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1 CHAPTER 1 

Introduction 

1.1 . Overview of central nervous system (CNS) tumours 

Malignant tumours of the central nervous system (CNS) are characterised by high morbidity 

and mortality [1]. Gliomas and meningiomas are the most common types of primary CNS 

tumour [2][3] (Figure 1.1). Gliomas account for almost 30% of all primary CNS tumours, and 

80% of all malignant ones. 

Approximately half of newly diagnosed gliomas are classified as glioblastoma, which is the 

most malignant type of CNS tumour — with median patient survival of approximately 14–17 

months in contemporary clinical trials [4][5][6] and approximately 12 months in population-

based studies [2][7]. 

Figure 1.1 Relative frequency of primary brain and central nervous system tumours.Taken from [8]. 
The figure shows the Central Brain Tumour Registry of the United States (CBTRUS) statistical report, 
which classified central nervous system tumours by histological groupings (n = 343,175). 

During my thesis, the classification of tumours of the CNS by the World Health Organization 

(WHO) have changed. The 2016 CNS WHO stepped forward over the 2007 WHO classification. 

In this introduction some parts reference the earlier classification and some the newer.  
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1.1.1 Histological classification of glioma 

Gliomas are tumours that arise from glial or precursor cells (Figure 1.2). On the basis of their 

histological appearance, they have been traditionally classified as astrocytic, oligodendroglial 

or ependymal tumours and assigned WHO grades I–IV, which indicate different degrees of 

malignancy. 

Figure 1.2 Brain cells and brain tumours. Taken from [9]. Self-renewing, common progenitors are 
thought to produce committed neuronal and glial progenitors that eventually differentiate into 
mature neurons, astrocytes and oligodendrocytes. Although the precise cells of origin for diffuse 
glioma variants and medulloblastoma remain largely unknown, a selection of likely candidates for each 
(dashed arrows) is indicated. 

 

Grade I gliomas pilocytic astrocytomas are benign tumours that occur primarily in children. 

Astrocytomas, oligodendrogliomas and oligoastrocytomas correspond to low-grade (II) or 

high-grade (III and IV), which are invasive tumours and can progress to glioblastoma. Grade 

IV gliomas are glioblastomas including primary and secondary GBM [10][11] (Table 1.3).  
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 Histologic types (grades) 
Age at diagnosis 

(years) 
Survival time  

(years) 

Astrocytic 
tumours 

Pilocytic astrocytoma (I) children >20 

Diffuse astrocytoma (II) young adults 4-10 

Anaplastic astrocytoma (III) 41 2-5 

Glioblastoma (IV) 45-75 1-2 

Oligodendroglial 
tumours 

Oligodendroglioma (II) 50-60 8-20 

Anaplastic Oligodendroglioma (III) 50-60 2-10 

Mixed gliomas 
Oligoastrocytoma (II) 35-45 5-12 

Anaplastic oligoastrocytoma (III) 45 2-8 

Table 1.1 Histological classification of gliomas based on WHO (2007) guidelines. Based on [10]. 

In term of frequency the distribution of the histological subtypes of glioma vary, while GBMs 

account for 56% of all glioma tumours, oligodendrogliomas represent only 5% of cases (Figure 

1.3) 

Figure 1.3 Distribution of primary brain and other CNS gliomas by histology subtypes (N=100,619). 
Taken from CBTRUS Statistical Report: Primary brain and other central nervous system tumours 
diagnosed in the United States in 2010–2014 [2].  
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1.1.2 Epidemiology of glioma  

Gliomas are diagnosed most commonly in middle-age, with a median age at diagnosis of 56 

years in the European population [2][12]. Glioma are rare, with the overall incidence rate for 

all gliomas being 5.5 per 100,000 in Europeans of which about half were glioblastomas [2]. 

These tumours are more common in men, with an incidence rates per 100,000 for 

glioblastomas ranging from 3.95 to 4.03 in men compared with 2.49 to 2.56 in women (Table 

1.2). Glioma shows a regional variation, with an incidence rate of gliomas in Japan being less 

than half of that in Northern Europe [10][11]. The reasons of this regional difference are 

presently not known.  

Mortality rates in glioma differ significantly by histology and age. For example, patients with 

glioblastoma multiform (GBM) have a 5-year survival rate of 2.7% (Table 1.3), whereas 

patients with lower grade gliomas, such as pilocytic astrocytoma, oligodendroglioma, and 

ependymoma, have 5-year survival rates of >70% and patients with diffuse astrocytoma and 

anaplastic astrocytoma have 5-year survival rates <40%. Overall, and for most histologies, the 

5 year survival rate decreases with age. 

 
Median age 

Incidence for 100,000 (95% confidence interval) 

Glioma histology Overall Male Female 

Diffuse astrocytoma 48 0.48(0.47-0.49) 0.55(0.54-0.57) 0.42(0.41-0.43) 
Anaplastic astrocytoma 53.0 0.40 (0.39-0.41) 0.46 (0.44-0.47) 0.35 (0.33-0.36) 
GBM 64.0 3.20 (3.17-3.23) 3.99 (3.95-4.03) 2.52 (2.49-2.56) 
Oligodendroglioma 43.0 0.24 (0.23-0.25) 0.28 (0.26-0.39) 0.21 (0.20-0.22) 
Anaplastic oligodendroglioma 50.0 0.11 (0.10-0.11) 0.12 (0.11-0.13) 0.09 (0.09-0.10) 
Oligoastrocytoma 41.0 0.19 (0.18-0.20) 0.22 (0.21-0.23) 0.16 (0.15-0.17) 

Table 1.2 Age-adjusted incidence rates per 100,000 by histology and sex. Based on Central Brain 
Tumor Registry of the United States (CBTRUS) Statistical Report: Primary brain and other central 
nervous system tumours diagnosed in the United States in 2010–2014 [2]. 

 

Glioma histology 5-year relative survival 
(95% confidence interval) 

Other glioma 38.5 (35.4-41.7) 
Astrocytoma unspecified 38.5 (35.9-41.1) 

Oligodendroglioma 67.2 (62.5-71.6) 
Anaplastic astrocytoma 15.8 (13.6-18.2) 

Anaplastic oligodendroglioma 31.5 (25.0-38.3) 
Glioblastoma Multiform 2.7 (2.3-3.2) 

Table 1.3 Five-year relative survival across all Europe. Data from [15].  
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1.2 . Molecular classification of glioma 

In recent years, there has been substantial progress in our understanding of the molecular 

pathogenesis of glioma allowing generation of a molecular classification of these tumours. 

The distinction of glioma entities based on their IDH mutation and the status of the co-

deletion of chromosome arms 1p and 19q was the fundamental improvement in the 2016 

WHO classification [16] (Table 1.4)  comparing to previous 2007 classification. 

The work in this thesis is focussed on the genetic study of the diffuse astrocytic and 

oligodendroglia tumours. 

The diffuse astrocytic and oligodendroglial tumour category of brain cancers comprises IDH-

mutant astrocytic gliomas of WHO grades II–IV, IDH-mutant and 1p/19q co-deleted 

oligodendroglial tumours of WHO grades II–III, IDH-wild-type glioblastomas of WHO grade IV, 

and a newly introduced class of histone H3-K27M (H3-K27M)-mutant diffuse midline gliomas 

of WHO grade IV (Table 1.4).  
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Tumour classification WHO grade 

Diffuse astrocytic and oligodendroglial tumours  

Diffuse astrocytoma, IDH-mutant II 

• Gemistocytic astrocytoma, IDH-mutant  
Diffuse astrocytoma, IDH-wild-type* II 

Diffuse astrocytoma, NOS II 

Anaplastic astrocytoma, IDH-mutant III 

Anaplastic astrocytoma, IDH-wild-type* III 

Anaplastic astrocytoma, NOS III 

Glioblastoma, IDH-wild-type IV 

• Giant-cell glioblastoma  
• Gliosarcoma  
• Epithelioid glioblastoma*  
Glioblastoma, IDH-mutant IV 

Glioblastoma, NOS IV 

Diffuse midline glioma, H3-K27M-mutant IV 

Oligodendroglioma, IDH-mutant and 1p/19q co-deleted II 

Oligodendroglioma, NOS II 

Anaplastic oligodendroglioma, IDH-mutant and 1p/19q co-
deleted 

III 

Anaplastic oligodendroglioma, NOS III 

Oligoastrocytoma, NOS‡ II 

Anaplastic oligoastrocytoma, NOS‡ III 

 

Table 1.4 2016 WHO classification of diffuse astrocytic and oligodendroglial tumours. Based on [16]. 
NOS categories are reserved for the rare instances that a tumour cannot be molecularly tested or that 
test results remain inconclusive. H3-K27M, K27M-mutated histone H3; NOS, not otherwise specified. 
*Provisional tumour entities or variants. ‡The diagnosis of 'oligoastrocytoma, NOS' or 'anaplastic 
oligoastrocytoma, NOS' is discouraged in the 2016 WHO classification of gliomas[16]: oligoastrocytic 
(mixed) gliomas should be assigned either to an astrocytic or an oligodendroglial tumour entity via 
appropriate molecular testing for IDH1/2 mutation and 1p/19q codeletion. §The pilomyxoid 
astrocytoma variant is not assigned to a definite WHO grade. 

 

IDH mutation (IDH1 or IDH2 mutation) is more common in WHO grade II and III gliomas (60-

80%) than in WHO IV glioblastoma (5-10%) [17][18]. IDH-mutation is among the earliest 

genetic aberrations that occur during the development of glioma [19]. Theses mutation have 

been identified as driver genes in low grade gliomas and secondary GBMs, but not primary 

GBM [19][20][21]. Findings in mice indicate that IDH mutation alone is not sufficient for 

tumourigenesis [22]. The exact mechanism by which IDH mutations contribute to glioma 

progression remains to be established, but could result from metabolic changes [23]. The 

association of IDH mutated gliomas with a glioma CpG island methylator phenotype (G-CIMP) 
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[24], suggest that progression in glioma is driven by large scale epigenetic changes (Figure 

1.4) 

 

Figure 1.4 Biochemical consequences of glioma-associated isocitrate dehydrogenase 
mutations.Taken from [8]. 

 

The co-deletion of chromosomes arms 1p and 19q is caused by an unbalanced (1;19)(q10;p10) 

translocation [25]. IDH-mutation associated with 1p/19q co-deletion is the genetically 

signature of oligodendroglioma tumours.  

TERT promoter mutation is associated with the majority of glioma with IDH mutation and 

1p/19q co-deletion [20][26][27]. In addition oligodendroglial tumours have been shown to 

contain FUBP1 and CIC mutation in more than one and two thirds of patients, respectively 

[28]. 
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Astrocytomas as well as secondary GBMs (which progress from astrocytomas) commonly 

contain mutations in TP53 and ATRX. These mutation are mutually exclusive with 1p/19q co-

deletion suggesting that following IDH-mutation, acquisition of either 1p/19q co-deletion or 

TP53/ATRX mutation determines differentiation along the oligodendroglial or astrocytic 

lineages respectively [20]. The remaining subset (20%) of low-grade gliomas that do not 

contain IDH mutations are typically grade III and are genetically and clinically similar to 

primary GBMs [20]. 

EGFR amplification is detectable in about 40% of IDH-wild-type glioblastomas, with half of 

these tumours also harbouring a genetic rearrangement that results in deletion of EGFR exons 

2–7 [29] referred to as EGFRvIII [30]. Additionally, PI(3)K pathway components are often 

mutated, and CDKN2A and NF1 tumour suppressor genes are commonly deleted [20][31]. 

 

1.2.1 Molecular model of glioma development 

In 2015, Eckel-Passow et al [32] developed a classification that stratified gliomas into five 

subtypes based on combinations of IDH mutation, TERT promoter mutation and 1p/19q co-

deletion [32]. The different groups were found to be associated with distinct tumour 

alterations, age of diagnosis distributions and survival (Table 1.5 and Figure 1.5). In both low 

grade and GBM tumours patients the TERT promoter mutation only group had the poorest 

overall survival (OS) while in low grade glioma triple-positive tumours and gliomas with TERT 

and IDH mutations had a better survival than patients with triple-negative gliomas [32].  
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Figure 1.5 Adjusted estimates of overall survival in the glioma molecular groups. Taken from [32]. Overall Kaplan-Meier survival estimates were adjusted 
for sex and age at diagnosis (on the basis of the 2010 US white population) with the use of the reweighted (direct adjustment) method. Because there was 
only one triple-positive case among patients with grade IV gliomas, this group was not included in Panel B. 
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Table 1.5 Summary of somatic alterations in adult gliomas. Adapted from [32]. IDH indicates mutation in either IDH1 or IDH2. TERT indicates TERT promoter 
mutation. Chr, chromosome. 

 

 Molecular classification groupings 

Feature Triple positive TERT and IDH IDH Triple negative TERT 

Grouping 
alterations 

IDH, 1p/19q, and 
TERT 

TERT and IDH IDH - TERT 

Histology Oligodendroglioma/ 
oligoastroctyoma 

Astroctyomas/ 
oligoastrocytoma 

GBM (67%) GBM (85%) + 
astrocytoma 

No specific association 

Mean age at 
diagnosis 

44 years 46 years 37 years 50 years 59 years 

Grade II/III 
(615) 

29% 5% 45% 7% 10% 

Grade IV (472) <1% 2% 7% 17% 74% 

Common 
acquired 
mutations 

CIC, FUBP1, 
NOTCH1, either 
PIK3CA or PIK3R1 

TP53 TP53 and ATRX EGFR, PTEN and NF1 EGFR, EGFRvIII, PTEN, NF1, RB1, 
either PIK3CA or PIK3R1 

Common 
acquired copy-
number 
alterations 

Chr 4 loss, 
hemizygous 
CDKN2A/B loss 
“genomically quiet” 

Chr 7 gain, 8q24 (MYC) 
duplication, 
homozygous CDKN2A/B 
loss, PTEN deletion 

Chr 7q duplication, 
8q24 (MYC) 
duplication, 
hemizygous 
CDKN2A/B loss, 19q 
deletion 

Similar to TERT 
mutation only (at 
lower prevalence) 

Chr 4 loss, chr 7 gain, chr 19 gain, 
EGFR  amplification, CDKN2A/B 
homozygous loss, PTEN deletion 
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1.3 . Clinical and biological aspects of glioma 

1.3.1 Glioma origins 

The cell of origin for glioma has been an issue for discussion, with evidence pointing to neural 

stem cells (NSCs), or NSC-derived astrocytes or oligodendrocyte precursor cells (OPCs). 

Consideration of cell of origin suggests that glioma formation may result from acquisition of 

mutations in a variety of neural and glial cell backgrounds. 

For example, GBMs have further been sub-classified based on gene expression signatures into 

classical, mesenchymal, proneural and neural subtypes [33]. Moreover, further subclasses on 

the basis of microRNA expression resemble radial glia, oligoneuronal precursors, neuronal 

precursors, neuroepithelial/neural crest precursors or astrocyte precursors [34]. 

1.3.2 Prognosis of glioma 

Prognosis is dependent on both grade and molecular profile: diffuse gliomas are divided into 

three prognostic molecular subgroups: the IDH wild type have the poorest outcome (median 

OS is 2 years for grade 3), the IDH mutation and 1p/19q co-deleted gliomas have the best 

survival (median OS >14 years for grade 3) and the IDH mutated non co-deleted (median OS 

5-7 years for grade 3). Outcome is also dependent on age, and performance status. 

1.3.3 Treatments of glioma  

Gliomas grade III and IV are typically treated by surgical resection (if possible) followed by 

radiotherapy and chemotherapy. Alkylating agents, notably nitrosourea and temozolomide, 

have shown benefits on patient survival particularly in tumours with IDH mutation and/or 

with MGMT promoter methylation [35][36]. Grade IV (ie glioblastomas) are treated with 

radiotherapy and concomitant and adjuvant temozolomide [37]. In grade III gliomas, the 

modality and type of chemotherapy is dependent on genomic profile: IDH wild type grade III 

are assimilated to GBM (see above), IDH mutated co deleted are treated with radiotherapy 

and adjuvant nitrosourea based chemotherapy (PCV), IDH mutated non co-deleted are 

treated with radiotherapy and adjuvant chemotherapy (PCV or TMZ) [38][39][40][41]. 

Management of grade II gliomas is based on surgical resection which may be iterative, with 

wait and see periods, chemotherapy, and radiotherapy associated with adjuvant 

chemotherapy in case of “high risk” grade II glioma [42]. 
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There is no standard of treatment at recurrence. Targeted therapies, antiangiogenic therapies 

[4][43][44], and immunotherapies have been disappointing so far. While, targeting EGFR 

initially appeared to be an attractive therapeutic strategy in GBM tumours, clinical 

effectiveness has so far been limited by both upfront and acquired drug resistance [45]. A 

vaccine targeting the most common IDH1 alteration (p.Arg132His) has recently been 

demonstrated to introduce anti-tumour immunity and has been proposed as a viable future 

therapy for tumours with this mutation [46]. 
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1.4 . Genetic architecture of susceptibility to cancer 

1.4.1 Overview 

Genetic susceptibility, also called genetic predisposition or genetic risk, refers to the increased 

risk of developing a particular disease based on a person's germline DNA. The two- to three-

fold familial risks associated with glioma and other cancers are compatible with a range of 

effect sizes and frequencies of predisposition alleles observed in the population. The 

composition of risk alleles for a given disease is typically described as the genomic 

architecture of disease susceptibility (Figure 1.6). More than 40 years ago, Anderson [47] 

stated that the magnitude of these familial risks seen for almost all cancers was not indicative 

of strong genetic effects but instead suggested a mechanism involving many genes with 

smaller effect acting in concert with environmental or non-genetic factors with larger and 

more important effects [47]. 

 

1.4.2 Multi-locus/multi-allele hypothesis 

In terms of evidence to validate these models, a number of rare high penetrance cancer 

susceptibility genes were successfully identified by linkage studies of highly selected families 

across 1980s-2000s, hence validating the “multi-locus/multi-allele” model. Examples of these 

include most of the currently known high-penetrance susceptibility genes, for example BRCA1 

and BRCA2 in breast cancer, MLH1 in colorectal cancer and CDKN2A in melanoma 

[48][49][50][51] (Figure 1.6). In recent years the search for additional rare high penetrance 

mutations has continued, using High-Throughput Sequencing (HTS) techniques, which offer 

greater resolution than genetic linkage. In fact the increasing cost effectiveness, quality, 

throughput and bioinformatics resources supporting HTS are enabling comprehensive studies 

of the entire exome or genome in large patient cohorts.  
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Figure 1.6 Genetic architecture of cancer risk. Taken from [52].This graph depicts the low relative 
risks (RRs) associated with common, low-penetrance genetic variants (such as single nucleotide 
polymorphisms (SNPs) identified in genome-wide association studies (GWAS)); moderate RRs 
associated with uncommon, moderate-penetrance genetic variants (such as ataxia telangiectasia 
mutated (ATM) and checkpoint kinase 2 (CHEK2)); and higher RRs associated with rare, high-
penetrance genetic variants (such as pathogenic mutations in BRCA1 and BRCA2 associated with 
hereditary breast and ovarian cancer). BRIP1, BRCA1 interacting protein C-terminal helicase 1; MLH1, 
mutL homologue 1; MSH2, mutS homologue 2; PALB2, partner and localizer of BRCA2. 

 

Increased risk of glioma is now recognised to be associated with a number of these Mendelian 

cancer predisposition syndromes, notable neurofibromatosis (NF1 and NF2), Li-Fraumeni and 

Turcot’s [53][54][55][56][57][58][59][60][61][62]. Additionally, germline mutation of CDKN2A 

has been reported to be a cause of the astrocytoma-melanoma syndrome [63][64]. A number 

of these cancer syndromes are now recognised to be associated with an increased risk of 

glioma (Table 6). 

  



33 
 

Table 1.6 Inherited cancer syndromes associated with high risk of glioma. 

 

Inherited mutations in these genes are typically very rare at a population level and are 

consistent with Knudson’s “two-hit” hypothesis of cancer development [67]. Collectively 

however these syndromes are rare and account for little of the two-fold of familial risk of 

glioma in the population [68]. 

1.4.3 More recent models of genetic susceptibility to glioma 

The identification of susceptibility genes to glioma through linkage analysis has been limited. 

In a segregation study of four Finnish families with two or more gliomas non-significant 

linkage was attained at 15q23-q26.3 [69]. In 2011, linkage analysis by Shete et al using high-

density SNP arrays of 46 US families provided suggestive linkage at 17q12-q21.32 [70]. 

however replication genotyping of an independent series of 29 families has failed to provide 

evidence for causal basis of the linkage signal [71][72]. 

  

Syndrome Inheritance Gene Location Tumours Reference 

Li-Fraumeni Dominant TP53 17p13.1 

Sarcoma, breast, 
brain, leukaemia, 
adrenocortical 
carcinoma 

[53][54][55]
[57][58][59] 

Turcot’s  type 1 
(hereditary 
nonpolyposis 
cancer syndrome) 

Dominant/ 
Recessive 

MLH1, 
MSH2, 
MSH6, 
PMS2 

3p22.2, 
2p16.3, 
2p21, 
7p22.1 

Colorectal 
carcinoma, glioma 

[62][65] 

Turcot’s type 2 Dominant APC 5q22.2 
Colorectal 
carcinoma, glioma 

[65] 

Neurofibromatosis 
type 1 (NF1) 

Dominant NF1 17q11.2 

Glioma, 
neurofibroma, 
pheochromocytom
a, meningioma, 
schwannoma 

[61] 

Neurofibromatosis 
type 2 (NF2) 

Dominant NF2 22q12.2 

Bilateral acoustic 
schwannoma, 
meningioma, 
glioma, 
neurofibroma, 
ependymoma 

[60] 

Melanoma-
astrocytoma 

Dominant CDKN2A 9p21.3 
Melanoma, 
astrocytoma 

[63][64] 

BRCA Dominant 
BRCA1, 
BRCA2 

17q21.31, 
13q13.1 

Breast, ovarian, 
prostatic, 
pancreatic, glioma 

[66] 
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Linkage studies are not powered to detect moderate and low-penetrance alleles conferring 

more modest risk of disease, which are unlikely to cause multiple cases in families [73]. 

Statistical modelling of glioma has suggested that much of the heritable risk is polygenic and 

enshrined in common risk variants, involving the co-inheritance of multiple genetic factors 

(Figure1.7).  

 

 

Figure 1.7 Polygenic model of disease susceptibility. The distribution of risk alleles in both cases and 
controls follows a normal distribution. However, cases have a shift towards a higher number of risk 
alleles. 

 

1.4.3.1 Rare, moderately-penetrant disease-causing variants 

The “rare variant” hypothesis suggests that a proportion of the remaining heritability of 

glioma could be due to the combined effect of rare, moderately-penetrant risk alleles [74]. 

This hypothesis suggests that such variants act independently and confer modest but 

detectable increases in risk. Studies of rare variants through sequencing of candidate genes 

in glioma cases and controls have failed to identify genes associated with glioma. A recent 

study of 1,662 cases and 1,301 controls failed to replicate 52 variants previously identified by 

candidate gene studies [75].  
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Thus in summary, both models of genetic susceptibility have proven to be correct and across 

all tumour types wide continuums of differing genomic architectures have been observed. For 

example prostate cancer has a genetic susceptibility predominantly based on common low risk 

alleles, whereas in ovarian cancer a very substantial proportion is accounted for by rare high 

penetrance mutations, with the majority of other cancers somewhere in between. 
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1.5 . Identification of common low-penetrance allele 

The “common disease, common variant” hypothesis posits that a substantial proportion of 

the genetic risk of common diseases can be accounted for by the action of multiple low-

penetrance alleles that have a relatively high population frequency [76]. While each variant 

may individually cause very modest increases in risk, collectively they could underscore a 

substantial proportion of disease genetic risk. These alleles are highly unlikely to cause 

multiple cases in families and therefore would have eluded prior detection through linkage 

studies [73]. 

1.5.1 Genome-wide association studies  

Genome-wide association studies (GWAS) emerged in 2005 as a powerful tool for the 

identification of common genetic markers associated with disease risk. A marker allele is 

associated with disease if one allele is found significantly more frequently in cases than in 

disease-free controls. Single nucleotide polymorphisms (SNPs), the marker variants generally 

used for association studies, are common in the human genome and account for over 90% of 

all sequence variation [77]. Adjacent SNPs in the genome are not randomly inherited; they 

are strongly correlated and likely to co-segregate together in a haplotype. The strong 

correlation of genetically nearby SNPs is termed linkage disequilibrium (LD); the strength of 

which decreases rapidly with increasing genomic distance [76]. The nature of this haplotype 

structure allows certain SNPs across the genome to be selected as “tagging SNPs”, which are 

expected to capture the majority of sequence variation across a given region (Figure 1.7).   
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Figure 1.8 Tagging SNPs. It is possible to identify genetic variation without genotyping every SNP in a 
chromosomal region. For example through genotyping SNP 2 it is possible to infer the genotypes of 

SNP 1, SNP 4 and SNP 7 

 

GWAS arrays typically directly genotype 300,000-1,000,000 tagging SNPs (tag SNPs) across 

the genome simultaneously. They allow identification of regions associated with a disease or 

trait (termed “risk loci”) without prior knowledge of genomic location or function. The power 

of an association study is the likelihood of detecting a true genetic association. The sample 

size required to yield sufficient power is dependent on the frequency of the disease allele 

under study, the effect size of the variant on the trait of interest and the significance threshold 

required to declare a true association. The main advantage of the association design over 

linkage studies is that single cases are much more readily available than large extended 

pedigrees. This allows for much larger sample sizes and therefore greater power to detect 

variants with small effects. Additionally, multiple studies can be combined in a meta-analysis 

resulting in further increases in power. An alternative approach is to select cases that are 

genetically enriched for disease, such as those with a family history or early age of disease 

onset [78]. Since 2005 GWAS have been successfully applied across a broad range of disease 

types, and the NHGRI-EBI catalogue of published GWAS [79] currently lists over 13,000 

published disease associating SNPs. GWAS have also been extensively applied to cancer, with 

disease-associated SNPs identified for the majority of tumour types.  
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1.5.2 Imputation 

Risk SNPs identified through GWAS represent proxies for the association signal but are not 

themselves necessarily the functional or causative variant at the risk locus. The causative SNP 

in the association is likely to be correlated with the sentinel tag SNP at the GWAS association 

peak while not being directly genotyped on a GWAS array. These SNPs can be recovered and 

the disease risk locus fine-mapped through imputation, which is a computational method that 

aims to predict the likely genotypes at un-genotyped loci across the genome. This method 

makes use of the information provided by haplotypes in a reference panel of sequenced 

samples such as the 1000 Genomes project [80] and UK10K project [81] (Figure 1.10). 

Additionally, a genome-wide approach to imputation can be used to identify new regions of 

association at variants that are incompletely tagged by GWAS tag SNPs or at 

insertion/deletions (indels) that are not fully captured by GWAS arrays. This genome-wide 

imputation approach has been successfully implemented in a recent study which identified 

rare variants in BRCA2 and CHEK2 with a large effect on lung cancer risk (OR>2.4) [82]. 

Imputation is limited by the choice of reference panel, the quality and size of which can impact 

on imputation fidelity. Therefore robust methodological practices are required to avoid 

erroneous associations, however when conducted correctly imputation can be a valuable tool 

in risk loci discovery [83]. 

 
Figure 1.9 Overview of Imputation.Adapted from [84].  
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1.6 . Genetic susceptibility to glioma 

1.6.1 Association studies in glioma  

Outside of the work detailed in this thesis, fourteen glioma susceptibility loci have been 

identified in European populations (Table 1.7 

Table) [83][85][86][87][88][89][90][91].In 2009 Shete et al carried out the first glioma GWAS 

[85] that comprised a discovery case-control series of UK and European-American individuals 

(totalling 1,878 cases and 3,670 controls) and replication series of French, German and 

Swedish individuals (totalling 2,545 cases and 2,953 controls). This study identified five 

susceptibility loci at 5p15.33, 8q24.21, 9p21.3, 11q23.3 and 20q13.33 [85]. The loci at 9p21.3 

and 20q13.33 were independently confirmed by Wrensch et al [89] in a contemporaneous 

study of European-American individuals comprising a discovery phase of 692 high-grade 

glioma cases and 3,992 controls as well as a replication phase of 176 high-grade glioma cases 

and 174 controls [89]. In 2011, a GWAS carried out by Sanson et al [87], making use of data 

from the UK and European-American studies previously reported by Shete et al [80] as well 

as two additional case-control series from France and Germany (totalling 4,147 cases and 

7,435 controls). This study identified 7p11.2 as a susceptibility locus for glioma, which 

contained two statistically independent SNP associations with glioma risk [83]. In 2014 a 

GWAS was carried out by Walsh et al [90] comprising a UK and European-American discovery 

series of 1,013 high-grade glioma cases and 6,595 controls (in part overlapping with the study 

of Wrensch et al [89]), as well as a European-American replication series of 631 GBM cases 

and 1,141 controls. This study reported a novel glioma risk locus at 3q26.2 (near TERC) [90]. 

 

Most recently Kinnersley et al [92] performed a meta-analysis of GWAS data previously 

generated on four non-overlapping case–control series of Northern European ancestry, 

totalling 4,147 cases and 7,435 controls (comprising the previous data; the UK-GWAS [93], 

the French-GWAS [87], the German-GWAS [87] and the US-GWAS [85]). The study led to the 

identification of additional susceptibility loci at 12q23.33, 10q25.2, 11q23.2, 12q21.2 and 

15q24.2 and taking the total count of risk loci to 12 [92]. Intriguingly across all of the four 

GWAS data sets the authors did not replicate the association between rs1920116 (near TERC) 

at 3q26.2 and risk of high-grade glioma recently reported by Walsh et al[91]. 
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In addition to this, a sequence-based association study in the Icelandic population led to the 

discovery of 17p13.1 (TP53) as a risk locus for several cancers including glioma. The 

association with glioma was confirmed in an independent European study [83]. To refine the 

association signal at 8q24.21 in glioma, the region was fine-mapped by sequencing as well as 

statistical imputation of pre-existing GWAS datasets. This led to the identification of 

rs55705857 as being responsible for the 8q24.21 glioma association, with the SNP exhibiting 

a much larger effect size than the initial GWAS tagSNPs and being highly restricted to low-

grade IDH mutated glioma [86][91]. 
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Table 1.7 Glioma risk loci identified outside of the work detailed in this thesis. Odds ratios derived with respect to the risk allele, highlighted in bold. Risk 
allele frequencies are according to the European population in 1000 Genomes Project. RAF, risk allele frequency. *Associations are statistically independent.  
 

Locus SNP Alleles RAF P-value Odd ratio Reported 
subtype 

Reference 

3q26.2 rs1920116 A/G 0.710 8.3x10-9 1.30 GBM [90] 
5p15.33 rs2736100 C/T 0.499 1.4x10-15 1.39  GBM [85] 
7p11.2 rs2252586 T/G 0.281 2.09x10-8 1.18 GBM [87] 
7p11.2 rs11979158 A/G 0.83 7.03x10-8 1.23 GBM [87] 
8q24.21 rs55705857 A/G 0.057 2.3x10-94 4.3 Non-GBM [85] 
9p21.3 rs4977756 T/G 0.40 1.41x10-12 1.22 GBM [85][89] 
10q25.2 rs11196067 A/T 0.41 4.32x10-8 1.09 Non-GBM [92] 
11q23.2 rs648044 A/G 0.38 6.26x10-11 1.25 Non-GBM [92] 
11q23.3 rs498872 G/C 0.307 1.07x10-8 1.18 Non-GBM [85] 
12q21.2 rs12230172 G/A 0.45 7.35x10-11 1.00 Non-GBM [92] 
12q23.3 rs3851634 T/C 0.27 3.02x10-9 1.00 GBM [92] 
15q24.2 rs1801591 G/A 0.10 5.71x10-9 1.36 Non-GBM [92] 
17p13.1 rs78378222 T/G 0.01 6.86x10-24 3.74 All [88] 
20q13.33 rs6010620 T/C 0.80 4.7x10-19 1.56  GBM [85][89] 
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1.6.2 Perspectives from glioma GWAS 

The glioma GWAS risk loci so far provide support for a polygenic model of disease 

susceptibility. Aside from the fine-mapped associations at 8q24.21 and 17p13.1, the glioma 

GWAS SNPs identified so far are relatively common (European MAF>0.2) and have modest 

effect sizes (1.18<OR<1.56). The loci implicate genes known to be important in glioma and 

cancer biology, for example EGFR at 7p11.2, CDKN2A/B at 9p21.3, MYC at 8q24.21, TP53 at 

17p13.1. Additionally, through identification of risk loci at TERC (3q26.2), TERT (5p15.33) and 

RTEL1 (20q13.33) GWAS associations reveal telomere maintenance as an important feature 

in glioma progression. 

 

Recent methods allow the estimation of SNP-based heritability from GWAS datasets and have 

been applied to a variety of complex traits including cancer [94][95]. Analysis performed by 

Kinnersley et al [96] shows that substantial proportion (approximately 25%) of the heritability 

of developing glioma can be ascribed to common genetic variation. These results suggest that 

most of the heritable risk attributable to common genetic variants remains to be identified 

and that further GWAS efforts will lead to the identification of additional risk loci.  
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1.7 . Strategies to identify novel glioma susceptibility alleles 

Collectively, the architecture of glioma predisposition encompasses a small proportion of 

high-penetrance single gene mutations as well as the combined effect of multiple common 

low-penetrance polymorphisms (Figure 1.11). 

 

Figure 1.10 Architecture of glioma predisposition. Graph of allele frequency against relative risk for 
glioma risk variants. Highlighted are the three major classes of risk allele, and the methods used to 
identify them. GWAS, genome-wide association study; MMR, mismatch repair. 
 

1.7.1 GWAS, Imputation and meta-analysis 

Given that many GWAS exhibit long tails of associations with small effect sizes, much of the 

underlying genetic architecture of cancer susceptibility may be due to a large number of 

common susceptibility alleles, which individually account for a small proportion of the 

inherited risk [97]. New susceptibility loci are likely to be identified through imputation using 

larger reference panels and generation of larger GWAS [96], involving large-scale meta-

analysis and replication. Additionally, given that many of the currently identified glioma 

GWAS risk SNP show a degree of specificity to glioma histological subtypes it is therefore likely 
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that further studies combining pre-existing and additional GWAS datasets with subtype data 

will identify further glioma risk loci.  

1.7.2 Next-generation arrays 

Low-frequency risk variants (MAF ~1%) are hypothesised to contribute significantly to the risk 

of glioma. While current GWAS arrays are designed to capture common risk variants, they do 

not adequately capture variation at MAF < 5% [98][99]. Using pools of reference haplotypes 

such as that provided by the 1000 genomes project and UK10K project, whole-genome 

imputation may extend the frequency range for which associations can be detected from 

existing datasets [80][81]. 

Recently there has been development of new disease specific arrays such as the Illumina 

OncoArray which contains approximately 533,000 markers with nearly 50% of the markers 

selected as a GWAS backbone (Illumina HumanCore). These markers were selected to tag the 

large majority of known common variants, via imputation. The remaining markers were 

selected from the disease consortia representing the main cancer sites [100]. These arrays 

enable the identification of new susceptibility loci, performing fine mapping of new or known 

loci associated with either single or multiple cancers, assessing the degree of overlap in cancer 

causation and pleiotropic effects of loci that have been identified for disease-specific risk, and 

jointly model genetic, environmental and lifestyle related exposures. 

1.7.3 Functional annotation of risk SNPs 

Many functional classes of genetic variation have been implicated as the basis of risk loci 

identified from GWAS (Figure 1.12). A small number of the loci identified from cancer GWAS 

directly impact on the amino acid sequence of the expressed protein. The mechanistic 

interpretation of such variants is presumed to be relatively simple, owing to the implied direct 

relationship between genotype and function [82][101]. Similarly, a direct relationship can be 

inferred for those variants affecting RNA processing [88] and those affecting splice sites such 

as the inhibitory splice isoform [102]. However, it is possible that coding variants could have 

more subtle effects that do not necessarily involve disrupting protein function but instead 

involve tagging functional non-coding variants. 

The majority of risk loci map to non-coding regions of the genome (for example, to gene 

introns or promoters and intergenic regions). Risk loci identified from GWAS have been 



 

45 
 

demonstrated to map to genomic regions of cell-type-specific active chromatin and show an 

over-representation of expression quantitative trait loci, methylation quantitative trait loci 

[103][104] and transcription factor (TF) binding [105]. Chromatin conformation studies have 

helped link regulatory regions, which SNPs identified by GWAS localise to, with their 

respective target genes [106][107].  

To date, relatively few risk loci have been comprehensively studied. However, insights into 

the genetic and biological basis of cancer susceptibility mediated through common variation 

are emerging. 

 

Figure 1.11 Potential molecular mechanisms by which risk polymorphisms mediate cancer 
susceptibility. Taken from [52] The A>G polymorphism is affecting gene transcription by altering 
transcription factor (TF) binding through a looping promoter–enhancer-complex interaction (part a); 
the A>G polymorphism occurs at an intron splice site and results in intron retention, thereby affecting 
mRNA processing (for example, by modulating splicing and poly-adenylation) (part b); the A>G 
polymorphism leads to the generation of a novel microRNA binding site on the large intergenic non-
coding RNA (lincRNA) (part c); and the A>G polymorphism affects the protein sequence by causing an 
amino acid substitution of tyrosine to cytosine (part d). GWAS, genome-wide association studies; 
SNPs, single nucleotide polymorphisms. 
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1.8 . Study aims and scope of enquiry  

The identification of the discussed risk loci to glioma is consistent with architecture of 

inherited predisposition to glioma involving both high-penetrance mutations in single genes 

and multiple low-penetrance risk SNPs. However, the estimation of SNP-based heritability 

(approximately 25%), suggest that most of the heritable risk attributable to common genetic 

variants remains to be identified. In addition, the discovery of a new recurrent somatically 

mutated gene help to a better classification of glioma entities and will offer the potential to 

support drug development and advance precision medicine for these tumours. 

 

The work detailed in this thesis was therefore aimed at gaining further insight into these 

questions, studying both the inherited genetic basis and somatic mutational features of 

glioma, making use of currently available technologies and analytical methods. It is anticipated 

that this research will lwad to increased insight into the biological and genetic basis of glioma 

development, with potential to support the development of improved treatment strategies 

and predictive biomarkers of therapeutic outcome. 

Specifically: 

 Chapter 3 reports on the identification of novel common germline risk loci for glioma 

 Chapter 4 reports on the investigation of the relationship between risk SNPs and 

glioma molecular subtype. 

 Chapter 5 reports the results of somatic whole-exome sequencing of a series of glioma 

subgroup (anaplastic oligodendroglioma) 
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2 CHAPTER 2 

Materials and methods 

2.1 . Subjects and samples  

The case/control samples and datasets used in this thesis can be described as follows: 

2.1.2  Germline gliomas cases controls samples 

Here I describe the GWAS data from seven studies used in Chapter 3. Cases and controls 

samples used in Chapter 4 are described in 4.2.1. 

GICC GWAS 

Studies participating in GICC comprised 5,189 glioma cases and 3,827 controls that were 

ascertained through centers in the USA, Denmark, Sweden and the UK. Cases had newly 

diagnosed glioma, and controls had no personal history of central nervous system tumour at 

the time of ascertainment. Table 2.1 describe the summary characteristics of the GICC sub-

studies. Detailed information regarding recruitment protocol is given in Amirian et al [108].  

UK GWAS 

The previously published UK GWAS [85][87][92] was based on 636 cases (401 males; mean 

age 46 years) of Northern European ancestry who were ascertained through the INTERPHONE 

study [93]. Individuals from the 1958 Birth Cohort (n = 2,930) served as a source of controls 

[109]. 

German GWAS 

The German GWAS published in Kinnersley et al [92], comprised 880 patients of Northern 

European ancestry who had undergone surgery for a glioma at the Department of 

Neurosurgery, University of Bonn Medical Center, between 1996 and 2008. Control subjects 

were taken from three population studies: KORA (Co-operative Health Research in the Region 

of Augsburg; n = 488) [110]; POPGEN (Population Genetic Cohort; n = 678) [111] and the Heinz 

Nixdorf Recall study (n = 380) [112]. 
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MDA GWAS 

The MDA GWAS [85] was based on 1,281 cases of Northern European ancestry (786 males; 

mean age 47 years) who were ascertained through the MD Anderson Cancer Center, Texas, 

between 1990 and 2008. Individuals from the Cancer Genetic Markers of Susceptibility 

(CGEMS, n = 2,245) studies served as controls [113][114]. 

UCSF adult glioma case-control study (SFAGS–GWAS) 

The SFAGS-GWAS included participants of the San Francisco Bay Area Adult Glioma Study 

(AGS). Details of subject recruitment for AGS have been reported previously 

[32][89][91][115][116]. Briefly cases were adults (>18 years of age) with newly diagnosed, 

histologically confirmed glioma. Population-based cases who were diagnosed between 1991 

and 2009 (series 1–4) and who were residing in the six San Francisco Bay area counties were 

ascertained using the Cancer Prevention Institute of California's early-case ascertainment 

system. Clinic-based cases who were diagnosed between 2002 and 2012 (series 3–5) were 

recruited from the UCSF Neuro-oncology Clinic, regardless of the place of residence. From 

1991 to 2010, population-based controls from the same residential area as the population-

based cases were identified using random digit-dialing and were frequency matched to 

population-based cases for age, gender and ethnicity. Between 2010 and 2012, all controls 

were selected from the UCSF general medicine phlebotomy clinic. Clinic-based controls were 

matched to clinic-based glioma cases for age, gender and ethnicity. Consenting participants 

provided blood, buccal and/or saliva specimens, and information, during in-person or 

telephone interviews. A total of 677 cases and 3,940 controls were used in the current analysis. 

GliomaScan GWAS 

The previously published GliomaScan GWAS [117] comprise In total 1,653 cases and 2,725 

controls were used in the current study. 

French GWAS 

The French GWAS is detailed in 4.2.1. 
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All Glioma GBM Non-GBM  

Pre-QC Post QC Post QC Post QC  
Total Cases Controls Total Cases Controls Total Cases Controls Total Cases Controls 

Baylor College of Medicine 40 40 0 11 11 0 6 6 0 5 5 0 
Brigham and Women's 
Hospital 

247 225 22 215 193 22 123 101 22 98 76 22 

Columbia 215 64 151 166 40 126 150 24 126 141 15 126 
Case Western Reserve 
University 

74 60 14 67 56 11 44 33 11 34 23 11 

Denmark 1,054 522 532 1,008 496 512 811 299 512 706 194 512 
Duke 876 622 254 782 578 204 627 423 204 338 134 204 
Mayo 833 376 457 803 358 445 639 194 445 604 159 445 
MD Anderson 1,783 1,505 278 1,140 921 219 571 352 219 774 555 219 
Memorial Sloan Kettering 652 283 369 531 239 292 416 124 292 396 104 292 
North Shore 306 133 173 264 123 141 217 76 141 187 46 141 
Sweden 1,400 476 924 1,356 465 891 1,162 270 891 1,079 188 891 
University of California, San 
Francisco 

673 333 340 506 277 229 381 152 229 350 121 229 

UK 914 798 116 874 766 108 491 383 108 366 258 108 
University of Southern 
California 

297 98 199 135 49 86 115 29 86 105 19 86 

GICC 9,364 5,535 3,829 7,858 4,572 3,286 5,754 2,466 3,286 5,183 1,897 3,286 
* Israeli samples and whole genome amplified samples were excluded at the initial QC regarding DNA quality control.  

Table 2.1 Summary characteristics of the GICC sub-studies.
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2.1.3 Anaplastic oligodendroglioma matched tumour/normal samples 

Samples were obtained with informed and written consent and the after approval of the 

institutional review boards (IRBs) study was approved by Comité de Protection des Personnes Ile de 

France-VI (October 2008) of respective hospitals participating in the Prise en charge des 

oligodendrogliomes anaplasiques (POLA) network. All patients were aged 18 years or older at 

diagnosis and tumour histology was centrally reviewed and validated according to World Health 

Organization (WHO) guidelines [118]. 

In addition to the datasets generated through the work reported in this thesis, in Chapter 5 I made 

use of The Cancer Genome Atlas (TCGA) study of low grade glioma as described in 5.2.1  

 

2.2 Molecular methods 

2.2.1 Illumina whole-exome sequencing 

Whole-exome sequencing was used to generate data analysed in the course of this thesis. Here is a 

brief description of the sequencing technology  

2.2.1.1 Sample and library preparation 

DNA was quantified using the Quant-iT™ PicoGreen® dsDNA Assay Kit (Life Technologies). Libraries 

were generated robotically using the SureSelectXT Automated Human All Exon Target Enrichment 

for Illumina Paired-End Multiplexed Sequencing (Agilent) as per the manufacturer’s 

recommendations. Libraries were quantified using the Quant-iT™ PicoGreen® dsDNA Assay Kit (Life 

Technologies) and the Kapa Illumina GA with Revised Primers-SYBR Fast Universal kit (D-Mark). 

Average size fragment was determined using a LaChip GX (PerkinElmer) instrument.   

2.2.1.2 Target capture 

Regions of interest are selected for by a 24hour hybridisation step with biotinylated RNA library 

baits followed by a cleanup step using magnetic streptavidin beads. The baits can be custom 

designed using Agilent’s SureDesign software. PCR is then used to amplify these regions which are 

then ready for sequencing. (Figure 1.2)  

2.2.1.3 High-throughput sequencing 

Finally samples then underwent paired end sequencing using the Ilumina HiSeq2000 platform with 

a 100-bp read length. The Illumina HiSeq 2000 platform carries out sequencing by synthesis whereby 

millions of DNA fragment clusters are sequenced in parallel. Briefly, as each deoxynucleotide 
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triphosphate (dNTP) is added, an attached fluorescently labelled reversible terminator is imaged 

before being cleaved to allow incorporation of the following base. Incorporation bias is minimised 

by natural competition generated through the presence of all four possible terminator-bound dNTPs 

throughout the reaction. Base calls are made directly from the signal intensity during each 

incorporation cycle. 

Figure 2.1 SureSelect Target Enrichment System Capture Process. Taken from, agilent exome enrichment kit 
datasheet.  
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2.2.2 Illumina transcriptome sequencing (RNA-seq) 

Illumina transcriptome sequencing was performed on 39 tumours on Chapter 5. Here is a brief 

description of the used sequencing technology.  

2.2.2.1 Sample and library preparation 

RNA-seq library construction protocols include similar basic steps, which require elimination of 

ribosomal RNA (rRNA), reverse transcription of the desired RNA species, fragmentation, adapter 

ligation, and enrichment (Figure2.2) Extracted RNA from tumours was cleaned using the RNeasy 

MinElute Cleanup Kit (Qiagen) and the RNA integrity assessed using an Agilent 2100 Bioanalyzer and 

quantified using a Nanodrop 1000. Libraries for stranded total RNA-sequencing were prepared with 

Illumina Stranded Total RNA protocol (RS-122-2301). Libraries were assessed by Agilent 2100 

Bioanalyzer. 

 

Figure 2.2 RNA sequencing workflow and analysis. Taken from [119]. 
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2.2.2.2 High-throughput sequencing 

Sequencing was performed by pooling 4 libraries per lane at a 9pM dilution on an Illumina HiSeq 

2000 instrument for 2x 100 cycles using the recommended manufacturer's conditions. PhiX control 

was added at 1% on each lane. 

2.2.3 Genotyping 

2.2.3.1 Genome wide array genotyping 

Most of the GWAS datasets presented in Chapter 3 and 4 were genotyped on Illumina BeadChip 

SNP arrays. The GICC GWAS dataset presented in Chapter 3 were genotyped using a custom Infinium 

OncoArray-500K BeadChip (Oncoarray) from Illumina (Illumina, San Diego, CA, USA), comprising a 

250K SNP genome-wide backbone and 250K SNP custom content selected across multiple consortia 

within COGS (Collaborative Oncological Gene-environment Study). Oncoarray genotyping was 

conducted in accordance with the manufacturer’s (Illumina Inc.). 

The principles of BeadChip arrays can be illustrated by the Illumina infinium II assay. 

Prior to genotyping DNA samples were quantified by Picogreen, normalised and 50ng/μl aliquots 

plated in 96 deep-well plates. The Illumina infinium II assay is a genome-wide genotyping assay 

carried out in a single tube using high-density BeadArray technology. Briefly, genomic DNA (~750ng) 

is isothermally amplified before fragmentation. After alcohol precipitation and DNA resuspension, 

samples are hybridised onto BeadChip arrays containing locus-specific 50-mer oligonucleotides. 

Allele detection through a two-step process provides high call rates and accuracy. An 

oligonucleotide primer hybridises to a complementary region, forming a duplex, with the primer’s 

terminal 3’ end directly adjacent to the nucleotide base to be identified (Figure 2.3). The primer is 

enzymatically extended a single base by a labelled nucleotide terminator complementary to the 

nucleotide being identified. The intensities of the beads’ fluorescence are detected by the Illumina 

BeadArray Reader and analysed using Illumina’s software for automated genotype calling (Figure 

2.3; http://www.illumina.com/technology/beadarray-technology/infinium-hd-assay.ilmn). 
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Figure 2.3 The Illumina infinium II genotyping assay. 
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2.3 Statistical and bioinformatics methods 

2.3.1 General statistical methods 

2.3.1.1 Software 

Statistical analyses were carried out using the following statistical software programs: R v3.01 

(http://www.r-project.org/) [120], PLINK v1.07 (http://pngu.mgh.harvard.edu/~purcell/plink/) 

[121] and custom perl/python scripts. 

2.3.1.2 Assessing statistical significance 

When assessing statistical significance, the P-value is defined as the probability of obtaining a value 

that is at least as extreme as that of the actual sample by chance. If the P-value is smaller than a 

pre-set threshold then the null hypothesis of no association is rejected and the result is considered 

significant. For a single test P<0.05 is deemed significant in order to control the family wise error 

rate (FWER; the probability of making even one type I error) at 0.05. To minimise type I error and 

keep the FWER at 0.05, a Bonferroni correction of the P-value can be applied. The corrected P-value 

is given by the equation P = α/n, where α equates to the initially accepted level of significance (0.05) 

and n to the number of independent tests performed. For GWAS, previous simulations generating 

an infinitely dense set of polymorphisms identified a P-value cut off of 5x10-8 as appropriate in 

genome-wide studies [122][123][124]. Additional analyses were explicitly corrected according to 

the number of tests carried out unless stated otherwise. Continuous variables were analysed using 

Student's t tests. Study power is defined as the probability of rejecting the null hypothesis (H0) of no 

association when the alternative hypothesis (H1) is true [125]. 

2.3.2 General Bioinformatics techniques 

2.3.2.1 Databases and publically available data resources 

The following public databases were utilised in this thesis: 

University of California Santa Cruz genome browser 

The University of California, Santa Cruz (UCSC) genome browser (http://genome.ucsc.edu/) is a 

virtual map of the human genome, annotated with known genes, transcripts, polymorphic variation, 

repeated sequences, conservation, structural variation and experimental data from external 

databases such as ENCODE (see below). These features are mapped against their physical positions 

in the genome. Various bioinformatics tools are contained within the website and were utilised as 

follows: 

http://www.r-project.org/
http://pngu.mgh.harvard.edu/~purcell/plink/


 

58 
 

 Genome Browser tool was used to query specific regions of DNA and visualise genes, introns, 

regulatory elements and other features of the genomic location. 

 BLAT tool was used to assess the binding accuracy of primers designed for PCR by finding 

possible spurious binding sites with >95% similarity to the sequence of interest. 

 LiftOver tool was used to convert genome coordinates between different genome 

assemblies. Specifically, early GWAS SNPs may be mapped to NCBI Build 36 (hg18) whereas 

sequencing reads are mapped to the more recent Build 37 (hg19).  

 Table Browser tool was used to download data associated with specific tracks in the genome 

browser. For example this tool was used to download genomic coordinates of genes, histone 

modifications and predicted transcription factor binding sites across specific regions and 

genome-wide. 

 

National Centre for Biotechnology Information 

The National centre for biotechnology information (NCBI) web server 

(http://www.ncbi.nlm.nih.gov/) hosts a multitude of databases and bioinformatics tools [126]. 

Specific tools used in this work are: 

 PubMed for literature searches and citations.. 

 RefSeq to obtain reference sequences of chromosomes, genomic contigs, mRNAs and 

proteins. These data can also be queried in UCSC. 

 dbSNP database of short genetic variations to query specific SNPs for position, allele and 

frequency information. 

 ClinVar to query genetic variant pathogenicity  

 

The Encyclopedia of DNA Elements  

The encyclopedia of DNA elements (ENCODE) [105] was established in order to build a 

comprehensive list of functional elements in the human genome, including elements that act at the 

protein and RNA level, as well as DNA regulatory elements. The ENCODE project integrates genome-

wide experimental data for over 100 different cell types. Data includes: chromatin structure (e.g. 

Hi-C), open chromatic prediction (e.g. DNase hypersensitivity), histone modifications and 

transcription factor binding prediction (ChIP-seq) and RNA transcription (RNAseq). All data is 

publicly available for download and can be viewed in the UCSC genome browser. From this data the 
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functionality of specific genomic regions can be inferred which is critical in fine-mapping studies and 

prioritisation of sequence variants. 

 

1000 Genomes project 

The 1000 Genomes Project (http://www.1000genomes.org/) was established to provide a 

comprehensive catalogue of human genetic variation with frequencies >1% through sequencing 

large numbers of individuals at 4x coverage [127]. Combining data from all individuals will then allow 

for accurate imputation of variants not directly covered in this low coverage sequencing. Data from 

the pilot phase, phase one and phase three of the project have been made publicly available. It is 

currently the largest publicly available resource for genome-wide variant frequency data across 

different populations worldwide. 

  

Variant data from 1000 Genomes project were used for the following purposes: 

 Haplotype data, as part of a reference panel for imputation. 

 Variant frequency data, as part of a rare variant screening pipeline. 

 

UK10K project 

The UK10K project (http://www.uk10k.org/) aims to sequence 10,000 phenotyped people at 6x 

coverage in order to better understand the link between low-frequency and rare genetic changes 

and human disease [128]. The 10,000 individuals are split into three cohorts; the Twins UK and 

ALSPAC cohorts comprise 1,854 and 1,927 whole-genome sequenced individuals respectively and a 

further 6,000 individuals with extreme health problems (neurodevelopment, obesity and rare 

diseases) are to be exome sequenced. It is currently the largest publicly available resource for 

variant frequency data in the UK population. 
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Ensembl genome browser 

The Ensembl genome browser (http://www.ensembl.org) is a genome annotation database 

supported by the European bioinformatics institute. Along with the ensembl biomart 

(http://www.ensembl.org/biomart/) it is of particular use for retrieval of gene information including 

genomic organisation of exons, introns and known regulatory domains, known transcripts, proteins, 

homologues and recorded variation within the gene sequence and also hosts the Variant Effect 

Predictor (VEP) for annotation of variant effects (See 0) [129]. 

 

Exome Aggregation Consortium (ExAC) Browser 

The Exome Aggregation Consortium (ExAC) Browser (http://exac.broadinstitute.org/) contains 

variant frequencies from 60,706 unrelated individuals (of which 33,370 are non-Finnish European) 

sequenced as part of various disease-specific and population genetic studies. ExAC is currently the 

largest publicly available resource for coding variant sequence data worldwide.  

 

The Cancer Genome Atlas (TCGA) 

The Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov/) project has generated 

comprehensive, multi-dimensional maps of the key molecular changes in 33 types of cancer. The 

dataset encompasses DNA/RNA sequencing, methylation and SNP array platforms, together with 

clinical notes. Data has been generated on matched tumour/normal tissue for more than 15,000 

patients and is publically available, with wide usage across the cancer research community. 

 

The Genotype-Tissue Expression (GTEx) project 

The Genotype-Tissue Expression (GTEx) (http://www.gtexportal.org/home/) project is a resource 

aiming to study human gene expression and regulation, and its relationship to genetic variation, in 

multiple tissue types. Expression Data, from Affymetrix Expression Array or Illumina TrueSeq RNA 

sequencing, is collected from tissue samples along with germline genotypes, from Illumina OMNI 

5M SNP Array. GTEx contains integrated data from <7,000 samples, across >40 different tissue-

types. By analysing global RNA expression within individual tissues and treating the expression levels 

of genes as quantitative traits, variations in gene expression that are highly correlated with genetic 

variation can be identified as expression quantitative trait loci (eQTLs). 
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2.3.2.2 Gene-set enrichment analysis 

Gene set enrichment analysis (GSEA; http://www.broadinstitute.org/gsea/index.jsp) is a well-

established, widely used and publicly available computational method that determines whether an 

a priori defined set of genes show statistically significant differences between two biological states 

(e.g. phenotypes) [130]. GSEA was used in Chapter 5. 

 

2.3.2.3 High-throughtput-sequencing (HTS) pipeline 

In Chapters 5 HTS methods were used to conduct whole exome sequencing, and the following data 

formats were utilised: 

FASTQ format 

The FASTQ format is a text-based format for storing nucleotide next-generation sequence reads and 

their corresponding per-base quality scores [131]. Additional information relating to whether reads 

are single-end or paired-end is also stored. Base quality scores (Q) are Phred-based and related to 

the probability (p) of a base call being false by the equation: 

Q = -10 log10 p 

For example, a Q score of 10 corresponds to a 1 in 10 chance of an incorrect base call, whereas a Q 

score of 30 corresponds to a 1 in 1,000 chance. 

 

Sequence alignment/map (SAM) format 

The sequence alignment/map (SAM) format is the most widely used file format for storing read 

alignments against reference sequences [132]. Details of aligned and unaligned reads are stored 

along with associated mapping qualities. SAM files are typically stored in the binary form as BAM 

files. 
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Variant call format (VCF) 

The variant call format (VCF) is a widely used specification for storing genetic sequence variations 

relative to a specified reference genome [133]. These files are typically generated by variant calling 

algorithms [134]. A variant in this format is defined as containing an allele (called the alternate 

allele) that is not the reference allele at that position. For a given genetic variant, the likely genotype 

is given along with a Phred-based genotype quality score, information about read depths for the 

reference and alternate alleles, genotype likelihoods as well as any additional meta-information. 

 

These data types were generated using the following tools: 

bcl2fastq (FASTQ extraction) 

Illumina sequencing instruments generate per-cycle BCL basecall files as primary sequencing output, 

but many downstream analysis applications use per- read FASTQ files as input. bcl2fastq 

(https://support.illumina.com/tools.html) combines these per-cycle BCL files from a run and 

translates them into FASTQ files. At the same time as converting, bcl2fastq also separates 

multiplexed samples (demultiplexing). Multiplexed sequencing allows you to run multiple individual 

samples in one lane. 

Stampy/BWA (sequence alignment) 

Stampy (http://www.well.ox.ac.uk/project-stampy) [135] is a package designed for sensitive and 

fast single-end and paired-end mapping of short reads produced by Illumina-based sequencing. In 

its recommended hybrid mode, the Burrows-Wheeler aligner BWA (http://bio-

bwa.sourceforge.net/) [136] is first used to map the majority of reads which are closely 

representative of the reference sequence. The remaining reads that could not initially be aligned 

are then mapped using the Stampy algorithm, which features a more detailed statistical model to 

aid sensitivity. In the exome sequence analysis pipeline, alignment to human build 37 reference 

genome was carried out in BWA (v. 0.5.10) and Stampy (v.1.0.23) 

Picard tools (removing PCR duplicates) 

Picard (http://broadinstitute.github.io/picard/) is a set of command line tools for working with next 

generation sequencing data in a reliable and efficient manner. In the exome sequence analysis 

pipeline, Picard (v.1.48) was used to filter duplicate reads and generate coverage metrics. 

 



 

63 
 

Genome Analysis Toolkit (local indel realignment and base score recalibration)  

The Genome Analysis Toolkit (GATK; https://www.broadinstitute.org/gatk/) is a widely used 

software package developed for use in analysis of high-throughput sequencing data [137][138]. It 

was chosen (v. 3.1-1) for its ability to perform a wide range of analyses including local realignment, 

base score calibration and coverage estimation. Target realignment locally realigns target (e.g. 

exome capture) regions which may have been incorrectly mapped due to the presence of indels. 

The base quality score recalibration (BQSR) package attempts to recalibrate base quality scores of 

sequence reads in a BAM file. The aim is for these quality scores to more truly reflect the probability 

of mismatching the reference genome through correcting for variation in quality with machine cycle 

and sequence context. Coverage was estimated using the GATK DepthOfCoverage tool. 

 

MuTect (Somatic variant calling) 

MuTect (v. 1.1.4) was used for somatic variant detection (Chapter 5). MuTect is a widely used tool 

for accurate identification of point mutations found somatically in tumour tissue, and was chosen 

due to its low false positive rate. MuTect starts by preprocessing aligned reads in tumour and normal 

sequencing data, ignoring reads with low quality scores. Two Bayesian classifiers are then used to 

identify candidate somatic mutations, the first aims to detect whether the tumour is non-reference 

at a given site and then when this is found, the second classifier makes sure the normal does not 

carry the variant allele. Finally post-processing of candidate somatic mutations is completed, to 

eliminate artifacts of next-generation sequencing, short read alignment and hybrid capture. 

 

IndelGenotyper 

Somatic indels in Chapter 5 were called using IndelGenotyper. This GATK 

(https://software.broadinstitute.org/gatk/) tool uses a Bayesian genotype likelihood model to 

estimate simultaneously the most likely genotypes and allele frequency in a population of N 

samples, emitting a genotype for each sample. 

2.3.2.4 In-silico prediction of variant effect 

These programs and methods were used to predict variant functional effect: 

Polyphen-2 

Polymorphism phenotyping v2 (PolyPhen-2) (http://genetics.bwh.harvard.edu/pph2/) is an 

automatic web-based tool for prediction of possible functional impact of amino acid substitutions 
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on human proteins [139]. Sequence- and structure-based features of the substitution site are fed 

into a probabilistic classifier trained using a supervised machine-learning approach (Naive Bayes 

classifier). PolyPhen-2 calculates the posterior probability that a mutation is damaging and reports 

estimates of false positive rate (FPR) and true positive rate (TPR) in addition to a qualitative 

assessment that the mutation is benign, possibly damaging or probably damaging based on FPR 

thresholds.  

 

SIFT 

The sorting intolerant from tolerant (SIFT) algorithm (http://sift.jcvi.org/) predicts whether an 

amino acid substitution is likely to affect protein function [140]. SIFT assumes important positions 

within the protein sequence will be conserved through evolution and therefore mutations at these 

positions may affect protein function. By assessing this sequence conservation, SIFT predicts effects 

of all possible substitutions in a protein sequence. A score is output which ranges from 0 to 1. The 

amino acid substitution is predicted to be damaging if the score is ≤0.05 and tolerated if score is 

>0.05. While there exist a number of in-silico prediction algorithms, both the SIFT and Polyphen-2 

methods are well-established and widely used, facilitating easier interpretation of their output 

among the scientific community. 

CONDEL 

The consensus deleteriousness score (CONDEL) method (http://bg.upf.edu/fannsdb/) integrates the 

output of up to five computational tools (SIFT, MutationAssessor, PolyPhen-2, LogRE and FATHMM) 

by computing a weighted average of the scores output from these tools [141]. Relative weights are 

calculated using the probability that a predicted deleterious mutation is not a false positive and the 

probability that a predicted neutral mutation is not a false negative. CONDEL predictions have been 

demonstrated to be more reliable than using the individual tools contributing to the algorithm alone 

[141]. 

CADD 

The combined annotation dependent depletion (CADD) tool (http://cadd.gs.washington.edu/) 

scores the deleteriousness of SNVs and insertions/deletions in the human genome. C-scores are 

calculated by contrasting naturally occurring variants that have survived natural selection with 

simulated variants [142]. This information is integrated with 63 annotations of conservation, 

functional genomics and protein-level scores (SIFT, PolyPhen-2) derived from the Ensembl Variant 
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Effect predictor, ENCODE and the UCSC Genome Browser and used to train a support vector 

machine (SVM). Phred-like scaled C-scores ranging from 1 to 99 are calculated based on the rank of 

each variant relative to all possible 8.6 billion substitutions in the human genome. CADD scores were 

made use of as they allow genome-wide in-silico prediction of variant effect, as opposed to 

algorithms such as SIFT and PolyPhen-2 which are restricted to missense variants in coding regions. 

 

Variant Effect Predictor 

The Ensembl variant effect predictor (http://www.ensembl.org/info/docs/tools/vep/index.html) 

annotates the likely effect of genomic variants on genes, transcripts and protein sequence as well 

as regulatory, non-coding regions [129]. Along with the location (e.g. upstream of a transcript, in 

non-coding RNA, regulatory) and consequence of the variant (e.g. stop gained, missense), allele 

frequencies and predicted impacts from SIFT and PolyPhen-2 are returned, where available.  

2.3.3 Methods for genome-wide association studies 

Genome wide association study (GWAS) analyses in Chapter 4 were conducted using PLINK v1.07, a 

whole genome association analysis toolset which is designed to perform a range of basic, large-scale 

analyses [121]. PLINK provides a computationally efficient platform to store GWAS genotype data 

and to perform a number of quality control steps and association analyses in a typical GWAS analysis 

pipeline. 

