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I. Introduction

I.1 General context

In a worldwide context where energy production and exchange take more and more place into the
human activity, new sources of energy are continuously under investigation within the global research
field, first under the purely scientific aspect, then gradually entering into the field of industrial mass
production to become available to a maximum of users.

In this environment, aside to the conventional energy sources (coal, oil and fission for the most
active ones) and among the new means of energy production (e.g. photovoltaic), the concept of power
generation issued from fusion physical mechanism has emerged during the 1950’s as a possible
component of a future energy mix. The fusion use for civil energy production purpose is intended to be
established through the exploitation of plasma magnetic confinement and principally aims at developing
the tokamak-type installations.

The tokamak approach bears two main advantages: relying on quasi-infinite resources on earth
(derived from hydrogen fueling for plasma) and carrying marginal risks of uncontrolled and accidental
dissemination endangering populations (derived from spontaneous plasma extinction tendency).

On the other hand substantial challenges remain ahead and should also be considered in the tokamak
strategy. Indeed the control of fusion plasma burning requires high level of technicality and experience
given the high number of parameters to be mastered to reach steady-state regimes plasma.

Among these critical components is the magnetic system, keystone of the plasma control (see details
below). Since several decades the international community has installed and operated many fusion
installations throughout the world, mainly tokamaks such as TFR (FR), Tore Supra/WEST (FR),
FT (IT), ASDEX (DE), TEXTOR (DE), COMPASS (CZ), MAST (UK), JET (UK), TCV (CH), Alcator
(US), PLT (US), DIII-D (US), TFTR (US), T3 (RU), T10 (RU), SST1 (IN), EAST (CN), KSTAR (KR)
but also other type of machines like stellarators such as ST (US), W7-X (DE) or heliotrons such as LHD
(JP). Some of those tokamaks are shown in Figure 1.
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Figure 1 : Images of some major tokamaks. Left: JET -- Middle: Tore Supra/West — right: EAST

The above list includes tokamaks currently in operation; most of them have mainly scientific scopes
dedicated to a broad range of thematics, from plasma physics experiments to sub-components
development (first wall, divertor, diagnostics, heating sources, current drive etc...).

The next generation of tokamaks is more and more oriented on the demonstration of energy
production capacities:

» JT-60SA will be operated in Japan around 2020 and is substantially devoted to investigations on
long plasma pulses relevant to future fusion reactor (DEMO)

» ITER will be operated in France around 2025 and is principally oriented towards demonstrating
the operability of long pulses of D-T nuclear plasma

Those two large tokamaks are illustrated in Figure 2.



Cryostat

Figure 2 : Left: JT-60SA - right: ITER

The magnet system being a key component of a tokamak it is important to ensure its reliability
during operation and therefore to consolidate the best technical and scientific knowledge on it. Another
noticeable point to be considered is that magnet system is a major cost driver for the whole tokamak
(about 1/3 of construction investment) and that knowledge mastering is also a component of machine
merit in this regard.

I.2 Fusion and tokamak

While fission is based on the principle of heavy nuclei splitting into smaller nuclei, fusion is based
on the merging of two light nuclei into a heavier one.

/\ ]
"
,\J ====p Energy

p Fusion

T
Figure 3 : Left: fission reaction - right: fusion reaction

Both reactions result into creation of energy through a neutron generation, and are therefore
compatible with energy production strategy.

While in fission the reaction is self-generated by chain reaction, in the case of fusion the reaction is
not self-maintained as demanding conditions must be established and sustained to allow the fusion
between the two nuclei. As an example the coulomb repulsion barrier must be overpassed to allow the
particles to interact, in a medium where density and temperature must therefore be sufficiently high to
trigger the reaction. Typically the order of magnitude of the plasma core temperature in its reaction state
is about hundred millions of Kelvin.

The fusion reaction is usually based on Deuterium and Tritium atoms, which are the most facilitating
components for the reaction. The most common fusion reactions producing neutrons are

2D +°T — n (14.03MeV) + “He(3.56MeV)
2D + 2D — n (2.45MeV) + 3He(0.82MeV)
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In order to allow continuous burn regime, these reactions must be triggered and confined in a closed
volume.

We focus here on the specific closed volume formed in a tokamak configuration. The principle of
tokamak was first established in Russia [1] (tokamak being issued from acronym TOroidal naya KAmera
MAgnitnaya Katushka or toroidal chamber with magnetic coil) and relies on a torus-shaped plasma
confined by a discrete number of coils enclosing it, called Toroidal Field coils or TF coils (see Figure
4). With this configuration, the charged particles moving along those toroidal lines would be subject to
a drift due to a magnetic field gradient, and would not finally be confined, preventing the configuration
from generating a stable equilibrium. To cancel this effect, the plasma drives a current which adds a
poloidal component to the toroidal magnetic field, resulting in helical lines (see Figure 4) that cancel the
gradient effect: particles are confined and their trajectories explore both high and low field zones.

The plasma current is induced by transformer effect through the coupling between inner coils
(further called in our work Central Solenoid or CS system, visible in Figure 4): the current variation in
CS generates by mutual induction a current in the plasma. This current creates the above-mentioned
poloidal field component and heats the plasma by Joule effect. The later effect is not sufficient to reach
the reaction temperature but contributes to it; it has to be assisted by additional heating systems (e.g.
electromagnetic antennas). Once established, the plasma current is maintained by induction with CS.

The described TF and CS systems are further complemented by the system of Poloidal Field (PF)
coils which are located on the edge of the TF outer envelope (see Figure 4) and which drive the plasma
control by imposing, at each moment of the scenario, the most appropriate plasma magnetic field
configuration to maintain the plasma stability. As an example of the PF coils roles, the uppermost PF
coil is mainly devoted to plasma initiation (start of plasma expansion).

v inner poloidal : )
toroidal magnetic field coils R outer poloidal
magnetic ‘ﬁeld coils magnetic field coils

vessel

Figure 4 : General magnetic field configuration of a tokamak. The purely toroidal field lines (green) and the twisted field
lines (yellow) derived from combination with plasma self-field, are shown. Toroidal Field Coils and Poloidal Field Coils are
also shown. Here CS and PF systems are respectively figured by “inner poloidal magnetic field coils”
and “outer poloidal magnetic field coils”

We have already stressed at this stage that, among the three systems presented, CS and PF ones are
pulsed (i.e. they generate a time varying magnetic field). Since these two systems are major drivers
regarding the plasma burn duration and stability (which are crucial for the operation reliability), it is
important to note that the robustness of the pulsed magnet system must be ensured in a tokamak. This
is a point supporting the rationale of our research work.

1.3 Superconductivity

The superconductivity aspect is a major characteristic of fusion magnets since the ultimate goal of
a tokamak is to produce a net electric power; the “balance of plant” aspect is then of central importance.
In an illustrative approach, the plasma magnetic field (which drives fusion power) being of substantial
amplitude (order of few teslas) and being established in large volumes (e.g. 840 m® for ITER), the energy
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stored in magnet system is expected to be high. If the magnets were resistive, the electrical power needed
to energize them and maintain this configuration would be so high that the global power balance would
become negative and therefore hopeless for any economic model.

Superconducting technology is consequently unavoidable in the large scale fusion electricity
endeavor and should therefore be considered as a key component for technical and scientific knowledge
mastering.

The basic principles of superconductivity are described below together with the particularities
attached to the fusion technology.

Superconductivity is characterized by the two main properties of the material when in
superconducting state:
1. The zero value of its resistivity inside its volume.
2. The zero value of the magnetic field inside its volume (Meissner effect).

The property evoked at first point (zero resistivity) derives from a specific interaction between
electrons and the crystalline network, resulting into a perturbation of their wave function that allows
electron pairing and further on their mobility into the crystalline network without interaction with this
latter (no collision between them i.e. no Joule effect). We will not enter into details of these
considerations that are out of the scope of this work, but as an example the BCS theory [2] well describes
the physics underlying this phenomenon.

Note that the present resistive property is not absolute as in reality the superconducting state is valid
in a domain limited by upper values of three driving parameters: the temperature, the magnetic field and
the current density. An example of superconducting state operational domain limits is illustrated in
Figure 5.

e

Current density (kA.mm?)

Figure 5 : Critical surface for NbTi material (see [3]). The absolute B and T limit parameters
(critical field and critical temperature) are shown in red.

These considerations on limits will not be considered in the present work as attached to the current
transport properties in DC regimes, while our scope is to deal with currents induced in AC regimes.
However it should be kept in mind that in transient conditions the critical properties are the main drivers
for anticipating the stability limits in given conditions. As a matter of fact the AC shielding phenomena
will induce local variations of the three above-mentioned parameters and therefore impose (B, T, J)
excursions possibly out of the critical surface.

In addition, the property evoked at second point (full expulsion of magnetic field, i.e. Meissner
effect) will not be considered in our work since large magnets are using type-I1 superconductors which
are in their mixed state during operation (state in which the Meissner effect does not apply anymore).
We will nevertheless consider that our material is always in superconducting state regarding its
resistivity.

12



Furthermore, a point should be made clear: since the supercurrents that shield the superconductor
from any magnetic field —i.e. corresponding to the Meissner effect — will not be considered in our work,
we will exclusively use the expressions “screening currents” or “shielding currents” throughout the
present manuscript to designate the currents induced by a magnetic field variation — i.e. corresponding
to Lenz’s law.

In our work the application of superconductivity principles will be implemented in the specific
environment of fusion magnets, which embeds specific technology and faces specific operational loads;
both will be subject of the next section.

1.4 Fusion magnets: Tokamak operation context and CICC technology

As previously mentioned the magnet system is a major component of a tokamak and therefore was
subject to continuous R&D programs aiming at establishing the most adapted design for the present but
also future tokamaks. Since the way to power production requires large tokamaks (fusion power
exponentially increases with size) the projection lies in heavily energized magnets, i.e. carrying high
currents and subject to high mechanical constraints.

As an illustration to the context where the work takes place, we here describe more features on ITER
project. ITER (acronym standing for International Tokamak Experimental Reactor) will be the largest
tokamak ever built and will be operated at St Paul-lez-Durance near CEA site in France. The reactor
will be built and operated in the framework of an international collaboration which has also been
involved since several decades in the fusion research program related to all components of a tokamak,
including magnets.

The main scope of ITER is to ultimately demonstrate a maintained combustion of a deuterium-
tritium plasma over long durations (typically 1000 seconds) and with a net fusion power balance gain
(the ratio between extracted and injected energy) situated between 5 and 10.

ITER will be the first machine including and operating the major technologies requested for the
exploitation of a commercial fusion reactor: superconductivity, plasma-facing components, tritium
breeding components, robotics maintenance and diagnostics.

An illustration of this tokamak can be seen in Figure 6.

“xiE

Figure 6 :-ITER tokamak 3D cut view. TF, CS and PF magnet systems are indicated.
Three PF coils out of the six are pointed by arrows. Human scale at bottom right figures the machine size.
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The ITER magnet system conductors are based on a specific technology: the Cable-In-Conduit
Conductor or CICC. This technology is particularly adapted to the main constraints faced by ITER
magnets: high currents injected, high magnetic field on conductors and therefore large mechanical loads
on conductors.

The CICC concept main features are:

> A cable made up of a large number of strands twisted in multiple stages. The strands can be of
different natures (superconducting versus copper) and with different sizes (diameter). A lot of
combinations of patterns can be included at each stage (bundles with different number of strands
twisted together).

» Some stages can be wrapped into thin metallic sheets to ensure their compaction and increase the
inter-stage resistance.

» Cooling channels can be inserted into the cable usually under the form of spirals or tubes. Their
role is, when hydraulic lengths are important, to relieve the pressure drop while still keeping the
cable cooling capacity.

» An external thick metallic jacket into which the cable is drawn. The role of this jacket is to confine
the coolant (helium), ensuring a forced circulation and therefore a more efficient wetting of the
superconducting strands. But the jacket mainly serves as structural material for absorbing the high
mechanical efforts developed in the coil. It avoids the cable plasticization and the need for delicate
technologies such as reinforced strands. On the other hand the external jacket eases the insulation
integration into the winding, and knowing that ITER coils can experience high voltages during
currents discharge, this point is also beneficial.

An illustration of typical ITER CICCs is shown in Figure 7.

Figure 7 : Two ITER CICC illustrations: (left) view of CS conductor, round cable in square jacket;
(right) exploded view of TF Model Coil [4] cable, with wrapped petals and central spiral

The smallest integrated element of the CICC is the superconducting strand. The strand provided for
fusion is of composite type, i.e. it is composed of a mix of different metallic alloys integrated with the
superconducting material. The metallic part acts as thermal stabilizer, mechanical embedding matrix
and possible support for surface treatment (coating).
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The two categories of superconducting material located in the strands are:

» The NDbTi, alloy composed of Niobium and Titanium, bears the advantage of being insensitive to
mechanical strain, and thus is quite adapted for any forming step (twisting, bending etc...) in the
magnet manufacturing. The NbTi can be used up to magnetic field of about 11T at temperature
of 1.8 K (superfluid helium).

