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Examiners Gregory Batt DR Inria Saclay Ile-de-France, France

Gilles Bernot DR Laboratoire I3S, France
Frédéric Dayan Founder ExactCure, France
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Abstract

This thesis deals with modeling, analysis and reduction of various biological models, with

a focus on gene regulatory networks in the bacterium E. coli. Different mathematical

approaches are used. In the first part of the thesis, we model, analyze and reduce, using

classical tools, a high-dimensional transcription-translation model of RNA polymerase

in E. coli. In the second part, we introduce a novel method called Principal Process

Analysis (PPA) that allows the analysis of high-dimensional models, by decomposing

them into biologically meaningful processes, whose activity or inactivity is evaluated

during the time evolution of the system. Exclusion of processes that are always inactive,

and inactive in one or several time windows, allows to reduce the complex dynamics of

the model to its core mechanisms. The method is applied to models of circadian clock,

endocrine toxicology and signaling pathway; its robustness with respect to variations of

the initial conditions and parameter values is also tested. In the third part, we present an

ODE model of the gene expression machinery of E. coli cells, whose growth is controlled

by an external inducer acting on the synthesis of RNA polymerase. We describe our

contribution to the design of the model and analyze with PPA the core mechanisms of

the regulatory network. In the last part, we specifically model the response of RNA

polymerase to the addition of external inducer and estimate model parameters from

single-cell data. We discuss the importance of considering cell-to-cell variability for

modeling this process: we show that the mean of single-cell fits represents the observed

average data better than an average-cell fit.
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Résumé (en français)

Cette thèse porte sur la modélisation, l’analyse et la réduction de modèles biologiques,

notamment de réseaux de régulation génique chez la bactérie E. coli. Différentes ap-

proches mathématiques sont utilisées. Dans la 1ère partie de la thèse, on modélise, anal-

yse et réduit avec des outils classiques un modèle de transcription-traduction de grande

dimension de l’ARN polymérase (RNAP) chez E. coli. Dans la 2de partie, l’introduction

d’une nouvelle méthode appelée Analyse de Processus Principaux (PPA) nous permet

d’analyser des modèles de haute dimension, en les décomposant en processus biologiques

dont l’activité est évaluée pendant l’évolution du système. L’exclusion des processus in-

actifs réduit la dynamique du modèle à ses principaux mécanismes. La méthode est

appliquée à des modèles d’horloge circadienne, de toxicologie endocrine et de voie de

signalisation; on teste également sa robustesse aux variations des conditions initiales et

des paramètres. Dans la 3ème partie, on présente un modèle ODE de la machinerie

d’expression génique de cellules d’E. coli dont la croissance est contrôlée par un in-

ducteur de la synthèse de RNAP. On décrit notre contribution au développement du

modèle et analyse par PPA les mécanismes essentiels du réseau de régulation. Dans une

dernière partie, on modélise spécifiquement la réponse de RNAP à l’ajout d’inducteur et

estime les paramètres du modèle à partir de données de cellules individuelles. On discute

l’importance de considérer la variabilité entre cellules pour modéliser ce processus: ainsi,

la moyenne des calibrations sur chaque cellule apparâıt mieux représenter les données

moyennes observées que la calibration de la cellule moyenne.
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Résumé étendu (en français)

La vie est l’un des phénomènes les plus complexes dans l’univers [60]. En ce qui con-

cerne la biologie, l’étude d’une seule unité de vie, la cellule, est une tâche infiniment

compliquée.

Au cours du siècle dernier, les mécanismes cellulaires ont été étudiés dans différentes per-

spectives par des biologistes, des mathématiciens, des ingénieurs: par des expérimentations

dans différentes conditions, par la modélisation mathématique du comportement cellu-

laire, par la calibration de ces modèles en utilisant des données expérimentales, par

l’analyse et la réduction des structures de ces modèles à des fins différentes.

Toutes ces différentes études ont créé un domaine, un grand ensemble de connaissances,

appelé biologie des systèmes [58], où différents auteurs ont contribué dans des directions

diverses. L’objectif de cette thèse est d’y ajouter une brique.

Motivations

Un sujet majeur de la biologie des systèmes est la modélisation et l’analyse des réseaux

cellulaires.

La création de modèles biologiques et leurs simulations dans différentes conditions sont

déterminantes pour comprendre comment l’adaptation des organismes vivants aux sig-

naux environnementaux résulte de grands réseaux de métabolites, d’ARN, de protéines

et de leurs interactions mutuelles.

De plus en plus grands modèles cinétiques de réseaux cellulaires sont aujourd’hui publiés,

comme résultat de décennies de travail en biologie, de progrès récents dans les bio-

technologies [26, 60] et des progrès dans la modélisation et les approches d’estimation

de paramètres (par exemple, voir [23] et [64]). La grande taille de ces modèles et leur

non linéarité (en raison de boucles de rétroaction complexes) rendent leur calibration et

leur analyse dynamique plutôt difficiles. Plus précisément, il est extrêmement difficile

de relier le comportement global du système au fonctionnement de processus cellulaires

spécifiques (par example La transcription de l’ARN, la phosphorylation des protéines
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ou la formation de complexes), alors que ce gain de connaissances est essentiel pour

identifier quels sont les processus cellulaires clés pour l’adaptation environnementale et

quand ils sont en jeu.

Dans cet esprit, notre travail aborde différentes façons d’obtenir des informations sur le

fonctionnement des cellules, en particulier sur la bactérie Escherichia coli [6]. Le réseau

de régulation des gènes et la croissance de cet organisme modèle sont une grande source

d’intérêts pour la communauté scientifique et pour l’industrie. En outre, l’expérimentation

et la modélisation de E. coli sont l’un des principaux intérêts de l’équipe Inria Ibis et

du groupe de Hans Geiselmann à l’Univ. Grenoble-Alpes avec lequel j’ai collaboré.

Approche

Les méthodes de réduction jouent un rôle central dans la conception des modèles. La

description de la synthèse et de la consommation des composants biologiques d’un réseau

peut conduire à un gros ensemble d’équations différentielles ordinaires (ODE): les ap-

proches de modèles classiques comme des quasi-equilibrium approximation ou des quasi-

steady-state approximation (QSSA) [103] aident à réduire la dimension du modèle, à

travers la séparation des échelles de temps. Cependant, la réduction du modèle avec ces

approches n’est pas une tâche facile, en particulier pour les systèmes avec des boucles

de rétroaction, que l’on trouve souvent dans les systèmes biologiques. Pour cette raison,

dans la première partie de la thèse, nous montrons la réduction d’un modèle ODE de

grande dimension, décrivant l’activité de l’ARN polymérase dans E. coli, qui favorise sa

propre transcription. En utilisant la théorie des systèmes monotones et les arguments

d’échelles de temps, nous pouvons le réduire à un modèle avec deux variables (ARN

polymérase et son ARNm). Nous analysons le modèle réduit, en particulier la relation

entre le taux de production RNAP, la quantité de ribosome et le taux de croissance

cellulaire.

Ces outils classiques ont permis le développement de modèles plus grands, dont les

formes réduites conservent encore de nombreuses équations et boucles de rétroaction. Si

l’on considère le mécanisme complet d’expression de gènes de E. coli, par exemple, il ne
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comprend pas seulement l’ARN polymérase, mais aussi les ribosomes, les protéines cellu-

laires et les métabolites, ainsi que leurs interactions régulatrices mutuelles. Pour analyser

ces modèles cellulaires complexes, dans la deuxième partie de la thèse, nous présentons

une nouvelle approche numérique appelée Analyse de Processus Principaux (PPA) qui

permet à la fois l’analyse et la réduction des systèmes biologiques sans modifier leur

structure principale. Basé sur la décomposition de la dynamique du système en proces-

sus biologiques actifs ou inactifs par rapport à une certaine valeur seuil, PPA apporte la

connaissance des processus clés impliqués lors de l’évolution du système dans différentes

fenêtres temporelles. Dans chaque fenêtre temporelle, le système est réduit à ses princi-

paux mécanismes, négligeant les processus biologiques considérés comme étant inactifs.

Cette approche est une méthode simple à utiliser, qui constitue un outil supplémentaire

et utile pour analyser le comportement dynamique complexe des systèmes biologiques.

La réduction de modèle qui en résulte n’entrâıne pas une perte d’information ou de

changements significatifs de la structure du modèle, comme cela se produit avec d’autres

techniques de réduction. Pour tester la qualité de notre approche, nous appliquons la

PPA sur différents systèmes biologiques à grande dimension: modèles d’horloges cir-

cadiennes, toxicologiques, et de voies de signalisation. Chaque analyse donne des in-

formations biologiques importantes et, pour la plupart, nous obtenons un sous-modèle

pour chaque fenêtre de temps proposée. En fait, la PPA peut être appliqué à n’importe

quel modèle biologique exprimé par ODEs et il a été récemment utilisé par d’autres

équipes de recherche [88, 95] à des fins d’analyse et de réduction, obtenant des résultats

intéressants. Parce que notre approche est basée sur la connaissance a priori des trajec-

toires du système, elle dépend des paramètres et des valeurs de condition initiale: nous

avons également testé la robustesse de la PPA aux valeurs des paramètres en utilisant

l’analyse de sensibilité globale et les valeurs de condition initiale à l’aide d’une méthode

ayant des similitudes avec un formalisme piece-wise linear.

Après avoir testé notre technique sur différents modèles biologiques, dans la troisième

partie de la thèse, nous l’appliquons pour l’analyse d’un modèle, conçu par Delphine

Ropers de l’équipe Inria Ibis, qui décrit le fonctionnement du mécanisme d’expression des

gènes. En tant que tel, le modèle étend avec d’autres modules le modèle de transcription-

traduction de l’ARN polymérase décrite dans la première partie. Il est également capable
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de décrire le contrôle externe de la croissance de E. coli par un inducteur externe (IPTG)

agissant sur la transcription des ARNm de la sous-unité de l’ARN polymérase.

La dernière partie de la thèse étudie en outre le contrôle externe de E. coli par IPTG,

au moyen d’un modèle beaucoup plus simple de ce système, axé sur les processus clés

nécessaires pour reproduire des observations biologiques sur l’expression des gènes dans

des cellules individuelles, avec ou sans IPTG. Ce système est l’occasion d’aborder le

problème de l’estimation des paramètres, qui suit immédiatement celui de la réduction

du modèle. Dans le cas présent, nous calibrons le modèle simple en utilisant des données

de gènes rapporteurs et des données de croissance obtenues dans des cellules individuelles

traitées ou non avec IPTG [51]. Nous montrons que la calibration du modèle sur chaque

cellule est préférable à la calibration d’un modèle moyen aux données moyennes, en

raison de la grande variabilité entre les cellules et bien que cette variabilité soit incluse

dans la procédure de calibration comme une erreur de mesure.

Organisation du manuscrit et contributions

Le manuscrit est organisé comme suit. Dans le premier chapitre introductif, nous

décrivons brièvement la biologie cellulaire de E. coli et des méthodes pour contrôler

sa croissance (Chapitre 3). Dans le deuxième chapitre introductif, nous présentons

différents formalismes classiques pour concevoir, analyser et réduire les systèmes de

réseau de régulation des gènes (GNR) (Chapitre 4).

Dans le Chapitre 5, nous nous concentrons sur le modèle de transcription-traduction

de l’ARN polymérase dans E. coli. Mes contributions sont: effectuer des simulations

de modèles complets et réduits avec un nouvel ensemble de paramètres pour obtenir

des résultats plus réalistes d’un point de vue biologique; comparer un modèle classique

de polymérase RNAP au modèle réduit obtenu, y compris une étude de sensibilité par

rapport au nombre de ribosomes; concevoir et étudier un système réduit incluant un

taux de croissance variable. Une version de ce chapitre a été soumise au journal Bulletin

of Mathematical Biology, dans lequel je suis le deuxième auteur.
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Dans le Chapitre 6, nous présentons l’analyse de processus principaux et la notion de

poids relatif associés aux processus afin de les comparer. Nous appliquons la PPA à

un modèle de rythmes circadiens chez les mammifères [73]: les erreurs relatives globales

sont utilisées pour tester la qualité de la réduction, tandis que l’application de l’analyse

de sensibilité globale nous permet de tester l’influence des paramètres du modèle sur ces

erreurs. Les résultats obtenus prouvent la robustesse de notre méthode. J’ai développé

en détail cette approche numérique à partir d’une version préliminaire développée par

Jean-Luc Gouzé, avec la collaboration de ma co-encadrante Delphine Ropers. J’ai ef-

fectué l’analyse de sensibilité globale avec l’aide de Suzanne Touzeau (Biocore et INRA).

Une version en papier de journal de ce chapitre a été soumise à Journal of Theoretical

Biology dans laquelle je suis le premier auteur.

Les premières applications de PPA sur un modèle circadien de Drosophila [72] et un

modèle de voie de signalisation [68] sont présentés en Annexe B: nous ne les insérons pas

dans un chapitre ordinaire pour éviter les redondances avec le Chapitre 6. Ce travail

a été présenté au 23ème Méditerranée Conférence sur le contrôle et l’automatisation

MED, tenue à Torremolinos, en Espagne, du 16 au 19 juin 2015 (avec des relectures par

des pairs) et a été accepté comme un papier de conférence dans lequel je suis le premier

auteur.

Le Chapitre 7 traite de la robustesse du modèle aux conditions initiales: nous évaluons la

qualité de la PPA sur un ensemble de valeurs initiales possibles. Par souci de simplicité,

et parce que les ordres de grandeur peuvent être importants dans les modèles biologiques,

nous considérons les conditions initiales dans les rectangles représentant un ordre de

grandeur et nous limitons cette approche à la dimension deux. Le plan est divisé en

une grille logarithmique et nous appliquons (sous certaines hypothèses concernant la

monotonie des processus) la PPA en calculant une limite maximale pour les poids de

chaque processus. Nous conservons les processus actifs qui ont un poids dynamique plus

élevé qu’un seuil fixe. Avec ce travail, nous démontrons la robustesse de notre méthode

aux variations des conditions initiales. J’ai effectué ce travail en collaboration avec mon

directeur de thèse Jean-Luc Gouzé et il sera présenté au Congrès mondial IFAC 2017
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(avec relectures par les pairs) et a été accepté comme un papier de conférence dans lequel

je suis le premier auteur.

Dans le Chapitre 8, nous appliquons la PPA sur un modèle déterministe conçu par Bayer

CropScience [79], qui décrit les effets toxicologiques d’un fongicide sur les souris mâles.

Nous voulons vérifier si les processus du modèle calibré sont actifs dans l’ordre attendu,

connaissant la série d’événements clés proposés pour cette substance [96]. Pour cela,

nous utilisons, en tant que critère de comparaison, les valeurs absolues des modèles bi-

ologiques et un seuil variable qui dépend des valeurs maximales et minimales des proces-

sus dans chaque variable. Nous appelons cette approche l’Analyse Absolue des Processus

Principaux (APPA). Le travail a été réalisé en collaboration avec David Rouquié, senior

researcher au centre de recherche en toxicologie de Bayer CropScience et avec Frédéric

Dayan, fondateur d’ExactCure et ancien chef d’équipe de R&D chez Dassault Systèmes.

Le système a été modélisé en 2014 par un stagiaire Bayer CropScience, Benjamin Mi-

raglio, sous la supervision de David Rouquié et Frédéric Dayan. Ce travail fera partie

d’un article de journal futur.

Après avoir établi PPA et testé la méthode sur différents modèles, nous l’utilisons main-

tenant pour étudier un nouveau modèle mathématique dans E. coli. Le modèle a été

conçu par ma co-encadrante Delphine Ropers et décrit les mécanismes d’expression des

gènes de la bactérie dans les détails ainsi que l’effet de l’inducteur IPTG sur celui-ci.

Dans le Chapitre 9 nous présentons notre contribution au développement du modèle

pour la description du taux de croissance cellulaire. Nous appliquons ensuite une PPA

sur le modèle GEM pour analyser ses mécanismes de base et nous étudions l’effet de

l’addition d’IPTG au milieu de culture sur la croissance de la bactérie. Ce travail fera

partie d’un article de journal futur.

Dans le Chapitre 10 nous poursuivons l’étude du contrôle externe de E. coli par IPTG

avec un modèle plus simple calibré avec des données expérimentales de surface cellulaire

et de fluorescence, obtenu par Jérôme Izard lors de sa thèse de doctorat dans le labo-

ratoire Adaptation et Pathogénie des Micro-organismes (Univ. Grenoble-Alpes). Nous

comparons la calibration sur chaque cellule individuelle et la calibration de la cellule

moyenne et montrons comment adapter le modèle à chaque cellule individuelle au lieu
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d’une cellule moyenne, permettant d’obtenir plus d’informations sur la variabilité entre

les cellules et donnant une meilleure qualité de calibration. J’ai effectué cette analyse en

collaboration avec Eugenio Cinquemani de l’équipe Ibis et Delphine Ropers. Ce travail

fera partie d’un article de journal futur.

Les conclusions de ces travaux de recherche ainsi que les perspectives sont données au

Chapitre 11.
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Cette thèse a été dirigée par Jean-Luc Gouzé (Inria Biocore) et co-encadrée par Delphine

Ropers (Inria Ibis). Elle a bénéficié du support financier du Conseil Régional PACA et

du projet RESET (ANR-11-BINF-0005) du programme Investissements d’Avenir Bio-

informatique.



Acknowledgements

First of all I want to thank my supervisor Jean-Luc Gouzé to have picked me to be
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Chapter 1

Introduction

Life is one of the most complex phenomena in the universe [60]. When it comes to

biology, the study of even a single unit of life, the cell, is not at all an easy task.

In the last century, cellular mechanisms were studied from different perspectives by

biologists, mathematicians, engineers: through experimentations in different conditions,

mathematical modeling of cell behavior, calibration of these models using experimental

data, analysis and reduction of model structures for different purposes.

All these different studies created a field, a big wall of knowledge, called systems biology

[58], where different minds contributed in their own way.

The aim of this thesis is to add a brick to it.

1.1 Motivations

A major topic of systems biology is in fact the modeling and analysis of cellular networks.

The creation of biological models and their simulations in different conditions are de-

terminant in understanding how adaptation of living organisms to environmental cues

results from large networks of metabolites, RNAs, proteins, and their mutual interac-

tions.

Larger and larger kinetic models of cellular networks are nowadays published, as a results

of decades of work in biology, recent advances in high throughput technologies [26, 60]

and progress in modeling and parameter estimation approaches (for example, see [23]

and [64]). The large size of these models and their non linearity due to complex feedback

loops make their calibration and dynamical analysis rather difficult. More specifically,

1
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it is extremely difficult to relate the global behavior of the system to the functioning of

specific cellular processes (e.g. RNA transcription, protein phosphorylation, or complex

formation), while this gain of knowledge is crucial to identify what are the key cellular

processes for the environmental adaptation and when they are at play.

In this spirit, our work addresses different ways to gain information on cell functioning,

especially on the bacterium Escherichia coli [6]. The gene regulatory network and the

growth of this model organism is a source of interest in the scientific community and

industry. Furthermore experimental and modeling of E. coli are one of the main interest

of the Inria Ibis team and of the group of Hans Geiselmann at the Univ. Grenoble-Alpes

with which I collaborated.

1.2 Approach

Reduction methods play a pivotal role in model designing. Describing the synthesis and

the consumption of the biological components of a network can lead to a large set of

ordinary differential equations (ODEs): classical model approaches as quasi-equilibrium

approximations or quasi-steady-state approximations (QSSA) [103] help to reduce con-

sistently the model dimension, through time scale separation. However model reduction

with these approaches is not an easy task, in particular for systems with feedback loops,

as often found in biological systems. For this reason, in the first part of the thesis, we

show the reduction of a high dimensional ODE model, describing the activity of RNA

Polymerase in E. coli, which promotes its own transcription. Using monotone system

theory and time-scale arguments we are able to reduce it to a model with two variables

(RNA polymerase and its mRNA). We analyze the reduced model with a specific fo-

cus on the relation between the RNAP production rate, ribosome quantity and cellular

growth rate.

These classical tools have allowed the development of larger models, whose reduced forms

still retain many equations and feedback loops. If we consider the full gene expression

machinery of E.coli, for instance, it does not only include the RNA polymerase, but also

the ribosomes, cell proteins and metabolites, as well as their mutual regulatory interac-

tions. For analyzing such complex cellular models, in the second part of the thesis, we

present a new numerical approach called Principal Process Analysis (PPA) that allows

both the analysis and the reduction of biological systems without changing their main

structure. Based on the decomposition of the system dynamics into biological processes

that are active or inactive with respect to a certain threshold value, PPA brings the

knowledge of which are the key processes involved during the system evolution in differ-

ent time windows. In each time window the system is reduced at its core mechanisms,
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neglecting the biological processes that are considered to be inactive. This approach is a

simple-to-use method, which constitutes an additional and useful tool for analyzing the

complex dynamical behavior of biological systems. The resulting model reduction does

not lead to a loss of information or significantly changes of the model structure as can

happen with other reduction techniques. To test the quality of our approach, we apply

PPA on different high dimensional biological systems: circadian clocks, toxicological and

signaling pathway models. Each analysis gives important biological information and for

most of them we obtain a sub-model for each proposed time window. In fact PPA can

be applied to any biological model expressed by ODEs and it has been recently used by

other research teams [88, 95] for analysis and reduction purposes, obtaining interesting

results. Because our approach is based on the a priori knowledge of system trajectories,

it depends on parameter and initial condition values: we have also tested the robustness

of PPA to parameter values using global sensitivity analysis and to initial condition

values using a method, which shares similarity with piece-wise linear formalism.

After having tested our technique on different biological models, in the third part of

the thesis, we apply it to analyze a model, designed by Delphine Ropers from the Inria

Ibis team, that describes the functioning of the gene expression machinery. As such, the

model extends with other modules the transcription-translation model of RNA poly-

merase described in the first part. It is also able to describe the external control of the

growth of E. coli through an external inducer (IPTG) acting on the transcription of

RNA polymerase subunit mRNAs.

The last part of the thesis further studies the external control of E. coli growth by IPTG,

by means of a much simpler model of this system, centered around the key processes

needed to reproduce biological observations on gene expression in single cells, with or

without IPTG. This system is an occasion to tackle the problem of parameter estimation,

which immediately follows that of model reduction. In the present case, we calibrate the

simple model using reporter gene data and growth data obtained in single cells treated

or not with IPTG [51]. We show that single-cell calibration of the model is preferable

over fitting a mean model to the average data, due to the large cell-to-cell variability

and despite its inclusion into the calibration procedure as a measurement error.

1.3 Organization of the manuscript and contributions

The manuscript is organized as follows. In the first introductory chapter we describe

in a nutshell the cell biology of E. coli and methods to control its growth (Chapter 3).

In the second introductory chapter we present different classical formalisms to design,

analyze and reduce gene regulatory network (GNR) systems (Chapter 4).
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In Chapter 5 we focus on the transcription-translation model of RNA polymerase in

E. coli. My contributions are: performing simulations of the full and reduced models

with a new set of parameters to have more realistic results from a biological point of

view; comparing a classical model of RNA polymerase to the reduced model obtained,

including a sensitivity study with respect to the number of ribosomes; designing and

studying a reduced system including a variable growth rate. A version of this chapter

has been submitted to the journal Bulletin of Mathematical Biology, in which I am

second author.

In Chapter 6 we introduce principal process analysis and the notion of relative weights

associated with processes in order to compare them. We apply PPA to a model of

circadian rhythms in mammals [73]: global relative errors are used to test the quality of

the reduction, while applying global sensitivity analysis allows us to test the influence

of the model parameters on these errors. The results obtained prove the robustness of

our method. I developed in detail this numerical approach from a preliminary version

developed by Jean-Luc Gouzé, with the collaboration of my co-supervisor Delphine

Ropers. I performed the global sensitivity analysis with the help of Suzanne Touzeau.

A journal paper version of this chapter has been submitted to Journal of Theoretical

Biology in which I am first author.

The first applications of PPA on a Drosophila Circadian model [72] and a signaling

pathway model [68] are presented in Appendix B: we do not insert them in a regular

chapter to avoid redundancy with Chapter 6. This work has been presented at the

23rd Mediterranean Conference on Control and Automation MED, held in Torremolinos,

Spain, on June 16th-19th, 2015 (with peer reviewed proceedings) and has been accepted

as a conference paper in which I am first author.

Chapter 7 deals with the model robustness to the initial conditions: we assess the quality

of PPA on an entire set of possible initial values. For the sake of simplicity, and because

the orders of magnitude can be large in biological models, we consider initial conditions in

rectangles representing one order of magnitude and we limit this approach to dimension

two. The plane is divided in a logarithmic grid and we apply (under some assumptions

concerning the monotonicity of the processes) PPA by computing a maximal bound for

the weights of of each process. We retain the active processes that have a dynamical

weight higher that a fixed threshold. With this work we prove the robustness of our

method to variations of initial conditions. I performed this work in collaboration with

my supervisor Jean-Luc Gouzé and it will be presented at the IFAC 2017 World Congress

(with peer reviewed proceedings) and has been accepted as a conference paper in which

I am first author.
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In Chapter 8 we apply PPA on a deterministic model designed by Bayer CropScience

[79], that mimics the toxicological effects of a fungicide on male mice. We want to verify

if the processes of the calibrated model get active in the order expected, knowing the

series of key events that have been proposed for this substance [96]. For this purpose we

use, as a comparison criteria, the absolute values of the biological models and a varying

threshold that depends on the maximum and minimum values of the processes in each

variable. We call this approach Absolute Principal Process Analysis (APPA). The work

has been done in collaboration with David Rouquié, senior researcher at the toxicology

research center of Bayer CropScience, and with Frédéric Dayan, ExactCure founder and

former R&D team leader at Dassault Systèmes. The system was modeled in 2014 by a

Bayer CropScience intern, Benjamin Miraglio, under the supervision of David Rouquié

and Frédéric Dayan. This work will be a part of a future journal paper.

Having established PPA and tested the method on various models, we now use it to

study a new mathematical model in E. coli. The model has designed by my co-supervisor

Delphine Ropers and describes the gene expression machinery of the bacterium in details

as well has the effect of the inducer IPTG on it. In Chapter 9 we present our contribution

to the model development for the description of cell growth rate. We then apply PPA

on the GEM model to analyze its core mechanisms and we study the effect of IPTG

addition to the culture medium on the bacterium growth. This work will be a part of a

future journal paper.

In Chapter 10 we continue the study of the external control of E. coli by IPTG with a

simpler model calibrated with experimental data of cellular area and fluorescence, ob-

tained by Jérôme Izard during his PhD thesis in the laboratoire Adaptation et Pathogénie

des Micro-organismes (Univ. Grenoble-Alpes). We compare single-cell calibration and

average-cell calibrations, and show how fitting the model to each individual cell instead

of an average cell, leads to more information about cell-to-cell variability and results

in a better calibration quality. I performed this analysis in collaboration with Eugenio

Cinquemani from the Ibis team and Delphine Ropers. This work will be a part of a

future journal paper.

Conclusions for these research works together with perspectives are given in Chapter 11.





Chapter 2

Introduction (en français)

Cette thèse porte sur la modélisation, l’analyse et la réduction de modèles biologiques,

notamment de réseaux de régulation génique chez la bactérie E. coli. Différentes ap-

proches mathématiques sont utilisées. Dans la 1ère partie de la thèse, on modélise, anal-

yse et réduit avec des outils classiques un modèle de transcription-traduction de grande

dimension de l’ARN polymérase (RNAP) chez E. coli. Dans la 2de partie, l’introduction

d’une nouvelle méthode appelée Analyse de Processus Principaux (PPA) nous permet

d’analyser des modèles de haute dimension, en les décomposant en processus biologiques

dont l’activité est évaluée pendant l’évolution du système. L’exclusion des processus in-

actifs réduit la dynamique du modèle à ses principaux mécanismes. La méthode est

appliquée à des modèles d’horloge circadienne, de toxicologie endocrine et de voie de

signalisation; on teste également sa robustesse aux variations des conditions initiales et

des paramètres. Dans la 3ème partie, on présente un modèle ODE de la machinerie

d’expression génique de cellules d’E. coli dont la croissance est contrôlée par un in-

ducteur de la synthèse de RNAP. On décrit notre contribution au développement du

modèle et analyse par PPA les mécanismes essentiels du réseau de régulation. Dans une

dernière partie, on modélise spécifiquement la réponse de RNAP à l’ajout d’inducteur et

estime les paramètres du modèle à partir de données de cellules individuelles. On discute

l’importance de considérer la variabilité entre cellules pour modéliser ce processus: ainsi,

la moyenne des calibrations sur chaque cellule apparâıt mieux représenter les données

moyennes observées que la calibration de la cellule moyenne.

7





Chapter 3

Notes on molecular cell biology

Various biological systems have been studied during this PhD thesis, from the bacterium

Escherichia coli to the fly Drosophila. Rather than describing these systems in detail,

we will introduce in this chapter important concepts of cell biology in the case of the

bacterium E. coli. For more details, see [6] and [7].

3.1 Escherichia coli

Because cells descend from a common ancestor, studying properties of one organism

can help to understand the properties of others [6]: usually these model organisms are

chosen for their easy genetic manipulation and cultivation in the laboratory or because

they can survive under certain conditions of stress.

The bacterium Escherichia coli is a model organism for prokaryotic cells. It is com-

monly found in the lower intestine of warm-blooded organisms and was one of the first

organisms to have its complete genome sequenced [25]. The bacterium has a rod-shaped

form and is typically 2 µM long. Its cell wall consists of an outer membrane and an

inner membrane containing only one compartment with cytoplasm and generally, no

organelles. The cytoplasm contains most of the cell components: DNA, RNAs, proteins,

metabolites... It is the place where most cellular processes take place: the metabolism,

DNA replication, gene expression processes for instance (see Figure 3.1). Complex molec-

ular machineries also present in the cytoplasm catalyze these processes: for instance, the

ribosomes, responsible for the production of proteins, and the RNA polymerase, involved

in RNA synthesis.

9
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Figure 3.1: Schematic representation of a prokaryotic cell. Intracellular com-
ponents (proteins, DNA and metabolites) are located within the cytoplasm, protected
by the cell wall composed of two membranes. On their surface, E. coli cells carry a
lash-like appendage called flagellum, useful to move in a fluid-like environment and to

detect concentration gradients and other signals (picture taken from [1]).

3.2 Growth of E. coli

E. coli reproduce asexually by a process called binary fission [84], involving an orderly

increase in the quantity of cellular constituents: in terms of cell mass and number of

ribosomes, followed by a duplication of the bacterial chromosome, the synthesis of new

cell walls, the partitioning of the two chromosomes, the septum formation, and the cell

division.

In the laboratory, bacterial growth can be studied from two different perspectives [122]:

• At the level of the single cell, where the increase in cell length or cell volume is

monitored;

• At the population level, with the monitoring of the population size (expressed in

number of cells or total biovolume).

If N is the population size or the cell volume, we can define the bacterial growth rate

as:
dN(t)

dt
= µ(t) ·N(t) (3.1)
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where µ is the specific growth rate.

When cells are grown in population in a batch culture, that is, when the environment

changes over time, the growth can be decomposed in four different phases (see also

Figure 3.2):

• The Lag Phase: bacteria adjust to the new environmental conditions by adapting

gene expression in order to resume growth;

• The Log phase or exponential phase: cell grow and divide at a constant rate such

that the number of cells doubles with each consecutive time period. In this phase

the growth rate expressed by Equation (3.1) is maximal and constant (cells are in

a quasi-steady-state growth);

• The Stationary phase: the depletion of a growth-limiting factor such as a nutrient

arrests growth. In this phase growth rate and death rate are equal. E. coli and

other bacteria produce secondary metabolites, such as antibiotics, during this

phase [84]. The growth rate expressed by Equation (3.1) is null;

• The Death phase: bacteria die.

Figure 3.2: Bacterial growth curve. The evolution of the size of the bacterial
population is represented along time on a logarithmic scale (picture taken from [2]).

The generation time of E. coli bacteria depends widely on the environmental conditions,

from 20 minutes to several hours. An example is shown in Figure 3.3, where E. coli

bacteria were grown in two different growth media containing either glucose as a carbon

source, or a mixture of glucose and amino acids. I did myself the experiment in the group

of Hans Geiselmann at the Univ. Grenoble-Alpes, associated with the Ibis project-team.

Amino acids in the second growth medium can be used directly as building blocks for
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the synthesis of proteins, as a result of which bacteria in the second medium grow faster

than in the presence of glucose only. The size of their population increases to reaches a

plateau when glucose is depleted. Cells subsequently start a new phase of growth where

they use the amino acids as a source of carbon.
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Figure 3.3: Growth kinetics of E. coli . The E.coli strain K12 BW25113 was
inoculated in two minimal media M9 supplemented with 0.3% glucose, in the absence
or presence of 0.1% casamino acids (CAA). Samples were taken every 30 minutes dur-
ing 420 minutes, and their optical density at 600 nm (OD600) was measured. Optical
density is generally proportional to the number of bacteria in the sample. The contin-
uous lines are spline fits of the data: red, resp. green, line in absence, resp. presence,
of CAA. I performed this experiment within the group of Hans Geiselmann (Univ.

Grenoble-Alpes), associated with the Ibis project-team.

3.3 Gene expression

The adaptation of E. coli to different environmental conditions is done through the

reprogramming of gene expression. This process leads to the synthesis of proteins,

starting from the information stored inside genes. Proteins have regulatory and struc-

tural functions needed to form new bacteria cells.

The genome of E. coli is a circular double-stranded DNA of approximately 4.6 million

nucleotide pairs, coding for 4288 different proteins (see Figure 3.4).

In this section, we describe the main phases of gene expression: the transcription of genes

into RNAs and the translation of mRNAs (messenger ribonucleic acids) into proteins.
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Figure 3.4: DNA molecule. DNA is built with four types of nucleotides, each
of them is composed of a sugar-phosphate covalently linked to a base (adenine (A),
cytosine (C), guanine (G) or thymine (T)). They are also linked together through a
sugar-phosphate backbone forming a polynucleotide chain. Two chains, held together
by hydrogen bonds between the paired bases, form a DNA helix (picture taken from [6]).

3.3.1 Transcription

During transcription, the information is copied in another chemical form, but still in

the language of nucleotides: RNAs are linear polymers made of a single-stranded helix

containing ribonucleotides.

The enzyme that catalyzes transcription is called RNA polymerase (RNAP): one of

its sub-unit, called σ factor, recognizes and binds to the promoter region of a gene.

Once bound, RNAP moves stepwise along the DNA, using energy to open the double

helix of DNA and adding ribonucleotides one by one to the growing RNA, which are

complementary to one of the two DNA strands. Transcription stops when RNAP meets

a termination site. There are two possible mechanisms, ρ dependent or ρ independent,

depending on whether the protein ρ binds to the transcription terminator pause site or

not. The transcription process is over and RNAP halts, releasing the RNA molecule

(see Figure 3.5).

Different types of RNAs can be produced in E. coli :

• RNA molecules that are transcribed from genes coding for proteins are called

messenger RNAs (mRNAs);
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Figure 3.5: Transcription. The σ subunit of RNAP (RNA Polymerase) identifies
the promoter (green in the figure) in the DNA and allows the binding of the enzyme.
RNAP opens the double helix of DNA and transcription starts: the σ factor is released
and RNAP synthesizes the RNA, by adding each time a ribonucleotide to the chain
(the bases of ribonucleotides are called adenine (A), guanine (G), cytosine (C) and
uracil (U)). Transcription stops when RNAP meets the terminator signal of DNA (red
in the figure). At this point, RNAP halts and releases both the DNA template and the
newly-made RNA. The enzyme then binds again to the σ factor, searching for a new

DNA promoter to bind (picture taken from [6]).

• RNA molecules that form the ribosome, essential for translation process, are called

ribosomal RNAs (rRNAs);

• RNA molecules that carry an amino acid to the ribosome for protein synthesis are

called transfer RNAs (tRNAs);

• Small RNAs that are non-coding RNA sequences with regulatory functions

within cells.

The total amount of rRNAs and tRNAs is called stable RNAs (sRNAs).

3.3.2 Translation

While DNA and RNA are chemically and structurally similar, RNA and proteins differ

in composition: proteins are made of amino acids covalently linked during translation.

The mRNA sequence is decoded in sets of three nucleotides, called codons, each coding

for an amino acid. Due to the redundancy of the genetic code, there are 43 = 64 possible
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combinations of three nucleotides, even though only 20 amino acids are commonly found

in proteins.

The process of translation is described in Figure 3.6. It is catalyzed by ribosomes,

large macromolecular complexes made of three ribosomal RNAs and more than fifty

ribosomal proteins. The ribosomes assemble on the ribosome binding site of mRNAs,

from which they move three nucleotides by three nucleotides to allow an accurate and

rapid translation of the genetic code. Specific incorporation of amino acids in nascent

proteins is ensured by tRNAs: they carry an amino acid and possess a sequence called

anti-codon, complementary to a mRNA codon.

Figure 3.6: Translation process. In the initialization phase, the ribosome assembles
onto the mRNA and the first tRNA binds to the start codon. In the elongation phase,
the tRNA transfers an amino acid to the tRNA corresponding to the next codon.
The ribosome then moves to the next mRNA codon to continue the process, creating
an amino-acid chain. In the termination phase, when a stop codon is reached, the

ribosome releases the polypeptide (picture taken from [3]).

3.3.3 mRNA degradation

While proteins are usually stable and essentially consumed through growth dilution,

mRNA are labile and can degrade: in E. coli they are actively degraded by enzymes,

like the Ribonuclease E (RNAse E) [76]. When mRNAs are not used in translation

(and thus not protected by translating ribosomes), they have a much higher probability

to be degraded. Contrary to mRNAs, stable RNAs like tRNAs and rRNAs are much

more stable due to their three dimensional structure.
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3.4 Regulation of gene expression in E. coli

Every type of cell, including E. coli, is able, through a wide range of mechanisms to

increase or decrease the production of a specific gene product. These regulations allow

cells to adjust gene expression levels to external signals, for example, according to the

food sources that are available in the environment [33, 85, 87].

Cells control gene regulation at different levels, by [6]:

• Controlling when and how frequently a given gene is transcribed;

• Selectively degrading certain mRNA molecules;

• Selecting which mRNA are translated by ribosomes;

• Selectively activating or inactivating proteins following their synthesis.

Here we will focus on the regulation of transcription. The promoter of a gene contains a

binding site for the RNA polymerase, as well as binding sites for transcription factor(s)

if its expression is regulated. These factors can be:

• a repressor protein if, in its active form, it blocks the binding of RNAP to the

promoter, thus switching genes off;

• an activator protein if, in its active form, it switches some genes on by binding

nearby the promoter and recruiting RNAP to the promoter to initiate transcrip-

tion.

In addition to these specific regulations, global effects such as the abundance of ribo-

somes and RNA polymerase contribute to adjust gene expression to the environmental

conditions [61]. These effects are growth-rate dependent: for instance the number of

ribosomes and RNAP vary with the growth rate, which directly affects the rates of

transcription and translation.

A vivid example of regulation of gene expression is the glucose-lactose diauxie. If a

culture medium contains both glucose and lactose, E. coli cells will preferentially use

glucose by blocking the transport and metabolism of lactose through the transcriptional

inhibition of the lac operon. This first phase of growth on glucose stops with the deple-

tion of the carbon source. After some time during which bacteria express the enzymes

needed for growth on lactose, they resume growth on this nutrient.

The choice of using glucose or lactose is regulated by two mechanisms controlling the

expression of the lac operon. One mechanism is the carbon catabolite repression
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[114]: depletion of glucose is accompanied by the production of high levels of a small

molecule, cAMP (cyclic adenosine monophosphate), which binds to the catabolite re-

pressor protein (CRP). The complex CRP-cAMP is active in transcription: it stimulates

transcription of the lac operon by binding near the lac promoter, which helps to recruit

RNAP onto the promoter region. The second regulatory mechanism informs bacteria

about the presence of lactose in the growth medium through the accumulation of allolac-

tose, a product of lactose metabolism within cells (Figure 3.7). Allolactose binds to the

lactose repressor, LacI, which makes the protein unable to bind to the operator sequence

next to the lac promoter and relieves the transcriptional inhibition of the operon. Thus,

when glucose is absent and lactose is present, the two regulatory mechanisms ensure

that RNAP binds to the promoter region and maximally transcribe the lac genes whose

products are needed for cells to start growing on lactose.

Figure 3.7: Lac operon. The lac operon includes three genes: lacZ (6) coding for the
β-galactosidase cleaving lactose into glucose and galactose; lacY (7) whose product is
a permease involved in the transport of lactose, and lacA (8) coding for a β-galactoside
transacetylase which is not directly involved in lactose metabolism. In the top panel,
RNAP (1) cannot bind to the promoter (3) due to the repressor (2) binding to the
operator (4). In the bottom panel, the allolactose (5) binds to the repressor, so that
RNAP can bind to the promoter region of the lac operon (picture taken from [4]).

The regulation of the lac operon has inspired various applications, in which a synthetic

lac promoter is used to control the transcription of a gene of interest. One example con-

cerns the modification of E. coli to create a strain whose growth rate can be controlled:

this topic is of interest in bio-technologies, where the arrest and re-start of bacterial

growth allows to maximize the production of products of interest. For example, in [51],

the growth rate of E. coli has been artificially modulated, by controlling the transcrip-

tion of the rpoBC genes coding for the ββ′ sub-units of RNAP, through the replacement

of their natural gene promoter by a synthetic lac promoter. In this case, isopropyl
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β-D-1-thiogalactopyranoside (IPTG) is used as a synthetic inducer that mimics

allolactose, without being metabolized by the cell:

• When IPTG is added to the culture medium, it enters the cells where it binds

to the repressor LacI and allows transcription of rpoBC genes. These conditions

allow the synthesis of new RNAP, that induce the expression of proteins needed

by cells to grow and divide;

• When IPTG is absent, LacI binds to its operator in the rpoBC promoter region.

RNAP is no longer expressed, other cell proteins are no longer synthesized and

cells stop growing.

We will come back to this application in Chapters 9 and 10.