 

2.3.3.1 SNP quality control filtering 

The GWAS SNP data (Chapter 3 and Chapter 4) was filtered as follows: all SNPs were excluded with 

minor allele frequency <1%, a call rate of <95% in cases or controls or with a minor allele frequency 

of 1–5% and a call rate of <99%. In addition SNPs deviating from Hardy-Weinberg equilibrium (P < 

10-12 in controls and P < 10-5 in cases) were also removed. The Hardy-Weinberg principle states that 

the allele and genotype frequencies in a population will remain constant from generation to 

generation in the absence of evolutionary influences [143]. At a single locus with two alleles denoted 

A and a with frequencies f(A)=p and f(a)=q, respectively, expected genotype frequencies are 

f(AA)=p2, f(aa)=q2 and f(Aa) = 2pq for the AA homozygote, aa homozygote and Aa heterozygote 

respectively. As the sum of all genotype frequencies must equal 1: p2 + 2pq + q2 = 1. If a genetic 

locus satisfies this equation it is said to be in Hardy-Weinberg equilibrium (HWE), with deviation 

from HWE assessed using the 2-test [143]. 
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2.3.3.2 Association analysis and meta-analysis 

In Chapter 4 association between imputed SNPs and glioma was performed using logistic regression 

under an additive genetic model in SNPTESTv2.5 [144]. Overall significance was assessed using a 

fixed-effects meta-analysis in PLINK v1.07. In Chapter 3 and Chapter 4, for the new primary GWAS 

tests of association between imputed SNPs and glioma were performed under a probabilistic dosage 

model in in SNPTESTv2.5 [144], adjusting for principal components. Meta-analyses were performed 

using the fixed-effects inverse-variance method based on the β estimates and standard errors from 

each study using META v1.6 [145]. In Chapter 3 and 4 Cochran's Q-statistic to test for heterogeneity 

and the I2 statistic to quantify the proportion of the total variation due to heterogeneity were 

calculated [146]. Throughout all GWAS studies a threshold of P<5.0x10-8 was used to denote 

genome-wide significance. For each new locus discovered evidence of departure from a log-additive 

(multiplicative) model was examined for, to assess any genotype specific effect. Individual genotype 

data ORs were calculated for heterozygote (ORhet) and homozygote (ORhom) genotypes, which were 

compared to the per allele ORs. A difference in these 1d.f. and 2d.f. logistic regression models was 

tested for, to assess for evidence of deviation (P<0.05) from a log-additive model. Subtype analyses 

were conducted to test for an association between SNP genotype and glioma risk for each individual 

histological subtype using logistic regression. 

2.3.3.3 Assessment of inflation 

Quantile-quantile (Q-Q) plots were used to assess the adequacy of case-control matching and the 

possibility of differential genotyping of cases and controls by comparing the distribution of observed 

test statistics from that of a null distribution. A Q-Q plot is a probability plot comparing two 

probability distributions by plotting their quantiles against each other. The highest observed value 

is plotted against the highest expected value. If the two distributions being compared are similar, 

the points in the Q-Q plot will approximately lie on the line y = x. The comparatively few variants 

with much higher observed than expected values are assumed to represent true associations. The 

inflation factor λ was calculated by dividing the median of the test statistics by the median expected 

values from a χ2 distribution with 1 degree of freedom for the 90% least-significant SNPs [147]. 

However, it is recognised that the degree of inflation will increase with experiment size; thus 

standardisation is required to correct for experiment size. Therefore, an estimate of lambda 

corrected to an equivalent statistic as if the study were of 1,000 cases and 1,000 controls (λ1000), 

was obtained using the formula: 
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λ1,000 = 1 + 500 (1 / Ncases+ 1 / Ncontrols) * (λ – 1) 

 

where Ncases and Ncontrols are the number of cases and controls, respectively. Q-Q plots were 

generated and inflation factors estimated using R.  

 

2.3.3.4 Estimating linkage disequilibrium 

SNPs adjacent in the genome are not randomly inherited; they are strongly correlated and likely to 

co-segregate together in a haplotype. This non-random association of alleles is termed linkage 

disequilibrium (LD). The most common measures of LD are D’ and the correlation coefficient (r2). D’ 

is determined by dividing the disequilibrium co-efficient (D) by its maximum possible value (Dmax), 

given the allele frequencies at the two loci. D’ varies between 0 and 1 with a value of 1 corresponding 

to complete LD. Values less than one indicate disrupted LD and have no clear statistical interpretation 

particularly as D’ is strongly inflated in small sample sizes and only measures recombinational 

history. Therefore, intermediate values should not be used to measure the extent of LD. The more 

stable r2 is the preferred measure of the extent of LD as it summarises both the recombinational and 

the mutational history of the markers [148][149]. The r2 statistic is equal to D’ divided by the product 

of the allele frequencies at the two loci. Perfect LD is indicated by r2=1 while high values of LD are 

generally defined as r2>0.34 [150]. LD has been exploited by GWAS to maximise the coverage of the 

SNP genotyping platforms employed. Tagging SNPs are representative SNPs in a region of the 

genome in LD termed LD blocks or haplotypes.  

Haploview v4.2 (http://www.broadinstitute.org/scientific-community/science/ programs/medical-

and-population-genetics/haploview/Haploview) and SNP Annotation and Proxy search (SNAP) 

(http://www.broadinstitute.org/mpg/snap/) tools were used to calculate LD scores. LD blocks were 

defined using the HapMap recombination rates (cM/Mb) and defined using the Oxford 

recombination hotspots [151]. 

 

2.3.3.5 Imputation 

Genome-wide imputation was performed on the MDA GWAS, SFAGS–GWAS, GICC GWAS Oncoarray 

and TCGA Affymetrix datasets. The 1000 genomes phase 3 data (2014 release) was used as a 

reference panel, with haplotypes pre-phased using SHAPEIT2 [152]. Imputation was performed 

using IMPUTE2 software [153] and association between imputed genotype and Glioma was tested 

http://www.broadinstitute.org/mpg/snap/
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using SNPTEST [84], under a frequentist model of association. QC was performed on the imputed 

SNPs; excluding those with INFO score < 0.8 and MAF < 0.01. 

2.3.4 Methods for functional analysis of genomic data 

2.3.4.1 Measures of sequence conservation 

These well-established methods were used to functionally annotate SNPs in Chapters 3 and 4. As 

with CADD (2.3.2.4), they allow genome-wide assessment of variant effect. 

 

2.3.4.2 GERP 

Genomic evolutionary rate profiling (GERP) [154] identifies sequence conservation by searching for 

substitution deficits in multiple sequence alignments. These substitutions would be expected to 

occur if the site were neutral and not under purifying selection. GERP scores vary from -12.3 to 6.17 

with a score >2 taken as evidence of evolutionary constraint. 

 

2.3.4.3 PhastCons 

PhastCons is a statistical program which identifies evolutionarily conserved elements in multiple 

species alignments given a phylogenetic tree using a phylogenetic hidden Markov model (phylo-

HMM) [155]. PhastCons produces base-by-base conservation scores and predictions of discrete 

conserved elements both of which can be visualised and downloaded from the UCSC genome 

browser. Predictions can be based on 100 vertebrate genomes, 46 primate genomes or just 

placental mammals. Conservation scores range from 0 to 1 with a score of >0.3 taken as evidence 

of sequence conservation. 

 

2.3.5 Annotation of regulatory elements 

Used in combination these tools can be used to derive increased insight into the potential function 

of a query risk SNP. 

 

2.3.5.1 ChromHMM 

ChromHMM (chromatin hidden markov model) is a software package for learning and characterising 

chromatin states. Multiple genomic datasets (e.g. ChIP-seq, histone marks) are integrated into a 

hidden Markov model that models the presence or absence of each chromatin mark to demarcate 

the genome into a defined number of states corresponding to different biological functions (e.g. 
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active promoter, strong enhancer or repetitive) [156]. This inference of regulatory elements aids in 

interpretation of SNP effect. 

 

2.3.5.2 HaploReg 

The Broad Institute’s HaploReg database [157] is a tool for exploring non-coding variant genomic 

annotations. This web-based tool allows for visualisation of all linked variants, predicted chromatic 

state, sequence conservation and effects on regulatory motifs. This tool was used to functionally 

annotate SNPs in Chapter 3. 

 

2.3.5.3 RegulomeDB 

RegulomeDB [158] (http://www.regulomedb.org/) is a database that annotates non-coding SNPs 

with known and predicted regulatory elements from the gene expression omnibus (GEO) and 

ENCODE projects as well as published literature. The web-based interface can be queried for specific 

variants or genomic regions. Variants are scored from 1 to 6 corresponding to the overlapping 

regulatory elements identified. This tool was used to functionally annotate SNPs in Chapter 3. 

 

2.3.5.4 Super-enhancer regions 

Hnisz et al [159] propose the existence super-enhancers, which are large clusters of transcriptional 

enhancers that play key roles in human cell identity in health and in disease. They provide a 

catalogue of super-enhancers in 86 human cell and tissue types [159], allowing interrogation of DNA 

sequence of interest and potentially enabling increased insight into the functional effect of query 

risk SNPs. In Chapter 3 SNPs were annotated for overlap with super-enhancers in U87 GBM cells, 

astrocyte cells and brain tissue. 

 

2.3.5.5 Roadmap epigenomics project 

The Roadmap epigenomics project (http://www.roadmapepigenomics.org/) aims to investigate the 

hypothesis that the origins of health and susceptibility to disease are partly due to epigenetic 

regulation [160]. The goal of the project is to produce a public resource of human epigenomic data, 

for example DNA methylation, histone modifications, chromatin accessibility in stem cells and 

primary tissues, expanding the more limited range available from the ENCODE project. Chapter 3 

made use of 15-state chromHMM data (se 2.3.5.1) from H1 derived neuronal progenitor cells 

available from the Epigenome roadmap project. 



 

70 
 

 

2.3.5.6 Expression quantitative trait locus (eQTL) analysis 

For the Geuvadis the relationship between SNP and expression of genes located within 1 Mb was 

analysed using the Matrix eQTL package under a linear model. In all the datasets, SNPs in LD (r2 > 0.8) 

with the potential pleiotropic associations were explored, and were included where FDR adjusted 

P-value < 0.05. 

2.3.5.6.1 Summary-data-based Mendelian Randomisation 

To examine the relationship between SNP genotype and gene expression, Summary-data-based 

Mendelian Randomization (SMR) analysis (http://cnsgenomics.com/software/smr/) was carried out 

as per Zhu et al [104]. Briefly, if bxy is the effect size of x (gene expression) on y (slope of y regressed 

on the genetic value of x), bzx is the effect of z on x, and bzy be is the effect of z on y. Therefore bxy 

(bzy/bzx) is the effect of x on y. To distinguish pleiotropy from linkage where the top associated cis-

eQTL is in LD with two causal variants, one affecting gene expression the other affecting trait, 

heterogeneity was tested for in dependent instruments, using multiple SNPs in each cis-eQTL region. 

Under the hypothesis of pleiotropy bxy values for SNPs in LD with the causal variant will be identical. 

Thus testing against the null hypothesis that there is a single causal variant is equivalent to testing 

heterogeneity in the bxy values estimated for the SNPs in the cis-eQTL region. For each probe that 

passed significance threshold for the SMR test, heterogeneity in the bxy values estimated for 

multiple SNPs in the cis-eQTL region using the HEIDI method [104]. 

2.3.5.7 Transcription factor binding motif analysis 

To examine enrichment in specific TF binding across risk loci a variant set enrichment method was 

used. Briefly, for each risk locus, a region of strong LD (defined as r2 > 0.8 and D’ > 0.8) was 

determined, and these SNPs were termed the associated variant set (AVS). Transcription factor 

ChIP-seq uniform peak data were obtained from ENCODE for the GM12878 cell line, and included 

data for 82 TF. For each of these marks the overlap of the SNPs in the AVS and the binding sites was 

determined to produce a mapping tally. SNPs with the same LD structure as the risk associated SNP 

were randomly selected to calculate a null mapping tally. A null distribution was produced by 

repeating this process 10,000 times, and approximate P-values were calculated as the proportion of 

permutations where the null mapping tally was greater or equal to the AVS mapping tally. An 

enrichment score was calculated by normalising the tallies to the median of the null distribution. 
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Thus the enrichment score is the number of standard deviations of the AVS mapping tally from the 

mean of the null distribution tallies. 

2.3.5.8 Hi-C analysis  

To investigate the significant contacts between glioma risk SNPs and nearby genes in chapter 4, I 

made use of the HUGIn browser [161], which is based on analysis by Schmitt et al, 2016 [162]. I 

restricted analysis to Hi-C data generated on H1 Embryonic Stem Cell and Neuronal Progenitor cell 

lines, as originally described in Dixon et al, 2015 [163]. Plotted topologically associating domain 

(TAD) boundaries were obtained from the insulating score method [164] at 40-kb bin resolution. We 

searched for significant interactions between bins overlapping the glioma risk SNP and all other bins 

within 1Mb at each locus (i.e. “virtual 4C”). 

2.3.6 Methods for somatic genomic analysis 

Tumour/normal somatic sequencing analysis was conducted as follows: 

2.3.6.1 Somatic variant calling and driver gene analysis 

The core HTS processing pipeline was followed, as described in 2.3.2.3, with final BAM files 

generated as normal. Single nucleotide variations (SNVs) were then called using MuTect (v. 1.1.4). 

Data was quality filtered using FoxoG software, based on methods as described in Costello et al 2013 

[165], including removal of potential artefactual variants introduced through DNA oxidation. FoxoG 

ensured variants were supported by minimum of 1 alternative read in each strand direction, a mean 

Phred base quality score of > 26, mean mapping quality ≥50 and an alignability site score of 1.0. 

Small-scale insertion/deletions (Indels) were called using GATK IndelGenotyper. MutSigCV (v.1.4) 

was used to identify genes somatically mutated more often than would be expected by chance 

[166]. MutSigCV was run using the standard genomic covariates of (i) global gene expression data, 

(ii) DNA replication time and (iii) Hi-C statistic of open vs. closed chromatin states. Oncodrive-fm 

[167] was used as implemented within the IntOGen-mutations platform [168] for pathway analysis, 

using data mutation data from multiple tumour studies. 

2.3.6.2 Somatic copy number alteration analysis 

SNP array analysis 

Genomic profiles were divided into homogeneous segments by applying the circular binary 

segmentation algorithm to both log R ratio and BAF values. We then used the Genome Alteration 

Print method to determine the ploidy of each sample, the level of contamination with normal cells 
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and the allele-specific copy number of each segment. Chromosome aberrations were defined using 

empirically determined thresholds as follows: gain, copy number ≥ploidy+1; loss, copy number 

≤ploidy −1; high-level amplification, copy number >ploidy+2; homozygous deletion, copy number=0. 

Finally, we considered a segment to have undergone LOH when the copy number of the minor allele 

was equal to 0. Lists of homozygous deletions and focal amplifications, defined by at least five 

consecutive probes, were generated and verified manually to remove doubtful events. Significantly 

recurrent copy number changes were identified using the GISTIC2.0 algorithm [169]. 

2.3.6.3 Methods for RNA-seq analysis 

Paired-end reads from RNA-seq were aligned to the following database files using BWA 0.5.5: (i) the 

human GRCh37-lite reference sequence, (ii) RefSeq, (iii) a sequence file representing all possible 

combinations of non-sequential pairs in RefSeq exons and (iv) the AceView database flat file 

downloaded from UCSC representing transcripts constructed from human ESTs. The mapping 

results from databases (ii)-(iv) were aligned to human reference genome coordinates. The final BAM 

file was constructed by selecting the best alignment. 

2.3.6.4 Fusion detection  

To identify fusion transcripts we analysed RNAseq data using Chimerascan software [170] (version 

0.4.5). As advocated algorithmic output was analyzed for high-confidence fusion transcripts 

imposing filters (i) spanning reads > 2 (ii) total supported reads ≥10 [171]. In absence of 

corresponding paired normal tissue samples, we made use of data from the human body map 

project data to identify fusions seen in normal tissue.  

 

2.3.7 Plotting tools  

2.3.7.1 VisPIG  

Visual plotting interface for genetics (visPIG; http://vispig.icr.ac.uk/) [234] is a web application for 

producing multi-region, multi-track, multi-scale plots of genetic data. Making use of code from SNAP 

[172] association plots can be generated. Additional tracks can be plotted to aid interpretation, for 

example chromHMM (see 2.3.5.1). At the time of writing, no other publicly available web-based tool 

exists to produce high-quality plots in this way. In this thesis therefore all association plots were 

generated using visPIG (e.g. in Chapter 3). 
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2.3.7.2 ggplot2 

The ggplot2 package [173], created by Hadley Wickham, offers a powerful graphics language for 

creating elegant and complex plots. ggplot2 allows you to create graphs that represent both 

univariate and multivariate numerical and categorical data in a straightforward manner. Grouping 

can be represented by colour, symbol, size, and transparency. The creation of trellis plots (i.e., 

conditioning) is relatively simple.ggplot2 were used to generate plots in Chapter 4 
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2.3.8 Survival analysis 

In Chapter 4, survival plots were generated using the survfit package in R which computes an 

estimate of a survival curve for censored data using the Kaplan–Meier method. Log-rank tests were 

used to compare curves between groups and power to demonstrate a relationship between 

different groups and overall survival was estimated using sample size formulae for comparative 

binomial trials. The Cox proportional-hazards regression model was used to investigate the 

association between survival and age, grade, molecular group and number of risk alleles. Individuals 

were excluded if they died within a month of surgery. Date of surgery was used as a proxy for the 

date of diagnosis. 

  



 

75 
 

3 CHAPTER 3 

Genome-wide association study of glioma subtypes identifies specific 

differences in genetic susceptibility to glioblastoma and non-

glioblastoma tumours 

 

In this Chapter, I had contributed to the bioinformatics and statistical analysis related to this 

project. I performed SNP quality control filtering, haplotypes phasing and the SNP imputation of 

the GICC GWAS, MDA GWAS and SFAGS–GWAS datasets described in 2.1. In addition, I had 

contributed to the meta-analysis. 

The published version of this chapter with the figures is attached on appendix 2. 
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Genome-wide association studies (GWAS) have transformed our understanding of glioma susceptibility, 

but individual studies have had limited power to identify risk loci. We performed a meta-analysis of 

existing GWAS and two new GWAS, totalling 12,496 cases and 18,190 controls. We identified five new loci 

for glioblastoma (GBM) at 1p31.3 (rs12752552; P=2.04×10-9, odds ratio (OR)=1.22), 11q14.1 (rs11233250; 

P=9.95×10-10, OR=1.24), 16p13.3 (rs2562152; P=1.93x10-8, OR=1.21), 16q12.1 (rs10852606; P=1.29×10-11, 

OR=1.18), 22q13.1 (rs2235573; P=1.76×10-10, OR=1.15) and eight for non-GBM at 1q32.1 (rs4252707; 

P=3.34×10-9, OR=1.19), 1q44 (rs12076373; P=2.63×10-10, OR=1.23), 2q33.3 (rs7572263; P=2.18×10-10, 

OR=1.20), 3p14.1 (rs11706832; P=7.66×10-9, OR=1.15), 10q24.33 (rs11598018; P=3.39×10-8, OR=1.14), 

11q21  (rs7107785; P=3.87×10-10, OR=1.16), 14q12 (rs10131032; P=5.07x10-11, OR=1.33) and 16p13.3 

(rs3751667; P=2.61×10-9, OR=1.18). These data substantiate genetic susceptibility to GBM and non-GBM 

being highly distinct, likely reflecting different etiology. 

 

Glioma accounts for around 27% of all primary brain tumors and is responsible for approximately 13,000 

cancer-related deaths in the US each year1,2. Gliomas can be broadly classified into glioblastoma (GBM) and 

lower-grade non-GBM3. Gliomas typically have a poor prognosis irrespective of medical care, with the most 

common form, GBM, having a five-year survival rate of only 5%4. 

 

So far, no environmental exposures have been robustly linked to risk of developing glioma except for 

moderate to high doses of ionizing radiation, which accounts for a small proportion of cases5. Evidence for 

inherited predisposition to glioma is provided by a number of rare inherited cancer syndromes, such as 

Turcot's and Li–Fraumeni syndromes, and neurofibromatosis. Even collectively, however these account for 

little of the two-fold familial risk of glioma6. Our understanding of the heritability of glioma has been 

transformed by recent genome-wide association studies (GWAS), which have identified single nucleotide 

polymorphisms (SNPs) at 13 loci influencing risk7-14. 

 

Previous individual studies have had limited statistical power for additional discovery of novel glioma risk 

loci15. Therefore, to gain a more comprehensive insight to glioma etiology, we performed a meta-analysis of 

previously published GWAS and two new GWAS, allowing us to identify 13 new risk loci for glioma. 
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We analysed GWAS SNP data passing quality control for 12,496 cases (6,191 classified as GBM, 5,819 as non-

GBM) and 18,190 controls from eight studies of European ancestry; a new GWAS of 4,572 cases and 3,286 

controls performed by the Glioma International Case Control Consortium (GICC) (Supplementary Table 1), a 

new GWAS of 1,591 cases and 804 controls from University of California, San Francisco (UCSF)-Mayo and six 

previously reported GWAS9,10,13 totalling 6,405 cases and 14,100 controls (Supplementary Table 2). To 

increase genomic resolution, we imputed >10 million SNPs. Quantile-Quantile (Q-Q) plots for SNPs with minor 

allele frequency (MAF) >1% post imputation did not show evidence of substantive over-dispersion (λ=1.02–

1.10, λ90=1.02–1.05; Supplementary Fig. 1). We derived joint odds ratios (ORs) and 95% confidence intervals 

(CIs) under a fixed-effects model for each SNP with MAF >1% and associated per allele principal component 

(PCA) corrected P-values for all glioma, GBM and non-GBM cases versus controls (Fig. 1). 

 

In the combined meta-analysis, among previously published glioma risk SNPs, those for all glioma at 17p13.1 

(TP53), GBM at 5p15.33 (TERT), 7p11.2 (EGFR), 9p21.3 (CDKN2B-AS1) and 20q13.33 (RTEL1) and for non-GBM 

at 8q24.21 (CCDC26), 11q23.2, 11q23.3 (PHLDB1) and 15q24.2 (ETFA) showed even greater evidence for  

association (Supplementary Table 3, Supplementary Fig. 2). SNPs at 10q25.2 and 12q12.1 for non-GBM 

tumors retained genome-wide significance (i.e. P<5.0x10-8). Associations at the previously reported 3q26.2 

(near TERC)11 and 12q23.33 (POLR3B)10 loci for GBM did not retain statistical significance (respective P-values 

for the most associated SNPs = 2.68x10-5 and 1.60x10-5; Supplementary Table 3).  

 

In addition to previously reported loci, we identified genome-wide significant associations marking novel loci 

(Table 1, Supplementary Fig. 3, Supplementary Data 1) for GBM at 1p31.3 (rs12752552; P=2.04×10-9), 

11q14.1 (rs11233250; P=9.95×10-10), 16p13.3 (rs2562152; P=1.93x10-8), 16q12.1 (rs10852606; P=1.29×10-11), 

22q13.1 (rs2235573; P=1.76×10-10) and for non-GBM at 1q32.1 (rs4252707; P=3.34×10-9), 1q44 (rs12076373; 

P=2.63×10-10), 2q33.3 (rs7572263; P=2.18×10-10), 3p14.1 (rs11706832; P=7.66×10-9), 10q24.33 (rs11598018; 

P=3.39×10-8), 11q21  (rs7107785; P=3.87×10-10), 14q12 (rs10131032; P=5.07x10-11) and 16p13.3 (rs3751667; 

P=2.61×10-9). Conditional analysis confirmed the existence of two independent association signals at 7p11.2 

(EGFR) as previously reported7 but did not provide evidence for additional signals at any of the other 

established identified risk loci or the 13 newly identified loci. Case-only analyses confirmed the specificity of 

11q14.1, 16p13.3 and 22q13.1 associations for GBM and 1q44, 2q33.3, 3p14.1, 11q21 and 14q12 for non-

GBM tumors (Supplementary Table 4, Fig. 2). Collectively our findings provide strong evidence for subtype 

associations for glioma consistent with their distinctive molecular profiles presumably resulting from 

different etiological pathways. 
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Across the new and known risk loci, we found a significant enrichment of overlap with enhancers in H9 

derived neuronal progenitor cells (P=8.2x10-5; Supplementary Data 2). These observations support the 

assertion that the GWAS loci influence glioma risk through effects on neural cis-regulatory networks, and are 

strongly involved in transcriptional initiation and enhancement. To gain further insight into the biological 

basis for associations at the 13 new risk loci we performed an expression quantitative trait loci (eQTL) analysis 

using RNA-Seq data on 10 regions of normal human brain from up to 103 individuals from GTEx16 and blood 

eQTL data on 5,311 individuals from Westra et al.17 We used Summary level Mendelian Randomization 

(SMR)18 analysis to test for an concordance between GWAS signal and cis-eQTL for genes within 1Mb of the 

sentinel and correlated SNPs (r2>0.8) at each locus (Supplementary Data 3), deriving bXY statistics which 

estimate the effect of gene expression on glioma risk. Additionally for each of the risk SNPs at the 13 new 

loci (as well as correlated variants) we examined published data19,20 and made use of the online resources, 

HaploRegv4, RegulomeDB, and SeattleSeq for evidence of functional effect (Supplementary Table 5). 

 

At 16q12.1 the GBM association signal was significantly associated with HEATR3 expression in nine of ten 

regions of the brain (PSMR=3.38x10-6-6.55x10-10, bXY=0.14-0.24; Supplementary Data 3, Supplementary Fig. 

4). The C-risk allele of rs10852606 being associated with reduced HEATR3 expression is consistent with 

differential expression of HEATR3 being the functional basis of the 16q12.1 association. The observation that 

variation at 16q12.1 is associated with risk of testicular21 (rs8046148) and esophageal22 (rs4785204) cancer 

(pairwise r2 and D’ with rs10852606, 0.67, 1.0 and 0.16, 1.0 respectively) suggests the locus has pleiotropic 

effects on tumor risk, compatible with generic effects as shown by the observation of a HEATR3 eQTL signal 

in blood (PSMR=5.84x10-11, bXY=0.30). 

 

Similarly, significant associations between gene expression and glioma risk were observed at the GBM loci 

1p31.3 (JAK1, brain cortex and cerebellar hemisphere), 16p13.3 (POLR3K, whole blood) and 22q13.1 (CTA-

228A9.3, brain cerebellum; PICK1, brain hippocampus) (Supplementary Data 3, Supplementary Fig. 4). The 

non-GBM 1q32.1 association marked by rs4252707 (Supplementary Fig. 3) maps to intron eight of the gene 

encoding MDM4 (mouse double minute 4 homolog) a p53-binding protein. SNP rs4252707 is in strong LD 

with rs12031912 and rs12028476 (r2=0.92), which both map to the MDM4 promoter. While no significant 

eQTL was shown in any brain tissue an association with MDM4 was seen in blood (PSMR=4.74x10-6, bXY=0.31; 

Supplementary Data 3, Supplementary Fig. 4). Over-expression of MDM4 is a feature in TP53-wildtype and 

MDM2-amplification negative glioma, consistent with MDM4 amplification being a mechanism by which the 

p53-dependent growth control is inactivated23. 
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The 1q44 association marked by rs12076373 maps to the eighth intron of AKT3 (v-akt murine thymoma viral 

oncogene homolog 3) one of the major downstream effectors of phosphatidylinositol 3-kinase which is highly 

expressed during active neurogenesis, with haploinsufficiency causing postnatal microcephaly and agenesis 

of the corpus callosum24. Importantly AKT3 is hyper-expressed in glioma playing an important role in tumor 

viability by activating DNA repair25. While rs12076373 does not map to a regulatory element, correlated SNPs 

rs12124113 and rs59953491 (r2=0.94 and 0.90 respectively), locate within an enhancer element in brain 

cells/tissues including H9 derived neuronal progenitor cultured cells, cortex derived primary cultured 

neurospheres and NH-A astrocytes.  

 

The 3p14.1 association marked by rs11706832 localizes to intron 2 of LRIG1 (leucine-rich repeats- and 

immunoglobulin-like domains-containing protein 1). Although we did not identify an eQTL LRIG1 is highly 

expressed in the brain and is a pan-negative regulator of the EGFR signaling pathway which inhibits hypoxia-

induced vasculogenic mimicry via EGFR/PI3K/AKT pathway suppression and epithelial-to-mesenchymal 

transition26. Reduced LRIG1 expression is linked tumor aggressiveness, temozolomide-resistance and radio-

resistance27,28. We have previously shown an association for glioma at EGFR (7p11.2)7, which is well 

established to be pivotal in both initiation of primary GBM and progression of lower-grade glioma to grade 

IV. Although speculative our new findings now suggest a more extensive pathway involving variation at LRIG1 

and AKT3. 

 

Of particular interest is rs7572263 mapping to 2q33.3 which localizes within intron three of C2orf80 and is 

50 kb telomeric to IDH1 (isocitrate dehydrogenase 1). Mutation of IDH1 is a driver for gliomagenesis29,30 and 

is responsible for the CpG island methylator (G-CIMP) phenotype31,32. IDH mutation predominates in non-

GBM glioma33,34 therefore the association at 2q33.3 is plausible as a basis for susceptibility to non-GBM 

glioma. In the absence of convincing eQTL or other functional support, this does not preclude C2orf80 or 

another gene mapping to the region of LD being the functional basis for the 2q33.3 association. 

 

Maintenance of telomeres is central to cell immortalization and plays a central role in gliomagenesis35. We 

have previously shown the risk of GBM is strongly linked to genetic variation in the telomere-related genes 

TERT (5p15.33) and RTEL1 (20q13.33), and possibly also TERC (3q26.2)8,9,11. The 10q24.33 association marked 

by rs11598018 lies intronic to OBFC1 (oligonucleotide/oligosaccharide-binding fold-containing protein 1), 

which functions in a telomere-associated complex protecting telomeres independently of POT136. The CST 
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complex encoded by OBFC1, CTC1, and TEN1 competes with shelterin for telomeric DNA inhibiting 

telomerase-based telomere extension37. The significant association between risk of non-GBM and OBFC1 

variation is particularly intriguing in light of our recent exome sequencing report demonstrating that rare 

germline loss-of-function mutations in shelterin-complex genes are a cause of familial oligodendroglioma38. 

The glioma risk alleles at TERT, TERC and OBFC1 are associated with increased leukocyte telomere length 

thereby supporting a relationship between genotype and biology (Supplementary Table 6)35,39,40. However 

the RTEL1 locus is not consistent with such a postulate and recent data which has not shown a relationship 

between the TERT promoter mutation and telomere length in glioma41 raises the possibility of a role for extra-

telomeric effects.  

 

Deregulation of pathways involved in telomere length and EGFR signalling are thus consistent with glioma 

risk being governed by pathways important in the longevity of glial cells and substantiate early observations 

that genetic susceptibility to GBM and non-GBM is highly distinct, presumably reflecting different aetiologies 

between GBM and non-GBM tumors (Fig. 2). 

 

The other associations we identified mark genes with varying degrees of plausibility for having a role in glioma 

oncogenesis. The GBM association at 16p13.33 marked by rs2562152 localizes 3 kb telomeric to MPG which 

encodes a N-methylpurine DNA glycosylase whose expression is linked to temozolomide resistance in 

glioma42. Although attractive as a candidate, the only genes for which there was found to be a significant 

association between expression and glioma risk were POLR3K and C16ORF33 in blood (Supplementary Data 

3, Supplementary Fig. 4). At 1p31.3 only JAK1 provided convincing evidence for a significant eQTL with glioma 

risk SNPs in brain. The strongest association was shown in the cortex (PSMR=1.61x10-6, bXY=0.22; 

Supplementary Data 3, Supplementary Fig. 4) with the T-risk allele of rs12752552 increasing JAK1 

expression. The cis-eQTL signal for JAK1 in the cortex maps to 65.3Mb-65.35Mb and shows a consistent 

direction of effect with the glioma associated SNPs. JAK1-STAT6 signaling is increasingly being recognized to 

be relevant to glioma progression43. Hence, while JAK1 remains an attractive candidate mechanistic basis for 

the glioma association at 1p31.3 we cannot exclude the possibility of the cluster of SNPs between 65.3Mb 

and 65.35Mb containing the true causal variant. In the absence of functional data potential target genes for 

associations at 11q14.1 (GBM), 16p13.3 (non-GBM), 11q21 (non-GBM) and 14q12 (non-GBM) remain to be 

elucidated.  

 

In conclusion, we have performed the largest glioma GWAS to date identifying 13 new glioma risk loci, 

thereby providing further evidence for a polygenic basis of genetic susceptibility to glioma. Histological 
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classification of glioma is in part being superseded by molecular profile34,44; hence, it is important to 

understand the biology behind these risk variants in the context of molecularly defined glioma subtypes. 

Currently identified risk SNPs for glioma account for at best around 27% and 37% of the familial risk of GBM 

and non-GBM tumors respectively (Supplementary Table 7). Therefore further GWAS-based studies in 

concert with functional analyses should lead to additional insights into the biology and etiological basis of 

the different glioma histologies. Importantly, such information can inform gene discovery initiatives and thus 

have a measurable impact on the successful development of new therapeutic agents.  

 

METHODS 

Methods, including statements of data availability and any associated accession codes and references, are 

available in the online version of the paper. 

 

Note: Any Supplementary Information and Source Data files are available in the online version of the paper. 
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FIGURE LEGENDS 

 

Figure 1: Genome-wide discovery-phase meta-analysis P-values (–log10P, y axis) plotted against their 

chromosomal positions (x axis): a) All Glioma, b) GBM, c) Non-GBM. The red horizontal line corresponds to 

a significance threshold of P = 5.0x10-8. New and known loci are labelled in red and blue respectively. 

 

Figure 2: Relative impact of SNP associations at known and newly identified risk loci for GBM and non-

GBM tumors. Odds ratios (ORs) derived with respect to the risk allele. Asterisks denote SNPs showing a 

significant difference between GBM and non-GBM from the case-only analysis as detailed in Supplementary 

Table 4. 
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       All glioma GBM glioma Non-GBM glioma 

Locus Subtype SNP Position Alleles RAF INFO P OR (95% CI) P OR (95% CI) P OR (95% CI) 

1p31.3 GBM rs12752552 65229299 T/C 0.870 0.992 4.07x10-9 1.18 (1.11-1.24) 2.04x10-9 1.22 (1.15-1.31) 4.78x10-3 1.11 (1.03-1.18) 

1q32.1 non-GBM rs4252707 204508147 G/A 0.220 0.992 2.97x10-7 1.12 (1.07-1.17) 0.015 1.07 (1.01-1.13) 3.34x10-9 1.19 (1.12-1.26) 

1q44 non-GBM rs12076373 243851947 G/C 0.837 0.996 4.97x10-4 1.09 (1.04-1.15) 0.846 0.99 (0.94-1.06) 2.63x10-10 1.23 (1.16-1.32) 

2q33.3 non-GBM rs7572263 209051586 A/G 0.756 0.997 2.58x10-6 1.11 (1.06-1.15) 0.019 1.06 (1.01-1.12) 2.18x10-10 1.20 (1.13-1.26) 

3p14.1 non-GBM rs11706832 66502981 A/C 0.456 0.997 1.06x10-5 1.08 (1.05-1.12) 0.158 1.03 (0.99-1.08) 7.66x10-9 1.15 (1.09-1.20) 

10q24.33 non-GBM rs11598018 105661315 C/A 0.462 0.960 3.07x10-7 1.10 (1.06-1.14) 0.0103 1.06 (1.01-1.11) 3.39x10-8 1.14 (1.09-1.20) 

11q14.1 GBM rs11233250 82397014 C/T 0.868 0.990 5.40x10-6 1.14 (1.08-1.21) 9.95x10-10 1.24 (1.16-1.33) 0.592 0.98 (0.91-1.05) 

11q21 non-GBM rs7107785 95747337 T/C 0.479 0.997 2.96x10-4 1.07 (1.03-1.11) 0.844 1.00 (0.95-1.04) 3.87x10-10 1.16 (1.11-1.21) 

14q12 non-GBM rs10131032 33250081 G/A 0.916 0.991 2.33x10-6 1.17 (1.09-1.24) 0.247 1.05 (0.97-1.13) 5.07x10-11 1.33 (1.22-1.44) 

16p13.3 GBM rs2562152 123896 A/T 0.850 0.937 1.18x10-3 1.09 (1.04-1.15) 1.93x10-8 1.21 (1.13-1.29) 0.948 1.00 (0.93-1.07) 

16p13.3 non-GBM rs3751667 1004554 C/T 0.208 0.985 8.75x10-10 1.14 (1.09-1.19) 5.95x10-6 1.13 (1.07-1.19) 2.61x10-9 1.18 (1.12-1.25) 

16q12.1 GBM rs10852606 50128872 T/C 0.713 0.990 3.66x10-11 1.14 (1.10-1.19) 1.29x10-11 1.18 (1.13-1.24) 2.42x10-3 1.08 (1.03-1.14) 

22q13.1 GBM rs2235573 38477930 G/A 0.507 0.995 8.64x10-7 1.09 (1.06-1.13) 1.76x10-10 1.15 (1.10-1.20) 0.325 1.02 (0.97-1.07) 

 

Table 1: Association statistics for the top SNP at each of the newly-reported glioma risk loci. Associations at P<5x10-8 are highlighted in bold. Odds ratios (ORs) 

were derived with respect to the risk allele underlined and highlighted in bold. Minor allele frequency (MAF) is according to European samples from 1000 genomes 

project. The INFO column indicates the average imputation info score across all studies, with a score of 1 indicating the SNP is directly genotyped in all studies. CI, 

confidence interval. 
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ONLINE METHODS 

 

Ethics 

Collection of patient samples and associated clinico-pathological information was undertaken with 

written informed consent and relevant ethical review board approval at respective study centers in 

accordance with the tenets of the Declaration of Helsinki. Specifically, UK: South-East Multicentre 

Research Ethics Committee (MREC) and the Scottish MREC; France: APHP ethical committee-CPP 

(comité de Protection des Personnes); Germany: Ethics Commission of the Medical Faculty of the 

University of Bonn and USA: US: University of Texas MD Anderson Cancer Institutional Review Board, 

the Mayo Clinic Office for Human Research Protection, the UCSF Committee on Human Research, the 

University Hospitals of Cleveland Institutional Review Board and the Cleveland Clinic Institutional 

Review Board (board for the Case Comprehensive Cancer Center). The diagnosis of glioma [ICDO-3 

codes 9380-9480 or equivalent], was established through histology in all cases in accordance with 

World Health Organization guidelines. Every effort was made to classify tumors as GBM or non-GBM.  

 

GWAS datasets  

GICC, UK, French, German, MDA, SFAGS and GliomaScan 

Studies participating in GICC are described in Amirian et al.45 and in Supplementary Table 1. Briefly, 

they comprise 5,189 glioma cases and 3,827 controls ascertained through centers in the US, Denmark, 

Sweden and the UK. Cases had newly diagnosed glioma and controls had no personal history of central 

nervous tumor at ascertainment. Detailed information regarding recruitment protocol is given in 

Amirian et al.45. Cases and controls were genotyped using the Illumina Oncoarray according to the 

manufacturer’s recommendations (Illumina Inc.). Individuals with call rate <99% as well as all 

individuals evaluated to be of non-European ancestry (<80% estimated European ancestry using the 

FastPop46 procedure developed by the GAMEON consortium with HapMap version 2 CEU, JPT/CHB 

and YRI populations as a reference; Supplementary Fig. 5) were excluded. For apparent first-degree 

relative pairs, we removed the control from a case-control pair; otherwise, we excluded the individual 

with the lower call rate. SNPs with a call rate <95% were excluded as were those with a MAF<0.01 or 

displaying significant deviation from Hardy-Weinberg equilibrium (HWE) (i.e. P<10-5).  
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The UK, French, German, MDA, SFAGS and GliomaScan GWAS of non-overlapping case-control series 

of Northern European ancestry, have been the subject of previous studies;  Briefly: (1) The UK-

GWAS7,8,10 was based on 636 cases (401 males; mean age 46 years) ascertained through the 

INTERPHONE study47. Individuals from the 1958 Birth Cohort (n=2,930) served as a source of controls; 

(2) The French-GWAS7,10 comprised 1,495 patients with glioma ascertained through the Service de 

Neurologie Mazarin, Groupe Hospitalier Pitié-Salpêtrière Paris. The controls (n=1,213) were 

ascertained from the SU.VI.MAX (SUpplementation en VItamines et MinerauxAntioXydants) study of 

12,735 healthy subjects (women aged 35–60 years; men aged 45–60 years)48; (3) The German-GWAS10 

comprised 880 patients who underwent surgery for a glioma at the Department of Neurosurgery, 

University of Bonn Medical Center, between 1996 and 2008. Control subjects were taken from three 

population studies: KORA (Co-operative Health Research in the Region of Augsburg; n=488)49; POPGEN 

(Population Genetic Cohort; n=678)50 and from the Heinz Nixdorf Recall study (n=380)51. Standard, 

quality control measures were applied to the UK, French and German GWAS and have previously been 

reported. (4) The MDA-GWAS8 was based on 1,281 cases (786 males; mean age 47 years) ascertained 

through the MD Anderson Cancer Center, Texas, between 1990 and 2008. Individuals from the Cancer 

Genetic Markers of Susceptibility (CGEMS, n=2,245) studies served as controls52,53. Quality control 

measures were applied as per the Primary GWAS. (5) The SFAGS-GWAS. The UCSF adult glioma case-

control study includes participants of the San Francisco Bay Area Adult Glioma Study (AGS).  Details of 

subject recruitment for AGS have been reported previously9,12,34,54,55. Briefly, cases were adults (>18 

years of age) with newly diagnosed histologically confirmed glioma. Population-based cases diagnosed 

between 1991 and 2009 (Series 1-4) and residing in the six San Francisco Bay Area counties were 

ascertained using the Cancer Prevention Institute of California’s early case ascertainment system. 

Clinic-based cases diagnosed 2002-2012, (Series 3-5) were recruited from the UCSF Neuro-oncology 

Clinic, regardless of place of residence. From 1991 to 2010, population-based controls from the same 

residential area as the population-based cases were identified using random digit dialling and were 

frequency matched to population-based cases on age, gender, and ethnicity. Between 2010 and 2012, 

all controls were selected from the UCSF general medicine phlebotomy clinic. Clinic-based controls 

were matched to clinic-based glioma cases on age, gender, and ethnicity. Consenting participants 

provided blood, buccal, and/or saliva specimens and information during in-person or telephone 

interviews. A total of 677 cases and 3,940 controls (including 3,347 iControls) were used in the current 

analysis. (6) The GliomaScan-GWAS13 – in addition to the published analysis we excluded samples from 

the ATBC (Finnish study) and controls from NSHDS which were excluded due to exhibiting outlying 
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population ancestry after manual inspection of PCA plots. In total 1,653 cases and 2,725 controls were 

used in the current study. 

 

GWAS data from the seven studies were imputed to >10 million SNPs with IMPUTE2 v2.356 software 

using a merged reference panel consisting of data from 1000 Genomes Project (phase 1 integrated 

release 3, March 2012)57 and UK10K (ALSPAC, EGAS00001000090/EGAD00001000195 and TwinsUK 

EGAS00001000108/EGAS00001000194 studies). Genotypes were aligned to the positive strand in 

both imputation and genotyping. Imputation was conducted separately for each study, and in each, 

the data were pruned to a common set of SNPs between cases and controls before imputation. We 

set thresholds for imputation quality to retain potential risk variants with MAF>0.01. Poorly imputed 

SNPs defined by an information measure <0.40 with IMPUTE2 were excluded, as were SNPs exhibiting 

a significant deviation from hardy-weinberg equilibrium (P<1x10-8) in controls. Test of association 

between imputed SNPs and glioma was performed using SNPTESTv2.558 under an additive frequentist 

model. The adequacy of the case-control matching and possibility of differential genotyping of cases 

and controls were formally evaluated using Q-Q plots of test statistics (Supplementary Fig. 1). Where 

appropriate, principal components, generated using common SNPs, were included in the analysis to 

limit the effects of cryptic population stratification that otherwise might cause inflation of test 

statistics. Principal components, based on genotyped SNPs were generated for GICC, GliomaScan, 

MDA-GWAS and SFAGS studies using PLINK59. Eigenvectors for the German-GWAS were inferred using 

smartpca (part of EIGENSOFTv2.4)60 by merging cases and controls with Phase II HapMap samples10. 

PCA plots for all studies are provided in Supplementary Figure 4. 

 

UCSF-Mayo GWAS 

The UCSF-Mayo study comprised Mayo cases (n=945) and UCSF cases (n=574) and Mayo Clinic Biobank 

control (n=806) data. The Mayo Clinic case-control study has been described previously9,34,61. Briefly, 

adult cases (>18 years of age) were identified at diagnosis (diagnosed at Mayo Clinic) or at pathologic 

confirmation (diagnosed elsewhere and treated at Mayo Clinic), and had a surgical resection or biopsy 

between 1973 and 2014. Consenting participants provided blood, buccal, and/or saliva specimens and 

information during in-person or telephone interviews. This analysis used 574 non-overlapping cases 

from the UCSF adult glioma study described above. Mayo Clinic and UCSF cases were genotyped using 

the Illumina Oncoarray. The Mayo Clinic Biobank controls comprised volunteers who donated 

biological specimens, provide risk factor data, access to clinical data obtained from the medical record 
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and provide consent to participate in any study approved by the Access Committee. Recruitment for 

the Mayo Clinic Biobank took place from April 2009 through December 2015. While participants could 

be unselected volunteers, the vast majority of participants were contacted as part of a pre-scheduled 

medical examination in the Department of Medicine Divisions of Community Internal Medicine, Family 

Medicine, and General Internal Medicine at Mayo Clinic sites in Rochester, MN; Jacksonville, FL; and 

the Mayo Clinic Health System sites in La Crosse and Onalaska, WI. All were aged 18 years and older 

at time of consent.  Illumina Omni Express genotyping arrays were run on the 806 Mayo Clinic Biobank 

participants. 

 

Quality control analyses were performed on each cohort separately (Mayo cases; UCSF cases; Mayo 

Clinic Biobank controls). SNPs with call rates <95% were removed, followed by removal of subjects 

with call rates <95%. Concordance of replicate samples was assessed and the sample with the higher 

call rate was retained.  Subject’s sex was verified using the sex check option in PLINK. Relationship 

checking was performed by estimating the proportion of alleles shared identical by descent (IBD) for 

all pairs of subjects in PLINK59. STRUCTURE62 was used to assess population admixture with 1000 

Genomes as reference. Subjects indicated to be non-Caucasian were excluded. Prior to imputation, 

SNPs were tested for HWE and SNPs with HWE P<10-6 removed. Mayo Clinic, UCSF and Mayo Clinic 

Biobank SNP data were each phased and imputed using the Michigan Imputation Server with the 

Haplotype Reference Consortium (release 1; http://www.haplotype-reference-consortium.org) as 

reference. Genotypes were forward-strand aligned to the 1000 genome reference and for ambiguous 

SNPs the Browning strand checking utility was used 

 (http://faculty.washington.edu/sguy/beagle/strand_switching/strand_switching.html). PCA was 

used to correct for population stratification using SNPs common to cases and controls. The first three 

principal components were significantly (P<0.05) associated with case-control status.  An additive 

logistic regression model was used to assess the association between each SNP and disease status, 

with genotype coded as 0, 1, or 2 copies of the minor allele, adjusted for age, sex, and the first three 

principal components. 

 

Meta-analysis and additional statistical analyses 

Meta-analyses were performed using the fixed-effects inverse-variance method based on the β 

estimates and standard errors from each study using META v1.663. Cochran's Q-statistic was used to 

test for heterogeneity and the I2 statistic was used to quantify the proportion of the total variation 
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due to heterogeneity64, taking I2 values > 75 to indicate significant heterogeneity. Using the meta-

analysis summary statistics and LD correlations from a reference panel of 1000 Genomes Project 

combined with UK10K we used GCTA65,66 to perform conditional association analysis. Association 

statistics were calculated for all SNPs conditioning on the top SNP in each locus showing genome-wide 

significance. This is carried out in a step-wise fashion. We performed a case-only analysis to test for 

differences in SNP risk allele frequency between GBM and non-GBM tumors.  

 

ENCODE and chromatin state dynamics 

Risk SNPs and their proxies (i.e., r2 > 0.8 in the 1000 Genomes EUR reference panel) were annotated 

for putative functional effect using HaploReg v467, RegulomeDB68 and SeattleSeq Annotation69. These 

servers make use of data from ENCODE, genomic evolutionary rate profiling (GERP) conservation 

metrics, combined annotation dependent depletion (CADD) scores and PolyPhen scores. We searched 

for overlap of associated SNPs with enhancers defined by the FANTOM5 enhancer atlas19, annotating 

by overlap with ubiquitous, permissive and robust enhancers as well as enhancer-promoter 

correlations and enhancers specifically expressed in astrocytes, neuronal stem cells and brain tissue. 

Similarly we searched for overlap with “super-enhancer” regions as defined by Hnisz et al., 201320 

restricting analysis to data from U87 GBM cells, astrocyte cells and brain tissue. We additionally made 

use of 15-state chromHMM data from H1- and H9-derived neuronal progenitor cells available from 

the Epigenome roadmap project70. Enhancer enrichment analysis was carried out using HaploReg 

v4.067. Briefly, from a query list of variants, the overlap with enhancers in each of 107 cell types as 

predicted from Roadmap Epigenomics Project70 chromatin state segmentations is calculated. A 

binomial test for enrichment was performed against a background set of all 1) 1000 Genomes variants 

with MAF > 0.05 and 2) all unique GWAS loci in the European population. We applied a cutoff of 

P<3.94x10-4 corresponding to a Bonferroni correction for 127 cell lines/tissues. 

 

Expression quantitative trait loci analysis 

To examine the relationship between SNP genotype and gene expression we carried out Summary-

data-based Mendelian Randomization (SMR) analysis as per Zhu et al., 201618 (at 

http://cnsgenomics.com/software/smr/index.html). We used publicly available brain tissue data from 

the GTEx16 (http://www.gtexportal.org) v6p release. Briefly, GWAS summary statistics files were 

generated from the meta-analysis. Reference files were generated from merging 1000 genomes phase 

3 and UK10K (ALSPAC and TwinsUK) vcfs. Summary eQTL files for GTEx samples were generated from 
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downloaded v6p ”all_snpgene_pairs” files. Besd files were generated from these summary eQTL files 

using the –make-besd command. Additionally, we analyzed downloaded whole blood eQTL data from 

Westra et al., 201617. Results from the SMR test for each of the 13 new glioma loci are reported in 

Supplementary Data 3. As previously advocated18 only probes with at least one eQTL P-value of 

<5.0x10-8 were considered for SMR analysis. We set a threshold for the SMR test of PSMR < 1.06x10-4 

corresponding to a Bonferroni correction for 473 tests (473 probes with a top eQTL P<5.0x10-8 across 

the 13 loci, 10 brain regions and Westra dataset). For all genes passing this threshold we generated 

plots of the eQTL and GWAS associations at the locus, as well as plots of GWAS and eQTL effect sizes 

(i.e. corresponding to input for the HEIDI heterogeneity test). HEIDI test P-values < 0.05 were taken to 

indicate significant heterogeneity. Respective SMR plots for significant eQTLs are shown in 

Supplementary Fig. 4. 

 

Additional statistical and bioinformatics analysis 

Estimates of individual variance in risk associated with glioma risk SNPs was carried out using the 

method described in Pharoah, et al., 200871 assuming the familial risk of high-grade and low-grade 

glioma to be 1.76 and 1.54 respectively from analysis of the Swedish series in Scheurer et al., 201072. 

Briefly, for a single allele (i) of frequency p, relative risk R and ln risk r, the variance (Vi) of the risk 

distribution due to that allele is given by: 

𝑉𝑖 = (1 − 𝑝)2𝐸2 + 2𝑝(1 − 𝑝)(𝑟 − 𝐸)2 + 𝑝2(2𝑟 − 𝐸)2 

Where E is the expected value of r given by: 

𝐸 = 2𝑝(1 − 𝑝)𝑟 + 2𝑝2𝑟 

For multiple risk alleles the distribution of risk in the population tends towards the normal with 

variance: 

𝑉 =∑𝑉𝑖 

The total genetic variance (V) for all susceptibility alleles has been estimated to be √1.77. Thus the 

fraction of the genetic risk explained by a single allele is given by: 

𝑉𝑖 𝑉⁄  
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LD metrics were calculated in vcftools v0.1.12b73 using UK10K data and plotted using visPIG74. LD 

blocks were defined on the basis of HapMap recombination rate (cM/Mb) as defined using the Oxford 

recombination hotspots and on the basis of distribution of confidence intervals defined by Gabriel et 

al.75 

 

Data availability 

Genotype data from the GICC GWAS are available from dbGaP (xx). Additionally, genotypes from the 

GliomaScan GWAS can be accessed through dbGaP accession phs000652.v1.p1. Data from other 

studies are available upon request. 
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6 CHAPTER 4 

Diffuse gliomas classified by 1p/19q co-deletion, TERT promoter 

and IDH mutation status are associated with specific genetic risk 

loci 

6.1 . Overview and rational 

Despite glioma being an especially devastating malignancy little is known about its aetiology 

and aside from exposure to ionising radiation that accounts for very few cases no 

environmental or lifestyle factor has been unambiguously linked to risk [174]. Recent 

genome-wide association studies (GWAS) have however enlightened our understanding of 

glioma genetics identifying single-nucleotide polymorphisms (SNPs) at multiple independent 

loci influencing risk [85][87][89][92][88][91][175]. While understanding the functional basis 

of these risk loci offers the prospect of gaining insight into the development of glioma, few 

have been deciphered. Notable exceptions are the 17p13.1 locus, where the risk SNP 

rs78378222 disrupts TP53 polyadenylation [88] and the 5p15.33 locus, where the risk SNP 

rs10069690 creates a splice-donor site leading to an alternate TERT splice isoform lacking 

telomerase activity [102]. 

Since the aetiological basis of glioma subtypes is likely to reflect different developmental 

pathways it is not perhaps surprising that subtype-specific associations have been shown for 

GBM (5p15.33, 7p11.2, 9p21.3, 11q14.1, 16p13.33, 16q12.1, 20q13.33 and 22q13.1) and for 

non-GBM glioma (1q44, 2q33.3, 3p14.1, 8q24.21, 10q25.2, 11q21, 11q23.2, 11q23.3, 

12q21.2, 14q12 and 15q24.2) [175]. Recent large-scale sequencing projects have identified 

IDH mutation, TERT promoter mutation and 1p/19q co-deletion as cancer drivers in glioma. 

These findings have improved the subtyping of glioma [20][26][32][176] and this information 

has been incorporated into the revised 2016 WHO classification of glial tumours [16]. Since 

these mutations are early events in glioma development, any relationship between risk SNP 

and molecular profile should provide insight into glial oncogenesis. Evidence for the existence 

of such subtype specificity is already provided by the association of the 8q24.21 (rs55705857) 

risk variant with 1p/19q co-deletion, IDH mutated glioma [86]. Additionally, it has been 

proposed that associations may exist between risk SNPs at 5p15.33, 9p21.3 and 20q13.33 and 



 

106 
 

IDH wild-type glioma [177], as well as 17p13.1 and TERT promoter, IDH mutated glioma 

without 1p/19q co-deletion [32]. 

To gain a more comprehensive understanding of the relationship between the 25 glioma risk 

loci and tumour subtype I analysed three patient series totalling 2,648 cases. Since generically 

the functional basis of GWAS cancer risk loci appear primarily to be through regulatory effects 

[52], we analysed Hi-C and gene expression data to gain insight into the likely target gene/s 

of glioma risk SNPs. 

 

The results of this Chapter have been published (APPENDIX 2). Therefore, due to the format, 

some data are available in the online version of the paper. 
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6.2 . Methods 

6.2.1 Patients, samples and datasets  

We analysed data from three non-overlapping case series: TCGA, French GWAS, French 

sequencing. Details of these datasets are provided below and are summarised in Table 4.1.  

TCGA 

Raw genotyping files (.CEL) for the Affymetrix Genome-wide version 6 array were downloaded 

for germline (i.e. normal blood) glioma samples from The Cancer Genome Atlas (TCGA, dbGaP 

study accession: phs000178.v1.p1). Controls were from publicly accessible genotype data 

generated by the Wellcome Trust Case-Control Consortium 2 (WTCCC2) analysis of 2,699 

individuals from the 1958 British birth cohort (1958-BC) [109]. Genotypes were generated 

using the Affymetrix Power Tools Release 1.20.5 using the Birdseed (v2) calling algorithm 

(https://www.affymetrix.com/support/developer/powertools/changelog/index.html) and 

PennCNV [178]. After quality control (Figure 4.1 and 4.2, Table 4.2) there were 521 TCGA 

glioma cases and 2,648 controls (Table 4.1). Glioma tumour molecular data (IDH mutation, 

1p/19q co-deletion, TERT promoter mutation) were obtained from Ceccarelli et al, 2016 

[179]. Further data (EGFR amplification/activating mutations, CDKN2A deletion) were 

obtained from the cBioportal for cancer genomics [180]. After adjustment for principal 

components there was minimal evidence of over-dispersion inflation (λ=1.01; Figure.4.2). 

French GWAS 

The French-GWAS [87][92] comprised 1,423 patients with newly diagnosed grade II to IV 

diffuse glioma attending the Service de Neurologie Mazarin, Groupe Hospitalier Pitié-

Salpêtrière Paris. The controls (n=1,190) were ascertained from the SU.VI.MAX 

(SUpplementation en VItamines et MinerauxAntioXydants) study of 12,735 healthy subjects 

(women aged 35–60 years; men aged 45–60 years) [181]. Tumours from patients were snap-

frozen in liquid nitrogen and DNA was extracted using the QIAmp DNA minikit, according to 

the manufacturer's instructions (Qiagen, Venlo, LN, USA). DNA was analysed for large-scale 

copy number variation by comparative genomic hybridisation (CGH) array as previously 

described [182][183]. For tumours not analysed by CGH array, 1p/19q co-deletion status was 

assigned using PCR microsatellites, and EGFR-amplification and CDKN2A-p16-INK4a 

homozygous deletion by quantitative PCR. IDH1, IDH2 and TERT promoter mutation status 

was assigned by sequencing [26][184]. 
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French sequencing 

Eight hundred and fifteen patients newly diagnosed grade II to IV diffuse glioma were 

ascertained through the Service de Neurologie Mazarin, Groupe Hospitalier Pitié-Salpêtrière 

Paris. Genotypes for the 25 risk SNPs were obtained by universal-tailed amplicon sequencing 

in conjunction with Miseq technology (Illumina inc). Genotypes were called using GATK 

(Genome Analysis ToolKit, version 3.6-0-g89b7209) software.  Duplicated samples and 

individuals with low call rate (<90%) were excluded (n=111). Molecular profiling of tumour 

samples was carried out as per the French GWAS.  
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   Case groupings 

   IDH status EGFR CDKN2A Molecular subgroup WHO 2016 classification 

Dataset Controls Cases 

(GBM/non-

GBM) 

mut wt amp wt del wt IDH-

only 

TERT-

IDH 

TERT-

only 

Triple 

–ve 

Triple 

+ve 

Total Astro

IDH-

mut 

Astro 

IDH-

wt 

Oligo 

1p19q 

GBM 

IDH-

mut 

GBM 

IDH-

wt 

Total 

TCGA 2,648 521 

(183/338) 

293 228 246 270 254 262 100 4 45 10 65 224 166 51 116 10 171 514 

French 

GWAS 

1,190 1,423 

(430/993) 

366 498 118 628 173 573 169 46 309 141 85 750 188 214 95 27 233 757 

French 

seq 

5,527 704 

(181/523) 

427 277 101 592 144 549 181 28 185 92 199 685 178 114 218 31 148 689 

Total 9,365 2,648 

(795/1,854) 

1,086 1,003 465 1,490 571 1,384 450 78 539 243 349 1,659 532 379 429 68 552 1,960 

Table 6.1 Overview of TCGA, French GWAS and French Seq series and mutation status of tumours . Amp, amplified; astro, astrocytoma; del, deleted; mut, mutated; oligo, oligodendroglioma; 
wt, wildtype. 
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Unrelated French controls were obtained from the 3C Study (Group, 2003) [185] a population-based, 
prospective study of the relationship between vascular factors and dementia being carried out in 
Bordeaux , Montpellier, and Dijon. Genotyping of controls was performed using Illumina Human 610-
Quad BeadChips. To recover untyped genotypes imputation using IMPUTE2 software was performed 
using 1000 Genomes multi-ethnic data (1000 G phase 1 integrated variant set release v3) as 
reference. SNPs genotypes were retained call rates were >98%, Hardy-Weinberg equilibrium (HWE) 
P value > 1x10-6, minor allele frequency (MAF) > 1%. After quality control, 704 cases and 5,527 
controls were available for analysis (Table 4.1). 
 
 

Table 6.2 Details of the quality control filters applied to TCGA and FRENCH sequencing studies. Samples were 
excluded due to call rate (< 90% or failed genotyping), ethnicity (principle components analysis or other 
samples reported to be not of white, European descent), relatedness (any individuals found to be duplicated 
or related within or between data sets through identity by state) or sex discrepancy. TCGA, The Cancer 
Genome Atlas. † filters for quality control were performed simultaneously so numbers for each criteria may 
not sum to total removed. 

 

 
    

 TCGA French Sequencing 

 Cases Controls Cases Controls 

Pre-quality control 754 2662 815 5,527 

Sex discrepancy  24 - - - 

Call rate <0.9 - - 111 - 

Heterozygosity rate 55 10 - - 

Related Individuals - 5 - - 

Non-European Ancestry 179 - - - 

Post-quality control† 521 2,648 704 5,527 
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Figure 6.1 Identification of individuals of non-European ancestry in TCGA cases and WTCC controls. (a) before excluding non-European ancestry in cases 
and controls, and (b) after. The first two principal components of the analysis are plotted. HapMap CEU individuals are plotted in red, JPT individuals are 
plotted in pink, CHB are plotted in cyan, YRI are plotted in yellow. Cases are plotted in green and controls are plotted in blue. 
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Figure 6.2 Quantile-Quantile (Q-Q) plots of observed and expected 
2
 values of association between SNP genotype and risk of glioma after imputation 

using TCGA cases and WTCC controls.. Before adjustment for population stratification in the left and after adjustment in the right. The red line represents 
the null hypothesis of no true association. 
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6.2.2 Statistical analysis 

Test of association between SNP and glioma molecular subgroup was performed using SNPTESTv2.5 

[144] under an additive frequentist model. Where appropriate, principal components, generated 

using common SNPs, were included in the analysis to limit the effects of cryptic population 

stratification that otherwise might cause inflation of test statistics. Eigenvectors for the TCGA study 

were inferred using smartpca (part of EIGENSOFTv2.4) [186] by merging cases and controls with 

Phase II HapMap samples [92]. 

 

To ensure reliability when restricting cases to per-group low sample counts, imputed genotypes were 

thresholded at a probability > 0.9 (e.g. –method threshold in SNPtest) for the TCGA and French-GWAS 

studies. For the French-sequence study we used –method expected, as we were comparing 

genotypes from directly sequenced cases against imputed controls. We compared control 

frequencies to those from European 1000 genomes project to ensure the validity of this approach. 

 

Meta-analyses were performed using the fixed-effects inverse-variance method based on the β 

estimates and standard errors from each study using META v1.6 [145] Cochran's Q-statistic was used 

to test for heterogeneity [187]. 

 

Risk allele number and age at diagnosis 

For imputed SNPs a genotype probability threshold > 0.9 was used. The age and survival distribution 

of cases carrying additive combinations of risk alleles were assessed for the 25 SNPs across the 

molecular subgroups. Trend lines were estimated using linear regression in R and plotted using the 

ggplot2 package [173]. Association between risk allele number and age was assessed using Pearson 

correlation. 

 

Survival analysis 

Survival plots were generated using the survfit package in R which computes an estimate of a survival 

curve for censored data using the Kaplan-Meier method. Log-rank tests were used to compare curves 

between groups and power to demonstrate a relationship between different groups and overall 

survival was estimated using sample size formulae for comparative binomial trials. The Cox 

proportional-hazards regression model was used to investigate the association between survival and 
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age, grade, molecular group and number of risk alleles. Individuals were excluded if they died within 

a month of surgery. Date of surgery was used as a proxy for date of diagnosis. 

 

Expression quantitative trait locus analysis 

We searched for expression quantitative trait loci (eQTLs) in 10 brain regions using the V6p GTEx 

[188] portal (https://gtexportal.org/home/) as well as in whole blood using the blood eQTL browser 

[189] (https://molgenis58.target.rug.nl/bloodeqtlbrowser/). 

 

Hi-C analysis 

We examined for significant contacts between glioma risk SNPs and nearby genes using the HUGIn 

browser [161], which is based on analysis by Schmitt et al, 2016 [162]. We restricted analysis to Hi-C 

data generated on H1 Embryonic Stem Cell and Neuronal Progenitor cell lines, as originally described 

in Dixon et al, 2015 [163]. Plotted topologically associating domain (TAD) boundaries were obtained 

from the insulating score method [164] at 40-kb bin resolution. We searched for significant 

interactions between bins overlapping the glioma risk SNP and all other bins within 1Mb at each locus 

(i.e. “virtual 4C”). 

 

Gene set enrichment analysis 

Gene set enrichment analysis (GSEA) was carried out using version 3.0 with gene sets from Molecular 

Signatures Database (MSigDB) v6.0 [190][130], restricted to the C2 canonical pathways sets 

(n=1,329). Analysis was carried out using default settings, with the exception of removing restrictions 

on gene set size. RSEM normalised mRNASeq expression data for 20,501 genes in 676 glioma cases 

from TCGA were downloaded from the Broad Institute TCGA GDAC (http://gdac.broadinstitute.org/). 

These were assigned molecular groupings using sample information from Supplementary Table 1 of 

Ceccarelli et al, 2016 [179]. 
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6.3 . Results  

Descriptive characteristics of datasets  

I studied three non-overlapping glioma case-control series of Northern European ancestry totalling 

2,648 cases and 9,365 controls (Table 4.1). For 1,659 of the 2,648 cases information on tumour, 

1p/19q co-deletion, TERT promoter and IDH mutation status was available (Figure 4.3). Using these 

data allowed definition of five molecular subgroups of glioma: Triple-positive (IDH mutated, 1p/19q 

co-deletion, TERT promoter mutated); TERT-IDH (IDH mutated, TERT promoter mutated, 1p/19q-

wild-type); IDH-only (IDH mutated, 1p/19q wild-type, TERT promoter wild-type);TERT-only (TERT 

promoter mutated, IDH wild-type, 1p/19q wild-type) and Triple-negative (IDH wild-type, 1p/19q 

wild-type, TERT promoter wild-type). 

