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ABSTRACT 

Characterizing the behaviour of bituminous materials is essential for the design of 

pavement structures and to predict their service life more accurately. Indeed, these materials 

are subjected to complex phenomenon, mechanical, thermal, physical and chemical that are 

often coupled. Due to the complexity of the phenomenon observed and with the development 

of new materials and new fabrication process, advanced laboratories studies and rheological 

modelling are necessary.  

With the existing test methods, it is possible to characterize bituminous materials in 

laboratory using expensive devices such as hydraulic presses. These conventional tests consist 

in applying cyclic loading to determine the complex modulus and complex Poisson’s ratio of 

the tested materials. However, complicated experimental procedures are necessary to accurately 

perform the time-consuming preparation of the test set-up and tested samples must be either 

fabricated in laboratories or cored from road infrastructures.  

In this thesis, the possibility of using dynamic tests to characterize accurately the linear 

viscoelastic (LVE) behaviour of bituminous mixtures is studied. Dynamic tests are economic 

nondestructive tests, simple to perform and could be adapted for in situ measurements. The 

experimental methodology developed to measure the frequency response functions (FRFs) 

from dynamic impact loadings is first presented. Then, different inverse methods to determine 

the LVE properties from FRFs measurements are proposed and their accuracy is evaluated 

using numerical experimentation. Finally, the performed experimental campaigns and 

associated results are presented. In these experimental campaigns, dynamic tests and 

conventional cyclic tension-compression tests were performed on a wide variety of bituminous 

mixtures including 5 different materials and 28 specimens. The repeatability of the dynamic 

tests was studied and the LVE properties determined from both tests were compared. 

The numerical experimentation showed that three of the proposed methods of inverse 

analysis are accurate to characterize the LVE behaviour from FRFs. Two of these methods only 

give access to the complex modulus and one gives access to both the complex modulus and 

complex Poisson’s ratio. In addition, one method is very interesting because of its simplified 

approach that considerably facilitates the optimization process and reduces the computational 

time. 

Results from the experimental campaigns showed the good repeatability of dynamic tests, 

even when using different geometries (cylinders, discs and straight beams) and modes of 

vibration (longitudinal and flexural). In addition, results from dynamic tests and from 

conventional cyclic complex modulus tests are in good agreement, especially for the low 

temperatures (or high frequencies). The norm of the complex modulus determined from 

dynamic tests is little higher (about 15% higher on average at 15°C and 10 Hz), which can be 
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explained, at least for a part by the nonlinear behaviour of bituminous mixtures with the strain 

amplitude (strain amplitude is about 500 times lower in dynamic tests). Dynamic tests also have 

interesting potential to determine the complex Poisson’s ratio even if some differences exist 

between the results from dynamic and cyclic tests.  

The results of this research suggest that dynamic tests are a great alternative to conventional 

cyclic tests and they can be used to characterize accurately the LVE behaviour of bituminous 

mixtures. 
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RESUME 

La caractérisation du comportement des matériaux bitumineux est primordiale pour 

pouvoir dimensionner les structures de chaussées, mais aussi pour prédire de manière plus 

précise leur durée de vie. En effet, ces matériaux sont soumis à des phénomènes complexes, 

mécaniques, thermiques, physiques et chimiques qui apparaissent souvent de manière couplée. 

Devant la complexité des problèmes observés et avec le développement de nouveaux matériaux 

et de nouveaux procédés de fabrication, des études avancées de laboratoire et des modélisations 

rhéologiques sont nécessaires.  

Les méthodes existantes permettent de caractériser avec les matériaux en laboratoire grâce 

à l’utilisation de presses hydrauliques très couteuses. Ces essais consistent à appliquer des 

chargements cycliques pour déterminer le module complexe et le coefficient de Poisson 

complexe des matériaux testés. Cependant, les procédures expérimentales pour préparer le 

montage de ces essais avec la précision nécessaire sont complexes et longues à mettre en œuvre. 

De plus, les échantillons testés doivent être fabriqués en laboratoire ou prélevés sur la chaussée. 

 Dans cette thèse, la possibilité d’utiliser des essais dynamiques pour caractériser le 

comportement viscoélastique linéaire (VEL) des enrobés bitumineux est étudiée. Il s’agit 

d’essais non destructif, simples à appliquer et qui peuvent s’adapter pour des mesures in-situ. 

La procédure expérimentale développée pour mesurer les fonctions de réponse fréquentielle 

(FRFs) à partir d’essais dynamiques est d’abord présentée. Puis différentes méthodes d’analyse 

inverse permettant d’obtenir les propriétés VEL à partir de FRFs mesurées sont proposées et 

leur précision est évalué grâce à des simulations numériques. Enfin, les campagnes 

expérimentales et les résultats associés sont présentés. Dans ces campagnes expérimentales, des 

essais dynamiques et des essais cycliques conventionnels de traction-compression ont été 

réalisés sur une large gamme d’enrobés incluant 5 matériaux différents et 28 échantillons. La 

répétabilité des essais dynamiques a été étudiée et les propriétés VEL déterminées par les deux 

types d’essais ont été comparées. 

Les simulations numériques ont permis d’identifier trois méthodes d’analyse inverse qui 

permettent de caractériser le comportement VEL avec précision à partir de FRFs. Deux de ces 

méthodes permettent seulement de déterminer le module complexe et une permet également de 

déterminer le coefficient de Poisson complexe. De plus, l’une des méthodes est particulièrement 

intéressante car son approche simplifiée permet de faciliter grandement le procédé 

d’optimisation et de réduire le temps de calcul. 

Les résultats des campagnes expérimentales ont montré la bonne répétabilité des essais 

dynamiques, même en utilisant différentes géométries (cylindres, disques, poutres droites) et 

modes de vibration (longitudinal et flexion). De plus, les résultats des essais dynamiques et des 

essais cycliques de module complexe présentent une bonne concordance, particulièrement pour 
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les basses températures (ou hautes fréquences). La norme du module complexe déterminée avec 

les essais dynamiques est légèrement plus élevée (environ 15% plus élevée en moyenne à 15°c 

et 10 Hz), ce qui peut s’expliquer, au moins en partie, par le comportement non linéaire des 

enrobés bitumineux par rapport à l’amplitude de déformation (l’amplitude de déformation est 

environ 500 fois plus faible dans les essais dynamiques). Les essais dynamiques sont également 

intéressants pour déterminer le coefficient de Poisson complexe, bien que des différences 

existent entre les résultats des essais dynamiques et cycliques. 

Les résultats de ce travail de recherche suggèrent que les essais dynamiques sont une vraie 

alternative aux essais cycliques et ils peuvent être utilisés pour caractériser le comportement 

VEL des enrobés bitumineux avec précision. 
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1 INTRODUCTION 

Roads are major infrastructures that greatly contribute to the economic development of a 

country. Most of the medium and heavy traffic pavement infrastructures are constructed with 

bituminous materials. For example, in France, the length of the paved road network exceed one 

million kilometers (Commissariat général au développement durable, 2018). These structures 

are conceived for a certain lifetime determined from design methods. Traditionally, empirical 

considerations have been used in French design methods to determine material properties 

suitable for specific climate and traffic conditions. Therefore, the applicability of this type of 

approach is limited and it has not helped understanding the fundamental mechanical behaviour 

of pavements. Nowadays, the road construction industry increasingly looks to use mechanical 

design methods to optimize the costs and the lifecycles of pavement infrastructures. In the 

meantime, new materials (e.g. mixtures with increasing reclaimed asphalt pavement (RAP) 

content, polymer modified bitumen, etc.) and new fabrication process (e.g. cold or warm 

coating) are developing, within a sustainable development approach. In this context, accurate 

characterization of the mechanical properties of bituminous materials is necessary.  

In conventional test methods, cyclic loadings are applied to determine the linear 

viscoelastic (LVE) properties of bituminous mixtures (Corté & Di Benedetto, 2005). However, 

this type of test requires the use of expensive experimental devices such as hydraulic presses. 

In addition, complicated experimental procedures are necessary to accurately perform the time-

consuming preparation of the test set-up and tested samples must be either fabricated in 

laboratories or cored from road infrastructures.  

Dynamic tests, which are based on wave propagation, are a great alternative to 

conventional cyclic tests. They are nondestructive tests, economic and simple to perform. They 

also can possibly be adapted for in-situ measurements on pavement structures. Impulse 

techniques using impact loadings (ASTM-C215-02, 2002; Halvorsen & Brown, 1977) are 

known to provide accurate characterization of material properties in the case of elastic materials 

(Migliori & Sarrao, 1997). For these tests, the elastic modulus is generally derived from the 

measurement of the fundamental resonance frequency using simplified analytical formulas. For 

bituminous mixtures, the complex modulus has an elastic component but also a viscous 

component that accounts for the viscous damping of bitumen. Various authors (Whitmoyer & 

Kim, 1994; Kweon & Kim, 2006; Lacroix, Kim, Sadat, & Far, 2009) used the same 

methodology that in the elastic case to determine the complex modulus of bituminous mixtures, 

adding correction factors to take into account the damping and using the half-power bandwidth 

method to determine the phase angle. However, it is not possible to describe accurately the 

frequency dependency of the behaviour over a wide frequency range with this type of analysis. 

The same limitations have been found for tests using measurements of wave propagation time 

on bituminous mixtures (Di Benedetto, Sauzéat, & Sohm, 2009; Mounier, Di Benedetto, & 

Sauzéat, 2012; Norembuena-Contreras, Castro-Fresno, Vega-Zamanillo, Celaya, & Lombillo-
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Vozmediano, 2010). More recently, measurement of frequency response functions (FRFs) have 

been successfully used to characterize various LVE materials over a wide frequency range such 

as metal polymer sandwich beams (Ren, Atalla, & Ghinet, 2011) or highly damped acoustical 

porous materials (Guo, 2000; Renault, Jaouen, & Sgard, 2011; Rupitsch, Ilg, Sutor, Lerch, & 

Döllinger, 2011). FRFs measurements have also been performed on a limited variety of 

bituminous mixtures (Gudmarsson, Ryden, & Birgisson, 2012; Gudmarsson, et al., 2014; 

Gudmarsson, Ryden, Di Benedetto, & Sauzéat, 2015; Carret, Pedraza, Di Benedetto, & Sauzéat, 

2018) and they reveal to be a very promising approach to characterize accurately the LVE 

behaviour of bituminous mixtures over a wide frequency range. 

In this thesis, the possibility of using FRFs measurements to characterize accurately the 

global LVE behaviour of bituminous mixtures has been rigorously studied. More specifically, 

the principle objectives of this research are: 

• To develop an accurate and repeatable methodology to perform FRFs 

measurements on bituminous mixture specimens at different temperatures and for 

different modes of vibration (longitudinal, flexural and torsional). 

• To propose accurate back-analysis (or inverse) methods to determine the LVE 

properties of bituminous mixtures from FRFs measurements. 

• To demonstrate the good accuracy of dynamic tests for different types of 

bituminous mixtures using comparisons of the LVE properties determined from 

dynamic tests and with more conventional cyclic tension-compression complex 

modulus tests. 

The dissertation is organized in seven sections. After this introduction presenting the 

context and the objectives of the study, generalities about the linear viscoelastic behaviour of 

bituminous materials are presented together with an introduction to wave propagation in elastic 

and viscoelastic materials. Then, the experimental methodology developed to perform dynamic 

tests on bituminous mixtures is introduced. Afterwards, numerical simulations of the dynamic 

tests are performed to develop different inverse analysis methods to derive the LVE properties 

from FRFs measurements. In this section, the accuracy of all proposed inverse methods is 

evaluated. In the next section, the different performed experimental campaigns are presented. 

The materials and the tests performed are described and the results and analyses procedures are 

reported. The papers published in or submitted to scientific journals during this thesis are 

gathered in the sixth section. Finally, the general conclusions of the study and perspectives for 

future research are presented. 
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2 ISOTROPIC LINEAR VISCOELASTIC (LVE) 

BEHAVIOUR 

2.1 General considerations 

2.1.1 Definition of an isotropic linear viscoelastic behaviour 

A material is defined isotropic when its rheological properties are identical in all directions. 

Bituminous mixtures are generally considered as isotropic materials. Nevertheless, the behavior 

of bituminous mixtures is not perfectly isotropic in practice (Motola & Uzan, 2007; Di 

Benedetto, Sauzéat, & Clec'h, 2016). 

When subjected to small amplitude strain, bituminous mixtures express a linear 

viscoelastic behavior. Viscoelasticity is a time-dependent behaviour, characterizing materials 

showing both an elastic and a viscous behaviour when a deformation is imposed. To be defined 

as viscoelastic, a material must show a complete stress recovery at an infinite time (the residual 

stress σ∞ at t∞ is equal to 0) when subjected to a “cancellation test” (Salençon, 2009). This 

test illustrated in Figure 2.1 consists in applying a constant strain for a given time before 

returning to zero and to monitor the resulting stress. This principle is valid only for non-aging 

materials whose properties remain unaltered when the material is undisturbed. 

 

Figure 2.1. “Cancellation test”: (a) strain history; (b) resulting stress. 

The linearity of the behaviour is valid if it verifies Boltzmann superposition principle 

(Boltzmann, 1874). It means that the response to the superposition of different loads is equal to 

the superposition of the individual responses to each load. The LVE behaviour can be 

characterized in time domain or in frequency domain with material properties similar to elastic 

properties such as the Young’s modulus E or the Poisson’s ratio ν. However, in the case of LVE 
materials, the mechanical properties are complex numbers which depend on time and 

frequency. 
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2.1.2 Time domain properties 

Creep and relaxation are two classical quasi-static tests used to characterize the LVE 

behaviour in time domain. In the creep test (Figure 2.2), a stress σ0 is applied to the material 

initially at rest and kept constant over time. It is observed that the resulting strain signal ε 
increases with time. This corresponds to a material flow called the creep phenomenon. The 

creep function D, defined as the ratio between the variable strain and the constant stress is 

obtained from this test:  

 
0

(t)
D(t)

ε
=
σ

 (2-1) 

 

Figure 2.2. Creep test for a LVE material: (a) imposed stress; (b) resulting stain. 

In the relaxation test (Figure 2.3), an instant strain ε0 is applied to the material initially at 

rest and kept constant over time. It is observed that the resulting strain signal σ decreases with 
time. This is called the relaxation phenomenon. The relaxation function J, defined as the ratio 

between the variable stress and the constant strain is obtained from this test: 

 
0

(t)
J(t)

σ
=

ε
 (2-2) 

 

Figure 2.3. Relaxation test for a LVE material: (a) imposed strain; (b) resulting stress. 

It is possible to extend equations (2-1) and (2-2) in the case of strain or stress varying with 

time from the application of Boltzmann superposition principle. Relations obtained between 

the strain signal response ε to the applied stress history σ and between the stress response σ to 
the applied strain history ε are presented in equations (2-3) and (2-4) when strain and stress are 

differentiable: 
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t

0

(t) D(t ) ( )dε = − τ σ τ τ∫   (2-3) 

 

 

t

0

(t) J(t ) ( )dσ = − τ ε τ τ∫   (2-4) 

where τ is a time-variable used in the integration, D is the creep function and J is the relaxation 

function. These convolution integrals are difficult to apply. Therefore, the Laplace-Carson 

transform is introduced to turn these integrals into algebraic equations and to ease calculations 

(Corté & Di Benedetto, 2005). The Laplace-Carson transform of a time-dependent function f is 

defined as: 

 
pt

0

f (p) p f (t)e dt

∞
−= ∫  (2-5) 

where p is a complex variable corresponding to time in the transform domain. After application 

of the Laplace-Carson transform, equations (2-3) and (2-4) become: 

 (p) D(p) (p)ε = σ   (2-6) 
 

 (p) J(p) (p)σ = ε   (2-7) 

where ε , σ , D and J are the Laplace-Carson transforms of strain, stress, creep function and 

relaxation function. It should be noted that equations (2-6) and (2-7) are very similar to 

fundamental relations of elasticity. These equations can be used to obtain the LVE solution to 

a given boundary value problem from the elastic solution for the same problem, according to 

the elastic-viscoelastic correspondence principle (Biot, 1959). Moreover, the existing 

reciprocity between the Young’s modulus and the relaxation modulus in the elastic theory is 

preserved: 

 D(p)J(p) 1=   (2-8) 

2.1.3 Frequency domain properties: complex modulus and complex Poisson’s ratio 

If a LVE material is subjected to an axial sinusoidal stress 0(t) sin( t)σ = σ ω  where ω=2πf 
is the pulsation and f is the frequency, the steady state resulting axial strain 

1 01(t) sin( t )ε = ε ω −ϕ  is also sinusoidal at the same frequency and with a phase lag ϕ called the 

phase angle. Considering the complex notation (i²=-1), the stress and strain can be written: 

 * i t
0(t) e ωσ = σ  (2-9) 

 

 1
* i( t )

01(t) e ω −ϕε = ε  (2-10) 
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The complex modulus E* is defined as the ratio between the sinusoidal stress and the 

sinusoidal strain: 

 
1

i t*
* i * i0 0

* i( t )
0101

e
E e E e

e

ω
ϕ ϕ

ω −ϕ
σ σσ

= = = =
εε ε

 (2-11) 

where |E*| is the norm of the complex modulus defined as the ratio between the stress and strain 

amplitudes. Note that the complex modulus E* corresponds to the Laplace-Carson transform 

of the relaxation function calculated in p=iω. The complex modulus can also be expressed as: 

 *
1 2E E iE= +  (2-12) 

where E1 is the storage or elasticity modulus that accounts for the recoverable part of the energy 

stored by the material during loading and E2 is the loss modulus that accounts for the energy 

lost during loading due to the irreversible viscous component of the behaviour. If the phase 

angle ϕ=0°, the behaviour is purely linear elastic while if ϕ=90°, the behaviour is purely viscous. 

Between these two extreme case, when 0<ϕ<90, the behaviour is considered LVE. 

 In addition to the axial response, a radial response is also observed due to Poisson’s 

ratio effect. During simple compression loading on isotropic LVE material, when a contraction 

is observed in the axial direction, an extension is observed in the radial direction. Therefore, 

the axial strain and the radial strain are in phase opposition but the radial strain may also present 

a phase lag with respect to the axial strain so that the radial strain is expressed in complex 

notation as:  

 
2

i( t ) i( t )*
02 02(t) e eν νω −ϕ+π+ϕ ω −ϕ+ϕε = ε = −ε  (2-13) 

where π represents the phase opposition between the axial and radial strains and ϕν is the phase 

angle of Poisson’s ratio. The complex Poisson’s ratio is then defined as the opposite of the ratio 

between the radial strain and the axial strain:  

 

i( t )*
i i* *02 022

* i( t )
011 01

e
e e

e

ν
ν ν

ω −ϕ+π+ϕ
ϕ ϕ

ω −ϕ
ε εε

ν = − = = = ν
εε ε

 (2-14) 

Instead of an axial sinusoidal loading test, a shear sinusoidal loading test may also be used. 

In this case, the complex shear modulus is obtained:   

 G G

G

i t*
i i* *0 0

* i( t )
00

e
G e G e

e

ω
ϕ ϕ

ω −ϕ
τ ττ

= = = =
γγ γ

 (2-15) 

where γ is the shear strain applied to the material, τ is the resulting shear stress and ϕG is the 

phase angle of the complex shear modulus. For an isotropic behavior, E*, ν* and G* are linked 
similarly as in the elastic case: 
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*
*

*

E
G

2(1 )
=

+ ν
 (2-16) 

The complex modulus and complex Poisson’s ratio can be represented with different 

graphs that highlight their frequency and temperature dependency. The isotherms (respectively 

the isochrones) present the norm or the phase of the complex modulus or complex Poisson’s 

ratio as a function of the loading frequency (respectively the tested temperature). These curves 

show at a fixed temperature (respectively frequency) the effect of the loading frequency 

(respectively the temperature) as seen in Figure 2.4. Another graphical representation is the 

Cole-Cole plot (Figure 2.4 (a)) where the imaginary part of the complex modulus or complex 

Poisson’s ratio is plotted against the real part. This representation is well adapted for the low 

temperatures or high frequencies that are particularly visible. In the Black space (Figure 2.4 

(b)), the phase angle of the complex modulus is plotted against the norm. This representation 

suits well the high temperatures or low frequencies. Cole-Cole and Black representations are 

particularly interesting because the curves obtained are independent of the temperature and 

frequency if the time temperature superposition principle is respected. 

2.1.4 Time-Temperature Superposition Principle 

The complex modulus generally depends on temperature and frequency for LVE materials. 

Observations on several LVE materials raised by different authors (Gross, 1968; Ferry, 1980) 

showed that the complex modulus values tend to form a unique curve in the Cole-Cole or Black 

representations, independently of loading frequency or test temperature as shown in Figure 2.4 

(a) and (b). Materials presenting this behaviour are called “thermo-rheologically simple” (Corté 

& Di Benedetto, 2005) and their frequency and temperature dependency can be reduced to one 

single parameter. Therefore, values of the complex modulus obtained at different pairs of 

temperature and frequency might be equal and an equivalency exists between the effects of 

temperature and frequency. This equivalency is called the Time-Temperature Superposition 

Principle (TTSP). 

The main consequence of the TTSP is that one single variable can be used to describe the 

variations of the complex modulus. Therefore, it is possible to generate unique curves 

describing the variations of the norm or the phase of the complex modulus as a function of 

frequency at any chosen reference temperature Tref. This type of curves, called master curves, 

are obtained by shifting the isothermal curves along the frequency axis. The frequencies of each 

isotherm are multiplied by a shift factor aT, which depends only on the temperature T of the 

isotherm and the reference temperature Tref (cf Figure 2.4). The frequencies multiplied by the 

shift factors are called reduced frequencies and the following equation links the complex 

modulus at a frequency f and a temperature T to the modulus at the corresponding reduced 

frequency f.aT and temperature Tref: 

 * *
T refE (f ,T) E (f .a (T),T )=  (2-17) 

The shift factors are commonly fitted to temperature using the Williams-Landel-Ferry 

(WLF) equation (Williams, Landel, & Ferry, 1955): 
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1 ref

T
2 ref

C (T T )
log(a )

C T T

− −
=

+ −
 (2-18) 

where C1 and C2 are material constants varying with the reference temperature Tref. The 

WLF equation can be applied over the entire range of temperature tested. It is therefore possible 

to generate master curves at any desired reference temperature. Consequently, application of 

the TTSP is very interesting because it gives access to values of the complex modulus at 

frequencies and temperatures not accessible experimentally. Note that the TTSP is also 

applicable to generate master curves for the complex Poisson’s ratio. For bituminous Materials 

the same values of the shift factor are obtained for the complex modulus and complex Poisson’s 

ratio. (Nguyen Q. T., Di Benedetto, Sauzéat, & Tapsoba, 2013). 

 

Figure 2.4. Example of graphical representation for the complex modulus: (a) Cole-Cole 

representation; (b) Black space representation; (c) master curve of the norm of the complex 

modulus at 15°C; (d) master curve of the norm of the complex modulus at 15°C. 
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2.2 Complex modulus test developed at ENTPE 

Different test geometries may be used with homogeneous or non-homogeneous test to 

characterize the complex modulus of bituminous mixtures. At ENTPE, tension-compression 

tests on cylindrical specimen are used, which is a homogeneous test, allowing to obtain the 

rheological behaviour without assumptions. In this type of tests, a hydraulic press is used in 

strain controlled mode to apply a homogeneous axial loading to a cylindrical sample while the 

material response is measured. The samples have approximately a 75 mm diameter and a 150 

mm length. They are glued to the upper and lower aluminum caps prior to the test. The upper 

cap is fixed to the press actuator which generates tension or compression in the specimen while 

the lower cap is attached to the fixed axis of the press.  

The experimental set-up used in this thesis is presented in Figure 2.5. The targeted axial 

strain amplitude was about 50 μm/m. The behaviour is considered LVE for this imposed strain 
level. The axial strain was measured with three extensometers placed at 120° from each other. 

Each extensometer has a total span of 72.5 mm with a measuring range of ±1 mm and a 0.5 μm 
accuracy. The axial load was measured with a Dynacell® load cell having a ±25kN capacity 

and a 25N accuracy. The radial strain was deduced from measurements of two non-contact 

transducers (Micro-Epsilon eddy current sensors with 0-500 μm range and a resolution of 0.05 
μm) placed diametrically opposed. Tests were performed inside a thermal chamber operating 
between -40°C and 150°C. A PT100 temperature probe with a 0.1°C accuracy was used to 

measure the temperature at the surface of the specimen. The tension-compression tests were 

performed at 8 different loading frequencies from 0.003Hz to 10Hz and 9 different temperatures 

from -25°C to 55°C in steps of 10°C.  

 

Figure 2.5. Test set-up for the cyclic tension-compression tests (ENTPE laboratory) and 

detailed scheme of the sample and measurement sensors. 

The complex modulus and complex Poisson’s ratio values are then deduced from the 

measurements of the sensors and according to equations (2-11) and (2-14). An example of the 

experimental signals recorded by the sensors during a tension-compression test is given in 

Figure 2.6. for two loading cycles. Further information about cyclic tension-compression tests 

can be found in literature (Gayte, Di Benedetto, Sauzéat, & Nguyen, 2015; Perraton, et al., 

2016; Graziani, et al., 2017).  
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Figure 2.6. Example of experimental signals recorded during a tension-compression test for 

two loading cycles at 15°C and 1 Hz: axial stress σ, axial strain �1 and radial strain �2. 

2.3 Waves propagation in isotropic linear elastic and LVE materials 

When a deformable solid is subjected to an external force, a deformation is induced in the 

solid. This deformation generates a disturbance of the matter around its equilibrium state. As 

particles of the medium are deformed, the disturbance also called wave progresses through the 

medium, carrying energy inside the medium through motions of particles and without any mass 

transport. This is called a mechanical wave. The study of the propagation of this type of waves 

in solids is very well documented in literature (Mandel, 1966; Graff, 1975; Ingard, 1988; 

Bedford & Drumheller, 1994). The aim of this section is to describe the case of waves 

propagating in isotropic linear elastic and LVE materials.  

2.3.1 Types of body waves 

Body waves are waves propagating inside a solid. Two types of particle motion are 

observed for the body waves, resulting in two different types of body waves: 

• The primary waves or pressure waves called P-waves. They are associated to 

relatively small particle displacements and are polarized in the same direction of 

propagation. P-waves are the fastest body waves and their mode of propagation is 

always longitudinal. An illustration of the particle motions corresponding to P-

waves is given in Figure 2.7.  

• The secondary waves or shear waves called S-waves. They are polarized in the 

transverse direction of propagation. S-waves are slower than P-waves and their 

mode of propagation is always transverse. An illustration of the particle motions 

corresponding to S-waves is given in Figure 2.7. 
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Figure 2.7. Particle motions characteristic of body waves propagation: (a) P-waves; (b) S-

waves (Shearer, 1999). 

2.3.2 Wave equation and resonance phenomenon 

Newton’s second law states that sum of force applied to a solid are equal to mass times 

acceleration, which could be written in continuous mechanics without bulk forces: 

 
2

2

u
div( )

t

∂
σ = ρ

∂
 (2-19) 

where div is the divergence tensor operator, σ is the stress tensor, ρ is the density, u is the 
displacement vector and t is the time. If the material is isotropic and linear elastic, Hooke’s law 

is valid: 

 div(u) 2 tr( )σ = λ + µ ε  (2-20) 

where div is the divergence vector operator, λ and μ are Lamé’s elastic constants of the material 
and ε is the strain tensor. In the small strain domain, the strain tensor is linked to the 
displacements as follow: 

 ( )T1
grad(u) grad(u)

2
ε = +  (2-21) 

where grad is the gradient vector operator. By using equations (2-21) and (2-20), it is possible 

to substitute displacements to stress in equation (2-19): 

 
2

2

u
( )grad(div(u)) u

t

∂
λ +µ +µ∆ = ρ

∂
 (2-22) 

where Δ is the Laplace vector operator, div is the divergence vector operator and grad is the 
gradient vector operator. Equation (2-22) is called the displacement equation of motion or wave 

equation. This equation admits only two solutions that are plane-waves propagating in the same 

direction x and polarized in the direction of propagation or in the transverse direction (Mandel, 

1966). These two solutions correspond to the two types of body waves introduced in the 

previous section. The displacement fields are expressed:  

 
P

x
i t

V
P P0U (x, t) U e

 
ω − 
 =  

(2-23) 
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i t

V
S S0U (x, t) U e

 
ω − 
 =  

(2-24) 

where Up and Us are the displacement fields of the P-wave and of the S-wave, Up0 and Us0 are 

the amplitudes of the displacement of the P-wave and of the S-wave, x is the position, ω is the 
pulsation or angular frequency and Vp and Vs are the velocities of the P-wave and of the S-wave 

that can be expressed: 

 P

2 E(1 )
V

(1 )(1 2 )

λ + µ −ν
= =

ρ ρ + ν − ν
 (2-25) 

 

 S

E
V

2 (1 )

µ
= =

ρ ρ + ν
 (2-26) 

In the case of LVE materials, the frequency dependency of the complex modulus and 

complex Poisson’s ratio has to be taken into account. The Hooke’s law of elasticity is therefore 

modified as follow: 

 * * * * *div(u ) 2 tr( )σ = λ + µ ε  (2-27) 

where σ*, ε*, u*, λ* and μ* are the complex versions of the stress tensor, the strain tensor, the 

displacement vector and Lamé’s constants whose values vary with frequency. In harmonic 

regime at pulsation ω, the stress tensor and the displacement vector are expressed: 

 * i t
0e ωσ = σ  (2-28) 

 

 * i t
0u u e ω=  (2-29) 

where σ0 and u0 are not depending on the frequency but only on space-variables. By application 

of the Boltzmann superposition principle (Boltzmann, 1874), the wave equation in elasticity 

(equation (2-22) is also valid for the LVE behaviour in the Laplace-Carson transform domain 

under the form: 

 * * * * * 2
0( )grad(div(u )) u u 0λ +µ +µ ∆ +ρω =  (2-30) 

This equation is very similar to the one obtain for elastic materials. If the Poisson’s ratio is 

considered as a real number depending on the frequency, the same type of solutions than in the 

elastic case are obtained. However, an attenuation term ϕ depending on the frequency appears 

due to the viscous component of the behaviour. The displacement fields of the P-waves and S-

waves are depending on the frequency (Mandel, 1966) and are expressed: 

 
P P

( )
x tan(x 2)

i t
V ( ) V ( )

P P0U (x, t) U e e

ϕ ω
 

ω − −ω ω ω =  
(2-31) 
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ϕ ω
 

ω − −ω ω ω =  
(2-32) 

where the velocities Vp and Vs of the P-waves and of the S-waves are also depending on the 

frequency. For a fixed frequency, they are expressed: 

 

*

P

E (1 )1
V

(1 )(1 2 )
cos( )

2

−ν
=

ϕ ρ + ν − ν
 (2-33) 

 

 

*

S

E1
V

2 (1 )
cos( )

2

=
ϕ ρ + ν

 (2-34) 

where |E*| and ϕ are the norm and phase angle of the complex modulus at the considered 

frequency and ν is the real value of the Poisson’s ratio at the same frequency. The velocities of 
the body waves are directly linked to the material properties. Therefore, measuring the travel 

time of a wave over a known distance enables an estimation of the modulus. This approach has 

already been used on bituminous mixtures (Nazarian, Tandon, & Yuan, 2005; Di Benedetto, 

Sauzéat, & Sohm, 2009; Norembuena-Contreras, Castro-Fresno, Vega-Zamanillo, Celaya, & 

Lombillo-Vozmediano, 2010; Mounier, Di Benedetto, & Sauzéat, 2012). However, this method 

is limited to the very high frequencies and is accurate only if the plane-waves approximation is 

verified.  

An interesting alternative to record the flying time of body waves is to exploit the 

resonance phenomenon. Resonance occurs when the loading frequency of a material is equal to 

one of its natural frequencies. This is traduced by oscillations of the structure at greater 

amplitudes for these natural frequencies also called resonance frequencies. These resonance 

frequencies are a function of the geometry, of the density and of the material properties (e.g. 

Young’s modulus and Poisson’s ratio for elastic materials; complex modulus and complex 

Poisson’s ratio for LVE materials). Moreover, measurements of resonance frequencies do not 

rely on the plane-waves approximation since they account for the complex vibrations of the 

material. Therefore, measurements of the resonance frequencies have been widely used to 

derive the elastic constants of different materials with methods called resonant ultrasonic 

spectroscopy (RUS) (Maynard, 1996; Leisure & Willis, 1997; Migliori & Sarrao, 1997) or 

resonant acoustic spectroscopy (RAS) (Ostrovsky, et al., 2001). RAS has also been applied to 

LVE materials (Ryden, 2011; Gudmarsson, Ryden, & Birgisson, 2012). In addition to RAS, 

other methods based on the same principle but using only the first resonance frequency have 

been used on LVE materials by various authors (Whitmoyer & Kim, 1994; Kweon & Kim, 

2006; Lacroix, Kim, Sadat, & Far, 2009). 

2.3.3 Strain amplitude corresponding to wave propagation 

Measuring the resonance frequencies of a structure requires to excite the material over a 

wide frequency range. This can be achieved using contact excitation with an impact hammer 
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for example or through non-contact excitation with a speaker for example. This type of 

solicitation corresponds to a certain level of strain that can be determined from the vibratory 

response of the material. For a material excited in harmonic regime at the pulsation ω, the 
following equation links the amplitudes of the displacement and acceleration: 

 2A( ) U( )ω = ω ω  (2-35) 

where A is the amplitude of the acceleration and U is the amplitude of the displacement. For a 

wave propagating in a beam of length L in the main direction x, different wavelengths 

corresponding to different resonant frequencies coexist. They are represented in Figure 2.8. If 

r is the number of the mode of vibrations, for each resonance frequencies fr=ωr/2π, 
displacements inside the material can be expressed: 

 r r rU (x, t) U (x)sin( t)= ω  (2-36) 

where Ur is function of the position x equal to: 

 r r
r

2 x
U (x) U sin( )

π
=

λ
 (2-37) 

where Ur is the maximum amplitude of the displacement at the resonance frequency fr and λr is 

the corresponding wavelength. It’s possible to express equation (2-37) in function of the 

amplitude of the acceleration using equation (2-35). Then, derivation of equation (2-37) and 

injecting in equation (2-36) gives: 

 
0 r

r r r2
rr r

dU 2 A 2 x
(x, t) (x)sin( t) cos( )sin( t)

dx

π π
ε = ω = ω

λλ ω
 (2-38) 

where εr and Ar are the strain and the maximum amplitude of the acceleration at the resonance 

frequency fr. In the case of a P-wave propagating in the x direction and polarized in the same 

direction, Ar corresponds to the term εxx of the strain tensor. In the case of a S-wave propagating 

in the x direction and polarized in the transverse direction y, Ar corresponds to the term εxy of 

the strain tensor. A rapid study of equation (2-38) shows that the maximum strain is obtained 

when x is a multiple of λr/2 and when sin(ωrt)=1. The maximum strain for the resonance fr 

frequency is therefore: 

 
r r

max,r 2 2
r r r r

2 A A

2 f

π
ε = =

λ ω πλ
 (2-39) 

It should be noted that the frequency and the wavelength are linked to the wave velocity. It has 

been established that the maximum strain regarding all the resonance frequencies is obtained 

for the first or fundamental resonance frequency f1 corresponding to the wavelength λ1=2L 

(TenCate, et al., 2004; Pasqualini, 2006): 

 
1

max 2
1

A

4 Lf
ε =

π
 (2-40) 
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Figure 2.8. Example of wavelengths corresponding to resonance frequencies for a wave in a 

beam of length L in the main direction x.  

Equation (2-40) is valid for an elastic behaviour. In the case of a LVE behaviour, the only 

difference is the appearance of an attenuation term due to the viscous component of the 

behaviour. However, this attenuation term, which has a limited impact on the strain, can only 

reduce the maximum strain. Therefore, as a first approximation, the maximum strain 

corresponding to a wave propagating in a LVE material can be considered equal to the 

maximum strain occurring in the case of an elastic behaviour. 

2.4 LVE Continuous spectrum models for bituminous materials 

Many rheological LVE models exist and have the purpose of providing a mathematical 

approximation of real material behaviour. Some of these models have an analogical 

representation which is a combination of springs, dashpots and parabolic elements. The springs 

are purely elastic elements, the dashpots are purely viscous elements and parabolic elements 

are viscous elements with a parabolic creep function. LVE models can have a discrete relaxation 

spectrum or a continuous relaxation spectrum: 

• models with a discrete relaxation spectrum can be represented by the association 

of a finite number of Maxwell elements (a spring and a dashpot associated in 

series) or Kelvin-Voigt elements (a spring and a dashpot associated in parallel).  

• models with a continuous relaxation spectrum can be represented by the 

association of an infinite number of Maxwell and Kelvin-Voigt elements 

In this section, focus is given on two continuous spectrum models used in this work.  

2.4.1 2S2P1D model 

The 2S2P1D model is the association in series of two springs, two parabolic elements and 

one dashpot (Olard & Di Benedetto, 2003; Di Benedetto, Olard, Sauzéat, & Delaporte, 2004). 

This model is an extension of the Huet-Sayegh model (Sayegh, 1965) to adequately describe 

the low frequencies or high temperatures behaviour of bitumen. The Huet-Sayegh model is 

itself an improvement of the Huet model (Huet, 1963) to fit the behaviour of bituminous 
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mixtures at high temperatures or low frequencies. An analogical scheme of the 2S2P1D model 

is presented in Figure 2.9. 

 

Figure 2.9. Analogical representation of the 2S2P1D model.  

The 2S2P1D model has an expression for the complex modulus that depends on seven 

constants: 

 
* 0 00

00 k h 1

E E
E ( ) E

1 (i ) (i ) (i )− − −
−

ω = +
+ δ ωτ + ωτ + ωβτ

 (2-41) 

where ω is the pulsation (ω=2πf where f is the frequency), E00 is the static modulus when ω0, 

E0 is the glassy modulus when ω+∞, k and h are dimensionless constants of the two parabolic 
elements such as 0<k<h<1, δ is dimensionless constant, β is a dimensionless constant related 
to Newtonian viscosity η of the dashpot (η=(E0-E00)βτ) and τ is a characteristic time depending 

on the temperature. For bituminous materials, the TTSP is valid and the WLF equation can be 

used to model the evolution of the characteristic time as a function of the temperature (see 

section 2.1.4). This adds two more constants C1 and C2 to describe the temperature 

susceptibility of the material. The 2S2P1D model can successfully fit the LVE behaviour of 

bituminous mixtures (Olard & Di Benedetto, 2003; Di Benedetto, Olard, Sauzéat, & Delaporte, 

2004; Delaporte, Di Benedetto, Chaverot, & Gauthier, 2007) and more generally of bituminous 

materials (Di Benedetto, Olard, Sauzéat, & Delaporte, 2004). Figure 2.10 shows the influence 

of the 2S2P1D model constants on the Cole-Cole plot.  

 

Figure 2.10. Influence of the 2S2P1D model constants on the Cole-Cole plot.  

In the 3-dimensions case (Di Benedetto, Delaporte, & Sauzéat, 2007), the model also has 

an expression for the complex Poisson’s ratio: 
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( )

1 (i ) (i ) (i )− − −
ν ν ν

ν −ν
ν ω = ν +

+ δ ωτ + ωτ + ωβτ
 (2-42) 

where ν0 and ν00 are the glassy and static Poisson’s ratios and τν is the characteristic time of the 

Poisson’s ratio directly linked to the characteristic time of the complex modulus (τν=τ/γ where 
γ is a dimensionless constant). Therefore, a total of twelve constants (seven for the complex 

modulus, three for the complex Poisson’s ratio and two for the WLF equation) are needed to 

fully characterize the isotropic LVE behaviour over the whole frequency and temperature 

domains. 

2.4.2 Havriliak-Negami (HN) model 

The Havriliak-Negami (HN) model is a rheological model initially used to describe the 

dielectric relaxation of polymers (Havriliak & Negami, 1966). The HN model was formulated 

to model both the complex modulus and complex Poisson’s ratio (Gudmarsson A. , 2014; 

Gudmarsson, et al., 2014; Gudmarsson, Ryden, Di Benedetto, & Sauzéat, 2015): 

 ( )
* 00 0

0

E E
E ( ) E

1 (i )
βα

−
ω = +

+ ωτ
 

(2-43) 
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(2-44) 

where E0, E00, ν0, ν00, τ and τν have the same signification than for the 2S2P1D model and α 
and β are dimensionless constants. The evolution of the characteristic times of the complex 
modulus and Poisson’s ratio can also be described with the WLF equation. HN model is known 

to accurately model the LVE behaviour of polymers (Havriliak & Negami, 1967; Hartmann, 

Lee, & Lee, 1994; Madigosky, Lee, & Niemiec, 2006; Zhao, Liu, Bai, & Tan, 2013). A total of 

ten constants (five for the complex modulus, three for the complex Poisson’s ratio and two for 

the WLF equation) are necessary to fully characterize the LVE behaviour on the whole 

frequency and temperature range. Figure 2.11 shows the influence of the HN model constants 

on the Cole-Cole plot.  

 

Figure 2.11. Influence of the HN model constants on the Cole-Cole plot.  
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2.4.3 Comparison of the two models 

The two rheological models introduced in the previous sections present some differences. 

The number of constants needed to fully characterize the LVE behaviour is the first difference. 

