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1

Introduction

Magnetic resonance imaging (MRI) is one of the most powerful and safest imaging
modalities for examining the human body. High-resolution MRI is expected to aid in the
understanding and diagnosis of many neurodegenerative pathologies involving submil-
limetric lesions or morphological alterations, such as Alzheimer’s disease and multiple
sclerosis (Barnes et al., 2009; Pruessner et al., 2000; Kolk et al., 2013). Although high-
magnetic-field systems can deliver a sufficient signal-to-noise ratio (SNR) to increase
spatial resolution (Duyn, 2012), long scan times and motion sensitivity continue hin-
dering the utilization of high resolution MRI. Despite the development of corrections
for bulk and physiological motion (Maclaren et al., 2012; Federau and Gallichan, 2016;
Stucht et al., 2015; Vannesjo et al., 2015), lengthy acquisition times remain a major obsta-
cle to high-resolution acquisition, especially in clinical applications.

In the last decade, the newly developed theory of compressed sensing (CS) (Candès et
al., 2006; Donoho, 2006; Lustig et al., 2007b) offered a promising solution for reducing the
MRI scan time. Despite many successful applications in dynamic MRI for instance (Feng
et al., 2014), the application of CS to MRI commonly relies on simple sampling patterns
such as straight lines, spirals or slight variations of these elementary shapes, which do
not take full advantage of the degrees of freedom offered by the hardware and can-
not be easily adapted to fit an arbitrary sampling distribution. In this PhD thesis, we
have introduced a method called SPARKLING, that may overcome these limitations
by taking a radically new approach to the design of k-space sampling. The acronym
SPARKLING stands for Spreading Projection Algorithm for Rapid K-space sampLING.
This work stems from a close collaboration between mathematicians (P. Weiss, J. Kahn),
physicists (A. Vignaud), engineers (F. Mauconduit, P. Ciuciu) and last but not least PhD
students (C. Lazarus, N. Chauffert, L. El Gueddari) who strove to provide an elegant
approach to achieve significant reductions in the scan time of segmented acquisitions in
magnetic resonance imaging (MRI). It is a versatile method inspired from stippling tech-
niques that automatically generates optimized non-Cartesian sampling patterns com-
patible with MR hardware constraints on maximum gradient amplitude and slew rate.
These sampling curves are designed to comply with key criteria for optimal sampling: a
controlled distribution of samples and a locally uniform k-space coverage.

In this PhD thesis, the SPARKLING method was developed and used for prospec-
tively accelerated acquisitions mostly at 7 Tesla. The method was not only improved
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but also extended for 3D imaging. The objectives were to evaluate the practical perfor-
mance of this new design. Given the erratic aspect of the proposed trajectories, will the
gradient system be able to play out these complex gradient waveforms? Is this method
competitive with spiral imaging, which is considered as the most efficient sampling?
How sensitive to imaging and system imperfections will these new non-Cartesian trajec-
tories be? Are they interesting for all imaging protocols? In this dissertation, I carefully
address all these concerns and provide specific answer to each point.

In addition to the SPARKLING method, which is the core of the PhD thesis, side
projects in connection with this topic were investigated. On the one hand, this manuscript
starts with an empirical and quantitative analysis of the maximum undersampling fac-
tor achievable with compressed sensing for T∗2 -weighted imaging. This question was
investigated because we realized that a quantitative guide on the degree of accelera-
tion applicable to a given acquisition scenario is still lacking today, leading in practice
to a trial-and-error approach in the selection of the appropriate undersampling factor
in CS. Finally, a model-based reconstruction accounting for analog-to-digital filtering
effects was investigated to cope with artifacts that were appearing with the very first
SPARKLING trajectories which happened to be too fast at some points.

Thesis outline

Chapter 1: Background in MRI

In this chapter, the fundamentals of MRI are reminded from the origin of the signal to its
detection and sampling. The emphasis is put on the k-space formalism, a domain which is
Fourier conjugate to the standard spatial domain that contains the object magnetization.
Moreover, different pulse sequences relevant to this work are briefly presented. Then,
more advanced signal description which take into account the imaging and system im-
perfections are considered. Furthermore, we will present some mathematical tools for
image reconstruction, notably regarding non-Cartesian data. Finally, we will give an
overview of the advantages and challenges of ultra high field (UHF) MRI, which con-
cerns the main applications of this work. In particular, UHF enables to trade the gain in
signal-to-noise ratio (SNR) for high resolution.

Chapter 2: Compressed sensing in MRI: how much can we accelerate?

In this chapter, the theory of compressed sensing (CS) is introduced and its application to
MRI is presented. The limitations of the current theorems in quantifying the maximum
degree of subsampling applicable to a certain acquisition scenario are discussed. Then,
an empirical study of the range of applicability of CS in MRI is investigated for a T∗2 -
contrast. The objective is to quantify the maximum subsampling factor Rmax allowed for
a given image size and an input SNR in order to preserve a desired image quality. On the
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one hand, this study is performed on an analytical brain phantom for both iid (identically
independently drawn) variable-density and radial retrospective subsampling. On the
other hand, prospective experimental data were collected using a radial trajectory to
verify the consistency with the retrospective results. Experimental results were found to
be in good agreement with simulations.

Chapter 3: 2D SPARKLING

In this chapter, which is the heart of this PhD thesis, we present a new method to de-
sign optimal k-space trajectories for MRI. This technique is based on the previous work
done in (Boyer et al., 2016) and uses optimization to design sampling patterns which
respect two key criteria: (i) a controlled distribution of the samples (e.g., a variable den-
sity for CS) and (ii) a locally uniform coverage to avoid gaps and clusters of samples.
This method was named SPARKLING which stands for Spreading Projection Algorithm
for Rapid K-space sampLING. Before engaging into experiments, we verified that our
gradient system was capable of executing the complex gradient waveforms. We imple-
mented the local phase measurement method described in (Schneider et al., 2011) and
we observed a very good adequacy between prescribed and measured k-space trajecto-
ries. Then, SPARKLING was used to design 2D variable-density sampling patterns for
a high in plane resolution of 390 µm and a T∗2 -contrast. These trajectories were used for
in vivo brain imaging at 7 Tesla. They were also compared to standard non-Cartesian
trajectories such as radial and spiral sampling.

Chapter 4: 3D SPARKLING

In this chapter, the SPARKLING method is extended to 3D in various ways: stacks-of-
SPARKLING (SOS) and fully 3D SPARKLING trajectories are explored. For SOS, two
different techniques are presented: a regular stack and z-variable-density stack whose num-
ber of shots and density vary with the plane’s altitude. The extension of the SPARKLING
algorithm to 3D is also detailed, as well as its acceleration to limit the computation cost
in the design of multi-shot trajectories. Then, experiments were performed with an ex
vivo baboon brain at 7 Tesla to compare the different methods. Furthermore, the 3D
SPARKLING method was compared to other standard 3D trajectories for an isotropic
resolution of 0.6 mm. It was finally used for very high in plane resolution of 0.3 mm
with the objective to perform susceptibility-weighted imaging (SWI).

Chapter 5: Correcting the side effects of ADC filtering in MR image reconstruc-
tion

In this last chapter, the side effects of bandlimiting filters performed during the analog-
to-digital conversion (ADC) are discussed. Originally applied to prevent aliasing of the
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temporal signal, we explain how and when this filtering may have deleterious conse-
quences on image quality. We then propose a model to take into account this ADC filter-
ing and numerical algorithms to handle the ADC filtering effect for linear and nonlinear
reconstructions methods. Finally, the proposed algorithms are tested against simulated
and real data, to demonstrate the potential improvements in the reconstruction quality,
especially when using the novel SPARKLING trajectories designed in the framework of
compressed sensing.
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Chapter 1

Background in MRI

The objective of this part is to summarize the fundamentals of MRI which will be use-
ful for understanding the rest of the manuscript. We will start by briefly reminding the
origins of the MR signal, how it is detected and processed by an MR scanner. Then, the
so called k-space formalism will be introduced before considering more advanced phase
description. Furthermore, we will present some mathematical tools for image recon-
struction, notably regarding non-Cartesian data. Finally, we will give an overview of the
advantages and challenges of ultra high field MRI, which concerns the main applications
of this work.

1.1 NMR and MR signal

Here, we briefly remind the origins of the MR signal, which are based on nuclear mag-
netic resonance (NMR). We also present the different pulse sequences, which are relevant
for the work. For more details on the NMR phenomenon and pulse sequences, the reader
may refer to the well-known MR handbooks (Bernstein et al., 2004; Haacke et al., 1999).

1.1.1 Spins, magnetization and precession

According to quantum physics, each nucleon particle is associated with a spin quantity,
which is an intrinsic property of matter such as mass and charge. Depending on the spin
value, the particle may present a spin magnetic moment. For instance, the hydrogen
proton has a spin of 1

2 and so presents a non-zero magnetic moment µ. Interestingly
for biomedical imaging, the water molecules, which are abundant in organic tissues, are
composed of hydrogen nuclei.

In the absence of an external magnetic field, a set of protons has no bulk magneti-
zation because the spin magnetic moments have independent and randomly distributed
directions. However, after a short time in the presence of a magnetic field B0 = B0ez,
a small static nuclear magnetization arises because the spin magnetic moments tend to
align with the applied field, which decreases the system’s energy. This effect is coun-
terbalanced by thermal agitation, leading to a proportion of anti-parallel spins. Once
thermal equilibrium is established, the population difference between the upper and the
lower levels is given by Boltzmann statistics rules (Abragam, 1961):

∆Np =
Nph̄γB0

2kTs
(1.1)
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where Np is the number of protons present, γ is the proton gyromagnetic ratio, h̄ is
the Planck’s constant divided by 2π, k is Boltzmann’s constant, and Ts is the absolute
temperature of the sample.

Since each proton is associated with a magnetic moment given by µ = γh̄/2, the total
magnetic moment M0, whose intensity characterizes the imbalance between the two spin
populations, is given by:

M0 =
Npγ2h̄2B0

4kTs
ez (1.2)

This total magnetic moment M0, which is aligned and proportional to the magnetic field,
is referred to as the bulk magnetization.

According to the laws of motion applied to the magnetization M0 in the presence of
the static magnetic field B0, a torque is created and leads to the clockwise precession of
M0 around B0 at the Larmor angular frequency ω0 = γB0.

1.1.2 NMR and radiofrequency excitation

To observe the bulk magnetization M0, which is aligned to the static magnetic field,
nuclear magnetic resonance (NMR) should be provoked. This can be achieved by ap-
plying a transversal1 pulse B1 of electromagnetic field oscillating at angular frequency
ω. When the frequency of the excitation pulse is equal to the Larmor frequency (i.e.,
ω = ω0), nuclear magnetic resonance occurs: in the rotating frame, M0 is precessing
around B1 at angular frequency ω1 = γB1. Typically, in the case of protons for which
γ = 42.56 MHz/T, the Larmor frequency lies in the radiofrequency (RF) band (i.e., in
the MHz range depending on the field strength), which is why the excitation pulse is
referred to as the RF pulse.

If the excitation pulse oscillates at the Larmor frequency ω0 for a duration of TB1 , the
magnetization gets flipped by an angle of θ = ω1TB1 . Therefore, an excitation pulse of
duration T90 = π

2γB1
flips M0 from the longitudinal axis (along B0) to the transverse plane

where it can be measured with maximal intensity.

1.1.3 Relaxation

After excitation, the magnetization vector M0 returns to the thermal equilibrium state
M0 = M0ez, where the energy of the system of spins is minimal. This relaxation is ex-
ponential with two characteristic times: T1 for the longitudinal magnetization Mq and T2
for the transverse component M⊥. In the reference frame rotating at angular frequency
ω0, the relaxation of the magnetization is modeled by the Bloch equations and is given
by:

dM⊥
dt

= −M⊥
T2

dMq
dt

=
M0 −Mq

T1

which yield the Free Induction Decay (FID) signal:

1i.e., transversal to the main magnetic field B0.
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M⊥(t) = M⊥(0)e−t/T2

Mq(t) = Mq(0)e−t/T1 + M0(1− e−t/T1)

Both relaxation times are tissue-specific, which will create the contrast of MR images:

• The longitudinal relaxation time T1 is related to the time required for the resonating
protons to re-establish thermal equilibrium magnetization. It describes the rate of
energy transfer from the spins to the lattice, during which a transfer of population
from anti-parallel spins (higher energy) to parallel spins occurs.

• The transverse relaxation time T2 describes the rate of desynchronization of the
magnetic moments, i.e., how long the resonating protons remain coherent (i.e., in
phase), following an excitation. The dephasing of magnetic moments is caused by
two phenomena: spin-spin interactions and B0 inhomogeneities. The first factor
occurs at a microscopic scale where magnetic moments randomly influence each
other. The second factor happens at a macroscopic scale, where slight local changes
in the precession frequency cause loss in transverse magnetization as the moments
dephase. The latter is characterized by a T∗2 (T2 star) transverse relaxation time,
sometimes called the apparent T2 and is related to the spin-spin relaxation time T2
by:

1
T∗2

=
1
T2

+
1
T′2

(1.3)

where T′2 is inversely proportional to the magnetic field inhomogeneity ∆B0 in each
imaging voxel, that is, T′2 ∝ 1

γ∆B0
. Whereas T2 is an intrinsic property of the tissue,

T′2 and T∗2 depend not only on external factors (e.g. susceptibility variations within
the patient and how well the magnet is shimmed), but also on the prescribed imag-
ing voxel size. Although a moderate amount of T∗2 weighting can be advantageous
for some applications (e.g., to image hemorrhage), excessive T∗2 weighting causes
signal-loss artifacts (e.g., in regions near metallic implants) (Bernstein et al., 2004).

1.1.4 From FID to spatial encoding

The simplest MRI experiment involves measuring a global signal from an object (see Sec-
tion 1.2 for more details on signal detection). This signal coming from all the object in
the scanner is the FID and decays with the time constant T∗2 . It carries the information
on the entire object in the intensity of its envelope and the relaxation times as is depicted
in (Fig. 1.1).

However, without any means of spatial localization, the FID only produces a single
information for the entire object and not an image of it. It is Lauterbur and Mansfield
who discovered a way to separate signal from different parts of the object and laid the
foundations of current MR imaging (Mansfield, 1977). By using time-varying linear mag-
netic gradients, denoted as Gx, Gy and Gz corresponding to the three Cartesian axes, one
can create a magnetic field that changes in strength depending on the position, which
causes the precession frequency of the protons to vary as well. For example, when Gx is
applied, the magnetic field will vary with position as B(x) = B0 + Gx · x. This variation
causes the precession angular frequency to vary linearly in space as follows:

ω(x) = γ(B0 + Gx · x) (1.4)
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FIGURE 1.1: Free Inducation Decay (FID). Following excitation, the mea-
sured transverse magnetization oscillates at the Larmor frequency but re-
laxes to zero. The exponential envelop decays with the time constant T∗2 .

As a result, magnetization at positive x positions will precess at a higher frequency
than magnetization at negative x positions.

Hence, gradients applied during the signal acquisition enable frequency encoding,
as multiple frequencies are introduced into the FID dependent on the location of the
source. The same encoding principle is used with transverse phase for 2D and 3D imag-
ing, allowing a 2D and 3D Fourier-transform-based spatial encoding. The next section,
explaining how the signal is detected, will precise the origin of this Fourier encoding.

1.2 Signal detection and receive chain

Because understanding how the signal is acquired is essential to provide high quality
sampling and understand anomalies, we briefly detail here the successive signal pro-
cessing steps of signal detection performed by the receive chain.

The information we seek to measure is the magnetization M(r, t), which is propor-
tional to the spin density of interest. The measured MR signal is the electromagnetic force
(emf) induced in a coil by the rotating magnetization M(r, t) for a sample of volume Vs
and is given by (Hoult and Richards, 2011)2:

S(t) = − d
dt

∫
Vs

(B1 ·M(r, t))dr (1.5)

After interchanging the integral and partial differential operators and neglecting the
derivative of the e−t/T1 and e−t/T2 factors compared to the derivative of the e−ω0t fac-
tor3, the signal is given by (Haacke et al., 1999):

S(t) ∝ ω0

∫
Vs

e−t/T2(r)|M⊥(r)||B⊥(r)|sin(ΦM(r, t)−ΦB(r))dr (1.6)

where ω0 = γB0 is the Larmor frequency in radians per second; M⊥ = Mxex + Myey
is the transverse component of the magnetization in the laboratory frame at time t = 0;
B⊥(r) is the transverse component of the receive coil B1 field; ΦM(r, t) is the phase of
M⊥, i.e. its angle with the x-axis; ΦB(r) is the phase of B⊥ in the laboratory frame.

2Mathematically, it should be understood that the integration is performed over R2 and the magnetiza-
tion has compact support.

3For static field at the Tesla level, the Larmor frequency ω0 is at least four orders-of-magnitude larger
than typical values of 1/T1 and 1/T2.
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Then, an MRI receiver removes the Larmor precession frequency of the transverse
magnetization, which is called demodulation. Next, the receiver does quadrature detec-
tion, during which the real-valued signal induced in the receive coil is converted into a
complex-valued signal. Finally, the receiver performs data sampling, analog-to-digital
conversion (ADC) and band-limiting to prevent aliasing (Bernstein et al., 2004). These
processing steps are summarized in Fig. 1.2.

Split
Signal 
induced 
in coil

cos(ωt)

90° phase shift

Anti-alias filter ADC Digital filter

Anti-alias filter ADC Digital filter

Band-limiting Sampling Band-limiting 
& resampling

FIGURE 1.2: Diagram of MRI receive chain processing (Adapted from
(Bernstein et al., 2004)).

1.2.1 Signal demodulation

Ignoring relaxation effects in Eq. (1.6), the signal S(t) induced in the coil by the precess-
ing magnetization reduces to:

S(t) ∝ ω0

∫
Vs

|M⊥(r)||B⊥(r)|sin(ΦM(r, t)−ΦB(r))dr (1.7)

Ignoring B0 inhomogeneities, the precession frequency of M⊥ is the Larmor fre-
quency plus a frequency offset due to imaging gradients G(t), giving the resulting phase:

ΦM(r, t) = Φ0(r) + ω0t + γ
∫ t

0
G(τ)dτ (1.8)

where Φ0(r) is the transverse magnetization phase at t = 0. So the signal S(t) becomes:

S(t) ∝ ω0

∫
Vs

|M⊥(r)||B⊥(r)|sin(ω0t + γ
∫ t

0
G(τ)dτ + Φ0(r)−ΦB(r))dr (1.9)

To remove the ω0t term in Eq. (1.9), the signal is multiplied by a sine and a cosine
oscillating at ω0

4, followed by low-pass filtering. This yields two separate signals SR and
SI which are combined to give a complex demodulated signal given by S⊥ = SR − ıSI .
Finally:

S⊥(t) ∝ ω0

∫
Vs

M⊥(r)B⊥(r)e−ıγ
∫ t

0 G(τ)dτdr (1.10)

4Calibrated at the beginning of the MR exam, the demodulation frequency is equal to the frequency of
the RF pulse
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The Fourier encoding can be clearly identified in this equation and will take an even
simpler form in the next section 1.3.

1.2.2 The analog-to-digital conversion (ADC)

Before detailing how the analog signal (i.e., continuous-time) is transformed into its dig-
itized version (i.e., discrete-time), it is useful to remind the Nyquist-Shannon sampling
theorem.

The Nyquist-Shannon sampling theorem

In the field of digital signal processing, the sampling theorem is a fundamental bridge
between analog and digital signals. It establishes a sufficient condition on a sampling
rate which allows a discrete sequence of samples to capture all the information from a
continuous-time signal of finite bandwidth. The Nyquist-Shannon theorem states that the
spectrum of a discretely sampled signal is replicated in the Fourier conjugate domain. It
provides a prescription for the nominal sampling interval required to avoid aliasing. It
may be stated as follows:

The sampling rate should be at least twice the highest frequency contained in the
signal.

If the signal is sampled at intervals ∆t, the Fourier transform of the sampled signal is
replicated at intervals 1/∆t. If the frequency bandwidth of the signal is greater than
fs = 1/∆t, the replicates will overlap (i.e., aliasing results), as is illustrated in (Fig. 1.3a-
b). This overlap can be prevented by windowing the spectrum before sampling so that
the bandwidth is less than or equal to the replication distance 2Ωc ≤ fs (Fig. 1.3c-d).
This result can be directly applied to the readout process in MRI by calculating the band-
width of the signal resulting from spin precession in the presence of the readout gradient
(Bernstein et al., 2004).

Band-limiting filtering and ADC

Many different receiver designs are possible. To allow flexibility in the choice for band-
width, the band-limiting can be done in several steps using analog and/or digital hard-
ware. In all designs, prior to analog-to-digital converter (ADC) sampling, the signal
is band-limited with an analog anti-alias filter (hardware filter) to the maximum band-
width allowed by the ADC sampling interval. The purpose of this anti-alias filter is to
avoid spurious signals from aliasing and also prevent wide-band noise such as white
noise. The ADC sampling bandwidth is denoted ±BWADC and the corresponding sam-
pling time is denoted ∆tADC. The maximum bandwidth allowed by the system ±BWmax
can be less than±BWADC. If the operator has prescribed a bandwidth less than±BWADC,
the signal is then digitally filtered (band-limiting) and resampled to the final bandwidth
(Bernstein et al., 2004).

1.3 The k-space

Early in the development of MRI, it was realized that the time-varying signals detected
from precessing magnetization could be analyzed by following trajectories that evolve
in a 2D or 3D space. This space corresponds to a domain that is Fourier conjugate to the
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FIGURE 1.3: (a) Fourier transform of a time-domain signal (a) before sam-
pling and (b) after discrete sampling at frequency fs. The frequency-
domain replication interval is fs = 1/∆t. Because fs < 2Ω, the replicates
overlap resulting in aliasing. (c) Fourier transform of the signal in (a) af-
ter windowing with a low-pass filter H of cut-off frequency Ωc < fs

2 . (d)
Resulting Fourier transform of (c) after discrete sampling at frequency fs.

standard spatial domain that contains the object magnetization (Likes, 1981; Ljunggren,
1983). The Fourier transform variables were given the symbol k, and the domain was
called k-space. The requirements for sampling and the effects of partial sampling (e.g.,
parallel imaging) can be easily apprehended when viewed from the k-space perspective
(Bernstein et al., 2004).

1.3.1 The k-space formalism

After demodulation, ignoring relaxation effects, the time-domain signal created by the
transverse magnetization in Eq. (1.10) can be rewritten as follows:

S(t) =
∫

Vs

ρ(r)e−ıΦ(r,t)dr (1.11)

where ρ(r) = ω0ΛM⊥(r)B⊥(r) is the effective spin density5, and the accumulated phase
(in radians) reads:

Φ(r, t) = γ
∫ t

0
r ·G(τ)dτ (1.12)

Then, a function k(t), which resides in what is called the k-space, is introduced as follows:

5where Λ is introduced as a constant including the gain factors from the electronic detection system. See
section 9.1.1 in (Haacke et al., 1999) for details.
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k(t) = γ
∫ t

0
G(τ)dτ (1.13)

With the definition of the k-space, Eq. (1.11) now reads:

S(t) =
∫

Vs

ρ(r)e−ık(t)·rdr (1.14)

and the signal S(t) is the Fourier transform of the spin density ρ(r). The function k(t)
is thus the Fourier conjugate variable to the spatial variable r and its unit is the inverse
distance, as is illustrated in (Fig. 1.4). A simple inverse fast Fourier transform (FFT)
reconstruction (if the k-space samples fall onto a grid) may be used to recover the image:

I(r) =
∫ T

0
S(t)eık(t)·rdt (1.15)

FT

FIGURE 1.4: Correspondence between k-space (left) and image space
(right) via the Fourier Transform (FT).

It is interesting here to introduce the point-spread-function (PSF), which is defined as
the modulus of the Fourier transform of the sampling pattern viewed as a set of Dirac
impulses:

PSF(r) =
∫ T

0
eık(t)·rdt (1.16)

The PSF is what the sampling would produce if the true object were a delta impulse lo-
cated at zero, so it is a good descriptor of the sampling effect on the image. According to
the convolution theorem, an image I(r) reconstructed with an inverse Fourier transform
will be equal to the convolution f ? PSF of the actual object f with the PSF. The more
closely the PSF resembles a delta impulse, the better the reconstruction.

1.3.2 K-space trajectories

The path traced out by k(t) is called the k-space trajectory and is determined by the gra-
dient waveform G(t). The speed and acceleration of k-space traversal are controlled by
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the gradient as well, since:

k̇(t) = γG(t) (1.17)

k̈(t) = γĠ(t) (1.18)

In MRI, the derivative of the gradient waveforms Ġ(t) is commonly called the slew
rate. Owing to hardware and physiological constraints (e.g., peripheral nerve stimula-
tions), these encoding gradients have a bounded amplitude and a maximum slew rate,
imposing limitations of speed and acceleration on the sampling trajectories:{ ‖k̇‖ ≤ α

‖k̈‖ ≤ β
(1.19)

These kinematic constraints make the design of trajectories more difficult, since they
have to be smooth with bounded speed and acceleration. This is probably why the first
and still most widely used sampling patterns are based on simple geometrical shapes
such as lines or spirals. In addition, the rapid decay of the MR signal (∼ 50 ms) usually
prevents the measurement of all the needed data at once. For these reasons, k-space tra-
jectories are generally composed of multiple segments, called shots, which sequentially
fill the considered k-space grid in what is called a segmented acquisition.

The most widespread k-space trajectory is a Cartesian raster (Lauterbur, 1973), in
which parallel and equidistant lines of the k-space grid are acquired during the frequency-
encoded readout. Each Cartesian line corresponds to a given value of the phase-encoding
gradient as is illustrated in (Fig. 1.5a).

(a) Cartesian raster
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(c) Radial

(d) Propeller (e) Spiral (f) Rosette

FIGURE 1.5: A few standard 2D k-space trajectories.
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One drawback of the Cartesian raster is relatively long scan times6 because each line
requires a separate RF excitation pulse (or multiple pulses, if signal averaging is used).
Another Cartesian-based k-space trajectory is Echo-Planar Imaging (EPI) described by
Mansfield in (Mansfield, 1977), which was developed to speed up the Cartesian raster.
The idea is to collect many k-space lines in one excitation by zigzagging through the k-
space, as is depicted in (Fig. 1.5b). This is done by using a strong frequency-encoding
gradient together with a intermittently blipped low-magnitude phase-encoding gradi-
ents to switch from one line to the next.

1.3.3 2D non-Cartesian trajectories

Numerous 2D non-Cartesian trajectories were developed for MRI, mostly based on geometri-
cal patterns that were gradually improved or optimized. Here, we present an non-
exhaustive list of the most widespread sampling patterns used for 2D scans.

Projection Acquisition (PA) or radial. The first k-space trajectory used for MRI was
projection acquisition (PA) (Lauterbur, 1973), which consists of radial spokes either start-
ing from the origin of the k-space such as in (Fig. 1.5c) or traversing it from one border to
the opposite. Its repeated sampling of k-space center results in a signal averaging over
the image space, which renders radial sampling intrinsically robust to motion effects.
This is why radial imaging is widely used in dynamic MRI, especially in cardiac MRI
(Larson et al., 2004; Arunachalam et al., 2007). Radial imaging is also commonly used
in ultra-short echo time (UTE), which allows the detection of signal components with
T2 relaxation times of only a few hundred microseconds necessary for musculoskeletal
applications.

Spiral trajectories. The spiral trajectory was developed to decrease acquisition time
with the idea to sweep over the k-space more efficiently than its Cartesian or radial
counterparts (Ahn et al., 1986; Meyer et al., 1992). The readout is usually longer than
in Cartesian sampling and in some cases sufficiently long to cover the entire k-space in
a single shot. The shots composing the spiral trajectory are also called interleaves. These
trajectories usually start at the origin of the k-space and spiral outward as illustrated
in (Fig. 1.5e). For example, a spiral trajectory may be described as follows:

kx(t) = λtαcos(ωt) (1.20)
ky(t) = λtαsin(ωt) (1.21)

where α is the variable density parameter, ω = 2πn with n the number of turns in
the spiral and λ = N/(2FOV) with N the matrix size and FOV the field-of-view. The
Archimedean spiral characterized by a constant separation distance between successive
interleaves is given for α = 1 (uniform density).

However, the main difficulty with the design of spiral trajectories is the compliance
with the hardware constraints on speed and acceleration in Eqs. (1.19). Most of the pro-
posed designs are based on closed-form expressions, which are easy to implement on
a clinical scanner. To take full advantage of the gradient hardware capabilities, two
regimes are commonly defined: a slew-rate-limited regime and an amplitude-limited
regime. Near the center of k-space, the trajectory is only limited by the gradient slew

6Unless echo train spin refocusing is used.
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rate and so the slew rate is set to the maximum available slew rate Smax. Then, when
reaching the maximal gradient amplitude, the trajectory reaches an amplitude-limited
regime where the gradient is equal to the maximum available gradient amplitude Gmax
(Delattre et al., 2010).

A simple analytical solution for constant density (α = 1) was first given in (Duyn
and Yang, 1997) for the slew rate limited case only and then extended in (Glover et al.,
1999) for the two regimes. It was then generalized to variable density in (Kim et al.,
2003). However, the proposition given in (Kim et al., 2003) overshoots the maximum
available slew rate in the first milliseconds of the trajectory which implies that the center
of k-space may not be correctly sampled. Both (Glover et al., 1999) and (Zhao et al., 2008)
efficiently correct for this problem at a price of lengthening the trajectory.
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FIGURE 1.6: Variable-density design proposed in (Lee et al., 2003). L=16,
resolution of 1mm, Smax = 150 T/m/s, Gmax = 40 mT/m, sampling inter-

val ∆t = 4 µs, FOV varying linearly from 24 to 12 cm.

Moreover, numerical method were proposed to design variable-density spiral tra-
jectories such as in (Lee et al., 2003), for which a Matlab toolbox is in open access7. In
this technique, the sampling density is defined as the inverse of the sampling interval
in each direction, so that a variable-density sampling is equivalent to a variable effec-
tive FOV which is used as design parameter. The effective FOV in each direction gives
the following relationship that determines the rate of increase in the radial direction kr
compared with the rate of turning:

∆kr

∆θ
=

L
2πFOVr(kr)

(1.22)

7http://mrsrl.stanford.edu/brian/vdspiral/
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FIGURE 1.7: Multi-shot variable-density spiral proposed in (Lee et al.,
2003) corresponding to the design in (Fig. 1.6).

where L is the number of interleaves. Then, the constraints imposed by the hardware
and the effective FOV read:{

‖G(t)‖ ≤ min
(

2π
γ

1
FOV(kr)

1
∆t , Gmax

)
,

‖S(t)‖ ≤ Smax
(1.23)

where ∆t is the sampling interval. The trajectory that satisfies the above constraints can
be solved numerically. Since the effective FOV is specified to be a monotonically decreas-
ing function of kr, the spirals will have increased spacing in the outer k-space region.
Fig. 1.6 shows a single spiral interleaf generated with this method, and its characteristics
(gradient, slew rate, ...). Finally, Fig. 1.7 displays the whole variable-density trajectory
composed of 16 spiral interleaves.

Symmetric spiral trajectories which start at the border of the k-space and finish at
the opposite border can simply be designed by adding the time-reversed gradient of a
center-out spiral (Glover and Law, 2001).

Hybrid trajectories. Other k-space trajectories were often heuristically derived from
basic geometrical patterns such as the PROPELLER (see Fig. 1.5d) method (Pipe et al.,
1999) which allows for motion correction by using low frequencies information acquired
along stacks of parallel radial spokes. Hybrids of radial and spiral patterns were also de-
veloped allowing a faster start with radial segments, such as TWIRL, which starts with a
radial spoke and finishes with an Archimedean spiral (Jackson et al., 1992). The winding
hybrid interleaved radial lines (WHIRL) is another example of hybrid trajectories (Pipe,
1999).

Others. The rosette trajectory (see Fig. 1.5f) is another example of 2D sampling patterns
(Noll, 1997). Rosette trajectories cross the k-space origin many times, which enables for
off-resonance phase accumulation and for the generation of an incoherent distribution
of phase in the k-space data. It is also possible to calculate maps of magnetic field inho-
mogeneity directly from the acquired imaging data. Numerous other heuristic sampling
trajectories were explore such as zigzag patterns (Breuer et al., 2008).
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1.3.4 3D non-Cartesian trajectories

Various geometrical designs were explored for 3D imaging (Irarrazabal and Nishimura,
1995) and can be divided into several categories: from stack of 2D sampling patterns to
fully 3D trajectories, to optimization-based sampling schemes.

Stack of 2D trajectories. Several 2D sampling patterns were used for 3D scans, by
stacking the 2D trajectories along the partition direction. These sampling schemes in-
clude the "stack-of-stars" for the radial trajectory (Song and Dougherty, 2004; Lin et al.,
2008; Chandarana et al., 2011; Feng et al., 2014) and the stack of spirals (Irarrazabal and
Nishimura, 1995; Thedens et al., 1999; Chang et al., 2017; Valvano et al., 2016) and also
the stack of EPI (Börnert and Jensen, 1995). Moreover, an hybrid radial-Cartesian 3D EPI
trajectory was proposed in (Graedel et al., 2017) to enable motion correction for func-
tional MRI. The latter trajectory is not strictly speaking a stack, but rather an assemblage
of EPI planes which are rotated about the phase-encoding axis to fill out a cylinder in 3D
k-space.