Figure 6.3 Molecular classification of diffuse glioma and frequency of each subgroup in the TCGA, French-
GWAS and French sequencing case series. 

 

As only 29 cases were classified as IDH mutation, 1p/19q co-deletion and TERT promoter wild-type, 

we restricted subsequent analyses to the five groups as above. Table 4.1 also shows grouping of the 

1,960 cases adopting the WHO 2016 classification of glial tumours into five categories (Astrocytoma 

with IDH mutation, IDH wild-type astrocytoma, Oligodendroglioma with 1p/19q co-deletion, GBM 

with IDH mutation and IDH wild-type GBM) (APPENDIX 1; page: 151). 

 

SNP selection 

We analysed 25 SNPs, which had been reported to show the strongest genome-wide significant 

association with glioma in Chapter 3 meta-analysis of 12,496 cases and 18,190 controls [175] (Table 
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4.3). In the current analysis all of the SNPs exhibited a consistent direction of effect with that 

previously reported, albeit some weakly (APPENDIX 1; page: 152, online resource; Supplementary 

Table 3). 

 

Relationship between risk SNP and molecular subgroup 

In the first instance we examined whether the associations at the 25 risk loci were broadly defined 

by IDH status. We observed significant association for IDH mutated group with 1q44 (rs12076373), 

2q33.3 (rs7572263), 3p14.1 (rs11706832), 8q24.21 (rs55705857), 11q21 (rs7107785), 11q23.3 

(rs12803321), 14q12 (rs10131032), 15q24.2 (rs77633900) and 17p13.1 (rs78378222) risk SNPs. In 

addition, we found strong associations for the IDH wild-type glioma with 5p15.33 (rs10069690), 

7p11.2 (rs75061358), 9p21.3 (rs634537), and 20q13.33 (rs2297440) (APPENDIX 1; page: 152, online 

resource; Supplementary Table 3). Of particular note was the finding that many of the risk loci 

recently discovered which were reported to be associated with non-GBM (1q44, 2q33.3, 3p14.1, 

11q21, 14q12, 15q24.2) [175] showed a strong association with IDH mutant glioma. 

 

Following on from this we performed a more detailed stratified analysis based on classifying the 

glioma tumours into the five molecularly defined groups. We found a strong association with IDH 

mutated tumours at 8q24.21 (rs55705857), in particular with Triple-positive glioma (P=1.27x10-37
, 

OR=9.30 [6.61-13.08]), which corresponds to the WHO 2016 oligodendroglioma classification 

(APPENDIX 1; page 153, online resource; Supplementary Table 3). Furthermore, we confirmed the 

previously reported associations at 5p15.33 (rs10069690), 9p21.3 (rs634537), 17p13.1 (rs78378222) 

and 20q13.33 (rs2297440) with TERT-only glioma in each of the three series [32]. Finally, we found 

suggestive evidence for an association between 22q13.1 (rs2235573) with TERT-only glioma, as well 

as 11q21 (rs7107785), 11q23.2 (rs648044), and 12q21.2 (rs1275600) with Triple-positive glioma 

(Figure 4.4, online resource; Supplementary Table 3). 
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Locus SNP Alleles RAF Reported subtype 

1p31.3 rs12752552 T/C 0.87 GBM 

1q32.1 rs4252707 G/A 0.22 Non-GBM 

1q44 rs12076373 G/C 0.84 Non-GBM 

2q33.3 rs7572263 A/G 0.76 Non-GBM 

3p14.1 rs11706832 A/C 0.46 Non-GBM 

5p15.33 rs10069690 C/T 0.28 GBM 

7p11.2 rs75061358 T/G 0.10 GBM 

7p11.2 rs11979158 A/G 0.83 GBM 

8q24.21 rs55705857 A/G 0.06 Non-GBM 

9p21.3 rs634537 T/G 0.41 GBM 

10q24.33 rs11598018 C/A 0.46 Non-GBM 

10q25.2 rs11196067 A/T 0.58 Non-GBM 

11q14.1 rs11233250 C/T 0.87 GBM 

11q21 rs7107785 T/C 0.48 Non-GBM 

11q23.2 rs648044 A/G 0.39 Non-GBM 

11q23.3 rs12803321 G/C 0.64 Non-GBM 

12q21.2 rs1275600 T/A 0.60 Non-GBM 

14q12 rs10131032 G/A 0.92 Non-GBM 

15q24.2 rs77633900 G/C 0.09 Non-GBM 

16p13.3 rs2562152 A/T 0.85 GBM 

16p13.3 rs3751667 C/T 0.21 Non-GBM 

16q12.1 rs10852606 T/C 0.71 GBM 

17p13.1 rs78378222 T/G 0.01 All 

20q13.33 rs2297440 T/C 0.80 GBM 

22q13.1 rs2235573 G/A 0.51 GBM 

 

Table 6.3 Overview of glioma risk SNPs at the 25 loci. The risk allele is emboldened and the minor allele 
underlined. The risk allele frequency (RAF) is from European samples from 1000 genomes project. Note: At 
10q25.2, rs115997751 [175] failed sequencing so the originally reported SNP rs111960672 [92] was used.
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Figure 6.4 Association between the 25 risk loci and glioma molecular subgroup. Horizontal red line corresponds to an odds ratio of 1.0.
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In addition to data on 1p/19q co-deletion, TERT promoter and IDH mutation, for 1,955 of the tumours 

we had information on EGFR amplification and CDKN2A deletion status (Table 4.1). Using these data 

we examined for an association with EGFR amplification and CDKN2A deletion, particularly focusing on 

the 7p11.2 (rs75061358 and rs11979158) and 9p21.3 (rs634537) risk SNPs in view of the fact that these 

loci map in or near EGFR and CDKN2A respectively (APPENDIX 1; page 154-155, online resource; 

Supplementary Table 3). At 7p11.2, the intergenic variant rs75061358, which is located in the genomic 

vicinity of EGFR, was associated with EGFR amplified tumours and not those without amplification. 

There was a less strong association with EGFR amplification seen with the second independent signal 

at the locus defined by rs11979158, which is intronic within EGFR itself. At 9p21.3 rs634537, which is 

intronic within CDKN2B-AS1 and in the vicinity of CDKN2A and CDKN2B, was not associated with 

CDKN2A deletion status. Low grade gliomas tend to be EGFR wild-type and p16 wild-type tumours, and 

therefore as anticipated many non-GBM risk SNPs were most strongly associated with these tumours; 

notably 2q33.3 (rs7572263), 3p14.1 (rs11706832), 8q24.21 (rs55705857), 10q25.2 (rs11196067), 

11q23.3 (rs12803321) (APPENDIX 1; page 154-155, online resource; Supplementary Table 3). 

 

Polygenic contribution to age at diagnosis and patient survival 

Patient survival by molecular subgroup in each of the three series was consistent with previous 

published reports [20][32]; specifically, patients with Triple-positive tumours had the best prognosis 

whilst those with TERT-only tumours had the worst outcome (APPENDIX 1; page 148-150). We 

investigated whether an increased burden of glioma risk alleles might be associated with earlier age at 

diagnosis (i.e. indicative of influence on glioma initiation) or survival (indicative of influence on glioma 

progression). There was a slight albeit, non-significant trend towards decreased age at diagnosis with 

increased risk allele number in the IDH-only, TERT-only and Triple-positive molecular subgroup, but 

with decreased risk allele number in the TERT-IDH and Triple-negative tumours (APPENDIX 1; page 156-

158). We found no overall relationship between age and risk allele number, or for the individual 

molecular groups (APPENDIX 1; page 174). Examining each SNP individually, only rs55705857 at 

8q24.21 was nominally associated with age (APPENDIX 1; page 174) 

We used Cox Proportional-Hazards Regression to investigate whether burden of glioma risk was 

associated with survival, with each risk allele coded as 0, 1 or 2. As expected, age, grade and all 

molecular group (Triple-negative, Triple-positive, TERT-only, IDH-only and TERT-IDH) were strongly 

associated with decreased survival. Intriguingly, the number of risk alleles was associated with 

increased survival (APPENDIX 1; page 175; P<10-4) with 1q32.1 (rs4252707), 11q23.3 (rs12803321) and 
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11q21 (rs7107785) each being nominally associated with survival, independent of age and molecular 

subgroup. Considering the relationship between burden of glioma risk alleles and survival in each 

molecular subgroup a consistent association with increased survival was shown in Triple-positive, 

Triple-negative and TERT-only molecular groups but not in IDH-only and TERT-IDH groups. 

 

Biological inference of risk loci 

Since genomic spatial proximity and chromatin looping interactions are fundamental for regulation of 

gene expression [191], we interrogated physical interactions at respective risk loci in embryonic stem 

cells and neuronal progenitor cells using Hi-C data. We also sought to gain insight into the possible 

biological mechanisms for associations by performing expression quantitative trait locus (eQTL) 

analysis using mRNA expression data in 10 brain regions using the GTEx portal. 

 

We identified significant Hi-C contacts from the genomic regions which encompass 14 of the 25 risk 

loci implicating a number of presumptive candidate genes. For two of these, candidacy was supported 

by eQTL data. (Table 4.4; Online Resource,Supplementary Table 6). Notably at 2q33.3, there was a 

significant looping interaction between the risk SNP and IDH1/IDH1-AS1 and LRIG1 at 3p14.1 (Figure 

4.5), as well as with EGFR/EGFR-AS1 at 7p11.2, CDKN2A/CDKN2B at 9p21.3, NFASC at 1q32.1 

(APPENDIX 1, page 159-172). At the 8q24.21 gene desert Hi-C data revealed a significant interaction 

between the risk SNP rs55705857 and MYC, as well as lincRNAs in the region such as PCAT1/PCAT2. 

Additionally, the risk SNP rs12803321 at 11q23.3 was significantly associated with PHLDB1 expression 

in the brain. 

 

Pathway analysis  

To potentially gain further insight into the biological basis of subtype associations, we performed a 

gene-set enrichment analysis (GSEA) analysing gene expression data from TCGA (online resource; 

Supplementary Table 7) While we did not identify any significantly altered gene sets (at FDR q-value 

<0.1), the most significantly expressed genes in subgroups was upregulation of PI3K signalling shown 

in 1p/19q co-deleted tumours (online resource; Supplementary Table 7). 

  



 

121 
 

  Glioma molecular classification grouping   

Locus SNP Molecular subgroup IDH group EGFR group CDKN2A group eQTL Hi-C Commentary 

1p31.3 rs12752552 TERT-IDH (ns) - - - JAK1 (brain) RAVER2 
JAK1 
UBE2U 
CACHD1 

JAK1 is involved in actomyosin contractility in tumour cells and 
stroma to aid metastasis [192]. 

1q32.1 rs4252707 TERT-only* 
IDH-only* 

IDHmut* EGFRwt* CDKN2Awt* - NFASC NFASC is a cell adhesion molecule involved in axon subcellular 
targeting and synapse formation during neural development 
[193]. 

1q44 rs12076373 TP* IDHmut** - - - AKT3 AKT3 is highly expressed in brain, regulates cell signalling in 
response to insulin and growth factors [194], involved in 
regulation of normal brain size [195]. 

ZBTB18 

SDCCAG8 

2q33.3 rs7572263 IDH-only* 
TP* 

IDHmut** EGFRwt* CDKN2Awt* - IDH1 
IDH1-AS1 

Overexpression of IDH mutant proteins renders glioma cells 
more sensitive to radiation [196]. 

3p14.1 rs11706832 IDH-only** IDHmut** EGFRwt* CDKN2Awt* LRIG1 (blood) 
SLC25A26 (blood) 

LRIG1 - 

5p15.33 rs10069690 TERT-only** 
IDH-only* 
TP* 
TN* 

IDHmut* 
IDHwt** 

EGFRamp** 
EGFRwt* 

CDKN2Adel* 
CDKN2Awt** 

- - rs10069690 affects TERT splicing [102]. 

7p11.2 rs75061358 TERT-only* 
TERT-IDH* 
TN* 

IDHwt** EGFRamp** CDKN2Awt* - - - 

7p11.2 rs11979158 TERT-only* 
TN* 

IDHwt* EGFRamp* 
EGFRwt* 

CDKN2Adel* 
CDKN2Awt* 

- EGFR 
EGFR-AS1 

- 

8q24.21 rs55705857 IDH-only** 
TERT-IDH* 
TP** 
TN* 

IDHmut** EGFRwt** CDKN2Awt** 
CDKN2Adel** 

- PCAT1 
PCAT2 
CASC8 
CASC11 
MYC 
PVT1 

- 

9p21.3 rs634537 TERT-only** IDHwt** EGFRamp* 
EGFRwt* 

CDKN2Adel* 
CDKN2Awt** 

- CDKN2A 
CDKN2B-
AS1 

- 
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Table 6.4 Candidate gene basis of glioma risk loci.  ns, non-significant; PMID, PubMed identifier; TN, triple negative (i.e. IDH-wildtype, TERT promoter wildtype, 1p/19q wildtype); TP, triple positive 

(i.e. IDH-mutation, TERT promoter mutation and 1p/19q co-deletion). * P<0.05; ** significant after adjustment for multiple comparisons.  

10q24.3
3 

rs11598018 - IDHmut* EGFRwt* - - GSTO1 
GSTO2 
SH3PXD2A 

Correlated SNP to rs11598018 associated with telomere 
length likely through OBFC1 [197]. 

10q25.2 rs11196067 IDH-only* 
TN* 

IDHmut* 
IDHwt* 

EGFRwt* CDKN2Awt* - TCF7L2 
VTI1A 
HABP2 

TCF7L2 modifies beta-catenin signalling and controls 
oligodendrocyte differentiation [198]. 

11q14.1 rs11233250 - - - - - - - 

11q21 rs7107785 IDH-only* 
TP* 

IDHmut** EGFRwt* CDKN2Adel* RP11-712B9.2 
(brain) 

- - 

11q23.2 rs648044 TP* IDHmut* EGFRwt** CDKN2Awt** - NNMT 
ZBTB16 

NNMT is upregulated in GBM, NAD metabolism important in 
glioma [199]. 

11q23.3 rs12803321 IDH-only** 
TERT-IDH* 
TP* 

IDHmut** EGFRwt** CDKN2Awt** 
CDKN2Adel* 

PHLDB1 (brain) - PHLDB1 is an insulin-responsive protein that enhances Akt 
activation [200]. 

12q21.2 rs1275600 TP* IDHmut* EGFRwt* CDKN2Adel*   KRR1 
GLIPR1 

GLIPR1 is targeted by TP53 [201]. 

14q12 rs10131032 IDH-only* IDHmut** EGFRwt* CDKN2Adel* 
CDKN2Awt* 

  NPAS3 NPAS3 is a tumour suppressor for astrocytoma [202]. 

15q24.2 rs77633900 IDH-only* IDHmut** EGFRwt* CDKN2Awt* - SCAPER - 

16p13.3 rs2562152 - - - - - - - 

16p13.3 rs3751667 IDH-only* IDHmut* EGFRamp* 
EGFRwt* 

CDKN2Awt* RP11-161M6.2 
(brain) 
SOX8 (blood) 

- SOX8 is strongly expressed in brain and may be involved in 
neural development [203]. 

16q12.1 rs10852606 IDH-only* 
TP* (-ve) 

- - - HEATR3 - HEATR3 may be involved in NOD2-mediated NF-kappa B 
signalling [204]. 

17p13.1 rs78378222 TERT-only** 
IDH-only* 
TERT-IDH* 
TP* 

IDHmut** 
IDHwt* 

EGFRamp* 
EGFRwt** 

CDKN2Awt** 
CDKN2Adel* 

- - SNP rs78378222 affects TP53 3’UTR poly-adenylation 
processing [88]. 

20q13.3
3 

rs2297440 TERT-only** 
TN* 

IDHwt** EGFRamp** 
EGFRwt* 

CDKN2Adel* 
CDKN2Awt* 

STMN3 (brain) 
LIME1 (blood) 
ZGPAT (blood) 
EEF1A2 (blood) 

- Overexpression of STMN3 promotes growth in GBM cells 
[205]. 

22q13.1 rs2235573 TERT-only* IDHwt* - - CTA-228A9.3 (brain) - - 
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Figure 6.5 Plots of Hi-C interactions in H1 neuronal progenitor cells at the 2q33.3 and 3p14.1 risk loci. Plots were generated using the HUGIn browser [161]. 

Each plot shows a “virtual 4C” of all Hi-C interactions with “bait” fragments overlapping the glioma risk SNP of interest (indicated by the shaded 

rectangle).Topologically associating domain (TAD) boundaries are plotted as filled blue rectangles. The purple dotted line represents the Bonferroni threshold, 

with interactions exceeding this threshold treated as statistically significant. 



 

124 
 

6.4 . Discussion 

These findings provide further support for subtype specific associations for glioma risk loci. 

Specifically, we confirm the strong relationship between the 8q24.21 (rs55705857) risk variant and 

Triple-positive glioma. Moreover, we substantiate the proposed specific associations between 

5p15.33 (rs10069690) and 20q13.33 (rs2297440) variants with TERT promoter mutations, 9p21.3 

(rs634537) with TERT-only glioma, as well as 17p13.1 (rs78378222) with TERT-IDH glioma. Other loci 

such as 1q32.1 (rs4252707) and 10q25.2 (rs11196067) appear to have more generic effects. 

 

Although preliminary, and in part speculative, our analysis delineates potential candidate disease 

mechanisms across the 25 glioma risk loci (Table 4.4; Figure. 4.5). Firstly, maintenance of telomeres 

is central to cell immortalization [206], and is generally considered to require mutually exclusive 

mutations in either the TERT promoter or ATRX. The risk alleles at 5p15.33 (TERT) and 10q24.33 

(OBFC1) are associated with increased leukocyte telomere length, thereby supporting a relationship 

between SNP genotype and biology [206][207][208]. While dysregulation of the telomere gene RTEL1 

has traditionally been assumed to represent the functional basis of the 20q13.33 locus, the glioma 

risk SNP does not map to the locus associated with telomere length [175][197] Intriguingly, our 

analysis instead implicates STMN3 at 20q13.33, whose over-expression promotes growth in GBM 

cells [205] suggesting an alternative mechanism by which the risk SNP influences glioma 

development. With respect to the 5p15.33 (TERT) and 10q24.33 (OBFC1) loci, it is unclear whether 

the effect on glioma risk is solely due to telomeres or is pleiotropic and involves multiple factors. For 

example, rs10069690 at 5p15.33 is strongly associated with TERT-only glioma, yet the TERT promoter 

mutation increases telomerase activity without necessarily affecting telomere length [179]. An 

intriguing hypothesis to test would therefore be to examine the impact of allele-specific effects of 

rs10069690 on telomere length in the context of gliomas carrying the TERT promoter mutation. 
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Figure 6.6 Summary of the relationship between glioma risk with molecular subgroup and associated 
biological pathways.  The extent of the evidence supporting each candidate gene (ranging from an established 
role in glioma to largely speculative) is summarised in Table 4.4. 
 
 
Secondly, the EGFR-AKT pathway involves EGFR at 7p11.2, LRIG1 at 3p14.1, PHLDB1 at 11q23.3 and 

AKT3 at 1q44. We showed a significant interaction between the risk SNP rs11979158 at 7p11.2 and 

EGFR, consistent with a cis-regulatory effect on gene expression. Although the mechanistic basis of 

the 7p11.2 locus has long been suspected to involve EGFR and is highly associated with classical GBM, 

emerging evidence suggests that additional components of the EGFR-AKT signalling pathway are 

implicated by non-GBM SNPs. At the IDH-only associated locus 3p14.1, LRIG1 is highly expressed in 

the brain and negatively regulates the epidermal growth factor receptor (EGFR) signalling pathway 

[209]. Reduced LRIG1 expression is linked to tumour aggressiveness, temozolomide resistance and 

radio-resistance [210][211]. Downstream components of EGFR-AKT signalling are implicated at 

11q23.3 via PHLDB1, as well as 1p31.3 via JAK1 and 1q44 via AKT3. The risk allele of rs12803321 is 

associated with increased expression of PHLDB1, an insulin-responsive protein that enhances Akt 

activation [200]. AKT3 at 1q44 is highly expressed in the brain and appears to respond to EGF in a 

PI3K dependent manner [212], with GBM cells containing amplified AKT3 having enhanced DNA 

repair and resistance to radiation and temozolomide [213]. The risk allele of rs12752552 at 1p31.3 is 

associated with increased JAK1 expression in brain tissue. Since JAK1 can be activated by EGF 

phosphorylation, it may be involved in astrocyte formation [214][215][216]. The 3p14.1 and 11q23.3 
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loci are strongly associated with EGFR amplification negative gliomas, with a consistent albeit non-

significant trend at 1p31.3 and 1q44, consistent with elevated upstream EGFR activation masking 

their functional effects. 

 

Thirdly, the NAD pathway involves IDH1 at 2q33.3 and NNMT at 11q23.2. At 2q33.3 we detected a 

significant Hi-C interaction between the glioma risk SNP rs7572263 and IDH1/IDH1-AS1. 

Overexpression of IDH1 mutant proteins has been reported to sensitize glioma cells to radiation [196] 

providing an interesting mechanism to test the allele-specific effects of this SNP. IDH mutation causes 

de-regulation of NAD signalling [17]. Interestingly therefore, at 11q23.2 which is strongly associated 

with IDH mutated gliomas, the most convincing molecular mechanism is via NNMT, which encodes 

nicotinamide N-methyltransferase and is highly expressed in GBM relative to normal brain, causing 

methionine depletion-mediated DNA hypomethylation and accelerated tumour growth [199][217]. 

 

Fourthly, genes with established roles in neural development may be involved. While the risk SNP 

rs4252707 at 1q32.1 is within the intron of MDM4, the strongest evidence for a mechanistic effect 

was with NFASC. Neurofascin is involved in synapse formation during neural development [193] and 

therefore represents an attractive functional candidate for the association with glioma. Additionally 

at 16p13.3 and 20q13.33, implicated genes SOX8 and STMN3 are strongly expressed in the brain and 

thought to play a role in neural development [203][205]. At 10q25.2, implicated gene TCF7L2 

modifies beta-catenin signalling and controls oligodendrocyte differentiation [198]. Intriguingly, 

10q25.2 has previously been reported to be a risk locus for colorectal cancer [218], a tumour driven 

by wnt signalling, however the risk SNP is not correlated with rs11196067 raising the possibility of 

tissue-specific regulation across the wider region. 

Finally, the p53 pathway is involved at 17p13.1, where the risk SNP rs7837222 affects TP53 3’UTR 

poly-adenylation processing. In addition the p53 target GLIPR1 [201] is implicated at 12q21.2. 

Moreover, 12q21.2 is most strongly associated with Triple-positive glioma, which does not feature 

TP53 mutation, consistent with wild-type p53 protein being required for the SNP to exert a functional 

effect. 

 

As with many cancers, the exact point at which the risk SNPs exert their functional impact on glioma 

oncogenesis still remains to be elucidated, and we did not demonstrate a relationship between 
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increased risk allele number and age at diagnosis. Surprisingly we found a significant association 

between increasing risk allele number and improved outcome. This result was consistent across the 

prognostic molecular groups, consistent with our observations not being due to an over-

representation of the more favourable prognostic groups among patients with a higher burden of 

risk alleles. In addition, the distribution of risk allele numbers did not differ across the four groups 

(P=0.3, ANOVA test). Examining the impact of an individual SNP’s impact on survival did not reveal 

any loci strongly associated with outcome. Collectively our findings suggest that, independent of 

other prognostic factors, the greater the number of risk alleles carried, the better the outcome. 

 

In conclusion, we performed the most comprehensive association study between molecular 

subgroup and the 25 recently identified glioma risk loci to date. While confirming previous 

observations, we show that the majority of risk loci are associated with IDH mutation. Through 

integration of Hi-C and eQTL data we have additionally sought to define candidate target genes 

underlying the associations. Collectively our observations highlight pathways critical to glioma 

susceptibility, notably neural development and NAD metabolism, as well as EGFR-AKT signalling. 

Intriguingly, we show here that the number of risk alleles is consistently associated with better 

outcome. Functional investigation in tumour and neural progenitor-based systems will be required 

to more fully elucidate these molecular mechanisms. Notably, IDH mutant tumours have been shown 

to reshape 3D chromatin organisation and may reveal new regulatory interactions [219].  
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7 CHAPTER 5 

TCF12 is mutated in anaplastic oligodendroglioma 

7.1 . Overview and rational  

Anaplastic oligodendrogliomas (AO; World Health Organization grade III oligodendrogliomas) are rare 

primary malignant brain tumours with a highly variable overall prognosis. The genomic instability in 

cancer is characterised by somatic genetic mutation, including single-nucleotide variants (SNV), 

small-scale insertion-deletions (indels), large-scale somatic copy number alterations (sCNA) and 

genomic translocations. 

 

The emblematic molecular alteration in oligodendrogliomas is 1p/19q co-deletion, which is 

associated with a better prognosis and response to early chemotherapy with procarbazine, lomustine 

and vincristine (PVC) [27][41][220]. Prior to the work presented in this thesis, recent high-throughput 

sequencing approaches have identified IDH (IDH1 and IDH2), CIC, FUBP1 and TERT promoter 

mutations in oligodendroglioma (75%, 50%, 10% and 75%, respectively) [27][28][221]; IDH mutation 

status typically being associated with a better clinical outcome [17]. Identifying additional driver 

genes and altered pathways in oligodendroglioma offers the prospect of developing more effective 

therapies and biomarkers to predict individual patient outcome. 

  

Here I performed whole-exome and transcriptome sequencing analysis of AO to search for additional 

tumour driver mutations and pathways disrupted.  

 

The results of this Chapter have been published (APPENDIX 2). Therefore, due to the format, some 

data are available in the online version of the paper. 
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7.2 . Methods 

7.2.1 Patients, samples and datasets  

The Exome sequencing was conducted on samples from 51 AO patients (33 male; median age 49 

years at diagnosis, range 27-81), as detailed in 2.1.3 and 2.2.6. For targeted follow-up analyses we 

studied the tumours from an additional 83 AO patients and 75 patients with grade II tumours. A 

summary of each of the tumour cohorts and respective pathological information on the patients is 

provided in online resource: Supplementary Data 1. 

Additionally, to explore the mutational spectra of AO in an independent series I made use of data 

generated by The Cancer Genome Atlas (TCGA) study of low grade glioma, which provides exome 

sequencing data on a further 43 AO tumours. 

7.2.2 Statistical and bioinformatics analysis  

Sequence alignment, mapping, and variant calling performed using BWA/Stampy/GATK/MuTect 

software, as detailed in 2.3.2.3 and 2.3.6. Copy number variation (CNV) analysis was conducted using 

SNP array as detailed in 2.3.6.2. Pathway analysis was performed as described in 2.3.6.1 using 

Oncodrive-fm [167] as implemented within the IntOGen-mutations platform [168], using  all  SNVs 

and indel mutations called across the 51 tumours.  

 

Gene expression profiles of 71 samples were analysed using Affymetrix Human Genome U133 Plus 

2.0 arrays. All samples were normalized in batch using the RMA algorithm (Bioconductor affy 

package), and probe set intensities were then averaged per gene symbol. 

 

To identify the significantly mutated pathways, gene set member lists were retrieved online from 

MSigDB33, GO34 and SMD35 databases. We searched for gene sets harbouring more damaging 

mutations than expected by chance. Given the set G of all the genes sequenced with sufficient 

coverage, the set S of tumour samples (of size n) and any gene set P, we calculated the probability of 

observing a number of mutations equal or greater to that observed in P across the n samples 

according to a binomial law B(k, p), with k = n × L(P) and the mutation rate p = A(G,S) / (n × L(G)), 

where L(X) is the sum of the lengths (in bp) of all genes/exons from a gene set X, and A(G, S) is the 

total number of mutations observed in all the targeted sequences across all the samples from S. 
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7.3 . Results  

In accordance with conventional clinical practice I considered three molecular subtypes for our 

analyses: (i) IDH mutated 1p/19q co-deleted (IDHmut-codel); (ii) IDH mutated 1p/19q non-co-deleted 

(IDHmut-non-codel) and (iii) IDH-wildtype (IDHwt)7. Assignment of IDH mutated (defined by IDH1 

R132 or IDH2 R172 mutations), 1p/19q and TERT promoter mutation (defined by C228T or C250T) 

status in tumours was determined using conventional sequencing and SNP array methods.   

Mutational landscape  

Whole exome sequencing of 51 AO tumours and matched germline DNA were performed, targeting 

318,362 exons from 18,901 genes. The mean sequencing coverage across targeted bases was 57x, 

with 80% of target bases above 20x coverage (Figure 5.1). We identified a total of 4,733 mutations 

(with a mean of 37 non-silent mutations per sample) equating to a mean somatic mutation rate of 

1.62 mutations per megabase (Mb) (Figure 5.2). Although the tumours of two patients (3063 and 

3149) had high rates of mutation (9.1 and 12.4 respectively) this was not reflective of tumour site 

(both frontal lesions as were 68% of the whole series) or treatment. Excluding these two cases the 

mean rate of non-silent mutations per tumour was 33±14, which is similar to the number found in 

most common adult brain tumours. The mutation spectrum in AO tumours was characterized by a 

predominance of C>T transitions, as observed in most solid cancers (Figure 5.2) [166][222]. While few 

of the tumours were IDHwt, these did not harbour a significantly higher number of mutations 

compared to IDHmut-1p/19q co-deleted and IDHmut-non-1p/19q co-deleted tumours (Figure 5.2). 

Intriguingly one tumour (2688) was co-mutated for IDH1 (R132H) and IDH2 (P162S), but exhibited no 

distinguishing phenotype in terms of clinico-pathology or mutation rate. 
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Figure 7.1 Coverage of exome sequencing. Proportion of bases in targeted exons sequenced at a depth of 10× 
and 25× for 51 AOs tumours and their normal counterparts. Boxes divided by median values. Length of boxes 
corresponds to interquartile range and whiskers correspond to 1.5 interquartile ranges. 
 
 

I used MutSigCV version 1.4 [166] to identify genes harbouring more non-synonymous mutations 

than expected by chance given gene size, sequence context and mutation rate of each tumour for 

the three molecular subtypes, respectively. As expected we observed frequent mutations of the 

tumour suppressors FUBP1 (22%) located on 1p, and CIC (32%) located on 19q, which have been 

reported in the context of 1p/19q co-deletion; these were not mutually exclusive events (Figure 5.2). 

Also within the IDHmut-codel group, 37 of tumours tested carried TERT C228T or C250T promoter 

mutations (72%); none of which also carried an ATRX mutation, concordant with the previously 

reported finding that these are mutually exclusive events [27]. 
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Figure 7.2 Significantly mutated genes in anaplastic oligodendroglioma by molecular subtype. Significantly 
mutated genes (Q-value<0.1) identified by exome sequencing are listed by Q-value. The percentage of AO 
samples with mutation detected by automated calling is detailed on the left. Samples are displayed as 
columns, with the mutation rate plotted at the top. Samples are arranged to emphasize mutual exclusivity. 
Mutation types are indicated in different colours (see legend). White colour indicates no information available. 
Also shown is the relative proportion of base-pair substitutions within mutation categories for each tumour. 

 

In addition to mutation of IDH1 (78%), IDH2 (17%), CIC (32%), and FUBP1 (22%), TCF12 was also 

significantly mutated (Q value <0.1; Figure 5.2; Online resource: Supplementary Data 2). 

Heterozygous somatic mutations in TCF12, which encodes the basic helix-loop-helix (bHLH) 

transcription factor 12 (aliases HEB, HTF4, ALF1) were identified in five (1 missense, R602M; 2 splice-

site, c.825+5G>T, c.1979-3_1979-delTA and 2 frameshift, E548fs*13, S682fs*14) of the 46 

IDHmutated-1p/19q co-deleted (Figure 5.3). Intriguingly germline mutations of residues E548R and 

602M have been previously shown to cause coronal craniosynostosis [223].  
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Figure 7.3 Location of mutations of TCF12 in AO. Transcripts are plotted 5’ to 3’; untranslated regions are not 
colored; coding regions of exons are shown in alternating red and gray. The variants track shows the 
distribution of mutations. 

 

The availability of high quality tumour material allowed us to generate SNP array and expression data 

on 31 of the cases exome sequenced. In addition to co-deletion of chromosome arms 1p/19q we 

identified several other recurrent genomic alterations - mainly loses of chromosomes 4 (29%), 9p 

(28%), and 14q (19%) (Figure 5.4; Table5.1). Notably, tumours featuring mutation of Notch-pathway 

genes showed significant chromosome 4 loss (P=0.02, Chi squared test).  
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Figure 7.4 Frequency of genomic gains and losses in 31 AO samples. Vertical solid lines separate chromosomes, and vertical dashed lines indicate 
centromeres positions. Gains and losses frequency peaks were computed for each genomic position targeted by SNP arrays (excluding sexual chromosomes 
and positions within known frequent germline CNVs). 
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Arm # Genes 
Amp 
frequency 

Amp z-
score 

Amp q-
value 

Del 
Frequency 

Del z-
score 

Del q-
value 

1p 2121 0 -0.689 0.951 0.84 14.9 0 

1q 1955 0.08 -0.177 0.951 0.17 1.64 0.194 

2p 924 0.13 0.84 0.712 0 -1.6 0.951 

2q 1556 0.13 0.838 0.712 0 -1.6 0.951 

3p 1062 0.03 -0.998 0.951 0.07 -0.388 0.951 

3q 1139 0.03 -0.998 0.951 0.07 -0.388 0.951 

4p 489 0 -1.44 0.951 0.29 4.04 0.000215 

4q 1049 0 -1.44 0.951 0.29 4.03 0.000215 

5p 270 0.1 0.204 0.951 0 -1.63 0.951 

5q 1427 0.06 -0.438 0.951 0 -1.66 0.951 

6p 1173 0 -1.66 0.951 0.06 -0.437 0.951 

6q 839 0 -1.66 0.951 0.06 -0.437 0.951 

7p 641 0.16 1.48 0.453 0 -1.57 0.951 

7q 1277 0.16 1.48 0.453 0 -1.57 0.951 

8p 580 0.16 1.48 0.453 0 -1.57 0.951 

8q 859 0.16 1.48 0.453 0 -1.57 0.951 

9p 422 0.09 0.00747 0.951 0.28 3.63 0.000932 

9q 1113 0.08 -0.057 0.951 0.24 2.96 0.00848 

10p 409 0 -1.57 0.951 0.16 1.48 0.194 

10q 1268 0 -1.57 0.951 0.16 1.48 0.194 

11p 862 0.23 2.76 0.0574 0 -1.51 0.951 

11q 1515 0.23 2.75 0.0574 0 -1.51 0.951 

12p 575 0 -1.63 0.951 0.1 0.203 0.82 

12q 1447 0 -1.63 0.951 0.1 0.2 0.82 

13q 654 0.14 1.06 0.712 0.11 0.454 0.745 

14q 1341 0 -1.54 0.951 0.19 2.12 0.0744 

15q 1355 0.04 -0.873 0.951 0.17 1.56 0.194 

16p 872 0.14 0.983 0.712 0.07 -0.231 0.951 

16q 702 0.1 0.262 0.951 0.04 -0.957 0.951 

17p 683 0.07 -0.231 0.951 0.14 0.984 0.398 

17q 1592 0.07 -0.233 0.951 0.14 0.981 0.398 

18p 143 0.04 -0.781 0.951 0.23 2.86 0.0103 

18q 446 0.04 -0.872 0.951 0.17 1.56 0.194 

19p 995 0.05 -0.686 0.951 0.3 4.16 0.00021 

19q 1709 0.2 0.901 0.712 0.87 15.2 0 

20p 355 0.06 -0.436 0.951 0 -1.66 0.951 

20q 753 0.1 0.202 0.951 0 -1.63 0.951 

21q 509 0.06 -0.436 0.951 0 -1.66 0.951 

22q 921 0.04 -0.957 0.951 0.1 0.261 0.82 

Table 7.1 Significantly recurrent broad copy number changes identified by GISTIC2.0 analysis  
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To identify fusion transcripts, we analysed RNAseq data, which was available for 36 of the 51 

tumours. After filtering, the only chimeric transcript identified was the predicted driver FGFR3-TACC3 

fusion, previously described in IDH wild type gliomas [224][225][226], which was seen in 2 of the 

IDHwt-non-1p/19q co-deleted tumours - Patients 2463 and 2441; Of note was that Patient 2463 

carried an IDH2 intron 5 mutation (c.679-28C>T). 

Incorporation of TCGA mutation data 

To explore the mutational spectra of AO in an independent series, we made use of data generated 

by The Cancer Genome Atlas (TCGA) study of low-grade glioma, which provides exome sequencing 

data on a further 43 AO tumours.Two of the analysed 43 tumours harboured frameshift mutations in 

TCF12 (E548R and D171fs) (Online resource: Supplementary Data 2). As with our series, these TCF12 

mutations were exclusive to IDH-1p/19q co-deleted tumours. In a combined analysis, mutations in 

PI3KCA, NOTCH1 and TP53 were significantly overrepresented when analyzed using MutSigCV (Q 

value <0.1; online resource: Supplementary Data 2). Additionally mutation of ATRX and RBPJ were of 

borderline significance.  

 

A bias towards variants with functional impact (FM) is a feature of cancer drivers [167] To increase 

our ability to identify cancer drivers and delineate associated oncogenic pathways for AO, we 

incorporated mutation data from multiple tumour types using Oncodrive-fm [167] implemented 

within the IntOGen-mutations platform [168] (Figure 5.5). The most recurrently mutated genes 

according to MutSig were also detected by Oncodrive-fm as significantly mutated (Q-value<0.05). 

Oncodrive-fm also identified a number of other important mutated genes (that is, displaying high FM 

bias) including SETD2, NOTCH2, RBPJ, ARID1A, ARID1B, HDAC2 and SMARCA4 (Figure 5.5). 
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Figure 7.5 FM-biased genes and gene modules in AO identified by Oncodrive-fm using data from this study and tumours profiled by TCGA.  Heatmap shows 

tumours in columns and genes in rows, the colour reflecting the MutationAssessor (MA) scores of somatic mutations. FM ext. qv, corrected P values of the 

FM bias analysis using the external null distribution. 

  



 

139 
 

Using all mutation results, we performed an analysis to identify pathways or gene ontologies that 

were significantly enriched in mutated genes. As expected the most significantly altered pathways 

were linked to TCA cycle and isocitrate metabolic process as a consequence of IDH mutation. 

Consistent with the other genes that were found significantly mutated by MutSigCV and Oncodrive-

fm analysis, Notch-signaling pathway (P=1.0x10-5, Binomial test), genes involved in neuron 

differentiation (P=2.0x10-5, Binomial test), and genes involved in chromatin organization (P=0.02, 

Binomial test) were also significantly enriched for mutations (Table 5.2). 

a) 

 

 

 

 

 

b) 

Table 7.2 Downregulation of pathways regulated by TCF12 partners in tumors with altbHLH TCF12m 
mutants. (a) Target gene sets of CDH1, TCF21, EZH2 and BMI1 are significantly enriched in differentially 
expressed genes between TCF12 bHLH altered samples and TCF12 wild type tumors. Gene set ranks refer to 
the p-value ranks among the 19591 gene sets that were tested. CDH1, TCF21, EZH2 and BMI1 target gene set 
members were retrieved from MSigDB (see ref and methods). (b) Visualisation of samples ranked according 
to their value of mean gene expression for each gene set. Each row corresponds to the gene set listed on the 
left, and each rectangle corresponds to a tumour with a color indicating its TCF12 status (wt, altbHLH mutant, 
or other mutations). Samples with the lowest global expression of all the target genes (whether or not they 
were initially found differentially expressed in TCF12 bHLH altered samples) are on the left hand side. 
Reciprocally, samples with the highest global expression of all the target genes are on the right hand side.  

Rank Gene Set p-value 

43 ONDER_CDH1_TARGETS_2_UP 1,23E-08 

138 CUI_TCF21_TARGETS_2_DN 2,61E-06 

443 NUYTTEN_EZH2_TARGETS_UP 3,57E-04 

1418 CUI_TCF21_TARGETS_2_UP 1,13E-02 

1594 WIEDERSCHAIN_TARGETS_OF_BMI1_AND_PCGF2 1,57E-02 

2060 ONDER_CDH1_TARGETS_1_UP 2,91E-02 

2225 BMI1_DN_MEL18_DN.V1_DN 3,38E-02 
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Gene set Source 
Number of genes in 

the gene set 

Number of 
mutated 

genes 

Number of 
mutations in 
the gene set 

Main genes mutated (number of mutations) 
Binomial 

test p-value 
BH adjusted q-

value 

MSIGDB.C2.CP___KEGG_CI
TRATE_CYCLE_TCA_CYCLE 

KEGG 32 2 49 IDH1 (n=42); IDH2 (n=7) ; 0 0 

GO:0048699=generation of 
neurons 

GO 1221 90 219 
AATK (n=2); ATG7 (n=2); COL6A1 (n=5); DIAPH1 
(n=4); KIDINS220 (n=3); NEO1 (n=3); NOTCH1 
(n=6); NOTCH3 (n=3); PSD3; TCF12 (n=5) 

8.90E-06 0.00035499 

MSIGDB.C2.CP___KEGG_N
OTCH_SIGNALING_PATHW
AY 

KEGG 47 7 20 
CREBBP (n=3);MAML2 (n=2);NCOR2 (n=2); 
NOTCH1 (n=6); NOTCH2 (n=2); NOTCH3 (n=3); 
RBPJ (n=2) 

1.04E-05 0.00040244 

GO:0022008=neurogenesis GO 1296 95 230 
AATK (n=2); ATG7 (n=2); COL6A1 (n=5); DIAPH1 
(n=4); KIDINS220 (n=3); NEO1 (n=3); NOTCH1 
(n=6); NOTCH3 (n=3); PSD3; TCF12 (n=5) 

1.12E-05 0.00042855 

GO:0030182=neuron 
differentiation 

GO 1126 82 202 
AATK (n=2); ATG7 (n=2); COL6A1 (n=5); DIAPH1 
(n=4;KIDINS220 (n=3); NEO1 (n=3);NOTCH1 
(n=6);NOTCH3 (n=3);PSD3; TCF12 (n=5) 

2.39E-05 0.00080623 

GO:0006325=chromatin 
organization 

GO 618 35 85 
ARID1A (n=2);ATRX (n=4);ATXN7 (n=2);BRCA2 
(n=2); CREBBP (n=3); NIPBL (n=5); SETD2 (n=3); 
SMARCA4 (n=2); TRRAP (n=4) 

0.02110324 0.17069518 

GO:0016568=chromatin 
modification 

GO 495 31 77 
ARID1A (n=2);ATRX (n=4);ATXN7 (n=2);BRCA2 
(n=2); CREBBP (n=3); NIPBL (n=5); SETD2 (n=3); 
SMARCA4 (n=2); TRRAP (n=4) 

0.02728121 0.20473476 

 
Table 7.3 Significantly mutated gene sets.(a) Gene sets harbouring significantly more mutations than expected by chance are indicated. (b) Gene sets highlighted in the study, with detailed 

number of mutations among the main mutated genes of each set (identified as significantly mutated through MutSigCV or as significantly biased through Oncodrive-fm). 
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Validation of TCF12 in an additional series of AO 

To identify additional TCF12 mutated AO tumours we conducted targeted sequencing of a further 83 

AOs. Five tumours harboured TCF12 mutations - G48fs*38, M260fs*5, R326S, D455fs*59 and 

delN606 (Online resource: Supplementary Data 1). Based on our combined sample of 134 tumours 

the mutation frequency of TCF12 in AO is 7.5% (95% confidence interval 3.6-13.2%). No significant 

difference in patient survival in 1p/19q co-deleted AOs was associated with TCF12 mutation in 69 

patients (Figure 5.6). While our power to demonstrate a statistically significant relationship was 

limited (i.e. ~40% for a hazard ratio of 2.0, stipulating P=0.05) we noted that patients having either 

TCF12 mutated or TCF12 LOH tended to be associated with shorter survival (Figure 5.6). To gain 

further insight into the role of TCF12 mutation in oligodendroglioma we sequenced 75 grade II 

tumours identifying one mutation carrier (P212fs*31; Online resource: Supplementary Data 1). The 

observation that the frequency of TCF12 mutations is higher in AO as compared with grade II tumours 

(P=0.049, Chi squared test) is compatible with TCF12 participating in the generation of a more 

aggressive phenotype. 

 

Figure 7.6 Overall survival from of 1p/19q co-deleted anaplastic oligodendrogliomas according to TCF12 
mutation status. Overall survival analysis of (a) TCF12 mutant (red line) and TCF12 wild-type glioma patients 
(black line), (b) TCF12 mutant ± TCF12 loss of heterozygosity (LOH; red line) and TCF12 wild-type patients 
without any copy number change (black line). The median follow-up was 35 months. Log-rank (Mantel-Cox) 
test was used to evaluate the significance of differences. 
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TCF12 bHLH mutants compromised transactivation  

To explore the functional consequences of TCF12 mutation, we tested the transcriptional activity of 

several mutants (Figure 5.7). We tested the frameshift mutations M260fs*5 and E548fs*13, which in 

the germline cause coronal craniosynostosis [223] and S682fs*14, since introduction of a C-terminal 

premature stop codon may result in escape from non-sense mediated decay. We also tested the 

missense mutation R602M, which is predicted to destabilize the bHLH domain required for DNA 

binding and dimerization (Figure 5.7) and whose adjacent residue (R603) has been found recurrently 

mutated in colon cancer [227]. Finally, we tested the missense mutation R326S, since mutations of 

adjacent G327 have been reported in lung adenocarcinoma [228]. The frame-shift mutants M260fs*5 

and E548fs*13 completely abolished TCF12 transactivation consistent with the lack of bHLH DNA 

binding domain (Figure 5.7). R602M retained only 34% of WT transcriptional activity (P=0.0018, 

Student’s t-test; Figure 5.7). We did not observe significant modulation of transactivation for the 

R326S and S682fs*14 mutants although the latter consistently showed decreased activity (Figure 

5.7). 

 

Down-regulation of pathways in TCF12 bHLH mutants  

We profiled gene expression in 8 TCF12 mutated and 45 wild-type tumours within 1p/19q co-deleted 

samples (Table 5.1). TCF12 mutation was associated with significant enrichment of immune response 

pathways (Table 5.3). Restricting the analysis to tumours with TCF12 altered bHLH domain (n=6), we 

found down regulation of pathways featuring known partners of TCF12, such as TCF21, EZH2 and 

BMI1 [229] (Table 5.2). Interestingly, we found decreased activity of genes sets related to E-cadherin 

(CDH1), which is a TCF12 target gene associated with tumour phenotype [229]. Since the promoter 

sequences of CDH1 and BMI1 feature E-box motifs and are modulated by the bHLH binding 

[230][231], this provides a mechanistic basis for change in gene expression associated with mutant 

TCF12. 
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Figure 7.7 TCF12 mutations altering the bHLH domain result in impaired transactivation.  (a) Schematic view 
of the wild-type and mutant TCF12 proteins for which the transactivation capacity has been assessed. Upper 
panel: wild-type human TCF12, functional domains in grey—activation domain 1 (AD1), activation domain 2 
(AD2), repressor domain (Rep) and bHLH domain (bHLH). Lower panel: resulting truncated proteins. Black 
boxes indicate non-related amino-acid sequences resulting from frameshift mutations (fs), and truncated 
proteins size is in italic. (b) Schematic structure of the bHLH domain of TCF12 (blue) bound to DNA (grey). WT 
R602 (yellow) and mutant M602 (purple) residues are indicated. (c) E-box-luciferase reporter plasmid (Eb) was 
transfected alone or in combination with TCF12 wild-type or mutant expression plasmids. Both frameshift 
mutants that lack the bHLH DNA binding domain completely abolish TCF12 transcriptional activity. All samples 
were run in triplicate in four independent experiments. Data were normalized to control renilla luciferase. 
Values are mean±s.d. ***P=0.0002, **P=0.0018 (Student's t-test). 
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Mutant TCF12 proteins show subcellular localization changes 

We evaluated TCF12 expression and subcellular localization for all of our 11 TCF12-mutated tumours 

(10 AO and 1 Oligodendroglioma grade II) and 11 TCF12 wild-type tumours by 

immunohistochemistry. All TCF12 wild-type tumours showed nuclear expression in a heterogeneous 

cell population (Figure 5.8; Figure 5.9), whereas TCF12 mutated tumours showed nuclear and 

cytoplasmic staining (Figure 5.8). Interestingly, mutations abolishing transcriptional activity were 

associated with increased staining, suggesting mutant protein accumulation.  

 

Figure 7.8 TCF12 is highly expressed in a subset of anaplastic oligodendroglioma. Representative TCF12 
immunostainings are shown: (a) wild-type TCF12 tumours show nuclear staining in a heterogeneous cell 
population. (b–e) Mutant TCF12 tumours show strong nuclear and cytoplasmic staining. (f) Mutant M260fs 
(resulting in a truncated protein) is associated with 15q21.3 LOH and shows no staining. Scale bar, 50 μm. 
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Figure.7.9 TCF12 protein expression in anaplastic oligodendroglioma. (a-m) TCF12 immunostaining on 
paraffin sections of 1p/19q co-deleted AO. (a) Representative IHC of wild type TCF12 tumor shows nuclear 
staining in a heterogeneous cell population, the scale bar corresponds to 5u (b) TCF12 negative field from the 
same tumor, (c-e,h) N-terminal heterozygous frame shift (fs) mutants show reduced positive staining, 
corresponding only to the residual wild type allele, (f) N-terminal frame shift mutant M260fs with loss of 
heterozygosity at 15q21.3 stains negative, (g,i-k,m) C-terminal TCF12 mutants show a characteristic strong 
nuclear and cytoplasmic staining. The in-frame deletion in (l) showing only nuclear staining is the exception  
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TCF12 mutations associate with aggressive tumour phenotype 

We profiled the extent of necrosis, microvascular proliferation and the mitotic index available for 

TCF12 wild type or mutated tumours. A significant increase in palisading necrosis (Figure 5.10) as well 

as a trend towards a higher mitotic index was associated with TCF12 mutation, consistent with a 

more aggressive phenotype (Figure 5.10). Intriguingly, tumours harboring disruptive bHLH domain 

mutations exhibited the highest proportion of palisading necrosis and mitotic figures. 

 

Figure 7.10 TCF12 mutation correlates with a higher necrotic and mitotic index. (a) Percentage of palisading 
necrosis in tumours with wild-type TCF12, all tumours mutated for TCF12 or only altered bHLH TCF12 mutants; 
*P=0.02, **P=0.004. (b) Mitotic index in TCF12 wild-type, TCF12-mutated and altered bHLH TCF12 mutants; 
*P=0.039, mean±s.e.m. CN, copy number; LOH, loss of heterozygosity; HPF, high-power field. The number of 
samples is indicated in parenthesis. 

 

7.4 . Discussion 

These whole exome sequencing of AO has confirmed the mutually exclusive mutational profile in 

IDHmut-1p/19q co-deleted and IDHmut non-1p/19q co-deleted tumour subtypes, which reflect 

distinct molecular mechanisms of oncogenesis - consistent with the requirement for either 1p/19q 

co-deletion or TP53 mutation post IDH-mutation. Moreover, as previously proposed, the genomic 

abnormalities in IDHmut- 1p/19p co-deleted tumours are consistent with one common mechanism 

of tumour initiation being through 1p/19q loss, mutation of IDH1 or IDH2, and TERT activation 

through promoter mutation [27], which in turn predisposes to deactivation of CIC, FUBP1, NOTCH 

and activating mutations/amplifications in the PI3K-pathway.  



 

147 
 

I identified and replicated mutations in TCF12, a bHLH transcription factor that mediates transcription 

by forming homo- or heterodimers with other bHLH transcription factors. Tcf12 is highly expressed 

in neural progenitor cells during neural development [232] and in cells of the oligodendrocyte lineage 

[233] . 

We found that mutations generating truncated TCF12 lacking the bHLH DNA binding domain 

abrogate the transcriptional activity of TCF12. In addition, single residue substitutions such as R602M 

within the bHLH domain also dramatically reduce TCF12 transcriptional ability. Finally, we found that 

the loss of TCF12 transcriptional activity was associated with a more aggressive tumour phenotype. 

Although speculative, our expression data provides evidence that the effects of TCF12 mutation on 

AO development may be mediated in part through E-cadherin related pathway. Indeed, this was one 

of the pathways down-regulated in mutated tumours and intriguingly CDH1 has been implicated in 

metastatic behavior in a number of cancers [229][234]. It is likely that some TCF12 mutations may 

have subtle effects on bHLH function or act through independent pathways. Irrespective of the 

downstream effects of TCF12 mutation on glioma our data are compatible with TCF12 having haplo-

insufficient tumour suppressor function. TCF12 haploinsufficiency has previously been reported in 

patients with coronal craniosynostosis and in their unaffected relatives [223]. Strikingly, 3 of the 11 

mutations we identified in AO, that concern residues M260, E548 and R602 cause coronal 

craniosynostosis [223][235]. Although speculative collectively these data raise the possibility that 

carriers of germline TCF12 mutations may be at an increased risk of developing AO.  
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8 CHAPTER 6  

General discussion, future work and conclusion 

8.1 . Glioma inherited predisposition 

A major focus of this thesis has been on glioma germline genetic susceptibility, and the results of this 

work can be summarised as follows. The identification of thirteen new risk loci for glioma in chapter 

3 provides additional evidence that genetic susceptibility to glioma is polygenic. This study, which is 

the largest glioma GWAS to date, provides strong evidence for specific associations between risk 

SNPs and different histological glioma subtypes, presumably resulting from different etiological 

pathways. In the combined meta-analysis, among previously published glioma risk SNPs, those for all 

glioma at 17p13.1 (TP53), for GBM at 5p15.33 (TERT), 7p11.2 (EGFR), 9p21.3 (CDKN2B–AS1) and 

20q13.33 (RTEL1), and for non-GBM tumours at 8q24.21 (CCDC26), 11q23.2, 11q23.3 (PHLDB1) and 

15q24.2 (ETFA) showed even greater evidence for association. SNPs at 10q25.2 and 12q12.1 for non-

GBM tumours retained genome-wide significance. Associations at the previously reported 3q26.2 

(near TERC) [90] and 12q23.33 (POLR3B) [92] loci for GBM did not retain statistical significance. In 

addition to previously reported loci, we identified genome-wide significant associations marking new 

risk loci for GBM at 1p31.3 (RAVER2), 11q14.1, 16p13.3 (near MPG), 16q12.1 (HEART3) and 22q13.1 

(SLC16A8) and for non-GBM tumours at 1q32.1 (MDM4), 1q44 (AKT3), 2q33.3 (near IDH1), 3p14.1 

(LRIG1), 10q24.33 (OBCF1), 11q21 (MAML2), 14q12 (AKAP6) and 16p13.3 (LMF1). 

As demonstrated in Chapter 3, meta-analysis of GWAS studies with genotype imputation using a 

UK10K and 1000 genomes project reference panel is a robust method for investigating low-

penetrance genetic susceptibility to glioma. However, the 25 identified risk SNPs for glioma account 

for, at best, ∼27% and ∼37% of the familial risk of GBM and non-GBM tumours, respectively. 

Therefore, further GWAS-based analyses should lead to additional insights into the biology and 

etiological basis of the different glioma histologies. Notably, such information can inform gene 

discovery initiatives and thus have a measurable effect on the successful development of new 

therapeutic agents. Regarding future studies of glioma germline genetics, an important step forward 

is the continued large collaborative efforts such as the Glioma International Case Control (GICC) 

consortium to increase detection power for common alleles.  
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In the course of this thesis the WHO 2016 CNS classification has emerged to provide better definition 

and more precise categorisation of distinct brain tumours. This new classification integrates 

molecular markers with histology, consistent with results in chapter 4 where a majority of risk loci 

show evidence of molecular subtype specificity notably for 5p15.33, 9p21.3, 17p13.1 and 20q13.33 

with TERT promoter mutated only glioma as well as 8q24.21 for glioma with IDH mutation, TERT 

promoter mutation and 1p/19q co-deletion.  

This analysis was based on defining glioma subgroups using only three primary markers. Integration 

of additional genetic markers to molecular sub-grouping of glioma resulting from ongoing large-scale 

tumour sequencing projects is likely to provide for further insights into glial oncogenesis and 

ultimately may suggest targets for novel therapeutic strategies. 

The functional basis of most GWAS risk loci is through regulatory effects, and results in chapter 3 and 

4 demonstrate that the use of publicly available eQTL, chromatin state and Hi-C data to identify 

candidate regulatory elements and target genes. However, such data is limited and it is extremely 

important to use the most appropriate model systems to investigate these loci. Future studies 

therefore will benefit from more extensive reference data, for example to enable exploration of 

chromatin architecture differences between IDH mutated and wild-type gliomas, as well as at 

different stages of gliogenesis,  

 

8.2 . Somatic genetic studies of Anaplastic Oligodentroglioma OA  

To our knowledge the study in chapter 5 represents the largest sequencing study of AO conducted to 

date. TCF12 was shown to be a driver gene with mutations compromising TCF12 transcriptional 

activity and resulting in a more aggressive tumour type. However, given the number of tumour-

normal pairs we have analysed and the mutational frequency in AO, we were only well powered to 

identify genes which have a high frequency of mutations (i.e. >10%). Hence further insights into the 

biology of AO should be forthcoming through additional sequencing initiatives and meta-analyses of 

these data. 
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8.3 . Overall conclusion  

Understanding the molecular basis of glioma predisposition is likely to derive insight into tumour 

biology and potentially identify novel targets or pathways for therapeutic intervention. While 

progress in this area has been limited so far, initiatives providing integrated molecular and clinico-

pathological data on glioma are likely to accelerate advances. The collective findings from this thesis 

suggest future efforts in genetic predisposition to glioma are likely to involve further GWAS as well 

as functional studies to identify the molecular mechanisms by which risk loci influence disease risk. 

During my thesis, I also, studied the genetic susceptibility in Primary central nervous system 

lymphoma (PCNSL) which is a rare form of Hodgkin lymphoma. I performed a meta-analysis of two 

new genome-wide association studies of PCNSL totaling 475 cases and 1,134 controls of European 

ancestry. These study led to the identification of independent risk loci at 3p22.1 (rs41289586, ANO10, 

P = 2.17 x 10-8) and 6p25.3 near EXOC2 (rs116446171, P = 1.95 x 10-13). These data provided for the 

first time, insight into inherited predisposition to PCNSL (Labreche et al”A genome-wide association 

study identifies susceptibility loci for primary central nervous system lymphoma at 6p25.3 and 3p22.1: 

a LOC network study group” Nature Communication 2018, in review). 

In addition, I contributed on work that has led to the identification of a novel recurrent gene fusion 

ETV6-IgH in PCNSL. Overall, ETV6-IgH was found in 13 out of 72 PCNSL (18%). ETV6 was significantly 

underexpressed at the gene level. ETV6-IgH is a new potential surrogate marker of PCNSL with 

favorable prognosis, with ETV6 haploinsuffiency as a possible mechanism. 