» The NbsSn, alloy composed of Niobium and Tin, can be operated at much higher fields (about 25
T at 4.2 K) and therefore is unavoidable for projects with such requirements (large tokamaks).
This material is obtained after a specific heat treatment that triggers the chemical formation of a
superconducting phase. The drawback of this material is that, after heat treatment, it bears a
sensitivity to mechanical deformation, that directly impacts (reversibly but at a certain point
irreversibly) the critical performances. It should therefore in most cases be formed before the heat
treatment (always before cabling and mostly before forming) and consequently can require large
ovens. The complexity of the fabrication process and the demanding QA steps result in a much
higher price of NbsSn compared to NbTi.

In all strands the superconducting material is embedded into a metallic matrix, mostly composed of
copper, whose role is to stabilize the superconductor against local perturbations thanks to its heat
absorption capacity. In case of quench, it allows to temporarily delay the discharge of the energy stored
in the magnet (thanks to the current deviation from superconductor to copper) until the external
protection circuit is activated. Finally, it allows a good conduction from coolant to superconducting
material and therefore further contributes to its stability. Other metals can also be integrated, serving as
resistive barrier or anti-diffusion barrier.

Some views of superconducting strands are shown in Figure 8.

Figure 8 : Different types of superconducting strands for fusion magnets.
From left to right: ITER NbsSn internal tin type; ITER NbsSn bronze route type; ITER NbTi; JT-60SA NbTi

As an example of selected superconducting material, in ITER project the TF and CS coils
experiencing about 12-13 T, the NbsSn is chosen. Conversely, the PF coils experiencing about 5-6 T,
the NbTi is selected. For JT-60SA project, since the TF system maximum field is about 6 T, NbTi is
used.

The strand integration into a CICC follows a specific cabling process: strands are twisted into
multiplets (e.qg. triplet, including 3 strands), then multiplets are twisted, forming the second stage bundle,
next, the second stage bundles are twisted, forming the third stage bundle, and so on. Following this
process the cable may contain any number of stages (e.g. 5 stages for ITER). An illustration of cable
manufacturing steps can be seen in Figure 9.
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Figure 9 : Examples of successive cabling stages for ITER CICC. Note the addition of wrappings at the 4th stage

Apart from ITER and JT-60SA, the CICC technology has already been integrated in several other
tokamaks such as EAST (CN) and KSTAR (KR) and other fusion installations such as W7-X (DE) [5]
and LHD (JP) [6]. The tokamak JT-60SA (which stands for “Japanese Tokamak 60 Super Advanced”),
which will shortly be operational, also uses CICC technology (see [7]).

Although the CICC technology has been developed for many years in accordance with the fusion
magnet needs, it still presents risks which are intrinsic to any superconducting magnet: the appearance
of instability possibly leading to a quench, i.e. the rapid transition from superconducting state to resistive
state of the whole cable. Given the high values of energy stored in the magnets, the release of this energy
remains a serious issue as it can irreversibly induce degradations and lead to underperforming magnets.

Going more in depth into those sources of instabilities while in tokamak operation context, the
CICCs can be subject to various load prone to trigger transitions from superconducting to resistive state.

They can be of diverse nature:

» increase of current density (J), that can be due to an uneven distribution of currents inside the
cable (e.g. bad connections quality).

» increase of temperature, that can be caused by an external heating source (e.g. thermal shield
failure, vacuum loss) or internal one (e.g. current partially entering resistive part of
superconducting strand).

» increase of magnetic field, that can be caused by e.g. uneven current distribution leading to local
field inhomogeneities.

» decrease of critical properties, that can be due to local damage of superconductor bulk (e.g. caused
by superconductor filament fracture due to mechanical load).

In the present work we pay attention to specific instability sources: those coming from the pulsed
variations of magnetic field, leading to the establishment of shielding currents in the CICC, triggering
both local heating sources and local current density increase.

As a matter of fact, in order to ensure a stable plasma regime, the tokamak operation requires rapid
variations of current in the CS and PF systems. As an example, the typical variations of CS and PF are
illustrated in Figure 10.
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Figure 10 : Examples of ITER transient current variations in CS (left) and PF (right) system.
The data refer to ITER baseline 15 MA scenario.

These rapid current variations (and thus those of magnetic field on conductor) being requested to
ensure the tokamak operation (e.g. CS breakdown step necessary to initiate the plasma before ramping
its current up), it is of high importance to assess that they do not systematically induce conductor
instabilities as this would lead to an inoperable tokamak.

It is clearly seen here that the mastering of knowledge about the evaluation of consequences issued
from the shielding current and their associated heat loads, stands as an important point regarding the
establishment of a secured fusion magnet design.

1.5 Thesis content and associated strategy

During the above-mentioned transient field variations the shielding currents trigger both local
heating sources (called AC losses) and local over-currents, impacting the stability limit of the conductor.
In our work we consider the only AC losses due to shielding currents flowing in the resistive part, that
are called coupling losses. However when CICCs are considered, the ab-initio evaluation of those
coupling losses is extremely difficult as it combines multiple sources of complexity:

» the coupling currents flow along the strands, but strands trajectories in CICC are difficult to know
since the combination of twisting stages and cable compaction makes it almost unpredictable

» the shielding currents redistribute in the volume by crossing between strands and therefore
establish inhomogeneous current 3D distribution in a medium whose discontinuous nature adds
difficulties for representing the shielding effect

» the coupling currents locally heat and deposit their power through their path inside strands and
across resistive connections between strands. These resistive paths being highly dependent on the
inter-strand contact physics, which is non-linear and hardly known, severe difficulties are
encountered for developing a model

The possible approaches for representing this behavior are of two types: analytical or numerical.
Fusion community has attempted to address the item through both ways:

» On one side the numerical approach consists in representing, in the more relevant way possible,
the 3D strands (or bundle of strands) network, figuring then its resistive (strands intersections)
and inductive (strands mutual coupling) components. The basic equilibrium equations (Maxwell
equations) are then applied to define at any moment the current in any part of the network.
Summing up the local heat loads one can then deduce the thermal perturbation imposed to the
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conductor and can attempt to determine the distance to unstable regimes. The advantage of this
approach is that it can be conducted down to the smallest scale, leading to a diagnostic considering
the smallest local effects. Furthermore a predictive approach can be attempted since any design
can in principle be treated. On the other hand difficulties are also present with this approach, for
instance the challenge of relevance when representing a complex system containing a large
number of interacting elementary units, or for large size magnets, the heavy model setting process
and the demanding CPU time for calculations. In the fusion community EU working groups are
involved in such approach, for example using the THELMA [8] or JackPot [9] codes (see further
in the document).

On the other side the analytical approach is relying on the representation of heat load by analytical
expressions, dependent on conductor characteristics (e.g. cable time constant, see further) and on
the magnetic field variation. The usual approach (the “single time constant” approach) consists in
a simplification of the conductor shielding effect using analogies with classical models of
transient behavior of superconducting composites. Indeed, in this approach, a single time
constant, which is the parameter used to classically characterize the coupling losses at strand scale
(see reference books [10], [11]), is used to represent the coupling losses at conductor scale. The
single time constant approach then assumes that, although bearing substantial topologic
differences, the conductor behaves similarly as a strand. The large majority of analyses on AC
losses at the conductor scale follows this method ([12]-[16]). In addition, two models deviate
from this “strand-like” analogy. A heuristic one, called MPAS [17], considers that the coupling
between the different cabling stages can be represented with several weighted time constants: its
ability to represent the experimental reality has been established, but it is not a predictive model
as the time constants it considers have to be determined from AC losses measurements at different
frequencies. The other one [18] provides analytical formulae of coupling currents and losses
inside conductors from its electrical and geometrical features: it is then a predictive model, but it
does not take the coupling between the induced currents into account, and therefore its validity
domain is restricted to slowly time varying magnetic fields. The advantage of these analytical
models lies in their high versatility of integration into simulation tools (e.g. thermo-hydraulic
codes); they also consume low CPU resources and thus allow a broad variety of explorations (e.g.
different magnetic field variations for MPAS). On the other hand their associated drawback is the
macroscopic nature of their parameters and thus their strong dependence on experimental curves
(AC losses energy per cycle versus frequency); as a result, their capacity of prediction is strongly
limited for cable designs other than already existing ones (except for [18], but whose domain of
prediction is restricted to slowly time varying magnetic fields).

The advantages and disadvantages of the already existing approaches are summarized in Table 1. In
this table, we have divided the existing approaches in three main categories: analytical, heuristic and
numerical. The analytical and heuristic approaches are both based on the use of analytical expressions
but our distinction between them lies in their origins. Indeed, we consider as analytical the approaches
that have been derived from electromagnetic equations while we consider as heuristic the ones that have
been derived from observations of experimental results and/or from the extension of an existing
analytical modeling outside of its initial frame. In addition, for better readability of the table, we have
chosen to make use of the plus signs to provide a nuanced appreciation of the accuracy of the results
obtained by the different methods.
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As an example, the first line of Table 1 indicates that the Multistage cable model [18]

» has been derived from electromagnetic equations

» can predict the coupling losses of a CICC from measurements of its electrical and geometrical
parameters and well matches the experimental results

» requires very light computation given its analytical and explicit nature

> provides relatively detailed information on the induced coupling currents

» but is not valid for every magnetic regimes encountered in tokamaks (here, the model is not
valid for fast transient magnetic regimes)

Table 1

Valid for every Prediction of
magnetic losses from
regimes in measured
tokamaks features of CICC

Light Information
computing on coupling
time currents

Analytical approach

Multist bl
model (CEA) M++ M+++ M++
Heuristic approach

«nt» approach
(most common)
one time constant

MPAS model
(CEA, used at ITER)
several time constants

THELMA code
(University of
Bologna, IT)

JackPot code
(University of
Twente, NL)

Our objective

The purpose of the present work is to develop a model that would somehow stand between [17] and
[18], thus trying to initiate a bridge between both approaches while remaining at the same time in the
analytical approach category.

The key point of our strategy is to keep using analytical tools to establish a CICC coupling losses

model, but which deviates from the single time constant approach and from the MPAS model since we
consider the CICC electrical and geometrical features as departure point instead of the experimental AC

19



losses results. Our strategy is then similar to that of [18], except that our intention is to establish models
whose domain of validity is the largest possible, i.e. we aim at covering all possible transient regimes
regardless of their dynamics with respect to the system time constants (see Table 1). This is an important
objective as we will try to represent the magnetic shielding effects of a cable in tokamak configuration,
thus subject to a broad variety of magnetic field regimes (see section 1.4 ).

To achieve this aim, our progress strategy is based on a scale by scale approach:

» First step is conducted at the smallest elementary unit bearing coupling losses: the strand. At
strand scale, a generalization of the analytical coupling model is conducted, also standing as
a toolbox for the larger scales.

» Second step is carried out at cable stage, but with the simplest description of a cable, i.e. an
assembly of single bundles. Here too the generalization to any transient regime is targeted.
This step as single stage scale also stands as toolbox for the next step.

» Third step is still located at cable stage but integrates an additional geometrical complexity,
i.e. it considers two cabling stages with independent twist pitches. This step allows the
improvement of the relevance of the modeling, considering a second degree of detail in the
cable architecture.

Along the progress across those different steps, continuous confrontation will be carried out between
the results of our analytical approach and those of previously developed models, i.e. the ones presented
in Table 1. In addition, throughout this manuscript we have chosen to include the demonstrations leading
to our analytical results since our methodology differs from the ones used in the previous models. Our
objective is thus not only to present our analytical results, but also to share the methodology that has led
us to them.

Nevertheless, being aware that these complex and long analytical demonstrations can make the
reader lose the thread of the work presented in this manuscript, their objective and location will be
presented schematically in the “methodology” section of each scale (strand, single stage and two cabling
stages). In order to further enhance the readability of this document, the objective will be recalled to the
reader at the beginning of each demonstration.
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I1. Superconducting composites

Content: This part is dedicated to the presentation of a general analytical modeling of coupling losses
in superconducting composites and its associated algorithm. Experimental work (AC losses
measurements) on strands is also presented as well as comparisons with other analytical
models.

