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Maı̂tre de conférence, Université Paris-Sud (L2S) Directrice de thèse
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Résumé

Cette thèse s’inscrit dans le contexte de résolution d’un problème inverse pour l’astrophysique.
L’objectif est de reconstruire un objet tridimensionnel, ayant une distribution spatiale et
spectrale, à partir d’un ensemble d’images multi-spectrales de basse résolution fournies par
l’imageur MIRI (Mid-InfraRed Instrument) à bord du prochain télescope spatial James
Webb Space Telescope (JWST). Le JWST est le télescope spatial de la prochaine dé-
cennie. Il est développé en collaboration internationale entre la NASA, l’agence spatiale
européenne (ESA) et l’agence spatiale canadienne (CSA). Le télescope est doté d’un grand
miroir primaire (6,5 mètres) et il couvre une large bande spectrale (0,6 à 30 microns). Le
lancement du JWST est prévu en mars 2021.

Les images multi-spectrales observées souffrent de plusieurs dégradations. Première-
ment, une dégradation spatiale due au produit de convolution de l’objet d’intérêt avec
la réponse optique dépendante de la longueur d’onde, appelée fonction d’étalement (où
PSF-Point Spread Function). La résolution spatiale des images est donc limitée sous forme
d’un flou spatial qui dépend de la longueur d’onde. Cet effet est dû à la diffraction de
flux de photons (ou objet d’intérêt) sur le plan focal du télescope. Deuxièmement les
images multispectrales portent très peu d’informations spectrales sur l’objet observé en
raison d’une dégradation spectrale due au filtrage et l’intégration du flux de photons (ob-
jet d’intérêt) sûr de larges bandes spectrales par le détecteur infrarouge de l’imageur MIRI.

La reconstruction de l’objet d’intérêt original est un problème mal posé en raison du
manque important d’informations spectrales dans l’ensemble de données multi-spectrales.
La difficulté se pose alors dans le choix d’une représentation adapté de l’objet permet-
tant la reconstruction de l’information spatiale et spectrale. Un modèle classique utilisé
dans l’état de l’art repose sur l’utilisation d’une PSF moyennée sur la largeur spectrale de
chaque bande. En effet, ce choix de PSF néglige la variation spectrale au sein d’une bande
spectrale, et donc introduisant des erreurs dans le modèle de l’instrument spécialement
pour de larges bandes. Cependant, ce modèle simpliste est convenqble que dans le cas
d’un imageur à une bande spectrale très étroite, ce qui n’est pas le cas pour l’imageur de
MIRI.

L’approche de reconstruction que nous avons proposée consiste à développer une
méthode pour l’inversion qui se résume en quatre étapes: (1) Concevoir un modèle de
l’instrument reproduisant les données multi-spectrales observées, prenant en compte la
variation spectrale de la PSF et l’intégration spectrale sur de larges bandes. (2) Utiliser
un modèle de l’objet adapté à la reconstruction. En effet, deux modèles ont été utilisés, un
modèle multi-longueur d’onde et un modèle de mélange linéaire. (3) Exploiter conjointe-
ment l’ensemble des images multi-spectrales pour reconstruire la totalité de l’information
spectrale et prendre en compte l’inter-corrélation entre les images, et enfin (4) dévelop-
per des méthodes de reconstruction, efficaces et rapides, basées sur la minimisation des
critères convexes en introduisant des priori à la solution. En effet, trois algorithmes de
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reconstruction sont proposées.

Les résultats de reconstruction de l’objet spatio-spectral sont obtenus en utilisant neuf
images multi-spectrales, simulées avec le modèle proposé de l’imageur de MIRI. Une aug-
mentation significative des résolutions de l’objet, spatiale et spectrale, a été obtenu en
utilisant le modèle de mélange linéaire. Où l’objet reconstruit montre l’effet de débruitage
et de déconvolution sur la totalité des longueur d’ondes. De plus, nous avons obtenu une
erreur relative n’excédant pas 5% à 30 dB et un temps d’exécution de 1 seconde pour
l’algorithme de norm-l2 et 20 secondes (avec 50 itérations) pour l’algorithme norm-l2/l1.
C’est qui est 10 fois plus rapide que la solution classique calculée par l’algorithme de
gradient conjugué.
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Introduction

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Context

The James Webb Space Telescope (JWST)1 is the next flagship space telescope of NASA
(National Aeronautics and Space Administration) with the collaboration of ESA (Euro-
pean Space Agency) and CSA (Canadian Space Agency) to be launched in 2021. The
JWST mission will offer a unique combination of imagers and spectrometers in a broad
range of wavelengths. After its launch, the JWST will be the largest telescope in space with
a primary mirror diameter of 6.5 meters compared to 2.4 meters for Hubble telescope2.
In this work, we are interested in the Mid-InfraRed Instrument (MIRI). It contains an
imager and an Integral Field Unit (IFU) spectrometer both working between 5 and 28
microns. More specifically, in this thesis, we are interested in a problems related to the
Imager of MIRI [Bouchet et al. 2015].

During the acquisition process of the 2D+λ spatio-spectral object of interest the tele-
scope focuses the beam of photon flux at the focal plane. Unfortunately, the formed image
is affected by diffraction. The result is modeled by a 2D spatial convolution with the op-
tical response or PSF (Point Spread Function), which degrades the spatial resolution of
the object in the form of a blur varying according to the wavelength. This degradation is
well-known in diffraction theory [Goodman 2005]. The width of the PSF linearly increases
with the wavelength. Then the blurred object is filtered spectrally over a broad band, and
then integrated and sampled by the 2D detector of the MIRI imager. The main issue
arising here is a severe degradation of the spectral resolution because of the integration
(filter and detector response) adding to the limitation of the number of bands, e.g. nine
bands for the imager of MIRI.

1https://www.jwst.nasa.gov/
2http://hubblesite.org/

https://www.jwst.nasa.gov/
http://hubblesite.org/
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The multispectral data observed by the imager of MIRI has the advantage of being rich
in spatial information of the object due to the relatively wide field of view (FOV = 74"
× 113" where " stands for arcseconds) compared to the FOV of a spectrometer. But
they are poor in spectral resolution because of the spectral integration over broad band
(λ/4λ ≈ 5). On the other hand, hyperspectral data observed by the Medium Resolution
Spectrometer (MRS) of MIRI are rich in spectral information (λ/4λ ≈ 1550− 3250) but
are limited in spatial information because of the small FOV (∼ 3.5" × 3.5"). In Figure
1.1 we illustrate the lack of spectral information in the multispectral data by showing the
system input and output for an observation using the MIRI imager. The exploration and
understanding of astrophysical objects are essentially based on the processing and anal-
ysis of the observed data. Therefore, it is important to consider the degradation of the
measuring instrument and develop sophisticated methods for reconstruction of the best
possible high-resolution spatio-spectral object without the instrument degradation.

Output: Set of 2-D
Multispectral data

Input: 3-D Original
Spatio-Spectral

Object

λ (µm)5 28λ (µm)5 28

Multispectral
Imaging
System

Figure 1.1: Illustration of the input and output for a multispectral imaging system such
as the imager MIRI of the JWST [Bouchet et al. 2015]. The input is a 2D+λ continuous
object having spatial and spectral distributions and the output a set of 2D low-resolution
multispectral data degraded by the instrument response.

For the sake of clarity here is the meaning of words mostly used throughout the thesis.
The spatio-spectral object is the object of interest we want to reconstruct. It has two
spatial dimensions and one spectral dimension or 2D+λ, where λ symbolizes the wave-
lengths. Multispectral data is an observed image acquired by the observing instrument or
multispectral imaging system. It results from the spectral integration of the object on a
specific wavelength range. We use the word channel to mention a slice from the 2D+λ
cube of the object at a particular wavelength. The word band is used to refer to the
spectral response of the instrument. It is associated with the spectral transmission of the
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filter and the spectral response of a detector. Bold-face capital letters refer to matrices
(e.g. H) and bold-face lower-case letters refer to vectors (e.g. x,y).

1.2 Objective

This thesis deals with an inverse problem in astronomy. The objective is the development
of methods for the reconstruction of a 2D+λ astrophysical object with high spatial and
spectral resolution from a set of 2D multispectral data with limited resolution obtained
by the observation instrument.

The data processing is challenging because of the complex response of the segmented
mirror of the JWST which varies according to the wavelength due to the diffraction, and
the detector behavior which performs the spectral integration over broad bands and the
spatial sampling. A combination of knowledge of the object and the observation system
is necessary. In addition, a joint processing of multispectral data at multiple bands is
required to reconstruct the object over the whole wavelengths range.

1.3 Methodology

In this thesis we propose to follow the methodology summarized in Figure 1.2. The
reconstruction of a discrete version φ̂ of the spatio-spectral object φ is achieved by building
four major stages. The first stage is for the instrument model; this is a mathematical model
able to reproduce the observed multispectral data y by accounting for the instrument
response such as the optical response, the spectral filtering, the detector sampling and
integration. Once the instrument model is developed we are able to simulate multispectral
data for any object of interest and use it later for the reconstruction. The second stage is
for the object model; it is the key model that restricts the object reconstruction to specific
spatial and spectral distributions. In this thesis two models are used - the multiwavelength
model and the mixture model. At the third stage comes the forward model; this model
results from the instrument and object models, and it represents the joint processing of
the whole multispectral dataset y in terms of the unknown parameter x (that describes
the object φ) through the observation matrix H. Next, we deal with the reconstruction
in the fourth stage; it consists of the reconstruction of the spatio-spectral object using the
description of the forward model and some additional priors information about the object,
which are necessary in order to stabilize the solution.

1.4 Contributions

This section highlights my main contributions during the thesis. I first developed a math-
ematical model for a diffraction-limited instrument such as the MIRI imager on board the
JWST. This model is used to develop the next stages of the inverse problem framework
such as the forward model and the reconstruction. It is mainly adapted for the inversion
algorithm, i.e. it allows the extraction of the observation matrix and its transpose. It
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Instrument
Model

Linear Forward
Model

Reconstruction

Object Modelφ̂

x

y

Hx

x̂

Figure 1.2: The proposed inverse problem paradigm for the reconstruction of a discrete
2D+λ object φ̂ from a set of multispectral dataset y. Here x represents an unknown
parameter of the object model and H is the observation matrix.

accounts for the spectral shift-variant non-stationary optical response, the spectral inte-
gration over a set of P broad bands (or spectral responses) by the detector, the spatial
sampling of the object over the detector matrix, and an additive term that accounts for
modeling errors and noise generated by the detector.

Next, I represent the object of interest with two different linear models using firstly
a piecewise linear function and secondly a mixing model. Both models preserve the spa-
tial and spectral distribution of the object. Then I proposed two linear forward models
where the discrete multichannel unknown object x is related to the discrete multispectral
dataset y through an observation matrix H. The contents and the meaning of x and H
are specific for each object model. We end up with two linear forward models which are
formulated by a sum of 2D convolutions between the elements of x and H.

Several reconstruction methods are proposed based on the regularized least-squares
method, one for the first object model and two for the second one. The solution is obtained
as the minimizer of a convex cost function. The reconstruction problem is ill-posed and
this is mainly due to the ill-conditioning of the Hessian matrix. This ill-posedness is
corrected by adding different prior information of type l2-norm and l2/l1-norm to enforce
spatial smoothness or high spatial gradient of the solution respectively. For test and
validation of algorithms, I simulated multispectral data using the developed instrument
model of the JWST/MIRI imager from three spatio-spectral objects, one is a simplified
model of an astrophysical object, and the others are synthetics objects having different
spatial and spectral distributions. In addition, the multispectral dataset is corrupted with
an additive Gaussian white noise of different levels. The overall reconstruction results
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obtained on simulated data show a significant increase of spatial and spectral resolutions
of the reconstructed object compared to the classical method.

1.5 Outline of the thesis

The following chapters of this thesis are divided as follows. Chapter 2 presents the inverse
problem framework and a general overview of the most common linear forward models used
in the literature. In addition, we highlight different methods used for reconstruction and
present a mean of computation for each method. Chapter 3 describes the multispectral
imaging system and its components and presents the development of an instrument model
such as the MIRI imager of the JWST. Chapters 4 and 5 deal with the reconstruction
of a high-resolution discrete spatio-spectral object from low-resolution multispectral data,
using the object models - piecewise linear model and linear mixing model, respectively.
Both chapters rely on the results reported in Chapter 3. Finally, a general conclusion is
given in Chapter 6.
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General Overview
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2.1 Inverse Problems Framework

In this thesis we are interested in a linear inverse problem application. In general an
inverse problem is the process of restoration, reconstruction or estimation of an input
vector x (the object of interest) from a degraded output y (observations or data), which
is observed directly or indirectly. We denote H the observation matrix, a response of the
linear system that relates the input of the observation system to the output. Figure 2.1
illustrates a general linear inverse problem and all terminology that are used. In fact, in
order to deal with an inverse problem application we distinguish two main processes:

1. Forward or direct model which describes the formation of the observations.

2. Inverse problem or reconstruction is the reverse process that allows recovering of the
input object from the observed data and knowledge about the system response.

Several inverse problems applications are defined based on (a) the type of the forward
model, linear [Banham & Katsaggelos 1997] or non-linear [Chappell et al. 2009]. (b) The
observation system, e.g. response of an imaging system such as telescope, camera, micro-
scope. (c) The structure and the content of the observation matrix, e.g. the application is
called deconvolution if H is a convolution matrix [Banham & Katsaggelos 1997], and in-
painting ifH is a mask [Bertalmio et al. 2000], a super-resolution problem ifH is a down-
sampling operator [Park et al. 2003], denoising if H is an identity matrix [Donoho 1995,
Buades et al. 2005]. (d) Single or multiple observations. e.g. 1D signal, 2D image, 3D
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Forward or
direct Model

Input:
Object of interest x

System
response
H

Inverse Problem or
reconstruction

Error/Noise n

Output:
Observated data

y

∑

Figure 2.1: Illustration of the linear inverse problems framework.

datacube, 2D+λ (spatio-spectral object), 2D+t (spatio-temporel object). (e) The avail-
ability of information. In general y and H are known, otherwise the problem is called
blind ifH is unknown [Chan & Wong 1998, Molina et al. 2006], and it is called semi-blind
or myopic if H is known partially [Mugnier et al. 2004, Orieux et al. 2010], or a system
identification problem in case we only dispose of x and y [Ljung 1998].

If the next sections we provide a general overview for the forward model and the
reconstruction methods.

2.2 Linear Forward Models

2.2.1 Mono-channel Linear Forward Model

The single-channel linear forward model is the most common model used in the literature
[Bertalmio et al. 2000, Combettes & Pesquet 2004, Molina et al. 2006, Chambolle & Pock 2011].
Its classical formulation is given by

y = Hx+ n (2.1)

where y ∈ RNiNj represents the observed data in a vector form, here we provide details
for an image type object of size Ni ×Nj pixels. n ∈ RNiNj is an additive term added to
the data in order to take into accounts noise and modeling errors. The vector x ∈ RNkNl
is the original object of interest and H ∈ RNiNj×NkNl is the observation or degradation
matrix.
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The particularity of the single-channel forward model is that only one observation is
considered at a time. Therefore, it is not suitable to for multiple observation such as
multichannel or multispectral restoration.

2.2.2 Multichannel Linear Forward Model with a Block-Diagonal Ma-
trix

In order to reconstruct an object which is observed at multiple times [Hunt & Kubler 1984]
proposed a multichannel forward model where the object is observed with the same instru-
ment, thus the instrument response is the same for all observations. Hence, the observation
matrix H is a square block-diagonal matrix with the same block in the diagonal. Few
years later [Galatsanos & Chin 1989] proposed an update of the previous model in order
to take into account responses from different instruments, thus, the observation matrix
is a block-diagonal observation matrix with H = diag

(
H1,H2, . . . ,HP

)
. Moreover, the

block matrices were all approximated with convolution matrices for faster computation in
the Fourier domain. Consequently, H is block-circulant and has a block-Toeplitz form.
The multichannel forward model is formulated as




y(1)

y(2)

...
y(P )




︸ ︷︷ ︸
y

=




H1

H2

. . .
HP




︸ ︷︷ ︸
H




x(1)

x(2)

...
x(P )




︸ ︷︷ ︸
x

+




n(1)

n(2)

...
n(P )




︸ ︷︷ ︸
n

(2.2)

where x ∈ RPNiNj represent the object of interest which is a stack of P channels in a
vector form x(p), p = 1, 2, . . . , P . Each channel contains Nk × Nl pixels where x(p)

i,j de-
notes the (i, j)th spatial position in the (p)th wavelength. y ∈ RPNiNj represents the
stack of all multispectral data acquired via P spectral bands of the imaging system. The
additive noise associated to the observation data set is represented by n ∈ RPNiNj . The
block-diagonal matrix H ∈ RPNiNj×PNkNl represents the full system response, where
it maps every channel x(p) to an observation y(p) through its blocks or sub-matrices
Hp ∈ RNiNj×NkNl , p = 1, 2, . . . , P .

The block-diagonal forward model in Equation (2.2) has been widely used for mul-
tichannel deconvolution, e.g. [Benazza-Benyahia & Pesquet 2006, Bongard et al. 2011,
Henrot et al. 2013, Song et al. 2016] address multichannel 2-D deconvolution problem for
hyperspectral image deconvolution. It was also used for multichannel reconstruction of
spectral computed tomography images [Rigie & La Rivière 2015].

However, this above forward model takes into account within channel degradation (or
auto-degradation) but does not accounts for the between channels degradation (or cross-
degradation) which can occur from the spectral correlation between channels. Therefore,
this model is not suitable for multispectral imaging especially when there is a strong
correlation between channels. In addition, the number of observations is not necessarily
equal to the number of channels.
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2.2.3 Multichannel Linear Forward Model in General

In [Galatsanos et al. 1991] a modified forward model is proposed to overcome limitations
of the previous model for multichannel image restoration. It is given by




y(1)

y(2)

...
y(P )




︸ ︷︷ ︸
y

=




H1,1 H1,2 · · · H1,P

H2,1 H2,2 · · · H2,P

...
...

. . .
...

HP,1 HP,2 · · · HP,P




︸ ︷︷ ︸
H




x(1)

x(2)

...
x(P )




︸ ︷︷ ︸
x

+




n(1)

n(2)

...
n(P )




︸ ︷︷ ︸
n

(2.3)

where the full system responseH is represented by a block matrix corresponding to within
and between channels degradation Hm,p,m, p = 1 . . . , P . Here P is the total number of
observations. The block Hp,t, t = m represents the direct (or auto) degradation, whereas
the block Hp,t, t 6= m accounts for between or cross degradation occurring between chan-
nels.

Most of works used this model for color image restoration such as [Schultz & Stevenson 1995,
Galatsanos et al. 2000, Molina et al. 2003, Wen et al. 2008, Yang et al. 2009a]. In this
case P = 3 and y(p) corresponds to a degraded channel of the color image. Another use of
the multichannel forward model in Equation (2.3) is for multichannel image reconstruction
in spectral X-Ray computed tomography [Sawatzky et al. 2014]. In [Yang et al. 2009b]
presented a method for deblurring multichannel images corrupted with impulsive noise is
presented.

The above model is mostly used for applications where the number of channels and
observations are the same, e.g. restoration of a colored image with three channels. In this
thesis we will use this forward model but with different dimensions of y and x, i.e. we
will consider M channels in x and P multispectral data in y with P 6= M . In this case
the observation block-matrix is H ∈ RPNiNj×MNkNl , p = 1 . . . , P,m = 1 . . . ,M .

2.3 Reconstruction Methods

In this section we review different reconstruction method based on regularized inversion
or Bayesian approach.

2.3.1 Regularization Method

A classical approach to reconstruct the object x from the observed data y giving a forward
model is the minimization of an objective (or a cost) function J (x) having the solution
x̂ as a minimizer

x̂ = argmin
x

{J (x)} (2.4)

A naive choice for the objective function is to measure the fidelity or consistency of
the solution to the data J (x) = Q(y,x) by measuring a distance between the data y and
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the forward modelHx. Several functions for Q(.) exist in the literature depending on the
statistical distribution of the noise n, e.g. l2-norm in case of an additive Gaussian white
noise [Rudin et al. 1992], or l1-norm in case of Laplace noise [Alliney 1992]. l∞-norm for a
uniform noise. Here we consider the most common noise distribution which is a Gaussian
white noise. A particular usefulness of this choice is that objective function is strictly
convex and differentiable. The reconstruction problem is then given by

x̂ = argmin
x

{
J (x) = ‖y −Hx‖22

}
(2.5)

which is known as the Least-Squares method [Demoment 1989]. In this case the solution
of the problem is

x̂ =
(
HTH

)−1
HTy (2.6)

where T symbolizes the transpose of a matrix.

Computing the solution in Equation (2.6) requires the inversion of the Hessian matrix
HTH and its multiplication by HTy. However, this solution is unstable for most inverse
problems applications because of the ill-conditioning of the matrix HTH, i.e. a small
error in HTy leads to a high error in the solution, hence, the problem is called ill-posed.
In order to overcome the ill-posedness of the problem we proceed by correcting the ill-
conditioning of HTH by adding one or multiple regularization terms R(x) in order to
stabilize the solution. Therefore Equation (2.5) becomes

x̂ = argmin
x

{J (x) = Q(x,y) + µ R(x)} (2.7)

where µ is a regularization parameter which adjust the compromise between the data
fidelity term and the regularization term.

2.3.1.1 Regularization Models

The regularization term can take different forms depending on the nature of the object
but must enforce prior information about the object. Several choices can be found in
the literature such as the Tikhonov regularization [Tikhonov & Arsenin 1977] to enforces
smoothness of the solution by penalizing the difference between pixels in case of an image.
This regularization has been used widely in the literature for its properties such as linearity,
continuous differentiability, and speed of calculation of the solution.

Rl2(x) =

Nk∑

k=1

Nl∑

l=1

(xk+1,l − xk,l)2 + (xk,l+1 − xk,l)2 = ‖Dx‖22 (2.8)

whereD can be a 2D finite difference in case of a correlated (or smooth) object of an iden-
tity matrix in case of an uncorrelated image. Here Nk and Nl are number of pixels in row
and column of the image x. Often the operator D is implemented in the Fourier domain
for faster computation through circular convolution, in this case circularity conditions are
assumed xNk+1,l = x1,l and xk,Nl+1 = xk,1.

The problem solution using Tikhonov regularization is given by

x̂l2 =
(
HTH + µDTD

)−1 (
HTy

)
. (2.9)
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However, the quadratic regularization creates ringing artifacts to the solution at a high
value of the gradient such as the contour for an image. Therefore, a non-quadratic regu-
larization helps in overcoming these artifacts such as the Total Variation (TV), isotropic
total variation [Rudin et al. 1992] or anisotropic total variation [Yang et al. 2009b]. The
TV regularization is used for an object with a piecewise constant distribution and it is
defined by

RTV (x) =

Nk∑

k=1

Nl∑

l=1

|(∇x)k,l| = ‖∇x‖1 (2.10)

where a ∇ is a 2D finite difference operator same as D in Equation 2.8. But is usually
represented by ∇ in the total variation regularizer. It has two components, horizontal (h)
and vertical (v), according to the dimension of the image (∇x)k,l =

(
(∇x)hk,l, (∇x)vk,l

)
,

and the first order finite differences with Neumann boundary conditions [Chambolle 2004]
are defined by

(∇x)hk,l =

{
xk+1,l − xk,l if k < Nk

0 if k = Nk

and

(∇x)vk,l =

{
xk,l+1 − xk,l if l < Nl

0 if l = Nl

.
.

The isotropic TV is defined by

|(∇x)k,l| =
√(

(∇x)hk,l

)2
+
(

(∇x)vk,l

)2
(2.11)

and the anisotropic TV
|(∇x)k,l| =

∣∣∣(∇x)hk,l

∣∣∣+
∣∣(∇x)vk,l

∣∣ (2.12)

The problem solution using TV regularization cannot be directly computed because of
the non-differentiability of the l1-norm. Thus iterative algorithms are used instead such as
the splitting Bregman method [Goldstein & Osher 2009] or more recently the primal-dual
algorithm [Chambolle & Pock 2011].

Another nonlinear regularization is the half-quadratic regularization (e.g. l2/l1-norm).
It promotes high gradient values to the solution and it is defined by a nonlinear function
ϕ(.)

Rl2/l1(x) =

Nk∑

k=1

Nl∑

l=1

ϕ
(

(Dx)k,l

)
(2.13)

where several l2/l1 function for ϕ(.) can be found in [Idier 2001], e.g. Huber function

ϕ(δ) =

{
δ2 if |δ| < s

2s|δ| − s2 otherwise
. (2.14)
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The half-quadratic regularization was first proposed in [Geman & Reynolds 1992] (GR)
witch proposed a convex conjugate construction for the non linear as a minimum of two
convex functions in which the quadratic function is multiplied by the auxiliary variable
b. Few years later [Geman & Yang 1995] (GY) proposed another construction where the
auxiliary variable is added inside the quadratic function.

ϕGR(δ) = min
b

{
bδ2 + ξ(b)

}
, (2.15)

ϕGY (δ) = min
b

{
(δ − b)2 + ξ(b)

}
, (2.16)

where ξ(b) is the auxiliary function.
The solution of this problem is computed iteratively by performing an alternate mini-

mization of the augmented objective function J ∗(x, b) with respect to x and b





x̂ = argmin
x

J ∗(x, b) (2.17)

b̂ = argmin
b

J ∗(x̂, b) (2.18)

with

J (x) = min
b
J ∗(x, b). (2.19)

Equation (2.17) gives the following solution for the two half-quadratic constructions

x̂GR =
(
HTH + µbDTD

)−1 (
HTy

)
. (2.20)

x̂GY =
(
HTH + µDTD

)−1 (
HTy + µDTb

)
. (2.21)

Note that both solutions are linear and require the inversion of the Hessian matrix. In
addition, it is worth noting that the solution x̂GY can be computed directly and efficiently
by inverting once the Hessian matrix in the Fourier domain for circular matrices H and
D [Hunt 1971].

Other types of regularization exist among which the l1-norm of the object to en-
force sparsity of the solution [Mairal et al. 2014], i.e. a solution with less nonzero coef-
ficients. Since the l1-norm is not differentiable, problem solution is computed through
minimization of the convex objective function iteratively until convergence using opti-
mization algorithms, e.g. algorithms based on proximal operator [Beck & Teboulle 2009,
Combettes & Pesquet 2011].

The regularization method is very sensitive to the noise and there is a difficulty to
chose the amount of information introduced by the prior, which regularize the problem and
compensate the lack of information in the data. In addition, the regularization parameter
is set manually.

In the next section, we see another framework based on statistical distributions where
the regularization parameter, also called hyper-parameter, can be tuned automatically.
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2.3.2 Bayesian Interpretation

The reconstruction using the regularization method can be interpreted in the Bayesian
framework using statistical distributions [Jaynes 2003]. The main difference between the
two approaches is that the object to reconstruct is deterministic in the regularization
method, whereas it is probabilistic in the Bayesian approach. Here the solution is obtained
by maximizing the posterior distribution of the object, which is computed using the Baye’s
theorem

f(x|y) =
f(y|x)f(x)

f(y)
(2.22)

where f(y|x) is the likelihood distribution, f(x) represents the prior distribution for the
object, f(x|y) is the a posterior law, and f(y) is the marginal law for the data.

As explained in Section 2.3.1, the data fidelity term is chosen based on the distribution
of the noise, e.g. the distribution of a zero-mean, white, Gaussian noise of variance σn or
precision parameter γn = σ−1

n , denoted by f(n|γn) = N
(
0, γ−1

n IN
)
, is given by

f(n|γn) = (2π)−N/2 γN/2n exp

[
−1

2
γn ‖n‖22

]
, (2.23)

where N refers to the total number of element of n. The likelihood of the object x
associated to the data y (through the forward model y = Hx+ n) is

f(y|x, γn) = N (Hx, γ−1
n IN ) = (2π)−N/2 γN/2n exp

[
−1

2
γn ‖y −Hx‖22

]
. (2.24)

The data fidelity term appears in the exponential function of the likelihood and it is obtain
through the co-logarithm by

Q(y,x) = ‖y −Hx‖22 = −k log [f(y|x, γn)] + C (2.25)

where k = 2
γn

and C = − N
γn

(log γn − log 2π) are a multiplicative and an additive con-
stants. Concerning the regularization term, it is introduced through a prior distribution
of the object f(x). For instance, Tikhonov regularization is enforced through a Gaussian
distribution, f(x|γx) = N

(
0,R =

(
γxD

TD
)−1
)
, which is given by

f(x|γx) = (2π)−N/2 γN/2x det
[
DTD

]1/2
exp

[
−1

2
γxx

TDTDx

]
(2.26)

where N is the size of the vector x same as for the data to simplify the notations. and γx
is a precision parameter, inverse of the variance. The regularization term appears in the
exponential function of the prior distribution and is obtained through the co-logarithm by

Rl2(x) = xTDTDx = ‖Dx‖22 = −kx log [f(x|γx)] + Cx (2.27)

where kx = 2
γx

and Cx = −N
γx

(log γx − log 2π) + log[det[DTD]] are a multiplicative and
an additive constants. The higher the regularity the higher the probability f(x|γx) and
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the lower the regularization ‖Dx‖22. Lastly the posterior distribution f(x|y, γx, γn) allow
the estimate the object x. From the Baye’s theorem in Equation (2.22) we have

f(x|y, γx, γn) =
f(y|x, γn)f(x|γx)

f(y|γx, γn)
∝ f(y|x, γn)f(x|γx)

≈ exp


−

1

2

(
γn ‖y −Hx‖22 − γx ‖Dx‖22

)

︸ ︷︷ ︸
− γn

2
J (x)




Here the objective function appears in the exponential function and is obtained through
the co-logarithm of the posterior distribution. The regularization parameter µ = γx

γn
= σn

σx
is written as a signal to noise ratio.

Finally, the reconstruction solution can be computed using several estimators such the
mean, the median or the maximum of the posterior distribution. These three estimators
are the same in case of a Gaussian distribution. For instance, the Maximum A Posteriori
(MAP) estimator minimizes the objective function. It is equal to the quadratic solution
of the regularized least square through

x̂MAP = argmax
x

f(x|y, γx, γn) ∝ argmax
x

f(y|x, γn)f(x|γx)

= argmin
x

J (x) = x̂l2 (2.28)

Moreover, the estimation of the regularization parameter is possible in the Bayesian
approach. The precision parameters of the object and the noise needs to be probabilized.
For instance, a Gamma distribution or Jeffreys priors [Kass & Wasserman 1996].

2.4 Related Works

In this section we present key works in the literature that are related to our topic.
In general, multispectral imaging has been used for many applications. For instance,
[Nuzillard & Bijaoui 2000] present a set of blind source separation methods with an appli-
cation for the analysis of multispectral astronomical images. [Levenson & Mansfield 2006]
presents the importance and advantages of using multispectral images provided by a mi-
croscope for the improvement of the analysis of a biological object. Another application
is developed in [Hedjam & Cheriet 2013] which uses multispectral imaging in order to de-
velop an image enhancement algorithm for the preservation of the historical documents
through digitization of ancient manuscripts. The idea is to scan the degraded documents
by an infrared camera to detect only the artifact of the images.

As anticipated in Section 2.2.2, most of multispectral reconstruction in the litera-
ture deal with applications to remote sensing and color images [Galatsanos & Chin 1989,
Katsaggelos & Paik 1988, Galatsanos et al. 1991, Schultz & Stevenson 1995] and in
[Galatsanos et al. 2000, Molina et al. 2003, Wen et al. 2008, Yang et al. 2009a]. However,
these methods cannot be easily applied to astronomical data where the dimensions of the
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object are high and the number of observations is not necessarily equal to the number
of channels of the spatio-spectral object. In addition the dynamic range of astronomical
data can vary a lot as well as the structure of the images, e.g. sharp and sparse object.

Spatio-Spectral Reconstruction:
In recent years, researchers have started working on the reconstruction of spatio-spectral

object in general, multispectral and hyperspectral data. In [Rodet et al. 2009] a method
is proposed for the reconstruction of hyperspectral objects observed by an infrared slit
spectrograph on board the Spitzer Space Telescope. The instrument model and the in-
version method are carried out in the continuous spatio-spectral coordinates. The spatial
distribution of the object is decomposed over a family of Gaussian functions, and the
hyperspectral data are collected from different dithering.