The great opportunity provided by working in two prestigious multidisciplinary research institutes, 

has offered me the chance to be implicated in diverse studies both in terms of tumours type as well 

as the technologies and analytical methods I employed. The peer reviewed publications I contributed 

to during my thesis are listed in the APPENDIX 2. 
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ABSTRACT 80 

 81 

Primary central nervous system lymphoma (PCNSL) is a rare form of extra-nodal non-Hodgkin 82 

lymphoma. Here we performed a meta-analysis of two new genome-wide association studies of 83 

PCNSL totaling 475 cases and 1,134 controls of European ancestry. We identified independent 84 

risk loci at 3p22.1 (rs41289586, ANO10, P = 2.17 x 10-8) and 6p25.3 near EXOC2 (rs116446171, P= 85 

1.95 x 10-13). These data provide the first evidence for inherited predisposition to PCNSL.  86 

 87 

  88 
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INTRODUCTION 89 

 90 

Primary diffuse large B-cell lymphoma of the central nervous system (PCNSL) is a rare tumor that 91 

accounts for ≤1% of all lymphomas, and approximately 2% of all primary CNS tumors1. The WHO 92 

classification of tumors of hematopoietic and lymphoid tissues recognizes PCNSL as a distinct 93 

subtype of non-Hodgkin lymphoma (NHL)2, with over 95% of tumors belonging to the diffuse large 94 

B-cell lymphoma (DLBCL) group3.  95 

 96 

Immunocompromised individuals are considered most at risk of PCNSL, however, the incidence of 97 

the disease is increasing in the immunocompetent populations who represent today the vast 98 

majority of the patients4-6. The disease typically follows an aggressive course and despite advances 99 

in the treatment of PCNSL is still associated with very high mortality3.  100 

 101 

Although PCNSL is strongly linked to Epstein-Barr virus (EBV) infection in immunocompromised 102 

patients, its detection is virtually absent in PCNSL from immunocompetent patients and little else 103 

is known about its etiology and risk factors in the population7. To address the possibility that 104 

common genetic variants influence the risk of developing PCNSL, we have conducted a genome-105 

wide association study (GWAS) on immunocompetent patients. Specifically, we performed a meta-106 

analysis of two new GWAS of PCNSL and identify independent single nucleotide polymorphisms 107 

(SNPs) at 3p22.1 and 6p25.3 associated with risk.  108 

 109 

  110 
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 111 
RESULTS 112 

 113 

Association analysis 114 

After quality control, the two GWAS provided SNP genotypes on a total of 475 cases and 1,134 115 

controls (Supplementary Fig. 1 and 2 - Supplementary Tables 1 and 2). To increase genomic 116 

resolution, we imputed >10 million SNPs using the 1000 Genomes Project8 combined with UK10K9 117 

as reference. Quantile-Quantile (Q-Q) plots for SNPs with minor allele frequency (MAF) >0.5% post 118 

imputation showed only minimal evidence of over-dispersion (λ values for both GWAS = 1.0; 119 

Supplementary Fig. 3). Meta-analyzing test results from the two GWAS, we derived joint odds 120 

ratios (OR) per-allele and 95% confidence intervals (CI) under a fixed-effects model for each SNP 121 

and associated P-values.  122 

 123 

Genome-wide significant associations (i.e. P<5.0 × 10-8) were shown for loci at 3p22.1 124 

(rs41289586, P=2.17 × 10-8) and 6p25.3 (rs116446171, P=1.95 × 10-13) (Fig. 1, Table 1). Conditional 125 

analysis of GWAS data showed no evidence for additional independent signals at either of the two 126 

risk loci. 127 

 128 

The 6p25.3 risk SNP rs116446171 (Fig. 2), which maps intragenic to EXOC2 (exocyst complex 129 

component 2) and IRF4 (interferon regulatory factor 4), has been previously been shown to 130 

influence the risk of DLBCL10. EXOC2 is part of the multi-protein exocyst complex essential for 131 

polarized vesicle trafficking and the maintenance and intercellular transfer of viral proteins and 132 

virions11. Thus far there is no evidence to implicate EXOC2 in lymphoma. In contrast IRF4 has a 133 

well-established role in the development of most B-cell malignancies12-14. The 3p22.1 risk SNP 134 

rs41289586 (Fig. 2) localizes to exon 6 of the anoctamin 10 gene (ANO10) and is responsible for 135 

the rare missense change (ANO10:c.788G>A, p.Arg263His). Defects in ANO10, which encodes a 136 

calcium-activated chloride channel transmembrane protein are a cause autosomal recessive 137 

spinocerebellar ataxia15. To date there is no evidence for the role of ANO10 in any B-cell 138 

malignancy. 139 

 140 

In addition to the 6p25.3 and 3p22.1 risk loci we identified promising associations (P<2.0 × 10-7), at 141 

6q15 (rs10806425, P=1.36 × 10-7) and 8q24.21 (rs13254990; P=1.33 × 10-7) annotating genes with 142 

strong relevance to B-cell tumorigenesis (Table 1, Supplementary Fig. 4). rs10806425 localizes to 143 
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intron 1 of the gene encoding BACH2 (basic leucine zipper transcription factor 2). Loss of 144 

heterozygosity of BACH2 has been reported at a frequency of 20% in B-cell lymphoma16. In DLBCL 145 

patients with higher BACH2 expression tend to have a better prognosis17. BACH2 is a key regulator 146 

of the pre-BCR check point as well as a tumor suppressor in pre-B acute lymphoblastic leukemia18. 147 

One mechanism of BACH2 downregulation in leukemias is the loss of the transcription factor 148 

PAX5, which is intriguingly, commonly mutated in both PCNSL19 and B-cell ALL18. 149 

 150 

The 8q24 SNP rs13254990 localizes to intron 4 of PVT1, a non-coding RNA affecting the activation 151 

of MYC. Two independent risk loci at 8q24 defined by SNPs rs13255592 and rs4733601 have 152 

previously been shown to influence DLBCL10. rs13255592 which also localizes within intron 4 of 153 

PVT1 and is highly correlated with rs13254990 (r2=0.98, P=3.81 × 10-7). No association between 154 

rs4733601, which maps approximately 1.9Mb telomeric to PVT1, and PCNSL risk was shown 155 

(P=0.99, r2=4.21 × 10-5; Supplementary Table 3). The 8q24.21 128-130Mb genomic interval 156 

harbors multiple independent risk loci with different tumor specificities (Supplementary Table 157 

4)10,20-29. The strongest additional association for PCNSL being shown by the Hodgkin lymphoma 158 

risk SNP rs2019960 (P=4.1 × 10-5) raising the possibility of an additional risk locus for the disease at 159 

8q24.2130.  160 

 161 

Following on from this we examined to see if the other reported risk loci for DLBCL influenced 162 

PCNSL risk. Respective association P-values for the 6p21.22-HLA (rs2523607) and 2p23.3 163 

(rs79480871) risk SNPs were 0.023 and 0.14 (Supplementary Table 3).  164 

 165 

HLA alleles 166 

Variation at HLA has been linked to risk of DLCBL and a number of other B-cell tumors10,22,30-32. The 167 

strongest SNP association at 6p21 (HLA) for PCNSL was provided by rs2395192 (P=1.81 × 10-7), 168 

which maps between HLA-DRA and HLA-DRB5 (Supplementary Fig.5, Table 1). To obtain 169 

additional insight into plausible functional variants within the HLA region, we imputed the classical 170 

HLA alleles and amino acid residues using SNP2HLA33. No imputed HLA alleles or amino acid 171 

positions reached genome-wide significance (Supplementary Fig. 5). The strongest coding changes 172 

within the HLA region were observed for the HLA class II alleles DRB1 Ser11Pro 173 

(AA_DRB1_11_32660115_SP, P=3.35 × 10-6) and presence of the haplotype SRG 174 

(DRB1_13_32660109_SRG, P=3.35 × 10-6) (Supplementary Table 5).  175 

 176 
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Functional annotation of risk loci 177 

To gain insight into the biological basis underlying associations at 6p25.3 and promising risk loci 178 

the novel association signals, we first evaluated each of the risk SNPs as well as the correlated 179 

variants use of the online resources HaploRegv434, RegulomeDB35 and Fantom536 for evidence of 180 

functional effects (Supplementary Data 1). These data revealed regions of active chromatin state 181 

at 6p25.3, 6q15 and 8q24 risk loci in B-cells. To explore whether there was an association between 182 

SNP genotype and transcript levels we performed an expression quantitative trait loci (eQTL) 183 

analysis using from the Genotype-Tissue Expression (GTEx) project37, MuTHR38 and blood eQTL 184 

data from Westra et al39. We used summary-level Mendelian randomization40 (SMR) analysis to 185 

test for a concordance between signals from GWAS and cis eQTL for genes within 1 Mb of the 186 

sentinel and correlated SNPs (r2>0.8) at each locus (Supplementary Data 2) and derived bXY 187 

statistics, which estimate the effect of gene expression on PCNSL risk. After accounting for 188 

multiple testing we were unable to demonstrate any consistently significant eQTL for any of the 189 

risk loci examined.  Chromatin looping interactions formed between enhancer elements and the 190 

genes that they regulate map within distinct chromosomal topological associating domains. To 191 

identify patterns of local chromatin patterns, we analyzed promoter capture Hi-C data on the LCL 192 

cell line GM12878 as a source of B-cell information41. Looping chromatin interactions were shown 193 

between non-coding regions at 6p25.3 (rs11646171) with the IRF4 promoter (Fig. 2) and at 194 

8q24.21 (rs13254990) with the MYC promoter; both genes with strong relevance to B-cell 195 

tumorigenesis.  196 

 197 

Using ChIP-seq data on 82 transcription factors (TFs) in GM12878 we examined for an over-198 

representation of the binding of TFs at risk loci. Although not statistically significant the strongest 199 

TF bindings were shown for TBL1XR1 that is mutated in 20% of PCNSL42 (Supplementary Fig. 6). 200 

 201 

 202 

  203 
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DISCUSSION 204 

 205 

To our knowledge this is the first study providing evidence for a genetic predisposition to PCNSL.  206 

While PCNSL is a specific entity it corresponds pathologically to diffuse large B-cell lymphoma. 207 

Hence, it is therefore perhaps not surprising that we identified associations at 6q25.3 and 8q24.21 208 

for PCNSL, which were previously reported for DLBCL. However, the absence of associations at the 209 

8q24.21 (rs4733601) and 2p23.3 (rs79480871) risk loci strongly suggests a distinct developmental 210 

pathway for PCNSL, presumably reflective of its etiology.   211 

 212 

Although in part speculative, the 6q25.3 association implicates IRF4 in the development of PCNSL. 213 

Through interaction with transcription factors including PU.1, IRF4 controls the termination of pre-214 

B-cell receptor signaling and promotes the differentiation of pro-B cells to small B cells43. 215 

Furthermore, via BLIMP1 and BCL6, IRF4 controls the transition of memory B cells44. The 216 

observation that PVT1 rearrangement occurs frequently in highly aggressive B-cell lymphomas 217 

harboring an 8q24 abnormality makes it entirely plausible that germline variation in this region 218 

influences PCNSL risk45-47. The 6q15 association implicates BACH2 in the development of PCNSL. 219 

BACH2 is an attractive candidate a priori for having a role in PCNSL development being regulator 220 

of the antibody response mediating effects through BLIMP1, XBP1, LRF4, and PAX548. Moreover, it 221 

is partly mediates the tumor suppressor activity of c-Rel in lymphoma development49. Collectively 222 

these data are consistent with aberrant B-cell developmental pathways being central for 223 

predisposition to PCNSL. 224 

 225 

While not statistically significant the HLA-DRA and HLA-DRB1 associations are intriguing as these 226 

alleles have previously been shown to influence the human reaction to viral load and EBV infection 227 

respectively50. Their link to the development of PCNSL is entirely consistent with an infective basis 228 

to this B-cell malignancy even though all of the patients we have analyzed are not 229 

immunocompromised. 230 

 231 

In summary, our findings represent an important step in defining the contribution of common 232 

genetic variation to the risk of developing PCNSL. Our observations are notable since the 233 

associations highlighted define regions of the genome harboring plausible candidate genes for 234 

further investigation.  Given the relatively modest size of our analysis, inevitably constrained by 235 

the rarity of PCNSL, it is highly probable that further studies will discover additional common 236 
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susceptibility loci. These coupled with functional analyses should provide for an explanation of the 237 

biological underpinnings of PCNSL.  238 
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METHODS 239 

 240 

Subjects and ethics 241 

This study was based on two primary GWAS datasets: (1) GWAS-1 comprised 346 242 

immunocompetent HIV negative patients (184 male; median age 68 years) with PCNSL ascertained 243 

through the Service de Neurologie Mazarin, Groupe Hospitalier Pitié-Salpêtrière Paris and the 244 

Lymphome oculo-cerebral network (LOC) between 2008-2017. For controls we made use of 245 

Illumina HumanHap 660 data 788 individuals from the SU.VI.MAX (SUpplementation en VItamines 246 

et MinerauxAntioXydants) study healthy subjects (women aged 35–60 years; men aged 45–60 247 

years).  (2) GWAS-2 comprised 129 immunocompetent HIV negative patients (76 male; median 248 

age 69 years) with primary DLBCL CNS tumors ascertained through the Service de Neurologie 249 

Mazarin, Groupe Hospitalier Pitié-Salpêtrière Paris and LOC 2001-2007. For controls, we made use 250 

of second series of Illumina HumanHap 660 data generated on 346 individuals from the 251 

SU.VI.MAX. Collection of patient samples and associated clinico-pathological information was 252 

undertaken with written informed consent and ethical review board approval in accordance with 253 

the tenets of the declaration of Helsinki. The diagnosis of PCNSL (ICD-10 C83.3; WHO 9690/3) was 254 

established in accordance with WHO guidelines.  255 

 256 

Genotyping and quality control  257 

Constitutional DNA was extracted from blood samples using QIAamp DNA Blood Mini Kit (Qiagen) 258 

(OncoNeuroTek, Paris). The quality of extracted DNA was analyzed on a Caliper LabchipGX and 259 

Nanodrop. DNA samples were prepared according to Qubit quantification. Cases were genotyped 260 

using the Infinium OmniExpress-24 v1.2 BeadChip array according to the manufacturer's 261 

recommendations (Illumina Inc, San Diego, CA, USA). Standard quality control measures were 262 

applied to the GWAS51. Specifically, individuals with low call rate (<90%) as well as all individuals 263 

with non-European ancestry (using the HapMap version 2 CEU, JPT/CHB and YRI populations as a 264 

reference) were excluded. SNPs with a call rate <90% were excluded as were those with a MAF < 265 

0.01 or displaying significant deviation from Hardy-Weinberg equilibrium (i.e. P<10-6). GWAS data 266 

were imputed to >10 million SNPs with IMPUTE2 v2.352 software using a merged reference panel 267 

consisting of data from 1000 Genomes Project (phase 1 integrated release 3, March 2012)8 and 268 

UK10K9. Genotypes were aligned to the positive strand in both imputation and genotyping. 269 

Imputation was conducted separately for each GWAS, and in each, the data were pruned to a 270 

common set of SNPs between cases and controls before imputation. Poorly imputed SNPs defined 271 
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by an information measure <0.80 were excluded. Tests of association between imputed SNPs and 272 

P-values were calculated using logistic regression under an additive genetic model in 273 

SNPTESTv2.553. The adequacy of the case-control matching and possibility of differential 274 

genotyping of cases and controls were evaluated using Q-Q plots of test statistics (Supplementary 275 

Fig. 1). The fidelity of rs41289586 imputation was confirmed by the finding of 99% concordance 276 

between imputed and directly sequenced genotypes in a subset of 345 samples (31 heterozygous) 277 

(Pearson correlation coefficient, r=0.99).  278 

 279 

HLA imputation and analysis 280 

To examine if specific coding variants within HLA genes contributed to the association signals, we 281 

imputed the classical HLA alleles (A, B, C, DQA1, DQB1, DRB1) and coding variants across the HLA 282 

region (chr6:29–34 Mb) using SNP2HLA33- http://www.broadinstitute.org/mpg/snp2hla/. 283 

Imputation was based on a reference panel from the Type 1 Diabetes Genetics Consortium 284 

(T1DGC) which comprises genotype data from 5,225 individuals of European descent typed for 285 

HLA-A, B, C, DRB1, DQA1, DQB1, DPB1, DPA1 4-digit alleles. A total of 8,961 classical HLA alleles 286 

(two- and four-digit resolution) and 1,873 AA markers including 580 AA positions that were ‘multi-287 

allelic’, were successfully imputed (info score >0.8 for variant). Multi-allelic markers were analyzed 288 

as binary markers and a meta-analysis was conducted where we tested SNPs, HLA alleles and AAs 289 

across the HLA region for association with PCNSL using SNPTEST. 290 

 291 

Meta-analysis 292 

Meta-analyses were performed using the fixed-effects inverse-variance method based on the β 293 

estimates and standard errors from each study using META v1.654. Cochran's Q-statistic to test for 294 

heterogeneity, and the I2 statistic to quantify the proportion of the total variation due to 295 

heterogeneity were calculated55.  296 

 297 

eQTL analysis 298 

To examine the relationship between SNP genotype and gene expression we carried out 299 

Summary-data-based Mendelian Randomization (SMR) analysis as per Zhu et al., 2016 300 

(http://cnsgenomics.com/software/smr/index.html)40. We used publicly available lymphoblastoid 301 

cell line data from the GTEx37 (http://www.gtexportal.org) v6p release and MuTHR38. Briefly, 302 

GWAS summary statistics files were generated from the meta-analysis. Reference files were 303 

generated from merging 1000 genomes phase 3 and UK10K (ALSPAC and TwinsUK) vcfs. Results 304 
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from the SMR test for each of the five risk loci are reported in Supplementary Data 2. As 305 

previously advocated only probes with at least one eQTL P-value of <5.0 × 10-8 were considered 306 

for SMR analysis. We set a threshold for the SMR test of PSMR<7.57 × 10-4 and PSMR<2.5 × 10-3 307 

corresponding to a Bonferroni correction for 66 tests (66 probes with a top eQTL P<5.0 × 10-8 308 

across the 5 loci and two LCL eQTL dataset) and 20 tests (20 probes with a top eQTL P<5.0 × 10-8 309 

across the 5 loci and Muther eQTL dataset) respectively. 310 

 311 

Functional annotation 312 

Novel risk SNPs and their proxies (i.e. r2>0.2 in the 1000 Genomes EUR reference panel) were 313 

annotated for putative functional effect based upon histone mark ChIP-seq/ChIPmentation data 314 

for H3K27ac, H3K4Me1 and H3K27Me3 from GM12878 (LCL)56 and primary B-cells57. We searched 315 

for overlap with “super-enhancer” regions as defined by Hnisz et al58, restricting the analysis to 316 

the GM12878 cell line and CD19+ B-cells. The novel risk SNPs and their proxies (r2>0.2 as above) 317 

were intersected with regions of accessible chromatin in CLL cells, as defined by Rendeiro et al57, 318 

which were used as a surrogate for likely sites of TF binding. SNPs falling within accessible sites 319 

(n=47) were taken forward to TF binding motif analysis and were also annotated for genomic 320 

evolutionary rate profiling (GERP) score59 as well as bound TFs based on ENCODE project56 ChIP-321 

seq data. 322 

 323 

Transcription factor binding disruption analysis 324 

To examine enrichment in specific TF binding across risk loci, we adapted the variant set 325 

enrichment method of Cowper-Sal lari et al60. Briefly, for each risk locus, a region of strong LD 326 

(defined as r2>0.8 and D′>0.8) was determined, and these SNPs were termed the associated 327 

variant set (AVS). TF ChIP-seq uniform peak data were obtained from ENCODE for the GM12878 328 

cell line, which included data for 82 TF. For each of these marks, the overlap of the SNPs in the 329 

AVS and the binding sites was determined to produce a mapping tally. A null distribution was 330 

produced by randomly selecting SNPs with the same characteristics as the risk-associated SNPs, 331 

and the null mapping tally calculated. This process was repeated 10,000 times, and approximate P-332 

values were calculated as the proportion of permutations where the null mapping tally was 333 

greater or equal to the AVS mapping tally. An enrichment score was calculated by normalizing the 334 

tallies to the median of the null distribution. Thus, the enrichment score is the number of s.d.’s of 335 

the AVS mapping tally from the mean of the null distribution tallies. 336 

 337 
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FIGURE AND TABLE LEGENDS 370 

 371 
Figure 1: Manhattan plot of association P-values. Shown are the genome-wide –log10P-values 372 
(two-sided) of >10 million successfully imputed autosomal SNPs in 475 cases and 1,134 controls. 373 
The red horizontal line represents the genome-wide significance threshold of P=5.0 × 10−8. 374 
 375 

Figure 2: Regional plots of association results and recombination rates for new risk loci for 376 
primary cerebral nervous system lymphoma. Results shown for (a) 6p25 and (b) 3q21. Plots 377 
(drawn using visPig61) show association results of both genotyped (triangles) and imputed (circles) 378 
SNPs in the GWAS samples and recombination rates. −log10P values (y axes) of the SNPs are shown 379 
according to their chromosomal positions (x axes). The sentinel SNP in each combined analysis is 380 
shown as a large circle or triangle and is labelled by its rsID. The color intensity of each symbol 381 
reflects the extent of LD with the top genotyped SNP, white (r2=0) through to dark red (r2=1.0). 382 
Genetic recombination rates, estimated using 1000 Genomes Project samples, are shown with a 383 
light blue line. Physical positions are based on NCBI build 37 of the human genome. Also shown 384 
are the chromatin-state segmentation track (ChromHMM) for lymphoblastoid cells using data 385 
from the HapMap ENCODE Project, and the positions of genes and transcripts mapping to the 386 
region of association. 387 
 388 
 389 
Table 1: Summary results for risk SNPs  390 
 391 
  392 
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Table 1: Summary results for SNPs associated with CNS Lymphoma risk 393 
 394 

Locus 

 
Nearest 
gene(s)      SNP 

Position 
(bp, hg19) 

Risk 
allele Dataset 

RAF 
(case;control) OR 95% CI P-value 

6p25.3 
 

EXOC2 
 
rs116446171 484,453 G GWAS-1 (0.066; 0.022) 4.11 (2.47- 6.85) 5.13x10-8 

  GWAS-2 (0.088;0.019) 7.87 (3.59 - 17.21) 2.36x10-7 
  Combined 4.99 (3.26 - 7.65) 1.53x10-13 
  I2=46% Phet=0.17 
  

3p22.1 ANO10 rs41289586 43,618,558 T GWAS-1 (0.048;0.017) 3.42 (1.94 - 6.02) 1.90x10-5 
  GWAS-2 (0.065;0.019) 4.84 (2.10 - 11.13) 2.05x10-4 
  Combined 3.82 (2.39 - 6.09) 1.87x10-8 
  I2=0% Phet=0.50 
  

8q24.21 PTV1 rs13254990 129,076,451 T GWAS-1 (0.43;0.33) 1.58 (1.31 - 1.91) 2.21x10-6 
  GWAS-2 (0.40;0.32) 1.44 (1.05 - 1.96) 0.021 
  Combined 1.54 (1.31 - 1.81) 1.33x10-7 
  I2=0% Phet=0.60 
  

6q15 BACH2 rs10806425 90,926,612 C GWAS-1 (0.68;0.58) 1.50 (1.25 - 1.80) 8.93x10-6 
  GWAS-2 (0.69;0.59) 1.53 (1.14 - 2.05) 0.0045 
  Combined 1.51 (1.30 - 1.77) 1.36x10-7 
  I2=0% Phet=0.93 
 
6p21.32 

 
HLA-DRA rs2395192 32,447,644 C GWAS-1 (0.48;0.59) 1.56 (1.30 - 1.88) 1.65x10-6 

  GWAS-2 (0.52;0.60) 1.38 (1.03 - 1.84) 0.029 
  Combined 1.51 (1.29 - 1.76) 1.81x10-7 
  I2=0% Phet=0.47 
  

  
bp, base pair position; OR, odds ratio; 95% CI, 95% confidence interval; Phet, P-value for heterogeneity; I2, proportion of the total variation due to heterogeneity.  395 
RAF is risk allele frequency across all of the GWAS-1 and GWAS-2 datasets, respectively. Odds ratios are derived with respect to the risk allele. 396 
 397 
 398 
  399 
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Figure 1: Manhattan plot of association P-values for primary cerebral nervous system lymphoma. Shown are the genome-wide –log10P-values (two-sided) of >10 million 
successfully imputed autosomal SNPs in 475 cases and 1,134 controls. The red horizontal line represents the genome-wide significance threshold of P=5.0 × 10−8.  

 



 
  

Figure 2: Regional plots of association results and recombination rates for new risk loci for primary cerebral nervous system lymphoma. Results shown for (a) 6p25 
and (b) 3q21. Plots (drawn using visPig64) show association results of both genotyped (triangles) and imputed (circles) SNPs in the GWAS samples and recombination rates. 
−log10P values (y axes) of the SNPs are shown according to their chromosomal positions (x axes). The sentinel SNP in each combined analysis is shown as a large circle or 
triangle and is labelled by its rsID. The color intensity of each symbol reflects the extent of LD with the top genotyped SNP, white (r2=0) through to dark red (r2=1.0). Genetic 
recombination rates, estimated using 1000 Genomes Project samples, are shown with a light blue line. Physical positions are based on NCBI build 37 of the human genome. 
Also shown are the chromatin-state segmentation track (ChromHMM) for lymphoblastoid cells using data from the HapMap ENCODE Project, and the positions of genes and 
transcripts mapping to the region of association. 
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Abstract

Background: An inverse relationship between allergies with glioma risk has been reported in several but not all
epidemiological observational studies. We performed an analysis of genetic variants associated with atopy to assess
the relationship with glioma risk using Mendelian randomisation (MR), an approach unaffected by biases from
temporal variability and reverse causation that might have affected earlier investigations.

Methods: Two-sample MR was undertaken using genome-wide association study data. We used single nucleotide
polymorphisms (SNPs) associated with atopic dermatitis, asthma and hay fever, IgE levels, and self-reported allergy
as instrumental variables. We calculated MR estimates for the odds ratio (OR) for each risk factor with glioma using
SNP-glioma estimates from 12,488 cases and 18,169 controls, using inverse-variance weighting (IVW), maximum
likelihood estimation (MLE), weighted median estimate (WME) and mode-based estimate (MBE) methods. Violation
of MR assumptions due to directional pleiotropy were sought using MR-Egger regression and HEIDI-outlier analysis.

Results: Under IVW, MLE, WME and MBE methods, associations between glioma risk with asthma and hay
fever, self-reported allergy and IgE levels were non-significant. An inverse relationship between atopic
dermatitis and glioma risk was found by IVW (OR 0.96, 95% confidence interval (CI) 0.93–1.00, P = 0.041) and
MLE (OR 0.96, 95% CI 0.94–0.99, P = 0.003), but not by WME (OR 0.96, 95% CI 0.91–1.01, P = 0.114) or MBE
(OR 0.97, 95% CI 0.92–1.02, P = 0.194).

Conclusions: Our investigation does not provide strong evidence for relationship between atopy and the risk
of developing glioma, but findings do not preclude a small effect in relation to atopic dermatitis. Our analysis
also serves to illustrate the value of using several MR methods to derive robust conclusions.
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Background
Although glioma accounts for approximately 80% of
malignant primary brain tumours [1], to date, few
aetiological risk factors are well established for the dis-
ease [2]. Over the past three decades the search for an
immune-mediated risk factor that might influence risk
has led to studies of a possible relationship between
multiple allergic conditions and autoimmune disorders
with glioma [3].
Several case-control studies have shown that self-

reported allergic conditions may protect against glioma
[4]. For example, in the International Adult Brain
Tumour Study, based on 1178 glioma patients, an odds
ratio (OR) of 0.59 was found for any self-reported allergy
[5]. Other case-control studies have reported similar
ORs, however, most have been reliant on substantial
numbers of proxy informants (up to 44%) [4, 6] and
have potential bias as a consequence of how controls
were ascertained, thereby casting doubt on findings. In
contrast to case-control studies, evidence for an associ-
ation between glioma and allergy from cohort-based
analyses has been less forthcoming [7], although such
studies have been poorly powered to demonstrate a
relationship.
Assaying IgE potentially reduces bias stemming from

self-reporting despite levels not necessarily correspond-
ing to specific allergies or equating to a single allergic
response. Nevertheless, measurement of IgE has been
explored by a number of researchers seeking to identify
risk factors for glioma [8–10]. In a case-control study of
228 cases and 289 controls performed in 2004 [8], self-
reported allergies and IgE levels were both inversely as-
sociated with glioma, but concordance between the two
outcomes was poor. In a larger study of 535 cases and
532 controls [11], both self-reported allergies and IgE
levels were inversely related to glioma risk; however, IgE
levels in patients were affected by temozolomide treat-
ment. A case-control study nested within the European
Prospective Investigation into Cancer and Nutrition co-
hort based on prospectively collected serum IgE levels
reported a non-significant OR of 0.73 [9]. A similar
nested case-control study performed in the USA based
on 181 cases reported a non-significant OR of 0.72 for
high serum IgE [10].
Several mechanisms have been proposed to explain a

possible association between atopic disease and glioma
[12]. The findings could reflect a true causal effect of the
heightened immune function reported for atopy on
tumour development. Alternatively, the associations ob-
served might be non-causal, arising as a consequence of
methodological biases inherent in the study design. Impre-
cisely defined exposures, such as allergic disease, are likely
to have affected the validity of the findings of both case-
control and cohort studies. The heterogeneous description

of allergy in studies and different levels of detail in self-
reporting on individual allergies complicate the inter-
pretation of results. Additional biases include possible
selection bias in controls, recall bias from self-reported
allergy assessment and reverse causation or confound-
ing from unmeasured effects. Finally, the high fre-
quency of exposure ascertainment by proxy for cases is
also likely to have systematically biased findings.
Mendelian randomisation (MR) analysis can be used

to minimise potential biases in conventional observa-
tional studies and to determine the causal association of
an exposure with an outcome such as disease risk [13].
The causal association can also be manifested by com-
mon genetic and biological pathways that determine two
sequentially developed phenotypes such as an atopic
trait and glioma risk. Atopy has a strong heritable basis
[14, 15] and, thus far, genome-wide association studies
(GWAS) have identified over 50 loci associated with
different atopy-related traits [16]. The alleles associated
with atopy should be randomly assigned to offspring
from parents during mitosis, a process analogous to the
random assignment of subjects to an exposure of inter-
est in randomised clinical trials. Thus, genetic scores
summarising the effects of single nucleotide polymor-
phisms (SNPs) associated with atopy-related traits can
serve as instrumental variables (IVs) in a MR analysis of
atopy and glioma risk.
To examine the nature of the association between atopy

and glioma, we implemented two-sample MR [17] to
estimate associations between atopy-associated SNPs and
glioma risk using summary data from the recent GWAS
meta-analysis performed by the Glioma International
Case-Control Consortium study [18].

Methods
Two-sample MR was undertaken using GWAS data.
Ethical approval was not sought for this specific project
because all data came from the summary statistics of pub-
lished GWAS, and no individual-level data were used.

Glioma genotyping data
Glioma genotyping data were derived from the most recent
meta-analysis of GWAS in glioma, which related > 10 mil-
lion genetic variants (after imputation) to glioma, in 12,488
glioma patients and 18,169 controls from eight independent
GWAS datasets of individuals of European descent [18]
(Additional file 1: Table S1). Comprehensive details of the
genotyping and quality control of the seven GWAS have
been previously reported [18].

Genetic variant instruments for atopic traits
SNPs associated with each of the atopy-related traits
investigated, namely atopic dermatitis (eczema), asthma
and hay fever, IgE level, and self-reported allergy, by the
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NHGRI-EBI GWAS Catalog [19–26] at genome-wide
significance (i.e. P ≤ 5.0 × 10− 8) in individuals with
European ancestry were used as IVs. To avoid co-linearity
between SNPs for each trait, we excluded SNPs that were
correlated (i.e. r2 value of ≥ 0.001) within each trait, and
only considered the SNPs with the strongest effect on the
trait for use as IVs (Additional file 2: Table S2). For each
SNP, we recovered the chromosome position, risk allele,
association estimates (per-allele log-OR) and standard
errors (Table 1). The allele that was associated with
increased risk of the exposure was considered the effect
allele. For IgE level, the allele associated with an increase
in serum IgE was considered the effect allele. Allele fre-
quencies for these SNPs were compared between the
atopy-related trait and glioma datasets to ensure that the
effect estimates were recorded with respect to the same
allele. Gliomas are heterogeneous and different tumour
subtypes, defined in part by malignancy grade (e.g. pilo-
cytic astrocytoma World Health Organization (WHO)
grade I, diffuse ‘low-grade’ glioma WHO grade II, ana-
plastic glioma WHO grade III and glioblastoma (GBM)
WHO grade IV) can be distinguished [27]. For the sake
of brevity we considered gliomas as being either GBM
or non-GBM.

Two-sample MR method
The association between each atopy-related trait and gli-
oma was examined using MR on summary statistics
using the inverse-variance weighting (IVW) method and
maximum likelihood estimation (MLE) as per Burgess et

al. [28]. The IVW ratio estimate ðβ̂Þ of all SNPs associ-
ated with each atopy-related trait on glioma risk was cal-
culated as follows:

β̂ ¼
P

kXkY kσY −2
kP

kX
2
kσY

−2
k

Where Xk corresponds to the association of SNP k (as
log of the OR per risk allele) with the atopy-related trait
Yk is the association between SNP k and glioma risk (as

log OR) with standard error σY k . The estimate for ðβ̂Þ
represents the causal increase in the log odds of gli-
oma for each trait. The standard error of the com-
bined ratio estimate is given by:

se β̂
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1P
kX

2
kσY

−2
k

s

For the MLE, a bivariate normal distribution for the
genetic associations was assumed, and the R function

optim was used to estimate β. seðβ̂Þ was calculated using
observed information. The correlation between the er-
rors of Yk and Xk was taken to be 0 as they were derived
from independent studies.

A central tenet in MR is the absence of pleiotropy (i.e.
a gene influencing multiple traits) between the SNPs
influencing the exposure and outcome disease risk [13].
This would be revealed as deviation from a linear rela-
tionship between SNPs and their effect size for atopy
and glioma risk. To examine for violation of the stand-
ard IV assumptions in our analysis we first performed
MR-Egger regression, as well as HEIDI-outlier analysis,
as per Zhu et al. [29], imposing the advocated threshold
of P ≤ 0.01. Additionally, we derived weighted median
estimates (WME) [30] and mode-based estimates (MBE)
[31] to establish the robustness of findings.
Atopic dermatitis, asthma and hay fever, and self-

reported allergy as well as all of the disease outcomes (all
glioma, GBM and non-GBM glioma) are binary. The
causal effect estimates therefore represent the odds for
outcome disease risk per unit increase in the log OR of
the exposure disease [32]. These ORs were converted to
represent the OR for the outcome disease per doubling in
odds of the exposure disease to aid interpretation [32].
For each statistical test we considered a global signifi-

cance level of P < 0.05 as being satisfactory to derive con-
clusions. To assess the robustness of our conclusions, we
initially imposed a conservative Bonferroni-corrected sig-
nificance threshold of 0.0125 (i.e. 0.05/4 atopy-related
traits). We considered a P value ≥ 0.05 as non-significant
(i.e. no association), a P < 0.05 as evidence for a potential
causal association, and a P < 0.0125 as significant evidence
for an association. All statistical analyses were undertaken
using R software (Version 3.1.2). The meta and gsmr
packages were used to generate forest plots and perform
HEIDI-outlier analysis [29].
The power of a MR investigation depends greatly on

the proportion of variance in the risk factor that is ex-
plained by the IV. We estimated study power a priori
using the methodology of Burgess et al. [33], making use
of published estimates of the heritability of trait associ-
ated IV SNPs [34–36], as well as estimates found by
direct calculation (Additional file 3: Table S3), and the
reported effect of each trait on glioma risk reported in a
meta-analysis of epidemiological studies [18]. Additional
file 4: Table S4 shows the range of ORs for which we
had less than 80% power to detect for each of the four
atopy-related traits.

Simulation model
Through simulation we evaluated the suitability of using
each employed MR method in a two-sample setting with
binary-exposure and binary-outcome data. Let i index
genetic variants, N be the total number of genetic variants,
and j index individuals. Genetic variants gij were generated
independently by sampling from a Binomial(2,pj) distribu-
tion with probability pj drawn from a Uniform(0.1,0.9) dis-
tribution, to mimic bi-allelic SNPs in Hardy–Weinberg
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Table 1 Variant and effect allele with frequencies and magnitude of effect on each atopy-related trait and strength of association
with glioma

Region SNP Position (bp)a Allelesb MAF Hay fever and asthma Glioma

OR (95% CI) OR (95% CI)

2q12.1 rs10197862 102,966,549 G/A G = 0.161 1.24 (1.16–1.32) 0.98 (0.93−1.03)

4p14 rs4833095 38,799,710 C/T T = 0.425 1.20 (1.14–1.26) 1.03 (0.99−1.08)

5q22.1 rs1837253 110,401,872 T/C T = 0.382 1.17 (1.11–1.23) 0.96 (0.93−1.00)

8q21.13 rs7009110 81,291,879 C/T C = 0.467 1.14 (1.09–1.19) 0.98 (0.94−1.01)

9p24.1 rs72699186 6,175,855 A/T T = 0.110 1.26 (1.17–1.36) 0.97 (0.93−1.02)

11q13.5 rs2155219 76,299,194 G/T G = 0.468 1.17 (1.13–1.21) 1.01 (0.97−1.05)

15q22.33 rs17294280 67,468,285 A/G G = 0.120 1.18 (1.12–1.25) 0.98 (0.94−1.03)

16p13.13 rs62026376 11,228,712 T/C T = 0.144 1.17 (1.11–1.23) 0.97 (0.93−1.01)

17q21.1 rs7212938 38,122,680 T/G G = 0.473 1.16 (1.11–1.22) 1.00 (0.97−1.04)

Region SNP Positiona Allelesb MAF Atopic dermatitis Glioma

OR (95% CI) OR (95% CI)

1q21.3 rs11205006 152,440,176 T/A A = 0.265 1.62 (1.48–1.77) 0.96 (0.91−1.02)

1q21.3 rs2228145 154,426,970 A/C C = 0.293 1.15 (1.10–1.20) 0.99 (0.96−1.03)

2p25.1 rs10199605 8,495,097 A/G A = 0.244 1.04 (1.03–1.06) 1.01 (0.97−1.05)

2p13.3 rs112111458 71,100,105 G/A G = 0.224 1.08 (1.05–1.10) 0.98 (0.92−1.03)

2q24.3 rs6720763 167,992,286 T/C C = 0.320 1.29 (1.18–1.41) 1.02 (0.97−1.06)

5p13.2 rs10214237 35,883,734 C/T C = 0.176 1.06 (1.05–1.08) 0.98 (0.94−1.02)

5q31.1 rs1295686 131,995,843 C/T T = 0.422 1.35 (1.22–1.49) 0.99 (0.95−1.03)

6p21.32 rs12153855 32,074,804 T/C C = 0.125 1.58 (1.40–1.78) 0.97 (0.92−1.03)

8q21.13 rs6473227 81,285,892 A/C A = 0.473 1.06 (1.05–1.08) 0.98 (0.94−1.02)

9p21.3 rs10738626 22,373,457 C/T C = 0.397 1.23 (1.15–1.32) 0.96 (0.93−1.00)

10p15.1 rs6602364 6,038,853 G/C G = 0.492 1.05 (1.03–1.07) 1.03 (0.99−1.07)

11q13.1 rs10791824 65,559,266 A/G G = 0.490 1.15 (1.12–1.19) 0.99 (0.95−1.02)

11q24.3 rs7127307 128,187,383 C/T C = 0.488 1.09 (1.07–1.11) 0.99 (0.95−1.03)

11q13.5 rs7130588 76,270,683 G/A G = 0.216 1.29 (1.20–1.38) 1.02 (0.98−1.06)

14q13.2 rs2143950 35,572,357 C/T T = 0.215 1.08 (1.06–1.10) 1.01 (0.97−1.06)

16p13.13 rs2041733 11,229,589 C/T T = 0.496 1.09 (1.06–1.11) 0.97 (0.94−1.01)

19p13.2 rs2164983 8,789,381 C/A A = 0.169 1.16 (1.10–1.22) 0.95 (0.90−1.00)

20q13.33 rs909341 62,328,742 T/C T = 0.262 1.32 (1.21–1.44) 1.32 (1.26−1.37)

Region SNP Positiona Allelesb MAF IgE levelc Glioma

OR (95% CI) OR (95% CI)

1q23.2 rs2251746 159,272,060 C/T C = 0.015 1.09 (1.08–1.11) 0.98 (0.95−1.02)

5q31.1 rs20541 131,995,964 A/G A = 0.270 1.08 (1.06–1.10) 1.01 (0.97−1.06)

6p22.1 rs2571391 29,923,838 C/A C = 0.303 1.06 (1.05–1.08) 0.97 (0.94−1.01)

6p21.32 rs2858331 32,681,277 A/G G = 0.490 1.04 (1.03–1.06) 1.02 (0.98−1.06)

12q13.3 rs1059513 57,489,709 C/T C = 0.070 1.13 (1.09–1.17) 0.97 (0.92−1.03)

Region SNP Positiona Allelesb MAF Self–reported allergy Glioma

OR (95% CI) OR (95% CI)

2q12.1 rs10189699 102,879,464 A/C A = 0.143 1.16 (1.12–1.20) 0.99 (0.94−1.04)

2q33.1 rs10497813 198,914,072 T/G T = 0.401 1.08 (1.05–1.11) 0.99 (0.96−1.03)

3q28 rs9860547 188,128,979 G/A A = 0.272 1.08 (1.05–1.11) 1.02 (0.98−1.06)

4p14 rs2101521 38,811,551 A/G A = 0.475 1.15 (1.12–1.18) 1.02 (0.98−1.07)
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equilibrium. Let wj correspond to the per-allele OR for the
exposure disease, sampled from ORs reported for
genome-wide significant SNPs reported in the GWAS
Catalog [37], and v be the OR for the outcome disease per
doubling in odds of the exposure disease. For each indi-
vidual, exposure disease odds xj, outcome disease odds yj,
exposure disease status aj, and outcome disease status bj
were determined as follows:

x j ¼ x0
YN
i¼1

wi
gij

y j ¼ y0 � 2 log2x j� log2v

a j � Binomial 1;
x j

1þ x j

� �

bj � Binomial 1;
y j

1þ y j

 !

Data for 1,000,000 individuals were simulated and parti-
tioned at random to reflect the two-sample setting. Cases
and controls for the exposure and outcome GWAS were
sampled from each half of the dataset using the exposure
and outcome disease statuses of each individual, and asso-
ciation statistics computed under an additive logistic re-
gression model. To ensure the simulated data closely
resembled the atopy-related trait and glioma data, the
simulation analysis was repeated for each binary atopy-
related trait using the same number of genetic variants as
IVs and the same numbers of case and control individuals
as used to estimate the atopy-related trait and glioma asso-
ciation statistics (Additional file 5: Table S5). Parameters x0
= 0.0005 and y0 = 0.01 were chosen to ensure the preva-
lence of the simulated exposure and outcome diseases were
similar to that of the atopy-related traits and glioma,

respectively (Additional file 5: Table S5). To determine the
suitability of each MR method we considered two scenar-
ios: (1) no causal relationship between exposure and out-
come (v = 1.00) and (2) a causal relationship between
exposure and outcome (v = 1.33). We performed 100 simu-
lations for each scenario for each binary atopy-related trait.

Results
The atopic dermatitis risk SNP rs909341, which is highly
correlated with the chromosome 20q13.33 glioma risk
SNP rs2297440 (D’ = 0.89, r2 = 0.77), was strongly asso-
ciated with risk of glioma (P = 2.10 × 10−34). Testing for
pleiotropy using HEIDI-outlier analysis formally identi-
fied rs909341 as violating the assumption of the instru-
ment on the outcome. Henceforth, we confined our
analysis of the relationship between atopic dermatitis
and glioma to a dataset excluding this SNP.
Figure 1 shows forest plots of ORs for glioma gener-

ated from the SNPs. There was minimal evidence of
heterogeneity between variants for asthma and hay fever,
atopic dermatitis, IgE levels and self-reported allergy (re-
spective I2 and Phet values being 28% and 0.192, 8% and
0.377, 0% and 0.444, and 0% and 0.707). Including
rs909341 in the analysis for atopic dermatitis, the I2 value
was 90% and Phet < 10− 4 (Additional file 6: Figure S1),
providing further evidence that inclusion of this SNP
would invalidate the MR analysis.
The results of the IVW, MLE, WME, MBE and MR-

Egger methods are summarised in Table 2. Using the
IVW method to pool results from individual SNPs, no
associations (i.e. P ≥ 0.05) were identified between gen-
etically conferred risk of raised IgE level (OR 0.88, 95%
CI 0.69–1.13, P = 0.319), asthma and hay fever (OR 0.96,
95% CI 0.90–1.03, P = 0.248), or self-reported allergy
(OR 1.03, 95% CI 0.95–1.11, P = 0.534) with risk of all gli-
oma. There was some support for an inverse relationship

Table 1 Variant and effect allele with frequencies and magnitude of effect on each atopy-related trait and strength of association
with glioma (Continued)

4q27 rs17388568 123,329,369 G/A A = 0.141 1.08 (1.05–1.11) 1.01 (0.97−1.05)

5p13.1 rs7720838 40,486,896 G/T T = 0.362 1.08 (1.06–1.11) 1.02 (0.99−1.06)

5q22.1 rs1438673 110,467,499 T/C C = 0.296 1.12 (1.09–1.15) 0.97 (0.94−1.01)

6p21.33 rs9266772 31,352,113 T/C C = 0.175 1.11 (1.08–1.14) 1.03 (0.98−1.08)

9p24.1 rs7032572 6,172,380 A/G G = 0.114 1.12 (1.08–1.16) 0.97 (0.93−1.02)

10p14 rs962993 9,053,132 T/C T = 0.106 1.07 (1.05–1.10) 1.02 (0.98−1.06)

11q13.5 rs2155219 76,999,194 G/T G = 0.468 1.11 (1.09–1.14) 1.01 (0.97−1.05)

15q22.33 rs17228058 67,450,305 A/G G = 0.100 1.08 (1.05–1.11) 1.00 (0.96−1.04)

17q21.1 rs9303280 38,074,031 T/C T = 0.346 1.07 (1.05–1.09) 0.98 (0.94−1.02)

20q13.2 rs6021270 50,141,264 C/T T = 0.346 1.16 (1.10–1.22) 1.02 (0.94−1.10)
aNCBI build 37
bReference allele/effect allele
cPer standard deviation
MAF minor allele frequency, OR odds ratio, SNP single nucleotide polymorphism
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between atopic dermatitis and glioma risk (OR 0.96, 95%
CI 0.93–1.00, P = 0.041), albeit not significant after adjust-
ment for multiple testing.
Using MLE, no associations were identified between

asthma and hay fever (OR 0.96, 95% CI 0.93–1.00,
P = 0.066), IgE levels (OR 0.88, 95% CI 0.74–1.05,
P = 0.157) or self-reported allergy (OR 1.02, 95% CI
0.97–1.08, P = 0.429) with risk of all glioma. For
atopic dermatitis, an OR of 0.96 (95% CI 0.94–0.99,
P = 0.003) was shown, which remained significant
after adjusting for multiple testing. Figure 2 shows
relaxation of the assumption that the correlation
between the errors in Xk and Yk is zero for each of
the atopy-related traits demonstrating the consistency of
findings. Specifically, for a correlation in the range −0.15
to 0.15, the association between atopic dermatitis and
glioma risk remained significant.
In contrast to findings from IVW and MLE, no signifi-

cant support was provided by either the WME or MBE
for an association between any of the atopy-related traits
and glioma risk, including atopic dermatitis (WME: OR
0.96, 95% CI 0.91–1.01, P = 0.114; MBE: OR 0.97, 95%
CI 0.92–1.02, P = 0.194; Table 2).

The respective effect estimated from MR-Egger regres-
sion (Fig. 3) were 0.97 for atopic dermatitis (95% CI
0.92–1.03; P = 0.375), 0.63 for IgE levels (95% CI 0.32–
1.25; P = 0.184), 0.99 for asthma and hay fever (95% CI
0.72–1.36, P = 0.951) and 0.92 for self-reported allergy
(95% CI 0.69–1.22; P = 0.540), with intercepts of −0.004
(95% CI −0.014 to 0.006, P = 0.396), 0.027 (95% CI 0.001
to 0.053, P = 0.042), −0.007 (95% CI −0.030 to 0.016, P =
0.542) and 0.017 (95% CI 0.003–0.031, P = 0.018). Collect-
ively, these findings provide possible evidence of systematic
bias in the IVW estimate for IgE level and self-reported
allergy, which might have arisen through overall unbal-
anced horizontal pleiotropy. There was no such evidence
for such pleiotropy in respect of atopic dermatitis.
We explored the possibility that a relationship between

atopy and glioma might be subtype specific, considering
GBM and non-GBM separately. Imposing a stronger
significance threshold of P = 0.00625 (0.05/8, to correct
for testing four traits over two outcomes), no histology-
specific associations were shown by the IVW method
between asthma and hay fever, IgE levels and self-
reported allergy and glioma risk, with the respective
ORs for the IVW method being 0.97, 0.92 and 1.04 for

a b

c d

Fig. 1 Forest plot of Wald odds ratios (ORs) and 95% confidence intervals generated from single nucleotide polymorphisms (SNPs) associated
with atopy-related traits. ORs for individual SNPs are listed according to magnitude of effect in the instrumental variable analysis and are
presented with pooled effects using the inverse-variance weighting method. Squares represent the point estimate, and the bars are the 95%
confidence intervals. a Asthma and hay fever, b atopic dermatitis, c IgE level, d self-reported allergy
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GBM tumours, and 0.96, 0.97 and 1.04 for non-GBM
tumours (Additional file 7: Table S6). For atopic derma-
titis, a significant OR of 0.94 (95% CI 0.90–0.98, P =
0.004) was shown for GBM but not for non-GBM (OR
0.98, 95% CI 0.93–1.03, P = 0.421). The association be-
tween atopic dermatitis and risk of GBM was also appar-
ent in the MLE analysis, which provided an OR of 0.94
(95% CI 0.91–0.97, P = 2.17 × 10− 4). MR-Egger regres-
sion provided for an intercept of −0.007 (95% CI −0.019
to 0.005, P = 0.247). As with the analysis of all glioma,
the association between atopic dermatitis and GBM
was weaker under the WME (OR 0.96, 95% CI 0.91–
1.02, P = 0.172) and MBE (OR 0.95, 95% CI 0.90–1.01,
P = 0.096) frameworks.
Although previously implemented in other studies

[32, 38], ratio estimators may not fully recapitulate an
estimate of the causal OR in the case of binary expo-
sures, such as atopic dermatitis, and binary outcomes
such as glioma [39]. We therefore evaluated, through

simulation, whether the IVW, MLE, WME, MBE and MR-
Egger methods provide reliable estimates of causal ORs.
When no causal relationship between exposure and out-
come was simulated, each MR method provided accurate
estimates of the null relationship (Additional file 5: Table
S5). Conversely, when a causal relationship was simulated,
the magnitudes of the relationship estimates were weakly
inflated in some instances (Additional file 5: Table S5), indi-
cating the importance of considering additional evidence
when evaluating causal relationships between binary expo-
sures and binary outcomes.

Discussion
To our knowledge, this is the first MR study evaluating
a range of atopy-related traits with glioma risk. Overall,
our results provide evidence for a causal protective effect
of atopic dermatitis with GBM tumours, but do not pro-
vide evidence that asthma and hay fever, raised IgE

Fig. 2 Plot of P value of maximum likelihood estimation associations with glioma against correlation between errors in Xk and Yk. a Asthma and
hay fever, b atopic dermatitis, c IgE level, d self-reported allergy
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levels, or self-reported allergy is protective against the
risk of developing glioma.
Possible mechanisms explaining an observed inverse

relation between the risk of atopic dermatitis and the
risk of glioma have been suggested in previous papers
[12], postulated to be the consequence of immune sys-
tem hyperactivity. The question thus arises as to how
such divergent findings for other atopic traits can be ex-
plained or reconciled, when they have been previously
reported in high numbers.
A key assumption in MR is that the instrument affects

glioma risk through its effect on a specific phenotype/
exposure (i.e. atopic traits), and does not have a direct
effect on glioma risk. We tested this assumption using
MR-Egger regression and HEIDI-outlier analysis and
found possible evidence of violation of this assumption
for IgE and self-reported allergy. It is notable that self-
reported allergy does not show an approximately quad-
ratic response to correlation, in contrast to asthma and

hay fever, atopic dermatitis and IgE level. This is likely
to be a consequence of imprecise estimates of the associ-
ation between SNPs and allergy, illustrating the inherent
issue in attempting to make use of self-reported allergy
data as an atopy-related trait.
The meta-analyses of published epidemiological obser-

vational studies has indeed provided strong evidence for
an inverse relationship between atopy and glioma risk
[40]. However, most of the support for such a relation-
ship came from case-control studies [4]. A common
limitation in retrospective studies of glioma has been the
use of proxy respondents for patients with cognitive
impairment, who may not remember past exposures ac-
curately due to cognitive deficits [4]. Such issues are
compounded by the fact that, across studies, multiple
atopic traits have been assessed. The strength of support
for a relationship seen across case-control studies con-
trasts markedly with the limited evidence for a relation-
ship from prospective cohort-based analyses [7].

Fig. 3 Scatter plots of genetic associations with glioma against genetic associations with the exposure. a Asthma and hay fever, b atopic
dermatitis, c IgE level, d self-reported allergy

Disney-Hogg et al. BMC Medicine  (2018) 16:42 Page 9 of 13



By inference, a relationship between long-term antihista-
mine use could theoretically provide supporting evidence,
albeit indirect, that atopic-mediated mechanisms influence
glioma risk. However, the impact of antihistamine use is dif-
ficult to disentangle from that of allergies, as these factors
are highly correlated and few individuals without allergies
use antihistamines regularly. Paradoxically, an increased
risk for glioma associated with antihistamines, particularly
among individuals with allergic conditions, has been found
in some studies [41, 42].
Raised IgE levels and self-reported allergy suffer limita-

tions as traits used to assess the effect of atopy on gli-
oma risk as they are both variable over short time scales
in their level of expression (in contrast to clinical diag-
nosis of atopic dermatitis). Further, allergies may develop
later in life, and patients may not necessarily exhibit
symptoms. This introduces the possibility of bias and
error due to the time varying association of SNPs with
the exposure. However, it has been suggested that sea-
sonality does not have a significant effect [11].
An additional possible explanation for the lack of

causal association between IgE levels and glioma risk
seen in this study is that the causality is in fact reversed,
which could result in epidemiological observational
studies reporting inverse relationships [8, 9], but would
not affect an MR analysis. Immunosuppression caused
by glioblastoma is well documented [43, 44] and may
lead to reduced expression of atopy. Furthermore, in
addition to steroids, temozolomide therapy, routinely
used to treat GBM nowadays, leads to reduced blood
IgE levels [11].
Using data from large genetic consortia for multiple

atopy-related traits and glioma risk has enabled us to
more precisely test our study hypotheses than if we had
used individual-level data from a smaller study. Through
simulation scenarios, the IVW, MLE, WME, MBE and
MR-Egger methods have been demonstrated to accur-
ately estimate causal effects using summary-level data
[28, 30, 31, 45]. However, using summary-level data in-
stead of individual-level data limits the approaches that
can be used to test the validity of genetic variants as IVs,
as adjusting for measured covariates and assessing gene-
environment interactions is generally not possible using
summary-level data [46]. The first-stage F statistic was
large (> 25 for all traits), and therefore weak instrument
bias is unlikely.
Epidemiological observational studies have reported

inverse relationships between atopy-related traits and
glioma risk, with ORs in the range 0.43–0.96 for asthma
[6, 47], 0.42–0.90 for atopic dermatitis [6, 47], 0.37–0.73
for IgE levels [8–10] and 0.47–0.69 for self-reported
allergies [4, 5, 8]. Odds ratios for binary exposures
estimated in this MR study represent the OR for the
outcome disease per doubling in odds of the exposure

disease, and the magnitudes of these causal effect esti-
mates are therefore not directly comparable to those
reported in observational studies.
Our MR analysis has several strengths. Firstly, by utilis-

ing the random allocation of genetic variants, we were
able to overcome potential confounding and reverse caus-
ation that may bias estimates from observational studies.
Secondly, given that a poor outcome from glioma is al-
most universal, it is unlikely that survival bias will have in-
fluenced study findings. Lastly, the findings from this
study represent the association of a lifelong atopy with
glioma in the general European population.
Nevertheless, our study does have limitations. Firstly,

while it is entirely appropriate to implement different
MR methods to assess the robustness of findings, they
have a differing power to demonstrate associations, with
the WME, MBE and MR-Egger methods having less
power than IVW and MLE. Irrespective of such factors,
our study only had 80% power to detect ORs of 1.16,
1.09, 1.16 and 1.22 for asthma and hay fever, atopic
dermatitis, IgE level and self-reported allergy, respect-
ively (Additional file 4: Table S4), due to the very low
proportion of variability in the atopy-related traits ex-
plained by the SNPs used. Hence, we cannot exclude the
possibility that these traits influence glioma risk, albeit
modestly. To explore this possibility, will require add-
itional IVs and larger sample sizes affording increased
power. Furthermore, it is possible that an effect of atopy
on glioma risk might be mediated through mechanisms
associated with a trait that we have not captured by
using MR to assess asthma and hay fever and self-
reported allergy. Secondly, a weakness of the two-sample
MR strategy is that it does not allow examination of
non-linear relationships between exposures and out-
comes. Finally, we have sought to examine whether bias
could be introduced when considering a binary exposure
for a binary outcome. Although in our simulation study
we found no evidence of bias when estimating non-
causal relationships, we did not extend our analysis to
consider the potential impact of invalid SNPs.

Conclusions
In conclusion, our investigation does not provide strong
evidence for a relationship between atopy-related dis-
eases and risk of developing glioma, but findings do not
preclude a small effect for atopic dermatitis. Our ana-
lysis also serves to illustrate the value of using several
MR methods to derive robust conclusions.
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95% confidence intervals generated from single nucleotide
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ARTICLE
Epidemiology

Influence of obesity-related risk factors in the aetiology of
glioma
Linden Disney-Hogg1, Amit Sud1, Philip J. Law1, Alex J. Cornish1, Ben Kinnersley1, Quinn T. Ostrom2, Karim Labreche1,
Jeanette E. Eckel-Passow3, Georgina N. Armstrong4, Elizabeth B. Claus5,6, Dora Il’yasova7,8,9, Joellen Schildkraut8,9,
Jill S. Barnholtz-Sloan3, Sara H. Olson10, Jonine L. Bernstein10, Rose K. Lai11, Anthony J. Swerdlow1,12, Matthias Simon13,
Per Hoffmann14,15, Markus M. Nöthen15,16, Karl-Heinz Jöckel17, Stephen Chanock18, Preetha Rajaraman18, Christoffer Johansen19,20,
Robert B. Jenkins21, Beatrice S. Melin22, Margaret R. Wrensch23,24, Marc Sanson25,26, Melissa L. Bondy4 and Richard S. Houlston1,27

BACKGROUND: Obesity and related factors have been implicated as possible aetiological factors for the development of glioma in
epidemiological observation studies. We used genetic markers in a Mendelian randomisation framework to examine whether
obesity-related traits influence glioma risk. This methodology reduces bias from confounding and is not affected by reverse
causation.
METHODS: Genetic instruments were identified for 10 key obesity-related risk factors, and their association with glioma risk was
evaluated using data from a genome-wide association study of 12,488 glioma patients and 18,169 controls. The estimated odds
ratio of glioma associated with each of the genetically defined obesity-related traits was used to infer evidence for a causal
relationship.
RESULTS: No convincing association with glioma risk was seen for genetic instruments for body mass index, waist-to-hip ratio,
lipids, type-2 diabetes, hyperglycaemia or insulin resistance. Similarly, we found no evidence to support a relationship between
obesity-related traits with subtypes of glioma–glioblastoma (GBM) or non-GBM tumours.
CONCLUSIONS: This study provides no evidence to implicate obesity-related factors as causes of glioma.

British Journal of Cancer https://doi.org/10.1038/s41416-018-0009-x

INTRODUCTION
Glioma is the most common primary intracranial tumour,
accounting for around 80% of all malignant brain tumours.1 Thus
far, few established risk factors for the development of glioma
have been robustly identified.2

Obesity-related factors are increasingly being recognised
as risk determinants for the development many of common
cancers, such as those of the breast and colorectum.3 Evidence
from epidemiological observational studies, for obesity-

related traits being a risk factor for the development of glioma
have, however been inconsistent, with only a subset of studies
reporting a significant association.4–9 Furthermore, in contrast to
most cancers, some studies have reported diabetes to be
protective against glioma.10–13 Obesity-related exposures are
however inherently interrelated,14, 15 and in traditional epidemio-
logical studies it can be problematic to isolate specific risk factors
that may exert a causal influence on disease from those that are
merely associated with an underlying causal factor (i.e.
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confounded). In addition, findings can be affected by reverse
causation.
Mendelian randomisation (MR) is an analytical approach to the

traditional epidemiological study whereby genetic markers are
used as proxies or instrumental variables (IVs) of environmental
and lifestyle-related risk factors.16 Such genetic markers cannot be
influenced by reverse causation and can act as unconfounded
markers of exposures provided the variants are not associated
with the disease through an alternative mechanism.16 Under these
circumstances, the association between a genetic variant (or set of
variants) and outcome of interest implies a causal relationship
between the risk factor and outcome. MR has therefore been
compared to a natural randomised controlled trial, circumventing
some of the limitations of epidemiological observational studies.17

However, as IVs used in MR often explain a small proportion of the
exposure phenotypic variance, large sample sizes are required to
have sufficient power.18

To gain insight into the aetiology of glioma, we have examined
the role of obesity-related risk factors in glioma using an MR-

based framework. Specifically, we identified genetic variants
associated with 10 key obesity-related risk factors from external
genetic association studies. We implemented two-sample MR19 to
estimate associations between these genetic variants with glioma
risk using genome-wide association study (GWAS) data from the
Glioma International Case-Control Consortium study (GICC).20

MATERIALS AND METHODS
Two-sample MR was undertaken using GWAS data. Ethical
approval was not sought for this specific project because all data
came from the summary statistics of published GWAS, and no
individual-level data were used.

Genetic instruments for obesity and related risk factors
Genetic instruments were identified as a panel of single-
nucleotide polymorphisms (SNPs) identified from recent meta-
analyses or largest studies published to date. Specifically: (i) SNPs
for body mass index (BMI) and waist-to-hip ratio (WHR) were

Table 1. Metabolic risk factors for which genetic instruments were developed and evaluated in relation to disease risk

Trait SNPsa Mean (SD) Units PVE (%) References

Two hour post-challenge glucose 7 5.6 (1.7) mmol/l 1.7 24

BMI 75 27.0 (4.6) kg/m2 2.4 21

Fasting glucose 33 5.2 (0.8) mmol/l 4.8 24

Fasting insulin 12 56.9 (44.4) pmol/l 1.2 24

HDL cholesterol 54 53.3 (15.5) mg/dl 13.7 23

LDL cholesterol 26 133.6 (38.0) mg/dl 14.6 23

Type-2 diabetes 34 — — 1.6 25

Total cholesterol 37 213.3 (42.6) mg/dl 15.0 23

Triglycerides 24 140.9 (87.8) mg/dl 11.7 23

WHR 33 1.1 (0.1) cm/cm 0.7 22

BMI body mass index, HDL high-density lipoprotein, LDL low-density lipoprotein, PVE proportion of variance explained, SD standard deviation, SNP single-
nucleotide polymorphism, WHR waist–hip ratio
aNumber of SNPs used after quality control
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identified from the Genetic Investigation of ANthropometric Traits
(GIANT) consortium;21, 22 (ii) SNPs for circulating high-density and
low-density lipoprotein cholesterol (HDL and LDL), total choles-
terol and triglycerides, were identified from the Global Lipids
Genetic Consortium (GLGC);23 (iii) SNPs for factors related to
hyperglycaemia and hyperinsulinemia—fasting glucose, fasting
insulin and 2-h post-challenge glucose, were obtained from the
Meta-Analysis of Glucose and Insulin related traits Consortium
(MAGIC)24 and (iv) SNPs for type-2 diabetes were identified from.25

For each SNP, we recovered the chromosome position, the effect
estimate expressed in standard deviations (SD) of the trait per-
allele along with the corresponding standard error (Supplemen-
tary Table 1). We restricted our analysis to SNPs associated at
genome-wide significance (i.e. P≤ 5.0 × 10−8) in individuals with
European ancestry. To avoid co-linearity between SNPs for each
trait, we excluded SNPs that were correlated (i.e. r2≥ 0.01) within
each trait, and only considered the SNPs with the strongest effect
on the trait for inclusion in genetic risk scores (Supplementary
Table 2). For type-2 diabetes, linkage disequilibrium (LD) scores
with rs140730081 were calculated via a proxy SNP rs2259835 (r2 =
0.48). After imposing these criteria, we obtained 7 SNPs for 2-h
post-challenge glucose, 75 for BMI, 33 for fasting glucose, 13 for
fasting insulin, 54 for HDL cholesterol, 26 for LDL cholesterol, 38
for type-2 diabetes, 39 for total cholesterol, 25 for triglycerides and
33 for WHR.

Glioma association results
To evaluate the association of each genetic instrument with
glioma risk, we made use of data from the most recent meta-
analysis of GWAS in glioma, comprising >10 million genetic
variants (after imputation) in 12,488 glioma patients and 18,169
controls from eight independent GWAS data sets of individuals of
European descent (Supplementary Table 3).20 Comprehensive
details of the genotyping and quality control of the seven GWAS
have been previously reported.20 To limit the effects of cryptic
population stratification, association test statistics for six of the
glioma GWAS were generated using principal components as
previously detailed.20 Gliomas are heterogeneous and different
tumour subtypes, defined in part by malignancy grade (e.g.
pilocytic astrocytoma World Health Organization (WHO) grade I,
diffuse ‘low-grade’ glioma WHO grade II, anaplastic glioma WHO
grade III and GBM WHO grade IV) can be distinguished.26 For the
sake of diagnostic brevity, we considered gliomas as being either
GBM or non-GBM tumours.

Statistical analysis
The odds ratios (OR) of glioma per unit of SD increment for each
obesity-related trait, were estimated using generalised summary
data-based Mendelian randomisation (GSMR).27 This approach
performs a multi-SNP MR analysis, which is more powerful than
other existing summary data-based MR methodologies.28
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Separation of signals of causality from horizontal pleiotropy (a
single locus influencing affecting multiple phenotypes, also
referred to as type-II pleiotropy) is a recognised issue in MR
analyses and we therefore used a HEIDI-outlier test27 to detect and
eliminate genetic instruments that have apparent pleiotropic
effects on both the obesity-related trait and glioma. A P value
threshold of 0.01 for the HEIDI-outlier test was utilised as
recommended by Zhu et al. The HEIDI-outlier test may also in
theory detect additional violations of the assumptions of MR such
as the exclusion restriction assumption. Given that glioma is a
binary outcome and type-2 diabetes a binary exposure, the
resulting causal effect estimate in this scenario represents the
odds for glioma risk per unit increase in the log OR for type-2
diabetes.
For each statistical test, we considered a global significance

level of P < 0.05 as being satisfactory to derive conclusions. To
assess the robustness of our conclusions, we imposed a
Bonferroni-corrected significance threshold of 0.0017 (i.e. 0.05/
30, to correct for testing 10 traits over three outcomes). We
considered a P value > 0.05 as non-significant (i.e. no association),

a P value≤ 0.05 as evidence for a potential causal association, and
a P value≤ 0.0017 as significant evidence for an association.
Additionally, we defined the Bayesian false null probability (BFNP)
using the Bayesian false discovery probability (BFDP) as per
Wakefield29 by BFNP = 1 − BFDP. Then to assess whether null
results found could be considered reliable, we calculated the
minimum prior probability of the alternative hypothesis for which
the BFNP was >10%. The power of an MR investigation depends
greatly on the proportion of variance in the risk factor that is
explained by the respective IV. We estimated study power a priori
using the methodology of Burgess.30 Statistical analyses were
undertaken using R software (Version 3.1.2).

RESULTS
In our data sets, there were missing data for one fasting insulin
SNP (rs1530559), four type-2 diabetes SNPs (rs2972156,
rs34706136, rs11257658, rs144613775) and one total cholesterol
SNP (rs7570971). These SNPs were excluded from our analysis.
Performing HEIDI-outlier analysis on the instruments for each trait
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Fig. 3 SNP-specific effects for risk of GBM glioma. For each figure, the effect size of the respective measure for a 2-h post-challenge glucose, b
BMI, c fasting glucose, d fasting insulin, e HDL cholesterol, f LDL cholesterol, g type-2 diabetes, h total cholesterol, i triglycerides and j WHR is
plotted against the effect for GBM glioma. Error bars represent one SD. The GSMR estimate is plotted as a dashed line for reference. BMI body
mass index, GBM glioblastoma mulitforme, GSMR generalised summary data-based Mendelian randomisation, HDL high-density lipoprotein,
LDL low-density lipoprotein, SD standard deviation, WHR waist–hip ratio
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identified two SNPs as violating the assumptions of MR with
respect to horizontal pleiotropy, rs11603023 for total cholesterol
and rs5756931 for triglyceride, which were further excluded. Both
SNPs are in LD with the lead SNP in glioma risk loci.
Subsequently, Table 1 details the number of SNPs used as an IV

for each of the obesity-related traits, the mean and SD of the risk
factor in the original discovery study, and the proportion of
variance explained for each factor by the corresponding genetic
instruments. Effect estimates for each SNP used as genetic
instruments for each risk factor and disease risk are detailed in
Supplementary Table 1. For BMI and LDL, the SNPs rs12016871
and rs9411489 have since merged with the SNPs rs9581854 and
rs635634, respectively, and it is from these subsequent SNPs the
associations with glioma were derived. Figure 1 shows the
statistical power of genetic instruments for different levels of
predicted ORs for each obesity-related trait.
Figure 2 shows a plot of the association of each IV with

exposure against the association with glioma, together with the
resulting GSMR estimate of the log OR. For each of the obesity-
related traits under investigation, an approximately null estimate
for effect was obtained, with the strongest association being
shown by fasting insulin. Setting a threshold of P≤ 0.05, no
statistically significant associations were shown for 2-h post-

challenge glucose (ORSD = 1.25, 95% confidence interval (CI) =
0.93–1.67), BMI (ORSD = 0.91, 95% CI = 0.77–1.07), fasting glucose
(ORSD = 1.00, 95% CI = 0.78–1.3), fasting insulin (ORSD = 1.32, 95%
CI = 0.71–2.46), HDL cholesterol (ORSD = 1.01, 95% CI = 0.98–1.05),
LDL cholesterol (ORSD = 1.00, 95% CI = 0.95–1.05), type-2 diabetes
(ORSD = 1.04, 95% CI = 0.97–1.11), total cholesterol (ORSD = 0.98,
95% CI = 0.88–1.09), triglycerides (ORSD = 1.01, 95% CI = 0.97–1.06)
and WHR (ORSD = 1.11, 95% CI = 0.84–1.46).
We explored the possibility that a relationship between an

obesity-related trait and glioma might be subtype-specific,
considering GBM and non-GBM separately. Figures 3 and 4 show
corresponding plots of the association of each IV with exposure
against the association with GBM and non-GBM glioma. The
strongest association was provided by the relationship between
increased triglyceride level and risk of non-GBM glioma (ORSD =
1.07, 95% CI = 1.00–1.13, P = 0.044), albeit non-significant after
adjustment for multiple testing (Table 2). Table 3 presents the
minimum prior probabilities of an association required for each
trait to have a BFNP≥ 0.1. Where possible, the maximum likely OR
has been taken from the largest value reported in observational
studies.7, 12, 31 In the event that this was not possible, an upper
bound of 2 was chosen. If the ‘true’ maximum likely OR were
lower, then the smallest required prior probability would in fact be
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Fig. 4 SNP-specific effects for risk of non-GBM glioma. For each figure, the effect size of the respective measure for a 2-h post-challenge
glucose, b BMI, c fasting glucose, d fasting insulin, e HDL cholesterol, f LDL cholesterol, g type-2 diabetes, h total cholesterol, i triglycerides
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lower. There is no current precedent for what value should be
taken for the prior probability of an association, indeed attempt-
ing to sample published papers would produce an over estimation
due to winners curse, but it is noted that a value of 10% would
ensure all the results reported would have significance.