Chapter 4

Modeling genetic regulatory

network systems

As explained in Chapter 3, the growth and adaptation to the environmental conditions

in E.coli are due to gene expression and its control. To study and understand the

connections through positive and negative loops between genes, mRNA, proteins and

other cell elements, within gene regulatory networks (GRNs), mathematical and

computer tools are necessary [31, 43, 108].

In this chapter, we present the most well known formalism to model a GRN (ordinary

differential equations), classical tools to analyze graphically and mathematically the sta-

bility of the system (phase plane analysis and Jacobian matrix), reduction methods to

simplify the structure of the model (quasi-steady-state assumptions and piece-wise for-

malism), methods to study the uncertainty of the system (parameter sensitivity analysis)

and to calibrate the model (least-square fitting).

We illustrate these methods with two small regulatory circuits: one including the inter-

action between the mRNA and the protein of a generic gene and one with two proteins

mutually inhibiting the expression of their gene.

We describe these techniques because they are applied in the following chapters. Quasi-

steady-state approximation is used to reduce a high dimension model of the transcription-

translation of RNA Polymerase. Jacobian matrix and phase plane analysis are used to

calculate the steady states of the reduced system and to visualize them graphically

(Chapter 5). These methods are then briefly compared to our technique called prin-

cipal process analysis (PPA) that allows both the analysis and the reduction of

biological systems (Chapter 6 and Appendix B). Global parameter sensitivity analysis

19



Chapter 4. Modeling genetic regulatory network systems 20

is applied in Chapter 6 to verify the robustness of PPA. Some ideas from the piece-

wise linear formalism, like regular domains, switching domains and transition graphs,

are combined to PPA to extend our reduction methodology to biological models with

initial conditions spanning several orders of magnitude (Chapter 7). Then in Chapter

10, parameter fitting is applied to calibrate single cell models and average cell models.

4.1 Ordinary differential equation models

Ordinary differential equation (ODE) systems are the mostly used formalism to

model gene regulatory networks. Example of biological models involving the ODE for-

malism can be found in [36, 44, 56].

The ODE formalism models the concentration of mRNAs, proteins and other cell ele-

ments which are represented by non-negative continous time variables. Regulatory inter-

actions take the form of functional and differential relations between the concentration

variables. More specifically, gene regulation is modeled by reaction-rate equations

expressing the rate of production of a gene product - a protein or mRNA - as a function

of the concentrations of other elements of the system [31].

Reaction-rate equations have the mathematical form:

dxi
dt

= fi(x), xi ≥ 0, 1 ≤ i ≤ n (4.1)

where x = (x1, . . . , xn)
t ∈ R

n
+ is the concentration of n molecular species in the sys-

tem (mRNAs, proteins, metabolites). If we distinguish the positive contribution to the

molecular species xi as the production or the synthesis process (gi(x) ≥ 0) and the

negative contribution as the dilution, degradation or transformation in other species

(di(x) ≥ 0) Equation (4.1) becomes [20]:

dxi
dt

= gi(x)− di(x). (4.2)

4.1.1 Modeling transcription-translation

Transcription and translation can be modeled with the formalism of Equation 4.2, by

taking into account the activator and repressor proteins that enhance/reduce transcrip-

tion and translation rates.
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Let us call A the activator protein, m the number of proteins A and D the promoter

site of a gene. When A binds to D we have the complex C through the reaction:

D +mA
k1−⇀↽−
k2

C (4.3)

where k1 and k2 are the reaction rates, which indicate how quickly or slowly a reaction

takes place. We can model this reaction in a set of ODEs using the law of mass-

action, where the rate of a chemical reaction is directly proportional to the product of

the activities or concentrations of the reactants [38, p.3]:

Ċ = k1DAm − k2C,

Ḋ = −Ċ.
(4.4)

Figure 4.1 shows the formation of the complex C.

Figure 4.1: Formation of complex C. m = 3 activator proteins bind to the
promoter D of the gene G to form the complex C.

Applying the law of conservation of mass - that states that for any system closed

to all transfers of matter and energy, the mass of the system must remain constant over

time - the equation D+C = DT is set: the total amount of promoter sites, free or bound,

remains constant. Knowing that the binding processes are faster than transcription we

suppose that Ċ ≈ 0 (see the quasi-steady-state assumption in Section 4.1.2). We then

obtain the equations:

C = DT
Am

θmA +Am
,

D = DT − C = DT
θmA

θmA +Am
,

(4.5)

with θA = (k2
k1
)

1

m . The amount of mRNA produced depends both on the concentration

of free DNA sites and the concentration of DNA sites bound to an activator or repressor

[20]: supposing that the effect of repressors and activators can be modeled independently,

that the production of mRNA is linearly dependent on D and C, and that the mRNA
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degrades at constant rate, the equation for transcription is:

Ṁ = α0D + α1C − γM M. (4.6)

We can have two distinct cases. In the case of an activator, the contribution of C

on mRNA is much larger than that of D (then α1 ≫ α0). Setting the basal activity

κ0 = α0DT and the parameter κ1 = (α1 − α0)DT , we obtain for the activator case:

Ṁ = κ0 + κ1
Am

θmA +Am
− γM M. (4.7)

In the case of a repressor, the contribution of C to mRNA production is much smaller

than that of D (α1 ≪ α0). Setting the basal activity κ0 = α1DT and κ1 = (α0−α1)DT :

Ṁ = κ0 + κ1
θmA

θmA +Am
− γM M. (4.8)

The function h+(A, θ,m) = Am

θmA +Am in its positive form and in its negative form h−(A, θ,m) =
θmA

θmA +Am is called the Hill function: h+(A, θ,m) describes a curve that starts from zero

and approaches unity [92] and h−(A, θ,m) describes the opposite case. The parameter

θ is the expression threshold of the protein A necessary to produce a significant increase

of mRNA and the parameter m is called Hill coefficient. It controls the steepness of

the Hill functions (the higher is m, the more step-like is the Hill function): if m = 1

the function is then called the Michaelis-Menten equation. Figure 4.2 shows the

steepness of Hill functions at different values of m.
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Figure 4.2: Hill function. Positive (resp. negative) Hill function on the left (resp.
right) for different Hill coefficients: m=1 (Michaelis-Menten case), 2, 5, 100. The

expression threshold of protein A is set at θ = 0.25.
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Figure 4.3: Classical model of gene regulation. The regulation of the gene G by
the protein A.

Translation can be modeled as a linear function of mRNA concentration with a degra-

dation term as well [20]:

Ṗ = κ2M − γP P. (4.9)

Therefore the classical model of gene regulation is:







Ṁ = κ0 + κ1 h
+(A, θ,m)− γM M,

Ṗ = κ2M − γP P.
(4.10)

The gene G is transcribed in the M mRNA and the latter is translated in the protein

P . The transcription of the gene is regulated by the protein A, see Figure 4.3.

4.1.2 Quasi-steady-state assumption of mRNA concentration

It is possible to further simplify the system using the quasi-steady-state-assumption

(QSSA) [103]. QSSA is an well-known approximation method in biochemical kinetics

an and other fields, simplifying the ODE systems with two relevant time scales (fast and

slow scale).

Most of the time mRNA dynamics in GRNs is much faster than protein dynamics, i.e.

the mRNA concentration reaches its equilibrium faster than that of the protein (typical

mRNA half-lives are 2-6 minutes, while those of proteins are on the order of hours [8]).

So, in System (4.10), the mRNA M is degrading faster than the protein P (γM ≫ γP ):

because mRNA concentrations reaches its equilibrium point - the point where Ṁ = 0

- on a time scale much quicker than the concentration of the protein, we can apply the

QSSA in System (4.10).

We now consider the case with an activator protein [20]. We do a time variable change

(τ = γP t) and we obtain the scaled system:

dM

dτ
=

κ0
γP

+
κ1
γP

Am

θmA +Am
−

γM
γP

M, (4.11)
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dP

dτ
=

κ2
γP

M − P. (4.12)

The Tikhonov’s theorem (see Appendix C.2), for a fixed value of the concentration

of the activator protein, can be applied, setting y = M , x = P , ǫ = γP
γM

and with

f(x, y, ǫ) = κ2

γP
y − x, g(x, y, ǫ) = κ0

γM
+ κ0

γM
+ κ1

γm
An

θnA+An − y.

If we substitute the quasi-steady-state equation for M ((4.11), where dM
dτ

= 0) in the

Equation (4.12) for P rewritten in the original time variable, we obtain:

Ṗ = κ̃0 + κ̃1
Am

θmA +Am
− γP P, (4.13)

where κ̃0 =
κ2κ0

γM
and κ̃1 =

κ2κ1

γM
.

4.2 Analysis of a genetic bistable switch

Once we obtain one single ODE Model (4.13), it is possible to study the case where two

proteins are inhibiting mutually their expression. The protein P1 is the repressor of the

protein P2 and vice-versa. We model the System (4.14):

Ṗ1 = κ10 + κ11
θm2

2

θm2

2 + Pm2

2

− γ1 P1,

Ṗ2 = κ20 + κ21
θm1

1

θm1

1 + Pm1

1

− γ2 P2.

(4.14)

Figure 4.4 shows this mutual inhibition.

Figure 4.4: Mutual inhibition between gene p1 and p2. The protein P1 inhibits
the transcription of the gene p2 and the protein P2 inhibits the transcription of gene

p1.

4.2.1 Phase plane analysis

It is possible to represent the interaction between P1 and P2 by plotting one concentra-

tion against one another.
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This graphical representation is called system’s phase plane or phase portrait: it

shows the trajectory that starts at the initial starting point or initial values of the sys-

tem (P1(0),P2(0)) and, because the concentration of molecular species are not negative,

the solutions of the system P1(t) and P2(t) evolves in the region of space called positive

orthant where all coordinates are zero or positive. In the case of System (4.14) the

positive orthant has 2 dimensions (R2
+ = R+ × R+).

It is possible to use vectors to indicate the direction and speed at each point of phase

plane: the overall plot is called direction field that can be determined directly from

the differential equation model. For System (4.14), written in its general form,

d

dt
P1(t) = f1(P1(t), P2(t)),

d

dt
P2(t) = f2(P1(t), P2(t)),

(4.15)

the motion in the phase plane at any given point (P1,P2) is given by the vector

(f1(P1, p2), f2(P1, P2)) [47].

An important feature of phase portrait are the points where the trajectories change

direction with respect to one axis, more precisely where one of the two variables reaches

a local minimun or maximum with respect to time. These points constitute the system

nullclines. The set of points (P1, P2), where Ṗ1 = f1(P1, P2) = 0 is called P1-nullcline

and where Ṗ2 = f2(P1, P2) = 0 is called P2-nullcline. In general the nullcline for the i

coordinate is:

Γi = x ∈ R
2
+ : fi(x) = 0. (4.16)

The points of intersection of nullclines are called the equilibria or steady-state of the

system, where:

x∗ = (x∗1, x
∗
2) ∈ R

2
+ : f1(x

∗
1, x

∗
2) = 0 and f2(x

∗
1, x

∗
2) = 0. (4.17)

The steady state is a configuration of the system where both variables in the system

remain constant. The region of the phase plane from which trajectories converge to each

steady state is called the basin of attraction (the set of points x0 ∈ R
2
+ such as the

solution x(t, x0) converges to x∗ as time approaches infinity).

It is possible to verify the stability of the equilibrium points by applying a small pertur-

bation to the initial condition x(0) = x∗. From an intuitive point of view, if the solution

returns at the value x∗, it means that this point is stable and if the solution does not
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Figure 4.5: Phase portrait. Phase plane for System (4.14), in the case of bistability.
The red arrows compose the direction field of the system. Each region is delimited by
the nullclines (f(P1, P2) = 0 in black and g(P1, P2) = 0 in blue). The stable steady
states are marked by a open rectangle and the unstable steady state is marked by a
black circle. The parameter of the systems are [20]: κ10 = 0.02, κ11 = 1, θ1 = 0.3,

γ1 = 1, κ20 = 0.05, κ21 = 2, θ2 = 0.6, γ1 = 1.3, m1 = m2 = 4.

return to the original point it means that this point is unstable. This notion is for-

malized by Lyapunov stability in [57, Ch.4]. There could be more than one equilibrium

point in one system: for example, System (4.14) has two distinct stable steady-state

points (bistable system) and one unstable point: the biological reason is that if one

of the proteins is present at high concentration, it inhibits the transcription of the other

gene and this implies that the second protein is present at very low concentration (and

vice versa).

This example is called bistable switch because only external stimulus can force the

system to switch from one steady state to the other.

4.2.2 Jacobian matrix

Phase portrait is an important tool to determine the stability of a system, but there

is a technique for stability analysis, called Jacobian matrix, that does not rely on

graphical representation and is not restricted to two species networks. It is the matrix

of all first order partial derivatives of a vector-valued function:
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J(x) =

(

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)

.

The steady state of the system x∗ is locally stable if all the eigenvalues of J(x+) have a

strictly negative part [20]: for the two dimensional case, if the trace of the matrix J(∗) is

strictly negative and the determinant strictly positive, the steady state is locally stable.

In Example (4.14), the equation of each nullcline fi(P1, P2), implicity defines a function

P2 = f̃i(P1). The Jacobian matrix for this system is:

J(x) =

(

− ∂f1
∂P2

df̃1
dP1

∂f2
∂P2

− ∂f2
∂P2

df̃2
dP1

∂f2
∂P2

)

.

and det(J) = ∂f1
∂P2

∂f2
∂P2

( df̃2
dP1

− df̃1
dP1

). So the trace and the determinant for J∗ are: tr(J∗) =

−(γ1 + γ2) and det(J∗) = γ2κ11
m2θ

m2
2

(P ∗
2
)m2−1

(θ
m2
2

+(x∗
2
)m2 )2

(

df̃2
dx1

(P ∗)− df̃1
dx1

(P ∗)
)

.

The trace is always negative and in the steady states near to P1 and P2 axis the deter-

minant is positive and the stable states are positive. The middle steady state is unstable

and the determinant negative (see Figure 4.5).

4.2.3 Piece-wise affine linear system

If more than two proteins are present in a gene network model, the application of phase

plane analysis could be difficult. The piece-wise linear (PL) formalism helps to

overcome this problem [41]: for example, it leads to a qualitative description of the

bistable switch.

Let us take the PL general form:

ẋi = fi(x)− γi xi, 1 ≤ i ≤ n, (4.18)

where the functions fi(x) describe the activation/inhibition of the expression of gene i by

the activation/repression of the protein xj and the term γixi describes the degradation

of the product of gene i. The function fi: R
n
+ → R+ can be detailed as:

fi(x) =
∑

l∈I

κil bil(x), (4.19)

where κil is a rate parameter and bil is a boolean-valued regulation function and I is a

index set. The conditions for the synthesis of the protein of gene i, captured by bij , are
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modeled as the sum of product of step functions s+, s−. The latter are derived from the

Hill functions of ODE models by letting the Hill coefficients tend to infinity (m → ∞).

So:

lim
m→∞

h+(x; θ,m) = s+(x; θ) =







1 if x > θ

0 if x < θ

lim
n→∞

h−(x; θ,m) = s−(x; θ) =







1 if x < θ

0 if x > θ

(4.20)

Assuming that κ10 = κ20 = 0 and limn→∞, System (4.14) becomes:

Ṗ1 = κ11 s
−(P2, θ2)− γ1 P1,

Ṗ2 = κ21 s
−(P1, θ1)− γ2 P2.

(4.21)

The system is defined inside the set Ω = [0, κ11

γ1
] × [0, κ21

γ2
] and is now divided in four

boxes or regular domains [20]:

B00 =
{

P ∈ R
2
+ : 0 < P1 < θ1, 0 < P2 < θ2

}

,

B01 =

{

P ∈ R
2
+ : 0 < P1 < θ1, θ2 < P2 <

κ2
γ2

}

,

B10 =

{

P ∈ R
2
+ : θ1 < P1 <

κ1
γ1

, 0 < P2 < θ2

}

,

B11 =

{

P ∈ R
2
+ : θ1 < P1 <

κ1
γ1

, θ2 < P2 <
κ2
γ2

}

.

(4.22)

In each box the system is simple to study (linear decoupled form) and its solution can

move in one of the adjacent boxes, crossing the box threshold (or switching domains):

the succession of the possible transitions is called transition graph.

For example in B0,0 the system becomes Ṗ1 = κ1 − γ1P1, Ṗ2 = κ2 − γ2P2: the steady

state of the solution is (P ∗
1 , P

∗
2 ) = (κ1/γ1, κ2/γ2). If θi < κ1/γi, the system crosses the

domain and the solution switches to another system.

In Figure 4.6 is shown System (4.21) with its equilibrium points φ1 = (κ1/γ1, 0), φ2 =

(0, κ2/γ2), φ3 = (θ1, θ2). φ1 and φ2 belong to the boundary of their respective domains

(B10 and B01), so any trajectory entering in one of these boxes remains there. Instead the

ones starting in B00 and B11 will switch to another domain. This behavior is summarized

in Figure 4.7.
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Figure 4.6: Phase plane for piecewise linear System (4.21). The threshold
values θ1, θ2 divide the plane into four rectangular regions, where the vector field is
constant. There are two stable steady states (φ1, φ2) and an unstable equilibrium point
(φ3). One solution x(t) = [P1(t), P2(t)] is shown in black. Picture taken from [20] and

label modified to match our notations.

Figure 4.7: Graph of transition of System (4.21). It is a qualitative description
of the behavior of system 4.21. φ1 is represented by 10, φ2 by 01, φ3 is located in the

middle, at the boundary of the four regular domains. Picture taken from [20].

4.3 Parameter sensitivity analysis

Another important type of model analysis focuses on how the model behavior depends

on parameter values: the study of this dependence is called parameter sensitivity

analysis.

In general, a sensitivity analysis is the study of how the uncertainty variability in the

output of a mathematical model can be apportioned to different sources of uncertainty

variability in its input [97, 99]: for our applications the inputs of the system, i.e. the

model components whose influence on the output is to be investigated, are the parameter

values. This analysis is useful for different purposes [89], for example: to check that the

model output behaves as expected when parameters vary, to identify which parameters

have a small or a large influence on the output, to simplify the model finding and
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removing the parameters that have no effect on the outputs, to detect and quantify

parameter interactions.

There are different ways to define sensitivity of a model with respect to its inputs. We

can distinguish two types of analysis: local and global sensitivity analyses.

4.3.1 Local sensitivity analysis

A local sensitivity analysis is based on the local derivatives of the output Ŷ of the

model Ŷ = f(Z) with respect to the input factors, for instance the parameters Z. It

indicates how fast the output increases or decreases locally around a given value of Z.

The absolute local sensitivity coefficient Si(zk) is defined as the partial derivative of the

output variable Ŷ with respect to factor Zi, calculated for Z = zk, where zk is a set of

parameter values:

Si(zk) =
∂f(Z)

∂Zi

∣

∣

∣

zk
. (4.23)

As an example, let us consider Equation (4.14) and, for the sake of simplicity, let us

assume that P2 has a fixed concentration P̄2:

Ṗ1 = κ10 + κ11
θm2

2

θm2

2 + P̄m2

2

− γ1 P1. (4.24)

The system output of interest (Ŷ ) is the steady state of P1, P
∗
1 :

P ∗
1 =

κ10
γ1

+
κ11
γ1

θm2

2

θm2

2 + P̄m2

2

. (4.25)

The absolute local sensitivity coefficient for the steady state P ∗
1 in Equation (4.25) with

respect to κ11, is:

Sκ11
=

∂P ∗
1

∂κ11
=

∂

∂κ11

(

κ10
γ1

+
κ11
γ1

θm2

2

θm2

2 + P̄m2

2

)

=
θm2

2

γ1(θ
m2

2 + P̄m2

2 )
. (4.26)

Setting the parameter values as follows: κ10 = 0.02, κ11 = 1, θ2 = 0.6, m2 = 4, P̄2 = 0.6,

γ1 = 1, we obtain the following sensitivity coefficient: Sκ11
= 0.5.

The local sensitivity analysis can also be applied to the system dynamics. Let us consider

the state-space equation [121, p.154]:

d

dt
x = f(x, Z), x(0) = x0(Z). (4.27)
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It is possible to calculate the time derivative of the dynamical local sensitivity index, Si:

d

dt
Si(t, zk) =

∂f(x, Z)

∂x
Si +

∂f(x, Z)

∂Zi
, Si(0, zk) =

∂x0(Z)

∂Zi

∣

∣

zk
, i = 1, . . . , s (4.28)

where Si(t, zk) =
∂x
∂Zi

.

Taking as an example Equation (4.24), the time derivative for the dynamical sensitivity

index of κ11 is:
d

dt
Sκ11

(t, zk) = −γ1 Sκ11
+

θm2

2

θm2

2 + P̄m2

2

. (4.29)

As Sκ11
(0, zk) = 0 =⇒ Sκ11

(t, zk) =
θ
m2
2

(θ
m2
2

+P̄
m2
2

)γ1
(1− e−γ1t).

The advantage of these local sensitivity analyses is that one can obtain analytical ex-

pressions of the sensitivity coefficients. However, they are local methods, that focus on

one parameter at a time (for more details, see [116]). To study the effect of several

parameters on model outputs on a larger parameter space, global sensitivity analysis

methods are more relevant.

4.3.2 Global sensitivity analysis

In a global sensitivity analysis the output variability is evaluated when the inputs

factors vary in a given range. Inputs can vary one at a time (for instance in the Morris

method [82]), as in local analyses, but most global methods have inputs varying simulta-

neously to account for and estimate parameter interactions. Although global sensitivity

analyses are numerical analyses, these two advantages (global and input interactions)

make them particularly relevant to study the model behavior to input uncertainty or

variability. There are different methods to perform a global sensitivity analysis (for de-

tails of all methods see [98]). The core methodology of parameter sensitivity analysis is

the same for most methods [80]. The first step is to identify the inputs of the analysis,

i.e. s parameters, and for each parameter Zi to quantify its uncertainty, an interval

value [Zmin(i), Zmax(i)] around its nominal value z0,i. This defines the parameter space.

The second step is to generate N scenarios to explore the parameter space. An input

scenario zk is a combination of input factor levels: zk = (zk,1, . . . , zk,s), k = 1, . . . , N .

The N scenarios depend on the sensitivity analysis method chosen. The third step is to

compute the model output for each scenario f(zk), k = 1, . . . , N . The fourth step is the

analysis of the output distribution, which also depends on the method chosen.

In this section we present major variance-based methods.

Factorial design based method

This method evaluates simultaneously the influence of a large number of parameters,

that can be quantitative or qualitative. The input space is discretized: each input factor
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i can be set to l values or levels (which can depend on i). In a full factorial design,

having s input factors and l levels per factor, there are ls distinct input scenarios: the

full ls factorial design consists in running simulations for all these scenarios exactly

once. To reduce the number of simulations required, a fractional factorial design can be

implemented. It is a subset of the full design, chosen according to the model terms one

wishes to estimate (main effects, two-way interactions,...). For factorial design based

methods, the analysis of variance (ANOVA) is used to estimate the contribution of each

factor and each interaction between factors to the output variability, assuming that there

is a linear statistical model linking factors and output.

Supposing we have s parameters Zi and one output Y , we can implement a fractional

factorial design in order to estimate all main effects αi and two-way interactions βij of

the following linear statistical model linking the output Y to the parameters Zi :

Y = µ+
∑

i

αi +
∑

i

∑

i 6=j

βij + ǫ (4.30)

where µ is the grand mean and ǫ the residual.

After performing ls−f simulations, where f describes the size of the fraction of the full

factorial used, one can estimate thanks to an ANOVA the sum of squares associated

with each factorial term for the output Y : the main effect SSi (αi), or the two-way

interaction SSi,j (βi,j). According to the sparsity-of-effects principle, a system is usually

dominated by main effects and low order interactions, so neglecting third order and

higher interactions can still provide good estimates. Denoting by SST the total sum of

squares, the total sensitivity index of parameter Zi is defined as follows:

tSIi =
SSi +

∑

i 6=j SSi,j

SST
. (4.31)

In Chapter 6 we will use fractional factorial design as a method to evaluate the influence

of every parameter on the global relative errors. These errors assess the quality of

the model reduction by PPA applied to a well-known model of circadian ryhthms in

mammals [73]. Through global sensitivity analysis we will prove the robustness of our

method.

Other variance-based methods

The most common variance-based methods are the Sobol and FAST methods. Com-

pared to the method based on factorial design, they only consider quantitative inputs

and they generally require a fairly larger number of simulations.

The Sobol method [109] considers input that vary continuously within the uncertainty

interval, which can be scaled to [0,1]. The parameter space is explored by Monte Carlo
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sampling or latin hypercube sampling (LHS) [99], with samples that only vary for a

limited number of parameters. The Sobol method hence requires a large number of

simulations, but being a stochastic method, it provides confidence intervals for the sen-

sitivity index estimations.

The Fourier amplitude sensitivity test (FAST) method also considers quantitative input

parameters that vary within given intervals. Simulation scenarios are selected regularly

(periodic sampling) along one or several search trajectories that are designed to explore

the input space. Each trajectory scans each parameter range, with frequency that vary

among parameters. Sensitivity indices are estimated based on a Fourier decomposition

of the variance. The original FAST method [30] is a method for estimating essentially

the first-order sensitivity index for every parameter, while the extend FAST (eFAST)

method [100] allows the estimation of the first-order and the total sensitivity indices.

The FAST method hence requires less simulations than the Sobol method, but the index

approximations may be biased.

4.4 Parameter fitting

Another important topic in modeling is to find the appropriate parameter values for

a biological dynamical model: this task is called model calibration or parameter

fitting. There are parameters that can be measured directly like the degradation rate

of a mRNA from observations of its half-lives but others are not: their values are assigned

by fitting the model behavior to corresponding observations of the system behavior

[47].

The goal of parameter fitting is to determine the parameter values for which model sim-

ulation best matches the data. The accuracy of the model can be assessed by comparing

model predictions to each of the experimental observations, by focusing on residuals

that are the difference between an observed value and the fitted value provided by the

model. One measure of how well the model fits the data is the sum of squared errors,

which sums up the squares of the residuals for each data point, thus giving a single

measure of the quality of the fit.

The measures can be compared during the whole dynamic of the system: in Figure

4.8, for example, the least square method is calculated through the sum of the square

difference between the dynamics of the variable P1(t) and the experimental observations

pj (j = 1 . . . 5) of the concentration of P1 at times tj . The sum of square is:

SSE =
5
∑

j=1

(P (tj)− pj)
2. (4.32)
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Figure 4.8: Fitting of the curve P1. A fitting of the curve based of experimental
data of the curve P1 and the residuals e1, e2, e3, e4, e5: the sum of square is SSE =
5
∑

j=1

(P (tj) − pj)
2 = (0.06082 − 0.03)2 + (0.1397 − 0.2)2 + (0.3877 − 0.32)2 + (0.4737 −

0.5)2 + (0.52− 0.55)2 = 0.0108.

The method called least-square fitting calculates the fit that corresponds to the pa-

rameter values minimizing the sum of squared errors: this parameter set can be found

by numerical function-minimization techniques. For example, MATLAB software has

a nonlinear programming solver, called fmincon: knowing the objective function (for

example the SSE), the parameter initial guess and parameter boundaries, it finds the

parameter values that minimize the objective function [5].

In Chapter 10 we will use parameter fitting to calibrate a deterministic model that de-

scribes the growth arrest of E. coli through the transcriptional control of RNAP genes.



Chapter 5

Reduction and stability analysis

of a transcription-translation

model of RNA polymerase

The aim of the work presented in this chapter is to analyze the dynamical behavior of

models of gene transcription and translation, in the case of RNA polymerase synthesis.

This is an example of positive feedback loop, where RNA polymerase is needed to tran-

scribe its own gene. We write a full model of high dimension based on mass-action laws.

Using monotone system theory and time-scale arguments, we reduce it to a model with

two variables (RNA polymerase and its mRNA). We show that it has either a single

globally stable trivial equilibrium in (0, 0), or it has an unstable zero equilibrium and a

globally stable positive one. We give generalizations of this model, in particular with a

variable growth rate. The dynamical behavior can be related to biological observations

on the bacterium Escherichia coli.

A first draft of this work was written by Ismail Belgacem, former PhD student of the

BIOCORE team. My contributions were: performing simulations of the full and reduced

models with a new set of parameters to have more realistic results from a biological

point of view; comparing a classical model of RNA polymerase to the reduced model

that we obtained, including a sensitivity study with respect to the number of ribosomes;

designing and studying a reduced system including a variable growth rate.

A journal paper version of this chapter was submitted to Bulletin of Mathematical Bi-

ology, in which I am second author (see Appendix A).

35
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5.1 Introduction

The central dogma of molecular biology argues that “DNA makes RNA and RNA makes

proteins”, which are the primary components of cells, see [8]. As we have seen in Chapter

3 gene expression starts with transcription, where the gene is copied into a messenger

RNA (mRNA) by the RNA polymerase. The mRNA is then translated into proteins

by ribosomes. In prokaryotic cells like bacteria, transcription and translation take place

in the same compartment. As a consequence, ribosomes can translate nascent mRNAs

being elongated by the RNA polymerase.

Classical models of gene expression often disregard the effect of RNA polymerase and

ribosome concentration on the accumulation of RNAs and proteins, which is assumed

non limiting. Yet, some works emphasize the important role of the global machinery for

gene expression (see [22] for an example). It is therefore interesting to build detailed

models involving the main actors of the transcription-translation processes, such as RNA

polymerase and ribosomes: some partial detailed models have been developed, see [63]

for an example. We develop in this chapter a complete and detailed model of RNA

polymerase. From the point of view of Control Theory, it is also a nice example of a

positive feedback loop, where RNA polymerase is needed to transcribe its own gene.

Based on mass-actions laws, we first write a detailed mechanistic model of transcription

and translation, where every event (binding, release,. . .) is accounted for. The high

dimension of the resulting model makes it too difficult to handle: we reduce it into a

much simpler system by time-scale arguments and we study the mathematical properties

of the reduced model. To investigate the stability of the fast subsystem and of the

reduced system, we use monotone system theory and concavity properties.

Monotone systems form a class of dynamical systems such that the partial order in

dimension n between two solutions is conserved (see [107]); see Appendix C.1 for more

details about monotone systems. These tools are well adapted to analyze the stability of

biological models [112]. They have strong properties of convergence towards equilibria,

and cannot (for example) exhibit stable periodic oscillations. The second tool is related

to the concavity of functions used in differential equations [105]. In our opinion, these

tools are particularly appealing because they are qualitative (they do not depend too

much on the values of parameters), and they give very strong results about the global

dynamical behavior of the system [46]. These tools have been applied to biological

systems already: population dynamics [106], chemical networks [71]... J.-L. Gouzé and

I. Belgacem have worked with monotone systems theory on metabolic-genetic networks

[15] and on detailed models for gene expression, without any loop [14, 16]. Yet, to

our knowledge, the theorem on concave and monotone systems has not been used in

the context of detailed gene expression models, where functions can be given by rather

complex algebraic expressions resulting from mass balance.
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Using monotone system theory, we are able to prove the global stability of the fast sub-

system with respect to the equilibrium; the global result is difficult to prove by other

techniques, and not proven or proven only locally in most similar works [44, Chapter 4].

We present the original model and its reduction in the next section. Using parameters

built from the literature, we analyze the different time scales in which evolve the variables

of the full system. We decompose the full system into fast and slow subsystems and verify

in Section 5.4 that the fast subsystem satisfies the conditions for applicability of the

Tikhonov’s theorem. This allows us to put the fast subsystem at its quasi-steady state

and obtain a reduced model with a similar dynamical behavior. In Section 5.6, we verify

that the concavity and monotonicity assumptions hold for the reduced model. We show

that the trivial equilibrium is either globally stable (in that case no other equilibrium

exists) or locally unstable, and that it implies the existence and uniqueness of a positive

equilibrium, which is globally stable with respect to the positive orthant. We provide

the biological condition for this alternative. We then investigate a generalization of the

model with a variable growth rate, compare it with simpler models, and finally give

conclusions from a modeling and a biological point of view.

5.2 The coupled transcription-translation model of RNA

polymerase

5.2.1 Description of the model

Figure 5.1 shows the transcription-translation model for the synthesis of RNA poly-

merase in a single cell; for simplification, we consider it to be encoded from a single

gene. This model is inspired from those given in [63]. Transcription is initiated by the

specific binding of RNA polymerase to the promoter region D onto the DNA, a process

promoted by an initiating factor called σ. The RNA polymerase clears the promoter

(with a constant rate kc) and moves along the DNA (with a constant rate kt). Complexes

Y and Y i describe the elongating RNA polymerase, which adds nucleotides one by one.

Addition of the last nucleotide completes the full length mRNA, which is released from

the RNA polymerase. The completed RNA molecule is either subject to degradation

(with a constant rate km) or it is used by ribosomes as a template for the synthesis of

a new RNA polymerase1. Translation starts with the ribosome R forming a complex

RRNA′ with the free ribosome binding site RNA′ on the newly synthesized mRNA.

After clearance of the ribosome binding site (with a constant rate kw), the elongating

1The process of translation can be initiated from every nascent mRNA as shown in [63]. For simplicity,
we suppose that proteins are synthesized from completed mRNAs only. This is consistent with recent
observations on the lack of coupling between transcription and translation in E. coli cells [11].



Chapter 5. Reduction and stability analysis of a transcription-translation model of
RNA polymerase 38

σ + P + D
k−

⇆
k+

PD

PD
kc→ Y + D + σ

Y + Nu
kt→ Y 1

Y 1 + Nu
kt→ Y 2

...

Y L−1 + Nu
kt→ P + RNA

RNA
km→ φ

R + RNA′
k
′

−

⇆

k
′

+

RRNA′

RRNA′ kw→ X + RNA′

X + tRNA∗ k
′

t→ tRNA + X1

X1 + tRNA∗ k
′

t→ tRNA + X2

...

XH−1 + tRNA∗ k
′

t→ tRNA + R + P

P
kp

→ φ

Figure 5.1: Reaction scheme of the transcription-translation model.

form of the ribosome X starts synthesizing the protein: amino acids carried by tRNAs

(tRNA∗) are transferred one by one to the nascent protein (with a constant rate k′t),

giving the complexes X1, X2, ..., X i. After addition of the last amino acid, the protein

is completed and released by the ribosome. The newly synthesized RNA polymerase is

able to start transcribing its own gene and other cellular genes.

The protein and its mRNA are also subject to degradation (with a constant rate kp and

km, respectively), and dilution by growth due to the augmentation of cell volume (at a

rate µ). In a first step, we consider a constant growth rate µ and, for simplicity, the sum

of degradation and dilution will be expressed by only one parameter: k′p for the protein

and k′m for the mRNA. In a second step (Section 5.9) we will consider the degradation

rate and the dilution rate separately, where the latter varies in function of the RNA

polymerase concentration.

5.2.2 Full equation

To write the full system, some assumptions have to be done:
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• The nucleotides, the amino acids and the sigma factor are non limiting and their

concentrations are included in the parameters;

• The free and bound forms of RNA polymerase and mRNA are considered to be

degraded at the same rate;

• The degradation of the bound forms (PD and RRNA′) releases the promoter and

the ribosome;

• The free mRNA corresponds to the mRNA with a free ribosome binding site RNA′.

Using classical mass action kinetics laws we obtain the system:

ċ = k+ p d− k− c− kc c− k
′

p c

ḋ = −k+ p d+ k− c+ kc c+ k
′

p c

ṗ = −k+ p d+ kt y
L−1 + k− c+ k

′

t x
H−1 − k

′

p p

ẏ = kc c− kt y − k
′

p y

ẏ1 = kt y − kt y
1 − k

′

p y
1

ẏ2 = kt y
1 − kt y

2 − k
′

p y
2

...

ẏL−1 = kt y
L−2 − kt y

L−1 − k
′

p y
L−1

ẇ = k
′

+ rm− k
′

− w − kw w − k
′

m w

ṁ = −k
′

+ rm+ k
′

− w + kw w + kt y
L−1 − k

′

m m

ṙ = −k
′

+ rm+ k
′

− w + k
′

t x
H−1 + k

′

m w

ẋ = kw w − k
′

t x

ẋ1 = k
′

t x− k
′

t x
1

...

ẋH−1 = k
′

t x
H−2 − k

′

t x
H−1

(5.1)

where p, d, c, y, yi and m are the concentrations of P , D, PD, Y , Y i and mRNA

respectively, and where w, r, x and xi are the concentrations of RRNA′, R, X and

Xi respectively. L and H are the lengths of the mRNA and the protein, respectively2.

The promoter D remains intact during the degradation of the complex between the

RNA polymerase and the promoter, which means that the following mass conservation

relation holds for the total concentration of promoter:

d = d0 − c

2H is equal to L/3, because the translation of three combined nucleotides in the mRNA gives one
amino acid.
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where d0 is the initial concentration of promoter. We can reduce System (5.1) by re-

placing the three first equations with the following ones:

ċ = k+ p (d0 − c)− k− c− kc c− k
′

p c

ṗ = −k+ p (d0 − c) + kt y
L−1 + k− c+ k

′

t x
H−1 − k

′

p p

The total number of ribosomes (R0) is also conserved:

d

dt
(r + w + x+ x1 + · · ·+ xH−1) = 0

r + w + x+ x1 + · · ·+ xH−1 = R0

System (5.1) has a high dimension due to the large size (L) of the mRNA (up to several

thousands nucleotides) and of the protein (H), see Table 5.1 for their values. The system

dimension is L +H + 53. In addition, the system is non linear and non monotone (for

example ∂ṁ
∂r

= −k
′

+m is negative), which makes it difficult to study its properties: in

this case we need a simplification of the full system.

5.3 Time-scale reduction (fast-slow behavior)

5.3.1 Parameter values for the coupled transcription-translation mod-

els of RNA polymerase

The values of parameters in Tables 5.14, 5.2 and 5.3 have been carefully built from

the literature based on classical papers such as [29]. In the next section, we will show

that System (5.1) has two different time scales - fast and slow - and therefore it can be

approximated by a reduced system by applying Tikhonov’s theorem (see Appendix C.2

and [57] for the statement of the theorem).

3In the ODE System (5.1) there are L differential equations for ẏ, ẏ1...ẏL−1 (L=8253 nucleotides), H
for ẋ, ẋ1...ẋH−1 (L=2751 amino acids) and 5 for ċ, ṗ, ẇ, ṁ, ṙ, which gives a total of 11009 differential
equations.

4In Table 5.1, the ratios L
kt
, and H

k
′

t

are constant (see [63]), so if we take another gene length L and

H, the new values of kt and, k
′

t with respect to L and H respectively will be : kt = (2340/8253)L, and

k
′

t = (1258/2751)H. This rescaling is useful to reduce the number of equations under consideration.
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Table 5.1: Values of the set of parameters (fast scale)

Parameter Value Unit

k+ 80 µM−1 ·min−1

k− 40 min−1

kc 1.5 min−1

kt 2340 nucleotide ·min−1

L 8253 nucleotide

k
′

+ 11 µM−1 ·min−1

k
′

− 100 min−1

kw 55 min−1

k
′

t 1258 aminoacid ·min−1

H 2751 aminoacid

Table 5.2: Values of the set of parameters (slow scale)

Parameter Value Unit

kp 0.00048 min−1

km 0.17 min−1

µ 0.012 µM ·min−1

k′p 0.01248 min−1

k′m 0.182 min−1

Table 5.3: Initial conditions

Parameter Value Unit

d0 0.000347 µM
R0 35 µM
z0 0.5 µM

5.3.2 Separation of the full system into “fast” and “slow” variables

We choose the following slow variables:

z = c+ p+ y + y1 + . . .+ yL−1 (5.2)

q = m+ w (5.3)

They represent the total concentration (free and bound forms) of the RNA polymerase

z and the total concentration of its mRNA q. The fast variables appear more easily if

some variables are rescaled. So, to make the time scales more obvious and verify that

the evolution of z and q is slow, we scale the variables y, y1, ..., yL−1 with respect to

a scaling factor α, and the variables x, x1, ..., xH−1 with respect to a scaling factor β.
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Consider y = αy, yi = αyi and x = βx, xi = βxi, this gives:

ċ = k+ p (d0 − c)− k− c− kc c− k
′

p c

ṗ = −k+ p (d0 − c) +
kt
α

yL−1 + k− c+
k

′

t

β
xH−1 − k

′

p p

ẏ = αkc c− kt y − k
′

p y

ẏ
1
= kt y − kt y

1 − k
′

p y
1

ẏ
2
= kt y

1 − kt y
2 − k

′

p y
2

...

ẏ
L−1

= kt y
L−2 − kt y

L−1 − k
′

p y
L−1

ẇ = k
′

+ rm− k
′

− w − kw w − k
′

m w

ṁ = −k
′

+ rm+ k
′

− w + kw w +
kt
α

yL−1 − k
′

m m

ṙ = −k
′

+ rm+ k
′

− w +
k

′

t

β
xH−1 + k

′

m w

ẋ = βkw w − k
′

t x

ẋ
1
= k

′

t x− k
′

t x
1

...

ẋ
H−1

= k
′

t x
H−2 − k

′

t x
H−1

(5.4)

where kt
α
,
k
′

t

β
are small compared to kt and k

′

t but where the first one is bigger than the

second one (kt
α
= 200min−1 and

k
′

t

β
= 10min−1)5.

Finally the slow evolution part is given by the equation: z = c+p+ 1
α
(y+y1+. . .+yL−1),

then ż =
k
′

t

β
xH−1 − k

′

p z. Similarly, q = m + w therefore q̇ = kt
α
yL−1 − k′m q. Having

introduced the two new variables z and q we return, for simplicity, to the original system

scale (see System (5.5)).

5To obtain these values we choose α = 11.7 and β = 125.8.
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Finally, the full system writes (the slow terms are marked in bold):

ż = k
′

t x
H−1 − k

′

p z

q̇ = kt y
L−1 − k

′

m q

ċ = k+ p (d0 − c)− k− c− kc c− k
′

p c

ṗ = −k+ p (d0 − c) + kt y
L−1 + k− c+ k

′

t x
H−1 − k

′

p p

ẏ = kc c− kt y − k
′

p y

ẏ1 = kt y − kt y
1 − k

′

p y1

ẏ2 = kt y
1 − kt y

2 − k
′

p y2

...