Authors in [Bongard et al. 2011] present a general method for 3D deconvolution of
hyperspectral astronomical data based on l2-norm, where the reconstruction method is
based on a multichannel quadratic regularization (see [Schultz & Stevenson 1995]). The
prior information of the solution is enforced by using two types of regularization terms
such as the spatial and the spectral smoothness. However, this reconstruction method is
not suitable for our application because the observation matrix is block-diagonal along the
spectral dimension. Thus, it does not take into account the cross correlation occurring
between the channels.

An interesting work in [Soulez et al. 2013] deals with the development of a hyper-
spectral image restoration for integral field spectrographs (IFS) data where the spectral-
variant PSF is approximated by a linear combination of few monochromatic PSFs for
faster computation while preserving the PSF properties such as normalization, positivity,
and symmetry. Moreover, the inversion method is based on regularization methods where
separable regularization terms, spatial and spectral, are introduced to enforce prior infor-
mation to the solution. In addition, a comparison between quadratic regularization and
spatial sparsity regularization is provided and the reconstruction results are illustrated
on simulations coming from the Multi Unit Spectroscopic Explorer (MUSE) instrument.
In [Henrot et al. 2013] the authors deal with deconvolution of hyperspectral images. The
output of the forward model is a 2D convolution of the channel l and the l-th channel
PSF. The deconvolution method is based on regularization methods where two smooth-
ness priors are enforced, spatial and spectral, and the positivity constraint. An iterative
algorithm is derived for updating the solution and its constraint. The reconstruction re-
sults on simulated microscopy data, having a narrow wavelengths range of 0.3 − 0.6 µm,
are very good where a very low root mean square error is obtained. However, the devel-
oped forward model does not take into accounts the spectral variation of the PSF nor the
cross-correlation between channels. Hence, this reconstruction method cannot be applied
for multispectral data of the imager MIRI of the JWST.

Spectral unmixing:
Spectral unmixing is a technique used for multispectral/hyperspectral data reconstruc-
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tion. It consists of decomposing a pixel spectrum into a collection of distinct spectra (end-
members or spectral components) and estimating the corresponding abundances (weights
or mixture coefficients or proportion) [Keshava & Mustard 2002, Plaza et al. 2004]. Au-
thors in [Adams et al. 1986] proposed a linear mixing model in order to analyze a mul-
tispectral image. The spectral components in the image correspond to different materi-
als (e.g. soil, rock, and shade), whereas the mixture coefficients represent the propor-
tion of each spectral components. The linear mixing model has been used on a wide
range of hyperspectral applications [Settle & Drake 1993, Haertel & Shimabukuro 2004,
Berne et al. 2007]. Several works consider the spatial and spectral correlations between
neighbors pixels in order to analyze the hyperspectral data. [Tarabalka et al. 2009] pro-
posed a spectral–spatial classification scheme for hyperspectral images. The authors of
[Guo et al. 2009] presented an hyperspectral image enhancement method based on the to-
tal variation regularizer to produce a higher visual quality hyperspectral image. Authors
in [Dobigeon et al. 2009] proposed a Bayesian method for the extraction of end-members
and the estimation of abundances from hyperspectral images. An overview of hyper-
spectral unmixing models and algorithms is presented in [Bioucas-Dias et al. 2012]. In
a recent work [Loncan et al. 2015] proposed a comparison of several pansharpening tech-
niques basically used for multispectral and adapted for hyperspectral images. It consists of
improving the spatial resolution of hyperspectral data by fusing it with data characterized
by sharper spatial information. Spectral unmixing have been very successfully used for
the reconstruction and the analysis of hyperspectral data. In this thesis, we aim to use
this technique in order to reconstruct a high spatio-spectral resolution object from a set
of multispectral data which are severely limited in spectral resolution.

PSF Modeling:
Other works focused on with the variability of the PSF especially for image deconvolu-

tion such as [Denis et al. 2011], where the shift-variant PSF is approximated using a linear
PSF interpolation. A few years later [Denis et al. 2015] presented an overview of fast PSF
approximation and derived an improved PSF approximation based on PSF interpolation
by proposing optimal interpolation weights and PSF samples. The obtained results are
illustrated on the deconvolution of an image blurred with a spatial shift-variant PSF and
it is shown that a low approximation error is obtained using the proposed approximation.

Yet a recent work in [Thiébaut et al. 2016] provides a consistent understanding of the
shift-variant PSF models, PSF interpolation and modal PSF approximation. Authors
shown that the PSF properties such as non-negativity, normalization, symmetries and
invariances are well preserved with the approximation by the PSF interpolation using a
set of calibrated PSF, whereas it not the case for the modal PSF approximation, which
consists of decomposing the shift-variant PSF into a sum of multiplication of the (left
and right) modes computed using the truncated singular value decomposition. This is
because no constraints are imposed on the modes even though the model offers the best
approximation in term of least-squares error.
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PSF Homogenization:
When it comes to comparison between multispectral data issued from different instru-

ments or spectral bands, the notion of PSF homogenization is usually used in practice,
especially in astronomy [Aniano et al. 2011] or recently in [Boucaud et al. 2016], where
each multispectral data has a broadband (or effective) PSF associated to it. PSF homog-
enization consists of convolving all observed multispectral data with specific kernels in
order to unify the resolution of all data, practically the lowest resolution. However this
approach degrades severally the spatial resolution of data especially the one with high
resolution, thus, a considerable loss of information might occurs especially if there is a
high range between the lowest resolution and highest resolution.

Additionally, more related works are presented in the Problem Statement section of
Chapters 4 and 5.

The particularity of the proposed work lies in the observed data. A small number
of low-resolution multispectral data degraded by a spatial blur and noise, in addition to
severe lack of spectral distribution after integrations over broad bands by the detector.
This limit the direct use of the methods applied on hyperspectral data, where a datacube
with high spectral resolution is observed.

2.5 Conclusion

In the first section of this chapter, we presented the general paradigm of a linear inverse
problem, where we seek the reconstruction of an object of interest, degraded by the re-
sponse of a measuring system and corrupted with an additive noise. Then we presented
several linear forward models that are used to model the degraded data with a particular
interest for multichannel objects. We pointed out the difference between several linear
forward models provided details for the forward model we will use later in Chapters 4
and 5. In fact, the response of the system is a block-matrix containing a direct degrada-
tion of the object channels in the observed data, and cross degradation occurring between
channels. In addition, the dimension of the observation matrix depends on the number of
observation and number of channels of the object which are not equals.

Next, we presented two frameworks for the reconstruction, regularization method and
Bayesian estimation. Both frameworks present technical advantages and drawbacks and
the choice between the two approaches is based on the application. (a) Regularization
method offers the possibility to introduce a prior knowledge of the object using linear or
nonlinear functions without any complications. However, this is not always the case in
the Bayesian approach since the prior of the object corresponds to a defined statistical
distribution. This restricts the choice of priors of the object and/or the hyper-parameter.
(b) Regularization method is a supervised method because it requires to set manually a
regularization parameter. Whereas the Bayesian approach can be unsupervised because
the regularization parameter can be estimated through estimation of the precision param-
eters of the object and noise. (c) Although the Bayesian method offers an uncertainty of
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the reconstruction and a possibility for an unsupervised algorithm, this approach remains
limited in case of data with high dimensions. Our choice in this thesis is based on the
regularization method since it allows a better flexibility of choosing the prior. This is very
important in our application since we aim to reconstruct a high-resolution object with
multiple components from multiple observations.

Finally, we presented in the last section related works that are useful for the rest of the
thesis. From reconstruction of multispectral and hyperspectral data, spectral unmixing,
PSF modeling, and PSF Homogenization.
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3.1 Introduction

In this chapter we provide the multispectral imaging system response by developing an
instrument model. We first present the considered multispectral imaging system which is
the Mid-InfraRed Instrument (MIRI) Imager on board the James Webb Space Telescope
(JWST)1 in order to develop applications related to astrophysical data. We first high-
light the optical issues related to this instrument. We then detail the response of each
instrument components and propose a mathematical model of the multispectral imaging
system. Lastly, to carry well the pre-processing of data clarify the physical units of the
astrophysical object and the electronic units of the multispectral data and some useful
conversions.

The multispectral imaging system is a diffraction-limited instrument. It consists of an
optical system and a detector (or sensor). The non-stationarity of the optical response
and the integration of the filtered object over broad bands are the main issues discussed
here.

1https://www.jwst.nasa.gov/

https://www.jwst.nasa.gov/
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In the following we present the JWST and provide details about the optical response,
then we present the MIRI imager. Moreover, we develop an instrument model that will
be used in Chapters 4 and 5.

3.2 JWST/MIRI Imager

In this section we first present the optical system response of the JWST. Then we address
the multispectral imaging system of MIRI. It is worth mentioning that we only provide
a description of the instrument components that are pertinent in this work. More spe-
cific details about the conception and characteristics of the instrument can be found in
[Rieke et al. 2015, Bouchet et al. 2015, Glasse et al. 2015].

Figure 3.1: The James Webb Space Telescope (JWST) (image from NASA).

The JWST will be launched by an Ariane rocket in 2021. The JWST project is an
international collaboration between NASA (National Aeronautics and Space Administra-
tion), the European Space Agency (ESA) and the Canadian Space Agency (CSA). With
a primary mirror diameter of 6.5 meters, the JWST will be the largest telescope in space.
The telescope has been fully optimized to observe in the InfraRed (IR) wavelength range
from 2 to 10 microns. It will offer the possibility to observe down to 0.6 µm and up to
28 µm, with unprecedented performances.

In the JWST IR wavelength range, the previous space telescope was the Spitzer tele-
scope, with a 0.85 m primary mirror. Going from a 0.85 m to a 6.5 m mirror improves the
performances in terms of sensitivity and angular resolution. The angular resolution will
be almost an order of magnitude (factor 7) better than that of Spitzer, the IR satellite
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launched in 2003. The sensitivity will also be increased by a factor about 10− 100.

A set of four instruments will be located at the focal plane of the JWST and will allow
various instrument observation modes, such as imaging, spectroscopy, and coronagraphy.
The four instruments are : (1) A Near-IR Imager and Slitless Spectrograph (0.6− 5 µm),
NIRISS, provided by the Canadian Space Agency. (2) A Near-IR Camera (0.6 − 5 µm),
NIRCam, provided by the University of Arizona (US). (3) A Near-IR Spectrometer (1− 5

µm), NIRSpec, provided by ESA with components provided by NASA. (4) A Mid-IR
Instrument (5−28 µm), MIRI, provided by a European Consortium of laboratories under
the auspices of ESA and by the NASA Jet Propulsion Laboratory (JPL).

3.2.1 Effect of the Optical System of JWST

The photon flux emitted by the spatio-spectral astrophysical object (or source) in the sky
is first reflected on a set of mirrors (primary and secondary) that composes the optical
system then oriented to the focal plane as shown in Figure 3.2.

Focal Plane

Focal Plane length

Primary Mirror

Source λ

Secondary Mirror

Optical Path

D
iffraction

pattern

Figure 3.2: Illustration of the optical path from a source at wavelength λ to the focal plane
of the JWST. Due to the diffraction theory a diffraction pattern is formed at the focal
plane. The instrument MIRI is hosted on the back of the mirror and is not represented in
the figure.

The optical system of the JWST is mainly composed of a 6.5 m primary mirror made
by a set of 18 hexagonal-mirror segments aligned together to form one big mirror. The
optical system of the telescope is limited by the diffraction as for all optical imaging
system. The response of the optical system or Point Spread Function (PSF) depends on
many parameters such as the focal plane length and the aperture transmittance function
of the mirror, including its shape and size, e.g. for a circular aperture, the response is
the Airy function (see Figure 3.3.a). In [Makidon et al. 2007] several methods of PSF
calculation for JWST have been conducted with a comparison with PSF of different space
telescopes such as Hubble and Spitzer. The calculation of the diffraction pattern for a
far-field object, such as the astrophysical object, is based on the Fraunhofer diffraction
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theory [Goodman 2005], where the intensity of the diffraction pattern intensity at the
focal plane or the PSF is given by the square modulus |ψ|2 of the 2D Fourier transform
of the aperture transmittance function A(x, y) :

ψ(u, v) = F {A(x, y)} (u, v) =

∫∫
A(x, y) exp

{
−2πi(ux+ vy)

λ

}
dxdy (3.1)

Therefore an analytic formula of the JWST’s PSF can be obtained by performing the sum
of 18 Fourier transforms of 18 off-centered hexagonal segments

ψ(u, v) = ψhex(u, v)

[
18∑

i=1

e−
i2π(xiu+yiv)

λ

]
(3.2)

where xi and yj are the coordinates of the i-th segment center for all 18 segments of the
primary mirror of the JWST. ψhex is the amplitude for a single segment which is obtained
by calculated the Fourier transform of an hexagonal aperture. The calculations details
for this calculation are provided in [Mast et al. 1982, Sabatke et al. 2005] which we report
here

ψhex(u, v) =

√
3a2

4λ

[
sin(3β′ + α′) sin(β′ − α′)

β′(β′ − α′) +
sin(3β′ − α′) sin(β′ + α′)

β′(β′ + α′)

]
(3.3)

where α′ =
√

3kau
4 and β′ = kav

4 . k = 2π/λ and a is the width of the segment. The PSF
is then the square |ψ|2.

Figure 3.3: Illustration of the PSF in a logarithmic scale (2nd row) for different aperture
transmittance function (1st row). The column (a) corresponds to a circular aperture and
the classical Airy disk. Whereas, columns (d) and (e) illustrate the complexity of the PSF
structure for the segmented JWST aperture, with and without secondary mirror supports,
respectively [Makidon et al. 2007].

However the analytic expression of the PSF does not accounts for the misalignment of



3.2. JWST/MIRI Imager 25

the mirrors and the optical path difference (OPD). We use insteadWebbPSF 2 [Perrin et al. 2012,
Perrin et al. 2014] the official PSF simulation tool for the JWST mission in order to simu-
late a realistic PSF image because it considers the OPD maps precomputed by a detailed
optical simulations of JWST. In addition WebbPSF takes into accounts the most recent
JWST pupil and OPD models, thus it simulates PSFs for JWST based on up-to-date
models for telescope wavefronts maps. It is developed by the Space Telescope Science
Institute (STScI) to simulate monochromatic PSF and offers the possibility to compute
broadband PSF weighted by a predefined source spectrum and allows tuning the spatial
sampling as well as the size of the PSF image. It is available in both interfaces, graphical
and scripting, which makes it easy to use in the programming language such as Python.
Finally, it offers a suite of tools for quantifying PSF properties such as the Full Width at
Half Maximum (FWHM), the Strehl ratio, the encircled energy.

We display in Figure 3.4 monochromatic PSFs at wavelengths from 5.6 to 25.5 µm
as mentioned on top of each image. All PSF are normalized to 1 and displayed on a
logarithmic scale. We clearly observe that the PSF structure is complex because of the
hexagonal-shape segmented primary mirror. Moreover, we observe that the shape of the
PSF depends on the wavelength, the larger the wavelength the wider the PSF, the shorter
the wavelength the narrower the PSF ; we say that the PSF is spectral-variant or spec-
trally non-stationary. The PSF of JWST linearly depends on the wavelength as shown
in Figure 3.5, where we display the Full-Width at Half-Maximum (FWHM) of the PSFs
presented in Figure 3.4. We observe that the FWHM increases by a factor 5, as expected
from the diffraction theory [Goodman 2005].

3.2.2 MIRI Imager

The Mid-InfraRed Instrument (MIRI) Imager [Bouchet et al. 2015] is one of the science
instrument onboard the JWST (Figure 3.6). It covers a broad mid-infrared spectral range
from 5 to 28 µm with a wavelength ratio around 5 between the shorter and the longer
wavelength. MIRI imager will provide wide-field, broadband imaging that will continue
the breathtaking astrophotography that has made Hubble 3 so universally admired.

The filter wheel contains nine broadband filters dedicated for imaging of MIRI to fil-
ter spectrally the photon flux, as shown in Figure 3.7. Their spectral characteristics are
reported in Table 3.1 where p indicates the index (or position) of the filter. λc is the
central wavelength and 4λ is the bandwidth of the filter. It is between 2µm and 4µm
except for the 1-st and 4-th filter. R = λ/4λ is the spectral resolving power. It varies
from 3.5 to 16, which is very low compared to the Medium Resolution Spectrometer of
MIRI [Wells et al. 2015], with R = 1500 to 3500. This indicates that the multispectral

2https://jwst.stsci.edu/science-planning/proposal-planning-toolbox/
psf-simulation-tool-webbpsf

3https://www.nasa.gov/mission_pages/hubble/story/index.html

https://jwst.stsci.edu/science-planning/proposal-planning-toolbox/psf-simulation-tool-webbpsf
https://jwst.stsci.edu/science-planning/proposal-planning-toolbox/psf-simulation-tool-webbpsf
https://www.nasa.gov/mission_pages/hubble/story/index.html
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Figure 3.4: Monochromatic PSF of the JWST/MIRI imager simulated using WebbPSF
[Perrin et al. 2012] and displayed in the same log scale. We clearly observe the dependency
of the PSF to the wavelength.

data provided by MIRI imager are poor in spectral resolution.

The transmission profiles of the filters τp(λ) for p = 1, . . . , 9 of MIRI imager filters
are provided in [Bouchet et al. 2015] and reported in Figure 3.8. It is interesting to note
that several filter profiles overlap which causes spectral cross-correlation between the mul-
tispectral data.
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Figure 3.5: Illustration of the wavelength dependence of the PSF by displaying the Full-
Width at Half-Maximum (FWHM) associated to the PSF in Figure 3.4. We notice a clear
linear dependency of the PSF’s FWHM to the wavelength, as expected from the diffraction
theory.

Figure 3.6: The Mid-infrared instrument Imager (http://irfu.cea.fr).

The detector is a device sensitive to infrared light. It converts the detected photon
focused on the focal plane into a photocurrent in a detector pixel. It contains 1024 by
1024 pixels and a field of view of 113 arcsecond per 113 arcsecond (or "), whose 73.5”

by 112.6” are dedicated to MIRI imager as shown in Figure 3.11. The pixel scale is 0.11

arcsecond which means that each pixel covers an area Ωpix = 0.112 arcsec2. Additional
technical details of MIRI imager detector can be in [Love et al. 2005, Rieke et al. 2015].

http://irfu.cea.fr
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Imager optical design

Figure 3.7: MIRI optical design shows the path of the photon flux inside the imager from
the focal plane to the detector [Bouchet et al. 2015].

Table 3.1: Nine filters for MIRI Imager with their names, central wavelength and band-
wavelength.

Filter position λc (µm) 4λ(µm) R = λ/4λ
p = 1 5.6 1.2 5.0
p = 2 7.7 2.2 3.5
p = 3 10.0 2.2 5.0
p = 4 11.3 0.7 16.0
p = 5 12.8 2.4 5.0
p = 6 15.5 3.0 5.0
p = 7 18.0 3.0 6.0
p = 8 21.0 5.0 4.0
p = 9 25.5 4.0 6.0

A non-ideal detector is characterized by its quantum efficiency (QE), which is mea-
sured in detected electrons per incident photon (e−.photon−1). Its spectral response η(λ)

depends on the wavelength and can be increased by applying an anti-reflection coating on
the detector, see Figure 3.9.

The common spectral response used by the JWST community is the PCE (Photon
Conversion Efficiency) [Glasse et al. 2015]. It is the product of filter transmission τp(λ)

and detector quantum efficiency η(λ). Thus, we define spectral bands response ωp(λ) by

ωp(λ) = τp(λ)η(λ), ∀λ ∈ [λmin, λmax], (3.4)

where a discrete values for the nine PCE profiles from 1 to 30µm are publicly available
on the website of the University of Arizona 4, see Figure 3.10.

4 http://ircamera.as.arizona.edu/MIRI/ImPCE_TN-00072-ATC-Iss2.xlsx

http://ircamera.as.arizona.edu/MIRI/ImPCE_TN-00072-ATC-Iss2.xlsx
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Figure 3.8: MIRI imager transmission profiles [Bouchet et al. 2015] covering the spectral
range of 5 to 28 µm.
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Figure 3.9: Measured quantum efficiency of bare detector material (solid line). The dashed
line is a computed result assuming the array has an antireflection coating applied optimized
for 6 µm, and the dotted line is for an AR coating optimized for 16 µm [Rieke et al. 2015].

3.3 Instrument Model

In this section we develop the multispectral imaging system response by establishing a
relation between the input object to the output data. The multispectral imaging system
we are considering is presented in Figure 3.12 as a block diagram, where its components
are summarized in three blocks, namely: optical system, spectral bands and detector.
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Figure 3.10: Nine spectral bands of the JWST/MIRI Imager [Glasse et al. 2015] also called
PCE (Photon Conversion Efficiency).

Figure 3.11: Illustration of sectioning of MIRI detector. A field of view (FOV) of 73.6′′ ×
112.6′′ is dedicated to the imager while the rest is dedicted to the chronography and
spectroscopy.

The parameters corresponding to each block are defined in the following sections. We first
define the spatio-spectral object of interest as a function of three variables

φ(α, β, λ) : R3 → R

where (α, β) ∈ R2 represent the spatial dimension and λ ∈ R+ represents the spectral one.

3.3.1 Optical System Response

Due to the light diffraction on the focal plane of the telescope, the optical system response
is carried out by a spatial-convolution between the object of interest φ and a spectral-
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Figure 3.12: Illustration of the model of a multispectral imaging system with a block
diagram.

variant PSF h [Goodman 2005] as follows

φh(α, β, λ) = φ ∗
α,β

h

=

∫∫

R2

φ(α′, β′, λ)h(α− α′, β − β′, λ)dα′dβ′, (3.5)

where ∗
α,β

stands for 2D spatial convolution.

The output of the optical system φh is a blurred version of φ, depending on the
wavelength λ. This limits the spatial resolution of the observed object especially at long
wavelengths, e.g. observations by the JWST/MIRI Imager.

3.3.2 Spectral Band Response

The diffracted object is spectrally filtered over P broad bands ωp(λ), p = 1, . . . , P . This
operation is modeled by a multiplication with the spectral bands response as

φ(p)
w (α, β, λ) = ωp(λ)φh(α, β, λ). (3.6)

3.3.3 Detector Response

Finally, the object within a spectral band is integrated and sampled pixel-by-pixel on the
detector matrix forming discrete multispectral data, Gsamp = {θi,j}Ni,Nji,j=1 , i and j indicates
the pixel position, Nj and Nj are the number of pixel according to dimensions α and β,
respectively. θi,j = (αi, βj) refers to the 2D angular position of the pixel (i, j). A basis
function bi,jsamp(θ) is defined over the pixel sensitive area Ωpix to carry out spatial sampling
of the pixel (i, j). Moreover, a detector noise and modeling errors term n

(p)
i,j is added for

each pixel (e.g. readout noise of the detector). The detector response for a single pixel is
given by

y
(p)
i,j =

∫

R+

(∫∫

Ωpix

φ(p)
w (θ, λ) bi,jsamp(θ)dθ

)
dλ+ n

(p)
i,j , (3.7)

we discuss the choice of the basis function bi,jsamp later in Section 4.4.
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3.3.4 Complete Model

Finally, the full equation of the instrument model is obtained by substituting Equations
(3.5) and (3.6) in Equation (3.7). This yields

y
(p)
i,j =

∫∫

Ωpix

(∫

R+

ωp(λ)

(
φ(α, β, λ) ∗

α,β
h(α, β, λ)

)
dλ

)
bi,jsamp(α, β) dαdβ+n

(p)
i,j . (3.8)

The final instrument model in Equation (3.8) establishes a relation between the contin-
uous spatio-spectral object φ(α, β, λ) at the entrance of the multispectral imaging system
to the discrete multispectral data y

(p)
i,j through a complex instrument response, which

includes spectral windowing and five integrations, two from spatial convolution, two for
spatial sampling and one spectral integration. However, the above model does not in-
clude any non-ideal characteristic of the detector such as rejecting saturated data or bad
data based on a predefined bad pixel mask, removing common noise components, cor-
recting for anomalies in the initial frames in a detector integration caused by the reset
[Gordon et al. 2015], which are assumed to be corrected upstream.

3.4 Unit Conversion : Physical Units and Electronic Units

The physical units of the object of interest at the input of the imaging system change
throughout the observation and becomes electronic units by the output of the imaging
system or multispectral data. It is interesting the highlight the transformation of the
unit and determines the electronic units associated to the physical units that are used
specifically for an astrophysical object.

3.4.1 Physical Units

The physical units of an astrophysical object or photon flux is photon per seconds per
pixel per microns (photon.s−1.pixel−1.µm−1) but a common units used is Mega Jansky
per steradian (MJy.sr−1) because flux densities are extremely small. The Jansky (Jy) is
a unit usually used in radio and IR astronomy with 1 Jy = 10−26 J.s−1.m−2.Hz−1.

In the following we provide details for the physical units conversion from MJy.sr−1 to
photon.s−1.pixel−1.µm−1. In fact we need basics from physical law of light, unit conversion
and instrument parameters (telescope and MIRI imager). Let’s first recall the energy of
one photon in Joule (or J):

Ephoton =
hc

λ0
J, (3.9)

where h = 6.62607×10−34 J.s is the Planck’s constant. c = 2.998×108 m.s−1 is the speed
of light in vacuum thus hc = 1.98× 10−25 J.m. λ0 is the wavelength of the light source in
meter (m).

1 J =
λ0

hc
photons. (3.10)

The relation between wavelength λ and frequency ν of light is given by

ν =
c

λ
. (3.11)
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Then we need the relation to convert the flux density per frequency Fν to the flux density
per wavelength Fλ:

Fλdλ = Fνdν. (3.12)

Also from Equation (3.11) we have

dν =
∣∣∣− c

λ2

∣∣∣ dλ (3.13)

By replacing Equation (3.13) in (3.12) we can derive the photon flux per frequency

Fν =
c

λ2
Fλ (3.14)

We also need the aperture surface of the telescope Atel = 25.03m2, and additional
wavelength independent transmission terms such as τtel = 0.88, a transmission of the
clean telescope optics at the start of the mission and τEOL = 0.8 is then used to account
for the loss in transmission of all elements in the optical train up to the “end-of-life” of
the nominal 5-year mission [Glasse et al. 2015].

The pixel scale of the MIRI imager detector is 0.11 arcsec.pixel−1 which means that
each pixel covers an area Ωpix = 0.112 arcsec2. Thus the solid angle per pixel in steradian
(sr) is given by

Ωpix = 0.112 × (2.35× 10−11) sr.pixel−1

= 2.84× 10−13 sr.pixel−1 (3.15)

with
{

1 sr = 1 rad2

2.35× 10−11 sr = 1 arcsec2
(3.16)

with 1̊ = 60 arcminutes (′) = 3600 arcseconds(′′).

Finally, unit conversion of a photon flux [X] fromMJy.sr−1 to photon.s−1.pixel−1.µm−1

at wavelength λ0 is:

[X] MJy.sr−1 × C(λ0) = [X] photon.s−1.pixel−1.µm−1

with

C(λ0) = 106.10−26.
λ0

hc
.τtelAtel

(
c

λ2
0

)
× 10−6.Ωpix

=

(
τtelAtel

λ0

)
4.286× 10−6. (3.17)

For instance let’s consider a photon flux F = 0.4 MJy.sr−1 at λ1 = 5 µm. The
computation of the conversion coefficient using Equation (3.17) gives

C(λ1) =

(
0.88× 25.03

5× 10−6

)
4.286× 10−6

= 18.87
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Thus, the converted photon flux is F = 0.4× 18.87 = 7.55 photon.s−1.pixel−1.µm−1. We
obtain the same values reported in [Glasse et al. 2015] and confirm the expression of the
conversion coefficient of photon flux from MJy.sr−1 to photon.s−1.pixel−1.µm−1 in Equa-
tion (3.17). Throughout this rapport, the physical units of the spatio-spectral object is
photon.s−1.pixel−1.µm−1 even if it is not mentioned explicitly.

3.4.2 Electronic Units

The electronic units of the multispectral data can be derived simply by using the instru-
ment model in Equation (3.8) and the physical units of the object of interest, i.e.





τp(λ) : e−. photon
φ(α, β, λ) : photon.s−1.pixel−1.µm−1

h(α, β, λ) : arcsec −2 or sr−1

dαdβ : arcsec 2 or sr1

dλ : µm

(3.18)

Therefore, the electronic units of the multispectral data [X] for a single pixel are

y
(p)
i,j = [X] e−.s−1.pixel−1 (3.19)

Same as above, the electronic units of the multispectral data is e−.s−1.pixel−1 even if
it will not be mentioned explicitly.

3.5 Conclusion

This chapter deals with a model of a multispectral imaging system, particularly the MIRI
imager on board the JWST. We first present the instrument and then highlight the issues
related to its components, especially the limit of the spatial resolution of the object by the
optical response (PSF) because of the diffraction of light on the focal plane of the telescope.
Moreover, the spectral variance of the optical response of the JWST linearly depends
on the wavelength, the larger the wavelength the wider the PSF, and the shorter the
wavelength the narrower the PSF, as expected from the diffraction theory. In addition, the
spectral resolution of the multispectral data is limited because of the spectral integration
over broad bands, with an important wavelength ratio of ∼ 5 and a very low spectral
resolving power from 3.5 to 16, which implies that the multispectral data are poor in
the spectral information of the original spatio-spectral object. Furthermore, an analytic
expression of the PSF is computed thanks to the Fraunhofer theory, through a sum of
18 Fourier transform of 18 hexagonal-shape segments. In practice we use WebbPSF, a
PSF simulator tool developed exclusively for the JWST mission due to many practical
advantages.

We end up with an instrument model which rely on the input of the imaging system,
a continuous original object φ, to the output a discrete multispectral data y

(p)
i,j . This
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model is complex and takes into account the diffraction limitation of the optical sys-
tem, which is modeled by a 2D spatial convolution of the object with a spectral-variant
PSF, spectral integration over few broad bands, spatial sampling of the multispectral data
over the detector matrix, and an additive term that account for modeling errors and noise.

In the next two chapters, we show how we incorporate the developed instrument model
to develop spatio-spectral reconstruction methods.
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4.1 Introduction

In this chapter we address the reconstruction of a discrete 2D+λ spatio-spectral object
from a set of few 2D multispectral data, where the original object of interest is degraded
by an instrument that suffers from diffraction, because of the limited size of its optical
system, and from the spectral integration over broad bands. The instrument model con-
sidered is given by the Equation (3.8).

The linear forward model characterizes the relationship between the input (or un-
known) of the multispectral imaging system and the multispectral data at the output. It
accounts for degradation occurring within and between channels degradations or auto and
cross-channel degradations, where the number of multispectral data is much lower than
the number of spectral channels.
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The reconstruction of the spatio-spectral object is based on regularization methods.
We see that a naive least-squares method leads to an unstable solution because of the
ill-conditioning of the observation matrix, thus the problem is ill-posed. A regularization
term is added to correct the ill-posedness such as the spatial and spectral smoothness. In
the last section we present reconstruction results with a comparison to multichannel 2D
deconvolution for an application to the MIRI Imager on board the JWST.

4.2 Problem Statement

The accuracy of the instrument model developed in Chapter 3 depends on the knowledge
of the instrument characteristics such as the monochromatic PSF. The real monochro-
matic PSF is the one measured during an observation by the MIRI imager, thus after
the launch of the telescope. However, this task remains difficult to achieve because of
the large wavelength number required in order to obtain a monochromatic PSF with high
spectral resolution over a broad wavelength range of the instrument, i.e. 5 to 28 µm. In
fact, conventional approaches generally neglect the spectral variation of the PSF in order
to simplify the lack of knowledge of the real PSF [Guillard et al. 2010]. Several works
consider 2D images and therefore need only a wavelength-independent 2D PSF. Another
common approach, particularly in astrophysics, is to use a broadband (or effective) 2D
PSF, e.g. [Geis & Lutz 2010, Aniano et al. 2011, R. Gastaud 2018], where the broadband
PSFs are computed with an integral of the monochromatic PSFs, weighted by the spectral
response of the instrument (filter and detector) and the object spectrum (or Source Energy
Distribution) of a given astronomical object. Thus, its formulation is given by

hbroad(α, β) =

∫
R+
ω(λ)s(λ)h(α, β, λ) dλ
∫
R+
ω(λ)s(λ) dλ

(4.1)

where the function s(.) is the spectrum of the object, and ω(.) is the broad band spectral
response of the instrument, e.g. Figure 3.10.