Associated publications:

» A. Louzguiti, L. Zani, D. Ciazynski, B. Turck, F. Topin, Development of an Analytical-Oriented
Extensive Model for AC Coupling Losses in Multilayer Superconducting Composite, I.E.E.E. Trans.
on App. Superconductivity, Vol. 26, April 2016, Art. No. 4700905. (reference [40])

» A. Louzguiti, L. Zani, D. Ciazynski, B. Turck, F. Topin, Modélisation analytique de la puissance
thermique générée par les courants de couplage a l’intérieur d’un composite supraconducteur,
Actes du Congres de la Société Frangaise de Thermique (SFT), Mars 2017, 8 p. (reference [41])

I1.1 Presentation

I1.1.1 Architecture

Superconducting composites are majorly encountered in conductors of large superconducting
magnets which are needed in tokamaks or particle accelerators. Although their average diameter is less
than a millimeter, they present a specific and quite complex layout.

Composites are cylindrical and made of several superconducting filaments (from a few dozens to
several thousands) whose diameter lies in the range of a dozen of microns; these filaments are lightly
twisted (usually with a twist pitch lying in the 15-25 mm range) and are located in what is known as the
filamentary zone of the composite. In this filamentary zone, we also find a metallic - thus resistive -
matrix which fills every space between the filaments.

Filamentary zone

(NbTi filaments in Cu matrix) Resistaverconona (Cd)

Resistive core (Cu)
Resistive barrier (CuNi)

Figure 11 : Detailed architecture of a JT-60SA TF conductor strand (0.81 mm diameter)

21



In addition to the filamentary zone, composites may also feature a copper core and multiple external
resistive layers. The layer located just after the filamentary zone is often called “resistive barrier” as it
consists of a more resistive material (e.g. CuNi); its role is to reduce both the intrastrand and interstrand
coupling losses [19]. The most outer one(s) are again made of copper. All these layers are visible on
Figure 11 and Figure 12.

Filamentary zones of NbsSn composites appear to be slightly different from the ones of NbTi
composites as the filaments are gathered in bundles (see Figure 12) instead of being uniformly spread
over the zone; this is due to their different fabrication process.

@] o |
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Bruker Energy & Mechanical Plant Hitachi Jastec

Supercon Technologies
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Technology Technology Techonology

Figure 12 : Examples of different designs of NbTi (above) and Nb3Sn (below) superconducting composite

The need for these specific types of architectures essentially arises from the necessity to protect the
composites against stability issues.

Indeed, instabilities occur when the local temperature in the superconductor exceeds its critical
value; the local increase of temperature can be caused by hysteresis losses. Therefore, in order to
enhance the protection of the superconductor against instabilities, it is recommended to subdivide the
superconductor into several small filaments instead of having one large filament for at least two reasons:

» the hysteresis losses per unit volume of superconductor increase with the filament diameter [10];
therefore the total losses and associated heat are smaller when the superconductor is divided into
several small filaments

» for a given volume of superconductor, the total exchange surface — and thus the cooling — is
enhanced if the total volume is divided into several small volumes

Furthermore, the omnipresence of copper inside superconducting composites is needed for several
reasons. Indeed, thanks to its very good thermal and electrical conductivity, it enhances the stability of
the composite by:

> tentatively providing another path for the transport current in case of a local transition; this other
path is less resistive than the superconductor in its normal state and thus corresponds to a lower
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local Joule heating. The superconducting filament may then have enough time to cool down and
recover its superconducting state.

» improving the cooling effect provided by the refrigerating fluid because its thermal conductivity
is higher than that of superconductors

Finally, twisting the filaments is an efficient way to reduce the intrastrand coupling losses since the
magnetic flux they enclose cancels out every twist pitch; this prevents then the appearance of very strong
current loops that would exceed the critical current of the filament and generate very strong ohmic losses
at the ends of the composite when subject to an external time varying magnetic field.

IL.1.2  State of the art on coupling losses modeling at composite scale

Before presenting a synthetic historical review and discussion of the previous work accomplished
on the coupling losses issue at strand scale, we will provide a brief reminder of the different losses
generated inside superconducting composites under magnetic AC regimes.

When multifilamentary strands are subject to a time-varying external magnetic field, they develop
currents in specific zones to shield themselves from this magnetic variation following Lenz’s law. The
induced currents are flowing through the different materials present in the composite and are due to
magnetic shielding at different scales:

» The superconducting filament develops its own peripheral currents to shield itself from any
magnetic variation; the local critical current density Jc is then temporarily outreached in the outer
region of the filament which enters into the flux flow regime and thus develops a local resistivity.
The excess current density (difference between the local current density and Jc) will decay
because of the local resistivity, and the magnetic variation will penetrate deeper into the filament
leading also to the penetration of screening currents. Once the local current density has fallen to
the local Jc, it persists indefinitely because of the zero resistivity of the superconductor and the
filament develops then persistent magnetization currents. The total ohmic losses generated during
the transient flux flow regime correspond to the “hysteresis losses”

» The filamentary zone (containing a large number of superconducting filaments embedded in a
resistive matrix) develops a supercurrent flowing in its outer edge filaments to shield its enclosed
volume. This supercurrent will loop back by crossing the resistive matrix and the resistive layers
of the composite : this will generate the so-called “coupling losses”

> All the copper present throughout the composite also participates in the magnetic shielding of the
whole composite by carrying other screening currents classically known as eddy currents whose
associated ohmic heating are simply named the “eddy currents losses”

As described in the previous section, each of these currents directly threatens the superconductor
with a transition into its normal state (flux jump) : first, because of the creation of local heat sources
inside (hysteresis losses) and outside (coupling and eddy currents losses) the superconductor, secondly
because the induced currents (magnetization and coupling currents) will cumulate with any current
already carried by the filament (transport current), thus creating another local heat source if the
superconductor enters transitorily into the flux flow regime.

AC losses therefore play a major role in the composite stability, for this reason they have been deeply
investigated since the 70’s ([20]-[37]).
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A complete study both theoretical and experimental [20] has provided an important insight of the
behavior of superconducting composites with respect to an external time-varying magnetic field. The
derivation of the magnetization of the composite due to currents shielding the superconductor (i.e.
magnetization currents) and shielding the entire composite (i.e. coupling currents) is shown together
with the calculation of their associated losses: hysteresis losses and an approximation for the coupling
losses for composites in coil configuration. The experimental results are in reasonable agreement with
the developed theory.

In the same time period, Morgan [21] has improved the coupling losses modeling by giving the
complete time-dependent equation of a system composed of two filaments embedded in a copper matrix.
For a composite containing a large number of filaments, as it is usually the case, the two-filament
approach seems inappropriate and is then replaced by a macroscopic model considering a supercurrent
flowing through outer edge filaments and looping back across the resistive matrix. The supercurrent is
supposed to have a cosine distribution in the cross section of the composite, i.e. of the form K =
Kycos(60) with 6 the radial angle and K, the amplitude of the current per unit length; this distribution is
legitimated by the fact that it will produce an internal uniform magnetic field in the opposite direction
of the applied field. The value of K, is then given as a function of the time-variation of the external
magnetic field B, when the supercurrent is not time varying, i.e. when K, = 0 (the overdot notation
refers to the time derivative). The external or applied magnetic field B, is defined as the magnetic field
that would exist in the volume of the composite if the composite was removed (or if any shielding effect
occurring inside the composite was omitted).

Following this work, Carr [22] and Ries [23] have pushed the modeling of coupling losses one step
further by providing the macroscopic behavior of a composite composed of a central filamentary zone
and a copper sheath subject to a transverse magnetic field for any time regime. Even though they have
derived it with two different approaches, the same homogeneous representation of the filamentary zone
is used. In his studies, Carr has summarized the electrical properties of the composite in an effective
transverse conductivity for which he has given approximate formulae for the two extreme values of the
filament-to-matrix contact resistance [24]. This method provides an efficient way to calculate the
coupling currents across the resistive matrix and offers then the possibility to represent the response of
the composite at its scale instead of the filament one. His treatment refers to the shielding accomplished
by classical resistive conductors together with considerations on the frequency domain of the applied
magnetic field and the associated skin depths while the alternative approach provided by Ries makes
use of the effective transverse conductivity to promptly derive the relation verified by the internal
magnetic field; we will thus here discuss the outcomes of the latter one.

For the sake of simplicity, the notation F will refer to a composite consisting in a filamentary zone
only, F/R to composite with a filamentary zone and an outer resistive layer, F/R/R to a composite with
a filamentary zone and two outer resistive layers and so on. For example, all composites present on
Figure 12 are represented by F/R/R as they are composed of - starting from their center - a filamentary
zone, an outer resistive barrier and a copper layer and the layout of the JT-60SA composite on Figure
11 will then be referred to as R/F/R/R (copper core, filamentary zone, resistive barrier and outer copper
layer).

For a composite composed of a central filamentary zone only (F) or with an outer copper layer (F/R),
the induction B; inside the filamentary zone is governed by the first-order differential equation

Bi + TBi = Ba (1)
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where B, is the magnitude of the transverse applied magnetic field, B; is the time derivative of B;
and t is the time constant of the system whose expression is

2
T:ﬁ(l—p> L @
2 \2n) p;

with [, the twist pitch of the filaments and p, the effective transverse resistivity (inverse of the
effective transverse conductivity mentioned above).

B, (B, #0) B, (B, # 0)

(a) : Longitudinal view (b) : Cross-section view
Figure 13 : Schematic views of coupling currents inside the filamentary zone (only outer edge filaments are represented)

It is interesting to note that equation (1) is valid for both F and F/R, the only difference between
them lies in the formula of p,, which in the first case is the effective transverse resistivity of the
filamentary zone while in the second one, it is a combination of the effective transverse resistivity of the
filamentary zone and of the transverse resistivity of the outer layer. In fact, in the case of F/R, the outer
resistive layer is seen as another path for coupling currents flowing in the outer edge filaments to loop
back (see Figure 14); therefore the total effective conductivity can be expressed as a weighted sum of
the transverse conductivities of the two zones since they are in parallel.

To push this idea further, we can also take a look at composites with a central filamentary zone
surrounded by several resistive layers. Turck has made a detailed investigation on this issue [25] and
provided the analytical method and formulae enabling the description of the response of composites
with layouts ranging from F/R to F/R/R/R to a transverse magnetic field. He has quantitatively shown
that a cupronickel barrier surrounding the filamentary zone was significantly reducing the coupling
losses. Indeed, the resistivity of the copper sheath being usually lower than the effective matrix
resistivity of the filamentary zone, the flow of the coupling currents through the copper sheath can be
responsible for a major part of the dissipated energy if the sheath is thick. The local resistance created
by the cupronickel barrier enhances the average resistance of the alternative path and thus reduces the
coupling losses. For composites with several outer resistive layers, the expression of the time constant
of the composite given by equation (2) is still valid provided that the total effective resistivity is
computed again with the taking into account of the radii and resistivities of the outer layers.
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Figure 14 : Coupling currents flowing in the outer edge filaments looping back using the filamentary zone
and the outer resistive layer in the case of a F/R composite

The next step is of course to compute the coupling power dissipated in the whole composite. In order
to do so, two methods giving the same results can be used.

The first one is simply to integrate the Joule power density J.E over the whole volume, with J the

local coupling current density flowing through the resistive parts and E the local electric field. The other
one is to compute the magnetization M inside the filamentary zone and then to integrate the local density
power —M B; over the volume.

Both methods give the following power per unit volume of filamentary zone [10] (see discussion
below)

.2
p= TlTBl' (3)
Ho

with n = 2 for a cylindrical composite.

Before going any further, a point should be made clear: for composites consisting in a filamentary
zone only (F types), the only part were coupling currents will generate ohmic power is of course the
filamentary zone, while for composites of types F/R/.../R (central filamentary zone surrounded by one
or several resistive layers) the coupling currents will not only dissipate energy inside the filamentary
zone but also in the outer resistive layers. Therefore, one must not misunderstand equation (3) : P
corresponds to the power dissipated in the whole composite divided by the volume enclosed by the outer
edge filaments (which will often be referred to as “volume of filamentary zone” by abuse of language).
This expression has only been chosen for its schematic and simple view.

If we now apply a sinusoidal external magnetic field B, = By,sin(wt), with w = 2xf the angular
frequency, using (1) we obtain in complex notations

jwt
= Bye
L

(4)

14 jwt
Then we can readily give the internal magnetic field amplitude |B;]| as

- J1+ (w7)? ®)
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Using (3), the associated power density P averaged over time (after a time long compared to 7) will
then be

2 2
_ Bp ntw

P 2T @0 ©

As a matter of fact, we see from equation (5) that the composite will behave as a low-pass filter with
regard to the external magnetic field: its low frequency components will penetrate through the composite
while its high ones will be completely shielded by the outer edge filaments. This leads to the conclusion
that the power dissipated by hysteresis inside the filaments will also depend on the frequency: at high
frequencies, the applied transverse field will partly be shielded by the outer edge filaments so that the
internal filaments will see a smaller excursion of the magnetic field and thus dissipate less energy.

