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I. Introduction I.1 General context

In a worldwide context where energy production and exchange take more and more place into the human activity, new sources of energy are continuously under investigation within the global research field, first under the purely scientific aspect, then gradually entering into the field of industrial mass production to become available to a maximum of users.

In this environment, aside to the conventional energy sources (coal, oil and fission for the most active ones) and among the new means of energy production (e.g. photovoltaic), the concept of power generation issued from fusion physical mechanism has emerged during the 1950's as a possible component of a future energy mix. The fusion use for civil energy production purpose is intended to be established through the exploitation of plasma magnetic confinement and principally aims at developing the tokamak-type installations.

The tokamak approach bears two main advantages: relying on quasi-infinite resources on earth (derived from hydrogen fueling for plasma) and carrying marginal risks of uncontrolled and accidental dissemination endangering populations (derived from spontaneous plasma extinction tendency).

On the other hand substantial challenges remain ahead and should also be considered in the tokamak strategy. Indeed the control of fusion plasma burning requires high level of technicality and experience given the high number of parameters to be mastered to reach steady-state regimes plasma.

Among these critical components is the magnetic system, keystone of the plasma control (see details below). Since several decades the international community has installed and operated many fusion installations throughout the world, mainly tokamaks such as TFR (FR), Tore Supra/WEST (FR), FT (IT), ASDEX (DE), TEXTOR (DE), COMPASS (CZ), MAST (UK), JET (UK), TCV (CH), Alcator (US), PLT (US), DIII-D (US), TFTR (US), T3 (RU), T10 (RU), SST1 (IN), EAST (CN), KSTAR (KR) but also other type of machines like stellarators such as ST (US), W7-X (DE) or heliotrons such as LHD (JP). Some of those tokamaks are shown in Figure 1. The above list includes tokamaks currently in operation; most of them have mainly scientific scopes dedicated to a broad range of thematics, from plasma physics experiments to sub-components development (first wall, divertor, diagnostics, heating sources, current drive etc…).

The next generation of tokamaks is more and more oriented on the demonstration of energy production capacities:  JT-60SA will be operated in Japan around 2020 and is substantially devoted to investigations on long plasma pulses relevant to future fusion reactor (DEMO)  ITER will be operated in France around 2025 and is principally oriented towards demonstrating the operability of long pulses of D-T nuclear plasma

Those two large tokamaks are illustrated in Figure 2. The magnet system being a key component of a tokamak it is important to ensure its reliability during operation and therefore to consolidate the best technical and scientific knowledge on it. Another noticeable point to be considered is that magnet system is a major cost driver for the whole tokamak (about 1/3 of construction investment) and that knowledge mastering is also a component of machine merit in this regard.

I.2 Fusion and tokamak

While fission is based on the principle of heavy nuclei splitting into smaller nuclei, fusion is based on the merging of two light nuclei into a heavier one. Both reactions result into creation of energy through a neutron generation, and are therefore compatible with energy production strategy.

While in fission the reaction is self-generated by chain reaction, in the case of fusion the reaction is not self-maintained as demanding conditions must be established and sustained to allow the fusion between the two nuclei. As an example the coulomb repulsion barrier must be overpassed to allow the particles to interact, in a medium where density and temperature must therefore be sufficiently high to trigger the reaction. Typically the order of magnitude of the plasma core temperature in its reaction state is about hundred millions of Kelvin.

The fusion reaction is usually based on Deuterium and Tritium atoms, which are the most facilitating components for the reaction. The most common fusion reactions producing neutrons are In order to allow continuous burn regime, these reactions must be triggered and confined in a closed volume.

We focus here on the specific closed volume formed in a tokamak configuration. The principle of tokamak was first established in Russia [1] (tokamak being issued from acronym TOroidal naya KAmera MAgnitnaya Katushka or toroidal chamber with magnetic coil) and relies on a torus-shaped plasma confined by a discrete number of coils enclosing it, called Toroidal Field coils or TF coils (see Figure 4). With this configuration, the charged particles moving along those toroidal lines would be subject to a drift due to a magnetic field gradient, and would not finally be confined, preventing the configuration from generating a stable equilibrium. To cancel this effect, the plasma drives a current which adds a poloidal component to the toroidal magnetic field, resulting in helical lines (see Figure 4) that cancel the gradient effect: particles are confined and their trajectories explore both high and low field zones.

The plasma current is induced by transformer effect through the coupling between inner coils (further called in our work Central Solenoid or CS system, visible in Figure 4): the current variation in CS generates by mutual induction a current in the plasma. This current creates the above-mentioned poloidal field component and heats the plasma by Joule effect. The later effect is not sufficient to reach the reaction temperature but contributes to it; it has to be assisted by additional heating systems (e.g. electromagnetic antennas). Once established, the plasma current is maintained by induction with CS.

The described TF and CS systems are further complemented by the system of Poloidal Field (PF) coils which are located on the edge of the TF outer envelope (see Figure 4) and which drive the plasma control by imposing, at each moment of the scenario, the most appropriate plasma magnetic field configuration to maintain the plasma stability. As an example of the PF coils roles, the uppermost PF coil is mainly devoted to plasma initiation (start of plasma expansion). We have already stressed at this stage that, among the three systems presented, CS and PF ones are pulsed (i.e. they generate a time varying magnetic field). Since these two systems are major drivers regarding the plasma burn duration and stability (which are crucial for the operation reliability), it is important to note that the robustness of the pulsed magnet system must be ensured in a tokamak. This is a point supporting the rationale of our research work.

I.3 Superconductivity

The superconductivity aspect is a major characteristic of fusion magnets since the ultimate goal of a tokamak is to produce a net electric power; the "balance of plant" aspect is then of central importance. In an illustrative approach, the plasma magnetic field (which drives fusion power) being of substantial amplitude (order of few teslas) and being established in large volumes (e.g. 840 m 3 for ITER), the energy stored in magnet system is expected to be high. If the magnets were resistive, the electrical power needed to energize them and maintain this configuration would be so high that the global power balance would become negative and therefore hopeless for any economic model.

Superconducting technology is consequently unavoidable in the large scale fusion electricity endeavor and should therefore be considered as a key component for technical and scientific knowledge mastering.

The basic principles of superconductivity are described below together with the particularities attached to the fusion technology. Superconductivity is characterized by the two main properties of the material when in superconducting state:

1. The zero value of its resistivity inside its volume.

2. The zero value of the magnetic field inside its volume (Meissner effect).

The property evoked at first point (zero resistivity) derives from a specific interaction between electrons and the crystalline network, resulting into a perturbation of their wave function that allows electron pairing and further on their mobility into the crystalline network without interaction with this latter (no collision between them i.e. no Joule effect). We will not enter into details of these considerations that are out of the scope of this work, but as an example the BCS theory [START_REF] Bardeen | Theory of Superconductivity[END_REF] well describes the physics underlying this phenomenon.

Note that the present resistive property is not absolute as in reality the superconducting state is valid in a domain limited by upper values of three driving parameters: the temperature, the magnetic field and the current density. An example of superconducting state operational domain limits is illustrated in Figure 5. These considerations on limits will not be considered in the present work as attached to the current transport properties in DC regimes, while our scope is to deal with currents induced in AC regimes. However it should be kept in mind that in transient conditions the critical properties are the main drivers for anticipating the stability limits in given conditions. As a matter of fact the AC shielding phenomena will induce local variations of the three above-mentioned parameters and therefore impose (B, T, J) excursions possibly out of the critical surface.

In addition, the property evoked at second point (full expulsion of magnetic field, i.e. Meissner effect) will not be considered in our work since large magnets are using type-II superconductors which are in their mixed state during operation (state in which the Meissner effect does not apply anymore). We will nevertheless consider that our material is always in superconducting state regarding its resistivity.

Furthermore, a point should be made clear: since the supercurrents that shield the superconductor from any magnetic fieldi.e. corresponding to the Meissner effectwill not be considered in our work, we will exclusively use the expressions "screening currents" or "shielding currents" throughout the present manuscript to designate the currents induced by a magnetic field variationi.e. corresponding to Lenz's law.

In our work the application of superconductivity principles will be implemented in the specific environment of fusion magnets, which embeds specific technology and faces specific operational loads; both will be subject of the next section.

I.4 Fusion magnets: Tokamak operation context and CICC technology

As previously mentioned the magnet system is a major component of a tokamak and therefore was subject to continuous R&D programs aiming at establishing the most adapted design for the present but also future tokamaks. Since the way to power production requires large tokamaks (fusion power exponentially increases with size) the projection lies in heavily energized magnets, i.e. carrying high currents and subject to high mechanical constraints.

As an illustration to the context where the work takes place, we here describe more features on ITER project. ITER (acronym standing for International Tokamak Experimental Reactor) will be the largest tokamak ever built and will be operated at St Paul-lez-Durance near CEA site in France. The reactor will be built and operated in the framework of an international collaboration which has also been involved since several decades in the fusion research program related to all components of a tokamak, including magnets.

The main scope of ITER is to ultimately demonstrate a maintained combustion of a deuteriumtritium plasma over long durations (typically 1000 seconds) and with a net fusion power balance gain (the ratio between extracted and injected energy) situated between 5 and 10.

ITER will be the first machine including and operating the major technologies requested for the exploitation of a commercial fusion reactor: superconductivity, plasma-facing components, tritium breeding components, robotics maintenance and diagnostics.

An illustration of this tokamak can be seen in Figure 6. 
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The ITER magnet system conductors are based on a specific technology: the Cable-In-Conduit Conductor or CICC. This technology is particularly adapted to the main constraints faced by ITER magnets: high currents injected, high magnetic field on conductors and therefore large mechanical loads on conductors.

The CICC concept main features are:  A cable made up of a large number of strands twisted in multiple stages. The strands can be of different natures (superconducting versus copper) and with different sizes (diameter). A lot of combinations of patterns can be included at each stage (bundles with different number of strands twisted together).

 Some stages can be wrapped into thin metallic sheets to ensure their compaction and increase the inter-stage resistance.

 Cooling channels can be inserted into the cable usually under the form of spirals or tubes. Their role is, when hydraulic lengths are important, to relieve the pressure drop while still keeping the cable cooling capacity.

 An external thick metallic jacket into which the cable is drawn. The role of this jacket is to confine the coolant (helium), ensuring a forced circulation and therefore a more efficient wetting of the superconducting strands. But the jacket mainly serves as structural material for absorbing the high mechanical efforts developed in the coil. It avoids the cable plasticization and the need for delicate technologies such as reinforced strands. On the other hand the external jacket eases the insulation integration into the winding, and knowing that ITER coils can experience high voltages during currents discharge, this point is also beneficial.

An illustration of typical ITER CICCs is shown in Figure 7. The smallest integrated element of the CICC is the superconducting strand. The strand provided for fusion is of composite type, i.e. it is composed of a mix of different metallic alloys integrated with the superconducting material. The metallic part acts as thermal stabilizer, mechanical embedding matrix and possible support for surface treatment (coating).

The two categories of superconducting material located in the strands are:  The NbTi, alloy composed of Niobium and Titanium, bears the advantage of being insensitive to mechanical strain, and thus is quite adapted for any forming step (twisting, bending etc…) in the magnet manufacturing. The NbTi can be used up to magnetic field of about 11T at temperature of 1.8 K (superfluid helium).  The Nb3Sn, alloy composed of Niobium and Tin, can be operated at much higher fields (about 25 T at 4.2 K) and therefore is unavoidable for projects with such requirements (large tokamaks). This material is obtained after a specific heat treatment that triggers the chemical formation of a superconducting phase. The drawback of this material is that, after heat treatment, it bears a sensitivity to mechanical deformation, that directly impacts (reversibly but at a certain point irreversibly) the critical performances. It should therefore in most cases be formed before the heat treatment (always before cabling and mostly before forming) and consequently can require large ovens. The complexity of the fabrication process and the demanding QA steps result in a much higher price of Nb3Sn compared to NbTi.

In all strands the superconducting material is embedded into a metallic matrix, mostly composed of copper, whose role is to stabilize the superconductor against local perturbations thanks to its heat absorption capacity. In case of quench, it allows to temporarily delay the discharge of the energy stored in the magnet (thanks to the current deviation from superconductor to copper) until the external protection circuit is activated. Finally, it allows a good conduction from coolant to superconducting material and therefore further contributes to its stability. Other metals can also be integrated, serving as resistive barrier or anti-diffusion barrier. Some views of superconducting strands are shown in Figure 8. As an example of selected superconducting material, in ITER project the TF and CS coils experiencing about 12-13 T, the Nb3Sn is chosen. Conversely, the PF coils experiencing about 5-6 T, the NbTi is selected. For JT-60SA project, since the TF system maximum field is about 6 T, NbTi is used.

The strand integration into a CICC follows a specific cabling process: strands are twisted into multiplets (e.g. triplet, including 3 strands), then multiplets are twisted, forming the second stage bundle, next, the second stage bundles are twisted, forming the third stage bundle, and so on. Following this process the cable may contain any number of stages (e.g. 5 stages for ITER). An illustration of cable manufacturing steps can be seen in Figure 9. Apart from ITER and JT-60SA, the CICC technology has already been integrated in several other tokamaks such as EAST (CN) and KSTAR (KR) and other fusion installations such as W7-X (DE) [START_REF] Maix | Design, Production and QA Test Results of the NbTi CIC Conductors for the W7-X Magnet System[END_REF] and LHD (JP) [START_REF] Yamamoto | Helical and poloidal coil R&D in LHD[END_REF]. The tokamak JT-60SA (which stands for "Japanese Tokamak 60 Super Advanced"), which will shortly be operational, also uses CICC technology (see [START_REF] Koide | JT-60SA superconducting magnet system[END_REF]).

Although the CICC technology has been developed for many years in accordance with the fusion magnet needs, it still presents risks which are intrinsic to any superconducting magnet: the appearance of instability possibly leading to a quench, i.e. the rapid transition from superconducting state to resistive state of the whole cable. Given the high values of energy stored in the magnets, the release of this energy remains a serious issue as it can irreversibly induce degradations and lead to underperforming magnets.

Going more in depth into those sources of instabilities while in tokamak operation context, the CICCs can be subject to various load prone to trigger transitions from superconducting to resistive state.

They can be of diverse nature:  increase of current density (J), that can be due to an uneven distribution of currents inside the cable (e.g. bad connections quality).  increase of temperature, that can be caused by an external heating source (e.g. thermal shield failure, vacuum loss) or internal one (e.g. current partially entering resistive part of superconducting strand).  increase of magnetic field, that can be caused by e.g. uneven current distribution leading to local field inhomogeneities.  decrease of critical properties, that can be due to local damage of superconductor bulk (e.g. caused by superconductor filament fracture due to mechanical load).

In the present work we pay attention to specific instability sources: those coming from the pulsed variations of magnetic field, leading to the establishment of shielding currents in the CICC, triggering both local heating sources and local current density increase.

As a matter of fact, in order to ensure a stable plasma regime, the tokamak operation requires rapid variations of current in the CS and PF systems. As an example, the typical variations of CS and PF are illustrated in Figure 10. These rapid current variations (and thus those of magnetic field on conductor) being requested to ensure the tokamak operation (e.g. CS breakdown step necessary to initiate the plasma before ramping its current up), it is of high importance to assess that they do not systematically induce conductor instabilities as this would lead to an inoperable tokamak.

It is clearly seen here that the mastering of knowledge about the evaluation of consequences issued from the shielding current and their associated heat loads, stands as an important point regarding the establishment of a secured fusion magnet design.

I.5 Thesis content and associated strategy

During the above-mentioned transient field variations the shielding currents trigger both local heating sources (called AC losses) and local over-currents, impacting the stability limit of the conductor. In our work we consider the only AC losses due to shielding currents flowing in the resistive part, that are called coupling losses. However when CICCs are considered, the ab-initio evaluation of those coupling losses is extremely difficult as it combines multiple sources of complexity:

 the coupling currents flow along the strands, but strands trajectories in CICC are difficult to know since the combination of twisting stages and cable compaction makes it almost unpredictable  the shielding currents redistribute in the volume by crossing between strands and therefore establish inhomogeneous current 3D distribution in a medium whose discontinuous nature adds difficulties for representing the shielding effect  the coupling currents locally heat and deposit their power through their path inside strands and across resistive connections between strands. These resistive paths being highly dependent on the inter-strand contact physics, which is non-linear and hardly known, severe difficulties are encountered for developing a model

The possible approaches for representing this behavior are of two types: analytical or numerical. Fusion community has attempted to address the item through both ways:

 On one side the numerical approach consists in representing, in the more relevant way possible, the 3D strands (or bundle of strands) network, figuring then its resistive (strands intersections) and inductive (strands mutual coupling) components. The basic equilibrium equations (Maxwell equations) are then applied to define at any moment the current in any part of the network. Summing up the local heat loads one can then deduce the thermal perturbation imposed to the conductor and can attempt to determine the distance to unstable regimes. The advantage of this approach is that it can be conducted down to the smallest scale, leading to a diagnostic considering the smallest local effects. Furthermore a predictive approach can be attempted since any design can in principle be treated. On the other hand difficulties are also present with this approach, for instance the challenge of relevance when representing a complex system containing a large number of interacting elementary units, or for large size magnets, the heavy model setting process and the demanding CPU time for calculations. In the fusion community EU working groups are involved in such approach, for example using the THELMA [START_REF] Ciotti | THELMA code electromagnetic model of ITER superconducting cables and application to the ENEA stability experiment[END_REF] or JackPot [START_REF] Van Lanen | JackPot: A novel model to study the influence of current nonuniformity and cabling patterns in cable-in-conduit conductor[END_REF] codes (see further in the document).

 On the other side the analytical approach is relying on the representation of heat load by analytical expressions, dependent on conductor characteristics (e.g. cable time constant, see further) and on the magnetic field variation. The usual approach (the "single time constant" approach) consists in a simplification of the conductor shielding effect using analogies with classical models of transient behavior of superconducting composites. Indeed, in this approach, a single time constant, which is the parameter used to classically characterize the coupling losses at strand scale (see reference books [START_REF] Wilson | Time-vaying fields and A.C. losses[END_REF], [START_REF] Tixador | Supraconductivité" in Les supraconducteurs[END_REF]), is used to represent the coupling losses at conductor scale. The single time constant approach then assumes that, although bearing substantial topologic differences, the conductor behaves similarly as a strand. The large majority of analyses on AC losses at the conductor scale follows this method ( [START_REF] Ciazynski | AC losses and current distribution in 40 kA NbTi and NbSn conductors for NET / ITER[END_REF]- [START_REF] Nijhuis | Change of interstrand contact resistance and coupling loss in various prototype ITER NbTi conductors with transverse loading in the Twente Cryogenic Cable Press up to 40,000 cycles[END_REF]). In addition, two models deviate from this "strand-like" analogy. A heuristic one, called MPAS [START_REF] Turck | A macroscopic model for coupling current losses in cables made of multistages of superconducting strands and its experimental validation[END_REF], considers that the coupling between the different cabling stages can be represented with several weighted time constants: its ability to represent the experimental reality has been established, but it is not a predictive model as the time constants it considers have to be determined from AC losses measurements at different frequencies. The other one [START_REF] Schild | A model for calculating AC losses in multistage superconducting cables[END_REF] provides analytical formulae of coupling currents and losses inside conductors from its electrical and geometrical features: it is then a predictive model, but it does not take the coupling between the induced currents into account, and therefore its validity domain is restricted to slowly time varying magnetic fields. The advantage of these analytical models lies in their high versatility of integration into simulation tools (e.g. thermo-hydraulic codes); they also consume low CPU resources and thus allow a broad variety of explorations (e.g. different magnetic field variations for MPAS). On the other hand their associated drawback is the macroscopic nature of their parameters and thus their strong dependence on experimental curves (AC losses energy per cycle versus frequency); as a result, their capacity of prediction is strongly limited for cable designs other than already existing ones (except for [START_REF] Schild | A model for calculating AC losses in multistage superconducting cables[END_REF], but whose domain of prediction is restricted to slowly time varying magnetic fields).

The advantages and disadvantages of the already existing approaches are summarized in Table 1. In this table, we have divided the existing approaches in three main categories: analytical, heuristic and numerical. The analytical and heuristic approaches are both based on the use of analytical expressions but our distinction between them lies in their origins. Indeed, we consider as analytical the approaches that have been derived from electromagnetic equations while we consider as heuristic the ones that have been derived from observations of experimental results and/or from the extension of an existing analytical modeling outside of its initial frame. In addition, for better readability of the table, we have chosen to make use of the plus signs to provide a nuanced appreciation of the accuracy of the results obtained by the different methods.

As an example, the first line of Table 1 indicates that the Multistage cable model [START_REF] Schild | A model for calculating AC losses in multistage superconducting cables[END_REF]  has been derived from electromagnetic equations  can predict the coupling losses of a CICC from measurements of its electrical and geometrical parameters and well matches the experimental results  requires very light computation given its analytical and explicit nature  provides relatively detailed information on the induced coupling currents  but is not valid for every magnetic regimes encountered in tokamaks (here, the model is not valid for fast transient magnetic regimes) 

 + ++ +

The purpose of the present work is to develop a model that would somehow stand between [START_REF] Turck | A macroscopic model for coupling current losses in cables made of multistages of superconducting strands and its experimental validation[END_REF] and [START_REF] Schild | A model for calculating AC losses in multistage superconducting cables[END_REF], thus trying to initiate a bridge between both approaches while remaining at the same time in the analytical approach category.

The key point of our strategy is to keep using analytical tools to establish a CICC coupling losses model, but which deviates from the single time constant approach and from the MPAS model since we consider the CICC electrical and geometrical features as departure point instead of the experimental AC losses results. Our strategy is then similar to that of [START_REF] Schild | A model for calculating AC losses in multistage superconducting cables[END_REF], except that our intention is to establish models whose domain of validity is the largest possible, i.e. we aim at covering all possible transient regimes regardless of their dynamics with respect to the system time constants (see Table 1). This is an important objective as we will try to represent the magnetic shielding effects of a cable in tokamak configuration, thus subject to a broad variety of magnetic field regimes (see section I.4 ).

To achieve this aim, our progress strategy is based on a scale by scale approach:

 First step is conducted at the smallest elementary unit bearing coupling losses: the strand. At strand scale, a generalization of the analytical coupling model is conducted, also standing as a toolbox for the larger scales.

 Second step is carried out at cable stage, but with the simplest description of a cable, i.e. an assembly of single bundles. Here too the generalization to any transient regime is targeted. This step as single stage scale also stands as toolbox for the next step.

 Third step is still located at cable stage but integrates an additional geometrical complexity, i.e. it considers two cabling stages with independent twist pitches. This step allows the improvement of the relevance of the modeling, considering a second degree of detail in the cable architecture.

Along the progress across those different steps, continuous confrontation will be carried out between the results of our analytical approach and those of previously developed models, i.e. the ones presented in Table 1. In addition, throughout this manuscript we have chosen to include the demonstrations leading to our analytical results since our methodology differs from the ones used in the previous models. Our objective is thus not only to present our analytical results, but also to share the methodology that has led us to them.

Nevertheless, being aware that these complex and long analytical demonstrations can make the reader lose the thread of the work presented in this manuscript, their objective and location will be presented schematically in the "methodology" section of each scale (strand, single stage and two cabling stages). In order to further enhance the readability of this document, the objective will be recalled to the reader at the beginning of each demonstration.

II. Superconducting composites

Content: This part is dedicated to the presentation of a general analytical modeling of coupling losses in superconducting composites and its associated algorithm. Experimental work (AC losses measurements) on strands is also presented as well as comparisons with other analytical models.

Associated publications:

 A. 

II.1 Presentation

II.1.1 Architecture

Superconducting composites are majorly encountered in conductors of large superconducting magnets which are needed in tokamaks or particle accelerators. Although their average diameter is less than a millimeter, they present a specific and quite complex layout.

Composites are cylindrical and made of several superconducting filaments (from a few dozens to several thousands) whose diameter lies in the range of a dozen of microns; these filaments are lightly twisted (usually with a twist pitch lying in the 15-25 mm range) and are located in what is known as the filamentary zone of the composite. In this filamentary zone, we also find a metallic -thus resistivematrix which fills every space between the filaments. In addition to the filamentary zone, composites may also feature a copper core and multiple external resistive layers. The layer located just after the filamentary zone is often called "resistive barrier" as it consists of a more resistive material (e.g. CuNi); its role is to reduce both the intrastrand and interstrand coupling losses [START_REF] Schild | AC losses dependence on a CuNi layer location in NbTi CICC[END_REF]. The most outer one(s) are again made of copper. All these layers are visible on Figure 11 and Figure 12.

Filamentary zones of Nb3Sn composites appear to be slightly different from the ones of NbTi composites as the filaments are gathered in bundles (see Figure 12) instead of being uniformly spread over the zone; this is due to their different fabrication process. The need for these specific types of architectures essentially arises from the necessity to protect the composites against stability issues. Indeed, instabilities occur when the local temperature in the superconductor exceeds its critical value; the local increase of temperature can be caused by hysteresis losses. Therefore, in order to enhance the protection of the superconductor against instabilities, it is recommended to subdivide the superconductor into several small filaments instead of having one large filament for at least two reasons:

 the hysteresis losses per unit volume of superconductor increase with the filament diameter [START_REF] Wilson | Time-vaying fields and A.C. losses[END_REF]; therefore the total losses and associated heat are smaller when the superconductor is divided into several small filaments  for a given volume of superconductor, the total exchange surfaceand thus the coolingis enhanced if the total volume is divided into several small volumes Furthermore, the omnipresence of copper inside superconducting composites is needed for several reasons. Indeed, thanks to its very good thermal and electrical conductivity, it enhances the stability of the composite by:  tentatively providing another path for the transport current in case of a local transition; this other path is less resistive than the superconductor in its normal state and thus corresponds to a lower local Joule heating. The superconducting filament may then have enough time to cool down and recover its superconducting state.  improving the cooling effect provided by the refrigerating fluid because its thermal conductivity is higher than that of superconductors Finally, twisting the filaments is an efficient way to reduce the intrastrand coupling losses since the magnetic flux they enclose cancels out every twist pitch; this prevents then the appearance of very strong current loops that would exceed the critical current of the filament and generate very strong ohmic losses at the ends of the composite when subject to an external time varying magnetic field.

II.1.2 State of the art on coupling losses modeling at composite scale

Before presenting a synthetic historical review and discussion of the previous work accomplished on the coupling losses issue at strand scale, we will provide a brief reminder of the different losses generated inside superconducting composites under magnetic AC regimes.

When multifilamentary strands are subject to a time-varying external magnetic field, they develop currents in specific zones to shield themselves from this magnetic variation following Lenz's law. The induced currents are flowing through the different materials present in the composite and are due to magnetic shielding at different scales:

 The superconducting filament develops its own peripheral currents to shield itself from any magnetic variation; the local critical current density Jc is then temporarily outreached in the outer region of the filament which enters into the flux flow regime and thus develops a local resistivity. The excess current density (difference between the local current density and Jc) will decay because of the local resistivity, and the magnetic variation will penetrate deeper into the filament leading also to the penetration of screening currents. Once the local current density has fallen to the local Jc, it persists indefinitely because of the zero resistivity of the superconductor and the filament develops then persistent magnetization currents. The total ohmic losses generated during the transient flux flow regime correspond to the "hysteresis losses"  The filamentary zone (containing a large number of superconducting filaments embedded in a resistive matrix) develops a supercurrent flowing in its outer edge filaments to shield its enclosed volume. This supercurrent will loop back by crossing the resistive matrix and the resistive layers of the composite : this will generate the so-called "coupling losses"  All the copper present throughout the composite also participates in the magnetic shielding of the whole composite by carrying other screening currents classically known as eddy currents whose associated ohmic heating are simply named the "eddy currents losses"

As described in the previous section, each of these currents directly threatens the superconductor with a transition into its normal state (flux jump) : first, because of the creation of local heat sources inside (hysteresis losses) and outside (coupling and eddy currents losses) the superconductor, secondly because the induced currents (magnetization and coupling currents) will cumulate with any current already carried by the filament (transport current), thus creating another local heat source if the superconductor enters transitorily into the flux flow regime.

AC losses therefore play a major role in the composite stability, for this reason they have been deeply investigated since the 70's ( [START_REF] Wilson | Experimental and Theoretical Studies of Filamentary Superconducting Composites[END_REF]- [START_REF] Nijhuis | The influence of the diffusion barrier on the AC loss of Nb3Sn superconductors[END_REF]).

A complete study both theoretical and experimental [START_REF] Wilson | Experimental and Theoretical Studies of Filamentary Superconducting Composites[END_REF] has provided an important insight of the behavior of superconducting composites with respect to an external time-varying magnetic field. The derivation of the magnetization of the composite due to currents shielding the superconductor (i.e. magnetization currents) and shielding the entire composite (i.e. coupling currents) is shown together with the calculation of their associated losses: hysteresis losses and an approximation for the coupling losses for composites in coil configuration. The experimental results are in reasonable agreement with the developed theory.

In the same time period, Morgan [START_REF] Morgan | Theoretical Behavior of Twisted Multicore Superconducting Wire in a Time-Varying Uniform Magnetic Field[END_REF] has improved the coupling losses modeling by giving the complete time-dependent equation of a system composed of two filaments embedded in a copper matrix. For a composite containing a large number of filaments, as it is usually the case, the two-filament approach seems inappropriate and is then replaced by a macroscopic model considering a supercurrent flowing through outer edge filaments and looping back across the resistive matrix. The supercurrent is supposed to have a cosine distribution in the cross section of the composite, i.e. of the form 𝐾 = 𝐾 0 cos (𝜃) with 𝜃 the radial angle and 𝐾 0 the amplitude of the current per unit length; this distribution is legitimated by the fact that it will produce an internal uniform magnetic field in the opposite direction of the applied field. The value of 𝐾 0 is then given as a function of the time-variation of the external magnetic field 𝐵 𝑎 when the supercurrent is not time varying, i.e. when 𝐾 ̇0 = 0 (the overdot notation refers to the time derivative). The external or applied magnetic field 𝐵 𝑎 is defined as the magnetic field that would exist in the volume of the composite if the composite was removed (or if any shielding effect occurring inside the composite was omitted).

Following this work, Carr [START_REF] Carr | Longitudinal and transverse field losses in multifilament superconductors[END_REF] and Ries [START_REF] Ries | AC-losses in multifilamentary superconductors at technical frequencies[END_REF] have pushed the modeling of coupling losses one step further by providing the macroscopic behavior of a composite composed of a central filamentary zone and a copper sheath subject to a transverse magnetic field for any time regime. Even though they have derived it with two different approaches, the same homogeneous representation of the filamentary zone is used. In his studies, Carr has summarized the electrical properties of the composite in an effective transverse conductivity for which he has given approximate formulae for the two extreme values of the filament-to-matrix contact resistance [START_REF] Carr | Conductivity, permeability, and dielectric constant in a multifilament superconductor[END_REF]. This method provides an efficient way to calculate the coupling currents across the resistive matrix and offers then the possibility to represent the response of the composite at its scale instead of the filament one. His treatment refers to the shielding accomplished by classical resistive conductors together with considerations on the frequency domain of the applied magnetic field and the associated skin depths while the alternative approach provided by Ries makes use of the effective transverse conductivity to promptly derive the relation verified by the internal magnetic field; we will thus here discuss the outcomes of the latter one.

For the sake of simplicity, the notation F will refer to a composite consisting in a filamentary zone only, F/R to composite with a filamentary zone and an outer resistive layer, F/R/R to a composite with a filamentary zone and two outer resistive layers and so on. For example, all composites present on Figure 12 are represented by F/R/R as they are composed of -starting from their center -a filamentary zone, an outer resistive barrier and a copper layer and the layout of the JT-60SA composite on Figure 11 will then be referred to as R/F/R/R (copper core, filamentary zone, resistive barrier and outer copper layer).

For a composite composed of a central filamentary zone only (F) or with an outer copper layer (F/R), the induction 𝐵 𝑖 inside the filamentary zone is governed by the first-order differential equation

𝐵 𝑖 + 𝜏𝐵 ̇𝑖 = 𝐵 𝑎 (1)
where 𝐵 𝑎 is the magnitude of the transverse applied magnetic field, 𝐵 ̇𝑖 is the time derivative of 𝐵 𝑖 and 𝜏 is the time constant of the system whose expression is

𝜏 = 𝜇 0 2 ( 𝑙 𝑝 2𝜋 ) 2 1
𝜌 𝑡 [START_REF] Bardeen | Theory of Superconductivity[END_REF] with 𝑙 𝑝 the twist pitch of the filaments and 𝜌 𝑡 the effective transverse resistivity (inverse of the effective transverse conductivity mentioned above). It is interesting to note that equation ( 1) is valid for both F and F/R, the only difference between them lies in the formula of 𝜌 𝑡 , which in the first case is the effective transverse resistivity of the filamentary zone while in the second one, it is a combination of the effective transverse resistivity of the filamentary zone and of the transverse resistivity of the outer layer. In fact, in the case of F/R, the outer resistive layer is seen as another path for coupling currents flowing in the outer edge filaments to loop back (see Figure 14); therefore the total effective conductivity can be expressed as a weighted sum of the transverse conductivities of the two zones since they are in parallel.

To push this idea further, we can also take a look at composites with a central filamentary zone surrounded by several resistive layers. Turck has made a detailed investigation on this issue [START_REF] Turck | Coupling losses in various outer normal layers surrounding the filament bundle of a superconducting composite[END_REF] and provided the analytical method and formulae enabling the description of the response of composites with layouts ranging from F/R to F/R/R/R to a transverse magnetic field. He has quantitatively shown that a cupronickel barrier surrounding the filamentary zone was significantly reducing the coupling losses. Indeed, the resistivity of the copper sheath being usually lower than the effective matrix resistivity of the filamentary zone, the flow of the coupling currents through the copper sheath can be responsible for a major part of the dissipated energy if the sheath is thick. The local resistance created by the cupronickel barrier enhances the average resistance of the alternative path and thus reduces the coupling losses. For composites with several outer resistive layers, the expression of the time constant of the composite given by equation ( 2) is still valid provided that the total effective resistivity is computed again with the taking into account of the radii and resistivities of the outer layers. The next step is of course to compute the coupling power dissipated in the whole composite. In order to do so, two methods giving the same results can be used.

The first one is simply to integrate the Joule power density 𝐽 ⃗ . 𝐸 ⃗⃗ over the whole volume, with 𝐽 ⃗ the local coupling current density flowing through the resistive parts and 𝐸 ⃗⃗ the local electric field. The other one is to compute the magnetization 𝑀 inside the filamentary zone and then to integrate the local density power -𝑀𝐵 ̇𝑖 over the volume.

Both methods give the following power per unit volume of filamentary zone [START_REF] Wilson | Time-vaying fields and A.C. losses[END_REF] (see discussion below)

𝑃 = 𝑛𝜏𝐵 ̇𝑖2 𝜇 0 (3) 
with 𝑛 = 2 for a cylindrical composite.

Before going any further, a point should be made clear: for composites consisting in a filamentary zone only (F types), the only part were coupling currents will generate ohmic power is of course the filamentary zone, while for composites of types F/R/…/R (central filamentary zone surrounded by one or several resistive layers) the coupling currents will not only dissipate energy inside the filamentary zone but also in the outer resistive layers. Therefore, one must not misunderstand equation (3) : 𝑃 corresponds to the power dissipated in the whole composite divided by the volume enclosed by the outer edge filaments (which will often be referred to as "volume of filamentary zone" by abuse of language). This expression has only been chosen for its schematic and simple view.

If we now apply a sinusoidal external magnetic field 𝐵 𝑎 = 𝐵 𝑝 sin (𝜔𝑡), with 𝜔 = 2𝜋𝑓 the angular frequency, using (1) we obtain in complex notations

𝐵 ̅ 𝑖 = 𝐵 𝑝 𝑒 𝑗𝜔𝑡 1 + 𝑗𝜔𝜏 (4) 
Then we can readily give the internal magnetic field amplitude |𝐵 ̅ 𝑖 | as

|𝐵 ̅ 𝑖 | = 𝐵 𝑝 √1 + (𝜔𝜏) 2 (5) 
Using (3), the associated power density 𝑃 averaged over time (after a time long compared to 𝜏) will then be

𝑃 = 𝐵 𝑝 2 2𝜇 0 𝑛𝜏𝜔 2 1 + (𝜔𝜏) 2 (6) 
As a matter of fact, we see from equation ( 5) that the composite will behave as a low-pass filter with regard to the external magnetic field: its low frequency components will penetrate through the composite while its high ones will be completely shielded by the outer edge filaments. This leads to the conclusion that the power dissipated by hysteresis inside the filaments will also depend on the frequency: at high frequencies, the applied transverse field will partly be shielded by the outer edge filaments so that the internal filaments will see a smaller excursion of the magnetic field and thus dissipate less energy.

In addition, equation [START_REF] Yamamoto | Helical and poloidal coil R&D in LHD[END_REF] indicates that the coupling power density 𝑃 will rise as 𝑓 2 in the low frequency domain and will become constant reaching its maximum for frequencies higher than 1/(2𝜋𝜏) as indicated in [START_REF] Carr | Longitudinal and transverse field losses in multifilament superconductors[END_REF].

As it is widely used within the applied superconductivity community, we can also express the losses in terms of average losses per cycle 𝑄 per unit volume (of filamentary zone); this can be done very quickly multiplying 𝑃 by the period 𝑇 of the cycle. Using (6), we have

𝑄 = 𝐵 𝑝 2 2𝜇 0 2𝜋𝑛𝜏𝜔 1 + (𝜔𝜏) 2 (7) 
Of course these considerations and formulae are relevant only to the coupling losses generated by a transverse field and assume that the outer edge filaments are not saturated and that the composite is not carrying any transport current. In case of saturation, we would need to add the penetration losses corresponding to the work done by the variation of the magnetic field in the saturated filaments on the outer edge which is very similar to hysteresis losses in a single filament but at strand scale [START_REF] Ries | AC-losses in multifilamentary superconductors at technical frequencies[END_REF]. Regarding the impact of a transport current on these losses, it has been investigated both theoretically [START_REF] Morgan | Theoretical Behavior of Twisted Multicore Superconducting Wire in a Time-Varying Uniform Magnetic Field[END_REF], [START_REF] Ogasawara | Transient field losses in multifilamentary composite conductors carrying dc transport currents[END_REF] and experimentally [START_REF] Ogasawara | Alternating field losses in superconducting wires carrying dc transport currents. Part 2: multifilamentary composite conductors[END_REF], [START_REF] Salmon | AC losses in composite superconducting wires[END_REF] but we will not detail its nature here.

From an experimental point of view, Kwasnitza [START_REF] Kwasnitza | Scaling law for the ac losses of multifilament superconductors[END_REF] has measured 𝑄 vs 𝑓 curves for a transverse sinusoidal applied magnetic field up to roughly 15Hz for composites featuring different twist pitchesfrom 5 to 50 mm. He has experimentally highlighted the global dependence of the time constant of the composite as 1/𝑙 𝑝 2 (with 𝑙 𝑝 the twist pitch of the filaments) as indicated by equation ( 2), the time constant being here determined by the maximum of each 𝑄 vs 𝑓 curve. The 𝑄(𝑓 = 0) values deduced from linear fittings of the measured 𝑄 vs 𝑓 curves in the low frequency domain are all equal to the same value which corresponds to the hysteresis losses per cycle.

According to equation [START_REF] Koide | JT-60SA superconducting magnet system[END_REF], the curve of losses per unit volume per cycle Q versus the angular frequency 𝜔 of the sinusoidal applied magnetic field (curve referred to as "𝑄 vs 𝑓 curve" thereafter) will exhibit a maximum at 𝜔 = 1/𝜏 and its initial slope will be proportional to 𝑛𝜏. In other words, this means that for composite containing only one filamentary zone located at the center of the strand (F/R/…/R types), the time constant 𝜏 of the system can be determined using one method or the other.

However a precision is needed on this point. Indeed, let us note 𝐵 𝑟𝑒𝑎𝑐𝑡 the reacting magnetic field generated by the supercurrent flowing in the outer edge filament. This field will be proportional to the previously mentioned 𝐾 0 (amplitude of the cosine supercurrent distribution) and, by superposition, we can say that the internal field 𝐵 𝑖 is the sum of the applied field 𝐵 𝑎 and of the reacting magnetic field 𝐵 𝑟𝑒𝑎𝑐𝑡 , therefore : 𝐵 𝑖 = 𝐵 𝑎 + 𝐵 𝑟𝑒𝑎𝑐𝑡 . Equation (1) states that 𝐵 𝑖 + 𝜏𝐵 ̇𝑖 = 𝐵 𝑎 so, replacing 𝐵 𝑖 with (𝐵 𝑎 + 𝐵 𝑟𝑒𝑎𝑐𝑡 ), we obtain 𝐵 𝑎 + 𝐵 𝑟𝑒𝑎𝑐𝑡 + 𝜏(𝐵 ̇𝑎 + 𝐵 ̇𝑟𝑒𝑎𝑐𝑡 ) = 𝐵 𝑎 which leads to 𝐵 𝑟𝑒𝑎𝑐𝑡 + 𝜏𝐵 ̇𝑟𝑒𝑎𝑐𝑡 = -𝜏𝐵 ̇𝑎 (8) where the -𝜏𝐵 ̇𝑎 term can be seen as the exciting magnetic field while the 𝜏𝐵 ̇𝑟𝑒𝑎𝑐𝑡 one reflects the self-induction.

It is important to point out the fact that 𝜏 is present on both sides of equation ( 8), but it does not have the same meaning at all. In fact, the 𝜏 on the left-hand side reflects the coupling of the supercurrent with itself and therefore really corresponds to the definition of time constant of a system; it refers to the time needed for the induced supercurrent to relax when the applied field 𝐵 𝑎 is no longer time-varying (i.e. when the exciting magnetic field -𝜏𝐵 ̇𝑎 is zero). Actually it exactly corresponds to the "L/R" time constant of a RL circuit, L being the self-inductance and R the resistance. On the other hand, the 𝜏 present on the right-hand side of equation ( 8) reflects the coupling between the supercurrent and the external source generating the applied field 𝐵 𝑎 : it therefore does not answer to the definition of time constant of a system, it can alternatively be seen as "M/R" where M is the mutual inductance between the supercurrent and the external source and R the resistance which is here the same as for the RL circuit. The only reason why the 𝜏 on both sides of ( 8) are equal here is because both the field 𝐵 𝑟𝑒𝑎𝑐𝑡 created by the supercurrent and the applied field 𝐵 𝑎 are uniform and oriented along the y-axis in the volume enclosed by the supercurrent: the self-inductance L of the supercurrent and the mutual inductance M between the supercurrent and the external source have then here the same value. It thus explains why it is possible to measure the time constant of a composite in steady-state or slowly time-varying regimes even though the composite cannot express its own time constant in these regimes. This point is a very important one as today it is not unusual to encounter values of the "𝑛𝜏" parameter -measured on 𝑄 vs 𝑓 curves of conductors -used to deduce the conductor response for regimes other than steady-state ones. This "𝑛𝜏" parameter is determined from the initial slope of the measured 𝑄 vs 𝑓 curve by analogy with the F or F/R composite; indeed in the low frequency region, i.e. for 𝜔𝜏 ≪ 1, equation [START_REF] Koide | JT-60SA superconducting magnet system[END_REF] indicates that the 𝑄 vs 𝑓 curve becomes linear with a slope equal to 2𝜋 2 𝐵 𝑝 2 𝑛𝜏/𝜇 0 .

As a matter of fact, well before reaching the conductor scale, it could be misleading to use the "𝑛𝜏" value deduced from the initial slope of the 𝑄 vs 𝑓 curve to extrapolate the response of some composites (e.g. featuring a copper core, as the one displayed on Figure 11) at higher frequencies. Indeed, at the beginning of the 80's, Ciazynski has studied the coupling losses occurring in a R/F/R composite [START_REF] Ciazynski | Distributions de courant et pertes à l'intérieur d'un composite multifilamentaire supraconducteur soumis à un champ magnétique variable[END_REF] and has shown that the internal induction 𝐵 𝑖 could not be modeled by equation (1). In reality, in addition to the supercurrent flowing through the outer edge filaments, another supercurrent is flowing in the inner edge filaments; the classical description with a single time constant is therefore no longer valid. To model the behavior of these supercurrents, one has to replace the time constant 𝜏 with a two-by-two matrix containing four time coefficients which reflect the electromagnetic coupling (self and mutual) between the supercurrents; the new time constants of this system are the eigenvalues of the previous matrix. Ciazynski has derived the expressions of the four time coefficients and the equation governing the supercurrents for any time regime. He has also expressed the power dissipated by the coupling currents but only for slowly time-varying regimes.

As a consequence, when trying to model the response of the JT-60SA TF conductor strand which is of R/F/R/R type (Cu core, filamentary zone, CuNi barrier and outer Cu layer, see Figure 11) for regimes other than very slowly time-varying ones, we have realized that there was not any analytical solution to this problem in the literature. This is due to the fact that the design of composites has kept evolving because of the more and more challenging environment strands have to face (e.g. larger superconducting tokamaks) while the analytical modeling of coupling losses has been abandoned in favor of numerical modeling.

Accordingly we have decided to develop a general analytical modeling of coupling losses generated inside composites featuring any number of concentric layers of any nature (filamentary or resistive) in order to  provide the community with an exhaustive model able to thoroughly describe the magnetic behavior of any cylindrical composite  open the way for the study of the composites stability thanks to the ability of the model to generate detailed cartographies of the power density with very low CPU consumption  create a tool able to rationally design superconducting composites with respect to their coupling losses and their magnetic environment This general analytical model is presented in the next section.

II.2 Development of the Coupling Losses Algorithm for Superconducting Strands

In this section, we will present the analytical model we have used to determine the main physical fields and the coupling losses induced in any axisymmetric composite. The outputs of this model are used to build the Coupling Losses Algorithm for Superconducting Strands (CLASS) which aims at modeling the magnetic response of a composite to any transverse and uniform magnetic excitation.

II.2.1 Methodology

First of all, we will here describe the methodology we have used to model the response of a composite to a time-varying transverse and uniform magnetic field. The nature of this problem could be assimilated to the eddy currents one except that the superconducting parts (filaments) of the composite play a major role and induces strong differences. Indeed, they have a zero electric field in their volume when they are not saturated; therefore they will impose multiple boundary conditions in the composite since each filament will exhibit an equipotential in its whole volume.

In a classical holistic approach of the problem, we would start by considering a conductor of resistivity 𝜌 subject to a time-varying magnetic field and derive the equation governing its behavior. If we apply the curl operator on both sides of Maxwell-Faraday equation ∇ ⃗ ⃗⃗ × 𝐸 ⃗⃗ = -𝐵 ⃗⃗ ̇; we then obtain

∇ ⃗ ⃗⃗ × (∇ ⃗ ⃗⃗ × 𝐸 ⃗⃗ ) = -∇ ⃗ ⃗⃗ × 𝐵 ⃗⃗ ̇
which gives, using Maxwell-Ampère equation ∇ ⃗ ⃗⃗ × 𝐵 ⃗⃗ = 𝜇 0 J ⃗ (the displacement current is considered here to be negligible, see assumption A6 after) ∇ ⃗ ⃗⃗ (∇ ⃗ ⃗⃗ . 𝐸 ⃗⃗ ) -∆ ⃗ ⃗⃗ 𝐸 ⃗⃗ = -𝜇 0 𝐽 ⃗ ̇ If we add the local Ohm's law 𝐸 ⃗⃗ = 𝜌𝐽 ⃗ , we now have

∆ ⃗ ⃗⃗ 𝐽 ⃗ - 𝜇 0 𝜌 𝐽 ⃗ ̇= 0 ⃗⃗ (9)
Therefore the induced currents are governed by a classical diffusion equation. However due to the presence of the multiple boundary conditions imposed by the superconductor and the complex geometry (helicoids) of the filaments, this approach seems to be too complex to analytically solve the problem.

Consequently we propose an alternative vision based on the determination of the spatial form of the induced currents; this approach will be used in all our analytical studies at each scale of a superconducting cable (from a single composite to any multi-stage bundle).

When a conductor is subject to a time-varying magnetic field 𝐵 𝑎 , we know that a set of currents will be induced to shield the conductor from this magnetic variation. We can then virtually split the shielding currents; indeed, a part of these currents can be seen as shielding the time-variation of the magnetic field 𝐵 𝑎 produced by an external source while the other part of the induced currents will try to shield the timevariation of the magnetic field 𝐵 𝑟𝑒𝑎𝑐𝑡 produced by all the induced currents (the 𝐵 𝑟𝑒𝑎𝑐𝑡 field can then be seen as a kind of self-field).

Our method aims at determining the spatial form of the induced currents using the logical chain displayed on Figure 15: 𝐵 𝑎 ⃗⃗⃗⃗⃗ ̇ creates an electric field 𝐸 (1) ⃗⃗⃗⃗⃗⃗⃗⃗ which gives rise to a spatial distribution of currents 𝐽 (1) ⃗⃗⃗⃗⃗⃗⃗ which in turn produces a magnetic field 𝐵 (1) ⃗⃗⃗⃗⃗⃗⃗⃗⃗ . The time-variation of 𝐵 (1) ⃗⃗⃗⃗⃗⃗⃗⃗⃗ , i.e. 𝐵 (1) ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ̇, creates 𝐸 (2) ⃗⃗⃗⃗⃗⃗⃗⃗ which generates a distribution of currents 𝐽 (2) ⃗⃗⃗⃗⃗⃗⃗ which in turn produces a magnetic field 𝐵 (2) ⃗⃗⃗⃗⃗⃗⃗⃗⃗ and so on.

Let us assume that the spatial distribution of currents 𝐽 (𝑘) ⃗⃗⃗⃗⃗⃗⃗ can be modeled using a linearly independent family of 𝑁 𝑘 spatial functions (𝑓 1 (𝑘) , 𝑓 2 (𝑘) , … , 𝑓 𝑁 𝑘 (𝑘) ) and let us call this family 𝐹 (𝑘) , this means that we can write 𝐽 (𝑘) ⃗⃗⃗⃗⃗⃗⃗ at every point of space 𝑀 and at every instant 𝑡 as

𝐽 (𝑘) ⃗⃗⃗⃗⃗⃗⃗ (𝑀, 𝑡) = ∑ 𝑎 𝑖 (𝑘) (𝑡)𝑓 𝑖 (𝑘) (𝑀) 𝑛 𝑘 𝑖=1
where (𝑎 𝑖 (𝑘) )

1≤𝑖≤𝑛 𝑘 are functions of time only and (𝑓 𝑖 (𝑘) )

1≤𝑖≤𝑛 𝑘 are the spatial functions constituting the 𝐹 (𝑘) linearly independent family.

By definition, the time-variation of 𝐽 (𝑘) ⃗⃗⃗⃗⃗⃗⃗ , i.e. 𝐽 (𝑘) ⃗⃗⃗⃗⃗⃗⃗ ̇, creates the new distribution 𝐽 (𝑘+1) ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ which can be modeled using the linearly independent family of spatial functions 𝐹 (𝑘+1) , this means that the timevariation of each element 𝑎 𝑖 (𝑘) (𝑡)𝑓 𝑖 (𝑘) (𝑀) of 𝐽 (𝑘) ⃗⃗⃗⃗⃗⃗⃗ will produce a sub-distribution which can be expressed using the spatial functions of 𝐹 (𝑘+1) . Our iterative process then stops as soon as the family 𝐹 (𝑁) of spatial functions of the distribution 𝐽 (𝑁) ⃗⃗⃗⃗⃗⃗⃗⃗ is included in the families (𝐹 (𝑘) ) 1≤𝑘≤𝑁-1 of spatial functions of the previous distributions (𝐽 (𝑘) ⃗⃗⃗⃗⃗⃗⃗ )

1≤𝑘<𝑁

, i.e. when 𝐹 (𝑁) ∈ (𝐹 (1) ⊕ 𝐹 (2) ⊕ … ⊕ 𝐹 (𝑁-1) ).

Indeed, since 𝐹 (𝑁) is included in the (𝐹 (𝑘) ) 1≤𝑘≤𝑁-1 families, we can express 𝐽 (𝑁) ⃗⃗⃗⃗⃗⃗⃗⃗ using the spatial functions of the (𝐹 (𝑘) ) 1≤𝑘≤𝑁-1 families, i.e. 𝐽 (𝑁) ⃗⃗⃗⃗⃗⃗⃗⃗ can be expressed as a linear combination of the

(𝑎 𝑖 (𝑘) (𝑡)𝑓 𝑖 (𝑘) (𝑀))
1≤𝑖≤𝑛 𝑘 ,1≤𝑘≤𝑁-1 elements. However, the time-variation of these elements can, by assumption, only produce sub-distributions that can be expressed using the spatial functions of the (𝐹 (𝑘) ) 1≤𝑘≤𝑁 families, thus of the (𝐹 (𝑘) ) 1≤𝑘≤𝑁-1 families since 𝐹 (𝑁) is included in the (𝐹 (𝑘) ) 1≤𝑘≤𝑁-1

families. We immediately conclude that the 𝐽 (𝑁+1) ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ distribution generated by 𝐽 (𝑁+1) ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ̇ can be expressed using the spatial functions of the (𝐹 (𝑘) ) 1≤𝑘≤𝑁-1 families only. Applying the same logic to any 𝐽 (𝑁+𝑝) ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗

with 𝑝 a positive integer, we deduce that every (𝐽 (𝑘) ⃗⃗⃗⃗⃗⃗⃗ )

𝑘≥1 can be expressed using spatial functions of the (𝐹 (𝑘) ) 1≤𝑘≤𝑁-1 families only.

When the 𝑁 𝑡ℎ iteration is reached we are then sure to have found all the spatial functions required to model the global distribution of induced currents (in other words, all the spatial modes) and the linearly independent family 𝐹 of all the spatial functions is 𝐹 = (𝐹 (1) ⊕ 𝐹 (2) ⊕ … ⊕ 𝐹 (𝑁-1) ); this means that the global distribution of induced currents 𝐽 ⃗ = ∑ 𝐽 (𝑘) ⃗⃗⃗⃗⃗⃗⃗ 𝑁 𝑘=1

must be of the form

𝐽 ⃗ (𝑀, 𝑡) = ∑ 𝑎 𝑖 (𝑡)𝑓 𝑖 (𝑀) 𝑛 𝐹 𝑖=1 (10) 
where (𝑎 𝑖 ) 1≤𝑖≤𝑛 𝐹 are functions of time only and (𝑓 𝑖 ) 1≤𝑖≤𝑛 𝐹 are the 𝑛 𝐹 spatial functions constituting the linearly independent family 𝐹.

Note that there can be cases where 𝑁 is equal to infinity, meaning that new spatial functions will be involved at each iteration, it is therefore not possible to find them all in a finite number of iterations. However, even in this situation, it may be possible to quickly identify the nature of the spatial functions that will be involved in the next iterations. When this occurs we can also say that we have reached the end of our analytical procedure as soon as we have identified the nature of the functions induced at each new iteration. This analytical iterative procedure is very useful as it enables us to find the spatial form of the induced currents; it can be seen as another way for solving the Laplacian of equation [START_REF] Van Lanen | JackPot: A novel model to study the influence of current nonuniformity and cabling patterns in cable-in-conduit conductor[END_REF]. The main difference between both methods lies in the fact that we only consider the spatial modes that will be excited, while the solving of the Laplacian will disclose all the allowed spatial modes, even those that will not be excited because of the spatial form of the external applied magnetic field.

As a consequence we will always be able to suppose a solution to equation (9) under the form given by (10) which will then simply be reduced to a first-order differential equation in time on the (𝑎 𝑖 ) 1≤𝑖≤𝑁 𝐹 functions of [START_REF] Wilson | Time-vaying fields and A.C. losses[END_REF].

It is important to point out that our logical procedure does not correspond to what physically occurs inside a conductor when shielding its volume. As a matter of fact, all distributions (𝐽 (𝑘) ⃗⃗⃗⃗⃗⃗⃗ )

𝑘≥1 are induced at the same time and our decomposition is a simple view of the mind of the magnetic shielding effect; it therefore does not reflect the order of occurrence of the different shielding effects. As a result, when trying to analytically find the spatial form of the induced currents, we will always begin by a study in regimes where all the induced currents are not time-varying.

First because the solution provided by this study can be extended to commonly encountered regimes where the applied magnetic field 𝐵 𝑎 is slowly time-varying (e.g. when ramp-up time is long compared to the largest time constant of the system) and secondly, because this solution provides the current distribution 𝐽 1 ⃗ ⃗⃗⃗ needed in our logical chain. By abuse of language the regimes where all the induced currents are not time-varying will be referred to as "steady-state regimes" in the following. Note that in these regimes, the applied magnetic field 𝐵 𝑎 is supposed to be time varying.

We have followed this methodology during the study at composite scale and we present here a schematic summary of the analytical content of this study (as mentioned in section I.5 ):

 In section II.2.3 we establish the expression of the electric field due to the time variation of the applied magnetic field 𝑩 𝒂 ⃗⃗⃗⃗⃗⃗ and we then deduce the distribution of currents induced in the composite in steady-state regime  In section II.2.4 we express the magnetic field generated by the distribution of current found in steady-state regime (at the end of section II.2.3 ). We then compute the new distribution of current induced by the time variation of this magnetic field. Finally, we combine these results to those of section II.2.3 to establish the equation of the composite for any time regime  In section II.2.5 we evaluate the shielding made by the outer copper sheath and we discuss the saturation of filaments  In section II.2.6 we compute the power generated by coupling currents as a function of coefficients, previously introduced in section II.2.3  In section II.2.7 we express the currents and the electric and magnetic fields in the composite as a function of the previous coefficients  In section II.2.8 we establish the expression of coupling losses as a function of the previous coefficients. We also demonstrate that the coupling losses generated inside complex composites can be expressed as a sum of the coupling losses generated inside simple composites; this result is important and will be used in the study of a two cabling stages conductor

II.2.2 Assumptions

The main assumptions used in our model are the classical ones: A1. The system is invariant by translation along the composite axis (z-axis, see Figure 16)

A2. The external magnetic field 𝐵 𝑎 is assumed transverse (along the y-axis, see Figure 16) and spatially uniform within the composite A3. The composite does not carry any transport current A4. The filaments are not saturated, i.e. 𝐸 𝑠 ⃗⃗⃗⃗⃗ = 0 ⃗⃗ in the filaments, with 𝑠 the longitudinal direction along the filaments. This relation is extended to the whole filamentary zone with the commonly used [START_REF] Wilson | Time-vaying fields and A.C. losses[END_REF], [START_REF] Ries | AC-losses in multifilamentary superconductors at technical frequencies[END_REF], [START_REF] Turck | Coupling losses in various outer normal layers surrounding the filament bundle of a superconducting composite[END_REF], [START_REF] Ciazynski | Distributions de courant et pertes à l'intérieur d'un composite multifilamentaire supraconducteur soumis à un champ magnétique variable[END_REF] homogeneous representation presented in [START_REF] Carr | Longitudinal and transverse field losses in multifilament superconductors[END_REF] A5. The filaments are lightly twisted, i.e.

( 2𝜋𝑅 𝑙 𝑝 ) 2
≪ 1 where 𝑅 is the composite radius and 𝑙 𝑝 is the twist pitch of the filaments A6. The time variation of the external magnetic field 𝐵 𝑎 is slow enough to neglect the displacement current so that ∇ ⃗ ⃗⃗ . J ⃗ = 0 where J ⃗ is the current density inside the composite A7. The time variation of the external magnetic field 𝐵 𝑎 is also slow enough to ensure that the copper sheath does not magnetically shield its enclosed volume

The following Maxwell's equation ∇ ⃗ ⃗⃗ × 𝐵 ⃗⃗ = 𝜇 0 J ⃗ + 𝜇 0 𝜀 0 𝐸 ⃗⃗ ̇ can be reduced to ∇ ⃗ ⃗⃗ × 𝐵 ⃗⃗ = 𝜇 0 J ⃗ if the displacement current is negligible compared to the current flowing inside the composite (assumption A6). This leads to the following condition:

𝜇 0 𝜀 0 ‖𝐸 ⃗⃗ ̇‖ 𝜇 0 ‖J ⃗ ‖ = 𝜀 0 ‖𝐸 ⃗⃗ ̇‖ ‖J ⃗ ‖ ≪ 1
Using the complex notations we can write ‖𝐸 ⃗⃗ ̇‖ ~‖𝐸 ⃗⃗ ‖2𝜋𝜔 with 𝜔 the angular frequency. Inside the composite, Ohm's law states that 𝐸 ⃗⃗ = 𝜌J ⃗ with 𝜌 the local resistivity, therefore

‖𝐸 ⃗⃗ ̇‖ ‖J ⃗ ‖ ~𝜌𝜔.
The previous condition becomes then 𝜀 0 𝜌𝜔 ≪ 1, or alternatively, using 𝜔 = 2𝜋𝑓 𝑓 ≪ 1 2𝜋𝜀 0 𝜌 If we consider the cupronickel resistivity which is within the 10 -7 𝛺. 𝑚 range (usually the highest one in the composite), 2𝜋𝜀 0 𝜌 is then within the 10 -17 𝑠 range.

Consequently, we can neglect the displacement current as long as 𝑓 ≪ 10 17 

𝐻𝑧

The classical range of frequencies of magnetic variation considered for coupling losses being largely inferior to 10 17 𝐻𝑧, we can legitimately reduce the previous Maxwell's equation to ∇ ⃗ ⃗⃗ × 𝐵 ⃗⃗ = 𝜇 0 J ⃗ In addition, since mathematically ∇ ⃗ ⃗⃗ . (∇ ⃗ ⃗⃗ × 𝐵 ⃗⃗ ) = 0, we can conclude that ∇ ⃗ ⃗⃗ . 𝐽 ⃗ = 0; assumption A6 is then justified. Assumption A7 will be considered later because we first need to introduce some analytical tools to justify it.

In our approach, conversely to the configurations explored in the previous analytical models that were limited in number and/or nature of layers, we allow ourselves to consider any of the possible configurations: composite whose cross-section consists of 𝑛 circular concentric layers (see Figure 16) either filamentary (i.e. superconducting filaments embedded in a resistive matrix) or purely resistive. The trajectory followed by each filament is a helix of radius 𝑟 and constant pitch 𝑙 𝑝 , whose center is the center of the composite. The local geometric coordinate system associated to each filament is curvilinear and described by ( .

Using assumption A5, we then deduce

𝑡𝑎𝑛 2 𝛼 ≪ 1 (15) 

II.2.3 Study in steady-state regime

 We will derive here the electric field due to the time variation of the applied magnetic field 𝑩 𝒂 ⃗⃗⃗⃗⃗⃗ and we will then deduce the distribution of currents induced in the composite in steady-state regime.

By superposition, we can express the magnetic field 𝐵 ⃗⃗ inside the composite as 𝐵 ⃗⃗ = 𝐵 𝑎 ⃗⃗⃗⃗⃗ + 𝐵 𝑟𝑒𝑎𝑐𝑡 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ with 𝐵 𝑎 ⃗⃗⃗⃗⃗ the applied magnetic field and 𝐵 𝑟𝑒𝑎𝑐𝑡 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ the reacting magnetic field created by the induced currents flowing through the composite. Since by assumption the induced currents are not time-varying (we recall that the term "steady-state regime" refers to a regime where the induced currents are not time-varying.), neither is the reacting magnetic field, then 𝐵 𝑟𝑒𝑎𝑐𝑡 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ̇= 0 ⃗⃗ (0 ⃗⃗ is the null vector).

As a result, Maxwell-Faraday equation ∇ ⃗ ⃗⃗ × 𝐸 ⃗⃗ = -𝐵 ⃗⃗ ̇ gives here

∇ ⃗ ⃗⃗ × 𝐸 ⃗⃗ = -𝐵 𝑎 ⃗⃗⃗⃗⃗ ̇ (16) 
The expression of this equation in cylindrical coordinates (𝑟, 𝜃, 𝑧) leads to the following system

𝜕𝐸 𝑧 𝜕𝜃 = -𝑟𝐵 ̇𝑎 sin 𝜃 (17) 
𝜕𝐸 𝑧 𝜕𝑟 = 𝐵 ̇𝑎 cos 𝜃 (18) 
𝜕(𝑟𝐸 𝜃 ) 𝜕𝑟 = 𝜕𝐸 𝑟 𝜕𝜃 (19) 
Equations ( 17) and [START_REF] Schild | A model for calculating AC losses in multistage superconducting cables[END_REF] give

𝐸 𝑧 = 𝑟𝐵 ̇𝑎 cos 𝜃 + 𝐸 0
with 𝐸 0 a constant value (we consider here a steady-state regime).

In a cylinder made of a material of resistivity 𝜌, this longitudinal electric field would give rise to a longitudinal current 𝐽 𝑧 = 𝐸 𝑧 /𝜌 whose average over the whole volume would be 𝐸 0 /𝜌. According to assumption A3, the average current should be zero; it follows that 𝐸 0 = 0. By analogy, 𝐸 𝑧 can then be reduced everywhere in the composite to

𝐸 𝑧 = 𝑟𝐵 ̇𝑎 cos 𝜃 (20) 
In 

In cylindrical coordinates, it can be reformulated as

𝜕(𝑟𝐸 𝑟 ) 𝜕𝑟 + 𝜕𝐸 𝜃 𝜕𝜃 = 0 (24) 
Together with [START_REF] Schild | AC losses dependence on a CuNi layer location in NbTi CICC[END_REF] and [START_REF] Carr | Longitudinal and transverse field losses in multifilament superconductors[END_REF], we can deduce

𝐸 𝑟 = - 𝑙 𝑝 2𝜋 𝐵 ̇𝑎 sin 𝜃 + 𝑉 0 𝑟 (25) 
with 𝑉 0 a constant value (we consider here a steady-state regime).

If the considered filamentary zone is central, we can readily conclude that 𝑉 0 must be zero in order not to obtain a divergent solution at 𝑟 = 0; in the opposite case, we have to retain this value.

We have now calculated the expression of the transverse electric field in each filamentary zone and therefore now need to study that of each resistive zone.

Using the previously introduced notation 𝐸 𝑡 ⃗⃗⃗⃗ and equation [START_REF] Nijhuis | Change of interstrand contact resistance and coupling loss in various prototype ITER NbTi conductors with transverse loading in the Twente Cryogenic Cable Press up to 40,000 cycles[END_REF], we can write ∇ ⃗ ⃗⃗ × 𝐸 𝑡 ⃗⃗⃗⃗ = 0 ⃗⃗ since 𝐵 𝑎 ⃗⃗⃗⃗⃗ ̇ is oriented along the y-axis; we can then conclude that there exists a scalar potential 𝑉 𝑡 such that

𝐸 𝑡 ⃗⃗⃗⃗ = -∇ ⃗ ⃗⃗ 𝑉 𝑡 (26) 
Combining it with (23), it appears that in each resistive zone, 𝑉 𝑡 satisfies Laplace's equation In order to complete the system, we must add the boundary conditions. First, at each interface between layers, the continuity of the azimuthal component of the transverse electric field 𝐸 𝜃 between the layers 𝑘 and 𝑘 + 1 can expressed as

∆𝑉 𝑡 = 0 (27 
𝐸 𝜃 𝑘 (𝑅 𝑘 ) = 𝐸 𝜃 𝑘+1 (𝑅 𝑘 ) (30) 
Secondly, we have to consider Kirchhoff's current law; its expression depends on the nature of the interface (i.e. resistive/resistive, resistive/filamentary or filamentary/filamentary): 


where 𝜌 𝑡 𝑘 is the transverse resistivity of the layer 𝑘.

 At an interface of resistive/filamentary or filamentary/filamentary type, Kirchhoff's current law must include the additional current flowing through the filaments located on the boundary so that it becomes

𝜕𝐾 𝑠 𝑘 𝜕𝜃 = 𝑙 𝑝 2𝜋 [ 𝐸 𝑟 𝑘 (𝑅 𝑘 ) 𝜌 𝑡 𝑘 - 𝐸 𝑟 𝑘+1 (𝑅 𝑘 ) 𝜌 𝑡 𝑘+1 ] (32) 
where 𝐾 𝑠 𝑘 is the surface current (i.e. in 𝐴. 𝑚 -1 ) flowing through all the filaments located at 𝑟 = 𝑅 𝑘 .

If the composite is composed of at least one filamentary zone and one resistive layer, there will necessarily be an interface of resistive/filamentary type. Assuming layers 𝑘 and 𝑘 + 1 are respectively resistive and filamentary, expressions [START_REF] Carr | Longitudinal and transverse field losses in multifilament superconductors[END_REF] and (29) and equation [START_REF] Ciazynski | Distributions de courant et pertes à l'intérieur d'un composite multifilamentaire supraconducteur soumis à un champ magnétique variable[END_REF] implies

{ 𝑏 𝑘 -1 -𝑏 𝑘 1 = - 𝑙 𝑝 2𝜋 𝐵 ̇𝑎 𝑎 𝑘 𝑖 = 0, 𝑖 ∈ ℤ * 𝑏 𝑘 𝑖 = 0, 𝑖 ∈ ℤ * \{-1,1} (33) 
since cos(𝑖𝜃) 𝑖∈ℕ * and sin(𝑖𝜃) 𝑖∈ℕ * are linearly independent families.

Assuming now that layers 𝑘 and 𝑘 + 1 are respectively filamentary and resistive, we obtain

{ 𝑏 𝑘+1 -1 ( 𝑅 𝑘+1 𝑅 𝑘 ) 2 -𝑏 𝑘+1 1 = - 𝑙 𝑝 2𝜋 𝐵 ̇𝑎 𝑎 𝑘+1 𝑖 = 0, 𝑖 ∈ ℤ * 𝑏 𝑘+1 𝑖 = 0, 𝑖 ∈ ℤ * \{-1,1} (34) 
Therefore, in a resistive layer 𝑘 in contact with a filamentary zone, the transverse electric field components will be of the form

{ 𝐸 𝑟 𝑘 = -[𝑏 𝑘 -1 ( 𝑅 𝑘 𝑟 ) 2 + 𝑏 𝑘 1 ] sin(𝜃) 𝐸 𝜃 𝑘 = [𝑏 𝑘 -1 ( 𝑅 𝑘 𝑟 ) 2 -𝑏 𝑘 1 ] cos(𝜃) (35) 
since 𝑏 𝑘 -1 and 𝑏 𝑘 1 are the only non-zero coefficients.

If we consider a resistive layer 𝑘 + 1 (resp. 𝑘 -1) adjacent to another resistive layer 𝑘 whose 𝐸 𝑟 𝑘 and 𝐸 𝜃 𝑘 expressions are described by [START_REF] Campbell | A general treatment of losses in multifilamentary superconductors[END_REF], boundary conditions [START_REF] Ciazynski | Distributions de courant et pertes à l'intérieur d'un composite multifilamentaire supraconducteur soumis à un champ magnétique variable[END_REF] and [START_REF] Miller | Penetration of transient magnetic fields through conducting cylindrical structures with particular reference to superconducting a.c. machines[END_REF] ensure that 𝐸 𝑟 𝑘+1 (resp. 𝐸 𝑟 𝑘-1 ) and 𝐸 𝜃 𝑘+1 (resp. 𝐸 𝜃 𝑘-1 ) expressions will also have the same form as [START_REF] Campbell | A general treatment of losses in multifilamentary superconductors[END_REF], again because cos(𝑖𝜃) 𝑖∈ℕ * and sin(𝑖𝜃) 𝑖∈ℕ * are linearly independent families.

We have thus shown by induction that 𝐸 𝑟 𝑘 and 𝐸 𝜃 𝑘 expressions in every resistive layer 𝑘 of the composite will share the same form as [START_REF] Campbell | A general treatment of losses in multifilamentary superconductors[END_REF].

Knowing the general form of the electric field in the resistive layers, we can now deduce from equation (32) that the surface current 𝐾 𝑠 𝑘 flowing through the filaments located at 𝑟 = 𝑅 𝑘 (if at least one of the layers 𝑘 and 𝑘 + 1 is filamentary) must be of the form 𝐾 𝑠 𝑘 = 𝐾 0 𝑘 cos(𝜃) because of the expressions of 𝐸 𝑟 in the filamentary and resistive zones. In addition, the 𝑉 0 term present in equation [START_REF] Turck | Coupling losses in various outer normal layers surrounding the filament bundle of a superconducting composite[END_REF] must be zero in order to ensure assumption A3 (no transport current).

From this exhaustive study, we are now able to give the general expressions of 𝐸 𝑟 𝑘 , 𝐸 

In order to ease and bring some consistency to the notation we have replaced the 𝑏 𝑘 -1 and 𝑏 𝑘 1 coefficients of a layer 𝑘 respectively with 𝐸 0 2𝑘-1 and 𝐸 0 2𝑘 since they have the dimension of an electric field (𝑏 𝑘+1 -1 and 𝑏 𝑘+1 1 are thus now noted as 𝐸 0 2𝑘+1 and 𝐸 0 2𝑘+2 respectively).

We can now produce a short summary of the results achieved so far:  If the layer 𝑘 is filamentary, we have

{ 𝐸 0 2𝑘-1 = 0 𝐸 0 2𝑘 = 𝑙 𝑝 2𝜋 𝐵 ̇𝑎 (37) 
 For an interface of resistive/resistive type located at 𝑟 = 𝑅 𝑘 , boundary equations [START_REF] Ciazynski | Distributions de courant et pertes à l'intérieur d'un composite multifilamentaire supraconducteur soumis à un champ magnétique variable[END_REF] 

 Using equation [START_REF] Jl | Coupling-current losses in composites and cables: analytical calculations in Handbook of Applied Superconductivity[END_REF] and the general form of 𝐸 𝑟 𝑘 and 𝐾 𝑠 𝑘 present in [START_REF] Van De Klundert | stability and a.c. loss in composite superconductors[END_REF] we can also express each 𝐾 0 𝑘 (when they exist, i.e. on the edges of a filamentary zone) as a function of the 𝐸 0 2𝑘-1 , 𝐸 0 2𝑘 , 𝐸 0 2𝑘+1 and 𝐸 0 2𝑘+2 coefficients

𝐾 0 𝑘 = 1 ρ 𝑡 𝑘 𝑙 𝑝 2𝜋 [𝐸 0 2𝑘-1 + 𝐸 0 2𝑘 - ρ 𝑡 𝑘 ρ 𝑡 𝑘+1 ( 𝑅 𝑘+1 𝑅 𝑘 ) 2 𝐸 0 2𝑘+1 - ρ 𝑡 𝑘 ρ 𝑡 𝑘+1 𝐸 0 2𝑘+2 ] (44) 
Note that in case the ultimate zone of the composite is filamentary, we have 𝐽 𝑟 𝑛+1 (𝑅) = 𝐸 𝑟 𝑛+1 (𝑅)/𝜌 𝑡 𝑛+1 = 0 (i.e. there is no current flowing outside the composite). Using equation [START_REF] Jl | Coupling-current losses in composites and cables: analytical calculations in Handbook of Applied Superconductivity[END_REF] again, we see that equation [START_REF] Torre | AC losses measurement on strand K006-01C[END_REF] is also valid for 𝑘 = 𝑛 after having removed 𝐸 0 2𝑛+1 and 𝐸 0 2𝑛+2 , i.e.

𝐾 0 𝑛 = 1 ρ 𝑡 𝑛 𝑙 𝑝 2𝜋 [𝐸 0 2𝑛-1 + 𝐸 0 2𝑛 ] (45) 
We have now derived all the analytical equations required for the determination of every 𝐸 0 2𝑘-1 and 𝐸 0 2𝑘 coefficients. The method described in Appendix A can then be used to analytically solve the system.

From another perspective which is more suitable for automating the solving procedure with an algorithm, for a composite made of 𝑛 layers, one can express the whole system as a matrix equation

[𝐴][𝐸 0 ] = 𝑙 𝑝 2𝜋 𝐵 𝑎 ̇[𝑌]
where [𝐸 0 ] is the column vector of the 2𝑛 -1 (𝐸 0 𝑖 ) 2≤𝑖≤2𝑛 coefficients (since 𝐸 0 1 = 0). [𝐴] is a (2𝑛 -1) × (2𝑛 -1) square matrix which is automatically built line by line (depending on the nature of each interface and on the positions of the filamentary zones) from equations [START_REF] Ciazynski | Distributions de courant et pertes à l'intérieur d'un composite multifilamentaire supraconducteur soumis à un champ magnétique variable[END_REF], [START_REF] Miller | Penetration of transient magnetic fields through conducting cylindrical structures with particular reference to superconducting a.c. machines[END_REF] and [START_REF] Nijhuis | The influence of the diffusion barrier on the AC loss of Nb3Sn superconductors[END_REF] with the general expressions given by [START_REF] Van De Klundert | stability and a.c. loss in composite superconductors[END_REF] and [𝑌] is a column vector whose 2𝑛 -1 components (either 0 or 1) are deduced from equation [START_REF] Nijhuis | The influence of the diffusion barrier on the AC loss of Nb3Sn superconductors[END_REF]. The method used to automatically build [𝐴] and

[𝑌] is described in Appendix B.
The analytical study of the coupling currents induced in steady-state regimes is now achieved and we know the spatial form of these currents; the first part of our global methodology is then also achieved (first line of Figure 15). We will then make use of this knowledge to push the modeling towards any time-varying regimes following the philosophy depicted in Figure 15.

Again, by abuse of language, the term "time-varying regimes" refers here to regimes where all quantities inherent to the composite -in particular the induced currents -can no longer be considered as constant over time; they occur when the characteristic time for the external magnetic excitation 𝐵 𝑎 to vary is comparable to or smaller than the largest time constant of the system.

II.2.4 Study in time-varying regime

 We will express here the magnetic field generated by the distribution of current found in steady-state regime (at the end of section II.2.3 ). We will then compute the new distribution of current induced by the time variation of this magnetic field. Finally, we will combine these results to those of section II.2.3 to establish the equation of the composite for any time regime.

As mentioned previously, we will make use of the results of our analytical study in steady-state regimes to find the spatial solution of the induced currents in time-varying regimes. To make the link with the logical chain displayed in Figure 15, the electric field found in the previous analytical study in steady-state regimes corresponds to 𝐸 (1) ⃗⃗⃗⃗⃗⃗⃗⃗ and the associated distribution of currents to 𝐽 (1) ⃗⃗⃗⃗⃗⃗⃗ since they are due to 𝐵 𝑎 ⃗⃗⃗⃗⃗ ̇ only.

In order to follow our logical chain we will now calculate the magnetic field 𝐵 (1) ⃗⃗⃗⃗⃗⃗⃗⃗⃗ created by 𝐽 (1) ⃗⃗⃗⃗⃗⃗⃗ , i.e. created by the distribution of currents induced by 𝐵 𝑎 ⃗⃗⃗⃗⃗ ̇. The distribution of currents 𝐽 (1) ⃗⃗⃗⃗⃗⃗⃗ can be subdivided into two sub-distributions : the first one corresponds to the currents flowing through the resistive parts of the composites thus in its cross-section while the second one corresponds to the currents flowing through the superconducting filaments located on the edges of each filamentary zone.

Since the first sub-distribution of currents is exclusively flowing in the cross-section plane of the composite, it will have a tendency to produce a magnetic field oriented along the z-axis while the magnetic time-variation 𝐵 𝑎 ⃗⃗⃗⃗⃗ ̇ produced by an external source is supposed to be along the y-axis; this sub-distribution will thus not take part in the magnetic shielding of the inside of the composite and will therefore be omitted for this reason in the following.

Consequently we will consider that the magnetic field 𝐵 (1) ⃗⃗⃗⃗⃗⃗⃗⃗⃗ is exclusively produced by the second sub-distribution of currents, i.e. the currents flowing through the superconducting filaments located on the edges of each filamentary zone, and we will now focus on its determination assuming that each supercurrent flowing at 𝑟 = 𝑅 𝑘 can be seen a surface current of the form 𝐾 𝑠 𝑘 = 𝐾 0 𝑘 cos(𝜃).

Before determining the magnetic field 𝐵 (1) ⃗⃗⃗⃗⃗⃗⃗⃗⃗ produced by all the surface currents (𝐾 𝑠 𝑘 ) 1≤𝑘≤𝑛 , we will briefly calculate the magnetic field produced by only one surface current 𝐾 𝑠 𝑘 = 𝐾 0 𝑘 cos(𝜃) located at 𝑟 = 𝑅 𝑘 .

Maxwell-Ampère equation ∇ ⃗ ⃗⃗ × 𝐵 ⃗⃗ = 𝜇 0 J ⃗ combined with the relation between the magnetic field 𝐵 ⃗⃗ and the magnetic vector potential 𝐴 ⃗ , i.e. 𝐵 ⃗⃗ = ∇ ⃗ ⃗⃗ × 𝐴 ⃗ leads to ∆ ⃗ ⃗⃗ 𝐴 ⃗ = -𝜇 0 J ⃗ considering the Coulomb gauge, that is to say ∇ ⃗ ⃗⃗ . 𝐴 ⃗ = 0.

The supercurrent 𝐾 𝑠 𝑘 = 𝐾 0 𝑘 cos(𝜃) flowing through the filaments located at 𝑟 = 𝑅 𝑘 is oriented along the 𝑠 direction (longitudinal direction along the filaments) and can thus be decomposed as where 𝑆 is the surface where the supercurrent is flowing.

We then have

𝐴 𝜃 𝐴 𝑧 = 𝑡𝑎𝑛𝛼 (46) 
Making use of assumption A5 which implies 𝑡𝑎𝑛 2 𝛼 ≪ 1, to the first order, we can consider that the azimuthal component 𝐴 𝜃 of the magnetic vector potential created by the supercurrent is negligible compared to its axial component 𝐴 𝑧 . We can then suppose that the magnetic vector potential 𝐴 ⃗ is reduced to its axial component only: 𝐴 ⃗ = 𝐴 𝑧 𝑒 𝑧 ⃗⃗⃗⃗.