Variations of 3D Cartesian raster. Other designs such as Wave-CAIPI (Bilgic et al.,
2015) sought to speed up the 3D Cartesian raster by acquiring a corkscrew trajectory
instead of a Cartesian line in the readout direction.

FIGURE 1.8: A spiral-based 3D radial trajectory.

Fully 3D trajectories. Fully 3D sampling patterns are also widely used, the most wide-
spread being 3D radial trajectories. 3D radial trajectories have the same applications as
2D radial sampling, typically in dynamic MRI (Barger et al., 2000; Larson et al., 2002).
There exist many ways to organize the radial spokes within the 3D k-space so as to
have an approximately uniform distribution. Some of them are based on spiral patterns
described on a sphere (Wong and Roos, 1994; Larson et al., 2008; Piccini et al., 2011) but
other techniques exist as well (Park et al., 2016). (Fig. 1.8) displays a spiral-based 3D
radial trajectory as in (Larson et al., 2008), which is going to be used in later applications
of this work.

Morover, other geometrical 3D patterns were developed such as 3D cones (Gur-
ney et al., 2006) or twisted projection imaging (TPI) which is often used in MR spec-
troscopy (Boada et al., 1997) (Fig. 1.9a). A method introduced in (Pipe et al., 2011) is
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based on a Fermat spiral 2D trajectory and is called fermat looped, orthogonally encoded
trajectories (FLORET) (Fig. 1.9b). More recently, the hybrid radial-cones (Johnson, 2017)
displayed in (Fig. 1.9c) are another example of hybrid trajectories that were heuristically
proposed to increase sampling efficiency.

Optimization-based. Optimization-driven 3D trajectory design were also explored, ei-
ther derived from genetic algorithm (Sabat et al., 2003; Dale et al., 2004) (Fig. 1.9d) or in-
spired from missile-guidance ideas (Mir et al., 2004) (Fig. 1.9e), or so called ’heuristically-
optimized’ patterns (Kumar Anand et al., 2008) (Fig. 1.9f). In some works (Kumar Anand
et al., 2008; Curtis and Anand, 2008), optimization was used to design random feasi-
ble trajectories, where the idea was to use uniformly and randomly distributed control
points over a sphere. Then, a feasible trajectory passing close to the control points is
generated using second order cone programming. In this way, multiple random trajec-
tories are produced among which the most relevant one in terms of k-space coverage is
selected using a genetic algorithm. Moreover, in (Seeger et al., 2010; Ravishankar and
Bresler, 2011; Liu et al., 2012), the design of k-space trajectories was addressed using
Bayesian methods. In (Seeger et al., 2010), the key idea was to fix a set of feasible tra-
jectories (e.g., spiral interleaves) and to select them iteratively by picking the one that
brings the largest amount of information at each step. Given the computational load of
this method, other works proposed adaptive approaches based on training images (Rav-
ishankar and Bresler, 2011; Liu et al., 2012).

FIGURE 1.9: Examples of 3D k-space trajectories. Top: geometrically
based 3D trajectories. a: TPI. b: FLORET. c: hybrid radial-cones. Bot-
tom: optimization-based 3D trajectories. d: genetic (Sabat et al., 2003). e:
missile (Mir et al., 2004). f: heuristically-optimized (Kumar Anand et al.,

2008).
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1.3.5 Sampling of k-space trajectories

The Nyquist-Shannon criterion in k-space sampling

To prevent image aliasing, also called wrap-around artifacts, the Nyquist-Shannon crite-
rion should be applied to k-space sampling. Let’s first consider the case of 2D Cartesian
raster sampling, with a imaging field-of-view FOVx × FOVy, a matrix size Nx × Ny, one

gets a resolution of ∆x = FOVx
Nx

and ∆y =
FOVy

Ny
. To comply with the Nyquist-Shannon cri-

terion and get the desired resolution, the k-space sampling should respect the following
relations:

∆kx ≤
1

FOVx
and ∆ky ≤

1
FOVy

, (1.24)

kx,max =
1

2∆x
and ky,max =

1
2∆y

(1.25)

In the case of radial sampling, the number of equiangular spokes nc must be adapted to
the corresponding Nyquist-Shannon criteria. Assuming a matrix size of N × N:

nc ≥ πN in the case of center-out spokes (1.26)

nc ≥
π

2
N in the case of diametral spokes (1.27)

Nyquist-sampled 2D radial trajectories therefore require more views than a comparable
rectilinear acquisition: about 1.57 times more for spokes spanning over π rad (diame-
tral) and up to 3.14 times more for center-out spokes spanning over 2π rad. Artifacts
from undersampling are called streaks. If streaking artifacts are not objectionable, this
can result in shorter scans without sacrificing spatial resolution compared to Cartesian
sampling.

Regarding spiral imaging, two criteria can be introduced: an azimuthal sampling
interval ∆kθ along a spiral interleaf and a radial sampling interval ∆kr, that may cause
either azimuthal or radial aliasing respectively (Bernstein et al., 2004). Because of the
slew rate limit, the gradient amplitude is typically not maximal near the center of k-
space, causing the distance between sampled k-space points along a spiral interleaf to be
smaller near the center of the k-space than at its periphery. To reduce the readout time, it
is not rare that the azimuthal sampling interval on an interleaf exceeds the Nyquist limit
away from the center, causing what is called azimuthal undersampling.

Sampling along continuous curves

In most cases, discussion about MRI sampling stops at the spatial Nyquist criteria. How-
ever, one has to keep in mind that although k-space trajectories traverse a continuous
path, the signal is sampled in time only at discrete intervals along the path. Because
of the underlying band-limiting filters of MR receiver hardware, the measured informa-
tion is essentially averaged over pieces of trajectories traversed between two sampled
points (Bernstein et al., 2004; Cho, 1993; Ansorge and Graves, 2016). More precisely, as
we saw in section 1.2.2, since band-limiting filters are applied to the received temporal
signal before resampling at a smaller rate, this filtering is equivalent to a convolution of
consecutive k-space information with a given kernel (e.g., a truncated sinc). In practice,
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to avoid any artifacts, the 1D spatial Nyquist criterion should be (at least) be respected
along a sampling curve.

1.4 MRI pulse sequences

An MRI pulse sequence can be defined as a preselected set of defined RF and gradient
pulses, usually repeated many times during a scan, wherein the time interval between
pulses and the amplitude and shape of the gradient waveforms will control NMR signal
reception and affect the characteristics of the MR images (e.g., their contrast). The dura-
tion between successive excitations is called the repetition Time (TR) and the time arount
which the signal is acquired is called the echo time (TE). Over the years, a multitude of
imaging methods has been introduced and can be roughly divided into two categories:
the Gradient-Recalled-Echo (GRE) and the Spin-Echo (SE). While SE sequences use an ex-
citation pulse that is normally 90◦ followed by a 180◦ refocusing pulse that reverses the
effect of field inhomogeneities, GRE sequences present only one excitation pulse with
a flip angle that is typically less than 90◦. In this thesis, we only present the two se-
quences most relevant to the presented work: the fast low angle shot (FLASH) and the
magnetization-prepared rapid gradient-echo imaging (MP-RAGE), which both belong
to the GRE family.

Gradient Recalled Echo (GRE)

FID

GRE

RF

Gradients

Phase

Pulse

FIGURE 1.10: Pulse timing diagram of the Gradient Recalled Echo (GRE)
for Cartesian acquisition. (-) and (+) gradient lobes that dephase and
rephase spins respectively. The lowest line shows the phase changes of
four spins in different spatial locations subjected to the (-) and (+) gradi-
ents. The peak of the gradient echo occurs when the net phase shift among

spins is zero.

Gradient Recalled Echo (GRE) is a class of pulse sequences that is generally used for
fast scanning (Haase et al., 1986). For instance, GRE is widely used in 3D volume imag-
ing, cardiac imaging and acquisitions that require breath-holding. The term ’recalled
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echo’ refers to the magnetic field produced by the frequency-encoding gradient wave-
form that rephases the GRE, as depicted in (Fig. 1.10). GRE pulse sequences do not have
the 180-degree RF refocusing pulse that is used to form an RF spin echo. Instead, gra-
dient reversal on the frequency-encoded axis forms the echo. In the Cartesian setup, a
readout prephasing gradient lobe first dephases the spin isochromats8, and then they are
rephased with a readout gradient that has opposite polarity, as is illustrated in (Fig. 1.10).
The peak of the GRE occurs when the area under the two gradient lobes is equal. For
other k-space trajectories, the echo occurs when the dephasing is minimal, i.e. when the
trajectory crosses the origin of the k-space or when one of its coordinates is zero. GRE
acquisitions can be fast because the flip angle α of the excitation pulse is typically less
than 90 degrees so the longitudinal magnetization component is never inverted by an RF
refocusing pulse. Therefore, no lengthy period of time is required for T1 recovery, and
GRE pulse sequences can use short TR (e.g., 2-50 ms).

GRE sequences can provide susceptibility-weighted images because there is no 180◦

pulse to refocus the phase evolution caused by local variations in the magnetic field. The
phase of the spin isochromats in the transverse plane continues to accumulate during the
entire echo time. Consequently, GRE images are contrast weighted by a factor e−TE/T∗2

(see Fig. 1.12c), instead of e−TE/T2 (see Fig. 1.12b) as in SE images.

FLASH sequence: spoiled Fast Low-Angle Shot

The basic GRE sequence described in the previous section assumes that the transverse
magnetization M⊥ prior to any RF pulse is zero. If so, the GRE pulse sequence is said
to be spoiled. This is true if the TR is very long compared to the T2 of the sample (at
least four to five times T2). Typically, spoiled GRE sequence with long TRs can be used
for interleaved multi-slice acquisitions to increase the number of acquired slices per TR.
However, when the TR becomes comparable or shorter than T2, unwanted stimulated
echoes may arise and corrupt the final image. It is then necessary to use other meth-
ods of spoiling such as gradient spoiling, rewinder gradients and/or RF-spoiling, which
is the case of the FLASH sequence introduced by (Haase et al., 1986) and now a se-
quence product of SIEMENS. The pulse diagram of a 2D FLASH sequence is displayed
in (Fig. 1.11), where a slice-selection gradient is applied during a low flip angle RF pulse,
before the application of gradients in the phase encoding (PE) and the frequency encod-
ing (FE) directions. A spoiler ("SP" lobe on Fig. 1.11) is applied after FE encoding. The
FLASH also performs RF spoiling (not displayed on the diagram).

Magnetization-prepared rapid gradient-echo imaging (MP-RAGE)

The MP-RAGE sequence is generally done for 3D T1-weighted imaging (Fig. 1.12a). A
typical 3D MP-RAGE pulse sequence uses a three-step cycle: (a) magnetization prepara-
tion for contrast control (typically to maximize white matter/gray matter contrast), (b)
data acquisition with a short TR gradient-echo sequence, and (c) magnetization recovery
for additional contrast control (Mugler and Brookeman, 1990; Mugler and Brookeman,
1991). The diagram of a 3D MP-RAGE sequence is displayed in (Fig. 1.13). It starts with
a nonselective inversion preparatory pulse whose flip angle is equal to 180◦. After a
inversion time denoted as TI, a T1 contrast is introduced into the longitudinal magneti-
zation. This T1-prepared magnetization is excited and then read out by a series of fast
gradient-echo sequences (e.g., FLASH) to sample multiple k-space lines. The maximum

8A microscopic group of spins, which resonate at the same frequency.
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FIGURE 1.11: Unit pulse sequence of 2D FLASH and its parameters: rep-
etition time (TR), echo time (TE) and flip angle (α). A spoiler and phase

rewinders are also depicted.

(a) T1 constrast (b) T2 contrast (c) T∗2 contrast

FIGURE 1.12: Different contrasts in MRI.

number of k-space lines depends on the temporal nature of the imaged object, the TR,
and the degradation rate of the prepared contrast.

1.5 Advanced signal modeling

Despite hardware improvements, MRI is often subject to field perturbations that violate
the traditional k-space formalism introduced above. Imperfections of gradients systems
and undesired field contributions perturb the spatially encoding magnetic fields. As a
result, the actual phase evolution is prone to deviate from the assumed nominal behavior,
which may cause important image artifacts (Barmet et al., 2008; Vannesjo et al., 2015).
Here, we list the frequently occurring technical and experimental imperfections and how
they affect the signal phase.
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FIGURE 1.13: Unit pulse sequence of 3D MP-RAGE.

1.5.1 System and imaging imperfections

B0 variations or off-resonance effects

Despite shimming, there are spatial time-independent deviations of the field strength
from the nominal value B0. These deviations are not only due to non-perfect hardware
(1ppm) but also to magnetic susceptibility (χ) differences typically occurring between
soft tissues (χ = −9× 10−6) and air (χ = 0.4× 10−6). In addition, chemical shift, which
refers to the frequency shift due to electron shielding effectively, reduces the resonance
frequency. The most common chemical shift concerns transitions between fat and water,
for which the deviations can reach 3.5ppm (220Hz at 1.5T / 440Hz at 3T). In these con-
ditions, the local magnetic field can be modeled as a static, spatially varying deviations
∆B0(r) from the assumed homogeneous main magnetic field B0. After demodulation at
the nominal resonance frequency ω0 = γB0, this results in a additional phase contribu-
tion compared to Eq. 1.12:

Φ(r, t) =
∫ t

0
(γBz(r, τ)−ω0) dτ

=
∫ t

0
(γ∆B0(r) + γG(τ)) dτ

= ∆ω0(r)t + k(t) · r

(1.28)

where ∆ω0(r) = γ∆B0(r) is the deviation from ω0.
Hence, in this case, the acquired signal at time t is:

S(t) ≈
∫

f (r)e−ı∆ω0(r)te−ık(t)·rdr (1.29)

which is no longer a Fourier transform. The problem here comes from the term e−ı∆ω0(r)t,
where t is not a constant and so cannot be absorbed by the f (r) := M⊥(r)B⊥(r) term and
be quickly evaluated by a FFT.
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Off-resonance will have different effects depending on the k-space trajectory. In a
conventional Cartesian raster acquisition it causes displacement in the frequency-encoded
(i.e., readout) direction, while in a spiral acquisition it causes displacement in all direc-
tions, which results in blurring.

Gradient imperfections

The gradient system itself suffers from inherent deficiencies such as limited coils and
amplifier bandwidth. This may result in temporal delays (e.g., amplifier delays, circuit
delays) and varying amplitude scaling of the generated gradient field. Overall, the gra-
dient chains exhibit low-pass characteristics (Vannesjo et al., 2013). Moreover, nonlinear
field components may arise due to limitations in the accuracy and the range of spatial
linearity of the gradient fields (Bernstein et al., 2004). This is especially occurring at
larger distance from isocenter.

Eddy currents

The time-varying magnetic fields from gradients induce currents in conducting struc-
tures within the magnet, gradient coils themselves and RF coils. This is a consequence
of Faraday’s law:

∇× E = −∂B
∂t

(1.30)

These induced currents are called eddy currents and create unwanted local, spatially
nonlinear transient fields. The magnetic field produced by the eddy current always op-
poses the change in the field causing the eddy current (Lenz’s law). The rate of eddy-
current buildup is proportional to the gradient slew rate. Eddy-current time constants on
commercial scanners can range from a few microseconds to hundreds of seconds. Their
spatial dependence is mainly classified into B0 eddy currents which are spatially constant
over the imaging volume, and linear eddy currents, which have linear spatial variation,
similar to the imaging gradient fields. Higher-order spatial dependence is possible but is
not commonly measured or corrected. Since eddy currents increase with higher gradient
amplitude and faster slew rate, they have become a more important problem with the
advent of higher performance gradients. They can be dealt with in four main ways: (a)
shielded gradient coils, (b) gradient waveform preemphasis, (c) gradient waveform der-
ating, and (d) application-specific calibrations and corrections during image acquisition
or reconstruction (Bernstein et al., 2004).

Concomitant terms

According to Maxwell equations (∇× B = 0 and ∇ · B = 0), when linear gradients are
applied in the z-direction, other magnetic field components perpendicular to Bz are pro-
duced. They also cause the amplitude of the magnetic field to exhibit higher-order spatial
dependence (e.g., x2 and y2). The magnetic field corresponding to these spatially non-
linear time-varying terms is known as a concomitant field (Bernstein et al., 2004). This
concomitant field is however negligible at high field since the characteristics parameter
describing the deviations ε = B0/(G · FOV) is very small compared to 1 (Yablonskiy
et al., 2005).
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Others

Other experimental imperfections such as coil vibrations and thermal variations cause
nonlinear time-varying phase contributions.

1.5.2 Phase modeling of growing complexity

Among the previously listed sources of phase errors, one can distinguish between static
contributions (off-resonance effects), dynamic contributions (gradient imperfections and
nonlinearities, eddy currents, concomitant field), and spatially linear field contributions
(gradient imperfections) for which the k-space formalism holds. Regardless of the ori-
gin of phase distortions, one can consider three phase models of growing complexity
(Schneider et al., 2011):

a) Only deviations in time or amplitude of linear spatial encoding magnetic fields are
accounted for, which can still be described in the k-space formalism. In this case the
experimentally k-space trajectory kexp deviates from the nominal trajectory knom:

kexp = knom(t + τ) + ∆k(t + τ) (1.31)

where τ is the vector of timing delays in each gradient direction and ∆k is the
vector of deviations in k-space positions along x, y and z directions.

b) Deviations consist of spatially nonlinear but static fields. In this case, a static off-
resonance term must be added to the magnetization phase:

Φexp(r, t) = kexp(t) · r + ∆ω0(r)t (1.32)

c) Deviations are arbitrary and contain explicit dynamic and spatially nonlinear com-
ponents. The local phase evolution can then be exhaustively described by:

Φexp(r, t) = (knom(t + τ) + ∆k(t + τ)) · r + ∆ω0(r)t + γ
∫ t

0
Bl(r, τ)dτ (1.33)

where Bl is a dynamic nonlinear spatially encoding magnetic field component.

Gradient Impulse Response functions (GIRFs)

A number of studies have shown that, to a relatively high degree of accuracy, the gradi-
ent response can be considered as a linear time-invariant (LTI) system (Alley et al., 1998;
Addy et al., 2012; Vannesjo et al., 2013; Brodsky et al., 2009). Under this assumption, the
gradient system’s behavior is fully described by its impulse response functions, which
are called the gradient impulse response functions (GIRFs):

Gout(t) = (Gin ∗ h)(t)

Gout(t) =
∫ +∞

−∞
Gin(τ)× h(t− τ)dτ
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Or, equivalently in the Fourier domain:

F(Gout)(ω) = F(Gin)(ω)× H(ω) (1.34)

where F denotes the Fourier transform and H := F(h) is the GIRF. An advantage of this
approach is that it is independent of any eddy current modeling, and it also includes
effects due to gradient mechanical vibrations. Due to the low-pass characteristics of the
gradient coils and amplifiers, the GIRF presents a low-pass behavior in a first approx-
imation, as can be seen in (Fig. 1.14). Vannesjo et al. managed to measure the GIRF
with unprecedented accuracy by using a gradient field camera and multiple averaging
(Vannesjo et al., 2013).

FIGURE 1.14: Magnitude of GIRFs as measured by Vannesjo et al in (Van-
nesjo et al., 2013) for all three gradient directions with and without built-in
eddy current compensation (ECC). The low-pass characteristics of the gra-
dient system is apparent in (A). Detail of the responses in (B) shows how
the EDD serves to broaden the response plateau and align the responses of
the three different gradient channels. Several mechanical resonances are

visible at low frequencies in (C).

1.5.3 Measuring system imperfections

B0 field maps

A B0 field map can be estimated from different scans (at least two) acquired at differ-
ent echo times. The phase difference between the acquired images is due to the different
precession frequencies, which are related to the field map via a linear relation. A straight-
forward estimation consist of dividing the phase difference by the delay time between
the acquisitions ∆TE. More sophisticated reconstructions have been proposed in the
literature such as linear regression techniques (Windischberger et al., 2004), phase un-
wrapping techniques (Reber et al., 1998) or statistically based approaches such as (Funai
et al., 2008). Once these GIRFs are determined for a given gradient system, they can be
used to predict and correct gradient distortions in the image reconstruction.

Local Phase Measurement (LPM)

Many different techniques to measure deviations in the magnetization phase exist, depen-
ding on the desired degree of accuracy (phase models 1, 2 or 3). For instance, in the
context of phase model 1, a simple and fast method to measure the linear deviations is
proposed in (Duyn et al., 1998). However, this method cannot detect gradient coupling
effects for instance.
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To tackle the exhaustive phase model 3, one can for example use a gradient field cam-
era such as (Barmet et al., 2008; Vannesjo et al., 2015) that allows to measure the actual
phase up to a certain order of spherical harmonics decomposition (usually ≤ 3). If one
does not possess such costly device, other (more time-consuming) methods can be used,
such as the one proposed in (Schneider et al., 2011), which is an extension of method pre-
sented in (Papadakis et al., 1997). This method, called Local Phase Measurement (LPM),
has the advantage of measuring all the phase contributions accumulated during the ap-
plication of the gradient waveforms including coupling effects. Because this method is
going to be implemented and used in the following Chapter 3, we briefly detail here its
principles. Compared to (Duyn et al., 1998), the phase evolution is not only determined
at two positions but is spatially resolved on a grid N × N, as illustrated in (Fig. 1.15).
For each grid point in the k-space, the excited spins are correspondingly spatially en-
coded before playing out the entire gradient waveform during the ADC. This results in
N2 time-series of complex data points, which, after Fourier transform, gives N2 complex
images representing the spatial distribution of the transverse magnetization (REP2). This
sequence is repeated without any gradient waveforms to acquire a baseline (REP1).
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FIGURE 1.15: Principles of the Local Phase Measurement (LPM) method.

After phase unwrapping, the temporal phase can be retrieved:

φ(x, y, t) = φrep2(x, y, t)− φrep1(x, y, t) (1.35)

Because of this baseline subtraction, the LPM does not capture the static B0 inhomo-
geneities. The time derivative of the phase divided by γ gives the effective magnetic
field:

1
γ

∂φ

∂t
(x, y, t) = B(x, y, t)

= B0(t) + Gx(t) · x + Gy(t) · y + h(x, y, t)
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where h(x, y, t) denotes the higher-order terms. In a discrete-time setup, the phase deriva-
tive is calculated as follows:

1
γ

[
∂φ

∂t

]
ti

(x, y) ≈
{

φ(ti+1)−φ(ti−1)
2γ∆t , if i ∈ [2, T − 1]

φ(ti+1)−φ(ti)
γ∆t , if i = 1

(1.36)

For each time step i ∈ [1, T], we define fi(x, y) := 1
γ

[
∂φ
∂t

]
ti
(x, y). The objective is to ex-

tract the first spatial orders of the polynomial expansion of fi. This polynomial fit was
performed up to a chosen order by computing the pseudoinverse with QR decomposi-
tion of the matrix for better numerical stability (backslash operator in Matlab). The field
of view used for fitting was smaller than the whole object to ensure a relative smoothness
of the data. Completing the fit for all time steps then yields the global B0(t), Gx(t), Gy(t)
and other higher order term time-courses.

For the LPM to work adequately, two conditions regarding the LPM phase-encoding
resolution and sampling rate must be met. First, the dephasing at the border of the
k-space should not exceed π for the signal not to be too weak, imposing ∆φmax =
ktest,max∆xLPM ≤ π, or equivalently:

kLPM,max ≥ ktest,max (1.37)

where ktest,max is the maximum spatial frequency of the tested trajectory and kLPM,max is
the k-space extent of the LPM phase-encoding. Secondly, the dephasing between two
consecutive measurements should not exceed π to enable unwrapping of the phase, i.e.
∆φmax = γGtest,maxrmax∆tLPM ≤ π, which results in:

∆tLPM ≤
π

γGtest,maxrmax
(1.38)

1.6 Image reconstruction

In this section, we will present basic tools and methods to reconstruct non-Cartesian
data. We will also introduce susceptibility-weighted imaging (SWI), which is a post-
processing method to enhance the image contrast.

1.6.1 Reconstruction of non-Cartesian data

Gridding

One method to reconstruct images from non-Cartesian data is to resample the data onto
a 2D Cartesian grid before using a 2D DFT. This technique is called ‘gridding’ or ‘regrid-
ding’ and can be done in many ways. First, we will present a ‘grid-driven’ approach and
then a ‘data-driven’ approach.

Grid-driven approach. Grid-driven interpolation is the easiest method to resample the
data onto a grid. The idea is to estimate the value at each grid point based on the sur-
rounding samples as is illustrated in (Fig. 1.16a). One disadvantage of this approach
is that it may not use all of the input data, and thus won’t be as ‘SNR efficient’ as the
data-driven interpolation. However, because it does not use all the data, the grid-driven
approach does not require a density estimate, which is very convenient. The fidelity of
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image reconstruction will be a trade-off between interpolator complexity and k-space
oversampling. If the data is resampled onto a grid twice as finely sampled (‘2X’ grid), a
simple bilinear interpolator yields acceptable reconstructions. In practice, this approach
is seldom used due to the general convergence of the MRI community towards the data-
driven interpolation. However, grid-driven interpolation can produce high-fidelity re-
constructions, especially when the sampling density is difficult to compute or continu-
ally changing.

a b

FIGURE 1.16: Two approaches to gridding. a: grid-driven approach. b:
data-driven approach.

Data-driven approach. The idea of the data-driven approach is to take each data point
and add its contribution to the surrounding grid points, as is represented in (Fig. 1.16b).
More precisely, each sample is convolved with a small kernel, which is wide enough so
as to cover the neighboring grid points. This approach has the advantage of exploiting
all the data, making it more ‘SNR efficient’. However, a density estimation is necessary to
correct for the fact that the samples may be concentrated in particular areas of k-space,
leading to an increased contribution to surrounding grid points. The third concern is
the choice of the density of the reconstruction grid (i.e., the grid oversampling factor α).
Following the work of (Jackson et al., 1991), the data M̂(kx, ky) after the entire gridding
procedure is given by :

M̂(kx, ky) =

([(
M(kx, ky)× S(kx, ky)×W(kx, ky)

)
? C(kx, ky)

]
×q

(
kx
∆kx

α

,
ky
∆ky

α

))
?−1 C(kx, ky)

(1.39)
where M(kx, ky) is the MR signal, W(kx, ky) is a weighting function for density com-
pensation, S(kx, ky) is the non-Cartesian sampling function, C(kx, ky) is the convolution
kernel and q defines the comb function associated to the Cartesian grid. Here, ? and ?−1

are the convolution and deconvolution operators. After Fourier transform, it becomes:

m̂(x, y) =
(
[(m(x, y) ? s(x, y) ? w(x, y))× c(x, y)] ?q

(
x

αFOVx
,

y
αFOVy

))
× 1

c(x, y)
(1.40)

A Kaiser-Bessel kernel is often used for C(kx, ky). The density compensation W(kx, ky)
can be calculated analytically using geometrical arguments in some cases (e.g., radial) or
by using a Voronoi diagram.
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The non-uniform Fourier transform

Another way to deal with non-Cartesian data is to use a non-uniform or nonequispaced
Fourier transform. Several methods were proposed (Dutt and Rokhlin, 1993; Fessler
and Sutton, 2003; Keiner et al., 2009b), but we will only remind the principle of the
nonequispaced fast Fourier transform (NFFT) introduced by Keiner et al. in (Keiner et
al., 2009b).

A d-dimensional nonequispaced discrete Fourier transform (NDFT) is defined by a
set of arbitrary spatial nodes χ and a frequency bandwidth vector N. Each node xj in
the nonequispaced sampling set χ :=

{
xj ∈ Td : j = 0, ..., M− 1

}
is drawn from the d-

dimensional torus Td
∼=
[
− 1

2 , 1
2

)d
with the number of nodes equal to |χ| = M. For each

dimension t ∈ J0, d− 1K, the bandwidth Nt ∈ 2N is defined as a fixed even number, and
collected into the vector N := (N0, ..., Nd−1)

T . Let us define the multi-index IN set which
is a representation of all possible frequencies in a transform:

IN :=
{

k = (kt)t=0,...,d−1 ∈ Zd : −Nt

2
≤ kt <

Nt

2
, t = 0, ..., d− 1

}
(1.41)

Given Fourier coefficients f̂k ∈ C, k ∈ IN as input, the NDFT is defined as the eval-
uation of the corresponding trigonometric polynomial f ∈ TN at the set of M arbitrary
nodes χ as follows:

∀j ∈ J0, M− 1K, f j = ∑
k∈IN

f̂ke−2ıπkxj (1.42)

This can be rewritten as a matrix-vector product:

f = A f̂ (1.43)

with the vectors f := ( f j)j=0,...,M−1, f̂ := ( f̂k)k∈IN and the nonequispaced matrix A :=(
e−2ıπkxj

)
j=0,...,M−1:k∈IN

The adjoint NDFT is then defined by:

ĥ = AH f (1.44)

which is equivalent to the sums:

∀k ∈ IN , ĥk =
M−1

∑
j=0

f je2ıπkxj (1.45)

The NFFT C library is a fast approximation algorithm which computes the sums
in Eqs. (1.45) and (1.42). This library uses only O

(
|IN |log|IN |+ |logε|d M

)
instead of

O (M|IN |) floating point operations (ε is the desired accuracy of computation). The key
idea of the NFFT algorithm is to use standard FFTs (fftw) in combination with an approx-
imation scheme that is based on a window function φ, which should be mutually well
localized in time/spatial and frequency domain. Two parameters controls the accuracy
of the NFFT: an oversampling factor σ and a truncation parameter m9.

9The first approximation concerns a cut-off in frequency domain, for which an aliasing error is intro-
duced due to the use of a FFT of length n := σN on a smaller number of samples N. A second approxi-
mation is due to the cut-off in time/spatial domain. Assuming the window function to be well localized in
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1.6.2 Post-processing: susceptibility-weighted imaging (SWI)

FIGURE 1.17: Processing steps of susceptibility-weighted imaging.

Once a complex image is reconstructed, it is possible to enhance its contrast by tak-
ing advantage of the phase information, thus creating a new type of contrast different
from spin density, T1-, or T2- weighted imaging (Haacke et al., 2004). Specifically, the
phase images themselves can provide excellent contrast between gray matter and white
matter (Haacke et al., 1995), iron-laden tissues (Ogg et al., 1999), venous blood vessels
(Reichenbach et al., 1997; Wang et al., 2000), and other tissues with susceptibilities that
are different from the background tissue (Reichenbach et al., 2001). Indeed, signals from
substances with different magnetic susceptibilities compared to their neighboring tissue
will become out of phase with these tissues at sufficiently long echo times. One approach
for combining magnitude and phase images was introduced as susceptibility-weighted
imaging (SWI) (Haacke et al., 2004). SWI is typically performed using 3D gradient echo
sequences with the following parameters: TR = 25-40 ms, TE = 20-40 ms and a flip
angle between 15◦ and 20◦. The successive processing steps of SWI are displayed in
(Fig. 1.17). The phase images are first high-pass-filtered and then transformed to a phase
mask that varies in amplitude between zero and unity (Haacke et al., 2004). This mask is
multiplied a few times (n times on (Fig. 1.17)) into the original magnitude image to create
enhanced contrast between tissues with different susceptibilities. To further accentuate

time/spatial domain, it is approximated by a truncated version with support
[
−m

n , m
n
]

, m � n, m ∈ N,
which causes a truncation error.
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the contrast of the susceptibility-weighted (SW) image, minimum intensity projection
(mIP) may be used.

If SWI has become today a standardized sequence in the clinical routine at 3 Tesla, it
is also more and more used at 7 Tesla with the idea to make good use of the high field
advantages.

1.7 Ultra High Field MRI

Until recently, most clinical MRI scanners operated at field strengths at 1.5 Tesla. How-
ever, due in part to improvements in magnet design and shielding, 3 Tesla clinical scan-
ners are now widely available and there is a push for even higher field whole body scan-
ners (7-11 Tesla) throughout the industry. There seems to be a trend towards high(er)-
field MRI, which is fueled by the benefits of potentially higher signal-to-noise ratio (SNR),
contrast-to-noise ratios (CNR) and spectral resolution for certain applications (Duyn,
2012). Ultra high fields (UHF) ranges from 7 Tesla and above.

1.7.1 Signal-to-noise ratio

Given as certain imaging protocol, the SNR in MRI is proportional to the following pa-
rameters:

SNR ∝ B0B−1 ∆V fseq(TR, TE, θ)
√

NshotsTobsNavg (1.46)

where B0 is the main magnetic field, B−1 the receive sensitivity (RF magnetic field per unit
current in the receive coil), ∆V is the voxel volume, fseq(TR, TE, θ) is a factor dependent
on the other sequence parameters, Nshots is the number of shots, Tobs is the observation
time per shot and Navg is the number of averages. Therefore, once sequence parame-
ters and receive coils are adjusted to their optimal performance, the only options left to
improve the SNR are to increase the main magnetic field B0 or decrease the resolution.
When high resolution images are desired, the only remaining possibility is to increase
the main magnetic field B0.