In addition, equation (6) indicates that the coupling power density P will rise as f2 in the low
frequency domain and will become constant reaching its maximum for frequencies higher than 1/(2m7)
as indicated in [22].

As it is widely used within the applied superconductivity community, we can also express the losses
in terms of average losses per cycle Q per unit volume (of filamentary zone); this can be done very
quickly multiplying P by the period T of the cycle. Using (6), we have

B,* 2mnmiw

T 2u0 1+ (w1)? )

Of course these considerations and formulae are relevant only to the coupling losses generated by a
transverse field and assume that the outer edge filaments are not saturated and that the composite is not
carrying any transport current. In case of saturation, we would need to add the penetration losses
corresponding to the work done by the variation of the magnetic field in the saturated filaments on the
outer edge which is very similar to hysteresis losses in a single filament but at strand scale [23].
Regarding the impact of a transport current on these losses, it has been investigated both theoretically
[21],[26] and experimentally [27],[28] but we will not detail its nature here.

From an experimental point of view, Kwasnitza [29] has measured Q vs f curves for a transverse
sinusoidal applied magnetic field up to roughly 15Hz for composites featuring different twist pitches -
from 5 to 50 mm. He has experimentally highlighted the global dependence of the time constant of the
composite as 1/l,[,2 (with L, the twist pitch of the filaments) as indicated by equation (2), the time
constant being here determined by the maximum of each Q vs f curve. The Q(f = 0) values deduced
from linear fittings of the measured Q vs f curves in the low frequency domain are all equal to the same
value which corresponds to the hysteresis losses per cycle.

According to equation (7), the curve of losses per unit volume per cycle Q versus the angular
frequency w of the sinusoidal applied magnetic field (curve referred to as “Q vs f curve” thereafter)
will exhibit a maximum at w = 1/7 and its initial slope will be proportional to nt. In other words, this
means that for composite containing only one filamentary zone located at the center of the strand
(F/R/.../R types), the time constant T of the system can be determined using one method or the other.

However a precision is needed on this point. Indeed, let us note B,..,.: the reacting magnetic field
generated by the supercurrent flowing in the outer edge filament. This field will be proportional to the
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previously mentioned K, (amplitude of the cosine supercurrent distribution) and, by superposition, we
can say that the internal field B; is the sum of the applied field B, and of the reacting magnetic field
Breqcrt, therefore : B; = B, + Byegee. Equation (1) states that B; + tB; = B, so, replacing B; with
(By + Breact), We obtain By + Byeger + T(By + Breacr) = B, Which leads to

. Breact + TBreact = _TBa . 8
where the —tB, term can be seen as the exciting magnetic field while the 7B,..4.: 0ne reflects the
self-induction.

It is important to point out the fact that 7 is present on both sides of equation (8), but it does not have
the same meaning at all. In fact, the = on the left-hand side reflects the coupling of the supercurrent with
itself and therefore really corresponds to the definition of time constant of a system; it refers to the time
needed for the induced supercurrent to relax when the applied field B, is no longer time-varying (i.e.
when the exciting magnetic field —zB, is zero). Actually it exactly corresponds to the “L/R” time
constant of a RL circuit, L being the self-inductance and R the resistance. On the other hand, the
present on the right-hand side of equation (8) reflects the coupling between the supercurrent and the
external source generating the applied field B,: it therefore does not answer to the definition of time
constant of a system, it can alternatively be seen as “M/R” where M is the mutual inductance between
the supercurrent and the external source and R the resistance which is here the same as for the RL circuit.
The only reason why the t on both sides of (8) are equal here is because both the field B,.,.; created by
the supercurrent and the applied field B, are uniform and oriented along the y-axis in the volume
enclosed by the supercurrent: the self-inductance L of the supercurrent and the mutual inductance M
between the supercurrent and the external source have then here the same value. It thus explains why it
is possible to measure the time constant of a composite in steady-state or slowly time-varying regimes
even though the composite cannot express its own time constant in these regimes.

This point is a very important one as today it is not unusual to encounter values of the “nt” parameter
- measured on Q vs f curves of conductors - used to deduce the conductor response for regimes other
than steady-state ones. This “nt” parameter is determined from the initial slope of the measured Q vs f
curve by analogy with the F or F/R composite; indeed in the low frequency region, i.e. for wt «< 1,
equation (7) indicates that the Q vs f curve becomes linear with a slope equal to ansznT/.uO-

As a matter of fact, well before reaching the conductor scale, it could be misleading to use the “nt”
value deduced from the initial slope of the Q vs f curve to extrapolate the response of some composites
(e.g. featuring a copper core, as the one displayed on Figure 11) at higher frequencies. Indeed, at the
beginning of the 80°s, Ciazynski has studied the coupling losses occurring in a R/F/R composite [30]
and has shown that the internal induction B; could not be modeled by equation (1). In reality, in addition
to the supercurrent flowing through the outer edge filaments, another supercurrent is flowing in the inner
edge filaments; the classical description with a single time constant is therefore no longer valid. To
model the behavior of these supercurrents, one has to replace the time constant t with a two-by-two
matrix containing four time coefficients which reflect the electromagnetic coupling (self and mutual)
between the supercurrents; the new time constants of this system are the eigenvalues of the previous
matrix. Ciazynski has derived the expressions of the four time coefficients and the equation governing
the supercurrents for any time regime. He has also expressed the power dissipated by the coupling
currents but only for slowly time-varying regimes.

As a consequence, when trying to model the response of the JT-60SA TF conductor strand which is
of R/F/R/R type (Cu core, filamentary zone, CuNi barrier and outer Cu layer, see Figure 11) for regimes
other than very slowly time-varying ones, we have realized that there was not any analytical solution to
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this problem in the literature. This is due to the fact that the design of composites has kept evolving
because of the more and more challenging environment strands have to face (e.g. larger superconducting
tokamaks) while the analytical modeling of coupling losses has been abandoned in favor of numerical
modeling.

Accordingly we have decided to develop a general analytical modeling of coupling losses generated
inside composites featuring any number of concentric layers of any nature (filamentary or resistive) in
order to

» provide the community with an exhaustive model able to thoroughly describe the magnetic
behavior of any cylindrical composite

» open the way for the study of the composites stability thanks to the ability of the model to generate
detailed cartographies of the power density with very low CPU consumption

» create a tool able to rationally design superconducting composites with respect to their coupling
losses and their magnetic environment

This general analytical model is presented in the next section.

I1.2 Development of the Coupling Losses Algorithm for Superconducting Strands

In this section, we will present the analytical model we have used to determine the main physical
fields and the coupling losses induced in any axisymmetric composite. The outputs of this model are
used to build the Coupling Losses Algorithm for Superconducting Strands (CLASS) which aims at
modeling the magnetic response of a composite to any transverse and uniform magnetic excitation.

I1.2.1  Methodology

First of all, we will here describe the methodology we have used to model the response of a
composite to a time-varying transverse and uniform magnetic field. The nature of this problem could be
assimilated to the eddy currents one except that the superconducting parts (filaments) of the composite
play a major role and induces strong differences. Indeed, they have a zero electric field in their volume
when they are not saturated; therefore they will impose multiple boundary conditions in the composite
since each filament will exhibit an equipotential in its whole volume.

In a classical holistic approach of the problem, we would start by considering a conductor of
resistivity p subject to a time-varying magnetic field and derive the equation governing its behavior. If

we apply the curl operator on both sides of Maxwell-Faraday equation Vx E=-B ; we then obtain

=

Vx(Vx E)=-VxB
which gives, using Maxwell-Ampére equation Vx B = ,uof (the displacement current is
considered here to be negligible, see assumption A6 after)
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V(V.E) — A = —pof
If we add the local Ohm’s law E = pf , we now have

—_ MO 5 -
A - F] =0 (9)
Therefore the induced currents are governed by a classical diffusion equation. However due to the

presence of the multiple boundary conditions imposed by the superconductor and the complex geometry
(helicoids) of the filaments, this approach seems to be too complex to analytically solve the problem.

Consequently we propose an alternative vision based on the determination of the spatial form of the
induced currents; this approach will be used in all our analytical studies at each scale of a
superconducting cable (from a single composite to any multi-stage bundle).

When a conductor is subject to a time-varying magnetic field B,, we know that a set of currents will
be induced to shield the conductor from this magnetic variation. We can then virtually split the shielding
currents; indeed, a part of these currents can be seen as shielding the time-variation of the magnetic field
B, produced by an external source while the other part of the induced currents will try to shield the time-
variation of the magnetic field B,..4.+ produced by all the induced currents (the B, field can then be
seen as a kind of self-field).

Our method aims at determining the spatial form of the induced currents using the logical chain
displayed on Figure 15: B_a) creates an electric field E(™) which gives rise to a spatial distribution of

currents /D which in turn produces a magnetic field B(D). The time-variation of B(1, i.e. B, creates

E®@) which generates a distribution of currents /@ which in turn produces a magnetic field B(® and so
on.

Let us assume that the spatial distribution of currents /&) can be modeled using a linearly

independent family of N, spatial functions ( 1(k), z(k), s 1&:)) and let us call this family F®, this

means that we can write (%) at every point of space M and at every instant t as

Nk
0 k k
JEM,0 = al @ 0n
i=1
where (agk) )1 _ are functions of time only and ( fl-(k)) ~ are the spatial functions constituting
sisng 1<isng

the F linearly independent family.

By definition, the time-variation of J(), i.e. J)  creates the new distribution J(K*1) which can be

modeled using the linearly independent family of spatial functions F(**1 this means that the time-

variation of each element agk) ® fi(k) M) ofm will produce a sub-distribution which can be expressed

using the spatial functions of F*1_ Our iterative process then stops as soon as the family F(") of

spatial functions of the distribution ](—N)) is included in the families (F (k)) of spatial functions

1<ks<N-1

of the previous distributions (m) ,ie.when FM e (FO @ FO @ ... FV-D),
N

1<k<
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Indeed, since F®) is included in the (F (k)) 1 families, we can express ](—N)) using the spatial

1<ksN-

functions of the (F (")) families, i.e. W can be expressed as a linear combination of the

1<ksN-1

(ai(k) ) fi(k) (M)) elements. However, the time-variation of these elements can, by
1<isng,1sksN—-1

assumption, only produce sub-distributions that can be expressed using the spatial functions of the

(F (k)) families, thus of the (F (k)) families since F™ is included in the (F (k))

1<k<N 1<ks<N-1 1<ks<N-1

families. We immediately conclude that the J(N+1) distribution generated by J(N+1) can be expressed

using the spatial functions of the (F (k)) families only. Applying the same logic to any J(N+P)

1<ksN-1
with p a positive integer, we deduce that every (] (k)) can be expressed using spatial functions of the
k=1

(F®) families only.

1<ksN-1
When the N" iteration is reached we are then sure to have found all the spatial functions required
to model the global distribution of induced currents (in other words, all the spatial modes) and the

linearly independent family F of all the spatial functions is F = (F O FO@..oFN _1)); this
means that the global distribution of induced currents f = Zﬁﬂm must be of the form

nr

Ja1,0 = > a(of.0n (10

i=1
where (a;)1<i<n, are functions of time only and (f;)1<;<n,. are the np spatial functions constituting

the linearly independent family F.

Note that there can be cases where N is equal to infinity, meaning that new spatial functions will be
involved at each iteration, it is therefore not possible to find them all in a finite number of iterations.
However, even in this situation, it may be possible to quickly identify the nature of the spatial functions
that will be involved in the next iterations. When this occurs we can also say that we have reached the
end of our analytical procedure as soon as we have identified the nature of the functions induced at each
new iteration.

This analytical iterative procedure is very useful as it enables us to find the spatial form of the
induced currents; it can be seen as another way for solving the Laplacian of equation (9). The main
difference between both methods lies in the fact that we only consider the spatial modes that will be
excited, while the solving of the Laplacian will disclose all the allowed spatial modes, even those that
will not be excited because of the spatial form of the external applied magnetic field.

As a consequence we will always be able to suppose a solution to equation (9) under the form given
by (10) which will then simply be reduced to a first-order differential equation in time on the (a;)1<i<n,
functions of (10).