The drawbacks of this approach rely on three major points. (1) The spectral distri-
bution (or spectrum) of the object: since the spectrum of an object being observed by
the instrument is unknown, a predefined spectrum of another object (e.g. a black body
at a given temperature or a flat spectrum) is used to compute the broadband PSF. An
interesting question arises concern the choice of the predefined spectrum. in all cases,
the broadband PSF is inaccurate unless it is computed from the original spectrum. (2)
The spectral-independence of the broadband PSF: meaning that the same 2D PSF is used
across the whole range of a band, whereas we know that the PSF of a diffraction-limited
instrument is wavelength-dependent according to the diffraction theory. In fact, a unique
PSF can only be used in case of narrow-band imaging, e.g. hyperspectral data, but not
for a broad-band imaging, e.g. multispectral data. (3) The limitation of the spectral res-
olution: reconstruction of the object using the broadband 2D PSF is done band per band
[Aniano et al. 2011, Boucaud et al. 2016]. Thus, the spectral resolution of multispectral
data is limited by the number of instrument bands.
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We illustrate these drawbacks on Figure 4.1. We clearly see the inaccuracy of spectral
distribution of the reconstructed object (in red) using five broadband PSF. In addition,
an ambiguity arises when the bands overlap where it is hard to restore the intensity of
the object in the overlapping zone. This ambiguity becomes a serious limitation especially
when the overlapping zone is large.

λ

Broadband reconstruction

Original Object

Multispectral data

Integration bands

Figure 4.1: Inaccuracy of the broadband reconstruction method illustrated on five low-
resolution multispectral data. The spectral distribution of the original object of interest
is illustrated for a single spatial position over the wavelength range.

In [Soulez et al. 2013] authors proposed to use linear interpolation to model the spec-
tral variation of the PSF, an idea that was used in [Denis et al. 2011] to model the spatial
variation of the PSF. More recently, [Thiébaut et al. 2016] presented the existing models
for spatial variant PSF based on speed and accuracy.

In the following sections, we propose to preserve the spectral variations of the PSF.
Moreover, here instead of using a predefined spectrum, we propose to model the spectral
distribution of the object by a piecewise linear function in order to approach the real one.

4.3 Object Model: Piecewise Linear Function

Having a set of discrete multispectral data, our goal is to reconstruct a discrete version of
the object of interest from a set of low-resolution multispectral data. We model the con-
tinuous distribution of the object by a sum of discrete coefficients φ(αk, βl, λm) weighted
by a basis function b(α, β, λ), with k, l andm referring to the spatial and spectral positions
of the sample, respectively. The basis function is defined as separable functions in order
to distinguish the spatial and spectral reconstructions [Bongard et al. 2011], i.e.

b (α, β, λ) = bspat (α, β) bspec(λ). (4.2)

where the subscript spat stands for spatial, and spec stands for spectral.

Moreover, as in Section 3.3.3, we define two discrete grids for the object Gspat =

{αk, βl}Nk,Nlk,l=1 and Gspec = {λm}Nλm=1 , Nk, Nl and Nλ refers to the number of pixels in
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the grid according to dimensions α, β and λ, respectively. Therefore, the object model is
given by

φ(α, β, λ) =

Nλ∑

m=1

Nk∑

k=1

Nl∑

l=1

φ(αk, βl, λm) bk,lspat(α, β)bmspec(λ). (4.3)

In order to handle the lack of spectral information in the multispectral data and to
increase the spectral resolution of the object to reconstruct, we propose to model the
spectral distribution of the object bspec(λ) by a uniform piecewise linear function, with
Nλ channels [Hadj-Youcef et al. 2017a], see Figure 4.2. This choice allows us to obtain
a simple model that preserves the spectral distribution of the object with less complex-
ity, whereas the broadband model does not because the spectral variability of the PSF is
neglected. The parameter Nλ controls the sharpness of the spectral sampling and com-
promises between this sharpness and the number of unknown channels. In fact, Nλ is to
be set experimentally in order to satisfy a good reconstruction result.

We consider a uniform shift-basis function, i.e. bspec(λ) = bspec(λ − λm) with λm =

m4λ and 4λ =
λNλ−λ1
Nλ−1 . This spectral uniform shift-basis function can be seen as the

first-order uniform B-spline function [Thévenaz et al. 2000].

Hereafter we denote the discrete coefficients φ(αk, βl, λm) by x(m)
k,l to denote the un-

known parameter of the spatio-spectral object at (k, l)-th spatial position and m-th spec-
tral channel in a finite dimensional space.

x
(m)
k,l = φ(αk, βl, λm). (4.4)

λ1 λ3λ2 λλNλ

...

...

x
(3)
k,l

x
(1)
k,l

x
(2)
k,l

x
(M)
k,l Broadband reconstruction

Original Object

Multispectral data

Integration bands

Estimated

φ(αk, βl, λ)

Figure 4.2: Illustration of the proposed modeling using a piecewise linear spectral model
and comparison with the broadband reconstruction method on five low–resolution mul-
tispectral data. The spectral distribution of the original object is illustrated for a single
spatial position (αk, βl) over the spectral band [λ1, λNλ ].
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4.4 Forward Model: Definition of the Observation Matrix

In this section we develop a linear forward model characterizing the relationship between
the discrete unknown parameter x ∈ RNλNkNl and the discrete multispectral data y ∈
RPNiNj . It accounts for within channel and between channels degradations, respectively,
where the number of multispectral data is much lower than the number of spectral chan-
nels, i.e. Nλ � P [Hunt & Kubler 1984, Galatsanos et al. 1991, Schultz & Stevenson 1995].
The set of P low-resolution multispectral data is degraded by a spectral-variant PSF and
integrated over broad spectral bands (or windows).

The linear forward model is obtained by substituting Equation (4.3) of the object
model in the instrument model (3.8)

y
(p)
i,j =

∫∫

Ωpix

(∫

R+

ωp(λ)

((
Nλ∑

m=1

Nk∑

k=1

Nl∑

l=1

x
(m)
k,l b

k,l
spat(α, β)bmspec(λ)

)
∗
α,β

h(α, β, λ)

)
dλ

)

bi,jsamp(α, β)dαdβ + n
(p)
i,j .

where i, j indicates the pixel coordinates, and p refers to the band.

Since we are not interested in a super-resolution problem [Park et al. 2003] and we
dispose multispectral data with high spatial resolution, we define bsamp(.) and bspat(.) on
a uniform or regular sampling grid with same sampling steps (or discretization intervals)
(4α)samp = (4α)spat = 4α, (4β)samp = (4β)spat = 4β according to dimensions α and
β, respectively. The sampling functions are called shift basis functions

bi,jsamp(α, β) = bsamp(α− αi, β − βj)

and
bk,lspat(α, β) = bspat(α− αk, β − βl)

with αt = t4α and βt = t4β, for t = {i, j, k, l}.

By rearranging all wavelength-dependent terms in hp,mint we obtain

y
(p)
i,j =

Nλ∑

m=1

Nk∑

k=1

Nl∑

l=1

x
(m)
k,l

(∫∫

Ωpix

(
bspat ∗

α−αk,β−βl
hp,mint

)
bsamp(α−αi, β−βj)dαdβ

)
+n

(p)
i,j ,

(4.5)

with

hp,mint (α, β) =

∫

R+

ωp(λ)bmspec(λ)h(α, β, λ) dλ. (4.6)

hp,mint is a wavelength independent PSF-like term. It is obtained by averaging monochro-
matic PSFs over the p-th spectral band, weighted by bmspec to account for spectral linear
variations around the wavelength λm. Thus, the accurate the spectral variation in bmspec
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the accurate the system response.

For computational purpose, we carry out the spectral integration in Equation (4.6)
by defining a spectral grid with a uniform sampling Gλ = {λi} Nλi=1, Nλ is total number of
wavelengths. λi = i4λ with 4λ refers to the spectral sampling step. It is chosen to be
sufficiently high in order to account properly the spectral variation of the PSF, e.g. we
set Nλ in order to have 4λ = 2.9 10−2 µm.

Furthermore Equation (4.5) can be simplified as

y
(p)
i,j =

Nλ∑

m=1

Nk∑

k=1

Nl∑

l=1

Hp,m
i,j;k,l x

(m)
k,l + n

(p)
i,j , (4.7)

with

Hp,m
i,j;k,l =

∫∫

Ωpix

((∫

R+

ωp(λ)h(α, β, λ)bmspec(λ)dλ

)
∗
α,β

bspat(α− αk, β − βl)
)

bsamp(α− αi, β − βj)dαdβ (4.8)

where Hp,m
i,j;k,l represents an element of the observation matrix which models the detector

spatial sampling and optical response through spatial convolution between the basis func-
tion of the object model and a PSF-like term hp,mint . This later is obtained after spectral
integration of all wavelength-dependent terms, which includes the instrument parameters
and the spectral model of the object, i.e. uniform piecewise linear function.

For the sampling function, we consider a separable rectangular impulse function over
one pixel area Ωpix = 4α4β [Yaroslavsky 2013]:

bi,jsamp(α, β) =
1

4αΠ

(
α− i4α
4α

)
× 1

4βΠ

(
β − j4β
4β

)
. (4.9)

Other choices are possible such as the cardinal-sine [Bongard et al. 2011], Fourier trans-
form of the rectangular function, or the 2D circular function [Yaroslavsky 2012].

Thus, Equation (4.8) becomes

Hp,m
i,j;k,l =

1

4α
1

4β

∫ (i+1)4α

i4α

∫ (j+1)4β

j4β

(
bspat ∗

α−αk,β−βl
hp,mint

)
dαdβ

=

[
bspat ∗

αi−αk,βj−βl
hp,mint

]

=

[
bspat ∗

αi−k,βj−l
hp,mint

]

= Hp,m
i−k,j−l (4.10)

where f(αi, βj) is the mean value of f(α, β) over the area of the pixel (i, j). Thus H
naturally becomes a discrete convolution kernel.
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Therefore, by rewriting Equation (4.7) with a matrix-vector notation, this yields

y(p) =

Nλ∑

m=1

Hp,mx(m) + n(p). (4.11)

where the p-th multispectral image y(p) ∈ RNiNj is a sum of Nλ discrete 2D convolu-
tions of the spectral channels (unknown parameter) x(m) ∈ RNkNl ,m = 1, . . . , Nλ, with
convolution matrices Hp,m, p = 1, . . . , P and m = 1, . . . , Nλ.

The forward model described by Equation (4.11) has many advantages. The obser-
vation matrices Hp,m are known and mainly depend on the accuracy of hint, which is
parametrized by the instruments parameters and the spectral model of the object. The
model is linear, thus simple linear algebra can be applied to implement it. In addition, it
allows us to obtain an explicit solution for the reconstruction (see next section). Computa-
tion of discrete convolution can be done efficiently through diagonalization in the Fourier
domain [Hunt 1971] under the circular approximation assumption.

By combining all multispectral data set we obtain from Equation (4.11) the following
multi-observation forward model




y(1)

y(2)

...
y(P )




︸ ︷︷ ︸
y

=




H1,1 H1,2 · · · H1,Nλ

H2,1 H2,2 · · · H2,Nλ

...
...

. . .
...

HP,1 HP,2 · · · HP,Nλ




︸ ︷︷ ︸
H




x(1)

x(2)

...
x(Nλ)




︸ ︷︷ ︸
x

+




n(1)

n(2)

...
n(P )




︸ ︷︷ ︸
n

, (4.12)

where x ∈ RNλNkNl is the stack of Nλ spectral channels represented in a vector form and
each spectral channel x(m) contains Nk × Nl pixels. Here y ∈ RPNiNj is the stack of
all multispectral data observed with P broad-bands of the multispectral imaging system.
n ∈ RPNiNj represents an additive unknown error associated to multispectral data in y.

The block matrixH ∈ RPNiNj×NλNkNl is defined by a set of P×Nλ Toeplitz and circu-
lant sub-matrices Hp,m ∈ RNiNj×NkNl , p = 1 . . . , P,m = 1 . . . , Nλ. The block Hp,t, t = m

represents the within (or auto) degradation, whereas the block Hp,t, t 6= m accounts for
degradation occurring between channels. All sub-matrices are ill-conditioned, meaning
thatH is also ill-conditioned, which leads to an ill-posed problem. In addition, it is worth
noting that the spectral distribution of the object is carried out by the spectral channels
of x and are weighted by the block of the observation matrix.

We are interested in the particular case where we dispose a small number of low-
resolution multispectral observed data compared to spectral channels, i.e. P � Nλ, which
means there is a lack of spectral information in the data. For instance, for multispectral
data observed by the JWST/MIRI imager we have p = 9 and Nλ = 1000. Hence the size
of H is 9× 2562 by 1000× 2562, for a 256× 256 pixel detector (Ni = Nk, Nj = Nl).
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4.5 Reconstruction

4.5.1 Regularized Least-Squares

In this section we aim to reconstruct a multichannel spatio-spectral object through the
reconstruction of its unknown parameter x using a set of multispectral data y. A naive re-
construction consists of applying a Least-Squares method, where the solution x̂ is obtained
as the minimizer of a cost function

x̂ = argmin
x





P∑

p=1

Nλ∑

m=1

Ni∑

i=1

Nj∑

j=1

(
y(p) −Hp,mx(m)

)2

i,j



 . (4.13)

Since the cost quadratic function is differentiable and H is linear, it gives a linear
solution

x̂ = (HTH)−1HTy. (4.14)

However, the matrixHTH, composed of convolution block-matrices, is ill-conditioned. In
fact it has a large condition number, defined by κ(HTH) =

∣∣λmax(HTH)
∣∣/
∣∣λmin(HTH)

∣∣.
If κ is large which is the case here, even a small error in HTy (e.g. due to the noise in
y) can cause a large error in x. Therefore, the inversion problem in Equation (4.14) is
ill-posed. The Least-squares solution is thus unstable because of the inversion of HTH

[Neumaier 1998].

The simplest way to correct this ill-posedness is by adding some prior information
about the solution, this leads to the regularized least-squares method [Demoment 1989].
It consists of adding a regularization term to the cost function in order to correct the
ill-conditioning of HTH and stabilize the solution. In this chapter we are interested in a
smooth spatio-spectral object. Hence two types of regularizations are of interest, spatial
regularizationRspat(x) and spectral regularizationRspec(x). In this case the minimization
problem becomes

x̂ = argmin
x

{J (x) = Q(x,y) + µspat Rspat(x) + µspec Rspec(x)} , (4.15)

where the first term measures the consistency of the sought object to the data,

Q(x,y) = ‖y −Hx‖2
C−1
n

= (y −Hx)tC−1
n (y −Hx), (4.16)

with Cn refers to the covariance matrix of the multichannel noise vector n. Since all
multispectral data are observed with the same imaging system, we assume a special case
of an identically independent distributed white Gaussian noise, i.e. Cn = σnIPNiNj ,
with IPNiNj refers to a, identity matrix of size PNiNj by PNiNj . Thus Equation (4.16)
becomes

Q(x,y) = ‖y −Hx‖22 . (4.17)

The second term Rspat(x) is a spatial regularization. It enforces spatial smoothness be-
tween pixels of the sought object. It is defined by

Rspat(x) =

Nλ∑

m=1

(
Nk∑

k=1

Nl∑

l=1

(
x

(m)
k+1,l − x

(m)
k,l

)2
+
(
x

(m)
k,l+1 − x

(m)
k,l

)2
)

= ‖Dspatx‖22 (4.18)
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where Dspat is defined by

Dspat =




D

D
. . .

D


 ∈ RNλNkNl×NλNkNl (4.19)

and D is the second-order finite difference operator along the spatial dimension of x
under circularity conditions x(m)

Nk+1,l = x
(m)
1,l and x(m)

k,Nl+1 = x
(m)
k,1 . The last term Rspec(x)

refers to the spectral regularization. It enforces the similarity between intensity values of
corresponding pixels in neighboring channels. It is defined by

Rspec(x) =

Nk∑

k=1

Nl∑

l=1

(
Nλ∑

m=1

(
x

(m+1)
k,l − x(m)

k,l

)2
)

= ‖Dspecx‖22 (4.20)

where Dspec ∈ RNλNkNl×NλNkNl is the first-order finite difference operator along the spec-
tral dimension of x, defined in Section 4.5.3, under circularity condition x(Nλ+1) = x(1).
Regularization terms µspat ≥ 0 and µspec ≥ 0 are regularization parameters. They are
set to adjust the trade-off between fidelity to data and spatial smoothness for µspat, and
spectral smoothness between channels for µspec, respectively.

By rewriting the cost function J (x) in Equation (4.15), this yields

x̂ = argmin
x

{
J (x) = ‖y −Hx‖22 + µspat ‖Dspatx‖22 + µspec ‖Dspecx‖22

}
, (4.21)

the resulting cost function J (x) is a sum of quadratic terms, therefore it is differentiable
and strictly convex. Thus, the solution is obtained by solving :

∂

∂x̂
J (x̂) = 0,

where

∂

∂x̂
J (x̂) =

∂

∂x̂

(
yTy − yTHx̂− x̂THTy + x̂THTHx̂+ µspat x̂

TDT
spatDspatx̂

+ µspec x̂
TDT

specDspecx̂

)

= −2HTy + 2HTHx+ 2µspatD
T
spatDspatx+ 2µspecD

T
specDspecx

= −2
(
HTy −

(
HTH + µspatD

T
spatDspat + µspecD

T
specDspec

)
x
)

(4.22)

Therefore, the global minimizer of J (x) is given by

x̂ =
(
HTH + µspat D

T
spatDspat + µspec D

T
specDspec

)
︸ ︷︷ ︸

Q

−1
HTy, (4.23)
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where Q is the Hessian matrix. It is a square block matrix of size NλNkNl by NλNkNl

containing Nλ × Nλ Toeplitz matrices Q(p,m). However, Q(p,m) 6= Q(p+t,m+t) ∀t ∈ N+,
thus, Q is block-Toeplitz but not Toeplitz itself. In addition, the matrix Q is very large
and cannot be inverted in the spatio-spectral domain. In the next sections, we focus on the
computation of the solution x̂ iteratively without inverting Q, and directly by inverting
Q in the Fourier domain.

4.5.2 Optimization Algorithms

4.5.2.1 Gradient Descent Algorithm

The first algorithm is the gradient descent or steepest descent algorithm [Shewchuk 1994].
It computes the solution without inverting the matrix Q through an iterative scheme by
updating the solution xn for the iteration n and this is done by taking steps rn in the
opposite direction of the cost function gradient, i.e. rn = −∂J (xn)/∂xn, which is equal
toHTy−Qxn in case of the cost function in Equation (4.21). All the steps are controlled
by a convergence parameter an, where a small value of an will slow down the convergence
to the global minimum whereas a high value will speed up the convergence but could
lead to divergence. The convergence parameter can be computed automatically at every
iteration (see [Shewchuk 1994]) or chosen manually. Moreover, an arbitrary initialization
x̂0 is required in order to update the solution, see Algorithm 4.1.

Algorithm 4.1 Gradient Descent Algorithm
Input: H,y,Q, a

Initialization : x̂0 = 0

for n = 0 : Niter do
Directions of the steepest descent
rn = HTy −Qx̂n
Computation of the next iteration
x̂n+1 = x̂n + a rn

return x̂

4.5.2.2 Conjugate Gradient Algorithm

The gradient descent algorithm needs a lot of iterations to reach convergence, especially
for a multi-variable cost function. Another optimization algorithm called the Conjugate
Gradient (CG) algorithm requires fewer iterations than the gradient descent to converge.
It consists of minimizing the cost function in the opposite direction of n Q-orthogonal
conjugated vectors

{
d(0), . . . ,d(n−1)

}
so the conjugate gradient algorithm does not make

a step in the same direction as earlier steps. Moreover, same as the gradient descent
algorithm the convergence parameter an is updated at every iteration, see Algorithm 4.2.
The full description of the algorithm is provided in [Shewchuk 1994].

Subsequently, we keep the conjugate gradient algorithm for implementation. In ad-
dition, the heaviest calculation in the algorithm is the computation of high-dimensional
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Algorithm 4.2 Conjugate Gradient Algorithm [Shewchuk 1994]
Input H,y,Q

Initialization : x̂0 = 0, r0 = d0 = HTy −Qx̂0

for n = 0 : Niter do
Convergence parameter
an ← rTn rn

dTnQdn
Computation of the next iteration
x̂n+1 ← x̂n − an dn
Conjugate directions
rn+1 ← rn + anQdn

bn ← rTn+1rn+1

rTn rn
dn+1 ← rn+1 + bn+1dn

return x̂

matrix-vector multiplication Qdn for every iteration. Thus, we consider the circular ap-
proximation of the blocks of Q in order to speed up the computation in the Fourier
domain.

4.5.3 Diagonalization in the Fourier domain

In this section we propose a second method to compute explicitly the solution in Equation
(4.23), i.e.

x̂ =
(
HTH + µspat D

T
spatDspat + µspec D

T
specDspec

)
︸ ︷︷ ︸

Q

−1
HTy, (4.24)

with

x =




x(1)

x(2)

...
x(Nλ)


 and HTy =




∑
p(H

p,1)Ty(p)

∑
p(H

p,2)Ty(p)

...∑
p(H

(p,Nλ))Ty(p)


 (4.25)

This method consists of computing the solution by inverting the Hessian matrix Q
explicitly through diagonalization of its blocks Qi,j , i, j = 1, . . . , Nλ in the Fourier do-
main [Galatsanos et al. 1991]. The inverting procedure is detailed in the following and is
summarized in four steps:

- Determination of the analytic expression of Qi,j .

- Diagonalization of Qi,j in the Fourier domain: ⇒ Λi,j .

- Determination of ΛQ

- Inverting ΛQ by using a parallel computation
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Determination of the analytic expression of Qi,j:
We first detail expressions of Qi,j , i, j = 1, . . . , Nλ and then proceed to the inver-

sion. The matrix Q is a sum of three block-circulant matrices, HTH, DT
spatDspat and

DT
specDspec. Each matrix is defined in the following.

1. The first matrix HTH is given by

HTH =




(
H1,1

)T (
H2,1

)T · · ·
(
HP,1

)T
(
H1,2

)T (
H2,2

)T · · ·
(
HP,2

)T
...

...
. . .

...(
H1,Nλ

)T (
H2,Nλ

)T · · ·
(
HP,Nλ

)T







H1,1 H1,2 · · · H1,Nλ

H2,1 H2,2 · · · H2,Nλ

...
...

. . .
...

HP,1 HP,2 · · · HP,Nλ




Hence,

HTH =




∑P
p=1

(
Hp,1

)T
Hp,1 · · · ∑P

p=1

(
Hp,1

)T
Hp,Nλ

∑P
p=1

(
Hp,2

)T
Hp,1 . . .

∑P
p=1

(
Hp,2

)T
Hp,Nλ

...
. . .

...∑P
p=1

(
Hp,Nλ

)T
Hp,1 · · · ∑P

p=1

(
Hp,Nλ

)T
Hp,Nλ




(4.26)

2. By using the definition of Dspat in Equation (4.19), the second matrix DT
spatDspat

is

DT
spatDspat =




DT 0 . . . 0

0 DT . . .
...

...
. . . . . . 0

0 . . . 0 DT







D 0 . . . 0

0 D
. . .

...
...

. . . . . . 0
0 . . . 0 D




=




DTD 0 . . . 0

0 DTD
. . .

...
...

. . . . . . 0
0 . . . 0 DTD




(4.27)

where D ∈ RNkNl×NkNl is a second-order finite difference matrix.

3. Concerning the expression of the third matrix DT
specDspec, we first define Dspec by

a first-order finite difference matrix explicitly. For instance the first-order difference
matrix C for a vector of size Nλ is given by

C =




−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . . . . . . . . 0

0 . . . 0 −1 1



∈ R(Nλ−1)×Nλ .
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However, the matrix C needs to be a circular matrix in order to carry out the
diagonalization in the Fourier domain, thus we consider a circular approximation of
C by adding one row :

C ≈




−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . . . . . . . . 0

0 . . . 0 −1 1

1 0 . . . 0 −1



∈ RNλ×Nλ , (4.28)

It remains to perform a difference between intensities of the same pixel from different
channels of x (a vectorized version of the 2D+λ cube). We do this by introducing
a Kronecker product ⊗ between C and an identity matrix INkNl of size NkNl by
NkNl:

Dspec =C ⊗ INkNl . (4.29)

Thus,

DT
specDspec =







−1 1 0 . . . 0

0 −1 1
. . .

...
... 0 −1

. . . 0

0
. . . . . . 1

1 0 . . . 0 −1




T 


−1 1 0 . . . 0

0 −1 1
. . .

...
... 0 −1

. . . 0

0
. . . . . . 1

1 0 . . . 0 −1







⊗ INkNl

=




2 −1 0 · · · 0 −1

−1 2 −1 0 0

0 −1 2 −1
. . .

...
... 0 −1

. . . . . . 0

0
. . . . . . 2 −1

−1 0 · · · 0 −1 2




⊗ INkNl

Lastly, the third matrix DT
specDspec is then defined as

DT
specDspec =




2INkNl −INkNl 0 · · · 0 −INkNl
−INkNl 2INkNl −INkNl 0 0

0 −INkNl 2INkNl −INkNl
. . .

...
... 0 −INkNl

. . . . . . 0

0
. . . . . . 2INkNl −INkNl

−INkNl 0 · · · 0 −INkNl 2INkNl




(4.30)
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Therefore, the analytic expression of Qi,j using Equations (4.26)-(4.27)-(4.30) are:





Qm,m =
∑

p (Hp,m)T H (p,m) + µspatD
TD − 2µspecINkNl m = 1, . . . , Nλ

Qm+1,m =
∑

p

(
Hp,m+1

)T
H (p,m) − µspecINkNl m = 1, . . . , Nλ − 1

Qm,m+1 =
∑

p (Hp,m)T H (p,m+1) − µspecINkNl m = 1, . . . , Nλ − 1

Qm,m+2 =
∑

p (Hp,m)T H (p,m+2) m = 1 : Nλ − 2

Qm+2,m =
∑

p

(
Hp,m+2

)T
H (p,m) m = 1 : Nλ − 2

QNλ,1 =
∑

p (Hp,m)T H (p,m) − µspecINkNl

Q1,Nλ =
∑

p (Hp,m)T H (p,m) − µspecINkNl

(4.31)

Diagonalization of Qi,j in the Fourier domain:
The diagonalization of the matrices Qi,j , i, j = 1, . . . , Nλ implies the diagonalization of

the circulant matrices Hp,m,D and INkNl in the Fourier domain, see [Hunt 1971]. This
yields





Λp,m
H = FHp,mF †, p = 1, . . . , P and m = 1, . . . , Nλ

ΛD = FDF †

ΛI = FINkNlF
† = INkNl

(4.32)

where F and F † are the unitary discrete Fourier transform (DFT) matrix and its con-
jugate, respectively, such as F †F = I. † symbolizes the conjugate transpose. Moreover,
Λp,m

H and ΛD are diagonal matrices whose elements are the eigenvalues of Hp,m and D
[Hunt 1971], respectively. Therefore, we can write

Λi,j = FQi,jF †, i, j = 1, . . . , Nλ (4.33)

with





Λm,m =
∑

p

(
Λp,m

H

)†
ΛH

(p,m) + µspatΛ
†
DΛD − 2µspecΛI m = 1, . . . , Nλ

Λm+1,m =
∑

p

(
Λp,m+1

H

)†
ΛH

(p,m) − µspecΛI m = 1, . . . , Nλ − 1

Λm,m+1 =
∑

p

(
Λp,m

H

)†
ΛH

(p,m+1) − µspecΛI m = 1, . . . , Nλ − 1

Λm,m+2 =
∑

p

(
Λp,m

H

)†
ΛH

(p,m+2) m = 1 : Nλ − 2

Λm+2,m =
∑

p

(
Λp,m+2

H

)†
ΛH

(p,m) m = 1 : Nλ − 2

ΛNλ,1 =
∑

p

(
Λp,m

H

)†
ΛH

(p,m) − µspecΛI

Λ1,Nλ =
∑

p

(
Λp,m

H

)†
ΛH

(p,m) − µspecΛI

(4.34)
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Determination of ΛQ:
As a result, the Hessian matrix Q becomes

Q =




Q1,1 Q1,2 · · · Q1,Nλ

Q2,1 Q2,2 · · · Q2,Nλ

...
...

. . .
...

QNλ,1 QNλ,2 · · · QNλ,Nλ




=




F † 0 · · · 0

0 F †
. . .

...
...

. . . . . . 0
0 · · · 0 F †




︸ ︷︷ ︸
F
†




Λ1,1 Λ1,2 · · · Λ1,Nλ

Λ2,1 Λ2,2 · · · Λ2,Nλ

...
...

. . .
...

ΛNλ,1 ΛNλ,2 · · · ΛNλ,Nλ




︸ ︷︷ ︸
ΛQ




F 0 · · · 0

0 F
. . .

...
...

. . . . . . 0
0 · · · 0 F




︸ ︷︷ ︸
F

(4.35)

where F = diag {F ,F , . . . ,F } and F † are the multichannel unitary DFT matrices. The
matrix ΛQ is a non-diagonal block-diagonal (NDBD) matrix [Galatsanos et al. 1991].

Inverting ΛQ through parallel computation:
The inversion of a NDBD matrix such as ΛQ relies on extracting NkNl matrices of size

Nλ by Nλ, i.e. R(k) ∈ RNλ×Nλ , k = 1, . . . , NkNl, and inverting them separately. These
two steps are illustrated in the following:

1. In Figure 4.3 we present an illustration on extraction of the matrix R. This extrac-
tion process is done in parallel so we have instantaneously all matrices R(k), k =

1, . . . , NkNl. This operation is formulated as

Rk(i, j) = Λi,j
Q (k, k), k = 1, 2, . . . , NkNl and i, j = 1, 2, . . . , Nλ. (4.36)

2. After extraction, we proceed to the inversion of the matrix under the condition that
R(k) is not a singular matrix, i.e. T (k) =

(
R(k)

)−1
, k = 1, . . . , NkNl. Therefore,

ΛQ
−1 is computed as

(
Λinv

Q

)(i,j)
(k, k) = T (k)(i, j), k = 1, 2, . . . , NkNl and i, j = 1, 2, . . . , Nλ. (4.37)

Finally, the solution in (4.23) is computed by performing inverse multichannel DFT
as:

x̂ =
(
HTH + µspatD

T
spatDspat + µspecD

T
specDspec

)−1
HTy

= Q−1HTy

=
(
F
†
Λinv

Q F
)(
F
†
Λ†HF

)
y

= F
†
Λinv

Q Λ†H ẙ (4.38)



52
Chapter 4. Multichannel Reconstruction of a Spatio-Spectral object from

Low-Resolution Multispectral Data

Figure 4.3: Illustration of the extraction procedure of R(1) for the inversion of a non-
diagonal bloc-diagonal matrix ΛQ.

Figure 4.4: Illustration of the inversion of the matrix ΛQ with an example for k = 2.

with ẙ = Fy is the multichannel DFT of the multispectral data set. The presented
method is called Multichannel Discrete Fourier transform (MDFT) and is summarized in
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a pseudo-algorithm form in Algorithm 4.3.

The solution in (4.38) has several key advantages. It is explicit and does not need to
be updated thanks to the diagonalization operation in the Fourier domain. The runtime
to compute the solution directly is faster and more efficient compared to the iterative one
(using CG algorithm) due to the parallel computation in Fourier. In addition, since all
block matrices are reals valued, their Fourier transform are Hermitian, which allows us to
reduce the cost and speed up the computation. Finally, the solution is linear and easy to
implement directly on a calculating machine using simple linear algebra. Thus it is much
efficient than the iterative solution such as the CG optimization.

