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ABSTRACT

ABSTRACT

Characterizing the behaviour of bituminous materials is essential for the design of
pavement structures and to predict their service life more accurately. Indeed, these materials
are subjected to complex phenomenon, mechanical, thermal, physical and chemical that are
often coupled. Due to the complexity of the phenomenon observed and with the development
of new materials and new fabrication process, advanced laboratories studies and rheological
modelling are necessary.

With the existing test methods, it is possible to characterize bituminous materials in
laboratory using expensive devices such as hydraulic presses. These conventional tests consist
in applying cyclic loading to determine the complex modulus and complex Poisson’s ratio of
the tested materials. However, complicated experimental procedures are necessary to accurately
perform the time-consuming preparation of the test set-up and tested samples must be either
fabricated in laboratories or cored from road infrastructures.

In this thesis, the possibility of using dynamic tests to characterize accurately the linear
viscoelastic (LVE) behaviour of bituminous mixtures is studied. Dynamic tests are economic
nondestructive tests, simple to perform and could be adapted for in situ measurements. The
experimental methodology developed to measure the frequency response functions (FRFs)
from dynamic impact loadings is first presented. Then, different inverse methods to determine
the LVE properties from FRFs measurements are proposed and their accuracy is evaluated
using numerical experimentation. Finally, the performed experimental campaigns and
associated results are presented. In these experimental campaigns, dynamic tests and
conventional cyclic tension-compression tests were performed on a wide variety of bituminous
mixtures including 5 different materials and 28 specimens. The repeatability of the dynamic
tests was studied and the LVE properties determined from both tests were compared.

The numerical experimentation showed that three of the proposed methods of inverse
analysis are accurate to characterize the LVE behaviour from FRFs. Two of these methods only
give access to the complex modulus and one gives access to both the complex modulus and
complex Poisson’s ratio. In addition, one method is very interesting because of its simplified
approach that considerably facilitates the optimization process and reduces the computational
time.

Results from the experimental campaigns showed the good repeatability of dynamic tests,
even when using different geometries (cylinders, discs and straight beams) and modes of
vibration (longitudinal and flexural). In addition, results from dynamic tests and from
conventional cyclic complex modulus tests are in good agreement, especially for the low
temperatures (or high frequencies). The norm of the complex modulus determined from
dynamic tests is little higher (about 15% higher on average at 15°C and 10 Hz), which can be
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ABSTRACT

explained, at least for a part by the nonlinear behaviour of bituminous mixtures with the strain
amplitude (strain amplitude is about 500 times lower in dynamic tests). Dynamic tests also have
interesting potential to determine the complex Poisson’s ratio even if some differences exist
between the results from dynamic and cyclic tests.

The results of this research suggest that dynamic tests are a great alternative to conventional
cyclic tests and they can be used to characterize accurately the LVE behaviour of bituminous
mixtures.
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RESUME

RESUME

La caractérisation du comportement des matériaux bitumineux est primordiale pour
pouvoir dimensionner les structures de chaussées, mais aussi pour prédire de maniere plus
précise leur durée de vie. En effet, ces matériaux sont soumis a des phénomenes complexes,
mécaniques, thermiques, physiques et chimiques qui apparaissent souvent de maniere couplée.
Devant la complexité des problémes observés et avec le développement de nouveaux matériaux
et de nouveaux procédés de fabrication, des études avancées de laboratoire et des modélisations
rhéologiques sont nécessaires.

Les méthodes existantes permettent de caractériser avec les matériaux en laboratoire grace
a Dutilisation de presses hydrauliques trés couteuses. Ces essais consistent a appliquer des
chargements cycliques pour déterminer le module complexe et le coefficient de Poisson
complexe des matériaux testés. Cependant, les procédures expérimentales pour préparer le
montage de ces essais avec la précision nécessaire sont complexes et longues a mettre en ceuvre.
De plus, les échantillons testés doivent étre fabriqués en laboratoire ou prélevés sur la chaussée.

Dans cette thése, la possibilité d’utiliser des essais dynamiques pour caractériser le
comportement viscoélastique linéaire (VEL) des enrobés bitumineux est étudiée. Il s’agit
d’essais non destructif, simples a appliquer et qui peuvent s’adapter pour des mesures in-situ.
La procédure expérimentale développée pour mesurer les fonctions de réponse fréquentielle
(FRFs) a partir d’essais dynamiques est d’abord présentée. Puis différentes méthodes d’analyse
inverse permettant d’obtenir les propriétés VEL a partir de FRFs mesurées sont proposées et
leur précision est évalu¢ grace a des simulations numériques. Enfin, les campagnes
expérimentales et les résultats associés sont présentés. Dans ces campagnes expérimentales, des
essais dynamiques et des essais cycliques conventionnels de traction-compression ont été
réalisés sur une large gamme d’enrobés incluant 5 matériaux différents et 28 échantillons. La
répétabilité des essais dynamiques a été étudiée et les propriétés VEL déterminées par les deux
types d’essais ont été comparées.

Les simulations numériques ont permis d’identifier trois méthodes d’analyse inverse qui
permettent de caractériser le comportement VEL avec précision a partir de FRFs. Deux de ces
méthodes permettent seulement de déterminer le module complexe et une permet également de
déterminer le coefficient de Poisson complexe. De plus, I’une des méthodes est particuliérement
intéressante car son approche simplifiée permet de faciliter grandement le procédé
d’optimisation et de réduire le temps de calcul.

Les résultats des campagnes expérimentales ont montré la bonne répétabilité¢ des essais
dynamiques, méme en utilisant différentes géométries (cylindres, disques, poutres droites) et
modes de vibration (longitudinal et flexion). De plus, les résultats des essais dynamiques et des
essais cycliques de module complexe présentent une bonne concordance, particuliérement pour
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les basses températures (ou hautes fréquences). La norme du module complexe déterminée avec
les essais dynamiques est légerement plus élevée (environ 15% plus élevée en moyenne a 15°c
et 10 Hz), ce qui peut s’expliquer, au moins en partie, par le comportement non linéaire des
enrobés bitumineux par rapport a I’amplitude de déformation (I’amplitude de déformation est
environ 500 fois plus faible dans les essais dynamiques). Les essais dynamiques sont également
intéressants pour déterminer le coefficient de Poisson complexe, bien que des différences
existent entre les résultats des essais dynamiques et cycliques.

Les résultats de ce travail de recherche suggerent que les essais dynamiques sont une vraie
alternative aux essais cycliques et ils peuvent étre utilisés pour caractériser le comportement
VEL des enrobés bitumineux avec précision.
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INTRODUCTION

1 INTRODUCTION

Roads are major infrastructures that greatly contribute to the economic development of a
country. Most of the medium and heavy traffic pavement infrastructures are constructed with
bituminous materials. For example, in France, the length of the paved road network exceed one
million kilometers (Commissariat général au développement durable, 2018). These structures
are conceived for a certain lifetime determined from design methods. Traditionally, empirical
considerations have been used in French design methods to determine material properties
suitable for specific climate and traffic conditions. Therefore, the applicability of this type of
approach is limited and it has not helped understanding the fundamental mechanical behaviour
of pavements. Nowadays, the road construction industry increasingly looks to use mechanical
design methods to optimize the costs and the lifecycles of pavement infrastructures. In the
meantime, new materials (e.g. mixtures with increasing reclaimed asphalt pavement (RAP)
content, polymer modified bitumen, etc.) and new fabrication process (e.g. cold or warm
coating) are developing, within a sustainable development approach. In this context, accurate
characterization of the mechanical properties of bituminous materials is necessary.

In conventional test methods, cyclic loadings are applied to determine the linear
viscoelastic (LVE) properties of bituminous mixtures (Corté & Di Benedetto, 2005). However,
this type of test requires the use of expensive experimental devices such as hydraulic presses.
In addition, complicated experimental procedures are necessary to accurately perform the time-
consuming preparation of the test set-up and tested samples must be either fabricated in
laboratories or cored from road infrastructures.

Dynamic tests, which are based on wave propagation, are a great alternative to
conventional cyclic tests. They are nondestructive tests, economic and simple to perform. They
also can possibly be adapted for in-situ measurements on pavement structures. Impulse
techniques using impact loadings (ASTM-C215-02, 2002; Halvorsen & Brown, 1977) are
known to provide accurate characterization of material properties in the case of elastic materials
(Migliori & Sarrao, 1997). For these tests, the elastic modulus is generally derived from the
measurement of the fundamental resonance frequency using simplified analytical formulas. For
bituminous mixtures, the complex modulus has an elastic component but also a viscous
component that accounts for the viscous damping of bitumen. Various authors (Whitmoyer &
Kim, 1994; Kweon & Kim, 2006; Lacroix, Kim, Sadat, & Far, 2009) used the same
methodology that in the elastic case to determine the complex modulus of bituminous mixtures,
adding correction factors to take into account the damping and using the half-power bandwidth
method to determine the phase angle. However, it is not possible to describe accurately the
frequency dependency of the behaviour over a wide frequency range with this type of analysis.
The same limitations have been found for tests using measurements of wave propagation time
on bituminous mixtures (Di Benedetto, Sauzéat, & Sohm, 2009; Mounier, Di Benedetto, &
Sauzéat, 2012; Norembuena-Contreras, Castro-Fresno, Vega-Zamanillo, Celaya, & Lombillo-
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Vozmediano, 2010). More recently, measurement of frequency response functions (FRFs) have
been successfully used to characterize various LVE materials over a wide frequency range such
as metal polymer sandwich beams (Ren, Atalla, & Ghinet, 2011) or highly damped acoustical
porous materials (Guo, 2000; Renault, Jaouen, & Sgard, 2011; Rupitsch, Ilg, Sutor, Lerch, &
Déllinger, 2011). FRFs measurements have also been performed on a limited variety of
bituminous mixtures (Gudmarsson, Ryden, & Birgisson, 2012; Gudmarsson, et al., 2014;
Gudmarsson, Ryden, Di Benedetto, & Sauzéat, 2015; Carret, Pedraza, Di Benedetto, & Sauzéat,
2018) and they reveal to be a very promising approach to characterize accurately the LVE
behaviour of bituminous mixtures over a wide frequency range.

In this thesis, the possibility of using FRFs measurements to characterize accurately the
global LVE behaviour of bituminous mixtures has been rigorously studied. More specifically,
the principle objectives of this research are:

e To develop an accurate and repeatable methodology to perform FRFs
measurements on bituminous mixture specimens at different temperatures and for
different modes of vibration (longitudinal, flexural and torsional).

e To propose accurate back-analysis (or inverse) methods to determine the LVE
properties of bituminous mixtures from FRFs measurements.

e To demonstrate the good accuracy of dynamic tests for different types of
bituminous mixtures using comparisons of the LVE properties determined from
dynamic tests and with more conventional cyclic tension-compression complex
modulus tests.

The dissertation is organized in seven sections. After this introduction presenting the
context and the objectives of the study, generalities about the linear viscoelastic behaviour of
bituminous materials are presented together with an introduction to wave propagation in elastic
and viscoelastic materials. Then, the experimental methodology developed to perform dynamic
tests on bituminous mixtures is introduced. Afterwards, numerical simulations of the dynamic
tests are performed to develop different inverse analysis methods to derive the LVE properties
from FRFs measurements. In this section, the accuracy of all proposed inverse methods is
evaluated. In the next section, the different performed experimental campaigns are presented.
The materials and the tests performed are described and the results and analyses procedures are
reported. The papers published in or submitted to scientific journals during this thesis are
gathered in the sixth section. Finally, the general conclusions of the study and perspectives for
future research are presented.
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2 ISOTROPIC LINEAR VISCOELASTIC (LVE)
BEHAVIOUR

2.1 General considerations
2.1.1 Definition of an isotropic linear viscoelastic behaviour

A material is defined isotropic when its rheological properties are identical in all directions.
Bituminous mixtures are generally considered as isotropic materials. Nevertheless, the behavior
of bituminous mixtures is not perfectly isotropic in practice (Motola & Uzan, 2007; Di
Benedetto, Sauzéat, & Clec'h, 2016).

When subjected to small amplitude strain, bituminous mixtures express a linear
viscoelastic behavior. Viscoelasticity is a time-dependent behaviour, characterizing materials
showing both an elastic and a viscous behaviour when a deformation is imposed. To be defined
as viscoelastic, a material must show a complete stress recovery at an infinite time (the residual
stress 0w at t>o0 is equal to 0) when subjected to a “cancellation test” (Salengon, 2009). This
test illustrated in Figure 2.1 consists in applying a constant strain for a given time before
returning to zero and to monitor the resulting stress. This principle is valid only for non-aging
materials whose properties remain unaltered when the material is undisturbed.

: 1 s 1 b

t t, t to tlw t

Figure 2.1. “Cancellation test”: (a) strain history, (b) resulting stress.

The linearity of the behaviour is valid if it verifies Boltzmann superposition principle
(Boltzmann, 1874). It means that the response to the superposition of different loads is equal to
the superposition of the individual responses to each load. The LVE behaviour can be
characterized in time domain or in frequency domain with material properties similar to elastic
properties such as the Young’s modulus E or the Poisson’s ratio v. However, in the case of LVE
materials, the mechanical properties are complex numbers which depend on time and
frequency.
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2.1.2 Time domain properties

Creep and relaxation are two classical quasi-static tests used to characterize the LVE
behaviour in time domain. In the creep test (Figure 2.2), a stress oo is applied to the material
initially at rest and kept constant over time. It is observed that the resulting strain signal €
increases with time. This corresponds to a material flow called the creep phenomenon. The
creep function D, defined as the ratio between the variable strain and the constant stress is
obtained from this test:

0}
D(t) = o (2-1)
c | (@) e | (b)
Gy [T
& 777
t, t t, t

Figure 2.2. Creep test for a LVE material: (a) imposed stress, (b) resulting stain.