1.7.2 Clinical value

The SNR increase promised by UHF can typically be traded into higher spatial and/or
temporal resolution MRI, which is expected to aid in the understanding and diagnosis of
many neurodegenerative pathologies involving submillimetric lesions or morphological
changes, such as Alzheimer’s disease and multiple sclerosis (Barnes et al., 2009; Thomas
et al., 2008; Pruessner et al., 2000; Kolk et al., 2013). For instance, Fluid-Attenuated In-
version Recovery (FLAIR) sequences are able to make very good use of the increased
SNR at 7 Tesla, providing high CNR between brain tissue lesions and the surrounding
healthy brain tissue (Visser et al., 2010). Furthermore, MR angiography, which is regu-
larly used in clinical practice to assess all kinds of brain pathology, can be obtained with
an ultra-high resolution for optimal assessment of even smaller arteries of the brain than
at lower field strengths.

Besides the gain in SNR and CNR, pushing up the main magnetic field strength
brings other advantages. Most importantly, susceptibility effects are increased at ultra-
high field, which provide additional contrast with potential clinical utility. In particular,
T∗2 -weighted sequences are very interesting at UHF for the detection of microlesions and
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microbleeds and the visualization of microvasculature (Frischer et al., 2012; De Guio et
al., 2014; Moenninghoff et al., 2010b; Zwanenburg et al., 2011). (Fig. 1.18) shows the en-
hanced visualization of microbleeds possible with a T∗2 acquisition at 7 Tesla compared
to clinical standard 1.5-Tesla imaging (Conijn et al., 2010).

This increased susceptibility-induced contrast is not only beneficial for structural
brain imaging, but also for Blood oxygenation level dependent (BOLD) functional imag-
ing (Glover and Law, 2001). Indeed, the physiological noise contributions (veinous
blood) are expected to decrease with increased resolutions while the BOLD signal in-
creases with field strength (Triantafyllou et al., 2005).

FIGURE 1.18: Enhanced susceptibility contrast at 7 Tesla. 77-year-old
man with a history of hypertension presented with transient dysphasia
based on a transient ischemic attack (TIA) of the left hemisphere. a: mag-
nified region of a T∗2 -weighted brain image at 7 Tesla and b: standard
clinical image at 1.5 Tesla. The images at 7 Tesla clearly show better visu-
alization of the microbleeds due to the increased susceptibility effects at 7
Tesla compared to 1.5 Tesla MRI. (results published in (Conijn et al., 2010))

1.7.3 Challenges

There are, however, technological, physical and safety limitations impeding the full re-
alization of UHF (Stafford, 2004). The most important technical challenges concern:

• The inhomogeneous transmit field. At high fields of 3 Tesla and above, the B1 be-
comes increasingly inhomogeneous due to permittivity, conductivity and the con-
formation of the patients. The dielectric properties of tissues give rise to a region
of hyperintensity at the center of the image referred to as ‘field focusing’. This
problem can be compensated with the use of parallel transmission.

• Increased susceptibility artifacts. Since susceptibility effects are proportional to
the field strength, deleterious image distortions and signal loss are particularly
detrimental in regions of air/tissue interfaces (sinus, ears) as discussed in Sec-
tion 1.5.1.

• Specific absorption rate (SAR) limitations. The SAR is a measure of the power
absorbed in tissue per unit mass and is approximately proportional to B2

0 for fields
below 4 Tesla10. The potential effects of heating imposes limitations on sequence
pulses.

10This power law is somewhat reduced for higher field strengths.
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Furthermore, in spite of a more favorable SNR offered by UHF, high resolution imag-
ing is in practice hindered by motion concerns and long acquisition times. Despite the
recent development of corrections for bulk and physiological motion (Maclaren et al.,
2012; Federau and Gallichan, 2016; Stucht et al., 2015; Vannesjo et al., 2015), long acqui-
sition times remain a major obstacle to high-resolution acquisition, especially in clinical
applications. Hence, the development of methods to speed up MRI is still an active area
of research in MRI. This issue motivates the following chapter, which presents the appli-
cation of compressed sensing in MRI to accelerate the acquisition time.
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Chapter 2

Compressed sensing in MRI: how
much can we accelerate?

2.1 Introduction

Reducing the acquisition time in Magnetic Resonance Imaging (MRI) has been a major
direction of research in recent years. Speeding up image acquisition while maintain-
ing diagnostic quality is indeed crucial in many respects. The improvement of patient
comfort together with a reduced risk of motion artifacts are examples of consequential
advantages. Moreover, in dynamic imaging for instance, accelerated acquisitions are
critical to visualize rapid physiological changes. Finally, the resulting gain in time can be
invested in increasing the spatial and temporal resolution or in supplementary scans. In
this context, considerable effort has been spent on developing methods to accelerate data
acquisition while preserving image quality. One recent and most promising strategy is
the Compressed Sensing (CS) theory which consists in reducing the number of measure-
ments and thus the acquisition time (TA) by exploiting the compressibility of MR images
(Lustig et al., 2007b). Using CS, data can be massively undersampled by a given ac-
celeration factor R compared to the fully-sampled Cartesian acquisition, while ensuring
conditions for optimal image recovery. Examples of recent successful applications of CS
in MRI are numerous (Siemens Healthineers, 2016) especially in two-dimensional (2D)
or three-dimensional (3D) dynamic MRI (Gamper et al., 2008; Jung et al., 2009). In car-
diac imaging for instance, CS made it possible to perform single breath-hold and even
free-breathing 2D cine MRI while including motion-correction (Vardoulis et al., 2015; Us-
man et al., 2013). Moreover, combining CS with golden-angle radial trajectories, the XD-
GRASP method allows free-breathing cardiac cine imaging and 3D dynamic contrast-
enhanced MRI of the liver (Feng et al., 2016; Feng et al., 2014).

While many efforts have been made to improve the CS methodology in MRI both
on the acquisition (Haldar et al., 2011; Puy et al., 2012; Adcock et al., 2013; Adcock and
Hansen, 2015; Boyer et al., 2014; Bigot et al., 2016; Chauffert et al., 2014; Chauffert et al.,
2016; Boyer et al., 2016) and the reconstruction (Lustig et al., 2007b; Aelterman et al.,
2011; Guerquin-Kern et al., 2011; Haldar, 2014; Florescu et al., 2014) sides, the question
on the actual limitations to the acceleration rate in CS for a given experimental setup
has been hardly addressed. Hence, CS could considerably benefit from a study analyz-
ing in a quantitative way the major practical limitations to the degree of acceleration in
CSMRI. Such work would provide CS users with valuable information to design their
MR sequence by selecting the appropriate acceleration factor adapted to each scan in-
stead of using a trial-and-error approach. This is however a delicate question as numer-
ous parameters affect the quality of CS reconstructions including the image size and the
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available signal-to-noise ratio (SNR) for a particular acquisition (Hollingsworth, 2015).
In this work, we will offer an insight into the following question:

In CSMRI, how should the maximum acceleration factor be selected as a function of the image
size and the available SNR, in order to maintain a desired image quality?

One may expect that existing theoretical sampling results would provide an analytical
answer to this question. Unfortunately, if the existing literature proposes a rather com-
prehensive qualitative analysis of CSMRI, the constants involved in the theorems and
concentration inequalities are often crudely estimated. The result is that most practically
implemented sampling schemes should be considered as mere heuristics.

Following this observation which we briefly elaborate in a first theoretical part (Sec-
tion 2.2), we propose to conduct an empirical analysis of the considered preceding ques-
tion in the case of T∗2 -weighted imaging. Applying a generic method based on retro-
spective undersampling (Section 2.3), we present its results (Section 2.4) on an analytical
image for two types of MR sampling schemes and a conventional `1-based non-linear
reconstruction. The image quality dynamics could thus be quantitatively analyzed and
threshold values were identified. The maximum acceleration factor Rmax was also quan-
titatively determined as a function of the image size and the available input SNR to reach
a desired image quality. Moreover, we present a retrospective and prospective experi-
mental validation of these results based on T∗2 -weighted images acquired with a 7 Tesla
scanner on an ex vivo baboon brain. We finally propose a method to deduce a sequence-
specific maximum undersampling factor circumscribed by the intrinsic SNR of any given
acquisition.

2.2 The theory of CS in MRI and its limitations

The theory of compressed sensing is often considered a mature field by non-specialists.
While this belief proves to be quite accurate for Gaussian measurements, many impor-
tant questions are still open when dealing with structured measurements and structured
signal recovery, as met in MRI. In this section, we review a few major theoretical results
and open questions to motivate our experimental study.

2.2.1 The case of unstructured measurements

Let
σs(z) = min

z′∈Cn, s-sparse
‖z− z′‖1 (2.1)

denote the `1-tail of a vector z ∈ Cn. This function is often used to characterize the
compressibility of a signal z.

The following theorem ([)Theorem 9.13]foucart2013mathematical provides an accu-
rate description of the recovery guarantees in the case of unstructured Gaussian mea-
surements.

Theorem 1 Assume that A ∈ Cm×n is a matrix with i.i.d. random Gaussian components. There
exist universal constants C1, C2, D1 and D2 such that, for any 1 ≤ s ≤ n, for any ε ∈ (0, 1), if

m ≥ C1s(ln(n/2) + 1) + C2 ln(2/ε), (2.2)
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then, with probability at least 1− ε, for all vectors z ∈ Cn, given the measurements y = Az +
e ∈ Cm, where e is a measurement error satisfying ‖e‖2

2 ≤ mσ2, we get:

‖z− ẑ‖2 ≤ D1
σs(z)√

s
+ D2

√
mσ, (2.3)

where
ẑ = arg min

‖Az′−y‖2≤
√

mσ

‖z′‖1. (2.4)

The value of this theorem lies in the fact that it provides a good understanding of the
reconstruction quality with respect to the signal’s compressibility (captured by σs(z))
and the input SNR (captured by σ). In particular, it shows that if s 7→ σs(z)√

s decreases
sufficiently fast with s, a small number of measurements will be sufficient to reconstruct
the true signal, up to an error proportional to ‖e‖2. The `1-tail σs explains the role of
resolution in the theory of CS. Fig. 2.1 shows the evolution of the normalized σs(z) with
respect to the normalized sparsity s/n for the phantom image Fig. 2.3A) at different
resolutions (n = 128×128, n = 512×512 and n = 2048×2048). Two observations can be
drawn from this graph: on the one hand, the larger the relative sparsity of z, the smaller
its `1-tail σs(z). On the other hand and more importantly, the higher the resolution,
the faster the `1-tail decay. Hence, CS will allow using higher sub-sampling factors at
higher resolution for an equal error. Similar phenomena are explained in more details in
(Roman et al., 2014).
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FIGURE 2.1: Normalized `1-tail σs(z) = minz′∈Cn , s-sparse ‖z − z′‖1 with
respect to the relative sparsity s/n for different resolutions of the brain
phantom image in Fig. 2.3A): n = 128×128, n = 512×512 and n = 2048×
2048. The `1-tail decays faster at higher resolutions, thus allowing the use
of larger undersampling factors for higher resolutions in the context of CS.

Let us now describe the limitations of this theorem. First, it does not capture the de-
noising capabilities of `1 reconstructions. The term

√
mσ in (2.3) coincides with the amount

of noise in the data and increases with the number of measurements m. In practice it is
often observed that `1 minimization not only allows to recover missing information, but
also serves as a regularizer able to denoise the data. Second, the constants C1, C2, D1 and
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D2 are not tight and can be huge in some variants of this theorem, meaning that the lower
bound on the number of measurements m may actually be quite large, or equivalently
that the undersampling factor R = n/m may be close to 1 or even smaller than 1.

This last criticism has to be moderated by the theoretical analysis of phase tran-
sitions in (Amelunxen et al., 2014). It is now well known that in the case of noise-
less measurements, perfect recovery will occur with high probability whenever m ≥
2s(log(n/s) + 1) + ε and will fail with high probability when m ≤ 2s(log(n/s) + 1)− ε,
where ε is a small margin. This shows that the minimum number of measurements for
good recovery is very well understood in this case.

2.2.2 The case of structured measurements and structured signals

In MRI, signals are highly structured: all brain images share strong similarities and can
be modeled much more precisely than arbitrary s-sparse signals. A simple model to
describe this structure is the sparsity by levels in wavelet bases (Adcock et al., 2013): each
wavelet sub-band of the image contains a number of nonzero coefficients bounded by a
known quantity at each scale. (Fig. 2.2) illustrates a brain phantom image and its wavelet
decompositions for four sub-bands. Moreover, the traditional way of acquiring data in
MRI is far from independent Gaussian measurements: Fourier transform values of the
image are probed along continuous trajectories.

(a) Brain phantom (b) Wavelet representation

FIGURE 2.2: A brain phantom image of size N = 256 (a) and its wavelet
representation (b) for a Symmlet wavelet basis and 4 leves of decomposi-

tion.

The current sampling theory in this challenging setting can safely be described as sig-
nificantly less comprehensive than the case of Gaussian measurements. Let us however
remark that significant advances were proposed recently (Adcock et al., 2013; Roman
et al., 2014; Krahmer and Ward, 2014; Bigot et al., 2016; Boyer et al., 2017). Without intro-
ducing the theorems, let us detail the main conclusions and limitations of these studies.
First, the use of incoherent sampling and reconstruction bases is not necessary if the
sparsity pattern is adapted to the sampling scheme (Boyer et al., 2016). This is the case in
particular for MRI, where most images are compressible in the wavelet domain. Second,
one important result argues that low frequencies should be probed more often than high
frequencies. The reason is subtle and not just due to the fact that there is more informa-
tion in the low frequencies (Puy et al., 2011). To understand the reconstruction limits,
one needs to precisely describe the links between wavelet bases, Fourier bases and sparse
by levels signals. The current major limitations can be listed as follow:
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• The constants appearing in the theorems are usually far too large to be of any practical use.
This is due to inaccurate proof techniques, but it is currently unknown how much
the constants can be lowered. Establishing phase transition results for structured
sampling schemes as in the case of Gaussian measurements still requires significant
mathematical advances.

• Designing optimal sampling densities is still an open problem. Theorems provide quan-
titative upper-bounds on the number of measurements necessary for perfect recon-
struction, which allows designing decent densities. However, proving optimality
results requires to establish tight lower bounds. In practice the design of good
sampling densities is therefore heuristic.

• The noise is not correctly handled. The stability to noise and compressibility is estab-
lished, but the dependencies are far less optimistic than those in Theorem 1.

• Most results are only available for orthogonal wavelet transforms and `1-reconstructions. It
is now admitted that much better reconstruction results can be obtained in practice
by using redundant transforms, learned dictionaries or non-convex regularizers.
The understanding of CS in this setting is still very partial.

• In the case of measurements collected along curves, very little is known. Let us mention
that the case of parallel lines as proposed in (Lustig et al., 2007b) was analyzed
completely in (Boyer et al., 2017).

Overall, we see that existing theoretical results provide a good qualitative analysis of
CS, allowing to guide the design of sampling and reconstruction schemes. However, to
date, theorems are unable to provide quantitative conclusions on the number of needed
measurements in CSMRI.

2.3 An empirical and quantitative study of the maximum degree
of undersampling

While being theoretically inextricable, the proposed question1 can be empirically ad-
dressed and its answer may provide valuable practical and quantitative information to
CSMRI. Hence, we proposed the following methodology.

2.3.1 A generic method

In order to empirically quantify the effects of the image size and input SNR on the re-
constructed image quality from undersampled data, we propose the following generic
framework. All notations are listed in (Table 2.1).

First, a database of 2D reconstructions is constituted for a large range of image sizes,
input SNR and acceleration factors. Square images are considered and characterized by
their image size, denoted by N ∈ N, which refers to the dimension of the corresponding
N × N square matrix. An image of size N ∈ N , where N is the studied range of sizes,
is therefore composed of N2 pixels. Images of different input SNR (xSNR

N ) were obtained
by adding complex-valued zero-mean white Gaussian noise of varying standard devi-
ation σ ∈ Σ to the full complex k-space data of a noiseless image (x∞

N), where Σ is the

1In CSMRI, how should the maximum acceleration factor be selected as a function of the image size and
the available SNR, in order to maintain a desired image quality?
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TABLE 2.1: Notations used throughout the paper.

Notations Meaning

N ∈ N Image size

m Number of measurements

R = N2/m ∈ R Undersampling factor

σ ∈ Σ Noise level

SNR ∈ SNR Signal-to-noise ratio

xN ∈ CN2
Image of size N

x∞
N Noiseless image of size N

xSNR
N Noisy image of size N characterized by its input SNR

x̂R Reconstructed image from R-fold undersampled data

Q ; Q0 Image quality metric ; image quality threshold

Rmax(Q0, N, SNR) Maximum undersampling factor

z ∈ CN2×q q-fold undecimated wavelet representation of image x

y ∈ Cm Measured Fourier data

FΩ Fourier Transform over the support Ω ⊆ {1, . . . , N2}
Ψ q-fold undecimated wavelet transform (L = 4, q = 3L + 1)

studied range of noise levels. Each noise level (σ ∈ Σ) was then expressed as its corre-
sponding input SNR ∈ SNR, a quantity more commonly used in the MRI community,
where SNR denotes the studied range of SNR. The input SNR is computed over the
FFT-reconstructed fully sampled magnitude image by taking the ratio of the mean sig-
nal in a region-of-interest (ROI) in the white matter (smaller orange circle in Fig. 2.3A))
over the standard deviation in the background signal (larger yellow circle in Fig. 2.3A)).
Finally, a set of undersampling schemes and image reconstruction is specified as input
of the proposed pipeline 1. The undersampling or acceleration factor R ∈ R is given
by R = N2/m, where m is the number of measurements and R the studied range of
undersampling factors.

Once the database is complete, it is possible to introduce the concept of a maximum
acceleration factor Rmax(Q0, N, SNR) as the function of (i) the targeted image quality
expressed in terms of a quality threshold Q0 for a given image quality metric Q, (ii) the
image size N and (iii) the image input SNR:

Rmax(Q0, N, SNR) = arg max
R

{
Q(x̂R, xSNR

N ) > Q0

}
where xSNR

N is the reference image with given image size N and SNR and x̂R the corre-
sponding reconstruction retrospectively undersampled by a factor R. Similar threshold
over image quality score was already used in (Zhang et al., 2014) for diagnostic utility.

Finally, to study separately the effect of either the image size or the noise level, one
of these parameters was kept constant while the other was varied.
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Pipeline 1 Find Rmax(Q0, N, SNR)

Input: An undersampling method undersample and the associated reconstruction
reconstruct.

Input: Image quality metric Q and a threshold Q0
1: for N in N do
2: Take an image x∞

N of size N
3: for σ in Σ do
4: xSNR

N ← FFT−1(FFT(x∞
N) +N (0, σ)).

5: for R inR do
6: data← undersample(xSNR

N , R)
7: x̂R ← reconstruct(data)
8: end for
9: end for

10: end for
Output: Rmax(Q0, N, SNR) ∀ N ∈ N , SNR ∈ SNR

2.3.2 The studied pipeline

In this work, we applied the above method to both analytical and experimental data in
the case of T∗2 -weighted imaging.

2D images

The studied images shown in Fig. 2.3A-B) are derived from the analytical brain phan-
tom with a contrast similar to T∗2 -weighting, which was introduced by Guerquin-Kern
et al (Guerquin-Kern et al., 2012b). Considered image sizes belonged to the set N =
{128, 256, 512, 1024, 2048}.

Input SNR

We studied a set of input SNR ranging from 3 to 110. Resulting noisy images are dis-
played in Fig. 2.3A)-B) for the most extreme SNR values.

Undersampling schemes

Two undersampling schemes were considered in this work: identically and indepen-
dently distributed (iid) and radial samplings. First, non-Cartesian samples were iid
randomly drawn according to polynomially decaying distribution of degree 2, with a
plateau in the low frequencies, which provided good reconstruction performance across
the different image sizes (Chauffert et al., 2013). An example of the resulting sampling
schemes is depicted in Fig. 2.3C), for an image size N = 512 and a acceleration factor of
R = 10. Acceleration factors from 2 up to 30 were considered.

Moreover, we also propose to evaluate the performance of radial readouts, which are
widely used in CSMRI. This radial k-space trajectory is composed of diametrical sym-
metric spokes spaced by a constant angle increment. Fig. 2.3D) shows the isotropic radial
trajectory for the studied image size of N = 1024 and R = 15, which results in 68 spokes
composed of 1024 samples.

Both sampling patterns are implementable in practice in MRI either using 2D acquisi-
tions in the case of radial sampling or using so called partition (i.e., the 3rd dimension) as
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FIGURE 2.3: Guerquin-Kern analytical phantom of a brain image
(Guerquin-Kern et al., 2012b) for an image size of N = 512 with highest
studied SNR of 110 (A) and lowest input SNR of 3 (B). The smaller orange
and larger yellow circles respectively represent the ROI in the white mat-
ter and the area in the background signal used to calculate the input SNR.
Examples of iid sampling schemes of Fourier space along the chosen vari-
able density is displayed for N = 512 and R = 10 in (C) and symmetric

isotropic radial trajectory for N = 1024 and R = 15 in (D).

the encoding direction of a 3D acquisition for the iid sampling (Lustig et al., 2008b). For
the sake of simplicity however, only slice-wise reconstructions in the orthogonal plane
are considered in this work.

Reconstructions

Nonlinear non-Cartesian reconstructions were implemented to reconstruct the images
by solving the `1-`2 penalized synthesis formulation of the CS reconstruction problem:

ẑ = arg min
z∈CN2×q

1
2
‖FΩΨz− y‖2

2 + λ‖z‖1 (2.5)

where y ∈ Cm is the measured Fourier data, x = Ψz ∈ CN2
is the image and z ∈ CN2×q

its wavelet decomposition over a redundant wavelet basis on L = 4 levels (q = 3L + 1),
A = FΩΨ is the sensing matrix over the support Ω ⊆ {1, . . . , N2} with F the discrete
Fourier transform and λ the regularization parameter. The Non-equispaced Fast Fourier
Transform (NFFT) (Keiner et al., 2009b) was used to handle non-Cartesian Fourier data
and an undecimated wavelet transform was taken from the Rice Wavelet Toolbox (RWT
version 3.0 available on github.com/ricedsp/rwt). A proximal accelerated gradient
method (Fast Iterative Soft Thresholding Algorithm (Beck and Teboulle, 2009)) was im-
plemented to solve the minimization problem (2.5). Finally, the regularization parameter

github.com/ricedsp/rwt
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TABLE 2.2: Correspondence between SSIM scores and Mean Opinion
Scores (MOS) between an image and a reference (Zanforlin et al., 2014).

SSIM MOS Quality Impairement

≥ 0.99 5 Excellent Imperceptible

[0.95, 0.99) 4 Good Perceptible but not annoying

[0.88, 0.95) 3 Fair Slightly annoying

[0.5, 0.88) 2 Poor Annoying

≤ 0.5 1 Bad Very annoying

was tuned over a range of [10−6; 10−2] so as to select the reconstruction of best quality
according to the criterion introduced below.

Image quality metrics

To quantitatively assess the image quality, we chose to work with two reference-based
image quality metrics: the structural similarity (SSIM) index introduced in (Wang et al.,
2004) and the Normalized Root Mean Square Error (NRMSE in %). On the one hand, the
SSIM attempts to model the human visual system (HVS) and is increasingly employed in
the MRI community to assess image quality (Hollingsworth et al., 2014; Mann et al., 2015;
Jeromin et al., 2012), and on the other hand the NRMSE is a commonly used intensity-
based metric calculated as follows (Eq. 2.6):

NRMSE(x̂, x) =
‖x̂− x‖2

‖x‖2
(2.6)

where x̂ is the reconstructed image from Eq. (2.5) and x the reference. While the SSIM in-
dex, SSIM(x̂, x), varies between 0 (null correspondence with the reference) and 1 (perfect
match with the reference), the NRMSE is comprised between a 0% and 100% error. For
each image size, the corresponding reference was chosen as the fully sampled Cartesian
image of same size presenting a SNR of 110, which is the highest studied SNR in this
work. Moreover, these indexes were computed over cropped images deprived of their
background with a binary mask. Since both metrics presented very similar tendencies,
NRMSE performance was only shown in the first part of the results and the SSIM index
was used for the rest of the study.

Furthermore, to quantitatively represent the targeted image quality, we selected an
arbitrary SSIM threshold denoted by Q0 whose value was set to 0.9 as this is considered
to convey a fair image quality (Zanforlin et al., 2014). A correspondence between SSIM
scores and Mean Opinion Scores (MOS) is displayed in Table 2.2.

2.3.3 Experimental validation with MRI acquisitions

MR acquisitions were performed on a 7 Tesla Siemens scanner (Siemens Healthineers,
Erlangen, Germany), with a 1-channel transmit and 1-channel receive coil (InVivo Corp.,
Gainesville, FL, USA) to provide experimental noisy data for retrospective undersam-
pling. An ex vivo baboon brain conserved in a fluorinert solution was imaged with a
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TABLE 2.3: Parameters of T∗2 -weighted GRE sequence used for experi-
ments.

Parameters Values

Repetition time (TR) 60 ms

Echo time (TE) 30 ms

Flip angle (FA) 10◦

Slice thickness (SL) 5 mm

Field of view (FOV) 205 mm

Total NEX for N = 512 15

Total NEX for N = 1024 82

2D T∗2 -weighted Gradient Recalled Echo (GRE) sequence. All animal studies were con-
ducted in accordance with the European convention for animal care and the NIH’s Guide
for the Care and Use of Laboratory Animals. The acquisition was fully-sampled on the
Cartesian grid for image sizes of N = 512 and N = 1024 and consisted of N lines collect-
ing N Fourier samples (no oversampling). Parameters of the sequence are summarized
in Table 2.3. To get a wide range of input SNR, data averaging over several measure-
ments was performed in the Fourier domain. To reach an input SNR of 110, image sizes
N = 512 and N = 1024 needed respectively a number of 15 and 82 averages, referred as
to NEX (Number of EXcitations) hereafter. The resulting magnitude images of various
input SNR were then retrospectively undersampled with the presented iid and radial
sampling patterns.

Moreover, prospective radial acquisitions were performed for an image size of N =
1024 and a acceleration factor of R = 15 using the trajectory displayed in Fig. 2.3D).
Imaging parameters were the same as for the fully-sampled Cartesian acquisition at N =
1024, including the NEX to vary the input SNR.

2.3.4 Dependence of SSIM scores on reference SNR

Furthermore, the influence of the reference should also be mentioned as SSIM scores are
likely to change with the input SNR of the reference notably. We evaluated the impact
of this parameter here, and showed that this effect is of minor concern for the consid-
ered SNR. To evaluate the influence of the input SNR of the reference x on the scores
SSIM(x̂, x) scores, the reference SNR was varied in the computation of the SSIM for a
fixed reconstruction x̂ of the analytical brain phantom with iid sampling schemes. Two
cases were tested and are presented in Fig. 2.4 for (i) N = 512, R = 5 and an input
SNR of 46 (black line) and (ii) N = 1024, R = 10 and an input SNR of 110 (orange line).
Both curves present a stationary value as the input SNR of the reference increases. This
graph shows that above an input SNR of approximately 100, the SNR of the reference
no longer influences the value of SSIM scores. Noisier references do not match as well
the reconstructed images probably because of the denoising effect of the nonlinear re-
constructions. This result supports the use of a reference presenting an input SNR of 110
for the calculation of SSIM scores.
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FIGURE 2.4: Influence of input SNR of the reference on the SSIM scores
calculated for fixed reconstructions in the case of a 5-fold undersampled
image size of N = 512 for an input SNR of 46 (black line) and of a 10-fold
undersampled image size of N = 1024 for an input SNR of 110 (orange

line). The logarithmic scale was used for the x-axis.

2.4 Results

2.4.1 Influence of SNR

Fig. 2.5A)-B) respectively show the SSIM and NRMSE scores as a function of the input
SNR for four increasing undersampling factors, under a constant image size of N =
1024. For a given acceleration factor, as the input SNR gets larger the SSIM increases
to an asymptotic value corresponding to the maximum score denoted by SSIMlim(N, R)
(Fig. 2.5A). More precisely, the image quality reaches a plateau, as soon as the input SNR
is sufficiently high. Hence, the concept of a minimum input SNR required to attain the
asymptotic image quality score can be defined: once this SNR is reached, there is no gain
in image quality anymore.

For the presented case N = 1024 and R ∈ {5, 10, 20, 30}, the values of SSIMlim(N, R)
are reported in Table 2.4. As the undersampling factor grows, the corresponding asymp-
totic SSIM value drops. A similar but reversed trend can be observed on Fig. 2.5B) for
the NRMSE index where a plateau is visible as well.

TABLE 2.4: Asymptotical SSIM values, SSIMlim(N = 1024, R), for R ∈
{5, 10, 20, 30}.

R 5 10 20 30

SSIMlim 0.97 0.93 0.89 0.85

2.4.2 Influence of image size

Fig. 2.6 shows the SSIM scores as a function of the image size for four undersampling
factors, under a constant intermediate input SNR of 81. For a given acceleration factor,
as the image size gets larger the SSIM index increases in a concave manner. Moreover,
two regimes can be identified in the dynamics of image quality scores: a high-resolution
regime corresponding to large image sizes and a low-resolution regime corresponding
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FIGURE 2.5: For a constant image size N = 1024, evolution of A) SSIM
scores and B) NRMSE scores as a function of input SNR, for different ac-
celeration factors of 5, 10, 20 and 30, in the case of analytical images re-
constructed from iid-undersampled data. For both metrics, as the input
SNR increases, the image quality improves and approaches its limit. A
stationary regime is reached for high input SNR, where SSIM and NRMSE
scores are approximately equal to their maximum and minimum values

respectively for a given acceleration factor.

to small image sizes (the FOV is kept constant). On the one hand, for large image sizes
above N = 512 the image quality scores are quasi invariant by change in image size and
are close to their maximum value for each acceleration factor. On the other hand, for
small image sizes the image quality rapidly drops to severely low scores.

Furthermore, Fig. 2.6 allows to determine the combinations of image size and accel-
eration factor (N, R) guaranteeing a SSIM threshold of Q0 = 0.9 (dashed line) at the
studied input SNR. While any undersampling factor up to R = 30 can be applied to an
image of size N = 2048 and still ensure SSIM scores above 0.9, an image size of N = 256
cannot be accelerated more than 5 times in order to meet Q0 = 0.9.

2.4.3 Maximum acceleration factor

The previous results on image size and SNR influences can be combined to determine
the maximum acceleration factor allowed in a given situation, Rmax(Q0, N, SNR).
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FIGURE 2.6: For a constant input SNR of 81, evolution of SSIM scores as a
function of image size, for different acceleration factors of 5, 10, 15 and 30,
in the case of analytical images reconstructed from iid-undersampled data.
SSIM scores increase in a concave manner as the image size gets larger.
Two dynamics can be distinguished: a low-resolution regime where im-
age quality rapidly diminishes as the image size decreases and a high
resolution regime where image quality remains stable as the image size
gets larger. The dashed black line represented the chosen quality thresh-
old Q0 = 0.9 and highlights the combinations (N, R) of image sizes and
acceleration factors which allow to maintain the targeted image quality.

A 3D map of the maximum undersampling factor allowing SSIM scores higher than
Q0 = 0.9 is shown in Fig. 2.7A) for the analytical phantom, as a function of image size N
and input SNR. The flat aspect of the surface along the input SNR direction conveys the
image quality reaching the previously observed stationary state once a specific minimum
SNR has been attained. In contrast, as can be seen on the 2D projection of the surface on
Fig. 2.7B), the maximum acceleration factor keeps growing as the image size increases,
reaching values of 5, 8, 16 and 30 for images sizes of 256, 512, 1024 and 2048 respectively.
Moreover, the natural logarithmic scale on the image size direction used on this view
indicates a super-linear growth rate of Rmax as a function of image size.