Algorithm 4.3 Multichannel Discrete Fourier Transform (MDFT)
Input: H,D,C,y, µspat, µspec

Compute the Hessian matrix:
Dspat = diag {D,D, . . . ,D} . Equation (4.19)
Dspec = C ⊗ INkNl . Equations (4.28)-(4.29)
Q←HTH + µspatD

T
spatDspat + µspecD

T
specDspec . Equation (4.34)

Diagonalize Q (Non-Circulant Block Circulant) :
ΛH ←

{
Λi,j

H = FH i,jF †
}
P,Nλ
i,j=1

ΛQ ←
{

Λi,j
Q = FQi,jF †

}
Nλ,Nλ
i,j=1 . Equation (4.35)

Nλ, Nλ, Nk, N l = size(ΛQ)

Invert ΛQ (Non-Diagonal Block Diagonal) :
for k = 0 : Nk do

for l = 0 : N l do
R = Λ:,:

Q[k, l] . Equation (4.36)
Λinv

Q
:,:

[k, l] = R−1 . Equation (4.37)

Compute the solution:
x̂← F

†
Λinv

Q Λ†HF y . Equation (4.38)
return x̂

4.6 Simulation Results

4.6.1 Description of Spatio-Spectral Object: HorseHead nebula

In this section we present an astrophysical object to test our reconstruction method. The
object is a simplified spatio-spectral model of the HorseHead nebula [Abergel et al. 2003]
modeling a cloud of matter (dust and gas) illuminated by a star. The datacube has been
computed at IAS1 using a state-of-the-art model of interstellar dust particles. It computes

1https://www.ias.u-psud.fr/

https://www.ias.u-psud.fr/
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the emission spectrum in the infrared at different positions, for a given dust population
and a given geometry of the object and of the illumination conditions.

Figure 4.5:(a)-(b) illustrates a comparison of the HorseHead nebula observed in the
visible light using the Very Large Telescope (VLT)2 and in the near-infrared spectrum
using the space telescope Hubble3. It is clear that the near-infrared observation uncovers
a lot of information about the object, such as the sharpness of structure and embedded
or background stars.

(a) Visible

(b) Near-Infrared

Figure 4.5: Illustration of the spatial distribution of the HorseHead nebula in (a) The vis-
ible. (b) The near-infrared. The illuminating star is on the right (but outside the images).
(c) Represents a small region from the sky taken for simulation [Abergel et al. 2003].

The object datacube is distributed on a spatial grid with a pixel scale of 0.5”/pixel. The
intensity of each element of the cube has a unit ofMJy/sr−Mega Jansky.Steradian−1 (see
Section 3.4.1 for more details). In addition, the spectrum of the object is non-uniformly
sampled. In practice we need to re-sample first the spatial and the spectral distributions of
the object so they meet the JWST/MIRI imager requirements, i.e. wavelength range from
1 to 28µm and a pixel scale of 0.11”/pixel. Therefore, a spatial region of Nk = 256×Nl =

2http://www.eso.org/public/teles-instr/paranal-observatory/vlt/
3https://www.nasa.gov/mission_pages/hubble/story/index.html

http://www.eso.org/public/teles-instr/paranal-observatory/vlt/
https://www.nasa.gov/mission_pages/hubble/story/index.html
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256 pixels is taken for simulations with Nλ = 1000 spectral samples uniformly distributed.
Figure 4.6 shows the spatial and spectral distributions of the re-sampled object. Note
that the horizontal spatial distribution of the object is smooth and the vertical spatial
distribution is constant.

4.6.2 Setup of the Experiment

Nine multispectral data (p = 9) are simulated using Equation (3.8), with a zero-mean
white Gaussian noise added in order to obtain a global Signal-to-Noise Ratio (SNR) of
30, 20, 10 dB, defined by

SNR(dB) = 10 log10

( 1
PNiNj

‖y‖22
σ2
n

)
,

where σn is the standard deviation of the noise, P the number of multispectral data and
NiNj the total number of pixels in the multispectral data.
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Figure 4.6: Display of (a) the spatial distribution at 12µm and (b) the spectral distribution
at pixel position (129, 129) of the HorseHead nebula.

4.6.2.1 Influence of the Regularization Parameters: µspat and µspec

In order to tune the regularization parameters µspat and µspec we adopt a supervised
strategy, running the code for different values in a range and keep the pair of parameters
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that minimizes the convex cost function

µ̂spat, µ̂spec = argmin
µspat,µspec

J (x̂;µspat, µspec) . (4.39)

We are conscious that this approach is time-consuming for a wide range of parame-
ters, but this is not an issue since the solution is computed in few seconds thanks to the
implementation of the algorithm in the Fourier domain.

For a quantitative comparison between the original spectral channel forig and the
reconstructed frec we compute the relative reconstruction error defined by

Error(%) = 100× ‖forig − frec‖2‖forig‖2
. (4.40)

It is also called NMSE (Normalized Mean Square Error).

We display the obtained results in Figure 4.7 after running the reconstruction algorithm
multiple times for different values of regularization parameters µspat and µspec. We can
clearly observe that the performance of the reconstruction algorithm on both regulariza-
tion parameters and that there is an optimal pair that satisfies a minimum reconstruction
error (mentioned by a red dot). The reconstruction results are obtained by using a 30 dB

multispectral dataset and a number of spectral channels of 60.

Figure 4.7: Influence of the regularization parameters on the reconstruction Algorithm 4.3
for the HorseHead nebula with SNR = 30 dB,M = 60 and P = 9. The red dot indicates
the pair of parameters corresponding to the minimum of reconstruction error of the whole
cube.
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4.6.2.2 Simulated Multispectral Data

Figures 4.8 shows the simulated multispectral data of nine broad bands of the JWST/MIRI
imager at 30 dB, indexed from p = 1, . . . , 9 and associated to the objects HorseHead neb-
ula. Figures 4.9 illustrates the spatial distribution of the multispectral data and the
interaction between pixels, by displaying a cut from the central row of images of Figures
4.8. All images of the figure are represented with the same color-bar for better illustration
and comparison.

The simulated multispectral data illustrate the complexity of the imaging system. In
fact, we notice a presence of a blur that increases for larger wavelength, e.g. the 8-th
and 9-th bands compared to the shorter wavelength, e.g. the 1-st and 2-nd bands. This
is due to the spectral variability of the PSF. Moreover, we notice a difference in the in-
tensities between images, where some images appear with high intensities and other with
low intensities. This is due to the amount of information in the spectral components to
be integrated within bands and the width of these bands. For instance the 1-st band is
narrower then the 9-th band (see Figure 3.10). Furthermore, we notice domination of the
noise in the multispectral data, especially those integrated from narrow bands, p = 1, 3, 4.
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Figure 4.8: Simulation of nine multispectral data using Equation (3.8) for the HorseHead
nebula object. All the multispectral data are corrupted with an additive white Gaussian
noise so that SNR=30 dB.
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Figure 4.9: Illustration of the spatial distribution of multispectral data by displaying a
slice from the central row of images in Figure 4.8.

4.6.3 Results and Discussion

The reconstruction results are summarized in Table 4.1 together with a comparison be-
tween the proposed method and the broadband reconstruction or multichannel 2D decon-
volution method [Galatsanos & Chin 1989]. In Figure 4.10 we show the result of one single
pixel (127, 100), comparing the original spectrum φorig, the reconstructed spectrum using
our method φMDFT , and the reconstructed spectrum using multichannel 2D deconvolution
φBroadband. The original spectrum is complex with spectral features at short wavelengths
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(4−13µm) and continues. Therefore an accurate reconstruction using a few multispectral
data is difficult, if not impossible, without using a strong prior knowledge of the spectrum
of the object. In fact, the reconstructed spectrum computed with our method (using piece-
wise linear model) allows us to reconstruct an envelope like spectral distribution which
significantly increases the spectral resolution compared to multichannel 2D deconvolution.
Several values of Nλ = {20, 40, 60} have been tested, and the reconstruction results for
three wavelengths, 7.8, 16 and 21 µm, are reported in Table 5.1. Increasing Nλ improves
the spectral resolution of the object model but increases the between-channel degradation
and the number of unknowns. Moreover, we find that there is not much error improvement
for Nλ > 60. In any case, our proposed reconstruction shows smaller reconstruction errors
compared to the multichannel 2D deconvolution; this is due to our model accounting for
within- and between-channels degradations.

The reconstruction results using the proposed method at different wavelengths are
illustrated in Figure 4.11. As anticipated, a better reconstruction is obtained at λ = 16µm
and λ = 21µm than at λ = 7.8µm (see the fourth row of the figure) since within the
integration windows at long wavelengths the spectrum of the object does not contain any
feature.

Table 4.1: Reconstruction results of the HorseHead nebula of size 1000× 256× 256 using
a multichannel quadratic regularization method.

SNR(dB) λ(µm) Error (%)
MDFT Broadband

Nλ = 20 Nλ = 40 Nλ = 60

7,8 49,44 42,37 41,42 52,85

30 16,0 2,44 4,11 4,80 7,89

21,0 1,87 3,82 4,26 11,92

7,8 49,50 43,07 41,46 52,84

20 16,0 7,41 7,66 8,98 8,02

21,0 4,42 5,40 5,77 11,97

7,8 50,71 43,71 42,38 52,84

10 16,0 19,67 21,25 25,51 8,56

21,0 10,85 11,31 13,38 12,13
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Figure 4.10: Comparison between one single pixel spectrum from the original object φorig,
the proposed reconstruction φMDFT (with Nλ = 60) and the multichannel 2D deconvo-
lution φBroadband. The nine multispectral data (p = 9) were corrupted with zero-mean
Gaussian noise of 30 dB.
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Figure 4.11: [1st row] Original channel of the HorseHead nebula at 7.8, 16 and 21µm. [2nd
row] Simulated multispectral data with 30 dB corresponding to the bands that includes
wavelengths of the first row. [3rd row] Proposed reconstruction of the channel at 7.8, 16

and 21µm. [4th row] Difference between the original and reconstructed spectral channels.

On the other hand, in figure 4.12 we display the influence of the number of channels
Nλ on the runtime of the Algorithm 4.3. We clearly see that, the higher the value of Nλ

the longer it takes to compute the solution and this is due to increase of the size of the
Hessian matrix, hence, more block matrices are to inverse in the Fourier domain.
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Figure 4.12: Display of the influence of number of channels Nλ on the runtime of the
Algorithm 4.3.

4.7 Conclusion

This chapter presents a reconstruction method of a 2D+λ multichannel spatio-spectral
object observed by a multispectral imaging system from a few low-resolution data. We
first modeled the spectral distribution of the object with a piecewise linear function of
one parameter in order to control the spectral sampling. Then we developed first a linear
forward model where each multispectral data is a sum of discrete 2D convolution between
the spectral channel, and the observation matrix that models the spectral degradation
occurring between channels. Moreover, the reconstruction method is developed using
regularization methods where we proposed to correct the ill-conditioning of the Hessian
matrix by enforcing spatial and spectral smoothness to the solution. The computation
of the multichannel quadratic solution consists mainly of inverting the Hessian matrix Q.
However the matrix Q is very large and cannot be inverted in the spatio-spectral domain.
Hence we proposed to compute the solution with two approaches: (1) iteratively by using
an optimization algorithm such as the conjugate gradient algorithm, and (2) directly by
performing inverting the Hessian matrix in the Fourier domain, which is explicit and 10×
faster than the iterative solution thanks to the diagonalization of circular matrices.

Finally, the obtained results on simulated data of the JWST/MIRI Imager highlights
the complexity of the instrument response. In addition, an important increase of spatial
and spectral resolution of the reconstructed spatio-spectral object is observed compared to
multichannel 2D deconvolution method thanks to the modeling of the spectral distribution
of the object and considering of the spectral variation of the PSF instead of using stationary
broadband PSF per band.

However, the proposed reconstruction method presents some limitations because of
the object model. Firstly, it is difficult to choose the number of channels to reconstruct,
Nλ, and the higher it is the longer it takes for the algorithm to compute the solution.
Secondly, the choice of a piecewise linear function is a good choice to model object with
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linear spectral distribution within the integration bands, but integration bands in case
of MIRI imager of the JWST are very large and the spectral distribution of the original
object might vary a lot implying that the object model is not accurate anymore.

In the next chapter, we see how to overcome this limitation and improve the recon-
struction results by using an accurate model for the object.
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5.1 Introduction

The aim of this chapter is the reconstruction of an object with a high spatio-spectral
resolution from a set of low-resolution multispectral data degraded by a multispectral
imaging system, such as the JWST/MIRI imager described in Chapter 3. Rather than
representing the spectral distribution of the object by a piecewise linear function, as in
Chapter 4, we choose to use a linear mixing model (or dictionary representation), where
each spectral distribution is represented by a linear combination of high-resolution spectral
components. Therefore the reconstruction problem of a spatio-spectral object turns to an
estimation of a set of mixture coefficients which are the weights of the spectral components.

As for the spatial distribution, two types of object are addressed which contains smooth
or high gradients, respectively. Therefore two reconstruction methods are developed. A
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comparison of simulation results is presented for a synthetic and a real-like astrophysical
(HorseHead nebula) spatio-spectral object.

For the sake of consistency, the paradigm of this chapter is similar to the one used in
Chapter 4, i.e. object model, linear forward model, reconstruction, simulation results.

5.2 Problem Statement

We have seen in Chapter 4 that the reconstruction of the spectral distribution of a spatio-
spectral object from a small number of multispectral data, observed by an imager over
broad bands, is not very accurate without enforcing a strong prior on the spectral distri-
bution even though we obtained better reconstruction results in [Hadj-Youcef et al. 2017a]
compared to the common reconstruction method [Galatsanos & Chin 1989].

In this chapter we use another linear model for the spatio-spectral object in order to
improve the spatial and spectral resolution of the reconstructed object. We are interested
in objects with spectral correlations where each spectral distribution is approximated by a
linear combination of uncorrelated spectral components (also known as signatures or end-
members) for all spatial coordinates. This model is called the linear mixing model (LMM).
It was first proposed in [Adams et al. 1986] to analyze a multispectral image, where the
spectral end-members in the image corresponds to materials such as soil, rock, and shade.
In [Keshava & Mustard 2002] a spectral unmixing method is presented, i.e. decomposi-
tion of a mixed spatial position (or pixel) into a collection of distinct spectra, and a set of
mixture coefficients. These coefficients represent the weight of each uncorrelated spectral
components. The linear mixing model has been used on a wide range of hyperspectral
applications, see [Bioucas-Dias et al. 2012] where an overview of hyperspectral unmixing
methods is given. Moreover, several works consider the spatial and spectral correlation
between neighbors pixels in order to analyze hyperspectral data, [Tarabalka et al. 2009]
proposed a spectral–spatial classification scheme for hyperspectral images. The authors of
[Guo et al. 2009] present an hyperspectral image enhancement method based on the total
variation regularizer to produce a higher visual quality hyperspectral image.

The spectral components could be found in archives such as for stellar spectra li-
braries [Jacoby et al. 1984, Pickles 1998]. The spectral components can also be extracted
using source separation techniques; for instance, Independent Component Analysis (ICA)
[Hyvärinen et al. 2004] Principal Component Analysis (PCA) [Jolliffe 1986], or blind source
separation techniques [Cichocki & Amari 2003, Comon & Jutten 2010]. Moreover, au-
thors in [Dobigeon et al. 2009] proposed a Bayesian method for the extraction of end-
members (or spectral components) and the estimation of abundances (or mixture coef-
ficients) from hyperspectral images. Another approach consists of taking advantages of
hyperspectral instruments such as a spectrometer, e.g. the spectrometer of JWST/MIRI
[Wells et al. 2015].
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We propose to represent the object by a small number of M uncorrelated spectral
components (typically M is less than the number of spectral bands P ). This allows us to
make use of the linear mixing model to represent in an approximate manner the spatio-
spectral object, where theM uncorrelated spectral components are weighted by a set ofM
mixture coefficients (or weights) c1, . . . , cM at each spatial position (αk, βl), as illustrated
in Figure 5.1.

The particularity of the proposed work is that the reconstruction of the spatio-spectral
object is done through the estimation of the mixture coefficients using a set of low-
resolution multispectral data degraded by a spatial blur and noise, in addition to lack
of spectral distribution after integrations over broad bands by the detector.

λ

=

c1(αk, βl)×

c2(αk, βl)×

cM (αk, βl)×

φ(αk, βl, λ)

Figure 5.1: Illustration of the linear mixing model on a single spatial position (αk, βl) of
the spatio-spectral object.

5.3 Object Model: Linear Mixing Model

In this section we are interested in representing the continuous spatio-spectral object by
a set of discrete coefficients using the linear mixing model. The object is represented
by a sum of M high-resolution spectral components assumed to be known, sm(λ),m =

1, . . . ,M , weighted by mixture coefficients cm(α, β) associated to each spatial position
(α, β), as illustrated in Figure 5.2. This yields

φ(α, β, λ) =
M∑

m=1

cm(α, β)sm(λ) . (5.1)

Therefore in order to reconstruct the object, a set of M 2D mixture coefficients (or
weights maps) for each spectral component must be estimated. A discrete representation
of the mixture coefficients upon a shift basis function is given by the reconstruction formula
[Yaroslavsky 2013]

cm(α, β) =

Nk∑

k=1

Nl∑

l=1

xmk,l brec(α− αk, β − βl), (5.2)
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Figure 5.2: Representation of a spatio-spectral object using a linear mixing model.

where xmk,l are the discrete coefficients of the (k, l)-th spatial position associated to the
m-th spectral component. Moreover, we chose the shift basis function brec(.) to be a
rectangular impulse function defined on the grid Grec = {αk, βl}Nk,Nlk,l=1 . Nk, Nl refers to
the total number of pixel according to dimensions α and β, respectively as in Chapter
4. αk = k4α′ and βl = l4β′, where 4α′ and 4β′ are the sampling steps according
to dimensions α and β, respectively. They are set to be equal to the sampling steps of
the multispectral data 4α and 4β. A finer sampling steps could be defined in case of a
super-resolution problem by setting the 4α′ and 4β′ to be a fraction of 4α and 4β.

Finally, the model for the object in Equation (5.1) becomes

φ(α, β, λ) =
M∑

m=1

(
Nk∑

k=1

Nl∑

l=1

xmk,l brec(α− αk, β − βl)
)
sm(λ) (5.3)

This model represents a continuous spatio-spectral object φ(α, β, λ) by a sum ofM spectral
components weighted by discrete mixture coefficients (unknown parameter of the object)
xkk,l. In the next section, we focus on the reconstruction of these coefficients using an
inverse problem framework.

5.4 Linear Forward Model: Observation Matrix

The discrete forward model expressing the relationship between the discrete multispectral
data and the discrete mixture coefficients is obtained by substituting Equation (5.3) of
the object model in the instrument model (3.8). This yields

y
(p)
i,j =

∫∫

Ωpix

(∫

R+

ωp(λ)

((
M∑

m=1

Nk∑

k=1

Nl∑

l=1

xmk,l brec(α− αk, β − βl)sm(λ)

)
∗
α,β

h(α, β, λ)

)
dλ

)

bi,jsamp(α, β)dαdβ + n
(p)
i,j . (5.4)
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By rearranging terms of Equation (5.4), we obtain

y
(p)
i,j =

M∑

m=1

Nk∑

k=1

Nl∑

l=1

Hp,m
i,j;k,l x

m
k,l + n

(p)
i,j , (5.5)

with

Hp,m
i,j;k,l =

∫∫

Ωpix

((∫

R+

ωp(λ)h(α, β, λ)sm(λ)dλ

)
∗
α,β

brec(α− αk, β − βl)
)

bsamp(α− αi, β − βj)dαdβ (5.6)

where the observation matrix Hp,m
i,j;k,l only depends on the instrument and the object pa-

rameters. Hence, the accurate the knowledge of the instrument model and the modeling
of the object, the more accurate is the observation matrix.

Moreover, by considering the same assumptions as in Section 4.4, i.e. setting bsamp(.) to
be an impulse rectangular function, the observation matrix becomes a convolution matrix
Hp,m
i,j;k,l = Hp,m

i−k;j−l . Therefore, we end-up with the matrix-vector representation of the
forward model

y(p) =

M∑

m=1

Hp,mxm + n(p), p = 1, 2, . . . , P. (5.7)

where the p-th multispectral image y(p) is a sum ofM discrete 2D convolutions of discrete
mixture coefficients xm with circular convolution matrices Hp,m.

In addition, by combining all multispectral dataset we obtain the following multi-
observation forward model




y(1)

y(2)

y(3)

...
y(P )




︸ ︷︷ ︸
y

=




H1,1 H1,2 · · · H1,M

H2,1 H2,2 · · · H2,M

H3,1 H3,2 · · · H3,M

...
...

. . .
...

HP,1 HP,2 · · · HP,M




︸ ︷︷ ︸
H




x1

x2

...
xM




︸ ︷︷ ︸
x

+




n(1)

n(2)

n(3)

...
n(P )




︸ ︷︷ ︸
n

, (5.8)

where x ∈ RMNkNl is the stack of M mixture coefficients in a vector form. Each coeffi-
cient contains Nk ×Nl pixels and xmk,l denotes the (k, l)− th spatial position of the m-th
coefficient. Here y ∈ RPNiNj is the stack of all multispectral data observed with P broad
bands of the imaging system. In addition, n ∈ RPNiNj represents an additive unknown
error associated to multispectral data in y.

It is worth noting that the linear system in Equation (5.8) is over-determined, whereas
the one proposed in Equation (4.12) is under-determined. In addition, the spectral distri-
bution is totally embedded in the 2D block matrices of H unlike in the previous chapter,
where the spectral distribution of the object is carried out by the channels and is weighted
by the block matrices of H. Therefore, there is no way to enforce spectral prior here as
we did in Chapter 4 because it is already embedded in H.
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5.5 Reconstruction by Mixture Coefficients Estimation

In this section we aim to reconstruct the spatio-spectral object through the estimation of
a stack of mixture coefficients x̂ by using a set of low-resolution multispectral data y. A
naive reconstruction such least-squares solution x̂ =

(
HTH

)−1
HTy leads to an unstable

solution because of the ill-conditioning of the matrix HTH, similar to the problem en-
counter in Section 4.5. This ill-conditioning is corrected by adding a regularization term
to the cost function. Therefore, x̂ is obtained by solving

x̂ = argmin
x

{J (x) = Q(x,y) + µ R(x)} , (5.9)

where J (x) is a convex cost function which is composed of a data fidelity term Q(x,y) in
order to enforce agreement of the solution with the data. It is defined under the assumption
of a stationary white Gaussian noise by

Q(x,y) =
P∑

p=1

M∑

m=1

Ni∑

i=1

Nj∑

j=1

(
y(p) −Hp,mxm

)2

i,j

= ‖y −Hx‖22 . (5.10)

The second term of Equation (5.9) R(x) is a regularization term to enforce prior in-
formation of the sought object. Finally, µ ≥ 0 is a regularization parameter used to tune
the trade-off between fidelity to the data and prior information. It is chosen depending
on the spatial distribution of the unknown mixture coefficients we want to enforce, e.g.
smoothness, sharp-edges, sparsity. . . .

In this chapter, we consider two distributions: the first one is an object with spatial
smoothness, and the second one is an object with strong spatial gradients or sharp-edges.
In subsections 5.5.1 and 5.5.2 we detail two types of multichannel regularization and pro-
vide a reconstruction method in each case.

5.5.1 Multichannel Quadratic Regularization

The choice of a quadratic term enforce the spatial smoothness of the solution by penalizing
the difference between the four (horizontal and vertical) neighboring pixels of xmk,l for each
mixture coefficient. The quadratic regularization Rl2(x) is then defined by

Rl2(x) =

M∑

m=1

Nk∑

k=1

Nl∑

l=1

((
xmk+1,l − xmk,l

)2
+
(
xmk,l+1 − xmk,l

)2) (5.11)

=
M∑

m=1

‖Dxm‖22 =
∥∥Dx

∥∥2

2
,

with

D =




D

D
. . .

D




MNkNl×MNkNl

(5.12)
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where D is a block-diagonal matrix and D ∈ RNkNl×NkNl is a 2D second-order finite
difference operator, e.g. 2D Laplacian filter, with circularity conditions xmNk+1,l = xm1,l and
xmk,Nl+1 = xmk,1.

Therefore, the quadratic cost function Jl2(x),

Jl2(x) = ‖y −Hx‖22 + µ
∥∥Dx

∥∥2

2
, (5.13)

is a sum of two convex functions, which ensures the existence of a global solution of the
problem. In addition, Jl2(x) is linear and differentiable, thus, the multichannel quadratic
solution x̂l2 is explicit and obtained by canceling the gradient of Jl2(x). This yields

x̂l2 =
(
HTH + µD

T
D
)

︸ ︷︷ ︸
Ql2

−1 (
HTy

)
︸ ︷︷ ︸

ql2

, (5.14)

where Ql2 ∈ RMNkNl×MNkNl is the Hessian of the cost function Jl2(x) with a block struc-
ture, while ql2 is the gradient of Jl2 at the origin (x = 0). We compute the quadratic
solution in Equation (5.14) by inverting the Hessian matrix. This is done by assuming cir-
cularity of the convolution matrices,Hp,m : p = 1, . . . , P,m = 1, . . . ,M , and diagonalizing
them in the Fourier space. The Hessian matrix becomes a non-diagonal block-diagonal
matrix [Galatsanos et al. 1991] where its inversion procedure is presented in Section 4.5.3.
Algorithm 5.4 presents a pseudo-algorithm that summarizes the multichannel reconstruc-
tion with a quadratic regularization.
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Algorithm 5.4 Multichannel Reconstruction with a Quadratic Regularization (l2)
Input H,y,D, µ, a = 0.5, Niter

D = diag {D,D, . . . ,D} . Equation (5.28)
F = diag {F ,F , . . . ,F }

Compute the Hessian matrix :
Ql2 ←HTH + µD

T
D . Equation (5.29)

Diagonalize Ql2 (Non-Circulant Block Circulant) :
ΛH ←

{
Λi,j

H = FH i,jF †
}
P,M
i,j=1

ΛQ ←
{

Λi,j
Q = FQi,j

l2
F †
}
M,M
i,j=1 . Equation (4.35)

M,M,Nk, N l = size(ΛQ)

Invert ΛQ (Non-Diagonal Block Diagonal) :
for k = 0 : Nk do

for l = 0 : N l do
R = Λ:,:

Q[k, l] . Equation (4.36)
Λ:,:

Q
inv

[k, l] = R−1 . Equation (4.37)

Compute the solution:
x̂l2 ← F

†
Λinv

Q Λ†HF y . Equation (5.29)
return x̂l2

5.5.2 Multichannel Non-Quadratic Regularization : Half-Quadratic

Despite technical and mathematical advantages, quadratic regularization enforces smooth-
ness of the solution but fails to restore strong spatial gradients (high frequencies of the
gradient Dx) and creates ringing artifacts. This limit the use of the quadratic regulariza-
tion, especially for deconvolution problems where high frequencies are corrupted by the
noise. A non-quadratic regularization is defined by a non-quadratic function in order to
overcome these artifacts.

Several methods are found in the literature such as methods based on partial differen-
tial equation using a non-quadratic function [Perona & Malik 1990], Total Variation (l1-
norm of the gradient) [Rudin et al. 1992, Chambolle 2004] or Half-Quadratic regulariza-
tion (l2/l1-norm) [Geman & Reynolds 1992, Geman & Yang 1995, Charbonnier et al. 1997].
We are particularly interested in the method proposed in [Geman & Yang 1995] for three
practical reasons. Firstly, the minimization of the cost function is done through alter-
nating two simple minimization problems, one is quadratic and the other is separable.
Secondly, we want to exploit the advantages of the quadratic solution such as an explicit
and a linear solution, so we can invert the Hessian matrix in the Fourier domain for faster
and efficient computation. Thirdly, a variety of convex functions can be used to define the
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non-quadratic l2/l1-norm (e.g. Huber, Hyperbolic, LogCosh,. . . ).
The half-quadratic regularization proposed in [Geman & Yang 1995] consists of intro-

ducing a couple of Nk ×Nl auxiliary variables b = (bh, bv) horizontal and vertical, so that
the non-quadratic regularization function ϕ is expressed as the minimum (with respect to
b) of the sum of a quadratic function and an auxiliary function ξ(b)

ϕ(δ) = min
b

{
1

2
(δ − b)2 + ξ(b)

}
, ∀δ ∈ R. (5.15)

The horizontal and vertical auxiliary variables bh, bv are proportional to the gradient
of x, i.e. the higher the gradient (sharp discontinuity), the higher the intensity of the
auxiliary variables. They shift the quadratic function to a suitable position so the cost
of the non-quadratic regularization at high gradient is lower compared to the cost of the
quadratic regularization. In Figure 5.3 we display three regularization functions, quadratic
(l2-norm), absolute value (l1-norm as for the total variation) and Huber function (l2/l1-
norm) which is defined by

ϕ(δ) =

{
δ2 if |δ| < s

2s|δ| − s2 otherwise
, (5.16)

where the threshold parameter s define the transition of the Huber function from quadratic
function to absolute value function. We illustrate in the figure that a lower cost is ob-
tained with Huber function (blue dot) compared to the quadratic function (red dot) for
high value of δ, and this by shifting the quadratic function by a value of the auxil-
iary variable. This is exactly what we are looking for in order to decrease the cost of
the regularization function at high gradient and avoid smoothing them. In a Bayesian
framework, auxiliary variables are interpreted as the mean of a Gaussian distribution
[Champagnat & Idier 2004, Giovannelli 2008].

In addition, the Huber functions can approximate the quadratic (l2-norm) or the ab-
solute function (l1-norm), up to a certain limit of δ, by fixing a threshold parameter s to
a high value or a low value receptively. This make the Huber function more reliable and
flexible for smooth objects with or without high spatial gradients.

To address the non-quadratic reconstruction we define the non-quadratic cost function
by

Jl2/l1(x) = ‖y −Hx‖22 + µ Rl2/l1(x) (5.17)

with the multichannel non-quadratic regularization is given by

Rl2/l1(x) =
1

a

M∑

m=1

(
Nk∑

k=1

Nl∑

l=1

ϕa
(
xmk,l+1 − xmk,l

)
+

Nk∑

k=1

Nl∑

l=1

ϕa
(
xmk+1,l − xmk,l

)
)

=
1

a

M∑

m=1

(
Nk∑

k=1

Nl∑

l=1

ϕa

(
[Dhx

m]k,l

)
+

Nk∑

k=1

Nl∑

l=1

ϕa

(
[Dvx

m]k,l

))
, (5.18)

where Dh,Dv ∈ RNkNl×NkNl are first-order finite difference operators between two pixels
along the horizontal and vertical direction of xm, respectively, with circularity conditions
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b

Figure 5.3: Comparison between three regularization functions: Quadratic function, Ab-
solute value function and Huber function. The symbol b in blue indicates the auxiliary
variable. The red and blue dots indicates the cost of the quadratic function at δ = 10

and the Huber function respectively. This indicates the decrease of the cost function by
adding an auxiliary variable to shift the quadratic function.

xmNk+1,l = xm1,l and xmk,Nl+1 = xmk,1. ϕ is a non-quadratic regularization function such as
Huber function. Same as [Idier 2001] we introduced a scale parameter a > 0 which controls
the scale of the non-quadratic function, ϕa = aϕ, and allows the use of a wide range of
auxiliary functions, e.g. a ∈ [0, 1

2 ] for the Huber function and the auxiliary function is
defined by

ξa(b) = a

{
1

1−2ab
2 if |b| < (1− 2a)s

2s|b| − (1− 2a)s2 otherwise
. (5.19)

Therefore, the non-quadratic cost function Jl2/l1(x) can be written as the minimum
of an half-quadratic augmented criterion

min
bh,bv

J ∗l2/l1(x, bh, bv) = Jl2/l1(x), (5.20)

where J ∗l2/l1(x, bh, bv) is defined by replacing the non linear function (in Equation (5.18))
by Geman&Yang convex construction [Geman & Yang 1995] (in Equation (5.15)). This



5.5. Reconstruction by Mixture Coefficients Estimation 77

yields

J ∗l2/l1(x, bh, bv) = ‖y −Hx‖22 +
µ

a

M∑

m=1

(
Nk∑

k=1

Nl∑

l=1

(
1

2
[Dhx

m − bmh ]2k,l + ξa

(
[bmh ]k,l

))

+

Nk∑

k=1

Nl∑

l=1

(
1

2
[Dvx

m − bmv ]2k,l + ξa

(
[bmv ]k,l

)))
, (5.21)

and

bh =




b1
h

b2
h
...
bMh


 ∈ RMNkNl , and bv =




b1
v

b2
v
...
bMv


 ∈ RMNkNl (5.22)

are vector representations of the stack of all auxiliary variables along the horizontal and
vertical directions, respectively.

