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Résumeé

Dans les applications modernes des statistiques et de |'apprentissage machine, les prati-
ciens sont encouragés a produire de plus en plus de données, ce qui conduit souvent
a assouplir les techniques d'acquisition et a agréger des sources d'information diverses.
En conséquence, les analystes sont confrontés a de nombreuses imperfections dans les
données. En particulier, les données sont souvent hétérogénes, c'est-a-dire qu'elles com-
binent des informations quantitatives et qualitatives, incomplétes, avec des valeurs man-
quantes dues a des pannes de machines ou au phénoméne de non-réponse, et multi-
sources, lorsque les données résultent de I'agrégation de plusieurs sources de données.
Cela remet souvent en question les cadres classiques des statistiques et de |'apprentissage
machine, ol la plupart des résultats théoriques sont généralement spécifiques a des don-
nées numériques et complétes.

L'objet de cette thése est de développer de nouvelles méthodes d'analyse de telles
données multi-sources, hétérogénes et incomplétes. En particulier, nous cherchons a
prédire les données manquantes. Pour ce faire, nous développons un cadre complet
basé sur des modéles bas rang dans des familles exponentielles hétérogénes. Par rapport
aux travaux antérieurs, 'originalité de cette thése est qu'elle aborde simultanément les
phénomeénes de données multi-sources, hétérogénes et incomplétes, tandis que la plupart
des travaux existants ne traitent ces imperfections qu'une a la fois.

Les contributions de ce manuscrit consistent en deux grandes catégories de résul-
tats. Dans les trois premiers chapitres, nous nous concentrons sur |'imputation des don-
nées de comptage, en présence d'informations secondaires constituées de caractéristiques
quantitatives et qualitatives. Nous proposons un cadre combinant les modéles linéaires
généralisés et la complétion de matrice dans la famille exponentielle, afin de tirer parti
de l'information secondaire dans le processus d'imputation. Nous obtenons des garanties
statistiques pour notre méthode, fournissons un logiciel libre avec un tutoriel, et des éval-
uations empiriques. Nous appliquons également la méthode a un probléme d'écologie, et
estimons la tendance temporelle de la taille de la population de trois espéces d'oiseaux
d'eau.

Dans les chapitres 6, 7 et 8, nous nous concentrons sur |'imputation de données
multi-sources, hétérogénes et incomplétes. Nous introduisons un cadre trés général qui
incorpore comme cas particuliers plusieurs exemples d'intérét dans les applications. En-
core une fois, nous fournissons une étude théorique approfondie, un logiciel libre ainsi
qu'un tutoriel et des évaluations empiriques des méthodes proposées. Enfin, nous les util-
isons pour imputer un sous-échantillon d'un registre médical concernant les traumatisés
séveéres traités dans plusieurs hépitaux francais.






Abstract

In modern applications of statistics and machine learning, the urge of producing more
data often leads to relaxing acquisition techniques, and compounding diverse sources.
As a results, analysts are often confronted to many data imperfections. In particular,
data are often heterogeneous, i.e. combine quantitative and qualitative information,
incomplete, with missing values caused by machine failures or by the nonresponse phe-
nomenon, and multi-source, when the data result from the aggregation of several data
sets. One of the most important characteristics of these data imperfections is probably
that they often occur all together. This challenges the classical frameworks in statistics
and machine learning, where most theoretical results are usually specific to numeric and
complete data.

The subject of this dissertation is to develop new methods to analyze such multi-
source, heterogeneous and incomplete data. In particular, we seek to predict the missing
data. To do so, we develop a complete framework based on heterogeneous exponential
family low-rank models. Compared to prior work, the originality of this dissertation is that
it tackles multi-source, heterogeneous and incomplete data phenomenons simultaneously,
while most existing work only handle these imperfections one at a time.

The contributions of this manuscript consist in two main classes of methods. In the
first three chapters, we focus on the imputation of count data, in the presence of side
information consisting of quantitative and qualitative features. We propose a frame-
work combining generalized linear models and exponential family matrix completion, to
take advantage of the side information in the imputation process. We derive statistical
guarantees for our method, provide an open-source software with a tutorial, and empir-
ical evaluations. We also apply the method to a problem in ecology, and estimate the
temporal trend of the population size of three waterbird species

In Chapters 6, 7 and 8, we focus on the imputation of multi-source, heterogeneous
and incomplete data. We introduce a very general framework which incorporates as
special cases several examples of interest in applications. Again, we provide a thorough
theoretical study, an open-source software along with a tutorial, and empirical evaluations
of the proposed methods. Finally, we use them to impute a subsample of a severe trauma
registry from French hospitals.
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1; indicator vector of set I C [m], (1) =1 if k € I and 0 otherwise
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Chapter 1

Résumé a |I'intention des non
mathématiciens et
mathématiciennes

Une donnée, dans son sens le plus général, est ce qui est connu, et peut étre utilisé
afin d'élaborer un raisonnement, ou de déterminer la solution & un probléme (définition
du dictionnaire Larousse). Les données sont donc en quelque sorte la matiére premiére
a partir de laquelle on peut produire de I'information. D’ailleurs, on associe souvent
aux données |'adjectif brutes, pour indiquer qu'elles ne peuvent pas étre utilisées telles
quelles, mais doivent étre explorées, analysées, découpées, réduites, pour en extraire
une information compréhensible. Cet exercice de transformation de données brutes en
information, nous le pratiquons tous, tous les jours, lorsque nous reconnaissons des
visages, des objets ou des sons familiers a partir des données sensorielles qui parviennent
a notre cerveau. L'activité professionnelle de certains d'entre nous est également fondée
sur une expertise a extraire un certain type d'information d'un certain type de données.
Ainsi, un médecin produit un diagnostic, c'est-a-dire une information compréhensible,
a partir de résultats d'examens variés, qui représentent des données incompréhensibles
pour qui n'a pas recu de formation médicale.

Exemple introductif

Prenons un exemple concret. Lorsqu'une personne subit un traumatisme grave, suite
a une chute, un accident de voiture, etc., la principale cause de mortalité et morbidité
est |'apparition d'un choc hémorragique (Hamada et al., 2018). Un choc hémorragique
correspond a une forte diminution de la masse sanguine en circulation, qui entraine a son
tour une diminution de la distribution d'oxygéne et une chute du débit cardiaque, et donc
de potentielles séquelles, voire la mort (Cannon, 2018). La détection précoce du choc
hémorragique permet donc de mieux traiter les patients concernés et, dans certains cas,
d'éviter leur déceés. Pour cela, des médecins ont mis en place un protocole qui consiste
a mesurer sur les patients cing facteurs associés au choc hémorragique. Ensuite, selon
les valeurs observées, ils lancent, ou non, une alerte indiquant que le patient court un
risque élevé de connaitre un choc hémorragique. Les mesures effectuées concernent trois
facteurs quantitatifs, c'est-a-dire des nombres dont une valeur particuliérement faible
(ou particulierement élevée selon le facteur regardé) correspond a un risque de choc
hémorragique : I'indice de choc noté Sl (le rapport du rythme cardiaque sur la pression

21


https://www.larousse.fr/dictionnaires/francais/donn%C3%A9e/26436

artérielle systolique), le taux d'hémoglobine mesuré au moment de l'accident (Hb), et
la pression artérielle moyenne (calculée a partir des pressions artérielles systolique et
diastolique), notée MBP. lls mesurent également deux facteurs binaires, c'est-a-dire des
questions auxquelles la réponse est soit "oui" soit "non" : le patient a-t-il été intubé 7
Le patient souffre-t-il d'une fracture instable du bassin 7

En statistique, il s'agit d'un probléme de prédiction, qui consiste a prédire un trait non
observé, ici le choc hémorragique, a partir d'autres traits observés, ici l'indice de choc, le
taux d'hémoglobine, la pression artérielle moyenne, les fractures du bassin et intubations
éventuelles. Pour déterminer la procédure de prédiction, les médecins se basent sur des
données déja existantes. En effet, dans le passé, de nombreux patients ont été traités
pour des traumatismes graves, leurs caractéristiques ont été mesurée, et |'on sait si oui ou
non ils ont subi un choc hémorragique. Donc, les médecins vont chercher a déterminer
si, parmi les patients déja traités, ceux qui ont souffert d'un choc hémorragique se
différencient des autres par leurs caractéristiques. Et en effet, pour chacun des cing
facteurs étudiés, ils ont identifié des valeurs associées a un plus grand risque de choc
hémorragique : lorsque I'indice de choc Sl est plus grand que 1, le taux d'hémoglobine
Hb plus petit que 13g/dl (grammes par décilitre), la pression artérielle moyenne MBP
est plus petite que 7T0mmHg (millimétres de mercure), lorsque le patient a été intubé,
et lorsqu'il ou elle souffre d'une fracture instable du bassin. De plus, ils ont identifié que
le fait de lancer une alerte lorsqu'au moins deux de ces conditions étaient vérifiées en
méme temps permettait de détecter 85% des patients souffrant finalement d'un choc
hémorragique. En somme, a partir des résultats de nombreux examens effectués sur
les patients souffrant de traumatismes sévéres, ils produisent une information simple et
pertinente : une alarme qui se déclenche lorsque le patient a un risque élevé de choc
hémorragique.

Ainsi, lorsqu'un nouveau patient arrive, et pour lequel on ne sait pas encore si un
choc hémorragique va se déclencher, il suffit de vérifier si ses caractéristiques satisfont
les conditions pour le déclenchement de I'alerte. Pour cela, on peut en particulier utiliser
des outils visuels, qui consistent a représenter chaque individu sur des cartes, ou les
coordonnées correspondent aux facteurs quantitatifs mesurés (Hb, MBP, SI). Selon la
position des individus dans ces espaces, |'alerte sera ou non déclenchée. De telles cartes
sont représentées en Figure 1.1 pour des données synthétiques, c'est-a-dire qui ne cor-
respondent pas & des patients réels. Dans la Figure 1.1, chaque point correspond & un
(faux) individu. La couleur bleue indique que I'individu n'a pas eu de choc hémorrag-
ique, la couleur rouge indique la présence d'un choc hémorragique. Les quadrants gris
indiquent les zones dans lesquelles les individus satisfont les conditions pour le déclenche-
ment d'une alerte, c’est-a-dire ot deux des critéres détaillés plus haut (SI> 1, Hb< 13,
MBP< 70) sont vérifiés.

De maniére similaire, il existe des outils visuels permettant de représenter les informa-
tions binaires (fracture du bassin instable et intubation), comme le montre la Figure 1.2.
Dans ces deux graphiques, chaque point correspond a un individu. La position le long
de I'axe des abscisses indique la valeur prise par un facteur quantitatif (S| ou MBP)
et la forme (triangle ou rond) indique la valeur prise par une variable binaire (fracture
du bassin instable et intubation). La couleur bleue indique que I'individu n'a pas eu
de choc hémorragique, la couleur rouge indique la présence d'un choc hémorragique.
Les demi-espaces gris indiquent les zones dans lesquelles les individus satisfont le critére
concernant la variable quantitative. L'alerte est déclenchée pour les individus correspon-
dant aux triangles situés dans les zones grises. Comme indiqué dans |'étude originale
(Hamada et al., 2018), en déclenchant I'alerte pour tout nouveau patient qui se trouve
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Figure 1.1: Carte en deux dimensions des individus (points) selon les valeurs de leurs
trait quantitatifs. Les points bleus indiquent les individus n'ayant pas eu de choc hé-
morragique, les points rouges les individus ayant eu choc hémorragique. Les quadrants
gris indiquent les zones dans lesquelles les individus satisfont les conditions pour le dé-
clenchement d’une alerte.

dans |'un des quadrants gris de la Figure 1.1 ou correspondant & un triangle dans une
zone grise de la Figure 1.2 (toutes les configurations ne sont pas représentées), permet
de détecter 85% des chocs hémorragiques.

En réalité, I'exemple présenté ci-dessus repose sur trois hypothéses extrémement im-
portantes, qui ne sont pas vérifiées dans tous les problémes. Premiérement, il suppose
que I'on dispose d'information a priori sur le phénoméne que I'on cherche a décrire :
les cinq facteurs considérés ne sont pas pris au hasard, ils correspondent a des données
dont les médecins savent qu’elles sont liées au choc hémorragique. Dans de nombreux
exemples, en médecine et dans d'autres champs scientifiques, on ne dispose pas de telles
informations a priori. Ainsi, pour certaines maladies moins bien connues que les trau-
matismes sévéres, on ne connait pas forcément de facteurs, ou indicateurs, qui puissent
donner des informations sur |'apparition ou la progression de la maladie. Deuxiémement,
il suppose que |'on dispose de données sur des individus ayant été traités pour des trau-
matismes graves et des chocs hémorragiques dans le passé. C'est la disponibilité de ces
données qui permet de déterminer les critéres précis (Hb< 13, MBP< 70, SI> 1) a
regarder pour prédire le choc hémorragique, en fonction des valeurs prises dans le passé
par ces traits pour les patients souffrant de choc hémorragique d'une part, et les patients
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Figure 1.2: Représentation des individus selon un facteur quantitatif (Sl ou MBP) et un
facteur qualitatif (fracture du bassin instable ou intubation). Les individus correspondant
aux triangles situés dans les zones grises satisfont les conditions de déclenchement de
I'alerte.

ne souffrant pas de choc hémorragique d'autre part. Troisiémement, lorsqu’un nouveau
patient arrive, afin de déterminer si la procédure doit étre déclenchée ou non, il est
nécessaire de disposer d'un modeéle, ou d'un outil d'interprétation, tel que les représen-
tations graphiques des Figures 1.1 et 1.2. Ce modéle permet de synthétiser les données
récoltées, et de savoir ou se situe le nouveau patient dans |'espace caractérisé par les
traits concernés (Hb, MBP, SI, fracture du bassin, intubation).

Réduction de la dimensionnalité

Cependant, dans la plupart des problémes modernes en analyse de données, ces trois
hypothéses ne sont pas, ou seulement partiellement, vérifiees. D'abord, souvent, les
scientifiques ou analystes s'intéressent & un phénomeéne, tel que le développement d'une
maladie, |'évolution temporelle de la taille de population d'espéces, etc. pour lesquels
ils ne connaissent pas d'indicateur, variable, trait ou facteur, qui puissent les informer
sur la question posée : cela remet en question la premiére hypothése. Par exemple,
en étude génomique du cancer, ot I'on cherche a identifier des génes potentiellement
reliés au développement d'un cancer, on dispose en géneral de mesures faites pour des
milliers, voire des millions de génes, mais on ne sait pas lesquels sont pertinents pour le
type de cancer étudié. Il est évidemment impossible a un médecin d'émettre un avis a
partir de millions de mesures dont il ne sait pas lesquelles sont importantes. De méme,
en écologie, lorsque I'on cherche a surveiller une espéce (menacées, par exemple), on
dispose parfois d'une grande quantité d'information géographiques et météorologiques
sur son habitat et les activités anthropiques qui |'entoure, mais on ne sait pas toujours
lesquelles ont véritablement une influence sur la taille des populations. Cela conduit au
probléme que I'on appelle en statistique la réduction de la dimensionnalité : & partir d'un
grand nombre de variables (informations physiologiques sur un patient, météorologique
sur un certain site environnemental, etc.), peut-on produire un petit nombre d’'entre elles
qui soient associées au phénoméne auquel on s'intéresse (maladie, surveillance d'espéce,
etc.) 7

Ce probléme est illustré en Figure 1.3 a I'aide d'un exemple fictif. Dans cet exemple,
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on s'intéresse a trois caractéristiques dans une population d'individus: la taille, le poids,
et & un trait qualitatif dont on cherche & distinguer les individus qui le possédent de
ceux qui ne le possédent pas. Ce trait peut correspondre, par exemple, a la présence
d'une maladie, ou d'un symptéme particulier. Dans la figure Figure 1.3a, on représente
les individus (un point par individu) dans un plan ot les coordonnées correspondent a la
taille pour I'abscisse et au poids pour I'ordonnée. La couleur du point indique la présence
du trait, avec du bleu lorsque I'individu posséde le trait particulier (maladie, etc.), et du
rouge sinon. Cette représentation est en deux dimensions géométriques, puisque chaque
individu est caractérisé par sa taille d'une part, et son poids d'autre part. Cependant,
il est trés clair visuellement que le nuage de point suit une structure particuliére, avec
une relation linéaire entre le poids et la taille. La droite noire représentée en Figure 1.3a
représente cette relation linéaire, et indique la direction selon laquelle on observe le plus
de variabilité entre les individus : le nuage de points est le plus "étalé" le long de cette
direction. De plus, le long de cette droite, on observe que les individus possédant le trait
considéré (les points bleus), se trouvent en amont, c'est-a-dire plus proches de |'origine
correspondant a un poids et une taille de zero, que les individus ne possédant pas ce
trait (les points rouges). Cela conduit a la réflexion suivante : il n'est pas nécessaire de
renseigner le poids et la taille de chaque individu, mais seulement leur position le long de
cette droite. Cela revient a créer une "variable résumé", qui rassemble a I'information
importante contenue dans le poids, et I'information importante contenue dans la taille.
Ce type de transformation est dans le méme esprit que la constructions de l'indice de
masse corporelle (IMC) par exemple. Plutét que de conserver deux nombres (poids et
taille) pour chaque individu, on construit une troisiéme variable qui les résume. Ainsi,
on obtient le graphe unidimensionnel de la Figure 1.3b, ot chaque individu est placé le
long d'une droite correspondant a la variable résumé. Il s'agit bien d'une réduction de la
dimensionnalité, puisque I'on est passé d'une représentation en deux dimensions, a une
représentation en une seule dimension.

65.0
Présence Présence
trait R o trait
« oui « oui
« non * non

55.0

165 1_70 175 87.5 90.0 X 925 95.0 97.5
taille variable résumé

(a) Représentation des individus en fonction de (b) Représentation des individus selon leur posi-
leur poids et leur taille. tionnement sur la droite noire de la Figure 1.3a.

Figure 1.3: Réduction de la dimensionnalité pour une collection de données concernant
le poids, la taille, et la présence d'un trait d'intérét (maladie, etc.) dans un échantillon
d'individus. Chaque point représente un individu, et la couleur indique la présence du
trait étudié (maladie, etc.). Les individus bleus possédent le trait, les individus bleus ne
possédent pas le trait. La droite en noir sur la Figure 1.3a indique la direction du plan
selon laquelle on observe le plus de variabilité.

Dans cet exemple simple, |'utilité d'une telle réduction de la dimensionnalité n'est

25



pas évidente, puisque le graphique 1.3a est déja relativement interprétable tel quel.
Cependant, elle apparait clairement lorsque I'on analyse des données oti de nombreuses
variables ont été mesurées sur chaque patient. Considérons par exemple un jeu de don-
nées publiques provenant d'une étude médicale sur le diabéte chez les indiennes Pima
(Newman et al., 1998) disponible dans le package R mlbench (Leisch and Dimitriadou,
2010). Un extrait du jeu de données est présenté en Table 1.1. Les variables mesurées
sont le nombre de fois ol la personne est tombée enceinte, le taux de glucose, la pres-
sion artérielle diastolique, I'épaisseur du pli cutané du triceps, l'insuline sérique, |'indice
de masse corporelle, la fonction pédigrée du diabéte (information sur les antécédents
familiaux concernant le diabéte), I'age, et enfin, la présence du diabéte. Une question
possible est de savoir si ces variables mesurées sont liées au diabéte, et donc permettrait
par exemple de prédire, pour une nouvelle personne, ses chances d'étre diabétique. L'un
des problémes rencontrés dans |'analyse de ces données est qu'en raison du nombre de
variables (sept caractéristiques quantitatives et un trait binaire, le diabéte), il est difficile
de visualiser les individus dans I'espace comme dans les exemples précédents.

enceinte glucose pression triceps insuline masse pedigree age diabetes

1 6 148 72 35 0 336 0.63 50 pos
2 1 85 66 29 0 266 0.35 31 neg
3 8 183 64 0 0 233 0.67 32 pos
4 1 89 66 23 94 281 0.17 21 neg
5 0 137 40 35 168 431 229 33 pos
6 5 116 74 0 0 256 0.2 30 neg

Table 1.1: Extrait d'un jeu de données concernant le diabéte chez les indiennes Pima.

Cependant, a I'aide de méthodes de réduction de dimensionnalité, on peut produire,
a partir des septs variables quantitatives mesurées, un petit nombre de variables résumé,
par exemple deux ou trois, qui peuvent a leur tour étre utilisées pour visualiser les
données en deux ou trois dimensions. La méthode de réduction de dimensionnalité
la plus ancienne et la plus répandue est |'analyse en composante principales, ou ACP,
(Pearson, 1901; Hotelling, 1933), qui consiste a chercher des directions orthogonales
selon lesquelles les points sont les plus variables (comme la droite en Figure 1.3a). Une
telle représentation est montrée en Figure 1.4, ou chaque femme présente dans le jeu
de données est indiquée par un point dont les coordonnées sont les valeurs que prend
chaque personne pour de nouvelles "variables résumé" calculée en utilisant I'ACP a partir
des sept variables quantitatives données dans la Table 1.1.

Une telle représentation présente plusieurs intéréts. D'abord, elle facilite I'analyse
et l'interprétation en permettant de visualiser les données dans I'espace plutét que sous
la forme d'un tableau (cf. Table 1.1) : elle permet de confirmer que les variables
mesurées sont bien liées au diabéte, puisque I'on observe clairement que les femmes
atteintes de diabétes sont séparées de celles ne souffrant pas de diabéte dans cet espace.
Ensuite, elle a un intérét computationnel, puisqu'il suffit ensuite de garder en mémoires
les coordonnées des individus selon trois axes, au lieu des sept variables initiales; cela
allége également le coiit des calculs. Ce dernier point est encore plus important dans
les cas ot des milliers voire des millions de caractéristiques sont mesurées sur chaque
personne, comme en génomique par exemple. Notons que l'analyste a la possibilité
de choisir le nombre de dimensions qu'il veut conserver, deux, trois ou plus selon ses
besoins, et tant que ce nombre ne dépasse pas le nombre de variables initial. Le nombre
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Diabéte

Figure 1.4: Représentation en deux (droite) et trois (gauche) dimensions du jeu de
données sur le diabéte des indiennes Pima a I'aide de I'ACP.

de dimensions conservées s'appelle le rang. Dans cette thése, nous développons des
méthodes dites de rang faible, c'est-a-dire des méthodes qui permettent de produire un
petit nombre de nouvelles variables importantes a partir d'un grand nombre de variables
initiales, afin de visualiser et analyser les données plus facilement.

Données multi-sources

Depuis environ une dizaine d'années, et dans de nombreux champs scientifiques, la
quantité et la complexité des données disponibles, entrainée par le développement de
techniques d'acquisitions de plus en plus efficaces et de moins en moins coliteuses, a
explosé. En paralléle, les méthodes d'apprentissage automatique, qui apprennent a ré-
soudre des taches a partir de données, par exemple & prédire la présence d'une maladie
a partir de caractéristiques des individus, se sont développées rapidement. En partic-
ulier, I'efficacité de ces méthodes d'apprentissage grandit avec le nombre de données
disponibles. Par exemple, supposons que |'on cherche a prédire si des individus souffrent
d'une maladie, a partir de certaines de leurs caractéristiques, et a partir de données con-
cernant des patients déja diagnostiqués. Dans ce cas, |'erreur de prédiction, c'est-a-dire
le nombre de patients pour lequel on prédit qu'ils sont malades alors qu'ils ne le sont pas,
ou l'inverse, va avoir tendance a diminuer avec le nombre de patients déja diagnostiqués
inclus dans I'étude. Ainsi, la Figure 1.5 représente I'erreur de prédiction d'une méthode
d'apprentissage en fonction du nombre d'individus pour lesquels le diagnostic est déja
connu : cette erreur diminue lorsque le nombre d'individus augmente, pour se stabiliser
a une erreur minimale se trouvant autour de 10%.

Pour cette raison, les analystes sont poussés a chercher & augmenter la quantité de
données disponibles, afin de fournir de meilleures résultats. Cela passe, par exemple, par
la mise en commun de jeux de données. Ainsi, il est fréquent dans les études médicales
ou sociales, que les individus proviennent de plusieurs hépitaux, plusieurs écoles, plusieurs
villes, etc. C'est ce que I'on appelle des données multi-sources. De facon générale, la
mise en commun des données doit permettre d’améliorer les performances des méthodes
d'apprentissage, en accroissant les bases de données. Cependant, il peut arriver que
cette mise en commun détériore en réalité les résultats obtenus, en particulier lorsque
les différentes sources (hopitaux, écoles, etc.) présente une forte hétérogéneité. Par
exemple, en raison de disparités géographiques ou démographiques, il arrive que les
individus provenant de deux hdpitaux distincts aient des caractéristiques trés différentes.
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Figure 1.5: Erreur de prédiction d'une méthode d'apprentissage en fonction du nombre
d'individus inclus dans la base de données d'entrainement.
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Figure 1.6: Représentations en deux dimensions d'individus en fonction de leur taille et
leur poids, pour des individus issus de deux groupes différents (deux sources). La couleur
indique la présence d'un trait binaire d'intérét (la présence d'une maladie par exemple).

Dans ce cas, chercher a décrire les deux populations dans une seule et méme analyse peut
mener a |'échec. Pour le voir, reprenons |'exemple du jeu de données contenant le poids
et la taille d'individus, ainsi qu'un trait binaire (maladie par exemple). Cependant, cette
fois, nous considérons deux jeux de données correspondant a deux hopitaux différents,
et nous introduisons de |'hétérogénéité entre les individus des deux hoépitaux, comme
présenté en Figure 1.6, ou la présence du trait binaire ne se répartit pas de la méme
facon entre les individus du premier hépital (graphique de gauche), et ceux du deuxiéme
hépital (graphique de droite).

A partir de ces deux jeux de données, on peut comparer les résultats d'une méthode
d'apprentissage (une régression logistique) entrainée sur chacun des jeux de données
séparément, ou sur la combinaison des deux. On obtient les résultats suivants : en
entrainant la méthode séparément sur les deux jeux de données, le bon diagnostic est
effectué dans 99.2% des cas pour le premier jeu de données (figure de gauche), et dans
96.8% des cas pour le deuxiéme jeu de données (figure de droite); en revanche lorsque
la méthode est entrainée sur la mise en commun des jeux de données, on obtient le
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bon diagnostic dans seulement 92.4% des cas. Ce résultat trés simple montre que, si
I'aggrégation de données permet en théorie d'obtenir des méthodes plus performantes,
il est crucial de prendre en compte I'hétérogénéité des différentes sources de données.
Les méthodes de rang faible développées dans cette thése sont concues pour prendre en
compte ces différences possibles entre plusieurs sources de données, afin de pouvoir les
agréger et bénéficier de davantage de données, sans risquer de détériorer les performances
si les sources sont trop différentes.

Données hétérogenes

Jusqu'ici nous avons présenté des exemples ou les variables utilisées dans la réduc-
tion de dimensionnalité étaient des variables quantitatives. En effet, nous avons re-
gardé des traits binaires tels que la présence d'un choc hémorragique ou de diabéte,
mais nous cherchions a prédire ces traits, et les "variables résumé" étaient calculées
uniquement a partir des variables quantitatives. Or, dans plusieurs applications d'intérét
pour cette thése, les données contiennent des variables quantitatives et qualitatives, que
I'on cherche a analyser simultanément. Par exemple, le jeu de données Traumabase
(http://www.traumabase.eu/fr_FR), contient des informations concernant des pa-
tients polytraumatisés, dont des informations quantitatives telles que le temps passé en
réanimation, mais aussi des informations qualitatives, telles que le type d'accident. Par
ailleurs, les données sont multi-sources, puisque les patients proviennent de plusieurs
hépitaux francais (Bicétre, Pitié Salpétriere, etc.). Le jeu de données contient aussi de
nombreuses données manquantes, indiquées par "NA" : ce point sera détaillé dans la
section suivante.

Centre Radio poumons  Radio bassin  Accident Temps en réa (h)
Bicétre NA Normal Chute d'une hauteur NA

HEGP NA NA Chute d'une hauteur 2

Pitié Salpétriere NA NA Accident piéton-voiture NA

Lille Normal NA Chute d'une hauteur 2

Beaujon NA NA Chute de sa hauteur NA

Lille NA NA Chute de sa hauteur NA

Table 1.2: Extrait de jeu de données Traumabase.

Ce type de données contenant un mélange d'informations quantitatives et qualitatives
est qualifié d'hétérogénes, ou de mixtes (Pagés, 2004). Le caractére hétérogéne des
données est essentiel, car la plupart des méthodes visant a réduire la dimension des
données sont géométriques, et ne peuvent pas étre appliquées directement a des données
qualitatives. Considérons I'exemple de la Figure 1.7, déja analysée plus haut.

L'analyse en composante principales permet de trouver une "variable résumé"-la
droite noire de la Figure 1.7a—3a partir de rotations des variables initiales. C'est-a-dire que,
partant de la Figure 1.7a, on cherche a tourner les axes des abscisses et des ordonnées,
jusqu'a trouver la direction selon laquelle les points sont les plus variables (les plus
étalés). Cela conduit au graphe Figure 1.7b, on I'on n'a plus qu'une seule dimension
quantitative (I'axe des abscisses de la Figure 1.7b), et une information qualitative :
la présence d'un certain trait, indiquée par la couleur des points. Supposons qu'on
veuille encore réduire la dimensionnalité de nos données et ne plus garder, pour chaque
point, qu'une seule caractéristique qui résume a la fois la variable quantitative (qui
résume déja le poids et la taille), et la couleur des points. On ne peut pas appliquer
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(a) Représentation des individus en fonction de (b) Représentation des individus selon leur posi-
leur poids et leur taille. tionnement sur la droite noire de la Figure 1.3a.

Figure 1.7: Réduction de la dimensionnalité pour une collection de données concernant
le poids, la taille, et la présence d'un trait d'intérét (maladie, etc.) dans un échantillon
d'individus. Chaque point représente un individu, et la couleur indique la présence du
trait étudié (maladie, etc.). Les individus bleus possédent le trait, les individus bleus ne
possédent pas le trait. La droite en noir sur la figure de gauche indique la direction du
plan selon laquelle on observe le plus de variabilité.

directement la méme méthode que pour passer de Figure 1.7a & Figure 1.7b. En effet,
la notion de rotation est fondamentalement géométrique, et ne s'applique pas a un trait
binaire tel que la couleur bleue ou rouge. Ainsi, pour pouvoir appliquer des méthodes de
réduction de dimensionnalité a des données hétérogénes, il est nécessaire de développer
des alternatives a celles qui existent déja pour les données quantitatives. De telles
méthodes ont été proposé dans le passé, mais elles souffrent de certaines limites, soit
car elles ne prennent pas en compte le caractére multi-source des données, soit parce
qu'elle ne disposent pas de garanties théoriques. Dans cette thése, nous proposons des
méthodes de réduction de dimension, qui s'adaptent a des données multi-sources et
hétérogénes, et nous prouvons plusieurs résultats théoriques, qui garantissent |'efficacité
des méthodes, sous des conditions qui sont vérifiées dans la plupart des cas qui nous
intéressent.

Données incompleétes

Pour définir les contours du sujet de cette thése, il reste & discuter le phénoméne
des données incomplétes, ou manquantes. En effet, comme on I'a déja entrevu avec
I'exemple de la Traumabase en Table 1.2, il est courant, dans les applications modernes
de |'apprentissage statistique, qu'une partie des données nécessaires pour |'application
des méthodes classiques ne soit pas disponible. Par exemple, dans la Table 1.2, on voit
que certaines caractéristiques n'ont pas été mesurées pour certains patients; c'est ce
qu'indiquent les cases contenant "NA" (Non Applicable). Ces cases non remplies sont
appelées données manquantes, et les jeux de données contenant de telles données man-
quantes, des données incomplétes. Ce phénoméne apparait dans la quasi-totalité des
applications des statistiques et de |'apprentissage. Par exemple, en médecine, et partic-
ulierement dans la médecine d'urgence telle que le traitement des traumatisés séveres, il
est rares que toutes les mémes mesures puissent étre effectuées sur tous les patients. En
effet, le manque de temps ou la gravité de I'état du patient conduit souvent a ne pas ren-
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Figure 1.8: Deux canards milouin (Aythya ferina).

seigner |'intégralité des caractéristiques supposées étre contenur dans la base de données.
En statistiques sociales, lorsque |'on interroge des individus a I'aide de questionnaires, il
arrive trés réguliérement que certains d’'entre eux ne souhaitent pas répondre a toutes
les questions, en particulier lorsque le questionnaire contient des sujets sensibles comme
les revenus, la consommation de drogues ou les pratiques sexuelles. Enfin, il arrive que
certaines données ne soient tout simplement pas accessibles.

Par exemple, en écologie, afin de surveiller la taille des populations d'espéces, des
écologues et des personnes volontaires se déplacent sur différents sites, pour compter les
individus présents. Ainsi, dans le cadre de la surveillance des oiseaux d’eau migrateurs en
Afrique du Nord, plusieurs instituts dont le Mediterranean Waterbirds Network (MNW),
Groupe de Recherche pour la Protection des Oiseaux au Maroc/BirdLife Morocco, la
Direction Générale des Foréts (Algérie), |'Association "les Amis des Oiseaux"/BirdLife
(Tunisie), la Libyan Society for Birds, I'Egyptian Environment Affairs Agency, I'Office
National de la Chasse et de la Faune Sauvage (ONCFS, France), et l'institut de la Tour du
Valat (France), organisent annuellement le comptage de plusieurs espéces d'oiseaux d'eau
dans 785 sites répartis en Afrique du Nord. Le but est, pour chaque espéce, d'estimer
le nombre d'oiseaux présents dans toute la région, afin de déterminer quelles espéces
sont stables, et lesquelles sont en déclin. Pour compter I'intégralité des populations,
il faut en théorie visiter chaque site tous les ans : si un site majeur est manqué, on
risque de grandement sous-évaluer ou sur-évaluer la taille de la population. Cependant,
pour des raisons financiéres et politques, il est impossible de visiter chaque site chaque
année. Ainsi, le jeu de données disponible est en réalité grandement incomplet. Ce
phénomeéne est illustré en Table 1.3, ol est montré un extrait du jeu de données résultant
du comptage des oiseaux d'eau en Afrique du Nord pour une espéce particuliére : le
canard milouin (Aythya ferina), dont une photo est montrée en Figure 1.8.

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Site 1 0 0 0 0 0 NA 5 0 NA 0 0 0 0 0 0 0 0 0
Site 2 0 0 0 0 0 0 23 8 4 50 25 126 0 0 0 12 4 2
Site3 NA NA NA NA NA NA NA 0 NA 0 0 9 0 0 0 0 0 0
Site4 NA NA NA NA NA NA NA NA NA~ NA NA NA NA NA 0 0 0
Site5 NA  NA NA NA NA NA NA 12 NA NA NA NA NA NA NA 0 20 102
Site6 782 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.3: Extrait du jeu de données de comptage du canard milouin en Afrique du Nord.

Dans la Table 1.3, on voit que, dans de nombreux cas, des sites n'ont pas pu étre vis-
ités : ils sont indiqués par "NA". En théorie le but est, a partir du tableau d’abondances
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Figure 1.9: Prédiction d'une donnée manquante en utilisant la réduction de dimension.

dont un extrait est montré en Table 1.3, de calculer la somme des comptes observés
dans tous les sites, par année, pour voir |'évolution temporelle de |I'abondance totale
du canard milouin. Malheureusement, ce n'est pas possible directement en raison des
données manquantes.

Cependant, encore une fois, les méthodes de réduction de dimensionnalité permettent
de pallier ce probléme. Prenons I'exemple de la Figure 1.9. Ici, les deux coordonées (taille
et poids) sont observés pour tous les individus sauf un, indiqué par une croix noire, pour
lequel on ne dispose que de la taille. Cependant, grace aux individus dont on connait
toutes les caractéristiques, on peut calculer la position de la droite noire, qui correspond
toujours a la méme variable, résumant la taille et le poids. Ainsi, pour I'individu dont on
ne connait pas le poids, on peut le prédire, a I'aide de sa taille et de la direction calculée,
comme indiqué par les segments et les croix vertes. Le fait de prédire les données
manquantes est également appelé, en statistique, |'imputation de données manquantes.

Ici également, la méthode utilisée repose sur le caractére quantitatif des données.
Cependant, dans les données d'abondance du canard milouin, les données sont discrétes,
puisqu'il s'agit de nombre entiers. Dans le cas des données médicales de la Traum-
abase, les données sont hétérogénes. Dans cette thése, nous développons des méthodes
d'imputation de données manquantes, qui permettent d'imputer des données quantita-
tives, qualitatives et discrétes, qui peuvent également étre multi-sources, comme discuté
dans la section précédente. Ces méthodes sont utilisées pour imputer le jeu de données
contenant les abondances d'oiseaux d'eau, et déterminer, pour trois espéces différentes,
I'évolution temporelle de la taille des populations. Par ailleurs, elles sont également
appliquées a l'imputation d'un extrait de la Traumabase contenant des informations
hétérogénes sur des patients souffrant de traumatisme cranien.

Résultats de la these

Aprés avoir situé le travail effectué dans cette thése dans son contexte statistique et
applicatif, nous pouvons a présent résumer les résultats obtenus. Ce manuscrit contient
quatre types de contributions. Premiérement, nous proposons des méthodes de bas rang
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pour |'imputation de données multi-sources, hétérogénes et incomplétes, qui permettent
de prédire les données manquantes dans tous les cas de figures discutés précédemment.
Deuxiémement, nous prouvons, sous la forme de plusieurs théorémes, que les méthodes
proposées sont efficaces sous des conditions réalistes. En particulier, nous prouvons des
résultats de la forme suivante. Supposons qu'une donnée n'a pas été observée, par exem-
ple le nombre de canards dans un certain site. Supposons que, si elle avait été observée,
elle prendrait la valeur 3, c'est-a-dire si quelqu'un avait pu se déplacer pour compter le
nombre de canards, il aurait compté y canards. Alors, sous certaines conditions tech-
niques réalistes, en utilisant nos méthodes d'imputation de données manquantes, on
prédit pour cette donnée non observée une valeur ¢ qui satisfait:

(y—9)<d,et(y—y) <o

c'est-a-dire que la donnée prédite est proche de la vraie donnée, et I'erreur est d'au
plus une quantité ¢, dont on prouve également qu'elle est optimale, c'est-a-dire qu'il est
impossible de faire mieux. Troisiémement, nous distribuons les méthodes proposées sous
la forme de deux logiciels publics disponibles en ligne. Le premier logiciel, appelé lori
(https://CRAN.R-project.org/package=lori), permet d'imputer des données de
comptes, telles que les données d'abondance d'oiseaux présentées en Table 1.3. Le deux-
iéme logiciel, appelé mimi (https://CRAN.R-project.org/package=mimi), permet
d'imputer des données hétérogenes, telles que les données de la Traumabase présentées
en Table 1.2. Enfin, nous présentons un certains nombre d'expériences empiriques, qui
évaluent les performances pratiques des logiciels lori et mimi. Nous montrons qu'ils se
comparent globalement de fac favorable aux techniques existentes, et mettons en valeurs
les cas de figure oul ces techniques sont supérieures aux méthodes existantes. Ainsi, nous
proposons un cadre complet, avec des résultats théoriques et empiriques, ainsi que des
logiciels réutilisables, pour I'imputation de données multi-sources, hétérogénes et incom-
plétes, a I'aide de méthodes de bas rang.
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2.1 Low-rank data tables

In statistics and machine learning, the most natural way to store data is usually to
arrange them in tables, where rows correspond to examples or individuals, and columns
to attributes. Organizing data in such a way is convenient but, in practice, confronts
analysts to data imperfections. Indeed, through the data collection process, it is common
that some information is missed, because of machine failures, lack of resources, or
simply because individuals do not wish to provide it. For this reason, as data tables are
filled, some of their entries remain empty. In ecology for instance, monitored species
are counted at regular time intervals in multiple ecological sites (Choler, 2005; Peres-
Neto et al., 2016; Sayoud et al., 2017). This process is costly, and requires to visit
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remote locations. Thus, at time points when the economical or political situations are
not favorable-which happens regularly—some of the sites are not sampled. In species
abundance tables, such events result in missing values. In addition, data tables are
flat by definition, and put on the same level attributes of different types which cannot
be straightforwardly compared. For example, in social surveys (Heeringa et al., 2010,
Chapters 5 and 6), individuals are asked to provide quantitative information (such as
income, rent, etc.), as well as qualitative attributes (employment and marital status,
etc.). These heterogenous data tables are difficult to analyze as such. Missingness and
heterogeneity may also result from the compounding of several data sources, as data
aggregation is often seen as an opportunity to increase statistical power. Recently, the
promise of personalized medicine has encouraged hospitals to centralize electronic health
records (EHR), in order to increase the chance of finding patients with similar profiles.
Thus, an essential characteristic of EHR is that they are often multi-source, as registries
contain patients coming from multiple hospitals. When practices are not standardized,
aggregating hospital data may produce heterogeneity and missing values. For example,
it is common that two different hospitals resort to different examinations to obtain the
same information.

The most important aspect of such data imperfections is probably that they often
happen all together. In ecology, incomplete abundance tables are usually supplemented
by geographical and meteorological information about the sites and time points where
species were counted; this side information is often retrospectively scrapped from the
web, and may contain quantitative and qualitative attributes. For instance, the average
rainfall, a numerical variable, and the country where the sites are located, a categorical
feature. Similarly, in recommendation systems, categorical ratings are collected together
with users and items attributes, which may be of different types (Agarwal et al., 2011).
Furthermore, in this application, only a small proportion of ratings are observed, and
the goal is usually to predict the missing entries. In the medical field, in addition to
being multi-source, EHR contain quantitative clinical features like blood pressure and
physiological measurements, as well as categorical information like gender, disease stage,
type of accident, etc. (Murdoch and Detsky, 2013); EHR are also often incomplete, since
not all measurements are made on all patients.

In all these applications, an essential challenge is to compute effective data table
summaries, with the objective in mind to use them to assess relationships between
variables of different types, and to predict missing values. To do so, statisticians have
exploited the mathematical counterpart of data tables: matrices. In particular, data
tables may be approximated by low-rank matrices, whose rows and columns lie in low-
dimensional vector spaces. Low-rank approximation methods have been extensively used
for tasks such as visualization, clustering, and missing values imputation. The most
famous example is probably Principal Component Analysis (PCA), invented by Pearson
(1901) and formalized by Hotelling (1933). Since then, a jungle of extensions were
proposed, to adapt PCA—which is designed for quantitative numeric data—to more general
data types and structures (Greenacre, 1984; Kiers, 1991; Collins et al., 2001; de Leeuw,
2006; Zou et al., 2006; Mohamed et al., 2009; Xu et al., 2010; Candés et al., 2011; Li
and Tao, 2013; Mardani et al., 2013; Kateri, 2014; Hastie et al., 2015; Pagés, 2015; Liu
et al., 2016; Udell et al., 2016).

In this dissertation, we are concerned with the analysis of multi-source, heterogeneous
and incomplete data tables. In particular, through two practical problems: the analysis
of a waterbird abundance data set and of a severe trauma registry. To do so, we develop
new tools based on low-rank models, and adapted to multi-source, heterogeneous and
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incomplete data. Before introducing some background on low-rank methods, we present
two motivating examples inspired by collaborations with the Tour du Valat institute and
the Traumabase group.

2.1.1 Waterbird monitoring

Waterbirds are defined as the families of bird species who depend upon wetland sites
for at least part of their life cycle, for instance through food, habitat, or breeding. The
monitoring of waterbirds has been a global concern for at least 50 years, when Wetlands
International (www.wetlands.org), a global organization dedicated to the conservation
and restoration of wetlands, launched the first International Waterbird Census (IWC) in
1967. In these censuses, birds are counted synchronously in over 25,000 wetland sites in
more than 100 countries, to monitor the population sizes and the changes in the number
and distribution of waterbirds. One of the objectives is to provide information to global
conservation organizations; this may have an impact on regulatory measures at national
and international levels.

In this respect, a major challenge is to analyze such bird census data at flyway
or regional scales, including in areas where there may be gaps in the temporal or site
sampling schemes. North Africa in particular is a region of major importance, as it
acts as a last stopover for migratory waterbirds before they cross the Sahara or the
Mediterranean Sea. In this region, before 2013, abundance data have been collected
partially, without any coordination across countries. Since 2013, waterbirds monitoring
in North-Africa is conducted through coordinated region-wide censuses (Sayoud et al.,
2017). In particual, Sayoud et al. (2017) revealed how to reduce census cost by focusing
on important sites, assessed the effectiveness of conservation policies, and detected
environmental predictors related to waterbird distributional ecology. However, waterbird
monitoring data at this regional scale were not yet analyzed across more than one year.
Because of the irregular spatial coverage, imputation of nonexistent count data is a
challenge of major importance in this application.

The first contributions presented in this dissertation are motivated by the analysis
of a waterbird abundance data set, which gathers waterbird counts across 785 wetland
sites (across the 5 countries in North Africa), between 1990 and 2017. For political and
financial reasons, not all wetland sites could be visited every year, and thus there are
many missing values in this data set (between 40% and 60% depending on the species).
The final goal is to estimate the temporal trends over all sites, in order to identify
declining species. We approach this task with a missing values imputation perspective:
we seek to predict the unobserved counts before computing estimated yearly totals. The
originality of the approach compared to existing imputation methods, is that we use side
information concerning the sites and years (such as meteorological anomalies, latitude
and longitude, distance to the closest urban center) to improve the predictions. As a
result, in the process, we also estimate the effect of geographical and meteorological
covariates on the bird counts. This is also interesting in itself, for example to detect
environmental factors which may be adverse to some of the species. The general model
and procedure are described in Chapter 3, the analysis of the waterbird data set in
Chapter 4, and an R (R Core Team, 2017) tutorial in Chapter 5.
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2.1.2 Multi-center major trauma registry

Major trauma is defined as any injury that can cause prolonged disability or death. It has
been pointed out by the World Health Organization (https://www.who.int/home) as
a major cause of handicap and mortality on a global scale (Hay, 2017). It has also been
shown that management of major trauma based on standardized and protocol-based
care improves prognosis of patients (David JS, 2018; Rossaint et al., 2016). But before
evaluating the care process, a first inevitable step is to collect reliable data that describe
it. To do so, in France, the Traumabase Group (http://www.traumabase.eu/en_US)
maintains a national observatory of major trauma. Since 2012, fifteen French trauma
centers have contributed to the data base, which now contains information on more than
20,000 patients from admission until discharge from critical care.

The resulting data set can be seen as an aggregation of smaller data sets coming
from multiple centers. In addition, a broad heterogeneity of trauma care processes
across French hospitals has been reported in existing studies (Hamada et al., 2015;
Jouffroy et al., 2018). Thus, it is crucial to take into account the multi-center, or
multilevel structure of the Traumabase. Furthermore, another distinctive characteristic
of the Traumabase is that it contains mixed data, i.e. both qualitative and quantitative
variables. For example, the systolic and diastolic blood pressures are numeric variables
(measured in millimeters of mercury mmHg). The variable indicating the type of accident
(fall, car accident, gun shot, etc.), on the other hand, is qualitative. The time passed
between the accident and arrival at the hospital, measured in hours, is a discrete variable.
Finally, many entries are missing in the data set.

From a clinical point of view, there are several important questions such as finding
predictors of morbidity and mortality, to describe the strategies deployed in major trauma
care, and to develop decision support tools. From a statistical point of view, these
challenges involve, e.g., performing predictive models, exploratory data analysis, and
causal inference, all of this with missing values. In this problem too, missing values
imputation is a flexible and attractive option, as one may apply any statistical method
once the data set is complete (although care must be taken if the imputation is single),
instead of adapting every model to an incomplete framework. Thus, the second part of
our contributions is focused on providing methods to impute multilevel mixed data. The
first method, presented in Chapter 8, is based on multilevel singular value decomposition
(SVD). The second method, presented in Chapter 6, is an alternative based on a general
probabilistic model. This second method is implemented in an R package for which we
provide a tutorial in Chapter 7.