2.4.4 Acquisition intrinsic SNR and Rmax

We propose to further specify the aforementioned functional Rmax defined on all the
possible combinations of studied input SNR and image sizes, by taking into account the
acquisition intrinsic SNR available in practice which depends on the image resolution and
the considered MR sequence. Indeed, any acquisition is characterized by its sequence
relaxation parameters (TR, TE, FA), resolution parameters (N, FOV, SL), the MR scan-
ner itself and its transmitting/receiving chain including the coils, and the imaged object
relaxation properties (T1, T2). Hence, for a particular acquisition and fixed FOV, there ex-
ists a unique relationship between the image size N and the input SNR. Graphically, this
N-SNR relation can be projected onto the Rmax surface to delineate where the maximum
undersampling factor of the sequence of interest lives in practice. Fig. 2.7 shows this ex-
perimental N-SNR level line (in orange) in the case of the presented GRE sequence (see
Table 2.3) which was projected on the studied domain. The 2D view of this line is de-
picted in Fig. 2.7B) and illustrates where the maximum acceleration factor for each image
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FIGURE 2.7: Analytical phantom Rmax results in the case of iid undersam-
pling. A) 3D view of the maximum undersampling factors allowing SSIM
scores above Q0 = 0.9 as a function of image size N and input SNR. B)
Its 2D projection on the (Rmax, N) plane. Knowing the image size and the
available input SNR of any acquisition, the corresponding maximum un-
dersampling factor allowing to reach the targeted image quality Q0 = 0.9
can thus be derived. The experimental N− SNR level line (orange line) of
the presented T∗2 -weighted GRE acquisition (see section III.C) was added
on both graphs. It represents the projection onto the Rmax surface of the
relationship between the intrinsic SNR available in practice for this par-
ticular acquisition and the image size. For the considered sequence, only
acceleration factors below the N− SNR level line will thus meet or exceed

the targeted image quality (see B).
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FIGURE 2.8: Results of retrospective iid-undersampling performed on ex-
perimental data acquired with a T∗2 -weighted GRE sequence (see sections
III.C). Fully-sampled Cartesian reference images presenting an input SNR
of 110 for N = 512 (A) and N = 1024 (B). A 2x-zoom displaying a folded
pattern in the baboon cortex of visual interest has been added in the bot-
tom left-hand corner for each image. For the intrinsic SNR of the consid-
ered acquisition (no average), reconstructions for images sizes N = 512 (E)
and N = 1024 (F), which were undersampled respectively by a factor
R = 8 and R = 16, are shown together with their SSIM scores calcu-
lated against their respective reference. In the case of an increased input
SNR of 110 which was obtained by multiple averaging (82 and 15 NEX
for N = 1024 and N = 512 respectively), reconstructions for images sizes
N = 512 (C) and N = 1024 (D), accelerated respectively by a factor R = 8

and R = 16 are displayed likewise.
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FIGURE 2.9: For an image size N = 1024 and an acceleration factor of
R = 15, SSIM performance of iid (in red) and radial (in yellow) sampling
schemes. Results obtained for the analytical phantom are represented by
continuous lines while the experimental data on the ex vivo baboon brain
are symbolized by discrete symbols. For radial sampling, prospectively
acquired results are represented with triangles, while retrospective recon-

structions on experimental data are displayed with cross signs.

size is located in practice for this particular sequence to reach the targeted image quality
Q0 = 0.9. This N-SNR level line interestingly presents a maximum of 8 reached for an
image size of N = 512. More precisely, between N = 256 and N = 512, we observe
that the N-SNR level line begins to deviate from the envelope of the Rmax projection,
which represents the point at which the acceleration starts to be limited by the available
SNR. Hence, given the intrinsic SNR of the studied acquisition for one NEX, an 8-fold
accelerated reconstruction of an image size N = 512 should maintain a SSIM score above
0.9 which is verified experimentally in Fig. 2.8E), whereas this is no longer ensured for a
16-fold undersampled image of size N = 1024 as can be seen in Fig. 2.8F). Nevertheless,
if the input SNR is important enough (e.g., SNR = 110 as this was experimentally ob-
tained by computing multiple averages), an acceleration factor of 16 would be feasible
for an image size of N = 1024 and the same threshold Q0 (Fig. 2.8D)). The increase of the
input SNR to 110 for the image size of N = 512 expectedly increases the SSIM score up
to 0.95 (Fig. 2.8C)).

2.4.5 2D radial sampling trajectories

Finally, we present the performance of conventional radial trajectories for an image size
of N = 1024 and an undersampling factor of R = 15. SSIM scores are reported in
Fig. 2.9 for both iid (red) and radial sampling (yellow) patterns, in the case of the analyt-
ical phantom (continuous line) and of the experimental data of the baboon brain image
(discrete symbols). In the case of radial sampling, prospectively acquired results are
represented with triangles, while retrospective reconstructions on experimental data are
displayed with cross signs. It can be noted that retrospective and prospective quality
scores are almost overlapping. Moreover, experimental scores are in good agreement
with the simulated results for both retrospective and prospective data. As expected,
radial trajectories are performing worse than iid sampling, with a difference of approx-
imately 0.1 in the asymptotic SSIM scores for both experimental and simulated results.



2.5. Discussion 53

Nevertheless, as the input SNR falls to lowest values, the gap between the two different
sampling schemes shrinks to zero. Theses results illustrate how iid sampling schemes
can produce near upper bounds to other 2D MR-feasible sampling trajectories such as
radial readouts.

2.5 Discussion

In this empirical study, we showed how to quantitatively derive the maximum under-
sampling factor preserving a targeted image quality as a function of the image size and
the input SNR. Hence, our results for T∗2 -weighted MRI provide quantitative guidelines
on how to select subsampling factors and resolution in the framework of compressed
sensing. On the one hand, our analysis quantitatively confirmed the benefits of going
higher in resolution and is therefore in agreement with the presented theoretical results
of CS (Section II - Fig. 2.1). By increasing the image size, larger acceleration factors can
indeed be used while allowing to recover high-resolution details. Nevertheless, this en-
hanced performance at high resolution is in practice limited by the available SNR of
the considered acquisition. We thus showed the existence of a minimum SNR that has
to be reached in order to meet the expected image quality, a key feature which is not
always clearly stated in previous studies in CSMRI. This Rmax function is theoretically
defined over all possible combinations of image sizes and SNRs in the studied domain,
but in practice remains confined to a more restricted area owing to the intrinsic SNR
limitations of a particular MR acquisition. We introduced this constraint by means of a
characteristic relationship between image size and SNR. In situations where the intrinsic
SNR is limiting, it may be more favorable to use a smaller accelerating factor on a lower
resolution scan for optimal results.

Regarding the practical utilization of this work, our experimental results appeared
to be in good agreement with simulations performed on the analytical brain phantom,
which corroborates the validity of our approach to derive a maximum undersampling
factor for a given acquisition-reconstruction setup. Our work may thus aid the design
of undersampled 3D acquisitions using CS and even 4D MRI, even though prospective
performance of compressed MR acquisitions may be slightly lower than predicted due
to unconsidered MR system imperfections (e.g., eddy currents). Moreover, our compar-
ison with experimental radial sampling performance suggests that our results may be
extended to 2D acquisitions insofar as they provide close upper bounds on the maxi-
mum undersampling factor which may be approached with spiral readouts (Boyer et
al., 2016). Although in practice it is not always possible to acquire the fully-sampled
Cartesian image to compute the available input SNR, MR physicists could estimate their
acquisition intrinsic SNR by probing the noise and signal strength in the k-space directly.

Since this study assumes a particular acquisition and reconstruction pipeline, SSIM
scores generated with another setup (e.g., parallel imaging and multi-channel CSMRI
reconstruction, see for instance (Liang et al., 2009; Chaari et al., 2011; Chun et al., 2016))
may lead to slightly different quality scores. However, we expect the observed tenden-
cies and dynamics to remain similar with other methods (e.g. changes in sparsifying dic-
tionary or algorithm), with possibly minor up- or down-shifts of the SSIM curves. If the
arbitrary choice of the SSIM quality threshold is not an issue itself since any user should
be able to determine the image quality of interest against a chosen reference, some limi-
tations of the SSIM index should be pointed out. First, the comparison of scores between
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different image sizes should be done carefully since the SSIM metric is not resolution-
invariant: an image of size N = 1024 presenting a SSIM of 0.92 may look better than an
image of size N = 512 presenting a SSIM of 0.95, as can be observed on Fig. 2.8B)-C). The
explanation lies in the fact that matching a reference of higher resolution is inherently
more demanding. This issue can be bypassed by adjusting the desired image quality (i.e.
the threshold) to the resolution via a threshold function Q0(N). The structural character-
istics of different images are also expected to influence the SSIM scores since this metric
was designed to be sensitive to structural features. Nevertheless, our experimental re-
sults on a brain baboon showed SSIM scores very close to those of the analytical brain
phantom despite significant structural differences between these two types of images
(Fig. 2.8 and 2.9), which supports the consistency of the presented study. Although this
study uses T∗2 data, it is not unreasonable to expect the same behavior and quantitative
estimations for other contrast such as T2 and T1, but this should be confirmed with fur-
ther experiments. Finally, the code and data used for this study are freely accessible on
the website cosmic.cosmostat.org/code.

2.6 Conclusion

In the case of T∗2 -weighted MRI, our study empirically and quantitatively showed how
the image quality measured with the SSIM index is affected by both input SNR and im-
age size when Compressed Sensing alone is used to speed up MRI acquisition and how
this information can be used to determine a maximum acceleration factor depending on
the targeted image quality. On the one hand, our results confirmed the benefits of going
higher in resolution since increasing the image size allows the use of larger acceleration
factors. Nevertheless, this enhanced performance at high resolution is in practice lim-
ited by the available SNR in the considered acquisition. We showed the existence of a
minimum SNR required to meet the expected image quality. Once this minimum SNR is
reached, increasing the input SNR does not improve the image quality anymore. Most
interestingly, we showed how to quantitatively derive the maximum undersampling fac-
tor Rmax preserving a targeted image quality as a function of the image size and the input
SNR. When the input SNR is high enough, typical Rmax values were found to be 5, 8, 16
and 30 for image sizes 256, 512, 1024 and 2048 respectively for the considered `1-based
reconstruction. In practice, this Rmax function is however constrained by SNR limitations
inherent to a particular MR acquisition and we demonstrated how our results enable to
take this a priori knowledge into account. These results were corroborated by experi-
ments performed on a 7 Tesla scanner both retrospectively and prospectively on radial
data. They illustrate how the use of CS in acquisitions can be virtually limited by the
available SNR when exploring very high resolution. Finally, our proposed SSIM-based
method to determine the maximum acceleration factor for a particular acquisition can
easily be adapted to any acquisition-reconstruction pipeline and may thus be of interest
to other techniques such as parallel imaging.

cosmic.cosmostat.org/code
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Chapter 3

2D SPARKLING: k-space filling
curves for accelerated MRI

In this Chapter, the SPARKLING method and results will be presented for 2D imaging.
This will be preceded by a short review on existing sampling strategies used in CSMRI.
In addition, we will show the results of the Local Phase Measurement (LPM) that was
used on a SPARKLING shot and allowed to estimate trajectory errors on our 7 Tesla
scanner.

3.1 Introduction

Magnetic resonance imaging (MRI) is one of the most powerful and safest imaging
modalities for examining the human body. High-resolution MRI is expected to aid in
the understanding and diagnosis of many neurodegenerative pathologies involving sub-
millimetric lesions or morphological changes, such as Alzheimer’s disease and multiple
sclerosis (Barnes et al., 2009; Pruessner et al., 2000; Kolk et al., 2013). Although high-
magnetic-field systems can deliver a sufficient signal-to-noise ratio (SNR) to increase
spatial resolution (Duyn, 2012), long scan times and motion sensitivity continue hin-
dering the utilization of high resolution MRI. Despite the development of corrections
for bulk and physiological motion (Maclaren et al., 2012; Federau and Gallichan, 2016;
Stucht et al., 2015; Vannesjo et al., 2015), long acquisition times remain a major obstacle
to high-resolution acquisition, especially in clinical applications.

As explained in Chapter 1, the k-space is sampled along a set of parameterized curves
generated by varying magnetic field gradients which have a bounded amplitude and a
maximum slew rate. Hence, filling the entire k-space array may require a long time
especially for high-resolution imaging. In this work, we make significant progress in
accelerating the acquisition time of segmented MR acquisitions with minimum deterio-
ration of image quality, by limiting the number of shots using efficient sampling patterns
combined with compressed sensing. The proposed strategy can be used in combination
with parallel imaging (Pruessmann et al., 1999; Griswold et al., 2002), yielding even more
important acceleration factors.

Most MRI sampling methods are currently based on the Shannon-Nyquist theory,
which relies on the use of Cartesian sampling, with the number of required samples in-
creasing with the resolution. The newly developed theory of compressed sensing (Can-
dès et al., 2006; Donoho, 2006; Lustig et al., 2007b) offers a promising solution for re-
ducing the MRI scan time, since it theoretically allows for subsampling of the k-space
while guaranteeing exact reconstructions. While early theoretical results were based
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on concepts such as coherence or restricted isometry properties, more recent develop-
ments (Adcock et al., 2017; Boyer et al., 2016) suggest compliance with two criteria for
optimal sampling:

(i) The sampling pattern should be distributed along a given variable density. In the
case of MRI, low frequencies should be sampled more densely than high frequen-
cies.

(ii) Coverage of the k-space should be locally uniform to avoid large gaps and clusters
of samples.

Although seemingly unrelated, the Shannon-Nyquist and compressive sampling theo-
ries advocate for the same criteria since both methods promote locally uniform sampling
patterns and differ only in the target density (uniform density for the Shannon-Nyquist
theory and variable density for compressed sensing theory). Methods to generate sam-
pling patterns satisfying (i) and (ii) have been extensively studied and range from simple
dart throwing to Poisson disk sampling or more elaborate optimal transportation-based
techniques (Dippé and Wold, 1985; De Goes et al., 2012). Nevertheless, since they do not
account for hardware constraints and produce discontinuous samples, these algorithms
are unable to provide sampling curves for MRI.

This limitation may explain why the 2D sampling patterns used in practice are es-
sentially made of simple analytical models such as Cartesian lines (spin-warp imaging
or EPI) (Edelstein et al., 1980; Mansfield, 1977), non-Cartesian radial spokes (Lauterbur,
1973; Bergin et al., 1991; Glover and Pauly, 1992), spiral interleaves (Ahn et al., 1986;
Meyer et al., 1992) and variations of these patterns (Pipe et al., 1999; Jackson et al., 1992;
Bilgin et al., 2008; Lustig et al., 2005; Wang et al., 2012). Although these geometrical
curves may enable relatively rapid scanning, they do not take advantage of all the de-
grees of freedom offered by the hardware and lack flexibility to comply with the above
optimal criteria. They may therefore be significantly improved to reduce MRI scan time.

Here, we introduce a method called SPARKLING, that may overcome these limita-
tions by taking a radically new approach to the design of k-space sampling. SPARKLING
stands for Spreading Projection Algorithm for Rapid K-space sampLING. To optimally
spread the samples (criteria (i)-(ii)), our method relies on optimization to automatically
generate k-space trajectories under the aforementioned hardware constraints by min-
imizing a tailored distance between the sample distribution and any prescribed den-
sity (for details, see Materials and Methods). Finally, to maximize sampling efficiency
(i.e., the k-space coverage per unit time), we apply our algorithm to highly-sampled tra-
jectories in the same manner as for spiral imaging (Tan and Meyer, 2009). Hence, for a
given MR protocol with defined imaging parameters (TR, TE and readout duration), this
method is able to enhance sampling performance.

The proposed sampling patterns were prospectively validated both ex vivo and in vivo
in healthy volunteers on a 7-Tesla MR scanner for T∗2 -weighted imaging. The versatility
of the method was demonstrated for various setups and target densities. In compari-
son to standard fully-sampled Cartesian acquisitions, our strategy significantly reduced
the scan time while maintaining good image quality. Moreover, SPARKLING-generated
acquisitions were compared to acquisitions obtained with two non-Cartesian sampling
methods widely used in anatomical MRI, namely, radial and spiral trajectories. Us-
ing the same equally accelerated gradient echo sequence (GRE) and without additional
equipment, we show that our method achieves enhanced image quality. The stability of
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SPARKLING-generated acquisitions was also tested for very high in-plane acceleration
factors of up to 20.

3.2 Related works: compressed sensing and sampling patterns

3.2.1 Compressed sensing and undersampled k-space trajectories

The two main ideas which guided previous designs of MRI sampling for compressed
sensing were randomness or incoherence and variable density. This is clearly stated in the
original paper of Lustig et al.: Realistic designs for CS in MRI should have variable-density
sampling with denser sampling near the center of k-space, matching the energy distribution in
k-space. Such designs should also create k-space trajectories that are somewhat irregular and
partially mimic the incoherence properties of pure random sampling, yet allow rapid collection of
data. Note that the original search for randomness is different from our criterion of local
uniform distribution (criterion (ii)). We summarize here the most important sampling
patterns developed for CSMRI.

Resorting to 3D acquisitions

If acquiring a random distribution of point-wise samples using a 2D acquisition is gen-
erally impractical, the situation improves when considering 3D acquisitions. (Fig. 3.1)
displays the idea introduced by Lustig et al. to use the partition encoding dimension to
acquire 3D lines whose cross-section would be the desired 2D random sampling distri-
bution. This trick has the advantage of avoiding the design of feasible trajectories for
MRI but forces to resort to 3D imaging. Practical implementations of this method were
used for dynamic MRI using a Poisson disk distribution with a fully-sampled central re-
gion of the k-space as is shown in (Fig. 3.1b) (Vasanawala et al., 2010; Menzel et al., 2011).
Note that Poisson disk sampling which yields a locally uniform coverage was rapidly pre-
ferred over random sampling. Nevertheless, this strategy has several limitations. First,
from a 3D perspective, the 3rd encoding direction is sampled at least at Nyquist rate
and so does not take full advantage of the potential acceleration offered by undersam-
pling all available dimensions. Second, the efficiency of this strategy decreases as the
readout duration of each shot increases. Indeed, if quickly acquiring a set of lines can
be effective for short readouts and short TRs, it however becomes inefficient for longer
readouts since sticking to the support of a line prevents the exploration of other parts
of the k-space which could have been sampled and thus limits the amount of collected
information. We will illustrate this limitation in the following chapter which deals with
3D MRI (Chapter 4).

Radial trajectories

Among all k-space trajectories, radial patterns are the most widely and successfully used
in CSMRI. Radial sampling has a particular appeal for compressed sensing since the
spokes of a radial acquisition naturally lead to a variable density sampling, measur-
ing low frequencies more frequently than high frequencies. In dynamic imaging, radial
spokes are typically ordered according to a golden ratio profile (Winkelmann et al., 2007),
where the angle between consecutive shots is set to 111.25◦. This ensures that any con-
secutive selection of radial spokes that are retrospectively selected yields a very good
k-space coverage. In addition, each new acquisition explores a direction not covered by
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FIGURE 3.1: Lustig’s method of acquiring along the 3rd direction (a) to
perform a Poisson disk sampling (b) in cross-sections.

the previous profiles. Such properties not only permit robustness to motion, but allows
to select a spatial and temporal resolution after the acquisition by varying the number
of consecutive shots per image to reconstruct. This method was successfully applied
in free-breathing dynamic contrast-enhanced MRI (Chandarana et al., 2013), volumetric
abdominal and cardiac imaging (Feng et al., 2016; Feng et al., 2014).

Spiral trajectories

Undersampled spiral trajectories were also used for compressed sensing, as they can be
designed to respect a variable density sampling. This enables to use the data collected
near the k-space center for motion correction. In addition to sampling efficiency, they
also present non-aliased artifacts. In clinical imaging, spiral sampling has been applied
in 4D flow imaging with CS-PI reconstruction (Dyvorne et al., 2014) and fMRI (Holland
et al., 2013).

Adding randomness to existing trajectories.

Following Lustig’s idea that randomness was desirable for compressed sensing, a few
works sought to add ‘random-like’ perturbations to existing sampling patterns such as
radial (Bilgin et al., 2008; El-Metwally et al., 2008) or spiral (Lustig et al., 2005; Lustig
et al., 2008a; Wang et al., 2012; Pang et al., 2014) trajectories. Some of them are displayed
in (Fig. 3.2). For instance in (Lustig et al., 2008a), the spiral is perturbed in the radial
direction by a randomly generated smooth waveform (see Fig. 3.2c). Then, the gradi-
ent waveform is found by solving a time-optimal control problem subject to hardware
constraints. One drawback of this method is that the k-space trajectory and the gradient
waveforms are designed separately, so that the final sampling distribution is not truly
controlled. It has however the advantage of being simple and rather fast when not too
many samples are used.

3.2.2 Previous optimization-driven sampling designs

In the literature of sampling trajectories for MRI, a few works addressed the problem
of optimizing k-space coverage using computational techniques. These methods must
be distinguished from two-step approaches which design the k-space trajectory and the
gradient waveform separately such as the time-optimal control method we just men-
tioned (Lustig et al., 2008a). These optimization-driven sampling design were already
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(a) El metwalli et al. (El-
Metwally et al., 2008)

(b) Pang et al. (Pang et al.,
2014)

(c) Lustig et al. (Lustig et
al., 2008a)

FIGURE 3.2: Different examples of "random-like" perturbations applied to
radial and spiral trajectories.

presented in Chapter. 1. We highlight here the limitations of these approaches and how
they differ from the proposed SPARKLING method (Boyer et al., 2016).

In the works of (Kumar Anand et al., 2008; Curtis and Anand, 2008), as the authors
state themselves, this method is heuristically-optimized as it is not established on any clear
sampling theory and advocates randomness in contrast to the SPARKLING approach.
Furthermore, the algorithms relying on techniques used for missile guidance (Mir et al.,
2004; Spiniak et al., 2005) sought to satisfy Shannon’s sampling theorem, i.e., to cover the
k-space uniformly and is therefore not adapted to variable-density sampling. Finally, the
Bayesian methods proposed in (Seeger et al., 2010; Ravishankar and Bresler, 2011; Liu et
al., 2012), also present some limitations. First, these methods use a set of predefined tra-
jectories, and so are unable to produce original trajectories which differ from the chosen
preset. Moreover, these techniques deviate from existing sampling theories in contrast
to the SPARKLING method.

3.3 Design of SPARKLING trajectories

The flowchart describing our method is depicted in (Fig. 3.3). Any segmented pat-
tern (feasible or not) may serve as an initialization of the proposed pipeline and be trans-
formed into a feasible k-space trajectory with a truly controlled density and optimized
k-space coverage. Gradient waveforms are defined as a set of discrete gradient ampli-
tudes that are spaced across a given gradient sampling period, defined as the raster time.
The latter is fixed and typically equal to dt = 10 µs on the actual MR gradient coils. The
support of a k-space trajectory is thus determined by its gradients steps and will be sam-
pled at the desired sampling rate, also referred to as the readout bandwidth (rBW = 1

∆t ,
where ∆t is the interval between digitized samples, also called the dwell time in the
MRI field). The key aspect of our method is optimization, in which the samples are op-
timally distributed in the non-Cartesian k-space, following criteria (i)-(ii). When using
compressed sensing, since the selection of the target density proved to be important for
optimal results, we incorporated in our method a density generator that adapts to the
resolution and the number of samples. Finally, the method allows for handling of addi-
tional linear constraints such as passage through the origin of the k-space at a given time
(the echo time), which is crucial for controlling the image contrast.



60 Chapter 3. 2D SPARKLING: k-space filling curves for accelerated MRI

Hardware 
constraints

G
max 

 = 40 mT/m

S
max

 = 200 T/m/s
Δt

min
 = 10 μs

Hardware 
constraints

G
max 

 = 40 mT/m

S
max

 = 200 T/m/s
Δt

min
 = 10 μs

Target density

INPUTb

 SPARKLING

PSF

OUTPUT

PSF

Target density

INPUTa

 SPARKLING

Hardware 
constraints

G
max 

 = 40 mT/m

S
max

 = 200 T/m/s
Δt

min
 = 10 μs

PSF

OUTPUT

PSF

Target density

INPUTc

 SPARKLING

PSF

OUTPUT

PSF

FIGURE 3.3: Generation of SPARKLING trajectories for different ini-
tializations and target densities. The maximum gradient amplitude and
slew rate were Gmax = 40 mT/m and Smax = 200 T/m/s, respectively. The
duration of each segment was 30.72 ms, and the readout bandwidth was
taken equal to the gradient bandwidth (rBW = BWgradient = 100 kHz). a,
The SPARKLING method applied to Cartesian lines with uniform density
for N = 256 and 32 segments (AF = 8, R = 0.66). b, The SPARKLING
method applied to radial spokes with variable radial density for N = 512
and 34 symmetric segments (AF = 15, R = 2.5). c, The SPARKLING
method applied to centered-out Archimedean spiral initialization with

variable radial density for N=256 and 8 segments (AF=32, R=2.66).

3.3.1 A projection algorithm on measure sets

The algorithm of SPARKLING trajectories is based on the theoretical work presented
in (Chauffert et al., 2017; Chauffert et al., 2016), from which an iterative algorithm was
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derived to comply with criteria (i)-(iii). A k-space trajectory is usually composed of sev-
eral segments k(t), also referred to as shots, which are controlled by magnetic field gra-
dients G(τ) as follows :

k(t) =
γ

2π

∫ t

0
G(τ)dτ (3.1)

Hardware constraints on the maximum gradient amplitude (Gmax) and slew rate
(Smax) induce limitations in trajectory speed and acceleration. These limits can be ex-
pressed as inequality range constraints on each of the time points of the discrete wave-
form k[i]1≤i≤N :

‖k̇[i]‖ =
∥∥∥∥k[i]− k[i− 1]

δt

∥∥∥∥ <
γ

2π
Gmax (3.2)

where δt is the gradient raster time. Note that the gradient raster may be different from
the dwell time ∆t but, in what follows, we set ∆t = δt. The constraint on the discrete
trajectory acceleration is expressed likewise:

‖k̈[i]‖ =
∥∥∥∥k[i− 1]− 2k[i] + k[i + 1]

δt2

∥∥∥∥ <
γ

2π
Smax (3.3)

Following our previous work (Boyer et al., 2016; Chauffert et al., 2017), our objective
is to minimize the distance between a target density π and a sample distribution k under
the aforementioned constraints :

min
k∈Qp

dist(π, ν(k)) = min
k∈Qp

1
2
‖h ? (ν(k)− π)‖2

2 (3.4)

where h is a continuous interpolation kernel, ν(k) is the probability measure supported
by the curve k andQp is the set of admissible curves, i.e., respecting the aforementioned
constraints.

The distance in Eq. (3.4) can be conveniently rewritten by expanding the L2-norm
into (details not shown):

min
k∈Qp

1
N2 ∑

1≤i,j≤N
H(k[i]− k[j])︸ ︷︷ ︸

Fr(k)

− 1
N

N

∑
i=1

∫
Ω

H(x− k[i])π(x) dx︸ ︷︷ ︸
Fa(k)

(3.5)

where H is a well-chosen radial function (e.g. H(x) = ‖x‖2) (Boyer et al., 2016; Schmaltz
et al., 2010). (Problem 3.5) can be interpreted as the minimization of a potential energy
F = Fr − Fa containing an attractive term Fa (bringing together samples according to the
target density) and a repulsive term Fr (avoiding the formation of gaps and clusters of
samples). After calculation of the derivatives of these two terms giving a gradient fi at
iteration i, this non-convex cost function can be minimized by a projected gradient de-
scent of the type kt+1 = ΠQp (kt − βt∇F(kt)), which alternates between a non-convex
distance minimization part and a projection onto the convex MR constraints. See Ap-
pendix A for more mathematical details or refer to (Boyer et al., 2016; Chauffert et al.,
2017).

The SPARKLING algorithm’s bottleneck lies in the calculation of repulsive term Fr
between the samples in Eq. 3.5 and its gradient, where there is a summation over all the
samples. The naive approach to compute this gradient is to directly use the explicit for-
mula, at the cost of a high complexity in O(m2), where m is the total number of samples.
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Here in 2D, this summation is performed via a fast NFFT-based summation (Potts and
Steidl, 2003; Keiner et al., 2009a; Teuber et al., 2011), that allows to significantly acceler-
ate the computation. Compared to the previous works (Chauffert et al., 2017; Chauffert
et al., 2016), we accelerated the convergence by using a Barzilei-Borwein (BB) step size
rule (Barzilai and Borwein, 1988), allowing to double the algorithm speed. This method
is motivated by Newton’s method but does not compute the Hessian. At nearly no extra
cost over the standard gradient method, the BB method is often found to significantly
outperform the standard gradient method just using a special steps size βi at iteration i
of the form:

βi =
< ∆k, ∆ f >

< ∆ f , ∆ f >
, (3.6)

where ∆k = kt − kt−1 and ∆ f = f t − f t−1, where f t = ∇F(kt).
Importantly, all segments of an output SPARKLING trajectory are generated simul-

taneously using a multi-scale algorithm, which first decimates the number of samples by
a dyadic factor (e.g., a factor 4), spread these fewer samples before interpolating them
by a factor, and so on until reaching the desired number of samples. This multi-scale ap-
proach proved to fasten and stabilize the algorithm, as its runs faster with fewer samples
and fewer iterations are needed for the last scales.

Altogether, this non-Cartesian algorithm was implemented on Matlab (Release 2015b,
the MathWorks Inc., Natick, MA, USA). Typically, to generate the k-space trajectory in
(Fig. 3.3a) (N=256, 32 shots, 3072 gradient points per shot, 5 decimation levels), the com-
putation time was about 10 minutes on a Intel dual Core i7-5600U CPU running at 2.60
GHz with 16GB RAM.

The considered hardware constraints were Gmax = 40 mT/m and Smax = 200 T/m/s
for the gradient and the slew rate respectively. For T∗2 -weighted imaging, the readout
time was set to 30.72 ms, corresponding to 3072 gradient samples. (Fig. 3.12a) displays
the SPARKLING trajectory composed of 16 spokes of 3072 samples used to produce the
brain image in Fig. (3.14b), corresponding to a 16-fold acceleration for an image size of
256× 256.

3.3.2 High receiver sampling rate

To take full advantage of the curves’ flexibility and maximize sampling efficiency, it
seems natural to sample at least at the same rate as the gradient bandwidth. The same
idea guides spiral acquisitions, where a high sampling rate is used to rapidly sweep
over a large portion of the k-space (Cline et al., 2001; Tan and Meyer, 2009). Although a
higher readout bandwidth practically increases the amount of noise per sample, the re-
sulting additional information collected is theoretically more advantageous (Daubechies
and DeVore, 2003).

More importantly, one has to keep in mind that although k-space trajectories tra-
verse a continuous path, the signal is sampled only at discrete intervals along the path.
Because of the underlying bandlimiting filters of MR receiver hardware, the measured
information is essentially averaged over pieces of trajectories comprised between two
sampled points (Bernstein et al., 2004; Cho, 1993; Ansorge and Graves, 2016). This ex-
plains why the per sample SNR increases as the bandwidth decreases, but it comes at the
expense of a lower resolution in the k-space. Hence, it is necessary to incorporate a third
criterion in our trajectory design to minimize these filtering effects:
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(iii) For each individual shot, assuming a certain sampling rate rBW, the k-space path
between two consecutive samples should be smaller than the size of a k-space pixel
∆k = 1

FOV , where FOV is the field-of-view.

Criterion (iii) can easily be incorporated into the algorithm by adjusting the speed limi-
tation to:

‖k̇[i]‖ < min
(

γ

2π
Gmax,

1
FOV · ∆t

)
(3.7)

This additional requirement tends to straighten the trajectories, since they are designed
so that consecutively acquired samples remain close to each other in the k-space. To relax
this side effect, the readout sampling rate should therefore be chosen as large as possible.
Indeed, as the sampling rate increases, more and more circumvolutions are permitted to
fill the k-space, as is illustrated in (Fig. 3.4). Hence, using a high sampling rate allows
for improvement of the resolution in the k-space, which is critical in the case of our non-
Cartesian winding trajectories (see more discussion in Materials and Methods).

rBW = 25 kHz rBW = 50 kHz rBW = 100 kHz

FIGURE 3.4: Evolution of SPARKLING patterns as a function of the
readout sampling rate. Radial-initialized SPARKLING trajectories com-
posed of 34 shots were generated for three growing readout sampling
rates. From left to right, the readout bandwidth (rBW) is equal to 25 kHz,
50 kHz and 100 kHz respectively. Because the k-space path between two
consecutive samples acquired along an individual shot is constrained to
be smaller than the size of a k-space pixel (∆k = 5 m−1), the trajectories
become more flexible and space-filling as the rBW increases. Excluding
the readout sampling rate, all other parameters were kept constant and
the same radially decaying target density was used. The readout duration
was 30.72 ms, corresponding to 3072 gradient steps (displayed on the fig-
ures) per individual shot (BWgradient = 100 kHz). The considered imaging
matrix was 512 × 512, corresponding to a resolution of 390 µm × 390 µm.