ẏL−1 = kt y
L−2 − kt y

L−1 − k
′

p yL−1

ẇ = k
′

+ r (q − w)− k
′

− w − kw w − k
′

m w

ṙ = −k
′

+ r (q − w) + k
′

− w + k
′

t x
H−1 + k

′

m w

ẋ = kw w − k
′

t x

ẋ1 = k
′

t x− k
′

t x
1

...

ẋH−1 = k
′

t x
H−2 − k

′

t x
H−1

(5.5)

We obtain the fast subsystem by neglecting the bold terms. We group the system

in 2 sub-systems. The first one describes the dynamics of the RNA polymerase z:

ż = k
′

t x
H−1 − k

′

p z. The other fast variables c, p, y, y1, . . . , yL−1 have the following

dynamics:

ċ = k+ p (d0 − c)− k− c− kc c

ṗ = −k+ p (d0 − c) + kt y
L−1 + k− c

ẏ = kc c− kt y

ẏ1 = kt y − kt y
1

ẏ2 = kt y
1 − kt y

2

...

ẏL−1 = kt y
L−2 − kt y

L−1

(5.6)

and should leave the hyperplane z = c+ p+ y + y1 + . . .+ yL−1 invariant.
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The second subsystem describes the dynamics of the mRNA q. With q̇ = kt y
L−1−k

′

m q,

the other fast variables w, r, x, x1, . . . , xH−1 have the following dynamics:

ẇ = k
′

+ r (q − w)− k
′

−w − kw w

ṙ = −k
′

+ r (q − w) + k
′

−w + k
′

t x
H−1

ẋ = kw w − k
′

t x

ẋ1 = k
′

t x− k
′

t x
1

...

ẋH−1 = k
′

t x
H−2 − k

′

t x
H−1

(5.7)

and should leave the hyperplane R0 = w + r + x+ x1 + . . .+ xH−1 invariant.

In Section 5.4, we will show that Subsystem (5.6) - with the variables c, p, y, y1,..., yL−1

- and Subsystem (5.7) - with variables w, r, x, x1, xL−1 - converge to a quasi steady

state and satisfy the conditions to apply the Tikhonov’s theorem and reduce the full

system. In particular we will establish that each of the two subsystems has a unique,

globally stable equilibrium.

5.4 Verification of the applicability of the Tikhonov’s the-

orem for the fast subsystems

To check the assumptions of Tikhonov’s theorem, we need first to study the existence

and uniqueness of the steady state and the global stability of Subsystems (5.6) and (5.7),

which represent the fast part of the full system.

Considering the fast Subsystem (5.6), we see that ċ + ṗ + ẏ + ẏ1 + ... + ẏL−1 = 0: the

system is closed. Powerful theorems apply to this type of monotone system, as can be

easily checked: the Jacobian matrix J(c, p, y, y1, . . . , yL−1)

=

























−(k− + kc − k+ p) k+ (d0 − c) 0 . . . 0

k− + k+ p −k+ (d0 − c) 0 . . . kt

kc 0 −kt . . . 0

0 0 kt . . . 0
...

...
...

...
...

0 0 0 . . . −kt

























(5.8)

is a compartmental matrix which means that
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





















Jii(c, p, y, y
1, . . . , yL−1) ≤ 0 for all i,

Jij(c, p, y, y
1, . . . , yL−1) ≥ 0 for all i 6= j,

−Jjj(c, p, y, y
1, . . . , yL−1) ≥

∑

i 6=j

Jij(c, p, y, y
1, . . . , yL−1) for all j

We can also easily check that the graph of the Jacobian matrix is strongly connected.

The interaction graph associated with the Jacobian matrix (5.8) is shown in Figure 5.2.

Figure 5.2: Interaction graph of System (5.6).

Therefore, we can apply Property 5 [13] to obtain this theorem.

Theorem 5.1. Let z(c, p, y, y1, . . . , yL−1) = c+p+y+y1+ ...+yL−1 be the (fixed) total

concentration of the closed system.

Then for any z > 0, hyperplane Hz = {(c, p, y, y1, . . . , yL−1) ∈ R
L+2
+ : z(c, p, y, y1, . . . ,

yL−1) = z > 0} is forward invariant and contains a unique equilibrium, globally stable

in Hz.

The proof of this theorem can be obtained using a Lyapunov function (for more details

of this proof see [52]).

The second Subsystem (5.7) is quite similar to Subsystem (5.6). The study of the equi-

librium and the stability is exactly the same as before and will not be given here for the

sake of brevity. We define the hyperplane

G =
{

(w, r, x, x1, . . . xH−1) ∈ R
H+2 : w + r + x+ x1 + . . .+ xH−1 = R0

}

. The final re-

sult is that System (5.7) has a unique equilibrium on this invariant hyperplane, which

is globally asymptotically stable.
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5.5 Application of the Tikhonov’s theorem

Since the assumptions of the Tikhonov’s theorem are verified, we apply it and set the

differential equations of the fast part to zero, which gives the following algebraic equa-

tions:

yL−1 = . . . = y1 = y =
kc
kt

c =
kcd0
kt

p

p+ k1
,

xH−1 = . . . = x1 = x =
kw

k
′

t

w =
kw

k
′

t

q r

r + k2
,

k1 =
k− + kc

k+
, k2 =

k
′

− + kw

k
′

+

.

(5.9)

Moreover, using the two conservation relations on the hyperplanes, and the above alge-

braic equations, we obtain:

p+
d0 p

p+ k1
+ l

kc
kt

d0 p

p+ k1
= z,

r +
q r

r + k2
+ h

kw

k
′

t

q r

r + k2
= R0.

(5.10)

The slow subsystem is always given by:

ż = k
′

t x
H−1 − k

′

p z,

q̇ = kt y
L−1 − k

′

m q,
(5.11)

which results in the reduced system:

ż = kw
q r(q)

r(q) + k2
− k

′

p z,

q̇ = kcd0
p(z)

p(z) + k1
− k

′

m q.

(5.12)

where p(z) and r(q) are calculated from the following algebraic equations:

z = γ
p(z)

p(z) + k1
+ p(z),

R0 = λ
q r(q)

r(q) + k2
+ r(q).

(5.13)

with γ = (L kc
kt

+ 1) d0 and λ = H kw
k
′
t

+ 1. These algebraic equations have only one

positive solution p(z) and r(q), because for fixed z and q, the right members of System

(5.13) are increasing functions of p and r.
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Figure 5.3: Time behavior of the total concentration of RNA polymerase z in the
reduced system (dashed red line) and in the complete system (solid blue line), with
initial conditions: p0 = z0 = 0.5 µM , taking L = l = 100 nucleotides, H = h = 33

amino acids. At the equilibrium: z∗reduced = 8.449 µM , z∗full = 8.061 µM .
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Figure 5.4: Time behavior of the concentration of mRNA q in the reduced system
(dashed red line) and in the complete system (solid blue line), with q0 = 0 µM , l = 100
nucleotides, h = 33 amino acids. At the equilibrium: q∗reduced = 0.002694 µM , q∗full =

0.002571 µM .
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5.6 Dynamical study of the reduced system

5.6.1 Simulations of the full and the reduced system

We performed simulations to study the similarity of the reduced system and the full

system, as shown in Figure 5.3 and Figure 5.4 for the concentration of RNA polymerase

and its mRNA, respectively. The dashed line represents the evolution of the reduced

system, and the full line shows the evolution of the complete system. The behavior of

the two systems are rather similar, the full system slightly oscillates a at the beginning,

while the reduced system does not.

5.6.2 Equilibria of the reduced system

We get the following equations for the equilibrium:

z =
kw
kp

q r(q)

r(q) + k2
=

kw
k′

pλ
(R0 − r(q)),

q =
kcd0
km

p(z)

p(z) + k1
=

kcd0
k′

mγ
(z − p(z)).

(5.14)

We therefore obtain z as a function of q, and q as a function of z. Consider the functions:

ξ(q) =
kw
k′

p

q r(q)

r(q) + k2
,

ϕ(z) =
kcd0
k′

m

p(z)

p(z) + k1
.

(5.15)

First we can notice that ϕ(z) is bounded (ϕ(z) < kcd0
k
′
m

), because p(z)
p(z)+k1

< 1. Similarly,

r(q) = R0 −
k
′
pλ

kw
ξ(q), should remain positive, which leads to ξ(q) < kwR0

k
′
pλ

. To determine

the equilibria we have to study the intersections of the two above functions ξ(q) and

ϕ(z). From the algebraic Equations (5.13), if we differentiate the first equation with

respect to z, and the second with respect to q, we obtain:

∂p(z)

∂z
=

(p(z) + k1)
2

γk1 + (p(z) + k1)2
,

∂r(q)

∂q
= −

λ r(q)
r(q)+k2

λq k2
(r(q)+k2)2

+ 1
.

(5.16)

p(z) is positive and increasing, with p(0) = 0 and p(z) ≈ z when z is large. Similarly,

r(q) is positive and decreasing, with r(0) = R0 and r(q) tends toward 0 for large q.
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From the second derivative of the algebraic Equations (5.13), the first equation with

respect to z, and the second with respect to q, we obtain:

∂2p(z)

∂2z
= γ

2k1
(p(z) + k1)3

∂p(z)

∂z

2

,

∂2r(q)

∂2q
=

−2λ k2
(r(q)+k2)2

∂r(q)
∂q

+ λq 2k2
(r(q)+k2)3

∂r(q)
∂q

2

1 + λq k2
(r(q)+k2)2

.

(5.17)

Thus, ∂2p(z)
∂2z

and ∂2r(q)
∂2q

are positive, and we conclude that p(z) and r(q) are also convex.

The derivative of ξ(q) is ξ′(q) = − kw
k
′
pλ

∂r(q)
∂q

, which is positive because ∂r(q)
∂q

is negative.

We have also ξ′′(q) = − kw
k
′
pλ

∂2r(q)
∂q2

, which is negative, because ∂2r(q)
∂q2

is positive.

Similarly, for ϕ(z), we have ϕ′(z) = kcd0
k
′
m

k1
(p(z)+k1)2

∂p(z)
∂z

= kcd0
kmγ

(1 − ∂p(z)
∂z

), which is

positive, because ∂p(z)
∂z

is positive. We also have ϕ′′(z) = −kcd0
k
′
mγ

∂2p(z)
∂z2

, which is negative,

because ∂p(z)
∂2z

is positive.

The functions ξ(q) and ϕ(z) are therefore increasing, positive and concave, and are

bounded (ξ(q) < kwR0

kpλ
, ϕ(z) < kcd0

k
′
m

).

In the phase space (q, z), two cases are possible, see Figure 5.5 and Figure 5.6: either

(0,0) is the unique equilibrium, or there exists another unique, positive equilibrium (the

point (0,0) is always an equilibrium for this system). The alternative between these two

cases depends on the slope at the origin (0,0).

• If : ξ′(q)|q=0 > 1
ϕ′(z)|z=0

⇒ k
′

mk
′

p < kw
kcd0
γ+k1

R0

R0+k2
, then there exist two equilibria

which are (0, 0), and a unique, positive (z∗, q∗).

• If: ξ′(q)|q=0 < 1
ϕ′(z)|z=0

⇒ k
′

mk
′

p > kw
kcd0
γ+k1

R0

R0+k2
, then there exists only one

equilibrium for the system which is (0, 0).

5.6.3 Stability of equilibria

The stability study of the reduced System (5.12) gives the following results: it has either

a single stable equilibrium in (0, 0) or two equilibria, one in zero (unstable) and another

stable one (z∗, q∗).

Proposition 5.2. If k
′

mk
′

p − kw
kcd0
γ+k1

R0

R0+k2
> 0 then

• (0, 0) is the unique equilibrium of the system and it is globally stable in the non-

negative orthant.
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q = ϕ(z)

z = ξ(q)

q

z

kcd0
k
′
m

kwR0

k
′
pλ

Figure 5.5: The phase space (q, z). Two equilibria exist: (0, 0) and another one which
is strictly positive (z∗, q∗) under the condition ξ′(q)|q=0 > 1

ϕ′(z)|z=0

.

q = ϕ(z)

z = ξ(q)

q

z

Figure 5.6: The phase space (q, z). One equilibrium exists, which is (0, 0) if
ξ′(q)|q=0 < 1

ϕ′(z)|z=0

.

Proposition 5.3. If k
′

mk
′

p − kw
kcd0
γ+k1

R0

R0+k2
< 0 then

• (0, 0) is unstable.

• The positive equilibrium (z∗, q∗) is globally stable in the positive orthant.

For the proof of these propositions, we use the fact that System (5.12) is still monotone

[107]. See [18] for more details. The biological interpretations of Proposition 1 and

Proposition 2 are presented in the conclusion.

Figure 5.7 shows the simulation of the reduced system from two different initial condi-

tions, (q01, z01) = (0, 0.5) and (q02, z02) = (0.1, 0.8). We observe that the two trajectories

converge to the positive equilibrium.

The power of this approach is that it allows results from qualitative hypotheses, even
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Figure 5.7: Simulation with the parameter values in Tables 5.1 and 5.2 from two
different initial conditions: q01, z01 = (0, 0.5) (blue line) and q02, z02 = (0.1, 0.8) (red
line). This corresponds to the case that two equilibria exist, (0, 0) and (0.002694, 8.449)

(black star). The latter is globally stable in the positive orthant.

in high dimensions. Being qualitative, it can be easily applied to similar models with

other assumptions. We consider below the case of different degradation rates.

5.7 Applications to other models

In the above model, we supposed that all forms of RNA polymerase are degraded at the

same rate. This assumption could be changed, for example by supposing a degradation

of the free form of the polymerase only, but no degradation for the bound forms. The

new equations are:

z = γ
p

p+ k1
+ p,

R0 = λ
q r

r + k2
+ r,

ż = kw
q r(q)

r(q) + k2
− k

′

p p(z),

q̇ = kcd0
p(z)

p(z) + k1
− k

′

m

(

q −
q r(q)

r(q) + k2

)

.

(5.18)

The conservation equations are the same, but the diagonal elements of the Jacobian

matrix change: yet, it is easy to verify that our approach is still applicable, and, similarly,
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Table 5.4: Parameters of χ(t)

Parameter Value Unit

υc 0.1251 µM ·min−1

kc 0.6452 µM
kpc 0.00087264 min−1

the global stability now depends only on the local stability at (0, 0) with the new

inequality (for the trivial equilibrium) k′p k
′
m > kw

kc d0 R0

k1 k2
. Other generalizations with

qualitative functions of Michaelis-Menten type (M(p) is strictly increasing, concave,

bounded, and such that M(0) = 0) are possible (see [17, 18]).

5.8 Comparison with a classical model of RNA polymerase

It is interesting to compare the new Model (5.12) with the more “classical” model used

to describe gene expression in [8, chapter 2, p. 13], in the case of a protein activating its

own transcription:

χ̇ = υc
χ

χ+ kc
− (kpc + µ)χ, (5.19)

where χ is the protein concentration and µ is the same growth rate as in Table 5.2. We

first substitute in the model of Equations (5.18) k′p with kp + µ and k′m with km + µ.

The dilution term (term with µ) of the equation q̇ can be neglected because biological

evidences demonstrate that µ ≪ km. To simplify our study, we assume that the dynamics

of ż is much slower than the one of q̇, so that q̇ ≈ 0 (by a new quasi-steady state

approximation). We obtain System (5.20).

ż = kw
q r(q)

r(q) + k2
− (kp + µ) z,

q =
kc d0
km

p(z)

p(z) + k1
.

(5.20)

We use then the points of the solution z(t) to fit the model of Equation (5.19)6 and

find the values of the parameters υc, kc, kpc, shown in Table 5.4, so that the dynamical

behavior of the solution χ(t) is the closest to the one of z(t), where χ(0) = z(0). With

these particular values of parameters, the two solutions are very close: the model of

Equations (5.20) can fit classical simpler models.

Yet, from their comparison, we can observe phenomena of biological interest with our

model that are not captured in the “classical” model, especially in the translation term.

6The fitting was done using the fmincon function of MATLAB. We thank Eugenio Cinquemani (Inria,
IBIS) for his help with the optimization procedure.
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Figure 5.8: Variation of the translation process τ with the RNA polymerase concen-
tration z, for different ribosome concentrations: R0=35 µM (black line; in this case the
dynamics of z and χ overlap), R0 = 12.5 µM (blue line), R0 = 5 µM (red line), and
R0 = 0.3 µM (magenta line). The star in each curve denotes the equilibrium points,

respectively z = 9.082 µM , z = 6.919 µM , z = 2.972 µM , z = 0 µM .

.

If we substitute in System (5.20) the algebraic expression for q in the differential expres-

sion of z and isolate the translation term, we have:

τ = kw
q r(q)

r(q) + k2
. (5.21)

Contrary to the “classical” model, this model shows that the translation process τ is

sensitive to R0 (the number of ribosomes): the algebraic part of System (5.18) high-

lights the dependence between r(q) and R0 (for q = 0, r(0) = R0). In Figure 5.8 are

shown different curves of the translation process as a function of RNA polymerase con-

centration, due to different concentrations of R0: the more ribosomes are available in

the system, the more z can be translated. The first three curves from the top represent

three systems that follow the case of Proposition 1 (one positive stable equilibrium) and

the last curve, the case of Proposition 2 (0 is the only stable equilibrium). Obviously,

these different curves cannot be generated by the simpler model of Equation (5.19).
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Table 5.5: Growth Rate Parameters

Parameter Value Unit

K 8.85 µM
ν 0.0237 µM ·min−1

5.9 System with a variable growth rate

In the above sections, we considered a fixed growth rate for the model of Equations

(5.12). In the reality, bacteria experience a variable growth rate most of the time. What

is the consequence of this variation on the dynamics of the model? To simplify, we study

only a one-dimensional model, as in Section 5.8. We study the effect of introducing a

variable growth rate, which depends on the concentration of the cell components, here

the concentration of RNA polymerase z. The growth rate can be expressed by means of

a function analogous to the widely used Monod equation in growth kinetic studies [81,

p. 211]:

µ = ν
z

K + z
. (5.22)

The previous System (5.20) becomes:

ż = kw
q r(q)

r(q) + k2
−

(

kp + ν
z

K + z

)

z,

q =
kc d0
km

p(z)

p(z) + k1
.

(5.23)

A way to find reasonable values for parameters ν and K is to substitute in the Equation

(5.22) the equilibrium point that the variable z reaches in System (5.20), z∗, to obtain:

µ(z∗) = ν
z∗

K + z∗
. (5.24)

We manually set parameter values in Table 5.5 so that µ(z∗) reaches the value of the

constant µ in Table 5.2 and that System (5.22) reaches the same equilibrium point as

System (5.20). The values in Table 5.5 allows System (5.24) to have the same equilibrium

point of System (5.20). The simulation for z is shown in Figure 5.9 and the growth rate

dynamics in Figure 5.10.

To analyze the new system, we notice that the first term of the equation ż, G(z) =

H(q(z)) = kw
q(z) r(q(z))
r(q(z))+k2

is a function of q, which in turn is a function of z. Using the same

notation as Equations (5.15): G(z) = ξ(ϕ(z)), the derivative of this function is G
′
(z) =

ξ
′
(ϕ(z))ϕ

′
(z). Both term are positive (as discussed in Section 5.6), so the derivative is

positive. The second derivative is G
′′
(z) = ξ

′′
(ϕ(z))ϕ

′
(z)ϕ

′
(z) + ξ

′
(ϕ(z))ϕ

′′
(z). The
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Figure 5.9: Evolution of the total concentration of RNA polymerase z in the case of a
dependent growth rate (dashed red line), compared with system (5.20) (solid blue line).
Initial conditions are: p0 = z0 = 0.5 µM , L = l = 100 nucleotides and H = h = 33

amino acids. The final equilibrium is the same at 9.084 µM
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Figure 5.10: Growth rate dynamics with the parameters of Table 5.5.
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first and last terms are negative and the others positive (as we discussed in Section 5.8),

so the second derivative of the function is positive. G(z) is therefore increasing, positive,

concave and it is bounded (kc d0 kw
km

). The second term of the equationD(z) = kp z+ν z2

K+z

is positive, increasing and convex: depending on the values of the parameters, the

functions G(z) and D(z) can have one or two equilibrium points.

• If : D′(z)|z=0 < G′(z)|z=0 ⇒ km kp < kw
kcd0
γ+k1

R0

R0+k2
, there exist two equilibria

which is 0, and a unique, positive z∗.

• If: D′(z)|z=0 > G′(z)|z=0 ⇒ km kp > kw
kcd0
γ+k1

R0

R0+k2
, there exists only one equilib-

rium for the system which is 0.

Following the same rules as in Section 5.6.3, we see that in the first case the equilibrium

point z∗ is globally stable and 0 is globally unstable, and in the second case 0 is globally

stable.

We notice that the growth rate, which depends only on the concentration of RNA

polymerase z, does not play any role in the qualitative stability of the system. Of

course, it changes the trajectories, as shown in Figure 5.9.

5.10 Conclusion

Several interesting conclusions can be made from this study. First, we demonstrate that

tools from monotone theory are useful for proving stability for, e.g. the fast part of the

system. Moreover, biological conclusions can be drawn. For example, computations lead

to the fact that the system is stable depending on the sign of (see Proposition 1 and

Proposition 2):

km kp − kw
kc d0
γ+k1

R0

R0+k2
.

If R0 is large (many ribosomes), the zero equilibrium is unstable; if R0 is small, the

zero equilibrium is globally stable, and every variable tends to zero. These results are in

agreement with several biological observations on the adaptation of living organisms to

their environment. For instance, in the case of bacteria, the zero equilibrium corresponds

to the situation of cells whose growth is arrested by harmful environmental conditions.

Translation is halted in these cells, through an arrest of ribosome synthesis and the

inactivation of the remaining ribosomes [104, 119]. As a consequence, the intracellular

concentration of active ribosomes decreases, which lowers the concentration of RNA

polymerase. The essential cell components can no longer be synthesized; cells eventually
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die if the ribosomes and the RNA polymerase remains at so low concentrations. By

contrast, when environmental conditions become favorable again, ribosome synthesis

starts immediately and inactivated ribosomes become functional again [104, 119]. The

concentration of ribosomes rises in the cell. According to the model, the zero equilibrium

becomes unstable in these conditions. The consequence is a rapid accumulation of new

pools of RNA polymerase and ribosomes, that are necessary for the cell to synthesize

all the precursors needed to grow and divide again. Note that this very simple loop is

not isolated from the rest of the cell. The simple model could be easily extended so as

to include these regulatory mechanisms. As well, the reduced system could be included

into more general models of the gene expression machinery.

Adding to the system a variable growth rate (depending only on the RNA polymerase

concentration) does not change the stability of the curve, because for z = 0 ⇒ µ′(0) = 0.

We can reach the same equilibrium point of z with a constant or a variable growth rate

as shown in Figure 5.9, if µ(z∗) = µ of Table 5.2.

Moreover, it is important to notice that, in restricted cases, the dynamics of our model

overlaps with a simpler dynamical model (see Section 5.8): this confirms the fact that

we can explain the dynamics of RNA polymerase in a more precise way, detailing also

the relationship with mRNA, without changing its performance with respect to more

simpler and classical models.

Finally, an exciting perspective on which we are working is to add a control on this sys-

tem, for example via the action of an inducer which activates or inhibits the transcription

step.





Chapter 6

Principal process analysis and its

robustness to parameter changes

In this chapter we discuss a work that has been written as a journal paper and submitted

to Journal of Theoretical Biology in which I am first author (see Appendix A).

We design a method called principal process analysis (PPA) that aims at analyzing the

key processes for the system behavior of dynamical networks of high dimension. The

knowledge of the system trajectories allows us to decompose the system dynamics into

processes that are active or inactive with respect to a certain threshold value. Process

activities are graphically represented by boolean and dynamical process maps. We elim-

inate from the model processes that are always inactive, and inactive in one or several

time windows. This reduces the complex dynamics of the original model to the much

simpler dynamics of the core processes, in a succession of sub-models that are easier to

analyze. In this chapter we apply the method to a well-known model of circadian rhythms

in mammals [73] and we use global relative errors to assess the quality of the model re-

duction and apply global sensitivity analysis to test the influence of model parameters

on the errors. The results obtained prove the robustness of our method. Analysis of

the sub-model dynamics allows us to analyze the source of circadian oscillations. We

find that the negative feedback loop involving proteins PER, CRY, CLOCK-BMAL1

is the main oscillator, in agreement with previous modeling and experimental studies.

Hence, PPA is a simple-to-use method, which constitutes an additional and useful tool

for analyzing the complex dynamical behavior of biological systems.

The parameter sensitivity analyses were performed with the supervision of Suzanne

Touzeau, researcher at INRA and Inria of Sophia Antipolis.

59
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In Appendix B we present our first use of PPA. We apply our method to a model that

describes the circadian rhythm in Drosophila [72] and another one that describes the

influence of RKIP on the ERK signaling pathway [68]. The work in Appendix B has

been presented at the 23rdMediterranean Conference on Control and Automation MED,

held in Torremolinos, Spain, on June 16th-19th, 2015 (with peer reviewed proceedings)

and has been accepted as a conference paper in which I am first author (see Appendix

A).

6.1 Introduction

Mathematical modeling has been used for decades as an approach to address complex

problems in several domains of biology. For example, it helps studying the large networks

of metabolites, RNAs and proteins that allow cells to live and grow. Numerous models of

these networks have been developed in computational biology, of increasing complexity

due to advances in modeling and parameter estimation approaches (see [23] and [64] for

an example). Complexity arises from the high dimension of these networks, the large

number of biological processes involved and their non linearity due to complex feedback

loops. This makes the analysis of network functioning rather difficult, notably in terms

of key processes and regulatory mechanisms for the system dynamics.

Different techniques are classically used to reduce model complexity. The simplified

models are easier to analyze, while retaining the main characteristics of the original

models and their biological significance. Quasi-steady-state approximations are mostly

used to reduce system dimension when different time scales are present. Replacement

of some ordinary differential equations (ODEs) by algebraic expressions results in a

differential-algebraic system of smaller dimension. However the reduced models may

remain difficult to analyze [103]. Other approaches simplify the mathematical functions

describing the molecular processes. For instance, piece-wise affine differential equations

approximate by step functions the sigmoidal functions used to describe the regulation of

gene expression. The dynamics of the simplified system can be easily analyzed by means

of state transition graphs [32]. However, these simplifications are generally restricted

to models of gene expression and are more difficult to apply to other types of networks

[12].

Here we address the problem of high dimensional model analysis and reduction by de-

veloping a mathematical and numerical approach, based on the boolean concept of ac-

tivity/inactivity. The method, called principal process analysis (PPA), determines the

contribution of each cellular process to the output of the dynamical system, without
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changing its main structure. We first identify processes that are not contributing signifi-

cantly to the system dynamics and neglect the inactive ones. Some processes can switch

from active, when they contribute most to the system dynamics, to inactive. In a second

step, we thus define time windows in which processes are either always active or always

inactive. We eventually create sub-models for each time window that only contain the

active processes. This reduces the system to its core mechanisms. PPA is a general

approach that can be easily applied to any biological system described by ODEs. For

example, it has been recently used to reveal the correlation between C cycling and pesti-

cide degradation in the detritusphere and fungal dynamics [88], or to reduce a dynamic

metabolic model of lipid accumulation [95].

PPA shares some common features with a method focusing on the major model param-

eters rather than processes [9]. The exploration of parameter space leads to admissible

system outputs. Parameters contributing most to the system dynamics are identified

by cross sections of the admissible regions, whereas PPA uses dynamical weights and

fixed thresholds to determine major processes. Parameters contributing less to the sys-

tem dynamics are eventually removed. Another approach dedicated to chemical kinetics

makes use of stoichiometric coefficients and chemical reactions to identify and remove

chemical species that contribute less to the model output [91]. In this case, the problem

is solved using optimization approaches (see also [24]).

The main objective in this work is that our method should neither change the structure

of the model nor require additional and complicated computations as QSSA can do.

The original and simplified models should remain close and the interpretation of results

should be easy for the biologist.

In Appendix B, we started to develop PPA and applied it to two ODE models whose

reduction preserved their dynamical behavior. Hence, the model of circadian rhythms

in Drosophila [72] was reduced into two models, each describing the system dynam-

ics during day light or darkness. The simpler models maintain a functional negative

feedback loop responsible for the oscillatory behavior of clock proteins. In the second

model describing the regulation of the ERK signaling pathway, the process found to be

the most active influences the variable determinant for the system dynamics, as shown

in [90]. Questions remained open though, concerning the scalability of the approach

and its robustness: to which extent does PPA preserve model dynamics in systems of

higher dimension, with many more biological processes involved and interlocked feed-

back loops? And since the approach requires an a priori knowledge of parameter values,

how sensitive are process activities or inactivities to parameter values? In this study, we

address these questions by studying a much more complex model of circadian rhythms

in mammals, including 16 variables, 76 processes, and intertwined positive and negative



Chapter 6. Principal process analysis and its robustness to parameter changes 62

feedback loops [74]. Parameter sensitivity analysis of the global relative error between

the original and reduced systems allowed us to assess the quality and robustness of our

approach. To that aim, fractional factorial design was used to explore a large parameter

space in a limited number of simulations.

Section 6.2 describes the principle of PPA and global sensitivity analysis. Section 6.3

introduces the model of mammalian circadian clock. We apply our approach to this

complex model in Sections 6.4 to 6.6, and draw conclusions in Section 6.7.

6.2 Methodology

We describe below the basics of the method. We will use as a running example the

14th variable of the mammalian circadian clock model (see Section 6.3 and Appendix

D.1), which describes concentration changes of the nuclear form of protein BMAL1

(BN = x14):

dBN

dt
= −V3B

BN

Kp +BN
+V4B

BNP

Kdp +BNP
+k5BC −k6BN −k7BNPCN +k8IN −kdnBN

(6.1)

6.2.1 Principal process analysis (PPA)

Consider the following ODE model of biological network:

ẋ = f (x, p) (6.2)

where x = (x1, x2, ..., xn) ǫ Rn is the vector of component concentrations,

x0 = (x01, x02, . . . , x0n) ǫ R
n the vector of their initial values and p ǫ R

b the vector of

parameters. Each equation is decomposed into a sum of biological processes:

ẋi =
∑

j

fij (x, p) (6.3)

where fij represents the j
th process involved in the dynamical evolution of the ith variable

of the system over a period of time [0,T].

Example: Equation (6.1) includes seven processes, each associated with a specific bi-

ological function. They take a positive or negative value, depending on whether they

affect positively or negatively the variation of BMAL1 concentration. The equation of
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Figure 6.1: Dynamics of processes that change the nucleic concentration of protein
BMAL1 (BN , see Equations (6.1) and (6.4)) over a 24-hour time window. A: Absolute
value of the processes along time (one color per process). B: Weights associated with

the processes along time. The threshold δ is set at 0.1.

the protein is rewritten as:

ẋ14 = f14,1 + f14,2 + f14,3 + f14,4 + f14,5 + f14,6 + f14,7 (6.4)

where f14,1 = −V3B
BN

Kp+BN
, ..., f14,7 = −kdnBN .

Comparison criteria are needed to weigh the influence of the different processes fij on
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the time evolution of each variable xi. There are several alternatives. For instance,

we can compare their absolute value
(

|fij(x, p)|
)

, scale it by the ith initial condition
( |fij(x(t),p)|

x0i

)

, or scale it by the solution of the ith ODE (
|fij(x(t),p)|

x(t)i
). In this work we

associate a relative weight to each process to make it dimensionless:

Wij(t, p) =
|fij(x(t), p)|

∑

j |fij(x(t), p)|
(6.5)

where 0 ≤ Wij(t, p) ≤ 1 and
∑

j Wij(t, p) = 1.

Definition: Let the continuous function fij(x(t), p) be the jth process of ẋi(t) in t ǫ

[0, T ] and let the threshold δ ǫ [0,1].

We call a process fij(x(t), p) always inactive when Wij(t, p) < δ ∀ t ǫ [0,T].

We call a process fij(x(t), p) inactive at time t when Wij(t, p) < δ.

We call a process fij(x(t), p) active at time t when Wij(t, p) ≥ δ.

Switching time for a process fij(x(t), p) is the time tsij when Wij(t, p) = δ. A process

can have 0, 1, ..., z switching times.

The switching time set Si for the ith variable contains all the switching times tsij where

j = 1, .., k and s = 1, ..., z.

The global switching time set S is the union of all Si.

Example: We set δ = 0.1 (see Section 6.2.3 for the choice of this value) and apply

Equation (6.5) to the seven processes of Equation (6.1). We obtain their dynamical

weight:

• the weight of processes W14,2, W14,6, W14,7 is always below δ and their related

processes f14,2, f14,6, f14,7 are always inactive;

• the processes W14,1 and W14,3 are always above δ and f14,1 and f14,3 are active

during the whole dynamics;

• the weight of the processes W14,4 and W14,5 crosses the threshold twice and the

switching times t114,4 = 4.4h, t214,4 = 20.7h, t114,5 = 0.8h and t214,5 = 20.3h are

collected in the set S14. Figure 6.1a shows the dynamics of the absolute values of

processes involved in Equation (6.1) during a day, while relative weights defined in

(6.5) are shown in Figure 6.1b.

6.2.2 Visualization of process activities

For models as complex as the mammalian circadian clock model, it is advantageous

to qualitatively visualize process activities or inactivities during the system dynamics.



Chapter 6. Principal process analysis and its robustness to parameter changes 65

PPA allows to visually summarize this information in one figure with the help of graph-

ical tools. They are described below.

Boolean Process Map: shows the time-dependent activity of processes, ordered by vari-

ables, during the whole system dynamics [t0, T ]. Active, resp. inactive, processes are

depicted by a white, resp. black, bar.

Dynamical Process Map: displays the activity of processes and their interactions with

variables. In this map, we distinguish three types of process activity to take account

of system equations sharing common processes. Variables (represented by boxes) are

connected by processes (arrows), which can be either inactive (shown in black), active

for all the variables involved (red) or, active for some variables involved and inactive for

the others (yellow).

3-D Process Map: depicts qualitatively for each process, the time-dependent evolution

of its intensity. Process activities are averaged per hour, leading to the discretization of

time. Vertical bars represent process weights for each hour. Their color code represents

the intensity of process weights relatively to the other weights.

Example: Figure 6.2 shows the boolean process map for variable x14 with its specific

switching times (Panel A), the dynamical process map for the time intervals between

t114,4 and t114,5 (Panel B), and the 3-D process map with the evolution of seven processes

during time, discretized for each hour (Panel C). The nuclear import of protein BMAL1

is the strongest process.

6.2.3 First model reduction

The first step of PPA identifies always inactive processes and remove them from the

original system.

The threshold value δ must be chosen in the range [0,1], preferentially at a low value to

avoid neglecting important processes. Otherwise the dynamics of the new system would

change significantly. The objective is to obtain g(xr), the function approximating f(x)

and including less processes.

We introduce the ODE system (6.6), which approximates system (6.2):

ẋr = g (xr, pr) (6.6)

where xr = (xr1, x
r
2, ..., x

r
n) ǫ R

n is the vector of component concentrations, x0 =

(x01, x02, ..., x0n) ǫ R
n the vector of their initial values, and pr ǫ R

c, where c ≤ b is

the vector of parameters. The model reduction approach relies basically on the fol-

lowing theorem: if the vector fields of two systems are close (f(x) ≈ g(x)), then the
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(a)
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Figure 6.2: A. Boolean process map, B. Dynamical process map between times t114,4
and t114,5, C. 3-D process map for the variable x14 and its corresponding 2-D version.

solutions of the original and approximated systems are close during some time interval

under the assumptions on the Lipschitz conditions listed in [57, p. 96, Th. 3.4].

At this stage, dynamical weights have been assigned to every process and a value has

been set for the threshold δ. We can now apply the following rule to define g(xr, pr):

if Wij(x(t), p) < δ ∀ t ǫ [0,T] then gij = 0;

if not, gij ≡ fij.

We thus define xr as an approximation of x and pr as a subset of p.

Example: Because f14,2, f14,6, f14,7 are always inactive, g14,2 = 0, g14,6 = 0, g14,7 = 0

and g14,1 ≡ f14,1, g14,3 ≡ f14,3, g14,4 ≡ f14,4, g14,5 ≡ f14,5. The resulting ODE for xr14 is:

dBr
N

dt
= −V3B

Br
N

Kp +Br
N

+ V4B
Br

NP

Kdp +Br
NP

− k6B
r
N − k7B

r
NPCr

N − kdnB
r
N . (6.7)

To assess the quality of the reduced model g(xr), we numerically compute the global
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relative error between the original and the reduced models on the six outputs of the sys-

tem: the concentrations of Per mRNA (MP ), Cry mRNA (MC), Bmal1 mRNA (MB),

total PER protein (PTot), total CRY protein (CTot), total BMAL1 protein (BTot)
1. If

yh and yrh are the hth output of the original and the reduced systems respectively, one

possible form of global relative error is:

eh =

∫

|yh(t)− yrh(t)|dt
∫

|yh(t)|dt
(6.8)

6.2.4 Creation of chains of sub-models

The second step of PPA consists in defining sub-models. The time period during which

the system evolves can be split into time intervals using the switching times tb (with b =

1, . . . , d) previously grouped in set S and sorted in ascending order: this allows creating

a succession of sub-models for each time window, which contain the core mechanisms

in that period of time. To avoid large chains of sub-models, we reduce the number

of time windows by grouping closer switching times with the easy-to-compute k-means

clustering [54]. Given our global switching time set S = [t1, t2, ..., td], this leads us to

group the d switching times into z (≤ d) clusters C={C1, C2, ..., Cz}, so as to minimize

the within-cluster sum of square (or within-cluster inertia):

argminC

z
∑

v=1

∑

tǫCv

||t− µv||
2 (6.9)

where µv is the mean of the switching times in Cv. We assume that processes with a

switching time in cluster Cv switch together at time trv = µv, the mean switching time

in cluster Cv. There is no precise rule to choose the number of clusters z, but it can be

related to the difference between the maximum and minimum number of active processes

during the time evolution of the system: if the difference is low, z should be chosen low

as well. Such an approach could be:

z ≈
max
v

(nv
act)−min

v
(nv

act)

2
, (6.10)

where nv
act denotes the number of active processes in the vth time window.

We eventually end up with a chain of z + 1 sub-models in the time interval [0, T ], the

first one being valid in [0, tr1], while the last is valid in [trz, T ]. To test the quality of this

second model reduction in each time window, we compute the error (6.8) between the

original model and each sub-model. The global error can be calculated with or without

1The outputs PTot, CTot and BTot are: PTot = PC + PCP + PCC + PCN + PCCP + PCNP + IN ,
CTot = CC + CCP + PCC + PCN + PCCP + PCNP + IN , BTot = BC +BCP +BN +BNP + IN .
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the propagation error: in the first case, for each time window [trv−1, t
r
v] (v = 1, . . . , z + 1

with tr0 = 0 and trz+1 = T ), the initial values of the h outputs of the sub-model SMv are

equal to the final values at trv−1 of the sub-model SMv−1; in the second case, they are

equal to the values of the original model at trv−1.

6.2.5 Global sensitivity analysis

The simplification method described above is performed for a fixed set of parameters

and initial conditions. In Chapter 7 we will study the robustness of PPA with respect

to variations of the initial conditions of the system. Here we focus instead on the effect

of varying parameter values on the quality of the method.

To that aim, we performed a global sensitivity analysis on the global relative errors (6.8)

between the original and reduced models. In a first analysis, we considered the errors

defined as previously, for the six model outputs (eMP
,eMC

,eMB
,ePTot

,eCTot
,eBTot

); then,

in a more detailed analysis, we computed the global relative error for each variable (ei, i =

1, ..., 16). The method we used is based on a factorial design on the uncertain parameters

[35, Ch.3, pp. 69-209], analysis of variance (ANOVA) and principal component analysis

(PCA) [69].

First, we explored the parameter space using factorial design. We varied Nf = 51

parameters of the model [74] (see Section 6.3). We chose Nl = 2 levels for each parameter

pf (or factor): p−f = 0.8 pf and p+f = 1.2 pf . A full factorial design, defined as all

possible combinations of the parameter levels, would be necessary to estimate the main

effects and interactions of all parameters. Such a full design corresponds to N
Nf

l = 251

parameter combinations and would necessitate the same number of model simulations

to compute the corresponding outputs, which are far too many. Thus we implemented

a fractional factorial design [27], which is a subset (fraction) of the full design, chosen

in order to estimate all main effects αf and two-way interactions βfk of the following

linear statistical model linking the error eh to the parameters pf :

eh = µ+
∑

f

αf +
∑

f

∑

k 6=f

βfk + ǫh (6.11)

where µ is the grand mean and ǫh the residual. The fractional factorial design is obtained

using the R package planor2 and consists of 212 parameter combinations, yielding as

many simulations.

By means of an ANOVA based on the linear model and the simulations described above,

one can estimate the sum of squares associated with each factorial term for each error eh:

2Generation of Regular Factorial Designs https://cran.r-project.org/web/packages/planor/

https://cran.r-project.org/web/packages/planor/
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the main effect SSh
f or the two-way interaction SSh

f,k. According to the sparsity-of-effects

principle, a system is usually dominated by main effects and low order interactions, so

neglecting third order and higher interactions can still provide good estimates. Denoting

by SSh
T the total sum of squares, the total sensitivity index of parameter pf is defined

as follows:

tSIhf =
SSh

f +
∑

k 6=f SS
h
f,k

SSh
T

. (6.12)

It represents the fraction of the variance of the error (σ2
eh
) explained by parameter pf .

However, as an ANOVA requires a scalar output, separate sensitivity indices were hence

computed for each error eh. To compare the parameter influence on the different errors

eh, we used non-normalized indices, obtained by multiplying each tSIhf by the variance

of the error:

tSIh
′

f = σ2
eh
tSIhf . (6.13)

To obtain sensitivity indices that represent the global output variance for all 16 variables,

a decomposition of the multivariate output (eh) using PCA was performed (without

normalizing eh). As a result, an inertia proportion ωl was attributed to each component

l. It represents the variability among simulations carried by the component. Only the

Nc first components whose cumulated inertia added up to 95% or more were retained.

