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Paper I. Role of the loop β5-β6 in the substrate specificity of OXA-48. Moreover, the characterization of three novel natural OXA variants revealed structural features important in the observed hydrolysis profile. Thus, the I215 E216 deletion and R214K substitution in the loop of OXA carbapenems and C3G at high level. In OXA the V120L substitution is located at the bottom of the binding site, in the close vicinity of the active Ser70 and the higher 48. The bulkier side chain of L120 in OXA hampers the approach of resulting in a decrease of the substrate affinity. Finally, we have characterized the chromosomally encoded OXA O hydrolysis profiles. Interestingly, OXA presented 98.9% of AA identity with the plasmid mediated OXA gene might be the progenitor of the plasmid encoded propensity of OXA to accommodate different substrates in its active site and how the specificity of the enzyme.

Aubin, France

Structural and functional insights into the substrate specificity of OXA to β-lactams with bulky sidechains e.g. ceftazidime. Additionally, by performing alanine replacements in the β5-β6 loop we could show reduced hydrolysis of carbapenems, mostly reflected by changes in k cat loop, starting from Tyr Pro-217 to Tyr carbapenems decreased with the size of the deletion whereas the activity against ceftazidime increased. 4 AA deletions revea activity, except for one single AA mutant, OXA 48∆P217, with high level carbapenem and ceftazidime hydrolysis. Crystallography along with molecular modelling showed an increased flexibility of this loop allowing different sized enter the active site.

Moreover, the characterization of three novel natural OXA variants revealed structural features important in the observed hydrolysis profile. Thus, the I215 E216 deletion and R214K substitution in the loop of OXA carbapenems and C3G at high level. In OXA the V120L substitution is located at the bottom of the binding site, in the close vicinity of the active Ser70 and the higher Km values were observed c 48. The bulkier side chain of L120 in OXA hampers the approach of resulting in a decrease of the substrate affinity. Finally, we have characterized the chromosomally encoded OXA-OXA-48 (91.5% AA identity), despite similar hydrolysis profiles. Interestingly, OXA presented 98.9% of AA identity with the plasmid mediated OXA gene might be the progenitor of the plasmid encoded bla OXA Taken together, our work illustrates the propensity of OXA to accommodate different substrates in its active site and how the specificity of the enzyme.

Structural and functional insights into the substrate specificity of OXA-48 lactams with bulky sidechains e.g. ceftazidime. Additionally, by performing alanine replacements 6 loop we could show reduced hydrolysis of carbapenems, mostly reflected by cat . By increasing deletions in the loop, starting from Tyr-211 to Pro 217 to Tyr-211, the activity against carbapenems decreased with the size of the deletion whereas the activity against ceftazidime increased. 4 AA deletions revea activity, except for one single AA mutant, OXA ∆P217, with high level carbapenem and ceftazidime hydrolysis. Crystallography along with molecular modelling showed an increased flexibility of this loop allowing different sized enter the active site. Moreover, the characterization of three novel natural OXA variants revealed structural features important in the observed hydrolysis profile. Thus, the I215 E216 deletion and R214K substitution in the loop of OXA-517 induced the hydrolysis of carbapenems and C3G at high level. In OXA the V120L substitution is located at the bottom of the binding site, in the close vicinity of the active Ser70 and the β5-β6 loop, and therefore overall m values were observed c 48. The bulkier side chain of L120 in OXA hampers the approach of resulting in a decrease of the substrate affinity. Finally, we have characterized the chromosomally -535 that is more distantly related to 48 (91.5% AA identity), despite similar hydrolysis profiles. Interestingly, OXA presented 98.9% of AA identity with the plasmid mediated OXA-436 suggesting that the gene might be the progenitor of the plasmid OXA-436 gene. en together, our work illustrates the propensity of OXA-48 to evolve through mutations to accommodate different substrates in its active site and how the β5-β6 loop determines the specificity of the enzyme.
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lactams with bulky sidechains e.g. ceftazidime. Additionally, by performing alanine replacements 6 loop we could show reduced hydrolysis of carbapenems, mostly reflected by

. By increasing deletions in the 211 to Pro-217 and from the 211, the activity against carbapenems decreased with the size of the deletion whereas the activity against ceftazidime increased. 4 AA deletions revealed the highest 3GC activity, except for one single AA mutant, OXA ∆P217, with high level carbapenem and ceftazidime hydrolysis. Crystallography along with molecular modelling showed an increased flexibility of this loop allowing different sized βenter the active site.