Using ∆ ⃗ ⃗⃗ 𝐴 ⃗ = -𝜇 0 J ⃗ , we can deduce that, inside and outside the supercurrent (i.e. respectively for 𝑟 < 𝑅 𝑘 and 𝑟 > 𝑅 𝑘 ), 𝐴 𝑧 satisfies Laplace's equation Note that 𝑎 𝑖𝑛𝑡 𝑖 and 𝑏 𝑖𝑛𝑡 𝑖 are zero for 𝑖 < 0 and that 𝑎 𝑒𝑥𝑡 𝑖 and 𝑏 𝑒𝑥𝑡 𝑖 are zero for 𝑖 > 0 to avoid any divergence at 𝑟 = 0 and 𝑟 → ∞. The general formulations of 𝐴 𝑧 𝑖𝑛𝑡 and 𝐴 𝑧 𝑒𝑥𝑡 are chosen so that the 𝑎 𝑖𝑛𝑡 𝑖 , 𝑎 𝑒𝑥𝑡 𝑖 ,𝑏 𝑖𝑛𝑡 𝑖 and 𝑏 𝑒𝑥𝑡 𝑖 coefficients have the dimension of a magnetic field.

∆𝐴 𝑧 = 0 ( 
Using 𝐵 ⃗⃗ = ∇ ⃗ ⃗⃗ × 𝐴 ⃗ , we can also give the general formulation of the magnetic field inside and outside the supercurrent using the general expressions given by (48)

{ 𝐵 𝑟 𝑖𝑛𝑡 (𝑟, 𝜃) = ∑[-𝑎 𝑖𝑛𝑡 𝑖 sin(𝑖𝜃) + 𝑏 𝑖𝑛𝑡 𝑖 cos(𝑖𝜃)]𝑖(𝑟/𝑅 𝑘 ) 𝑖-1 ∞ 𝑖=1 𝐵 𝑟 𝑒𝑥𝑡 (𝑟, 𝜃) = ∑ [-𝑎 𝑒𝑥𝑡 𝑖 sin(𝑖𝜃) + 𝑏 𝑒𝑥𝑡 𝑖 cos(𝑖𝜃)]𝑖(𝑟/𝑅 𝑘 ) 𝑖-1 -1 𝑖=-∞ 𝐵 𝜃 𝑖𝑛𝑡 (𝑟, 𝜃) = -∑[𝑎 𝑖𝑛𝑡 𝑖 cos(𝑖𝜃) + 𝑏 𝑖𝑛𝑡 𝑖 sin(𝑖𝜃)]𝑖(𝑟/𝑅 𝑘 ) 𝑖-1 ∞ 𝑖=1 𝐵 𝜃 𝑒𝑥𝑡 (𝑟, 𝜃) = -∑ [𝑎 𝑒𝑥𝑡 𝑖 cos(𝑖𝜃) + 𝑏 𝑒𝑥𝑡 𝑖 sin(𝑖𝜃)]𝑖(𝑟/𝑅 𝑘 ) 𝑖-1 -1 𝑖=-∞ (49)
In addition, the expressions of the magnetic field must also satisfy the interface conditions at 𝑟 = 𝑅 𝑘 . On the one hand, the continuity of the component normal to the interface which here corresponds to the radial component of the magnetic field (i.e. 𝐵 𝑟 ), leads to

𝐵 𝑟 𝑖𝑛𝑡 (𝑅 𝑘 , 𝜃) = 𝐵 𝑟 𝑒𝑥𝑡 (𝑅 𝑘 , 𝜃), 𝜃 ∈ ℝ (50) 
On the other hand, the component tangent to the interface which here corresponds to the azimuthal component of the magnetic field (i.e. 𝐵 𝜃 ), must satisfy

𝐵 𝜃 𝑒𝑥𝑡 (𝑅 𝑘 , 𝜃) -𝐵 𝜃 𝑖𝑛𝑡 (𝑅 𝑘 , 𝜃) = 𝜇 0 𝐾 0 𝑘 cos(𝜃) , 𝜃 ∈ ℝ (51) 
Since cos(𝑖𝜃) 𝑖∈ℕ * and sin(𝑖𝜃) 𝑖∈ℕ * are linearly independent families, using equation ( 50), we can deduce that

{ 𝑎 𝑖𝑛𝑡 1 = 𝑎 𝑒𝑥𝑡 -1 𝑏 𝑖𝑛𝑡 1 = -𝑏 𝑒𝑥𝑡 -1 (52) 
and from equation [START_REF] Bagni | Analysis of ITER Nb-Ti and Nb3Sn CICCs experimental Minimum Quench Energy with JackPot[END_REF], that

{ 𝑎 𝑖𝑛𝑡 1 + 𝑎 𝑒𝑥𝑡 -1 = 𝜇 0 𝐾 0 𝑘 𝑏 𝑖𝑛𝑡 1 = 𝑏 𝑒𝑥𝑡 -1 (53) 
The combination of systems ( 52) and (53) leads to the conclusion that

{ 𝑎 𝑖𝑛𝑡 1 = 𝑎 𝑒𝑥𝑡 -1 = 𝜇 0 𝐾 0 𝑘 /2 𝑏 𝑖𝑛𝑡 1 = 𝑏 𝑒𝑥𝑡 -1 = 0 (54)
Consequently, using the general expressions given by ( 48) and ( 49 

We must keep in mind that the components of the magnetic field calculated above are the components of the magnetic field created by a surface current of the form 𝐾 0 𝑘 cos(𝜃) flowing on the surface of the cylinder described by the equation 𝑟 = 𝑅 𝑘 .

We have here found that the magnetic field inside a cosine distributed surface current 𝐾 0 cos(𝜃), flowing on the surface of a cylinder, is uniform and oriented along the y-axis; this result is well known, especially in the accelerator community.

For a composite consisting in a filamentary zone only, using equations [START_REF] Nijhuis | The influence of the diffusion barrier on the AC loss of Nb3Sn superconductors[END_REF] and [START_REF] Seiler | Hysteresis Losses and Effective Jc(B) Scaling Law for ITER Nb3Sn Strands, I[END_REF], the supercurrent flowing through the outer edge filaments is found to be equal to 𝐵 ̇𝑎 = -𝜏𝐵 ̇𝑎 with 𝜏 given by equation [START_REF] Bardeen | Theory of Superconductivity[END_REF]. If 𝐵 ̇𝑎 is positive, the internal reacting magnetic field 𝐵 𝑦 𝑖𝑛𝑡 will then be negative, thus trying to shield the interior of the composite; this result is therefore physically consistent and corroborates previous analytical studies.

Furthermore, since a composite can feature multiple surface currents (on the edges of each filamentary zone), we can now express, by superposition, the magnetic vector potential 𝐴 𝑧 𝑘 (1) created by all the surface currents inside a layer 𝑘 as

𝐴 𝑧 𝑘 (1) (𝑟, 𝜃) = 𝜇 0 2 [ 1 𝑟 ∑ 𝐾 0 𝑖 𝑘-1 𝑖=1 𝑅 𝑖 2 + 𝑟 ∑ 𝐾 0 𝑖 𝑛 𝑖=𝑘 ] cos(𝜃) (58) 
where 𝐾 0 𝑖 is the amplitude of the surface current flowing at 𝑟 = 𝑅 𝑖 . Note that for an interface of resistive/resistive type, the formula above is still valid replacing the 𝐾 0 𝑖 of the considered interface with zero since there is no filament.

Following our logical chain, we can now compute the axial electric field 𝐸 𝑧 𝑘 (2) generated in each layer 𝑘 by the time-variation of the surface currents using the following alternative formulation of Maxwell-Faraday equation

𝐸 𝑧 𝑘 (2) = -𝐴 ̇𝑧𝑘 (1) (59) 
From equation [START_REF] Morgan | Theoretical Behavior of Twisted Multicore Superconducting Wire in a Time-Varying Uniform Magnetic Field[END_REF], i.e. 𝐸 𝜃 = -𝑙 𝑝

2𝜋𝑟

𝐸 𝑧 , the new azimuthal component of the electric field in a filamentary zone is

𝐸 𝜃 𝑘 (2) = 𝑙 𝑝 2𝜋𝑟 𝐴 ̇𝑧𝑘 (1) (60) 
In reality, we should also consider the azimuthal component 𝐴 𝜃 𝑘 (1) of the magnetic vector potential created by the supercurrents and have 𝐸 𝜃 𝑘 (2) = 𝑙 𝑝 2𝜋𝑟 𝐴 ̇𝑧𝑘 (1) -𝐴 ̇𝜃𝑘 (1) instead of (60). If we note 𝐴 𝑧 𝑘 𝑖 (1) and 𝐴 𝜃 𝑘 𝑖 (1) the contributions of each supercurrent 𝐾 𝑠 𝑖 , we see that

𝐸 𝜃 𝑘 (2) = ∑ [ 𝑙 𝑝 2𝜋𝑟
𝐴 ̇𝑧𝑘 𝑖 (1) -𝐴 ̇𝜃𝑘 𝑖 (1) ] 𝑛 𝑖=1

And, according to equation [START_REF] Louzguiti | AC Coupling Losses in CICCs: Analytical Modeling at Different Stages[END_REF], we can calculate the ratio of the second to the first term in the above sum:

𝐴 ̇𝜃𝑘 𝑖 (1) 𝑙 𝑝 2𝜋𝑟 𝐴 ̇𝑧𝑘 𝑖 (1) = 2𝜋𝑟 𝑙 𝑝 𝐴 ̇𝜃𝑘 𝑖 (1) 𝐴 ̇𝑧𝑘 𝑖 (1) = 2𝜋𝑟 𝑙 𝑝 𝑡𝑎𝑛𝛼 = 𝑡𝑎𝑛 2 𝛼 ≪ 1 since 𝑡𝑎𝑛𝛼 = 2𝜋𝑟 𝑙 𝑝
from equation [START_REF] Takahashi | AC Loss Measurement of 46 kA-13T Nb3Sn Conductor for ITER[END_REF].

Therefore the reduction of the magnetic vector potential 𝐴 𝑘

⃗⃗⃗⃗⃗⃗⃗⃗ created by the supercurrents to its axial component 𝐴 𝑧 𝑘 (1) only is all the more justified since the taking into account of its azimuthal component 𝐴 𝜃 𝑘 (1) has a largely negligible effect. Now, replacing 𝐴 𝑧 𝑘 (1) in equation ( 60) with its expression given in equation (58), in each filamentary zone we have

𝐸 𝜃 𝑘 (2) = 𝜇 0 2 𝑙 𝑝 2𝜋 [ 1 𝑟 2 ∑ 𝐾 ̇0𝑖 𝑘-1 𝑖=1 𝑅 𝑖 2 + ∑ 𝐾 ̇0𝑖 𝑛 𝑖=𝑘 ] cos(𝜃) (61) 
It should be noted that expression (61) of 𝐸 𝜃 𝑟𝑒𝑎𝑐𝑡𝑘 can be rewritten using the formulation present in [START_REF] Van De Klundert | stability and a.c. loss in composite superconductors[END_REF] i.e. 𝐸 𝜃 𝑘 (2) = [𝐸 0 2𝑘-1 (2) ( 𝑅 𝑘 𝑟 )

2

-𝐸 0 2𝑘 (2) ] cos(𝜃)

with, by identification

{ 𝐸 0 2𝑘-1 (2) = 𝜇 0 2 𝑙 𝑝 2𝜋 ∑ 𝐾 ̇0𝑖 𝑘-1 𝑖=1 ( 𝑅 𝑖 𝑅 𝑘 ) 2 𝐸 0 2𝑘 (2) = - 𝜇 0 2 𝑙 𝑝 2𝜋 ∑ 𝐾 ̇0𝑖 𝑛 𝑖=𝑘 (63) 
Using the previously introduced notation 𝐸 𝑡

⃗⃗⃗⃗⃗⃗⃗⃗ and Maxwell-Faraday equation ∇ ⃗ ⃗⃗ × 𝐸 (2) ⃗⃗⃗⃗⃗⃗⃗⃗ = -𝐵 (1) ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ̇, we can write ∇ ⃗ ⃗⃗ × 𝐸 𝑡

⃗⃗⃗⃗⃗⃗⃗⃗ = 0 ⃗⃗ since we have seen that the magnetic field 𝐵 (1) ⃗⃗⃗⃗⃗⃗⃗⃗⃗ produced by the surface currents did not have any axial component (i.e. along the z-axis).

From the considerations presented in our analytical study in steady-state regimes for the calculation of 𝐸 𝑟 𝑘 in the filamentary zones and the expression of 𝐸 𝜃 𝑘 (2) given by (61), we can immediately deduce that, in each filamentary zone, 𝐸 𝑟 𝑘 (2) will be given by 𝐸 𝑟 𝑘 (2) = -[𝐸 0 2𝑘-1 (2) ( 𝑅 𝑘 𝑟 ) 2 + 𝐸 0 2𝑘 (2) ] sin(𝜃)

where 𝐸 0 2𝑘-1 [START_REF] Bardeen | Theory of Superconductivity[END_REF] and 𝐸 0 2𝑘 (2) are also given by (63).

Again using considerations from the study in steady-state regimes, we can also deduce that the expressions of the transverse electric field components (𝐸 𝑟 𝑘 (2) and 𝐸 𝜃 𝑘 (2) ) in the resistive zones of the composite are also given by { 𝐸 𝑟 𝑘 (2) = -[𝐸 0 2𝑘-1 (2) ( 𝑅 𝑘 𝑟 ) 2 + 𝐸 0 2𝑘 (2) ] sin(𝜃) 𝐸 𝜃 𝑘 (2) = [𝐸 0 2𝑘-1 (2) ( 𝑅 𝑘 𝑟 ) 2 -𝐸 0 2𝑘 (2) ] cos(𝜃)

(65)
Note that here the 𝐸 0 2𝑘-1 [START_REF] Bardeen | Theory of Superconductivity[END_REF] and 𝐸 0 2𝑘 (2) coefficients are not given by (63) because the formulae presented in (63) are only valid for filamentary zones.

Since the electric field 𝐸 (2) ⃗⃗⃗⃗⃗⃗⃗⃗ shares the same spatial form as the previous one found for steady-state regimes, we can deduce using Kirchhoff's current law [START_REF] Jl | Coupling-current losses in composites and cables: analytical calculations in Handbook of Applied Superconductivity[END_REF] that the new supercurrents will also have the same form as the previous ones, i.e. 𝐾 𝑠 𝑘 (2) = 𝐾 0 𝑘 (2) cos(𝜃).

From these observations and the considerations of section II.2.1 , we can say that we have now reached the end of our logical chain because the new distribution of currents 𝐽 (2) ⃗⃗⃗⃗⃗⃗⃗ , i.e. the new surface currents (𝐾 𝑠 𝑘 (2) ) 1≤𝑘≤𝑛

, shares the same spatial form as the previous one, i.e. the previous surface currents

(𝐾 𝑠 𝑘 ) 1≤𝑘≤𝑛
, found for steady-state regimes.

We are now sure that, for any time-varying regime, the spatial form of the components of the transverse electric field in each layer 𝑘 (𝐸 𝑟 𝑘 and 𝐸 𝜃 𝑘 ) and of the supercurrents (𝐾 𝑠 𝑘 ) 1≤𝑘≤𝑛 will be given by [START_REF] Van De Klundert | stability and a.c. loss in composite superconductors[END_REF], i.e.

{ 𝐸 𝑟

𝑘 = -[𝐸 0 2𝑘-1 ( 𝑅 𝑘 𝑟 ) 2 + 𝐸 0 2𝑘 ] sin(𝜃) 𝐸 𝜃 𝑘 = [𝐸 0 2𝑘-1 ( 𝑅 𝑘 𝑟 ) 2 -𝐸 0 2𝑘 ] cos(𝜃) 𝐾 𝑠 𝑘 = 𝐾 0 𝑘 cos(𝜃) (66) 
The complete basis of spatial functions enabling the description of the system being established, we can now formulate the global equation of the system as a time-dependent only equation. Indeed, we now consider that the 𝐸 0 2𝑘-1 and 𝐸 0 2𝑘 coefficients associated to the transverse electric field in each filamentary zone 𝑘 are due both to 𝐵 ̇𝑎, i.e. the time-variation of the magnetic field created by an external source, and to the time-variation of the magnetic field created by the surface currents (𝐾 𝑠 𝑘 ) 1≤𝑘≤𝑛

. The contribution of 𝐵 ̇𝑎 in the 𝐸 0 2𝑘-1 and 𝐸 0 2𝑘 coefficients of each filamentary zone has been given through equations (37) while the contribution of the time-variation of the surface currents (𝐾 𝑠 𝑘 ) 1≤𝑘≤𝑛 is given by equations (63). Therefore for every filamentary layer 𝑘, we can now, by superposition, write

{ 𝐸 0 2𝑘-1 = 𝜇 0 2 𝑙 𝑝 2𝜋 ∑ 𝐾 ̇0𝑖 𝑘-1 𝑖=1 ( 𝑅 𝑖 𝑅 𝑘 ) 2 𝐸 0 2𝑘 = 𝑙 𝑝 2𝜋 𝐵 ̇𝑎 - 𝜇 0 2 𝑙 𝑝 2𝜋 ∑ 𝐾 ̇0𝑖 𝑛 𝑖=𝑘 (67) 
which can alternatively be written as

{ 𝐸 0 2𝑘-1 - 𝜇 0 2 𝑙 𝑝 2𝜋 ∑ 𝐾 ̇0𝑖 𝑘-1 𝑖=1 ( 𝑅 𝑖 𝑅 𝑘 ) 2 = 0 𝐸 0 2𝑘 + 𝜇 0 2 𝑙 𝑝 2𝜋 ∑ 𝐾 ̇0𝑖 𝑛 𝑖=𝑘 = 𝑙 𝑝 2𝜋 𝐵 ̇𝑎 (68) 
We can also express 𝐸 𝑧 𝑘 in every zone as

𝐸 𝑧 𝑘 = [𝑟 (𝐵 ̇𝑎 - 𝜇 0 2 ∑ 𝐾 ̇0𝑖 𝑛 𝑖=𝑘 ) - 1 𝑟 𝜇 0 2 ∑ 𝐾 ̇0𝑖 𝑘-1 𝑖=1 𝑅 𝑖 2 ] cos(𝜃) (69) 
superposing the expressions of 𝐸 𝑧 𝑘 given in [START_REF] Van De Klundert | stability and a.c. loss in composite superconductors[END_REF] and obtained by the combination of equations ( 58) and (59).

In addition, in our study in steady-state regime, we have derived the expressions of the (𝐾 0 𝑖 ) 1≤𝑖≤𝑛 as functions of the 𝐸 0 2𝑘-1 and 𝐸 0 2𝑘 coefficients; they are given by equations [START_REF] Torre | AC losses measurement on strand K006-01C[END_REF] and [START_REF] Seiler | Hysteresis Losses and Effective Jc(B) Scaling Law for ITER Nb3Sn Strands, I[END_REF]. We have also seen that the 𝐸 0 2𝑘-1 and 𝐸 0 2𝑘 coefficients of the resistive zones could be expressed as functions of the 𝐸 0 2𝑘-1 and 𝐸 0 2𝑘 coefficients of the filamentary zones only and this fact is independent of the regime considered because the coefficients are linked by boundary conditions. Now let us consider a composite made of 𝑛 𝑓 filamentary zones and 𝑛 𝐼𝑛𝑡𝑓 interfaces between filamentary layers, we know that there will be 2𝑛 𝑓 𝐸 0 2𝑘-1 and 𝐸 0 2𝑘 coefficients (or 2𝑛 𝑓 -1 if the first layer is filamentary, because 𝐸 0 1 is always zero) for the filamentary zones and 𝑛 𝐼𝑛𝑡𝑓 boundary conditions due to the continuity of the azimuthal component 𝐸 𝜃 of the electric field between filamentary layers; it is therefore possible to express all the 𝐸 0 2𝑘-1 and 𝐸 0 2𝑘 coefficients of the filamentary zones as functions of only 2𝑛 𝑓 -𝑛 𝐼𝑛𝑡𝑓 of these coefficients (or 2𝑛 𝑓 -1 -𝑛 𝐼𝑛𝑡𝑓 if the first layer is filamentary). This is not a coincidence, because the number of edges of filamentary zones, thus the number of existing surface currents, is exactly equal to 2𝑛 𝑓 -𝑛 𝐼𝑛𝑡𝑓 (or 2𝑛 𝑓 -1 -𝑛 𝐼𝑛𝑡𝑓 if the first layer is filamentary). We have then shown that the system could be expressed using a set of only 2𝑛 𝑓 -𝑛 𝐼𝑛𝑡𝑓 (or 2𝑛 𝑓 -1 -𝑛 𝐼𝑛𝑡𝑓 if the first layer is filamentary) variables which can be chosen to be either the reduced number of 𝐸 0 2𝑘-1 and 𝐸 0 2𝑘 coefficients of the filamentary zones or the 𝐾 0 𝑖 amplitudes of surface currents.

Consequently, replacing the time derivatives of the (𝐾 0 𝑖 ) 1≤𝑖≤𝑛 amplitudes of surface currents in the set of equations (68) for 1 ≤ 𝑘 ≤ 𝑛 with their expressions as functions of the time derivatives of the reduced number of 𝐸 0 2𝑘-1 and 𝐸 0 2𝑘 coefficients of the filamentary zones, the system can be expressed as

[𝐸 0 𝑓𝑟𝑒𝑑 ] + [𝑇 𝑓 𝐸 ] [𝐸 ̇0𝑓𝑟𝑒𝑑 ] = 𝐵 ̇𝑎[𝑌 𝑓 𝐸 ] (70) 
where [𝐸 0 𝑓𝑟𝑒𝑑 ] is the column vector of the 2𝑛 𝑓 -𝑛 𝐼𝑛𝑡𝑓 (or 2𝑛 𝑓 -1 -𝑛 𝐼𝑛𝑡𝑓 if the first layer is filamentary) reduced number of 𝐸 0 2𝑘-1 and 𝐸 0 2𝑘 coefficients of the filamentary zones, [𝑇 𝑓 𝐸 ] is a 2𝑛 𝑓 -𝑛 𝐼𝑛𝑡𝑓 (or2𝑛 𝑓 -𝑛 𝐼𝑛𝑡𝑓 -1) square matrix whose coefficients have the dimension of time and [𝑌 𝑓 𝐸 ] is a column vector having the same size as [𝐸 0 𝑓𝑟𝑒𝑑 ] and whose coefficients can be calculated analytically from the previous considerations.

Alternatively, replacing all the 𝐸 0 2𝑘-1 and 𝐸 0 2𝑘 coefficients present in the set of equations (68) for 1 ≤ 𝑘 ≤ 𝑛 with their expressions as functions of the non-zero 𝐾 0 𝑖 amplitudes of surface currents, it is also possible to express the global equation of the system as

[𝐾 0 𝑓 ] + [𝑇 𝑓 𝐾 ] [𝐾 ̇0𝑓 ] = 𝐵 ̇𝑎[𝑌 𝑓 𝐾 ] (71) 
where [𝐾 0 𝑓 ] is the column vector of the 2𝑛 𝑓 -𝑛 𝐼𝑛𝑡𝑓 (or 2𝑛 𝑓 -1 -𝑛 𝐼𝑛𝑡𝑓 if the first layer is filamentary) non-zero amplitudes of surface currents, [𝑇 𝑓 𝐾 ] is a 2𝑛 𝑓 -𝑛 𝐼𝑛𝑡𝑓 (or2𝑛 𝑓 -𝑛 𝐼𝑛𝑡𝑓 -1)

square matrix whose coefficients have the dimension of time and [𝑌 𝑓 𝐾 ] is a column vector having the same size as [𝐾 0 𝑓 ] and whose coefficients can also be calculated analytically from the previous considerations.

Both formulations have advantages and disadvantages: equation (70) will preferably be chosen for the derivation of coupling losses generated inside the composite while equation (71) has a more enlightening physical meaning. Indeed, it is much easier to understand that the system can be represented with an equation on the surface currents only rather than on some electric field coefficients, because we physically understand that the surface currents are actually trying to shield the composite from the timevariations of the magnetic field created by an external source and that they are linked both electrically (through resistances) and magnetically (through inductances).

It is also interesting to note that [𝑇 𝑓 𝐸 ] and [𝑇 𝑓 𝐾 ] are actually similar matrices and they therefore share the same eigenvalues which physically represent the time constants of the system.

Another important point is that the number of time constants of a composite is therefore always equal to the number of edges of filamentary zones it contains; we are now able to determine the number of time constants of a composite with a short glimpse at its design.

As we have already presented a detailed analytical procedure for the derivation of the equation of the system in our study in steady-state regime, we will simply provide a summary of the new analytical procedure for time-varying regimes:

We express all the 𝐸 0 2𝑘-1 and 𝐸 0 2𝑘 coefficients of every resistive zone as functions of those of the filamentary zones using equations (38), ( 39), ( 42), ( 43) and (343). If there exist interfaces between filamentary layers, we make use of equation (343) at these interfaces to express one of the 𝐸 0 2𝑘-1 and 𝐸 0 2𝑘 coefficients of the filamentary zones adjacent to the interfaces as function of the others. We then have a basis for the 𝐸 0 2𝑘-1 and 𝐸 0 2𝑘 coefficients that we call (𝐸 0 𝑓𝑟𝑒𝑑 ): indeed the 𝐸 0 2𝑘-1 and 𝐸 0 2𝑘 coefficients of every layer can be expressed as a linear combination of the 𝐸 0 2𝑘-1 and 𝐸 0 2𝑘 coefficients contained in (𝐸 0 𝑓𝑟𝑒𝑑 ) only. Similarly let us call (𝐾 0 𝑓 ) the family of the non-zero 𝐾 0 𝑖 amplitudes of surface currents (i.e. those located on the edge of a filamentary zone). The expressions of the amplitudes contained in (𝐾 0 𝑓 ) being given by equations [START_REF] Torre | AC losses measurement on strand K006-01C[END_REF] and [START_REF] Seiler | Hysteresis Losses and Effective Jc(B) Scaling Law for ITER Nb3Sn Strands, I[END_REF], we can also express these amplitudes as functions of the 𝐸 0 2𝑘-1 and 𝐸 0 2𝑘 coefficients of (𝐸 0 𝑓𝑟𝑒𝑑 ) only; these coefficients can reciprocally be expressed as functions of the amplitudes of (𝐾 0 𝑓 ). Finally from the set of equations (68) for 1 ≤ 𝑘 ≤ 𝑛, we only keep those featuring the 𝐸 0 2𝑘-1 and 𝐸 0 2𝑘 coefficients contained in (𝐸 0 𝑓𝑟𝑒𝑑 ) and then replace the 𝐾 ̇0𝑖 present in the remaining equations with their expressions as functions of the time-derivatives of the coefficients contained in (𝐸 0 𝑓𝑟𝑒𝑑 ) and thus obtain matrix equation (70); indeed the relations between the elements of (𝐾 ̇0𝑓 ) and (𝐸 ̇0𝑓𝑟𝑒𝑑 ) are the same as the ones between elements of (𝐾 0 𝑓 ) and (𝐸 0 𝑓𝑟𝑒𝑑 ).

In order to obtain matrix equation (71), we start from matrix equation (70) and replace the coefficients contained in (𝐸 0 𝑓𝑟𝑒𝑑 ) with their expressions as functions of the elements of (𝐾 0 𝑓 ).

In our study in steady-state regime, we have provided the logical tree to build the [𝐴] matrix and the [𝑌] column vector which are needed to express the equation of the system as in equation (348), i.e.

[𝐴][𝐸 0 ] = 𝑙 𝑝 2𝜋 𝐵 𝑎 ̇[𝑌]. We will not provide here the logical tree to build the [𝑇 𝑓 𝐸 ], [𝑇 𝑓 𝐾 ] matrices and the [𝑌 𝑓 𝐸 ], [𝑌 𝑓 𝐾 ] column vectors of matrix equations (70) and (71) since it would feature too many exceptions, making it quite unattractive.

Alternatively, we have chosen to express the equation of the system as

[𝐴][𝐸 0 ] + 𝜇 0 2 ( 𝑙 𝑝 2𝜋 ) 2 1 𝜌 𝑡 1 [𝐵][𝐸 ̇0] = 𝑙 𝑝 2𝜋 𝐵 ̇𝑎[𝑌] (72) 
where [𝐴] and [𝑌] are exactly the same as the ones used in steady-state regime and [𝐵] is another square matrix whose coefficients are dimensionless and whose derivation is shown through Appendix C.

It is important to point out that matrix equation (72) does not have the same size as matrix equations (70) and (71), i.e. [𝐴] and [𝐵] are 2𝑛 -1 square matrices while [𝑇 𝑓 𝐸 ] and [𝑇 𝑓 𝐾 ] are 2𝑛 𝑓 -𝑛 𝐼𝑛𝑡𝑓 (or 2𝑛 𝑓 -𝑛 𝐼𝑛𝑡𝑓 -1 if the first layer is filamentary) square matrices. This means that the system described by matrix equations (70) and (71) will have (2𝑛 𝑓 -𝑛 𝐼𝑛𝑡𝑓 ) or (2𝑛 𝑓 -𝑛 𝐼𝑛𝑡𝑓 -1) time constants (eigenvalues) while the system described by matrix equation (72) will have (2𝑛 -1) time constants; this seems to be physically inconsistent as these three matrix equations are describing the same system. In reality, there will only be (2𝑛 𝑓 -𝑛 𝐼𝑛𝑡𝑓 ) or (2𝑛 𝑓 -𝑛 𝐼𝑛𝑡𝑓 -1) physical time constants (eigenvalues) in matrix equation (72); the other eigenvalues will be artificial and all equal to

𝜇 0 2 ( 𝑙 𝑝 2𝜋 ) 2 1 𝜌 𝑡 1
. We employ the term "artificial" here because the additional eigenvalues are a consequence of our mathematical manipulation and do not correspond to any physical process occurring inside the strand. In fact, the appearance of these extra eigenvalues is due to the fact that we have duplicated some lines of the [𝐴] matrix into the [𝐵] matrix to render it invertible. Indeed, the continuity equations on 𝐸 𝜃 and 𝐽 𝑟 which are represented by some lines of the [𝐴] matrix are still valid after a derivation with respect to time; we have therefore duplicated these lines into [𝐵] without physically changing the system (the multiplication by

𝜇 0 2 ( 𝑙 𝑝 2𝜋 ) 2 1
𝜌 𝑡 1 has no effect since the right-hand terms of continuity equations (343), (344) and (345) are zero). In reality, the extra eigenvalues correspond to the eigenvectors that will always be zero; this explains why they have no incidence on the physical behavior of the composite. As mentioned previously, we have chosen this formulation over matrix equations (70) and (71) as it is much more adequate for the development of a general algorithm.

II.2.5

Discussion about specific assumptions of the model  We will evaluate here the shielding made by the outer copper sheath and we will discuss the saturation of filaments to establish the domain of validity of the model.

II.2.5.1 Discussion about shielding by the outer copper sheath

Now that we have completed the derivation of the equations governing any composite with 𝑛 cylindrical concentric layers either filamentary or purely resistive for a time-varying regime, we can discuss assumption A7 which states that "the time variation of the external magnetic field 𝐵 𝑎 is slow enough to ensure that the copper sheath does not magnetically shield its enclosed volume".

In order to do so, we will establish a simplified equation governing the currents induced in the copper sheath making use of the results of the previous sections. This simplified approach requires the thickness 𝑒 of the copper sheath to be small compared to the composite radius 𝑅 so that these currents can be represented to good approximation by a surface current 𝐾 𝐶𝑢 located at 𝑟 = 𝑅 -𝑒/2 as displayed on Figure 18 and flowing in the axial direction (i.e. along the z-axis). This approach will enable us to give an estimate of the frequency domain in which our model is valid. with 𝜌 𝐶𝑢 the copper resistivity. We therefore have

𝐽 𝑧 = 𝑟𝐵 ̇𝑎 𝜌 𝐶𝑢 cos (𝜃) (73) 
We consider that the distribution of current density 𝐽 𝑧 can be alternatively seen as flowing through a thin sheet of current 𝐾 𝐶𝑢 located at 𝑟 = 𝑅 -𝑒 2 , i.e. at the middle of the sheath as indicated on Figure 18. This assumption implies that

𝐾 𝐶𝑢 = ∫ 𝐽 𝑧 (𝑟)𝑑𝑟 𝑅 𝑅-𝑒 (74)
Combining equations ( 73) and (74), we obtain

𝐾 𝐶𝑢 = 𝐵 ̇𝑎 𝜌 𝐶𝑢 cos(𝜃) ∫ 𝑟𝑑𝑟 𝑅 𝑅-𝑒 ≃ 𝑅𝑒𝐵 ̇𝑎 𝜌 𝐶𝑢 cos(𝜃) (75) 
since 𝑒 is assumed to be small compared to 𝑅.

From the previous equation we see that 𝐾 𝐶𝑢 can also be written as 𝐾 𝐶𝑢 = 𝐾 0 𝐶𝑢 cos(𝜃) with

𝐾 0 𝐶𝑢 = 𝑅𝑒𝐵 ̇𝑎 𝜌 𝐶𝑢 (76) 
Following our logical chain displayed on Figure 15, we now have to compute the reacting magnetic vector potential 𝐴 𝑧 (1) created by the sheet of current 𝐾 𝐶𝑢 . Since 𝐾 𝐶𝑢 can be written as 𝐾 0 𝐶𝑢 cos(𝜃), we can use equations (55) so that

𝐴 𝑧 (1) = { 𝜇 0 𝐾 0 𝐶𝑢 2 𝑟 cos(𝜃) 𝑓𝑜𝑟𝑟 ≤ 𝑅 - 𝑒 2 𝜇 0 𝐾 0 𝐶𝑢 2 (𝑅 - 𝑒 2 ) 2 𝑟 cos(𝜃) 𝑓𝑜𝑟𝑟 ≥ 𝑅 - 𝑒 2 (77) 
Knowing 𝐴 𝑧 (1) , we can now compute the axial electric field 𝐸 𝑧 (2) generated by the time-variation of the surface current 𝐾 𝐶𝑢 using the alternative formulation of Maxwell-Faraday equation as we did for the derivation of equation ( 59)

𝐸 𝑧 (2) = -𝐴 ̇𝑧 (1) (78) 
In addition local Ohm's law indicates that 𝐽 𝑧 (2) 

= 𝐸 𝑧 (2) 
𝜌 𝐶𝑢

. Then, making use of equations ( 74), ( 77) and ( 78), the new current sheet 𝐾 𝐶𝑢 (2) is

𝐾 𝐶𝑢 (2) = ∫ 𝐽 𝑧 (2) (𝑟)𝑑𝑟 𝑅 𝑅-𝑒 = - 𝜇 0 𝐾 ̇0𝐶𝑢 2𝜌 𝐶𝑢 cos(𝜃)[∫ 𝑟𝑑𝑟 𝑅- 𝑒 2 𝑅-𝑒 + (𝑅 - 𝑒 2 ) 2 ∫ 𝑑𝑟 𝑟 𝑅 𝑅- 𝑒 2 ] (79) 
We can compute and reduce the first term in brackets as follows

∫ 𝑟𝑑𝑟 𝑅- 𝑒 2 𝑅-𝑒 = (𝑅 - 𝑒 2 ) 2 -(𝑅 -𝑒) 2 2 = 𝑅𝑒 2 (1 - 3 4 𝑒 𝑅 ) ≃ 𝑅𝑒 2
since we have supposed

𝑒 𝑅 ≪ 1
The second term leads to

(𝑅 - 𝑒 2 ) 2 ∫ 𝑑𝑟 𝑟 𝑅 𝑅- 𝑒 2 = -(𝑅 - 𝑒 2 ) 2 𝑙𝑛 (1 - 𝑒 2𝑅 ) ≃ (𝑅 - 𝑒 2 ) 2 𝑒 2𝑅 ≃ 𝑅𝑒 2
using the Taylor series expansion of 𝑙𝑛 (1 -𝑒 2𝑅 ) to the first order since 𝑒 𝑅 ≪ 1.

From these calculations, we can now simplify equation (79)

𝐾 𝐶𝑢 (2) = - 𝜇 0 𝑅𝑒 2𝜌 𝐶𝑢 𝐾 ̇0𝐶𝑢 cos(𝜃) (80) 
We now see that it is also possible to write 𝐾 𝐶𝑢 (2) as 𝐾 𝐶𝑢 (2) = 𝐾 0 𝐶𝑢 (2) cos(𝜃) with

𝐾 0 𝐶𝑢 (2) = - 𝜇 0 𝑅𝑒 2𝜌 𝐶𝑢 𝐾 ̇0𝐶𝑢 (81) 
Since 𝐾 𝐶𝑢 (2) shares the same spatial form as 𝐾 𝐶𝑢 we can now legitimately suppose that the currents induced in the copper sheath can be expressed as 𝐾 𝐶𝑢 = 𝐾 0 𝐶𝑢 cos(𝜃). Then, we can give, by superposition, the equation governing the spatial amplitude 𝐾 0 𝐶𝑢 of the surface current 𝐾 𝐶𝑢 flowing at

𝑟 = 𝑅 - 𝑒 2
using equations ( 76) and ( 81)

𝐾 0 𝐶𝑢 + 𝜇 0 𝑅𝑒 2𝜌 𝐶𝑢 𝐾 ̇0𝐶𝑢 = 𝑅𝑒 𝜌 𝐶𝑢 𝐵 ̇𝑎
which can be written as

𝐾 0 𝐶𝑢 + 𝜏 𝐶𝑢 𝐾 ̇0𝐶𝑢 = 2 𝜇 0 𝜏 𝐶𝑢 𝐵 ̇𝑎 (82) 
with

𝜏 𝐶𝑢 = 𝜇 0 𝑅𝑒 2𝜌 𝐶𝑢 (83) 
Note that this formula is fully consistent with the one given in [START_REF] Miller | Penetration of transient magnetic fields through conducting cylindrical structures with particular reference to superconducting a.c. machines[END_REF].

By superposition, the internal magnetic field 𝐵 𝑖 in the volume enclosed by the copper sheath, i.e. for 𝑟 ≤ 𝑅 -𝑒 (see Figure 18) will be given by

𝐵 𝑖 = 𝐵 𝑎 - 𝜇 0 𝐾 0 𝐶𝑢 2
according to equation (57). This is equivalent to

𝐾 0 𝐶𝑢 = 2 𝜇 0 (𝐵 𝑎 -𝐵 𝑖 )
Replacing 𝐾 0 𝐶𝑢 with 2 𝜇 0 (𝐵 𝑎 -𝐵 𝑖 ) in equation ( 82) and multiplying both sides by 𝜇 0 2 leads to 𝐵 𝑖 + 𝜏 𝐶𝑢 𝐵 ̇𝑖 = 𝐵 𝑎 (84) which is identical to (1).

The condition to ensure that the copper sheath does not magnetically shield its enclosed volume can be expressed as

| 𝐵 ̇𝑖 𝐵 ̇𝑎| ≃ 1
We can use the complex notation and equation (84) to write

𝐵 ̅ 𝑖 = 𝐵 ̅ 𝑎 (1 + 𝑗𝜔𝜏 𝐶𝑢 )
In addition, we have

𝐵 ̅ ̇𝑖 = 𝑗𝜔𝐵 ̅ 𝑖 = 𝑗𝜔 𝐵 ̅ 𝑎 (1 + 𝑗𝜔𝜏 𝐶𝑢 ) = 𝑗𝜔𝐵 ̅ 𝑎 (1 + 𝑗𝜔𝜏 𝐶𝑢 ) = 𝐵 ̅ ̇𝑎 (1 + 𝑗𝜔𝜏 𝐶𝑢 )
which enables us to write

| 𝐵 ̇𝑖 𝐵 ̇𝑎| = | 𝐵 ̅ ̇𝑖 𝐵 ̅ ̇𝑎| = | 1 1 + 𝑗𝜔𝜏 𝐶𝑢 | = 1 √1 + (𝜔𝜏 𝐶𝑢 ) 2
The previous condition is then equivalent to

1 √1 + (𝜔𝜏 𝐶𝑢 ) 2 ≃ 1
For |𝐵 ̇𝑖| to not differ from more than 1% from |𝐵 ̇𝑎|, we need

1 √1 + (𝜔𝜏 𝐶𝑢 ) 2 ≥ 0.99 which leads to 𝜔𝜏 𝐶𝑢 ≤ √1 -0.99 2 0.99 ≃ 0.142 (85) 
To give a relevant estimate of 𝜏 𝐶𝑢 , we choose the following parameters which are relevant for several strands used in fusion: 𝜌 𝐶𝑢 = 2.10 -10 𝛺. 𝑚, 𝑅 = 0.5𝑚𝑚 and 𝑒 = 𝑅/4, using (83), we obtain the following value for 𝜏 𝐶𝑢 𝜏 𝐶𝑢 ≃ 0.2𝑚𝑠

Replacing the angular frequency 𝜔 with 2𝜋𝑓 and 𝜏 𝐶𝑢 with 0.2𝑚𝑠, condition (85) implies

𝑓 ≤ 113𝐻𝑧

(87) Note that this value is not as high as we can expect, and this frequency range could be encountered in tokamaks during ELMs.

We can also easily derive a condition of minimum duration of a rising or falling ramp of 𝐵 𝑎 to ensure that the magnetic shielding accomplished by the copper sheath is negligible.

First, we can differentiate equation ( 84) with respect to time in order to obtain

𝐵 ̇𝑖 + 𝜏 𝐶𝑢 𝐵 ̈𝑖 = 𝐵 ̇𝑎 (88) 
We immediately see that equation ( 88) is in fact the equation of a first-order system and, in the case of a rising (or falling) ramp going from 0 to 𝐵 𝑚 (or -𝐵 𝑚 ) in a time 𝑇 𝑎 , we have |𝐵 ̇𝑎| = 𝐵 𝑚 /𝑇 𝑎 . We can therefore conclude that a time of 5𝜏 𝐶𝑢 is needed for |𝐵 ̇𝑖| to go from an initial zero value to |𝐵 ̇𝑎|; indeed 5𝜏 𝐶𝑢 is the time for |𝐵 ̇𝑖| to reach 99% of its final value, i.e. |𝐵 ̇𝑎|, because 1 -𝑒 -5 ≃ 0.99.

Considering that the magnetic shielding accomplished by the copper sheath is negligible if it occurs for less than 1% of the total ramp duration 𝑇 𝑎 , we can write the following condition

5𝜏 𝐶𝑢 ≤ 𝑇 𝑎 100 (89) 
which, with 𝜏 𝐶𝑢 = 0.2𝑚𝑠, leads to

𝑇 𝑎 ≥ 0.1𝑠 (90) 
The ranges of maximum frequencies and minimum ramp durations found by our simple model where the copper sheath might shield its enclosed volume are seldom the ones experienced by magnets in tokamaks. Some exceptions can be met in very specific cases such as plasma disruption and ELMs, or the rapid breakdown step in CS; in this cases specific analyses should be led.

II.2.5.2 Discussion about the saturation of filaments

Before deriving the formulae needed for the computation of the power dissipated by coupling currents, we also need to give a limit for the validity of assumption A4. Indeed, in order for the superconducting filaments not to be saturated, they must carry a current inferior to their critical current. Let us call 𝜆 the proportion of superconductor in a filamentary zone, the maximum local current 𝐼 𝑙𝑜𝑐𝑚𝑎𝑥 that an elementary area of length 𝑟𝑑𝜃 and thickness 𝑑𝑟 can carry is

𝐼 𝑙𝑜𝑐𝑚𝑎𝑥 = 𝜆𝐽 𝑐 𝑟𝑑𝜃𝑑𝑟
(91) where 𝐽 𝑐 is the critical current density of the superconducting material.

On another side, the local coupling current 𝐼 𝑙𝑜𝑐 carried by the same elementary area is

𝐼 𝑙𝑜𝑐 = 𝐾 0 cos (𝜃)𝑟𝑑𝜃 (92) 
To ensure the validity of assumption A4, we therefore need

|𝐼 𝑙𝑜𝑐 | ≤ |𝐼 𝑙𝑜𝑐𝑚𝑎𝑥 |, i.e.
|𝐾 0 cos(𝜃)| ≤ 𝜆𝐽 𝑐 𝑑𝑟 (93) using equations ( 91) and (92).

The most critical case is reached in the midplane for which 𝜃 = 0 or 𝜃 = 𝜋 2 , i.e. for |cos(𝜃)| = 1.

Consequently, the maximum surface current amplitude 𝐾 0 𝑚𝑎𝑥 allowed without saturating more than the first ring of filaments is then 𝐾 0 𝑚𝑎𝑥 = 𝜆𝐽 𝑐 𝑑 𝑓 (94) according to condition (93) for 𝑑𝑟 = 𝑑 𝑓 , with 𝑑 𝑓 the filaments diameter.

Beyond this limit, we can reasonably consider that the analytical formulae derived in our approach still hold for relatively small values of 𝑑𝑟, i.e. when 𝑑𝑟 does not exceed more than 10% of the filamentary layer thickness.

For an interface of R/F type located at 𝑟 = 𝑅 𝑘 , condition (94) becomes then

𝐾 0 𝑚𝑎𝑥 = 0.1(𝑅 𝑘+1 -𝑅 𝑘 )𝜆𝐽 𝑐 (95) 
And for an interface of F/R type located at 𝑟 = 𝑅 𝑘 , condition (94) becomes 𝐾 0 𝑚𝑎𝑥 = 0.1(𝑅 𝑘 -𝑅 𝑘-1 )𝜆𝐽 𝑐 (96) with 𝑅 𝑘-1 = 0 if 𝑘 = 1, i.e. if the filamentary layer is located at the center of the composite.

II.2.6

Power dissipated by coupling currents  We will compute here the power generated by coupling currents as a function of the 𝑬 𝟎 𝒌 coefficients introduced in section II.2.3 .

We will first remind the expressions of each component of the electric field in every layer 𝑘 from equations ( 66) and ( 69)

{ 𝐸 𝑟 𝑘 = -[𝐸 0 2𝑘-1 ( 𝑅 𝑘 𝑟 ) 2 + 𝐸 0 2𝑘 ] sin(𝜃) 𝐸 𝜃 𝑘 = [𝐸 0 2𝑘-1 ( 𝑅 𝑘 𝑟 ) 2 -𝐸 0 2𝑘 ] cos(𝜃) 𝐸 𝑧 𝑘 = [𝑟 (𝐵 ̇𝑎 - 𝜇 0 2 ∑ 𝐾 ̇0𝑖 𝑛 𝑖=𝑘 ) - 1 𝑟 𝜇 0 2 ∑ 𝐾 ̇0𝑖 𝑘-1 𝑖=1 𝑅 𝑖 2 ] cos(𝜃) (97) 
To compute the local power density 𝑃 𝑘 dissipated by coupling currents in each layer 𝑘, we use the following formula 

𝑃 𝑘 = 𝐽 ⃗ 𝑘 . 𝐸
We have previously assumed 𝐸 𝑟 𝑘 = 𝜌 𝑡 𝑘 𝐽 𝑟 𝑘 and 𝐸 𝜃 𝑘 = 𝜌 𝑡 𝑘 𝐽 𝑟 𝑘 , where 𝜌 𝑡 𝑘 is the effective transverse resistivity of layer 𝑘. We can also define 𝜌 𝑙 𝑘 as being the effective longitudinal resistivity of each layer 𝑘 so that we have 𝐸 𝑧 𝑘 = 𝜌 𝑙 𝑘 𝐽 𝑧 𝑘 .

Note that in each resistive layer 𝜌 𝑡 𝑘 = 𝜌 𝑙 𝑘 since metals are isotropic materials. However, in the filamentary zones, the effective transverse and longitudinal resistivities are different from one another, but they are of the same order of magnitude.

As a consequence, in each filamentary zone 𝑘, equation (99) leads to

𝑃 𝑘 = 𝐸 𝑟 𝑘 2 + 𝐸 𝜃 𝑘 2 𝜌 𝑡 𝑘 + 𝐸 𝑧 𝑘 2 𝜌 𝑙 𝑘 (100) 
The ratio of the second to the first term of equation ( 100) can be majored as follows 2 . Indeed, we can legitimately assume that first, the values of 𝐸 𝜃 are of the same order of magnitude in the resistive zones and in the filamentary zones and secondly, that the values of 𝐸 𝑧 are also of the same order of magnitude in the resistive and filamentary zones. The ratio of 𝐸 𝑧 𝑘 2 /𝐸 𝜃 𝑘 2 being negligible in the filamentary zones, we can deduce that it is also the case in the resistive zones; we can therefore use formula (102) to evaluate the power density dissipated in each layer of the composite.

Replacing 𝐸 𝑟 𝑘 and 𝐸 𝜃 𝑘 by their expressions given by (97) in formula (102), we obtain

𝑃 𝑘 (𝑟, 𝜃) = [𝐸 0 2𝑘-1 ( 𝑅 𝑘 𝑟 ) 2 + 𝐸 0 2𝑘 ] 2 sin 2 (𝜃) + [𝐸 0 2𝑘-1 ( 𝑅 𝑘 𝑟 ) 2 -𝐸 0 2𝑘 ] 2 cos 2 (𝜃) 𝜌 𝑡 𝑘 which reduces to 𝑃 𝑘 (𝑟, 𝜃) = 1 𝜌 𝑡 𝑘 [𝐸 0 2𝑘-1 2 ( 𝑅 𝑘 𝑟 ) 4 + 𝐸 0 2𝑘 2 -2𝐸 0 2𝑘-1 ( 𝑅 𝑘 𝑟 ) 2 𝐸 0 2𝑘 cos(2𝜃)] (103) 
The average power density 𝑃 ̅ dissipated in a length 𝐿 of composite is equal to

𝑃 ̅ = 1 𝜋𝑅 2 𝐿 ∑ ∭ 𝑃 𝑘 (𝑟, 𝜃)𝑑𝑉 𝑉 𝑘 𝑛 𝑘=1 = 1 𝜋𝑅 2 𝐿 ∑ ∫ ∫ ∫ 𝑃 𝑘 (𝑟, 𝜃)𝑟𝑑𝑟𝑑𝜃𝑑𝑧 2𝜋 𝜃=0 𝑟=𝑅 𝑘 𝑟=𝑅 𝑘-1 𝐿 𝑧=0 𝑛 𝑘=1 (104) 
Combining equations ( 103) and (104), we finally obtain

𝑃 ̅ = 1 𝜌 𝑡 1 ( 𝑅 1 𝑅 ) 2 𝐸 0 2 2 + ∑ 1 𝜌 𝑡 𝑘 ( 𝑅 𝑘 𝑅 ) 2 ([( 𝑅 𝑘 𝑅 𝑘-1 ) 2 -1] 𝐸 0 2𝑘-1 2 + [1 -( 𝑅 𝑘-1 𝑅 𝑘 ) 2 ] 𝐸 0 2𝑘 2 ) 𝑛 𝑘=2 (105) 
Note that the formula of the average power density is not given here per unit volume of filamentary zone as it has been done in (3) but per unit volume of composite.

II.2.7 Calculation of coupling currents and of electric and magnetic fields in the composite

 We will express here the currents and the electric and magnetic fields in the composite as a function of the 𝑬 𝟎 𝒌 coefficients.

Our main objective here is to produce analytical tools which are able to compute every physical quantity inherent to a composite subject to a transverse time-varying magnetic field as this situation is commonly encountered in large superconducting devices (e.g. tokamaks, particle accelerators, etc.). However since it is not possible to give an expression of these quantities without the preliminary knowledge of the composite design, we have decided to build a general algorithm (CLASS : Coupling Losses Algorithm for Superconducting Strands) able to compute them using mainly analytical formulae and the electrical and geometrical parameters of the strand. This choice of an analytical oriented algorithm is motivated by the fact that it ensures a very fast and light computation of the composite response to time-varying magnetic field: this is an important point in an environment where heavy computation times are required by other physics (e.g. thermal sciences, mechanics, etc.). It also has the benefit to be easily reproducible since all the formulae required for the calculation of the composite response are explicitly given in this manuscript.

We will now give a review of the expressions of each of the following physical quantities 

[𝐾 0 ] = 1 𝜌 𝑡 1 𝑙 𝑝 2𝜋 [𝑀][𝐸 0 ] (106) 
where [𝑀] is a 𝑛 × (2𝑛 -1) matrix whose coefficients can be computed using the procedure given in Figure 79.

The formulae of the transverse components of the electric field 𝐸 ⃗⃗ in layer 𝑘 are visible in (97)

{ 𝐸 𝑟 𝑘 = -[𝐸 0 2𝑘-1 ( 𝑅 𝑘 𝑟 ) 2 + 𝐸 0 2𝑘 ] sin(𝜃) 𝐸 𝜃 𝑘 = [𝐸 0 2𝑘-1 ( 𝑅 𝑘 𝑟 ) 2 -𝐸 0 2𝑘 ] cos(𝜃) (107) 
The axial component of the electric field 𝐸 ⃗⃗ in each layer is also given in (97) but as functions of the surface current amplitudes (𝐾 0 𝑘 ) 1≤𝑘≤𝑛 i.e.

𝐸 𝑧 𝑘 = [𝑟 (𝐵 ̇𝑎 - 𝜇 0 2 ∑ 𝐾 ̇0𝑖 𝑛 𝑖=𝑘 ) - 1 𝑟 𝜇 0 2 ∑ 𝐾 ̇0𝑖 𝑘-1 𝑖=1 𝑅 𝑖 2 ] cos(𝜃)
First, using equations ( 350) and (352), we can replace the sum terms present in the above expression as follows

{ 𝜇 0 2 ∑ 𝐾 ̇0𝑖 𝑛 𝑖=𝑘 = 𝜇 0 2 [𝑆] 2𝑘 [𝐾 ̇0] - 𝜇 0 2 ∑ 𝐾 ̇0𝑖 𝑘-1 𝑖=1 𝑅 𝑖 2 = 𝜇 0 2 𝑅 𝑘 2 [𝑆] 2𝑘-1 [𝐾 ̇0]
where [𝑆] 2𝑘-1 and [𝑆] 2𝑘 are the line vectors defined in (351) and ( 353).

Therefore we now obtain the following expression for 𝐸 𝑧 𝑘

𝐸 𝑧 𝑘 = [𝑟 (𝐵 ̇𝑎 - 𝜇 0 2 [𝑆] 2𝑘 [𝐾 ̇0]) + 𝑅 𝑘 2 𝑟 𝜇 0 2 [𝑆] 2𝑘-1 [𝐾 ̇0]] cos(𝜃)
which can be re-expressed as

𝐸 𝑧 𝑘 = 𝑟 [𝐵 ̇𝑎 + 𝜇 0 2 ([𝑆] 2𝑘-1 ( 𝑅 𝑘 𝑟 ) 2 -[𝑆] 2𝑘 ) [𝐾 ̇0]] cos(𝜃)
Secondly, using the time derivative of equation ( 106), we finally have

𝐸 𝑧 𝑘 = 𝑟 [𝐵 ̇𝑎 + 𝜇 0 2 1 𝜌 𝑡 1 𝑙 𝑝 2𝜋 ([𝑆] 2𝑘-1 ( 𝑅 𝑘 𝑟 ) 2 -[𝑆] 2𝑘 ) [𝑀][𝐸 ̇0]] cos(𝜃) (108) 
From (107) we can readily derive the transverse components of the current distribution 𝐽 ⃗ in each layer 𝑘 as

{ 𝐽 𝑟 𝑘 = 𝐸 𝑟 𝑘 𝜌 𝑡 𝑘 = - 1 𝜌 𝑡 𝑘 [𝐸 0 2𝑘-1 ( 𝑅 𝑘 𝑟 ) 2 + 𝐸 0 2𝑘 ] sin(𝜃) 𝐽 𝜃 𝑘 = 𝐸 𝜃 𝑘 𝜌 𝑡 𝑘 = 1 𝜌 𝑡 𝑘 [𝐸 0 2𝑘-1 ( 𝑅 𝑘 𝑟 ) 2 -𝐸 0 2𝑘 ] cos(𝜃) (109) 
Regarding the axial component of 𝐽 ⃗ , we can only give its expression in the resistive zones from ( 108)

𝐽 𝑧 𝑘 = 𝐸 𝑧 𝑘 𝜌 𝑡 𝑘 = 1 𝜌 𝑡 𝑘 𝑟 [𝐵 ̇𝑎 + 𝜇 0 2 1 𝜌 𝑡 1 𝑙 𝑝 2𝜋 ([𝑆] 2𝑘-1 ( 𝑅 𝑘 𝑟 ) 2 -[𝑆] 2𝑘 ) [𝑀][𝐸 ̇0]] cos(𝜃) (110) 
the expressions of 𝐽 𝑧 in the filamentary zones require the knowledge of their equivalent longitudinal resistivities; they must be consistent with their associated equivalent transverse resistivities.

Finally, to complete this review, we will derive here the expressions of the transverse components of the magnetic field 𝐵 ⃗⃗ .

Since the applied field 𝐵 𝑎 ⃗⃗⃗⃗⃗ is oriented along the y-axis, we can deduce that

{ 𝐵 𝑟 𝑘 = 𝐵 𝑎 sin(𝜃) 𝐵 𝜃 𝑘 = 𝐵 𝑎 cos(𝜃)
Then, from 𝐵 ⃗⃗ = ∇ ⃗ ⃗⃗ × A ⃗ ⃗⃗ and expression (58) of the magnetic vector potential generated by the surface currents, we have

{ 𝐵 𝑟 𝑘 = 1 𝑟 𝜕𝐴 𝑧 𝑘 𝜕𝜃 = - 𝜇 0 2 [ 1 𝑟 2 ∑ 𝐾 0 𝑖 𝑘-1 𝑖=1 𝑅 𝑖 2 + ∑ 𝐾 0 𝑖 𝑛 𝑖=𝑘 ] sin(𝜃) 𝐵 𝜃 𝑘 = - 𝜕𝐴 𝑧 𝑘 𝜕𝑟 = 𝜇 0 2 [ 1 𝑟 2 ∑ 𝐾 0 𝑖 𝑘-1 𝑖=1 𝑅 𝑖 2 -∑ 𝐾 0 𝑖 𝑛 𝑖=𝑘 ] cos(𝜃)
Now, superposing the two above systems, we can write

{ 𝐵 𝑟 𝑘 = [𝐵 𝑎 - 𝜇 0 2 ( 1 𝑟 2 ∑ 𝐾 0 𝑖 𝑘-1 𝑖=1 𝑅 𝑖 2 + ∑ 𝐾 0 𝑖 𝑛 𝑖=𝑘 )] sin(𝜃) 𝐵 𝜃 𝑘 = [𝐵 𝑎 + 𝜇 0 2 ( 1 𝑟 2 ∑ 𝐾 0 𝑖 𝑘-1 𝑖=1 𝑅 𝑖 2 -∑ 𝐾 0 𝑖 𝑛 𝑖=𝑘 )] cos(𝜃)
As we did in the derivation of 𝐸 𝑧 𝑘 , we first can replace the sum terms to have

{ 𝐵 𝑟 𝑘 = [𝐵 𝑎 + 𝜇 0 2 ([𝑆] 2𝑘-1 ( 𝑅 𝑘 𝑟 ) 2 -[𝑆] 2𝑘 ) [𝐾 0 ]] sin(𝜃) 𝐵 𝜃 𝑘 = [𝐵 𝑎 - 𝜇 0 2 ([𝑆] 2𝑘-1 ( 𝑅 𝑘 𝑟 ) 2 + [𝑆] 2𝑘 ) [𝐾 0 ]] cos(𝜃)
and then replace [𝐾 0 ] with

1 𝜌 𝑡 1 𝑙 𝑝 2𝜋 [𝑀][𝐸 0 ] using (106) to finally obtain { 𝐵 𝑟 𝑘 = [𝐵 𝑎 + 𝜇 0 2 1 𝜌 𝑡 1 𝑙 𝑝 2𝜋 ([𝑆] 2𝑘-1 ( 𝑅 𝑘 𝑟 ) 2 -[𝑆] 2𝑘 ) [𝑀][𝐸 0 ]] sin(𝜃) 𝐵 𝜃 𝑘 = [𝐵 𝑎 - 𝜇 0 2 1 𝜌 𝑡 1 𝑙 𝑝 2𝜋 ([𝑆] 2𝑘-1 ( 𝑅 𝑘 𝑟 ) 2 + [𝑆] 2𝑘 ) [𝑀][𝐸 0 ]] cos(𝜃) (111) 

II.2.8 Coupling losses per cycle per unit volume of filamentary zone

 We will establish here the expression of coupling losses as a function of the 𝑬 𝟎 𝒌 coefficients. We will also demonstrate that the coupling losses generated inside complex composites can be expressed as a sum of the coupling losses generated inside simple composites; this result is important and will be used in the study of a two cabling stages conductor in section IV.3 .

In order to remove any ambiguity, let us clarify what we mean by "volume of filamentary zone" or "volume enclosed by the outer edge filaments". If we note 𝑅 𝑓 the radius on which the most outer edge filaments are located, here are its values for different designs of composite:

 for an F type composite, 𝑅 𝑓 = 𝑅 1 = 𝑅, (𝑅 always refers to the composite radius)

 for an F/R type composite, 𝑅 𝑓 = 𝑅 1  for an R/F type composite, 𝑅 𝑓 = 𝑅 2 = 𝑅  for an R/F/R/R type composite (e.g. JT-60SA TF strand displayed on Figure 11), 𝑅 𝑓 = 𝑅 2

The volume that we have called "volume of filamentary zone" or "volume enclosed by the outer edge filaments" throughout the manuscript is in fact the one of a cylinder of radius 𝑅 𝑓 and length 𝐿; this length is not set to any value as the composite geometry is considered to be invariant along its axis according to assumption A1. Therefore the coupling losses per cycle per unit volume of filamentary zone 𝑄 correspond to the total energy that has been dissipated over the whole volume of the composite and during a cycle of a periodic magnetic excitation, divided by the volume of the cylinder of radius 𝑅 𝑓 .

After having clearly defined the notion of "coupling losses per cycle per unit volume of filamentary zone 𝑄", we will now focus on its determination as function of the frequency 𝑓 of a sinusoidal magnetic excitation. This "𝑄 vs 𝑓" curve is usually considered in the community as it gives the full characterization of the frequency response of a composite with regard to any magnetic excitation.

Up to this point, we possess all the elements to produce this curve. Indeed, we have derived the formulae required to compute the coupling losses generated by any magnetic signal inside a composite. Therefore, in order to obtain one point of the "𝑄 vs 𝑓" curve, we should simulate the time response of the (𝐸 0 𝑘 ) 2≤𝑘≤2𝑛 coefficients to a sinusoidal magnetic signal with a specific frequency using equation (72), deduce the average coupling power density thanks to (105) and compute the associated value of 𝑄. To produce the full curve we should then repeat this process for different values of the frequency of magnetic excitation.

Even though this process can be achieved in a very reasonable time, we propose a faster method leading to an analytical expression of 𝑄(𝑓).

Let us assume that the composite is subject to the following magnetic signal 𝐵 𝑎 = 𝐵 𝑝 sin(𝜔𝑡) with 𝜔 = 2𝜋𝑓, the angular frequency.

We can first start by deriving the classical expression of 𝑄(𝜔) for a composite made of a filamentary zone only (F type) given in [START_REF] Koide | JT-60SA superconducting magnet system[END_REF] (with 𝑛 = 2 for a cylindrical composite) i.e.

𝑄(𝜔) = 𝐵 𝑝 2 𝜇 0 2𝜋𝜔𝜏 1 + (𝜔𝜏) 2
from time equation (1), i.e. 𝐵 𝑖 + 𝜏𝐵 ̇𝑖 = 𝐵 𝑎 , and from expression (3) of coupling power per unit volume of filamentary zone which is

𝑃 = 2𝜏𝐵 ̇𝑖2 𝜇 0
Using equation ( 1), the expression of 𝐵 𝑎 and the initial condition 𝐵 𝑖 (𝑡 = 0) = 𝐵 𝑎 (𝑡 = 0) = 0, we find the following solution for 𝐵 𝑖 𝐵 𝑖 (𝑡) = 𝐵 𝑝 1 + (𝜔𝜏) 2 [sin(𝜔𝑡) -𝜔𝜏 cos(𝜔𝑡) + 𝜔𝜏𝑒 -𝑡/𝜏 ] After a time long compared to 𝜏 (typically for 𝑡 > 5𝜏), we have

𝐵 𝑖 (𝑡 ≫ 𝜏) = 𝐵 𝑝 1 + (𝜔𝜏) 2 [sin(𝜔𝑡) -𝜔𝜏 cos(𝜔𝑡)] Therefore 𝐵 ̇𝑖(𝑡 ≫ 𝜏) = 𝐵 𝑝 𝜔 1 + (𝜔𝜏) 2 [cos(𝜔𝑡) + 𝜔𝜏 sin(𝜔𝑡)]
In the following, the notation 〈𝑋(𝑡)〉 will always corresponds to 〈𝑋(𝑡)〉 = 

〈𝐵 ̇𝑖2 (𝑡)〉 = ( 𝐵 𝑝 𝜔 1 + (𝜔𝜏) 2 ) 2 〈[cos(𝜔𝑡) + 𝜔𝜏 sin(𝜔𝑡)] 2 〉 = ( 𝐵 𝑝 𝜔 1 + (𝜔𝜏) 2 ) 2 [〈cos 2 (𝜔𝑡)〉 + (𝜔𝜏) 2 〈sin 2 (𝜔𝑡)〉 + 2𝜔𝜏〈sin(𝜔𝑡) cos(𝜔𝑡)〉] = ( 𝐵 𝑝 𝜔 1 + (𝜔𝜏) 2 ) 2 1 2 [1 + (𝜔𝜏) 2 ] = 1 2 𝐵 𝑝 2 𝜔 2 1 + (𝜔𝜏) 2
As a consequence, since 𝑄 = 〈𝑃(𝑡)〉𝑇 and 𝑇 = 2𝜋 𝜔 , using (3) we have

𝑄(𝜔) = 2𝜏 𝜇 0 〈𝐵 ̇𝑖2 〉 𝑇 = 𝐵 𝑝 2 𝜇 0 2𝜋𝜔𝜏 1 + (𝜔𝜏) 2
Now that we have derived the expression of 𝑄 as function of 𝜔 for F type composites, we will focus on its determination for other types of composite.

Since we know the expression of the (spatial) average power density 𝑃 ̅ dissipated in any composite as function of the (𝐸 0 𝑘 ) 2≤𝑘≤2𝑛 coefficients from (105), we can first begin by rewriting it in the following abbreviated form

𝑃 ̅ (𝑡) = ∑ 𝛽 𝑗 𝐸 0 𝑗 2 (𝑡) 2𝑛 𝑗=2 (112) 
with, by identification

{ 𝛽 2 = 1 𝜌 𝑡 1 ( 𝑅 1 𝑅 ) 2 𝛽 2𝑗-1 = 1 𝜌 𝑡 𝑗 ( 𝑅 𝑗 𝑅 ) 2 [( 𝑅 𝑗 𝑅 𝑗-1 ) 2 -1] 𝑓𝑜𝑟2 ≤ 𝑗 ≤ 𝑛 𝛽 2𝑗 = 1 𝜌 𝑡 𝑗 ( 𝑅 𝑗 𝑅 ) 2 [1 -( 𝑅 𝑗-1 𝑅 𝑗 ) 2 ] 𝑓𝑜𝑟2 ≤ 𝑗 ≤ 𝑛 (113) 
From equation (112), it is possible to express the coupling losses per cycle per unit volume of filamentary zone 𝑄 as

𝑄(𝜔) = ( 𝑅 𝑅 𝑓 ) 2 〈𝑃 ̅ (𝑡)〉𝑇 = 2𝜋 𝜔 ( 𝑅 𝑅 𝑓 ) 2 ∑ 𝛽 𝑗 〈𝐸 0 𝑗 2 (𝑡)〉 2𝑛 𝑗=2 (114) 
Note that the term

( 𝑅 𝑅 𝑓 ) 2
comes from the fact that 𝑃 ̅ has been defined per unit volume of composite while 𝑄 is defined per unit volume of filamentary zone.

To complete the process, we now need to analytically solve equation (72), i.e.

[𝐴]

[𝐸 0 ] + 𝜇 0 2 ( 𝑙 𝑝 2𝜋 ) 2 1 𝜌 𝑡 1 [𝐵][𝐸 ̇0] = 𝑙 𝑝 2𝜋 𝐵 ̇𝑎[𝑌]
for the time dependence of the (𝐸 0 𝑘 ) 2≤𝑘≤2𝑛 coefficients.

In order to do so, we begin by re-expressing time equation (72) as

[𝐸 0 ] + [𝜏][𝐸 ̇0] = 𝑙 𝑝 2𝜋 𝐵 ̇𝑎[𝐴] -1 [𝑌] (115) 
where [𝜏] is a (2𝑛 -1) × (2𝑛 -1) matrix whose coefficients have the dimension of time and which is defined as

[𝜏] = [𝐴] -1 [𝐵] (116) 
Assuming that [𝜏] is a diagonalizable matrix, we can express it as

[𝜏] = [𝑉][𝜏 𝑐 ][𝑉] -1
(117) where [𝜏 𝑐 ] is the diagonal matrix containing the eigenvalues of [𝜏] and [𝑉] is the matrix containing the eigenvectors of [𝜏].

Replacing [𝜏] with [𝑉][𝜏 𝑐 ][𝑉] -1 in (115) leads to [𝐸 0 ] + [𝑉][𝜏 𝑐 ][𝑉] -1 [𝐸 ̇0] = 𝑙 𝑝 2𝜋 𝐵 ̇𝑎[𝐴] -1 [𝑌]
The multiplication on each side by [𝑉] -1 gives

[𝑋] + [𝜏 𝑐 ][𝑋 ̇] = 𝐵 ̇𝑎[𝑌 𝑏 ] (118) with [𝑋] = [𝑉] -1 [𝐸 0 ]
(119) and

[𝑌 𝑏 ] = 𝑙 𝑝 2𝜋 [𝑉] -1 [𝐴] -1 [𝑌] (120) 
Equation ( 118) can alternatively be written, for 1 ≤ 𝑘 ≤ 2𝑛 -1, as By analogy with the previous resolution of equation (1), we can give the solutions of equations ( 121) as

[𝑋] 𝑘 + 𝜏 𝑐 𝑘 [𝑋 ̇]𝑘 = 𝐵 ̇𝑎[𝑌 𝑏 ] 𝑘 ( 
[𝑋] 𝑘 (𝑡) = [𝑌 𝑏 ] 𝑘 𝐵 𝑝 𝜔 1 + (𝜔𝜏 𝑐 𝑘 ) 2 [cos(𝜔𝑡) + 𝜔𝜏 𝑐 𝑘 sin(𝜔𝑡)] (122) 
These solutions are obtained considering the initial conditions ([𝑋] 𝑘 (𝑡 = 0) = 0) 1≤𝑘≤2𝑛-1 and are valid after a time long compared to the greatest value of (𝜏 𝑐 𝑘 ) 1≤𝑘≤2𝑛-1 .

Inverting relation (119), we have [𝐸 0 ] = [𝑉][𝑋] which leads to

𝐸 0 𝑗 (𝑡) = ∑ [𝑉] 𝑗-1𝑘 [𝑋] 𝑘 (𝑡) 2𝑛-1 𝑘=1 (123)
Remember that since 𝐸 0 1 is always zero, the first component of the [𝐸 0 ] (2𝑛 -1) × 1 column vector is 𝐸 0 2 and its 𝑗 𝑡ℎ component is in fact 𝐸 0 𝑗-1 . To avoid any confusion, we note [𝐸 0 ] 𝑗 the 𝑗 𝑡ℎ component of column vector [𝐸 0 ] and 𝐸 0 𝑗 the 𝑗 𝑡ℎ coefficient of the (𝐸 0 𝑗 ) 2≤j≤2𝑛 ; we therefore have [𝐸 0 ] 𝑗 = 𝐸 0 𝑗-1 .

The combination of equations ( 122) and (123) enables us to write

𝐸 0 𝑗 2 (𝑡) = (𝐵 𝑝 𝜔) 2 [cos(𝜔𝑡) ∑ [𝑉] 𝑗-1𝑘 [𝑌 𝑏 ] 𝑘 1 + (𝜔𝜏 𝑐 𝑘 ) 2 2𝑛-1 𝑘=1 + sin(𝜔𝑡) ∑ 𝜔𝜏 𝑐 𝑘 [𝑉] 𝑗-1𝑘 [𝑌 𝑏 ] 𝑘 1 + (𝜔𝜏 𝑐 𝑘 ) 2 2𝑛-1 𝑘=1 ] 2
Thus, the average of 𝐸 0 𝑗 2 (𝑡) over one cycle of duration 𝑇 is

〈𝐸 0 𝑗 2 (𝑡)〉 = (𝐵 𝑝 𝜔) 2 2 ([ ∑ [𝑉] 𝑗-1𝑘 [𝑌 𝑏 ] 𝑘 1 + (𝜔𝜏 𝑐 𝑘 ) 2 2𝑛-1 𝑘=1 ] 2 + [ ∑ 𝜔𝜏 𝑐 𝑘 [𝑉] 𝑗-1𝑘 [𝑌 𝑏 ] 𝑘 1 + (𝜔𝜏 𝑐 𝑘 ) 2 2𝑛-1 𝑘=1 ] 2 )
since 〈cos 2 (𝜔𝑡)〉 = 〈sin 2 (𝜔𝑡)〉 = This average can be factorized, using 𝐴 2 + 𝐵 2 = (𝐴 -𝑖𝐵)(𝐴 + 𝑖𝐵) with 𝑖 the imaginary unit, as

〈𝐸 0 𝑗 2 (𝑡)〉 = (𝐵 𝑝 𝜔) 2 2 [ ∑ [𝑉] 𝑗-1𝑘 [𝑌 𝑏 ] 𝑘 1 + (𝜔𝜏 𝑐 𝑘 ) 2 (1 -𝑖𝜔𝜏 𝑐 𝑘 ) 2𝑛-1 𝑘=1 ] [ ∑ [𝑉] 𝑗-1𝑘 [𝑌 𝑏 ] 𝑘 1 + (𝜔𝜏 𝑐 𝑘 ) 2 (1 + 𝑖𝜔𝜏 𝑐 𝑘 ) 2𝑛-1 𝑘=1 ]
To make the above expression lighter we will temporarily note the terms appearing in the sums as 𝑎 𝑘 and 𝑏 𝑘 respectively, i.e.

{ 𝑎 𝑘 = [𝑉] 𝑗-1𝑘 [𝑌 𝑏 ] 𝑘 1 + (𝜔𝜏 𝑐 𝑘 ) 2 (1 -𝑖𝜔𝜏 𝑐 𝑘 ) 𝑏 𝑘 = [𝑉] 𝑗-1𝑘 [𝑌 𝑏 ] 𝑘 1 + (𝜔𝜏 𝑐 𝑘 ) 2 (1 + 𝑖𝜔𝜏 𝑐 𝑘 )
Thus 〈𝐸 0 𝑗 2 (𝑡)〉 can be expressed as

〈𝐸 0 𝑗 2 (𝑡)〉 = (𝐵 𝑝 𝜔) 2 2 [ ∑ 𝑎 𝑘 2𝑛-1 𝑘=1 ] [ ∑ 𝑏 𝑘 2𝑛-1 𝑘=1 ]
In addition, we have

[ ∑ 𝑎 𝑘 2𝑛-1 𝑘=1 ] [ ∑ 𝑏 𝑘 2𝑛-1 𝑘=1 ] = [ ∑ 𝑎 𝑘 2𝑛-1 𝑘=1 ] [ ∑ 𝑏 𝑙 2𝑛-1 𝑙=1 ] = ∑ ∑ 𝑎 𝑘 𝑏 𝑙 2𝑛-1 𝑙=1 2𝑛-1 𝑘=1 = 1 2 ∑ ∑ (𝑎 𝑘 𝑏 𝑙 + 𝑎 𝑙 𝑏 𝑘 ) 2𝑛-1 𝑙=1 2𝑛-1 𝑘=1
since summation indices 𝑘 and 𝑙 can be interchanged, and

𝑎 𝑘 𝑏 𝑙 + 𝑎 𝑙 𝑏 𝑘 = [𝑉] 𝑗-1𝑘 [𝑌 𝑏 ] 𝑘 1 + (𝜔𝜏 𝑐 𝑘 ) 2 [𝑉] 𝑗-1𝑙 [𝑌 𝑏 ] 𝑙 1 + (𝜔𝜏 𝑐 𝑙 ) 2 [(1 -𝑖𝜔𝜏 𝑐 𝑘 )(1 + 𝑖𝜔𝜏 𝑐 𝑙 ) + (1 -𝑖𝜔𝜏 𝑐 𝑙 )(1 + 𝑖𝜔𝜏 𝑐 𝑘 )] = 2[𝑉] 𝑗-1𝑘 [𝑌 𝑏 ] 𝑘 [𝑉] 𝑗-1𝑙 [𝑌 𝑏 ] 𝑙 1 + 𝜔 2 𝜏 𝑐 𝑘 𝜏 𝑐 𝑙 [1 + (𝜔𝜏 𝑐 𝑘 ) 2 ] [1 + (𝜔𝜏 𝑐 𝑙 ) 2 ]
Thus

〈𝐸 0 𝑗 2 (𝑡)〉 = (𝐵 𝑝 𝜔) 2 2 ∑ ∑ [𝑉] 𝑗-1𝑘 [𝑌 𝑏 ] 𝑘 [𝑉] 𝑗-1𝑙 [𝑌 𝑏 ] 𝑙 1 + 𝜔 2 𝜏 𝑐 𝑘 𝜏 𝑐 𝑙 [1 + (𝜔𝜏 𝑐 𝑘 ) 2 ] [1 + (𝜔𝜏 𝑐 𝑙 ) 2 ] 2𝑛-1 𝑙=1 2𝑛-1 𝑘=1
Moreover, using a partial fraction decomposition, it appears that

1 + 𝜔 2 𝜏 𝑐 𝑘 𝜏 𝑐 𝑙 [1 + (𝜔𝜏 𝑐 𝑘 ) 2 ] [1 + (𝜔𝜏 𝑐 𝑙 ) 2 ] = 1 𝜏 𝑐 𝑘 + 𝜏 𝑐 𝑙 [ 𝜏 𝑐 𝑘 1 + (𝜔𝜏 𝑐 𝑘 ) 2 + 𝜏 𝑐 𝑙 1 + (𝜔𝜏 𝑐 𝑙 ) 2 ]
Therefore we can conclude that

〈𝐸 0 𝑗 2 (𝑡)〉 = (𝐵 𝑝 𝜔) 2 2 ∑ ∑ [𝑉] 𝑗-1𝑘 [𝑌 𝑏 ] 𝑘 [𝑉] 𝑗-1𝑙 [𝑌 𝑏 ] 𝑙 𝜏 𝑐 𝑘 + 𝜏 𝑐 𝑙 [ 𝜏 𝑐 𝑘 1 + (𝜔𝜏 𝑐 𝑘 ) 2 + 𝜏 𝑐 𝑙 1 + (𝜔𝜏 𝑐 𝑙 ) 2 ] 2𝑛-1 𝑙=1 2𝑛-1 𝑘=1
which reduces to

〈𝐸 0 𝑗 2 (𝑡)〉 = (𝐵 𝑝 𝜔) 2 ∑ ∑ [𝑉] 𝑗-1𝑘 [𝑌 𝑏 ] 𝑘 [𝑉] 𝑗-1𝑙 [𝑌 𝑏 ] 𝑙 𝜏 𝑐 𝑘 + 𝜏 𝑐 𝑙 𝜏 𝑐 𝑘 1 + (𝜔𝜏 𝑐 𝑘 ) 2 2𝑛-1 𝑙=1 2𝑛-1 𝑘=1
splitting the previous double sum into two double sums and interchanging 𝑘 and 𝑙 in the second one.

Finally, we obtain

〈𝐸 0 𝑗 2 (𝑡)〉 = (𝐵 𝑝 𝜔) 2 ∑ [𝑉] 𝑗-1𝑘 [𝑌 𝑏 ] 𝑘 𝜏 𝑐 𝑘 1 + (𝜔𝜏 𝑐 𝑘 ) 2 ∑ [𝑉] 𝑗-1𝑙 [𝑌 𝑏 ] 𝑙 𝜏 𝑐 𝑘 + 𝜏 𝑐 𝑙 2𝑛-1 𝑙=1 2𝑛-1 𝑘=1 (124) 
The combination of equations ( 114) and (124) enables us to write

𝑄(𝜔) = 2𝜋 𝜔 ( 𝑅 𝑅 𝑓 ) 2 ∑ 𝛽 𝑗 (𝐵 𝑝 𝜔) 2 ∑ [𝑉] 𝑗-1𝑘 [𝑌 𝑏 ] 𝑘 𝜏 𝑐 𝑘 1 + (𝜔𝜏 𝑐 𝑘 ) 2 ∑ [𝑉] 𝑗-1𝑙 [𝑌 𝑏 ] 𝑙 𝜏 𝑐 𝑘 + 𝜏 𝑐 𝑙 2𝑛-1 𝑙=1 2𝑛-1 𝑘=1 2𝑛 𝑗=2
which can be re-expressed as

𝑄(𝜔) = 𝐵 𝑝 2 ( 𝑅 𝑅 𝑓 ) 2 ∑ [ ∑ ∑ 𝛽 𝑗+1 [𝑉] 𝑗𝑘 [𝑉] 𝑗𝑙 [𝑌 𝑏 ] 𝑙 [𝑌 𝑏 ] 𝑘 𝜏 𝑐 𝑘 + 𝜏 𝑐 𝑙 2𝑛-1 𝑙=1 2𝑛-1 𝑗=1 ] 2𝜋𝜔𝜏 𝑐 𝑘 1 + (𝜔𝜏 𝑐 𝑘 ) 2 2𝑛-1 𝑘=1 (125) 
We have now derived the analytical expression of 𝑄(𝜔) for any composite for any magnetic excitation 𝐵 𝑎 of the form 𝐵 𝑎 = 𝐵 𝑝 sin (𝜔𝑡).