DISCUSSION
There is an abundance of studies that have implicated obesity and
related traits (notably diabetes), as risk factors for all of the major
common cancers, including breast, colorectal, oesophageal,
pancreatic, ovarian and renal.3 Furthermore, there is increasing
evidence that obesity is likely to also be a risk factor for many of
the less common tumours, such as those of the haematopoietic
system.3, 32 The mechanistic basis of how obesity and diabetes
affects an increased cancer risk is poorly understood. The long-
term metabolic consequences of obesity and its related traits are
complex and several mechanisms have been suggested, including

increased insulin and insulin-like growth factor signalling, chronic
inflammation and signalling via adipokines.33 Such mechanisms
would be compatible with obesity and related traits having a
generic effect on cancer risk.
Evidence for obesity influencing risk of glioma from previous

observational studies has been mixed.4, 6, 9 Intriguingly, in contrast
to other cancers, an inverse relationship between both diabetes
and increased HbA1c with risk of glioma has been reported in
some but not all studies.4–7, 9 Furthermore, in so far as it has been
studied, anti-diabetic treatment has been reported to not
influence glioma risk.12 In terms of the wider spectrum of the
metabolic syndrome, a study has linked elevated levels of
triglyceride to risk of developing glioma.9

Our findings do not support a causal role for higher BMI and
related metabolic risk factors, including diagnosis of type-2
diabetes and blood lipid levels, in influencing glioma risk. An
important strength of our analysis is that by utilising the random
allocation of genetic variants, we were able to overcome potential
confounding, for example, from other interrelated traits.14, 15

Furthermore, reverse causation and selection bias may have
biased estimates from previously published observational studies.
By exploiting data from large genetic consortia for multiple
obesity-related traits and glioma risk has enabled us to more
precisely test study hypotheses than if we had been reliant on
individual-level data from a small study. The only obesity-related
trait with a first-stage F-statistic <10 was WHR (F = 6.75) and
therefore weak instrument bias for other traits is unlikely.34 In
addition, given that a poor outcome from glioma is almost
universal, it is unlikely that survival bias will have influenced study
findings materially. Finally, we have employed a Bayesian
approach to interpret the significance of the null results while
comparing our findings to published observational epidemiologi-
cal studies. There is currently no precedent within the MR
community as to what value is an accurate representation of the
prior probability of association. If the true value is ~20%, then the
null findings for 2 h post-challenge glucose, BMI, fasting glucose,
fasting insulin and WHR all have a >10% chance of being false.
There are however potential limitations in our analysis that

warrant further discussion. Firstly, the use of summary test
statistics in two-sample MR analyses requires consideration of
sample overlap, the winner’s curse and genotype uncertainty.35, 36

Sample overlap between the association studies of the exposure
traits and outcome trait has the potential of inflating the type I
error rate. The number of controls shared between the glioma
GWAS and the anthropometric and lipid GWAS are, however <2%
of the respective exposure sample size. Although we are unable to

Table 2. GSMR results for the combined obesity-related IVs

Trait All glioma GBM Non-GBM

OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value

Two hour post-challenge glucose 1.25 (0.93–1.67) 0.132 1.28 (0.90–1.83) 0.173 1.13 (0.77–1.66) 0.525

BMI 0.91 (0.77–1.07) 0.247 0.89 (0.73–1.08) 0.237 0.93 (0.75–1.15) 0.510

Fasting glucose 1.00 (0.78–1.3) 0.974 0.89 (0.66–1.22) 0.484 1.04 (0.75–1.45) 0.809

Fasting insulin 1.32 (0.71–2.46) 0.374 1.41 (0.66–3.00) 0.377 1.35 (0.60–3.04) 0.471

HDL cholesterol 1.01 (0.98–1.05) 0.375 1.01 (0.97–1.05) 0.532 1.03 (0.99–1.08) 0.167

LDL cholesterol 1.00 (0.95–1.05) 0.939 0.96 (0.90–1.02) 0.197 1.05 (0.98–1.12) 0.195

Type-2 diabetes 1.04 (0.97–1.11) 0.290 1.00 (0.92–1.08) 0.933 1.08 (0.99–1.18) 0.076

Total cholesterol 0.98 (0.88–1.09) 0.736 1.00 (0.87–1.14) 0.949 0.95 (0.83–1.10) 0.505

Triglycerides 1.01 (0.97–1.06) 0.637 0.97 (0.92–1.03) 0.291 1.07 (1.00–1.13) 0.044

WHR 1.11 (0.84–1.46) 0.456 0.97 (0.69–1.35) 0.847 1.34 (0.94–1.93) 0.109

BMI body mass index, CI confidence interval, GBM glioblastoma multiforme, GSMR generalised summary data-based Mendelian randomisation, HDL high-
density lipoprotein, IV instrumental variable, LDL low-density lipoprotein, OR odds ratio, SD standard deviation, WHR waist–hip ratio

Table 3. Prior probability of association required for BFNP> 0.1, for
the combined obesity-related IVs

Trait Glioma References

Maximum
likely OR

Minimum required
prior probability

Two hour post-
challenge glucose

2.00 0.10 N/A

BMI 1.27 0.11 8

Fasting glucose 1.57 0.18 31

Fasting insulin 2.00 0.12 N/A

HDL cholesterol 200 0.64 N/A

LDL cholesterol 2.00 0.61 N/A

Type-2 diabetes 0.60 0.31 12

Total cholesterol 2.00 0.41 N/A

Triglycerides 2.00 0.60 N/A

WHR 2.00 0.19 N/A

BFNP Bayesian false null probability, BMI body mass index, HDL high-
density lipoprotein, IV instrumental variable, LDL low-density lipoprotein,
WHR waist–hip ratio, OR odds ratio, N/A no observational data to inform
maximum likely OR, value of 2 taken
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calculate an exact number of glioma cases sampled in the
exposure GWAS, given the lifetime risk of glioma is only 0.24%,
very few numbers of glioma cases will have been analysed in the
exposure trait studies. Hence, such sample overlap is unlikely to
contribute to type I error rate inflation.36 As the instrumental
variables were discovered in the data used in this two-sample MR
analysis, weak instrument bias will be accentuated due to winner’s
curse, thus attenuating the causal effect estimate towards the
null.36 Uncertainty with respect to genotyping or disease
associations may diminish causal effect estimates.36 However IVs
used in this analysis are robust and only SNPs passing stringent
quality control thresholds were used in the analysis. Secondly, MR
is limited in the extent to which it can explore different life course
models, such as when an exposure has a temporal relationship to
the outcome risk.35 Finally, our study does have limitations related
to power. However, based on the relatively sizable fraction of
variance explained by the genetic instruments for the majority of
the obesity-related factors (Table 1), typically there was sufficient
statistical power (>80%) to detect even modest odds ratios of 1.43,
and close to complete statistical power (99%) to detect relative
risks of 1.72 (Fig. 1).
In conclusion, our findings shed light on an issue for which the

evidence to date has been mixed. Specifically, they provide
evidence against obesity and related traits as significant risk
factors for the development of glioma.

Availability of data and material
Genotype data from the GICC GWAS are available from the
database of Genotypes and Phenotypes (dbGaP) under accession
phs001319.v1.p1. In addition, genotypes from the GliomaScan
GWAS can be accessed through dbGaP accession phs000652.v1.
p1.
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Abstract
Recent genome-wide association studies of glioma have led to the discovery of single nucleotide polymorphisms (SNPs) 
at 25 loci influencing risk. Gliomas are heterogeneous, hence to investigate the relationship between risk SNPs and glioma 
subtype we analysed 1659 tumours profiled for IDH mutation, TERT promoter mutation and 1p/19q co-deletion. These data 
allowed definition of five molecular subgroups of glioma: triple-positive (IDH mutated, 1p/19q co-deletion, TERT promoter 
mutated); TERT-IDH (IDH mutated, TERT promoter mutated, 1p/19q-wild-type); IDH-only (IDH mutated, 1p/19q wild-
type, TERT promoter wild-type); triple-negative (IDH wild-type, 1p/19q wild-type, TERT promoter wild-type) and TERT-
only (TERT promoter mutated, IDH wild-type, 1p/19q wild-type). Most glioma risk loci showed subtype specificity: (1) the 
8q24.21 SNP for triple-positive glioma; (2) 5p15.33, 9p21.3, 17p13.1 and 20q13.33 SNPs for TERT-only glioma; (3) 1q44, 
2q33.3, 3p14.1, 11q21, 11q23.3, 14q12, and 15q24.2 SNPs for IDH mutated glioma. To link risk SNPs to target candidate 
genes we analysed Hi-C and gene expression data, highlighting the potential role of IDH1 at 2q33.3, MYC at 8q24.21 and 
STMN3 at 20q13.33. Our observations provide further insight into the nature of susceptibility to glioma.

Introduction

Diffuse gliomas are the most common malignant primary 
brain tumour affecting adults with around 26,000 newly 
diagnosed cases each year in Europe [9]. Diffuse gliomas 
have traditionally been classified into oligodendroglial and 
astrocytic tumours and are graded II–IV, with the most com-
mon form—Glioblastoma (GBM) or glioma grade IV—typi-
cally having a median survival of only 15 months [2].

Despite glioma being an especially devastating malig-
nancy little is known about its aetiology and aside from 
exposure to ionising radiation that accounts for very few 
cases no environmental or lifestyle factor has been unambig-
uously linked to risk [2]. Recent genome-wide association 
studies (GWAS) have, however, enlightened our understand-
ing of glioma genetics identifying single-nucleotide poly-
morphisms (SNPs) at multiple independent loci influencing 
risk [22, 25, 35, 44, 49, 51, 63]. While understanding the 
functional basis of these risk loci offers the prospect of gain-
ing insight into the development of glioma, few have been 
deciphered. Notable exceptions are the 17p13.1 locus, where 
the risk SNP rs78378222 disrupts TP53 polyadenylation 
[51] and the 5p15.33 locus, where the risk SNP rs10069690 
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creates a splice-donor site leading to an alternate TERT 
splice isoform lacking telomerase activity [24].

Since the aetiological basis of glioma subtypes is likely 
to reflect different developmental pathways it is not per-
haps surprising that subtype-specific associations have 
been shown for GBM (5p15.33, 7p11.2, 9p21.3, 11q14.1, 
16p13.33, 16q12.1, 20q13.33 and 22q13.1) and for non-
GBM glioma (1q44, 2q33.3, 3p14.1, 8q24.21, 10q25.2, 
11q21, 11q23.2, 11q23.3, 12q21.2, 14q12 and 15q24.2) [35]. 
Recent large-scale sequencing projects have identified IDH 
mutation, TERT promoter mutation and 1p/19q co-deletion 
as cancer drivers in glioma. These findings have improved 
the subtyping of glioma [5, 12, 26, 27] and this information 
has been incorporated into the revised 2016 WHO classifica-
tion of glial tumours [32]. Since these mutations are early 
events in glioma development, any relationship between 
risk SNP and molecular profile should provide insight into 
glial oncogenesis. Evidence for the existence of such sub-
type specificity is already provided by the association of the 
8q24.21 (rs55705857) risk variant with 1p/19q co-deletion, 
IDH mutated glioma [13]. Additionally, it has been proposed 
that associations may exist between risk SNPs at 5p15.33, 
9p21.3 and 20q13.33 and IDH wild-type glioma [10], as 
well as 17p13.1 and TERT promoter, IDH mutated glioma 
without 1p/19q co-deletion [12].

To gain a more comprehensive understanding of the rela-
tionship between the 25 glioma risk loci and tumour subtype 
we analysed three patient series totalling 2648 cases. Since 
generically the functional basis of GWAS cancer risk loci 
appear primarily to be through regulatory effects [53], we 
analysed Hi-C and gene expression data to gain insight into 
the likely target gene/s of glioma risk SNPs.

Materials and methods

Data sources

We analysed data from three non-overlapping case series: 
TCGA, French GWAS, French sequencing. Details of these 
datasets are provided below and are summarised in Table 1.

TCGA 

Raw genotyping files (.CEL) for the Affymetrix Genome-
wide version 6 array were downloaded for germline (i.e. 
normal blood) glioma samples from The Cancer Genome 
Atlas (TCGA, dbGaP study accession: phs000178.v1.p1). 
Controls were from publicly accessible genotype data gen-
erated by the Wellcome Trust Case–Control Consortium 2 
(WTCCC2) analysis of 2699 individuals from the 1958 Brit-
ish birth cohort (1958-BC) [41]. Genotypes were generated 
using the Affymetrix Power Tools Release 1.20.5 using the Ta
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Birdseed (v2) calling algorithm (https ://www.affym etrix 
.com/suppo rt/devel oper/power tools /chang elog/index .html) 
and PennCNV [59]. After quality control (Supplementary 
Figs. 1, 2, Supplementary Table 1) there were 521 TCGA 
glioma cases and 2648 controls (Table 1). Glioma tumour 
molecular data (IDH mutation, 1p/19q co-deletion, TERT 
promoter mutation) were obtained from Ceccarelli et al. 
[6]. Further data (EGFR amplification/activating mutations, 
CDKN2A deletion) were obtained from the cBioportal for 
cancer genomics [15]. After adjustment for principal com-
ponents there was minimal evidence of over-dispersion infla-
tion (λ = 1.01; Supplementary Fig. 2).

French GWAS

The French-GWAS [25, 44] comprised 1423 patients with 
newly diagnosed grade II–IV diffuse glioma attending the 
Service de Neurologie Mazarin, Groupe Hospitalier Pitié-
Salpêtrière Paris. The controls (n = 1190) were ascertained 
from the SU.VI.MAX (SUpplementation en VItamines et 
MinerauxAntioXydants) study of 12,735 healthy subjects 
(women aged 35–60 years; men aged 45–60 years) [19]. 
Tumours from patients were snap-frozen in liquid nitrogen 
and DNA was extracted using the QIAmp DNA minikit, 
according to the manufacturer’s instructions (Qiagen, Venlo, 
LN, USA). DNA was analysed for large-scale copy num-
ber variation by comparative genomic hybridisation (CGH) 
array as previously described [16, 21]. For tumours not ana-
lysed by CGH array, 1p/19q co-deletion status was assigned 
using PCR microsatellites, and EGFR-amplification and 
CDKN2A-p16-INK4a homozygous deletion by quantitative 
PCR. IDH1, IDH2 and TERT promoter mutation status was 
assigned by sequencing [26, 45].

French sequencing

Eight hundred and fifteen patients newly diagnosed grade 
II–IV diffuse glioma were ascertained through the Service 
de Neurologie Mazarin, Groupe Hospitalier Pitié-Salpêtrière 
Paris. Genotypes for the 25 risk SNPs were obtained by 
universal-tailed amplicon sequencing in conjunction with 
Miseq technology (Illumina Inc.). Genotypes were called 
using GATK (Genome Analysis ToolKit, version 3.6-0-
g89b7209) software. Duplicated samples and individuals 
with low call rate (< 90%) were excluded (n = 111). Molec-
ular profiling of tumour samples was carried out as per the 
French GWAS.

Unrelated French controls were obtained from the 3C 
Study (Group 2003) [17] a population-based, prospec-
tive study of the relationship between vascular factors and 
dementia being carried out in Bordeaux, Montpellier, and 
Dijon. Genotyping of controls was performed using Illumina 
Human 610-Quad BeadChips. To recover untyped genotypes 

imputation using IMPUTE2 software was performed using 
1000 genomes multi-ethnic data (1000 G phase 1 integrated 
variant set release v3) as reference. SNPs genotypes were 
retained call rates were > 98%, Hardy–Weinberg equilib-
rium (HWE) P value > 1 × 10−6, minor allele frequency 
(MAF) > 1%. After quality control, 704 cases and 5527 con-
trols were available for analysis (Table 1).

Statistical analysis

Test of association between SNP and glioma molecular 
subgroup was performed using SNPTESTv2.5 [33] under 
an additive frequentist model. Where appropriate, principal 
components, generated using common SNPs, were included 
in the analysis to limit the effects of cryptic population strati-
fication that otherwise might cause inflation of test statistics. 
Eigenvectors for the TCGA study were inferred using smart-
pca (part of EIGENSOFTv2.4) [40] by merging cases and 
controls with phase II HapMap samples [25].

To ensure reliability when restricting cases to per-group 
low sample counts, imputed genotypes were thresholded at a 
probability > 0.9 (e.g. –method threshold in SNPtest) for the 
TCGA and French-GWAS studies. For the French-sequence 
study we used –method expected, as we were comparing 
genotypes from directly sequenced cases against imputed 
controls. We compared control frequencies to those from 
European 1000 genomes project to ensure the validity of 
this approach.

Meta-analyses were performed using the fixed-effects 
inverse-variance method based on the β estimates and stand-
ard errors from each study using META v1.6 [30]. Cochran’s 
Q statistic was used to test for heterogeneity [20].

Risk allele number and age at diagnosis

For imputed SNPs a genotype probability threshold > 0.9 
was used. The age and survival distribution of cases carrying 
additive combinations of risk alleles were assessed for the 
25 SNPs across the molecular subgroups. Trend lines were 
estimated using linear regression in R and plotted using the 
ggplot2 package [62]. Association between risk allele num-
ber and age was assessed using Pearson correlation.

Survival analysis

Survival plots were generated using the survfit package in 
R which computes an estimate of a survival curve for cen-
sored data using the Kaplan–Meier method. Log-rank tests 
were used to compare curves between groups and power 
to demonstrate a relationship between different groups and 
overall survival was estimated using sample size formulae 
for comparative binomial trials. The Cox proportional-haz-
ards regression model was used to investigate the association 

https://www.affymetrix.com/support/developer/powertools/changelog/index.html
https://www.affymetrix.com/support/developer/powertools/changelog/index.html
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between survival and age, grade, molecular group and num-
ber of risk alleles. Individuals were excluded if they died 
within a month of surgery. Date of surgery was used as a 
proxy for the date of diagnosis.

Expression quantitative trait locus analysis

We searched for expression quantitative trait loci (eQTLs) 
in 10 brain regions using the V6p GTEx [31] portal (https 
://gtexp ortal .org/home/) as well as in whole blood using the 
blood eQTL browser [61] (https ://molge nis58 .targe t.rug.nl/
blood eqtlb rowse r/).

Hi‑C analysis

We examined for significant contacts between glioma 
risk SNPs and nearby genes using the HUGIn browser 
[34], which is based on analysis by Schmitt et al. [48]. We 
restricted the analysis to Hi-C data generated on H1 Embry-
onic Stem Cell and Neuronal Progenitor cell lines, as origi-
nally described in Dixon et al. [11]. Plotted topologically 
associating domain (TAD) boundaries were obtained from 
the insulating score method [8] at 40-kb bin resolution. We 
searched for significant interactions between bins overlap-
ping the glioma risk SNP and all other bins within 1 Mb at 
each locus (i.e. “virtual 4C”).

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was carried out using 
version 3.0 with gene sets from Molecular Signatures Data-
base (MSigDB) v6.0 [36, 52], restricted to the C2 canonical 

pathways sets (n = 1329). Analysis was carried out using 
default settings, with the exception of removing restrictions 
on gene set size. RSEM normalised mRNASeq expression 
data for 20,501 genes in 676 glioma cases from TCGA were 
downloaded from the Broad Institute TCGA GDAC (http://
gdac.broad insti tute.org/). These were assigned molecular 
groupings using sample information from Supplementary 
Table 1 of Ceccarelli et al. [6].

Results

Descriptive characteristics of datasets

We studied three non-overlapping glioma case–control series 
of Northern European ancestry totalling 2648 cases and 
9365 controls (Table 1). For 1659 of the 2648 cases infor-
mation on tumour, 1p/19q co-deletion, TERT promoter and 
IDH mutation status was available (Fig. 1). Using these data 
allowed definition of five molecular subgroups of glioma: 
triple-positive (IDH mutated, 1p/19q co-deletion, TERT 
promoter mutated); TERT-IDH (IDH mutated, TERT pro-
moter mutated, 1p/19q-wild-type); IDH-only (IDH mutated, 
1p/19q wild-type, TERT promoter wild-type); TERT-only 
(TERT promoter mutated, IDH wild-type, 1p/19q wild-type) 
and triple-negative (IDH wild-type, 1p/19q wild-type, TERT 
promoter wild-type). As only 29 cases were classified as 
IDH mutation, 1p/19q co-deletion and TERT promoter wild-
type, we restricted subsequent analyses to the five groups as 
above. Table 1 also shows grouping of the 1960 cases adopt-
ing the WHO 2016 classification of glial tumours into five 
categories (Astrocytoma with IDH mutation, IDH wild-type 

Fig. 1  Molecular classification of diffuse glioma and frequency of each subgroup in the TCGA, French-GWAS and French sequencing case 
series

https://gtexportal.org/home/
https://gtexportal.org/home/
https://molgenis58.target.rug.nl/bloodeqtlbrowser/
https://molgenis58.target.rug.nl/bloodeqtlbrowser/
http://gdac.broadinstitute.org/
http://gdac.broadinstitute.org/
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astrocytoma, Oligodendroglioma with 1p/19q co-deletion, 
GBM with IDH mutation and IDH wild-type GBM) (Sup-
plementary Table 2 [Online Resource 1]).

SNP selection

We analysed 25 SNPs, which had been reported to show the 
strongest genome-wide significant association with glioma 
in our recent meta-analysis of 12,496 cases and 18,190 con-
trols [35] (Table 2). In the current analysis all of the SNPs 
exhibited a consistent direction of effect with that previously 
reported, albeit some weakly [Supplementary Fig. 4 (Online 
Resource 1), Supplementary Table 3 (Online Resource 2)].

Relationship between risk SNP and molecular 
subgroup

In the first instance, we examined whether the associa-
tions at the 25 risk loci were broadly defined by IDH sta-
tus. We observed significant association for IDH mutated 
group with 1q44 (rs12076373), 2q33.3 (rs7572263), 3p14.1 
(rs11706832), 8q24.21 (rs55705857), 11q21 (rs7107785), 
11q23.3 (rs12803321), 14q12 (rs10131032), 15q24.2 
(rs77633900) and 17p13.1 (rs78378222) risk SNPs. In addi-
tion, we found strong associations with IDH wild-type glio-
mas at 5p15.33 (rs10069690), 7p11.2 (rs75061358), 9p21.3 
(rs634537), and 20q13.33 (rs2297440) (Supplementary 
Fig. 5 [Online Resource 1], Supplementary Table 3 [Online 
Resource 2]). Of particular note was the finding that many 
of the risk loci recently discovered which were reported to 
be associated with non-GBM (1q44, 2q33.3, 3p14.1, 11q21, 
14q12, 15q24.2) [35] showed a strong association with IDH 
mutant glioma.

Following on from this we performed a more detailed 
stratified analysis based on classifying the glioma tumours 
into the five molecularly defined groups. We found a 
strong association with IDH mutated tumours at 8q24.21 
(rs55705857), in particular with triple-positive glioma 
[P = 1.27 × 10−37, OR = 9.30 (6.61–13.08)], which cor-
responds to the WHO 2016 oligodendroglioma classifica-
tion [Supplementary Fig. 6 (Online Resource 1), Supple-
mentary Table 3 (Online Resource 2)]. Furthermore, we 
confirmed the previously reported associations at 5p15.33 
(rs10069690), 9p21.3 (rs634537), 17p13.1 (rs78378222) 
and 20q13.33 (rs2297440) with TERT-only glioma in each 
of the three series [12]. Finally, we found suggestive evi-
dence for an association between 22q13.1 (rs2235573) with 
TERT-only glioma, as well as 11q21 (rs7107785), 11q23.2 
(rs648044), and 12q21.2 (rs1275600) with triple-positive 
glioma [Fig. 2, Supplementary Table 3 (Online Resource 2)].

In addition to data on 1p/19q co-deletion, TERT promoter 
and IDH mutation, for 1955 of the tumours we had informa-
tion on EGFR amplification and CDKN2A deletion status 

(Table 1). Using these data we examined for an association 
with EGFR amplification and CDKN2A deletion, particu-
larly focusing on the 7p11.2 (rs75061358 and rs11979158) 
and 9p21.3 (rs634537) risk SNPs in view of the fact that 
these loci map in or near EGFR and CDKN2A, respectively 
(Supplementary Figs. 7, 8 [Online Resource 1], Supplemen-
tary Table 3 [Online Resource 2]). At 7p11.2, the intergenic 

Table 2  Overview of glioma risk SNPs at the 25 loci

The risk allele frequency (RAF) is from European samples from 1000 
genomes project. At 10q25.2, rs11599775 [35] failed sequencing so 
the originally reported SNP rs11196067 [25] was used
The risk allele is emboldened and the minor allele underlined

Locus SNP Alleles RAF Reported subtype

1p31.3 [35] rs12752552 
[35]

T/C 0.87 GBM

1q32.1 [35] rs4252707 [35] G/A 0.22 Non-GBM
1q44 [35] rs12076373 

[35]
G/C 0.84 Non-GBM

2q33.3 [35] rs7572263 [35] A/G 0.76 Non-GBM
3p14.1 [35] rs11706832 

[35]
A/C 0.46 Non-GBM

5p15.33 [49] rs10069690 
[35]

C/T 0.28 GBM

7p11.2 [44] rs75061358 
[35]

T/G 0.10 GBM

7p11.2 [44] rs11979158 
[44]

A/G 0.83 GBM

8q24.21 [49] rs55705857 [13, 
22]

A/G 0.06 Non-GBM

9p21.3 [49, 63] rs634537 [35] T/G 0.41 GBM
10q24.33 [35] rs11598018 

[35]
C/A 0.46 Non-GBM

10q25.2 [25] rs11196067 
[25]

A/T 0.58 Non-GBM

11q14.1 [35] rs11233250 
[35]

C/T 0.87 GBM

11q21 [35] rs7107785 [35] T/C 0.48 Non-GBM
11q23.2 [25] rs648044 [25] A/G 0.39 Non-GBM
11q23.3 [49] rs12803321 

[35]
G/C 0.64 Non-GBM

12q21.2 [25] rs1275600 [35] T/A 0.60 Non-GBM
14q12 [35] rs10131032 

[35]
G/A 0.92 Non-GBM

15q24.2 [25] rs77633900 
[35]

G/C 0.09 Non-GBM

16p13.3 [35] rs2562152 [35] A/T 0.85 GBM
16p13.3 [35] rs3751667 [35] C/T 0.21 Non-GBM
16q12.1 [35] rs10852606 

[35]
T/C 0.71 GBM

17p13.1 [51] rs78378222 
[51]

T/G 0.01 All

20q13.33 [49, 
63]

rs2297440 [35] T/C 0.80 GBM

22q13.1 [35] rs2235573 [35] G/A 0.51 GBM
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variant rs75061358, which is located in the genomic vicin-
ity of EGFR, was associated with EGFR amplified tumours 
and not those without amplification. There was a less strong 
association with EGFR amplification seen with the second 
independent signal at the locus defined by rs11979158, 
which is intronic within EGFR itself. At 9p21.3 rs634537, 
which is intronic within CDKN2B-AS1 and in the vicin-
ity of CDKN2A and CDKN2B, was not associated with 
CDKN2A deletion status. Low grade gliomas tend to be 
EGFR wild-type and p16 wild-type tumours and, there-
fore, as anticipated many non-GBM risk SNPs were most 
strongly associated with these tumours; notably 2q33.3 
(rs7572263), 3p14.1 (rs11706832), 8q24.21 (rs55705857), 
10q25.2 (rs11196067), 11q23.3 (rs12803321) (Supplemen-
tary Figs. 7, 8 [Online Resource 1], Supplementary Table 3 
[Online Resource 2]).

Polygenic contribution to age at diagnosis 
and patient survival

Patient survival by molecular subgroup in each of the three 
series was consistent with previous published reports [5, 12]; 
specifically, patients with triple-positive tumours had the 
best prognosis whilst those with TERT-only tumours had 

the worst outcome (Supplementary Fig. 3 [Online Resource 
1]). We investigated whether an increased burden of glioma 
risk alleles might be associated with earlier age at diagnosis 
(i.e. indicative of influence on glioma initiation) or survival 
(indicative of influence on glioma progression). There was a 
slight albeit, non-significant trend towards decreased age at 
diagnosis with increased risk allele number in the IDH-only, 
TERT-only and triple-positive molecular subgroup, but with 
decreased risk allele number in the TERT-IDH and Triple-
negative tumours (Supplementary Fig. 9 [Online Resource 
1]). We found no overall relationship between age and risk 
allele number, or for the individual molecular groups (Sup-
plementary Table 4 [Online Resource 1]). Examining each 
SNP individually, only rs55705857 at 8q24.21 was nomi-
nally associated with age (Supplementary Table 4 [Online 
Resource 1]).

We used Cox Proportional-Hazards Regression to investi-
gate whether burden of glioma risk was associated with sur-
vival, with each risk allele coded as 0, 1 or 2. As expected, 
age, grade and all molecular group (Triple-negative, Triple-
positive, TERT-only, IDH-only and TERT-IDH) were strongly 
associated with decreased survival. Intriguingly, the number 
of risk alleles was associated with increased survival (Supple-
mentary Table 5 [Online Resource 1]; P < 10−4) with 1q32.1 

Fig. 2  Association between the 25 risk loci and glioma subgroup. Horizontal red line corresponds to an odds ratio of 1.0
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(rs4252707), 11q23.3 (rs12803321) and 11q21 (rs7107785) 
each being nominally associated with survival, independent 
of age and molecular subgroup. Considering the relationship 
between burden of glioma risk alleles and survival in each 
molecular subgroup a consistent association with increased 
survival was shown in Triple-positive, Triple-negative and 
TERT-only molecular groups but not in IDH-only and TERT-
IDH groups.

Biological inference of risk loci

Since genomic spatial proximity and chromatin looping inter-
actions are fundamental for the regulation of gene expression 
[42], we interrogated physical interactions at respective risk 
loci in embryonic stem cells and neuronal progenitor cells 
using Hi-C data. We also sought to gain insight into the pos-
sible biological mechanisms for associations by performing 
expression quantitative trait locus (eQTL) analysis using 
mRNA expression data in 10 brain regions using the GTEx 
portal.

We identified significant Hi-C contacts from the genomic 
regions which encompass 14 of the 25 risk loci implicating a 
number of presumptive candidate genes. For two of these, can-
didacy was supported by eQTL data. (Table 3; Supplementary 
Fig. 10 [Online Resource 1]; Supplementary Table 6 [Online 
Resource 3]). Notably at 2q33.3, there was a significant loop-
ing interaction between the risk SNP and IDH1/IDH1-AS1, as 
well as with EGFR/EGFR-AS1 at 7p11.2, CDKN2A/CDKN2B 
at 9p21.3, NFASC at 1q32.1 and LRIG1 at 3p14.1. At the 
8q24.21 gene desert Hi-C data revealed a significant interac-
tion between the risk SNP rs55705857 and MYC, as well as 
lincRNAs in the region such as PCAT1/PCAT2. Additionally, 
the risk SNP rs12803321 at 11q23.3 was significantly associ-
ated with PHLDB1 expression in the brain.

Pathway analysis

To potentially gain further insight into the biological basis 
of subtype associations, we performed a gene-set enrich-
ment analysis (GSEA) analysing gene expression data from 
TCGA (Supplementary Table 7 [Online Resource 4]). While 
we did not identify any significantly altered gene sets (at 
FDR q value < 0.1), the most significantly expressed genes 
in subgroups was upregulation of PI3K signalling shown in 
1p/19q co-deleted tumours (Supplementary Table 7 [Online 
Resource 4]).

Discussion

Our findings provide further support for subtype-specific 
associations for glioma risk loci. Specifically, we confirm 
the strong relationship between the 8q24.21 (rs55705857) 

risk variant and Triple-positive glioma. Moreover, we sub-
stantiate the proposed specific associations between 5p15.33 
(rs10069690) and 20q13.33 (rs2297440) variants with TERT 
promoter mutations, 9p21.3 (rs634537) with TERT-only 
glioma, as well as 17p13.1 (rs78378222) with TERT-IDH 
glioma. Other loci such as 1q32.1 (rs4252707) and 10q25.2 
(rs11196067) appear to have more generic effects.

Although preliminary, and in part speculative, our analy-
sis delineates potential candidate disease mechanisms across 
the 25 glioma risk loci (Table 3; Fig. 3). First, maintenance 
of telomeres is central to cell immortalization [57], and is 
generally considered to require mutually exclusive muta-
tions in either the TERT promoter or ATRX. The risk alleles 
at 5p15.33 (TERT) and 10q24.33 (OBFC1) are associated 
with increased leukocyte telomere length, thereby support-
ing a relationship between SNP genotype and biology [56, 
57, 66]. While dysregulation of the telomere gene RTEL1 
has traditionally been assumed to represent the functional 
basis of the 20q13.33 locus, the glioma risk SNP does 
not map to the locus associated with telomere length [7, 
35]. Intriguingly, our analysis instead implicates STMN3 
at 20q13.33, whose over-expression promotes growth in 
GBM cells [68], suggesting an alternative mechanism by 
which the risk SNP influences glioma development. With 
respect to the 5p15.33 (TERT) and 10q24.33 (OBFC1) loci, 
it is unclear whether the effect on glioma risk is solely due 
to telomeres or is pleiotropic and involves multiple factors. 
For example, rs10069690 at 5p15.33 is strongly associated 
with TERT-only glioma, yet the TERT promoter mutation 
increases telomerase activity without necessarily affecting 
telomere length [6]. An intriguing hypothesis to test would, 
therefore, be to examine the impact of allele-specific effects 
of rs10069690 on telomere length in the context of gliomas 
carrying the TERT promoter mutation.

Second, the EGFR-AKT pathway involves EGFR at 
7p11.2, LRIG1 at 3p14.1, PHLDB1 at 11q23.3 and AKT3 at 
1q44. We showed a significant interaction between the risk 
SNP rs11979158 at 7p11.2 and EGFR, consistent with a cis-
regulatory effect on gene expression. Although the mecha-
nistic basis of the 7p11.2 locus has long been suspected to 
involve EGFR and is highly associated with classical GBM, 
emerging evidence suggests that additional components 
of the EGFR-AKT signalling pathway are implicated by 
non-GBM SNPs. At the IDH-only associated locus 3p14.1, 
LRIG1 is highly expressed in the brain and negatively regu-
lates the epidermal growth factor receptor (EGFR) signal-
ling pathway [18]. Reduced LRIG1 expression is linked to 
tumour aggressiveness, temozolomide resistance and radio-
resistance [60, 65]. Downstream components of EGFR-AKT 
signalling are implicated at 11q23.3 via PHLDB1, as well 
as 1p31.3 via JAK1 and 1q44 via AKT3. The risk allele 
of rs12803321 is associated with increased expression of 
PHLDB1, an insulin-responsive protein that enhances Akt 
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activation [70]. AKT3 at 1q44 is highly expressed in the 
brain and appears to respond to EGF in a PI3K dependent 
manner [38], with GBM cells containing amplified AKT3 
having enhanced DNA repair and resistance to radiation and 
temozolomide [54]. The risk allele of rs12752552 at 1p31.3 
is associated with increased JAK1 expression in brain tissue. 
Since JAK1 can be activated by EGF phosphorylation, it may 
be involved in astrocyte formation [3, 39, 50]. The 3p14.1 
and 11q23.3 loci are strongly associated with EGFR ampli-
fication negative gliomas, with a consistent albeit non-sig-
nificant trend at 1p31.3 and 1q44, consistent with elevated 
upstream EGFR activation masking their functional effects.

Third, the NAD pathway involves IDH1 at 2q33.3 and 
NNMT at 11q23.2. At 2q33.3 we detected a significant Hi-C 
interaction between the glioma risk SNP rs7572263 and 
IDH1/IDH1-AS1. Overexpression of IDH1 mutant proteins 
has been reported to sensitize glioma cells to radiation [29], 
providing an interesting mechanism to test the allele-specific 
effects of this SNP. IDH mutation causes de-regulation of 
NAD signalling [64]. Interestingly, therefore, at 11q23.2 
which is strongly associated with IDH mutated gliomas, 
the most convincing molecular mechanism is via NNMT, 
which encodes nicotinamide N-methyltransferase and is 
highly expressed in GBM relative to normal brain, causing 
methionine depletion-mediated DNA hypomethylation and 
accelerated tumour growth [23, 55].

Fourth, genes with established roles in neural develop-
ment may be involved. While the risk SNP rs4252707 at 
1q32.1 is within the intron of MDM4, the strongest evidence 
for a mechanistic effect was with NFASC. Neurofascin is 
involved in synapse formation during neural development 
[1] and, therefore, represents an attractive functional can-
didate for the association with glioma. Additionally at 
16p13.3 and 20q13.33, implicated genes SOX8 and STMN3 
are strongly expressed in the brain and thought to play a 
role in neural development [47, 68]. At 10q25.2, implicated 
gene TCF7L2 modifies beta-catenin signalling and controls 
oligodendrocyte differentiation [69]. Intriguingly, 10q25.2 
has previously been reported to be a risk locus for colorectal 
cancer [58], a tumour driven by wnt signalling, however, the 
risk SNP is not correlated with rs11196067 raising the pos-
sibility of tissue-specific regulation across the wider region.

Finally, the p53 pathway is involved at 17p13.1, where the 
risk SNP rs78378222 affects TP53 3′UTR poly-adenylation 
processing. In addition, the p53 target GLIPR1 [43] is impli-
cated at 12q21.2. Moreover, 12q21.2 is most strongly asso-
ciated with Triple-positive glioma, which does not feature 
TP53 mutation, consistent with wild-type p53 protein being 
required for the SNP to exert a functional effect.

As with many cancers, the exact point at which the risk 
SNPs exert their functional impact on glioma oncogenesis 
still remains to be elucidated, and we did not demonstrate a 
relationship between increased risk allele number and age Ta
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at diagnosis. Surprisingly we found a significant associa-
tion between increasing risk allele number and improved 
outcome. This result was consistent across the prognostic 
molecular groups, consistent with our observations not 
being due to an over-representation of the more favourable 
prognostic groups among patients with a higher burden of 
risk alleles. In addition, the distribution of risk allele num-
bers did not differ across the four groups (P = 0.3, ANOVA 
test). Examining the impact of an individual SNP’s impact 
on survival did not reveal any loci strongly associated with 
outcome. Collectively our findings suggest that, independent 
of other prognostic factors, the greater the number of risk 
alleles carried, the better the outcome.

In conclusion, we performed the most comprehensive 
association study between molecular subgroup and the 25 
recently identified glioma risk loci to date. While confirm-
ing previous observations, we show that the majority of risk 
loci are associated with IDH mutation. Through the integra-
tion of Hi-C and eQTL data, we have additionally sought to 
define candidate target genes underlying the associations. 
Collectively our observations highlight pathways critical to 
glioma susceptibility, notably neural development and NAD 
metabolism, as well as EGFR-AKT signalling. Intriguingly, 
we show here that the number of risk alleles is consistently 
associated with better outcome. Functional investigation in 

tumour and neural progenitor-based systems will be required 
to more fully elucidate these molecular mechanisms. Nota-
bly, IDH mutant tumours have been shown to reshape 3D 
chromatin organisation and may reveal new regulatory inter-
actions [14].

Our current analysis is based on defining glioma sub-
groups using only three primary markers. Given the extent 
of the missing heritability for glioma further expansion of 
GWAS by international consortia [35] is likely to result in 
the identification of additional risk variants. Additional 
molecular sub-grouping glioma resulting from ongoing 
large-scale tumour sequencing projects is likely to provide 
for further insights into glial oncogenesis and ultimately may 
suggest targets for novel therapeutic strategies.
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Abstract  

Background: Primary central nervous system lymphoma (PCNSL) represents a particular 

entity within non-Hodgkin lymphomas and is associated with poor outcome. The present 

study addresses the potential clinical relevance of chimeric transcripts in PCSNL discovered 

by using RNA-sequencing (RNA-Seq). 

Methods: Seventy-two immunocompetent and newly diagnosed PCNSL cases were included 

in the present study. Among them, six were analyzed by RNA-seq to detect new potential 

fusion transcripts. We confirmed the results in the remaining 66 PCNSL. The gene fusion was 

validated by fluorescence in situ hybridization (FISH) using formalin-fixed paraffin-

embedded (FFPE) samples. We assessed the biological and clinical impact of one new gene 

fusion. 

Results: We identified a novel recurrent gene fusion ETV6-IgH. Overall, ETV6-IgH was 

found in 13 out of 72 PCNSL (18%). No fusion conserved an intact functional domain of 

ETV6 and ETV6 was significantly underexpressed at gene level, suggesting an ETV6 

haploinsufficiency mechanism. The presence of the gene fusion was also validated by FISH in 

FFPE samples. Finally, PCNSL samples harboring ETV6-IgH showed a better prognosis in 

multivariate analysis, p-value=0.03, HR=0.33, 95% interval confidence (IC95) [0.12-0.88]. 

The overall survival at 5 years was of 69% for PCNSL harboring ETV6-IgH vs 29% for 

samples without this gene fusion.   
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Conclusions: ETV6-IgH is a new potential surrogate marker of PCNSL with favorable 

prognosis with ETV6 haploinsuffiency as a possible mechanism. The potential clinical impact 

of ETV6-IgH should be validated in larger prospective studies. 

Keywords: Primary CNS lymphoma, RNA sequencing, fusion gene, ETV6-IGH, 

haploinsufficiency 

Importance of the study 

Primary central nervous system lymphoma (PCNSL) is a rare entity with heterogenous 

clinical evolution. Chimeric genes are interesting molecular markers because they may allow 

to detect novel oncogenic pathways and could be used as a biomarkers. We analyzed 6 fresh-

frozen PCNSL by RNA-Seq and we have detected a recurrent chimeric fusion involving 

ETV6-IGH. The prevalence of this gene fusion has been established using 66 fresh-frozen 

PCNSL samples by direct sequencing. We have analyzed the potential functional impact of 

this gene fusion by western blot of transfected COS-7 cells with ETV6-IGH gene fusion. 

Finally, we found that PCNSL harboring this chimeric gene are associated with a better 

prognosis in the multivariate analysis as well as low ETV6 expression, suggesting a 

haploinsufficiency mechanism.  

Introduction 

Primary central nervous system lymphoma (PCNSL) is an intriguing entity currently 

classified according to World Health Organization (WHO) criteria as a diffuse large B-cell 

lymphoma (DLBCL) restricted to the CNS.
1
  PCNSL are extranodal, malignant non-Hodgkin 

lymphomas that are confined to the brain, eyes, leptomeninges, or spinal cord, in the absence 

of systemic lymphoma.
1
 The particular tropism of PCNSL to the central nervous system 

(CNS) as well as the reason why this neoplasm exclusively manifest in the immunoprivileged 

brain in the absence of systemic spread is still unclear.
2
 Although PCNSL is associated with a 
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dismal prognosis, the prognosis has been substantially improved by using high-dose 

methotrexate.
3
 However, treatment of this disease remains challenging because remissions are 

frequently of short-lasting with substantial toxicity.
4
  

The rarity of this disease and the small amount of tissue obtained in the vast majority of cases 

from stereotaxic biopsies has delayed understanding of the oncogenesis of PCNSL. The 

expression profiling of PCNSL with expression of BCL6, IRF4 together with an aberrant 

somatic hypermutation (aSHM) indicates that PCNSL cells belong to a late germinal center B 

cell.
2,5

 We and others have reported recurrent copy number aberrations using high-density 

CGH or SNP arrays and described the mutational landscape of PCNSL using whole-exome 

sequencing (WES).
6–12

 The most striking alterations reported to date are (i) frequent 

chromosomal deletions affecting HLA locus (6p21.32), 6q22 chromosome and CDKN2A 

locus (9p21.3) and (ii) somatic mutations in genes involved in B-cell receptor/Toll-like 

receptor/NF-κB pathways, especially MYD88 and CD79B.
6,13-15

  

The present study addresses the potential clinical relevance of chimeric transcripts in PCSNL 

discovered by using RNA-Seq. We have identified several new fusion genes and we have 

focused on the most frequent one involving ETV6 and IgH, as a novel gene fusion that could 

be potentially used as a prognostic marker in PCNSL.   

Material and methods 

PCNSL samples  

Seventy-two immunocompetent (HIV negative and no history of immunosuppressive drugs or 

organ transplantation) and newly diagnosed PCNSL cases homogenously treated with high-

dose methotrexate regimen (3.5g/m
2
) were included in the present study. Tumors were 

selected on the basis of fresh frozen tissue availability. All tumors were PCNSL classified as 

CD20+ DLBCL according to the WHO criteria 
1
 and demonstrated to contain at least 80% 
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tumor cells. For all cases, systemic lymphoma was excluded by extensive investigation. This 

project was approved by the local ethics committee (CPPRB Pitié-Salpêtrière). Written 

consent for sample collection and genetic analysis was obtained from all the participants. 

Details about PCNSL cases investigated in the present study are provided in Supplementary 

Supplementary Table S1. 

RNA extraction and quality assessment 

Total RNA from cryopreserved samples was extracted using the iPrep Trizol® Plus RNA kit 

(Life Technologies). Tumor lysis was first performed in Trizol (Invitrogen) lysis buffer and 

using FastPrep system (MP Biomedicals). After chloroform addition, total RNA was purified 

using iPrep Trizol® Plus RNA kit. RNA was quantified using a NanoDrop 

spectrophotometer, and the quality, depending on RNA Integrity Number (RIN), RNA 

concentration and 28S:18S rRNA ratio, was assessed using an Agilent BioAnalyzer.  

RNA sequencing 

RNA sequencing was performed for cases with a minimal amount of RNA of 1.5µg and a 

RNA Integrity Number (RIN) of at least 7. Library was prepared using the TruSeq Stranded 

mRNA kit protocol (Illumina technology) with an input total RNA of 1µg. Capture of 

polyadenylated RNA was realized using oligo dT beads. Captured RNA was fragmented in 

approximatively 400bp. After DNA synthesis, Illumina adaptors ligation and library 

amplification by PCR, 100bp paired-end sequencing was performed on an Illumina HiSEQ 

2000.  

Data analysis and detection of putative fusion transcripts  

Data analysis was realized by GenoSplice technology (ICM, France). Data Quality control 

was performed using FastQC v0.10.1 

Downloaded from https://academic.oup.com/neuro-oncology/advance-article-abstract/doi/10.1093/neuonc/noy019/4843980
by University of California Santa Barbara/Davidson Library user
on 16 February 2018



Acc
ep

te
d 

M
an

us
cr

ipt

 

 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Fusion transcripts were detected 

using three different approaches: tophat-fusion, defuse, and EASANA-fusion (Genosplice). 

We only considered chimeric transcripts that were commonly detected by at least two three 

algorithms. Further details on the bioinformatics analysis are found in the supplementary 

methods. 

ETV6 expression in PCNSL and transfected cells   

ETV6 expression was assessed by quantitative PCR. Primer and probes were synthesized 

using Universal Probe Library (UPL, Roche) software (primers and probes are provided in 

suppl data). The qPCR was performed on LightCycler 480 (Roche) and using the following 

conditions : 10 minutes at 95°C for 1 cycle, 10 seconds at 95°C, 30 seconds at 60°c and 1 

second at 72°C  for 45 cycles, 30 seconds at 40°C. Expression levels were normalized to 

(PPIA) and relative expression of ETV6 was calculated using the ΔΔCt method.  

Cell culture  

Monkey kidney COS-7 cell line were obtained from the American Type Culture Collection 

and supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin (15140, 

ThermoFisher Scientific).  The cells were cultured in a humidified incubator with 5% CO2 at 

37°C.   

Plasmid construction 

ETV6 wt, ETV6-IgHG4, ETV6-delta (a truncated version of ETV6 without IgH) and Green 

Fluorescent Protein (GFP) control were cloned into lentiviral vector control using a CMV-

3HA-pPGK-puromycin selection. COS-7 cells expressing ETV6 wt, ETV6 delta (ETV6 

lacking the last four exons), ETV6-IgHG4 or GFP control were generated by lentiviral 

transduction and subsequent puromycin selection.  
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Western blot analysis 

Immunoblotting of COS-7 cells was performed with the following antibodies: anti-HA 

(ab18181, Abcam, diluted 1:5000) and anti-ETV6 (ab151698, Abcam, diluted 1:5000) in at 

first, and then anti-cyclophylin B (PA1-027A, Pierce, diluted 1:2000). After the overnight 

incubation at 4°C with primary antibodies IRDye 680RD Goat anti-Rabbit IgG (Li-Cor, 

diluted 1:5000), membranes were washed again and scanned on Odyssey CLx Imaging 

System. Scan settings were high quality, 169µm resolution, intensity 5 for both channels 

without focus offset.  Further details are provided in the supplementary methods. 

Interphase FISH on Formalin-fixed Paraffin-embedded (FFPE) sections 

ETV-IgH fusion was confirmed using 3µm FFPE tissue section using ETV6-IgH positive 

PCNSL samples detected by RNA-Seq or by Sanger sequencing that were deparaffinized with 

the histology FISH Accessory Kit (Dako). Slides were visualized using a fluorescence scanner 

(Pathscan, Excilone). Hybridizing signals in at least 100 non-overlapping nuclei were 

counted. The presence of the breakapart probe signal in greater than 15% of tumor cells was 

defined as positive for ETV6-IgH fusions. 

Direct sequencing of MYD88 and CD79B somatic mutations 

The hotspots mutations of MYD88 (L265P) and CD79B (Y196) were investigated by Sanger 

as previously described.
8
 Shortly, the amplifications conditions were 94°C for 3 min followed 

by 45 cycles of 94°Cx15 sec, 60°Cx45 and 72°Cx1 min, with a final step at 72°C for 8 min. 

The somatic DNA was amplified using the following primers: for MYD88 L265P 

TGTGTGAGTGAATGTGTGCC (forward) and GAGTCCAGAACCAAGATTTGGT and for 

CD79B Y196 CACCCCTCTCCCTGGCCCTC (forward) and 

CGGGACCACACCCCAACCAC (reverse). 
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Validation  

The validation of the putative fusion transcripts identified by RNA-Seq was performed using 

RT-PCR. Five hundred nanograms of total RNA were retrotranscribed using the Maxima first 

strand cDNA synthesis kit (Thermo Scientific) following the manufacturer’s instructions. 

PCR was performed using primers designed according to predicted fusion transcript sequence 

with the forward primer located within the 5 prime end of ETV6 transcript and the reverse 

primer within the 3 prime end of IGH transcript. Primer sequences are listed in the 

Supplementary Table S2. The amplification conditions were as already described.
8
 The 

purified sequences were addressed to GATC Biotech for conventional Sanger sequencing.  

All transcriptome sequencing data have been deposited at the Gene Expression Omnibus 

(GEO), which is hosted by the National Center for Biotechnology Information (NCBI), under 

the accession code GSE81816. 

The investigation of additional cases with ETV6-IgH fusion gene was assessed using an 

optimized RT-PCR assay. Further details are provided in supplementary methods en 

Supplementary Table S2. 

Statistical Analyses 

We applied unpaired Wilcoxon Mann-Whitney test for comparing ETV6 expression levels 

obtained by qRT-PCR, age and Karnofsky Perfomance Status (KPS), both as a continuous 

variables, in PCNSL samples according to ETV6-IgH status. 

Kaplan-Meier analysis and the log-rank test were used to explore differences between overall 

survival according to ETV6-IgH status, age (≥60 vs <60 years) and Karnofsky Performance 

Status (KPS) (≥70 vs <70%). Cox proportional hazards regression models were used to obtain 

hazard ratios (HR) with Wald 95% confidence intervals (CI) for the relationship between OS 

Downloaded from https://academic.oup.com/neuro-oncology/advance-article-abstract/doi/10.1093/neuonc/noy019/4843980
by University of California Santa Barbara/Davidson Library user
on 16 February 2018



Acc
ep

te
d 

M
an

us
cr

ipt

 

 

and ETV6-IgH status, age, and KPS in the patient cohorts. We assessed the proportionality of 

the hazards for Cox regression with the Schoenfeld residuals. All p-values were two-sided and 

p-values less than 0.05 were interpreted as statistically significant. 

Analyses were performed using R statistical software, version 3.3 (Free Software Foundation 

available at http://www.r-project.org).  

Results 

Gene fusion identification using RNA-Seq 

We collected a cohort of 6 PCNSL samples on which we performed transcriptome sequencing 

with the aim of identifying new chimer alterations. We applied 3 different gene fusion 

algorithms and only those fusion genes detected by all of them were further considered.  

We identified a total of 1827 putative fusion transcripts in the 6 PCNSL samples 

(Supplementary Table S3). 

Thirty-two putative fusions involving 57 distinct genes were commonly detected by at least 2 

out of the 3 fusion detection algorithms (Figure 1, Supplementary Figure S1 and Figure S2, 

Table S3) including 3 inter-chromosomal and 29 intra-chromosomal fusions. Only 3 fusions 

were commonly detected by the 3 pipelines: SSR2-GON4L, ETV6-IgH and WHSC2-LETM1. 

Among them, we selected the most frequent chimeric transcript ETV6-IgH detected in 2 cases 

out of the 6 investigated by RNA-Seq. This fusion raised our interest because ETV6 is 

frequently involved in different hematological diseases, it has a prominent role in 

hematopoietic stem cell homeostasis.
16,17

 In addition, focal deletions of ETV6 locus and 

recurrent somatic mutations have been recently identified in 2 different PCNSL studies.
18,19

 In 

the same line, there are many studies suggesting that ETV6 could act in some setting as a 

tumor suppressor gene.
20

  

Downloaded from https://academic.oup.com/neuro-oncology/advance-article-abstract/doi/10.1093/neuonc/noy019/4843980
by University of California Santa Barbara/Davidson Library user
on 16 February 2018

http://www.r-project.org/


Acc
ep

te
d 

M
an

us
cr

ipt

 

 

Validation of the ETV6-IGH gene fusion by sequencing in 66 PCNSL 

The fusion is a somatic genomic event as ETV6 break-apart FISH and FISH with custom 

ETV6 and IgH probes revealed rearrangements in the respective chromosomal regions in the 

tumor cells, but not in surrounding nontumoral cells (Figure 2E).  

We next performed reverse transcriptase PCR (RT-PCR) using primers specific for the 

chimeric transcript to identify additional tumors bearing the fusion in a set of 66 PCNSL, in 

addition to the 6 PCNSL tested by RNA-seq. We identified 11 additional tumors carrying the 

fusion (Supplementary Table S1). All breakpoints that we identified on ETV6 were located on 

the 5 prime side of the transcript - i.e before the third exon - while IGH breakpoints were 

distributed all along the transcripts. Some preferential clustering of breakpoints were 

identified at the ends of exons 1 and 2 for ETV6 and in the middle of exon 4 for IgHG4 

(Figure 2B-2D and Supplementary Figure S3). The predicted fusion proteins indicated that 

none preserved an entire functional domain of ETV6 protein (Supplementary Figure S3). Four 

ETV6-IgH proteins were predicted to conserve a part of the PNT (or pointed) domain 

responsible for protein-protein interactions including one conserving more than half of its 

domain.  

Clinical impact of ETV6 gene fusion 

Age and sex were equally distributed in PCNSL carrying ETV6-IgH and in ETV6 wild-type 

(wt) PNCSL counterparts (Supplementary Table S4A). Interestingly, univariate survival 

analysis pinpointed that PCNSL harboring ETV6-IgH had a better prognosis than their ETV6 

wt counterparts (p = 0.04, Figure 3A). Moreover, multivariate analysis using Cox proportional 

hazards model confirmed that ETV6-IgH was independently associated with favorable 

prognosis after adjusting for age and KPS (p-value=0.03, HR=0.33, 95% interval confidence 
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(IC95) [0.12-0.88]) (Supplementary Table S4B) with an OS at 5 years of 69% for PCNSL 

harboring ETV6-IgH vs 29%.  

We also analyzed the prognostic impact of ETV6 expression. Patients with high ETV6 

expression levels (according to the median) had lower KPS compared to the low ETV6 

expression samples (p=0.02) and age was equally distributed (Supplementary Table S4C). 

Low ETV6 expression in the overall cohort was associated with a better prognosis in 

univariate (p-value=0.007, Supplementary Figure S4) and in multivariate analysis (p-

value=0.01, HR=0.44 [0.24-0.83], Supplementary Table 4D) with an OS at 5 years of 55% for 

PCNSL with low ETV6 expression levels vs 20%. However, when only ETV6 wild-type (wt) 

samples (i.e. without ETV6 fusion) were analyzed, we did not find any prognostic impact of 

ETV6 gene expression (p=0.17, Supplementary Figure S5). 

Functional impact of ETV6-IGH fusion 

In most of the cases ETV6 fusions involved the first 2 exons, potentially altering the 

expression ETV6. To validate this prediction, we transduced COS-7 cells with ETV6-IgHG4 

and ETV6-Delta lentiviruses and we performed western blot of COS-7 cells to determine the 

expression. We also transduced this cell line with either an empty vector, or a virus containing 

normal ETV6 (ETV6 wt) (Figure 3B). We did not find any difference in ETV6 protein 

expression compared to the different ETV6 constructions (Figure 3B). We next analyzed the 

expression of ETV6 in COS-7 cells using qRT-PCR showing a underexpression of ETV6 3p 

compared to control constructions (p < 0.05, data not shown), arguing in favor of a potential 

haploinsufficiency of ETV6 expression. Likewise, qRT-PCR in PCNSL samples showed a 

significant ETV6 underexpression in ETV6-IgH positive samples compared to those with 

ETV6 wt (p < 0.05, Figure 3C).  
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Taken together this data suggest that ETV6-IgH leads to a single-allele loss of ETV6 reducing 

its gene expression (Figure 3C) but without significantly modifying its protein expression 

(Figure 3B). Therefore, haploinsufficiency may have a potential impact in the mechanism 

involved in this gene fusion. 

Correlation of ETV6 fusion with other molecular features 

We have also screened the most frequent hotspot mutations described in PCNSL: MYD88 

L265P and CD79B Y196.
18,19

 Overall, 29/72 (40.3%) harbored MYD88 L265P, 19/72 (26.4%) 

CD79B Y196 mutation and 15/72 (20.8%) both of them, Supp Table S1. In addition, the 

distribution of MYD88 L265P and CD79B Y196 mutations was similar according to ETV6-

IgH gene fusion status. Indeed, according to ETV6-IgH gene fusion status, 5/13 (38.6%) 

harbored MYD88 L265P mutation vs 24/59 (40.7%), p-value = 1 Fisher’s exact text, CD79B 

Y196 in 2/13 (15.4%) vs 13/59 (22%), p-value =0.7, and also in 2/13 (15.4%) vs 13/59 (22%) 

both of them (Supp Table S1).   

Discussion 

We have characterized a small cohort of PCNSL by RNA-seq to discover new chimeric 

transcripts. We have identified several potential interesting gene fusions and we have further 

estimated the frequency and the clinical impact in a larger series of PCNSL using fresh-frozen 

tissue. All ETV6-IgH gene fusions were validated by cDNA sequencing. Overall, we 

identified 13 cases with ETV6-IgH fusion gene in our whole-cohort of 72 PCNSL. We 

estimate the frequency of ETV6-IgH in PCNSL to approximately 18%. Therefore, ETV6-IgH 

is the most frequently reported fusion gene in PCNSL. We provide evidence that ETV6-IgH 

leads to a decrease of expression (at mRNA), suggesting a potential role of haploinsufficiency 

of ETV6. In the same line, there are many studies suggesting that ETV6 could be a tumor 

suppressor gene also by an haploinsufficiency mechanism.
21

  Haploinsufficiency occurs when 
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the amount of protein product created from the remaining wild-type allele is not sufficient for 

normal cellular function. Therefore ETV6 could be considered as ‘haplo-insufficient’ to 

indicate that one copy of the gene is insufficient for proper function.
22

 

The ETV6 protein contains two major domains, the HLH (helix-loop-helix) domain, encoded 

by exons 3 and 4, and the ETS domain, encoded by exons 6 through 8, with in between the 

internal domain encoded by exon 5. ETV6 is a strong transcriptional repressor, acting through 

its HLH and internal domains.
16

 This transcription factor is frequently rearranged in childhood 

pre-B acute lymphoblastic leukemia (ALL) and leukemia of myeloid or lymphoid origins.
23,24

 

It is important to emphasize that ETV6 is known to be fused with a wide range of genes 

encoding receptor tyrosine kinases genes, transcription factors, homeobox genes, and many 

others.
25

 Interestingly, the mentioned fusions, as the one described in this study, do not 

include the full-length ETV6 protein. Remarkably, several gene fusions involving ETV6 have 

been associated with a haploinsufficiency mechanism.
26,27

 Furthermore, even fusions of ETV6 

with the same target will not always have the same breakpoints in ETV6 protein.
25

 

Interestingly, in a recent PCNSL study, ETV6 was found to be statistically significant 

associated as a target of aSHM phenotype in 22/41 of cases (53.7%).
19

 

The fusion partner of ETV6, IgH is a frequently rearranged locus in DLBCL and PCNSL and 

in both diseases these rearrangements could be associated with aSHM.
28

 IgH translocations 

have been found in 13% of PCNSL and are less frequent than in DLBCL (45%).
14

 In addition, 

the most common IgH translocation partner in PCNSL is BCL6 (80%) while in DLBCL is 

more frequently linked to BCL2 (15%).
14

 

Furthermore, ETV6-IgH samples harbored a favorable prognosis in multivariate analysis with 

an OS at 5 years of 69% for PCNSL harboring ETV6-IgH vs 29% for samples without this 

gene fusion after adjusting for age and KPS (Supp Table S4). Different prognostic scores 
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using clinical characteristics have been proposed but age and KPS seem to be the strongest 

independent predictors in PCNSL.
29

 However, it should be noted that further molecular 

alterations might impact the clinical evolution of PCNSL. Accordingly, another gene fusion 

involving ETV6, ETV6-RUNX1, is the most frequent genomic aberration found in pre-B acute 

lymphoblastic leukemia (ALL), occurring in approximately 25% of cases, and is associated 

with favorable prognosis.
30

 Different potential biomarkers of prognosis in PCNSL have been 

described during the last years. Overexpression of BCL-6 was associated with improved 

survival compared to patients whose tumors did not express BCL-6.
31

 However, other studies 

did not corroborate these findings.
32

 More recently, recurrent somatic nonsynonymus 

mutations in MYD88 and CD79B genes were found in approximately two thirds of 

PCNSL.
9,18,19

 Interestingly, the blockade of B-cell-receptor (BCR) signals with an inhibitor of 

BTK kinase (ibrutinib) has shown clinical efficacy against activated B-cell DLBCL, notably 

in DLBCL with double mutations (CD79B and MYD88), showing a potential prediction 

biomarker for a target therapy.
33

 In our study the distribution of double mutations of MYD88 

L265P and CD79B Y196 were equally distributed according to ETV6-IgH gene fusion status 

(2/13 (15.4%) vs 13/59 (22%), p-value = 0.7, Fisher’s exact test. It is also important to 

highlight that all the patients included in this study were treated with high-dose methotrexate 

regimen without any prior chemotherapy treatment nor radiotherapy.
34

  

We have validated the presence of ETV6-IgH gene fusion by FISH in FFPE samples. This 

technique could be used to detect this chimeric transcript in the clinical setting and to be 

screened in PCNSL samples in order to validate this potential new biomarker.  

Recent studies have pinpointed recurrent chromosomal rearrangements in PCNSL with highly 

heterogeneous results.
18,19

 Among the recently described gene fusions one study found:  

BCL6-IgH (17%) and PD ligand foci (PD-L1 or PD-L2) translocations (6%).
18

 We found a 

common gene fusion with this study involving BCL6-IGL (Supplementary Table S3). 
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Conversely, in another recent study, only one rare fusion gene was found in a series of 30 

PCNSL.
19

 These divergent results could be explained in part due to different pipeline analysis, 

NGS approaches and different tissue samples (i.e. fresh-frozen and FFPE). Interestingly, one 

of these studies using whole-exome and RNA-seq analysis of PCNSL had also identified 

inactivating alterations of ETV6 in 3 out of 24 cases (12.5%), with deletions of exon 2 or 

exons 2-5 that modified the reading frame.
18

 Therefore, it is tempting to speculate that these 

single-allele deletions of ETV6 may be also involved in loss-of-function of this gene leading 

to a reduction of the amount of ETV6 within the cell as we showed in ETV6-IgH chimeric 

transcript. Furthermore, the mutational landscape of DLBCL using whole-genome analysis 

have also highlighted the presence of a rare gene fusion involving ETV6 with a IgH in 1 out of 

40 (2.5%) that was further validated by RNA-seq.
35

 Consequently, we can hypothesize that 

due to the higher frequency found in this study, this gene fusion could be more frequently 

found in PCNSL (13 out of 72, 18% vs 1 out of 40, 2.5%, p-value = 0.017, Fisher’s exact 

test).  

It is worth mentioning that our study has some limitations. This is a small retrospective 

dataset and the potential clinical impact should be validated in larger prospective studies. The 

impact of intratumoral heterogeneity of ETV6-IgH has not been thoroughly assessed. Further 

studies analyzing larger cohort of PCNSL using FISH are warranted to better characterize the 

potential impact of intratumoral heterogeneity in ETV6-IgH gene fusion. It should be also 

noted that other genetic alterations (i.e. mutations and copy number alterations) of ETV6 wild-

type allele may modify the impact if this gene fusion. These alterations should be further 

evaluated in future studies. Finally, we cannot formally exclude a potential role of dominant-

negative in ETV6-IgH. However, the loss of both oligomerization and DNA-binding domains 

in ETV6-IgH fusion make unlikely that this molecular mechanism has a major effect. 
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To the best of our knowledge, this is the first study showing a novel fusion gene in PCNSL 

that could be used as a potential biomarker to detect a subset of PCNSL patients with less 

severe disease.  
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Figure legends 

Figure 1. Overview of the 32 putative chimeric transcripts identified by at least 2 fusion 

detection algorithms. Inner arcs represent rearrangements from the 6 cases analyzed by RNA-

Seq. Interchromosomal fusions are shown in purple and intrachromosomal fusions are shown 

in red. 

Figure 2. ETV6-IgH fusion transcripts identified by RNA sequencing of PCNSL and FISH. 