The 2S2P1D model has two extra constants compared to the HN model. The consequences are 

that the 2S2P1D model, contrarily to the HN model, has one shape constant (δ) to adjust the 
shape of the loss modulus peak and one constant to account for the Newtonian viscosity (β). 
Figure 2.10 and Figure 2.11 show the asymptotic behaviours of the two models. It is seen that 

to obtain the same asymptotic behaviours with the 2S2P1D model and HN model, relations 

exist between the constants k and h of the 2S2P1D model and α and β of the HN model:  

 

h

k
k

h

α =

αβ = →β =
 (2-45) 

Relations (2-45) must be verified or the two models will exhibit different asymptotic 

behaviours. In addition, the glassy and static complex modulus and complex Poisson’s ratio 

should be the same for the two models since they are material mechanical properties. Therefore, 

all constants of the HN model at the exception of the characteristic time can be obtained from 

the constants of the 2S2P1D model. This highlights an important drawback of the HN model: 

once the constants are fixed to fit the low and high frequencies behaviours, it is not possible to 

adjust the loss modulus peak. Constants of the 2S2P1D model representing an average LVE 

material (Carret, Di Benedetto, & Sauzéat, 2018) were chosen to illustrate this difference. The 

static modulus was set to 100 MPa, the glassy modulus was set to 35 GPa, k was fixed at 0.17 

and h at 0.55. Consequently, by applying relations (2-45), α must be equal to 0.55 and β to 0.31. 
The two models are compared in the Cole-Cole plot in Figure 2.12. It is seen that the different 

values used for constant δ can change significantly the shape of the curve of the 2S2P1D model 

while it is not possible to adjust the shape with the HN model. Note also that the best fit between 

the two models is obtained when δ is equal to 0.9 while δ is closer than 2 for most of the 

bituminous mixtures. This indicates that differences will appear between the two models: either 

the symptotic behaviours or the loss modulus peak will not match.  

In addition, the same analysis was performed for constant β of the 2S2P1D model. The 
value of constant δ was fixed at 0.9, the values that gives the best fit in the Cole-Cole plot. The 

two models are compared in the Black space representation in Figure 2.13. It is seen that 

constant β of the 2S2P1D model has an influence on the shape of the curve of the 2S2P1D 
model. The influence is less important than the influence of constant δ and it mostly affects the 
high temperatures or low frequencies that correspond to the lower portion of the curve.  
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Figure 2.12. Comparison of the HN model and 2S2P1D model with different values of 

constant δ of the 2S2P1D model in the Cole-Cole representation.  

 

Figure 2.13. Comparison of the HN model and 2S2P1D model with different values of 

constant β of the 2S2P1D model in the Black space representation. 

Differences between the HN and 2S2P1D models have been highlighted. It is clearly 

established that if the constants of the HN model are set to match the low and high frequencies 

behaviours of the 2S2P1D model, a mismatch will be observed between the two models unless 

the values of constants δ and β of the 2S2P1D model are adjusted adequately. Therefore, the 

2S2P1D model offers more flexibility to model material behaviour because of its two extra 

constants. Moreover, given that the 2S2P1D model is specifically designed to model the LVE 

behaviour of bituminous mixtures, it is recommended to use this model instead of the HN 

model. In addition, the 2S2P1D model is also adapted for bitumen and mastics. A procedure to 

obtain the LVE properties of bituminous materials from the properties of the binder is also 

proposed. It includes the geometrical transformation SHStS (Di Benedetto, Olard, Sauzéat, & 

Delaporte, 2004; Pouget, Sauzéat, Di Benedetto, & Olard, 2010). 
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3 DEVELOPED DYNAMIC TEST 

3.1 Presentation of the dynamic test 

3.1.1 General considerations 

The dynamic test developed in this thesis is dedicated to measure the frequency response 

functions (FRFs) of a bituminous mixture specimen with free boundary conditions. FRFs are 

very interesting because they give the possibility to identify not only the resonance frequencies 

but also the damping properties (linked to the amplitudes of the peaks) of a material. Therefore, 

analyzing FRFs measurements is a good possibility to derive material properties. FRFs 

measurements have been successfully used to characterize different LVE materials over a wide 

frequency range such as metal polymer sandwich beams (Ren, Atalla, & Ghinet, 2011) or highly 

damped acoustical porous materials (Guo, 2000; Renault, Jaouen, & Sgard, 2011; Rupitsch, Ilg, 

Sutor, Lerch, & Döllinger, 2011). FRFs measurements have also been performed on a limited 

variety of bituminous mixtures (Gudmarsson, Ryden, & Birgisson, 2012; Gudmarsson, et al., 

2014; Gudmarsson, Ryden, Di Benedetto, & Sauzéat, 2015).  

FRFs are frequency domain signals defined as the ratio between an output Y (displacement 

or acceleration for example) and an input X (force for example). To reduce noise when 

determining FRFs signals, the cross power spectrum Sxy and the input auto power spectrum Sxx 

are used in practice (Halvorsen & Brown, 1977) and FRFs are defined as: 

 
xy

xx

S (f )
H(f )

S (f )
=  (3-1) 

where H is the FRF, f is the frequency and the cross power spectrum Sxy and the input auto 

power spectrum Sxx are defined as follow: 

 
*

xyS (f ) X (f ).Y(f )=  (3-2) 

 

 *
xxS (f ) X (f ).X(f )=  (3-3) 

where X and X* are the input in the frequency domain and its complex conjugate and Y is 

the output in the frequency domain. FRFs are complex numbers which contain both an 

amplitude and a phase but only the amplitude is necessary for material characterization. 

Consequently, the phase of the FRFs is not used in this thesis. A great advantage of using FRFs 

is that the amplitude of the FRFs is not depending on the input. Therefore, FRFs account only 

for the reaction of the material and can very easily be compared at different temperatures to 

highlight changes of material properties. 
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 The coherence function is an indicator often associated to FRFs measurement that is used 

to evaluate the quality of the measurements (Halvorsen & Brown, 1977). More precisely, the 

coherence function evaluates the correlation between the input and output signals at each 

frequency. The coherence is a real function that ranges between zero and one. A value of one 

indicates that the output is fully explained by the input while decreasing values mean there is 

noise in the system that has disrupted the test. The coherence function is calculated as follow: 

 

2
xy

xx yy

S
CF(f )

S .S
=  (3-4) 

where CF is the coherence function, Sxy and Sxx correspond to the cross power spectrum and 

input auto power spectrum defined in equations (3-2) and (3-3) and Syy corresponds to the 

output auto power spectrum:  

 
*

yyS (f ) Y (f ).Y(f )=  (3-5) 

where Y and Y* are the output in the frequency domain and its complex conjugate.  

3.1.2 Experimental devices and procedures  

To achieve free boundary conditions during physical tests, the specimen is placed on soft 

foam. The excitation is generated with an automated impact hammer equipped with a load cell 

(PCB model 086E80) to record the impulse signal. The vibrations of the specimen are measured 

with a piezoelectric accelerometer (PCB model 353B15) screwed on a mounting base glued to 

the specimen. The technical specifications and the calibration certificates of the sensors will be 

found in APPENDIX A. Figure 3.1 shows the automated impact hammer with a scheme of 

principle and the accelerometer.   

 

Figure 3.1 Sensors used for the dynamic tests: (a) automated impact hammer and scheme of 

principle; (b) accelerometer 

Both the impact hammer and the accelerometer are connected to a signal conditioner (PCB 

model 482C15) that conditions the signals for analog to digital conversion. The technical 

specifications and the calibration certificate of the signal conditioner can be found in 

APPENDIX A. The signal conditioner is connected to a data acquisition device (NI model 

USB-6356) which converts the signals from analog signals to digital signals. The data 

acquisition device has a simultaneous sampling rate of 1.25 MHz which allows a sampling rate 

of 1 MHz on each channel (one data point acquired every 10-6 second). The length of the 



DEVELOPED DYNAMIC TEST 

-22- 

recorded signals is chosen to record the entire vibratory response. Due to the damping properties 

that changes with temperature, the record length varies with the test temperature, which is 

measured with a PT 100 surface probe. The data acquisition device is connected to a computer 

through a USB cable and the data acquisition is managed by a Matlab application specially 

developed for this test. Figure 2.1 illustrates the test set-up for the measurements of the 

longitudinal mode of vibrations of a cylinder. Note that three different modes of vibration 

(longitudinal, flexural and torsional) were considered depending on the geometry and on the 

positions of the impact and of the accelerometer. An example for each mode of vibrations is 

shown in Figure 3.3. 

 

Figure 3.2. Dynamic test set-up for the measurements of the FRFs of the longitudinal mode of 

vibrations (ENTPE laboratory). 

 

Figure 3.3. Example of dynamic test set-up for three different modes of vibrations: (a) 

longitudinal mode of a cylinder; (b) flexural mode of a straight beam; (c) torsional mode of a 

straight beam 

The signals measured are in time domain. They must be transformed into frequency domain 

signals to calculate the FRFs. The fast Fourier transform (FFT) is used for that purpose and 

signals have a 1 Hz resolution in the frequency domain. In addition, it is common practice to 

perform different measurements of the FRFs to ensure a reliable estimation. Therefore, FRFs 
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are averaged from the signals recorded on five repetitions of the test that correspond to five 

impact with the automated impact hammer. Equations (3-1) and (3-4) are transformed to: 

 
xy

xx

S (f )
H(f )

S (f )
=  (3-6) 

 

 

2
xy

xx yy

S
CF(f )

S .S
=  (3-7) 

where the bar above the cross-power spectrum Sxy, the input auto power spectrum Sxx and the 

output auto power spectrum Syy corresponds to the arithmetic average on the five impacts.  

The test and procedures described above are derived from the work of Gudmarsson 

(Gudmarsson A. , 2014). However, two important improvements have been developed in this 

thesis and must be highlighted. The first improvement is a doubled sampling rate for the data 

acquisition. This is possible because the data acquisition device used has a higher maximum 

sampling rate. It guarantees a finer description of the recorded signals in time domain and 

therefore a better accuracy of the measurements. The second improvement is the development 

of an automated impact hammer (Figure 3.1 (a)) inspired from existing impact devices 

(Norman, Jung, Ratcliffe, Crane, & Davis, 2012; Brüggemann, Biermann, & Zabel, 2015). The 

developed automated impact hammer is suitable for many different geometries (cylinders, 

discs, beams, etc.) as shown in Figure 3.3. The device is connected to a microcontroller 

(Arduino Uno R3) and can be programmed with the Arduino interface. Details about the 

electronic circuit of the automated impact hammer and the Arduino microcontroller are given 

in APPENDIX A  

The use of an automated impact system improves significantly the quality of the impacts 

and their repeatability (see Figure 3.5 and Figure 3.6). It is quite interesting because the duration 

and the position of the impacts are two essential parameters to determine the usable frequency 

range. Indeed, an impact excitation provides energy to the specimen over a certain frequency 

range that is directly dependent on the contact time between the hammer and the specimen. The 

contact time should be as short as possible to obtain a wider usable frequency range. For 

example, hitting the binder instead of a stone result in a longer contact time and a reduced usable 

frequency range. A good programming of the automated impact hammer coupled to a careful 

positioning guarantees to obtain the widest possible usable frequency range. Another great 

advantage of using an automated device is the possibility to use it inside a thermal chamber 

without opening the door. Since bituminous mixtures are highly thermosensitive materials, it is 

essential to perform FRFs measurements at different temperatures. Without having an 

automated impact hammer, an operator must open the thermal chamber to perform the 

measurements at each temperature. This complicates the test procedure and may introduce 

experimental errors. By synchronizing the programming of the automated impact hammer and 

the thermal chamber, it is possible to run measurements at all desired temperatures faster and 

with more accuracy without any intervention from an operator. The improvements of the 

methodology to measure FRFs are therefore very useful for practical experimentation and to 

come up with a standardization of the test in the future. 
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3.1.3 Example of dynamic test results 

All the results presented in this section correspond to measurements performed on the same 

cylinder of material GB5 (see section 5.3). An example of the signals in time domain and in 

frequency domain corresponding to five impact is given in Figure 3.4. The FFT being a complex 

number, only the amplitude of the signals is presented for the frequency domain. 

 

Figure 3.4. Example of signals recorded during a dynamic test for five impacts: (a) force in 

time domain; (b) acceleration in time domain; (c) amplitude of the force in frequency domain; 

(d) amplitude of the acceleration in frequency domain. 

Figure 3.4 (c) shows that the level of force decreases with frequency. When the value of 

force is close to zero, the signals are not useable. In practice, frequency range from 0 up to 30 

kHz at most can be used depending on the quality of the impacts. The FRFs corresponding to 

the five individual impacts displayed in Figure 3.4 and the corresponding averaged FRF are 

given in Figure 3.5 (a). It is seen in Figure 3.5 (a) that the curves corresponding to the six FRFs 

are almost perfectly overlaid. This proves the excellent repeatability of the test from one impact 

to another due to the use of an automated impact hammer. The averaged FRFs obtained at five 

different temperatures for the same specimen are plotted in Figure 3.5 (b). It shows the influence 

of temperature on the FRFs. The resonance frequencies and amplitudes decrease with 

temperature, which corresponds to material properties changes: the norm of the complex 

modulus decreases and the phase angle increases. The coherence functions corresponding to 

the five individual impacts displayed in Figure 3.4 and the corresponding averaged coherence 

function are plotted in Figure 3.6 (a). The same observation than for the FRFs is made on Figure 

3.6 (a) for the coherence function. This confirms the good quality of the measurements. The 

averaged coherence functions obtained at five different temperatures for the same specimen are 

displayed  in Figure 3.6 (b). A zone of interferences is observed for frequencies lower than 

approximately 3 000 Hz. Therefore, it is recommended to not use frequencies below 3 000 Hz 



DEVELOPED DYNAMIC TEST 

-25- 

for which there is some noise in the system. For higher frequencies, value of the coherence 

function is very close to one for all temperatures.  

 

Figure 3.5. (a) Example of FRFs for five individual impacts and the corresponding averaged 

FRF. (b) Example of FRFs at five different temperatures for the same specimen. 

 

Figure 3.6. (a)  Example of coherence functions for five individual impacts and the 

corresponding averaged coherence function. (b) (b) Example of coherence functions at five 

different temperatures for the same specimen. 

3.2 Differences with cyclic tension-compression tests 

The resonance frequencies obtained from FRFs measurements are approximately between 

5 kHz and 30 kHz depending on the geometry and density of the specimen and also the testing 

temperature. FRFs can be measured from approximately -20°C to 50°C depending on the 

damping properties of the material. Therefore, FRFs measurements are only high frequency 

measurements and cannot give access to the entire master curves of LVE materials. Traditional 

complex modulus cyclic tension-compression tests are performed at much smaller frequencies 

(from 0.003 Hz to 10 Hz) and in a similar temperature range (from -25°C to 55°C). Cyclic 

tension-compression tests cover a larger portion of the master curves but are limited to lower 

frequencies than the dynamic tests. This difference should be considered when comparing the 

LVE properties of bituminous mixtures determined with the two tests. The two tests are 

expected to match best on the frequency range that contains experimental results for both tests. 

Figure 3.7 shows the frequency range accessible in function of the reference temperature for 

the cyclic tension-compression tests and the dynamic tests. Figure 3.7 confirms the previous 
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comments. Figure 3.7 was obtained by creating master curves with experimental data from 

tension-compression tests and then from dynamic tests at different reference temperatures. The 

same constants of the WLF equation at the reference temperature of 15°C were considered for 

both tests (C1=30 and C2=210). At each reference temperature, the minimum and the maximum 

reduced frequencies of the experimental data were saved for both tests. The frequency ranges 

obtained for the GB5 cylinder considered in section 3.1.3 are reported at the corresponding 

reference temperature in Figure 3.7. Note that Figure 3.7 only gives an order of magnitude of 

the frequency ranges and variations may exist from one material to another.  Note also that the 

value of the modulus at 15°C and 10 Hz, which is used for pavement design in the French 

standards is accessible with both tests.  

 

Figure 3.7. Frequency range containing experimental data in function of the reference 

temperature for the cyclic tension-compression tests and for the dynamic tests. Example for a 

GB5 cylinder. The frequency ranges may vary from one material to another. 

Another important difference between the two tests is the level of strain applied to the 

material. Cyclic-tension compression tests are performed with a strain of about 50 μm/m. The 
maximum level of strain for a dynamic test can be approximated from the first resonance 

frequency and the corresponding amplitude of the acceleration using equation (2-40).The 

maximum strain level estimated for seven specimens of bituminous mixtures tested in this work 

(see sections 5.1, 5.3 and 5.4) are presented in Figure 3.8. The maximum strain level is between 

0.01 μm/m and 0.25 μm/m with most of the values being less than 0.1 μm/m. Also, the 
maximum strain level increases with the frequency. This indicates that the strain level of the 

dynamic tests varies with temperature, and the lower strain levels corresponds to the highest 

temperatures. Therefore, strains occurring during dynamic tests are approximately a thousand 

times lower than the level of strain applied in the cyclic tension-compression tests. The 

properties of bituminous mixtures being dependent of the magnitude of the applied strain 

(Nguyen, Di Benedetto, & Sauzéat, 2015; Airey & Rahimzadeh, 2004; Mangiafico, 

Babadopoulos, Sauzéat, & Di Benedetto, 2018), non-linearity’s effects should be accounted for 

when comparing material properties estimated from FRF measurements and from cyclic 

tension-compression tests.   
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Figure 3.8. Maximum strain level for the dynamic tests estimated at the first resonance 

frequency of the longitudinal mode of vibrations for seven specimens (see sections 5.1, 5.3 

and 5.4). 

3.3 Experimental verifications 

3.3.1 Repeatability of the test 

FRFs are determined from the average of five individual impacts. This should guarantee 

the repeatability and the reliability of the test. To verify these assumptions, dynamic 

measurements of the longitudinal mode of vibration have been repeated three times on the same 

GB5 specimen than in the previous sections. The repeated measurements were performed at 

five temperatures (-20°C, 0°C, 15°C, 35°C, 50°C) without opening the door of the thermal 

chamber and without any modification of the experimental set-up. The first and second 

resonance frequencies and amplitudes are given in Table 3.1. The average values for the three 

tests, the standard deviation (SD) and the relative standard deviation (RSD) are also listed in 

Table 3.1. The values of the RSD of the resonance frequencies are excellent with less than 1% 

at most and values really close to 0. The values of the RSD of the amplitudes are also very 

satisfying with a maximum of 3.9%. Figure 3.9 presents the evolution of the values of the RSD 

with temperature. It can be seen that the RSD of the amplitudes is a little bit higher than the 

RSD of the resonance frequencies. This indicates that the measurement of the amplitude is a 

little bit more sensitive than the measurement of the resonance frequencies. This repeatability 

study demonstrates the excellent overall repeatability of the dynamic tests.  
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Table 3.1. Results obtained for the three dynamic tests performed on the same GB5 specimen 

at five different temperatures (longitudinal mode of vibration). Measurements were repeated 

without any modification of the experimental set-up. 

T (°C) Test nr. 1 2 3 Average SD RSD (%) 

-20°C 

1st frequency (Hz) 13 188 13 208 13 214 13 203 13.6 0.1 

1st amplitude (m/s²/N) 179.6 173.2 180.3 177.7 3.9 2.2 

2nd frequency (Hz) 25 454 25 470 25 488 25 471 17.0 0.1 

2nd amplitude (m/s²/N) 261.0 241.4 251.0 251.1 9.8 3.9 

0°C 

1st frequency (Hz) 12 429 12 474 12 473 12 459 25.7 0.2 

1st amplitude (m/s²/N) 64.9 66.3 64.2 65.1 1.1 1.6 

2nd frequency (Hz) 24 088 24 137 24 145 24 123 30.9 0.1 

2nd amplitude (m/s²/N) 86.8 87.3 87.3 87.1 0.3 0.3 

15°C 

1st frequency (Hz) 11 477 11 514 11 500 11 497 18.7 0.2 

1st amplitude (m/s²/N) 27.7 28.2 27.3 27.7 0.5 1.6 

2nd frequency (Hz) 22 391 22 447 22 410 22 410 28.5 0.1 

2nd amplitude (m/s²/N) 36.9 36.4 36.7 36.7 0.3 0.7 

35°C 

1st frequency (Hz) 9 593 9 551 9 541 9 562 27.6 0.3 

1st amplitude (m/s²/N) 10.8 10.6 10.5 10.6 0.2 1.4 

2nd frequency (Hz) 18 905 18 714 18 776 18 798 97.4 0.5 

2nd amplitude (m/s²/N) 14.0 13.0 13.8 13.6 0.5 3.9 

50°C 

1st frequency (Hz) 7 623 7 654 7 575 7 617 39.8 0.5 

1st amplitude (m/s²/N) 5.3 5.4 5.4 5.4 0.1 1.1 

2nd frequency (Hz) 15 174 15 207 15 429 15 270 138.7 0.9 

2nd amplitude (m/s²/N) 6.0 6.2 6.3 6.2 0.2 2.4 

 

Figure 3.9. Relative standard deviation for the three dynamic tests performed on the same 

specimen at five different temperatures (longitudinal mode of vibrations). 
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3.3.2 Sensitivity of the sensors 

A cylindrical sample of duralumin has been used to investigate the sensitivity of the 

sensors. This material was chosen because its behaviour is not dependent on the frequency and 

is very little sensitive to temperature changes. Indeed, the Young’s modulus of duralumin is 

about 70 GPa at 0°C and it decreases linearly of approximately 0.04 GPa (≈0.06 %) per degree 
(Young's Modulus of Elasticity for Metals and Alloys, 2004). FRFs corresponding to the 

longitudinal mode of vibrations of the duralumin specimen have been measured at fifteen 

different temperatures from -20°C to 50°C in steps of 5°C. This temperature range corresponds 

to the range on which FRFs can be measured on bituminous mixtures and therefore to the range 

of use of the sensors in this thesis. The Young’s modulus of duralumin was evaluated using the 

first resonance frequency according to the ASTM C215-02 standard (ASTM-C215-02, 2002). 

The evolution of the evaluated Young’s modulus in function of temperature is plotted in Figure 

3.10 along with the curve found in literature (Young's Modulus of Elasticity for Metals and 

Alloys, 2004). A very nice agreement is seen between the curves plotted in Figure 3.10. In 

addition, the value of the Young’s modulus is 70.7 GPa at 0°C which is also in very good 

agreement with values found in literature. The Young’s modulus decreases linearly (correlation 

coefficient R²=0.9997) from 71.4 GPa at -20°C to 68.8 GPa at 50°C. This corresponds to a loss 

of 0.036 GPa per degree, in the same order of magnitude than the thermal sensitivity of 

duralumin. Therefore, the Young’s modulus variation is mainly due to the material and the 

thermal sensitivity of the sensors is negligible for the evaluation of the resonance frequencies. 

 

Figure 3.10. Young’s modulus of duralumin specimen evaluated from dynamic tests. The red 

dotted line represents the decreasing of the Young’s modulus of duralumin with temperature 

found in literature (Young's Modulus of Elasticity for Metals and Alloys, 2004). 

The amplitude measured at the first resonance frequency was also studied. The amplitude 

is linked to the damping properties and it is possible to determine the damping ratio ζ at the first 
resonance frequency with the half-power bandwidth method (Bachmann, 1991): 

 
f

2f

∆
ξ =  (3-8) 
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where f is the first resonance frequency and Δf is the width of the FRFs at 0.707 of the amplitude 
at the first resonance. The damping ratio is then used to determine the phase angle ϕ of the 

material according to the following relationship (Clough & Penzien, 1993): 

 arctan(2 )ϕ = ξ  (3-9) 

The phase angles calculated for the duralumin specimen are displayed in Figure 3.11. It can be 

seen that the values of the phase angle are extremely low with a maximum of 0.027°. This was 

expected because duralumin is considered as a purely elastic material. Also, variations of the 

phase angle do not follow a clear trend and the difference between the maximum and the 

minimum values of the phase angle is less than 0.01°, which proves the very good repeatability 

of the measurements. However, the amplitudes measured for the duralumin specimen are at 

least ten times higher than the amplitudes measured for bituminous mixtures. Therefore, it is 

not possible to conclude about the sensitivity of the sensors regarding the measured amplitudes. 

According to the calibration certificates provided with the sensors (cf. APPENDIX A), the 

sensors are not impacted by temperature or frequency on the range used in this work.  

 

Figure 3.11. Phase angle of duralumin specimen evaluated from dynamic tests. 

3.3.3  Effect of the frequency resolution on the fast Fourier transformation (FFT) 

FRFs are calculated from the frequency domain signals of the impact hammer and 

accelerometer. FFT is used to transform these signals recorded in time domain to frequency 

domain with a frequency resolution chosen equal to 1 Hz. Care must be taken during this 

operation because in general, to return a correct FFT amplitude, FFT has to be normalized by 

the number of input time samples. In the Fourier theory, the frequency resolution is directly 

linked to the number of time samples acquired and the sampling frequency: 

 sF
f

N
∆ =  (3-10) 

where Δf is the frequency resolution of the FFT, Fs is the sampling frequency and N is the 

number of samples acquired. The number of samples is defined by the length of the oscillatory 
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part of the accelerometer signal to observe the vibrations of the material on the right window 

of time. The number of samples must be the same for the impact hammer or the amplitude of 

the FRF cannot be estimated correctly. Equation (3-10) indicates that it is necessary to record 

a number of samples equal to the sampling frequency to obtain a frequency resolution of 1 Hz. 

The used sampling frequency is 1 MHz so a million of samples are needed to have a frequency 

resolution of 1 Hz. Figure 3.4 (b) and Figure 3.12 show examples of time domain signals from 

the accelerometer. Oscillations only last a few milliseconds. Therefore, the number of samples 

recorded limit the frequency resolution between 1 500 Hz and 150 Hz at best depending on the 

temperature.  

Fortunately, it is possible to increase the frequency resolution. Since the signals recorded 

are transient non-periodic signals, it is possible to extend them numerically. This process 

consists in adding virtual samples equal to zero at the end of the signals. To reach a frequency 

resolution of 1 Hz, virtual samples must be added so that the total number of samples is one 

million to equal the sampling frequency. Figure 3.12 shows an example of time signals 

measured and the corresponding extended signals. Logarithmic scale has been used for clarity. 

 

Figure 3.12. Example of measured and extended signals of the impact hammer and 

accelerometer in time domain. 

Using a larger number of samples is very useful to improve the frequency resolution. 

However, in this case, the amplitude of the FFT must be normalized by the number of samples 

recorded in the oscillatory part of the accelerometer signal and not by the total number of 

samples in the extended signals. In the contrary case, amplitudes of the FFT of the impact 

hammer and accelerometer are not estimated correctly. The FRF is not sensitive to this effect 

because it is defined as the ratio between the cross power and auto power spectrum (equation 

(3-1)). The amplitudes of the FFT of the impact hammer and accelerometer calculated from the 

extended signal and the corresponding FRF are plotted in Figure 3.13. The same curves are also 

plotted for the measured time signals. Figure 3.13 confirms that the proposed methodology does 

not affect the amplitude of the FFT and of the FRF and that the frequency resolution is increased 

for the extended signals.  
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Finally, according to the Nyquist sampling theorem (Nyquist, 1928), the highest frequency 

that a time signal can represent is half of the sampling frequency. With a sampling frequency 

of 1 MHz, it is possible to reach frequency up to 500 000 Hz. FRFs are calculated for 

frequencies up to 30 kHz at most in this work which is largely below 500 000 Hz.  

 

Figure 3.13. FFT (a) and FRF (b) calculated from the measured and extended signals of the 

impact hammer and accelerometer. 
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4 NUMERICAL SIMULATIONS OF THE DYNAMIC 

TESTS ON REFERENCE ISOTROPIC LVE 

BITUMINOUS MIXTURE 

Characterizing the LVE properties of bituminous mixtures from dynamic tests is a 

complicated process. It requires to use an inverse analysis method to determine the LVE 

properties from the FRFs measurements. The developments made during this thesis bring us to 

propose different inverse analysis methods, all based on finite element method (FEM) (section 

4.3). Therefore, as a first step, it was necessary to develop numerical calculation tools to 

perform the FEM calculations (section 4.1.1). Then, a numerical model corresponding to a 

reference isotropic LVE bituminous mixtures with averaged LVE properties was built up 

(section 4.1.2). The reference LVE material was developed to test and evaluate the accuracy of 

the different inverse analysis methods (section 4.3). This procedure based on numerical 

experimentation eliminates any potential divergence due to experimental measurement errors 

or to material behaviour that is not perfectly isotropic and LVE in practice. This step is essential 

to validate or not the proposed inverse analysis scenario. In addition, reducing the number of 

LVE properties or model constants to be identified in the inverse analysis process is needed to 

limit the computational time and the risk of finding non valid local solutions. For this purpose, 

a parametric analysis was performed to evaluate the influence of the LVE properties on the 

FRFs (section 4.2). The results of the parametric analysis were used to fit the different inverse 

analysis methods. 

4.1 Numerical calculation tools 

4.1.1 Finite element method (FEM) calculation 

A FEM model was developed with the COMSOL software. The first step when building a 

FEM model is to define the geometry. Three geometries were studied: cylinders (C), straight 

beams (B) and discs (D). The dimensions considered for each geometry correspond to the 

dimensions of bituminous mixtures specimen commonly used for laboratory testing: the 

cylinder used in the parametric analysis has a 15cm length and a 7.5cm diameter, the cylinder 

used in the inverse analysis has a 16cm length and a 6.5cm diameter, the straight beam has a 

30cm length and a 5cm width and height and the disc has a 3cm height and a 10cm diameter. 

In a second step, the mesh is created. It consists in tetrahedral elements with a maximum 

element size of 2cm that was determined through mesh size convergence studies for each 

geometry.  
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Different material behaviours corresponding to different modulus and Poisson’s ratio were 

used: 

•  Isotropic linear elastic behaviour (used in inverse analysis method I in section 

4.3.1.1) 

• LVE behaviour with a constant complex modulus value and a constant real 

Poisson’s ratio value (used in inverse analysis method IV in section 4.3.1.4) 

• LVE behaviour with constant complex modulus and complex Poisson’s ratio values 

(used in the first parametric analysis in section 4.2.1) 

• LVE behaviour with a complex modulus frequency and temperature dependent 

modelled with the 2S2P1D model (cf. equations (2-41)) and a constant real value 

of the Poisson’s ratio (used in inverse analysis method V in section 4.3.2) 

• LVE behaviour with a complex modulus and a complex Poisson’s ratio frequency 

and temperature dependents modelled with the 3-dim version of the 2S2P1D (cf. 

equations (2-41) and (2-42)) (used in the second parametric analysis in section 4.2.2 

and in all inverse methods except the first one). 

After the material behaviour, the boundary conditions are entered. They were set to be in 

accordance with physical experimentations in which the material placed on soft foam is excited 

with an impact hammer and the resulting acceleration is recorded with an accelerometer. 

Therefore, free boundary conditions are assumed everywhere except at the position 

corresponding to the impact where a cyclic load eiωt is applied in the direction of the impact. 

The last step before launching the calculation is to define the parameters of the frequency study. 

The frequencies for which the calculation is performed were chosen to match the frequency 

range accessible with physical tests: from 100 Hz to 30 kHz. The frequency resolution was set 

to 20 Hz to limit the computational time but it can be adjusted if needed. Finally, for the LVE 

behaviour temperature dependents, the temperature range accessible in physical tests, between 

-20°C and 50°C, was considered.  

Once the geometry, the mesh, the material behaviour, the boundary conditions and the 

parameters of the study are introduced, the following three-dimensional equation of motion is 

solved for each specified frequency: 

 ²u . 0−ρω −∇σ =  (4-1) 

where ρ is the bulk density of the material, ω is the angular frequency, u is the displacement 
vector, ∇ is the gradient tensor operator and σ is the Cauchy stress tensor. This equation 
corresponds to the wave equation applicable for elastic material (2-22) or LVE material(2-30). 

The results of the calculation are processed to obtain the amplitude of the acceleration at the 

position and in the direction of vibration of the accelerometer during physical test. Since the 

cyclic load applied in the model is unitary, this value directly corresponds to the value of the 

FRF. Note that depending on the geometry and on the positions of the impact and of the 

accelerometer, different modes of vibration can be obtained. In the next sections, the 

longitudinal (L), flexural (F) and torsional (T) modes of vibration are studied. A total of seven 

different configurations are considered for the parametric analysis(section 4.2) and the inverse 

analysis (section 4.3). Table 4.1 lists the configurations used in each case. Table 4.2 gives the 
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position of the sensors, the direction of the impact and the direction of vibration of the 

accelerometer for the different combinations considered. The longitudinal mode for cylinders 

is particularly interesting because it is the only axisymmetric configuration. Therefore, two-

dimensions calculations are possible instead of three-dimensions calculations for all the other 

configurations. This is a great advantage that makes calculations approximately ten times faster. 

Table 4.1. Configurations studied in the parametric analysis (section 4.2) and inverse 

analysis (section 4.3). C, B and D correspond to the geometry (cylinders, straight beams or 

discs) and L, F and T correspond to the mode of vibration (longitudinal, flexural or 

torsional).  

Configuration C-L C-F C-T C-L+F B-L B-T D-F 

Direct analysis (section 4.2) x - - - - x x 

Inverse analysis: method 1 for the 

complex modulus (section 4.3.1.1) 
x x x - - - - 

Inverse analysis: method 2 for the 

complex modulus (section 4.3.1.2) 
x - - x x - x 

Inverse analysis: method 3 for the 

complex modulus (section 4.3.1.3) 
x - - x x - x 

Inverse analysis: method 4 for the 

complex modulus (section 4.3.1.4) 
x - - x x - x 

Inverse analysis: method 5 for the 

complex modulus and complex 

Poisson’s ratio (section 4.3.2) 

x - - - x - - 
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Table 4.2. Position of the sensors, direction of the impact and direction of vibration of the accelerometer for the different considered 

combinations of geometry and mode of vibration. 

 Cylinders (C) Straight beams (B) Discs (D) 

Longitudinal 

mode of 

vibration (L) 

  

X 

Flexural 

mode of 

vibration (F) 

 

X 

 

Torsional 

mode of 

vibration (T) 

 
 

X 

Longitudinal 

and flexural 

modes of 

vibration 

(L+F) 
 

X X 
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4.1.2 Reference LVE material with averaged LVE properties 

A reference isotropic LVE bituminous mixture is considered in this section. It consists in 

a numerical simulation material with averaged LVE properties called reference LVE material. 

This reference LVE material was used in section 4.3 to study different inverse methods to obtain 

the LVE properties of bituminous mixtures from FRF measurements and to evaluate their 

accuracy. The behaviour of the reference LVE material is described with the 2S2P1D model 

(cf. equations (2-41) and (2-42)) and the WLF equation (cf. equation (2-18)). The constants of 

the 2S2P1D model and the WLF equation were fixed following the procedure presented in the 

next paragraph. The bulk density of the reference LVE material was fixed to 2 400 kg/m3. 

Cyclic tension-compression tests were previously performed on a total of 54 specimens of 

bituminous mixtures covering 32 different bituminous materials. These tests were performed 

during 4 different PhD thesis carried out at the University of Lyon / ENTPE, LTDS laboratory 

(Mangiafico, 2014; Pham N. H., 2014; Phan, 2016; Pedraza, 2018)and are presented in different 

publications (Mangiafico, et al., 2013; Nguyen Q. T., Di Benedetto, Sauzéat, & Tapsoba, 2013; 

Mangiafico, et al., 2015; Pham N. H., et al., 2015; Pham N. H., et al., 2015; Phan, et al., 2017). 

For each test, the 2S2P1D model and the WLF equation constants were calibrated to fit the 

experimental data. The resulting 54 sets of 2S2P1D model and WLF equation constants are 

given in APPENDIX B. They constitute a data base that was used to determine the 2S2P1D 

model and WLF equation constants of the reference LVE material. Each constant is taken in 

the vicinity of the average value of the corresponding constant of the 54 sets. The data base was 

also used to determine a realistic range of variations for each constant. The procedure to 

determine the 2S2P1D model and WLF constants of the reference LVE material is explained in 

Figure 4.1 and the values of the obtained constants are listed in Table 4.3. The minimum, 

maximum and average values and the standard deviation (SD) are also listed in Table 4.3for 

each constants. 

Figure 4.1. Procedure to determine the 2S2P1D model and WLF equation constants of the 

reference LVE material with averaged LVE properties. 
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Table 4.3. 2S2P1D model and WLF equation constants of the reference LVE material. The 

minimum, maximum and average values of the 2S2P1D model and WLF equation constants of 

the data base and the standard deviation (SD) are also indicated. 

 

2S2P1D model 

WLF 

Equation 

at 15°C 

 E00 

(MPa) 

E0 

(MPa) 
ν0 ν00 δ k h β 

τE15°C 

(s) 

τν15°C 

(s) 
C1 C2 

Reference 

LVE 

material 

100 35 000 0.19 0.45 2.15 0.17 0.53 250 0.1 3.16 30 210 

Minimum 9 30 900 0.10 0.24 1.79 0.14 0.45 95 0.002 0.1 18 133 

Maximum 180 42 000 0.47 0.63 2.63 0.23 0.57 9E3 16.5 333.1 59 376 

Average 35 36 500 0.19 0.43 2.12 0.17 0.53 630 0.71 51.8 31 209 

SD 27 2 850 0.07 0.09 0.18 0.01 0.03 1E3 2.3 72.9 5 28 

4.2 Parametric analysis  

The parametric analysis consists in calculating FRFs for different LVE properties obtained 

with different complex modulus and complex Poisson’s ratio values or different 2S2P1D model 

and WLF constants, chosen in a realistic range of variations (see Table 4.3). It allowed to 

identify the constants that have a negligible influence and that can be fixed for the inverse 

analysis.  

Three different configurations were studied for the parametric analysis: the longitudinal 

mode of a cylinder (D=7.5cm and L=15cm), the torsional mode of a straight beam (L=30cm, 

H=5cm and W=5cm) and the flexural mode of a disc (D=10cm and L=3cm). Two parametric 

analyses corresponding to two different modeling of the LVE behaviour were performed. First, 

the complex modulus and complex Poisson’s ratio were considered independent of the 

frequency and of the temperature and the influence of the norm and phase angle of the complex 

modulus and complex Poisson’s ratio were studied. Then, the complex modulus and complex 

Poisson’s ratio were considered temperature and frequency dependents and were modelled with 

the 3-dim version of the 2S2P1D model. In this parametric analysis, the influence of the 

2S2P1D model constants were studied.  

4.2.1 Influence of the norm and of the phase angle of the complex modulus and complex 

Poisson’s ratio 

The complex modulus and the complex Poisson’s ratio are considered as complex numbers 

independent of frequency: 

 Ei*E E.e
ϕ=  (4-2) 

 

 i* .e νϕν = ν  (4-3) 

where E and ϕE (respectively ν and ϕν) are the norm and the phase angle of the complex modulus 

(respectively complex Poisson’s ratio). The ranges of variations of these four LVE properties 

were defined to match those accessible with dynamic tests. For each LVE property, one median 
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value and four additional values were chosen in the corresponding range of variation. These 

values are listed in  Table 4.4. To evaluate the influence of each LVE property, five FRFs 

corresponding to the five selected values were calculated while the three other LVE properties 

are set to their median values. Therefore, a total of twenty FRFs were calculated for each 

configuration studied. The FRFs showing the influence of E, ϕE, ν and ϕν for the longitudinal 

mode of the cylinder are displayed in Figure 4.2. 

Table 4.4. Values of the norm and of the phase angle of the complex modulus and complex 

Poisson’s ratio considered for the parametric analysis. When one LVE property varies, the 

rest of the properties are set to their median values. 

LVE property 
Median 

value 
Values chosen for the parametric analysis 

E (MPa) 25 000 10 000 17 500 32 500 40 000 

ϕE (°) 6 0.5 2 12 25 

ν 0.300 0.150 0.225 0.375 0.450 

ϕν (°) -3 -1 -2 -4 -5 

 

Figure 4.2. Influence of the LVE properties on the FRFs of the longitudinal mode of the 

cylinder: (a) norm of the complex modulus; (b) phase angle of the complex modulus; (c) norm 

of the complex Poisson’s ratio; (d) phase angle of the complex Poisson’s ratio. The constants 

not listed in each figure have the median value given in Table 4.4. 

The relative standard deviation (RSD) for the two to three first resonance frequencies and 

amplitudes was calculated for each LVE property. The RSD is a good indicator of the sensitivity 

of the FRFs to one LVE property and it is very efficient to compare the influence of the different 
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LVE properties. Values of the RSD for this configuration and for each LVE property are listed 

in  Table 4.5 for the two first resonance frequencies and amplitudes. 

Table 4.5. Values of the RSD for the two first resonance frequencies and amplitudes for the 

longitudinal mode of the cylinder. The LVE property indicated in the left column varies while 

the other properties are set to their median values indicated in Table 4.4 

LVE 

property 

RSD 1st 

frequency (%) 

RSD 1st 

amplitude (%) 

RSD 2nd 

frequency (%) 

RSD 2nd 

amplitude (%) 

E 25.5 0.0 25.6 0.0 

ϕE 0.9 135.9 2.3 118.1 

ν 1.1 0.6 4.1 3.0 

ϕν 0.0 1.5 0.1 5.3 

Figure 4.2 and Table 4.5 show that in the considered frequency domain, the norm of the 

complex modulus has an important influence on the resonance frequencies but almost no effect 

on the amplitudes. It is the contrary for the phase angle of the complex modulus that has an 

important influence on the amplitudes and a very limited effect on the resonance frequencies. 

The complex Poisson’s ratio has a far lower influence than the complex modulus on the FRFs. 

More interestingly, the influence of the complex Poisson’s ratio on the first resonance is almost 

negligible. The norm of the complex Poisson’s ratio has a small influence on the second 

resonance frequency and amplitude while the phase angle of the complex Poisson’s ratio only 

has a very limited influence on the amplitude. 

Results of the direct analysis for the two other studied configurations are given in 

APPENDIX C. The influence of the complex modulus is very similar for all the configurations. 

The complex Poisson’s ratio also has a far lower influence than the complex modulus for all 

the configurations. However, the longitudinal mode of the cylinder is the only configuration for 

which the effect of the Poisson’s ratio is almost negligible for the first resonance (the RSD for 

ν for the first resonance frequency is 3.9% for the flexural mode of the disc and 4.6% for the 
torsional mode of the straight beam). This is an interesting observation that proves that the 

complex modulus can be identified independently of the complex Poisson’s ratio using the first 

resonance of the longitudinal mode. For the other modes of vibration, the effect of the complex 

Poisson’s ratio can be neglected as a first approximation. It allows to limit the number of 

unknowns values to be determined in the inverse analysis.  