Moreover, each simulation was given a score on each component, a scalar representing the

projection of the simulation on the component. Then, for each component retained, an

ANOVA was performed on the scores and total sensitivity indices tSI lf were computed, as

described in Equation (6.12). Finally, a total generalized sensitivity index was calculated

for each parameter pf as the sum of the total sensitivity indices on each PCA component,

weighted by the inertia of the component:

tGSIf =

Nc
∑

l=1

wl tSI
l
f . (6.14)

We used the Multisensi R package3 for this analysis.

6.3 Model description

Periodic fluctuations of the environment subject living organisms to biological rhythms.

The latter are endogenous by nature, but entrained by environmental variations. For

instance, circadian rhythms are generated by a molecular clock within cells, which syn-

chronizes daily physiological variations to the day-night alternance. The model we study

3http://cran.r-project.org/web/packages/multisensi/index.html

http://cran.r-project.org/web/packages/multisensi/index.html
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here describes the circadian clock in mammals [73, 74]. We summarize it below. In the

model, the clock forms a complicated network of intertwined positive and negative feed-

back loops involving four clock genes: Per, Cry, Bmal1, and Clock. Their mRNA and

protein produce sustained oscillations with a period of 24 hours. Light affects expres-

sion of gene Per at the transcriptional level: the first twelve hours of day light increases

its transcription rate (up to 1.8 [µM/h]), while it is lowered in the next twelve hours

of darkness (down to 1.5 [µM/h]). The system functions as follows (for the complete

schema, see Figure 6.3):

• Transcription of genes Per ; Cry and Bmal1 occurs in the nucleus. The newly

synthesized mRNAs are exported into the cytosol.

• In the cytosol, the mRNAs can be either degraded or translated into proteins,

which ones are subsequently phosphorylated (the process is reversible). Unphos-

phorylated proteins PER and CRY form the complex PER-CRY, which reversibly

enters the nucleus. The nuclear and cytosolic forms of the complex can be phos-

phorylated. Likewise, protein BMAL1 is reversibly phosphorylated and reversibly

enters the nucleus, but sole its unphosphorylated form makes a complex with pro-

tein CLOCK. Phosphorylated proteins and complexes in the nucleus or the cytosol

are subject to degradation;

• In the nucleus, the complex CLOCK-BMAL1 activates the transcription of Per

and Cry genes. Activation is stopped by binding of the PER-CRY complex to

CLOCK-BMAL1, which indirectly inhibits Per and Cry transcription;

• The concentration of CLOCK protein is not a variable in the model because it is

constitutively expressed at high levels and considered to be not limiting [74].

The 16 model equations, 56 parameter and 16 initial condition values are shown in

Appendix D.1. The model dynamics is difficult to analyze though, as the circadian

clock involves numerous processes, including interlocked positive and negative feedback

loops responsible for the oscillatory behavior of the clock proteins. Reducing the orig-

inal model around its core active processes can facilitate the model analysis, without

changing significantly the original dynamics, in particular the sustained oscillations of

the solutions.

6.4 Principal process analysis and first reduction

We applied PPA to identify major processes along the system dynamics. We decomposed

each ordinary differential equation in processes, as shown in Equation (6.4) for BMAL1.



Chapter 6. Principal process analysis and its robustness to parameter changes 71

Figure 6.3: Schematic representation of the mammalian circadian clock. Light stim-
ulates the transcription of gene Per. The complex CLOCK-BMAL1 inhibits the tran-
scription of gene Bmal1 and activates the transcription of genes Cry and Per. Nota-
tions: ∅: degradation product; the different forms of a given protein are noted cyto:

cytosolic form, nuc: nuclear form; P : phosphorylated form.

Each process has a biological interpretation and corresponds to a regulatory process or

a biochemical reaction.

We then calculated the relative weight of each process using Equation (6.5) and set a

low threshold δ = 0.1 (see Section 6.2.3 for the choice of this value).

We collected the switching times (values given in Appendix D.2) and then built a boolean

process map to visualize the activity/inactivity of each process (see Figure 6.4). We ob-

tained a first reduction of the model by neglecting 24 out of 76 processes, which were

always inactive (32% of all processes). They correspond to mRNA and protein basal

degradations; cytosolic dephosphorylations of CRY, BMAL1, and PER-CRY; PER-

CRY-CLOCK-BMAL1 dissociation in the nucleus; and BMAL1 dephosphorylation in

the nucleus. The list of neglected processes is shown in Appendix D.3.
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Figure 6.4: Activity of the 76 model processes during a 24-hour period. Processes are
listed in the first column (white background), ordered by variable (blue background).
Their activity is depicted in the second column between 0 and 24 h: a horizontal black,
resp. white, bar when the process is active, resp. inactive. Values for the switching

times are given in Appendix D.2.
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Table 6.1: Global relative errors between the original and reduced models for the six
outputs.

Global Relative Error

Output MP MC MB PTot CTot BTot

Error 0.2499 0.2148 0.1535 0.2648 0.1326 0.2053

We then determined the global relative errors between the original and reduced models

using Equation (6.8) for all six outputs (see Table 6.1). The dynamics of the two models

are compared in Figure 6.7a. The reduced model preserves qualitatively the trend of the

original solutions, as well as their sustained oscillations. The most noticeable difference

concerns the peak of the total concentration of protein PER (PTot), which corresponds

also to the highest error in Table 6.1 (26.48 %): the peak is lower with the reduced

model, which also explains the delay between the original and reduced solutions.

6.5 Creation of sub-models

The simplified model obtained above can be further reduced if we also neglect processes

that are sometimes inactive during the system dynamics. Based on the boolean process

map and the collected switching times, we identified between 38 and 45 active processes

along time (Figure 6.5) and a total of 46 switching times (see Figure 6.6a). Clustering

the switching times into 4 clusters (Figure 6.6) allowed us to generate the five sub-models

described below. The number of clusters was chosen according to Equation (6.10).

• SM1, valid from tr0 = 0 to tr1 = 0.9 h: neglected processes for this model are

always inactive (32% of the total). It therefore corresponds to the reduced model

obtained in Section 6.4.

• SM2, from tr1 = 0.9 h to tr2 = 6 h: 46% of the processes are neglected. In addition

to the always inactive processes listed in Section 6.4, we have the following inactive

processes in this model: cytosolic dephosphorylation of PER, CRY, and PER-

CRY; cytosolic dissociation of PER-CRY; nuclear dephosphorylation of PER-CRY;

PER-CRY export from the nucleus; and formation of the large complex PER-CRY-

CLOCK-BMAL1.

• SM3, from tr2 = 6 h to tr3 = 12.5 h, in which 50% of processes are neglected. In

addition to the always inactive processes listed in Section 6.4, inactive processes

are in this case: transcription of Per and Cry mRNAs; cytosolic phosphorylations
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Figure 6.5: Evolution of the number of active processes as a function of time. The
function increases or decreases at switching times, listed in Appendix D.2.

and dephosphorylations of PER and CRY; cytosolic dephosphorylation of PER-

CRY; nuclear phosphorylation and dephosphorylation of PER-CRY; and nuclear

export of BMAL1.

• SM4, from tr3 = 12.5 h to tr4 = 20 h, which neglects 42% of processes. The processes

include the processes always inactive listed in Section 6.4, as well as: PER and

CRY translation; formation of the PER-CRY complex in the cytosol; PER-CRY

dephosphorylation in the cytosol and the nucleus; and export of BMAL1 from the

nucleus.

• SM5, from tr4 = 20 h to tr5 = 24 h, in which 46% of the processes are neglected.

With the always inactive processes listed in Section 6.4, other neglected processes

are: cytosolic dephosphorylation of PER and CRY; PER-CRY dissociation in the

cytosol; export of PER-CRY; PER-CRY dephosphorylation both in the cytosol

and the nucleus; and PER-CRY-CLOCK-BMAL1 formation.

See also Appendix D.3 for the list of neglected processes in each sub-model.

Table 6.2 gives the global relative error without propagation error, between the original

model and the sub-models for the six outputs. Figure 6.7b illustrates the six models

outputs for the original model and the sub-models without propagation errors, while

Figure 6.7c compares the coupled sub-models with and without propagation error. The

simplified models preserve the oscillatory behavior of the total concentrations of PER,

CRY, and BMAL1, albeit with some discrepancies in the amplitude of the oscillations.

It is in the third time window that the approximated solution differs the most from the



Chapter 6. Principal process analysis and its robustness to parameter changes 75

0 2 4 6 8 10 12 14 16 18 20 22 24

t
0

T

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24

t
0

T

(b)

0 2 4 6 8 10 12 14 16 18 20 22 24

t
0

T

(c)

Figure 6.6: Switching time clustering. A: switching times tb, b = 1, ..., 46 (also
listed in Appendix D.2). B: the four switching time clusters (red, green, pink, black)
obtained by the k-means method. C: the four reduced switching times (trv, v = 1, ..., 4),

corresponding to the mean switching time within each cluster.

original one (Table 6.2). This is visible in Figure 6.7b where the total concentrations

of PER and CRY form a much higher peak in the reduced solution. Note that this

error is not an issue, since our objective is primarily the qualitative analysis of the

model. It is sufficient that the remaining processes in the reduced model produce a

dynamical behavior qualitatively similar and close to the original model. This shows

their important contribution to the system dynamics.

Applying a dynamical process map to the third sub-model (Figure 6.8; see also Section

6.2.2) shows that the transcription of Per and Cry genes is inactive (black arrow) and

that both PER and CRY phosphorylations in the cytosol and in the nucleus are not fully

active (they are not active for all the variables in which they are involved, yellow arrow).

In the other time windows these processes are always fully active (red arrows). This

probably explains why we had an higher error in Table 6.2 for the variable MP , MC ,

PTot and CTot in SM3. The global sensitivity analysis, presented in the next section,

confirmed the validity of this assumption.

Since the dynamics of the coupled sub-models remain close to the original one, we can

further analyze the behavior of the network reduced to its core processes. We use the

dynamical process maps for the different sub-models (Appendix D.4), together with the

process activities in Figure 6.4 and the model outputs in Figure 6.7. The simplified

models preserve the three main interlocked feedback loops described in the original

model, one positive and two negative loops. The functioning of these loops is directly

affected by changes of process activities. Among the two negative feedback loops, which

one is the main oscillator? One negative feedback loop involves the inhibition of Bmal1

transcription by the nuclear form of BMAL1 associated to the protein CLOCK. If this

mechanism is the main source of oscillations, we should observe wide changes in process

activities controlling BMAL1 levels. The total concentration of the protein does not
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Figure 6.7: Model outputs along time for: (A) the original model (solid lines) and
the reduced model (dashed lines); (B) the original model (solid lines) and the coupled
sub-models without propagation errors (dashed lines); (C) the coupled sub-models,
with (dashed lines) and without (solid lines) propagation errors. The equations for
the total concentration of protein PER (PTot), CRY (CTot) and BMAL1 (BTot) are:
PTot = PC + PCP + PCC + PCN + PCCP + PCNP + IN , CTot = CC +CCP + PCC +

PCN + PCCP + PCNP + IN , BTot = BC +BCP +BN +BNP + IN .
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Figure 6.8: Dynamical process map for the third time window. Variables (boxes) and
processes (arrows) are represented, as well as the process activities: inactive (black);

active for all variables involved (red); active for some variables involved (yellow).

vary much in amplitude (Figure 6.7). It mainly decreases in SM2 and SM3, when the

concentration of PER-CRY is also high and forms a complex with CLOCK-BMAL1,

which is subsequently degraded. This degradation process is active most of the time

(Figure 6.4 and Appendix D.4), but variations of the total BMAL1 concentration do

not modify strongly the transcription of Bmal1 mRNA, which remains always active.

As well, the other processes of translation, phosphorylation and degradation for this

variable almost never switch between inactive and active states over time (Figure 6.4

and Appendix D.4). Overall, this suggests that the negative feedback loop involving

CLOCK-BMAL1 is not the main oscillator. This is consistent with analysis results of

the original model in [74].

The other negative feedback loop inhibits Per and Cry transcription through the titra-

tion of CLOCK-BMAL1 by PER-CRY to form the inhibitory complex PER-CRY-CLOCK-

BMAL1. The total concentration of BMAL1 peaks before that of PER and CRY, as

can be seen in Figure 6.7 for SM2 and SM3. When its concentration is maximal in SM1

and SM2, the nuclear form of the protein associated to the protein CLOCK, stimulates
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the transcription of Per and Cry genes, in conditions where light has also a stimulatory

effect on the transcription of these two genes. The processes of transcription and trans-

lation of Per and Cry are active in both models, as a result of which levels of PER and

CRY raise to reach their maximal concentration in SM3. As can be seen from the pro-

cess activities in Figure 6.4 and the dynamical process maps in Appendix D.4 conditions

are favorable for the accumulation of high levels of complexes PER-CRY and CLOCK-

BMAL1-PER-CRY in the nucleus. For instance, numerous processes decreasing PER,

CRY and PER-CRY concentrations in the cytosol and the nucleus are inactive: their

phosphorylation is reduced (the process is inactive for the dephosphorylated forms but

still active for the phosphorylated ones), which limits their degradation, and the nuclear

import of PER-CRY is always active. During the same period of time, the formation

of the large complex CLOCK-BMAL1-PER-CRY, which is active for both CLOCK-

BMAL1 and PER-CRY (Figure 6.4 and Appendix D.4), suggests that the nuclear forms

of PER-CRY and CLOCK-BMAL1 bind as soon as they accumulate in the nucleus. The

large complex is immediately degraded since its degradation process is always active and

its dissociation, always inactive.

In SM2 and SM3, the degradation of the large complex is not compensated for by other

mechanisms allowing BMAL1 accumulation in the nucleus: the cytosolic form of the

protein is actively phosphorylated and then degraded, while its dephosphorylation is

inactive, which reduces the quantity of protein to be imported in the nucleus (see Fig-

ure 6.4 and the dynamical process maps in Appendix D.4). In this compartment, the

absence of active dephosphorylation, together with the active protein phosphorylation,

also contribute to decrease pools of CLOCK-BMAL1 complexes (Figure 6.4, Section

D.4). This halts transcription of Per and Cry mRNAs in SM3 (the processes are in-

active and light is also switched off towards the end of SM3). This also affects the

translation of PER and CRY, which becomes inactive in SM4. Altogether these obser-

vations suggest that the negative feedback loop inhibiting Per and Cry transcription

via the complex CLOCK-BMAL1-PER-CRY is the main source of circadian oscillations.

This is consistent with conclusions in [74], which could obtain a second oscillator based

on the auto-inhibition of BMAL1 for specific parameter values only. These results are

also consistent with the observation of arrhythmic behaviors in mutant mice with double

knock-out of the Per and Cry genes [118, 123].

The positive feedback loop activates Per and Cry transcription through a control of

protein stability mediated by the phosphorylation processes. In the model, sole the

phosphorylated forms of the proteins are degraded. We observed that the reversible

phosphorylation reactions are often displaced in the forward sense, as dephosphoryla-

tion processes are often found inactive. In particular, they contribute to decrease the

concentration of PER, CRY and PER-CRY, which also diminishes the concentration of
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Table 6.2: Global relative error between the original model and each sub-model with-
out propagation error for the six outputs.

Global Relative Error

Output MP MC MB PTot CTot BTot

Error SM1 0.0044 0.0044 0.0044 0.0208 0.0195 0.0073

Error SM2 0.0519 0.0434 0.0453 0.0397 0.1832 0.0402

Error SM3 0.2059 0.2951 0.0360 0.1427 0.2233 0.0356

Error SM4 0.0143 0.0377 0.0389 0.0678 0.1164 0.0210

Error SM5 0.0146 0.0032 0.0230 0.1150 0.0237 0.0053

the large complex CLOCK-BMAL1-PER-CRY and thus relieves the inhibition exerted

by the complex on transcription of Per and Cry genes. Kinetic modeling of the circa-

dian clock in Drosophila has shown the importance of this positive feedback loop for

circadian rhythms [117].

6.6 Parameter influence

To check the robustness of the five sub-models, we performed a global sensitivity analysis

on the output errors (eh) without propagation error for each time window. We varied 51

among the 56 parameters of the model: the Hill coefficients m and n are kept fixed be-

cause they represent the degree of cooperativity in gene repression/activation, while kstot,

vstot, Vphos are function of other parameters (see Appendix D.1). We hence computed

the non normalized total sensitivity indices for all parameters according to Equation

(6.13) (see Figure 6.9, first column). Because the last three outputs (PTot, CTot, BTot)

are the sum of model variables that interact, some processes have no impact on these

outputs and the information on the parameter influence is lost. Thus we also performed

the global sensitivity analysis on the 16 global relative errors between the original model

and the sub-model variables without propagation (see Figure 6.9, second column). The

complex PER-CRY plays an important role in every time window: its variability is due

mostly to its maximal phosphorylation velocity (V1PC) and its degradation parameter

(vdPCC). In the third and fourth time window the other important variation is due to

the CRY protein: in SM3 the variation is mostly due to the binding constants in the

transcription of Per and Cry mRNAs (KAP and KAC) and in SM4, to the maximal

translation rate of BMAL1 (ksB) that stimulates Per and Cry mRNA transcription. In

the last time window, lots of variables contribute to the system variation: the most im-

portant parameter for the variability of the outputs is the maximal velocity of BMAL1

phosphorylation in the nucleus (V3B).
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To get a more global view, we calculated for each parameter set and for each time

window, the average error (averaged over the 16 variables) between the original model

and the sub-model variables as follows:

ē =
1

16

16
∑

i=1

ei (6.15)

Results are shown in Figure 6.10: the variability is higher in the third and four sub-

model: anyway, the difference between the lower and upper quartiles is low in all the

sub-models.

Then, for each time-window, we computed the total generalized sensitivity indices ac-

cording to Equation (6.14), which represents the fraction of error variability explained

by each parameter when parameter values vary. The results are shown in Figure 6.11:

we obtain similar results to the ones in Figure 6.9 (column 2), where in SM1 and SM2 the

maximal phosphorylation velocity (V1PC) and degradation (vdPCC) of PER-CRY com-

plex play the main role, in SM3 the binding constants of Per and Cry protein (KAP and

KAC), in SM4 the translation of BMAL1 protein (ksB) and in SM5 the maximal phospho-

rylation velocity of BMAL1 protein in the nucleus (V3B). To check whether the error vari-

ations between the original model and the sub-models are due to parameters appearing

in neglected processes, we calculated the following ratio: Rh =

∑

f∈{inactive processes}

tGSIhf

∑

f

tGSIh
f

.

We only used the 10 most informative parameters, with higher tGSI, as they explained

most variability. We chose a conservative option: if a parameter is neglected in an in-

active process but still appeared in other active processes, we still considered that it

belongs to the neglected process parameters (worst case). Results are shown in Table

6.3. In most time windows, the variability is mainly due to parameters still contained

in the reduced sub-models, i.e. the parameters of the active processes. In the third

time-window, however, parameters appearing in neglected processes generate more than

50 % of the variability. It is consistent with Figure 6.7b: the peaks of the total con-

centration of PER and CRY are overestimated by the sub-model and some of the most

important parameters that lead to the output variability for this time window are the

translation rate of PER and CRY proteins, the maximal phosphorylation velocity of

PER-CRY complex in the cytosol and nucleus (as it has been shown in Figure 6.11).

This confirms what we have supposed when applying the dynamical process map to SM3

(see discussion about Figure 6.8 at the end of Section 6.5).
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Figure 6.9: Global sensitivity analysis on the output (left column) or variable (right
column) errors between the original model and the sub-models without propagation
error for each time window (lines). Non-normalized total sensitivity indices are repre-
sented for each error (one bar per error) and for: (i) the 10 most influential parameters
(color-coded); (ii) the remaining parameters (white). The residual is also represented
(grey). For the biological meaning of the variables in the second column, see the equa-

tions in Appendix D.1.

Table 6.3: Percentage of tGSI for parameters contained in inactive processes .

% tGSI inactive

SM SM1 SM2 SM3 SM4 SM5

Rh(%) 19.11 15.55 59.54 0 0
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Figure 6.10: Average error between the original model and the sub-model variables
calculated in each time window according to Equation (6.15). Variability (box-plots)
within each sub-model (or time window) is due to the various parameter sets designed

for the sensitivity analysis.

6.7 Conclusion

Model reduction approaches have been used to analyze biochemical network models

since long, but there is no ideal method for models as complex as the mammalian

circadian clock model. The main challenge when analyzing this type of network is to

gain knowledge on key processes: ideally, one would like to identify the major processes,

quantify and then understand their contribution to the system dynamics. PPA has

been developed with this objective in mind, and with the final goal of reducing the

original model in one or several sub-models around core active processes that are easier

to analyze. Questions remained open though concerning the scalability and robustness

of this approach.

In this chapter we applied PPA on a model of high dimension, which incorporates

numerous processes and complex interlocked feedback loops responsible for oscillatory

behaviors. Reduction of the original system dynamics to as much as 50% of its processes

in five coupled sub-models helped us relate the dynamics of the simplified models to the

system components and their active interactions. We hence observed that the negative

feedback loop controlling Per and Cry transcription through the formation of the large

complex PER-CRY-CLOCK-BMAL1 is the main oscillator, in agreement with previous

experimental and modeling studies [74, 118, 123].

The quantification of the global errors allowed us conclude that the simplified models are

good approximations of the original ones. Even in the case of the largest errors observed

on the model output, did the simplified models preserve the oscillations of the clock

proteins. Since PPA is based on the a priori knowledge of the model parameters, it was
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Figure 6.11: Generalized sensitivity indices (GSI) computed for each sub-model on the
errors between the original model and the sub-model variables. The 10 most influential
parameters on the errors are retained: main effect (grey bar) and total GSI (black

bar).
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important to assess the robustness of the approach to uncertainties on these parameter

values. Through a global sensitivity analysis, we studied the impact of variations of

parameter values on the error between the original model and the reduced sub-models.

Not only was the variation of the error small, but it was mostly due to parameters of the

neglected processes. With this analysis, we proved the robustness of PPA to parameter

uncertainty. In a Chapter 7, we will show the robustness of PPA to initial conditions.

In Chapter 9 we will present a refinement of PPA by considering three different levels of

activities (inactive, moderately active, fully active), defined by two different thresholds

in order to improve the quality of model analysis.

Model analysis is the primary goal of PPA, but the method could be used as well for

model reduction purposes: this requires to obtain better reduced models. Another

possible extension is to apply PPA on the full coupled system of equations instead of

working on each equation separately: this would help to analyze activities or inactivities

of processes shared by several equations.



Chapter 7

Principal process analysis and

reduction of biological models

with different orders of magnitude

In this chapter we discuss a work that will be presented at IFAC 2017 World Congress

(with peer reviewed proceedings) and has been accepted as a conference paper in which

I am first author (see Appendix A).

This work is an extension of what we have presented in Chapter 6, testing the robustness

of principal process analysis based on a change in initial values. First, we decompose

the model into biological meaningful processes and then study their activity or inactivity

during the time evolution of the system. Then the structure of the model is reduced

to the core mechanisms involving only the active processes. The initial conditions are

supposed to lie in some rectangle, that could represent one order of magnitude for

the variables. Keeping only the active processes, we obtain the principal processes in

the rectangle and then in the adjacent rectangles where the trajectories may have a

transition. Finally we obtain a partition of the space with a reduced model within each

rectangle. We apply these techniques to a classical model of gene expression with a

protein and a messenger RNA.

7.1 Introduction

In the previous Chapter 6 and in Appendix B we applied principal process analysis

(PPA) on different models: the results were valid for a fixed set of initial values and

parameter values, and we tested the robustness of this approach with respect to a change

85
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of parameter values in the Mammalian Clock Model of Chapter 6. In this chapter, we

rather focus on how the choice of the initial conditions affects the activity of the pro-

cesses, resulting into a possible change of the reduced model: this work has similarities

with the work in [19] and other qualitative approaches based on phase-space partition

(e.g. see [48–50, 66]), but our approach is not mainly oriented toward reduction and

applies to general systems.

Instead of a single initial point we consider the PPA on an entire set of possible initial

values. For the sake of simplicity and brevity, and because the orders of magnitude of

the variables are very important in biological models, we consider initial conditions in

rectangles representing one order of magnitude (e.g., the variables are between 1 and 10,

or 10 and 100...) and we limit this first approach to the dimension two. It is however

clear that it could be applied to any rectangular grid, and to any dimensions (but the

notations would be more cumbersome). The plane (x1,x2) is therefore divided into a

logarithmic grid, and we apply (under some assumptions concerning the monotonicity

of the processes) our method by computing a maximal bound for the weight of each

process within the rectangle. We only retain the active processes, having a dynamical

weight higher than a fixed threshold δ.

The chapter is organized as follows: in Section 7.2, we present the technique of reduction

for a fixed initial condition, then compute the weights in the rectangle and finally within

every rectangle of the space that can be reached from the initial rectangle. In Section 7.3

we present the gene model and in Sections 7.4 and 7.5 we apply the technique presented

in the previous sections. The conclusions are presented in Section 7.6.

7.2 Methodology

7.2.1 Principal process analysis and model reduction

We briefly remind PPA (see Chapter 6) for fixed initial conditions and parameter value.

Consider the following ODE system that models a biological network (for example an

intracellular network):

ẋ = f(x, p) (7.1)

where x = (x1, x2, .., xn) ∈ R
n is the vector of concentrations of the components, x0 =

(x01, x02, ..., x0n) ∈ R
n is the vector of initial conditions and p ∈ R

b is the vector of
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parameters. It is possible to decompose each equation into a sum of biological processes:

ẋi =
∑

j

fi,j(x, p) (7.2)

where fi,j(x, p) represents the jth process involved in the dynamical evolution of the ith

variable of the system over a period of time [0,T].

The first equation in the gene expression model in Section 7.3, Equation (7.9), is taken

as an example: it represents the variation of the concentration of mRNA. It contains

four different processes, each of which with a specific biological meaning. They can be

positive or negative:

ẋ1 = f1,1 + f1,2 + f1,3 + f1,4 (7.3)

where f1,1 = κ1, f1,2 = κ2
αm
P

αm
P +Pm , f1,3 = −γM , f1,4 = −γP .

In order to compare the influence of the different processes fi,j(x, p) in the evolution of

each variable xi, we associate to them a dimensionless relative weight:

Wi,j(t, p) =
|fi,j(x(t), p)|
∑

j

|fi,j (x(t), p) |
(7.4)

where 0 ≤ Wi,j(t, p) ≤ 1 and
∑

j

Wi,j(t, p) = 1.

Definition: Let the continuous function fi,j(x(t), p) be the jth process of ẋ(t)i for t ǫ

[0, T ] and let the threshold δ ǫ [0,1].

We call a process fi,j(x(t), p) always inactive when Wi,j(t, p) < δ ∀ t ǫ [0,T].

We call a process fi,j(x(t), p) inactive at time t when Wi,j(t, p) < δ.

We call a process fij(x(t), p) active at time t when Wi,j(t, p) ≥ δ.

The first step of the PPA is to identify the always inactive processes and delete them

from the original System (7.1). The threshold value δ must be chosen between the range

[0,1]: a low threshold avoids neglecting important processes.

The goal is to obtain a function g(xr) which approximates the function f(x), that

contains a minor number of processes. Let consider the ODE system g(xr) which ap-

proximates the System (7.1):

ẋr = g (xr, pr) (7.5)

where xr = (xr1, x
r
2, .., x

r
n)ǫR

n is the vector of concentration of the components, x0 is the

vector of their initial values and pǫRc, where c ≤ b is the vector of the parameters. The

basic idea of the proposed model reduction method is based on the following classical

theorem: if the vector fields of two systems are close (f(x) ≈ g(x)), then the solutions
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of the original and approximated systems are close during some time interval under the

assumptions on the Lispchitz conditions listed in [57, p. 96, Th. 3.4].

After having assigned dynamical weights to every process and a value to the threshold

δ , we follow this rule to obtain g(xr):

if Wi,j(x(t), p) < δ ∀ t ǫ [0,T] then gi,j(x(t), p) = 0;

if not, gi,j(x(t), p) = fi,j(x(t), p).

For example, applying this rule to Equation (7.3) we find that the processes f1,1 and f1,3

are always inactive (see Section 7.3). To test the quality of the reduced model g(xr), we

numerically compute the global relative error between the original and reduced model

for each variable. It is defined for the ith variable as:

ei =

∫

|xi(t)− xri (t)|dt
∫

|xi(t)|dt
(7.6)

where xi(t) and xri (t) are respectively the solutions of the original and reduced systems.

This method strongly depends on the initial condition.

7.2.2 Principal process analysis and model reduction based on initial

conditions in a rectangle

To increase the robustness of the method, the initial condition is chosen in some region,

then we compute if the activity/inactivity of the process fi,j - and consequently the

reduced system g(xr) - changes.

We divide the variable space into rectangles, and then apply the technique in each do-

main: for simplicity, we consider in this paper a system with two variables (x1, x2) and

a logarithmic subdivision, corresponding to order of magnitude from the modeling point

of view. The grid is shown in Figure 7.1.

Every point θm,n = (θm1 , θn2 ) corresponds the value (10m, 10n): for example the point

θ2,0 = (102, 100) = (100, 1). We call Bm,n the rectangle delimited by the four vertices

θm,n, θm+1,n, θm+1,n+1 and θm,n+1 (shown in Figure 7.2): inside of it, every process

fi,j(x, p) is limited horizontally fi,j(θ
m,n
1 , p) < fi,j(x, p) < fi,j(θ

m+1,n
1 , p) and vertically

fi,j(θ
m,n
2 , p) < fi,j(x, p) < fij(θ

m,n+1
2 , p).

To compute a global bound for the weights in the rectangle, we need the following as-

sumption for the processes. Below, all the functions are supposed to be locally Lipschitz;

by “fixed sign”, we mean that the functions are either non-negative, or non-positive, or

zero.
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Figure 7.1: The variable space (coordinates x1, x2), divided in domains. Each vertex
θm,n corresponds to the value (10m, 10n).

Figure 7.2: A generic rectangle Bm,n delimited by the vertices θm,n, θm+1,n, θm+1,n,
θm+1,n+1.

Assumption: ∂fij/∂xk has a fixed sign in Bmn,

∀i, k ∈ {1, . . . , n}, ∀j; moreover for a given i and k, all the

∂fij/∂xk have the same sign.

In words, it means that all the processes for the velocity ẋi have a derivative of a fixed

sign with respect to any variable. This assumption is verified for many models. For

example in Equation (7.3) f1,1 is a constant and f1,2, f1,3, f1,4 are decreasing processes.

Because of Equation (7.2), it easily implies the following corollary.

Corollary: The Jacobian matrix J = Df(x, p) of the System (7.1) has a fixed sign

inside the rectangle Bm,n.

Remark that the Jacobian matrix is signed, but all the signs may be different (therefore

the system is not monotone in the sense of conservation of partial order between tra-

jectories). This assumption allows to study the behavior of the process fi,j(x, p) inside

the full rectangle Bm,n, knowing only the behavior of the process at the vertices θm,n,
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θm+1,n, θm+1,n+1 and θm,n+1. Indeed, the monotonicity of each process with respect to

any variable implies that:

Corollary: In the rectangle Bm,n, each process fi,j takes its maximum and minimum

on the vertices of the rectangle.

We note Sm,n
i,j the vertex of Bm,n where the process fij is maximum, and sm,n

i,j the vertex

of Bm,n where the process fij is minimum in Bm,n.

Inside Bm,n, a worst-case version of the general weight in Equation (7.4) is:

WW
Bm,n

i,j (p) =
|fi,j(S

m,n
i,j , p)|

∑

j |fi,j(s
m,n
i,j , p)|

(7.7)

and normalizing these weights to proportions summing to one we obtain:

W
Bm,n

i,j (p) =
|fi,j(S

m,n
i,j , p)|

∑

j |fi,j(S
m,n
i,j , p)|

. (7.8)

The reduction method in Bm,n is now similar to the previous one: if this weight is smaller

than some threshold δ, then the process is considered as inactive in Bm,n, and discarded.

A reduced model is obtained within each domain Bm,n by keeping the principal processes.

For example, we find that the processes f1,1, f1,2, f1,4 of the Equation (7.9), of the model

described in Section 7.3, are always inactive in the rectangle B0,0 because their weight,

represented by Formula (7.8), are below the threshold δ.

7.2.3 Possible transitions between domains

Furthermore, our assumption has strong consequences concerning the possible transi-

tions between rectangles. These transitions are conditioned by the vector field on the

boundary (the edges) of each rectangle Bm,n. This analysis is valid for the full or the

reduced model.

Proposition: For i ∈ {1, 2, ..., n}, if ẋi is positive (resp. negative) on two adjacent

vertices, then it is positive (resp. negative) on the edge between these two vertices. If

the signs are opposite, then the vector field will cancel somewhere on the edge.

Proof: By Corollary (2), the Jacobian matrix is signed, and therefore each component

of the vector field is increasing or decreasing along an edge.

Therefore, knowing the values of the processes at the vertices of the rectangle, allows

to study the possible transitions of solutions x(t) from a rectangle Bm,n into another

adjacent rectangle or into the same rectangle.

As an example, in Figure 7.3 two different situations are illustrated. In Figure 7.3a, the

solutions of the system x moves in the rectangles Bm+1,n and Bm,n+1. In Figure 7.3b,
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the solutions stay in the rectangle Bm,n, which is invariant.

(a)

(b)

Figure 7.3: In Figure 7.3a (top) the vector field leads the solutions of the system to
move from Bm,n to the adjacent rectangles. In Figure 7.3b (bottom) the vector field

leads the solutions to stay inside the rectangle Bm,n.

Therefore, having the reduced model in some rectangle Bm,n, the vector field on the

vertices gives the possible transitions toward adjacent rectangles. Then the model is

reduced in these rectangles. Finally a graph of transition is obtained between rectangles,

each rectangle having a reduced model. The biologist may follow the possible sequence

of reduced models with respect to the different orders of magnitude. This sequence is not

deterministic because most of the time a rectangle has transitions in several rectangles.

Moreover, from the sequence of reduced models, if some process is always inactive for
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every rectangle, it is possible to obtain a global reduced model valid on the whole

pathway of rectangles.

7.3 The gene expression model

We apply this technique on a classical deterministic model in which the protein P inhibits

its own mRNA [20, p.57].

The amount of mRNA produced (variable M) depends on its basal activity κ1 and on

the transcription activity, based in turn on the concentration of its DNA sites bound

to the repressor P and on the amount of the free DNA sites, κ2
αm
P

αm
P +Pm . The mRNA

can degrade with a degradation term γM and be diluted due to growth rate (µ). The

translation process leads the production of the protein P and it is designed as a linear

function of the mRNA (κ3M) . The protein can also degrade with a degradation term

γP and be diluted due to growth rate (µ).

d

dt
M = κ1 + κ2

αm
P

αm
P + Pm

− (γM + µ)M (7.9)

d

dt
P = κ3M − (γP + µ)P . (7.10)

In Table 7.1 are presented the model parameters with their units. We used the infor-

mation contained in database for biological numbers, BioNumbers, to give to model

parameters reasonable values [78]. The criteria we used to choose the parameter values

are:

• An average protein concentration at steady state would be in the order of µM. In

our model we choose P ∗=1 µM and M∗ = 0.015 µM;

• We consider a cell doubling time of 1 hour, which gives the growth rate µ = 0.0116

min−1;

• Proteins are usually stable. We consider an half life of 5 hours for protein P ,

which gives γP = 0.0023 min−1. On the contrary, mRNAs are not stable, having

half-lives of a few minutes. We consider 4 minutes here, which gives: γM = 0.1733

min−1;

• At steady state, κ3M
∗ = (γP +µ)P ∗. We replace known parameters and variables

by their value to estimate κ3, which gives: κ3 = 1.39 min−1;

• We choose αP of the same order of magnitude as P such that the Hill function

term plays a role in the system dynamics (we choose a reasonable valure for m=2).
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From the Equation (7.9) at its steady-state and from the reasonable assumption

that κ2 = 2κ1, we obtain: κ1 = 9.25 × 10−4 µM min−1 and κ2 = 0.00185µM

min−1.

Table 7.1: Parameters

Parameter Value Unit
κ1 0.000925 µMmin−1

κ2 0.00185 µMmin−1

κ3 1.39 −
γM 0.1733 min−1

γP 0.0023 min−1

m 2 −
αP 20 µM
µ 0.0166 µMmin−1

7.4 Model reduction from an initial condition

As a first step, we decompose the ODE System (7.9)-(7.10) in the following processes:

• the mRNA derivative ( d
dt
M) can be divided into its basal activity process f1,1 = κ1,

into transcription process f1,2 = κ2
αm
P

αm
P +Pm , into degradation process f1,3 = γMM

and into dilution process f1,4 = µM ;

• the protein derivative ( d
dt
P ) can be divided into translation process f2,1 = κ3M ,

into degradation process f2,2 = γPP and into dilution process f2,3 = µP .

We calculate the process weights of the system using Formula (7.4), having a initial

conditions vector: x0 = [θ01, θ
0
2]. In Figure 7.4 are shown the plots of the weights of the

processes for a fix threshold of δ = 0.2.

From this analysis, the processes resulting always inactive are f1,1, f1,3, f2,2. The new

system g(xr) is:

d

dt
M r = κ2

αm
P

αm
P + (P r)m

− γM M r (7.11)

d

dt
P r = κ3M

r − µP r . (7.12)

In Figure 7.5 is shown the solution of the variable P in the original system f(x) and the

reduced one g(xr).
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Figure 7.4: 7.4a. The evolution in time of mRNA process weights: the basal activity
process and the degradation process are always inactive because the dynamics are al-
ways under the threshold δ. 7.4b. The evolution in time of protein process weights: the
dilution process is always inactive because the dynamic is always under the threshold

δ.

The global relative errors are shown in Table 7.2.

Table 7.2: Global Relative Errors

Variable values
eM 0.14
eP 0.10
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Figure 7.5: A. The solution of the variable M of the original model in blue and the
solution the variable Mr of the reduced model in red. B. The solution of the variable
P of the original model in blue and the solution the variable P r of the reduced model

in red.

7.5 Model reduction in a rectangle

We extend our method to the entire rectangle B0,0 that has the vertices (θ0,0, θ0,1,

θ1,1, θ1,0). We first verify the assumption on the monotonicity of the processes and the

Jacobian matrix, written as:

J =

[

df1
dM

df1
dP

df2
dM

df2
dP

]

=





−(γM + µ) −κ2
αm
P Pmm

(αm
P +Pm)2P

κ3 −(γP + µ)





We compute the vector field for the rectangle B0,0, θ
0
1 < x1 < θ11 and θ02 < x2 < θ12 at

the 4 vertices:
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• At θ0,0:
∑

j

f1,j(θ
0
1, θ

0
2, p) < 0,

∑

j

f2,j(θ
0
1, θ

0
2, p) > 0

• At θ0,1:
∑

j

f1,j(θ
0
1, θ

1
2, p) < 0,

∑

j

f2,j(θ
0
1, θ

1
2, p) > 0

• At θ1,0:
∑

j

f1,j(θ
1
1, θ

0
2, p) < 0,

∑

j

f2,j(θ
1
1, θ

0
2, p) > 0

• At θ1,1:
∑

j

f1,j(θ
1
1, θ

1
2, p) < 0,

∑

j

f2,j(θ
1
1, θ

1
2, p) > 0

Because of the monotonicity of the Jacobian matrix, we can deduce the behavior of the

processes on the edges of the rectangle. The result is presented in Figure 7.6. Based on

the direction of the arrows, the solutions move to the rectangles B−1,0 and B0,1.

Using the Formula (7.8), it is possible to compute the weight for the entire rectangle B0,0,

based on the worst case. In Table 7.3, for the rectangle B0,0 we show the maximum value

that the process fi,j(x, p) can reach and its weights: setting the value of the threshold δ

at 0.2, we can neglect the processes f1,1, f1,2, f1,4, f2,2, f2,3.

Figure 7.6: Vector field on the edges. The solutions are moving into the adjacent
rectangles B−1,0 and B0,1.

Table 7.3: Processes in B0,0

Process Max. Value (µM) Weight
κ1 0.000925 0.00048638

κ2
αm

P

αm
P
+Pm 0.0018455 0.00097

γMM 1.733 0.91125
µM 0.166 0.087287
κ3M 13.9 0.9866
γPP 0.023 0.0016
µP 0.166 0.0118

The valid sub-model g(xr) for B0,0 is:

d

dt
M r = −γM M r (7.13)

d

dt
P r = κ3M

r (7.14)



Chapter 7. Principal process analysis and reduction of biological models with different
orders of magnitude 97

Figure 7.7: Vector field on the edges in the plane.

The sub-Model (7.13)-(7.14) is only valid in the rectangle B0,0. To study the dynamics

of the process weights over the whole time [0, T ] as we did for θ0,0 in Figure 7.4, we need

to know the pathway of the solutions x in the different rectangles.

Extending the PPA as we did in Figure 7.6 to the full domain, we obtain the result

shown in Figure 7.7: from any initial value x0 the solutions are moving into the final

rectangles B−2,0 B−2,−1. Starting from an initial value inside the rectangle B0,0 we can

have different solution pathways: the solutions can move into rectangle B−1,0 or B0,1,

then from B−1,0 they can move into B−2,0 or B−1,1 and from B0,1 to B0,2 or B−1,1. Every

pathway eventually ends in the space occupied by the rectangles B−2,0 and B−2,−1.

To explain the application of our technique, we perform it on one of the possible pathways

that starts from the rectangle B0,0: B0,0 =⇒ B0,1 =⇒ B−1,1 =⇒ B−2,1 =⇒ B−3,1 =⇒

B−3,0 =⇒ B−2,0. The process weights of mRNA and protein, using Formula (7.7) in each

rectangle (or region) are plotted in Figure 7.8. Neglecting the always inactive processes

we obtain the global reduced model described by Equations (7.15)-(7.16).

d

dt
M r = κ2

αm
P

αm
P + (P r)m

− γM M r (7.15)

d

dt
P r = κ3M

r − µP r . (7.16)

The reduced model has the same structure of the one describes by Equations (7.11)-

(7.12) with the difference that the first reduced model describes the dynamics of the

system starting from a single initial value θ0,0 while the second one describes the dy-

namics of the system starting from any point of an entire region of initial values B0,0 -
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in which the point θ0,0 is included - and follows a pathway till it arrives in the rectangle

B−2,0 which contains the steady-state of the solutions x of the original System (7.9)-

(7.10).