2.1.3 Why are low-rank models relevant?

To see it, we need some general background on low-rank matrices. The rank of a matrix
X € R"™*™2 is defined as the dimension of the vector space generated by its columns,
or rows. Indeed, it can be proved that the row and column spaces are in fact of the
same dimension. Along this dissertation, we will denote the rank of X by rank(X).
The matrix X is said to be of low-rank if rank(X) is small compared to the dimensions
my and msy. Usually, small compared to m and msy means smaller than a predefined
integer rmax < min (mq, ms).
If X € R™>™2 s of rank r, then, it can be factorized as follows:

Y =UDV', (2.1)
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where U € R™*" and V' € R™2*" are orthonormal matrices, and D € R"*" is diagonal
with nonnegative entries. Decomposition (2.1) is called the singular value decomposition
(SVD) of X. The matrices U and V' contain singular vectors of Y, and the diagonal
matrix D contains the singular values of Y. The SVD of Y, which generalizes eigen-
decompositions to rectangular matrices, is given by the triplet of matrices (U, D, V).
From factorization (2.1), it results that X can be represented using r(m; + mg — 1)
parameters. Indeed, the free parameters consist in r nonnegative values, r orthonor-
mal directions in R™ (U), and r orthonormal directions in R™2 (V). The number
of free parameters in U is (m; — 1) + ...+ (my; —r) = rmy — r*/2 — r /2, since for
k € [r], the column U j is constrained to have a unitary norm, and to be orthog-
onal to the (k — 1) previous ones. Similarly, the number of free parameters in V' is
(mg — 1)+ ...+ (mg —r) = rmg — r? — r/2. Finally, the number of free parameters
in D is 7.

Thus, in parametric models with matrix parameters, the rank controls the complexity
of a model, through the number of free parameters involved. Consider a data matrix Y
with m; rows and msy columns. Low-rank methods rely on the assumption that Y can
be well approximated by a matrix X° of low-rank. For example, in this dissertation, we
will consider models of the form:

Y = F(X"), (2.2)

where F : R™>*™2 — R™X™2 is 3 matrix-valued function and may have a stochastic
component. In this case, a low-rank method aims at estimating the underlying matrix
X", from the noisy and/or incomplete observations Y, subject to a rank constraint. If r
is small enough, approximating a full-rank data matrix Y by a rank-r matrix can reduce
dramatically the storage and computational costs. Furthermore, in matrix estimation
problems, the number of parameters to estimate is m,m5, and the number of observed
values is equal to mims, or smaller when the data matrix has missing entries. In high-
dimensional statistics jargon, this corresponds to a "p > n" problem, where constraints
on the parameter space are usually made. In this respect, the low-rank assumption can
be seen as an equivalent of the bet on sparsity principle (Hastie et al., 2015, Chapter 1)-
which is usually endorsed for vector parameters—for matrix parameters. To back up these
popular low-rank models, recent works provided evidence that a vast class of matrices
are well approximated by a low-rank counterpart (Alon et al., 2013; Chatterjee, 2015;
Udell and Townsend, 2018). Finally, factorization (2.1) also has the advantage of easily
providing interpretation tools. Indeed, U and V are in fact r-dimensional approximations
of the row and column vector spaces of Y. These low-dimensional vector spaces can be
used, for instance, to visualize the data points.

2.1.4 Principal component analysis

The next question is: how to compute a low-rank approximation X of Y7 In model
(2.2), this implies choosing a link function F, and a cost function to measure the distance
between the data Y and a candidate low-rank matrix. A simple example is the following
model:

Y =X"+E, (2.3)

where Y is a realization of the low-rank matrix X° perturbed by i.i.d. additive noise
E = (E,;;). In this case, a natural distance measure is the usual Euclidean distance,
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given in R™1*™2 by the Frobenius norm. In this example, the underlying low-rank matrix
X" may be estimated by solving the following optimization problem:

minimize  ||Y — X%

subject to rank(X) <r. (2.4)

Program (2.4) admits a closed-form solution given by the rank-r truncated SVD of
Y. Assume without loss of generality that m; < ms, and note that we will keep
this assumption along the whole dissertation. If the data matrix Y has full rank, i.e.
rank(Y') = my, its SVD is given by:

Y =UDV', (2.5)

with U € R™>™ 'V ¢ R™>*™ two orthonormal matrices and D € R™*™ 3
diagonal matrix with nonnegative entries. The rank-r truncated SVD of Y consists,
from equation (2.5), in keeping only the first r columns of U and V/, and the first r x r
block in D:

SVD(Y) = U. s D) (Vo) (2.6)

where U, f,jis the submatrix of U defined by its r first columns U 1, = (U, ), €
[mil,j € [r]. Similarly, V. ,1(Vi;),i € [m2],j € [r], and D is the submatrix of
D defined by the intersection of the first  rows and columns: Dy = (D;j),i €
[r].5 € [r].

This simple example is of course very well-known under the name of principal com-
ponent analysis (PCA), when the columns (or rows) of Y have been centered. It can be
shown that the solution to the rank-r PCA problem (2.4) is exactly the rank r truncated
SVD (2.6), where the principal components are defined by the columns of U ,j. From
a statistical point of view, the principal components are orthonormal directions along
which the variance of the samples X is maximized. In data analysis, they are often
used as a new basis of reduced dimension where samples can be represented.

The majority of low-rank methods can be seen as extensions or variants of PCA, for
example adapted to non numeric data, with general link functions and distance measures.
Another important extension is the processing of missing values. In the context of
incomplete data, low-rank methods have been used for two purposes. The first is to
perform PCA (or alternatives) in spite of the missing values; this led to extensions of
PCA to incomplete data settings, using EM-type algorithms for instance (Josse and
Husson, 2012). The second standpoint is to exploit a low-rank structure to recover the
missing values; this is the starting point of a vast field of the statistics literature called
matrix completion (Candés and Recht, 2009; Recht et al., 2010).

2.2 Nuclear norm heuristics

Contrary to PCA, most rank constrained problems have no closed-form solution, and
are NP-hard in general, for instance, if some entries of Y are unobserved. Since NP-
hardness comes from the rank constraint rank(X) < r, it is often replaced in practice
by tractable proxies. Equivalently to the definition given in Section 2.1.3, the rank of a
matrix X is also defined as its number of nonzero singular values. Denote, for k € [m,],
0, (X) the k-th largest singular value of X. If X has rank r, then
o(X)>...20,(X)>0, and 0,1 (X) = ... =0, (X) = 0. (2.7)
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Thus, the rank of X is in fact the /4 norm of the vector containing its singular values:
mi

rank(X) = Z ﬂ{gk(x)>0}. (28)
k=1

Similarly to what was done in sparse vector estimation problems, an option is to replace
the /o norm by a convex relaxation, such as the ¢; norm. This is precisely the definition
of the nuclear norm:

1)1 = on(X). (2.9)

It has been shown that, in many cases, nuclear norm heuristics provide accurate (even
exact) solutions, and can be computed with tractable algorithms, for example in matrix
completion.

Matrix completion addresses the problem of recovering a matrix from partial ob-
servation of its entries. The most famous practical example is probably the Netflix
problem (see, e.g., Bell and Koren (2007) and the references therein). In this problem,
items (columns) are rated by users (rows). However, each user typically only rates a
few items, so that only very few entries of the data matrix are actually observed. The
goal is to complete the missing ratings, in order to recommend relevant items to users.
Formally, let 2 C [m4] x [mz] denote the indices of the observed entries in Y, and
denote by n = || the cardinality of 2, i.e., the number of observed entries. Of course,
matrix completion is impossible in general if n < m;msy and without additional con-
straints. But, if the data matrix Y has rank r, then it is intrinsically characterized by
r(my + mg — 1) parameters, and thus there is hope to recover the unobserved entries.
The so-called low-rank matrix completion problem has been extensively studied.

2.2.1 Exact matrix completion

The question asked in exact low-rank matrix completion is: can we find a matrix X of
minimal rank which matches exactly Y on the set of observed entries 27 This boils
down to the following optimization problem:

minimize  rank(X) (2.10)
subject to X, ; =Y, forall (4, ) € Q. '
Problem (2.10) is NP-hard (Candés and Recht, 2009), and was replaced in seminal works
(Recht et al., 2010; Candés and Recht, 2009; Candés and Tao, 2010) by the following
nuclear norm heuristic:

minimize || X« (2.11)
subject to X, ; =Y forall (i,7) € Q. '
Note that problem (2.11) is stochastic whenever the set of observed entries () are sam-
pled through a random process. It was shown in Recht et al. (2010); Candés and Recht
(2009); Candés and Tao (2010); Recht (2011); Gross (2011) that, under an incoher-
ence assumption discussed later on, and when the number of observed entries is large
enough, the incomplete matrix Y can be recovered exactly by solving problem (2.11).
In particular, Recht (2011) prove the following result.
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Definition 1 (Recht (2011), Definition 1.1). Let U be a subspace of R™ of dimension
r, and Py the orthogonal projection on U. Then, the coherence of U with respect to
the standard basis (e;) is defined to be

_m 112
p(U) = s [Py (2.12)
Intuitively, the coherence 1(U) of the subspace U measures the correlation between
the subspace and the canonical basis. Indeed, denote (U, ..., U,) an orthonormal basis

of U, with U, € R™ for all k& € [r]. Then, the coherence of U may be written simply

as follows:
_m NIAL
w(U) = — max (;(Q:Uk) ) : (2.13)
The coherence p(U) satisfies 1 < pu(U) < m/r. The lower bound 1 is achieved, for
example, if U is of dimension 1 and U; = (1/y/m,...,1/y/m). The upper bound m/r
is achieved if (Uy,...,U,) contains a standard basis vector ¢;, i € [m]. Let Y be an
my X mgy matrix of rank r with SVD (U, D, V). Assume without loss of generality that
D is of size r x r, U is of size m; x r and V is of size my x r. Then, using (2.13), the
coherence of the row and column vector spaces are given by:

wlU) = ™ ax <Z(ei,U_7k>2> ., (V)= 2 thax <Z<€j>V,k>2> . (2.14)

r 1<i<r r 1<<r
k=1 k=1

In Recht (2011), the authors prove the following theorem.
Theorem 1 (Recht (2011), Theorem 1.1). Assume that:

e The row and column vector spaces of Y have coherence bounded above by some
positive [ig.

e The matrix UV'T has a maximum entry bounded by ji11/7/(mims) in absolute
value for some i, positive.

e The entries of Y are observed with locations sampled uniformly at random.

Assume that the number of observed entries n satisfies
n > 32max (2, po)r(my + ms)Blog® (2my), (2.15)

with B > 1. Then, program (2.11) has a unique minimizer which is equal to'Y with
2—2p31/2
> .

probability at least 1 — 61og(msy)(my +my)?~% —m

The incoherence condition in Theorem 1, max(u(U), u(V')) < po, controls the
correlation between the singular vector spaces U and V' and the orthonormal bases of
R™ and R™2. Intuitively, it is related to the amount of information provided by each
entry of Y about the other entries of Y. For example, it is impossible to recover a
matrix which is equal to zero everywhere except in one entry, unless the nonzero entry is
observed. If the incoherence condition is satisfied, each entry of Y contains a sufficient
amount of information about the singular vector spaces U and V/, so that they can be
recovered exactly by sampling the entries of Y uniformly at random. The result (2.15)
essentially shows that the nuclear norm heuristic (2.11) yields an exact solution, provided
that the number of observed entries is of the order of O (r(m; + my)log(ms,)?). Note
that the result holds with high probability, in reference to the sampling of the observed
entries, which are assumed to be sampled uniformly at random.
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2.2.2 Noisy matrix completion

In many cases, it is unlikely that the observations are exact, and more plausible to assume
the data matrix Y corrupted by noise. For now, we assume for simplicity that the noise is
additive; we will consider more general cases in Section 2.3. In other words, we observe:

Y =X} +Eij, (i) €9, (2.16)

where {E, ;. (i,j) € Q} are independent noise terms. In this case, fitting the obser-
vations exactly is pointless, and the matrix completion problem (2.11) is reformulated
as:

minimize || X|[].
subject to  ||Po(X —Y)||% <4, (2.17)
where Pq is the projection on the set of observed entries. For M € R™*™z2:
Po(M)= > M ef], (2.18)
(1,5)€Q

where (e;) and (f;) are the standard bases of R™' and R respectively. This problem
was introduced by Candes and Plan (2010), who showed that the estimation error of
program (2.17) is proportional to the noise level, under conditions which are similar to
those required in the noiseless setting. Noisy matrix completion was later also studied in
Keshavan et al. (2010); Foygel and Srebro (2011); Gaiffas and Lecué (2011); Koltchinskii
(2011b); Koltchinskii et al. (2011); Rohde and Tsybakov (2011); Agarwal et al. (2012);
Klopp (2014). In particular, Klopp (2014) shows optimal convergence rates for noisy
matrix completion, without requiring the incoherence condition described in Theorem 1,
and used in Candes and Plan (2010). Klopp (2014) considers the following nuclear norm
penalized estimation problem:

minimize  [|[Po(X = Y)||% + M| X

subject to || X || < q, (2.19)

where A > 0 is a regularization parameter controlling the trade-off between fitting the
data and enforcing low-rank solutions. Klopp (2014) shows that (2.19) has minimax
optimal estimation error. They only assume an upper bound a on the absolute value
of the matrix X, which is a much weaker condition than the incoherence condition of
Candes and Plan (2010); Keshavan et al. (2010). The result of Klopp (2014) may be
summarized as follows.

Theorem 2. Assume that:
e The noise E and the sampling 2 are independent.

e The probability of observing an entry in column j (resp. row i) is bounded above
by L/ min(my, msy), with L > 1.

e Every entry is observed with probability at least (umymsy)~t, with > 1.

e The noise (E; ;) is subexponential: there exists K > 0 such that for all (i, j) € €,
E [exp(|Ei 5]/ K)] < e.
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Then, there exists a value of A (which we omit here for sake of clarity), such that, for
n > 210g2(m1 + mg) min(my, my) /L, and with probability at least 1 — 3/(m1 + msy),
any solution X of (2.19) satisfies:

X — X% < MgLrank(XO)m27 (2.20)
mims n
where < denotes the inequality up to constant and logarithmic factors. The rate
(2.20) is parametric; furthermore, Klopp (2014) also shows that it is minimax optimal, up
to constant and logarithmic factors. Theorem 2 provides a high probability upper bound,
this time in reference to the sampling of the observed entries, and to the distribution of
the noise.

2.3 General data types

The low-rank methods reviewed so far are all based on a least squares loss function,
which may be interpreted as an implicit additive noise model, and is not adapted to all
types of data. Several extensions of PCA and matrix completion have thus been proposed
to accommodate multiplicative noise, such as Poisson noise for instance. Other works
proposed generalizations to heterogeneous noise, with quantitative and qualitative data.

2.3.1 Generalized principal component analysis

Extending PCA to general loss functions boils down to replacing problem (2.4) by:

minimize  L(Y, X)

subject to rank(X) <, (2.21)

where L is a function measuring how well X fits the data Y. For example, in pa-
rameteric models, £(Y ', X) may be the negative log-likelihood of the distribution of Y
parametrized by X . Because (2.21) does not have a closed-form solution in general, in
practice, a factorized version is often solved instead:

minimize L(Y,UV")

subject to U € R™*" and V € R™2*", (2.22)

Problem (2.22) was introduced in Collins et al. (2001), where L is derived from prob-
abilistic models of the exponential family. This includes the Gaussian model Y;; ~
N(X?;,0%), (i,5) € [mi] x [mz], in which case L is simply the least squares loss.

If Y contains counts, then one may use a Poisson model with an exponential link
Yi; ~ P(exp(X};)), in which case L(Y, X) = >3 3" (=Y ;X5 + exp(X,;)).
Gordon (2002) further extended the framework to loss functions based on the generalized
Bregman divergence of convex functions. Many other works have considered problem
(2.22), with Bayesian (Mohamed et al., 2009) and probabilistic (Chiquet et al., 2018)
versions of exponential family PCA, as well as scalable methods for high-dimensional data
sets (Liu et al., 2016). Other works studied even more general losses, and additional reg-
ularization terms (Srebro, 2004; de Leeuw, 2006; Singh and Gordon, 2008; Udell et al.,
2016). In particular, Udell et al. (2016) consider heterogeneous loss functions which are
allowed to depend on the columns of Y, so that heterogeneous data can be modeled:
LY. X) =31 L;(Y,;, X ).

J
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With a different perspective, other types of generalizations for non numeric data
consist in applying transformations to Y before computing the classical PCA solution:

minimize  ||Y — X||%

subject to rank(X) <r, (2.23)

where Y is the transformed data set. This is the case of Correspondence Analysis (CA)
(Greenacre, 1984) for count data, Multiple Correspondence Analysis (MCA) (Greenacre
and Blasius, 2006) for categorical data, as well Factorial Analysis of Mixed Data (FAMD)
(Pages, 2015) and PCAMIX (Kiers, 1991), both for mixed data. These geometric meth-
ods are designed without any reference to probabilistic models. However, often times,
such transformations are in fact first-order approximations of non Gaussian probabilistic
models. For example, it has been shown that CA approximates a Poisson log-bilinear
model for small entry-wise values of Y (Escoufier, 1982). There are also similar results
for MCA and a multi-logit bilinear model (Fithian and Josse, 2017).

2.3.2 Exponential family matrix completion

In the same way, matrix completion was extended to more general data types, mainly by
replacing (2.16) and (2.19) by similar problems where non Gaussian data fitting terms
are minimized, with additional constraints or regularizations. One of the first extensions
of matrix completion to non numeric data was done in Davenport et al. (2012). In
this paper, the authors introduced one-bit matrix completion, which is similar to the
original matrix completion problem (2.11), with one crucial difference: only the sign of
the observations Y; ; = X, + E; ; are observed (+1if Y;; > 0 and —1if Y;; <0). In
Davenport et al. (2012), the authors consider the optimization problem

minimize — Z(i,j)e(l (]]_}f/m.zl log(f(Xi;)) + Ly, ,——1log(1 — f(Xm-)))

subject to || X ||« < ay/rmimy and || X ||« < a, (2.24)

with f a link function. In (2.24), a logistic loss is penalized instead of a least squares
loss. The nuclear norm and infinity norm constraints are used as proxies for a low-rank
constraint. Indeed, any matrix X of rank r satisfies || X ||. < /7| X]||#. If, in addition,
| X||sc < @, then one obtains || X||. < a,/rmimy. Davenport et al. (2012) obtain the
first theoretical guarantees for (2.24). In particular, they show that, when the number
of observations n is large enough, the rank-r signal matrix X can be estimated with

an error of the order A

X=X ([l ) 0225)
m1ms n
where < denotes the inequality up to constant and log factors, and C, is a constant
which depends on the regularity of the link function f on [—a,a]. The bound reported
in (2.25) is a high probability upper bound, as a result of the noise and the sampling of
entries. One-bit matrix completion was also studied in Cai and Zhou (2013) for general
(non uniform) sampling distributions, and with a constraint on the max-norm of X
rather than the nuclear norm; they obtain a convergence rate similar to (2.25). Cao and
Xie (2016) further extended the approach of Davenport et al. (2012) to Poisson matrix

completion, with the following matrix recovery problem:

minimize Z(i,j)eﬂ (_}fi,in,j + exp(Xm-))
subject to || X ||« < ay/rmyima, (2.26)
b< X,;; <aforall (4,5) € [mi] x [m2].
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Other works extended the nuclear norm penalized version of matrix completion (2.19)
by solving problems of the following form:

minimize Z(m)eg L(Y;;, X ;) + M X

subject to || X || < a. (2.27)

For example, in Klopp et al. (2015), the authors introduce multinomial matrix comple-
tion, where the observations are allowed to take more than two values. As a special
case, they study the one-bit matrix completion problem in its penalized form, where

L(Yij, Xij) = =1y, ;=1 log(f(Xi;)) — Ly, ;=1 log(1 — f(Xi;)). (2.28)

In this case, they provide a minimax optimal estimator with a convergence rate of the
order of: R

X — X% < Cj%ar(ml + mg).

mimsy ’ n

Similarly to (2.25), the bound (2.29) holds with high probability. Note that, compared
to (2.25), the above rate is faster, in the sense that it converges to 0 with a dependence
on the number of observations n of the order of 1/n instead of 1/y/n. For other
(unbounded) data types, Lafond (2015) studied exponential family matrix completion in
the same framework as Klopp et al. (2015). In Lafond (2015), problem (2.27) is solved
for loss functions £ derived from exponential family models. This includes (but is not
restricted to) the Gaussian, binomial, Poisson and exponential models. Lafond (2015)
provides minimax convergence rates of the same order as (2.29).

(2.29)

2.4 Hybrid low-rank structures

In this dissertation, we are interested in incorporating several sources of data in the same
low-rank model. For example, a count table resulting from species censuses together
with geographical and meteorological information scrapped from the web. Or, in our
application to the Traumabase registry, several data sets from multiple hospitals. Our
approach at doing this will be to consider hybrid low-rank structures. In particular, the
parameter matrix X may be decomposed into two components, one of them being low-
rank. This type of composite structure has been studied before. We review here some
models which will be useful to contextualize our contributions.

2.4.1 Main effects and interactions

The concept of main effects and interactions first emerged in the design of experiments
and analysis of variance. In these tasks, one tries to describe how an outcome variable
y varies with conditions, or variables (z1,...,2,). Qualitatively, a main effect is the
effect of a variable z;, i € [¢] on y independent of other variables (z;);.. On the
contrary, an interaction refers to the effect of a variable x;, i € [¢] on y dependent on
another variable x;, j # i. For example, in waterbird monitoring, the outcome y is a
count variable, and (zy,...,z,) are geographical and meteorological information about
the place and time where the birds were counted. Suppose that x; is a measure of the
rainfall. A main effect may be: the rainfall has a positive impact on the bird counts
across all sites and time points. An interaction may be: the rainfall has a positive impact
on the bird counts in sites located far from urban centers, and a negative impact on the
sites located close to urban centers.
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Log-linear models In count data analysis, log-linear models (Kateri, 2014, Chapter
4) are often used to estimate main effects and interactions. Suppose that Y is a count
table with independent entries. Equivalently, each observation Y; ; can be represented as
a triplet (ig, jk, Yx), k € [mima], where (ig, ji) are two categorical variables indicating
the row and column where the count y; is located in the table Y. In its simplest form,
the log-linear model assumes:

log E[Y;,] = 1+ s + . (2.30)

In (2.30), p is an offset, and «; and 3; are the main effects of the row i and column
j, respectively. For example, in waterbird monitoring, if i is a site of major importance,
«; may be large, indicating that the bird counts are large in site ¢ across all years.
Respectively, if year j was favorable (resp. unfavorable), 3; may be large (resp. small),
indicating that the bird counts are large (resp. small) during year j across all sites.
Model (2.30) is simplistic, and often times does not reflect reality, as sites and years are
known to interact. Especially at a large regional scale, a specific year j may be favorable
in some sites, and unfavorable in others. For instance, the weather conditions may vary
across North Africa, so that year j was a favourable year for birds in Morocco, but a
defavourable year for birds in Libya. To incorporate such interactions, model (2.30) may
be generalized into:

IOgE [Yvi,j] = U + a; + ﬁj + @i,j7 (231)

where ©, ; is an interaction term between the i-th row and the j-th column. Model
(2.31) above is overparametrized, or saturated. To reduce the number of parameters,
a low-rank structure has often been imposed to the interaction matrix © (see, e.g.,
Goodman (1985); de Falguerolles (1998)), thus obtaining the following model:

logEY, ;] = p+ a; + B + O, ;, rank(®) <, (2.32)

where 7 is a predefined maximal rank. Thus, the parameter matrix X, dfined by X =
(1 + a; + B; + O, ;) consists of the superimposition of a two-way linear regression term
and a low-rank component.

Multilevel regression Other examples of models where main effects and interactions
are estimated are multilevel regression models (Gelman and Hill, 2007). Multilevel regres-
sion aims to analyze hierarchically structured data, where examples (patients, students,
etc.) are nested within groups (hospitals, schools, etc.). The idea behind it is that sev-
eral regression models may be fitted in each group, and that the regression coefficients
may depend on the groups themselves.

In the Traumabase example, denote Y = (Y;;) the data frame containing the
patients in rows and the attributes in columns. Consider the j-th variable, and assume
it is quantitative (time spent in critical care for instance). If U; € R¥ is a vector of
patients characteristics, a regression model may be:

Yo, = i+ (ol Uy + 0, (233)

In (2.33), M? is an intercept, a? is a vector of regression coefficients, and @?J is a

residual. Note that, in (2.33), the hospital center where individual ¢ was treated is not
taken into account, and the regression coefficients are the same for every trauma center.
However, (2.33) may not reflect reality. For instance, some hospitals are known to treat
patients with more severe injuries, which may lead to the average time in critical care
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being larger in these centers, compared to the overall average. To model this variability
across hospitals, model (2.33) may be generalized into
Y = tow,; + (), Ui) + O] (2.34)

i), 0,50

where ¢(i) indicates the group to which individual i belongs. This corresponds to the
varying intercept multilevel regression framework (Gelman and Hill, 2007), where the
intercept pfc](im depends on the group, but the regression coefficients a? are constant
across hospitals. Model (2.34) may be further generalized to account for variability of
the regression coefficients:

Y, = Ng(z‘),j + <a(c)(i),j7 U;) + @?,j- (2.35)

Such models are also referred to as random effects models, when the variations of the
coefficients (intercept, slope, or both) across groups, are modeled as random.

In addition, the residuals @?J are sometimes also estimated, in which case some
assumptions need to be made, to constrain the parameter space. In Chapter 6, we
study such a framework, and constrain the matrix of residuals (or interactions) ©7; to
be of low-rank. Intuitively, this may be interpreted as assuming that a few archetypical
individuals and a few summary variables are sufficient to characterize the interactions.

2.4.2 Low-rank plus sparse matrix decomposition

Low-rank plus sparse decomposition consists in the following problem. Suppose we (par-
tially) observe a data matrix Y, which is the superimposition of a low-rank component
and a sparse component. Is it possible to recover both components? This problem has
in fact many practical applications, for instance in graphical modeling (Chandrasekaran
et al., 2012) and robust PCA (Candes et al., 2011). A large body of work has tackled
the problem of reconstructing a sparse and a low-rank term exactly from the observation
of their sum. Formally, assume the data matrix can be decomposed into:

Y =0°+ A°, (2.36)

where @ is a low-rank matrix, and A° is entry-wise sparse. For example, the matrix A°
may contain gross errors or corruptions. Chandrasekaran et al. (2011) derived sufficient
conditions under which such a model is identifiable, based on a rank-sparsity incoherence
principle, detailed later on. Under this condition, they prove that the two components
©° and A° may be recovered exactly with the following convex program:

minimize  ||©]|. + A A

subjectto @+ A=Y, (2:37)

where ||A||; denotes the ¢; norm of the matrix A (the sum of entries in absolute
value). The result of Chandrasekaran et al. (2011) may be summarized as follows. For
M e R™>*™2 et R(M) be the tangent space at M with respect to the variety of all
matrices with rank less than or equal to rank(M ). Define the quantity:

E(M) = max | IV || 0o (2.38)

NeR(M),|N|<1

with |[IN||« denoting the largest entry of IN in absolute value. Intuitively, if {(M) is
small, then M cannot be too sparse. Similarly, let S(M) be the tangent space at M
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with respect to the variety of all matrices with number of nonzero entries less than or
equal to ||[M|o. Define the quantity:
M) = max N|. 2.39
M) = | omax IV (2.39)
In (2.38), |[IV]| denotes the operator norm (the largest singular value). Intuitively, if
(M) is small, then the singular values M cannot be too large.

Theorem 3 (Theorem 2, Chandrasekaran et al. (2011)). Let Y = ©° + A% with
E(O°)u(A®) < 1/6. Then, for A\ = 1/3£(O©Y)/u(AL), the unique minimum of (2.37)
is (@° A).

Hsu et al. (2011) studied a similar model, and also provided recovery guarantees. In
Candés et al. (2011), the authors studied decomposition (2.36), under a probabilistic
model where the locations of the nonzero entries in A° are chosen uniformly at random.
Under this model, they show that, if @° satisfies the same incoherence condition as in
Theorem 1, then ®° and A° can be recovered exactly without requiring the rank-sparsity
incoherence condition. In particular, this allows to recover matrices with larger ranks and
sparsity patterns. Xu et al. (2010) extended the model to study column-wise sparsity.
Mardani et al. (2013) studied an even broader framework with general sparsity pattern,
where Y = ©° + RA®, with R € R™*? is a compression matrix and A? € RP*™2 js a
sparse matrix. In this model, Mardani et al. (2013) determined conditions under which
exact recovery of both @° and A° is possible.

In many instances, it is unrealistic to assume that the data matrix Y is observed
exactly, and noisy models are more plausible. In Klopp et al. (2017), the authors study
noisy matrix completion in the presence of entry-wise or column-wise corruptions:

Y =0"+A"+ E, (2.40)
where E = (E; ;) is a matrix of additive noise. For the entry-wise sparse case, they
consider the following estimation procedure:

minimize 53 5co(Yij — O = Aij)* + M (O] + Aol AlL
subject to ||O|| < @, || Al < a.

(2.41)

Similar to noisy matrix completion (Theorem 2), they only assume an upper bound a
on the largest entries in absolute value of the matrices ®° and A° which, here also, is
a much weaker assumption than the incoherence condition of Hsu et al. (2011); Candés
et al. (2011); Mardani et al. (2013). Klopp et al. (2017) shows that the estimation
procedure (2.41) is minimax optimal. Denote by || Al|p the number of nonzero entries
in the matrix A. The result of Klopp et al. (2017) may be summarized as follows.

Theorem 4 (Corollary 11, Klopp et al. (2017)). Assume that:
e The probability of observing an entry in column j (resp. row i) is bounded above
by L/min(my,ms), with L > 1.
o Every entry is observed with probability at least (pmymsy)~t, with pn > 1.

e The noise (E; ;) is subexponential: there exists K > 0 such that for all (i, j) € €,
E[E:;|/K] <e.

Then, there exist values of \; and \y (which we pmit here for sake of clarity), such that,
for n large enough, any solution of (2.41) (©, A) satisfies:

|© - O | 1A~ A (rank(@% +14% "AO"°) |

n mqime

(2.42)

mimes mimes
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2.4.3 Multilevel PCA

Multilevel simultaneous component analysis (MLSCA, Timmerman (2006)), or multilevel
PCA (MLPCA), is an extension of PCA designed to model numeric data with group
structures. Along this dissertation, we will always refer to it as MLPCA, for simplicity.
MLPCA is based on multilevel SVD, which consists in decomposing the variability of the
data into two components, the between and within groups variability, and performing an
SVD on both parts. Assume that the numeric data Y is naturally the row concatenation
of K smaller data sets Y, € R™*™2 L € [K], such that the k-th group contains ny
individuals and Z,ﬁil nE = my:

Y inl
Y- n

Yy =|— i_ ° (2.43)
Y« inK

For a group k € [K], an individual of the k-th group i) € [ns] and a variable 5 € [p],
we denote by yy;, ; the value of variable j taken by individual i) in group k. The entries
of Y can be decomposed, for a group k& € [K], an individual i), € [ng] in the k-th
group and a variable j € [p], as

Yk ip,j = My + (m;“ —m;) + (Yripj — m?), (2.44)

where m; = m; ' Y Y, ; is the mean of the j-th variable, and m* = mh™! Zﬁl Yk iy i
is the mean of the j-th variable in group k. The deviation of group k to the overall
mean of variable 7, mf — my, is usually referred to as the between groups variability,
and the deviation of individual i to the mean of variable j in group k, yi, j — mf, as
the within groups variability. Written in matrix form, we obtain:

Y=1,m' +Y,+Y,,
k _
J
(Yu)ij = Yrin — m?”, for i in group k and j € [mo]. The multilevel extension of PCA,
MLPCA, consists in assuming two low-rank models, for the between matrix Y;, that we
approximate by a matrix of rank r,, and for the within matrix Y,,, that we approximate
by a matrix of rank r,. This yields the following decomposition:

where m = (my,...,mg) , (Y3),; = mj —my;, for 7 in group k and j € [mz], and

Y =1,m" +UV,/ +U, V] +E. (2.45)

Model (2.45) implies that there are two target low-rank matrices, which we seek to
recover from noisy observations of their sum. In Chapter 8, we will introduce extensions
of MLPCA to heterogeneous and incomplete data.

2.5 Summary of contributions

Despite the abundant literature on low-rank matrix approximations for data analysis, a
number of shortcomings still limit their application. In particular, although a number
of methods address multi-source, heterogeneous or incomplete data, to the best of our
knowledge, none of them address these three problems simultaneously. As a result,
in relation with the applications we have in mind, existing works suffer from either
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model-related limitations, or theoretical gaps. The objective of this dissertation is to
provide general models, which adapt to multi-source, heterogeneous and incomplete data
simultaneously, and in particular to the ecological and medical applications described in
Sections 2.1.1 and 2.1.2. For these models, we will be committed to providing complete
methodologies, from estimation methods, to theoretical guarantees and ready-to-use
implementations.

2.5.1 Low-rank model with covariates for count data analysis

In Chapter 3, we address the problem of analyzing and imputing incomplete count data
using side information. Consider a count table Y of size m; x ms, from which some
values are missing. For example, Y might contain abundance data about a particular
species, measured across ecological sites (rows) and time points (columns). Assume that,
in addition to Y, two covariate matrices R € R™ %K1 and C' € R™2*%2 are available. R
contains side information about the rows of Y, such as geographical information about
the sampling sites, and C' contains side information about its columns, for example
meteorological characteristics of the different time points. Both covariate matrices may
contain quantitative and qualitative row and column features. Our objective is dual.
On the one hand, we seek to take advantage of available side information R and C to
better impute the missing counts: if the covariates are good predictors of the counts Y,
using them may improve the imputation. On the other hand, we seek to estimate the
relation between R and C and the counts Y in spite of the missing observations. In
particular, to detect factors which may be associated to larger or smaller counts. We
provide a complete methodology including a general model, an estimation procedure for
which we derive statistical guarantees, and an optimization algorithm. In addition, we
evaluate our method empirically on synthetic and ecological data.

We consider a parametric Poisson probabilistic model, and assume the counts to
follow distributions of the form:

Y., ~ Plexp(X7))), (2.46)

where P(\) denotes the Poisson distribution of intensity A. We model the effects of the
covariates on the counts through the following log-linear model (2.32):

X =p’+ R o’ +C; 5+ 6. (2.47)

In (2.47), u° € R is an offset, a® € RE1 is a vector modeling the effects of the row
covariates, and 3 € RX2 is a vector modeling the effects of the column covariates.
Finally, ®° is a row-column interaction matrix, which we assume to be low-rank. Intu-
itively, this low-rank assumption may be interpreted as modeling a few archetypical rows
and columns, which interact in a multiplicative manner. Models related to (2.47) have
been considered before in statistical ecology applications, for instance in Brown et al.
(2014); ter Braak et al. (2017). However, to the best of our knowledge, their theo-
retical and empirical properties have not been thoroughly studied. On the other hand,
the literature on convex low-rank matrix completion is abundant and benefits from a
substantial theoretical background. However, as far as we know, solutions which incor-
porate side information consider only numeric data (Mao et al., 2017). Some works on
generalized low-rank models allow to incorporate covariates, but they have no statistical
guarantees (Fithian and Mazumder, 2018; Chiquet et al., 2018). In this sense, the scope
of this paper is to develop a complete methodology for the inference of model (2.47),
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with theoretical guarantees and ready-to-use implementation, bridging the gap between
convex low-rank matrix completion and model-based count data analysis. We estimate
the parameters of model (2.47) through a convex program, where a Poisson data fitting
term penalized by the nuclear norm of ® is minimized:

minimize  L(Y,u,a, 3,0) + A\||O]].

subject to |u+ R+ C; 6+ ©,,] < a, (i,5) € [mi] x [ma], (2.48)

where £ is the Poisson loss:

LY, pa,B,0)= Z Y. (p+R; a+C; B+0; ;) +exp(u+R; a+C; +0; ;)].

(4,5)e

On the theoretical side, our main contribution is to show that the estimation procedure
(2.48) guarantees an estimation error of the same order of magnitude as the minimax
optimal rates of Klopp (2014) and Lafond (2015). In particular, we show that (under
assumptions detailed in Chapter 3):
0
X - xO| 5 PO (2:49)
p

where < denotes the inequality up to constant ant logarithmic factors, and every entry
is observed with probability at least p > 0. On the practical side, our main contribution
is to propose an optimization algorithm, and to evaluate the method on synthetic and
ecological data. We demonstrate empirically that our method outperforms state-of-
the-art count data imputation procedures, in particular when the proportion of missing
values is large and the main effects and interactions are of similar orders of magnitude.
We also provide interpretation tools through visual displays, and illustrate the method
with the analysis of a well-known plant abundance data set. In particular, we show that
the arising interpretation is consistent with known results from the original study. The
method is implemented in the R package lori, available on the CRAN, for which we
provide a tutorial in Chapter 5.

2.5.2 Estimation of waterbird population trends with multiple
imputations

Chapter 3 provided a single imputation procedure for count data with missing values,
when side information is available. Although the numerical results were promising, we
identified two directions of improvement.

First, in settings where the proportion of observed values is very small, and espe-
cially when the number of covariates is simultaneously large, the model developed in
Chapter 3, which does not constrain the covariate coefficients, may be statistically and
computationally limiting. In Chapter 4, we extend the methodology introduced in Chap-
ter 3, by adding a LASSO-type penalty to regularize the vector of main effects. We thus
obtain an estimation problem with a hybrid LASSO and nuclear norm penalty. We in-
troduce a mixed coordinate gradient descent algorithm (MCGD), which efficiently solves
the resulting optimization problem in large dimensions. This new estimation procedure
also defines a single imputation method.

Second, single imputation is useful when one seeks to predict the missing entries
as well as possible. However, if data analyses are performed after imputation, multi-
ple imputation (Rubin, 1987)-which consists in predicting several plausible values for
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the missing entries in order to reflect uncertainty in the imputation—is the statistically
sound approach. We develop a bootstrap-based multiple imputation procedure, based
on our doubly penalized single imputation method and a resampling method which com-
bines nonparametric and parametric bootstrap. Note that, because of the two penalties,
our imputation procedure is biased, and thus we cannot hope to obtain valid confidence
regions for our prediction even with multiple imputation. However, the resampling proce-
dure allows to derive intervals of variability which reflect the variability of our imputations
with respect to the missing values and the noise of the observations. We evaluate the
methods in terms of imputation and coverage in realistic settings, and show that it im-
proves on state-of-the art count data imputation methods which are currently used in
ecology. The complete methods, implemented in the R package lori, is finally used to
impute the waterbird data set.

Let Y € R™*™2 denote the data set containing the waterbird abundances: the rows
of Y correspond to different sites, and the columns to different time points (around the
15t of January, during the years 1990 to 2017). The entry Y;; contains an integer
number corresponding to the number of birds counted at the i-th site, in the j-th year.
As discussed in Section 2.1.1, the data set Y has many missing values, and we seek to
impute them in order to compute yearly total abundances, i.e. to compute the column-
wise sums of Y. More precisely, we will perform multiple imputations, which allow us
to compute intervals of variability for the predicted values.

To do so, we start by introducing a new single imputation procedure, which take
advantage of available side information. Let U € R"™™2*X denote a matrix of covariates
about the rows and columns of Y. For every entry Y;; corresponds a row of U,
denoted U (7, j) := U(j_1ym,+:;, € R¥, which contains geographical information about
the i-th site (latitude, longitude, etc.), meteorological information about the j-th year
(temperature abnormalities, etc.), as well as information about the pair (i-th site, j-th
year), such as the yearly rainfall in the site's area, and yearly economical indices of the
site’s country. We use a parametric Poisson model similar to (2.46) and (2.47):

K

Y~ P(M?,j)v log(:u?,j) = O‘? + 530 + Z GgU(iaJ’)k + 9?,]'- (2.50)
k=1

In (2.50), the vectors a® € R™ and 3 € R™2 contain main row and column effects, € €
RX contains main effects of covariates, and ©° is a matrix of interactions. We estimate
the parameters of model (2.50) by minimizing the Poisson negative log-likelihood, with
two additional penalties:

(&, 8,¢ 0) € argmin £(Y; 0, 5,6,0) + At O], + Az ([lall, + 18, + llell,) - (2.51)

In (2.51), L(Y;, 3,¢,0) is the Poisson negative log-likelihood:

K K
> =Yt B+ D eU, )i+ Oiy) +explai+ B+ > exUi, )i+ Oy )]

(i.9) k=1 k=1

In comparison to the method described in Chapter 3, we introduce an additional LASSO-
type regularization term Az (||c||; + || 5]l; + ||€ll,)- Indeed, in practice, this improved the
imputation, reduced the computational time, and had the advantage of selecting impor-
tant covariates, which is useful for interpretation purposes. We will provide statistical
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guarantees for the estimation problem (2.51) in Chapter 6, as a special case of our
general result. Finally, the single imputation procedure consists in predicting, for every

(¢,5) € [ra] > ma] \ 2:

K
Y. = exp(&; + Bj + Z U (1, 5)k + O ;). (2.52)
=1

We are not the first to consider imputation of count data using side information. In
particular, TRIM (Trends and Indices in Monitoring data, Pannekoek and van Strien
(2001)), is a popular count data imputation method used by ecologists, and is also
based on a Poisson log-linear model. Compared to TRIM, our model allows to include
quantitative and categorical covariates, while TRIM requires to categorize the quanti-
tative traits. Second, TRIM does not model row-column interactions, which we believe
to be important in the waterbird application. On the other hand, low-rank models for
incomplete count data such as Correspondence Analysis (CA, Greenacre (1984)) and
Poisson matrix completion (Cao and Xie, 2016) may be interpreted as low-rank interac-
tion models, but do not incorporate covariates.

We produce multiple imputations by combining a resampling procedure to the single
imputation procedure (2.52). First, we produce M new data set using nonparametric
bootstrap. To generate them, we interpret the count data matrix Y as a contingency
table. We assume that the location of birds in time and space are independent and
identically distributed: each bird is observed in the site i and at the year j with probability
7 j, Where the probability 7; ; is the same for all birds, and the birds are observed
independently. Based on this assumption, we generate new samples Y, ..., Y™ using
nonparametric bootstrap, and fit our Poisson model to each of them. We thus obtain M
imputation model, and produce M imputed data sets Y!,..., Y ™. Then, to account
for the uncertainty related to the missingness pattern, we generate new missing values
in the completed data sets Y!,..., Y™ and re-estimate M imputation models based
on new data with different observed values and different missingness patterns. This first
process accounts for uncertainty about the imputation model.

Then, we must also assess the variability of each imputation model. To do so, we
use parametric bootstrap to estimate the variability of each model separately. In other
word, for each of the M imputation models, we generate D completed data set, using
the same stochastic imputation procedure. Finally, we obtain M D imputed data sets.

On the practical side, we demonstrate empirically that, in the regime where the
waterbirds data set is located, with many missing values and some large interactions,
the proposed imputation method outperforms existing techniques which are currently
used by ecologists. We also evaluate the coverage of the multiple imputation procedure,
and the robustness of the method to model misspecification, with an experiment on zero-
inflated and overdispersed count data. We finally apply the method to the estimation
of the temporal trends three waterbird species, and provide estimates of the total yearly
bird counts as well as intervals of variability for these estimates.
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2.5.3 Main effects and interactions in mixed and incomplete
data frames

In Chapter 6, we develop a general framework for main effects and interactions in mixed
and incomplete data frames, based on a heterogeneous exponential family probabilis-
tic model. The main contribution with respect to prior work, is to generalize low-rank
models to accommodate side information and heterogeneous noise simultaneously. In
particular, we will consider hybrid low-rank structures, where the parameter matrix X°
is decomposed into two components, one of them being low-rank, and the other a re-
gression term on an arbitrary, fixed, dictionary of matrices. Our noise model is also
very general, through the use of column-wise heterogeneous loss functions, in the spirit
of Udell et al. (2016). After introducing our general model, and motivating its main
features through several examples of interest in applications, we propose an estimation
procedure. The estimation is based on the minimization of a heterogeneous loss func-
tions, with a hybrid penalty inducing low-rank solutions for the matrix of interactions
and sparse solution for the vector of main effects. We derive a block coordinate gradient
descent algorithm (BCGD), and provide a convergence result. Then, we derive statistical
guarantees for our estimates, in the form of upper and lower bounds on the estimation
error of the main effects and interactions simultaneously. \We then evaluate the method
in terms of estimation, and demonstrate that it compares favorably to state-of-the art
methods for mixed data imputation in terms of prediction of the missing entries. Finally,
we illustrate the applicability of the method with a short analysis of a subsample of the
Traumabase data set.

Formally, we model mixed data types using a data-fitting term based on heteroge-
neous exponent|a| family quasi-likelihoods. Let h, and ¢ be functions, and denote by
Exp9) = {f M) pe R} the canonical exponential family with base function i and

link function g. We denote by fé’“g) the density given by:

£ (y) = h(y) exp (y — g(x)), (2.53)

The exponential family is a flexible framework for different data types. For example,
for numerical data, we set g(z) = 2202/2 and h(y) = (270?) 2 exp(—y?/0?).

this case, Exp®9 is the family of Gaussian distributions with mean o2z and variance
o?. For count data, we set g(x) = exp(ax) and h(y) = 1/y!, where a € R. In this
case, Exp™9 is the family of Poisson distributions with intensity exp(ax). For binary
data, g(z) = log(1 + exp(z)) and h(y) = 1. Here, Exp™¥ is the family of Bernoulli
distributions with success probability 1/(1+exp(—z)). To model mixed data, we choose
a collection {(gj, h;), j € [ma]} of link functions and base functions corresponding to
the types of each column in Y (numeric, binary, etc.). For each (i,7) € [mi] x [m2],

we denote by X the value of the parameter minimizing the divergence between the

distribution of Yw and the exponential family Exp+93), j € [m2]. Finally, we consider
a setting with missing values, so that Y ; is observe only for a subset of entries. We use
the following data-fitting term defined by the heterogeneous exponential family negative
quasi log-likelihood

mi1 M2

LIXY, Q) = > i {-Yi,; X, +9;(Xiy)} (2.54)

i=1 j=1

We model main effects and interactions in the parameter space, through decompo-
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sitions of the form:

N

=> aU"+ @’ (2.55)
where U := (U*, ..., U") is a dictionary of matrices of R™ *™2. Model (2.55) is closest
to the decomposition studied in Mardani et al. (2013). In this work, the authors consider
the problem of separating a low-rank matrix and the product of a compression matrix by
a sparse matrix X° = ©° + RA. Mardani et al. (2013) study the exact decomposition
problem, when X is observed directly and without errors. The main difference with our
contribution in Chapter 6, is that we consider a noisy setting. Furthermore, we consider
a general and heterogeneous noise framework. Finally, we estimate a® and @° we the
following program:

(4,0) € argmin  L(fy(a) + ©;Y, Q) + \i[|O]. + Xolalh

. 2.56
subject to  ||]|00 < @, ||O]| < a, (2.56)

with A\; > 0 and Ay > 0. We discuss the statistical guarantees of our procedure, with
two simultaneous upper bounds on the estimation errors of the sparse and low-rank
components. We show that the estimation errors of (2.56) are of the order of:

If(a®) — fu(@)[3 < L2lopy),

rank(®°)ma al|a®
H@O H% (p) 2 “pHO¢(Z/{),

(2.57)

where ¢(U) is a factor which depends on the geometry of the dictionary, and accounts
for interplay between main effects and interactions. To assess the tightness of our
convergence rates, we derive lower bounds, and show that in a number of situations, our
upper bounds are near optimal. We also propose a block coordinate gradient descent
algorithm to compute our estimator, and a convergence result. Numerical results are
presented to support our theoretical claims. We also show that our method performs
comparably to state-of the art mixed data imputation methods in terms of prediction
of the missing values. The method is available in the R (R Core Team, 2017) package
mimi, for which we propose a tutorial in Chapter 7.