If we take a close look at formula (125) we notice that it is very similar to the formula [START_REF] Koide | JT-60SA superconducting magnet system[END_REF] of 𝑄(𝜔) for F type composites, i.e.

𝑄(𝜔) = 𝐵 𝑝 2 𝜇 0 2𝜋𝜔𝜏 1 + (𝜔𝜏) 2
In order to highlight the resemblance between formulae ( 7) and (125) we will introduce another function 𝑄 𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 (𝜔, 𝜏) defined as 2 (126) which represents the average coupling losses per cycle of magnetic excitation 𝐵 𝑝 sin (𝜔𝑡) per unit volume of filamentary zone for a composite with only one time constant 𝜏.

𝑄 𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 (𝜔, 𝜏) = 𝐵 𝑝 2 𝜇 0 2𝜋𝜔𝜏 1 + (𝜔𝜏)
Using this new function, it is then possible to formulate equation (125) as

𝑄(𝜔) = ∑ 𝛼 𝑘 𝑄 𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 (𝜔, 𝜏 𝑐 𝑘 ) 2𝑛-1 𝑘=1 (127) with 𝛼 𝑘 = 𝜇 0 ( 𝑅 𝑅 𝑓 ) 2 ∑ ∑ 𝛽 𝑗+1 [𝑉] 𝑗𝑘 [𝑉] 𝑗𝑙 [𝑌 𝑏 ] 𝑙 [𝑌 𝑏 ] 𝑘 𝜏 𝑐 𝑘 + 𝜏 𝑐 𝑙 2𝑛-1 𝑙=1 2𝑛-1 𝑗=1 ( 128 
)
where 𝛽 is defined in (113), [𝑉] and [𝜏 𝑐 ] are obtained diagonalizing [𝜏], and[𝑌 𝑏 ] is defined in (120).

Formula ( 127) is a very meaningful physical result as it clearly indicates that the coupling losses of a complex strand with 𝑁 multiple time constants can be seen as a cumulation of the coupling losses generated by 𝑁 elementary strands (i.e. F type strands) having specific effective time constants and effective volumes. Indeed, instead of formula (127), we could write

𝑄(𝜔) = ∑ ( 𝑅 𝑓 𝑘 𝑅 𝑓 ) 2 𝑄 𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 (𝜔, 𝜏 𝑐 𝑘 ) 2𝑛-1 𝑘=1
where 𝑅 𝑓 𝑘 would be defined as 𝑅 𝑓 𝑘 = 𝑅 𝑓 √𝛼 𝑘 and would represent the radius of the effective shielded volume of each elementary strand. In this regard we can straightforwardly realize that the coupling between the screening currents leads to the modification of the shielding accomplished by each screening current if it was isolated; the notion of partial shielding can therefore be observed down to the strand scale. Furthermore, we have previously mentioned that a strand with 𝑛 layers did not really have 2𝑛 -1 time constants; the number of time constants it possesses is equal to the number of edges of its filamentary zones. The apparent surplus of time constants in formula (127) seems to be inconsistent with this fact. However we have also mentioned that among the 2𝑛 -1 time constants, some were artificial ones because their presence was due to our modeling. This paradox is solved by the fact that the 𝛼 𝑘 coefficients associated with the artificial time constants are zero (we will not demonstrate this point here but we have observed it for every design we tested).

Another point is that the sum of the 𝛼 𝑘 coefficients is equal to 1. In order to demonstrate this, let us consider an F type composite with its outer edge filaments located at 𝑟 = 𝑅 𝑓 subject to a step-type variation of the applied magnetic field from 0 to 𝐵 𝑠 . The energy stored per unit length of strand 𝐸 𝑙 just after the step is equal to

𝐸 𝑙 = 𝐵 𝑠 2 𝜇 0 𝜋𝑅 𝑓 2
After the step, the currents induced inside the strand will start to decrease until they reach zero; the final energy stored in the strand will then also be zero. The only dissipative phenomena we consider here are coupling losses, therefore we can deduce that the integral over time of the coupling losses per unit length of strand after the step will then be equal to 𝐸 𝑙 to ensure the conservation of energy.

If we apply the same step change of 𝐵 𝑎 on a composite with multiple time constants and with the same 𝑅 𝑓 , the energy stored per unit length of this composite just after the step will also be equal to 𝐸 𝑙 . Indeed, the change of 𝐵 𝑎 being instantaneous, the magnetic shielding of the composite will exclusively be accomplished by its outer edge filaments located at 𝑟 = 𝑅 𝑓 ; it is only when the current they carry start to decay that the internal edge filaments (located at 𝑟 < 𝑅 𝑓 ) begin to develop their own screening currents.

Since the coupling losses of a strand with 𝑁 multiple time constants correspond to the sum of those generated by 𝑁 F type strands having their outer edge filaments located at 𝑟 = 𝑅 𝑓 𝑘 (1 ≤ 𝑘 ≤ 𝑁), we deduce that 𝐸 𝑙 can also be expressed as

𝐸 𝑙 = ∑ 𝐵 𝑠 2 𝜇 0 𝜋𝑅 𝑓 𝑘 2 𝑁 𝑘=1
Consequently, we have

∑ 𝑅 𝑓 𝑘 2 𝑁 𝑘=1 = 𝑅 𝑓 2
which is equivalent to

∑ ( 𝑅 𝑓 𝑘 𝑅 𝑓 ) 2 𝑁 𝑘=1 = 1
And since 𝛼 𝑘 = (𝑅 𝑓 𝑘 /𝑅 𝑓 ) 2 , we have thus demonstrated that

∑ 𝛼 𝑘 𝑁 𝑘=1 = 1
Finally it also important to notice that in a strand with 𝑁 distinct time constants, the (𝛼 𝑘 ) 1≤𝑘≤𝑁 depend on the transverse resistivities of the different zones. Indeed the (𝛼 𝑘 ) 1≤𝑘≤𝑁 are given by formula (128) in which appear the coefficients of 𝛽, [𝑉], [𝑌 𝑏 ] and the time constants (𝜏 𝑐 𝑘 ) 1≤𝑘≤𝑁 ; all these parameters depend on the transverse resistivities of the different zones. The only exception is for strands with a single time constant, in this case there will only be one non zero 𝛼 𝑘 coefficient which must be equal to 1 and therefore does not depend on the transverse resistivities of the different zones.

II.3 Comparisons with literature analytical models

In this section we will show that the formulae derived in our analytical modeling are fully consistent with those issued from previous analytical studies found in the literature. In the case of a composite consisting in a unique zone of filamentary type (displayed on Figure 19), we can give the equation governing 𝐸 

II.3.1 F type composite

𝐸 0 2 + 𝜇 0 2 ( 𝑙 𝑝 2𝜋 ) 2 1 𝜌 𝑡 1 𝐸 ̇02 = 𝑙 𝑝 2𝜋 𝐵 ̇𝑎
In this case there will be a supercurrent, whose spatial amplitude is

𝐾 0 1 = 1 𝜌 𝑡 1
𝑙 𝑝 2𝜋 𝐸 0 2 , flowing through the superconducting filaments located on the edge of the composite. According to equation (57), we know that this supercurrent will create a reacting magnetic field 𝐵 𝑟𝑒𝑎𝑐𝑡 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ = -𝜇 0 𝐾 0 1 2 𝑒 𝑦 ⃗⃗⃗⃗⃗ inside the composite. By superposition, the total internal magnetic field 𝐵 ⃗⃗ 𝑖 will be given by

𝐵 ⃗⃗ 𝑖 = 𝐵 𝑎 ⃗⃗⃗⃗⃗ + 𝐵 ⃗⃗ 𝑟𝑒𝑎𝑐𝑡 = 𝐵 𝑎 𝑒 𝑦 ⃗⃗⃗⃗⃗ - 𝜇 0 𝐾 0 1 2 𝑒 𝑦 ⃗⃗⃗⃗⃗ = 𝐵 𝑖 𝑒 𝑦 ⃗⃗⃗⃗⃗ with 𝐵 𝑖 = 𝐵 𝑎 - 𝜇 0 𝐾 0 1 2
Replacing 𝐾 0 1 with

1 𝜌 𝑡 1 𝑙 𝑝 2𝜋
𝐸 0 2 in the expression above leads to

𝐵 𝑖 = 𝐵 𝑎 - 𝜇 0 2 1 𝜌 𝑡 1 𝑙 𝑝 2𝜋 𝐸 0 2
which is equivalent to

𝐸 0 2 = 2 𝜇 0 𝜌 𝑡 1 2𝜋 𝑙 𝑝 (𝐵 𝑎 -𝐵 𝑖 )
If , after some manipulations, we finally obtain

𝐵 𝑖 + 𝜇 0 2 ( 𝑙 𝑝 2𝜋 ) 2 1 𝜌 𝑡 1 𝐵 ̇𝑖 = 𝐵 𝑎
which is exactly the classical equation governing the internal induction inside a composite composed of a filamentary zone only (see equations ( 1) and (2) in the "state of the art" section).

II.3.2 R/F/R type composite

We will now derive the equations governing R/F/R type composites (see Figure 20) and compare them to those developed by Ciazynski [START_REF] Ciazynski | Distributions de courant et pertes à l'intérieur d'un composite multifilamentaire supraconducteur soumis à un champ magnétique variable[END_REF]. For this geometry, we will not use equation (72) as the associated expressions of [𝐴], [𝑌] and [𝐵] will be quite heavy and not easy to manipulate. We will then start by writing equations (68) for 𝑘 = 2 and 𝑛 = 3 as it is a much more convenient way :

{ 𝐸 0 3 - 𝜇 0 2 𝑙 𝑝 2𝜋 ∑ 𝐾 ̇0𝑖 1 𝑖=1 ( 𝑅 𝑖 𝑅 2 ) 2 = 0 𝐸 0 4 + 𝜇 0 2 𝑙 𝑝 2𝜋 ∑ 𝐾 ̇0𝑖 3 𝑖=2 = 𝑙 𝑝 2𝜋 𝐵 ̇𝑎
This leads to

{ 𝐸 0 3 = 𝜇 0 2 𝑙 𝑝 2𝜋 ( 𝑅 1 𝑅 2 ) 2 𝐾 ̇01 𝐸 0 4 = - 𝜇 0 2 𝑙 𝑝 2𝜋 𝐾 ̇02 + 𝑙 𝑝 2𝜋 𝐵 ̇𝑎
given the fact that 𝐾 0 3 = 0 since there is no filament at 𝑟 = 𝑅 3 in the R/F/R composite (see Figure 20). Using the expressions of 𝐾 0 1 and 𝐾 0 2 as functions of the (𝐸 0 𝑘 )

2≤𝑘≤6

given by ( 44) for 𝑘 = 1 and 𝑘 = 2, we have

{ 𝐾 0 1 = 𝑙 𝑝 2𝜋 [ 1 ρ 𝑡 1 𝐸 0 2 - 1 ρ 𝑡 2 ( 𝑅 2 𝑅 1 ) 2 𝐸 0 3 - 1 ρ 𝑡 2 𝐸 0 4 ] 𝐾 0 2 = 𝑙 𝑝 2𝜋 [ 1 ρ 𝑡 2 𝐸 0 3 + 1 ρ 𝑡 2 𝐸 0 4 - 1 ρ 𝑡 3 ( 𝑅 3 𝑅 2 ) 2 𝐸 0 5 - 1 ρ 𝑡 3 𝐸 0 6 ]
We also have to consider the two continuity equations of 𝐸 𝜃 at 𝑟 = 𝑅 1 and 𝑟 = 𝑅 2 given by (343) for 𝑘 = 1 and 𝑘 = 2

{ -𝐸 0 2 -( 𝑅 2 𝑅 1 ) 2 𝐸 0 3 + 𝐸 0 4 = 0 𝐸 0 3 -𝐸 0 4 -( 𝑅 3 𝑅 2 ) 2 𝐸 0 5 + 𝐸 0 6 = 0
as well as the boundary condition 𝐸 𝑟 3 (𝑅 3 ) = 0 given by ( 43)

𝐸 0 6 = -𝐸 0 5
The combination of these equations enables us to express 𝐸 0 2 , 𝐸 0 5 and 𝐸 0 6 as functions of 𝐸 0 3 and

𝐸 0 4 { 𝐸 0 2 = -( 𝑅 2 𝑅 1 ) 2 𝐸 0 3 + 𝐸 0 4 𝐸 0 5 = 𝑅 2 2 𝑅 2 2 + 𝑅 3 2 (𝐸 0 3 -𝐸 0 4 ) 𝐸 0 6 = 𝑅 2 2 𝑅 2 2 + 𝑅 3 2 (-𝐸 0 3 + 𝐸 0 4 )
Injecting these new relations into the formulae of 𝐾 0 1 and 𝐾 0 2 above leads to

{ 𝐾 0 1 = 1 ρ 𝑡 2 𝑙 𝑝 2𝜋 [-( 𝑅 2 𝑅 1 ) 2 ( ρ 𝑡 2 ρ 𝑡 1 + 1) 𝐸 0 3 + ( ρ 𝑡 2 ρ 𝑡 1 -1) 𝐸 0 4 ] 𝐾 0 2 = 1 ρ 𝑡 2 𝑙 𝑝 2𝜋 [(1 - ρ 𝑡 2 ρ 𝑡 3 𝑅 3 2 -𝑅 2 2 𝑅 3 2 + 𝑅 2 2 ) 𝐸 0 3 + (1 + ρ 𝑡 2 ρ 𝑡 3 𝑅 3 2 -𝑅 2 2 𝑅 3 2 + 𝑅 2 2 ) 𝐸 0 4 ]
Finally, replacing 𝐸 0 3 and 𝐸 0 4 with their expressions as functions of 𝐾 ̇01 , 𝐾 ̇02 and 𝐵 ̇𝑎 in the new formulae of 𝐾 0 1 and 𝐾 0 2 , we obtain

{ 𝐾 0 1 + ( ρ 𝑡 2 ρ 𝑡 1 + 1) 𝜏 𝑐 𝐾 ̇01 + ( ρ 𝑡 2 ρ 𝑡 1 -1) 𝜏 𝑐 𝐾 ̇02 = ( ρ 𝑡 2 ρ 𝑡 1 -1) 2 𝜇 0 𝜏 𝑐 𝐵 ̇𝑎 𝐾 0 2 + ( 𝑅 1 𝑅 2 ) 2 ( ρ 𝑡 2 ρ 𝑡 3 𝑅 3 2 -𝑅 2 2 𝑅 3 2 + 𝑅 2 2 -1) 𝜏 𝑐 𝐾 ̇01 + ( ρ 𝑡 2 ρ 𝑡 3 𝑅 3 2 -𝑅 2 2 𝑅 3 2 + 𝑅 2 2 + 1) 𝜏 𝑐 𝐾 ̇02 = ( ρ 𝑡 2 ρ 𝑡 3 𝑅 3 2 -𝑅 𝑅 3 2 + 𝑅 + 1) 2 𝜇 0 𝜏 𝑐 𝐵 ̇𝑎 with 𝜏 𝑐 = 𝜇 0 2 ( 𝑙 𝑝 2𝜋 ) 2 1 ρ 𝑡 2
These equations can be turned into the following matrix equation These results are exactly the same as those found by Ciazynski [START_REF] Ciazynski | Distributions de courant et pertes à l'intérieur d'un composite multifilamentaire supraconducteur soumis à un champ magnétique variable[END_REF]; our general approach is thus consistent.

[
It is interesting to note that 𝜏 𝑒𝑥𝑡1 = 𝜏 12 and 𝜏 𝑒𝑥𝑡2 = 𝜏 22 ; this means that the coupling between 𝐾 0 1 and 𝐾 ̇02 is identical to the one between 𝐾 0 1 and 2 𝜇 0 𝐵 ̇𝑎. Indeed the magnetic field created by the second surface current (i.e. 𝐾 0 2 ) in its enclosed volume is perfectly uniform and equal to -𝜇 0 2 𝐾 0 2 according to (57); the first surface current (i.e. 𝐾 0 1 ) feels then its time-variation it in the exact same way it feels 𝐵 ̇𝑎.

It is also interesting to note that, in case 𝜌 𝑡 1 = 𝜌 𝑡 2 , we have 𝜏 𝑒𝑥𝑡1 = 𝜏 12 = 0, and the new time equation on the spatial amplitudes of the surface currents 𝐾 0 1 and 𝐾 0 2 becomes

[ 𝐾 0 1 𝐾 0 2 ] + [ 𝜏 11 0 𝜏 21 𝜏 22 ] [ 𝐾 ̇01 𝐾 ̇02 ] = 2 𝜇 0 [ 0 𝜏 𝑒𝑥𝑡2
] 𝐵 ̇𝑎 Therefore, if the initial value of 𝐾 0 1 is zero, it will remain zero no matter the time variations of 𝐵 𝑎 . This result makes sense as, in case 𝜌 𝑡 1 = 𝜌 𝑡 2 , the continuity of 𝐽 𝑟 at 𝑟 = 𝑅 1 will always be ensured and thus there would be no need for an axial surface current at 𝑟 = 𝑅 1 to balance the radial current flow. Consequently, in case 𝜌 𝑡 1 = 𝜌 𝑡 2 , the time equation can be reduced to

𝐾 0 2 + 𝜏 22 𝐾 ̇02 = 2 𝜇 0 𝜏 𝑒𝑥𝑡2 𝐵 ̇𝑎
and there will only be one time constant equal to 𝜏 22 .

Furthermore, in steady-state regimes, i.e. when the surface currents are not time-varying (𝐾 ̇01 = 𝐾 ̇02 = 0), we have

{ 𝐾 0 1 = ( 1 ρ 𝑡 1 - 1 ρ 𝑡 2 ) ( 𝑙 𝑝 2𝜋 ) 2 𝐵 ̇𝑎 𝐾 0 2 = ( 1 ρ 𝑡 3 𝑅 3 2 -𝑅 2 2 𝑅 3 2 + 𝑅 2 2 + 1 ρ 𝑡 2 ) ( 𝑙 𝑝 2𝜋 ) 2 1 ρ 𝑡 2 𝐵 ̇𝑎
When ρ 𝑡 1 > ρ 𝑡 2 , the first surface current is flowing in the opposite direction to the second one. At first sight this seems quite unintuitive; indeed assuming 𝐵 𝑎 is increasing with time, we expect both surface current amplitudes 𝐾 0 1 and 𝐾 0 2 to be positive in order to screen the strand from the time variation of 𝐵 𝑎 .

In reality, 𝐾 0 2 will be positive while 𝐾 0 1 will be negative, this can be explained saying that the current induced between any pair of filaments located at 𝑟 = 𝑅 2 will use the filaments located at 𝑟 = 𝑅 1 to shunt the central zone (of resistivity ρ 𝑡 1 higher than ρ 𝑡 2 ), i.e. they prefer to temporarily flow through the filaments located at 𝑟 = 𝑅 1 to loop back in the second zone rather than directly crossing the central zone.

Therefore, in addition to the currents induced between filaments located at 𝑟 = 𝑅 1 -which would give a positive 𝐾 0 1 if they were alone -there exists a surplus of current due to filaments located at 𝑟 = 𝑅 2 which can make the global 𝐾 0 1 (corresponding to the superposition of the two contributions) negative

if ρ 𝑡 1 > ρ 𝑡 2 .
The configuration for which the central resistive zone is replaced with a hole allows an easy understanding of this phenomenon. Indeed, in this case the currents induced between two distant filaments located at 𝑟 = 𝑅 2 would have no choice but to circulate through the filaments located at 𝑟 = 𝑅 1 to loop back. In the configuration featuring a central hole, we would have ρ 𝑡 1 → ∞, thus 1/ρ 𝑡 1 = 0,

and 𝐾 0 1 = - 1 ρ 𝑡 2 ( 𝑙 𝑝 2𝜋 ) 2
𝐵 ̇𝑎 which would be negative for a rising ramp of 𝐵 𝑎 .

Consequently, we can deduce that the part of the induced currents due to the filaments located at 𝑟 = 𝑅 1 in the expression of 𝐾 0 1 above, is

1 ρ 𝑡 1 ( 𝑙 𝑝 2𝜋 ) 2
𝐵 ̇𝑎, while the other one (i.e. due to the filaments

located at 𝑟 = 𝑅 2 ) is - 1 ρ 𝑡 2 ( 𝑙 𝑝 2𝜋 ) 2 𝐵 ̇𝑎.

II.4 Applications

II.4.1 Simulations of Q vs f curves for F/R and R/F type composites

In order to give a more practical vision of the outputs of our analytical modeling, we have chosen to compute the 𝑄 vs 𝑓 curves of both R/F and F/R type composites (see Figure 21). In order to do this, we will choose the following geometrical parameters for both strands (representative of ITER and JT-60SA strands) We are here interested in the values of the 𝜌 𝑡 2 /𝜌 𝑡 1 ratio rather than in the absolute values of 𝜌 𝑡 1 and 𝜌 𝑡 2 , therefore we will set 𝜌 𝑡 1 to the following realistic value (which corresponds to the resistivity of copper with 𝑅𝑅𝑅 = 150 at 𝑇 = 4.2𝐾 and 𝐵 = 1𝑇) 𝜌 𝑡 1 = 1.5 × 10 -10 𝛺. 𝑚

We have explored several cases resulting into a total of ten 𝑄 vs 𝑓 curves which correspond to the following values of the 𝜌 𝑡 2 /𝜌 𝑡 1 ratio (which covers about 2 orders of magnitude)

𝜌 𝑡 2 /𝜌 𝑡 1 = { 1/9 1/3 1 3 9
We have considered a sinusoidal magnetic excitation 𝐵 𝑎 = 𝐵 𝑝 𝑠𝑖𝑛(𝜔𝑡), with 𝐵 𝑝 = 2𝑇 for both strands; the results for the F/R type strand are displayed in Figure 22 and those of the R/F in Figure 23.

Note that the curves displayed on Figure 22 correspond to coupling losses per cycle per unit volume of strand (they are not per unit volume of filamentary zone).

These curves have been computed using formulae (127) and (128); in the case of the F/R composite they are fully consistent with the formula found in [START_REF] Turck | Coupling losses in various outer normal layers surrounding the filament bundle of a superconducting composite[END_REF], i.e.

𝑄(𝜔) = ( 𝑅 𝑓 𝑅 ) 2 𝐵 𝑝 2 𝜇 0 2𝜋𝜔𝜏 1 + (𝜔𝜏) 2 with 𝜏 = 𝜇 0 2 ( 𝑙 𝑝 2𝜋 ) 2 [ 1 𝜌 𝑡 1 + 1 𝜌 𝑡 2 ( 𝑅 2 2 -𝑅 1 2 𝑅 2 2 + 𝑅 1 2 )]
For each value of the 𝜌 𝑡 2 /𝜌 𝑡 1 ratio, we have obtained only one non zero 𝛼 𝑘 coefficient, equal to 1. This is consistent with our previous discussions since the F/R type composite has only one time constant.

We can also notice that the maximum of the curves are all equal to one another and that they are shifted to the right with increasing 𝜌 𝑡 2 /𝜌 𝑡 1 ratio.

From equation (126), we can see that the 𝑄 vs 𝑓 curves corresponding to strands with only one time constant 𝜏 reach their maximum for 𝜔 = 1/𝜏; this maximum does not depend on 𝜏 and is equal to

𝑄 𝑚𝑎𝑥 = ( 𝑅 𝑓 𝑅 ) 2 𝐵 𝑝 2 𝜋 𝜇 0
Note that the (𝑅 𝑓 /𝑅) 2 term is needed here to give the coupling losses per cycle per unit volume of strand instead of unit volume of filamentary zone. For an F/R type composite, there is only one time constant 𝜏 which is inversely proportional to the total effective transverse resistivity of the strand. This total effective resistivity consists in a combination of the effective transverse resistivity of the filamentary zone and of the transverse resistivity of the outer layer (we have already discussed this point in section II.1.2 ). When the resistivity of the second zone (R) increases, the total effective transverse resistivity also increases, as a consequence, the time constant 𝜏 decreases and the maximum of the 𝑄 vs 𝑓 curve is then shifted to the right. There even exists a limit to the minimum value of 𝜏: it is reached when the resistivity of the second zone (R) is infinitely higher than that of the first layer (F). In this case, the F/R type strand actually corresponds to an F type strand and we obtain 𝜏 = 23.9𝑚𝑠 using the parameters of our example.

The 𝑄 vs 𝑓 curves displayed on Figure 23 are also coupling losses per cycle per unit volume of strand (not per unit volume of filamentary zone). These curves have also been computed using formulae (127) and (128) but this time, unlike the case of the F/R type composite, we can see that there are two 𝛼 𝑘 coefficients per curve (except for the third curve) and that their values are sensitive to the 𝜌 𝑡 2 /𝜌 𝑡 1 ratio. This clearly supports our discussion on the dependence of the 𝛼 𝑘 coefficients on the transverse resistivity of the different zones for strands with more than one time constant.

In addition, conversely to the F/R type composites, we can notice that the maxima of each curve are all different from one another even though they are also shifted to the right with increasing 𝜌 𝑡 2 /𝜌 𝑡 1 ratio. As a remark, we can see that the third curve is the only one with a single time constant and a single 𝛼 𝑘 coefficient. This comes from the fact that 𝜌 𝑡 2 = 𝜌 𝑡 1 for this curve and, in this case, the R/F type composite has no longer two time constants but only one (as previously mentioned in the R/F/R case). As a matter of fact, when 𝜌 𝑡 2 = 𝜌 𝑡 1 , the first surface current normally flowing at 𝑟 = 𝑅 1 has not any specific role and both zones are electrically equivalent, so virtually merge. Therefore the composite features only one surface current flowing at 𝑟 = 𝑅 2 with only one 𝛼 𝑘 coefficient equal to 1 and there is only one time constant left.

The fifth curve is interesting as it deviates in shape from the other ones. For this reason we have displayed it on Figure 24 together with its decomposition as a weighted sum of two classical (i.e. single time constants) 𝑄 vs 𝑓 curves, as indicated in formula (127). This means that, in addition to curve 5, we have plotted 𝛼 1 𝑄 𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 (𝜏 𝑐 1 ) and 𝛼 2 𝑄 𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 (𝜏 𝑐 2 ) such that curve 5 is equal to 𝛼 1 𝑄 𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 (𝜏 𝑐 1 ) + 𝛼 2 𝑄 𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 (𝜏 𝑐 2 ). The fact that it deviates in shape from the other curves is majorly due to the fact that the values of its 𝛼 1 and 𝛼 2 coefficients are close from one another (respectively 0.562 and 0.438) while in the other curves, 𝛼 1 predominates. Since the two 𝛼 𝑘 coefficients are in the same range and the two time constants quite far apart we can observe that the convolution of the two contributions results in a curve with a maximum rather "flat", unlike the curves usually expected from the "single time constant" approach for representing the strand behavior. In order to quantify this consideration, we will extrapolate curve 5 at high frequencies from its linear part and using the classical formula (126).

In order to do so, we consider that the R/F type composite has only one time constant and therefore assume that its associated coupling losses per cycle per unit volume of filamentary zone can be described by formula (126) which is equivalent to

𝑄 𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 (𝑓, 𝜏) = ( 𝑅 𝑓 𝑅 ) 2 𝐵 𝑝 2 𝜇 0 4𝜋 2 𝑓𝜏 1 + (2𝜋𝑓𝜏) 2
per unit volume of strand.

For small values of 𝑓 satisfying 2𝜋𝑓𝜏 ≪ 1, we can assume that the 𝑄 𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 (𝑓, 𝜏) function is well described by the following linear function

𝑄 𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 (𝑓 ≪ 1/(2𝜋𝜏), 𝜏) ≃ 4𝜋 2 𝜏 ( 𝑅 𝑓 𝑅 ) 2 𝐵 𝑝 2 𝜇 0 𝑓
And it is then possible to compute the time constant 𝜏 of the strand from the slope at origin 𝑎 of curve 5 as

𝜏 = 𝜇 0 4𝜋 2 𝐵 𝑝 2 ( 𝑅 𝑅 𝑓 ) 2 𝑎
Using this formula and the slope at origin of curve 5, we have obtained 𝜏 = 13.3𝑚𝑠 and have then extrapolated curve 5 at high frequencies using this τ; both curve 5 and the extrapolation from its linear part are displayed in Figure 25. We clearly see a disagreement between these two curves at frequencies higher than 2𝐻𝑧. The discrepancy between both curves is clear: it reaches a factor 1.5 for 𝑓 = 11𝐻𝑧 and generally shows that for most of the high frequencies important over-evaluations or under-evaluations are made between the two approaches. We can also note that curve 5 reaches its maximum at 𝑓 = 30𝐻𝑧 while its extrapolation reaches its maximum at 𝑓 = 12𝐻𝑧.

II.4.2 Study on the effect of the layout of a composite on coupling losses

When designing a composite, the total amount of superconductor inside the composite is a key parameter as it will ensure the ability of the strand to produce the desired current, but it is not the only one. The Cu/NonCu ratio is also an important parameter as it will ensure the stability of the composite while guaranteeing also its integrity in case of quench. The filaments diameter plays a significant role in the protection of the composite against flux jumps too and should not be too large for this reason.

With the knowledge of the main design parameters of the composite, it is possible to propose a geometry that will meet given design requirements.

There can be more than one acceptable geometry since the number and sequencing of the layers are usually not fixed. These parameters might be optimized with respect to coupling losses.

In order to draw a tentative contribution to those considerations we have carried out a study on the response of composites meeting the same design requirements, but with different layouts, to sinusoidal magnetic excitations.

We have therefore chosen the four different layouts displayed on Figure 26: F, F/R, R/F and R/F/R. We have chosen realistic design requirements (inspired from the design of JT-60SA TF conductor) and have therefore set the radius 𝑅 of the composites to 𝑅 = 0.405𝑚𝑚, the filaments diameter to 𝑑 𝑓𝑖𝑙 = 20𝜇𝑚 and the Cu/NonCu ratio to 1.5. We assume that the superconductor is the only non-copper material inside the composites; the overall proportion 𝜆 of superconductor in each composite is then

𝜆 = 1 1 + Cu/NonCu = 0.4
For layouts 2 to 4 which feature several layers, the radii of each of their internal zones are set as below (these assumptions are considered as examples for possible design constraints).

For layout 2, 𝑅 1 is such that the surface of layer 2 (copper) is equal to half that of layer 1 (filamentary), we then have 𝑅 1 = 𝑅√2/3.

For layout 3, we have set 𝑅 1 such that the surface of layer 1 (copper) is equal to half that of layer 2 (filamentary), therefore 𝑅 1 = 𝑅/√3.

For layout 4, we have set 𝑅 1 and 𝑅 2 such that the surface of layer 1 (copper) is equal to that of layer 3 (copper) and one fourth that of layer 2 (filamentary), thus

{ 𝑅 1 = 𝑅/√6 𝑅 2 = 𝑅√5/6
The resistivity of copper is set to 𝜌 𝐶𝑢 = 1.5 × 10 -10 𝛺. 𝑚 which again corresponds to the resistivity of copper with 𝑅𝑅𝑅 = 150 at 𝑇 = 4.2𝐾 and 𝐵 = 1𝑇.

We now have to compute the effective transverse resistivities of the filamentary zone of each strand. In order to do so, we will use the formula given by Ciazynski [START_REF] Ciazynski | Distributions de courant et pertes à l'intérieur d'un composite multifilamentaire supraconducteur soumis à un champ magnétique variable[END_REF] which is in agreement with the two extreme values of the filament-to-matrix contact resistance given by Carr [START_REF] Carr | Conductivity, permeability, and dielectric constant in a multifilament superconductor[END_REF]. In his formula Ciazynski assumes that the filament-to-matrix contact can be represented by a small resistive barrier of thickness 𝑒 𝑏 and resistivity 𝜌 𝑏 surrounding the filaments; we assume this barrier to be thin enough so that his formula can be written as in [START_REF] Jl | Coupling-current losses in composites and cables: analytical calculations in Handbook of Applied Superconductivity[END_REF] 

𝜌 𝑡 = 𝜌 𝑚 1 -𝜆 𝐹 + 𝜒(1 + 𝜆 𝐹 ) 1 + 𝜆 𝐹 + 𝜒(1 -𝜆 𝐹 )
with 𝜒 = 𝜌 𝑏 𝑒 𝑏 𝜌 𝑚 𝑟 𝑓𝑖𝑙 𝑟 𝑓𝑖𝑙 is the radius of the filaments and 𝜌 𝑚 is the resistivity of the matrix in the filamentary zone, but since the matrix is supposed to be exclusively made of copper, we have here 𝜌 𝑚 = 𝜌 𝐶𝑢 .

Turck [START_REF] Turck | Effective transverse resistivity in multifilamentary superconducting composite[END_REF] has estimated the 𝜌 𝑏 𝑒 𝑏 parameter to be close to 𝜌 𝑏 𝑒 𝑏 = 6 × 10 -15 𝛺. 𝑚 2 which is consistent with the measurements presented in [START_REF] Zhou | Inter-filament resistance, effective transverse resistivity and coupling loss in superconducting multi-filamentary NbTi and Nb3Sn strands[END_REF].

We have chosen this value for each of the four composites because since we assume this parameter is related to the fabrication process, it should be the same for every strand.

𝜆 𝐹 is the proportion of superconductor in the filamentary zone; it is therefore not always equal to 𝜆 depending on the layout. Let us note 𝜆 𝐹 (𝑘) the proportion of superconductor in the filamentary zone of the composite with layout 𝑘, in order to conserve the have the same amount of superconductor in each composite we must have

{ 𝜆 𝐹 (1) 𝜋𝑅 2 = 𝜆𝜋𝑅 2 𝜆 𝐹 (2) 𝜋𝑅 1 2 = 𝜆𝜋𝑅 2 𝜆 𝐹 (3) 𝜋(𝑅 2 -𝑅 1 2 ) = 𝜆𝜋𝑅 2 𝜆 𝐹 (4) 𝜋(𝑅 2 2 -𝑅 1 2 ) = 𝜆𝜋𝑅 2
which is equivalent to

{ 𝜆 𝐹 (1) = 𝜆 𝜆 𝐹 (2) = 𝜆 ( 𝑅 𝑅 1 ) 2 𝜆 𝐹 (3) = 𝜆 𝑅 2 𝑅 2 -𝑅 1 2 𝜆 𝐹 (4) = 𝜆 𝑅 2 𝑅 2 2 -𝑅 1 2
We now have all the elements to compute the effective transverse resistivities of the filamentary zone of each composite. Table 2 and Table 3 summarize the geometrical and electrical parameters of the composites computed using the previous considerations for the four different layouts. Using the parameters presented in Table 2 and Table 3 we have been able to produce the 𝑄 vs 𝑓 curves for the four layouts; they are plotted on Figure 27. First of all, it is quite clear that, under our design assumptions, the F/R layout seems to be the best configuration with respect to coupling losses while the F one is the worst : there is a factor 1.5 between the maxima of the 𝑄 vs 𝑓 curves of the F and F/R type composites. In between these two extremes, are the R/F/R and R/F type composites.

The obtained results are not intuitive at all and are quite difficult to predict qualitatively. Indeed, the different parameters of each strand have several effects that are competing with each other in the phenomenon of coupling losses.

Actually two antagonistic effects enter into competition. First, the radius 𝑅 𝑓 on which the outer edge filaments are located defines the volume to shield, therefore the larger the radius 𝑅 𝑓 , the larger the volume to shield and thus the larger the losses. Secondly, for a given variation of applied magnetic field 𝐵 𝑎 , the smaller the total effective transverse resistivity, the higher the induced currents and consequently the larger the losses.

If we now take a look at the parameters of the F and F/R type composites present in Table 3, we observe that the F composite has an effective transverse resistivity of 𝜌 𝑡 = 2.45 × 10 -10 𝛺. 𝑚 while the F/R one has a higher transverse resistivity in its filamentary zone (𝜌 𝑡 1 = 3.19 × 10 -10 𝛺. 𝑚) and a lower one in its copper sheath (𝜌 𝑡 2 = 1.5 × 10 -10 𝛺. 𝑚). The first difficulty is to compute the total effective transverse conductivity (i.e. 1/𝜌 𝑡 𝑡𝑜𝑡 ) of the F/R type composite as it consists in a weighted sum of the effective transverse conductivities of its two layers (i.e. 1/𝜌 𝑡 1 and 1/𝜌 𝑡 2 ). The two weighting coefficients depend on the geometrical parameters of the strand but they cannot be trivially derived, therefore we will not calculate them here. However given the values of the different resistivities and the geometry of both strands we can assume that the total effective transverse resistivity of the F/R type composite should be close to that of the F strand. Knowing that the time constant of an F or an F/R type strand is inversely proportional to its total effective transverse resistivity (see section II.1.2), our previous conjecture is confirmed by the fact that the time constants of both strands are very close from one another (14.6𝑚𝑠 for F and 16𝑚𝑠 for F/R). As a consequence, from considerations on the resistivities of both strands, we expect their respective coupling losses to be very similar and yet this is not what we observe.

Regarding the location of the outer edge filaments we see that the F/R type composite has an advantage on its counterpart. Indeed the ratio of the shielded volumes of both strands is here equal to 2/3 and is in favor of layout 2 (F/R); this therefore explains the relative positions of their 𝑄 vs 𝑓 curves.

Finally, in order to produce a qualitative explanation for the positions of the different 𝑄 vs 𝑓 curves, we have displayed in Table 4 the ratio of the shielded volume to the strand volume for the four layouts.

Table 4

Ratio of shielded volume to strand volume for the different layouts

Layout number 1 2 3 4 Type F F/R R/F R/F/R 𝑟𝑎𝑡𝑖𝑜 1 2/3 1 5/6
Maximum of Q(f) (𝟏𝟎 𝟔 𝑱/𝒄𝒎 𝟑 / 𝒄𝒚𝒄𝒍𝒆) 10.0 6.67 9.70 8.17

A posteriori we see that the shielded volume is the parameter that mainly impacts the coupling losses : the order of the ratios of Table 4 is consistent with the relative positions of the curves.

In summary, the results of our study have shown that when designing a composite, if the factor of merit includes the coupling losses, it would be better to minimize the radius on which the outer edge filaments are located.

Our study only considers coupling losses so the conclusions might differ when other parameters (critical performances, ease of assembly at manufacturing stage, stability of the composite in self-field, cost, etc…) are taken into account in the design requirements of a composite; these considerations could lead to the choice of another type of composite (different from F/R) with respect to the design constraints.

Since this section aims only at spotting the general trends among different options, we go into a more quantitative approach by studying a particular design in the following section.

II.4.3 Study on JT-60SA TF strand

In this section we will present a detailed study of the electromagnetic behavior of the strand to be integrated into the Toroidal Field Coil of JT-60SA tokamak [START_REF] Zani | Starting EU Production of Strand and Conductor for JT-60SA Toroidal Field Coils[END_REF] when subject to a transverse timevarying magnetic field. This strand is the K006-01C and was manufactured by Furukawa.

As shown on Figure 11, this composite features a copper core surrounded by a filamentary zone containing NbTi filaments embedded in a copper matrix. The filamentary zone is enclosed in a CuNi barrier which is surrounded by a copper shell; this strand is thus of R/F/R/R type.

II.4.3.1

Determination of the filament-to-matrix contact 𝜌 𝑏 𝑒 𝑏 parameter First of all, we have to determine the effective transverse resistivity of its filamentary zone (i.e. 𝜌 𝑡 2 ). In order to do so, we will use the coupling losses measurements that we have carried out on this strand in the Speedy facility at CEA; they are presented in section II.5.2.1 .

However, since we have not directly measured its effective resistivity, we have to express the coupling losses of this strand as function of 𝜌 𝑡 2 to be able to deduce its value.

The measurements were made for trapezoidal cycles consisting in a succession of rising ramps, plateaus and falling ramps; we can then consider that the measurements were made in steady state regime since the durations of the ramps and plateaus were long compared to the large time constant of the JT-60SA TF strand (see section II.5.2.1 ).

As a consequence we will derive the formula of coupling losses inside this strand for steady state regime.

Since the strand is of R/F/R/R type, it features 𝑛 = 4 layers and we therefore have 2𝑛 -1 = 7 electric field coefficients to determine i.e. (𝐸 0 𝑘 ) 2≤𝑘≤8 .

The second layer being filamentary, we can use equation [START_REF] Nijhuis | The influence of the diffusion barrier on the AC loss of Nb3Sn superconductors[END_REF] for 𝑘 = 2 which gives

{ 𝐸 0 3 = 0 𝐸 0 4 = 𝑙 𝑝 2𝜋 𝐵 ̇𝑎
At 𝑟 = 𝑅 1 there is an interface of resistive/filamentary type, according to equation [START_REF] Louzguiti | Development of an Analytical-Oriented Extensive Model for AC Coupling Losses in Multilayer Superconducting Composite[END_REF] for 𝑘 = 1 we can thus write

-𝐸 0 1 + 𝐸 0 2 = 𝑙 𝑝 2𝜋 𝐵 ̇𝑎
which reduces to

𝐸 0 2 = 𝑙 𝑝 2𝜋 𝐵 ̇𝑎 since 𝐸 0 1 is always zero.
The ultimate layer of the composite is resistive, for 𝑛 = 4 equation ( 43) indicates that

𝐸 0 8 = -𝐸 0 7
The filamentary/resistive interface located at 𝑟 = 𝑅 2 leads, from equation ( 41) for 𝑘 = 2, to

-( 𝑅 3 𝑅 2 ) 2 𝐸 0 5 + 𝐸 0 6 = 𝑙 𝑝 2𝜋 𝐵 ̇𝑎
Finally since there is an interface between two resistive layers at 𝑟 = 𝑅 3 , we can use equation ( 39) for 𝑘 = 3 and the fact that 𝐸 0 8 = -𝐸 0 7 to obtain 

{ 𝐸 0 5 =
𝑠 2 = 1 2 [( 𝑅 4 𝑅 3 ) 2 ( 𝜌 𝑡 3 𝜌 𝑡 4 -1) -1 - 𝜌 𝑡 3 𝜌 𝑡 4 ]
The combination of these expressions with the equation on 𝐸 0 5 and 𝐸 0 6 above gives 

𝐸 0 7 = 𝑅 2 2 𝑠 2 𝑅 2 2 -
(𝑠 2 𝑅 2 2 -𝑠 1 𝑅 3 2 ) 2 ]
From the measurements (see section II.5.2.1 ), we have determined 𝑎 = 6.34 × 10 5 𝐽. 𝑚 -3 . 𝑠 for a trapezoidal cycle with a 𝐵 𝑚 of 3𝑇.

The average magnetic field amplitude during the -3/+3𝑇 trapezoidal cycle being 1.5𝑇, we have set 𝜌 𝐶𝑢 = 2.278 × 10 -10 𝛺. 𝑚 which corresponds to the resistivity of copper with 𝑅𝑅𝑅 = 100 at 𝑇 = 4.2𝐾 and 𝐵 = 1.5𝑇.

The third layer of the composite is a cupronickel barrier of 13 wt% (weight percent) Ni; the resistivity values of CuNi present in [START_REF] Jl | Coupling-current losses in composites and cables: analytical calculations in Handbook of Applied Superconductivity[END_REF] For the considered composite, 𝑟 𝑓𝑖𝑙 = 9.5𝜇𝑚, 𝜆 𝐹 = 0.86 and 𝜌 𝑚 = 𝜌 𝐶𝑢 [START_REF] Zani | Starting EU Production of Strand and Conductor for JT-60SA Toroidal Field Coils[END_REF] . We therefore obtain

𝜌 𝑏 𝑒 𝑏 = 2 × 10 -15 𝛺. 𝑚 2 II.4.3.2 Simulated Q vs f curve for JT-60SA TF strand
Knowing all the electrical and geometrical parameters of K006-01C JT-60SA TF strand, we have been able to instantly compute its 𝑄 vs 𝑓 curve for 𝐵 𝑎 = 𝐵 𝑝 sin (2𝜋𝑓𝑡) with 𝐵 𝑝 = 3𝑇 using CLASS algorithm -which features analytical formula (127) -and the measurements made in the low frequency region with CEA SPEEDY facility, i.e. with 𝜌 𝑡 2 = 2.096 × 10 -10 𝛺. 𝑚, see section II.5.2.1 ; the curve is displayed on Figure 28. Since K006-01C JT-60SA TF composite features two interfaces between filamentary and resistive zones (see Figure 11), it has two time constants. As shown on Figure 28, CLASS algorithm has obtained the following time constants 𝜏 𝑐 𝑘 and 𝛼 𝑘 coefficients for the K006-01C JT-60SA TF composite with the previous electrical and geometrical parameters:

{ 𝜏 𝑐 1 = 17.0𝑚𝑠𝑤𝑖𝑡ℎ𝛼 1 = 0.998 𝜏 𝑐 2 = 33.3𝑚𝑠𝑤𝑖𝑡ℎ𝛼 2 = 0.002
This clearly indicates that even if the K006-01C JT-60SA TF composite has two time constants, the first one i.e. 𝜏 𝑐 1 = 17.0𝑚𝑠 is largely predominant. Indeed, its weighting in the losses is worth 99.8% while the other one (𝜏 𝑐 2 = 33.3𝑚𝑠) only weights 0.2%. From this information we can readily deduce that, for an average magnetic field of 1.5 T (+/-3T cycles), the K006-01C JT-60SA TF composite behaves as if it only had one time constant : this is due to the fact that here 𝜌 𝑡 2 ≃ 𝜌 𝑡 1 (see discussion in section II.3.2 ).

Note that the value of the average magnetic field seen by the composite is important because it has an influence on the transverse resistivities of the different zones and thus can affect the values of the time constants 𝜏 𝑐 𝑘 and 𝛼 𝑘 coefficients.

The results of CLASS algorithm on this specific case are consistent with the ones that would be classically derived from the experimental losses. Indeed the composite is subject to +/-3T trapezoidal cycles whose ramps last 2𝜏 𝑎 and whose plateaus last 𝑇 𝑝 (both 𝜏 𝑎 and 𝑇 𝑝 are greater than the largest time constant of the strand), therefore the coupling losses per cycle per unit volume of strand 𝑄 can be determined from [START_REF] Wilson | Introduction" in Superconducting Magnets[END_REF] Therefore using 𝑎 = 6.34 × 10 5 𝐽. 𝑚 -3 . 𝑠 determined from measurements, we can deduce

𝜏 ≃ ( 𝑅 𝑅 𝑓 ) 2 𝜇 0 𝑎 8𝐵 𝑚 2 ≃ 17.0𝑚𝑠
which is fully consistent with the results obtained with CLASS.

It is very important to understand that the case of the K006-01C JT-60SA TF composite is a specific one. Indeed, although having two time constants, it here behaves exactly as if it had only one time constant, but there is no guarantee that it will keep this behavior for any magnetic field amplitude. Considering it a single time constant strand under any circumstances could lead to appreciable discrepancies.

Erratum: In [START_REF] Louzguiti | Development of an Analytical-Oriented Extensive Model for AC Coupling Losses in Multilayer Superconducting Composite[END_REF] and [START_REF] Louzguiti | Modélisation analytique de la puissance thermique générée par les courants de couplage à l'intérieur d'un composite supraconducteur[END_REF] we have presented the same application but the associated results at the time of the publications were different than those discussed in the present manuscript; an error was made on the determination of the effective transverse resistivity. Consequently, the discrepancy between the single time constant approach and the CLASS algorithm has been significantly reduced on this particular case (JT-60SA TF strand).

In order to highlight again the difference in behavior between single time constant strands and multiple time constants ones, we have also computed another 𝑄 vs 𝑓 curve assuming this composite had an arbitrary but realistic 𝜌 𝑏 𝑒 𝑏 value of

𝜌 𝑏 𝑒 𝑏 = 6 × 10 -15 𝛺. 𝑚 2
This modification of the 𝜌 𝑏 𝑒 𝑏 value also has an impact on the effective transverse resistivity of the second zone which is now quite different from 𝜌 𝑡 1 , i.e. 𝜌 𝑡 2 = 5.367 × 10 -10 𝛺. 𝑚

The new 𝑄 vs 𝑓 curve computed by CLASS ("Qtot") is displayed on Figure 29. It is interesting to note that it is no longer possible to see the K006-01C JT-60SA TF strand as a single time constant composite. Indeed the new values of time constants 𝜏 𝑐 𝑘 and 𝛼 𝑘 coefficients are :

{

𝜏 𝑐 1 = 8.3𝑚𝑠𝑤𝑖𝑡ℎ𝛼 1 = 0.876 𝜏 𝑐 2 = 21.1𝑚𝑠𝑤𝑖𝑡ℎ𝛼 2 = 0.124 and here 𝜏 𝑐 1 is not as predominant as before (weight of 87.6%). In order to visualize the error made considering a two time constant strand as a single time constant one, we have plotted two additional 𝑄 vs 𝑓 curves on Figure 29. The first one "Q determined from slope" is computed assuming the strand has only one time constant : the value of the time constant is determined from the behavior of "Qtot" in the low frequency linear region (i.e. in the steady state region). The second one "Q determined from maximum" is computed assuming the strand has only one time constant : the value of the time constant is determined from the location of the maximum of "Qtot" (i.e. when 𝜔𝜏 = 1).

II.4.3.3 2D cartographies of main physical quantities for JT-60SA TF strand

With the knowledge of the electrical and geometrical parameters of a strand, it is also possible to simulate its time response to any magnetic signal and to produce detailed cartographies of all the physical quantities inherent to this strand in a very short computation time using CLASS algorithm issued from our analytical modeling. Indeed, after the numerical solve of the matrix equation of the system (72), equations (103) to (111) are used to compute the time dependent solutions of the screening currents and of the spatial average of the losses as well as instant detailed cartographies of the electric field, of the transverse currents, of the magnetic field and of the coupling losses inside the composite.

We have therefore used CLASS algorithm to simulate the response of K006-01C JT-60SA TF strand to the following sinusoidal magnetic field with 𝐵 𝑝 = 3𝑇 and 𝑓 = 1𝐻𝑧 𝐵 𝑎 = 𝐵 𝑝 sin (2𝜋𝑓𝑡)

The computed time dependent solutions of the screening currents, of the magnetic field at the center of the strand and of the spatial averages of the losses are displayed on Figure 30. Note that in principle for K006-01C JT-60SA TF strand there are only two screening currents located at 𝑟 = 𝑅 1 and 𝑟 = 𝑅 2 while on Figure 30 we see that there are four of them. In reality the two additional screening currents 𝐾 0 3 and 𝐾 0 4 are always zero since there are no superconducting filaments at the interfaces located at 𝑟 = 𝑅 3 and 𝑟 = 𝑅 4 (this point has previously been discussed). These cartographies are interesting as they provide both time and spatial variations of the physical quantities inside the composite. In our example, we clearly see that the power density cartographies produced at three different instants of the simulation (see Figure 31) show major differences between them. We can see that the power dissipated is here higher in the filamentary zone (second layer) than in the copper core and that the power dissipated in the two outer layers (CuNi barrier and copper shell) is almost negligible because of the presence of the CuNi barrier.

Furthermore, for illustrative purposes, we have also simulated the response of K006-01C JT-60SA TF strand to a ramp going from 0𝑇 to 3𝑇 in 1𝑠 followed by a plateau and to the same rising ramp but this time followed by an exponential decay with a characteristic time of 0.1s (this value lies in the range of the time constant of the composite); the results are displayed through Figure 93 to Figure 96 in Appendix D.

All these cartographies exhibit a large heterogeneity of the power density spatial distribution inside the composite; they clearly differ one from another either in terms of distribution or in terms of magnitude. This fact stresses that the stability of a strand can be impacted differently according to the operating conditions and that dedicated analyses e.g. with the present tool must be conducted in order to finely assess the risk of quench in given conditions. Conversely to the analytical approach which currently prevails in the community of superconducting magnets and which considers that the power is homogeneously dissipated inside superconducting strands, our model allows to predict the spatial variation of the power deposition at any time with very low CPU consumption thanks to its analytical nature. This characteristic makes it attractive because it can be quickly integrated in any multiphysics platforms that must scan thousands of scenario point; it would have a marginal impact on studies complexity or computation time.

Regarding stability studies, our model can provide one of the source terms of the heat equation which are essential to any thermal study. It therefore stands as a first step towards the development of an integrated model dedicated to stability diagnostics.

II.5 Experimental work

II.5.1 Presentation of Speedy facility

II.5.1.1 Speedy

The Speedy facility has existed at CEA for many years and has thoroughly been described in [START_REF] Torre | CEA Working Note[END_REF]. The Speedy facility is located at IRFM CEA Cadarache and is used for measuring the magnetization cycles of superconducting composites, which allow the determination of their hysteresis and coupling losses. It features a liquid helium bath in which the superconducting coil responsible for the application of a magnetic field on the composite to be tested is immersed (see Figure 32). The composite is tested with the compensated pick-ups method and is therefore wound on a cylindrical sample holder. An inner pick-up copper coil called reference coil is wound on a "finger holder" and inserted inside the sample holder. An outer pick-up copper coil is used as a measurement coil and is wound on a "sheath holder" which encloses the sample holder. The different holders which are about ten centimeters high, the pick-up coils and the position of the composite to be tested are presented in Figure 33. The three holders are designed in an accurate way so that they can exactly fit in each other. Their assembly is displayed on Figure 34. Once assembled, the three holders and their coils are integrated onto a rod that will be placed in the central hole of the superconducting coil visible on Figure 32 which is immersed in a liquid helium bath.

Figure 35 displays a complete overview of the Speedy facility. We see that the superconducting coil creates a magnetic field called 𝐵 𝑎 ⃗⃗⃗⃗⃗ : it corresponds to the magnetic field that would exist inside the superconducting coil if its enclosed volume was empty (i.e. without the composite to be tested). It is important to note that the ends of the superconducting composite to be tested are not connected to avoid it behaving as a small coil once immersed in the magnetic field generated by the superconducting coil of Figure 32. The reasons why the sample is coil shaped are that:  it allows the measurement of the composite response to a transverse time varying magnetic field  the different turns increase the total measured magnetization and therefore enhance the quality of the measurement On the other hand, the ends of both the inner and outer pick-up coils are connected through a Wheatstone bridge whose electrical scheme can be seen on Figure 36. This bridge features two electrical resistances noted 𝑅 𝑖 and 𝑅 𝑒 and is designed so that the voltage induced in the inner coil (reference) by the time variation of the applied magnetic field 𝐵 𝑎 ⃗⃗⃗⃗⃗ can compensate that induced in the outer coil (measurement). Indeed, when the bridge is balanced, these voltages cancel each other out and 𝑉 𝑚 can be directly linked to the time variation of the magnetization of the composite. According to the electric scheme of Figure 36, we have

𝑉 𝑚 = 𝑅 𝑖 𝑉 𝑒 -𝑅 𝑒 𝑉 𝑖 𝑅 𝑖 + 𝑅 𝑒
We can now decompose the voltage induced in each pick-up coils as a sum of the voltage due to the time variation of the applied magnetic field (i.e. due to 𝐵 ̇𝑎) and of the voltage due to the time variation of the magnetization of the composite (i.e. due to 𝑀 ̇). This consideration leads to the following equations: In order for the Wheatstone bridge to be balanced, the second term in 𝑉 𝑚 expression must be zero, so that the measured value of 𝑉 𝑚 only relates to the time variation of the magnetization of the composite.

{ 𝑉 𝑖 =
Therefore the balancing condition of the Wheatstone bridge is

𝑛 𝑒 𝜋𝑟 𝑒 2 𝑅 𝑖 = 𝑛 𝑖 𝜋𝑟 𝑖 2 𝑅 𝑒
which can be alternatively expressed as

𝑅 𝑖 𝑅 𝑒 = 𝑛 𝑖 𝑟 𝑖 2 𝑛 𝑒 𝑟 𝑒 2
When the Wheatstone bridge is balanced, 𝑉 𝑚 only depends on the time variation of the magnetization of the composite 𝑀 ̇ and is equal to

𝑉 𝑚 = 𝑅 𝑖 𝑉 𝑒 𝑀 ̇-𝑅 𝑒 𝑉 𝑖 𝑀 Ṙ𝑖 + 𝑅 𝑒
We will derive the expressions of 𝑉 𝑖 𝑀 ̇ and 𝑉 𝑒 𝑀 ̇ as functions 𝑀 ̇ of in the next section.

II.5.1.2 Measurement method of magnetization

We will here derive the expression which links the energy dissipated during a magnetic cycle to the measured voltage 𝑉 𝑚 presented in the previous section. This calculation has already been carried out by Ciazynski [START_REF] Ciazynski | Distributions de courant et pertes à l'intérieur d'un composite multifilamentaire supraconducteur soumis à un champ magnétique variable[END_REF] for a composite having only one screening current (i.e. having only one interface between resistive and filamentary zones, see section II.2.3 ). However, in our modeling, we have considered composites with any number of screening currents (i.e. with any number of interfaces between resistive and filamentary zones), therefore we had to derive again the relation between the energy dissipated during a magnetic cycle and the measured voltage 𝑉 𝑚 for these configurations.

First of all, we know that the energy density 𝑄 𝑣𝑜𝑙 dissipated during a cycle of the external magnetic excitation is equal to

𝑄 𝑣𝑜𝑙 = -∫ 𝑀 ⃗⃗⃗ . 𝑑𝐵 ⃗⃗ 𝑖 𝑐𝑦𝑐𝑙𝑒
where 𝑀 ⃗⃗⃗ is the magnetization inside the strand and 𝐵 ⃗⃗ 𝑖 the induction inside the strand.

Splitting 𝐵 ⃗⃗ 𝑖 as 𝐵 ⃗⃗ 𝑖 = 𝐵 ⃗⃗ 𝑎 + 𝐵 ⃗⃗ 𝑟𝑒𝑎𝑐𝑡 where 𝐵 ⃗⃗ 𝑟𝑒𝑎𝑐𝑡 is the reacting magnetic field, i.e. the magnetic field due to the induced currents, we can alternatively write where 𝜇 0 𝐻 ⃗ ⃗⃗ 𝑎 = 𝐵 ⃗⃗ 𝑎 is the applied field and 𝐻 ⃗ ⃗⃗ 𝑑 is the demagnetizing field. We can therefore express 𝐵 ⃗⃗ 𝑟𝑒𝑎𝑐𝑡 as 𝐵 ⃗⃗ 𝑟𝑒𝑎𝑐𝑡 = 𝜇 0 (𝐻 ⃗ ⃗⃗ 𝑑 + 𝑀 ⃗⃗⃗ )

𝑄
Finally, the relation between 𝐻 ⃗ ⃗⃗ 𝑑 and 𝑀 ⃗⃗⃗ can be written as

𝐻 ⃗ ⃗⃗ 𝑑 = -𝑁 𝑑 𝑀 ⃗⃗⃗
where 𝑁 𝑑 is known as the coefficient of demagnetization (it can also be a tensor if the relation between 𝐻 ⃗ ⃗⃗ 𝑑 and 𝑀 ⃗⃗⃗ is anisotropic).

Using the previous relations, it is now possible to write 𝐵 ⃗⃗ 𝑟𝑒𝑎𝑐𝑡 = 𝜇 0 (1 -𝑁 𝑑 )𝑀 ⃗⃗⃗ and thus

-∫ 𝑀 ⃗⃗⃗ . 𝑑𝐵 ⃗⃗ 𝑟𝑒𝑎𝑐𝑡 𝑐𝑦𝑐𝑙𝑒 = -𝜇 0 (1 -𝑁 𝑑 ) ∫ 𝑀 ⃗⃗⃗ . 𝑑𝑀 ⃗⃗⃗ 𝑐𝑦𝑐𝑙𝑒 = -𝜇 0 (1 -𝑁 𝑑 ) 1 2 [𝑀 𝑒𝑛𝑑 2 -𝑀 𝑠𝑡𝑎𝑟𝑡 2 ]
where 𝑀 𝑒𝑛𝑑 is the magnetization at the end of a cycle and 𝑀 𝑠𝑡𝑎𝑟𝑡 is the magnetization at the beginning of the same cycle.

After the first magnetic cycle, we are sure that the magnetization is the same at the beginning and at the end of each cycle, consequently 𝑀 𝑒𝑛𝑑 = 𝑀 𝑠𝑡𝑎𝑟𝑡 and -∫ 𝑀 ⃗⃗⃗ . 𝑑𝐵 ⃗⃗ 𝑟𝑒𝑎𝑐𝑡 𝑐𝑦𝑐𝑙𝑒 = 0

As a result, 𝑄 𝑣𝑜𝑙 can be reduced to

𝑄 𝑣𝑜𝑙 = -∫ 𝑀 ⃗⃗⃗ . 𝑑𝐵 ⃗⃗ 𝑎

𝑐𝑦𝑐𝑙𝑒

We will now compute the magnetization inside a cylinder carrying a surface current 𝐾 ⃗ ⃗⃗ = 𝐾 0 cos (𝜃)𝑒 𝑧 ⃗⃗⃗⃗ on its outer surface. In the following, this distribution of current will be referred to as a "circular dipole". According to (57), we know that the magnetic field components inside and outside the cylinder of radius 𝑅 are given by Using the fact that 𝐵 ⃗⃗ 𝑖𝑛𝑡 = 𝜇 0 (𝐻 ⃗ ⃗⃗ 𝑖𝑛𝑡 + 𝑀 ⃗⃗⃗ ), we can deduce

{ 𝑀 𝑥 = 0 𝑀 𝑦 = -𝐾 0
We will now compute the magnetic flux due to a vertical row of circular dipoles of radius 𝑅 enclosed by each pick up coil.

According to (55), the magnetic vector potential 𝐴 𝑧 𝑑 at (𝑥, 𝑦) created by a circular dipole of radius 𝑅 𝑑 located at (𝑥 𝑑 , 𝑦 𝑑 ) with a surface current amplitude 𝐾 0 𝑑 is equal to

𝐴 𝑧 𝑑 (𝑥, 𝑦) = 𝜇 0 𝐾 0 𝑑 2 𝑅 𝑑 2 𝑥 -𝑥 𝑑 (𝑥 -𝑥 𝑑 ) 2 + (𝑦 -𝑦 𝑑 ) 2
For a vertical row of 2𝑛 + 1 circular dipoles spaced 2𝑎 apart (see Figure 37) and centered on 𝑦 = 𝑦 𝑑 0 with -𝑎 ≤ 𝑦 𝑑 0 ≤ 𝑎, we have

𝐴 𝑧 𝑑𝑟𝑜𝑤 (𝑥, 𝑦) = 𝜇 0 𝐾 0 𝑑 2 𝑅 𝑑 2 (𝑥 -𝑥 𝑑 ) ∑ 1 (𝑥 -𝑥 𝑑 ) 2 + (𝑦 -𝑦 𝑑 0 -2𝑘𝑎) 2 𝑛 𝑘=-𝑛
The height of the wound sample in the vertical direction (i.e. 4𝑛𝑎 along the y-axis) being large compared to the heights of the pick-up coils (see Figure 34), we can assume that the magnetic vector potential felt by the pick-up coils at any 𝑦 is constant and given by

〈𝐴 𝑧 𝑑𝑟𝑜𝑤 〉(𝑥) = 1 2𝑎 ∫ 𝐴 𝑧 𝑑𝑟𝑜𝑤 (𝑥, 𝑦)𝑑𝑦 𝑎 𝑦=-𝑎
which is equal to

〈𝐴 𝑧 𝑑𝑟𝑜𝑤 〉(𝑥) = 𝜇 0 𝐾 0 𝑑 𝑅 𝑑 2 (𝑥 -𝑥 𝑑 ) 4𝑎 ∑ ∫ 𝑑𝑦 (𝑥 -𝑥 𝑑 ) 2 + (𝑦 -𝑦 𝑑 0 -2𝑘𝑎) 2 𝑎 𝑦=-𝑎 𝑛 𝑘=-𝑛
The integral inside the sum being equal to

1 (𝑥 -𝑥 𝑑 ) [arctan( 𝑦 𝑑 0 + (2𝑘 + 1)𝑎 𝑥 -𝑥 𝑑 ) -arctan ( 𝑦 𝑑 0 + (2𝑘 -1)𝑎 𝑥 -𝑥 𝑑 )]
we can simplify the sum as For 𝑥 = -ℎ 𝑖 or 𝑥 = ℎ 𝑒 , the assumption (2𝑛 + 1)𝑎 ≫ |𝑥 -𝑥 𝑑 | is valid since the half-height of the sample (several centimeters in the vertical direction, see Figure 34) is much larger than the distance between the sample and the pick-up coils in the (𝑂𝑥𝑧) plane (this distance is usually comparable to the radius of the tested composite, i.e. about half a millimeter). In addition, since the sample is wound with a large number of turns 𝑛 (see Figure 34) and |𝑦 𝑑 0 | ≤ 𝑎, the assumption (2𝑛 + 1)𝑎 ≫ |𝑦 𝑑 0 | is also valid.

The magnetic flux 𝛷 𝑖 𝑑𝑟𝑜𝑤 due to a vertical row of circular dipoles with radius 𝑅 and current 𝐾 0 𝑑 enclosed by the internal pick-up coil which has a winding radius 𝑟 𝑖 and 𝑛 𝑖 turns is then

𝛷 𝑖 𝑑𝑟𝑜𝑤 = -2𝜋𝑟 𝑖 𝑛 𝑖 〈𝐴 𝑧 𝑑𝑟𝑜𝑤 〉(𝑥 = -ℎ 𝑖 ) = 2𝜋𝑟 𝑖 𝑛 𝑖 𝜇 0 𝐾 0 𝑑 𝑅 𝑑 2 𝜋

4𝑎

Note that the flux of a magnetic field oriented along the y-axis through the inner pick-up coil is counted as positive here.

Using the fact that the magnetization inside the dipole is 𝑀 𝑑 = -𝐾 0 𝑑 , we have

𝛷 𝑖 𝑑𝑟𝑜𝑤 = -2𝜋𝑟 𝑖 𝑛 𝑖 𝜇 0 𝑀 𝑑 𝑅 𝑑 2 𝜋

4𝑎

Similarly, the magnetic flux 𝛷 𝑒 𝑑𝑟𝑜𝑤 enclosed by the external pick-up coil which has a winding radius 𝑟 𝑒 and 𝑛 𝑒 turns is then

𝛷 𝑒 𝑑𝑟𝑜𝑤 = -2𝜋𝑟 𝑒 𝑛 𝑒 〈𝐴 𝑧 𝑑𝑟𝑜𝑤 〉(𝑥 = ℎ 𝑒 ) = -2𝜋𝑟 𝑒 𝑛 𝑒 𝜇 0 𝐾 0 𝑑 𝑅 𝑑 2 𝜋 4𝑎 = 2𝜋𝑟 𝑒 𝑛 𝑒 𝜇 0 𝑀 𝑑 𝑅 𝑑 2 𝜋

4𝑎

Again the flux of a magnetic field oriented along the y-axis through the outer pick-up coil is counted as positive here. In a composite, there exist several circular dipoles with different internal magnetizations 𝑀 𝑑 and radii 𝑅 𝑑 . Indeed, the magnetization currents flowing through the superconducting filaments which are responsible for the hysteresis losses can be seen as dipoles with a radius equal to that of a filament (𝑅 ℎ = 𝑟 𝑓𝑖𝑙 ). In addition, the currents flowing through the edge filaments of each filamentary zone are also circular dipoles with a radius equal to the radial localization of the currents.

Therefore we can define an average magnetization 𝑀 0 over the whole volume of a composite of radius 𝑅 as

𝑀 0 = 1 𝑅 2 ∑ 𝑀 𝑑 𝑅 𝑑 2 𝑑
In order to take into account the contribution of every circular dipole existing inside the composite in the magnetic flux enclosed by each pick-up coil, we have to sum the previous relations over every dipole, i.e. It is interesting to note that, from the point of view of each pick-up coil, there is absolutely no distinction between the effects of several circular dipoles with different radii inside the composite and a circular dipole with a radius equal to that of the composite (i.e. 𝑅) and a magnetization 𝑀 0 equal to the surface weighted average of the magnetizations of every circular dipoles in the composite.

Finally we can deduce that the voltage induced in each pick-up coil by the variation of 𝑀 0 is

{ 𝑉 𝑖 𝑀 ̇0 = -𝛷 ̇𝑖𝑀 0 = 𝑟 𝑖 𝑛 𝑖 𝜇 0 𝜋 2 2𝑎 𝑀 ̇0𝑅 2 𝑉 𝑒 𝑀 ̇0 = -𝛷 ̇𝑒𝑀 0 = -𝑟 𝑒 𝑛 𝑒 𝜇 0 𝜋 2 2𝑎 𝑀 ̇0𝑅 2
Now, using the relation of the Wheatstone bridge given in the previous section, we have . This leads to

𝑉 𝑚 = 𝑅 𝑖 𝑉
𝑄 𝑣𝑜𝑙 = -∫ 𝑀 0 𝑑𝐵 𝑎 𝑐𝑦𝑐𝑙𝑒 = ∫ 𝑓 𝑔𝑒𝑜 𝜇 0 (∫ 𝑉 𝑚 𝑑𝑡) 𝑑𝐵 𝑎 𝑐𝑦𝑐𝑙𝑒
The expression we have obtained is almost equal to that of Ciazynski [START_REF] Ciazynski | Distributions de courant et pertes à l'intérieur d'un composite multifilamentaire supraconducteur soumis à un champ magnétique variable[END_REF] because the taking into account of the additional screening currents does not modify the relation between the energy and 𝑉 𝑚 (the difference is about 5% and is due to the different approaches we have used to average the magnetic vector potential felt by the pick-up coils). Indeed, we have seen that the pick-up coils make no distinction between the contributions of every circular dipoles in the composite and that of an equivalent circular dipole with radius 𝑅 and magnetization 𝑀 0 equal to the surface weighted average of the magnetizations of every circular dipoles in the composite. However this calculation had to be carried out in order to assess the effect of the additional screening currents in the relation between the measured voltage 𝑉 𝑚 and the magnetization of the composite.

II.5.2 Measurements

In this section we will present the results issued from the AC losses measurements we have carried out in the Speedy facility on the two strands displayed on Figure 38. As a reminder K006-01C JT-60SA TF strand [START_REF] Zani | Starting EU Production of Strand and Conductor for JT-60SA Toroidal Field Coils[END_REF] has been manufactured by Furukawa and contains a copper core surrounded by a filamentary zone which consists of twisted NbTi superconducting filaments embedded in a copper matrix. The filamentary zone is enclosed in a CuNi barrier which is surrounded by a copper shell.

The F 0796-1 ITER TF strand [START_REF] Boutboul | European Nb3Sn Superconducting Strand Production and Characterization for ITER TF Coil Conductor[END_REF] has been manufactured by Oxford Instruments Superconducting Technology (OST) by means of the Internal Tin Diffusion Process. It features 19 sub-elements each containing a tin core surrounded by twisted Nb3Sn superconducting filaments embedded in a bronze matrix (originally the matrix is made of copper but is transformed into a bronze matrix during the tin diffusion process). The 19 sub-elements are assembled together and are surrounded by a tantalum diffusion barrier; outside the barrier is a copper shell.

The AC losses of K006-01C JT-60SA TF strand have been measured at CEA in 2011 [START_REF] Torre | AC losses measurement on strand K006-01C[END_REF] for trapezoidal cycles which were slowly time-varying. According to our analytical modeling, this strand is supposed to exhibit two time constants because it features two interfaces between filamentary and resistive zones but this behavior cannot be observed in slowly time-varying regimes. Consequently our original objective was to measure the AC losses of this strand for fast time-varying magnetic regimes in order to produce its 𝑄 vs 𝑓 curve and to verify if the strand was indeed exhibiting two time constants instead of one as it is usually admitted within the community for any strand. The fast regimes were supposed to be explored using sinusoidal signal excitation, tentatively implemented for the first time in CEA Speedy facility. However, we have encountered two difficulties which have prevented us from observing this behavior:

 The power supply used in the Speedy facility is limited to 800 A in current and 30 V in voltage; it is therefore not powerful enough to explore sufficiently fast time-varying regimes because of the complex impedance due to the self-inductance of the Speedy superconducting coil. Knowing that it would not be possible to reach frequencies high enough to overpass the maximum of the 𝑄 vs 𝑓 curve of K006-01C JT-60SA TF strand, our original plan was just to measure the AC losses outside the linear region of the 𝑄 vs 𝑓 curve. Unfortunately, it appeared that the sinusoidal magnetic field 𝐵 𝑎 = 𝐵 𝑝 sin (2𝜋𝑓𝑡) that the power supply and the coil could produce was limited to 𝐵 𝑝 = 17𝑚𝑇 at 𝑓 = 10𝐻𝑧 and to 𝐵 𝑝 = 1𝑚𝑇 at 𝑓 = 20𝐻𝑧; with these amplitudes, it is not possible to have trustworthy magnetization signals (values close to HC1 value and complex way to discriminate coupling and hysteresis losses). Consequently it was then not possible to explore out of the linear region of the 𝑄 vs 𝑓 curve.

 After having measured the AC losses of K006-01C JT-60SA TF strand for slow time-varying regimes, we have been able to deduce the effective transverse resistivity of its filamentary zone (see section II.4.3 ) : it appeared that this resistivity was very close to that of the copper core so that the screening current flowing at the interface between the copper core and the filamentary zone was too weak. This implies that K006-01C JT-60SA TF strand almost behaves as a single time constant strand and therefore it would have been very difficult to distinguish the contribution of a second time constant in the measurements.

Despite these difficulties we have been able to take profit of the experiments by measurements of the AC losses of K006-01C JT-60SA TF strand for trapezoidal cycles with different magnetic field amplitudes and for sinusoidal cycles until 𝑓 = 1𝐻𝑧 also with different magnetic field amplitudes; we will present these results further.

Regarding the F 0796-1 ITER TF strand, it appears that there is no record of measurement of any Nb3Sn strand coupling losses while the hysteresis losses of ITER TF-type strands have systematically been measured [START_REF] Seiler | Hysteresis Losses and Effective Jc(B) Scaling Law for ITER Nb3Sn Strands, I[END_REF] in the production QA flow. For this reason we have chosen to measure this strand to evaluate its time constant.

II.5.2.1

NbTi strand (JT-60SA TF)

II.5.2.1.1 Trapezoidal cycles

We have first measured the AC losses of K006-01C JT-60SA TF strand generated during symmetric magnetic trapezoidal cycles. These cycles are routinely specified for a strand fabrication and therefore accordingly used by manufacturers for the characterization of superconducting strands during manufacture.

Each trapezoidal cycle started from +𝐵 𝑚 , fell to -𝐵 𝑚 in a time 2𝜏 𝑎 , then stayed at -𝐵 𝑚 for a time 𝑇 𝑝 (typically around 5s), then went back to +𝐵 𝑚 again in a time 2𝜏 𝑎 and finally stayed at +𝐵 𝑚 for a time 𝑇 𝑝 . The pattern of the trapezoidal cycle can be seen on Figure 39. Both 𝜏 𝑎 and 𝑇 𝑝 are long compared to the largest time constant of the strand so that we can consider the magnetic trapezoidal cycles as slow time-varying regimes.

For this strand, we have carried out several series of measurement for three different values of 𝐵 𝑚 : 1.5𝑇, 2.5𝑇 and 3𝑇. For each value of 𝐵 𝑚 we have also made several measurements of losses for different values of 𝜏 𝑎 between 2s and 20s. Finally, in order to increase the reliability of the measured losses, for each (𝐵 𝑚 , 𝜏 𝑎 ) couple we have submitted the strand to 5 consecutive cycles and only kept the average of the losses over these 5 cycles.

For each value of 𝐵 𝑚 , we will display both the magnetization cycles we have measured in the Speedy facility and the curve of AC losses per cycle per unit volume of strand 𝑄 as function of 1/𝜏 𝑎 . This curve is important as it enables us to distinguish the hysteresis losses from the coupling losses and to deduce the time constant of the strand. Indeed we can split the total measured losses 𝑄 as a sum of the hysteresis losses 𝑄 ℎ𝑦𝑠𝑡 and of the coupling losses 𝑄 𝑐𝑜𝑢𝑝 𝑄 = 𝑄 ℎ𝑦𝑠𝑡 + 𝑄 𝑐𝑜𝑢𝑝 We first express the instant power per unit volume of strand 𝑃 𝑐𝑜𝑢𝑝 during a ramp of a trapezoidal cycle using equation ( 3) and considering that 𝐵 ̇𝑎 ≃ 𝐵 ̇𝑖 since the ramps are long enough (i.e. much longer that the highest time constant of the strand)

𝑃 𝑐𝑜𝑢𝑝 ≃ 2𝜏𝐵 ̇𝑎2 𝜇 0 ( 𝑅 𝑓 𝑅 ) 2 = 2𝜏 𝜇 0 ( 𝐵 𝑚 𝜏 𝑎 ) 2 ( 𝑅 𝑓 𝑅 ) 2
where 𝑅 𝑓 is the external radius of the filamentary zone, 𝑅 the radius of the composite and 𝜏 is either the time constant of the strand if it is a single time constant strand or the equivalent time constant of the strand for slowly time-varying regimes if it is a multiple time constants strand (in this case the equivalent time constant will then be a linear combination of the time constants of the strand).

Consequently, since the total duration of the ramps in a trapezoidal cycle is equal to 4𝜏 𝑎 , we can deduce that

𝑄 𝑐𝑜𝑢𝑝 ≃ 4𝜏 𝑎 2𝜏 𝜇 0 ( 𝐵 𝑚 𝜏 𝑎 ) 2 ( 𝑅 𝑓 𝑅 ) 2 = 8𝜏𝐵 𝑚 2 𝜇 0 ( 𝑅 𝑓 𝑅 ) 2 1

𝜏 𝑎

The hysteresis losses are independent of the rate of variation of the applied magnetic field 𝐵 𝑎 , therefore for trapezoidal cycles with a fixed value of 𝐵 𝑚 , they will always be the same. It is then now possible to express 𝑄 as function of Finally, from the experimental value of 𝑎, we can compute the time constant 𝜏 as

𝜏 = 𝜇 0 8𝐵 𝑚 2 ( 𝑅 𝑅 𝑓 ) 2 𝑎 (129) 
The total losses per unit volume of strand per cycle are proportional to the areas of the measured magnetization cycles displayed on Figure 97, Figure 99 and Figure 101 in Appendix E. We clearly see that the lower τ a the higher the area of the measured magnetization cycle and thus the higher the total losses.

In reality, for a fixed value of 𝐵 𝑚 , the area corresponding to the hysteresis losses is the same for each magnetization cycle because it does not depend on 𝜏 𝑎 while the area of the coupling losses increases with decreasing 𝜏 𝑎 . This is logical as the rate of change of the applied magnetic field 𝐵 𝑎 , and thus the coupling losses, are higher if 𝜏 𝑎 is lower.

From the different experimental values of the losses per unit volume of strand per cycle and their linear fitting, we can now deduce the hysteresis losses of K006-01C JT-60SA TF strand and its time constant for the different values of 𝐵 𝑚 using equation (129) with 𝑅 𝑓 = 327𝜇𝑚 and 𝑅 = 405𝜇𝑚 (see section II.4.3.1 ); they are displayed on Table 5. The values of hysteresis losses and of time constant measured for a trapezoidal cycle with 𝐵 𝑚 = 3𝑇 are consistent with those measured at CEA in 2011 [START_REF] Torre | AC losses measurement on strand K006-01C[END_REF].

Regarding the other values of 𝐵 𝑚 , we can clearly see that the time constant decreases with increasing 𝐵 𝑚 : this is explained by the fact that when 𝐵 𝑚 is higher, the average magnetic field felt by the strand during the cycle is also higher and thus the average magnetoresistance of copper increases. Consequently, the equivalent transverse resistivity of the whole strand increases and thus its time constant decreases (see section II.1.2 ).

II.5.2.1.2 Positive trapezoidal cycles

We will present here the experimental AC losses of K006-01C JT-60SA TF strand measured for positive trapezoidal cycles; these cycles are used here because they will also be used in a later section focused on the AC losses of JT-60SA TF conductor that we have measured in Josefa facility at CEA Cadarache.

The positive trapezoidal cycles are trapezoidal cycles in which the applied magnetic field 𝐵 𝑎 is always positive; their pattern is displayed on Figure 40.

Again, for each value of 𝐵 𝑚 (either 1𝑇 or 1.5𝑇), both the magnetization cycles and the curve of AC losses per cycle per unit volume of strand 𝑄 as function of 1/𝜏 𝑎 we have measured in the Speedy facility are displayed through Figure 103 to Figure 106 in Appendix E. The hysteresis losses and the time constant are deduced using the same methodology; the only difference lies in the adaptation of equation ( 129) which becomes

𝜏 = 𝜇 0 4𝐵 𝑚 2 ( 𝑅 𝑅 𝑓 ) 2 𝑎 ( 130 
)
because the total duration of the ramps in a positive trapezoidal cycle is to 2𝜏 𝑎 instead of 4𝜏 𝑎 .

As we did previously, we can deduce the hysteresis losses and time constant from the different experimental values of the losses per unit volume of strand per cycle and their linear fitting using equation (130); they are displayed on Table 6. The time constants measured here are consistent with the previous measurements made with the symmetric trapezoidal cycles. 