4.2.2 Influence of the 2S2P1D model constants 

For this analysis, the complex modulus and complex Poisson’s ratio are modelled with the 

3-dim version of the 2S2P1D model (equations (2-41) and (2-42)). The influence of the ten 

constants of the 2S2P1D model was evaluated at five temperatures (-20°C, 0°C, 15°C, 35°C; 

50°C). The range of variations of each constant of the model was defined from the data base of 

the constants values (see section 4.1.2). Following the same approach than in the previous 

section, one median value and four additional values were chosen for each constant in the 

corresponding range of variations. The values used for each constant of the model are listed in 

Table 4.6. For the ten constants of the model, five FRFs corresponding to the five selected 

values were calculated while the nine other constants are fixed to their median values. It 

represents a total of fifty FRFs that were calculated for each temperature and configuration. 
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Note that the temperature dependency of the characteristic times τE15°C and τν15°C was modelled 

with the WLF equation with C1=30 and C2=210 at the reference temperature of 15°C. 

Table 4.6. Values of the 2S2P1D model constants considered for the parametric analysis. 

When one constant varies, the rest of the constants are set to their median values. 

2S2P1D model constant 
Median 

value 
Values chosen for the parametric analysis 

E00 (MPa) 100 10 50 150 200 

E0 (MPa) 35 000 30 000 32 500 37 500 40 000 

k 0.17 0.13 0.15 0.19 0.21 

h 0.53 0.47 0.50 0.56 0.59 

δ 2.15 1.75 1.95 2.35 2.55 

β 250 10 100 500 1000 

τE15°C (s) 0.1 0.01 0.05 0.5 1 

ν00 0.4 0.3 0.35 0.45 0.5 

ν0 0.2 0.1 0.15 0.25 0.3 

τν15°C (s) 100 10 000 1 000 10 1 

Evolution of the RSD with temperature for the two first resonance frequencies and 

amplitudes is plotted for all the constants in the case of the longitudinal mode of the cylinder in 

Figure 4.3.  

 

Figure 4.3. RSD in function of temperature for each of the ten constants of the 2S2P1D model 

for the longitudinal mode of the cylinder: (a) 1st resonance frequency; (b) 2nd resonance 

frequency; (c) 1st resonance amplitude; (d) 2nd resonance amplitude. 
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From this figure, four constants can be identified as the constants having the main influence 

on the FRFs: the constant E0 has an important influence on the resonance frequencies while 

constants τE15°C, k and δ have an influence on both the resonance frequencies and amplitudes. 

For each of these four constants, the FRFs calculated when the considered constant varies (the 

nine other constants are fixed to their median values) are plotted at 15°C for the longitudinal 

mode of the cylinder in Figure 4.4. It shows an example of how these four constants influence 

the FRFs. Figure 4.3 also shows that the constants ν00, ν0 and τν15°C governing the value of the 

complex Poisson’s ratio have almost a negligible influence on the first resonance and a small 

influence on the second resonance. This observation is very similar to the observation raised 

from the study of the influence of the complex Poisson’s ratio on the longitudinal mode of the 

cylinder in section 4.2.1. The rest of the constants of the 2S2P1D model (E00, β and h) have a 

negligible influence on the FRFs, which is logical because they influence the low frequencies 

behaviour of the model and FRFs are calculated at very high frequencies. 

 

Figure 4.4. Influence of four constants of the 2S2P1D model on the FRFs of the longitudinal 

mode of the cylinder at 15°C: (a) E0; (b) τE15°C; (c) k; (d) δ. The constants not listed in each 

figure have the median value given in Table 4.6. 

The results for the two other configurations are given in APPENDIX D. Similarly, to what 

was observed for the influence of the complex modulus and complex Poisson’s ratio, the 

constants of the 2S2P1D model have comparable effects on all the configurations studied. In 

addition, the longitudinal mode is again the only configuration for which the first resonance is 

almost not impacted by the values of constants ν00, ν0 and τν15°C governing the value of the 

complex Poisson’s ratio. Therefore, the longitudinal mode of vibration seems to be the more 

suitable for practical application since the number of constants to identify in the inverse analysis 

can be reduced to four, at least when studying the first resonance only.  
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4.3 Inverse analysis 

The inverse analysis consists in determining the LVE properties of a material from FRFs 

measurements. In this thesis, different inverse methods based on FEM calculations were 

developed to do so. The five proposed methods were applied to the reference LVE material 

described in section 4.1.2 to evaluate their accuracy. This approach presents the great advantage 

to eliminate any potential divergence due to experimental measurements errors or to the 

material behaviour that is not perfectly isotropic and LVE in practice. Therefore, only the 

accuracy of the different inverse analysis methods is evaluated. This step is essential to verify 

that the inverse methods selected for practical application on bituminous mixtures specimens 

introduce no bias for the characterization of the LVE properties.  

First, four methods that give only access to the complex modulus are presented. Then, 

another method for which it is possible to determine the complex Poisson’s ratio is introduced. 

For the five methods, different FRFs are compared after applying the method to the reference 

LVE material: 

• The FRFs calculated with the LVE properties or the constants of the 2S2P1D model 

determined at each temperature in the first step of the methods. They are called 

FRFs after optimization and are noted FRF A.O. 

• The FRFs calculated with the constants of the 2S2P1D model and WLF equation 

simulating the global LVE behaviour of the material determined in the second steps 

of the methods. They are called global LVE FRFs and are noted G.LVE.FRF. 

• The FRFs of the reference LVE material calculated with the constants of the 

2S2P1D model and WLF equation of the reference LVE material (cf. Table 4.3). 

Similarly, different complex modulus values are also compared:  

• The complex modulus back-calculated in the first step of the methods, noted E*
BCp 

(norm |E*
BCp| and phase angle ϕE*BCp) where p is the index of the considered method 

(p=1, 2, 3, 4 or 5). 

• The complex modulus of the 2S2P1D model simulating the global LVE behaviour 

of the material determined in the second step of the methods, noted E*
Dynp (norm 

|E*
Dynp| and phase angle ϕE*Dynp) where p is the index of the considered method 

(p=1, 2, 3, 4 or 5). 

• The complex modulus of the reference LVE material, noted E*
Ref (norm |E*

Ref| and 

phase angle ϕE*Ref). 

4.3.1.1 Method I: simplified back analysis method 

All the details about this method and the results obtained are presented in Paper I and Paper 

II. In this section, only a summary of the method and of the main results is given. 

4.3.1.1.1 Principle of the method 

This method is the simplest method proposed in this thesis. It is divided in two distinct 

steps. The first step consists to back analyze the FRFs obtained at each temperature to determine 
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one value of the complex modulus at the first resonance frequency. The second step consists to 

fit the 2S2P1D model and the WLF equation simulating the global LVE behaviour of the 

material using the results of the first step.  

The first step of the method gives access to one value of the complex modulus at the first 

resonance frequency for each temperature. This value is obtained following a process divided 

into two stages described in Figure 4.5: 

• First, the norm of the complex modulus (|E*
BC1|) is determined from the first 

resonance frequency f. The material behaviour is considered elastic and the 

modulus is back-calculated using the FEM so that the first resonance frequency of 

the elastic calculation matches the first resonance frequency of the FRF to back-

analyze or input FRF. For the longitudinal and flexural modes of vibration, it is 

necessary to fix the value of the Poisson’s ratio to perform the elastic back-

calculation of the modulus. The torsional mode of vibration is independent of the 

value of the Poisson’s ratio. 

• Then, the frequency bandwidth at -3dB, Δf, is determined with the half-power 

bandwidth method applied to the first resonance peak of the input FRF. The phase 

angle of the complex modulus is calculated from the frequency bandwidth Δf and 
the first resonance frequency f according to the following relationship (Clough & 

Penzien, 1993): 

 E*BC1

f
arctan

f

∆ ϕ =  
 

 (4-4) 

 

Figure 4.5. Principle of the two-stages process to determine the value of the complex modulus 

at the first resonance frequency for each temperature in the first step of method I. 
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In the second step of the method, the complex modulus simulating the global LVE 

behaviour of the material (E*
Dyn1) is determined. To do so, the values of the complex modulus 

back-calculated at each temperature in the first step (one value at each temperature) are used as 

data points to fit a unique 2S2P1D model and to find the WLF equation of the material. This is 

done in three stages explained in Figure 4.6 for an example in which five temperatures are 

considered: 

• The first stage consists in adjusting manually the values of the 2S2P1D model 

constants until the fit in the cole-cole plan between the 2S2P1D model and the data 

points is satisfying. Only the values of constants E0, k, δ and h of the 2S2P1D 

model can be found considering the range of values of the data points. Constants 

E00 and β are fixed to the values of the reference LVE material listed in Table 4.3. 

or to values determined from other tests. Constants τE15°C of the 2S2P1D model 

and C1 and C2 of the WLF equation are not considered in this stage because the 

Cole-Cole representation of the 2S2P1D model is independent of the frequency 

and temperature. 

• In the second stage, the experimental characteristic times τexp are determined at 

each temperature. To do so, the constants of the 2S2P1D model obtained in the 

first stage are used to calculate the values of the complex modulus at the same 

frequencies than the data points. The experimental characteristic times τexp are 

optimized at each temperature separately to minimize the relative difference 

between the norm of the complex modulus calculated as described above and the 

norm of the complex modulus of the data points (i.e. the norm of the back-

calculated complex modulus, E*
BC1).  

• Finally, the characteristic time at the reference temperature τE15°C and the constants 

C1 and C2 of the WLF equation at 15°C are found in the third stage using the excel 

solver with characteristic times τexp found in the second stage.  
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Figure 4.6. Three-stages process to determine the values of constants E0, τE15°C, k, δ, h, C1 and 

C2 of the 2S2P1D model and WLF equation simulating the global LVE behaviour of the 

material that are identified in the second step of method I. Example in which five 

temperatures are considered. 

4.3.1.1.2 Results for the reference LVE material  

The method described in the previous section was applied to a cylinder (L=15cm, 

D=7.5cm) of the reference LVE material and three modes of vibration (longitudinal, flexural 

and torsional) were studied. Values of the constants of the 2S2P1D model of the reference LVE 

material considered in this section are slightly different than those listed in Table 4.3and the 

reference temperature is 10°C instead of 15°C (cf. Paper I and Paper II). The effect of the 

temperature was also studied and ten temperatures between -40°C and 50°C were used. For the 

longitudinal and flexural modes of vibration, the influence of the fixed value of the Poisson’s 

ratio for the elastic back-calculation in the first step was studied. To do this, three back-

calculations of the norm of the complex modulus corresponding to three different values of the 

Poisson’s ratio were performed: ν1=0.2, ν2 equal to the value of the norm of the Poisson’s ratio 

of the reference LVE material at the first resonance frequency for the considered mode of 

vibration (ν2= |ν*
Ref-L| for the longitudinal mode and ν2=|ν*

Ref-F| for the flexural mode) and 

ν3=0.45. Consequently, three values of the complex modulus were obtained for the longitudinal 

and flexural modes while only one value the complex shear modulus was obtained for the 

torsional mode. The notations corresponding to the complex modulus back-calculated in the 

first step and to the complex modulus of the reference LVE material are summarized in Table 

4.7 for the three studied modes of vibration..  
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Table 4.7. Notations used for the complex modulus back-calculated in the first step of method 

I and for the complex modulus of the reference LVE material for the three studied modes of 

vibration. (Suffixes L, F and T corresponds respectively to the longitudinal, flexural and 

torsional modes). 

Mode of 

Vibration 

Poisson’s 

ratio 

Complex modulus from the 

back analysis at the 1st 

resonance frequency 

Complex modulus of the 

reference LVE material at 

the 1st resonance frequency 

Longitudinal 

ν1=0.2 
*

BC1 L
i* *

BC1 L1 BC1 L1E E .e −ϕ
− −=  

*

Ref L
i* *

Ref L Ref LE E .e −ϕ
− −=  ν2= |ν*

Ref-L| 
*

BC1 L
i* *

BC1 L2 BC1 L2E E .e −ϕ
− −=  

ν3=0.45 
*

BC1 L
i* *

BC1 L3 BC1 L3E E .e −ϕ
− −=  

Flexural 

ν1=0.2 
*

BC1 F
i* *

BC1 F1 BC1 F1E E .e −ϕ
− −=  

*

Ref F
i* *

Ref F Ref FE E .e −ϕ
− −=  ν2=|ν*

Ref-F| 
*

BC1 F
i* *

BC1 F2 BC1 F2E E .e −ϕ
− −=  

ν3=0.45 
*

BC1 F
i* *

BC1 F3 BC1 F3E E .e −ϕ
− −=  

Torsional 
Independent 

of ν 

*

BC1 T
i* *

BC1 T BC1 TG G .e −ϕ
− −=  

*

Ref T
i* *

Ref T Ref TG G .e −ϕ
− −=  

The relative difference (respectively the difference) between the norm (respectively the 

phase angle) of the complex modulus evaluated in the first step of method I and the norm 

(respectively the phase angle) of the complex modulus of the reference LVE material calculated 

at the same frequencies is presented in Figure 4.7. A good agreement is seen for both the norm 

and phase angle of the complex modulus for the low temperatures. Figure 4.7 (a) also shows 

that the Poisson’s ratio has a limited impact (less than 5%) on the calculation of the norm of the 

complex modulus. For temperatures higher than 10°C, differences increase, especially for the 

phase angle. For temperatures higher than 30°C, it is seen on Figure 4.7 (b) that the phase angle 

cannot be evaluated with the back analysis method for the longitudinal and torsional modes. 

These observations highlight the limits of the half-power bandwidth method for the evaluation 

of the phase angle when there is too much damping in the material. Because of the previous 

observations, it is expected that the global LVE behaviour determined in the second step of the 

method will not be in good agreement with the behaviour of the reference LVE material.  
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Figure 4.7. a) Relative difference between the norm of the complex modulus determine in the 

first step of method I (E*
BC1-L/F/T) and the norm of the complex modulus of the reference LVE 

material (E*
Ref-L/F/T); (b) difference between the phase angle of the complex modulus 

determined in the first step of method I (ϕ*
BC1-L/F/T) and the phase angle of the complex 

modulus of the reference LVE material (ϕ*
Ref-L/F/T). Suffixes L, F and T corresponds 

respectively to the longitudinal, flexural and torsional modes. 

The values of the constants of the 2S2P1D model and WLF equation determined in the 

second step of the method are listed in Table 4.8 for the three studied modes of vibration. Values 

listed in Table 4.8were obtained by using as input data points for the second step: 

• For the longitudinal and flexural modes, the values of the complex modulus back 

calculated in the first step that are in best agreement with the values of E*
Ref (E*

BC1-

L2 for the longitudinal mode and E*
BC1-F2 for the flexural mode)  

• For the torsional mode, the values of G*
BC1-T transformed to complex modulus 

values using equation (2-16). 

Table 4.8. Values of the seven constants E0, τE10°C, k, δ, h, C1 and C2 of the 2S2P1D model and 

WLF equation simulating the global LVE behaviour of the material determined in the second 

step of method I for the three studied modes of vibration. 

 2S2P1D model WLF equation at 10°C 

Mode of vibration E0 (MPa) τE10°C (s) k δ h C1 C2 

Longitudinal 34 900 0.013 0.162 1.35 0.49 17.2 132.8 

Flexural 34 900 0.065 0.182 2.10 0.62 27.2 197.5 

Torsional 35 000 0.023 0.185 1.90 0.58 24.2 186.9 
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The master curves at 10°C of the relative difference (respectively the difference) between 

the norm (respectively the phase angle) of E*
Dyn1 and E*

Ref are plotted in Figure 4.8. As 

expected, Figure 4.8 confirms the observations raised from Figure 4.7. For all modes of 

vibration, method I is very accurate for temperatures lower than 10°C (or reduced frequencies 

higher than 105 Hz) with less than 2% of error for the norm of the complex modulus and 0.5° 

for the phase angle. However, for temperatures higher than 10°C (or reduced frequencies lower 

than 105 Hz), the error increases and the norm of the complex modulus is underestimated up to 

30% while the phase angle is overestimated up to 10°  

 

Figure 4.8. Master curve at 10°C of: (a) the relative difference between the norm of the 

complex modulus determined with method I (|E*
Dyn1|) and of the reference LVE material 

(|E*
Ref|) ;(b) the difference between the phase angle of the complex modulus determined with 

method I (ϕE*Dyn1) and of the reference LVE material (ϕE*Ref). Results for three studied modes 

of vibrations. 

To conclude, method I is very interesting to evaluate quickly and accurately the high 

frequencies or low temperatures behaviour of bituminous mixtures. However, it is not 

recommended to use this method for characterizing bituminous mixtures properties on a wider 

frequency and temperature range. 

4.3.1.2 Method II: determination of the complex modulus simulating the global LVE 

behaviour of the material in one step 

4.3.1.2.1 Principle of the method 

In this method, the behaviour of the material is modelled with the 3-dim version of the 

2S2P1D model and the temperature dependency is described with the WLF equation. The 

constants of the 2S2P1D model and of the WLF equation simulating the global LVE behaviour 

of the material are directly determined from one single optimization of all the input FRFs of the 

material for a given mode of vibration. The optimization consists in optimizing FRFs calculated 

with the FEM (cf. section 4.1.1) to match the input FRFs. This is done with an optimization 

algorithm that adjusts iteratively the values of the constants of the 2S2P1D model and WLF 

equation until the fit with the input FRFs is good enough.  

The direct analysis showed that constants E00, β, h, ν00, ν0 and τν15°C of the 2S2P1D model 

have a negligible influence on the FRFs calculation, at least as a first approximation (see section 

4.2.2). Therefore, these six constants can be fixed and are not identified during the optimization. 
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Consequently, the complex Poisson’s ratio is not determined with this method. In this thesis, 

the values chosen for the six fixed constants of the 2S2P1D model were set to the values of the 

constants of the reference LVE material (cf. Table 4.3) or to values determined from other tests. 

Note that constant τν15°C is not fixed to a constant value but is continuously adjusted so that the 

ratio γEν between τE15°C and τν15°C is constant (equal to the value of the reference LVE material 

unless the value is known from other tests): 

 
E15 C

E
15 C

Constant°
ν

ν °

τ
γ = =

τ
 

(4-5) 

The four remaining constants E0, τE15°C, k and δ of the 2S2P1D model are determined with 

this method. In addition, if the temperature dependency of the characteristic time τE15°C is not 

known, constants C1 and C2 of the WLF equation must also be determined in the optimization 

process. In the contrary case, they can be fixed to their known values during the optimization.  

The frequencies used as input in the optimization are chosen around the resonance 

frequencies seen on the input FRFs according to previous studies that showed their meaningful 

importance (Gudmarsson, Ryden, & Birgisson, 2012; Gudmarsson, et al., 2014; Gudmarsson, 

Ryden, Di Benedetto, & Sauzéat, 2015). At each temperature, a total of 10 frequencies are 

selected along each resonance peak and the error function to minimize is defined as follow: 

 

5

T

T 1

Error E
=

=∑  
(4-6) 

where T is the index of the temperatures and ET is the error at temperature T defined as: 

 

ij ij

ij

NpeakT 10 InpT OptT

T

i 1 j 1 InpT

H H
E

H= =

 − =  
 
 

∑ ∑  
(4-7) 

where HInpT is the input FRF at temperature T, HOptT is the FRF calculated during the 

optimization process at temperature T, NpeakT is the number of resonance peaks at temperature 

T, i is the index of the peaks and j is the index of the frequencies.  The starting values of the 

constants to be optimized can be adjusted manually before launching the optimization to reduce 

the initial error. The optimization is performed in MATLAB with the “fminsearch” algorithm 

and the optimization is stopped when the error and the parameter tolerance of 1% is reached 

(e.g. when the variation of the error and of all the values of the constants to be optimized is less 

than 1% between two iterations of the algorithm). The principle of the method is explained in 

Figure 4.9 in the cases for which constants C1 and C2 of the WLF equation are fixed.  
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Figure 4.9. Principle of the optimization process for method II in the cases for which 

constants C1 and C2 of the WLF equation are fixed. In the other cases, constants C1 and C2 

are optimized along with constants E0, τE15°C, k and δ of the 2S2P1D model. 

This method is based on a unique optimization of all the input FRFs for a given mode of 

vibration. Potential measurement errors at some temperatures in physical tests may not be 

detected with this global approach. A good alternative is to use a two steps process including a 

local approach in the first step, as for method I (cf. 4.3.1.1.1). The methods that are introduced 

in the next sections are all based on this same principle. 

4.3.1.2.2 Results for the reference LVE material  

The method described in the previous section was tested on the reference LVE material. 

Four configurations were studied: the longitudinal mode of a cylinder (L=16cm, D=6.5cm) and 

of a straight beam (L=30cm, H=W=5cm), the longitudinal and flexural modes of the same 

cylinder and the flexural mode of a disc (L=3cm, D=10cm). For each configuration, the FRFs 

of the reference LVE material (reference FRFs) were calculated at five temperatures (-20°C, 

0°C, 15°C, 35°C and 50°C) for frequencies between 100 Hz and 20 kHz in steps of 20 Hz. 

The values of the four constants E0, τE15°C, k and δ of the 2S2P1D model determined with 

this method are given in Table 4.9 for the four studied configurations. To obtain these values, 

the values of the six constants of the 2S2P1D model (E00, β, h, ν00, ν0 and τν15°C) that are not 

optimized were fixed to the values of the constants of the reference LVE material listed in Table 

4.3 except for τν15°C which was continuously adjusted so that the ratio γEν between τE15°C and 

τν15°C is constant and equal to the ratio of the reference LVE material: 

 
E15 C

E
15 C

0.1
0.0316

3.16

°
ν

ν °

τ
γ = = =

τ
 

(4-8) 
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The temperature dependency of the characteristic time τE15°C was supposed known and 

constants C1 and C2 of the WLF equation were also fixed the values of the reference LVE 

material. The starting values of the four 2S2P1D model constants to be optimized were chosen 

randomly by taking values in a range of +/- 15% around the values of the reference LVE 

material listed in Table 4.3. 

Table 4.9. Values of the four constants E0, τE15°C, k and δ of the 2S2P1D model simulating the 

global LVE behaviour of the material determined with method II for the four studied 

configurations. 

Configuration E0 (MPa) τE15°C (s) k δ 

C-L 34 150 0.117 0.188 2.34 

C-P+F 35 351 0.088 0.165 2.00 

B-L 35 059 0.086 0.167 2.03 

D-F 35 099 0.072 0.164 1.89 

Table 4.9 shows that the final values of the four identified constants are slightly different 

than the constants of the reference LVE material. Though, the global LVE FRFs are in very 

good agreement with the reference FRFs as seen in Figure 4.10 for the longitudinal mode of the 

cylinder. The figures corresponding to the three other studied configurations can be found in 

APPENDIX E. They confirm observations raised from Figure 4.10. It shows that the 

optimization process works correctly for all the studied configurations  
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Figure 4.10. Comparison of the reference FRFs (noted Ref. FRF) with the global LVE FRFs 

(noted G.LVE.FRF) for method II. Values of the reference FRFs at the frequencies where the 

optimization is performed (noted Opt. Points) are also plotted. Example for the longitudinal 

mode of the cylinder at: (a) -20°C; (b) 0°C; (c) 15°C; (d) 35°C; (e) 50°C. 

Then, the values of E*
Dyn2 (i.e. the values of the complex modulus calculated with the 

2S2P1D model simulating the global LVE behaviour which constants values are listed in Table 

4.9) were compared with the values of E*
Ref. The comparison was performed for six frequencies 

selected at each temperature in a narrow domain including all the resonance frequencies (cf. 

Figure 4.11). The frequencies corresponding to each configuration studied are given in 

APPENDIX E The principle of the comparison is illustrated in Figure 4.11.  
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Figure 4.11. Principle of the comparison of the values of the complex modulus of the 

reference LVE material (E*
Ref) with the values of the complex modulus determined in the 

second inverse method (E*
Dyn2). Example for the longitudinal mode of the cylinder at 35°C. 

Figure 4.12 shows the Cole-Cole plot and the master curves at 15°C of the norm and phase 

angle of the different complex modulus (E*
Dyn2 and E*

Ref) for the longitudinal mode of the 

cylinder. A very good fit is seen between the values of E*
Dyn2 and E*

Ref. This observation is 

confirmed in Figure 4.13 where master curves at 15°C of the relative difference (respectively 

the difference) between the norm (respectively the phase angle) of E*
Dyn2 and E*

Ref is presented. 

It is seen in Figure 4.13 that the maximum relative difference is about 5% for the norm of the 

complex modulus and the maximum difference is less than 1° for the phase angle except for the 

longitudinal mode of the straight beam for which the difference reaches 2° at 50°C. The overall 

agreement between the values of E*
Dyn2 and E*

Ref is very satisfying. It demonstrates the good 

accuracy of the method. However, it should be remembered that the shift factors were supposed 

known before the optimization, which is generally not the case in physical experimentation. 
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Figure 4.12. Comparison of the values of the complex modulus determined with method II 

(E*
Dyn2) with the values of the complex modulus of the reference LVE material (E*

Ref). (a) 

Cole-Cole plot; (b) and (c) master curves of the norm and of the phase angle of the complex 

modulus at 15°C. Results for the longitudinal mode of the cylinder. 

 

Figure 4.13. Master curve at 15°C of: (a) the relative difference between the norm of the 

complex modulus determined with method II (|E*
Dyn2|) and of the reference LVE material 

(|E*
Ref|) ;(b) the difference between the phase angle of the complex modulus determined with 

method II (ϕE*Dyn2) and of the reference LVE material (ϕE*Ref). Results for the four studied 

configurations. 
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4.3.1.3 Method III: determination of the complex modulus simulating the global LVE 

behaviour of the material in two steps 

4.3.1.3.1 Principle of the method 

This method is described in details in Paper IV. In this method, the constants of the 2S2P1D 

model and of the WLF equation simulating the global LVE behaviour of the material are 

determined in two distinct steps. 

In the first step, the optimization process used in method II is applied at each temperature 

separately (i.e. only the FRF corresponding to the considered temperature is taken as input for 

the optimization). Therefore, the number of optimizations performed corresponds to the number 

of temperatures tested. The error function to minimize at each temperature is defined in 

equation (4-7). One set of the four 2S2P1D model constants optimized (E0, τE15°C, k and δ) is 

obtained at each temperature. The principle of the optimization process at each temperature is 

illustrated in Figure 4.14 

 

Figure 4.14. Principle of the optimization process repeated at each temperature in the first 

step of method III. 

At each temperature, values of the complex modulus are back-calculated using the four 

2S2P1D model constants (E0, τE15°C, k and δ) determined at the corresponding temperature. The 

six remaining constants of the 2S2P1D model (E00, β, h, ν00, ν0 and γEν) are fixed to the values 

of the constants of the reference LVE material (cf. Table 4.3) or to values determined from 

other tests. Six values of the complex modulus are back-calculated (E*
BC3) at frequencies 

selected in a frequency range including all the resonance frequencies following the procedure 

illustrated in Figure 4.11:. This back-calculation process is explained in Figure 4.15.  
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Figure 4.15. Principle of the back-calculation of the values of the complex modulus (E*
BC3) at 

each temperature in the first step of method III. 

In the second step of the method, the global LVE behaviour of the material is determined 

following the same process than in the second step of method I (cf. section 4.3.1.1.1). The only 

difference is that six values of the complex modulus are used at each temperature to fit the 

2S2P1D model and WLF equation instead of only one value. 

4.3.1.3.2 Results for the reference LVE material  

Method III was tested on the reference LVE material using the same configurations, 

temperatures and hypothesis to calculate the reference FRFs than for method II (cf. section 

4.3.1.2.2).  

The values of the four constants E0, τE15°C, k and δ obtained at each temperature (in the first 

step) for the longitudinal mode of the cylinder are listed in Table 4.10. The values of the 

constants for the other configurations are given in APPENDIX F.  

Table 4.10. Values of the four constants E0, τE15°C, k and δ of the 2S2P1D model determined at 

each temperature in the first step of method III for the longitudinal mode of the cylinder. 

Temperature (°C) E0 (MPa) τE15°C (s) k δ 

-20 34 903 0.050 0.181 2.28 

0 35 820 0.096 0.152 1.90 

15 33 934 0.165 0.183 2.42 

35 40 251 0.045 0.139 2.11 

50 31 832 0.138 0.193 2.03 
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During the optimization at each temperature, the values of the six constants of the 2S2P1D 

model (E00, β, h, ν00, ν0 and γEν) that are not optimized were fixed to the values of the constants 

of the reference LVE material (cf. Table 4.3 and equation (4-8)) The constants listed in Table 

4.10 are different at each temperature and are also different than those of the reference LVE 

material. It shows that they should only be used to calculate values of the complex modulus at 

the corresponding temperature and frequency range.  

The values of the seven constants of the 2S2P1D model and WLF equation simulating the 

global LVE behaviour of the material determined in the second step of the method (E0, τE15°C, 

k, δ, h, C1 and C2) are given in Table 4.11.  

Table 4.11. Values of the seven constants E0, τE15°C, k, δ, h, C1 and C2 of the 2S2P1D model 

and WLF equation simulating the global LVE behaviour of the material determined in the 

second step of method III for the four studied configurations. 

 2S2P1D model 
WLF equation at 

15°C 

Configuration E0 (MPa) τE15°C (s) k δ h C1 C2 

C-L 35 300 0.076 0.169 2.01 0.50 28.0 198.1 

C-P+F 35 000 0.117 0.172 2.27 0.54 34.6 244.8 

B-L 35 100 0.102 0.169 2.20 0.52 30.0 211.2 

D-F 35 000 0.088 0.170 2.10 0.51 29.5 207.4 

The two remaining constants of the 2S2P1D model governing the value of the complex 

modulus (E00 and β) that are not optimized were fixed to the values of the constants of the 

reference LVE material (cf. Table 4.3). The FRFs after optimization and the global LVE FRFs 

are compared to the reference FRFs in Figure 4.16 for the longitudinal mode of the cylinder. 

The same comparisons will be found in APPENDIX F for the other configurations. The fit 

between the reference FRFs and both the FRFs after optimization and the global LVE FRFs is 

excellent. It is not as good for the flexural mode of the disc but the fit remains very satisfying. 

The best results are obtained when studying the longitudinal mode of the cylinder or of the 

straight beam.  
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Figure 4.16. Comparison of the reference FRFs (noted Ref. FRF) with the FRFs after 

optimization (noted FRF A.O) and the global LVE FRFs (noted G.LVE FRF) for method III. 

Values of the reference FRFs at the frequencies where the optimization is performed (noted 

Opt. Points) are also plotted. Example for the longitudinal mode of the cylinder at: (a) -20°C; 

(b) 0°C; (c) 15°C; (d) 35°C; (e) 50°C. 

Then, the values of E*
BC3 back-calculated in the first step (cf. Figure 4.15) and the values 

of E*
Dyn3 determined in the second step (cf. Figure 4.6) were compared with the values of E*

Ref. 

The Cole-Cole plot and the master curves at 15°C of the norm and phase angle of the complex 

modulus for the longitudinal mode of the cylinder are plotted in Figure 4.17. A very good 

agreement is seen between the values of E*
BC3 and E*

Dyn3 which demonstrates the good 

efficiency of the second step of the method. In addition, the values of E*
Dyn3 and E*

Ref are also 

in good agreement, which shows the high accuracy of method III. 
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Figure 4.17. Comparison of the values of the complex modulus determined with method III 

(E*
BC3 and E*

Dyn3) with the values of the complex modulus of the reference LVE material 

(E*
Ref). (a) Cole-Cole plot; (b) and (c) master curves of the norm and of the phase angle of the 

complex modulus at 15°C. Results for the longitudinal mode of the cylinder. 

Observations raised from Figure 4.17 are confirmed in Figure 4.18 in which the relative 

difference (respectively the difference) between the norm (respectively the phase angle) of 

E*
Dyn3 and E*

Ref are plotted at 15°C for all studied configurations. The maximum difference is 

about 2% for the norm of the complex modulus and less than 1° for the phase angle.  

 

Figure 4.18. Master curve at 15°C of: (a) the relative difference between the norm of the 

complex modulus determined with method III (|E*
Dyn3|) and of the reference LVE material 

(|E*
Ref|) ;(b) the difference between the phase angle of the complex modulus determined with 

method III (ϕE*Dyn3) and of the reference LVE material (ϕE*Ref). Results for the four studied 

configurations. 
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In addition, the shift factors obtained in the second step of the method are compared to the 

shift factors of the reference LVE material in Figure 4.19 for all studied configurations. The 

different curves plotted in Figure 4.19 almost perfectly overlap and cannot be distinguished. 

The observations raised from Figure 4.18 and Figure 4.19 confirm that method III is very 

accurate. Moreover, the shift factors and the WLF equation of the material are determined with 

this method, which is a great advantage compared to method II. 

 

Figure 4.19. Comparison of the shift factors of the reference LVE material with the shift 

factors of the WLF equation determined with method III for the four studied configurations. 

4.3.1.4 Method IV: determination of the complex modulus simulating the global LVE 

behaviour of the material in two steps using a simplified approach in the first step 

4.3.1.4.1 Principle of the method 

This method is based on the same principle than method III. However, in the first step of 

the method, a simplified approach that does not require a rheological model taking into account 

the frequency and temperature dependency of the behaviour is used. The behaviour of the 

material is simply modelled with a constant complex modulus value and a constant real 

Poisson’s ratio fixed at 0.3. The Poisson’s ratio is fixed at 0.3 because the parametric analysis 

of the LVE properties (cf. section 4.2.1) showed the small influence of the complex Poisson’s 

ratio, and particularly of its phase angle, comparing to the influence of the complex modulus. 

 At each temperature, the norm and the phase angle of the complex modulus are determined 

at the first resonance frequency. Because the norm and phase angle of the complex modulus 

have separated effects on the FRFs calculation (cf. section 4.2.1), it is possible to back-calculate 

their values using two distinct dichotomy calculations repeated iteratively until the error on the 

amplitude at the first resonance frequency is less than 0.1% (cf. Figure 4.20):  

• First, the norm of the complex modulus is determined by dichotomy so that the first 

resonance frequency f of the input FRF matches the first resonance frequency of 

the FRF calculated. 
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• Then, the phase angle of the complex modulus is determined by dichotomy so that 

the amplitude A at the first resonance frequency of the input FRF matches the 

amplitude at the first resonance frequency of the FRF calculated. 

 

Figure 4.20. Principle of the back-calculation of the norm (|E*
BC4|) and phase angle (ϕE*BC4) 

of the complex modulus at each temperature from the first resonance frequency in the first 

step of method IV. 

In the second step of the method, the same procedure than in methods I and III is applied 

(see Figure 4.6) to determine the global LVE behaviour of the material. 

4.3.1.4.2 Results for the reference LVE material 

The method described in the previous section was tested on the reference LVE material. 

The same configurations, temperatures and hypothesis to calculate the reference FRFs than for 

the methods II and III (cf. sections 4.3.1.2.2 and 4.3.1.3.2) were used for this method.  

The values of the first resonance frequencies and of |E*
BC4| and ϕE*BC4 determined in the 

first step of the method at each temperature are given in APPENDIX G. The relative difference 

(respectively the difference) between the norm (respectively the phase angle) of |E*
BC4| and 

(|E*
Ref|)  is plotted against the temperature in Figure 4.21 for all studied configurations. It is 

seen in Figure 4.21 that differences appear for the flexural mode of the cylinder (up to 15% for 

the norm and 2.5° for the phase angle) and for the flexural mode of the disc (up to 8% for the 

norm and 1° for the phase angle) while there are almost no differences for the longitudinal mode 

of the cylinder and of the straight beam (less than 1% for the norm and 0.2° for the phase angle). 

This is probably an effect of the modelling of the Poisson’s ratio with a constant real value. 

Indeed the Poisson’s ratio has a limited influence for all modes of vibration, but its influence is 

negligible only for the first resonance of the longitudinal mode (cf. section 4.2.1). 

Consequently, the first step used in method IV is accurate only for the longitudinal mode and 

should not be used with other modes of vibration. 
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Figure 4.21. (a) Relative difference between the norm of the complex modulus determined in 

the first step of method IV (|E*
BC3|) and of the reference LVE material (|E*

Ref|) ;(b) difference 

between the phase angle of the complex modulus determined in the first step of method IV 

(ϕE*BC4) and of the reference LVE material (ϕE*Ref). Results for the four studied 

configurations. 

In accordance with the results of the first step, only the longitudinal mode of the cylinder 

and of the straight beam were considered in the second step of the method. The values of E*
BC4 

are in very good agreement with the values of E*
BC3 as seen in Figure 4.23. Consequently, the 

seven constants of the 2S2P1D model and WLF equation (E0, τE15°C, k, δ, h, C1 and C2) 

simulating the global LVE behaviour determined in the second step of method IV are the same 

than those determined in the second step of method III (cf. Table 4.11). 

Using a simplified approach with a constant real value for the Poisson’s ratio has an impact 

on the FRFs calculation that can be seen in Figure 4.22. The fit between the FRFs after 

optimization, the global LVE FRFs and the reference FRF is very good for frequencies below 

the first resonance frequency while slight deviations are seen for higher frequencies. These 

deviations from the reference FRFs are mostly due to the value of the Poisson’s ratio that is 

fixed to 0.3 instead of being modelled with the 2S2P1D model. Moreover, deviations are more 

important for the FRFs after optimization than for the global LVE FRFs because the FRFs after 

optimization are calculated with a constant complex modulus independent of the frequency 

(E*
BC4) contrarily to the global LVE FRFs calculated with the complex modulus of the 2S2P1D 

model which constants are determined in the second step (E*
Dyn4) The same observations can 

be made for all the configurations (cf. APPENDIX G). 
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Figure 4.22. Comparison of the reference FRFs (noted Ref. FRF) with the FRFs after 

optimization (noted FRF A.O) and the global LVE FRFs (noted G.LVE FRF) for method IV. 

Values of the reference FRFs at the frequencies where the optimization is performed (noted 

Opt. Points) are also plotted. Example for the longitudinal mode of the cylinder at: (a) -20°C; 

(b) 0°C; (c) 15°C; (d) 35°C; (e) 50°C. 

In Figure 4.23, values of the complex modulus determined with methods III (E*
BC3 and 

E*
Dyn3) and IV (E*

BC4 and E*
Dyn4) for the longitudinal mode of the cylinder are plotted along 

with values of E*
Ref. The same figure can be found in APPENDIX G for the longitudinal mode 

of the straight beam. A very good agreement is seen between the complex modulus values 

obtained with methods III and IV. Therefore, the simplified approach used in the first step of 

method IV does not introduce any bias to characterize the global LVE behaviour. Moreover, 

one value of the complex modulus back-calculated at each temperature seems to be sufficient 

to find the constants simulating the global LVE behaviour of the material. Method IV is quite 

interesting because the approach used in the first step is very easy to apply, it limits the number 



NUMERICAL SIMULATIONS ON REFERENCE LVE BITUMINOUS MIXTURE 

-65- 

of constants to identify at each temperature to two and it considerably reduces the computational 

time (a calculation for a given temperature is between five and ten times faster with method IV 

than with method III). However, as seen previously, method IV is only adapted for the 

longitudinal mode of vibration.  

 

Figure 4.23. Comparison of the values of the complex modulus determined with methods III 

(E*
BC3 and E*

Dyn3) and IV (E*
BC4 and E*

Dyn4) with the values of the complex modulus of the 

reference LVE material (E*
Ref). (a) Cole-Cole plot; (b) and (c) master curves of the norm and 

of the phase angle of the complex modulus at 15°C. Results for the longitudinal mode of the 

cylinder. 

4.3.2 Method V: determination of the complex modulus and complex Poisson’s ratio 

simulating the global LVE behaviour of the material in two steps 

4.3.2.1 Principle of the method 

This method is the only method that gives access to the complex Poisson’s ratio. It is only 

applicable for the longitudinal mode of vibration. Similarly to methods III and IV, the method 

is divided into two steps.  

In the first step of the method, the complex modulus of the material is modelled with the 

2S2P1D model while the Poisson’s ratio is modelled with a constant real value noted ν. At each 
temperature, a three-stages optimization process is used to determine the constants E0, τE15°C, k 

and δ of the 2S2P1D model and the real value ν of the Poisson’s ratio. The two first stages aim 

to find realistic values of constants E0, τE15°C, k, δ and ν prior to the third stage. Constants E00, 
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h, β, C1 and C2 of the 2S2P1D model and WLF equation are fixed during the three stages of the 

process that is repeated at each temperature: 

• The first step of method III is applied with two slight modifications:  

- Only the frequencies selected along the first resonance peak are used as 

input for the optimization. 

- The Poisson’s ratio is modelled with a constant real value fixed to 0.3 

instead of being modelled with the 2S2P1D model (cf. Figure 4.24).  

The aim of this stage is to guarantee that final values of optimized constants E0, τE15°C, k 

and δ are representative of the material behaviour at the considered temperature. If it’s not the 

case, the values of ν determined in the second stage could be completely incorrect. Only the 

longitudinal mode guarantees that this stage will provide values of E0, τE15°C, k and δ 
representative of the material behaviour at the considered temperature because it is the only 

mode for which the influence of the Poisson’s ratio on the first resonance is negligible.  

 

Figure 4.24. Principle of the first stage of the first step of method V. 

• Then, constants E0, τE15°C, k and δ of the 2S2P1D model are fixed to the values 

obtained at the end of the first stage. The real value of the Poisson’s ratio is adjusted 

by dichotomy until the second resonance frequency of the calculated FRF matches 

with the second resonance frequency of the input FRF. Consequently, it is not 

possible to use method V if only one resonance peak is available.  

• Finally, the first step of method III is applied with one slight modification: the 

Poisson’s ratio is modelled with a constant real value that is optimized along 

constants E0, τE15°C, k and δ of the 2S2P1D model (cf. Figure 4.25). The values of 

constants E0, τE15°C, k and δ of the 2S2P1D model and constant ν determined in the 
two first stages are used as starting values for the optimization.  
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Figure 4.25. Principle of the third stage of the first step of method V. 

In the second step, the same procedure than in methods I, III and IV (cf. Figure 4.6) is 

applied to determine the values of the seven constants of the 2S2P1D model and WLF equation 

(E0, τE15°C, k, δ, h, C1 and C2) simulating the global LVE behaviour of the material. In addition, 

the real values of the Poisson’s ratio determined at each temperature in the first step of method 

V are used to fit the constants ν00, ν0 and τν15°C of the 2S2P1D model assuming two hypotheses: 

• The real values of the Poisson’s ratio obtained at each temperature in the first step 

of the method are the values of the Poisson’s ratio at the first resonance frequency 

of the corresponding temperature. 