2.5.4 Imputation of mixed data with multilevel SVD

In Chapter 8, we introduce an extension of multilevel PCA (MLPCA), which is designed
for data sets with categorical and quantitative information, and can be used to impute
missing values in multilevel mixed data frames. Recall that in the multilevel setting, the
data set Y € R™*™2 is naturally the row concatenation of K smaller data sets Y}, €
Rm™xm2 ke [K]. Y collects the measurements of my variables across a population of
my individuals categorized in K groups, such that the k-th group contains n;, individuals

K
and >, np =my:

Y, $n1
Y, n

y = |2 i_ ° (2.58)
Y« inK

Famous examples include pupils nested within schools or patients within hospitals.
Throughout this chapter, we focus on this latter example with a running application
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to the Traumabase data set (see Section 2.1.2). In this work, we focus on the imputa-
tion of missing values in the multilevel data set Y. There are several methodological
contributions in this chapter. First, we introduce two multilevel component methods
to analyze qualitative and mixed data respectively. Second, we extend these methods
to accommodate missing values, and to impute categorical and mixed variables with
multilevel structures. We demonstrate on synthetic data that our methods have smaller
prediction errors than competitors when the data are generated with a multilevel model.
Finally, we illustrate the methods with the imputation of the Traumabase register. We
also discuss how the computations may be distributed, as an incentive for hospitals to
participate in the program. The methods are implemented in the R (R Core Team, 2017)
package missMDA (Josse and Husson, 2016).

We start by proposing a counterpart of MLPCA to analyse categorical variables. Our
method is based on multiple correspondence analysis (MCA, ?Husson et al. (2010)),
that we extend to handle multilevel structures. More precisely, assume that categorical
data are coded as a complete disjunctive table Z where all categories of all variables
are represented as indicator vectors. In other words z;, = 1 if individual i takes the
category ¢ and 0 otherwise. For example, if there are my = 2 variables with 2 and 3
levels respectively, we have the following equivalent codings:

11 10 100
2 3 01 001
12 10 010

Y=l 3] < Z2=|01 001
2 9 01 010
2 9 01 010

For 1 < j < my we denote by C; the number of categories of variable j, and C' =
Z;njl C; the total number of categories. For 1 < ¢ < C, Z _ is the c-th column of Z
corresponding to the indicator of category c¢. We define 7. = ml_l]lz11 Z .. the proportion
of observations in category ¢, 7 = (71,...,7¢)" and D, the C' x C diagonal matrix
with 7 on its diagonal. Multiple correspondence analysis (MCA) is defined as the SVD
of the matrix

1

mimes

A=

(Z - 1,,7") D72 (2.59)

We introduce the following strategy for multilevel MCA (MLMCA). From the indica-
tor matrix of dummy variables Z, we start by defining a between part and a within part.
MCA, in the sense of the SVD of a transformed matrix (2.59), will then be applied on
each part. For k € [K], define Z; the sub-matrix of Z containing all categories and the
rows corresponding to individuals of group k. The between part is defined block-wise as
the mean of the indicator matrix per group & with the following n; x p matrices, stacked
below one another:

1

Zyyp=—1,1] Z,.
g

Nk —ny

The entries of Z,, ;, contain the proportion of observations taking each category in group k&
(for instance the proportion of individuals carrying some disease in a particular hospital).
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Finally

Z, =

MCA (2.59) is afterwards applied to the fuzzy indicator matrix Z,, i.e. SVD is applied
to
(Zy — Ly, w " )D;Y2.

This results in obtaining between component scores F;, € R™ %% and between loadings
V, € R™*@_ The estimated between matrix is then Z, = FbV;TD}r/2 + 1y, 7', As
for the within part, MCA is applied to the data where the between part has been swept
out, i.e. SVD is applied to the following matrix:

(Z — Z,) D;Y2. (2.60)
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Chapter 3

L ow-rank model for count data
with covariates
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3.1 Introduction

Let Y be an m; X my observation matrix of counts, R € R™*K1 and C € Rr*K:
be two matrices containing row and column covariates, respectively. In the waterbird
monitoring application introduced Section 2.1.1, the rows of the count table represent
ecological sites, and columns represent years. For (i,j) € [mi] x [ms], Y;; counts
the abundance of waterbirds measured in site ¢ during the year j. The row feature R;,
¢ e {1,..., K} embeds geographical information about the site ¢ (latitude, longitude,
distance to coast, etc.) while the column feature Cj, ¢ € {1,..., Ky} codes mete-
orological characteristics of the year j (precipitation, etc.). In addition, some entries
of Y are missing. For example ecological sites are sometimes inaccessible because of
meteorological or political conditions, and therefore cannot be counted. In this chapter,
we develop a complete methodology to impute the missing entries, and to analyze the
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relationship between the covariates and the counts.

To do so, we assume a probabilistic framework with independent entries Y; ; following
a Poisson model

}/;7]. ~ P(eX?,j)’ (2,]) € [[ml]] X [[mg]], (31)

and approach the problem through the estimation of the underlying parameter matrix
X", To estimate it, we rely on a hybrid model combining regression on the covariates
R and C and on a low-rank assumption. In particular, we build upon existing low-
rank models for count data. For instance, the generalized additive main effects and
multiplicative interaction model, or row-column model (see, e.g., Goodman (1985);
de Falguerolles (1998)), assumes

X =p’+a)+p)+0), rank(©°) < min(m; —1,my —1). (3.2)
In this model, 1" is an offset, the terms which only depend on the index of the row or
column (a and (37) are called main effects, and the terms which depend on both (here
©7,) are called interactions (Kateri, 2014, Section 4.1.2, p.87).

To incorporate side information in this framework, we express the row and column
effects o and 5]0 as regression terms on the covariates. In other words, for ;° € R,
a € R, B9 ¢ RE2 and @Y ¢ Rmixm2,

Z?]’

K1 K2
XZQJ» =10 —I—Z Ri,kag + Z ijlﬂlo +O! rank(®%) < min(m; —1,my—1). (3.3)
k=1 =1

vV vV
row effect column effect

This extension is relevant in practice for two purposes. First, estimated covariates co-
efficients (and in particular their signs) can be used to determine whether the studied
covariates have positive or negative effects on the counts; this is useful in ecology, to
check whether meteorological, geographical or political conditions are favorable or ad-
verse to species. Second, when the proportion of missing values is large, which is often
the case in bird monitoring, incorporating (relevant) covariates may improve the imputa-
tion significantly. Thus, the estimation of model (3.3) serves the dual objective of count
data analysis and imputation.

Models related to (3.3) have been considered for statistical ecology applications in
(Brown et al., 2014; ter Braak et al., 2017). However, to the best of our knowledge,
their theoretical properties have not been thoroughly studied. On the other hand, the
literature on convex low-rank matrix estimation is abundant and benefits from a sub-
stantial theoretical background, but few software with ready to use solution are available
for practitioners, and applications for count data outside image analysis (Luisier et al.,
2011; Salmon et al., 2014; Cao and Xie, 2016) and recommendation systems (Gopalan
et al., 2014) have not been attempted. The scope of this paper is to develop a complete
methodology for the inference of model (3.3), bridging the gap between convex low-rank
matrix completion and model-based count data analysis.

After detailing related work, we introduce in Section 3.2 a general model which

includes (3.3) as a special case; we propose an estimation procedure through the mini-
mization of a data fitting term penalized by the nuclear norm of the interaction matrix,
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which acts as a convex relaxation of the rank constraint. In the same section, building
upon existing results on nuclear norm regularized loss functions, we derive statistical
guarantees for our estimation procedure. In particular, we provide an upper bound for
the Frobenius norm of the estimation error. In Section 3.3, we propose an optimiza-
tion algorithm, and two methods to choose the regularization parameter automatically.
We provide a simulation study in Section 3.4 revealing that the method outperforms
state-of-the-art methods when the proportion of missing values is large and the inter-
actions are of significant order compared to the main effects. In Section 3.5, we show
on plant abundance data with side information, how the results of our procedure can be
interpreted through visual displays. In particular, the arising interpretation is consistent
with known results from the original study (Choler, 2005). In Section 3.6, we use our
method to analyze a waterbirds abundance data set from the French national agency for
wildlife and hunting management (ONCFS). The proofs of the statistical guarantees are
postponed to Section 3.8, and the method is available as an R package (R Core Team,
2017) called lori (LOw-Rank Interaction) on the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/package=1lori.

Model (3.3) is closely related to other models previously suggested in the statistical
ecology literature to analyze count tables with row and column covariates. For instance,
Brown et al. (2014) and ter Braak et al. (2017) suggested the following model:

with R;, 1 <4 < n a row trait and C;, 1 < j < p a column trait. The interaction
between covariates is modeled by €%, R;C;, where e} is an unknown parameter mea-
suring the strength of the interaction between the two traits. The main difference with
model (3.3) is that we incorporate the covariates in the main effects rather than the
interactions, which leads to different interpretations. In terms of estimation properties,
the main advantage of (3.3) is that, as long as K; < m; and Ky < mgy, we estimate
less parameters. This is an important point for us since in many applications we are
interested in (see e.g. Section 2.1.1), a large proportion of entries is missing, limiting
the amount of available data. Finally, model (3.4) was developed with the aim of test-
ing significant associations between covariates, rather than estimating the parameters
or imputing missing values. In particular, its theoretical properties, as far as we know,
were not studied.

In the low-rank matrix completion literature, related approaches for count matrix re-
covery and dimensionality reduction can be embedded within the framework of low-rank
exponential family estimation (Collins et al., 2001; de Leeuw, 2006; Li and Tao, 2013;
Josse and Wager, 2016; Liu et al., 2016) as well as its Bayesian counterpart (Mohamed
et al.,, 2009; Gopalan et al., 2014). In terms of statistical guarantees, the theoretical
performance of nuclear norm penalized estimators for Poisson denoising has been studied
in Cao and Xie (2016), where the authors prove uniform bounds on the empirical error
risk. Estimation rates are also given in Lafond (2015), where optimal bounds are proved
for matrix completion in the exponential family. These two papers do not account for
available covariates.

More recently, Chiquet et al. (2018) developped a probabilistic PCA framework for

the exponential family, where covariates can be included in the parameter space. Fithian
and Mazumder (2018) present a variety of low-rank problems including the generalized
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nuclear norm penalty (Angst et al., 2011), that can be used to include row and column
covariates. Similar estimation problems were also considered, e.g., in Agarwal and Chen
(2009); Abernethy et al. (2009). However, to the best of our knowledge, these papers
did not provide statistical guarantees and the practical advantages of such extensions
compared to classical low-rank methods have not been thoroughly studied.

3.2 The low-rank interactions (LORI) model

3.2.1 General model

We now introduce a general version of the model (3.3) described in the introduction.
Indeed, assuming a Poisson probabilistic model may be restrictive; thus, we relax it and
rely on a pseudo-likelihood data fitting term instead. Consider the following assumption
on the distribution of Y; ;, (4, j) € [mi] x [mo].

H1. The random variables Y = {Y; ;} (i j)c[mi]x[ms] are independent and there exist
v>0,0_>0and o, < oo such that for all i € [my] and j € [ms]
eV <E[Y;,] <e and 0> < varlY;,] < o?.

Assumption H 1 means that the random variables Y; ; have bounded expectations and
variances. In particular, their expectations satisfy E [Y; ;] > 0, for (¢, j) € [mi] x [m2].
We do not assume the entries follow Poisson distributions, but we define our target
parameter X7, as:

X, = argmin,x {~E[Y; ]z + exp(z)} . (3.5)

In other words, the target parameter ng minimizes the Kullback-Leibler divergence
between the distribution of Y;; and a Poisson distribution. Thus, it defines the best
Poisson approximation of the distribution of Y; ; (in the sense of the Kullback-Leibler

divergence). Note that the assumption E[Y;;] > 0 implies that (3.5) is always well-
defined.

Similarly, we generalize the decomposition introduced in (3.3), to incorporate the
broadest family of models possible. The main feature of model (3.3) is that it de-
composes the parameter matrix X" into two components, one of them being low-rank.
Furthermore, the low-rank component is not arbitrary: it corresponds to the "residual
term" after modeling main row and column effects. Thus, from a given parameter matrix
X", @Y is obtained by centering the rows and columns of X°. This corresponds to the
following matrix computation:

0'=X"—1,,1) X°— X 1,1} + 1,1} X°L,,1} . (3.6)
In other words, the rows and columns of X are projected onto the vector spaces
orthogonal to 1,,, and 1,,, respectively. Starting from (3.6), the decomposition may
be generalized by considering projections on arbitrary row and column vector spaces.
Let S; and Sy be fixed linear subspaces of R™ and R™2 respectively. Let P, and P,
be the orthogonal projection matrices on S; and Sy, P+ : X € R™*m2 sy P X P,
P:X e Rxm oy X — PHX), &) C {X € Rm2; PL(X) = 0} and T =
{X € Rm*m2:P(X) = 0}. For example, if S; is the span of the constant vector
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(1,...,1) of size my, and S; is the span of the constant vector (1,...,1) of size my,
the orthogonal projection operator P consists in substracting the row and column
means, with operation (3.6). We consider general decompositions of the form:

X°=A"4+0" A'cx,@ cT. (3.7)

Such general decompositions may be used to model particular types of interactions
explicitly. For example, interactions between covariates, similarly to what is done in
(3.4). Note that the original model, (3.3), is included in (3.7) by setting S; = {u €
R™; 1) uw=0}, Sy ={veR™;1] v =0}, and

K Ks
Xy = <M+ZRikak+ZC¢k5k) pnER 0 e R, B e R
k=1 k=2 (i,5)€[ma] x[m2]

The dimension of this subspace is at most 1 + K; + K5 and the rank of a matrix in X,
is less than 3. In the general case, we denote:

r = max ({rank(A) : A € Ap}). (3.8)

We finally consider a setting with missing observations. Denote by 2 C [m;] x [m2]
the set of observed entries: (i,7) € Q if and only if Y; ; is observed. Define also the
random variables (w;;) such that w;; = 1 if Y, is observed and w;; = 0 otherwise.
We assume that (w;;) and Y are independent, and a Missing Completely At Random
(MCAR) scenario (Little and Rubin, 2002), where (w;;) are independent Bernoulli random
variables. For (i,7) € {1,...,n} x{1,...,p}, we denote 7;; = P(w;; = 1). We assume
the probability of observing any entry is positive, i.e. there exists 7 > 0 such that

min {m;; : (i,5) € [mi] x [ma]} =7 > 0. (3.9)

For j € [ms], denote by m; = >"""  m; the probability of observing an element in
the j-th column. Similarly, for i € [m], denote by m; = > 7_, m;; the probability of
observing an element in the i-th row. We define the following upper bound:

max ({m; i€ [m]tu{r; : j€[me]}) <5. (3.10)

3.2.2 Estimation and main results

We define a data-fitting term based on the Poisson pseudo-likelihood:

L(X)= > wi{-Yi, X+ exp(Xiy)} (3.11)

(i) €[ma]x[me]
Denote || - || the operator norm (the largest singular value), || - || the infinity norm
(the largest entry in absolute value) and || - ||, the nuclear norm (the sum of singular

values). Our estimator of model (3.3), for a given regularization parameter A > 0, is
the minimizer of the data-fitting term (3.11) penalized by the nuclear norm of ©:

(A,©) e argmin L(A+0O)+)\|O].,

subject to  ||[A + Ol| <7, (4,7) € [ma] x [ms], (3.12)
AcX),and ® cT.
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Denote X = A - ©. After solving the estimation problem (6.11), we compute an
imputed data set Y as follows:

~ A~

Y, =exp(Xy), (i,5) € [ma] x [mo] \ @,

. oY (3.13)
Y;,j :Y;ja (Z,j)GQ.

We evaluate the statistical properties of the estimation procedure (3.12) in terms of the

estimation error X — X, where X = A — @©. Indeed, for (i, j) € [mi] x [m.], the

distance (X;; — X})? is related to the Kullback-Leibler divergence between the Poisson

distributions parameterized by exp(X,-j) and exp(X?j), respectively. Thus, it measures
how well the distribution of Y; ; is approximated by a Poisson distribution of intensity

~

exp(X;;) and, by extension, the quality of the imputation procedure (3.13).

The following statistical guarantees essentially show that the Frobenius norm of the
estimation error X — XU is of the order of
rank(@%)my My

HX_XOH%S T =+ T ;

where < denotes the inequality up to constant and logarithmic factors. The first term
corresponds to the usual bound in low-rank matrix estimation and completion (Klopp,
2014; Lafond, 2015). The additional term rmy/m accounts for explicit modeling of
the covariates in the main effects. To derive this upper bound, we need additional
assumptions. Let (E;;) be the matrices of the canonical basis of R™*™2 Let

VLX) = ) wi{-Yi,+exp(X))} Ey

(7'7])€|Im1]] X [[mZ]]

be the gradient of £ evaluated at X. Denote also 0°£/0z}; the second derivative of £
with respect to the (i, j)-th coordinate.

H2. The function L is strongly convex and smooth on [—v — &, + €]|™*™2 for some
e > 0. There exist o_ > 0 and o, < oo such that for all X € [—y — g, 4 g]™ >
and (i,7) € [mi] x [my], 0® < PL(X)/0x}; < o7

We also introduce the following random matrix related to the distribution of the
missing entries. Let (e;;), (4,7) € [m1] x [me] be i.i.d. Rademacher random variables
independent of Y and Q2 and define

(6.9)€lma] x[m2]

The derivation of our statistical guarantees follow two steps. First, we derive in The-
orem 5 a deterministic upper bound, which depends on the two random matrices X
(explicitly) and VL(X?) (through an assumption of the theorem).

Theorem 5. Assume H 1-2, and X\ > 2||VL(XP")|. Then for all my,my > 1, with
probability at least 1 — 8(my + my) ™",

A

HXO X

1g%([§+<mzauw <rank<@0>+r>+1og<n+p>), (3.15)

where r, v are defined in (3.8) and (3.12), C' is a numerical constant whose value can
be found in the proof and which is independent of my, ms and X°.
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Proof. The proof is postponed to Section 3.8.1. ]

Then, we use tail bounds on the norms of sums of random matrices, to control the
quantities E||Xz|| and ||[VL(X?)||. Doing so, we obtain an upper bound on E||Xx||,
and compute a value of X such that the condition A > 2||[VL(X?)| holds with high
probability. Finally, we obtain a high probability upper bound which only depends on
the parameters of the problem (in Theorem 6). We will need the following additional
assumption on the distribution of the counts:

H3. There exists § > 0 such that for all (i,7) € [m1] x [ma2],
E [exp(|Yi;]/0)] < 4o00.

Assumption (3) means that the entries Y; ;, and thus the entries of VL(X?), are
subexponential. Equipped with Theorem 5, we now derive our main theorem. Define
the following quantities, with C* a numerical constant defined in Lemma 5 and r, 3 and
~ defined in (3.8), (3.10) and (3.12) respectively:
;= 4807 Blog(my + ms),
dy = 360%(e — 1)%log® (1 + 852m1m2> log?(my + my) (3.16)
d3 = 4C** max(B3, log{min(my, my)}).

Considering only the parameters which depend on the size of the problem, i.e. on the

dimensions m; and my, or on the proportion of observed entries through the parameter
B, the orders of magnitude of these three quantities are:

¢, : Blog(my + ma),
®y : log? (mimy/B) log?(my + my), (3.17)
¢ : max(f, log{min(my,ms)}).

Theorem 6. Assume H 1-H 3 and set

A = max {4a+\/36 log(my 4+ myg), 120(e — 1) log (1 + 852 > log(my + mg)} :

Baz
Then with probability at least 1 — 10(my + mgy) ™,

. C
X — X% < 3 {(max(®y, ®5) + ®3) (rank(©°) + r) + log(m; +ma)}, (3.18)

where C' is a numerical constant independent of m,, my and X°.
Proof. The proof is postponed to Section 3.8.2. ]

Denoting < the inequality up to constant and logarithmic factors, and using the
orders of magnitude reported in (3.17), we recover an upper bound of the order of:

0
1% - X0 5 D0 7
T s
The first term correspond to the usual bound in low-rank matrix estimation and comple-
tion (Klopp, 2014; Lafond, 2015), and is equal to rank(®°) max(m;, msy)/7 when the
sampling is almost uniform (¢;7 < m;; < cam). The additional term r3/7? accounts for
explicit modeling of the covariates in the main effects. The constant term appearing in
bound (3.18) grows linearly with the upper bound o2 and quadratically with the inverse
of 02. This means that by relaxing Assumption 1 to allow var(Y; ;) to grow as fast as
log(my + ms) or decrease as fast as 1/log(m; + ms), we only lose a log-polynomial
factor in bound (3.18).
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3.3 Implementation

3.3.1 Optimization algorithm

In this section, we propose an algorithm to solve the estimation problem (3.12) for the
initial model

K Ko
X0 ="+ Rzl +Y_ Ciup+ 0.
k=1 =1

We use an alternating minimization (Csiszar and Tusnady, 1984) algorithm, which con-
sists in updating u, «, $ and © alternatively, each time along a descent direction.
Note that, in the algorithm and the entire numerical section, we relax the constraint
lu+ R, a+C; + 0, ;| <, which is mainly required to obtain statistical guarantees.
Denote

Flp,o,6,0)=L(p+ R a+C; 5+ 0),

and VeF the gradient of F with respect to © defined by (VeF (1, a,3,0));; =

=Y, j+exp(p+R;.a+C; f+0,;) ifw; =1and (VeF (1, @, 3,0));; = 0 otherwise.
Denote (pl l0) , 3, G)[O]) the initialized parameters, and (ul, al¥, 3l ©) the value
of the parameters at iteration ¢, t > 1. At every iteration we solve three sub-problems
in 1, a, f and © in order to update ull all, g and O, First, the sub-problem in u
can be solved in closed form:

mip ma2

,u[] Eargmanwa{ Yijp +exp M+ZR”€O‘1<: ]+Z 5l[t_1]+®£t,]'_1])}v

=1 j=1

which yields:

t Z Z] 1(“}1]
[ —
p =108 —1] =] =]
> i Z; 1 Wij eXp(Zk:l ik U, = Z C; 51 +6;; ")
as long as D™ > w;;Yi; > 0, that s, there is at least one positive count observed

inY . Then, the updates in « and 3 may be done simultaneously by estimating a Poisson
generalized linear model with offsets:

mi1 ma K1 K2
(Oé[t], 5[t]> € argmin Z Z Wij{ — Y;,j (Z Ri,kak + Z CjJﬁl)
i=1 j=1 k=1 =1

K Ko
+ exp(pl + Z R; oy + Z Cj,5 + @Z[fj—ﬂ) },
k=1 =1

which can be done for instance with standard algorithms implemented in available li-
braries. Finally, we perform the update in ©® along the proximal gradient direction.
Denote by D, the soft-thresholding operator of singular values at level A (Cai et al.,
2010, Section 2). We update © by soft-thresholding the singular values

el =D, e — Ve F(ull, ol gt @l

where the step size 7 is tuned using backtracking line search. The complete procedure
is sketched in Algorithm 1.
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Algorithm 1 Alternating minimization for problem (6.11)
1: Initialize pl, o0, o] @

2: fort=0,1,..., T —1do
3 plt € argmin F(p, o¥, g8, @11),

b: T=1,

6: Ot =p, [0l _rveF(ul,all gl )

7: while F(plttl oltt1] g1l @lt+1ly 1 x|@F+1||, > F(ulttl ottt glt+1l @) £ x|,
do

8: T=1/2

9: e+l — DA[QM — Tv@}"(u[t]’ altl, gt @[t])].

10: end while

11: end for

12: Return pl™1, o717l @71

Note that if Ky 4+ Ky > |Q2], with |2| denoting the cardinality of 2, the update in «
and 3 does not have a unique solution. However in our targeted applications, typically
Ky + Ky < [©]. Note that, even though our theoretical guarantees require a MCAR
mechanism, the estimation method still holds when entries are missing at random (Little
and Rubin (2002), Section 1.3).

3.3.2 Automatic selection of )\

A common way to select the regularization parameter is cross-validation, which consists
in erasing a fraction of the observed cells in Y, estimating a complete parameter matrix
X for a range of \ values, and choosing the parameter \ that minimizes the imputation
error. This can be performed directly using our method (LORI) without modifying the
code, simply by modifying the weights w;;. However, this procedure is computationally
costly, as it implies estimating the LORI model many times. We suggest an alternative
to cross-validation, inspired by Donoho and Johnstone (1994) and the work of Giacobino
et al. (2016) on quantile universal threshold. In Theorem 7 below, we define the so-
called null-thresholding statistic of estimator (6.11), a function of the data A\o(Y") for
which the estimated interaction matrix () is null, and the same estimate ©* = 0
is obtained for any A > \o(Y).

Theorem 7 (Null-thresholding statistic). The estimated interaction matrix ©* for a
regularization parameter X\ is null if and only if A > X\o(Y'), where M\o(Y) is the null-
thresholding statistic

M(Y) = ||[VL(A)||, where A €argming.y, L(A). (3.19)
Proof. The proof is postponed to Section 3.8.3. O
Here, ||.|| denotes the operator norm (the largest singular value). We propose a

heuristic selection of A based on this null-thresholding statistic A\o(Y"). To explain further
the procedure, we first need to define the following test:

Hy:©" =0 against the alternative H; : ©" # 0 (3.20)

which tests whether the parameter matrix X° can be explained only in terms of linear
combinations of the measured covariates. For a probability £ € (0, 1), consider the upper
e-quantile . of the null-thresholding statistics, namely that satisfies Py, (Ao(Y) > A.) <
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. The test which consists in comparing the statistics A\o(Y") to A. is of level 1 — ¢ for
(3.20). This can be seen as an alternative to the x? test for independence which han-
dles covariates. In practice we do not have access to the distribution under the null
P, (M\o(Y) < A), but perform parametric bootstrap (Efron, 1979) to compute a proxy
A.. In practice we use ¢ = 0.05 and AQuT = Aos; we refer to it in what follows as
quantile universal threshold (QUT). This selection of the regularization parameter is
essentially the universal threshold of Donoho and Johnstone (1994) extended to our
setting.

3.4 Simulation study

3.4.1 Simulation scheme

In this experiment section we simulate count data under the LORI model (3.3). First,
we generate covariate matrices R € R3%%3 and C' € R3*%*4 drawn from independent
multivariate Gaussian distributions with mean 0 and diagonal covariance matrices. Then,
we set 1% =1, a® = (0.5,0.5,0) and 3° = (0.5,0.5,0,0). Then, an interaction matrix
©° of rank 5 is generated by sampling orthonormal matrices U and V, and fixing five
decreasing singular values. We also "plant" some values in ®°: 5 entries are fixed to
3, to model outlier profiles. Denote by A" the matrix corresponding to all the main
effects, defined by (A°),; = u® 4+ S°0% Rl + 3212 €80, The Frobenius norm of
©Y is then controlled through a parameter 7 = ||@°|| /|| A°||r. We obtain a parameter
matrix X% X, = (u° + R; .a® + C; 3%);; + ©7,. Finally, we simulate Y € N3%0x3
under model (3.1): Y;; ~ P(exp(X};)).

3.4.2 Estimation

We compare the performance of LORI in terms of estimation of the regression coefficients
a® and ° and compare it to a standard Poisson Generalized Linear Model (GLM)
estimated with the glm function in R. We repeat the experiment 100 times for decreasing
values of the ratio 7 = ||@°|| /|| A°|| r, where A = ((u° + R; o+ C; 3%); ;) is fixed.
We look at the Root Mean Square Error (RMSE) for the estimation of A?; the results
are given in Table 3.1, where we observe that LORI and the Poisson GLM are equivalent
for 7 = 0, and that LORI outperforms the GLM for non-zero interactions, with a gap
widening as 7 increases.

Second, we compare LORI to a convex low-rank matrix estimatiob procedure with
a Poisson loss function and where covariates are not modeled (e.g. Lafond (2015)), in
terms of the relative estimation error || X — X°||#/||X°||r (because || X°|| varies with
7). We refer to this competitor as "Poisson LRM". Again, we reproduce the experi-
ment 100 times for decreasing values of the ratio 7 = ||@°||z/||A°||z. On Table 3.2, we
observe that LORI achieves lower errors than Poisson LRM, which is expected as we sim-
ulated under the LORI model. As 7 decreases—i.e. the size of the main effects increases
relative to the interactions—both errors decrease as well, and the gap between LORI and
the Poisson LRM widens, indicating that modeling covariates explicitly improves the
estimation.
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T Mean of RMSE*100 Standard deviation of RMSE*100
] LORI 23 1.6
GLM 76 15.5
0.5 LORI 8.3 1.2
' GLM 9.0 1.2
LORI 3.1 0.9
0.25 GLM 3.2 1.0
0.1 LORI 2.4 0.8
' GLM 2.4 0.8
0 LORI 2.3 0.7
GLM 2.4 0.7

Table 3.1: Estimation error (RMSE) of regression coefficients \/||d — a2 + ||3 — B9 2

of LORI and a Poisson GLM, for decreasing values of 7 = ||©||r/||A°||r. The results
are aggregated across 100 replications of the experiment.

T Mean of Relative RMSE*100 Std dev. of Relative RMSE*100
1 LORI 63 0.5
Poisson LRM 93 0.4
0.5 LORI 45 0.16
' Poisson LRM 99 0.14
0.95 LORI 24 0.1
Poisson LRM 100 0.06
0.1 LORI 10 0.1
' Poisson LRM 100 0.06
0 LORI 2.1 0.6
Poisson LRM 100 0.06

Table 3.2: Estimation error (Relative RMSE) of parameter matrix || X — X°|| /|| X°||
of LORI and a Poisson GLM, for decreasing values of 7 = [|@°|| /|| A°|| .

3.4.3 Imputation

Using the same simulation scheme, we now compare LORI in terms of missing values
imputation to Correspondence Analysis (CA) and Trends & Indices for Monitoring data
Pannekoek and van Strien (2001) (TRIM), a method based on a Poisson log-linear model
used to impute bird abundance data. To do so we erase an increasing proportion of entries
in the data and impute them using LORI, CA and TRIM, replicating the experiment 100
times. In the first experiment, we also include imputation of the missing values using
the column means, as a baseline referred to as "MEAN"; we remove it in subsequent
experiments to improve visibility. We observe on Figure 3.1 that LORI performs best,
which is expected as we simulate under the LORI model. Moreover, the gap widens as
the percentage of missing values increases. In particular, as the proportion of missing
values increases, TRIM is not able to impute all the rows, and removes some of them;
thus the imputation error of TRIM—-which is already larger than LORI-is computed on a
subsample of the rows (with the least missing entries).

Then, we evaluate the imputation performances of LORI on the Aravo data set
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Figure 3.1: Imputation error Z(i’j)EQ(YM —Y; ;)% aggregated across 100 replications.
The compared methods are, from left to right in the boxplots, imputation by the column
means (MEAN), correspondence analysis (CA), trends and indices in monitoring data
(TRIM), and low-rank interactions (LORI). The results are given for increasing propor-
tions of missing values: 20% (top left), 40% (top right), 60% (bottom left) and 80%
(bottom right).

(described in more details in the next section). We introduce an increasing amount of
(completely at random) missing values, and compute the prediction errors of CA, TRIM
and LORI. The results are displayed in Figure 3.2, which essentially shows that LORI
performs similarly as CA on this data set.

3.5 Analysis of the Aravo data

The Aravo data set (Choler, 2005) counts the abundance of 82 species of alpine plants
in 75 sites in France; covariates about the environments and species are also available.
We focus on 8 species traits providing physical information about plants (height, spread,
etc.), and 4 environmental variables giving geographical and meteorological information
about sites. We apply our method LORI after scaling the covariates and tuning the
regularization parameter with the QUT method. This results in estimates for the main
effects of the environment characteristics o and of the species traits 3, as well as an
estimate of the interaction matrix ©.
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Figure 3.2: Imputation error Z(M)EQ(YM — Yivj)Q, for the Aravo data set, aggregated
across 100 replications. The compared methods are, from left to right in the boxplots,
imputation by the column means (MEAN), correspondence analysis (CA), trends and
indices in monitoring data (TRIM), and low-rank interactions (LORI). The results are
given for increasing proportions of missing values: 20% (top left), 40% (top right), 60%
(bottom left) and 80% (bottom right).

Aspect Slope PhysD Snow
0.01 0.02 -0.01 -0.02

Table 3.3: Main effect of the Aravo environment characteristics estimated with LORI.
The regularization parameter is tuned using QUT.

Height Spread Angle Area Thick SLA Nmass Seed
0.02 -0.06 -0.05 -0.05 -0.03 -0.04 0.05 -0.03

Table 3.4: Main effect of the Aravo species traits estimated with LORI. The regulariza-
tion parameter is tuned using QUT.

The main effects of environment characteristics are given in Table 3.3 and the main
effects of the species traits in Table 3.4. First we observe that overall, species traits
have larger effects than environment characteristics on the observed abundances. In par-
ticular, the mass-based leaf nitrogen content (Nmass) has a large positive effect, which
seems to indicate that plants with a large Nmass tend to be more abundant across all
environments. On the other hand, the maximum lateral spread of clonal plants (Spread),
area of single leaf (Area) leaf elevation angle estimated at the middle of the lamina (An-
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gle) and specific leaf area (SLA) have large negative effects on the abundances.

The estimated rank of the interaction matrix © (number of singular values above
107%) is 2. The environments (rows) and species (columns) can be visualized on a bi-
plot (de Rooij and Heiser, 2005, Section 2.5), where rows and columns are represented
simultaneously in a normalized Euclidean space. In such plots, the dimensions of the Eu-
clidean space are given by the principal directions of ©, scaled by the square root of the
singular values of ©. Figure 3.3 shows such a display, which can be interpreted in terms
of distance between points: a species and an environment that are close interact highly,
and two species or two environments that are close have similar profiles. Justifications
for such a distance interpretation can be found in (de Rooij and Heiser, 2005, Section
2.5) or (Fithian and Josse, 2017, Section 2). Note that, in both plots, the signs of the
directions may be flipped simultaneously. We can then look at the relations between the
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Figure 3.3: Display of the two first dimensions of interaction estimated with LORI.
Environments are represented with blue points and species with red triangles.

known traits and the interaction directions of ©. Figure 3.4a shows that the two first
directions of interaction are correlated with the species covariates; the correlation is par-
ticularly high for the Nmass and SLA variables. Thus, on Figure 3.3, the two directions
separate the plants with large SLA and Nmass (top right corner) from those with small
SLA and Nmass (bottom left corner). Then, Figure 3.4a shows that the directions of
interaction are also correlated with the environment covariates, and particularly with the
mean snowmelt date (Snow). Thus, on Figure 3.3, the two directions separate the late
melting environments (top right corner) from the early melting environments (bottom
left corner). Combining the interpretation of Figure 3.3, Figure 3.4a and Figure 3.4b,
we deduce that plants with large Nmass and SLA interact highly with late melting sites
(large value of Snow). This was in fact the main result obtained in the original study
Choler (2005) (see, e.g., the summary of findings in the abstract), which advocates the
good properties of LORI in terms of interpretation.

Then, we evaluate the performance of LORI in terms of imputation of the missing
values on the Aravo data: we introduce increasing proportions of missing values, and

72



1.0

0.5
L

im.2
0.0
L
Dim.2
0.0
L

P
PhysD ; Aspect]

Slope

-1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Dim.1 Dim.1

(a) Environment covariates (b) Species traits

Figure 3.4: Correlation between the two first dimensions of interaction and the covariates
(the covariates are not used in the estimation).

compare LORI to mean imputation, CA and TRIM.

3.6 Using covariates to impute ecological data

The waterbirds data are constituted by counts of migratory waterbirds in 785 wetland
sites (across the 5 countries in North Africa), between 1990 and 2017 (Sayoud et al.,
2017). One of the objectives is to assess the effect of time on species abundances, to
monitor the populations and assess wetlands conservation policies. Ornithologists have
also recorded side information concerning the sites and years, which may influence the
counts. For instance, meteorological anomalies, latitude and longitude. The count table
contains a large amount of missing entries (70%), but the covariate matrices which con-
tain respectively 6 covariates about the 785 sites and 8 covariates about the 18 years,
are fully observed. Our method allows to take advantage of the available covariates
to provide interpretation for spatio-temporal patterns. As a by-product, it produces an
imputed contingency table.

Tables 3.5 and 3.6 show the estimated main effects of some of the sites and years
characteristics. Sites with large altitudes are associated to smaller counts, as well as
sites which are far from the coast. Sites which are located far from towns, and sites
with large water surfaces are associated to larger counts. The four year covariates
given in Table 3.6 concern meteorological anomalies. The associated coefficients are
much smaller than those of the site covariates, which may indicate that there is more
variability in the counts across sites than across years.

Latitude Longitude Altitude (m) Dist. town(m) Dist. coast (m) Surface (km?)
0.98 -0.70 -5.67 0.46 -6.17 0.71

Table 3.5: Main effect of the sites characteristics estimated with LORI. The regularization
parameter is tuned using QUT.
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Spring N/O  Spring N/JE  Winter S/O  Winter S/E N/O Europe N/E Europe NAO
0.06 -0.01 0.07 0.09 0.05 0.00 0.08

Table 3.6: Main effect of the years characteristics estimated with LORI.

The sites and years can also be displayed using the same visual tools as described
in Section 3.5. Figure 3.5a and 3.5b show the correlations between the covariates and
the directions of interaction. On the two-dimensional display on Figure 3.5¢c, the first
dimension is correlated with meteorological anomalies. Simultaneously, on Figure 3.5c,
we observe a very clear temporal gradient along the first dimension, indicating that over
time, meteorological abnormalities increase (in the sense of a summary anomaly variable
embodied by the second direction). Several sites (55, 375, 582, 698, 704) lay out of the
point cloud, and correspond to sites with very large surface.
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(a) Correlation between sites characteristics (b) Correlation between year characteristics
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(c) Display of the two first dimensions of interaction estimated with LORI. Envi-
ronments are represented with blue points and years with red triangles.

Figure 3.5: Visual display of LORI results for the waterbirds data.
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LORI also returns counts estimates, which can be used to compute an estimation
of the total yearly abundances (i.e. counts estimates summed across sites). To better
assess the temporal trend, one can decompose the estimated counts into three factors
corresponding to the site effects, year effects and interactions respectively. Indeed, for
(1,7) € {1,...,n} x {1,...,p}, one can write

A~ A ~

GXP(Xz‘j) = exp(j1) exp(R; &) exp(Cj,ﬂ) eXP(@z’j)-

Figure 3.5 shows the last three factors of this decomposition separately.
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RN
(a) Total site effects in count scale (exp(R; &), (b) Total vyear effects in count scale
for 1 < i < n). One site has exp(R;,a) > (exp(C; B), for 1 < j < p). Blue line: loess
exp(5) (large red point). Horizontal line: (standard deviation in gray).
exp(R; ) = 1.
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(c) Interaction in count scale (exp(®;;)) for 150 sites (to improve the display).
Figure 3.6: Decomposition of the estimated counts into multiplicative site effects (top

left), year effects (top right) and interactions (bottom).

On Figure 3.6a we see that most sites have multiplicative effects around 1 on count
scale. One site (site 376, large red point) stands out; again, it corresponds to an ex-
tremely large site (6000km?, 5 times larger than the second, 300 times larger than the
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mean). In this respect, the row effects act as normalization factors accounting for sur-
face. We also observe tenuous levels along the x axis, corresponding to sites of different
countries. On Figure 3.6b we observe a slighlty increasing temporal trend. This means
that, all other things being equal, later years tend to produce larger abundances. As
illustrated in Figure 3.5b, this temporal trend can be associated with the effects of me-
teorological abnormalities. This may indicate that more birds migrated from Europe
to North Africa in the recent years, due to increasing meteorological abnormalities in
Europe. Note that the temporal effects (top right) are much smaller in amplitude than
the spatial effects (top left). Indeed, more variability is observed in the counts between
sites in a given year, than between years for a given site.

Finally, looking at the interaction matrix on Figure 3.6¢c, we see that the interactions
are mainly driven by a few sites which interact more or less highly with every year. In
particular the sites 55 and 375 present large interactions with part of the years. Site 55
corresponds to a site where the number of birds counted every year has extreme varia-
tions. For most of the years, the counts are around the median of the data set (482).
On the contrary, in 2012, 2014 and 2016, the observed counts (respectively 113,990,
239,069, and 92,730) are in the largest 1% of the entries: these years correspond to
the large interactions observed for site 55. The site 375, on the other hand, has very
few observed entries (5 across the 28 years). In particular, the count observed in 1990
(254, 749) is much larger than the others (around 10,000). This explains the large in-
teraction observed for the pair (site 375, year 1990).

The site 704 also presents some large interactions. It corresponds to Ichkeul national
park in Tunisia, which is a major site for most species; the abundances are very large
in Ichkeul compared to other sites. However during several years including 2007, bad
weather conditions prevented ornithologist to correctly count the birds, thus reported
counts are significantly lower than expected. This explains the drop in the interaction in
2007 for Ichkeul, corresponding to an outlier behavior.

Such profiles, which correspond to outlying values, could not be highlighted without
modeling interactions. This illustrates one of the advantages of LORI for such bird
abundance data compared to state-of-the-art methods such as TRIM (Pannekoek and
van Strien, 2001) which do not model interactions. In particular, in most cases the
interaction terms absorb outliers (small or large), and indirectly account for the over-
dispersion which is known to occur in birds abundance data.

3.7 Conclusions and perspectives

In this chapter, we introduced a first low-rank method, with statistical guarantees and
an open source implementation, to analyze count data with covariates. The method
can either be seen as an imputation technique, which uses row and column covariates to
better predict the missing values, or as a way to estimate main effects of covariates and
interactions simultaneously. Promising numerical experiments suggest that it could be
used successfully to impute the waterbird monitoring data set, and produce interpretable
summaries. There are, however, several opportunities of improvement.

On the theoretical side, our estimation method only guarantees upper bounds on esti-
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mation error of the parameter matrix X°. Although this already is a new result, it would
be useful to control the error we make on the main effects and interactions separately. In
particular, if we want to interpret the regression coefficients & and 3. On the practical
side, in settings where the number of covariates is large (or if we have qualitative covari-
ates with many categories), and we observe only a small proportion of entries, this first
model, which does not constrain the covariates coefficients, may be limiting. Indeed, as
the number of covariates increases, two phenomenons occur. Firstly, the computational
cost increases significantly; secondly, the number of observations may not be sufficient
to estimate the covariate coefficients. To solve all these limitations simultaneously, an
option would be to penalize the main effects, for example with a LASSO-type penalty.

Another limitation is that we have defined a single imputation procedure, which does
not allow to estimate the variability of our parameters’ point estimates. As our goal
is to impute the data set prior to data analysis, single imputation is not a statistically
sound approach. Thus, an interesting extension would be to build a multiple imputation
method, based on this single imputation method. We investigate these two extensions
in Chapter 4, by adding a regularization term to the LORI model, to constrain the
covariates coefficients, and proposing a multiple imputation procedure.

3.8 Proofs

3.8.1 Proof of Theorem 5

We will first derive an upper bound for Z(M)EQ(XM —X?,)?, then control || X — X°|%
by | X — X912 < > (i) EQ(X X0 :)? + D, with D a residual term defined later on.

By definition of X = A+ @, L(X) + )‘H@H* < L(X°) + \||©*]|.. Using the strong
convexity of £ and substracting (VL(X"), X — X°) on both sides of this inequality, we
obtain

QZMGQ( XO)
2

< VLX), X~ X°) + A" — [©].). (3.21)

Vv Vv
I 11

We will bound separately the two terms on the right hand side of (3.21).

Given a matrix X € R"™"™2 we denote S1(X) (resp. S2(X)) the span of left (resp.
right) singular vectors of X. Let Pg 51(X) (resp. PSLQ(X)) be the orthogonal projector in

R™ on S;(X)* (resp. in R™ on Sy(X)*). We define the projection operator in

R™*m2 Py 2 X = Pg )X Ps ) and Px : X — X — Pg o X Pg, ). We use
the following Lemma, proved in (Lafond, 2015, Lemma 16).

Lemma 1. For all M and M’ in R™>™m2,
(i) 1M + Pay(M)||. = [| M|l + | Pag (M)l
(ii) | Ml = | M'||. < [[Par(M = M)« — [|Pag (M — M),
(iii) |Par(M — M) < /20k(M)||M — M'|| .
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Using [(VL(X?), X — X%| < || X — X|,||[VL(X?)|| and the triangular inequality
gives that

1< VLX) (IPo-(© ~ €)1 + [P5.(6 — O] + [ %o~ A".) . (3.22)
Then, Lemma 1 (ii) applied to © and ©, results in
1<\ (HP@*((;) — @), — |IPS.(6 — 6*)H*) . (3.23)
Plugging inequalities (3.22) and (3.23) in (3.21) we obtain

> 3 (X, - X0 <2()\+||V£(X°)||)HP@*((3)—@*)
(1,5)€Q

*

+2(| VLX) = N)|[Pa-(© — ). + 2| VL(X")[|A — A%.. (3.24)
We now use the condition A > 2||[VL(X )| in (3.24):

o> Y (X — X)) < 3M|Pe-(O© — ©%)|. + A|A — A|.. (3.25)

(4,7)€Q

Then, rk(A — A%) < r and A — A°||p < || X — XO||p imply that A — A°||, <
V7| X? — X ||, which together with Lemma 1 (iii) and [|© — @} < | X — X0||F
yields

2 Y wy(Xy - X0 <)\<3\/2rank®*+\/_) 1X — X°|lr. (3.26)
(4,5)€[ma]x [me]

We now derive the upper bound || X — X°||2 < D (id)elma]x [ma] wii (X — X7P)?+D.
Define n = 72log(n + p) /(7 log(6/5)),
Sw X)= > w;X} (3.27)
(i,5)€lma] x[me]

and the set
Cn,p) = {X e R™ "™ || X || < 1,[| X[, < Vol X|lr E[E(w, X)] >n}. (3.28)

We start by showing in the following Lemma that whenever X — X?° belongs to C(?Z, )
(for p and D defined later on), a restricted strong convexity property of the form || X —
X% < Z(” Ye[mi]x[ms] WZJ(X X*) + D holds. Define

s = 967 [p(E||Xr|)* + 8]. (3.29)

Lemma 2. Let n = 72log(n + p)/(wlog(6/5)) and p > 0. With probability at least
1—8(n+p)7t, forall X € C(n, p) we get
E [¥(w, X))

S, X) — E[S(w, X)]| £ ——

+ <,
with ¥ defined in (3.14).
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Proof. Consider the event

B— { sup [IZ(w,X) B[S (w, X)) - %E 5w, X))

XeC(n,p)

Define also for [ € N,
Si={X e€Cn,p);r'n<E[S(w,X)] <x'n},

for k = 6/5 and n = 72log(n + p)/(wlog(6/5)). On B, there exist [ > 1 and X €
C(n, p) such that X € C(n,p)(S;, and

1 1 5
1¥(w, X) — E[S(w, X)]| > SE [S(w, X)] +¢ > 5/4—177 +¢= Enln +¢. (3.30)

For T' > 0, define the set
Cn,p,T)={X €C(n,p), E[X(w,X)] < T}

and the event

5
B = sup  |X(w, X) —E[S(w, X)]| > —=k'n+cp.
X eC(n,p.ktn) 12

It follows from (3.30) that B C (J,"> B;; thus, it is enough to estimate the probability
of the events 3;, [ € N, and then apply the union bound. Such an estimation is given
in the following Lemma, adapted from Klopp (2015) (see Lemma 10). Define

Zr= sup |Z(w X)-E[Sw X)) (3.31)

XeC(n,p,T)

Lemma 3. Under the assumptions of Theorem 5,

P (ZT > %T + g) < 4e7T/T2 (3.32)

where < is defined in (3.29).