The augmented criteria in Equation (5.21) is composed of three terms. (1) A least-
squares term measuring the fidelity to the data, (2) a quadratic term expressing the
difference between neighbor pixels and depends on the auxiliary variables, and (3) an
auxiliary function which depends only on auxiliary variables.

Therefore, the multichannel half-quadratic solution is obtained by minimizing the aug-
mented cost function

x̂l2/l1 = argmin
x,b

J ∗l2/l1(x, bh, bv), (5.23)

by performing an alternate minimization with respect to x and b. It results into two
minimization problems





b̂h, b̂v = argmin
bh,bv

J ∗l2/l1(x, bh, bv) (5.24)

x̂l2/l1 = argmin
x

J ∗l2/l1(x, b̂h, b̂v) (5.25)

The first problem in Equation (5.25) corresponds to the minimization of J ∗l2/l1(x, bh, bv)

with respect to x. This yields

x̂l2/l1 = argmin
x

{
‖y −Hx‖22 +

µ

2a

M∑

m=1

(
‖Dhx

m − bmh ‖22 + ‖Dvx
m − bmv ‖22

)}
(5.26)

or in a compact representation

x̂l2/l1 = argmin
x

{
‖y −Hx‖22 +

µ

2a

(∥∥Dhx− bh
∥∥2

2
+
∥∥Dvx− bv

∥∥2

2

)}
(5.27)

with

Dh =




Dh

Dh

. . .
Dh


 ,Dv =




Dv

Dv

. . .
Dv


 ∈ RMNkNl×MNkNl

(5.28)



78
Chapter 5. Spatio-Spectral Reconstruction through Mixture Coefficient

Estimation from Low-Resolution Multispectral Data

Therefore the minimizer of (5.25) is given by

x̂l2/l1 =
(
HTH +

µ

2a

(
D
T
hDh +D

T
vDv

))

︸ ︷︷ ︸
Ql2/l1

−1 (
HTy +

µ

2a

(
D
T
h bh +D

T
v bv

))

︸ ︷︷ ︸
ql2/l1

. (5.29)

where Ql2/l1 ∈ RMNkNl×MNkNl is a non-circulant block circulant matrix and ql2/l1 ∈
RMNkNl is a multichannel vector.

This solution is similar to the one obtained in Equation (5.14) with an additive term
on the right to account for auxiliary variables. It is computed directly by inverting the
Hessian matrix Q, by considering circulant approximation of Hp,m : p = 1, . . . , P,m =

1, . . . ,M,Dh and Dv, and diagonalizing them in the Fourier space. The inversion proce-
dure is described in details in Section 4.5.3.

The second minimization problem in Equation (5.24) concerns the update of the aux-
iliary variables. This yields

b̂mh , b̂
m
v = argmin

bmh ,b
m
v

{ Nk∑

k=1

Nl∑

l=1

(
1

2
[Dhx

m − bmh ]2k,l + ξα

(
[bmh ]k,l

))

︸ ︷︷ ︸
ψh([bh]k,l)

+

Nk∑

k=1

Nl∑

l=1

(
1

2
[Dvx

m − bmv ]2k,l + ξα

(
[bmv ]k,l

))

︸ ︷︷ ︸
ψv([bv ]k,l)

}

=

Nk∑

k=1

Nl∑

l=1

argmin
bmh ,b

m
v

{
ψh

(
[bh]k,l

)
+ ψv

(
[bv]k,l

)}
(5.30)

where ψh and ψv are two convex and differentiable functions.
The minimization problem in Equation (5.30) is separable for each pixel position (k, l)

and mixture coefficient m, thus all elements of the auxiliary variables can be computed in
parallel. A single element of the solution is then obtained by





[bmh ]k,l = argmin
bmh

{
ψh

(
[bmh ]k,l

)}
(5.31)

[bmv ]k,l = argmin
bmv

{
ψv

(
[bmv ]k,l

)}
(5.32)

where the minimizers [bmh ]k,l and [bmv ]k,l verify ψ
′
h

([
b̂mh

]
k,l

)
= 0 and ψ′v

([
b̂mv

]
k,l

)
= 0,

respectively, and this ∀ k ∈ [1, Nk] and ∀ l ∈ [1, Nl]. Therefore

ψ′h

([
b̂mh

]
k,l

)
=





([
b̂mh

]
k,l
− [Dhx

m]k,l

)
+ 2a

1−2a

[
b̂mh

]
k,l
, If

∣∣∣∣
[
b̂mh

]
k,l

∣∣∣∣ < (1− 2a)s

([
b̂mh

]
k,l
− [Dhx

m]k,l

)
+ a 2s sign

([
b̂mh

]
k,l

)
, Otherwise

(5.33)
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Thus, the obtained auxiliary variables in case of Huber function are

[
b̂mh

]
k,l

=





[Dhx
m]k,l − 2a [Dhx

m]k,l , If
∣∣∣[Dhx

m]k,l

∣∣∣ < s

[Dhx
m]k,l − a 2s sign

(
[Dhx

m]k,l

)
, Otherwise

= [Dhx
m]k,l − aϕ′

(
[Dhx

m]k,l

)
(5.34)

Finally,
b̂mh = Dhx

m − aϕ′ (Dhx
m) . (5.35)

and similarly,
b̂mv = Dvx

m − aϕ′ (Dvx
m) . (5.36)

where ϕ′ is the first derivative of the Huber function ϕ and it is given in Appendix B.1.

We summarize the proposed multichannel reconstruction with an half-quadratic regu-
larization (l2/l1) in a pseudo-algorithm form in Algorithm 5.5.
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Algorithm 5.5Multichannel Reconstruction with a Half-Quadratic Regularization (l2/l1)
Input

(
x̂l2/l1

)
0

= 0,H,y,Dh,Dv, µ, a ∈ [0, 1
2 ], Niter

Dh = diag {Dh,Dh, . . . ,Dh} . Equation (5.28)
Dv = diag {Dv,Dv, . . . ,Dv} . Equation (5.28)
F = diag {F ,F , . . . ,F }

Compute the Hessian matrix
Ql2/l1 ←HTH + µ

2a

(
D
T
hDh +D

T
vDv

)
. Equation (5.29)

Diagonalize Ql2/l1 (Non-Circulant Block Circulant) :

ΛQ ←
{

Λi,j
Q = FQi,j

l2/l1
F †
}
M,M
i,j=1

M,M,Nk, N l = size(ΛQ)

Invert ΛQ (Non-Diagonal Block Diagonal) :
for k = 0 : Nk do

for l = 0 : N l do
R = Λ:,:

Q[k, l] . Equation (4.36)
Λ:,:

Q
inv

[k, l] = R−1 . Equation (4.37)

for n = 1 : Niter do
1) - Update the auxiliary variables

(b̂h)n ←Dh

(
x̂l2/l1

)
n−1
− aϕ′H

(
Dh

(
x̂l2/l1

)
n−1

)
. Equation (5.35)

(b̂v)n ←Dv

(
x̂l2/l1

)
n−1
− aϕ′H

(
Dv

(
x̂l2/l1

)
n−1

)
. Equation (5.36)

(
ql2/l1

)
n
←HTy + µ

2a

(
D
T
h

(
b̂h

)
n

+D
T
v

(
b̂v

)
n

)
. Equation (5.29)

2) - Compute the solution:(
x̂l2/l1

)
n
← F

†
Λinv

Q F
(
ql2/l1

)
n

. Equation (5.29)

return
(
x̂l2/l1

)
Niter

5.6 Simulation and Results

5.6.1 Description the Original Spatio-Spectral Objects

We apply the proposed reconstruction Algorithms 5.4 and 5.5 on simulated multispec-
tral data observed by the Mid-InfraRed Instrument (MIRI) Imager [Bouchet et al. 2015]
on-board the James Webb Space Telescope (JWST). For this experiment, we use the
HorseHead nebula cube described in Section 4.6.1 and generate two other spatio-spectral
objects with different spatial and spectral distributions in order to test the performance of
the algorithms. We provide in the following the spatial and spectral distribution of these
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three objects:

1. The first object is a simplified spatio-spectral model of the HorseHead nebula, see
Section 4.6.1. It is a 256 × 256 pixels spatial region from the sky taken for simula-
tion, with Nλ = 1000 spectral samples uniformly distributed within the mid-infrared
wavelength range 4− 28 µm.

In Figure 5.4 we display all spectral components of the HorseHead nebula cube. We
notice a clear correlation between spectral components. Therefore, we perform a data
reduction using the Principal Components Analysis method (PCA) [Jolliffe 1986] in
order to extract a set of uncorrelated principal components which will be used as
spectral components in the forward model (Equation (5.6)).

5 10 15 20 25
wavelength (µm)

0

25

50

75

100

125

Figure 5.4: Display of all spectral components of the HorseHead nebula cube. We notice
a clear correlation between spectral distributions of all pixels.

After applying the PCA algorithm (in Appendix B.2) on the HorseHead nebula cube
with 10 principal components, we display the explained variance in % for each prin-
cipal component in Figure 5.5. It is clear that at most M = 3 principal components
are sufficient to represent a linear combination of all spectral components of the
cube. Figure 5.6 shows the three extracted principal components after projection of
the data on the new reduced space.



82
Chapter 5. Spatio-Spectral Reconstruction through Mixture Coefficient

Estimation from Low-Resolution Multispectral Data

1 2 3 4 5 6 7 8 9 10
Principal components

0

20

40

60

80

100

E
xp

la
in

ed
va

ri
an

ce
(%

)

cumulative explained variance

Figure 5.5: Explained variance (in %) by different principal component, extracted from
the HorseHead nebula cube.

Figure 5.6: Extracted spectral components from the HorseHead nebula using the principal
component analysis method [Jolliffe 1986].

2. The second object is Synthetic1. It is simulated using three (M = 3) mixtures coeffi-
cients with strong spatial gradients patterns, see Figure 5.7. Then we associate three
spectral components1 to these mixture coefficients. They are extracted from Spitzer
spectroscopy data by using a blind source separation method [Berne et al. 2007] and
covers the mid-infrared wavelength range from 4 to 21 µm as shown in Figure 5.8.

1http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/469/575
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Figure 5.7: Original mixture coefficients used to construct the spatio-spectral object
Synthetic1.

Figure 5.8: Original spectral components used to describe the original spatio-spectral
object Synthetic1. They are extracted from Spitzer spectro-imagery data by using a blind
source separation [Berne et al. 2007].

3. The third spatio-spectral object Synthetic2 is created by mixing two mixture coeffi-
cient (M = 2) having a smooth distribution, i.e. gradient image, and a sharp-edge
distribution, e.g. cameraman, see Figure 5.9. The two spectral components as-
sociated to mixture coefficients are the ones presented in [Berne et al. 2007] and
extracted from Spitzer spectroscopy data, see Figure 5.10.
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Figure 5.9: Original mixture coefficients used to construct the spatio-spectral object
Synthetic2.

Figure 5.10: Original spectral components used to describe the original spatio-spectral
object Synthetic2. They are extracted from Spitzer spectro-imagery data by using a blind
source separation [Berne et al. 2007].

The spectral components sm(λ),m = 1, . . . , 3 are re-sampled in order to fit the spec-
tral grid Gλ that is defined in Section 5.4. Next, we simulate nine multispectral data
for the three input objects using the developed instrument model in Equation (3.8). An
additive zero-mean white Gaussian noise of different level, SNR = 40, 30, 20, 10 and 5 dB,
is added to corrupt the multispectral data. The Signal-to-Noise Ratio (SNR) is defined

by SNR(dB) = 10 log10

( 1
PNiNj

‖y‖22
σ2
n

)
where σn is the standard deviation of the noise. P is

the number of multispectral data or bands, and NiNj is the total number of pixels in the
multispectral data.
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5.6.2 Choice of Algorithm Parameters: µ and s

Both quadratic and half-quadratic regularization require a regularization parameter µ.
It must be chosen carefully since it compromises the solution between data fidelity and
regularization terms. Our supervised approach consists of tuning the parameter by running
the code for different values of µ, in a range [10−3, 101], and keep the value that minimizes
the relative reconstruction error, which is defined by

Error(%) = 100× ‖forig − frec‖2‖forig‖2
, (5.37)

where forig is the original object and frec is the reconstructed one.

In addition, the same approach is used to select the threshold parameter s for the half-
quadratic regularization. This approach is time-consuming for a wide range of parameters,
but this is not an issue since the solution, quadratic or half-quadratic, is computed in just
a few seconds (less than 20 seconds) thanks to the implementation of the algorithms in
the Fourier domain.

Finally, all the experiments are coded in Python 2.7 on a laptop machine, with a
memory of 16 GiB RAM and a processor Intel Core i7 CPU 2.50GHz ×8.

5.6.3 Results and Discussion

In this section we present the simulation results with a discussion. We first present the
simulation results of the multispectral data then the estimated mixtures coefficients, fol-
lowed by spatial and spectral distributions of the reconstruction object. In addition, we
provide algorithm parameters and a comparison between algorithms.

5.6.3.1 Simulated Multispectral Data

Figures 5.11, 5.13 and 5.15 show the simulated multispectral data of nine broad bands
of the JWST/MIRI imager at 30 dB, indexed from p = 1, . . . , 9, and associated to the
objects HorseHead nebula, Synthetic1 and Synthetic2, respectively. Figures 5.12, 5.14 and
5.16 illustrate the spatial distribution of the multispectral data by displaying a slice from
the central row of images of Figures 5.11, 5.13 and 5.15. All Figure images are represented
with the same color-bar for better illustration and comparison.

These figures illustrate the complexity of the imaging system. We notice the presence
of a blur that increases for long wavelengths, e.g. in multispectral data with p = 8, 9,
compared to short wavelengths, e.g. p = 1, 2, and this is due to the spectral variability of
the PSF. This blur is also well visible in the multispectral data of the object Synthetic1 in
Figure 5.14, where all the strong gradient are smoothed. Moreover, we notice a difference
in the intensities between images, where several images appear with a high intensity and
others with low intensity. This is due to the relative amplitude of spectral components
integrated within bands, and/or and the width of these bands. For instance the 1-st band
is a narrower compared to the 9-th band (see Figure 3.10). Furthermore, we notice the



86
Chapter 5. Spatio-Spectral Reconstruction through Mixture Coefficient

Estimation from Low-Resolution Multispectral Data

domination of the noise in the multispectral data for narrow bands, p = 1, 3, 4.

p = 1 p = 2 p = 3

p = 4 p = 5 p = 6

1 86 171 256

1

86

171

256

p = 7 p = 8 p = 9

0 10 20 30 40 50 60

Figure 5.11: Simulation of nine multispectral data using the instrument model in Equation
(3.8) for the HorseHead nebula object. All the multispectral data are corrupted with an
additive white Gaussian noise so that SNR=30 dB.
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Figure 5.12: Display of slice from the central row of images in Figure 5.11.
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Figure 5.13: Simulation of nine multispectral data using the instrument model in Equation
(3.8) for the object Synthetic1. All the multispectral data are corrupted with an additive
white Gaussian noise so that SNR=30 dB.
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Figure 5.14: Display of slice from the central row of images in Figure 5.13.
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Figure 5.15: Simulation of nine multispectral data using the instrument model in Equation
(3.8) for the object Synthetic2. All the multispectral data are corrupted with an additive
white Gaussian noise so that SNR=30 dB.
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Figure 5.16: Display of slice from the central row of images in Figure 5.15.
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5.6.3.2 Estimated Mixture Coefficient

In Figures 5.17 and 5.18 we display estimation results of the mixture coefficients for the
three spatio-spectral objects by using Algorithms 5.4 and 5.5, respectively.

The estimated mixtures coefficients for the HorseHead nebula are shown in Figures
5.17.(a) and 5.18.(a) using l2 and l2/l1 algorithms respectively. Both results looks simi-
lar where we estimated a high intensity of x1 and a very low intensities for x2 and x3.
These results are expected due to the domination of the first spectral component s1(λ)

(see Figure 5.6) in all object spectra (Figure 5.4). Unfortunately we can not judge which
algorithm provide a better estimation because we do not dispose the original coefficients
for the HorseHead nebula object, but we can make a comparison later once we presents
the reconstructed objects.

Concerning estimated mixture coefficients for objects Synthetic1 and Synthetic2, they
are shown in Figure 5.17.(b) and 5.17.(c), respectively. We can see clearly cross patterns in
each estimated mixture coefficients by the l2 algorithm. As expected since the quadratic
regularization fails to reconstruct strong spatial gradients from the multispectral data.
These cross patterns are removed or faded in Figure 5.18.(b) and 5.18.(c) using the half-
quadratic regularization thanks to the auxiliary variables that prevent the algorithm from
smoothing the strong gradient mixture coefficients. Improvement factors (the ratio error
between l2/l1/l2) of 2.63, 3.35 and 3.99 are obtained using l2/l1 algorithm instead of the
l2 algorithm for the estimation of the mixture coefficients x1,x2 and x3 of the object
Synthetic1, and improvement factors of 1.83 and 1.17 are obtained using l2/l1 algorithm
instead of the l2 algorithm for the mixture coefficients x1 and x2 of the object Synthetic2.
The improvement factors for the object Synthetic1 are higher than the object Synthetic2.
This is due to the spatial distribution of the original mixture coefficients (in Figure 5.7 and
5.9 respectively), i.e. the three coefficients of Synthetic1 present higher spatial gradients
than the two coefficients of Synthetic2 (where only one coefficient has high spatial gradient
and the other is smooth).

The corresponding auxiliary variables for the three objects are shown in Figures 5.19,
5.20 and 5.21. As expected from the half-quadratic construction in [Geman & Yang 1995],
the estimated auxiliary variables mimic very well the gradient of the mixture coefficients,
see the horizontal gradient bh and the vertical gradient bv of the mixture coefficients. As
anticipated in Section 5.5.2, we notice that the threshold parameter s is very small (close to
zero) for the objects Synthetic1 and Synthetic2 compared to the HorseHead nebula. This
is due to high gradients of the mixture coefficients of the Synthetic objects. Moreover, the
Huber function with a small threshold parameter s is equivalent to the l1-norm function.
This is equivalent to using the total variation regularization but with a lower cost thanks
to the half-quadratic solution.
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Figure 5.17: The estimation results of the mixture coefficients using the quadratic regu-
larization (l2-norm).
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Figure 5.18: The estimation results of the mixture coefficients using the half-quadratic
regularization (l2/l1-norm).
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Figure 5.19: Estimated auxiliary variables for the HorseHead nebula object after 50 iter-
ations with a threshold parameter s = 1.17 and a 30 dB multispectral data. Subscript h
refers to horizontal and v for vertical.
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Figure 5.20: Estimated auxiliary variables for the object Synthetic1 after 50 iterations
with a threshold parameter s = 0.03 and a 30 dB multispectral data.
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Figure 5.21: Estimated auxiliary variables for the object Synthetic2 after 50 iterations
with a threshold parameter s = 0.01 and a 30 dB multispectral data.

5.6.3.3 Reconstruction Results of the Spatio-Spectral Object

The discrete version of the spatio-spectral object is reconstructed using the linear mixing
model in Equation (5.3). The reconstruction results of the three 1000× 256× 256 spatio-
spectral objects from a set of nine multispectral data, corrupted with a 30 dB zero-mean
white Gaussian noise, are summarized in Table 5.1. A comparison between reconstruction
results using l2 and l2/l1 algorithms is provided. The reconstruction error in the third
column of the table is computed using whole 2D+λ of the original spatio-spectral object
and the reconstructed one.

Based on what we have seen on the estimated mixing coefficients in Section 5.6.3.2,
a smaller reconstruction error is obtained using the l2/l1 algorithm compared the l2 al-
gorithm for the three objects at the cost of few more seconds. We obtained a gain of
0.48%, 3.38% and 1.04% for the objects HorseHead nebula, Synthetic1 and Synthetic2,
respectively. Moreover, improvement factors of 1.73, 2.77 and 1.21 are obtained for the
three objects by using l2/l1 algorithm compared to the l2 one. These improvement factors
confirm the increase of objects resolutions due to the good estimation of mixture coeffi-
cients using the l2/l1 algorithm.

The l2 algorithm needs around 1 second to compute the final solution compared to
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19 seconds of the l2/l1 algorithm (for 50 iterations). This is because the l2/l1 algorithm
iterates both the solution and auxiliary variables. It is worth noting that both algorithms
are 10 times faster than the iterative algorithm such as the conjugate gradients algorithm
(see Algorithm 4.2) thanks to the matrix inversion in the Fourier domain.

Table 5.1: Reconstruction results of three 1000× 256× 256 spatio-spectral objects from a
set of nine (P = 9) multispectral data corrupted with a 30 dB zero-mean white Gaussian
noise.

Spatio-Spectral
Object φ

Regularization Error (%)
Runtime
(seconds)

Niter µ s

HorseHead l2 1.14 1.36 1 6.11× 10−3

nebula l2/l1 0.66 20.33 50 5.99× 10−2 1.17

Synthetic1 l2 5.29 1.19 1 6.11× 10−3

l2/l1 1.91 19.98 50 4.64× 10−2 0.03

Synthetic2 l2 5.95 0.97 1 6.11× 10−3

l2/l1 4.91 18.50 50 5.99× 10−3 0.01

Spatial distribution: The comparison between original, observed and reconstructed
objects (at 6, 12 and 18 µm) are shown in Figures 5.22, 5.24 and 5.26 using the l2 algo-
rithm, and in Figures 5.23, 5.25 and 5.27 using the l2/l1 algorithm for objects HorseHead
nebula, Synthetic1 and Synthetic2, respectively.

The reconstructed objects at 6, 12 and 18 µm show a clear denoising and deconvolu-
tion of the multispectral data. The overall dynamic range and the spatial distribution
are well reconstructed using both algorithms. However, we obtain better reconstruction
results using the l2/l1 algorithm due to the good estimation of high gradients of the mix-
ture coefficients. Improvement factors of 0.93, 0.2, 0.18 are obtained for the HorseHead
nebula at 6, 12 and 18 µm, and 2.49, 2.57, 2.46 are obtained for the object Synthetic1, and
1.14, 1.15, 1.18 are obtained for the object Synthetic2.

Furthermore, for a better illustration and comparison of the spatial distribution, we
display a slice (from the middle row) of the multispectral data, original and reconstructed
object in Figure 5.28 (l2 algorithm) and Figure 5.29 (l2/l1 algorithm). We see that ringing
artifacts appear on strong gradients of the reconstructed object using the quadratic regu-
larization φl2 . The amplitude of these artifacts is strongly reduced using the half-quadratic
solution φl2/l1 , e.g. the middle columns of Figures 5.28 and 5.29 illustrate the significant
improvement of the reconstruction results using the l2/l1 algorithm over the l2 one. The
noise also appears reduced. Finally, the sharp edges of the object are well reconstructed.
Therefore, the proposed method performs deconvolution and denoising of the data at all
wavelengths.

Additionally, we depict in Figure 5.30 the difference between the original and the re-
constructed object for both algorithms. It is clear that the l2 algorithm fails to reconstruct



98
Chapter 5. Spatio-Spectral Reconstruction through Mixture Coefficient

Estimation from Low-Resolution Multispectral Data

high gradient and that the l2/l1 algorithm helps in overcoming this limitation.

Spectral distribution: We display in Figure 5.31 the original spectral distribution
φorig, the quadratic solution φl2 and the half-quadratic solution φl2/l1 , for a single spa-
tial position as indicated in the legend. The results in the first column fit the original
distribution over the whole spectral range from 4 to 28 µm because the spatial position
corresponds to a smooth region. Whereas, results in the second column show improve-
ment in spectral reconstruction using the l2/l1 algorithm compared to the l2 algorithm for
a spatial position located at high gradients.

In Figure 5.32 we compare the reconstruction of the spectral distribution using differ-
ent methods presented in this thesis. A same spatial position (127,100) of the HorseHead
nebula is displayed for the original object φorig, the reconstructions proposed in this chap-
ter φl2 and φl2/l1 , the reconstruction using the proposed method in Chapter 4 φMDFT ,
and the broadband reconstruction presented also in Chapter 4 φBroadband. The broad-
band method gives a bad reconstruction since it neglects of the spectral variations in the
broadband PSF. Although φMDFT approximates φorig better than φBroadband, the result
remains insufficient and fails to reconstruct high spectral variations within a band, even
if spatial and spectral priors have been enforced to the solution. Lastly, the two proposed
solutions in this chapter φl2 and φl2/l1 provide an accurate and satisfactory reconstruc-
tion that fit φorig over the whole range of wavelengths. This is mainly due to the joint
processing of all multispectral data and the accuracy of the forward model, through the
observation matrix H that describes the instrument and the object models.
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Figure 5.22: [1st row] Original HorseHead nebula object at 6, 12 and 18 µm. [2nd row]
Simulated multispectral data with 30 dB associated to the bands that include wavelengths
of the first row, i.e. p = 1, 4, 7. [3rd row] Reconstructed object at 6, 12 and 18 µm with
the l2 algorithm. [4th row] Difference between the original and reconstructed at 6, 12 and
18 µm..
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Figure 5.23: Same as in Figure 5.22 but here the reconstructed results of the HorseHead
nebula are obtain using the l2/l1 algorithm.
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Figure 5.24: [1st row] Original Synthetic1 object at 6, 12 and 18 µm. [2nd row] Simulated
multispectral data with 30 dB associated to the bands that include wavelengths of the
first row, i.e. p = 1, 4, 7. [3rd row] Reconstructed object at 6, 12 and 18 µm with the
l2 algorithm. [4th row] Difference between the original and reconstructed at 6, 12 and 18

µm..
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Figure 5.25: Same as in Figure 5.24 but here the reconstructed results of the Synthetic1

are obtain using the l2/l1 algorithm.
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Figure 5.26: [1st row] Original Synthetic2 object at 6, 12 and 18 µm. [2nd row] Simulated
multispectral data with 30 dB associated to the bands that include wavelengths of the
first row, i.e. p = 1, 4, 7. [3rd row] Reconstructed object at 6, 12 and 18 µm with the
l2 algorithm. [4th row] Difference between the original and reconstructed at 6, 12 and 18

µm.
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Figure 5.27: Same as in Figure 5.26 but here the reconstructed results of the Synthetic2

are obtain using the l2/l1 algorithm.
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Figure 5.28: Illustration of the reconstruction results by displaying three spatial slices
at 6, 12 and 18 µm selected from the middle row of the original object φorig and the
reconstructed object using the quadratic regularization φl2 . [1st column] HorseHead nebula
object. [2nd column] Synthetic1 object. [3rd column] Synthetic2 object. The multispectral
data used for the three experiments were corrupted with a 30 dB white Gaussian noise.
The magenta scale on the right of the plots corresponds to the electronic unit of the
multispectral. The blue scale on the left of the plots corresponds to the physical unit of
the spatio-spectral object (see Section 3.4).
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Figure 5.29: Same as Figure 5.28 but here the reconstrcted object is obtained using the
l2/l1 algorithm.
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Figure 5.30: Display of the difference between slices of the original and the reconstructed
object using the l2 algorithm (in Figure 5.28) φorig − φl2 (in blue), and using the l2/l1
algorithm (in Figure 5.29) φorig − φl2/l1 (in orange).
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(a) HorseHead nebula

(b) Synthetic1

(c) Synthetic2

Figure 5.31: Comparison between spectral distributions of the original object φorig, and
the reconstructed ones φl2 and φl2/l1 for a single pixel. The first column corresponds
spectral distributions of central spatial positions for the three objects. The second column
corresponds to spectral distributions of spatial positions that are located on a high gradient
as indicated on the legends.
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Figure 5.32: Comparison between different spectral distributions for a single pixel position
(127, 100) of the object HorseHead nebula. φorig is the original, φl2 and φl2/l1 are the
reconstruction proposed in this chapter using the l2 and l2/l1 algorithm, φMDFT is the
reconstruction result obtained the method proposed in Chapter 4, and φBroadband is the
reconstruction result using 2D deconvolution band per band by considering broadband
PSFs.

5.6.3.4 Influence of the Algorithm Parameters : µ and s

The influence of the parameters on the Algorithm 5.4 (l2) and Algorithm 5.5 (l2/l1) are
illustrated in Figure 5.33. As expected from the regularized least-squares method, we ob-
serve that both algorithms performances depend on the regularization parameter. Testing
different values and evaluating the reconstruction error allows us to determine the optimal
value that gives the best reconstruction quality of mixture coefficients.

The optimal regularization parameters are depicted in red dots on the Figure 5.33. We
see that it is enclosed in µopt ∈]10−3, 10−2[. In addition, we see as expected that l2/l1 the
algorithm depends also on the threshold parameter s of Huber function, and sopt ∈]0, 1.5[

for the three experiments. For the HorseHead nebula object a value of s = 1.17 gives the
best results. At the contrary, a very small value of s is necessary for objects Synthetic1

and Synthetic2. This is because of the spatial distributions of mixture coefficients, i.e the
higher the gradient, the smaller s, and the lower the gradient the bigger s. As anticipated,
the Huber function with s close to zero is equivalent to the l1-norm function. It means
the enforcement of an l1-norm of the gradients, like the total variation, but with a lower
computational cost thanks to the half-quadratic solution.
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(a) l2 algorithm (b) l2/l1 algorithm

(c) l2 algorithm (d) l2/l1 algorithm

(e) l2 algorithm (f) l2/l1 algorithm

Figure 5.33: Influence of the parameters on [left column] the l2 algorithm in 5.4 and
[right column] the l2/l1 algorithm in 5.5, for three spatio-spectral objects: (a)-(b) Horse-
Head nebula, (c)-(d) Synthetic1 and (e)-(f) Synthetic2. The red dot indicates the optimal
parameters corresponding to the minimum reconstruction error.



5.6. Simulation and Results 111

5.6.3.5 Influence of the Noise Level

In order to evaluate the influence of the noise, we have added different levels of noise
(through the SNR) to the multispectral data and then run the reconstruction algorithms.
We depict in Figure 5.34 the reconstruction errors obtained for different SNR. As ex-
pected, the proposed algorithms are sensitive to the noise like any regularization method.
We observe a decrease of reconstruction errors for both algorithms as the SNR increases.

From the first column of Figure 5.34, we obtained reconstruction error below 5% for
an SNR > 5 dB for the HorseHead nebula object in Figure 5.34.(a), 15% for the object
Synthetic1 and an error below 16% for the object Synthetic2. An SNR < 10 dB show an
important increase of reconstruction error for both algorithms of two synthetic objects,
i.e. object with high spatial gradients, Although we did not display the multispectral data
at SNR = 5 dB, these later correspond to a complete domination of the noise.

A comparison of the influence of the noise on the improvement factor of the l2/l1
algorithm over the l2 algorithm is shown in the second column of the Figure 5.34. We
observe that the improvement factor is not sensitive to the noise for the object HorseHead
nebula and Synthetic2 objects. This is because the two objects are simulated with smooth
mixture coefficients. However, the improvement factor increases with a high SNR for the
object Synthetic1. This is because high gradients or sharp-edges in the multispectral data
become less affected by the noise.
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Figure 5.34: Influence of the noise level on the reconstruction of the three spatio-spectral
objects using [left column] quadratic (l2-norm) and half-quadratic (l2/l1-norm) regulariza-
tion. [right column] Influence of the noise on the improvement factor of the l2/l1 algorithm
over the l2 algorithm.

5.7 Conclusion

This chapter presents a high-resolution reconstruction method of a 2D+λ spatio-spectral
object observed by a multispectral imaging system from a few low-resolution data.