II.5.2.1.3 Sinusoidal cycles

We have also measured the experimental AC losses of K006-01C JT-60SA TF strand for sinusoidal cycles with frequencies up to 1𝐻𝑧. This constitutes an innovation for the Speedy facility as so far it was not able to produce sinusoidal magnetic excitations.

We have carried out four series of measurements where the sinusoidal magnetic excitations are all given by 𝐵 𝑎 = 𝐵 𝑝 sin(2𝜋𝑓𝑡) + 𝐵 𝑜𝑓𝑓 The first three series of measurements were made for 𝐵 𝑜𝑓𝑓 = 0𝑇 and 𝐵 𝑝 = 1.5𝑇, 𝐵 𝑝 = 2.5𝑇, 𝐵 𝑝 = 3𝑇 and the last series was made for 𝐵 𝑜𝑓𝑓 = 1.5𝑇 and 𝐵 𝑝 = 1.25𝑇. The experimental results (magnetization cycles and curves of losses 𝑄 vs 𝑓) are displayed though Figure 107 to Figure 114 in Appendix E.

Since the magnetic excitation is here different from ramps we have to express the instant power per unit volume of strand 𝑃 𝑐𝑜𝑢𝑝 during a sinusoidal cycle using equation [START_REF] Wilson | Introduction" in Superconducting Magnets[END_REF] Finally, from the experimental value of 𝑎, we can compute the time constant 𝜏 as

𝜏 = 𝜇 0 4𝜋 2 𝐵 𝑝 2 ( 𝑅 𝑅 𝑓 ) 2 𝑎 (131) 
As we did previously, we can deduce the hysteresis losses and time constant from the different experimental values of the losses per unit volume of strand per cycle and their linear fitting using equation (131); they are displayed on Table 7. The values of hysteresis losses and of time constant measured for sinusoidal cycles are fully consistent with those measured for trapezoidal cycles (displayed on Table 5).

II.5.2.2

Nb3Sn strand (ITER TF)

We have also measured the AC losses of F 0796-1 ITER TF strand generated during magnetic trapezoidal cycles and sinusoidal cycles in order to deduce its time constant; the experimental results are displayed in the following.

II.5.2.2.1 Trapezoidal cycles

The trapezoidal cycles we have used for the measurements of the AC losses of F 0796-1 ITER TF strand are identical to these we have used for K006-01C JT-60SA TF strand.

The experimental results (magnetization cycles and AC losses per unit volume of strand per cycle) are displayed though Figure 115 to Figure 120 in Appendix F.

For each value of 𝐵 𝑚 , we can clearly see that the magnetization curves we have measured for different values of 𝜏 𝑎 are really close from one another. This means that the hysteresis losses of F 0796-1 ITER TF strand are largely predominant over its coupling losses. As a consequence the experimental determination of its time constant is not easy since the magnetization signal of its coupling losses appears to be negligible compared to that of its hysteresis losses.

Despite this difficulty, we have deduced the hysteresis losses of F 0796-1 ITER TF strand and its time constant for the different values of 𝐵 𝑚 from the experimental values of the losses per unit volume of strand per cycle and their linear fitting using equation (129) with 𝑅 𝑓 = 293𝜇𝑚 and 𝑅 = 410𝜇𝑚 [START_REF] Boutboul | European Nb3Sn Superconducting Strand Production and Characterization for ITER TF Coil Conductor[END_REF]; they are displayed on Table 8. The values of hysteresis losses of F 0796-1 ITER TF strand we have measured in Speedy facility appear to be lower than those measured for other ITER TF-type strands [START_REF] Seiler | Hysteresis Losses and Effective Jc(B) Scaling Law for ITER Nb3Sn Strands, I[END_REF] but the ratios 𝑄 ℎ𝑦𝑠𝑡 (𝐵 𝑚 = 1.5𝑇)/𝑄 ℎ𝑦𝑠𝑡 (𝐵 𝑚 = 3𝑇) and 𝑄 ℎ𝑦𝑠𝑡 (𝐵 𝑚 = 2.5𝑇)/𝑄 ℎ𝑦𝑠𝑡 (𝐵 𝑚 = 3𝑇) are consistent with the results presented in [START_REF] Seiler | Hysteresis Losses and Effective Jc(B) Scaling Law for ITER Nb3Sn Strands, I[END_REF].

Given the fact that the coupling losses of F 0796-1 ITER TF strand are very small compared to its hysteresis losses, the values of its time constant we have measured should only be considered as an estimate of its real value.

II.5.2.2.2 Sinusoidal cycles

We have also measured the AC losses of F 0796-1 ITER TF strand for sinusoidal cycles up to 𝑓 = 1𝐻𝑧 in order to produce a better estimate of its time constant.

The sinusoidal magnetic excitation was of the form 𝐵 𝑎 = 𝐵 𝑝 sin(2𝜋𝑓𝑡) + 𝐵 𝑜𝑓𝑓 with 𝐵 𝑜𝑓𝑓 = 1.5𝑇 and 𝐵 𝑝 = 1.4𝑇.

The experimental results (magnetization cycles and AC losses per unit volume of strand per cycle) are displayed on Figure 121 and Figure 122 in Appendix F.

We can see that the magnetization curves we have measured for different values of 𝑓 are again close from one another but less than for the trapezoidal cycles; this means that the coupling losses have here a stronger impact on the total losses than they did for the trapezoidal cycles.

We have then deduced the hysteresis losses of F 0796-1 ITER TF strand and its time constant from the experimental values of the losses per unit volume of strand per cycle and their linear fitting using equation (131) with 𝑅 𝑓 = 293𝜇𝑚 and 𝑅 = 410𝜇𝑚 [START_REF] Boutboul | European Nb3Sn Superconducting Strand Production and Characterization for ITER TF Coil Conductor[END_REF]; they are displayed on Table 9. 

II.6 Synthesis

In this part of our work, we have established a new and fully generalized analytical description of the magnetic response of a given axisymmetric superconducting composite subject to any time variation of transverse magnetic field. The associated developed CLASS algorithm produces, in this regard, complete 2D cartographies of the coupling currents, the electric and magnetic fields and the local power density dissipated inside the composite at any time of transient magnetic field regime. This algorithm being based on analytical formulations, it requires very low CPU resources and can thus be easily implemented into multiphysics platforms. Further to its exhaustive and innovative aspect, the present achievement represents a step towards broader modeling objectives, e.g. the evaluation of composites stability limits (associated with thermal models). Besides, the CLASS tool can quantify coupling losses vs. frequency dependence and thus possibly be of a help to design optimized composites.

Aside to the modeling activities, we have also addressed an experimental work with AC losses measurements in CEA Speedy facility on JT-60SA TF and ITER TF strands. The results found (hysteresis losses, but mainly time constants) are compatible with those found in the literature for similar superconducting composites. Additional measurements could be carried out in order to build a fairly populated database and confront our model under a statistical approach.

Finally, we have recently developed a finite element model in collaboration with Aix-Marseille University to predict the effective transverse resistivity of filamentary zones which cannot be assimilated to infinite periodic lattices (e.g. filamentary zone of ITER TF strand, see Figure 38b); the outputs of this model will be confronted to the effective transverse resistivity deduced from the AC losses measurements of ITER TF Nb3Sn strand.

 In section III.2.3 we first begin by formulating the fundamental equations of the system  In section III.2.4 we compute the currents induced in steady-state regime, i.e. when these currents are not time-varying  In section III.2.5 , knowing the spatial form of the currents induced in steady-state regime, we

follow the logical chain displayed on Figure 15 until the spatial form of the currents induced for any time-varying regime is defined; these expressions will enable us to reduce the equations of the system to a simple first-order differential equation  In section III.2.6 , knowing the spatial form of the currents induced for any time regime, we attempt to establish the most analytical expression of the coupling power dissipated in a group of twisted elements in any time-varying regime  In section III.2.3 we address the specific case of two twisted elements (i.e. a doublet)

During the study in time-varying regime, we put in central place of our mathematical architecture the magnetic vector potential generated by the induced currents. Along this calculation based on the use of the Biot-Savart law, we deal with complex integrals that cannot be solved analytically. Consequently, extending the resolution itself, we attempt to find a purely analytical expression of this magnetic vector potential using an alternative method while keeping a high reliability. This complement is motivated by an intention to provide a tool that can easily be integrated in usual thermo-hydraulic codes (e.g. THEA code) which are not designed to integrate intermediate calculations such as complex integrals.

III.2.2 Assumptions

The geometry we consider in our modeling features a group of 𝑁 elements twisted together with a pitch equal to 𝑙 𝑝 and a cabling radius equal to 𝑅 𝑐 . Since the element can either represent a strand, a group of strands or a petal, we simply consider it as a cylinder of radius 𝑅 containing a thin superconducting shell of radius 𝑅 𝑓 (see Figure 41). Regarding the resistive component of the model, we consider that in a slice of thickness 𝑑𝑧 there exists a local effective conductance between adjacent elements which is noted 𝑑𝐺 = 𝜎 𝑙 𝑑𝑧 where 𝜎 𝑙 is the transverse conductance per unit axial length (i.e. expressed in 𝑆/𝑚) and considered constant along the N-uplet axis. The current flowing longitudinally through the superconducting shell of element 𝑘 at 𝑧 is noted 𝐼 𝑘 (𝑧) and the current flowing transversely in a slice 𝑑𝑧 from element 𝑘 -1 to element 𝑘 at 𝑧 is noted 𝐼 𝑘-1𝑘 (𝑧). The below list depicts the overall assumptions considered in the present modeling:  The external magnetic field 𝐵 𝑎 is transverse (along the y-axis, see Figure 41 Finally, the position (𝑥 𝑘 , 𝑦 𝑘 ) of the center of element 𝑘 at 𝑧 is given by

( 𝑥 𝑘 (𝑧) 𝑦 𝑘 (𝑧) ) = ( 𝑅 𝐶 cos( 2𝜋𝑧 𝑙 𝑝 + 2𝜋(𝑘 -1) 𝑁 ) 𝑅 𝐶 sin( 2𝜋𝑧 𝑙 𝑝 + 2𝜋(𝑘 -1) 𝑁 ) ) (132) 
Note that we have assumed that the induced current carried by an element was located on an infinitely thin shell of superconductor. If the element is a composite this assumption is justified by the fact that the induced current is seen by the composite as a transport current and we know that the transport current does not penetrate the interior of a composite as long as the first shell of filaments is not saturated. If the element is a substage (i.e. a bundle of strands), we assume that the radius of the superconducting shell corresponds to the cabling radius of the last cabling stage of the bundle.

III.2.3 Equations of the system

 We will formulate here the fundamental equations of the system using Kirchhoff's current law, Ohm's law and Faraday's law of induction.

We will here derive the equations governing a single cabling stage conductor starting by the case 𝑁 ≥ 3. The case of the doublet (i.e. 𝑁 = 2) -presenting some specificities -will be treated afterwards in section III.2.7 .

III.2.3.1 Electrical equations

Each element is carrying the current 𝐼 𝑘 (𝑧) in its superconducting shell along its trajectory. In addition, 𝐼 𝑘-1𝑘 (𝑧) is the local current flowing transversely in a slice 𝑑𝑧 from element 𝑘 -1 to 𝑘 and 𝐼 𝑘𝑘+1 (𝑧) is the local current flowing transversely in a slice 𝑑𝑧 from element 𝑘 to 𝑘 + 1. Consequently, Kirchhoff's current law enables us to write

𝑑𝐼 𝑘 𝑑𝑧 (𝑧) = 1 𝑑𝑧 [𝐼 𝑘-1𝑘 (𝑧) -𝐼 𝑘𝑘+1 (𝑧)] (133) 
In the following, we will consider that the current 𝐼 𝑘 (𝑧) flowing in the superconducting shell of element 𝑘, thus along the helicoid of element 𝑘, is exclusively oriented along the z-axis since we have assumed that the elements were lightly twisted, i.e.( where 𝑈 𝑘𝑘+1 (𝑧) is the local transverse voltage existing at 𝑧 between the centers of elements 𝑘 and 𝑘 + 1. It can alternatively be expressed as

1 𝑑𝑧 𝐼 𝑘𝑘+1 (𝑧) = 𝜎 𝑙 𝑈 𝑘𝑘+1 (𝑧) (134) 

III.2.3.2 Magnetic equations

Now, let us note 𝛷 𝑘𝑘+1 (𝑧) the magnetic flux enclosed between the center of element 𝑘 and that of element 𝑘 + 1 from 𝑧 = 0 to 𝑧.

It then comes

𝛷 𝑘𝑘+1 (𝑧) = ∮ 𝐴 ⃗ . 𝑑𝑙 ⃗⃗⃗⃗ ( 135 
)
where 𝐴 ⃗ has to be integrated along the red path displayed on Figure 42.

From Biot-Savart law, we know that the magnetic vector potential 𝐴 ⃗ is collinear to the distribution of current it is associated with if the distribution of current has a constant orientation in space. This means that the 𝑥 component 𝐴 𝑥 of 𝐴 ⃗ is exclusively due to the 𝑥 component of the current distribution, and so on for 𝑦 and 𝑧. From the relation 𝐵 ⃗⃗ = ∇ ⃗ ⃗⃗ × 𝐴 ⃗ , we also know that the magnetic field associated with 𝐴 𝑥 will have a zero 𝑥 component 𝐵 𝑥 and so on for 𝑦 and 𝑧. Since we consider that the time-variation of the applied magnetic field 𝐵 𝑎 ⃗⃗⃗⃗⃗ is along the 𝑦 axis, we can deduce that the components of the current distribution that will actually play a role in the magnetic shielding of the conductor are the 𝑥 and 𝑧 ones. But since we have assumed that the elements were lightly twisted, the 𝑥 component of the current carried by an element is negligible in front of its 𝑧 component. As a consequence, the problem is reduced to the 𝑧 component of the current distribution and thus we assume that the magnetic vector potential is given by where 𝐴 𝑧 𝑘 (𝑧) is the axial component of the magnetic vector potential at the center of element 𝑘 at 𝑧. 

𝐴 ⃗ =
where the overdot notation represents differentiation with respect to time.

III.2.3.3 Electromagnetic equations

Furthermore, Faraday's law of induction enables to write

∮ 𝐸 ⃗⃗ . 𝑑𝑙 ⃗⃗⃗⃗ = -𝛷 ̇𝑘𝑘+1 (𝑧) (138) 
where 𝐸 ⃗⃗ also has to be integrated along the previous red path displayed on Figure 42.

Since we have considered that the electric field was zero along the trajectory of an element, we can reduce ∮ 𝐸 ⃗⃗ . 𝑑𝑙 ⃗⃗⃗⃗ to

∮ 𝐸 ⃗⃗ . 𝑑𝑙 ⃗⃗⃗⃗ = 𝑈 𝑘𝑘+1 (𝑧 = 0) -𝑈 𝑘𝑘+1 (𝑧) (139) 
where 𝑈 𝑘𝑘+1 (𝑧) is again the transverse voltage existing at 𝑧 between the centers of elements 𝑘 and 𝑘 + 1.

Equation (138) combined to equation (139) leads to

𝑈 𝑘𝑘+1 (𝑧 = 0) -𝑈 𝑘𝑘+1 (𝑧) = -𝛷 ̇𝑘𝑘+1 (𝑧)
The differentiation of this equation with respect to 𝑧 gives

𝑑𝑈 𝑘𝑘+1 𝑑𝑧 (𝑧) = 𝑑 𝑑𝑧 𝛷 ̇𝑘𝑘+1 (𝑧) (140) 
Once combined to equation (137), equation (140) enables us to obtain

𝑑𝑈 𝑘𝑘+1 𝑑𝑧 (𝑧) = 𝐴 ̇𝑧𝑘+1 (𝑧) -𝐴 ̇𝑧𝑘 (𝑧) (141) 

III.2.3.4 Global equations

We have now written the basic equations of the system, i.e. equation (133) coming from Kirchhoff's current law, equation (134) coming from Ohm's law and equation (141) coming from Faraday's law of induction; they are recalled here

{ 𝑑𝐼 𝑘 𝑑𝑧 (𝑧) = 1 𝑑𝑧 [𝐼 𝑘-1𝑘 (𝑧) -𝐼 𝑘𝑘+1 (𝑧)] 1 𝑑𝑧 𝐼 𝑘𝑘+1 (𝑧) = 𝜎 𝑙 𝑈 𝑘𝑘+1 (𝑧) 𝑑𝑈 𝑘𝑘+1 𝑑𝑧 (𝑧) = 𝐴 ̇𝑧𝑘+1 (𝑧) -𝐴 ̇𝑧𝑘 (𝑧) (142) 
Combining the first equation of (142) to the second one enables us to write for 1 ≤ 𝑘 ≤ 𝑁

𝑑𝐼 𝑘 𝑑𝑧 (𝑧) = 1 𝑑𝑧 [𝐼 𝑘-1𝑘 (𝑧) -𝐼 𝑘𝑘+1 (𝑧)] = 𝜎 𝑙 [𝑈 𝑘-1𝑘 (𝑧) -𝑈 𝑘𝑘+1 (𝑧)]
Finally, differentiating this equation with respect to 𝑧 and combining it to the last equation of (142) leads us to the following equation of the system

𝑑 2 𝐼 𝑘 𝑑𝑧 2 (𝑧) = 𝜎 𝑙 [ 𝑑𝑈 𝑘-1𝑘 𝑑𝑧 (𝑧) - 𝑑𝑈 𝑘𝑘+1 𝑑𝑧 (𝑧)] = 𝜎 𝑙 [𝐴 ̇𝑧𝑘 (𝑧) -𝐴 ̇𝑧𝑘-1 (𝑧) -(𝐴 ̇𝑧𝑘+1 (𝑧) -𝐴 ̇𝑧𝑘 (𝑧))]
which can be written as

𝑑 2 𝐼 𝑘 𝑑𝑧 2 (𝑧) = 𝜎 𝑙 [2𝐴 ̇𝑧𝑘 (𝑧) -𝐴 ̇𝑧𝑘-1 (𝑧) -𝐴 ̇𝑧𝑘+1 (𝑧)] (143) 
Similarly to what we did in the study of the magnetic shielding accomplished by a superconducting composite, we can split by superposition the magnetic vector potential present in the equation of the system, i.e. equation (143), as a sum of two terms

𝐴 𝑧 𝑘 (𝑧) = 𝐴 𝑧 𝑎 𝑘 (𝑧) + 𝐴 𝑧 𝑟 𝑘 (𝑧)
where 𝐴 𝑧 𝑎 𝑘 (𝑧) is the axial component of the magnetic vector potential at the center of element 𝑘 at 𝑧 due to the applied magnetic field 𝐵 𝑎 ⃗⃗⃗⃗⃗ and 𝐴 𝑧 𝑟 𝑘 (𝑧) is due to the currents induced in the superconducting shell of every element, i.e. due to the (𝐼 𝑘 ) 1≤𝑘≤𝑁 .

We know that the magnetic vector potential 𝐴 ⃗ corresponding to a uniform magnetic field 𝐵 𝑎 ⃗⃗⃗⃗⃗ = 𝐵 𝑎 𝑒 𝑦 ⃗⃗⃗⃗⃗ must satisfy ∇ ⃗ ⃗⃗ × 𝐴 ⃗ = -𝐵 𝑎 ⃗⃗⃗⃗⃗ ; it is therefore everywhere equal to

𝐴 ⃗ = -𝑥𝐵 𝑎 𝑒 𝑧 ⃗⃗⃗⃗
where 𝑥 is the abscissa visible on Figure 41.

Since 

Similarly to what was done at the composite scale we will now initiate the global calculation strategy starting with the steady-state regime study.

III.2.4 Study in steady-state regime

 We will calculate here the currents induced in steady-state regime. We will simply start from the system equation derived at the end of the previous section and we will solve it considering that the coupling currents are not time-varying.

III.2.4.1 Equations of the system in steady-state regime

We here consider steady-state regimes for coupling currents, that is to say that the currents induced in the elements are, by assumption, not varying, i.e. we consider that for any 𝑧 and for 1 ≤ 𝑘 ≤ 𝑁 𝐼 ̇𝑘(𝑧) = 0 Since 𝐴 𝑧 𝑟 𝑘 (𝑧) is exclusively due to the induced currents, we can also conclude that for any 𝑧 and for 

The (𝑐 𝑘 ) 1≤𝑘≤𝑁 and (𝑑 𝑘 ) 1≤𝑘≤𝑁 are integration constants that have to be determined.

III.2.4.2 Determination of the solutions for an infinitely long conductor

In a first step we start the resolution considering an infinitely long conductor, which is somehow relevant of the magnet configuration, having long lengths exposed to varying magnetic field.

We have assumed that the system was not carrying any transport current, therefore at any 𝑧, we must have As a consequence, the current 𝐼 𝑘 (𝑧 + 𝑙 𝑝 /𝑁) carried by the superconducting shell of element 𝑘 at 𝑧 + 𝑙 𝑝 /𝑁 must be equal to the current 𝐼 𝑘+1 (𝑧) carried by the superconducting shell of element 𝑘 + 1 at 𝑧, i.e. As a result, the integration constants (𝑐 𝑘 ) 1≤𝑘≤𝑁 and (𝑑 𝑘 ) 1≤𝑘≤𝑁 are all equal to zero and the solution of the system in steady-state regime is

∑
𝐼 𝑘 (𝑧) = 𝐼 0 cos ( 2𝜋𝑧 𝑙 𝑝 + 2𝜋(𝑘 -1) 𝑁 ) (150) 
with

𝐼 0 = 4𝜎 𝑙 𝑅 𝑐 𝐵 ̇𝑎 𝑠𝑖𝑛 2 ( 𝜋 𝑁 ) ( 𝑙 𝑝 2𝜋 ) 2 (151) 

III.2.4.3 Determination of the solutions for a finite length of conductor

We here investigate the effect of a finite length of conductor on the induced currents. This situation is typically relevant to the configuration encountered in sample tests, where short lengths (few decimeters to meters) are exposed to varying magnetic field.

Let us consider a piece of conductor of length 𝐿 so that the ends of the conductor are located at 𝑧 = -𝐿/2 and 𝑧 = 𝐿/2.

For this geometry, the currents induced in each element must be zero at both ends of conductor. This implies the following boundary conditions for 

where 𝐼 0 is again given by equation (151).

III.2.5 Study in time-varying regime

 Since we now know the spatial form of the currents induced in steady-state regime, we will follow the logical chain displayed on Figure 15 until the spatial form of the currents induced for any time-varying regime is defined (this is achieved through III.2.5.1 to III.2.5.3 ). These expressions will then enable us to reduce the equations of the system to a simple first-order differential equation in III.2.5.4 . Finally, we will present an alternative approach leading to a simpler expression of the system equation in III.2.5.5 .

We are now studying the magnetic response of the conductor when the induced currents are timevarying, i.e. we now consider that for any 𝑧 and for 1 ≤ 𝑘 ≤ 𝑁 𝐼 ̇𝑘(𝑧) ≠ 0 This also implies that for any 𝑧 and for 1 ≤ 𝑘 ≤ 𝑁 𝐴 ̇𝑧𝑟 𝑘 (𝑧) ≠ 0

Therefore we now have to take into account the contribution of the magnetic vector potential due to the induced currents in the equation of the system which is now written as 𝑑 2 

In order to do so, we will begin by evaluating 𝐴 𝑧 𝑟 𝑘 (1) (𝑧) due to the spatial distribution of current found in steady-state regime and which is noted (𝐼 𝑘 (1) (𝑧))

1≤𝑘≤𝑁

.

In doing so, we are actually following the analytical methodology we have described in section III.2.1 .

First, we have assumed that the current 𝐼 𝑘 (𝑧) carried by the superconducting shell of element 𝑘 at 𝑧 was uniformly distributed over its circumference, i.e. we consider that the superconducting shell of element 𝑘 is in fact carrying a uniform surface current 𝐾 𝑘 (𝑧) at 𝑧 with

𝐾 𝑘 (𝑧) = 𝐼 𝑘 (𝑧) 2𝜋𝑅 𝑓 ( 155 
)
where 𝑅 𝑓 is the radius of the infinitely thin superconducting shell.

The current distribution (𝐼 𝑘 (1) (𝑧) = 𝐼 0 (1) ))

1≤𝑘≤𝑁 found in steady-state regime then leads to the following distribution of surface currents (𝐾 𝑘 (1) (𝑧))

1≤𝑘≤𝑁 𝐾 𝑘 (1) (𝑧) = 𝐼 𝑘 (1) (𝑧)

2𝜋𝑅 𝑓 = 𝐼 0 (1) 2𝜋𝑅 𝑓 cos ( 2𝜋𝑧 𝑙 𝑝 + 2𝜋(𝑘 -1) 𝑁 ) (156) 
according to (155).

III.2.5.1 Calculation of the magnetic vector potential due to the current flowing in one element

Let us note 𝐾 𝑝 (1) ⃗⃗⃗⃗⃗⃗⃗⃗⃗ = 𝐾 𝑝 (1) 𝑒 𝑠 𝑝 ⃗⃗⃗⃗⃗⃗ the surface current flowing through the superconducting shell of element 𝑝 at 𝑧 which has been found in steady-state regime. Using equation (156), we have

𝐾 𝑝 (1) (𝑧) = 𝐼 0 (1) 2𝜋𝑅 𝑓 cos ( 2𝜋𝑧 𝑙 𝑝 + 2𝜋(𝑝 -1) 𝑁 ) (157) 
𝑠 𝑝 (𝑧) is the abscissa along the trajectory of the center of element 𝑝 at 𝑧 and 𝑒 𝑠 𝑝 ⃗⃗⃗⃗⃗⃗(𝑧) is the unit vector tangent to the trajectory of center of element 𝑝 at 𝑧.

Let us note 𝐴 𝑧 𝑟 (𝑝) (1) (𝑀 𝑘 ) the axial component of the magnetic vector potential felt at the center of element 𝑘 at 𝑧 (the center is noted 𝑀 𝑘 ) and due to 𝐾 𝑝

⃗⃗⃗⃗⃗⃗⃗⃗⃗ . We recall that we are only interested in its axial component because we have neglected the contributions of the other components (see section III.2.3.2 ).

Using the Biot-Savart law, we can write 123 𝐴 𝑧 𝑟 (𝑝) (1) (𝑀 𝑘 ) = 𝜇 0 4𝜋 ∬ 𝐾 𝑝 (1) 𝑒 𝑠 𝑝 ⃗⃗⃗⃗⃗⃗(𝑧 𝑃 ). 𝑒 𝑧 ⃗⃗⃗⃗ 𝑃𝑀 𝑘 𝑑𝛴 𝑃∈𝛴 (158

)
where 𝑃 is the source point (see Figure 41) whose axial coordinate is 𝑧 𝑃 and which has to be integrated over the area 𝛴 corresponding to the localization of the surface current 𝐾 𝑝 (1) ⃗⃗⃗⃗⃗⃗⃗⃗⃗ , i.e. to the external area of the hollow cylinder of radius 𝑅 𝑓 whose center follows the center of element 𝑘 (see green surface on Figure 43). 

𝑧 𝑃 )

Given the geometry, the elementary area 𝑑𝛴 is equal to

𝑑𝛴 = 𝑅 𝑓 𝑑𝛹 𝑃 𝑑𝑠 𝑝 (𝑧 𝑃 )
where 𝛹 𝑃 is the angle between 𝑒 𝑥 ⃗⃗⃗⃗⃗ and 𝑂 𝑃 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗ in the (𝑂𝑥𝑦) plane (see Figure 41) so that 𝑂 𝑃 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗ = 𝑅 𝑓 cos (𝛹 𝑃 )𝑒 𝑥 ⃗⃗⃗⃗⃗ + 𝑅 𝑓 sin (𝛹 𝑃 )𝑒 𝑦 ⃗⃗⃗⃗⃗ assuming the elements are lightly twisted (𝑂 𝑃 is the center of element 𝑝 at 𝑧 𝑃 and 𝑃 is the source point located on the superconducting shell of element 𝑝 at 𝑧 𝑃 ).

𝑠 𝑝 (𝑧 𝑃 ) being the abscissa corresponding to the position of 𝑂 𝑃 along the trajectory of the center of 𝐾 𝑝 (1) (𝑃) with its expression given by (157) for 𝑧 = 𝑧 𝑃 into the formula of 𝐴 𝑧 𝑟 (𝑝) (1) (𝑀 𝑘 ) given by (158),

we now obtain

𝐴 𝑧 𝑟 (𝑝) (1) (𝑀 𝑘 ) = 𝜇 0 𝐼 0 (1) 
8𝜋 In order to ease the mathematical treatment of integral (159), we will use the notation This implies

{ 𝑑𝑧 ′ = 𝑑𝑧 𝑃 𝑑𝛹 ′ = 𝑑𝛹 𝑃
The interval of integration of 𝑧 𝑃 being infinite, the new interval of integration of 𝑧′ also remains infinite, i.e. from -∞ to +∞. In addition, 𝑓(𝑧, 𝑧 𝑃 , 𝛹 𝑃 ) is a 2𝜋-periodic function of 𝛹 𝑃 , thus even with the change of variable of 𝛹 𝑃 into 𝛹 ′ , we choose to keep the same interval of integration for 𝛹 ′ which is [0; 2𝜋].

As a result, it is now possible to re-express integral (160) as 𝐴 𝑧 𝑟 (𝑝) (1) 

(𝑀 𝑘 ) = 𝜇 0 𝐼 0 (1) 8𝜋 2 ∫ ∫ cos ( 2𝜋(𝑧 ′ + 𝑧) 𝑙 𝑝 + 2𝜋(𝑝 -1) 𝑁 ) 𝑔 𝑝𝑘 (𝑧 ′ , 𝛹 ′ ) 2𝜋 𝛹 ′ =0 +∞ 𝑧 ′ =-∞ 𝑑𝛹 ′ 𝑑𝑧 ′ 𝑒 𝑧 ⃗⃗⃗⃗ (161) 
where 𝑔 𝑝𝑘 (𝑧 ′ , 𝛹 ′ ) is given by The cosine term at the numerator of (161) can be expressed as

√4𝑅 𝑐
cos ( 2𝜋(𝑧 ′ + 𝑧) 𝑙 𝑝 + 2𝜋(𝑝 -1) 𝑁 ) = cos ( 2𝜋𝑧 𝑙 𝑝 + 2𝜋(𝑘 -1) 𝑁 + 2𝜋𝑧 ′ 𝑙 𝑝 + 2𝜋(𝑝 -𝑘) 𝑁 )
Developing it, we can now write 𝐴 𝑧 𝑟 (𝑝) (1) (𝑀 𝑘 ) as

{ 𝜇 0 𝐼 0 (1) 8𝜋 2 [ cos ( 2𝜋𝑧 𝑙 𝑝 + 2𝜋(𝑘 -1) 𝑁 ) ∫ ∫ cos ( 2𝜋𝑧 ′ 𝑙 𝑝 + 2𝜋(𝑝 -𝑘) 𝑁 ) 𝑔 𝑝𝑘 (𝑧 ′ , 𝛹 ′ ) 2𝜋 𝛹 ′ =0 +∞ 𝑧 ′ =-∞ 𝑑𝛹 ′ 𝑑𝑧 ′ -sin ( 2𝜋𝑧 𝑙 𝑝 + 2𝜋(𝑘 -1) 𝑁 ) ∫ ∫ sin ( 2𝜋𝑧 ′ 𝑙 𝑝 + 2𝜋(𝑝 -𝑘) 𝑁 ) 𝑔 𝑝𝑘 (𝑧 ′ , 𝛹 ′ ) 2𝜋 𝛹 ′ =0 +∞ 𝑧 ′ =-∞ 𝑑𝛹 ′ 𝑑𝑧 ′ ] (163) 

III.2.5.2 Calculation of the magnetic vector potential due to the currents flowing in all the elements

Let us note (𝐾 𝑝 (1) ⃗⃗⃗⃗⃗⃗⃗⃗⃗ (𝑧) = 𝐾 𝑝 (1) 𝑒 𝑠 𝑝 ⃗⃗⃗⃗⃗⃗)

1≤𝑝≤𝑁 the current distribution flowing through the superconducting shell of all the elements which has been found in steady-state regime.

Let us note 𝐴 𝑧 𝑟 (1) (𝑀 𝑘 ) the magnetic vector potential felt at the center of element 𝑘 at 𝑧 (noted 𝑀 𝑘 )

and due to the current distributions (𝐾 𝑝

⃗⃗⃗⃗⃗⃗⃗⃗⃗ (𝑧) = 𝐾 𝑝 (1) 𝑒 𝑠 𝑝 ⃗⃗⃗⃗⃗⃗)

1≤𝑝≤𝑁

.

Following the definition of 𝐴 𝑧 𝑟 (𝑝) (1) (𝑀 𝑘 ) and 𝐴 𝑧 𝑟 (1) (𝑀 𝑘 ), by superposition, we have 𝐴 𝑧 𝑟 (1) (𝑀 𝑘 ) = ∑ 𝐴 𝑧 𝑟 (𝑝) (1) 

(𝑀 𝑘 ) 𝑁 𝑝=1 (164) 
Since 𝐴 𝑧 𝑟 𝑘 (1) (𝑧) is by definition the axial component of the magnetic vector potential felt at the center of element 𝑘 at 𝑧 due to the total current distribution found in steady-state regime, we can write 𝐴 𝑧 𝑟 (1) (𝑀 𝑘 ) = 𝐴 𝑧 𝑟 𝑘 (1) (𝑧) in order to be consistent with the previous notations.

Making use of formula (163), we then obtain

𝐴 𝑧 𝑟 𝑘 (1) (𝑧) = { 𝜇 0 𝐼 0 (1) 
8𝜋 

where 𝑔 𝑝𝑘 (𝑧 ′ , 𝛹 ′ ) is still given by (162).

Note that in the notation 𝑔 𝑝𝑘 (𝑧 ′ , 𝛹 ′ ), 𝑝 and 𝑘 are both modulo 𝑁, i.e. for 1 ≤ 𝑝 ≤ 𝑁 and 1 ≤ 𝑘 ≤ 𝑁, we have 𝑔 𝑝+𝑁𝑘 (𝑧 ′ , 𝛹 ′ ) = 𝑔 𝑝𝑘 (𝑧 ′ , 𝛹 ′ ) and 𝑔 𝑝𝑘+𝑁 (𝑧 ′ , 𝛹 ′ ) = 𝑔 𝑝𝑘 (𝑧 ′ , 𝛹 ′ ).

We will now focus on the second integral of equation (165), i.e. on

∫ ∫ ∑ sin ( 2𝜋𝑧 ′ 𝑙 𝑝 + 2𝜋(𝑝 -𝑘) 𝑁 ) 𝑔 𝑝𝑘 (𝑧 ′ , 𝛹 ′ ) 𝑁 𝑝=1 2𝜋 𝛹 ′ =0 𝑑𝛹 ′ 𝑑𝑧 ′ +∞ 𝑧 ′ =-∞
We can first split it as

∫ ∫ ∑ sin ( 2𝜋𝑧 ′ 𝑙 𝑝 + 2𝜋(𝑝 -𝑘) 𝑁 ) 𝑔 𝑝𝑘 (𝑧 ′ , 𝛹 ′ ) 𝑁 𝑝=1 2𝜋 𝛹 ′ =0 𝑑𝛹 ′ 𝑑𝑧 ′ 0 𝑧 ′ =-∞ + ∫ ∫ ∑ sin ( 2𝜋𝑧 ′ 𝑙 𝑝 + 2𝜋(𝑝 -𝑘) 𝑁 ) 𝑔 𝑝𝑘 (𝑧 ′ , 𝛹 ′ ) 𝑁 𝑝=1 2𝜋 𝛹 ′ =0 𝑑𝛹 ′ 𝑑𝑧 ′ +∞ 𝑧 ′ =0
In the first integral (i.e. from 𝑧 ′ = -∞ to 0), we can choose to shift 𝛹 ′ from any angle without changing the value of the integral because the function inside it is a 2𝜋-periodic function of 𝛹 ′ which is integrated over its whole period. We then choose to shift 𝛹 ′ from 𝜋 which makes the first integral now equal to

∫ ∫ ∑ sin ( 2𝜋𝑧 ′ 𝑙 𝑝 + 2𝜋(𝑝 -𝑘) 𝑁 ) 𝑔 𝑝𝑘 (𝑧 ′ , 𝛹 ′ + 𝜋) 𝑁 𝑝=1 2𝜋 𝛹 ′ =0 𝑑𝛹 ′ 𝑑𝑧 ′ 0 𝑧 ′ =-∞
which after changing 𝑧 ′ in -𝑧 ′ can alternatively be expressed as

∫ ∫ ∑ sin (- 2𝜋𝑧 ′ 𝑙 𝑝 + 2𝜋(𝑝 -𝑘) 𝑁 ) 𝑔 𝑝𝑘 (-𝑧 ′ , 𝛹 ′ + 𝜋) 𝑑𝛹 ′ 𝑑𝑧 ′ 𝑁 𝑝=1 2𝜋 𝛹 ′ =0 +∞ 𝑧 ′ =0
Thanks to these mathematical operations, we can now write the second integral of equation ( 165) as

∫ ∫ ∑ ℎ 𝑝𝑘 (𝑧 ′ , 𝛹 ′ ) 𝑁 𝑝=1 2𝜋 𝛹 ′ =0 +∞ 𝑧 ′ =0 𝑑𝛹 ′ 𝑑𝑧 ′ (166) with ℎ 𝑝𝑘 (𝑧 ′ , 𝛹 ′ ) = sin (- 2𝜋𝑧 ′ 𝑙 𝑝 + 2𝜋(𝑝 -𝑘) 𝑁 ) 𝑔 𝑝𝑘 (-𝑧 ′ , 𝛹 ′ + 𝜋) + sin ( 2𝜋𝑧 ′ 𝑙 𝑝 + 2𝜋(𝑝 -𝑘) 𝑁 ) 𝑔 𝑝𝑘 (𝑧 ′ , 𝛹 ′ ) (167) 
In addition, from the expression of 𝑔 𝑝𝑘 (𝑧 ′ , 𝛹 ′ ) given by equation (162), for 𝑝 = 𝑘 -𝑗 with 𝑗 ∈ ℤ, we have

𝑔 𝑘-𝑗𝑘 (-𝑧 ′ , 𝛹 ′ + 𝜋) = 𝑔 𝑘+𝑗𝑘 (𝑧 ′ , 𝛹 ′ ) (168) 
Therefore, using equation (167) for 𝑝 = 𝑘 -𝑗 with 𝑗 ∈ ℤ and equation (168), we have for any 𝑧 ′ and any 𝛹 ′ ℎ 𝑘-𝑗𝑘 (𝑧 ′ , 𝛹 ′ ) + ℎ 𝑘+𝑗𝑘 (𝑧 ′ , 𝛹 ′ ) = 0 (169)

Using equation ( 168) for 𝑗 = 0, we can also deduce that ℎ 𝑘𝑘 (𝑧 ′ , 𝛹 ′ ) + ℎ 𝑘𝑘 (𝑧 ′ , 𝛹 ′ ) = 0 which implies ℎ 𝑘𝑘 (𝑧 ′ , 𝛹 ′ ) = 0 (170)

If 𝑁 is even, using equation (168) for 𝑗 = 𝑁/2, we can also deduce that ℎ 𝑘-𝑁/2𝑘 (𝑧 ′ , 𝛹 ′ ) + ℎ 𝑘+𝑁/2𝑘 (𝑧 ′ , 𝛹 ′ ) = 0 and since 𝑝 is modulo 𝑁 in ℎ 𝑝𝑘 (𝑧 ′ , 𝛹 ′ ), we see that in reality

ℎ 𝑘-𝑁/2𝑘 (𝑧 ′ , 𝛹 ′ ) = ℎ 𝑘-𝑁/2+𝑁𝑘 (𝑧 ′ , 𝛹 ′ ) = ℎ 𝑘+𝑁/2𝑘 (𝑧 ′ , 𝛹 ′ ) = 0 (171) 
Now let us consider the sum present in equation ( 166) :


If 𝑁 is odd, the sum can be expressed as

∑ ℎ 𝑝𝑘 (𝑧 ′ , 𝛹 ′ ) 𝑁 𝑝=1 = ℎ 𝑘𝑘 (𝑧 ′ , 𝛹 ′ ) + ∑[ℎ 𝑘+𝑗𝑘 (𝑧 ′ , 𝛹 ′ ) + ℎ 𝑘-𝑗𝑘 (𝑧 ′ , 𝛹 ′ )] 𝑁-1 2 𝑗=1 
If 𝑁 is even, the sum can be expressed as

∑ ℎ 𝑝𝑘 (𝑧 ′ , 𝛹 ′ ) 𝑁 𝑝=1 = ℎ 𝑘𝑘 (𝑧 ′ , 𝛹 ′ ) + ℎ 𝑘+𝑁/2𝑘 (𝑧 ′ , 𝛹 ′ ) + ∑[ℎ 𝑘+𝑗𝑘 (𝑧 ′ , 𝛹 ′ ) + ℎ 𝑘-𝑗𝑘 (𝑧 ′ , 𝛹 ′ )] 𝑁 2 -1

𝑗=1

In both cases, from relations (169) to (171), we see that the sum will be zero for any 𝑧 ′ and any 𝛹 ′ , therefore the second integral of equation (165) will also be zero and thus 𝐴 𝑧 𝑟 𝑘 (1) (𝑧) is reduced to 𝐴 𝑧 𝑟 𝑘 (1) (𝑧) = 𝛾 𝑘 𝐼 0 (1) 

cos ( 2𝜋𝑧 𝑙 𝑝 + 2𝜋(𝑘 -1) 𝑁 ) (172) 
with

𝛾 𝑘 = 𝜇 0 8𝜋 2 ∫ ∫ ∑ cos ( 2𝜋𝑧 ′ 𝑙 𝑝 + 2𝜋(𝑝 -𝑘) 𝑁 ) 𝑔 𝑝𝑘 (𝑧 ′ , 𝛹 ′ ) 𝑁 𝑝=1 2𝜋 𝛹 ′ =0 +∞ 𝑧 ′ =-∞ 𝑑𝛹 ′ 𝑑𝑧 ′ (173) 
where 𝑔 𝑝𝑘 (𝑧 ′ , 𝛹 ′ ) is still given by (162).

We will now show that in reality 𝛾 𝑘 does not depend on 𝑘.

Indeed, according to (173), for 𝑘𝜖ℤ we have

𝛾 𝑘+1 = 𝜇 0 8𝜋 2 ∫ ∫ ∑ cos ( 2𝜋𝑧 ′ 𝑙 𝑝 + 2𝜋(𝑝 -𝑘 -1) 𝑁 ) 𝑔 𝑝𝑘+1 (𝑧 ′ , 𝛹 ′ ) 𝑁 𝑝=1 2𝜋 𝛹 ′ =0 +∞ 𝑧 ′ =-∞ 𝑑𝛹 ′ 𝑑𝑧 ′
From the expression of 𝑔 𝑝𝑘 (𝑧 ′ , 𝛹 ′ ) given by (162), we see that 𝑔 𝑝𝑘 (𝑧 ′ , 𝛹 ′ ) does not directly depends on 𝑝 and 𝑘 but on the difference 𝑝 -𝑘. Therefore, since the difference between 𝑝 and 𝑘 + 1 is identical to that between 𝑝 -1 and 𝑘, we can conclude that for any 𝑧 ′ and any 𝛹 ′ 𝑔 𝑝𝑘+1 (𝑧 ′ , 𝛹 ′ ) = 𝑔 𝑝-1𝑘 (𝑧 ′ , 𝛹 ′ ) (174)

Consequently, we can now express 𝛾 𝑘+1 as

𝛾 𝑘+1 = 𝜇 0 8𝜋 2 ∫ ∫ ∑ cos ( 2𝜋𝑧 ′ 𝑙 𝑝 + 2𝜋(𝑝 -𝑘 -1) 𝑁 ) 𝑔 𝑝-1𝑘 (𝑧 ′ , 𝛹 ′ ) 𝑁 𝑝=1 2𝜋 𝛹 ′ =0 +∞ 𝑧 ′ =-∞ 𝑑𝛹 ′ 𝑑𝑧 ′
Changing the index of summation 𝑝 to 𝑝 ′ = 𝑝 -1, we now have

𝛾 𝑘+1 = 𝜇 0 8𝜋 2 ∫ ∫ ∑ cos ( 2𝜋𝑧 ′ 𝑙 𝑝 + 2𝜋(𝑝 ′ -𝑘) 𝑁 ) 𝑔 𝑝 ′ 𝑘 (𝑧 ′ , 𝛹 ′ ) 𝑁-1 𝑝 ′ =0 2𝜋 𝛹 ′ =0 +∞ 𝑧 ′ =-∞ 𝑑𝛹 ′ 𝑑𝑧 ′
Since in both the cosine term at the numerator and 𝑔 𝑝 ′ 𝑘 (𝑧 ′ , 𝛹 ′ ), the index of summation 𝑝 ′ is modulo 𝑁, the term 𝑝 ′ = 0 corresponds to the term 𝑝 ′ = 𝑁, and it is thus possible to write

𝛾 𝑘+1 = 𝜇 0 8𝜋 2 ∫ ∫ ∑ cos ( 2𝜋𝑧 ′ 𝑙 𝑝 + 2𝜋(𝑝 ′ -𝑘) 𝑁 ) 𝑔 𝑝 ′ 𝑘 (𝑧 ′ , 𝛹 ′ ) 𝑁 𝑝 ′ =1 2𝜋 𝛹 ′ =0 +∞ 𝑧 ′ =-∞ 𝑑𝛹 ′ 𝑑𝑧 ′ = 𝛾 𝑘
As a result, since for 1 ≤ 𝑘 ≤ 𝑁 we have 𝛾 𝑘+1 = 𝛾 𝑘 , we can immediately conclude that for 1 ≤ 𝑘 ≤ 𝑁 𝛾 𝑘 = 𝛾 1 . Thus 𝛾 𝑘 does not depend on 𝑘 and will now simply be noted it as 𝛾 (𝛾 is equal to 𝛾 1 ).

We can finally conclude that 𝐴 𝑧 𝑟 𝑘 (1) (𝑧) is given by 𝐴 𝑧 𝑟 𝑘 (1) (𝑧) = 𝛾𝐼 0 (1) We recall that 𝐴 𝑧 𝑟 𝑘 (1) (𝑧) is the axial component of the magnetic vector potential felt at the center of element 𝑘 at 𝑧 which is due to the current distribution induced in the system in steady-state regime.

III.2.5.3 Calculation of the new spatial form of the current induced in the elements

In the previous section we have computed the term 𝐴 𝑧 𝑟 𝑘 (1) (𝑧) due to the current induced in the elements in steady-state regime. Following our analytical procedure described in section III.2.1 , we now have to compute the new distribution of currents induced by the time-variation of 𝐴 𝑧 𝑟 𝑘 (1) (𝑧).

From the equation of the system given by (153), we see that the new distribution of currents

(𝐼 𝑘 (2) (𝑧)) 1≤𝑘≤𝑁 will satisfy for 1 ≤ 𝑘 ≤ 𝑁 𝑑 2 𝐼 𝑘 (2) 
𝑑𝑧 2 (𝑧) = 𝜎 𝑙 [2𝐴 ̇𝑧𝑟 𝑘 (1) (𝑧) -𝐴 ̇𝑧𝑟 𝑘-1 (1) (𝑧) -𝐴 ̇𝑧𝑟 𝑘+1 (1) (𝑧)]

Replacing 𝐴 𝑧 𝑟 𝑘 (1) (𝑧), 𝐴 𝑧 𝑟 𝑘-1 (1) (𝑧) and 𝐴 𝑧 𝑟 𝑘+1 (1) (𝑧) with their expressions given by (175) in the right-hand term of equation (178) and using trigonometric simplifications, we have 𝜎 𝑙 [2𝐴 ̇𝑧𝑟 𝑘 (1) (𝑧) -𝐴 ̇𝑧𝑟 𝑘-1 (1) (𝑧) -𝐴 ̇𝑧𝑟 𝑘+1 (1) (𝑧)] = 𝜎 𝑙 𝛾𝐼 ̇0 (1) 

This equation is almost identical to the one derived in the steady-state regime, i.e. equation (147).

The only difference between these equations is that -𝑅 𝑐 𝐵 ̇𝑎 has been replaced with 𝛾𝐼 ̇0 (1) . Consequently, to obtain the solution of (180) we just have to replace -𝑅 𝑐 𝐵 ̇𝑎 with 𝛾𝐼 ̇0 (1) in the solution of (147) which is given by (150) and (151), i.e.

𝐼 𝑘 (2) (𝑧) = 𝐼 0 (2) 

We have demonstrated that the spatial form of the new current distribution (𝐼 𝑘 (2) (𝑧))

1≤𝑘≤𝑁 induced by the time-variation of the current distribution (𝐼 𝑘 (1) (𝑧))

1≤𝑘≤𝑁 obtained in steady-state regime exactly corresponds to that of (𝐼 𝑘 (1) (𝑧))

1≤𝑘≤𝑁

. Hence, similarly to the composite methodology, we can affirm that we have reached the end of our analytical procedure and that we now know the spatial form of the current distribution (𝐼 𝑘 (𝑧)) 1≤𝑘≤𝑁 induced for any time-varying regime, which is given by (𝐼 𝑘 (𝑧)) 1≤𝑘≤𝑁 = (𝐼 0 cos (

2𝜋𝑧 𝑙 𝑝 + 2𝜋(𝑘-1) 𝑁 )) 1≤𝑘≤𝑁
, where 𝐼 0 is a function of time only.

III.2.5.4 Reduction of the global equation of the system for any time-varying regime

In the global equation of the system, i.e. equation ( 153 

and

𝛾 = 𝜇 0 8𝜋 2 ∫ ∑ cos ( 2𝜋𝑧 ′ 𝑙 𝑝 + 2𝜋(𝑝 -1) 𝑁 ) 𝑁 𝑝=1 [∫ 1 𝑔 𝑝 (𝑧 ′ , 𝛹 ′ ) 2𝜋 𝛹 ′ =0 𝑑𝛹 ′ ] 𝑑𝑧 ′ +∞ 𝑧 ′ =-∞ (186)
where, according to equation (177), 𝑔 𝑝 (𝑧 ′ , 𝛹 ′ ) is equal to

√4𝑅 𝑐 2 sin 2 ( 𝜋𝑧 ′ 𝑙 𝑝 + 𝜋(𝑝 -1) 𝑁 ) + 4𝑅 𝑐 𝑅 𝑓 sin ( 𝜋𝑧 ′ 𝑙 𝑝 + 𝜋(𝑝 -1) 𝑁 ) sin(𝛹 ′ ) + 𝑅 𝑓 2 + 𝑧 ′ 2 (187) 
We have now reduced the global equation of the system to its simplest form. However, the 𝛾 coefficient appearing in the time constant 𝜏 of the system has a complicated expression which has to be computed numerically.

We will thus here present an alternative approach leading to an explicit analytical expression approximating the value of the 𝛾 coefficient. This approach is motivated by our will to provide expressions that can easily be integrated in already existing thermal modeling codes.

III.2.5.5 Alternative calculation of the 𝜸 coefficient

In order to provide a simpler and explicit analytical expression of the γ coefficient, we will here give another method to compute the magnetic vector potential due to the current distribution (𝐼 𝑘 (𝑧)) 1≤𝑘≤𝑁 = (𝐼 0 cos (

2𝜋𝑧 𝑙 𝑝 + 2𝜋(𝑘-1) 𝑁
))

1≤𝑘≤𝑁

.

The elements are assumed to be lightly twisted, i.e.

( 2𝜋𝑅 𝑐 𝑙 𝑝 ) 2 ≪ 1
where 𝑅 𝑐 is the cabling radius of the elements and 𝑙 𝑝 their twist pitch and thus the current flowing along one element is also slowly varying in space.

Consequently, we can approximate the magnetic vector potential A z r k (z 0 ) created by the considered current distribution at the center of element k at z 0 by the one created by a set of N straight infinite hollow tubes of current (see Figure 44), each tube being located at the position of the elements at 𝑧 0 and carrying the current I k (z 0 ) constant along the z-axis. The exercise below is shown to consolidate this intuition.

The set of 3 straight infinite hollow tubes of current (in black) which are used to compute the magnetic vector potential A z r k (𝑧 0 ) created by the current distribution (in green) of a triplet (𝑁 = 3) are displayed on Figure 44. The considered infinite hollow tubes (in black) are intercepting the superconducting shells (in green) of the elements at 𝑧 = 𝑧 0 . We also consider that each tube carries a current constant along the z-axis whose value corresponds to the value locally carried by the superconducting shell it intercepts.

Note that, after some bibliographic research, it appeared that this kind of approximation had already been made by Morgan in [START_REF] Morgan | Theoretical Behavior of Twisted Multicore Superconducting Wire in a Time-Varying Uniform Magnetic Field[END_REF]. The only difference is that he originally applied it to a set of two elements instead of 𝑁 elements.

The magnetic vector potential 𝐴 𝑡𝑢𝑏𝑒 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ (𝑀) created at a point 𝑀(𝑟, 𝜃, 𝑧) by an infinite hollow tube centered on 𝑟 = 0 with radius equal to 𝑅 𝑓 and carrying a current 𝐼 constant along the z-axis is given by ) constant along the z-axis. Using (189), we then have

𝐴 𝑡𝑢𝑏𝑒 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ (𝑀) = 𝐴 𝑧 𝑡𝑢𝑏𝑒 (𝑟,
𝐴 𝑧 𝑝 (𝑀 𝑘 ) = { 0𝑖𝑓𝑟 𝑝𝑘 (𝑧 0 ) ≤ 𝑅 𝑓 - 𝜇 0 𝐼 0 2𝜋 cos ( 2𝜋𝑧 0 𝑙 𝑝 + 2𝜋(𝑝 -1) 𝑁 ) ln ( 𝑟 𝑝𝑘 (𝑧 0 ) 𝑅 𝑓 ) 𝑖𝑓𝑟 𝑝𝑘 (𝑧 0 ) > 𝑅 𝑓 ( 190 
)
where 𝑟 𝑝𝑘 (𝑧 0 ) is the distance between the centers of elements 𝑝 and 𝑘 at 𝑧 = 𝑧 0 .

In the plane given by equation 𝑧 = 𝑧 0 , we know that the centers of elements 𝑝 and 𝑘 are located on a circle of radius 𝑅 𝑐 and that the angle 𝜃 𝑝𝑘 between the rays going from the center of the circle to the positions of the centers of elements 𝑝 and 𝑘 is equal to

𝜃 𝑝𝑘 = 2𝜋(𝑝 -𝑘) 𝑁
From this geometrical consideration, we can deduce that the distance 𝑟 𝑝𝑘 (𝑧 0 ) between the centers of elements 𝑝 and 𝑘 at 𝑧 = 𝑧 0 is given by

𝑟 𝑝𝑘 (𝑧 0 ) = 2𝑅 𝑐 sin | 𝜃 𝑝𝑘 2 | = 2𝑅 𝑐 sin | 𝜋(𝑝 -𝑘) 𝑁 | (191)
Considering that the superconducting shells of two elements cannot penetrate each other, using equations (190) and (191), we can now conclude that for any 𝑧 0 and for 1 ≤ 𝑘 ≤ 𝑁, is given by (199).

We have now provided another formula for the magnetic vector potential felt at the center of element 𝑘 at any 𝑧 0 and due to the current distribution (𝐼 𝑘 (𝑧)) 1≤𝑘≤𝑁 = (𝐼 0 cos ( 2𝜋𝑧 𝑙 𝑝 + 2𝜋(𝑘-1) 𝑁

))

1≤𝑘≤𝑁 using the infinite straight hollow tubes approach.

In formula (175), 𝛾 has been defined so that

𝐴 𝑧 𝑟 𝑘 (𝑧) = 𝛾𝐼 0 cos ( 2𝜋𝑧 𝑙 𝑝 + 2𝜋(𝑘 -1) 𝑁 )
Since 𝐴 𝑧 (𝑀 𝑘 ) corresponds to 𝐴 𝑧 𝑟 𝑘 (𝑧 0 ), using equation (200) the new formula of 𝛾 obtained using the infinite straight hollow tubes approach is then

𝛾 = - 𝜇 0 2𝜋 ∑ 𝑎 𝑝𝑘 𝑁 𝑝=1 𝑝≠𝑘
which using (199) leads to

𝛾 = 𝜇 0 2𝜋 [ ln ( 2𝑅 𝑐 𝑅 𝑓 ) -2 ∑ cos ( 2𝜋𝑗 𝑁 ) ln (sin | 𝜋𝑗 𝑁 |) 𝑓𝑙𝑜𝑜𝑟( 𝑁-1 2 ) 𝑗=1 ] (201) 

III.2.5.6 Comparison between the values of 𝜸 coefficient obtained with both approaches

In order to evaluate the discrepancy between the infinite straight hollow tubes approach and the Biot-Savart one, we have chosen to compute the relative error between the values of 𝛾 obtained with equations (176) and (201) (which are also valid for 𝑁 = 2, see section III.2.7 ) for two sets of realistic values of 𝑅 𝑐 (cabling radius of the elements), 𝑅 𝑓 (radius of the superconducting shell), 𝑙 𝑝 (twist pitch of the elements) and𝑁 (number of elements).

The first set of 𝑅 𝑐 , 𝑅 𝑓 and 𝑙 𝑝 values is representative of the first cabling stage of JT-60SA TF conductor: the composites (elements) have a radius of 𝑅 = 0.405𝑚𝑚, the outer radius of their filamentary zone (superconducting shell) is 𝑅 𝑓 = 0.327𝑚𝑚 and their cabling twist pitch is 𝑙 𝑝 = 45𝑚𝑚. In addition the first cabling stage is composed of 𝑁 = 3 strands but we will make the number of elements vary between 𝑁 = 2 and 𝑁 = 6 and suppose that the elements are always tangent to each other so that 𝑅𝑐 = 𝑅/𝑠𝑖𝑛(𝜋/𝑁). The relative errors between the values of 𝛾 computed using both approaches are displayed on Table 10. The second set of 𝑅 𝑐 , 𝑅 𝑓 and 𝑙 𝑝 values is representative of the edge filaments of K006-01C composite: the filaments (superconducting shells) have a radius of about 𝑅 𝑓 = 10𝜇𝑚, the outer radius of the filamentary zone (cabling radius of the elements) is 𝑅 𝑐 = 0.327𝑚𝑚 and the twist pitch of the filaments is 𝑙 𝑝 = 15𝑚𝑚. In this case, the relative error between the values of 𝛾 computed using both approaches is 𝟎. 𝟎𝟔% for 𝑁 = 50 and 𝟎. 𝟎𝟒% for 𝑁 = 100. We can now conclude that the straight hollow tubes approach is really consistent with the Biot-Savart one and that the values of 𝛾 computed using equation (201) can be trusted.

We can now conclude that the straight hollow tubes approach is a trustworthy analogy, which analytically converges with the Biot-Savart one with a marginal deviation. The values of 𝛾 computed using equation (201) can therefore be considered as fully relevant and are thus used in the following for calculation.

III.2.6 Power dissipated by coupling currents

 From the knowledge of the spatial form of the currents induced for any time regime, we will establish the analytical expression of the coupling power dissipated in a group of twisted elements.

The local transverse current flowing from element 𝑘 to the adjacent element 𝑘 + 1 at 𝑧 has previously been noted 𝐼 𝑘𝑘+1 (𝑧).

The local power 𝑑𝑃 𝑘𝑘+1 (𝑧) dissipated in a slice of thickness 𝑑𝑧 by the flow of 𝐼 𝑘𝑘+1 (𝑧) is expressed as

𝑑𝑃 𝑘𝑘+1 (𝑧) = 𝐼 𝑘𝑘+1 2 (𝑧) 𝑑𝐺 = 1 𝜎 𝑙 ( 𝐼 𝑘𝑘+1 (𝑧) 𝑑𝑧 ) 2 𝑑𝑧 ( 202 
)
Therefore the total local power 𝑑𝑃(𝑧) dissipated in a slice of thickness 𝑑𝑧 by the flow of all the local transverse currents (𝐼 𝑘𝑘+1 (𝑧))

1≤𝑘≤𝑁 is

𝑑𝑃(𝑧) = ∑ 𝑑𝑃 𝑘𝑘+1 (𝑧) 𝑁 𝑘=1 = 1 𝜎 𝑙 ∑ ( 𝐼 𝑘𝑘+1 (𝑧) 𝑑𝑧 ) 2 𝑁 𝑘=1 𝑑𝑧 (203) 
and the total power dissipated from 𝑧 = 0 to 𝑧 is then

𝑃(𝑧) = ∫ 𝑑𝑃(𝑧′) 𝑑𝑧 𝑑𝑧′ 𝑧 0 = 1 𝜎 𝑙 ∫ ∑ ( 𝐼 𝑘𝑘+1 (𝑧′) 𝑑𝑧 ) 2 𝑁 𝑘=1 𝑑𝑧′ 𝑧 0 (204)
From our previous considerations, we know that for any time regime, the current 𝐼 𝑘 (𝑧) flowing along element 𝑘 at 𝑧 is given by The total power dissipated by the coupling currents in a 𝑁-uplet with 𝑁 ≥ 3 from 𝑧 = 0 to 𝑧 is then

𝐼 𝑘 (𝑧) =
𝑃(𝑧) = ∫ 𝑑𝑃(𝑧′) 𝑑𝑧 𝑑𝑧′ 𝑧 0 = 1 𝜎 𝑙 ( 2𝜋 𝑙 𝑝 ) 2 𝑁 8 sin 2 ( 𝜋 𝑁 ) 𝐼 0 2 𝑧 ( 210 
)
As a result, the power per unit length of conductor is

𝑃 𝑙 (𝑧) = 𝑃(𝑧) 𝑧 = 1 𝜎 𝑙 ( 2𝜋 𝑙 𝑝 ) 2 𝑁 8 sin 2 ( 𝜋 𝑁 ) 𝐼 0 2 (211)

III.2.7 Specific case of the doublet

 We will address here the specific case of two twisted elements (i.e. a doublet) following the same approach than for a 𝑵-uplet with 𝑵 ≥ 𝟑.

Morgan has studied the magnetic response of a strand having two filaments in [START_REF] Morgan | Theoretical Behavior of Twisted Multicore Superconducting Wire in a Time-Varying Uniform Magnetic Field[END_REF] and has expressed the time constant of the system and the average power dissipated during a sinusoidal excitation. In order to compare our model to his approach, we first have to adapt the N-uplet model to a doublet. However it is not directly possible to replace 𝑁 with 2 in the expressions we have previously derived for 𝑁 ≥ 3. Indeed, since the doublet has only one transverse current flowing from the first element to the second one, the Kirchhoff's current law we have derived in the 𝑁-uplet model is not valid anymore. As a result, we have to derive the equation governing the doublet following the methodology we have used in the 𝑁-uplet.

III.2.7.1 Global equation of the system

In the case of a doublet, there is only one local transverse current 𝐼 12 (𝑧) which flows from the first element to the second one; according to Kirchhoff's current law, it must satisfy

𝐼 12 (𝑧) 𝑑𝑧 = - 𝑑𝐼 1 𝑑𝑧 (𝑧) (212) 
instead of (133) for 𝑁 ≥ 3.

Equations ( 134) and ( 141) derived for the case 𝑁 ≥ 3 (i.e. Ohm's law and Faraday's law of induction) being still valid for 𝑁 = 2, the set of equations of the doublet is then

{ 𝐼 12 (𝑧) 𝑑𝑧 = - 𝑑𝐼 1 𝑑𝑧 (𝑧) 1 𝑑𝑧 𝐼 12 (𝑧) = 𝜎 𝑙 𝑈 12 (𝑧) 𝑑𝑈 12 𝑑𝑧 (𝑧) = 𝐴 ̇𝑧2 (𝑧) -𝐴 ̇𝑧1 (𝑧) (213) 
Once combined, equations (213) leads to the global equation of the system

𝑑 2 𝐼 1 𝑑𝑧 2 (𝑧) = 𝜎 𝑙 [𝐴 ̇𝑧1 (𝑧) -𝐴 ̇𝑧2 (𝑧)] (214) 
Since the doublet does not carry any transport current, we have 𝐼 2 (𝑧) = -𝐼 1 (𝑧), therefore all the equations and solutions will only be given for 𝐼 1 as 𝐼 2 is simply the opposite of 𝐼 1 .

As we did it previously for 𝑁 ≥ 3, 𝐴 𝑧 𝑘 can be split as 𝐴 𝑧 𝑘 = 𝐴 𝑧 𝑎 𝑘 + 𝐴 𝑧 𝑟 𝑘 with 𝐴 𝑧 𝑎 𝑘 = -𝑥 𝑘 𝐵 𝑎 .

This leads to the following equation

𝑑 2 𝐼 1 𝑑𝑧 2 (𝑧) -𝜎 𝑙 [𝐴 ̇𝑧𝑟 1 (𝑧) -𝐴 ̇𝑧𝑟 2 (𝑧)] = -2𝜎 𝑙 𝑅 𝑐 𝐵 ̇𝑎 cos ( 2𝜋𝑧 𝑙 𝑝 ) (215) 

III.2.7.2 Study in steady-state regime

In steady-state regime, we then have

𝑑 2 𝐼 1 𝑑𝑧 2 (𝑧) = -2𝜎 𝑙 𝑅 𝑐 𝐵 ̇𝑎 cos ( 2𝜋𝑧 𝑙 𝑝 ) (216) 
The solutions of this equation can be quickly determined from the case 𝑁 ≥ 3 as

𝐼 1 (𝑧) = 𝐼 0 cos ( 2𝜋𝑧 𝑙 𝑝 ) (217) 
for an infinitely long conductor or

𝐼 1 (𝑧) = 𝐼 0 [cos ( 2𝜋𝑧 𝑙 𝑝 ) -cos ( 𝜋𝐿 𝑙 𝑝 )] ( 218 
)
for a conductor of length 𝐿. In both cases 𝐼 0 is given by

𝐼 0 = 2𝜎 𝑙 𝑅 𝐶 𝐵 ̇𝑎 ( 𝑙 𝑝 2𝜋 ) 2 (219) 
Note that this expression of 𝐼 0 is not equal to the one obtained replacing 𝑁 with 2 in the formula of the 𝑁-uplet, i.e. equation (149).

III.2.7.3 Study in time-varying regime

The current distribution found in steady-state regime for the doublet is consistent with that found for the 𝑁-uplet, i.e. it is given by (𝐼 𝑘 (𝑧) = 𝐼 0 cos ( 2𝜋𝑧 𝑙 𝑝 + 2𝜋(𝑘-1) 𝑁

))

1≤𝑘≤𝑁 for = 2 . Consequently, the formula of the magnetic vector potential due to this distribution of current is directly given by equations ( 175) to (177) for 𝑁 = 2, i.e.

𝐴 𝑧 𝑟 𝑘 (1) (𝑧) = 𝛾𝐼 0 (1) cos ( 2𝜋𝑧 𝑙 𝑝 + 𝜋(𝑘 -1))

with

𝛾 = 𝜇 0 8𝜋 2 ∫ ∫ ∑ cos ( 2𝜋𝑧 ′ 𝑙 𝑝 + 𝜋(𝑝 -1)) 𝑔 𝑝 (𝑧 ′ , 𝛹 ′ ) 2 𝑝=1 2𝜋 𝛹 ′ =0 +∞ 𝑧 ′ =-∞ 𝑑𝛹 ′ 𝑑𝑧 ′ (221)
where 𝑔 𝑝 (𝑧 ′ , 𝛹 ′ ) is now given by

√4𝑅 𝑐 2 sin 2 ( 𝜋𝑧 ′ 𝑙 𝑝 + 𝜋 2 (𝑝 -1)) + 4𝑅 𝑐 𝑅 𝑓 sin ( 𝜋𝑧 ′ 𝑙 𝑝 + 𝜋 2 (𝑝 -1)) sin(𝛹 ′ ) + 𝑅 𝑓 2 + 𝑧 ′ 2 (222) 
Using equations ( 215) and (220), we see that the new distribution of currents 𝐼 1 (2) (𝑧) induced by the time-variation of the current distribution (𝐼 𝑘 (1) (𝑧) = 𝐼 0 (1) cos (

2𝜋𝑧 𝑙 𝑝 + 𝜋(𝑘 -1))) 1≤𝑘≤2
found in steadystate regime will satisfy

𝑑 2 𝐼 1 (2) 
𝑑𝑧 2 (𝑧) = 2𝜎 𝑙 𝛾𝐼 ̇0 (1) cos ( 2𝜋𝑧 𝑙 𝑝 )

Using previous considerations, the solution of this equation is

𝐼 1 (2) (𝑧) = 𝐼 0 (2) cos ( 2𝜋𝑧 𝑙 𝑝 ) (224) with 𝐼 0 (2) = -2𝜎 𝑙 𝛾𝐼 ̇0 (1) ( 𝑙 𝑝 2𝜋 ) 2 (225) 
Once again we have reached the end of our analytical procedure and we now know that the spatial form of the current distribution 𝐼 1 (𝑧) induced in a doublet for any time-varying regime is given by

𝐼 1 (𝑧) = 𝐼 0 cos ( 2𝜋𝑧 𝑙 𝑝
), where 𝐼 0 is a function of time only.

III.2.7.3.1 Reduction of the global equation of the system for any time-varying regime

Using the fact that 𝐼 1 (𝑧) = 𝐼 0 cos ( 

and

𝛾 = 𝜇 0 8𝜋 2 ∫ ∑ cos ( 2𝜋𝑧 ′ 𝑙 𝑝 + 𝜋(𝑝 -1)) 2 𝑝=1 [∫ 1 𝑔 𝑝 (𝑧 ′ , 𝛹 ′ ) 2𝜋 𝛹 ′ =0 𝑑𝛹 ′ ] 𝑑𝑧 ′ +∞ 𝑧 ′ =-∞ (229)
where, according to equation (222), 𝑔 𝑝 (𝑧 ′ , 𝛹 ′ ) is equal to

√4𝑅 𝑐 2 sin 2 ( 𝜋𝑧 ′ 𝑙 𝑝 + 𝜋 2 (𝑝 -1)) + 4𝑅 𝑐 𝑅 𝑓 sin ( 𝜋𝑧 ′ 𝑙 𝑝 + 𝜋 2 (𝑝 -1)) sin(𝛹 ′ ) + 𝑅 𝑓 2 + 𝑧 ′ 2 (230)
Note that the expressions of 𝜏 and 𝜏 𝑒𝑥𝑡 of the doublet are not equal to the one obtained replacing 𝑁 with 2 in the formulae of the 𝑁-uplet, i.e. equation (185).

III.2.7.3.2 Alternative calculation of the 𝜸 coefficient

Formula (201) of the γ coefficient derived for the 𝑁-uplet using the straight infinite hollow tubes approach is still valid for the doublet but with 𝑁 = 2, i.e. Finally, the total power dissipated by the coupling currents in a doublet from 𝑧 = 0 to 𝑧 is then

𝛾

𝑃(𝑧) = ∫ 𝑑𝑃(𝑧′) 𝑑𝑧 𝑑𝑧′ 𝑧 0 = 1 𝜎 𝑙 ( 2𝜋 𝑙 𝑝 ) 2 𝐼 0 2 𝑧 2 [1 -sinc ( 4𝜋𝑧 𝑙 𝑝 )] (234) 
where sinc(𝑥) = sin(𝑥) /𝑥. And the power per unit length of conductor is

𝑃 𝑙 (𝑧) = 𝑃(𝑧) 𝑧 = 1 𝜎 𝑙 ( 2𝜋 𝑙 𝑝 ) 2 𝐼 0 2 2 [1 -sinc ( 4𝜋𝑧 𝑙 𝑝 )] (235) 
Note that in the case of a doublet, the power dissipated by the coupling currents per unit length of conductor depends on the length of conductor considered while for a 𝑁-uplet with 𝑁 ≥ 3 it does not.

III.2.7.5 Comparison with Morgan's expressions

In [START_REF] Morgan | Theoretical Behavior of Twisted Multicore Superconducting Wire in a Time-Varying Uniform Magnetic Field[END_REF], Morgan has derived the time constant governing a strand with two filaments and the average power per unit length dissipated during a sinusoidal excitation. In order to compare his expressions to ours, we first have to make the link between his notations and ours:  𝑝 is the twist pitch of the filaments, we thus have 𝑝 = 𝑙 𝑝  𝐿 is one fourth of the pitch, thus 𝐿 = 𝑙 𝑝 /4  𝑑 is the diameter of the filaments, thus 𝑑 = 2𝑅 𝑓  𝑎 is the distance between the two filaments, thus 𝑎 = 2𝑅 𝑐  𝜌 𝑒 is an effective resistivity such that 𝑑ℛ = 𝜌 𝑒 /𝑑𝑧is the local transverse resistance between the two filaments, we then have ℛ = 1/𝑑𝐺 = 1/(𝜎 𝑙 𝑑𝑧) and thus 𝜌 𝑒 = 1/𝜎 𝑙 The time constant derived by Morgan in [START_REF] Morgan | Theoretical Behavior of Twisted Multicore Superconducting Wire in a Time-Varying Uniform Magnetic Field[END_REF] is the following

𝜏 𝑀𝑜𝑟𝑔𝑎𝑛 = 𝜇 0 𝜋𝜌 𝑒 ( 2𝐿 𝜋 ) 2 ln ( 2𝑎 -𝑑 𝑑 ) = 𝜇 0 𝜎 𝑙 𝜋 ( 𝑙 𝑝 2𝜋 ) 2 ln ( 2𝑅 𝑐 -𝑅 𝑓 𝑅 𝑓 )
The time constant we have derived is given by (228), i.e.

𝜏 = 2𝜎 𝑙 𝛾 ( 𝑙 𝑝 2𝜋 )

2

Since Morgan has used the straight infinite tubes approach, we will replace 𝛾 with expression (231) we have found using the same approach, this leads to the following time constant

𝜏 = 𝜇 0 𝜎 𝑙 𝜋 ( 𝑙 𝑝 2𝜋 ) 2 ln ( 2𝑅 𝑐 𝑅 𝑓 )
We can see that our expression is almost identical to that derived by Morgan, the only difference lies in the presence of the term 2𝑅 𝑐 -𝑅 𝑓 instead of 2𝑅 𝑐 in the logarithm. This difference is simply explained by the fact that Morgan has considered filaments while we have chosen to consider elements that can be strands or groups of strands. Indeed, when computing the change of magnetic flux enclosed by the two filaments, Morgan has chosen not to take into account the part of the change of flux that was inside the volume of the filaments because of their superconducting nature (they directly shield that part developing their own screening currents, these currents correspond to the currents responsible for the hysteresis losses in superconducting filaments). In our approach, we have not made use of this assumption because the elements are not supposed to be able to instantly shield the change of magnetic flux in their own volume; this is the reason for the slight difference between both models.

Having now found an agreement between the time constants calculated by both models, we will now carry on the comparison on the average power per unit length dissipated during a sinusoidal excitation.

In [START_REF] Morgan | Theoretical Behavior of Twisted Multicore Superconducting Wire in a Time-Varying Uniform Magnetic Field[END_REF], Morgan has also computed the following power per unit length averaged over one fourth of the twist pitch (i.e. 𝐿 = 𝑙 𝑝 /4) and averaged over one cycle of sinusoidal magnetic excitation 𝐵 𝑎 = 𝐵 𝑝 sin (𝜔𝑡)

𝑃 𝑙 𝑀𝑜𝑟𝑔𝑎𝑛 = 1 4𝜌 𝑒 ( 2𝐿 𝜋 ) 2 𝐵 𝑝 2 (𝑎 -𝑑) 2 𝜔 2 1 + 𝜔 2 𝜏 𝑀𝑜𝑟𝑔𝑎𝑛 2 = 𝜎 𝑙 ( 𝑙 𝑝 2𝜋 ) 2 𝐵 𝑝 2 (𝑅 𝑐 -𝑅 𝑓 ) 2 𝜔 2 1 + 𝜔 2 𝜏 𝑀𝑜𝑟𝑔𝑎𝑛 2
From equation (235), the power per unit length averaged over one fourth of the twist pitch we have computed is

𝑃 𝑙 (𝑧 = 𝑙 𝑝 /4) = 1 𝜎 𝑙 ( 2𝜋 𝑙 𝑝 ) 2 𝐼 0 2 2
where 𝐼 0 is governed by equation (227).

In section II.2.8 , we have computed the average of 𝐵 ̇𝑖2 (𝑡) governed by the equation 𝐵 𝑖 + 𝜏𝐵 ̇𝑖 = 𝐵 𝑎 over the time period 𝑇 = 1/𝑓 of an applied magnetic field 𝐵 𝑎 = 𝐵 𝑝 sin (𝜔𝑡) and we have found

〈𝐵 ̇𝑖2 (𝑡)〉 𝑐𝑦𝑐𝑙𝑒 = 𝐵 𝑝 2 2 𝜔 2 1 + (𝜔𝜏) 2
Differentiating equation 𝐵 𝑖 + 𝜏𝐵 ̇𝑖 = 𝐵 𝑎 with respect to time leads to 𝐵 ̇𝑖 + 𝜏𝐵 ̈𝑖 = 𝐵 ̇𝑎. We can notice that this equation is very similar to the one satisfied by 𝐼 0 i.e. 𝐼 0 + 𝜏𝐼 ̇0 = 𝜏 𝑒𝑥𝑡 𝑅 𝐶 𝐵 ̇𝑎/𝜇 0 .

Consequently, replacing 𝐵 ̇𝑖 with 𝐼 0 and 𝐵 𝑝 with 𝐵 𝑝 𝜏 𝑒𝑥𝑡 𝑅 𝐶 /𝜇 0 in the expression of 〈𝐵 ̇𝑖2 (𝑡)〉 𝑐𝑦𝑐𝑙𝑒 above, we can directly conclude that the average of 𝐼 0 2 over the time period 𝑇 = 1/𝑓 of an applied magnetic field 𝐵 𝑎 = 𝐵 𝑝 sin (𝜔𝑡) is given by

〈𝐼 0 2 (𝑡)〉 𝑐𝑦𝑐𝑙𝑒 = (𝐵 𝑝 𝜏 𝑒𝑥𝑡 𝑅 𝐶 /𝜇 0 ) 2 2 𝜔 2 1 + (𝜔𝜏) 2 = 𝐵 𝑝 2 2 𝑅 𝑐 2 ( 𝜏 𝑒𝑥𝑡 𝜇 0 ) 2 𝜔 2 1 + (𝜔𝜏) 2
Replacing 𝜏 𝑒𝑥𝑡 with its expression given by (228), we finally obtain

〈𝐼 0 2 (𝑡)〉 𝑐𝑦𝑐𝑙𝑒 = 2𝐵 𝑝 2 𝑅 𝑐 2 𝜎 𝑙 2 ( 𝑙 𝑝 2𝜋 ) 4 𝜔 2 1 + (𝜔𝜏) 2
Therefore, we can deduce that 2 We can see that the expressions 𝑃 𝑙 𝑀𝑜𝑟𝑔𝑎𝑛 and 〈𝑃 𝑙 (𝑧 = 𝑙 𝑝 /4)〉 𝑐𝑦𝑐𝑙𝑒 computed by both models are almost identical, again the difference lies in the presence of the term (𝑅 𝑐 -𝑅 𝑓 )

〈𝑃 𝑙 (𝑧 = 𝑙 𝑝 /4)〉 𝑐𝑦𝑐𝑙𝑒 = 1 𝜎 𝑙 ( 2𝜋 𝑙 𝑝 ) 2 〈𝐼 0 2 (𝑡)〉 𝑐𝑦𝑐𝑙𝑒 2 = 𝜎 𝑙 ( 𝑙 𝑝 2𝜋 ) 2 𝐵 𝑝 2 𝑅 𝑐 2 𝜔 2 1 + (𝜔𝜏)
2 instead of 𝑅 𝑐 2 which is again due to the fact that Morgan does not take into account the part of the change of magnetic flux that is inside the volume of the filaments.

III.2.8 Summary

For any time-varying regime the currents induced along the elements of the 𝑁-uplet are given by

𝐼 𝑘 (𝑧) = 𝐼 0 cos( 2𝜋𝑧 𝑙 𝑝 + 2𝜋(𝑘 -1) 𝑁 )
where 𝐼 0 is a function of time only governed by the equation For 𝑁 ≥ 2, the 𝛾 coefficient can be approximated by the following explicit formula

𝐼
𝛾 = 𝜇 0 2𝜋 [ ln ( 2𝑅 𝑐 𝑅 𝑓 ) -2 ∑ cos ( 2𝜋𝑗 𝑁 ) ln (sin | 𝜋𝑗 𝑁 |) 𝑓𝑙𝑜𝑜𝑟( 𝑁-1 2 ) 𝑗=1 ] (239) 

III.3 Adaptation of the N-uplet model to the MPAS model

III.3.1 The MPAS model

Having derived the equation governing a conductor described by the 𝑁-uplet model, we will now express it differently as we will try to provide a physical interpretation of its behavior.

In doing so we are actually making the link with the Multizone Partial Shielding (MPAS) model [START_REF] Turck | A macroscopic model for coupling current losses in cables made of multistages of superconducting strands and its experimental validation[END_REF]; this heuristic approach considers that every cabling stage of a conductor, if taken alone, can be seen as a magnetic circular dipole (see section II.5.1.2 ) partially screening the external magnetic field. We recall that the term "circular dipole" refers to a cosine distribution of current on the outer radius of the cross-section of a cylinder; this distribution is encountered when a composite with a central filamentary zone shields its enclosed volume from the time variation of an applied transverse magnetic field.