Proof. We use the following Talagrand’'s concentration inequality and a symmetriza-
tion argument. Recall the statement of Talagrand's concentration inequality. Let
f:[=1,1]™ — R a convex Lipschitz function with Lipschitz constant L, =;,...,=,, be
independent random variables taking values in [—1,1], and Z := f(Z1,...,Z,,). Then,
forany t > 0, P(|Z—E[Z]| > 16L+t) < 4e /2. Forx = (z), (1,7) € [mi] x[ma],
we apply this result to the function

f(x) = sup Z (w45 — Wij)Xin )

XeC(n,p,T) (i,5)€[m1] x[ma]
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which is Lipschitz with Lipschitz constant v/ 7—1T"

‘f(xlla Ce ,CCnp) — f(le, e ,an)|

= sup Z (ﬂfi]’ — ﬂ_ij)Xi%j — sup Z (Zij — Wij)Xi%j

XeC(n,p,T) (i.5)€[m1] x[ma] XeC(n,p,T) (4,9)€[ma] x[m2]

S sup Z (:Bij — Wij)XiQ,j — Z (Zi]’ — Wij)Xz‘zhj

XeCmpT) 1 (i j)elma]x[ms] (i,)€lma] x[ms]

< sup Z (ZL‘Z‘]‘ - ﬂ-ij)XiQ,j - Z (Zij — Wij)Xz?,j

XECmAT) | (5 j)elmr] x [ma] (i,)€lma]x[ms]

< sup Z (zij — 2i5) X7,
XeC(n,p,T) (i,5)€[ma] x[m2]

< sup )\/(i,j)e > (i — ) > m XY

XeCmp,T [ma]x[me] (i.j)€lma] x[me]

< sup Vrl > (=) > X
XeC(n.p,T) (i,5)€[m1]x[m2] (i,5)€[ma]x[mz]
< VaolT Y (o)
(i,5)€lma]x[me]

where we have used ||a| — |b]| < |a — b],[|X||oc < 1 and E[X(w, X)] < T. Thus,
Talagrand's inequality and the identity v7—'T < T/(2 x 96) + 96/(27) give

1
P (ZT > E(Zr) + 7687 + T+ t) < 4o UT/T
Taking t = T'/6 we get
3
P (ZT > E(Zy) + 7687 + ET) < 4e7T/T2, (3.33)

Now we bound the expectation E[Z7] using a symmetrization argument (Ledoux, 2001,
Section 7.2). Let (¢;;) be an i.i.d. Rademacher sequence. We have

E(ZT) < 2E sup Z EijwinZj ) (334)
XECpT) (i jyelma]x[ms]

Then, the contraction inequality (see Koltchinskii (2011a), Theorem 2.2) yields

E(Z7) < 8E sup Z €i;wi; Xi ;| | =8E < sup |<ER,X>|> :

XECPT) | j)efm]x[ma] XeClnpT)

where Y is defined in (3.14). For X € C(n,p,T) we have that || X|. < /pr~!T.
Then by duality between the nuclear and operator norms we obtain

E(Zr) <SE|  sw  |(SrX)| | <8V/pm I TE|Z4.
X |«<+/pn=1T
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Combined with (3.33) and using 8v/p7 T E||Sg|| < 5L+ 287 (|| S x|)? we finally

2x3 2
obtain (3.32) using the definition of ¢ in (3.29). O

Lemma 3 implies that
+00 “+oo
P(B) <Y P(B) <4) exp(—mr'n/72) < 8/(n+p),
=1 1=1
which concludes the proof. H

Case 1 If 32 cpmixtma ™ (Xij — X2;)? < 0, then [|X — X°|3 </ and the
result of Theorem 5 (3.18) is proved.

C(n, 64rank(X")). Using (3.24), 02 3= EQ(XM—X&V >0and [|[VL(XO)| < )\/2,
we obtain that

Z7j)

|P&-(© — ©7)||. < 3|Po-(© — ©)|. + || A — A”|..
On the other hand,

IX - X <[P&.(© - ©)]. + [|Po-(© — ©)||. + || A — A",
< 4| Pe-(© — ©). + 2| A - A7
< 24/21ank(©%)[|© — ©*||p + 2V7||A — A r
< /64 rank(XO)[| X — X ||

Thus, Lemma 2 implies that with probability at least 1 — 8(n + p)~1,

Y wy(Xiy - X0 > [Z(l’])eﬂmlﬂxﬂmzﬂz i(Xey i)

(i,5)€lma]x[m2]

— 384~*m 64 rank(X ) (E||Sx|)? + 8. (3.35)

Combining (3.35) and (3.26) we obtain

7| X = X% 3844264 rank(X°) (B[ Sk[])* + 8] _
2 ™

012 (3\/2 rank(©7) + \/?) IX — X[

Finally, using the identity ab < a® + b?/4 and rank(X") < rank(©*) + r we obtain

6144

19202 245767%(E|Sg|)?
71+ 2 w2

=0 ™

(3.36)

% - %0 < ) k@) 411+
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3.8.2 Proof of Theorem 6

Theorem 6 derives from Theorem 5 and combining the two following steps: 1) computing
a value of X such that the condition A > 2||VL(X?)|| holds with high probability
and 2) controlling E||Xg||. Let us start with 1). Define the random matrices Z;; =
wi;(—Y;; + exp(X7;))E;; and the quantity

1 les 2 1 les 2
2 T T
0% = max (n—p S S E(zy2)| o > Y E[Z 7] |> . (337)
i=1 j=1 i=1 j=1
Lemma 4. Under the assumptions of Theorem 6,
J2 ,6 0_2
<ol < 2 3.38
np = Oz > np ( )

Proof. For all (i,7) € [m1] x [ma], ZijZZ = wi(-Yi; + exp(ng))QEijE;, and
E[Zi;Z)}] = Elw;]E[(-Y;; + exp(X},))?|E;E;;, which is a diagonal matrix with 0

everywhere except on the i-th element of its diagonal, where its value is E[w;; | E[(—Y; ;+

exp(X7;))?]. Thus,
> Elz;z)
(i,5) €lma]x[m2]

is also a diagonal matrix, and the i-th element of its diagonal is 7, E[w;;|E[(-Y;; +
exp(X7?;))?]. We obtain that

1 1 P
— > E[Z;Z}]| = — max > Elw,|E[(-Y;, + exp(X);))].

(i,5)€[ma]x[m2]

Using E[Y] ;] = exp(X7};) and 0% < var(Y;;) < 07, we obtain:

2 p 2 P
1
7= max S Ewy] € — S EZyZ)]| < 2 max Y Elwy]. (3.39)

np ie[mi] = np (i) elm]x[ma] np ie[mi] o

IN

Using the same arguments, we also obtain

= max 3 Elwy) < — S EZIZ)|| < 2 max S Elwy) (3.40)
np jelma] = np (i) e[ x [ma] np jelma] <=

Combining (3.39) and (3.39), we obtain that

o? P -
— max { max E|w;;|, max Elw;i] ¢ < 02 <
7 e i D Bl sy S Bl < 0%
o? U -
— max { max Elw;;], max Elwij] ¢,
np i€[mi] j€lma]
which concludes the proof. ]
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Note that E[Z;;] = 0 for all (i, ) € [mi1] x [mo] and VL(X ) =30 >0 | Z;.
We use an extension of Theorem 4 in Koltchinskii (2013) to rectangular matrlces via
self-adjoint dilation (cf., for example, 2.6 in Tropp (2012)). Let Z4,...,Z,, be m
independent (m; x my)-matrices satisfying E[Z;] = 0 and

inf{K > 0: Elexp(||Zi|| /K)] < e} < M

for some constant M and for all i € {1,...,m}. Define
0% = max l f:IE(E ET) l iEGTE)
m - = s m - i —1 ;

and U = Mlog(1 + 225). Then, for tU < 2(e — 1)o*m

1 & t2
“ Vg, <9 . _
{ mz; }— ("+p)eXp{ 4m02+2Ut/3}

and for tU > 2(e — 1)o%*m

E e R

Under Assumption 3 we may apply this result with m = np, (Z1,...,Z,) = (Z11,. .., Zup),
M =26, 0> = 0% and U = 2§ log(1 + 8% /0%). Taking

t > max {202\/371]9 log(n + p),66(e — 1) log(1 4 86%/c%) log(n + p)}

and using Lemma 4, we get that with probability at least 1 — (n +p)~!,

IVL(X®)| < max {2U+ (381log(n + p))*'*,66(e — 1) log{1 + 86%np/(Bc>)} log(n +p)} :

Thus, taking A as in Theorem 6 ensures that A > 2||V.L(X?")|| with probability at least
1—(n+p~t
We now control E||Xz|| with the following lemma.

Lemma 5. There exists an absolute constant C* such that the two following inequality

holds
E[||Sg]] < C* {ﬂ+ \/logm}.

Proof. \We use an extension to rectangular matrices via self-adjoint dilation of Corollary
3.3 in Bandeira and van Handel (2016).

Proposition 1. Let A be an my x mqy rectangular matrix with entries A, ;, (i,7) €
[m1] x [ms], independent and centered bounded random variables. then, there exists a
universal constant C* such that

E[|A]] < C* {01V o2 + 0u/log(n A ) }

01 = max E E[Alzj], 02 = max E ]E[Azzj]a 0, = max |A; .
i - ’ J - ’ &J
7
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Applying Proposition 1 to Yp with a1 V 09 < /3/|Q| and o, < 1 we obtain

E[|Sall) < € { VB + Viogln Ap) }
[l

Combining 1) and 2) with (3.36) and a union bound argument, we obtain the result
of Theorem 6.

3.8.3 Proof of Theorem 7

In what follows we denote for A € Xy and © € T F}(A,0) = L(A + ©O) + )\||O]..
We establish below that \o(Y") defined in (3.19) is equal to

Mo(Y) =min 0 € do{FMNA,O) + x7(0)} |eo,

where for K C R™*™2 v (X)) is the characteristic function of the set ', equal to 0

on K and +oo elsewhere, and A = argminf(A) (see (3.19)). The subdifferential of
AEXy

the objective function F* with respect to © is given by
0o F*(A,0) = VL(A + ©) [o=o +)36 O], lo=o +00x7(O) o= -

0 € 9o X7(O) |@=o. Lemma 6 ensures that 0 € IF*(O) |e— if and only if

0e {V.C(A) FAW ||Pr(W)]| < 1}.

This is equivalent to A > HPT(VC(A))H Additionally, at the optimum A, we have

Pr(VL(A)) = VL(A), which concludes the proof.

Lemma 6. Let g : T — R, be the function defined by g(A) = ||A||, for A € T.
dg(0) = {W e R™=™ [|[Pr(W)]| < 1}.

Proof. By definition of the subdifferential we need to prove that for all W € R™*™2,
|Pr(W)|| < 1, and for all B € T, g(B) > ¢(0) + (W,B—0). First B € T
implies (W, B) = (Pr(W), B), therefore ||Pr-(W)|| < 1 is a sufficient condition for
W < 9g(0). Now assume ||Pr(W)|| > 1 and let Pr-(W) =UXV T, where U and V
are orthogonal matrices of left and right singular vectors, and ¥y, = ||[Pr(W)| > 1.
Let us define B = UXVT, ¥, = 1 and %;; = 0 elsewhere; note that with this
definition B € 7. We have g(B) = 1 and (P7(W), B) = ¥y; > ¢g(B). Therefore
|Pr(W)|| > 1= W ¢ 9g(0), from which we conclude

9g(0) = {W e R™*™ | Pr(W)|| < 1}.
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Chapter 4

Estimation of waterbird population
trends with multiple imputations
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4.1 Introduction

Birds are among the most studied species worldwide, and their monitoring is used as a
surrogate to evaluate the state of biodiversity on a global scale. In particular, waterbirds
are important ecosystem service providers, involved in the dispersion of seeds, acting as
sentinels of epidemics and bioindicators of the condition of wetlands (Amat and Green,
2010). Waterbirds have been monitored since the 1960s, and are now counted yearly in
more than 25,000 sites all over the world (Amano et al., 2017). These abundance data—
and their reliability—are crucial to guide international conventions for the conservation
of biodiversity. However, global studies have shown that increased surveillance efforts
are required, in particular in the southern half of the Mediterranean basin, which is one
of the most important biodiversity hotspots (Galewski et al., 2011). At this regional
scale, the estimation of waterbird population trends is indeed often jeopardized by the
lack of data. For example, the International Waterbird Census (IWC), initiated in 1967
by Wetlands International (www.wetlands.org) and conducted—in theory—every year,
has been regular only since 1983 in Morocco, 1985 in Algeria, and 2002 in Tunisia.
Furthermore, in some countries, the spatial coverage of the bird counts has remained
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variable over the years, for financial and political reasons (Etayeb et al., 2015). From a
data analysis perspective, this results in missing values.

For a concrete example, in this chapter, we analyze a North-African waterbird abun-
dance data set, which contains bird counts across 785 sites in the five North-African
countries (Algeria, Egypt, Libya, Morocco and Tunisia), between 1990 and 2017. The
data consist of several count tables corresponding to different species, and where rows
represent different sites and columns different years. In these count tables, after remov-
ing the sites where the species were never observed, there are between 40% and 60% of
missing entries, depending on the species. The goal is to estimate total yearly counts, i.e.
to compute column-wise sums, and to assess an uncertainty measure for these temporal
trends. We approach the problem with a missing values imputation perspective: we
predict plausible values for the missing entries, and then compute yearly totals. To pro-
vide an uncertainty measure, we resort to multiple imputation (Rubin, 1987). Multiple
imputation consists in predicting, for each missing entry, several plausible values instead
of a single prediction, in order to assess the uncertainty associated to the missing entries.
An important feature of the waterbird data set, is that supplementary information about
the rows and columns of the count table are also available. For example, geographical
and meteorological information about where and when the birds were counted. In this
chapter, we introduce a method which uses this side information with a dual goal: to im-
prove the imputation quality and to select important predictors of waterbird abundances.
Note that we analyze each species independently of the others.

Indeed, several studies have already shown that such factors are good predictors of
waterbird abundances (Amano et al., 2017). However, as the supplementary data are
often retrospectively scrapped from the web, and the available factors do not always
correspond to actual biological hypotheses, it is unlikely that all variables have an effect
on the observed counts. Thus, we expect to observe a sparsity phenomenon, where the
effect of some of the variables included in the model take zero values. Furthermore,
the spatial behavior of waterbirds is complex, and the available covariates may not be
sufficient to explain the observations. In particular, one of the main hypotheses in
this chapter is that sites and years interact. Indeed, we observed that bird counts are
extremely variable across years for some of the sites, and quite stable for others. In
light of these model assumptions, existing count imputation methods classically used
by ecologists are not completely satisfactory, because they model either only effects of
covariates, only interactions, or consist in single imputation methods without uncertainty
assessment.

The most commonly used imputation method for waterbird count data is proba-
bly TRIM (trends and indices for monitoring data, Pannekoek and van Strien (2001)).
TRIM is based on a Poisson log-linear model, and may include covariate effects. How-
ever, the implemented models are designed to incorporate qualitative covariates either
about the rows or columns of the count table. In the present waterbird data analysis,
the supplementary variables concern the rows (sites), columns (years), and also the row-
column pairs (variables which depend on the sites and on the years); moreover most of
the variables are quantitative. In addition, the TRIM model is not designed to incor-
porate row-column interactions. Another popular method is Correspondence Analysis
(CA, Greenacre (1984)), a component method for count data which can be used for
imputation purposes (Josse and Husson, 2016). CA imputes the missing values using a
low-rank model which may be interpreted as interactions, but does not incorporate side
information. Furthermore, CA and TRIM both correspond to single imputation meth-
ods, and do not evaluate the uncertainty of the imputed counts. Multiple imputation
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methods for count data already exist. For example, the R package countimp (Kleinke
and Reinecke, 2013), based on Multiple Imputation by Chained Equations (mice, van
Buuren and Groothuis-Oudshoorn (2011)), implements multiple imputation methods for
several count data models (Poisson, negative binomial, as well as zero-inflated and mul-
tilevel extensions), and may incorporate additional predictors. However, to the best of
our knowledge, these methods do not model interactions.

In this chapter, we introduce a new multiple imputation method for count data which
incorporates effects of supplementary covariates (which may be quantitative or qualita-
tive), models row-column interactions, and automatically selects important covariates.
The method may be casted in the framework of bootstrap-based multiple imputation
methods. However, note that, because our imputation procedure is biased, so we cannot
hope to obtain valid confidence regions for our prediction even with multiple imputation.
Nevertheless, the resampling procedure allows to derive intervals of variability which re-
flect the variability of our imputations with respect to the missing values and the noise
of the observations. The rest of the chapter is organized as follows. In Section 4.2, we
describe the complete procedure, namely the estimation problem and the single imputa-
tion procedure, as well as the resampling method and the resulting multiple imputation.
Then, in Section 4.3, we evaluate the method in terms of imputation of the missing val-
ues and compare it to state-of-the-art count data imputation methods. We demonstrate
that it yields smaller imputation errors when the data is generated according to a Poisson
model, in particular when the proportion of missing values is large. We also evaluate
the coverage of the method, and show that it is robust to model misspecification with
an experiment on zero-inflated and overdispersed count data. To conclude Section 4.3,
we evaluate the method and the same competitors on the imputation of a subsample
of the waterbird data set. Finally, in Section 4.4, we apply the method to estimate the
population trends of three waterbird species.

4.2 Multiple imputation

The new multiple imputation method developed in this chapter consists of two main
building blocks: a single imputation method based on a Poisson log-linear model and
a resampling procedure. In Section 4.2.1, we describe the distinctive features of our
model, and try to provide intuitions about the underlying biological assumptions. Then,
we propose an estimation procedure in Section 4.2.2, based on the minimization of a
doubly penalized Poisson negative log-likelihood. We also describe the mixed coordinate
gradient descent (MCGD) algorithm used to solve the optimization problem, and imple-
mented in the R package lori. Finally, Section 4.2.3 describes the multiple imputation
procedure.

4.2.1 Poisson log-linear model

Consider an abundance table Y € N™*™2 containing missing values. Assume that a
supplementary covariate matrix, U € R("™™2)%4  contains side information about the
rows and columns of the count table Y. In the waterbird example, the rows of Y
correspond to ecological sites, and the columns to years. The matrix U has m;my rows,
each corresponding to an entry of Y, as represented on Figure 4.1. The columns of U
correspond to variables describing either the rows, the columns, or the row-column pairs
of Y. For instance, in Figure 4.1, the first column of U indicates the surface of the sites
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0.06 0.50 0.8
0.34 0.50 0.8
0.25 0.50 3.41
6.38 0.50 3.41
0.48 0.50 7.95
0.06 0.17 2
9 T8 0.34 0.17 12
14 6 NA 5 0.25 0.17 3.90
6.38 0.17 3.90
5 NA” 9  NA 0.48 017 7.22
1 6 1 7 0.06 0.37 1.80
0.34 0.37 1.80
NA 7 8 4 0.25 0.37 -2.10
6.38 0.37 -2.10
Count table (Y) 0.48 0.37 7.81
0.06 -0.18 -0.90
0.34 -0.18 -0.90
0.25 -0.18 2.19
6.38 -0.18 2.19
0.48 -0.18 10.59

Covariate matrix (U)
Figure 4.1: Incomplete count table and covariate matrix for one of the waterbird species.

(in km?), a variable which depends only on the site index. Thus, the first column takes
the same value in the rows that correspond to the same site (e.g. rows 1, 6, 11, 16).
On the other hand, the second column of U indicates a global temperature anomaly,
which only depends on the years. Thus, the second column takes the same value in the
rows that correspond to the same year (e.g. rows 1-5, 6-10, etc.). Finally, the third
column indicates a regional economical index, which depends on the location of the site
and on the year. Note that the covariate vector associated to the (7, j)-th entry Y ; is
the (j — 1)my +i-th row of U, U(;_1ym,+4, € RY. For simplicity, we denote this vector

Ui’j = U(j—l)ml—‘,-i,.- (41)

We also denote by U;” the k-th entry of U™,

We assume the entries of Y to be independent and to follow Poisson distributions.
That is, we assume the following Poisson log-linear model:

Y~ Plexp(X()), X{=af+8)+ 320U ) +6), (4.2)
where P(\) denotes the Poisson distribution of intensity A. In (4.2), a? is a row effect,
5]0 a column effect, €) is the effect of the k-th covariate, and @?J an interaction term
between row ¢ and column j. The model is saturated, and we make two main assumptions
to constrain the parameter space. First, we assume that the vectors o, 3% and €° are
sparse (contain zero values), meaning that not all sites, years or covariates have an effect
on the counts. Second, we assume the interaction matrix ®° has low-rank, meaning that
the row-column interactions may be summarized by multiplicative interactions between
a few latent row and column factors. To impose such structure to the parameters, we
use an estimation procedure which includes sparsity and low-rank inducing regularization
terms, as described in Section 4.2.2.

Denote by © € {0,1}™*™2 the observation mask, satisfying €2;;, = 1 if Y, is
observed, and 0 otherwise. Denote by Y, the set of observed values, and Y,,;, the
set of unobserved values. Along this chapter, we assume a Missing At Random missing
values mechanism. Denote the conditional probability of the observation mask

P <Q|U =U, Yo = Yobs, Yyis = ifmis) ; (4.3)
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where U, Y,,, and Y,,;. are possible values of the covariates and counts. The MAR
assumption means that the probability given in (4.3) takes the same value for any Y.,
once U and Y, are fixed. Note that, in particular, the missingness pattern may depend
on the covariate matrix U, which we assume completely observed.

4.2.2 Estimation

To perform multiple imputation, we first define a single imputation procedure, through
the estimation of model (4.2). For a set of parameters («, 3, ¢, ©), consider the Poisson
negative log-likelihood defined by:

L(Y;a,B,¢0) = ZQ” ”oﬁﬁﬁzekUM@”)

K
+ exp(a; + 35 + Z aU +©,;)]. (4.4)

k=1

We estimate (a°, 3°, €%, @°) by minimizing the data-fitting term (4.4) penalized by a
hybrid penalty:

(4, 5,¢,0) € argmin L(Y; , 8,¢,0) + A [|©]], + Az (lally + 18]l + llell,), (4.5)

with A\; and )y two positive regularization parameters. The first regularization term
(A1]|®]|,) is a nuclear norm penalty for the matrix of row-column interactions, which
induces low-rank solutions: this may be interpreted as assuming a few latent factors
summarize the interactions. The second penalty (Ao(||al, + ||8]l; + ll€ll,)) is a LASSO-
type regularization term (Tibshirani, 1996), which induces sparse solutions for the vectors
of main effects (the vectors &, 3 and ¢ contain many zeros). The intuition behind (4.5)
is to fit the data as much as possible, by minimizing the negative log-likelihood, while
enforcing models of low-complexity, through the additional penalties which constrain
the parameter space and induce automatic model selection. The trade-off between
fitting the data and producing low-complexity solutions is controlled by the regularization
parameters \; and \o. As )\ increases, the rank of the solution O decreases (the number
of latent factors decreases). As )\, increases, the number of nonzero values in &, B and
¢ decreases (the number of active rows, columns and covariates decreases). Statistical
guarantees for such estimators will be provided in Chapter 6.

Problem (4.5) is solved using a mixed coordinate gradient descent procedure (MCGD),
where ¢ := (a, 3, €) on the one hand, and © on the other hand, are updated alternatively.
The vector ¢ is updated along a proximal gradient direction. Denote by VL, (¢, ©) the
gradient of £ with respect to ¢ and evaluated at (¢, ®). At iteration ¢, we update ¢ as

follows:
H = proxpgy, (010 ~9VLe(6,0)) (4.6)
— T, (070 — 1V L,(6,©)) . |

where 7 is a step sized computed with a line search, and for A > 0, T(x) = sign(z) ®
(x — Al), is the component-wise soft-thresholding operator at level A. The matrix
©, on the other hand, is updated along a conditional gradient direction. Denote
F(¢,9) = L(Y;0,0) + A\ [|O]|, + \2||¢]l;- We define at iteration ¢ the quan-
tity RY = A\['F(pt) @¢1). We also denote VLg(¢* 1, ®¢~1) the gradient
of £ with respect to © evaluated at (¢~", ®¢V).  Furthermore, we denote by
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01(VLe (oD, @F1)) its largest singular value, and u; and v, its first left and right
singular vectors. The conditional gradient update consists in the following operation:

@(t) — { 0 |f )\1 Z Jl(v£®<¢(t_l) @(t_l))) (47)

O — §ROuv| if A < 01(VLe(¢D, ©17D)).

In the update (4.7), § is a step size which we determine with a line search. A sketch
of the MCGD algorithm is provided in Algorithm 2, and its convergence properties are
studied in Robin et al. (2018).

Algorithm 2 MCGD algorithm for (4.5).

1: Initialize: — ©© ¢ RO Eg (00 4 R®)=(0,0,0).
2. fort=1,2,...,7T do
3. // Update for ¢ //
Compute the proximal update using (4.6) to obtain ¢®.
4:  Perform line search to compute the step size 7.
5. // Update for © //
Compute as R := \[1F (¢, @),
6:  Compute the update direction, om, using (4.7).
7:  Perform line search to compute the step size ¢.
8: end for
9: Return: M) 1)

Based on estimation problem (4.5), we define a single stochastic imputation proce-
dure as follows. For (2,]) € [[ml]] X [[mz]], denote X,L'J‘ = OAéZ + 5j + ZZ:l gkU]i’] + @i,j-
We define the imputed data set Y by:

(4.8)

The imputation model (4.8) is stochastic since we draw samples from Poisson distribu-
tions. In classical single imputation procedures when one seeks to predict the missing
values as well as possible without measuring the uncertainty, one would replace the
sampling in (4.8) by a prediction step with YH = exp(Xivj) if 2, ; = 0. To perform
multiple imputations, we apply the single imputation (4.8) to M incomplete data sets
bootstrapped from the original data Y. Furthermore, we apply procedure (4.8) several
times on each incomplete data set, to model the uncertainty of the imputed values.

4.2.3 Multiple imputation

We define a resampling procedure to model the uncertainty of the single imputation
model (4.8), which corresponds to uncertainty about the parameter matrix X. To do
so, we interpret the count matrix as a contingency table, and perform nonparametric
bootstrap by resampling the counts with a multinomial model. We "de-aggregate" the
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count table Y:

Site ID | Year

Site 1 1990

1990 1991 1992 1993 Site 1 1990

Site 1 9 7 1 3 : :

y S!te 2 14 6 NA 5 e z_ Stel 1990
Site 3 5 NA 9 NA Site 9 1990

Site 4| 11 6 1 7 _ :
Site5| NA 7 8 4 : :

Site 2 1990

In the de-aggregated table Z, for all (i,j) € [my] x [m2], the row (Site i, Year j) is
repeated Y; ; times if Y; ; is observed. If Y] ; is not observed, the row (Site ¢, Year j) does
not appear at all. We assume that the rows of the de-aggregated table Z are i.i.d. This
amounts to assuming that, for each bird species, each individual bird is observed in site
i during the year j independently of the other individuals, and with the same probability
m;; (however the 7, ; vary across sites and years). This is a simplistic model, as birds are
known to have gregarious behaviors, which challenges the independence assumption: we
leave improvement in this direction to future work. Let n be the number of rows in Z,
i.e. the total number of birds counted in Y, and let M be a predefined integer number.
We perform nonparametric bootstrap by sampling n rows of Z with equal probability
and with replacement. Furthermore, we repeat this procedure M times, thus obtaining
M new tables Z',... Z™. Then, each Z™, m € [M] is "re-aggregated" to form a
new count table Y™. Finally we obtain M count tables Y, ..., Y™ with the same
missing data pattern as the original table Y.

The nonparametric bootstrap procedure described here in fact amounts to sampling
new counts from a multinomial distribution with frequencies equal for each entry to
Yij/N, N =371 5" Y, ;, and with total number of trials N. This is not the only
way to generate bootstrap samples: other options include, for example, performing the
same multinomial sampling in every row (or column) of the count table.

For each of the M incomplete data sets, we estimate (using our algorithm) a set of
parameters

(&m7 Bmv gm, ém))

and obtain a parameter matrix X™. These parameter matrices are used to produce
M imputation models, with the single imputation procedure described in (4.8). These
multiple models reflect the uncertainty about the imputation procedure (learned from
incomplete data). For each of these models, we produce a completed data set Y™, me
[M]. Then, uncertainty in the missing values is estimated. Since we produced completed
data sets, we may now incorporate "new" missing values, to generate new missing data
patterns. To do so, we add missing completely at random (MCAR) missing values to
each Y™, with the same proportion of missing values as in the original data set. We then
re-estimate an imputation model (&m,Bm, e, é)m). Finally, we model the variability of
the imputation with a parametric bootstrap. For each model (dm,Bm,€m,@m), we
generate D imputed data sets, using the same stochastic imputation procedure (4.8).
Finally, we obtain M D imputed data sets (Y}, ..., Y2, Y2, ..., Y2 ..,V M .. YM).
The complete multiple imputation procedure is summarized in Figure 4.2. Note that our
single imputation procedure is biased: the ¢; norm and nuclear norm regularization terms
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are precisely meant to trade variance for bias, in order to reduce the estimation error.
As a result, the intervals of variability that we compute are not confidence intervals, but
reflect the variability of our estimates in relation to the variability of the observations.

nonparametric
bootstrap

inter variability

same missing
data pattern

P
[y

different missing
+— data patterns

parametric

l
Xl

intra variability
—

—_ HE
missing values UER

imputed values

Figure 4.2: Multiple imputation procedure: nonparametric bootstrap (M samples); es-
timation (M estimates); parametric bootstrap (M D imputed data sets). Gray cells
correspond to missing values: the same missing data pattern is shared across all incom-
plete data sets in the first level (Y'!,...,Y'™). In the second level the missing data
patterns are different (Y, ..., Y'™). The colored cells on the bottom line (which differ
from the background color) correspond to imputed missing values, with different imputed
values across the multiple imputed data sets.

4.3 Empirical performance
In this section, we conduct an empirical study to assess the performance of our imputa-

tion method, and compare it to state-of-the-art imputation techniques in three settings.
In Section 4.3.1, we generate synthetic data under the assumed Poisson log-linear model
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and show that, under this model, our method outperforms competitors, particularly when
the proportion of missing values is large. In Section 4.3.2, we compare imputation per-
formances under model misspecification, with experiments on non-Poisson count data.
Finally in Section 4.3.3, we demonstrate that the method performs favourably on a sub-
sample of the waterbird data set. Throughout the experiment section, we refer to our
method as LORI (LOw-Rank Interactions).

4.3.1 Imputation of synthetic data

In a first experiment, we generate synthetic data under the LORI model (4.2). We sample
a covariate matrix U as follows. We sample a row covariate matrix R € R3%°*2 3 column
covariate matrix C € R3°*2 and a row-column covariate matrix E € R%090%2 Then,
we combine them in a large covariate matrix U € R%090%6 where the rows of R and C
are replicated. We set e = (1.2,0,—1.2,0,1). The interaction matrix © is set to have
a rank of 2, and its Euclidean norm ||®|| ¢ fixed to 0.1]|U¢||2, meaning that the scale of
the interactions is small compared to the main effects. Finally, we generate a count table
Y € N300%30 according to the Poisson model (4.2). To assess the performance of LORI
in terms of imputation, we artificially remove entries from Y, using two different missing
data mechanisms. In the first mechanism, referred to as "random" in the figures, we
remove entries uniformly at random. In the second mechanism, referred to as "pattern",
we first select (at random), a fraction of rows and columns, and then remove some of
their entries, so that the missing values are concentrated in these rows and columns.
This is a more plausible mechanism as, in practice, the most important sites are almost
always visited, while the less important sites are often neglected. In addition, during
the years when less sampling effort was made (for financial reasons for instance), only
a few sites are sampled. Finally, we predict the missing entries with LORI and several
competitors:

e Imputation with Correspondence Analysis (CA) implemented in the package missMDA
(Josse and Husson, 2016)

e Imputation with Trends and Indices in Monitoring data (TRIM) implemented in
the package rtrim (Pannekoek and van Strien, 2001). We use the "model 3" in
their implementation, which corresponds to a Poisson log-linear model with row
and column effects (and no covariate).

e Imputation with TRIM using "model 3" and additional categorical covariates (ob-
tained by cutting the quantitative covariates in U). We only use this option for
10% of missing values. For larger percentages, the method failed most of the time,
because not enough observations were available for every level combination of the
categorical covariates.

e Imputation with a Generalized Linear Mixed Model (GLMM) with random row
and column effects, and using the covariates U as predictors. We use the package
glmmTMB (Brooks et al., 2017).

The results of the experiment are displayed in Figure 4.3, where we represent boxplots

of the relative RMSE, i.e. the imputation error \/||Y — Y||2 divided by the number

of missing values in Y. In other words, this corresponds to the average error per
missing entry. As expected since we simulate under our model, LORI achieves smaller
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imputation errors. The more remarkable result is that its imputation performance is quite
stable across different proportions of missing values. Furthermore, the improvement
with respect to other methods increases with the proportion of missing values. This
is an encouraging result which seems to indicate that we can improve the imputation
results by taking advantage of side information in settings where a large proportion of
the data is missing, as in the waterbirds data set. Second, we evaluate the coverage

pattern random
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Root Mean Square Error
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10 20 30 40 50 60 10 20 30 40 50 60
Percentage of missing values

Figure 4.3: Average imputation relative RMSE (100 replications) for synthetic Poisson
data, and increasing percentages of missing values (10%, 20%, 30%, 40%, 50%, 60%).
Compared methods: imputation by the column mean (MEAN), Correspondence Analysis
(CA), Trends and Indices in Monitoring data (TRIM), Generalized linear mixed model
(GLMM), Low-rank Interactions (LORI).

of the multiple imputation method. With the same simulation setting, we estimate
(from incomplete data) the column-wise sums as well as intervals of variability using
the multiple imputation method described in Section 4.2.3. Repeating the experiment
100 times, we evaluate how often the true column-wise sum falls in our interval of
variability. A plot of the result for one of the 100 trials is displayed in Figure 4.4,
where we represent the estimated column sums, the computed intervals of variability,
and the true column means. The horizontal axis corresponds to the columns of the count
tables, and the point by point empirical coverage is displayed above each column-wise
sum. Overall, the coverage is below 95%, and is close to 95% for only a small fraction
of the columns (coverage above 80% for 7 columns out of 30). In some cases, the
coverage is very poor, even though the prediction error is simultaneously very small (see
columns 5 or 13 for example). This illustrates the fact that, as our imputation method
is biased, the estimated intervals of variability are not valid confidence intervals, but
may be interpreted as reflecting the variability of our predictions (i.e. they estimate the
variance of our estimates, but our estimates are not consistent). For one of the years
(column 16), corresponding to a large total count compared to the average, the total
sum is way above the interval; again, this observation may result from the shrinkage
induced by our regularized imputation procedure.
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Figure 4.4: Estimated yearly abundances (black squares), intervals of variability (black
segments), and true yearly abundances (red) points, for an example simulated under the
LORI model with 30% of missing values. The displayed numbers correspond to the point
by point empirical coverage for each interval of variability.

4.3.2 Robustness to model misspecification

In many cases in abundance data analysis, Poisson models are expected to be simplistic,
as abundance data are often overdispersed and zero-inflated. We conduct a second
similar experiment, this time generating synthetic data from a zero-inflated negative
binomial distribution, where each entry is sampled from a negative binomial distribution
with probability 0.9, and set to zero with probability 0.1. The compared methods are the
same as in the previous section, except for the generalized linear mixed model. Here, we
use a GLMM with a zero-inflated negative binomial distribution. In other words, here,
GLMM is the only methods which imputes using the correct model.

Since all the methods (except the GLMM) are based on a Poisson model, they have
worse performance in this misspecified experiment. However, we observe that LORI
seems more robust to model misspecification than CA and TRIM. This difference in
behavior may be explained by the fact that LORI estimates interactions, which are an
alternative way of modeling overdispersion, since larger (resp. smaller) interactions yield
larger (res. smaller) counts for the same set of covariate values.

4.3.3 Imputation of northern shoveler abundance data

To evaluate our method in the most realistic setting, we finally challenge it on the
imputation of a subsample of the waterbirds data set. We focus on the northern shoveler
(Spatula clypeata), one of the most abundant species-specific subsample in our data set,
and which displayed the less missing values. We select 209 sites where the shoveler was
counted in more than 13 years among the 28 years in total. In the end, we obtain a count
table of size 209 x 28, and containing around 30% of missing values. In addition, we
also have access to side information about the sites (altitude, longitude, water surface,
etc.), the years (temperature anomalies and rainfall, etc.) and the site-year pairs (yearly
economical index by country, etc.). In this experiment, we remove an increasing amount
of entries in the count table, and seek to impute them back, using the available side
information. We compare our method to imputation using CA and TRIM. The results

95



pattern random

25000

20000

method

15000 B3 MEAN
B3 cA
B3 TRM
[= ety

10000 + * % & won

%
I LA ¢

10 20 30 40 50 60 10 20 30 40 50 60
Percentage of missing values

Root Mean Square Error

Figure 4.5: Average imputation relative RMSE (100 replications) for synthetic negative
binomial data, and increasing percentages of missing values (10%, 20%, 30%, 40%, 50%,
60%). Compared methods: imputation by the column mean (MEAN), Correspondence
Analysis (CA), Trends and Indices in Monitoring data (TRIM), Generalized linear mixed
model (GLMM), Low-rank Interactions (LORI).

are displayed in Figure 4.6, where the percentage of missing values indicated was added
to the already 30% of missing values. For example, in the first experiment with 15% of
additional missing values, the count table has in total 40% of missing values, while in
the last experiment where 30% is indicated, the table has 50% of missing values.

We observe that, compared to the experiments on synthetic data with a Poisson
model, all the methods are closer to one another. However, LORI has smaller prediction
errors, and the improvement between LORI and two state-of-the-art methods (CA and
TRIM) is of the same order of magnitude as between these two methods and imputation
by the column means. Furthermore, LORI is more robust to large proportions of missing
values, with imputation errors stable in average and variability for increasing proportions,
contrary to CA and TRIM. Finally, in the last setting with 30% of (additional) missing
entries, all the methods have a large variability. Note that, in addition, TRIM does not
impute all the missing entries: some entries corresponding to sites with large proportions
of missing entries are automatically removed. Therefore, average RMSE and its variability
are biased low for TRIM and thus not fully comparable to other methods. Because of
the covariates included in the LORI model, we are able to impute all entries. The results
of Figure 4.6, which are more similar to the results of the experiment on zero-inflated
and overdispersed data than to those on Poisson data, probably indicate that there is
room for improvement through more complex models which account for zero excess and
overdispersion (known to occur in bird abundance data). We discuss this point in more
details in Section 4.5, and leave such extensions to future work.

4.4 Estimation of waterbirds population trends

We finish by applying the LORI multiple imputation procedure to analyze the abun-
dance of three waterbirds species, and produce estimates and intervals of variability of
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proportion is added to the 30% of missing values originally present in the data set.
Compared methods: imputation by the column mean (MEAN), Correspondence Analysis
(CA), Trends and Indices in Monitoring data (TRIM), Low-rank Interactions (LORI).
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Figure 4.7: northern shoveler (left), and common pochard (middle) and eurasian coot

(right).

the total yearly abundances. Abundance data for these species were collected in Al-
geria, Egypt, Libya, Morocco and Tunisia between 1990 and 2017, by ornithologists
and volunteers from different organizations and institutes including the Mediterranean
Waterbirds Network (MNW), Groupe de Recherche pour la Protection des Oiseaux au
Maroc/BirdLife Morocco, Direction Générale des Foréts (Algeria), Association "les Amis
des Oiseaux"/BirdLife (Tunisia), Libyan Society for Birds, Egyptian Environment Affairs
Agency, Office National de la Chasse et de la Faune Sauvage (ONCFS, France), and
the Tour du Valat Institute (France). In total, 785 sites were visited. For every site
and every year, we have access to a set of covariates, of which an excerpt is given in
Table 4.1. In this table, we center and scale the quantitative covariates; indeed, this
is a necessary step as we use the same regularization parameter for all the covariates.
The side information includes categorical variables such as the country, that we code as
dummy indicator variables (with 4 dummy variables to code the 5 countries). The other
variables are quantitative, and we center and scale them before imputation. From one
species to the next, the set of sites is different, because not all species are present in
every site. However, the set of years, and the side information as well, remain constant.

In the next sections, we analyze the abundance data sets of the northern shoveler,
common pochard, and Eurasian coot.
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Site 1 2 3 4 5 6
Year | 1990 | 1990 | 1990 | 1990 | 1990 | 1990

algeria 1 1 1 1 1 1
egypt 0 0 0 0 0 0
libya 0 0 0 0 0 0
morocco 0 0 0 0 0 0

latitude | 088 | -0.69 | 056 | 0.10| 0.36| 0.74

longitude | 0.15| 050 | 0.37| 0.66 | 0.01| -0.06

altitude | -0.66 | -0.60 | 1.14 | 133 | 0.67 | -0.48

area (log) | -1.27 | -0.58 | 0.99 | 0.55| 1.17 | 0.54

dam 0 0 1 1 1 1

NAO | -0.20 | -0.20 | -0.20 | -0.20 | -0.20 | -0.20

rainfall | -1.91 | -0.20 | -1.55 | 0.90 | -0.19 | -1.20

economy | -0.71 | -0.71 | -0.71 | -0.71 | -0.71 | -0.71
agriculture surface | 098 | 098 | 098 | 098 | 0.98 | 0.98

Table 4.1: Excerpt of the side information about the sites and years of the waterbird
abundance data (after centering and scaling the quantitative variables).

4.4.1 Northern shoveler

The northern shoveler (Spatula clypeata), is a common duck species, breeding in the
northern areas of Eurasia, and across North America; part of the European population
of the northern shoveler winters in Africa. In this section, we analyze the whole northern
shoveler abundance data (contrary to the previous section where we selected a subsample
with less missing values). In total, we have access to the abundance of the shoveler
across 513 sites, between 1990 and 2017, and 60% of the entries are missing. We apply
our multiple imputation procedure to compute yearly total abundances, and display the
estimated yearly totals, as well as the corresponding intervals of variability on Figure 4.8a.
Based on our results, the total population of the northern shoveler in North Africa is
increasing.

We can also look at the estimated covariate coefficients in the Poisson log-linear
model across the multiple imputations, as displayed them in a boxplot in Figure 4.8b.
Indeed, although we advertised LORI as a method to impute count data using side in-
formation, it also has the advantage of estimating covariate coefficients, which is useful
for interpretation purposes independently of the imputation. We observe a clear country
effect: Algeria and Morocco have positive effects, everything else being equal, compared
to Egypt, Libya and Tunisia (which is the reference category). Overall, covariates de-
scribing the sites (latitude, longitude, altitude, distance to towns and coast, and area)
have larger effects than the covariates describing the years, such as the rain index in
North-East Europe (rain NE eur) or the winter temperature anomaly in South-East Eu-
rope (anom TWSE). This is expected as there is a large variability in the counts from
one sites to the other, but most sites are relatively stable across years, in comparison to
the variability across sites. Some of the year covariates have mostly zero effect across
the imputation models, such as the North Atlantic Oscillations (NAO), a meteorolog-
ical index, and the spring temperature anomaly in North-East Europe (anom TSNE).
Among the covariates which describe both the sites and the years, the economical index
has a small but positive effect across all imputation models, indicating that favorable
economical conditions have a positive impact on the bird counts.
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Figure 4.8: Results of yearly totals of multiple imputation for the northern shoveler data

Note that we may not interpret the estimated main effects in a straightforward man-
ner. Indeed, first, the covariates are correlated. For instance, the covariates related
to meteorological anomalies. In addition, some of the covariates (related to rain for
example), are constant across sites, meaning that they are correlated to the year effects.
Secondly, main effects and interactions may superimpose, as we do not enforce orthog-
onality between the two. However, for imputation purposes, the relevant parameter is
the sum of all main effects and interactions, and thus this identifiability issue is not
really a problem. In practice, we also observed that the estimated interaction matrix was
approximately orthogonal to the main effects (up to residual means much smaller than
the main effects), even without forcing identifiability.

4.4.2 Common pochard

The common pochard (Aythya ferina), is a diving duck breeding in wetlands across Eu-
rope and Asia, who migrates to south Europe and Africa to spend the winter there. In
our data set, the common pochard was observed in 338 sites, between 1990 and 2017,
and 55% of the entries are missing. Estimated yearly totals, as well as the correspond-
ing intervals of variability on Figure 4.9a, where the North African common pochard
population seems to decrease slowly, with an exception in 2008 where an excess of
pochards were observed. This observation may correspond to a particular year where
more pochards migrated from Europe, for some unknown reason.

As in the previous section, we can also look at the estimated covariate coefficients in
the Poisson log-linear model across the multiple imputations. These results are displayed
in a boxplot in Figure 4.9b. Here again, we observe a country effect: Egypt and Morocco
have large positive effects on the pochard counts. The area also have a positive effect
on the counts, which is expected. Most indicators of temperature anomalies in Europe
(anom TWSW, anom TWSW, anom TSNW) are associated to smaller counts. Indeed,
if the temperature is higher than expected in Europe, the ducks may be less encouraged
to migrate to Africa.
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Figure 4.9: Results of multiple imputation for the common pochard data

4.4.3 Eurasian coot

The Eurasian coot (Fulica atra), breeds in most parts of Europe and Asia, and is found
in freshwater lakes and ponds. In winter, it migrates to North Africa and South-East
Asia. In our data set, the coot was observed in 498 sites, between 1990 and 2017, and
60% of the entries are missing. Estimated yearly totals, as well as the corresponding
intervals of variability on Figure 4.10a, where the North African coot population seems
to increase slowly. The same peak is observed in 2008, as for the common pochard. This
backs up the hypothesis that a particular condition in 2008 pushed more waterbirds to
migrate to North Africa. The estimated covariate coefficients in the Poisson log-linear
model across the multiple imputations are displayed in a boxplot in Figure 4.10b. The
distance to coast has the largest estimated effect on the coot counts, with a negative
effect indicating that sites located near the sea tend to have larger bird counts. On
the other hand, the distance to town has a positive effect, meaning that sites located
close to towns tend to have smaller bird counts. As for the two previous species, the
area of the site also has a positive effect on the counts. Finally the agricultural surface
is associated to larger counts, which may indicate that wetlands created by or close
to agricultural areas became more favourable because eutrophication increased foraging
opportunities on aquatic vegetation or water levels possibly became higher and more
regular for irrigation purposes.

4.5 Conclusion

In this chapter, we introduced a new multiple imputation procedure for count data with
supplementary covariates. The method also has the advantage of estimating the covari-
ate coefficients in a Poisson log-linear model, and of selecting important covariates. We
evaluated the method on synthetic data generated with different models for count data,
and on a waterbird abundance data set. We also illustrated the method with the trend
analysis of abundance data for three species of waterbirds, and released an open source
library where the method is available on the CRAN (R package lori).