We first modeled the object with a set of M mixture coefficients and spectral compo-
nents using a linear mixing model, withM < P . This allowed us to reduce the complexity
of the reconstruction compared to Chapter 4. Next, we developed an accurate linear for-
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ward model where multispectral data are the sum of 2D convolutions between mixture
coefficients and observation matrix. The observation matrix preserves the spectral infor-
mation of the object and accounts for the instrument parameters such as spectral-variant
PSF, spectral response of the instrument. The reconstruction of the spatio-spectral ob-
ject is done through the estimation of the mixture coefficients. We tackled this ill-posed
problem using the regularized least-squares method and proposed two multichannel re-
construction methods. The first method uses a multichannel quadratic regularization in
order to enforce spatial smoothness to the solution, while the second method uses a mul-
tichannel half-quadratic regularization to enforce high spatial gradient to the solution.

We were able to validate the performance of the reconstruction algorithm using three
spatio-spectral objects, one model of an astrophysical object and two synthetic data.
The execution time to compute the multichannel quadratic solution is about 1 seconds
compared to 20 seconds (for 50 iterations) for the computation of the multichannel half-
quadratic solution. In addition, an acceleration time of ten is obtained compared the
conjugate gradient algorithm thanks to the implementation in the Fourier domain. The
reconstruction results are very satisfactory, with reconstructed objects free from noise and
blur. In all experiments we obtained a relative error below 5% for an SNR = 30 dB.

However, obviously the reconstruction error increases for a lower SNR, especially for
objects with high spatial gradients. Our results are based on the hypothesis that a set of
high-resolution spectral components are known which not always true.





Chapter 6

General Conclusion

6.1 Summary

The first stage of the data processing chain of our inverse problem framework is the
instrument model described in Chapter 3. In this chapter, we focused in modeling the
response of the multispectral imaging system, particularly the mid-infrared imager (MIRI)
on board the James Webb Space Telescope (JWST). This multispectral imaging system is
a diffraction-limited instrument. It consists of an optical system that collects the photon
flux and focus them on the detector of the imager. The detector integrates and samples
the multispectral data.

The developed instrument model aims to simulate the multispectral data based on the
instrument response. It relates the continuous original object at the input of the imaging
system to the discrete multispectral data at the output. The specificity of the instrument
model is that it accounts the non-stationarity of the optical response (or PSF) of the
JWST. It blurs the spatial distribution of the original spatio-spectral object according to
the wavelength through a 2D spatial convolution. The PSF linearly depends on the wave-
length, i.e. the larger the wavelength the wider the PSF as expected from the diffraction
theory. Moreover, the blurred object is spectrally integrated over a set of P broad bands
(or spectral responses) by the detector within a broad spectral range (wavelength ratio of
5) and a very low spectral resolving power (λ/4λ) from 3.5 to 16. These degradations
severely limit the spatial and spectral resolutions of the multispectral data and strongly
challenge the data analysis.

Finally, the instrument model allows us to simulate the multispectral data by tak-
ing into account the response of the imaging system. It is also used to develop the next
stages of the inverse problem framework such as the forward model and the reconstruction.

In Chapter 4 we tackled the reconstruction of a spatio-spectral object by jointly ex-
ploiting and processing the whole set of low-resolution multispectral data. Due to the
lack of knowledge of the real PSF, a common approach in the literature consists of con-
sidering a broadband PSF to process the multispectral data issued from individual bands
separately. However, this approach neglects the spectral variability of the PSF within a
spectral band and introduces considerable inaccuracy to the model. Therefore we proposed
to use simulated monochromatic PSFs and model the spectral distribution of the object
with a piecewise linear function instead of using a non-accurate predefined spectrum.

Next, we have developed a forward model where the discrete stack of unknown spectral
channels x is related to the discrete multispectral dataset y through the observation matrix
H. It represents degradations occurring within and between channels. The forward model
is linear and is formulated by a sum of Nλ 2D convolutions between spectral channels and
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the observation matrix, where each multispectral data depends on the whole unknown
vector of the object x. Moreover the spectral distribution is carried out by the channels
and weighted by the blocks of the observation matrix. Concerning the reconstruction
method, it is based on the regularized least-squares method where the solution is obtained
as the minimizer of a cost function. In fact the problem is ill-posed because of the ill-
conditioning of the matrix HTH and the under-determination of the forward model. To
correct this ill-posedness we have added prior information about the solution to the cost
function J (x) by penalizing the spatial and spectral gradients to enforce smoothness to
the solution. This choice is mainly motivated for obtaining a differentiable cost function
which allows us to implement a fast algorithm.

The obtained multichannel quadratic solution is linear and consists mainly of inverting
the Hessian matrix Q. However, this matrix is very large and cannot be inverted in the
spatio-spectral domain. Thus we proposed to compute the solution with two different
approaches. The first one consists of using an iterative optimization algorithm such as the
conjugate gradient, thus no matrix inversion is required. The second one is based on the
matrix inversion using diagonalization in the Fourier domain by considering the circulant
approximation of the block matrices of the Hessian matrix.

Simulated data of the MIRI imager of the JWST have been used to highlight the com-
plexity of the instrument response, and both algorithms have been tested on a simplified
model of the astrophysical object HorseHead nebula of size 1000× 256× 256 pixels. The
exact quadratic solution is computed in the Fourier domain. It is ten times faster than
the iterative one. Even though a significant increase in spatial and spectral resolutions is
obtained compared to the broadband method, the proposed method has some shortcom-
ings originating mainly from the multispectral dataset and the object model. Firstly, it is
difficult to choose the number of channels Nλ; a high number implies a high dimensional
observation matrix but increases the between channels degradations. Secondly, the spec-
tral bands of the JWST/MIRI imager are broad and their number is limited (less than
9), meaning that the spectral resolution of the multispectral data is very poor. Therefore
additional prior knowledge about the spectral distribution of the object is required in or-
der to improve the obtained results.

In Chapter 5 we aimed to overcome the encountered limitations of Chapter 4 such as
the lack of spectral information in the multispectral dataset about the original object. The
idea is based on using a linear mixing model to model the spatial and spectral distributions
of the object. We proposed a hypothesis wherein we considered the set of high-resolution
spectral components or templates to be known. This allows us to reduce the complexity of
the previous problem and to represent more accurately the object. Therefore the spatio-
spectral object is modeled by a sum of M high-resolution spectral components (supposed
to be known) weighted by M mixture coefficients for each spatial position.

Same as in Chapter 4 we developed a linear forward model formulated by a sum of
M discrete convolutions between mixture coefficients and observation matrix. Here the
spectral information is completely embedded in the blocks of the observation matrix H.
With respect to the reconstruction of the spatio-spectral object, it is achieved through
the estimation of the mixture coefficients. The reconstruction method is based on the
regularized least-squares methods where the solution is obtained as a minimizer of a con-
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vex cost function. We considered two types of regularization in order to correct the
ill-posedness of the problem caused by the ill-conditioning of the matrix HTH and the
over-determination of the forward model. The first one enforces spatial smoothness to
the solution, whereas the second one enforces a high spatial gradient for the purpose of
reconstructing the object with further spatial distribution compared to Chapter 4. This
is assured by using multichannel quadratic regularization and multichannel half-quadratic
regularization, respectively. The quadratic solution x̂l2 is linear and consists mainly of in-
verting the Hessian matrix Ql2 in the Fourier domain, whereas the half-quadratic solution
x̂l2/l1 is updated iteratively with auxiliary variables that catch high spatial gradients and
prevent the algorithm from smoothing them.

The two algorithms l2 and l2/l1 have been implemented on simulated data using three
objects having different spatial and spectral distributions. The reconstruction results of
both algorithms are very satisfactory. The three reconstructed objects show a clear de-
noising and deconvolution of the multispectral data. We obtained a relative error that
does not exceed 5% for a noise level of SNR = 30 dB. The algorithm l2/l1 gives better
reconstruction results than the l2 algorithm especially for objects with high spatial gra-
dients. It computes the solution in 20 seconds (for 50 iterations) compared to 1 second
for the l2 algorithm thanks to the matrix inversion in the Fourier domain. On the other
hand, the shortcomings of the proposed reconstruction methods mainly come from the
hypothesis that high-resolution spectral components are known which is not always valid.
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6.2 Perspectives

Several aspects are to be improved in the contributions of this thesis. The instrument
model developed in Chapter 3 was used to simulate observations of the JWST for the
imager MIRI. In fact, an evaluation of this model is necessary, for instance, by performing
a comparison with the observations taken from another simulator, such as the MIRI Sim-
ulator software (MIRISim) released in April 20181. This tool is developed by the MIRI
european team, and in France in a collaboration between DAP/AIM/ CEA (Commissariat
d’Energie Atomique)2 and the IAS (Institut d’Astrophysique Spatiale)3 with a purpose to
simulate observations of the imager or spectrometer of MIRI.

In Chapter 4, the object model depends on a parameter Nλ which set the number of
channels to represent the object. This parameter is very important for object represen-
tation and reconstruction. It defines the dimension of the problem, i.e. the number of
unknown, and has a direct link with the spectral sampling of the reconstructed object.
It also controls the spectral regularization added to stabilize the regularized least-squares
solution as well as its computation. Thus, this parameter needs to be estimated, for in-
stance, according to the number of multispectral data and the width of the spectral bands.

We have shown in Chapter 5 that considering a set of a few high-resolution spectral
components helps a lot in the reconstruction of a high-resolution spatio-spectral object
from a small number of low-resolution multispectral data. For instance, these spectral com-
ponents can be extracted from hyperspectral data using source separation techniques such
as the principal components analysis. The instrument MIRI of the JWST can be exploited
perfectly in this manner because it delivers two types of data : (1) the imager delivers mul-
tispectral data, i.e. data with high spatial-resolution and limited spectral-resolution, and
(2) the spectrometer delivers hyperspectral data, i.e. data with high spectral-resolution
and limited spatial-resolution. This allows us to make use of complementary advantages of
both data in order to reconstruct a spatio-spectral object with high-resolution. Moreover,
the threshold parameter s of the Huber function (in the l2/l1 algorithm) depends on the
gradients of the object. Thus, finding a way to estimate it will reduce from the data will
reduce the number of parameters of the algorithm.

Finally, tests and validations of the reconstruction algorithms in Chapters 4 and 5 have
been performed on multispectral data that were simulated using the developed instrument
model. Thus it is necessary to evaluate the performance of our algorithms and analyze
how they perform on real multispectral data. We expect this evaluation to reveal further
strong/weak points of the algorithm which are needed to improve. For instance, we intend
to consider a noise other than white Gaussian (e.g. Poissonian noise) and account for

1https://jwst.fr/wp/?p=2172
2http://www.cea.fr/
3https://www.ias.u-psud.fr/

https://jwst.fr/wp/?p=2172
http://www.cea.fr/
https://www.ias.u-psud.fr/
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photon noise which varies according to the wavelength.
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Abstract—This paper deals with the reconstruction of a
3-D spatio-spectral object observed by a multispectral imaging
system, where the original object is blurred with a spectral-
variant PSF (Point Spread Function) and integrated over few
broad spectral bands. In order to tackle this ill-posed problem,
we propose a linear forward model that accounts for direct (or
auto) channels and between (or cross) channels degradation,
by modeling the imaging system response and the spectral
distribution of the object with a piecewise linear function.
Reconstruction based on regularization method is proposed, by
enforcing spatial and spectral smoothness of the object. We test
our approach on simulated data of the Mid-InfraRed Instrument
(MIRI) Imager of the James Webb Space Telescope (JWST).
Results on simulated multispectral data show a significant
improvement over the conventional multichannel method.

Index Terms—Inverse problems, Image reconstruction, Decon-
volution, System modeling, Multispectral restoration

I. INTRODUCTION

Multispectral imaging systems are used in many fields,
e.g. astrophysics [1], remote sensing [2], medicine [3] or
microscopy [4]. This paper deals with the inverse problem
of joint restoration. Our goal is to reconstruct a discrete 3-
D spatio-spectral object from a small number of 2-D Multi-
Spectral (MS) observed data when this continuous 3-D object
is degraded by the instrument that suffers the diffraction
due to the limited size of the optical system. This physical
degradation affects its spatial resolution (in the form of blur)
accordingly to the wavelength. Moreover, before its spatial
sampling, the blurred object is integrated by the detector over
the different wide spectral bands, which results in low spectral
resolution multispectral data. Therefore, the multispectral data
are severely degraded and contain limited spectral information
about the original object.

Multichannel restoration has been extensively studied in the
literature. Multichannel forward models have been proposed
in [5], [6], where the system response is a block-diagonal
matrix with circulant blocks. For instance, [7], [8], [9] address
multichannel 2-D deconvolution problem for hyperspectral
image deconvolution. They take into account the within-
channel degradation, but not the between channel (or cross-
channel) degradation. Hence, this approach is not suitable for
MS imaging, especially if spectral bands are broad and over-
lapping, which implies a strong correlation between channels.

In [10] a model is proposed that reduces these limitations
since the system response is represented by a block matrix
corresponding to within and between channel degradations.
However, this model is mostly used when the number of
channels and observations is the same, e.g. color image
restoration [11], [12], [13].

In this paper we propose a multispectral forward model that
accounts for within and between channels degradation (or auto
and cross-channel), where (1) the number of multispectral data
is much lower than the number of spectral channels and (2)
a set of low-resolution multispectral data are degraded by a
spectral-variant PSF and integrated over broad spectral bands.
Reconstruction of a spatio-spectral object is performed using
regularization method, by accounting for spatial and spectral
quadratic regularization. Simulated results are provided with
a comparison to multichannel 2-D deconvolution for an appli-
cation to the MIRI Imager on board the JWST1.

This paper is organized as follows. In Sec. II we present the
problem formulation. The imaging system response and the
forward model are described in Sec. III. The reconstruction
method is presented in Sec. IV. Simulation and results are
presented in Sec. V including a brief description of the
JWST/MIRI Imager. Conclusions and perspectives are pro-
vided in Sec. VI.

II. PROBLEM FORMULATION

The general form of the multispectral problem we are
considering is the one proposed in [10], [11]. It follows the
discrete linear forward model

y = Hx + n, (1)

where x =
[
x(1)T ,x(2)T , . . . ,x(M)T

]T ∈ RMNkNl is the
stack of M spectral channels represented in a vector form,
each channel containing Nk × Nl pixels, where x

(m)
k,l de-

notes the (k, l)th spatial position in the (m)th wavelength.
The vector y =

[
y(1)T ,y(2)T , . . . ,y(P )T

]T ∈ RPNiNj

is the stack of multispectral observed data acquired via
P broad spectral bands of the imaging system. n =[
n(1)T ,n(2)T , . . . ,n(P )T

]T ∈ RPNiNj represents an additive

1https://jwst.nasa.gov/



unknown noise. The full system response is a PNiNj by
MNkNl block matrix,

H =




H1,1 H1,2 · · · H1,M

...
...

. . .
...

HP,1 HP,2 · · · HP,M


 , P �M, (2)

defined by a set of P × M Toeplitz sub-matrices Hp,m ∈
RNiNj×NkNl , which are approximated for computational ease
by circulant blocks.

However, all sub-matrices are ill-conditioned, meaning that
H is also ill-conditioned, which leads to an ill-posed problem.
Each multispectral observation y(p) depends on all spectral
channels through the blocks of H , where Hp,t, t = m
represents the direct (or auto) observation, whereas the block
Hp,t, t 6= m accounts for between (or cross) degradation
occurring between channels. We are interested in the particular
case where we have few low-resolution multispectral observed
data compared to spectral channels, i.e. P �M , which means
there is a lack of spectral information in the data. For instance,
for the multispectral data observed by the JWST/MIRI imager,
P = 9 and M = 1000, and the size of H is 9× 2562 by
1000× 2562 for a 256× 256 pixel detector.

III. MODELING OF WITHIN AND BETWEEN CHANNEL
DEGRADATIONS

A. Object Model

We first define the 3-D spatio-spectral object of interest
with φ(α, β, λ) : R3 → R, having two spatial parameters
(α, β) ∈ R2 and one spectral parameter λ ∈ R+. In order to
handle the lack of spectral information in the data, we propose
to perform approximation of the M spectral channels by M ′

channels, with M ′ < M , by modeling the object spectral dis-
tribution with a piecewise linear function [14]. Moreover, we
are interested in reconstructing a discrete version of the object,
hence, we define two basis functions for spatial and spectral
discretization, bs() and bλ(), respectively. They are defined
upon two grids, Gs = {αk, βl}Nk,Nl

k,l=1 and Gλ =
{
λ(m)

}
M ′
m=1 ,

respectively. Thus, the object is modeled by

φ(α, β, λ) =

M ′∑

m=1

Nk∑

k=1

Nl∑

l=1

x
(m)
k,l b

(k,l)
s (α, β)b

(m)
λ (λ), (3)

where b
(m)
λ (λ) is a uniform piecewise linear function, for

instance first-order B-spline function [15]. The parameter M ′

compromises between the sharpness of the spectral sampling
of the modeled object and the unknown spectral channels to
reconstruct x(m).

B. Imaging System Response

In this section we provide the multispectral imaging system
response by establishing an imaging system model that relates
the input to the output. The instrument we are considering
is composed of an optical system and a detector. Due to
light diffraction of φ, the optical system response is modeled
by a 2-D spatial convolution [16] with a spectral variant

optical response, known as Point Spread Function (PSF)
h(α, β, λ). This blurs the object accordingly to the wavelength
and limits its spatial resolution (as illustrated in Sec. V).
The blurred object is integrated over broad spectral bands
τp(λ) and sampled pixel-by-pixel on the 2-D detector grid,
Gsamp = {αi, βj}Ni,Nj

i,j=1 , with αi, βj being the 2-D angular
positions of pixels (i, j) and Ni, Nj are the total number of
pixel according dimensions α and β. We introduce a basis
function b(i,j)samp(α, β) to carry out spatial sampling. It is defined
on the pixel sensitive surface Ωpix. Moreover, a noise term n

(p)
i,j

is added for each pixel (i, j) and band p, e.g. readout noise of
the detector. Finally, the imaging system model is given by

y
(p)
i,j =

∫

R+

τp(λ)

(∫∫

Ωpix

(∫∫

R2

φ(α′, β′, λ) (4)

h(α− α′, β − β′, λ)dα′dβ′
)
b(i,j)samp(α, β)dαdβ

)
dλ+ n

(p)
i,j

this model links the 3-D continuous input φ(α, β, λ) to the 2-D
discrete output y(p)

i,j through a complex instrument response,
which includes spectral windowing and five sums, two for
spatial 2-D convolutions, two for spatial sums and one for
spectral integration. Note that the above model does not
include any non-ideal characteristics of the detector, which
are assumed to be corrected upstream.

C. Forward Model and definition of Hp,m

The discrete forward model links the discrete spectral
channels to the discrete multispectral data. It is obtained by
substituting equation (3) in (4). This yields

y
(p)
i,j =

M ′∑

m=1

Nk∑

k=1

Nl∑

l=1

Hp,m
i,j;k,l x

(m)
k,l + n

(p)
i,j , (5)

with

Hp,m
i,j;k,l =

∫

R+

τp(λ)b
(m)
λ (λ)

(∫∫

Ωpix

(∫∫

R2

b(k,l)s (α′, β′)

h(α− α′, β − β′, λ)dα′dβ′
)
b(i,j)samp(α, β)dαdβ

)
dλ. (6)

In addition, we consider for instance a rectangular impulse
function [17] for the sampling function. i.e. b(i,j)samp(α, β) =

1
4α4βΠ4α,4β(α−αi, β−βj), with4α,4β are the sampling
steps according to dimensions α and β, respectively. Thus,
the system response becomes a convolution matrix Hp,m

i,j;k,l =
Hp,m
i−k;j−l. Therefore, the vector-matrix representation of (5) is

y(p) =

M ′∑

m=1

Hp,mx(m) + n(p), (7)

where the p-th multispectral data y(p) is a sum of M ′

discrete 2-D spatial convolutions between spectral channels
and convolution matrices Hp,m (blocks of the matrix H
in (2)). Thus, it accounts for within and between channels
degradation. The discrete multispectral forward model with the



full imaging system H response takes the form in (1). Without
loss of generality, we consider Ni = Nj = Nk = Nl = N .

IV. RECONSTRUCTION

The reconstruction of the object of interest φ relies on the re-
construction of its spectral channels x(m) : m = 1, 2, . . . ,M ′

using a regularization method. The solution x̂ is obtained by
minimizing an objective function J (x),

x̂ = argmin
x

{J (x) = Q(x,y)} , (8)

where Q(x,y) = ‖y −Hx‖22 is the data fidelity that enforces
agreement of the solution with the data.

Therefore, the solution is x̂ =
(
HTH

)−1

HTy, called
the Least-Squares solution. However, this solution is unstable
because of the ill-conditioning of the matrix H , hence the
problem is ill-posed. To correct this ill-posedness we add reg-
ularization terms to J (x), this method is called Regularized
Least-Squares [18]. The objective function becomes J (x) =
Q(x,y) + Rs(x) + Rλ(x), where Rs(x) = µs ‖Dsx‖22
is a spatial regularization which enforces spatial smoothness
between neighboring pixels of x, with Ds ∈ RM ′N2×M ′N2

is a second-order finite difference operator along the spatial
dimension. Rλ(x) = µλ ‖Dλx‖22 refers to spectral regu-
larization. It enforces the similarity between intensity val-
ues of corresponding pixels in neighboring channels, with
Dλ ∈ RM ′N2×M ′N2

is a first-order finite difference operator
along the spectral direction. µs and µλ are regularization
parameters, they are set to compromise between fidelity to
the data and spatial smoothness, and spectral smoothness
across channel, respectively. Therefore the objective function,
J (x) = ‖y −Hx‖22 + µs ‖Dsx‖22 + µλ ‖Dλx‖22 . is a sum
of quadratic, linear and differentiable terms. Thus we obtain
the solution

x̂ =
(
HTH + µsD

T
sDs + µλD

T
λDλ

)−1

HTy, (9)

where Q = HTH +µsD
T
sDs+µλD

T
λDλ contains Toepltiz

blocks Qi,j : i, j = 1, . . . ,M ′ of size N2 × N2. However,
Qi,j 6= Qi+t,j+t, hence Q is not a Toeplitz matrix. We
propose to compute the solution without inverting Q, but by
computing the solution iteratively using the following form:

x̂k+1 = x̂k − a
[
Qx̂k −HTy

]
, (10)

with x̂k=0 = 0 corresponds to the initialization and a is a
convergence parameter of the algorithm. A conjugated gradient
(CG) algorithm [19] is implemented.

V. SIMULATION RESULTS

A. JWST/MIRI Imager

We apply the proposed reconstruction algorithm to mul-
tispectral data, simulated using the model in (4), for the
Mid-InfraRed Instrument (MIRI) Imager [20] on-board the
James Webb Space Telescope (JWST), the next flagship space
telescope of NASA, ESA and the Canadian Space Agency
(CSA) to be launched in 2020. This imager provides nine

multispectral observations (P = 9) integrated over a broad
range of spectral bands, from 5 µm to 28 µm [21]. The
nine bands are shown in Fig. 1. Note that overlapping of
the spectral bands increases the between channels degradation.
The MIRI Imager detector has a pixel pitch of 0.11 arcsecond,
i.e. Ωpix = 0.11 × 0.11 arcsecond2. We use the official
PSF simulator of the JWST mission, WebbPSF [22], [23],
to simulate realistic PSF images at different wavelengths, as
shown in Fig. 2. The PSF is complex due to the segmented
mirror of the JWST. We clearly observe an enlargement of
the PSF according to the wavelength, i.e. the longer the
wavelength the wider the PSF, as expected from diffraction
theory [16].
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Fig. 1. The nine broad bands of the JWST/MIRI Imager [21] covering the
mid-infrared wavelength range from 5 to 28 µm.
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Fig. 2. Monochromatic PSF of the JWST/MIRI imager simulated using
WebbPSF [22], [23] and displayed in the same logarithmic scale. We clearly
observe the dependency of the PSF to the wavelength as expected from
diffraction theory.

B. Setup of the Experiment

The original 3D object φ is a simplified spatio-spectral
model of the Horsehead nebula [24]. A spatial region of
256 × 256 pixels (N = 256) is taken for the simulation
with M ′ = 1000 spectral samples uniformly distributed within
4−28 µm. Nine multispectral data are simulated using (4) with
a zero-mean white Gaussian noise added in order to obtain a
global Signal-to-Noise Ratio (SNR) of 30, 20, 10 dB.

SNR(dB) = 10 log10

(
1

PN2 ‖y‖22
σ2
n

)
, (11)

where σn is the standard deviation of the noise, P is the
number of MS data and N2 is the total number of pixels in
the MS data.

Reconstruction results are summarized in Table I together
with a comparison between the proposed method and the



multichannel 2-D deconvolution method (MDec) [6] (indepen-
dent channel restoration using an averaged PSF per channel).
The regularization parameters µs and µλ are adjusted by
running the code for different values in a range [10−4, 10−2]
and keeping the pair that minimizes the objective function
J (x̂(µ̂s, µ̂λ)). For a quantitative comparison between the
original object forig and the reconstructed f rec, we compute
the relative reconstruction error as defined by

Error(%) = 100×
∥∥forig − f rec

∥∥
2
/
∥∥forig

∥∥
2
.

C. Discussion
Fig. 3 shows the spectral reconstruction result of one

single pixel (100, 150), comparing the original spectrum φorig,
the reconstructed spectrum using our method φrec, and the
reconstructed spectrum using multichannel 2-D deconvolution
φMDec. The original spectral distribution is complex with
spectral features at short wavelengths (4 − 13µm) and con-
tinuum. Therefore, an accurate reconstruction using a few MS
data is difficult, if not impossible, without using a strong prior
knowledge of the spectrum of the object. The reconstructed
spectrum computed with our method (using piecewise linear
model) allows us to reconstruct an envelope-like spectral dis-
tribution which significantly increases the spectral resolution
compared to multichannel 2-D deconvolution. Several values
of M ′ = {20, 40, 60} have been tested, and the reconstruction
results for three wavelengths, 7.8, 16 and 21 µm, are reported
in Table I. Increasing M ′ improves the spectral resolution
of the object model, but increases the between channels
degradation and the number of unknowns. Moreover, we find
that there is not much error improvement for M ′ > 60. In any
case, the proposed reconstruction shows smaller reconstruction
errors compared to the multichannel 2-D deconvolution ;
this is due to our model accounting for within and between
channel degradations. Spatial reconstruction results at different
wavelengths are illustrated in Fig. 4. As anticipated, a better
reconstruction is obtained at λ = 16µm and λ = 21µm than
at λ = 7.8µm (see the fourth row of the figure) since within
the integration windows at long wavelengths the spectrum of
the object does not contain any feature.

TABLE I
RELATIVE RECONSTRUCTION ERRORS (SEE THE TEXT) FOR THE

HORSEHEAD NEBULA [24] OF SIZE 1000× 256× 256

SNR λ Error (%)
(dB) (µm) Proposed Reconstruction MDec

M’=20 M’=40 M’=60

7,8 49,44 42,37 41,42 52,85
30 16,0 2,44 4,11 4,80 7,89

21,0 1,87 3,82 4,26 11,92

7,8 49,50 43,07 41,46 52,84
20 16,0 7,41 7,66 8,98 8,02

21,0 4,42 5,40 5,77 11,97

7,8 50,71 43,71 42,38 52,84
10 16,0 19,67 21,25 25,51 8,56

21,0 10,85 11,31 13,38 12,13
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0

50

100

φorig

φrec

φMDec

Fig. 3. Comparison between one single pixel (100, 150) spectrum from the
original object φorig, the proposed reconstruction φrec (with M ′ = 60) and
the multichannel 2-D deconvolution φMDec. The nine MS data (P = 9)
were corrupted with zero-mean Gaussian noise of 30 dB.
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Fig. 4. [First row] Original spectral channel of the Horse Head nebula.
[Second row] Simulated MS data with 30 dB corresponding to the bands
that include wavelengths of the first row (see Fig. 1). [Third row] Proposed
reconstruction. [Fourth row] Difference between the original and reconstructed
spectral channels. The original and reconstructed objects are in physical units,
whereas MS data are in detector units.

VI. CONCLUSION

In this paper we address the reconstruction of 3-D spatio-
spectral object observed by a multispectral imaging system
from a few low-resolution data. A discrete forward model is
defined accounting for within and between channel degrada-
tions using a piecewise linear function to model the spectral
distribution of the sought object. A quadratic reconstruction
is proposed by considering spatial and spectral regularization
terms. Results on simulated data applied to the JWST/MIRI
Imager highlights the complexity of the problem. A clear in-
crease of spatial and spectral distribution is achieved compared
to multichannel 2-D deconvolution method.
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Abstract—In this paper we propose an approach of image
restoration from multispectral data provided by an imaging
system. We specifically address two topics: (i) Development of
a multi-wavelength direct model for non-stationary instrument
response that includes a spatial convolution and a spectral
integration, (ii) Implementation of multispectral image
restoration using a regularized least-square, based on a
quadratic criterion and minimized by a gradient algorithm.
We test our approach on simulated data of the Mid-InfraRed
Instrument IMager (MIRIM) of the James Webb Space
Telescope (JWST). Our method shows a clear increase of spatial
resolution compare to conventional methods.

Index Terms—Direct Model, Multispectral Imaging, Inverse
Problems, Image Restoration

I. INTRODUCTION

Multispectral imaging instrument are used in many fields,
e.g. remote sensing [1], medicine [2], astrophysics [3]. Imag-
ing system on board space telescopes are specific subject
of this work, especially the Mid-InfraRed Instrument IMager
(MIRIM) [4] on board the James Webb Space Telescope
(JWST)1 which is the next space telescope of NASA, ESA and
the Canadian Space Agency (CSA) to be launched at the end of
2018. Such a system is mainly composed of an optical system
(or optic) that gathers source’s light (or object) from space
and provides it to the imaging instrument, which contains a
spectral filter (or photometric band) to select the wavelength
band of interest and an infrared detector that integrates and
discretizes the light, providing a 2D discrete image data.

Due to its passage through the optics, photon flux of the
object of interest is diffracted on the focal plane of the
telescope. The result is a spatial 2D-convolution of the object
with the optic response known as Point Spread Function
(PSF) [5]. On the other hand, the PSF vary accordingly to
the wavelength, blurring the object of interest and limiting
its spatial resolution. The second problem occurs during the
integration of the object by the detector, where the continuous
2D+λ object is integrated spectrally over the filter bandpass,
the 2D discrete image data has thus no spectral dimension.

Conventional approaches consider measured PSFs [6], [4]
but only PSFs at specific wavelengths are measured. Other

1https://jwst.nasa.gov/

approaches assume a broadband PSF, by averaging available
monochromatic PSFs, weighted by the filter+detector spectral
response and the object spectrum to observe [7]. Broadband
PSF smooths the structure of the PSF and makes it dependent
on the object spectrum to observe, especially for filters with
wide bands. In addition, a monochromatic object spectrum is
assumed for unknown sources, which results in a stationary
PSF and leads to inaccurate optics response and direct model.
Spatially-variant PSF has also been studied in [8] which
approximates the spatial-variant PSF using PSF-interpolation.
The same idea was used in [9] to approximate the spectral-
variant PSF. More recently, [10] reviews and provides models
of spatial-variant PSF. Other works treated deconvolution
problem with unknown parameter of the PSF or unknown
PSF, known as myope or blind deconvolution [11]. In the
other hand, the spectral integration is mostly approached by
a spectral convolution, such as in [12] where the 3D-PSF is
separated into spectral and spatial-invariant PSF, and [9] by
using PSF-interpolation so that the direct model is a 2D+λ
convolution. In this paper we deal with the continuous spectral
integration by taking into account informations from available
multispectral data of multi-filter, and preserve the spectral
non-stationarity of PSF using PSF simulator. This work aims
to restore a discrete version of the original spatio-spectral
object from available multispectral discrete data. Our main
contribution is the development of an instrument model and
a direct model for an imaging system with a non-stationary
instrument response.

The paper is organized as follows. In Sec. II, we develop
the instrument model. Then we present the direct model
along with the restoration in Sec. III. Experimental results on
simulated data with an application to the instrument MIRIM
are presented and discussed in Sec. IV. Finally, we conclude
our work and provide perspectives in Sec. V.