In the relaxation test (Figure 2.3), an instant strain €o is applied to the material initially at
rest and kept constant over time. It is observed that the resulting strain signal ¢ decreases with
time. This is called the relaxation phenomenon. The relaxation function J, defined as the ratio
between the variable stress and the constant strain is obtained from this test:

t
(=24 (2-2)
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Figure 2.3. Relaxation test for a LVE material: (a) imposed strain; (b) resulting stress.

It is possible to extend equations (2-1) and (2-2) in the case of strain or stress varying with
time from the application of Boltzmann superposition principle. Relations obtained between
the strain signal response € to the applied stress history ¢ and between the stress response ¢ to
the applied strain history € are presented in equations (2-3) and (2-4) when strain and stress are
differentiable:
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t
g(t) = j D(t—1)5(1)dt (2-3)
0

t
o(t) = jJ(t —1)i(t)dt (2-4)
0

where 1 is a time-variable used in the integration, D is the creep function and J is the relaxation
function. These convolution integrals are difficult to apply. Therefore, the Laplace-Carson
transform is introduced to turn these integrals into algebraic equations and to ease calculations
(Corté & Di Benedetto, 2005). The Laplace-Carson transform of a time-dependent function f'is
defined as:

f(p)=p][ (e dt (2-5)
0

where p is a complex variable corresponding to time in the transform domain. After application
of the Laplace-Carson transform, equations (2-3) and (2-4) become:

&(p) = D(p)&(p) (2-6)

&(p) = J(p)E(p) (2-7)

where &, &, Dand J are the Laplace-Carson transforms of strain, stress, creep function and
relaxation function. It should be noted that equations (2-6) and (2-7) are very similar to
fundamental relations of elasticity. These equations can be used to obtain the LVE solution to
a given boundary value problem from the elastic solution for the same problem, according to
the elastic-viscoelastic correspondence principle (Biot, 1959). Moreover, the existing
reciprocity between the Young’s modulus and the relaxation modulus in the elastic theory is
preserved:

D(p)J(p) =1 (2-8)
2.1.3  Frequency domain properties: complex modulus and complex Poisson’s ratio

If a LVE material is subjected to an axial sinusoidal stress o(t) = 5, sin(wt) where o=2nf

is the pulsation and f is the frequency, the steady state resulting axial strain
g;(t) = g¢; sin(wt — @) i1s also sinusoidal at the same frequency and with a phase lag ¢ called the

phase angle. Considering the complex notation (i>=-1), the stress and strain can be written:

o (1) =ope® (2-9)

g1 (1) = g9, @ (2-10)
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The complex modulus E* is defined as the ratio between the sinusoidal stress and the
sinusoidal strain:

iot
* O G€ (@) i *
B == =20 E

=— el -
80161(wt—(p) €01 (2 1 1)

where |[E*| is the norm of the complex modulus defined as the ratio between the stress and strain
amplitudes. Note that the complex modulus E* corresponds to the Laplace-Carson transform
of the relaxation function calculated in p=i®. The complex modulus can also be expressed as:

E"=E, +iE, (2-12)

where E1 is the storage or elasticity modulus that accounts for the recoverable part of the energy
stored by the material during loading and E: is the loss modulus that accounts for the energy
lost during loading due to the irreversible viscous component of the behaviour. If the phase
angle $=0°, the behaviour is purely linear elastic while if ¢$=90°, the behaviour is purely viscous.
Between these two extreme case, when 0<$<90, the behaviour is considered LVE.

In addition to the axial response, a radial response is also observed due to Poisson’s
ratio effect. During simple compression loading on isotropic LVE material, when a contraction
is observed in the axial direction, an extension is observed in the radial direction. Therefore,
the axial strain and the radial strain are in phase opposition but the radial strain may also present
a phase lag with respect to the axial strain so that the radial strain is expressed in complex
notation as:

82 (t) _ 802ei(u)t—q)-HH(,[)V) _ _gozei(wt—(pﬂpv) (2-13)

where 7 represents the phase opposition between the axial and radial strains and ¢v is the phase
angle of Poisson’s ratio. The complex Poisson’s ratio is then defined as the opposite of the ratio
between the radial strain and the axial strain:

. 8; ~ Sozei(wt—qﬂ-nﬂpv)

_
V=" i(ot—g) et
€ €01€ i

€01

elov (2-14)

*
=V

Instead of an axial sinusoidal loading test, a shear sinusoidal loading test may also be used.
In this case, the complex shear modulus is obtained:

* iot
* T Tn€ T ; *
= AL €
i(ot-9g) Yo

_ el%a (2-15)
Y Yo€

where 7y is the shear strain applied to the material, T is the resulting shear stress and ¢ is the
phase angle of the complex shear modulus. For an isotropic behavior, E*, v* and G* are linked
similarly as in the elastic case:
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*

* E

G e
2(1+v)

(2-16)

The complex modulus and complex Poisson’s ratio can be represented with different
graphs that highlight their frequency and temperature dependency. The isotherms (respectively
the isochrones) present the norm or the phase of the complex modulus or complex Poisson’s
ratio as a function of the loading frequency (respectively the tested temperature). These curves
show at a fixed temperature (respectively frequency) the effect of the loading frequency
(respectively the temperature) as seen in Figure 2.4. Another graphical representation is the
Cole-Cole plot (Figure 2.4 (a)) where the imaginary part of the complex modulus or complex
Poisson’s ratio is plotted against the real part. This representation is well adapted for the low
temperatures or high frequencies that are particularly visible. In the Black space (Figure 2.4
(b)), the phase angle of the complex modulus is plotted against the norm. This representation
suits well the high temperatures or low frequencies. Cole-Cole and Black representations are
particularly interesting because the curves obtained are independent of the temperature and
frequency if the time temperature superposition principle is respected.

2.1.4 Time-Temperature Superposition Principle

The complex modulus generally depends on temperature and frequency for LVE materials.
Observations on several LVE materials raised by different authors (Gross, 1968; Ferry, 1980)
showed that the complex modulus values tend to form a unique curve in the Cole-Cole or Black
representations, independently of loading frequency or test temperature as shown in Figure 2.4
(a) and (b). Materials presenting this behaviour are called “thermo-rheologically simple” (Corté
& Di Benedetto, 2005) and their frequency and temperature dependency can be reduced to one
single parameter. Therefore, values of the complex modulus obtained at different pairs of
temperature and frequency might be equal and an equivalency exists between the effects of
temperature and frequency. This equivalency is called the Time-Temperature Superposition
Principle (TTSP).

The main consequence of the TTSP is that one single variable can be used to describe the
variations of the complex modulus. Therefore, it is possible to generate unique curves
describing the variations of the norm or the phase of the complex modulus as a function of
frequency at any chosen reference temperature Trer. This type of curves, called master curves,
are obtained by shifting the isothermal curves along the frequency axis. The frequencies of each
isotherm are multiplied by a shift factor ar, which depends only on the temperature T of the
isotherm and the reference temperature Trer (cf Figure 2.4). The frequencies multiplied by the
shift factors are called reduced frequencies and the following equation links the complex
modulus at a frequency f and a temperature T to the modulus at the corresponding reduced
frequency f.ar and temperature Tres:

E'(f,T)=E (fag(T),T,) (2-17)

The shift factors are commonly fitted to temperature using the Williams-Landel-Ferry
(WLF) equation (Williams, Landel, & Ferry, 1955):
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log(aT) — _Cl (T B Tref)
Cy+T T

(2-18)

where C1 and Cz are material constants varying with the reference temperature Trer. The
WLF equation can be applied over the entire range of temperature tested. It is therefore possible
to generate master curves at any desired reference temperature. Consequently, application of
the TTSP is very interesting because it gives access to values of the complex modulus at
frequencies and temperatures not accessible experimentally. Note that the TTSP is also
applicable to generate master curves for the complex Poisson’s ratio. For bituminous Materials
the same values of the shift factor are obtained for the complex modulus and complex Poisson’s
ratio. (Nguyen Q. T., Di Benedetto, Sauzéat, & Tapsoba, 2013).
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Figure 2.4. Example of graphical representation for the complex modulus: (a) Cole-Cole
representation, (b) Black space representation; (c) master curve of the norm of the complex
modulus at 15°C; (d) master curve of the norm of the complex modulus at 15°C.
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2.2 Complex modulus test developed at ENTPE

Different test geometries may be used with homogeneous or non-homogeneous test to
characterize the complex modulus of bituminous mixtures. At ENTPE, tension-compression
tests on cylindrical specimen are used, which is a homogeneous test, allowing to obtain the
rheological behaviour without assumptions. In this type of tests, a hydraulic press is used in
strain controlled mode to apply a homogeneous axial loading to a cylindrical sample while the
material response is measured. The samples have approximately a 75 mm diameter and a 150
mm length. They are glued to the upper and lower aluminum caps prior to the test. The upper
cap is fixed to the press actuator which generates tension or compression in the specimen while
the lower cap is attached to the fixed axis of the press.

The experimental set-up used in this thesis is presented in Figure 2.5. The targeted axial
strain amplitude was about 50 um/m. The behaviour is considered LVE for this imposed strain
level. The axial strain was measured with three extensometers placed at 120° from each other.
Each extensometer has a total span of 72.5 mm with a measuring range of £1 mm and a 0.5 um
accuracy. The axial load was measured with a Dynacell® load cell having a +25kN capacity
and a 25N accuracy. The radial strain was deduced from measurements of two non-contact
transducers (Micro-Epsilon eddy current sensors with 0-500 pm range and a resolution of 0.05
um) placed diametrically opposed. Tests were performed inside a thermal chamber operating
between -40°C and 150°C. A PT100 temperature probe with a 0.1°C accuracy was used to
measure the temperature at the surface of the specimen. The tension-compression tests were
performed at 8 different loading frequencies from 0.003Hz to 10Hz and 9 different temperatures
from -25°C to 55°C in steps of 10°C.

Press actuator
Upper cap

Axial Extensometers (3)

PT100 temperature probe

Radial non contact
transducer (2)

Specimen

Lower cap

Figure 2.5. Test set-up for the cyclic tension-compression tests (ENTPE laboratory) and
detailed scheme of the sample and measurement sensors.

The complex modulus and complex Poisson’s ratio values are then deduced from the
measurements of the sensors and according to equations (2-11) and (2-14). An example of the
experimental signals recorded by the sensors during a tension-compression test is given in
Figure 2.6. for two loading cycles. Further information about cyclic tension-compression tests
can be found in literature (Gayte, Di Benedetto, Sauzéat, & Nguyen, 2015; Perraton, et al.,
2016; Graziani, et al., 2017).
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Figure 2.6. Example of experimental signals recorded during a tension-compression test for
two loading cycles at 15°C and 1 Hz: axial stress o, axial strain & and radial strain &.

2.3 Waves propagation in isotropic linear elastic and LVE materials

When a deformable solid is subjected to an external force, a deformation is induced in the
solid. This deformation generates a disturbance of the matter around its equilibrium state. As
particles of the medium are deformed, the disturbance also called wave progresses through the
medium, carrying energy inside the medium through motions of particles and without any mass
transport. This is called a mechanical wave. The study of the propagation of this type of waves
in solids is very well documented in literature (Mandel, 1966; Graff, 1975; Ingard, 1988;
Bedford & Drumheller, 1994). The aim of this section is to describe the case of waves
propagating in isotropic linear elastic and LVE materials.

2.3.1 Types of body waves

Body waves are waves propagating inside a solid. Two types of particle motion are
observed for the body waves, resulting in two different types of body waves:

e The primary waves or pressure waves called P-waves. They are associated to
relatively small particle displacements and are polarized in the same direction of
propagation. P-waves are the fastest body waves and their mode of propagation is
always longitudinal. An illustration of the particle motions corresponding to P-
waves is given in Figure 2.7.

e The secondary waves or shear waves called S-waves. They are polarized in the
transverse direction of propagation. S-waves are slower than P-waves and their
mode of propagation is always transverse. An illustration of the particle motions
corresponding to S-waves is given in Figure 2.7.
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(a) P-wave e

I
i
1

Figure 2.7. Particle motions characteristic of body waves propagation: (a) P-waves, (b) S-
waves (Shearer, 1999).