The selection of the readout bandwidth is traditionally based on the Shannon-Nyquist
criterion. Although matching Shannon’s rate exactly does not convey stable reconstruc-
tions, it is well known that a small oversampling allows to design improved and stable
linear reconstructions (Aldroubi and Gröchenig, 2001). This explains why Cartesian tra-
jectories for instance are usually sampled at twice the Shannon’s rate. In the framework
of linear reconstructions, using a higher bandwidth would arguably be unproductive
because of the resulting higher computational burden. However, in the context of non-
Cartesian sampling and nonlinear reconstructions, one faces the following dilemma: is
it better to use a large sampling period, allowing to increase the per sample SNR or a
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shorter sampling period, yielding a larger number of noisier samples? In view of recent
theoretical findings (Daubechies and DeVore, 2003), we argue below that the latter solu-
tion should be preferred, especially in the case of our optimized trajectories. Although
it is not clearly stated, the same idea seems to drive spiral acquisitions, where a high
sampling rate is often used to rapidly sweep over a large portion of the k-space (Cline
et al., 2001; Tan and Meyer, 2009). First, by increasing the bandwidth, the total number
of samples is also larger, bringing additional valuable information for nonlinear recon-
structions. More importantly, although the path traced out by k-space trajectories is
continuous, the signal is sampled only at discrete intervals along the path. Because of
the underlying bandlimiting filters of MR receiver hardware, the measured information
is essentially averaged over short pieces of the continuous trajectories (Bernstein et al.,
2004; Cho, 1993; Ansorge and Graves, 2016). The question is then: should SNR be pre-
ferred over k-space resolution? In view of the recent progresses in the field of nonlinear
denoising (Chatterjee and Milanfar, 2010), the answer seems to favor k-space resolution:
it is usually much easier to denoise data than solve complex deconvolution problems.
There are however two practical reasons which may limit the bandwidth. First, a higher
bandwidth produces more data which are harder to store and analyze. Fortunately, this
aspect is mitigated by the use of massively parallel architectures such as GPUs. Second,
since the ADC produces quantized data, it is critical to remain above the quantization
step. In view of these arguments, we therefore set the sampling bandwidth equal to
the gradient bandwidth, allowing to take full advantage of our erratic trajectories. Al-
together, in all our experiments, we acquired the ADC samples at a rate of 100 kHz,
which is equal to the gradient bandwidth: ADC samples and gradient samples are thus
superimposed. Because MR data are sampled at a high rate and samples are optimally
spread along a variable density adapted to compressed sensing, the proposed method
allows to maximize the amount of information measured per shot, and thus to reduce
the large number of shots needed for high resolution imaging. Hence, very high acceler-
ation factor AF can be achieved while maintaining a relatively low subsampling factor
R. R and AF are defined with respect to the fully sampled Cartesian acquisition (ground
truth image), leading to the formulas R = n/m and AF = N/nc, where n = N × N is
the number of pixels in the image, m is the number of collected Fourier samples and nc
is the number of shots.

3.3.3 Target density

In this work, we address radially symmetric densities for the most part. The rationale for
this choice is that we aimed to design sampling patterns that are rotation and translation
invariant, i.e., that are capable of reconstructing images independently of arbitrary rigid
transforms. This choice might be arguable since i) the organs (e.g., brain) are usually
oriented in a unique position and ii) the sparsifying transform that we chose is not rota-
tion invariant. However, the invariance requirement seems important for the design of
universal sequences adapted to any organ.

In the situation in which all segments of a k-space trajectory pass through the origin
at a given echo time, the sample density at the origin is excessively high. Our objective
was to provide a method to generate target densities that mitigate this effect.

Considering nc segments crossing the origin with a maximum speed α, the minimal
density in the center of the k-space is that of the radial trajectories at the maximum speed
(see Fig. 3.5a). The density of the radial curves at a constant speed is of type f (k) =
c
|k| for a certain c (at least asymptotically as nc increases). However, this is only true
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FIGURE 3.5: Design of the target density. (Left), The most rapidly vanish-
ing density in the center of the k-space corresponds to the radial trajecto-
ries at the maximal speed. (Right), A representative density generated by
our algorithm for N=512, nc = 34, d = 2, τ = 0.5, ∆t = 10 µs, α = γGmax

and Gmax = 40 mT/m.

within a given disk Dr0 of radius r0 that we wish to determine. In practice, the distance
between two circularly adjacent samples (denoted ∆rad(j) for the jth sample from the
center) should be smaller than τ∆k0, where τ ∈ (0, 1] and ∆k0 = 1

FOV is the size of
a k-space pixel. Nyquist’s theorem suggests taking τ = 1, but selecting a lower value
ensures more stability, as it allows the use of smooth interpolation functions (Daubechies
and DeVore, 2003). The condition on two circularly adjacent samples ∆rad( j̄) ≤ τ∆k0

therefore gives rmin = j̄α∆t, where ∆t is the sampling interval and the index j̄ is given
by:

j̄ =

⌈
τ∆k0

α∆tmin
√

2− 2 cos(π/nc)

⌉
. (3.8)

Furthermore, to determine the density inside the disk Dr0 , we use the fact that the
total mass of the density inside the disk should be nc( j̄+1)

m , where m is the total number of
samples. The value of constant c defining the density f should be such that:∫

Brmin
0

f (k) dk =
nc( j̄ + 1)

m
, (3.9)

i.e.,

c =
nc( j̄ + 1)

m
∫

Brmin
0

1
|k| dk

. (3.10)

Finally, we get:

f (k) =
nc( j̄ + 1)

m2πrmin|k|
. (3.11)

Given, an initial target density ν : k 7→ 1
|k|d , a value τ and the parameters describing

the trajectory α, nc and ∆t, we generate an algorithm that returns a new target density π
complying with the following three constraints:
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1. Inside the disk Dr0 , π = f . Since the analytic expression of f was derived, it suffices
to set π(I) = f (I), where I is the set of indices with |k| ≤ rmin.

2. Two samples outside this disk should be separated by a distance greater than τ∆k0.
The mean number of samples inside a pixel x of edge length ∆k0 is nsπ(x). If the
samples are uniformly distributed in the pixel, the mean distance between adjacent

pixels is
∆k0√
nsπ(x)

; we aimed for this distance to be greater than τ∆k0 . This means

that π should satisfy:

π(x) ≤ 1
nsτ2 = πmax. (3.12)

3. π should be proportional to ν when possible. To satisfy this criterion, we designed
an iterative algorithm as follows:

• While max(π(Ic)) > πmax

– Find J = {k ∈ Ic, π(k) > πmax}.
– Set π(J) = πmax.
– Normalize π in Ic \ J.

For simplicity, we assumed that π is constant on each pixel of edge size ∆k0.

3.3.4 Resulting trajectories

Uniform sampling

To illustrate the versatility of the proposed approach, we first consider a uniform density
without undersampling for an acceleration factor of AF = 8 and an imaging matrix of
256× 256. Classically, the fully sampled Cartesian acquisition would measure 512 sam-
ples (oversampling factor of 2) along 256 Cartesian lines to fill the k-space grid. (Fig.
3.3a) displays how our process transforms an initial Cartesian trajectory composed of 32
parallel lines, which corresponds to AF = 8. Here, the considered readout duration is
30.72 ms, corresponding to 3072 samples (rBW = BWgradient = 100 kHz), with the idea to
perform T∗2 -weigthed acquisitions (Mainero et al., 2009). Our optimization algorithm de-
forms these straight lines and uniformly scatters the non-Cartesian samples along highly
sinuous curves. In this case, despite high acceleration (AF = 8), the acquisition is not
subsampled (R = 0.66).

Variable-density sampling

Above all, the most important benefit of our strategy where the largest acceleration fac-
tors are attained lies in the use of variable densities. Hence, in the context of compressed
sensing, our approach can substantially improve robustness to subsampling by com-
plying with criteria (i)-(ii). The results of such variable-density k-space trajectories are
presented for a radial initialization in (Fig. 3.3b) and for an Archimedean spiral initial-
ization in (Fig. 3.3c). In both cases, the input initializations did not originally comply
with the gradient hardware constraints, the target density was radially decreasing, and
the considered readout duration was also 30.72 ms. (Fig. 3.3a-c) also displays the point
spread functions (PSFs) of both the input and output k-space trajectories, defined as the
modulus of the Fourier transform of the sampling pattern viewed as a set of Dirac im-
pulses. This result shows how the proposed method improves the PSF properties by
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transforming coherent patterns that are sources of artifacts into incoherent noise, which
is easily removed with nonlinear reconstructions. The output central peak is also better
defined than initially and is surrounded by a low-energy annulus, yielding higher image
quality (Nayak and Nishimura, 1998; Tsai and Nishimura, 2000).

3.4 Is the gradient system able to accurately perform these com-
plicated waveforms?

Before engaging into prospective image acquisitions using the SPARKLING trajectories,
we wanted to verify that the gradient system would be able to play out such com-
plex gradient waveforms. Fig. 3.6 displays the gradient and slew rate waveforms for
a SPARKLING trajectory.
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FIGURE 3.6: Gradient (left) and slew rate (right) in the x-axis of a uniform-
density SPARKLING trajectory composed of 32 shots.

3.4.1 Simple estimation using a GIRF

To have an idea of how well the gradient system will be able to perform the SPARKLING
trajectories, it is reasonable to model the gradient system as linear and time-invariant
(LTI) (Brodsky et al., 2009). Under this assumption, the gradient system’s behavior is
fully described by its impulse response functions, which are called the gradient impulse
response functions (GIRF) (Vannesjo et al., 2013). Given the general low-pass character-
istics of gradient coils and amplifiers, the self-term GIRFs (x − x, y − y, z − z) can be
approximated by low-pass filters.
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FIGURE 3.7: Effects of low-pass filtering on spiral and radial-initialized
SPARKLING shots. To simulate trajectory errors, the gradients corre-
sponding to an individual segment of a spiral trajectory (in blue) and
a sparkling trajectory (in orange) were filtered with the same low-pass
filter. A magnified region of the center of the k-space shows the nom-
inal trajectories and the corresponding error vectors represented as ar-
rows. Compared to the simulated trajectory errors of the spiral, the ones
of SPARKLING are of smaller magnitude and present random directions.
The gridded background corresponds to the Cartesian grid for the consid-

ered FOV.

Fig. 3.7 shows the effects of low-pass filtering on one shot of the spiral (in blue)
and the radial-initialized SPARKLING (in orange) trajectories. These shots were se-
lected from the 20-fold accelerated trajectories used for the in vivo prospective experi-
ments (Fig. 3.16). After bilateral zero-padding of the corresponding gradient waveforms
in the time domain, a low-pass constant kernel of width 20 was applied to the input
gradients by multiplication in the Fourier domain as described in (Vannesjo et al., 2015).
After inverse discrete Fourier transform, the output trajectories were obtained by time
integration. The simulated errors are represented as arrows departing from the nom-
inal trajectories in a magnified region of the k-space center. The error vectors tend to
point in the direction of the inward-pointing normal. Compared to the spiral errors, the
SPARKLING ones are not only smaller in magnitude but also present random directions.
This simple experiment provides an insight on why the SPARKLING patterns may be
less sensitive to gradient errors than spiral patterns, even though a full validation would
require a dynamic field camera such as (De Zanche et al., 2008).

3.4.2 Trajectory measurement with a Local Phase Measurement (LPM)

To get an even better appraisal of the practical trajectory, we used the LPM method de-
scribed in Section 1.5.3 for one shot of a particular SPARKLING trajectory.

Materials and Methods

A SIEMENS mini-FLASH sequence was adapted to perform the LPM. All acquisitions
were done on a 7-Tesla MR scanner (Siemens Healthineers, Erlangen, Germany) with
a single-receiver coil. The considered trajectory displayed in Fig. 3.8 corresponds to a
matrix size of 256 × 256 and field-of-view of 205 cm. It is composed of 8 shots, each
lasting 32.76 ms. We applied the LPM method to one of the shots highlighted in orange
in Fig. 3.8. Remembering the requirements of the LPM, a matrix size of 512× 512 was
considered for a field-of-view of 256 cm. Repetition time was 40 ms, echo time 4.44 ms,
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flip angle 30◦ and dwell time of 4 µs. A marcol ball phantom of diameter 20 cm was
used and the acquisition was in the coronal plane. Regarding the phase reconstruction,
a mask of radius 6 cm was applied to the complex images before polynomial expansion
of the phase up to an order 4 as explained in Chapter 1.

FIGURE 3.8: SPARKLING trajectory. The individual shot used for the LPM
is highlighted in orange.

Results

The result of the LPM acquisition for the linear term x, which corresponds to the gradi-
ent waveform along the x-axis, is displayed in Fig. 3.9a for the total duration. On this
scale, the prescribed gradient (blue continuous line) and the measured gradient (orange
dashed line) seem to be superimposed on each other. On the same figure, a black win-
dow delineates the extent of the magnified region displayed in (Fig. 3.9b). Now, it is
possible to observe the differences between prescribed and measured waveforms. The
measured gradient never reaches the local extrema of the prescribed gradient, convey-
ing the low-pass characteristics of the gradient system. Moreover, very small variations
present in the prescribed waveform are smoothed out in the measured one.

Then, the k-space trajectory was reconstructed using the measured gradient informa-
tion and is displayed (orange dashed line) in (Fig. 3.10). The measured and prescribed
(blue continuous line) trajectories are almost overlaid. Highest deviations are observed
where the curvature is the most important and the measured trajectory is inside the pre-
scribed one. In the end, as observed in the previous low-pass filtering experiment, the
trajectory errors seem to somehow compensate since the NRMSE1 on the total shot is of
0.92% and 0.22% in the x and y directions respectively.

Furthermore, the zeroth-order field term B0 is displayed in (Fig. 3.11a) and reaches
a maximum magnitude of 0.02 mT. Finally, (Fig. 3.11b) displays the second-order field
term whose oscillations reach a maximum amplitude of 1 µT/cm2.

1NRMSE(x̂, x) =
‖x̂− x‖2
‖x‖2
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FIGURE 3.9: Prescribed (in blue continuous line) and measured (in orange
dashed line) gradient waveforms along x-axis for the total duraction (a)
and a magnified region (b) which corresponds to the black window in (a).

-500 0 500
-600

-400

-200

0

200

400

600
Prescribed trajectory
Measured trajectory
Start point
End point

FIGURE 3.10: Prescribed (in blue continuous line) and measured (in or-
ange dashed line) trajectory.

3.5 SPARKLING prospective acquisitions for T2* 2D imaging

After having ensured that the gradient system on our 7-Tesla scanner was capable of
playing out the SPARKLING trajectories, we performed a series of prospective acqui-
sitions using the SPARKLING trajectories and compared them to fully-sampled Carte-
sian, iPAT, variable-density spiral and radial sequences. In this section, we acquired
T∗2 -weighted images, which permits the use of long observation times (∼ 30 ms).

3.5.1 Materials and Methods

Design of spiral trajectories

Variable-density spiral trajectories were designed using a variable effective FOV as de-
scribed in (Lee et al., 2003), with a maximum gradient amplitude of Gmax = 40 mT/m,
a maximum slew rate of Smax = 200 T/m/s. A symmetric segment was obtained by
joining two opposing center-out spiral interleaves (Law and Glover, 2009) in order for
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FIGURE 3.11: Zeroth-order field coefficient (a) and second-order field co-
efficients (b).

the echo time to be half of the readout time. The total duration of one interleaf was set
to 30.72 ms by tuning the parameters controlling the linear variable-density trajectory.
(Fig. 3.12b) displays the variable-density spiral sampling composed of 16 interleaves of
3072 samples used to produce the brain image in (Fig. 3.14c), corresponding to a 16-fold
acceleration for an image size of 256× 256.

Design of radial trajectories

Radial trajectories were designed using a trapezoid gradient waveform, with a ramp
time of 0.1 ms until reaching a plateau amplitude of 0.98 mT/m and 1.96 mT/m for
images sizes of n = 256× 256 and n = 512× 512, respectively, such that the readout time
was 30.72 ms. Radial spokes crossed the origin of the k-space at their middle time point
and were designed to reach the corners of the k-space. (Fig. 3.12c) displays the radial
sampling composed of 16 spokes of 3072 samples each, which were used to produce the
brain image in (Fig. 3.14d), corresponding to a 16-fold acceleration for an image size of
256× 256.

Acquisitions

All acquisitions were performed on a 7-Tesla MR scanner (Siemens Healthineers, Er-
langen, Germany) with a 1Tx/32Rx head coil (Nova Medical, Wilmington, MA, USA).
The maximum gradient amplitude and slew rate for this system were 50 mT/m and 333
T/m/s, respectively. For the T∗2 -weighted acquisitions, a 2D GRE sequence was modi-
fied to allow execution of arbitrary gradient waveforms complying with the hardware
constraints. All non-Cartesian trajectories were acquired using this sequence and the
same parameters. The repetition time, echo time and observation time were 550 ms, 30
ms and 30.72 ms, respectively. The FOV was 20 cm, and the flip angle was 25 degrees.
Two resolutions were investigated: 390 µm × 390 µm × 3 mm and 780 µm × 780 µm
× 1.5 mm, corresponding to matrix sizes of 512× 512 and 256× 256, respectively. Stan-
dard shimming was performed on the studied slice for ex vivo acquisitions and on the
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b ca

FIGURE 3.12: Sampling trajectories used for (Fig. 3.14). The SPARKLING
(a), variable-density spiral (b) and radial (c) trajectories used for ex vivo
comparisons in (Fig. 3.14). The considered imaging matrix was 256× 256,
corresponding to a resolution of 780 µm × 780 µm. Each trajectory is com-
posed of 16 symmetric segments of 3072 samples (an individual shot is
highlighted in yellow), resulting in an acceleration factor of AF = 16 and
a subsampling factor of R = 1.33. An individual segment is highlighted

in yellow.

whole brain volume for in vivo experiments. The sampling bandwidth was equal to the
gradient bandwidth: rBW = BWgradient = 100 kHz.

For the 8-fold accelerated Cartesian acquisition using online GRAPPA reconstruction
(Fig. 3.13d-h), the same GRE sequence was used with Integrated Parallel Acceleration
Technology. This sequence acquires 24 reference lines for auto-calibration. Sequence
parameters were the same as above and the default oversampling factor of 2 was used
for a base resolution of 256.

Ex vivo experiments. The human brain used for this study was obtained via the body
donation program of University of Tours, France from a donor who gave his written con-
sent before death. The brain was extracted and fixed in formalin (formaldehyde solution
at 37 % m/m, Cooper, Melun, France) diluted in tap water to obtain a formalin concen-
tration of 10 %). The ex vivo phantom was then immersed in a proton-free perfluorinated
liquid before the acquisitions.

In vivo experiments. The in vivo human experiments were approved by a national
ethics committee (CPP IDF 7 Kremlin-Bicêtre) under the protocol registration number
07-042. All volunteers signed a written informed consent form.

Self-calibrating nonlinear reconstruction

2D MR image reconstructions were performed by iteratively minimizing a sparsity pro-
moting regularized Compressed Sensing SENsitivity Encoding (CS-SENSE) criterion in-
troduced in (Wu et al., 2008; Liu et al., 2008; Boyer et al., 2012). We adopted a synthesis
formulation composed of one `2-norm data consistency term and one `1-norm penalty



3.5. SPARKLING prospective acquisitions for T2* 2D imaging 73

term, which reads as follows:

ẑ = arg min
z∈CN×N

1
2

L

∑
`=1
‖FΩS`Ψz− y`‖2

2 + λ ‖z‖1. (3.13)

This function estimates the image decomposition (ẑ) in a sparsifying domain before pro-
jecting the values back to the image domain, i.e., x̂ = Ψẑ with x̂ ∈ CN×N , where Ψ

was chosen as an orthogonal wavelet transform using the Symmlet of order 8 as the
mother wavelet basis function Ψ(t). We used J = 4 levels of decompositions, i.e., 12
sub-bands of detail coefficients for encoding horizontal, vertical and diagonal details
on top of the low-frequency approximation. The sum of squares term in (3.13) encodes
parallel reception over the L = 32 channels of our phased array coil. yl ∈ Cm rep-
resents the measured Fourier values of the `th coil. To handle non-Cartesian Fourier
samples, the non-equispaced fast Fourier transform (NFFT, version 3.2.3) (Keiner et al.,
2009b) was therefore used to compute FΩ. The NFFT takes non-uniformly sampled k-
space measurements as input data and returns an image on the Cartesian grid. Matrix
S` ∈ Cn×n (n = N × N) in (3.13) is diagonal and represents the sensitivity map associ-
ated with the `th coil that enhances the specific spatial domain of the desired image x̂.
To estimate the sensitivity maps {S`}`=1:L, we extended a self-calibrated method used
in SAKE (Shin et al., 2014) or IRGN (Uecker et al., 2008) to the non-Cartesian setting, as
explained below. First, for each coil, a low-resolution N × N image was reconstructed
using the central surface representing 20 % of the collected k-space completed by zero-
filling: xLR

` = F?
[Ω|20%,0]y`, where LR stands for low resolution and F∗ defines the adjoint

operator of the NFFT. Second, the square root of the sum of squares (SSOS) was com-

puted: w =
√

∑L
`=1 ‖xLR

` ‖2. Third, the sensitivity maps were given by the pixelwise ra-
tio of the low-resolution image coils and the SSOS: [s`]i = diag[S`]ii =

[
xLR
`

]
i/wi, ∀` =

1 : L, (i = 1 : n). Because of this SSOS operation, our method is less dependent on
the threshold (i.e., 20 %) over the central surface of the k-space than the method of (Yeh
et al., 2005), who directly exploits the xLR

` images as sensitivity map information. Once
the sensitivity maps were estimated, an accelerated proximal gradient method (Taylor et
al., 2017) was implemented to solve (3.13). The regularization parameter λ controls the
trade-off between data consistency and confidence in the sparsity prior, and this param-
eter was tuned manually over a discrete grid of values within the interval [10−7; 10−4]. In
practice, we conducted image reconstructions for each value over this grid and retained
the setting with the highest visual quality.

3.5.2 Prospective ex vivo and in vivo results

The proposed method was prospectively validated on a 7-Tesla MR scanner with a mod-
ified gradient echo (GRE) sequence, allowing to execute any feasible gradient wave-
form. All acquisitions were prospectively performed with this sequence. For both ex
vivo and in vivo acquisitions, a 32-channel receiver coil was used. The first set of ex-
periments involved an ex vivo human brain, which allowed assessing the performance
of the proposed strategy independently from motion and physiological considerations.
Second, acquisitions were also performed in vivo on four healthy volunteers to validate
the clinical potential of the approach. Following typical high-field sequence specifica-
tions (Mainero et al., 2009), we considered a T∗2 contrast with an echo time of 30 ms and
a readout of 30.72 ms for both in vivo and ex vivo experiments. The long repetition time
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(550 ms) allows to acquire 11 interleaved slices per excitation, but in what follows, re-
constructions are only displayed for one slice. To assess the performance of our method,
we compared it with the two most widespread non-Cartesian trajectories in MRI: ra-
dial and variable-density spiral trajectories (Materials and Methods, Fig. 3.12). The col-
lected mutli-channel non-Cartesian data were reconstructed using a `1-based nonlinear
reconstruction algorithm suggested in compressed sensing, which does not account for
distortions (Smith and Nayak, 2010; Jezzard, Clare, et al., 1999).

Ex vivo experiments

a b c d

e f g h

SPARKLING
Nonlinear reconstruction

REFERENCE SPARKLING
gridding

iPAT 8

FIGURE 3.13: Prospective validation of SPARKLING trajectories. Ac-
quisitions performed on a ex vivo human brain for uniform-density
SPARKLING sampling (Fig. 3.3a output) at a resolution of 780 µm ×
780 µm × 1.5 mm and an acceleration factor of AF = 8 without sub-
sampling (R = 0.66). a, A fully sampled Cartesian reference lasting
2 min 20 s for 11 slices. b,f, Image reconstructed using nonlinear methods
from SPARKLING acquisition lasting 16 s. c, Image reconstructed from
the same SPARKLING acquisition using a gridding method. d, Image ac-
quired with the input Cartesian trajectory of (Fig. 3.3a) and reconstructed
with a GRAPPA method available on a Siemens scanner (integrated paral-
lel acceleration technology with a factor of 8), whose acquisition time was
16 s. e,f,g,h, Magnified region of interest in the medial part of the parieto-
occipital cortex (delimited by a yellow square in a) of images a,b,c, and
d, respectively. Image reconstructions did not include any correction of

system imperfections.

Prospective results of the SPARKLING strategy initialized with Cartesian lines for a
T∗2 -weighted contrast are displayed in (Fig. 3.13) in the case of the uniform-density out-
put shown in (Fig. 3.3a). The acquisition performed with the SPARKLING trajectories
thus lasted 16 s, which is 8 times shorter than the fully sampled Cartesian acquisition
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with an acquisition duration of 2 min 20 s for 11 slices. SPARKLING images recon-
structed with nonlinear compressed sensing reconstructions are displayed in (Fig. 3.13b-
f). We also show in (Fig. 3.13c-g) the results of a simple gridding method to reconstruct
the SPARKLING data. Both reconstructions show very little difference from the fully
sampled Cartesian reference (Fig. 3.13a-e), although the gridding reconstruction may be
slightly noisier (Fig. 3.13g) than the nonlinear reconstruction (Fig. 3.13f). The data cor-
responding to the input trajectory of 32 Cartesian lines (oversampled by a factor of 2) in
(Fig. 3.3a) can be typically processed online with a GRAPPA reconstruction (Griswold
et al., 2002) available on the MR scanner to produce the image in (Fig. 3.13d-h). The
degradation of the image quality, along with a significant decrease in the SNR, is clearly
observed (Fig. 3.13h).

The radially initialized SPARKLING strategy similar to that in (Fig. 3.3b) was also
compared to widely used radial and variable-density spiral trajectories for an in-plane
resolution of 780 µm and a slice thickness of 1.5 mm (Fig. 3.14). All three acquisitions
lasted 8.8 s and involved 16 segments, corresponding to a 16-fold acceleration relative
to the fully sampled Cartesian reference with an acquisition duration of 2 min 20 s for
11 slices. The subsampling factor was in that case R = 1.33, as the long readout du-
ration of 30.72 ms allowed the measurement of many samples per shot (3072 samples

a b c d

e f g h

SPARKLINGREFERENCE SPIRAL RADIAL

FIGURE 3.14: Comparison of SPARKLING sampling with variable-
density spiral and radial trajectories. Ex vivo acquisition presenting a res-
olution of 780 µm × 780 µm × 1.5 mm, an acceleration factor of AF = 16
and a subsampling factor of R = 1.33. a, T∗2 -weighted reference image
and a magnified region of interest in the parieto-occipital cortex in e ac-
quired with a fully sampled Cartesian acquisition lasting 2 min 20 s for 11
slices. b,f, Image reconstructed from a 16-fold-accelerated SPARKLING-
generated acquisition lasting 8.8 s. c,g, Image reconstructed from a 16-
fold-accelerated variable-density spiral acquisition lasting 8.8 s. d,h, Im-
age reconstructed from a 16-fold accelerated radial acquisition lasting
8.8 s. Image reconstructions did not include any correction of system im-
perfections. Image reconstructions did not include any correction of sys-

tem imperfections.
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FIGURE 3.15: Robustness of radial-initialized SPARKLING to very high
acceleration factors. Acquisitions performed on an ex vivo human brain
for an image resolution of 390 µm × 390 µm × 3 mm and with acceler-
ation factors ranging from AF = 10 to AF = 20. a,b, T∗2 -weighted ref-
erence image acquired with a fully sampled Cartesian acquisition lasting
4 min 42 s for 11 slices and a magnified region of interest in the parieto-
occipital junction (delimited by the yellow box). Image reconstructed from
10-fold accelerated acquisitions (28 s) and magnified region of interest are
respectively displayed in c,d for SPARKLING sampling, g,h for variable-
density spiral sampling and k,l for radial sampling. Magnified images
reconstructed from 15-fold accelerated acquisitions (18 s) are displayed in
e for SPARKLING sampling, i for spiral sampling and m for radial sam-
pling. Magnified images reconstructed from 20-fold accelerated acquisi-
tions (14 s) are displayed in f for SPARKLING sampling, j for spiral sam-
pling and n for radial sampling. Image reconstructions did not include

any correction of system imperfections.
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per shot). Using the same nonlinear reconstruction pipeline, the resulting images (top
row) and corresponding magnified images of a region of interest in the medial parieto-
occipital cortex (bottom row) are shown in (Fig. 3.14b-f) for the SPARKLING trajectory,
(Fig. 3.14c-g) for the variable-density spiral trajectory and (Fig. 3.14d-h) for the radial
trajectory. While the SPARKLING reconstruction remains similar to the fully sampled
Cartesian reference (Fig. 3.14a-e), the high acceleration factor severely impairs the results
of the variable-density spiral and radial reconstructions. The accelerated radial trajectory
generates a blurry image, illustrating the inefficiency of oversampling radial spokes. The
more efficient variable-density spiral trajectory produces a higher-quality image; how-
ever the image contains notable off-resonance artifacts along the cortical surface of the
brain (Fig. 3.14c) as well as in finer structures visible in the magnified image (Fig. 3.14g).

Acquisitions were also performed with a higher in-plane resolution of 390 µm and
three acceleration factors AF = 10, 15, 20. The SPARKLING trajectories were initialized
with radial patterns; the 15-fold accelerated SPARKLING trajectory corresponds to the
output of (Fig. 3.3b). The resulting SPARKLING images and corresponding magnified
images are displayed in (Fig. 3.15c-d) for AF=10, (Fig. 3.15e) for AF=15 and (Fig. 3.15f)
for AF = 20. When focusing on fine brain structures in the medial parieto-occipital cor-
tex, the stability of image quality using SPARKLING trajectories with increasing accel-
eration factors is observed. In addition, the images produced with the SPARKLING
sequence, despite their very short acquisition times, e.g. 14 s for the highest accelera-
tion factor (Fig. 3.15f), maintain high similarity to the fully sampled Cartesian reference,
which was obtained with an acquisition time of 4 min 42 s for 11 slices (Fig. 3.15a-b).
Likewise, variable-density spiral and radial acquisitions with increasing acceleration fac-
tors are displayed in (Fig. 3.15g-h,i,j) and (Fig. 3.15k-l,m,n), respectively. In contrast to
the SPARKLING reconstructions, the spiral acquisition yielded substantially more dis-
tortions due to off-resonance effects and the undersampled radial patterns produced an
overly smoothed image presenting streaking artifacts at AF=20.

In vivo experiments

T∗2 -weighted acquisitions were also performed in vivo on four healthy volunteers at an
image resolution of 390 µm × 390 µm × 3 mm. Consistent with the ex vivo results,
the in vivo results showed that the proposed SPARKLING strategy outperformed the
conventional variable-density spiral and radial trajectories in all cases. The results from
one subject are presented in (Fig. 3.16) for the highest studied acceleration factor, AF =
20. (Fig. 3.16b) shows the image reconstructed from the SPARKLING acquisition lasting
14 s, and this image is nearly indistinguishable from the reference (Fig. 3.16a), which was
obtained in an acquisition time of 4 min 42 s for 11 slices. However, the spiral acquisition
at the same acceleration factor (Fig. 3.16c,g) has notably more off-resonance artifacts, and
the 20-fold-accelerated radial reconstruction (Fig. 3.16d,h) appears blurry and presents
streaking artifacts.

3.6 Short-readout SPARKLING for T1-weighting

Finally, T1-weighted SPARKLING acquisitions with a shorter readout time were ob-
tained on our 7-Tesla scanner at an image resolution of 780 µm × 780 µm × 3 mm.
The acquired trajectory was generated from a Cartesian initialization and a 1D-variable
density to obtain the appropriate T1 contrast (Deichmann et al., 2000). The readout time
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FIGURE 3.16: In vivo validation of radial-initialized SPARKLING tra-
jectories at an acceleration factor of 20 and comparison with spiral and
radial sampling. T∗2 -weighted GRE acquisition on a 7-Tesla scanner at
an image resolution of 390 µm × 390 µm × 3 mm. a,e, Fully sampled
Cartesian reference with an acquisition time of 4 min 42 s for 11 slices
and a magnified region of interest in the parieto-occipital cortex (yel-
low box). b,f, Image and magnified image reconstructed from a 20-fold-
accelerated variable-density SPARKLING acquisition lasting 14 s for 11
slices. c,g, Image and magnified image reconstructed from a 20-fold ac-
celerated variable-density spiral acquisition lasting 14 s. d,h, Image and
magnified image reconstructed from a 20-fold accelerated radial acquisi-
tion lasting 14 s. Image reconstructions did not include any correction of

system imperfections.
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was set to 5.12 ms, corresponding to 512 gradient samples and 1024 ADC samples were
measured along each shot. (Fig. 3.17a) displays the resulting 128 shots of 1024 samples,
each of which lasted 5.12 ms, corresponding to an acceleration factor of AF = 2. A 2D
MP-RAGE sequence was used with an inversion time of TI=2000 ms, a flip angle of 9◦,
an echo-spacing of 9.4 ms and a repetition time of 10 s (Deichmann et al., 2000). With
these sequence and trajectory, a T1-weighted image was acquired as displayed in (Fig.
3.17b).

ba

FIGURE 3.17: T1-weighted in vivo SPARKLING acquisitions. Experi-
ments performed on a 7-Tesla scanner at an image resolution of 780 µm
× 780 µm × 3 mm. a, The SPARKLING trajectory used for the acquisi-
tions, composed of 128 shots of 1024 samples with a readout time of 5.12
ms each, and generated for a 1D-variable density and a Cartesian initial-

ization. b, Image reconstructed from the SPARKLING trajectory in a.