Figure 9 represents a graphic way to obtain quickly the knowledge of the activity/inac-

tivity of each process (black means active and white inactive) in each rectangle:

• regarding mRNA processes it is possible to see that the basal activity is active when

the mRNA has very low values and the protein has low values; the transcription

is active only for small concentration of M and high concentration of P while the

degradation is always an active process, in every rectangle;

• regarding the protein processes it is possible to see that while the degradation

process is always inactive in every rectangle, the translation process is active in

the rectangle where the protein has a small concentration and the dilution is active

when the protein has an high concentration.

This information is very useful for the biological analysis of the system.

7.6 Conclusion

In this chapter we proved the robustness of our technique in relation with a variation

of the initial conditions of the System (7.9)-(7.10). In fact we have obtained a reduced

model described by Equations (7.11)-(7.12) applying our method to the original model

that had an initial value x0 = [1, 1] and then we have obtained the same reduced model

of Equations (7.15)-(7.16) choosing a space B0,0 of initial values that contains x0 = [1, 1],

a range of one order of magnitude in each coordinate and that follows a pathway close

to the evolution of System (7.9)-(7.10), starting from x0 and ending in the steady state

point x∗.

Furthermore, in every rectangle Bm,n - that represents a different order of magnitude

of the system - we obtain a meaningful reduced model in which we can obtain the

knowledge of the activity/inactivity of each process as we presented in Figure 7.9. The

biological interpretation of this table can be very fruitful. We used a grid, in which every

boundary differs of one order of magnitude in relation to the previous one: a different

grid can be chosen.

At first we have tested the robustness of our method on a model of two dimensions for

simplicity reasons and to describe easily the applications: a future work will verify the

robustness of our method on models of higher dimensions. Furthermore we can extend

our analysis applying the same method as in Section 7.5 to the model parameters. Finally
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Figure 7.8: A. The evolution in each rectangle of the mRNA process weights: the
basal activity and mRNA dilution are always inactive because the dynamic is al-
ways under the threshold δ. The regions correspond respectively to the rectangles
B0,0, B0,1, B−1,1, B−2,1, B−3,1, B−3,0, B−2,0. B. The evolution in each rectangle of the
protein process weights: the degradation is always inactive because the dynamic is
always under the threshold δ. The regions correspond respectively to the rectangles

B0,0, B0,1, B−1,1, B−2,1, B−3,1, B−3,0, B−2,0.
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Figure 7.9: The activity/inactivity of every process in each rectangle: black means
that the process is active in that rectangle, white means that it is inactive.

a further method of reduction could be applied: in Section 7.2.3 we consider that the

possible reduction is done independently for each component of the vector field. We

could also consider a more global reduction on the sum of the components.



Chapter 8

Principal process analysis applied

to a model of endocrine toxicity

induced by Fluopyram

This chapter is confidential. The results can not be used
without the express written consent by the authors.

In this chapter we discuss an ongoing work about the application of principal process

analysis to a deterministic model that describes the toxicological effect of a fungicide,

called Fluopyram, in rodents (produced by Bayer). The work is in collaboration with

David Rouquié, senior researcher at the toxicology research center of Bayer CropScience,

and with Frédéric Dayan, ExactCure founder and former R&D team leader at Dassault

Systèmes. The system was modeled in 2014 by a Bayer CropScience intern, Benjamin

Miraglio, under the supervision of David Rouquié and Frédéric Dayan. In this chapter

we present the results we have so far and the future applications are detailed in Section

8.7. This work will be a part of a future journal paper.

8.1 Introduction

Fluopyram is a broad spectrum fungicide developed by Bayer CropScience for the control

of fungi such as white mold, black dot and botrytis. It inhibits the succinate dehydro-

genase (complex II) within the fungal mithocondrial respiratory chain. This compound

was shown to be a weak inducer of thyroid follicular cell tumors in male mice following

life-time exposure [96].

101
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Figure 8.1: Proposed mode of action (MoA) for Fluopyram. The liver-
mediated thyroid toxicity mode of action of Fluopyram. Picture taken from [79]

It was important to investigate the characteristics of this toxicological effect in order

to market the new molecule: being able to predict this adverse effect earlier was really

important for the cost of development process of the product.

The investigation was oriented to identify the mode of action (MoA) of thyroid toxi-

city: a MoA is constituted of a series of key events inducing cancer or other adverse

effects (the conceptual framework for evaluating an animal mode of action for chemical

carcinogenesis can be found in [111]).

The proposed MoA for Fluopyram underlines that the fungicide does not cause directly

the thyroid cell proliferation: its MoA consists of an initial effect on the liver by acti-

vating the constitutive androstane (Car) and pregnane (Pxr) nuclear receptors causing

increased elimination of thyroid hormones followed by an increased secretion of thy-

roid stimulating hormones (TSH). This change in TSH secretion results in an increase

of thyroid follicular cell (TFC) proliferation which leads to hyperplasia and eventually

adenomas after chronic exposure [79] (see Figure 8.1).

Furthermore, to obtain the full use of the fungicide in the North American market, it

was necessary to demonstrate that the carcinogenic effect was induced by a threshold

mechanism: that means that a no-observed adverse effect level (NOAEL), the highest

experimental point that is without adverse effect, can be identified and then an accept-

able daily intake (ADI) can be inferred. In general, ADI = NOAEL
100 to account for the

differences between test animals and humans (factor of 10) and possible differences in

sensitivity between humans (another factor of 10) [59, pp.92-94].

Once every threshold is determined for every key event of MoA, temporal and dose-

response must be assessed: temporal concordance means that every event X must happen

before event Y if the event X influences the event Y in the MoA of a given toxicity; the

dose-reponse concordance is the proportionality that must be observed between the dose

of the studied compound and the key events [79].

In order to prove the defined MoA and the threshold-dependent toxicity of Fluopyram,

in [96] were run a set of mechanistic studies on male mice that showed the validity of the

dose and the temporal concordance of the specific key events and, using Car/Pxr knock

out mice it was confirmed that the activation of Car and Pxr is the initial molecular

event and the thyroid effects were secondary to increased metabolism and elimination of
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thyroid hormones: that means that Fluopyram thyroid toxicity is mediated by activation

of hepatic Car/Pxr receptors. Furthermore, NOELs could be identified for each of key

events, which provided evidence that Fluopyram acts through a threshold-dependent

MoA.

Lately an important amount of data generated in mechanistic toxicity studies were used

to design and calibrate a deterministic model able to quantitatively predict the evolu-

tion of the thyroid follicular proliferation given by the toxicological effect of Fluopyram.

Because knock out experiments are very expensive and time-consuming, in silico model-

ing could bring an extra-argument for regulatory authorities. In this context, principal

process analysis (PPA) could be an additional proof of the temporal ranking/hierarchy

of key events: in fact through PPA we can verify if the temporal order of the activation

of processes maintains the same sequence of the temporal concordance of the MoA of

Fluopyram. If in silico results are in agreement with MoA hypothesis and if those results

are robust, then this analysis can save a lot of economic resources dedicated to product

marketing.

8.2 Methodology

In the previous applications with PPA, we associated a dynamical relative weight to each

process in order to compare them: if they were over a fixed threshold they were declared

active over a fixed threshold and inactive otherwise. In this chapter, application of PPA

is oriented towards system analysis and parameter setting. We thus modify our usual

approach and use abolute values as criteria to compare the processes during the system

dynamics. A threshold depending of the values of the absolute values of the processes is

set for every variable. We call this new methodology Absolute Principal Process Analysis

(APPA).

8.2.1 Absolute principal process analysis

Considering the ODE System (8.1) that models a biological network:

ẋ = f(x, p) (8.1)

where x = (x1, x2, . . . , xn) ǫ Rn is the vector of concentration of components, x0 =

(x01, x02, ..., x0n) ǫ Rn is the vector of their initial values and p ǫ Rb is the vectors of

parameters. It is possible to decompose each equation into a sum of biological processes:

ẋi =
∑

j

fij (x, p) (8.2)
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where fij represents the j
th process involved in the dynamical evolution of the ith variable

of the system over a period of time [0,T]. In order to weigh the influence of the different

processes fij in the time evolution of each variable xi, we use the dynamic of their

absolute values as a criterion to compare them:

A(t, p)ij = |f(t)ij(x, p)|. (8.3)

Then for each variable we choose a dynamical threshold:

δi = min
j

min
tǫ[0,T ]

|fij |+
maxj maxtǫ[0,T ] |fij | −minj mintǫ[0,T ] |fij |

c
(8.4)

where minj mintǫ[0,T ] |fij | is the lowest of the local minima of the j absolute values of

the processes in [0, T ] for the variable i, maxj maxtǫ[0,T ] |fij | is the highest of the local

maxima of the j absolute values of the processes in [0, T ] for the variable i and c is a

parameter of our choice (c > 1 and the higher is c the lower is the threshold). For this

work we set c = 5. Therefore δi is depending on the values of the processes, on the time

of the simulation and on an arbitrary parameter.

Definition: Let the continuous function fij(x(t), p) be the jth process of ẋi(t) in t ǫ

[0, T ] and let the threshold δi be the threshold associated to the variable xi

We call a process fij(x(t), p) always inactive when Aij(t, p) < δi ∀ t ǫ [0,T].

We call a process fij(x(t), p) inactive at time t when Aij(t, p) < δi.

We call a process fij(x(t), p) active at time t when Aij(t, p) ≥ δi.

The switching time for a process fij(x(t), p) is the time tsij when Aij(t, p) = δ. A process

can have s = 0, 1, ..., z switching times.

The switching time set Si for the ith variable contains all the switching times tsij where

j = 1, .., k and s = 1, ..., z.

The global switching time set S is the union of all Si.

8.2.2 Visualization of the process activity

An important aspect of APPA is to qualitatively visualize, with the help of graphical

tools, the activity/inactivity of the processes during the system dynamics, with the

advantage to summarize this information in one picture. In this chapter we apply two

visualization tools.

Temporal Process Map: it allows to visualize the temporal activity of the absolute values

of the processes (including their switching times), ordered by variable during the whole

system dynamics [0, T ]. Every process bar is in black, resp. white, color when the
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respective process is active, resp. inactive.

Heat Process Map: it allows to study qualitatively the evolution of the intensity of the

active process activity using colors. Values along the rows (the absolute process values

Ai,j(t, p)) are standardized

SAi,j(t, p) =
Ai,j(t, p)− Āi,j

σAi,j
, (8.5)

where Āi,j is the mean of all the values of the processes SAi,j(t, p) in the time window

[0, T ] and σAi,j its standard deviation. The standardized absolute processes assume a

red color (active) if their value at a generic instant of time t = τǫ[0, T ] is above the

mean, black if their value is equal to the mean and green (inactive) if their value is

below the mean of a column across all rows (the mean of all the standardized processes

SAi,j(t, p) at time τ). If the red (or green) color is lighter it means that the process is

more active (inactive).

8.3 Hierarchical graph

This tool is not a part of PPA but it helps understanding the relationship between vari-

ables and, in our case, which variables can be affected by a parameter change (for details,

see [86, Chapter 3]). This method consists in a decomposition of an interaction graph

(graph that represents the structure of the Jacobian matrix) of the model considering

the strongly connected components.

If we consider an oriented graph G, a strongly connected component C of a graph G is

a maximal sub-set of vertices such that any two of them are connected by a path:

• if a ǫ C, so ∀ y ǫ C, it exists a circuit containing a and y,

• if a ǫ C, so ∀ z ǫ G\C, it doesn’t exist a circuit containing a and z,

A path is a sequence (a0, a1, . . . , an−1, an) of vertices of G such that any two consecutive

vertices are connected by an arc G. a0 and an are respectively the origin and the end of

the path. A circuit is a path where the origin and the end are identical. It is possible

to create a hierarchy in a graph, re-organizing the graph by level. The higher level

includes the components that are not influenced by the others. The lower level are only

influenced by the higher levels. The lowest level includes all the components that do not

have any influence on the other components.
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8.4 Model

For more information about the model see [79].

The pharmacokinetics of the fungicide and its effect in the mouse bodies are described

through a multicompartimental model. This model integrates the different markers

measured by Bayer CropScience. The model units are nanomoles, liters and hours.

Every variable has a different notation depending on the compartment in which it is

contained: ’b’ means that the variable is in the blood compartment, ’l’ in the liver, ’h’

in the brain and ’t’ in the thyroid.

The full model is shown in Figure 8.2.

8.4.1 Blood compartment

Because the mice were orally exposed to Fluopyram, the daily intake is considered as

linear. The degradation of the fungicide in the blood is a linear function. Fx denotes

the concentration of Fluopyram.

dFxb
dt

= k1r − k1f Fxb + k2r Fxl − k2f Fxb (8.6)

In the blood compartment are also present the thyroid hormones, triiodothyronine (T3)

and its prohormone, thyroxine (T4): they are tyrosine-based hormones produced by the

thyroid gland that are primarily responsible for regulation of metabolism. In this model

the effects of T3 and T4 are considered as one effect by only considering T4. In this

model, the variable T4 is the concentration of triiodothyronine and thyroxine.

dT4b
dt

= k12r T4l − k12f T4b + k13f T4h − k13f T4b + k21r T4t − k21f T4b (8.7)

Finally in the blood there is the thyroid-stimulating hormone (TSH) that is a pitu-

itary hormone that stimulates the thyroid gland to produce thyroxine (T4), and then

triiodothyronine (T3). The variable TSH denotes the concentration of TSH.

dTSHb

dt
= k19r TSHh − k19f TSHb + k20r TSHt − k20r TSHb − k23 TSHb (8.8)

8.4.2 Liver compartment

Once in the liver, Fluopyram binds reversibly to hepatic CAR/PXR receptors. The

constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) function
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Figure 8.2: Fluopyram MoA Model built by Benjamin Miraglio. The picture
was made by using CellDesigner. The different compartments are represented by the
blue boxes; the different species are in green with the reactions represented by arrows.
The arrows pointing to or from an “empty space” symbol indicate respectively the
degradation or the creation of species. The name of the fluxes corresponds to the

subscript of coefficients located in the different equations. Figure taken from [79].

as a sensor of endobiotic and xenobiotic substances. In response, expression of proteins

responsible for the metabolism and excretion of these substances is upregulated. Hence,

CAR and PXR play a major role in the detoxification of foreign substances such as

Fluopyram. In the model these two receptors are simplified in one entity concentration

CAR and the concentration of the complex between CAR and Fxl in the liver is label

as CAR Fxl.

dFxl
dt

= k2f Fxb − k2r Fxl − k3f Fxl CAR+ k3r CAR Fxl (8.9)

dCAR Fxl
dt

= k3f Fxl CAR− k3r CAR Fxl (8.10)
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dCAR

dt
= k3r CAR Fxl − k3f Fxl CAR (8.11)

The complex CAR Fxl stimulates the phase I and phase II enzymes activity for drug

metabolism.

The enzymes of phase I in this model are the Cyp2b and Cyp3a: the activity of the

first is studied through the microsomal pentoxyresorufin-O-depentylation (PROD) and

the activity of the second is studied throughthe O-debenzylation of benzyloxyquinoline

(BQ). The enzyme of phase II is called uridine 5’-diphospho-glucuronosyltransferase

(UDPGT) and its activity was measured using T4 as substrate.

dCyp3aA
dt

= V max4a
(CAR Fxl)

n4a + b4a k
n4a
4a

(CAR Fxl)n4a + kn4a
4a

− k5aCyp3aA (8.12)

dCyp2bA
dt

= V max4b
(CAR Fxl)

n4b + b4b k
n4b

4b

(CAR Fxl)n4b + kn4b

4b

− k5bCyp3aA (8.13)

dUDPGTA

dt
= V max4u

(CAR Fxl)
n4u + b4u k

n4u
4u

(CAR Fxl)n4u + kn4u
4u

− k5u UDPGTA (8.14)

Although the enzymatic activities were measured on material extracted from a in vivo

study, the measurement were performed in vitro and not directly in the organism, mod-

ifying some factors, such as the concentration of the enzyme. To take account of this,

a supplementary proportionality factor was thus applied between the concentration of

the enzyme in the model (the absolute one, A) and the concentration measured in the

experimentation (the relative one, R): Cyp3aR = Ca · Cyp3aA, Cyp2bR = Cb · Cyp2bA,

UDPGTR = Cu · UDPGTA.

In the liver the glucuronidation of T4 is performed by UDPGT enzyme: in this form

the T4 degrades and can be expelled by the organism (we denote the concentration of

this form with T4G).

dT4l
dt

= k12f T4b − k12r T4l − kcat6 UDPTGA
T4l

Km6 + T4l
(8.15)

dT4G

dt
= kcat6 UDPGTA

T4l
Km6 + T4l

− k7 T4G (8.16)
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8.4.3 Brain compartment

The brain compartment regroups both hypothalamus and pituitary entities in the same

compartment. The exchange of T4 with the blood is expressed by:

dT4h
dt

= k13f T4b − k13r T4h (8.17)

TRH is a releasing hormone, produced by the hypothalamus, that stimulates the release

of TSH: the presence of T4 has an influence on TRH/TSH axis. TRH is produced at its

maximum rate without the presence of T4h that inhibits its production. TRH variable

denotes its concentration.

dTRH

dt
= V max14

kn14

14

kn14

14 + T4n14

h

(8.18)

The mRNA of TSH is present in the equations because it is one of the marker measured

in the mechanistic experinments in [96]. The concentration of mRNA of TSH is denoted

as mRNATSH .

dmRNATSH

dt
= V max16

kn16b

16b

kn16b

16b + T4n16b

h

TRHn16a

kn16a
16a + TRHn16a

− k17mRNATSH (8.19)

The translation of mRNA of TSH increases with the presence of TSH and decreases

with the presence of T4. The concentration of TSH protein (TSH) is:

TSHh

dt
= k18mRNATSH + k19f TSHb − k19r TSHh (8.20)

8.4.4 Thyroid compartment

The thyroid hosts the follicular cell proliferation by Fluopyram, that eventually leads to

the production of Adenoma. In the compartment there is also the presence of T4 whose

production is stimulated by TSH.

(8.21)

dTSHt

dt
= k20f TSHb − k20r TSHt (8.22)

The presence of TSH in the thyroid can induce follicular proliferation (variable CP ).

dCP

dt
= V max24

TSHn24

t

kn24

24 + TSHn24

t

− k25CP (8.23)



Chapter 8. Principal process analysis applied to a model of endocrine toxicity induced
by Fluopyram 110

Table 8.1: Parameter values of the model

k1f 0.034 Kcat6 1743.553114 k20r 1.005482275

k1r Dose of Fluopyram V max6 65666.87588 k21f 1.236398116

k2f 999460 k7 31588.85616 k21r 0.2002760808

k2r 0.415897 k12f 80.64227305 n22 0.8689751827

k3f 1e-006 k12r 10307.95894 V max22 14.1733236

k3r 116.536 k13f 0.302741393 k22 0.1929138594

k4a 410568 k13r 0.6426040942 k23 2.77

b4a 0.0815793 k14 5 k24 0.3533230358

n4a 0.982814 n14 1.027112014 n24 1.597710749

k4b 12213.9 V max14 22.93543793 V max24 4162.908906

b4b 0.0220242 k15 8.32 k25 3.965767295

n4b 4.49535 k16a 1.219779758 a26 1e-006

k4u 56434.4 k16b 0.2450688022 b26 0.06976043718

b4u 0.630659 n16a 2.21198226 k27 11.05080028

n4u 5.45077 n16b 0.06145468961 C 10.83538438

V max4a 53945.1 V max16b 35.76667853 Ca 9.6375

V max4b 31.4309 k17 1.164964739 Cb 0.01

V max4u 124777 k18 0.3011508688 Cu 0.0100004

k5a 5646.85 k19f 1.260950263 km6 5385.524094

k5b 1e-006 k19r 0.1000043066

k5u 17061.2 k20f 2.489579679

8.4.5 The data

The data required to calibrate the model parameters are from Bayer CropScience and

from the literature [37]. For more details about the parameter and initial condition

estimation of this model, see [79]. The parameters are shown in Table 8.1 and the initial

conditions in Table 8.2.

8.4.6 Different experiments in silico

We design two different types of experiments to apply PPA.

The first type of experiment is divided in two consequential time windows:

• 3 days (72 hours) of preparation, where the mouse is not exposed to Fluopyram

(k1r = 0).

• 28 days (672 hours) where the mouse is exposed to 1500 pm of Fluopyram (k1r =

75773[nM
h
]).
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Table 8.2: Initial values of the model

Fxb 0

T4b 186.535714901588

TSHb 0.0109393373647131

Fxl 0

CAR Fxl 0

CAR 999953

Cyp3aA 0.779337771754164

Cyp2bA 692240.059366051

UDPGTA 4.61232141015872

T4l 1.45911386914052

T4G 6.89547850285214e-05

T4h 87.8800534936859

TRH 0.137857583256398

mRNA TSH 0.100620544848501

TSHh 0.440940258740178

T4t 1162.44839786602

TSHt 0.0270858598724828

CP 17.0538586985414

The second type of experiment is divided in three consequential time windows:

• 3 days (72 hours) of preparation, where the mouse is not exposed to Fluopyram

(k1r = 0).

• 28 days (672 hours) where the mouse is exposed of 1500 pm of Fluopyram (k1r =

75773[nM
h
]).

• 28 days (672 hours) where the mouse recovers after the exposition of Fluopyram

(k1r = 0).

The parameter k1r is represented by a step function that changes its value during the

dynamics of the experiments (see Figure 8.3).

In Figure 8.4a is represented the dynamics of the cellular proliferation in the thyroid for

the first type of experiment performed with model parameters of Table 8.1 (experiment

1A). If we perform the second type of experiment with the parameter listed in Table

8.1 (experiment 2A) it is possible to see in Figure 8.4b that the TFC proliferation in

the recovery phase is slighty increasing, contrary to what has been observed in the

mechanistic in vivo experiments in Figure 6 of [96] where the TFC proliferation in the

same phase returned to the level of control animals after 28-day recovery. The same

goes for the other system variables. We then decided to change the degradation of
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Figure 8.3: Exposition of Fluopyram dose. A. First type of experiment, B.
Second type of experiment.

Fluopyram to k1f = 8000 and the degradation of k5a = 3700. We obtain these values

performing multiple simulations with different values for k1f and k5a and choose the

ones that give the most consistent model dynamics with the experimental results in [96],

including the recovery phase. In future steps, we plan to verify the biological validity of

these values using new data from Bayer CropScience database (for example the half life

of Fluorpyram) and to study the influence of these parameters on the final order of the

key events. Figure 8.4c shows, for the second type of the experiment, the dynamics of

the TFC proliferation with the new parameters (experiment 2B). The dynamics of all

the system variables for the different experiments (1A, 2A, 2B) are shown in Appendix

E.1. For the sake of clarity, from now on we label the experiment with number 1 if it is

of the first type, 2 if it is of the second type, with letter A if the model has the original

set of parameters of Table 8.1 and with letter B if the model has the set of parameters

of Table 8.1 but with k1f = 8000 and k5a = 3700.

Using the hierarchical graph, it is possible to see that the change of degradation of

Fluopyram (k1f ) affects the dynamics of the other variables because Fxb variable is con-

tained in the first level of the graph while the change of the degradation of Cyp3a (k5a)

only affects the dynamics of variable Cyp3aA because the latter is contained in the third

level and is not connected to any variable of lower levels (see Figure 8.5). Furthermore

it is interesting to observe that the node that contains the variable UDPGTA works as

a switch between the two graphs of level 3: if UDPGTA reaches a high value T4l will

have low value (and consequently all the other variables contained in that graph) and
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Figure 8.4: Exposition to Fluopyram dose. A. TFC profile in the first type of
experiment with model parameters of Table 8.1 (experiment 1A), B . TFC profile in
the second type of experiment with model parameters of Table 8.1 (experiment 2A), C
. TFC profile in the second type of experiment with model parameters of Table 8.1 but

where k1f = 8000 and k5a = 3700 (experiment 2B).
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Figure 8.5: Hierarchical graph of the toxicological model divided in four
levels.

T4G a high value; if UDPGTA reaches a low value we will have the opposite case.

In the following sections we perform PPA on the first type of experiment with the original

set of parameters (experiment 1A) to verify if the results obtained with the original

parameter set of Benjamin Miraglio are in agreement with MoA hypothesis. In case

experiment 1A does not give satisfactory results, we perform PPA on the second type of

experiment with the new set of parameters (experiment 2B) to verify, if the modifications

applied in experiment 2B give the correct concordance (including the recovery phase) or

if further research are needed.
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Figure 8.6: TSHb processes. The processes f3,j(t, p) (where j = 1, . . . , 5) are
compared using their absolute value over time, A3,j(t, p) = |f3,j(t, p)|. For every j
A3,j(t, p) its maximum and minimum values are calculated (maxtǫ[0,T ] A3,j(t, p) and
mintǫ[0,T ] A3,j(t, p)), then the higher of the j maximum and the lower of the j minimum
are chosen (in this case maxtǫ[0,T ] A3,1(t, p) and mintǫ[0,T ] A3,2(t, p)). Using equation
8.4, δ3 are set. The processes f3,1(t, p), f3,3(t, p), f3,4(t, p), f3,5(t, p) are active and
f3,2(t, p) is always inactive. In this variable system, no processes crosses the threshold,

so no switching times are collected in S3.

Table 8.3: Switching times of the model in the experiment 1A (units [h])

t11,3 209 t15,2 173 t19,2 144 t114,1 217

t11,4 206 t16,1 173 t111,1 141 t114,2 218

t14,1 297 t16,2 173 t111,2 141 t117,1 233

t14,2 299 t17,1 133 t112,1 423 t117,2 234

t14,3 173 t17,2 133 t112,2 425 t118,1 239

t14,4 173 t18,1 88 t113,1 212 t118,2 239

t15,1 173 t19,1 144 t113,2 212

8.5 Absolute principal process analysis on the experiment

1A

We decompose each ordinary differential equation in processes that we considered having

a precise biological meaning. Then, we calculated the absolute value of each process using

8.3. For each variable system we calculate the threshold δi using 8.4. As an example,

Figure 8.6 shows how we compute the threshold δ3 from the processes of the variable

TSHb.

Table 8.3 contains the switching times tsij for all variables.
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Table 8.4: Switching times of the model in the experiment 2B (units [h])

t11,3 133 t15,2 125 t19,2 155 t114,1 237

t21,3 1236 t25,2 1276 t29,2 1153 t214,1 1417

t11,4 131 t16,1 125 t111,1 137 t214,2 238

t21,4 1234 t26,1 1276 t211,1 1111 t214,2
t14,1 209 t16,2 125 t111,2 137 t117,1 253

t24,1 1015 t26,2 1276 t211,2 1111 t217,1
t14,2 212 t17,1 92 t112,1 459 t117,2 254

t24,2 1018 t27,1 t212,1 1110 t217,2
t14,3 125 t17,2 92 t112,2 460 t118,1 260

t24,3 1276 t27,2 t212,2 1112 t218,1
t14,4 125 t18,1 88 t113,1 232 t118,2 260

t24,4 1276 t28,1 t213,1 t218,2
t15,1 125 t19,1 155 t113,2 232

t25,1 1276 t29,1 1153 t213,2

Once we obtain them we are able to build the temporal process map where we can

visually see the activity/inactivity of each process.

We can see in Figure 8.7 that the sequence of activation of the processes is not following

the temporal concordance of MoA schema of Figure 8.1. In Figure 8.8 a heat process map

is applied only to the active processes: because in this map each process absolute value is

standardized only by the process itself we do not group the processes by variable. Neither

considering every process independent from its system variable and applying the heat

process map we match the temporal concordance of MoA schema of Figure 8.1. In both

cases the presence of Fluopyram in the liver and the formation of the CAR Fx complex

become active after the activation of the production of Cyp3aA-Cyp2bA-UDPTGA and

the expression of UDPTGA happens slightly after the glucuronidation of the tyroxine.

8.6 Absolute principal process analysis on the experiment

2B

We apply the same steps as the first experiment. The switching times are shown in

Table 8.4.

In both maps 8.9- 8.10 we can notice better results: the activation of Fluopyram hap-

pens considerably before with respect to the one in the maps of the experiment 1A and

the activation time of the production of the complex CAR Fx is getting closer to the

activation time of the variables Cyp3aA, Cyp2bA and UDPTGA. The same happens
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Figure 8.7: Temporal process map of the experiment 1A. Activity of the 50
model processes during a 744-hour period. Processes are listed in the first column
(white background), ordered by variable (grey background). Their activity is depicted
in the second column between 0 and 744h: a horizontal black, resp. white, bar when
the process is active, resp. inactive. Values for the switching times are given in Table

8.3.
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Figure 8.8: Heat process map of the experiment 1A. Because we do not consider
the inactive processes and we consider the active process that appears in more variable
systems as the same process (same line), we have in this map 26 processes (during a

744-hour period).
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0 1416 h

Figure 8.9: Temporal process map of the experiment 2B. Activity of the 50
model processes during a 1416-hour period (with recovery phase). Processes are listed
in the first column (white background), ordered by variable (grey background). Their
activity is depicted in the second column between 0 and 1416h: a horizontal black, resp.
white, bar when the process is active, resp. inactive. Values for the switching times are

given in Table 8.4.
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Figure 8.10: Heat process map of the experiment experiment 2B. Because we
do not consider the inactive processes and we consider the active process that appears
in more variable systems as the same process (same line), we have in this map 26

processes (during a 1416-hour period).
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between the activation of the production of UDPGTA and the activation of glucuronida-

tion of tyroxine. This proves that the change of the value of the Fluopyram degradation

parameter K1f = 8000 changes considerably both the system dynamics in the recovery

phase and the temporal order of activation of the processes. But still, we are not able

to obtain the same sequence between the latter and the temporal concordance of MoA.

8.7 Conclusion and future steps

In conclusion, we have shown that APPA was really useful to understand the core

mechanisms of this model and how analyzing the temporal activation of processes was

important for checking the consistency of toxicological models. In this work we started

the first steps to get to the temporal activation of processes (using PPA) and to the

temporal concordance of the key events of the proposed MoA the same order, giving

interesting results in the system dynamics: in fact, through temporal process map and

heath process map it was possible to see that with the original parameter set the process

were not become active in the order we expected. Furthermore the recovery phase of

the experiment had to fit with respect to experimental data of [96]: then, with a new

parameter set, we obtained a more consistent dynamic and also better results for the

two maps but we were still not able to obtain the same order between the temporal

concordance of key events and the temporal activation of processes.

The next steps of this work are many.

We will perform the APPA on experiments 1B and 2A to complete the study on all the

possible cases and to verify if there are significant differences between the analyses of

experiments 1A and 2B.

Furthermore, because the temporal process map and heat process map show different

results for some processes (for example, the translation of TSH process in Brain TSH

variable), it could be interesting to apply also the temporal process map to the reduced

model (the model without the inactive processes) to see if the two maps will show a

better match (and to verify if the differences are due to the different approaches or

because the first map was applied to the original model and the second one to the

reduced model).

After choosing the best method to compare the temporal order of activation of the

processes through APPA and the temporal concordance of MoA on the Fluopyram

model, we will re-calibrate the model to obtain the same temporal sequence between the

two and to see if the system dynamics will further improve. The new calibration not only

will involve the parameters k5a and k1f but also other uncertain parameters of the model.
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New data from Bayer CropScience and results of the mechanistic experiments performed

in [96] during the dosing phase and recovery phase can help us to achieve this goal. Once

we will obtain the new parameter set, we will vary through a sensitivity analysis the

half-life (tmax/2) of the system variables of interest (Fluopyram, TSH, ...) during the

recovery phase to see if the ranking order (the order of activation of the processes) will

also vary. This is a useful method to test the robustness of the re-calibrated model.



Chapter 9

Model and control of the gene

expression machinery in E. coli

This chapter is confidential. The results can not be used
without the express written consent by the authors.

This chapter describes my contribution to the ANR project RESET, which aims at

arresting and restarting the gene expression machinery of E. coli. I have been involved in

the development, by my co-supervisor Delphine Ropers, of a model of the gene expression

machinery and its analysis by principal process analysis.

9.1 Introduction

As we have seen in Chapter 3, biotechnological approaches often rely on the obtention of

products of interest through the growth control of E. coli. Arresting the growth opens

the possibility to channel resources into the production of a desired metabolite, instead

of wasting nutrients on biomass production [39, 110]. Different approaches are used to

limit growth: for example, the use of antibiotics targeting the transcription or transla-

tion machinery or limiting nutrients essential for cell growth [77]. These methodologies

however have a number of drawbacks and can be ineffective: the first solution can lead

to cell death and the second to cell adjustments of their flux distribution and of their en-

zyme level to nutrient limitations. The aim of the project is to propose a novel strategy

for improving product yield and productivity, focusing on global but reversible changes

of the cellular physiology, by controlling the gene expression machinery (GEM). In fact,

as we have seen in Chapter 3, RNA Polymerase (RNAP) plays a fundamental role in the

synthesis of the other proteins. The idea is to arrest the GEM in a precise and controlled

123
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(a) (b)

Figure 9.1: Outline of approach for improving product yields and productivity, based
on the repeated arrest/restart of the GEM. A. Under normal operation, bacterial cells
reserve the major part of the incoming nutrient fluxes for the synthesis of building blocks
for macromolecules (RNAs, proteins) necessary for growth. B. The arrest of the syn-
thesis of RNA polymerase by removing the external inducer reduces the fluxes towards
the synthesis of macromolecules at the profit of fluxes in other product pathways.

way, by externally controlling the expression of two RNAP genes (rpoB and rpoC ) using

IPTG as an inducer (see Section 3.4 for details about gene expression control by IPTG):

in this way it is possible to create non-growing cells with a functional metabolism that

utilizes substrates for the synthesis of specific target compounds rather than for biomass.

Contrary to other methods, in which the fluxes in one or the other pathway are favored

or disfavored by over-expressing or deleting enzymes, respectively, arresting the GEM

completely blocks the demand for other building blocks of protein and RNA synthesis:

in this way the enzymes present at the time of growth arrest remain functional, as well as

the pathways involved in the synthesis and secretion of a target product. When different

factors compromise the cell survival, i.e. the degradation of enzymes and other proteins

threatens the stability of metabolism, the GEM can be switched on again, thus altering

phases of growth and product synthesis (see Figure 9.1). This control of the gene expres-

sion machinery proved to be effective for the production of glycerol at nearly theoretical

yields [51]. Although different partners participate to this project, this chapter focus on

my contributions to the mathematical modeling aspects of the project.

Mathematical models of GEM and its effect on metabolic fluxes are developed in RE-

SET, in order to understand and optimize the effect of the externally controlled genetic

circuits. I worked on two models of the gene expression machinery. The first one

describes the functioning of the wild-type GEM, starting from existing studies in the

literature [28, 61, 115] and information by decades of work on the cellular physiology of

gene expression [29, 34, 40, 93]. This model is described in Section 9.2. In Section 9.3,

we present the second model, which extends the previous one with the control of rpoBC

transcription by IPTG.
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9.2 The model

The model, shown in Figure 9.2, can be divided into four principal modules, each assur-

ing a different task in the cell: the ribosome module for the production of stable RNAs,

their maturation and assembly with ribosomal proteins into ribosomes; the bulk pro-

tein module for the synthesis of cellular proteins; the RNA polymerase module for the

production of the RNA polymerase subunits and their assembly into functional RNA

polymerase; and the metabolic module involved in the production of pools of amino

acids and ppGpp.

ppGpp is an alarmone involved in the stringent response in bacteria, causing the in-

hibition of ribosome synthesis when there is a shortage of amino acids. This causes

translation to decrease while biosynthesis of amino acids is stimulated [113].

The GEM model has been developed by Delphine Ropers using the mass-action law,

quasi-equilibrium and quasi-steady-state approximations. It is composed of 13 ordinary

differential equations and 5 algebraic expressions, described in Figure 9.3 and 9.4, and

53 parameters calibrated from literature data (e.g. [29]). The state variables correspond

to the intracellular concentrations of bulk (b), rpoBC (o), and r-protein mRNAs (m), of

ribosomal (n) and transfer (T ) RNAs, of bulk proteins (B), RNA polymerase ββ′ sub-

units (β), RNA polymerase (P ), r-proteins (M), and ribosomes (R). The state variables

G, A, and C describe the intracellular concentrations of ppGpp, amino acids, and tRNAs

charged with amino-acids, respectively. Five algebraic variables denote the free intracel-

lular concentrations of RNA polymerase (Pf), ribosomes (Rf), amino acids (Af) and

ppGpp (Gf), and the specific growth rate (µ). All the variables are expressed in µM

with the exception of A and Af , expressed in M . Mass-balance equations describe the

synthesis and degradation of the network components. For instance, the rate of change

of bulk mRNA concentration is described as the difference between its transcription rate

rtb and its consumption through growth dilution at a rate µ b and degradation by RNase

E at a rate eb b (see also Figure 9.3):

d

dt
b = rtb(Pf , p)− (µ+ eb(Rf , B, p)) b. (9.1)

The transcription rate depends on the concentration of free RNA polymerase (see also

Figure 9.4)

rtb = db kb
Pf

Pf +Kb
, (9.2)

while the expression for bulk mRNA degradation, eb expresses the fact that RNase E

and ribosomes compete for their binding to the messenger RNAs: binding of RNase

leads to the mRNA degradation, while the latter is avoided by the ribosome binding
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and the subsequent translation of the mRNA. For the same reason, translation rates

thus depend also on the concentration of free ribosomes and RNase E. For instance the

translation rate of bulk proteins, rTB is (see also Figure 9.4):

rTB = kB b C
Rf

Rf +KB

(

1 + B
KEB

) . (9.3)

d

dt
b = rtb(Pf , p)− (µ+ eb(Rf , B, p)) b

d

dt
B = rTB(Rf , b, B,C, p)− µB

d

dt
o = rto(Pf , p)− (µ+ eo(Rf , β, B, p)) o

d

dt
β = rTβ (Rf , o, B, β, C, p)− (µ+ kmP )β

d

dt
P = rmP (β, p)− µP

d

dt
n = rtn(Pf ,Gf , p)− (µ+ kmR M)n

d

dt
m = rtm(Pf ,Gf , p)− (µ+ em(Rf,B, p))m

d

dt
M = rTM (Rf ,m,B,C, p)− (µ+ kmR n)M

d

dt
R = rmR (M,n, p)− µR

d

dt
T = ρ rtn(Pf ,Gf , p)− µT

d

dt
C = rC(T,C,Af , p)− JR − µC

d

dt
G = kG −







kspoT

1 + Pf
Kg

K2
CT

K2
CT +

(

C
T

)2
+ µ






G

d

dt
A = rA − µA

Pf = P −

(

1

kb
+

Lb

cb

)

rtb −

(

1

ko
+

Lo

co

)

rto −

(

1

kn
+

Ln

cn

)

rtn −

(

1

km
+

Lm

cm

)

rtm −
Pf Gf

Kg

− dns
Pf

Pf +Kns

Rf = R−m
Rf

Rf +KM

(

1 + B
KE

)

(

1 + kM
LM − 1

cM

)

− o
Rf

Rf +Kβ

(

1 + B
KE

+ β
KIβ

)

(

1 + kβ
Lβ − 1

cβ

)

− b
Rf

Rf +KB

(

1 + B
KE

)

(

1 + kB
LB − 1

cB

)

Gf =
G

1 + Pf
Kg

Af = A− (C +AB +AM +Aβ)× 10−6

µ =
JR

AB +AM +Aβ

Figure 9.3: Model equations according to the network structure in Figure 9.2.
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rtb = db kb
Pf

Pf +Kb

rto = ko do
Pf

Pf +Ko

rtn = dn kn
Pf

Pf (1 + αn Gf ) +Kn

rtm = km dm
Pf

Pf (1 + αm Gf ) +Km

rTB = kB b C
Rf

Rf +KB

(

1 + B
KE

)

rTβ = kβ o C
Rf

Rf +Kβ

(

1 + B
KE

+ β
KIβ

)

rTM = kM m C
Rf

Rf +KM

(

1 + B
KE

)

rmP = kmP β

rmR = kmR nM

rA = V A
m

KIA
2

KIA
2 +Af 2

JR = LB × rTB + LM × rTM + Lβ × rTβ

eb = kEB
B

B +KE

(

1 + Rf
KB

)

eo = kEβ

B

B +KE

(

1 + Rf
Kβ

+ β
KIβ

)

em = kEM
B

B +KE

(

1 + Rf
KM

)

rC = V C
m

Af

KA +Af

T − C

T − C +KU

AB = LB B

AM = LM (M +R)

Aβ = Lβ (β + P )

Figure 9.4: Kinetic rate laws.

9.2.1 Growth rate

In this subsection, we focus on the modeling of the bacterial growth rate, which is my

main contribution to the development of the GEM model. The interesting aspect of our

approach is that we do not consider the growth rate as a constant or as a Michaelis-

Menten equation depending on an input variable, but we deduce it from the total amount

of cellular biomass.

We consider that biomass formation (schematically represented in Figure 9.5) results

from the accumulation of newly synthesized proteins.
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Bulk proteins

RNA polymerase

ββ' subunits

r-proteins

Biomass

μ

Ribosomes

Figure 9.5: Biomass formation. The accumulation of biomass results from de novo
synthesis of protein species (r-proteins alone or within ribosomes, ββ′ subunits alone
or within RNA polymerase, and Bulk proteins. The growth rate corresponds to the

relative rate of biomass accumulation.