• The WLF equation determined for the complex modulus is also valid for the 

complex Poisson’s ratio (Nguyen Q. T., Di Benedetto, Sauzéat, & Tapsoba, 2013).  

The main advantage of this method is that the constants ν00, ν0 and τν15°C of the 2S2P1D 

model can be determined in the second step of the method. It is the only inverse method 

proposed for which the complex Poisson’s ratio can be determined.  

4.3.2.2 Results for the reference LVE material 

The method described in the previous section was tested on the reference LVE material. 

Because the method is adapted only for the longitudinal mode, the flexural mode of the disc 

and the longitudinal and flexural modes of the cylinder were not considered. The reference 

FRFs were calculated at the same temperatures and frequencies than for methods II, III and IV 

(cf. sections 4.3.1.2.2, 4.3.1.3.2 and 4.3.1.4.2). Due to the necessity to have at least two 

resonance frequencies at each temperature in this method (cf. section 4.3.1.4.1), reference FRFs 

were calculated for frequencies up to 30 kHz at -20°C and 0°C for the longitudinal mode of the 

cylinder.  
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The values of the five constants E0, τE15°C, k, δ and ν determined at each temperature (in 

the first step are given in APPENDIX H for both studied configurations. The values of E*
BC5 

determined in the first step are very similar to the values of E*
BC3 determined in the first step of 

method III. Consequently, the constants of the 2S2P1D model and WLF equation (E0, τE15°C, k, 

δ, h, C1 and C2) simulating the global LVE behaviour determined in the second step of method 

V are the same than in methods III and IV (cf. Table 4.11). The values obtained for constants 

ν00, ν0 and τν15°C of the 2S2P1D model are listed in Table 4.12. The value of constant γEν (see 

equations (4-5) and  (4-8)) is also given in Table 4.12. The values of constants ν00 and ν0 are 

very close to those of the reference LVE material. The value of constant τν15°C is a little bit 

different than for the reference LVE material but the ratio γEν is equal to the ratio of the reference 

LVE material. 

Table 4.12. Values of the constants ν00, ν0, τν15°C and γEν of the 2S2P1D model simulating the 

global LVE behaviour of the material that are identified in the second step of the fifth inverse 

method for the longitudinal mode of the cylinder and of the straight beam. 

Configuration ν00 ν0 τν15°C γEν 
C-L 0.445 0.188 2.40 0.0316 

B-L 0.435 0.188 3.26 0.0316 

The comparison of the FRFs is presented in Figure 4.26 for the longitudinal mode of the 

cylinder and can be found in APPENDIX H for the longitudinal mode of the straight beam. 

Both the FRFs after optimization and the global LVE FRFs are in very good agreement with 

the reference FRFs. The agreement for the FRFs after optimization is better than what was 

observed with method IV (cf. Figure 4.22), which shows the interest of optimizing the value of 

the Poisson’s ratio in the first step of the method.  
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Figure 4.26. Comparison of the reference FRFs (noted Ref. FRF) with the FRFs after 

optimization (noted FRF A.O) and the global LVE FRFs (noted G.LVE FRF) for method V. 

Values of the reference FRFs at the frequencies where the optimization is performed (noted 

Opt. Points) are also plotted. Example for the longitudinal mode of the cylinder at: (a) -20°C; 

(b) 0°C; (c) 15°C; (d) 35°C; (e) 50°C. 

In Figure 4.27, values of the complex modulus determined with methods III (E*
BC3 and 

E*
Dyn3) and V (E*

BC5 and E*
Dyn5) for the longitudinal mode of the cylinder are plotted along with 

values of E*
Ref. The same figure can be found in APPENDIX H for the longitudinal mode of 

the straight beam. A very good agreement is seen between the complex modulus values 

obtained with methods III and V and of the reference LVE material, which confirms the good 

accuracy of method V. 
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Figure 4.27. Comparison of the values of the complex modulus determined with methods III 

(E*
BC3 and E*

Dyn3) and V (E*
BC5 and E*

Dyn5) with the values of the complex modulus of the 

reference LVE material (E*
Ref). (a) Cole-Cole plot; (b) and (c) master curves of the norm and 

of the phase angle of the complex modulus at 15°C. Results for the longitudinal mode of the 

cylinder. 

The real values of the Poisson’s ratio back-calculated at each temperature in the first step 

(noted νBC5) and the values of the complex Poisson’s ratio simulating the global LVE behaviour 

of the material determined in the second step (noted ν*
Dyn5) are compared with the values of the 

complex Poisson’s ratio of the reference LVE material (noted ν*
Ref) in Figure 4.28. The same 

figure can be found in APPENDIX H for the longitudinal mode of the straight beam. The values 

of νBC5 and ν*
Dyn5 are in good agreement with the values of ν*

Ref. It demonstrates that the 

complex Poisson’s ratio is determined accurately with method V. This is confirmed in Figure 

4.29 where master curves at 15°C of the relative difference (respectively the difference) 

between the norm (respectively the phase angle) of ν*
Dyn5 and ν*

Ref. are plotted for both studied 

configurations. The maximum relative difference is about 3% for the norm of the complex 

Poisson’s ratio and the maximum difference is about 0.15° for the phase angle of the complex 

Poisson’s ratio. 

Method V is the only method that enables to determine the complex Poisson’s ratio, using 

the longitudinal mode of vibration. As demonstrated in the previous paragraphs, the 

characterization of the global three-dimensional LVE behaviour of the material is very accurate 

with method V. Therefore, method V is well-adapted when the characterization of the complex 

Poisson’s ratio is an objective. However, it is the most complex proposed method and it is more 

recommended to use methods III or IV when characterizing only the complex modulus. 
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Figure 4.28. Comparison of the values of the complex Poisson’s ratio determined with 

methods V (real values νBC5 and ν*
Dyn5) with the values of the complex Poisson’s ratio of the 

reference LVE material (ν*
Ref). (a) Cole-Cole plot; (b) and (c) master curves of the norm and 

of the phase angle of the complex modulus at 15°C. Results for the longitudinal mode of the 

cylinder. 

 

Figure 4.29. Master curve at 15°C of: (a) the relative difference between the norm of the 

complex Poisson’s ratio determined with method V (|ν*
Dyn5|) and of the reference LVE 

material (|ν*
Ref|) ;(b) the difference between the phase angle of the complex Poisson’s ratio 

determined with method V (ϕν*Dyn5) and of the reference LVE material (ϕν*Ref). Results for the 

two studied configurations. 
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4.3.3 Summary and remarks about the different methods 

Method I is not adapted to characterize the LVE behaviour of bituminous mixtures on a 

wide frequency and temperature range because of its limits for the intermediate and high 

temperatures (as can be seen in section 4.3.1.1.2). In method II, the optimization proposed 

follows a global approach, which may not be adapted for application to experimental 

measurements. Therefore, these two methods are not recommended for application to 

bituminous mixtures specimens.  

The last three methods are all very accurate and are recommended to characterize the LVE 

behaviour of bituminous mixtures specimens from dynamic measurements. The similarities and 

differences between these three methods are detailed in Figure 4.30. The three methods are 

based on the same approach divided in two main steps: 

• In the first step, an optimization process is repeated at each tested temperature to 

obtain the LVE properties at the corresponding temperature. 

• In the second step, the global LVE behaviour of the material is determined using 

the results obtained at each temperature in the first step. The same five constants of 

the 2S2P1D model (E0, τE15°C, k, δ and h) and two constants of the WLF equation 

(C1 and C2) constants are determined with a similar process than the one used when 

fitting the 2S2P1D model with experimental complex modulus data.  

Though the general principle of the three methods is the same, some differences exist. The 

main differences are: 

• The modelling of the complex modulus in the first step of the methods is different: 

- In methods III and V, the complex modulus is modelled with the 2S2P1D 

model. 

- In method IV, the complex modulus is simply modelled with a norm and a 

phase angle independents of the frequency. 

• The modelling of the complex Poisson’s ratio in the first step of the methods is also 

different: 

- In method III, the complex Poisson’s ratio is modelled with the 2S2P1D 

model, with constants ν00, ν0 and γEν fixed. 

- In method IV, the Poisson’s ratio is fixed at 0.3. 

- In method V, the Poisson’s ratio is modelled with a real value independent 

of the frequency that is identified at each temperature. 

• The complex modulus is back-calculated at each temperature for several 

frequencies (six in this study) selected in a frequency range including all resonance 

frequencies in methods III and V while only one value is back-calculated at the first 

resonance frequency with method IV.  

• Methods IV and V are only accurate for the longitudinal mode of vibration. 

• Method IV has quite interesting advantages comparing to method III and V: 

- It does not require to use a rheological model taking into account the 

frequency and temperature dependency of the behaviour in the first step. 

-  Only two constants are determined in the first step (four are determined in 

method III and five in method V). 
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- The optimization process in the first step is very easy to apply because the 

two determined constants are obtained by dichotomy. 

- Thanks to the previous observations, the computational time is considerably 

reduced in the first step of method IV (between five and ten times faster 

than methods III and V). 

• Method V is the only method for which the complex Poisson’s ratio can be 

determined. 

In addition, results from our back-calculations for the reference LVE material, for all 

studied vibration modes, showed that complex modulus obtained at each temperature in the first 

step are quite close for the three methods. Consequently, the values of the seven 2S2P1D model 

and WLF equation constants determined in the second step are also quite close or identical in 

our case. It is therefore recommended to use method V only if the characterization of the 

complex Poisson’s ratio is targeted. In the other cases, methods III and IV are more 

recommended. Method IV is the best choice to simplify the calculations and to reduce the 

computational time but it is only accurate for the longitudinal mode of vibration. 
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Figure 4.30. Comparison of methods III, IV and V. Values of constants noted as fixed are set to the values of the reference LVE material or to values 

determined from other tests. 
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5 EXPERIMENTAL CAMPAIGNS 

Five experimental campaigns were carried out in the course of this thesis. The aim of this 

chapter is to present the materials tested in the different campaigns and the tests performed. A 

summary of the results is given for each experimental campaign while all the results can be 

found either in the papers attached to this thesis or in appendices. The first experimental 

campaign is part of an international project between French and Swedish laboratories called 

FSDyn. The four other experimental campaigns correspond to tests performed on different 

types of bituminous mixtures: a material with an optimized granular skeleton (MOGS), a 

Swedish mixture (SM), a material with high reclaimed asphalt pavement content (MHRAPC) 

and materials from airport pavement (MAP). Table 5.1 gives an overview of the samples tested 

in each experimental campaign and the modes of vibration used for the dynamic tests. The 

samples for which cyclic tension-compression tests were performed are also specified. 

Table 5.1. Overview of the five experimental campaigns. 

Experimental campaign Samples Mode of vibration Cyclic T.C test 

FSDyn 

2 cylinders Longitudinal Yes 

2 straight beams Longitudinal No 

4 discs Flexural No 

MOGS 2 cylinders Longitudinal Yes 

SM 1 straight beam Longitudinal Yes 

MHRAPC 3 cylinders Longitudinal Yes 

MAP 14 cylinders Longitudinal On 2 cylinders 

The main focuses of the experimental campaigns are to demonstrate the repeatability of 

the dynamic tests from one sample of a material to another and to compare the results obtained 

from dynamic tests with the results obtained from cyclic tension-compression tests that are 

commonly used to characterize bituminous mixtures LVE properties.  

In the five presented experimental campaigns, different comparisons are carried out. The 

notations used are introduced hereafter. Regarding the FRFs that are compared: 

• The FRFs calculated with the LVE properties or the constants of the 2S2P1D model 

determined at each temperature in the first step of the inverse methods. They are 

called FRFs after optimization and are noted FRF A.O. 

• The FRFs calculated with the constants of the 2S2P1D model and WLF equation 

simulating the global LVE behaviour of the material determined in the second step 

of the inverse methods. They are called global LVE FRFs and are noted 

G.LVE.FRF. 

• The FRFs measured experimentally from dynamic tests are called experimental 

FRFs and are note Exp. FRF. 
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Regarding the complex modulus values that are compared:  

• The complex modulus determined from dynamic tests in the first step of the 

methods, noted E*
BCp (norm |E*

BCp| and phase angle ϕE*BCp) where p is the index of 

the considered method (p=2, 3, 4 or 5 in this section). 

• The complex modulus of the 2S2P1D model simulating the global LVE behaviour 

of the material determined from dynamic tests in the second step of the methods, 

noted E*
Dynp (norm |E*

Dynp| and phase angle ϕE*Dynp) where p is the index of the 

considered method (p=2, 3, 4 or 5 in this section). 

• The experimental complex modulus data obtained from cyclic tension-compression 

tests, noted E*
ExpTC (norm |E*

ExpTC| and phase angle ϕE*ExpTC). 

• The complex modulus of the 2S2P1D model simulating the global LVE behaviour 

of the material determined from tension-compression tests experimental results, 

noted E*
TC (norm |E*

TC| and phase angle ϕE*TC). 

Regarding the complex Poisson’s ratio values that are compared:  

• The real Poisson’s ratio determined from dynamic tests in the first step of method 

V, noted νBC5. 

• The complex Poisson’s ratio of the 2S2P1D model simulating the global LVE 

behaviour of the material determined from dynamic tests in the second step of 

method V, noted ν*
Dyn5 (norm |ν*

Dyn5| and phase angle ϕν*Dyn5). 

• The experimental complex Poisson’s ratio data obtained from cyclic tension-

compression tests, noted ν*
ExpTC (norm |ν*

ExpTC| and phase angle ϕν*ExpTC). 

• The complex Poisson’s ratio of the 2S2P1D model simulating the global LVE 

behaviour of the material determined from tension-compression tests experimental 

results, noted ν*
TC (norm |ν*

TC| and phase angle ϕν*TC). 

5.1 French-Swedish project for the evaluation of bituminous mixtures properties from 

dynamic tests (FSDyn) 

The first experimental campaign is part of an international project called FSDyn project. 

This international project was funded by the Swedish transport administration. It is a 

collaboration between three Swedish companies (PEAB asphalt, SKANSKA and NCC), the 

Swedish national road and transport research institute (VTI), a French company (EIFFAGE) 

and our LTDS laboratory at the “Ecole nationale des travaux publics de l’état” (ENTPE). The 

principal objective of this project was to evaluate the reproducibility of the dynamic test 

developed in this thesis between different laboratories. To do that, dynamic tests were 

performed on the same eight specimens by each laboratory with their own experimental devices 

and experimental measurements were compared. Moreover, cyclic tension-compression tests 

were performed at ENTPE laboratory on two specimens used in the project to add a comparison 

between the results of dynamic tests and more conventional cyclic tests. The project is still on-

going and some results such as the comparison of the LVE properties determined by the 

different laboratories are missing. Full results of the project will be further published in 

scientific journals or presented in conferences. The main findings up until now are presented in 

the next sections.  
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5.1.1 Materials 

Two different materials were used in this project. The first material is a Swedish base 

course bituminous mixture produced by PEAB asphalt and labelled ABS. It has a continuous 

0/16 grading curve and a 70/100 bitumen. Two disc specimens (ABS-D9 and ABS-D10) of this 

material were tested in the project. The second material is a French surface course bituminous 

mixture with an optimized granular skeleton produced by EIFFAGE and called GB5. This 

material. has a continuous 0/14 grading curve, it contains 30% of RAP and the bitumen is a 

35/50 polymer modified bitumen. More details about the materials will be found in APPENDIX 

I. Six specimens of this materials were tested in the FSDyn campaign: two cylinders (GB5-C1 

and GB5-C2), two straight beams (GB5-B2 and GB5-B4) and two discs (GB5-D1 and GB5-

D3). Table 5.2 gives some details about the eight specimens considered in this experimental 

campaign. 

Table 5.2. Specimens tested in the FSDyn experimental campaign. (D stands for discs, C for 

cylinders and B for straight beams). 

Specimen H (mm) D (mm) W (mm) L (mm) Density (kg/m3) Void ratio (%) 

ABS-D9 40.6 150.0 x x 2 450 2.6 

ABS-D10 40.4 150.0 x x 2 443 2.9 

GB5-D1 32.0 99.7 x x 2 422 2.4 

GB5-D3 31.4 99.8 x x 2 439 1.7 

GB5-C1 162.4 64.2 x x 2 403 3.1 

GB5-C2 157.8 64.3 x x 2 366 4.6 

GB5-B2 50.2 x 50.3 299.6 2 399 3.3 

GB5-B4 49.8 x 50.4 300.0 2 409 2.9 

5.1.2 Tests performed 

The dynamic tests were performed at five temperatures and a conditioning time of four 

hours between each temperature was respected. Therefore, the total duration of the test is twenty 

hours. Because of the different bitumen of the two materials, the damping properties change, 

especially for the high temperatures. As a result, specimens of the ABS material that are made 

with a softer bitumen must be tested at lower maximum temperatures than the GB5 specimens 

(30°C and 40°C against 35°C and 50°C as seen in Figure 5.1). The same three other 

temperatures are used for both materials (-20°C, 0°C and 15°C). The chronology of the tests is 

detailed in Figure 5.1. 

The four discs were tested in flexural mode while the two cylinders and the two straight 

beams were tested in longitudinal mode. Our laboratory was the first to test the GB5 specimens 

and the last to test the ABS specimens. In addition, dynamic tests were performed a second time 

on the two GB5 cylinders at the end of the project. Following the second round of dynamic 

tests, cyclic tension-compression tests were performed on these two cylinders. The dates of the 

different tests and the modes of vibration used for the dynamic tests are summarized in Table 

5.3 
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Figure 5.1 Chronology of the dynamic tests in the FSDyn experimental campaign. 

Table 5.3. Summary of the tests performed in the FSDyn experimental campaign. 

Specimen 
Date of dynamic 

tests 
Mode of vibration Date of cyclic T.C tests 

ABS-D9 25/10/17 Flexural x 

ABS-D10 27/10/17 Flexural x 

GB5-D1 18/09/17 Flexural x 

GB5-D3 20/09/17 Flexural x 

GB5-C1 
29/09/17 

Longitudinal 25/06/18 
08/06/18 

GB5-C2 
01/10/17 

Longitudinal 02/07/18 
10/06/18 

GB5-B2 25/09/18 Longitudinal x 

GB5-B4 27/09/18 Longitudinal x 

5.1.3 Results 

5.1.3.1 Comparison of the FRFs measurements from all laboratories 

One of the main interest of the FSDyn project is that the same eight specimens were tested 

by all laboratories. Therefore, it is possible to compare directly the FRFs measured by the five 

different laboratories. The relative standard deviation (RSD) was calculated for the two or three 

first resonance frequencies and amplitudes for each specimen tested. The results are plotted in 

function of the temperature in Figure 5.2. It is seen in Figure 5.2 that the amplitude variability 

is far more important than the frequency variability. Indeed, the average RSD is of about only 

1.5% for the resonance frequencies while it is of about 25% for the amplitudes. This indicates 

that the measurements of the resonance frequencies are more accurate than the measurements 

of the amplitudes. Also, it is seen that the frequency variability increases with temperature. This 

is especially true for the discs (in green) which present the highest RSD values both for the 

resonance frequencies and amplitudes. Since the discs are the only geometry tested in flexural 

mode, the previous observations suggest to choose cylinders (in blue) or straight beams (in red) 

tested in longitudinal mode to reduce the variability of the measurements. 
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Figure 5.2 RSD in function of temperature for the eight specimens tested by five different 

laboratories in the FSDyn project: (a) Three first resonance frequencies; (b) Three first 

resonance amplitudes. 

The variability of the measurements is relatively high in comparison with the results of the 

repeatability study of the dynamic tests (see section 3.3.1), especially for the amplitude 

variability. As a reminder, values of the RSD were around 0.5% for the resonance frequencies 

and 2% for the amplitudes at the resonance frequencies. The reproducibility of dynamic tests 

between different laboratories is still satisfying but it can be improved, especially for the 

measurements of the amplitudes.  

The variability of the measurements is not due to different positions of the impact or of the 

accelerometer because the positions were clearly indicated on the specimens to make sure that 

every laboratory uses the same. The different experimental devices (impact hammer, 

accelerometer and signal conditioner) used by the laboratories were suspected to be a potential 

reason of the variability observed. A short study was carried out between the ENTPE and 

EIFFAGE to evaluate the influence of using experimental devices from different laboratories 

on the FRFs measurements. In this study, dynamic tests were performed on cylinder GB5-C1 

using six different experimental configurations in which sensors and signal conditioners from 

ENTPE and from EIFFAGE were used. The list of experimental configurations is given in 

Table 5.4. At least fifteen minutes were waited between two configurations to make sure that 

the system is stabilized at the moment of the measurement. If the system is not stabilized, the 

amplitude of both the impact force and the acceleration cannot be measured accurately. The 

same study was performed at -20°C and at 35°C. Note that the same model of impact hammer 

(PCB model 086E80) and accelerometer (PCB model 353B15) are used by the ENTPE and 

EIFFAGE but the signal conditioner is different (PCB model 482C15 at ENTPE and PCB 

model 480B21 at EIFFAGE). 

Table 5.4. Six experimental configurations used to evaluate the influence of using 

experimental devices from different laboratories on the FRFs measurements. 

Experimental device Config. 1 Config. 2 Config. 3 Config. 4 Config. 5 Config. 6 

Impact hammer ENTPE ENTPE EIFFAGE ENTPE EIFFAGE EIFFAGE 

Accelerometer ENTPE EIFFAGE ENTPE ENTPE EIFFAGE EIFFAGE 

Signal conditioner ENTPE ENTPE ENTPE EIFFAGE ENTPE EIFFAGE 

The RSD was calculated for the two first resonance frequencies and amplitudes and the 

values obtained are far lower from those observed in Figure 5.2: 0.2% for the two first resonance 

frequencies and 2.8% and 5.6% for the amplitudes at the first and second resonance frequencies. 
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Therefore, using different experimental devices cannot explain the variability of the 

measurements observed, at least for the ENTPE and EIFFAGE. The different experimental 

procedures used by the laboratories (e.g. measurements performed inside or outside the thermal 

chamber, time waited for the stabilization of the system, use of an automated or manual impact 

hammer, etc.) and the different levels of practice of each laboratory with dynamic tests are 

probable explanations to the variability of the measurements. The different sampling 

frequencies (between 50 kHz and 1 MHz) used by each laboratory may also have an impact. 

5.1.3.2 LVE properties of all specimens evaluated from dynamic tests at ENTPE 

The values of the constants of the 2S2P1D model and WLF equation at 15°C simulating 

the global LVE behaviour of each specimen are listed in Table 5.5. Note that results for the first 

round of dynamic tests of the GB5 cylinders are presented in this section. The values of the 

constants obtained after the optimizations at each temperature are given in APPENDIX J for all 

the specimens. The figures showing the complex modulus values determined from dynamic 

tests for all the specimens can also be found in APPENDIX J. 

Table 5.5. Values of the constants of the 2S2P1D model and WLF equation simulating the 

global LVE behaviour determined from dynamic tests for all the specimens of the FSDyn 

experimental campaign. The results for the GB5 cylinders were obtained from the first round 

of dynamic tests with method V and the results for the other specimens were obtained with 

method III. 

 2S2P1D model 
WLF equation at 

15°C 

Specimen 
E0 

(MPa) 

τE15°C 

(s) 
k δ h ν0 ν00 

τν15°C 

(s) 
C1 C2 

GB5-C1  

(1st round) 
43 500 9.0E-2 

0.130 1.17 0.442 

0.31 0.55 2.0E-1 

19.2 139.5 GB5-C2  

(1st round) 
40 700 7.4E-2 0.27 0.40 1.0E3 

GB5-D1 38 800 7.0E-2 x x x 

GB5-D3 x x x x x x x x x x 

GB5-B2 43 300 3.1E-2 
0.130 0.96 0.442 

x x x 
16.0 123.0 

GB5-B4 43 200 3.2E-2 x x x 

ABS-D9 41 100 1.3E-3 
0.160 0.85 0.468 

x x x 
19.1 191.0 

ABS-D10 40 800 1.4E-3 x x x 

The results from Table 5.5 were obtained by analyzing the dynamic measurements 

performed on the two GB5 cylinders with method V (cf. section 4.3.2.1) while method III (cf. 

section 4.3.1.3.1) was used for all the other specimen. The analysis methods used were chosen 

following the recommendations from section 4.3.3. The specimens GB5-C1 and GB5-C2 are 

the only specimens for which method V was used because they are the only specimen for which 

the complex Poisson’s ratio was measured with tension-compression tests. It should be 

remembered that constants E00 and β are fixed to 100MPa and 250 for all methods of inverse 
analysis and constants τν15°C, ν0 and ν00 are only determined with method V. For specimen GB5-

D3, it was impossible to determine constants simulating the global LVE behaviour of the 

material because of measurements problems. These problems may be due to the disc geometry 

that is not well-adapted for dynamic tests. Comparison of the experimental FRFs and calculated 

FRFs (after optimization at each temperature and the global LVE FRFs is plotted in Figure 5.3 

for specimen GB5-C1. The same figures for all specimens can be found in APPENDIX J. 
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Figure 5.3 Comparison of the experimental FRFs measured at the beginning of the project 

(noted Exp. FRF) with the FRFs after optimization (noted FRF A.O) and the global LVE 

FRFs (noted G.LVE FRF) for specimen GB5-C1. Values of the experimental FRFs at the 

frequencies where the optimization is performed (noted Opt. Points) are also plotted. (a) T=-

20.3°C; (b) -0.6°C; (c) 14.8°C; (d) 35.2°C; (e) 49.4°C. 

The match between the experimental FRFs and both the FRFs after optimizations and the 

global LVE FRFs is good, especially for frequencies up to the first resonance frequencies. For 

higher frequencies, the fit is not as good especially for the amplitudes but it remains satisfying. 

Interestingly, the values of constants k, δ and h of the 2S2P1D model listed in Table 5.5 

are the same for the two ABS specimens. They also are the same for the GB5 cylinders and 

disc. This result was expected because these constants of the 2S2P1D model are only depending 

on the bitumen and should therefore be equal for all specimens of the same material. However, 

constant δ obtained for the GB5 beams is different than constant δ obtained for the rest of the 
GB5 specimens. The reason for this difference is not identified. Effects on the Cole-Cole plot 
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and the master curves at 15°C for the norm and phase angle of the normalized complex modulus 

are shown in Figure 5.4. The normalized complex modulus E*
N depends only on constants 

τE15°C, k, δ, h and β and not on constants E0 and E00: 
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Figure 5.4 Comparison of the values of the normalized complex modulus determined from 

dynamic tests for the specimens tested in the FSDyn experimental campaign. (a) Cole-Cole 

plot; (b) and (c) master curves of the norm and of the phase angle of the normalized complex 

modulus at 15°C. 

Figure 5.4 shows that the different values of constant δ for the GB5 cylinders and discs and 
the GB5 beams have few effects and curves corresponding to the three geometries are in good 

agreement, especially for the norm of the normalized complex modulus. It demonstrates the 

good repeatability of the dynamic tests for different geometries. In addition, the curves 

corresponding to the ABS discs are quite different than the curves of the GB5 specimens with 

lower values of the norm of the normalized complex modulus and higher values of the phase 

angle for reduced frequencies below 105 Hz. This difference observed is characteristic of a 

mixture with a softer bitumen, which is the case of the ABS specimens. 

Another interesting result from Table 5.5 is that the constants C1 and C2 of the WLF 

equation at 15°C are the same for the two ABS specimens. They also are the same for the GB5 

cylinders and discs but they are different for the GB5 beams. The corresponding shift factors 

are plotted in Figure 5.5. It is seen in Figure 5.5 that the correlation between the shift factors of 

the GB5 beams and the shift factors of the GB5 cylinders and discs is excellent except for 
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temperatures higher than 35°C. It confirms the observations raised from Figure 5.4 showing 

that only the high temperatures behaviour is slightly different between the GB5 beams and the 

rest of the GB5 specimens. It is also observed that the shift factors of the ABS discs are quite 

different than the shift factors of the GB5 specimens, also due to the difference in bitumen. 

 

Figure 5.5 Comparison of the shift factors determined from dynamic tests for the specimens 

tested in the FSDyn experimental campaign. 

5.1.3.3 Comparison of the LVE properties of the GB5 cylinders determined from dynamic tests 

and cyclic tension-compression tests 

After the second dynamic tests performed on the GB5 cylinders, cyclic tension-

compression tests were performed on the same specimens. The values of the constants of the 

2S2P1D model and WLF equation at 15°C simulating the global LVE behaviour of the two 

GB5 cylinders determined from the second round of dynamic tests are listed in Table 5.6. These 

constants were obtained using method V, as for the first round of dynamic tests. The constants 

determined from the tension-compression tests are listed in Table 5.7. Constants E00 and β of 
the 2S2P1D model can be determined from cyclic tension-compression tests because 

experimental data are available for lower frequencies than with dynamic tests  (see Figure 3.7). 

Table 5.6. Values of the constants of the 2S2P1D model and WLF equation simulating the 

global LVE behaviour determined from the second round of dynamic tests with method V for 

the two GB5 cylinders. 

 2S2P1D model 

WLF 

equation at 

15°C 

Specimen 
E0 

(MPa) 

τE15°C 

(s) 
k δ h ν0 ν00 

τν15°C 

(s) 
C1 C2 

GB5-C1 

(2nd round) 
44 600 6.5E-2 

0.130 1.17 0.442 

0.31 0.55 2.0E-1 

19.2 139.5 
GB5-C2  

(2nd round) 
41 300 7.2E-2 0.27 0.40 1.0E3 
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Table 5.7. Values of the constants of the 2S2P1D model and WLF equation simulating the 

global LVE behaviour determined from cyclic tension-compression tests performed at the end 

of the FSDyn experimental campaign for the two GB5 cylinders. 

 2S2P1D model 

WLF 

equation at 

15°C 

Specimen 
E00 

(MPa) 

E0 

(MPa) 

τE15°C 

(s) 
k δ h β ν0 ν00 

τν15°C 

(s) 
C1 C2 

GB5-C1 20 44 000 0.24 0.172 2.15 0.56 150 0.28 0.6 100 24.7 165.9 

GB5-C2 28 39 600 0.24 0.172 2.15 0.56 150 0.31 0.5 200 24.7 165.9 

The Cole-Cole plot and the master curves at 15°C of the norm and phase angle of the 

complex modulus obtained from both tests (E*
BC5, E*

Dyn5, E*
ExpTC and E*

TC) are plotted in Figure 

5.6 for the cylinder GB5-C1. The same figure for cylinder GB5-C2 can be found in APPENDIX 

J. A very good agreement between the values of the complex modulus obtained from both tests 

is seen in Figure 5.6. To confirm this observation, the master curves at 15°C of the relative 

difference (respectively the difference) between the norm (respectively the phase angle) of 

E*
Dyn5 and E*

TC were plotted in Figure 5.7 for both cylinders. The norm of the complex modulus 

evaluated from dynamic tests is globally higher that the norm of the complex modulus evaluated 

with cyclic tension-compression tests but the maximum relative difference is less than 10%. 

The phase angle of the complex modulus evaluated from both tests are in very good agreement 

with less than 1° of difference at 50°C. These results demonstrate that for the GB5 material, 

dynamic tests give complex modulus values very close from those of the tension-compression 

tests. Moreover, due to the nonlinearity of bituminous mixtures with the applied strain (Airey 

& Rahimzadeh, 2004; Nguyen, Di Benedetto, & Sauzéat, 2015; Babadopoulos, 2017; 

Mangiafico, Babadopoulos, Sauzéat, & Di Benedetto, 2018), values of the norm of the complex 

modulus are expected to be a few percent higher with the dynamic tests than with the cyclic 

tension-compression tests. This is what is observed in Figure 5.7 and this could explain part of 

the differences between both tests. 
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Figure 5.6 Comparison of the values of the complex modulus determined from dynamic tests 

with method V (E*
BC5 and E*

Dyn5) with the values of the complex modulus determined from 

cyclic tests (E*
ExpTC and E*

TC). (a) Cole-Cole plot; (b) and (c) master curves of the norm and 

of the phase angle of the complex modulus at 15°C. Results for specimen GB5-C1. 

 

Figure 5.7 Master curve at 15°C of: (a) the relative difference between the norm of the 

complex modulus determined from dynamic tests with method V (|E*
Dyn5|) and from cyclic 

tests (|E*
TC|); (b) the difference between the phase angle of the complex modulus determined 

from dynamic tests with method V (ϕE*Dyn5) and from cyclic tests (ϕE*TC). Results for the GB5 

cylinders tested in the FSDyn experimental campaign. 

The same comparison was carried out for the values of the complex Poisson’s ratio (νBC5, 

ν*
Dyn5, ν*

ExpTC and ν*
TC). The values of ν*

Dyn5 and ν*
TC are in good agreement for cylinder GB5-

C1 as seen in Figure 5.8. The same figure can be found in APPENDIX J for cylinder GB5-C2. 

Moreover, Figure 5.9 shows that there is less than 0.08 of difference between the norm of the 

complex Poisson’s ratio determined from both tests and less than 0.8° for the phase angle of 
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the complex Poisson’s ratio. Considering the difficulty to determine accurately values of the 

complex Poisson’s ratio in experimental tests, these differences are not surprising and the 

evaluation of the complex Poisson’s ratio from dynamic tests seems to be a promising approach. 

 

Figure 5.8 Comparison of the values of the complex Poisson’s ratio determined from dynamic 

tests with method V (real values νBC5 and ν*
Dyn5) with the values of the complex Poisson’s 

ratio determined from cyclic test (ν*
ExpTC and ν*

TC). (a) Cole-Cole plot; (b) and (c) master 

curves of the norm and of the phase angle of the complex Poisson’s ratio at 15°C. Results for 

specimen GB5-C1. 

 

Figure 5.9 Master curve at 15°C of: (a) the relative difference between the norm of the 

complex Poisson’s ratio determined from dynamic tests with method V (|ν*
Dyn5|) and from 

cyclic tests (|ν*
TC|); (b) the difference between the phase angle of the complex Poisson’s ratio 

determined from dynamic tests with method V (ϕν*Dyn5) and from cyclic tests (ϕν*TC). Results 

for the GB5 cylinders tested in the FSDyn experimental campaign. 
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Finally, the shift factors obtained from dynamic tests and from tension-compression tests 

were compared. Results are plotted in Figure 5.10 in which a good agreement is seen between 

the shift factors obtained from both tests, especially for the low temperatures. 

 

Figure 5.10 Comparison of the shift factors determined from dynamic tests and from cyclic 

tension-compression tests for the two GB5 cylinders tested in the FSDyn experimental 

campaign. 

5.1.3.4 Effects of material ageing for the GB5 cylinders 

The FRFs measured for specimen GB5-C2 at the beginning and at the end of the project at 

-20°C and 15°C are plotted in Figure 5.11 (a) and (b). The FRFs measured for specimen GB5-

C1 at 35°C and 50°C at the beginning and at the end of the project are also plotted in Figure 

5.11 (c) and (d). FRFs for all temperatures can be found in APPENDIX J for both cylinders. 

For specimen GB5-C2, the resonance frequencies and the amplitudes are higher at the end of 

the project than at the beginning of the project. For this specimen, the same trend is observed 

for all temperatures. However, for specimen GB5-C1, the same effect is observed only for 

temperatures up to 15°C. At 35°C, the amplitudes measured at the end of the project are lower 

and at 50°C, both the resonance frequencies and the amplitudes are lower. 
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Figure 5.11 FRFs measured at the beginning and at the end of the FSDyn project for the two 

GB5 cylinders: (a) GB5-C2 at -20°C; (b) GB5-C2 at 15°C; (c) GB5-C1 at 35°C; (d) GB5-C1 

at 50°C. 

The values of the constants of the 2S2P1D model and WLF equation at 15°C simulating 

the global LVE behaviour of the two GB5 cylinders at the beginning and at the end of the 

project are listed in Table 5.5 and Table 5.6, respectively. For both specimens, the constant E0 

is slightly higher at the end of the project than at the beginning, which corresponds to a stiffer 

norm of the complex modulus for the low temperatures. Constant τE15°C is also a little bit lower 

at the end of the project for both specimens. However, the impact of these differences is very 

limited with a maximum relative difference of 4% for the norm of the complex modulus and a 

maximum phase angle difference of 1° between the beginning and the end of the project as seen 

in Figure 5.12. Therefore, the differences observed on the FRFs measurements between the first 

round and the second round of dynamic tests have very little influence on the determination of 

the complex modulus.  
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Figure 5.12 (a) Relative difference in % at 15°C between the norm of the complex modulus 

evaluated from dynamic tests at the end (|E*
End|) and at the beginning (|E*

Beginning|) of the 

FSDyn project for the two GB5 cylinders; (b) Difference in ° at 15°C between the phase angle 

of the complex modulus evaluated from dynamic tests at the end (ϕE*End) and at the beginning 

(ϕE*Beginning) of the FSDyn project for the two GB5 cylinders.  

For the complex Poisson’s ratio, the real values of the Poisson’s ratio back-calculated at 

each temperature in the first step of method V (cf. section 4.3.2.1) are very similar at the 

beginning (noted νBC5Beg) and at the end (noted νBC5End) of the project (cf. Figure 5.13). 

Consequently, the same values of constants τν15°C, ν0 and ν00 can be used at the beginning and 

at the end of the project to fit the values of νBC5Beg and νBC5End in the second step of method V 

(ν*
Dyn5) as seen in Figure 5.13. Therefore, the differences observed between the FRFs measured 

at the beginning and at the end of the FSDyn project have very little influence on the 

determination of the complex Poisson’s ratio.  

 

Figure 5.13 (a) Master curves at 15°C of the real values of the Poisson’s ratio back-

calculated at each temperature from dynamic tests with method V at the beginning (νBC5Beg) 

and at the end (noted νBC5End) of the FSDyn project. The master curves of the norm of the 

complex Poisson’s ratio determined from dynamic tests with method V (ν*
Dyn5) are also 

plotted. (a) Specimen GB5-C1; (b) Specimen GB5-C2.  
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5.2 Experimental campaign with the Swedish mixture (SM) 

The main objectives of this experimental campaign are to compare: 

• The LVE properties determined from dynamic tests for the beam tested in this 

section and for the discs of the same material (ABS) tested in the FSDyn 

experimental campaign (cf. section 5.1.3.2). 

• The LVE properties determined from dynamic and cyclic tension-compression tests 

for the Swedish mixture. 

5.2.1 Material 

The material is the ABS Swedish base course bituminous mixture already introduced in 

the FSDyn experimental campaign (see section 5.1.1). One straight beam not used in the FSDyn 

campaign was tested in this campaign. Details about this beam are given in  Table 5.8. 

Table 5.8. Specimen tested in the SM experimental campaign. 

Specimen H (mm) W (mm) L (mm) Density (kg/m3) Void ratio (%) 

ABS-P4 49.0 49.0 147.5 2 475 2.8 

5.2.2 Tests performed 

Dynamic tests were performed on the beam following the same procedure than for the ABS 

specimen in the FSDyn campaign (see Figure 3.1). One week after the dynamic tests, the beam 

was tested with the cyclic tension-compression. The Poisson’s ratio was not measured during 

the cyclic test.  

5.2.3 Comparison of the LVE properties determined from dynamic tests for the beam and 

for the discs of the same material tested in the FSDyn experimental campaign 

The values of the constants of the 2S2P1D model and WLF equation at 15°C simulating 

the global LVE behaviour determined from dynamic tests and from the tension-compression 

test are given in Table 5.9. To obtain these values, the dynamic tests were analyzed with method 

III (cf. section 4.3.1.3.1). As a reminder, constants E00 and β are not evaluated with method III 
and they were fixed to the values of the constants of the reference LVE material (E00=100MPa 

and β=250). The values of the constants obtained after the optimizations at each temperature 
are given in APPENDIX K. Comparison of the experimental FRFs and calculated FRFs (after 

optimization at each temperature and the global LVE FRFs) can also be found in APPENDIX 

K. 

Table 5.9. Values of the constants of the 2S2P1D model and WLF equation simulating the 

global LVE behaviour determined from dynamic tests with method III for the beam tested in 

the SM experimental campaign. 

 2S2P1D model WLF equation at 15°C 

Specimen E0 (MPa) τE15°C (s) k δ h C1 C2 

ABS-P4 42 200 0.0015 0.178 1.32 0.570 13.5 110.5 

The values of the constants obtained are different than the values obtained for the disc 

specimens of the same material tested in the FSDyn campaign (cf. Table 5.5). The influence of 

these differences was evaluated by plotting in Figure 5.14 the Cole-Cole plot and master curves 
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at 15°C of the norm and phase angle of the normalized complex modulus (equation (5-1)). The 

curves corresponding to the beam and to the discs are in good agreement on the whole frequency 

range except for the phase angle, for which slight differences (less than 5°) appear for reduced 

frequencies under 100 Hz. However, the repeatability of dynamic tests between the beam 

geometry and the disc geometry remains satisfying for the ABS material. 

 

Figure 5.14 Comparison of the values of the normalized complex modulus determined from 

dynamic tests for the beam and for the discs of the ABS material tested in the FSDyn and SM 

experimental campaigns. (a) Cole-Cole plot; (b) and (c) master curves of the norm and of the 

phase angle of the normalized complex modulus at 15°C. 

5.2.4 Comparison of the LVE properties determined from dynamic tests and from the cyclic 

tension-compression test 

The values of the constants of the 2S2P1D model and WLF equation at 15°C simulating 

the global LVE behaviour of the beam determined from the tension-compression test are given 

in Table 5.10. 

Table 5.10. Values of the constants of the 2S2P1D model and WLF equation simulating the 

global LVE behaviour determined from the cyclic tension-compression test performed on the 

beam tested in the SM experimental campaign. 

 2S2P1D model 
WLF equation at 

15°C 

Specimen 
E00 

(MPa) 

E0 

(MPa) 

τE15°C 

(s) 
k δ h β C1 C2 

ABS-P4 15 41 500 1.8E-3 0.230 1.90 0.60 150 25.3 186.8 
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Values of the complex modulus obtained from both tests (E*
BC3, E*

Dyn3, E*
ExpTC and E*

TC) 

are plotted in Figure 5.15 for the ABS-P4 beam. A good agreement is seen between the different 

curves.  