This work paves the way to several directions of future research. To begin with,

100


https://CRAN.R-project.org/package=lori

8 agriculture [
o | T economy - ]
3 N meteo i
™ | NAO - |
3 rain NW eur | |
5 | rain NE eur |
=] anom TWSE + |
i 8 I anom TWSW - |
5 8 | I anom TSNE |
T A i anom TSNW -+ |
5 \ \ area (log) 4
3| \ x dciist_coast - A0 "
/ ist_town i
S |\ \ aititude - i
8 ) lon -
Ire) lat 4 IS

1990 1995 2000 2005 2010 2015

Year

24
0
2

T
<
|

(a) Estimation of yearly abundances of the (b) Boxplot of estimated effects of covariates
Eurasian coot (red line) and intervals of vari- on the Eurasian coot counts (€) across multiple
ability (black segments). imputations.

Figure 4.10: Results of multiple imputation for the Eurasian coot data

our experiments revealed that improvement may be obtained by extending the model to
richer frameworks accounting for zero-inflation and over-dispersion. A first step could
be to incorporate a scale parameter in the model, to estimate the variance and the mean
of each entry with a quasi-Poisson model. Another important extension would be the
derivation of valid confidence intervals. A possible direction would be to extend post-
selection inference—which allows to compute valid intervals after ¢; penalized variable
selection in generalized linear models (Taylor and Tibshirani, 2018)—to our setting where
an additional low-rank term is involved.
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Chapter 5

Tutorial: R package lori
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The R package lori (https://CRAN.R-project.org/package=lori) contains methods
for the analysis, single imputation, and multiple imputation of incomplete count data
with side information. In this chapter, we display the main functionalities of the lori
package, namely a single imputation procedure—which also returns estimates of main ef-
fects and interactions—a cross-validation function to select the regularization parameters,
and a function to perform multiple imputation. We also provide reusable code using a
simulated toy example and a public use data set from the ade4 package. Finally we
provide technical details about the implementation in the last section, and describe the
two implemented optimization algorithms. All the code reported here is available as R
files at https://github.com/genevievelrobin/Lori-tutorial. The implemented
functions correspond to the methods described in Chapters 3 and 4, but this tutorial is
also meant to be read and used independently. Thus, the models and procedures are
recalled, and some of the figures from the previous chapters are replicated here: they
will be indicated so that the reader may skip them.

5.1 Simulated example

We start with a synthetic example with a data set generated under the lori model. The
goal is to describe and provide intuitions about the model, and to display the important
functions of the package. Thus, we will start by generating some synthetic data, and
add missing values. Then, we will estimate the parameters of the model using the lori
function, and impute them. Before going on with the tutorial, here are the necessary
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0.06 0.50 0.8
0.34 0.50 0.8
0.25 0.50 3.41
6.38 0.50 3.41
0.48 0.50 7.95
0.06 0.17 1.2
o 7 1 3 0.34 0.17 1.2
14 68 NA 5 0.25 0.17 3.90
6.38 0.17 3.90
5 NA" 9 NA 0.48 0.17 7.00
11 6 1 7 0.06 0.37 1.80
0.34 0.37 1.80
NA | 7 8 4 0.25 0.37 -2.10
6.38 0.37 -2.10
Count table (Y) 0.48 0.37 7.81
0.06 -0.18 -0.90
0.34 -0.18 -0.90
0.25 -0.18 2.19
6.38 -0.18 2.19
0.48 -0.18 10.59

Covariate matrix (U)
Figure 5.1: Incomplete count table and covariate matrix.

commands to install and load the package lori:

install.packages("lori")
library (lori)

To obtain the exact results that are presented here, you may set the following seed:

set.seed (123)

The lori model (already described in Chapter 4) Consider an abundance table
Y € N"™*™2 with missing values. Assume that covariates about the row, columns, and
row-column pairs of Y are available in a supplementary data matrix U € R™*™2 3s
displayed in Figure 5.1. The columns of U correspond to variables describing either the
rows, the columns, or the row-column pairs of Y. For instance, in Figure 4.1, the first
column of U indicates the surface of the sites (in km?), a variable which depends only on
the site index. Thus, the first column takes the same value in the rows that correspond
to the same site (e.g. rows 1, 6, 11, 16). On the other hand, the second column of
U indicates a global temperature anomaly, which only depends on the years. Thus, the
second column takes the same value in the rows that correspond to the same year (e.g.
rows 1-5, 6-10, etc.). Finally, the third column indicates a regional economical index,
which depends on the location of the site and on the year. Note that the covariate vector
associated to the (i, j)-th entry Y; ; is the (j — 1)mq +i-th row of U, U(j_1y, 44, € R
For simplicity, we denote this vector

U™ = Ug—1ymy +i,. (5.1)
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We also denote by U;” the k-th entry of U/, The model implemented in the lori
package is the following log-linear model:

Y ~ Plexp(X,), X2 =a)+ B0+ Uie) + ey (5.2)

1’7J ’

where P(\) denotes the Poisson distribution of intensity A. In (5.2), a? is a row effect,
5]0 a column effect, €? is the effect of the k-th covariate, and @% an interaction term
between row ¢ and column j. The model is saturated, and we make two main assumptions
to constrain the parameter space. First, we assume that the vectors o, 3% and € are
sparse (contain zero values), meaning that not all sites, years or covariates have an effect
on the counts. Second, we assume the interaction matrix ®° has low-rank, meaning that
the row-column interactions may be summarized by multiplicative interactions between
a few latent row and column factors. To impose such structure to the parameters, we
use an estimation procedure which includes sparsity and low-rank inducing regularization

terms, as described in Section 4.2.2.

Remarks Note that, in the package, options are implemented to remove row and
column effects: this will be detailed later on. The package is also designed to accomodate
the case where several covariate tables are available separately. For instance, often,
three supplementary tables are available: R € R™*X1 containing covariates about the
rows of Y (geographical information for instance), C' € R™2*Kz2 containing covariates
about the columns of Y (yearly meteorological indices), and E € R™™2*Ks containing
covariates about the row-column pairs (yearly meteorological information at the sites’
scale, yearly economical indices of the sites’ country, etc.). For i € [m;], the vector

R, = (R;1,...,R;k,) contains all the information about the row i. Similarly, for
J € [ma], the vector C; = (Ci1,...,Cjk,) contains all the information about the
column j. Finally, the vector E;_1ym,+i, = (EG—1)mi+i1s - - - Ej—1)mi+iks) contains

all the information about the row-column pair (i, j). The package lori contains a function
to construct the table U containing all these covariates, from R, C and E (or any
singleton or pair of these three matrices).

5.1.1 Generating simulated data

We now generate covariate tables and incomplete count data, using model (5.2). Con-
sider the following simulated example.

## covariates

ml <- 30 # number of rows

m2 <- 10 # number of columns

K1 <- 2 # number of row covariates

K2 <- 2 # number of column covariates

K3 <- 3 # number of (rowxcolumn) covariates

q <- K1+K2+K3

R <- matrix(rnorm(mi1*K1), nrow=ml) # matrix of row covariates

C <- matrix(rnorm(m2*K2), nrow=m2) # matrix of column
covariates

E <- matrix(rnorm(ml1*m2*K3), nrow=ml*m2) # matrix of (
rowxcolumn) covariates

To compute the matrix U, a simple command is available in the 1ori package:

U <- covmat(ml, m2, R, C, E)
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Note that the function also supports creating U from any singleton or pair of the matrices
(R,C, E), provided that the arguments are in the correct order. In other words, all the
commands below may also be used:

U <- covmat(ml, m2, R)

U <- covmat(ml, m2, C)

U <- covmat(ml, m2, R, C)

U <- covmat(ml, m2, R=R, E=E)
U <- covmat(ml, m2, C=C, E=E)

An important practical point is that the rows of R, C and FE should be sorted in the
correct order. If R and C' are sorted as displayed in Tables 5.1 and 5.2, then, E should
be sorted as displayed in Table 5.3, with the row indices varying inside the colum indices.

Row ID  Covariate 1 Covariate 2 Column ID  Covariate 1  Covariate 2
Row 1 -0.6 0.4 Column 1 0.4 -0.5
Row 2 -0.2 -0.3 Column 2 -0.5 -2.3
Row 3 1.6 0.9 Column 3 -0.3 1.0

Table 5.1: First three rows of table R

Table 5.2: First three rows of table C

Row ID  Column ID  Covariate 1  Covariate 2  Covariate 3
Row 1 Column 1 0.0 0.0 0.4
Row 2 Column 1 0.4 0.2 1.0
Row 3 Column 1 -0.4 0.2 -0.7
Row 1 Column 2 -0.6 0.5 1.1
Row 2 Column 2 0.6 0.3 -0.2
Row 3 Column 2 -1.6 0.7 -0.1

Table 5.3: Covariate matrix E

Now that we have our covariate matrices in the correct ordering, let us construct
artificial row, column, and covariate effects, a’, 3% and €°, and artificial interactions ©°.

## parameters

alpha0 <- rep(0, ml);alphaO[1:6] <- 1

betal <- rep(0, m2);betalO[1:4] <- 1

epsilon0 <- rep(0, q);epsilon0[5:6] <- 0.2

2 #rank of interaction matrix thetal

thetal0 <- O.l*matrix(rnorm(mlx*r), nrow=ml)¥%*%diag(r:1)%x%
matrix (rnorm(m2*r), nrow=r)

theta0 <- sweep(thetal, 2, colMeans(theta0))

theta0 <- sweep(theta0, 1, rowMeans (thetal))

r <-

Finally, we can construct the parameter matrix X° and sample our incomplete count
data Y, after centering and scaling the covariate matrix.

## construct xO0

U <- scale(U)#center and normalize the covariates

x0 <- matrix(rep(alphal,m2) ,nrow=ml)#row effects

x0 <- x0 + matrix(rep(betal,each=ml) ,nrow=ml)#add col effects
x0 <- x0 + matrix(Ul%*%epsilonO ,nrow=ml) #add cov effects

x0 <- x0 + thetaO #add interactions
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## sample count data y
y0 <- matrix(rpois(ml*m2, lambda = c(exp(x0))), nrow = ml)

## add missing values

p <- 0.2

y <- yo0

y[sample (1: (m1*m2), round(p*ml*m2))] <- NA

5.1.2 Estimation and single imputation

Model and estimation The purpose of the lori package is dual: to estimate the
parameters a?, 3°, €, ©° and to impute the count table Y. The corresponding
input are the incomplete count data Y and (optionally) the covariate matrix U. The
estimation procedure is:

(&, 5,¢,0) € argmin L(Y; , 5,€,0) + M [|®], + Ao (lally + 18]l + [lell,), (5:3)

where L(Y; o, B,¢€,0) is the Poisson negative log-likelihood:

K K
Q=Y+ B+ D Ui, )i+ ©ij) +explai + B+ Y U (i, )k + ©4;)],
(i.9)

k=1 k=1

and Q,;; = 1 if Y;; is observed, and 0 otherwise. The intuition behind (5.3) is that
the negative log-likelihood is minimized (the parameters should fit the data as much
as possible) with additional regularization terms which constrain the parameters and
perform model selection automatically. The first penalty term, ||©®]||. corresponds to the
nuclear norm of ® and induces low-rank solutions: this is interpreted as assuming that
a few latent factors summarize the interactions. The second term, |a||, + || 3], + |€ll;.
corresponds to the sum of the /; norms of the vectors «, 3 and e:

mi m2 K
leelly + 11811 + llelly = > lesl + D181+ > leal-
=1 j=1 k=1

This penalty induces sparse solutions (vectors «, § and € containing many zeros), mean-
ing that not all rows, columns and covariates have an effect on the counts. The trade-off
between the data-fitting term and the penalties is controlled by the regularization pa-
rameters A\; and \y. As )\; increases, the rank of the solution O decreases (the number
of latent factors decreases). As ), increases, the number of nonzero values in &, § and
¢ decreases (the number of active rows, columns and covariates decreases).

In R, the estimation is done as follows, for some predefined regularization parameters
)\1 and )\21

## lori estimation

lambdal <- 0.1

lambda2 <- 0.1

res.lori <- lori(y, U, lambdal, lambda2)
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Cross-validation and estimation However, the quality of the estimation is highly
dependent on the choice of A\; and Ay, and thus we provide a cross-validation function
to select them automatically:

## cross-validation

res.cv <- cv.lori(y, U, trace.it = T) #this takes a few
minutes, the trace.it argument states that information
about the progress should be printed

## estimation

res.lori <- lori(y, U, res.cv$lambdal, res.cv$lambda?2)

res.lori$alpha
res.lori$beta
res.lori$espilon
res.lori$theta

In the present case, we obtain point estimates for the main effects (with a one-digit
precision), displayed in Table 5.4 for &, Table 5.5 for 5 and Table 5.6 for €.

1| 2| 3| 4| 5 6 7, 8 9 10|11 12|13 14 |15| 16| 17| 18| 19| 20
10/10|01(06|09| 05|0.0 00‘00‘00 00/0000/00]00|00|00]|0.0(0.0]0.0

Table 5.4: First 20 coefficients in & (res.lori$alpha[1:20]). The cells colored in green

correspond to the nonzero coefficients in a® (a? = ... =ad =1).

1 2 3 4| 5, 6, 7| 8| 9|10
12, 07| 09| 06/0.0,0.000|00]0.0]0.2

Table 5.5: [ (res.lori$beta). The cells colored in green correspond to the nonzero
coefficients in 3° (B = ... =B =1).

1| 2 3, 4| 5| 6| 7
01{01]-01/00]03]0.2]0.0

Table 5.6: € (res.lori$epsilon). The cells colored in green correspond to the nonzero

coefficients in €® (€2 = €2 = 0.2).

Single imputation The function lori also returns imputed values for the missing
entries in Y, based on these point estimates. For each missing entry, the predicted
value is given by

Ki+K>

}Afi,j = exp (dl + Bj + Z U(jfl)mlJri’ké\k + é@j) . (54)

k=1

~

The imputed data set Y, such that Y” =Y, ; if Y, is observed, and Y;; given by
(5.4) otherwise, is accessed as follows:

res.lori$imputed
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1 2, 3| 4/ 5| 6| 7|, 8,910
1 9 7 1 3| 12 8 31 5|1 6
2| 14 6| 6.6 5 4 5122 1|3 6
3 5132 9137 3 5 3] 1|2 1
4| 11 6 1 7137|18 5/ 4|4 2
588 7 8 4 2 3 7110229
6| 17|42 8141 1 0 3|1 4|5 4

Table 5.7: First six rows of the imputed data set Y (res.lori$imputed[1:5,]). The red
cells correspond to imputed values, originally missing in Y.

Removing row and column effects Note that, by default, the row and column
effects a” and 3° are estimated. To estimate model (5.2) without row and column
effects, one can force them to zero by using the arguments reff (boolean indicating
whether row effects should be fit) and ceff (boolean indicating whether column effects
should be fit) in lori, which are set to TRUE by default:

res.noreff <- lori(y, U, lambdal, lambda2, reff=F)
res.noceff <- lori(y, U, lambdal, lambda2, ceff=F)
res.noreffceff <- lori(y, U, lambdal, lambda2, reff=F, ceff=F)

5.1.3 Multiple imputation

The function mi.lori performs multiple imputation, based on the single imputation
procedure described above. To produce M imputed data sets, a two-step bootstrap
procedure is applied.

Resampling procedure (already in Chapter 4) We define a resampling procedure
to model the uncertainty of the single imputation model (4.8), which corresponds to
uncertainty about the parameters &, 3,¢ and ©. To do so, we interpret the count
matrix as a contingency table, and perform nonparametric bootstrap by resampling the
counts with a multinomial model. We "de-aggregate" the count table Y:

Row ID | Col ID

Row 1 Col 1

Coll Col2 Col3 Col 4 Row 2 Col 1

Row 1 9 7 1 3 : ;
Row 3 5 NA 9 NA Row 1 Col 2
Row 4 11 6 1 7 : :
Row 5 NA 7 8 4 : :
Row 5 Col 1

In the de-aggregated table Z, for all (i,j) € [m] x [mz], the row (Row i, Col 7) is
repeated Y; ; times if Y; ; is observed. If Y, ; is not observed, the row (Row i, Col j)
does not appear at all. We assume that the rows of the de-aggregated table Z are
i.i.d. In spatio-temporal species monitoring, where rows correspond to sites, columns to
years, and entry to the number of individuals counted in each site at each time point,
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this amounts to assuming that, each individual is observed in site ¢ during the year j
independently of the other individuals, and with the same probability 7; ;. Let n be the
number of rows in Z, i.e. the total number of individuals counted in Y, and let M be
a predefined integer number. We perform nonparametric bootstrap by sampling n rows
of Z with equal probability and with replacement. Furthermore, we repeat this proce-
dure M times, thus obtaining M new tables Z',..., ZM. Then, each Z™, m € [M]
is "re-aggregated" to form a new count table Y. Finally we obtain M count tables
Y!, ...,YM with the same missing data pattern as the original table Y, and where
the observed counts are sampled from a multinomial distribution with n trials, and with
vector of probabilities given by the frequencies of each entry.

For each of the M incomplete data sets, we estimate a set of parameters
(@™, g™, em, em).
These parameters are used to produce M imputation models. These multiple mod-
els reflect the uncertainty about the imputation procedure (learned from incomplete
data). Then, uncertainty in the missing values is estimated, for each imputation model,
with a parametric bootstrap. For each model, we produce D imputed data sets, using
the same stochastic imputation procedure. Finally, we obtain M D imputed data sets
(Y, . YA Y2 . YE .. YM . YM). The complete multiple imputation pro-
cedure is summarized in F|gure 5.2. The entire procedure goes as follows in R. The

mi.lori function performs multiple imputations, and the pool.lori function aggre-
gates the results using Rubin’s rule (Rubin, 1987).

res.mi <- mi.lori(y, U, res.cv$lambdal, res.cv$lambda2)
res.pool <- pool.lori(res.mi)

The function pool.lori returns estimates for the mean and variance of the imputed
values, and for all the parameters involved in the model (&, B €, é) Table 5.8 shows
the result obtained for the imputed values. Compared to the single imputation result
displayed in Table 5.7, we obtain intervals of variability for the predicted values.

1 2 3 4 5 6 7] 89 10
1 9 7 1 3 12 8 3] 51 6
2 14 6 | 5.5(3.1) 5 4 5|1.7(16)| 13 6
3 5| 3.1(2.7) 9|31(21) 3 5 3] 12 1
4 11 6 1 7 13.2(2.0) | 1.4(1.7) 5) 44 2
5 | 8.3(3.8) 7 8 4 2 3 7110 2]22@21)
6 17 | 3.9(2.8) 8| 3.4(2.4) 1 0 3| 45 4

Table 5.8: Results for the first six rows of the imputed data set Y after multiple im-
putation and pooling. The red cells correspond to imputed values, originally missing in
Y. The standard deviation of the multiple imputation (computed via Rubin’s formula
(Rubin, 1987)) is given between parenthesis.

One may also visualize the variability of the parameter estimates with boxplots. In-
deed, for every single data set generated by the bootstrap procedure, denoted Y'!, ..., Y™,
one obtains point estimates &%, 5%, ¢ and ©* , k € [M]. For example for the column
effects:

boxplot (res.mi$mi.beta, pch="", names=paste("col", 1:10))
The resulting boxplot is displayed in Figure 5.3.
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Figure 5.2: Multiple imputation procedure: nonparametric bootstrap (M samples); es-
timation (M estimates); parametric bootstrap (M D imputed data sets). Gray cells
correspond to missing values: the same missing data pattern is shared across all incom-
plete data sets in the first level (Y'!,...,¥Y'™). In the second level the missing data
patterns are different (Y, ..., Y'™). The colored cells on the bottom line (which differ
from the background color) correspond to imputed missing values, with different imputed
values across the multiple imputed data sets.

5.2 Analysis of the Aravo data set

5.2.1 Loading the data

The Aravo data set (Choler, 2005) consists of three main data tables. First, a count
table collecting the abundance of 82 species of alpine plants in 75 sites in France (the
rows correspond to the environments, and the column to species). We will denote this
abundance table, displayed in Table 5.9, Y € R™*™2_ Second, a matrix containing 6
geographical and meteorological characteristics of the sites. Third, a matrix containing
8 species traits (height, spread, etc.). We denote R the matrix of row covariates, and
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Figure 5.3: Boxplot of the estimators B, ..., BM produced by the multiple imputation
procedure.

C' the matrix of column covariates, respectively displayed in Tables 5.10 anc 5.11.

library (ade4)
data("aravo")

‘ Agro.rupe  Alop.alpi  Anth.nipp Heli.sede Aven.vers Care.rosa

ARO07 0 0 0 0 0 1
ART71 0 0 0 0 0 2
AR26 3 0 1 0 1 2
AR54 0 0 0 2 0 2
AR60 0 0 0 0 0 0

Table 5.9: First 5 rows (environments) and 6 columns (species) of the Aravo count table
(aravo$spe[1:5, 1:6]).

aravo$env([1:5,]
aravo$traits[1:6,]

‘Aspect Slope  Form PhysD  ZoogD  Snow

ARO7 7 2 1 50 no 140
AR71 1 35 3 40 no 140
AR26 5 0 3 20 no 140
ARb4 9 30 3 80 no 140
AR60 9 5 1 80 no 140

Table 5.10: First 5 rows (environments) of the Aravo row covariates (aravo$env[1:5, ]).

First we put the data in the right shape for the lori function.

Y <- aravo$spe # count table

R <- aravo$env # row covariates

R <- R[, c(1,2,4,6)] # keep quantitative variables (for
simplicity)

C <- aravo$traits # column covariates

d <- dim(Y)

n <- d[1]

p <- d[2]
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‘ Height Spread Angle Area  Thick SLA° N mass Seed

Agro.rupe 6 10 80 60.0 0.12 8.10 218.70  0.08
Alop.alpi 5 20 20 190.9 0.20 15.10 203.85 0.21
Anth.nipp 15 5 50 280.0 0.08 18.00 219.60 0.54
Heli.sede 0 30 80 600.0 0.20 10.60 233.20 1.72
Aven.vers 12 30 60 420.0 0.14 12.50 156.25  1.17
Care.rosa 30 20 80 180.0 0.40 6.50 208.65 1.68

Table 5.11: First 6 rows (species) of the Aravo column covariates (aravo$traits[1:6, |).

U <- Covmat(n,p,R,C) # construct covariate matrix for lori
input
U <- scale(U) # scale the covariates

5.2.2 Estimation of the lori model

Then, we tune the regularization parameters, and apply the lori function.

# Tune regularization parameter

res_cv <- cv.lori(Y, U, reff=F, ceff=F, trace.it=T, len=10)

res_lori <- lori(Y, U, lambdal = res_cv$lambdal, lambda2=res_
cv$lambda2, reff=F, ceff=F)

Aspect Slope PhysD Snow Height Spread Angle Area Thick SLA Nmass Seed
0.00 0.02 -0.00 -0.01 0.00 -0.04 -0.02 -0.03 -0.02 -0.00 0.01 -0.01

Table 5.12: Estimated covariate effects in the Aravo data set using lori. The regular-
ization parameters are selected using cross-validation.

The obtain covariates coefficients are reported in Table 5.12. The estimated rank
of the interaction matrix © is 3. The rows and columns of the interaction matrix can
be visualized on a biplot (de Rooij and Heiser, 2005, Section 2.5), where rows and
columns are represented simultaneously in a normalized Euclidean space. In such plots,
the dimensions of the Euclidean space are given by the principal directions of ©, scaled
by the square root of the singular values of ©. Such displays can be interpreted in terms
of distance between points: a species and an environment that are close interact highly,
and two species or two environments that are close have similar profiles. Justifications
for such a distance interpretation can be found in (de Rooij and Heiser, 2005, Section
2.5) or (Fithian and Josse, 2017, Section 2). To visualize the two-dimensional display,
one may use the following command, whose output plot in given in Figure 5.4, where
the "axes" argument indicates which dimensions to use.

plot (res_lori, axes = c(1,2)

5.2.3 Bootstrap and intervals of variability

Finally, even though the table Y in complete, the multiple imputation function may be
used to obtain intervals of variability for the coefficients reported in Table 5.12. The
following command performs multiple imputation (which may be seen as bootstrap in
this case), with 20 replications. Then, one can visualize the variability of the main effects
coefficients with a boxplot (given in Figure 5.5).
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Figure 5.4: Two-dimensional display of the first dimensions of interaction.

res_mi <- mi.lori(Y, U, lambdal = res_cv$lambdal, lambda2=res_
cv$lambda2, reff=F, ceff=F, M=20)
boxplot (res_mi$mi.epsilon)
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Figure 5.5: Boxplot of the main effects coefficients of the Aravo data set estimated with
lori, across 20 bootstrap replications.

5.3 Implementation

To solve the minimization problem (5.3), we implemented two different algorithms in the
lori package. The first one is based on alternating minimization (AM), and involves
solving a LASSO problem and computing a full-rank SVD at each iteration. The second
one is a mixed coordinate gradient descent (MCGD) algorithm, and involves solving a
LASSO problem and computing a rank-1 SVD at each iteration. In small dimensions, we
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recommend using the AM option, which involves costly iterations (full-rank SVDs), but
converges in fewer iterations. On the other hand, in large dimensions, we recommend us-
ing the MCGD option, which converges at a (slower) sublinear rate (Robin et al., 2018),
but involves less costly iterations (rank-1 SVDs). By default, alternating minimization
is used in the package lori. This option may be changed using the "algo" argument:

res <- lori(Y, U, lambdal = 0.1, lambda2=0.1, algo
alternating minimization (default)

res <- lori(Y, U, lambdal = 0.1, lambda2=0.1, algo = "mcgd") #
mixed coordinate gradient descent

naltn) #

5.3.1 Alternating minimization (AM)

Recall the lori estimation problem:
(4, 8,¢,0) € argmin L(Y; @, 8,¢,0) + A1 O], + X2 (lall, + 181l + llell,)

and denote ¢ = (a, 3, €) the vector of R™ ™14 containing all the main effects. Al-
ternating minimization (AM) (Csiszar and Tusnady, 1984) consists in updating ¢ and
© alternatively, each time along a descent direction. At every iteration we update ¢
and © both along proximal gradient directions. The update of ¢ involves entry-wise
soft-thresholding, and the update of ® involves soft-thresholding of singular values. For
each of the updates, we tune the step size using backtracking line search. The procedure
is sketched in Algorithm 3 where, for A > 0, 7, denotes the operator of entry-wise soft-
thresholding at level )\, and D, denotes the soft-thresholding of singular values operator
at level \.

Algorithm 3 Alternating minimization for problem (5.3)

1: Initialize ¢[°!, ®
2: fort=1,...,7 do

3 =1
. 9= PrOXysal (0471 —9VL(Y39,©))

= Ton, (0070 —AVLy(Y;6,0)).
5:  while L(Y;06®), @F1) 4 Xy[l0M]1) > L(Y; 00D, ©@FD) 4+ \y]|0*V];) do
6: y="/2
7. o = prOX'y)\QéL-Hll (=D —yVLy(9, ©))

= JyXe (¢ - - ’YV‘C¢(Y7¢a 6)) .

8: end while
9: =1

10 W =D, (0N —1VeLlL(Y;s®, 0@¢1))
11:  while £(Y;6®, 0®) + 11 ]|©D|],) > L(Y; 61, 0¢1D) + )\ |@FD],) do
12: y="/2

13 @0 =D, (00D - 1VeL(Y:o), 1)),
14: end while
15: end for

16: Return ¢(7), ©()

5.3.2 Mixed coordinate gradient descent (MCGD)

When the dimensions m; and my are large, SVDs are extremely computationally heavy.
Thus, we also implemented an alternative to AM, adapted to large data frames. In this
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alternative algorithm, problem (5.3) is solved using a mixed coordinate gradient descent
procedure (MCGD), where ¢ on the one hand, and ® on the other hand, are updated
alternatively. The vector ¢ is, as before, updated along a proximal gradient direction with
a step size ¥ computed using a line search. The matrix ©, on the other hand, is updated
along a conditional gradient direction: this requires computing only the first singular
value and vectors of ©, instead of the full SVD. Denote F(¢,0©) = L(Y;¢,0) +
M O], + A2 [|¢]|;. We define at iteration ¢ the quantity R®) = A\['F(¢(=Y, @(-1).
We also denote VLg(Y; ¢~ ©¢~1) the gradient of £ with respect to © evaluated
at (oY, © 1) Furthermore, we denote by 01(VLe(Y;¢!H ©¢1)) its largest
singular value, and u; and v its first left and right singular vectors. The conditional
gradient update consists in the following operation:

en_J0 if Ay > 01(VLe(Y; ¢, @071)), (5.5)

Tl O — ROy if A\ < 01 (VLe(Y; 0D, @01, '
In the update (5.5), J is a step size which we determine with a line search. A sketch
of the MCGD algorithm is provided in Algorithm 4, and its convergence properties are
studied in Robin et al. (2018).

Algorithm 4 MCGD algorithm for (5.3).
1: Initialize: — ©© ¢ RO Eg. (00 ¢ R®)=(0,0,0).
2. fort=1,2,...,7T do
3: V=
. = pmxwgl'ul (07D —VLy(Y; 6, 0))
e (7Y =V Ly(Y 56, 0)) .
5. while L(Y;0"),07D) + Xs[¢][|1) > L(Y;047D, 0671 + Xof|o“" V1) do
6: v ="/2
¢(t) = prOXW)\Qél'”l (¢(t_1) - ’}/VE(;S(Qb, 6))

= T (07D =4 VL(Y;9,0)).
8: end while
0: 0=1
100 RO = \[TE(p(-), @0-1)
1 em—10Y !f A > gl(V£®(Y’¢ 1)),
@(t_l) — 5R(t)U1U£|— if A < Ol(V[,@(Y, ¢ t 1)))
12 while L(Y: 60, 00) + \[O0].) > £(Y: 6, 00 >+ o)) d
13: 0 = 6/2
14: R® — /\le(qb(t_l), @(t—l))
15- o — 0 if A\, > 01(VLe(Y; oD @),
: — )] et _ 5R(t)U1U;r if \} <01(VLe(Y 7¢ et 1)))'

16:  end while
17: end for
18: Return: ©) 4T,
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Chapter 6

Main effects and interactions in
mixed and incomplete data frames
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6.1 Introduction

Mixed data frames (MDF) (see Pagés (2015); Udell et al. (2016)) are tables collecting
categorical, numerical and count data. In most applications, each row is an example or
a subject and each column is a feature or an attribute. A distinctive characteristic of
MDF is that column entries may be of different types, and most often many entries are
missing. MDF appear in numerous applications including patient records in health care
(survival values at different time points, quantitative and categorical clinical features
like blood pressure, gender, disease stage, see e.g. Murdoch and Detsky (2013)), survey
data (Heeringa et al., 2010, Chapters 5 and 6), abundance tables in ecology (Legendre
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et al., 1997), and recommendation systems (Agarwal et al., 2011).

In all these applications, data analysis is often made in the light of additional infor-
mation, such as sites and species traits in ecology, or users and items characteristics in
recommendation systems. This caused the introduction of the two central concepts of
interest in this chapter: main effects and interactions. This terminology is classically
used to distinguish between effects of covariates on the observations which are indepen-
dent of the other covariates (main effects), and effects of covariates on the observations
which depend on the value of one or more other covariates (interactions). For example,
in health care, a treatment might extend survival for all patients—this is a main effect—or
extend survival for young patients but shorten it for older patients—this is an interaction.

Many statistical models have been developed to estimate such types of data. Abun-
dance tables counting species across environments are for instance classically analyzed
using the log-linear model (Agresti, 2013, Chapter 4). This model decomposes the log-
arithms of the expected abundances into the sum of species (rows) and environment
(columns) effects, plus a low-rank interaction term. Other examples include multilevel
models (Gelman and Hill, 2007) to analyze hierarchically structured data where examples
(patients, students, etc.) are nested within groups (hospitals, schools, etc.).

At the same time, low-rank models, which embed rows and columns into low-
dimensional spaces, have been widely used for exploratory analysis of MDF (Kiers, 1991;
Pagés, 2015; Udell et al., 2016). Despite the abundance of results in low-rank matrix
estimation (see Kumar and Schneider (2017) for a literature survey), to the best of our
knowledge most of the existing methods for MDF analysis do not provide a statistically
sound way to account for main effects in the data. In most applications, estimation of
main effects in MDF has been done heuristically as a preprocessing step (Hastie et al.,
2015; Udell et al., 2016; Landgraf and Lee, 2015). Fithian and Mazumder (2018) in-
corporate row and column covariates in their model, but mainly focus on optimization
procedures and did not provide statistical guarantees concerning the main effects. Mao
et al. (2017) propose a procedure to estimate jointly main effects and a low-rank matrix,
which may be interpreted as an interaction matrix, but the procedure is based on a least
squares loss, and is therefore not suitable to mixed data types.

On the other hand, several approaches are available in the matrix completion liter-
ature to model non-Gaussian, and particularly discrete data, but they do not consider
mixed observations or main effects. Davenport et al. (2012) introduced one-bit matrix
completion, where the observations are binary such as yes/no answers, and provide nearly
optimal upper and lower bounds on the mean square error of estimation. One-bit matrix
completion was also studied in Cai and Zhou (2013). In Klopp et al. (2015), the authors
introduce multinomial matrix completion, where the observations are allowed to take
more than two values, such as ratings in recommendation systems, and propose a min-
imax optimal estimator. Unbounded non-Gaussian observations have also been studied
before. For instance, Cao and Xie (2016) extended the approach of Davenport et al.
(2012) to Poisson matrix completion, and Lafond (2015) proves optimal convergence
rates for exponential family matrix completion.

In this chapter, we propose a new framework for incomplete and mixed data which
allows to account for main effects and interactions. We start in Section 6.2 with a con-
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crete example from medical data analysis, before introducing a general model for MDF
with sparse main effects and low-rank interactions. Then, we propose in Section 6.3 an
estimation procedure based on the minimization of a doubly penalized negative quasi
log-likelihood. We also propose a block coordinate gradient descent algorithm to com-
pute our estimator, and provide a convergence result. In Section 6.4.1 we discuss the
statistical guarantees of our procedure, with two simultaneous upper bounds on the
estimation errors of the sparse and low-rank components. To assess the tightness of
our convergence rates, we also derive lower bounds in Section 6.4.2, and show that in
a number of situations, our upper bounds are near optimal. In addition, we specialize
our results to three examples of interest in applications in Section 6.4.3. Numerical
results are presented in Section 6.5 to support our theoretical claims. We also show that
our method performs comparably to state-of the art mixed data imputation methods in
terms of prediction of the missing values. The proofs are postponed to the supplemen-
tary material; the method is available in the R (R Core Team, 2017) package mimi on
the Comprehensive R Archive Network.

Notation We denote the Frobenius norm on R™ ™2 by || - ||, the operator norm by
|| |l, the nuclear norm by || - ||. and the sup norm ||-||oc. ||-||2 is the usual Euclidean norm,
|- |0 the number of non zero coefficients, and || || the infinity norm. For n € N, denote
[n] = {1,...,n}. We denote the support of o € R™ by supp(a) = {k € [N], ax # 0}.
For I C [my]), we denote 1, defined by 1,(:i) = 1if i € I and 0 otherwise, the indicator
of set I,.

6.2 General model and examples

6.2.1 Traumabase data set

Before introducing our general model, we start by giving a concrete example. The
Traumabase registry (http://www.traumabase.eu/en_US) gathers information about
severe trauma patients distributed across 15 trauma centers. As shown in Table 6.1, this
results in a highly heterogeneous and incomplete data collection.

Center Lung X-ray Pelvic X-ray Accident Time in critical care (h)
Bicétre NA NA Falling from a height NA

HEGP NA NA Falling from a height 2

Pitié Salpétriere NA NA Car-pedestrian accident NA

Lille Normal NA Falling from a height 2

Beaujon NA NA Falling (from own height) NA

Lille NA NA Falling (from own height) NA

Table 6.1: Excerpt of the Traumabase data set.

Here, the Center variable categorizes the patients in groups, depending on the hos-
pital where they were treated. In an exploratory data analysis perspective, a question
of interest may be: is the trauma center related to the values of other variables? For
example the type of accident, survival, etc. Furthermore, as we do not expect the groups
(trauma centers) to be sufficient to explain the observations, can we also model residu-
als, or interactions?
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Denote Y = (Y; ;) the data frame containing the patients in rows and the attributes
in columns. If the j-th column is continuous (systolic blood pressure for instance), one
might model the group effects and interactions as follows:

0

E[Y:;] = acu; + ©iy

where ¢(7) indicates the group to which individual i belongs, and c(i); and ©;; are fixed
group effects and interactions respectively. This corresponds to the so- called mu/t/leve/

regression framework (Gelman and Hill, 2007). If the j-th column is binary (result of
pelvic X-ray for instance, which is either normal or abnormal), one might model

X 0 0
P(Yi; =1) = P Xij = Qegiy; + iy

corresponding to a logistic regression framework.

The goal is then to estimate the vector of group effects a® and the matrix of inter-
actions ®° simultaneously, from the mixed and incomplete data frame Y. We propose
a method assuming the vector of main effects a is sparse and the matrix of interactions
©" has low-rank. The sparsity assumption means that groups affect a small number of
variables. On the other hand, the low-rank assumption means the population can be
represented by a few archetypical individuals and summary features (Udell et al., 2016,
Section 5.4), which interact in a multiplicative manner. In fact, if ®° is of rank r, then
it can be decomposed as the sum of » rank-1 matrices as follows:

r
T
— E ukvk y
k=1

where wy, (resp. vy) is a vector of R™ (resp. R™2). Thus, using the above example, we
obtain

E[Y; ;| = ag(i)j + Z Uik Vs,

where the last term Y, w;xv;x can be interpreted as the sum of multiplicative inter-
action terms between latent individual types and features.

6.2.2 General model

We now introduce a new framework generalizing the above example to other types of
data and main effects. Consider an MDF Y = (Y} ;) of size m; x mq. The entries in
each column j € [my] belong to an observation space, denoted Y,. For example, for
numerical data, the observation space is Y; = R, and for count data, Y; = N is the set
of natural integers. For binary data, the observation space is Y; = {0,1}. In the entire
paper, we assume that the random variables (Y; ;) are independent and that for each
(i,7) € [ma] x [m2], Yi; € Y; and E[|Y;]] < oo Furthermore, we will assume that
Y, ; is sub-exponential with scale v and variance o2: for all (1,7) € [mi] x [m2] and
’Z’ <", E[ 2(Y;,;—E[ 1]])] < e 22/2

In our estimation procedure, we will use a data-fitting term based on heterogeneous
exponential family quasi-likelihoods. Let (Y,), i) be a measurable space, h: Y — R,
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and ¢ : R — R be functions. Denote by Exp®9 = {fx(h’g) : x € R} the canonical

exponential family. Here, h is the base function, ¢ is the link function, and féh’g) is the
density with respect to the base measure y given by

F9(y) = h(y) exp (ya — g(x)), (6.1)

for y € Y. For simplicity, we assume [ h(y) exp(yz)u(dy) < oo for all z € R.

The exponential family is a flexible framework for different data types. For example,
for numerical data, we set g(x) = 2%0%/2 and h(y) = (2m0?) Y2 exp(—y?/c?). In
this case, Exp™ is the family of Gaussian distributions with mean o2z and variance
o?. For count data, we set g(x) = exp(ax) and h(y) = 1/y!, where a € R. In this
case, Exp™9 is the family of Poisson distributions with intensity exp(ax). For binary
data, g(z) = log(1 + exp(z)) and h(y) = 1. Here, Exp™9 is the family of Bernoulli

distributions with success probability 1/(1 + exp(—x)).

In our estimation procedure, we choose a collection {(g;,h;), j € [m2]} of link
functions and base functions corresponding to the observation spaces {(Y;, ;, i1;), j €
[ma]}. For each (i,7) € [mi] x [ms], we denote by X7, the value of the parameter
minimizing the divergence between the distribution of Y, and the exponential family
EXp(hﬁgj), j € [ma]:

X!, = argmin, ez {~E [Vi;] 2 + g;(x)} . (6.2)

To model main effects and interactions we assume the matrix of parameters X° =
(X?;) € R™>*™2 can be decomposed as the sum of sparse main effects and low-rank
interactions:

N
X°=> a)U"+ 0" (6.3)

k=1
Here, U = (U*',...,U") is a fixed dictionary of m; x my matrices, a® is a sparse

vector with unknown support Z = {k € [N];al # 0} and ©° is an m; X my matrix
with low-rank. The decomposition introduced in (6.3) is a general model combining
regression on a dictionary and low-rank design.

Such decompositions have been studied before in the literature. In particular, a large
body of work has tackled the problem of reconstructing a sparse and a low-rank term
exactly from observation of their sum. Chandrasekaran et al. (2011) derived identifiabil-
ity conditions under which exact reconstruction is possible when the sparse component
is entry-wise sparse; the same model was also studied in Hsu et al. (2011). Candés
et al. (2011) proved a similar results for entry-wise sparsity, when the location of the
non-zero entries are chosen uniformly at random. Xu et al. (2010) extended the model
to study column-wise sparsity. Mardani et al. (2013) studied an even more general case
with general sparsity pattern, and determined conditions under which exact recovery is
possible.

In this chapter, we consider the problem of estimating a (general) sparse component
and a low-rank term from noisy and incomplete observation of their sum, when the
noise is heterogeneous and in the exponential family. Because of this noisy setting, we
do not seek to recover the two components exactly. Thus, we do not require strong
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identifiability conditions as those derived in (Chandrasekaran et al., 2011; Hsu et al.,
2011; Candés et al., 2011; Xu et al., 2010; Mardani et al., 2013). However, since
decomposition (6.3) may not be unique, we restrict our model to the following class of
possible decompositions, to which our estimator will be the closest. From all possible
decompositions («, L), consider (o, ®’) such that

(o), @) € argminyo_s~ o, veroillafly +rank ©}. (6.4)
Let s" = ||&/||, + rank(®’). Finally let

(%, 0°%) € argmin xo_s~ o, vk 1@ [l - (6.5)
la|lg+rank(@)=s"
The decomposition satisfying (6.4) and (6.5) may also not be unique. Assume that there
exists a pair (o, ®) # (o, @) satisfying (6.4) and (6.5). Then,

1©" —O|F=| zk:OéZUk - zk:oku’“HF < 2al|a®||o max |Ukll2 = R,

with a an upper bound on ||a°||. This implies that for all such possible decompositions
(o, ©) we have that © and >, a;U”* are in the small balls of radius R and centered
at ©° and Y, aU?* respectively. Our statistical guarantees in Section 6.4 show that
our estimators of ®° and Dok ong’C are in balls of radius > R, and also centered at
®° and Dok agU’“. Moreover, we also show that this error bound is minimax optimal
in a number of situations. To summarize, the decomposition may not be unique, but
all the possible decompositions are in a neighborhood of radius smaller than the optimal
convergence rate.

6.2.3 Examples

We now provide three examples of dictionaries which can be used to deal with classical
main effects.

Example 1. Group effects We assume the m; individuals are divided into H groups.
For h € [H] denote by I, C [m4] the h-th group containing n; individuals. The
size of the dictionary is N = Hmy and its elements are, for all (h,q) € [H] x [ms],
Uh,q = (11,(4) 111 () i.j)e[mi] x[me] - T his example corresponds to the model discussed
in Section 6.2.1; we develop it further in Section 6.5 with simulations and a survey data
analysis.

Example 2. Row and column effects (see e.g. (Agresti, 2013, Chapter 4)) Another
classical model is the log-linear model for count data analysis. Here, Y is a matrix of
counts. Assuming a Poisson model, the parameter matrix X°, which satisfies | Y, ;] =
exp(X7;) for all (4, 7) € [m1] x [my], is assumed to be decomposed as follows:

X = (a))i+ (a); + ©7 (6.6)

r 2,77

where o € R™, 2 € R™ and @° € R™*™2 s low-rank. This model is often used
to analyze abundance tables of species across environments (see, e.g., ter Braak et al.
(2017)). In this case the low-rank structure of @ reflects the presence of groups of
similar species and environments. Model (6.6) can be re-written in our framework as

N
XO = ZO&%U]C—F@O,
k=1
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with a® = (a2,a2), N = m; + my and where for i € [m4] and j € [mz] we have

Ui = (14 (k) kpyetmaxima] and Unny 15 = (L1g53(1) (k)€ fma] x [ma] -

Example 3. Corruptions Our framework also embeds the well-known robust matrix
completion problem (Hsu et al., 2011; Candés et al., 2011; Klopp et al., 2017) which is
of interest, for instance, in recommendation systems. In this application, malicious users
coexist with normal users, and introduce spurious perturbations. Thus, in robust matrix
completion, we observe noisy and incomplete realizations of a low-rank matrix @° of fixed
rank and containing zeros at the locations of malicious users, perturbed by corruptions.
The sparse component corresponding to corruptions is denoted Z(m)ez U, ;, where
{Uj, (i,7) € [m1] x [m2]}, are the matrices of the canonical basis of R™*"™2 U,; =
(Lgiy (B) 1553 (D) kyepma] x[ma] @nd I is the set of indices of corrupted entries. Thus,
the non-zero components of o correspond to the locations where the malicious users
introduced the corruptions.

For Example 3, the particular case of quadratic link functions g;(z) = 2?/2 was
studied in Klopp et al. (2017). We generalize these results in two directions: we consider
mixed data types and general main effects.