It is important to point out that our logical procedure does not correspond to what physically occurs

inside a conductor when shielding its volume. As a matter of fact, all distributions (] (")) are induced
k21

at the same time and our decomposition is a simple view of the mind of the magnetic shielding effect;
it therefore does not reflect the order of occurrence of the different shielding effects.
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. Ma}.;well-Faraday , , Biot-Savart lav\f or
B a equation or Faraday’s E (D) Local Ohm’s law ] (D Maxwell-Ampére B (D
law of induction equation
- Maxwell-Faraday Biot-Savart law or
B (1) equation or Faraday’s E (2) Local Ohm’s law ] (2) Maxwell-Ampere B (2)
law of induction equation
L
: Maxwell-Faraday
B (N—1)| equation or Faraday’s E (N) Local Ohm’s law ] (N)
law of induction

Figure 15 : Logical chain of calculation of induced currents

As a result, when trying to analytically find the spatial form of the induced currents, we will always

begin by a study in regimes where all the induced currents are not time-varying.

First because the solution provided by this study can be extended to commonly encountered regimes

where the applied magnetic field B, is slowly time-varying (e.g. when ramp-up time is long compared
to the largest time constant of the system) and secondly, because this solution provides the current

distribution ]T needed in our logical chain. By abuse of language the regimes where all the induced

currents are not time-varying will be referred to as “steady-state regimes” in the following. Note that in

these regimes, the applied magnetic field B, is supposed to be time varying.

We have followed this methodology during the study at composite scale and we present here a

schematic summary of the analytical content of this study (as mentioned in section 1.5 ):

R/
0.0

In section I1.2.3 we establish the expression of the electric field due to the time variation of the

applied magnetic field B_,; and we then deduce the distribution of currents induced in the
composite in steady-state regime

In section I1.2.4 we express the magnetic field generated by the distribution of current found
in steady-state regime (at the end of section 11.2.3 ). We then compute the new distribution of
current induced by the time variation of this magnetic field. Finally, we combine these results
to those of section I1.2.3 to establish the equation of the composite for any time regime

In section I1.2.5 we evaluate the shielding made by the outer copper sheath and we discuss the
saturation of filaments

In section I1.2.6 we compute the power generated by coupling currents as a function of
coefficients, previously introduced in section 11.2.3

In section I1.2.7 we express the currents and the electric and magnetic fields in the composite
as a function of the previous coefficients
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¢ In section I1.2.8 we establish the expression of coupling losses as a function of the previous
coefficients. We also demonstrate that the coupling losses generated inside complex composites
can be expressed as a sum of the coupling losses generated inside simple composites; this result
is important and will be used in the study of a two cabling stages conductor

I1.2.2  Assumptions

The main assumptions used in our model are the classical ones:

Al

A2.

A3.

A4,

AS.

AG.

AT.

The system is invariant by translation along the composite axis (z-axis, see Figure 16)

The external magnetic field B, is assumed transverse (along the y-axis, see Figure 16) and
spatially uniform within the composite

The composite does not carry any transport current

The filaments are not saturated, i.e. FS’ =0 in the filaments, with s the longitudinal direction
along the filaments. This relation is extended to the whole filamentary zone with the commonly
used [10],[23],[25], [30] homogeneous representation presented in [22]

2
The filaments are lightly twisted, i.e. (ZILR) <« 1 where R is the composite radius and [,, is the

4
twist pitch of the filaments

The time variation of the external magnetic field B, is slow enough to neglect the displacement
current so that V.] = 0 where J is the current density inside the composite

The time variation of the external magnetic field B, is also slow enough to ensure that the copper
sheath does not magnetically shield its enclosed volume

The following Maxwell’s equation Vx B = Ho T+ Ho SOE can be reduced to V X B = Uo T if the
displacement current is negligible compared to the current flowing inside the composite (assumption
A6). This leads to the following condition:

oo £ _ = ]
w0

«1

Using the complex notations we can write || E || ~ ||E || 2nw with w the angular frequency. Inside the

composite, Ohm’s law states that E= pf with p the local resistivity, therefore

2]
Il

~pWw.

The previous condition becomes then ggpw K 1, or alternatively, using w = 2nf

< 2megp
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If we consider the cupronickel resistivity which is within the 10~7.m range (usually the highest

0—17

one in the composite), 2meyp is then within the 1 S range.

Consequently, we can neglect the displacement current as long as
f < 10YHz

The classical range of frequencies of magnetic variation considered for coupling losses being largely
inferior to 1017 Hz, we can legitimately reduce the previous Maxwell’s equation to

Vx B=p,]
In addition, since mathematically V. (V X §) = 0, we can conclude that V. f = 0; assumption A6 is
then justified.

Assumption A7 will be considered later because we first need to introduce some analytical tools to
justify it.

In our approach, conversely to the configurations explored in the previous analytical models that
were limited in number and/or nature of layers, we allow ourselves to consider any of the possible

configurations: composite whose cross-section consists of n circular concentric layers (see Figure 16)
either filamentary (i.e. superconducting filaments embedded in a resistive matrix) or purely resistive.

o= ]

R,=R

Figure 16 : Scheme showing the generic cross-section geometry of composites considered by our model
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Figure 17 : Scheme showing the trajectories of filaments and their associated local frame (e, €,,, €;) inside a R/F/R
strand

The trajectory followed by each filament is a helix of radius r and constant pitch L,,, whose center is
the center of the composite. The local geometric coordinate system associated to each filament is
curvilinear and described by (e, e, ;) which relates to the cylindrical coordinate system (e;’, eg, €,) as

e =¢e (11)
e, = cosa eg — sina e, (12)
e; = sina eg + cosa e, (13)

with a the angle between e, and e,

a satisfies then the relation
2nr
tana = — (14)
by

. o . 2R
Since all the filaments are inside the composite we have r < R and thus tana < IL
D

Using assumption AS, we then deduce

tan®a < 1 (15)
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IL.2.3  Study in steady-state regime

+» We will derive here the electric field due to the time variation of the applied magnetic field B_;
and we will then deduce the distribution of currents induced in the composite in steady-state
regime.

By superposition, we can express the magnetic field B inside the composite as B = B_a) + Breact

with B_a) the applied magnetic field and B, the reacting magnetic field created by the induced currents
flowing through the composite. Since by assumption the induced currents are not time-varying (we recall
that the term “steady-state regime” refers to a regime where the induced currents are not time-varying.),

neither is the reacting magnetic field, then Bypqcr = 0 (6 is the null vector).
As a result, Maxwell-Faraday equation Vx E=-B gives here

Vx E=-B, (16)

The expression of this equation in cylindrical coordinates (r, 8, z) leads to the following system

oE,

= —rB_ si 17
50 rB,sin @ 17)

0E, .

——Z _ 18
p B, cos@ (18)
0(rEy) _ 0E, (19)

or 00

Equations (17) and (18) give
E, =1B,cosf + E,
with Ej a constant value (we consider here a steady-state regime).

In a cylinder made of a material of resistivity p, this longitudinal electric field would give rise to a
longitudinal current J, = E,/p whose average over the whole volume would be Ey/p. According to
assumption A3, the average current should be zero; it follows that E, = 0. By analogy, E, can then be
reduced everywhere in the composite to

E, =1rB,cosf (20)

In each filamentary zone, the relation FS) =0 (coming from assumption A4) implies E; = 0 which
can be alternatively expressed as E, . e, + Eg. €5 + E,. e, = 0. Using equation (13), we then obtain
Egsina + E,cosa =0
Making use of equation (14), this is equivalent to

l
Ea=——PF 21
o 2nr (1)
which, combined with (20), gives
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L, .
Eg = — ﬁBa cos 6 (22)
Regarding the calculation of E,, we first need to introduce another equation. According to the

homogeneous representation (assumption A4), we can assign an effective transverse resistivity p; to the

filamentary zone; this implies E = pt]_t) with E the transverse electric field andﬁ the transverse current.

Since V. f = 0 from assumption A6, we have V. (]7 +E) =V. (?) = piv (E) = 0 because of the
t t

longitudinal invariance assumed by Al (i.e. aa_z = (). This gives the new equation

V.E,=0 (23)

In cylindrical coordinates, it can be reformulated as

0(rE,) O0Eg
—— = 24
S+ =0 (24)
Together with (19) and (22), we can deduce
L, . v
=_Pp g 0 25
E, 27TBasmt9+ - (25)

with V; a constant value (we consider here a steady-state regime).

If the considered filamentary zone is central, we can readily conclude that V; must be zero in order
not to obtain a divergent solution at r = 0; in the opposite case, we have to retain this value.

We have now calculated the expression of the transverse electric field in each filamentary zone and
therefore now need to study that of each resistive zone.

Using the previously introduced notation E and equation (16), we can write V x E_')t = 0 since B_a) is
oriented along the y-axis; we can then conclude that there exists a scalar potential V; such that

-

Combining it with (23), it appears that in each resistive zone, V; satisfies Laplace’s equation

AV, =0 27)

Let us note V;, the value of V; in a resistive layer numbered k, since it is solution of (27), its general

form must be

Ve, (1,0) = 52 _oo[ak, cos(if) + by, sin(i0)] R, (r/Ry)", ax, € R, by, € R (28)
Note that the general formulation of V;, is chosen so that the a;; and by, coefficients have the
dimension of an electric field.

Injecting the expression of V;, into equation (26) yields the general forms of the components of the

transverse electric field in each resistive zone
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[ee)

|(Erk =— z [ay, cos(if) + by, sin(i6)] i(r/Ry)"*
i=—oooo,i¢0 (29)
Eg, = Z [ay, sin(if) — by, cos(i6)]i(r/Ry)"*
i=—00,i%0

In order to complete the system, we must add the boundary conditions. First, at each interface
between layers, the continuity of the azimuthal component of the transverse electric field E4 between
the layers k and k + 1 can expressed as

Eg, (Ry) = Eg,,, (Ri) (30)

Secondly, we have to consider Kirchhoff’s current law; its expression depends on the nature of the
interface (i.e. resistive/resistive, resistive/filamentary or filamentary/filamentary):

» For an interface of resistive/resistive type, Kirchhoff’s current law requires the continuity of the
radial component of the current density /-

Erk (Rk) _ ETk+1 (Rk)

Pty Ptisq
where p;, 1s the transverse resistivity of the layer k.

(1)

» At an interface of resistive/filamentary or filamentary/filamentary type, Kirchhoff’s current law
must include the additional current flowing through the filaments located on the boundary so that
it becomes

aKSk _ l_p ETk(Rk) _ ETk+1 (Rk)

06~ 2m Pty Ptyys
where Kj, is the surface current (i.e. in A. m™1) flowing through all the filaments located at

(32)

T=Rk.

If the composite is composed of at least one filamentary zone and one resistive layer, there will
necessarily be an interface of resistive/filamentary type. Assuming layers k and k + 1 are respectively
resistive and filamentary, expressions (22) and (29) and equation (30) implies

L .
b, = b, = =5 Ba
a, =0,i €L
by, = 0,i € Z'\{-1,1}
since cos(if);en+ and sin(if);cy+ are linearly independent families.

(33)

Assuming now that layers k and k + 1 are respectively filamentary and resistive, we obtain

Rk+1 2 lp :
bri1_, (R_k) — bygyq, = _%Ba
{ ak+1i = O,l YA
\  bisr, =0,i € Z°\{-1,1}

(34)

38



Therefore, in a resistive layer k in contact with a filamentary zone, the transverse electric field
components will be of the form

| o (%)

k Eq, = [bk_1 (%)2 — bkl] cos(6)

since by, _, and b, are the only non-zero coefficients.

2
+ bkl] sin(0)
(35)

If we consider a resistive layer k + 1 (resp. k — 1) adjacent to another resistive layer k whose E;.,
and Eg, expressions are described by (35), boundary conditions (30) and (31) ensure that E,., , (resp.
E,, ) and Eg,  (resp. Eg, ,) expressions will also have the same form as (35), again because
cos(if);en+ and sin(if);en+ are linearly independent families.

We have thus shown by induction that E,, and Eg, expressions in every resistive layer k of the
composite will share the same form as (35).

Knowing the general form of the electric field in the resistive layers, we can now deduce from
equation (32) that the surface current K, flowing through the filaments located at r = R, (if at least

one of the layers k and k + 1 is filamentary) must be of the form Ky, = K, cos(@) because of the

expressions of E,. in the filamentary and resistive zones. In addition, the V,, term present in equation (25)
must be zero in order to ensure assumption A3 (no transport current).