 

Figure 5.15 Comparison of the values of the complex modulus determined from dynamic tests 

with method III (E*
BC3 and E*

Dyn3) with the values of the complex modulus determined from 

cyclic tests (E*
ExpTC and E*

TC). (a) Cole-Cole plot; (b) and (c) master curves of the norm and 

of the phase angle of the complex modulus at 15°C. Results for specimen ABS-P4. 

In addition, the relative difference (respectively the difference) between the norm 

(respectively the phase angle) of  E*
Dyn3 and E*

TC was calculated and results are plotted in Figure 

5.16. The norm of the complex modulus evaluated from dynamic tests is globally higher than 

the norm of the complex modulus evaluated with cyclic tension-compression tests. The 

maximum relative difference is around 20% for the norm of the complex modulus. The phase 

angle of the complex modulus evaluated from both tests are in very good agreement with less 

than 2° of difference on the whole frequency range. Nonlinearity strain (Airey & Rahimzadeh, 

2004; Nguyen, Di Benedetto, & Sauzéat, 2015; Babadopoulos, 2017; Mangiafico, 

Babadopoulos, Sauzéat, & Di Benedetto, 2018) can explain at least a part of these differences, 

as already explained in section 5.1.3.3. These results demonstrate that for the ABS material, 

dynamic tests and cyclic tests give complex modulus values in good agreement. 
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Figure 5.16 Master curve at 15°C of: (a) the relative difference between the norm of the 

complex modulus determined from dynamic tests with method III (|E*
Dyn3|) and from cyclic 

tests (|E*
TC|); (b) the difference between the phase angle of the complex modulus determined 

from dynamic tests with method III (ϕE*Dyn3) and from cyclic tests (ϕE*TC). Results for the 

ABS-P4 beam tested in the SM experimental campaign. 

Finally, the shift factors obtained from dynamic tests and from tension-compression tests 

were compared in Figure 5.17. A good agreement is seen between the shift factors obtained 

from both tests. 

 

Figure 5.17 Comparison of the shift factors determined from dynamic tests and from cyclic 

tension-compression tests for the ABS-P4 beam tested in the SM experimental campaign. 
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5.3 Material with an optimized granular skeleton (MOGS) 

Some results of this experimental campaign are presented in Paper V that was submitted 

for publication in the scientific journal Applied Science. The two main objectives of this 

campaign are to compare: 

• The LVE properties determined from dynamic tests for the different specimens 

tested. 

• The LVE properties determined from dynamic tests with method III (cf section 

4.3.1.3.1) and with method IV and its simplified approach in the first step (cf 

section 4.3.1.4.1). 

• The LVE properties determined from dynamic and cyclic tension-compression tests 

for two additional specimens of the GB5 material already introduced in section 

5.1.1. 

5.3.1 Material  

This material corresponds to the GB5 material used in the FSDyn experimental campaign 

(cf. section 5.1.1). Two cylindrical specimens that were not used in the FSDyn project were 

tested. Details about these two specimens are given in Table 5.11.  

Table 5.11. Specimens tested in the MOGS experimental campaign. 

Specimen H (mm) D (mm) 
Density 

(kg/m3) 
Void ratio (%) 

GB5-C3 161.8 64.3 2 361 4.8 

GB5-C4 161.8 64.2 2 355 5.1 

5.3.2 Tests performed 

Cyclic tension-compression tests were performed first on the two cylinders. During these 

two cyclic tests, the radial strain was not measured and the Poisson’s ratio was therefore not 

evaluated. Then the lower and upper parts of the specimens were sawed to remove the caps 

glued to the specimens for the tension-compression tests. Dynamic tests were performed on the 

specimens with reduced lengths of 15.2cm following the same experimental procedure than for 

the GB5 specimens in the FSDyn campaign (see Figure 3.1). The two cylinders were tested in 

longitudinal mode. The dynamic tests were performed two weeks after the tension-compression 

tests.  

5.3.3 Comparison of the LVE properties determined from dynamic tests with methods III 

and IV 

The values of the constants of the 2S2P1D model and WLF equation at 15°C simulating 

the global LVE behaviour determined from dynamic tests with methods III (cf. section 

4.3.1.3.1) and IV (cf. section 4.3.1.4.1) are given in Table 5.12. The values of the constants 

obtained after the separate optimizations at each temperature in the first step of the two inverse 

methods are given in APPENDIX L. Comparisons of the experimental FRFs and calculated 

FRFs (after optimization at each temperature and the global LVE FRFs) will be found in 

APPENDIX L for the two cylinders and the two inverse analysis methods. 
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Table 5.12. Values of the constants of the 2S2P1D model and WLF equation simulating the 

global LVE behaviour determined from dynamic tests with methods III and IV for the two 

cylinders tested in the MOGS experimental campaign. 

 2S2P1D model 
WLF equation at 

15°C 

Specimen E0 (MPa) τE15°C (s) k δ h C1 C2 

GB5-C3 (Method III) 39 100 
5.5E-2 

0.130 1.17 0.442 19.2 139.5 
GB5-C3 (Method IV) 39 800 

GB5-C4 (Method III) 40 500 
7.0E-2 

GB5-C4 (Method IV) 41 100 

It is seen in Table 5.12 that except for constant E0,  the same values of the constants are 

obtained with both inverse methods. Moreover, values of these constants correspond to the 

values obtained for the GB5 cylinders in the FSDyn experimental campaign (cf. Table 5.6 and 

Table 5.7), which confirms the good repeatability of the dynamic tests for the GB5 material. 

For constant E0, the values are slightly increasing when using inverse method IV (+700 MPa or 

+1.8% for GB5-C3 and +600 MPa or +1.5% for GB5-C4). However, the differences are not 

significant so the use of a simplified approach in the first step of inverse method IV has almost 

no impact on the complex modulus evaluation, at least for material GB5 (cf. Figure 5.18 and 

Figure 5.19). 

5.3.3.1 Comparison of the LVE properties determined from dynamic tests and from cyclic 

tension-compression tests 

The values of the constants of the 2S2P1D model and WLF equation at 15°C simulating 

the global LVE behaviour determined from the tension-compression tests are given in Table 

5.13 for the two cylinders. 

Table 5.13. Values of the constants of the 2S2P1D model and WLF equation simulating the 

global LVE behaviour determined from the cyclic tension-compression test performed on the 

two cylinders tested in the MOGS experimental campaign. 

 2S2P1D model 
WLF equation at 

15°C 

Specimen 
E00 

(MPa) 

E0 

(MPa) 

τE15°C 

(s) 
k δ h β C1 C2 

GB5-C3 65 39 100 7.5E-2 
0.160 1.80 0.60 350 24.7 165.9 

GB5-C4 65 39 500 1.5E-1 

The complex modulus values obtained from dynamic and cyclic tests (E*
BC3, E*

Dyn3, E*
BC4, 

E*
Dyn4, E*

ExpTC and E*
TC) are plotted in Figure 5.18 for cylinder GB5-C4. The same figure can 

be found in APPENDIX L for cylinder GB5-C3. Figure 5.18 confirms the good agreement 

between results obtained from both inverse analysis methods of the dynamic tests. Results from 

dynamic tests are also in good agreement with the results of the tension-compression test. 

The relative difference (respectively the difference) between the norm (respectively the 

phase angle) of E*
DynIII and E*

TC in the one hand, and E*
DynIV and E*

TC in the other hand are 

plotted in Figure 5.19. Results from Figure 5.19 confirm the tendency seen in Figure 5.7 and 

Figure 5.16: the norm of the complex modulus evaluated from dynamic tests is little higher and 

the relative difference remains less than 15% on the whole frequency range. The maximum 

difference for the phase angle is of about only 1.5°. These results confirm the results obtained 
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for the two GB5 cylinders tested in the FSDyn campaign showing that for the GB5 material, 

dynamic tests and cyclic tests give complex modulus values in good agreement. The good 

match between shift factors obtained from both tests was already verified in Figure 5.10 

 

Figure 5.18 Comparison of the values of the complex modulus determined from dynamic tests 

with method III (E*
BC3 and E*

Dyn3) and method IV (E*
BC4 and E*

Dyn4) with the values of the 

complex modulus determined from cyclic tests (E*
ExpTC and E*

TC). (a) Cole-Cole plot; (b) and 

(c) master curves of the norm and of the phase angle of the complex modulus at 15°C. Results 

for specimen GB5-C3. 

 

Figure 5.19 Master curve at 15°C of: (a) the relative difference between the norm of the 

complex modulus determined from dynamic tests with method III/IV (|E*
Dyn3/4|) and from 

cyclic tests (|E*
TC|); (b) the difference between the phase angle of the complex modulus 

determined from dynamic tests with method III/IV (ϕE*Dyn3/4) and from cyclic tests (ϕE*TC). 

Results for the ABS-P4 beam tested in the SM experimental campaign. 
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5.4 Material with high reclaimed asphalt pavement content (MHRAPC) 

Some results of this experimental campaign are reported in Paper III that was published in 

the scientific journal Construction and Building Materials and in Paper V that was submitted 

for publication in the scientific journal Applied Science. The main objectives of this 

experimental campaign are: 

• To compare the LVE properties determined from dynamic tests for the different 

specimens tested. 

• To study the possibility of using method II (cf. section 4.3.1.2.1) to characterize the 

LVE behaviour of bituminous mixtures from dynamic tests. 

• To compare the LVE properties determined from dynamic tests with method III (cf. 

section 4.3.1.3.1), method IV (cf. section 4.3.1.4.1) and method V (cf. section 

4.3.2.1). 

• To compare the LVE properties determined from dynamic and cyclic tests for the 

material with high RAP content considered in this campaign. 

5.4.1 Material 

The material considered in this experimental campaign is a warm mix that was fabricated 

in laboratory. This material has a 0/10 continuous grading curve and a 35/50 original bitumen. 

RAP was incorporated in the original mix to reach 70% of RAP content using a 160/220 foam 

bitumen. The material is labelled WF for warm foam mixture. This material was used in the 

Improvmure project from the French national research agency (Poirier, Pouget, Leroy, & 

Delaporte, 2016). More details about the material will be found in APPENDIX I. Details about 

the three cylinders of this material that were used in this campaign are given in Table 5.14. 

Table 5.14. Specimens tested in the MHRAPC experimental campaign. 

Specimen H (mm) D (mm) 
Density 

(kg/m3) 
Void ratio (%) 

WF-4 150.3 75.0 2 379 6.6 

WF-6 150.7 75.0 2 431 4.2 

WF-8 149.5 75.0 2 449 3.8 

5.4.2 Tests performed 

The three cylinders were first tested with cyclic tension-compression tests. Then the lower 

and upper parts of the specimens were sawed to remove the caps glued to the specimens for the 

tension-compression tests. Two rounds of dynamic tests in longitudinal mode were performed 

on the specimens with reduced lengths of 12.3cm: 

• Seven temperatures from -20°C to 40°C in steps of 10°C were tested respecting 

the same chronology than in the FSDyn experimental campaign (see Figure 3.1). 

These tests were performed five months after the cyclic tests.  

• Five temperatures (-20°C, 0°C, 15°C, 35°C, 50°C) were tested following the same 

procedure than for the GB5 cylinders in the FSDyn and MOGS experimental 

campaigns (cf. Figure 3.1). These tests were performed seven months after the 

cyclic tests (two months after the first round of dynamic tests).  
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5.4.3 Results obtained for the first round of dynamic tests analyzed with method II 

The results obtained from the first round of dynamic tests and from tension-compression 

tests are presented and compared in Paper III. The values of the constants of the 2S2P1D model 

and WLF equation at 15°C simulating the global LVE behaviour determined from the tension-

compression tests and from the dynamic tests are listed in Table 5.15 and Table 5.16, 

respectively.  

Table 5.15. Values of the constants of the 2S2P1D model and WLF equation simulating the 

global LVE behaviour determined from cyclic tension-compression tests for the three 

cylinders tested in the MHRAPC experimental campaign. 

 2S2P1D model 

WLF 

equation at 

15°C 

Specimen 
E00 

(MPa) 

E0 

(MPa) 

τE15°C 

(s) 
k δ h β ν0 ν00 

τν15°C 

(s) 
C1 C2 

WF-4 28 33 400 0.054 

0.177 2.28 0.57 154 

0.20 0.45 1.5 

24.9 166.6 WF-6 40 37 500 0.070 0.31 0.51 4.0 

WF-8 56 36 900 0.069 0.18 0.52 3.9 

Table 5.16. Values of the constants of the 2S2P1D model and WLF equation simulating the 

global LVE behaviour determined from the first round of dynamic tests with method II for the 

three cylinders tested in the MHRAPC experimental campaign. 

 2S2P1D model WLF equation at 15°C 

Specimen E0 (MPa) τE15°C (s) k δ C1 C2 

WF-4 33 584 9.5E-2 0.186 2.34 28.5 210.1 

WF-6 37 748 3.4E-1 0.172 2.12 29.8 209.3 

WF-8 36 554 1.1E-1 0.178 2.05 30.8 230.8 

Values listed in Table 5.16 were obtained with method II (cf. section 4.3.1.2.1). The values 

of the constants E00, h, β, γEν, ν0 and ν00 that are fixed in method II were fixed to the values of 

constants determined from the tension-compression tests listed in Table 5.15.  

Values of constants k and δ listed in Table 5.16 are different from one specimen to another 

though they all are from the same material. The same observation is made for constants C1 and 

C2 of the WLF equation. These difference are due to the global approach used in method II. 

The influence of these differences was evaluated by plotting in Figure 5.20 the Cole-Cole plot 

and master curves at 15°C of the norm and phase angle of the normalized complex modulus 

(equation (5-1)) for the three cylinders. The curves corresponding to specimens WF-4 and WF-

8 are in good agreement but they are quite different than the curves of specimen WF-6. This 

kind of differences between specimens of the same material having the same geometry was not 

seen in other experimental campaigns when using methods III, IV and V.  
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Figure 5.20 Comparison of the values of the normalized complex modulus determined from 

dynamic tests for the specimens tested in the MHRAPC experimental campaign. (a) Cole-Cole 

plot; (b) and (c) master curves of the norm and of the phase angle of the normalized complex 

modulus at 15°C. 

The shift factors of the three cylinders obtained from dynamic tests and from tension-

compression tests are compared in Figure 5.21. A good agreement is seen between all the curves 

and there is no significant difference between the shift factors determined from dynamic tests 

for the three cylinder.  

 

Figure 5.21 Comparison of the shift factors determined from dynamic tests with method II 

and from cyclic tension-compression tests for the specimens tested in the MHRAPC 

experimental campaign. 
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The relative difference (respectively the difference) between the norm (respectively the 

phase angle) of E*
DynII and E*

TC are plotted in Figure 5.22. Results from both tests are in good 

agreement for specimens WF-4 and WF-8 but important differences (up to 80% for the norm 

of the complex modulus and 7° for the phase angle) are seen for specimen WF-6. This is a direct 

consequence of the observations raised from Figure 5.20 and a good example that shows the 

risk of error when using method II. It is therefore not recommended to use this method. 

 

Figure 5.22 Master curve at 15°C of: (a) the relative difference between the norm of the 

complex modulus determined from dynamic tests with method II (|E*
Dyn2|) and from cyclic 

tests (|E*
TC|); (b) the difference between the phase angle of the complex modulus determined 

from dynamic tests with method II (ϕE*Dyn2) and from cyclic tests (ϕE*TC). Results for the WF 

specimens tested in the MHRAPC experimental campaign. 

5.4.4 Comparison of the LVE properties determined from the second round of dynamic tests 

and from cyclic tension-compression tests 

Some of the results obtained from the second round of dynamic tests and from the tension-

compression tests are presented and compared in Paper V. The values of the constants of the 

2S2P1D model and WLF equation at 15°C simulating the global LVE behaviour determined 

from dynamic tests are given in Table 5.17. These values were obtained using method III, IV 

and V to back-analyze the FRFs measurements. The values of the constants obtained after the 

separate optimizations at each temperature in the first step of the three methods are given in 

APPENDIX M. Comparisons of the experimental FRFs and calculated FRFs (after optimization 

at each temperature and the global LVE FRFs) will be found in APPENDIX M for methods IV 

and V for all specimens. 
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Table 5.17. Values of the constants of the 2S2P1D model and WLF equation simulating the 

global LVE behaviour determined from the second round of dynamic tests with methods III, 

IV and V for the three cylinders tested in the MHRAPC experimental campaign. Values of 

constants τν15°C, ν0 and ν00 were only determined with method V. 

 2S2P1D model 

WLF 

equation at 

15°C 

Specimen 
E0 

(MPa) 

τE15°C 

(s) 
k δ h ν0 ν00 

τν15°C 

(s) 
C1 C2 

WF-4  

(Method III) 
34 800 4.0E-2 

0.147 1.39 0.490 

- - - 

18.9 133.2 

WF-6  

(Method III) 
38 700 7.0E-2 - - - 

WF-8  

(Method III) 
37 500 4.0E-2 - - - 

WF-4  

(Method IV) 
36 100 4.0E-2 - - - 

WF-6  

(Method IV) 
39 500 7.0E-2 - - - 

WF-8  

(Method IV) 
38 500 4.0E-2 - - - 

WF-4  

(Method V) 
34 800 4.0E-2 0.110 0.55 5 

WF-6  

(Method V) 
38 700 7.0E-2 0.235 0.55 150 

WF-8  

(Method V) 
37 500 4.0E-2 0.179 0.55 1 000 

Values of the constants obtained with methods III and V are the same. It is because values 

of the complex modulus back-calculated at each temperature are very similar with both inverse 

methods as seen in Figure 5.23 for the example of specimen WF-8. The same figures can be 

found in APPENDIX M for the other specimens. Consequently, values of constants E0, τE15°C, 

k, δ, h, C1 and C2 determined in the second step of methods III and V are the same (cf. Table 

5.17). 

 

Figure 5.23 Comparison of the values of the complex modulus back-calculated from dynamic 

tests at each temperature with methods III (E*
BC3), IV (E*

BC4) and V (E*
BC5). Results for 

specimen WF-8. 
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Also, similarly as in the MOGS experimental campaign (see section 5.3.3), the only 

differences between values of the constants determined with methods III and V and with method 

IV are for constant E0 that is slightly higher with method IV. This is because the norm of the 

complex modulus back-calculated at each temperature with method IV are higher than with 

methods III and IV, especially for the low temperatures, as seen in Figure 5.23 (slight horizontal 

shift to the right for values obtained with method IV). However, the maximum variation of E0 

is of only 3.7% (for specimen WF-4) so the use of a simplified approach in the first step of 

method IV has a very limited impact on the complex modulus evaluation for material WF (cf.  

Figure 5.24 and Figure 5.25). Values of the complex modulus obtained from both tests (E*
BC4, 

E*
Dyn4, E*

BC5, E*
Dyn5, E*

ExpTC and E*
TC) are plotted in Figure 5.24 for specimen WF-8. The same 

figures will be found in APPENDIX M for the two other specimens. A good agreement is seen 

between the different curves plotted in Figure 5.24.  

 

Figure 5.24 Comparison of the values of the complex modulus determined from dynamic tests 

with method IV (E*
BC4 and E*

Dyn4) and method V (E*
BC5 and E*

Dyn5) with the values of the 

complex modulus determined from cyclic tests (E*
ExpTC and E*

TC). (a) Cole-Cole plot; (b) and 

(c) master curves of the norm and of the phase angle of the complex modulus at 15°C. Results 

for specimen WF-8. 

The relative difference (respectively the difference) between the norm (respectively the 

phase angle) of E*
Dyn4 and E*

TC in the one hand, and E*
Dyn5 and E*

TC in the other hand are plotted 

in Figure 5.25. Results from Figure 5.25 confirm the tendency of previous results: the norm of 

the complex modulus evaluated from dynamic tests is little higher. The relative difference 

remains less than 30% on the whole frequency range while the maximum difference for the 

phase angle is of about only 2°. For this material, the difference between results from dynamic 

and cyclic tests is a bit more important than for materials GB5 and ABS but the agreement 

between both tests remains satisfying. 
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Figure 5.25 Master curve at 15°C of: (a) the relative difference between the norm of the 

complex modulus determined from dynamic tests with method IV/V (|E*
Dyn4/5|) and from cyclic 

tests (|E*
TC|); (b) the difference between the phase angle of the complex modulus determined 

from dynamic tests with method IV/V (ϕE*Dyn4/5) and from cyclic tests (ϕE*TC). Results for the 

WF specimens tested in the MHRAPC experimental campaign. 

The same comparison was carried out for the values of the complex Poisson’s ratio (νBC, 

ν*
Dyn, ν*

ExpTC and ν*
TC). Results are plotted in Figure 5.26 and Figure 5.27. The same figure than 

Figure 5.26 can be found in APPENDIX M for the two other specimens. The values of the 

complex Poisson’s ratio determined from dynamic tests are in good correlation with those 

determined from cyclic tests for the cylinder WF-8 as seen in Figure 5.26. Moreover, Figure 

5.27 shows that there is less than 0.1 of difference between the norm of the complex Poisson’s 

ratio determined from both tests for all specimens. However, the values of the phase angle of 

the complex Poisson’s ratio determined with both tests are not in good agreement, especially 

for specimen WF-4 (up to 3° of difference). Though, considering the difficulty to determine 

accurately values of the complex Poisson’s ratio in experimental tests, these differences are not 

surprising and the evaluation of the complex Poisson’s ratio from dynamic tests has great 

potential. 
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Figure 5.26 Comparison of the values of the complex Poisson’s ratio determined from 

dynamic tests with method V (real values νBC5 and ν*
Dyn5) with the values of the complex 

Poisson’s ratio determined from cyclic test (ν*
ExpTC and ν*

TC). (a) Cole-Cole plot; (b) and (c) 

master curves of the norm and of the phase angle of the complex Poisson’s ratio at 15°C. 

Results for specimen WF-8. 

 

Figure 5.27 Master curve at 15°C of: (a) the relative difference between the norm of the 

complex Poisson’s ratio determined from dynamic tests with method V (|ν*
Dyn5|) and from 

cyclic tests (|ν*
TC|); (b) the difference between the phase angle of the complex Poisson’s ratio 

determined from dynamic tests with method V (ϕν*Dyn5) and from cyclic tests (ϕν*TC). Results 

for the WF cylinders tested in the MHRAPC experimental campaign. 

Finally, the shift factors obtained from dynamic tests and from tension-compression tests 

were compared. Results are plotted in Figure 5.28 in which a good overall agreement is seen 

between the shift factors obtained from both tests. 
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Figure 5.28 Comparison of the shift factors determined from dynamic tests with methods III, 

IV and V and from cyclic tension-compression tests for the three WF cylinders tested in the 

MHRAPC experimental campaign. 

5.5 Materials from airport pavement (MAP) 

The main objectives of this experimental campaign are to compare: 

• To compare the LVE properties determined from dynamic tests for the specimens 

of the same materials. 

• To compare the LVE properties determined from dynamic and cyclic tests for the 

materials from airport pavement considered in this campaign. 

5.5.1 Materials 

Two airfield pavement materials are considered in this experimental campaign. Both 

materials were drilled from a test track located at the test facility of the French Civil Aviation 

Technical Centre (Bonneuil-sur-Marne, France). This pavement was designed using the French 

rational design method (French civil aviation authority, 2016) with the Alizé software (Balay 

& Caron, 2008) for a ten years lifetime considering ten heavy weight deflectometer loads (or 

jumbo jets movements) per day. 

The two upper layers are made of bituminous materials. The surface asphalt concrete (resp. 

the base asphalt concrete layer) has a continuous 0/10 (resp. 0/14) grading curve. Both materials 

have a 35/50 bitumen. More details about the materials will be found in APPENDIX I.  

The first mixture tested in this campaign was cored from the base layer and is labelled GB. 

The second mixture was cored from the surface layer and is labelled BB. An unidentified layer, 

with a thickness of approximately 3cm was seen after the extraction of the specimens. Some 

specimens of this material labelled GB’ were also considered in this campaign. The specimens 

cored from this layer were labelled GB’ because it was suspected that the layer correspond to a 

thin layer of badly compacted material GB. Finally, note that the specimens cored in the 

direction of compaction are labelled GB-L, GB’-L or BB-L and the specimens cored in the 

transverse direction are labelled GB-T and BB-T. Details of the specimens tested in this 

campaign are given in Table 5.18.  
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Table 5.18. Specimens tested in the MAP experimental campaign. 

Specimen H (mm) D (mm) 
Density 

(kg/m3) 
Void ratio (%) 

GB-L-1 152.1 73.5 2 410 4.1 

GB-L-2 151.4 74.0 2 400 4.5 

GB-L-3 150.8 33.9 2 392 4.8 

GB-L-4 150.7 33.8 2 405 4.3 

GB-L-5 150.6 34.0 2 375 5.5 

GB’-L-1 151.3 33.9 2 275 9.4 

GB’-L-2 150.1 33.9 2 291 8.8 

GB’-L-3 150.8 34.0 2 260 10.0 

GB-T-1 151.5 73.9 2 404 4.3 

GB-T-2 151.5 73.9 2 411 4.0 

BB-L-1 151.3 74.0 2 543 1.8 

BB-L-2 151.0 74.1 2 541 1.9 

BB-T-1 152.0 74.6 2 530 2.3 

BB-T-2 151.9 74.0 2 547 1.7 

5.5.2 Tests performed 

The same experimental procedure than in previous campaigns was used for the dynamic 

tests (see Figure 3.1). The GB and GB’specimens were tested at -20°C, 0°C, 15°C, 35°C and 

50°C while the BB specimens were tested at -20°C, 0°C, 15°C, 30°C and 45°C. The 

longitudinal mode of vibration was used for all the specimens. Two specimens (GB-L-1 and 

BB-L-1) were also tested with cyclic tension-compression tests performed one month after the 

dynamic tests.  

5.5.3 LVE properties determined from dynamic tests 

The values of the constants of the 2S2P1D model and WLF equation at 15°C simulating 

the global LVE behaviour determined from dynamic tests are listed in Table 5.19. These results 

were obtained with method III (cf. section 4.3.1.3.1) for all specimens except for GB-L-1 and 

BB-L-1 for which method V (cf. section 4.3.2.1) was used. The analysis methods used were 

chosen following the recommendations from section 4.3.3. The specimens GB-L-1 and BB-L1 

are the only specimens for which method V was used because they are the only specimen for 

which the complex Poisson’s ratio was measured with tension-compression tests. When using 

method III, the constants E00, β, γEν, ν0 and ν00 were fixed in the first step of the method to the 

values of the constants of the reference LVE material (for E00 and β) and to the values of the 

constants determined with method V and listed in Table 5.19 (for γEν, ν0 and ν00). For all 

specimens, the values of the constants obtained after the optimizations at each temperature are 

given in APPENDIX N. The figures showing comparisons of the experimental FRFs and 

calculated FRFs and the complex modulus values determined from dynamic tests will also be 

found in APPENDIX N. 
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Table 5.19. Values of the constants of the 2S2P1D model and WLF equation simulating the 

global LVE behaviour determined from dynamic tests with methods III and V for the 

specimens tested in the MAP experimental campaign.  

2S2P1D model 

WLF 

equation at 

15°C 

Specimen 
E0 

(MPa) 

τE15°C 

(s)
k δ h ν0 ν00 

τν15°C 

(s) 
γEν C1 C2 

GB-L-1 

(Meth.V) 
39 400 0.032 

0.137 1.18 0.500 

0.285 0.55 0.1 0.32 

17.6 132.6 

GB-L-2 

(Meth.III) 
38 100 0.031 - - - - 

GB-L-3 

(Meth.III) 
36 500 0.034 - - - - 

GB-L-4 

(Meth.III) 
36 600 0.030 - - - - 

GB-L-5 

(Meth.III) 
37 300 0.031 - - - - 

GB’-L-1 

(Meth.III) 
26 500 0.033 

0.137 1.10 0.510 

- - - - 

GB’-L-2 

(Meth.III) 
28 400 0.035 - - - - 

GB’-L-3 

(Meth.III) 
28 700 0.034 - - - - 

GB-T-1 

(Meth.III) 
38 900 0.033 

0.137 1.18 0.500 

- - - - 

GB-T-2 

(Meth.III) 
39 100 0.029 - - - - 

BB-L-1 

(Meth.V) 
41 400 0.013 

0.161 1.38 0.555 

0.260 0.55 10 0.0013 

20.0 149.3 

BB-L-2 

(Meth.III) 
41 800 0.019 - - - - 

BB-T-1 

(Meth.III) 
40 300 0.016 - - - - 

BB-T-2 

(Meth.III) 
41 300 0.013 - - - - 

The same values of constants C1 and C2 are obtained for all the specimens of each material. 

Values of constants k, δ and h are also the same for all specimens of each material except for 
the GB’ cylinders for which slight differences are seen with the GB specimens. The Cole-Cole 

plot and the master curves at 15°C of the norm and phase angle of the normalized complex 

modulus (equation (5-1)) are plotted in Figure 5.29 for the GB, GB’ and BB specimens. The 

master curves corresponding to the GB and GB’ specimens are in very good agreement and 

they are quite different than the master curves of the BB specimens which have lower values of 

the norm of the normalized complex modulus and higher value of the phase angle for reduced 

frequencies lower than 105 Hz. Figure 5.29  demonstrates one more time the good repeatability 

of dynamic tests, even when using different dimensions for the GB and GB’ cylinders. It also 

confirms that the material of the GB and GB’ specimens is the same. The GB’ specimens were 

probably cored from a layer not well compacted.  
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Figure 5.29 Comparison of the values of the normalized complex modulus determined from 

dynamic tests for the specimens tested in the MHRAPC experimental campaign. (a) Cole-Cole 

plot; (b) and (c) master curves of the norm and of the phase angle of the normalized complex 

modulus at 15°C. 

5.5.4 Comparison of the LVE properties determined from dynamic tests and from cyclic 

tension-compression tests 

The values of the constants of the 2S2P1D model and WLF equation at 15°C simulating 

the global LVE behaviour determined from tension compression tests are listed in Table 5.20.  

Table 5.20. Values of the constants of the 2S2P1D model and WLF equation simulating the 

global LVE behaviour determined from cyclic tension-compression tests for specimens GB-L-

1 and BB-L-1 tested in the MAP experimental campaign. 

 2S2P1D model 

WLF 

equation at 

15°C 

Specimen 
E00 

(MPa) 

E0 

(MPa) 

τE15°C 

(s) 
k δ h β ν0 ν00 

τν15°C 

(s) 
C1 C2 

GB-L-1 14 37 500 0.107 0.180 2.05 0.59 130 0.21 0.30 200 27.3 184.2 

BB-L-1 9 39 500 0.025 0.205 2.20 0.63 60 0.24 0.50 10 24.9 166.6 

Values of the complex modulus obtained from dynamic and cyclic tests (E*
BC5, E*

Dyn5, 

E*
ExpTC and E*

TC) are plotted in Figure 5.30 for specimen BB-L-1. The same figure can be found 

in APPENDIX N for specimen GB-L-1. A good overall agreement is seen between the different 

curves plotted in Figure 5.30. The relative difference (respectively the difference) between the 

norm (respectively the phase angle) of E*
Dyn5 and E*

TC are plotted in Figure 5.31 for both 

materials. Results confirm the observation from the previous campaigns: the norm of the 
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complex modulus evaluated from dynamic tests is little higher while no significant difference 

is seen for the phase angle. The relative difference remains less than 15% on the whole 

frequency range while the maximum difference for the phase angle is of about only 2°. 

 

Figure 5.30 Comparison of the values of the complex modulus determined from dynamic tests 

with method V (E*
BC5 and E*

Dyn5) with the values of the complex modulus determined from 

cyclic tests (E*
ExpTC and E*

TC). (a) Cole-Cole plot; (b) and (c) master curves of the norm and 

of the phase angle of the complex modulus at 15°C. Results for specimen BB-L-1. 

 

Figure 5.31 Master curve at 15°C of: (a) the relative difference between the norm of the 

complex modulus determined from dynamic tests with method V (|E*
Dyn5|) and from cyclic 

tests (|E*
TC|); (b) the difference between the phase angle of the complex modulus determined 

from dynamic tests with method V (ϕE*Dyn5) and from cyclic tests (ϕE*TC). Results for the GB-

L-1 and BB-L-1 specimens tested in the MAP experimental campaign. 
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The same comparison was performed for the values of the complex Poisson’s ratio (νBC5, 

ν*
Dyn5, ν*

ExpTC and ν*
TC). Results are plotted in Figure 5.32 and Figure 5.33. The same figure 

than Figure 5.32 can be found in APPENDIX N for cylinder GB-L-1. As seen in Figure 5.32, 

the values of the complex Poisson’s ratio determined from dynamic tests are in good agreement 

with those determined from cyclic tests for the cylinder BB-L-1. However, Figure 5.33 shows 

that more important differences exist for cylinder GB-L-1 (up to 0.25 for the norm of the 

complex Poisson’s ratio and to 2° for the phase angle). The reason for these differences for 

cylinder GB-L-1 is not identified. Though, considering the difficulty to determine accurately 

values of the complex Poisson’s ratio in experimental tests, these differences are not alarming 

and dynamic tests are a good possibility to obtain values of the complex Poisson’s. 

 

Figure 5.32 Comparison of the values of the complex Poisson’s ratio determined from 

dynamic tests with method V (real values νBC5 and ν*
Dyn5) with the values of the complex 

Poisson’s ratio determined from cyclic test (ν*
ExpTC and ν*

TC). (a) Cole-Cole plot; (b) and (c) 

master curves of the norm and of the phase angle of the complex Poisson’s ratio at 15°C. 

Results for specimen BB-L-1. 
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Figure 5.33 Master curve at 15°C of: (a) the relative difference between the norm of the 

complex Poisson’s ratio determined from dynamic tests with method V (|ν*
Dyn5|) and from 

cyclic tests (|ν*
TC|); (b) the difference between the phase angle of the complex Poisson’s ratio 

determined from dynamic tests with method V (ϕν*Dyn5) and from cyclic tests (ϕν*TC). Results 

for the GB-L-1 and BB-L-1 cylinders tested in the MAP experimental campaign. 

Finally, the shift factors obtained from dynamic tests and from tension-compression tests 

are compared. in Figure 5.34 in which a good overall agreement is seen between the shift factors 

obtained from both tests for the two considered materials. 

 

Figure 5.34 Comparison of the shift factors determined from dynamic tests with methods III, 

IV and V and from cyclic tension-compression tests for the GB and BB specimens tested in the 

MAP experimental campaign. 
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ABSTRACT 
 

In this paper, an investigation was performed to determine if the viscoelastic analysis of bituminous 

mixtures under dynamic loadings gives different results than the simplified elastic analysis. First, 

different asphalt mixes (AM) were tested with cyclic tension-compression tests and the results were 
analyzed using the 3 dimensional 2S2P1D linear viscoelastic (LVE) model with continuous spectrum. 

From a large data base considering very different types of AM, a LVE material was created 

considering “average” viscoelastic properties. Then, this material was used to perform finite elements 
method (FEM) numerical simulations of a cylinder under dynamic loadings at 8 different 

temperatures from -40°C to 30°C. Only longitudinal mode of vibrations is studied in this paper. The 

complex Young’s modulus and complex Poisson’s ratio were first obtained using the viscoelastic 
2S2P1D model considering resonance frequencies. Then, a combined back analysis, which has the 

advantage of simplicity, was used to determine the elastic equivalent properties and the damping of 

the specimen. The complete viscoelastic analysis and the combined back analysis results regarding 

both parameters are discussed in the paper.  

 

Keywords: asphalt mixes, viscoelasticity, dynamic loading, finite element calculation. 

 
 

1. INTRODUCTION 

 

Nondestructive seismic measurements such as impact loadings are economical, simple to 
perform and seem to be a good approach to provide accurate characterization of materials properties 
(Migliori et al., 1993).  Wave propagation measurements (Mounier et al., 2012; Di Benedetto et al., 
2009) and measurements of the fundamental resonance frequencies (Kweon G., & Kim Y. R., 2006; 

Whitmoyer, S.L. & Kim, Y.R., 1994) have been used to determine the complex moduli of asphalt 
mixtures (AM). These methods provide information for the tested VEL material only for limited 

number of resonant frequencies (1 to 3), which are, a priori, unknown. In these tests, simplified 

approximate formulations are used to determine a complex modulus for each considered temperature 
and mode of vibration (ASTM: C215-08, 2008). Ryden (2011) applied resonant acoustic spectroscopy 

(RAS) to calculate resonance frequencies for different mode types of cylindrical discs and beams. In 

this paper, frequency response functions (FRFs) were calculated with FEM numerical simulations of 

impact loadings on a cylindrical viscoelastic specimen. Only the fundamental resonance frequency of 
the longitudinal mode of vibration was considered for the 8 tested temperatures between -40°C and 

30°C. Viscoelastic properties of the specimen were estimated at the corresponding resonance 

frequency with the 2S2P1D linear viscoelastic model for each temperature. Then, a combined back 
analysis was performed to determine the elastic equivalent properties and the damping of the 

specimen. Finally, results from the viscoelastic analysis and from the combined back analysis were 

compared.   
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2. MATERIALS AND TESTING 
 

2.1 Materials and considered material model 
 

38 specimen used in 4 different PhD thesis performed at University of Lyon / ENTPE, LTDS 
laboratory (Nguyen, Q. T., 2011; Mangiafico, S., 2014; Pham, N. H., 2014; Viet, P. C., 2016) were 
considered. From all these specimen, that represent a good range of bituminous mixture types, a 
material model with “averaged” viscoelastic properties were created from average values of the 
constants of the LVE 2S2P1D model obtained for each material. This material model was used to run 
the numerical simulations and analyses that are presented in the paper.  
 

2.2 Tension-compression tests 

 

Tension-compression tests were used to determine complex modulus of asphalt mixes. Tests 
were performed on cylindrical samples (150 mm high with a 75 mm diameter). Cyclic sinusoidal 
loadings were performed using a hydraulic press, as shown in Figure 1, in strain-controlled mode with 
an amplitude of 10-5 m/m.  
 

                      
Figure 1. (left) Tension-compression test apparatus used for tests on asphalt mixes; (right) detailed scheme of 

measurement devices and sample). 
 

Axial stress (ı1=ı0.sin(ωt-ϕE)) was measured with a load cell, while axial strain 
(İ1=İ01.sin(ωt)) was obtained from three extensometers placed at 120° and radial strain 
(İ2=İ02.sin(ωt+ϕν)) was deduced from non-contact transducers (figure 1). The complex modulus and 
the complex Poisson’s ratio at different loading frequencies and temperatures are calculated according 
to Eq. 1 and Eq. 2 where ϕE and ϕν is the phase of the complex modulus and of the complex Poisson’s 
ratio, respectively.  
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2.3 Dynamic impact tests 

 

The test set-up of the dynamic impact tests is illustrated in Figure 2. An impact hammer 
equipped with a load cell (PCB model 086E80) is used to manually apply a load impulse on the 
specimen. An accelerometer (PCB model 353B15), attached using wax, is used to measure the 
standing wave modes. The specimen is placed on soft foam to achieve free boundary conditions 
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(Whitmoyer, S.L., & Kim, Y.R., 1994). A signal conditioner (PCB model 482C15), a data acquisition 
device (NI DAQ USB-6251) and a computer are connected to the hammer and to the accelerometer 
according to Figure 2. Only the longitudinal mode of vibration was measured in this study, by hitting 
the specimen in the middle of one short side while placing the accelerometer on the middle of the 
opposite short side (see Figure 2.). 
 

 
Figure 2. Dynamic impact tests set-up (ENTPE laboratory, Vaulx-en-Velin, France). 

 

The longitudinal mode of vibration was excited by five impacts and a Frequency Response 
Function (FRF) has been calculated from the average of these five impacts for each measurement 
temperature according to Eq. 3, 
 

   ( ) ( ). *( ) / ( ). *( )H f Y f X f X f X f    (3) 

 

where H(f) is the FRF, Y(f) is the measured acceleration, X(f) is the measured applied force, X*(f) is 
the complex conjugate of the applied force and the bar above represents the arithmetic mean. 
 

3. VISCOELASTIC ANALYSIS 

 

3.1 2S2P1D linear viscoelastic isotropic model 
 

Experimental tension-compression tests results were analyzed using 2S2P1D model (Di 
Benedetto et al., 2004; Olard & Di Benedetto, 2003; Tijouani et al., 2011), developed at ENTPE. It 
consists of a combination of two springs, two parabolic creep elements and one dashpot. The complex 
modulus of the 2S2P1D model is expressed according to Eq. 4,  
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(4) 

 

Where ω is the angular frequency (ω=2πf, where f is the frequency), E00 is the static modulus when ω 
tends towards 0, E0 is the glassy modulus when ω tends towards +∞, į is a dimensionless constant, k 
and h are dimensionless constants such as 0 < k < h < 1, β is a dimensionless constant related to 
Newtonian viscosity η by η = (E0-E00) βĲ and Ĳ is the characteristic time, whose value varies only with 
temperature. The time-temperature superposition principle is verified for bituminous mixtures in the 
linear and nonlinear domains (Nguyen HM et al. 2009; Nguyen ML et al. 2013; Nguyen QT et al. 
2013) using: 

( ) ( )T refT a T     (5) 
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Where aT is the shift factor at the temperature T given by the Williams-Landel-Ferry (WLF) equation 
(Ferry, 1980): 
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(6) 

 

Where C1 and C2 are the two WLF constants and Tref is the reference temperature. 
 Di Benedetto et al. (2007) extended the 2S2P1D model to characterize complex Poisson’s 
ratio as given in Eq. 7,  
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(7) 

 

Where ν00 is the low frequency Poisson’s ratio when ω tends towards 0 and ν0 is the high frequency 
Poisson’s ratio when ω tends towards +∞. Note that the same value of the parameters į, k, h and β are 
used to determine both the complex modulus and complex Poisson’s ratio while Ĳ is determined 
uniquely for Poisson’s ratio and is therefore labeled Ĳν. The 2S2P1D parameters for the material model 
used in the numerical simulations (see section 2.1) are given in Table 1.  
  