2.3.2 Wave equation and resonance phenomenon

Newton’s second law states that sum of force applied to a solid are equal to mass times
acceleration, which could be written in continuous mechanics without bulk forces:

o%u

div(c) = P (2-19)

where div is the divergence tensor operator, ¢ is the stress tensor, p is the density, u is the
displacement vector and t is the time. If the material is isotropic and linear elastic, Hooke’s law
is valid:

o = Adiv(u) + 2utr(e) (2-20)

where div is the divergence vector operator, A and p are Lamé’s elastic constants of the material
and ¢ is the strain tensor. In the small strain domain, the strain tensor is linked to the
displacements as follow:

€= %( grad(u) + T grad(u)) (2-21)

where grad is the gradient vector operator. By using equations (2-21) and (2-20), it is possible
to substitute displacements to stress in equation (2-19):

2
O+ wgrad(div(w)) + pAu = pzt—;l (2-22)

where A is the Laplace vector operator, div is the divergence vector operator and grad is the
gradient vector operator. Equation (2-22) is called the displacement equation of motion or wave
equation. This equation admits only two solutions that are plane-waves propagating in the same
direction x and polarized in the direction of propagation or in the transverse direction (Mandel,
1966). These two solutions correspond to the two types of body waves introduced in the
previous section. The displacement fields are expressed:

i® t—xj
2-23
UP (X, t) = UP()e [ VP ( )
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iwt—)(]
224
Us(X,t):Usoe ( Vs ( )

where Up and Us are the displacement fields of the P-wave and of the S-wave, Upo and Uso are
the amplitudes of the displacement of the P-wave and of the S-wave, x is the position, ® is the
pulsation or angular frequency and Vj and V; are the velocities of the P-wave and of the S-wave
that can be expressed:

p \p+v)I-2v)

_ L/ E ]
VS_\/; 2p(1+v) (2-26)

In the case of LVE materials, the frequency dependency of the complex modulus and
complex Poisson’s ratio has to be taken into account. The Hooke’s law of elasticity is therefore
modified as follow:

v, = \/mzu: \/ E(1-v) (2-25)

o =A"div(u)+2u'tr(e") (2-27)

where 6°, ¢", u”, A" and p” are the complex versions of the stress tensor, the strain tensor, the
displacement vector and Lamé’s constants whose values vary with frequency. In harmonic
regime at pulsation o, the stress tensor and the displacement vector are expressed:

6 =0, (2-28)

u = uge (2-29)

where 6o and uo are not depending on the frequency but only on space-variables. By application
of the Boltzmann superposition principle (Boltzmann, 1874), the wave equation in elasticity
(equation (2-22) is also valid for the LVE behaviour in the Laplace-Carson transform domain
under the form:

(K* + u* )grad(div(u*)) + u*Au* + pm2u0 =0 (2-30)

This equation is very similar to the one obtain for elastic materials. If the Poisson’s ratio is
considered as a real number depending on the frequency, the same type of solutions than in the
elastic case are obtained. However, an attenuation term ¢ depending on the frequency appears
due to the viscous component of the behaviour. The displacement fields of the P-waves and S-
waves are depending on the frequency (Mandel, 1966) and are expressed:

t
Vp(0) Vp(0)

tan(®(®@)
iw( x ] R (2-31)
Up (X, t) = Upoe €
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t
Vs(®) Vs (w)

x tan(®(®@)
ico[ x j—m ™)) (2-32)
US (X, t) = USOe €

where the velocities Vp and Vs of the P-waves and of the S-waves are also depending on the
frequency. For a fixed frequency, they are expressed:

1 \/ El0-v
V ) -
" eos(®) VP VII-2v) (2-33)
2
Y 1 E
> os(®) V2005 V) (2-34)
2

where |E*| and ¢ are the norm and phase angle of the complex modulus at the considered
frequency and v is the real value of the Poisson’s ratio at the same frequency. The velocities of
the body waves are directly linked to the material properties. Therefore, measuring the travel
time of a wave over a known distance enables an estimation of the modulus. This approach has
already been used on bituminous mixtures (Nazarian, Tandon, & Yuan, 2005; Di Benedetto,
Sauzéat, & Sohm, 2009; Norembuena-Contreras, Castro-Fresno, Vega-Zamanillo, Celaya, &
Lombillo-Vozmediano, 2010; Mounier, Di Benedetto, & Sauzéat, 2012). However, this method
is limited to the very high frequencies and is accurate only if the plane-waves approximation is
verified.

An interesting alternative to record the flying time of body waves is to exploit the
resonance phenomenon. Resonance occurs when the loading frequency of a material is equal to
one of its natural frequencies. This is traduced by oscillations of the structure at greater
amplitudes for these natural frequencies also called resonance frequencies. These resonance
frequencies are a function of the geometry, of the density and of the material properties (e.g.
Young’s modulus and Poisson’s ratio for elastic materials; complex modulus and complex
Poisson’s ratio for LVE materials). Moreover, measurements of resonance frequencies do not
rely on the plane-waves approximation since they account for the complex vibrations of the
material. Therefore, measurements of the resonance frequencies have been widely used to
derive the elastic constants of different materials with methods called resonant ultrasonic
spectroscopy (RUS) (Maynard, 1996; Leisure & Willis, 1997; Migliori & Sarrao, 1997) or
resonant acoustic spectroscopy (RAS) (Ostrovsky, et al., 2001). RAS has also been applied to
LVE materials (Ryden, 2011; Gudmarsson, Ryden, & Birgisson, 2012). In addition to RAS,
other methods based on the same principle but using only the first resonance frequency have
been used on LVE materials by various authors (Whitmoyer & Kim, 1994; Kweon & Kim,
2006; Lacroix, Kim, Sadat, & Far, 2009).

2.3.3  Strain amplitude corresponding to wave propagation

Measuring the resonance frequencies of a structure requires to excite the material over a
wide frequency range. This can be achieved using contact excitation with an impact hammer
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for example or through non-contact excitation with a speaker for example. This type of
solicitation corresponds to a certain level of strain that can be determined from the vibratory
response of the material. For a material excited in harmonic regime at the pulsation ®, the
following equation links the amplitudes of the displacement and acceleration:

A(0) = 0 U(w) (2-35)

where A is the amplitude of the acceleration and U is the amplitude of the displacement. For a
wave propagating in a beam of length L in the main direction x, different wavelengths
corresponding to different resonant frequencies coexist. They are represented in Figure 2.8. If
r is the number of the mode of vibrations, for each resonance frequencies fi=w:/2m,
displacements inside the material can be expressed:

U, (x,t) = U, (x)sin(o,t) (2-36)
where Ur is function of the position x equal to:

U,(x)=U, sin(zxﬂ) (2-37)

r

where Ur is the maximum amplitude of the displacement at the resonance frequency fr and Ar is
the corresponding wavelength. It’s possible to express equation (2-37) in function of the
amplitude of the acceleration using equation (2-35). Then, derivation of equation (2-37) and
injecting in equation (2-36) gives:

2TA 2TX .
) COS(T) sin(o,t) (2-38)

dU .
2 (%, 0 == E)sin(o,) ==
T T

T

where & and Ar are the strain and the maximum amplitude of the acceleration at the resonance
frequency fi. In the case of a P-wave propagating in the x direction and polarized in the same
direction, Ar corresponds to the term exx of the strain tensor. In the case of a S-wave propagating
in the x direction and polarized in the transverse direction y, Ar corresponds to the term exy of
the strain tensor. A rapid study of equation (2-38) shows that the maximum strain is obtained
when x is a multiple of A+/2 and when sin(wrt)=1. The maximum strain for the resonance f;
frequency is therefore:

_2mA, A
- N 2 2
(oF  2mAf

T

8max,r

(2-39)

It should be noted that the frequency and the wavelength are linked to the wave velocity. It has
been established that the maximum strain regarding all the resonance frequencies is obtained
for the first or fundamental resonance frequency fi corresponding to the wavelength A1=2L
(TenCate, et al., 2004; Pasqualini, 2006):

Ay
Emax = 2-40
- 41th12 (2-49)
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U A =21

Uy -

M= L2 ™

As = 2L/3

L

Figure 2.8. Example of wavelengths corresponding to resonance frequencies for a wave in a
beam of length L in the main direction x.

Equation (2-40) is valid for an elastic behaviour. In the case of a LVE behaviour, the only
difference is the appearance of an attenuation term due to the viscous component of the
behaviour. However, this attenuation term, which has a limited impact on the strain, can only
reduce the maximum strain. Therefore, as a first approximation, the maximum strain
corresponding to a wave propagating in a LVE material can be considered equal to the
maximum strain occurring in the case of an elastic behaviour.

2.4 LVE Continuous spectrum models for bituminous materials

Many rheological LVE models exist and have the purpose of providing a mathematical
approximation of real material behaviour. Some of these models have an analogical
representation which is a combination of springs, dashpots and parabolic elements. The springs
are purely elastic elements, the dashpots are purely viscous elements and parabolic elements
are viscous elements with a parabolic creep function. LVE models can have a discrete relaxation
spectrum or a continuous relaxation spectrum:

e models with a discrete relaxation spectrum can be represented by the association
of a finite number of Maxwell elements (a spring and a dashpot associated in
series) or Kelvin-Voigt elements (a spring and a dashpot associated in parallel).

e models with a continuous relaxation spectrum can be represented by the
association of an infinite number of Maxwell and Kelvin-Voigt elements

In this section, focus is given on two continuous spectrum models used in this work.
2.4.1 2S2P1D model

The 2S2P1D model is the association in series of two springs, two parabolic elements and
one dashpot (Olard & Di Benedetto, 2003; Di Benedetto, Olard, Sauzéat, & Delaporte, 2004).
This model is an extension of the Huet-Sayegh model (Sayegh, 1965) to adequately describe
the low frequencies or high temperatures behaviour of bitumen. The Huet-Sayegh model is
itself an improvement of the Huet model (Huet, 1963) to fit the behaviour of bituminous
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mixtures at high temperatures or low frequencies. An analogical scheme of the 2S2P1D model
is presented in Figure 2.9.

Eoo
/5800000 \
o -0
EiEw k h _n
- )

Figure 2.9. Analogical representation of the 2S2P1D model.

The 2S2P1D model has an expression for the complex modulus that depends on seven
constants:

EO _EOO

E (0)=E
(@=Foo 7 3(io1) ™ +(i01) ™" + (iwpr) !

(2-41)

where o is the pulsation (o=2xf where f'is the frequency), Eoo is the static modulus when >0,
Eo is the glassy modulus when @—>+0o0, k and h are dimensionless constants of the two parabolic
elements such as 0<k<h<1, § is dimensionless constant, B is a dimensionless constant related
to Newtonian viscosity 1 of the dashpot (n=(Eo-Eo0)PBt) and t is a characteristic time depending
on the temperature. For bituminous materials, the TTSP is valid and the WLF equation can be
used to model the evolution of the characteristic time as a function of the temperature (see
section 2.1.4). This adds two more constants Ci and Cz to describe the temperature
susceptibility of the material. The 2S2P1D model can successfully fit the LVE behaviour of
bituminous mixtures (Olard & Di Benedetto, 2003; D1 Benedetto, Olard, Sauzéat, & Delaporte,
2004; Delaporte, Di Benedetto, Chaverot, & Gauthier, 2007) and more generally of bituminous
materials (Di Benedetto, Olard, Sauzéat, & Delaporte, 2004). Figure 2.10 shows the influence
of the 2S2P1D model constants on the Cole-Cole plot.

Shape
~— parameter

E*Imaginary

/
A

—

T N E 0
Q}N——I k2 o

Figure 2.10. Influence of the 2S2P1D model constants on the Cole-Cole plot.

E*Real

In the 3-dimensions case (Di Benedetto, Delaporte, & Sauzéat, 2007), the model also has
an expression for the complex Poisson’s ratio:
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VYo~ Voo

v (®)=vyo +
O 1+ 80t,)  + (iwt,) " + (iopr,) !

(2-42)

where vo and voo are the glassy and static Poisson’s ratios and 1v is the characteristic time of the
Poisson’s ratio directly linked to the characteristic time of the complex modulus (tv=t/y where
v is a dimensionless constant). Therefore, a total of twelve constants (seven for the complex
modulus, three for the complex Poisson’s ratio and two for the WLF equation) are needed to
fully characterize the isotropic LVE behaviour over the whole frequency and temperature
domains.

2.4.2 Havriliak-Negami (HN) model

The Havriliak-Negami (HN) model is a rheological model initially used to describe the
dielectric relaxation of polymers (Havriliak & Negami, 1966). The HN model was formulated
to model both the complex modulus and complex Poisson’s ratio (Gudmarsson A. , 2014;
Gudmarsson, et al., 2014; Gudmarsson, Ryden, Di Benedetto, & Sauzéat, 2015):

* Ey—E
E'(0)=E,+—2—0_
" (lJr(icm:)Ot)B (2-43)
vie)=v +—0 =Y
’ (1+(i0)rv)°‘)B (2-44)

where Eo, Eoo, vo, voo, T and tv have the same signification than for the 2S2P1D model and o
and P are dimensionless constants. The evolution of the characteristic times of the complex
modulus and Poisson’s ratio can also be described with the WLF equation. HN model is known
to accurately model the LVE behaviour of polymers (Havriliak & Negami, 1967; Hartmann,
Lee, & Lee, 1994; Madigosky, Lee, & Niemiec, 2006; Zhao, Liu, Bai, & Tan, 2013). A total of
ten constants (five for the complex modulus, three for the complex Poisson’s ratio and two for
the WLF equation) are necessary to fully characterize the LVE behaviour on the whole
frequency and temperature range. Figure 2.11 shows the influence of the HN model constants
on the Cole-Cole plot.

E*Imaginary E:l:]

e

E*Real

Figure 2.11. Influence of the HN model constants on the Cole-Cole plot.
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2.4.3 Comparison of the two models

The two rheological models introduced in the previous sections present some differences.
The number of constants needed to fully characterize the LVE behaviour is the first difference.
The 2S2P1D model has two extra constants compared to the HN model. The consequences are
that the 2S2P1D model, contrarily to the HN model, has one shape constant (9) to adjust the
shape of the loss modulus peak and one constant to account for the Newtonian viscosity (f).
Figure 2.10 and Figure 2.11 show the asymptotic behaviours of the two models. It is seen that
to obtain the same asymptotic behaviours with the 2S2P1D model and HN model, relations
exist between the constants k and h of the 2S2P1D model and a and B of the HN model:

a=nh

aB:k_)B:% (2-45)

Relations (2-45) must be verified or the two models will exhibit different asymptotic
behaviours. In addition, the glassy and static complex modulus and complex Poisson’s ratio
should be the same for the two models since they are material mechanical properties. Therefore,
all constants of the HN model at the exception of the characteristic time can be obtained from
the constants of the 2S2P1D model. This highlights an important drawback of the HN model:
once the constants are fixed to fit the low and high frequencies behaviours, it is not possible to
adjust the loss modulus peak. Constants of the 2S2P1D model representing an average LVE
material (Carret, Di Benedetto, & Sauzéat, 2018) were chosen to illustrate this difference. The
static modulus was set to 100 MPa, the glassy modulus was set to 35 GPa, k was fixed at 0.17
and h at 0.55. Consequently, by applying relations (2-45), o must be equal to 0.55 and 3 to 0.31.
The two models are compared in the Cole-Cole plot in Figure 2.12. It is seen that the different
values used for constant & can change significantly the shape of the curve of the 2S2P1D model
while it is not possible to adjust the shape with the HN model. Note also that the best fit between
the two models is obtained when & is equal to 0.9 while o is closer than 2 for most of the
bituminous mixtures. This indicates that differences will appear between the two models: either
the symptotic behaviours or the loss modulus peak will not match.