From this exhaustive study, we are now able to give the general expressions of Ey, , Eg, and E,, in
each layer together with those of K, for steady-state regimes

Ri\* :
E. =-— [Eozk_1 (T) + E02k] sin(0)
Ri\?
{ Eo, = [Eozk_1 (T) - Eozk] cos(0) (36)
E, = rB, cos 6
\ K, = Ko, cos(8)

In order to ease and bring some consistency to the notation we have replaced the by_, and by,
coefficients of a layer k respectively with Eq,  and Ej,, since they have the dimension of an electric

field (by41_, and by q, are thus now noted as E_, . and Ey,, ,, respectively).
We can now produce a short summary of the results achieved so far:

» If the layer k is filamentary, we have

(37)

» For an interface of resistive/resistive type located at r = Ry, boundary equations (30) and (31)
enable us to write
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( 1/ Re \? 1/ R \?
o, = 5 (2 <@+1>E0 +_( k) (%_QEO
t1 2\R 2k-1 ° 2\R 2k
k+1 ptk k+1 ptk (38)
1 ptk 1 ptk
l E02k+2 = E( pt+1 - 1) EOzk-1 + E( pt+1 +1 EOzk
k k
Or, alternatively
1 (Rie1\ [ Pty 1( pe,
EOzk—1 = E( Ry ) Ptsn +1 E02k+1 + E Pt -1 E02k+2
(39)

2
| 1 /Rp4q Pty 1( pe
k Eozk - E( Ry ) (ptk+1 -1 E02k+1 +E p +1 E02k+2

tk+1

» For an interface of resistive/filamentary type located at r = Ry, (i.e. layers k and k + 1 are
respectively resistive and filamentary), equation (30) together with expressions (36) and (37) now
lead to

L .
_Eozk—1 + EOzk = %Ba (40)

Alternatively, if the layers k and k + 1 are interchanged, i.e. k is filamentary and k + 1 is

resistive, we have
2

L, .
) E02k+1 + E02k+2 = %Ba (41)

_ (Rk+1
Ry

» In order not to obtain a divergent solution at r = 0 we can deduce from expression (36) that
EO 1 =0 (42)

» If the ultimate layer is resistive, the radial current flowing at r = R (i.e. J,, (R)) must be zero as
not net current can escape the composite (if the ultimate layer was filamentary, this radial current
could flow through the outer edge filaments). Consequently, since E;. (R) = p¢, Jr. (R), we can
conclude that E,. (R) = 0, and using (36)

Eo,, = —Eo,,_, (43)

> Using equation (32) and the general form of E, and K, present in (36) we can also express each
Ko, (when they exist, i.e. on the edges of a filamentary zone) as a function of the Ey,, , Eo,,,
Eo,,.., and Ey,, . coefficients

11 Pr. (Rii1\? p
_ 14 tx k+1 tk
Kok - p_tkﬁ Eozk—1 + EOzk - Ptrns ( Ry ) E02k+1 - Pt E02k+2 (44)

Note that in case the ultimate zone of the composite is filamentary, we have J. (R) =
E,. ., (R)/pt,,, = 0 (i.e. there is no current flowing outside the composite). Using equation (32)
again, we see that equation (44) is also valid for k = n after having removed E,, .. and Ey, .,

ie.
Kon = 5 [EOZn—l + Eozn] (45)
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We have now derived all the analytical equations required for the determination of every Eg,, , and

Ey,, coefficients. The method described in Appendix A can then be used to analytically solve the system.

From another perspective which is more suitable for automating the solving procedure with an
algorithm, for a composite made of n layers, one can express the whole system as a matrix equation
[A][E,] = zl—:’TB'a [Y] where [E,] is the column vector of the 2n — 1 (Eoi)zsisz
0). [A]isa (2n — 1) x (2n — 1) square matrix which is automatically built line by line (depending on
the nature of each interface and on the positions of the filamentary zones) from equations (30), (31) and
(37) with the general expressions given by (36) and [Y] is a column vector whose 2n — 1 components

(either 0 or 1) are deduced from equation (37). The method used to automatically build [A] and [Y] is
described in Appendix B.

coefficients (since E,, =
n 1

The analytical study of the coupling currents induced in steady-state regimes is now achieved and
we know the spatial form of these currents; the first part of our global methodology is then also achieved
(first line of Figure 15). We will then make use of this knowledge to push the modeling towards any
time-varying regimes following the philosophy depicted in Figure 15.

Again, by abuse of language, the term “time-varying regimes” refers here to regimes where all
quantities inherent to the composite - in particular the induced currents - can no longer be considered as
constant over time; they occur when the characteristic time for the external magnetic excitation B, to
vary is comparable to or smaller than the largest time constant of the system.

IL.2.4  Study in time-varying regime

+ We will express here the magnetic field generated by the distribution of current found in
steady-state regime (at the end of section 11.2.3 ). We will then compute the new distribution of
current induced by the time variation of this magnetic field. Finally, we will combine these
results to those of section I1.2.3 to establish the equation of the composite for any time regime.

As mentioned previously, we will make use of the results of our analytical study in steady-state
regimes to find the spatial solution of the induced currents in time-varying regimes. To make the link
with the logical chain displayed in Figure 15, the electric field found in the previous analytical study in

steady-state regimes corresponds to E'(1 and the associated distribution of currents to /(1) since they are

due to B_a) only.

In order to follow our logical chain we will now calculate the magnetic field B(1 created by ](_1)),

i.e. created by the distribution of currents induced by B_a). The distribution of currents ](_1)) can be
subdivided into two sub-distributions : the first one corresponds to the currents flowing through the
resistive parts of the composites thus in its cross-section while the second one corresponds to the currents
flowing through the superconducting filaments located on the edges of each filamentary zone.

Since the first sub-distribution of currents is exclusively flowing in the cross-section plane of the
composite, it will have a tendency to produce a magnetic field oriented along the z-axis while the

magnetic time-variation E; produced by an external source is supposed to be along the y-axis; this sub-
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distribution will thus not take part in the magnetic shielding of the inside of the composite and will
therefore be omitted for this reason in the following.

Consequently we will consider that the magnetic field B js exclusively produced by the second
sub-distribution of currents, i.e. the currents flowing through the superconducting filaments located on
the edges of each filamentary zone, and we will now focus on its determination assuming that each
supercurrent flowing at 7 = Ry, can be seen a surface current of the form K;, = K, cos(6).

Before determining the magnetic field B(Y) produced by all the surface currents (K Sk)1<k<n’ we will

briefly calculate the magnetic field produced by only one surface current Kg, = K, cos() located at

T:Rk.

Maxwell-Ampére equation Vx B = o Tcombined with the relation between the magnetic field B
and the magnetic vector potential A), ie. B=Vx A4 leads to A4 = —Uo T considering the Coulomb
gauge, that is to say V.A=0.

The supercurrent Ky, = K, cos(0) flowing through the filaments located at r = Ry is oriented
along the s direction (longitudinal direction along the filaments) and can thus be decomposed as K, e; =
Ko, eg + K, e, with Ky, = K, cos(6) sina and K, = K, cos(f) cosa using the relation e; =
sina eq + cosa e, given by (13).

d
From the Biot-Savart law A(M) = £ ffPES T e, We see that the magnetic vector potential A(M)

created by the supercurrent K, = K, Cos(H) can also be decomposed as

N K, sina cos(6)dS K, cosa cos(8)dS _,
Ay =10l [ 0SB gy MRl [ S0 B = g (M) + A, (M2
PES pes

PM PM
where S is the surface where the supercurrent is flowing.

We then have

A
A_e = tana (46)

z

Making use of assumption A5 which implies tan? a « 1, to the first order, we can consider that the
azimuthal component Ao of the magnetic vector potential created by the supercurrent is negligible

compared to its axial component A,. We can then suppose that the magnetic vector potential Ais reduced
to its axial component only: 4 = 4,¢,.

Using A = —Uo J, we can deduce that, inside and outside the supercurrent (i.e. respectively for r <
R, and r > Ry,), A, satisfies Laplace’s equation

AA, =0 (47)
Let us note 4,,  and A4, the values of A,, the magnetic vector potential due to the supercurrent

Ky, cos(0) flowing at r = Ry, respectively inside and outside the supercurrent. Since 4, and 4,

are solutions of (47), their general form must be
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[oe]

( .
| A, (r0) = Z[amti c0s(i6) + bine, SiN(i0)] R (r/Ri) g, ., € Roby, . € R
{ ig() (48)
{Azext(r, 0) = z [@ext; COS(0) + by, Sin(if)] Rk(r/Rk)i,akem ER, by, ., ER
i=—o00

Note that a;,;; and byy,, are zero for i < 0 and that a,y; and by, are zero for i > 0 to avoid any

divergence atr = 0 and r — co. The general formulations of A, and A, _, are chosen so that the a;y,;,,

Zext

Aext;> Dint; and beyy; coefficients have the dimension of a magnetic field.

Using B =V x 4, we can also give the general formulation of the magnetic field inside and outside
the supercurrent using the general expressions given by (48)

oo

( .
By (1,0) = ) [~yng,Sin(i6) + bine, cos(i0)]i(r/Re)' ™
i=1
-1

By (r,0) = ) [~Gexe, SIn(i0) + beye, cosGOiCr/R)™"

[=—o00

) s (49)
By, (r,0) = _Z[ainti cos(if) + bine, sin(i0)]i(r/Ry)"t
=l
Boury(110) = = ) [Gexe, COS(i6) + by, Sin(GO)]iCr/Ri)' ™"
\ i=—o0

In addition, the expressions of the magnetic field must also satisfy the interface conditions at r =
Rj,.. On the one hand, the continuity of the component normal to the interface which here corresponds to
the radial component of the magnetic field (i.e. B,.), leads to

By, .(Ri,0) = B, (R, 6),0 €R (50)
On the other hand, the component tangent to the interface which here corresponds to the azimuthal
component of the magnetic field (i.e. Bg), must satisfy
By, (R, 0) — Bg,,, (R, 0) = uoKy, cos(0),6 € R (51)

Since cos(if);en+ and sin(if);en+ are linearly independent families, using equation (50), we can
deduce that

Aint, = Aext_,
52
{bintl = _bext_l (52)
and from equation (51), that
{aint1 + Aext_, = .LlOKO;C (53)
bint1 = bext_1
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The combination of systems (52) and (53) leads to the conclusion that
{aintl =Oext_, = .uOKOk/2 (54)
bint1 = bext_1 =0

Consequently, using the general expressions given by (48) and (49), we now have

K
( A, (1,0) = %r cos(6)
(55)

HoKo, RI%

— cos(0)
r

kAzext (T; 9) =
And

K
Brint(r’ 9) = _%Sin(e)

toKo, (Rk 2 .
Brext (T, 9) = _Tk (T) Sln(B)
3 (56)

K,
By. (1,0) = —%cos(@)

int

toKo, (Ri\?
Bg,, . (r,0) = Tk (T) cos(6)

Using system (56), we can also express the x and y components of the magnetic field as
By, (r,0) =0

Ko, (Ri\?
_Hoo, (Tk> sin(26)

2

MoKok
By (r,0) = ==
2

_ HoKo, (Ry
\ By, .(r,0)= — (T) cos(26)

Bxext (T', 9) =

(57)

We must keep in mind that the components of the magnetic field calculated above are the
components of the magnetic field created by a surface current of the form K, cos(@) flowing on the
surface of the cylinder described by the equation r = Ry.

We have here found that the magnetic field inside a cosine distributed surface current K, cos(6),
flowing on the surface of a cylinder, is uniform and oriented along the y-axis; this result is well known,
especially in the accelerator community.

For a composite consisting in a filamentary zone only, using equations (37) and (45), the

2 .
supercurrent flowing through the outer edge filaments is found to be equal to pi (;_1171') B, cos(6). With
t

int

2 . - -
the K, cos(8) notation, this leads to K, = pl (;—’;T) B,, and therefore, according to equation (57), B, , =
t

p\? - s . . o - ) . .
—%pi (i) B, = —tB, with T given by equation (2). If B, is positive, the internal reacting magnetic
t
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field B, . will then be negative, thus trying to shield the interior of the composite; this result is therefore
physically consistent and corroborates previous analytical studies.