Moreover, the characterization of three novel natural OXA variants revealed structural features important in the observed hydrolysis profile. Thus, the I215 E216 deletion and R214K substitution in the duced the hydrolysis of carbapenems and C3G at high level. In OXA the V120L substitution is located at the bottom of the binding site, in the close vicinity of the active 6 loop, and therefore overall m values were observed compared to OXA 48. The bulkier side chain of L120 in OXA hampers the approach of β-lactam substrate, resulting in a decrease of the substrate affinity. Finally, we have characterized the chromosomally 535 that is more distantly related to 48 (91.5% AA identity), despite similar hydrolysis profiles. Interestingly, OXA presented 98.9% of AA identity with the plasmid 436 suggesting that the gene might be the progenitor of the plasmid en together, our work illustrates the 48 to evolve through mutations to accommodate different substrates in its active 6 loop determines the lactams with bulky sidechains e.g. ceftazidime. Additionally, by performing alanine replacements 6 loop we could show reduced hydrolysis of carbapenems, mostly reflected by

. By increasing deletions in the β5-β6 217 and from the 211, the activity against carbapenems decreased with the size of the deletion whereas the activity against ceftazidime led the highest 3GC activity, except for one single AA mutant, OXA-∆P217, with high level carbapenem and ceftazidime hydrolysis. Crystallography along with molecular modelling showed an increased flexibility -lactams to enter the active site.