3.7 Discussion and Conclusion

In this work, we demonstrated that gradient performance allows the successful use of
more complex and efficient variable-density sampling patterns which are optimal for
compressed sensing (Lustig et al., 2008b). Using the non-Cartesian SPARKLING frame-
work, it is hence possible to generate optimized sampling trajectories fulfilling the afore-
mentioned key criteria of truly controlled sampling density, locally uniform coverage
and controlled k-space path between consecutive samples. Given any MR protocol char-
acterized by its echo time (TE) and readout duration (Tobs), the presented optimization-
driven method is thus able to enhance MR sampling performance and reduce the number
of shots in segmented acquisitions.

In this study, prospective accelerated acquisitions using SPARKLING trajectories were
performed on a 7-Tesla scanner. The quality of these images was maintained at high in-
plane resolutions of 390 µm and 780 µm both ex vivo and in vivo. The stability of this
method was established even for very high acceleration factors of up to 20, at which fine
structural details of T∗2 -weighted images were adequately preserved. The versatility of
the SPARKLING approach in terms of initialization and density inputs was corroborated
in practice with the implementation of both uniform and variable-density sampling ini-
tialized either with Cartesian lines or radial spokes.

Moreover, our sampling strategy was 5 to 7 times faster than the standard accelera-
tion techniques available on the scanner (IPAT) to achieve acceptable image quality for
T∗2 weighting. Compared with conventional non-Cartesian spiral and radial 2D trajecto-
ries, the SPARKLING sampling yielded perceptually higher image quality. The similar
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results of ex vivo and in vivo imaging prove that motion was not a discriminating ele-
ment in these cases. Despite the long readout duration for the T∗2 -weighted acquisition
(30.72 ms), our method seemed to be relatively less sensitive to system imperfections
such as magnetic field inhomogeneity or trajectory errors, while spiral acquisitions pre-
sented important artifacts, as often reported in the literature (Yudilevich and Stark, 1987;
Mason et al., 1997; Börnert et al., 1999; Tan and Meyer, 2009). In spite of its sinuous ap-
pearance, SPARKLING patterns did not seem to suffer much from trajectory distortions
which usually lead to severe image artifacts especially in non-Cartesian scanning. As
we saw previously, this relative robustness may be explained by considering a simple
linear and time-invariant model of the gradient system. Using a simple low-pass filter
to model the GIRF self-terms (Vannesjo et al., 2013), we observed that trajectory errors
were more important in the studied spiral patterns that in the SPARKLING curves.

There may be two obstacles to the enhanced performance of the proposed strategy
for 2D imaging. First, the modest SNR associated with 2D acquisitions may reduce the
effectiveness of our method, as for any other subsampled trajectory. Although our exper-
iments benefited from relatively good SNR conditions owing to a strong magnetic field
and the use of a multiple receiver coil, SNR limitations appeared beyond the highest
presented in-plane resolution of 390 µm. The second potential limitation is the hard-
ware capacity, namely, the maximum gradient amplitude, the maximum slew rate and
the gradient and readout bandwidths, which together control the flexibility and thus, the
efficiency of the k-space trajectory. In particular, the gradient raster time plays a critical
role and should be as short as possible. Assuming a readout bandwidth larger or equal
to the gradient bandwidth, the following practical rule for best SPARKLING use should
be observed: the ratio of the number of gradient steps per shot to the image size should
be as high as possible. As regards high resolution, long-readout scenarios will maximize
this ratio and thus optimize SPARKLING performance, while short-readout acquisitions
allow for less departure from simple geometric trajectories. When considering lower
resolutions however, our method remains applicable and promising. Moreover, in view
of the considerable efforts that are currently being invested to push the limits of gra-
dient systems (Weiger et al., 2018), it is reasonable to expect further improvement of
SPARKLING performance.

The SNR limitation should be considerably mitigated by the use of 3D SPARKLING
acquisitions, which benefit from improved SNR conditions. Although our demonstra-
tion focused on 2D sampling as a proof of concept, the presented method can be extended
to 3D imaging, for which further gains in terms of acceleration factors are anticipated.
Additional improvements may be achieved by incorporating corrections for field inho-
mogeneities and trajectory deviations into the reconstruction algorithms (Sutton et al.,
2003); these possibilities have yet to be investigated. Most interestingly, in contrast to
radial or spiral sampling methods, our technique is able to handle any arbitrary den-
sity and therefore permits implementation of anisotropic trajectories, which may lead to
improved image reconstructions (Kutyniok and Lim, 2015; Baldassarre et al., 2016).

Our findings may be of value in numerous MRI applications including T∗2 (Frischer
et al., 2012; De Guio et al., 2014), proton-density (Kasper et al., 2017), susceptibility-
weighted imaging (SWI) (Haacke et al., 2004) and also reconsquantitative susceptibility
mapping (Langkammer et al., 2015), as our method paves the way to increases in spa-
tial and temporal resolution under conditions compatible with clinical time constraints.
Our approach also allows to design optimized multi-echo acquisitions, which may be of
interest for T∗2 -mapping (Bittersohl et al., 2009; Denk and Rauscher, 2010). By properly
adjusting the initialization and target density of the proposed algorithm, any arbitrary
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sampling trajectory might be improved and potentially replaced. Given the advantage
of SPARKLING sampling over radial sampling, substituting radial trajectories for pat-
terns produced with our strategy would potentially enhance image quality or allow fur-
ther acceleration. Furthermore, since each segment can be constrained to pass through
the origin of the k-space at a given time, our SPARKLING trajectories possess valuable
properties such as robustness to motion and potential for self-navigation (e.g., respira-
tory self-navigation), while remaining efficient. Most interestingly, our method can be
readily used for lower magnetic field imaging available in the clinic just by adapting the
imaging protocol.
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Chapter 4

3D SPARKLING

4.1 Introduction

In the previous chapter, we saw that the SPARKLING strategy yielded significantly
higher image quality compared to standard geometrical patterns such as radial or spiral
trajectories, while allowing very high acceleration factors up to 20 for T2*-weighted in
vivo 2D high resolution imaging of the brain.

Most interestingly, the SPARKLING method can be readily extended to design opti-
mal 3D trajectories, thus allowing to perform 3D imaging which benefits from more fa-
vorable SNR conditions than 2D imaging. On the one hand, 3D imaging can be directly
achieved using stacks of 2D SPARKLING trajectories, in the same way as stack-of-stars
or stack-of-spirals. On the other hand, the SPARKLING algorithm may be extended to
3D and hence permit to produce fully 3D sampling patterns. Fully 3D trajectories have
the potential to respect a true 3D variable density presumably necessary for an optimal
use of compressed sensing in 3D. Additionally, they are not concerned with limitations in
the undersampling factor along the partition direction, which in practice rarely exceeds
4.

Introduced in Chapter 1, susceptibility-weighted imaging (SWI), which is usually
performed in 3D, may significantly benefit from the efficiency of the SPARKLING method,
since SWI allows the use of long TE (15-20 ms), TR (28-40 ms) and readouts (15 ms). In-
deed, in the previous Chapter 3, it was understood that the advantages of the SPARKLING
method are enhanced for longer readouts that allow a more important departure from
the initial support. Moreover, our method could be an interesting alternative to EPI
in this application. Indeed, as well explained in (Holdsworth et al., 2015), although
3D GRE-EPI trajectories are an attractive faster alternative to 3D GRE, they are prone
to off-resonance artifacts such as signal drop-out, image blurring, and geometric dis-
tortion even when coupled with parallel imaging. Interleaved (’multi-shot’) EPI (iEPI)
approaches can help reducing distortion artifacts (at the expense of scan time), however
(like standard GRE) even small head motion can cause phase errors that typically result
in ghosting artifacts and unreliable phase maps. Navigator-based phase correction can
help mitigate image ghosting; however, residual non-equidistant sampling in k-space
may require excessive oversampling or averaging (Atkinson et al., 2000). In the litera-
ture of SWI at 7 Tesla, imaging protocols targeted either a very high in plane resolution
(0.2-0.4 mm) with thicker slices ( 1.5 mm) (Moenninghoff et al., 2010a; Moenninghoff et
al., 2015; Theysohn et al., 2011) or high isotropic resolution (0.6-0.8 mm) (Abosch et al.,
2010; Schmidt et al., 2017; Moenninghoff et al., 2015). In this chapter, we will therefore
focus on such applications and resolutions for 3D imaging.
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Here, we will introduce and assess different sampling designs of the 3D SPARKLING
approach: stacks and fully 3D trajectories. Imaging and sampling parameters were se-
lected with the objective to perform SWI at 7 Tesla. The study was mostly performed ex
vivo on a baboon brain. Preliminary in vivo results are shown as well.

4.2 Materials and Methods

4.2.1 Stack-of-SPARKLING

Having designed and implemented 2D SPARKLING trajectories, the most straightfor-
ward way to perform 3D imaging is to stack these 2D trajectories along the partition
direction denoted here as z.

Regular stack-of-SPARKLING

Fig. 4.1a shows a stack of 10 identical SPARKLING trajectories, which will be referred to
as regular stack-of-SPARKLING or regular SOS. To respect the Nyquist criterion along the
partition direction, the Nz stacks should be spaced by a FOV−1

z -distance until reaching
the desired maximum spatial frequency.

(a) Regular SOS (b) z-variable-density SOS

FIGURE 4.1: Stack of 10 identical SPARKLING trajectories filling a cylin-
der (left) and stack of 11 variable SPARKLING trajectories filling a 3D ball

(right). (Colors are just for visualization purposes)

Z-variable-density stack-of-SPARKLING

More interestingly, to obtain a fully 3D variable density, the target density may be changed
according to the plane’s altitude kz. Given a 3D density π ∈ RN×N×Nz , a trajectory at
altitude kz will be generated with the density π2D(kz) = p(:,:,kz)∫

p(:,:,kz)
. In addition, once the

number of shots in the central stack n(0) is chosen, the mass of each plane can be adapted
to the plane density by reducing the number of shots per altitude, as kz increases:

n(kz) = n(0)
∫

π(:, :, kz)∫
π(:, :, 0)

, (4.1)

where n(kz) is the number of shots in the plane of altitude kz. Fig. 4.1b shows such a
stack for an isotropic density (defined on a 3D ball) for 10 SPARKLING trajectories. This
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design will be referred to as z-variable-density stack-of-SPARKLING or z-vd SOS. Further
acceleration may be reached by subsampling the number of planes and using parallel
imaging along this direction.

4.2.2 Fully 3D SPARKLING

The SPARKLING method was adapted to 3D imaging, with the objective to generate
admissible non-Cartesian segmented trajectories filling a ball of radius kmax, where kmax
is the maximum radial extent in 3D k-space.

Computation time and memory load

As explained in Chapter 3, the SPARKLING algorithm’s bottleneck lies in the repulsive
term Fr between the samples in Eq. (3.5), where there is a summation over all the sam-
ples. In 3D, this summation is calculated directly in C++ via a mex file, which gives a
complexity of O(m2), where m is the number of samples. This method to calculate the
summation was chosen for time concerns, since developing the NFFT-based fast sum-
mation in 3D is a considerable work (probably requiring a few months of development).
For 3D sampling, the total number of samples is of the order of 10 million. On a stan-
dard computer, it takes about 10 minutes to generate one single shot of 3000 samples,
for a matrix size of 256, on one core. Hence, to generate 1000 such shots together, the
computation time should be multiplied by 10002, which corresponds to about 26 years.
Using multiple cores, the computation time could admittedly be reduced, but probably
not to a reasonable time... Hence, in our design, each shot of the segmented trajectory
was generated independently from the others.

Regarding memory load, there also exist constraints that limit the parallelization of
the 3D algorithm over the number of shots, when using large 3D matrices. In practice,
on a standard (good) PC with 128 Go RAM, this parallelization was typically limited to
7 shots of 3000 samples for N = 256 in parallel.

Using a regular sphere tessellation to accelerate the process

Since each shot must be generated separately, the target density was truncated into ns
volumetric sectors filling the considered k-space, where ns is the desired total number of
shots. To further accelerate the process, we sought to reduce the number of SPARKLING-
processed shots by taking advantage of a semi-regular partition of the sphere. We used
an equal-area tessellation which divides the sphere into regions of equal area (Leopardi,
2006), as is displayed in (Fig. 4.2a) for ns = 100. The property of equal area is important
insofar as it ensures that all 3D sectors have equal mass in the case of a radial den-
sity. Furthermore, for a constant elevation angle (highlighted in blue on (Fig. 4.2a)), all
tiles are exactly identical and can be obtained from one another using a simple rotation.
Hence, only a small fraction of the desired total number of shots needs to be generated
(one per latitude), leading to a reduction in computation time by a factor 20 to 30. In
the case of center-out shots, a 3D sector is created by connecting the four summits of a
spherical tile to the origin of the k-space. If symmetric shots for which the echo time is
at the middle of the segment are desired, the latter sector constitutes one half of total
symmetric sector and the other half is obtained by rotating the latter about the origin,
as displayed in (Fig. 4.2b). To avoid discontinuity between the two halves, the sector
is slightly thickened near the origin. For example, with this strategy, only 7 symmetric
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a b

dc

FIGURE 4.2: 3D SPARKLING process. (a): Partition of the sphere into
100 regions of equal area. Regions along a constant elevation angle were
highlighted in blue: they are identical up to a rotation. (b): One 3D density
sector. N = 128, kmax = 320 m−1, 100 symmetric shots. 7 shots to generate

(6 + 1 conic cap).

a b

FIGURE 4.3: A 3D SPARKLING trajectory composed of 60 symmetrical
shots for a matrix size of 128 × 128 × 128, kmax = 320 m−1, Gmax =
40 mT/m and Smax = 200 T/m/s. The target density was a variable radi-

ally decaying density. An individual segment is highlighted in black.

shots need to be produced by the SPARKLING algorithm for ns = 100. (Fig. 4.2c) shows
one SPARKLING shot, corresponding to the sector in (Fig. 4.2b) with a radially decaying
density and for a matrix size of 128× 128× 128, kmax = 320 m−1, Gmax = 40 mT/m and
Smax = 200 T/m/s. This shot is then rotated to fill the regions of equal elevation angle,
as depicted in (Fig. 4.2d). For example, (Fig. 4.3a) displays a complete 3D SPARKLING
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trajectory using this method for a radially decaying density and a total of ns = 60 shots1.
An individual shot was highlighted in black. For comparison, (Fig. 4.3b) displays the
corresponding radial trajectory with 60 shots, showing the gain in k-space coverage of-
fered by the SPARKLING method, especially when looking at the individual spoke in
black.

4.2.3 Selection of the target density

In view of the long computation time required for 3D images, the target density was
retrospectively selected among a set of 6 radially decaying densities. We consider here
a radial isotropic density of the form ν : k 7→ 1

|k|d , which decays with a decay rate d
and is going to be truncated by the method introduced in the last chapter 3.3.3 based
on the threshold parameter τ and give the density π. Two parameters of the density
were varied here: the decay rate d ∈ {2, 3} and the plateau threshold τ ∈ {0.5, 0.75, 1}.
(Fig. 4.4) shows the 6 tested densities for N = 320. To rank the different densities, evenly
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d=2, τ=0.75
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FIGURE 4.4: The 6 tested densities for N = 320.

spaced samples were drawn along each density by using Lloyd’s algorithm, also known
as Voronoi iteration (Lloyd, 1982). Lloyd’s method allows to quickly produce a distribu-
tion of points with blue noise characteristics, i.e. to produce a locally uniform coverage
(criterion (ii) of the previous Chapter). The initial positions of the m samples were de-
termined with an i.i.d. drawing along the considered density. Then, LLoyd’s algorithm
was applied as follows:

• The Voronoi diagram of the m samples is computed.

• The centroid of each cell of the Voronoi diagram is computed.

• Each sample is then moved to the centroid of its Voronoi cell.

This process was repeated 10 times. (Fig. 4.5) illustrates the output of the algorithm
for m = 1000 samples in 2D and 3D. Lloyd’s algorithm allowed to spread the samples:

1Trajectories with only 60 shots are displayed here for better visualization.



88 Chapter 4. 3D SPARKLING

the clusters that were present in the initial iid sampling were disrupted and void region
were filled. It can be noted that the process is not perfect (even after more iterations) as
some bunches of clusters are still visible.

(a) 2D iid samples (b) 2D Lloyd samples (c) 3D iid samples (d) 3D Lloyd samples

FIGURE 4.5: Results of Lloyd’s algorithm performed on iid samples in 2D
and 3D.

Once the 3D samples are produced for m = 106 and all densities, the corresponding
retrospectively generated Fourier data of a 3D baboon brain image are reconstructed
using nonlinear 3D reconstructions2. The density which gives the best image quality
both visually and in terms of pSNR is selected and will be used as a 3D target density
for the SPARKLING trajectories. For instance, in the case of N = 320, we selected the
density with d = 3 and τ = 0.75.

4.2.4 Acquisitions

3D acquisitions were performed on a 7 Tesla MR scanner (Siemens Healthineers, Er-
langen, Germany) with a 1Tx/32Rx head coil (Nova Medical, Wilmington, MA, USA).
The maximum gradient amplitude and slew rate for this system were 40 mT/m and
200 T/m/s, respectively. A 3D Gradient Recalled Echo (GRE) sequence was used. The
imaging parameters are summarized in (Table 4.1).

TABLE 4.1: Parameters used for 3D GRE sequence.

Parameters Values

TR 40 ms
TE 20 ms
FA 15◦

Tobs 15.36 ms
BWr 200 kHz

4.2.5 Image reconstruction

Images were reconstructed using the Matlab algorithm presented in the previous Chap-
ter 3, which was extended to handle 3D matrices. The NFFT was replaced with the GPU
nufft to speed up the reconstruction time. Yet, the reconstruction time remained quite

2Although the optimal density might change as a function of the number of samples, we assumed here
that the hierarchy between the different density remains unchanged for the considered number of samples
which usually varied between 1 and 20 million.
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long, especially for treating 32ch-receiver coil data, reaching about 4 hours for N = 256
and 400 iterations, including the calculation of the Lipschitz constant (needed to calcu-
lated the step size), with a NVIDIA GPU card GM204GL Quadro M4000 (1664 cores,
global memory 8 GB). In practice, time was saved by avoiding the calculation of the
Lipschitz constant and using a "realistic" value.

4.3 Ex vivo results

4.3.1 Experimental setup

Prospective acquisitions were performed on an ex vivo baboon brain for different setups.
First, for an isotropic resolution of 0.6 mm, various 3D sampling strategies are compared:

• 3D SPARKLING sampling:

– regular stack-of-sparkling

– z-variable-density stack-of-sparkling

– fully 3D SPARKLING

• 3D Poisson disk strategy as introduced by Lustig et al (Vasanawala et al., 2010) re-
ferred to as PD-lines:
2D Poisson disk samples with a deterministic sampling of the k-space center were
produced with our algorithm by removing the constraints on speed and acceler-
ation. The size of the deterministically sampled region and the radially decaying
rate of the density outside this region were selected by doing a grid-search on ret-
rospectively subsampled reconstructions of a brain phantom image.

• 3D radial trajectories as presented in Chapter 1 (Larson et al., 2008) (Fig. 1.8).

• Cartesian iPAT with GRAPPA reconstruction available on the scanner (Siemens
product sequence):

– iPAT 4x1 (24 reference lines)

– iPAT 2 (24 references lines) with Partial Fourier 6/8 (phase and encode)

– iPAT 8x1 (32 reference lines)

Since the previous chapter on 2D imaging already compared the performance of 2D
SPARKLING against radial and variable-density spiral trajectories, we did not inves-
tigate here the stack-of-stars nor the stack-of-spirals. We expect the relative performance
of 2D sampling patterns to remain the same when they are stacked into 3D trajectories.

Finally, a very high resolution of 0.3 mm in the axial plane with a slice thickness of
1.5 mm was performed, similar to the protocols presented in the literature (Abosch et al.,
2010; Schmidt et al., 2017; Moenninghoff et al., 2015). (Table 4.2) summarizes the studied
protocols and the different acceleration setups. The acceleration factor is calculated as a
function of the fully-sampled Cartesian scan; it is the ratio of the number of lines in the
reference scan over the number of shots in the accelerated scan.
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TABLE 4.2: Parameters used for trajectory design.

FOV (mm3) Matrix size Resolution (mm) Number
of shots ns

Total scan
time (TA)

Acceleration factor
AF = N×Nz

ns

200× 200× 140 320× 320× 224 0.6× 0.6× 0.6 4010 2 min 40 s 18
2050 1 min 22 s 35
1040 45 s 69

200× 200× 140 640× 640× 96 0.3× 0.3× 1.5 4085 2 min 43 s 15
2090 1 min 24 s 30

4.3.2 Results at 0.6 mm isotropic resolution

Different SPARKLING strategies

First, different 3D SPARKLING strategies were compared for an isotropic resolution of
0.6 mm. Regular stack-of-SPARKLING, z-variable stack-of-SPARKLING and fully 3D
SPARKLING trajectories were acquired for two different acquisition times: 2 min 40 s
and 1 min 22 s. A Cartesian iPAT 4 scan (TA = 14 min 31 s) was also performed and will
be considered as the reference image quality. Results in transversal, coronal and sagittal
planes are displayed in (Fig. 4.6) for a SPARKLING acquisition time of 2 min 40 s. Each
column corresponds to a different sampling method.

For both acceleration factors of 18 and 35, the image quality is well preserved espe-
cially in the tree cerebellum visible in the sagittal plane. It can be noticed that the fully
3D SPARKLING results are slightly below the SOS image quality, as they appear more
blurry. Regular and z-variable SOS yield similar image quality as is corroborated by the
SSIM scores measured on an axial slice taking the iPAT 4 image as a reference. A similar
trend was observed for the shorter acquisition of 1 min 22 s (data not shown).

Comparison with existing sampling trajectories

3D SPARKLING trajectories were also compared to 3D radial and Poisson disk sampling
strategies for a very acceleration factor of 69, corresponding to an acquisition time of
45 s. Here, a z-variable-density stack-of-SPARKLING was used for SPARKLING acqui-
sitions since it yielded better image quality among the previously tested 3D SPARKLING
strategies and has the advantage of supporting high acceleration factor while still well
covering the low frequencies very well. Indeed, at this acceleration factor (1140 shots), a
regular SOS would only have 5 shots per plane while the z-variable-density SOS presents
twice as more shots in the center of the k-space. Moreover, standard GRAPPA-accelerated
Cartesian scans were also performed for an iPAT of 4 and an iPAT of 8, lasting respec-
tively 14 min 31 s and 10 min 02 s. Results are displayed in (Fig. 4.7) for coronal, sagittal,
axial planes and a magnified central region of the axial image. Each column displays a
different strategy.

Of all 69-fold accelerated scans, the SPARKLING method presents the best image
quality. For instance, the tree cerebellum in the sagittal slice and the magnified region of
the axial slice both appear significantly more blurry in 3D radial than in SPARKLING.
Regarding the Poisson disk lines strategy, it is clearly not competitive in this setup as the
high acceleration factor translates into a very high subsampling factor in plane as was
explained in the previous Chapter. These visual observations are corroborated by the
SSIM scores, calculated for a central axial slice with the iPAT 4 image taken as reference.
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(a) iPAT 4
TA = 14 min 31 s

-

(b) Regular SOS
TA = 2 min 40 s

SSIM=0.87

(c) z-variable SOS
TA = 2 min 40 s

SSIM=0.88

(d) Fully 3D Sparkling
TA = 2 min 40 s

SSIM=0.79

FIGURE 4.6: 0.6 mm isotropic ex vivo results comparing different
SPARKLING strategies. Column (a): iPAT 4. Column (b): regular stack-
of-sparkling (SOS). Column (c): z-variable stack-of-sparkling. Column (d):
fully 3D SPARKLING for a total number of shots of 4010, i.e., an acquisi-

tion time of 2 min 40 s. FOV was 200× 200× 140 mm3.

The SPARKLING image has 0.14 SSIM point more than the radial, and 0.28 SSIM point
more than the Poisson disk strategy.

Moreover, it is interesting to compare the iPAT 8 acquisition, although it is signif-
icantly longer than the SPARKLING scan (10 min vs. 45 s). As expected, it is quite
noisy especially in the central region (see magnified axial slice), but maintains a rather
high SSIM score of 0.93. Visually, one may find it more comfortable to work with the
SPARKLING image which does not contain so much noise that starts to corrupt the small
speckles present in the axial slice of the iPAT 8 image (see magnified region). Let us note
that this iPAT 8 acquisition is the maximum in plane acceleration factor achievable using
parallel imaging and lasts 10 min. It would be possible to get down to an acquisition
time of 45 s by adding a parallel acceleration of 8 along the partition direction and some
Partial Fourier 6/8 (phase + slice), but this would surely lead to a very poor image qual-
ity.
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FIGURE 4.7: 0.6 mm isotropic ex vivo results comparing z-variable stack-
of-sparkling, 3D radial and 3D Poisson disk lines (PD-lines) sampling for
a total number of shots of 1140, i.e., an acquisition time of 45 s. FOV was

200× 200× 140 mm3.
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4.3.3 Very high in plane resolution

Finally, images were acquired at a very high in plane resolution of 0.3 mm with a slice
thickness of 1.5 mm. A standard iPAT 2 PF 6/8 (phase and slice) scan was acquired,
which is commonly used in the literature of GRE used for SWI at 7 Tesla (Abosch et al.,
2010), and is displayed in (Fig. 4.8a). SPARKLING-accelerated acquisitions were also
performed for an acquisition time of 2 min 43 s (Fig. 4.8b) and 1 min 24 s (Fig. 4.8c).
We can observe that the SPARKLING reconstructions yield very good image quality al-
though 4 and 10 times faster than the Cartesian scan.

(a) iPAT 2 PF 6/8
TA = 12 min 04 s

(b) SOS
TA = 2 min 43 s

(c) SOS
TA = 1 min 24 s

FIGURE 4.8: Ex vivo results of very high in plane resolution of 0.3 mm
and 1.5-mm slice thickness for 96 slices. The reference Cartesian scan
used iPAT 2 with partial Fourier 6/8 (phase and slice encode) and lasted
12 min 04 s. Regular stack-of-sparkling (SOS) was composed of 2090
shots and 4085 shots, corresponding to acquisition times of 1 min 24 s

and 2 min 43 s, respectively. FOV was 200× 200× 140 mm3.

4.4 In vivo results

4.4.1 Preliminary results at 7 Tesla

Preliminary in vivo results were acquired at 7 Tesla with a regular stack-of-sparkling with
7396 shots and a readout duration of 23 ms and 0.6 mm isotropic resolution. The total
acquisition time was 4 min 55 s. Unfortunately, the different setup previously shown for
the ex vivo study could not be tested yet in vivo due to time constraints. (Fig. 4.9) shows
the raw image for an axial slice (Fig. 4.9a), a minimum intensity projection (mIP) over 10
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slices (Fig. 4.9b) and a SWI-processed image with a phase mask multiplication of 2 and a
mIP over 10 slices (Fig. 4.9c). As expected, the mIP process enhances the contrast of the
vessels which is further accentuated in the SWI results. Here, the SWI-processing was
performed on the whole complex image directly, because it is the solution provided by
our reconstruction algorithm. Some off-resonance effects can be distinguished at the top
of the image, near the sinuses.

(a) Raw image (b) mIP (c) SWI + mIP

FIGURE 4.9: Axial slice of an in vivo 0.6 mm isotropic brain image. Total
acquisition time was TA = 4 min 55 s. (a) shows the raw image, (b) the min-
imum intensity projection (mIP) over 10 slices and (c), the SWI-processed

and mIP image.

4.5 Discussion and conclusions

4.5.1 About the different 3D SPARKLING approaches

Among the three studied approaches of 3D SPARKLING (i.e., regular SOS, z-variable-
density SOS and fully 3D SPARKLING), it was observed that the z-variable-density SOS
was the most promising. It allows to perform a variable density along the partition
direction, thus measuring low frequencies much more than the higher frequencies, in
contrast to the regular SOS. Hence, it allows to undersample the data even more.

Regarding the performance of the fully 3D SPARKLING which was significantly be-
hind the SOS strategies, one may propose several explanations. First, the constraint to
generate the shots separately introduces some structure in the sampling, which leads to
a degraded global distribution of the samples compared to 2D SPARKLING. To examine
this, it can be useful to look at all the samples of a 3D SPARKLING trajectory present in
a plane of thickness one k-space pixel. These plane sections are displayed in (Fig. 4.10)
for different axes and altitudes. Globally, asymmetric structures can be observed in these
planes sections, due to the rotation of one SPARKLING-generated shot to fill one latitude
of the k-space. In addition, the distribution of the samples is not as neat as it was for 2D
SPARKLING, in terms of locally uniformity for instance. Moreover, the center of the k-
space seems to be critical as well. Since the samples of different shots are not interacting,
the global distribution of the samples in the center is not perfect, with possible holes or
overloading. Hence, the fully 3D SPARKLING approach may probably be significantly
improved by generating simultaneously all the shots together. This would however re-
quire some development efforts and time to reduce significantly the computation time
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of the algorithm using fast summations for instance (Potts and Steidl, 2003; Keiner et al.,
2009a).

(a) (0;XY) plane (b) (0;YZ) plane (c) (0;XZ) plane

(d) ( Kmax
2 ;XY) plane - zoom (e) ( Kmax

2 ;YZ) plane - zoom (f) ( Kmax
2 ;XZ) plane - zoom

FIGURE 4.10: Plane sections of a fully 3D SPARKLING trajectory show-
ing all the samples contained in a plane of thickness one k-space
pixel (1/FOV). The plane sections are crossing the origin of the k-space or

half the maximum spatial frequency Kmax
2 for different directions (top).

4.5.2 About the global performance

Ex vivo results

We used the accelerated 3D SPARKLING trajectories to acquire images at a high isotropic
resolution of 0.6 mm for a FOV of 200× 200× 140 mm3. If the iPAT 4 acquisition is con-
sidered as a reference scan, the proposed method allowed to divide the acquisition time
by a factor of 20, reducing the scan time from 14 min 31 s to 45 s, while maintaining very
good image quality. Compared to the fully sampled Cartesian, this acceleration factor
would reach 80. For the studied imaging protocol, we also compared the SPARKLING
method to other 3D methods such as 3D radial and the Poisson-disk-lines (PD-lines)
proposed by Lustig et al., for the same acquisition time of 45 s. The proposed method
performed significantly better than these two techniques which both appear very blurry,
because of the inefficiency of their sampling lines which are too few at this accelera-
tion rate to produce correct images. Interestingly, this shows that in 3D, the PD-lines
method is not adapted to all imaging scenarios using compressed sensing: it may be in-
teresting for short readouts but for longer readouts applications such as SWI it is not as
efficient as the SPARKLING approach. Hence, for sufficiently long readouts that enable
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the SPARKLING trajectories to wiggle significantly, our method leads to better image
quality than PD-lines in the framework of compressed sensing.

For a very high in plane resolution of 0.3 mm, a slice thickness of 1.5 mm and a FOV
of 200× 200× 140 mm3, the SPARKLING method was also able to significantly reduce
the acquisition time. Compared to the standard sequence used in the context of high res-
olution SWI (iPAT 2 Partial Fourier 6/8) which lasted 12 min 04 s, the proposed method
yielded a very similar image quality in only 1 min 24 s. Perhaps, the acceleration could be
pushed even further and enable to reduce the acquisition time below one minute while
still presenting diagnostic image quality.

In vivo results

Unfortunately, the extensive ex vivo study could not be reproduced in vivo due to time
constraints. We however hope to gather these results for the PhD defense. One in vivo
experiment at an isotropic resolution of 0.6 mm with a regular stack-of-sparkling was
performed in vivo for an acquisition time of less than 5 minutes, while an iPAT 4 scan
would have lasted 14 min 31 s. These preliminary in vivo results showed the expected im-
age quality at this resolution although some off-resonance effects could be distinguished
near the sinuses. Regarding SWI, improvements could be expected by applying the SWI-
processing coil by coil, if all coil images are provided by the reconstruction method.
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Chapter 5

Correcting the side effects of ADC
filtering in MR image reconstruction

5.1 Motivation

We saw in Chapter 1, Section 1.2, how the receive chain detects and processes the re-
ceived MR signal. One important step of the ADC involves band-limiting and decima-
tion of the temporal digital signal to reduce its bandwidth while avoiding aliasing. How-
ever, this filtering may have deleterious consequences if the final bandwidth does not
permit to respect at least the spatial Nyquist criterion along one shot. This may occur in
the case of trajectories traversing the k-space at maximum speed or when the SNR does
not allow a very high sampling rate. In this situation, the MR sampling can no longer be
approximated by a simple discrete Fourier model. The true signal model should describe
the accumulation of Fourier information along the k-space path traversed between two
consecutive samples.