In addition, the same analysis was performed for constant § of the 2S2P1D model. The
value of constant 6 was fixed at 0.9, the values that gives the best fit in the Cole-Cole plot. The
two models are compared in the Black space representation in Figure 2.13. It is seen that
constant B of the 2S2P1D model has an influence on the shape of the curve of the 2S2P1D
model. The influence is less important than the influence of constant é and it mostly affects the
high temperatures or low frequencies that correspond to the lower portion of the curve.
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Figure 2.12. Comparison of the HN model and 2S2P1D model with different values of
constant 6 of the 2S2P1D model in the Cole-Cole representation.
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Figure 2.13. Comparison of the HN model and 252P1D model with different values of
constant 8 of the 2S2P1D model in the Black space representation.

Differences between the HN and 2S2P1D models have been highlighted. It is clearly
established that if the constants of the HN model are set to match the low and high frequencies
behaviours of the 2S2P1D model, a mismatch will be observed between the two models unless
the values of constants 6 and B of the 2S2P1D model are adjusted adequately. Therefore, the
2S2P1D model offers more flexibility to model material behaviour because of its two extra
constants. Moreover, given that the 2S2P1D model is specifically designed to model the LVE
behaviour of bituminous mixtures, it is recommended to use this model instead of the HN
model. In addition, the 2S2P1D model is also adapted for bitumen and mastics. A procedure to
obtain the LVE properties of bituminous materials from the properties of the binder is also
proposed. It includes the geometrical transformation SHStS (Di Benedetto, Olard, Sauzéat, &
Delaporte, 2004; Pouget, Sauzéat, Di Benedetto, & Olard, 2010).
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3 DEVELOPED DYNAMIC TEST

3.1 Presentation of the dynamic test
3.1.1 General considerations

The dynamic test developed in this thesis is dedicated to measure the frequency response
functions (FRFs) of a bituminous mixture specimen with free boundary conditions. FRFs are
very interesting because they give the possibility to identify not only the resonance frequencies
but also the damping properties (linked to the amplitudes of the peaks) of a material. Therefore,
analyzing FRFs measurements is a good possibility to derive material properties. FRFs
measurements have been successfully used to characterize different LVE materials over a wide
frequency range such as metal polymer sandwich beams (Ren, Atalla, & Ghinet, 2011) or highly
damped acoustical porous materials (Guo, 2000; Renault, Jaouen, & Sgard, 2011; Rupitsch, Ilg,
Sutor, Lerch, & Doéllinger, 2011). FRFs measurements have also been performed on a limited
variety of bituminous mixtures (Gudmarsson, Ryden, & Birgisson, 2012; Gudmarsson, et al.,
2014; Gudmarsson, Ryden, Di Benedetto, & Sauzéat, 2015).

FRFs are frequency domain signals defined as the ratio between an output Y (displacement
or acceleration for example) and an input X (force for example). To reduce noise when
determining FRFs signals, the cross power spectrum Sxy and the input auto power spectrum Sxx
are used in practice (Halvorsen & Brown, 1977) and FRFs are defined as:

Sy

H0=3 (f)

(3-1)

where H is the FRF, f is the frequency and the cross power spectrum Sxy and the input auto
power spectrum Sxx are defined as follow:

S,y (F)=X"(£).Y(F) (3-2)

S (F) =X (F).X(F) (3-3)

where X and X" are the input in the frequency domain and its complex conjugate and Y is
the output in the frequency domain. FRFs are complex numbers which contain both an
amplitude and a phase but only the amplitude is necessary for material characterization.
Consequently, the phase of the FRFs is not used in this thesis. A great advantage of using FRFs
is that the amplitude of the FRFs is not depending on the input. Therefore, FRFs account only
for the reaction of the material and can very easily be compared at different temperatures to
highlight changes of material properties.
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The coherence function is an indicator often associated to FRFs measurement that is used
to evaluate the quality of the measurements (Halvorsen & Brown, 1977). More precisely, the
coherence function evaluates the correlation between the input and output signals at each
frequency. The coherence is a real function that ranges between zero and one. A value of one
indicates that the output is fully explained by the input while decreasing values mean there is
noise in the system that has disrupted the test. The coherence function is calculated as follow:

Q2
CF(f) = —; (3-4)
XX Oyy
where CF is the coherence function, Sxy and Sxx correspond to the cross power spectrum and
input auto power spectrum defined in equations (3-2) and (3-3) and Syy corresponds to the
output auto power spectrum:

Syy () =Y (£).Y(f) (3-5)
where Y and Y~ are the output in the frequency domain and its complex conjugate.

3.1.2  Experimental devices and procedures

To achieve free boundary conditions during physical tests, the specimen is placed on soft
foam. The excitation is generated with an automated impact hammer equipped with a load cell
(PCB model 086E80) to record the impulse signal. The vibrations of the specimen are measured
with a piezoelectric accelerometer (PCB model 353B15) screwed on a mounting base glued to
the specimen. The technical specifications and the calibration certificates of the sensors will be
found in APPENDIX A. Figure 3.1 shows the automated impact hammer with a scheme of
principle and the accelerometer.

(a) Automated Impact Hammer (b) Accelerometer

$ <—— Magnet

<—— Solenoid

Electrical connector
& ——— Piston in metal 1.1cm

g
— > $ Mounting base
_ al{F <— Load cell
< Connexion =~ Impact ti
1.5¢cm cable P P

Spring

Figure 3.1 Sensors used for the dynamic tests: (a) automated impact hammer and scheme of
principle; (b) accelerometer

Both the impact hammer and the accelerometer are connected to a signal conditioner (PCB
model 482C15) that conditions the signals for analog to digital conversion. The technical
specifications and the calibration certificate of the signal conditioner can be found in
APPENDIX A. The signal conditioner is connected to a data acquisition device (NI model
USB-6356) which converts the signals from analog signals to digital signals. The data
acquisition device has a simultaneous sampling rate of 1.25 MHz which allows a sampling rate
of 1 MHz on each channel (one data point acquired every 10 second). The length of the
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recorded signals is chosen to record the entire vibratory response. Due to the damping properties
that changes with temperature, the record length varies with the test temperature, which is
measured with a PT 100 surface probe. The data acquisition device is connected to a computer
through a USB cable and the data acquisition is managed by a Matlab application specially
developed for this test. Figure 2.1 illustrates the test set-up for the measurements of the
longitudinal mode of vibrations of a cylinder. Note that three different modes of vibration
(longitudinal, flexural and torsional) were considered depending on the geometry and on the
positions of the impact and of the accelerometer. An example for each mode of vibrations is
shown in Figure 3.3.

Automated
Impact Hammer

Solenoid piston Computer
l
DAQ device
| |

Signal conditioner

Load cell

Specimen Hammer

N
Accelerometer Soft foam

‘Soft foam

Figure 3.2. Dynamic test set-up for the measurements of the FRFs of the longitudinal mode of
vibrations (ENTPE laboratory).

Figure 3.3. Example of dynamic test set-up for three different modes of vibrations: (a)
longitudinal mode of a cylinder, (b) flexural mode of a straight beam, (c) torsional mode of a
straight beam

The signals measured are in time domain. They must be transformed into frequency domain
signals to calculate the FRFs. The fast Fourier transform (FFT) is used for that purpose and
signals have a 1 Hz resolution in the frequency domain. In addition, it is common practice to
perform different measurements of the FRFs to ensure a reliable estimation. Therefore, FRFs
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are averaged from the signals recorded on five repetitions of the test that correspond to five
impact with the automated impact hammer. Equations (3-1) and (3-4) are transformed to:

S, ()
)= -
H(f) NG (3-6)
ST
CF(f) = —=2— (3-7)
Sxx Yy

where the bar above the cross-power spectrum Sxy, the input auto power spectrum Sxx and the
output auto power spectrum Syy corresponds to the arithmetic average on the five impacts.

The test and procedures described above are derived from the work of Gudmarsson
(Gudmarsson A. , 2014). However, two important improvements have been developed in this
thesis and must be highlighted. The first improvement is a doubled sampling rate for the data
acquisition. This is possible because the data acquisition device used has a higher maximum
sampling rate. It guarantees a finer description of the recorded signals in time domain and
therefore a better accuracy of the measurements. The second improvement is the development
of an automated impact hammer (Figure 3.1 (a)) inspired from existing impact devices
(Norman, Jung, Ratcliffe, Crane, & Davis, 2012; Briiggemann, Biermann, & Zabel, 2015). The
developed automated impact hammer is suitable for many different geometries (cylinders,
discs, beams, etc.) as shown in Figure 3.3. The device is connected to a microcontroller
(Arduino Uno R3) and can be programmed with the Arduino interface. Details about the
electronic circuit of the automated impact hammer and the Arduino microcontroller are given
in APPENDIX A

The use of an automated impact system improves significantly the quality of the impacts
and their repeatability (see Figure 3.5 and Figure 3.6). It is quite interesting because the duration
and the position of the impacts are two essential parameters to determine the usable frequency
range. Indeed, an impact excitation provides energy to the specimen over a certain frequency
range that is directly dependent on the contact time between the hammer and the specimen. The
contact time should be as short as possible to obtain a wider usable frequency range. For
example, hitting the binder instead of a stone result in a longer contact time and a reduced usable
frequency range. A good programming of the automated impact hammer coupled to a careful
positioning guarantees to obtain the widest possible usable frequency range. Another great
advantage of using an automated device is the possibility to use it inside a thermal chamber
without opening the door. Since bituminous mixtures are highly thermosensitive materials, it is
essential to perform FRFs measurements at different temperatures. Without having an
automated impact hammer, an operator must open the thermal chamber to perform the
measurements at each temperature. This complicates the test procedure and may introduce
experimental errors. By synchronizing the programming of the automated impact hammer and
the thermal chamber, it is possible to run measurements at all desired temperatures faster and
with more accuracy without any intervention from an operator. The improvements of the
methodology to measure FRFs are therefore very useful for practical experimentation and to
come up with a standardization of the test in the future.
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3.1.3  Example of dynamic test results

All the results presented in this section correspond to measurements performed on the same
cylinder of material GBS (see section 5.3). An example of the signals in time domain and in
frequency domain corresponding to five impact is given in Figure 3.4. The FFT being a complex
number, only the amplitude of the signals is presented for the frequency domain.
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Figure 3.4. Example of signals recorded during a dynamic test for five impacts: (a) force in
time domain; (b) acceleration in time domain; (c) amplitude of the force in frequency domain,
(d) amplitude of the acceleration in frequency domain.

Figure 3.4 (c) shows that the level of force decreases with frequency. When the value of
force is close to zero, the signals are not useable. In practice, frequency range from 0 up to 30
kHz at most can be used depending on the quality of the impacts. The FRFs corresponding to
the five individual impacts displayed in Figure 3.4 and the corresponding averaged FRF are
given in Figure 3.5 (a). It is seen in Figure 3.5 (a) that the curves corresponding to the six FRFs
are almost perfectly overlaid. This proves the excellent repeatability of the test from one impact
to another due to the use of an automated impact hammer. The averaged FRFs obtained at five
different temperatures for the same specimen are plotted in Figure 3.5 (b). It shows the influence
of temperature on the FRFs. The resonance frequencies and amplitudes decrease with
temperature, which corresponds to material properties changes: the norm of the complex
modulus decreases and the phase angle increases. The coherence functions corresponding to
the five individual impacts displayed in Figure 3.4 and the corresponding averaged coherence
function are plotted in Figure 3.6 (a). The same observation than for the FRFs is made on Figure
3.6 (a) for the coherence function. This confirms the good quality of the measurements. The
averaged coherence functions obtained at five different temperatures for the same specimen are
displayed in Figure 3.6 (b). A zone of interferences is observed for frequencies lower than
approximately 3 000 Hz. Therefore, it is recommended to not use frequencies below 3 000 Hz
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for which there is some noise in the system. For higher frequencies, value of the coherence
function is very close to one for all temperatures.
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Figure 3.5. (a) Example of FRFs for five individual impacts and the corresponding averaged
FRF. (b) Example of FRFs at five different temperatures for the same specimen.
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Figure 3.6. (a) Example of coherence functions for five individual impacts and the
corresponding averaged coherence function. (b) (b) Example of coherence functions at five
different temperatures for the same specimen.

3.2 Differences with cyclic tension-compression tests

The resonance frequencies obtained from FRFs measurements are approximately between
5 kHz and 30 kHz depending on the geometry and density of the specimen and also the testing
temperature. FRFs can be measured from approximately -20°C to 50°C depending on the
damping properties of the material. Therefore, FRFs measurements are only high frequency
measurements and cannot give access to the entire master curves of LVE materials. Traditional
complex modulus cyclic tension-compression tests are performed at much smaller frequencies
(from 0.003 Hz to 10 Hz) and in a similar temperature range (from -25°C to 55°C). Cyclic
tension-compression tests cover a larger portion of the master curves but are limited to lower
frequencies than the dynamic tests. This difference should be considered when comparing the
LVE properties of bituminous mixtures determined with the two tests. The two tests are
expected to match best on the frequency range that contains experimental results for both tests.
Figure 3.7 shows the frequency range accessible in function of the reference temperature for
the cyclic tension-compression tests and the dynamic tests. Figure 3.7 confirms the previous
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comments. Figure 3.7 was obtained by creating master curves with experimental data from
tension-compression tests and then from dynamic tests at different reference temperatures. The
same constants of the WLF equation at the reference temperature of 15°C were considered for
both tests (Ci1=30 and C>=210). At each reference temperature, the minimum and the maximum
reduced frequencies of the experimental data were saved for both tests. The frequency ranges
obtained for the GBS cylinder considered in section 3.1.3 are reported at the corresponding
reference temperature in Figure 3.7. Note that Figure 3.7 only gives an order of magnitude of
the frequency ranges and variations may exist from one material to another. Note also that the
value of the modulus at 15°C and 10 Hz, which is used for pavement design in the French
standards is accessible with both tests.
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Figure 3.7. Frequency range containing experimental data in function of the reference
temperature for the cyclic tension-compression tests and for the dynamic tests. Example for a
GBS cylinder. The frequency ranges may vary from one material to another.