Table 1. 2S2P1D constants for the material model with “averaged” viscoelastic properties of bituminous 
mixtures 

E00 (MPa) E0 (MPa) ν0 ν00 į k h β Ĳ10°C (s) Ĳν (s) C1 C2 
105 35 000 0.19 0.24 2.15 0.17 0.525 505 0.1 3.165 30 210 

 

 

3.2 Finite elements method numerical simulations 

 
Finite element method (FEM) was used to calculate FRFs (Eq. 3), using the three-dimensional 

equation of motion in the frequency domain (Eq. 8)  
 

² . iΦe    pu F    (8) 

Where ρ is the density, ω is the angular frequency, u is the displacement vector, ∇ is the gradient 
tensor operator, i is the square root of -1 and ı is the Cauchy stress tensor. Fp is the unity load equal to 
1N and ϕ is the phase of the cyclic load. 
 The unity load in the model has been applied to the corresponding point of the hammer 
impact in the measurement of the longitudinal mode of vibration, while the response has been 
determined at the point corresponding to the position of the accelerometer. The simulations were 
performed at 8 different temperatures from -40°C to 30°C, considering steps of 20 Hz in a frequency 
range from 100 Hz to 20 000 Hz. More precise simulations with steps of 1 Hz were also carried out 
around the first resonant frequency for each temperature in order to obtain a better evaluation of the 
fundamental resonant frequency and of the damping of the material. The geometry used for the study 
was a cylinder with a 150 mm height and a 75 mm diameter. The mesh consists of tetrahedral 
elements with a maximum element size of 2.5 cm that was determined through a convergence study. 
 

4. COMBINED BACK ANALYSIS 

 

For each tested temperature, the viscoelastic FRF was calculated with FEM numerical 
simulations using 2S2P1D model (complex modulus and complex Poisson’s ratio) of the model 
material (considered as isotropic) as input. From the calculated viscoelastic FRF, the fundamental 
resonance frequency of the longitudinal mode of vibration, fFδ, was determined and this frequency 
was used in the 2S2P1D model to calculate the corresponding longitudinal complex modulus, E*

Fδ, 
and Poisson’s ratio, ν*

Fδ, according to Eq. 9 and Eq. 10. 
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The frequency bandwidth Δf (figure 3) was determined according to the half-power 
bandwidth method, and the phase angle used in the back analysis, ϕBA, was deduced using the 
following relationship suggested by Clough and Penzien (1993):  
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 (11) 

 

Then, fFδ and three different real values of Poisson’s ratio of 0.2, |ν*
Fδ|, and 0.45 were used as 

input in elastic FEM numerical simulations to back-calculate three elastic equivalent moduli, EEE1, 
EEE2 and EEE3. ϕBA was considered as the corresponding phase angle for these moduli and three 
complex moduli, E*

BA1, E*
BA2 and E*

BA3 were determined according to Eqs. 12-14. 
 

*

1
BAi

BA EE1E = E e 
 (12) 

*

2
BAi

BA EE2E = E e 
 (13) 

*

3
BAi

BA EE3E = E e 
 (14) 

 

Finally, the norm and the phase angle of the complex modulus E*
Fδ were compared to the 

norm and to the phase angle of the three complex moduli E*
BA1, E*

BA2 and E*
BA3 allowing to consider 

the effect of the Poisson’s ratio value. The explanation of the combined back analysis described above 
is given in Figure 3. 
 

 

 
Figure 3. Explanation of the combined back analysis. 
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5. COMPARISON BETWEEN THE LINEAR VISCOELASTIC ANALYSIS AND THE 

PROPOSED COMBINED BACK ANALYSIS 

 

 The procedure described previously was used to determine the values of fFδ, |E*
Fδ|, ϕFδ, |ν*

Fδ|, 
ϕBA, EEE1, EEE2 and EEE3 for the 8 considered temperatures. Results are given in Table 2. 
 

Table 2. Results of the numerical simulations and the combined back analysis 

 2S2P1D model Combined Back Analysis 

T (°C) |E*
Fδ| (MPa) ΦFδ (°) |ν*

Fδ| fFδ (Hz) ΦBA (°) EEE1 (εPa) EEE2 (εPa) EEE3 (εPa) 
-40 34 602 0.178 0.191 12 320 0.186 34 645 34 605 34 425 

-30 34 029 0.434 0.194 12 216 0.450 34 060 34 030 35 810 

-20 32 890 0.943 0.198 12 006 0.969 32 900 32 890 34 585 

-10 30 891 1.837 0.206 11 631 1.901 30 870 30 910 32 460 

0 27 813 3.232 0.219 11 031 3.372 27 775 27 850 29 200 

10 23 675 5.219 0.238 10 173 5.542 23 620 23 755 24 840 

20 18 770 8.049 0.264 9 062 8.813 18 740 18 930 19 705 

30 13 475 12.575 0.294 7 708 14.782 13 560 13 780 14 260 

 

There is no temperature above 30°C in Table 2, because it was impossible to estimate the 
damping of the material and the phase angle with the half-power bandwidth method for such 
temperatures. Therefore, the relationship suggested by Clough and Penzien (Eq. 11) is not applicable 
for high temperatures. The solid line in Figure 4 presents the relative change of the elastic equivalent 
moduli EEE1, EEE2 and EEE3 compared to the norm of the longitudinal complex modulus, |E*

Fδ|, 
calculated using 2S2P1D model at the frequency fFδ.  

 

 
Figure 4. Relative difference between the norm of complex moduli from the combined back analysis and the 

norm of the 2S2P1D model complex modulus. 
 
 

Figure 4. clearly shows that there is a good correlation between the elastic equivalent moduli 
EEE2 and the complex modulus from the 2S2P1D model with a maximum relative difference of less 
than 2.5 % at the temperature of 30°C. It can also be seen on Fig. 4 that the Poisson’s ratio value has 
an impact on the calculation of the elastic equivalent moduli. The relative change is clearly higher for 
EEE3 that is calculated for a Poisson’s ratio of 0.45. Figure 5 presents the difference in ° between the 
back analysis phase angle ϕBA and the phase angle ϕFδ given by 2S2P1D model at the frequency fFδ. 
Figure 5 shows also a good correlation between the back analysis phase angle ϕBA and the 2S2P1D 
phase angle with a maximum 2.5° difference for the temperature of 30°C. It can also be observed that 
errors between values calculated with the combined back analysis and values given by the 2S2P1D 
model increase with higher temperatures, especially for the phase angle.  
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Figure 5. Difference between phase angle from the combined back analysis and the 2S2P1D model phase angle.  
 

 
 Figure 6 presents the different obtained complex moduli in a Cole-Cole diagram. It can be 
seen that the correlation between, E*

BA2 and complex modulus from the 2S2P1D model is very good at 
low temperatures which confirms the observations from Fig. 4 and 5.  
 

 
Figure 6. Complex modulus values obtained from the 2S2P1D model and the proposed combined back analysis.  
 

 

6. CONCLUSION 
 

It is shown in this paper that the proposed simplified back analysis gives good results for low 

and intermediate temperatures, both for the norm of the complex modulus and for the phase angle. For 
temperatures higher than 20°C, slight differences appear. These differences are mostly due to an 

overestimation of the phase angle for the higher temperatures. Therefore, the half-power bandwidth 

method used to determine the phase angle is not adapted for high temperatures because it 

overestimates the damping of the materials. Poisson’s ratio effect was also studied. It was found that it 
has a significant impact on the calculation of the elastic equivalent modulus. The observations and 

findings from this study demonstrate that for temperatures under 20°C, a good evaluation of Poisson’s 
ratio and a simplified combined back analysis are sufficient to back analyse impact loadings on 
asphalt mixtures. However, for higher temperatures, the method does not provide good evaluation of 

phase angle for values higher than about 15°. For temperatures above 30°C corresponding to phase 

angle of above 15° the half-power bandwidth could not be used because of too much damping in the 

material. These numerical results will be verified in further studies using laboratory measurements. 
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Abstract

In this paper, an investigation was performed to determine the accuracy of a simplified viscoelastic back analysis to interpret

dynamic loading tests on asphalt mixes (AM). First, quasi-static cyclic tension–compression lab tests were performed on

different AM to fit the 3 dimensional 2S2P1D linear viscoelastic (LVE) model. Considering these tests on very different

types of AM, a LVE material with “averaged” viscoelastic properties was obtained. Then, these “averaged” viscoelastic

properties were considered to perform finite elements method numerical simulations of dynamic loading tests on a cylinder.

The simulations were performed at ten different temperatures from − 40 to 50 ◦C. The longitudinal, flexural and torsional

modes of vibration are studied. The complex Young’s modulus and complex Poisson’s ratio were first obtained using the

viscoelastic 2S2P1D model at the first resonance frequency for the three studied modes of vibration. Then, a combined

viscoelastic back analysis, which has the advantage of simplicity, was used to determine the elastic equivalent properties and

the phase angle of the material. The results obtained directly with the 2S2P1D model and the results from the combined

viscoelastic back analysis results regarding both the Young’s modulus and the Poisson’s ratio are discussed in the paper.

Keywords Asphalt mixes · Viscoelasticity · Dynamic loading · Finite element calculation · Back analysis

1 Introduction

Seismic measurements such as impact loadings are econom-

ical, simple to perform and are nondestructive tests. These

tests seem to be a good approach for providing accurate char-

acterization of materials properties [1]. Measurement of the

flying time in wave propagation tests [2–4] and measurement

of the fundamental resonance frequencies through resonance

testing [5,6] have been used to determine the complex mod-

ulus of asphalt mixtures. These methods give information on

the tested LVE material only for a limited number of reso-

nance frequencies (1–3), which are, a priori, unknown. The

analysis of the results of these tests is based on simplified

approximate formulations used to determine a complex mod-
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Cedric Sauzeat

cedric.sauzeat@entpe.fr
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M. Audin, 69518 Vaulx en Velin, France

ulus for each considered temperature and mode of vibration

[7,8]. Ryden and Gudmarsson [9,10] applied resonant acous-

tic spectroscopy (RAS) to calculate resonance frequencies of

cylindrical discs and beams for different modes of vibration.

These tests require simplified method such as the half-power

bandwidth method to evaluate the damping of the specimen.

In this paper, a comparison between the direct viscoelastic

analysis and a simplified back analysis of a specimen under

impact loadings were performed. The differences between

the two approaches and the limitations of the simplified back

analysis were highlighted. LVE finite element method numer-

ical simulations of impact loadings on a cylindrical specimen

were carried out. These numerical tests were performed at 10

different temperatures between − 40 and 50 ◦C for three dif-

ferent modes of vibration: the longitudinal mode, the flexural

mode and the torsional mode. The analysis of these compu-

tations were limited to the first resonance frequency for each

mode. Viscoelastic properties of the specimen were estimated

at the corresponding resonance frequency for each mode of

vibration and for each temperature using the 2S2P1D linear

viscoelastic model. Then, a combined back analysis—it is

the type of method mostly used to analyze impact testing on

asphalt materials—was used to evaluate the elastic equiva-

0123456789().: V,-vol 123
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Fig. 1 (left)

Tension–compression test

apparatus used for tests on

asphalt mixes; (right) detailed

scheme of measurement devices

and sample

Fig. 2 (left) Dynamic impact

tests set-up (ENTPE/LTDS

laboratory), case of the

longitudinal mode; (right)

Position of the accelerometer

and of the impact for the three

considered modes of vibration

lent properties and the phase angle of the material. Finally,

results obtained directly with the 2S2P1D model and from

the combined back analysis were compared.

2 Materials and Experimental Tests

2.1 Materials and ConsideredMaterial for Modelling

38 specimens are first considered in this study. They were

previously tested (cyclic tension–compression test—see fol-

lowing section-) during 4 different Ph.D. theses performed at

the University of Lyon / ENTPE, LTDS laboratory [11–17].

The wide variety of these specimens represents a good range

of asphalt mixes types and makes it possible to consider a

material with averaged viscoelastic properties. This material

was given the average values of the constants of the 2S2P1D

LVE model obtained for the 38 specimens. All the numeri-

cal simulations and analyses that are presented in this paper

were performed on this average material.

2.2 Cyclic Tension–Compression Tests

The tension–compression tests were used to determine the

complex Young’s modulus and the complex Poisson’s ratio of

asphalt mixes. The tests were performed on cylindrical sam-

ples (150 mm high with a 75 mm diameter). Cyclic sinusoidal

loadings were applied using a hydraulic press, as shown in

Fig. 1, in strain-controlled mode with an amplitude of around

5 ∗ 10−5 m/m.

The axial stress (σ1 = σ0.sin(ωt−φE )) was measured

with a load cell with a ±25 kN maximum load and a 25N

accuracy. The axial strain (ε1 = ε01.sin(ωt)) was obtained

by means of three extensometers placed at 120◦ from each

other (Fig. 1). The radial strain (ε2 = ε02.sin(ωt+φν)) was

deduced from measurements of two non-contact transducers

(Fig. 1). The complex modulus and the complex Poisson’s

ratio at different loading frequencies (from 0.01 to 10 Hz) and

different temperatures (from − 30 to 50 ◦C) are calculated

according to Eqs. 1 and 2 where φE and φν are the phases

of the complex modulus and of the complex Poisson’s ratio

respectively.

E∗(ω) =
σ ∗

1

ε∗
1

=
∣

∣E∗(ω)
∣

∣ ei�E (1)

ν∗(ω) = −
ε∗

2

ε∗
1

=
∣

∣ν∗(ω)
∣

∣ ei�ν (2)
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Fig. 3 Representation of the 2S2P1D LVE model in the 1-dimension

case

2.3 Dynamic Impact Tests and Conditions for the
Numerical Simulations

The sample geometry used for tension–compression test (7.5

cm diameter and 15 cm height) was considered for dynamic

test. In this paper only numerical tests are presented but

the associated lab test set-up of the dynamic impact tests is

shown on the left of Fig. 2. The loading is manually applied

on the specimen with an impact hammer equipped with a

load cell (PCB model 086E80). The standing wave modes

are measured with an accelerometer (PCB model 353B15)

glued to the specimen. During the test, the specimen lays

on soft foam to ensure free boundary conditions [6]. The

impact hammer and the accelerometer are connected to the

data acquisition system that consists of a signal conditioner

(PCB model 482C15), a data acquisition device (NI DAQ

USB-6251) and a computer (see Fig. 2). It is possible to excite

different modes of vibration depending on the position of the

impact and of the accelerometer [18,19]. The configurations

for the three different modes of vibration considered in this

study are described on the right of Fig. 2. These configu-

rations were used for the FEM numerical simulations (see

Sect. 3.2).

3 Linear Viscoelastic Analysis

3.1 2S2P1D LVE Isotropic Model

The tension–compression tests results were analyzed using

the 2S2P1D LVE model developed at ENTPE [20–22]. It

consists of a combination of two springs, two parabolic creep

elements (also called fractional-derivative model [23]) and

one dashpot as schematized in the 1-dimension case in Fig. 3.

The introduced model has seven parameters and the com-

plex modulus of the 2S2P1D model is expressed according

to Eq. 3,

E∗
2S2P1D(ω)

= E00 +
E0 − E00

1 + δ( jωτ)−k + ( jωτ)−h + ( jωβτ)−1
(3)

where j is complex number defined by j2 = −1, ω is the

angular frequency (ω = 2π f , where f is the frequency), E00

is the static modulus when ω → 0, E0 is the glassy modulus

when ω → +∞, δ is a dimensionless constant, k and h are

dimensionless exponents such as 0 < k < h < 1, β is a

dimensionless constant related to the Newtonian viscosity

η by η = (E0 − E00)βτ and τ is the characteristic time,

function of temperature. The time-temperature superposition

principle (TTSP) is verified for asphalt mixes in the linear and

nonlinear domains [16,24,25] using:

τ(T ) = aT (T )τre f (4)

where aT is the shift factor at the temperature T defined by

the Williams–Landel–Ferry (WLF) equation [26]:

log(aT ) = −
C1(T − Tre f )

C2 + T − Tre f

(5)

where C1 and C2 are the two constants of the WLF equation

and Tre f is the reference temperature. The WLF parameters

used in this study are listed in Table 1 and the correspond-

ing shift factors are plotted in Fig. 4. Di Benedetto et al.

[27] extended the 2S2P1D model to characterize the com-

plex Poisson’s ratio as given in Eq. 6,

ν∗
2S2P1D(ω)

= ν00 +
ν0 − ν00

1 + δ( jωτν)
−k + ( jωτν)

−h + ( jωβτν)
−1

(6)

where ν00 is the low frequency Poisson’s ratio when ω → 0

and ν0 is the high frequency Poisson’s ratio when ω → +∞.

The same values of the parameters δ, k, h and β are used to

determine both the complex modulus and complex Poisson’s

ratio while τ is determined also for the Poisson’s ratio and

is therefore labeled τν . The constants of the 2S2P1D LVE

model for the material used in the numerical simulations (see

Sect. 2.1) are given in Table 1. The complex modulus (E*)

and the complex Poisson ratio (ν∗) of the average material

are plotted in Fig. 5 (master curves) and Fig. 6 (normalized

cole–cole curves).

3.2 Finite Element Method Simulations

Finite element method is widely used on pavement for dif-

ferent applications [28–32]. In this study, the behavior of

123
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Table 1 2S2P1D constants at the reference temperature of 10 ◦C for the material with “averaged” viscoelastic properties of asphalt mixes used for

the numerical simulations

E00(M Pa) E0(M Pa) ν0 ν00 δ k h β τ10◦C (s) τν(s) C1 C2

105 35,000 0.19 0.42 2.15 0.17 0.525 505 0.1 3.165 30 210

Fig. 4 Shift factor versus

temperature for the considered

WLF parameters

Fig. 5 Master curves at 10 ◦C

for the norm of the complex

Young’s modulus (solid line)

and for the norm of the complex

Poisson’s ratio (dot line) for the

material used for the numerical

simulations

Fig. 6 Cole–Cole plot for the

normalized complex Young’s

modulus and for the normalized

complex Poisson’s ratio for the

material used for the numerical

simulations

123

Author's personal copy



Journal of Nondestructive Evaluation   (2018) 37:35 Page 5 of 11  35 

Fig. 7 FEM calculation and

principle of the combined back

analysis

the material under dynamic loadings was calculated with

FEM numerical simulations. The 2S2P1D model complex

modulus and complex Poisson’s ratio (Table 1) were used as

input for the material properties and the material was con-

sidered as isotropic. The Comsol software was used to solve

the three-dimensional equation of motion in the frequency

domain (Eq. 7):

−ρω2u − ∇.σ = FpeiΦ (7)

where ω is the angular frequency, ρ is the density, u is the

displacement vector, ∇ is the gradient tensor operator, i is

complex number defined by i2 = −1 and σ is the Cauchy

stress tensor. Fp is the unity load and φ is the phase of the

cyclic load.

The unity load has been applied to the corresponding

point of the hammer impact while the response has been

determined at the position of the accelerometer for the three

considered modes of vibration (see Fig. 2). The simulations

were performed at 10 different temperatures every 10 ◦C

from − 40 to 50 ◦C, in a frequency range from 100 to 20,000

Hz considering steps of 20 Hz. Finer analysis with steps of 1

Hz were also carried out around the first resonant frequency

for each temperature and for each mode of vibration in order

to obtain a better evaluation of the first resonance frequency

and of the damping of the material. The geometry used in this

study was a cylinder with a 75 mm diameter and a 150 mm

height. The mesh consists of tetrahedral elements with a max-

imum element size of 2.5 cm that was determined through a

convergence study.

4 Combined Back Analysis

Back analysis methods are used for different applications on

pavement [33,34]. The proposed combined back analysis is

based on the analysis of the first resonance peak for each tem-

perature and for each mode of vibration. Figure 7 explains the

principle of the back analysis for one temperature. In the first

step (see Fig. 7), the first resonance frequency of each mode

of vibration fFi (i = L for the longitudinal mode, i = F

for the flexural mode and i = T for the torsional mode) was

deduced from the FEM simulations. The frequency band-

width Δ fi was also determined for each mode of vibration

from the FEM simulations using the half-power bandwidth

method (see Fig. 3). For the longitudinal and flexural modes

of vibration, the frequencies fFi were used in the 2S2P1D

model to calculate the corresponding complex modulus E∗
Fi ,

and Poisson’s ratio, ν∗
Fi , according to Eqs. 8 and 9:

E∗
Fi = E∗

2S2P1D(2π fFi ) (8)

ν∗
Fi = ν∗

2S2P1D(2π fFi ) (9)

For the torsional mode of vibration, the frequency fFT

was used in the 2S2P1D model to calculate the corresponding

complex shear modulus G∗
FT according to Eq. 10:

G∗
FT = G∗

2S2P1D(2π fFT ) (10)

The phase angle used in the back analysis φB Ai was deduced

using the following relationship suggested by Clough and

Penzien [35]:

123
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φB Ai = Arctan

(

� fi

fFi

)

(11)

In the second step of the combined back analysis (see Fig. 7),

2 different approaches were used. For the longitudinal and

flexural modes of vibration, three cases corresponding to

three different real values of Poisson’s ratio of 0.2, |ν∗
Fi |, and

0.45 were studied. Three elastic equivalent moduli EE E1i ,

EE E2i and EE E3i associated to the three cases were back-

calculated through elastic FEM numerical simulations for

these two modes of vibration. For the torsional mode of vibra-

tion, the shear modulus is independent of the Poisson’s ratio

value. Therefore, only one elastic equivalent shear modulus

G E ET was back-calculated through elastic FEM numerical

simulations. Then φB Ai was considered as the correspond-

ing phase angle for the three considered modes of vibration.

Three complex moduli E∗
B A1i , E∗

B A2i and E∗
B A3i were deter-

mined according to Eqs. 12–14 for the longitudinal and

flexural mode and one complex shear modulus G∗
B AT was

determined according to Eq. 15.

E∗
B A1i = EE E1i e

iφB Ai (12)

E∗
B A2i = EE E2i e

iφB Ai (13)

E∗
B A3i = EE E3i e

iφB Ai (14)

G∗
B AT = G E ET eiφB AT (15)

5 Evaluation of the Proposed Combined
Back Analysis

5.1 Principle of the Comparison

The procedure described in the previous section was used to

determine the values of fFi , E∗
Fi (norm and phase angle φFi ),

|ν∗
Fi |, φB Ai , EE E1i , EE E2i and EE E3i for the longitudinal

and flexural modes of vibration and the values of fFT , G∗
FT

(norm and phase angle φFT ), φB AT and G E ET . All these

values were calculated for the 10 considered temperatures.

Table 2 details the name of the variables evaluated in the back

Fig. 8 Example of the half-power bandwidth method limitations at

high temperatures where it was not possible to obtain �f (numerical

simulation for the longitudinal mode at 40 ◦C)

analysis in the different cases studied for clarity. Results are

given in Tables 3, 4 and 5 in appendix.

For temperatures higher than 30 ◦C, it was not possible to

estimate the phase angle of the material for the longitudinal

and the torsional modes of vibration. This is due to too much

damping in the material for such temperatures that made the

estimation of the frequency bandwidth impossible with the

half-power bandwidth method (see Fig. 8).

In order to evaluate the accuracy of the proposed combined

back analysis, the different values obtained were compared.

For the longitudinal and flexural modes of vibration, the norm

and the phase angle of the 2S2P1D model complex modulus

E∗
Fi obtained at the frequency fFi (Eq. 8) were compared

to the norm and to the phase angle of the three complex

moduli E∗
B A1i , E∗

B A2i and E∗
B A3i (Eqs. 12–14) obtained from

the simplified back analysis. The three studied cases allow

to consider the effect of the Poisson’s ratio value. For the

torsional mode of vibration, the norm and the phase angle of

the 2S2P1D model complex shear modulus G∗
FT obtained

at the frequency fFT (Eq. 10) were compared to the norm

and to the phase angle of the complex shear modulus G∗
B AT

(Eq. 15) obtained from the simplified back analysis.

Table 2 Summary of the

variables evaluated in the

different cases studied for the

back analysis

Mode of

vibration

Case studied Elastic equivalent

modulus

Phase

angle

Complex

modulus

Longitudinal ν1 =0.2 EEE1L φBAL E∗
BA1L

ν2 = | ν∗
2S2P1D(fL)| EEE2L E∗

BA2L

ν3 =0.45 EEE3L E∗
BA3L

Flexural ν1 =0.2 EEE1F φBAF E∗
BA1F

ν2 = | ν∗
2S2P1D(fF)| EEE2F E∗

BA2F

ν3 =0.45 EEE3F E∗
BA3F

Torsional Independent of ν GET φBAT G∗
BAT

123

Author's personal copy



Journal of Nondestructive Evaluation   (2018) 37:35 Page 7 of 11  35 

Fig. 9 Relative difference

between the elastic equivalent

modulus obtained from the

combined back analysis (Fig. 3)

and the norm of the 2S2P1D

model value obtained at the first

resonance frequency

(Eqs. 8–10) for the three

considered modes of vibration

and different considered

Poisson’s ratio values

Fig. 10 2S2P1D model phase

angle obtained at the first

resonance frequency (Eqs. 8–10)

(dot lines) and difference with

the phase angle obtained from

the combined back analysis

(Fig. 3) (solid lines) for the three

considered modes of vibration

Fig. 11 Complex modulus

values obtained from the

2S2P1D model at the first

resonance frequency of the

longitudinal mode (Eq. 8) and

values obtained from the

proposed combined back

analysis for the three considered

values of Poisson’s ratio (Fig. 3)

for the longitudinal mode of

vibration (Eqs. 12–14)

5.2 Results and Discussion

Figure 9 presents the relative difference between the elastic

equivalent moduli EE E1i , EE E2i and EE E3i and the norm

of the complex modulus |E∗
Fi | calculated using the 2S2P1D

model at the resonance frequencies fFi . Lines with a circle

(in blue) are for the longitudinal mode of vibration while lines

with a square (in red) are for the flexural mode of vibration.

Also on Fig. 6, the relative difference between the elastic

equivalent shear modulus G E ET and the norm of the com-

plex shear modulus |G∗
FT | calculated using 2S2P1D model at

the frequency fFT is plotted (green line with a triangle). The

solid lines on Fig. 6 clearly indicate that there is a good cor-

relation between the elastic equivalent modulus EE E2i and

the norm of the complex modulus from the 2S2P1D model

|E∗
Fi | and also between the elastic equivalent shear modu-
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Fig. 12 Complex modulus

values obtained from the

2S2P1D model at the first

resonance frequency of the

flexural mode (Eq. 8) and values

obtained from the proposed

combined back analysis for the

three considered values of

Poisson’s ratio (Fig. 3) for the

flexural mode of vibration

(Eqs. 12–14)

Fig. 13 Complex shear

modulus values obtained from

the 2S2P1D model at the first

resonance frequency of the

torsional mode (Eq. 10) and

values obtained from the

proposed combined back

analysis (figure 3) for the

torsional mode of vibration

(Eq. 15)

lus and the norm of the complex shear modulus from the

2S2P1D model |G∗
FT |. This is particularly true for temper-

atures below 30 ◦C with a maximum relative difference of

less than 2.5%. At higher temperatures, the error increases

for the three modes of vibration but it remains less than 6%.

It can also be seen on Fig. 6 that the Poisson’s ratio value has

an impact on the calculation of the elastic equivalent moduli.

The relative difference is clearly higher for EE E3i (around

3% for the flexural mode and around 5% for the longitudi-

nal mode) that is calculated for a Poisson’s ratio of 0.45, a

value away from the two other studied cases. Nevertheless,

the impact of the Poisson’s ratio value remains limited.

Figure 10 presents the phase angle φFi given by the

2S2P1D model at the frequency fFi (dot lines) and also

the difference in degree (◦) with the combined back analysis

phase angle φB Ai for the three considered modes of vibration.

Figure 4 shows a good agreement between the back analy-

sis phase angle φB Ai and the 2S2P1D model phase angle

φFi with a maximum difference of around 2◦ at 30 ◦C for

the longitudinal and torsional modes. For the flexural mode,

it can be seen that the difference significantly increases for

temperatures above 30 ◦C to reach 6◦ at 50 ◦C. This proves

the inaccuracy of the half-power bandwidth method at high

temperature: when there is too much damping in the material,

the damping is overestimated and so is the phase angle.

For the complex modulus or complex shear modulus

as well as for the phase angle, differences between values

obtained from the 2S2P1D model at the first resonance fre-

quency and values obtained with the combined back analysis

increase with the temperature but remain limited. Figures 11,

12 and 13 present the different complex moduli in a Cole–

Cole diagram for the three considered modes of vibration and

the three different values of Poisson’s ratio. On Figs. 7 and 8

corresponding to the longitudinal mode and to the flexural

mode respectively, it can be seen that the values of E∗
B A1i or

E∗
B A2i and E∗

Fi are rather close, especially at low tempera-

tures. E∗
B A3i does not fit so well with E∗

Fi . It is due to the

effect of the Poisson’s ratio value as already noted on Fig. 6.

Figure 9 corresponding to the torsional mode shows a good

agreement between G∗
B AT and G∗

FT , especially for the low

temperatures. All the observations from Figs. 11, 12 and 13

confirm the conclusions already raised from Figs. 9 and 10.
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6 Conclusion

The proposed simplified back analysis proposed in this paper

gives good results, both for the norm of the complex modulus

and for the phase angle at low and intermediate temperatures.

Slight differences appear for temperatures higher than 20 ◦C.

They are mostly due to an overestimation of the phase angle.

Therefore, the half-power bandwidth method used to deter-

mine the phase angle is not adapted for high temperatures

because it overestimates the damping of the materials. The

influence of the Poisson’s ratio value was also studied. It was

found that it has a limited impact on the calculation of the

elastic equivalent modulus (less than 5%). The observations

and findings from this study demonstrate that for temper-

atures below 20 ◦C, a simple assumption on constant real

value for Poisson’s ratio and the proposed simplified com-

bined back analysis are enough to analyse accurately impact

loadings in order to obtain the behaviour of asphalt mixes..

This is very interesting to obtain quickly and accurately the

LVE properties at high frequencies. However, the limitation

with the temperature gives only access to a small part of

the master curve that can be estimated with this method.

In addition, for higher temperatures corresponding to values

of the phase angle higher than about 15◦, the method does

not provide a good evaluation of the phase angle. Therefore,

for temperatures higher than 30 ◦C corresponding to phase

angle of above 15◦ the half-power bandwidth could not be

used because of too much damping in the material. These

numerical results need to be checked and validated in further

studies using laboratory measurements.

Appendix

Table 3 Results of the numerical simulations and the combined back analysis (longitudinal mode)

T (◦C) 2S2P1D model Combined back analysis

|E∗
F L |(M Pa) φF L (◦) |ν∗

F L | fF L (H z) φB AL (◦) EE E1L (M Pa) EE E2L (M Pa) EE E3L (M Pa)

−40 34,602 0.178 0.191 12,320 0.186 34,645 34,605 34,425

−30 34,029 0.434 0.194 12,216 0.450 34,060 34,030 35,810

−20 32,890 0.943 0.198 12,006 0.969 32,900 32,890 34,585

−10 30,891 1.837 0.206 11,631 1.901 30,870 30,910 32,460

0 27,813 3.232 0.219 11,031 3.372 27,775 27,850 29,200

10 23,675 5.219 0.238 10,173 5.542 23,620 23,755 24,840

20 18,770 8.049 0.264 9062 8.813 18,740 18,930 19,705

30 13,475 12.575 0.294 7708 14.782 13,560 13,780 14,260

40 8179 20.188 0.327 6080 × 8440 8625 8870

50 3746 30.621 0.362 4160 × 3950 4065 4155

Table 4 Results of the numerical simulations and the combined back analysis (flexural mode)

T (◦C) 2S2P1D model Combined back analysis

|E∗
F F | (M Pa) φF F (◦) |ν∗

F F | fF F (H z) φB AF (◦) EE E1F (M Pa) EE E2F (M Pa) EE E3F (M Pa)

−40 34,569 0.193 0.192 7619 0.203 34,625 34,575 35,580

−30 33,948 0.47 0.194 7549 0.486 34,000 33,960 34,940

−20 32,720 1.019 0.199 7410 1.044 32,750 32,750 33,630

−10 30,580 1.977 0.207 7161 2.031 30,595 30,610 31,420

0 27,317 3.461 0.221 6764 3.587 27,290 27,380 28,030

10 22,991 5.571 0.242 6201 5.838 22,935 23,040 23,570

20 17,933 8.63 0.268 5472 9.218 17,860 17,980 18,350

30 12,518 13.671 0.3 4573 15.101 12,490 12,610 12,815

40 7177 22.12 0.334 3460 25.880 7140 7230 7325

50 3002 32.832 0.37 2220 39.036 2940 2985 3015
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Table 5 Results of the

numerical simulations and the

combined back analysis

(torsional mode)

T (◦C) 2S2P1D model Combined back analysis

|G∗
FT | (M Pa) φFT (◦) fFT (H z) φB AT (◦) G E ET (M Pa)

−40 14,502 0.192 8033 0.214 14,550

−30 14,184 0.514 7954 0.526 14,225

−20 13,653 1.107 7795 1.139 13,670

−10 12,681 2.152 7512 2.203 12,685

0 11,205 3.769 7065 3.887 11,220

10 9284 6.051 6437 6.321 9320

20 7090 9.227 5639 9.967 7145

30 4834 14.371 4684 16.540 4930

40 2711 22.839 3560 × 2850

50 1107 33.091 2280 × 1170
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h i g h l i g h t s

� Dynamic tests can be used to characterize the LVE behavior of asphalt mixes.

� Asphalt mixes with 70% of RAP were tested with dynamic tests.

� Small differences exist between results from complex modulus and dynamic tests.

� Norm of the complex modulus obtained from dynamic tests is higher.

� Phase angle of the complex modulus obtained from dynamic tests is lower.
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a b s t r a c t

In this paper, conventional cyclic tension-compression tests and dynamic measurements have been

applied to three cylindrical specimens of asphalt mixes. The results of the two tests have been compared.

For the tension-compression tests, the complex modulus was obtained from the measurements of the

axial stress and axial strain. For the dynamic testing, an instrumented impact hammer and an accelerom-

eter have been used to obtain the frequency response functions of the specimens at different tempera-

tures. The dynamic complex modulus was then back calculated by optimizing finite element

calculated frequency response functions to match the measured frequency response functions. The

2S2P1D linear viscoelastic model was used to estimate master curves of the complex modulus for the

two test methods. The two tests give similar results. However, the dynamic measurements give a higher

value of the norm of the complex modulus and a lower value of the phase angle compared to the tension–

compression results. This result is probably explained by the nonlinearity of asphalt mixes as dynamic

tests are performed at a much smaller strain level than the tension-compression tests.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The complex modulus is widely known as the fundamental

parameter to characterize the linear viscoelastic (LVE) behavior

of asphalt mixes (AM), which is essential in pavement design. Con-

ventional cyclic tension-compression tests are costly, complex to

perform and they are not adapted for in situ measurements. There-

fore, there is a need for alternative test methods that are more eco-

nomical and that could be applied on field pavement structures.

Dynamic measurements such as impact loadings [1,2] are econom-

ical, simple to perform and are very well known for accurate char-

acterization of material properties in different applications [3].

Dynamic measurements can also be used for in situ quality control

of pavement [4,5]. Dynamic testing of AM to determine the com-

plex modulus have been performed through measurements of

the flying time in wave propagation tests [6–8]. Resonance testing

has also been used to evaluate the complex modulus of AM

through the measurements of the fundamental resonance frequen-

cies of AM specimens [9–11]. These twomethods are based on sim-

plified approximate formula that give access to the complex

modulus only for a limited number of geometries and frequencies.

Therefore, the frequency dependency of AM cannot be character-

ized through these two tests. Resonant acoustic spectroscopy

intends to increase the number of frequency for which the complex

modulus can be calculated [12–15]. Although, this method still not

provide enough information to estimate the global master curve

for AM. Frequency response functions (FRFs) measurements have

been used to characterize viscoelastic materials over a wide fre-

quency range [16–18]. Laboratory measurements of FRFs for AM

https://doi.org/10.1016/j.conbuildmat.2018.04.156

0950-0618/� 2018 Elsevier Ltd. All rights reserved.
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have showed promising results [19] and enables a direct compar-

ison between master curves obtained from tension-compression

tests and from dynamic measurements. Duttine et al. in 2007

and Ezaoui et al. in 2009 [20,21] have showed that the combination

of both conventional measurements and dynamic testing is useful

to improve the characterization of sands. The same approach was

used on AM by Gudmarsson et al. in 2014 and 2015 [22,23] and

it showed small differences between the two test methods due

to the known nonlinearity of asphalt concrete [24–26] and because

the applied strain levels are different in the two methods. In this

paper, three specimens of the same AM containing 70% of

reclaimed asphalt pavement (RAP) were tested with tension-

compression tests and dynamic testing. The LVE properties of the

specimens obtained with the two different methodologies were

compared. The results show that the two test methods give similar

results.

2. Methodology

The tests presented in this paper were performed at the ENTPE

laboratory (University of Lyon). The tension-compression tests

were performed first. Then the upper and lower part of the sample

were sawed in order to eliminate the caps glued on the specimens

for these tests. Then, dynamic tests were performed on the same

specimen with a reduced length. More details on the materials

and on the two different experimental procedures are presented

in the following sections.

2.1. Materials

Three different specimens of the same material are considered

in this paper. The material was fabricated for the IMPROVMURE

project [27], a project from the French national research agency

studying the environmental and mechanical impact of multi-

recycling on asphalt mixes. It is a laboratory designed asphalt

mix containing 70% of RAP after one cycle of recycling. Details of

the three studied specimens are reported in Table 1. To simplify

the notation in the next tables, each specimen is identified to its

abbreviation. Tension-compression tests and dynamic tests were

performed on each specimen.

2.2. Conventional characterization of the LVE behavior with complex

modulus test

2.2.1. Tension-compression complex modulus tests

Cyclic tension-compression tests were used to determine the

complex modulus of the three considered specimens. Cylindrical

samples having a height of 150 mm and a diameter of 75 mmwere

used for these tests. Cyclic sinusoidal axial loadings were applied

using a hydraulic press in strain-controlled mode with an ampli-

tude of around 50 lm/m. A load cell measured the axial stress

(r1 = r0.sin(xt-uE) or r1 = r0.e
i(xt-uE) in complex notation) while

the axial strain (e1 = e01.sin(xt) or e1 = e01.e
ixt in complex notation)

was obtained from the average of the three extensometers placed

at 120�. Finally, the radial strain (e2 = e02.sin(xt + um) or e2 = e02.e
i

(xt+um) in complex notation) was deduced from two non-contact

transducers. The tension-compression tests were performed at 9

temperatures from �25 �C to 55 �C in steps of 10 �C and at 8 load-

ing frequencies (0.003, 0.01, 0.03, 0.1, 0.3, 1, 3 and 10 Hz). Details

of the experimental set up are shown in Fig. 1 and an example of

experimental data for two cycles of loading at 1 Hz and 15 �C, is

presented in Fig. 2.

The complex modulus and complex Poisson’s ratio at the differ-

ent temperatures and frequencies were calculated according to

Eqs. (1) and (2) where r1
⁄, e1

⁄ and e2
⁄ are the complex expressions

of r1, e1 and e2, uE is the phase of the complex modulus and um is

the phase of the complex Poisson’s ratio.

E�ðxÞ ¼
r�

1

e�1
¼ jE�ðxÞjeiuE ð1Þ

m�ðxÞ ¼ �
e�2
e�1

¼ jm�ðxÞjeium ð2Þ

Table 1

Details of the specimen used in this study.

Specimen Abbreviation Mass (g) Height (mm) Diameter (mm) Density (kg/m3) Void ratio (%) Bitumen content (%)

LWF-70-1-1-4 4 1293 0.123 75 2379 6.6 5.4

LWF-70-1-1-6 6 1320 0.123 75 2431 4.2 5.4

LWF-70-1-1-8 8 1330 0.123 75 2449 3.8 5.4

Fig. 1. (left) Tension-compression test apparatus used for tests on asphalt mixes (ENTPE laboratory, Vaulx-en-Velin, France); (right) detailed scheme of measurement devices

and sample.
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2.2.2. 2S2P1D linear viscoelastic model

The 2S2P1D model [28–30], developed at ENTPE, was used to fit

the tension-compression tests results. This model is a combination

of two springs, two parabolic elements and one dashpot (Fig. 3). In

the 3-dimensions case [31], the model has an expression for both

the complex modulus and complex Poisson’s ratio. These expres-

sions are given in Eqs. (3) and (4) wherex is the angular frequency

(x = 2pf,where f is the frequency), E0 and m0 are the high frequency

modulus and Poisson’s ratio, E00 and m00 are the low frequency

modulus and Poisson’s ratio, k and h are dimensionless constants

such as 0 < k < h < 1, d is a dimensionless constant, b is a dimen-

sionless constant related to Newtonian viscosity g by g = (E0 �

E00) bs and sE and sm are the characteristic times of the complex

modulus and of the complex Poisson’s ratio, whose value varies

only with temperature.

E�
2S2P1DðxÞ ¼ E00 þ

E0 � E00

1þ dðjxsEÞ
�k

þ ðjxsEÞ
�h

þ ðjxbsEÞ
�1

ð3Þ

m�2S2P1DðxÞ ¼ m00 þ
m0 � m00

1þ dðjxsmÞ
�k

þ ðjxsmÞ
�h

þ ðjxbsmÞ
�1

ð4Þ

The time-temperature superposition principle is verified for

asphalt mixes in the linear and nonlinear domains [32–34] so it

is possible to calculate a characteristic time at any given tempera-

ture using Eq. (5):

sðTÞ ¼ aTðTÞsref ð5Þ

where sref is the characteristic time at the reference temperature

and aT is the shift factor at the temperature T given by the

Williams-Landel-Ferry equation [35]:

logðaTÞ ¼ �
C1ðT � Tref Þ

C2 þ T � T ref

ð6Þ

where Tref is the reference temperature and C1 and C2 are the two

WLF constants. Considering the use of shift factors, 12 parameters

are required to characterize the LVE behavior of asphalt mixes at

any temperature and frequency.