II. INSTRUMENT MODEL

In this section we develop the instrument model for the
imager. The block diagram of the instrument is represented in
Fig. 1, and is composed of an optic response, spectral filtering
and detector integration. The object of interest at the entrance
of the acquisition system is a 3D object, φ pα, β, λq : R3 Ñ R,
having two spatial dimensions pα, βq P R2 (angles in radian)



and one spectral dimension λ P R` (in microns). During the
observation process with the filter f (f P r1, nf s where nf
stands for total number of filters), the object is modified by
the instrument components, providing 2D-discrete data ypfq.

Optic
hpα, β, λq

Filter
τf pλq

Detector
ηpλq, bint

ypfqφpα, β, λq φopt φfilt

Fig. 1. Block diagram of the instrument model of the imager.

A. Instrument Response

1) Optic: The effect of the optic is carried out by the
pα, βq-convolution of the input object φpα, β, λq with the
spectral-variant PSF hpα, β, λq as follows

φopt pα, β, λq “ φ pα, β, λq ˚
pα,βq

h pα, β, λq (1)

“
ĳ

R2

φ
`
α1, β1, λ

˘
h
`
α´ α1, β ´ β1, λ˘ dα1dβ1,

where ˚
pα,βq

stands for 2D spatial convolution.

Fig. 2 illustrates the non-stationarity of the PSF. We display
two simulated PSFs of the instrument JWST/MIRIM at dif-
ferent wavelengths from the mid-infrared range, λ1 “ 7.7µm
and λ2 “ 25.25µm, PSFλ2

is clearly larger than PSFλ1
.

Fig. 2. Monochromatic PSFs simulated at λ1 “ 7.7µm and λ2 “
25.25µm, using the simulation tool WebbPSF [13] for the instrument MIRIM
on board the JWST.

2) Filter: The object passes through the filter f in order
to select the wavelength range of interest. This operation is
performed through the filter response τf pλq as follows

φ
pfq
filt pα, β, λq “ τf pλqφopt pα, β, λq . (2)

3) Detector: The detector integrates the filtered object and
performs sampling. We model its response in two steps :

‚ The spectral integration is weighted by the spectral re-
sponse of the detector (or quantum efficiency) ηpλq,

ypfqpα, βq “
ż

R`
ηpλqφpfqfiltpα, β, λqdλ. (3)

‚ We introduce a basis function bint to perform spatial
sampling within spatial integration, e.g. indicator function

of a sensitive area of the pixel Ωpix. The discrete data of
the filter f and pixel pi, jq is

y
pfq
i,j “

ĳ

Ωpix

ypfqpα, βqbint pα´ αi,j , β ´ βi,jq dαdβ.

(4)

with αi,j and βi,j the angular directions of the pixel
position pi, jq defined on the detector grid. We denote
N the total number of pixels.

B. Complete Formulation

The complete formulation of the instrument model is ob-
tained by substituting Eqs.(1)-(2) and (3) in Eq.(4). This yields

y
pfq
i,j “

ż

R`
ηpλqτf pλq

´ ĳ

Ωpix

φ pα, β, λq ˚
pα,βq

h pα, β, λq

bint pα´ αi,j , β ´ βi,jq dαdβ
¯
dλ. (5)

This model links the continuous 3D object φpα, β, λq at the
entrance of the imaging system to the 2D discrete data ypfq
through the instrument response, which includes spectral win-
dowing and five integrations, two for spatial 2D-convolution,
two for spatial integration and one for spectral integration.
The developed instrument model takes into account the non-
stationarity of the instrument response through the spectral-
variant PSF. Moreover, the above model does not include non-
ideal characteristics of the detector [14]. All these effects are
assumed to be corrected through the pipeline stages of the
data reduction plan [15]. In this paper, we consider the same
sampling grid of the object as for the data, and that all pixels
are regularly disposed on the detector grid, having the same
area Ωpix.

In order to simplify the instrument model, we consider
a constant object over pixel area. Thus, we define bint as
a rectangular function over the pixel area. The impact of
this approximation is slightly important for detectors with
good resolution, such as MIRIM detector [16]. Thus, Eq.(5)
becomes

y
pfq
i,j “ Ωpix

ż

R`
ηpλqτf pλq

φ pαi,j , βi,j , λq ˚
pαi,j ,βi,jq

h pαi,j , βi,j , λq dλ (6)

where ˚
pαi,j ,βi,jq

stands for discrete 2D-convolution.

III. DIRECT MODEL AND INVERSE PROBLEM

In this section we first model the object spectrum, then
we develop the direct model, thereafter we tackle the inverse
problem of the object.

A. Continuous Object Spectrum

In this paper we model the spectrum object with a continu-
ous piecewise linear function, as shown in Fig.(3). This choice
allows us to obtain a simple model that preserves the spec-
tral distribution of the object with less complexity, whereas
conventional approaches do not. They generally consider a



model with broadband PSF, defined as a spectral integration of
monochromatic PSF weighted by the filter + detector + object
spectrum window [7]. Hence, one can only attempt to restore
a spatial distribution with such a model [17]. The object is
modeled as follows

φ pαi,j , βi,j , λq “
nbÿ

b“1

´
xpbq pαi,j , βi,jq gpbq` pλq`

xpb´1q pαi,j , βi,jq gpbq´ pλq
¯
1rλpb´1q,λpbqspλq,

(7)

where b P r1, ..., nbs is the index of the bandwidth, 1pλq the
indicator function, which is equal to 1 for λ P “

λpb´1q, λpbq
‰

and 0 otherwise. The discrete parameters x
pb´1q
i,j and x

pbq
i,j

are intensities of the object at λpb´1q and λpbq, respectively.
g
pbq
´ pλq “ 1

2 ´ λ´λpbqc

λpbq´λpb´1q and g
pbq
` pλq “ 1

2 ` λ´λpbqc

λpbq´λpb´1q
express the linear slope of the object spectrum.

Thanks to the parameterization in Eq. (7), the object spec-
trum is continuous in λ and the positivity constraint is naturally
fulfilled.

xp2q
xp0q

xp1q
xpnb´1q

λp0q

xpnbq

λp2qλp1q λλpnb´1q λpnbq

...

...
λ
p1q
c λ

p2q
c λ

pnbq
c

φpαi,j , βi,j , λq
...

b “ 1 b “ 2 b “ nb

Fig. 3. Representation of a piecewise linear spectrum, for a single position
over a wavelength range of rλp0q, λpnbqs. (in dots) Filters transmission to
illustrate the multi-filter analysis.

B. Direct model

The discrete data ypfq contains information about the object
of interest within the filter bandpass. In fact, we use a multi-
filter analysis to develop a direct model that accounts for
informations of the whole wavelength range of the instrument.
By substituting Eq.(7) in Eq.(6) and rearranging similar
terms, only wavelength-dependent terms are left in the spectral
integration without the object parameter x. This yields

y
pfq
i,j “

nbÿ

b“0

h
pf,bq
int pαi,j , βi,jq ˚

pαi,j ,βi,jq
xpbqpαi,j , βi,jq (8)

where hpf,bqint is a 2D integrated PSF

h
pf,bq
int pαi,j , βi,jq “ Ωpix

ż

R`
ηpλqτf pλq

”
g
pb`1q
0 pλq ` gpbq1 pλq

ı
hpαi,j , βi,j , λqdλ,

(9)

with the boundary conditions gpnb`1q
´ pλq “ g

p0q
` pλq “ 0.

Eq. (8) can be formulated in a vector form as follows

ypfq “
nbÿ

b“0

H int
pf,bqxpbq ` εpfq, (10)

where Hpf,bq
int P RNˆN is a convolution matrix. xpbq P RN

and ypfq P RN are vector representations of ypfq and xpbq.
εpfq P RN corresponds to readout noise and modeling error.

The linear direct model in Eq. (10) is a sum of pnb ` 1q
spatial convolutions, between the 2D object parameters xpbq
and 2D system response Hpf,bq

int . Moreover, the observation
ypfq contains information about the unknown object over
the whole spectral range, weighted by the spectral windows
ηpλqτf pλq. By combining all available multispectral data in
one vector y, Eq. (10) becomes

y “Hx` ε, (11)

whereH “
!
H
pf,bq
int

)
f“1:nf

b“0:nb

is a block matrix containing nfˆ
pnb` 1q convolution matrices corresponding to the integrated
PSFs hpf,bqint . We denote by x “ “

xp0q . . .xpnbq‰t the vector of
pnb ` 1q unknowns object parameters, y “ “

yp1q . . .ypnf q‰t

vector of all available data, and ε “ “
εp1q . . . εpnf q‰t vector of

additive noise associated to data.

C. Restoration

Restoration of x relies on regularized least-square approach
in inverse problems [18], where the solution is obtained by
minimizing a criterion J as follows

x̂ “ argmin
x

J pxq . (12)

The criterion of least-square (called data fidelity) is
}y ´Hx}22. It enforces agreement of the solution x̂ with the
data y. Least-square problem is ill-posed because of the ill-
conditioning of H . In fact, regularized least-square estimator
aims of correcting this ill-posedness by adding a regularization
term }Cx}22 to the criterion, withC a well-conditioned matrix.
We are particularly interested in a quadratic-regularization (l2-
norm) in order to obtain a differentiable criterion. This allow
us to implement a fast calculation of the solution. Therefore,
the regularized least-square criterion is

J pxq “ }y ´Hx}22 ` }Cx}22 , (13)

the matrix C “ diag
!?

µ0Dα,β , . . . ,
?
µnb
Dα,β

)
, where

Dα,β is a 2D spatial constraint operator, e.g. discrete
Laplacian operator in case of a spatially smooth object.
Moreover, regularization parameters µ0, . . . , µnb

are set to
compromise between the two terms of the criterion, data
fidelity and regularization.



As J is a quadratic form, solution of the problem x̂ is
explicit and obtained by canceling the gradient of the criterion
defined in Eq.(13) :

x̂ “ pHtH `CtClooooooomooooooon
Q

q´1Hty (14)

where Q is a Hessian matrix of size pnb` 1qN ˆ pnb` 1qN .
We first attempt to compute the solution by inverting Q

using diagonalization of circular matrices in Fourier space,
therefore, computing Q´1 means inverting N square matrices
of size pnb ` 1q ˆ pnb ` 1q. This calculation turns out
heavy for nb ą 4. We propose instead to compute the
solution without inverting Q, i.e. by solving a linear system
pHtH ` CtCqx̂ “ Hty through an iterative scheme, e.g.
using numerical optimization algorithm such as the conjugated
gradient (CG) algorithm [19]. Moreover, we consider circular
convolution and compute the solution in Fourier space for
efficient computation.

IV. SIMULATION RESULTS

A. Application to JWST/MIRIM

We apply the proposed approach to the instrument MIRIM
on board the space telescope JWST. The optical system of the
telescope is mainly composed of a 6.5-meters primary mirror,
made up of 18-hexagonal segmented mirror. The imaging
instrument MIRIM has nine photometric bands that cover
the mid-infrared range of 5 to 28µm. Their transmission
profiles are given in [4]. The object of interest is guided
through mirrors to the MIRIM detector [16], where it will be
integrated and sampled. MIRIM detector has a pixel scale of
0.11 arcsec/pixel (Ωpix “ 0.112 arcsecond2) and its spectral
window ηpλqτf pλq is known as Photon Conversion Efficiency
(PCE) [20], see Fig. 4. Moreover, non-stationary PSF is a set
of monochromatic PSFs simulated on a discrete wavelength
grid that covers the whole spectral range of the instrument,
simulated with WebbPSF [13] the official PSF simulator of
mission JWST.

B. Setup

In order to validate the proposed approach, all tests were
done on simulated data, where we simulated the original object
as a cube of size 64ˆ64ˆ9 pN “ 64, nb “ 8q with a Gaussian
spatial distribution (σ “ 3) and a linear spectrum over the
instrument spectral range. We implemented the direct model in
Eq.(11) by computing the nine integrated PSFs and performing
convolutions with original object parameters. As a result,
nine multispectral data are simulated corresponding to nine
MIRIM photometric bands. Signal-to-noise ratio (SNR) [21]
is used to evaluate the level of the white Gaussian zero-mean
noise added to the data. We implement the conjugate gradient
algorithm to restore the object parameter x̂ and compare it to
the conventional approach given in Sec. III-A, referenced as as
"standard". Object restoration in case of the standard approach
consists of deconvolution of nine data by considering com-
puted broadband PSFs. We use the unsupervised deconvolution
method of [22], with a quadratic-regularization and same prior.

We obtain deconvolved observations as well as estimation
of regularization parameters, these latter are used for both
approaches, proposed and standard ones. Finally, the restored
object of interest φ̂ is deducted from the restored object
parameter x̂ using Eq.(7). Restoration quality is measured
with a relative error

›››φoriginal ´ φ̂
›››
2
{ ››φoriginal

››
2

between the

original object of interest φoriginal and the restored object φ̂.

C. Discussion

Fig. 4 illustrates restoration results in a spectral dimension,
where we display the spectrum of the central pixel of the
original object, proposed and standard restorations. All data
are corrupted by an additive zero-mean Gaussian noise of 30
dB. We observe that the restored spectrum using the proposed
approach fits very well the original spectrum along the whole
wavelength range. However, the standard approach fails to
do so, because of the inaccuracy of the instrument response
considered in the standard approach. In addition, Fig. 5 shows
observed data using filter f “ 8 (named F2100W), the original
object at λ “ 18.7µm and the spatial restoration with both
approaches. The restoration result using our approach shows
a good restoration of the dynamic and the spatial details, the
blur caused by the PSF is also removed, with an error of 6.27%
compared to 21.29% obtained with the standard approach.
Moreover, we notice that the wider the filter band, the better
the results of our approach compared to the conventional
approach, which is the case for the instrument MIRIM.

V. CONCLUSION

In this paper we present the problem of image restoration
from multispectral data acquired by an imager, where we
restored a spatio-spectral object. An instrument model with
a complex non-stationary response is detailed, including a
spatial convolution with a spectral-variant PSF and a spectral
integration. Then, we developed a multi-wavelength direct
model, which is the sum of spatial 2D-convolution of the
object parameter with an integrated PSF. The idea relies
on using a multi-filter processing and an approximation
of a continuous piecewise linear spectrum. Multispectral
restoration is implemented using regularized least-square
based on quadratic criterion. Preliminary restoration results
are provided on simulated data, where we obtained a clear
improvement of restoration quality compared to classical
approach.

Several aspects are to improve in our approach, such as the
estimation of the pnb`1q regularization parameters. As future
work, generalization of the direct model by introducing a set
of basis functions of the object discretization, and increasing
the spectral sampling of the sought object by adding spectral
prior of the object. Finally, validation of direct model and
restoration of real astrophysical object.
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Fig. 4. Illustration of the spectral restoration. All intensities were normalized
to 1 for better visualization and comparison.
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Fig. 5. Illustration of the spatial restoration : (a) original object at λ “
18.7µm. (b) data for the filter F2100W. (c) proposed restoration, (d) standard
restoration. Parameters used are : SNR = 30 dB, σGauss “ 3
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Résumé – Cet article traite de la restauration du flux lumineux à partir de données multispectrales fournies par un imageur à bord d’un
télescope spatial. Les problèmes abordés concernent la limitation de la résolution spatiale causée par la réponse optique variant spectralement et
l’intégration spectrale de l’objet sur une large bande. Nous avons développé un modèle instrument prenant en compte ces effets et proposé un
modèle direct qui exploite conjointement l’ensemble des données à différentes bandes spectrales. Nous avons mis en œuvre la restauration de
l’objet inconnu en utilisant la méthode des moindres carrés régularisés et la solution est calculée par l’algorithme du gradient conjugué. Nous
avons testé notre approche sur des données simulées de l’imageur de Mid-InfraRed Instrument (MIRI) à bord du futur télescope spatial James
Webb (JWST). Notre méthode montre une nette augmentation des résolutions spatiale et spectrale par rapport aux méthodes conventionnelles.

Abstract – In this paper we deal with the restoration of astrophysical objects from multispectral data acquired by an imager on board of a
space telescope. The problems we address are the spatial resolution limitation caused by the spectral varying optical response and the broadband
spectral integration of the object. Indeed, we develop an instrument model that takes into account these effects, and we propose a direct model
by exploiting all the data from different spectral band jointly. The restoration of the object is implemented using the regularized least squares
method, and the solution is computed by the conjugate gradient algorithm. We test our approach on simulated imagery data from the Mid-
InfraRed Instrument (MIRI) on board the future James Webb Space Telescope (JWST). Our method shows a significant increase in spatial and
spectral resolution compared to conventional methods.

1 Introduction
Les instruments d’imagerie multispectrale sont utilisés dans

de nombreux domaines, comme la télédétection, l’imagerie mé-
dicale ou l’astrophysique. Dans ce travail nous nous intéressons
à l’imageur du Mid-InfraRed Instrument (MIRI)[1], à bord du
futur télescope spatial James Webb (JWST) 1 de la NASA (en
collaboration avec l’ESA), dont le lancement est prévu fin 2018.
Le faisceau de lumière 3D (2 dimensions spatiales et 1 spec-
trale) à l’entrée du télescope est diffracté et focalisé sur le dé-
tecteur. Le résultat est modélisé par un produit de convolution
spatiale 2D de l’objet avec la réponse impulsionnelle, ou PSF
(Point Spread Function) [2]. Cette PSF floute l’objet différem-
ment en fonction de la longueur d’onde, ce qui entraîne une ré-
duction de résolution spatiale. De plus, la distribution spectrale
de l’objet disparaît lors de l’intégration sur de larges fenêtres
spectrales.

Les approches conventionnelles généralement négligent les

1. https ://jwst.nasa.gov/

variations spectrales de PSF. Certains travaux considèrent une
PSF 2D mesurée, mais uniquement à des longueurs d’onde spé-
cifiques [1, 3]. D’autres utilisent une PSF 2D à large bande
en calculant la moyenne pondérée de PSFs monochromatiques
[4, 5], mais la PSF est alors supposée spectralement invariante,
conduisant à un modèle instrument inexact. D’autre part, [6]
a traité un cas où la variation spectrale de PSF est faible et
la PSF 3D approchée par deux PSFs spatialement et spectra-
lement invariantes ; l’intégration spectrale du filtre + détecteur
revient à une convolution spectrale. De façon comparable dans
[7], l’interpolation de PSF est utilisée pour prendre en compte
la variation spectrale de PSF, ce qui conduit à un modèle de
convolution 3D.

Nous proposons une nouvelle approche pour reconstruire l’ob-
jet original 2D+λ à partir d’un modèle direct, prenant en compte
l’intégration spectrale continue et préservant la variation en
longueur d’onde exacte de la PSF. Notre contribution réside
dans le développement du modèle instrument et du modèle di-
rect et d’une première méthode de restauration. Nous suppo-



sons que le spectre de l’objet est linéaire par morceaux, afin
d’extraire son contenu spectral, mais également de conserver
sans approximation les variations spectrales de PSF. Par ailleurs,
nous traitons l’ensemble des données multispectrales dispo-
nibles issues de plusieurs filtres pour restaurer l’information
sur la totalité de la bande spectrale de l’instrument. L’objet 3D
est alors représenté par des paramètres 2D spatiaux, calculés en
utilisant la méthode des moindres carrés régularisés.

Notre approche est testée sur des données simulées de MIRI.
Les résultats de la restauration montrent un gain significatif en
résolution spatiale et fournissent plus d’information spectrale
que les méthodes utilisant une PSF à large bande.

2 Modèle instrument

L’objet d’intérêt à l’entrée du système optique est un flux lu-
mineux φpα, β, λq : R3 Ñ R ayant deux dimensions spatiales
pα, βq P R2 et une dimension spectrale λ P R`. Durant le
processus d’observation, l’objet est modifié par la réponse ins-
trument, fournissant une sortie discrète 2D ypfq pour chaque
filtre f P r1, nf s (nf est le nombre total des filtres). On notera
dans la suite N le nombre total de pixels de données.

Dans ce qui suit, nous allons modéliser la réponse instru-
ment présentée sur le schéma en blocs dans la figure 1. Elle est
composée de la réponse du système optique et du système de
mesure de l’imageur, comprenant le filtre et le détecteur.

Optique Filtre Détecteur
ypfqφpα, β, λq

FIGURE 1 – Diagramme en blocs du modèle instrument

2.1 Réponse du système optique

Elle est modélisée par une convolution spatiale 2D de l’objet
φpα, β, λq avec une PSF variant en longueur d’onde :

φoptpα, β, λq “ φpα, β, λq ˚
pα,βq

hpα, β, λq. (1)

Afin d’illustrer la non-stationnarité spectrale de la PSF, la fi-
gure 2 présente des PSFs à des longueurs d’onde différentes du
spectre moyen-infrarouge (en utilisant l’outil WebbPSF [8]).
On observe clairement la variation spectrale de PSF, avec une
largeur à mi-hauteur proportionnelle à λ.

2.2 Réponse du filtre

L’objet φoptpα, β, λq est ensuite spectralement filtré. Cette
opération est modélisée par un produit avec la transmission du
filtre τf pλq

φ
pfq
filtpα, β, λq “ τf pλq φoptpα, β, λq. (2)
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FIGURE 2 – Simulation de PSF monochromatique du
JWST/MIRI

2.3 Réponse du détecteur
Le détecteur effectue une intégration spectrale et spatiale.

L’intégration spectrale est pondérée par la réponse spectrale du
détecteur (ou efficacité quantique) ηpλq. L’objet est intégré spa-
tialement sur la matrice du détecteur 2D, la réponse pour un
pixel est modélisé par

ypfqpi, jq “
ĳ ż

R`
ηpλqφpfqfiltpα, β, λqdλ

Bint

ˆ
α´ i4i
4i

,
β ´ j4j
4j

˙
dα dβ, (3)

où4i ˆ4j est la surface du pixel pi, jq. Bint est une fonction
d’intégration sur la surface du pixel.

Le modèle complet de l’instrument est obtenu en substituant
les équations (1)-(2) dans (3) :

ypfqpi, jq “
ĳ ż

R`
ηpλqτf pλqφpα, β, λq ˚

pα,βq
hpα, β, λq

Bint

ˆ
α´ i4i
4i

,
β ´ j4j
4j

˙
dλdαdβ. (4)

Ce modèle relie l’objet d’intérêt continu aux données dis-
crètes à travers une réponse système complexe, incluant un fe-
nêtrage spectral et cinq intégrations. Dans la suite nous avons
fait deux hypothèses simplificatrices : (1) les pixels sont régu-
lièrement disposés et de même surface 4i ˆ 4j “ 42. (2)
la constance de l’objet sur la surface des pixels, en choisissant
pour fonction d’intégration Bint une fonction rectangle, ce qui
permet de passer d’une convolution continue à une convolution
discrète. Finalement, le modèle instrument devient

ypfqpi, jq “ 42

ż

R`
ηpλqτf pλqφpi, j, λq ˚pi,jq hpi, j, λq dλ.

(5)

3 Modèle direct et inversion

3.1 Modèle pour le spectre de l’objet
L’objectif est de reconstruire l’objet 2D`λ sur la totalité de

la bande spectrale de l’instrument à partir de données multis-
pectrales obtenues avec différents filtres. Pour cela, la para-
métrisation de l’objet doit permettre des liens entre les filtres.
Nous avons choisi de prendre pour chaque pixel un spectre



linéaire par morceaux avec une contrainte de continuité, tel
qu’illustré sur la figure 3. Ce spectre s’écrit comme

φi,jpλq “
nbÿ

b“1

x
pbq
i,j g

pbq
` pλq ` xpb´1q

i,j g
pbq
´ pλq1rλpb´1q,λpbqspλq

(6)
avec b P r1, nbs l’indice de la bande et 1pλq la fonction indica-
trice sur rλpb´1q, λpbqs.

La fonction φpbqi,j pλq est linéaire

φ
pbq
i,j pλq “ x

pbq
i,j g

pbq
` pλq ` xpb´1q

i,j g
pbq
´ pλq (7)

où xpbqi,j est l’intensité du pixel pi, jq à λpbq et gpbq˘ pλq la fonction
contenant la variation linéaire sur la bande b :

g
pbq
˘ pλq “

1

2
˘ λ´ λpbqc
λpbq ´ λpb´1q .

Ce modèle présente plusieurs avantages. Tout d’abord il per-
met une description linéaire du spectre plutôt que constante
sans ajout de degré de liberté. La positivité sur toute la largeur
de bande est respectée avec la positivité des intensités xpbq. En-
fin, plusieurs jeux de données correspondant à différents filtres
dépendent des mêmes inconnues.

xp2q
xp0q

xp1q
xpnb´1q

λp0q

xpnbq

λp2qλp1q λλpnb´1q λpnbq

...

...
λ
p1q
c λ

p2q
c λ

pnbq
c

φi,jpλq
...

b “ 1 b “ 2 b “ nb

FIGURE 3 – Illustration du modèle linéaire par morceaux du
spectre de l’objet (en continues). Spectre d’objet constant sur
la bande spectrale du filtre (en pointillés).

3.2 Modèle direct
Le modèle direct pour un filtre f est obtenu en substituant

l’équation (6) dans (5). En réarrangeant les termes de l’équa-
tion résultante, les termes dépendant de la longueur d’onde res-
tent dans l’intégration spectrale :

ypfqpi, jq “
nbÿ

b“0

h
pf,bq
int pi, jq ˚

pi,jq
xpbqpi, jq (8)

avec

h
pf,bq
int pi, jq “

ż
ηpλqτf pλq

´
g
pb`1q
` pλq ` gpbq´ pλq

¯

hpi, j, λq dλ. (9)

L’équation (8) montre que l’image obtenue pour le filtre f
est la somme de nb`1 convolutions 2D où chaque image d’in-
tensités xpbq est convoluée avec une réponse 2D, elle même
somme pondérée des PSFs monochromatiques hpλq.

La représentation matrice-vecteur de l’équation (8) s’écrit

ypfq “
nbÿ

b“0

H
pf,bq
int xpbq, (10)

où ypfq P RN est le vecteur de données, xpbq P RN l’ensemble
des inconnues et Hpf,bq

int P RN ˆ RN une matrice de convo-
lution de réponse impulsionnelle hpf,bqint pi, jq. En définitive, le
modèle direct de l’ensemble des données est linéaire et s’écrit

y “Hx` ε, (11)

où ε P RnfN contient les erreurs liés à chaque observation. La
matriceH est une matrice bloc de taille nfN ˆ pnb ` 1qN où
chaque bloc est une matrice de convolution.

3.3 Inversion
Nous estimons les intensités x dans l’équation (11) en mini-

misant le critère

x̂ “ argmin
x

Jpxq “ }y ´Hx}22 `
nbÿ

b“0

µb }Dx}22
loooooomoooooon

}Cx}22

. (12)

Il s’agit d’une méthode de moindres carrés régularisés [9].
Le terme de régularisation }Cx}22 permet d’ajouter une infor-
mation a priori sur l’objet à restaurer, dans le but de compenser
le mauvais conditionnement de la matrice H et de stabiliser
la solution des moindres carrés. Nous choisissons une norme
quadratique pour obtenir une solution linéaire et tirer profit des
moyens de calculs rapides de la solution.

Nous avons choisi un opérateur différentiel 2D pour D afin
de promouvoir les solutions lisses,C “ diagtµ0D, . . . , µnb

Du
où µ0, . . . , µb sont les paramètres de régularisation. Le critère
Jpxq est quadratique et la solution x̂ est obtenue en annulant
son gradient :

x̂ “ pHtH `CtClooooooomooooooon
Q

q´1Hty (13)

oùQ est une matrice de taille pnb ` 1qN ˆ pnb ` 1qN .
En fixant nb ` 1 “ nf la matrice H devient carrée. Par

conséquent, l’inversion Q´1 peut se faire par diagonalisation
dans l’espace de Fourier, en faisant une approximation circu-
lante des matrices de convolution et en inversant N matrices
carrées de taille nb ˆ nb. En revanche, ce calcul s’avère lourd
pour nb ą 4. Nous proposons plutôt le calcul de la solution
par résolution du système linéaireQx̂ “Hty à l’aide d’un al-
gorithme itératif, sans inversion de matrice, comme le gradient
conjugué [10].

4 Simulations et résultats

4.1 Application à l’imageur JWST/MIRI
Nous considérons l’imageur MIRI, et nous évaluons l’inver-

sion sur des données simulées. Les PSF du JWST sont simulées



avec l’outil WebbPSF. MIRI comporte neuf bandes photomé-
triques dans l’infrarouge moyen (5µm´ 28µm) ; leurs profils
spectraux ηpλqτf pλq sont fournis dans [1].

4.2 Simulation
Afin de valider notre approche, nous avons effectué des si-

mulations sur des données synthétiques. Nous avons donc si-
mulé un cube pour l’objet original de taille 64ˆ 64ˆ 9, ayant
une source spatialement gaussienne (σ “3) et un spectre li-
néaire. Ensuite, neuf observations sont simulées pour les neuf
bandes de MIRI. Toutes les données sont corrompues avec un
bruit blanc gaussien centré avec un rapport signal sur bruit SNR
« 30 dB (défini dans [11] page 376). Nous comparons nos ré-
sultats aux travaux utilisant une PSF 2D à large bande [4, 5],
appelés large bande ou LB dans la suite. Nous considérons
donc neuf PSFs à large bande ne variant pas spectralement.
Par conséquent, la restauration LB consiste à déconvoluer les
données filtre par filtre indépendamment. Nous avons utilisé la
méthode de déconvolution proposé dans [12]. Cette méthode
est non-supervisée et permet d’estimer les paramètres de régu-
larisations pour les deux approches de restaurations.

4.3 Résultats
Nous illustrons la restauration du contenu spectral à la fi-

gure 4 en affichant le spectre du pixel central de la source
(normalisé à 1). Le spectre restauré par notre approche coïn-
cide parfaitement au spectre original sur la totalité de la bande
spectrale de l’instrument, tandis que la restauration LB ne per-
met pas de restaurer le spectre original. La figure 5 présente le
contenu spatial restauré de l’objet original à la longueur d’onde
λ “ 18.7µm contenue dans le filtre f “ 8. Nous observons
un effet de déconvolution de données et une restauration des
intensités spatiales, avec une erreur relative de 6% au lieu des
21% pour l’approche LB. Cette différence apparaît bien dans
les résidus affichés figure 5 (c) et (f).