Since protein translation results from the incorporation of amino acids into proteins,

describing the formation of biomass amounts to keeping track of the mass of amino

acids incorporated into cellular proteins, that is:

B = V ×MWA · 10−6 ×At (9.4)

where V is the cell volume (expressed in L), MWA is the molecular weight in g/mol of

the amino acids (whose concentration are multiplied by 10−6 to convert them into mol·L)

and the total concentrations of amino acids At = AB +AM +Aβ (where AB = LB B,

AM = LM (M + R), Aβ = Lβ (β + P )). We define the growth rate µ (expressed in

min−1) as the relative increase of the cell volume V :

µ =
dV

dt

1

V
. (9.5)

During the cell growth, the cell density α (expressed in g/L) is considered to be constant,

which implies that the biomass B is proportional to the cell volume V :

B = αV. (9.6)

We rewrite the expression for the growth rate µ, using Equations (9.4)-(9.5)-(9.6):

µ =
dB

dt

1

B
=

dAt

dt

1

At
+

dV

dt

1

V
(9.7)

Given the definition of µ in Equation (9.5), we can write the following relation :

dAt

dt

1

At
= 0 ⇔

dAt

dt
= 0. (9.8)

The time derivative of the concentration of amino acids incorporated into proteins is

defined as:
dAt

dt
=

dAB

dt
+

dAM

dt
+

dAβ

dt
(9.9)
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where
dAB

dt
= LB rTB − LB µAB (9.10)

dAM

dt
= LM rTM − LM µAM (9.11)

dAβ

dt
= Lβ r

T
β − Lβ µAβ. (9.12)

We can rewrite Equation (9.9) as:

d

dt
At = LB rTB+LM rTM+Lβ r

T
β −µ (AB+AM+Aβ) = JR−µ (AB+AM+Aβ). (9.13)

Then, the final expression for the growth rate is:

µ =
JR

AB +AM +Aβ
. (9.14)

The total concentration of amino acids incorporated into proteins (expressed in mol·L−1)

is proportional to the cell density (expressed in g · L−1) which implies that

α = (LB B + Lβ (β + P ) + LM (M +R))×MWA · 10−6, (9.15)

is constant.

Given the expression of µ in Equation (9.14), the relation expressed in Equation (9.15)

implies that:

LB B + Lβ (β + P ) + LM (M +R) = constant (9.16)

should be verified at all time t.

9.3 The effect of IPTG on E. coli growth

The data from the experiments in [51] suggest that the switch between cell growth

and growth arrest, after the removal of IPTG from the media, is due to the highly

ultrasenstive response of the growth rate to a change in concentration of the ββ′ subunits.

Different experiments were performed with different IPTG concentrations, varying from

0 to 1000 µM . Two different responses to IPTG were observed: in the first category,

for IPTG concentrations of 30 µM and higher, growth is close to normal (compared

to a wild-type E. coli) while in the second category, for IPTG concentrations of 20

µM or lower, growth stops after few hours. In the second case, the quantity of newly

synthesized β and β′ subunits is not enough to sustain growth, whereas growth reaches

the maximum rate for higher concentrations of IPTG. To measure the intracellular



Chapter 9. Model and control of the gene expression machinery in E. coli 131

activity of ββ′ subunits a gene coding a fluorescent protein was inserted after rpoBC

genes. Figure 9.7c shows the concentration of β′ once the bacteria have reached steady-

state growth. For concentrations above a threshold between 20 and 30 µM we can

notice a high cell growth, reaching a saturation effect after IPTG concentration higher

than 100 µM . It is possible to notice that the dependence of the growth rate on the β′

concentration appears to be highly switch like or ultrasensitive in the sense of [62]. The

data, fitted with a curve fitted with a Hill function of order 10, indicates that growth

requires a threshold level of RNA polymerase to switch from zero to maximal growth.

We want to verify if the proposed GEM system is able to reproduce the same type of

response with different concentrations of IPTG as in [51]. Until now, we have considered

a wild-type model of E. coli, in which the IPTG control on the growth rate of the

bacterium is not modeled. To achieve this task, we need to control the transcriptional

rate of rpoBC mRNA rto (see Figure 9.4). We express the positive effect of IPTG on the

rate as follows (for more details see [102]):

srto =

(

1

1 + (KII
I

)nI

)

ko do
Pf

Pf +Ko
(9.17)

where I is the concentration of IPTG, KII = 40 µM is the dissociation rate of IPTG

and nI = 2.6 is the Hill coefficient of the response to IPTG, based on the information

in [65]. In the absence of IPTG in the culture medium (I = 0 µM), there is an arrest of

rpoBC mRNA transcription (srto = 0). If there is a high concentration of IPTG in the

medium (I = 1000 µM), the engineered strain has the same transcription rate as in the

wild type (srto = rto). Figure 9.6 shows the relationship between the IPTG concentration

and the transcriptional activity: the engineered strain in a medium with 100 µM of

IPTG has a similar transcription rate to the one in a medium with 1000 µM of IPTG

(similar results have been found in [51]).

After the implementation of Equation 9.17, we perform multiple simulations with differ-

ent values of the IPTG input I, between 0 and 100 µM . We then analyze the relation

between the predicted growth rate and the concentration of ββ′ when the system reaches

a steady state. The plot is shown in Figure 9.7d. With the current calibration the model

is able to qualitatively reproduce the hypersensitivity of bacterial growth to ββ′ concen-

tration observed in Figure 9.7d.
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Figure 9.6: IPTG effect. The response of transcriptional activity of rpoBC mRNA
to different concentrations of IPTG. The curve represents a Hill function with degree

nI = 2.6 and concentration threshold KII = 40 µM .

9.4 Model analysis with three-level PPA

As we have seen in the previous sections, E. coli, under stress conditions as a nutrient

downshift or a removal of IPTG, arrests its growth rate. We are interested in identifying

the core mechanisms at play when we apply a specific stress condition to the bacterium:

in this manner, we can verify if the GEM of the model responds in the expected way.

To analyze the internal mechanisms of the proposed model we apply principal process

analysis (PPA), using two thresholds to detect not only the inactive processes but also

to make a further distinction between processes with a moderate activity and a full

activity.

Furthermore we apply PPA both to the differential equations and to the conservation

equations of the system.

We refer to Section 6.2.1 and 6.2.2 for the detailed explanation about PPA: in this

section we present briefly the important additions we bring to this numerical approach

for analyzing the GEM model.

9.4.1 Methodology

Consider the following ODE model of biological network:

ẋ = f (x, p) (9.18)
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Figure 9.7: A. Different steady-state responses of growth rates of the engineered strain
for different values of IPTG. The blue points represent the engineered strains while the
red points, the wild type. Picture taken from [51]. B. Quantitative dependence of the
growth rate on β′ concentration in a medium with different IPTG concentrations. The
blue points represent the engineered strains while the red point the wild type. Picture
taken from [51]. C. Dependence of the growth rate on different IPTG concentrations in
the proposed system at its steady state. Simulations performed using different values
of IPTG (0, 1, 2, 5, 10, 30, 40, 50, 100 µM). D. Growth rate in function of ββ′ subunit
concentrations for the different values of IPTG listed in (C) in the proposed system at

its steady state.

where x = (x1, x2, ..., xn) ǫ Rn is the vector of component concentrations,

x0 = (x01, x02, . . . , x0n) ǫ R
n the vector of their initial values and p ǫ R

b the vector of

parameters.

Each equation is decomposed into a sum of biological processes:

ẋi =
∑

j

fij (x, p) (9.19)

where fij represents the j
th process involved in the dynamical evolution of the ith variable

of the system over a period of time [0,T].
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Each conservation equation is also decomposed into a sum of relevant concentration

terms:

Hi =
∑

j

hij (x, p) (9.20)

where hij represents the j
th relevant term considered in the conservation laws with total

concentration Hi over a period of time [0,T].

Comparison criteria are needed to weigh the influence of the different processes fij

on the time evolution of each variable xi and of the different terms on the dynamical

contribution for the total concentration Hi.

In this work we associate a relative weight W d
ij to each process to make it dimensionless:

W d
ij(t, p) =

|fij(x(t), p)|
∑

j |fij(x(t), p)|
(9.21)

where 0 ≤ W d
ij(t, p) ≤ 1 and

∑

j W
d
ij(t, p) = 1.

Similarly, we associate a relative weight W a
ij to the terms involved in the conservation

laws:

W a
ij(t, p) =

|hij(x(t), p)|
∑

j |hij(x(t), p)|
(9.22)

where 0 ≤ W a
ij(t, p) ≤ 1 and

∑

j W
a
ij(t, p) = 1.

Definition: Let the continuous function fij(x(t), p) (resp. hij(x(t), p)) be the jth pro-

cess (resp. term) of ẋi(t) (resp. Hi(t)) in t ǫ [0, T ] and let the thresholds δ ǫ [0,1], ν ǫ

[0,1] with δ < ν.

We call a process fij(x(t), p) (resp. a term gij(x(t), p)) always inactive when Wij(t, p) <

δ ∀ t ǫ [0,T].

We call a process fij(x(t), p) (resp. a term gij(x(t), p)) inactive at time t when Wij(t, p) <

δ.

We call a process fij(x(t), p) (resp. a term gij(x(t), p)) moderately active at time t when

δ ≤ Wij(t, p) < ν.

We call a process fij(x(t), p) (resp. a term gij(x(t), p)) fully active at time t when

Wij(t, p) ≥ ν.

Switching time for a process fij(x(t), p) is the time tsij when Wij(t, p) = δ or Wij(t, p) =

ν. A process can have 0, 1, ..., z switching times.

The switching time set Si for the ith variable contains all the switching times tsij where

j = 1, .., k and s = 1, ..., z.

The global switching time set S is the union of all Si.
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9.4.2 Different applications

We apply three-level PPA on two experiments in silico, in which we put E. coli cells

under two different types of stress conditions.

In the first experiment, the system starts from a steady-state condition of the wild-type

model, in which cells grow exponentially in a minimal medium. At time τ1 we shift

the bacterial population in a poorer medium permitting a moderate synthesis of amino

acids (nutrient downshift). At time τ2 we shift cells back to the initial medium (nutrient

upshift).

In the second experiment, the system starts from a steady-state condition of the engineered-

type model in a medium with a high concentration of IPTG. At time τ1 we shift the

bacterial population in a medium with no IPTG (growth arrest). At time τ2 we shift it

back to the initial medium (growth restart).

We apply the Boolean Process Map for all analyses: it shows the time-dependent activity

of processes, ordered by variables, during the whole system dynamics [t0, T ]. Fully Active

processes are depicted by a black bar, moderately active processes by a grey one and

inactive processes by a white one. We set the threshold δ at 0.1 and the threshold ν at

0.4.

The parameter values and initial conditions for the model are listed in Appendix F.

9.4.2.1 Nutrient stress condition

The GEM network includes many interlaced feedback loops whose functioning varies

with the environmental conditions. We study here their functioning in the case of

changing nutritional conditions. Figures 9.8 and 9.9 shows simulation results and the

boolean process map for this case. The first red line indicates the time (minute 200)

of the transfer of bacterial cells to a poorer medium supporting a lower growth rate

(nutrient downshift), while the second line indicates the time (minute 1200) at which

cells are transferred back to the richer medium (nutrient upshift).

We notice that, in the first 200 minutes of the experiment, the degradation factor is

the main reason for the decrease of the concentration of mRNAs and ppGpp (fully

active) while the dilution is negligible (inactive). Also for rRNAs and r-proteins the

dilution factor is not an important process: they are both mainly consumed through

their assembly into new ribosomes. The dilution of charged tRNAs is not an important

process as well since they are essentially consumed by the protein synthesis. The RNA

polymerase is present equally in three forms at this stage: the free form, the form
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Figure 9.9: Boolean Process Table for downshift/upshift experiment. Activ-
ity of the 50 model processes during a 2200-minute period. Processes are listed in the
first column (white background), ordered by variable (blue background) and by con-
servation equation (pink background). Their activity is depicted in the second column
between 0 and 500 min: a horizontal black bar when the process is fully active, grey

when it is moderately active and white when it is inactive.
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transcribing bulk mRNAs, and the aspecifically bound form. Most of the ribosomes are

used to translate bulk proteins and a non-negligible part of them is present in free form.

The amino acids are most present in the free form and a significative part is used to

form new proteins.

At minute 200 bacteria are shifted to a poorer medium supporting a lower growth

rate. To simulate this part of the experiment we divide the maximal velocity of amino-

acid synthesis (V A
m ) by 5. In these conditions, growth is not halted but the reduced

growth rate restrains cells from spending their resources for growth only. As expected,

the nutrient downshift, performed at minute 200, results in lower intracellular pools of

amino acids and thus, charged tRNAs (see Figures 9.8 and 9.9). This immediately affects

the translation rate of the proteins. To avoid that cells waste resources to synthesize

new ribosomes while they cannot no longer translate proteins, ppGpp blocks de novo

synthesis of ribsosomes through the inhibition of the transcription of stable RNAs and

r-protein mRNAs. In the absence of protein translation the accumulation of biomass

stops and growth is quickly arrested.

These concentrations and the growth rate are restored to their original levels following

the nutrient upshift (Figure 9.8): in fact at minute 1200 the bacterial population is

shifted back to the initial medium. To simulate this part of the experiment we use

the initial value of the maximal velocity of amino-acid synthesis (V A
m ). Following the

addition of nutrients, new amino acids and charged tRNAs are produced and translation

is restored; in addition ppGpp is degraded, which relieves the inibithion of ribosome

synthesis. This leads to a quick production of biomass and faster growth rate.

A number of feedback loops are active throughout the growth in these both favorable

and less favorable conditions. This is for instance the case of the positive feedback

loop involving the RNA polymerase, which has been studied in Chapter 5. The RNA

polymerase stimulates its own expression, since it transcribes its own genes rpoBC.

Transcription of rpoBC is fully active throughout the nutrient downshift and upshift,

in the sense that it is always above the threshold value ν (see Figure 9.9 and 9.10a-

9.10b). However the transcription and also the reduction of the dilution by growth are

compensated for a fully active degradation, which is even more so following nutrient

downshift, because the decreased concentration of ribosomes gives room to RNase E to

bind to rpoBC mRNAs and to degrade them (see Figure 9.9 and 9.10a-9.10b).

The accumulation of ppGpp during the nutrient downshift inactivates the positive feed-

back loop involving RNA polymerase and the ribosomes. RNAP stimulates the forma-

tion of new ribosomes by transcribing ribosomal RNAs and r-protein mRNAs. Newly

formed ribosomes in turn activate the synthesis of new RNAP. We observe in Figure 9.9

that a significant amount of RNA polymerase is bound to ppGpp in this phase, which
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Figure 9.10: Absolute values of the processes (left) and their relative weights (right)
for the first experiment.
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ultimately impacts the assembly of stable RNAs into new ribosomes. In addition to the

direct effect of ppGpp on the ribosome concentration, the positive feedback loop made of

the auto-activation of ribosomes through the stimulation of r-protein translation is less

important. In conditions of downshift, the degradation of r-protein mRNAs by RNase

E is always fully active, but is strengthened by the reduced concentration of ribosomes

(see Figure 9.8 ,9.9 and 9.10e-9.10h).

The principal process analysis provides also an explanation for model predictions in-

consistent with experimental data. This is the case of the RNAP and bulk protein

concentrations that are predicted to slightly accumulate during the downshift. For in-

stance, the reduced growth rate concentrates the proteins and is not compensated for a

lower maturation rate of RNAP (see Figure 9.10d) and a lower translation rate for bulk

proteins. A new calibration of the model is currently under way to correct this problem,

based on the use of additional experimental data that were not taken into account during

the first model calibration.

9.4.2.2 IPTG stress condition

In this section, we study the effect of controlling the growth rate with IPTG. We use for

that purpose the model described in Section 9.3, which relates the transcription rate of

rpoBC to the external concentration of IPTG. Figures 9.11 and 9.12 show simulation

results and the boolean process map for this case. Initial conditions for the simulation

correspond to cells growing exponentially in glucose minimal medium (V A
m is at its refer-

ence value) supplemented with IPTG (parameter I in Equation 9.17 equals to 1000 µM).

In these conditions, as explained in Section 9.3, the engineered strain behaves similarly

to the wild type (srto = rto): the dynamics and core process activities are the same.

In Figures 9.11 and 9.12 the first red line indicates the time (minute 200) of the transfer

of bacterial cells to a growth medium without IPTG (parameter I switched to 0 µM),

while the second line indicates the time (minute 1200) at which IPTG is reintroduced into

the medium (parameter I switched again to 1000 µM). As expected, removing IPTG

stops the transcription of rpoBC, the subsequent translation of ββ′ subunits and RNAP

assembly. As a consequence, the transcription of all cell mRNAs and their translation

stop also (note that this is less visible in the boolean process map where these processes

appear as active. Simply they still contribute to the total processes, while the latter

drop to zero in the absence of IPTG). The consequence of the reduced concentration of

cell mRNAs and proteins is a growth arrest. The simulations also reproduce a behavior

observed experimentally for the growth rate after removal of IPTG: a lag time of several

hours is needed before we observe a growth arrest [51]. Indeed, despite the arrest of its
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Figure 9.12: Boolean Process Table growth arrest/restart experiment with
IPTG. Activity of the 50 model processes during a 2200-minute period. Processes are
listed in the first column (white background), ordered by variable (blue background)
and by conservation equation (pink background). Their activity is depicted in the
second column between 0 and 500 min: a horizontal black bar when the process is fully

active, grey when it is moderately active and white when it is inactive.
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production, RNAP is a stable protein, whose concentration decreases through growth

dilution. Several repeated cell divisions are needed before the concentration of RNAP

becomes limiting and that protein synthesis can no longer support growth.

As shown in Figures 9.11 and 9.12, ppGpp does not play any role in the whole simulation:

its synthesis and degradation are fully active both in the presence and absence of IPTG,

but the resulting concentration of the alarmone remains low. The proportion of RNAP

bound to ppGpp is below the threshold level δ and does not affect the transcription

of stable RNAs and r-protein mRNAs. Despite the decrease of RNAP concentration

when IPTG is absent, a non negligible part of RNAP is even transcribing stable RNAs.

However this will not be sufficient to support the formation of ribosomes in quantity

high enough to support growth.

The accumulation of bulk proteins contributes a lot to the formation of biomass. As can

be seen in Figure 9.12, the ribosomes translating bulk proteins become negligible when

IPTG is absent, and amino acids are no longer incorporated into bulk proteins. These

unused ribosomes and amino acids accumulate as free forms within cells.

The r-proteins are predicted to accumulate within cells in the absence of IPTG. These

proteins are stable and translated as long as ribosomes are in sufficient quantities. Their

reduced synthesis is largely compensated by their reduced dilution by growth and assem-

bly into new ribosomes. In the latter case indeed, stable RNAs are no longer available

to make new ribosomes and the free form of r-proteins accumulates. They are no experi-

mental data available to validate or invalidate this model prediction. It might be possible

that the concentration of r-proteins decreases in the absence of IPTG, because a negative

feedback mechanism is known to cause the degradation of excess of r-proteins, which are

not incorporated into ribosomes [55]. Proteomics experiments are planned in the frame-

work of the RESET project by our CEA partners from the EDYP team, to characterize

the phenotype of the engineered strain. The experiments will consist of measurements

of the relative content of the different cell proteins in the presence or absence of IPTG.

These experimental results, notably concerning the r-proteins, will be confronted to the

model predictions and will potentially lead to further model adjustments to improve its

predictive capabilities.

Note that the system, after the removal of IPTG, can reach a steady state where the

growth rate is null, but we prefer to restart the growth at 1200 minutes because we want

to mimic the experiments of [51], in which cells restart growth more easily when there

is a residual activity.

After the re-introduction of IPTG in the medium, growth rate and the system variables

are restored to their values reached before the removal of the inducer at minute 200.
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There is a delay before rpoBC mRNAs accumulate: despite their fully active transcrip-

tion, mRNAs are still highly degraded by RNAse E in the absence of protection by

ribosomes whose concentration is still low (and consequently ββ′-subunit and RNAP

concentrations).

9.5 Conclusion

This chapter uses the various methods described in the manuscript (model reduction

and principle process analysis) to contribute to the modeling of the gene expression

machinery and the analysis of its dynamical functioning. This algebro-differential model

is used to analyze the functioning of GEM in wild-type cells responding to nutritional

changes, as well as engineered strains, in which the growth rate is under the control

of IPTG. The model predictions are consistent with experimental data in most cases.

As discussed above, new calibrations are planned to improve the predicted response of

RNAP concentration to a nutrient downshift. As well, potential model refinements will

be considered depending on the results of the proteomics experiments obtained with the

engineered strain.

The project is still on-going, but the first results of principle process analysis described

above allow to start analyzing the regulatory mechanisms at work during the different

phases of growth on a rich or poor nutrient or with or without IPTG. We have already

analyzed the functioning of the feedback loops that directly affect RNAP and ribosome

levels. It is puzzling to observe that, despite its important complexity, the function-

ing of the network can be directly affected by targeting only one component, the RNA

polymerase. Living organisms are characterized by complex networks with redundant

interactions, that can compensate for certain inactive interactions. In the present case,

the RNA polymerase of E. coli is unique, contrary to its Eukaryotes couterparts. Affect-

ing this network component breaks down the functioning of the whole network, as could

be observed in the simulation and PPA results in Section 9.4.2.2, and experimentally in

[51].

The RESET project relies on the idea that the control of growth rate exerted by IPTG

is preferable over a control through nutrient limitations. Although, at this stage, the

GEM model has not been not connected yet with a metabolic model developed by

Adrien Henry and Olivier Martin from INRA in Le Moulon, we can already provide

some explanations based on the simulation and PPA results in Sections 9.4.2.1 and

9.4.2.2. In the former case, the nutrient limitation imposes a stress to the cell, as shown

by the accumulation of the alarmone ppGpp. In addition to its direct impact on protein

synthesis through the inhibition of the formation of new ribosomes, ppGpp is also known
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to elicit more general stress responses that involve the sigma factor σS responsible for

establishing genetic program allowing the cell survival in adverse conditions [45]. Part of

the cell resources are thus allocated to the stress response rather than the formation of a

high value product. To the contrary, the model does not predict a situation of stress in

growth-arrested cells in the absence of IPTG: the concentration of ppGpp is low, similar

to the levels detected in cells grown in minimal medium [83]. We clearly see that cell

resources are no longer allocated to mRNA transcription and protein translation, thus

to the biomass formation. They are ready to be channeled to the synthesis of products

of interest. The connection of the model to the model of metabolism will help to better

analyze the conditions for the re-channeling of resources and will also allow to study

how optimal control could be applied to optimize the product yield.

As seen above, the growth rate responds non linearly to the concentration of RNA

polymerase in the engineered strain. Whether the hypersensitivity is due to a bistable

behavior is not known at this stage. The model will be used to answer this question,

together with additional experiments. However, such behaviors are known to introduce

heterogeneity in the cell response and we did observe variability of growth rate and gene

expression with the engineered strain in single cell experiments [51]. This is the subject

of the following chapter, in which we have used a much simpler version of the GEM

model to study the relation between growth and RNAP concentration at the single-cell

level.





Chapter 10

Single-cell model calibration of

growth control experiments in E.

coli

In this chapter we discuss the work done in collaboration with Eugenio Cinquemani,

research scientist at Inria Grenoble-Rhône-Alpes. The experimental data we used were

obtained by Jérôme Izard during his PhD thesis in the Laboratoire Adaptation et

Pathogénie des Micro-organismes (Univ. Grenoble - Alpes). The experiments were done

in collaboration with Ariel Lindner at the Centre for Research and Interdisciplinarity in

Paris.

This work will be a part of a future journal paper.

10.1 Introduction

Optimizing growth is an important topic in cell biology. As we have seen in Chapter 3,

control of E. coli cell growth and metabolism can increase the production of high-value

biotechnological products like glycerol.

We will first recapitulate the characteristics of the engineered strain and the monitoring

of its growth in single-cell experiments, as these concepts will be needed later on in the

chapter.

The control enables the growth of an E. coli population up to a certain biomass and

the subsequent arrest of the growth, allowing certain enzymes to become functional and

produce metabolites of interest [51]. Because cell populations cannot survive without

147
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growing for an extended period of time (i.e because of degradation of enzymes and

other proteins), growth can be switched on again, thus alternating phases of growth

and product synthesis. To achieve this regulatory mechanism, an E. coli strain was

constructed in which the transcription of the rpoB and rpoC genes, encoding the two

subunits ββ′ of RNA Polymerase (RNAP), are under the control of an IPTG-inducible

promoter. The control of the production of RNA Polymerase has direct effect on cell

growth and duplication. Indeed, as we have seen in Chapter 3 and 9 the synthesis of

mRNA starts with transcription where RNAP plays a key role. Inhibiting the latter,

mRNAs, and thus proteins, cannot be synthesized. By substituting the original promoter

with an IPTG-inducible promoter and adding extra copies of the Lac repressor gene

(lacI ) makes it possible to have a synthetic control of E. coli growth. If there is no

IPTG in the culture medium, the Lac repressor protein (that is always expressed) binds

in the operator area of rpoB and rpoC genes, so that RNAP cannot bind the promoter

to start the transcription of its own gene. This results in dilution of RNAP during the

residual growth, followed by the arrest of synthesis of the other cellular proteins as well.

If instead IPTG is added to the medium, imported IPTG molecules bind Lac repressor

proteins, preventing their binding on the promoter, thus allowing RNAP to transcribe

its own gene. This makes further RNAP molecules available for the expression of the

different genes, thus allowing E.coli to grow and divide. In order to quantify protein

synthesis capabilities of E. coli over time, a gene encoding a red fluorescent protein

(RFP) was placed under the control of the promoter of a constitutive gene.

The experiment in [51] consists of monitoring and controlling the growth of such modified

E. coli cells in a microfluidics device in minimal (M9) medium. Cells are trapped in dead-

end channels, and growth leads offspring eventually leave the channel from its open end.

The cell that always remains at the dead-end is monitored throughout the experiment,

leading to measurements (cell growth and gene expression) taken every approximately 10

minutes for every channel. In the first 800 minutes of the experiment IPTG is provided

(allowing the growth and division of E. coli); from minute 800 to 1150, IPTG is removed

(leading to arrest of growth and cell division); then IPTG is provided again (allowing

re-start of growth and cell division). As shown by removal and reinjection of IPTG,

growth arrest is reversible.

The accompanying fluorescent reporter data from constitutive gene expression are used

for image analysis purposes in [51]. Here, we additionally exploit RFP profiles to study

the relationships between growth and RNAP expression. To do this, we develop a

deterministic model of RFP expression dynamics. As customary in this type of models,

the growth rate acts as the system input and fluorescence is the system output. This

implicit assumption on a causal relationship is a point that we will rediscuss in the light

of our modeling results at the end of the chapter.
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Earlier results [67] showed that treating growth rate data as an input profile fixed a priori

by data preprocessing (i.e. before the inference of model parameters) does not lead to

satisfactory modeling. On the other hand, growth rate data are themselves uncertain

data that need to be explained together with the corresponding gene expression data.

In this spirit, we consider a modeling approach where growth rate and gene expression

are jointly fitted with explicit account for their respective uncertainty (see also [101]).

Experimental single-cell data display large variability between the different cell fluores-

cence profiles, hinting at the fact that an average model may not be an appropriate

description of the system. Therefore we focus on a calibration approach that accounts

for cell-to-cell variability and that can model response of different cells. Together with

the calibration of an average model, we thus perform single-cell calibration and compare

the results from the two approaches.

The results of this chapter will show that fitting a mean model to the average data by

considering cell-to-cell variability as bare ”measurement error” leads to an unsatisfactory

model of the average data itself, which is instead better explained in terms of mean of

single-cell fits. In addition, single-cell calibration enables the study of the variability

of single-cell dynamics across the population. Yet, some inconsistency remains that

prompts further research.

10.2 Model

Figure 10.1 summarizes the dynamic of the experiment [51].

The first scheme (A) corresponds to the situation in the presence of IPTG, between

minute 200 and 800, as well as from minute 1150 to the end of the experiment. The

second one (B) corresponds to the the absence of IPTG, between minute 800 and 1150.

The growth rate of the bacteria was quantified by measuring the cell area of the newly-

formed bacteria in successive frames of time-lapse microscopy. The concentration of the

reporter protein RFP was determined by dividing the cell fluorescence by the cell area.

The model reactions are the following:

PrpoBC +RNAP
K2

⇋ PrpoBC −RNAP
k1→ 2RNAP

µ
→ ∅

PrpoBC + LacI4
K5

⇋ PrpoBC − LacI4

LacI4 + IPTG
K4

⇋ LacI4− IPTG

Prfp +RNAP
K3

⇋ Prfp −RNAP
kp
→ RFPimmature +RNAP

RFPimmature
km→ RFPmature

RFPimmature
µ
→ ∅
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Figure 10.1: Model experiment. A- In the presence of IPTG, the protein LacI
is inactivated (forming a complex with it) and then RNA Polymerase can transcribe
its own genes, producing rpoB and rpoC mRNAs encoding the subunits β and β′

that form, with the subunits α, the RNA Polymerase: this is a positive loop because
the RNAP enhances its own expression. RNAP binds also to the promoter of the
gene rfp, leading the transcription into rfp mRNA coding for the fluorescence protein
RFP. Fluorescence activity of RFP in reponse to light excitation depends on post-
transcriptional modifications: the protein maturation gives rise to an additional reaction
step from RFP to active RFP. The synthesis of the mRNAs and proteins in the system
is counterbalanced by growth dilution and degradation of the gene product. B- In
the absence of IPTG LacI can bind to the operator region near the promoter of the
genes rpoB and rpoC, leading to the arrest of RNAP and RFP transcription and to the

subsequent arrest of the growth rate.
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RFPmature
µ
→ ∅

PLacI +RNAP
K6

⇋ PLacI −RNAP
kl→ LACI4 +RNAP

LacI4
µ
→ ∅

The protein LacI in its tetrameric form (LacI4) controls the binding of RNAP to the

promoter of the rpoB and rpoC genes (PrpoBC). The presence of IPTG inhibits the

binding of LacI4 to PrpoBC , while the absence of IPTG allows the binding of LacI4

to PrpoBC . In turn this hampers the binding of RNAP to PrpoBC . The parameters of

the model are: the maximal synthesis rate of RNAP (k1), the dissociation constant of

RNAP and PrpoBC complex (K2), the dissociation constant of Prfp and RNAP (K3),

the maximal synthesis rate of RFP (kp), the dissociation constant of IPTG and LacI4

complex (K4), the dissociation constant of PrpoBC and PLacI4 complex (K5), the disso-

ciation constant of PLacI4 and RNAP complex (K6), the maturation rate of RFP (km)

and the maximal synthesis rate of lacI4 (kl).

The dynamics of the concentrations of RNAP (P ), of immature RFP (Fim), of mature

RFP (Fm) and of LacI4 (L) are modeled by mass-action laws with Michaelis-Menten-

type reaction rates, resulting in the system of equations:

dP

dt
= −µP + k1

P

P +K2

(

1 + L
K4+K5 I

) (10.1)

dFim

dt
= kp

P

P +K3
− (µ+ km)Fim (10.2)

dFm

dt
= km (Fim)− µFm (10.3)

dL

dt
= kl

P

P +K6
− µL (10.4)

where I is the concentration of IPTG.

The input of the system is the growth rate µ and the output is the fluorescence Y =

Kf Fm, where Kf is a conversion factor.

10.3 Methodology

To estimate the parameters of the model, different calibration approaches are consid-

ered: in a first approach, we consider that the model represents an average cell, and
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an average growth rate profile is used to explain an average fluorescence profile. In a

second approach, the same model equations are considered for the response of the single

cell, and different response profiles observed in different cells are explained in terms of

different parameter values for different cells [75], as well as different growth rate pro-

files. In both approaches growth rate is treated as an input measured with error and

simultaneously fitted with the dynamical model parameters.

10.3.1 Data

From the microfluidics experiments, after a first image analysis phase, we are provided

with time course measurements for C channels. For every channel, the cell that sits

at the bottom is monitored over time. This is a growing cell that divides repeatedly

in the course of an experiment at times tdj , with j = 1, ...,m. After every division,

measurements pertain the daughter cell that takes the position of the mother cell at the

channel dead-end. For simplicity we will refer to this as one cell, so that we have as many

cells as channels, and keep into account the discontinuities that measurements undergo

at division times. Refer to Figure 10.2, showing the raw-time course measurements for

one cell. For each of C cells, at observation times t1 < t2 < ... < tn, we are provided

with measurements of cell size A(ti), total cell fluorescence F (ti) and, by straightforward

division, normalized fluorescence per unit size Y (ti) = F (ti)/A(ti) (later in this chapter,

we refer to the normalized fluorescence simply as fluorescence). For all measurements

the observation times of interest ti are between minute 400 and 1400 and they are

not necessarily identical across cells. It can be appreciated that both A and F show

discontinuities at division times tdj (which are also available as data), whereas the profile

of Y is essentially continuous thanks to normalization. From this data for C cells, to

perform estimation of the model parameters and the (input) growth rate profiles, we

need to extract first raw growth rate data from cellular size profiles A(ti), as well as

statistics on the measurement uncertainty associated with single-cell growth rate and

fluorescence data Y (ti). For the fitting of the average model, we also need to compute

mean fluorescence and growth rate data that will be treated as the “average-cell” data.

10.3.2 Extraction of cellular profiles

In this section, for a given cell, we discuss how we obtain growth rate data µ(ti) from

A(ti), and how, on the basis of µ(ti) and Y (ti), we obtain the associated uncertainties.

To obtain the latter we rely on a statistical procedure known as bootstrap, which relies on

an initial fit of the data A(ti) and Y (ti). We will discuss this initial fit for fluorescence Y

first, then move on to the more complex case of A, from which an initial estimate of the
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Figure 10.2: Area and fluorescence measurements. Measurements for one cell
at observation times ti, i =, . . . , n, consisting of cell area A(ti) (top plot), total cell
fluorescence F (ti) (center plot) and normalized fluorescence per unit size Y (ti) (bottom
plot). The top plot shows that removing IPTG (at minute 800) from the microfluidics
channels does not cause immediate consequences in cell division: the RNAP protein
has a long half-life and the arrest of cell division starts with a delay of approximately
100 minutes. In the same way there is a delay of approximately 100 minutes after the
addition of IPTG (at minute 1150) before growth-limited cells resume normal growth:
this lag period is probably necessary for replenishing the pool of RNA polymerase and
other cellular components necessary for cellular growth. The microfluids experiments
also reveal that, in the time period in which IPTG is not in medium M9, cell division
stops and elongated cells appear to restore their own division after a successive insertion
of IPTG. The cause of this filamentous morphology is currently unknown. It might
involve the bacterial SOS response [53], but could also be a consequence of the decrease
in concentration of a protein necessary for cell division when RNA polymerase is diluted
out (and transcription of this factor stops): for more details see [51]. Anyhow, during
the experimental time while IPTG is not inserted we assist at a remarkable decrease of
the growth rate of the single cell. The arrest of the synthesis of RNAP causes the arrest
of the production of the protein RFP responsible for the total cellular fluorescence (see
center plot) with a similar delay as we have seen in the first graph: during the time of
the experiment while IPTG is not inserted the fluorescence increases because the cell
does not divide. The decrease in fluorescent protein synthesis rate appears to occur
at a slower rate than the decrease of growth rate, whence the increase of normalized

fluorescence in absence of IPTG observed in the bottom plot.

profile µ follows, and eventually explain the bootstrap procedure for the quantification

of data uncertainty.

We apply as a fitting method the cubic smoothing spline. Consider the relation Yi =

f(ti). The smoothing spline is an estimate f̂ of the function f , that is defined to be the

minimizer of
n
∑

i=1

(Yi − f̂(ti))
2 + λY

∫ tn

t1

f̂ ′′(t)2dt (10.5)

in a space of suitably smooth functions [120], where λY is a smoothing parameter,

controlling the trade-off between fidelity to the data and roughness of the function
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estimate. To choose the value λY , we perform leave-one-out cross-validation. For any

candidate value of λY , we solve the problem above n times, each time ignoring one point

(ti, Yi) in the fit and computing the error that the fitting result commits in predicting

(ti, Yi). Taking the median of these n prediction errors, we quantify the predictive

capability of the solution associated with that value of λY . The final value of λY is

chosen numerically as the one that minimizes this median prediction error. We denote

by Ŷ (ti) the associated solution of Formula (10.5) finally obtained on the basis of all

data points.

Toward computation of the growth rate, in order to compute an initial fit of cell size,

consider the relation Ai = g(ti). To properly account for cell division, we calculate the

area profile in-between division times tdj , j = 1, ...,m: the function g(t) (defined from

t1 to tn) is decomposed in the m − 1 functions gj(t) (defined from tdj to tdj+1). If the

time window is large (numerous data points, as in the case of slow growth in absence of

IPTG), we calculate the profile of the area ĝj as we do for the fluorescence in Formula

(10.5), that is, by finding the smoothing spline solution to

∑

i:tdj≤ti≤tdj+1

(Ai − ĝj(ti))
2 + λAj

∫ tdj+1

tdj

ĝj
′′(t)2dt (10.6)

with value of the smoothing parameter λAj
again fixed by leave-one-out cross validation.

Correspondingly, we calculate growth rate estimates µ̂i = ĥj(ti) (for all time points ti

between tdj and tdj+1) by means of the formula

ĥj(t) =
1

ĝj(t)

dĝm(t)

dt
(10.7)

If instead the time window is small (few data points), fitting the curve with a cubic

smoothing spline may lead to artifacts. Assuming in this case exponential growth Â(t) =

a expbt (as expected in the presence of IPTG), we perform a linear regression on the log

of the experimental data:

min
a,b

∑

i=1

(logA(ti)− logÂ(ti, a, b))
2 = min

a,b

∑

i=1

(logA(ti)− log a− b ti)
2 (10.8)

and set µ̂ = 1
A
Ȧ = a b eb t

a eb t = b for all times ti between the division times considered. In

this case, cross-validation is not needed since this parametric solution does not incur the

risk of overfitting. Overall, the estimate µ̂ over the whole experiment is obtained by the

juxtaposition of all estimates obtained in-between division times.
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Based on these initial fits, in order to quantify the uncertainty of the data, we consider

the residual between the experimental data at time ti and the point of the fitted curve

at the same times ti: ε(ti) = A(ti)− Â(ti) and ξ(ti) = Y (ti)− Ŷ (ti). Then we perform

bootstrap, a statistical technique allowing one to draw statistics from a finite data set

by random sampling. We resample the residuals K times to obtain K different resid-

ual vectors εk and ξk, where k = 1, . . . ,K. Correspondingly we define K vectors of

synthetically generated data Ak(ti) = Â(ti) + εk(ti) and Y k(ti) = Ŷ (ti) + ξk(ti), with

k = 1, . . . ,K. We then calculate for each new set of data estimates µ̂k and Ŷ k as we did

before for µ̂(ti) and Ŷ (ti) and we calculate the uncertainty (standard deviation) for the

fluorescence and growth rate data at the different times ti as the standard deviation σ
Ŷ

of the K mean fluorescence profiles and σµ̂ of the K growth rate profiles at the same

times ti.

10.3.3 Calculation of average cell profiles

After the calculation of the estimates Ŷ c and µ̂c and related uncertainties for each

cell c = 1, . . . , C, it is possible to obtain the weighted average of the c profiles for the

fluorescence:

ˆ̄Y (ti) =
C
∑

c=1

Ŷ c(ti)W
c

Ŷ
(ti) (10.9)

and for the growth rate:

ˆ̄µ(ti) =
C
∑

c=1

µ̂c(ti)W
c
µ̂(ti) (10.10)

where W c

Ŷ
(ti) is the weight associated with the fluorescence profile of the cth cell at time

ti and W c
µ̂(ti) is the weight associated with the growth rate profile of the cth cell at time

ti, defined by:

W c

Ŷ
(ti) =

1
σ2

Ŷ c (ti)

C
∑

c=1

1
σ2

Ŷ c (ti)

(10.11)

and

W c
µ̂(ti) =

1
σ2
µ̂c

(ti)

C
∑

c=1

1
σ2
µ̂c

(ti)

(10.12)

These mean profiles will be used for the calibration of the average cell mode. Note that,

because single-cell fits are used to compute the average data, times ti may be chosen

identical across cells even if they are not in the original data sets.
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10.3.4 Calibration of the model

The model equations can be summarized by

ẋ = Φ(x, µ, θ), (10.13)

with measured fluorescence

y = Γ(x, θ). (10.14)

Here we discuss the approach to find the unknown input µ and parameters θ to fit

growth rate and fluorescence data. For single cells, these are Ŷ c and µ̂c (and relevant

uncertainties), and calibration is repeated for c = 1, . . . , C, thus getting C estimates of

θ and µ. For the average model, the data to fit is ˆ̄Y and ˆ̄µ.

For both single cell and average cell approaches, the dynamical model parameters that

we estimate are θ = [k1,K2,K3,K4,K5,K6, km, Rm(0), L(0)]. The search space for the

parameter values is defined by the intervals [0.01 θ0, 100 θ0], where θ0 is an initial guess

derived from [67]. The remaining model parameters are determined by θ via stationarity

assumptions of the system dynamics at the beginning of the experiment.

In all cases, the unknown input µ is modeled by a B-spline curve of sixth degree, defined

over the domain [t0, tn], with 30 knots, which can be expressed as a linear function of a

vector of parameters η. Thus, µ(t) = B(t) η, where B(t) is a vector of basis functions,

and the problem of input estimation becomes that of estimating η. In accordance with

their definition, we estimate the coefficients η in a boundary of [−1, 1]. To perform

simultaneous estimation of input and dynamics, i.e. of η and θ, the objective function

that we minimize for the average cell is the negative log-likelihood function (under

Gaussianity and mutual independence assumptions of the errors affecting the data ˆ̄µ(ti)

and ˆ̄Y (ti) )
n
∑

t=1

( ˆ̄Y (ti)− Y (ti; θ, η)

σ ˆ̄Y (ti)

)2
+

n
∑

t=1

( ˆ̄µ(ti)−B(ti) η

σ ˆ̄µ(ti)

)2
(10.15)

where Y (t; θ, η) is the solution of the system dynamics of Equations (10.13)-(10.14) for

the candidate θ and input µ = B η. Here, σ ˆ̄µ(ti)
and σ ˆ̄Y (ti)

are the standard deviations of

C cellular profiles Ŷ c and µ̂c, evaluated at time ti, that express the cell-to-cell variability.

Similarly, the objective function for the single cell calibration is:

n
∑

t=1

( Ŷ c(ti)− Y (ti; θ, η)

σ
Ŷ c(ti)

)2
+

n
∑

t=1

( µ̂c(ti)−B(ti) η

σµ̂c(ti)

)2
(10.16)
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Figure 10.3: Cellular profiles. Fluorescence profile Ŷ (left picture) and growth rate
profile (right picture) µ̂ for the cell of Figure 10.2 with their interval of confidence ±2σŶ

and ±2σµ̂.