6.2.4 Missing values

Finally, we consider a setting with missing observations. Let {2 = (€2; ;) be an observation
mask with €, ; = 1 if Y, ; is observed and €; ; = 0 otherwise. We assume that (2 and
Y are independent, i.e. a Missing Completely At Random (MCAR) scenario (Little and
Rubin, 2002): (€2; ;) are independent Bernoulli random variables with probabilities m;;,
(i,7) € [ma] x [mz]. Furthermore for all (i, ) € [m;]] x [m2], we assume there exists
p > 0 allowed to vary with m; and my, such that

For j € [ms], denote by m; = > "' m;;, j € [mo] the probability of observing an
element in the j-th column. Similarly, for i € [m4], denote by m; = Z;Tfl m;; the
probability of observing an element in the i-th row. We define the following upper
bound:

max(m, 7)< B (6.8)

Z7j

6.3 Estimation procedure

Consider the data-fitting term defined by the heterogeneous exponential family negative
quasi log-likelihood

LX;Y,Q) =) > 0 {-Yi,; X, +9;(Xi5)}, (6.9)
i=1 j=1
and define the function
fla,®) = L(fy(a) + ©; Y, Q), (6.10)

where for a € RY, fy(a) = 0, a,Us. We assume [[a°[oo < a and [|©°]5 < a
where @ > 0 is a known upper bound. We use the nuclear norm || - ||. (the sum of
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singular values) and ¢; norm || - ||; penalties as convex relaxations of the rank and
sparsity constraints respectively:

(6,©) € argmin, o) F(a, ©) (6.11)
5.t ||lafle < a,]|O]e < a, (6.12)
F(a,8) = f(a,0) + M|O]. + Ao [al]1, (6.13)

with A; >0 and A3 > 0. In the sequel, for all (4, @) in the set of solutions, we denote

6.3.1 Block coordinate gradient descent (BCGD)

To solve (6.11) we develop a block coordinate gradient descent algorithm where the
two components « and © are updated alternatively in an iterative procedure. At every
iteration, we compute a (strictly convex) quadratic approximation of the data fitting
term and apply block coordinate gradient descent to generate a search direction. The
BCGD algorithm we describe is a special instance of the coordinate gradient descent
method for non-smooth separable minimization developed in Tseng and Yun (2009).
Note first that the upper bound @ on |||« and ||®||« is mainly required to derive the
statistical guarantees; thus we did not implement it for simplicity. In practice, we solve
the following relaxed problem:

(4,0) e argmin, g, F'(a, ©). (6.14)

Quadratic approximation. For any (o, ®) € RY x R™*™2 and for any direction
(do,de) € RY x R™>™2 consider the following local approximation of the data fitting
term

fla+da, © +de) = f(a,0) + Alfy(a) + ©,da, de) + o([|dall5 + [|dell7) , (6.15)

where we have set

mi  m2

AX,do,de) = =2 Y wi[ X )24 Xi 5] (fu(de)is + deiy)

i=1 j=1

+ 0wy X ) (fu(de)is + deiy)” + vlidall3 + vlidell7 (6.16)
i=1 j=1

In (6.16), v > 0 is a positive constant and for x € R and (i, 7) € [m1] x [ms],

wiile] = Qg5 (@)/2,  Zijla] = (Yi; — g5(2)) /g5 (). (6.17)

Note that the approximation (6.16) is simply a Taylor expansion of £ around X, with
an additional quadratic term v||d,||% + v||de||% ensuring its strong convexity. Denote
by (all, ) the fit of the parameter at iteration ¢ and set X = f;;(all) + ©. We
update o and L alternatively as follows.
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a-Update. We first solve
d € argmin { A(X, d,0) + Xof|al? +d||, } . (6.18)
deRN

Problem (6.18) may be rewritten as a weighted Lasso problem:

m1  m2

argmin Y > wy [ X2  [fu(a))iy)? + vl = al3 + Asllalh

a€cRd i=1 j=1

where for i, j € [m4] x [ma] we have set Z[] = Zj; [X[t]] +fu (o). Efficient numerical
solutions to this problem are available (see e.g., Frledman et al. (2010)). To update
o, we select a step size with an Armijo line search. The procedure goes as follows. We
choose 7y, > 0 and we let 79 be the largest element of {ﬁnitﬁj}‘;‘;o satisfying

F(al 4 hdt, ©1) + dgllal? + I, < F(al), O + Xyl + 7T,
where 0 < f<1,0<(<1,0<6<1, and

Ol = =230 3 [ X312 (X1 (d)]a 00 Y0 > e[ X (] [fr (0] )
=1 j=1 =1 j=1

+ X { | + @]y — o))}
We set ol = ol 1 y1gl] and X1+1/2 = £, (al1+1)) 4 @11,

L-Update. We first solve
dd = argmin {A(XFY2 0,d) + 7|01 4 d||. ), (6.19)
dEle Xmag

which is equivalent to
mi1 ma

argmin Y > (v + wy[ X)) (25 - ©1,)7 + MO, (6.20)

OER™IX™2 1 j—1
where for i, j € [m4] x [ma] we have set
t+1/2 t t
Slt+1/2 wi[ XY }](Zz"[X[tH/Q]] +0!) +vel
The minimisation problem (6.20) may be seen as a welghted version of softImpute
(Hastie et al., 2015). Srebro and Jaakkola (2003) proposed to solve (6.20) using an
EM algorithm where the weights in [0, 1] are viewed as frequencies of observations in
a missing value framework (see also Mazumder et al. (2010)). We use this procedure,

which involves soft-thresholding of the singular values of ®, by adapting the softImpute
package (Hastie et al., 2015). To update ®, we choose the step size using again the

Armijo line search. We set 7, > 0 and let Tg} be the largest element of {ﬂnitﬁj};?‘;o
satisfying

Flal e o Agy 4oy e + 44l < f(olHY @) + @1, + r¢Tl,

mi1 Mo mip m2
1/2 12 1/2] 2
:_QZZ [t+/] 17X [t+/ @”JF@Z}:'LUU t+/ [(f)]m
i=1 j=1 i=1 j=1
{109 + gl — |ldg. } -

We finally set ®+1 = @1 + Md[t]
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6.3.2 Convergence of the BCGD algorithm

The algorithm described in Section 6.3.1 is a particular case of the coordinate gradient
descent method for nonsmooth minimisation introduced in Tseng and Yun (2009). In
the aforementioned paper, the authors studied (in the general case) the convergence
of the iterate sequence to a stationary point of the objective function. Here, we apply
their general result (Tseng and Yun, 2009, Theorem 1) to our problem to obtain global
convergence guarantees. Consider the following assumption on the dictionary .

H4. For all k € [N] and (i,j) € [mi] x [m2], Uf; € [=1,1] and there exists & > 0
such that for all (i, 5) € [mi] x [ma], o, [UF| < .

Assumption H4 is satisfied in the three models introduced in Examples 1, 2 and
3: for group effects and corruptions with & = 1 and for row and column effects with
& = 2. In particular, it guarantees that X° = f;;(a®) 4+ @0 satisfies || X ||, < (1+2)a.
Plugging this in the definition of X in (6.2), this assumption also implies that E [Y; ;] €
gi([=(1+2)a, (1 +=)a]) for all (4, j) € [mi] x [ms]. Note that H4 can be relaxed by
|Uklloo < p, with p an arbitrary constant. Consider also the following assumption on
the link functions.

H5. For all j € [m] the functions g; twice continuously differentiable. Moreover, there

exist 0 < 0_, 0, < 400 such that for all |x] < (14 a&)a and j € [my], 0* < gf(z) <

2
U+.

Assumptions H4-5 imply that the data-fitting term has Lipschitz gradient. Further-
more, the quadratic approximation defined in (6.16) is strictly convex at every iteration.
We obtain the following convergence result.

Theorem 8. Assume H4-5 and let {(a!*l, ®lF))} be the iterate sequence generated by
the BCGD algorithm. Then the following results hold.

(a) {(a!®, ®"} has at least one accumulation point. Furthermore, all the accumu-
lation points of {(alFl, ®¥1)} are global optima of F.

(b) {F (/" @)} — F(4,0).
Proof. See Section 6.7.2. ]

6.4 Statistical guarantees

We now state our main statistical results. Denote by (-, -) the usual trace scalar product
in R™>*™2_ For ¢ > 0 and a sparsity pattern Z C [N], define the following sets

&1(a,T) = {a € R, |lal|s < a,supp(a) C T},
Ea,T) = {@ € R™X™2 |O||o < a,rileaIX\(@, Uy)| =0, } : (6.21)
X(a,T) ={X =fy(a) + O; (a,0) € &(a,Z) x E(a,T)}.

H6. There exist a > 0 and T C [N] such that (a°,0°) € & (a,Z) x E(a,T).

Assumption H6 can be relaxed to allow upper bounds to depend on the entries of
o’ and @, but we stick to H6 for simplicity.
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6.4.1 Upper bounds

We now derive upper bounds for the Frobenius and /5 norms of the estimation errors
©° — © and a® — & respectively. In Theorem 9 we give a general result under condi-
tions on the regularization parameters \; and )y, which depend on the random matrix
VL(X%Y,Q). Then, Lemma 7 and 8 allow us to compute values of \; and A, that
satisfy the assumptions of Theorem 9 with high probability. Finally we combine these
results in Theorem 10.

We denote V and A the max and min operators respectively, M = m; V mo,
m = my Amy and d = my + my. We also define r = rank (©°), s = ||a°||y and
u = maxy [|[Ugll1. Let (Eij)@j)efmi]x[me] be the canonical basis of R™*™2 and {e;;}
an i.i.d. Rademacher sequence independent of Y and ). Define

ZR = ZZQZJEUEU and Vﬁ X Y Q 2291]{ —|—g; (X17])}El]
=1 j=1 =1 j=1

(6.22)
Yr is a random matrix associated with the missingness pattern and VL(X;Y, Q) is
the gradient of £ with respect to X . Define also

Ao P a\’
0, =22 + 2R [|Skll] + —— (=) log(d
=R+ e (5) e

0 =M+ (1+x)aE [HERHQ} )

A2
03 =—=+20
3 " + 20;.

Theorem 9. Assume H4-6 and let
M 22| VL(X% Y, Q)| and XA > 2u (|[VL(X%Y,Q)|o + 207 (1 + &)a) .
Then, with probability at least 1 — 8d~1,

R as A r as
HfU(OéO) — 'FU(Oé)”%‘ S ?C’lél and ||(")0 — @H% S EOQQQ + 503(93, (623)

where C, Cy and Cy are numerical constants independent of my, my and p.

Proof. See Section 6.7.2. ]

We now give deterministic upper bounds on E [||Xg||] and E [||Xg]|~] in Lemma 7,
and probabilistic upper bounds on |[VL(X %Y, Q)| and |[VL(X? Y, Q)| « in Lemma 8.
We will use them to select values of A\; and A\, which satisfy the assumptions of Theo-
rem 9 and compute the corresponding upper bounds.

Lemma 7. There exists an absolute constant C* such that the two following inequalities

hold
E([Sallel <1 and E[|Sxl] < C*{V/B+ iogm}.
Proof. See Section 6.7.2 O
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Lemma 8. Assume H4-6. Then, there exists an absolute constant c* such that the
following two inequalities hold with probability at least 1 — d~':

log d
IVL(X%Y, Q) §6max{a+\/logd, 05 },

(6.24)
log d 1
IVL(X" Y, Q)| < ¢ max {a+\//3 log d, Of log (— mg”?) } ,
o_
where d = my + my , o, and ~y are defined in H 5, and /3 in (6.8).
Proof. See Section 6.7.2. O

We now combine Theorem 9, Lemma 7 and 8yvith a union bound argument to derive
upper bounds on [|fy(a®) — fi;(&)]|% and ||©° — O||%. We assume that M = (m; Vms)
is large enough, that is

4 2 pous
M > max {L; log® <_m) ,2exp (07 /7* Voiy(l+ aea))} :
Y pyo—

Define

o —a?s 8@, a’ log(d)

uoZy " pulla®f
2
G2 = 3 log(d) + (L+=)a(1V (logm/5).

12p+/log(d) 1 (log d) N plog(d) N a*log(d)

3 = = wuoty  pulla|;’

Y(1+2)ao /B o2

and recall that s = ||a®||o, r = rank(®°), 8 > max;; (D2 T, Y pey Tkj) and that
the entries Y; ; are sub-exponential with scale parameter ~.

v

Theorem 10. Assume H4-6 and let
M =270, y/Blogd, Ay > w,
where c, is the absolute constant defined in Lemma 8. Then, with probability at least
1—10d71,
Ify () = fu (@)l < O%m and |©° - O} < C (;—f@ + %%) . (6.29)

with C' an absolute constant.
Denoting by < the inequality up to constant and logarithmic factors we get:

S A rB  su
fU OéO —fU Q 2 ~ T and @0—@ 2 §—+—,
Ifu(a”) — fu @)z , I 1% i
In the case of almost uniform sampling, i.e., for all (i,5) € [m1] x [ms] and two
positive constants ¢; and ¢z, ¢;p < 7;; < cop we obtain that § < ¢;Mp and the
following simplified bound:
A M
e -0z s —+= (6.26)
p p
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The rate given in (6.26) is the sum of the usual convergence rate of low-rank matrix
completion M /p and of the usual sparse vector convergence rate s (Biihlmann and
van de Geer, 2011; Tsybakov, 2008) multiplied by u/p. This additional factor accounts
for missing observations (p~!) and interplay between main effects and interactions (u).
Furthermore, the estimation risk of fr;(a) is also the usual sparse vector convergence
rate, with an additional up~! factor accounting for interactions and missing values.

Note that whenever the dictionary U is linearly independent, Theorem 10 also pro-
vides an upper bound on the estimation error o’ — &. Let G € RV*Y be the Gram
matrix of the dictionary U defined by Gy, = (Uy, U;) for all (k,1) € [N] x [V].

H7. Fork >0 and all « € RY, o' Ga > x2||al]3.

Recall that in the group effects model, we denote by I, the set of rows which belong
to group h. H7 is satisfied for the group effects model with x* = miny, |I,|, the row and
column effects model with k? = min(my, m,) and the corruptions model with x* = 1. If
H7 is satisfied then, Theorem 10 implies that (up to constant and logarithmic factors):

O A 2 Su
[a” —alw S ]ﬁ

6.4.2 Lower bounds

To characterize the tightness of the convergence rates given in Theorem 10, we now
provide lower bounds on the estimation errors. We need three additional assumptions.

H8. The sampling of entries is uniform, i.e. for all (i,7) € [m1] x [m2], m;; = p.

H9. There exists Z C [N], a > 0 and X € Xz, such that for all (i,7) € [m1] x [m],
Y ~ Exp9) (X ;).

Denote 7 = maxy ;. [(Us, Up)|. Without loss of generality we assume m; =
my V me = M. For all X € R™*™2 we denote Px the product distribution of (Y, )
satisfying H8 and 9. Consider two integers s < (my A mgy)/2 and r < (my A mg)/2.
We define the following set

F(r,s) = |J {(,®) € &1(a,T) x E(a, T);rank(©) < r} . (6.27)

IZI<s

Theorem 11. Assume H4-8 and p > ml;m. Then, there exists a constant § > 0 such
that

. 0 A2 0 112 rM sK?
inf sup Pxo | |©° — O|% + [|fu(a’) — fu(&)]|% > v1— + bo— | >,
0,4 (@9,a9)eF(r,s) p p

(6.28)
1 = Cmin (UIQ,min(a, a+)2) ,
1 (6.29)
=C AlaNoi)?).
v (03 (e [0+ 27) " (41 ) )
Proof. See Section 6.7.2. O
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Model Group effects | Row & col effects | Corruptions
u maXp, ‘Ih‘ M 1
A ~ r smax |I rM sl rM s
[6°— Ol + lfo (o) —fu@) [ | =+ ===l | el s

Table 6.2: Order of magnitude of the upper bound for Examples 1, 2 and 3 (up to
logarithmic factors).

Model Group effects | Row & col effects | Corruptions
u maxy |Ih| M 1
maxy ||Uk||%ﬂ maxy |Ih| M 1
K2 miny, || m 1
A ~ r) smin | r sm r S
18° — O +llfu(e) — fu(@F | '+ Juai] P Bt

Table 6.3: Order of magnitude of the lower bound for Examples 1, 2 and 3.

6.4.3 Examples

We now specialize our theoretical results to Examples 1, 2 and 3 presented in Sec-
tion 6.2.2. We compute the values of u, 7 and max;, ||U*||% for the group effects, row
and column effects and corruption models, and obtain the rates of Theorem 10 and
Theorem 11 for these particular cases. Recall that in the group effects model, we denote
by I;, the set of rows which belong to group h. The orders of magnitude are summarized
in Table 6.2 for the upper bound and in Table 6.3 for the lower bound. Comparing
Table 6.2 and Table 6.3 we see that the convergence rates obtained in Theorem 10 are
minimax optimal across the three examples whenever s < r. Furthermore, in the corrup-
tions model our rates are optimal (up to constant and logarithmic factors) for any values
of 7,5 and M, and equal to the minimax rates derived in Klopp et al. (2017). In the
case of group effects, the rates are optimal when r > smax;, |1,|/M or when maxy, |1,
is of the order of a constant. When s > rM/ maxy, |I,|, we have an additional factor of
the order (maxy, |I;])?/ miny, |I;| in the upper bound. Note that the bounds have the
same dependence in the sparsity pattern s. In the row and column model, when r < s,
we have an additional factor of the order s/r in the upper bound.

6.5 Numerical results

6.5.1 Estimation of main effects and interactions

We start by evaluating our method (referred to as “mimi": Main effects and Interactions
in Mixed and Incomplete data) in terms of estimation of main effects and interactions.
In this experiment, we focus on the group effects model presented in Section 6.2.1, with
H = 5 groups of equal size. We select at random s non-zero coefficients in o, and
construct a matrix ®° of rank k. Then, X° = Zthl Z;njl oz?ljUh’j + ©° with Uy,
1< h< Hand1l<j < msydefined in Example 1. Finally, every entry of the matrix
is observed with probability p. We then evaluate the estimation errors [|[a® — @||3 and
1@° — B||2 of estimator (6.11).

In a first experiment, we consider only numeric variables, and compare mimi to the

following two-step method. In this alternative method, the main effects o are estimated
by the means of the variables taken by group; this corresponds to the preprocessing step
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Figure 6.1: Estimation error of mimi (red triangles) and of groups means + SVD (blue
points) for increasing problem sizes (m;ma, in log scale).

performed in Udell et al. (2016) and Landgraf and Lee (2015) for instance. Then, ©°
is estimated using softImpute (Hastie et al., 2015); we refer to this method as “group
mean + SVD". The regularization parameters of both methods are selected with cross-
validation. The results are displayed in Figure 6.1 where we plot the estimation errors
1@ — @°||% and ||& — a°|)2 for increasing problem sizes. We observe that the excess
risk ||© — ©Y]|2, the two methods are similar. Furthermore, the estimation error of mimi
increases linearly with the largest dimension m4 V ms as predicted by Theorem 10, when
the rank r and probability p are fixed. In terms of estimation of a”, mimi is superior.
The estimation error of mimi is constant as the problem size increases but the sparsity
level of a® is kept constant, as predicted by Theorem 10. On the contrary, we observe
that estimating o in a preprocessing step yields large errors in high dimensions.

6.5.2 Imputation of mixed data

To evaluate mimi in a mixed data setting, we compare it in terms of imputation of
missing values to five state-of-the-art methods:

e softimpute (Hastie et al., 2015), a method based on soft-thresholding of singular
values to impute numeric data implemented in the R package softImpute.

e Generalized Low-Rank Model (GLRM, Udell et al. (2016)), a matrix factorization
framework for mixed data implemented in R in the h2o package.

e Factorial Analysis of Mixed Data (FAMD, Pagés (2015)), a principal component
method for mixed data implemented in the R package missMDA (Josse and Husson,
2016).

e Multilevel Factorial Analysis of Mixed Data (MLFAMD, Husson et al. (2018)),
an extension of FAMD to impute multilevel data, i.e. when individual are nested
within groups. The method is also implemented in missMDA.

e Multivariate Imputation by Chained Equations (mice, van Buuren and Groothuis-
Oudshoorn (2011)), an implementation of multiple imputation using Fully Condi-
tional Specification. In the package mice, different models can be set for each
column to account for mixed data.

To do so, we fix a dictionary U of indicator matrices corresponding to group effects (see
Example 1), and generate a parameter matrix satisfying the decomposition (6.3). Then,
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columns are sampled from different data types, namely Gaussian and Bernoulli. For
varying proportions of missing entries and values of the ratio p = |[fy(a®)||¢/]|®°||F,
we evaluate the six methods in terms of imputation error of the two different data types.
The parameters of all the methods (number of components for GLRM and FAMD and
regularization parameters for softimpute and mimi) are selected using cross-validation.
In addition, we use an optional ridge regularization in the h2o implementation of the
GLRM method, which penalizes the ¢, norm of the left and right principal components
(U and V'), and improved the imputation in practice. Note that we also add a com-
parison to imputation by the column means, in order to have a baseline reference. The
details are available in the associated code provided as supplementary material.

% missing 20

P 0.2 1 5

mean 24.5(0.7) | 23.3(0.7) | 22.9(0.4)
mimi 18.6(0.4) | 18.3(0.3) | 17.7(0.3)
GLRM 21.5(0.7) | 22.0(0.8) | 19.9(0.5)
softlmpute | 18.5(0.3) | 18.5(0.2) | 17.9(0.3)
FAMD 18.5(0.4) | 18.9(0.4) | 18.1(0.4)
MLFAMD | 18.5(0.4) | 19.2(0.4) | 18.3(0.4)
mice 22.3(0.8) | 22.6(0.6) | 22.1(0.6)

Table 6.4: Imputation error (MSE) of mimi, GLRM, softimpute and FAMD for 20%
of missing entries and different values of the ratio ||fy(a®)||#/||©°|# (0.2, 1, 5). The
values are averaged across 100 replications and the standard deviation is given between
parenthesis. In this simulation m; = 150, my = 30, s =3 and r = 2.

% missing 40

P 0.2 1 5

mean 24.4(1.15) | 33.2(1.1) | 31.0(1.0)
mimi 18.8(0.3) | 27.0(0.5) | 24.8(0.6)
GLRM 21.5(0.7) | 31.7(1.2) | 31.0(0.9)
softlmpute | 18.6(0.3) | 26.8(0.6) | 24.9(0.5)
FAMD 18.7(0.3) | 28.3(0.6) | 25.6(0.7)
MLFAMD | 18.5(0.5) | 27.7(0.6) | 26.3(0.5)
mice 22.7(0.6) | 32.9(0.6) | 30.1(0.9)

Table 6.5: Imputation error (MSE) of mimi, GLRM, softimpute and FAMD for 40%
of missing entriesand different values of the ratio ||fy(a®)||r/||®°||r (0.2, 1, 5). The
values are averaged across 100 replications and the standard deviation is given between
parenthesis. In this simulation m; = 150, my = 30, s =3 and r = 2.

The results, presented in Tables 6.4-6.6, reveal that mimi, softlmpute, FAMD and
MLFAMD vyield imputation errors of comparable order. In this simulation setting, our
method mimi improves on these existing methods when the ratio p = ||fy(a®)||#/|©°||
is large, i.e. when the scale of the main effects is large compared to the interactions.
The size of this improvement also increases with the amount of missing values. The
imputation error by data type (quantitative and qualitative) are given in Section 6.7.1,
along with average experimental computational times of all the compared methods.
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% missing 60

P 0.2 1 5
mean 421(1.2) |40.7(1.2) | 39.9(0.6)
mimi 36.0(1.0) | 33.7(0.8) | 30.6(0.4)
GLRM 445(10.8) | 49.4(16.2) | 50.7(3.2)
softimpute | 34.9(1.0) | 34.9(0.8) | 32.2(0.5)
FAMD 36.0(1.5) | 40.6(0.8) | 32.7(0.5)
MLFAMD | 34.9(1.3) | 40.7(1.0) | 33.5(0.6)
mice 48.1(2.4) | 48.1(0.9) | 44.7(1.4)

Table 6.6: Imputation error (MSE) of mimi, GLRM, softlmpute and FAMD for 60%
of missing entries and different values of the ratio ||fy(a®)|/||®°||F (0.2, 1, 5). The
values are averaged across 100 replications and the standard deviation is given between
parenthesis. In this simulation m; = 150, my = 30, s =3 and r = 2.

6.5.3 Analysis of the Traumabase data set

We next apply our method on the Traumabase data presented in Section 6.2.1. We focus
on a subsample of the original registry, with 2,120 patients treated for head trauma in six
French hospitals from the Paris area (Beaujon, Bicétre, Hopital Européen George Pom-
pidou (HEGP), Henri Mondor, Percy, and Pitié Salpétriére). We also restrict ourselves
to 9 variables (4 quantitative and 5 qualitative variables):

e Age of the patient: numeric, missing for 235 patients

e Sex of the patient: binary (male=1, female=0), missing for 235 patients
e Weight of the patient: numeric, missing for 513 patients

e Height of the patient: numeric, missing for 588 patients

e Body mass index (BMI): numeric, missing for 599 patients

e On-call: binary variable indicating whether the patient was treated during the day
(1) or during on-call periods (0), missing for 203 patients

e KTV/TDM: binary variable indicating whether a catheter was placed before doing
a CT scan (yes=1, no=0), missing for 711 patients

e PIC: binary variable indicating whether a small sensing device was placed to mea-
sure the intracranial pressure (yes=1, no=0), missing for 191 patients

e Death: binary variable indicating whether the patient died in intensive care (death=1,
no death = 0), missing for 278 patients

We model the quantitative attributes using Gaussian distributions, and the binary at-
tributes with Bernoulli distributions. Using the same notations as in Section 6.2.1, ¢(7)
denotes the group (the hospital center) to which patient i belongs. Thus, if the j-th
column is continuous (Weight), our model implies:

E[Y;;] = aju,; + ©7;.
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If the j-th column is binary (PIC for instance), we model

X0
oy e 0 _ 0 0
P(Yi;=1) = 14X Xij = Qeiy; T Oy

In Table 6.7, we display the value of the parameter a;); for all possible groups ¢(z) and
variables j. The value of av(;); is related to the expected value E[Y];]: everything else
being fixed, E[Y; ;] is an increasing function of Qc(i)j- Thus, in terms of interpretation,
the "group effect" a.(;); indicates (everything else being equal) whether being treated in
hospital ¢(i) yields larger or smaller values for E[Y; ;] compared to other hospital centers.

Age | Sex | Weight | Height | BMI | On-call | KTV/TDM | PIC | Death

Beaujon | 0.51 | 0.16 0.12 0.20 | 0.18 -0.10 01]-0.02 -0.11

Bicétre | -0.56 | 0.14 0.16 -0.06 | -0.25 -0.14 0.08 | -0.05 -0.12

HEGP 0]0.01 -0.09 -0.09 | -0.04 0 0]-0.02| -0.04

Henri Mondor 0.2 | 0.04 0 0.02 0 0 0 0 0
Percy 0 0 0.03 0 0 0 0 0 0

Pitié Salpétriére | 0.02 | 0.11 -0.19 -0.30 | -0.02 -0.07 0]-0.03| -0.09

Table 6.7: Main effect of hospital centers on other variables in the Traumabase (esti-
mated with MIMI).

In Table 6.7, we observe that the main effects «.; take nonzero values for some of
the hospitals and some of the variables. For instance, for the Age variable, the effect of
the Beaujon hospital is positive, and the effect of the Bicétre hospital is negative. This
indicates that, compared to the overall average, patients from Beaujon are older, while
patients from Bicétre are younger. Looking at the Sex variable, observe that some of the
hospitals have positive effects (Beaujon and Bicétre), which means that they treat more
males (which are indicated by 1 in the Sex variable). The hospitals Pitié-Salpétriére,
Beaujon and Bicétre also tend to treat more patients during on-call times (indicated by
Day = 0) than the average of hospitals. These three hospitals also seem to resort less
to the PIC procedure, and to have less deaths.

One may also use the MIMI results as dimensionality reduction tools to visualize the
individuals. Figure 6.2 is a two-dimensional display, where each individual is represented
in a Euclidean plane defined by the first principal components of the interaction matrix
©. The purple squares correspond to the center of gravity of each hospital center. We
observe that these centers of gravity are very close to the origin, indicating that the
hospital effects have been captures in the main effects («), and that the interactions are
now centered in each group. Then, on Figure 6.3, we represent the correlation between
the original variables and the first principal components of the interaction matrix ©.
The first direction is highly correlated with the Death, On-call and PIC variable. On the
other hand, the second direction seems to correspond to a summary variable for physical

characteristics of patients: it is highly correlated with the Weight, Height and BMI.

6.6 Conclusions and perspectives

This article introduces a general framework to analyze high-dimensonal, mixed and in-
complete data frames with main effects and interactions. Upper bounds on the esti-
mation error of main effects and interactions are derived; these bounds match with the
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Figure 6.2: Two-dimensional display of the individuals (patients) in a Euclidean plane
defined by the principal directions of the interaction matrix.
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Figure 6.3: Correlation circle between the original variables and the principal directions
of the interaction matrix.

lower-bounds under weak additional assumptions Our theoretical results are supported
by a numerical experiments on synthetic and survey data, showing that the introduced
method performs best when the proportion of missing values is large and the main effects
and interactions are of comparable size.

Our work opens several directions of future research. A natural extension would
be to consider the inference problem, i.e. to derive confidence intervals for the main
effects coefficients. Another useful direction would be to consider exponential family
distributions with multi-dimensional parameters, for example multinomial distributions,
to incorporate categorical variables with more than two categories. One could also learn
the scale parameter (which we currently assume fixed) adaptively.

6.7 Supplementary material

6.7.1 Additional experiments

In this section we provide more details on the simulations of Section 6.5.2. Tables 6.8,
6.9 and 6.10 present the imputation errors of the compared methods for quantitative
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variables only, and the tables 6.11, 6.12 and 6.13 for binary variables. For the quan-
titative variables, mimi and MLFAMD, which both model main group effects, perform
best. As already noticed in Section 6.5.2, mimi has smaller imputation errors than other
methods when the size of the main effects compared to the interactions, and the propor-
tion of missing entries, are both large. For the binary variables, suprisingly, softlmpute
outperforms consistently the other methods, although it is not designed for mixed data.
Finally, Table 6.14 shows the average computational times of the different compared
methods. We observe that the computational times of mimi, GLRM, FAMD and ML-
FAMD are of comparable order. The aforementioned methods are an order of magnitude
slower than softlmpute and mice.

% missing 20

P 0.2 1 5

mean 20.7(1.3) | 19.8(0.7) | 19.6(0.6)
mimi 13.0(0.4) | 12.3(0.4) | 11.4(0.3)
GLRM 16.1(1.0) | 16.9(0.7) | 13.8(0.4)
softimpute | 14.0(0.5) | 14.0(0.4) | 13.3(0.4)
FAMD 12.7(0.5) | 12.9(0.6) | 12.1(0.3)
MLFAMD | 12.6(0.6) | 13.7(0.6) | 12.2(0.4)
mice 17.3(0.8) | 17.2(1.0) | 16.9(0.6)

Table 6.8: Quantitative variables: Imputation error (MSE) of mimi, GLRM, softlmpute
and FAMD for 20% of missing entries and different values of the ratio ||f ()| /|| ©°|| »
(0.2, 1, 5). The values are averaged across 100 replications and the standard deviation
is given between parenthesis.

% missing 40

P 0.2 1 5

mean 28.0(2.6) | 28.2(1.3) | 26.9(1.1)
mimi 19.8(1.1) | 19.0(0.7) | 16.1(0.5)
GLRM 24.0(5.3) | 24.5(1.5) | 23.4(1.1)
softimpute | 20.3(1.2) | 20.9(0.7) | 18.5(0.8)
FAMD 19.2(1.3) | 20.2(0.6) | 17.3(0.6)
MLFAMD | 18.8(1.0) | 19.7(0.6) | 17.6(0.7)
mice 25.1(1.2) | 26.0(0.7) | 23.1(1.0)

Table 6.9: Quantitative variables: Imputation error (MSE) of mimi, GLRM, softlmpute
and FAMD for 40% of missing entries and different values of the ratio ||f;(a)|| /|| ©°|| »
(0.2, 1, 5). The values are averaged across 100 replications and the standard deviation
is given between parenthesis.

6.7.2 Proofs
Proof of Theorem 8

To prove global convergence of the BCGD algorithm, we use a result from (Tseng and
Yun, 2009, Theorem 1) summarized below in Theorem 12, combined with the compacity
of the level sets of the objective F', proved using Lemma 9 and Lemma 10.
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% missing 60

P 0.2 1 5

mean 35.5(1.6) | 34.2(1.3) | 34.1(0.5)
mimi 27.1(1.0) | 24.3(1.1) | 20.2(0.4)
GLRM 36.5(12.3) | 41.9(18.0) | 44.1(3.7)
softimpute | 27.3(1.2) | 27.4(1.0) | 24.4(0.5)
FAMD 26.9(1.8) | 31.2(1.0) | 22.7(0.4)
MLFAMD | 25.4(15) | 26.2(1.2) | 23.5(0.6)
mice 40.7(2.8) | 40.1(0.9) | 36.8(1.8)

Table 6.10: Quantitative variables: Imputation error (MSE) of mimi, GLRM, softlmpute
and FAMD for 60% of missing entries and different values of the ratio ||[f7(a®)||#/||©°||
(0.2, 1, 5). The values are averaged across 100 replications and the standard deviation
is given between parenthesis.

% missing 20

P 0.2 1 5

mean 13.0(0.3) | 12.4(0.3) | 11.8(0.4)
mimi 13.5(0.3) | 13.5(0.3) | 13.5(0.3)
GLRM 14.2(0.4) | 14.1(0.6) | 14.2(0.5)
softimpute | 12.2(0.1) | 12.0(0.3) | 12.0(0.6)
FAMD 13.6(0.4) | 13.8(0.4) | 13.5(0.3)
MLFAMD | 13.6(0.5) | 13.5(0.4) | 13.6(0.4)
mice 14.6(0.3) | 14.5(0.4) | 14.4(0.4)

Table 6.11: Binary variables: Imputation error (MSE) of mimi, GLRM, softimpute and
FAMD for 20% of missing entries and different values of the ratio ||fi7/(a®)||r/|©°|F
(0.2, 1, 5). The values are averaged across 100 replications and the standard deviation
is given between parenthesis.

% missing 40

P 0.2 1 5

mean 18.33(0.4) | 17.4(0.3) | 16.9(0.3)
mimi 18.9(0.5) | 19.1(0.3) | 18.9(0.6)
GLRM 20.0(0.4) | 20.2(0.4) | 20.4(0.3)
softimpute | 17.0(0.3) | 16.7(0.2) | 16.6(0.4)
FAMD 19.2(05) | 19.8(0.3) | 18.8(0.6)
MLFAMD | 19.4(0.5) | 19.5(0.4) | 19.6(0.5)
mice 20.5(0.4) | 20.3(0.2) | 20.5(0.4)

Table 6.12: Binary variables: Imputation error (MSE) of mimi, GLRM, softimpute and
FAMD for 40% of missing entries and different values of the ratio ||f;/(a®)||r/|©"|F
(0.2, 1, 5). The values are averaged across 100 replications and the standard deviation
is given between parenthesis.

Theorem 12. Let {(alfl, ©F)} be the current iterates, {(d¥),d%)} the descent di-

rections and {(FZ“ ], F[@k])} the functionals generated by the BCGD algorithm. Then the
following results hold.
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% missing 60

P 0.2 1 5

mean 22.6(0.5) | 22.0(0.6) | 20.8(0.6)
mimi 23.7(0.6) | 23.4(0.5) | 23.1(0.4)
GLRM 24.9(0.5) | 25.1(0.6) | 24.9(0.3)
softimpute | 21.6(0.4) | 21.6(0.3) | 21.0(0.5)
FAMD 24.0(0.5) | 25.0(0.4) | 23.6(0.4)
MLFAMD | 24.0(0.5) | 24.1(0.4) | 23.9(0.4)
mice 25.7(0.4) | 25.7(0.6) | 25.3(0.2)

Table 6.13: Binary variables: Imputation error (MSE) of mimi, GLRM, softimpute and
FAMD for 60% of missing entries and different values of the ratio ||fy(a®)||r/]|©°F
(0.2, 1, 5). The values are averaged across 100 replications and the standard deviation
is given between parenthesis.

method | mean | mimi | GLRM | softimpute | FAMD | MLFAMD | mice
time (s) | 1.7e-4 | 6.6 |55 0.1 2.6 35 0.2

Table 6.14: Computation time of the seven compared methods (averaged across 100
simulations).

(a) {F(al¥, ®"} is nonincreasing and for all k, (T, T'¥) satisfies
T8> (1= 0wl and —Tg > (1= 0)vdg |7

o =

(b) Every cluster point of {(al¥l, @)} is a stationary point of F.

Assumptions H4 and 5, combined with the separability of the ¢; and nuclear norm
penalties, guarantee that the conditions of (Tseng and Yun, 2009, Theorem 1) are
satisfied. We now show that the data-fitting term L(fy (o) +©; Y, Q) is lower-bounded.

Lemma 9. There exists a constant ¢ > —oo such that, for all X € R™*™ L(X;Y,Q) >
c.

Proof. Recall that L(X;Y,Q) = > >0 Q{=Y; ;X ; + g;(X;;)}. Thus, we only

need to prove that for all (i,5) € [my] x [m2], the function z — =Y,z + g;(x) is
lower bounded by a constant ¢;; > —oo. Assume that this is not the case; by the

convexity of z — =Y,z + g;(x) we have that either —Y; ;x + g;(x) €E~>—+>oo o

or =Y,z + g;(x) x:m —00. Assume without loss of generality that —Y; ;z +

9;() oo TO0 Then, there exists o € R such that for all z > zy, =Y ;2 + g;(x) <

log fy@f})}ijj h;(y)p;(dy). Thus, for all 2 > max(zo,0), we have that

/yeyj hi(y)es =9 @ yi(d,) = /yey.j. hy(y)e¥® 9@ . (d,) + /yey.j' hy(y)e? ™9 . (d,)
y<Yi y>Yi,

> /yEyj hj(y)ey%gj(w),uj(dy) -+ 1> 1,

y<Yi;

contradicting normality of the density h;(y)e¥*=9®). Thus, there exists ¢;; > —oo, such
that for all x € R, =Y, ;& + g;j(x) > ¢;;. Finally we obtain that £(X;Y,Q) > ¢ =

Do D02 cije O
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Finally, we use Lemma 9 to show the compactness of the level sets of the objective
function F', defined for C' € R by

Lo = {(a,®) € RY x R™*™2; [(q, ®) < O},
Lemma 10. The level sets of the objective function I’ are compact.

Proof. For all (o, ®) € RY x R™*™2 F(a,©) > ¢+ \|O||« + Xa|a|1, where ¢ is
the constant defined in Lemma 9. Thus, for all C € R, the level set L¢ is included in
the compact set

C—-c C—-c
0) e RY x R™m>*m2.1@||, < d < .
{ore fe1. < % and ol < 7}
Furthermore, by the continuity of I, the level set L is also a closed set. Thus we
obtain that for all C' € R, the level set L¢ is compact. ]

We can now combine Theorem 12, Lemma 9 and Lemma 10 to prove Theorem 8.
Let (ol ®%) be an initialization point. Theorem 12 (a) implies that the sequence
(¥, ©*) generated by the BCGD algorithm lies in the level set of F

Ly o)) = {(@,0) € RY x R™*™2; F(a,0) < F(al,0)}.

Furthermore, L0 g0 is compact by Lemma 10, showing that the sequence (al¥, ©lk])
has at least one accumulation point. Combined with Theorem 12 (b) and the convexity
of F, this shows Theorem 8 (a).

Theorem 12 (a) and Lemma 9 combined imply that the sequence {F (/¥ ®K])}
converges to a limit /™. Furthermore, Theorem 8 (a) and the continuity of F' imply that
there exists a sub-sequence { F(al*, ®")}, . such that { F(a/¥ @)}, o — F(a, ©).
Thus, F* = F(é, ©), which proves Theorem 8 (b).

Proof of Theorem 9

Let IT = (mi;)(ij)e[mi]x[ms] De the distribution of the mask Q. For B € R™*™2 we
denote Bg, the projection of B on the set of observed entries. We define || B||% = || Bal|%.
and || B||4 = E|||B||%], where the expectation is taken with respect to II. The proof of
Theorem 9 will follow the subsequent two steps. We first derive an upper bound on the
Frobenius error restricted to the observed entries ||AX ||, then show that the expected
Frobenius error ||AX||% is upper bounded by ||AX||3 with high probability, and up to
a residual term defined later on.

Let us derive the upper bound on |AX||. By definition of © and a: L(X;Y,Q)—

LIX%Y.Q) < A (||@0||* - ||é||*) + o (@1 — [|éllh) . Recall that, for a € RY,
we use the notation fy(a) = Sr , a,U*. Adding (VL(X?;Y,Q), AX) on both sides
of the last inequality, we get
LIX;Y,Q) - L(X%Y,Q) + (VL(XY,Q),AX) <
A (1001~ [1811.) = (VE(X"; Y, ©), A)
+ X2 ([la’l = [lallh) = (VL(X® Y, Q), fu(Aa)). (6.30)
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Assumption H5 implies that for any pair of matrices X' and X?2 in R™*™2 satisfying
X oo V | X?||oo < (1 + 2)a, the two following inequalities hold for all ©:

2
L(X;Y,Q) - L(X;Y,Q) - (VL(X,Y,Q), X - X) > %HX - X5, (6:31)
IVL(X;Y,Q) - VL(X;Y,Q)|r < 02| X — X]o. (6.32)

Plugging (6.31) into (6.30) allows to construct a lower bound on the left hand side term
and obtain 02 ||AX[|3/2 < A; + As,

Av = (€~ [1O].) + (VL(X: Y, 0), 20)), 6.33)
A =X ([l = [lalh) + (VL(X Y, Q), fu(Aa))| .

Let us upper bound A;. The duality of the norms || - ||, and || - || implies that
(VL(X%Y,9),40)| < [VE(X® Y, Q)] A6)]..

Denote by S; and Sy the linear subspaces spanned respectively by the left and right
singular vectors of ®°, and Pg1 and Pg1 the orthogonal projectors on the orthogonal
of 51 and Sy, Pgor : X + Pgr X Pgy and Peo : X — X — Py X Pg.. The triangular
inequality yields

18] = [[©° — Pgo: (A®) — Peo(AB)]. >
18" + Pgo1 (AO)]. — [ Peo(AO)].. (6.34)

Moreover, by definition of Pg,., the left and right singular vectors of Pg,.(A®) are
respectively orthogonal to the left and right singular spaces of ©°, implying ||©° +
Pgor (AO)|l. = [|@°|4 + || Pgor (ABO)]|.. Plugging this identity into (6.34) we obtain

©
1€°] — 1Ol < [[Poo(AO)||. — || Pgo: (AO)]., (6.35)
and As < Ay ([Pon(AO)]. = [[Poo: (AO)].) + [VL(X%: Y. ) |26
Using [|AB||. < ||[Peo(ABO)||. + || Pgor (AB®)||, and the assumption
A > 2| VL(X Y, Q)

we get Ay < 3\1||Peo(A®)||./2. In addition,

1Peo(A®)]. < \/rank (Peo(A®))| Peo(AO)|

, and rank (Pgo(AB)) < 2rank (@°) (see, e.g., (Klopp, 2014, Theorem 3)). Together
with || Peo(A®)||r < ||A®||r, this finally implies the following upper bound:

A
A, < %\/ZHA@HF. (6.36)
We now derive an upper bound for Ay. The duality between || - ||; and || - ||oo ensures
(VL(XY,Q),fu(Aa))| < | Aali|[VLX% Y, Q)]scu. (6.37)
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The assumption Ay > 2||VL(X% Y ,Q)|lsu in conjunction with (6.37) and the trian-
gular inequality ||Aall; < [|a°])1 + ||&]|; yield

3\
A, < —2||a0||1. (6.38)

Combining inequalities (6.33), (6.36) and (6.38) we obtain

32

IAX |6 < 1\/_||A@||F+ 7 lla’lh (6.39)

We now show that when the errors A® and A« belong to a subspace C and for a
residual D - both defined later on - the following holds with high probability:

IAX|[G > |AX|f — D. (6.40)

We start by defining our constrained set and prove that it contains the errors A® and
Ac with high probability (Lemma 11-12); then we show that restricted strong convexity
holds on this subspace (Lemma 13). For non-negative constants dy, dp, p < m and &
that will be specified later on, define the two following sets where A« and A® should
lie:

A(dl,dn) = {Oé & RN : ||Oé||1 < dl, ||fU(O./)||12—[ < dH} . (641)
721og(d)
=@ cR™™ aeRY: L+ fy(a)|f > —= =
£lp.c) { e R € RY 5L+ o)l 2 T

(6.42)
1€ +fu(@)ll= <118l < \/_||L||F+5}

If ||JAX]|% is too small, the right hand side of (6.40) is negative. The first inequality
in the definition of L(p,¢) prevents from this. Condition [|®]. < |/p||®|[F + ¢ is a
relaxed form of the condition ||®||, < ,/p||® || satisfied for matrices of rank p. Finally,
we define the constrained set of interest:

C(dl, dl‘[, P, E) = E(p, 8) N {leme X A(dl, d]‘[)} .
Recall u = maxy, |Ug||; and let

3a

72a% log(d
D00+ 640 [ S 0+ 30720 o OB

log(6/5)

Lemma 11. Let Xy > 2u (|[VL(X® Y, Q)| + 202 (1 + u)a) and assume H4-5 hold.
Then, with probability at least 1 — 8d~!, Aa € A(dy, dy).

dl = 4HOJOH1, and d]‘[ =

Proof. See Section 6.7.2. O]

Lemma 11 implies the upper bound on ||A«||% of Theorem 9. Thus, we only need
to prove the upper bound on [|[A®||%. Let p = 32r and € = 33/ )\ [[a°]];.

Lemma 12. Assume H5 and let
M >2IVE(XY Y, Q) X >2u(|[VL(XY,Q) ||« + 2075 (1 + uw)a) .

Then ||AB||. < \/p||AB||F +¢.
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Proof. See Section 6.7.2 O

As a consequence, under the conditions on the regularization parameters \; and
A2 given in Lemma 12 and whenever ||A® + fiy(A«)||Z > 721og(d)/(plog(6/5)), the
error terms (A®, A«) belong to the constrained set C(dy, diy, p, €) with high probability.

Case 1: Suppose ||A® + fy(Aa)||% < 72log(d)/(plog(6/5)). Then, Lemma 11
combined with the fact that ||M||2 < p~!||M |3 for all M, and the identity (a +b)? >
a?/4 — 4b* ensures that [|AB||% < 4]|A® + fy(Aa)||% + 16/fy (Aa)||%. Therefore we
obtain (ii) of Theorem 9:

288a*log(d)
log(6/5)

Case 2: Suppose [|AO + fy(Aa)||f > 721og(d)/(plog(6/5)). Then, Lemma 11
and 12 yield that with probability at least 1 — 84!,

0
+16||04 ||1

1A©]F < 0.

( AGO Ao
2

dl dl / / h
1—}-%)&72(14—%)@) EC( 1 H7P75>,W ere

L d/ = d—H / = gl pr—y L
20+)a M Alrez PP 21 1 )a’
and where dy, dy, p and € are the same as in Lemma 11 and 12. We use the following

result, proven in Section 6.7.2. Recall that we assume for all (i,7) € [mi] x [ma],
P(€2;; = 1) > p and define:

& =

18log(d)
dy) = RN . <1 <d: fula)|? > —28\)
Aa)={ae®s Jala<t fali<ds @l 280

Do = 8a=diuR[||Zr|ls] + 768071,

Dx = %E ISR + 8cE [||2r]|] + 8ediul [||Xx|o] + di + 768p~ . (6.43)
Lemma 13. (i) For any a € A(d,), with probability at least 1 — 8d ',
Ifo(@)l3 > 3 lfu@) ;Do
(i) For any pair (©,«a) € C(dy,dn, p, €), with probability at least 1 — 8d~*
1© +fu(a)llg > %!\@+fU(Oé)|!%— Dx. (6.44)
Proof. See Section 6.7.2. O

Lemma 13 (ii) applied to (Q(ﬁ%)a, 2(1_%38

1 —8d!, [AX|% < 2|AX| + 4(1 + =)aDx. Combined with (6.39),
pAXIE, IAX1F > |A®]7/2~[lfu(Aa)[7 and 6v2rAi/(po? ) | AS)
288rA?/(p*ct), we obtain the result of Theorem 9 (ii):

)a> implies that with probability at least
AX|E <

11527 \2 N 24\ |||} ||

p2 O'é 2

AB|% <
|2 < 7

+4(1 + =)aDx + 470,
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Proof of Theorem 11
We will establish separately two lower bounds of order 7 M /p and s/p respectively. Define
. ) . .\ M2
L= {@ eR™ 0@, € {O,nmin(a,oq) (—) } (i, 7) € [ma] % [[r]]} :
pm
where 0 < 1 < 1 will be chosen later. Define also the associated set of block matrices
L= {@:(é|...|é)|0) eRmIXmZ;éeﬁ},

where O denotes the m; x (mg — 7 |my/r]) null matrix and, for some = € R, |z] is
the integer part of . We also define the following set of vectors

A= {a = (0|a) € RY, & € {0,7jmin(a,04)} V1 < k < s},

with O € R™2¢ denoting the null vector. Finally, we set
X={X=0+fy(a) eR™* ™ aec A, OcL}.

For any X € X there exists a matrix ® € L of rank at most r and a vector o with
at most s non-zero components satisfying X = © + fy(a). Furthermore, for any
X € X there exists a matrix © € £ of rank at most 7 and a vector & with at most
s non-zero components satisfying X — X = © + f;(&@). Finally, for all X € X and
(i,7) € [ma] x [m2], 0 < X;; < (1 + @)a. Thus, X C F(r,s), where F(r,s) is
defined in (6.27).

Lower bound of order rAM/p. Consider the set
X, ={X =0+fy(a) € X;a=0}.