In the MPAS approach, each cabling stage of a CICC is considered to behave like a superconducting composite partially shielding the external magnetic excitation, this means that the isolated cabling stage 𝑗 is governed by the classical equation 𝐵 𝑖𝑛𝑡𝑗 + 𝜏 𝑗 𝐵 ̇𝑖𝑛𝑡𝑗 = 𝐵 𝑎 (240) where 𝐵 𝑎 is the amplitude of the transverse applied magnetic field, 𝐵 𝑖𝑛𝑡𝑗 is the part of the induction inside cabling stage 𝑗 which is collinear to 𝐵 𝑎 and 𝜏 𝑗 is the time constant of the cabling stage 𝑗 if taken alone (i.e. without considering the magnetic interactions with the other cabling stages).

The MPAS model also considers that the power density dissipated in an isolated cabling stage 𝑗 is equal to

𝑃 𝑣𝑜𝑙 = 𝑛𝑘 𝑗 𝜏 𝑗 𝐵 ̇𝑖𝑛𝑡𝑗 2 𝜇 0 (241)
where 𝑛𝑘 𝑗 is known as the partial shielding coefficient. Note that in the case of a composite with a central filamentary zone, the 𝑛𝑘 𝑗 coefficient is 𝑛𝑘 𝑗 = 2 according to equation [START_REF] Wilson | Introduction" in Superconducting Magnets[END_REF].

Finally, this model also considers that when the totality of the magnetic couplings are taken into account, the coupling losses per cycle per unit volume of cable envelope of a CICC with 𝑁 cabling stages can be expressed as

𝑄 𝑣𝑜𝑙 = ∑ 𝑛𝜅 𝑗 𝜃 𝑗 𝐵 ̇𝑖𝑛𝑡𝑗 2 𝜇 0 𝑁 𝑗=1 ( 242 
)
where the 𝑛𝜅 𝑗 and 𝜃 𝑗 are respectively the new time constants and new partial shielding coefficients of the system which depend on the previous 𝑛𝑘 𝑗 , 𝜏 𝑗 and on the volume fractions in which the different stages are shielding the applied magnetic field: they reflect the magnetic coupling between the different cabling stages.

The previous equations assumed by the MPAS model seem to be in line with the experimental observations as it is possible to adjust the 𝑛𝜅 𝑗 and 𝜃 𝑗 so that the experimental losses can be described with equation (242).

However, these considerations have never been demonstrated theoretically. In the next section we will thus show that it is indeed possible to represent the magnetic behavior of single cabling stage conductor with equations (240) and (241). We will also derive the analytical formulae of its 𝑛𝑘 𝑗 and 𝜏 𝑗 parameters using the results of the 𝑁-uplet model. This point is very important as it consolidates on one side, the MPAS model which is consistent with the experimental reality but which features considerations that have not been reinforced on a theoretical ground and, on the other side, the 𝑁-uplet model which is derived from purely theoretical considerations without any link -even indirect-with experimental reality.

III.3.2 Adaptation to the MPAS model

Let us start with the equation of the 𝑁-uplet, i.e. equation (184) which is

𝐼 0 + 𝜏𝐼 ̇0 = 𝜏 𝑒𝑥𝑡 𝑅 𝐶 𝐵 ̇𝑎 𝜇 0
In steady-state regime, i.e. when the coupling currents are not time-varying, at any time 𝑡 we have 𝐼 ̇0(𝑡) = 0 and according to the equation above we have In time-varying regime, the internal magnetic field 𝐵 ⃗⃗ 𝑖 in the volume enclosed by the elements (i.e.

in the cylinder of radius 𝑅 𝑐 ) corresponds to the superposition of the applied magnetic field 𝐵 ⃗⃗ 𝑎 which is transverse and uniform and of the reacting magnetic field 𝐵 𝑟𝑒𝑎𝑐𝑡 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ which is the magnetic field produced by the currents flowing in the elements. We will not compute the magnetic field created by the 𝐼 𝑘 (𝑧) = 𝐼 0 cos ( 2𝜋𝑧 𝑙 𝑝 + 2𝜋(𝑘-1) 𝑁

) current distribution but it is quite obvious that it is not uniform in the volume enclosed by the elements. As a result the internal magnetic field 𝐵 ⃗⃗ 𝑖 cannot be uniform either and the 𝑁uplet cannot be described by the classical equation This result is important as it shows that it is in fact possible to characterize the response of a single cabling stage conductor to a transverse magnetic field with an equation very similar to the one encountered in superconducting composites with a central filamentary zone. The only difference with the composite lies in the fact that we approximate the non-uniform internal magnetic field with an equivalent uniform one.

𝐵 𝑖 + 𝜏𝐵 ̇𝑖 = 𝐵 𝑎
From equations (211) and (235) giving the power dissipated per unit length of conductor 𝑃 𝑙 , we can express the average power density 𝑃 𝑣𝑜𝑙 inside the 𝑁-uplet dividing 𝑃 𝑙 by the circumscribed surface 𝜋(𝑅 𝑐 + 𝑅) 2 (i.e. surface of the circumscribed circle on Figure 41) as and using the formulae of 𝜏 given by (237), we can deduce that

𝑃 𝑣𝑜𝑙 (𝑧) = { 1 𝜎 𝑙 ( 2𝜋 𝑙 𝑝 ) 2 𝐼 0 2 2𝜋(𝑅 𝑐 + 𝑅)
𝑛𝑘 = { 𝜇 0 𝛾𝜋 ( 𝑅 𝑐 𝑅 𝑐 + 𝑅 ) 2 [1 -sinc ( 4𝜋𝑧 𝑙 𝑝 )] 𝑓𝑜𝑟𝑁 = 2 𝜇 0 𝑁 2𝛾𝜋 ( 𝑅 𝑐 𝑅 𝑐 + 𝑅 ) 2 𝑓𝑜𝑟𝑁 ≥ 3
where 𝛾 is given by (239).

Note that for the doublet the value of 𝑛𝑘 depends on the length of the conductor.

In addition, assuming the elements of the 𝑁-uplet being tangent to each other, we would have the following relation on 𝑅 and 𝑅 𝑐 𝑅 = 𝑅 𝑐 sin ( 𝜋 𝑁 )

Therefore, we then have 

III.3.3 Discussion about the values of nk

We have plotted on Figure 45 the values of 𝑛𝑘 as function of the superconducting shell radius to element radius ratio 𝑅 𝑓 /𝑅 and of the number of elements 𝑁.

First it can be seen that 𝑛𝑘 values are always lower than 2, which is one of the basic hypotheses of MPAS model in an axisymmetric configuration. Furthermore, it is also very interesting to notice that 𝑛𝑘 = 2 for a large number of elements (for 𝑁 = 1000 on Figure 45). Indeed when 𝑁 is large, the elements are actually arranged like edge filaments in a composite and we have previously mentioned that for a composite, the partial shielding coefficient 𝑛𝑘 was equal to 2.

The last two points, established for the configuration with single stage CICC, assess the robustness of the analytical model we have built. It ensures in fact that the assumptions considered (e.g. the distribution of currents in elements) do not degrade the relevance of our model as it aligns with the already existing approaches which are experimentally validated. 

III.4 Comparison with another analytical model

Another analytical model [START_REF] Schild | A model for calculating AC losses in multistage superconducting cables[END_REF] (introduced in section I.5 ) considers the following average instant power per unit volume of composite 𝑃 ̅ in a 𝑁-uplet of composite (one stage cable) under constant magnetic excitation (i.e. constant 𝐵 ̇𝑎)

𝑃 ̅ = 2𝛹𝑅 𝜌 𝑏 𝑒 𝑏 𝜋 ( 𝑝 1 2𝜋 ) 2 𝐵 ̇𝑎2 [1 - 𝑅 𝑓 𝑝 * 𝑅𝑝 1 ] 2 (247)
where 𝑝 1 is the twist pitch of the first stage, 𝑝 * the effective twist pitch of filaments in the composite, 𝛹 is the average angular thickness of contacts between two strands, 𝑒 𝑏 is the thickness of the resistive barrier surrounding each composite and 𝜌 𝑏 is its resistivity.

It is then interesting to compare our expression of the power to that of this model. But first, we have to express the power per unit axial length of conductor for a constant magnetic excitation from equations ( 149 Then, in order to obtain the power per unit volume of composite, we have to divide this expression by the area of composites 𝑁𝜋𝑅 2 , therefore we obtain

𝑃 ̅ = 2 𝜋 𝜎 𝑙 ( 𝑙 𝑝 2𝜋 ) 2 ( 𝑅 𝑐 sin ( 𝜋 𝑁 ) 𝑅 ) 2 𝐵 ̇𝑎2
Since, the composites are considered tangent in [START_REF] Schild | A model for calculating AC losses in multistage superconducting cables[END_REF], we have the relation 𝑅 𝑐 sin(𝜋/𝑁) = 𝑅, and thus

𝑃 ̅ = 2 𝜋 𝜎 𝑙 ( 𝑙 𝑝 2𝜋 ) 2 𝐵 ̇𝑎2 (248) 
We now have to convert the parameters of [START_REF] Schild | A model for calculating AC losses in multistage superconducting cables[END_REF] into ours. Since in [START_REF] Schild | A model for calculating AC losses in multistage superconducting cables[END_REF], the interstrand resistance is assumed to be exclusively due to the resistive barrier surrounding the filaments, the transverse conductance 𝑑𝐺 between adjacent elements considered by our model corresponds to

𝑑𝐺 = 𝛹𝑅 𝜌 𝑏 𝑒 𝑏 𝑑𝑧
In our model, we have 𝑑𝐺 = 𝜎 𝑙 𝑑𝑧, therefore 𝛹𝑅 𝜌 𝑏 𝑒 𝑏 = 𝜎 𝑙 Consequently, the power per unit volume of composite 𝑃 ̅ derived in [START_REF] Schild | A model for calculating AC losses in multistage superconducting cables[END_REF] and given by (247), is expressed in our notations, as

𝑃 ̅ = 2 𝜋 𝜎 𝑙 ( 𝑙 𝑝 2𝜋 ) 2 𝐵 ̇𝑎2 [1 - 𝑅 𝑓 𝑝 * 𝑅𝑙 𝑝 ] 2 (249) 
which is very similar to our expression given by (248), except that in (249), an additional factor is included.

In fact, in our model, we consider the 𝑁-uplet at the element scale (here composites) while [START_REF] Schild | A model for calculating AC losses in multistage superconducting cables[END_REF] considers it down to the filament scale. Therefore, the additional factor in (249) is due to the fact that [START_REF] Schild | A model for calculating AC losses in multistage superconducting cables[END_REF] only considers the magnetic flux variation enclosed between the closest filaments of adjacent composites (i.e. filaments of adjacent composites directly facing each other) while we consider the magnetic flux variation between the centers of adjacent composites.

Note that we have already discussed this point in section III.2.7.5 . In reality, the expression of the power must be somewhere in between these two expressions because:

 [START_REF] Schild | A model for calculating AC losses in multistage superconducting cables[END_REF] has an optimistic approach considering that only the closest filaments of adjacent composites contributes to the shielding and thus to the losses (the transverse conductances between filaments of adjacent composites that are not directly facing each other are neglected, and so is their contribution in the losses)

 Our model has a conservative approach considering that the transverse conductances between filaments of adjacent composites are all identical and set to the average one (we will discuss in further detail the effect of this consideration in section IV.4.3 )

III.5 Synthesis

In this section, we have established the 𝑁-uplet model which is relevant to the analytical representation of the magnetic shielding occurring in a single cabling stage of a conductor. We have shown that it can be described, as in the simplest approach at strand scale, by a single time equation with a single time constant 𝜏 and that its associated coupling power could be expressed considering a partial shielding due to coupling (in analogy with MPAS model). The partial shielding coefficient 𝑛𝑘 was expressed together with analytical expressions of 𝜏. The comparison of the 𝑁-uplet model with other analytical models issued from the literature [START_REF] Schild | A model for calculating AC losses in multistage superconducting cables[END_REF], [START_REF] Morgan | Theoretical Behavior of Twisted Multicore Superconducting Wire in a Time-Varying Uniform Magnetic Field[END_REF] have shown a good consistency, thus consolidating our approach.

This achievement constitutes a significant step towards the modeling of coupling losses in CICCs as it shows that the losses are mainly driven by a very few number of parameters and its dependence on these parameters have now been identified. Furthermore the fact that the assumption of the MPAS model is in agreement with the analytical output of the 𝑁-uplet model is substantial because, at the same time, it provides a theoretical background to the MPAS model and it reinforces the consistency of our model since the MPAS approach has proved its ability to describe the experimental reality.

As previously mentioned at strand scale, the single-stage CICC scale stands as a step towards a more elaborated representation of a cable, i.e. the integration of complexity due to the multiple stages. In this objective, we up scale this model in the next section, addressing a two-stage cable.

IV.2 N2-uplet of N1-uplets model

IV.2.1 Methodology

In order to study the magnetic response of a group of groups of twisted elements to a time-varying transverse and uniform magnetic field (𝑁 2 -uplet of 𝑁 1 -uplets model), we will follow the methodology we have presented in the study of a one cabling stage conductor (see section III.2.1 ):

 In section IV.2.3 we first begin by formulating the fundamental equations of the system at each scale  In section IV.2.4 we compute the currents induced in steady-state regime, i.e. when these currents are not time-varying  In section IV.2.5, knowing the spatial form of the currents induced in steady-state regime, we follow the logical chain displayed on Figure 15 until the spatial form of the currents induced for any time-varying regime is defined; these expressions will enable us to reduce the equations of the system to a simple first-order differential equation  In section IV.2.6, knowing the spatial form of the currents induced for any time regime, we express the coupling power dissipated in a group of groups of twisted elements as a function of the currents  In section IV.2.7 we assess the relevance of the inductive part of our model through a study in purely inductive regime

IV.2.2 Assumptions

The geometry we consider in our modeling features 𝑁 2 twisted groups (with a pitch equal to 𝑙 𝑝 2 and a cabling radius equal to 𝑅 𝑐 2 ) of 𝑁 1 twisted elements (with a pitch equal to 𝑙 𝑝 1 and a cabling radius equal to 𝑅 𝑐 1 ). As in the 𝑁-uplet model, the element can either represent a strand, a group of strands or a petal, we simply consider it as a cylinder of radius 𝑅 containing a thin superconducting shell of radius 𝑅 𝑓 (see Figure 46).

In addition, we consider that in a slice of thickness 𝑑𝑧 there exists a local effective conductance between adjacent substages which is noted 𝑑𝐺 2 = 𝜎 𝑙 2 𝑑𝑧 where 𝜎 𝑙 2 is the transverse conductance of the superstage per unit axial length (i.e. expressed in 𝑆/𝑚). We also consider that in a slice of thickness 𝑑𝑧 there exists a local effective conductance between adjacent elements of a substage which is noted 𝑑𝐺 1 = 𝜎 𝑙 1 𝑑𝑧 where 𝜎 𝑙 1 is the transverse conductance per unit axial length (i.e. expressed in 𝑆/𝑚). Both 𝜎 𝑙 1 and 𝜎 𝑙 2 are considered constant along the axis of the conductor. The current flowing through the superconducting shell of element 𝑘 1 of substage 𝑘 2 at 𝑧 is noted 𝐼 𝑘 1 𝑘 2 (𝑧), the current flowing transversely in a slice 𝑑𝑧 from substage 𝑘 2 to substage 𝑘 2 + 1 at 𝑧 is noted 𝐼 𝑘 2 𝑘 2 +1 (𝑧) and the current flowing transversely in a slice 𝑑𝑧 from element 𝑘 1 of substage 𝑘 2 to element 𝑘 1 + 1 of substage 𝑘 2 at 𝑧 is noted 𝐼 𝑘 1 𝑘 1 +1 〈𝑘 2 〉 (𝑧). Furthermore, we consider that:  The external magnetic field 𝐵 𝑎 is transverse (along the y-axis, see Figure 46  The time variation of the external magnetic field 𝐵 𝑎 is slow enough to neglect the displacement current so that Kirchhoff's current law applies  The number of elements in each substage is at least 3, i.e. 𝑁 1 ≥ 3 and the number of substages is at least 3, i.e. 𝑁 2 ≥ 3. These assumptions are made here because of the specificity of the doublet case (see section III.2.7 ). Finally, the position (𝑥 𝑘 1 𝑘 2 , 𝑦 𝑘 1 𝑘 2 ) of the center of element 𝑘 1 of substage 𝑘 2 at 𝑧 is given by

( 𝑥 𝑘 1 𝑘 2 (𝑧) 𝑦 𝑘 1 𝑘 2 (𝑧) ) = ( 𝑥 𝑘 2 (𝑠𝑢𝑝𝑒𝑟) (𝑧) 𝑦 𝑘 2 (𝑠𝑢𝑝𝑒𝑟) (𝑧) ) + ( 𝑥 𝑘 1 (𝑠𝑢𝑏) (𝑧) 𝑦 𝑘 1 (𝑠𝑢𝑏) (𝑧) ) (250) 
with

( 𝑥 𝑘 2 (𝑠𝑢𝑝𝑒𝑟) (𝑧) 𝑦 𝑘 2 (𝑠𝑢𝑝𝑒𝑟) (𝑧) ) = ( 𝑅 𝐶 2 cos ( 2𝜋𝑧 𝑙 𝑝 2 + 2𝜋(𝑘 2 -1) 𝑁 2 ) 𝑅 𝐶 2 sin ( 2𝜋𝑧 𝑙 𝑝 2 + 2𝜋(𝑘 2 -1) 𝑁 2 ) ) (251) 
and

( 𝑥 𝑘 1 (𝑠𝑢𝑏) (𝑧) 𝑦 𝑘 1 (𝑠𝑢𝑏) (𝑧) ) = ( 𝑅 𝐶 1 cos ( 2𝜋𝑧 𝑙 𝑝 1 + 2𝜋(𝑘 1 -1) 𝑁 1 ) 𝑅 𝐶 1 sin ( 2𝜋𝑧 𝑙 𝑝 1 + 2𝜋(𝑘 1 -1) 𝑁 1 ) 
)

Note that Figure 46 shows a scheme which is representative of a two cabling stages conductor before compaction, but note that our approach can also be used to model the magnetic behavior of a compacted two cabling stages conductor whose scheme is displayed in Figure 47. 

IV.2.3 Equations of the system

 We will formulate here the fundamental equations of the system at each scale using Kirchhoff's current law, Ohm's law, Faraday's law of induction. We will then combine them to express the global equation of the system.

We will here derive the equations governing a two cabling stages conductor. The main difficulty with respect to the development of the 𝑁-uplet model, is that the geometry considered in the 𝑁 2 -uplet of 𝑁 1 -uplets is not necessarily periodic because 𝑙 𝑝 2 is not necessarily an integer multiple of 𝑙 𝑝 1 .

We assume that the current 𝐼 𝑘 1 𝑘 2 (𝑧) flowing along each element can be decomposed as

𝐼 𝑘 1 𝑘 2 (𝑧) = 𝐼 𝑘 2 (𝑧)/𝑁 1 + 𝐼 𝑘 1 〈𝑘 2 〉 (𝑧) (253) 
where 𝐼 𝑘 2 (𝑧) is the current induced in substage 𝑘 2 to shield the superstage and 𝐼 𝑘 1 〈𝑘 2 〉 (𝑧) is the current induced in element 𝑘 1 of substage 𝑘 2 to shield substage 𝑘 2 .

Again we assume that the magnetic vector potential 𝐴 ⃗ can be reduced to its axial component 𝐴 𝑧 only for the same reasons than those mentioned in section III.2.3 . We now have

𝐴 ⃗ = 𝐴 𝑧 𝑒 𝑧 ⃗⃗⃗⃗
and the notation 𝐴 𝑧 𝑘 1 𝑘 2 (𝑧) will refer to the value of the axial component of the magnetic vector potential at the center of element 𝑘 1 of substage 𝑘 2 at 𝑧.

IV.2.3.1 Equations at the substage scale

Regarding the substage scale, we can directly adapt the equations of the 𝑁-uplet model for 1 ≤ 𝑘 2 ≤ 𝑁 2 and 1 ≤ 𝑘 1 ≤ 𝑁 1 as

{ 𝑑𝐼 𝑘 1 〈𝑘 2 〉 𝑑𝑧 (𝑧) = 1 𝑑𝑧 [𝐼 𝑘 1 -1𝑘 1 〈𝑘 2 〉 (𝑧) -𝐼 𝑘 1 𝑘 1 +1 〈𝑘 2 〉 (𝑧)] 1 𝑑𝑧 𝐼 𝑘 1 𝑘 1 +1 〈𝑘 2 〉 (𝑧) = 𝜎 𝑙 1 𝑈 𝑘 1 𝑘 1 +1 〈𝑘 2 〉 (𝑧) 𝑑𝑈 𝑘 1 𝑘 1 +1 〈𝑘 2 〉 𝑑𝑧 (𝑧) = 𝐴 ̇𝑧𝑘 1 +1𝑘 2 (𝑧) -𝐴 ̇𝑧𝑘 1 𝑘 2 (𝑧) (254) 
Once combined, the equations of (254) enable us to write for 1 ≤ 𝑘 2 ≤ 𝑁 2 and

1 ≤ 𝑘 1 ≤ 𝑁 1 𝑑 2 𝐼 𝑘 1 〈𝑘 2 〉 𝑑𝑧 2 (𝑧) = 𝜎 𝑙 1 [2𝐴 ̇𝑧𝑘 1 𝑘 2 (𝑧) -𝐴 ̇𝑧𝑘 1 -1𝑘 2 (𝑧) -𝐴 ̇𝑧𝑘 1 +1𝑘 2 ] (255) 

IV.2.3.2 Equations at the superstage scale

Regarding the superstage scale, we first consider that the average voltage 𝑈 𝑘 2 𝑘 2 +1 (𝑧) between substages 𝑘 2 and 𝑘 2 + 1 at 𝑧 is equal to the difference between the average electric potential of the elements of substage 𝑘 2 𝑉 𝑘 2 (𝑧) and that of the elements of substage 𝑘 2 + 1 𝑉 𝑘 2 +1 (𝑧) at 𝑧, i.e.

𝑈 𝑘 2 𝑘 2 +1 (𝑧) = 𝑉 𝑘 2 (𝑧) -𝑉 𝑘 2 +1 (𝑧) with 𝑉 𝑘 2 (𝑧) = 1 𝑁 1 ∑ 𝑉 𝑘 1 𝑘 2 (𝑧) 𝑁 1 𝑘 1 =1
where 𝑉 𝑘 1 𝑘 2 (𝑧) is the electric potential of element 𝑘 1 of substage 𝑘 2 at 𝑧.

These considerations lead to the following relation

𝑈 𝑘 2 𝑘 2 +1 (𝑧) = 1 𝑁 1 2 ∑ ∑ 𝑈 𝑘 1 𝑘 2 𝑗 1 𝑘 2 +1 (𝑧) 𝑁 1 𝑗 1 =1 𝑁 1 𝑘 1 =1
where 𝑈 𝑘 1 𝑘 2 𝑗 1 𝑘 2 +1 (𝑧) is the local transverse voltage between element 𝑘 1 of substage 𝑘 2 and element 𝑗 1 of substage 𝑘 2 + 1 at 𝑧, which, according to equation (141) of the 𝑁-uplet model, must satisfy the equation

𝑑𝑈 𝑘 1 𝑘 2 𝑗 1 𝑘 2 +1 𝑑𝑧 (𝑧) = 𝐴 ̇𝑧𝑗 1 𝑘 2 +1 (𝑧) -𝐴 ̇𝑧𝑘 1 𝑘 2 (𝑧)
The combination of the previous relations leads to

𝑑𝑈 𝑘 2 𝑘 2 +1 𝑑𝑧 (𝑧) = 1 𝑁 1 ∑ [𝐴 ̇𝑧𝑘 1 𝑘 2 +1 (𝑧) -𝐴 ̇𝑧𝑘 1 𝑘 2 (𝑧)] 𝑁 1 𝑘 1 =1
We can now adapt the equations of the 𝑁-uplet model to the write the equations of the superstage scale for 1 ≤ 𝑘 2 ≤ 𝑁 2 as

{ 𝑑𝐼 𝑘 2 𝑑𝑧 (𝑧) = 1 𝑑𝑧 [𝐼 𝑘 2 -1𝑘 2 (𝑧) -𝐼 𝑘 2 𝑘 2 +1 (𝑧)] 1 𝑑𝑧 𝐼 𝑘 2 𝑘 2 +1 (𝑧) = 𝜎 𝑙 2 𝑈 𝑘 2 𝑘 2 +1 (𝑧) 𝑑𝑈 𝑘 2 𝑘 2 +1 𝑑𝑧 (𝑧) = 1 𝑁 1 ∑ [𝐴 ̇𝑧𝑘 1 𝑘 2 +1 (𝑧) -𝐴 ̇𝑧𝑘 1 𝑘 2 (𝑧)] 𝑁 1 𝑘 1 =1 (256) 
Once combined, the equations of (256) enable us to write for

1 ≤ 𝑘 2 ≤ 𝑁 2 𝑑 2 𝐼 𝑘 2 𝑑𝑧 2 (𝑧) = 𝜎 𝑙 2 1 𝑁 1 ∑ [2𝐴 ̇𝑧𝑘 1 𝑘 2 (𝑧) -𝐴 ̇𝑧𝑘 1 𝑘 2 -1 (𝑧) -𝐴 ̇𝑧𝑘 1 𝑘 2 +1 (𝑧)] 𝑁 1 𝑘 1 =1 (257) 

IV.2.3.3 Global equations

Using equations (253), ( 255) and (257), we can derive the global equations of the system for 1 ≤ 𝑘 2 ≤ 𝑁 2 and 1 ≤ 𝑘 1 ≤ 𝑁 1 as

𝑑 2 𝐼 𝑘 1 𝑘 2 𝑑𝑧 2 (𝑧) = { 𝜎 𝑙 1 [2𝐴 ̇𝑧𝑘 1 𝑘 2 (𝑧) -𝐴 ̇𝑧𝑘 1 -1𝑘 2 (𝑧) -𝐴 ̇𝑧𝑘 1 +1𝑘 2 (𝑧)] + 𝜎 𝑙 2 𝑁 1 2 ∑ [2𝐴 ̇𝑧𝑗 1 𝑘 2 (𝑧) -𝐴 ̇𝑧𝑗 1 𝑘 2 -1 (𝑧) -𝐴 ̇𝑧𝑗 1 𝑘 2 +1 (𝑧)] 𝑁 1 𝑗 1 =1 (258) 
As we did previously, we can split the magnetic vector potential 𝐴 𝑧 𝑘 1 𝑘 2 (𝑧) felt at the center of element 𝑘 1 of substage 𝑘 2 at 𝑧 by superposition as

𝐴 𝑧 𝑘 1 𝑘 2 (𝑧) = 𝐴 𝑧 𝑎 𝑘 1 𝑘 2 (𝑧) + 𝐴 𝑧 𝑟 𝑘 1 𝑘 2 (𝑧)
where 𝐴 𝑧 𝑎 𝑘 1 𝑘 2 (𝑧) is the part of the magnetic vector potential 𝐴 𝑧 𝑘 1 𝑘 2 (𝑧) which is due to the applied magnetic field 𝐵 𝑎 and 𝐴 𝑧 𝑟 𝑘 1 𝑘 2 (𝑧) is the other part which is due to the currents

(𝐼 𝑘 1 𝑘 2 ) 1≤𝑘 1 ≤𝑁 1 ,1≤𝑘 2 ≤𝑁 2
induced in all the elements.

With this decomposition, equations (258) now become for 1 ≤ 𝑘 2 ≤ 𝑁 2 and

1 ≤ 𝑘 1 ≤ 𝑁 1 { 𝑑 2 𝐼 𝑘 1 𝑘 2 𝑑𝑧 2 (𝑧) -𝜎 𝑙 1 [2𝐴 ̇𝑧𝑟 𝑘 1 𝑘 2 (𝑧) -𝐴 ̇𝑧𝑟 𝑘 1 -1𝑘 2 (𝑧) -𝐴 ̇𝑧𝑟 𝑘 1 +1𝑘 2 (𝑧)] - 𝜎 𝑙 2 𝑁 1 2 ∑ [2𝐴 ̇𝑧𝑟 𝑗 1 𝑘 2 (𝑧) -𝐴 ̇𝑧𝑟 𝑗 1 𝑘 2 -1 (𝑧) -𝐴 ̇𝑧𝑟 𝑗 1 𝑘 2 +1 (𝑧)] 𝑁 1 𝑗 1 =1 = 𝜎 𝑙 1 [2𝐴 ̇𝑧𝑎 𝑘 1 𝑘 2 (𝑧) -𝐴 ̇𝑧𝑎 𝑘 1 -1𝑘 2 (𝑧) -𝐴 ̇𝑧𝑎 𝑘 1 +1𝑘 2 (𝑧)] + 𝜎 𝑙 2 𝑁 1 2 ∑ [𝐴 ̇𝑧𝑎 𝑗 1 𝑘 2 (𝑧) -𝐴 ̇𝑧𝑎 𝑗 1 𝑘 2 -1 (𝑧) -𝐴 ̇𝑧𝑎 𝑗 1 𝑘 2 +1 (𝑧)] 𝑁 1 𝑗 1 =1 (259) 
From previous considerations, we now that the magnetic vector potential 𝐴 𝑎 ⃗⃗⃗⃗⃗ associated with the applied magnetic field 𝐵 𝑎 is given everywhere in space by

𝐴 𝑎 ⃗⃗⃗⃗⃗ = -𝑥𝐵 𝑎 𝑒 𝑧 ⃗⃗⃗⃗
Using (250) we can thus deduce that

𝐴 𝑧 𝑎 𝑘 1 𝑘 2 (𝑧) = -𝑥 𝑘 1 𝑘 2 (𝑧)𝐵 𝑎 = -[𝑥 𝑘 2 (𝑠𝑢𝑝𝑒𝑟) (𝑧) + 𝑥 𝑘 1 (𝑠𝑢𝑏) (𝑧)] 𝐵 𝑎
where 𝑥 𝑘 2 (𝑠𝑢𝑝𝑒𝑟) (𝑧) and 𝑥 𝑘 1 (𝑠𝑢𝑏) (𝑧) are given by (251) and (252).

Consequently we have

2𝐴 ̇𝑧𝑎 𝑘 1 𝑘 2 (𝑧) -𝐴 ̇𝑧𝑎 𝑘 1 -1𝑘 2 (𝑧) -𝐴 ̇𝑧𝑎 𝑘 1 +1𝑘 2 (𝑧) = [-2𝑥 𝑘 1 (𝑠𝑢𝑏) (𝑧) + 𝑥 𝑘 1 -1 (𝑠𝑢𝑏) (𝑧) + 𝑥 𝑘 1 +1 (𝑠𝑢𝑏) (𝑧)] 𝐵 ̇𝑎
Using (252) and after some mathematical manipulations, we can write

2𝐴 ̇𝑧𝑎 𝑘 1 𝑘 2 (𝑧) -𝐴 ̇𝑧𝑎 𝑘 1 -1𝑘 2 (𝑧) -𝐴 ̇𝑧𝑎 𝑘 1 +1𝑘 2 (𝑧) = -4𝑅 𝑐 1 𝐵 ̇𝑎 sin 2 ( 𝜋 𝑁 1 ) cos( 2𝜋𝑧 𝑙 𝑝 1 + 2𝜋(𝑘 1 -1) 𝑁 1 )
Using the same methodology and (251), we can also write

∑ [𝐴 ̇𝑧𝑎 𝑗 1 𝑘 2 (𝑧) -𝐴 ̇𝑧𝑎 𝑗 1 𝑘 2 -1 (𝑧) -𝐴 ̇𝑧𝑎 𝑗 1 𝑘 2 +1 (𝑧)] 𝑁 1 𝑗 1 =1 = -4𝑁 1 𝑅 𝑐 2 𝐵 ̇𝑎 sin 2 ( 𝜋 𝑁 2 ) cos( 2𝜋𝑧 𝑙 𝑝 2 + 2𝜋(𝑘 2 -1) 𝑁 2 )
From equations (259), we can now express the global equations of the system for 1 ≤ 𝑘 2 ≤ 𝑁 2 and 1 ≤ 𝑘 1 ≤ 𝑁 1 as

{ 𝑑 2 𝐼 𝑘 1 𝑘 2 𝑑𝑧 2 (𝑧) -𝜎 𝑙 1 [2𝐴 ̇𝑧𝑟 𝑘 1 𝑘 2 (𝑧) -𝐴 ̇𝑧𝑟 𝑘 1 -1𝑘 2 (𝑧) -𝐴 ̇𝑧𝑟 𝑘 1 +1𝑘 2 (𝑧)] - 𝜎 𝑙 2 𝑁 1 2 ∑ [2𝐴 ̇𝑧𝑟 𝑗 1 𝑘 2 (𝑧) -𝐴 ̇𝑧𝑟 𝑗 1 𝑘 2 -1 (𝑧) -𝐴 ̇𝑧𝑟 𝑗 1 𝑘 2 +1 (𝑧)] 𝑁 1 𝑗 1 =1 = -4𝜎 𝑙 1 𝑅 𝑐 1 𝐵 ̇𝑎 sin 2 ( 𝜋 𝑁 1 ) cos( 2𝜋𝑧 𝑙 𝑝 1 + 2𝜋(𝑘 1 -1) 𝑁 1 ) -4 𝜎 𝑙 2 𝑁 1 𝑅 𝑐 2 𝐵 ̇𝑎 sin 2 ( 𝜋 𝑁 2 ) cos( 2𝜋𝑧 𝑙 𝑝 2 + 2𝜋(𝑘 2 -1) 𝑁 2 ) (260) 

IV.2.4 Study in steady-state regime

 We will calculate here the currents induced in steady-state regime. We will simply start from the system equations derived at the end of the previous section and we will solve them considering that the coupling currents are not time-varying.

IV.2.4.1 Equations of the system in steady-state regime

In steady-state regimes for coupling currents, the currents induced in the elements are, by assumption, not time varying, i.e. we consider that for any 𝑧 and for 1 ≤ 𝑘 2 ≤ 𝑁 2 and 1 ≤ 𝑘 1 ≤ 𝑁 1 𝐼 ̇𝑘1 𝑘 2 (𝑧) = 0 Since 𝐴 𝑧 𝑟 𝑘 1 𝑘 2 (𝑧) is exclusively due to the induced currents, we can also conclude that for any 𝑧 and

for 1 ≤ 𝑘 2 ≤ 𝑁 2 and 1 ≤ 𝑘 1 ≤ 𝑁 1 𝐴 ̇𝑧𝑟 𝑘 1 𝑘 2 (𝑧) = 0
And therefore, from equation (260), we see that the equation of the system is, in steady-state regime, simply reduced to 

𝑑 2 𝐼 𝑘 1 𝑘 2 𝑑𝑧 2 (𝑧) = { -4𝜎 𝑙 1 𝑅 𝑐 1
IV.2.4.2 Determination of the solutions for an infinitely long conductor (assumption of the model) Equations (262) being identical to equations (147) of 𝑁-uplet model, we can directly adapt the solutions given by (150) and (151) as

{ 𝐼 𝑘 1 〈𝑘 2 〉 (𝑧) = 𝐼 0 1 cos ( 2𝜋𝑧 𝑙 𝑝 1 + 2𝜋(𝑘 1 -1) 𝑁 1 ) 𝐼 𝑘 2 (𝑧) = 𝐼 0 2 cos ( 2𝜋𝑧 𝑙 𝑝 2 + 2𝜋(𝑘 2 -1) 𝑁 2 ) with { 𝐼 0 1 = 4𝜎 𝑙 1 𝑅 𝑐 1 𝐵 ̇𝑎 sin 2 ( 𝜋 𝑁 1 ) ( 𝑙 𝑝 1 2𝜋 ) 2 𝐼 0 2 = 4𝜎 𝑙 2 𝑅 𝑐 2 𝐵 ̇𝑎 sin 2 ( 𝜋 𝑁 2 ) ( 𝑙 𝑝 2 2𝜋 ) 2
As a result, for an infinitely long conductor the solutions of equations (261) are for 1 ≤ 𝑘 2 ≤ 𝑁 2 and 1 ≤ 𝑘 1 ≤ 𝑁 1

𝐼 𝑘 1 𝑘 2 (𝑧) = 𝐼 0 1 cos ( 2𝜋𝑧 𝑙 𝑝 1 + 2𝜋(𝑘 1 -1) 𝑁 1 ) + 𝐼 0 2 𝑁 1 cos ( 2𝜋𝑧 𝑙 𝑝 2 + 2𝜋(𝑘 2 -1) 𝑁 2 ) (263) 
with

{ 𝐼 0 1 = 4𝜎 𝑙 1 𝑅 𝑐 1 𝐵 ̇𝑎 sin 2 ( 𝜋 𝑁 1 ) ( 𝑙 𝑝 1 2𝜋 ) 2 𝐼 0 2 = 4𝜎 𝑙 2 𝑅 𝑐 2 𝐵 ̇𝑎 sin 2 ( 𝜋 𝑁 2 ) ( 𝑙 𝑝 2 2𝜋 ) 2 (264) 

IV.2.4.3 Determination of the solutions for a finite length of conductor

Let us consider a piece of conductor of length 𝐿 so that the ends of the conductor are located at 𝑧 = -𝐿/2 and 𝑧 = 𝐿/2. Again, equations (262) being identical to equations (147) of 𝑁-uplet model, we can directly adapt the solutions given by (151) and (152) as 

{ 𝐼 𝑘 1 〈𝑘 2 〉 (𝑧) = 𝐼 0 1 [
where 𝐼 0 1 and 𝐼 0 2 are still given by (264).

IV.2.5 Study in time-varying regime

 Since we now know the spatial form of the currents induced in steady-state regime, we will follow the logical chain displayed on Figure 15 until the spatial form of the currents induced for any time-varying regime is defined (this is achieved through IV.2.5.1 to IV.2.5.3 ). These expressions will then enable us to reduce the equations of the system to a first-order differential equation in IV.2.5.4 .

We are now studying the magnetic response of the conductor when the induced currents are timevarying, i.e. we now consider that for any 𝑧 and for 1 ≤ 𝑘 2 ≤ 𝑁 2 and 1 ≤ 𝑘 1 ≤ 𝑁 1 𝐼 ̇𝑘1 𝑘 2 (𝑧) ≠ 0 This also implies that for any 𝑧 and for 1 ≤ 𝑘 2 ≤ 𝑁 2 and 1 ≤ 𝑘 1 ≤ 𝑁 1 𝐴 ̇𝑧𝑟 𝑘 1 𝑘 2 (𝑧) ≠ 0

Therefore we now have to take into account the contribution of the magnetic vector potential due to the induced currents in the equations of the system which are now written for 1 ≤ 𝑘 2 ≤ 𝑁 2 and 1 ≤ 𝑘 1 ≤ 𝑁 1 as

{ 𝑑 2 𝐼 𝑘 1 𝑘 2 𝑑𝑧 2 (𝑧) -𝜎 𝑙 1 [2𝐴 ̇𝑧𝑟 𝑘 1 𝑘 2 (𝑧) -𝐴 ̇𝑧𝑟 𝑘 1 -1𝑘 2 (𝑧) -𝐴 ̇𝑧𝑟 𝑘 1 +1𝑘 2 (𝑧)] - 𝜎 𝑙 2 𝑁 1 2 ∑ [2𝐴 ̇𝑧𝑟 𝑗 1 𝑘 2 (𝑧) -𝐴 ̇𝑧𝑟 𝑗 1 𝑘 2 -1 (𝑧) -𝐴 ̇𝑧𝑟 𝑗 1 𝑘 2 +1 (𝑧)] 𝑁 1 𝑗 1 =1 = -( 2𝜋 𝑙 𝑝 1 ) 2 𝐼 0 1𝑒𝑥𝑡 cos( 2𝜋𝑧 𝑙 𝑝 1 + 2𝜋(𝑘 1 -1) 𝑁 1 ) -( 2𝜋 𝑙 𝑝 2 ) 2 𝐼 0 2𝑒𝑥𝑡 𝑁 1 cos( 2𝜋𝑧 𝑙 𝑝 2 + 2𝜋(𝑘 2 -1) 𝑁 2 ) (266) 
with

{ 𝐼 0 1𝑒𝑥𝑡 = 4𝜎 𝑙 1 𝑅 𝑐 1 𝐵 ̇𝑎 sin 2 ( 𝜋 𝑁 1 ) ( 𝑙 𝑝 1 2𝜋 ) 2 𝐼 0 2𝑒𝑥𝑡 = 4𝜎 𝑙 2 𝑅 𝑐 2 𝐵 ̇𝑎 sin 2 ( 𝜋 𝑁 2 ) ( 𝑙 𝑝 2 2𝜋 ) 2 (267) 
In order to follow our analytical methodology (described in section IV.2.1 ), we now have to calculate the effect of the time-variation of the current distribution we have found in steady-state regime. But we see that this time, conversely to the 𝑁-uplet model, we have to take into account, by superposition, the contributions of two different current distributions instead of one, which are

(𝐼 𝑘 1 〈𝑘 2 〉 (𝑧) = 𝐼 0 1𝑒𝑥𝑡 cos( 2𝜋𝑧 𝑙 𝑝 1 + 2𝜋(𝑘 1 -1) 𝑁 1
))

1≤𝑘 1 ≤𝑁 1 and (𝐼 𝑘 2 (𝑧) = 𝐼 0 2𝑒𝑥𝑡 𝑁 1 cos( 2𝜋𝑧 𝑙 𝑝 2 + 2𝜋(𝑘 2 -1) 𝑁 2 )) 1≤𝑘 2 ≤𝑁 2 .
To carry out this operation in an efficient way, we will first calculate the magnetic vector potential due to a current distribution of the following general form

(𝐼 𝑘 1 𝑘 2 (𝑧) = 𝐼 0 (𝛼) cos(𝛼𝑧 + 𝜑 𝑘 1 𝑘 2 )) 1≤𝑘 1 ≤𝑁 1 ,1≤𝑘 2 ≤𝑁 2
where 𝐼 0 is a function of time only, 𝛼 is a spatial frequency (corresponding to 2𝜋/𝑙 𝑝 1 and 2𝜋/𝑙 𝑝 2 in the previous current distributions) and 𝜑 𝑘 1 𝑘 2 is an initial phase shift (corresponding to 2𝜋(𝑘 1 -1)/𝑁 1 or 2𝜋(𝑘 2 -1)/𝑁 2 in the previous current distributions).

IV.2.5.1

Calculation of the magnetic vector potential due to the current flowing in one element Let us note 𝐴 𝑧 𝑟 (𝑝 1 𝑝 2 ) (𝛼)

Let us note 𝐾

(𝑀 𝑘 1 𝑘 2 ) the axial component of the magnetic vector potential felt at the center of element 𝑘 1 of substage 𝑘 2 at 𝑧 (the center is noted 𝑀 𝑘 1 𝑘 2 ) and due to 𝐾 𝑝 1 𝑝 2 (𝛼)

⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗

. We recall that we are only interested in its axial component because we have neglected the contributions of the other components (see section IV.2.3 ).

Using the Biot-Savart law, we can write

𝐴 𝑧 𝑟 (𝑝 1 𝑝 2 ) (𝛼) (𝑀 𝑘 1 𝑘 2 ) = 𝜇 0 4𝜋 ∬ 𝐾 𝑝 1 𝑝 2 (𝛼) (𝑃)𝑒 𝑠 𝑝 1 𝑝 2 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗(𝑧 𝑃 ). 𝑒 𝑧 ⃗⃗⃗⃗ 𝑃𝑀 𝑘 1 𝑘 2 𝑑𝛴 𝑃∈𝛴 ( 268 
)
where 𝑃 is the source point (see Figure 46) whose axial coordinate is 𝑧 𝑃 and which has to be integrated over the area 𝛴 corresponding to the localization of the surface current 𝐾 𝑝 1 𝑝 2 (𝛼) ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ , i.e. to the external area of the hollow cylinder of radius 𝑅 𝑓 whose center follows the center of element 𝑝 1 of substage 𝑝 2 (see green surface on Figure 48). The position of the center of element 𝑝 1 of substage 𝑝 2 at 𝑧 𝑃 noted 𝑂 𝑃 is given by equations ( 250) to ( 252)

𝑂𝑂 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗ = ( 𝑥 𝑝 1 𝑝 2 (𝑧 𝑃 ) 𝑦 𝑝 1 𝑝 2 (𝑧 𝑃 ) 𝑧 𝑃 ) = ( 𝑅 𝑐 2 cos ( 2𝜋𝑧 𝑃 𝑙 𝑝 2 + 2𝜋(𝑝 2 -1) 𝑁 2 ) + 𝑅 𝑐 1 cos( 2𝜋𝑧 𝑃 𝑙 𝑝 1 + 2𝜋(𝑝 1 -1) 𝑁 1 ) 𝑅 𝑐 2 sin ( 2𝜋𝑧 𝑃 𝑙 𝑝 2 + 2𝜋(𝑝 2 -1) 𝑁 2 ) + 𝑅 𝑐 1 sin( 2𝜋𝑧 𝑃 𝑙 𝑝 1 + 2𝜋(𝑝 1 -1) 𝑁 1 ) 
𝑧 𝑃 )

Given the geometry, the elementary area 𝑑𝛴 is equal to

𝑑𝛴 = 𝑅 𝑓 𝑑𝛹 𝑃 𝑑𝑠 𝑝 1 𝑝 2 (𝑧 𝑃 )
where 𝛹 𝑃 is the angle between 𝑒 𝑥 ⃗⃗⃗⃗⃗ and 𝑂 𝑃 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗ in the (𝑂𝑥𝑦) plane (see Figure 46) so that 𝑂 𝑃 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗ = 𝑅 𝑓 cos (𝛹 𝑃 )𝑒 𝑥 ⃗⃗⃗⃗⃗ + 𝑅 𝑓 sin (𝛹 𝑃 )𝑒 𝑦 ⃗⃗⃗⃗⃗ assuming the elements are lightly twisted (𝑂 𝑃 is the center of element 𝑝 1 of substage 𝑝 2 at 𝑧 𝑃 and 𝑃 is the source point located on the superconducting shell of element 𝑝 1 of substage 𝑝 2 at 𝑧 𝑃 ).

𝑠 𝑝 1 𝑝 2 (𝑧 𝑃 ) being the abscissa corresponding to the position of 𝑂 𝑃 along the trajectory of the center of element 𝑝 1 of substage 𝑝 2 at 𝑧 𝑃 , we can thus write (𝛼) (𝑀 𝑘 1 𝑘 2 ) given by (268), we now obtain

𝑑𝑠 𝑝 1 𝑝 2 (𝑧 𝑃 ) = ‖𝑑𝑂𝑂 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ‖ Since 𝑒 𝑠 𝑝
𝐴 𝑧 𝑟 (𝑝 1 𝑝 2 ) (𝛼) (𝑀 𝑘 1 𝑘 2 ) = 𝜇 0 𝐼 0 (𝛼) 8𝜋 2 ∫ ∫ cos(𝛼𝑧 𝑃 + 𝜑 𝑝 1 𝑝 2 ) 𝑃𝑀 𝑘 1 𝑘 2 (𝑧, 𝑧 𝑝 , 𝛹 𝑝 ) 2𝜋 𝛹 𝑝 =0 +∞ 𝑧 𝑝 =-∞ 𝑑𝛹 𝑃 𝑑𝑧 𝑃 (269) 
Let us now express the distance 𝑃𝑀 𝑘 1 𝑘 2 (𝑧, 𝑧 𝑃 , 𝛹 𝑃 ).

Since 𝑃 is the source point located on the superconducting shell of element 𝑝 In order to ease the expression and the manipulation of 𝑃𝑀 𝑘 1 𝑘 2 (𝑧, 𝑧 𝑃 , 𝛹 𝑃 ), let us note 𝑤(𝑧) the complex affix of a point with coordinates (𝑥, 𝑦, 𝑧) in the plane orthogonal to the z-axis such that

𝑤 = 𝑥 + 𝑖𝑦

where 𝑖 is the imaginary unit.

Consequently, using equations (250) to (252), the complex affix 𝑤 𝑀 𝑘 1 𝑘 2 (𝑧) of the point 𝑀 𝑘 1 𝑘 2 is

𝑤 𝑘 1 𝑘 2 (𝑧) = 𝑥 𝑘 1 𝑘 2 (𝑧) + 𝑖𝑦 𝑘 1 𝑘 2 (𝑧) = 𝑅 𝑐 2 𝑒 𝑖[ 2𝜋𝑧 𝑙 𝑝 2 + 2𝜋(𝑘 2 -1) 𝑁 2 ] + 𝑅 𝑐 1 𝑒 𝑖[ 2𝜋𝑧 𝑙 𝑝 1 + 2𝜋(𝑘 1 -1) 𝑁 1 ] (270) 
and the complex affix 𝑤 𝑃 (𝑧 𝑃 , 𝛹 𝑃 ) of the source point 𝑃 is

𝑤 𝑃 (𝑧 𝑃 , 𝛹 𝑃 ) = [𝑥 𝑝 1 𝑝 2 (𝑧) + 𝑅 𝑓 𝑐𝑜𝑠(𝛹 𝑃 )] + 𝑖[𝑦 𝑝 1 𝑝 2 (𝑧) + 𝑅 𝑓 𝑠𝑖𝑛(𝛹 𝑃 )] = 𝑅 𝑐 2 𝑒 𝑖[ 2𝜋𝑧 𝑃 𝑙 𝑝 2 + 2𝜋(𝑝 2 -1) 𝑁 2 ] + 𝑅 𝑐 1 𝑒 𝑖[ 2𝜋𝑧 𝑃 𝑙 𝑝 1 + 2𝜋(𝑝 1 -1) 𝑁 1 ] + 𝑅 𝑓 𝑒 𝑖𝛹 𝑃
Making use of this notation, we can now write

𝑃𝑀 𝑘 1 𝑘 2 (𝑧, 𝑧 𝑃 , 𝛹 𝑃 ) 2 = |𝑤 𝑘 1 𝑘 2 (𝑧) -𝑤 𝑃 (𝑧 𝑃 , 𝛹 𝑃 )| 2 + [𝑧 -𝑧 𝑃 ] 2
where the notation |𝑋| refers to the modulus of 𝑋.

Replacing 𝑤 𝑘 1 𝑘 2 (𝑧) and 𝑤 𝑃 (𝑧 𝑃 , 𝛹 𝑃 ) with their expressions, after some manipulations, 𝑃𝑀 𝑘 1 𝑘 2 (𝑧, 𝑧 𝑃 , 𝛹 𝑃 ) 2 can be expressed as

𝑃𝑀 𝑘 1 𝑘 2 (𝑧, 𝑧 𝑃 , 𝛹 𝑃 ) 2 = { [𝑧 -𝑧 𝑃 ] 2 + 𝑅 𝑐 2 2 |(1 -𝑒 𝑖[ 2𝜋(𝑧 𝑃 -𝑧) 𝑙 𝑝 2 + 2𝜋(𝑝 2 -𝑘 2 ) 𝑁 2 ] - 𝑅 𝑓 𝑅 𝑐 2 𝑒 𝑖[𝛹 𝑃 - 2𝜋𝑧 𝑙 𝑝 2 - 2𝜋(𝑘 2 -1) 𝑁 2 ] + 𝑅 𝑐 1 𝑅 𝑐 2 𝑒 𝑖[2𝜋𝑧( 1 𝑙 𝑝 1 - 1 𝑙 𝑝 2 )+2𝜋( 𝑘 1 -1 𝑁 1 - 𝑘 2 -1 𝑁 2 )] (1 -𝑒 𝑖[ 2𝜋(𝑧 𝑃 -𝑧) 𝑙 𝑝 1 + 2𝜋(𝑝 1 -𝑘 1 ) 𝑁 1 ]
))| 2

We will now carry out the following changes of variable in integral (269)

{ 𝑧 ′ = 𝑧 𝑃 -𝑧 𝛹 ′ = 𝛹 𝑃 -[ 2𝜋𝑧 𝑙 𝑝 2 + 2𝜋(𝑘 2 -1) 𝑁 2 ]
This implies

{ 𝑑𝑧 ′ = 𝑑𝑧 𝑃 𝑑𝛹 ′ = 𝑑𝛹 𝑃
The interval of integration of 𝑧 𝑃 being infinite, the new interval of integration of 𝑧′ also remains infinite, i.e. from -∞ to +∞. In addition, 𝑃𝑀 𝑘 1 𝑘 2 (𝑧, 𝑧 𝑝 , 𝛹 𝑝 ) is a 2𝜋-periodic function of 𝛹 𝑃 , thus even with the change of variable of 𝛹 𝑃 into 𝛹 ′ , we choose to keep the same interval of integration for 𝛹 ′ which is

[0; 2𝜋].
As a result, it is now possible to re-express integral (269) as

𝐴 𝑧 𝑟 (𝑝 1 𝑝 2 ) (𝛼) (𝑀 𝑘 1 𝑘 2 ) = 𝜇 0 𝐼 0 (𝛼) 8𝜋 2 𝑅𝑒 (∫ ∫ 𝑒 𝑖𝛼(𝑧 ′ +𝑧)+𝜑 𝑝 1 𝑝 2 𝑔 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝑧, 𝑧 ′ , 𝛹 ′ ) 2𝜋 𝛹 ′ =0 𝑑𝛹 ′ 𝑑𝑧 ′ +∞ 𝑧 ′ =-∞ ) (271) 
where 𝑅𝑒(𝑋) refers to the real part of complex number 𝑋 and 𝑔 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝑧, 𝑧 ′ , 𝛹 ′ ) is given by

𝑔 𝑝 1 𝑝 2 𝑘 1 𝑘 2 2 (𝑧, 𝑧 ′ , 𝛹 ′ ) = { 𝑧 ′ 2 + 𝑅 𝑐 2 2 |(1 -𝑒 𝑖[ 2𝜋𝑧 ′ 𝑙 𝑝 2 + 2𝜋(𝑝 2 -𝑘 2 ) 𝑁 2 ] - 𝑅 𝑓 𝑅 𝑐 2 𝑒 𝑖𝛹 ′ + 𝑅 𝑐 1 𝑅 𝑐 2 𝑒 𝑖[2𝜋𝑧( 1 𝑙 𝑝 1 - 1 𝑙 𝑝 2 )+2𝜋( 𝑘 1 -1 𝑁 1 - 𝑘 2 -1 𝑁 2 )] (1 -𝑒 𝑖[ 2𝜋𝑧 ′ 𝑙 𝑝 1 + 2𝜋(𝑝 1 -𝑘 1 ) 𝑁 1 ] ))| 2 (272) 
From the expression of 𝑔 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝑧, 𝑧 ′ , 𝛹 ′ ) given by equation (272), we can see that it is a 𝑙-periodic function of 𝑧 with

𝑙 = 1 𝑙 𝑝 1 - 1 𝑙 𝑝 2 (273) 
Note that 𝑙 actually corresponds to the distance that separates two consecutive contacts between elements of adjacent substages.

We can therefore conclude that the function 1/𝑔 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝑧, 𝑧 ′ , 𝛹 ′ ) inside integral (271) is also a 𝑙periodic function of 𝑧 and can thus be expanded in Fourier series as

1 𝑔 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝑧, 𝑧 ′ , 𝛹 ′ ) = ∑ 𝑐 𝑛 (𝑧 ′ , 𝛹 ′ )𝑒 𝑖 2𝜋𝑛𝑧 𝑙 +∞ 𝑛=-∞ (274) 
with

𝑐 𝑛 (𝑧 ′ , 𝛹 ′ ) = 1 𝑙 ∫ 𝑒 -𝑖 2𝜋𝑛𝑧 ′′ 𝑙 𝑔 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝑧 ′′ , 𝑧 ′ , 𝛹 ′ ) 𝑑𝑧 ′′ 𝑙/2 𝑧 ′′ =-𝑙/2 (275) 
In order to lighten the formulae, we will now use the complex notation 𝐴 𝑧 𝑟 (𝑝 1 𝑝 2 ) (𝛼)

̅̅̅̅̅̅̅̅̅̅̅ (𝑀 𝑘 1 𝑘 2 ) such that

𝐴 𝑧 𝑟 (𝑝 1 𝑝 2 ) (𝛼) (𝑀 𝑘 1 𝑘 2 ) = 𝑅𝑒 (𝐴 𝑧 𝑟 (𝑝 1 𝑝 2 ) (𝛼) ̅̅̅̅̅̅̅̅̅̅̅ (𝑀 𝑘 1 𝑘 2 )) (276) 
As a result, using integral (271) and equations (274) and (276), we have

𝐴 𝑧 𝑟 (𝑝 1 𝑝 2 ) (𝛼) ̅̅̅̅̅̅̅̅̅̅̅ (𝑀 𝑘 1 𝑘 2 ) = 𝜇 0 𝐼 0 (𝛼) 8𝜋 2 ∑ 𝑒 𝑖[(𝛼+ 2𝜋𝑛 𝑙 )𝑧+𝜑 𝑝 1 𝑝 2 ] +∞ 𝑛=-∞ 𝑋 𝑛 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝛼) (277) 
with

𝑋 𝑛 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝛼) = 1 𝑙 ∫ 𝑒 𝑖𝛼𝑧 ′ ∫ 𝑒 -𝑖 2𝜋𝑛𝑧 ′′ 𝑙 ∫ 1 𝑔 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝑧 ′′ , 𝑧 ′ , 𝛹 ′ ) 𝑑𝛹 ′ 2𝜋 𝛹 ′ =0 𝑑𝑧 ′′ 𝑙/2 𝑧 ′′ =-𝑙/2 𝑑𝑧 ′ +∞ 𝑧 ′ =-∞ (278) 
where 𝑙 is given by (273) and 𝑔 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝑧 ′′ , 𝑧 ′ , 𝛹 ′ ) is given by

𝑔 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝑧 ′′ , 𝑧 ′ , 𝛹 ′ ) = { [𝑧 ′ 2 + 𝑅 𝑐 2 2 |1 -𝑒 𝑖[ 2𝜋𝑧 ′ 𝑙 𝑝 2 + 2𝜋(𝑝 2 -𝑘 2 ) 𝑁 2 ] - 𝑅 𝑓 𝑅 𝑐 2 𝑒 𝑖𝛹 ′ + 𝑅 𝑐 1 𝑅 𝑐 2 𝑒 𝑖[ 2𝜋𝑧 ′′ 𝑙 +2𝜋( 𝑘 1 -1 𝑁 1 - 𝑘 2 -1 𝑁 2 )] (1 -𝑒 𝑖[ 2𝜋𝑧 ′ 𝑙 𝑝 1 + 2𝜋(𝑝 1 -𝑘 1 ) 𝑁 1 ] )| 2 ] 1/2 (279) 
This result is important as we have shown that the magnetic vector potential generated by a current with any spatial frequency 𝛼 flowing in an element of the conductor contains the following spatial frequencies

(𝛼 + 2𝜋𝑛 ( 1 𝑙 𝑝 1 - 1 𝑙 𝑝 2
))

𝑛∈ℤ Indeed, without this knowledge, we would not be able to solve the equations of the system, i.e. equations (266).

IV.2.5.2

Calculation of the magnetic vector potential due to the currents flowing in all the elements

Let us note (𝐾 𝑝 1 𝑝 2 (𝛼) ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ = 𝐾 𝑝 1 𝑝 2 (𝛼) 𝑒 𝑠 𝑝 1 𝑝 2 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗) 1≤𝑝 1 ≤𝑁 1 ,1≤𝑝 2 ≤𝑁 2
the surface currents flowing through the superconducting shells of all the elements having the general form 𝐾 𝑝 1 𝑝 2 (𝛼) (𝑧) = 𝐾 0 (𝛼) cos(𝛼𝑧 + 𝜑 𝑝 1 𝑝 2 )

with 𝐾 0 (𝛼) = 𝐼 0 (𝛼) 2𝜋𝑅 𝑓
Let us note 𝐴 𝑧 𝑟 (𝛼) (𝑀 𝑘 1 𝑘 2 ) the magnetic vector potential felt at the center of element 𝑘 1 of substage 𝑘 2 at 𝑧 (noted 𝑀 𝑘 1 𝑘 2 ) and due to the current distributions

(𝐾 𝑝 1 𝑝 2 (𝛼) ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ = 𝐾 𝑝 1 𝑝 2 (𝛼) 𝑒 𝑠 𝑝 1 𝑝 2 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗) 1≤𝑝 1 ≤𝑁 1 ,1≤𝑝 2 ≤𝑁 2 .
Following the definition of 𝐴 𝑧 𝑟 (𝑝 1 𝑝 2 ) (𝛼)

(𝑀 𝑘 1 𝑘 2 ) and 𝐴 𝑧 𝑟 (𝛼) (𝑀 𝑘 1 𝑘 2 ), by superposition, we have

𝐴 𝑧 𝑟 (𝛼) (𝑀 𝑘 1 𝑘 2 ) = ∑ ∑ 𝐴 𝑧 𝑟 (𝑝 1 𝑝 2 ) (𝛼) (𝑀 𝑘 1 𝑘 2 ) 𝑁 1 𝑝 1 =1 𝑁 2 𝑝 2 =1
Again using the complex notation 𝐴 𝑧 𝑟 (𝛼) ̅̅̅̅̅̅ (𝑀 𝑘 1 𝑘 2 ) such that

𝐴 𝑧 𝑟 (𝛼) (𝑀 𝑘 1 𝑘 2 ) = 𝑅𝑒 (𝐴 𝑧 𝑟 (𝛼) ̅̅̅̅̅̅ (𝑀 𝑘 1 𝑘 2 )) (280) 
we can write

𝐴 𝑧 𝑟 (𝛼) ̅̅̅̅̅̅ (𝑀 𝑘 1 𝑘 2 ) = ∑ ∑ 𝐴 𝑧 𝑟 (𝑝 1 𝑝 2 ) (𝛼) ̅̅̅̅̅̅̅̅̅̅̅ (𝑀 𝑘 1 𝑘 2 ) 𝑁 1 𝑝 1 =1 𝑁 2 𝑝 2 =1
Using the expression of 𝐴 𝑧 𝑟 (𝑝 1 𝑝 2 ) (𝛼) ̅̅̅̅̅̅̅̅̅̅̅ (𝑀 𝑘 1 𝑘 2 ) given by (277), we now have

𝐴 𝑧 𝑟 (𝛼) ̅̅̅̅̅̅ (𝑀 𝑘 1 𝑘 2 ) = 𝜇 0 𝐼 0 (𝛼) 8𝜋 2 ∑ 𝑒 𝑖(𝛼+ 2𝜋𝑛 𝑙 )𝑧 +∞ 𝑛=-∞ ∑ ∑ 𝑋 𝑛 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝛼) 𝑒 𝑖𝜑 𝑝 1 𝑝 2 𝑁 1 𝑝 1 =1 𝑁 2 𝑝 2 =1 (281) 
In order to be consistent with the previous notations, let us note 𝐴 𝑧 𝑟 𝑘 1 𝑘 2 (𝛼) (𝑧) the axial component of the magnetic vector potential felt at the center of element 𝑘 1 of substage 𝑘 2 at 𝑧 and due to the current

distributions (𝐾 𝑝 1 𝑝 2 (𝛼) ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ = 𝐾 𝑝 1 𝑝 2 (𝛼) 𝑒 𝑠 𝑝 1 𝑝 2 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗) 1≤𝑝 1 ≤𝑁 1 ,1≤𝑝 2 ≤𝑁 2
. Using again the complex notation, we have

𝐴 𝑧 𝑟 𝑘 1 𝑘 2 (𝛼) ̅̅̅̅̅̅̅̅̅ (𝑧) = 𝐴 𝑧 𝑟 (𝛼) ̅̅̅̅̅̅ (𝑀 𝑘 1 𝑘 2 )

IV.2.5.3 New currents induced by the time-variation of currents flowing in all the elements

We now know the expression of the magnetic vector potential generated by surface currents flowing through the superconducting shells of all the elements and having the general form 𝐾 𝑝 1 𝑝 2 (𝛼) (𝑧) = 𝐾 0 (𝛼) cos(𝛼𝑧 + 𝜑 𝑝 1 𝑝 2 ).

Using equation (281), we can then write

[2𝐴 ̇𝑧𝑟 𝑘 1 𝑘 2 (𝛼) ̅̅̅̅̅̅̅̅̅ (𝑧) -𝐴 ̇𝑧𝑟 𝑘 1 -1𝑘 2 (𝛼) ̅̅̅̅̅̅̅̅̅̅̅̅ (𝑧) -𝐴 ̇𝑧𝑟 𝑘 1 +1𝑘 2 (𝛼) ̅̅̅̅̅̅̅̅̅̅̅̅ (𝑧)] = 𝜇 0 𝐼 ̇0 (𝛼) 8𝜋 2 ∑ 𝑒 𝑖(𝛼+ 2𝜋𝑛 𝑙 )𝑧 +∞ 𝑛=-∞ ∑ ∑ 𝐶 𝑛 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝛼) 𝑒 𝑖𝜑 𝑝 1 𝑝 2 𝑁 1 𝑝 1 =1 𝑁 2 𝑝 2 =1 (282) 
with

𝐶 𝑛 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝛼) = 2𝑋 𝑛 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝛼) -𝑋 𝑛 𝑝 1 𝑝 2 𝑘 1 -1𝑘 2 (𝛼) -𝑋 𝑛 𝑝 1 𝑝 2 𝑘 1 +1𝑘 2 (𝛼) (283) and 
∑ [2𝐴 ̇𝑧𝑟 𝑗 1 𝑘 2 (𝛼) ̅̅̅̅̅̅̅̅̅ (𝑧) -𝐴 ̇𝑧𝑟 𝑗 1 𝑘 2-1 (𝛼) ̅̅̅̅̅̅̅̅̅̅̅̅ (𝑧) -𝐴 ̇𝑧𝑟 𝑗 1 𝑘 2 +1 (𝛼) ̅̅̅̅̅̅̅̅̅̅̅̅ (𝑧)] 𝑁 1 𝑗 1 =1 = 𝜇 0 𝐼 ̇0 (𝛼) 8𝜋 2 ∑ 𝑒 𝑖(𝛼+ 2𝜋𝑛 𝑙 )𝑧 +∞ 𝑛=-∞ ∑ ∑ 𝐶 𝑛 𝑝 1 𝑝 2 𝑘 2 (𝛼) 𝑒 𝑖𝜑 𝑝 1 𝑝 2 𝑁 1 𝑝 1 =1 𝑁 2 𝑝 2 =1 (284) 
with

𝐶 𝑛 𝑝 1 𝑝 2 𝑘 2 (𝛼) = ∑ [2𝑋 𝑛 𝑝 1 𝑝 2 𝑗 1 𝑘 2 (𝛼) -𝑋 𝑛 𝑝 1 𝑝 2 𝑗 1 𝑘 2 -1 (𝛼) -𝑋 𝑛 𝑝 1 𝑝 2 𝑗 1 𝑘 2 +1 (𝛼) ] 𝑁 1 𝑗 1 =1 (285) 
According to the equations of the system, i.e. equations (266), and to equations (282) and (284), we see that the time-variation of surface currents of the form

(𝐾 𝑝 1 𝑝 2 (𝛼) ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ = 𝐾 0 (𝛼) cos(𝛼𝑧 + 𝜑 𝑝 1 𝑝 2 ) 𝑒 𝑠 𝑝 1 𝑝 2 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗) 1≤𝑝 1 ≤𝑁 1 ,1≤𝑝 2 ≤𝑁 2
will give rise to new distributions of currents

𝐼 𝑘 1 𝑘 2 ̅̅̅̅̅̅ (𝑧) such that for 1 ≤ 𝑘 2 ≤ 𝑁 2 and 1 ≤ 𝑘 1 ≤ 𝑁 1 𝑑 2 𝐼 𝑘 1 𝑘 2 ̅̅̅̅̅̅ 𝑑𝑧 2 (𝑧) = 𝜇 0 𝐼 ̇0 (𝛼) 8𝜋 2 ∑ 𝑒 𝑖(𝛼+ 2𝜋𝑛 𝑙 )𝑧 +∞ 𝑛=-∞ ∑ ∑ 𝐷 𝑛 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝛼) 𝑒 𝑖𝜑 𝑝 1 𝑝 2 𝑁 1 𝑝 1 =1 𝑁 2 𝑝 2 =1 (286) 
with

𝐷 𝑛 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝛼) = 𝜎 𝑙 1 𝐶 𝑛 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝛼) + 𝜎 𝑙 2 𝑁 1 2 𝐶 𝑛 𝑝 1 𝑝 2 𝑘 2 (𝛼) (287) 
where again 𝐼 𝑘 1 𝑘 2 ̅̅̅̅̅̅ (𝑧) is the complex notation associated with 𝐼 𝑘 1 𝑘 2 (𝑧) such that

𝐼 𝑘 1 𝑘 2 (𝑧) = 𝑅𝑒 (𝐼 𝑘 1 𝑘 2 ̅̅̅̅̅̅ (𝑧))
The double integration of equation (286) with respect to 𝑧 leads to

𝐼 𝑘 1 𝑘 2 ̅̅̅̅̅̅ (𝑧) = - 𝜇 0 𝐼 ̇0 (𝛼) 8𝜋 2 ∑ 𝑒 𝑖(𝛼+ 2𝜋𝑛 𝑙 )𝑧 (𝛼 + 2𝜋𝑛 𝑙 ) 2 +∞ 𝑛=-∞ ∑ ∑ 𝐷 𝑛 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝛼) 𝑒 𝑖𝜑 𝑝 1 𝑝 2 𝑁 1 𝑝 1 =1 𝑁 2 𝑝 2 =1 (288) 
This result is important as it shows that the time-variation of surface currents with spatial frequency 𝛼 will induce new currents with the following infinity of spatial frequencies

(𝛼 + 2𝜋𝑛 ( 1 𝑙 𝑝 1 - 1 𝑙 𝑝 2
))

𝑛∈ℤ Note that, according to equation ( 288), the amplitude associated with the spatial frequency 𝛼 + 2𝜋𝑛 (

1 𝑙 𝑝 1 - 1 𝑙 𝑝 2
) features a term in 1/ (𝛼 + 2𝜋𝑛 𝑙 )

2

. Therefore the higher the order of the spatial frequency, i.e. the higher 𝑛, the smaller its amplitude.

In addition, since the currents induced in steady-state regime feature the spatial frequencies 2𝜋/𝑙 𝑝 1 and 2𝜋/𝑙 𝑝 2 , their time-variation will induce currents with spatial frequencies

( 2𝜋 𝑙 𝑝 1 + 2𝜋𝑛 ( 1 𝑙 𝑝 1 - 1 𝑙 𝑝 2 )) 𝑛∈ℤ and ( 2𝜋 𝑙 𝑝 2 + 2𝜋𝑛 ( 1 𝑙 𝑝 1 - 1 𝑙 𝑝 2 )) 𝑛∈ℤ .
In order to lighten the future expressions we will now use the following notation for any 𝑛 ∈ ℤ

𝛼 𝑛 = 2𝜋 𝑙 𝑝 1 + 2𝜋(𝑛 -1) ( 1 𝑙 𝑝 2 - 1 𝑙 𝑝 1 ) (289) 
so that

{ 𝛼 1 = 2𝜋 𝑙 𝑝 1 𝛼 2 = 2𝜋 𝑙 𝑝 2
Therefore the previous families are now noted as

( 2𝜋 𝑙 𝑝 1 + 2𝜋𝑛 ( 1 𝑙 𝑝 1 - 1 𝑙 𝑝 2 )) 𝑛∈ℤ = (𝛼 1-𝑛 ) 𝑛∈ℤ and 
( 2𝜋 𝑙 𝑝 2 + 2𝜋𝑛 ( 1 𝑙 𝑝 1 - 1 𝑙 𝑝 2 )) 𝑛∈ℤ = (𝛼 -𝑛+2 ) 𝑛∈ℤ
We can notice that these two families are actually identical and equal to (𝛼 𝑛 ) 𝑛∈ℤ . Indeed, we have

(𝛼 1-𝑛 ) 𝑛∈ℤ = (𝛼 1-(𝑛 ′ -1) ) 𝑛 ′ ∈ℤ = (𝛼 2-𝑛 ′ ) 𝑛 ′ ∈ℤ = (𝛼 2-𝑛 ) 𝑛∈ℤ = (𝛼 𝑛 ) 𝑛∈ℤ
Therefore the time-variation of the currents induced in steady-state regime (featuring the spatial frequencies 2𝜋/𝑙 𝑝 1 and 2𝜋/𝑙 𝑝 2 ) will induce currents with spatial frequencies (𝛼 𝑛 ) 𝑛∈ℤ .

Following the logical chain displayed on Figure 15 in section II.2.1 , we now have to determine the currents that will be induced by the time-variation of the currents with a spatial frequency belonging to the family (𝛼 𝑛 ) 𝑛∈ℤ . Since we know that the time-variation of currents with any spatial frequency 𝛼 will induce currents with the spatial frequencies (𝛼 + 2𝜋𝑛 (

1 𝑙 𝑝 1 - 1 𝑙 𝑝 2
)) 𝑛∈ℤ , we can deduce that the timevariation of the currents with a spatial frequency 𝛼 𝑘 , 𝑘 ∈ ℤ will induce currents with the spatial frequencies (𝛼 𝑘 + 2𝜋𝑛 ( We can now conclude that we have reached the end of our analytical procedure described in section II.2.1 because we have demonstrated that the currents that will be induced in the 𝑁 2 -uplet of 𝑁 1 -uplets conductor during any time varying regime will necessarily feature the spatial frequencies of the family (𝛼 𝑛 ) 𝑛∈ℤ .

Consequently, we now know that the currents induced during any time-varying regime will be given for 1 ≤ 𝑘 1 ≤ 𝑁 1 and 1 ≤ 𝑘 2 ≤ 𝑁 2 by

𝐼 𝑘 1 𝑘 2 ̅̅̅̅̅̅ (𝑧) = ∑ 𝐼 0 𝑘 1 𝑘 2 (𝛼 𝑛 ) ̅̅̅̅̅̅̅ 𝑒 𝑖𝛼 𝑛 𝑧 +∞ 𝑛=-∞ (290)
where the 𝐼 0 𝑘 1 𝑘 2 (𝛼 𝑛 ) ̅̅̅̅̅̅̅ for 𝑛 ∈ ℤ are complex functions depending on time only.

Note that if 𝛼 1 ≠ 𝛼 2 the elements of the family (𝛼 𝑛 ) 𝑛∈ℤ are all distinct from each other (if 𝛼 1 = 𝛼 2 , the family (𝛼 𝑛 ) 𝑛∈ℤ is simply reduced to 𝛼 1 ). Indeed, for 𝑘 ∈ ℤ and 𝑛 ∈ ℤ, the equation 𝛼 𝑘 = 𝛼 𝑛 leads to (𝑘 -𝑛)(𝛼 2 -𝛼 1 ) = 0; the solution must then be 𝑘 = 𝑛 if 𝛼 2 -𝛼 1 ≠ 0.

IV.2.5.4

Reduction of the global equations of the system for any time-varying regime  We have now established the expression of the magnetic vector potential as a function of the coupling currents; we also know the spatial form of these currents for any time-varying regime. First, we will make use of this knowledge to reformulate the global equation of the system, which will be presented at the end of IV.2.5.4.1. We will then use an invariance of the system and different considerations and approximations to finally reduce the system equation to a simple 4x4 matrix equation (this is achieved through IV.2.5.4.2 to IV.2.5.4.4).

IV.2.5.4.1 Expression of the system equations using the determined spatial form of the induced currents

Let us now express the equations of the system in complex notations from equations (260), we have for 1 ≤ 𝑘 (291)

To simplify these equations, we will now make use of the knowledge of the spatial form of the currents induced during any time-varying regime given by (290) which is

𝐼 𝑘 1 𝑘 2 ̅̅̅̅̅̅ (𝑧) = ∑ 𝐼 0 𝑘 1 𝑘 2 (𝛼 𝑘 ) ̅̅̅̅̅̅̅ 𝑒 𝑖𝛼 𝑘 𝑧 +∞ 𝑘=-∞
In order to do so, we will replace the expressions on the left-hand side of equations ( 291 

The term

[2𝐴 ̇𝑧𝑟 𝑘 1 𝑘 2 ̅̅̅̅̅̅̅̅̅ (𝑧) -𝐴 ̇𝑧𝑟 𝑘 1 -1𝑘 2 ̅̅̅̅̅̅̅̅̅̅̅̅ (𝑧) -𝐴 ̇𝑧𝑟 𝑘 1 +1𝑘 2 ̅̅̅̅̅̅̅̅̅̅̅̅ (𝑧)]
present in the equations of the system, i.e. equations ( 291), can now be replaced with

𝜇 0 8𝜋 2 ∑ ∑ ∑ 𝐼 ̇0𝑝 1 𝑝 2 (𝛼 𝑘 ) ̅̅̅̅̅̅̅ ∑ 𝑒 𝑖𝛼 𝑘-𝑛 𝑧 𝐶 𝑛 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝛼 𝑘 ) +∞ 𝑛=-∞ 𝑁 1 𝑝 1 =1 𝑁 2 𝑝 2 =1 +∞ 𝑘=-∞
where

𝐶 𝑛 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝛼 𝑘 ) = 2𝑋 𝑛 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝛼 𝑘 ) -𝑋 𝑛 𝑝 1 𝑝 2 𝑘 1 -1𝑘 2 (𝛼 𝑘 ) -𝑋 𝑛 𝑝 1 𝑝 2 𝑘 1 +1𝑘 2 (𝛼 𝑘 )
(293) and the term

∑ [2𝐴 ̇𝑧𝑟 𝑗 1 𝑘 2 (𝑧) ̅̅̅̅̅̅̅̅̅̅̅̅̅ -𝐴 ̇𝑧𝑟 𝑗 1 𝑘 2 -1 ̅̅̅̅̅̅̅̅̅̅̅̅ (𝑧) -𝐴 ̇𝑧𝑟 𝑗 1 𝑘 2 +1 (𝑧) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ] 𝑁 1 𝑗 1 =1
also present in the equations of the system can now be replaced with 

𝜇 0 8𝜋 2 ∑ ∑ ∑ 𝐼 ̇0𝑝 1 𝑝 2 (𝛼 𝑘 ) ̅̅̅̅̅̅̅ ∑ 𝑒 𝑖𝛼 𝑘-𝑛 𝑧 𝐶 𝑛 𝑝 1 𝑝 2 𝑘 2 (𝛼 𝑘 ) +∞ 𝑛=-∞ 𝑁 1 𝑝 1 =1 𝑁 2 𝑝 2 =1 +∞ 𝑘=-∞ where 𝐶 𝑛 𝑝 1 𝑝 2 𝑘 2 (𝛼 𝑘 ) = ∑ [2𝑋 𝑛 𝑝 1 𝑝 2 𝑗 1 𝑘 2 (𝛼 𝑘 ) -𝑋 𝑛 𝑝 1 𝑝 2 𝑗 1 𝑘 2 -1 (𝛼 𝑘 ) -𝑋 𝑛 𝑝 1 𝑝 2 𝑗 1 𝑘 2 +1 (𝛼 𝑘 ) ] 𝑁 1 𝑗 1 =1 ( 
Using these substitutions, the equations of the system can now be expressed for 1 ≤ 𝑘 (296)

IV.2.5.4.2 Invariance of the system

We will now make use of an invariance of the system to reduce equations (296). Indeed from equation (270), we know that for 1 ≤ 𝑘 1 ≤ 𝑁 1 and 1 ≤ 𝑘 2 ≤ 𝑁 2 the complex affix 𝑤 𝑘 1 𝑘 2 (𝑧) of the center of element 𝑘 1 of substage 𝑘 2 at 𝑧 in the plane orthogonal to the z-axis is

𝑤 𝑘 1 𝑘 2 (𝑧) = 𝑅 𝑐 2 𝑒 𝑖 2𝜋(𝑘 2 -1) 𝑁 2 𝑒 𝑖𝛼 2 𝑧 + 𝑅 𝑐 1 𝑒 𝑖 2𝜋(𝑘 1 -1) 𝑁 1 𝑒 𝑖𝛼 1 𝑧
The complex affix of the center of element 𝑘 ′ 1 + 𝑘 1 -1 of substage 𝑘 ′ 2 + 𝑘 2 -1 at 𝑧 is then

𝑤 𝑘 ′ 1 +𝑘 1 -1𝑘 ′ 2 +𝑘 2 -1 (𝑧) = 𝑅 𝑐 2 𝑒 𝑖 2𝜋(𝑘 2 -1) 𝑁 2 𝑒 𝑖 2𝜋(𝑘 ′ 2 -1) 𝑁 2 𝑒 𝑖𝛼 2 𝑧 + 𝑅 𝑐 1 𝑒 𝑖 2𝜋(𝑘 1 -1) 𝑁 1 𝑒 𝑖 2𝜋(𝑘 ′ 1 -1) 𝑁 1 𝑒 𝑖𝛼 1 𝑧 Let us note { 𝑧 𝑘 1 𝑘 2 = 2𝜋 𝛼 1 -𝛼 2 [ 𝑘 2 -1 𝑁 2 - 𝑘 1 -1 𝑁 1 ] 𝜃 𝑘 1 𝑘 2 = 2𝜋 𝛼 1 -𝛼 2 [𝛼 1 ( 𝑘 2 -1 𝑁 2 ) -𝛼 2 ( 𝑘 1 -1 𝑁 1 )] (297) 
So that

{ 𝜃 𝑘 1 𝑘 2 -𝛼 1 𝑧 𝑘 1 𝑘 2 = 2𝜋 𝛼 1 -𝛼 2 [( 𝑘 2 -1 𝑁 2 ) (𝛼 1 -𝛼 1 ) -( 𝑘 1 -1 𝑁 1 ) (𝛼 2 -𝛼 1 )] = 2𝜋(𝑘 1 -1) 𝑁 1 𝜃 𝑘 1 𝑘 2 -𝛼 2 𝑧 𝑘 1 𝑘 2 = 2𝜋 𝛼 1 -𝛼 2 [( 𝑘 2 -1 𝑁 2 ) (𝛼 1 -𝛼 2 ) -( 𝑘 1 -1 𝑁 1 ) (𝛼 2 -𝛼 2 )] = 2𝜋(𝑘 2 -1) 𝑁 2
Thus, replacing 2𝜋(𝑘 1 -1)/𝑁 1 with 𝜃 𝑘 1 𝑘 2 -𝛼 1 𝑧 𝑘 1 𝑘 2 and 2𝜋(𝑘 2 -1)/𝑁 2 with 𝜃 𝑘 1 𝑘 2 -𝛼 2 𝑧 𝑘 1 𝑘 2 in the expression of 𝑤 𝑘 ′ 1 +𝑘 1 -1𝑘 ′ 2 +𝑘 2 -1 (𝑧), we can write

𝑤 𝑘 ′ 1 +𝑘 1 -1𝑘 ′ 2 +𝑘 2 -1 (𝑧) = 𝑒 𝑖𝜃 𝑘 1 𝑘 2 [𝑅 𝑐 2 𝑒 𝑖 2𝜋(𝑘 ′ 2 -1) 𝑁 2 𝑒 𝑖𝛼 2 (𝑧-𝑧 𝑘 1 𝑘 2 ) + 𝑅 𝑐 1 𝑒 𝑖 2𝜋(𝑘 ′ 1 -1) 𝑁 1 𝑒 𝑖𝛼 1 (𝑧-𝑧 𝑘 1 𝑘 2 ) ]
And therefore, we have

𝑤 𝑘 ′ 1 +𝑘 1 -1𝑘 ′ 2 +𝑘 2 -1 (𝑧) = 𝑒 𝑖𝜃 𝑘 1 𝑘 2 𝑤 𝑘 ′ 1 𝑘 ′ 2 (𝑧 -𝑧 𝑘 1 𝑘 2 ) (298) 
 The term 𝑤 𝑘 ′ 298) means that the position of element 𝑘 1 of substage 𝑘 2 at 𝑧 corresponds to the position of element 1 of substage 1 at 𝑧 -𝑧 𝑘 1 𝑘 2 rotated from 𝜃 𝑘 1 𝑘 2 around the conductor axis; this example is illustrated on Figure 49.