(A) ETV6-IgH specific PCR from cDNA derived from the 6 PCNSL cases of the RNA-Seq 

cohort showing two different ETV6 breakpoints (red arrows) detected in two patients. (B) and 

(C) Schematics of the two fusion transcripts identified in two cases using RNA-Seq. Regions 

corresponding to ETV6 or IgH are shown in blue or purple, respectively. Vertical red lines 

show breakpoints and horizontal dotted lines indicate open reading frame for each fusion 

transcript. (D) Chromosomal rearrangements detected by FISH using custom ETV6 and IgH 

probes showing (white arrows).  

Figure 3. (A) Kaplan-Meier plot showing overall survival (OS) according to ETV6-IgH 

status. (B) Western Blot using COS-7 cell lines in the presence of and empty vector, no 

transfected cell line, transfection with ETV6, ETV6-IgHG4 and ETV6 truncated constructions 

using a lentivirus. (C) The boxes represent the median (black middle line) limited by the 25th 

(Q1) and 75th (Q3) percentiles of ETV6 expression according to ETV6-IgH fusion status in 

arbitrary units. Significance of the differences of ETV6 expression was determined using the 

Wilcoxon-Mann-Whitney test. 
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Figure 1. 
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Figure 3. 
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To examine for a causal relationship between vitamin D and glioma risk we performed an analysis 
of genetic variants associated with serum 25-hydroxyvitamin D (25(OH)D) levels using Mendelian 
randomisation (MR), an approach unaffected by biases from confounding. Two-sample MR was 
undertaken using genome-wide association study data. Single nucleotide polymorphisms (SNPs) 
associated with 25(OH)D levels were used as instrumental variables (IVs). We calculated MR estimates 
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both the IVW (OR = 1.21, 95% confidence interval [CI] = 0.90–1.62, P = 0.201) and MLE (OR = 1.20, 
95% CI = 0.98–1.48, P = 0.083) methods. In an exploratory analysis of tumour subtype, an inverse 
relationship between 25(OH)D levels and glioblastoma (GBM) risk was identified using the MLE method 
(OR = 0.62, 95% CI = 0.43–0.89, P = 0.010), but not the IVW method (OR = 0.62, 95% CI = 0.37–1.04, 
P = 0.070). No statistically significant association was shown between 25(OH)D levels and non-GBM 
glioma. Our results do not provide evidence for a causal relationship between 25(OH)D levels and all 
forms of glioma risk. More evidence is required to explore the relationship between 25(OH)D levels and 
risk of GBM.

While glioma accounts for around 80% of malignant primary brain tumours1, thus far exposure to ionising radi-
ation is the only well-established exogenous risk factor2. Vitamin D provides many health benefits, including 
increased bone strength and protection against autoimmune diseases and type 2 diabetes3. In-vitro studies have 
also suggested an anti-neoplastic role for vitamin D4. Several epidemiological studies have shown that vitamin 
D may indeed afford protection against the development of some cancers, including colon, prostate and breast 
cancer5. Associations in such observational studies do not however constitute evidence for a causal relationship 
and in some studies bias from confounding and reverse causation cannot be excluded.

Mendelian randomisation (MR) uses genetic markers as proxies for environmental exposures to determine 
the effect of the exposure on disease risk6. It therefore provides a strategy for establishing causal relationships 
where randomised control trials (RCTs) would involve either high cost or impractical study design. In the case 
of a possible relationship between vitamin D and glioma, the rarity of the cancer would limit any RCT to small 
sample sizes and would require lengthy follow up times.

We implemented two-sample MR analysis to examine the relationship between vitamin D and glioma risk 
in order to avoid the limitations of follow up time, reverse causation and confounding. Genotypes are randomly 
assigned at conception, thereby limiting confounding. Furthermore an individual’s genotype will always be estab-
lished before the onset of disease, excluding the possibility of reverse causation. The genotype is in part equivalent 
to a lifetime vitamin D deficiency, and hence a lifetime follow-up time in a RCT. We determine the relationship 
between vitamin D and glioma risk using genetic variants associated with 25(OH)D levels, rather than measuring 
25(OH)D levels directly.

Genetic variants identified by the Study of Underlying Genetic Determinants of Vitamin D and Highly Related 
Traits (SUNLIGHT) Consortium7 and the Canadian Multicentre Osteoporosis Study (CaMOS)8 were used as 
an instrumental variable (IV). We performed an MR analysis to test for a causal relationship between 25(OH)
D levels and glioma, using summary data from a recent genome-wide association study (GWAS) meta-analysis 
performed by the Glioma International Case-Control Consortium (GICC)9.

Methods
Two-sample MR was undertaken using GWAS data. Ethical approval was not sought for this specific project 
because all data came from the summary statistics of previously published GWAS, and no individual-level data 
were used.

Genetic variant instruments for 25(OH)D level. Genetic variants used as IVs were selected from the 
previously published SUNLIGHT study7. The SUNLIGHT Consortium GWAS identified four genetic variants 
associated with lowered 25(OH)D levels in 33,996 individuals of European descent from 15 cohorts. These vari-
ants were rs2282679 in GC (vitamin D binding carrier protein), rs10741657 near CYP2R1 (converter of vitamin 
D to the active ligand for the vitamin D receptor), rs12785878 near DHCR7 (7-dehydrocholesterol synthesis from 
cholesterol, a precursor to vitamin D) and rs6013897 in CYP24A1 (degrader of active 1,25-dihydroxyvitamin 
D3 to inactive vitamin D)10. The roles of GC, CYP2R1, DHCR7 and CYP24A1 in the vitamin D pathway are 
shown in Fig. 1. Association estimates (per-allele log-ORs) for SNPs were taken from previously published stud-
ies, which used data from the CaMOS study, a population based cohort study of 2,347 Canadians, genotyped and 
assayed for 25(OH)D levels8,10,11. None of the SNPs were in linkage disequilibrium (i.e. r2 ≥ 0.001). For each SNP, 
we recovered the chromosome position, risk allele, genetic locus, F-statistic and association estimates (Table 1). 
Standard errors (SE) were calculated from F-statistics calculated by previous studies, which derive from the 
CaMOS cohort11. The risk allele was taken to be the 25(OH)D decreasing allele. Allele frequencies for these SNPs 
were compared between the 25(OH)D and glioma data sets to ensure that the effect estimates were recorded with 
respect to the same allele. This study calculated the variants to account for about 2% of the variation in circulating 
25(OH)D levels, and have a combined F-statistic of 12.5712.

Glioma genotyping data. Association data between the four genetic variants and glioma were taken from 
the most-recent meta-analysis of GWAS in glioma9, which related >10 million genetic variants (after imputa-
tion) to glioma (Supplementary Table 1). This meta-analysis comprised eight GWAS datasets of individuals of 
European descent: FRE, GER, GICC, MDA, GliomaScan (NIH), UCSF-Mayo, UCSF and UK (Supplementary 
Table 2). All diagnoses were confirmed in accordance with WHO guidelines. Full quality control details are pro-
vided in previously published work9. Gliomas are heterogeneous and different tumour subtypes, defined in part 
by malignancy grade (for example, pilocytic astrocytoma World Health Organization (WHO) grade I, diffuse 
‘low-grade’ glioma WHO grade II, anaplastic glioma WHO grade III and glioblastoma (GBM) WHO grade IV) 
can be distinguished13. To avoid diagnostic ambiguity and for simplicity we considered glioma subtypes as being 
either GBM or non-GBM.
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Statistical analyses. We examined the association between circulating 25(OH)D levels and glioma (includ-
ing subtypes) using MR on summary statistics using the inverse variance weighted (IVW) and maximum likeli-
hood estimation (MLE) methods, as described by Burgess et al.14. The combined ratio estimate (β̂) of all SNPs 
associated with 25(OH)D levels on glioma risk was calculated under a fixed-effects model:
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Xk is the association between SNP k with 25(OH)D levels, Yk is the association between SNP k and glioma risk 
with standard error σY . The standard error of this association is given by:
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We also conducted a likelihood based analysis using the same genetic summary data15. For this maximum 
likelihood estimate, a bivariate normal distribution for the genetic associations was assumed, and the R function 
optim was used to estimate β. SE β( ) was calculated using observed information.

With the estimates from the two analyses calculated for each of the eight cohorts in the glioma data, we 
performed a meta-analysis under a fixed-effect model to derive final odds ratios (ORs) and confidence intervals 
(CIs)16.

To test whether the variants chosen as instruments were valid under MR assumptions, we examined the 
instruments for pleiotropy (multiple traits influenced by one gene) between the exposure and disease risk. This 
would be revealed as deviation from a linear relationship between SNPs and their effect size for 25(OH)D levels 
and glioma risk. We performed MR-Egger regression to test the average pleiotropic effect caused by the vari-
ants combined, as well as to provide a third association estimate between 25(OH)D level and glioma17. As per 
Dimitrakopoulou et al.18, we further evaluated the presence of horizontal pleiotropy by conducting stratified MR 
analyses using only the genetic variants influencing vitamin D synthesis (rs12785878, rs10741657) and vitamin D 
metabolism (rs2282679, rs6013897). rs12785878 has been associated with non-European status10 and we there-
fore also undertook a sensitivity analysis excluding rs12785878.

For each statistical test, we considered a global significance level of P < 0.05 as being satisfactory to derive 
conclusions. To assess the robustness of our conclusions, we imposed a conservative Bonferroni-corrected signif-
icance threshold of 0.017 (i.e. 0.05/3 tumour classifications).

DHCR7

Cholecalciferol

Cholesterol

7-Dehydrocholesterol

25-hydroxylase

25(OH)D

1 -hydroxylase

1,25-dihydroxyvitamin D3

Inactivation of vitamin D

Cellular actions of vitamin D

KIDNEYS

LIVER

SUNLIGHT

CYP2R1

GC

CYP24A1

Figure 1. Effect of SNPs chosen as IVs on the vitamin D pathway. Genes that contain, or are in proximity to, 
variants chosen as IVs are highlighted green. P values for the association of these variants with 25(OH)D levels 
were 1.9 × 10−109 for GC, 2.1 × 10−27 for DHCR7, 3.3 × 10−20 for CYP2R1, and 6.0 × 10−10 for CYP24A1.

SNP ID Chr Locus
Base pair 
position

EA 
glioma

NEA 
glioma

EA 
25(OH)D

NEA 
25(OH)D

Effect on 
25(OH)D SE F-statistic

rs2282679 4 GC 72608383 G T G T −0.047 0.013 13.38

rs10741657 11 Near CYP2R1 14914878 G A G A −0.052 0.012 18.78

rs12785878 11 Near DHCR7 71167449 T G G T −0.056 0.013 18.29

rs6013897 20 CYP24A1 52742479 A T A T −0.027 0.015 3.13

Table 1. Genetic variant instruments for 25(OH)D levels. EA, effect allele; NEA, non-effect allele; SE, standard 
error. Positions given using NCBI build 37. EA taken to be the 25(OH)D decreasing allele. Effect taken to be the 
per allele log OR effect on 25(OH)D.
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The power of a MR investigation depends greatly on the proportion of variance in the risk factor that is 
explained by the IV. We therefore estimated study power to assess the strength of the results19. The detectable ORs 
at 80% power were 1.26 or 0.79 in the all glioma analysis, 1.34 or 0.75 in the GMB analysis and 1.35 or 0.74 in the 
non-GBM analysis. All power calculations were completed at a significance level of 0.05 and assumed the variants 
explained 2% of the total variance of 25(OH)D levels.

Data availability. Genotype data from the GICC GWAS are available from the database of Genotypes 
and Phenotypes (dbGaP; accession phs001319.v1.p1). Genotype data from the GliomaScan GWAS can also be 
accessed through dbGaP (accession phs000652.v1.p1). Data from the other studies are available upon request.

Results
The results of the IVW and MLE methods are summarised in Table 2. Results of the MR-Egger analysis are sum-
marised in Table 3. Forest plots of all results from the IVW and MLE methods are shown in Figs 2 and 3. There 
was no evidence to support an association (i.e. P > 0.05) between circulating 25(OH)D levels and risk of all gli-
oma using either the IVW (OR = 1.21, 95% CI = 0.90–1.62, P = 0.201) or MLE (OR = 1.20, 95% CI = 0.98–1.48, 
P = 0.083) methods. MR-Egger regression produced an intercept of −0.001 (95% CI = −0.019–0.017, P = 0.893) 
and therefore provided no evidence for pleiotropy amongst the genetic variants chosen as IVs (Supplementary 
Fig. 1). Hence there was no evidence of violation of MR assumptions.

We explored the possibility that a relationship between vitamin D and glioma may be subtype specific, con-
sidering GBM and non-GBM separately. We imposed a stronger significance threshold of P = 0.017 (i.e. 0.05/3), 
to correct for multiple testing. The MLE method identified an inverse relationship between 25(OH)D levels and 
risk of the GBM subtype, with an OR of 0.62 (95% CI = 0.43–0.89, P = 0.010). The IVW method provided a 
similar, but non-significant effect size (OR = 0.62, 95% CI = 0.37–1.04, P = 0.070). No evidence for an associa-
tion between 25(OH)D levels and the non-GBM subtype was identified using either the IVW or MLE methods. 
MR-Egger regression provided intercepts of −0.013 (95% CI = −0.039–0.012, P = 0.307) for GBM and −0.005 
(95% CI = −0.035–0.026, P = 0.768) for non-GBM, again providing no evidence of pleiotropy.

Stratified MR analyses using separate allelic scores for vitamin D synthesis and metabolism did not indicate 
the presence of horizontal pleiotropy (Supplementary Tables 3 and 4). To address the potential effects of popula-
tion stratification, we undertook a MR sensitivity analysis excluding rs12785878, as this SNP has been associated 
with non-European status10 (Supplementary Table 5). Excluding rs12785878, the inverse relationship between 
25(OH)D levels and risk of the GBM subtype identified by the MLE method remains significant (OR = 0.51, 
95% CI = 0.33–0.80, P = 0.003), thereby providing no evidence that this association is a result of population 
stratification.

Discussion
To our knowledge, this is the first MR study evaluating the effect of vitamin D on glioma risk undertaken. Overall 
our results do not provide evidence for an effect of vitamin D on risk of all forms of glioma. They do however raise 
the possibility for a protective role of vitamin D in GBM. While vitamin D and its metabolites have been shown to 
induce death of glioblastoma cells20–22, only one epidemiological study has investigated the relationship between 
pre-diagnostic levels of 25(OH)D and glioma risk23. Researchers found that higher levels of 25(OH)D were pro-
tective against high-grade glioma in men over the age of 56 (OR = 0.59), although the reverse trend was shown 
in men under the age of 56, albeit at a borderline-significant level23. Excluding the possibility of post hoc data 
mining, such paradoxical findings would support distinct aetiologies between the GBM and non-GBM subtypes, 
as has been suggested previously9.

IVW method MLE method

β SE(β) OR (95% CI) P value β SE(β) OR (95% CI) P value

All glioma 0.189 0.148 1.21 (0.90–1.62) 0.201 0.184 0.106 1.20 (0.98–1.48) 0.083

GBM −0.471 0.261 0.62 (0.37–1.04) 0.070 −0.479 0.186 0.62 (0.43–0.89) 0.010

Non-GBM 0.177 0.281 1.19 (0.69–2.07) 0.529 0.177 0.199 1.19 (0.81–1.76) 0.373

Table 2. MR estimates between multi-SNP risk scores of 25(OH)D levels and all glioma, GBM and non-
GBM glioma using the IVW and MLE methods. IVW, inverse-variance weighted; MLE, maximum likelihood 
estimation; SE, standard error; OR, odds ratio; CI, confidence interval; GBM, glioblastoma.

MR Egger slope MR Egger intercept

Estimate (95% CI) P value Estimate (95% CI) P value

All Glioma 0.072 (−0.121–0.264) 0.466 −0.001 (−0.019–0.017) 0.893

GBM −0.097 (−0.272–0.078) 0.279 −0.013 (−0.039–0.012) 0.307

Non-GBM 0.160 (−0.114–0.434) 0.253 −0.005 (−0.035–0.026) 0.768

Table 3. MR-Egger test results for 25(OH)D levels and all glioma, GBM and non-GBM glioma. CI, confidence 
interval; GBM, glioblastoma.

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001319.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000652.v1.p1
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Vital to the method of statistical analysis used herein is that none of the MR assumptions are violated. This 
requires that the variants chosen as IVs are (i) strongly associated with the exposure, (ii) are not associated with 
any confounding effects between exposure and outcome and (iii) are only associated with the outcome via the 
exposure. With regard to this study, the instruments chosen were associated with 25(OH)D levels at genome-wide 
significance levels. The MR-Egger test provided no evidence of horizontal pleiotropy, which we deemed suf-
ficient to satisfy the third assumption. Furthermore, none of the four SNPs were in linkage disequilibrium  
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Figure 2. Individual cohort and meta-analysis ORs calculated using the IVW method. (a) All glioma, (b) 
GBM and (c) non-GBM glioma. Boxes are OR point estimates with area proportional to the weight of the 
study. Diamonds are overall summary estimates, with 95% CIs given by the width. Vertical line is null value 
(OR = 1.0).
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(i.e. r2 ≥ 0.001) with any of the variants identified by Melin et al.9 as being in the risk region for glioma. With 
regard to confounding factors, few risk factors are known for glioma, so it was not possible to entirely rule out the 
possibility of unknown confounding factors causing statistical bias. However it should also be noted that all four 
SNPs lie either within or near genetic loci whose function in vitamin D physiology is well understood7, although 
a lack of knowledge of possible confounding factors means it was not possible to entirely rule out the possibility 
of confounding by unknown factors.
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Figure 3. Individual cohort and meta-analysis ORs calculated using the MLE method. (a) All glioma, (b) 
GBM and (c) non-GBM glioma. Boxes are OR point estimates with area proportional to the weight of the 
study. Diamonds are overall summary estimates, with 95% CIs given by the width. Vertical line is null value 
(OR = 1.0).
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We acknowledge that a weakness of our study was in the small percentage of variability (around 2%) in 
25(OH)D levels explained by the IV. Such a low value means any interpretation of these results as true indicators 
of the effect of total 25(OH)D levels on glioma risk are limited. This is quantified by the high ORs required for suf-
ficient study power. Furthermore the study only accounts for circulating 25(OH)D levels and not for the action of 
25(OH)D at the cellular level11. The genetic variants used as IVs in this MR analysis associate with 25(OH)D lev-
els, rather than levels of the biologically active 1,25-dihydroxyvitamin D (1,25(OH)2D) and we therefore cannot 
explicitly comment on the relationship between 1,25(OH)2D and glioma. The low OR found in the GBM analysis 
should be noted however, given the fairly consistent indications of protective effects of 25(OH)D across all three 
methods. As is generally the case with MR, any findings should be viewed as a compliment to other future epi-
demiological studies, which test more robustly for associations between vitamin D and glioma and its subtypes.

In conclusion our MR analysis provides no evidence for an association between vitamin D and glioma, 
though findings raise the possibility of a potential association between vitamin D and GBM warranting further 
investigation.
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Single nucleotide variants in IDH1, IDH2, TP53, H3F3A, 
and the TERT promoter region were identified using deep 
amplicon sequencing. Nanopore sequencing yielded ~0.1X 
genome coverage within 6 h and resulting CN and epige-
netic profiles correlated well with matched microarray data. 
Diagnostically relevant alterations, such as 1p/19q codele-
tion, and focal amplifications could be recapitulated. Using 
ad hoc random forests, we could perform supervised pan-
cancer classification to distinguish gliomas, medulloblasto-
mas, and brain metastases of different primary sites. Sin-
gle nucleotide variants in IDH1, IDH2, and H3F3A were 
identified using deep amplicon sequencing within minutes 
of sequencing. Detection of TP53 and TERT promoter 
mutations shows that sequencing of entire genes and GC-
rich regions is feasible. Nanopore sequencing allows same-
day detection of structural variants, point mutations, and 
methylation profiling using a single device with negligible 
capital cost. It outperforms hybridization-based and current 
sequencing technologies with respect to time to diagnosis 
and required laboratory equipment and expertise, aiming to 

Abstract Molecular classification of cancer has entered 
clinical routine to inform diagnosis, prognosis, and treat-
ment decisions. At the same time, new tumor entities have 
been identified that cannot be defined histologically. For 
central nervous system tumors, the current World Health 
Organization classification explicitly demands molecular 
testing, e.g., for 1p/19q-codeletion or IDH mutations, to 
make an integrated histomolecular diagnosis. However, a 
plethora of sophisticated technologies is currently needed 
to assess different genomic and epigenomic alterations and 
turnaround times are in the range of weeks, which makes 
standardized and widespread implementation difficult and 
hinders timely decision making. Here, we explored the 
potential of a pocket-size nanopore sequencing device for 
multimodal and rapid molecular diagnostics of cancer. 
Low-pass whole genome sequencing was used to simulta-
neously generate copy number (CN) and methylation pro-
files from native tumor DNA in the same sequencing run. 
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make precision medicine possible for every cancer patient, 
even in resource-restricted settings.

Keywords Nanopore sequencing · Brain tumor · Glioma · 
Whole genome sequencing · Epigenomics · Molecular 
neuropathology

Introduction

Histomolecular classification of brain tumors has entered 
clinical routine diagnostics as the current World Health 
Organization (WHO) classification explicitly demands his-
tological findings to be refined by molecular testing [20]. 
Thus, pathologists rely on timely and accurate molecular 
testing to make an integrated diagnosis using both in situ 
methods and genetic information. However, high turna-
round time of current implementations delays integrated 
diagnosis by weeks. In addition, targeted next-generation 
sequencing panels, microarray-based analysis of copy 
number (CN), and epigenetic alterations all provide high-
quality data and aid in the diagnosis and therapeutic man-
agement of patients (i.e., stratification or identification of 
actionable targets or inclusion in clinical trials), but their 
high capital cost, demanding workflows and need for 
highly skilled personnel hinder their widespread use. Here, 
we demonstrate that real-time molecular genomics using 
nanopore sequencing is both fast and reliable to aid diag-
nosing cancer by unsupervised classification of CN and 
methylation profiles.

Nanopore sequencing interprets changes in ionic cur-
rents observed when single DNA molecules pass through 
a nanometer-size protein pore. This has led to the develop-
ment of handheld size devices that allow sequencing out-
side of classical laboratory settings and even in the field 
[27]. While overall throughput currently lacks behind 
other deep sequencing technologies, nanopores allow read 
analysis in real-time and selective sequencing [19], both 
of which allow rapid generation of data. In addition, nano-
pores are able to discriminate not only the nucleotides of a 
strand of DNA but also single base modifications such as 
5-methylation of cytosine [29, 35]. This allows concurrent 
analysis of sequence identity and methylation using native 
DNA.

Materials and methods

Experimental design

We performed a retrospective observational study for 
molecular characterization of diagnostically relevant 
genetic alterations using nanopore sequencing. Patients 

were recruited at the Pitié-Salpêtrière university hospital 
and have given informed consent for research use of tumor 
material, including genotyping. All tumor samples have 
been molecularly characterized previously using short-read 
exome sequencing, Sanger sequencing, SNP array, and/or 
genome-wide methylation microarray [14, 30].

Nanopore whole genome sequencing

DNA quality of fresh-frozen tumor tissue was determined 
using NanoDrop (Thermo Fisher Scientific) and samples 
were quantified using a QuantiFluor dsDNA assay (Pro-
mega, Madison, WI, USA). For whole genome sequencing, 
libraries were prepared using Rapid 1D Sequencing Kit 
(SQK-RAD001, SQK-RAD002, or SQK-RBK001, Oxford 
Nanopore Technologies, UK) following the manufacturer’s 
instructions. Briefly, 200 ng of tumor DNA was fragmented 
using a transposase and subjected to adapter ligation. 
Sequencing was performed using R9 or R9.4 flow cells on 
a MinION Mk 1B device (Oxford Nanopore) with the Min-
KNOW software (versions 1.0.5–1.5.12), respectively. For 
samples run with R9.4 sequencing chemistry, basecalling 
was performed using Albacore 1.1.0 (Oxford Nanopore). 
For R9 chemistries, online EPI2ME basecalling (Metrichor 
Ltd, Oxford, UK) was performed.

Template reads were exported as FASTA using nanopol-
ish or poretools version 0.6 [18] and aligned to the hg19 
human reference genome using BWA MEM 0.7.12 with the 
“−x ont2d” option [17]. Due to compatibility issues of data 
generated with R9 chemistries, only samples with R9.4 
flow cells were used for copy number analysis and methyl-
ation-based classification.

Copy number analysis

For copy number analysis, the QDNAseq package version 
1.8.0 [33] and R/Bioconductor, version 3.3, were used. 
Reads with a minimum mapping quality of 20 were sorted 
into 1000 kbp bins. Bins with missing reference sequence 
were excluded from analysis. To account for region- and 
technology-specific artifacts, public nanopore WGS data 
for the NA12878 human reference genome were processed 
identically and subtracted from the normalized tumor 
sample bin counts. Circular binary segmentation was per-
formed as implemented in the DNAcopy package requiring 
an alpha value <0.05 to accept change points. Arm-level 
copy number calls were made by calculating the segment 
length weighted mean log ratio per chromosome arm.

Methylation analysis

To identify 5-methylation of cytosines, we used a recently 
published algorithm based on a hidden Markov model 
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which has been trained using in vitro methylated E. coli 
DNA [35]. Training models for R9 sequencing chemistries 
were kindly provided by Jared Simpson. We modified the 
original implementation of nanopolish 0.6.0 to allow meth-
ylation calling from different basecalling groups. For clas-
sification, the subset of CpG sites overlapping with sites 
covered by Illumina 450K BeadChip microarrays was used. 
Beta values in the training set were dichotomized using a 
cut-off value of 0.6.

Structural variant detection

For detection of structural variants in amplified regions, 
we aligned nanopore FASTQ files from sample 3427T to 
the human reference genome, build GRCh37, using LAST 
(version 744) with settings: −Q 0. The last-train function 
was used with 1000 nanopore reads (~10 million bases) as 
input to adapt the alignment scoring parameters (−p) for 
error-prone nanopore reads. LAST alignment files (MAF) 
were converted to BAM files using the maf-convert func-
tion. BAM files were used as input for NanoSV [36] (avail-
able at https://github.com/mroosmalen/nanosv) with default 
settings.

Amplicon sequencing

Amplicons were designed to cover one or multiple exons 
of canonical transcripts of IDH1, IDH2, TP53, H3F3A, 
and the TERT promoter region. Oligonucleotide prim-
ers (Thermo Fisher Scientific) were then designed using 
Primer3 with the following non-default parameters (Tmin 
59 °C, Topt 60 °C, Tmax 61 °C, and maximum mononu-
cleotide repeat length = 3) to yield product sizes of 489–
2902 bp (Table S1).

25 ng of genomic DNA was amplified using 0.02 U/
µl Q5 polymerase (New England Biolabs, Ipswich, MA, 
USA), 200 µM dNTPs, 500 nM forward and reverse prim-
ers, and Q5 reaction buffer with high GC enhancer in a total 
reaction volume of 20 µl. Thermal cycling was performed 
as follows: 98 °C initial denaturation for 2 min, followed 
by 30 cycles of denaturation at 98 °C for 10 s, annealing at 
65 °C for 20 s and extension at 72 °C for 90 s, as well as 
a final extension at 72 °C for 2 min. Amplicons were ana-
lyzed using a Caliper LabChip GX DNA 5K assay (Perkin 
Elmer, Waltham, MA, USA). PCR products were purified 
using NucleoFast 96 PCR plates (Macherey–Nagel, Düren, 
Germany).

For amplicon sequencing, Ligation Sequencing Kit 1D 
(SQK-LSK108, Oxford) was used following the manufac-
turer’s protocol. Briefly, 1 µg of pooled amplicon DNA 
was subjected to end repair and dA-tailing. 250 ng of end-
repaired DNA (equivalent to 0.2 pmol of 2 kbp fragments) 
was then used as input for adapter ligation. For real-time 

monitoring of sequencing depth, reads were streamed to the 
BWA aligner using npReader [6] with jHDF5 2.11.0 and 
coverage was calculated using BEDTools [28]. For variant 
calling, reads were realigned on the event level and vari-
ants called using VarScan 2.4.3 [15]. Variants were anno-
tated using SnpEff version 4.3i [9] and ExAC release 0.3.1 
germline variants [16] before filtering for coding or hotspot 
mutations with a minimum mutant allele frequency >0.2.

Microarray methylation profiling

Samples for Illumina Infinium BeadChip 450K profiling 
were prepared as described before [14]. Briefly, 500 ng 
of DNA was subjected to bisulfite conversion. Hybridiza-
tion and imaging were performed by IntegraGen (Evry, 
France). Raw IDAT files were preprocessed using the 
GenomeStudio software (Illumina, San Diego, CA, USA). 
Processed methylation data from previously characterized 
samples [14] were retrieved via ArrayExpress (accession 
E-MTAB-3903). Beta values were used for all the subse-
quent analysis steps.

Statistics

All data analysis was done using R/Bioconductor version 
3.3 [13]. Hierarchical clustering was used for arranging 
probes in the depicted classification training set. Random 
forest classification as implemented in the R/randomForest 
package, version 4.6–12, was run with default parameters. 
Sequence concordance was calculated using the Genome 
Analysis Toolkit’s Genotype Concordance tool, version 3.7 
[21].

Data and material availability

Raw sequencing data are available via the European 
Genome–phenome Archive (accession EGAS00001002213). 
Microarray-based methylome data are available at Array-
Express (E-MTAB-5797). TCGA data were retrieved from 
the UCSC Cancer Browser [11] or the TCGA FireBrowse 
website (http://www.firebrowse.org). Pipelines, scripts, and 
supplementary data to reproduce all results presented in 
this work are available at https://gitlab.com/pesk/glioma.
nano-seq.

Results

To meet the needs of the WHO 2016 classification of 
CNS tumors, we designed 1-day workflows for CN, 
methylation, and point mutation profiling using nanopore 
sequencing (Fig. 1a). We first subjected tumor DNA from 
molecularly well-characterized brain tumors [14, 30] to 

https://github.com/mroosmalen/nanosv
http://www.firebrowse.org
https://gitlab.com/pesk/glioma.nano-seq
https://gitlab.com/pesk/glioma.nano-seq
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low-pass whole genome sequencing (WGS) using a com-
mercially available, handheld size nanopore sequencing 
device. With the aim of widespread implementation in 
routine diagnostics in mind, we used a transposon-based 
library preparation kit, which reduces sample preparation 
time to less than hour. In a cohort of 28 patients (Table 1), 
low-pass WGS for 6 h performed yielded a mean mapped 
read depth from <0.01X to 0.24X (Table S1), depending 
on the sequencing chemistry and input DNA fragment 
size. Nanopores decipher DNA sequence of single mol-
ecules as they present to the pore, generating long reads 
of variable length, whose distribution is determined by 
DNA extraction and fragmentation method. We observed 
typical mean read lengths around 2 kb (Fig. 1b). As 
library preparation does not involve PCR amplification, 
no GC bias is introduced and the GC content distribution 
of the reads resembles closely that of the human refer-
ence genome (Fig. 1c).

Copy number profiling

We then used WGS data to generate CN profiles. Reads 
were counted in 1000 kb windows, normalized and sub-
jected to circular binary segmentation (Fig. 1c). No correc-
tion of GC bias or mappability is necessary for nanopore 
reads; however, the long reads cause alignment artifacts 
with current reference genomes in regions with repetitive 
sequence such as centromeres. Still, the resulting CN pro-
files closely resembled matched SNP array-based profiles 
(Fig. 1d). Importantly, codeletion of chromosome 1p/19q 
as a diagnostic criterion for oligodendrogliomas imple-
mented in the 2016 WHO classification of CNS tumors 
was detected in three out of four affected samples (Fig. S1). 
The remaining sample did not yield sufficient read depth 
(<0.01) due to low input DNA quality (Table S1). High-
level focal amplifications of EGFR, PDGFRA, and CDK4 
were detected in affected glioblastoma samples (Table 1). 
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Fig. 1  Copy number profiling using nanopore low-pass whole 
genome sequencing. a Same-day workflows to simultaneously char-
acterize copy number variation (CNV) and methylation profiles or 
single nucleotide variants, respectively. Tumor DNA is subjected 
to quality control (QC), and then, 250 ng input material is used for 
library preparation for either whole genome sequencing (WGS) or 
PCR-based deep amplicon sequencing. b Representative read length 
distribution of mapped reads. Note log scale on X axis. c Representa-

tive distribution of GC content of reads in comparison with the hg19 
human reference genome. A randomly drawn subsample of the entire 
reference genome split into 1000 bp fragments is shown. d Copy 
number profile showing  log2 transformed, normalized read counts per 
1000 kbp window (grey) with running mean (red) and segmentation 
results (blue). e Comparison of nanopore WGS with matched SNP 
arrays. Heatmaps indicate copy number calls (losses and deletions in 
blue, and gains and amplifications in red) across the genome
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Table 1  Clinical characteristics of patients in study

ID Age at diagnosis Sex WHO 2016 integrated 
diagnosis

Nanopore sequencing 
performed

Nanopore methylation-
based classification

Key alterations identified 
by nanopore sequencing

3523T 70 F Glioblastoma,  
IDH-wildtype

WGS, amplicon Not classifiable pTERT C228T

2197T 58 F Glioblastoma,  
IDH-wildtype

WGS, amplicon Glioma, IDH-wildtype TP53 p.S241F, pTERT 
C228T

3427T 72 F Glioblastoma,  
IDH-wildtype

WGS, amplicon Glioma, IDH-wildtype pTERT C228T, 
 CDKN2Aloss,  EGFRamp

2402T 58 M Anaplastic oligodendro-
glioma, IDH-mutant, 
and 1p/19q-codeleted

WGS, amplicon Not classifiable IDH1 p.R132H, 1p/19q 
codeletion, pTERT 
C228T

2965T 29 F Anaplastic oligodendro-
glioma, IDH-mutant 
and 1p/19q-codeleted

WGS, amplicon Glioma, IDH-mutant IDH1 p.R132H, 1p/19q 
codeletion, pTERT 
C228T

2483T 51 F Anaplastic astrocytoma, 
IDH-mutant

WGS, amplicon Glioma, IDH-mutant IDH1 p.R132C
TP53 p.R273C, p.R282Q

2922T 44 M Diffuse astrocytoma, 
IDH-mutant

WGS Glioma, IDH-mutant N/D

6228T 33 F Diffuse midline glioma, 
H3.3 K27M-mutant

WGS, amplicon Classifiable PDGFRAamp

5337T 21 M Glioma H3.3 G34R WGS, amplicon Glioma IDH-wildtype H3F3A G34R,  CDK4amp, 
 PDGFRAamp

8347T 28 M Desmoplastic/nodular 
medulloblastoma, 
SHH-activated and 
TP53 wild type

Amplicon N/D pTERT C228T

8372T 25 M Classic medulloblas-
toma, non-WNT/
non-SHH

WGS, amplicon Medulloblastoma, 
group 4

pTERT C228T

MB683 7 F Classic medulloblas-
toma, WNT-activated

WGS, amplicon Medulloblastoma, 
WNT-activated

chr6 loss

8137T 48 M Anaplastic oligodendro-
glioma, IDH-mutant 
and 1p/19q-codeleted

WGS, amplicon Glioma, IDH-mutant IDH2 p.R172 W, 1p/19q 
codeletion, pTERT 
C228T

8146T N/A F Anaplastic oligodendro-
glioma, IDH-mutant 
and 1p/19q-codeleted

WGS, amplicon Glioma, IDH-mutant pTERT C228T

7382T 76 F Glioblastoma,  
IDH-wildtype

WGS, amplicon Glioma, IDH-wildtype pTERT C228T, 
 PDGFRAamp

TP53 p.V197M

7455T 45 M Glioblastoma,  
IDH-wildtype

WGS, amplicon Glioma, IDH-wildtype pTERT C228T

8355T 56 M Glioblastoma,  
IDH-wildtype

WGS Not classifiable N/D

8356T 73 F Breast adenocarcinoma, 
GFAP+, S100+

WGS Breast cancer N/D

8357T 79 M Neuro-endrocrine (pros-
tate adeno) carcinoma, 
TTF1+

WGS Lung cancer N/D

8358T 63 F Lung adenocarcinoma WGS Lung cancer N/D

8359T 51 M Bladder urothelial 
carcinoma

WGS, amplicon Not classifiable TP53 p.R280 K

8360T 65 F Lung adenocarcinoma Amplicon N/D TP53 p.I195T

4596T FFPE 44 F Anaplastic oligodendro-
glioma, IDH-mutant 
and 1p/19q-codeleted

WGS, amplicon Not classifiable pTERT C228T
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In contrast, focal deletions, such as CDKN2A, were fre-
quently missed by segmentation. Beyond diagnostic needs, 
we could reconstruct the double minute nature of an EGFR 
amplification (case 3427T), identify the exact genomic 
breakpoint using algorithmic structural variant discovery 
[36], and confirm the latter by Sanger sequencing (Fig. S2).

Methylation profiling

A major advantage of nanopore sequencing is the ability 
to detect base modifications, especially 5-methylation of 
cytosines, in native DNA without need for bisulfite con-
version. Epigenomic changes are functionally important 
in cancer, but also aid in delineating cancer entities. For 
example, IDH mutations cause a global hypermethylation 
of CpG islands [25], a phenotype of utmost prognostic 
importance in neuro-oncology. We thus aimed to detect the 
G-CIMP phenotype from nanopore reads.

First, we compared methylation events in CpG sites 
identified by nanopore sequencing to matched methylome 
microarrays. Good correlation was observed between sin-
gle read methylation status of a given CpG site and its cor-
responding beta value in microarray data (Fig. 2a). Next, 
we applied random forest (RF) classification to predict IDH 
mutation.

RF classification is a commonly used machine-learning 
algorithm based on randomly generated (weak) decision 
trees [3]. Majority votes then integrate decisions from the 
entire forest to provide robust classification. The challenge 
with low-pass WGS data is that it is not known beforehand 
which CpG sites will be sequenced and the classifier can be 
built upon. Therefore, we generated random forests ad hoc. 
With increasing numbers of probed CpG sites, we expect 
the classifier’s error rate to decrease. To test the feasibility 

of this approach, we simulated multiple random forests for 
a given number of CpG sites using the low-grade glioma 
cohort [5] from The Cancer Genome Atlas (TCGA) and 
determined misclassification rate for this “random taiga” 
(Fig. 2b). The simulations show that the mean class error 
rate to predict IDH and 1p/19q status does not improve for 
more than approximately 500 CpG sites. This amount of 
data is reliably sampled within 6 h of nanopore sequenc-
ing. Thus, information with respect to a cancer’s entity is 
redundantly encoded in the methylome and this fact can be 
exploited for classification from sparse, randomly sampled 
CpG sites.

Using the same training set, we then predicted IDH sta-
tus in our samples from nanopore-based methylation calls. 
Due to the low read depth (usually N = 1), methylation 
calls from nanopore WGS were binary. To enable classi-
fication using microarray-based training data, beta values 
were dichotomized as described in previous applications of 
RF in methylation data [5, 7]. All samples were correctly 
classified (Fig. 2c).

Supervised pan‑cancer classification

Next, following the idea of a machine-learning-based 
molecular classification of tumors to fully recognize molec-
ular entities and rule out interobserver variability [32], we 
sought to investigate whether nanopore CN and methyla-
tion profiles can be used to classify tumor samples on a 
pan-cancer level. As a training set for all analyses, we used 
public microarray-based methylation data from primary 
brain tumors (adult and pediatric glioblastomas, lower 
grade gliomas, and medulloblastomas) and tumors that fre-
quently metastasize to the brain (melanoma, breast, lung, 
bladder, prostate, colon, and clear cell renal carcinoma) [1, 

Table 1  continued

ID Age at diagnosis Sex WHO 2016 integrated 
diagnosis

Nanopore sequencing 
performed

Nanopore methylation-
based classification

Key alterations identified 
by nanopore sequencing

5539T FFPE 28 M Anaplastic astrocytoma, 
IDH-mutant

Amplicon N/D pTERT  C228T¶

3718T 78 F Glioblastoma,  
IDH-wildtype

WGS N/D N/D

3719T 74 M Glioblastoma,  
IDH-wildtype

WGS N/D N/D

2211T 75 F Glioblastoma,  
IDH-wildtype

WGS N/D N/D

3724T 65 M Glioblastoma,  
IDH-wildtype

WGS N/D N/D

Age at initial diagnosis, integrated diagnosis and the type of nanopore sequencing performed are reported. Results of methylation-based random 
forest classification and key genetic alterations identified by WGS or amplicon sequencing are indicated. Samples were considered not classifi-
able when there was less than 5 percentage points difference of the majority vote to the next best vote

WGS whole genome sequencing, N/D not done
¶  denotes false-positive variant
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2, 4, 5, 12, 23, 24, 37–40]. Where CN data were available, 
too, SNP array-based CN profiles were aggregated to chro-
mosome arm level and added to the training set (Fig. 3a). 
The resulting classifiers for any set of CpG sites in our 

cohort usually yielded an overall out-of-bag classification 
error rate ≪5%.

We first subjected seven glioma samples with CN and 
methylation profiles generated by nanopore sequencing to 
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Fig. 2  Methylome profiling by nanopore sequencing of native tumor 
DNA. a Comparison of methylation calls from nanopore sequenc-
ing with matched Illumina 450K microarray-based data. Beta value 
distributions for CpG sites that were identified as unmethylated (red) 
or methylated (blue), respectively, by nanopore WGS are shown. 
b “Random taiga” simulation of classification error as a function of 
the number of randomly sampled CpG sites. Each dot represents the 
class-specific error rate of an ad hoc generated random forest using a 

random subset of N CpG sites (indicated on X axis) from the TCGA 
lower grade glioma Illumina 450K cohort as training set. Lines indi-
cate the mean of five independent simulations. c Methylation profiles 
from nanopore sequencing discriminate IDH-mutant and wild-type 
tumors. Bar plots indicate vote distribution from ad hoc random for-
est classification. The TCGA low-grade glioma cohort was used as 
a training set. Illumina 450K-based beta values were dichotomized 
using >0.6 as threshold
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ad hoc RF classification. When we compared classifica-
tion using CN alone (Fig. 3b), methylation only (Fig. 3c) or 
both modalities together (Fig. 3d), using the joint approach 
improved overall accuracy: all (7/7) samples were correctly 
classified.

Then, we subjected two medulloblastoma (MB) cases 
to classification (here, only methylation training data were 
available). Both samples were identified as MB and also 
the genetic subtype according to the WHO classification 
was predicted correctly as WNT-activated (case MB683) or 
non-SSH-activated/non WNT-activated (i.e., group 4, case 
8372T) (Fig. 3e). Next, we attempted classification of brain 
metastasis and could predict the pulmonary origin in one 
case (Fig. 3f). We also selected a metastasis of a breast ade-
nocarcinoma in the posterior fossa for study which immu-
nohistochemically showed expression of GFAP and S100, 
so it was misleading for the diagnosis of carcinoma. Pan-
cancer classification based on nanopore WGS correctly 
identified this sample as breast cancer (Table 1, Fig. S1).

Several cases were not classifiable (requiring a > 5 per-
centage points’ difference of the majority vote to the next 
best vote) or misclassified (Table 1). These cases had often 
lower DNA quality with respect to fragment size (Table 
S1). One GBM sample that was not classifiable had low 
tumor purity when estimated from matched transcriptomic 
profiles using the ESTIMATE algorithm [41] (Fig. S3a). 
This also resulted in false-negative calling of copy num-
ber CN alterations using fixed thresholds, even though they 
were present at visual inspection (Fig. S3b).

Amplicon sequencing

Finally, we explored deep amplicon nanopore sequencing 
for identification of single nucleotide variants. We designed 
an amplicon panel covering hotspot exons in IDH1, IDH2, 
and H3F3A, all coding exons of TP53 and, addition-
ally, the TERT promoter (pTERT) region. Due to the long 
reads delivered by nanopore sequencing, this could be 

achieved with only nine PCR reactions (Table S2). Muta-
tions in these genes (with exception of pTERT) inform 
molecular diagnosis of glioma and medulloblastoma, and 
are demanded for diagnosis in the 2016 WHO classifica-
tion of CNS tumors [20]. Sufficient read depth is a criti-
cal parameter for variant calling with defined sensitivity 
and specificity. We thus implemented a real-time analysis 
pipeline that allowed monitoring of read depth and to stop 
sequencing when sufficient information to make a diagno-
sis has been collected (Fig. 4a). In samples run as single 
samples with real-time monitoring, a sequencing depth of 
1000X in all target regions could repeatedly be achieved 
within 2–20 min of sequencing. Mean overall coverage 
>1000X could be achieved in single runs, but was lower in 
runs using barcoding PCR for multiplexing (Fig. 4b).

In all samples, coding mutations were reliably detected 
as compared to routine diagnostics based on Sanger 
sequencing, immunohistochemistry or a next-generation 
sequencing (NGS) panel (Fig. 4c). Nanopore sequencing 
reads have historically shown high error rates, especially in 
homopolymer contexts. We, therefore, compared nanopore 
consensus sequences to matched short-read whole exome 
data in five cases. Overall concordance was 97.8–98.6% 
before functional filtering. Even though at low number 
(<5 per sample) after filtering for coding mutations, false-
positive variants were present. Most of these mutations 
occurred in multiple samples, indicating a context-specific 
error (Table S3). Improved base calling algorithms are thus 
needed to reduce the time to manually review mutations for 
false positives.

Technical aspects

Nanopore sequencing is highly scalable due to low capital 
cost of the device (use of multiple sequencers) and reuse of 
flow cells. To exclude carry-over and cross-contamination 
in sequential sequencing runs and for scalability, we evalu-
ated barcoding and multiplexing for both WGS and ampli-
con workflows (Table S1, Fig. 4b). For WGS, up to four 
samples were combined without major protocol changes 
and permitting convenient overnight runs (e.g., one sample 
for 6 h and two samples for 12 h). Barcoding of amplicon 
libraries and multiplexing 12 samples greatly reduces per-
assay price at the cost of additional PCR and quality control 
steps. Finally, we explored use of DNA derived from for-
malin-fixed paraffin-embedded tissue (FFPE). PCR ampli-
cons were generated from two FFPE samples with identical 
input amount and protocol. As expected from the usually 
highly fragmented DNA, PCR yields were lower, espe-
cially for large amplicons (>1 kbp). This could only partly 
be compensated by extending sequencing time. For nano-
pore WGS, transposase-based library preparation is not 
compatible with fragment size distribution of FFPE-derived 

Fig. 3  Pan-cancer classification using copy number and methylation 
profiles. a Training set composed of TCGA samples from nine can-
cer entities using arm-level averaged copy number (CN) information 
(CN loss blue, CN gain red) and dichotomized methylation data. For 
illustration purposes, only 200 random CpG sites were sampled, clus-
tered, and plotted. b–d Classification of samples subjected to WGS 
using R9.4 flow cells using ad hoc random forests (500 trees per sam-
ple). Bar plots show vote distributions based on copy number only 
(b), methylation (c), or both modalities (d). e, f Methylation-based 
pan-cancer classification of medulloblastoma (e) and a brain metas-
tasis of a lung adenocarcinoma (f). BRCA breast cancer, BLCA blad-
der urothelial carcinoma, COAD colon adenocarcinoma, KIRC kidney 
renal cell carcinoma, LUNG lung squamous cell and adenocarcinoma, 
SKCM skin cutaneous melanoma, PRAD prostate adenocarcinoma, 
MB medulloblastoma, K27 diffuse midline glioma H3 K27M mutant, 
G34 pediatric glioblastoma, H3 G34R mutant

◂
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DNA samples. We thus performed a different ligation pro-
tocol to test WGS in one FFPE sample. While read yield 
was acceptable (Table S1), the resulting copy number pro-
file was noisy and hard to interpret (Fig. S1). In summary, 
nanopore sequencing is compatible with FFPE samples, but 
clearly not recommended due to inferior performance.

Discussion

Histomolecular classification promises to significantly 
improve diagnosis, prognosis, and treatment decision 
making of cancer patients by aiding in clearly delineat-
ing distinct (molecular) entities and identifying targeta-
ble genomic alterations for personalized treatment. It is, 
therefore, crucial to ensure widespread implementation of 

appropriate technology in clinical routine for patient ben-
efit. We explored the potential of nanopore sequencing to 
comprehensively characterize genetic alterations.

CN alterations could be detected in brain tumor sam-
ples using ultra low-pass WGS. While overall resolution 
is lower than current SNP arrays or NGS approaches, arm-
level alterations and high-level focal alterations are reliably 
recapitulated. Most importantly, detection of 1p/19q-code-
letion fulfills diagnostic needs for the current WHO 2016 
classification of CNS tumors. While WGS using rapid, 
transposase-based library preparation works very well with 
high molecular weight DNA, some of the clinical routine 
fresh-frozen tumor DNA samples were highly fragmented 
and yielded insufficient results. Quality of input DNA thus 
seems to be pivotal. For use of FFPE material, changes to 
the protocol and further optimization are needed.
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of selected variant calls from nanopore sequencing (filtered for cod-
ing or hotspot mutations with minimum allele frequency >0.2) with 
reference calls from Sanger or Illumina sequencing
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Methylation data can directly be obtained from the same 
WGS data set which makes time-consuming bisulfite con-
version and specialized methylation assays (sequencing or 
hybridization-based) expendable. Very recently, it has been 
shown in the context of meningioma that classification of 
tumors using methylome data alone is sufficient or superior 
to make a correct diagnosis [32]. With low genome cover-
age, we obtained sparse random sampling of CpG sites. We 
show that this information is sufficient to subtype gliomas 
into IDH-mutant vs. wild-type samples and that cancer 
entities from different tissue origins can be distinguished in 
a few hours. This may aid in the differential diagnosis of 
primary brain tumors vs. brain metastases and greatly facil-
itate staging and the search for unknown primary tumors 
[22]. However, as diagnosis is inferred from relatively 
sparse data, it precludes inter-patient comparison and reuse 
of data with currently obtainable coverage in the (relatively 
short) time frame of 6 h of sequencing.

Finally, we used PCR-based amplicon generation fol-
lowed by nanopore sequencing to identify point mutations. 
Using a small, but diagnostically relevant gene panel (cov-
ering target regions with a total of 12 kb), high read depth 
could be routinely obtained in less than 30 min of sequenc-
ing when using real-time depth monitoring. However, 
context-specific base calling errors introduce platform-spe-
cific errors and false variant calls that need to be carefully 
reviewed.

Comparison to existing technologies

Targeted next-generation sequencing panels tailored to 
detect mutations in brain tumors or, more generally, can-
cer-related genes have been employed routinely with a 
turnaround time of several days [8, 31]. Methylation-based 
classification of brain tumors by microarray allows differen-
tiation of a wealth of different entities within 2 weeks [12, 
32]. Intraoperative subtyping of gliomas is possible using 
allele specific PCR for key alterations (IDH1, pTERT) but 
remains restricted to hotspot point mutations [34]. Similarly, 
CN changes and mutations have been detected in cell-free 
DNA from CSF to allow less invasive diagnostics [10, 26]. 
A major drawback of all approaches is the high investment 
cost, need for laboratory space or expertise.

For nanopore sequencing, besides the portable 
sequencing device and a laptop computer, only a spec-
trometer for DNA quantification and a thermocycler for 
library preparation and amplicon generation by PCR are 
needed. This allows implementation of a complete molec-
ular pathology laboratory even in resource-restricted set-
tings or mobile environments. Per sample cost is ~$200 
for WGS and ~$120 for amplicon sequencing without 
multiplexing. However, being a technology still under 
development, frequent updates in chemistry and software 

currently challenge routine use and need to be addressed 
to allow standardized diagnostics across laboratories. In 
addition, hybridization microarrays and targeted short-
read sequencing both work relatively well with frag-
mented DNA from FFPE samples, while this currently 
poses a technical challenge for nanopore sequencing.

Our study has several limitations. First, as this is a 
proof-of-principle study, sample number is small and 
precludes accurate quantification of sensitivity or speci-
ficity to detect structural alterations and point mutations. 
Second, a prospective and multi-centric evaluation of 
the approach presented here is needed to rule out sample 
selection bias and demonstrate robustness across labo-
ratories. Third, we reused flow cells to reduce per-assay 
cost, but washing also decreased the number of active 
pores and thus performance in subsequent runs.

In conclusion, same-day diagnosis of CN alterations, 
epigenetic modifications, and single nucleotide vari-
ants using nanopore sequencing is feasible with minimal 
capital cost and without need for sophisticated labora-
tory equipment. For CNS tumors, molecular features 
demanded for diagnosis by current guidelines can be 
obtained, which, together with histological data and grad-
ing, enable accelerated integrated diagnosis and improve 
patient care.
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Genome-wide association studies (GWAS) have transformed 
our understanding of glioma susceptibility, but individual 
studies have had limited power to identify risk loci. We 
performed a meta-analysis of existing GWAS and two new 
GWAS, which totaled 12,496 cases and 18,190 controls.  
We identified five new loci for glioblastoma (GBM) at  
1p31.3 (rs12752552; P = 2.04 × 10−9, odds ratio (OR) = 1.22),  
11q14.1 (rs11233250; P = 9.95 × 10−10, OR = 1.24), 
16p13.3 (rs2562152; P = 1.93 × 10−8, OR = 1.21), 16q12.1 
(rs10852606; P = 1.29 × 10−11, OR = 1.18) and 22q13.1 
(rs2235573; P = 1.76 × 10−10, OR = 1.15), as well as eight loci  
for non-GBM tumors at 1q32.1 (rs4252707; P = 3.34 × 10−9,  
OR = 1.19), 1q44 (rs12076373; P = 2.63 × 10−10, OR = 1.23),  
2q33.3 (rs7572263; P = 2.18 × 10−10, OR = 1.20), 3p14.1 
(rs11706832; P = 7.66 × 10−9, OR = 1.15), 10q24.33 
(rs11598018; P = 3.39 × 10−8, OR = 1.14), 11q21 (rs7107785; 
P = 3.87 × 10−10, OR = 1.16), 14q12 (rs10131032; P = 5.07 × 
10−11, OR = 1.33) and 16p13.3 (rs3751667; P = 2.61 × 10−9, 
OR = 1.18). These data substantiate that genetic susceptibility 
to GBM and non-GBM tumors are highly distinct, which likely 
reflects different etiology.

Glioma accounts for around 27% of all primary brain tumors and 
is responsible for approximately 13,000 cancer-related deaths in the 
United States each year1,2. Gliomas can be broadly classified into GBM 

and lower-grade non-GBM tumors3. Gliomas typically have a poor 
prognosis irrespective of medical care, with the most common form, 
GBM, having a five-year survival rate of only 5% (ref. 4).

So far, no environmental exposures have been robustly linked to 
the risk of developing glioma, except for moderate to high doses of 
ionizing radiation, which accounts for a small proportion of cases5. 
Evidence for an inherited predisposition to glioma is provided by 
a number of rare inherited cancer syndromes, such as Turcot’s and 
Li–Fraumeni syndromes, as well as neurofibromatosis. Even collec-
tively, however, these account for little of the twofold familial risk of 
glioma6. Our understanding of the heritability of glioma has been 
transformed by recent GWAS, which have identified single-nucleotide 
polymorphisms (SNPs) at 13 loci influencing risk7–14.

Previous individual studies have had limited statistical power for 
the additional discovery of new glioma risk loci15. Therefore, to gain 
more comprehensive insight into glioma etiology, we performed a 
meta-analysis of previously published GWAS and two new GWAS, 
which allowed us to identify 13 new risk loci for glioma.

We analyzed GWAS SNP data that passed quality control for 12,496 
cases (6,191 classified as GBM and 5,819 classified as non-GBM 
tumors) and 18,190 controls from eight studies with individuals of 
European ancestry, a new GWAS of 4,572 cases and 3,286 controls per-
formed by the Glioma International Case Control Consortium (GICC) 
(Supplementary Table 1), a new GWAS of 1,591 cases and 804 con-
trols from the University of California, San Francisco (UCSF)-Mayo,  
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and six previously reported GWAS9,10,13 totaling 6,405 cases and 
14,100 controls (Supplementary Table 2). To increase genomic reso-
lution, we imputed >10 million SNPs. Quantile–quantile (Q-Q) plots 
for SNPs with a minor allele frequency (MAF) >1% after imputation 
did not show evidence of substantive overdispersion (λ = 1.02–1.10, 
λ90 = 1.02–1.05; Supplementary Fig. 1). We derived joint ORs and 
95% confidence intervals (CIs) under a fixed-effects model for each 
SNP with MAF >1% and associated per-allele principal component 
(PCA) corrected P-values for all glioma, GBM and non-GBM cases 
versus those for the controls (Fig. 1).

In the combined meta-analysis, among previously published 
glioma risk SNPs, those for all glioma at 17p13.1 (TP53), for GBM 
at 5p15.33 (TERT), 7p11.2 (EGFR), 9p21.3 (CDKN2B–AS1) and 
20q13.33 (RTEL1), and for non-GBM tumors at 8q24.21 (CCDC26), 
11q23.2, 11q23.3 (PHLDB1) and 15q24.2 (ETFA) showed even greater 
evidence for association (Supplementary Fig. 2 and Supplementary 
Table 3). SNPs at 10q25.2 and 12q12.1 for non-GBM tumors retained 
genome-wide significance (i.e., P < 5.0 × 10−8). Associations at the 
previously reported 3q26.2 (near TERC)11 and 12q23.33 (POLR3B)10 
loci for GBM did not retain statistical significance (P values for the 
most associated SNPs are 2.68 × 10−5 and 1.60 × 10−5, respectively; 
Supplementary Table 3).

In addition to previously reported loci, we identified genome-
wide significant associations marking new risk loci (Table 1, 
Supplementary Fig. 3 and Supplementary Data 1) for GBM at 
1p31.3 (rs12752552; P = 2.04 × 10−9), 11q14.1 (rs11233250; P = 9.95 ×  
10−10), 16p13.3 (rs2562152; P = 1.93 × 10−8), 16q12.1 (rs10852606; 
P = 1.29 × 10−11) and 22q13.1 (rs2235573; P = 1.76 × 10−10) and 
for non-GBM tumors at 1q32.1 (rs4252707; P = 3.34 × 10−9), 1q44 
(rs12076373; P = 2.63 × 10−10), 2q33.3 (rs7572263; P = 2.18 × 10−10), 
3p14.1 (rs11706832; P = 7.66 × 10−9), 10q24.33 (rs11598018; P = 3.39 ×  
10−8), 11q21 (rs7107785; P = 3.87 × 10−10), 14q12 (rs10131032; P = 
5.07 × 10−11) and 16p13.3 (rs3751667; P = 2.61 × 10−9). Conditional 
analysis confirmed the existence of two independent association sig-
nals at 7p11.2 (EGFR) as previously reported7 but did not provide 
evidence for additional signals at any of the other established identi-
fied risk loci or at the 13 newly identified loci. Case-only analyses con-
firmed the specificity of 11q14.1, 16p13.3 and 22q13.1 associations for 
GBM and of 1q44, 2q33.3, 3p14.1, 11q21 and 14q12 associations for 
non-GBM tumors (Fig. 2 and Supplementary Table 4). Collectively, 
our findings provide strong evidence for specific associations for the 
different glioma subtypes, consistent with their previously described 
distinctive molecular profiles, presumably resulting from different 
etiological pathways.

Across the new and known risk loci, we found a significant enrich-
ment of overlap with enhancers in H9-Derived neuronal progenitor 
cells (P = 8.2 × 10−5; Supplementary Data 2). These observations 
support the assertion that the loci identified in the GWAS influence 
glioma risk through effects on neural cis regulatory networks and that 
they are strongly involved in transcriptional initiation and enhance-
ment. To gain further insight into the biological basis for associations 
at the 13 new risk loci, we performed an expression quantitative trait 
loci (eQTL) analysis using RNA-seq data on ten regions of normal 
human brain from up to 103 individuals from the Genotype–Tissue 
Expression (GTEx) project16 and blood eQTL data on 5,311 individuals 
from Westra et al.17. We used summary-level mendelian randomization 
(SMR)18 analysis to test for a concordance between signals from GWAS 
and cis eQTL for genes within 1 Mb of the sentinel and correlated 
SNPs (r2 > 0.8) at each locus (Supplementary Data 3) and derived bXY 
statistics, which estimate the effect of gene expression on glioma risk. 
Additionally, for each of the risk SNPs at the 13 new loci (as well as the 
correlated variants), we examined published data19,20 and made use 
of the online resources HaploRegv4, RegulomeDB and SeattleSeq for 
evidence of functional effects (Supplementary Table 5).

At 16q12.1, the GBM association signal was significantly associated 
with HEATR3 expression in nine of ten regions of the brain (PSMR = 
3.38 × 10−6 to 6.55 × 10−10; bXY = 0.14–0.24; Supplementary Fig. 4 
and Supplementary Data 3). The risk allele ‘C’ of rs10852606 that 
was associated with reduced HEATR3 expression was consistent with 
differential expression of HEATR3 being the functional basis of the 
16q12.1 association. The observation that variation at 16q12.1 is asso-
ciated with risk of testicular21 (rs8046148; pairwise r2 and D′ with 
rs10852606 of 0.67 and 1.0, respectively) and esophageal22 (rs4785204; 
pairwise r2 and D′ with rs10852606 of 0.16 and 1.0, respectively) can-
cer suggests that the locus has pleiotropic effects on tumor risk, which 
are compatible with generic effects as shown by the observation of a 
HEATR3 eQTL signal in blood (PSMR = 5.84 × 10−11; bXY = 0.30).

Similarly, significant associations between gene expression and 
glioma risk were observed at the GBM loci 1p31.3 (JAK1, brain cor-
tex and cerebellar hemisphere), 16p13.3 (POLR3K, whole blood) and 
22q13.1 (CTA-228A9.3, brain cerebellum; PICK1, brain hippocampus) 
(Supplementary Fig. 4 and Supplementary Data 3). The non-GBM 
association at 1q32.1 marked by rs4252707 (Supplementary Fig. 3)  
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maps to intron 8 of the gene encoding MDM4, a p53-binding protein. 
The SNP rs4252707 is in strong linkage disequilibrium (LD) with 
rs12031912 and rs12028476 (r2 = 0.92), both of which map to the 
MDM4 promoter. Although no significant eQTL was shown in any 
brain tissue, an association with MDM4 was seen in blood (PSMR = 
4.74 × 10−6; bXY = 0.31; Supplementary Fig. 4 and Supplementary 
Data 3). Overexpression of MDM4 is a feature in glioma tumors 
containing wild-type TP53 and no amplification of the MDM2 gene, 
consistent with MDM4 amplification being a mechanism by which 
the p53-dependent growth control is inactivated23.

The 1q44 association with non-GBM that is marked by rs12076373 
maps to intron 8 of AKT3, whose encoded product is one of the major 
downstream effectors of phosphatidylinositol 3-kinase (PI3K) and 
is highly expressed during active neurogenesis, with haploinsuffi-
ciency causing postnatal microcephaly and agenesis of the corpus 
callosum24. Notably, AKT3 is hyper-expressed in glioma, thus hav-
ing a role in tumor viability by activating DNA repair25. Although 
rs12076373 does not map to a regulatory element, the correlated SNPs 
rs12124113 (r2 = 0.94) and rs59953491 (r2 = 0.90) locate within an 
enhancer element in brain cells and tissues, including H9-derived 
neuronal progenitor cultured cells, cortex-derived primary cultured 
neurospheres and NH-A astrocytes.

The 3p14.1 association with non-GBM that is marked by rs11706832 
localizes to intron 2 of LRIG1. Although we did not identify an eQTL 
in this gene, LRIG1 is highly expressed in the brain and is a pan- 
negative regulator of the epidermal growth factor receptor (EGFR) 
signaling pathway, which inhibits hypoxia-induced vasculogenic 
mimicry via EGFR–PI3K–AKT pathway suppression and epithelial- 
to-mesenchymal transition26. Reduced LRIG1 expression is linked 
to tumor aggressiveness, temozolomide resistance and radio- 
resistance27,28. We have previously shown an association for glioma 
at EGFR (7p11.2)7, which is well established to be pivotal in both the 
initiation of primary GBM and the progression of lower-grade glioma 
to grade IV. Although speculative, our new findings now suggest a 
more extensive pathway involving variation at LRIG1 and AKT3.

Of particular interest is rs7572263, which maps to 2q33.3, localizes 
within intron 3 of C2orf80 and is 50 kb telomeric to IDH1. Mutation 

Glioma subtype

Odds ratio

1.0 1.5 2.0 2.5 3.0 3.5

Non-GBM

GBM

New loci
1p31.3 (rs12752552, RAVER2)
1q32.1 (rs4252707, MDM4)
1q44 (rs12076373, AKT3)
2q33.3 (rs7572263, near IDH1)
3p14.1 (rs11706832, LRIG1)
10q24.33 (rs11598018, OBFC1)
11q14.1 (rs11233250)
11q21 (rs7107785, MAML2)
14q12 (rs10131032, AKAP6)
16p13.3 (rs2562152, near MPG)
16p13.3 (rs3751667, LMF1)
16q12.1 (rs10852606, HEATR3)
22q13.1 (rs2235573, SLC16A8)
Known loci
3q26.2 (rs3772190, near TERC)
5p15.33 (rs10069690, TERT)
7p11.2 (rs75061358, near EGFR)
7p11.2 (rs723527, EGFR)
8q24.21 (rs55705857, CCDC26)
9p21.3 (rs634537, CDKN2A, CDKN2B)
10q25.2 (rs11599775, VTI1A)
11q23.2 (rs648044, ZBTB16)
11q23.3 (rs12803321, PHLDB1)
12q21.2 (rs1275600)
12q23.33 (rs12227783, POLR3B)
15q24.2 (rs77633900, ETFA)
17p13.1 (rs78378222, TP53)
20q13.33 (rs2297440, RTEL1)
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Figure 2 Relative impact of SNP associations at known and newly 
identified risk loci for GBM and non-GBM tumors. Odds ratios (ORs) 
derived with respect to the risk allele. Asterisks denote SNPs showing a 
significant difference between GBM and non-GBM tumors from the case-
only analysis as detailed in supplementary table 4.
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of IDH1 is a driver for gliomagenesis29,30 and is responsible for the 
CpG island methylator (G-CIMP) phenotype31,32. Mutations in IDH1 
predominate in non-GBM glioma33,34; therefore, the association at 
2q33.3 is plausible as a basis for susceptibility to non-GBM glioma. 
In the absence of convincing eQTL or other functional support, this 
does not preclude C2orf80 or another gene mapping to the region of 
LD as being the functional basis for the 2q33.3 association.