Moreover, the characterization of three novel natural OXA-48 variants revealed structural features important in the observed hydrolysis profile. Thus, the I215-E216 deletion and R214K substitution in the β5-β6 duced the hydrolysis of carbapenems and C3G at high level. In OXA-519, the V120L substitution is located at the bottom of the binding site, in the close vicinity of the active 6 loop, and therefore overall ompared to OXA-48. The bulkier side chain of L120 in OXA-519 lactam substrate, resulting in a decrease of the substrate affinity. 
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 4 Figure 4. Phylogenetic relationships between pCf587, p34998, and the different IncA/C STs identified to date, based on maximum likelihood and Bayesian methods.
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  de la spécificité de substrat des carbapénèmases de type boucle par une alanine a relevé de faibles changements hydrolytiques. En réalisant des délétions croissantes d'AA gauche de la boucle (Tyr-211 vers Pro 217 vers Tyr-211), nous avons montré que l'activité d'hydrolyse des carbapénèmes diminuait avec la taille des délétions, alors que celle des C3G augmentait. Les délétions de 4 AA présentent les plus fortes activités hydrolytiques des C3G et une perte totale de l'activité carbapénèmase, excepté pour le simple ∆P217, qui présentait un profile d'hydrolyse avec une forte activité carbapénèmase et C3G. La cristallographie et la modélisation moléculaire ont montré une grande flexibilité de la boucle, permettant l'entrée de β variables.De plus, l'étude de nouveaux variants 48 a permis d'identifier des déterminants structuraux importants dans le profil d'hydrolyse observé. Ainsi, la délétion I215 substitution R214K dans la boucle β5 517 permet une forte hydrolyse des carbapénèmes et des C3G. De même, dans OXA substitution V120L située à proximité de la boucle β6, a pour conséquence une diminution de pour tous les substrats. La chaine latérale plus encombrante de la L120 empêche l'ainsertion lactamines, diminuant l'affinité de l'enzyme. Finalement, nous avons caractérisé OXA lactamase naturelle et chromosomique de Shewanella bicestrii JAB-1 qui, n'ayant uniquement 91,5% d'identité en AA avec OXA même profil d'hydrolyse. OXA 98.9% d'identité en AA avec OXA gène plasmidique, suggérant ainsi que portant le gène bla OXA progéniteur du gène plasmidique Nos travaux ont montré le formidable pouvoir d'adaptation de OXA mutation afin d'accommoder différents substrats, et comment la nature et la longueur de la boucle β6 pouvait influencer sur la spécificité de e de la spécificité de substrat des carbapénèmases de type boucle par une alanine a relevé de faibles changements hydrolytiques. En réalisant des délétions croissantes d'AA soit en partant de la 211 vers Pro-217) ou de 211), nous avons montré que l'activité d'hydrolyse des carbapénèmes diminuait avec la taille des délétions, alors que celle Les délétions de 4 AA présentent les plus fortes activités hydrolytiques des C3G et une perte totale de l'activité carbapénèmase, excepté pour le simple présentait un profile d'hydrolyse avec une forte activité carbapénèmase et C3G. La cristallographie et la modélisation moléculaire ont e flexibilité de la boucle, β-lactamines de tailles variables.De plus, l'étude de nouveaux variants 48 a permis d'identifier des déterminants structuraux importants dans le profil d'hydrolyse observé. Ainsi, la délétion I215-E216 associée à la substitution R214K dans la boucle β5-β6 de OXA 517 permet une forte hydrolyse des carbapénèmes et des C3G. De même, dans OXA substitution V120L située à proximité de la boucle équence une diminution de pour tous les substrats. La chaine latérale plus encombrante de la L120 empêche l'ainsertion lactamines, diminuant l'affinité de l'enzyme. Finalement, nous avons caractérisé OXA lactamase naturelle et chromosomique de 1 qui, n'ayant uniquement 91,5% d'identité en AA avec OXA-48, présente le même profil d'hydrolyse. OXA-535 présentait 98.9% d'identité en AA avec OXA-436, codé par un gène plasmidique, suggérant ainsi que OXA-535 pourrait être le progéniteur du gène plasmidique bla OXA-436 Nos travaux ont montré le formidable pouvoir d'adaptation de OXA-48 à évoluer par mutation afin d'accommoder différents substrats, et comment la nature et la longueur de la boucle nfluencer sur la spécificité de e de la spécificité de substrat des carbapénèmases de type boucle par une alanine a relevé de faibles changements hydrolytiques. En réalisant des soit en partant de la 17) ou de la 211), nous avons montré que l'activité d'hydrolyse des carbapénèmes diminuait avec la taille des délétions, alors que celle Les délétions de 4 AA présentent les plus fortes activités hydrolytiques des C3G et une perte totale de l'activité carbapénèmase, excepté pour le simple mutant, présentait un profile d'hydrolyse avec une forte activité carbapénèmase et C3G. La cristallographie et la modélisation moléculaire ont e flexibilité de la boucle, lactamines de tailles variables.De plus, l'étude de nouveaux variants 48 a permis d'identifier des déterminants structuraux importants dans le profil d'hydrolyse 16 associée à la β6 de OXA-517 permet une forte hydrolyse des carbapénèmes et des C3G. De même, dans OXA-519, une substitution V120L située à proximité de la boucle équence une diminution de pour tous les substrats. La chaine latérale plus encombrante de la L120 empêche l'ainsertion lactamines, diminuant l'affinité de l'enzyme. Finalement, nous avons caractérisé OXA-535, la βlactamase naturelle et chromosomique de 1 qui, n'ayant uniquement 48, présente le 535 présentait 436, codé par un gène plasmidique, suggérant ainsi que S. bicestrii pourrait être le 436 . Nos travaux ont montré le formidable 48 à évoluer par mutation afin d'accommoder différents substrats, et comment la nature et la longueur de la boucle nfluencer sur la spécificité de
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