Furthermore, since a composite can feature multiple surface currents (on the edges of each
filamentary zone), we can now express, by superposition, the magnetic vector potential AS() created by
all the surface currents inside a layer k as

AD(r,0) == [ ZKOR +rZK0

where K, is the amplitude of the surface current flowmg at r = R;. Note that for an interface of
resistive/resistive type, the formula above is still valid replacing the K, of the considered interface with
zero since there is no filament.

cos(0) (58)

Following our logical chain, we can now compute the axial electric field Ez(i) generated in each layer

k by the time-variation of the surface currents using the following alternative formulation of Maxwell-
Faraday equation

From equation (21), i.e. Eg = —%EZ, the new azimuthal component of the electric field in a
filamentary zone is
l
@ _ ' ;@
Eg, = 7—Az, (60)

In reality, we should also consider the azimuthal component Aglk) of the magnetic vector potential

created by the supercurrents and have E(gi) = zl—pA(l) — Aglk) instead of (60). If we note AS() and Aélk),
13 i

nr’ Zk

the contributions of each supercurrent K, we see that

(2) (1) (1)
Eg Z [2nr Zkp 9k

And, according to equation (46), we can calculate the ratio of the second to the first term in the
above sum:

i(1) i(1)
A 27TT'A6

O, 2nr

—L = tana = tan’ a < 1
lp A(l) lp Agc) lp
2nr “zig t

since tana = zlﬂ from equation (14).
14
Therefore the reduction of the magnetic vector potential Ag) created by the supercurrents to its axial

component ASC) only is all the more justified since the taking into account of its azimuthal component

Agk) has a largely negligible effect.
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Now, replacing AS{) in equation (60) with its expression given in equation (58), in each filamentary
zone we have

@ _
Eg) = 2 21'[ = ZK(,!R +ZK0

It should be noted that expression (61) of Eq
(36) i.e.

cos(0) (61)

can be rewritten using the formulation present in

react k

R 2
@) _ |12 k )
E9k - [Eozk—1 ( r ) E ]COS(Q) (62)

with, by identification

(63)

k—
( @ _tobp
Ozk 1 221
{ =
n
@ _ _tolp
Bou = 2 2m
i=k

Using the previously introduced notation Et(z) and Maxwell-Faraday equation

Vx E@ = —BW), we can write V x E©* = 0 since we have seen that the magnetic field B produced
by the surface currents did not have any axial component (i.e. along the z-axis).

From the considerations presented in our analytical study in steady-state regimes for the calculation

of E, in the filamentary zones and the expression of E éi) given by (61), we can immediately deduce

that, in each filamentary zone, E,Ei) will be given by

R 2
@ _ _|g®@ k @1 ..
ETk [ O2k—1 (T) + Eozk] sm(@) (64)
where E(Z) _and Eéji are also given by (63).

Again using considerations from the study in steady-state regimes, we can also deduce that the
expressions of the transverse electric field components (Er(i) and E(Si)) in the resistive zones of the
composite are also given by

R
Er(i) =— [E(z) (Tk) + E(z)] sin(6)

O2k-1

65
@) @ (R @ ©)
kEGR = [E (T) - E, ]cos(G)

O2k-1

Note that here the Eéi)(_l and Eéjl)( coefficients are not given by (63) because the formulae presented
in (63) are only valid for filamentary zones.

Since the electric field £ shares the same spatial form as the previous one found for steady-state
regimes, we can deduce using Kirchhoff’s current law (32) that the new supercurrents will also have the

same form as the previous ones, i.e. KS(:) = Kéi) cos(6).
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From these observations and the considerations of section 11.2.1 , we can say that we have now
reached the end of our logical chain because the new distribution of currents J(2), i.e. the new surface
currents (Ks(;f)) een’ shares the same spatial form as the previous one, i.e. the previous surface currents

1<k=<n

(Ksk)lskSn’ found for steady-state regimes.

We are now sure that, for any time-varying regime, the spatial form of the components of the
transverse electric field in each layer k (E,, and Eg, ) and of the supercurrents (Ksk)1<k<n will be given

by (36), i.e.
R
Erk == [Eozk—1 (Tk)

(
|l (-
\

K, = Ko, cos(8)

2
+ Eozk] sin(8)

The complete basis of spatial functions enabling the description of the system being established, we
can now formulate the global equation of the system as a time-dependent only equation.

Indeed, we now consider that the E,_, | and E,,, coefficients associated to the transverse electric
field in each filamentary zone k are due both to B, i.e. the time-variation of the magnetic field created
by an external source, and to the time-variation of the magnetic field created by the surface currents
(Ksk)lsksn' The contribution of B, in the E,,_, and E,, coefficients of each filamentary zone has
been given through equations (37) while the contribution of the time-variation of the surface currents
(Ksk)lsksn is given by equations (63). Therefore for every filamentary layer k, we can now, by
superposition, write

l L=1 l n (67)
_lp HUo D .
Eop =57 Ba = 752%
=
which can alternatively be written as
k-1 2
o lp . (Ri
Eopes =551 2, Ko, (R_k) =0
, = : (68)
Ho tp _
L Eou + 5 52 ) Ko =55 Ba
=
We can also express E,,_in every zone as
n 1 k-1
Ho ; Ho
Ep =7 (Ba B 72 Koi> - ;72 Ko, Ri? | cos(6) (69)
1= 1=
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superposing the expressions of E,, given in (36) and obtained by the combination of equations (58)
and (59).

In addition, in our study in steady-state regime, we have derived the expressions of the (Koi)lsisn
as functions of the E,,, . and E, coefficients; they are given by equations (44) and (45). We have also
seen that the E,,, . and Ey,, coefficients of the resistive zones could be expressed as functions of the
Eo,,_, and E,, coefficients of the filamentary zones only and this fact is independent of the regime
considered because the coefficients are linked by boundary conditions.

Now let us consider a composite made of ny filamentary zones and n,.; interfaces between
filamentary layers, we know that there will be 2n; E,,, . and E,, coefficients (or 2n; — 1 if the first
layer is filamentary, because E is always zero) for the filamentary zones and n;,,;r boundary conditions

due to the continuity of the azimuthal component Ey of the electric field between filamentary layers; it
is therefore possible to express all the E,,  and E,,, coefficients of the filamentary zones as functions
of only 2n; — n,,. s of these coefficients (or 2n; — 1 — ny,, if the first layer is filamentary). This is
not a coincidence, because the number of edges of filamentary zones, thus the number of existing surface
currents, is exactly equal to 2ng — ny,.r (Or 2n — 1 — nyyf if the first layer is filamentary). We have
then shown that the system could be expressed using a set of only 2ny — ny,.r (OF 2np — 1 — My if
the first layer is filamentary) variables which can be chosen to be either the reduced number of E,,, |
and E,,, coefficients of the filamentary zones or the K, amplitudes of surface currents.

Consequently, replacing the time derivatives of the (Ko,-) <n amplitudes of surface currents in the

1<i<

set of equations (68) for 1 < k < n with their expressions as functions of the time derivatives of the
reduced number of E,,,  and E,, coefficients of the filamentary zones, the system can be expressed
as

[Eofred] + [TfE] [Eofred] = Ba [YfE] (70)
where [Eofred] is the column vector of the 2ns — ny s (Or 2ny — 1 — nyppy s if the first layer is

filamentary) reduced number of E,,,  and E,,, coefficients of the filamentary zones, [TfE] isa2ny —
Nnes (OF 2nf — e — 1) Square matrix whose coefficients have the dimension of time and [Yf, | isa

column vector having the same size as [EO fre d] and whose coefficients can be calculated analytically
from the previous considerations.

Alternatively, replacing all the E,,  and E,, coefficients present in the set of equations (68) for
1 < k < n with their expressions as functions of the non-zero K,,, amplitudes of surface currents, it is
also possible to express the global equation of the system as

[Ko, | + [Tr] Ko, | = Bal¥r,] (71)
where [Kof] is the column vector of the 2ng — ny,r (Or 2np — 1 —nyyep if the first layer is

filamentary) non-zero amplitudes of surface currents, [TfK] IS @ 2ng — Nypes (Or 2 — Npppr — 1)
square matrix whose coefficients have the dimension of time and [YfK] is a column vector having the

same size as [Kof] and whose coefficients can also be calculated analytically from the previous
considerations.
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Both formulations have advantages and disadvantages: equation (70) will preferably be chosen for
the derivation of coupling losses generated inside the composite while equation (71) has a more
enlightening physical meaning. Indeed, it is much easier to understand that the system can be represented
with an equation on the surface currents only rather than on some electric field coefficients, because we
physically understand that the surface currents are actually trying to shield the composite from the time-
variations of the magnetic field created by an external source and that they are linked both electrically
(through resistances) and magnetically (through inductances).

It is also interesting to note that [T, | and [Ty, ] are actually similar matrices and they therefore share
the same eigenvalues which physically represent the time constants of the system.

Another important point is that the number of time constants of a composite is therefore always
equal to the number of edges of filamentary zones it contains; we are now able to determine the number
of time constants of a composite with a short glimpse at its design.

As we have already presented a detailed analytical procedure for the derivation of the equation of
the system in our study in steady-state regime, we will simply provide a summary of the new analytical
procedure for time-varying regimes:

We express all the Eq_, | and E,, coefficients of every resistive zone as functions of those of the
filamentary zones using equations (38), (39), (42), (43) and (343). If there exist interfaces between
filamentary layers, we make use of equation (343) at these interfaces to express one of the E,,,  and
Ey,, coefficients of the filamentary zones adjacent to the interfaces as function of the others. We then

have a basis for the Eq,, , and E,,, coefficients that we call (EO Fre d): indeed the E,,, and E,,,
coefficients of every layer can be expressed as a linear combination of the Ey,, , and Ey,, coefficients
contained in (EO fre d) only. Similarly let us call (KO f) the family of the non-zero K, amplitudes of
surface currents (i.e. those located on the edge of a filamentary zone). The expressions of the amplitudes
contained in (KO f) being given by equations (44) and (45), we can also express these amplitudes as

functions of the Ey,, and E,,, coefficients of (EO fre d) only; these coefficients can reciprocally be
expressed as functions of the amplitudes of (KO f). Finally from the set of equations (68) for 1 < k < n,
we only keep those featuring the E,,  and Ej,, coefficients contained in (Eofred) and then replace
the I'(Ol_ present in the remaining equations with their expressions as functions of the time-derivatives of
the coefficients contained in (EO fre d) and thus obtain matrix equation (70); indeed the relations between
the elements of (KO f) and (EO fre d) are the same as the ones between elements of (KO f) and (EO fre d).
In order to obtain matrix equation (71), we start from matrix equation (70) and replace the coefficients

contained in (E0 fre d) with their expressions as functions of the elements of (KO f).

In our study in steady-state regime, we have provided the logical tree to build the [A] matrix and the
[Y] column vector which are needed to express the equation of the system as in equation (348), i.e.

[A][E,] = zl—fTBa [Y]. We will not provide here the logical tree to build the [TfE], [TfK] matrices and the

[YfE] , [YfK] column vectors of matrix equations (70) and (71) since it would feature too many exceptions,

making it quite unattractive.

Alternatively, we have chosen to express the equation of the system as
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L\"1 o L
[A][Eo]+%<§> oo, [BllEo] =5 BalY] (72)

where [A] and [Y] are exactly the same as the ones used in steady-state regime and [B] is another

square matrix whose coefficients are dimensionless and whose derivation is shown through Appendix
C.

It is important to point out that matrix equation (72) does not have the same size as matrix equations
(70) and (71), i.e. [A] and [B] are 2n — 1 square matrices while [TfE] and [Tfl(] are 2Ny — Nyper (O
2ns — nppep — 1 if the first layer is filamentary) square matrices. This means that the system described
by matrix equations (70) and (71) will have (2n; —npyr) OF (2ny — Nyper — 1) time constants
(eigenvalues) while the system described by matrix equation (72) will have (2n — 1) time constants;
this seems to be physically inconsistent as these three matrix equations are describing the same system.
In reality, there will only be (2nf — nppf) OF (2ns — 1y — 1) physical time constants (eigenvalues)

2
in matrix equation (72); the other eigenvalues will be artificial and all equal to % (;—’7’1) pi. We employ
t1

the term “artificial” here because the additional eigenvalues are a consequence of our mathematical
manipulation and do not correspond to any physical process occurring inside the strand. In fact, the
appearance of these extra eigenvalues is due to the fact that we have duplicated some lines of the [A]
matrix into the [B] matrix to render it invertible. Indeed, the continuity equations on Eg and J, which
are represented by some lines of the [A] matrix are still valid after a derivation with respect to time; we
have therefore duplicated these lines into [B] without physically changing the system (the multiplication

Ko

2
> (l—p) pi has no effect since the right-hand terms of continuity equations (343), (344) and (345)
t1

2

are zero). In reality, the extra eigenvalues correspond to the eigenvectors that will always be zero; this
explains why they have no incidence on the physical behavior of the composite. As mentioned
previously, we have chosen this formulation over matrix equations (70) and (71) as it is much more
adequate for the development of a general algorithm.

IL.2.5 Discussion about specific assumptions of the model

+ We will evaluate here the shielding made by the outer copper sheath and we will discuss the
saturation of filaments to establish the domain of validity of the model.

[1.2.5.1 Discussion about shielding by the outer copper sheath

Now that we have completed the derivation of the equations governing any composite with n
cylindrical concentric layers either filamentary or purely resistive for a time-varying regime, we can
discuss assumption A7 which states that “the time variation of the external magnetic field B, is slow
enough to ensure that the copper sheath does not magnetically shield its enclosed volume”.