2.3. Dynamic tests

2.3.1. Experimental procedure

For the dynamic tests, the same specimen previously tested

with tension-compression tests were used. An impact hammer

(PCB model 086E80) was used as an external input to excite the

specimens and to generate standing waves inside. The order of

magnitude of the maximum strain in the specimen induced by

the impact is of about 0.1 lm/m [19]. To improve the accuracy

and the repeatability of these dynamic tests, an automated impact

hammer was specifically designed (Fig. 4). This automated system

was inspired by systems previously developed by Norman et al. in

2012 and Brüggemann et al. in 2015 [36,37]. The specimens were

placed on soft foam during the test to achieve free boundary con-

ditions. The response of the materials was recorded with an

accelerometer (PCB model 353B15). The impact hammer and the

accelerometer were connected to a signal conditioner (PCB model

482C15), itself connected to a data acquisition device (NI USB-

6356) connected to a computer. The position of the impact and

of the accelerometer depend on the geometry of the specimen

and of the targeted mode of vibrations. In this study, only the lon-

gitudinal mode of vibrations of cylinders is considered. The corre-

sponding experimental set up is displayed in Fig. 4. The impact is

applied in the center of one short side of the cylinder while the

acceleration is measured in the center of the opposite short side.

The measurements were performed at 7 temperatures from

�20 �C to 40 �C in steps of 10 �C. The signals were recorded with

a sampling frequency of 1 MHz by using an application dedicated

to this task, which was developed with the MATLAB software.

The record length of the signals was adjusted for each measure-

ment temperature to record the entire vibratory response. This is

necessary to take into account the increasing damping with

increasing temperatures. 5 impacts were applied at each tempera-

ture and the applied force and the acceleration were recorded for

each impact. An example of experimental data is shown in Fig. 5

for the specimen 4 at �10.2 �C.

For each measurement temperature, the experimental data in

time domain was converted in frequency domain using Fast Four-

ier Transforms (FFT). The energy spectrum of the impacts allows to

go up to 20 kHz in the frequency domain. Frequency Response

Functions (FRFs) were therefore calculated from 1 Hz to 20 kHz

in steps of 1 Hz by averaging the results of the 5 impacts according

to Eq. (7):

Fig. 2. Tension-compression experimental data for two loading cycles at 15 �C for

specimen LWF-70-1-1-4 (axial strain, axial stress and radial strain).

Fig. 3. Analogical representation of the 2S2P1D LVE model.

Fig. 4. Dynamic test set-up for the longitudinal mode of vibrations (ENTPE

laboratory, Vaulx-en-Velin, France).
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Hðf Þ ¼ ðYðf Þ:X � ðf ÞÞ=ðXðf Þ:X � ðf ÞÞ ð7Þ

where H(f) is the FRF, Y(f) is the FFT of the measured acceleration, X

(f) is the FFT of the applied force, X⁄(f) is the complex conjugate of

the applied force and the bar above corresponds to the arithmetic

mean. Quality of the measurements was verified using the coher-

ence function. It gives an indicator between 0 and 1: a value of 1

means that the response is completely explained by the impact

while a decreasing value means something has disrupted the test.

The FRF and the coherence function for the specimen 4 at �10,2

�C is presented in Fig. 6. All tests gave an indicator very close to

1, which confirms the quality of the measurements.

2.3.2. Finite element calculations of theoretical FRFs

The finite element method (FEM) was used to calculate theoret-

ical FRFs by resolving the following three-dimensional equation of

motion in frequency domain:

�qx2u�r:r ¼ Fpe
iU ð8Þ

where q is the density,x is the angular frequency, u is the displace-

ment vector, r is the gradient tensor operator, i is a complex num-

ber such as i2 = �1 and r is the Cauchy stress tensor. Fp is the unity

load equal to 1N and / is the phase of the cyclic load. The FEM cal-

culation was made with the COMSOL software. The material was

considered perfectly homogenous and isotropic and the 2S2P1D

model was used to simulate the LVE behavior of asphalt mixes.

The load was applied to the corresponding point of the impact in

the measurement, while the response was determined at the point

corresponding to the position of the accelerometer as shown in

Fig. 7. The mesh was built with tetrahedral elements with a maxi-

mum size of 2 cm which was determined through a convergence

study. Results from the model were calculated in a frequency range

of 100–20,000 Hz considering steps of 20 Hz. This frequency range

was chosen to match the experimental frequency range.

2.3.3. Optimization of the FRFs

The complex modulus was estimated by optimizing the theo-

retical FRFs calculated with the finite element model (see previous

section) against the experimental measured FRFs. This type of

backcalculation using FEM is common for AM [38–40]. All the mea-

surement temperatures were optimized simultaneously. The opti-

mization was performed using the fminsearch algorithm in

MATLAB. This algorithm was applied to minimize automatically

and objectively the difference between the calculated and the

measured FRFs. Since the resonance frequencies are directly

related to the material properties, the experimental points used

for the optimization were selected around these resonance fre-

quencies at each temperature and a number of 10 points per peak

was chosen. The objective function to minimize was defined

according to Eq. (9):

Error ¼
X

N

i¼1

jHMNormi
j �

jHMi
j � jHT i j

jHMi
j

�

�

�

�

�

�

�

�

� �

ð9Þ

Fig. 5. Dynamic testing experimental data (five hits) in time domain for specimen 4 at �10,2 �C (left) impact force; (right) acceleration at the position of the accelerometer.

Fig. 6. Dynamic testing averaged experimental data in frequency domain for specimen 4 at �10,2 �C (left) frequency response function; (right) coherence function.
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where HMNorm is the normalized measured FRF used to weigh the

frequencies around the resonance, HM is the measured FRF, HT is

the theoretical FRF, N is the number of optimization points and i

is the index of the point. Among the 12 parameters of the 2S2P1D

model, 6 have no (or very little) influence in the range of frequen-

cies and temperatures existing for the performed dynamic tests.

Then only 6 parameters (E0, k, d, sE, C1 and C2) were optimized.

The remaining 6 parameters were fixed at the value obtained from

cyclic tests. This limitation of the number of constants to be deter-

mined is of great interest because limiting the number of optimized

parameters reduces considerably the computational time and the

risk to obtain a wrong solution corresponding to a local minimum.

3. Results and discussion

3.1. Tension-compression test results

The complex moduli values determined through the tension-

compression test for the specimen 4 are presented in Fig. 8. The

cole-cole representation shows a good continuity of the measure-

ments performed at different temperatures. It indicates that the

material is rheologically simple and that the time-temperature

superposition principle is valid. Therefore, a master curve was cre-

ated at the reference temperature of 14.9 �C. The 2S2P1D model

was fitted to the experimental data and is also plotted on Fig. 8.

A very good agreement between the model and the experimental

data can be observed.

The estimated values of the 2S2P1D model parameters to fit the

experimental tension-compression data are given in Table 2. Note

that the values of k, h, d and b are the same for all the specimens.

This is because these parameters are only depending on the bitu-

men which is the same for the 3 cylinders.

3.2. Dynamic test results

The measured and the optimized FRFs for the specimen 4 at

�22.9 �C and at 19.7 �C are displayed on Fig. 9. The experimental

data used for the optimization are also presented in this figure.

The optimized FRFs was obtained following the process described

in Section 2.3.3. A good agreement between the experimental FRFs

and the optimized FRFs can be seen.

The optimized parameters of the 2S2P1D model to match the

experimental FRFs are given in Table 3. As explained previously,

only the values of E0, k, d, sE, C1 and C2 were determined. The values

of the other parameters are equal to the ones obtained from the

tension-compression tests. It can be seen that a slight difference

Fig. 7. Mesh and position of the impact and of the accelerometer for the finite element method numerical simulations.

Fig. 8. Tension-compression test results for specimen 4 and 2S2P1D model simulation. (left) master curve at 14,9 �C; (right) cole-cole diagram.

Table 2

2S2P1D model constants to match the tension-compression measurements.

Specimen E00 (MPa) E0 (MPa) m0 m00 d k h b sE15�C (s) sm15�C (s) C1 C2

4 28 33,400 0.198 0.426 2.28 0.177 0.571 154 0.056 1.60 25.1 167.5

6 52 37,400 0.231 0.510 2.28 0.177 0.571 154 0.074 4.20 24.1 159.7

8 56 36,900 0.179 0.550 2.28 0.177 0.571 154 0.072 12 25.1 167.5
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is obtained between ‘‘dynamic” and ‘‘cyclic” constants. The impact

of this difference on the material behavior description is presented

in the next section.

3.3. Comparison of the dynamic and the tension-compression test

results

In Fig. 10, the characteristic times obtained from the tension-

compression tests and from the dynamic measurements are

shown. Characteristic times from the dynamic testing tend to be

lower than the characteristic times from tension-compression for

the low temperatures. The trend is reversed for the high tempera-

tures. The reason of this difference should be further investigated.

Fig. 11a and 11b presents the master curves for the norm and

the phase angle of the complex modulus at a reference tempera-

ture of 15 �C for specimen 4. Experimental data from the

tension-compression test are plotted with the two 2S2P1D model

master curves obtained from the calibrations on the tension-

compression and dynamic tests. Frequencies near the resonance

frequencies were chosen at each measurement temperature of

the FRFs to perform a direct comparison between the values

obtained from the two plotted 2S2P1D model. It is shown that

the norm of the complex modulus obtained from the dynamic tests

is higher than the values obtained with the tension-compression

test while it is the contrary for the phase angle. This effect

observed in previous studies [22,23] was expected because differ-

ent strain levels are applied in the two test methods (about 50 lm/

m for the tension-compression tests against about 0.1 lm/m for

the dynamic tests) and asphalt mixes have a behavior which is

strongly dependent on the strain level [24–26]. Therefore, using

both tension-compression measurements and dynamic tests can

improve the knowledge of the nonlinear behavior of asphalt mixes.

Since the norm of the complex modulus is higher and the phase

angle is lower for the dynamic measurements, a smaller loss factor

(loss modulus/storage modulus) is expected compared to the

results of the tension-compression tests. This is confirmed in

Fig. 11c, where the dynamic results are located to the right of the

tension-compression results in the cole-cole representation when

calculated at the same temperature and same frequencies. It is also

observed that the dynamic and tension-compression master curves

are in good agreement in the cole-cole space. Differences observed

between the two test methods are higher for the low frequencies

(or the high temperatures). This is shown in Fig. 12 in which the

relative differences between the norm of the complex modulus

from the dynamic tests and from the tension-compression tests

are plotted in the frequency range from 0.1 Hz to 1010 Hz at the ref-

erence temperature of 15 �C. In the same figure, the differences

between the phase angles are also presented. This observation

was also expected because the nonlinear behavior of asphalt mixes

regarding the strain level is dependent on the temperature and on

the frequency. For the same strain level difference, the norm and

the phase of the complex modulus are more affected by nonlinear-

ities when the frequency decreases or when the temperature

increases [24–26].

Fig. 9. Measured and optimized FRFs for specimen 4. (left) at �22,9 �C; (right) at 19,7 �C.

Table 3

Optimized 2S2P1D model parameters to match the dynamic measurements.

Specimen E00 (MPa) E0 (MPa) m0 m00 d k h b sE15�C (s) sm15�C (s) C1 C2

4 28 33,584 0.198 0.426 2.34 0.186 0.571 154 0.095 1.60 28.5 210.1

6 52 37,748 0.231 0.510 2.12 0.172 0.571 154 0.34 4.20 29.8 209.3

8 56 36,554 0.179 0.550 2.05 0.178 0.571 154 0.108 12 30.8 230.8

Fig. 10. Comparison of the values of tau obtained from the tension-compression

tests and obtained from the dynamic measurements (experimental values and WLF

fitted curves).
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4. Conclusion

In this paper, two test methods to characterize the LVE behavior

of asphalt mixes were used and compared. Three different speci-

men were tested with both methods and results were analysed.

It is shown that the conventional approach using tension-

compression tests gives lower values for the norm of the complex

modulus and higher values for the phase angle than the dynamic

measurements. The differences observed between the two meth-

ods are more important for the low frequencies and the high tem-

peratures. Since the dynamic tests are performed at a much

smaller strain level than the tension-compression tests, these

results were expected and they agree previous research on the

strain level dependency of asphalt mixes. The dynamic measure-

ments are performed at very high frequencies compared to the fre-

quency used for the tension-compression tests. Therefore, the

combination of the two tests methods is useful to improve the

characterization of the LVE behavior of asphalt mixes on a wider

frequency range. In addition, the presented research shows that

dynamic tests, which have the great advantage of being rapid,

cheap and non-destructive, can provide the 3-dimensional linear

viscous behavior of asphalt mixes on a wide range of frequencies

and temperatures.
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ABSTRACT 

 
In the small strain domain, asphalt mixes (AM) have a linear viscoelastic (LVE) behavior which is 

strongly dependent on frequency and temperature. The maximum ratio of modulus values can be up to 

one thousand and traditional elastic analyses are not pertinent. The possibility to characterize AM from 

frequency response functions (FRFs) was studied. A new optimization process using the finite element 

method (FEM) has been developed to back-calculate the LVE properties of AM from FRFs. The 

numerical optimization process was applied to a reference material with averaged LVE properties 

determined from tension-compression tests performed on a wide variety of AM types. The LVE 

properties were modeled considering the 3-Dim version of the model 2S2P1D (2 Springs, 2 Parabolic 

elements and 1 Dashpot). Reference FRFs for the considered reference material were obtained from 

FEM simulations. Three different configurations that may be of interest for practical tests were studied 

at 5 different temperatures. The proposed numerical optimization method consists in performing 

separate optimizations at each temperature to obtain the LVE properties for the considered temperature. 

Then values obtained at each temperature are considered to optimize 2S2P1D and Williams Landel 

Ferry (WLF) equation constants to simulate the global LVE behaviour of the material. The accuracy of 

the process was assessed regarding both the calculated FRFs and the complex modulus evaluation. 

Results indicate that the proposed optimization process converge almost perfectly towards the reference 

FRFs. The simulated complex modulus values are also in very good agreement with the values of the 

reference material.  

Keywords: asphalt mixes, linear viscoelasticity, complex modulus, frequency response functions, 

optimization process, finite element method 
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1. INTRODUCTION 
 
Dynamic tests such as measurements of frequency response functions (FRFs) obtained through impact 

loadings [1, 2] are economical, simple to perform and nondestructive. These measurements are known 

to provide accurate characterization of material properties in the case of elastic materials [3, 4]. 

Therefore, this type of measurements would be a good alternative to conventional complex modulus 

tests (cyclic tension-compression, flexion or others) traditionally used to determine the linear 

viscoelastic (LVE) characterization of asphalt mixes (AM). Different dynamic tests such as 

measurement of the flying time [5-7], resonance testing considering only the fundamental resonance 

frequency [8-10] or resonant acoustic spectroscopy (RAS) [11-14] have been applied to AM but the 

frequency dependency behaviour of AM cannot be evaluated properly with these tests. Recently, 

measurement of FRFs have been performed on LVE materials [15-16] and more specifically on AM 

[17, 18, 19, 20]. Gudmarsson et al. [18, 19] and Carret et al. [20] have demonstrated that FRFs 

measurements is a promising approach to characterize the LVE behavior. However, Carret et al. [21] 

have demonstrated that a simplified LVE back analysis using some results obtained from elastic 

approach cannot provide an accurate characterization of materials properties from FRFs. Therefore, 

characterizing the LVE behavior of AM from FRFs requires a more elaborate optimization approach. 

In this paper, a new numerical optimization process to back-calculate the LVE properties from FRFs 

was developed and was applied to a reference material with AM averaged LVE properties. The FRFs of 

this reference material were calculated with the finite element method (FEM). This procedure based on 

numerical experimentation eliminates any potential divergence due to physical experimentation. 

Therefore, only the effect of the optimization process on the characterization of the LVE properties was 

studied. Results of the optimization process were used to fit the 2S2P1D (2 Springs, 2 Parabolic 

elements and 1 Dashpot) model and the Williams Landel Ferry (WLF) constants simulating the global 

LVE behaviour of the material. The FRFs obtained after the optimization process were compared to the 

FRFs of the reference material. In addition, the simulated complex modulus obtained after the 

optimization process was compared to the complex modulus of the reference material. A very good 

agreement was observed for the FRFs as well as for the complex modulus. This demonstrates the 
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possibility to obtain accurately the LVE behavior of AM from FRFs and shows the good potentiality of 

the proposed method. 

2. OBTENTION OF REFERENCE MATERAL LINEAR VISCOELATIC PROPERTIES 

2.1 Procedure to obtain Reference Material properties  
Cyclic tension-compression complex modulus tests were previously performed on 38 different types of 

AM specimens during 4 different PhD theses carried out at the University of Lyon / ENTPE, LTDS 

laboratory and reported in different publications [22-28]. The results from the tests of these specimens, 

which represent a wide range of asphalt mixes types, are used as a data base. From this data base a 

reference material with “averaged” linear viscoelastic properties were obtained. The LVE behavior of 

the reference material is described with the 2S2P1D model [29-31], whose constant values are the 

average of the constants obtained from each of the 38 specimens. The principle of this averaging 

procedure is explained in figure 1. All the numerical simulations and analyses presented in this paper 

were performed on this reference material.  

 
Figure 1. Principle of the process to obtain the reference material LVE properties. 

 

2.2 Tension-Compression complex modulus tests 

The complex Young’s modulus and the complex Poisson’s ratio for each of the 38 different types of AM 

were determined with tension-compression tests. These tests were performed using a hydraulic press 

(figure 2). Cyclic sinusoidal loadings with an axial strain amplitude of about 50 μm/m were applied on 

cylindrical samples with a diameter of 75 mm and a height of 150 mm. The axial stress (ı1=ı0.sin(ωt-

ϕE) or ı1=ı0.ei(ωt-φE) in complex notation) was measured with a load cell. Three extensometers placed 

at 120° from each other were averaged to obtain the axial strain (İ1=İ01.sin(ωt) or İ1=İ01.eiωt in complex 

notation). The radial strain (İ2=İ02.sin(ωt+ϕν) or İ2=İ02.ei(ωt+φν) in complex notation) was deduced 

from measurements of two non-contact transducers. The tensions-compression tests were performed at 

8 different loading frequencies (from 0.003Hz to 10Hz) and 9 different temperatures from -25°C to 
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55°C. Equation 1 and 2 are used to calculate the complex modulus (E*) and the complex Poisson’s ratio 

(ν*) at each temperature and frequency. 

*
* *1

*

1

( ) ( ) EiE E e
 


   
 

(1) 

 
*

* *2

*

1

( ) ( )
ie 

   


    
 

(2) 

 

Where ϕE and ϕν are the phases of the complex modulus and of the complex Poisson’s ratio respectively.  

 

 
Figure 2. (left) Asphalt mix specimen during tension-compression test (Uni. of Lyon/ENTPE laboratory); (right) 

scheme of the sample and measurement sensors 

 

2.3 2S2P1D linear viscoelastic model 
The 2S2P1D LVE model developed at ENTPE [29-31] was used to simulate AM linear behavior. This 

model consists of a combination of two springs, two parabolic creep elements and one dashpot as 

schematized in the 1dimension case in figure 3. The complex modulus of the model is given in equation 

3. 
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Figure 3. Representation of the 2S2P1D LVE model in the 1dimension case. 
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Where ω is the angular frequency (ω=2πf, where f is the frequency), E0 is the high frequency modulus, 

E00 is the low frequency modulus, k and h are dimensionless constants such as 0 < k < h < 1, į is a 

dimensionless constant, β is a dimensionless constant related to Newtonian viscosity η by η = (E0-E00) 

βĲ and Ĳ is a characteristic time of the complex modulus, whose value varies only with temperature. 

Previous studies [32-34] showed that the time temperature superposition principle (TTSP) is verified 

for asphalt mixes in the linear and nonlinear domains. This allows to calculate a characteristic time at 

any given temperature using equation 4.   

( ) ( )T refT a T     (4) 

Where Ĳref is the characteristic time at the reference temperature and aT is the shift factor at the 

temperature T defined by the Williams-Landel-Ferry (WLF) equation [35]: 

1

2

( )
log( )

ref
T

ref

C T T
a

C T T


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 
 

 
(5) 

 
where C1 and C2 are the two constants of the WLF equation and Tref is the reference temperature.  

In the 3-dimension case [36], the model also has an expression for the complex Poisson’s ratio: 

* 0 00
2 2 1 00 1
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(6) 

 
where ν0 is the high frequency Poisson’s, ν00 is the low frequency Poisson’s ratio and Ĳν is the 
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characteristic time of the complex Poisson’s ratio, whose value varies only with temperature. 

Parameters į, k, h and β are the same the complex modulus and the complex Poisson’s ratio. More 

details on the performed test and calibration process can be obtained in references [22 to 31]. 

Previous studies showed that the 2S2P1D model simulates quite correctly bituminous materials 

behaviour. It explains why we chose this model for our analyses. As an example, the experimental and 

the simulated complex modulus and complex Poisson’s ratio are plotted in Cole-Cole curves for a 

laboratory designed warm mix containing 70% of RAP (specimen LWF-70-1-1-4 from [37]) in figure 

4. The curves of the reference material are also plotted in this figure.  

 
Figure 4. Example of results in Cole-Cole plot of experimental data from tension-compression test and 

modelling with the 2S2P1D model for specimen LWF-70-1-1-4 [37]. (left) complex modulus; (right) complex 
Poisson’s ratio. Curves obtained for the reference material (constant given in table 1) are also plotted.  

 

The values of the 2S2P1D model constants for the reference material (having averaged viscoelastic 

properties), considered in this study, are listed in table 1. Values of the relative standard deviation (RSD) 

for the 38 AM types are also given for each constant. 

Table 1. 2S2P1D constants for reference material with “averaged” viscoelastic properties of asphalt mixes and 
relative standard deviation (RSD) in per cent for each constant. 

 E00 
(MPa) 

E0 
(MPa) 

ν0 ν00 į k h β ĲE15°C 
(s) 

Ĳν15°C 
(s) 

C1 C2 

Average 100 35 000 0.19 0.43 2.15 0.17 0.53 250 0.1 3.165 30 210 

RSD 

(%) 
26.6 8.1 36.8 21.4 8.4 5.9 5.7 267.8 326.8 140.7 16.6 13.7 

 

3. LINEAR VISCOELASTIC BEHAVIOR FROM FREQUENCY RESPONSE 

FUNCTIONS 

3.1 Calculation of FRFs using finite element method numerical simulations  
 
 The frequency response functions (FRFs) for dynamic impact loadings were obtained by solving three-
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dimensional equation of motion (7) in the frequency domain. 

² . 0   u    (7) 

Free boundary conditions are assumed to solve equation 7 except at the impact point where a cyclic 

unity load eiωt is applied in the direction of the impact. In equation 7, ρ is the bulk density of the material 

set to 2 400 kg/m3, ω is the angular frequency, u is the displacement vector, ∇ is the gradient tensor 

operator, i is a complex number such as i²=-1 and ı is the Cauchy stress tensor. Equation (7) is 

numerically solved using finite element method (FEM) calculation made with the COMSOL software. 

The material was considered as isotropic and the linear viscoelastic behavior was implemented using 

complex modulus and complex Poisson’s ratio obtained from the 2S2P1D model (Eq. 3 and Eq. 6) with 

the constants given in table 1. FEM calculations are commonly applied to LVE materials [38-43] and 

specially to solve inverse problems to determine the LVE properties [44, 45]. It should be noted though, 

that the implementation of a continuous spectrum LVE model in a finite element model of AM is a new 

and recent approach. Two different geometries were considered. The first geometry is a cylinder with a 

diameter of 6.5 cm and a height of 16 cm and the second geometry is a disc with a diameter of 10 cm 

and a height of 3 cm. The mesh was built with tetrahedral elements with a maximum size of 2 cm, which 

was determined following a convergence study. The longitudinal and the flexural modes of vibrations 

were studied for the cylinder, while only the flexural mode was considered for the disc. The positions 

of the impact and of the point where is calculated the acceleration (position of the accelerometer during 

impact tests) are indicated in figure 5. The coordinates of these positions are given in table 2 were the 

origin of the coordinate system corresponds to the center of gravity in each case. The FRFs considered 

in this study are simply defined by equation 8. 

2( ) (2 ) ( )
( )

( ) 1

A f f U f
H f

F f


     (8) 

 

Where H is the FRF, A is the amplitude of the acceleration in the direction of measurement calculated 

at the position of the accelerometer, U is the amplitude of the displacement in the direction of 

measurement calculated at the position of the accelerometer, F is the impact loading corresponding to 

a unity load and f is the frequency. The FRFs were calculated at 5 different temperatures (-20°C, 0°C, 
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15°C, 35°C and 50°C) in a frequency range between 100 and 20 000 Hz by steps of 20 Hz. This range 

was fixed by the characteristics of the hammers and the accelerometers that can be used during physical 

tests (not presented in this paper). 

Table 2. Coordinates of the impact and of the accelerometer in the FEM numerical simulations. Origin of the 
coordinate system corresponds to the center of gravity. 
Case Point X (cm) Y (cm) Z (cm) 

Longitudinal mode of the cylinder 
Impact 0 0 -8 

Accelerometer 0 0 8 

Flexural mode of the cylinder 
Impact 3 0 -8 

Accelerometer 3 0 8 

Flexural mode of the disc 
Impact 1.5 0 -4.5 

Accelerometer 1.5 0 4.5 

 
 Figure 5. Position of the impact and of the accelerometer in the FEM numerical simulations for the 
three studied cases: the longitudinal and flexural modes for the cylinder and the flexural mode for the disc.  

 

3.2 Optimization process 

 
A sensitivity analysis, which is not presented in this paper, showed that only 4 constants of the 2S2P1D 

model (E0, k, į and ĲE) have a significant influence on the calculation of the FRFs. This result can be 

explained easily as dynamic tests mobilize “high” frequencies only. Note therefore that the complex 

Poisson’s ratio cannot be evaluated with this process because it also has a very small influence on the 

calculation of the FRFs. The optimization process consists in optimizing at each temperature separately 

FRFs calculated as described in 3.1 to match the reference FRF of the reference material. This is done 

by adjusting iteratively the values of the constants of the 2S2P1D model until the fit with the reference 

FRF is good enough. For these frequencies the constants of 2S2P1D not listed above have very few 

effect on the response. Therefore, only the constants above were considered in the optimization process. 

The values of the other constants were fixed to the values for the reference material as listed in table 1. 
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The same process described schematically in figure 6 was applied to the three considered configurations 

for each temperature. 

 
 Figure 6. Scheme of the optimization process. Xf is the vector of 4 2S2P1D constants to identify. 

 

 
The frequencies used for the optimization were selected around the resonance frequencies. 10 

frequencies were selected along each resonance peak and the error function to minimize was defined 

according to equation 9.  

10
Ref Mod

1 1
Ref

ji ji

ji

Npeaks

j i

H H
Error

H 

     
 

     (9) 

 

Where HRef is the reference calculated (i.e. experimental) FRF, HMod is the FRF calculated during the 

optimization, σpeaks is the number of resonance peaks, j is the index of the peaks and i is the index of 

the frequencies. The vector X0 of starting values of the 2S2P1D constants to be optimized was chosen 

randomly by taking values in a range of +/- 15% around the average values listed in table 1. The 

optimization was performed in MATLAB with the “fminsearch” algorithm. This algorithm was used to 

minimize the error function defined by equation 9. The tolerance on the error and on the parameter 



10 
 

estimation was set to 1%. Therefore, the optimization process was stopped if the variation of the error 

and of all the values of the parameters to be optimized is less than 1% between two iterations of the 

optimization loop.  The so called back calculated complex modulus was then estimated with the final 

vector Xf of 2S2P1D model constants obtained at the end of the optimization.   

4. RESULTS AND DISCUSSION 

4.1 Results obtained directly after the optimization process 

The final values of the 2S2P1D model constants in the case of the flexural mode of vibrations of the 

cylinder are listed in table 3. It can be seen that these values are slightly different than the reference 

values given in table 1. It is also observed that the values of the optimized parameters are different from 

one temperature to another and from one configuration to another. These observations indicate that each 

set of parameter should only be used to back calculate the complex modulus at the temperature of the 

optimization. 

Table 3. Optimized 2S2P1D constants for the 3 cases studied. “LC” corresponds to the longitudinal mode of the 
cylinder, “FC” to the flexural mode of the cylinder and “FD” to the flexural mode of the disc. 

Constant E0 (MPa) į k ĲET (s) 
T (°C) LC FC FD LC FC FD LC FC FD LC FC FD 

-20 34 903 35 344 35 396 2.28 1.84 2.21 0.181 0.140 0.136 8,4E4 1E6 1,2E7 

0 35 820 36 773 36 874 1.90 2.35 2.50 0.152 0.137 0.135 2,2E1 1.8E2 3,3E2 

15 33 934 33 604 33 156 2.42 2.44 1.93 0.183 0.187 0.189 1,8E-1 1.6E-1 6,7E-2 

35 40 251 33 706 31 265 2.11 2.34 1.95 0.139 0.186 0.189 1,3E-4 3.8E-4 3,8E-4 

50 31 832 31 610 33 409 2.03 1.96 1.95 0.193 0.182 0.140 9,1E-6 6.4E-6 5,9E-6 

 
Figure 7 presents, i) the reference FRF, ii) the FRF calculated at the beginning of the optimization 

process (noted starting FRF) with the initial values of the 2S2P1D constants, and iii) the FRF calculated 

at the end of the optimization (noted final FRF) with the final values of 2S2P1D constants obtain from 

the optimization process and the values of the reference FRF at the frequencies where the distance is 

minimized, in the 3 cases studied at 35°C and -20°C. A very good agreement between the reference 

FRFs and the final FRFs obtained after optimization can be seen. It shows that the optimization process 

is very efficient to converge towards the reference FRFs.  
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Figure 7. Reference FRF and values at the frequencies where optimization calculation is performed (noted 

optimization points), starting FRF at the beginning of the optimization process and final FRF after the 
optimization process for the 3 cases studied. (left column) T = 35°C; (right column) T = -20°C. 

 

In addition, for each configuration and at each temperature, 6 frequencies were chosen in a narrow 

domain including all the resonance frequencies. The complex modulus was calculated for these 6 

frequencies with the values of the 2S2P1D model constants after the optimization process using Eq. 3. 

The complex modulus values of the reference material were also calculated at the 6 same frequencies 

using Eq. 3. The principle of these calculations is detailed in figure 8 for the example of the flexural 

mode of the cylinder at 35°C. 
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Figure 8. Principle of the calculations of the complex modulus at each temperature after the optimization 

process and on the reference material. Example for the flexural mode of the cylinder at 35°C. 
 

 Results are displayed in the cole-cole plan in figure 9 for the three configurations. A very good 

agreement between the reference values and the back calculated values can be observed for the three 

configurations studied.  
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Figure 9. Comparison between the complex modulus values of the reference material and the back calculated 

complex modulus. (a) Longitudinal mode of the cylinder; (b) Flexural mode of the cylinder; (c) Flexural mode 
of the disc.   

 

4.2 Global LVE simulation of the material 
The global LVE simulation of the material is obtained from the values obtained at each temperature 

were the complex modulus is back calculated after optimization of the FRFs. These values are used as 

data points to fit a unique 2S2P1D model and to find the WLF law of the material. This is done in three 

steps. The first step consists in adjusting manually the values of the 2S2P1D constants until the fit in 

the cole-cole plan between the 2S2P1D model and the data points is satisfying. At this stage, only a 

visual criterion is used to assess the quality of the fit. In the second step, the experimental characteristic 

times Ĳexp are determined for each temperature. To do so, the constants of the 2S2P1D model found in 

the first step are used to calculate the complex modulus at the same frequencies than the data points 

using equation 3. The experimental characteristic times Ĳexp are optimized at each temperature separately 

to minimize the relative difference between the norm of the complex modulus calculated as described 

above and the norm of the complex modulus of the data points. Finally, the WLF law is found in the 

third step. A reference temperature of 15°C – the same reference temperature than the reference material 
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– was chosen and the 3 constants of the WLF law Ĳref, C1 and C2 were determined using the excel solver 

with characteristic times Ĳexp found in the second step. This 3-steps process is illustrated in figure 10.  

 
Figure 10. 3-steps process to determine the global LVE behaviour of the material from the complex modulus 

values back-calculated after the optimization process.  
 

The values of the constants of the final obtained 2S2P1D models and of the WLF laws are given in table 

4 for each of the three different configurations. It can be seen that the constants listed in table 4 are 

different but close from the constants of the reference materials listed in table 1. 

Table 4. 2S2P1D and WLF constants of the global LVE behaviour for the 3 cases studied.  

Configuration 
E00 

(MPa) 
E0 

(MPa) 
į k h β ĲE15°C 

(s) 
C1 C2 

Longitudinal mode of 

the cylinder 
100 35 300 2.01 0.169 0.500 250 0.0758 28 198.1 

Flexural mode of the 
cylinder 

100 35 000 2.27 0.172 0.543 250 0.1170 34.6 244.8 

Flexural mode of the 

disc 
100 35 000 2.10 0.170 0.510 250 0.0879 29.5 207.4 

 

4.3 Comparison with the reference material 
The complex modulus obtained from the back calculation optimization process was compared to the 
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complex modulus of the reference material. The master curves at 15°C for the relative difference in % 

(respectively in °) between the norm (respectively the phase angle) of the complex modulus of the 

global LVE behaviour and the norm (respectively the phase) of the complex modulus of the reference 

material are presented in figure 12a (respectively 12b) for the three considered configurations. 

 

 
Figure 12. Master curves at 15°C for the three cases studied. (a) relative difference between the norm of the 

complex modulus of the back calculated LVE behaviour and the norm of the complex modulus of the reference 
material; (b) difference between the phase angle of the complex modulus of the back calculated LVE behaviour 

and the phase angle of the complex modulus of the reference material. 
 

The maximum relative difference for the norm of the complex modulus is about 2% while it is 

approximately 0.5° for the phase angle. Moreover, for temperature below 15°C, corresponding to 

reduced frequencies higher than 1 kHz, there is almost no relative difference. These results validate the 

proposed back calculation procedure using the FRFs and the different steps detailed in this paper. The 

optimization process and the determination of global LVE behaviour introduce almost no bias effect for 

the material characterization. It is therefore possible to characterize completely and accurately the LVE 

behaviour of AM from FRFs measurements. Nevertheless, it is important to note that this study is based 

on FEM simulations of the FRFs and do not use experimental measurements. Other effects such as 

nonlinearities or experimental errors may introduce some deviations when applying this method to 

experimental results from complex modulus tests.  

 

5. CONCLUSION 

A process to characterize the LVE behaviour of asphalt mixes from FRFs was applied to a pure LVE 

reference material having averaged properties. This process includes two main steps. In the first step, 
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an optimization process is used to back calculate the LVE properties of the material at 5 different 

temperatures using the numerical FEM. In the second step, the back-calculated complex modulus values 

at each temperature are used to fit a unique 2S2P1D model and to obtain the two constants of the WLF 

law, which provides the global LVE behaviour of the material. This process was tested on three different 

modes (longitudinal and flexural modes for a cylinder and flexural mode for a disc) and the results were 

compared to the input reference material behaviour. For all the temperatures and all the configurations, 

the convergence toward the reference FRF is quite good. This demonstrates the efficiency of the process 

to optimize the FRFs. Moreover, it is also shown that the global LVE behaviour determined in the 

second step is in very good agreement with the LVE behaviour of the reference material. The maximum 

relative error is about 2% for the norm of the complex modulus and about 0.5° for the phase angle of 

the complex modulus. This study confirms the pertinence and the validity of the proposed optimisation 

back calculation method that appears as promising for application considering real experimental data. 

As the optimisation process is validated on the presented numerical purely LVE behaviour, possible 

differences obtained from tension-compression tests data should be due to other effects, such as 

experimental errors when measuring the FRFs or nonlinearity of AM. 
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Featured Application: Dynamic tests can be used to characterize asphalt mixes and the results

obtained from dynamic tests are in good agreement with the results of conventional cyclic tests.

Abstract: In the presented research, conventional cyclic tension–compression tests and dynamic

tests were performed on two types of asphalt mixes (AM). For the tension–compression tests,

the complex modulus was obtained from the measurements of the axial stress and axial strain.

For the dynamic tests, an automated impact hammer equipped with a load cell and an accelerometer

were used to obtain the frequency response functions (FRFs) of the specimens at different

temperatures. Two methods were proposed to back-calculate the complex modulus from the FRFs

at each temperature: one using the 2S2P1D (two springs, two parabolic elements and one dashpot)

model and the other considering a constant complex modulus. Then, a 2S2P1D linear viscoelastic

model was calibrated to simulate the global linear viscoelastic behaviour back calculated from each of

the proposed methods of analysis for the dynamic tests, and obtained from the tension–compression

test results. The two methods of analysis of dynamic tests gave similar results. Calibrations from the

tension–compression and dynamic tests also show an overall good agreement. However, the dynamic

tests back analysis gave a slightly higher value of the norm of the complex modulus and a lower

value of the phase angle compared to the tension–compression test data. This result may be explained

by the nonlinearity of AM (strain amplitude is at least 100 times smaller for dynamic tests) and/or by

ageing of the materials during the period between the tension–compression and the dynamic tests.

Keywords: asphalt mixes; linear viscoelasticity; complex modulus; dynamic measurements;

tension–compression tests; frequency response function; back-analysis; finite element method

1. Introduction

Asphalt mixes (AM) have a linear viscoelastic (LVE) behaviour in the small strain domain [1]

Cyclic tension–compression tests are traditionally used to determine the LVE properties of AM that

are strongly dependent on frequency and temperature. However, these tests require expensive

experimental devices such as hydraulic presses and are not applicable in situ. An economical

alternative is to use non-destructive dynamic tests that are simple to perform and possibly adaptable

for measurements on pavement structures. Impulse techniques using impact loadings [2,3] are

known to provide accurate characterization of material properties in the case of elastic materials [4,5].

In the case of LVE materials, dynamic tests could be a great alternative to conventional cyclic

tension–compression tests. Dynamic tests using wave propagation and measurement of the flying

time [6–8] have been applied to LVE materials. Resonance testing considering only the fundamental
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resonance frequency [9–11] or resonant acoustic spectroscopy (RAS) [12–15] have also been applied to

AM but it is not possible to describe accurately the frequency dependency behaviour of AM with

these different tests. Recently, measurement of frequency response functions (FRFs) have been

performed on LVE materials [16,17] and more specifically on AM [18–21]. Gudmarsson et al. [19,20] and

Carret et al. [21] showed that using FRFs measurements to derive the LVE properties of AM is a very

promising approach. However, characterizing accurately the LVE behaviour of AM from FRFs is not

possible through a simplified analysis [22] and it requires an elaborate approach. In this paper,

two different methods using finite element calculations are proposed to obtain the LVE behaviour from

FRFs. The first method consists in an optimization of the continuous spectrum 2S2P1D (two springs,

two parabolic elements and one dashpot) model constants to back-calculate the complex modulus at

each tested temperature while the second method is a more direct back-calculation of the complex

modulus at the first resonance frequency. The two methods were applied to two different types of

AM representing five specimens that were tested with cyclic tension–compression tests and with

dynamic tests. Experimental complex modulus values obtained from tension–compression tests and

back-calculated from FRFs with the two proposed methods were used to fit the 2S2P1D model and the

Williams-Landel-Ferry (WLF) constants simulating the global LVE behaviour of the material in each

case. First, the materials tested in this study are presented. Then, the LVE behaviour characterization

with cyclic tests and the modelling with the 2S2P1D model are introduced. Next, dynamic tests

are introduced and the two proposed back-analysis methods are explained. Finally, data from

tension–compression tests are compared with results from the two methods of back-analysis of the

dynamic tests.

2. Materials and Methods

Two different types of AM are considered in this paper. The first material is a warm mix that

was fabricated in laboratory using bitumen foam and labelled WF for warm foam. It contains 70% of

reclaimed asphalt pavement (RAP) after one cycle of recycling. This material was used in a project from

the French national research agency called IMPROVMURE [23]. Three specimens of this material were

tested with tension–compression and dynamic tests. The second material is a mix with an optimized

granular skeleton also fabricated in laboratory and labelled GB5. It contains 30% of RAP and the

bitumen used is a polymer modified bitumen (PMB). Two specimens of this material were tested

with tension–compression tests and dynamic tests. Table 1 gives some indications on the five studied

specimens. The tension–compression tests were performed first and the dimensions listed in Table 1

correspond to the dimensions after the specimens were cut (see Section 3.1) before performing the

dynamic tests.

Table 1. Specimens used in this study.

Specimen Mass (g)
Height
(mm)

Diameter
(mm)

Density
(kg/m3)

Void Ratio
(%)

Bitumen Content
(%)

RAP Content
(%)

WF-4 1293 0.123 75 2379 6.6 5.4 70
WF-6 1320 0.123 75 2431 4.2 5.4 70
WF-8 1330 0.123 75 2449 3.8 5.4 70
GB5-3 941 0.152 64 2381 4.8 4.8 30
GB5-4 951 0.152 64 2378 5.1 4.8 30

3. Characterization of the Linear Viscoelastic (LVE) Behaviour

3.1. Cyclic Tension–Compression Tests

Cyclic tension–compression tests were first performed to determine the complex modulus and

complex Poisson’s ratio of the five considered cylindrical specimens. A hydraulic press was used in

strain-controlled mode to apply cyclic sinusoidal axial loadings with an amplitude of around 50 µm/m.

The axial stress σz was measured with a load cell, the axial strain εz was obtained from the average of
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three extensometers placed at 120◦ from each other, and the radial strain εr was derived from the

measurements of two non-contact sensors. The procedure developed at ENTPE/University of Lyon

laboratory is detailed in other publications [24–26]. The complex notation of the axial stress, the axial

strain and the radial strain are given in Equation (1):

σ∗z = σ0z·e
jωt

ε∗z = ε0z·e
j(ωt+ϕεz)

ε∗r = ε0r·e
j(ωt+ϕεr)

(1)

where ω is the pulsation (ω = 2πf, where f is the frequency), σ0z is the norm of the complex axial stress

and ε0z and ϕεz (respectively, ε0r and ϕεr) are the norm and phase angle of the complex axial strain

(respectively, complex radial strain). The tension–compression tests were performed at eight loading

frequencies (0.003, 0.01, 0.03, 0.1, 0.3, 1, 3 and 10 Hz) and nine temperatures from −25 ◦C to 55 ◦C

in steps of 10 ◦C. Details of the experimental set up are shown in Figure 1. The complex modulus

(respectively, complex Poisson’s ratio) are defined as the ratio between the axial stress and the axial

strain (respectively, the opposite of the radial strain and the axial strain) and they are calculated at

each temperature and frequency as follow:

E∗ =
σ∗z
ε∗z

= |E∗|·ejϕE (2)

ν∗ = −
ε∗r
ε∗z

= |ν∗|·ejϕν (3)

where E* is the complex modulus, ϕE is the phase angle of the complex modulus, ν* is the complex

Poisson’s ratio and ϕν is the phase angle of the complex Poisson’s ratio.
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Figure 1. Tension–compression test set-up (ENTPE laboratory, University of Lyon).