5 Conclusion
Nous avons présenté le problème de restauration d’objet 2D+λ

à partir de l’ensemble de données multispectrales 2D floues.
Nous avons développé un modèle instrument de l’imageur pre-
nant en compte la variation en longueur d’onde de la PSF et
l’intégration spectrale sur de larges fenêtres spectrales. Nous
avons ensuite développé un modèle direct linéaire, en modéli-
sant le spectre de l’objet par une fonction continue, choisie li-
néaire par morceaux, ce qui nous a permis d’effectuer un traite-
ment multi-filtre. Finalement, la solution du problème est obte-
nue en utilisant la méthode des moindres carrés régularisés. Les
résultats de restauration préliminaires sont obtenus à partir de
données simulées. Par rapport aux approches conventionnelles
utilisant une PSF 2D à large bande, nous avons obtenu une aug-
mentation significative de résolution spatiale et une meilleure
reconstruction de l’information spectrale.
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FIGURE 4 – Illustration de la reconstruction spectrale pour le
pixel central de la source.
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FIGURE 5 – Illustration de la restauration spatiale sur des
coupes à λ “ 18.7µm
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ABSTRACT

Astrophysical images issued from different instruments and/or spectral bands often require to be processed together, either for fitting
or comparison purposes. However each image is affected by an instrumental response, also known as point-spread function (PSF),
that depends on the characteristics of the instrument as well as the wavelength and the observing strategy. Given the knowledge of the
PSF in each band, a straightforward way of processing images is to homogenise them all to a target PSF using convolution kernels,
so that they appear as if they had been acquired by the same instrument. We propose an algorithm that generates such PSF-matching
kernels, based on Wiener filtering with a tunable regularisation parameter. This method ensures all anisotropic features in the PSFs to
be taken into account. We compare our method to existing procedures using measured Herschel/PACS and SPIRE PSFs and simulated
JWST/MIRI PSFs. Significant gains up to two orders of magnitude are obtained with respect to the use of kernels computed assuming
Gaussian or circularised PSFs. A software to compute these kernels is available at https://github.com/aboucaud/pypher

Key words. methods: observational – techniques: image processing – telescopes – techniques: photometric

1. Introduction

The point-spread function (PSF), also known as beam, is one
of the main characteristics of any astronomical imager. It is a
model of the diffraction pattern resulting from the interaction
between the electromagnetic radiation and the instrument optics
and detectors at every wavelength. Since most instruments op-
erate on a single or a series of bandpasses (through e.g. filters),
the resulting effective PSF is an integral of the monochromatic
PSFs over the wavelength range, weighted by the instrumental
throughput and the source energy distribution of a given astro-
nomical object. A more accurate model can even include con-
volutional effects such as guiding errors, trailing effects from a
scanning mode, smearing by the detector response, or even non-
convolutional effects like the brighter-fatter effect. Once imaged,
these model PSFs exhibit a complex shape, including anisotropy,
wings, and spikes that extend far from the centre. Another classic
feature of the PSF derived from the laws of optics is the radially
oscillating pattern of the response, especially in the monochro-
matic case, creating a series of peaks and valleys. These sec-
ondary peaks can account for a non-negligible amount of the
total power of the PSF. For ground-based astronomy, however,
the atmospheric turbulence creates a smearing that redistributes
the power of these peaks and valleys and enables the PSF to be
modelled by simple analytic profiles such as two-dimensional
(2D) Gaussians. On the contrary, space telescopes can benefit
from a much higher resolution at the expense of a full complex-
ity of the PSF. To cite a few examples, the effective PSF of IRAS
maps was elliptical owing to the scanning strategy, so the an-
gular resolution was strongly anisotropic, with ratios up to 1:6
(e.g. 0.75′ × 4.6′ at 25 µm, from Wheelock et al. 1994). More

recently, the effective PSFs of the Planck/HFI1 maps appeared
to have an ellipticity in the range 1.04 to 1.4, depending on the
spectral band (Ade et al. 2011); the PSF of the PACS2 photome-
ter (Poglitsch et al. 2010) on board the Herschel satellite, charac-
terised by Lutz (2012), showed a narrow core, a tri-lobe pattern
and knotty structured diffraction rings. As we push the bound-
aries of both optical performances and detector capabilities of
future missions, optical designs highly increase in complexity.
Hence, for upcoming space surveys (Euclid3, WFIRST4) or ob-
servatories (Athena5 or JWST6), the characterisation and pro-
cessing of elaborated PSFs become a crucial task.

Most astrophysical studies necessitate multi-wavelength ob-
servations, either from multiple bands or filters within an instru-
ment or from various instruments and telescopes. The different
maps are affected by a particular PSF and the pixel-based data
comparison cannot be straightforward. However, a technique
widely used in multi-band photometry is to perform the measure-
ments on PSF homogenised data, that is to select a dataset as ref-
erence (usually the one with the worst resolution, or wider PSF)
and transform the other datasets so they are PSF-matched with
the reference PSF; this technique is called PSF homogenisation
or PSF matching (see e.g. Bertin et al. 2002; Gordon et al. 2008;
Darnell et al. 2009; Desai et al. 2012; Hildebrandt et al. 2012).
Usually, PSF homogenisation is achieved by convolving the

1 http://planck.esac.esa.int
2 http://herschel.esac.esa.int
3 http://www.euclid-ec.org/
4 http://wfirst.gsfc.nasa.gov/
5 http://www.the-athena-x-ray-observatory.eu/
6 http://http://www.jwst.nasa.gov/
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image with a kernel that is generated from the PSF
corresponding to the image and the reference PSF. In the litera-
ture, one can distinguish between parametric kernels and non-
parametric methods. Parametric methods use a fit of an ana-
lytic model to each PSF (Moffat, multiple Gaussians, etc.) or
their decomposition on a proper basis (e.g. Gauss-Hermite poly-
nomials or shapelets), and result in an analytic expression of
the kernel (e.g. Kuijken 2008; Hildebrandt et al. 2012; Liu et al.
2015); non-parametric methods use pixel information from the
image (e.g. Alard 2000) or adopt effective PSF images (e.g.
Gordon et al. 2008; Aniano et al. 2011) to compute the kernels.

With the purpose of taking the full complexity and angular
extension of the PSFs of space instruments into account, we ad-
dress the creation of PSF-matching kernels for multi-wavelength
studies. We then present two use cases for these kernels: one
based on the Herschel satellite data and a second on simulations
for the Mid-InfraRed Instrument Imager (MIRI) of the James
Webb Space Telescope (JWST). We also deliver a programme
called pypher that computes the kernels given two PSF im-
ages (see Appendix A). This code has initially been developed
in preparation for the Euclid mission (Laureijs et al. 2010).

In Sect. 2, we describe the algorithm for the generation of
convolution kernels used to match the resolution of images. In
Sect. 3, we assess the improvement brought by these kernels on
the multi-wavelength study of dust properties with the Herschel
satellite, and show in Sect. 4 the reconstruction power of such
kernels on PSF simulations of the future JWST satellite, before
summarising this work in Sect. 5.

2. Kernel generation

2.1. Data model

We first consider an astrophysical image y, observed with an in-
strument modelled as a linear invariant system,

y = h ∗ x + n, (1)

where h is the PSF convolved with the unknown sky x, n is the
image noise and ∗ stands for the discrete convolution (see e.g.
Gonzalez & Woods 2008).

Given two PSF models ha and hb, where a and b refer to
different frequency bands from the same or various instruments,
the process we are interested in, referred to as PSF-matching,
is to transform the image ya acquired at the angular resolution
of ha

ya = ha ∗ x + na, (2)

into an image ya,b at the angular resolution of hb

ya,b = ka,b ∗ ya, (3)

' hb ∗ x (4)

where ka,b is the matching kernel from ha to hb.
This paper presents a linear algorithm that computes the ker-

nel ka,b to produce the image ya,b from the original image ya
through a convolution. To this end, we need to construct the ker-
nel ka,b such that

hb = ha ∗ ka,b. (5)

2.2. Kernel generation

For such linear systems as Eq. (5), one can seek an estimate of
ka,b, denoted k̂a,b, which minimises the least squares criterion J

k̂a,b = arg min
ka,b

J(ka,b), (6)

= arg min
ka,b

∥∥∥hb − ha ∗ ka,b

∥∥∥2
. (7)

However, the presence of the convolution makes the system ill-
posed for the inversion, hence the solution to Eq. (7) is not sta-
ble. The only way to stabilise the solution is to add information.
For the considered system, we use a technique called regulari-
sation. We choose a `2 norm to have a linear estimator and use
Fourier filtering; and penalise the high frequencies in which we
expect the noise to dominate, using a high-pass filter d. This cor-
responds to adding a relative degree of smoothness between val-
ues of neighbouring pixels.

J(ka,b) =
∥∥∥hb − ha ∗ ka,b

∥∥∥2
+ µ

∥∥∥d ∗ ka,b

∥∥∥2
, (8)

where d is the second-order differential operator (i.e. 2D
Laplacian matrix)

d =


0 −1 0
−1 4 −1
0 −1 0

 (9)

and µ the regularisation parameter, which tunes the balance be-
tween the data fidelity and the penalisation. Other norms, such
as `1, `2`1 or TV (Total Variations) are known to better preserve
the image details, but produce non linear estimators that require
iterative algorithms to solve.

Denoting the Fourier transform of any two-dimensional vec-
tor u by ũ, the convolution theorem states that the real-space
convolution is equivalent to a termwise product in Fourier space

h ∗ k⇔ h̃ � k̃, (10)

where � symbolises the termwise product between vec-
tors/matrices.

Under these assumptions, the cancellation of the first gradi-
ent of the criterion (8) leads to the classical regularised mean
square solution of Eq. (7) in Fourier space

˜̂ka,b = w � h̃b (11)

where w is a Wiener filter with high-frequency penalisation

w(µ) =
h̃†a

|h̃a|2 + µ|d̃|2 ; µ , 0 (12)

and h̃†a stands for the complex conjugate of matrix h̃a.
The real-space convolution kernel ka,b, is eventually ob-

tained via the inverse Fourier transform of Eq. (11). For two
instruments a and b, this kernel is thus only parametrised by
the regularisation parameter µ. The optimal balance between the
data and the penalisation is found by setting µ to the inverse of
the signal-to-noise ratio (S/N) of the homogenised image, ya in
this case.

We provide with this paper the pypher programme (see
Appendix A); an implementation of the algorithm 1 presented
below, which computes ka,b. We note that the optical trans-
fer function (OTF) that appears in the algorithm is the discrete
Fourier transform of a signal that has been translated so that its
peak value is the first vector entry (i.e. Im[0, 0] for an image).
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3. Impact on Herschel data analysis

The pypher kernels allow us to convolve multiple astronomical
images to a common angular resolution. In order to preserve all
the information during this process, a good knowledge of the
effective PSFs of the instruments used is required. We focus here
on the particular analysis of Herschel photometric images that
have been widely used in the last few years to measure the dust
temperature and the spectral index β across many astronomical
objects from multi-band imaging with PACS and SPIRE.

Given the uncertainties on the PSFs of PACS and SPIRE
instruments, since the beginning of the operational period of
Herschel and in recent years, convolutions from PACS to SPIRE
angular resolution have been performed assuming Gaussian
PSFs with a given FWHM estimated from dedicated obser-
vations of asteroids. In 2011, a better characterisation of the
PSF of the instruments allowed Aniano et al. (2011, ADGS11)
to develop a method to construct convolution kernels assum-
ing circular PSFs. While a full analysis of the PSF of the
SPIRE instrument has been finalised recently by the Instru-
ment Control Centre (ICC, Schultz 2015), a final PSF charac-
terisation for the PACS instrument has not been released yet
by the ICC (Lutz 2015). Parallel work has been performed
by Bocchio et al. (2016), who computed PACS effective PSFs7

from the combination of Vesta and Mars dedicated observations,
which will be used hereafter. The current knowledge of both
PACS and SPIRE PSFs, and the pypher code allow us to con-
struct effective convolution kernels with an unprecedented pre-
cision. In this section we show how and to what extent the use of
different convolution kernels can affect the results.

3.1. Herschel PSFs and kernels

For each Herschel band, λ, we define four PSF images:

1. The effective PSF (Eλ), taken from Bocchio et al. (2016) for
PACS and Schultz (2015) for SPIRE.

2. The Gaussian PSF (Gλ), computed fitting a 2D Gaussian pro-
file to Eλ. The PSF Gλ has the same FWHM as Eλ but does
not account for secondary lobes and faint structures.

3. The circular PSF (Cλ), computed from Eλ by averaging the
image intensity in annular bins. All information on the asym-
metry of the PSF is then lost.

4. The Aniano PSF (Aλ), a circular PSF from the ADGS11
paper.

For each of the first three types of PSF, we define the correspond-
ing matching kernels between the bands λ1and λ2 as

KX
λ1,λ2

with X ∈ {E,G,C} (13)

and compute them with pypher. We also consider the Aniano
kernels defined here as KA

λ1,λ2
and computed in ADGS11 via a

different method than that used in this work.
The homogenised images can therefore be denoted by

X70,350 = E70 ∗ KX
70,350. (14)

7 These PSFs are publicly available at http://idoc-herschel.
ias.u-psud.fr/sitools/client-user/Herschel/
project-index.html.

Algorithm 1: Matching kernel generation recipe

inputs : ha 2D array of size Na × Na and pixel scale pa,
hb 2D array of size Nb × Nb and pixel scale pb,
angles αa and αb (see Appendix A)
regularisation factor µ.

output: ka,b 2D array of size N × N and pixel scale p.

/* PSF warping: */
N = Nb; p = pb

for i in {a, b} do
if αi , 0 then

rotate hi through an angle αi
end

end
if pa , p then

rescale ha to the pixel scale p
end
for u in {ha, d} do

if size(u) < N × N then
pad u with zeros to a size of N × N

else
trim u to a size of N × N

end
end

/* Wiener filter: */
for u in {ha, d} do

compute the OTF7 of u: ũ
end
compute w(µ) following Eq. (12)

/* Kernel: */

compute the discrete Fourier transform of hb: h̃b

compute ˜̂ka,b following Eq. (11) via a termwise product
inverse Fourier transform ˜̂ka,b to obtain the kernel ka,b

3.2. Kernel comparison

In this paragraph we assess the impact of using approximations
of effective PSFs in the homogenisation process, which is di-
rectly related to the creation of the convolution kernel. Because
the effective kernel KE

λ1,λ2
is the target of our kernel generation

algorithm, it is expected to produce better results than the other
types described above.

To compare the different types of kernels, we chose to mea-
sure the difference between the effective PSF at λ1 matched to λ2
and the effective PSF at λ2. We define the relative residuals RX

as

RX
λ1,λ2

=
|Eλ2 − Eλ1 ∗ KX

λ1,λ2
|

Eλ2

(15)

for each type of kernel.
For this comparison test, we consider the matching of the

PACS 70 µm PSF to the resolution of SPIRE 350 µm. In the re-
mainder of this paragraph, we refer to these bands as 70 and 350.

The two images on the left of Fig. 1 represent the effective
PSFs of PACS 70 µm E70 and SPIRE 350 µm E350. The central
column shows the kernels computed with pypher from Gaussian
(top) and circular (middle) approximations of the effective PSFs,
as described in Sect. 3.1, and those computed directly from the
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Fig. 1. Effective PACS 70 µm and SPIRE 350 µm PSFs on the left.
The central column shows Gaussian, circular, and effective kernels for
these PSFs computed following the procedure described in Sect. 3.1.
The corresponding relative residual images (see Eq. (15)) are shown in
the right column. The bottom kernel and residual image correspond to
this work. All images are 120′′ × 120′′.

left-side PSFs (bottom). On these kernel images, one can see
the characteristics of the input PSFs: the Gaussian approxima-
tion has a single lobe, the circular approximation is axisymmet-
rical and presents a second lobe, and the last approximation has
two lobes and the general shape of E350. Next to these kernels,
the associated homogenisation residual images are shown (see
Eq. (15) for computation).

Both RG
70,350 and RC

70,350 have residuals of the order of 10%
within the first lobe of E350 (central region of radius equal to
the half width at half maximum (HWHM) ' 12′′). Outside of
that region, the reconstruction from these two kernels is even
worse. In particular, the extinction ring that marks the transition
between the first and second lobe does not exist in the Gaussian
case and is slightly shifted owing to azimuthal averaging in the
circular case, which leads to a big residual error in both cases
(white circle on RG

70,350 and RC
70,350). Both kernel and residual

images from ADGS11, which are not shown in Fig. 1, present
very similar behaviour to the circular approximation. Using the
kernel constructed with effective PSFs, RE

70,350, we obtain very
homogeneous residuals of the order of 0.1%.

To analyse these residuals in more detail, we introduce the
first m and second σ polar moments of the residuals as follows:

m(r) =
1

nang

nang∑

i=1

RX(r, θi),

σ(r) =

√√
1

nang

nang∑

i=1

[
RX(r, θi)

]2, (16)

Fig. 2. First (m(r), top panel) and second (σ(r), bottom panel) polar
moments of the residuals (right column images of Fig. 1 + RA

70,350) as a
function of the distance r to the image centre. The different lines rep-
resent the kernel types used for the homogenisation: Gaussian (red dot-
ted), circular (green long dashed), ADGS11 (black dashed) and effec-
tive (blue solid, this work). The vertical black dotted line indicates the
HWHM of the SPIRE 350 µm PSF.

where RX(r, θi) is the intensity of the residual image (computed
using the kernel X) at a distance r from the image centre and at
an angle θi = 2πi/nang, with nang = 100. The moments express
the intensity and dispersion of the residuals along the PSF radius.

These two values, computed on the residual images for the
four kernel types, are shown in Fig. 2. As previously stated, the
Gaussian case (dotted red lines) is only stable within a circle
of radius equal to the HWHM of E350. At further distance it
shows very high first and second moments close to unity, and
establishes very poor matching. The circular case (long-dashed
green) exhibits a constant first moment below 10% at all dis-
tances, which is better than the Gaussian case. This is mainly due
to the computation of the first moment that is very similar to the
circularising process and averages out the measurements. How-
ever, the asymmetry and local structures of E70 and E350 are lost
and the second moment is comparable to that of RG

70,350. To pro-
duce the kernels, ADGS11 used narrower versions of PACS and
SPIRE PSFs than those used in this work. Both first and second
moments (dashed black) therefore present bumps at the position
of the lobes. Finally, the effective case (blue) best matches E350.
In amplitude, the first moment is .0.1% and the second moment
.1% at all distances, even if we note that the second moment
presents the two bumps observed earlier. By comparison, these
moments are two orders of magnitude lower than those of the
other three cases.

This concludes in a major improvement in using pypher ker-
nels with effective PSFs with respect to Gaussian, circular or
ADGS11 kernels from an image processing standpoint. Next we
test again these kernels on the determination of meaningful pa-
rameters from data or simulations.
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Fig. 3. Intrinsic dust profiles (see Eq. (17)) for scenarios a., b. and
c. listed in Table 1, corresponding to characteristic scale heights of
zd = 0.1, 1 and 10 kpc, respectively. These profiles are then convolved
with Herschel PSFs to simulate an edge-on galaxy observed in different
bands.

Table 1. Scale height, zd, and signal-to-noise ratio (S/N) adopted for the
simulation of dust profiles of an edge-on galaxy.

Scenario zd (kpc) S/N

a. 0.1 104

b. 1.0 104

c. 10.0 104

b.1 1.0 102

b.2 1.0 101

3.3. Dust properties study

Herschel observations are often used to retrieve information
about dust properties in our Galaxy and in local galaxies. In this
section we show how the choice of PSFs to construct the convo-
lution kernels can affect pixel-by-pixel measurements.

We consider an edge-on galaxy at D ∼ 10 Mpc from us with
an intrinsic vertical profile given by

Id(z) = Id(0) exp
(−z

zd

)
, (17)

where zd is the scale height of the vertical dust distribution. We
introduce the angular distance θ ' z/D and its characteristic
value θd ' zd/D. Three scale heights are examined, zd = 0.1,
1 and 10 kpc (scenarios a., b. and c. from Table 1), correspond-
ing to θd ' 2, 20 and 200′′. Their intrinsic dust profile is shown
in Fig. 3.

We convolve the intrinsic dust profile to the effective PSFs
of PACS 70, 100 and 160 µm and SPIRE 250 and 350 µm,
while keeping the pixel size at 1′′. We then make the basic
assumption that the dust in the whole galaxy has a tempera-
ture of Td = 20 K and spectral index of β = 1.6 (following
Planck Collaboration XI 2014), and rescale the convolved mod-
els accordingly.

In order to simulate real data, we add Gaussian statistical
noise to the models and consider three different values of S/N,
104, 102, 10 (scenarios b., b.1 and b.2 from Table 1), with respect
to the dust emission at the peak position (z = 0). These images
are then homogenised to the resolution of SPIRE 350 µm using
the four kernel types described in Sect. 3.1 and resampled with
a common pixel size of 10′′.

Fig. 4. Parameter ∆β as a function of ∆T for the four kernel types, using
an edge-on galaxy with the dust profile b. (zd = 1 kpc, S/N = 104). For
a given kernel type, there are 21 data points, each of which correspond
to a measurement on a single pixel along the galaxy profile. The spread
thus represents the systematic error on the β − T measurement for this
kernel type. Error bars on both axes at the centre indicate the statistical
errors on β and T obtained from the χ2-fitting routine.

Finally, using a minimum χ2 method, we fit the multi-
wavelength data on a pixel-by-pixel basis to a modified
blackbody

Iν = τν0 (ν/ν0)βBν(T ), (18)

where τν0 is the optical depth at the reference frequency ν0 and
Bν(T ) is the blackbody radiation for a grain at temperature T .

We define ∆β and ∆T as the deviations from the reference
dust spectral index β and temperature Td, respectively. Figure 4
shows ∆β as a function of ∆T for scenario b. where zd = 1 kpc
and S/N = 104, for the different kernel types. Except for the
case where effective PSFs are used, systematic discrepancies are
present (up to ∆T ± 1 K and ∆β ± 0.3), which are comparable
in amplitude to the statistical errors (horizontal and vertical bars
in Fig. 4), and a spurious strong negative correlation appears be-
tween dust temperature and β parameter.

In order to show where this effect is most significant within
the galaxy profile, we illustrate in Fig. 5 the quantities ∆T and
∆β at various angular distances from the galaxy centre and for
different kernel types (G: Gaussian; C: circular; A: ADGS11; E:
effective). Each column thus represents a vertical cut of the mod-
elled galaxy. Dashed lines indicate the characteristic scale height
of the intrinsic dust abundance profile. The top three panels show
scenarios a., b. and c. where the scale height varies and the S/N
is kept constant at 104. The two bottom panels show scenarios
b.1 and b.2 where the scale height is fixed at 1 kpc and we vary
the S/N (see Table 1 for a summary). Each panel of Fig. 5 shows
the relationship between ∆β and ∆T just as in Fig. 4, and adds the
spatial information to the data points.

Depending on the considered dust scale height, deviations
from the reference dust temperature and β parameter reach ±2 K
and ±0.6, respectively, with higher deviations for shorter scale
heights and at higher galactic latitudes. Regardless of the con-
volution kernel adopted, the negative correlation is clearly mea-
sured for all the pixels in the vertical cut.

Scenarios a., b. and c. show that very low (<1%) deviations
from the reference values are obtained using the effective ker-
nels, while the use of other convolution kernels leads to larger
errors for z & zd. However, as expected, in decreasing the level
of S/N (scenarios b.1 and b.2), the noise starts to dominate over
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Fig. 5. Heat maps of ∆T and ∆β measured on a simulated edge-on
galaxy at various angular distances θ from the centre, as a function of
the kernel type used. Each panel represents a scenario from Table 1.
Dashed lines indicate the scale height of the dust profile zd. This figure
highlights the very small scatter in both ∆T and ∆β when using the ker-
nels with effective PSFs (column E on each plot, until the S/N becomes
to low as in panel b.2).

the signal and very large discrepancies are observed in tempera-
ture and β, regardless of the adopted convolution kernel.

4. JWST PSF simulations

To show the reliability of our method for complex-shaped PSFs,
we now test our algorithm on simulated PSFs from a telescope
with an uncommon optical design. For this purpose, we select
the Mid-InfraRed Instrument Imager (MIRI) of the James Webb
Space Telescope (JWST, Bouchet et al. 2015). As the JWST
main mirror is made of several hexagonal mirrors, the optical re-
sponse of this instrument shows highly non-symmetrical features
that need to be accounted for in the homogenisation process.

We used WebbPSF (Perrin et al. 2012), the official JWST
PSF simulation tool to generate a set of four broadband PSFs of
5′′×5′′ centred at λ1 = 5.6 µm, λ2 = 11.3 µm, λ3 = 18.0 µm and
λ4 = 25.5 µm in order to cover the spectral range of MIRI. These
broadband PSFs were generated from a set of 20 monochromatic
PSFs assuming flat spectral energy distribution of the source,
and oversampled at four times the pixel size of the detector,

Fig. 6. Proof of concept of PSF homogenisation for the JWST/MIRI
instrument. The PSFs from the first column at 5.6 µm, 11.3 µm and
18.8 µm, respectively, are homogenised to the PSF on top of the second
column at 25.5 µm, using pypher kernels. The resulting homogenised
PSFs are shown in the second column. They are visually indistinguish-
able from the effective one on top. The relative residuals on the right
confirm that the central part of the PSF is reconstructed at least to 0.1%.

corresponding to a pixel scale of 0.11 arcsec. They are shown
in the first column (and top of the second column) of Fig. 6.

Using pypher, we then computed three matching kernels,
namely, Kλ1, λ4 ,Kλ2, λ4 and Kλ3, λ4 (following the notation from
Sect. 3.1) to homogenise the first three PSFs to the angular res-
olution of Eλ4 . Using the same procedure as in Sect. 3.2, we
compared these homogenised PSFs to the original PSF using the
residual formalism (15) applied to the MIRI bandpasses. The re-
sulting residual images Rλ1, λ4 ,Rλ2, λ4 and Rλ3, λ4 are shown on the
last column of Fig. 6.

The central region of the residual images, within the two
main lobes of the Eλ4 PSF, has a low level of residuals (∼10−5) in
the three configurations Along the image borders, there are some
non-negligible residual patches. A quick visual comparison with
the homogenised PSFs (central column) shows that these patches
correspond to extremely faint regions of the PSF (<10−6 w.r.t. the
peak) and thus have a very low impact in the matching process.

5. Conclusions

In this paper, we propose a new method for the generation
of static PSF homogenisation kernels which is applicable for
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instruments presenting complex PSFs such as recent or fu-
ture space-born telescopes. The PSF on such optical systems is
hardly ever static over the field-of-view, but we restricted the
purpose of this paper to the production of homogenization ker-
nels for the study of regions of interest on the image, where the
PSF can be considered non-variable. The treatment of the PSF
varying over the whole field-of-view of modern instruments can-
not be linearized as in this work and requires a very different
approach. It will be the subject of a following paper. The ap-
plication on Herschel/PACS and SPIRE and JWST/MIRI instru-
ments demonstrates the performance of the proposed algorithm
in terms of low residuals (better than 10−2–10−3 and 10−5–10−6

for observed and simulated PSFs, respectively).
To assess the improvement brought by our algorithm for

multi-wavelength studies, we address the estimation of dust
temperature and spectral index β of astronomical objects using
multi-band images taken in the submillimeter spectral range by
Herschel. This estimation is made via pixel-by-pixel measure-
ments across these images which have different intrinsic angular
resolutions. Homogenisation kernels are thus traditionally used
to bring all the images to the same angular resolution. Most of
the analyses performed so far use either Gaussian kernels, or
the circularised kernels produced by Aniano et al. (2011). How-
ever, effective PSFs of space imagers are anisotropic, so these
methods are not accurate enough therefore to introduce system-
atic anti-correlation on β and temperature measurements with an
amplitude that can be larger than the statistical noise. We have
checked that using pypher kernels, systematic errors are in any
case negligible compared to statistical noise.

Finally, we provide the pypher software (Boucaud 2016) to
compute homogenisation kernels to be used for current and fu-
ture instruments.
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Appendix A: The pypher code

A Python code called pypher (Boucaud 2016), which computes
the static PSF homogenisation kernels described in this work has
been made publicly available and can be retrieved at:
https://github.com/aboucaud/pypher

Once installed, this programme can be used through a
command-line interface taking as input the PSF images (source
and target) as fits files, and specifying the output filename for the
kernel,

$ pypher psf_a.fits psf_b.fits kernel_a_to_b.fits

The tunable parameters are, first, the regularisation parameter µ
of the Wiener filter (see Eq. (12)) that penalises the high fre-
quencies, and should be set according to the image that will be
homogenised, and second, the position angle of both PSFs with
respect to their image to accurately take into account the PSF
shape in the homogenisation process.

The programme takes less than a second on a single CPU to
compute a kernel from two 512 × 512 PSF images.
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Appendix

B.1 Half-Quadratic Regularization: l2/l1-norm

Huber ’s function is defined as

ϕ(δ) =

{
δ2 if |δ| < s

2s|δ| − s2 otherwise
(B.1)

and its first-order derivative is

ϕ′(δ) =

{
2δ if |δ| < s

2s signe(δ) otherwise
(B.2)

The auxiliary function associated to Huber ’s function [Idier 2001] is

ξα(b) = α

{
1

1−2αb
2 if |b| < (1− 2α)s

2s|b| − (1− 2α)s2 otherwise
. (B.3)

with α ∈ [0, αmax = 1/2].

B.2 Principal Component Analysis Method

Algorithm 2.6 Principal Component Analysis (PCA) algorithm
Input X, ncomp

[nsamp, nfeat] = size(X)

Normalize the data set
Xstd = X−mean(X)

std(X)

Compute the covariance matrix
Σx = 1

nsamp
XTX

Sort the eigen-vectors (columns) of Σx in decreasing order in term of eigen-values
ev, eig = eig(Σx)

Select the first ncomp columns of Σx

Σxnew = Σx[:, 0 : ncomp]

Project the dataset on the new space
Xnew = XΣT

xnew

return Xnew
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Résumé : Cette thèse traite un problème inverse
en astronomie. L’objectif est de reconstruire un ob-
jet spatio-spectral, ayant une distribution spatiale et
spectrale, à partir d’un ensemble de données mul-
tispectrales de basse résolution fournies par l’ima-
geur MIRI (Mid-InfraRed Instrument), qui est à bord
du prochain télescope spatial James Webb Space
Telescope (JWST). Les données multispectrales ob-
servées souffrent d’un flou spatial qui dépend de
la longueur d’onde. Cet effet est dû à la convo-
lution par la réponse optique (PSF). De plus, les
données multispectrales souffrent également d’une
sévère dégradation spectrale en raison du filtrage
spectral et de l’intégration par le détecteur sur de
larges bandes. La reconstruction de l’objet original
est un problème mal posé en raison du manque im-
portant d’informations spectrales dans l’ensemble des
données multispectrales. La difficulté se pose alors
dans le choix d’une représentation de l’objet permet-
tant la reconstruction de l’information spectrale. Un
modèle classique utilisé jusqu’à présent considère
une PSF invariante spectralement par bande, ce qui
néglige la variation spectrale de la PSF. Cependant,
ce modèle simpliste est convenable que dans le cas

d’instrument à une bande spectrale très étroite, ce qui
n’est pas le cas pour l’imageur de MIRI. Notre ap-
proche consiste à développer une méthode pour l’in-
version qui se résume en quatre étapes : (1) concevoir
un modèle de l’instrument reproduisant les données
multispectrales observées, (2) proposer un modèle
adapté pour représenter l’objet à reconstruire, (3) ex-
ploiter conjointement l’ensemble des données multis-
pectrales, et enfin (4) développer une méthode de re-
construction basée sur la régularisation en introdui-
sant des priori à la solution.
Les résultats de reconstruction d’objets spatio-
spectral à partir de neuf images multispectrales si-
mulées de l’imageur de MIRI montrent une augmenta-
tion significative des résolutions spatiale et spectrale
de l’objet par rapport à des méthodes convention-
nelles. L’objet reconstruit montre l’effet de débruitage
et de déconvolution des données multispectrales.
Nous avons obtenu une erreur relative n’excédant pas
5% à 30 dB et un temps d’exécution de 1 seconde
pour l’algorithme de norm-l2 et 20 secondes avec 50
itérations pour l’algorithme norm-l2/l1. C’est 10 fois
plus rapide que la solution itérative calculée par l’al-
gorithme de gradient conjugué.
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Abstract : This thesis deals with an inverse problem
in astronomy. The objective is to reconstruct a spatio-
spectral object, having spatial and spectral distribu-
tions, from a set of low-resolution multispectral data
taken by the imager MIRI (Mid-InfraRed Instrument),
which is on board the next space telescope James
Webb Space Telescope (JWST). The observed mul-
tispectral data suffers from a spatial blur that varies
according to the wavelength due to the spatial convo-
lution with a shift-variant optical response (PSF). In
addition the multispectral data also suffers from se-
vere spectral degradations because of the spectral fil-
tering and the integration by the detector over broad
bands. The reconstruction of the original object is an
ill-posed problem because of the severe lack of spec-
tral information in the multispectral dataset. The dif-
ficulty then arises in choosing a representation of the
object that allows the reconstruction of this spectral in-
formation. A common model used so far considers a
spectral shift-invariant PSF per band, which neglects
the spectral variation of the PSF. This simplistic model

is only suitable for instruments with a narrow spectral
band, which is not the case for the imager of MIRI. Our
approach consists of developing an inverse problem
framework that is summarized in four steps : (1) de-
signing an instrument model that reproduces the ob-
served multispectral data, (2) proposing an adapted
model to represent the sought object, (3) exploiting all
multispectral dataset jointly, and finally (4) developing
a reconstruction method based on regularization me-
thods by enforcing prior information to the solution.
The overall reconstruction results obtained on simu-
lated data of the JWST/MIRI imager show a signifi-
cant increase of spatial and spectral resolutions of the
reconstructed object compared to conventional me-
thods. The reconstructed object shows a clear denoi-
sing and deconvolution of the multispectral data. We
obtained a relative error below 5% at 30 dB, and an
execution time of 1 second for the l2-norm algorithm
and 20 seconds with 50 iterations for the l2/l1-norm
algorithm. This is 10 times faster than the iterative so-
lution computed by conjugate gradients.
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