10.4 Results

10.4.1 Cellular profiles

We considered data from 20 cells among those experimentally observed in [51]. On

this data we performed the data processing (computation of growth rates and of data

uncertainties) of Sections 10.3.2-10.3.3 and the calibrations of single-cell and average-

cell models of Section 10.3.4. Figure 10.3 shows, as an example, the data analysis of

Section 10.3.2 for the cell of Figure 10.2. The growth rate profile shows, for small time

windows in-between cellular divisions, a constant value (estimated by linear regression

using Equation (10.8)) and for long time window (i.e. from minute to 875 to 1280) a

curve modeled by cubic spline (through Equation (10.7)).

From the C profiles, we calculate average profiles using Equations (10.10)-(10.9). The

resulting average fluorescence and growth rate profiles are shown in Figure 10.4.

10.4.2 Calibration of the average cell model

We perform the calibration of the average-cell model in Matlab, using fmincon to mini-

mize the objective function (10.15) with respect to the vectors θ and η, in combination

with ode45 to solve the dynamics of Equations (10.13)-(10.14). In Figure 10.5, fitting
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Figure 10.4: Average profile. Weighted average of fluorescence profiles (left picture)
and weighted average of growth rate profiles (right picture). Average from 20 cells.

Table 10.1: Resulting parameters from the average-cell calibration.

Average-cell parameters

Par. K1 K2 K3 K4 K5 K6 Kmat Rm(0) L(0)

Val. 0.0896 6.2272 7.5574 0.1000 2.0002 7.1589 0.0028 0.8957 0.9795

results for the average cell model are shown. The fitted growth rate (input) profile ap-

pears to anticipate the observed growth dynamics, which is in agreement with the fact

that the corresponding estimated output has to fit fluorescence transitions that appear

to anticipate the observed growth-rate transitions. Yet, the model output presents a

lower amplitude compared with the fluorescence profile data. Growth rate and fluores-

cence fits both fall within the data confidence intervals, which are large due to the large

cell-to-cell variability.

The parameter values we obtain from the calibration of the average-cell model are shown

in Table 10.1.

10.4.3 Calibration of the single-cell models

We perform single-cell calibration in Matlab for every cell c, using fmincon to minimize

the objective function in Equation (10.16) with respect to the vectors θ and η and ode45

to solve the dynamics of Equations (10.13-10.14).
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Figure 10.5: Average-cell calibration. Left (resp. right) picture shows the fluores-
cence (resp. growth rate) profile of the average cell (black dashed line) with its interval
of confidence (red lines) and the curve obtained with the average-cell calibration (blue

line).

Table 10.2: Statistics of the parameters from the 20 single-cell calibration.

Single-cell parameters

Par. K1 K2 K3 K4 K5 K6 Kmat Rm(0) L(0)

Mean. 0.1905 6.2578 7.6467 0.0113 0.4632 4.2821 0.0034 0.9508 1.8135

St.d. 0.0738 4.0969 6.6396 0.0247 1.5843 10.7783 0.0034 0.1564 1.6863

The mean and standard deviation of parameter values obtained from the 20 cells are

shown in Table 10.2 (for the table containing the parameter values for each single-cell

model, see Appendix G).

As an example, Figure 10.6 shows the calibration of the fluorescence and growth rate

profiles for the cell of Figure 10.2 and 10.3. The fitted model explains the single-cell

data reasonably well, yet with discrepancies due to the fact that single-cell noise (fast

fluctuations of the dynamics over time) is not explicitly accounted for by the model. Yet

things become interesting when comparing single-cell estimates with the average-cell

model calibrated earlier on, as discussed in the next section.

10.4.4 Comparison

To compare the results from the two approaches (single-cell vs. average-cell modeling)

we first of all computed the weighted mean of the 20 cell profiles from the single-cell
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Figure 10.6: Single-cell calibration. Left (resp. right) picture shows the fluores-
cence (resp. growth rate) profile of the second cell (black dashed line) with its interval
of confidence (red lines) and the curve obtained with single-cell calibration (blue line).
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Figure 10.7: Calibration of average-cell vs average of single-cell calibrations.
Left (resp. right) picture shows the weighted average cell profile of the fluorescence
(resp. growth rate) in red. The profile given by the average cell model calibration is
shown in blue and the weighted average of the 20 profiles given by single-cell model

calibrations is shown in black.

model calibration of Section 10.4.1 with the weights computed as in Formulas (10.11)-

(10.12). The results are shown in Figure 10.7. The average of single-cell fluorescence

(gene expression response) profiles from the fitted single-cell models explains the average

data much better than average-cell calibration, whereas both approaches show similar is-

sues in the fit of growth rate profiles, namely, both approaches estimate that growth-rate

transitions occur before they actually take place in the data. The improvement on gene
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Figure 10.8: Fluorescence and growth rate transitions. After the removal
of IPTG at minute 800, the fluorescence increase seems to occur before a significant
decrease of growth rate. Both curves are the average-cell profiles calculated from Equa-

tions (10.9)-(10.10).

expression predictions is somewhat surprising and hints that single-cell dynamical mod-

eling is superior. This can be explained by the large single-cell response variability, and

by the fact that the average data is not an actual behavior of any of the cells of the popu-

lation. In other words, the average cell approach is simply an unsuitable approximation

in this case. On the other hand, the fact that growth rate estimates from model calibra-

tions show transitions before those observed in the data is qualitatively understood in

terms of the very nature of the model, where fluorescence dynamics depend causally on

the growth rate profile. Indeed, in the data, fluorescence (gene expression) transitions

related with IPTG removal seem to occur before significant growth-rate transitions (see

Figure 10.8), which cannot be explained by a causal model where, informally speaking,

fluorescence (output) changes can only follow growth rate (input) changes. This prompts

for future investigation of nonstandard models where growth rate is not an input but

rather, similar to gene expression, a resultant of yet-to-determine regulatory response

mechanisms.

Notwithstanding the causality issue, it is interesting to also compare the estimated

single-cell model parameters with the parameter calibration for the average model. Scat-

ter plots of the parameter estimates are compared in Figure 10.9. The red dots that

represent the parameter values of the average cell calibrated model fall inside the corre-

sponding clouds of single-cell parameter estimates, but they clearly do not coincide with

the average of the single-cell estimates. Moreover, for most parameters, these clouds are

as large as one order of magnitude relative to the corresponding value for the average

model. All this provides additional evidence of the strong variability of individual cell

dynamics, and of the importance of explaining population-average data not in terms
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Figure 10.9: Variability of parameter estimates. Every box shows the scatter
plot of the estimates of a pair coefficients from (K1, K2, K3, K4, K5, K6, Kmat, Rm(0),
L(0)). Red stars represent the parameter values of the average cell model and blue dots

represent the parameter values of the 20 singe-cell models.

of response of a virtual average cell, but in terms of average response of different indi-

vidual cells. On the other hand, further investigation is required to quantify practical

identifiability of the model parameters [10, 21, 94].

10.5 Conclusion

In this chapter we have studied the problem of modeling growth and gene expression

from single-cell growth arrest and restart experiments in E. coli. Using the approach

from [67, 101], in a model of gene expression where growth rate appears as input profile,

we have regarded growth rate data as uncertain and solved the problem of simultaneous

estimation of input and dynamical model parameters. The model was first interpreted

as a description of an average cell to explain the average growth and fluorescent reporter

profiles. Then it was reinterpreted as a description of a single observed cell, and different

model calibrations were carried out in correspondence of the different cells.

From the comparison of the two approaches in terms of population-average dynamics,

we found that the single-cell calibration approach leads to far better results than the

average cell calibration regarding the fitting of the fluorescent reporter output, which we

explained by the ability of the single-cell approach to account for the large variability of

single-cell responses to the control experiments [42, 75].
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However both approaches yield unsatisfactory results regarding the fitting of the system

growth rate input. We explained this in terms of the causal relationship between growth

and gene expression that is hard-coded in the model.

We argued that this assumption may not be appropriate in the light of the available

data and the model inference results. This consideration can lead to possible future

research steps on the modeling of the relationships between growth and gene expression.

On the other hand, the remaining discrepancies between single-cell model predictions

and data motivate further advancements in the modeling of the intrinsic noise (i.e. gene

expression randomness) and/or the extrinsic noise (i.e. parameter fluctuations over time)

in single cell, and the validation and possible redesign of the models on new experiments.

Exploitation of a Mixed-Effects approach to population modeling, as in [75], is another

possible development avenue of this work.





Chapter 11

Conclusion and perspectives

The research work presented in this doctoral thesis proposed classical, less classical and

new methods to analyze, reduce and calibrate biological models.

In particular we focused on deterministic models describing the gene regulatory net-

work of E. coli, but also circadian rhythms in insects and mammals, cellular signaling

pathways, and toxicological effects in mice due to pesticides to test our new numerical

approach. We were able to obtain useful biological information applying the tools and

methods proposed.

11.1 Classical tools for the analysis and reduction of bio-

logical models

In the first part of the thesis (Chapter 5) we focused on a system describing RNA

Polymerase in E. coli and its positive effect on the transcription of its own gene. Based

on mass-actions laws a detailed mechanistic model has been written, where every process

was accounted for. Because the high dimension of the resulting deterministic model was

difficult to handle, we reduced it into a much simpler system by time-scale arguments

and studied the mathematical properties of the reduced model. Especially, to investigate

the stability of the system we used monotone system theory and concavity properties.

We then showed how the quantity of ribosomes in the bacterium affects the stability of

the reduced system: the latter was able to mimic the growth arrest of E. coli because

of harmful environmental conditions and the restarts of its growth due to favorable

conditions, according with [104, 119]. Because the loop proposed is not isolated from

the rest of the cell, an interesting perspective could be to extend the model with other

mechanisms considered in the GEM model.
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In this work we have also modeled the growth rate as a Michaelis-Menten equation in

function of the concentration of RNA polymerase: an interesting perspective can be to

add IPTG in the system to control the synthesis of RNA polymerase and consequently

the bacterial growth rate.

11.2 New tools for the analysis and reduction of biological

systems

In the second part of the thesis we presented a new numerical approach, called principal

process analysis (PPA), which allows to analyze the dynamics of a biological system,

focusing on the contribution of each of its processes over time.

The main goal of PPA is model analysis: in Chapter 6, 7, 8, 9 and in Appendix B we

applied different visualization tools to summarize information about biological processes

in one figure (boolean, dynamical process, 3-D and heat process maps). The actual maps

can be improved in future works and new maps can be designed.

In Chapter 6 and Appendix B we used PPA for model simplification purpose. In fact,

neglecting the always inactive processes, we simplify the original model in a reduced

model and then, neglecting the inactive processes for every time window, we decomposed

it into multiple submodels. We compared their dynamics and tested the quality of the

reduction by means of global relative errors. To obtain a dynamics closer to the original

one, it could be interesting to perform a new parameter calibration of the reduced models.

This method can lead to lower global errors and provide an interesting alternative to

more classical model reduction approaches.

In Chapter 6 we performed a global sensitivity analysis on the model parameters to test

the robustness of PPA that: we could do the same analysis on the initial values of the

system.

In Chapter 7, after dividing the initial-condition space in rectangles we performed PPA

in each of them and we studied the possible transition of the system solutions. In this

way we have tested the robustness of our method with respect to initial conditions

on a model of two dimensions, for simplicity reasons. A future perspective can be to

verify this method on models of higher dimension and to apply it also to some specific

parameters spanning several orders of magnitude. In the work we also showed different

pathways that a model, contained in a rectangle, can perform toward other rectangles,

based on the vector field on the edge of the rectangles. Knowing the values of each

component of the vector field makes it possible to study the most probable pathway

used, gaining more information about the system behavior.
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In Chapter 8 we introduced a variant of our numerical approach, called absolute principal

process analysis (APPA): this method uses the absolute values of the processes as a

criteria to compare the processes during the system dynamics, contrary to PPA that

uses process weights. We apply it to understand the core mechanisms of the proposed

toxicological model and to analyze the temporal activation of processes for checking the

consistencies between the model and the proposed MoA. In a future work, this analysis

will help us to refine the model calibration that will be tested through a sensitivity

analysis performed on the half-lives of the system variables of interest.

An interesting future application can be to use APPA as a model simplification method:

for this application the method has to be tested on different models, as we did for the

classical PPA.

In Chapter 9 we performed a three-level PPA, gaining more information about model

processes as the usual two-level PPA. In future work we will perform PPA on more levels

to have a finer method for model analysis. The choice of the threshold between inactivity,

moderately activity and fully activity can be also improved as we did in Chapter 8 for

APPA.

Another possible extension of PPA is to apply it on the full coupled system of equations

instead of working on each equation separately: this would help to analyze activities or

inactivities of processes shared by several equations.

Furthermore a MATLAB or PYTHON tool can be implemented to perform PPA au-

tomatically, choosing different comparison methods, thresholds and visual tools. This

tool will allow fast analysis, helping mathematicians and biologists for system analysis,

model calibration and model reduction.

In Chapter 6, 7, 8, 9, in Appendix B and in the works of [88, 95] PPA was applied

to very different biological models showing its high applicability on the deterministic

systems (both ODE and DAE systems). An interesting application could be to design a

similar approach to stochastic systems, starting from simple cellular models in presence

of intrinsic noise (i.e. random timing of biochemical reactions) or extrinsic noise (i.e.

partitioning error in cell division).

11.3 Design and analysis of the gene expression machinery

in E. coli

In the third part of the thesis (Chapter 9) we presented a model designed by my co-

supervisor Delphine Ropers that describes the gene expression machinery in E. coli. We
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showed my contribution on the mathematical modeling, regarding especially the growth

rate and its control by IPTG.

Contrary to the phenomenological functions often used in models of biomass formation,

our description is mechanistic and allows to relate the components of the gene expression

machinery to the biomass.

The design of the control by IPTG gave interesting results: with the current calibration,

the model proposed was able to reproduce the hypersensitivity of the bacterial growth

to ββ′ concentration observed in the work of [51], although we noticed some imprecision

regarding the transition phase. In future works we will apply different designs of the

control of IPTG on E. coli, adding also as a model parameter the concentration of Lac

operon, and we will test which control will give the best results.

We also applied three-level PPA both on the wild-type and engineered strain of E. coli

to gain knowledge on the core mechanisms of the GEM of E. coli under conditions of

stress (nutrient downshift and IPTG removal). We will perform other experiments in

different conditions to see if the core mechanisms of the system responds as expected.

New model calibrations are also under way, to refine the model predictions in the wild-

type and the engineered strains. The results of the proteomics experiments to come

within the RESET project will be pivotal for that purpose.

The PPA applied to the current calibrated form of the model already provided us with

information on the functioning of important feedback loops. We could analyze the chain

of processes that lead to growth arrest in response to nutrient deprivation or IPTG

removal. An interesting result is the observation that the stress response elicited by

growth arrest following a nutrient downshift does not allow the diversion of cell resources

from biomass formation. On the contrary, when IPTG removal is the cause of growth

arrest, there is no stress response and cell resources are no longer used for biomass

formation. The extension of the model with the metabolism will allow to study this

rechanneling of cell resources to the formation of high value product.

Once the parameter calibration will be finished, an interesting idea can be to reduce its

structure using both classical and new tools we presented in this thesis.

11.4 Single-cell and average cell calibration of the gene

expression machinery control in E. coli

In the fourth part of the thesis (Chapter 10) we have studied the problem of modeling

growth and gene expression from single-cell growth arrest and restart experiments in
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E. coli. We used the approach from [67, 101], in a model of gene expression where

growth rate seems to be an input profile of the system. We then decided to generate

growth rate data from cell area data with their uncertainty and solved the problem

with a simultaneous estimation of input and dynamical model parameters. First we

performed the calibration on average cell data that described the average growth and

average fluorescence of rapporteur gene, then we performed the calibration on each single

cell.

Comparing the two approaches in terms of population-average dynamics, we found the

single-cell profile gave a far better fit of the fluorescence reporter output: in fact it

took account of the cell-to-cell variability response to the control experiments [42, 75].

Anyway, applying both approaches we were not able to perform a satisfactory fitting of

the system input, describing cellular growth rate. This is probably due to an indirect

relationship between the fluorescence profile of the rapporteur gene and growth in the

model considered.

This problematic can lead to a new modeling of the gene expression of the model and

its growth. New perspectives concern the modeling of the intrinsic noise (i.e. gene

expression randomness) and/or the extrinsic noise (i.e. parameter fluctuations over

time) in single cell, and the validation and possible redesign of the models on new

experiments. A possible future step for this work is to apply a Mixed-Effects approach

to population modeling, as in [75].





Chapter 12

Conclusion et perspectives (en

français)

Le travail de recherche présenté dans cette thèse de doctorat a proposé des méthodes

classiques, moins classiques et nouvelles pour analyser, réduire et calibrer les modèles

biologiques.

En particulier, nous nous sommes concentrés sur des modèles déterministes décrivant

le réseau de régulation des gènes de E. coli, mais aussi les rythmes circadiens dans les

insectes et les mammifères, les voies de signalisation cellulaire et les effets toxicologiques

de pesticides chez les souris, pour tester notre nouvelle approche numérique. Nous avons

pu obtenir des informations biologiques utiles en appliquant les outils et les méthodes

proposés.

12.1 Outils classiques pour l’analyse et la réduction des

modèles biologiques

Dans la première partie de la thèse (Chapitre 5), nous nous sommes concentrés sur un

système décrivant la polymérase d’ARN dans E. coli et son effet d’activation sur la

transcription de son propre gène. Sur la base des lois d’actions de masse, un modèle

mécaniste détaillé a été écrit, où chaque processus a été pris en compte. Étant donné

que la dimension élevée du modèle déterministe était difficile à gérer, nous l’avons réduit

dans un système beaucoup plus simple par des arguments d’échelle de temps et étudié

les propriétés mathématiques du modèle réduit. En particulier, pour étudier la stabilité

du système, nous avons utilisé la théorie des systèmes monotones et les propriétés de

concavité.
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Nous avons ensuite montré comment la quantité de ribosomes dans la bactérie affecte

la stabilité du système réduit: ce dernier a pu simuler l’arrêt de croissance de E. coli en

raison de conditions environnementales nuisibles et des redémarrages de sa croissance

en raison de conditions favorables, selon [104, 119]. Étant donné que la boucle proposée

n’est pas isolée du reste de la cellule, une perspective intéressante pourrait être d’étendre

le modèle avec d’autres mécanismes considérés dans le modèle GEM.

Dans ce travail, nous avons également modélisé le taux de croissance comme une équation

de Michaelis-Menten en fonction de la concentration de l’ARN polymérase: une perspec-

tive intéressante peut être d’ajouter l’IPTG dans le système pour contrôler la synthèse

de l’ARN polymérase et par conséquent le taux de croissance bactérienne.

12.2 Nouveaux outils pour l’analyse et la réduction des

systèmes biologiques

Dans la deuxième partie de la thèse, nous avons présenté une nouvelle approche numérique,

appelée analyse de processus principaux (PPA), qui permet d’analyser la dynamique d’un

système biologique, en mettant l’accent sur la contribution de chacun des processus dans

le temps.

L’objectif principal de PPA est l’analyse de modèle: dans le Chapitre 6, 7, 8, 9 et dans

l’Annexe B, nous avons appliqué différents outils de visualisation pour résumer les infor-

mations sur les processus biologiques dans une figure (carte booléenne, carte dynamique,

carte 3-D et carte de chaleur de processus). Ces cartes peuvent être améliorées dans les

travaux futurs et les nouvelles cartes peuvent être conçues.

Dans le Chapitre 6 et Annexe B, nous avons utilisé la PPA pour simplifier le modèle.

En fait, en négligeant les processus toujours inactifs, nous simplifions le modèle original

e un modèle réduit et, négligeant les processus inactive pour chaque fenêtre de temps,

nous l’avons décomposé en plusieurs sous-modèles. Nous avons comparé leur dynamique

et testé la qualité de la réduction au moyen d’erreurs relatives globales. Pour obtenir

une dynamique plus proche de l’original, il pourrait être intéressant d’effectuer une

nouvelle calibration des paramètres des modèles réduits. Cette méthode peut entrâıner

des erreurs globales plus faibles et constituer une alternative intéressante aux approches

de réduction de modèles plus classiques.

Dans le Chapitre 6, nous avons effectué une analyse de sensibilité globale sur les paramètres

du modèle pour tester la robustesse de la PPA: nous pourrions effectuer la même analyse

sur les valeurs initiales du système.
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Dans le Chapitre 7, après avoir divisé l’espace de condition initiale en rectangles, nous

avons effectué la PPA dans chacun d’eux et nous avons étudié la transition possible

des solutions du système. Ainsi, nous avons testé la robustesse de notre méthode par

rapport aux conditions initiales sur un modèle à deux dimensions, pour des raisons de

simplicité. Une perspective future peut être de vérifier cette méthode sur des modèles de

dimension supérieure et de l’appliquer aussi à certains paramètres spécifiques couvrant

plusieurs ordres de grandeur. Dans le travail, nous avons également montré des chemins

différents selon lesquels un modèle, à partir d’un rectangle, peut avoir des transitions

vers d’autres rectangles, en fonction du champ de vecteurs sur le bord des rectangles. La

connaissance des valeurs de chaque composante du champ de vecteurs permet d’étudier

la voie la plus probable utilisée, en obtenant plus d’informations sur le comportement

du système.

Dans le Chapitre 8, nous avons introduit une variante de notre approche numérique, ap-

pelée analyse absolue de processus principaux (APPA): cette méthode utilise les valeurs

absolues des processus en tant que critère pour comparer les processus pendant le

système dynamique, contrairement à PPA qui utilise des poids de processus. Nous

l’appliquons pour comprendre les mécanismes fondamentaux du modèle toxicologique

proposé et pour analyser les processus temporels de traitement des contraintes entre le

modèle et le MoA (mode of action) proposé. Dans un travail futur, cette analyse nous

aidera à affiner la calibration du modèle qui sera testée grâce à une analyse de sensibilité

effectuée sur les demi-vies des variables du système d’intérêt.

Une application future intéressante peut être d’utiliser APPA comme méthode de sim-

plification du modèle: pour cette application, la méthode doit être testée sur différents

modèles, comme nous l’avons fait pour la PPA classique.

Dans le Chapitre 9, nous avons effectué une PPA à trois niveaux, en obtenant plus

d’informations sur les processus modèles qu’avec la PPA de deux niveaux habituel. Dans

un travail futur, nous effectuerons la PPA avec plus de niveaux pour avoir une méthode

plus fine pour l’analyse des modèles. Le choix du seuil entre inactivité, modérément

activité et pleine activité peut également être amélioré comme nous l’avons fait dans le

Chapitre 8 pour l’APPA.

Une autre extension possible de la PPA est de l’appliquer sur le système couplé d’équations

au lieu de travailler séparément sur chaque équation: cela aiderait à analyser l’activité

ou l’inactivité des processus partagés par plusieurs équations.

De plus, un outil MATLAB ou PYTHON peut être implémenté pour effectuer automa-

tiquement la PPA, en choisissant différentes méthodes de comparaison, seuils et outils
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visuels. Cet outil permettra une analyse rapide, aidant les mathématiciens et les biolo-

gistes pour l’analyse du système, la calibration du modèle et la réduction du modèle.

Dans le Chapitre 6, 7, 8, 9, en Annexe B et dans les travaux de [88, 95] la PPA a été

appliquée à des modèles biologiques très différents montrant sa grande utilité sur les

systèmes déterministes (systèmes ODE et DAE). Une application intéressante pourrait

être de concevoir une approche similaire à celle des systèmes stochastiques, à partir de

modèles cellulaires simples en présence de bruit intrinsèque (c’est-à-dire du au hasard des

réactions biochimiques) ou du bruit extrinsèque (c’est-à-dire l’erreur de partitionnement

dans la division cellulaire).

12.3 Modélisation et analyse du mécanisme d’expression

des gènes dans E. coli

Dans la troisième partie de la thèse (Chapitre 9), nous avons présenté un modèle conçu

par ma co-encadrante Delphine Ropers qui décrit le mécanisme d’expression de gènes

dans E. coli. Nous avons montré ma contribution sur la modélisation mathématique, en

particulier le taux de croissance et son contrôle par IPTG.

Contrairement aux fonctions phénoménologiques souvent utilisées dans les modèles de

formation de biomasse, notre description est mécaniste et permet de relier les com-

posantes de la machinerie d’expression des gènes à la biomasse.

La conception du contrôle par IPTG a donné des résultats intéressants: avec la cali-

bration actuel, le modèle proposé a été capable de reproduire l’hypersensibilité de la

croissance bactérienne à la concentration ββ′ observée dans le travail de [51], bien que

nous avons constaté une certaine imprécision quant à la phase de transition. Dans les

travaux futurs, nous appliquerons différentes conceptions du contrôle d’IPTG sur E. coli,

ajoutant également comme paramètre la concentration de Operon Lac, et nous testerons

quel contrôle donne les meilleurs résultats.

Nous avons également appliqué une PPA à trois niveaux à la fois sur la souche de type

sauvage et modifiée de E. coli pour acquérir des connaissances sur les mécanismes de

base du GEM de E. coli dans des conditions de stress (baisse des éléments nutritifs et

suppression de l’IPTG). Nous effectuerons d’autres expériences dans différentes condi-

tions pour voir si les mécanismes de base du système répondent comme prévu.

Des calibrations de nouveaux modèles sont également en cours, afin d’affiner les prédictions

du modèle dans les souches de type sauvage et de génie. Les résultats des expériences

de protéomique dans le cadre du projet RESET seront essentiels à cette fin.
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La PPA appliqué à la forme calibrée actuelle du modèle nous a déjà fourni des infor-

mations sur le fonctionnement des boucles de rétroaction importantes. Nous pourrions

analyser la châıne de processus qui conduit à un arrêt de la croissance en réponse à

la privation de nutriments ou à l’élimination de l’IPTG. Un résultat intéressant est

l’observation selon laquelle la réponse au stress provoquée par l’arrêt de la croissance

suite à une baisse des éléments nutritifs ne permet pas le détournement des ressources

cellulaires de la formation de biomasse. Au contraire, lorsque l’élimination de l’IPTG est

la cause de l’arrêt de la croissance, il n’y a pas de réponse au stress et les ressources cel-

lulaires ne sont plus utilisées pour la formation de biomasse. L’extension du modèle avec

le métabolisme permettra d’étudier cette réallocation des ressources cellulaires pour la

formation d’un produit à haute valeur ajoutée. Une fois la calibration du paramètre ter-

miné, une idée intéressante peut être de réduire sa structure à l’aide des outils (classiques

et nouveaux) que nous avons présentés dans cette thèse.

12.4 Calibration d’un modèle de contrôle de la machinerie

d’expression des gènes dans E. coli en utilisant les

profils de la cellule individuelle et la moyenne

Dans la quatrième partie de la thèse (Chapitre 10), nous avons étudié le problème

de la croissance de la modélisation et de l’expression des gènes à partir de l’arrêt de la

croissance d’une cellule et des expériences de redémarrage dans E. coli. Nous avons utilisé

l’approche de [67, 101], dans un modèle d’expression génique où le taux de croissance

semble être un profil d’entrée du système. Nous avons ensuite décidé de générer des

données de taux de croissance à partir des données de la surface cellulaire avec leur

incertitude et avons résolu le problème avec une estimation simultanée des paramètres de

l’entrée et du modèle dynamique. D’abord, nous avons effectué la calibration des données

cellulaires moyennes qui décrivent la croissance moyenne et la fluorescence moyenne du

gène rapporteur, puis nous avons effectué la calibration sur chaque cellule.

En comparant les deux approches en termes de dynamique moyenne de la population,

nous avons constaté que le profil d’une seule cellule donnait une meilleure calibration

de la sortie du modèle (la fluorescence du gène rapporteur): en fait, il tient compte de

la réponse de la variabilité entre les cellules dans les expériences de contrôle [42, 75].

Quoi qu’il en soit, en appliquant les deux approches, nous n’avons pas été en mesure

d’effectuer un ajustement satisfaisant de l’entrée du système, en décrivant le taux de

croissance cellulaire. Ceci est probablement dû à une relation indirecte entre le profil de

fluorescence du gène rapporteur et la croissance du modèle considéré.
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Cette problématique peut conduire à une nouvelle modélisation de l’expression génique

du modèle et de sa croissance. De nouveaux paramètres décrivent la modélisation du

bruit intrinsèque (c’est-à-dire les fluctuations de l’expression du gène) et/ou le bruit

extrinsèque (c’est-à-dire les fluctuations des paramètres au fil du temps) dans une seule

cellule; la validation et la calibration de ces modèles sont possibles avec de nouvelles

expériences. Une étape future possible pour ce travail est d’appliquer une approche à

effets mixtes à la modélisation de la population, comme dans [75].
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Appendix B

First application of principal

process analysis on biological

models

In this chapter we discuss a work that has been presented at the 23rd Mediterranean

Conference on Control and Automation MED, held in Torremolinos, Spain, on June

16th-19th, 2015 (with peer reviewed proceedings) and has been accepted as a conference

paper in which I am first author (see Appendix A).

We do not insert these sections in a regular chapter to avoid redundancy with Chapter

6.

We present the first application of our method called Principal Process Analysis, pre-

sented in Chapter 6, that is able to analyze key processes for a dynamical network of

high dimension and that is based on a priori knowledge of the system trajectory and

the simplification of the mathematical model. The method consists of the model decom-

position into biologically meaningful processes, whose activity or inactivity is evaluated

during the time evolution of the system. The structure of the model is reduced to the

core mechanisms involving active processes only. We assess the quality of the reduction

by means of global relative errors and apply our method to two models of the circadian

rhythm in Drosophila [72] and the influence of RKIP on the ERK signaling pathway

[68].
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B.1 Methodology

We describe below the basics of the method. We will use as a running example the 8th

variable of the Drosophila circadian clock model [72] (see Section B.2 and the model

equations in Section B.5), which describes concentration changes of the double phos-

phorylated form of protein TIM (T2 = x8):

dT2

dt
= V3T

T1

K3T + T1
− V4T

T2

K4T + T2
− k3P2T2 + k4C − vdt

T2

KdT + T2
− kdT2 (B.1)

B.1.1 Principal process analysis (PPA)

Consider the following ODE model of biological network:

ẋ = f (x, p) (B.2)

where x = (x1, x2, ..., xn) ǫ R
n is the vector of component concentrations, x0 = (x01, x02

, ..., x0n) ǫ R
n the vector of their initial values and p ǫ Rb the vector of parameters. Each

equation is decomposed into a sum of biological processes:

ẋi =
∑

j

fij (x, p) (B.3)

where fij represents the j
th process involved in the dynamical evolution of the ith variable

of the system over a period of time [0,T].

Example: Equation (B.1) includes seven processes, each associated with a specific bio-

logical function. They take a positive or negative value, depending on whether they affect

positively or negatively the variation of T2 concentration. The equation of the protein is

rewritten as:

ẋ8 = f8,1 + f8,2 + f8,3 + f8,4 + f8,5 + f8,6 (B.4)

where f8,1 = V3T
T1

K3T+T1
, ..., f8,6 = −kdT2.

Comparison criteria are needed to weigh the influence of the different processes fij on

the time evolution of each variable xi. There are several alternatives. For instance,

we can compare their absolute value
(

|fij(x, p)|
)

, scale it by the ith initial condition
( |fij(x(t),p)|

x0i

)

, or scale it by the solution of the ith ODE (
|fij(x(t),p)|

x(t)i
). In this work we
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Figure B.1: Dynamics of processes that change the concentration of the double phos-
phorylated protein TIM (T2, see Equations (B.1) and (B.4)) over a 24-hour time win-
dow. B.1a: Absolute value of the processes along time (one color per process). B.1b:

Weights associated with the processes along time. The threshold δ is set at 0.1.



Appendix B. First application of principal process analysis on biological models 182

associate a relative weight to each process to make it dimensionless:

Wij(t, p) =
|fij(x(t), p)|

∑

j |fij(x(t), p)|
(B.5)

where 0 ≤ Wij(t, p) ≤ 1 and
∑

j Wij(t, p) = 1.

Definition: Let the continuous function fij(x(t), p) be the jth process of ẋi(t) in t ǫ

[0, T ] and let the threshold δ ǫ [0,1].

We call a process fij(x(t), p) always inactive when Wij(t, p) < δ ∀ t ǫ [0,T].

We call a process fij(x(t), p) inactive at time t when Wij(t, p) < δ.

We call a process fij(x(t), p) active at time t when Wij(t, p) ≥ δ.

Switching time for a process fij(x(t), p) is the time tsij when Wij(t, p) = δ. A process

can have 0, 1, ..., z switching times.

The switching time set Si for the ith variable contains all the switching times tsij where

j = 1, .., k and s = 1, ..., z.

The global switching time set S is the union of all Si.

Example: We set δ = 0.1 and apply Equation (B.5) to the six processes of Equation

(B.1). We obtain their dynamical weight:

• the weight of processes W8,3, W8,4, W8,6 is always below δ and their related pro-

cesses f8,3, f8,4, f8,6 are always inactive;

• the processes W8,1 and W8,5 are always above δ and f8,1 and f8,5 are active during

the whole dynamics;

• the weight W8,2 of the process f8,2 crosses the threshold twice and the switching

times t18,2 = 0.2h and t28,2 = 19.8h are collected in the set S8. Figure B.1a shows

the dynamics of the absolute values of processes involved in Equation (B.1) during

a day, while relative weights defined in (B.5) are shown in Figure B.1b.

B.1.2 Visualization of process activities

For models as complex as the mammalian circadian clock model, it is advantageous

to qualitatively visualize process activities or inactivities during the system dynamics.

PPA allows to visually summarize this information in one figure with the help of graph-

ical tools. They are described below.

Boolean Process Map: shows the time-dependent activity of processes, ordered by vari-

ables, during the whole system dynamics [t0, T ]. Active, resp. inactive, processes are

depicted by a white, resp. black, bar.

Dynamical Process Map: displays the activity of processes and their interactions with
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variables. In this map, we distinguish three types of process activity to take account

of system equations sharing common processes. Variables (represented by boxes) are

connected by processes (arrows), which can be either inactive (shown in black), active

for all the variables involved (red) or, active for some variables involved and inactive for

the others (yellow).

3-D Process Map: depicts qualitatively for each process, the time-dependent evolution

of its intensity. Process activities are averaged per hour, leading to the discretization of

time. Vertical bars represent process weights for each hour. Their color code represents

the intensity of process weights relatively to the other weights.

Heat Process Map: it allows to study qualitatively the evolution of the intensity of the

active process activity using colors. Values along the rows (the absolute process values

Wi,j(t, p)) are standardized

SWi,j(t, p) =
Wi,j(t, p)− W̄i,j

σWi,j
, (B.6)

where W̄i,j is the mean of all the values of the process weights SWi,j(t, p) in the time

window [0, T ] and σWi,j its standard deviation. The standardized process weights assume

a red color (active) if their value at a generic instant of time t = τǫ[0, T ] is above the

mean, black if their value is equal to the mean and green (inactive) if their value is below

the mean of a column across all rows (the mean of all the standardized process weights

SWi,j(t, p) at time τ). If the red (or green) color is lighter it means that the process is

more active (inactive).

B.1.3 First model reduction

The first step of PPA identifies always inactive processes and remove them from the

original system.

The threshold value δ must be chosen in the range [0,1], preferentially at a low value to

avoid neglecting important processes. Otherwise the dynamics of the new system would

change significantly. The objective is to obtain g(xr), the function approximating f(x)

and including less processes.

We introduce the ODE system (B.7), which approximates system (B.2):

ẋr = g (xr, pr) (B.7)

where xr = (xr1, x
r
2, ..., x

r
n) ǫ R

n is the vector of component concentrations, x0 =

(x01, x02, ..., x0n) ǫ R
n the vector of their initial values, and pr ǫ R

c, where c ≤ b is
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the vector of parameters. The model reduction approach relies basically on the fol-

lowing theorem: if the vector fields of two systems are close (f(x) ≈ g(x)), then the

solutions of the original and approximated systems are close during some time interval

under the assumptions on the Lipschitz conditions listed in [57, p. 96, Th. 3.4].

At this stage, dynamical weights have been assigned to every process and a value has

been set for the threshold δ. We can now apply the following rule to define g(xr, pr):

if Wij(x(t), p) < δ ∀ t ǫ [0,T] then gij = 0;

if not, gij ≡ fij.

We thus define xr as an approximation of x and pr as a subset of p.

Example: Because f8,3, f8,4, f8,6 are always inactive, g8,3 = 0, g8,4 = 0, g8,6 = 0 and

g8,1 ≡ f8,1, g8,2 ≡ f8,2, g8,5 ≡ f8,5. The resulting ODE for xr8 is:

dT r
2

dt
= V3T

T r
1

K3T + T r
1

− V4T
T r
2

K4T + T r
2

− vdt
T r
2

KdT + T r
2

(B.8)

To assess the quality of the reduced model g(xr), we numerically compute the global

relative error between the original and the reduced models on the six outputs of the

system: the concentrations of Per mRNA (MP ), Tim mRNA (MT ), total PER protein

(PTot), total TIM protein (TTot), cytosolic complex (C), nuclear complex (CN ) 1. If

yh and yrh are the hth output of the original and the reduced systems respectively, one

possible form of global relative error is:

eh =

∫

|yh(t)− yrh(t)|dt
∫

|yh(t)|dt
(B.9)

B.1.4 Creation of chains of sub-models

The second step of PPA consists in defining sub-models. The time period during which

the system evolves can be split into time intervals using the switching times tb (with b =

1, . . . , d) previously grouped in set S and sorted in ascending order: this allows creating

a succession of sub-models for each time window, which contain the core mechanisms

in that period of time. To avoid large chains of sub-models, we reduce the number

of time windows by grouping closer switching times with the easy-to-compute k-means

clustering [54]. Given our global switching time set S = [t1, t2, ..., td], this leads us to

group the d switching times into z (≤ d) clusters C={C1, C2, ..., Cz}, so as to minimize

1The outputs PTot and TTot are: PTot = P0 + P1 + P2, TTot = T0 + T1 + T2.
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the within-cluster sum of square (or within-cluster inertia):

argminC

z
∑

v=1

∑

tǫCv

||t− µv||
2 (B.10)

where µv is the mean of the switching times in Cv. We assume that processes with a

switching time in cluster Cv switch together at time trv = µv, the mean switching time

in cluster Cv. There is no precise rule to choose the number of clusters z, but it can be

related to the difference between the maximum and minimum number of active processes

during the time evolution of the system: if the difference is low, z should be chosen low

as well. Such an approach could be:

z ≈
max
v

(nv
act)−min

v
(nv

act)

2
, (B.11)

where nv
act denotes the number of active processes in the vth time window.

We eventually end up with a chain of z + 1 sub-models in the time interval [0, T ], the

first one being valid in [0, tr1], while the last is valid in [trz, T ]. To test the quality of this

second model reduction in each time window, we compute the error (B.9) between the

original model and each sub-model. The global error can be calculated with or without

the propagation error: in the first case, for each time window [trv−1, t
r
v] (v = 1, . . . , z + 1

with tr0 = 0 and trz+1 = T ), the initial values of the h outputs of the sub-model SMv are

equal to the final values at trv−1 of the sub-model SMv−1; in the second case, they are

equal to the values of the original model at trv−1.

B.2 Model for circadian rhythms in Drosophila

B.2.1 Description

We consider the model in [72] given by an ODE system of dimension 10. The model

describes the circadian oscillations of the proteins timeless (TIM) and period (PER),

which involve a negative feedback loop: the double phosphorylated forms of these pro-

teins can be degraded in the cytoplasm or form the PER-TIM complex which, following

its transport to the nucleus, inhibits the transcription of the Tim and Per genes and

the subsequent accumulation of their mRNAs and proteins. The light sets the period

of the oscillations to 24 hours precisely, by increasing the velocity of the degradation of

the double phosphorylated form of TIM (from 2 nM/h to 4 nM/h in the model). Since

the same oscillatory behavior is repeated every day, we focus our analysis on 24 hours

only and use the model parameters given in Figures 2 and 4 of [72].
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B.2.2 Model reduction

After having decomposed every kinetic equation of the model into a set of processes

that we consider to be biologically relevant, we simulate their relative weight as shown

before for (B.1) in Figure B.1. Every time that the weight of a process crosses the

threshold δ, the corresponding process changes its state. The timing of the process

activation/inactivation in each equation and the active/inactive processes along time is

conveniently shown in a Boolean Process Map, as displayed in Figure B.2.

From this analysis, we obtain a reduced model by neglecting the processes that are

Processes 0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Per mRNA

Gene trascription 

Enzymatic degradation 

Basal degradation

Period protein

Transaltion

First phosphorylation

First dephosphorylation

Basal degradation

Phosphorylated Period protein

First phosphorylation

First dephosphorylation

Second phosphorylation

Second Dephosphorylation

Basal degradation

Double phosphorylated Period protein

Second phosphorylation

Second dephosphorylation

Formation of the Complex

Dissociation of the complex

Enzymatic degradation

Basal degradation

Tim mRNA

Gene trascription 

Enzymatic degradation 

Basal degradation

Timeless protein
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First phosphorylation
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Formation of the complex
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Enzymatic degradation

Basal degradation

Complex

Formation of the complex

Dissociation of the complex

Nuclear import
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Nuclear complex

Nuclear import

Nuclear export
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Figure B.2: Boolean Process Map of the process activity for the ODE model in
Drosophila [72]. Black: active state. White: inactive state. Times td are, in the
order, 0.2, 0.5, 1.3, 1.8, 6, 12.3, 15.8, 19.6, 19.8, and 21.5 h. The total duration of the

simulation is 24 h.
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Figure B.3: Output dynamics for the original and reduced model. The firsts are
represented with continuous lines while the seconds with dotted lines.

always inactive (under the threshold δ = 0.1 during the whole time). We hence neglect

18 of 44 processes: f1,3, f2,3, f2,4, f3,2, f3,4, f3,5, f4,2, f4,6, f5,3, f6,3, f6,4, f7,2, f7,5, f8,3,

f8,4, f8,6, f9,5, f10,3. To test the quality of the reduced model, we calculate the global

relative error between the original and the reduced models for each variable using (B.9).