Lemma 2.9 in Tsybakov (2008) (Varshamov Gilbert bound) implies that there exists a
subset X C Xy satisfying Card(X}) > 2"M/8 1 1, such that the zero m; x my matrix
0 € X?, and that for any two X and X’ in &P, X # X' we have

M 2 M
X — X7|)% > ?7’ (772 min(a,@)?# L%D > %min(az,ai)%. (6.45)

For X € X} we compute the Kullback-Leibler divergence KL(Pg, Px) between Py and
Px. Using Assumption H5 we obtain

o2n?min(a, o4 )*Mr

L(Po, Px) Zﬂ'zj 9;(Xiz) — 9;(0) — g;(O)Xi,j) < 5
(6.46)
Inequality (6.46) implies that
1 1
— KL(Py,Px) < —1 d(xy) —1 A7
Card(Xg) —1 Z ( 0, X) =16 og(Car ( L) ) (6 )

Xexyp

is satisfied for 77 = min {1, (80 min(a, o))" }. Then, conditions (6.45) and (6.46)
guarantee that we can apply Theorem 2.5 from Tsybakov (2008). We obtain that for
some constant § > 0 and with ¥; = C'min (¢*, min(a, 0% )):

UirM
inf sup Pxo (HA@H% + ”AC(H% > 1 ) >0, (6.48)
6.4 (00,00)ce p
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Lower bound of order s/p. Using again the Varshamov-Gilbert bound (Tsybakov
(2008), Lemma 2.9) we obtain that there exists a subset A° € A satisfying Card(A°) >
25/8 + 1 and containing the null vector 0 € RY and such that, for any o and o’ of A°,

a# o,
o= o/ll3 > 7 mina, o) (6.49)

Define X, C X the set of matrices X = f;/(a) such that a € A and L = 0. For any
X € X, we compute the Kullback-Leibler divergence KL(Pg, Px) between Py and Py

L(Po, Px) = Z% 9i(Xi3) = 9;(0) = g5(0) X5 < o lfur(a) [Ty < o pllfu(a)|E.

(6.50)
Using Assumption H5

KL(Po, Px) < op (max|[U*[3 +2r) [|a3
k

(6.51)

< soip <m’?x U*||3 + 27) 7? min(a, o} )?.

From (6.51) we deduce that

1
——————— Y KL(Py,Px) < sp (max || U"||% + 27 ) o7 min(a,0,)®.  (6.52)
Card(A%) — 1 ; < k > +

Choosing 7 = min{l, (v/poy maxy,(|[U*|| F + 27) min(a,a+))_1}, we now use Tsy-
bakov (2008), Theorem 2.5 which implies for some constant § > 0

inf sup Pxo {||A@||F + || Z — &) U2 > \Ilg%} >0, (6.53)

0.a (©9,a0)eg 1

1
U, = C 2
: (ai (maxe OIS - 27) " (@ o) ) ’

where we have used that || 31, (a9 — &) U*||% > #2||@ — a°||3. We finally obtain the
result by combining (6.48) and (6.53).

Proof of Lemma 11

We start by proving ||Aall; < 4[|a’||;. By the optimality conditions over a convex
set (Aubin and Ekeland, 1984, Chapter 4, Section 2, Proposition 4), there exist two
subgradients fe in the subdifferential of || - ||, taken at © and f, in the subdifferential
of || - ||1 taken at &, such that for all feasible pairs (©, ) we have

N
(VLX;Y,92),0-0+ (a4 —a)U") +\i(fo, ©—0O) +a(fa,a—a) > 0. (6.54)
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Applying inequality (6.54) to the pair (6, a’) we obtain (VL(X;Y,Q), S0 | Aa,U*)+
A2(fu, Aa) > 0. Denote X = © + S aQU*. The last inequality is equivalent to

N N
(VL(X%Y,9Q),))  AaU*) +(VL(X; Y, Q) = VL(X Y, Q), > AayU")

k=1 k=1
A A
Vv Vo

Bl BQ

N
+(VL(X;Y,Q) = VL(X;Y,Q), ) AqU*) +X2(fa, Aa) > 0.

k=1
(. J/
v~

Bs

We now derive upper bounds on the three terms By, B, and B3 separately. Recall that
we denote u = max;, |U*||; and use (6.37) to bound B;:

Bi < [[Aafi[VL(X" Y, Q). (6.55)

The duality between ||| and [|-[|; gives By < |Aal1||[VL(X;Y, Q)-VL(IX"Y,Q)|cou.
Moreover, VL(X;Y,Q) — VL(X Y, Q) is a matrix with entries gj(X; ;) — ¢5(X7?;),
therefore assumption H5 ensures |[VL(X;Y,Q) — VL(X%Y,Q)|lw < 202 (1 + )a,
and finally we obtain
By < ||Aal120% (1 + ®)au. (6.56)
We finally bound Bj as follows. We have that B; = > ™ > 7™ Q”(g;(Xw)
95( X)) (X , (X )
i;) < 0, which implies B3 < 0. Combined with (6.55) and (6.56)

Xij — ):(”) Now, for all j € [ma], g; is increasing therefore (g —
9;( X)) Xi; — X
this yields

Ao (fa, & —a®) < [Aalliu ([VL(X"Y, Q)| + 207 (1 + 2)a) .
Besides, the convexity of || - ||; gives (fa, & — a®) > ||@ll; — ||a®]|1, therefore
{he —u (IVLX" Y, Q)lloc + 207 (1 + 2)a) } |61 <
D+ u([VLX%Y, Q)] + 205 (1 + &)a) } [|°]1,

and the condition Ay > 2 {u (|[VL(X% Y, Q)| + 202 (1 + )a) } gives [|&[|; < 3[|a’];
and finally
[Aall < 4/la’[|:. (6.57)

Case 1: |fy(Ac)||f < 72a*1og(d)/(plog(6/5)). Then the result holds trivially.

Case 2: ||fy(A«)||} > 72a*log(d)/(plog(6/5)). For di > 0 recall the definition of
the set

18log(d)
= N <1; < dy; 2> — b
Aldy) {a eRY: ol <15 lalh <di; [Ifu(@)lln = plog(6/5)}

Inequality (6.57) and ||Aa||s < 2a imply that Aa/(2a) € A(2||a°||1/a). Therefore we
can apply Lemma 13(i) and obtain that with probability at least 1 — 841,

Ifo (A |7 < 2|lfu(Aa)||g + 64aala’||1uE [||Zrle] + 3072a*p ™. (6.58)
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We now must upper bound the quantity ||f(Aa)||3. Recall that X = SV | 0U*+ X
By definition, £(X;Y,Q) + \[|O]« + Xaflafli < L(X;Y,Q) + M [[O]. + A2 ®]]1,
i.e.

LIX;Y,Q) = LX;Y, Q) < Xg ([la”]ls = [lall) -

Substracting (VL(X:Y,Q), X — X) on both sides and using the restricted strong
convexity ((6.31)), we obtain

2

O-_ . ~
7||fU(A04)||?z <X (lally = llallh) + (VL(X; Y, Q), fy(Aa))
< X2 (lally = llall) + (VL(X% Y, Q), fy(Aw))|

J/

PS : (6.59)

(VL(X Y, Q) — VL(X;Y), fy(A))

Co

+

The duality of || - |[; and || - || yields C; < [VL(X® Y, Q)|woulAa|);, and
C < [VL(X%Y,Q) - VL(X; Y, Q)| cul A

Furthermore, |[VL(X%Y,Q) — VL(X;Y, Q)| < 2024, since for all (4, ) € [mi] x
[ms] |Xi; — X7;| < 2a and ¢j(X;;) < 0f. The last three inequalities plugged in
(6.59) give

2

o2 .
S lfo(da)lla < Xs (ol = al) +ulldali {IVE(X Y, Q)] +20%a} .
The triangular inequality gives
2
0_
S Ife(Aalle < {u(IVEX"Y, Q)] +20%a) + Ao} [la[s
+ {u (|[VLX%Y, Q)| + 205a) — A} |1
Then, the assumption Ay > 2u ([[VL(X% Y, Q)| 4 202 (1 + &)a) gives

2

0.2

If (Al < =5[]
Plugged into (6.58), this last inequality implies that with probability at least 1 — 8d~!
2 3A 0 0 2, -1
Ifo(Aa)liy < —5lla”lls + 64zeaf|a” B [[[Zrllw] + 3072077 (6.60)

Combining (6.57) and (6.60) gives the result.

Proof of Lemma 12

Using (6.54) for ® = ©° and a = a” we obtain

N
(VL(IX:Y,Q),A0 + ) (Aap)U") + i (fo, AO) + Ay{fu, Aa) > 0.
k=1
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Then, the convexity of || - ||, and || - ||; imply that ||@°||, > [|©|. + (3]©||., AL) and
1a°]|1 > ||@]l« + (0]|@]|1, Ac). The last three inequalities yield

A (1811 = 171 ) + e (lally — la°ll) < (VL(X; Y, 0), A6)
N
+(VL(X;Y,Q),) (Aay)UY)
k=1

< IVLX; Y, QA8 + ul| VL(X; Y, Q)| || Acr 1.
Using (6.35) and the conditions
A 2 2VL(X% Y, Q). A > 2u{||[VL(X% Y, Q)| + 207 (1 + *)a},
we get
M ([1Peo(A®)| — (| Poo(AB) ) + Az ([lall — fla°[h) <
2 (IPS(A®). + [ Pon(AO) ) + 22 | Aa.

which implies || Pg,(AO)||. < 3||Pgo(AB)|. + 3Aa/A1]|a||1. Now, using
1AB||. < [|Pgo(A®)[| + [[Peo(AO)|., [[Per(AO)|r < [|AB||x

and rank(Pgo(A®)) < 2r, we get ||AO|, < V32r||AL||r + 3A2/A1]|a]|1. This com-
pletes the proof of Lemma 12.

Proof of Lemmma 13

Proof of (i): Recall D, = 82d;uE [||Zr||«] + 768p~" and

181og(d)
= N <1; < dy; 2> — >
Ay ={ac®: Jala<t Jali<di fulallh > 2D

We will show that the probability of the following event is small:
- 1
B - {aa € A(dy) such that (e[}~ (@3] > 3 Ifu(@)lf; + Da} .

Indeed, BB contains the complement of the event we are interested in. We use a peeling
argument to upper bound the probability of event B. Let v = 18log(d)/(plog(6/5))
and n =6/5. Forl € N set

Si={aedd): o<} <nv}.

Under the event B, there exists [ > 1 and a € A(d;) N S; such that

1 1 5
[Ifr ()11 = fr (@)l > §HfU(Oé)||2n +Do > 50w + Dy = o0'v + Da.

2 12
(6.61)
For T' > v, consider the set of vectors

Air, T) = {a e A@) - (o)} < T}
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and the event
1 l 2 2 3 l
Bl =<da € A(dl,T] I/) . ‘”fU(CO”Q — HfU(Oé>HH| > EU v+ Da .

If B holds, then (6.61) implies that B; holds for some | < 1. Therefore ,B C U8,
and it is enough to estimate the probability of the events 13; and then apply the union
bound. Such an estimation is given in the following lemma, adapted from Lemma 10 in
Klopp (2015).

Lemma 14. Define Zr = sup,c i, ) lIfu ()l — [Ifo(@)[[7] - Then,
5 —pT/18
P ZTZDa+ET < de PEE

Proof. By definition,

Jp = SUPqc i(d,,T) Z Qi,jfU(CO?’j —-E Z Qi,jfU(a)?,j
(4,) (4,9)

We use the following Talagrand’s concentration inequality, proven in Talagrand (1996)
and ?7.

Lemma 15. Assume f : [—-1,1]" — R is a convex Lipschitz function with Lipschitz
constant L. Let Z4,..., =, be independent random variables taking values in [—1,1].
Let Z := f(Z4,...,Z,). Then, foranyt >0, P(|Z —E[Z]| > 16L 4 t) < 4e /21",

We apply this result to the function

f(@1, o Tymy) = SUPqeA(dy,T) Z(mm - Wij)fU(O‘)zz,j ’

)

which is Lipschitz with Lipschitz constant \/p~'7T'. Indeed, for any (z11,. .., Zmym,) €

148



R™>™2 and (211, . . ., Zmymy) € R™*™M2:

|f(:L‘11, s 7xm1m2) - f(Zlh B va1m2)|

= [SUDge 1) | (g — T ()75 | = $WDac gy 1y | D (215 — mi)fu ()3,
(4,5) (4,5)

<SPy aar || D (@i — mi)fu (@) = | (2 — mij)fu ()},

(6,9 (4,9)

<SP, aar iy | D (@i — mip)fu (@)} = > (25 — miy)fu (@)l
(4.9) (4,4)

< SUPqe i(dy 1) Z<x” - Zij)fU(Oé)?,j

(4.9)
< SWoeawr | DT (@i — 2i)? [ mifu(e)l;
(4,9) (4,)
< sup, i VI [3 (s - ziwz (@),
(i.9) (i.9)

<SVPIT D (i — 25)%,

(4,9

where we used ||a] —|b|| < |a—0],|[fr(@)||e < 1 and ||A||%4 < T. Thus, Lemma 15 and
the identity \/p~1T < % + 2396 imply

1 2
P (IZ —E[Z]] > 768p~" + ST + t) < 4em P/

Taking t = T'/3 we get
5
P (|Z —~E[Z]| > 768p~" + ET) < 4e P18, (6.62)

Now we must bound the expectation |E [Z7]. To do so, we use a symmetrization argu-
ment (Ledoux, 2001) which gives

EZr] =E |sWacim|Y Ufv(@)i; —E Qijfu ()
(4.5) (

l’])

< 2E [sup,e ia, 1) ZEz‘jQijfU(@)?,j ’
(i.9)

where {¢;;} is an i.i.d. Rademacher sequence independent of {€2;;}. We apply an exten-
sion Talagrand'’s contraction inequality to Lipschitz functions (see Koltchinskii (2011a),
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Theorem 2.2) and obtain

E[Z] =E

2 2
eijQijAz‘J‘

.3

< 4zeE SUDPoc A(dy 1) Z €82 A j
(4,9)

sup
AeT

= 4K [supaej(th) (R, fu(a))]|,

where Y = Z(i,j) €:;$2i; Eyj. Moreover, for a € A(dl, T) we have

<ER, Z okuk)

k=1

[(Cr, fu(a))] = < [lafhullEx]ls-

Finally, we get E [Zr] < 4a&d uE [||Xk||«). Combining this with the concentration in-
equality (6.62) we complete the proof of Lemma 14:

)
. (ZT > 8diuE [||Sg|lo] + 768p 7! + ET) < 4oPT/S,

O

Lemma 14 gives that P (B;) < 4exp(—pn'v/18). Applying the union bound we
obtain

P (B) P(B) <4) exp(—pn'v/18)

1 =1

exp(—plog(n)lv/18),

NE

l

WE

IN

4
!

where we used e” > z. Finally, for v = 18log(d)/(plog(6/5)) we obtain

dexp(—prlog(n)/18) _texp(~ log(d))
)= e los(n)/18) = T exp(— log(d)

since d — 1 > d/2, which concludes the proof of (i).

1

8
<_7
—d

Proof of (ii): The proof is similar to that of (i); we recycle some of the notations for
simplicity. Recall Dx = 112pp 'E [|Zz]|]* + 8a<E [||Xz||] + 82diuE [|Zr]|o] + di +
768p~!, and let

B= {3(@, a) € C(dy, dm, p,);
10 + f(a)[3 — 1 + foa)| > 51 + o) +Dx .
v = 72log(d)/(plog(6/5)), n = 6/5 and for | € N
S ={(0,a) €C(d,dn,p.e): 0 v <O+ ()i <n'v}.

As before, if B holds, then there exist [ > 2 and (©, «) € C(dy, dm, p,e) NS, such that

5
1€ +fo ()l = 1© +fu(a)li| > EﬁlV + Dx. (6.63)
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For T > v, consider the set C(T) = {(®,a) € C(dy,d, p,e) : |© + fu(a)||} < T},
and the event

5 5
B, = {3(@,0&) S C(nly) : “|@ +fU(Oé)||g2 —1® 4+ fy(« ||H‘ > 277 v+ Dx}

Then, (6.63) implies that B; holds and B C UL B;. Thus, we estimate in Lemma 16
the probability of the events B3;, and then apply the union bound.

Lemma 16. Let Wr = sup(g 4c¢m) |1© + fu(a)[E — 1© + fu(a)[f] -

5
P (WT > Dy + ET) < 4e7PT/72,

Proof. The proof is two-fold: first we show that W concentrates around its expectation,
then bound its expectation. By definition,

WT_Sup(G)aGCT)ZQU (O + fu(a ZQU (©4; + fu(a)i;)?

(4,9) (4,4)

The concentration proof is exactly similar to the proof in Lemma 14, but we choose
t =T/6, and we obtain

3
P (|WT —E[Wr]| > 768p~" + ET) < 4e7PT/72, (6.64)

Let us now bound the expectation E [Wr]. Again, we use a standard symmetrization
argument (Ledoux, 2001) which gives

E[Wr] <2E |supe aecr | D €i(@i; + fula)is)’||
(4,5)

where {¢;;} is an i.i.d. Rademacher sequence independent of €2;;. Then, the contraction
inequality (see Koltchinskii (2011a), Theorem 2.2) yields

E[Wr] < 42 |supgaycer | (Er © + fu(a))l]
where ER = Z(’L,j) GZ]QZJEZ] Moreover

[(Xr, © + ()] < [(Er, ©) + [(Xr, fu(a))]
< O] + llaflulEa] -

For (©,a) € C(T) we have by assumption ||a|l; < dy, ||fu(@)||n < v/dy and ||©]], <
VP||®]|F + €. We obtain

1©]. \/7H®HH+€<\/7(H®+1:U( @)ln + [lfo(a)lln) + e

Sﬁ(ﬁ—l—\/d_n)—l—a
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This gives

E[Wy] <4z {\/g (\/T+ \/%) + 5} 1S5 + 42diu|| Sk

T d
< 55+ G 56l + del el + A el

Combining this with the concentration inequality (6.64) we finally obtain:

5
P <WT > Dx + ET) < 4P/,

]

Lemma 16 gives that P (B;) < 4exp(—pn'v/72). Applying the union bound we
obtain

o0

P(B) <3 PE) <4 expl—pv/T2

=1

<143 exp(-plog(n)lv/72),

=1

where we used e® > x. Finally, for v = 72log(d)/(plog(6/5)) we obtain

4dexp(—pv log(n)/72) 4 exp(—log(d)) ~1
FB) < T e Cprlog(m)/72) = T— oxp(—log(d)) = o

since d — 1 > d/2, which concludes the proof of (ii).

Proof of Lemma 7

The first inequality is trivially true using that ||X|« = max;; |[Q;;€;;] < 1. We prove
the second inequality using an extension to rectangular matrices via self-adjoint dilation
of Corollary 3.3 in Bandeira and van Handel (2016).

Proposition 2. Let A be anmy xmy rectangular matrix with A, ; independent centered
bounded random variables. then, there exists a universal constant C* such that

E[A|] < C* {01 V o9 + 0./ log(my A mg)} )

01 = max E E[A}], op=max E :E[Afj}, 0. = max|A;;|.
i - ’ j - ’ 4,7
J K3

Applying Proposition 2 to X with o1 V 05 < /B and o, < 1 we obtain

E(5ll) < ¢ {V/B+ VVioglmi Ama) |
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Proof of Lemmma 8

Denote ¥ = VL(X" Y, Q). Definition (6.2) implies that E[Y; ;] = ¢;(X},), (4,7) €
[ma] x [m2]. Combined with the sub-exponentiality of the entries Y; ;, we obtain that
foralli,j,Y; ;— ](ng) is sub-exponential with scale and variance parameters 1/~ and
o7 respectively. Then, noticing that |Q2;;] < 1 implies that for all ¢ > 0,

P{|Q (Yi; — g5(X7;))| >t} <P{|Yi; — g;(X2))| > t},

we obtain that the random variables ¥; ; = Q;; (Y;; — g;(X?;)) are also sub-exponential.
Thus, for all 7,5 and for all £ > 0 we have that |, ;| < ¢ with probability at least

1 — max {Qe’tQ/QU?*, 26*“/2}. A union bound argument then yields

[S]lee <t w. p. at least 1 — max {2m1m2e*t2/2°'i, 2m1m2€7’yt/2} ,

where v and o are defined in H5. Using log(mims) < 2logd, where d = my + my
and setting ¢ = 6 max {04 +/logd,7 'logd} , we obtain that with probability at least
1—d,

|2l < 6max {a+ logd,y " log d} :

which proves the first inequality. Now we prove the second inequality using the following
result obtained by extension of Theorem 4 in Tropp (2012) to rectangular matrices.

Proposition 3. Let W1, ..., W, be independent random matrices with dimensions m; x
my that satisfy E[W;] = 0. Suppose that

d, = sup mf {E [exp (||W;]|/0)] < e} < +o0. (6.65)

i€ ﬂn]

Then, there exists an absolute constant ¢* such that, for all t > 0 and with probability

at least 1 — e~ we have

1 & t +logd 5, \ t+logd

s, Sc*maX{UW‘/&’g* (1Og >&}

n & n ow n
where

1 1/2 L 1/2
_ “NTR[W,wT A=Y E W W,
oW = max n; [ Al n; (W, W]

For all (Z,j) € [[ml]] X [[mg]] define Z’U = —Q” (Y g](XO )) E,L] The sub-
exponentiality of the variables 2;; (Yi,j — g;.(ng)) implies that for all 7, j € [m4] x [m2]

/ 1
7 Y
We can therefore apply Proposition 3 to the matrices Z;; defined above, with the quantity

1/2

mi1 Mmoo m1 Mmo 1/2
azzmax{HmlmQ;;E 12,,Z]] mlmZ;;E }
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We obtain that for all ¢t > 0 and with probability at least 1 — e ™7,

1 t+logd
HZH <c* rnax{UZ\/WLﬂnQ(t—i—logd)7 (log ) + log }
10z v

We bound o, from above and below as follows.

mi; mao

35 1a25) - S-S0 (s -0 ] v,

i=1 j=1

where Ej;(n), i,n > 1 denotes the n x n square matrix with 1 in the (¢,7)-th entry and
zero everywhere else. Therefore

mi1 m2 1/2 ma
T o 1 9 [ 0 ]
HmlmzZZE Z iZij =\ umy m?x;E[Qij]E (Y (X )) )
Then, assumption H5 gives
mi1 ma2 1/2 1 me
T 2
Hmlmz ;;E Z 1% §U+\ mims <m?X;E[Qij}>’
and
m1 mo 1/2 ) g
E[Z;Z]] > g El0z2] )
Hm1m2 ;; =7 \mlmQ (mzasz:; [ A)

Similarly, we obtain

m1 ma 1/2 1 m1
2
R |
and )
mi1 ma 1/2 m1
H S S Bz >0 |1 <maXZE[m}>.
My N 7\ mims \ 5 4 "
=1 j=1 =1

Combining the last four inequalities, we obtain

o1/ b <oz <oy
mi1me

and setting t = log d, we further obtain for all + > 0 and with probability at least 1 —d~':

2logd 1
151 < s { o, /2TTogd, 212 g (1 ) 1

which proves the result.
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Chapter 7

R tutorial

Contents
7.1 Generalized low-rank models (GLRM) . . . . . ... ... 155
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7.4 Implementations ... ... ... ............... 161

This chapter consists in a tutorial for the R package mimi, which may be used
independently of the rest of this dissertation. We describe the three models implemented
in the package, namely generalized low-rank models (GLRM) for mixed and incomplete
data in Section 7.1, as well as two extensions of GLRM to multilevel structures in
Section 7.2, and to side information in Section 7.3. Then, we describe in Section 7.4
the implementation of the package, with two optimization algorithms, adapted to small
and large scale problems respectively.

7.1 Generalized low-rank models (GLRM)

In its general form, the package mimi assumes the following model. Consider a mixed
data frame Y € R"™*™2 whose columns may be any combination of numeric, binary, or
count variables, and with missing values. We place ourselves in the framework of expo-
nential family models, assume that the entries of Y are independent, and approximate
the distribution of Y} ;, (4,7) € [mi] x [m2] by:

e a Gaussian distribution if the column Y ; contains numerical values,
e a Bernoulli distribution if the column Y ; contains binary variables,
e a Poisson distribution if the column Y ; contains counts.

In particular, for every entry, we assume a model of the form:

Y, ~ Exp, . (X7)), X7, €R, (7.1)
where different choices of h; and g¢; induces either Gaussian, Bernoulli, or Poisson dis-
tributions. The package mimi aims to estimate the parameter matrix X° based on a
low-rank assumption.

The first and simplest models available in the package mimi are Generalized low-
rank models (GLRM). In these models, the data matrix Y € R™ ™2 is generated (or

155


https://CRAN.R-project.org/package=mimi

approximately generated) by model (7.1). We estimate X with the following convex
program:

mi mo
X €argmin ) > QL5 X 55 Yig) + M| X .. (7.2)

i=1 j=1

In (7.2), €, ; is a binary variable indicating the observed entries: €,;; = 1 if Y, is
observed and 0 otherwise. This amounts to assuming a Missing At Random mechanism
with independent entries. On the other hand, £; is a loss function adapted to the type
of the column j:

e Least squares loss if Y. ; is numeric,
e Logistic loss if Y ; is binary,
e Poisson loss if Y ; contains count data.

In fact, problem (7.2) is an extension of softImpute (Hastie et al., 2015) for mixed
data. The main function of the package estimates the underlying parameter matrix X
from the noisy and incomplete mixed data Y', by solving the optimization problem (7.2).

The package is installed and loaded with the following commands.

install.packages ("mimi"
library (mimi)

Let us now generate a synthetic example. We start by producing a low-rank matrix X°
using the package denoiseR (Josse et al., 2017).

install.packages("denoiseR")

library (denoiseR)

ml <- 50 # number of rows

m2 <- 30 # number of columns

r <- 3 # rank of xO

SNR <- 10 # signal to noise ratio (required for function LRsim
but plays no role)

x0 <- LRsim(ml, m2, r, SNR)$mu

Then, we sample heterogeneous data using Gaussian, Bernoulli and Poisson distri-
butions.

ngaus <- 10

nber <- 10

npois <- 10

y <- matrix(0, ml, m2)

# The 10 first columns are Gaussian

y[, 1:ngaus] <- matrix(rnorm(mlx*ngaus, c(xO[, l:ngaus])), nrow
=m1)

# The columns 11-20 are Bernoulli

probs <-
exp(x0[, (ngaus+1) :(ngaus+nber)])/(1+exp(x0[, (ngaus+1) :(

ngaus+nber)]))

y[, (ngaus+1) :(ngaus+nber)] <-
matrix (rbinom(ml*ngaus, 1, prob=c(probs)), nrow=ml)

# The columns 21-30 are Poisson

lambdas <- exp(x0[, (ngaus+nber+1):(ngaus+nber+npois)])
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y[, (ngaus+nber+1) :(ngaus+nber+npois)] <-
matrix (rpois (mi*ngaus, lambda=c(lambdas)), nrow=ml)

Finally, we add (MCAR) mising values in the data set Y.

prob.mis <- 0.3 # proportion of missing values
y[sample (1: (m1#*m2), round(prob.mis*ml*m2))] <- NA

Now we can estimate the matrix X° using the mimi function. It takes four main
arguments: the data matrix Y, the type of model to fit (GLRM or extensions, as
detailed later), the type of each column, and the value of the regularization parameter
AL

model <- "low-rank"

var.type <- c(rep("gaussian", 10), rep("binomial", 10), rep("
poisson", 10))

lambdal <- 1

res <- mimi(y, model=model, var.type=var.type, lambdal=lambdal

)

Then, the function outputs two results: the estimated parameter matrix X, called theta
in the mimi output, and an imputed data set: y.imputed.

head(res$y.imputed) # imputed data set
head (res$theta) # estimated parameter matrix

Of course, the output is highly dependent on the value of the regularization parameter
A1. Thus, we select it by cross-validation, using the function cv.mimi. The function
takes the same arguments as mimi (except \; of course). Optionally, one may set the
argument trace.it to TRUE, to have printed information about the progress of the
computation; indeed, for large data sets, cross-validation can be heavy. The size of the
grid of A; values tried is controlled by the len parameter (by default 15).

rescv <- cv.mimi(y, model=model, var.type=var.type, trace.it=
TRUE, 1len=100)

res <- mimi(y, model=model, var.type=var.type, lambdal=rescv$
lambda)

head(res$y. imputed) # imputed data set

head(res$theta) # estimated parameter matrix

7.2 Multilevel GLRM

The mimi package also contains an extension of the previous GLRM model for multilevel
data, i.e. when the rows of Y are nested within different groups. For instance, individuals
coming from different schools or hospitals. Denote by N the total number of groups,
and k(i) € [N] the group to which individual i belongs. In this case, the multilevel
mimi model is the following:

Y, ~ Expy , (X7)), X7 = ), + ©7. (7.3)

In (7.3), ag(i)’j is the effect of group k(i) on variable j. For instance, if the j-th column
corresponds to the age of individuals, and the individuals of the k(¢)-th group are older
on average than the rest of the population, ag(i),j is positive. On the contrary, if the
individuals of the k(i)-th group are younger on average than the rest of the population,
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&g(i),j is negative. If the k(7)-th group has no effect on the j-th variable, then O‘g(i),j = 0.
Then, ©Y; is an individual effect (which we assume fixed). The multilevel mimi option
solves the following estimation problem.

mi1 mo
(@,0) € argminz ZQML’j(ak(i),j +0,,; Y, ) + M| O]« + Aol (7.4)

i=1 j=1

In (7.4), the loss function L; are defined as in the previous section. The nuclear norm
penalty A1||®||. inducing low-rank solutions for the matrix of individual effects ®, mean-
ing that a few archetypical individuals and a few summary features summarize the indi-
vidual effects. The ¢; norm penalty A\s||cr||; induces sparse solution for the matrix « of
group effects, meaning that not all groups have an effect on all variables.

Let us now generate synthetic multilevel data to illustrate how to fit the multilevel
mimi model.

ngroup <- ml1/5 # number of individuals in each group

groups <- as.factor(rep(1:5, each = ngroup)) # factor
indicating group memberships

N <- nlevels(groups) # number of groups (5)

# matrix of group effects
alpha0 <- matrix(rep(0, N * m2), nrow = N)
alphaO[sample (1:(N * m2), 15)] <- 2

# low-rank individual effects
theta0 <- LRsim(ml, m2, r, SNR)$mu

# parameter matrix (sum of group and individual effects)
x0 <- matrix(rep(as.matrix(alpha0), rep(ncenters, m2)), nrow =
ml)+thetal

Then, we can generate mixed and incomplete data from the matrix X exactly as before.

ngaus <- 10
nber <- 10
npois <- 10
y <- matrix (0, ml, m2)
y[, 1:ngaus] <- matrix(rnorm(mlx*ngaus, c(xO[, 1l:ngaus])), nrow
=m1)
probs <-
exp(x0[, (ngaus+1) :(ngaus+nber)])/(1+exp(x0[, (ngaus+1) :(
ngaus+nber)]))
y[, (ngaus+1) :(ngaus+nber)] <-
matrix (rbinom(ml*ngaus, 1, prob=c(probs)), nrow=ml)
lambdas <- exp(x0[, (ngaus+nber+1):(ngaus+nber+npois)])
y[, (ngaus+nber+1) :(ngaus+nber+npois)] <-
matrix (rpois(ml*ngaus, lambda=c(lambdas)), nrow=ml)
prob.mis <- 0.1
y[sample (1: (m1*m2), round(prob.mis*ml*m2))] <- NA

Finally, we estimate the multilevel mimi model using the same mimi with different ar-
guments: model is set to "multilevel", and we must now also specify the value of A,
and the factor groups indicating the group memberships.
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model <- "multilevel"
var.type <- c(rep("gaussian", 10), rep("binomial", 10), rep("
poisson", 10))
lambdal <- 10
lambda2 <- 5
res <- mimi(y, model=model, var.type=var.type,
groups=groups, lambdal=10,lambda2=5)

There are four outputs to mimi in this case: the imputed data set y. imputed, the matrix
of group effects alpha, the matrix of individual effects theta, and the parameter matrix
(the sum of the group and individual effects) param. They are accessed as follows.

res$y.imputed # imputed data set
res$alpha # matrix of group effects
res$theta # matrix of individual effects
res$param # parameter matrix

Here again, the results are highly dependent of the parameters A\; and )y, and we
may also select them with the cv.mimi function. Of course, because we must now go
through a two-dimensional grid with different values of A\; and A5, this can be quite
computationally heavy.

# this takes around 20 minutes on my computer
rescv <- cv.mimi(y, model=model, var.type=var.type, groups=
groups, trace.it=T)
res <- mimi(y, model=model, var.type=var.type,
groups=groups, lambdal=rescv$lambdal, lambda2=rescv
$lambda2)

7.3 GLRM with side information

The last model implemented in the mimi package is a GLRM with side information. To
give a motivating example, consider a recommendation system problem where users rate
items with binary ratings (0 or 1). In this problem, the data is incomplete, and the goal is
to recommend relevant items to users. The scope of the GLRM with side information is
to incorporate knowledge about users and items attributes in the imputation model. The
GLRM with side information in mimi may also be generalized to accommodate mixed
data (binary, numeric, counts). The model is the following.

Yi; ~ Expy, .. (X7)), X7; = (o, Uy;) + O, (7.5)
where U, ; € R? is a vector of covariates which may contain information about the
i-th row (e.g., user characteristics) as well as information about the j-th column (e.g.,
item characteristics). In (7.5), a® is a vector of covariate effects in a generalized linear
regression framework. For instance, if the k-th covariate corresponds to the age of
individuals, and young individuals tend to give higher scores to all items, then oY is
positive. On the contrary, if young individuals tend to give lower scores to all items, then
o, is negative. If the age has no effect on the ratings, then o)) = 0. Then, ©7; is an
individual effect, residual, or interaction. The side information mimi option solves the
following estimation problem.

(6,0) € argmin » Y ", L;((Uj, 0) + O3 Yi,) + MO + Aoflelli. (7.6)

i=1 j=1
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In (7.6), the loss function L; are defined as in the previous sections. The nuclear norm
penalty A;||®||. inducing low-rank solutions for the matrix of residuals ®, meaning that
a few archetypical individuals and a few summary features summarize them. The ¢;
norm penalty Asf|c||; induces sparse solution for the matrix v of group effects, mean-
ing that not all covariates have an effect on the observations (on the ratings for instance).

Let us now generate a synthetic GLRM with side information.

# covariate matrix
N <- 4
U <- matrix(rnorm(ml1*m2*N), nrow=ml*m2)

# vector of covariate effects
alphaO <- rep(0,N)
alphaO[sample (1:N,2)] <- 2

# low-rank individual effects
theta0 <- LRsim(ml, m2, r, SNR)$mu

# parameter matrix (sum of group and individual effects)
x0 <- matrix (U%x*%alpha0, nrow = ml)+thetal

Then, we can generate binary incomplete data from the matrix X?°.

#binary and incomplete data

probs <- exp(x0)/(1+exp(x0))

y <- matrix(rbinom(ml*m2, 1, prob=c(probs)), nrow=ml)
prob.mis <- 0.1

y[sample (1: (m1#*m2), round(prob.mis*ml*m2))] <- NA

Finally, we estimate the GLRM with side information with the same mimi with different
arguments: model is set to "covariates", and we must specify the value of \;, and the
matrix of covariates x containing the predictors.

model <- "covariates"

var.type <- c(rep("binomial", 30))

lambdal <- 1

lambda2 <- 1

res <- mimi(y, model=model, var.type=var.type,
x=U, lambdal=lambdal,6 lambda2=1ambda?2)

There are four outputs to mimi in this case: the imputed data set y.imputed, the vector
of covariate effects alpha, the matrix of individual effects theta, and the parameter
matrix (the sum of the group and individual effects) param. They are accessed as follows.

res$y.imputed # imputed data set
res$alpha # matrix of group effects
res$theta # matrix of individual effects
res$param # parameter matrix

Here again, the results are highly dependent of the parameters A\; and )y, and we
may also select them with the cv.mimi function. Of course, because we must now go
through a two-dimensional grid with different values of A\; and \,, this can be quite
computationally heavy.

# this takes around 20 minutes on my computer
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rescv <- cv.mimi(y, model=model, var.type=var.type, x=U, trace
.it=T)
res <- mimi(y, model=model, var.type=var.type,
groups=groups, lambdal=rescv$lambdal,h lambda2=rescv
$lambda2)

7.4 Implementations

To solve the minimization problems (7.2), (7.4) and (7.6), we implemented two different
algorithms in the mimi package. The first one is based on block coordinate gradient
descent, and involves solving a LASSO problem and computing a full-rank SVD at each
iteration. The second one is a mixed coordinate gradient descent (MCGD) algorithm,
and involves solving a LASSO problem and computing a rank-1 SVD at each iteration.
In small dimensions, we recommend using the BCGD option, which involves costly iter-
ations (full-rank SVDs), but converges in fewer iterations. On the other hand, in large
dimensions, we recommend using the MCGD option, which converges at a (slower) sub-
linear rate (Robin et al., 2018), but involves less costly iterations (rank-1 SVDs). When
Poisson variables are included in the model, we recommend to used MCGD whatever
the size of the data set, since quadratic approximations can be slow with Poisson loss
functions. By default, MCGD is used in the package mimi. This option may be changed
using the "algo" argument:

res <- mimi(y, model=model, var.type=var.type,
groups=groups , lambdal=rescv$lambdal,
lambda2=rescv$lambda?2,
algo = "mcgd") # mixed coordinate gradient descent

(default)

res <- mimi(y, model=model, var.type=var.type,
groups=groups, lambdal=rescv$lambdal,
lambda2=rescv$lambda?2,
algo = "bcgd") # block coordinate gradient descent
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8.1 Introduction

Analyzing large data sets offers new opportunities to better understand underlying pro-
cesses, and to increase statistical power. For this reason, practitioners are increasingly
encouraged to share their data—after applying anonymization procedures if needed. Yet,
data accumulation often implies relaxing acquisition procedures or compounding diverse
sources. As a consequence, data sets often contain mixed data, i.e., both quantitative
and qualitative, as well as many missing values. In addition, aggregated data often
present a natural multilevel structure, where individuals, or samples, are nested within
different groups, such as different countries or hospitals. For instance, we focus in this
chapter on a running example in public health, with the imputation of a subsample of the
Traumabase data set, a large severe trauma registry from Paris hospitals maintained by
the Traumabase Group (http://www.traumabase.eu/en_US). In this data set, around
40% of the data is missing. Another distinctive characteristic of the Traumabase is that
it contains mixed data, such as quantitative physiological measurements and qualitative
socio-professional information. Lastly, the Traumabase data set results from the aggre-
gation of multilple smaller data sets coming from several French hospitals. As a broad
heterogeneity in the care process is known to occur across trauma centers, modeling
this multilevel structure is crucial. Although we illustrate the method on a particular
example, we emphasize that the method is quite general, as multi-source, heterogeneous
and incomplete data are in fact found in many applications, such as census data, social
surveys, and medical applications in general.

Imputation of multilevel data has therefore drawn some attention recently, but current
solutions are not designed to handle mixed data, and suffer from important drawbacks
such as their computational cost. In this chapter, we propose a single imputation method
for multilevel data, which can be used to complete either quantitative, categorical, or
mixed data. The method is based on multilevel singular value decomposition (SVD),
which consists in decomposing the variability of the data into two components, the be-
tween and within groups variability, and performing an SVD on both parts. We show on
a simulation study that, in comparison to competitors, the method has the advantage of
scaling up to data sets of larger dimensions, and being computationally faster. Further-
more, it is, as far as we know, the first multilevel imputation method available for mixed
data. We also apply the method to impute a subsample of the Traumabase medical
registry. To overcome some of the obstacles associated to the aggregation of medical
data, we turn to distributed computation. Indeed, such computations allow hospitals
to benefit from data coming from other centers, which increases the chance of finding
similar patients, without the need to explicitly share patients information. The method
is implemented in the R package missMDA.

8.1.1 Problem formulation and related work

Consider a data set Y € R™*™2 which is naturally the row concatenation of K smaller
data sets Y}, € R™*™2 L € [K]. Y collects the measurements of m variables across a
population of my individuals categorized in K groups, such that the k-th group contains
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. K
ny, individuals and ), n, = my:

Y inl
Y = Y2 i_w .
YK iTLK

For a group k € [K], an individual of the k-th group i), € [ni] and a variable j € [m.],
we denote by yy;, ; the value of variable j taken by individual ¢; in group k. Such struc-
ture is often called multilevel structure, and occurs in many fields of applications. Famous
examples include pupils nested within schools or patients within hospitals. Throughout
this article, we focus on this latter example with a running application in public health.
If some entries of Y are missing, we denote by M the indicator matrix of observations,
with M ;, i = 1if yg;, ; is observed and M ;, ; = 0 otherwise. To handle missing val-
ues, corresponding to Mj,;, ; = 0, a popular approach (Little and Rubin, 2002) consists
in imputing them, that is, in replacing the missing entries with plausible values to obtain
a completed data set. To do so, several approaches have been developed, and a com-
plete overview of state-of-the-art multilevel imputation methods is available in Audigier
et al. (2018). Latest proposals have focused on handling both sporadically missing values,
meaning that some variables are partly missing in some of the groups, and systematically
missing values, that is, when some variables are completely unobserved in (at least) one
of the groups. In most imputation methods, the hierarchical structure is modeled using
a random effects regression model, as suggested for instance in Resche-Rigon and White
(2016) and Quartagno and Carpenter (2016). However, current solutions suffer from
important gaps that deserve further development. In particular, they are not designed
to handle mixed data (quantitative and categorical), struggle with large dimensions and
are extremely costly in terms of computations.

At the same time, imputation by iterative singular value decomposition (SVD) algo-
rithms have proven excellent imputation capacities for quantitative (Hastie et al., 2015),
qualitative (Audigier et al., 2018) and mixed data (Audigier et al., 2016). This can be
explained in part because they assume an underlying low-rank structure for the data
which is plausible for many large data sets, as discussed in Udell and Townsend (2018).
These methods behave well compared to competitors in terms of prediction of the miss-
ing values, in particular when the number of observations is small with respect to the
number of variables, and when the qualitative variables have many categories and some
of them are rare. In addition, they are often competitive in terms of execution time.
However, these methods are not dedicated to the multilevel data we address in this
chapter. The work we present here can be cast as an extension of single imputation
methods based on SVD to the multilevel framework.

8.1.2 Multilevel principal component analysis

For sake of clarity, we start by reviewing the multilevel extension of principal component
analysis (PCA, Pearson (1901)) described in Timmerman (2006). Assume the data set
Y contains only quantitative variables. The measured values can be decomposed, for a
group k € [K], an individual iy € [ng] in the k-th group and a variable j € [ms], as

yk,ik,j - y‘,.,j +yk,,j - y~7-,j +ykﬂk7] - y'»k’j .
N s N 7 7

TV TV
offset between within

165



Here,

1 K ng
Y.,.ji—= E Z Z Yk,ix.j

L=t =1

is the overall mean of variable j and

1 &
yk)'vl - yk:“"
J T E : (272%)

ip=1

is the mean of variable j among individuals of group k. Then, (y; ; —v.. ;) is the
deviation of group k to the overall mean of variable j, and (yj s, ; — Y&, ;) is the deviation
of individual i) to the mean of variable j in group k. Written in matrix form, this gives

Y = ]]-mlmT_{'K)_}'Ywa

where 1,,, is the m; x 1 vector of ones and m is the my x 1 vector containing the overall
means of the my variables, Y; contains the variable means per group minus the overall
means, and Y,, contains the residuals. Similarly to what is done in analysis of variance,
we can split the sum of squares for each variable j as

K ng K K K ng
SN i =t Y kWhg = Yod) D> Whind — Yros)™
k=1 k=1

k=1 ip=1 k=1 ix=1

In the classical framework where there is no multilevel structure, PCA yields the best
fixed rank estimator of Y in terms of the least squares criterion. The multilevel extension
naturally leads, for (k, iy, j) € [K] x [n«] x [m2], to modelling the offsets, the between
and within terms separately by explaining as well as possible both the between and within
sum of squares. Therefore, multilevel PCA (MLPCA) consists in assuming two low-rank
models, for the between matrix Y, = (yk,. ; — ¥..;)kj, approximated by a matrix of rank
(s, and for the within matrix Y., = (Yk.i,.j — Vk..j)kir,j» aPProximated by a matrix of
rank ,,. This yields the following decomposition:

Y =1,,m" +FV, +F,V, + E. (8.1)

F, is the matrix of size m; x @, containing the between component scores

Fb = 77 ) (82)

where for all k € [K], F} is row-wise constant, with f;; repeated on every row. Let
I, € {0,1}™ be the indicator vector of group k such that the i-th entry I;,; = 1 if
individual 7 belongs to group k& and 0 otherwise. Representation (8.2) is equivalent to

K
Fy=> Lif
k=1

V, is the my X @, between loadings matrix, F,, (m; x @) denotes the within com-
ponent scores, and finally V,, (mq x @,,) denotes the within loadings matrix, and E
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(my X mgy) denotes the matrix of residuals. Note that in this model, the within loadings
matrix V,, is constrained to be constant across groups. Model (8.1) is called multilevel

simultaneous component analysis (MLSCA) in Timmerman (2006). We keep the name
MLPCA for simplicity.

In terms of interpretation, the low rank structure on the between part implies that
there are dimensions of variability to describe the hospitals: for instance the first dimen-
sion could oppose hospitals that resort to a large extent to pelvic and chest X-ray to
hospitals where those examinations are not usually performed. The low rank structure on
the within part implies that there are dimensions of variability to describe the patients:
for instance the first dimension opposes patients with a head trauma (taking specific
values for variables related to head trauma) to other patients. The constraint that the
within loading matrix is the same across hospitals means that this dimension is the same
from one hospital to the other but the strength of the dimension, i.e. the variability of
patients on the dimension, can differ from one group to the other. This constraint also
leads to fewer parameters to estimate.

The model is fitted by solving the least squares problem with respect to the param-
eters (m, F,, V,,, F,, V,,):

minimize Y — (1,,m" + K,V," + F,V,]) ||
subject to F}, = Zszl TSy

K
> m1 Mefok = 0y,
]lnT,Lle = OQw‘

(8.3)

where the last two constraints serve for identifiability. Since the three components
Ln,m', FV," and F,V,| are orthogonal, (8.3) is equivalent to solving the three
following subproblems. Denote Y € R? the vector of column means of Y.

minimize,, ||Y - mH%a
minimizeg, v, ||Ys — BV, |%, (8.4)
minimizepwyw HYw - FwVwT”%'

The constraints do not need to be specified: Y, Y}, and Y,, are orthogonal projections
of Y on orthogonal subspaces, thus the solutions to Equation (8.4) belong to the same
orthogonal spaces, and therefore satisfy the constraints of Equation (8.3). The solution
is obtained in Timmerman (2006) by computing the variables mean to estimate m; then,
truncated SVD of Y; = UbA;/QV,;T at rank Qp and of Y,, = UwAi,/QVwT at rank Q,, are

performed to estimate the parameters F), = UbA;ﬂ, Vi, F, = UwAL/2 and V,,. Such a
solution is in agreement with the rationale of performing an SVD on the matrix of means
per group to study the differences between groups and a SVD of the matrix centered by
groups to study the differences between patients after discarding the hospital effects.