3.2. Modelling of the LVE Behaviour: 2S2P1D Rheological Model

The continuous spectrum 2S2P1D model developed at ENTPE [27–29] was used to model the LVE

behaviour of AM. This model is the association in series of two springs, two parabolic creep elements

and one dashpot. In the three-dimension case [30], the expressions of the complex modulus and the

complex Poisson’s ratio, for isotropic behaviour, are given at a given reference temperature (Tref),

by Equations (4) and (5), respectively.
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E∗
2S2P1D(ω) = E00 +

E0 − E00

1 + δ(jωτE)
−k + (jωτE)

−h + (jωβτE)
−1

(4)

ν∗2S2P1D(ω) = ν00 +
ν0 − ν00

1 + δ(jωτν)
−k + (jωτν)

−h + (jωβτν)
−1

(5)

where ω is the pulsation (ω = 2πf, where f is the frequency), E0 and ν0 are the high frequency modulus

and Poisson’s ratio, E00 and ν00 are the low frequency modulus and Poisson’s ratio, k and h are

dimensionless constants such as 0 < k < h < 1, δ is a dimensionless constant, and β is a dimensionless

constant related to Newtonian viscosity η by η = (E0 − E00) βτE. τE and τν are characteristic time

constants of the complex modulus and Poisson’s ratio linked by a constant ratio. The values of the

characteristic times vary only with temperature. The time temperature superposition principle (TTSP)

is verified for asphalt mixes in the linear and nonlinear domains [31–33] so it is possible to calculate

the characteristic time at any given temperature using Equation (6):

τ(T) = aT(T)τref (6)

where τref is the characteristic time at the reference temperature (τE or τν) and aT is the shift factor at

the temperature T defined by the Williams–Landel–Ferry (WLF) equation [34]:

log(aT) = −
C1(T − Tref)

C2 + T − Tref
(7)

where C1 and C2 are the two constants of the WLF equation and Tref is the reference temperature.

4. Dynamic Tests

4.1. Measurement of the Frequency Response Functions (FRFs)

First, the specimens used for complex modulus tension–compression test were sawed to separate

the glued upper and lower metallic caps before performing the dynamic measurements. An impact

hammer equipped with a load cell (PCB model 086E80) was used as an external source of excitation.

The order of magnitude of the maximum strain induced in the specimen by the impact is of about

0.1 µm/m [18,21]. The impact hammer was automated with a solenoid piston programmed with a

microcontroller (Arduino Uno R3) to improve the repeatability of the test and to allow measurements

directly inside a thermal chamber. This automated system was inspired by systems previously

developed by Norman et al. in 2012 and Brüggemann et al. in 2015 [35,36]. The response of the

materials was recorded with an accelerometer (PCB model 353B15). The impact hammer and the

accelerometer were connected to a signal conditioner (PCB model 482C15) and the signal conditioner

was connected to a data acquisition device (NI USB-6356) connected to a computer. To achieve free

boundary conditions, soft foam was placed under the specimens during the tests. In this study, only the

longitudinal compression mode of vibrations was considered. For this mode of vibrations, the impact

is applied in the centre of one short side of the cylinder while the acceleration is measured in the

centre of the opposite short side. The experimental set up for the dynamic tests corresponding to the

longitudinal mode of vibrations is presented in Figure 2.

The measurements were recorded with a sampling frequency of 1 MHz by using a MATLAB

application which was specifically developed for this test. Measurements were performed at five

temperatures (−20, 0, 15, 35 and 50 ◦C) and five impacts were applied at each temperature. The applied

force and the acceleration were recorded for each impact. The experimental data in time domain were

then converted in frequency domain with a 1 Hz resolution using the Fast Fourier Transform (FFT).

Figure 3 shows an example of the signals in time and frequency domains for specimen GB5-3 at 14.7 ◦C

(measured temperature with a probe at the surface of the specimen).
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H(f ) Y(f ) X*(f ) / X(f ) X*(f )· ·

Figure 2. Test set up for the dynamic impact tests (example for specimen WF-6, ENTPE laboratory,

University of Lyon).

 

 
 

H(f ) Y(f ) X*(f ) / X(f ) X*(f )· ·

Figure 3. Dynamic test experimental data for specimen GB5-3 at 14.7 ◦C (5 hits): (a) force in time

domain; (b) acceleration in time domain; (c) force in frequency domain; and (d) acceleration in

frequency domain.

As shown in Figure 3, the frequency spectrum of the impact contains energy up to 20 kHz, which is

the maximum frequency considered for the calculations of frequency response functions (FRFs) in this

study. FRFs were calculated from the frequency domain signals as follow:

H(f) =
(

Y(f)·X ∗ (f)
)

/
(

X(f)·X ∗ (f)
)

(8)

where H is the FRF, Y is the FFT of the measured acceleration, X is the FFT of the applied force,

X* is the complex conjugate of the applied force and the bar above corresponds to the arithmetic
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average from the five impacts. The five FRFs corresponding to each of the five impacts and the

averaged FRF (Equation (8)) for specimen GB5-3 at 14.7 ◦C are displayed on Figure 4. Figure 4 shows

that the six FRFs overlaps, which confirms the very good repeatability of the test.

 

2
CF(f ) X*(f ) Y(f ) / X( )· ·f ) X*(f ) Y(· f ) Y· *(f

 

Figure 4. FRFs obtained for the 5 hits and averaged FRF (Equation (8)) of specimen GB5-3 at 14.7 ◦C.

Quality of the measurements was also checked with the coherence function. The coherence

is a value between 0 and 1 that indicates how much of the vibratory response recorded with the

accelerometer is due to the impact. For a value of 1, the response is fully explained by the impact while

decreasing values indicate that something has disrupted the test. Coherence function is calculated

according to Equation (9):

CF(f) =
(

X ∗ (f)·Y( f )
)2

/
((

X(f)·X ∗ (f)
)

·
(

Y(f)·Y ∗ (f)
))

(9)

where CF is the coherence function, Y and Y* are the FFT of the measured acceleration and its complex

conjugate, X and X* are the FFT of the applied force and its complex conjugate and the bar above

corresponds to the arithmetic average. The coherence functions of specimen GB5-3 for the five tested

temperatures are presented in Figure 5. For all temperatures, the coherence function is very good with

values close to one for frequencies higher than 1000 Hz. It is therefore recommended to not use the

frequencies below 1000 Hz.

 

2
CF(f ) X*(f ) Y(f ) / X( )· ·f ) X*(f ) Y(· f ) Y· *(f

 
 Figure 5. Coherence functions obtained for specimen GB5-3 at the five tested temperatures (a);

and zoom on the lower frequencies (b).
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4.2. Calculation of FRFs with the Finite Element Method (FEM)

Numerical FRFs were calculated with the finite element method (FEM) considering linear

viscoelastic behaviour and the dynamic test boundary conditions. Figure 6 shows the FEM mesh and

boundary conditions used for the FEM calculation of the FRFS.

 

0·²u

Ε ω∇ Η
ω

Έ Θ

Α Α ΘΑ
Έ Θ

Α Α
β ΘΑ Θ

ji ji

ji

Npeaks 10 Exp C

j 1 i 1 Exp

H H
Error

H

 
 
  
 

 

Figure 6. Finite element mesh and boundary conditions used for the FEM calculation of the FRFS.

FRFs were calculated at the desired frequencies by resolving the following three-dimensional

equation of motion in frequency domain:

− ρω2u −∇·σ = 0 (10)

where ρ is the bulk density of the material, ω is the angular frequency, u is the displacement vector,

∇ is the gradient tensor operator and σ is the Cauchy stress tensor. Free boundary conditions are

assumed to solve Equation (10) except at the impact point where a cyclic load eiωt is applied in the

direction of the impact. Since the load amplitude is unity, the calculated FRFs correspond to the

calculated acceleration in direction Z (direction of vibration of the accelerometer in physical tests).

Back analysis was performed considering two LVE behaviour models successively, as explained below.

4.3. Determination of the Material LVE Properties from Dynamic Tests

The LVE properties of the material were determined from the FRFs measured with the dynamic

tests in two steps. The first step is a back-calculation of the complex modulus of the material at

each tested temperature. Two methods, presented in the next sections, were used for this purpose.

They consist in optimizing the constants of the LVE model used to calculate FRFs so that calculated

FRFs match the experimental measured FRFs using dynamic tests at the considered temperature.

The second step, which is the same for the two proposed methods, consists in using the complex

modulus values determined in the first step at each temperature to fit a 2S2P1D model and a WLF law

simulating the global LVE behaviour of the material. This operation is similar to what is done with the

tension–compression test data.

4.3.1. First Method: Optimization of the 2S2P1D Model Constants to Match Experimental FRFs

Among the 10 constants of the 2S2P1D model, only four constants (E0, k, δ and τE) have a

significant influence for the considered range of frequencies involved during dynamic tests and need to

be optimized. The complex Poisson’s ratio has a very small influence on the calculation of the FRFs

below 20 kHz. Poisson’s ratio cannot be back-calculated with this procedure; however, it is necessary to

assume values for constants ν00, ν0 and τν to back-calculate the complex modulus at each temperature.

For each tested temperature, the vector X of the four constants (E0, k, δ and τE) to be identified was

optimized iteratively so that the calculated FRFs match the experimental FRFs. The values of the six

other constants were fixed to classical values for AM: E00 = 100 MPa, ν0 = 0.19, ν00 = 0.45, h = 0.53,

β = 250 and τν = 31.6τE. Only the values of the experimental FRFs at frequencies around the resonance

frequencies are used as input in the optimization according to previous studies [19–21] that showed
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their meaningful importance. Ten frequencies were selected along each resonance peak and the error

function to minimize was defined as follow:

Error =
Npeaks

∑
j=1

10

∑
i=1





∣

∣

∣

∣

∣

∣

∣
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∣HExpji
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∣

∣

∣

∣

∣

∣

∣



 (11)

where HExp is the experimental FRF, HC is the calculated FRF, Npeaks is the number of resonance peaks,

j is the index of the peak and i is the index of the frequencies. The number of peaks considered for the

optimization at each temperature corresponds to the number of peaks that are visible below 20 kHz

(maximum considered frequency with our experimental device). This number is given in Table 2 for

each temperature.

Table 2. Number of peaks considered for the optimization of the 2S2P1D model constants at

each temperature.

Temperature (◦C) −20 0 15 35 50

Number of peaks 1 1 1 1 2

The optimization was performed in MATLAB with the “fminsearch” algorithm and the

optimization was stopped when the error and the parameter tolerance of 1% is reached (e.g., when the

variation of the error and of all the values of the four constants to be identified is less than 1% between

two iterations of the algorithm). The final vector Xf of the four constants (E0, k, δ and τE) was then

used with the three fixed constants related to the complex modulus (E00, h, and β) to back-calculate

the complex modulus at the resonance frequencies of the peaks used as input for the optimization at

the considered temperature. The optimization procedure to identify the four 2S2P1D model constants

(E0, k, δ and τE) at each temperature is explained in Figure 7.

−

Έ Θ
β

Έ Θ

 

Έ Θ
Figure 7. Method 1: Principle of the optimization procedure to identify the four 2S2P1D constants

(E0, k, δ and τE) at each temperature. Xf is the final vector of the four 2S2P1D constants to identify.



Appl. Sci. 2018, 8, 2117 9 of 18

4.3.2. Second Method: Constant Complex Modulus Obtained from the First Resonance Peak Only

The second method is a simplified approach that does not require, in the first step, a rheological

LVE model considering the frequency and temperature dependence. At each tested temperature,

a constant complex modulus value and a constant real Poisson’s ratio of 0.3 were considered.

A numerical sensitivity analysis was performed to evaluate the influence of the norm and phase

angle of the complex modulus and the real value of the Poisson’s ratio on the calculation of FRFs.

The influence of each LVE constant was evaluated from FRFs calculated for five values taken in the

range of variation of the considered LVE constant while the two others are fixed. Table 2 lists the

five values considered for each LVE constant and the corresponding fixed values of the two others.

Some results are shown on Figure 8 for a cylinder with similar dimensions than those used in this

study and with a density of 2400 kg/m3. It is shown in Figure 8 that the norm of the complex modulus

has an important influence on the first resonance frequency but not on the amplitude. It is the reverse

for the phase of the complex modulus, while Poisson’s ratio has little influence on both the frequency

and the amplitude.

 
 ϕ Α

ϕ Α

ϕ
ν −

ϕ

ν
ν

ϕ

Figure 8. Influence of: E (a); ϕ (b); and ν (c) on the first peak of the FRFs corresponding to the first

resonance (example of calculations for a cylinder with a 7.5 cm diameter and a 12.3 cm length).

To confirm the observation raised in Figure 8, the relative standard deviations (RSD) for the first

resonance frequency and amplitude were calculated for the three studied constants. Results are given

in Table 3. They confirm the previous observations and also indicate that the norm of the complex

modulus has really no impact on the peak amplitude while the phase has a very little influence on

the frequency. The Influence of the Poisson’s ratio can be considered as negligible when compared

with the influence of the two other constants. Observations presented in Figure 8 and Table 3 justify

the assumption of a constant real value of 0.3 for the Poisson’s ratio. In addition, the identification of

the norm and phase of the complex modulus can be separated into two steps: the norm can be

determined by dichotomy from the first resonance frequency and then the phase can be determined by

dichotomy from the corresponding amplitude. This process was repeated iteratively until the error on
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the amplitude is less than 0.1%. Figure 9 shows the principle of the back-calculation of the complex

modulus using the first resonance peak of the FRFs.

Table 3. Influence of E, ϕ and ν on the first resonance frequency and FRF amplitude. When one of the

constants varies, the two other constants are fixed at the values listed in the left column.

E (GPa) 20 25 30 35 40 RSD (%)

ϕ = 8◦ f (Hz) 11,580 12,940 14,180 15,320 16,380 13.5
ν = 0.25 Amplitude (m/s2) 12.1 12.1 12.1 12.1 12.1 6 × 10−4

ϕ (◦) 1 4 8 12 16 RSD (%)

E = 30 GPa f (Hz) 14,120 14,140 14,180 14,240 14,340 0.6
ν = 0.25 Amplitude (m/s2) 97.7 24.4 12.1 8.0 5.9 130.8

ν 0.05 0.15 0.25 0.35 0.45 RSD (%)

E = 30 GPa f (Hz) 14,400 14,320 14,180 13,980 13,760 1.8
ϕ = 8◦ Amplitude (m/s2) 11.2 11.8 12.1 12.3 12.4 4.0

 

−

Α Α
Θ ΘΑ

Figure 9. Method 2: Principle of the back-calculation of the complex modulus on the first resonance

peak at each temperature (example for specimen GB5-3 at −0.2 ◦C).

4.3.3. Summary and Remarks on the Two Methods

Differences between the two proposed methods concern the first step in which the complex

modulus is back-calculated at each temperature, while the second step is identical for the two

methods. First, the assumptions on the Poisson’s ratio value are different in the two methods.

In the first method, the Poisson’s ratio is a complex number, which depends on the frequency and on

the temperature, and is modelled with the 2S2P1D model assuming the values of constants ν00, ν0 and

τE/τν. In the second method, a constant real value of Poisson’s ratio equal to 0.3 is assumed. Another

difference is that all resonance peaks under 20 kHz are considered in the first method while only

the first resonance peak is used in the second method. Consequently, the second method gives only

one value of the complex modulus at each temperature while the first method gives values for each

resonance frequency. This difference is not essential in this study since 50 ◦C is the only temperature for

which two peaks were observed. However, it can be interesting to evaluate more than one value of the

complex modulus at each temperature. Finally, in the first method, four constants are evaluated at each

temperature using a complex algorithm. In the second method, only two constants are evaluated using

a simple dichotomy process. The second method is therefore very easy to apply and time-effective

compared to the first method. Figure 10 highlights the main differences between the first step of the

two methods and gives the principle of the second step that is identical for the two methods. Note that,

even though the same constant h is fixed for the back-calculation at each temperature (in the first
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step of first method), a different constant h value can be obtained during the calibration process of the

second step.

 
 

 

Έ β

Figure 10. Summary and differences between the two proposed methods of back-analysis of the

dynamic tests.

5. Results

5.1. Tension–Compression Tests Results

Results of the tension–compression tests for specimen WF-8 are plotted in Figure 11. A continuous

curve can be seen on the Cole–Cole diagram, which indicates that the material is rheologically simple

and that the time–temperature superposition principle (TTSP) is valid. The master curve of the norm of

the complex modulus is plotted at a reference temperature (Tref) of 15 ◦C in Figure 11. The 2S2P1D

model was fitted to the experimental data and is also plotted in Figure 11. A very good agreement

between the experimental data and the 2S2P1D model can be observed.

 

 

Έ β

Figure 11. Tension–compression test results and fitted 2S2P1D model for specimen WF-8: (a) Cole–Cole

diagram; and (b) master curve for the norm of the complex modulus at 15 ◦C.
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The values of the 2S2P1D model and WLF equation constants obtained from the

tension–compression tests are given for all specimens in Table 4. The constants k, h, δ, β, C1 and C2

have the same values for a given material because they are only depending on the bitumen and not on

the granular skeleton as shown in previous research [27,37,38].

Table 4. Calibrated 2S2P1D constants to match tension–compression measurements.

Specimen E00 (MPa) E0 (MPa) δ k h β τE15◦C (s) C1 C2

WF-4 28 33,400 2.28 0.177 0.57 154 5.4 × 10−2 24.9 166.6

WF-6 40 37,500 2.28 0.177 0.57 154 7.0 × 10−2 24.9 166.6

WF-8 56 36,900 2.28 0.177 0.57 154 6.9 × 10−2 24.9 166.6

GB5-3 65 39,100 1.80 0.180 0.60 350 7.5 × 10−2 24.7 165.9

GB5-4 65 39,500 1.80 0.180 0.60 350 1.5 × 10−1 24.7 165.9

The measurements were recorded with a sampling frequency of 1 MHz by using a MATLAB

application which was specifically developed for this test. Measurements were performed at five

temperatures (−20, 0, 15, 35 and 50 ◦C) and five impacts were applied at each temperature. The applied

force and the acceleration were recorded for each impact. The experimental data in time domain were

then converted in frequency domain with a 1 Hz resolution using the Fast Fourier Transform (FFT).

Figure 3 shows an example of the signals in time and frequency domains for specimen GB5-3 at 14.7 ◦C

(measured temperature with a probe at the surface of the specimen).

5.2. Dynamic Impact Tests Results

The complex modulus values back-calculated at each temperature from the FRFs measurements

with the two proposed methods for specimen WF-8 are plotted, as an example, in Figure 12.

For the first method of back-calculation, one value of the complex modulus is plotted for temperatures

at which only one peak was considered for the optimization (−20, 0, 15 and 35 ◦C) and two values

are plotted at −50 ◦C because two peaks exist for this temperature. Only one value of the complex

modulus is presented for each temperature for Method 2 because the back-calculation is limited to

the first resonance frequency, as explained previously. The master curve of the norm of the complex

modulus at 15 ◦C was obtained considering the validity of the TTSP. The 2S2P1D model was fitted to

the back-calculated modulus for both methods and the two resulting 2S2P1D model curves are also

plotted in Figure 12. Good fitting of the 2S2P1D curves can be observed for both methods, which give

only slightly different results.

δ β τ
−

−

−

−

−

−

−
−

 
 Figure 12. Dynamic test results and fitted 2S2P1D model curve for the two analysis methods for

specimen WF-8: (a) Cole–Cole diagram; and (b) master curve for the norm of the complex modulus at

15 ◦C.
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The values of the 2S2P1D model and WLF equation constants fitting the results from the two

back-analysis methods are given for all specimens in Table 5 (first method) and Table 6 (second method).

Note that similarly to the results of the tension–compression tests, constants k, h, δ, β, C1 and C2 have

the same values for a given material. In addition, the same WLF equation constants can be used for

the two methods and only constant E0 differs between the first and the second method.

Table 5. Calibrated 2S2P1D constants to match complex modulus back-calculated from dynamic tests

with the first method using 2S2P1D model at each temperature. Constants E00 and β are assumed to be

100 MPa and 250, respectively.

Specimen E00 (MPa) E0 (MPa) δ k h β τE15◦C (s) C1 C2

WF-4 100 34,800 1.39 0.142 0.49 250 4.0 × 10−2 18.9 133.2

WF-6 100 38,700 1.39 0.142 0.49 250 7.0 × 10−2 18.9 133.2

WF-8 100 37,500 1.39 0.142 0.49 250 4.0 × 10−2 18.9 133.2

GB5-3 100 39,100 1.17 0.130 0.442 250 5.5 × 10−2 19.2 139.5

GB5-4 100 40,500 1.17 0.130 0.442 250 7.0 × 10−2 19.2 139.5

Table 6. Calibrated 2S2P1D constants to match complex modulus back-calculated from dynamic tests

measurements with the second method using the first resonance peak at each temperature. Constants

E00 and β are assumed to be 100 MPa and 250, respectively.

Specimen E00 (MPa) E0 (MPa) δ k h β τE15◦C (s) C1 C2

WF-4 100 36,100 1.39 0.142 0.49 250 4.0 × 10−2 18.9 133.2

WF-6 100 39,500 1.39 0.142 0.49 250 7.0 × 10−2 18.9 133.2

WF-8 100 38,500 1.39 0.142 0.49 250 4.0 × 10−2 18.9 133.2

GB5-3 100 39,800 1.17 0.130 0.442 250 5.5 × 10−2 19.2 139.5

GB5-4 100 41,100 1.17 0.130 0.442 250 7.0 × 10−2 19.2 139.5

GB5-4 100 40,500 1.17 0.130 0.442 250 7.0 × 10−2 19.2 139.5

It must be highlighted that values of constants E00 and β are assumed because they have no

influence on the complex modulus values in the frequency range involved during the dynamic tests.

The constants governing the value of the Poisson’s ratio ν00, ν0 and τν do not appear in Tables 5 and 6

because the Poisson’s ratio was not evaluated from the dynamic tests but assumptions on the values of

these constants were necessary to back-calculate the complex modulus at each temperature in the first

step of the first method. A good proximity between the results obtained with the two methods is shown

in Figure 12. The same observation was made for all specimens. To validate this visual impression,

the relative difference between the norm (in %) and the phase (in ◦) of the 2S2P1D simulated complex

modulus obtained from the two methods are plotted in Figure 13. In this figure, the relative difference

is plotted against the reduced frequency at 15 ◦C for all specimens. It is seen that the second method

considering a constant complex modulus at each temperature and a constant real Poisson’s ratio of

0.3 gives a norm slightly higher than the first method with a maximum relative difference of about

3.7%. The phase angle determined with the two methods can be considered equivalent with less

than 0.03◦ of difference, which was expected because only constant E0 of the 2S2P1D model differs

between the first and the second method. The slight differences between the two methods may

be explained by the different assumptions on the Poisson’s ratio value which is modelled with the

2S2P1D model in the first method and taken constant equal to 0.3 in the second method. However,

the two proposed methods are in very good agreement. This result is interesting because the second

simplified method does not require in the first step the use of an elaborate LVE model. In addition,

the back-calculation process is easy to perform as the two calculated constants can be identified using

dichotomy process. This new simplified approach considerably reduces the computational time and

offers great potential to back-calculate the complex modulus of AM from FRFs measurements using

the first resonance peak only.
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Figure 13. Difference between the complex modulus obtained from the two methods of analysis of the

dynamic tests plotted at a reference temperature of 15 ◦C for all specimens: (a) relative difference for

the norm of the complex modulus (in %); and (b) difference for the phase of the complex modulus

(in ◦).

5.3. Comparison between Cyclic and Dynamic Tests Results

The reduced frequency range of the tension–compression and dynamic tests is different,

as confirmed in Figures 10 and 11. The tension–compression tests cover a reduced frequency range

between approximately 10−7 Hz to 109 Hz at a reference temperature of 15 ◦C. The dynamic tests

cover a reduced frequency range between approximately 1 Hz and 1012 Hz at the same reference

temperature of 15 ◦C. Therefore, the best fit between the two tests is expected to be for frequencies

higher than 1 Hz and lower than 109 Hz for which experimental data from the two tests is available.

As the two methods of back analysis of the dynamic tests give similar results, only the complex

modulus obtained from the 2S2P1D model calibrated using the second method of analysis was chosen

for the comparison with results of the 2S2P1D model calibrated from quasi-static tension–compression

tests data. The relative difference between the norm (in %) and the phase (in ◦) of the complex modulus

from the two calibration processes are plotted in Figure 14 where the results are plotted against the

reduced frequency at 15 ◦C for all specimens. It is shown in Figure 14 that the complex modulus

simulated from the two tests are in quite good agreement for the high reduced frequencies (>107 Hz),

which was expected when dealing with dynamic measurements. The norm of the dynamic complex

modulus is around 3–5% higher than the norm of the complex modulus of the tension–compression

tests for this frequency range and there is less than 0.2◦ of difference between the phase angles from

both tests. For lower reduced frequencies (or higher temperatures), the relative difference increases

for the norm and reach a value between 12% and 30% at 1 Hz depending on the specimen with an

average value of 20.2%. The difference also increases for the phase angle but remains less than 2.5◦ for

reduced frequencies higher than 1 Hz.

The differences observed in Figure 14 show that the dynamic complex modulus has a higher

norm and a lower phase angle than the complex modulus obtained from the tension–compression tests.

The differences between the two tests increase with temperature. These results are in agreement with

results from previous studies using FRFs [18–21]. The differences between the two tests could be due to

two phenomena. First, the level of strain applied is different in the two types of tests (about 50 µm/m

for the tension–compression tests and about 0.1 µm/m for the dynamic tests). It is known that AM

have a nonlinear behaviour showing a strain level dependence even at small strain amplitude [39–41].

The differences observed in this analysis are in the same direction than the observed nonlinearity:

increasing of norm and decreasing of phase angle when decreasing strain amplitude. Then, nonlinearity

may account for at least a part of the difference between the two tests. Another possibility is ageing of

the materials. The tension–compression tests were performed several months before the dynamic tests
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and this could explain why the dynamic complex modulus is stiffer. However, the overall agreement

between the two tests is satisfying.

 
 

 

Figure 14. Relative difference between the complex modulus simulated with the 2S2P1D model

calibrated from back-calculation of the dynamic tests and the complex modulus simulated with the

2S2P1D model calibrated on the data of the tension–compression tests at 15 ◦C for all specimens:

(a) relative difference for the norm of the complex modulus (in %); and (b) relative difference for the

phase of the complex modulus (in ◦).

The shift factors from the WLF equation obtained from the tension–compression tests and from

the dynamic tests are plotted in Figure 15. It is seen that, for the low temperatures, the agreement

between the shift factors from both tests is very good. For temperatures higher than 10 ◦C, the shift

factors of the dynamic tests tend to be higher than the shift factors of the cyclic tests and the difference

increases with temperature. The difference between the shift factors is more important for material

labelled GB5. However, there is no apparent link between the difference observed in Figure 14 for

the complex modulus and for the shift factors since the highest difference on the complex modulus

evaluation correspond to a specimen of material labelled WF.

 

 
Figure 15. Shift factors of the WLF equation (Equation (7)) obtained from the tension–compression

tests (WLF T.C.) and from the dynamic tests (WLF Dyn.) for the two tested materials.
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6. Conclusions

In this paper, conventional cyclic tension–compression tests and dynamic tests were performed to

characterize the LVE behaviour of AM on a large range of frequencies and temperatures. Two different

AM and five specimens were tested with both tests and results were analysed using the 2S2P1D model.

Two methods were studied to back-calculate the complex modulus of AM from dynamic

measurements at each temperature. It is shown that the same shift factors are found with the two

methods. Moreover, the two methods give very similar complex modulus values (less than 4% of

difference for the norm of the modulus and 0.03◦ for the phase angle) and the differences observes

may be due to the different assumptions on the Poisson’s ratio value. Therefore, the second method,

which is a new and simpler approach, appears to be a good option to obtain the complex modulus of

AM from FRFs.

The results of dynamic tests were also compared to the results of tension–compression tests.

The shift factors from both tests are very close for the low temperatures and shift factors from dynamic

tests are little higher for temperatures higher than 10 ◦C. The complex modulus obtained from dynamic

tests have a higher norm and a lower phase angle than the ones determined with the conventional

approach using cyclic tests. The differences observed between the two tests are very limited for the

high frequencies or low temperatures (less than 5% for the norm and 0.2◦ for the phase angle) and are

more important for the low frequencies or high temperatures (around 20% for the norm and 2◦ for the

phase angle at 15 ◦C and 1 Hz). Since the strain level is approximately 500 times lower in the dynamic

tests, the nonlinearity of AM with the level of strain amplitude may explain a part of the differences.

Ageing of the materials between the tension–compression and the dynamic tests may also have an

impact on the complex modulus evaluation.

The agreement between dynamic tests and the tension–compression tests is still satisfactory

on the whole frequency range. The combination of the two tests methods is useful to improve the

characterization of the LVE behaviour of AM on a wider frequency range because dynamic tests give

access to very high frequencies. The presented research shows that dynamic tests, which have the

great advantage of being cheap and rapid, can be back-analysed with a very simple model and can

provide accurately the complex modulus of AM on a wide range of frequencies and temperatures.
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7 CONCLUSIONS AND PERSPECTIVES 

In this thesis, a dynamic test was developed to characterize the LVE behaviour of 

bituminous mixtures from FRFs measurements. Numerical tools based on the FEM were 

developed to back analyze the experimental results of the test and to obtain the LVE properties 

of the materials tested. A parametric analysis was carried out to identify the LVE properties and 

the constants of the 2S2P1D model having the most influence on the FRFs calculation. Using 

the results of the parametric analysis, five methods of inverse analysis with different level of 

complexity were developed. The accuracy of each inverse analysis method was evaluated by 

applying the method to a numerical model material with averaged LVE properties (reference 

LVE material). Then, dynamic tests were performed on twenty-eight specimens from five 

different bituminous mixtures. Results of these tests are presented in five experimental 

campaigns. In all experimental campaigns, the repeatability of the dynamic tests was assessed. 

In addition, in the first experimental campaign, different laboratories tested the same specimens 

and the reproducibility of the dynamic tests was evaluated. Also, ten of the specimens used in 

this study were also tested with cyclic tension-compression complex modulus tests. For seven 

of these specimens, the complex Poisson’s ratio was also determined from the cyclic tests and 

from the dynamic tests. The LVE properties (complex modulus and complex Poisson’s ratio) 

obtained from dynamic tests and from cyclic tension-compression tests were compared. In the 

next paragraphs, the conclusions drawn from obtained experimental results and performed 

analyses are summarized. 

Regarding the experimental aspects of the dynamic tests: 

 It is possible to determine FRFs from dynamic tests for frequencies up to 30 kHz 

and for temperatures up to between 40°C and 50°C depending on the damping 

properties of the material tested.  

 The strain amplitude corresponding to dynamic tests (≈0.1 μdef or less) is 
approximately 500 times lower than the strain amplitude applied during cyclic 

complex modulus tests (≈50 μm/m). As the behaviour of bituminous mixtures is 

strain amplitude dependent, this difference should be taken into account when 

comparing LVE properties determined from dynamic and cyclic tests. 

 An automated impact hammer was developed for the dynamic tests: 

- It improves the repeatability of the measurements with RSD values about 

0.5% for the resonance frequencies and 2% for the amplitudes.  

- It guarantees a very good quality of the measurements giving values of the 

coherence function very close to one for frequencies higher than 3 kHz. 

- It considerably simplifies the experimental procedure, reducing the 

variability of the measurements that can be observed when different 

operators perform dynamic tests. 

- It enables measurements at different temperatures without opening the door 

of the thermal chamber and without changing anything to the test set-up.  



CONCLUSIONS AND PERSPECTIVES 

 

-184- 

Regarding the results of the parametric analyses investigating the influence of the LVE 

properties and of the constants of the 2S2P1D model on the FRFs calculation: 

 The norm of the complex modulus has a significant impact on the resonance 

frequencies (RSD about 120%) but no impact on the amplitudes. It is the contrary 

for the phase angle that has an important influence on the amplitudes (RSD about 

25%) and a negligible influence on the resonance frequencies (RSD about 1%). 

 Four constants of the 2S2P1D model were identified as the most influents on the 

FRFs calculation: constant E0 has an important influence on the resonance 

frequencies while constants τE15°C, k and δ have an influence on both the resonance 
frequencies and amplitudes. The three other constants of the 2S2P1D model 

governing the complex modulus value (E00, β and h) have a lower influence and 

can be fixed when optimizing the FRFs in the first step of the proposed inverse 

analysis methods. 

 The complex Poisson’s ratio has a far lower influence than the complex modulus, 

and even a negligible influence for the first resonance of the longitudinal mode of 

vibration (RSD of 1.1% for the first resonance frequency and of 0.6% for the 

corresponding amplitude). The same observations are valid for constants Ȟ00, Ȟ0 and 

τȞ15°C of the 2S2P1D model. Therefore, the effect of Poisson’s ratio can be 
neglected in the inverse analysis to reduce the number of constants to identify, at 

least as a first approximation. 

Regarding the results of the five inverse analysis methods applied to the reference LVE 

material: 

 Method I is only adapted to characterize the LVE behaviour for the very high 

frequencies (above than 105 Hz at 10°C). For temperatures higher than 10°C, 

important errors (up to 30% for the norm of the complex modulus and 10° for the 

phase angle) appear showing the limitations of using a too simplified back-analysis 

method. 

 Method II is accurate both for the norm and for the phase angle of the complex 

modulus with error of less than 5% and 2°, respectively. However, these results 

were obtained assuming that the shift factors were known which is not the case 

when testing a new material. In addition, the global approach used in this method 

may not be adapted to be used with physical measurements. 

 The accuracy of methods III, IV and V is very good, with less than 2% of error for 

the norm of the complex modulus and 1° of difference for the phase angle. 

Moreover, the same constants of the 2S2P1D model (E0, τE15°C, k, δ and h) and of 

the WLF equation (C1 and C2) were found in the second step of these three inverse 

methods. The three methods have therefore a very comparable accuracy. 

 Methods IV and V are only accurate for the longitudinal mode of vibration and 

should not be used with the flexural or torsional modes. 

 Method IV has quite interesting advantages comparing to method III and V: 

- It does not require to use a rheological model taking into account the 

frequency and temperature dependency of the behaviour in the first step. 

-  Only two constants are determined in the first step (four are determined in 

method III and five in method V). 

- The optimization process in the first step is very easy to apply because the 

two determined constants are obtained by dichotomy. 
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- Thanks to the previous observations, the computational time is considerably 

reduced in the first step of method IV (between five and ten times faster 

than methods III and V). 

 Method V is the only method for which the complex Poisson’s ratio can be 

determined. Its evaluation with this method is very accurate (less than 4% of error 

for the norm of the complex Poisson’s ratio and less than 0.2° for the phase angle).  

Regarding the LVE properties determined from dynamic tests in the experimental 

campaigns: 

 Measurements of FRFs at five different temperatures are sufficient to determine the 

global LVE behaviour of the material over a wide frequency range. For example, 

at 15°C, the reduced frequency range covered by the dynamic tests is approximately 

between 1 Hz and 1011 Hz. 

 The characterization of the complex modulus from dynamic tests is very repeatable 

from one specimen of a material to another, especially when using the same 

geometry and mode of vibration. If different geometries or modes of vibrations are 

used, slight differences can appear between two specimens of the same material. 

 The longitudinal mode of vibration is the easiest mode to excite and it gives the 

most repeatable results. Some problems appeared when using the flexural mode for 

the disc geometry. In addition, the longitudinal mode is the only mode for which it 

is possible to determine the complex modulus with a simplified analysis (in method 

IV) or to determine the complex Poisson’s ratio (with method V). For these reasons, 

it is highly recommended to use the longitudinal mode of vibration in dynamic tests. 

 The same global LVE behaviour is determined with methods III and V when using 

only the first resonance frequency of the longitudinal mode as input in method III. 

This result confirms the negligible influence of the Poisson’s ratio on the first 

resonance of the longitudinal mode. 

 The global LVE behaviour determined with method IV is in very good agreement 

with the results of methods III and V. The phase angle of the complex modulus is 

identical for the three methods while the norm of the complex modulus is between 

1% and 3% higher with method IV. It confirms the great potential of method IV, 

despite its simplified approach in the first step. 

Regarding the reproducibility of the dynamic tests evaluated in the FSDyn project 

experimental campaign: 

 The reproducibility of the dynamic tests between different laboratories is satisfying 

but it can be improved. The variability of the measurements between different 

laboratories is higher than the variability observed in the repeatability study 

performed at ENTPE (the RSD is about 2% for the resonance frequencies and 25% 

for the amplitudes against approximately 0.5% and 2%, respectively). 

 The influence of using different experimental devices (accelerometer, impact 

hammer and signal conditioner) from one laboratory to another cannot explain the 

variability of the measurements observed in the FSDyn project. Indeed, the RSD 

obtained when studying six combinations of experimental devices from ENTPE 

and EIFFAGE was only 0.2% for the resonance frequencies and 5.6% at most for 

the amplitudes (RSD about 2% for the resonance frequencies and 25% for the 

amplitudes between the measurements of all laboratories in the FSDyn project). 
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 The different experimental procedures (such as measurements performed inside or 

outside the thermal chamber, time waited for the stabilization of the system, use of 

an automated or manual impact hammer, etc.) used by each laboratory are the most 

evident reasons to explain the variability of the measurements.  

Regarding the comparison of the LVE properties determined from dynamic tests and from 

cyclic tension-compression tests: 

 The norm of the complex modulus determined from dynamic tests is higher than 

the one obtained from tension-compression tests. The difference between the two 

tests is only a few per cent (5% at most) for the low temperatures (or high 

frequencies) and it increases with temperature (or when frequency decreases). For 

example, considering the ten comparisons of dynamic and cyclic tests performed 

on specimens of five different materials, the norm of the complex modulus at 15°C 

and 10 Hz obtained from dynamic tests is between 4% and 25% higher than the 

norm of the complex modulus obtained from cyclic tests with an averaged 

difference of about 15%.  

 The phase angle of the complex modulus determined from dynamic tests is in good 

agreement with the phase angle determined from cyclic tests. Almost no difference 

is seen for the high frequencies (or low temperatures). For higher temperatures 

(corresponding to frequencies below 100 Hz at 15°C.), the phase angle determined 

from dynamic tests tends to be slightly lower than the phase angle determined from 

cyclic tests. The maximum deviation between the two tests is limited to about 2°. 

 These results are not surprising given that the strain amplitudes of both tests are 

different. The norm (respectively the phase angle) of the complex modulus tends to 

increase (respectively decrease) when the strain amplitude decreases, which is 

observed in this study. Nonlinearities effects can explain differences between 5% 

and 15% for the norm of the complex modulus, depending on the materials. The 

effects of nonlinearities for the phase angle are less important which could explain 

the overall good agreement between both tests  

 Some differences exist between the norm of complex Poisson’s ratio determined 
from dynamic tests and from tension-compression tests. For most of the material, 

there is less than 0.1 of difference for the norm of the complex Poisson’s ratio. 
However, no clear trend is seen: the norm of the complex Poisson’s ratio 
determined with dynamic tests can either be higher or lower than the one obtained 

from cyclic tests.  

 The phase angle of the complex Poisson’s ratio determined from dynamic tests and 
from cyclic tests are not in good agreement for all materials. Differences up to 3° 

are seen in this study. It is difficult to evaluate accurately the phase angle of the 

complex Poisson’s ratio from dynamic tests.  
 Considering the difficulty to determine accurately the complex Poisson’s ratio in 

experimental tests, these differences are not surprising and the evaluation of the 

complex Poisson’s ratio from dynamic tests has great potential, especially for the 
norm of the complex Poisson’s ratio. 

The aforementioned results were obtained for a wide variety of materials including 

polymer modified bitumen, mixtures with high RAP contents, materials drilled from an airport 

runway, etc. It shows that dynamic tests, which are economic and simple to perform, are very 

repeatable tests and can provide an accurate characterization of the LVE properties of different 



CONCLUSIONS AND PERSPECTIVES 

 

-187- 

types of bituminous mixtures over a wide reduced frequency range. Therefore, the results and 

conclusions of this work highlight the great advantages of using dynamic test to characterize 

bituminous materials LVE behaviour. It is hoped that the results and conclusions of this thesis 

will contribute to better understanding of the dynamic tests and the associated inverse analysis 

methods to obtain the LVE properties. In addition, it is also hoped that the results and 

conclusions of this thesis will encourage the scientific community working on bituminous 

materials to use dynamic tests for characterizing the LVE behaviour. Finally, some 

recommendations and perspectives for future research can be made to further develop dynamic 

tests and their applicability: 

 It is recommended to use automated impact systems such as the one developed in 

this work for many reasons: 

- To standardize the experimental procedure, which will improve the 

reproducibility of the dynamic test.  

- To potentially couple dynamic tests with other tests such as crack or 

damage propagation tests. Using dynamic tests during this type of tests may 

give access to additional information about material properties. 

- To perform continuous measurements of FRFs, which could lead to an even 

better characterization of the material properties. 

 The number of temperatures used for the dynamic tests could be reduced to 

characterize the LVE behaviour over a shorter frequency range. For example, if 

only one value of the complex modulus is needed (for example at 15°C and 10Hz 

for pavement design in the French standards), only one or two temperatures may 

be enough, which will reduce the duration of the test. 

 The analysis of the dynamic tests should not require to use expensive finite element 

software. For this purpose, simplified inverse analysis methods such as method IV 

are very interesting. They offer great potential to calculate FRFs charts and can be 

more easily coded in free applications. The development of such charts or 

applications would probably be an important step to encourage asphalt researchers 

to use dynamic tests. 

 Dynamic tests can be applied to real pavement structures, which enables non-

destructive quality control of new and old pavements. In that case, the properties 

evaluated in situ and with laboratory dynamic tests can be directly compared 

because the strain amplitude levels are the same. 
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