Another important difference between the two tests is the level of strain applied to the
material. Cyclic-tension compression tests are performed with a strain of about 50 pm/m. The
maximum level of strain for a dynamic test can be approximated from the first resonance
frequency and the corresponding amplitude of the acceleration using equation (2-40).The
maximum strain level estimated for seven specimens of bituminous mixtures tested in this work
(see sections 5.1, 5.3 and 5.4) are presented in Figure 3.8. The maximum strain level is between
0.01 pm/m and 0.25 pm/m with most of the values being less than 0.1 um/m. Also, the
maximum strain level increases with the frequency. This indicates that the strain level of the
dynamic tests varies with temperature, and the lower strain levels corresponds to the highest
temperatures. Therefore, strains occurring during dynamic tests are approximately a thousand
times lower than the level of strain applied in the cyclic tension-compression tests. The
properties of bituminous mixtures being dependent of the magnitude of the applied strain
(Nguyen, Di Benedetto, & Sauzéat, 2015; Airey & Rahimzadeh, 2004; Mangiafico,
Babadopoulos, Sauzéat, & Di Benedetto, 2018), non-linearity’s effects should be accounted for
when comparing material properties estimated from FRF measurements and from cyclic
tension-compression tests.
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Figure 3.8. Maximum strain level for the dynamic tests estimated at the first resonance
frequency of the longitudinal mode of vibrations for seven specimens (see sections 5.1, 5.3

and 5.4).

3.3 Experimental verifications
3.3.1 Repeatability of the test

FRFs are determined from the average of five individual impacts. This should guarantee
the repeatability and the reliability of the test. To verify these assumptions, dynamic
measurements of the longitudinal mode of vibration have been repeated three times on the same
GBS specimen than in the previous sections. The repeated measurements were performed at
five temperatures (-20°C, 0°C, 15°C, 35°C, 50°C) without opening the door of the thermal
chamber and without any modification of the experimental set-up. The first and second
resonance frequencies and amplitudes are given in Table 3.1. The average values for the three
tests, the standard deviation (SD) and the relative standard deviation (RSD) are also listed in
Table 3.1. The values of the RSD of the resonance frequencies are excellent with less than 1%
at most and values really close to 0. The values of the RSD of the amplitudes are also very
satisfying with a maximum of 3.9%. Figure 3.9 presents the evolution of the values of the RSD
with temperature. It can be seen that the RSD of the amplitudes is a little bit higher than the
RSD of the resonance frequencies. This indicates that the measurement of the amplitude is a
little bit more sensitive than the measurement of the resonance frequencies. This repeatability
study demonstrates the excellent overall repeatability of the dynamic tests.
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Table 3.1. Results obtained for the three dynamic tests performed on the same GBS specimen
at five different temperatures (longitudinal mode of vibration). Measurements were repeated
without any modification of the experimental set-up.

T (°0) Test nr. 1 2 3 Average SD RSD (%)
1% frequency (Hz) 13188 13208 13214 13 203 13.6 0.1
20°C 1% amplitude (m/s*/N) 179.6 173.2 180.3 177.7 3.9 2.2
2" frequency (Hz) 25454 25470 25488 25471 17.0 0.1
2" amplitude (m/s*/N) 261.0 241.4 251.0 251.1 9.8 3.9
1% frequency (Hz) 12429 12474 12473 12 459 25.7 0.2
0°C 1% amplitude (m/s*/N) 64.9 66.3 64.2 65.1 1.1 1.6
2" frequency (Hz) 24088 24137 24145 24 123 30.9 0.1
2" amplitude (m/s*/N) 86.8 87.3 87.3 87.1 0.3 0.3
1% frequency (Hz) 11477 11514 11500 11 497 18.7 0.2
15°C 1% amplitude (m/s*/N) 27.7 28.2 27.3 27.7 0.5 1.6
2" frequency (Hz) 22391 22447 22410 22410 28.5 0.1
2" amplitude (m/s*/N) 36.9 36.4 36.7 36.7 0.3 0.7
1% frequency (Hz) 9593 9551 9541 9562 27.6 0.3
359C 1* amplitude (m/s?/N) 10.8 10.6 10.5 10.6 0.2 14
2" frequency (Hz) 18905 18714 18776 18 798 97.4 0.5
2" amplitude (m/s*/N) 14.0 13.0 13.8 13.6 0.5 3.9
1% frequency (Hz) 7 623 7 654 7575 7617 39.8 0.5
50°C 1* amplitude (m/s?/N) 53 5.4 5.4 5.4 0.1 1.1
2" frequency (Hz) 15174 15207 15429 15270 138.7 0.9
2" amplitude (m/s*/N) 6.0 6.2 6.3 6.2 0.2 2.4
4.5
4 - & e First frequency o
X First amplitude
35 1 e Second frequency
3 X Second amplitude
g 2.5 1 X
) X
2 2
15 - X X o
" :
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0,5 - - ° e
[ ]
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Figure 3.9. Relative standard deviation for the three dynamic tests performed on the same
specimen at five different temperatures (longitudinal mode of vibrations).
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3.3.2  Sensitivity of the sensors

A cylindrical sample of duralumin has been used to investigate the sensitivity of the
sensors. This material was chosen because its behaviour is not dependent on the frequency and
is very little sensitive to temperature changes. Indeed, the Young’s modulus of duralumin is
about 70 GPa at 0°C and it decreases linearly of approximately 0.04 GPa (=0.06 %) per degree
(Young's Modulus of Elasticity for Metals and Alloys, 2004). FRFs corresponding to the
longitudinal mode of vibrations of the duralumin specimen have been measured at fifteen
different temperatures from -20°C to 50°C in steps of 5°C. This temperature range corresponds
to the range on which FRFs can be measured on bituminous mixtures and therefore to the range
of use of the sensors in this thesis. The Young’s modulus of duralumin was evaluated using the
first resonance frequency according to the ASTM C215-02 standard (ASTM-C215-02, 2002).
The evolution of the evaluated Young’s modulus in function of temperature is plotted in Figure
3.10 along with the curve found in literature (Young's Modulus of Elasticity for Metals and
Alloys, 2004). A very nice agreement is seen between the curves plotted in Figure 3.10. In
addition, the value of the Young’s modulus is 70.7 GPa at 0°C which is also in very good
agreement with values found in literature. The Young’s modulus decreases linearly (correlation
coefficient R*=0.9997) from 71.4 GPa at -20°C to 68.8 GPa at 50°C. This corresponds to a loss
of 0.036 GPa per degree, in the same order of magnitude than the thermal sensitivity of
duralumin. Therefore, the Young’s modulus variation is mainly due to the material and the
thermal sensitivity of the sensors is negligible for the evaluation of the resonance frequencies.

72
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< y =-0,0361x + 70,663
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1 70.6 GPa

70,5
70
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Figure 3.10. Young’s modulus of duralumin specimen evaluated from dynamic tests. The red
dotted line represents the decreasing of the Young’s modulus of duralumin with temperature
found in literature (Young's Modulus of Elasticity for Metals and Alloys, 2004).

The amplitude measured at the first resonance frequency was also studied. The amplitude
is linked to the damping properties and it is possible to determine the damping ratio ( at the first
resonance frequency with the half-power bandwidth method (Bachmann, 1991):

CAf

=%

(3-8)
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where f'is the first resonance frequency and Afis the width of the FRFs at 0.707 of the amplitude
at the first resonance. The damping ratio is then used to determine the phase angle ¢ of the
material according to the following relationship (Clough & Penzien, 1993):

¢ = arctan(2&) (3-9)

The phase angles calculated for the duralumin specimen are displayed in Figure 3.11. It can be
seen that the values of the phase angle are extremely low with a maximum of 0.027°. This was
expected because duralumin is considered as a purely elastic material. Also, variations of the
phase angle do not follow a clear trend and the difference between the maximum and the
minimum values of the phase angle is less than 0.01°, which proves the very good repeatability
of the measurements. However, the amplitudes measured for the duralumin specimen are at
least ten times higher than the amplitudes measured for bituminous mixtures. Therefore, it is
not possible to conclude about the sensitivity of the sensors regarding the measured amplitudes.
According to the calibration certificates provided with the sensors (cf. APPENDIX A), the
sensors are not impacted by temperature or frequency on the range used in this work.
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Figure 3.11. Phase angle of duralumin specimen evaluated from dynamic tests.

3.3.3  Effect of the frequency resolution on the fast Fourier transformation (FFT)

FRFs are calculated from the frequency domain signals of the impact hammer and
accelerometer. FFT is used to transform these signals recorded in time domain to frequency
domain with a frequency resolution chosen equal to 1 Hz. Care must be taken during this
operation because in general, to return a correct FFT amplitude, FFT has to be normalized by
the number of input time samples. In the Fourier theory, the frequency resolution is directly
linked to the number of time samples acquired and the sampling frequency:

Af ==5 (3-10)

where Af is the frequency resolution of the FFT, Fs is the sampling frequency and N is the
number of samples acquired. The number of samples is defined by the length of the oscillatory

-30-



DEVELOPED DYNAMIC TEST

part of the accelerometer signal to observe the vibrations of the material on the right window
of time. The number of samples must be the same for the impact hammer or the amplitude of
the FRF cannot be estimated correctly. Equation (3-10) indicates that it is necessary to record
a number of samples equal to the sampling frequency to obtain a frequency resolution of 1 Hz.
The used sampling frequency is 1 MHz so a million of samples are needed to have a frequency
resolution of 1 Hz. Figure 3.4 (b) and Figure 3.12 show examples of time domain signals from
the accelerometer. Oscillations only last a few milliseconds. Therefore, the number of samples
recorded limit the frequency resolution between 1 500 Hz and 150 Hz at best depending on the
temperature.

Fortunately, it is possible to increase the frequency resolution. Since the signals recorded
are transient non-periodic signals, it is possible to extend them numerically. This process
consists in adding virtual samples equal to zero at the end of the signals. To reach a frequency
resolution of 1 Hz, virtual samples must be added so that the total number of samples is one
million to equal the sampling frequency. Figure 3.12 shows an example of time signals
measured and the corresponding extended signals. Logarithmic scale has been used for clarity.
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Figure 3.12. Example of measured and extended signals of the impact hammer and
accelerometer in time domain.

Using a larger number of samples is very useful to improve the frequency resolution.
However, in this case, the amplitude of the FFT must be normalized by the number of samples
recorded in the oscillatory part of the accelerometer signal and not by the total number of
samples in the extended signals. In the contrary case, amplitudes of the FFT of the impact
hammer and accelerometer are not estimated correctly. The FRF is not sensitive to this effect
because it is defined as the ratio between the cross power and auto power spectrum (equation
(3-1)). The amplitudes of the FFT of the impact hammer and accelerometer calculated from the
extended signal and the corresponding FRF are plotted in Figure 3.13. The same curves are also
plotted for the measured time signals. Figure 3.13 confirms that the proposed methodology does
not affect the amplitude of the FFT and of the FRF and that the frequency resolution is increased
for the extended signals.
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Finally, according to the Nyquist sampling theorem (Nyquist, 1928), the highest frequency
that a time signal can represent is half of the sampling frequency. With a sampling frequency
of 1 MHz, it is possible to reach frequency up to 500 000 Hz. FRFs are calculated for
frequencies up to 30 kHz at most in this work which is largely below 500 000 Hz.
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Figure 3.13. FFT (a) and FRF (b) calculated from the measured and extended signals of the
impact hammer and accelerometer.
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4 NUMERICAL SIMULATIONS OF THE DYNAMIC
TESTS ON REFERENCE ISOTROPIC LVE
BITUMINOUS MIXTURE

Characterizing the LVE properties of bituminous mixtures from dynamic tests is a
complicated process. It requires to use an inverse analysis method to determine the LVE
properties from the FRFs measurements. The developments made during this thesis bring us to
propose different inverse analysis methods, all based on finite element method (FEM) (section
4.3). Therefore, as a first step, it was necessary to develop numerical calculation tools to
perform the FEM calculations (section 4.1.1). Then, a numerical model corresponding to a
reference isotropic LVE bituminous mixtures with averaged LVE properties was built up
(section 4.1.2). The reference LVE material was developed to test and evaluate the accuracy of
the different inverse analysis methods (section 4.3). This procedure based on numerical
experimentation eliminates any potential divergence due to experimental measurement errors
or to material behaviour that is not perfectly isotropic and LVE in practice. This step is essential
to validate or not the proposed inverse analysis scenario. In addition, reducing the number of
LVE properties or model constants to be identified in the inverse analysis process is needed to
limit the computational time and the risk of finding non valid local solutions. For this purpose,
a parametric analysis was performed to evaluate the influence of the LVE properties on the
FRFs (section 4.2). The results of the parametric analysis were used to fit the different inverse
analysis methods.