The maintenance of telomeres is central to cell immortalization, 
and it has a central role in gliomagenesis35. We have previously shown 
that the risk of GBM is strongly linked to genetic variation in the 
telomere-related genes TERT (5p15.33) and RTEL1 (20q13.33), and 
possibly also TERC (3q26.2)8,9,11. The 10q24.33 association with non-
GBM that is marked by rs11598018 lies intronic to OBFC1, which 
functions in a telomere-associated complex that protects telomeres 
independently of POT1 (ref. 36). The CST complex, whose com-
ponents are encoded by OBFC1, CTC1, and TEN1, competes with 
shelterin for telomeric-DNA-inhibiting telomerase-based telomere 
extension37. The significant association between the risk of non-GBM 
tumors and OBFC1 variation is particularly of note in light of our 
recent exome-sequencing report demonstrating that rare germline 
loss-of-function mutations in genes that encode components of the 
shelterin complex are a cause of familial oligodendroglioma38. The 
glioma risk alleles at TERT, TERC and OBFC1 are associated with 
increased leukocyte telomere length, thereby supporting a relation-
ship between genotype and biology (Supplementary Table 6)35,39,40. 
However, the RTEL1 locus is not consistent with such a postulate, and 
recent data that have not shown a relationship between mutations in 
the TERT promoter and telomere length in glioma41 raise the pos-
sibility of a role for extratelomeric effects.

The deregulation of pathways involved in telomere length and 
EGFR signaling are thus consistent with glioma risk being governed 
by pathways that are important in the longevity of glial cells, and they 
substantiate early observations that genetic susceptibility to GBM and 
non-GBM tumors is highly distinct, presumably reflecting different 
etiologies between GBM and non-GBM tumors (Fig. 2).

The other associations we identified mark genes with varying 
degrees of plausibility for having a role in glioma oncogenesis. The 
GBM association at 16p13.33 marked by rs2562152 localizes 3 kb 
telomeric to MPG, which encodes a N-methylpurine DNA glycosylase 
whose expression is linked to temozolomide resistance in glioma42. 
Although attractive as a candidate, the only genes for which there was 
found to be a significant association between expression and glioma 
risk were POLR3K and C16ORF33 in blood (Supplementary Fig. 4 
and Supplementary Data 3). At 1p31.3, only JAK1 provided convinc-
ing evidence for a significant eQTL with glioma risk SNPs in brain 
tissue. The strongest association was shown in the cortex (PSMR = 
1.61 × 10−6; bXY = 0.22; Supplementary Fig. 4 and Supplementary 
Data 3), with the risk allele ‘T’ of rs12752552 showing increased JAK1 
expression. The cis-eQTL signal for JAK1 in the cortex maps from 65.3 
Mb to 65.35 Mb and shows a consistent direction of effect with the 
glioma-associated SNPs. JAK1–STAT6 signaling is increasingly being 
recognized to be relevant in glioma progression43. Hence, although 
JAK1 remains an attractive candidate mechanistic basis for the glioma 
association at 1p31.3, we cannot exclude the possibility that the clus-
ter of SNPs between 65.3 Mb and 65.35 Mb contains the true causal 
variant. In the absence of functional data, potential target genes for 
associations at 11q14.1 (GBM), 16p13.3 (non-GBM), 11q21 (non-
GBM) and 14q12 (non-GBM) remain to be elucidated.

In conclusion, we have performed the largest glioma GWAS to date 
and have identified 13 new glioma risk loci, thereby providing fur-
ther evidence for a polygenic basis of genetic susceptibility to glioma. 

Histological classification of glioma is, in part, being superseded by 
molecular profiling34,44; hence, it is important to understand the biol-
ogy behind these risk variants in the context of molecularly defined 
glioma subtypes. Currently identified risk SNPs for glioma account 
for, at best, ~27% and ~37% of the familial risk of GBM and non-GBM 
tumors, respectively (Supplementary Table 7). Therefore, further 
GWAS-based analyses in concert with functional analyses should lead 
to additional insights into the biology and etiological basis of the 
different glioma histologies. Notably, such information can inform 
gene discovery initiatives and thus have a measurable effect on the 
successful development of new therapeutic agents.

MeThOdS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINe MeThOdS
Ethics. Collection of patient samples and associated clinico-pathological infor-
mation was undertaken with written informed consent and relevant ethical 
review board approval at the respective study centers in accordance with the 
tenets of the Declaration of Helsinki. Specifically informed consent and ethi-
cal board approval was obtained from the South-East Multicentre Research 
Ethics Committee (MREC) (UK), the Scottish MREC (UK), the APHP ethical 
committee-CPP (Comité de Protection des Personnes) (France), the Ethics 
Commission of the Medical Faculty of the University of Bonn (Germany), the 
University of Texas MD Anderson Cancer Institutional Review Board (USA), 
the Mayo Clinic Office for Human Research Protection (USA), the UCSF 
Committee on Human Research (USA), the University Hospitals of Cleveland 
Institutional Review Board (USA) and the Cleveland Clinic Institutional 
Review Board (board for the Case Comprehensive Cancer Center) (USA). The 
diagnosis of glioma (ICDO-3 codes 9380-9480 or equivalent) was established 
through histology in all cases in accordance with World Health Organization 
guidelines. Every effort was made to classify tumors as GBM or non-GBM.

GWAS data sets. GICC, UK, French, German, MDA, SFAGS and GliomaScan. 
Studies participating in GICC are described in Amirian et al.46 and in 
Supplementary Table 1. Briefly, they comprise 5,189 glioma cases and 3,827 
controls that were ascertained through centers in the USA, Denmark, Sweden 
and the UK. Cases had newly diagnosed glioma, and controls had no personal 
history of central nervous system tumor at the time of ascertainment. Detailed 
information regarding recruitment protocol is given in Amirian et al.46. Cases 
and controls were genotyped using the Illumina Oncoarray according to the 
manufacturer’s recommendations (Illumina Inc.). Individuals with a call rate 
<99%, as well as all individuals evaluated to be of non-European ancestry 
(<80% estimated European ancestry using the FastPop47 procedure developed 
by the GAMEON consortium with HapMap version 2 CEU, JPT/CHB and YRI 
populations as a reference; Supplementary Fig. 5), were excluded. For pairs 
of apparent first-degree relatives, we removed the control from a case–control 
pair; otherwise, we excluded the individual with the lower call rate. SNPs with 
a call rate <95% were excluded as were those with a MAF <0.01 or those dis-
playing significant deviation from the Hardy–Weinberg equilibrium (HWE) 
(i.e., P < 10−5). After performing these quality-control measures, there were 
4,572 cases and 3,286 controls remaining for downstream analyses.

The UK, French, German, MDA, SFAGS and GliomaScan GWAS of 
non-overlapping case–control series of Northern European ancestry have 
been the subject of previous studies. Briefly, the UK GWAS7,8,10 was based 
on 636 cases (401 males; mean age 46 years) who were ascertained through 
the INTERPHONE study48. Individuals from the 1958 Birth Cohort (n = 
2,930) served as a source of controls. The French GWAS7,10 comprised 1,495 
patients with glioma who were ascertained through the Service de Neurologie 
Mazarin, Groupe Hospitalier Pitié-Salpêtrière Paris. The controls (n = 1,213) 
were ascertained from the SU.VI.MAX (Supplementation en Vitamines 
et MinerauxAntioXydants) study of 12,735 healthy subjects (women aged  
35–60 years; men aged 45–60 years)49. The German GWAS10 comprised 
880 patients who had undergone surgery for a glioma at the Department of 
Neurosurgery, University of Bonn Medical Center, between 1996 and 2008. 
Control subjects were taken from three population studies: KORA (Co-
operative Health Research in the Region of Augsburg; n = 488)50; POPGEN 
(Population Genetic Cohort; n = 678)51 and the Heinz Nixdorf Recall study  
(n = 380)52. Standard quality-control measures were applied to the UK, 
French and German GWAS and have previously been reported. The MDA 
GWAS8 was based on 1,281 cases (786 males; mean age 47 years) who were 
ascertained through the MD Anderson Cancer Center, Texas, between 1990 
and 2008. Individuals from the Cancer Genetic Markers of Susceptibility 
(CGEMS, n = 2,245) studies served as controls53,54. Quality-control measures 
were applied as per the primary GWAS. The UCSF adult glioma case–control 
study (SFAGS–GWAS) included participants of the San Francisco Bay Area 
Adult Glioma Study (AGS). Details of subject recruitment for AGS have been 
reported previously9,12,34,55,56. Briefly, cases were adults (>18 years of age) 
with newly diagnosed, histologically confirmed glioma. Population-based 
cases who were diagnosed between 1991 and 2009 (series 1–4) and who were 
residing in the six San Francisco Bay area counties were ascertained using the 
Cancer Prevention Institute of California’s early-case ascertainment system. 

Clinic-based cases who were diagnosed between 2002 and 2012 (series 3–5) 
were recruited from the UCSF Neuro-oncology Clinic, regardless of the place 
of residence. From 1991 to 2010, population-based controls from the same 
residential area as the population-based cases were identified using random 
digit-dialing and were frequency matched to population-based cases for age, 
gender and ethnicity. Between 2010 and 2012, all controls were selected from 
the UCSF general medicine phlebotomy clinic. Clinic-based controls were 
matched to clinic-based glioma cases for age, gender and ethnicity. Consenting 
participants provided blood, buccal and/or saliva specimens, and informa-
tion, during in-person or telephone interviews. A total of 677 cases and 3,940 
controls (including 3,347 Illumina iControlDB iControls) were used in the 
current analysis. For the GliomaScan GWAS13, in addition to the published 
analysis, we excluded samples from the ATBC (Finnish study) and controls 
from NSHDS due to exhibiting outlying population ancestry after manual 
inspection of PCA plots. In total 1,653 cases and 2,725 controls were used in 
the current study.

GWAS data from the seven studies were imputed to >10 million SNPs with 
IMPUTE2 (v2.3)57 software using a merged reference panel consisting of data 
from the 1000 Genomes Project (phase 1 integrated release 3, March 2012)58 
and UK10K (ALSPAC, EGAS00001000090 and EGAD00001000195, and 
TwinsUK EGAS00001000108 and EGAS00001000194 studies). Genotypes were 
aligned to the positive strand in both imputation and genotyping. Imputation 
was conducted separately for each study, and in each the data were pruned to 
a common set of SNPs between cases and controls before imputation. We set 
thresholds for imputation quality to retain potential risk variants with MAF 
> 0.01. Poorly imputed SNPs, defined by an information measure <0.40 with 
IMPUTE2, were excluded, as were SNPs exhibiting a significant deviation from 
Hardy–Weinberg equilibrium (P < 1 × 10−8) in controls. Test of association 
between imputed SNPs and glioma was performed using SNPTEST (v2.5)59 
under an additive frequentist model. The adequacy of the case–control match-
ing and the possibility of differential genotyping of cases and controls were 
formally evaluated using Q-Q plots of test statistics (Supplementary Fig. 1). 
Where appropriate, principal components, generated using common SNPs, 
were included in the analysis to limit the effects of cryptic population stratifi-
cation that otherwise might cause inflation of test statistics. Principal compo-
nents, based on genotyped SNPs, were generated for the GICC, GliomaScan, 
MDA-GWAS and SFAGS studies using PLINK60. Eigenvectors for the German 
GWAS were inferred using smartpca (part of EIGENSOFTv2.4)61 by merging 
cases and controls with Phase II HapMap samples10. PCA plots for all studies 
are provided in Supplementary Figure 4.

UCSF-Mayo GWAS. The UCSF-Mayo study comprised Mayo cases (n = 
945) and UCSF cases (n = 574) and Mayo Clinic Biobank control (n = 806) 
data. The Mayo Clinic case–control study has been described previously9,34,62. 
Briefly, adult cases (>18 years of age) were identified at diagnosis (diagnosed at 
Mayo Clinic) or at pathologic confirmation (diagnosed elsewhere and treated 
at Mayo Clinic), and the patients had a surgical resection or biopsy between 
1973 and 2014. Consenting participants provided blood, buccal and/or saliva 
specimens, and information, during in-person or telephone interviews. This 
analysis used 574 non-overlapping cases from the UCSF Adult Glioma Study 
described above. Mayo Clinic and UCSF cases were genotyped using the 
Illumina Oncoarray. The Mayo Clinic Biobank controls comprised volun-
teers who donated biological specimens and provided risk factor data, access 
to clinical data obtained from the medical record and consent to participate in 
any study approved by the Access Committee. Recruitment for the Mayo Clinic 
Biobank took place from April 2009 through December 2015. Although par-
ticipants could be unselected volunteers, the vast majority of participants were 
contacted as part of a pre-scheduled medical examination in the Department 
of Medicine, Divisions of Community Internal Medicine, Family Medicine 
and General Internal Medicine at Mayo Clinic sites in Rochester (Minnesota), 
Jacksonville (Florida), and the Mayo Clinic Health System sites in La Crosse 
and Onalaska (Wisconsin). All individuals were aged 18 years and older at the 
time of consent. Illumina Omni Express genotyping arrays were run on the 
806 Mayo Clinic Biobank participants.

Quality-control analyses were performed on each cohort separately (Mayo 
cases, UCSF cases and Mayo Clinic Biobank controls). SNPs with call rates 
<95% were removed, followed by removal of subjects with call rates <95%. 
Concordance of replicate samples was assessed, and the sample with the higher 
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call rate was retained. Subject’s sex was verified using the sex check option in 
PLINK. Relationship checking was performed by estimating the proportion of 
alleles shared identical by descent (IBD) for all pairs of subjects in PLINK60. 
STRUCTURE63 was used to assess population admixture with 1000 Genomes 
as a reference. Subjects indicated to be non-Caucasian were excluded. Prior 
to imputation, SNPs were tested for HWE, and SNPs with HWE P < 10−6 
were removed. Mayo Clinic, UCSF and Mayo Clinic Biobank SNP data 
were each phased and imputed using the Michigan Imputation Server with  
the Haplotype Reference Consortium (release 1; http://www.haplotype- 
reference-consortium.org) as reference. Genotypes were forward-strand-
aligned to the 1000 Genomes reference, and for ambiguous SNPs the Browning 
strand checking utility was used (http://faculty.washington.edu/sguy/ 
beagle/strand_switching/strand_switching.html). PCA was used to correct 
for population stratification using SNPs common to cases and controls. The 
first three principal components were significantly (P < 0.05) associated with 
case–control status. An additive logistic regression model was used to assess 
the association between each SNP and disease status, with genotype being 
coded as 0, 1 or 2 copies of the minor allele, adjusted for age, sex and the first 
three principal components.

Meta-analysis and additional statistical analyses. Meta-analyses were per-
formed using the fixed-effects inverse-variance method based on the β-esti-
mates and standard errors from each study using META (v1.6)64. Cochran’s 
Q-statistic was used to test for heterogeneity, and the I2 statistic was used to 
quantify the proportion of the total variation due to heterogeneity65, taking 
I2 values >75 to indicate significant heterogeneity. Using the meta-analysis 
summary statistics and LD correlations from a reference panel of the 1000 
Genomes Project combined with UK10K, we used GCTA66,67 to perform con-
ditional association analysis. Association statistics were calculated for all SNPs, 
conditioning on the top SNP in each locus showing genome-wide significance. 
This was carried out in a step-wise fashion. We performed a case-only analysis 
to test for differences in SNP-risk-allele frequency between GBM and non-
GBM tumors.

ENCODE and chromatin state dynamics. Risk SNPs and their proxies (i.e., 
r2 > 0.8 in the 1000 Genomes EUR reference panel) were annotated for puta-
tive functional effect using HaploReg (v4)68, RegulomeDB69 and SeattleSeq 
Annotation70. These servers make use of data from ENCODE, genomic evo-
lutionary rate profiling (GERP) conservation metrics, combined annotation-
dependent depletion (CADD) scores and PolyPhen scores. We searched for 
overlap of associated SNPs with enhancers defined by the FANTOM5 enhancer 
atlas19, annotating by overlap with ubiquitous, permissive and robust enhanc-
ers, as well as enhancer–promoter correlations and enhancers specifically 
expressed in astrocytes, neuronal stem cells and brain tissue. Similarly, we 
searched for overlap with ‘super-enhancer’ regions, as defined by Hnisz et al.20,  
restricting analysis to data from U87 GBM cells, astrocyte cells and brain 
tissue. We additionally made use of 15-state chromHMM data from H1- and 
H9-derived neuronal progenitor cells available from the Epigenome Roadmap 
Project71. Enhancer enrichment analysis was carried out using HaploReg 
(v4.0)68. Briefly, from a query list of variants, the overlap with enhancers in 
each of 107 cell types, as predicted from the Roadmap Epigenomics Project71 
chromatin-state segmentations, was calculated. A binomial test for enrich-
ment was performed against a background set of all (i) 1000 Genomes variants 
with MAF > 0.05 and (ii) all unique GWAS loci in the European population.  
We applied a cutoff of P < 3.94 × 10−4 corresponding to a Bonferroni correction 
for 127 cell lines and tissues.

Expression quantitative trait loci (eQTL) analysis. To examine the relation-
ship between SNP genotype and gene expression, we carried out summary-
data-based mendelian randomization (SMR) analysis as per Zhu et al.18 (at 
http://cnsgenomics.com/software/smr/index.html). We used publicly available 
brain tissue data from the GTEx16 (http://www.gtexportal.org) v6p release. 
Briefly, GWAS summary statistics files were generated from the meta-analy-
sis. Reference files were generated from merging 1000 Genomes phase 3 and 
UK10K (ALSPAC and TwinsUK) vcfs. Summary eQTL files for GTEx samples 
were generated from downloaded v6p “all_snpgene_pairs” files. Besd files were 
generated from these summary eQTL files using the –make-besd command.  

Additionally, we analyzed downloaded whole-blood eQTL data from Westra 
et al.17. Results from the SMR test for each of the 13 new glioma loci are 
reported in Supplementary Data 3. As previously advocated18, only probes 
with at least one eQTL P value <5.0 × 10−8 were considered for SMR analysis. 
We set a threshold for the SMR test of PSMR < 1.06 × 10−4 corresponding to a 
Bonferroni correction for 473 tests (473 probes with a top eQTL P < 5.0 × 10−8 
across the 13 loci, 10 brain regions and Westra data set). For all genes passing 
this threshold, we generated plots of the eQTL and GWAS associations at the 
locus, as well as plots of GWAS and eQTL effect sizes (i.e., corresponding 
to input for the HEIDI heterogeneity test). HEIDI test P values <0.05 were 
taken to indicate significant heterogeneity. Respective SMR plots for signifi-
cant eQTLs are shown in Supplementary Figure 4.

Additional statistical and bioinformatics analysis. Estimates of individual 
variance in risk associated with glioma risk SNPs was carried out using the 
method described in Pharoah et al.72, assuming the familial risk of high-grade 
and low-grade glioma to be 1.76 and 1.54, respectively, from analysis of the 
Swedish series in Scheurer et al.73. Briefly, for a single allele (i) of frequency 
p, relative risk R and ln risk r, the variance (Vi) of the risk distribution due to 
that allele is given by: 

V p E p p r E p r Ei = − + − − + −( ) ( )( ) ( )1 2 1 22 2 2 2 2

Where E is the expected value of r given by: 

E p p r p r= − +2 1 2 2( )

For multiple risk alleles, the distribution of risk in the population tends 
toward the normal with variance: 

V Vi= ∑
The total genetic variance (V) for all susceptibility alleles has been estimated 

to be √1.77. Thus, the fraction of the genetic risk explained by a single allele 
is given by: 

V Vi /

LD metrics were calculated in vcftools (v0.1.12b)74 using UK10K data 
and plotted using visPIG75. LD blocks were defined on the basis of HapMap 
recombination rate (cM/Mb), as defined using the Oxford recombination 
hotspots and on the basis of distribution of confidence intervals defined by  
Gabriel et al.76.

Data availability. Genotype data from the GICC GWAS are available from the data-
base of Genotypes and Phenotypes (dbGaP) under accession phs001319.v1.p1.  
Additionally, genotypes from the GliomaScan GWAS can be accessed through 
dbGaP accession phs000652.v1.p1. Data from the other studies are available 
upon request.
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ABSTRACT

Background. The 1p19q non-codeleted gliomas with IDH muta-
tion, defined as “molecular astrocytomas,” display frequent TP53
mutations and have an intermediate prognosis. We investigated
the prognostic impact of copy number-neutral loss of heterozy-
gosity (CNLOH) in 17p in this population.
Methods.Weanalyzed 793 gliomas (206 grade II, 377 grade III,
and210grade IV)by singlenucleotidepolymorphismarrayand
for TP53mutations.
Results. Homodisomy revealed by CNLOH was observed in
156 cases (19.7%). It wasmore frequent in astrocytomas and
oligoastrocytomas (98/256, 38%) than oligodendrogliomas
(28/327, 8.6%; p , .0001) or glioblastoma multiforme (30/

210, 14.3%;p, .0001), tightly associatedwith TP53mutation
(69/71 vs. 20/79; p52310216), andmutually exclusivewith
1p19q codeletion (1/156 vs. 249/556; p , .0001). In the
group of IDH-mutated 1p19q non-codeleted gliomas, CNLOH
17p was associated with longer survival (86.3 vs. 46.2
months; p 5 .004), particularly in grade III gliomas (overall
survival .100 vs. 37.9 months; p 5 .007). These data were
confirmed in an independent dataset from the Cancer
Genome Atlas.
Conclusion. CNLOH 17p is a prognostic marker and further
refines the molecular classification of gliomas.The Oncologist
2016;21:1–5

Implications for Practice: Homodisomy of chromosome 17p (CNLOH 17p) is a frequent feature in IDH-mutated 1p19q non-
codeleted gliomas (group 2). It is constantly associated with TP53mutation. It was found, within this specific molecular group of
gliomas (corresponding tomolecular astrocytomas), that CNLOH17p is associatedwith amuchbetteroutcomeandmay therefore
represent an additional prognostic marker to refine the prognostic classification of gliomas.

INTRODUCTION

Independently of histological grading, gliomas can be sep-
arated into three distinct prognostic subgroups according
to the presence of IDH mutation and 1p19q codeletion:
group 1, glioma with 1p19q codeletion, has the best survival;
group 2, non-codeleted glioma with IDH mutation, has an
intermediate prognosis; and group 3, IDH wild-type glioma,
has the poorest outcome [1–3]. Groups 1 and 2 also differ by
the occurrence of mutually exclusive mutations: TERT
promoter (90%), CIC (50%–60%), and FUBP1 (15%–20%) for
group 1 and ATRX mutation (associated with the alternative
lengthening telomeres phenotype) and TP53 mutation for

group2 [2–4]. Recent single nucleotidepolymorphism (SNP)
analysis showed several cases of copy neutral loss of
heterozygosity (CNLOH) with duplication of the retained
allele. The presence of CNLOH in glial tumors has been
reported to affect several genomic regions [5–9]. In a
recent report on anaplastic oligodendrogliomas, CNLOH fre-
quently affected the short arm of chromosome 17 [5].
Moreover, Yin et al. described eight cases with CNLOH 17p in
a series of 55 glioblastomas [9]. To date, the frequency and
prognostic significance of this alteration have not been
investigated.
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In this study, we investigated the presence of CNLOH 17p
in a large cohort of grade II–IV glial tumors, analyzed the
associations with TP53 mutation and other molecular alter-
ations, and investigated the prognostic impact of CNLOH 17p.

PATIENTS AND METHODS

Patients and Tissue Samples
Patients were selected according to the following criteria:
histologic diagnosis of primary glial tumor, clinical data and
follow-up available in theneuro-oncologydatabase (OncoNeur-
otek, Groupe Hospitalier Pitié Salpêtrière, Paris, France), and
written informed consent. Corresponding clinical annotations
were collected from the neuro-oncology department data-
base. As a duplication cohort, we used the DNA sequencing,
copy number variant (level 1 copy number data), and survival
data (level 3) from lower-grade gliomas (LGGs) of the Cancer
Genome Atlas (TCGA) (http://cancergenome.nih.gov).

DNA Isolation and SNP Array
Tumor DNA from cryopreserved samples was extracted
using the QIAmp DNA Midi Kit (Qiagen, Hilden, Germany,
http://www.qiagen.com) according to the manufacturer’s
instructions. DNA was extracted from blood samples by
conventional saline method, quantified using a NanoVue
spectrophotometer, and qualified by agarose gel electropho-
resis. Tumor DNA was run on an Infinium Illumina Human
610-Quad SNP array (Illumina, San Diego, CA, http://www.
illumina.com). Array processing, using 250 ng tumor DNA,
was outsourced to Integragen, Évry, France. Extracted data
using Feature Extraction software were imported and
analyzed using Nexus 5.1 (Biodiscovery, El Segundo, CA,
http://www/biodiscovery.com), as previously described
[10]. The confirmatory cohort from LGG TCGA was analyzed
using PennCNV-Affy from the PennCNV algorithm [11] to
convert raw CEL files from LGG TCGA into log R ratio and B-
allele frequency. Log R ratio and B-allele frequency files were
used to perform allele-specific copy number analysis with GC
correction using ASCAT (version 2.4) [12].We considered loss
of heterozygosity in a given chromosome region when$95%
of SNP probes in a DNA segment of at least 500 kb exhibited B-
allele frequencies$0.8 and#0.2. Loss of heterozygosity with
a copy number of 2 was considered CNLOH. Only termi-
nal CNLOH on chromosome 17p with a minimum size of
5 Mb was considered. Molecular characterization of glioma
samples (IDH1/2 mutation, TERT promoter mutation, and
MGMT promoter methylation) was performed as previously
described [13].

TP53 Pyrosequencing
Coding exons (2–11) of TP53 gene were first amplified using
primers detailed in supplemental online Table 1. Amplification
conditions were 94°C for 3 minutes followed by 45 cycles of
94°C for 15 seconds, 60°C for 45 seconds, and 72°C for 1
minute, with a final step at 72°C for 8 minutes. Polymerase
chain reaction (PCR) productswere purified conforming to the
Agencourt AMPure XP PCR purification protocol (Beckman-
Coulter,Nyon, Switzerland,http://www.beckmancoulter.com)
with the Biomek 3000 Automation Workstation. Universal
tailed amplicon resequencing approach (454 Sequencing

Technology; Roche, Basel, Switzerland, http://www.roche.
com) was used for sequencing of coding exons of TP53. This
system includes a second PCR, aiming for multiplex identifiers
and incorporation of 454 adaptors, an emulsion PCR according
totheemPCRAmplificationMethodManual Lib-Aprotocol (GS
Junior Titanium Series, Roche), enrichment, and pyrosequenc-
ing according to the Sequencing Method Manual (Roche).
Sequence analysis was performed using CLC Genomics Work-
bench software.

TP53 Sanger Sequencing
TP53 mutations identified by pyrosequencing were con-
firmed by direct Sanger sequencing. Tumor DNA was first
amplified and purified using the same primers and
conditions described for pyrosequencing. Sequencing re-
actions were performed in both orientations using Big-Dye
Terminator Cycle Sequencing Ready Reaction (PerkinElmer,
Waltham, MA, http://www.perkinelmer.com). Extension
productswerepurifiedwith theAgencourt CleanSEQprotocol
according to the manufacturer’s instructions (Beckman-
Coulter). Purified sequences were analyzed on anABI Prism
3730 DNA Analyzer (Applied Biosystems, Foster City, CA,
http://www.appliedbiosystems.com). Forward and reverse
sequences were systematically analyzed using Chromas Lite
software.

Statistical Analysis
We used chi-square and Fisher exact test to compare
genotype distribution. The association with continuous
variableswas calculatedwith theMann-Whitney test.Overall
survival (OS) was defined as the time between diagnosis
and death or last follow-up. Patients who were alive at last
follow-up were considered as a censored event in analysis.
Progression-free survival (PFS) was defined as the time
between diagnosis and recurrence or last follow-up. Patients
who were recurrence-free at last follow-up were considered
as a censored event in analysis. To find clinical or genomic
factors related to OS or PFS, survival curves were calculated
according to the Kaplan-Meier method, and differences
between curves were assessed using the log-rank test.
Variables with a significant p value were used to build a
multivariate Cox model. Two-sided p values , .05 were
considered significant.

Table 1. Frequency of CNLOH 17p according to glioma

histologic subtype

Subtype and histology n

CNLOH 17p

n %

Astrocytoma/oligoastrocytoma 256 98 38

Grade II 104 42 40

Grade III 152 56 37

Oligodendroglioma 327 28 8.6

Grade II 102 8 7.8

Grade III 225 20 8.9

Glioblastoma 210 30 14.3

Abbreviations: CNLOH, copy number-neutral loss of heterozygosity.
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RESULTS

Wescreened the genomic profiles of 793gliomas (206grade II,
377 grade III, and210grade IV) for thepresenceof CNLOH17p.
In the whole cohort, we identified 156 cases with CNLOH 17p
(19.7%), affecting the whole chromosome 17 in 14 cases
(9.0%), thewhole shortarmofchromosome17 in15cases (9.6%),
and only the telomeric portion of 17p in 127 cases (81.4%),
including in all cases the TP53 locus. The mean size of the
affected region was 21.6 6 1.1 Mb (range 7.7–80.9 Mb)
(supplemental online Fig. 1A, 1B).We also screened a series of
96constitutionalDNAsamples.Wedidnot findanyCNLOH17p
in blood DNA, confirming this as a somatic event.

CNLOH 17p affected 50 of 206 grade II (24.3%), 76 of 377
grade III (20.2%), and 30 of 210 grade IV gliomas (14.3%).
CNLOH 17p was more frequent in astrocytomas and oligoas-
trocytomas (98/256, 38%) than oligodendrogliomas (28/327,
8.6%; p, .0001) or glioblastomamultiforme (30/210, 14.3%;
p, .0001) (Table 1).

We investigated the presence of TP53 mutation by
pyrosequencing. Each nonsilent variation was then validated
by Sanger sequencing. Of the 71 tumors with CNLOH 17p and
available DNA, 97.2% (69/71)weremutatedon the TP53 gene.
Electropherograms showed a pattern of homozygous muta-
tion (supplemental online Fig. 2A) in all cases. Missense
mutations were the most frequent (58/71, 81.7%), compared
with nonsensemutations (8/71, 11.3%) and frameshifts (5/71,
7.0%). Strikingly, one of the two nonmutated tumors had a
focal homozygousdeletionofTP53 locus (supplemental online
Fig. 3). In all, the TP53 gene was altered in all but one tumor
with CNLOH 17p (70/71, 98.6%). Interestingly, P53 was
overexpressed by immunohistochemistry in the remaining
nonaltered case, suggestingabnormal P53 sequestration (data
not shown).

In non-CNLOH 17p gliomas, TP53mutational status was
available in 79 tumors. We identified 24 TP53 mutations
(25.3%; p, .0001) on 20 tumors, with four tumors having a
double variant consisting of 21 (80.8%)missensemutations,
four (15.5%) nonsense mutations, and one (3.8%) frame-
shift. In all these non-CNLOH 17p gliomas, electrophero-
grams showed a heterozygous pattern of TP53 mutation
(supplemental online Fig. 2B). Based on the TP53 database

reported by Edlund et al. [14], we found that 86 of 97 (89%)
of these mutations affected the TP53 DNA binding domain
(65/71 in the CNLOH 17p group and 21/26 in the control
group; not significant). All mutations are predicted to be
transcriptionally inactive.

We next investigated the association of CNLOH 17p with
other molecular alterations commonly found in gliomas
(Table 2). CNLOH 17p was mutually exclusive with 1p19q
codeletion (1/156 vs. 249/556; p, .0001) and was associated
with IDHmutation (114/141vs. 309/556;p, .0001). Ingrade II
and III gliomas,CNLOH17pwasassociatedwith the1p19qnon-
codeleted IDH-mutated gliomas (group 2) (55.9% of group 2
tumors compared with groups 1 and 3) (Table 3).

We then evaluated the prognostic impact of CNLOH 17p.
Wedidnot find any impact onPFS orOS for grade II–IV gliomas
with available clinical data (supplemental online Fig. 4). This is
not surprising, because CHLOH 17p is strongly associatedwith
the TP53 mutation, which itself is associated with group 2
gliomas, which have an intermediate prognosis (Fig. 1A). We
therefore considered specifically the prognostic impact of
CNLOH 17p in group 2 and found an association with a much
better outcome (OS 86.3 vs. 46.2 months; p5 .004) (Fig. 1B).
The difference was particularly clear in grade III gliomas (OS
.100 vs. 37.9 months; p5 .007) (Fig. 2) but was not found in
grade II and IV gliomas.

We then entered into the Coxmodel themajor histological
and biological prognostic markers, i.e., the grading and the
molecular subgroup (1p19q codeletion, IDH mutation, IDH

Table 2. Association of CNLOH 17p with common molecular alterations in gliomas

CNLOH 17p

Present Absent

p valueFrequency % Frequency %

EGFR amplification 6/156 3.8 99/637 15.6 ,.0001

CDKN2A deletion 23/156 14.7 165/637 25.9 .0032

IDHmutation 114/141 80.9 309/556 55.6 ,.0001

1p19q codeletion 1/156 0.6 249/637 39.1 ,.0001

MDM2 amplification 0/154 0.0 14/637 2.2 .0173

CDK4 amplification 8/155 5.2 20/637 3.1 NS

TERT promoter mutation 18/74 24.3 159/248 64.1 ,.0001

MGMT promoter methylation 17/23 73.9 78/140 55.7 NS

Chr10q loss 29/156 18.6 212/637 57.8 .0003

TP53mutation 69/71 97.2 20/79 25.3 ,.0001

Abbreviations: Chr, chromosome; CNLOH, copy number-neutral loss of heterozygosity; NS, not significant.

Table3. Relative frequencyofCNLOH17p inmoleculargroups

1, 2, and 3 of grade II–III gliomas

CNLOH 17p

Present

p valueFrequency %

Group 1 (1p19q codeletion) 1/225 0.44 ,.0001

Group 2 (IDHmutation without
1p19q codeletion)

85/152 55.92 —

Group 3 (IDH wild-type) 7/98 7.14 ,.0001

p value determined by Fisher’s exact test with group 2.
Abbreviations:—, no data; CNLOH, copy number-neutral loss of
heterozygosity.
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wild-type): both were strongly predictive of outcome (hazard
ratios 2.094 and 1.840, p 5 7 3 1027 and 2 3 1025,
respectively), but the negative prognostic impact of CNLOH
17premained significant (hazardratio1.641;p5 .04). Because
CNLOH 17p is specifically found in group 2 (IDH-mutated non-
codeletion gliomas), we performed multivariate analysis
specifically in this group, entering CNLOH 17p, grade, EGFR
amplification,CDKN2Adeletion, andTP53mutation.We found
that CNLOH 17p was the strongest (odds ratio [OR] for non-
CNLOH p17 5 3.58) and the most significant (p 5 .014)
prognostic marker.

To confirm this result, we analyzed survival data from 142
LGGs from TCGA with IDH1/IDH2 mutations and no 1p19q
codeletion. Despite the high rate of censured data, we found
that CNLOH17p, including the TP53 locus,was associatedwith
better outcome (OR 5 0.27; p 5 .026) (supplemental online
Fig. 5) [11].

DISCUSSION

Using SNP array, we found that CNLOH 17p is a frequent
alteration in gliomas. A similar mechanism has also been
reported in other malignancies [15]. Strikingly, CNLOH affects
selectively 17p and not (or only marginally) the other
chromosome segments, as shown by a recent whole-exome
sequencing analysis [2, 16].We found CNLOH17p to be almost
systematically associated with TP53 mutation or deletion (70

of 71 samples). The sequence analysis showed a homozygous
mutation in all cases, suggesting that during themechanismof
tumorigenesis, the normal arm of chromosome 17p is lost and
the altered chromosome arm is duplicated, leading to a
homozygous mutation of TP53 [9, 17–19].

In our series, CNLOH 17p is mutually exclusive with 1p19q
codeletion and is associatedwith IDHmutation. Regarding the
three molecular subgroups [1–3], CNLOH 17p samples were
mostly found in group 2, the 1p19q non-codeleted IDH-
mutated group, which is associated with TP53 mutation (85/
152 vs. 1/225 in the 1p19q codeleted group and 7/98 in the
non-1p19q codeleted, non-IDHmutated group).

Wethereforeanalyzedtheprognostic impactofCNLOH17pin
this particular subgroup (IDH mutated, non-1p19q codeleted).
WefoundthattumorsharboringCNLOH17phadabetterOSthan
tumors without CNLOH 17p and similar to that of 1p19q
codeleted tumors (Fig. 2B). The upcoming World Health Organi-
zationclassificationofgliomaswill integratemolecularmarkers; in
this setting, the replication of this finding in the independent
TCGA series allows generalization of our conclusion; thus we
propose CNLOH 17p as a stratification marker in this subgroup
defined as molecular astrocytomas [20].
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Figure 1. (A) Prognostic classification of grade II–IV gliomas according to 1p19q and IDH status (groups 1, 2, and 3). (B)Prognostic impact
of CNLOH 17p in group 2. Survival times were compared using log-rank test (Mantel-Cox). The presence of CNLOH 17 p in group 2 was
associated with better outcome (OS 86.3 vs. 46.2 months for group 2 with and without CNLOH 17p, respectively; p5 .004).

Abbreviations: CNLOH, copy number-neutral loss of heterozygosity; OS, overall survival; w/o, without.

Figure 2. (A) Prognostic classification of grade III gliomas according to 1p19q and IDH status (groups 1, 2, and 3). (B) Prognostic impact of
CNLOH 17p in group 2. Survival times were compared using log-rank test (Mantel-Cox). The presence of CNLOH 17 p in group 2 was
associated with better outcome (OS.100 vs. 37.9 months for group 2 with and without CNLOH 17p, respectively; p5 .007).

Abbreviations: CNLOH, copy number-neutral loss of heterozygosity; OS, overall survival; w/o, without.
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TCF12 is mutated in anaplastic oligodendroglioma
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Anaplastic oligodendroglioma (AO) are rare primary brain tumours that are generally

incurable, with heterogeneous prognosis and few treatment targets identified. Most

oligodendrogliomas have chromosomes 1p/19q co-deletion and an IDH mutation. Here we

analysed 51 AO by whole-exome sequencing, identifying previously reported frequent

somatic mutations in CIC and FUBP1. We also identified recurrent mutations in TCF12 and in

an additional series of 83 AO. Overall, 7.5% of AO are mutated for TCF12, which encodes an

oligodendrocyte-related transcription factor. Eighty percent of TCF12 mutations identified

were in either the bHLH domain, which is important for TCF12 function as a transcription

factor, or were frameshift mutations leading to TCF12 truncated for this domain. We show

that these mutations compromise TCF12 transcriptional activity and are associated with a

more aggressive tumour type. Our analysis provides further insights into the unique and

shared pathways driving AO.
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A
naplastic oligodendrogliomas (AO; World Health
Organization grade III oligodendrogliomas) are rare
primary malignant brain tumours with a highly variable

overall prognosis. The emblematic molecular alteration in
oligodendrogliomas is 1p/19q co-deletion, which is associated
with a better prognosis and response to early chemotherapy
with procarbazine, lomustine and vincristine1–3. Recent high-
throughput sequencing approaches have identified IDH (IDH1
and IDH2), CIC, FUBP1 and TERT promoter mutations in
oligodendroglioma (75, 50, 10 and 75%, respectively)2,4,5,
IDH mutation status typically being associated with a better
clinical outcome6. Identifying additional driver genes and altered
pathways in oligodendroglioma offers the prospect of developing
more effective therapies and biomarkers to predict individual
patient outcome.

Here we perform whole-exome and transcriptome sequencing
of AO to search for additional tumour driver mutations
and pathways disrupted. In addition to previously reported
recurrently mutated genes, we report the identification of somatic
mutations in TCF12 in AO. These mutations compromise TCF12
transcriptional activity and confer a more aggressive AO
phenotype.

Results
In accordance with conventional clinical practice, we considered
three molecular subtypes for our analyses: (i) IDH-mutated
1p/19q co-deleted (IDHmut-codel); (ii) IDH-mutated 1p/19q
non-co-deleted (IDHmut-non-codel) and (iii) IDH-wild type
(IDHwt)7. Assignment of IDH-mutated (defined by IDH1
R132 or IDH2 R172 mutations), 1p/19q and TERT promoter
mutation (defined by C228T or C250T) status in tumours was
determined using conventional sequencing and single-nucleotide
polymorphism (SNP) array methods.

Mutational landscape. We performed whole-exome sequencing
of 51 AO tumours (Supplementary Data 1) and matched germ-
line DNA, targeting 318,362 exons from 18,901 genes. The mean
sequencing coverage across targeted bases was 57� , with 80% of
target bases above 20� coverage (Supplementary Fig. 1). We
identified a total of 4,733 mutations (with a mean of 37 non-silent
mutations per sample) equating to a mean somatic mutation rate
of 1.62 mutations per megabase (Mb) (Fig. 1). Although the
tumours of two patients (3,063 and 3,149) had high rates of
mutation (9.1 and 12.4, respectively), this was not reflective of
tumour site (both frontal lesions as were 68% of the whole series)
or treatment. Excluding these two cases the mean rate of non-
silent mutations per tumour was 33±14, which is similar to the
number found in most common adult brain tumours. The
mutation spectrum in AO tumours was characterized by a pre-
dominance of C4T transitions, as observed in most solid cancers
(Fig. 1)8,9. While few of the tumours were IDHwt, these did not
harbour a significantly higher number of mutations compared
with IDHmut-1p/19q co-deleted and IDHmut-non-1p/19q
co-deleted tumours (Fig. 1). Intriguingly, one tumour (2,688)
was co-mutated for IDH1 (R132H) and IDH2 (P162S),
but exhibited no distinguishing phenotype in terms of
clinicopathology or mutation rate.

We used MutSigCV version 1.4 (ref. 8) to identify genes
harbouring more non-synonymous mutations than expected by
chance given gene size, sequence context and mutation rate of
each tumour for the three molecular subtypes, respectively.
As expected, we observed frequent mutations of the tumour
suppressors FUBP1 (22%) located on 1p, and CIC (32%) located
on 19q, which have been reported in the context of 1p/19q
co-deletion (Fig. 1; Supplementary Fig. 2); these were not

mutually exclusive events (Fig. 1). Also within the IDHmut-codel
group, 37 of tumours tested carried TERT C228T or C250T
promoter mutations (72%), none of which also carried an ATRX
mutation, concordant with the previously reported finding that
these are mutually exclusive events2.

In addition to the mutation of IDH1 (78%), IDH2 (17%), CIC
(32%) and FUBP1 (22%), TCF12 was also significantly mutated
(Q-valueo0.1; Fig. 1; Supplementary Table 2). Heterozygous
somatic mutations in TCF12, which encodes the basic helix–
loop–helix (bHLH) transcription factor 12 (aliases HEB, HTF4
and ALF1) were identified in five (1 missense, R602M; 2 splice-
site, c.825þ 5G4T, c.1979-3_1979-delTA and 2 frameshift,
E548fs*13, S682fs*14) of the 46 IDH-mutated 1p/19q co-deleted.
Intriguingly, germline mutations of residues E548 and R602 have
been previously shown to cause coronal craniosynostosis10.

The availability of high-quality tumour material allowed us to
generate SNP array and expression data on 31 of the cases exome
sequenced. In addition to co-deletion of chromosome arms
1p/19q, we identified several other recurrent genomic
alterations—mainly loses of chromosomes 4 (29%), 9p (28%)
and 14q (19%); Supplementary Fig. 3; Supplementary Table 1).
Notably, tumours featuring mutation of Notch-pathway genes
showed significant chromosome 4 loss (P¼ 0.02, w2-test).
To identify fusion transcripts, we analysed RNA-sequencing
(RNA-seq) data, which was available for 36 of the 51 tumours.
After filtering, the only chimeric transcript identified was the
predicted driver FGFR3–TACC3 fusion, previously described in
IDH wild-type gliomas11–13, which was seen in two of the IDHwt-
non-1p/19q co-deleted tumours—patients 2463 and 2441; Of
note was that patient 2463 carried an IDH2 intron-5 mutation
(c.679-28C4T).

Incorporation of TCGA mutation data. To explore the muta-
tional spectra of AO in an independent series, we made use of
data generated by The Cancer Genome Atlas (TCGA) study of
low-grade glioma, which provides exome sequencing data on a
further 43 AO tumours. Two of these 43 tumours harboured
frameshift mutations in TCF12 (E548R and D171fs)
(Supplementary Table 2). As with our series, these TCF12
mutations were exclusive to IDH-1p/19q co-deleted tumours.
In a combined analysis, mutations in PI3KCA, NOTCH1 and
TP53 were significantly overrepresented when analysed using
MutSigCV (Q-valueo0.1; Supplementary Table 2). In addition,
mutation of ATRX and RBPJ were of borderline significance.

A bias towards variants with functional impact (FM) is a
feature of cancer drivers14. To increase our ability to identify
cancer drivers and delineate associated oncogenic pathways for
AO, we incorporated mutation data from multiple tumour types
using Oncodrive-fm14 implemented within the IntOGen-
mutations platform15 (Fig. 2). The most recurrently mutated
genes according to MutSig were also detected by Oncodrive-fm
as significantly mutated (Q-valueo0.05). Oncodrive-fm also
identified a number of other important mutated genes (that is,
displaying high FM bias) including SETD2, NOTCH2, RBPJ,
ARID1A, ARID1B, HDAC2 and SMARCA4 (Fig. 2).

Using all mutation results, we performed an analysis to identify
pathways or gene ontologies that were significantly enriched in
mutated genes. As expected, the most significantly altered
pathways were linked to the tricarboxylic acid cycle and isocitrate
metabolic process as a consequence of IDH mutation. Consistent
with the other genes that were found significantly mutated by
MutSigCV and Oncodrive-fm analysis, the Notch signalling
pathway (P¼ 1.0� 10� 5, binomial test), genes involved in
neuron differentiation (P¼ 2.0� 10� 5, binomial test) and genes
involved in chromatin organization (P¼ 0.02, binomial test) were
also significantly enriched for mutations (Supplementary Data 3).
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Validation of TCF12 in an additional series of AO. To identify
additional TCF12-mutated AO tumours, we conducted targeted
sequencing of a further 83 AO. Five tumours harboured TCF12
mutations—G48fs*38, M260fs*5, R326S, D455fs*59 and delN606
(Supplementary Data 1). On the basis of our combined sample of
134 tumours, the mutation frequency of TCF12 in AO is 7.5%
(95% confidence interval 3.6–13.2%). No significant difference in
patient survival in 1p/19q co-deleted AO was associated with
TCF12 mutation in 69 patients (Supplementary Fig. 4). While our
power to demonstrate a statistically significant relationship was
limited (that is, B40% for a hazard ratio of 2.0, stipulating
P¼ 0.05), we noted that patients having either TCF12 mutated or
TCF12 loss of heterozygosity (LOH) tended to be associated with
shorter survival (Supplementary Fig. 4). To gain further insight
into the role of TCF12 mutation in oligodendroglioma, we
sequenced 75 grade II tumours identifying one mutation carrier
(P212fs*31; Supplementary Data 1). The observation that the
frequency of TCF12 mutations is higher in AO as compared with
grade II tumours (P¼ 0.049, w2-test) is compatible with TCF12
participating in the generation of a more aggressive phenotype.

TCF12 bHLH mutants compromised transactivation. To
explore the functional consequences of TCF12 mutation, we
tested the transcriptional activity of several mutants (Fig. 3). We
tested the frameshift mutations M260fs*5 and E548fs*13, which
in the germline cause coronal craniosynostosis10 and S682fs*14,
since introduction of a C-terminal premature stop codon may
result in escape from non-sense-mediated decay. We also tested
the missense mutation R602M, which is predicted to destabilize

the bHLH domain required for DNA binding and dimerization
(Fig. 3) and whose adjacent residue (R603) has been found
recurrently mutated in colon cancer16. Finally, we tested the
missense mutation R326S, since mutations of adjacent G327
have been reported in lung adenocarcinoma17. The frameshift
mutants M260fs*5 and E548fs*13 completely abolished TCF12
transactivation, consistent with the lack of bHLH DNA-binding
domain (Fig. 3). R602M retained only 34% of WT transcriptional
activity (P¼ 0.0018, Student’s t-test; Fig. 3). We did not observe
significant modulation of transactivation for the R326S and
S682fs*14 mutants, although the latter consistently showed
decreased activity (Fig. 3).

Downregulation of pathways in TCF12 bHLH mutants. We
profiled gene expression in 8 TCF12-mutated and 45 wild-type
tumours within 1p/19q co-deleted samples (Supplementary
Table 1). TCF12 mutation was associated with significant
enrichment of immune response pathways (Supplementary Data
4). Restricting the analysis to tumours with the TCF12-altered
bHLH domain (n¼ 6), we found downregulation of pathways
featuring known partners of TCF12, such as TCF21, EZH2 and
BMI1 (ref. 18) (Supplementary Table 2). Interestingly, we found
decreased activity of genes sets related to E-cadherin (CDH1),
which is a TCF12 target gene associated with tumour pheno-
type18. Since the promotor sequences of CDH1 and BMI1 feature
E-box motifs and are modulated by the bHLH binding19,20, this
provides a mechanistic basis for change in gene expression
associated with mutant TCF12.
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Mutant TCF12 proteins show subcellular localization changes.
We evaluated TCF12 expression and subcellular localization for
all of our 11 TCF12-mutated tumours (10 AO and 1 oligoden-
droglioma grade II) and 11 TCF12 wild-type tumours by
immunohistochemistry. All TCF12 wild-type tumours showed
nuclear expression in a heterogeneous cell population (Fig. 4;
Supplementary Fig. 5), whereas several TCF12-mutated tumours
showed nuclear and cytoplasmic staining (Fig. 4; Supplementary
Fig. 5). Interestingly, mutations abolishing transcriptional activity
were associated with increased staining, suggesting inactive
mutant protein accumulation.

TCF12 mutations associate with aggressive tumour phenotype.
We profiled the extent of necrosis, microvascular proliferation
and the mitotic index available for TCF12 wild-type or mutated
tumours. A significant increase in palisading necrosis (Fig. 5) as
well as a trend towards a higher mitotic index was associated with
TCF12 mutation, consistent with a more aggressive phenotype
(Fig. 5). Intriguingly, tumours harbouring disruptive bHLH
domain mutations exhibited the highest proportion of palisading
necrosis and mitotic figures.

Discussion
Our genome sequencing of AO has confirmed the mutually
exclusive mutational profile in IDHmut-1p/19q co-deleted and
IDHmut non-1p/19q co-deleted tumour subtypes, which reflect
distinct molecular mechanisms of oncogenesis—consistent with
the requirement for either 1p/19q co-deletion or TP53 mutation
post IDH mutation. Moreover, as previously proposed, the
genomic abnormalities in IDHmut-1p/19p co-deleted tumours
are consistent with one common mechanism of tumour initiation
being through 1p/19q loss, mutation of IDH1 or IDH2 and TERT
activation through promoter mutation2, which in turn

predisposes to deactivation of CIC, FUBP1, NOTCH and
activating mutations/amplifications in the PI3K pathway.

We identified and replicated mutations in TCF12, a bHLH
transcription factor that mediates transcription by forming
homo- or heterodimers with other bHLH transcription factors.
Tcf12 is highly expressed in neural progenitor cells during
neural development21 and in cells of the oligodendrocyte
lineage22.

We found that mutations generating truncated TCF12 lacking
the bHLH DNA-binding domain abrogate the transcriptional
activity of TCF12. In addition, single residue substitutions such as
R602M within the bHLH domain also dramatically reduce TCF12
transcriptional ability. Finally, we found that the loss of TCF12
transcriptional activity was associated with a more aggressive
tumour phenotype. Although speculative, our expression data
provides evidence that the effects of TCF12 mutation on AO
development may be mediated in part through E-cadherin related
pathway. Indeed, this was one of the pathways down-regulated in
mutated tumours and intriguingly CDH1 has been implicated in
metastatic behaviour in a number of cancers18,23. It is likely that
some TCF12 mutations may have subtle effects on bHLH
function or act through independent pathways. Irrespective of
the downstream effects of TCF12 mutation on glioma, our data
are compatible with TCF12 having haploinsufficient tumour
suppressor function. TCF12 haploinsufficiency has previously
been reported in patients with coronal craniosynostosis and in
their unaffected relatives10. Strikingly, 3 of the 11 mutations we
identified in AO, which concern residues M260, E548 and R602,
cause coronal craniosynostosis10,24. Although speculative,
collectively these data raise the possibility that carriers of
germline TCF12 mutations may be at an increased risk of
developing AO.

To our knowledge, this study represents the largest sequencing
study of AO conducted to date. However, given the number of
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Figure 2 | FM-biased genes and gene modules in AO identified by Oncodrive-fm using data from this study and tumours profiled by TCGA. Heatmap

shows tumours in columns and genes in rows, the colour reflecting the MutationAssessor (MA) scores of somatic mutations. FM ext. qv, corrected

P values of the FM bias analysis using the external null distribution.
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tumour-normal pairs we have analysed and the mutational
frequency in AO, we were only well powered to identify genes
that have a high-frequency mutations (that is, 410%). Hence

further insights into the biology of AO should be forthcoming
through additional sequencing initiatives and meta-analyses of
these data.
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Figure 4 | TCF12 is highly expressed in a subset of anaplastic oligodendroglioma. Representative TCF12 immunostainings are shown: (a) wild-type

TCF12 tumours show nuclear staining in a heterogeneous cell population. (b–e) Mutant TCF12 tumours show strong nuclear and cytoplasmic staining.

(f) Mutant M260fs (resulting in a truncated protein) is associated with 15q21.3 LOH and shows no staining. Scale bar, 50mm.
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Methods
Patient samples and consent. Samples were obtained with informed and written
consent and the study was approved by Comité de Protection des Personnes Ile de
France-VI (October 2008) of respective hospitals participating in the Prise en
charge des oligodendrogliomes anaplasiques (POLA) network. All patients were
aged 18 years or older at diagnosis, and tumour histology was centrally reviewed
and validated according to World Health Organization (WHO) guidelines25.
Exome sequencing was conducted on samples from 51 AO patients (33 male;
median age 49 years at diagnosis, range 27–81). For targeted follow-up analyses, we
studied the tumours from an additional 83 AO patients and 75 patients with grade
II tumours. A summary of each of the tumour cohorts and respective pathological
information on the patients is provided in Supplementary Table 1.

DNA and RNA extraction. Germline DNA was extracted from EDTA-venous
blood samples using QIAquick PCR Purification Kits (Qiagen Ltd). Tumour DNA
was extracted from snap-frozen tumour samples using the iPrep ChargeSwitchH
Forensic Kit, according to manufacturer’s recommendations. DNAs were quanti-
fied and qualified using a NanoVue Plus spectrophotometer (GE Healthcare Life
Sciences) and gel electrophoresis. RNA was extracted from tumours lysed by Lysing
Matrix D tube and FastPrep instrument (MP Biomedicals) using the iPrep Trizol
Plus RNA Kit (Life Technologies). Stringent criteria for RNA quality were applied
to rule out degradation, specifically a 28S/18S ratio 41.8.

SNP array analysis. In total, 115 samples from tumours were genotyped using
Illumina SNP microarrays: 32 samples with Illumina 370-Duo 1.0 BeadChips,
31 with Human610-Quad, 46 with HumanOmniexpress-12V1 and 6 with
HumanCore-12v1. Raw fluorescent signals were imported into BeadStudio
software (Illumina) and normalized to obtain log R ratio and B-allele frequency
(BAF) values. The tQN normalization procedure was then applied to correct for
asymmetry in BAF signals due to bias between the two dyes used in Illumina
assays. Genomic profiles were divided into homogeneous segments by applying the
circular binary segmentation algorithm to both log R ratio and BAF values. We
then used the Genome Alteration Print method to determine the ploidy of each
sample, the level of contamination with normal cells and the allele-specific copy
number of each segment. Chromosome aberrations were defined using empirically
determined thresholds as follows: gain, copy number Zploidyþ 1; loss, copy
number rploidy � 1; high-level amplification, copy number 4ploidyþ 2;
homozygous deletion, copy number¼ 0. Finally, we considered a segment to have
undergone LOH when the copy number of the minor allele was equal to 0. Lists of
homozygous deletions and focal amplifications, defined by at least five consecutive
probes, were generated and verified manually to remove doubtful events. Sig-
nificantly recurrent copy number changes were identified using the GISTIC2.0
algorithm26.

TERT promoter mutation sequencing. Characterized mutations in the TERT
promoter, C228T and C250T variants with G4A nucleotide substitutions at
genomic positions 1,295,228 bp and 1,295,250 bp (hg19), respectively, were
obtained by Sanger sequencing. Primer sequences were: TERT-F—50-GGCCGA
TTCGACCTCTCT-30 and TERT-R 50-AGCACCTCGCGGTAGTGG-30 .

Whole-exome sequencing. DNA was quantified using the Quant-iT PicoGreen
dsDNA Assay Kit (Life Technologies). Libraries were generated robotically using
the SureSelectXT Automated Human All Exon Target Enrichment for Illumina

Paired-End Multiplexed Sequencing (Agilent) as per the manufacturer’s recom-
mendations. Libraries were quantified using the Quant-iT PicoGreen dsDNA Assay
Kit (Life Technologies) and the Kapa Illumina GA with Revised Primers-SYBR Fast
Universal kit (D-Mark). Average size of the fragment was determined using a
LaChip GX (PerkinElmer) instrument. Sequencing was performed by pooling four
libraries per lane at a 9-pM dilution on an Illumina HiSeq 2,000 instrument for
2� 100 cycles using the recommended manufacturer’s conditions. PhiX control
was added at 1% on each lane. BCL2FASTQ (Illumina) was used to convert bcl files
to fastqs (v 1.8.4). Coverage statistics are summarized in Supplementary Fig. 1.
Paired-end fastq files were extracted using Illumina CASAVA software (v.1.8.1,
Illumina) and aligned to build 37 (hg19) of the human reference genome using
Stampy and Burrows–Wheeler Aligner27, and PCR duplicates were removed with
PicardTools 1.5. We assessed coverage of consensus coding sequence bases using
Genome Analysis Toolkit28 v2.4-9. Somatic single-nucleotide variants were called
using MuTect29 and the Genome Analysis Toolkit v2.4-9, and indels using
IndelGenotyper. We excluded potential Covaris-induced mutations as per Costello
et al.30 using in-house scripts. Confirmation of selected single-nucleotide variants
including TCF12, CIC, FUBP1, SYNE1, FAT1, SETD2, RBPJ, NOTCH1, IDH1 and
IDH2 was performed by Sanger sequencing implemented on ABI 3,300� l
platforms (Applied Biosystems, Foster City, USA). Primer sequences are detailed in
Supplementary Data 5. In all cases, Sanger sequencing was 100% concordant with
next-generation sequencing.

We used MutSigCV8 version 1.4 to identify genes harbouring more non-
synonymous mutations than expected by chance, given gene size, sequence context
and the mutation rate. We used as genomic covariates the mean expression level of
each gene in our AO expression data set, the DNA replication time and the HiC
statistic of chromatin state available in MutSig reference files. To increase our
ability to identify cancer drivers and delineate associated oncogenic pathways
for AO, we incorporated mutation data from multiple tumour types using
Oncodrive-fm14 implemented within the IntOGen-mutations platform15.

Transcriptome sequencing. Extracted RNA was cleaned using the RNeasy
MinElute Cleanup Kit (Qiagen) and the RNA integrity assessed using an Agilent
2,100 Bioanalyzer and quantified using a Nanodrop 1,000. Libraries for stranded
total RNA-seq were prepared using the Illumina Stranded Total RNA protocol
(RS-122-2301). Libraries were assessed by the Agilent 2,100 Bioanalyzer.
Sequencing was performed by pooling four libraries per lane at a 9-pM dilution on
an Illumina HiSeq 2,000 instrument for 2� 100 cycles using the recommended
manufacturer’s conditions. PhiX control was added at 1% on each lane.
BCL2FASTQ was used to convert bcl files to fastqs (v 1.8.4). Paired-end reads from
RNA-seq were aligned to the following database files using Burrows–Wheeler
Aligner 0.5.5: (i) the human GRCh37-lite reference sequence, (ii) RefSeq, (iii) a
sequence file representing all possible combinations of non-sequential pairs in
RefSeq exons and (iv) the AceView database flat file downloaded from UCSC,
representing transcripts constructed from human expressed sequence tag (ESTs).
The mapping results from databases (ii)-(iv) were aligned to human reference
genome coordinates. The final BAM file was constructed by selecting the best
alignment. To identify fusion transcripts, we analysed RNA-seq data using Chi-
merascan software31 (version 0.4.5). As advocated, algorithmic output was analysed
for high-confidence fusion transcripts imposing filters: (i) spanning reads 42 (ii)
total supported reads Z10 (ref. 32). In absence of corresponding paired normal
tissue samples, we made use of data from the human body map project data to
identify fusions seen in normal tissue.

TCF12 sequencing in the validation series. PCR amplification of 21 amplicons
covering each exon of TCF12 on DNA extracted from fresh-frozen tumours were
performed using Fluidigm technology according to the manufacturer’s recom-
mendations. The 21 PCR products from one tumour sample were then equimolarly
pooled and submitted to the MiSeq (Illumina) sequencing as per the manu-
facturer’s protocol. All mutations were validated by Sanger sequencing. Somatic
mutations were confirmed using paired constitutional DNA.

mRNA expression profiling. Gene expression profiles of 71 samples were
analysed using Affymetrix Human Genome U133 Plus 2.0 arrays. All samples were
normalized in batches using the RMA algorithm (Bioconductor affy package), and
probe set intensities were then averaged per gene symbol.

Identification of significantly mutated pathways. Gene set member lists were
retrieved online from MSigDB33, GO34 and SMD35 databases. We searched for
gene sets harbouring more damaging mutations than expected by chance. Given
the set G of all the genes sequenced with sufficient coverage, the set S of tumour
samples (of size n) and any gene set P, we calculated the probability of observing a
number of mutations equal or greater to that observed in P across the n samples
according to a binomial law B(k, p), with k¼ n� L(P) and the mutation rate
p¼A(G, S)/(n� L(G)), where L(X) is the sum of the lengths (in bp) of all genes/
exons from a gene set X, and A(G, S) is the total number of mutations observed in
all the targeted sequences across all the samples from S.
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Figure 5 | TCF12 mutation correlates with a higher necrotic and mitotic

index. (a) Percentage of palisading necrosis in tumours with wild-type

TCF12, all tumours mutated for TCF12 or only altered bHLH TCF12 mutants;

*P¼0.02, **P¼0.004. (b) Mitotic index in TCF12 wild-type, TCF12-

mutated and altered bHLH TCF12 mutants; *P¼0.039, mean±s.e.m. CN,
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Deregulated gene sets in TCF12 mutant samples. We performed a moderate t-
test using LIMMA R package to identify significantly differentially expressed genes
between TCF12 mutant samples and TCF12 wild-type samples (Po0.05 and
absolute log fold change 40.6). Biological pathways and gene set member lists
were retrieved online from MSigDB33, GO34 and SMD35 databases. Enrichment
P values were computed from a hypergeometric test between those gene sets and
the initial list of differentially expressed genes. To visualize gene set activity, for
each gene set defined as target genes of either CDH1, TCF21, BMI1, EZH2 and
found to be significantly deregulated in TCF12 bHLH-altered samples compared
with TCF12 wild-type samples in O3 samples with co-deletion, we retrieved the
complete member list from MSigDB33 and computed a global mean gene
expression value in each sample. We then ranked the samples according to the
later global mean expression value for each of these gene sets.

Structure modelling. The Swiss Model36 server was used to model mutated
TCF12 and VMD software37 used to align the structures of wild-type and mutated
TCF12 proteins with STAMP (STructural Alignment of Multiple Proteins)38.
Prediction of the functional effect of the R602M mutation on TCF12 was made
using Project HOPE39.

Statistical analysis. Statistical analysis was carried out using R3.0.1 software.
A P value r0.05 was considered to be significant. Continuous variables were
analysed using the Student’s t-test or Mann–Whitney test. Categorical data were
compared using Fisher’s exact test or the w2-test. Overall survival of patients was
the end point of the analysis. Survival time was calculated from the date of tumour
diagnosis to the date of death. Patients who were not deceased were censored at
the date of last contact. Mean follow-up time was computed among censored
observations only. Kaplan–Meier survival curves according to genotype were
generated and the homogeneity of the survival curves between genotypes was
evaluated using the log-rank test. Power to demonstrate a relationship between
mutation status and overall survival was estimated using sample size formulae for
comparative binomial trials40.

Cell culture. Human embryonic kidney HEK293T cell line (American Type
Culture Collection) was maintained in a 5% CO2-regulated incubator in DMEM
Glutamax (Life Technologies), completed with 10% fetal bovine serum and peni-
cillin/streptomycin (Life Technologies).

Plasmid construction. To construct the TCF12 wild-type plasmid, we cloned, by
Gateway recombination (Life Technologies), a pENTR221 TCF12 Ultimate ORF
Clone (Life Technologies) into a pDEST12 lentiviral vector (kind gift from
P. Ravassard), under the control of hCMV promoter. The M260fs*5 and R326S
mutations were generated by PCR mutagenesis using the Q5 Site-directed
Mutagenesis kit (New England Biolabs) on pENTR221 TCF12 plasmid (primer
sequences are detailed in Supplementary Data 5) and then cloned into the
pDEST12 vector by LR Gateway cloning. Synthetic NdeI/MfeI fragments
(encompassing sequences from exon 16 to the TAG stop codon of the
ENST00000438423 isoform), containing the mutations E548fs*13, R602M and
S683fs*14, were obtained from GeneCust, then substituted into pENTR221
and finally cloned by Gateway recombination into the pDEST12 plasmid. All
expression plasmids were sequenced before use.