(Fig. 5.1) shows the detrimental consequences of the ADC filtering for a SPARKLING
trajectory which does not respect the Nyquist rate along individual shots. Here, the im-
ages were reconstructed using a gridding method and the imaged object was an ex vivo
human brain. A zoom of the central part of a SPARKLING sampling which was not con-
strained to respect criterion (iii) is displayed in (Fig. 5.1a). This non-Cartesian trajectory
is composed of 64 symmetric shots of 512 samples each, for an image size of 512× 512
and a field-of-view of 20 cm× 20 cm. (Fig. 5.1a) shows that the center of the k-space is
sampled at Nyquist rate (1 sample/pixel). Nevertheless, when examining an individual
segment and their samples (blue curve in Fig. 5.1a), we can notice that the distance be-
tween consecutive samples on a given segment is sometimes 6 times larger than the size
of a k-space pixel ∆k0 = 1/FOV (represented by the Cartesian grid). This large gap is re-
sponsible for creating severe artifacts in the reconstructed image displayed in (Fig. 5.1e).
Indeed, it is possible to oversample the SPARKLING sampling in (Fig. 5.1a) by a fac-
tor 6, which is represented in the zoom in (Fig. 5.1b). Consecutive k-space samples are
now approximately at a one-pixel distance from each other. Using this sampling, the
reconstructed image in (Fig. 5.1f) does not suffer from the previously observed artifacts.
By picking only 1 sample out of 6 from the latter 6-fold oversampled SPARKLING sam-
pling, as depicted in (Fig. 5.1c), the selected samples (red squares) therefore correspond
to the first SPARKLING sampling in (Fig. 5.1a). However in this case, the reconstructed
image (Fig. 5.1g) is still artifact-free as in (Fig. 5.1f). Although the samples’ coordinates
are the same in (Fig. 5.1c) and (Fig. 5.1a), they were allocated different data values: the
first measurements result from an averaging of the MR signal over a long portion of k-
space curve (sometimes long of several k-space pixels) while the second measurements
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were acquired on a shorter k-space path smaller than 1 pixel. To verify this assumption,
one can artificially recreate the filtered measurements corresponding to (Fig. 5.1a) by av-
eraging the 6-fold oversampled SPARKLING acquisition over groups of 6 samples. This
operation is represented in (Fig. 5.1d), where the averaged value over a group of 6 sam-
ples (in different colors) is allocated to the first sample in time (red squares). In this case,
the resulting image in (Fig. 5.1h) presents the same artifacts as in (Fig. 5.1e).

In this chapter, we will show how it is possible to recover the artifact-free image in
(Fig. 5.1f) from the averaged measurements of (Fig. 5.1a) just by considering the appro-
priate signal model and reconstruction.

a b c d

e f g h

FIGURE 5.1: Effect of samples localization in k-space (criterion (iii). a, A
15-pixel wide zoom on the central part of a SPARKLING sampling trajec-
tory which does not respect criterion (iii). It is composed of 64 symmetric
segments of 512 samples each, for an image size of 512× 512 and a field-
of-view (FOV) of 20 cm× 20 cm, with an individual segment highlighted
in blue and samples represented by bullets. b, Zoom corresponding to
the SPARKLING sampling in a oversampled by a factor of 6. c, Zoom of
the SPARKLING sampling in b where 1 sample out of 6 (red squares) is
kept for reconstruction. d, Zoom of the SPARKLING sampling in b where
data values are averaged by groups of 6 samples (represented in different
colors) and the resulting mean is assigned to the the first (in time) sample
of each group (red squares). e, f, g and h show the images reconstructed
from sampling a, b, c and d respectively. The size of a k-space pixel is

given by ∆k0 = 1/FOV.

5.2 Introduction

The standard acquisition model in MRI states that the continuous Fourier transform of
an image u : Ω → C is sampled on a set of discrete points in what is commonly called
the k-space. The space Ω ⊂ Rd is the field of view, with d = 2 or d = 3 denoting the space
dimension. The particularity of MRI is that these samples are measured along several
parametrized curves λ : [0, T] 7→ Rd, called k-space trajectories or shots. According to
this model, given a sampling period ∆t and letting û denote the Fourier transform of the
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image u, the measured samples are modeled as (Fessler, 2010):

yj = û(λ(j∆t)), (5.1)

where j ∈ N denotes the index of the measurement. Most commonly, these points lie
on a grid, which is filled by parallel Cartesian lines (Lauterbur, 1973), but non-Cartesian
sampling such as spiral trajectories (Meyer et al., 1992) may also be used for their greater
sampling efficiency and are becoming increasingly popular with the advent of com-
pressed sensing (Lustig et al., 2007a).

Nevertheless, the model expressed in Eq. (5.1) does not account for the analog-to-
digital converter (ADC), which converts the continuous signal f (t) = û(λ(t)) into dis-
crete values. The model that will be used to describe this effect is a linear time invariant
filter of the type:

yj = (h ? f )(j∆t), (5.2)

where ? denotes a convolution operator and h is a filter that depends on the ADC techno-
logy. The main point of this chapter is to show that neglecting the filtering effect in
model (5.2) can have a dramatic impact on the reconstruction quality and to propose
numerical algorithms to handle it. We will pay special attention to two typical situations:
a simple integrator ADC and more advanced band-limiting filters which are typically
used in modern MRI scanners.

• Integration effect. The earliest ADCs were simply integrating ADCs, meaning that
the ADC simply integrates the Fourier transform û over a the k-space path. This
model reads as yj =

∫ j∆t
(j−1)∆t û(λ(t)) dt and can be cast into Eq. (5.2) by choosing h =

1[0,∆t]. The interest of choosing a large sampling period ∆t is that the signal-to-noise
ratio (SNR) increases since more signal is averaged over time (Hoult, 1978), which
is a typical reasoning in MRI physics. We will see later that this improvement might
not compensate the downsides that come along with it.

• Band-limiting filtering. On most MR scanners, the ADC bandwidth is fixed and
much higher than the desired receiver bandwidth (Ansorge and Graves, 2016). The
ADC rate reaches several megahertz, while the receiver bandwidth usually ranges
from about 5 to 100 kHz (Graessner, 2013). To produce the measurements at the
desired sampling rate, band-limiting filtering is applied on the digitized data be-
fore decimation. This band-limiting step is introduced both to avoid aliasing of the
temporal signal f when subsampling it and to reduce the noise. A perfect band-
limiting filter takes the form h(t) = sinc(t/∆t)1.

To the best of our knowledge, the effects of ADC filtering on image reconstructions
have not yet been described or studied in the literature.

The higher complexity of the model may be a possible explanation for this omission,
since Eq. (5.2) no longer represents a Fourier transform, preventing a straightforward
application of standard tools such as the fast Fourier transform. Furthermore, this ef-
fect might go unnoticed when using standard Cartesian acquisitions which are usually
oversampled by a factor of 2 in the readout direction compared to the Nyquist rate. We
will see later that the classical model in that case is sufficient to reconstruct high quality
images. However, in situations where faster trajectories are used, as is the case of spiral

1The cardinal sinc function is defined on R by: sinc(x) = sin(x)
x
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sampling and/or when the use of oversampling is not possible due to low signal-to-
noise-ratio (SNR), significant artifacts may appear.

In section 5.3, we first show how the classical approximation in Eq. (5.1) can lead to
detrimental artifacts in the reconstructed images, even in the case of Cartesian sampling
at Nyquist rate. Depending on the trajectories, intensity modulations, space-varying
blurs and image deformations can be observed when ignoring ADC filtering.

In many situations, the filter h is not provided by the manufacturer and correcting
the effect hence requires its estimation. In section 5.4, we propose a reverse engineer-
ing technique based on the design of specific sequences and numerical algorithms to
estimate the applied filter h.

In section 5.5, we propose numerical algorithms to handle the ADC filtering effect
for linear and nonlinear reconstructions methods. These are based on a combination of
numerical integration methods and of the nonuniform Fast Fourier transform.

In section 5.6, the proposed algorithms are tested against simulated and real data,
showing significant improvements in the reconstruction quality, especially when using
the novel trajectories designed in the framework of compressed sensing.

5.2.1 Notation

In this paper, we assume that the image domain is Ω = [−1/2, 1/2]2. We chose to work
in 2D to simplify the exposition, but an extension to 3D is direct. Similarly, the domain
can be shifted and inflated to account for a different field of view with straightforward
scaling arguments. Notice that with the choice Ω = [−1/2, 1/2]2, Shannon’s sampling
theorem (Shannon, 1948) suggests to take samples on a Cartesian grid, with a grid size
of length 1.

The space L2(Ω) is defined as the set of measurable functions u with finite L2 norm,
i.e. ‖u‖2

L2 :=
∫

Ω |u|2(x) dx < +∞. The canonical Hermitian product on Cn and L2(Ω) is
denoted 〈·, ·〉. Let u : Ω → C denote a magnetic resonance image in L2(Ω). Its Fourier
transform is defined for all ξ ∈ R2 by:

û(ξ) =
∫

Ω
exp(−2ıπ〈x, ξ〉)u(x) dx.

The Dirac delta function at 0 is denoted by δ and the Dirac delta function at a position
x is denoted δx.

Given two functions f and g, the tensor product of f and g is defined by ( f ⊗
g)(x, y) = f (x)g(y) for all x, y. We recall that the Fourier transform preserves the tensor
form: F ( f ⊗ g) = F ( f )⊗F (g).

5.3 The deleterious consequences of filtering

The aim of this section is to explain the ADC filtering effects on the reconstruction of
signals and when it is important to account for them. We start by the simple case of
Cartesian trajectories and then turn to more general sampling patterns.

5.3.1 The case of Cartesian sampling

The filtering effect in the case of Cartesian sampling with constant speed s can be under-
stood by an analytical argumentation. In that case, for each sampling point, the filtering
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is performed along the readout direction only. A convenient way to formalize this obser-
vation is to introduce the following tensor product filter µ̂ = g⊗ δ, where g(t) = h(t/s)
and to observe that the acquisition model then reads:

yi,j = (û ? µ̂)(i∆ξ, j∆ξ) (5.3)

where (i, j) ∈ {−n/2, n/2− 1}2 describe the set of samples indices, and n ∈N describes
the number of samples in each k-space direction.

Now, by not accounting for the filtering effect, the best we can hope for is to recon-
struct an image u∗ of the form u∗ = F−1(û ? µ̂) = u · µ, where µ is defined by:

µ = F−1(g⊗ δ) = F−1(g)⊗F−1(δ) = F−1(g)⊗ 1.

Depending on the filter h, different effects can be expected.

Integration In the case of an integration filter, we have h = 1[0,∆t], where ∆t is the sam-
pling period. Then g = 1[0,∆ξ], where ∆ξ = s∆t is the length of the segment over
which the Fourier transform is integrated. Hence, F−1(g) is a sinc filter, and the
filtering effect hence produces an image modulated by a sinc. Depending on the
integration length ∆ξ, this effect will either just lower the contrast at the image
boundaries, or create low frequency oscillations.

Sinc By using a sampling period ∆t, the standard Shannon-Nyquist sampling theo-
rem states that it is impossible to reconstruct frequencies beyond the interval I =
[− 1

2∆t , 1
2∆t ]. Hence, to avoid aliasing effects, one may be tempted to use a perfect

band-limiting filter of the type ĥ = 1I . In that case, we would get h(t) = sinc
( t

∆t

)
.

The filtering effect in that case would simply crop the image in one direction on the
interval I.

We now propose to simulate the effect using 4 different Cartesian sequences with
∆ξ ∈ { 1

2 , 1, 2, 4}. The value ∆ξ = 1/2 corresponds to the most standard Cartesian tra-
jectory in MRI (oversampling factor of 2 along the readout direction). The value ∆ξ = 1
corresponds exactly to the Shannon’s limit sampling rate for an image supported on
[−1/2, 1/2]2. For the simulation, our measurements are created by incorporating the fil-
tering effect as expressed in Eq. (5.3). For example, in the integration case with ∆ξ = 2,
each sample results from the integration of two consecutive samples acquired at ∆ξ = 1.
The reconstruction algorithm is based on a standard inverse discrete Fourier transform
(which does not account for any filtering effects). Figs. 5.2-5.3 show the results for the in-
tegration and the sinc filtering respectively as well with a cross section of the images. The
modulation due to the integration filtering can be seen on the cross sections for all values
of ∆ξ. On the contrary, the effect of the sinc filtering can be seen only for ∆ξ ∈ {2, 4},
with a dramatic effect: the disk is cropped with an irreversible loss of information.

Overall this experiment highlights the fact that larger distances between consecutive
samples in the k-space result in a more pronounced filtering effect.

For more general trajectories, it seems hard to give an analytical description of the
filtering effects. From a mathematical viewpoint, it amounts to studying integral opera-
tors with kernels defined as measures supported on one dimensional curves. To the best
of our knowledge, very little is currently known for such operators. Hence we restrict
ourselves to provide experimental simulations with spiral trajectories, which are one of
the most widespread non-Cartesian trajectories.
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(a) Ground truth (b) ∆ξ = 1/2 (c) ∆ξ = 1 (d) ∆ξ = 2 (e) ∆ξ = 4

FIGURE 5.2: The integration effect with a Cartesian sampling. Note: the
images might be complex valued, and we only display their modulus.

This explains why negative oscillations are seen as positive values.

(a) Ground truth (b) ∆ξ = 1/2 (c) ∆ξ = 1 (d) ∆ξ = 2 (e) ∆ξ = 4

FIGURE 5.3: The sinc filtering effect with Cartesian sampling. Note: in
that experiment, some ringing appears on the boundaries, explaing why

the cropped images are darker.

Fig. 5.4 shows a sampling pattern made of 200 interleaved spirals, which were de-
signed using the method proposed in (Lee et al., 2003). Each spiral is depicted with a
different color going continuously from blue to green. The number of samples is equal
to 153600, while the reference image contains 512× 512 pixels. Hence this experiment
corresponds to a subsampling factor of 1.7. Notice that while the distance between con-
secutive samples is about 1 pixel in the k-space center, it reaches about 5 pixels in the
outer part, meaning that the filtering effect will have a higher impact on high frequen-
cies. Images of a brain phantom (Guerquin-Kern et al., 2012a) were reconstructed using
a standard nonlinear reconstruction algorithm described in Section 5.5.3. Fig. 5.5 shows
the consequences of the integration and the sinc filtering on the images acquired with
the spiral trajectory. When integration effects occur (Fig. 5.5b), the reconstructed image
suffers from severe artifacts including a space varying blur, some contrast losses, a slight
rotation (visible on ly by switching from one image to the next) and a modulation. In
the case of band-limiting filtering (Fig. 5.5c), the image quality degrades even more: a
magnified region shows the loss of resolution as compared to the ground truth (Fig. 5.5a).

5.4 Validation of the filtering model

To the best of our knowledge, the forward model proposed in Eq. (5.2) has not been stud-
ied in the literature previously. The way the signal is digitized and processed depends
on the MR receiver hardware, with specifications that are usually not transparent. In the
following part, we therefore design a reverse-engineering technique to estimate the filter
h and to validate the proposed model.
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FIGURE 5.4: Two zooms on a sampling pattern made of 200 interleaved
spirals. Each spiral has a different color.

(a) Ground truth (b) Recon (integration) (c) Recon (sinc filtering)

FIGURE 5.5: Example of reconstruction of an image sampled along the
spirals of Fig. 5.4. The reconstruction algorithm does not account for the

integration effect.

5.4.1 A filter estimation procedure

We introduce a methodology to verify model (5.2) and to estimate the ADC filter. The
principle reads as follows:

• Set a sampling period δt, a downsampling factor p ∈ N, a number of measure-
ments m ∈ pN and a trajectory λ : [0, mδt]→ R2.

• Generate a first set of measurements y0 ∈ Cm by sampling f = û ◦ λ with the rate
δt.

• Generate a second set of measurements y1 ∈ Cm/p by sampling f with the rate pδt.

In the case of an integrating ADC for instance, the noiseless measurements should then
satisfy:

y1[i] =
p−1

∑
j=0

y0[pi + j]. (5.4)

A convenient way to express the model is y1 = h ? y0 ↓ p, where ? denotes the convo-
lution product, ↓ p is the downsampling by a factor p and h = [1, . . . , 1]/p is a constant
filter of size p. One way to verify Eq. (5.4) is then to solve the following optimization
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problem:

min
h∈Rm

1
2
‖(h ? y0 ↓ p)− y1‖

2
2 +

α

2
‖Lh‖2

2, (5.5)

where α ≥ 0 is a regularization parameter and L is a regularizing operator. In all our
experiments we set L to be the discrete first-order derivative and tune α manually.

The underlying idea behind problem (5.5) is to find the best linear time invariant
operator that allows to match the two sets of measurements y0 and y1. The least squares
in Eq. (5.5) correspond to a deconvolution problem, which is highly ill-posed (Tarantola,
2005). Hence we propose to regularize it by adding a Tikhonov regularization. Problem
(5.5) can easily be solved with an accelerated projected gradient descent. The interested
reader is refered to the first paper on the subject (Nesterov, 2005).

Remark 1 In practice, the vector of measurements y0 is itself filtered by the ADC and we can
only expect this procedure to yield an estimation of the filter valid for the time resolution δt instead
of mδt.

5.4.2 The experimental setup

All acquisitions were performed on a 7-Tesla MR scanner (Siemens Healthineers, Erlan-
gen, Germany) with a 1Tx/32Rx head coil (Nova Medical, Wilmington, MA, USA). To
validate our model, an ex vivo baboon brain was imaged using a gradient recalled echo
(GRE) sequence to acquire the Cartesian and spiral data corresponding to the experiment
described in the previous section 5.3.1.

We validated the model both for Cartesian and spiral sampling.
In the case of Cartesian sampling, we set δt = 10µs with a field-of-view (FOV) of 20×

20 cm2 for a target resolution of 256× 256. We then designed three trajectories composed
of 256 lines with different sampling periods ∆t ∈ {δt, 4δt, 16δt}, i.e. in the framework
of paragraph 5.4.1, p = 1, p = 4 and p = 16. When considering a normalized FOV,
those downsampling factors correspond to ∆ξ = 1

4 , ∆ξ = 1 and ∆ξ = 4 respectively.
For the case p = 16, we interleaved four sets of trajectories to fill the whole Cartesian
grid (yielding a total of 64× 4 = 256 samples), thus measuring enough information to
reconstruct the image. Overall, the number of samples per line reached 1024, 256 and
256 for p = 1, p = 4 and p = 16 respectively.

In the case of spiral trajectories, we set δt = 5µs with the same field-of-view (FOV)
of 20× 20 cm2. Spirals were designed using the method proposed in (Lee et al., 2003)
and were made of 20 shots for a target resolution of 512× 512. In that experiment, we
studied the cases p = 1, p = 2 and p = 8. For the case p = 8, we interleaved 4 spirals to
measure as much information as for p = 2 (yielding a total of 768× 4 = 3072 samples).
Overall, the number of samples per line reached 6144, 3072 and 3072 for p = 1, p = 2
and p = 8 respectively.

5.4.3 Filtering effects on experimental data

In order to validate the proposed model, we first reconstruct the images with Cartesian
and spiral sampling using a simple conjugate gradient algorithm. The results are dis-
played in Fig. 5.6.

In the case of Cartesian trajectories, no filtering effects are observed for p = 1 (Fig.
5.6a). For p = 4, corresponding to a sampling pattern at Shannon’s rate (i.e. ∆ξ = 1),
two black bands appear at the top and bottom of the image (Fig. 5.6b). For the image
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on Fig. 5.6c corresponding to p = 16 (i.e. ∆ξ = 4), four horizontal black bands can be
observed and the object is cropped along the readout direction. This perfectly matches
the effects described in Section 5.3.1 (Figs. 5.2-5.3). These results strongly suggest that
the MR scanner applies a band-limiting filter to the temporal signal. We will provide
further evidence of this observation in the next section.

In the case of spiral sampling, the image corresponding to p = 1 on Fig. 5.6d is near
perfectly resolved. For p = 2, the image gets slightly more blurry and the contrast is
slightly deteriorated. For p = 8, the effect gets disastrous, with some parts of the image
disappearing and strong rotational blurs.

(a) Cartesian: p = 1 (b) Cartesian: p = 4 (c) Cartesian: p = 16

(d) Spiral: p = 1 (e) Spiral: p = 2 (f) Spiral: p = 8

FIGURE 5.6: Direct reconstruction results of real data for the Cartesian
trajectories (top) and spiral trajectories (bottom) with different sampling
periods. Here, we used a change of contrast to better highlight the effect.

5.4.4 Estimation of the filter

Problem (5.5) was solved to estimate the filter h by using both Cartesian and spiral data.
We solved the problem for each shot and channel independently and then averaged the
result to reduce the noise. Fig. 5.7 shows the mean filter h (red line) for the Cartesian
and spiral experiments respectively. In both experiments, a sinc-like function can be
identified, which supports that a near perfect band-limiting filter is used on the ADC.
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FIGURE 5.7: Mean and standard deviation for the estimated filters using
the Cartesian data (top) and spiral data (bottom). For the Cartesian data,
we used p = 4 (top left) and p = 16 (top right). For the spiral data, we

used p = 2 (bottom left) and p = 8 (bottom right).

5.5 Handling the filtering effects in reconstruction algorithms

5.5.1 Discretizing the image

Let n ∈ 2N denote a resolution parameter. In this paper, we assume that the true mag-
netization u can be written as:

u = ud ? ψ, (5.6)

where
ud = ∑

−n/2≤i,j<n/2
u[i, j]δi/n,j/n (5.7)

is an atomic discretization of the image with u ∈ Cn×n and ψ : [−ε, ε]2 → R is a com-
pactly supported interpolation kernel. The interest of this decomposition lies in the fact
that it will allow using nonuniform fast Fourier transforms.

The simplest interpolation kernel ψ is the spline of order 0:

ψ(x, y) =

{
1 if − 1/(2n) ≤ x, y < 1/(2n),
0 otherwise.

It will be used in all the experiments of this paper.

Remark 2 Notice that the model (5.7) does not allow to reproduce any function u. An additional
error term ∆u : Ω → C should be added for completeness. We can however show that this term
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can be bounded in Lp under regularity assumptions on u. We refer the interested reader to the
following book for more details (DeVore and Lorentz, 1993).

5.5.2 Fast implementation of the forward model

In order to reconstruct the image, nearly any reconstruction algorithm requires an imple-
mentation of the forward operator and its adjoint. In this section, we therefore propose
a numerical algorithm to evaluate integrals of the form:

yi =
∫

R
h(i∆t− t)û(λ(t)) dt. (5.8)

It is based on a combination of numerical integration and of the nonuniform Fast Fourier
transform.

The NFFT

The atomic structure in (5.7) allows using the non uniform Fast Fourier Transform (NFFT
or NUFFT) (Dutt and Rokhlin, 1993; Keiner et al., 2009a) to get a numerical expression
of û at a set of locations k = (k[0], . . . , k[m− 1]) ∈ Rm×2 in the k-space. We let k1 and
k2 denote the two spatial components of k. The NFFT allows evaluating rapidly with a
high precision, all components of ûd(k), defined by:

ûd(k[l]) = ∑
−n/2≤i<n/2
−n/2≤j<n/2

u[i, j] exp(−2ıπ(ik1[l] + jk2[l])). (5.9)

While a naive implementation of the sum would require O(mn4) operations, the NFFT
reduces the complexity to O(n2 log(n) + m| log(ε)|2), where ε is the desired precision.
The constants involved in the O depend on the locations of the sampling points k.

By using matrix-vector product notations, this can be rewritten as:

ûd(k) = N∗ku,

where N∗k ∈ Cm×n2
is the NFFT matrix. Then, to get the values of û, we simply use the

formula: û = ûd � ψ̂2. Overall, the mapping (u, k) 7→ û(k) = û is given by:

û = ψ̂(k)� N∗ku.

Remark 3 When introducing the interpolating kernel ψ, we need to take special care of boundary
conditions. The NFFT assumes periodic boundary conditions. In this work, we simply work
with images surrounded by black, as is common in MRI, to avoid creating discontinuities on the
boundaries.

Integration along the curve

In order to compute the integrals (5.8), we propose to use simple numerical integration
procedures. Letting p ∈N denote an upsampling parameter, we shall use the following

2For two matrices, A and B, of the same dimension, m× n, the Hadamard product, A� B, is a matrix, of
the same dimension as the operands, with elements given by (A� B)i,j = (A)i,j(B)i,j
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approximation:
yi = (h ? f )(i∆t) ' ∑

j∈Z

hj · û(λ(i∆t− jδt)), (5.10)

where δt = ∆t/p and where the weights hj can be chosen either by using the estimation
procedure proposed in Section 5.4.4 or taken equal to h(jδt) if an analytical version of h is
available. More advanced Newton-Cotes formula (Ralston and Rabinowitz, 2001) could
also be used. The values û(λ(i∆t− jδt)) can be evaluated efficiently with the NFFT, and
the weights hj only need to be computed once at the start of the algorithm. In practice,
we typically use values of p in the range {1, . . . , 8}.

The forward model A can now be completely described. Letting k denote the vector
of discrete locations with components k[i] = λ(iδt) for 0 ≤ i ≤ mp − 1, it takes the
following form:

Au = HΣψN∗ku,

where H is the operator that computes the sums in Eq. (5.10) and where Σψ : z 7→
ψ̂(k)� z. The adjoint operator is given by:

A∗ = NkΣ∗ψH∗.

Remark 4 In the case of multiple coils, the forward model can be written as:

Au =

HΣψN∗kS1u
...

HΣψN∗kSnc u

 ,

where Sk = diag(sk) is the diagonal matrix associated to the k-th sensitivity profile and nc is
the total number of receiver coils.

5.5.3 Reconstruction algorithms

Once the forward operator and its adjoint are properly described, most existing algo-
rithms can be used out of the box. In this work, we implemented simple linear recon-
structions based on the linear conjugate gradient method and more advanced nonlinear
approaches. Other methods such as GRAPPA, SMASH, SENSE or ESPIRIT (Larkman
and Nunes, 2007), could be easily modified to account for the integration too.

Estimating the sensitivities

In all the experiments performed in this paper, we first acquire a reference image with
a standard Cartesian trajectory sampled at twice Shannon’s rate along the readout di-
rection. This allows to simply estimate the sensitivities by using the sum-of-square ap-
proach (McKenzie et al., 2002).

Linear reconstructions

One of the simplest ways to reconstruct an image is to solve the following Tikhonov-
regularized least squares problem:

min
u∈Rn

1
2
‖Au− y‖2

2 +
α

2
‖u‖2

2.
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The optimality conditions for this problem read

(A∗A + αI)u = A∗y,

which can be solved with an iterative solver. In this paper, we simply use a linear conju-
gate gradient method (Ralston and Rabinowitz, 2001).

Nonlinear reconstructions

Nonlinear reconstructions are known to yield better results than linear ones, especially
in the regime of subsampled data. The whole field of compressed sensing (Lustig et al.,
2007a; Candès et al., 2006), which under certain assumptions guarantees exact recon-
structions, is based on `1-regularized problems. In this paper, our nonlinear reconstruc-
tions are based on the resolution of the following problem:

min
u∈Rn

1
2
‖Au− y‖2

2 + αR(u), (5.11)

where R : Cn2 → R ∪ {+∞} is a regularization term describing some prior information
on the image that is sought for. This type of problem can be solved efficiently by using
a Douglas-Rachford algorithm (Combettes and Pesquet, 2011). Letting f (u) = 1

2‖Au−
y‖2

2, it reads as follows:

1. Input: initial guess v0 ∈ Cn2
and parameter γ > 0.

2. uk = proxγ f (vk).

3. vk+1 = vk − uk + proxγαR(2uk − vk).

The proximal operators proxγ f and proxγαR are defined by:

proxγ f (z) = arg min
u∈Cn2

γ

2
‖Au− y‖2

2 +
1
2
‖u− z‖2

2 (5.12)

and by

proxγαR(z) = arg min
u∈Cn2

γαR(u) +
1
2
‖u− z‖2

2. (5.13)

The step 2. above can be interpreted as the resolution of the inverse problem using
Tikhonov regularization. It can be solved using a linear conjugate gradient algorithm.
The step 3. can be interpreted as a denoising step. Depending on the prior R, different
algorithms can be used. The sequence (uk)k∈N can be proved to converge to a global
minimizer of (5.11) if R is a convex closed function with nonempty interior. In this work,
we define R as the total variation of the image (Chambolle et al., 2010) and solve the
proximal step (5.13) with the method proposed in (Weiss et al., 2009).

Remark 5 Notice that total variation regularization is a simple prior leading to decent results,
but suffering from some defects such as staircasing effect. More advanced denoising methods such
as BM3D (Dabov et al., 2007) image can be used instance, as was proposed in the plug-and-play-
prior algorithm (Venkatakrishnan et al., 2013).



110 Chapter 5. Correcting the side effects of ADC filtering in MR image reconstruction

5.6 Reconstruction results

In this section, we will demonstrate how the proposed reconstruction algorithms per-
form on simulated and experimental data compared to traditional approaches.

5.6.1 Simulated data

(a) Truth (b) Standard reconstruction (c) Proposed reconstruction

FIGURE 5.8: Reconstructions of the brain phantom image sampled along
the spirals of Fig. 5.4 without (b) and with (b) accounting for the band-

limiting filtering effects.

We first consider the experiment of Section 5.3.1, in which the spiral sampling pat-
tern of Fig. 5.4 was used to simulate measurements of a brain phantom incorporating the
band-limiting filtering with p = 2. Fig. 5.8b displays the brain phantom image recon-
structed with the nonlinear algorithm of Section 5.5.3 that does not include the filtering
in the forward model. Note that this corresponds to the standard MR reconstruction. We
reconstructed the same data with the method proposed in Section 5.5, which accounts
for the filtering effect. The result is displayed in Figure 5.8c. By looking at the magnified
regions, we notice that the proposed reconstruction was able to recover the fine struc-
tural details present in the ground truth image (Fig. 5.8a), which had disappeared in the
standard reconstruction (Fig. 5.8b).

Remark 6 In all experiments, the regularization parameter α of Eq. (5.11) was manually tuned
so as to produce the best possible result. We had to take it larger for the standard model, otherwise,
strong oscillations would have appeared in the reconstructed image, with no significant increase
in the level of details.

To further highlight the gain of resolution offered by the proposed approach, we
repeated the same experiment with a synthetic image displayed in Fig. 5.9. Here, we
used another four-interleaved spiral which samples the k-space with a variable density
decaying as the frequencies get higher. Images reconstructed with the standard method
and the proposed approach are displayed in Fig. 5.9a and 5.9b, respectively. Notice how
the resolution is enhanced by including the filtering effect in the forward model.
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(a) Standard (b) Proposed

FIGURE 5.9: Reconstruction with and without the band-limiting filtering
accounted for.

5.6.2 Experimental data

The proposed acquisition model and reconstruction schemes were tested on experimen-
tal data acquired from both spiral (Lee et al., 2003) and SPARKLING (Boyer et al., 2016;
Chauffert et al., 2017; Lazarus et al., 2017) sampling patterns.

(a) The whole trajectory
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FIGURE 5.10: Sparkling trajectory and magnified regions of central and
peripheral parts.

Spiral sampling

The spiral trajectory used for the acquisition was the same as in Section 5.4.3 for p = 8.
The reconstruction results are displayed in Fig. 5.11. In this example, we simply used a
linear reconstruction algorithm based on the conjugate gradient since the subsampling
factor was not large and 32 receiver channels were used. Even though the reconstruction
accounting for the filtering effect is not perfect it is clearly far superior to a standard
reconstruction.
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(a) Standard (b) Proposed

FIGURE 5.11: Linear reconstructions of an ex vivo baboon brain acquired
with a spiral trajectory, with (b) and without (b) the band-limiting filtering
accounted for. Acquisitions were prospectively performed on a 7 Tesla MR

scanner.

Sparkling sampling

The recently introduced SPARKLING trajectories are novel non-Cartesian trajectories
that produce optimal sampling patterns by taking full advantage of the hardware abili-
ties (Boyer et al., 2016; Chauffert et al., 2017; Lazarus et al., 2017).

Remark 7 This project actually began thanks to these new trajectories. Our first attempts to use
those trajectories led to unsatisfactory reconstruction results. We understood after long investi-
gations that the main problem was related to the ADC filtering, which motivated us to do this
work. While the results presented for the spiral trajectory were mainly of tutorial value, since we
artificially increased the sampling period ∆t, the results presented in this paragraph are based on
completely realistic data.

The trajectory used in our experiments consisted of 128 shots composed of 512 sam-
ples each for a target resolution of 512× 512, corresponding to a subsampling factor of
4. A typical trajectory is displayed in Fig. 5.10. Magnified regions of its center and pe-
riphery are displayed in Fig. 5.10b and 5.10c respectively. As can be seen, the distance
between consecutive samples is larger than one pixel, be it in the central region or at the
k-space boundary. These large gaps are related to the fact that the trajectory λ goes at the
maximal speed offered by the hardware.

An ex vivo human brain was imaged and reconstructed with a standard nonlinear
reconstruction algorithm and with the proposed method. The results are displayed in
Fig. 5.12. Once again, the improvement of quality allowed by the proposed approach is
striking, especially in the temporal lobes of the brain.