These geometrical considerations are important as they imply that element 𝑘 1 of substage 𝑘 2 at 𝑧 is in the same geometrical configuration than element 1 of substage 1 at 𝑧 -𝑧 𝑘 1 𝑘 2 with respect to the other elements.

Furthermore, we can see on Figure 49 ⃗⃗⃗⃗⃗ is along the 𝑦 ′ -axis, we know that 𝐴 𝑧 𝑎 ′ is given in complex notation by In addition, since we have

𝐼 𝑘 ′ 1 +𝑘 1 -1𝑘 ′ 2 +𝑘 2 -1 (𝑧) = 𝐼 𝑘 ′ 1 𝑘 ′ 2 ′ (𝑧 -𝑧 𝑘 1 𝑘 2 )
we can write for any 𝑧

∑ 𝐼 0 𝑘 ′ 1 +𝑘 1 -1𝑘 ′ 2 +𝑘 2 -1 (𝛼 𝑘 ) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ 𝑒 𝑖𝛼 𝑘 𝑧 +∞ 𝑘=-∞ = ∑ 𝐼 0 𝑘 ′ 1 𝑘 ′ 2 ′(𝛼 𝑘 )
̅̅̅̅̅̅̅̅̅ 𝑒 𝑖𝛼 𝑘 𝑧 𝑒 -𝑖𝛼 𝑘 𝑧 𝑘 1 𝑘 2 +∞ 𝑘=-∞

Since the elements of (𝛼 𝑘 ) 𝑘∈ℤ are all distinct from each other, the (𝑒 𝑖𝛼 𝑘 𝑧 ) 𝑘∈ℤ functions are linearly independent and we can conclude that for 𝑘 ∈ ℤ

𝐼 0 𝑘 ′ 1 +𝑘 1 -1𝑘 ′ 2 +𝑘 2 -1 (𝛼 𝑘 ) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ = 𝐼 0 𝑘 ′ 1 𝑘 ′ 2 ′(𝛼 𝑘 )
̅̅̅̅̅̅̅̅̅ 𝑒 -𝑖𝛼 𝑘 𝑧 𝑘 1 𝑘 2

We can now use these equalities in the equation verified by 𝐼 11 ′ (𝑧 -𝑧 𝑘 1 𝑘 2 ) to finally obtain

{ ∑ 𝛼 𝑘 2 𝐼 0 𝑘 1 𝑘 2 (𝛼 𝑘 ) ̅̅̅̅̅̅̅ 𝑒 𝑖𝛼 𝑘 𝑧 +∞ 𝑘=-∞ + 𝜇 0 8𝜋 2 ∑ ∑ ∑ 𝐼 ̇0𝑝 1 +𝑘 1 -1𝑝 2 +𝑘 2 -1 (𝛼 𝑘 )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ∑ 𝑒 𝑖𝛼 𝑘-𝑛 𝑧 𝑒 𝑖𝑛(𝛼 2 -𝛼 Because 𝑒 -𝑖𝛼 𝑘-𝑛 𝑧 𝑘 1 𝑘 2 = 𝑒 -𝑖𝛼 𝑘 𝑧 𝑘 1 𝑘 2 𝑒 𝑖𝑛(𝛼 2 -𝛼 1 )𝑧 𝑘 1 𝑘 2 , 𝑒 𝑖𝜃 𝑘 1 𝑘 2 𝑒 -𝑖𝛼 .

Note that the invariance of the system has enabled us to divide by 𝑁 1 𝑁 2 the number of 𝐷 coefficients. Indeed, the 𝐷 coefficients were previously depending on 𝑘 1 , 𝑘 2 , 𝑝 1 and 𝑝 2 while, now, they only depend on 𝑝 1 and 𝑝 2 . This reduction of coefficients has an important impact on the future computing time needed to determine them numerically.

IV.2.5.4.3 Reduction of the system equations to a first-order differential equation

For further needs, we will now express the equations of the system as

{ ∑ 𝛼 𝑘 2 𝐼 0 𝑘 1 𝑘 2 (𝛼 𝑘 ) ̅̅̅̅̅̅̅ 𝑒 𝑖𝛼 𝑘 𝑧 +∞ 𝑘=-∞ + 𝜇 0 8𝜋 2 lim 𝑁→∞ ∑ ∑ ∑ ∑ 𝐼 ̇0𝑝 1 +𝑘 1 -1𝑝 2 +𝑘 2 -1 (𝛼 𝑝 )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ 𝑒 𝑖𝛼 𝑝-𝑛 𝑧 𝑒 𝑖𝑛(𝛼 2 -𝛼 where 𝑁 is the maximum order of the decomposition in Fourier series.

Again, since the (𝑒 𝑖𝛼 𝑘 𝑧 ) 𝑘∈ℤ functions are linearly independent, we can project the equations of the system on the basis formed by the (𝑒 𝑖𝛼 𝑘 𝑧 ) 𝑘∈ℤ functions. For any 𝑘 ∈ ℤ, the projection of the left-hand side of the equation on 𝑒 𝑖𝛼 𝑘 𝑧 leads to

𝛼 𝑘 2 𝐼 0 𝑘 1 𝑘 2 (𝛼 𝑘 ) ̅̅̅̅̅̅̅ + 𝜇 0 8𝜋 2 lim 𝑁→∞ ∑ ∑ ∑ 𝐼 ̇0𝑝 1 +𝑘 1 -1𝑝 2 +𝑘 2 -1 (𝛼 𝑘+𝑛 ) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ 𝑒 𝑖𝑛(𝛼 2 -𝛼 1 )𝑧 𝑘 1 𝑘 2 𝐷 𝑛 𝑝 1 𝑝 2 11 (𝛼 𝑘+𝑛 ) 𝑁 1 𝑝 1 =1 𝑁 2 𝑝 2 =1 𝑁 𝑛=-𝑁
because the only index 𝑝 for which we have 𝑒 𝑖𝛼 𝑝-𝑛 𝑧 = 𝑒 𝑖𝛼 𝑘 𝑧 must satisfy 𝑝 -𝑛 = 𝑘 and is thus 𝑝 = 𝑘 + 𝑛. Therefore, we can now write the equations of the system for any 𝑘 ∈ ℤ as 

 For 𝑘 = 1 { 𝐼 0 𝑘 1 𝑘 2 (𝛼 1 ) ̅̅̅̅̅̅̅ = - 𝜇 0 8𝜋 2 1 𝛼 1 2 lim 𝑁→∞ ∑ ∑ ∑ 𝐼 ̇0𝑝
where the 𝐼 0 (𝛼 𝑘 ) are real functions depending on time only and

𝜑 𝑘 1 𝑘 2 (𝛼 𝑘 ) = 2𝜋 ( 𝑘 1 -1 𝑁 1 ) + (𝑘 -1) [2𝜋 ( 𝑘 2 -1 𝑁 2 ) -2𝜋 ( 𝑘 1 -1 𝑁 1 )] (303) 
Note that if we write

{ 𝜑 𝑘 1 = 2𝜋 ( 𝑘 1 -1 𝑁 1 ) 𝜑 𝑘 2 = 2𝜋 ( 𝑘 2 -1 𝑁 2 )
according to (303) we have

𝜑 𝑘 1 𝑘 2 (𝛼 𝑘 ) = 𝜑 𝑘 1 + (𝑘 -1)[𝜑 𝑘 2 -𝜑 𝑘 1 ]
which is very similar to the expression of 𝛼 𝑘 given by (289).

Finally, we can now replace the 𝐼 0 𝑘 1 𝑘 2 

Note that equations (304) are still written in complex notation and have been derived from complex equations (291) using linear operations only. Since the real part of complex equations (291) correspond to the true equations of the system which are given by (260), we can affirm that only the real part of complex equations (291) are needed to fully describe the system. As a result, we can deduce that only the real part of complex equations (304) are governing the system.

Since the 𝐼 0 (𝛼 𝑘 ) are real functions, the equations of the system are thus reduced to given in (278), we can write

{ 𝐸 𝑛 1 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) = 𝑅𝑒 ( 1 𝑙 ∫ 𝑒 𝑖𝛼 𝑘+𝑛 𝑧 ′ ∫ 𝑒 -𝑖 2𝜋𝑛𝑧 ′′ 𝑙 𝐹 1 (𝑧 ′′ , 𝑧 ′ )𝑑𝑧 ′′ 𝑙/2 𝑧 ′′ =-𝑙/2 𝑑𝑧 ′ +∞ 𝑧 ′ =-∞ ) 𝐸 𝑛 2 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) = 1 𝑁 1 2 𝑅𝑒 ( 1 𝑙 ∫ 𝑒 𝑖𝛼 𝑘+𝑛 𝑧 ′ ∫ 𝑒 -𝑖 2𝜋𝑛𝑧 ′′ 𝑙 𝐹 2 (𝑧 ′′ , 𝑧 ′ )𝑑𝑧 ′′ 𝑙/2 𝑧 ′′ =-𝑙/2 𝑑𝑧 ′ +∞ 𝑧 ′ =-∞ ) (309) 
where 𝛼 𝑘+𝑛 = 𝛼 1 + (𝑘 + 𝑛 -1)(𝛼 1 -𝛼 2 ), 𝑙 = 2𝜋/(𝛼 1 -𝛼 2 ), 𝛼 1 = 2𝜋/𝑙 𝑝 

The currents induced through each substage to shield the superstage are thus a combination of cosine functions of space with spatial frequencies (𝛼 2+𝑝𝑁 1 ) 𝑝∈ℤ .

We can immediately conclude that the currents induced through each element of a substage to shield it are a combination of cosine functions of space with the remaining spatial frequencies, i.e. with (𝛼 𝑘 ) 𝑘≠2+𝑝𝑁 1 ,𝑝∈ℤ . Indeed from the previous equations, we have

𝐼 𝑘 1 〈𝑘 2 〉 (𝑧) = 𝐼 𝑘 1 𝑘 2 (𝑧) - 𝐼 𝑘 2 (𝑧) 𝑁 1 = ∑ 𝐼 0 (𝛼 𝑘 ) cos (𝛼 𝑘 𝑧 + 𝜑 𝑘 1 𝑘 2 (𝛼 𝑘 ) ) +∞ 𝑘=-∞ 𝑘≠2+𝑝𝑁 1 ,𝑝∈ℤ (314) 
We have now expressed both the part of the induced currents shielding the superstage and the one shielding each substage and reduced the system equations to a first-order differential equation on the 𝐼 0 (𝛼 𝑘 ) amplitudes which depend on time only. The system equation, which is now given by (305), is an infinite matrix equation having the following form

[ ⋮ ⋮ ⋮ 𝐼 0 (𝛼 1 ) 𝐼 0 (𝛼 2 ) ⋮ ⋮ ⋮ ] + [ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ 𝜏 (𝛼 1 )(𝛼 0 ) 𝜏 (𝛼 1 )(𝛼 1 ) 𝜏 (𝛼 1 )(𝛼 2 ) ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ 𝜏 (𝛼 2 )(𝛼 1 ) 𝜏 (𝛼 2 )(𝛼 2 ) 𝜏 (𝛼 2 )(𝛼 3 ) ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ] [ ⋮ ⋮ ⋮ 𝐼 ̇0 (𝛼 1 ) 𝐼 ̇0 (𝛼 2 ) ⋮ ⋮ ⋮ ] = [ 0 ⋮ 0 𝐼 0 𝑒𝑥𝑡 (𝛼 1 ) 𝐼 0 𝑒𝑥𝑡 (𝛼 2 ) 0 ⋮ 0 ]
We clearly see that the two spatial modes which are directly excited by the time-variation of the applied magnetic field 𝐵 𝑎 are the spatial frequencies 𝛼 1 and 𝛼 2 . The other modes are only excited by the time-variation of the currents with the spatial frequencies 𝛼 1 and 𝛼 2 .

IV.2.5.4.4 Expression of the system equation for N=1

The maximum order of the Fourier series of the 1/𝑔 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝑧, 𝑧 ′ , 𝛹 ′ ) function has been noted 𝑁 in the previous section. Therefore the notation 𝑁 = 1 indicates that the Fourier series is stopped at the first order, i.e. we only take into account the terms obtained for -1 ≤ 𝑛 ≤ 1; the others are considered to be zero.

In the previous section we have shown that the system equation was described by an infinite matrix equation; it thus cannot be solved numerically.

The infinite nature of the matrix is due to two different facts:  First, the currents induced in the elements are described by an infinity of cosine functions of space having the spatial frequencies (𝛼 𝑘 ) 𝑘∈ℤ  Secondly, the decomposition in Fourier series we have used in section IV. 

First set of parameters : first two cabling stages of TF JT-60SA conductor

The first set of parameters, which is representative of the first two cabling stages of JT-60SA TF conductor, is deduced from the results of section IV.5.4 :

(𝑅 𝑓 = 0.327𝑚𝑚, 𝑅 𝑐 1 = 0.49𝑚𝑚, 𝑅 𝑐 2 = 0.82𝑚𝑚, 𝑙 𝑝 1 = 45.4𝑚𝑚, 𝑙 𝑝 2 = 66.7𝑚𝑚, 𝑁 1 = 3, 𝑁 2 = 3)

The 𝑅 𝑓 value corresponds here to the outer radius of the filamentary zone of JT-60SA TF strand (see section II.4.3 ).

Figure 50 displays the values of the 𝐸 𝑛 1 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) computed numerically for -1 ≤ 𝑘 ≤ 4 and -5 ≤ 𝑛 ≤ 5. We can see that, for each spatial frequency 𝛼 𝑘 , the maximum absolute value of 𝐸 𝑛 1 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) is always reached between 𝑛 = -1 and 𝑛 = 1. We can also observe that the 𝐸 𝑛 1 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) coefficients are all zero for 𝛼 𝑘 = 𝛼 -1 and 𝛼 𝑘 = 𝛼 2 .

Figure 51 displays, the values of 𝐸 𝑛 1 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) normalized to the maximum absolute value of 𝐸 𝑛 1 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) for each spatial frequency 𝛼 𝑘 (if the coefficients are not zero for every 𝑛).

For example, for 𝛼 𝑘 = 𝛼 0 , the normalized coefficient

|𝐸 𝑛 1𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 (𝛼 0 )(𝛼 0+𝑛 ) | = |𝐸 𝑛 1 (𝛼 0 )(𝛼 0+𝑛 ) / max(|𝐸 𝑛 1 (𝛼 0 )(𝛼 0+𝑛 ) |) -5≤𝑛≤5
| corresponds to the absolute value of the 𝐸 𝑛 1 (𝛼 0 )(𝛼 0+𝑛 ) coefficients divided by the maximum absolute value of 𝐸 𝑛 1 (𝛼 0 )(𝛼 0+𝑛 ) obtained for -5 ≤ 𝑛 ≤ 5.

Therefore Figure 51 also shows that the maximum absolute value of 𝐸 𝑛 1 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) is always reached between 𝑛 = -1 and 𝑛 = 1 (when the ratio is equal to 100%) and that the values of the 𝐸 𝑛 1 (𝛼 𝑘 )(𝛼 𝑘+𝑛 )

coefficients strongly decrease with increasing 𝑛 (they are all below 25% of their maximum absolute value for |𝑛| ≥ 2). coefficients. We also see that the maximum absolute value of 𝐸 𝑛 2 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) is always reached between 𝑛 = -1 and 𝑛 = 1 and that the absolute values of the 𝐸 𝑛 2 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) coefficients strongly decrease with increasing 𝑛 (they are all below 5% of their maximum absolute value for |𝑛| ≥ 2). We can observe that the 𝐸 𝑛 2 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) coefficients are all zero for 𝛼 𝑘 = 𝛼 0 , 𝛼 𝑘 = 𝛼 1 , 𝛼 𝑘 = 𝛼 3 and 𝛼 𝑘 = 𝛼 4 .

Second set of parameters : last two cabling stages of TF JT-60SA conductor

The second set of parameters, which is representative of the last two cabling stages of JT-60SA TF conductor, is also deduced from the results of section IV.5.4 :

(𝑅 𝑓 = 1.62𝑚𝑚, 𝑅 𝑐 1 = 2.31𝑚𝑚, 𝑅 𝑐 2 = 7.75𝑚𝑚, 𝑙 𝑝 1 = 185.2𝑚𝑚, 𝑙 𝑝 2 = 285.7𝑚𝑚, 𝑁 1 = 3, 𝑁 2 = 6)

The 𝑅 𝑓 value corresponds here to the cabling radius of the third cabling stage of JT-60SA TF conductor because here 𝑅 𝑐 2 is the fifth and last cabling stage of the conductor and 𝑅 𝑐 1 is the fourth cabling stage of the conductor (see section IV.5.4 ). and 𝐸 𝑛 2 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) coefficients strongly decrease with increasing 𝑛. Indeed for |𝑛| ≥ 2, they are all below 25% of their maximum absolute value for 𝐸 𝑛 1 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) and below 10% for 𝐸 𝑛 2 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) ).

Again we can notice on Figure 54 that the 𝐸 𝑛 1 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) coefficients are all zero for 𝛼 𝑘 = 𝛼 -1 and 𝛼 𝑘 = 𝛼 2 , and on Figure 56 that the 𝐸 𝑛 2 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) coefficients are all zero for 𝛼 𝑘 = 𝛼 0 , 𝛼 𝑘 = 𝛼 1 , 𝛼 𝑘 = 𝛼 3

and 𝛼 𝑘 = 𝛼 4 .

We recall that the time constant 𝜏 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) reflects the coupling between 𝐼 0 (𝛼 𝑘 ) and 𝐼 ̇0 (𝛼 𝑘+𝑛 ) and that it is a linear combination of 𝐸 𝑛 1 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) and 𝐸 𝑛 2 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) . The 𝐸 𝑛 1 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) coefficients are in fact giving the link between the 𝐼 0 (𝛼 𝑘 ) induced in each element of a substage to shield it from the time variation of the 𝐼 0 (𝛼 𝑘+𝑛 ) flowing through every element while the 𝐸 𝑛 2 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) gives the link between the 𝐼 0 (𝛼 𝑘 ) induced in each substage to shield the superstage from the same variation. In the previous section we have seen that the currents induced in each substage to shield the superstage, i.e. the 𝐼 𝑘 For the two different geometries we have chosen, we had 𝑁 1 = 3, thus the 𝐸 𝑛 1 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) are zero for 𝑘 = 2 + 3𝑝, 𝑝 ∈ ℤ and the 𝐸 𝑛 2 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) are zero for 𝑘 ≠ 2 + 3𝑝, 𝑝 ∈ ℤ. Since we have chosen 𝑘 such that -1 ≤ 𝑘 ≤ 4, the 𝐸 𝑛 1 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) are zero for 𝑘 = {-1; 2} and the 𝐸 𝑛 2 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) are zero for 𝑘 = {0; 1; 3; 4}; this is exactly what we have observed on Figure 50, Figure 52, Figure 54 and Figure 56. This numerical evaluation of the (𝐸 𝑛 1 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) , 𝐸 𝑛 2 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) ) coefficients for geometries at two very different scales (one representative of the first two cabling stages and the other representative of the last two cabling stages of TF JT-60SA conductor) has shown us that the coefficients obtained for |𝑛| > 1 were negligible in front of those obtained for |𝑛| ≤ 1.

In other words, this means that the coupling between the 𝐼 0 (𝛼 𝑘 ) and the 𝐼 ̇0 (𝛼 𝑘+𝑛 ) can be neglected when

|𝑛| > 1.
Therefore, we can now be confident about the fact that stopping the Fourier series of the 1/𝑔 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝑧, 𝑧 ′ , 𝛹 ′ ) function at the first order (i.e. for 𝑁 = 1) will not induce high differences in the modeling of the two cabling stage conductor. This step is an important one as we have assessed here that the analytical expression we have chosen along a trade-off between mathematical complexity and relevancy, finds our model still strongly reliable and stays in the guideline of our global model development strategy.

In addition, the assumption 𝑁 = 1 implies that the 𝜏 matrix describing the coupling between the different amplitudes is tridiagonal but still infinite. In this case, the matrix equation leads to the following equations for any 𝑘 ∈ ℤ 𝐼 0 (𝛼 𝑘 ) + ∑ 𝜏 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) 𝐼 ̇0

(𝛼 𝑘+𝑛 ) 1 𝑛=-1 = 𝐼 0 𝑒𝑥𝑡 (𝛼 𝑘 )
which can alternatively be expressed, using the complex notation 𝐼 0 

̅̅̅̅̅̅̅̅

Using our previous considerations on the (𝐸 𝑛 1 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) , 𝐸 𝑛 2 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) ) coefficients and equation (308), we have

𝜏 (𝛼 𝑘 )(𝛼 𝑘-1 ) /𝜏 (𝛼 𝑘 )(𝛼 𝑘 ) = { 𝐸 -1 1 (𝛼 𝑘 )(𝛼 𝑘-1 ) /𝐸 0 1 (𝛼 𝑘 )(𝛼 𝑘 ) 𝑖𝑓𝑘 ≠ 2 + 𝑝𝑁 1 , 𝑝 ∈ ℤ 𝐸 -1 2 (𝛼 𝑘 )(𝛼 𝑘-1 ) /𝐸 0 2 (𝛼 𝑘 )(𝛼 𝑘 ) 𝑖𝑓𝑘 = 2 + 𝑝𝑁 1 , 𝑝 ∈ ℤ
According to Figure 50 and Figure 57, it appears that those terms are almost always much smaller than 1; using the complex equation above, this indicates that the main contribution to 𝐼 0 (𝛼 𝑘 ) is the source term 𝐼 0 𝑒𝑥𝑡 (𝛼 𝑘 ) even when the coupling is maximum. As a result, we realize that there is no need to consider every 𝐼 0 (𝛼 𝑘 ) since their amplitudes rapidly decreases for 𝑘 < 1 and 𝑘 > 2 even in fully coupled regimes.

Consequently, for 𝑁 = 1, we have decided to only consider the four amplitudes (𝐼 0 (𝛼 𝑘 ) ) 0≤𝑘≤3 and have reduced the equation to

[ 𝐼 0 (𝛼 0 ) 𝐼 0 (𝛼 1 ) 𝐼 0 (𝛼 2 ) 𝐼 0 (𝛼 3 ) ] + [ 𝜏 (𝛼 0 )(𝛼 0 ) 𝜏 (𝛼 0 )(𝛼 1 ) 0 0 𝜏 (𝛼 1 )(𝛼 0 ) 𝜏 (𝛼 1 )(𝛼 1 ) 𝜏 (𝛼 1 )(𝛼 2 ) 0 0 𝜏 (𝛼 2 )(𝛼 1 ) 𝜏 (𝛼 2 )(𝛼 2 ) 𝜏 (𝛼 2 )(𝛼 3 ) 0 0 𝜏 (𝛼 3 )(𝛼 2 ) 𝜏 (𝛼 3 )(𝛼 3 )] [ 𝐼 ̇0 (𝛼 0 ) 𝐼 ̇0 (𝛼 1 ) 𝐼 ̇0 (𝛼 2 ) 𝐼 ̇0 (𝛼 3 ) ] = [ 0 𝐼 0 𝑒𝑥𝑡 (𝛼 1 ) 𝐼 0 𝑒𝑥𝑡 (𝛼 2 ) 0 ] (316)
where the 𝜏 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) are given by equation (308) with 𝐸 𝑛 1 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) = 0 for 𝑘 = 2 and 𝐸 𝑛 2 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) = 0 for 𝑘 = {0; 1; 3} and the 𝐼 0 𝑒𝑥𝑡 (𝛼 𝑘 ) are given by equation (306).

IV.2.6 Power dissipated by coupling currents

 We will now express the coupling power dissipated in a group of groups of twisted elements as a function of the 𝑰 𝟎 (𝜶 𝒌 ) amplitudes of the coupling currents.

IV.2.6.1

General expression

In section IV. 

where the 𝐼 𝑡 0 1 (𝛼 𝑘 ) are functions depending on time only equal to

𝐼 𝑡 0 1 (𝛼 𝑘 ) = -𝐼 0 (𝛼 𝑘 ) 2 sin ((2 -𝑘) 𝜋 𝑁 1 ) (326) 
The local power 𝑑𝑃 𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑎𝑔𝑒 (𝑧) dissipated in a slice of thickness 𝑑𝑧 by the flow of the interbundle (between substages) currents can be expressed using equations (318), (320) and (322) as

𝑑𝑃 𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑎𝑔𝑒 (𝑧) = 1 𝜎 𝑙 2 ∑ ( ∑ 𝛼 𝑘 𝐼 𝑘 2 𝑘 2 +1 (𝛼 𝑘 ) (𝑧) +∞ 𝑘=-∞ 𝑘=2+𝑝𝑁 1 ,𝑝∈ℤ ) 2 𝑁 2 𝑘 2 =1 𝑑𝑧 (327) 
with from (323)

𝐼 𝑘 2 𝑘 2 +1 (𝛼 𝑘 ) (𝑧) = { 𝐼 𝑡 0 2 (𝛼 𝑘 ) cos [𝛼 𝑘 𝑧 + (𝑘 -1) 𝜋(2𝑘 2 -1) 𝑁 2 ] 𝑖𝑓𝑘 ≠ 𝑗𝑁 2 + 1, 𝑗 ∈ ℤ 𝐼 0 (𝛼 𝑘 ) 𝑁 1 (𝑘 2 - 𝑁 2 + 1 2 ) sin(𝛼 𝑘 𝑧) 𝑖𝑓𝑘 = 𝑗𝑁 2 + 1, 𝑗 ∈ ℤ (328) 
where 𝐼 𝑡 0 2 (𝛼 𝑘 ) is given by (324).

And the local power 𝑑𝑃 𝑠𝑢𝑏𝑠𝑡𝑎𝑔𝑒 (𝑧) dissipated in a slice of thickness 𝑑𝑧 by the flow of the intrabundle (inside each substage) currents using equations (317), (320) and (325)

𝑑𝑃 𝑠𝑢𝑏𝑠𝑡𝑎𝑔𝑒 (𝑧) = 1 𝜎 𝑙 1 ∑ ∑ ( ∑ 𝛼 𝑘 𝐼 𝑡 0 1 (𝛼 𝑘 ) cos [𝛼 𝑘 𝑧 + 𝜑 𝑘 1 𝑘 2 (𝛼 𝑘 ) + (2 -𝑘) 𝜋 𝑁 1 ] +∞ 𝑘=-∞ 𝑘≠2+𝑝𝑁 1 𝑝∈ℤ ) 2 𝑑𝑧 𝑁 1 𝑘 1 =1 𝑁 2 𝑘 2 =1 (329) 
where 𝐼 𝑡 0 1 (𝛼 𝑘 ) is given by (326).

IV. 

Regarding the local power due to the substage scale, from equation (329), we can write

𝑑𝑃 𝑠𝑢𝑏𝑠𝑡𝑎𝑔𝑒 (𝑧) = 1 𝜎 𝑙 1 ∑ ∑ ( ∑ 𝛼 𝑘 𝐼 𝑡 0 1 (𝛼 𝑘 ) cos [𝛼 𝑘 𝑧 + 𝜑 𝑘 1 𝑘 2 (𝛼 𝑘 ) + (2 -𝑘) 𝜋 𝑁 1 ] 3 𝑘=0 𝑘≠2+𝑝𝑁 1 ,𝑝∈ℤ ) 2 𝑑𝑧 𝑁 1 𝑘 1 =1 𝑁 2 𝑘 2 =1
Since 𝑘 = 2 was the only possible value of 𝑘 with respect to the condition 𝑘 = 2 + 𝑝𝑁 1 , 𝑝 ∈ ℤ, we can deduce that the values of 𝑘 between 0 and 4 that satisfy the condition 𝑘 ≠ 2 + 𝑝𝑁 1 , 𝑝 ∈ ℤ are 𝑘 = {0; 1; 3}. Therefore, from (326), we have

𝑑𝑃 𝑠𝑢𝑏𝑠𝑡𝑎𝑔𝑒 (𝑧) = 1 4𝜎 𝑙 1 ∑ ∑ ( ∑ 𝛼 𝑘 𝐼 0 (𝛼 𝑘 ) sin ((2 -𝑘) 𝜋 𝑁 1 ) cos [𝛼 𝑘 𝑧 + 𝜑 𝑘 1 𝑘 2 (𝛼 𝑘 ) + (2 -𝑘) 𝜋 𝑁 1 ] 3 𝑘=0 𝑘≠2 ) 2 𝑑𝑧 𝑁 1 𝑘 1 =1 𝑁 2 𝑘 2 =1
The term inside the brackets features crossed cosines, which after the sum over 𝑘 (333)

IV.2.7 Study in inductive regime

 We will now assess the relevance of the inductive part of our model through a study in purely inductive regime.

In order to assess the relevance of 𝑁 2 -uplet of 𝑁 1 -uplets model with the assumption 𝑁 = 1, we have carried out a comparison of the results in purely inductive regime with a simplified analytical approach.

The purely inductive regime occurs when the conductor is subject to an infinite variation of the applied magnetic field 𝐵 𝑎 , i.e. when 𝐵 𝑎 behaves as a step function.

The simplified analytical approach considers that the two cabling stages conductor can be represented, at a given position 𝑧 along the 𝑧-axis, by 𝑁 2 groups of 𝑁 1 infinite straight tubes whose positions in the cross-sectional plane correspond to the positions of the elements at the same z. The geometry considered here is identical to the one displayed on Figure 44 but for 𝑁 2 groups of 𝑁 1 elements instead of 𝑁 elements; its cross-section is displayed on Figure 58 The simplified analytical approach consists in computing the inductance matrix per unit axial length [𝐿] of the 𝑁 2 groups of 𝑁 1 infinite straight tubes using the analytical formulae of self and mutual inductances per unit length between tubes and in assuming that the tubes are subject to a step function of 𝐵 𝑎 . This inductance matrix per unit axial length [𝐿] is used in the equation

[𝐿][𝐼 ] = -[𝑥]𝐵 ̇𝑎

where [𝐼 ] is the column vector of the time variation of the currents flowing through the infinite straight tubes and [𝑥] is the column vector of the positions of the infinite straight tubes along the x-axis. Note that the left-hand term of this equation corresponds to the time variation of the magnetic flux per unit axial length felt by the tubes and due to the currents in the tubes; the right-hand term is the time variation of the magnetic flux per unit axial length felt by the tubes and due to the applied magnetic field variation. In our model, in purely inductive regime, the system equation, given by (316), can be reduced to

[ 𝜏 (𝛼 0 )(𝛼 0 ) 𝜏 (𝛼 0 )(𝛼 1 ) 0 0 𝜏 (𝛼 1 )(𝛼 0 ) 𝜏 (𝛼 1 )(𝛼 1 ) 𝜏 (𝛼 1 )(𝛼 2 ) 0 0 𝜏 (𝛼 2 )(𝛼 1 ) 𝜏 (𝛼 2 )(𝛼 2 ) 𝜏 (𝛼 2 )(𝛼 3 ) 0 0 𝜏 (𝛼 3 )(𝛼 2 ) 𝜏 (𝛼 3 )(𝛼 3 )] [ 𝐼 ̇0 (𝛼 0 ) 𝐼 ̇0 (𝛼 1 )
𝐼 ̇0 This system can simply be solved diving both sides of the first, second and fourth lines of the matrix equation by 𝜎 𝑙 1 , and the third line by 𝜎 𝑙 2 and then inversing the obtained matrix on the left-hand side.

The variations of currents due to the step of 𝐵 𝑎 (here chosen as 𝑑𝐵 𝑎 = 1𝑇) computed using this procedure and the straight infinite tubes approach on the sextuplet of triplets of Figure 58 are displayed on Figure 59. We can see the good agreement between the results; the inductive part of the model is then consistent for realistic geometries. 

IV.3 Adaptation of the N2-uplet of N1-uplets model to the MPAS model

Having derived the equation governing a conductor described by the 𝑁 2 -uplet of 𝑁 1 -uplets model as well as the coupling power generated by unit length of conductor, we will show that it is possible to express the coupling losses per cycle per unit volume of conductor envelope (i.e. circumscribed volume) as in the MPAS model (see section III.3 ).

We first start by expressing the coupling power generated by unit volume of conductor envelope 𝑃 𝑣𝑜𝑙 . In order to do so, we simply have to divide the coupling power generated by unit length of conductor -which is given by equation (333) -by the surface of the conductor envelope which is 𝜋(𝑅 𝑐 2 + 𝑅 𝑐 1 + 𝑅) 2 where 𝑅 is the radius of the elements of the 𝑁 2 -uplet of 𝑁 

Let us note [𝐼 0 ] the column vector of the (𝐼 0 (𝛼 𝑘 ) )

0≤𝑘≤3 current amplitudes such that for 1 ≤ 𝑘 ≤ 4, [𝐼 0 ] 𝑘 = 𝐼 0 (𝛼 𝑘-1 ) . According to equation (316), the equation governing [𝐼 0 ] can be written as

[𝐼 0 ] + [𝜏][𝐼 ̇0] = [𝑌]𝐵 ̇𝑎 (336) with [𝜏] = [ 𝜏 (𝛼 0 )(𝛼 0 ) 𝜏 (𝛼 0 )(𝛼 1 ) 0 0 𝜏 (𝛼 1 )(𝛼 0 ) 𝜏 (𝛼 1 )(𝛼 1 ) 𝜏 (𝛼 1 )(𝛼 2 ) 0 0 𝜏 (𝛼 2 )(𝛼 1 ) 𝜏 (𝛼 2 )(𝛼 2 ) 𝜏 (𝛼 2 )(𝛼 3 ) 0 0 𝜏 (𝛼 3 )(𝛼 2 ) 𝜏 (𝛼 3 )(𝛼 3 )] and [𝑌] = [ 0 4𝜎 𝑙 1 𝑅 𝑐 1 sin 2 ( 𝜋 𝑁 1 ) /𝛼 1 2 4 𝜎 𝑙 2 𝑁 1 𝑅 𝑐 2 sin 2 ( 𝜋 𝑁 2 ) /𝛼 2 2 0 ] 𝐵 ̇𝑎
where the 𝜏 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) are given by equation (308).

As we did in the composite modeling in section II.2.8 , assuming that [𝜏] is a diagonalizable matrix, we can express it as

IV.4.1.1 Assumptions of the comparison

The comparison between the outputs of our analytical modeling and those of THELMA was carried out on a simplified representation of the last two stages of ITER CS conductor subject to a cyclic transverse and uniform magnetic excitation.

The considered geometry was then a sextuplet of quadruplets, i.e. six bundles of four elements (with diameter of 6.49mm) each, and the cycles were +/-0.2T triangles with frequency set to 0.1 Hz.

IV.4.1.2 Determination of the effective geometrical parameters

We consider that the trajectory of any element can be described by the following formula which is similar to that given by equations (250) to (252) 

( 𝑥 ( 
In the expression above, 𝑅 𝐶 2 and 𝑙 𝑝 2 are the cabling radius and twist pitch of the superstage while 𝑅 𝐶 1 and 𝑙 𝑝 1 are those of the substage; 𝜑 2 and 𝜑 1 are initial phase shifts.

In order to find the effective geometrical parameters of the trajectories generated by THELMA, we have developed an algorithm which iteratively processes a given set of trajectories of elements. It first generates complex trajectories out of the real trajectories of the elements with the relation 𝑤(𝑧) = 𝑥(𝑧) + 𝑖𝑦(𝑧), where 𝑥(𝑧) and 𝑦(𝑧) are the positions of the center of the element along the x-axis and the y-axis respectively at given axial position 𝑧. It then computes the Fourier transform of each complex trajectory and processes them to extract the cabling radii 𝑅 𝑐 𝑘 (from the values of the maximum amplitudes of the Fourier transform) and the twist pitches 𝑙 𝑝 𝑘 (from the spatial frequencies of each of the maximum amplitudes of the Fourier transform) associated with each cabling stage 𝑘.

The effective cabling radii and twist pitches we have found with our algorithm (whose values are displayed on Table 11) were in almost perfect agreement with the trajectories generated by THELMA since they consisted in a combination of perfect helicoids. This is shown on Figure 60 which displays the trajectory of cable element 1 (CE1) generated by THELMA and the one determined from the effective cabling radii and twist pitches we have found with our algorithm and from the fit of the initial phase shifts 𝜑 2 and 𝜑 1 using equation (342). Each element is only in electrical contact with its direct neighbors (no diagonal contacts). We recall that in the model we consider a local transverse conductance 𝑑𝐺 1 between two adjacent elements of the substage which is given for a slice of conductor of thickness 𝑑𝑧 by

𝑑𝐺 1 = 𝜎 𝑙 1 𝑑𝑧
where 𝜎 𝑙 1 is the transverse conductance per unit axial length of the substage scale.

Similarly, the local transverse conductance 𝑑𝐺 2 between two adjacent substages (i.e. bundles) is given for a slice of conductor of thickness 𝑑𝑧 by

𝑑𝐺 2 = 𝜎 𝑙 2 𝑑𝑧
where 𝜎 𝑙 2 is the transverse conductance per unit axial length of the superstage scale.

The conductance network generated by THELMA for the considered geometry is a 3D matrix whose 𝜎 𝑙 𝑘𝑗 (𝑧) coefficients correspond to the local transverse conductance per unit axial length between Cable Elements 𝑘 and 𝑗 at 𝑧.

It is important to note that THELMA considers diagonal contacts between each CE of the same bundle while these contacts are considered as non-existent in the 𝑁 2 -uplet of 𝑁 1 -uplets model. Therefore, in order to be able to extract the effective electrical parameters of the conductor (i.e. 𝜎 𝑙 1 and 𝜎 𝑙 2 ) from the conductance network generated by THELMA, we first have to convert the electrical circuit considered by THELMA which features adjacent and diagonal contacts inside each bundle into one with adjacent contacts only (as shown in Figure 62). The transverse conductance per unit axial length between diagonal CEs of the same bundle is noted 𝜎 𝑑 and the one between adjacent CEs of the same bundle is noted 𝜎 𝑣 . In the conductance network generated by THELMA, the 𝜎 𝑑 values are identical for all the bundles and for any position along the z-axis. The 𝜎 𝑣 values are also identical for all the bundles and for any position along the z-axis but are different from the 𝜎 𝑑 values.

Using electrical circuit laws we can derive

𝜎 𝑙 1 = 3 4 (𝜎 𝑣 + 𝜎 𝑑 )
According to the data generated by THELMA we have 𝜎 𝑣 = 1.73 * 10 7 𝑆. 𝑚 -1 and 𝜎 𝑑 = 1.41 * 10 7 𝑆. 𝑚 -1 which using the previous formula leads to the value of 𝜎 𝑙 1 displayed in Table 12.

Regarding the average transverse conductance per unit axial length between adjacent bundles, i.e. 𝜎 𝑙 2 , it is computed using the following procedure: for each group of adjacent bundles, we set all CEs of the first bundle to an electric potential 𝑉 and all CEs of the second bundle to a zero electrical potential, then we compute the current 𝐼 flowing from the first bundle to the second one and deduce an average conductance per unit length dividing 𝐼 by 𝑉 and by the length of conductor. Finally we average the values of conductance per unit length obtained for each group of adjacent strands.

The procedure leads to the following relation

𝜎 𝑙 2 = 1 𝑁 2 [ ∑ ∑ ∑ 〈𝜎 𝑙 𝑘𝑗 (𝑧)〉 𝑧 𝑁 1 (𝑖+1) 𝑗=𝑖𝑁 1 +1 𝑖𝑁 1 𝑘=𝑁 1 (𝑖-1)+1 𝑁 2 -1 𝑖=1 + ∑ ∑ 〈𝜎 𝑙 𝑘𝑗 (𝑧)〉 𝑧 𝑁 1 𝑁 2 𝑗=𝑁 1 (𝑁 2 -1)+1 𝑁 1 𝑘=1 ]
the notation 〈𝑋(𝑧)〉 𝑧 refers to the average of 𝑋 over 𝑧.

Using the conductance network generated by THELMA, this formula has led us to the value of 𝜎 𝑙 2 displayed in Table 12. 

IV.4.1.2 Comparison on the coupling power

In the comparison with THELMA, the conductor was subject to +/-0.2T triangular cycles of transverse magnetic field with frequency set to 0.1 Hz. We have chosen to compare the value of the coupling stationary power generated at the end of a rising ramp computed using the 𝑁 2 -uplet of 𝑁 1uplets model with that given by THELMA.

Since we consider a stationary regime at the end of a rising ramp, the coupling currents are not timevarying and the system equation given by equation ( 316) is simply reduced to Using the expressions of 𝐼 0 𝑒𝑥𝑡 (𝛼 1 ) and 𝐼 0 𝑒𝑥𝑡 (𝛼 2 ) given by (306), we have

{ 𝐼 0 (𝛼 1 ) = 4𝜎 𝑙 1 𝑅 𝑐 1 𝐵 ̇𝑎 sin 2 ( 𝜋 𝑁 1 ) 1 𝛼 1 2 𝐼 0 (𝛼 2 ) = 4 𝜎 𝑙 2 𝑁 1 𝑅 𝑐 2 𝐵 ̇𝑎 sin 2 ( 𝜋 𝑁 2 ) 1 𝛼 2 2
where 𝛼 1 = 2𝜋/𝑙 𝑝 1 and 𝛼 2 = 2𝜋/𝑙 𝑝 2 Since 𝐼 0 (𝛼 0 ) = 0 and 𝐼 0 (𝛼 3 ) = 0, from equation (333), the coupling power per unit axial length is which combined with the expressions of 𝐼 0 (𝛼 1 ) and 𝐼 0 (𝛼 2 ) above leads to

𝑃 𝑙 (𝑧) = 𝛼 1 2 𝑁 1 𝑁 2
𝑃 𝑙 (𝑧) = 2𝑁 2 [𝜎 𝑙 1 𝑁 1 𝑅 𝑐 1 2 sin 2 ( 𝜋 𝑁 1 ) ( 𝑙 𝑝 1 2𝜋 ) 2 + 𝜎 𝑙 2 𝑅 𝑐 2 2 sin 2 ( 𝜋 𝑁 2 ) ( 𝑙 𝑝 2 2𝜋 ) 2 ] 𝐵 ̇𝑎2 
For a rising ramp going from 0 to 0.2T in 2.5s, the time variation of the applied magnetic field is 𝐵 ̇𝑎 = 0.08𝑇. 𝑠 -1 . Using 𝑁 1 = 4, 𝑁 2 = 6 and the values of the effective parameters given in Table 11 and Table 12, we have computed the following coupling stationary power per unit length of conductor 𝑃 𝑙 = 862𝑚𝑊. 𝑚 -1 We have found this value to be about 30% higher than the one computed by THELMA which was around 667𝑚𝑊. 𝑚 -1 (between 662𝑚𝑊. 𝑚 -1 and 673𝑚𝑊. 𝑚 -1 depending on the length of cable considered by THELMA).

IV.4.1.3 Comparison on the induced currents

In addition to the calculation of the coupling stationary power, we have also computed the longitudinal current induced in the first element of the first bundle 𝐼 𝐶𝐸1 (𝑧) at the end of a rising ramp and compared it with the one obtained by THELMA; the results are displayed on Figure 63.

In order to compute 𝐼 𝐶𝐸1 (𝑧), we have adapted equation (312) such that 𝐼 𝐶𝐸1 (𝑧) = 𝐼 0 (𝛼 1 ) cos(𝛼 1 𝑧 + 𝜑 1 ) + 𝐼 0 (𝛼 2 ) cos(𝛼 2 𝑧 + 𝜑 2 )

where 𝜑 1 and 𝜑 2 are the initial phase shifts that we have found to be 𝜑 1 = 0 and 𝜑 2 = 0 when we have fitted the trajectory of CE 1.

However, THELMA has considered that the applied magnetic field was along the x-axis while our formulae are valid for an applied magnetic field along the y-axis. After having applied the relevant modifications on our formulae, the expression above becomes 𝐼 𝐶𝐸1 (𝑧) = 𝐼 0 (𝛼 1 ) sin(𝛼 1 𝑧) + 𝐼 0 (𝛼 2 ) sin(𝛼 2 𝑧)

Using 𝑁 1 = 4, 𝑁 2 = 6, the values of the effective parameters given in Table 11 and Table 12 and the formulae of 𝐼 0 (𝛼 1 ) and 𝐼 0 (𝛼 2 ) of the previous section, we have found { 𝐼 0 (𝛼 1 ) = 4.7𝐴 𝐼 0 (𝛼 2 ) = 76.6𝐴 We can see on Figure 63 the good agreement between the calculations of 𝐼 11 (𝑧) by both models (the difference lies in the range of 15% maximum).

However our expression of 𝐼 11 (𝑧) only consists of two sinusoids with spatial periods 𝑙 𝑝 1 and 𝑙 𝑝 2 while the one computed by THELMA features an additional signal (smaller than the sinusoids). This additional signal is very likely to come from the discretization of the inter-bundle (superstage scale) conductance network. Indeed, in our model we have averaged this network and, by doing this, we have also removed its local variations. The effect of the discretization of the intra-bundle (substage scale) conductance network may also play a role in the additional signal but with a smaller weight since we have seen that 𝐼 0 (𝛼 1 ) was around 6% of 𝐼 0 (𝛼 2 ) .

IV.4.2 JackPot

JackPot AC/DC is a numerical model developed at the University of Twente [START_REF] Van Lanen | JackPot: A novel model to study the influence of current nonuniformity and cabling patterns in cable-in-conduit conductor[END_REF]. It is an electromagnetic and thermal model that describes the AC/DC performance of CICCs and joints at strand level detail [START_REF] Van Lanen | Validation of a strand level CICC-joint coupling loss model[END_REF]. This model is used to study effects of current distribution non-uniformity, optimization of cable patterns and ITER and DEMO conductor and joint stability [START_REF] Bagni | Analysis of ITER Nb-Ti and Nb3Sn CICCs experimental Minimum Quench Energy with JackPot[END_REF].

IV.4.2.1 Assumptions of the comparison

We here present the comparison we have carried out with the University of Twente on a simplified geometry of the last two stages of JT-60SA TF conductor: sextuplet of triplets of elements with diameter of 4.21mm. The conductor was subject to a +/-1T sinusoidal transverse magnetic field with frequency set to 0.05 Hz.

IV.4.2.2 Determination of the effective geometrical parameters

Using the algorithm we have discussed in section IV.4.1.2 and the set of trajectories generated by JackPot we have determined the effective geometrical parameters displayed on Table 13. Using the effective cabling radii and twist pitches of Table 13, we have adjusted the initial phases of CE 1, i.e. 𝜑 2 and 𝜑 1 of equation (342), with respect to the trajectory of CE 1 generated by JackPot.

Both our representation of the trajectory of CE 1 and the one generated by JackPot are displayed on Figure 65. JackPot having the ability to simulate the compaction of a cable, the trajectories it generates are not exactly combinations of perfect helicoids (see Figure 64). Therefore our representation of the trajectory of CE 1 is not exaclty the same that the one generated by JackPot though we can see on Figure 65 that it is very close to it.

Using the conductance network generated by JackPot, the procedure has led us to the value of 𝜎 𝑙 2 displayed in Table 14. In the comparison with JackPot, the conductor was subject to +/-1T sinusoidal cycles of transverse magnetic field with frequency set to 0.05 Hz. We have chosen to compare the value of the coupling losses per sinusoidal cycle computed using the 𝑁 2 -uplet of 𝑁 1 -uplets model with that given by JackPot.

In order to do so, we first assume that the frequency of 0.05 Hz is small enough to neglect the magnetic coupling between the currents induced in all the elements. This implies that the

(𝜏 (𝛼 𝑘 )(𝛼 𝑘 ′) 𝐼 ̇0 (𝛼 𝑘 ′) ) 0≤𝑘≤4 0≤𝑘 ′ ≤4
terms of system equation (316) can be neglected so that we again have

{ 𝐼 0 (𝛼 1 ) = 4𝜎 𝑙 1 𝑅 𝑐 1 𝐵 ̇𝑎 sin 2 ( 𝜋 𝑁 1 ) 1 𝛼 1 2 𝐼 0 (𝛼 2 ) = 4 𝜎 𝑙 2 𝑁 1 𝑅 𝑐 2 𝐵 ̇𝑎 sin 2 ( 𝜋 𝑁 2 ) 1 𝛼 2 2
and 𝐼 0 (𝛼 0 ) = 𝐼 0 (𝛼 3 ) = 0.

Therefore, the instant coupling power per unit axial length is also given by

𝑃 𝑙 (𝑧) = 2𝑁 2 [𝜎 𝑙 1 𝑁 1 𝑅 𝑐 1 2 sin 2 ( 𝜋 𝑁 1 ) ( 𝑙 𝑝 1 2𝜋 ) 2 + 𝜎 𝑙 2 𝑅 𝑐 2 2 sin 2 ( 𝜋 𝑁 2 ) ( 𝑙 𝑝 2 2𝜋 ) 2 ] 𝐵 ̇𝑎2 
Since we have agreed with the University of Twente to compare the results of the 𝑁 2 -uplet of 𝑁 1uplets model and of JackPot on the coupling losses per sinusoidal cycle per unit axial length 𝑄 𝑙 , we have to make use of the relation

𝑄 𝑙 (𝑧) = ∫ 𝑃 𝑙 𝑑𝑡 𝑇 0
where 𝑇 is the time period of the sinusoidal cycles (𝑇 = 1/𝑓 with 𝑓 = 0.05𝐻𝑧).

Since

∫ 𝐵 ̇𝑎2 𝑑𝑡 𝑇 0 = 2𝐵 𝑝 2 𝜋 2 𝑓
where 𝐵 𝑝 = 1𝑇 is the amplitude of the sinusoidal cycles, from the expression of 𝑃 𝑙 above we have

𝑄 𝑙 = 4𝐵 𝑝 2 𝜋 2 𝑓𝑁 2 [𝜎 𝑙 1 𝑁 1 𝑅 𝑐 1 2 sin 2 ( 𝜋 𝑁 1 ) ( 𝑙 𝑝 1 2𝜋 ) 2 + 𝜎 𝑙 2 𝑅 𝑐 2 2 sin 2 ( 𝜋 𝑁 2 ) ( 𝑙 𝑝 2 2𝜋 ) 2 ]
Using 𝑁 1 = 3, 𝑁 2 = 6 and the values of the effective parameters given in Table 13 and Table 14, we have computed the following coupling losses per sinusoidal cycle per unit axial length 𝑄 𝑙 = 19.22𝐽. 𝑚 -1 /𝑐𝑦𝑐𝑙𝑒

We have found this value to be about 40% higher than the one computed by JackPot which was 13.35𝐽. 𝑚 -1 /𝑐𝑦𝑐𝑙𝑒.

IV.4.3 Discussions

In order to understand the origin of the differences between the results of the 𝑁 2 -uplet of 𝑁 1 -uplets model and those of the numerical codes, several numerical effects have been investigated (changes of spatial discretization, length of conductor and initial phase shifts between elements) but none of them were responsible for the 30-40% discrepancy.

As a matter of fact, it appears that, for both geometries, the coupling power is almost exclusively due to the inter-bundle currents (i.e. superstage); the difference is then bound to come from considerations made at the superstage scale.

In our approach, the local transverse voltages and conductances between any element of a bundle and any element of an adjacent bundle are all set to their respective average 𝑈 𝑎𝑣𝑔 and 𝜎 𝑎𝑣𝑔 . We then tend to underestimate the local transverse conductance 𝜎 𝑙𝑜𝑐 (compared to the one of JackPot or THELMA) and overestimate the local transverse voltage 𝑈 𝑙𝑜𝑐 between close elements of adjacent bundles and vice versa for distant elements. The local power dissipated between elements of adjacent bundles being equal to 𝑃 𝑙𝑜𝑐 = 𝜎 𝑙𝑜𝑐 𝑈 𝑙𝑜𝑐 2 , it is legitimate to expect that the antagonistic effects cancel each other out so that the average power dissipated between adjacent bundles would be close to 𝑃 𝑎𝑣𝑔 = 𝜎 𝑎𝑣𝑔 𝑈 𝑎𝑣𝑔 2 . However 𝜎 𝑙𝑜𝑐 , and thus 𝑃 𝑙𝑜𝑐 , are always zero between distant elements in THELMA and JACKPOT but this is not the case in our model. Consequently, we slightly overestimate the total coupling power computed by the numerical codes.

Therefore, our model turns out to be a conservative one and, although probably systematically overestimating the overall heat load deposited in the conductor as compared to the numerical prediction, it will rather lead to an over-dimensioning of the magnets, which, on the point of view of their operability, remains on the safe side.

Furthermore, since we have compared our analytical model on two different geometries with two different reference numerical codes, we can be fairly confident about the fact that the overestimation of our model is very likely to remain in the range found, i.e. about 30-50% more than the values computed by the numerical codes.

Knowing this characteristic of the model is precious and consistent with our objective of providing a rational analytical tool of conductor design with respect to coupling losses.

In addition, in the comparison with THELMA, we have also seen that the agreement on the induced currents lies in the range of 15%; this is also an important point as it shows that our analytical model is also legitimate for the study of the stability of a conductor.

To make an overall comment, at this stage of development, we have established an analytical model which possesses the expected features on the point of view of mathematical expression simplicity and ease of implementation. The present benchmarking exercise has shown that, when compared to the numerical approaches currently available, it still keeps its relevancy at the expense of some conservativeness. Therefore, the model can actually be trusted and, to a large extent, used for calculations when a two-stage cable description is adapted.

The future improvements remaining would aim at reducing the gap of our model with the numeric approaches, for example by considering correction factors for the potential map, depending on the stage considered. In this regard model refinements will be interesting to conduct.

IV.5 Experimental work

IV.5.1 Presentation of Josefa facility

The Josefa facility is located at IRFM CEA Cadarache and is used both for characterizing the critical current of a conductor with respect to the magnetic field and to the temperature to which it is subject, and for measuring the magnetization cycles of the conductor, which allow the determination of its hysteresis and coupling losses.

It features two liquid helium baths: one in which the superconducting dipole coil responsible for the application of a magnetic field on the conductor is immersed (its temperature is fixed to 4.2K), and one in which the conductor to be tested is immersed (its temperature can be adjusted for the characterization of the critical current of the conductor).

In the following we will focus the presentation of the Josefa facility on its configuration for AC losses measurement. In this configuration, the temperature of the liquid helium bath in which the conductor to be tested is immersed, is fixed to 4.2K.

The length of conductor that can be tested in Josefa facility is limited to 300mm. It is integrated into a sample holder as shown through Figure 67. The sample holder is then immersed in a liquid helium bath in the middle of the dipole coil.

We can see on Figure 67 (a) that a replica in epoxy resin of the conductor is also integrated into the sample holder and that magnetization pick-up coils are wound both on the conductor and on its replica. The replica is used to ensure that the voltage induced in its magnetization pick-up coil by the time variation of a uniform magnetic field is the same than the one induced in the magnetization pick-up coil wound on the conductor. The difference between the voltages induced in both pick-up coils is then proportional to the magnetization of the conductor when subject to a time-varying applied magnetic field. 

IV.5.2 Measurement method of magnetization

First of all, we have seen in section II.5.1.2 that the energy density Q vol dissipated during a cycle of the external magnetic excitation is equal to 𝑄 𝑣𝑜𝑙 = -∫ 𝑀 ⃗⃗⃗ . 𝑑𝐵 ⃗⃗ 𝑎 𝑐𝑦𝑐𝑙𝑒 where 𝑀 ⃗⃗⃗ is here the magnetization inside the conductor and 𝐵 ⃗⃗ 𝑎 is the magnetic field applied on the conductor.

We note 𝑉 𝑖 the voltage induced in the magnetization pick-up coil wound on the conductor and 𝑉 𝑒 the voltage induced in the magnetization pick-up coil wound on the replica in epoxy resin of the conductor. where 𝑉 𝑖 𝐵 ̇𝑎 is the voltage in the pick-up coil of the conductor due to the time variation of the applied magnetic field 𝐵 𝑎 and 𝑉 𝑖 𝑀 ̇0 is the voltage (in the same pick-up coil) due to the time variation of the magnetization 𝑀 0 of the conductor. 𝑉 𝑒 𝐵 ̇𝑎 and 𝑉 𝑒 𝑀 ̇0 follow the same definition than 𝑉 𝑖 𝐵 ̇𝑎 and 𝑉 𝑖 𝑀 ̇0 but for the pick-up coil of the replica.

Since the pick-up coil wound on the replica has the same characteristics that the one wound on the conductor, we have

𝑉 𝑒 𝐵 ̇𝑎 = 𝑉 𝑖 𝐵 ̇𝑎

As in the Speedy facility, the magnetization pick-up coils are also connected via a Wheatstone bridge such that the measured voltage 𝑉 𝑚 is equal to 𝑉 𝑚 = 𝑅 𝑖 𝑉 𝑒 -𝑅 𝑒 𝑉 𝑖 𝑅 𝑖 + 𝑅 𝑒 where 𝑅 𝑖 and 𝑅 𝑒 are the electrical resistances of the Wheatstone bridge (see Figure 36).

Given the fact that we have 𝑉 𝑒 𝐵 ̇𝑎 = 𝑉 𝑖 𝐵 ̇𝑎 , we have set 𝑅 𝑖 and 𝑅 𝑒 such that 𝑅 𝑖 = 𝑅 𝑒 = 𝑅 0 = 981𝛺. In order to determine the links between 𝑉 𝑒 𝑀 ̇0 and 𝑀 ̇0 and 𝑉 𝑖 𝑀 ̇0 and 𝑀 ̇0, we have developed an algorithm whose principle is described below.

Consequently

We first represent the conductor with a large number of infinite straight tubes located on its most outer surface. We then compute the inductance matrix per unit axial length [𝐿] of these infinite straight tubes using the analytical formulae of self and mutual inductance between infinite straight tubes (as in section IV.2.7 ).

This inductance matrix per unit axial length [𝐿] is used in the equation

[𝐿][𝐼 ] = -[𝑥]𝐵 ̇𝑎

where [𝐼 ] is the column vector of the time variation of the currents flowing through the infinite straight tubes and [𝑥] is the column vector of the positions of the infinite straight tubes along the x-axis. This equation enables us to compute the currents induced in the infinite straight tubes by an infinitely fast variation of 𝐵 𝑎 (step function) as

[𝑑𝐼] = -[𝐿] -1 [𝑥]𝑑𝐵 𝑎
Assuming the initial currents flowing through the infinite straight tubes to be zero, we can compute the energy 𝐸 𝑙 stored in the system per unit axial length after the step variation 𝑑𝐵 𝑎 of 𝐵 𝑎 as

𝐸 𝑙 = [𝑑𝐼] 𝑇 [𝐿][𝑑𝐼]
where the notation [𝑑𝐼] 𝑇 refers to the transposition of the column vector [𝑑𝐼] into a line vector.

At the same time we can write

𝐸 𝑙 = - 𝑑𝑀 0 𝑑𝐵 𝑎 2 𝑆
where 𝑆 is the area of superconducting composites in the conductor and 𝑑𝑀 0 is the step variation of the magnetization per unit area 𝑆. Finally, diving the value of 𝑉 𝑚 𝑑𝑡 by that of 𝑑𝑀 0 , we determine the coefficient linking 𝑉 𝑚 to 𝑀 ̇0.

IV.5.3 Measurements on JT-60SA TF conductor

In this section we will present the results issued from the AC losses measurements we have carried out in the Josefa facility on a sample of JT-60SA TF conductor whose photograph is displayed on Figure 68. This conductor is made of 486 strands : 324 NbTi superconducting composites and 162 copper strands [START_REF] Zani | Starting EU Production of Strand and Conductor for JT-60SA Toroidal Field Coils[END_REF]. where 𝑛𝜏 is the apparent time constant in the system.

Note that this approach is only valid when the applied magnetic field 𝐵 𝑎 is slowly time varying so that the coupling between the screening currents is negligible.

For these regimes, the hysteresis losses per unit volume of superconducting composites 𝑄 ℎ𝑦𝑠𝑡 per cycle do not depend on the rate of change of the applied magnetic field 𝐵 𝑎 ; it therefore does not depend on 𝜏 𝑎 .

The total AC losses 𝑄 dissipated in the conductor per unit volume of superconducting composites during a cycle of applied magnetic field 𝐵 𝑎 are then given by 𝑄 = ∫ 𝑃 𝑐𝑜𝑢𝑝 (𝑡) 15. Note that the hysteresis losses of the sample of JT-60SA TF conductor are consistent with those of K006-01C JT-60SA TF strand measured in Speedy facility for the same trapezoidal cycles.

IV.5.3.4 Determination of the average transverse conductance

In this part, we assume that the sample of JT-60SA TF conductor can be modeled with the 𝑁 2 -uplet of 𝑁 1 -uplets model and we will determine the average transverse conductance per unit axial length of the superstage scale, i.e. 𝜎 𝑙 2 , using  the value of the average transverse conductance per unit axial length of the substage scale, i.e. 𝜎 𝑙 1 , we have extracted from the JackPot conductance network  the effective geometrical parameters of the last two cabling stages of a sample of JT-60SA TF conductor which are issued from the results of section IV.5.4

 the coupling losses of the sample of JT-60SA TF conductor we have measured in Josefa facility

In section IV.4.2.4 , we have given the analytical formula of the instant coupling power per unit axial length generated by a slowly time variation of the applied magnetic field 𝐵 𝑎 as 

𝑃 𝑙 = 2𝑁

] 𝐵 ̇𝑎2

Since 𝑃 𝑐𝑜𝑢𝑝 is the instant coupling power per unit volume of superconducting composites, we have the following relation 𝑃 𝑙 = 𝑃 𝑐𝑜𝑢𝑝 𝑆 where 𝑆 = 𝑁 𝑠𝑐 𝜋𝑅 2 is the area of superconducting composites in the conductor. 𝑁 𝑠𝑐 is the number of superconducting composites inside the conductor which is equal to 𝑁 𝑠𝑐 = 324, and 𝑅 is the radius of the superconducting composites which is equal to 𝑅 = 0.405𝑚𝑚.

In addition, we have Note that the order of magnitude of the computed value of 𝜎 𝑙 2 is consistent with those extracted from the conductance networks of THELMA and JackPot (see sections IV.4.1.1 and IV.4.2.3 ).

𝑃
In addition, in the computation of 𝜎 𝑙 2 we have considered that the coupling power generated inside JT-60SA TF conductor was exclusively due to the last two cabling stages, while in reality it is due to the five cabling stages and to the composite stage of JT-60SA TF conductor. Therefore, the value of 𝜎 𝑙 2 we have computed using the 𝑁 2 -uplet of 𝑁 1 -uplets model is bound to be higher than the real one because the coupling power of the superstage scale also includes here the coupling power of the first three cabling stages and of the composite stage. This comparison is the first one, actually not too much developed for reason of time. However, it opens towards a broad analysis with free parameters for both conductances, in order to check the reliability of a two-stage cable description. Furthermore, the actual modeling and conductances sizing would be substantially consolidated by experimental data coming from interbundle resistance measurements. Such extensions are left for future investigations.

IV.5.4.1 Strategy of the IVORA algorithm

Initially, because of the low contrast of the 2D images obtained via X-ray tomography, the automatic strand detection in each slice of the sample was not 100% reliable even though it had a very good success rate (more than 98%). An example of strand detection in a slice of JT-60SA TF conductor is displayed on Figure 75; we can see a false strand detection on the bottom right-hand corner (red circle on the conductor wrapping) and a missing one the bottom left-hand corner. As a result, our first objective was to develop an algorithm able to reconstruct the strand trajectories with a set of strand positions featuring a very small number of missing positions or false detections. In order to do so, we have developed a strategy based on the global consistency of the strands displacement from one slice to the next one. It is sequenced as follows:

 Between strand positions of slice n and those of slice n+1, we apply a first restrictive logical rule mainly based on the closest neighbor approach: this creates a first set of associations between positions of slice n and slice n+1 which does not include the totality of the strands  From this set we create a 2D displacement field (that we call velocity field) between slice n and n+1, we then use it as a tool to associate the strands left aside by the first rule; we use the new complete set of associations to create a new velocity field  We then average the different velocity fields associated with each group of two consecutive slices to generate an average velocity field which constitutes our global association tool  The previous sets of associations are then cleared and we start over the association process but this time using the average velocity field  Every trajectory which is complete (i.e. continuous) after these new associations, are saved and removed from the pool of strand positions so that we are left with the strands that have disappeared (missing or not associated) for at least one slice  To deal with these strands we create a new average velocity field between slices n and n+2 using the set of associations which are both validated between slices n and n+1 and between slices n+1 and n+2

 After the new associations between slices n and n+2, we are left with the strands that have disappeared (missing or not associated) for at least two consecutive slices  We then repeat the process until we have created the average velocity field between slices n and n+5 as we have observed that beyond, we do not get any extra complete trajectory An example of velocity field generated between slice 1 and slice 2 of a sample of JT-60SA TF conductor is displayed on Figure 76. On a 56mm long sample, the IVORA algorithm has been able to reconstruct 100% of the trajectories using 100% complete strand detection while on a 292mm long one it has led to 80% of complete trajectories using also 100% complete strand detection; note that the remaining strand positions are part of fragments of trajectories which are not 292mm long. An example of the reconstruction of strand trajectories is displayed on Figure 77. Using the iterative Fourier transform algorithm described in section IV.4.1.2 and the 80% of complete trajectories of the 292mm long sample, we have been able to extract the effective geometrical parameters of JT-60SA TF conductor (i.e. cabling radii and twist pitches of the different cabling stages); they are displayed on Table 16 together with the cable specifications [START_REF] Zani | Starting EU Production of Strand and Conductor for JT-60SA Toroidal Field Coils[END_REF]. 

V. Conclusions and prospects

In the overall work described in this document, we attempted to address the representation of the coupling losses in a multistage cable with two strategy elements kept along the whole work: encompassing the model expression under the most advanced possible analytical approach and establishing models with a "generic" validity (i.e. for any transient magnetic field regime). In this regard the cable modeling was built increasing step by step the representation scale (strand to CICC) and the cable geometry complexity (single to dual-staged CICC). Although the theoretical way to the development of the CICC analytical model in a sort of ab-initio approach constitutes the major part of the work outcome, other thematic extensions were investigated: the purely numerical way (applicative scripts for the models developed, benchmarking with EU numerical codes, strands trajectories reconstruction out of tomography database) and the purely experimental way (coupling losses measurements at strand scale and at CICC scale). This variety of approaches gives a broader view to the scientific research outcomes obtained in this doctoral project and furthermore allows to more widely open possible paths for the future investigations complementing the present achievements.

During this thesis, we tried to develop our work from the theoretical/analytical side up to the development and implementation of actual working tools directly usable for integration in wider framework (CLASS, IVORA). In the following paragraphs, a complete summary of the present work along with concluding remarks is given. It is reorganized along three main lines: analytical/theoretical works, 3D imaging tools, experimental investigations. An additional specific emphasis is put on numerical models lately developed during this thesis.

V.1 Analytical modeling

V.1.1 Composite strand model development and implementation into CLASS

We have established an original fully generalized analytical representation of the magnetic behavior of a given axisymmetric superconducting composite subject to any time variation of transverse magnetic field. This achievement makes available for the first time a comprehensive analytical model representing composite strands valid for any geometry and any field transient. The associated ad-hoc developed CLASS algorithm produces in this regard complete 2D cartographies of the coupling currents, the electric and magnetic fields and the local power density dissipated inside the composite at any time of transient magnetic field regime. This algorithm being based on analytical formulations, it is easily implementable in multiphysics codes and requires very low CPU resources to be run. Further to its exhaustive and innovative aspect, the present achievement represents a step towards broader modeling objectives, e.g. the evaluation of composites stability limits (associated with thermal models). Besides, the CLASS tool can quantify coupling losses vs. frequency dependence and thus possibly be of a help to design optimized composites.

V.1.2 "Basic" CICC modeling and comparison

We have established and implemented the 𝑁-uplet model which is relevant to the analytical representation of the magnetic shielding occurring in a single cabling stage of a conductor. This configuration is the lowest level of complexity in the CICC representation besides the composite analogy.

The achievement of the modeling at this scale constitutes a significant step towards the modeling of coupling losses in CICCs as it shows that the coupling losses are mainly driven by a very few number of cable parameters and their dependence on these parameters has been identified. Furthermore, the fact that the assumption of the MPAS model is in agreement with the analytical output of the 𝑁-uplet model is central since, at the same time, it provides a theoretical background to the MPAS model and it reinforces the consistency of our model since the MPAS approach has proved its ability to describe the experimental reality.

V.1.3 Entering into the multistage cable configuration

We have established and implemented the 𝑁 2 -uplet of 𝑁 1 -uplets model which represents the behavior of a two cabling stages conductor when subject to any transverse time varying magnetic field. Although surely bearing improvement margins, our model is, in its current version, sufficiently advanced to form a robust basis for further developments, still keeping in line its analytical nature.

We have analytically defined the expression of coupling losses per cycle in analogy with the MPAS model approach. The difference lies in the number of time constants needed to represent the conductor: two in the MPAS model and four in ours. This point is important as it shows both the consistency of the MPAS model, which is in line with the experimental reality (i.e. the losses of conductor can be represented with a reduced set of time constants), and of our model, whose outputs are dependent upon the cable features, and finally found in line with the assumptions of the MPAS model. Moreover the comparison of the results of the 𝑁 2 -uplet of 𝑁 1 -uplets model with those of two reference numerical models (THELMA and JackPot) on two different geometries has shown a fair agreement (30-40% range for losses and 15% for induced currents) and assessed that our model is slightly conservative.

V.2 Experimental validations

Several attempts have been carried out in order to obtain reference values of several strand and cable properties and consolidate our model validity. Unfortunately, technical limitations of the existing facility used during this thesis, have prevented the use of the output data for our models validation. Nevertheless, AC losses measurements have been carried out in CEA Speedy facility on JT-60SA TF and ITER TF strands and the results found (hysteresis losses but mainly time constants) are finally compatible with those found in the literature for similar superconducting composites. More tests could be conducted to build a fairly populated database and confront our model along a statistical approach.

In a more general view, the integration of tailored designed superconducting magnets is essential for the safe and efficient operation of fusion reactors. Optimization of their design (e.g. conductor shape, size and architecture) regarding factors of merit such as electromagnetic or thermo-hydraulic performances is of major importance. The work presented here is included in this long-term framework and, based on the outcomes previously discussed and in complement of the actual state of the art, some prospective remarks can be drawn. First, our development and implementations could easily be integrated into multiphysics platforms and constitute first rational design tools of conductors with respect to their AC losses.

Secondly, these models can also be considered as a strong building material for the study of conductor stability since they are dealing with all the elements of the elaborated modeling (thermal, currents).

And thirdly, our work would be the keystone of the up scale approach on CICC modeling. As a matter of fact, since CICCs feature more than two cabling stages, the sophistication of the representation of their magnetic shielding behavior considering number of stages beyond the 𝑁 2 -uplet of 𝑁 1 -uplets geometry, is to be explored. Due to the complexity of the analytical calculations involved in the development of the 𝑁 2 -uplet of 𝑁 1 -uplets model, a strict replication of the presented approach on a three cabling stages conductor might reveal high difficulties. As tentative suggestion, two options could be considered:

 condense the magnetic shielding effects of two consecutive cabling stages into a single "effective" one with the appropriate partial shielding coefficient and then consider the third stage contribution  consider only the magnetic coupling between consecutive cabling stages assuming/checking low coupling effect between non-consecutive cabling stages.

Another way to use the outputs of the 𝑁 2 -uplet of 𝑁 1 -uplets model would consist in extrapolating the electrical potential at the positions of each strand from the one given by the 𝑁 2 -uplet of 𝑁 1 -uplets model at the center of gravity of the last but one cabling stage of a conductor.

Finally, we have contributed, at our level, to improve knowledge and representation of coupling losses in superconducting cables, providing to the community analytical concepts as well as various tools on this subject. Considering the importance of this phenomenon in the fusion magnet operation, which is, among others, linked to tokamaks safety aspects, this investigation domain should keep the attention of the fusion community. Hopefully further investigations will be carried out on coupling losses, in the aim to consolidate the future fusion reactor operation. Note that if 𝑛 = 1, that is to say if the composite considered consists in a unique zone, it will necessarily be of "F" type since the composite must feature at least one filamentary zone. In this case there will be only one coefficient to determine which is 𝐸 0 2 and using 

C. Method for the automatic generation of [B]

In order to provide the logical tree needed to build the [𝐵] matrix, we first have to express the amplitudes of the surface currents located on the edges of each filamentary zones -thus these contained in (𝐾 0 𝑓 ) -using the formulae given by equations ( 44) and [START_REF] Seiler | Hysteresis Losses and Effective Jc(B) Scaling Law for ITER Nb3Sn Strands, I[END_REF]. In addition, to simplify the construction of the [𝐵] matrix, we consider that there also exist surface currents at every other interface but with zero amplitudes if there are no superconducting filaments to transport them. It is therefore possible to express the relation between the (𝐾 0 𝑖 ) 1≤𝑖≤𝑛 amplitudes and the (𝐸 0 𝑘 ) 2≤𝑘≤2𝑛 coefficients as

[𝐾 0 ] = 1 𝜌 𝑡 1 𝑙 𝑝 2𝜋 [𝑀][𝐸 0 ] (349) 
where [𝐾 0 ] is the column vector of the 𝑛 amplitudes of surface currents located at each interface and [𝑀] is then a 𝑛 × (2𝑛 -1) matrix whose coefficients are dimensionless.

Using equations ( 44) and ( 45) and the previous considerations, we can derive the expressions of lines 𝑖 of [𝑀] matrix which are given in Figure 79 Note that if 𝑛 = 1, there will be only one coefficient (𝐸 0 2 ) as mentioned previously, therefore we have to take only the last coefficient of [𝑀] 𝑛 given by the "F" branch of Figure 79 (c) and obtain [𝑀] = 1 because the next-to-last one is multiplying 𝐸 0 1 which, by assumption, is always zero.

The [𝑀] matrix has been built following the procedure given in Figure 79 and we can now build [𝐵]: we start with 𝑖 = 1 and since 𝑛 > 1 we use Figure 80 (a), the first interface is of "R/F" type, thus which can be numerically solved for the time dependency of the (𝐸 0 𝑖 ) 2≤𝑖≤6 coefficients.

Once again, note that if 𝑛 = 1, the only coefficient to determine will be 𝐸 0 2 . Using 
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 1 Figure 1 : Images of some major tokamaks. Left: JET --Middle: Tore Supra/West -right: EAST

Figure 2 :

 2 Figure 2 : Left: JT-60SA -right: ITER

Figure 3 :

 3 Figure 3 : Left: fission reaction -right: fusion reaction

Figure 4 :

 4 Figure 4 : General magnetic field configuration of a tokamak. The purely toroidal field lines (green) and the twisted field lines (yellow) derived from combination with plasma self-field, are shown. Toroidal Field Coils and Poloidal Field Coils are also shown. Here CS and PF systems are respectively figured by "inner poloidal magnetic field coils" and "outer poloidal magnetic field coils"

Figure 5 :

 5 Figure 5 : Critical surface for NbTi material (see [3]). The absolute B and T limit parameters (critical field and critical temperature) are shown in red.

Figure 6 :

 6 Figure 6 : ITER tokamak 3D cut view. TF, CS and PF magnet systems are indicated. Three PF coils out of the six are pointed by arrows. Human scale at bottom right figures the machine size.

Figure 7 :

 7 Figure 7 : Two ITER CICC illustrations: (left) view of CS conductor, round cable in square jacket; (right) exploded view of TF Model Coil [4] cable, with wrapped petals and central spiral

Figure 8 :

 8 Figure 8 : Different types of superconducting strands for fusion magnets. From left to right: ITER Nb3Sn internal tin type; ITER Nb3Sn bronze route type; ITER NbTi; JT-60SA NbTi

Figure 9 :

 9 Figure 9 : Examples of successive cabling stages for ITER CICC. Note the addition of wrappings at the 4th stage

Figure 10 :

 10 Figure 10 : Examples of ITER transient current variations in CS (left) and PF (right) system. The data refer to ITER baseline 15 MA scenario.
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 11 Figure 11 : Detailed architecture of a JT-60SA TF conductor strand (0.81 mm diameter)
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 12 Figure 12 : Examples of different designs of NbTi (above) and Nb3Sn (below) superconducting composite
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 13 Schematic views of coupling currents inside the filamentary zone (only outer edge filaments are represented)

Figure 14 :

 14 Figure 14 : Coupling currents flowing in the outer edge filaments looping back using the filamentary zone and the outer resistive layer in the case of a F/R composite
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 15 Figure 15 : Logical chain of calculation of induced currents
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 1617 Figure 16 : Scheme showing the generic cross-section geometry of composites considered by our model
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 18 Figure 18 : Scheme of an external copper sheath



  the surface current amplitudes (𝐾 0 𝑘 ) 1≤𝑘≤𝑛 flowing through the edges of the filamentary zones  the distribution of the electric field 𝐸 ⃗⃗  the distribution of the transverse current 𝐽 ⃗ flowing through the resistive parts of the strand  the distribution of the magnetic field 𝐵 ⃗⃗ inside the composite as function of the (𝐸 0 𝑘 ) 2≤𝑘≤2𝑛 coefficients and of its electrical (resistivities) and geometrical (radii of each zone and twist pitch of the filaments) parameters only. The expressions of the surface current amplitudes (𝐾 0 𝑘 ) 1≤𝑘≤𝑛 has been given in equation (349)

  compute the average of 𝐵 ̇𝑖2 (𝑡) over the time period 𝑇 = 1/𝑓 of the applied magnetic signal, we have

  121) where [𝑋] 𝑘 and [𝑌 𝑏 ] 𝑘 are respectively the 𝑘 𝑡ℎ component of the column vectors [𝑋] and [𝑌 𝑏 ], and 𝜏 𝑐 𝑘 = [𝜏 𝑐 ] 𝑘𝑘 is the 𝑘 𝑡ℎ diagonal element of [𝜏 𝑐 ], i.e. the 𝑘 𝑡ℎ eigenvalue of [𝜏].