The results in Table B.1 show a good match between the original model and the reduced

one. The dynamics of the system outputs for the original and the first reduced model

are shown in Figure B.3.

B.2.3 Qualitative tool: heat process map

In the previous analysis we used a Boolean approach to study the process activity or

inactivity by means of the Boolean Process Map. We also have considered alternative

graphical representations in this paper, since we also want to qualitatively understand, in

one graph, the change over time of the intensity of the activity/inactivity of important

biological processes. For the circadian model, we chose an Heat Process Map as a

qualitative approach, where the individual values contained in a matrix are represented

using colors. The Heat Process Map for the reduced model g(xr) is shown in Figure B.4.
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Table B.1: Global relative Errors for the reduced Drosophila model

Output G. Rel. Err. (%)

Period mRNA 10.82

Total Period Protein 3.70

Timeless mRNA 7.54

Total Timeless Protein 5.80

Complex 6.08

Nuclear Complex 4.56

Figure B.4: Heat Process Map applied to the Drosophila Model.
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B.2.4 Creation of sub-models based on time windows

The Boolean Process Map is not only useful to identify negligible processes for model

reduction, it can be used also to study the evolution of important (non-negligible) pro-

cesses and create a succession of sub-models containing the core mechanisms, each one

being valid for a certain time window.

Figure B.6(A) shows the based-event grid that is built, based on the switching times

contained in the global switching time Set S, while Figure B.5 represents the number of

active processes as a function of time for the Drosophila model. The minimum number

of active processes is 21 and the maximum is 26 and the number of time windows is 10.
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Figure B.5: Evolution of the number of active processes as a function of time. The
function increases or decreases at the switching time tb in the time interval of the system

evolution.

We use the k-means clustering to compact together more switching times: applying

Equation (B.11), we choose z = 2. The steps are shown in Figure B.6. We have thus

created 2 sub-models: the first one (valid from 0 to 1.96 h and from 17.8 h to 24 h)

coincides with the reduced model and the second one (valid from 1.96 h to 17.8 h) sup-

presses also the processes f4,3, f4,4, f7,4, f8,2, f9,1.

In Figure B.7 is shown a Dynamical Process Map for the two sub-models, where red

lines represent active processes in that time-window, while inactive ones are represented

in black. The first sub-model essentially corresponds to a situation of night time and

the second one, of day time. The results in Table B.2 show a good match between the
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Figure B.6: (A) shows the based-event grid: every time window is delimited by the
switching time tb in the time interval of the system evolution (upper picture). In (B)
the algorithm subsequently chooses the membership of every tb in the Cluster C1 or C2

to minimize the WCCS expressed by B.10 (middle picture). In (C) the cluster is then
replaced with its centroid (in this case the mean) that will be the new approximate
switching time. (D) shows the approximation of Figure B.5. The number of time

windows becomes 2.

original model and the first sub-model, and the original model and the second sub-model.

The dynamics of the system outputs for the original and the for the first sub-model

(SM1) and second sub-model (SM2) with propagation error are shown in Figure B.8.
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Figure B.7: Upper panel: Dynamical Process Map for the sub-model valid from 0 to
1.96 h and 17.8 h to 24 h. Lower panel: Dynamical Process Map for the sub-model

valid from 1.96 h to 17.8 h. Black: inactive processes. Red: active processes.
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Table B.2: Global relative Errors for the two sub-models of the Drosophila

model

Output G. Rel. Err. SM1 (%) G. Rel. Err. SM2 (%)

Period mRNA 13.63 7.70

Total Period Protein 1.61 7.06

Timeless mRNA 9.95 5.96

Total Timeless Protein 2.64 10.96

Complex 4.74 3.97

Nuclear Complex 5.36 5.85
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Figure B.8: Output dynamics for the original and sub-models with propagation errors.
The firsts are represented with continuous lines while the seconds with dotted lines. The

tr1 and tr2 are the approximate switching times.

B.3 Model for the influence of RKIP on the ERK signaling

pathway

B.3.1 Description

We consider the model in [68] of dimension 11. The ERK signaling pathway controls

important cellular phenomena like proliferation or differentiation. The model describes

the inhibition of the activation of RAF by RKIP, which regulates the ERK signaling

pathway. We use in our analysis the parameters of [68] and initial values in [90].
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Since no switches occur during the simulation (due to the strong activity/inactivity

boundary separation and the absence of process weights crossing the threshold δ), we

will show neither the Boolean Process Map nor the creation of sub-models.

B.3.2 Model reduction

We simulate the relative weight of the processes for every ODE as we did for the previous

model. We are able to neglect 12 of 34 processes: f1,2, f2,2, f3,2, f3,4, f4,2, f5,3, f6,3, f7,2,

f8,2, f9,2, f10,2, f11,2. The results in Table B.3 show a really good match between the

original model and the reduced one with a low global error. In addition to our study,

other model reduction approaches with different goals have been applied to the ERK

model in [68]: the quasi-steady-state-approximation used by Petrov et al. in [90] and the

automatic complexity analysis by Lebiedz et al. in [70]. The work of [90] is concerned

with the separation of variables with fast dynamics from those with slow dynamics with

respect to a time scale and uses a mathematical scaling. The components of the ODEs

related to the fast variables are expressed by algebraic equations. Analysing the re-

sulting reduced model allowed the authors of the study to conclude that the variable

m4 (the complex Raf-1*/RKIP/ERK-PP) has the biggest influence on the system when

it approaches its quasi-steady state. The work of [70] uses two different methods: the

first one combines dynamic sensitivity analysis with singular value decomposition to find

a minimal dimension of the model and the second one permits to reduce actually the

dimension of the model and determine the variables which contribute more to the full

dynamics of the system (variables m5, m8, m11). Our analysis is different in the sense

that we are not interested in which variable gives the bigger contribution to the dynam-

ics of the full system but which mechanisms (processes) give the highest contribution

to the dynamics of the variable: we study the influence of the processes. It is a reduc-

tion method that does not change in general the dimension and the biological structure

of the system. For instance, the model in [68] is composed by two types of processes:

association processes, where two or more proteins combine together to form a complex,

and dissociation processes which correspond to the reverse mechanism. While the asso-

ciation processes are always active during the time evolution of the system, most of the

dissociation processes can be considered negligible: it means that association processes

play the bigger role in the dynamic for every variable of the system.

B.3.3 Qualitative tool: 3-D process map

We chose this time a three-dimensional bar graph as a qualitative approach to show the

evolution of the intensity of the activity for every process (Figure B.9). The height of
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Table B.3: Global relative Errors for the reduced ERK model

Variable G. Rel. Err. (%)

Raf-1* 0.0012

RKIP 0.106

Raf-1*/RKIP 6.172

Raf-1*/RKIP/ERK-PP 0.0036

ERK-P 9.07

RKIP-P 0.138

MEK-PP 0.0056

MEK-PP/ERK 0.0148

ERK-PP 0.0013

RP 0.00049

RKIP-P 0.03451
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Figure B.9: 3D bar graph: the x-axis represents the processes, the y-axis corresponds
to the time evolution and the z-axis, to the value of the weight.

the column gives the intensity of each process activity, while the color code indicates

the weight of the process. In this graph we put the processes of the reduced model

g(xr) during a one-second dynamics discretized in six time intervals. Figure B.9 shows

that the most active process during the system dynamics is the seventh process, the

association of Raf-1*/RKIP and ERK-PP to form the Raf-1*/RKIP/ERK-PP complex.

This process strongly influences the variable m4, which was found by Petrov et al. to

be the most important one for the system dynamics.
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B.4 Conclusions

We have presented in this appendix Principal Process Analysis, a method that allows

to reduce biological models of high dimension and to analyze their core mechanisms

and how these evolve dynamically, provided that their initial conditions and parameter

values are known. Reduced models and sub-models obtained by this approach can be

also refined, by calibrating the reduced vector of parameters so as to obtain models that

better approximate the original one. In Chapter 6, Parameter Sensitivity Analysis will

be applied to the original and reduced models to test the robustness of our technique. In

Chapter 6, a biological model of higher dimension will be also analyzed to check further

the quality of PPA.

B.5 Supplementary materials

Table B.4: Variables of Drosophila model

Variable Description

MP Period mRNA

P0 Period Protein

P1 Phosphorylated Period Protein

P2 Double Phosphorylated Period Protein

MT Timeless mRNA

T0 Timeless Protein

T1 Phosphorylated Timeless Protein

T2 Double Phosphorylated Timeless Protein

C Complex

CN Nuclear Complex

Full Drosophila model (see [72])

dMP

dt
= vsP

Kn
IP

Kn
IP

+ Cn
N

− vmP

MP

KmP + MP

− kdMP

dP0

dt
= ksPMP − V1P

P0

K1P + P0

+ V2P

P1

K2P + P1

− kdP0

dP1

dt
= V1P

P0

K1P + P0

− V2P

P1

K2P + P1

− V3P

P1

K3P + P1

+ V4P

P2

K4P + P2

− kdP1

dP2

dt
= V3P

P1

K3P + P1

− V4P

P2

K4P + P2

− k3P2T2 + k4C − VdP

P2

KdP + P2

− kdP2

dMT

dt
= vsP

Kn
IT

Kn
IT

+ Cn
N

− vmT

MT

KmT + MT

− kdMT

dT0

dt
= ksTMT − V1T

T0

K1T + T0

+ V2T

T1

K2T + T1

− kdT0
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Table B.5: Variables of ERK model

Variable Description

m1 Raf-1*

m2 RKIP

m3 Raf-1*/RKIP

m4 Raf-1*/RKIP/ERK-PP

m5 ERK-P

m6 RKIP-P

m7 MEK-PP

m8 MEK-PP/ERK

m9 ERK-PP

m10 RP

m11 RKIP-P

dT1

dt
= V1T

T0

K1T + T0

− V2T

T1

K2T + T1

− V3T

T1

K3T + T1

+ V4T

T2

K4T + T2

− kdT1

dT2

dt
= V3T

T1

K3T + T1

− V4T

T2

K4T + T2

− k3P2T2 + k4C − VdT

T2

KdT + T2

− kdT2

dC

dt
= k3P2T2 − k4C − k1C + k2CN − kdCC

dCN

dt
= k1C − k2CN − kdNCN

Reduced Drosophila model and first sub-model

dMP

dt
= vsP

Kn
IP

Kn
IP

+ Cn
N

− vmP

MP

KmP + MP

dP0

dt
= ksPMP − V1P

P0

K1P + P0

dP1

dt
= V1P

P0

K1P + P0

− V3P

P1

K3P + P1

dP2

dt
= V3P

P1

K3P + P1

− k3P2T2 + k4C − VdP

P2

KdP + P2

dMT

dt
= vsP

Kn
IT

Kn
IT

+ Cn
N

− vmT

MT

KmT + MT

dT0

dt
= ksTMT − V1T

T0

K1T + T0

dT1

dt
= V1T

T0

K1T + T0

− V3T

T1

K3T + T1

+ V4T

T2

K4T + T2

dT2

dt
= V3T

T1

K3T + T1

− V4T

T2

K4T + T2

− VdT

T2

KdT + T2

dC

dt
= k3P2T2 − k4C − k1C + k2CN

dCN

dt
= k1C − k2CN

Second Drosophila sub-model
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dMP

dt
= vsP

Kn
IP

Kn
IP

+ Cn
N

− vmP

MP

KmP + MP

dP0

dt
= ksPMP − V1P

P0

K1P + P0

dP1

dt
= V1P

P0

K1P + P0

− V3P

P1

K3P + P1

dP2

dt
= V3P

P1

K3P + P1

− VdP

P2

KdP + P2

dMT

dt
= vsP

Kn
IT

Kn
IT

+ Cn
N

− vmT

MT

KmT + MT

dT0

dt
= ksTMT − V1T

T0

K1T + T0

dT1

dt
= V1T

T0

K1T + T0

− V3T

T1

K3T + T1

dT2

dt
= V3T

T1

K3T + T1

− VdT

T2

KdT + T2

dC

dt
= −k4C − k1C + k2CN

dCN

dt
= k1C − k2CN

Full model ERK model (see [68])

dm1

dt
= −k1m1m2 + k2m3 + k5m4

dm2

dt
= −k1m1m2 + k2m3 + k11m11

dm3

dt
= k1m1m2 − k2m3 − k3m3m9 + k4m4

dm4

dt
= k3m3m9 − k4m4 − k5m4

dm5

dt
= k5m4 − k6m5m7 + k7m8

dm6

dt
= k5m4 − k9m6m10 + k10m11

dm7

dt
= −k6m5m7 + k7m8 + k8m8

dm8

dt
= k6m5m7 − k7m8 − k8m8

dm9

dt
= −k3m3m9 + k4m4 + k8m8

dm10

dt
= −k9m6m10 + k10m11 + k11m11

dm11

dt
= k9m6m10 − k10m11 − k11m11

Reduced ERK model

dm1

dt
= −k1m1m2 + k5m4

dm2

dt
= −k1m1m2 + k11m11
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dm3

dt
= k1m1m2 − k3m3m9

dm4

dt
= k3m3m9 − k5m4

dm5

dt
= k5m4 − k6m5m7

dm6

dt
= k5m4 − k9m6m10

dm7

dt
= −k6m5m7 + k8m8

dm8

dt
= k6m5m7 − k8m8

dm9

dt
= −k3m3m9 + k8m8

dm10

dt
= −k9m6m10 + k11m11

dm11

dt
= k9m6m10 − k11m11
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C.1 Monotone systems

Monotone systems form an important class of dynamical systems, and are particularly

well adapted to mathematical models in biology [112], because they are defined by

conditions related to the signs of Jacobian matrix. Such a sign for one element reflects

the fact that some variable will contribute positively to the variation of some other

variables, a kind of qualitative dependence frequently found in biological models. The

reader may consult the reference [107] for a review and an exhaustive presentation of

the theory of monotone systems.

In summary, if the system is cooperative, then the flow preserves the partial order of

trajectories in R
n (the flow is monotone). Consider an autonomous differential system:

ẋ = f(x) (C.1)

where, x ∈ R
n and f : Rn → R

n.

Therefore the system is monotone if x01 ≤ x02 (this inequality must be understood

coordinate by coordinate: i.e. x01i ≤ x02i, ∀ i ∈ [1, . . . , n] ), implies that x(t, x01) ≤

x(t, x02) ∀ t, where x(t, x0) corresponds to the evolution with respect to time starting

from the initial condition x0.

Cooperativity is easy to check by looking at the signs of the elements of the Jacobian

matrix, that should verify

199
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∂fi
∂xj

(t, x) ≥ 0 ∀i 6= j.

These systems have a strong tendency to converge to the set of their equilibria ([107]).

It can be shown that almost any solution converges to the set of equilibria except a set

of zero measure. In particular, there are no stable periodic solutions. For more precise

theorems, see [107].

C.2 Tikhonov’s theorem

This theorem applies to reduced systems of the form:

ẋ = f(x, y, ǫ)

ẏ =
1

ǫ
g(x, y, ǫ).

(C.2)

where x ∈ R
n, y ∈ R

m, and 0 < ǫ ≪ 1 (ǫ a very small parameter), x(0) = x0, y(0) = y0.

So, when ǫ tends to 0 (ẏ evolves very rapidly compared to ẋ), the system (C.2) is

equivalent to the system:

ẋ = f(x, y, 0)

g(x, y, 0) = 0

This is valid only if the fast subsystem ẏ = g(x, y, 0) satisfies some conditions which are

given as follows:

• Existence and uniqueness of the steady state (there exists a unique solution, y∗ =

φ(x) of g(x, y, 0) = 0).

• Stability of the steady state y∗ of the fast subsystem ẏ = g(x, y, 0) for fixed x.

These conditions are given by Tikhonov’s theorem (for a complete description see [57]),

which ensures that y will converge rapidly to a quasi steady state (y = φ(x), depending

only on x). Therefore the reduced system using Tikhonov’s theorem is:

ẋ = f(x, φ(x), 0), x(0) = x0.
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D.1 Full mammalian model

Model equations

Equations listed in [73, 74].

mRNAs of Per gene

dMP

dt
= vsP

Bn
N

Kn
AP+Bn

N
− vmP

MP

KmP+MP
− kdmpMP

ẋ1 = f1,1 + f1,2 + f1,3

mRNAs of Cry gene

dMC

dt
= vsC

Bn
N

Kn
AC+Bn

N
− vmC

MC

KmC+MC
− kdmcMC

ẋ2 = f2,1 + f2,2 + f2,3

mRNAs of Bmal1 gene

dMB

dt
= vsB

Kn
IB

Kn
IB+Bn

N
− vmB

MB

KmB+MB
− kdmbMB

ẋ3 = f3,1 + f3,2 + f3,3

Non-phosphorylated PER protein in the cytosol

dPC

dt
= ksPMP − V1P

PC

KP+PC
+ V2P

PCP

KdP+PCP
+ k4PCC − k3PCCC − kdnPC

ẋ4 = f4,1 + f4,2 + f4,3 + f4,4 + f4,5 + f4,6

201
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Non-phosphorylated CRY protein in the cytosol

dCC

dt
= ksCMC − V1C

CC

KP+CC
+ V2C

CCP

KdP+CCP
+ k4PCC − k3PCCC − kdncCC

ẋ5 = f5,1 + f5,2 + f5,3 + f5,4 + f5,5 + f5,6

Phosphorylated PER protein in the cytosol

dPCP

dt
= V1P

PC

KP+PC
− V2P

PCP

KdP+PCP
− vdPC

PCP

Kd+PCP
− kdnPCP

ẋ6 = f6,1 + f6,2 + f6,3 + f6,4

Phosphorylated CRY protein in the cytosol

dCCP

dt
= V1C

CC

KP+CC
− V2C

CCP

KdP+CCP
− vdCC

CCP

Kd+CCP
− kdnCCP

ẋ7 = f7,1 + f7,2 + f7,3 + f7,4

Non-phosphorylated PER-CRY complex in the cytosol

dPCC

dt
= −V1PC

PCC

KP+PCC
+ V2PC

PCCP

KdP+PCCP
− k4PCC + k3PCCC + k2PCN − k1PCC − kdnPCC

ẋ8 = f8,1 + f8,2 + f8,3 + f8,4 + f8,5 + f8,6 + f8,7

Non-phosphorylated PER-CRY complex in the nucleus

dPCN

dt
= −V3PC

PCN

KP+PCN
+ V4PC

PCNP

KdP+PCNP
− k2PCN + k1PCC − k7BNPCN + k8In − kdnPCN

ẋ9 = f9,1 + f9,2 + f9,3 + f9,4 + f9,5 + f9,6 + f9,7

Phosphorylated PER-CRY complex in the cytosol

dPCCP

dt
= V1PC

PCC

KP+PCC
− V2PC

PCCP

KdP+PCCP
− vdPCC

PCCP

Kd+PCCP
− kdnPCCP

˙x10 = f10,1 + f10,2 + f10,3 + f10,4

Phosphorylated PER-CRY complex in the nucleus

dPCNP

dt
= V3PC

PCN

KP+PCN
− V4PC

PCNP

KdP+PCNP
− vdPCN

PCNP

Kd+PCNP
− kdnPCNP

˙x11 = f11,1 + f11,2 + f11,3 + f11,4

Non-phosphorylated BMAL1 protein in the cytosol

dBC

dt
= ksBMB − V1B

BC

KP+BC
+ V2B

BCP

KdP+BCP
− k5BC + k6BN − kdnBC

˙x12 = f12,1 + f12,2 + f12,3 + f12,4 + f12,5 + f12,6

Phosphorylated BMAL1 protein in the cytosol

dBCP

dt
= V1B

BC

KP+BC
− V2B

BCP

KdP+BCP
− vdBC

BCP

Kd+BCP
− kdnBCP

˙x13 = f13,1 + f13,2 + f13,3 + f13,4



Appendix D. Supplementary materials of Chapter 6 203

Non-phosphorylated BMAL1 protein in the nucleus

dBN

dt
= −V3B

BN

KP+BN
+ V4B

BNP

KdP+BNP
+ k5BC − k6BN − k7BNPCN + k8IN − kdnBN

˙x14 = f14,1 + f14,2 + f14,3 + f14,4 + f14,5 + f14,6 + f14,7

Phosphorylated BMAL1 protein in the nucleus

dBNP

dt
= V3B

BN

KP+BN
− V4B

BNP

KdP+BNP
− vdBN

BNP

Kd+BNP
− kdnBNP

˙x15 = f15,1 + f15,2 + f15,3 + f15,4

Inactive complex between PER-CRY and CLOCK-BMAL1 in the nucleus

dIN
dt

= −k8IN + k7BNPCN − vdIN
IN

Kd+IN
− kdnIN

˙x16 = f16,1 + f16,2 + f16,3 + f16,4

Model parameters

Parameters listed in [74, p.546]: set 1.

k1(h
−1) = 0.4, k2(h

−1) = 0.2, k3(nM
−1h−1) = 0.4, k4(h

−1) = 0.2, k5(h
−1) = 0.4, k6(h

−1) =

0.2, k7(nM
−1h−1) = 0.5, k8(h

−1) = 0.1, KAP (nM) = 0.7, KAC(nM) = 0.6, KIB(nM) =

2.2, kdmb(h
−1) = 0.01, kdmc(h

−1) = 0.01, kdmp(h
−1) = 0.01, kdnc(h

−1) = 0.12, kdn(h
−1) =

0.01, Kd(nM) = 0.3, Kdp(nM) = 0.1, Kp(nM) = 0.1, KmB(nM) = 0.4, KmC(nM) =

0.4, KmP (nM) = 0.31, kstot(h
−1) = 1.0, ksB(h

−1) = 0.12kstot, ksC(h
−1) = 1.6kstot, ksP (h

−1) =

0.6kstot, n = 4, m = 2, Vphos(nMh−1) = 0.4, V1B(nMh−1) = 0.5, V1C(nMh−1) =

0.6, V1P (nMh−1) = Vphos, V1PC(nMh−1) = Vphos, V2B(nMh−1) = 0.1, V2C(nMh−1) =

0.1, V2P (nMh−1) = 0.3, V2PC(nMh−1) = 0.1, V3B(nMh−1) = 0.5, V3PC(nMh−1) =

Vphos, V4B(nMh−1) = 0.2, V4PC(nMh−1) = 0.1, vdBC(nMh−1) = 0.5, vdBN (nMh−1) =

0.6, vdCC(nMh−1) = 0.7, vdIN (nMh−1) = 0.8, vdIN (nMh−1) = 0.8, vdPC(nMh−1) =

0.7, vdPCC(nMh−1) = 0.7, vdPCN (nMh−1) = 0.7, vmB(nMh−1) = 0.8, vmC(nMh−1) =

1.0, vmP (nMh−1) = 1.1, vstot(nMh−1) = 1.0, vsB(nMh−1) = vstot, vsB(nMh−1) =

vstot, vsC(nMh−1) = 1.1vstot, vsP (nMh−1) = 1.5vstot

Initial conditions

The unit of the initial conditions is nM .

MP (0) =2.188MC(0) =1.633,MB(0) =9.498, PC(0)=2.008, CC(0)=1.884, PCP (0) =0.129,

CCP (0) =0.473, PCC(0) =1.228, PCN (0) =0.177, PCCP (0) =0.203, PCNP (0) =0.101,

BC(0) =2.523, BCP (0) =0.929, BN (0) =1.787, BNP (0) =0.318, IN (0) =0.051
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D.2 Switching times

See Table B.4.

D.3 Neglected procceses

D.3.1 First reduced model

Neglected processes are:

f1,3, f2,3, f3,3, f4,6, f5,3, f5,6, f6,4, f7,4, f8,2, f8,7, f9,6, f9,7, f10,4, f11,4, f12,3, f12,6, f13,2,

f13,4, f14,2, f14,6, f14,7, f15,4, f16,1, f16,4.

D.3.2 Second reduced model: sub-models

Neglected processes in SM1 are:

f1,3, f2,3, f3,3, f4,6, f5,3, f5,6, f6,4, f7,4, f8,2, f8,7, f9,6, f9,7, f10,4, f11,4, f12,3, f12,6, f13,2,

f13,4, f14,2, f14,6, f14,7, f15,4, f16,1, f16,4.

In SM2, we supposed that processes switching state from t1 = 0.33 until t6 = 1.5 change

simultaneously at time tr1 = 0.9. Deleted processes are common to those removed in

SM1, as well as: f4,3, f4,4, f5,4, f7,2, f8,3,f8,5, f9,2, f9,3, f10,2, f14,5.

Table D.1: Switching times (s.t), their values (v.) in [h] and associate reduced (clus-
ter) switching times (tr1,t

r
2,t

r
3,t

r
4) (s.t.c.).

s.t. v. s.t.c. s.t. v. s.t.c. s.t. v. s.t.c. s.t. v. s.t.c.

t0 0

0.9

t12 5.9

6

t24 13.5
12.5

t36 19.5

20

t1 0.3 t13 7.9 t25 13.6 t37 20.3
t2 0.6 t14 8.2 t26 15.6 t38 20.4
t3 0.8 t15 8.6 t27 17.3

20

t39 20.45
t4 1 t16 9.8

12.5

t28 17.4 t40 20.5
t5 1.1 t17 10.4 t29 18.5 t41 20.7
t6 1.5 t18 11.2 t30 18.9 t42 20.8
t7 3.8

6

t19 11.5 t31 19.1 t43 21.5
t8 4.1 t20 12.4 t32 19.2 t44 21.6
t9 4.4 t21 12.6 t33 19.25 t45 22.3
t10 5.4 t22 13.3 t34 19.3 t46 22.9
t11 5.7 t23 13.4 t35 19.35 T 24
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In SM3, we supposed that processes switching state from t7 = 3.8 until t6 = 1.5 change

simultaneously at time tr2 = 6. Deleted processes are common to those removed in SM1,

as well as: f1,1, f2,1, f4,2, f4,3, f5,2, f7,2, f8,1, f9,1, f9,2, f10,2, f11,2, f12,5, f14,4.

In SM4, we supposed that processes switching state from t16 = 9.8 until t26 = 15.6

change simultaneously at time tr3 = 12.5. Deleted processes are common to those re-

moved in SM1, as well as: f4,1, f5,1, f8,4, f9,2, f10,2, f11,2,f12,5, f14,4.

In SM5, we supposed that processes switching state from t27 = 17.3 until t46 = 22.9

change simultaneously at time tr4 = 20.0. Deleted processes are common to those re-

moved in SM1, as well as: f4,3, f4,4, f5,4, f7,2, f8,3, f8,5, f9,2, f9,3, f10,2, f14,5.

D.4 Dynamical process maps

See the figures below.

Figure D.1: Dynamical process map of SM1.
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Figure D.2: Dynamical process map of SM2.

Figure D.3: Dynamical process map of SM3.
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Figure D.4: Dynamical process map of SM4.

Figure D.5: Dynamical process map of SM5.
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E.1 Full dynamics of the experiments 1A, 2A, 2B

209



Appendix E. Supplementary materials of Chapter 8 210

T
im

e
 (h

)

0
2
0
0

4
0
0

6
0
0

Fx
b

(nM)

0

2
0

4
0

T
im

e
 (h

)

0
2
0
0

4
0
0

6
0
0

T4
b

(nM)

1
6
0

1
8
0

2
0
0

T
im

e
 (h

)

0
2
0
0

4
0
0

6
0
0

TSH
b

(nM)

0
.0

1

0
.0

1
5

0
.0

2

T
im

e
 (h

)

0
2
0
0

4
0
0

6
0
0

Fx
l
(nM)

×
1
0

7

0 5

1
0

T
im

e
 (h

)

0
2
0
0

4
0
0

6
0
0

CAR-Fx
l
(nM)

×
1
0

5

0 2 4

T
im

e
 (h

)

0
2
0
0

4
0
0

6
0
0

CAR (nM)

×
1
0

5

6 8

1
0

T
im

e
 (h

)

0
2
0
0

4
0
0

6
0
0

Cyp3a
A

(nM)

0 5

T
im

e
 (h

)

0
2
0
0

4
0
0

6
0
0

Cyp2b
A

(nM)

×
1
0

5

6
.8 7

7
.2

T
im

e
 (h

)

0
2
0
0

4
0
0

6
0
0

UDPGT
A

(nM)

4 6 8

T
im

e
 (h

)

0
2
0
0

4
0
0

6
0
0

T4
l
(nM)

1
.2

1
.4

1
.6

T
im

e
 (h

)

0
2
0
0

4
0
0

6
0
0

T4G (nM)

×
1
0

-4

0
.5 1

1
.5

T
im

e
 (h

)

0
2
0
0

4
0
0

6
0
0

T4
h

(nM)

7
0

8
0

9
0

T
im

e
 (h

)

0
2
0
0

4
0
0

6
0
0

TRH (nM)

0
.1

0
.1

5

0
.2

T
im

e
 (h

)

0
2
0
0

4
0
0

6
0
0

ARN
T
SH

A
(nM)

0
.1

0
.1

5

T
im

e
 (h

)

0
2
0
0

4
0
0

6
0
0

TSH
h

(nM)

0
.4

0
.6

0
.8

T
im

e
 (h

)

0
2
0
0

4
0
0

6
0
0

T4
t
(nM)

8
0
0

1
0
0
0

1
2
0
0

F
ig
u
r
e
E
.1
:
F
u
ll

d
y
n
a
m
ic
s
o
f
th

e
e
x
p
e
rim

e
n
t
1
A
.
A

-
S
im

u
lation

of
th
e
m
o
d
el

p
aram

eters
of

T
ab

le
8.1

(744
h
ou

rs).



Appendix E. Supplementary materials of Chapter 8 211

T
im

e
 (

h
)

0
5
0
0

1
0
0
0

Fxb(nM)

0

2
0

4
0

T
im

e
 (

h
)

0
5
0
0

1
0
0
0

T4b(nM)

1
6
0

1
8
0

2
0
0

T
im

e
 (

h
)

0
5
0
0

1
0
0
0

TSHb(nM)

0
.0

1

0
.0

1
5

0
.0

2

T
im

e
 (

h
)

0
5
0
0

1
0
0
0

Fxl(nM)

×
1
0

7

05

1
0

T
im

e
 (

h
)

0
5
0
0

1
0
0
0

CAR-Fxl(nM)

×
1
0

5

024

T
im

e
 (

h
)

0
5
0
0

1
0
0
0

CAR (nM)

×
1
0

5

68

1
0

T
im

e
 (

h
)

0
5
0
0

1
0
0
0

Cyp3aA(nM)

05

T
im

e
 (

h
)

0
5
0
0

1
0
0
0

Cyp2bA(nM)

×
1
0

5

6
.57

7
.5

T
im

e
 (

h
)

0
5
0
0

1
0
0
0

UDPGTA(nM)

468

T
im

e
 (

h
)

0
5
0
0

1
0
0
0

T4l(nM)

1
.2

1
.4

1
.6

T
im

e
 (

h
)

0
5
0
0

1
0
0
0

T4G (nM)

×
1
0

-4

0
.51

1
.5

T
im

e
 (

h
)

0
5
0
0

1
0
0
0

T4h(nM)

7
0

8
0

9
0

T
im

e
 (

h
)

0
5
0
0

1
0
0
0

TRH (nM)

0
.1

0
.1

5

0
.2

T
im

e
 (

h
)

0
5
0
0

1
0
0
0

ARNTSHA(nM)

0
.1

0
.1

5

T
im

e
 (

h
)

0
5
0
0

1
0
0
0

TSHh(nM)

0
.4

0
.6

0
.8

T
im

e
 (

h
)

0
5
0
0

1
0
0
0

T4t(nM)

8
0
0

1
0
0
0

1
2
0
0

F
ig
u
r
e
E
.2
:
F
u
ll
d
y
n
a
m
ic
s
o
f
th

e
e
x
p
e
ri
m
e
n
t
2
A
.
A

-
S
im

u
la
ti
on

of
th
e
m
o
d
el

p
ar
am

et
er
s
o
f
T
a
b
le

8
.1

w
it
h
re
co
ve
ry

p
h
a
se

(1
4
1
6
h
o
u
rs
).

T
h
e

va
ri
ab

le
so
lu
ti
on

s
ar
e
n
ot

re
tu
rn
in
g
to

th
ei
r
va
lu
es

th
ey

h
ad

at
th
e
b
eg
in
n
in
g
o
f
th
e
ex
p
er
im

en
t)
.



Appendix E. Supplementary materials of Chapter 8 212

T
im

e
 (h

)

0
5
0
0

1
0
0
0

Fx
b

(nM)

0 5

1
0

T
im

e
 (h

)

0
5
0
0

1
0
0
0

T4
b

(nM)

1
6
0

1
8
0

2
0
0

T
im

e
 (h

)

0
5
0
0

1
0
0
0

TSH
b

(nM)

0
.0

1

0
.0

1
5

0
.0

2

T
im

e
 (h

)

0
5
0
0

1
0
0
0

Fx
l
(nM)

×
1
0

7

0 2 4

T
im

e
 (h

)

0
5
0
0

1
0
0
0

CAR-Fx
l
(nM)

×
1
0

5

0 1 2

T
im

e
 (h

)

0
5
0
0

1
0
0
0

CAR (nM)

×
1
0

5

8 9

1
0

T
im

e
 (h

)

0
5
0
0

1
0
0
0

Cyp3a
A

(nM)

0 5

T
im

e
 (h

)

0
5
0
0

1
0
0
0

Cyp2b
A

(nM)

×
1
0

5

6
.5 7

7
.5

T
im

e
 (h

)

0
5
0
0

1
0
0
0

UDPGT
A

(nM)

4 6 8

T
im

e
 (h

)

0
5
0
0

1
0
0
0

T4
l
(nM)

1
.2

1
.4

1
.6

T
im

e
 (h

)

0
5
0
0

1
0
0
0

T4G (nM)

×
1
0

-5

6 8

1
0

T
im

e
 (h

)

0
5
0
0

1
0
0
0

T4
h

(nM)

7
0

8
0

9
0

T
im

e
 (h

)

0
5
0
0

1
0
0
0

TRH (nM)

0
.1

0
.1

5

0
.2

T
im

e
 (h

)

0
5
0
0

1
0
0
0

ARN
T
SH

A
(nM)

0
.1

0
.1

5

T
im

e
 (h

)

0
5
0
0

1
0
0
0

TSH
h

(nM)

0
.4

0
.6

0
.8

T
im

e
 (h

)

0
5
0
0

1
0
0
0

T4
t
(nM)

8
0
0

1
0
0
0

1
2
0
0

F
ig
u
r
e
E
.3
:
F
u
ll

d
y
n
a
m
ic
s
o
f
e
x
p
e
rim

e
n
t
2
B

w
ith

re
c
o
v
e
ry

p
h
a
se
.
A

-
S
im

u
lation

of
th
e
m
o
d
el

p
aram

eters
of

T
ab

le
8.1

b
u
t
w
h
ere

b
u
t

w
h
ere

k
1
f
=

8
0
0
0
a
n
d
k
5
a
=

3
7
0
0
,
w
ith

recovery
p
h
ase

(1416
h
ou

rs).
T
h
e
variab

le
solu

tion
s
are

retu
rn
in
g
close

to
th
eir

valu
es

th
ey

h
ad

at
th
e

b
egin

n
in
g
of

th
e
ex
p
erim

en
t).



Appendix F

Supplementary materials of

Chapter 9

F.1 Parameters and initial values of the GEM model

The parameters are shown in Table F.1.

Table F.1: Model parameters and their units.

Parameters Units Values

bulk mRNAs

db Promoter concentration µM 7.8867
kb Maximum transcription initiation rate min−1 1.5000
Kb Binding constant µM 6.1371
Lb Gene length base pairs 900
cb Elongation rate min−1 2572.1

Bulk proteins

kB Maximum translation initiation rate min−1 0.6368
KB Binding constant µM 63.3790
LB Protein length amino acids 300
cB Elongation rate min−1 2572.1

rpoBC mRNAs

do Promoter concentration µM 0.0016
ko Maximum transcription initiation rate min−1 26
Ko Binding constant µM 34.6854
Lo Gene length base pairs 8253
co Elongation rate min−1 2571.5

RNA Polymerase ββ′ subunits

kβ Maximum translation initiation rate min−1 0.8921
Kβ Binding constant µM 60.9419

Continued on next page
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Table F.1 – continued from previous page

Parameters Units Values

KIβ Inhibition binding constant µM 0.8360
Lβ Protein length amino acids 2751
cβ Elongation rate min−1 12.5831

Stable RNAs

dn Promoter concentration µM 0.0081
kn Maximum transcription initiation rate min−1 110
Kn Binding constant µM 0.4550
Ln Gene length base pairs 5498
cn Elongation rate min−1 4740
αn Constant µM−1 0.0274

r-protein mRNAs

dm Promoter concentration µM 0.0011
km Maximum transcription initiation rate min−1 26
Km Binding constant µM 1.4611
Lm Gene length base pairs 22680
cm Elongation rate min−1 2572.1
αm Constant µM−1 0.0908

r-proteins

kM Maximum translation initiation rate min−1 1.0068
KM Binding constant µM 104.004
LM Protein length amino acids 7560
cM Elongation rate min−1 2572.1

RNase E

kEB Catalytic constant min−1 0.3634
kEβ Catalytic constant min−1 0.2859
kEM Catalytic constant min−1 0.189
KE Binding constant µM 6036.9

RNA Polymerase

dns Aspecific binding site concentration µM 4109.8e+03
Kns Non-specific binding constant µM 2605
kmP Maturation rate constant min−1 0.0964

Ribosome and tRNAs

kmR Maturation rate constant M−1·min−1 0.0552
ρ Stoichiometry coefficient - 7
V C
m Maximal velocity M−1·min−1 229380

KA Binding constant M 1.1728
KU Binding constant µM 13.6095

Amino-acids

V A
m Maximal velocity mM·min−1 0.1169

KIA Inhibition binding constant mM 0.0893

ppGpp

kG Synthesis rate constant µM·min−1 3.8409
kspoT Degradation rate constant min−1 90.5822
KCT Binding constant µM 0.5
Kg RNA polymerase binding constant µM 40
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The initial values of the system are: b(0) = 12.0738 µM, B(0) = 6036.8995 µM, o(0) =

0.0152 µM, β(0) = 0.836 µM, P (0) = 6.764 µM, n(0) = 3.0069 µM, m(0) =

0.0898 µM, M(0) = 3.0069 µM, R(0) = 41.8933 µM, T (0) = 314.301 µM, C(0) =

100 µM, A(0) = 2.3313M, G(0) = 12.5 µM, Pf(0) = 1.3496 µM, Rf(0) = 13.0857 µM,

Af(0) = 0.1599 M
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G.1 Model parameters for each c calibration
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Table G.1: Parameters from each single-cell calibration.

Single cell parameters (full)

Par. K1 K2 K3 K4 K5 K6 Kmat Rm(0) L(0)

Cell 1 0.1032 6.6938 3.2942 0.1013 0.0201 1.6232 0.0045 0.7097 1.0953

Cell 2 0.1005 4.9767 5.3085 0.0133 0.0155 2.0516 0.0045 1.1109 2.3766

Cell 3 0.1105 3.0110 4.4145 0.0134 0.0079 0.9654 0.0049 1.2765 3.9259

Cell 4 0.1843 3.0154 4.4745 0.0183 0.0013 1.1023 0.0030 1.1713 4.0180

Cell 5 0.1970 3.1915 2.2358 0.0003 0.0011 0.5013 0.0023 1.1646 4.1441

Cell 6 0.1881 3.9206 2.0934 0.0251 0.0012 0.0050 0.0037 0.9598 2.0426

Cell 7 0.2736 4.5075 2.3862 0.0003 0.0010 0.0055 0.0038 0.8617 1.5726

Cell 8 0.2583 3.6361 2.9906 0.0000 0.0011 0.0074 0.0038 0.9183 3.1788

Cell 9 0.2590 4.2018 0.8491 0.0000 0.0011 0.0074 0.0019 0.9188 3.8889

Cell 10 0.2998 4.7409 0.3906 0.0000 0.0010 0.2068 0.0052 1.0550 3.3478

Cell 11 0.2680 0.0474 5.6891 0.0000 0.0009 0.0021 0.0145 1.0858 0.0335

Cell 12 0.0839 3.5542 7.7268 0.0511 1.2942 8.0177 0.0056 0.7541 3.4210

Cell 13 0.1047 2.9187 10.6879 0.0005 0.5795 36.7303 0.0055 0.8826 3.0706

Cell 14 0.0712 4.7005 4.0511 0.0004 0.0175 33.9299 0.0046 0.7646 0.0373

Cell 15 0.2621 12.4396 24.7368 0.0010 7.0673 0.0752 0.0001 0.9724 0.0680

Cell 16 0.1940 11.9989 16.4142 0.0000 0.1331 0.0972 0.0000 0.8848 0.0138

Cell 17 0.2662 11.7642 16.4960 0.0000 0.0719 0.1087 0.0000 0.8368 0.0071

Cell 18 0.2418 11.6691 16.4580 0.0000 0.0238 0.2013 0.0000 0.9895 0.0113

Cell 19 0.1715 10.2708 13.2786 0.0000 0.0249 0.0039 0.0000 0.9582 0.0100

Cell 20 0.1725 13.8972 8.9589 0.0011 0.0002 0.0000 0.0000 0.7416 0.0063
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[32] H. de Jong, J.-L. Gouzé, C. Hernandez, M. Page, T. Sari, and J. Geiselmann.

Qualitative simulation of genetic regulatory networks using piecewise-linear mod-

els. Bulletin of Mathematical Biology, 66(2):301–340, 2004.

[33] D. Dean, J. Reizer, H. Nikaido, and M. Saier. Regulation of the maltose

transport system of Escherichia coli by the glucose-specific enzyme III of the

phosphoenolpyruvate-sugar phosphotransferase system. Characterization of in-

ducer exclusion-resistant mutants and reconstitution of inducer exclusion in pro-

teoliposomes. Journal of Biological Chemistry, 265(34):21005–21010, 1990.

[34] P. P. Dennis, M. Ehrenberg, and H. Bremer. Control of rRNA synthesis in Es-

cherichia coli : a systems biology approach. Microbiology and Molecular Biology

Reviews, 68(4):639–668, 2004.

[35] J.-J. Droesbeke, G. Saporta, and J. Fine. Plans d’Expériences: Applications à
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