4.1 Numerical calculation tools

4.1.1 Finite element method (FEM) calculation

A FEM model was developed with the COMSOL software. The first step when building a
FEM model is to define the geometry. Three geometries were studied: cylinders (C), straight
beams (B) and discs (D). The dimensions considered for each geometry correspond to the
dimensions of bituminous mixtures specimen commonly used for laboratory testing: the
cylinder used in the parametric analysis has a 15cm length and a 7.5cm diameter, the cylinder
used in the inverse analysis has a 16cm length and a 6.5cm diameter, the straight beam has a
30cm length and a Scm width and height and the disc has a 3cm height and a 10cm diameter.
In a second step, the mesh is created. It consists in tetrahedral elements with a maximum
element size of 2cm that was determined through mesh size convergence studies for each
geometry.
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Different material behaviours corresponding to different modulus and Poisson’s ratio were
used:

Isotropic linear elastic behaviour (used in inverse analysis method I in section

4.3.1.1)

e LVE behaviour with a constant complex modulus value and a constant real
Poisson’s ratio value (used in inverse analysis method IV in section 4.3.1.4)

e LVE behaviour with constant complex modulus and complex Poisson’s ratio values
(used in the first parametric analysis in section 4.2.1)

e LVE behaviour with a complex modulus frequency and temperature dependent
modelled with the 2S2P1D model (cf. equations (2-41)) and a constant real value
of the Poisson’s ratio (used in inverse analysis method V in section 4.3.2)

e LVE behaviour with a complex modulus and a complex Poisson’s ratio frequency

and temperature dependents modelled with the 3-dim version of the 2S2P1D (cf.

equations (2-41) and (2-42)) (used in the second parametric analysis in section 4.2.2

and in all inverse methods except the first one).

After the material behaviour, the boundary conditions are entered. They were set to be in
accordance with physical experimentations in which the material placed on soft foam is excited
with an impact hammer and the resulting acceleration is recorded with an accelerometer.
Therefore, free boundary conditions are assumed everywhere except at the position
corresponding to the impact where a cyclic load €' is applied in the direction of the impact.
The last step before launching the calculation is to define the parameters of the frequency study.
The frequencies for which the calculation is performed were chosen to match the frequency
range accessible with physical tests: from 100 Hz to 30 kHz. The frequency resolution was set
to 20 Hz to limit the computational time but it can be adjusted if needed. Finally, for the LVE
behaviour temperature dependents, the temperature range accessible in physical tests, between

-20°C and 50°C, was considered.

Once the geometry, the mesh, the material behaviour, the boundary conditions and the
parameters of the study are introduced, the following three-dimensional equation of motion is
solved for each specified frequency:

—-po*u—V.o=0 4-1)

where p is the bulk density of the material, o is the angular frequency, u is the displacement
vector, V is the gradient tensor operator and ¢ is the Cauchy stress tensor. This equation
corresponds to the wave equation applicable for elastic material (2-22) or LVE material(2-30).
The results of the calculation are processed to obtain the amplitude of the acceleration at the
position and in the direction of vibration of the accelerometer during physical test. Since the
cyclic load applied in the model is unitary, this value directly corresponds to the value of the
FRF. Note that depending on the geometry and on the positions of the impact and of the
accelerometer, different modes of vibration can be obtained. In the next sections, the
longitudinal (L), flexural (F) and torsional (T) modes of vibration are studied. A total of seven
different configurations are considered for the parametric analysis(section 4.2) and the inverse
analysis (section 4.3). Table 4.1 lists the configurations used in each case. Table 4.2 gives the
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position of the sensors, the direction of the impact and the direction of vibration of the
accelerometer for the different combinations considered. The longitudinal mode for cylinders
is particularly interesting because it is the only axisymmetric configuration. Therefore, two-
dimensions calculations are possible instead of three-dimensions calculations for all the other
configurations. This is a great advantage that makes calculations approximately ten times faster.

Table 4.1. Configurations studied in the parametric analysis (section 4.2) and inverse
analysis (section 4.3). C, B and D correspond to the geometry (cylinders, straight beams or
discs) and L, F and T correspond to the mode of vibration (longitudinal, flexural or
torsional).

Configuration C-L C-F C-T C-L+F B-L B-T D-F

Direct analysis (section 4.2) X - - - - X X
Inverse analysis: method 1 for the
complex modulus (section 4.3.1.1) x X ) i ) i
Inverse analysis: method 2 for the
complex modulus (section 4.3.1.2) x i i X x ) X
Inverse analysis: method 3 for the
complex modulus (section 4.3.1.3) x i i X X ) X
Inverse analysis: method 4 for the X i i X X ) X

complex modulus (section 4.3.1.4)

Inverse analysis: method 5 for the
complex modulus and complex X - - - X - -
Poisson’s ratio (section 4.3.2)
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Table 4.2. Position of the sensors, direction of the impact and direction of vibration of the accelerometer for the different considered
combinations of geometry and mode of vibration.

Cylinders (C) Straight beams (B) Discs (D)

Longitudinal NAVA /\ZN,\ T 1H
mode of VAVAVAVAVAN X
AVAVAVAY, |
vibration (L) Yo JwW
L

Flexural
mode of
vibration (F)

Torsional
mode of
vibration (T)

Longitudinal L
and flexural A Y S AWAA eﬁa
modes of —T NVAWA ’T*' = b X X
vibration \ TAVAY Z/ AVAYA Y U
(L+F) PO 0C
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4.1.2 Reference LVE material with averaged LVE properties

A reference isotropic LVE bituminous mixture is considered in this section. It consists in
a numerical simulation material with averaged LVE properties called reference LVE material.
This reference LVE material was used in section 4.3 to study different inverse methods to obtain
the LVE properties of bituminous mixtures from FRF measurements and to evaluate their
accuracy. The behaviour of the reference LVE material is described with the 2S2P1D model
(cf. equations (2-41) and (2-42)) and the WLF equation (cf. equation (2-18)). The constants of
the 2S2P1D model and the WLF equation were fixed following the procedure presented in the
next paragraph. The bulk density of the reference LVE material was fixed to 2 400 kg/m?.

Cyclic tension-compression tests were previously performed on a total of 54 specimens of
bituminous mixtures covering 32 different bituminous materials. These tests were performed
during 4 different PhD thesis carried out at the University of Lyon / ENTPE, LTDS laboratory
(Mangiafico, 2014; Pham N. H., 2014; Phan, 2016; Pedraza, 2018)and are presented in different
publications (Mangiafico, et al., 2013; Nguyen Q. T., Di Benedetto, Sauzéat, & Tapsoba, 2013;
Mangiafico, et al., 2015; Pham N. H., et al., 2015; Pham N. H., et al., 2015; Phan, et al., 2017).
For each test, the 2S2P1D model and the WLF equation constants were calibrated to fit the
experimental data. The resulting 54 sets of 2S2P1D model and WLF equation constants are
given in APPENDIX B. They constitute a data base that was used to determine the 2S2P1D
model and WLF equation constants of the reference LVE material. Each constant is taken in
the vicinity of the average value of the corresponding constant of the 54 sets. The data base was
also used to determine a realistic range of variations for each constant. The procedure to
determine the 2S2P1D model and WLF constants of the reference LVE material is explained in
Figure 4.1 and the values of the obtained constants are listed in Table 4.3. The minimum,
maximum and average values and the standard deviation (SD) are also listed in Table 4.3for
each constants.

Step 1

Step 2
Tension- Calibration of the [ 54 sets of Step 3
Compression tests | 2S2P1D model 2S2P1D model Average for 2S2P1D model and
on 54 specimens > and WLE % \WLF constants of the
of bituminous and each constant reference material
mixtures WLF equation constants

Figure 4.1. Procedure to determine the 2S2P1D model and WLF equation constants of the
reference LVE material with averaged LVE properties.
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Table 4.3. 2S2P1D model and WLF equation constants of the reference LVE material. The
minimum, maximum and average values of the 2S2P1D model and WLF equation constants of
the data base and the standard deviation (SD) are also indicated.

WLF
2S2P1D model Equation
at 15°C
Eoo Eo TEI5°C  Tvi5°C

(MPa) (MPa) Vo Voo 0 k h B (s) (s) C ()
Reference

LVE 100 35000 0.19 0.45 2.15 0.17 053 250 0.1 3.16 | 30 210
material

Minimum 9 30900 0.10 024 1.79 0.14 045 95 0.002 0.1 18 133

Maximum 180 42000 0.47 0.63 2.63 023 0.57 9E* 16.5 333.1 |59 376

Average 35 36500 0.19 043 2.12 0.17 053 630 071 51.8 | 31 209

SD 27 2850 0.07 0.09 0.18 0.0l 003 1E* 23 72.9 5 28

4.2 Parametric analysis

The parametric analysis consists in calculating FRFs for different LVE properties obtained
with different complex modulus and complex Poisson’s ratio values or different 2S2P1D model
and WLF constants, chosen in a realistic range of variations (see Table 4.3). It allowed to
identify the constants that have a negligible influence and that can be fixed for the inverse
analysis.

Three different configurations were studied for the parametric analysis: the longitudinal
mode of a cylinder (D=7.5cm and L=15cm), the torsional mode of a straight beam (L=30cm,
H=5cm and W=5cm) and the flexural mode of a disc (D=10cm and L=3cm). Two parametric
analyses corresponding to two different modeling of the LVE behaviour were performed. First,
the complex modulus and complex Poisson’s ratio were considered independent of the
frequency and of the temperature and the influence of the norm and phase angle of the complex
modulus and complex Poisson’s ratio were studied. Then, the complex modulus and complex
Poisson’s ratio were considered temperature and frequency dependents and were modelled with
the 3-dim version of the 2S2P1D model. In this parametric analysis, the influence of the
2S2P1D model constants were studied.

4.2.1 Influence of the norm and of the phase angle of the complex modulus and complex
Poisson’s ratio

The complex modulus and the complex Poisson’s ratio are considered as complex numbers
independent of frequency:

E' =Ee'® (4-2)

v =vel® (4-3)
where E and ¢ (respectively v and ¢v) are the norm and the phase angle of the complex modulus

(respectively complex Poisson’s ratio). The ranges of variations of these four LVE properties
were defined to match those accessible with dynamic tests. For each LVE property, one median
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value and four additional values were chosen in the corresponding range of variation. These
values are listed in Table 4.4. To evaluate the influence of each LVE property, five FRFs
corresponding to the five selected values were calculated while the three other LVE properties
are set to their median values. Therefore, a total of twenty FRFs were calculated for each
configuration studied. The FRFs showing the influence of E, ¢r, v and ¢v for the longitudinal
mode of the cylinder are displayed in Figure 4.2.

Table 4.4. Values of the norm and of the phase angle of the complex modulus and complex
Poisson’s ratio considered for the parametric analysis. When one LVE property varies, the
rest of the properties are set to their median values.

LVE property N‘[:‘(lllllin Values chosen for the parametric analysis
E (MPa) 25000 10 000 17 500 32500 40 000
@) 6 0.5 2 12 25
v 0.300 0.150 0.225 0.375 0.450
Qv (0) -3 -1 -2 -4 -5
40 (a) 140 (b)
a - °
35 L|E (MPa) [o: ()]
=30 |-[—10000 2129 =05
% o5 | —17500 © 100 [ —2
I 25000 S 6
E = 80
220 | 32500 o 12
3 15 —40000 E 60 | —25 U
a ‘a 40
810 =
< 5 < 20 |
O 1 | 0 — t
0 10000 20000 30000 0 10000 20000 30000
Frequency (Hz) Frequency (Hz)
30 30
25 ¢ 25
= —0.15 =
pd pd
520 + |—0.225 & 20 +
w w
£ 03 £
—15 =15 r
o @
o ©
210 210 ¢
g g
g5 © g 97
C
0 ' 0 '
0 10000 20000 30000 0 10000 20000 30000

Frequency (Hz) Frequency (Hz)

Figure 4.2. Influence of the LVE properties on the FRFs of the longitudinal mode of the
cylinder: (a) norm of the complex modulus; (b) phase angle of the complex modulus, (c) norm
of the complex Poisson’s ratio, (d) phase angle of the complex Poisson’s ratio. The constants

not listed in each figure have the median value given in Table 4.4.

The relative standard deviation (RSD) for the two to three first resonance frequencies and
amplitudes was calculated for each LVE property. The RSD is a good indicator of the sensitivity
of the FRFs to one LVE property and it is very efficient to compare the influence of the different
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LVE properties. Values of the RSD for this configuration and for each LVE property are listed
in Table 4.5 for the two first resonance frequencies and amplitudes.

Table 4.5. Values of the RSD for the two first resonance frequencies and amplitudes for the
longitudinal mode of the cylinder. The LVE property indicated in the left column varies while
the other properties are set to their median values indicated in Table 4.4

LVE RSD 1% RSD 1% RSD 2 RSD 2"
property frequency (%) amplitude (%) frequency (%) amplitude (%)
E 25.5 0.0 25.6 0.0
QE 0.9 135.9 2.3 118.1
v 1.1 0.6 4.1 3.0
@y 0.0 1.5 0.1 5.3

Figure 4.2 and Table 4.5 show that in the considered frequency domain, the norm of the
complex modulus has an important influence on the resonance frequencies but almost no effect
on the amplitudes. It is the contrary for the phase angle of the complex modulus that has an
important influence on the amplitudes and a very limited effect on the resonance frequencies.
The complex Poisson’s ratio has a far lower influence than the complex modulus on the FRFs.
More interestingly, the influence of the complex Poisson’s ratio on the first resonance is almost
negligible. The norm of the complex Poisson’s ratio has a small influence on the second
resonance frequency and amplitude while the phase angle of the complex Poisson’s ratio only
has a very limited influence on the amplitude.