5.7 Discussion and conclusion

In this work, we illustrated how the anti-aliasing filters implemented in analog-to-digital
converters could be detrimental to the good reconstruction of MR images. Depending
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(a) Standard (b) Proposed

FIGURE 5.12: Nonlinear reconstructions of ex vivo humain brain with a
Sparkling trajectory, with (b) and without (b) the band-limiting filtering
accounted for. Acquisitions were prospectively performed on a 7 Tesla

MR scanner.

on the speed of the trajectory and on the sampling period, these filters can have dramatic
effects, with irreversible loss of information. To the best of our knowledge, these effects
were ignored until now in the literature. We proposed novel numerical algorithms to
mitigate them, yielding far superior reconstruction results than current approaches for
some modern trajectories. This enhanced quality comes at the expense of a higher nu-
merical complexity, with computing times typically multiplied by factors ranging from
2 to 4 compared to standard approaches.

At this point, the reader may wonder why such anti-aliasing filters are actually imple-
mented in practice. While they make perfect sense when the aim is to sample a purely
temporal signal f (t) = û(λ(t)) using Shannon’s theory, their pertinence becomes less
obvious when it comes to the reconstruction of spatial MR images u, especially with
modern nonlinear reconstruction algorithms.

Let us consider their pros and cons. On the positive side, filtering allows to reduce
noise and increase the signal-to-noise-ratio, which may sometimes be critical when little
signal is available. In addition, it allows to reduce the number of measurements and hence
leads to faster reconstruction algorithms. Those two arguments are probably the main
ones explaining the very existence of these filters. In addition, it is physically impossible
to measure pointwise values of f , and the filtering is an effect that cannot be avoided,
up to the temporal resolution of the ADC. On the negative side, applying filters trades
temporal resolution for signal-to-noise-ratio. It is however well known in the field of inverse
problems that it is much harder to gain resolution than signal-to-noise-ratio. State-of-the-art
denoisers are close to being unbeatable (Chatterjee and Milanfar, 2010), while blurring
induces an irreversible loss of information.

Overall, we believe that the increase of computational power using massively parallel
architectures, makes the arguments supporting the filtering partly irrelevant. We hope
that the current manuscript may motivate vendors to use or design different ADCs. For
instance, a striking side-result of this work is that the older technology of integrating
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ADC is somewhat preferable to more complex band-limiting ADCs, since the integrating
filters do not cause an irreversible loss of information (compare Fig. 5.2 and Fig. 5.3). In
addition, our analysis suggests to use time-varying sampling periods. In the center of the k-
space, a lot of signal is usually available, allowing to use very short sampling periods. In
contrast, as the sampling trajectory gets more distant to the center, the sampling period
should increase to account for the signal decay.

The key factor to know whether a trajectory is acceptable or not for standard re-
construction methods is the maximal distance between consecutive samples. Nearly no
effect should be observed below half a pixel, slight effects will be observed between
half a pixel and 1.5 pixels, and significant problems should appear beyond. The recent
advances in sampling theory advocate the use of more complex trajectories with high
speeds (Weiger et al., 2017; Mansfield, 1977; Ahn et al., 1986; Lazarus et al., 2017) that
may cross the critical regime of sampling distances. All those arguments make us believe
that the proposed analysis and algorithmic framework may play an important role in the
future.
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Conclusion

Contributions

SPARKLING

In this PhD manuscript, we developed and applied a new optimization-driven method
called SPARKLING to design optimal sampling patterns for MRI in the context of com-
pressed sensing to speed up the acquisition time. Perhaps, to conclude this work, we
could remind and answer the few questions that were raised in the introduction:

Will the gradient system be able to play out these complex gradient waveforms?
The answer is positive at least on our SIEMENS gradient system. This was directly ver-
ified by measuring the actual spatially-resolved phase while playing out a SPARKLING
shot, using a local phase measurement method (Schneider et al., 2011). Despite the er-
ratic aspect of the gradient waveform and its slew rate, this experiment proved that the
gradient system was very faithful, yielding a NRMSE smaller than 1%.

Furthermore, these non-Cartesian trajectories were successfully used for prospective
acquisitions at 7 Tesla both ex vivo and in vivo on healthy volunteers. For high resolution
T∗2 -weighted 2D in vivo brain imaging, they were shown to substantially speed up the
acquisition time while maintaining very good image quality, which would not be pos-
sible if substantial gradient errors occurred. Typically, for a high in-plane resolution of
390 µm, 11 slices could be acquired in just 14 seconds, instead of almost 5 minutes for the
fully-sampled Cartesian reference.

Is this method competitive with other non-Cartesian trajectories such as spiral imaging, which
is considered as the most efficient sampling?
Most interestingly, our 2D T∗2 -weighted segmented experiments showed that the SPAR-
KLING patterns were as efficient as variable-density spiral trajectories (Lee et al., 2003) in
the context of compressed sensing. Because samples are spread out as much as possible
along one curve, a SPARKLING shot can cover a large portion of k-space just like spiral.
Moreover, in the most accelerated scenarios, the images acquired with a variable-density
spiral presented important artifacts of which the SPARKLING images were devoid. This
suggests that the SPARKLING trajectories may be a good alternative to segmented spiral
imaging, offering more flexible design as well. Compared to radial trajectory – which
are admittedly not as efficient as spiral imaging especially in a long-readout setup –
SPARKLING-acquired images yielded a visibly superior image quality both in 2D and
3D acquisitions.

How sensitive to imaging and system imperfections are SPARKLING trajectories?
Non-Cartesian trajectories are well-known to be sensitive to imaging and system im-
perfections including off-resonance effects and physiological motion. In the case of our
long-readout experiments, we observed that SPARKLING acquisitions seemed relatively
less sensitive to these imperfections than the tested variable-density spirals, and the gap
was widening as the acceleration factor increased.
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Is SPARKLING interesting for all imaging protocols?
SPARKLING was used successfully both for 2D and 3D imaging at 7 Tesla and 3 Tesla. In
2D, T∗2 - and T1-weighted images were acquired using this method. In 3D, SPARKLING
trajectories allowed to perform T∗2 - and susceptibility-weighted imaging. Limitations
will be discussed below.

Other contributions

In this work, we also gave a theoretical introduction of the application of compressed
sensing in MRI and highlighted the current limitations in the theory. Based on simula-
tions and prospective experiments, an empirical study allowed to gave some qualitative
and quantitative guidelines on the degree of acceleration applicable in a given setup
of resolution and SNR. Our objective was to show to the MR community, with a T∗2 -
weighted image example, that depending on the input SNR and the target resolution
there is only a restricted range where compressed sensing can radically reduce the ac-
quisition time. To our knowledge, it is the first time that an extensive study is done
on the relationship existing between input SNR and acceleration factor in the context of
compressed sensing. Our findings confirm in particular that the benefit is much higher
when targeting high resolution as long as the input SNR can be maintained. It also high-
lights that beyond a certain threshold for a given acceleration, no more improvement can
be expected regardless of the input SNR.

Finally, we proposed a new acquisition model and the adapted nonlinear reconstruc-
tions that take into account the ADC filtering effects. Our approach thus incorporates the
implicit averaging that is performed when sampling along continuous k-space curves.
Simulations and prospective acquisitions allowed to evaluate these model-based algo-
rithms. In particular, they enabled to correct almost perfectly the important artifacts that
were present in an image acquired with a SPARKLING trajectory. Hence, the proposed
reconstruction could serve as an efficient safeguard against ADC filtering effects for very
fast trajectories typically.

Limitations

Although T1-weighted images were acquired with a variable-density SPARKLING tra-
jectory, it is quite obvious that SPARKLING’s best results were obtained for rather long
readouts. When the time and the hardware constraints allow it, the output trajectory
is able to substantially wiggle around the initial support, thus increasing the sampling
efficiency while distributing along the target density. We gave earlier a practical rule
for best usage of SPARKLING: the ratio of the number of gradient steps per shot to
the image size should be as high as possible. As regards high resolution, long-readout
scenarios will maximize this ratio and thus optimize SPARKLING performance, while
short-readout acquisitions allow for less departure from simple geometric trajectories.
In the latter case, a radial initialization will not be drastically transformed by the pro-
posed algorithm because the constraints do not permit it. In the most extreme case, at
maximum speed on a line for instance, we expect little room for improvement. When
considering lower resolutions however, our method can still be promising. Hence, there
exists a limited regime where the SPARKLING method can substantially improve sam-
pling patterns.
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Regarding 3D SPARKLING, it was observed that the fully 3D implementation of the
method (as opposed to stacks) did not perform as well as expected. This is most probably
due to the fact that all the shots are not generated together, so that the global distribution
of all the samples do not look as neat as in 2D SPARKLING. This limitation is due to the
development time it would have a taken to code an efficient algorithm.

Perspectives

Many more studies and developments could be imagined in the framework of SPAR-
KLING. For instance, trajectories with anisotropic densities adapted to specific organs
could be designed. Since the Fourier content of a knee does not have the same structure
as the k-space of a brain, the target density could be changed depending on the object to
image.

Although SPARKLING images looked correct without any correction of imaging im-
perfections, it would be interesting to correct for instance static field inhomogeneities or
trajectory errors and see the improvement in image quality. To this end, we intent to use a
multi-frequency interpolation method (Man et al., 1997) to handle field inhomogeneities
based on a field map. Regarding dynamic phase correction, a Skope camera was recently
acquired at NeuroSpin and will hopefully be quickly used to monitor SPARKLING ac-
quisitions. In this setup, it would be interesting to do again the comparison with spiral
trajectories.

Regarding the improvement of the method, the 3D algorithm would benefit from
some development regarding the calculation of the summation term with the help of
NFFT-based fast summation. This may enable to generate multiple shots at once. This
work will be addressed soon in the SILICOSMIC research project owing to a close col-
laboration with La Maison de la Simulation at CEA.

Closing remarks

All in all, we provided a flexible optimization-based tool to generate more exotic and
pertinent k-space trajectories. We applied this tool successfully to MRI, where it could
be used for many other applications, but this elegant framework could also serve other
scientific fields (e.g., electronic microscopy) and, perhaps, more artistic purposes.
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Résumé en français

Afin d’augmenter significativement la résolution spatio-temporelle des images IRM ac-
quises à très haut champ magnétique, une possibilité consiste à accroître la vitesse d’acqui-
sition en sous-échantillonnant massivement l’espace de Fourier (ou k-space). La théorie
récente du Compressed Sensing ou de l’échantillonnage compressif apporte une solu-
tion théorique élégante à ce problème et permet de plus de réduire les distorsions dans
les images, mais les conditions de sa mise en oeuvre pratique (échantillonnage aléa-
toire indépendant) la rendent peu utilisée en pratique en IRM en raison des contraintes
physiques d’acquisition (trajectoires d’échantillonnage continues voire plus régulières,
gradients bornés, vitesse de commutation limitée, ...). Dans ce contexte, des travaux
théoriques récents (Boyer et al., 2016) ont permis de produire, dans un cadre simulé ou
rétrospectif, des trajectoires d’échantillonnage satisfaisant les contraintes d’acquisition
tout en minimisant le temps d’acquisition. Cette technique, rebaptisée SPARKLING
(Spreading Projection Algorithm for Rapid K-space sampLING), s’appuie sur un algo-
rithme de projection qui permet de générer des schémas d’échantillonnage optimaux
pour l’IRM en alliant efficacité et une distribution des échantillons adaptée à la théorie de
l’échantillonnage compressif. Cette méthode a été appliquée sur la plateforme d’imagerie
clinique à 7 Teslas de NeuroSpin et a permis d’accélérer significativement l’imagerie
haute résolution pondérée en T∗2 . Ses performances ont été comparées aux techniques
standards d’imagerie non-cartésiennes (radial, spiral). La méthode a également été éten-
due à l’imagerie 3D à travers plusieurs stratégies.

Chapitre 1

Ce premier chapitre rappelle les fondamentaux de l’IRM et introduit les outils qui seront
utilisés dans les chapitres suivants. Il commence par expliquer l’origine du signal mesuré
en IRM, la façon dont il est mesuré et comment il est manipulé par le biais de séquences
de gradients de champ magnétique pour produire des images de l’intérieur du corps hu-
main. L’accent est mis sur l’encodage entre l’image et sa transformée de Fourier discrète,
appelée dans le jargon de l’IRM «k-space »ou espace-k, où k désigne la fréquence spa-
tiale. L’échantillonnage de l’espace-k se fait le long de courbes régulières et de manière
segmentée pour l’IRM anatomique car le signal que l’on mesure décroît vers zéro très
rapidement. Il faut donc plusieurs segments, aussi appelés shots en anglais, pour rem-
plir l’espace de Fourier de l’objet imagé et lui appliquer une transformée de Fourier in-
verse pour obtenir l’image. Un état de l’art des différentes méthodes d’échantillonnage
en IRM est présenté pour l’imagerie 2D et 3D. Aussi, des outils nécessaires à la recon-
struction de données non-Cartésiennes sont détaillés. Enfin l’intérêt des hauts champs
magnétiques est discuté. Ils permettent notamment d’utiliser le gain en signal-sur-bruit
pour augmenter la résolution. Cependant, plus la résolution de l’image est grande, plus
le nombre de données à acquérir pour remplir la grille de l’espace-k est grand, et donc
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plus le temps d’acquisition augmente. Cette constatation nous amène au chapitre suiv-
ant qui introduit l’Échantillonnage compressif et son application en IRM pour réduire le
temps d’acquisition.

Chapitre 2

Ce chapitre introduit l’Échantillonnage compressif et explique tout d’abord sa théorie,
et dans quelles conditions elle s’applique. l’Échantillonnage compressif nous dit qu’il
est possible de sous-échantillonner3 des signaux compressibles (i.e., parcimonieux dans
une certaine représentation), et toujours être capable de les reconstruire fidèlement si
des reconstructions adaptées sont utilisées. Si cette théorie est bien établie dans le cadre
des mesures aléatoires gaussiennes, elle l’est beaucoup moins quand il s’agit de l’IRM,
où l’échantillonnage et le signal sont structurés. Dans le cas de l’IRM par exemple, les
mesures doivent être plus fréquentes dans les basses fréquences que dans les hautes
fréquences: on parle d’échantillonnage à densité variable. Après avoir discuté les limites
actuelles de la théorie de l’Échantillonnage compressif en IRM, il est entrepris d’étudier
sa zone d’applicabilité de manière empirique. En effet, la théorie est aujourd’hui inca-
pable de prédire le facteur de sous-échantillonnage R utilisable pour une certaine situa-
tion, alors que ceci serait extrêmement utile à la communauté de l’IRM. Ainsi, pour un
contraste T∗2 , une méthodologie est présentée et appliquée pour déterminer quantitative-
ment le facteur de sous-échantillonnage maximal Rmax qui permet d’assurer une certaine

3c’est-à-dire de mesurer le signal à une fréquence d’échantillonnage au-dessous de celle dictée par le
théorème de Nyquist-Shannon.
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FIGURE 1: Résultats empiriques de la variation du facteur d’accélération
maximal Rmax permettant d’assurer une qualité d’image exprimée par
SSIM ≤ 0.9 en fonction de la taille de l’image (image size) et le rapport
signal-sur-bruit (RSB) des données (input SNR sur l’axe de la figure). A)
Vue 3D et B) projection 2D du graphe sur le plan (Rmax, N). La ligne or-
ange représente la relation expérimentale entre la taille de l’image et le
RSB pour une séquence donnée pour le scanner 7 Teslas de NeuroSpin.
Elle a été projetée sur la surface Rmax pour permettre de lire directement
quels sont les facteur de sous-échantillonnage permis en pratique: seuls
les facteurs situés sous cette ligne orange permettent de préserver la qual-

ité d’image souhaitée (voir B)).
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qualité d’image en fonction de la résolution de l’image (N) et du niveau de bruit dans les
données (input SNR). La qualité d’image est quantifié par la métrique de la similarité en
structure ou SSIM qui varie entre 0 et 1, où 1 correspond au meilleur score (Wang et al.,
2002). Ces résultats sont montrés sur la figure 1.

Chapitre 3

Après avoir mieux compris la zone d’applicabilité de l’échantillonnage compressif, est
présenté le coeur de cette thèse, à savoir la conception et l’utilisation de nouvelles trajec-
toires d’échantillonnage adaptées à l’échantillonnage compressif. La méthode repose sur
un algorithme d’optimisation présentée dans (Boyer et al., 2016) qui permet de générer
des courbes d’échantillonnage avec une densité contrôlée et un étalement optimal des
échantillons tout en respectant les contraintes de l’IRM en termes de vitesse et d’accéléra-
tion maximale. Le schéma en figure 2 explique le procédé de la méthode, baptisée
SPARKLING pour Spreading Projection Algortihm for Radid K-space samplING, et com-
ment elle permet d’améliorer les trajectoires existantes, notamment leur fonction d’étale-
ment de point (PSF pour point spread function en anglais).

Dans ce chapitre, cet outil a été utilisé pour générer des trajectoires 2D avec une den-
sité variable optimisée pour une haute résolution planaire de 390 µm. Les résultats in
vivo acquis avec une séquence écho de gradients à 7 teslas pour un contraste T∗2 sont
présentés sur la figure 3. Tout d’abord, on peut observer que la méthode SPARKLING
demeure très proche de la référence cartésienne échantillonnée à Nyquist, malgré son
temps d’acquisition 20 fois plus court. En revanche, l’acquisition spirale à densité vari-
able (Lee et al., 2003) présente beaucoup d’artefacts qui sont probablement dûs à l’inho-
mogénéité du champ magnétique et/ou à des erreurs de trajectoire. Enfin, la méthode
radiale, beaucoup trop accélérée est floue et présente des artefacts de stries. Ces ex-
périences nous ont permis de valider les performances de la méthode SPARKLING: des
trajectoires non seulement efficaces mais aussi avec une densité variable maîtrisée per-
mettent une application optimale de l’échantillonnage compressif. La méthode présen-
tée semble également être relativement plus robuste aux imperfections de l’acquisition
comparée à la spirale très sensible (Yudilevich and Stark, 1987).
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FIGURE 2: Génération des trajectoires SPARKLING. L’amplitude max-
imale du gradient et sont slew rate sont Gmax = 40 mT/m et Smax =
200 T/m/s respectivement. La durée de chaque segment était de 30.72 ms.
La méthode SPARKLING appliquée sur des lignes radiales pour une den-
sité variable pour N = 512 et 34 segments symétriques (AF=15, R=2.5).
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FIGURE 3: Validation in vivo des trajectoires SPARKLING à densité
variable pour un facteur d’accélération de 20 et comparison avec les
stratégies spirale et radiale. Des acquisitions pondérées en T∗2 réal-
isées sur un scanner 7 teslas à une resolution de 390 µm × 390 µm ×
3 mm. a,e, Référence cartésienne échantillonnées à Nyquist pour un temps
d’acquisition de 4 min 42 s et un zoom sur une région d’intérêt dans le cor-
tex parieto-occipital (boite jaune). b,f, Image et zoom reconstruits à partir
d’une acquisition SPARKLING accélérée 20 fois qui durait 14 s. c,g, Im-
age et zoom reconstruits à partir d’une acquisition spirale accélérée 20 fois
qui durait 14 s. d,h, Image et zoom reconstruits à partir d’une acquisi-
tion radiale accélérée 20 fois qui durait 14 s. (La reconstruction des images

n’incluait aucune correction.)

Chapitre 4

Au vue des performances prometteuses de la méthode SPARKLING en 2D, l’approche
a été étendue à l’imagerie 3D. Plusieurs approches ont été explorées. Tout d’abord,
comme il est coutûme de faire pour les trajectoires radiale et spirale, une trajectoire
3D peut se réaliser en empilant des trajectoires SPARKLING 2D. C’est ce qu’on appelle
en IRM «stack-of-Sparkling» (SOS). En outre, l’algorithme SPARKLING a été étendu en
3D avant de réaliser des trajectoires «complètement 3D». Les trois différentes stratégies
SPARKLING sont présentées en figure 4. Deux SOS sont considérées: l’une régulière
en figure 4a nommée «SOS régulier»et l’autre à densité variable selon la troisième direc-
tion en figure 4b nommée «z-vd SOS». Enfin, une trajectoire complètement 3D nommée
«SPARKLING 3D» est étudiée en figure 4c.

Ces différentes méthodes ont été comparées sur un cerveau de babouin ex vivo et il a
été observé que la stratégie z-vd SOS était la plus prometteuse parmi les trois méthodes
étudiées, surtout pour des facteurs d’accélération importants. C’est pour cela que cette
dernière a été utilisée pour une série de comparaison à d’autres stratégies 3D usuelles
et à facteur d’accélération important dont les résultats apparaissent en figure 5. Il a été
montré que la méthode permettait de réduire un temps d’acquisition de 14 min (iPAT
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(a) SOS régulier (b) z-vd SOS (c) SPARKLING 3D

FIGURE 4: Trois différentes trajectoires SPARKLING tridimensionnelles.
(a), SOS régulier: empilement de la même trajectoires SPARKLING. 11
plans sont représentés et forment un cylindre. (b), z-vd SOS: empilement
de trajectoires SPARKLING dont la densité et le nombre de shots varient
en fonction de l’altitude. 11 plans sont représentés et forment une boule.
(c), 3D SPARKLING: une trajectoire complètement 3D pour 60 segments.

44) à seulement 45 secondes, tout en préservant la qualité de l’image pour une résolution
isotrope de 0.6 mm et une tranche de 20× 20× 14 cm3. Comme on peut le voir sur la
figure 5, l’approche SPARKLING donne des résultats bien meilleurs que le radial 3D ou
l’approche Poisson disk proposé dans (Vasanawala et al., 2010). Aussi, de la très haute
résolution de 0.3 mm dans le plan a été testée avec notre approche qui s’est montrée à
nouveau très prometteuse (résultats non montrés). Enfin, des résultats préliminaires ont
été faits in vivo sur un volontaire sain, qui sont en accord avec les résultats ex vivo.

Chapitre 5

Dans ce dernier chapitre, on considère un modèle d’acquisition qui prend en compte
les effets de filtrage réalisé au cours de la réception du signal en IRM. En effet, il faut se
souvenir qu’on échantillonne une courbe régulière parcourue continûment dans l’espace
de Fourier. Chaque mesure résulte ainsi d’une sorte de moyennage de l’information de
Fourier parcourue pendant le temps d’échantillonnage. Lors de la conversion du signal
analogique en signal digital, il est en fait réalisé une série de filtrage à passe-bande qui
peuvent corrompre le signal. C’est équivalent à appliquer un filtre de convolution à
chaque segment. C’est ce filtrage que nous intégrons dans notre modèle d’acquisition
et dans notre modèle de reconstruction afin de tenter de corriger les artefacts introduits
par le modèle classique de la transformée de Fourier discrète. Nous montrons ainsi sur
des données simulées et expérimentales que nous arrivons à améliorer la qualité des
images reconstruites grâce à ce modèle plus précis, surtout dans les cas où la distance
dans l’espace-k est de l’ordre de grandeur ou plus grande qu’un pixel à Nyquist. Un
exemple de l’amélioration apportée par notre la méthode est montrée en figure 6 pour
une trajectoire SPARKLING.

4l’iPAT qui veut dire integrated parallel accceleration technique, utilise l’imagerie parallèle avec une recon-
struction GRAPPA (Griswold et al., 2002).
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FIGURE 5: Résultats ex vivo pour une résolution isotrope de 0.6 mm com-
parant les stratégies z-vd stack-of-sparkling, radiale 3D et l’approche 3D
Poisson disk pour un 1140 segments, i.e., un temps d’acquisition de 45

secondes. Le champ de vue est de 200× 200× 140 mm3.
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(a) Reconstruction standard (b) Reconstruction proposée

FIGURE 6: Reconstructions non-linéaires d’un cerveau humain ex vivo avec
une trajectoire SPARKLING, avec (a) et sans (b) prendre en compte l’effet
de filtrage de l’ADC. Les acquisitions ont été réalisées prospectivement

sur un scanner 7 teslas.
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Appendix A

Mathematical details on the
SPARKLING algorithm

A.1 Mathematical model

Let Ω = [0, 1]d denote the Fourier domain with d the dimension. Let π : Ω → R denote
a target probability density function. Following our previous work, we aim at solving:

min
k∈ΩN

1
N2 ∑

1≤i,j≤N
H(k[i]− k[j])− 1

N

N

∑
i=1

∫
Ω

H(x− k[i])π(x) dx, (A.1)

where H is a well chosen function, typically H(x) = ‖x‖2.
Let

Fr(k) =
1

N2 ∑
1≤i,j≤N

H(k[i]− k[j]) (A.2)

and

Fa(k) =
1
N

N

∑
i=1

∫
Ω

H(x− k[i])π(x) dx. (A.3)

The main issue to solve (A.1) is to compute these functions and their derivatives.

A.2 Evaluating Fa and its gradient

We assume that:

π =

(
∑

0≤i,j≤n−1
π[i, j]δi/n,j/n

)
? ψ, (A.4)

where ψ is an interpolation function, typically, a bilinear kernel.
Then, notice that for radial functions H, we have

Fa(k) =
1
N

N

∑
i=1

(H ? π)(k[i]), (A.5)

where k[i] ∈ Ω does not necessarily belong to the grid. The main difficulty is thus to
quickly evaluate (H ? π)(x) and its derivatives off the grid.

This can be done as follows. First, we can construct a discrete filter

φ[i, j] = (ψ ? H)(i/n, j/n) (A.6)
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for −n ≤ i, j ≤ n.
Notice that

(π ? H)(x) =

(
∑

0≤i,j≤n−1
π[i, j]δi/n,j/n

)
? (ψ ? H)(x)

= ∑
0≤i,j≤n−1

π[i, j](ψ ? H)(x− (i/n, j/n))

Now, for x belonging to the grid, i.e. x = (i′/n, j′/n), with (i′, j′) ∈ N2, the above
expression can be simplified as

(π ? H)(x) = (π ? φ)(i′, j′), (A.7)

where - this time - ? denotes the discrete convolution. Hence, it is possible to precompute
π ? φ on a discrete grid with fast Fourier transforms, this yields the values of (π ? H) on
a grid. If the kernel ψ ? H is sufficiently smooth, then, so is π ? H and its values can be
evaluated off the grid by using interpolation functions.

A.3 Evaluating Fr and its gradient

The problem addressed here is to compute:

∂iF(k) =
1

N2

N

∑
j=1
∇H(k[j]− k[i]). (A.8)

This can be done by direct calculation, but at the price of a large complexity of O(N2).
This is the most straightforward approach and can be done in C++ as was done for the
3D version of the algorithm.

On the other hand, the summation can be calculated faster using NFFT-based fast
summations (Fenn and Steidl, 2004). This was done for the 2D version of the SPARKLING
algorithm.
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Titre : L’échantillonnage compressif en IRM: conception optimisée de trajectoires d’échantillonnage pour accélérer l’IRM
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Résumé : L’imagerie par résonance magnétique (IRM) est
l’une des modalités d’imagerie les plus puissantes et les
plus sures pour examiner le corps humain. L’IRM de haute
résolution devrait aider à la compréhension et le diagnostic
de nombreuses pathologies impliquant des lésions submil-
limétriques ou des maladies telles que la maladie d’Alzheimer
et la sclérose en plaque. Bien que les systèmes à haut champ
magnétique soient capables de fournir un rapport signal-sur-
bruit permettant d’augmenter la résolution spatiale, les longs
temps d’acquisition et la sensibilité au mouvement continuent
d’entraver l’utilisation de l’IRM de haute résolution. Malgré le
développement de méthodes de correction du mouvement et
du bruit physiologique, le long temps d’acquisition reste un
obstacle majeur à l’IRM de haute résolution, en particulier
dans les applications cliniques.
Au cours de la dernière décennie, la nouvelle théorie du com-
pressed sensing (CS) a proposé une solution prometteuse
pour réduire le temps d’examen en IRM. Après avoir expliqué
la théorie du compressed sensing, ce projet de thèse pro-
pose une étude empirique et quantitative du facteur de sous-
échantillonnage maximum réalisable grâce au CS pour l’ima-
gerie pondérée en T ∗2 .
En outre, l’application de CS en IRM repose généralement
sur l’utilisation de courbes d’échantillonnage simples telles
que les lignes droites, spirales ou des légères variations de
ces formes élémentaires qui ne tirent pas pleinement parti
des degrés de liberté offerts par le hardware et ne peuvent
être facilement adaptées à une distribution d’échantillonnage
arbitraire. Dans cette thèse, j’ai introduit une méthode ap-
pelée SPARKLING, qui permet de surmonter ces limita-
tions en adoptant une approche radicalement nouvelle de
la conception de l’échantillonnage de l’espace-k. L’acronyme

SPARKLING signifie Spreading Projection Algorithm for Ra-
pid K-space sampLING. C’est une méthode flexible ins-
pirée des techniques de stippling qui génère automatique-
ment, grâce à un algorithme d’optimisation, des courbes
d’échantillonnage non cartésiennes optimisées et compatibles
avec les contraintes hardware de l’IRM en termes d’ampli-
tude de gradient maximale et d’accélération maximale. Ces
courbes d’échantillonnage sont conçues pour répondre à des
critères clés pour un échantillonnage optimal : une distribution
contrôlée des échantillons et une couverture de l’espace-k lo-
calement uniforme. Avant de s’engager dans des acquisitions,
nous avons vérifié que notre système de gradient était bien
capable d’exécuter ces trajectoires complexes. Nous avons
implémenté une méthode de mesure de phase et avons ob-
servé une très bonne adéquation entre trajectoires prescrites
et mesurées.
Enfin, en alliant une efficacité d’échantillonnage avec le
compressed sensing et l’imagerie parallèle, les trajectoires
SPARKLING ont permis de réduire jusqu’à 20 fois le temps
d’acquisition d’un examen IRM T ∗2 par rapport aux acquisi-
tions cartésiennes de référence, sans détérioration de la qua-
lité d’image. Ces résultats experimentaux ont été obtenus à
7 Tesla pour de l’imagerie cérébrale in vivo. Par rapport aux
stratégies d’échantillonnage non-cartésiennes usuelles (spi-
rale et radiale), la technique proposée a également permis
d’obtenir une qualité d’image supérieure. Enfin, l’approche
proposée a été étendue à l’imagerie 3D et appliquée à 3
Tesla pour laquelle des résultats préliminaires ex vivo à une
résolution isotrope de 0.6 mm suggèrent la possibilité d’at-
teindre des facteurs d’accélération très élevés jusqu’à 60 pour
la pondération T ∗2 et l’imagerie pondérée en susceptibilité.

Title : Compressed Sensing in MRI: optimization-based design of k-space filling curves for accelerated MRI

Keywords : Magnetic Resonance Imaging, MRI, Compressed Sensing, k-space trajectories, Acceleration, SPARKLING

Abstract : Magnetic resonance imaging (MRI) is one of the
most powerful and safest imaging modalities for examining the
human body. High-resolution MRI is expected to aid in the
understanding and diagnosis of many neurodegenerative pa-
thologies involving submillimetric lesions or morphological al-
terations, such as Alzheimer’s disease and multiple sclerosi-
sAlthough high-magnetic-field systems can deliver a sufficient
signal-to-noise ratio (SNR) to increase spatial resolution, long
scan times and motion sensitivity continue hindering the utili-
zation of high resolution MRI. Despite the development of cor-
rections for bulk and physiological motion, lengthy acquisition
times remain a major obstacle to high-resolution acquisition,
especially in clinical applications.
In the last decade, the newly developed theory of compressed
sensing (CS) offered a promising solution for reducing the MRI
scan time. After having explained the theory of compressed
sensing, this PhD project proposes an empirical and quantita-
tive analysis of the maximum undersampling factor achievable
with CS for T ∗2 -weighted imaging.
Furthermore, the application of CS to MRI commonly relies
on simple sampling patterns such as straight lines, spirals or
slight variations of these elementary shapes, which do not take
full advantage of the degrees of freedom offered by the hard-
ware and cannot be easily adapted to fit an arbitrary sampling
distribution. In this PhD thesis, I have introduced a method
called SPARKLING, that may overcome these limitations by
taking a radically new approach to the design of k-space sam-

pling. The acronym SPARKLING stands for Spreading Projec-
tion Algorithm for Rapid K-space sampLING. It is a versatile
method inspired from stippling techniques that automatically
generates optimized non-Cartesian sampling patterns compa-
tible with MR hardware constraints on maximum gradient am-
plitude and slew rate. These sampling curves are designed to
comply with key criteria for optimal sampling: a controlled dis-
tribution of samples and a locally uniform k-space coverage.
Before engaging into experiments, we verified that our gra-
dient system was capable of executing the complex gradient
waveforms. We implemented a local phase measurement me-
thod and we observed a very good adequacy between pres-
cribed and measured k-space trajectories. Finally, combining
sampling efficiency with compressed sensing and parallel ima-
ging, the SPARKLING sampling patterns allowed up to 20-fold
reductions in MR scan time, compared to fully-sampled Car-
tesian acquisitions, for T ∗2 -weighted imaging without deterio-
ration of image quality, as demonstrated by our experimental
results at 7 Tesla on in vivo human brains. In comparison to
existing non-Cartesian sampling strategies (spiral and radial),
the proposed technique also yielded superior image quality.
Finally, the proposed approach was also extended to 3D ima-
ging and applied at 3 Tesla for which preliminary results on
ex vivo phantoms at 0.8 mm isotropic resolution suggest the
possibility to reach very high acceleration factors up to 60 for
T ∗2 -weighting and susceptibility-weighted imaging.
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