1 2

 1 and 〈cos(𝜔𝑡)sin(𝜔𝑡)〉 = 0.
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 19 Figure 19 : Scheme of cross-section of F type composite

  0 2 using equation (72) and the relevant expressions of [𝐴], [𝑌] and [𝐵] that we have previously derived (i.e. [𝐴] = [𝑌] = [𝐵] = 1)

Figure 20 :

 20 Figure 20 : Scheme of cross-section of R/F/R type composite

{ 𝑅 2 =

 2 𝑅 = 0.81/2𝑚𝑚 = 0.405𝑚𝑚 𝑅 1 = 𝑅/√2 ≃ 0.286𝑚𝑚 𝑙 𝑝 = 15𝑚𝑚 so that the area of the first zone equals that of the second zone, i.e. 𝜋𝑅 1 2 = 𝜋(𝑅 2 2 -𝑅 1 2 ).
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 21 Figure 21 : Schemes of cross-sections of F/R (left) and R/F (right) type composites
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 22 Figure 22 : Q vs f curves of F/R type composite with different values of 𝝆 𝒕 𝟐 /𝝆 𝒕 𝟏 for 𝑩 𝒂 = 𝑩 𝒑 𝒔𝒊𝒏(𝝎𝒕), 𝑩 𝒑 = 𝟐𝑻

Figure 23 :

 23 Figure 23 : Q vs f curves of R/F type composite with different values of 𝝆 𝒕 𝟐 /𝝆 𝒕 𝟏 for 𝑩 𝒂 = 𝑩 𝒑 𝒔𝒊𝒏(𝝎𝒕), 𝑩 𝒑 = 𝟐𝑻

Figure 24 :

 24 Figure 24 : Q vs f curve of R/F type composite with 𝝆 𝒕 𝟐 /𝝆 𝒕 𝟏 = 𝟗 (curve 5) and its decomposition into two classical curves for 𝑩 𝒂 = 𝑩 𝒑 𝒔𝒊𝒏(𝝎𝒕), 𝑩 𝒑 = 𝟐𝑻

Figure 25 :

 25 Figure 25 : Q vs f curve of R/F type composite with 𝝆 𝒕 𝟐 /𝝆 𝒕 𝟏 = 𝟗 (curve 5) for 𝑩 𝒂 = 𝑩 𝒑 𝒔𝒊𝒏(𝝎𝒕), 𝑩 𝒑 = 𝟐𝑻 and corresponding curve with single time constant approach

Figure 26 :

 26 Figure 26 : The four different layouts considered in our study

Figure 27 :

 27 Figure 27 : Q vs f curves for composites with common design parameters and different layouts for 𝑩 𝒂 = 𝑩 𝒑 𝒔𝒊𝒏(𝝎𝒕), 𝑩 𝒑 = 𝟐𝑻

Figure 28 :

 28 Figure 28 : Simulated Q vs f curve for K006-01C JT-60SA TF composite and 𝑩 𝒂 = 𝑩 𝒑 𝒔𝒊𝒏(𝝎𝒕), 𝑩 𝒑 = 𝟑𝑻 from measurements made in the low frequency region with CEA SPEEDY facility (i.e. with 𝝆 𝒕 𝟐 = 𝟐. 𝟎𝟗𝟔 × 𝟏𝟎 -𝟏𝟎 𝜴. 𝒎)

Figure 29 :

 29 Figure 29 : Simulated Q vs f curve for K006-01C JT-60SA TF composite and 𝑩 𝒂 = 𝑩 𝒑 𝒔𝒊𝒏(𝝎𝒕), 𝑩 𝒑 = 𝟑𝑻 with 𝝆 𝒃 𝒆 𝒃 = 𝟔 × 𝟏𝟎 -𝟏𝟓 𝜴. 𝒎 𝟐 and thus 𝝆 𝒕 𝟐 = 𝟓. 𝟑𝟔𝟕 × 𝟏𝟎 -𝟏𝟎 𝜴. 𝒎

Figure 30 :

 30 Figure 30 : Simulated time solutions of screening currents, magnetic fields and average losses for K006-01C JT-60SA TF composite and 𝑩 𝒂 = 𝑩 𝒑 𝒔𝒊𝒏(𝟐𝝅𝒇𝒕) with 𝑩 𝒑 = 𝟑𝑻, 𝒇 = 𝟏𝑯𝒛

  (a) : First instant (Figure 84) (b) : Second instant (Figure 88) (c) : Third instant (Figure 92) Figure 31 : Examples of the different holders with superconducting composite and copper pick-up coils

Figure 32 :

 32 Figure 32 : Superconducting coil used for the application of a magnetic field on the tested composite

33 :

 33 Examples of the different holders with superconducting composite and copper pick-up coils

  (a) : The three holders dissociated (b) : The three holders assembled (c) : Schematic view of pick-up coils and composite for assembled holders Figure 34 : Assembly of the different holders with their pick-up coils and the superconducting composite

Figure 35 :

 35 Figure 35 : Schematic overview of the Speedy facility

Figure 36 :

 36 Figure 36 : Electrical scheme of the Wheatsone bridge used in Speedy facility

  𝑣𝑜𝑙 = -∫ 𝑀 ⃗⃗⃗ . 𝑑𝐵 ⃗⃗ 𝑖 𝑐𝑦𝑐𝑙𝑒 = -∫ 𝑀 ⃗⃗⃗ . 𝑑𝐵 ⃗⃗ 𝑎 𝑐𝑦𝑐𝑙𝑒 -∫ 𝑀 ⃗⃗⃗ . 𝑑𝐵 ⃗⃗ 𝑟𝑒𝑎𝑐𝑡 𝑐𝑦𝑐𝑙𝑒 In addition we have 𝐵 ⃗⃗ 𝑖 = 𝜇 0 (𝐻 ⃗ ⃗⃗ + 𝑀 ⃗⃗⃗ ) = 𝜇 0 (𝐻 ⃗ ⃗⃗ 𝑎 + 𝐻 ⃗ ⃗⃗ 𝑑 + 𝑀 ⃗⃗⃗ )
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 37 Figure 37 : Schematic cross-section of three turns of sample in Speedy facility

Figure 38 :

 38 Figure 38 : Strands measured in the Speedy facility
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 39 Figure 39 : Schematic pattern of a trapezoidal magnetic cycle

Figure 40 :

 40 Figure 40 : Schematic pattern of a positive trapezoidal magnetic cycle

  ) and spatially uniform within the group of twisted elements  The transport current is zero  The geometry is infinitely long along the z-axis  The superconducting shell is not saturated and thus the electric field is zero along the trajectory of an element  The current 𝐼 𝑘 (𝑧) carried by the superconducting shell of element 𝑘 at 𝑧 is uniformly distributed over its circumference  The elements are lightly twisted, i.e. (2𝜋𝑅 𝑐 /𝑙 𝑝 ) 2 ≪ 1 where 𝑅 𝑐 is the cabling radius of the elements and 𝑙 𝑝 their twist pitch  The time variation of the external magnetic field 𝐵 𝑎 is slow enough to neglect the displacement current so that Kirchhoff's current law applies

Figure 41 :

 41 Figure 41 : Scheme showing the cross-section geometry of a triplet (𝑵 = 𝟑)

2 ≪ 1 .

 21 This assumption is similar to the one we have used in the composite study. Using Ohm's law, we have 𝐼 𝑘𝑘+1 (𝑧) = 𝑑𝐺𝑈 𝑘𝑘+1 (𝑧) = 𝜎 𝑙 𝑑𝑧𝑈 𝑘𝑘+1 (𝑧)

  𝐴 𝑧 𝑒 𝑧 ⃗⃗⃗⃗ Using this assumption, equation (135) reduces to 𝛷 𝑘𝑘+1 (𝑧) = ∫ (𝐴 𝑧 𝑘+1 (𝑧′) -𝐴 𝑧 𝑘 (𝑧′))𝑑𝑧′ 𝑧 0 (136)

Figure 42 :

 42 Figure 42 : Scheme showing the integration path of equation (135)

  𝐼 𝑘 (𝑧 + 𝑙 𝑝 /𝑁) = 𝐼 𝑘+1 (𝑧)Using solution (148), this implies for any 𝑧 and for 1 ≤ 𝑘 ≤ 𝑁 𝑐 𝑘 (𝑧 + 𝑙 𝑝 /𝑁) + 𝑑 𝑘 = 𝑐 𝑘+1 𝑧 + 𝑑 𝑘+1Using this relation at 𝑧 = 0 and at 𝑧 = -𝑙 𝑝 /𝑁, we can deduce that for 1 ≤ 𝑘 ≤ 𝑁 𝑐 𝑘+1 = 𝑐 𝑘 we immediately conclude that for 1 ≤ 𝑘 ≤ 𝑁 𝑐 𝑘 = 0 which in turn implies that for 1 ≤ 𝑘 ≤ 𝑁 𝑑 𝑘+1 = 𝑑 𝑘 which also gives for 1 ≤ 𝑘 ≤ 𝑁 𝑑 𝑘 = 0

Figure 43 :

 43 Figure 43 : Scheme showing the integration area 𝚺 of equation (158)The position of the center of element 𝑝 at 𝑧 𝑃 noted 𝑂 𝑝 is given by (132)

Figure 44 :

 44 Figure 44 : Scheme showing the considered infinite tubes of current for a triplet (𝑵 = 𝟑) Now let us note 𝐴 𝑧 𝑝 (𝑀 𝑘 ) the magnetic vector potential felt at point 𝑀 𝑘 (center of element 𝑘 at 𝑧 0 ) and due to the infinite hollow tube 𝑝 which is centered on (𝑥 𝑝 (𝑧 0 ), 𝑦 𝑝 (𝑧 0 )) with radius equal to 𝑅 𝑓 and carrying a current 𝐼 𝑝 (𝑧 0 ) = 𝐼 0 cos ( 2𝜋𝑧 0 𝑙 𝑝 + 2𝜋(𝑝-1) 𝑁

𝐼 0 (

 0 𝑡) = 𝜏 𝑒𝑥𝑡 𝑅 𝐶 𝐵 ̇𝑎(𝑡) 𝜇 0 From a physical point of view, this means that at any time 𝑡 the time-variation of a transverse and uniform internal magnetic field 𝐵 𝑖 (𝑡) give rise to currents of the form 𝐼 𝑘 (𝑧) = 𝐼 0 cos ( 2𝜋𝑧 𝑙 𝑝 + 2𝜋(𝑘-1) 𝑁 ) inside the elements with 𝐼 0 (𝑡) = 𝜏 𝑒𝑥𝑡 𝑅 𝐶 𝐵 ̇𝑖(𝑡) 𝜇 0

Figure 45 :

 45 Figure 45 : 𝒏𝒌 values as function of 𝑹 𝒇 /𝑹 ratio and of 𝑵

  ) and spatially uniform within the conductor  The transport current is zero  The geometry is infinitely long along the z-axis  The superconducting shell is not saturated and thus the electric field is zero along the trajectory of an element  The current 𝐼 𝑘 1 𝑘 2 (𝑧) carried by the superconducting shell of element 𝑘 1 of substage 𝑘 2 at 𝑧 is uniformly distributed over its circumference  The substages and elements are lightly twisted, i.e. (

Figure 46 :

 46 Figure 46 : Scheme showing the cross-section geometry of a triplet of triplets (𝑵 𝟐 = 𝟑, 𝑵 𝟏 = 𝟑)

Figure 47 :

 47 Figure 47 : Scheme showing the cross-section geometry of a compacted triplet of triplets (𝑵 𝟐 = 𝟑, 𝑵 𝟏 = 𝟑)

  𝑝 1 𝑝 2(𝛼) 𝑒 𝑠 𝑝 1 𝑝 2 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ the surface current flowing through the superconducting shell of element 𝑝 1 of substage 𝑝 2 having the general form 𝐾 𝑝 1 𝑝 2 (𝛼) (𝑧) = 𝐾 0 (𝛼) cos(𝛼𝑧 + 𝜑 𝑝 1 𝑝 2 ) with 2 (𝑧) is the abscissa along the center of element 𝑝 1 of substage 𝑝 2 at 𝑧 and 𝑒 𝑠 𝑝 1 𝑝 2 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗(𝑧) is the unit vector tangent to the trajectory of the center of element 𝑝 1 of substage 𝑝 2 at 𝑧).

Figure 48 :

 48 Figure 48 : Scheme showing the integration area 𝚺 of equation (268)

′Figure 49 :

 49 Figure 49 : Example of the geometrical meaning of equation (298) for 𝒌 ′ 𝟏 = 𝒌 ′ 𝟐 = 𝟏

Figure 50 :Figure 51 :Figure 52 :Figure 53 :Figure 52 and

 5051525352 Figure 50 : 𝑬 𝒏 𝟏 (𝜶 𝒌 )(𝜶 𝒌+𝒏 ) coefficients for different values of k and n for the first set of parameters

Figure 54 to

 54 Figure 54 to Figure 57 are the equivalent of Figure 50 to Figure 53 but for the second set of parameters.

Figure 54 :Figure 55 :

 5455 Figure 54 : 𝑬 𝒏 𝟏 (𝜶 𝒌 )(𝜶 𝒌+𝒏 ) coefficients for different values of k and n for the second set of parameters

Figure 58 :

 58 Figure 58 : Cross-section positions of the infinite straight tubes for a sextuplet of triplets

Figure 59 :

 59 Figure 59 : Variations of currents induced in the sextuplet of triplets displayed on Figure 58 computed using the straight infinite tubes approach (solid lines) and the 𝑵 𝟐 -uplet of 𝑵 𝟏 -uplets model (dashed lines)

Figure 60 :

 60 Figure 60 : Fit of the trajectory of CE 1 generated by THELMA using our effective geometrical parameters

Figure 61 :

 61 Figure 61 : Electrical scheme of a cross-section of a sextuplet of quadruplets (𝑵 𝟐 = 𝟔, 𝑵 𝟏 = 𝟒)

Figure 62 :

 62 Figure 62 : Conversion of the electrical circuit considered by THELMA

Figure 63 :

 63 Figure 63 : Current induced in CE 1 computed by THELMA (red curve) and by our model (blue curve)

Figure 64 :

 64 Figure 64 : Cross-section (a) and 3D geometry (b) generated by JackPot

(

  Figure 67 : Scheme of the assembly of the conductor and of its replica in epoxy resin into the sample holder

From

  the relation above, we can determine 𝑑𝑀 0 as𝑑𝑀 0 = -2𝐸 𝑙 𝑑𝐵 𝑎 𝑆In parallel, we compute the flux changes 𝑑𝛷 𝑖 = 𝑉 𝑖 𝑑𝑡 and 𝑑𝛷 𝑒 = 𝑉 𝑒 𝑑𝑡 in each of the pick-up coils due to the variations [𝑑𝐼] of the currents flowing through the infinite straight tubes and deduce the value of 𝑉 𝑚 𝑑𝑡.

Figure 68 :

 68 Figure 68 : Photograph of a cross-section of a sample of JT-60SA TF conductorThe magnetic system of Josefa facility composed of the power supply and of the dipole coil can only generate a magnetic field on the conductor in one direction; we have therefore measured the AC losses dissipated in a sample of JT-60SA TF conductor during positive trapezoidal cycles.We recall that a positive trapezoidal cycle starts from 0T, rises to +𝐵 𝑚 in a time 𝜏 𝑎 , then stays at +𝐵 𝑚 for a time 𝑇 𝑝 (typically around 5s), and finally goes back to 0T again in a time 𝜏 𝑎 ; the pattern is displayed again on Figure69. We have carried out two series of measurements for 𝐵 𝑚 = 1𝑇 and 𝐵 𝑚 = 1.5𝑇 and for each series we have used 12 different values of 𝜏 𝑎 , between 1.58𝑠 and 25𝑠. Again, in order, to increase the reliability of the measured AC losses, for each (𝐵 𝑚 , 𝜏 𝑎 ) couple we have submitted the conductor to 5 consecutive cycles and only kept the average of the AC losses over these 5 cycles. The curves of AC losses per cycle per unit volume of conductor 𝑄 as function of 1/𝜏 𝑎 we have measured in Josefa facility are displayed through Figure 70 to Figure 73.

Figure 69 :Figure 70 :Figure 71 :Figure 72 :Figure 73 :

 6970717273 Figure 69 : Schematic pattern of a positive trapezoidal magnetic cycle

2

 2 ℎ𝑦𝑠𝑡where 𝑇 is the time period of a cycle.For a positive trapezoidal cycle, 𝐵̇𝑎2 is constant during the rising and falling ramps and equal toThe total duration of the ramps being 2𝜏 𝑎 , we can write∫ 𝑃 𝑐𝑜𝑢𝑝 (𝑡) can deduce that 𝑄 is a linear function of 1ℎ𝑦𝑠𝑡Using the experimental values of 𝑎 and 𝑏 given in Figure71and Figure73, we have determined the hysteresis losses and the apparent time constant 𝑛𝜏 of the sample of JT-60SA TF conductor we have measured in Josefa facility; the results are displayed in Table

Figure 75 :

 75 Figure 75 : Slice of JT-60SA TF conductor obtained by X-ray tomography with detected strand positions

Figure 76 :

 76 Figure 76 : Velocity field between slice 1 and slice 2 of a sample of JT-60SA TF conductor

Figure 77 :

 77 Figure 77 : Reconstructed strand trajectories of a sample of JT-60SA TF conductor

  For a "R/F/R" composite, we obtain the following [𝐴] matrix and [𝑌] column vector Using equation (348), we can finally give the matrix equation governing the "R/F/R" composite in steady-state regime [

  Figure 78 (c) we have [𝐴] = 1 and [𝑌] = 1. The first equation given by the "F" branch of Figure 78 (c) is out of interest here since it would give an equation on 𝐸 0 1 which, by assumption, is always zero.

  ; the [M] i notation represents line 𝑖 of [𝑀].

Figure 79 : 2 ]

 792 Figure 79 : Logical tree used to build [𝑴]We will give an example of application of the logical tree to build [𝑀] as we have done it previously for [𝐴] and [𝑌]; we choose the same "R/F/R" composite.In our example 𝑛 = 3 and thus [𝑀] will be a (2𝑛 -1) × 𝑛 = 5 × 3 matrix. We start with 𝑘 = 1 and since 𝑛 > 1 we use Figure79 (a): the first interface is of "R/F" type, thus[𝑀] 1 = [1 -𝜌 𝑡 1 𝜌 𝑡 2 ( 𝑅 2 𝑅 1 ) 2 -𝜌 𝑡 1𝜌 𝑡 2 0 0]. Then for 𝑘 = 2, we have an interface of "F/R" type, using Figure79

5 .

 5 and 𝑖 = 2.The second interface (i.e. for 𝑘 = 2) is of "F/R" type, using Figure80(b), we can deduce that [𝐵] 2 = [𝑆] 3 [𝑀] and 𝑖 = 3 because here 2𝑘 -1 = 2 * 2 -1 = 3, then we have [𝐵] 3 = [𝑆] 4 [𝑀] and 𝑖 = 4 because 2𝑘 = 2 * 2 = 4, and [𝐵] 4 = [0 The ultimate layer is of "R" type therefore, using Figure 80 (c), we finally conclude that [𝐵] 5 = [0 0 0 1 1]. According to expression (351) with 𝑘 = 2, we have [𝑆] 3 = -[( and according to expression (353) with 𝑘 = 2, we have [𝑆] 4 = [0 1 1]. Using the expressions of [𝑀], [𝑆] 3 and [𝑆] 4 , we can now give the explicit expressions of [𝐵] 2 = [𝑆] 3 [𝑀] and [𝐵] 3 = [𝑆] 4 [𝑀]: [𝐵]

  Figure 80 (c) we have [𝐵] = [𝑆] 2 [𝑀] and since in this case we have seen that [𝑀] = 1, we have [𝐵] = 1 because [𝑆] 2 = 1 when 𝑛 = 1 according to (353). The first equation given by the "F" branch of Figure 80 (c) is out of interest here since it would give an equation on 𝐸 ̇01 which, by assumption, is always zero.

Figure 91 :

 91 Figure 91 : Simulated cartography of axial electric field at the third instant of Figure 30 for K006-01C JT-60SA TF composite and 𝑩 𝒂 = 𝑩 𝒑 𝒔𝒊𝒏(𝟐𝝅𝒇𝒕) with 𝑩 𝒑 = 𝟑𝑻, 𝒇 = 𝟏𝑯𝒛

Figure 92 :Figure 96 :Figure 99 :Figure 100 :Figure 105 :Figure 106 :Figure 107 :Figure 108 :Figure 109 :Figure 110 :Figure 111 :Figure 112 :Figure 113 :Figure 114 :Figure 117 :Figure 118 :Figure 119 :Figure 120 :Figure 121 :Figure 122 :

 929699100105106107108109110111112113114117118119120121122 Figure 92 : Simulated cartography of power density at the third instant of Figure 30 for K006-01C JT-60SA TF composite and 𝑩 𝒂 = 𝑩 𝒑 𝒔𝒊𝒏(𝟐𝝅𝒇𝒕) with 𝑩 𝒑 = 𝟑𝑻, 𝒇 = 𝟏𝑯𝒛

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Table 1

 1 

		Valid for every magnetic regimes in tokamaks	Prediction of losses from measured features of CICC	Light computing time	Information on coupling currents
		Analytical approach		
	Multistage cable model (CEA)		++	+++ ++
		Heuristic approach		
	«𝒏𝝉» approach (most common) one time constant			+++	
	MPAS model (CEA, used at ITER) several time constants			+++	
		Numerical approach		
	THELMA code (University of Bologna, IT)		+++		+++
	JackPot code (University of Twente, NL)		+++		+++
	Our objective				

  Louzguiti, L. Zani, D. Ciazynski, B. Turck, F. Topin, Development of an Analytical-Oriented Extensive Model for AC Coupling Losses in Multilayer Superconducting Composite, I.E.E.E. Trans. on App. Superconductivity, Vol. 26, April 2016, Art. No. 4700905. (reference [40])  A. Louzguiti, L. Zani, D. Ciazynski, B. Turck, F. Topin, Modélisation analytique de la puissance thermique générée par les courants de couplage à l'intérieur d'un composite supraconducteur, Actes du Congrès de la Société Française de Thermique (SFT), Mars 2017, 8 p. (reference [41])

  Regarding the calculation of 𝐸 𝑟 , we first need to introduce another equation. According to the homogeneous representation (assumption A4), we can assign an effective transverse resistivity 𝜌 𝑡 to the filamentary zone; this implies 𝐸 𝑡 ⃗⃗⃗⃗ = 𝜌 𝑡 𝐽 𝑡 ⃗⃗⃗ with 𝐸 𝑡 ⃗⃗⃗⃗ the transverse electric field and 𝐽 𝑡 ⃗⃗⃗ the transverse current.

	𝐸 𝜃 = -	𝑙 𝑝 2𝜋	𝐵 ̇𝑎 cos 𝜃	(22)
	Since ∇ ⃗ ⃗⃗ . 𝐽 ⃗ = 0 from assumption A6, we have ∇ ⃗ ⃗⃗ . (𝐽 𝑡 ⃗⃗⃗ + 𝐽 𝑧 ⃗ ⃗⃗⃗ ) = ∇ ⃗ ⃗⃗ . ( 𝜌 𝑡 𝐸 𝑡 ⃗⃗⃗⃗⃗	) =	1 𝜌 𝑡	∇ ⃗ ⃗⃗ . (𝐸 𝑡 ⃗⃗⃗⃗ ) = 0 because of the
	longitudinal invariance assumed by A1 (i.e.	𝜕 𝜕𝑧 = 0). This gives the new equation
	∇ ⃗ ⃗⃗ . 𝐸 𝑡 ⃗⃗⃗⃗ = 0
	each filamentary zone, the relation 𝐸 𝑠 ⃗⃗⃗⃗⃗ = 0 ⃗⃗ (coming from assumption A4) implies 𝐸 𝑠 = 0 which
	can be alternatively expressed as 𝐸 𝑟 ⃗⃗⃗⃗⃗ . 𝑒 𝑠 ⃗⃗⃗⃗ + 𝐸 𝜃 ⃗⃗⃗⃗⃗ . 𝑒 𝑠 ⃗⃗⃗⃗ + 𝐸 𝑧 ⃗⃗⃗⃗⃗ . 𝑒 𝑠 ⃗⃗⃗⃗ = 0. Using equation (13), we then obtain
	𝐸 𝜃 𝑠𝑖𝑛𝛼 + 𝐸 𝑧 𝑐𝑜𝑠𝛼 = 0
	Making use of equation (14), this is equivalent to
	𝐸 𝜃 = -	𝑙 𝑝 2𝜋𝑟	𝐸 𝑧	(21)
	which, combined with (20), gives			

)

  Let us note 𝑉 𝑡 𝑘 the value of 𝑉 𝑡 in a resistive layer numbered 𝑘, since it is solution of (27), its general form must be Note that the general formulation of 𝑉 𝑡 𝑘 is chosen so that the 𝑎 𝑘 𝑖 and 𝑏 𝑘 𝑖 coefficients have the dimension of an electric field.

		∞	
	𝐸 𝑟 𝑘 = -∑ [𝑎 𝑘 𝑖 cos(𝑖𝜃) + 𝑏 𝑘 𝑖 sin(𝑖𝜃)]	𝑖(𝑟/𝑅 𝑘 ) 𝑖-1
		𝑖=-∞,𝑖≠0 ∞		(29)
	{	𝑖=-∞,𝑖≠0 𝐸 𝜃 𝑘 = ∑ [𝑎 𝑘 𝑖 sin(𝑖𝜃) -𝑏 𝑘 𝑖 cos(𝑖𝜃)]	𝑖(𝑟/𝑅 𝑘 ) 𝑖-1
	𝑉 𝑡 𝑘 (𝑟, 𝜃) = ∑ ∞ 𝑖=-∞ [𝑎 𝑘 𝑖 cos(𝑖𝜃) + 𝑏 𝑘 𝑖 sin(𝑖𝜃)]	𝑅 𝑘 (𝑟/𝑅 𝑘 ) 𝑖 , 𝑎 𝑘 𝑖 ∈ ℝ, 𝑏 𝑘 𝑖 ∈ ℝ	(28)
	Injecting the expression of 𝑉 𝑡 𝑘 into equation (26) yields the general forms of the components of the
	transverse electric field in each resistive zone	

  For an interface of resistive/resistive type, Kirchhoff's current law requires the continuity of the radial component of the current density 𝐽 𝑟

	𝐸 𝑟 𝑘 (𝑅 𝑘 ) 𝜌 𝑡 𝑘	=	𝐸 𝑟 𝑘+1 (𝑅 𝑘 ) 𝜌 𝑡 𝑘+1

  𝜃 𝑘 and 𝐸 𝑧 𝑘 in each layer together with those of 𝐾 𝑠 𝑘 for steady-state regimes

	𝐸 𝑟 𝑘 = -[𝐸 0 2𝑘-1 ( 𝑅 𝑘 𝑟	2 )	+ 𝐸 0 2𝑘 ] sin(𝜃)
		𝐸 𝜃 𝑘 = [𝐸 0 2𝑘-1 ( 𝑅 𝑘 𝑟	2 )	-𝐸 0 2𝑘 ] cos(𝜃)
		𝐸 𝑧 𝑘 = 𝑟𝐵 ̇𝑎 cos 𝜃
	{	𝐾 𝑠 𝑘 = 𝐾 0 𝑘 cos(𝜃)

  47)Let us note 𝐴 𝑧 𝑖𝑛𝑡 and 𝐴 𝑧 𝑒𝑥𝑡 the values of 𝐴 𝑧 , the magnetic vector potential due to the supercurrent 𝐾 0 𝑘 cos(𝜃) flowing at 𝑟 = 𝑅 𝑘 , respectively inside and outside the supercurrent. Since 𝐴 𝑧 𝑖𝑛𝑡 and 𝐴 𝑧 𝑒𝑥𝑡 𝑟/𝑅 𝑘 ) 𝑖 , 𝑎 𝑘 𝑖𝑛𝑡𝑖 ∈ ℝ, 𝑏 𝑘 𝑖𝑛𝑡𝑖 ∈ ℝ 𝐴 𝑧 𝑒𝑥𝑡 (𝑟, 𝜃) = ∑ [𝑎 𝑒𝑥𝑡 𝑖 cos(𝑖𝜃) + 𝑏 𝑒𝑥𝑡 𝑖 sin(𝑖𝜃)]

		∞	
		𝐴 𝑧 𝑖𝑛𝑡 (𝑟, 𝜃) = ∑[𝑎 𝑖𝑛𝑡 𝑖 cos(𝑖𝜃) + 𝑏 𝑖𝑛𝑡 𝑖 sin(𝑖𝜃)] 𝑖=0 𝑅 𝑘 (0	(48)
	{	𝑖=-∞	𝑅 𝑘 (𝑟/𝑅 𝑘 ) 𝑖 , 𝑎 𝑘 𝑒𝑥𝑡𝑖 ∈ ℝ, 𝑏 𝑘 𝑒𝑥𝑡𝑖 ∈ ℝ
	are solutions of (47), their general form must be	

  ⃗⃗ 𝑘 (98) Decomposing vectors 𝐽 ⃗ 𝑘 and 𝐸 ⃗⃗ 𝑘 in the cylindrical frame (𝑒 𝑟 ⃗⃗⃗⃗, 𝑒 𝜃 , ⃗⃗⃗⃗⃗⃗ 𝑒 𝑧 ⃗⃗⃗⃗), equation (98) becomes 𝑃 𝑘 = 𝐽 𝑟 𝑘 𝐸 𝑟 𝑘 + 𝐽 𝜃 𝑘 𝐸 𝜃 𝑘 + 𝐽 𝑧 𝑘 𝐸 𝑧 𝑘

  according to assumption A5 and because 𝜌 𝑡 𝑘 and 𝜌 𝑙 𝑘 are of the same order of magnitude.

				2 𝐸 𝑧 𝑘 𝜌 𝑙 𝑘 2 + 𝐸 𝜃 𝑘 𝐸 𝑟 𝑘 2 𝜌 𝑡 𝑘	=	𝐸 𝑧 𝑘 2 2 + 𝐸 𝜃 𝑘 𝐸 𝑟 𝑘 2	𝜌 𝑡 𝑘 𝜌 𝑙 𝑘	≤	𝐸 𝑧 𝑘 2 𝐸 𝜃 𝑘 2	𝜌 𝑡 𝑘 𝜌 𝑙 𝑘	(101)
	Using relation (21), i.e. 𝐸 𝜃 = -	𝑙 𝑝 2𝜋𝑟 𝐸 𝑧 , valid in each filamentary zone, we can deduce
						𝐸 𝑧 𝑘 2 𝐸 𝜃 𝑘 2	𝜌 𝑡 𝑘 𝜌 𝑙 𝑘	= (	2𝜋𝑟 𝑙 𝑝	)	2 𝜌 𝑡 𝑘 𝜌 𝑙 𝑘	≪ 1
	since ( 2𝜋𝑟 𝑙 𝑝	)	2	≪ 1 𝑃 𝑘 =	𝐸 𝑟 𝑘 2 + 𝐸 𝜃 𝑘 2 𝜌 𝑡 𝑘	(102)

We can therefore reduce equation (101) in each filamentary zone to the following On another side, in the resistive zones relation

[START_REF] Morgan | Theoretical Behavior of Twisted Multicore Superconducting Wire in a Time-Varying Uniform Magnetic Field[END_REF]

, i.e. 𝐸 𝜃 = -𝑙 𝑝 2𝜋𝑟 𝐸 𝑧 , is not valid but we can still consider that 𝐸 𝑧 𝑘 2 ≪ 𝐸 𝑟 𝑘 2 + 𝐸 𝜃 𝑘

  we now replace 𝐸 0 2 by

		2 𝜇 0	𝜌 𝑡 1	2𝜋 𝑙 𝑝	(𝐵 𝑎 -𝐵 𝑖 ) in the equation on 𝐸 0 2 , we have
	2 𝜇 0	𝜌 𝑡 1	2𝜋 𝑙 𝑝	(𝐵 𝑎 -𝐵 𝑖 ) +	𝑙 𝑝 2𝜋	(𝐵 ̇𝑎 -𝐵 ̇𝑖) =	𝑙 𝑝 2𝜋	𝐵 ̇𝑎
	Multiplying both sides by	𝜇 0 2	1 𝜌 𝑡 1	𝑙 𝑝 2𝜋	

Table 2 Common parameters

 2 

	N ame	Compo site radius R	Proportion of superconductor 𝜆	Twist pitch of filaments 𝑙 𝑝	Filaments radius 𝑟 𝑓𝑖𝑙	Resistivities of copper 𝜌 𝐶𝑢 and matrix 𝜌 𝑚
	V alue	𝟎. 𝟒𝟎𝟓𝒎𝒎	𝟎. 𝟒	𝟏𝟓𝒎𝒎	𝟏𝟎𝝁𝒎	𝟏. 𝟓 × 𝟏𝟎 -𝟏𝟎 𝜴. 𝒎

Table 3 Specific parameters for the different layouts

 3 

	Layout number	1	2		3			4	
	Type	F	F/R	R/F		R/F/R	
	𝝀 𝑭	𝟎. 𝟒	𝟎. 𝟔		𝟎. 𝟔			𝟎. 𝟔	
	Radii of zones	𝑅 1	𝑅 1	𝑅 2	𝑅 1	𝑅 2	𝑅 1	𝑅 2	𝑅 3
	Value (𝝁𝒎)	𝟒𝟎𝟓	𝟑𝟑𝟏	𝟒𝟎𝟓	𝟐𝟑𝟒	𝟒𝟎𝟓	𝟏𝟔𝟓 𝟑𝟕𝟎 𝟒𝟎𝟓
	Transverse resistivities of zones	𝜌 𝑡 1	𝜌 𝑡 1	𝜌 𝑡 2	𝜌 𝑡 1	𝜌 𝑡 2	𝜌 𝑡 1	𝜌 𝑡 2	𝜌 𝑡 3

Value (× 𝟏𝟎

-𝟏𝟎 𝜴. 𝒎) 𝟐. 𝟒𝟓 𝟑. 𝟏𝟗 𝟏. 𝟓 𝟏. 𝟓 𝟑. 𝟏𝟗 𝟏. 𝟓 𝟑. 𝟏𝟗 𝟏. 𝟓

  For a trapezoidal magnetic cycle falling from 𝐵 𝑚 to -𝐵 𝑚 in a time of 2𝜏 𝑎 and rising again to 𝐵 𝑚 after a plateau of duration 𝑇 𝑝 , we can calculate the coupling losses per unit volume of strand as

	We can now give the expressions of the (𝐸 0 𝑘 ) 2≤𝑘≤8	coefficients
					𝐸 0 2 = 𝐸 0 3 = 0 𝑙 𝑝 𝐵 ̇𝑎 2𝜋	
			𝐸 0 5 =	𝐸 0 4 = 𝑠 1 𝑅 2 𝑙 𝑝 2𝜋 2 𝑠 2 𝑅 2 2 -𝑠 1 𝑅 3 𝐵 ̇𝑎	2	𝑙 𝑝 2𝜋	𝐵 ̇𝑎
			𝐸 0 6 =	𝑠 2 𝑅 2 𝑠 2 𝑅 2 2 -𝑠 1 𝑅 3 2	2	𝑙 𝑝 2𝜋	𝐵 ̇𝑎
			𝐸 0 7 =	𝑠 2 𝑅 2	𝑅 2 2 -𝑠 1 𝑅 3 2	2	𝑙 𝑝 2𝜋	𝐵 ̇𝑎
			{ 𝐸 0 8 =	-𝑅 2 𝑠 2 𝑅 2 2 -𝑠 1 𝑅 3 2	2	𝑙 𝑝 2𝜋	𝐵 ̇𝑎
	Using formula (112) we can express the instant power per unit volume of strand as
	𝑃 ̅ (𝑡) = ∑ 𝛽 𝑗 𝐸 0 𝑗 8 𝑗=2	2 (𝑡)	= [𝛽 2 + 𝛽 4 +	(𝑠 1	2 𝛽 5 + 𝑠 2 (𝑠 2 𝑅 2 2 𝛽 6 + 𝛽 7 + 𝛽 8 )𝑅 2 2 -𝑠 1 𝑅 3 2 ) 2	4	] (	𝑙 𝑝 2𝜋	2 )	𝐵 ̇𝑎2
	𝑄 = ∫ 𝑃 ̅ (𝑡)𝑑𝑡 2𝜏 𝑎 0 𝜏 𝜌 𝑡 2 = + ∫ 𝑃 ̅ (𝑡)𝑑𝑡 𝑇 𝑝 +2𝜏 𝑎 𝑇 𝑝 = [𝛽 2 + 𝛽 4 + (𝑠 1 2 𝛽 5 + 𝑠 2 2 𝛽 6 + 𝛽 7 + 𝛽 8 )𝑅 2 4 (𝑠 2 𝑅 2 2 -𝑠 1 𝑅 3 2 ) 2 ] ( 𝑙 𝑝 2𝜋 2 4𝐵 𝑚 ) 𝑅 2 2 -𝑅 1 2 𝑅 4 2 [ 𝑎 4𝐵 𝑚 2 ( 2𝜋 𝑙 𝑝 ) 2 -𝛽 2 -(𝑠 1 2 𝛽 5 + 𝑠 2 2 𝛽 6 + 𝛽 7 + 𝛽 8 )𝑅 2 4	2
							𝑠 1 𝑅 3	2	𝑙 𝑝 2𝜋	𝐵 ̇𝑎

𝑎

𝑄 is therefore a linear function of 1/𝜏 𝑎 and can alternatively be written as 𝑄 = 𝑎/𝜏 𝑎 With the expression of 𝛽 4 given by (113) for 𝑗 = 2, we can now derive 𝜌 𝑡 2 as function of 𝑎

  has led us to 𝜌 𝐶𝑢𝑁𝑖 = 1.730 × 10 -7 𝛺. 𝑚 We now have the transverse resistivities needed to compute 𝜌 𝑡 2 , i.e.

	𝜌 𝑡 1 = 2.278 × 10 -10 𝛺. 𝑚
	{	𝜌 𝑡 3 = 1.730 × 10 -7 𝛺. 𝑚
	𝜌 𝑡 4 = 2.278 × 10 -10 𝛺. 𝑚
	The geometrical parameters of the K006-01C JT-60SA TF strand are the following
			𝑅 1 = 185𝜇𝑚
		𝑅 2 = 327𝜇𝑚
		𝑅 3 = 346𝜇𝑚
		𝑅 4 = 405𝜇𝑚
		{	𝑙 𝑝 = 15𝑚𝑚
	of 𝜌 𝑡 2	
	𝜌 𝑏 𝑒 𝑏 = 𝜌 𝑚 𝑟 𝑓𝑖𝑙	(1 -𝜆 𝐹 )𝜌 𝑚 -(1 + 𝜆 𝐹 )𝜌 𝑡 2 (1 -𝜆 𝐹 )𝜌 𝑡 2 -(1 + 𝜆 𝐹 )𝜌 𝑚

These information, combined with the measured value of 𝑎, has led us to 𝜌 𝑡 2 = 2.096 × 10 -10 𝛺. 𝑚 which is very close to the value of 𝜌 𝐶𝑢 , i.e. to the values of 𝜌 𝑡 1 and 𝜌 𝑡 4 .

From the formulae presented in the previous section, it is also possible to deduce 𝜌 𝑏 𝑒 𝑏 as function

  assuming that for most of the cycle 𝐵 ̇𝑖 = 𝐵 ̇𝑎, i.e.

	Now, using the fact that 𝑛 = 2 for cylindrical composites and that here 𝐵 ̇𝑎2 = (𝐵 𝑚 /𝜏 𝑎 ) 2 with 𝐵 𝑚 =
	3𝑇, we can derive												
					𝑄 ≃ ( 𝑅 𝑓 𝑅	2 8𝜏𝐵 𝑚 ) 𝜇 0	2	1 𝜏 𝑎	
	which can be expressed as									
							𝑄 = 𝑎/𝜏 𝑎			
	with												
						𝑎 ≃ ( 𝑅 𝑓 𝑅	2 8𝜏𝐵 𝑚 ) 𝜇 0	2	
	𝑄 = ( 𝑅 𝑓 𝑅	)	2	[∫ 2𝜏 𝑎 0	𝑛𝜏𝐵 ̇𝑖2 𝜇 0	𝑑𝑡	+ ∫ 𝑇 𝑝 +2𝜏 𝑎 𝑇 𝑝	𝑛𝜏𝐵 ̇𝑖2 𝜇 0	𝑑𝑡	] ≃ (	𝑅 𝑓 𝑅	) 2 𝑛𝜏𝐵 ̇𝑎2 𝜇 0	4𝜏 𝑎

  𝑉 𝑖 𝐵 ̇𝑎 + 𝑉 𝑖 𝑀 ̇= 𝑛 𝑖 𝜋𝑟 𝑖 2 𝐵 ̇𝑎 + 𝑉 𝑖 𝑀 𝑉 𝑒 𝐵 ̇𝑎 + 𝑉 𝑒 𝑀 ̇= 𝑛 𝑒 𝜋𝑟 𝑒 2 𝐵 ̇𝑎 + 𝑉 𝑒 𝑀 ̇where 𝑛 𝑖 and 𝑛 𝑒 are the number of turns of the inner and outer pick-up coils respectively and 𝑟 𝑖 and 𝑟 𝑒 are their respective winding radii. Now replacing 𝑉 𝑖 and 𝑉 𝑒 in the expression of 𝑉 𝑚 , we obtain

		V
	𝑒 𝑀 ̇0 = 𝑉 𝑚 = 𝑅 𝑖 𝑉 𝑒 𝑀 ̇-𝑅 𝑒 𝑉 𝑖 𝑀 Ṙ𝑖 + 𝑅 𝑒 + 𝑛 𝑒 𝜋𝑟 𝑒	2 𝑅 𝑖 -𝑛 𝑖 𝜋𝑟 𝑖 𝑅 𝑖 + 𝑅 𝑒	2 𝑅 𝑒	𝐵 ̇𝑎

  Outside the cylinder, we have 𝐵 ⃗⃗ 𝑒𝑥𝑡 = 𝜇 0 𝐻 ⃗ ⃗⃗ 𝑒𝑥𝑡 and inside, we have 𝐵 ⃗⃗ 𝑖𝑛𝑡 = 𝜇 0 (𝐻 ⃗ ⃗⃗ 𝑖𝑛𝑡 + 𝑀 ⃗⃗⃗ ). Given the spatial form of the magnetic field inside the cylinder, we can assume that{𝐻 ⃗ ⃗⃗ 𝑖𝑛𝑡 = 𝐻 𝑖𝑛𝑡 𝑥 𝑒 𝑥 ⃗⃗⃗⃗⃗ + 𝐻 𝑖𝑛𝑡 𝑦 𝑒 𝑦 ⃗⃗⃗⃗⃗ 𝑀 ⃗⃗⃗ = 𝑀 𝑥 𝑒 𝑥 ⃗⃗⃗⃗⃗ + 𝑀 𝑦 𝑒 𝑦 ⃗⃗⃗⃗⃗ where 𝐻 𝑖𝑛𝑡 𝑥 ,𝐻 𝑖𝑛𝑡 𝑦 , 𝑀 𝑥 and 𝑀 𝑦 do not depend on 𝑟 and 𝜃.

	Therefore				
					𝐻 𝑖𝑛𝑡 𝑥 = 0
			{	𝐻 𝑖𝑛𝑡 𝑦 =	𝐾 0 2
			𝐵 𝑥 𝑖𝑛𝑡 (𝑟, 𝜃) = 0
	𝐵 𝑥 𝑒𝑥𝑡 (𝑟, 𝜃) = -	𝜇 0 𝐾 0 2	( 𝑅 𝑟	2 )	sin(2𝜃)
	{	𝜇 0 𝐾 0 2 2 𝑅 𝐵 𝑦 𝑖𝑛𝑡 (𝑟, 𝜃) = -𝐵 𝑦 𝑒𝑥𝑡 (𝑟, 𝜃) = 𝜇 0 𝐾 0 2 ( 𝑟 ) cos(2𝜃)
	The continuity equation of 𝐻 ⃗ ⃗⃗ at 𝑟 = 𝑅 leads to
	𝑒 𝑟 ⃗⃗⃗⃗ × [𝐻 ⃗ ⃗⃗ 𝑒𝑥𝑡 (𝑅, 𝜃) -𝐻 ⃗ ⃗⃗ 𝑖𝑛𝑡 (𝑅, 𝜃)] = [	𝐾 0 2	cos(𝜃) + 𝐻 𝑖𝑛𝑡 𝑥 sin(𝜃) -𝐻 𝑖𝑛𝑡 𝑦 cos(𝜃)] 𝑒 𝑧 ⃗⃗⃗⃗ = 0 ⃗⃗

  𝑒 𝑀 ̇0 -𝑅 𝑒 𝑉 𝑖 𝑀 assuming the bridge is balanced. We can now give the relation between the measured voltage 𝑉 𝑚 and the average magnetization 𝑀 0 as 𝜇 0 𝑀 0 = -𝑓 𝑔𝑒𝑜 ∫ 𝑉 𝑚 𝑑𝑡 𝑅 𝑖 + 𝑅 𝑒 𝑛 𝑒 𝑟 𝑒 𝑅 𝑖 + 𝑛 𝑖 𝑟 𝑖 𝑅 𝑒 ] To compute the energy per unit volume of strand dissipated during a magnetic cycle, we can now replace 𝑀 ⃗⃗⃗ with 𝑀 0 𝑒 𝑦 ⃗⃗⃗⃗⃗ and 𝐵 ⃗⃗ 𝑎 with 𝐵 𝑎 𝑒 𝑦 ⃗⃗⃗⃗⃗ in 𝑄 𝑣𝑜𝑙 = -∫ 𝑀 ⃗⃗⃗ . 𝑑𝐵 ⃗⃗ 𝑎 𝑐𝑦𝑐𝑙𝑒

	with						
	𝑓 𝑔𝑒𝑜 =	2𝑎 𝜋 2 𝑅 2 [				
	𝑅 𝑖 + 𝑅 𝑒	̇0	= -	𝜇 0 𝜋 2 𝑅 2 2𝑎	[	𝑛 𝑒 𝑟 𝑒 𝑅 𝑖 + 𝑛 𝑖 𝑟 𝑖 𝑅 𝑒 𝑅 𝑖 + 𝑅 𝑒	] 𝑀 ̇0

Table 5 Experimental hysteresis losses and time constant of K006-01C JT-60SA TF strand for trapezoidal cycles with different values of 𝑩 𝒎

 5 

	𝐵 𝑚 (𝑇)	1.5	2.5	3
	𝑄 ℎ𝑦𝑠𝑡 (𝑚𝐽/𝑐𝑚 3 /𝑐𝑦𝑐𝑙𝑒) per unit volume of strand	98.9	134.1	145.3
	𝝉(𝒎𝒔)	20.9	17.6	17.0

Table 6 Experimental hysteresis losses and time constant of K006-01C JT-60SA TF strand for positive trapezoidal cycles with different values of 𝑩 𝒎

 6 

	𝐵 𝑚 (𝑇)	1	1.5
	𝑄 ℎ𝑦𝑠𝑡 (𝑚𝐽/𝑐𝑚 3 /𝑐𝑦𝑐𝑙𝑒) per unit volume of strand	31.5	42.7
	𝝉(𝒎𝒔)	20.4	18.8

  and considering that 𝐵 ̇𝑎 ≃ 𝐵 ̇𝑖 since the time periods of the sinusoids are long enough (i.e. much longer that the highest time constant of the strand) From the expression above we immediately see that the measured curve of 𝑄(𝑓) should be a linear function of 𝑓 that can be expressed as

			𝑃 𝑐𝑜𝑢𝑝 (𝑡) ≃	2𝜏𝐵 ̇𝑎2 𝜇 0	( 𝑅 𝑓 𝑅	)	2	=	2𝜏 𝜇 0	(2𝜋𝑓𝐵 𝑝 ) 2 (	𝑅 𝑓 𝑅	2 )	cos 2 (2𝜋𝑓𝑡)
	Since 𝑄 𝑐𝑜𝑢𝑝 = ∫ 𝑃 𝑐𝑜𝑢𝑝 (𝑡)𝑑𝑡 𝑇 0	where 𝑇 = 1/𝑓 is the time period of the sinusoidal magnetic
	excitation, we can deduce that														
	𝑄 𝑐𝑜𝑢𝑝 ≃	2𝜏 𝜇 0	(2𝜋𝑓𝐵 𝑝 ) 2 (	𝑅 𝑓 𝑅	) 2	∫ cos 2 (2𝜋𝑓𝑡) 𝑑𝑡 𝑇 0	=	2𝜏 𝜇 0	(2𝜋𝑓𝐵 𝑝 ) 2 (	𝑅 𝑓 𝑅	) 2 𝑇 2	=	4𝜋 2 𝐵 𝑝 𝜇 0	2 𝜏	(	𝑅 𝑓 𝑅	2 )	𝑓
	We can now express 𝑄 as function of 𝑓								
			𝑄(𝑓) = 𝑄 ℎ𝑦𝑠𝑡 + 𝑄 𝑐𝑜𝑢𝑝 =	4𝜋 2 𝐵 𝑝 𝜇 0	2 𝜏	( 𝑅 𝑓 𝑅	2 )	𝑓 + 𝑄 ℎ𝑦𝑠𝑡
											𝑄(𝑓) = 𝑎𝑓 + 𝑏
	with																	
									{	𝑎 =	4𝜋 2 𝐵 𝑝 𝜇 0	2 𝜏	( 𝑅 𝑓 𝑅	)	2
													𝑏 = 𝑄 ℎ𝑦𝑠𝑡

Table 7 Experimental hysteresis losses and time constant of K006-01C JT-60SA TF strand for sinusoidal cycles with different values of

 7 𝐁 𝐩 and 𝐁 𝐨𝐟𝐟

	𝐵 𝑝 (𝑇)/𝐵 𝑜𝑓𝑓 (𝑇)	1.5 / 0	2.5 / 0	3 / 0	1.25 / 1.5
	𝑄 ℎ𝑦𝑠𝑡 (𝑚𝐽/𝑐𝑚 3 /𝑐𝑦𝑐𝑙𝑒) per unit volume of strand	101.1	134.5	150.5	78.5
	𝝉(𝒎𝒔)	21.3	18.0	17.1	14.9

Table 8 Experimental hysteresis losses and time constant of F 0796-1 ITER TF strand for trapezoidal cycles with different values of 𝐁 𝐦

 8 

	𝐵 𝑚 (𝑇)	1.5	2.5	3
	𝑄 ℎ𝑦𝑠𝑡 (𝑚𝐽/𝑐𝑚 3 /𝑐𝑦𝑐𝑙𝑒) per unit volume of strand	137.7	190.5	212.7
	𝝉(𝒎𝒔)	1.4	1.2	1.0

Table 9 Experimental hysteresis losses and time constant of F 0796-1 ITER TF strand for sinusoidal cycles

 9 

	𝐵 𝑝 (𝑇)/𝐵 𝑜𝑓𝑓 (𝑇)	1.4 / 1.5
	𝑄 ℎ𝑦𝑠𝑡 (𝑚𝐽/𝑐𝑚 3 /𝑐𝑦𝑐𝑙𝑒) per unit volume of strand	86.5
	𝝉(𝒎𝒔)	0.9

  𝐼 𝑘 (𝑧)In addition, we can notice that the position of the center of element 𝑘 at 𝑧 + 𝑙 𝑝 /𝑁 corresponds to that of the center of element 𝑘 + 1 at 𝑧, indeed

													𝑁
													= 0
													𝑘=1
		Using solution (148), this implies for any 𝑧
			∑ [4𝜎 𝑙 𝑅 𝑐 𝐵 ̇𝑎 𝑠𝑖𝑛 2 ( 𝑁 𝜋 𝑁 𝑘=1	) (	𝑙 𝑝 2𝜋	) 2	cos (	2𝜋𝑧 𝑙 𝑝	+	2𝜋(𝑘 -1) 𝑁 ) + 𝑐 𝑘 𝑧 + 𝑑 𝑘 ]	= 0
		Since ∑ 𝑁 𝑘=1	cos ( 2𝜋𝑧 𝑙 𝑝	+	2𝜋(𝑘-1) 𝑁	) = 0 , we can deduce that
													𝑁
													∑ 𝑐 𝑘	= 0
													𝑘=1
													𝑁
													𝑘=1 { ∑ 𝑑 𝑘	= 0
	(	𝑥 𝑘 (𝑧 + 𝑦 𝑘 (𝑧 +	𝑙 𝑝 𝑁 ) 𝑙 𝑝 𝑁 ) )	=	𝑅 𝑐 cos( 𝑅 𝑐 sin( 2𝜋 (𝑧 + 2𝜋 (𝑧 + 𝑙 𝑝 𝑙 𝑝	𝑙 𝑝 𝑁 ) 𝑙 𝑝 𝑁 )	+ +	2𝜋(𝑘 -1) 𝑁 ) 2𝜋(𝑘 -1) 𝑁 )	= ( 𝑅 𝑐 cos( 𝑅 𝑐 sin( 2𝜋𝑧 2𝜋𝑧 𝑙 𝑝 𝑙 𝑝	+ +	2𝜋𝑘 𝑁 ) 2𝜋𝑘 𝑁 ) ) = (	𝑥 𝑘+1 (𝑧) 𝑦 𝑘+1 (𝑧) )
					(								)

  element 𝑝 at 𝑧 𝑃 , we can thus write𝑑𝑠 𝑝 (𝑧 𝑃 ) = ‖𝑑𝑂𝑂 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ‖Since 𝑒 𝑠 𝑝 ⃗⃗⃗⃗⃗⃗(𝑧 𝑃 ) is the unit vector tangent to the trajectory of the center of element 𝑝 at 𝑧 𝑃 and 𝑂 𝑃 is the center of element 𝑝 at 𝑧 𝑃 , we have

				𝑒 𝑠 𝑝 ⃗⃗⃗⃗⃗⃗(𝑧 𝑃 ) =	𝑑𝑂𝑂 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ‖𝑑𝑂𝑂 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ‖			
	Consequently, the term 𝑒 𝑠 𝑝 ⃗⃗⃗⃗⃗⃗(𝑧 𝑃 ). 𝑒 𝑧 ⃗⃗⃗⃗𝑑𝛴 in equation (158) can be expressed as	
	𝑒 𝑠 𝑝 ⃗⃗⃗⃗⃗⃗(𝑧 𝑃 ). 𝑒 𝑧 ⃗⃗⃗⃗𝑑𝛴 =	𝑑𝑂𝑂 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ‖𝑑𝑂𝑂 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ‖	. 𝑒 𝑧 ⃗⃗⃗⃗𝑅 𝑓 𝑑𝛹 𝑃 ‖𝑑𝑂𝑂 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ‖ = 𝑑𝑂𝑂 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ . 𝑒 𝑧 ⃗⃗⃗⃗𝑅 𝑓 𝑑𝛹 𝑃 = 𝑅 𝑓 𝑑𝛹 𝑃 𝑑𝑧 𝑃
	Therefore	replacing	𝑒 𝑠 𝑝 ⃗⃗⃗⃗⃗⃗(𝑧 𝑃 ). 𝑒 𝑧 ⃗⃗⃗⃗𝑑𝛴	with	the	expression	above	and

  Let us now express the distance 𝑃𝑀 𝑘 (𝑧, 𝑧 𝑃 , 𝛹 𝑃 ).Since 𝑃 is the source point located on the superconducting shell of element 𝑝 at 𝑧 𝑃 and 𝑀 𝑘 is the center of element 𝑘 at 𝑧, their coordinates in the (𝑒 𝑥 After some mathematical treatment involving trigonometric simplifications, we can express 𝑃𝑀 𝑘 (𝑧, 𝑧 𝑃 , 𝛹 𝑃 ) 2 as

		2 ∫ 𝑧 𝑝 =-∞ +∞	∫ 𝛹 𝑝 =0 2𝜋	cos (	2𝜋𝑧 𝑃 𝑙 𝑝 𝑃𝑀 𝑘 (𝑧, 𝑧 𝑝 , 𝛹 𝑝 ) + 2𝜋(𝑝 -1) 𝑁 )	𝑑𝛹 𝑃 𝑑𝑧 𝑃	(159)
					⃗⃗⃗⃗⃗, 𝑒 𝑦 , ⃗⃗⃗⃗⃗⃗ 𝑒 𝑧 ⃗⃗⃗⃗) basis are given by
	𝑂𝑃 ⃗⃗⃗⃗⃗⃗ = 𝑂𝑂 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗ + 𝑂 𝑃 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗ = [𝑥 𝑝 (𝑧 𝑃 ) + 𝑅 𝑓 𝑐𝑜𝑠(𝛹 𝑃 )]𝑒 𝑥 ⃗⃗⃗⃗⃗ + [𝑦 𝑝 (𝑧 𝑃 ) + 𝑅 𝑓 𝑠𝑖𝑛(𝛹 𝑃 )]𝑒 𝑦 ⃗⃗⃗⃗⃗ + 𝑧 𝑃 𝑒 𝑧 ⃗⃗⃗⃗ { 𝑂𝑀 𝑘 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ = 𝑥 𝑘 (𝑧)𝑒 𝑥 ⃗⃗⃗⃗⃗ + 𝑦 𝑘 (𝑧)𝑒 𝑦 ⃗⃗⃗⃗⃗ + 𝑧𝑒 𝑧 ⃗⃗⃗⃗
	Consequently, we have				
	𝑃𝑀 𝑃𝑀 𝑘 (𝑧, 𝑧 𝑃 , 𝛹 𝑃 ) 2 =	+4𝑅 𝑐 𝑅 𝑓 sin (	4𝑅 𝑐 𝜋(𝑧 -𝑧 𝑃 ) 𝑙 𝑝 + 2 sin 2 ( 𝜋(𝑘 -𝑝) 𝜋(𝑧 -𝑧 𝑃 ) 𝑙 𝑝 𝑁 ) sin (	+ 𝜋(𝑧 + 𝑧 𝑃 ) 𝜋(𝑘 -𝑝) 𝑁 𝑙 𝑝 + ) 𝜋(𝑘 + 𝑝 -2) 𝑁	-𝛹 𝑃 )
		{				+𝑅 𝑓	2 + (𝑧 -𝑧 𝑃 ) 2

𝑘 (𝑧, 𝑧 𝑃 , 𝛹 𝑃 ) 2 = [𝑥 𝑘 (𝑧) -𝑥 𝑝 (𝑧 𝑃 ) -𝑅 𝑓 𝑐𝑜𝑠(𝛹 𝑃 )] 2 + [𝑦 𝑘 (𝑧) -𝑦 𝑝 (𝑧 𝑃 ) -𝑅 𝑓 𝑠𝑖𝑛(𝛹 𝑃 )]

2 + [𝑧 -𝑧 𝑃 ] 2

  ), we can now replace 𝐼 𝑘 (𝑧) with

			𝐼 0 cos (	2𝜋𝑧 𝑙 𝑝	+	2𝜋(𝑘 -1) 𝑁 )
	and from equation (179), we can also replace the term
	𝜎 𝑙 [2𝐴 ̇𝑧𝑟 𝑘	(𝑧) -𝐴 ̇𝑧𝑟 𝑘-1	(𝑧) -𝐴 ̇𝑧𝑟 𝑘+1	(𝑧)]
	with											
	𝜎 𝑙 𝛾𝐼 ̇04 sin 2 ( 𝑁 𝜋	) cos (	2𝜋𝑧 𝑙 𝑝	+	2𝜋(𝑘 -1) 𝑁 )
	The new global equation of the system is thus reduced to
	𝐼 0 + 4𝜎 𝑙 𝛾 sin 2 ( 𝑁 𝜋	) (	𝑙 𝑝 2𝜋	)	2	𝐼 ̇0 = 4𝜎 𝑙 𝑠𝑖𝑛 2 ( 𝑁 𝜋	) (	𝑙 𝑝 2𝜋	)	2	𝑅 𝐶 𝐵 ̇𝑎	(183)
	and can now simply be expressed as									
		𝐼 0 + 𝜏𝐼 ̇0 =	𝜏 𝑒𝑥𝑡 𝑅 𝐶 𝐵 ̇𝑎 𝜇 0	(184)
	with											
	𝜏 = 4𝜎 𝑙 𝛾 sin 2 ( 𝑁 𝜋	) (	2𝜋 𝑙 𝑝	)	2
	{ 𝜏 𝑒𝑥𝑡 = 4𝜎 𝑙 𝜇 0 sin 2 ( 𝑁 𝜋	) (	2𝜋 𝑙 𝑝	)	2

  By superposition, we can now express the magnetic vector potential 𝐴 𝑧 (𝑀 𝑘 ) felt at point 𝑀 𝑘 (center of element 𝑘 at 𝑧 0 ) and due to all the tubes as𝐴 𝑧 (𝑀 𝑘 ) = ∑ 𝐴 𝑧 𝑝 (𝑀 𝑘 )Using equations (195) and (198), we can now express 𝐴 𝑧 (𝑀 𝑘 ) as

	Now let us consider the two sums present in equation (195) : In addition, from some analytical calculations we have carried out, we have
					If 𝑁 is odd, the sums can be expressed as 𝑁 𝑁-1 2 ∑ cos ( 𝑁 -1 2 2𝜋𝑗 𝑗=1 𝑁 ) = 0𝑖𝑓𝑁𝑖𝑠𝑒𝑣𝑒𝑛
							∑ 𝑎 𝑝𝑘 𝑝=1 𝑝≠𝑘 𝑁-1 𝑁 { ∑ cos ( 2 2𝜋𝑗 = ∑[𝑎 𝑘+𝑗𝑘 + 𝑎 𝑘-𝑗𝑘 ] 𝑗=1 𝑁-1 2 𝑗=1 𝑁 ) = -1/2𝑖𝑓𝑁𝑖𝑠𝑜𝑑𝑑	1 ≤ 𝑝 ≤ 𝑁
	𝐴 𝑧 𝑝 (𝑀 𝑘 ) = { As a result, we can simplify (197) as ∑ 𝑏 𝑝𝑘 -𝜇 0 𝐼 0 2𝜋 cos ( 2𝜋𝑧 0 𝑙 𝑝 + 2𝜋(𝑝 -1) = ∑[𝑏 𝑘+𝑗𝑘 + 𝑏 𝑘-𝑗𝑘 ] 0𝑖𝑓𝑝 = 𝑘 𝑁 ) ln ( 2𝑅 𝑐 𝑅 𝑓 sin | 𝜋(𝑝 -𝑘) 𝑁 |) 𝑖𝑓𝑝 ≠ 𝑘 𝑝=1 𝑗=1 { 𝑝≠𝑘  If 𝑁 is even, the sums can be expressed as 𝑁 𝑁 2 𝑝≠𝑘 -1 ∑ 𝑎 𝑝𝑘 𝑁 𝑝=1 = -ln ( 2𝑅 𝑐 𝑅 𝑓 ) + 2 ∑ cos ( 2𝜋𝑗 𝑁 ) ln (sin | 𝑓𝑙𝑜𝑜𝑟( 𝑁-1 ) 2 𝜋𝑗 𝑗=1 𝑁 |)	(192) (199)
						∑ 𝑎 𝑝𝑘	= 𝑎 𝑘+𝑁/2𝑘 + ∑[𝑎 𝑘+𝑗𝑘 + 𝑎 𝑘-𝑗𝑘 ]
						𝑝≠𝑘 𝑝=1	𝑁	𝑗=1
	𝑝=1 Using equations (192) and (193), we finally obtain { ∑ 𝑏 𝑝𝑘 𝑁 𝑝=1 = 𝑏 𝑘+𝑁/2𝑘 + ∑[𝑏 𝑘+𝑗𝑘 + 𝑏 𝑘-𝑗𝑘 ] 𝑁 2 -1 𝐴 𝑧 (𝑀 𝑘 ) = -𝜇 0 𝐼 0 2𝜋 cos ( 2𝜋𝑧 0 𝑙 𝑝 + 𝑁 2𝜋(𝑘 -1) ) ∑ 𝑎 𝑝𝑘 𝑁 𝑝=1 𝑗=1 𝑝≠𝑘 𝑝≠𝑘 where ∑ 𝑎 𝑝𝑘 𝑁 𝑝=1	(193) (200)
	𝐴 𝑧 (𝑀 𝑘 ) = -From equation (196), we see that 𝜇 0 𝐼 0 2𝜋 ∑ cos ( 𝑝=1 𝑝≠𝑘 { 𝑎 𝑘+𝑗𝑘 + 𝑎 𝑘-𝑗𝑘 = 2 cos ( 2𝜋𝑧 0 𝑙 𝑝 + 2𝜋(𝑝 -1) 𝑁 ) ln ( 2𝜋𝑗 𝑁 ) ln ( 2𝑅 𝑐 𝑅 𝑓 2𝑅 𝑐 sin | 𝑅 𝑓 sin | 𝜋(𝑝 -𝑘) 𝑁 𝑁 |) 𝜋𝑗 |) 𝑁 𝑝≠𝑘	(194)
								𝑏 𝑘+𝑗𝑘 + 𝑏 𝑘-𝑗𝑘 = 0
	Similarly to what we did previously in the calculation of 𝛾 with Biot-Savart law, we can express the cosine term of (194) as and
				cos (	2𝜋𝑧 0 𝑙 𝑝	+	2𝜋(𝑝 -1) 𝑁 ) = cos ( { 𝑎 𝑘+𝑁/2𝑘 = -ln ( 2𝜋𝑧 0 𝑙 𝑝 + 2𝑅 𝑐 2𝜋(𝑘 -1) 𝑁 ) 𝑅 𝑓 𝑏 𝑘+𝑁/2𝑘 = 0	+	2𝜋(𝑝 -𝑘) ) 𝑁
	Then (194) can be expressed as Consequently, after some mathematical operations, we obtain
	𝐴 𝑧 (𝑀 𝑘 ) = -with ∑ 𝑎 𝑝𝑘 𝑁 =	𝜇 0 𝐼 0 2𝜋 -ln ( [ cos ( 2𝑅 𝑐 𝑅 𝑓 ) 2𝜋𝑧 0 𝑙 𝑝 [ 1 -2 ∑ cos ( + 2𝜋(𝑘 -1) 𝑁 ) ∑ 𝑎 𝑝𝑘 𝑁 𝑝=1 𝑝≠𝑘 2𝜋𝑗 𝑁 ) 𝑁 2 -1 𝑗=1 + 2 ∑ cos ( -sin ( 2𝜋𝑧 0 𝑙 𝑝 2𝜋𝑗 𝑁 ) ln (sin | + 2𝜋(𝑘 -1) 𝑁 ) ∑ 𝑏 𝑝𝑘 𝑁 𝑝=1 𝑝≠𝑘 𝑁 -1 2 𝜋𝑗 |) 𝑖𝑓𝑁𝑖𝑠𝑒𝑣𝑒𝑛 ] 𝑁 𝑗=1 ] 𝑁-1 𝑁-1	(195) (197)
	𝑝=1 𝑝≠𝑘 and	{	{ 𝑎 𝑝𝑘 = cos ( 𝑏 𝑝𝑘 = sin ( 2𝜋(𝑝 -𝑘) 2𝜋(𝑝 -𝑘) 𝑁 ) ln ( 𝑁 ) ln ( 2𝑅 𝑐 2𝑅 𝑐 𝑅 𝑓 𝑅 𝑓 ln ( 2𝑅 𝑐 𝑅 𝑓 ) [ 2 ∑ cos ( 2𝜋𝑗 𝑁 ) 2 𝑗=1 + 2 ∑ cos ( sin | 𝜋(𝑝 -𝑘) 𝑁 |) sin | 𝜋(𝑝 -𝑘) 2𝜋𝑗 𝑁 ) ln (sin | 2 𝑗=1 ] |) 𝑁 𝑁	𝜋𝑗 𝑁	|)	𝑖𝑓𝑁𝑖𝑠𝑜𝑑𝑑	(196)
								∑ 𝑏 𝑝𝑘	= 0	(198)
								𝑝=1
								𝑝≠𝑘

Table 10 Relative errors on 𝜸 value for

 10 𝑹 = 𝟎. 𝟒𝟎𝟓𝒎𝒎, 𝑹 𝒇 = 𝟎. 𝟑𝟐𝟕𝒎𝒎 and 𝒍 𝒑 = 𝟒𝟓𝒎𝒎

	Number of elements 𝑁	2	3	4	5	6
	𝑅 𝑐 (𝑚𝑚)	0.405	0.468	0.573	0.689	0.810
	Relative error (%)	1.645	0.248	0.073	0.022	0.001

  Now that we have determined the local transverse current 𝐼 𝑘𝑘+1 (𝑧) flowing from element 𝑘 to the adjacent element 𝑘 + 1 at 𝑧, we can compute the local power 𝑑𝑃(𝑧) dissipated in a slice 𝑑𝑧 using (203) and (208), i.e.

	thus Since														
	𝐼 𝑘𝑘+1 (𝑧) 𝑑𝑧	=	𝐼 12 (𝑧) 𝑑𝑧	+	2𝜋 𝑙 𝑝	𝐼 0 2 sin ( 𝑁 ) 𝜋 ∑ cos 2 ( [cos ( 2𝜋𝑧 2𝜋𝑧 𝑙 𝑝 𝑙 𝑝 + 𝑁 𝑘=1	+ (2𝑘 -1)𝜋 𝜋 𝑁 ) -cos ( 𝑁 ) = 2𝜋𝑧 𝑙 𝑝 𝑁 2	+	(2𝑘 -1)𝜋 𝑁	)]	(206)
	the local power 𝑑𝑃(𝑧) is thus given by		
	From Kirchhoff's voltage law, we can see that
								𝑑𝑃(𝑧) =		1 𝜎 𝑙	∑ 𝑈 𝑘𝑘+1 (𝑧) 𝑁 ( 2𝜋 𝑙 𝑝 ) 2 2 𝑁𝐼 0 8 sin 2 ( 𝑁 ) = 0 𝜋 𝑑𝑧	(209)
													𝑘=1	
	combining this relation with equation (134), we can deduce that
	∑ 𝑁 𝑘=1 since 𝜎 𝑙 is by assumption identical between every element. 𝐼 𝑘𝑘+1 (𝑧) = 0 𝑑𝑧	(207)
	Using equations (206) and (207), we obtain	
	𝐼 12 (𝑧) 𝑑𝑧	= -	1 𝑁	2𝜋 𝑙 𝑝	𝐼 0 2 sin ( 𝑁 ) 𝜋	∑ [cos ( 𝑁 𝑘=1	2𝜋𝑧 𝑙 𝑝	+	𝜋 𝑁	) -cos (	2𝜋𝑧 𝑙 𝑝	+	(2𝑘 -1)𝜋 𝑁	)]
	and since														
									∑ cos ( 𝑁 𝑘=1	2𝜋𝑧 𝑙 𝑝	+	(2𝑘 -1)𝜋 𝑁	)	= 0
	we then have													
									𝐼 12 (𝑧) 𝑑𝑧	𝐼 0 cos ( = -2𝜋 𝑙 𝑝 2 sin ( 2𝜋𝑧 𝑙 𝑝 𝐼 0 𝜋 𝑁 + ) cos ( 2𝜋(𝑘 -1) 𝑁 ) 2𝜋𝑧 𝑙 𝑝 + 𝜋 𝑁	)
	which combined to (206) leads to					
	where 𝐼 0 depends on time only. Using equation (133), we can deduce that for 𝑁 ≥ 3 𝐼 𝑘𝑘+1 (𝑧) 𝑑𝑧 = 𝐼 𝑘-1𝑘 (𝑧) 𝑑𝑧 + 2𝜋 𝑙 𝑝 𝐼 0 sin ( 2𝜋𝑧 𝑙 𝑝 + 2𝜋(𝑘 -1) 𝑁 ) 𝐼 𝑘𝑘+1 (𝑧) 𝑑𝑧 = -2𝜋 𝑙 𝑝 𝐼 0 2 sin ( 𝜋 𝑁 ) cos ( 2𝜋𝑧 𝑙 𝑝 + (2𝑘 -1)𝜋 𝑁 )	(205) (208)
	which immediately gives the following relation
	𝐼 𝑘𝑘+1 (𝑧) 𝑑𝑧 The calculation of the sum gives = 𝐼 12 (𝑧) 𝑑𝑧 𝑑𝑃(𝑧) = 1 𝜎 𝑙 ∑ ( 𝐼 𝑘𝑘+1 (𝑧) 𝑑𝑧 ) 2 𝑁 𝑘=1 𝑑𝑧 = 1 + 𝜎 𝑙 ( 2𝜋 𝑙 𝑝 2𝜋 𝑙 𝑝	𝐼 0 ∑ sin ( 𝑘 𝑗=2 ) 2 𝐼 0 2 4 sin 2 ( 𝜋 2𝜋𝑧 𝑙 𝑝 𝑁 ) ∑ cos 2 ( + 2𝜋(𝑗 -1) 𝑁 ) 2𝜋𝑧 𝑙 𝑝 + 𝑁 𝑘=1	(2𝑘 -1)𝜋 𝑁	)	𝑑𝑧
	∑ sin ( 𝑘 𝑗=2	2𝜋𝑧 𝑙 𝑝	+	2𝜋(𝑗 -1) 𝑁 )	=	1 2 sin ( 𝑁 ) 𝜋	[cos (	2𝜋𝑧 𝑙 𝑝	+	𝜋 𝑁	) -cos (	2𝜋𝑧 𝑙 𝑝	+	(2𝑘 -1)𝜋 𝑁	)]

  However, we can introduce an equivalent internal uniform magnetic field 𝐵 𝑖𝑒𝑞 that we define as the internal uniform magnetic field collinear to 𝐵 𝑎 ⃗⃗⃗⃗⃗ whose time-variation would create, at any time 𝑡, the same distribution of current 𝐼 𝑘 (𝑧) = 𝐼 0 (𝑡) cos (

			2𝜋𝑧 𝑙 𝑝	+	2𝜋(𝑘-1) 𝑁 ) than the one given by the 𝑁-uplet model
	i.e. obtained with equation (184). It would therefore satisfy the relation
	𝐼 0 (𝑡) = Replacing 𝐼 0 with the expression above in equation (184) leads to 𝜏 𝑒𝑥𝑡 𝑅 𝐶 𝐵 ̇𝑖𝑒𝑞 (𝑡) 𝜇 0	(243)
	𝜏 𝑒𝑥𝑡 𝑅 𝐶 𝐵 ̇𝑖𝑒𝑞 𝜇 0	+ 𝜏	𝜏 𝑒𝑥𝑡 𝑅 𝐶 𝐵 ̈𝑖𝑒𝑞 𝜇 0	=	𝜏 𝑒𝑥𝑡 𝑅 𝐶 𝐵 ̇𝑎 𝜇 0
	Multiplying both sides with 𝜇 0 /(𝜏 𝑒𝑥𝑡 𝑅 𝐶 ) and integrating in time, we obtain
	𝐵 𝑖𝑒𝑞 + 𝜏𝐵 ̇𝑖𝑒𝑞 = 𝐵 𝑎	(244)
	where 𝜏 is given by (237).				