Luciferase expression assays. For each experiment, 105 exponentially growing
HEK293T cells were seeded in 12-well plates and transfected 24 h later using
Fugene6 (Promega), according to manufacturer’s instructions, with 0.3 mg of a
reporter plasmid encoding firefly luciferase under the control of an E-box-
responsive element (Eb, kind gift from A. Lasorella), or 0.3 mg of Eb plasmid and
0.7 mg of a TCF12 wild-type expression plasmid, or 0.3 mg of Eb plasmid and 0.7 mg
of either TCF12 mutant (M260fs*5, R326S, E548fs*13, R602M or S628fs*14)
expression plasmid. For all points, data were normalized by adding 30 ng of renilla
luciferase expression plasmid (pGL4.73, Promega, gift from F. Toledo). Cells were
harvested 24 h after transfection, and luminescence was monitored using the
Dual-Glo Luciferase assay system (Promega), according to the manufacturer’s
instructions, on a Spectramax M4 instrument and SoftMax Pro 6.2.2 software.
All samples were run in triplicate, in four independent experiments.

Immunohistochemistry. Paraffin-embedded tumour sections were deparaffinized
using standard protocols. Heat-mediated antigen retrieval was achieved by boiling
sections in a pressure cooker with Citrate buffer at pH 6. Sections were blocked in
10% goat serum in PBSþ 0.5% Triton X-100 for 30 min prior to incubation with
an anti-TCF12 antibody (Proteintech Cat no.: 14419-1-AP) and then revealed
using the Polink-2 HRP Plus Rabbit DAB Detection System (GBI Labs:D39-6).
Photographs were taken at � 400 magnification and processed using AxioVision
software (Zeiss). The mitotic index in tumours was recorded as the number of
mitotic figures in 10 high-power fields.

TCGA data. To complement our analysis, we made use of exome sequencing data
on AO tumours generated by the TCGA (Supplementary Data 2).
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ICM APHP and the Institut National du Cancer (INCa) (http://www.e-cancer.fr).
Research in Huillard and Sanson labs has received funding from the program
‘Investissements d’avenir’ ANR-10-IAIHU-06. Grant support from Génome Québec,
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Department, 51100 Reims, France. 31Hôpital de la cavale blanche, CHU Brest, Neurosurgery Department, 29609 Brest, France. 32Hôpital Nord, CHU Amiens,
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Whole-exome sequencing reveals the mutational
spectrum of testicular germ cell tumours
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Testicular germ cell tumours (TGCTs) are the most common cancer in young men. Here we

perform whole-exome sequencing (WES) of 42 TGCTs to comprehensively study the cancer’s

mutational profile. The mutation rate is uniformly low in all of the tumours (mean 0.5

mutations per Mb) as compared with common cancers, consistent with the embryological

origin of TGCT. In addition to expected copy number gain of chromosome 12p and mutation

of KIT, we identify recurrent mutations in the tumour suppressor gene CDC27 (11.9%). Copy

number analysis reveals recurring amplification of the spermatocyte development gene FSIP2

(15.3%) and a 0.4 Mb region at Xq28 (15.3%). Two treatment-refractory patients are shown

to harbour XRCC2 mutations, a gene strongly implicated in defining cisplatin resistance. Our

findings provide further insights into genes involved in the development and progression of

TGCT.
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T
GCTs are the most common cancer affecting young men,
with a mean age at diagnosis of 36 years1,2. The main
TGCT histologies are seminomas, which resemble

undifferentiated primary germ cells, and non-seminomas, which
show differing degrees of differentiation. Cure rates for TGCTS
are generally high, due to the sensitivity of malignant testicular
germ cells to platinum-based chemotherapies, however this is at
the cost of an increased risk of metabolic syndrome, infertility
and secondary cancer3–5. Furthermore, there are limited options
for the patients who are platinum resistant, a group for whom the
long-term survival rate is poor6.

Overall, TGCTs are markedly aneuploid with recurring gain
of chromosomes 7, 8, 21, 22 and X7–13. In addition, gain
of chromosomal material from 12p is noted in virtually all
cases7–9, with genomic amplification and overexpression of genes
in the 12p11.2-p12.1 region reported in B10% of TGCTs14.
KRAS is located in this region and has been proposed as the
candidate driver14. Focused studies of TGCTs have identified
somatic missense mutations and amplifications of the oncogene
KIT, present in B25% of seminomas15,16. These reported
mutations are clustered in the juxta membrane and kinase
encoding domains of KIT15,16. However, a study of 518 other
protein kinase encoding genes failed to conclusively identify any
new driver mutations17. Beyond these focused interrogations of
specific genes, no systematic mutational analysis across all genes
in a large series of TGCT samples has been reported to our
knowledge.

Here we perform WES of a series of 42 TGCTs to characterize
the mutational signature of these tumours and to search for
additional driver mutations and pathways disrupted. Our
analyses demonstrate these tumours to be relatively homogeneous
in profile with a markedly low rate of non-synonymous
mutations and provide some novel insights into the genomic
architecture of this biologically interesting tumour type.

Results
Overview of TGCT mutational landscape. The 42 TGCT cases
comprised 16 seminomas, 18 non-seminomas, 4 mixed semi-
noma/non-seminoma histology and 4 tumours of indeterminant
classification. Fresh frozen tumour tissue and matched germline
blood samples were obtained from each patient and WES was
performed on extracted DNA, achieving mean coverage of 72�
across targeted bases with 86% of targeted bases being covered at
Z20. Sequencing was conducted using Ilumina technology, with
subsequent alignment, mapping and variant calling performed
using Burrows–Wheeler Aligner (BWA)/Stampy/GATK/MuTect
software. Across all 42 cases a total of 1,168 somatic single
nucleotide variants (SNVs), and 111 small scale somatic insertion
–deletions (indels) were identified, resulting in a combined total
of 795 non-synonymous mutations, equating to a mean rate of
0.51 somatic mutations per Mb. By comparison, recent large-scale
analysis across 27 cancer types recorded mean rates as high as
11.0 Mb� 1 in melanoma and 8.0 Mb� 1 in lung cancers with a
mean rate across all tumour types of 4.0 Mb� 1, some eight times
higher than that seen here in TGCT (ref. 18). Indeed the mutation
rate in TGCT is within the second lowest decile,
only marginally greater than paediatric cancers such as Ewing
sarcoma (0.3 Mb� 1) and Rhabdoid tumour (0.15 Mb� 1). This
observation is entirely consistent with oncogenic origins of TGCT
arising during embryonic development19. Of additional note is
the high intra-patient homogeneity in mutation rate present in
our data, with a s.d. of just 0.24 across the 42 tumours and the
extreme lowest to extreme highest mutation rate varying by only
1 order of magnitude. This variation is low compared with the 3
orders of magnitude inter-sample variation observed for acute

myeloid leukaemia, which has a comparable mutation rate18.
Of note, there were no genes that were recurrently mutated or
structural variants shared between the tumours in which the
mutational rate was 42 s.d. above the mean (two tumours). The
mutational spectrum of SNVs in the TGCTs was typified by an
excess of CG4TA transitions (27% of SNVs), as observed in
most solid tumours18,20 (Fig. 1). In addition, TA4CG transitions
(23%) as well as CG4AT transversions (31%, of which the
majority were C4A) were also over-represented. While C4A
transversions are observed at higher proportion in lung cancers
postulated to be due to exposure to tobacco carcinogens18, this
pattern is also has also been reported in melanoma,
neuroblastoma and chronic lymphocytic leukaemia21.

Driver genes. We used MutSigCV version 1.4 to identify genes
harbouring more non-synonymous mutations than expected by
chance given gene size, sequence context and gene-specific
background mutation rates18. KIT was identified as the most
significantly mutated gene (Fig. 2), with mutations seen in 14.3%
across all TGC tumours, but predominantly found in seminomas
(31.3%); a result consistent with previously reported
observations16,22. All of the six KIT mutations we identified
were in hotspot domains—five non-synonymous SNVs in exon
17 (kinase encoding domain) and one in exon 11 (juxta
membrane domain). The absence of another gene ranked above
KIT is a notable result, given our study assesses an exome-wide
compliment of genes. In addition to KIT, a non-synonymous
SNV was also observed in previously proposed TGCT driver gene
KRAS. While p53 mutations have been suggested to be a feature
of TGCT23, none were observed in our data set, consistent with
most recent studies17,24,25. We validated all KIT/KRAS mutations
called by next generation sequencing (NGS) using Sanger
sequencing of the respective exons across all samples and to
ensure no additional mutations were missed. In all cases, Sanger
sequencing was 100% concordant with NGS.

In addition to KIT and KRAS, there was an over-representation
of mutations in cell division cycle 27 (CDC27) (11.9%;
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Figure 1 | TGCT somatic SNV spectrum exome wide. Proportions are

displayed for all 12 possible SNV alterations, collapsed by strand

complementarity. Each line represents one of the 42 tumours.
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5 mutations, 5 tumours) and PRKRIR (4 mutations, 2 tumours),
neither of which have been previously reported as TGCT drivers.
CDC27 is a core component of the anaphase-promoting complex/
cyclosome, a multi-subunit E3 ubiquitin ligase that governs cell
cycle progression, through ubiquitination and degradation of G1/
mitotic checkpoint regulators26. Anaphase-promoting complex/
cyclosome recruits its substrates via one of the two adaptor
proteins CDC20 or CDH1, overexpression of which have been
linked to multiple tumours27–29. CDC27 is downregulated in
breast cancer and CDC27 is postulated to be a tumour
suppressor30. All of the CDC27 mutations we identified were
missense variants, characterized by a consistently low frequency
of mutant allelic reads (8–14%), consistent with CDC27 mutation
being present only in a subclone of each tumour sample.
Intriguingly subclonal low frequency of CDC27 mutation has also
recently been demonstrated in a colonic adenocarcinoma31.

Pathway analysis. To increase our ability to identify cancer dri-
vers and delineate associated oncogenic pathways for TGCT, we
incorporated mutation data from multiple tumour types using
Oncodrive-fm32 as implemented within the IntOGen-mutations
platform33. The most frequently mutated pathways were those
involved in metabolism (mutated in 93%), pathways in cancer
(54%), endocytosis (54%) and PI3K–Akt signalling (54%). The
most significantly mutated pathway was RNA degradation
(14.6%), with a biased accumulation of functional mutations
(fm-bias, P¼ 3.8� 10� 3), observed across six different genes (see
methods and Supplementary Table 2).

Copy number variation. The 42 tumours were analyzed for
copy number variation (CNV) using software package Exo-
meCNV34. Focal CNVs (up to 3 Mb) were identified in all tumours
and large-scale CNVs (Z3 Mb) were detected in 35 (83%) tumours,

(Fig. 3). Across all 42 cases the proportion of the tumour genome
showing CNV ranged from 0.1 to 48.4% per genome (mean 10.8%).
The most frequent large-scale chromosome abnormality was 12p
copy number gain, present in 30 of the 42 tumours (71%), of which
25 were 12p isochromosomes, a result consistent with previous
experimental observations7–9. The remaining 12 cases without
large-scale 12p gain all showed evidence of focal copy number
amplification of 12p, however, detailed analysis of these sub-regions
did not reveal any recurring hotspots. Other recurring large-scale
copy number changes included gain of chromosome X (16 cases,
38%) as well as gains of chromosomes 7 (n¼ 15; 36%), 21 (n¼ 12;
29%) and 22 (n¼ 11; 26%), findings again consistent with previous
studies7–13. In addition, we observed large-scale copy number
deletion of chromosome Y (10 cases, 24%). We used previously
generated chromosomal comparative genomic hybridization (CGH)
data for 24 of the tumours12,35,36 to validate our large-scale CNVs
for the known mutational event at 12p; concordance between NGS/
CGH was 92%.

In terms of focal events three tumours (patients 115, 53 and 43)
exhibited a high degree of chromosomal instability, with a 19-fold
increase in focal alterations compared with the others. We
assessed these cases for evidence of chromothripsis, which we
defined as 420 CNVs on a chromosome single arm. While this
technical definition was met for several loci, the majority of
events were spread uniformly across the genome with no
common hotspots across the three tumours. Excluding these
three tumours we undertook an analysis of the focal alterations
seen in the remaining 39 tumours to identify any recurrent
patterns. Mapping the coordinates of all focal copy number
events to genes, all possible gene alterations were assessed, quality
filtered and ranked by frequency (Table 1 and methods). The
highest ranking gene from this analysis was fibrous sheath
interacting protein 2 (FSIP2) at 2q32.1, with seven recurring
amplifications observed across six (15.3%) tumours. FSIP2

Age at Diagnosis 45 33 33 27 – 49 46 – 36 33 27 33 25 44 – 23 25 – 26 22 – 21 29 – 23 – 34 27 18 24 23 19 – 16 – – 38 34 49 31 49 –
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4.8% NDUFV2
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amplifications were all 8–9 kb in length spanning a sub-region of
the gene coding sequence, encompassing exons 16–17. Recent
functional evidence has demonstrated that part-gene amplifica-
tions do affect gene expression levels, with an effect size
comparable to that of full-gene amplification37. Our finding of
recurrent FSIP2 amplification is corroborated by recent high
resolution SNP array data on an independent series of
seminomas38, which documented FSIP2 amplification in 22% of
tumours. Across both studies FSIP2 is the only gene consistently
observed with focal amplification in 410% of cases. There is a
strong biological basis for abnormalities of FSIP2 being a feature
of TGCTs a priori. The fibrous sheath is a cytoskeletal structure
located in the principle piece region of the sperm flagellum.
Transcription of FSIP2 begins in late spermatocyte development

with mouse model data demonstrating it to be expressed
exclusively in the testis39. Furthermore, FSIP2 also binds to
another fibrous sheath enzyme A kinase (PRKA) anchor protein 4
(AKAP4), which has been linked to male infertility40.
Interestingly the tumour from patient 21, which harboured a
FSIP2 amplification, also carried a missense mutation in
AKAP4.

Other focal events observed included a 0.4 Mb region at Xq28,
with amplification in six cases. This region contains 18 genes,
including testis expressed 28 (TEX28) and transketolase like
gene 1 (TKTL1), both of which are overexpressed in the human
testis41. TKTL1 is hypothesized to play a role in tumour response
to hypoxia with increased TKTL1 expression correlating with
poor patient outcome in many solid tumours42.
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Clinicopathological-molecular associations. SNV/indel somatic
mutation rates between seminoma and non-seminoma cases were
almost identical; 0.50 mutations per Mb and 0.49 mutations per
Mb respectively. KIT mutations were observed predominantly in
seminoma cases, as previously reported. The proportion of the
genome showing CNV was elevated (þ 47%) in non-seminona
tumours. A correlation between somatic mutational rate and
patient age was seen (r¼ 0.36), with the mean rate for patients
aged 440 years being 0.69 compared with 0.48 for cases o40
(P¼ 0.05, two-sided Student’s t-test). This is consistent with a
model in which the majority of mutations are passenger muta-
tions that accumulate with patient age following the early in utero
oncogenic transformation of germ cells. Of particular clinical
interest is the mutational profile of treatment-refractory TGCT, a
rare subset of B3% of patients in whom there is disease pro-
gression despite platinum-based chemotherapy. Within our
cohort only one such patient, 40, had this profile of therapeutic
response, so any conclusions are speculative. Accepting this
caveat the mutational rate for this tumour was 0.49 Mb� 1, a rate
comparable to the overall cohort, and of the 18 SNVs identified in
this patient (see Supplementary Table 1), a mutation in gene
XRCC2 (c.6T4Gp.Cys2Trp) is of particular note. XRCC2
encodes a member of the RecA/Rad51-related protein family,
which participates in homologous recombination maintaining
chromosome stability and repair of DNA damage. Importantly
XRCC2 mutant animal clones show increased resistance to cis-
platin through enhanced DNA repair activity43, and XRCC2
germline variants have been shown to significantly associate with
cytotoxic resistance in breast cancer44. In addition to the
treatment-refractory patient in our main cohort, we also
performed exome sequencing of tumour DNA from one
additional platinum refractory case (germline DNA was not
available, patient 109), identifying a further mutation in XRCC2
(c.2T4Gp.Met1Arg). This additional variant had alternative
allele frequency of only 4%, making it difficult to validate by
Sanger. Both XRCC2 mutations are predicted to be pathogenic on
the basis of in silico analysis using the CONDEL algorithm
(CONsensus DELeteriousness (CONDEL) score of non-
synonymous SNVs, http://bg.upf.edu/fannsdb/help)45,46.

Discussion
Our exome analysis has confirmed mutation of KIT and recurrent
copy number gain of 12p as archetypical features of TGCT. We
have also characterized the mutational signature of TGCTs,
demonstrating a homogeneous profile with a markedly low SNV
mutation rate, consistent with the embryonic origins of the
disease. This low rate of point mutations (that is, SNVs) is
contrasted, however, by frequent large-scale copy number gains,
of not only 12p but also chromosomes 7, 21, 22 and X. Since our
study was empowered to identify recurrent mutations having
frequency of 415% (84% power), we can conclude that it is
unlikely that additional high frequency driver mutations will
exist.

We did, however, identify novel mutations in the probable
tumour suppressor gene CDC27, implicating CDC27 mutation as
a potential oncogenic factor in a subset of TGCTs. Functionally
CDC27 interacts with spindle checkpoint proteins encoded by
MAD2 (ref. 47) and TEX14 (ref. 48) genes, the latter of which
resides in a linkage disequilibrium block associated through
recent genome-wide association study (GWAS) with germline
TGCT predisposition49. Interestingly three of the other TGCT
GWAS risk loci contain genes also related to mitotic spindle
assembly—MAD1L1, CENPE and PMF1 (refs 49,50). Collectively,
such observations provide further evidence of commonality
between germline and somatic TGCT pathways, a notable result
given the previous precedent that KITLG, the ligand which binds
KIT, is the only gene within the linkage disequilibrium block at
the strongest existing TGCT GWAS risk locus (odds
ratioB2.5)51. Aside from CDC27, we also observed mutations
in several other genes at a frequency of o10%; at this lower
frequency our study was not sufficiently powered to
comprehensively evaluate the genetic mutational profile (our
power to detect mutations with frequencies of 10% and 5% was
only 14%).

Previous CGH studies have characterized the aneuploidy
nature of TGCTs, and our findings are consistent with these
analyses. We hypothesized that NGS exome data, with average
probe lengths of B200 bp, would allow identification of novel
small-scale CNVs below the level detectable by CGH. We
performed this analysis and identified recurring focal copy
number alterations in the spermatocyte development gene FSIP2,
a finding corroborated by previous independent orthologous
study. Meta-analysis of the two experiments shows this to be
significant at P¼ 6.8� 10� 9. FSIP2 is shown to be unique to
spermatogenic cells and is hypothesized to act as a linker protein,
binding AKAP4 to the fibrous sheath39. Dysplasia of the fibrous
sheath and mutations in AKAP4 have both been linked to male
infertility40,52, an established risk factor for TGCT53. The
additional observation of an AKAP4 missense mutation further
implicates this pathway, although the exact mechanisms
facilitating tumorigenesis remain to be elucidated. Furthermore,
we observed recurrent deletion of chromosome Y, a finding that
also has interesting resonance with the germline as chromosome
Y ‘gr/gr’ germline deletions are linked to both TGCT
predisposition and male infertility54,55. In addition, we
identified a recurring focal amplification of 0.4 Mb in length at
Xq28, a region encompassing 18 genes, several of which may
plausibly link to TGCT. Several observations implicate
chromosome X in germ cell oncogenesis, with family studies
suggesting a possible X-linked model of inheritance for TGCT
genetic susceptibility56. In addition, patients with Klinefelter
syndrome (47XXY constitutional karyotype) have a 67-fold
elevated risk of developing mediastinal germ cell tumours57.

We found no significant difference observed in the mutational
rate between seminoma and non-seminoma cases. This is
consistent with findings from germline genetic studies of TGCT,

Table 1 | Genes with five or more recurrent copy number
gains/losses.

Gene (s) Region Losses Gains Total
CNVs

FSIP2 2q32.1 2 7 9
AK2 1p35.1 0 7 7
ZNF644 1p22.2 0 7 7
ENPP3 6q23.2 0 7 7
MUC12 7q22.1 0 7 7
AHNAK2 14q32.33 0 7 7
TSPEAR 21q22.3 0 7 7
FLG 1q21.3 1 6 7
AK056431 1q21.3 1 6 7
HCFC1, TMEM187, MIR3202-1, IRAK1,
MIR718, MECP2, OPN1LW, TEX28,
OPN1MW, TKTL1, FLNA, EMD,
AK307233, RPL10, SNORA70,
DQ570720, DNASE1L1, TAZ

Xq28 0 6 6

CHRND 2q37.1 0 6 6
CTAGE9 6q23.2 0 6 6
MUC5B 11p15.5 0 6 6

CNV, copy number variation.
Focal CNVs included are defined as o3 Mb in length. See methods for further details on quality
filters applied.
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where no differential genotype risk has been observed between
histological sub-groups49,51,58. This supports a hypothesis of
commonality in the oncogenic pathways activated, with
differentiation occurring later in the tumour formation. This
hypothesis is further supported by the observation of TGCT cases
with mixed pathology59, as well as bilateral and familial cases
displaying tumours with inconsistent histological types60,61.
Descriptive analysis of a single treatment-refractory patient in
our cohort revealed a XRCC2 mutation, a DNA repair gene which
has been demonstrated to promote cisplatin resistance in animal
studies43. Further analysis of one additional treatment-refractory
tumour sample revealed some evidence for a second XRCC2
mutation. Cell line studies suggest that the exceptional sensitivity
of TGCTs to cisplatin is due to their inability to repair treatment-
induced DNA damage, due to the low expression of DNA repair
genes such as ERCC1 (ref. 62). In addition, cisplatin-resistant
embryonal carcinoma cell lines show sensitivity to poly(ADP-
ribose) polymerase (PARP) inhibition, through blocking their
acquired ability to repair DNA63. The observation of XRCC2
mutations in our patient tumour data expands on these previous
animal and cell line studies, further supporting an important role
for this pathway.

To our knowledge this study represents the largest compre-
hensive sequencing study of TGCT conducted to date. While we
have implemented strategies to accurately identify the mutational
landscape of this tumour, we were only well powered to identify
genes with high mutational frequency. Hence further insights into
the biology of TGCT should be forthcoming through additional
sequencing initiatives and meta-analyses of such data. This is
likely to be especially important given the importance of probable
histological subtype-specific changes, the subclonal architecture
of TGCT and differences that are likely to be seen in platinum-
resistant tumours.

Methods
Sample description. Samples were collected from TGCT patients at the Royal
Marsden Hospital NHS Trust, UK. Informed consent was obtained from all par-
ticipants and the study was approved by the Institute of Cancer Research/Royal
Marsden Hospital Committee for Clinical Research (study number CCR2014). The
samples have been previously reported in other studies10,12,36,61,64. Surgical
specimens were snap frozen within 30 min of surgery and matched blood samples
were collected at the time of surgery. Tumour samples were trimmed to remove
surrounding normal tissue, and tumour cells were confirmed by histological
assessment. Tumour and matched lymphocyte DNA were extracted by standard
techniques65,66. Tumour samples from patients 26 and 9 were obtained post
chemotherapy. Clinical characteristics of our sample cohort were representative of
the broader patient population, in terms of histological sub-types, patient age,
familial TGCT and response to treatment. Our series was, however, enriched for
cases with bilateral disease (9/42 cases in our series compared with a frequency of
B5% in the broader patient population).

Whole-exome sequencing. Samples were quantified using Qubit technology
(Invitrogen, Carlsbad, CA, USA) and sequencing libraries constructed from 50 ng
of respective normal/tumour DNA. Library preparation was performed using
37 Mb Nextera Rapid Capture Exome kits (Ilumina, San Diego, CA, USA), with
enzymatic tagmentation, indexing PCR, clean-up, pooling, target enrichment and
post-capture PCR amplification/quality control performed in-house, following
standardized protocols as per manufacturer guidelines. Samples underwent paired-
end sequencing using the Ilumina HiSeq2500 platform with a 100-bp read length.
Mean coverage of 73.6� and 69.0� were achieved across targeted bases for
tumour and normal samples, respectively. FASTQ files were generated using
Illumina CASAVA software (v.1.8.1, Illumina) and aligned to the human reference
genome (b37/hg19) using BWA (v. 0.5.10, http://bio-bwa.sourceforge.net/)/
Stampy (v.1.0.23) packages. PCR duplicates were removed and coverage metrics
were calculated using Picard-tools (v.1.48, http://picard.sourceforge.net/). Coverage
metrics demonstrated a mean of 95% of target bases achieved 410� coverage
and 86% 420� . The Genome Analysis Toolkit (GATK, v. 3.1-1, http://www.
broadinstitute.org/gatk/) was used for local indel realignment/base quality score
recalibration and SNVs were called using MuTect (v. 1.1.4). Data was quality
filtered using in-house FoxoG software to remove potential artefactual variants
introduced through DNA oxidation21. FoxoG ensured variants were supported by a
minimum of one alternative read in each strand direction, a mean Phred base

quality score of 426, mean mapping quality Z50 and an alignability site score of
1.0. Small-scale insertion/deletions (indels) were called using GATK.

We used MutSigCV (v.1.4) to identify genes that somatically mutated more often
than would be expected by chance18, after first excluding common germline SNPs
with minor allele frequency 425% as recorded in either dbSNP (http://www.ncbi.
nlm.nih.gov/SNP/), 1000 genomes (http://www.1000genomes.org) or in our in-house
data from exome sequencing of the UK 1958 birth cohort (Houlston et al., personal
communication). In total, 33 common germline SNP variants were removed across
all samples. MutSigCV was run using the standard genomic covariates of (i) global
gene expression data, (ii) DNA replication time and (iii) HiC statistic of open versus
closed chromatin states. We used Oncodrive-fm32 as implemented within the
IntOGen-mutations platform67, using data mutation data from multiple tumour
studies (http://bg.upf.edu/group/projects/oncodrive-fm.php; http://www.intogen.org/
analysis/mutations/)

Confirmation sequencing. Confirmation sequencing was performed with bidir-
ectional Sanger sequencing of KIT (exons 11 and 17) and KRAS (exon 2) across all
84 tumour/normal samples. Primer sequences are shown in Supplementary
Table 3. Mutational analysis was conducted using Mutation Surveyor (v.3.97,
SoftGenetics, State College, PA, USA).

CNV analysis. CNV analysis was conducted using the CRAN package Exo-
meCNV34, a statistical algorithm designed to detect CNV, and loss of
heterozygosity (LOH) events using depth-of-coverage and B-allele frequencies
(https://secure.genome.ucla.edu/index.php/ExomeCNV_User_Guide). ExomeCNV
is calibrated to achieve high levels of sensitivity and specificity, with a power to
detect 95% for CNVs down to 500 bp in length34. When recently tested using a
matched tumour/normal exome data set with B40� coverage, ExomeCNV
achieved 97% specificity and 86% sensitivity compared with results from Illumina
Omni-1 SNP array34. To calculate CNVs, we first generated coverage files using
GATK, and then used ExomeCNV to calculate log coverage ratios between
matched tumour/normal samples and make CNV calls per exon. Exonic CNV calls
were combined into segments using circular binary segmentation. LOH calls were
made by first identifying all heterozygous germline positions per case, using
Platypus (v.0.5.2) for germline variant calling. GATK was then used to create BAF
files per case and ExomeCNV used to call LOH at heterozygous positions
individually and at combined LOH segments.

CNV results were classified as large-scale (43 Mb in length) or focal (o3 Mb)
and filtered by coverage ratio selecting copy number gain 41.3 or loss o0.7,
retaining calls with a specificity confidence score of 1.0. Focal events were analyzed
by gene, mapping the coordinates of all events to gene coding start and end points
to assess all possible gene alterations. Small-scale regions showing susceptibility to
variable levels of coverage, that is, exact same probes frequently altered and with
both copy number gain and loss, were removed to avoid false-positive associations.

Pathway analysis. Pathway analysis was performed using Oncodrive-fm32 as
implemented within the IntOGen-mutations platform67, using the 1,168 SNVs and
111 indel mutations called across the 42 tumours.

Statistical analyses. Statistical significance of mutations were determined by
testing whether the observed mutation counts in a gene significantly exceeded the
expected counts based on a gene-specific background mutation rate, as imple-
mented in MutSigCV (v.1.4). Plotted in the far section of Fig. 2 are the resulting
� log10 (P values), with the dotted red line denoting a significance threshold of
P¼ 0.05 and the solid red line a genome-wide significance threshold of P¼ 5
� 10� 6. Due to the overall low frequency of mutations observed in our data set,
and the way such tumour types are treated by MutSigCV, no genes were significant
at the genome-wide level, not even previously known TGCT driver gene KIT.
Power analysis was conducted using a binomial power model, based on recent
methods published by the Cancer Genome Analysis group at the Broad Institute68,
incorporating the average background somatic mutation rate specifically observed
for TGCT, sample size and assuming a genome-wide significance level of
Pr5� 10� 6. Significance of focal copy number events by gene was calculated
under a binomial distribution. Meta-analysis was conducted using the Fisher
method of combining P values from independent tests. Statistical analysis were
carried out using R3.0.2 (http://www.r-project.org/) and Stata12 (StataCorp,
Lakeway Drive College Station, TX, USA) software. Continuous variables were
analyzed using Student’s t-tests. We considered a P value of 0.05 (two sided) as
being statistically significant.
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ABSTRACT
Little is known about the genomic basis of primary central nervous system 

lymphoma (PCNSL) tumorigenesis. To investigate the mutational profile of PCNSL, we 
analyzed nine paired tumor and germline DNA samples from PCNSL patients by high 
throughput exome sequencing. Eight genes of interest have been further investigated 
by focused resequencing in 28 additional PCNSL tumors to better estimate their 
incidence. Our study identified recurrent somatic mutations in 37 genes, some 
involved in key signaling pathways such as NFKB, B cell differentiation and cell cycle 
control. Focused resequencing in the larger cohort revealed high mutation rates 
for genes already described as mutated in PCNSL such as MYD88 (38%), CD79B 
(30%), PIM1 (22%) and TBL1XR1 (19%) and for genes not previously reported to be 
involved in PCNSL tumorigenesis such as ETV6 (16%), IRF4 (14%), IRF2BP2 (11%) 
and EBF1 (11%). Of note, only 3 somatically acquired SNVs were annotated in the 
COSMIC database. Our results demonstrate a high genetic heterogeneity of PCNSL 
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INTRODUCTION

Primary central nervous system lymphoma 
(PCNSL) represents a rare subgroup of diffuse large 
B-cell lymphoma (DLBCL) that arises in the brain, eyes, 
meninges or spinal cord, accounting for up to 5% of 
primary malignant brain tumors and 1% of non-Hodgkin’s 
lymphomas (NHL) in adults. Despite the application of 
intensive treatment including high-dose methotrexate 
based poly-chemotherapy with or without whole brain 
radiotherapy, the median overall survival ranges from 
2 to 4 years with a poorer prognosis than extracerebral 
DLBCL [1]. The pathogenesis of PCNSL remains largely 
unclear, which is partly due to the rarity of the tumor 
tissue available for research studies. Transcriptomic 
studies have identified deregulated genes involved in the 
IL4/JAK/STAT6, cell adhesion-related, unfolded protein 
response (UPR) and apoptosis signaling pathways [2–5]. 
Copy number variation studies [4, 6–8] have revealed 
frequent chromosome losses affecting the 6q, 6p21.32 
and 9p21 regions. However, the mutational landscape of 
PCNSL is still poorly known. A whole exome sequencing 
strategy has successfully identified pivotal gene mutations 
in several hematologic and brain malignancies [9, 10]. In a 
previous study, we have reported preliminary results based 
on four PCNSL cases investigated by this technique and 
identified recurrent mutations in MYD88 and TBL1XR1 
[8]. Here, we have expanded our series and we present 
the results of nine paired germline and tumour samples, 
allowing for the identification of recurrent gene mutations 
that have not yet been reported in PCNSL. We confirmed 
the most relevant mutations and genes in a validation set 
of 28 PCNSL cases.

RESULTS

Mutational pattern of PCNSL revealed by whole 
exome sequencing

To investigate the mutational profile of PCNSL, we 
performed high throughput exome sequencing on 9 cases. 
DNA from case-matched blood was also sequenced to 
screen out germline polymorphisms. On average, 9.8e7 
(8.1e7-1.4e8) 75-bp paired reads were sequenced per 
sample, 5.8e7 (3.8e7-8.3e7) of these were specifically 
positioned onto the human reference exome (as defined 
by the Agilent SureSelect 50 Mb probes) after the 
removal of both low-quality mapped reads and potential 

PCR-derived duplicates (Supplementary Figure 1). This 
provided 76% (64-86) coverage over the targeted regions 
at a minimum depth of 20X (Supplementary Figure 
2), wherein 82% of the bases were suitable for variant 
detection. Across the coding regions of the 9 matched 
tumor and germline pairs we investigated, we detected 
17e3 (15e3-19e3) SNVs and 226 (176-263) indels. A total 
of 25e3 (20e3-32e3) SNVs and 21e2 (18e2-27e2) indels 
were also called outside of the targeted exons, but those 
primarily fell into neighboring introns and, in most cases, 
were already described as known polymorphisms. To 
assess the quality of our calls, we reviewed population-
scale variant distributions from the 1000-genomes project 
and found no difference with either paired germline or 
PCNSL samples when considering all high-quality called 
SNVs and comparing the (i) transition to transversion 
rates, (ii) mutational spectrum and (iii) variant annotation 
(Supplementary Figure 3). Then, we focused on somatic 
SNVs identified in tumor DNA and not present in germline 
DNA (Figure 1). On average, we identified 220 (126-
358) somatically acquired point mutations per sample 
and no hypermutated tumors were found. Among them, 
62 (26-101) and 143 (89-231) were synonymous and 
non-synonymous, respectively. The non-synonymous to 
synonymous ratio was thus 2.4 (1.8-3.4), and there was 
a non-silent mutation rate of 2.9 (1.8-4.6) per Mb, the 
latter being lower than previously published estimations 
in DLBCL [11]. Half of those non-synonymous SNVs, 
i.e., 74 (49-111) were predicted as functionally deleterious 
in the dbNSFP database [12, 13]. Transitions accounted 
for 68% of somatic events (Figure 1B) similar to pattern 
observed in DLBCL [14, 15]. To confirm the depth at the 
somatic mutation sites, reads aligned at these genomic 
positions were visualized using IGV software (Broad 
Institute). 

Identification of 37 genes recurrently affected by 
somatic non-synonymous mutations

Only SNVs located within coding regions were 
considered. After having removed germline variations, 
synonymous SNVs, indels and known polymorphisms, 
we identified 37 genes, harboring 142 somatically point 
mutations (Supplementary Table 1), that were mutated in 
at least 2 patients. Among these 142 mutations, 133 led 
to an amino acid exchange while the remaining nine led 
to the gain or loss of a stop codon. These 37 recurrently 
mutated genes were prioritized based on (i) the number of 
mutated tumors, (ii) the prediction of the functional impact 

and mutational pattern similarities with extracerebral diffuse large B cell lymphomas, 
particularly of the activated B-cell (ABC) subtype, suggesting shared underlying biological 
mechanisms. The present study provides new insights into the mutational profile of PCNSL 
and potential targets for therapeutic strategies.
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Table 1: Prioritization of the 37 genes of interest identified by whole exome sequencing. The present study 
identified 37 genes affected by non-synonymous somatic SNVs in at least 2 of the 9 patients of the discovery 
set. In this table are listed all these genes prioritized according to (i) number of mutated patients, (ii) functional 
impact prediction (FISM), (iii) number of mutations per gene. Functional impact prediction columns indicate 
the number of patients harboring at least one mutation for each FISM category (1 corresponds to the highest 
impact). Of importance, number of mutated patients and number of mutations per gene take into account all 
somatic mutations identified by exome sequencing before any attempt of validation.

Functional prediction impact (FISM)
Genes Chromosome Mutations Patients NA ≥0.5 ≥0.6 ≥0.7 ≥0.8 ≥0.9 =1
PIM1 6 32 8 0 8 8 7 6 6 5
IGLL5 22 12 6 6 0 0 0 0 0 0
MYD88 3 2 5 5 0 0 0 0 0 0
TBL1XR1 3 4 4 0 4 4 4 4 4 3
CSMD3 8 4 4 0 4 4 4 3 3 1
CD79B 17 3 3 0 2 2 2 2 2 1
HIST1H2AC 6 8 3 0 3 3 3 3 1 1
ETV6 12 5 3 0 3 3 2 2 1 1
KLHL14 18 7 2 0 2 2 2 2 2 2
IRF4 6 3 2 0 2 2 2 2 2 2
PRKCD 3 2 2 0 2 2 2 2 2 2
ABCC8 11 2 2 0 2 2 2 2 2 1
ZFHX4 8 2 2 0 2 2 2 2 2 1
SALL3 18 2 2 0 2 2 2 1 1 1
IRF2BP2 1 3 2 0 2 2 1 1 1 1
CD37 19 2 2 0 2 2 1 1 1 1
OSBPL10 3 7 2 0 2 2 2 2 2 0
EBF1 5 3 2 0 2 2 2 2 2 0
DST 6 2 2 0 2 2 2 2 1 0
MIF4GD 17 2 2 0 2 2 2 2 1 0
HIST1H1D 6 3 2 0 2 2 2 1 1 0
BTG1 12 2 2 0 2 2 2 1 1 0
MEP1B 18 2 2 0 2 2 2 1 1 0
THBS4 5 2 2 0 2 2 2 1 1 0
ADAMTS5 21 2 2 0 2 2 1 1 1 0
HIST1H1E 6 2 2 0 2 1 1 1 1 0
MPEG1 11 3 2 1 1 1 1 1 1 0
OBSCN 1 2 2 0 2 2 2 2 0 0
C10orf71 10 2 2 0 2 2 2 1 0 0
HMCN1 1 2 2 0 2 2 2 1 0 0
MYH4 17 2 2 0 2 2 1 1 0 0
TBC1D4 13 2 2 0 2 1 1 1 0 0
SLC2A12 6 2 2 0 2 2 1 0 0 0
ETS1 11 2 2 0 2 2 0 0 0 0
MUC16 19 2 2 2 0 0 0 0 0 0
UNC80 2 2 2 2 0 0 0 0 0 0
ACTG1 17 1 2 2 0 0 0 0 0 0
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and (iii) the number of SNVs per gene (Table 1). Then, 
somatic mutations were verified by Sanger sequencing 
on tumor and germline DNA. For PIM1 and MYD88 
genes, only “hot spot” mutations E226K and L265P, 
respectively, were validated. To better understand the 
biological processes that are potentially altered by somatic 
mutations, we used gene ontology [16] annotations for 
these 37 genes. This functional categorization highlighted 
the variability of the biological processes that are altered 
in PCNSL (Figure 2), including transcription (e.g., ETV6, 
IRF2BP2, EBF1, IRF4, TBL1XR1), cell cycle (e.g., 
PIM1, BTG1), nucleosome assembly (e.g., HIST1H1D, 
HIST1H2AC) and cell adhesion (e.g., MUC16, ACTG1). 
In terms of signaling pathways, we identified mutations 
in the genes involved in the NFKB, WNT and B-cell or 
T-cell receptor signaling pathways.

Analysis of 8 relevant genes in an independent 
series of 28 PCNSL

In order to specify their mutation frequency in 
PCNSL, we selected 8 genes for further investigation in 
an independent validation panel of PCNSL tumors (n=28). 
This selection was based both on high mutation rate in our 
discovery set and biological relevance. PIM1, TBL1XR1, 
ETV6, IRF4, IRF2BP2 and EBF1 were resequenced for 
their coding exons by pyrosequencing. We identified 

133 variations, including 122 SNVs and 11 deletions. 
Among them, 39 variations were missense mutations 
(Supplementary Table 2), including 35 variations that were 
not previously described in the dbSNP database as known 
polymorphisms. For each missense SNV, functional 
impact was predicted using SIFT or Polyphen2 tools and 
identified 11 SNVs with putative damaging consequences 
predicted by both softwares. Twenty-five out of the 35 
missense mutations were validated by Sanger sequencing 
and corresponded to 22 SNVs and 3 frameshift deletions. 
The somatic state of the validated mutations was verified 
with direct sequencing. Considering the whole cohort, 
including the discovery and the validation sets, somatic 
variations were found in 22% (8/37) of the PCNSL cases 
for TBL1XR1, 19% (7/37) for PIM1, 16% (6/37) for ETV6, 
14% (5/37) for IRF2BP2 and 11% (4/37) for IRF4 and 
EBF1 each (Fig 3A). Of note, 3 non-sense mutations 
affecting ETV6 and IRF2BP2 genes and 3 deletions 
leading to a frameshift in TBL1XR1, ETV6 and EBF1 
were observed (Figure 3B). Somatic mutations on the 
hot spots L265P of MYD88 and Y196 of CD79B were 
already referenced in the COSMIC database. One somatic 
mutation within the PIM1 gene was also identified in this 
database (e.g., COSM220740) as reported in DLBCL 
cases [9, 14]. Four other somatic mutations identified 
within the PIM1, ETV6 and IRF4 genes in this study 
occur in the same codon as the alterations that are mainly 
reported in hematopoietic or lymphoid malignancies. 

Figure 1: Mutation pattern of PCNSL samples investigated by whole exome sequencing. To address PCNSL mutational 
profile, whole exome sequencing was conducted in nine paired blood and tumor samples. (A) Pie chart represents relative distribution of 
somatically acquired mutations classified according to their type. (B) Histogram depicts the proportion of PCNSL somatic mutations in 
each mutational class of transitions and transversions compared with 1000-genomes project data (red line).
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Figure 2: Gene ontology of PCNSL genes. Relative distribution of the 37 genes somatically mutated in PCNSL by gene ontology 
categories. The spans of the arcs indicate the relative numbers of genes annotated with respect to gene ontology terms. Representative genes 
in each category are shown next to each arc.

Figure 3: Investigation of 8 relevant genes recurrently affected by point mutations in PCNSL. Based on genes identified by 
whole exome sequencing, we selected 8 relevant genes to be sequenced in a larger cohort: CD79B, EBF1, ETV6, IRF4, IRF2BP2, MYD88, 
PIM1 and TBL1XR1. (A) Repartition of validated mutations by gene within the whole population of 37 PCNSL cases. (B) Schematic 
representation of all validated mutations identified in the discovery (□) and the validation sets (○) with their position according to protein 
domains. Symbol color indicates mutation type. Number of □ or ○ indicates the number of mutated patients except for L265P MYD88 and 
Y196 CD79B mutations. 



Oncotarget5070www.impactjournals.com/oncotarget

Direct sequencing of MYD88 and CD79B focused on 
the hot spot mutations identified in the discovery panel; 
the L265P mutation was found in 4/9 cases, and Y196 
mutations were found in 3/9 cases. In the validation 
panel, 10 additional patients harbored the MYD88 L265P 
mutation and 8 additional cases harbored CD79B Y196 
mutations. Considering the whole population, MYD88 
L265P and CD79B Y196 mutations were identified in 38% 
(14/37) and 30% (11/37) of PCNSL tumors, respectively 
(Figure 3A), representing the most recurrently mutated 
genes in our series.

DISCUSSION

The present study investigated the coding 
genomes of PCNSL in order to provide information on 
the mutational landscape of these tumors. We described 
an overview of the genes that are recurrently mutated 
in PCNSL, including (i) genes previously known to be 
mutated in PCNSL, such as MYD88, CD79B, PIM1 and 
TBL1XR1; (ii) genes altered by somatic mutations in 
other B cell malignancies that have not yet been reported 
in PCNSL, such as ETV6, IRF4 or EBF1; and (iii) genes 
that are altered in solid tumors, such as IRF2BP2. These 
results reveal the genetic heterogeneity of this disease 
and highlight the major signaling pathways that are 
deregulated in PCNSL.

In our series, genes coding for nuclear factor-
κB (NFκB) pathway regulators (i.e., MYD88, CD79B 
and TBL1XR1) represented the most frequently altered 
genes. MYD88 encodes a signaling adaptor protein that 
induces NFκB and JAK/STAT3 pathway activation after 
the stimulation of the Toll-like and IL1/IL18 receptors as 
well as interferon β production [17, 18]. CD79B encodes 
a B-cell receptor (BCR) subunit that is essential for BCR 
signaling, leading to NFκB activation [19]. We identified 
MYD88 L265P and CD79B Y196 hot spot mutations in 
38% and 30% of the PCNSL patients, respectively. We 
confirm and expand the results of Montesinos-Rongen 
et al [20, 21] who have recently investigated PCNSL 
for mutations in several genes involved in the BCR 
signaling cascade and reported a 36% (7/14) and 20% 
(5/25) mutation rate in MYD88 and CD79B, respectively. 
These two hot-spot mutations have been described as 
oncogenic activating alterations leading to constitutive 
NFκB activation in DLBCL [22, 23]. Additionally, we 
found a significant association (p=0.0044, Chi-square test) 
between the MYD88 L265P and CD79B Y196 mutations, 
suggesting collaborative effects of the NFκB activating 
pathways in PCNSL. The TBL1XR1 gene, which encodes 
for a transcriptional regulator involved both in the Wnt/B 
catenin [24, 25] and NFκB pathways [26], was mutated 
in 22% of our PCNSL cohort. The TBL1XR1 mutation 
rate in our series and the recurrent deletions of 3q26.32 
(TBL1XR1 locus) reported in PCNSL [7], extracerebral 
DLBCL [15], and acute lymphoblastic leukemia [27, 28] 
suggest its potential role as a tumor suppressor. Taken 
together, mutations in MYD88, CD79B and TBL1XR1 
affected 54% (20/37) of our cohort, suggesting that 
NFκB pathway deregulation is a driving mechanism in 
PCNSL tumorigenesis. Other genes, such as CARD11 and 
TNFAIP3, which belong to this pathway are also reported 
to be mutated at lower rates in 16% and 3% of PCNSL, 
respectively [29]. 

A second set of alterations was detected in genes 
involved in B-cell proliferation and differentiation, such 
as ETV6, EBF1, IRF4 and ETS1. To our knowledge 
these gene mutations have never been reported in 

Figure 4: Overlaps in genes discovered in DLBCL 
studies and our 37 genes of interest. The Venn diagram 
depicts the comparison between gene mutations from the five 
DLBCL exomes studies and the present PCNSL study. The 
gene lists used were as follows: Lohr et al. (Table 1 in Ref. 11, 
n=72 genes), Pasqualucci et al. (Table S3 and Fig. S4 in Ref. 
15, n=108 validated somatic genes), Zhang et al. (Table S3 in 
Ref. 14, n=322 genes), Morin et al. (in Ref. 9, n=315 known and 
confirmed somatic genes; Table S3 in Ref. 37, n=588 known and 
confirmed somatic genes).
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PCNSL. The ETV6 tumor suppressor gene encodes an 
Ets family transcriptional repressor factor required for 
hematopoeisis [30] and largely described as a partner of 
gene translocation in lymphoid and myeloid hematopoietic 
tumors [31]. In our series, we found ETV6 mutations 
in 16% of cases, including 2 cases with non-sense 
mutations. In line with this, several studies have reported 
heterozygous and homozygous deletions of 12p13.2 
corresponding to the ETV6 locus (15% in the present 
series) in PCNSL [6, 7]. IRF4, also known as MUM1 
encoding a lymphocyte-specific transcription factor [32], 
and EBF1, encoding an activator of transcription involved 
in lymphoid development [33], were found to be mutated 
in 11% of our cohort. We also reported, in our discovery 
set, 2 somatic mutations affecting ETS1, encoding another 
Ets family transcription factor involved in the negative 
regulation of plasmocytic differentiation [34]. A variety 
of ETS1 alterations, including deletions [35] or gains [36] 
and somatic mutations [9, 37], have been reported in B 
cell malignancies. Finally, 11 tumors from our 37 samples 
(30%) harbored one or more mutation of genes involved 
in B cell proliferation and differentiation, supporting the 
role of B lymphoid development deregulation in PCNSL 
tumorigenesis.

A hallmark of oncogenesis is the alteration of genes 
controlling the cell cycle. We and others have previously 
identified CDKN2A homozygous deletions as a frequent 
alteration in PCNSL [4, 6–8] with an unfavorable impact 
on the prognosis [8]. In the present study, we found 
recurrent mutations in cell cycle regulator genes such as 
PIM1 [38] (7/37; 19%), IRF2BP2 [39] (5/37; 14%) and 
BTG1 [40] (2/9). PIM1 is a proto-oncogene that encodes 
a serine/threonine kinase and is known to be frequently 
targeted by somatic hypermutation in PCNSL [41]. Of 
note, 6 of the 7 seven mutations identified on PIM1 in the 
present study were located on the protein kinase domain. 
A variety of inhibitors are currently under development 
for PIM family proteins [42](Tab2), rendering these proteins 
attractive targets for therapy [5]. IRF2BP2 encodes a zinc 
finger protein that interacts with partners such as TP53 
and the oncogene IRF2. IRF2BP2 acts as a repressor of 
IRF2, leading to the inhibition of interferon responsive 
gene expression and NFAT1, which is involved in the cell 
cycle. Recently, a novel fusion between IRF2BP2 and the 
CDX1 homeobox gene was described in a patient suffering 
from a mesenchymal chondrosarcoma [43]. Intriguingly, 
the patient also had PCNSL; unfortunately the brain tumor 
tissue was not investigated.

Our results revealed many similarities between 
genomic abnormalities of extracerebral DLBCL and 
PCNSL. Indeed, among the 37 genes of interest identified 
in this study, 20 have described mutations in DLBCL 
exome studies [9, 11, 14, 15, 37] (Figure 4). More 
specifically, mutations in the genes involved in the NFκB 
signaling pathway and in PIM1, as observed in PCNSL, 
are likely associated with the activated B-cell like (ABC) 

subtype of DLBCL. In contrast, histone-modifying genes, 
such as CREBBP, EZH2 and MLL2, which are recurrently 
altered in the germinal center B-cell like (GCB) subtype 
of DLBCL [9, 14, 15], were not found in our series. These 
observations are in agreement with previous studies 
showing that the PCNSL gene expression profile is more 
closely related to post-GCB and ABC cells than to GCB 
cells [2, 44].

The present study has several limitations. Even if 
the small number of cases analyzed is generally acceptable 
given the rarity of the disease and small amount of 
available tissue, it provides a limited power of analysis and 
we likely underestimate the PCNSL gene mutations. In 
addition, the sequencing methods used do not investigate 
noncoding portions of the genome. Altogether, this could 
explain the relatively low overlap with a recent study of the 
Mayo Clinic including 10 PCNSL investigated by whole 
exome sequencing (O’Neill BP et al., 2013, ASH Annual 
Meeting Abstract). Alternatively, these results could also 
illustrate a high molecular heterogeneity within PCNSL 
as observed in extracerebral DLBCL exome studies [14]. 
However, our results contribute to the description of the 
PCNSL mutational landscape and provide insights into 
the prominent signaling pathways that are disrupted in 
PCNSL tumorigenesis. Genomic similarities with the ABC 
subtype of extracerebral DLBCL may open the possibility 
for parallels in therapeutic strategies of both lymphomas. 
For example, lenalidomide which induces IRF4 levels 
decrease [45], and ibrutinib which targets B-cell receptor 
signaling (Wilson WH et al., 2012, ASH Annual Meeting 
Abstract) have shown promising results in extracerebral 
ABC-DLBCL. In this setting, they might also be attractive 
therapeutic strategies for PCNSL.

METHODS

PCNSL sample selection and patient 
characteristics

Thirty-seven PCNSL patients were selected for 
the present study. All tumors were classified as CD20+ 
DLBCL according to the WHO classification and 
demonstrated to contain at least 90% tumor cells based 
on morphology and immunohistochemistry. All the 
patients were newly diagnosed and immunocompetent. 
The participants provided written consent for sample 
collection and genetic analysis. This study was approved 
by the local ethical committee (CPPRB Pitié-Salpêtrière). 
Based on the high quality and sufficient levels of DNA, 
nine paired frozen tumor and blood tissues were selected 
to constitute the discovery set investigated by whole 
exome sequencing, and 28 tumor samples constituted 
the validation set investigated by direct sequencing. The 
sex ratio was 1.18 (male/female) and the median age at 
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diagnosis was 61 years, ranging from 17 to 83.

Isolation and quality assessment of DNA

Tumor DNA from 34 cryopreserved and 3 FFPE 
samples was extracted using the QIAamp DNA Mini 
Kit (Qiagen) and iPrep™ ChargeSwitch® Forensic 
Kit (Life Technologies), respectively, according to the 
manufacturer’s instructions. A conventional saline method 
was used for the extraction of germline DNA from the 
blood samples. DNA was quantified using a NanoDrop 
spectrophotometer, and the quality was assessed on a 1% 
agarose gel.

Whole exome sequencing

Whole exome sequencing was possible for PCNSL 
patients with available paired frozen tumor and blood 
samples and with a minimal amount of 5 µg of tumor and 
germline DNA. Genomic DNA capture was performed 
using biotinylated oligonucleotides probes library (Human 
All Exon v2 – 46 Mb, Agilent) according to Agilent in-
solution enrichment methodology (SureSelect Human 
All Exon Kits Version 2, Agilent). Sequence capture, 
enrichment and elution were performed according to 
manufacturer’s instructions and protocols (SureSelect, 
Agilent). Massively parallel sequencing was realized on 
an Illumina GAIIX as paired-end 75 b reads.

Mapping and variant calling

Mapping of high-quality paired-end sequenced reads 
onto the GRCh37 build of the human reference genome 
was performed by Integragen using the Illumina ELAND 
2 software tool. Raw alignments were first filtered 
for both low-quality mapped reads and assumed PCR 
duplicates with the SAMtools view (-q 20) and the Picard 
MarkDuplicates utilities, respectively [46]. The resulting 
filtered BAM files were subsequently confined to the 
genomic coordinates delineating the Agilent SureSelect 
50-Mb probes using the intersectBed command of the 
BEDtools suite [47]. A commonly used combination of 
SAMtools mpileup and BCFtools view was then applied 
to the latter bounded alignments in order to call single 
nucleotide variations (SNVs) as well as short insertions 
and deletions (indels) within the targeted genomic 
regions. Mapping and coverage summary statistics were 
additionally obtained by an in-house post-processing of 
SAMtools idxstats and mpileup outputs.

Annotating called variants

Variant annotation was performed with the 
unpublished Genomic and Functional Annotation Pipeline 

(GFAP) software, developed and routinely used at Institut 
Curie (http://gfap.curie.fr/). Briefly, GFAP consists of 
a set of tools that automatically: (i) retrieve and store 
suitable information from public variant databases such 
as 1000-genomes [48], dbSNP [49] or COSMIC [50, 51], 
(ii) match submitted variants against built-in databases and 
annotate them with respect to their genomic localization, 
(iii) assign an integrated functional impact prediction 
to non-synonymous variants (including stop-gains and 
losses) using dbNSFP database [12, 13] which compiles 
several tools such as SIFT [52] or Polyphen2 [53].

Validation set

Samples were selected based on the availability 
of tumor DNA. The validation set was investigated for 
known hotspot mutations by Sanger sequencing and for 
all exons of highly mutated genes by pyrosequencing. 
The tumor DNA was amplified using the primers listed 
in Supplementary Table 3. The amplification conditions 
were 94°C for 3 min followed by 45 cycles of 94°Cx15 
sec, 60°Cx45 sec and 72°Cx1 min, with a final step at 
72°C for 8 min. Exon 13 of TBL1XR1 was amplified 
using Touch Down PCR with a gradient from 62 to 55°C 
during 6 cycles followed by 30 cycles at 55°C for primer 
annealing. The PCR products were purified according to 
the Agencourt® AMPure® XP PCR purification protocol 
(Beckman Coulter) with the Biomek® 3000 Automation 
Workstation. 

Sanger sequencing

Sequencing reactions were performed in both 
orientations using the Big-Dye® Terminator Cycle 
Sequencing Ready Reaction (Perkin Elmer). The 
extension products were purified with the Agencourt® 
CleanSEQ® protocol according to the manufacturer’s 
instructions (Beckman Coulter). The purified sequences 
were analyzed on an ABI Prism 3730 DNA Analyzer 
(Applied Biosystems). The forward and reverse sequences 
were visualized using Chromas Lite software. 

Pyrosequencing

The universal tailed amplicon resequencing 
approach (454 Sequencing Technology, Roche) was used 
for coding exons sequencing. This system employs a 
second PCR, aiming MID (multiplex identifier) and 454 
adaptors incorporation, an emulsion PCR according to the 
emPCR Amplification Method Manual Lib-A protocol 
(GS Junior Titanium Series, Roche), enrichment and 
pyrosequencing according to the Sequencing Method 
Manual (Roche). Sequences analysis was performed using 
CLC Genomics Workbench software.
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Ce manuscrit de thèse traitant de la prédisposition génétique aux gliomes comporte 5 
chapitres. 1/ une introduction, 2/ une présentation des méthodes utilisées, 3/ les résultats 
d'une étude largement collaborative identifiant des allèles à risque pour les glioblastomes et 
les gliomes non - glioblastomes ; 4/ un chapitre consacré à l'identification précise des allèles 
à risque pour les sous-types moléculaires de gliomes classés selon l'OMS 2016; 5/ la 
présentation d'une analyse d'exomes portant sur des oligodendrogliomes anaplasiques. 

Plus en détail, le premier chapitre se consacre à une présentation générale des 
prédispositions et susceptibilités génétiques aux gliomes. Il place le sujet dans le contexte 
des connaissances actuelles dans le champ de la susceptibilité génétique au cancer, 
distinguant les allèles rares avec forte pénétrance et les allèles fréquents avec faible 
pénétrance. Après avoir présenté les principes des analyses par GWAS, ce chapitre évoque 
les différents travaux réalisés antérieurement, ayant permis d'identifier 12 allèles à risque 
par approches de GWAS.  

Le deuxième chapitre est entièrement consacré à une présentation des méthodes utilisées 
pour réaliser les travaux bio-informatiques présentés par la suite. 

Dans un premier temps, une description des populations étudiées pour l'approche GWAS est 
apportée, à savoir une compilation des études antérieures réalisés par des grands 
collaborations internationales; il s'agit des données du GICC (5189 cas de gliomes), le UK 
GWAS (636 cas), le German GWAS (880 cas), le MDA GWAS (1281 cas), le UCSF GWAS (677 
cas), le GliomaScan (1653 cas) et les données françaises. De plus une description des 
techniques de génotype à partir de puces SNP-arrays d'illumina ainsi que  les techniques de 
préparation des librairies pour séquençage « whole exome » et « RNA-seq » est également 
présentées. 

Dans un deuxième temps, j’expose en détail les outils utilisés pour ses analyses bio-
informatiques, comprenant: 1/les outils de séquençage, d'alignement, d'appels de variants, 
de filtration et de prédiction, 2/ les techniques d'analyses de GWAS, 3/les modélisations in 
silico des altérations fonctionnelles, 4/ les outils de visualisation et de construction de figure.  

Le troisième chapitre est consacré à la présentation des résultats portant sur une méta-
analyse des GWAS réalisées jusqu'en mai 2017. Le travail a donc porté sur 12496 cas, 
comparés à 18190 contrôles. Ce travail collaboratif international a donné lieu à une 
publication dans Nat Genet en 2017. Ce travail a d'abord permis de confirmer 10/12 allèles à 
risque précédemment identifiés. Cinq allèles à risque pour les glioblastomes et 8 pour les 
non glioblastomes sont nouvellement identifiés, amenant à un total de 25 allèles à risque, 
dont deux non confirmés par cette méta-analyse. La suite du travail a consisté à inférer 
l'impact des SNP identifiés sur l'expression des gènes localisés dans un rayon de 1 Mb. Cette 
approche permet de proposer un lien fonctionnel entre les SNP candidats et plusieurs 
fonctions cellulaires et voies de signalisation, dont TP53-MDM4, P13K-AKT3, LRIG1-EGFR, et 
le maintien des télomères. Ce travail représente la nouvelle référence internationale pour la 
connaissance des allèles de susceptibilité aux gliomes de l'adulte. 

Le quatrième chapitre porte sur l'identification des allèles à risque pour chaque type 
moléculaire de gliomes, tels que définis par l'OMS 2016. A cette fin, j’ai cherché à établir des 
liens entre les 25 loci à risques identifiés à la suite de la méta-analyse et les sous-types de 
gliomes définis selon le statut IDH, 1p/19q et TERT. Les populations d'intérêt étaient celle du 
TCGA et celles du groupe de la Pitié-Salpêtrière (French GWAS et French sequencing). Les 
associations testées ont compris 1/le lien statistique entre les allèles à risque et le sous-type 



moléculaire de gliome, 2/le nombre d'allèles à risque et l'âge de survenue du gliome, 3/les 
allèles à risque et la survie. La signification biologique des allèles à risque a été explorée in 
silico par data mining concernant à la fois l'expression des gènes candidats dans diverses 
régions du cerveau et la conformation des régions chromatinennes d'intérêt dans des 
cellules souches neuronales et progéniteurs (« Hi-C »). Au total, les associations entre 5 
types moléculaires de gliomes et 25 allèles à risque ont été testées sur 2648 cas et 9365 
contrôles. Les allèles à risque identifiés précédemment comme associés aux « 
nonglioblastomes » se révèlent essentiellement être associés aux gliomes IDH1 mutés. Les 
analyses poursuivies pour chaque sous-type moléculaire permettent d'aboutir à 
l'identification d'allèles à risques associés aux IDH mutés, et « triple positifs » en particulier, 
ainsi qu'à les « TERT only ». Par ailleurs des SNP à risque ont aussi été identifiés en 7p11.2 
pour les gliomes avec amplification de EGFR, et en 9p21.3 pour les gliomes avec délétion de 
CDKN2A. Les logiciels permettant d'inférer les impacts fonctionnels amènent à identifier 5 
grandes fonctions biologiques impliquant les SNP issus des analyses: 1/ une voie du 
métabolisme, en lien avec les mutations de IDH, 2/ une voie de maintenance des télomères, 
associée aux mutations de TERT, 3/ une voie de signalisation par EGFR et AKT, 4/ le rôle de 
TP53, et enfin 5/des gènes impliqués dans le développement neuronal. 

Le cinquième chapitre présente les résultats d'une analyse par « whole exome sequencing » 
(WES) de 51 oligodendrogliomes anaplasiques, enrichis pour l'analyse de données publiques 
(TCGA) portant sur 43 échantillons supplémentaires. Le message principal de ce travail est 
l'identification de mutations hétérozygotes du gène TCF12 dans environ 8% des tumeurs. 
Plus en détail, les mutations identifiées sont hétérozygotes; l'expression protéique des 
formes mutées est en général augmentée et à la fois cytoplasmique et nucléaire, au 
contraire de la protéine sauvage qui n'est d'expression que nucléaire; certaines mutations 
tronquantes s'accompagnent d'une perte d'expression. Les protéines mutées perdent leur 
activité transcriptionnelle, testée in vitro avec un rapporteur luciférase sous une E-box. 
Enfin, une corrélation non significative est proposée avec un pronostic plus défavorable. 

Au total, le thème principal du projet de thèse est l'identification de gènes de susceptibilité 
aux gliomes de l'adulte, à partir d'analyses de GWAS. Cette thématique s'inscrit dans un 
travail plus large portant sur l'identification de loci de susceptibilité aux tumeurs cérébrales. 

La deuxième thématique du travail porte sur l'identification d'altérations génétiques 
somatiques, acquises dans les tumeurs, à partir d'analyses d'exomes. 
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Résumé : Les gliomes constituent les plus 

fréquentes des tumeurs malignes primaires du 

système nerveux central. Les liens qui existent 

entre ces tumeurs et un certain nombre de 

cancers rares héréditaires, comme les 

Neurofibromatoses I et II ou les syndromes de 

Turcot et de Li-Fraumeni, attestent d’une 

prédisposition génétique aux gliomes. 

L’observation d’un risque deux fois plus élevé 

de développer un gliome chez les parents de 

premier degré de patients atteints suggère aussi 

une possible prédisposition génétique dans les 

gliomes sporadiques. Par ailleurs, l’analyse à 

haut débit permet de préciser le profil somatique 

des gliomes et d’identifier des biomarqueurs 

pronostiques voire prédictifs et s’inscrire dans 

une démarche de traitement personnalisé du 

patient. 

Durant ma thèse, je me suis focalisé sur deux 

axes de recherches complémentaires; 

l’identification de gènes de susceptibilité et la 

découverte de nouveaux gènes fréquemment 

mutés dans les gliomes, afin de déterminer les 

voies de signalisation contribuant à la 

gliomagenèse. 

Dans leur ensemble, les résultats obtenus dans 

cette thèse apportent non seulement des 

informations importantes sur la nature de la 

prédisposition génétique aux gliomes mais 

également de son association spécifique pour 

les différents sous-types de tumeurs. La 

découverte d’un nouveau gène muté, offre la 

perspective à plus long terme d’un traitement 

personnalisé pour chaque patient sur la base du 

profil génétique de sa tumeur. 
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Abstract : Gliomas are the most common adult 

malignant primary tumour of the central 

nervous system. Thus far, no environmental 

exposures has been linked to risk except for 

ionizing radiation, which only accounts for a 

very small number of cases. Direct evidence for 

inherited predisposition to glioma is provided 

by a number of rare inherited cancer 

syndromes, such as Turcot's and Li–Fraumeni 

syndromes, and neurofibromatosis. Even 

collectively, these diseases however account 

for little of the twofold increased risk of glioma 

seen in first-degree relatives of glioma patients. 

My research was centred on two 

complementary research activities: Identifying 

susceptibility genes for glioma to delineate key 

biological pathways contributing to disease  

 

pathogenesis and to identify new recurrent 

mutated genes for glioma to provide for further 

insights into glial oncogenesis and suggesting 

targets for novel therapeutic strategies. 

Collectively the findings in this thesis provide 

increased insight into the nature of genetic 

predisposition to glioma and substantiate the 

often distinct associations between 

susceptibility variants and glioma molecular 

groups. In addition the discovery of a new 

mutated gene in glioma offers the potential to 

support drug development and advance 

precision medicine for this tumours. 
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