Results of the direct analysis for the two other studied configurations are given in
APPENDIX C. The influence of the complex modulus is very similar for all the configurations.
The complex Poisson’s ratio also has a far lower influence than the complex modulus for all
the configurations. However, the longitudinal mode of the cylinder is the only configuration for
which the effect of the Poisson’s ratio is almost negligible for the first resonance (the RSD for
v for the first resonance frequency is 3.9% for the flexural mode of the disc and 4.6% for the
torsional mode of the straight beam). This is an interesting observation that proves that the
complex modulus can be identified independently of the complex Poisson’s ratio using the first
resonance of the longitudinal mode. For the other modes of vibration, the effect of the complex
Poisson’s ratio can be neglected as a first approximation. It allows to limit the number of
unknowns values to be determined in the inverse analysis.

4.2.2  Influence of the 2S2P1D model constants

For this analysis, the complex modulus and complex Poisson’s ratio are modelled with the
3-dim version of the 2S2P1D model (equations (2-41) and (2-42)). The influence of the ten
constants of the 2S2P1D model was evaluated at five temperatures (-20°C, 0°C, 15°C, 35°C;
50°C). The range of variations of each constant of the model was defined from the data base of
the constants values (see section 4.1.2). Following the same approach than in the previous
section, one median value and four additional values were chosen for each constant in the
corresponding range of variations. The values used for each constant of the model are listed in
Table 4.6. For the ten constants of the model, five FRFs corresponding to the five selected
values were calculated while the nine other constants are fixed to their median values. It
represents a total of fifty FRFs that were calculated for each temperature and configuration.
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Note that the temperature dependency of the characteristic times te15°c and tviscc was modelled
with the WLF equation with Ci1=30 and C>=210 at the reference temperature of 15°C.

Table 4.6. Values of the 2S2P1D model constants considered for the parametric analysis.
When one constant varies, the rest of the constants are set to their median values.

2S2P1D model constant Nf}g(lllllin Values chosen for the parametric analysis
Eoo (MPa) 100 10 50 150 200
Eo (MPa) 35000 30 000 32 500 37 500 40 000
k 0.17 0.13 0.15 0.19 0.21
h 0.53 0.47 0.50 0.56 0.59
o 2.15 1.75 1.95 2.35 2.55
B 250 10 100 500 1000
TE15°C () 0.1 0.01 0.05 0.5 1
Voo 0.4 0.3 0.35 0.45 0.5
Vo 0.2 0.1 0.15 0.25 0.3
Tvisec (S) 100 10 000 1 000 10 1

Evolution of the RSD with temperature for the two first resonance frequencies and
amplitudes is plotted for all the constants in the case of the longitudinal mode of the cylinder in
Figure 4.3.

30 45
- 1st frequency (@) 40 | |2 frequency (b)
«E00  «EO 35 [[=E00  «EO
N 20 B -5 N 30 [—-B )
2 —k h L5 ||k +h
o rlevoo  —wo 500 Llevoo  —vo
@ 10 - --tE15°C o wl5°C @ 15 | --tE15°C o wvl5°C
10
5 5l | —t
0 ‘ ‘ 0 [ ————
-30 -20 -10 0 10 20 30 40 50 60 -30 -20 -10 0 10 20 30 40 50 60
Temperature (°C) Temperature (°C)
60 60
=E00 =EO (c) =E00 +EO (d)
50 - +D 50 | A =R <15
=k a-h il &
40 o-v00 —v0 40 | .
= «TEL5°C & Wi5°C < oveo V0
S 30 | o 30 | --TE15°C otvl5°C

(m) m]
@20 | 15t amplitude €20 | 2nd amplitude
10 ) 10 | <
~ pa
0 L " N | 0 pe N — =
-30-20-10 0 10 20 30 40 50 60 -30-20-10 0 10 20 30 40 50 60
Temperature (°C) Temperature (°C)

Figure 4.3. RSD in function of temperature for each of the ten constants of the 2S2P1D model
for the longitudinal mode of the cylinder: (a) I*' resonance frequency, (b) 2" resonance
frequency, (c) I*' resonance amplitude, (d) 2" resonance amplitude.
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From this figure, four constants can be identified as the constants having the main influence
on the FRFs: the constant Eo has an important influence on the resonance frequencies while
constants teis°c, k and o have an influence on both the resonance frequencies and amplitudes.
For each of these four constants, the FRFs calculated when the considered constant varies (the
nine other constants are fixed to their median values) are plotted at 15°C for the longitudinal
mode of the cylinder in Figure 4.4. It shows an example of how these four constants influence
the FRFs. Figure 4.3 also shows that the constants voo, vo and tvisec governing the value of the
complex Poisson’s ratio have almost a negligible influence on the first resonance and a small
influence on the second resonance. This observation is very similar to the observation raised
from the study of the influence of the complex Poisson’s ratio on the longitudinal mode of the
cylinder in section 4.2.1. The rest of the constants of the 2S2P1D model (Eoo, B and h) have a
negligible influence on the FRFs, which is logical because they influence the low frequencies
behaviour of the model and FRFs are calculated at very high frequencies.

40 40
|
35 H Eqy(MPa) T=15°C 35 ; T=15°C \U'
=30 |[—30000 | =30 | —0.01
N —32500
£2° 1135000
2 20 | 37500
515 —40000
o
£
a
0 . | (a)
0 10000 20000 30000 0 10000 20000 30000
Frequency (Hz) Frequency (Hz)
40 40
35 T=15°C 35 | [5] T=15°C
=30 [ —013 =30 [ —1.75
5 | —0.15 BN | —1.95
£ 0.17 22 215
220 | —0.19 220 [| 235
:% 15 —0.21 3 15 —2.55
310 510
g5 < s
(c) (d)
0 1 1 0 i i
0 10000 20000 30000 0 10000 20000 30000
Frequency (Hz) Frequency (Hz)

Figure 4.4. Influence of four constants of the 2S2P1D model on the FRFs of the longitudinal
mode of the cylinder at 15°C: (a) EO; (b) tE15°C; (c) k; (d) o. The constants not listed in each
figure have the median value given in Table 4.6.

The results for the two other configurations are given in APPENDIX D. Similarly, to what
was observed for the influence of the complex modulus and complex Poisson’s ratio, the
constants of the 2S2P1D model have comparable effects on all the configurations studied. In
addition, the longitudinal mode is again the only configuration for which the first resonance is
almost not impacted by the values of constants voo, vo and tviscc governing the value of the
complex Poisson’s ratio. Therefore, the longitudinal mode of vibration seems to be the more
suitable for practical application since the number of constants to identify in the inverse analysis
can be reduced to four, at least when studying the first resonance only.
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4.3 Inverse analysis

The inverse analysis consists in determining the LVE properties of a material from FRFs
measurements. In this thesis, different inverse methods based on FEM calculations were
developed to do so. The five proposed methods were applied to the reference LVE material
described in section 4.1.2 to evaluate their accuracy. This approach presents the great advantage
to eliminate any potential divergence due to experimental measurements errors or to the
material behaviour that is not perfectly isotropic and LVE in practice. Therefore, only the
accuracy of the different inverse analysis methods is evaluated. This step is essential to verify
that the inverse methods selected for practical application on bituminous mixtures specimens
introduce no bias for the characterization of the LVE properties.

First, four methods that give only access to the complex modulus are presented. Then,
another method for which it is possible to determine the complex Poisson’s ratio is introduced.
For the five methods, different FRFs are compared after applying the method to the reference
LVE material:

e The FRFs calculated with the LVE properties or the constants of the 2S2P1D model
determined at each temperature in the first step of the methods. They are called
FRFs after optimization and are noted FRF A.O.

e The FRFs calculated with the constants of the 2S2P1D model and WLF equation
simulating the global LVE behaviour of the material determined in the second steps
of the methods. They are called global LVE FRFs and are noted G.LVE.FRF.

e The FRFs of the reference LVE material calculated with the constants of the
2S2P1D model and WLF equation of the reference LVE material (cf. Table 4.3).

Similarly, different complex modulus values are also compared:

e The complex modulus back-calculated in the first step of the methods, noted E"scp
(norm |E"Bcp| and phase angle @e*cp) where p is the index of the considered method
(p=1,2,3,40r5).

e The complex modulus of the 2S2P1D model simulating the global LVE behaviour
of the material determined in the second step of the methods, noted E pynp (norm
|E"Dynp| and phase angle @e#pynp) Where p is the index of the considered method
(p=1,2,3,40r5).

e The complex modulus of the reference LVE material, noted E rer (norm |E"ref| and
phase angle @E*Rref).

4.3.1.1 Method I: simplified back analysis method

All the details about this method and the results obtained are presented in Paper [ and Paper
I1. In this section, only a summary of the method and of the main results is given.

4.3.1.1.1 Principle of the method

This method is the simplest method proposed in this thesis. It is divided in two distinct
steps. The first step consists to back analyze the FRFs obtained at each temperature to determine
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one value of the complex modulus at the first resonance frequency. The second step consists to
fit the 2S2P1D model and the WLF equation simulating the global LVE behaviour of the
material using the results of the first step.

The first step of the method gives access to one value of the complex modulus at the first
resonance frequency for each temperature. This value is obtained following a process divided
into two stages described in Figure 4.5:

e First, the norm of the complex modulus (JEsci|) is determined from the first
resonance frequency f. The material behaviour is considered elastic and the
modulus is back-calculated using the FEM so that the first resonance frequency of
the elastic calculation matches the first resonance frequency of the FRF to back-
analyze or input FRF. For the longitudinal and flexural modes of vibration, it is
necessary to fix the value of the Poisson’s ratio to perform the elastic back-
calculation of the modulus. The torsional mode of vibration is independent of the
value of the Poisson’s ratio.

e Then, the frequency bandwidth at -3dB, Af, is determined with the half-power
bandwidth method applied to the first resonance peak of the input FRF. The phase
angle of the complex modulus is calculated from the frequency bandwidth Af and
the first resonance frequency f according to the following relationship (Clough &
Penzien, 1993):

Af
Qg*C1 = arctan T (4_4)

| FRF to back-analyze or input FRF

-
N

% g
AT EACH TEMPERATURE E 070 e i
3 6
2
é‘ 4
g 2
0 .
0 5000 10000 15000 20000
Frequency\ (Hz)
® Elastic back-calculation of the 1400 Same st
norm of the complex modulus Z1200
%1000 | Elastic FRF resonance
» Longitudinal and Flexural modes £ 800 frequency f
3 600
Poisson’s ratio value must be fixed 2
Ex 400
) < 200
Torsional mode 0
Independent of Poisson’s ratio value 0 5000 10000 15000 20000

Frequency (Hz)

® Determination of the phase

=Arctan( Af) (Equation 4-4)
angle of the complex modulus PessC1 cla £ 4q

Figure 4.5. Principle of the two-stages process to determine the value of the complex modulus
at the first resonance frequency for each temperature in the first step of method I.
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In the second step of the method, the complex modulus simulating the global LVE
behaviour of the material (E pyn1) is determined. To do so, the values of the complex modulus
back-calculated at each temperature in the first step (one value at each temperature) are used as
data points to fit a unique 2S2P1D model and to find the WLF equation of the material. This is
done in three stages explained in Figure 4.6 for an example in which five temperatures are
considered:

e The first stage consists in adjusting manually the values of the 2S2P1D model
constants until the fit in the cole-cole plan between the 2S2P1D model and the data
points is satisfying. Only the values of constants Eo, k, 6 and h of the 2S2P1D
model can be found considering the range of values of the data points. Constants
Eoo and P are fixed to the values of the reference LVE material listed in Table 4.3.
or to values determined from other tests. Constants teisec of the 2S2P1D model
and Ci and Cz of the WLF equation are not considered in this stage because the
Cole-Cole representation of the 2S2P1D model is independent of the frequency
and temperature.

e In the second stage, the experimental characteristic times Texp are determined at
each temperature. To do so, the constants of the 2S2P1D model obtained in the
first stage are used to calculate the values of the complex modulus at the same
frequencies than the data points. The experimental characteristic times Texp are
optimized at each temperature separately to minimize the relative difference
between the norm of the complex modulus calculated as described above and the
norm of the complex modulus of the data points (i.e. the norm of the back-
calculated complex modulus, Esc1).

¢ Finally, the characteristic time at the reference temperature tei1s°c and the constants
Ci1 and Cz of the WLF equation at 15°C are found in the third stage using the excel
solver with characteristic times Texp found in the second stage.
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Figure 4.6. Three-stages process to determine the values of constants Eo, teis°c, k, 0, h, C1 and
C> of the 282P1D model and WLF equation simulating the global LVE behaviour of the
material that are identified in the second step of method I. Example in which five
temperatures are considered.

4.3.1.1.2 Results for the reference LVE material

The method described in the previous section was applied to a cylinder (L=15cm,
D=7.5cm) of the reference LVE material and three modes of vibration (longitudinal, flexural
and torsional) were studied. Values of the constants of the 2S2P1D model of the reference LVE
material considered in this section are slightly different than those listed in Table 4.3and the
reference temperature is 10°C instead of 15°C (cf. Paper I and Paper II). The effect of the
temperature was also studied and ten temperatures between -40°C and 50°C were used. For the
longitudinal and flexural modes of vibration, the influence of the fixed value of the Poisson’s
ratio for the elastic back-calculation in the first step was studied. To do this, three back-
calculations of the norm of the complex modulus corresponding to three different values of the
Poisson’s ratio were performed: vi=0.2, v2 equal to the value of the norm of the Poisson’s ratio
of the reference LVE material at the first resonance frequency for the considered mode of
vibration (v2= |[v'rer-L| for the longitudinal mode and va=|v'rer-¢| for the flexural mode) and
v3=0.45. Consequently, three values of the complex modulus were obtained for the longitudinal
and flexural modes while only one value the complex shear modulus was obtained for the
torsional mode. The notations corresponding to the complex modulus back-calculated in the
first step and to the complex modulus of the reference LVE material are summarized in Table
4.7 for the three studied modes of vibration..
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Table 4.7. Notations used for the complex modulus back-calculated in the first step of method
I and for the complex modulus of the reference LVE material for the three studied modes of
vibration. (Suffixes L, F' and T corresponds respectively to the longitudinal, flexural and
torsional modes).