  Replacing 𝐼 0 with its expression given by (243) in the equation above and using (238) giving 𝜏 𝑒𝑥𝑡 , we obtain

	𝑃 𝑣𝑜𝑙 (𝑧) =	{ 𝜎 𝑙 ( 𝜎 𝑙 ( 𝑙 𝑝 2𝜋 ) 𝑙 𝑝 2 2 𝜋 2𝜋 ) ( 𝑅 𝑐 + 𝑅 𝑅 𝑐 2 sin 2 ( 𝜋 ) 2 𝑁 )	𝐵 ̇𝑖𝑒𝑞 2𝑁 𝜋 ( 2 [1 -sinc ( 𝑅 𝑐 𝑅 𝑐 + 𝑅 ) 𝐵 ̇𝑖𝑒𝑞 4𝜋𝑧 𝑙 𝑝 2 𝑓𝑜𝑟𝑁 ≥ 3 )] 𝑓𝑜𝑟𝑁 = 2 2	(245)
	Expressing 𝑃 𝑣𝑜𝑙 (𝑧) as in the MPAS model, i.e. as
					𝑃 𝑣𝑜𝑙 (𝑧) =	𝑛𝑘𝜏𝐵 ̇𝑖𝑒𝑞 𝜇 0	2
									2 [1 -sinc (	4𝜋𝑧 𝑙 𝑝	)] 𝑓𝑜𝑟𝑁 = 2
		1 𝜎 𝑙	(	2𝜋 𝑙 𝑝	)	2	𝑁 8𝜋(𝑅 𝑐 + 𝑅) 2 sin 2 ( 𝑁 ) 𝜋	𝐼 0	2 𝑓𝑜𝑟𝑁 ≥ 3

  Splitting again 𝐼 𝑘 1 𝑘 2 (𝑧) as in (253), i.e. as 𝐼 𝑘 1 𝑘 2 (𝑧) = 𝐼 𝑘 2 (𝑧)/𝑁 1 + 𝐼 𝑘 1 〈𝑘 2 〉 (𝑧), we have

	𝑑 2 𝐼 𝑘 1 〈𝑘 2 〉 𝑑𝑧 2 (𝑧) = -4𝜎 𝑙 1 𝑅 𝑐 1 𝐵 ̇𝑎 sin 2 ( 𝑁 1 𝜋	) cos(	2𝜋𝑧 𝑙 𝑝 1	+	2𝜋(𝑘 1 -1) 𝑁 1 )
	{	𝑑 2 𝐼 𝑘 2 𝑑𝑧 2 (𝑧) = -4𝜎 𝑙 2 𝑅 𝑐 2 𝐵 ̇𝑎 sin 2 ( 𝑁 2 𝜋	) cos(	2𝜋𝑧 𝑙 𝑝 2	+	2𝜋(𝑘 2 -1) 𝑁 2 )
		-4	𝜎 𝑙 2 𝑁 1	𝐵 ̇𝑎 sin 2 ( 𝑁 1 𝜋 𝑅 𝑐 2 𝐵 ̇𝑎 sin 2 ( 𝜋 𝑁 2 ) cos( ) cos( 2𝜋𝑧 𝑙 𝑝 1 2𝜋𝑧 𝑙 𝑝 2	+ +	2𝜋(𝑘 1 -1) ) 𝑁 1 𝑁 2 ) 2𝜋(𝑘 2 -1)	(261)

  As a result, the solutions 𝐼 𝑘 1 𝑘 2 (𝑧) of equations (261) for a conductor of length 𝐿 are for 1 ≤ 𝑘 2 ≤ 𝑁 2 and 1 ≤ 𝑘 1 ≤ 𝑁 1

						cos (	2𝜋𝑧 𝑙 𝑝 1	+	2𝜋(𝑘 1 -1) 𝑁 1 ) +	2𝑧 𝐿	sin (	𝜋𝐿 𝑙 𝑝 1	) sin ( 2𝜋(𝑘 1 -1) 𝑁 1 ) -cos (	𝜋𝐿 𝑙 𝑝 1	) cos (	2𝜋(𝑘 1 -1) 𝑁 1 )]
	𝐼 𝑘 2 (𝑧) = 𝐼 0 2 [cos (	2𝜋𝑧 𝑙 𝑝 2	+	2𝜋(𝑘 2 -1) 𝑁 2 ) +	2𝑧 𝐿	sin (	𝜋𝐿 𝑙 𝑝 2	) sin ( 2𝜋(𝑘 2 -1) 𝑁 2 ) -cos (	𝜋𝐿 𝑙 𝑝 2	) cos (	2𝜋(𝑘 2 -1) 𝑁 2 )]
		where 𝐼 0 1 and 𝐼 0 2 are given in (264).
		𝐼 0 1 [cos (	2𝜋𝑧 𝑙 𝑝 1	+	2𝜋(𝑘 1 -1) 𝑁 1	) +	2𝑧 𝐿	sin (	𝜋𝐿 𝑙 𝑝 1	) sin ( 2𝜋(𝑘 1 -1) 𝑁 1	) -cos (	𝜋𝐿 𝑙 𝑝 1	) cos ( 2𝜋(𝑘 1 -1) 𝑁 1 )]
	{	+	𝐼 0 2 𝑁 1	[cos (	2𝜋𝑧 𝑙 𝑝 2	+	2𝜋(𝑘 2 -1) 𝑁 2 ) +	2𝑧 𝐿	sin (	𝜋𝐿 𝑙 𝑝 2	) sin ( 2𝜋(𝑘 2 -1) 𝑁 2	) -cos (	𝜋𝐿 𝑙 𝑝 2	) cos ( 2𝜋(𝑘 2 -1) 𝑁 2 )]

  1 𝑝 2 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗(𝑧 𝑃 ) is the unit vector tangent to the trajectory of the center of element 𝑝 1 of substage 𝑝 2 at 𝑧 𝑃 and 𝑂 𝑃 is the center of element 𝑝 1 of substage 𝑝 2 at 𝑧 𝑃 , we have 𝑑𝑂𝑂 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ . 𝑒 𝑧 ⃗⃗⃗⃗𝑅 𝑓 𝑑𝛹 𝑃 = 𝑅 𝑓 𝑑𝛹 𝑃 𝑑𝑧 𝑃 Therefore replacing 𝑒 𝑠 𝑝 1 𝑝 2 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗(𝑧 𝑃 ). 𝑒 𝑧 ⃗⃗⃗⃗𝑑𝛴 with the expression above and 𝐾 𝑝 1 𝑝 2 (𝛼) (𝑃) with 𝐾 0 (𝛼) cos(𝛼𝑧 𝑃 + 𝜑 𝑝 1 𝑝 2 ) into the formula of 𝐴 𝑧 𝑟 (𝑝 1 𝑝 2 )

	𝑒 𝑠 𝑝 1 𝑝 2 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗(𝑧 𝑃 ). 𝑒 𝑧 ⃗⃗⃗⃗𝑑𝛴 =	𝑑𝑂𝑂 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ‖𝑑𝑂𝑂 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ‖	. 𝑒 𝑧 ⃗⃗⃗⃗𝑅 𝑓 𝑑𝛹 𝑃 ‖𝑑𝑂𝑂 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ‖ =
			𝑒 𝑠 𝑝 1 𝑝 2 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗(𝑧 𝑃 ) =	𝑑𝑂𝑂 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ‖𝑑𝑂𝑂 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ‖
	Consequently, the term 𝑒 𝑠 𝑝 1 𝑝 2 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗(𝑧 𝑃 ). 𝑒 𝑧 ⃗⃗⃗⃗𝑑𝛴 in equation (268) can be expressed as

  1 of substage 𝑝 2 at 𝑧 𝑃 and 𝑀 𝑘 1 𝑘 2 is the center of element 𝑘 1 of substage 𝑘 2 at 𝑧, their coordinates in the (𝑒 𝑥 𝑥 𝑝 1 𝑝 2 (𝑧 𝑃 ) + 𝑅 𝑓 𝑐𝑜𝑠(𝛹 𝑃 )]𝑒 𝑥 ⃗⃗⃗⃗⃗ + [𝑦 𝑝 1 𝑝 2 (𝑧 𝑃 ) + 𝑅 𝑓 𝑠𝑖𝑛(𝛹 𝑃 )]𝑒 𝑦 ⃗⃗⃗⃗⃗ + 𝑧 𝑃 𝑒 𝑧 ⃗⃗⃗⃗ 𝑂𝑀 𝑘 1 𝑘 2 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ = 𝑥 𝑘 1 𝑘 2 (𝑧)𝑒 𝑥 ⃗⃗⃗⃗⃗ + 𝑦 𝑘 1 𝑘 2 (𝑧)𝑒 𝑦 ⃗⃗⃗⃗⃗ + 𝑧𝑒 𝑧 ⃗⃗⃗⃗

	⃗⃗⃗⃗⃗, 𝑒 𝑦 , ⃗⃗⃗⃗⃗⃗ 𝑒 𝑧 ⃗⃗⃗⃗) basis are
	given by
	{ 𝑂𝑃 ⃗⃗⃗⃗⃗⃗ = 𝑂𝑂 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗ + 𝑂 𝑃 𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗ = [

  This family is again equal to (𝛼 𝑛 ) 𝑛∈ℤ , because for any

	1 𝑙 𝑝 1 , 𝑘 ∈ ℤ. 𝑘 ∈ ℤ, we have -1 𝑙 𝑝 2 )) 𝑛∈ℤ					
	(𝛼 𝑘 + 2𝜋𝑛 (	1 𝑙 𝑝 1	-	1 𝑙 𝑝 2	)) 𝑛∈ℤ	= ( 2𝜋 𝑙 𝑝 1	+ 2𝜋(𝑘 -𝑛 + 1) (	1 𝑙 𝑝 2	-	1 𝑙 𝑝 1	𝑛∈ℤ ))	= (𝛼 𝑘-𝑛 ) 𝑛∈ℤ = (𝛼 𝑛 ) 𝑛∈ℤ

  1 ≤ 𝑁 1 and 1 ≤ 𝑘 2 ≤ 𝑁 2

	𝑑 2 𝐼 𝑘 1 𝑘 2 ̅̅̅̅̅̅ 𝑑𝑧 2 (𝑧) -𝜎 𝑙 1 [2𝐴 ̇𝑧𝑟 𝑘 1 𝑘 2 ̅̅̅̅̅̅̅̅̅ (𝑧) -𝐴 ̇𝑧𝑟 𝑘 1 -1𝑘 2 ̅̅̅̅̅̅̅̅̅̅̅̅ (𝑧) -𝐴 ̇𝑧𝑟 𝑘 1 +1𝑘 2 ̅̅̅̅̅̅̅̅̅̅̅̅ (𝑧)]
	-	𝑁 1 2 ∑ [2𝐴 ̇𝑧𝑟 𝑗 1 𝑘 2 𝜎 𝑙 2 𝑁 1 ̅̅̅̅̅̅̅̅̅̅̅̅̅ -𝐴 ̇𝑧𝑟 𝑗 1 𝑘 2 -1 (𝑧) 𝑗 1 =1 ̅̅̅̅̅̅̅̅̅̅̅̅ (𝑧) -𝐴 ̇𝑧𝑟 𝑗 1 𝑘 2 +1 ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ] (𝑧)	=	
	{ -4𝜎 𝑙 1 𝑅 𝑐 1 𝐵 ̇𝑎 sin 2 ( 𝑁 1 𝜋	) 𝑒	𝑖[ 2𝜋𝑧 𝑙 𝑝 1	+	2𝜋(𝑘 1 -1) 𝑁 1 ] -4	𝜎 𝑙 2 𝑁 1	𝑅 𝑐 2 𝐵 ̇𝑎 sin 2 (	𝜋 𝑁 2	) 𝑒	𝑖[	2𝜋𝑧 𝑙 𝑝 2	+	2𝜋(𝑘 2 -1) 𝑁 2	]

  Again by superposition, the magnetic vector potential 𝐴 𝑧 𝑟 𝑘 1𝑘 2 ̅̅̅̅̅̅̅̅̅ (𝑧) generated at the center of element 𝑘 1 of substage 𝑘 2 at 𝑧 by all the currents flowing through the 𝑁 2 -uplet of 𝑁 1 -uplets conductor during any time varying regime is thus in complex notation

	𝐴 𝑧 𝑟 𝑘 1 𝑘 2 ̅̅̅̅̅̅̅̅̅ (𝑧) = 𝐴 𝑧 𝑟 ̅̅̅̅ (𝑀 𝑘 1 𝑘 2 ) =	𝜇 0 8𝜋 2 ∑ ∑ ∑ 𝐼 0 𝑝 1 𝑝 2 (𝛼 𝑘 ) 𝑁 1 𝑁 2 +∞ ̅̅̅̅̅̅̅ ∑ 𝑒 𝑖𝛼 𝑘-𝑛 𝑧 𝑋 𝑛 𝑝 1 𝑝 2 𝑘 1 𝑘 2 +∞ (𝛼 𝑘 ) 𝑛=-∞ 𝑝 1 =1 𝑝 2 =1 𝑘=-∞
								) with their
	new expressions. First, we have				
	𝑑 2 𝐼 𝑘 1 𝑘 2 ̅̅̅̅̅̅ 𝑑𝑧 2 (𝑧) =	𝑑 2 𝑑𝑧 2 ( ∑ 𝐼 0 𝑘 1 𝑘 2 (𝛼 𝑘 ) ̅̅̅̅̅̅̅ 𝑒 𝑖𝛼 𝑘 𝑧 +∞ 𝑘=-∞	) = ∑ 𝐼 0 𝑘 1 𝑘 2 (𝛼 𝑘 ) ̅̅̅̅̅̅̅ 𝑑 2 𝑑𝑧 2 (𝑒 𝑖𝛼 𝑘 𝑧 ) +∞ 𝑘=-∞	= ∑ -𝛼 𝑘 +∞ 𝑘=-∞	(𝛼 𝑘 ) ̅̅̅̅̅̅̅ 𝑒 𝑖𝛼 𝑘 𝑧 2 𝐼 0 𝑘 1 𝑘 2
	Then, applying again the methodology of section IV.2.5.1 , we can adapt equation (277) to give the
	following expression of the magnetic vector potential 𝐴 𝑧 𝑟 (𝑝 1 𝑝 2 ) (𝛼 𝑘 ) ̅̅̅̅̅̅̅̅̅̅̅ (𝑀 𝑘 1 𝑘 2 ) generated by a current flowing
	through element 𝑝 1 of substage 𝑝 2 of the form 𝐼 𝑝 1 𝑝 2 ̅̅̅̅̅̅ (𝑧) = 𝐼 0 𝑝 1 𝑝 2 (𝛼 𝑘 ) ̅̅̅̅̅̅̅ 𝑒 𝑖𝛼 𝑘 𝑧 with 𝑘 ∈ ℤ
	𝐴 𝑧 𝑟 (𝑝 1 𝑝 2 ) (𝛼 𝑘 ) ̅̅̅̅̅̅̅̅̅̅̅ (𝑀 𝑘 1 𝑘 2 ) =	𝜇 0 𝐼 0 𝑝 1 𝑝 2 (𝛼 𝑘 ) ̅̅̅̅̅̅̅ 8𝜋 2 ∑ 𝑒 +∞ 𝑛=-∞	𝑖(𝛼 𝑘 +	2𝜋𝑛 𝑙	)𝑧 𝑋 𝑛 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝛼 𝑘 )	=	(𝛼 𝑘 ) ̅̅̅̅̅̅̅ 𝜇 0 𝐼 0 𝑝 1 𝑝 2 8𝜋 2 ∑ 𝑒 𝑖𝛼 𝑘-𝑛 𝑧 𝑋 𝑛 𝑝 1 𝑝 2 𝑘 1 𝑘 2 +∞ (𝛼 𝑘 ) 𝑛=-∞
	Therefore, by superposition, the magnetic vector potential 𝐴 𝑧 𝑟 (𝑝 1 𝑝 2 ) ̅̅̅̅̅̅̅̅̅̅̅ (𝑀 𝑘 1 𝑘 2 ) generated by a current
	flowing through element 𝑝 1 of substage 𝑝 2 of the form 𝐼 𝑝 1 𝑝 2 ̅̅̅̅̅̅ (𝑧) = ∑ +∞ 𝑘=-∞	𝐼 0 𝑝 1 𝑝 2 (𝛼 𝑘 ) ̅̅̅̅̅̅̅ 𝑒 𝑖𝛼 𝑘 𝑧	is given by
		𝐴 𝑧 𝑟 (𝑝 1 𝑝 2 ) ̅̅̅̅̅̅̅̅̅̅̅ (𝑀 𝑘 1 𝑘 2 ) =	𝜇 0 8𝜋 2 ∑ 𝐼 0 𝑝 1 𝑝 2 (𝛼 𝑘 ) +∞ ̅̅̅̅̅̅̅ ∑ 𝑒 𝑖𝛼 𝑘-𝑛 𝑧 𝑋 𝑛 𝑝 1 𝑝 2 𝑘 1 𝑘 2 +∞ (𝛼 𝑘 ) 𝑛=-∞ 𝑘=-∞

  1 +𝑘 1 -1𝑘 ′ 2 +𝑘 2 -1 (𝑧) of equation (298) corresponds to the position of the center of element 𝑘 ′ 1 + 𝑘 1 -1 of substage 𝑘 ′ 2 + 𝑘 2 -1 at 𝑧 in the plane orthogonal to the z-axis  The term 𝑤 𝑘 ′ 1 𝑘 ′ 2 (𝑧 -𝑧 𝑘 1 𝑘 2 ) of equation (298) corresponds to the position of the center of element 𝑘 ′ 1 of substage 𝑘 ′ 2 at 𝑧 -𝑧 𝑘 1 𝑘 2 in the plane orthogonal to the z-axis  The term 𝑒 𝑖𝜃 𝑘 1 𝑘 2 of equation (298) corresponds to a rotation of 𝜃 𝑘 1 𝑘 2 around the z-axis, therefore the term 𝑒 𝑖𝜃 𝑘 1 𝑘 2 𝑤 𝑘 ′ 1 𝑘 ′ 2 (𝑧 -𝑧 𝑘 1 𝑘 2 ) corresponds to the position of the center of element 𝑘 ′ 1 of substage 𝑘 ′ 2 at 𝑧 -𝑧 𝑘 1 𝑘 2 after a rotation of the conductor of 𝜃 𝑘 1 𝑘 2 around its axis As a result, equation (298) means that the position of element 𝑘 ′ 1 + 𝑘 1 -1 of substage 𝑘 ′ 2 + 𝑘 2 -1 at 𝑧 corresponds to the position of element 𝑘 ′ 1 of substage 𝑘 ′ 2 at 𝑧 -𝑧 𝑘 1 𝑘 2 after a rotation of the conductor of 𝜃 𝑘 1 𝑘 2 around its axis. If we choose 𝑘 ′ 1 = 𝑘 ′ 2 = 1, equation (

  that if the applied magnetic field was 𝐵 𝑎 ′ ⃗⃗⃗⃗⃗ instead of 𝐵 𝑎 ⃗⃗⃗⃗⃗ , element 1 of substage 1 at 𝑧 -𝑧 𝑘 1 𝑘 2 would exactly be in the same magnetic configuration than element 𝑘 1 of substage 𝑘 2 at 𝑧 with 𝐵 𝑎 ⃗⃗⃗⃗⃗ and would thus carry the exact same induced current. Note that 𝐵 𝑎 used so far but rotated from -𝜃 𝑘 1 𝑘 2 around the z-axis (see Figure49). Using again the complex notations 𝑥̅ and 𝑥 ′ ̅ such that 𝑥 = 𝑅𝑒(𝑥̅ ) and 𝑥 ′ = 𝑅𝑒(𝑥 ′ ̅ ), we

	the geometric coordinate system (𝑂, 𝑒 𝑥 ⃗⃗⃗⃗⃗, 𝑒 𝑦 ⃗⃗⃗⃗⃗, 𝑒 𝑧 ⃗⃗⃗⃗) have
		𝑥 ′ ̅ 𝑒 -𝑖𝜃 𝑘 1 𝑘 2 = 𝑥̅ 𝑥 ′ ̅ = 𝑥̅ 𝑒 𝑖𝜃 𝑘 1 𝑘 2
	We now have to express the axial component of the magnetic vector potential 𝐴 𝑎 ′ ⃗⃗⃗⃗⃗ associated with
	𝐵 𝑎 ′ ⃗⃗⃗⃗⃗ in the geometric coordinate system (𝑂, 𝑒 𝑥 ⃗⃗⃗⃗⃗, 𝑒 𝑦 ⃗⃗⃗⃗⃗, 𝑒 𝑧 ⃗⃗⃗⃗). Since, in the new geometric coordinate system
	(𝑂, 𝑒 𝑥 ′ ⃗⃗⃗⃗⃗⃗, 𝑒 𝑦 ′ ⃗⃗⃗⃗⃗⃗, 𝑒 𝑧 ⃗⃗⃗⃗), 𝐵 𝑎 ′
			′ ⃗⃗⃗⃗⃗ corresponds
	to 𝐵 𝑎 ⃗⃗⃗⃗⃗ but rotated from -𝜃 𝑘 1 𝑘 2 around the z-axis (see Figure 49), therefore 𝐵 𝑎 ′ = ‖𝐵 𝑎 ′ ⃗⃗⃗⃗⃗ ‖ = ‖𝐵 𝑎 ⃗⃗⃗⃗⃗ ‖ = 𝐵 𝑎 .
	Let us note 𝐼 𝑘 1 𝑘 2 ′	(𝑧) the induced current carried by element 𝑘 1 of substage 𝑘 2 at 𝑧 with 𝐵 𝑎 ′ ⃗⃗⃗⃗⃗ instead of 𝐵 𝑎 ⃗⃗⃗⃗⃗
	with	
			𝐼 𝑘 1 𝑘 2 ′ ̅̅̅̅̅̅ (𝑧) = ∑ 𝐼 0 𝑘 1 𝑘 2 ′(𝛼 𝑘 ) +∞ ̅̅̅̅̅̅̅ 𝑒 𝑖𝛼 𝑘 𝑧 𝑘=-∞
	We then have 𝐼 𝑘 1 𝑘 2 (𝑧) = 𝐼 11 ′ (𝑧 -𝑧 𝑘 1 𝑘 2 ), and more generally, from equations (298) we can deduce
	that 𝐼 𝑘 ′ 1 +𝑘 1 -1𝑘 ′ 2 +𝑘 2 -1 (𝑧) = 𝐼 𝑘 ′ 1 𝑘 ′ 2 ′	(𝑧 -𝑧 𝑘 1 𝑘 2 ).
	We will now establish the equation satisfied by 𝐼 11 ′ (𝑧) with the applied magnetic field 𝐵 𝑎 ′ ⃗⃗⃗⃗⃗ instead of
	𝐵 𝑎 ⃗⃗⃗⃗⃗ . In order to do so, we consider a new geometric coordinate system (𝑂, 𝑒 𝑥 ′ ⃗⃗⃗⃗⃗⃗, 𝑒 𝑦 ′ ⃗⃗⃗⃗⃗⃗, 𝑒 𝑧 ⃗⃗⃗⃗) corresponding to

  𝐵 𝑎 ′ , we just have to replace 𝐵 𝑎 by 𝐵 𝑎 ′ 𝑒 𝑖𝜃 𝑘 1 𝑘 2 in the first equation of (296) (i.e. the one obtained for 𝑘 1 = 𝑘 2 = 1) to derive the equation

	governing 𝐼 11 ′ (𝑧). This operation leads to	
	{ 𝑘=-∞ ∑ 𝛼 𝑘 +∞ 4𝜎 𝑙 1 𝑅 𝑐 1 𝐵 ̇𝑎𝑒 𝑖𝜃 𝑘 1 𝑘 2 sin 2 ( 2 𝐼 0 11 ′(𝛼 𝑘 ) ̅̅̅̅̅̅̅ 𝑒 𝑖𝛼 𝑘 𝑧 + 𝜇 0 8𝜋 2 ∑ ∑ ∑ 𝐼 ̇0𝑝 1 𝑝 2 ′(𝛼 𝑘 ) 𝑁 1 𝑁 2 +∞ ̅̅̅̅̅̅̅ ∑ 𝑒 𝑖𝛼 𝑘-𝑛 𝑧 𝐷 𝑛 𝑝 1 𝑝 2 11 +∞ (𝛼 𝑘 ) 𝑛=-∞ 𝑝 1 =1 𝑝 2 =1 𝑘=-∞ 𝜋 𝑁 1 ) 𝑒 𝑖𝛼 1 𝑧 + 4 𝜎 𝑙 2 𝑁 1 𝑅 𝑐 2 𝐵 ̇𝑎𝑒 𝑖𝜃 𝑘 1 𝑘 2 sin 2 ( 𝜋 𝑁 2 ) 𝑒 𝑖𝛼 2 𝑧	=
	The equation verified by 𝐼 11 ′ (𝑧 -𝑧 𝑘 1 𝑘 2 ) is then	
	{ 𝑘=-∞ ∑ 𝛼 𝑘 +∞ 4𝜎 𝑙 1 𝑅 𝑐 1 𝐵 ̇𝑎𝑒 𝑖𝜃 𝑘 1 𝑘 2 sin 2 ( 2 𝐼 0 11 ′(𝛼 𝑘 ) ̅̅̅̅̅̅̅ 𝑒 𝑖𝛼 𝑘 𝑧 𝑒 -𝑖𝛼 𝑘 𝑧 𝑘 1 𝑘 2 𝜋 𝑁 1 ) 𝑒 𝑖𝛼 1 𝑧 𝑒 -𝑖𝛼 1 𝑧 𝑘 1 𝑘 2 + 4 + 𝜇 0 𝑁 1 𝑁 2 +∞ 8𝜋 2 ∑ ∑ ∑ 𝐼 ̇0𝑝 1 𝑝 2 ′(𝛼 𝑘 ) ̅̅̅̅̅̅̅ ∑ 𝑒 𝑖𝛼 𝑘-𝑛 𝑧 𝑒 -𝑖𝛼 𝑘-𝑛 𝑧 𝑘 1 𝑘 2 𝐷 𝑛 𝑝 1 𝑝 2 11 +∞ (𝛼 𝑘 ) 𝑛=-∞ 𝑝 1 =1 𝑝 2 =1 𝑘=-∞ 𝜎 𝑙 2 𝑁 1 𝑅 𝑐 2 𝐵 ̇𝑎𝑒 𝑖𝜃 𝑘 1 𝑘 2 sin 2 ( 𝜋 𝑁 2 ) 𝑒 𝑖𝛼 2 𝑧 𝑒 -𝑖𝛼 2 𝑧 𝑘 1 𝑘 2	=

  1 

  1 

  ̅̅̅̅̅̅̅ amplitudes on 𝑘 1 and 𝑘 2 after several iterations. This procedure has led us for any 𝑘 ∈ ℤ to

	From equations (299), the exciting terms (featuring 𝐵 ̇𝑎) enable us to deduce that
										𝐼 0 𝑘 1 𝑘 2 (𝛼 1 ) ̅̅̅̅̅̅̅ = 𝐼 0 (𝛼 1 ) 𝑒	𝑖	2𝜋(𝑘 1 -1) 𝑁 1
										{ 𝐼 0 𝑘 1 𝑘 2 (𝛼 2 ) ̅̅̅̅̅̅̅ = 𝐼 0 (𝛼 2 ) 𝑒	𝑖	2𝜋(𝑘 2 -1) 𝑁 1
	which implies						
										𝐼 ̇0𝑝 1 +𝑘 1 -1𝑝 2 +𝑘 2 -1 (𝛼 1 ) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ = 𝐼	̇0 (𝛼 1 ) 𝑒	𝑖	2𝜋(𝑝 1 -1) 𝑁 1	𝑒	𝑖	2𝜋(𝑘 1 -1) 𝑁 1
							{	𝐼 ̇0𝑝 1 +𝑘 1 -1𝑝 2 +𝑘 2 -1 (𝛼 2 ) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ = 𝐼	̇0 (𝛼 2 ) 𝑒	𝑖	2𝜋(𝑝 2 -1) 𝑁 2	𝑒	𝑖	2𝜋(𝑘 2 -1) 𝑁 2
	Then substituting these terms in equations (301) enables us to find the dependences of the other
	𝐼 0 𝑘 1 𝑘 2 (𝛼 𝑘 )								
										𝐼 0 𝑘 1 𝑘 2 (𝛼 𝑘 ) ̅̅̅̅̅̅̅ = 𝐼 0 (𝛼 𝑘 ) 𝑒	𝑖𝜑 𝑘 1 𝑘 2 (𝛼 𝑘 )
										𝑁 𝑛=-𝑁	𝑁 2 𝑝 2 =1	𝑁 1 𝑝 1 =1	1 +𝑘 1 -1𝑝 2 +𝑘 2 -1 (𝛼 1+𝑛 ) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ 𝑒 𝑖𝑛(𝛼 2 -𝛼 1 )𝑧 𝑘 1 𝑘 2 𝐷 𝑛 𝑝 1 𝑝 2 11 (𝛼 1+𝑛 )	(299)
							+4𝜎 𝑙 1 𝑅 𝑐 1 𝐵 ̇𝑎 sin 2 ( 𝑁 1 𝜋	)	1 𝛼 1	2 𝑒	𝑖	2𝜋(𝑘 1 -1) 𝑁 1
	 For 𝑘 = 2		
	𝐼 0 𝑘 1 𝑘 2 (𝛼 2 ) ̅̅̅̅̅̅̅ = -	𝜇 0 8𝜋 2	1 𝛼 2	2 lim 𝑁→∞	∑ ∑ ∑ 𝐼 ̇0𝑝 1 +𝑘 1 -1𝑝 2 +𝑘 2 -1 (𝛼 2+𝑛 ) 𝑁 1 𝑁 2 𝑁 ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ 𝑒 𝑖𝑛(𝛼 2 -𝛼 1 )𝑧 𝑘 1 𝑘 2 𝐷 𝑛 𝑝 1 𝑝 2 11 (𝛼 2+𝑛 ) 𝑝 1 =1 𝑝 2 =1 𝑛=-𝑁	(300)
	{						+4	𝜎 𝑙 2 𝑁 1	𝑅 𝑐 2 𝐵 ̇𝑎 sin 2 ( 𝑁 2 𝜋	)	1 𝛼 2	2 𝑒	𝑖	2𝜋(𝑘 2 -1) 𝑁 2
	 For 𝑘 ∈ ℤ\{1; 2}
	𝐼 0 𝑘 1 𝑘 2 (𝛼 𝑘 ) ̅̅̅̅̅̅̅ = -	𝜇 0 8𝜋 2	1 𝛼 𝑘	2 lim 𝑁→∞	𝑝 1 =1 ∑ ∑ ∑ 𝐼 ̇0𝑝 1 +𝑘 1 -1𝑝 2 +𝑘 2 -1 𝑝 2 =1 𝑛=-𝑁 (𝛼 𝑘+𝑛 ) 𝑁 1 𝑁 2 𝑁 ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ 𝑒 𝑖𝑛(𝛼 2 -𝛼 1 )𝑧 𝑘 1 𝑘 2 𝐷 𝑛 𝑝 1 𝑝 2 11 (𝛼 𝑘+𝑛 )	(301)

  refers to the real part of complex number 𝑋 and the expressions of 𝛼 𝑘 , 𝐷 𝑛 𝑝 1 𝑝 2 11 (𝛼 𝑘+𝑛 ) and 𝜑 𝑝 1 𝑝 2 (𝛼 𝑘+𝑛 ) are given in (289), (295) and (303) respectively.

						𝑁		
	𝐼 0 (𝛼 𝑘 ) + lim 𝑁→∞ (𝛼 𝑘 ) are given by where the 𝐼 0 𝑒𝑥𝑡	∑ 𝜏 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) 𝐼 𝑛=-𝑁	̇0 (𝛼 𝑘+𝑛 )	= 𝐼 0 𝑒𝑥𝑡 (𝛼 𝑘 )	(305)
	𝐼 0 𝑒𝑥𝑡 (𝛼 𝑘 ) =	4𝜎 𝑙 1 𝑅 𝑐 1 𝐵 ̇𝑎 sin 2 ( 𝑁 1 𝜋 4 𝜎 𝑙 2 𝑁 1 𝑅 𝑐 2 𝐵 ̇𝑎 sin 2 ( 𝜋 𝑁 2 ) ) 𝛼 1 1 1 2 𝑓𝑜𝑟𝑘 = 1 𝛼 2 2 𝑓𝑜𝑟𝑘 = 2	(306)
	{					0𝑓𝑜𝑟𝑘 ∈ ℤ\{1; 2}
	and the 𝜏 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) are time constants given by	
	𝜏 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) =	𝜇 0 8𝜋 2	1 𝛼 𝑘	𝑝 1 =1 2 𝑅𝑒 ( ∑ ∑ 𝑒 𝑖𝜑 𝑝 1 𝑝 2 𝑝 2 =1 𝑁 1 𝑁 2 (𝛼 𝑘+𝑛 )	𝐷 𝑛 𝑝 1 𝑝 2 11 (𝛼 𝑘+𝑛 )	)	(307)
	where 𝑅𝑒(𝑋) Using the expressions of 𝐷 𝑛 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝛼 𝑘 )	given by (295), we can alternatively express the time constants
	𝜏 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) as							
	𝜏 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) = 𝜎 𝑙 1	𝜇 0 8𝜋 2	1 𝛼 𝑘	2 𝐸 𝑛 1 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) + 𝜎 𝑙 2	𝜇 0 8𝜋 2	1 𝛼 𝑘	2 𝐸 𝑛 2 (𝛼 𝑘 )(𝛼 𝑘+𝑛 )	(308)
	From the expressions of 𝐶 𝑛 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝛼 𝑘 )	and 𝐶 𝑛 𝑝 1 𝑝 2 𝑘 2 (𝛼 𝑘 )	given in (293) and (294) and those of 𝑋 𝑛 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝛼 𝑘 )

  1 , 𝛼 2 = 2𝜋/𝑙 𝑝 2 and The expressions of the ℎ 1 𝑝 1 𝑝 2 (𝑧 ′′ , 𝑧 ′ , 𝛹 ′ ) and ℎ 2 𝑝 1 𝑝 2 (𝑧 ′′ , 𝑧 ′ , 𝛹 ′ ) functions are Note that we have assumed 𝐼 𝑘 1 𝑘 2 (𝑧) = 𝐼 𝑘 2 (𝑧)/𝑁 1 + 𝐼 𝑘 1 〈𝑘 2 〉 (𝑧) (see equation (253) in section IV.2.3 ) where 𝐼 𝑘 2 (𝑧) is the current induced in substage 𝑘 2 to shield the superstage and 𝐼 𝑘 1 〈𝑘 2 〉 (𝑧) is the current induce in element 𝑘 1 of substage 𝑘 2 to shield substage 𝑘 2 . Thus we have because all the 𝐼 𝑘 1 〈𝑘 2 〉 (𝑧) currents are shielding the same substage, therefore their sum must be zero.

		ℎ 1 𝑝 1 𝑝 2	(𝑧 ′′ , 𝑧 ′ , 𝛹 ′ ) =	2 𝑔 𝑝 1 𝑝 2 11 (𝑧 ′′ , 𝑧 ′ , 𝛹 ′ )	-	1 𝑔 𝑝 1 𝑝 2 𝑁 1 1 (𝑧 ′′ , 𝑧 ′ , 𝛹 ′ )	-	1 𝑔 𝑝 1 𝑝 2 21 (𝑧 ′′ , 𝑧 ′ , 𝛹 ′ )
	{	ℎ 2 𝑝 1 𝑝 2 where the 𝑔 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝑧 ′′ , 𝑧 ′ , 𝛹 ′ ) functions are given by (279). (𝑧 ′′ , 𝑧 ′ , 𝛹 ′ ) = ∑ [ 2 𝑔 𝑝 1 𝑝 2 𝑗 1 1 (𝑧 ′′ , 𝑧 ′ , 𝛹 ′ ) -1 𝑔 𝑝 1 𝑝 2 𝑗 1 𝑁 2 (𝑧 ′′ , 𝑧 ′ , 𝛹 ′ ) 𝑁 1 𝑗 1 =1	-	1 𝑔 𝑝 1 𝑝 2 𝑗 1 2 (𝑧 ′′ , 𝑧 ′ , 𝛹 ′ )	]	(311)
		The current 𝐼 𝑘 1 𝑘 2 (𝑧) flowing though element 𝑘 1 of substage 𝑘 2 at 𝑧 is, from equations (290) and
	(302), equal to			
								+∞
					𝐼 𝑘 1 𝑘 2 (𝑧) = ∑ 𝐼 0 (𝛼 𝑘 ) cos (𝛼 𝑘 𝑧 + 𝜑 𝑘 1 𝑘 2 (𝛼 𝑘 ) )	(312)
								𝑘=-∞
								𝑁 1
								∑ 𝐼 𝑘 1 〈𝑘 2 〉 (𝑧)	= 0
								𝑘 1 =1
	As a result, we have			
					∑ 𝐼 𝑘 1 𝑘 2 (𝑧) 𝑁 1 𝑘 1 =1	= ∑ 𝐼 𝑘 1 〈𝑘 2 〉 (𝑧) 𝑁 1 𝑘 1 =1	+ ∑ 𝑁 1 𝑘 1 =1	𝐼 𝑘 2 (𝑧) 𝑁 1	= 𝐼 𝑘 2 (𝑧)
		which leads to			
				𝑁 1	+∞		+∞	𝑁 1
			𝐼 𝑘 2 (𝑧) = ∑ ∑ 𝐼 0 (𝛼 𝑘 ) cos (𝛼 𝑘 𝑧 + 𝜑 𝑘 1 𝑘 2 (𝛼 𝑘 ) )	= ∑ 𝐼 0 (𝛼 𝑘 ) ∑ cos (𝛼 𝑘 𝑧 + 𝜑 𝑘 1 𝑘 2 (𝛼 𝑘 ) )
				𝑘 1 =1	𝑘=-∞		𝑘=-∞	𝑘 1 =1
		Since, according to (303), 𝜑 𝑘 1 𝑘 2 (𝛼 𝑘 ) = (𝑘 -1)2𝜋 ( 𝑘 2 -1 𝑁 2 ) + (2 -𝑘)2𝜋 ( 𝑘 1 -1 𝑁 1	), we can deduce that
		𝑁 1						0𝑖𝑓𝑘 ≠ 2 + 𝑝𝑁 1 , 𝑝 ∈ ℤ
		∑ cos (𝛼 𝑘 𝑧 + 𝜑 𝑘 1 𝑘 2 (𝛼 𝑘 ) ) 𝑘 1 =1	= {	𝑁 1 cos (𝛼 𝑘 𝑧 + (𝑘 -1)2𝜋 ( 𝑘 2 -1 𝑁 2	)) 𝑖𝑓𝑘 = 2 + 𝑝𝑁 1 , 𝑝 ∈ ℤ
		So	{ 𝐹 2 (𝑧 ′′ , 𝑧 ′ ) = ∑ ∑ 𝑒 𝑖𝜑 𝑝 1 𝑝 2 𝐹 1 (𝑧 ′′ , 𝑧 ′ ) = ∑ ∑ 𝑒 𝑖𝜑 𝑝 1 𝑝 2 𝑁 1 𝑁 2 (𝛼 𝑘+𝑛 ) 𝑝 1 =1 𝑝 2 =1 (𝛼 𝑘+𝑛 ) 𝑝 1 =1 𝑝 2 =1 𝑁 1 𝑁 2 𝐼 𝑘 2 (𝑧) = ∑ 𝐼 0 (𝛼 2+𝑝𝑁 1 ) 𝑁 1 cos (𝛼 2+𝑝𝑁 1 𝑧 + (1 + 𝑝𝑁 1 )2𝜋 ( 2𝜋 ∫ ℎ 1 𝑝 1 𝑝 2 (𝑧 ′′ , 𝑧 ′ , 𝛹 ′ )𝑑𝛹 ′ 𝛹 ′ =0 ∫ 𝛹 ′ =0 ℎ 2 𝑝 1 𝑝 2 (𝑧 ′′ , 𝑧 ′ , 𝛹 ′ )𝑑𝛹 ′ 2𝜋 +∞ 𝑘 2 -1 𝑁 2 𝑝=-∞	))	(310)

  2.5.1 to express the 1/𝑔 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝑧, 𝑧 ′ , 𝛹 ′ ) function (see equation (274)) is, by nature, infinite The time constant 𝜏 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) which links the amplitude 𝐼 0 (𝛼 𝑘 ) (amplitude of the cosine function with spatial frequency 𝛼 𝑘 ) to 𝐼 ̇0 (𝛼 𝑘+𝑛 ) (time variation of the amplitude of the cosine function with spatial frequency 𝛼 𝑘+𝑛 ) is expressed in equation (308) as We can first notice that 𝜏 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) is proportional to 1/𝛼 𝑘 2 and since 𝛼 𝑘 = 𝛼 1 + (𝑘 -1)(𝛼 2 -𝛼 1 ), we can conclude that for 𝑘 ≫ 1 the time constants 𝜏 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) will tend towards zero for any 𝑛 ∈ ℤ. This means that the amplitudes 𝐼 0 (𝛼 𝑘 ) with 𝑘 ≫ 1 will be decoupled from the time variation of any 𝐼 0 (𝛼 𝑘 ) , 𝑘 ∈ ℤ, and since 𝐼 0 𝑒𝑥𝑡 (𝛼 𝑘 ) = 0 for 𝑘 ∈ ℤ\{1; 2}, we can see that it will in fact be possible to neglect the amplitudes 𝐼 0 (𝛼 𝑘 ) for 𝑘 ≫ 1. In other words, we can consider only a finite number of spatial frequencies 𝛼 𝑘 , and thus only a finite part (in the vertical direction) of the infinite 𝜏 matrix, without changing the physical behavior of the system. Furthermore, we have also investigated the values of the coefficients due to the decomposition in Fourier series of the 1/𝑔 𝑝 1 𝑝 2 𝑘 1 𝑘 2 (𝑧, 𝑧 ′ , 𝛹 ′ ) function, i.e. the 𝐸 𝑛 1 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) and 𝐸 𝑛 2 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) coefficients appearing in the expression of 𝜏 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) . Indeed, we have numerically computed them for different values of 𝑘 and 𝑛 and for two different set of (𝑅 𝑓 , 𝑅 𝑐 1 , 𝑅 𝑐 2 , 𝑙 𝑝 1 , 𝑙 𝑝 2 , 𝑁 1 , 𝑁 2 ) parameters which are representative of the first two and last two cabling stages of JT-60SA TF conductor; they are displayed from Figure 50 to Figure 57.

	𝜏 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) = 𝜎 𝑙 1	𝜇 0 8𝜋 2	1 𝛼 𝑘	2 𝐸 𝑛 1 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) + 𝜎 𝑙 2	𝜇 0 8𝜋 2	1 𝛼 𝑘	2 𝐸 𝑛 2 (𝛼 𝑘 )(𝛼 𝑘+𝑛 )

  2 , only featured the spatial frequencies (𝛼 2+𝑝𝑁 1 ) 𝑝∈ℤ and that the currents induced in each element of a substage to shield it, i.e. the 𝐼 𝑘 1 〈𝑘 2 〉 , only featured the spatial frequencies (𝛼 𝑘 ) 𝑘≠2+𝑝𝑁 1 ,𝑝∈ℤ . Consequently, the time variation of the

	𝐼 0 (𝛼 𝑘+𝑛 ) does not induce currents with spatial frequencies different from (𝛼 2+𝑝𝑁 1 ) 𝑝∈ℤ	in the 𝐼 𝑘 2 and does
	not induce currents with spatial frequencies (𝛼 2+𝑝𝑁 1 ) 𝑝∈ℤ	in the 𝐼 𝑘 1 〈𝑘 2 〉 ; therefore the
	(𝐸 𝑛 1 (𝛼 2+𝑝𝑁 1 )(𝛼 2+𝑝𝑁 1 +𝑛 ) ) 𝑝∈ℤ	and the (𝐸 𝑛 2 (𝛼 𝑘 )(𝛼 𝑘+𝑛 ) ) 𝑘≠2+𝑝𝑁 1 ,𝑝∈ℤ	are zero.

  are the only amplitudes that are directly excited by the time variation of the applied magnetic field 𝐵 𝑎 .

									(𝛼 𝑘 ) ̅̅̅̅̅̅ = 𝐼 0 (𝛼 𝑘 ) 𝑒 𝑖𝜔𝑡 , as
	𝐼 0 (𝛼 𝑘 ) ̅̅̅̅̅̅ =	1 1 + 𝑖𝜔𝜏 (𝛼 𝑘 )(𝛼 𝑘 )	𝐼 0 𝑒𝑥𝑡 (𝛼 𝑘 ) ̅̅̅̅̅̅ -	𝜔𝜏 (𝛼 𝑘 )(𝛼 𝑘-1 ) 1 + 𝑖𝜔𝜏 (𝛼 𝑘 )(𝛼 𝑘 )	𝐼 0 (𝛼 𝑘-1 ) ̅̅̅̅̅̅̅̅ -	𝜔𝜏 (𝛼 𝑘 )(𝛼 𝑘+1 ) 1 + 𝑖𝜔𝜏 (𝛼 𝑘 )(𝛼 𝑘 )	𝐼 0 (𝛼 𝑘+1 ) ̅̅̅̅̅̅̅̅	(315)
	Since the only non-zero 𝐼 0 𝑒𝑥𝑡 (𝛼 𝑘 ) are obtained for 𝑘 = 1 and 𝑘 = 2, we can deduce that 𝐼 0 (𝛼 1 ) and 𝐼 0 (𝛼 2 )
	For a slowly time varying applied magnetic field 𝐵 𝑎 , the coupling between the 𝐼 0 (𝛼 𝑘 ) is negligible and
	the only non-zero 𝐼 0 (𝛼 𝐼 0 (𝛼 𝑘 ) ̅̅̅̅̅̅ ≃	-𝑖 𝜔𝜏 (𝛼 𝑘 )(𝛼 𝑘 )	𝐼 0 𝑒𝑥𝑡 (𝛼 𝑘 ) ̅̅̅̅̅̅ + 𝑖	𝜏 (𝛼 𝑘 )(𝛼 𝑘-1 ) 𝜏 (𝛼 𝑘 )(𝛼 𝑘 )	𝐼 0 (𝛼 𝑘-1 ) ̅̅̅̅̅̅̅̅ + 𝑖	𝜏 (𝛼 𝑘 )(𝛼 𝑘+1 ) 𝜏 (𝛼 𝑘 )(𝛼 𝑘 )	𝐼 0 (𝛼 𝑘+1 )

𝑘 ) are obtained for 𝑘 = 1 and 𝑘 = 2. When the coupling is maximum, i.e. when 𝜔𝜏 (𝛼 𝑘 )(𝛼 𝑘 ) ≫ 1 for any 𝑘 ∈ ℤ, equation (315) becomes

  In section IV.2.3.2 , we have noted 𝐼 𝑘 2 𝑘 2 +1 (𝑧) the local transverse current flowing from substage 𝑘 2 to the adjacent substage 𝑘 2 + 1 at 𝑧.The local power 𝑑𝑃 𝑘 2 𝑘 2 +1 (𝑧) dissipated in a slice of thickness 𝑑𝑧 by the flow of 𝐼 𝑘 2 𝑘 2 +1 (𝑧) is then Again, with the method we have used in section III.2.6 to derive equation (208) and from the equation above, we can write for 1 ≤ 𝑘 2 ≤ 𝑁 2 and 1 ≤ 𝑘 2 ≤ 𝑁 2

	{ 𝑑𝑃 𝑠𝑢𝑏𝑠𝑡𝑎𝑔𝑒 (𝑧) = ∑ ∑ 𝑑𝑃 𝑘 1 𝑘 1 +1 𝑑𝑃 𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑎𝑔𝑒 (𝑧) = ∑ 𝑑𝑃 𝑘 2 𝑘 2 +1 (𝑧) 𝑁 2 𝑘 2 =1 〈𝑘 2 〉 (𝑧) 𝑁 1 𝑘 1 =1 𝑁 2 𝑘 2 =1 𝐼 𝑡 0 2 { (𝛼 𝑘 ) cos [𝛼 𝑘 𝑧 + (𝑘 -1) 𝜋(2𝑘 2 -1) ] 𝑖𝑓𝑘 ≠ 𝑗𝑁 2 + 1, 𝑗 ∈ ℤ 𝑁 2 𝐼 0 (𝛼 𝑘 ) 𝑁 1 (𝑘 2 -𝑁 2 + 1 ) sin(𝛼 𝑘 𝑧) 𝑖𝑓𝑘 = 𝑗𝑁 2 + 1, 𝑗 ∈ ℤ 2 (𝛼 𝑘 ) are functions depending on time only equal to (𝑧) = where the 𝐼 𝑡 0 2 𝐼 𝑘 2 𝑘 2 +1 (𝛼 𝑘 )	(320) (323)
	Using equations (254) and (256), we have 𝑑𝐼 𝑘 1 𝑘 2 (𝑧) 𝑑𝑧 = [ 𝐼 𝑘 1 -1𝑘 1 〈𝑘 2 〉 (𝑧) 𝑑𝑧 -𝐼 𝑘 1 𝑘 1 +1 〈𝑘 2 〉 (𝑧) 𝑑𝑧 ] + 𝐼 𝑡 0 2 -𝐼 0 (𝛼 𝑘 ) 𝑁 1 1 𝑁 1 (𝛼 𝑘 ) = 2 sin ((𝑘 -1) which enables us to write Now, going back to equation (321), for 1 ≤ 𝑘 2 ≤ 𝑁 2 , we have [ 𝐼 𝑘 2 -1𝑘 2 (𝑧) 𝑑𝑧 𝜋 ) 𝑁 2	-	𝐼 𝑘 2 𝑘 2 +1 (𝑧) ] 𝑑𝑧	(321) (324)
	[	𝐼 𝑘 1 -1𝑘 1 〈𝑘 2 〉 𝑑𝑧	(𝑧)	∑ 𝑁 1 𝑘 1 =1 -𝐼 𝑘 1 𝑘 1 +1 𝑑𝐼 𝑘 1 𝑘 2 (𝑧) 𝑑𝑧 〈𝑘 2 〉 (𝑧) 𝑑𝑧 ] = = [ 𝐼 𝑘 2 -1𝑘 2 (𝑧) 𝑑𝑧 𝑑𝐼 𝑘 1 𝑘 2 (𝑧) 𝑑𝑧 -1 -𝑁 1 [ 𝐼 𝑘 2 𝑘 2 +1 (𝑧) 𝑑𝑧 ] 𝐼 𝑘 2 -1𝑘 2 (𝑧) 𝑑𝑧 -	𝐼 𝑘 2 𝑘 2 +1 (𝑧) 𝑑𝑧 ]
	Using the previous relations, this leads to
	In addition, from equation (312), we know that for any time regime
	[	𝐼 𝑘 1 -1𝑘 1 〈𝑘 2 〉 𝑑𝑧	𝑑𝐼 𝑘 1 𝑘 2 (𝑧) 𝑑𝑧 (𝑧) -𝐼 𝑘 1 𝑘 1 +1 = ∑ -𝛼 𝑘 𝐼 0 +∞ 〈𝑘 2 〉 +∞ (𝑧) 𝑑𝑧 ] = ∑ 𝑘=-∞ (𝛼 𝑘 ) sin (𝛼 𝑘 𝑧 + 𝜑 𝑘 1 𝑘 2 (𝛼 𝑘 ) ) -𝛼 𝑘 𝐼 0 (𝛼 𝑘 ) sin (𝛼 𝑘 𝑧 + 𝜑 𝑘 1 𝑘 2 (𝛼 𝑘 ) ) 𝑘=-∞ 𝑘≠2+𝑝𝑁 1 ,𝑝∈ℤ
	Thus					
	2.3.1 , we have noted 𝐼 𝑘 1 𝑘 1 +1 ∑ 𝑁 1 +∞ 𝑑𝐼 𝑘 1 𝑘 2 (𝑧) 𝑑𝑧 𝑘 1 =1 = ∑ -𝛼 𝑘 𝐼 0 (𝛼 𝑘 ) ∑ sin (𝛼 𝑘 𝑧 + 𝜑 𝑘 1 𝑘 2 𝑁 1 (𝛼 𝑘 ) ) 𝑘 1 =1 𝑘=-∞ 𝐼 𝑘 1 𝑘 1 +1 〈𝑘 2 〉 𝑑𝑧 = ∑ 𝛼 𝑘 𝐼 𝑡 0 1 (𝛼 𝑘 ) cos [𝛼 𝑘 𝑧 + 𝜑 𝑘 1 𝑘 2 (𝛼 𝑘 ) + (2 -𝑘) +∞ 𝜋 ] 𝑁 1 𝑘=-∞ 〈𝑘 2 〉 (𝑧) the local transverse current flowing in substage 𝑘 2 𝑘≠2+𝑝𝑁 1 ,𝑝∈ℤ
	from element 𝑘 1 to the adjacent element 𝑘 1 + 1 at 𝑧. The local power 𝑑𝑃 𝑘 1 𝑘 1 +1 〈𝑘 2 〉 of thickness 𝑑𝑧 by the flow of 𝐼 𝑘 1 𝑘 1 +1 〈𝑘 2 〉 (𝑧) is then given by Since from (303), 𝜑 𝑘 1 𝑘 2 (𝛼 𝑘 ) = (𝑘 -1) 2𝜋(𝑘 2 -1) 𝑁 2 + (2 -𝑘) 2𝜋(𝑘 1 -1) 𝑁 1 , we can deduce that (𝑧) dissipated in a slice
	𝑑𝑃 𝑘 1 𝑘 1 +1 〈𝑘 2 〉 ∑ sin (𝛼 𝑘 𝑧 + 𝜑 𝑘 1 𝑘 2 (𝑧) = (𝛼 𝑘 ) ) 𝑁 1 = { 𝐼 𝑘 1 𝑘 1 +1 〈𝑘 2 〉 𝑑𝐺 1 2 𝑁 1 sin (𝛼 𝑘 𝑧 + (𝑘 -1) (𝑧) = 1 𝜎 𝑙 1 ( 𝐼 𝑘 1 𝑘 1 +1 〈𝑘 2 〉 𝑑𝑧 2𝜋(𝑘 2 -1) (𝑧) ) 2 𝑑𝑧 ) 𝑖𝑓𝑘 = 2 + 𝑝𝑁 1 , 𝑝 ∈ ℤ 𝑁 2 𝑘 1 =1 0𝑖𝑓𝑘 ≠ 2 + 𝑝𝑁 1 , 𝑝 ∈ ℤ	(317)
	Therefore					
	[ 𝐼 𝑘 2 -1𝑘 2 (𝑧) 𝑑𝑧	-	𝐼 𝑘 2 𝑘 2 +1 (𝑧) 𝑑𝑧 ] =	∑ +∞ 𝑘=-∞	-𝛼 𝑘 𝐼 0 (𝛼 𝑘 ) 𝑁 1 sin (𝛼 𝑘 𝑧 + (𝑘 -1)	2𝜋(𝑘 2 -1) ) 𝑁 2
							𝑘=2+𝑝𝑁 1 ,𝑝∈ℤ
	𝑑𝑃 𝑘 2 𝑘 2 +1 (𝑧) = With the method we have used in section III.2.6 to derive equation (208) and from the equation 𝐼 𝑘 2 𝑘 2 +1 2 (𝑧) 𝑑𝐺 2 = 1 𝜎 𝑙 2 ( 2 𝐼 𝑘 2 𝑘 2 +1 (𝑧) 𝑑𝑧 ) 𝑑𝑧 (318) above, we can write for 1 ≤ 𝑘 2 ≤ 𝑁 2
	Therefore the total local power 𝑑𝑃(𝑧) dissipated in a slice of thickness 𝑑𝑧 by the flow of all the local transverse currents (𝐼 𝑘 1 𝑘 1 +1 〈𝑘 2 〉 (𝑧)) 1≤𝑘 1 ≤𝑁 1 𝑘=2+𝑝𝑁 1 ,𝑝∈ℤ 1≤𝑘 2 ≤𝑁 2 and (𝐼 𝑘 2 𝑘 2 +1 (𝑧)) 1≤𝑘 2 ≤𝑁 2 is +∞ 𝐼 𝑘 2 𝑘 2 +1 (𝑧) 𝑘=-∞ 𝑑𝑧 = ∑ 𝛼 𝑘 𝐼 𝑘 2 𝑘 2 +1 (𝛼 𝑘 ) (𝑧) (322)
	with					𝑑𝑃(𝑧) = 𝑑𝑃 𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑎𝑔𝑒 (𝑧) + 𝑑𝑃 𝑠𝑢𝑏𝑠𝑡𝑎𝑔𝑒 (𝑧)	(319)
	with					

  In section IV.2.5.4.4, we have seen that it was possible to take into account only four of the

		2.6.2	Expression for 𝑁 = 1
	(𝐼 0 (𝛼 𝑘 ) ) 𝑘∈ℤ	amplitudes for 0 ≤ 𝑘 ≤ 3. From equation (327), we can now write
								2
			𝑑𝑃 𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑎𝑔𝑒 (𝑧) =	1 𝜎 𝑙 2	𝑁 2 𝑘 2 =1 ∑	3 𝑘=0 𝑘=2+𝑝𝑁 1 ,𝑝∈ℤ ( ∑	𝛼 𝑘 𝐼 𝑘 2 𝑘 2 +1 (𝛼 𝑘 )	) (𝑧)	𝑑𝑧
	The relative integer 𝑝 must satisfy 0 ≤ 2 + 𝑝𝑁 1 ≤ 3 and thus -	2 𝑁 1	≤ 𝑝 ≤	1 𝑁 1	, since by assumption
	𝑁 1 ≥ 3, the only possible relative integer is 𝑝 = 0 which corresponds to 𝑘 = 2. Therefore, from (323)
	and (324), since 𝑁 2 ≥ 3, we have				
		𝑑𝑃 𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑎𝑔𝑒 (𝑧) =	1 𝜎 𝑙 2	𝛼 2 4 sin 2 ( 2 𝐼 0 (𝛼 2 ) 2 𝜋 𝑁 1 𝑁 2 ) 2	∑ cos 2 [𝛼 2 𝑧 + 𝑁 2 𝑘 2 =1	𝜋(2𝑘 2 -1) 𝑁 2 ]	𝑑𝑧
	Since the sum of the squared cosines gives 𝑁 2 /2, we finally have
			𝑑𝑃 𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑎𝑔𝑒 (𝑧) 𝑑𝑧	=	𝛼 2 8𝜎 𝑙 2 sin 2 ( 2 𝑁 1 2 𝑁 2 𝜋 𝑁 2	)	𝐼 0 (𝛼 2 ) 2

Table 11 Effective geometrical parameters extracted from THELMA trajectories

 11 

	Name	R c 1	R c 2	l p 1	l p 2
	Value (mm)	𝟑. 𝟖𝟔	𝟏𝟏. 𝟒𝟗	𝟏𝟏𝟐. 𝟓	𝟒𝟓𝟎. 𝟎

Table 12 Effective electrical parameters extracted from THELMA conductance network

 12 

	Name	𝜎 𝑙 1	𝜎 𝑙 2
	Value (𝟏𝟎 𝟕 𝑺. 𝒎 -𝟏 )	𝟐. 𝟑𝟔	𝟔. 𝟓𝟎

Table 13 Effective geometrical parameters extracted from JackPot trajectories

 13 

	Name	R c 1	R c 2	l p 1	l p 2
	Value (mm)	𝟑. 𝟎	𝟔. 𝟔	𝟏𝟖𝟕. 𝟎	𝟐𝟗𝟎. 𝟐

Table 14 Effective electrical parameters extracted from JackPot conductance network

 14 

	Name		𝜎 𝑙 1	𝜎 𝑙 2
	Value (𝟏𝟎 𝟕 𝑺. 𝒎 -𝟏 )	𝟏. 𝟑𝟖	𝟓. 𝟗𝟐
	IV.4.2.4	Comparison on the coupling power

  Again, by superposition, we can split 𝑉 𝑖 and 𝑉 𝑒 as { 𝑉 𝑖 = 𝑉 𝑖 𝐵 ̇𝑎 + 𝑉 𝑖 𝑀 ̇0 𝑉 𝑒 = 𝑉 𝑒 𝐵 ̇𝑎 + 𝑉 𝑒 𝑀 ̇0

Table 15 Experimental hysteresis losses and apparent time constant 𝒏𝝉 of a sample of JT- 60SA TF conductor for positive trapezoidal cycles with different values of 𝑩 𝒎

 15 

	𝐵 𝑚 (𝑇)	1.0	1.5
	𝑄 ℎ𝑦𝑠𝑡 (𝑚𝐽/𝑐𝑚 3 /𝑐𝑦𝑐𝑙𝑒) per unit volume of superconducting composites	29.6	39.0
	𝒏𝝉(𝒎𝒔)	375	412

  2 [𝜎 𝑙 1 𝑁 1 𝑅 𝑐 1

	2 sin 2 ( 𝑁 1 𝜋	) (	𝑙 𝑝 1 2𝜋	)	2	+ 𝜎 𝑙 2 𝑅 𝑐 2	2 sin 2 ( 𝑁 2 𝜋	) (	2𝜋 𝑙 𝑝 2	)	2

Table 16 Cabling radii and twist pitches of JT-60SA TF conductor extracted from X-ray tomography

 16 

	Cabling stage	1	2	3	4	5
	Cabling radii (mm)	0.49	0.82	1.62	2.31	7.75
	Twist pitches (mm)	45.4	66.7	120.2	185.2	285.7
	Twist pitches					
	specifications [39]	45	70	120	190	290
	(mm)					

  For a "R/F/R" composite, we can then give the following [𝐵] matrix Using equation (72), we can finally express the matrix equation governing the "R/F/R" composite for any time-varying regime

																								𝑅 1 𝑅 2	) 2 𝜌 𝑡 1 𝜌 𝑡 2	𝜌 𝑡 1 𝜌 𝑡 2	( 𝑅 1 𝑅 2	) 2	0 0]	and	[𝐵] 3 =
	[0	𝜌 𝑡 1 𝜌 𝑡 2	𝜌 𝑡 1 𝜌 𝑡 2	-	𝜌 𝑡 1 𝜌 𝑡 2	( 𝑅 2 𝑅 1	) 2	-	𝜌 𝑡 1 𝜌 𝑡 2	].											
											-1					-(	𝑅 2 𝑅 1	2 )		1				0	0
						[𝐵] =	-( 𝑅 2 𝑅 1 0	) 2			𝜌 𝑡 1 𝜌 𝑡 2 𝜌 𝑡 1 𝜌 𝑡 2		𝜌 𝑡 1 𝜌 𝑡 2	( 𝑅 2 𝑅 1 𝜌 𝑡 1 𝜌 𝑡 2	2 )	-	𝜌 𝑡 1 𝜌 𝑡 2	0 (	𝑅 2 𝑅 1	) 2	-	0 𝜌 𝑡 1 𝜌 𝑡 2
									[		0 0							1 0				-1 0			-(	𝑅 3 𝑅 2 1	2 )	1 1 ]
	[	-1 -( 𝑅 2 𝑅 1 0 1 0 0 0 1 0 0	) 2	1 0 1 -1 -( 𝑅 3 0 0 0 𝑅 2 0 1	) 2	0 0 0 1 1 ]	[	𝐸 0 2 𝐸 0 3 𝐸 0 4 𝐸 0 5 𝐸 0 6 ]	+	𝜇 0 2	( 2𝜋 𝑙 𝑝	) 2 1 𝜌 𝑡 1	[ -( -1 𝑅 1 𝑅 2 0 0 0	) 2	-( 𝑅 2 𝑅 1 𝜌 𝑡 1 𝜌 𝑡 2 𝜌 𝑡 1 𝜌 𝑡 2 1 0	)	2	𝜌 𝑡 1 𝜌 𝑡 2	1 ( 𝑅 1 𝑅 2 𝜌 𝑡 1 𝜌 𝑡 2 -1 0	) 2	0 0 ( 𝑅 2 𝑅 1 𝑅 3 -( -𝜌 𝑡 1 𝜌 𝑡 2 1 𝑅 2 ) 2 ) 2	-	0 0 𝜌 𝑡 1 𝜌 𝑡 2 1 ] 1	[ 𝐸 ̇02 𝐸 ̇03 𝐸 ̇04 𝐸 ̇05 𝐸 ̇06 ]	=	𝑙 𝑝 2𝜋	0 0 𝐵 𝑎 ̇[ 1 0 0 ]

2 = [-(

D +

T → n (14.03MeV) +

He(3.56MeV) 2 D + 2 D → n (2.45MeV) + 3 He(0.82MeV)
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III.

Analytical study of the shielding due to a single stage of a CICC Content: This part is dedicated to the presentation of an analytical modeling of a single cabling stage conductor. Comparisons with other analytical models are also presented.

Associated publication:

A. Louzguiti, L. Zani, D. Ciazynski, B. Turck, JL. Duchateau, A. Torre, F. Topin, AC Coupling Losses in CICCs: Analytical Modeling at Different Stages, I.E.E.E. Trans. on App. Superconductivity, Vol. 27, June 2017, Art. No. 0600505. (reference [START_REF] Louzguiti | AC Coupling Losses in CICCs: Analytical Modeling at Different Stages[END_REF])

III.1 Presentation

In the previous section, we have studied the magnetic behavior of a single straight superconducting composite subject to a transverse time-varying magnetic field. Once having comprehensively addressed the elementary scale of a CICC (strand scale) and in the aim of progressing on the building of an extensive analytical representation of a multi-stage CICC, we now consider the next step of complexification, i.e. taking the features of a CICC into account. At this stage, the simplest representation of a CICC is to consider it as composed of an assembly of its last stages (petals) interacting all together, forming then at this level, a single stage CICC. We will consequently treat the problem by taking into consideration a bundle of elements twisted together into a round cable. The definition of "element" can either be a strand, a group of strands or a petal (i.e. multiple strands twisted in several cabling stages). Therefore, even if our strategy aims at representing the CICC scale, our present approach is also applicable to a group of any type of twisted elements regardless of the scale.

The purpose of the approach is to analyze the shielding due to a specific cabling stage as we aim at improving the physical understanding of coupling losses observed at this scale. In a group of twisted elements, the magnetic shielding established by the elements bears many similarities with what occurs with filaments in the composite. However, a major difference lies in the fact that we consider a finite number of filaments while in the composite the edge filaments are considered as having an infinitely small size (i.e. forming a continuous ring at filamentary zone edges). The extra complexity of the present step comes from the discretization of the zone which carries the shielding currents. In other words, we are here entering into the first stage of the topological decomposition of the CICC towards its real geometry (ultimately a multi-stage assembly of strands).

III.2 N-uplet model

III.2.1 Methodology

In order to study the magnetic response of a group of twisted elements to a time-varying transverse and uniform magnetic field (N-uplet model), we make profit of the work already addressed at the strand scale following the methodology described in section II.2.1 :

IV. Analytical study of the shielding due to two stages of a CICC

Content: This part is dedicated to the presentation of an analytical modeling of a two cabling stages conductor. Experimental work (AC losses measurements and X-ray tomography) on conductors is also presented as well as comparisons with other models (analytical and numerical).

Associated publication:

A. 

IV.1 Presentation

In the previous section, we have studied the magnetic behavior of a single cabling stage subject to a transverse time-varying magnetic field. In order to further investigate the dynamics of magnetic coupling occurring in a CICC, we now reach a higher level of complexity by considering the coupling effects occurring between different cabling stages of the CICC. We will therefore address the magnetic shielding in a two cabling stages conductor as it reveals the magnetic coupling between two consecutive cabling stages of a CICC.

The geometry we will consider here is a twisted group of twisted elements. Again the "element" can either be a strand, a group of strands or even a petal (i.e. multiple strands twisted in several cabling stages) because our approach aims at modeling the magnetic coupling between two consecutive cabling stages regardless of the scale.

In this section we will derive the equation governing the conductor as well as the power generated inside it and compare the outputs of our modeling to those of two reference numerical models (THELMA and JackPot) on two simplified geometries representative of ITER CS and JT-60SA TF conductors.

In addition, we will present the experimental losses of a sample of JT-60SA TF conductor we have measured in JOSEFA facility at CEA and its effective geometrical parameters (i.e. cabling radii and twist pitches) extracted via X-ray tomography from other samples of the same conductor.

The objective is then to investigate the possibility of representing the experimental losses with those predicted by our 𝑁 2 -uplet of 𝑁 1 -uplets model using the effective geometrical parameters of the conductor and adjusting the effective transverse conductances considered in our approach. By analogy with the calculations we have carried out in section II.2.8 , we can immediately conclude that it is possible to express the coupling losses per cycle of magnetic excitation 𝐵 𝑝 sin (𝜔𝑡) per unit volume of conductor envelope 𝑄 adapting equations ( 126), ( 127) and (128) to

with 

In addition, using the fact

we can express equation (336) as than the one given by the 𝑁 2 -uplet of 𝑁 1 -uplets model.

We have therefore shown that a two cabling stages conductor could be described as in the MPAS model, i.e. with a set of local internal magnetic fields 𝐵 𝑖𝑒𝑞 𝑗 associated with time constants 𝜏 𝑐 𝑗 (the 𝜏 𝑐 𝑗 are analogous to the 𝜃 𝑗 of the MPAS model in section III.3 ).

Note that we have found here that the 𝑁 2 -uplet of 𝑁 1 -uplets was described by a set of four time constants instead of two considered by the MPAS model.

However the MPAS model initially also considers that there are more than two time constants for a two cabling stages conductor, it simply reduces them to only two in order to simplify the approach. We have also chosen to reduce the number of time constants of the 𝑁 2 -uplet of 𝑁 1 -uplets because we have previously seen that theoretically there exists an infinity of time constants.

Again, this point is important as it consolidates both the MPAS model, which is consistent with the experimental reality, and our model because our theoretical results are in agreement with the assumptions of the MPAS model.

IV.4 Comparisons with numerical models

In this section, we will compare the results of the 𝑁 2 -uplet of 𝑁 1 -uplets model with those of the reference numerical models THELMA and JackPot on two different simplified geometries which are respectively representative of ITER CS and JT-60SA TF conductors.

For both comparisons, we have considered geometries which consist in a group of groups of cable elements (as in the 𝑁 2 -uplet of 𝑁 1 -uplets model) and slowly-time varying regimes of the applied transverse magnetic field 𝐵 𝑎 so that we can assess the relevance of the resistive part of our model.

In each comparison, we will start by extracting the effective geometrical parameters of the trajectories of the cable elements generated by the code (either THELMA or JackPot); these parameters are the cabling radii and the twist pitches of the substage and superstage scales, i.e. 𝑅 𝑐 1 , 𝑅 𝑐 2 , 𝑙 𝑝 1 and 𝑙 𝑝 2 . We will then extract the effective electrical parameters of the conductor from the conductance network generated by the code; these parameters are the transverse conductances per unit axial length of the substage and superstage scales, i.e. 𝜎 𝑙 1 and 𝜎 𝑙 2 . Having determined the effective parameters needed in the 𝑁 2 -uplet of 𝑁 1 -uplets model, we will then be able to compute the losses dissipated in the conductor and to compare it to the value computed by the code.

IV.4.1 THELMA

The THELMA code was developed to analyze the electromagnetic and thermo-hydraulic transients of superconducting CICCs for fusion magnets [START_REF] Ciotti | THELMA code electromagnetic model of ITER superconducting cables and application to the ENEA stability experiment[END_REF], [START_REF] Bellina | Numerical Analysis of the ITER TF Conductor Samples in SULTAN With the THELMA Code[END_REF]. In this work, the electromagnetic part of the code [START_REF] Breschi | Electromagnetic Modeling of the Jacket in Cable-in-Conduit Conductors[END_REF] has been applied to the analysis of the CS ITER conductor, through the same 24-sub-cable model adopted for the analysis of AC losses in the CS Insert experiment [START_REF] Breschi | Analysis of AC Losses in the ITER Central Solenoid Insert Coil[END_REF]. 

IV.4.2.3 Determination of the effective electrical parameters

The conductance network generated by JackPot for the considered geometry is a 3D matrix whose 𝑑𝐺 𝑘𝑗 (𝑧) coefficients correspond to the local transverse conductances between Cable Elements 𝑘 and 𝑗 at 𝑧. We can therefore write 𝑑𝐺 𝑘𝑗 (𝑧) = 𝜎 𝑙 𝑘𝑗 (𝑧)𝑑𝑧 where 𝜎 𝑙 𝑘𝑗 (𝑧) is the local transverse conductance per unit axial length between Cable Elements 𝑘 and 𝑗 at 𝑧.

Conversely to the conductance network generated by THELMA, there are no diagonal contacts between elements of the same bundle and the local transverse conductances between adjacent elements of the same bundle are not identical for all the bundles and for any position along the z-axis in the conductance network generated by JackPot.

We recall that the 𝑁 2 -uplet of 𝑁 1 -uplets model considers the electrical scheme displayed on Figure 66 for each cross-section of the geometry considered in the comparison.

In order to extract the effective electrical parameters of the conductance network generated by JackPot, i.e. 𝜎 𝑙 1 and 𝜎 𝑙 2 , we use the procedure described below.

We first compute the global transverse conductances between each CE by summing the 𝑑𝐺 𝑘𝑗 (𝑧)

given by JackPot over the cable length 𝐿. This gives us the global transverse conductance matrix 𝐺 between each CE whose coefficients are equal to From this 𝐺 matrix, we compute the "intrabundle" average transverse conductance 𝐺 1 ̂ which corresponds to the average transverse conductance between adjacent CEs of the same bundle.

Following the definition of 𝐺 1 ̂ and 𝜎 𝑙 1 we then have 𝜎 𝑙 1 = 𝐺 1 ̂/𝐿.

Using the conductance network generated by JackPot, the procedure has led us to the value of 𝜎 𝑙 1 displayed in Table 14.

Regarding the calculation of 𝜎 𝑙 2 , we first have to build an "interbundle" transverse conductance matrix 𝐺 2 (𝑁 2 × 𝑁 2 matrix) which gives the transverse conductance between every bundle.

The transverse conductance between bundle 𝑘 and bundle 𝑗 ("interbundle" conductance) is equal to the sum of the transverse conductances between every CE of bundle 𝑘 and every CE of bundle 𝑗.

Therefore the expression of 𝐺 2 coefficients is

From this 𝐺 2 matrix, we compute the "interbundle" transverse average conductance 𝐺 2 ̂ which corresponds to the average transverse conductance between adjacent bundles.

Following the definition of 𝐺 1 ̂ and 𝜎 𝑙 1 we then have 𝜎 𝑙 2 = 𝐺 2 ̂/𝐿.

IV.5.4 X-ray tomography

The knowledge of the internal architecture of a Cable-In-Conduit Conductor is of precious use since its geometrical characteristics largely influence the electromagnetic behavior of the conductor. However, the strong compaction of the CICCs prevents any mechanical method from revealing its inner structure without modifying the initial strands configuration. There is then a need for a non-destructive analysis; one method particularly adapted to this problematic is the X-ray microtomography [START_REF] Tiseanu | Accurate 3D modeling of Cable in Conduit Conductor type superconductors by X-ray microtomography[END_REF].

In the framework of a collaboration with the INFLPR Bucharest, several samples of JT-60SA TF conductor have been scanned by 2D X-ray microtomography. To reconstruct the internal architecture of each conductor, the following procedure has been implemented:  several 2D transverse images are generated along the axis of the sample using the data issued from the X-ray microtomography  these images are automatically processed to identify the positions of the strands in each slice of the conductor  from this set of strand positions along the conductor axis, the strand trajectories are reconstructed Even though the procedure seems to be achievable without any difficulty, several facts have to be pointed out. Indeed, the CICCs exhibit a thick steel sheath which strongly attenuates the X-rays and thus prevents the 2D images of the transverse plane of the conductor from having an optimal contrast (see Figure 74); this makes the automatic strand detection quite challenging. In addition, the X-ray microtomography of a slice of conductor being quite time consuming, the 2D transverse images are only obtained every millimeter along the conductor axis; this implies a substantial displacement of each strand from a slice to the next one and thus the covering between its positions in two consecutive slices is weak.

The INFLPR Bucharest has worked both on the automatic detection of the strand positions in each slice of the sample and on the trajectories reconstruction while we have mainly focused on the second point; because of the specificities of the problem, we had to develop our own reconstruction method: the Iterative Velocity-Oriented Reconstruction Algorithm (IVORA).

Figure 74 : Slice of JT-60SA TF conductor obtained by X-ray tomography

We can notice on Table 16 the good consistency between the twist pitches issued from our treatment of the X-ray tomography of a sample of JT-60SA TF conductor and their specifications. In addition, the first cabling stage of JT-60SA TF conductor being a triplet of strands having a radius of 0.405mm, we expect its cabling radius to be near 0.405𝑚𝑚/sin (𝜋/3) ≃ 0.47𝑚𝑚, which is close to the radius issued from our treatment (0.49mm).

Furthermore, we have also initiated a comparison with the INFLPR algorithm which is based on the minimization of the total length of the strand trajectories. We have observed a global consistency between the two approaches but with some local disagreements; this comparison will be continued.

IV.6 Synthesis

In this third and last part of our work, we have established the 𝑁 2 -uplet of 𝑁 1 -uplets model which represents the behavior of a two cabling stages conductor when subject to any transverse time varying magnetic field. We have seen that the inductive part of our model was consistent as it provides results close to the response of a set of straight infinite tubes (representative of the behavior of the cable in purely inductive regime).

Our work has shown that the currents induced in a two cabling stages conductor can be reduced from an infinite basis of cosine spatial functions (impossible to handle simply) to only four elements (i.e. four cosine functions with four different spatial frequencies, simple to possibly handle for evaluation). This was assessed on two different geometries representative of the first and last cabling stages of JT-60SA TF conductor. In addition, we have analytically defined the expression of coupling losses per cycle in analogy with the MPAS model approach. The difference lies in the number of time constants needed to represent the conductor: two in the MPAS model and four in ours. This point is important as it shows both the consistency of the MPAS model, which is in line with the experimental reality (i.e. the losses of conductor can be represented with a reduced set of time constants), and of our model, whose outputs are dependent upon the cable features, and finally found in line with the assumptions of the MPAS model.

Moreover the comparison of the results of the 𝑁 2 -uplet of 𝑁 1 -uplets model with those of two reference numerical models (THELMA and JackPot) on two different geometries has shown a fair agreement (30-40% range for losses and 15% for induced currents) and assessed that our model is slightly conservative. For all the above-mentioned reasons, we can remain confident in the capacity of our 𝑁 2 -uplet of 𝑁 1uplets model to represent the magnetic behavior of a cable subject to transient magnetic field. Although surely bearing improvement margins, the present analytical model is sufficiently advanced to form a robust basis for further developments.

Besides, on the experimental side, the AC losses measurements we have carried out in CEA Josefa facility on a sample of JT-60SA TF conductor have led to hysteresis losses consistent with those of its composite measured in Speedy and to an apparent time constant (𝑛𝜏 parameter) which is in a realistic range. We have also developed an algorithm (IVORA) to reconstruct the strand trajectories of a conductor from the data of its X-ray tomography. It has shown interesting abilities which have allowed the extraction of the effective geometrical parameters of JT-60SA TF conductor; these parameters were consistent with the cable specifications. AC losses measurements have also been carried out in CEA Josefa facility on a sample of JT-60SA TF conductor; they have led to hysteresis losses consistent with those of its strand measured in Speedy and to an apparent time constant (𝑛𝜏 parameter) which lies in a realistic range.

V.3 Numerical approach

V.3.1 3D CICC morphology and effective properties

We have also developed and implemented an ad-hoc algorithm (IVORA) to reconstruct the strand trajectories of a conductor from the data of its X-ray tomography.

Results obtained from the tomography of real samples have been validated. A satisfying agreement between the effective geometrical parameters of JT-60SA TF conductor extracted from the reconstructed trajectories and the specifications of this cable has been obtained. This algorithm needs to keep being improved to reach a systematic 100% reconstruction rate in order to generate the real 3D conductance and inductance network of any conductor from its X-ray tomography. This will then open the path for highly representative numerical simulations and will also provide information about pending questions such as the evolution of AC losses in a conductor along mechanical cycles (with insights on modification of its inner geometry).

V.3.2 Numerical simulation

In the view of future investigations of the AC losses measurements, a finite element model was recently developed to quantify the effective transverse resistivity of macroscopic filamentary zones from actual geometries which deviate from the periodic representation (e.g. filamentary zone of ITER TF strands). This complementary approach to the CLASS development provides insight to further extend the strand analytical model and its applicability to other geometries. A first step will be the prediction of effective transverse resistivity, to be further confronted to the one deduced from the AC losses measurements of ITER TF Nb3Sn strand.

V.4 Summary and recommendations

As an overall synthesis, we have established at the conductor scale an analytical model representing the coupling currents and coupling losses inside two types of cable: single-staged and double-staged ones. Their comparisons with various models (analytical, numerical and heuristic) for different geometries and different time regimes have robustly assessed the global consistency of our approach and exhibited its conservative tendency which is fully compatible with the requirements associated with conductor design and risk assessments. In addition, the analytical nature of the achieved studies exhibits a simple form which enhances the physical understanding of the coupling losses phenomenon.

Appendices A. Method for the analytical solving of the E0 coefficients in steady-state regimes

We can express the 𝐸 0 2𝑘-1 and 𝐸 0 2𝑘 coefficients of each filamentary zone with equation (37) and then use equations [START_REF] Zhou | Inter-filament resistance, effective transverse resistivity and coupling loss in superconducting multi-filamentary NbTi and Nb3Sn strands[END_REF] to [START_REF] Boutboul | European Nb3Sn Superconducting Strand Production and Characterization for ITER TF Coil Conductor[END_REF] to iteratively calculate the 𝐸 0 2𝑘-1 and 𝐸 0 2𝑘 coefficients of every resistive layers by substitution. Indeed, let us consider a subsequence of consecutive resistive layers inside the composite, only three different cases are actually possible:

 Case 1 : The subsequence goes from the first layer of the strand to the first filamentary zone Let 𝑓 be the number of the first filamentary zone inside the strand (e.g. if the first filamentary zone of the strand is the 5 th layer then 𝑓 = 5); the subsequence of resistive layers goes then from 𝑘 = 1 to 𝑘 = 𝑓 -1, and therefore consists of 𝑓 -1 layers. There are two coefficients per layer so 2𝑓 -2 coefficients have to be determined. As mentioned above, we have 𝐸 0 1 = 0 so we now have only 2𝑓 -3 coefficients left to compute. The considered subsequence features 𝑓 -2 interfaces between resistive layers and one interface of resistive/filamentary type, which makes 2(𝑓 -2) + 1 = 2𝑓 -3 boundary equations. There are as many unknowns as equations; the subsystem can then be solved.

From [START_REF] Torre | CEA Working Note[END_REF] we know that 𝐸 0 1 = 0, using equation [START_REF] Zhou | Inter-filament resistance, effective transverse resistivity and coupling loss in superconducting multi-filamentary NbTi and Nb3Sn strands[END_REF] iteratively from 𝑘 = 1 to 𝑘 = 𝑓 -1, we can express all the (𝐸 0 𝑖 ) 3≤𝑖≤2𝑓-2 as a function of 𝐸 0 2 . Then, replacing 𝐸 0 2𝑓-3 and 𝐸 0 2𝑓-2 with their expressions as a function of 𝐸 0 2 in equation ( 40) for 𝑘 = 𝑓 -1, we can easily calculate 𝐸 0 2 and thus all the (𝐸 0 𝑖 ) 3≤𝑖≤2𝑓-2 coefficients.

 Case 2 : The subsequence is located between two filamentary zones Let 𝑓 1 be the number of a filamentary zone inside the strand and 𝑓 2 the number of the next filamentary zone; the subsequence of resistive layers goes then from 𝑘 = 𝑓 1 + 1 to 𝑘 = 𝑓 2 -1, so there are 2(𝑓 2 -𝑓 1 -1) coefficients to determine. The considered subsequence features 𝑓 2 -𝑓 1 -2 interfaces between resistive layers and 2 interfaces of resistive/filamentary type, which makes 2(𝑓 2 -𝑓 1 -2) + 2 = 2(𝑓 2 -𝑓 1 -1) boundary equations. There are as many unknowns as equations; the subsystem can then be solved.

Using system [START_REF] Zhou | Inter-filament resistance, effective transverse resistivity and coupling loss in superconducting multi-filamentary NbTi and Nb3Sn strands[END_REF] iteratively from 𝑘 = 𝑓 1 + 1 to 𝑘 = 𝑓 2 -1, we can express all the

as a function of 𝐸 0 2𝑓 1 +1 and 𝐸 0 2𝑓 1 +2 . Then, replacing 𝐸 0 2𝑓 2 -3 and 𝐸 0 2𝑓-2 with their expressions as a function of 𝐸 0 2𝑓 1 +1 and 𝐸 0 2𝑓 1 +2 in equation [START_REF] Louzguiti | Development of an Analytical-Oriented Extensive Model for AC Coupling Losses in Multilayer Superconducting Composite[END_REF] for 𝑘 = 𝑓 2 -1, we can easily calculate 𝐸 0 2𝑓 1 +1 and 𝐸 0 2𝑓 1 +2 with the use of equation [START_REF] Louzguiti | Modélisation analytique de la puissance thermique générée par les courants de couplage à l'intérieur d'un composite supraconducteur[END_REF] for 𝑘 = 𝑓 1 , and thus all the

 Case 3 : The subsequence starts after the last filamentary zone Let 𝑓 be the number of the last filamentary zone inside the strand; the subsequence of resistive layers goes then from 𝑘 = 𝑓 + 1 to 𝑘 = 𝑛, and therefore consists of 𝑛 -𝑓 layers, so there are 2(𝑛 -𝑓) coefficients to determine. The considered subsequence features 𝑛 -𝑓 -1 interfaces between resistive layers, one interface of resistive/filamentary type and one interface with the outer region, which makes 2(𝑛 -𝑓 -1) + 1 + 1 = 2(𝑛 -𝑓) boundary equations. There are as many unknowns as equations; the subsystem can then be solved.

Using equation [START_REF] Zani | Starting EU Production of Strand and Conductor for JT-60SA Toroidal Field Coils[END_REF] iteratively from 𝑘 = 𝑛 -1 to 𝑘 = 𝑓 + 1 and equation [START_REF] Boutboul | European Nb3Sn Superconducting Strand Production and Characterization for ITER TF Coil Conductor[END_REF], we can express all the (𝐸 0 𝑖 ) 2𝑓+1≤𝑖≤2𝑛-1 as a function of 𝐸 0 2𝑛 . Then, replacing 𝐸 0 2𝑓+1 and 𝐸 0 2𝑓+2 with their expressions as a function of 𝐸 0 2𝑛 in equation [START_REF] Louzguiti | Modélisation analytique de la puissance thermique générée par les courants de couplage à l'intérieur d'un composite supraconducteur[END_REF] for 𝑘 = 𝑓, we can easily calculate 𝐸 0 2𝑛 and thus all the (𝐸 0 𝑖 ) 2𝑓+1≤𝑖≤2𝑛-1 coefficients.

B. Method for the automatic generation of [A] and [Y]

Equation [START_REF] Ciazynski | Distributions de courant et pertes à l'intérieur d'un composite multifilamentaire supraconducteur soumis à un champ magnétique variable[END_REF] which represents the continuity of the azimuthal component 𝐸 𝜃 of the electric field at 𝑟 = 𝑅 𝑘 , i.e. 𝐸 𝜃 𝑘 (𝑅 𝑘 ) = 𝐸 𝜃 𝑘+1 (𝑅 𝑘 ), can be rewritten, using the general expression of 𝐸 𝜃 𝑘 given by [START_REF] Van De Klundert | stability and a.c. loss in composite superconductors[END_REF], as

Similarly, equation ( 31) which represents the continuity of the radial current density 𝐽 𝑟 of the electric field at an interface between two resistive layers located at 𝑟 = 𝑅 𝑘 , i.e.

𝐸 𝑟 𝑘

(𝑅 𝑘 )

, can be rewritten, using the general expression of 𝐸 𝑟 𝑘 given by ( 36), as

If the ultimate layer (layer 𝑛) is resistive, the additional condition given by equation [START_REF] Boutboul | European Nb3Sn Superconducting Strand Production and Characterization for ITER TF Coil Conductor[END_REF] implies

Finally, equations [START_REF] Nijhuis | The influence of the diffusion barrier on the AC loss of Nb3Sn superconductors[END_REF] state that for a layer 𝑘 which is filamentary, we have

According to equation ( 42), the first coefficient 𝐸 0 1 is always zero, we are then now able to express the system under the form

with [𝐸 0 ] the column vector of the 2𝑛 -1

square matrix and [𝑌] a column vector whose 2𝑛 -1 components are either 0 or 1, using exclusively equations (343) to (347).

The logical tree to build 

We must keep in mind that these equations are only valid if layer 𝑘 is a filamentary zone; the other equations needed to complete the system are the time-derivatives of continuity equations (343), ( 344) and (345) multiplied by

(in order for all coefficients of [𝐵] to be dimensionless), i.e.

We now possess all the elements required, i.e. equations (354) to (357), to give the expression of the [𝐵] matrix appearing in the equation of the system (72). The logical tree used to build [𝐵] (consistent with the construction of [𝐴] and [𝑌] provided in Figure 78) is schematically described through Figure 80 We will now give an example of application of the logical tree to build [𝐵] as we have done it previsouly for [𝐴], [𝑌] and [𝑀]; we continue with the same "R/F/R" composite. 

D. Examples of 2D cartographies generated with CLASS