8.1.3 Contributions and outline of the chapter

In this chapter, we introduce two new multilevel component methods adapted to categor-
ical and mixed data, respectively. Furthermore, we directly extend them to the missing
data framework, and develop imputation procedures based on them. We conduct an
empirical study to evaluate our methods in realistic settings, and apply them to the
imputation of a subsample of a medical registry. The chapter is organized as follows.
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In Section 8.2, we introduce Multilevel Multiple Correspondence Analysis (MLMCA)
and Multilevel Factorial Analysis of Mixed Data (MLFAMD), two multilevel extensions
of component methods designed to analyze qualitative and mixed data respectively.
MLMCA and MLFAMD may also be seen as extensions of MLPCA to categorical and
mixed data: to the best of our knowledge, we are the first to propose such methods.
Our second main contribution is to propose, in Section 8.3, multilevel single imputation
methods to impute categorical and mixed variables with multilevel structures, based on
MLMCA and MLFAMD. In Section 8.4, we show on synthetic data that our methods
have smaller prediction errors than competitors when the data are generated with a mul-
tilevel model. Finally, in Section 8.5, we illustrate the methods with the imputation of a
large registry from Paris hospitals and discuss how to distribute the computation. The
methods are implemented in the R (R Core Team, 2017) package missMDA (Josse and
Husson, 2016).

8.2 Multilevel component methods

In the classical data analysis framework without multilevel structure, Multiple Correspon-
dence Analysis (MCA) and Factorial Analysis of Mixed Data (FAMD), were developed
as equivalents of PCA for categorical and mixed data, respectively. In short, MCA and
FAMD proceed by applying geometric transformations to the data, and then performing
PCA, with additional weights designed to balance the columns of different types. To
analyze multilevel categorical and mixed data, it is thus natural to define extensions of
MLPCA, based on the same geometric transformations. In this section, we introduce
such extensions: MLMCA and MLFAMD.

8.2.1 Multilevel Multiple Correspondence Analysis (MLMCA)

We now propose a new extension of MLPCA to analyse categorical variables with mul-
tilevel structures; the method is based on MCA (Greenacre and Blasius, 2006; Husson
et al., 2010). MCA is considered to be the counterpart of PCA for categorical data
analysis, and has been successfully applied in many fields, such as survey data analysis,
to visualize associations between categories. More precisely, categorical data are coded
as a complete disjunctive table Z where all categories of all variables are represented
as indicator vectors. In other words z;. = 1 if individual i takes the category ¢ and 0
otherwise. For example, if there are my = 2 variables with 2 and 3 levels respectively,
we have the following equivalent codings:

11 10 100
2 3 01 001
1 2 10 010
Y=1lo3| <= Z2=|01 001
2 9 01 010
2 9 01 010

For 1 < j < my we denote by C; the number of categories of variable j, and C' =
Z;”jl C; the total number of categories. For 1 < ¢ < C, Z_ is the c-th column of Z

corresponding to the indicator of category c. We define 7. = mfll;rm Z . the proportion
of observations in category ¢, 7 = (71,...,7¢)’ and D, the C' x C diagonal matrix
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with 7 on its diagonal. Multiple correspondence analysis (MCA) is defined as the SVD
of the matrix

1

mims

A= (Z - 1,,7") D2 (8.5)
This specific transformation endows MCA with many properties: the distances between
the rows and columns in the transformed matrix A coincide with the chi-squared dis-
tances, the first principal component (the scores) corresponds to the quantitative variable
the most related to the categorical variables in the sense of the n? coefficient of analysis
of variance (Husson et al., 2010, Section 3). This latter property justifies why MCA is
considered as the equivalent of PCA for categorical data.

We introduce the following strategy for multilevel MCA (MLMCA). From the indi-
cator matrix of dummy variables Z, we start by defining a between part and a within
part. MCA, in the sense of the SVD of a transformed matrix (8.5), will then be applied
on each part. For k € [K], define Zj, the sub-matrix of Z containing all categories and
the rows corresponding to individuals of group k. The between part is defined block-wise
as the mean of the indicator matrix per group k with the following n; x mo matrices,
stacked below one another:

Zbk = nkl]l ILT Zk

Nk ~ny

The entries of Z, ;, contain the proportion of observations taking each category in group
k (n.,/ni) (for instance the proportion of individuals carrying some disease in a particular
hospital). Finally

7= |

MCA (8.5) is afterwards applied to the fuzzy indicator matrix Z, i.e. SVD is applied to
(Zy — 1,7 ") DY,

This results in obtaining between component scores Fj, € R™*@ and between loadings
V, € R™*@_ The estimated between matrix is then Z;, = FbeTD71r/2 + 1,m". As
for the within part, MCA is applied to the data where the between part has been swept
out, i.e. SVD is applied to the following matrix:

(Z — Z,) D;Y2. (8.6)

Weighting by the inverse square root of the margins of the categories implies that more
weight is given to categories which are rare over all groups (for instance a rare disease).
We obtain within component scores F,, € R"™ %%« within loadings V,, € R™*%v  and
the estimated within matrix Z,, = F, V] Dy/*.

Finally, we estimate Z by Z = Zb + Z,. As with MCA (Josse et al., 2012), the
reconstructed fuzzy indicator matrix Z = Z, + Z,, has the property that the sum of
values for one individual and one variable is equal to one. Consequently, the estimated
values can be considered as degrees of membership to the categories. This property will
prove useful for the imputation.
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Remark Another approach to define MLMCA would have been to directly apply
MLPCA on the matrix A defined in (8.5). As it turns out, these two strategies are
equivalent, which reinforces our definition of Multilevel MCA.

8.2.2 Multilevel Factorial Analysis of Mixed Data (MLFAMD)

Consider now a mixed data set Y = (Y,,Y.), where Y, is a submatrix containing ¢
quantitative variables, and Y, a submatrix containing ¢ categories:

03 —-34 0.1 01 010
Y=|14 04 =28 10 001
92 18 71 01 1 01

Y, Y.

In the same flavour, we define a multilevel method for mixed data by extending a counter-
part of PCA for mixed data, namely factorial analysis for mixed data (FAMD), presented
in Pagés (2015). FAMD consists in transforming the categorical variables as in MCA
(8.5) and concatenating them with the quantitative variables. Then, each quantitative
variable is standardized (centered and divided by its standard deviation). Finally, SVD
is applied to this weighted matrix. This specific weighting ensures that all quantitative
and categorical variables play the same role in the analysis. More precisely, the principal
components, denoted F; for ¢ = 1,...,) maximize the link between the quantitative
and categorical variables in the following sense:

F, = amgmax Y (F. V) + YO (B, Y, ).

7j=1 Je=1

with the constraint that F, is orthogonal to F, for all ¢ # ¢ and with Y] being the
variable j, r? the square of the correlation coefficient and n? the square of the correlation
ratio. This formulation highlights that FAMD can be seen as the counterpart of PCA
for mixed data. More details about the method are given in Pagés (2015).

The extension to a multilevel structure, named MLFAMD, is now straightforward
following what is done for MCA and categorical data in the previous section. Denote C
the number of categories, ™ € (0,1)¢ the vector of categories proportions and D, the
C x C diagonal matrix with 7 on its diagonal. Denote m € R? the vector of means of
the quantitative variables, and X € R?*? the diagonal matrix containing the standard
deviations of Y,. MLFAMD consists in doing the following transformations.

1

mymes

W e Rmx(ate) <(Yq B ]lmlmT)E_l, (1/6 — ]]_ml’]TT) Dﬂl/Q). (87)

Then, multilevel SVD is performed on the matrix W. This boils down to computing the
between and within part, and performing SVD on both separately:

K
W,=> 1,1, W, W,=W-W, (8.8)
k=1

Nk —ny
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8.3 Multilevel imputation

We now focus on the case where some values in Y are missing, and describe how
MLPCA, MLMCA and MLFAMD may be extended into multilevel imputation methods.

8.3.1 Imputation with MLPCA

Recall that M is the m; X my indicator matrix of observations with M, ;, ; = 1if yy;, ;
is observed and M, ;, ; = 0 otherwise. We denote by Mj, the restriction of matrix M
to the rows belonging to group k € [K]. Consider a Missing (Completely) At Random
(M(C)AR) setting (Little and Rubin, 2002) where the process that generated the missing
values can be ignored for likelihood based model. To impute the missing values using
the multilevel model (8.1), we need to estimate its parameters from incomplete data.
This can be done through low rank matrix estimation for incomplete data sets (Hastie
et al., 2015) by weighting the least squares criterion (8.3) with {0, 1} weights indicating
the observed entries. The optimization problem is the following:

minimize  |[M © (Y — (L,m” + BV, + E,V,))) |2
subject to F, = Zle [kbek,

S M fok = 0g,,
IlnT“Fw =09,

(8.9)

where © denotes the Hadamard entry-wise product. Note that, with this approach, it
is possible to handle both sporadically and systematic missing values as it will be il-
lustrated in the Section 8.4. In Josse et al. (2013), the authors solved program (8.9)
using an iterative imputation algorithm. Note that the aim in Josse et al. (2013) was
to perform MLPCA with missing values, that is, to estimate the parameters in spite
of the missing values, and not to impute multilevel data. The distinction may appear
tenuous as the algorithm involves an underlying imputation of the missing entries, but
the quality of this imputation was never evaluated in itself. Let /m° be the mean vector
of the non-missing entries. The algorithm works iteratively, as described in Algorithm 5.
Such an algorithm starts by replacing the missing values by initial values (for example

Algorithm 5 Iterative MLPCA

Initialize missing values: ¥ =Y @ M + 1,,,,7°T ® (L, L), — M).
Estimate F},, V,, F,,, V,, with multilevel PCA (8.3);

Impute Y =Y © M + (1,,,m" + BV, + F,V,]) ® (1,,,1,,, — M);
Update means m = m;'1) Y.

Repeat steps 1, 2, 3 until empirical stabilization of the prediction.

AR

the mean of the non-missing entries), then the estimator (here MLPCA) is computed on
the completed matrix and the predicted values of the missing entries are updated using
the values given by the new estimation. The two steps of imputation and estimation
are repeated until empirical stabilization of the prediction. The detailed algorithm for
iterative MLPCA with missing values is given in Algorithm 6. In the end, it outputs both
the between and within scores and loadings obtained from the incomplete data set, and a
data set imputed using the MLPCA model (8.1). Thus, it is a single imputation method
(Schafer, 1997; Little and Rubin, 2002) which takes into account the multilevel structure
of the data. Note also that the algorithm corresponds to an expectation-maximization
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Algorithm 6 Iterative MLPCA (detailed)

L: InPUt: Y = (mbsaYmis) € Rmxmz, va Qw

2: Inintialize: M° the mean vector of the non-missing entries
3: for (i, ) € [ma] x [m2] do

4: if M,’j =0 then

5: }fij — mg)

6: end if

7: end for

8: for t=1,... do

9:

Estimation of the between structure

Y, = Sy ny L (1, Y — )

Y,=FV' (SVD)

Eb%F[,lin]; %(—V[,l@b]

Y, = BV

10:  Estimation of the within structure
Y,=Y —-1,m" -,
Y, = FV'T (SVD)
F, <+ F[,1:Qu); Vi < V[,1: Q]
Y, =F,V!

11:  Imputation of the missing values
Y1, 0 VY,
Y MOY + (L1} —M)oY
m=m;'1] Y

12: end for

(EM) algorithm of the multilevel model (8.1) assuming Gaussian noise (see Appendix
8.7.1). Furthermore, we implemented an accelerated version of the algorithm where the
between and the within parts are not updated simultaneously but one at a time. This
corresponds to a generalized EM step, where the least-squares criterion is decreased at
every iteration of the algorithm, but not entirely minimized. To prevent overfitting, the
SVD step is replaced by a regularized SVD, i.e. where the singular values are shrunk, as
described in Section 8.3.3.

Note that the criterion (8.9) does not have a unique solution in general, unless some
assumptions are made on the missing data pattern M and when the weighted least
squares are penalized by the nuclear norm for instance. Many theoretical results on
the recovery of Y are then available (Candés and Tao, 2010; Candes and Plan, 2010;
Klopp, 2014). Providing such guarantees is beyond the scope of this paper, but some
intuitions about the conditions on M can be drawn from the aforementioned papers.
The rationale is that the unknown low-rank matrix can be well approximated with high
probability, if the probability of observing an entry is positive for every entry, and the
number of observations is large enough. In particular, recovering Y when one row or one
column is completely missing is hopeless. We would expect similar results and behaviors,
if these previous works were extended to our framework.
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8.3.2 Imputation with MLMCA and MLFAMD

Based on Algorithm 6 for imputation of multilevel quantitative data, we define two itera-
tive imputation algorithms for multilevel MCA and multilevel FAMD. They are sketched
together in Algorithm 7. Note that for categorical features, our algorithm does not

Algorithm 7 Iterative MLMCA and iterative MLFAMD

1: Initialization

(a) Initialize missing values: mean imputation for quantitative data, proportion
imputation for dummy variables.

(b) Compute weights, standard deviations and column margins.
2: Repeat until convergence:

(a) Estimate parameters (with MLFAMD or MLMCA)

(b) Impute the missing entries with fitted values

(c) Update means, standard deviations, column margins.

output discrete categories but proportions, which can be interpreted as degrees of mem-
bership to each category. To impute, at the end of the algorithm, we assign the most
plausible category.

8.3.3 Implementation

We now discuss some technical points related to the implementation of MLPCA, MLMCA
and MLFAMD, available in the package missMDA. In particular, we describe how we may
select the parameters, add a regularization term, and implement the algorithms in a
distributed fashion.

Selecting the number of dimensions

The imputation methods described in Sections 8.3.1 and 8.3.2 require to select two
parameters: the number of between and within components ), and ),,. Furthermore,
they must be selected from an incomplete data set. This is far from trivial, especially
in the case of categorical variables. In fact, even in the complete case and without
multilevel structure, not many options are available. Consequently, we advocate the use
of cross-validation to select these components. More precisely, for quantitative data,
leave-one-out cross-validation consists in removing each observed value v ;, ; of the
data matrix Y one at a time. Then, for a fixed number of dimensions @, and @,,, we
predict its value using the multi-level method obtained from the data set that excludes

this cell (using the iterative MLPCA on the incomplete data set). The predicted value
P (Qb7Q1u)
is denoted (g,;f}jg] . Lastly, the prediction error is computed and the operation

repeated for all observed cells in Y and for a number of dimensions varying for @), from
0 to min(K — 2,my — 1) and for @,, from 0 to min(m; — K, my — 1). The numbers
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Qp and @, that minimize the mean square error of prediction (MSEP) are kept:

nEg  m2

(Q1:Qu)\ 2
MSEP(Qy, Q) = m1m2zzz <ylmk,3 (ykf:kf) b > .

k=1 ip=1 j=1

This method is computationally costly, especially when the number of cells is large, since
it requires to perform the iterative multilevel algorithm for each cell and for each number
of between and within components. To reduce the computational cost, we implement
a k-fold approach which consists in removing more than one value in the data set,
for instance 5% of the cells and predict them simultaneously, combined with parallel
computing and fast implementation of SVD. The same approach is used for categorical
and mixed data using the coding with the indicator matrix of dummy variables and the
iterative MLMCA and MLFAMD algorithms.

Regularization

Furthermore, to prevent overfitting, we actually perform a regularized SVD where singu-
lar values are shrunk. Many regularization are available for low-rank matrix estimation
(Gavish and Donoho, 2014; Josse and Wager, 2016) and they have different regime
of predilection. One of the most famous is soft-thresholding of singular values, which
minimizes a least squares criterion penalized by the nuclear norm; it shows good esti-
mation properties in low signal to noise ratio (SNR) regimes, but may struggle in other
situations. The shrinkage rule we use applies a non-linear transformation of the singular
values and shows good empirical performances in many regimes (Josse et al., 2017). Let
A, 1 <1< @y, and vy, 1 < ¢ < Qy, be the ordered singular values of W}, and W,
defined in (8.8). Let 67 = 1/(K—Qy) Y1, 1 Asand 62 = 1/(ma—Qu) Y02, v
We shrink the singular values as follows:

A2 62
Ay Ag,) <)\1 A AQb——b),
1

)\Qb
~9 A2
o o
(r1,...,vQ,) < (I/l——w,...,l/Qw B ) )
1%} Z/Qw

This regularization comes from Verbanck et al. (2013) and is a particular instance of the
adaptive shrinkage estimator of Josse and Sardy (2015). It can be seen as a compromise
between hard and soft thresholding. Indeed, when the noise variance is low (the SNR is
high), it is equivalent to a hard thresholding, which behaves well when the SNR is high.
When the noise variance is high (the SNR is low), it is equivalent to imputing using 0
dimensions, i.e. using the average of every variable. Between these two extremes, it
shrinks the smallest singular values, which can be considered responsible for instability,
more than the largest ones. In some particular cases, this shrinkage rule is equivalent to
minimizing a penalized criterion, as shown in Appendix 8.7.4.

Distribution

Finally, the algorithms we present in this paper can be implemented in parallel across
groups, provided that groups agree to share their mean values, standard deviations, sam-
ple sizes, and right singular vectors. Indeed, among other methods, SVD, which only
involves inner products and sums, can be very straightforwardly implemented in a dis-
tributed manner. This is one main advantage of the methods we present. The procedure
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to distribute the computation across sites is described in Section 8.7.3. Such a procedure
is interesting in the framework of the medical application described in Section 8.5 as it
allows each hospital to keep their data on site while benefiting from other hospitals data
for the imputation.

8.4 Simulation study

8.4.1 Imputation of multilevel quantitative data

We conducted a comparative simulation study to contrast the performances of the mul-
tilevel imputation with PCA (MLPCA) to other single imputation methods, namely

1. mean imputation which consists in imputing by the mean of each variable, used
as a benchmark method:

2. a separate PCA imputation where each group is imputed independently, using the
R package missMDA (Josse and Husson, 2016);

3. a global imputation by PCA (which ignores the multilevel structure and the group
variable) using the R package missMDA (Josse and Husson, 2016);

4. imputation with iterative conditional random effects regression models as imple-
mented in the R package mice (van Buuren, 2012);

5. imputation by a joint model based on random effects models as implemented in
the R package jomo (Quartagno and Carpenter, 2017);

6. imputation with iterative random forest (RF) as implemented in the R package
missForest, (Stekhoven and Biihimann, 2012). The group variable is included for
the imputation.

Note that methods 4 and 5 are considered as the references to impute multilevel quan-
titative data (Audigier et al., 2018). However, these methods are defined as multiple
imputation methods and used the imputed data as an intermediary to do statistical in-
ference with missing values. Here, we compute the mean over 100 multiple imputed
data to get one single imputed data set. The imputation based on random forests can
handle mixed variables and is known to be a very powerful tool for imputation. It is
not specifically designed to handle a multilevel structure, but is expected to perform
well in such a hierarchical setting. Indeed, random forests can account for interactions
between variables, and therefore in particular for interactions between the categorical
variable indicating the group and the other variables. This is another way of handling
the multilevel structure. In the same way, even though we focus here on quantitative
variables, we also added imputation method for mixed data with FAMD (Audigier et al.,
2016), where the group membership is used as a categorical variable.

We first simulate data according to the multilevel model (8.1) with Gaussian noise
and set the true number of between and within components to 2. For global PCA and
FAMD, we select the number of components resulting in the smallest errors, so in this
example 4 dimensions. For MLPCA, we use the true number of dimensions, that is
Q» = 2 and Q,, = 2, and we use those estimated by cross-validation (Section 8.3.3).
We use default parameters for the other methods. We start with n;, = 20 observations
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per group k and we vary the number of groups K (3,5), the number of variables .J (5,
10, 30), the intensity of the noise (¢ = 1,2) and the percentage of missing values (10%,
20%, 30%, 40%), which are missing completely at random (MCAR). We also consider
the case of missing at random (MAR) values. The detail is available in the associated
code provided as supplementary material. We then compute the mean squared error
(MSE) of prediction, and repeat the process 100 times. Figure 8.1 is representative of

.
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Figure 8.1: MSE of prediction for a data with J = 10 variables, K = 5 groups, n; = 20
observations per group and 30% of missing values completely at random. MLPCA is
performed with the true number of dimensions @), = 2 and @, = 2, and with the
numbers of dimensions (), and (), estimated by cross-validation.

many results where multilevel imputation MLPCA improves both on global PCA impu-
tation and separate PCA imputation but also on competitors. We have not included
the results from the package mice as, using the default parameters, we encountered too
many errors. It may be explained by the size of the data set, as the method does not
behave well when there are not too many variables. More tuning is surely required to
use the mice package seamlessly.

We summarize here our main findings with respect to all the simulations carried out.
The results for MAR data are given in Appendix 8.7.5. All the results are in agreement
to those obtained for MCAR values. Imputations with random forests and FAMD often
perform similarly with a slight advantage for FAMD especially when the percentage of
missing values is large. Imputation with jomo encounters many difficulties when the
number of variables increases as well as when the noise increases. Finally imputation
based on separate PCA collapses when the percentage of missing values increases and/or
the number of observations per group decreases, which is not surprising as it operates
on the smaller group data sets. The multilevel imputation is always the most accurate.
This is expected (but still reassuring) as the data are simulated according to a multilevel
model. We also simulated data without a multilevel structure, i.e. with one single group
containing all individuals, and the performances of multilevel PCA are only slightly lower
than those of global PCA.

All the methods have of course their strengths and weaknesses, and the properties
of an imputation method depend on its inherent characteristics: an imputation method
based on low rank assumption and linear relationships provides good prediction for data
with strong linear relationships contrary to imputation using random forests which are
designed for non-linear relationships. However, we observe that imputation with random
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forests breaks down for small sample sizes in missing at random (MAR) cases, because
extrapolation and prediction outside the range of the data seems difficult with random
forests. Since the structure of the data is not known in advance, one could use cross-
validation and select the method which best predicts the removed entries.

Figure 8.2 represents the differences, for each group, between imputing with a sepa-
rate PCA and with MLPCA. The improvement of a multilevel imputation over a separate
imputation may differ from one study to the other but still groups have interest in using
a multilevel imputation. Indeed, the results presented in Figure 8.2 reveal that in terms
of predicting the missing entries, multilevel PCA yields better results that separate PCA
for every group, thus showing that as far as imputation is concerned, all groups benefit
from participating in the study. This justifies the use of distributed multilevel methods
in contexts where there are confidentiality issues at stake, by quantifying how much the
different centers gain in terms of imputation accuracy, as further discussed in Section 8.5.

(MSE separate PCA — MSE MLPCA) per group

]
o
LD —
(o]
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Figure 8.2: Difference between MSE obtained with separate PCA and with MLPCA for
each group.

8.4.2 Imputation of multilevel mixed data

To simulate mixed data, we use the same design as for quantitative variables but cut
some of the variables into categories. We vary the same parameters as for the quan-
titative variables but also the ratio of the number of quantitative over the number of
categorical variables. We simulate either MCAR values or systematic missing values
where all the values of a variable are missing for one group. Note that the methods
implemented in the packages mice and jomo can handle mixed data when categorical
variables are binary, but not when variables have more than two categories. This is
why they are not included in the simulations. The global FAMD imputation is performed
with 2, 3 and 4 dimensions (we display only the number of components which resulted in
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J =10 J =30 J =15 J =235
ng 50 200 50 200 50 200 50 200
Global PCA 0.009 0.021 0.013 0.037
jomo 10.431 40.362 191.47 757.586
Multilevel FAMD | 0.017 0.030  0.025 0.057 | 0.037 0.067 0.045 0.108
Global FAMD 0.060 0.108 0.122 0.210 | 0.160 0.239 0.155 0.333
Random forest 2.073 15.143 8.88 59.953 | 1.953 14.488 10.326 64.466

Table 8.1: Time in seconds for a data set with 20% of missing values, K = 5 groups
and nj; = 50 or n, = 200 observations per groups, with 10 and 30 quantitative variables
for the two left columns and with additional 5 categorical variables for the two right
columns.

the lowest prediction error) whereas we add cross-validation for the multilevel method.
Figure 8.3 shows again that imputing with the multilevel method gives better results
than imputing with global FAMD or with random forests. This is especially true for
the quantitative variables. Note that when the missing values are systematic, it is not
possible to apply the separate imputation. We can evaluate the quality of the imputation
of the multilevel method by comparing the distributions of the observed and imputed
values (see Figure 8.9 in the appendix).

As far as the computational time is concerned, we compare in Table 8.1 the per-
formances of the different approaches. Regarding this point, SVD based imputation
methods have a clear advantage over jomo and random forests.

8.4.3 Robustness to model misspecification

In many cases we expect the data to be approximately rather than exactly of low-rank,
that is, to have a few principal directions of large variability and many principal directions
of very small variability. It is therefore crucial that the imputation method be robust to
such model misspecification. To assess the performance of imputation with multilevel
FAMD in approximately low-rank models, we use the same simulation scheme as before
with 5 quantitative variables, 5 qualitative variables, and 5 groups of 200 individuals
each. We simulate data from an underlying matrix with rank varying from 4 to 10. For
each of these rank settings, we impute the data with MLFAMD, and compute the RMSE
for quantitative variables, and the percentage of misclassification for qualitative variables.

The results are given in Figure 8.4, along with the same experiment with mean
imputation, in order to have a baseline. As expected, the imputation error increases
with the underlying rank. However, the degradation of the imputation is small compared
to the difference between MLFAMD and the baseline for similar rank, which indicates
the robustness of MLFAMD to such model misspecification.

8.5 Hospital data analysis

8.5.1 Trauma Register Traumabase

Expedient management of major trauma based on standardized and protocol-based care
improves functional outcome and survival. Even in mature systems trauma care is still
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Figure 8.3: J = 10 variables, 5 quantitative and 5 categorical (4 categories each),
30 observations per group. Top: 20% of MCAR missing
values, bottom: all values of one group are missing for two continuous variables and
all the values of another group are missing for two categorical variables. Left: MSE
for quantitative variables; right: percentage of misclassified categorical variables. Global
FAMD and separate FAMD are represented with the number of dimensions that yield the
smallest errors and MLFAMD is represented with values of (0, and @, estimated by cross-
validation. RF is imputation with random forest and Mean-Prop means the imputation
is done by the mean for quantitative variables and the proportion for categorical ones.
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Figure 8.4: J = 10 variables, 5 quantitative and 5 categorical, 20% of missing values,
K =5 groups and n;, = 200 observations per group: on the left plot MSE for the quan-
titative variables; on the right plot percentage of misclassified for categorical variables.
Left side: imputation with MLFAMD; right side: imputation by the column means.
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hampered by delays, deviation from protocols and cognitive error. The present work is
motivated by developing and providing data processing and analysis tools to inform clini-
cal decision making. This study is conducted in cooperation with the Traumabase Group
(http://www.traumabase.eu/en_US), a French multicenter trauma data base. The
Traumabase consists currently of more than 15 French level-1 Trauma centers and holds
detailed data of more than 20,000 trauma cases. These data are highly heterogeneous,
multi-source, and contain many missing values. Furthermore, expert clinicians expect
practice variation and lack of standardisation across different hospitals and regions to
exert considerable influence on a number of variables.

For this work, an initial reduced data set containing eight features was analysed, that
expert clinicians suggested to be prone to variation. The data set of interest consisted of
5 qualitative and 3 quantitative variables measured over 7,495 patients with around 11%
of missing values and at least one missing entry for 49% of all the patients. Probably
different mechanisms generate this level of missing values. For some variables, such as
accident type and name of center, no data are missing, whereas for other variables such
as chest and pelvis X-ray, a lot of entries are missing and may depend on local practice.
In a first approximation, a Missing At Random (MAR) mechanism, where the probability
of missingness is allowed to depend on the observed variables, seems satisfying.

Generally speaking, we focus on imputing medical data with iterative MLFAMD with
two aims. First, the imputed data can be further analyzed with other statistical methods
such as predictive models, to predict some outcome of interest. However, care must be
taken when analysing an imputed data set, as discussed in Section 8.6. Secondly, the
imputation of missing data from a hospital is improved when the hospital is integrated
into the aggregated database. Therefore, this may encourage medical professionals to
share their data and participate in the data aggregation projects. These projects are
important because disposing of aggregated data is an opportunity to have more cases
and to develop more robust and clinically pertinent modelling. Thus, more reliable and
powerful imputation techniques may actually entice hospitals to share their data in order
to facilitate evaluation and sequentially improve care for all patients.

However, there are technical and social barriers to the aggregation of medical data.
The size of combined databases often makes computations and storage intractable, while
institutions are usually reluctant to share their data due to privacy concerns and propri-
etary attitudes. Both obstacles can be overcome by turning to distributed computations,
which consists in leaving the data on sites and distributing the calculations, so that hos-
pitals only share some intermediate results instead of the raw data (Narasimhan et al.,
2017). The distributed framework is presented in Section 8.7.3.

8.5.2 Simulated imputation of the Traumabase

To assess the quality of imputation and legitimate the use of iterative MLFAMD to im-
pute the Traumabase, we first perform simulations by inserting an additional of 20% of
MCAR values to the data set, predicting them with the different imputation methods
described in Section 8.4, and computing the mean squared error of prediction for quanti-
tative variables and the percentage of misclassification for categorical variables. We also
conducted simulations with systematically missing data in both quantitative and cate-
gorical variables, which often happens when a hospital does not collect a measurement.
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Figure 8.5 presents the results over 30 replications of the experiment. Number of com-
ponents for all the methods is estimated by cross-validation. When the missing values

Error for quantitative variables

Error for categorical variables

=
37
o = T
8 u H
g 2| —
S 7
©
Q.
=
g1 1 g°
- ?
=
8 i F
= ; g T
L g
< 8 2 o — :
— [— — ; s | —
S I e ] — 5| o
E i | — °l —m—= ==
e i _— 8 ] i I
T T T T S T T T T
MLFAMD FAMD RF Separate FAMD MLFAMD FAMD RF Separate FAMD
Error for quantitative variables Error for categorical variables
N o [—
21 =
= -
o
o |
<
© I
Q o <
¢ I E z°
&
? i 2
=g ; 2 .
o JR - ‘g :
@ | 5 —
H o -
: < T !
L S — e
- — T
S ] T
8 ; ;
3 : R —
— —
o i T
€1 : 84 o
0 T T T T =4 T T T T
MLFAMD Global FAMD RF Mean-Prop MLFAMD Global FAMD RF Mean-Prop

Figure 8.5: Traumabase: MSE of prediction and % of mis-classification. Top: 20% of
MCAR values, bottom: systematic missing values.

are MCAR, in terms of prediction of quantitative variables, multilevel FAMD and global
FAMD perform similarly and improve on the random forest imputation. We observe the
same behavior for the categorical variables, with multilevel FAMD improving only slightly
on global FAMD. Note that the data are quite difficult to impute and the relationship
between variables weak. However, when we generate systematic missing values there is
a large improvement when using the multilevel method.

8.6 Conclusion

We proposed a method dedicated to the imputation of multilevel mixed data based on an
iterative SVD algorithm. To the best of our knowledge this is the first multilevel method
available for mixed data and which can handle both sporadic and systematic missing
values. We also believe the multilevel methods we have developped for mixed data can
be useful for exploratory analysis and visualization. We are eager to investigate for fu-
ture research a multiple imputation (Murray, 2018) procedure based on this multilevel
component method, in order to further analyse the Traumabase data set with predic-
tive models, for instance to study the occurence of diagnosis errors based on patients
profiles. Indeed, the proposed method is a single imputation method. This is perfectly
appropriate when the objective is to accurately predict the missing values, which was one
of the objectives of the application on hospital data. However, great caution should be
taken when analyzing the completed table. Indeed, like all simple imputation methods,
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our method suffers from not taking into account the uncertainty associated with pre-
dicting missing values from observed values. Thus, if we apply a statistical method on a
completed data table, the variability of estimators will be underestimated. To avoid this
problem, one solution is to use multiple imputation where different values are predicted
for each missing value, resulting in several imputed tables and the variability of imputa-
tions reflects the prediction variance. Multiple imputation then consists of applying an
analysis to each of the completed tables combining the results. The proposed iterative
imputation algorithm could be a first step in a multiple imputation method for multi-level
mixed data. A first idea could be to combine a stratified bootstrap with our algorithms.

Finally, as discussed, the methods presented in this paper can be implemented in
parallel across groups or sites. A following project we are currently involved in consists
in exploiting this property to implement a real-time distributed and privacy preserving
platform, dedicated to the imputation of health care data partitioned across several hos-
pitals, without having to aggregate the data. One issue with the distribution technique
described in Section 8.7.3 is that we use iterative procedures, therefore after N iterations
each hospital has shared N summary statistics, which can lead to information leakage. A
possible solution to this problem is to resort to homomorphic encryption (Gentry, 2009)
which allows to perform computations on encrypted data.

8.7 Supplementary material

8.7.1 EM algorithm for multilevel Gaussian data

The iterative procedure described in Section 8.3.1 is equivalent to an EM algorithm
based on a Gaussian model.

let Y = 1,,,m" + BV, + F,V,] + E, where m € R™, F, € R™*®@ V; ¢ Rm2*%,
V;, € R™*%w and F}, € R™2*Qw are parameters to be estimated, and E is a matrix with
Gaussian entries with known variance E; ; ~ N(0,0%). Denote by M € {0, 1}m*m2
the mask indicating (with a 1) the observed entries of Y, Y,us the observed entries and
Y..is the missing entries.

Denote 0 = (m, F,,V,, F,,V,). Under the classical hypothesis that the missing
values are missing at random, i.e., p(M|Yobs, Ymis; ®) = p(M | Yobs; @), the likelihood of
the observed data (Yops, M) is

p(ifobs: M; 07 Qb) = /p(ifobﬁ Ymi57 M; e)deis;qb

= p(Yos; 0)p(M |Yops; ¢)

The EM algorithm (Dempster et al., 1977) maximizes the observed log-likelihood ¢(Yops; )
iteratively by alternatively computing the expectation of the complete likelihood ¢(Y"; 6)
under the distribution of the missing values given the observed values and the current
estimate 6’ (E step), and maximizing this expectation with respect to 6 (M step). It
goes as follows at iteration ¢:

E step: Eg [((Y;0)|Yops] = Eg [”Y —1,ym’ — RV, — FwVwTHH. To compute
this expectation, one only needs to compute the two following sufficient statistics for all
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(¢,7) € fr] > [mo]:

BV Yo 0] ={ (G 7 T 4 BV M 20
.24 ¢ = bJ Z,J
E[Y; | Yobs, 0'] { (L' + BV, + F V)02, + (0%) if Mi; =0 -

(8.10)

M step: The M steps consists in maximizing the complete likelihood where the suffi-
cient statistics are replaced by the conditional expectation above. However, estimation
of the parameters in 0 do not require knowledge of o so that we do not need to compute
E[E3|¥bs,9t] in the E step. Denote for, (i,7) € [mi] x [m2], ¥;'; = Eg[Y;;; 0], and
Y = (Y,,)i;- The maximization of Eg: [((Y;0)|Y,ps] with respect to 6 is equivalent to
solving:

1< 2
argminm7Fb7‘/b,Fw7Fb 5 HY - ]]_mlm—l— - FbVl;T - FwVwTH2 .

The EM algorithm consisting of the E and M step described above is exactly equiv-
alent to Algorithm 5.

8.7.2 Distributed rank-QQ PCA

We start by reminding the power method (Golub and Van Loan, 1996), which computes
the first left and right singular vectors of a matrix Y € R™*™2_ Without loss of
generality, we assume m; < mo. Suppose Y = UAYV2VT U = (Upy ooy Upy), V =
(U1, vmy) and A = diag(M], ..., A2) |M| > [A2]... = |Amy|. The power method
is iterative and produces sequences of vectors z® and ¢} converging to u; and v,
respectively, with iterations detailed in Algorithm 8. Let ¢{*) be a starting point satisfying
1|2 = 1. The sequences ¢® and z(*) converge to u; and v; respectively, when

Algorithm 8 Power method
fort=1,2,...do

L) — YT (t-1)
2 = gl /HZ”HQ
¢ =Y 20
A = 1|g®]|,
g =q®/ gV

end for

(9, ur) # 0 and [Ai] > |Aol; | X2l /| A1].
This directly extends to the computation of the rank-Q) SVD. One can actually estimate
u1, v1 and Ay, then the second dimension by applying the same procedure to Y —u; A\ v/,
and so on so forth. Moreover it is straightforward to distribute this procedure when the
data are grouped in K different sites with




Indeed, all the computations in Algorithm 8 can be done in parallel with a master-slave
architecture (Narasimhan et al., 2017), where a central server collects summary statistics
computed locally on sites, as illustrated Figure 8.6. Here, the local right singular vectors
vj, j € [m] are sent to the master. The corresponding algorithm is given in Algorithm
9, and leads exactly to applying the power method for rank-(Q SVD to the entire data
matrix Y. The procedure is implemented in the distcomp R package (Narasimhan
et al., 2017). This algorithm can in turn be extended to perform distributed PCA with

Algorithm 9 Distributed power method
Input: workers private data Y, € R"*™2
Output: F e R™*Q Ve R™*XC N\ > N> ... >N F=0,A=0
fork=1,... K do

F.=0
transmit n; to master
end for
fori=1,...,Q do
fork=1,... K do
qdr = (1,1,,1)
end for
end for
[ ~K
lalla = /> 5= 7k
transmit ||¢||2, V and A to workers
while Not converged do
fork=1,...,K do
a = ¢"/|lqll
ry =Y, — F,VT) g
transmit r; to master

end for
r= Zszl Tk
r=r/|rl2

transmit r to workers
fork=1,..., K do
qr = Yr
transmit ||gx||2 to master
end for
lall: = 35 llaxl:
transmit ||¢||2 to workers
Ai = |gll2
end while
V' = combine by column (V,r)
fork=1,...,K do
F}, = combine by column (F}, q)
end for

missing values, yielding the algorithm given in 8.7.3. Indeed, the iterative PCA algorithm
iteratively performs SVD.
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Hospital Hospital
2 3

— Master sends aggregated means, proportions and singular vectors to slaves

—— Slaves send means, proportions and singular vectors to master

Figure 8.6: Master-slave distribution structure. The hospitals send their local means,
proportions, sample size and right sigular vectors to the master. The master sends back
the overall means, proportions, and right singular vectors to the hospitals.

8.7.3 Distributed algorithm for iterative multilevel PCA

In Section 8.7.2, we see how the power method (Golub and Van Loan, 1996), which
computes the first left and right singular vectors of a matrix Y € R™*™2  can be
straightforwardly distributed over K different sites. This algorithm can then be used
to perform a distributed rank-Q SVD, as shown in Algorithm 9. We take advantage of
this property to develop a distributed version of the iterative PCA algorithm, presented
in Algorithm 10. This algorithm imputes missing values with the iterative PCA algo-
rithm in a distributed way. Indeed, iterative PCA imputation involves iterative SVD.
Plugged in Algorithm 5, Algorithm 10 leads to a distributed version of the iterative mul-
tilevel PCA algorithm. In the same way, distributed iterative MLMCA and MLFAMD are
implemented.

8.7.4 Minimization of a penalized criterion

The singular value shrinkage we employ is an extension of the shrinkage rule of Verbanck
et al. (2013) to the multilevel settings. In Verbanck et al. (2013) the authors use a
shrinkage rule for the first () largest eigenvalues of the form:

Their estimator is defined to minimize the asymptotic MSE of the resulting estimator in
the Gaussian model X = p+¢ where 1 is of rank Q. In their framework, the asymptotic
corresponds to the variance of the Gaussian noise o2 going to 0. This rule is related
to other works on singular value shrinkage such as (Gavish and Donoho, 2014) but in
particular the one of Josse and Sardy (2015) which is:

Y
¥(\) = \; max (1 - %o)

using 7 = ¢ and v = 2. The rule (Josse and Sardy, 2015) is the solution of a penalized
criterion where the least-squares is penalized by a weighted nuclear norm. Consequently,
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Algorithm 10 Distributed iterative PCA
Input: Y, € R"™*™2 (Qy Q,
Output: m, F,,V,,F,,V,
Initialization: impute missing values with initial values; (m; x msy) = diag(y/ny).

R=0,A=0
fork=1,... K do

F, =0

transmit n; to master
end for

fori=1,...,Q do
fork=1,...,K do
[ (1,1,,1)
end for
[ K
lgllz = /> k=1 7
transmit ||¢||2, V' and A to workers
while Not converged do
fork=1,..., K do
@ = qr/||ql]2
re= Y, —F,VT) g
transmit 7, to master

end for
r= 25:1 Tk
r=r/[rl2

transmit r to workers
fork=1,...,K do
qx = Yr
transmit ||qx||2 to master
end for
lqll2 = 25:1 g2
transmit ||q||o to workers
Ai = llall2
end while
V = combine by column (V| /A7)
fork=1,...,K do
F}. = combine by column (F}, qx)
end for
end for

although the rationale of our shrinkage rule is not to minimize a penalized criterion, we
observe that our shrinkage rule is in fact, at iteration ¢+ 1, the solution to a least squares
problem penalized by a weighted nuclear norm

. 2
L 1
minimize {5 HX(t) - MH + A7 ||M||*,w<f>} (8.11)
such that rank(p) < Q,
where X is the estimate from the previous iteration, dy, ..., d; are the singular values
of u, HMH*,wu) = Z?;”f(ml’m” wgt)di, ai(X(t)) is the i-th singular value of X®, A = &
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and wZ@ = 1/0;(X®) for all i. Extending this to the Multilevel PCA iterative algorithm,
we solve such a problem twice at each iteration (one for the within component and one
for the between component).

In the following toy example, the entries of X are Gaussian, the variance of the noise
o2 is known and no entries are missing. With all these assumptions, the weights in (8.11)
are constant, and we show empirically that the criterion (8.11) is indeed decreasing for
the multilevel method. Figure 8.7 shows the criterion (8.11) is decreasing in this case.

Objective function

9540 9560 9580 9600 9620 9640 9660

Index

Figure 8.7: Objective function at every iteration until convergence of MLPCA.

8.7.5 MAR simulations

We performed simulations by putting Missing At Random (MAR) data as follows: in
each group, we selected the most correlated pair of variables and put missing data for
one of the 2 variables when the values of the other variable were greater than 1.1 times
the mean. This leads to a relatively low percentage of missing values, approximately
from 3% to 6% of missing values over the entire data set. Since this percentage is
low, to show the method's effect, we centered by simulation the MSE (in an analysis of
variance way, we removed the variability due to the simulations). Here we find results
quite similar to those found when the missing data are MCAR, i.e. that the MLPCA
algorithm is the most efficient. As expected, random forests are not very well suited for
MAR values. Figure 8.8 is representative of many results where multilevel imputation
MLPCA improves both on global PCA imputation and separate PCA imputation but
also on competitors.

8.7.6 Representation of the imputed values

Whether before or after imputation, it is very important to perform descriptive statistics
and graphical representations. The graphs in Figure 8.9 allow the distributions of ob-
served and imputed values to be compared. The graph on the left shows for a variable
the distribution of the predicted values in red and observed in black. Note that a differ-
ence between these distributions does not mean that the imputation model is unsuitable.
Indeed, when the missing data mechanism is not MCAR, it could make sense to observe
differences between the distribution of imputed values and the distribution of observed
values. However, if differences occur, more investigations would be required to try to
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Figure 8.8: MSE centered by simulation for a data with .J = 10 variables, K = 5 groups,
ng = 20 observations per group and missing values that are missing at random. MLPCA
is performed with the true number of dimensions ), = 2 and Q),, = 2, and with the
numbers of dimensions (), and @, estimated by cross-validation.

explain them. Here, the imputed values follow a distribution close to that of the observed
values. The quality of the imputation can also be assessed by graphically representing
two variables (the graph on the right). Here, it is clear that the correlation between the
two variables is not destroyed by imputation.
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Figure 8.9: Density of the observed (in black) and imputed (in red) values. Scatterplot
with observed values (in black) and imputed values (in red) for two variables.
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Chapter 9

Conclusion

The objective of this thesis was to develop new data analysis tools adapted to mod-
ern data collection processes, which often compound information from diverse sources,
and result in missingness and heterogeneity. In most fields of applications, because of
such imperfections, data collections indeed fall out the classical frameworks for which
substantial theory was already available. On the other hand, many methods used in
practice to cope with multi-source, heterogeneous and incomplete data in fact do not
benefit from any statistical guarantees. In this dissertation, we introduced a complete
framework based on hybrid low-rank models and heterogeneous data fitting terms, to
analyze and impute mixed data with missing values and side information. This new
framework is rooted in theoretical aspects of the low-rank matrix completion literature,
and blooms into the visual playground of principal components methods, from which it
borrows interpretation tools.

We started with the special case of incomplete count data with side information,
and developed in Chapter 3 a Poisson model which directly incorporates covariates in
the inference procedure, by combining log-linear models and exponential family matrix
completion. We demonstrated that this framework simultaneously inherited from the
theoretical guarantees of convex low-rank methods, and the interpretation capabilities
of model-based count data analysis.

Equipped with this new framework from count data analysis, we tackled in Chap-
ter 4 the analysis of a challenging waterbird abundance data set, in order to estimate
populations temporal trends and to detect important predictors of the bird counts. In
the process, we extended the initial model, to incorporate a variable selection tool, and
empirical assessment of uncertainty in our predictions. We implemented an open source
R package for count data imputation and analysis, and provided a tutorial for potential
users.

Building upon Chapter 3 and Chapter 4, we generalized in Chapter 6 the model from
incomplete count data with side information, to heterogeneous incomplete data with
hybrid structures, incorporating several models of interest in applications. We provided
a theoretical study demonstrating that our procedure has near-optimal estimation errors
and, in the process, generalizing theoretical results in noisy low-rank plus sparse matrix
decomposition. We proposed an optimization procedure, which is implemented in a
second R package adapted to mixed data with side information or multilevel structure.

Finally, in Chapter 8, we approached the imputation of multilevel mixed data with a
different perspective, and introduced a counterpart of the methods of Chapter 6, based
on component methods. This method stands out from the rest of this dissertation, as
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it is not based on a probabilistic model, and thus does not benefit from the statistical
background of Chapters 3 and 6. However, this lack of underlying model endows it with
other advantages, and in particular, relieves it from the computational burden of het-
erogeneous likelihood based approaches. In practice, the method of Chapter 8 displayed
good imputation properties, as well as a very competitive computational cost. In addi-
tion, it naturally leads to distributed implementations, which is attractive in applications
where privacy is an important issue.

The contributions of this dissertation paved the way for future research in both
theoretical and applied directions. In practice, there are three main limitations to the
methods developed in Chapter 3, Chapter 4 and Chapter 6. First, these regularized ap-
proaches involve selecting two hyper-parameters with heavy cross-validation procedures.
Even with efficient and scalable algorithms, this can be problematic for practitioners with
limited computational resources. A useful extension would therefore be to develop an
approximate cross-validation procedure. Second, although our methods automatically
perform variable selection, the interpretation of the selected predictors is impaired by
the lack of valid inference procedure which produces confidence intervals. This issue
was tackled heuristically in Chapter 4, but still deserves further investigation. To do so,
an option would be to consider the problem from a Bayesian perspective. Third, the
mixed data methods introduced in Chapter 6 are based on heterogeneous data fitting
terms, and suffer from scaling problems, with some variables taking more importance
than others in the analysis. To overcome this, a solution would be to incorporate a scale
parameter in our exponential family models.

On the theoretical side, there are also several directions of improvement. In partic-
ular, the general statistical guarantees derived in Chapter 6 depend on the geometry of
a fixed dictionary of matrices embedding side information. More precisely, it indirectly
depends on the sparsity of the dictionary, through the ¢; norm of its elements. How-
ever, in several applications we have in mind, the dictionary is not sparse, but is rather
generated from multivariate Gaussian distributions. An important extension of our our
results would be to adapt them to this particular type of dictionaries. The second main
limitation of our theoretical framework, is that we model heterogeneous data through
univariate exponential family distributions. In other word, we are able to model data
of different types such as Gaussian, binomial and Poisson data simultaneously, but we
cannot model categorical data with more than two categories, or estimate simultane-
ously the mean and the variance of the variables. This is also an important point, as we
observed in practice that fixing the scale of the variable could lead to poor estimation
results in some cases.

Finally, there are very exciting perspectives to this dissertation in terms of appli-
cations. In particular, the developed methods received very positive responses from
ecologists, and ongoing work includes the application of our methods to the analysis of
several species abundance data sets.
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