. , Complex modulus from the Complex modulus of the
Mode of Poisson’s . st 3
- . . back analysis at the 1 reference LVE material at
Vibration ratio st
resonance frequency the 1* resonance frequency
= * —|g* iq’;ch
vi=0.2 Epcir1 = EBCI—LI"e
. . * * * o * * i
Longitudinal  va=W'rert|  Epcy s =|Epcipale Pl Epepp = ‘ERef—L"e TR
= * " Ppeyp
vs=0.45 Epci-13 =|Epci-13|€
= * —|g* iq’;cui
vi=0.2 Epci-r =|Epci-p|-€
* * * i * * i
Flexural V=V rerrl  Epeppy = EBCI—FZ"e BCIF Brepy = ‘ERef—F"e Prer-¥
= * —|B* Ppe)_p
v3=0.45 Epci-r3 =|Epci-rs|-€
. Independent x % ip * x io
— BCI1-T — Ref-T
Torsional of v Ggcr-t =|Gpei-t|-© GRref_1 = ‘GRef—T € e

The relative difference (respectively the difference) between the norm (respectively the
phase angle) of the complex modulus evaluated in the first step of method I and the norm
(respectively the phase angle) of the complex modulus of the reference LVE material calculated
at the same frequencies is presented in Figure 4.7. A good agreement is seen for both the norm
and phase angle of the complex modulus for the low temperatures. Figure 4.7 (a) also shows
that the Poisson’s ratio has a limited impact (less than 5%) on the calculation of the norm of the
complex modulus. For temperatures higher than 10°C, differences increase, especially for the
phase angle. For temperatures higher than 30°C, it is seen on Figure 4.7 (b) that the phase angle
cannot be evaluated with the back analysis method for the longitudinal and torsional modes.
These observations highlight the limits of the half-power bandwidth method for the evaluation
of the phase angle when there is too much damping in the material. Because of the previous
observations, it is expected that the global LVE behaviour determined in the second step of the
method will not be in good agreement with the behaviour of the reference LVE material.
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Figure 4.7. a) Relative difference between the norm of the complex modulus determine in the
first step of method I (E"pci-vrr) and the norm of the complex modulus of the reference LVE
material (E"rer-1F1); (b) difference between the phase angle of the complex modulus
determined in the first step of method I (¢ sci-Lrr) and the phase angle of the complex
modulus of the reference LVE material (¢ rer1/r/1). Suffixes L, F and T corresponds
respectively to the longitudinal, flexural and torsional modes.

The values of the constants of the 2S2P1D model and WLF equation determined in the
second step of the method are listed in Table 4.8 for the three studied modes of vibration. Values
listed in Table 4.8were obtained by using as input data points for the second step:

e For the longitudinal and flexural modes, the values of the complex modulus back
calculated in the first step that are in best agreement with the values of Erer (E Bci-
12 for the longitudinal mode and Esc1-r2 for the flexural mode)

e For the torsional mode, the values of G'sci-r transformed to complex modulus
values using equation (2-16).

Table 4.8. Values of the seven constants Eo, tei0°c, k, 6, h, C1 and C2 of the 2S2P1D model and
WLF equation simulating the global LVE behaviour of the material determined in the second
step of method I for the three studied modes of vibration.

2S2P1D model WLF equation at 10°C
Mode of vibration | Eo (MPa) Tgiec (S) k o h C C;
Longitudinal 34 900 0.013 0.162 135 0.49 17.2 132.8
Flexural 34 900 0.065 0.182 2.10 0.62 27.2 197.5
Torsional 35000 0.023 0.185 190 0.58 24.2 186.9
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The master curves at 10°C of the relative difference (respectively the difference) between
the norm (respectively the phase angle) of E'pyn1 and E'rer are plotted in Figure 4.8. As
expected, Figure 4.8 confirms the observations raised from Figure 4.7. For all modes of
vibration, method I is very accurate for temperatures lower than 10°C (or reduced frequencies
higher than 10° Hz) with less than 2% of error for the norm of the complex modulus and 0.5°
for the phase angle. However, for temperatures higher than 10°C (or reduced frequencies lower
than 10° Hz), the error increases and the norm of the complex modulus is underestimated up to
30% while the phase angle is overestimated up to 10°

5 12

0+ 10 T.~10°C w
§ 5| 10°C ref—
— i 8 -s- Longitudinal mode
Eﬁf -10 -e- Longitudinal mode 26 - Flexural mode
= -15 - -+ Flexural mode & -s- Torsional mode
o0 L -=- Torsional mode - 4
L s
T 25 | T.=10°C s 2
530 © @) 50 . -
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Figure 4.8. Master curve at 10°C of: (a) the relative difference between the norm of the
complex modulus determined with method I (|E"pyi|) and of the reference LVE material
(\E"refl) ;(b) the difference between the phase angle of the complex modulus determined with
method I (©e+pyn1) and of the reference LVE material (QE+ref). Results for three studied modes
of vibrations.

To conclude, method I is very interesting to evaluate quickly and accurately the high
frequencies or low temperatures behaviour of bituminous mixtures. However, it is not
recommended to use this method for characterizing bituminous mixtures properties on a wider
frequency and temperature range.

4.3.1.2 Method II: determination of the complex modulus simulating the global LVE
behaviour of the material in one step

4.3.1.2.1 Principle of the method

In this method, the behaviour of the material is modelled with the 3-dim version of the
2S2P1D model and the temperature dependency is described with the WLF equation. The
constants of the 2S2P1D model and of the WLF equation simulating the global LVE behaviour
of the material are directly determined from one single optimization of all the input FRFs of the
material for a given mode of vibration. The optimization consists in optimizing FRFs calculated
with the FEM (cf. section 4.1.1) to match the input FRFs. This is done with an optimization
algorithm that adjusts iteratively the values of the constants of the 2S2P1D model and WLF
equation until the fit with the input FRFs is good enough.

The direct analysis showed that constants Eoo, 3, h, voo, vo and tvisec of the 2S2P1D model
have a negligible influence on the FRFs calculation, at least as a first approximation (see section
4.2.2). Therefore, these six constants can be fixed and are not identified during the optimization.

-49-



NUMERICAL SIMULATIONS ON REFERENCE LVE BITUMINOUS MIXTURE

Consequently, the complex Poisson’s ratio is not determined with this method. In this thesis,
the values chosen for the six fixed constants of the 2S2P1D model were set to the values of the
constants of the reference LVE material (cf. Table 4.3) or to values determined from other tests.
Note that constant Tvisec is not fixed to a constant value but is continuously adjusted so that the
ratio Yev between teisec and tvisec is constant (equal to the value of the reference LVE material
unless the value is known from other tests):

T o
Vgy = —22°C = Constant

Tvisec (4-5)
The four remaining constants Eo, Te15°c, k and 6 of the 2S2P1D model are determined with

this method. In addition, if the temperature dependency of the characteristic time tEis°c is not

known, constants Ci and Cz of the WLF equation must also be determined in the optimization

process. In the contrary case, they can be fixed to their known values during the optimization.

The frequencies used as input in the optimization are chosen around the resonance
frequencies seen on the input FRFs according to previous studies that showed their meaningful
importance (Gudmarsson, Ryden, & Birgisson, 2012; Gudmarsson, et al., 2014; Gudmarsson,
Ryden, Di Benedetto, & Sauzéat, 2015). At each temperature, a total of 10 frequencies are
selected along each resonance peak and the error function to minimize is defined as follow:

5
Error= > E
Tzzl T (4-6)
where T is the index of the temperatures and Er is the error at temperature T defined as:
NpeakT 10 HHIini' _‘HOptT,--
Er= 2 J J (4-7)
= Hipr, )

where Hmpr is the input FRF at temperature T, Hopr is the FRF calculated during the
optimization process at temperature T, NpeakT 1s the number of resonance peaks at temperature
T, 1 is the index of the peaks and j is the index of the frequencies. The starting values of the
constants to be optimized can be adjusted manually before launching the optimization to reduce
the initial error. The optimization is performed in MATLAB with the “fminsearch” algorithm
and the optimization is stopped when the error and the parameter tolerance of 1% is reached
(e.g. when the variation of the error and of all the values of the constants to be optimized is less
than 1% between two iterations of the algorithm). The principle of the method is explained in
Figure 4.9 in the cases for which constants C1 and Cz of the WLF equation are fixed.
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Figure 4.9. Principle of the optimization process for method Il in the cases for which
constants Ci1 and C2 of the WLF equation are fixed. In the other cases, constants Ci and C>
are optimized along with constants Ev, tei5°c, k and o6 of the 2S2P1D model.

This method is based on a unique optimization of all the input FRFs for a given mode of
vibration. Potential measurement errors at some temperatures in physical tests may not be
detected with this global approach. A good alternative is to use a two steps process including a
local approach in the first step, as for method I (cf. 4.3.1.1.1). The methods that are introduced
in the next sections are all based on this same principle.

4.3.1.2.2 Results for the reference LVE material

The method described in the previous section was tested on the reference LVE material.
Four configurations were studied: the longitudinal mode of a cylinder (L=16cm, D=6.5cm) and
of a straight beam (L=30cm, H=W=5cm), the longitudinal and flexural modes of the same
cylinder and the flexural mode of a disc (L=3cm, D=10cm). For each configuration, the FRFs
of the reference LVE material (reference FRFs) were calculated at five temperatures (-20°C,
0°C, 15°C, 35°C and 50°C) for frequencies between 100 Hz and 20 kHz in steps of 20 Hz.

The values of the four constants Eo, Teis°c, k and 6 of the 2S2P1D model determined with
this method are given in Table 4.9 for the four studied configurations. To obtain these values,
the values of the six constants of the 2S2P1D model (Eoo, B, h, voo, vo and tvis°c) that are not
optimized were fixed to the values of the constants of the reference LVE material listed in Table
4.3 except for tviscc which was continuously adjusted so that the ratio yev between teisec and
Tvisec 1S constant and equal to the ratio of the reference LVE material:

TE]SOC O-l
Stmse 0L 0316
e T e 316 (4-8)
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The temperature dependency of the characteristic time teiscc was supposed known and
constants C1 and Cz of the WLF equation were also fixed the values of the reference LVE
material. The starting values of the four 2S2P1D model constants to be optimized were chosen
randomly by taking values in a range of +/- 15% around the values of the reference LVE
material listed in Table 4.3.

Table 4.9. Values of the four constants Eo, teis°c, k and 6 of the 2S2P1D model simulating the
global LVE behaviour of the material determined with method Il for the four studied
configurations.

Configuration Eo (MPa) TE15°C () k o
C-L 34150 0.117 0.188 2.34
C-P+F 35351 0.088 0.165 2.00
B-L 35059 0.086 0.167 2.03
D-F 35099 0.072 0.164 1.89

Table 4.9 shows that the final values of the four identified constants are slightly different
than the constants of the reference LVE material. Though, the global LVE FRFs are in very
good agreement with the reference FRFs as seen in Figure 4.10 for the longitudinal mode of the
cylinder. The figures corresponding to the three other studied configurations can be found in
APPENDIX E. They confirm observations raised from Figure 4.10. It shows that the
optimization process works correctly for all the studied configurations
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Figure 4.10. Comparison of the reference FRFs (noted Ref. FRF) with the global LVE FRFs
(noted G.LVE.FRF) for method II. Values of the reference FRFs at the frequencies where the

optimization is performed (noted Opt. Points) are also plotted. Example for the longitudinal
mode of the cylinder at: (a) -20°C; (b) 0°C; (c) 15°C; (d) 35°C; (e) 50°C.

Then, the values of E'pyn2 (i.e. the values of the complex modulus calculated with the
2S2P1D model simulating the global LVE behaviour which constants values are listed in Table
4.9) were compared with the values of E*rer. The comparison was performed for six frequencies
selected at each temperature in a narrow domain including all the resonance frequencies (cf.
Figure 4.11). The frequencies corresponding to each configuration studied are given in
APPENDIX E The principle of the comparison is illustrated in Figure 4.11.
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Figure 4.11. Principle of the comparison of the values of the complex modulus of the
reference LVE material (E"ref) with the values of the complex modulus determined in the
second inverse method (E*pynz). Example for the longitudinal mode of the cylinder at 35°C.

Figure 4.12 shows the Cole-Cole plot and the master curves at 15°C of the norm and phase
angle of the different complex modulus (E’pyn2 and E'ref) for the longitudinal mode of the
cylinder. A very good fit is seen between the values of E'pyn2 and E'rer. This observation is
confirmed in Figure 4.13 where master curves at 15°C of the relative difference (respectively
the difference) between the norm (respectively the phase angle) of E pyn2 and E"rer is presented.
It is seen in Figure 4.13 that the maximum relative difference is about 5% for the norm of the
complex modulus and the maximum difference is less than 1° for the phase angle except for the
longitudinal mode of the straight beam for which the difference reaches 2° at 50°C. The overall
agreement between the values of E'pyn2 and E'rer is very satisfying. It demonstrates the good
accuracy of the method. However, it should be remembered that the shift factors were supposed
known before the optimization, which is generally not the case in physical experimentation.
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Figure 4.12. Comparison of the values of the complex modulus determined with method 11
(E"Dyn2) with the values of the complex modulus of the reference LVE material (E"ref). (a)
Cole-Cole plot; (b) and (c) master curves of the norm and of the phase angle of the complex
modulus at 15°C. Results for the longitudinal mode of the cylinder.
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