In order to do so, we will establish a simplified equation governing the currents induced in the copper
sheath making use of the results of the previous sections. This simplified approach requires the thickness
e of the copper sheath to be small compared to the composite radius R so that these currents can be
represented to good approximation by a surface current K., located at r = R — e/2 as displayed on
Figure 18 and flowing in the axial direction (i.e. along the z-axis).
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This approach will enable us to give an estimate of the frequency domain in which our model is
valid.

Cu

thin sheet of induced
current (Kqy,)

Figure 18 : Scheme of an external copper sheath

If an external time-varying magnetic field B, is applied to the copper sheath alone, an axial electric
field E, = rB,cos(#) will be created according to equation (20) which in turn will give rise to a local

axial current density J, = pEZ with p.,, the copper resistivity. We therefore have
Cu
rB
J; =—cos(6) (73)
Pcu

We consider that the distribution of current density J, can be alternatively seen as flowing through
a thin sheet of current K, located at r = R — g i.e. at the middle of the sheath as indicated on Figure
18. This assumption implies that

R
Kew=] J,(Ndr (74)

R-e

Combining equations (73) and (74), we obtain

B R ReB
Key = —=cos(6) rdr = 2 cos(6) (75)
Pcu R—e Pcu
since e is assumed to be small compared to R.

From the previous equation we see that K, can also be written as K¢,, = K, cos(8) with

C
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_ ReB,

Ocu —

(76)

Pcu

Following our logical chain displayed on Figure 15, we now have to compute the reacting magnetic
vector potential AS) created by the sheet of current K,,. Since K¢, can be written as K, . cos(8), we
can use equations (55) so that

K e
I( urcos(@) forrSR—E
AP = 2 )
| toKoe, (R=3) e
k 5 cos(8) forrZR—E

Knowing Agl), we can now compute the axial electric field EZ(Z) generated by the time-variation of
the surface current K, using the alternative formulation of Maxwell-Faraday equation as we did for the
derivation of equation (59)

E® = i (78)
In addition local Ohm’s law indicates that J$* = g Then, making use of equations (74), (77) and
(78), the new current sheet Kéi) is
o _ (f @ uoKop, R— eN2 (R adr
Ko/ = R—e]Z (r)dr = —mcos(e) UR_e rdr + (R _E) L—%T (79)

We can compute and reduce the first term in brackets as follows

4R

2 2 =7

e 2
R=3 (R - 7) —(R-e)* Re 3e\ Re
f rdr = =— (1 - )
R-e
since we have supposed % <1

The second term leads to

2 rR ¢ 2 2 R
(0=3) [} - =)~ (- =

using the Taylor series expansion of In (1 - %) to the first order since — <« 1.

From these calculations, we can now simplify equation (79)

2 _  HMoRe
cu —

K, cos(0 80
o Koc, cos(0) (80)

We now see that it is also possible to write Kc(i) as Kc(i) = Kéf,i cos(8) with
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@ _ _,LloRe .
Ocu — ZpCu KOCu

(81)

Since KC(Z) shares the same spatial form as K.,, we can now legitimately suppose that the currents
induced in the copper sheath can be expressed as K¢, = K, cos(8). Then, we can give, by
superposition, the equation governing the spatial amplitude K, . of the surface current K, flowing at

r = R — using equations (76) and (81)

K yOReK __Re B
Ocu 2.DCu Ocu ™ Pcu .
which can be written as
) 2 .
Koc, * TeuKog, = ETCuBa (82)
with
toRe
= 83
TCu ZpCu ( )

Note that this formula is fully consistent with the one given in [31].

By superposition, the internal magnetic field B; in the volume enclosed by the copper sheath, i.e. for
r < R — e (see Figure 18) will be given by

MOKOCu

Bi:Ba_ 2

according to equation (57). This is equivalent to

2
(Ba - Bi)

KOCu = _0

Replacing K, ., with #i (B, — B;) in equation (82) and multiplying both sides by % leads to
0

B; + TCuBi =B, (84)
which is identical to (1).

The condition to ensure that the copper sheath does not magnetically shield its enclosed volume can
be expressed as

We can use the complex notation and equation (84) to write

(1 + ijCu)

B;

In addition, we have
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which enables us to write

B| _|B _| 1 ~ 1
Byl |B,| NMHjwtcul 1+ (wrey)?

The previous condition is then equivalent to
1

1+ (wtey)?

For | B;| to not differ from more than 1% from |B, |, we need

=1

———>0.99
1+ (wtey)?

which leads to

WTcy < W ~ 0.142

To give arelevant estimate of z,,, we choose the following parameters which are relevant for several
strands used in fusion: pg, = 2.1071902.m, R = 0.5mm and e = R/4, using (83), we obtain the
following value for 7,

Ty = 0.2ms (86)

Replacing the angular frequency w with 2zf and 7, with 0.2 ms, condition (85) implies

f <113 Hz (87)
Note that this value is not as high as we can expect, and this frequency range could be encountered
in tokamaks during ELMs.

We can also easily derive a condition of minimum duration of a rising or falling ramp of B, to ensure
that the magnetic shielding accomplished by the copper sheath is negligible.

First, we can differentiate equation (84) with respect to time in order to obtain

Bi + TCuBi = Ba (88)

We immediately see that equation (88) is in fact the equation of a first-order system and, in the case
of a rising (or falling) ramp going from 0 to B, (or —B,;,) in atime T,, we have |Ba| = B,,/T,. We can
therefore conclude that a time of 5z, is needed for |B;| to go from an initial zero value to |B,|; indeed
Stcy is the time for |B] to reach 99% of its final value, ie. |B,|, because
1—e™>=0.99.
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Considering that the magnetic shielding accomplished by the copper sheath is negligible if it occurs
for less than 1% of the total ramp duration T,, we can write the following condition

Ty
< 89
5tcy < 10 (89)

which, with 7, = 0.2 ms, leads to

T,=01s (90)

The ranges of maximum frequencies and minimum ramp durations found by our simple model where
the copper sheath might shield its enclosed volume are seldom the ones experienced by magnets in
tokamaks. Some exceptions can be met in very specific cases such as plasma disruption and ELMs, or
the rapid breakdown step in CS; in this cases specific analyses should be led.

11.2.5.2 Discussion about the saturation of filaments

Before deriving the formulae needed for the computation of the power dissipated by coupling
currents, we also need to give a limit for the validity of assumption A4. Indeed, in order for the
superconducting filaments not to be saturated, they must carry a current inferior to their critical current.
Let us call A the proportion of superconductor in a filamentary zone, the maximum local current [;,¢ max
that an elementary area of length rd6@ and thickness dr can carry is

Lioc max = AcrdOdr (91)
where J . is the critical current density of the superconducting material.

On another side, the local coupling current I;,,. carried by the same elementary area is

I, = Kycos(0)rd6o (92)

To ensure the validity of assumption A4, we therefore need |I;pc| < 110c max!, i-€-

|Ky cos(6)| < AJ.dr (93)
using equations (91) and (92).

The most critical case is reached in the midplane for which 6 = 0 or 6 = g i.e. for |cos(8)| = 1.

Consequently, the maximum surface current amplitude K, . allowed without saturating more than the
first ring of filaments is then

Komax = /Ucdf (94)
according to condition (93) for dr = d, with df the filaments diameter.

Beyond this limit, we can reasonably consider that the analytical formulae derived in our approach
still hold for relatively small values of dr, i.e. when dr does not exceed more than 10% of the
filamentary layer thickness.

For an interface of R/F type located at r = Ry, condition (94) becomes then
Komax = 0-1(Rk+1 - Rk)/Uc (95)
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And for an interface of F/R type located at r = Ry, condition (94) becomes

Komax = 0-1(Ri = R DA, (96)
with R,_; = 0if k = 1, i.e. if the filamentary layer is located at the center of the composite.

IL2.6  Power dissipated by coupling currents

% We will compute here the power generated by coupling currents as a function of the Eg,

coefficients introduced in section I1.2.3 .

We will first remind the expressions of each component of the electric field in every layer k from
equations (66) and (69)

2
( Ry, )
E, = —|Eo,_, (T) + Ey,, [ sin(8)
Eq, = |E Ry’ E 6
4 6x = |Eoyees (7]~ Eoy | cOS(O) (97)
: Ho 1#0
E,, =|r|Ba —7 ——— KO 2] cos(0)

To compute the local power density P, dissipated by coupling currents in each layer k, we use the
following formula

Py = Ji-Ex (98)

Decomposing vectors ]k and Ek in the cylindrical frame (e, eg, €,), equation (98) becomes

Pk =]TkETk +]6kE6k +]ZkEZk (99)

We have previously assumed E,, = py, J», and Eg, = py, Jr,, Where p,, is the effective transverse
resistivity of layer k. We can also define p;, as being the effective longitudinal resistivity of each layer

k so that we have E, = py, ], -

Note that in each resistive layer p,, = p;, since metals are isotropic materials. However, in the
filamentary zones, the effective transverse and longitudinal resistivities are different from one another,
but they are of the same order of magnitude.

As a consequence, in each filamentary zone k, equation (99) leads to
Ef +Ef EZ
=4 —
'Dtk plk

(100)

The ratio of the second to the first term of equation (100) can be majored as follows
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2
Ez.

p_lk EZZk ptk EZZk ptk
2 2 2 7T =713 (101)
Erk + Eek Erk + E9k plk E9k ‘Olk
'Dtk
Using relation (21), i.e. Eg = — Z%EZ, valid in each filamentary zone, we can deduce

2
E}kﬁhk :;<EEZZ> EEE <1

EGZk plk lp plk

2
since (Z)lipr) <« 1 according to assumption A5 and because p;, and p,;, are of the same order of

magnitude.

We can therefore reduce equation (101) in each filamentary zone to the following

E? + E}
P =——% (102)
ptk
On another side, in the resistive zones relation (21), i.e. Eg = —ZI—LEZ, is not valid but we can still

consider that Ezzk < Erzk + Egk. Indeed, we can legitimately assume that first, the values of E, are of the
same order of magnitude in the resistive zones and in the filamentary zones and secondly, that the values
of E,, are also of the same order of magnitude in the resistive and filamentary zones. The ratio of £Z, /Egk

being negligible in the filamentary zones, we can deduce that it is also the case in the resistive zones;
we can therefore use formula (102) to evaluate the power density dissipated in each layer of the
composite.

Replacing E, and Eg, by their expressions given by (97) in formula (102), we obtain

2

2
R.\2 . R.\2
[Eozk—l (Tk) + EOzk] sin®(6) + [Eozk_1 (Tk) — Eozk] cos?(0)
Pk(r, 9) =
ptk
which reduces to
1 R\ R\ 2
P(r,0) = — [E(,Zk_lz (—") +Eo, 2~ 2Eo,,_, (—") Eo,, cos(ZH)] (103)
ptk r T

The average power density P dissipated in a length L of composite is equal to

— 1 < 1 & (L [r=Rx 27
P= TRZL z fff Py (r,0) dV = —T) z f f f Py (r,0)rdrdfdz (104)
k=1 Vi k=1 z=0"Yr 6=0

=Rg-1

Combining equations (103) and (104), we finally obtain
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n
5_ 1 (R, 1 (Rp\? Ry \? 2 Ri-1\’ 2
oo \R o \R - = 105
P pt1<R) o, +Zptk(R> (Rk_1> 1oy *11 (Rk) Eoy (105)

k=2

Note that the formula of the average power density is not given here per unit volume of filamentary
zone as it has been done in (3) but per unit volume of composite.

IL2.7  Calculation of coupling currents and of electric and magnetic fields in the
composite

+» We will express here the currents and the electric and magnetic fields in the composite as a
function of the E,, coefficients.

Our main objective here is to produce analytical tools which are able to compute every physical
guantity inherent to a composite subject to a transverse time-varying magnetic field as this situation is
commonly encountered in large superconducting devices (e.g. tokamaks, particle accelerators, etc.).

However since it is not possible to give an expression of these quantities without the preliminary
knowledge of the composite design, we have decided to build a general algorithm (CLASS : Coupling
Losses Algorithm for Superconducting Strands) able to compute them using mainly analytical formulae
and the electrical and geometrical parameters of the strand. This choice of an analytical oriented
algorithm is motivated by the fact that it ensures a very fast and light computation of the composite
response to time-varying magnetic field: this is an important point in an environment where heavy
computation times are required by other physics (e.g. thermal sciences, mechanics, etc.). It also has the
benefit to be easily reproducible since all the formulae required for the calculation of the composite
response are explicitly given in this manuscript.

We will now give a review of the expressions of each of the following physical quantities

o the surface current amplitudes (Kok)1<k<n flowing through the edges of the filamentary zones

e the distribution of the electric field E
o the distribution of the transverse current f flowing through the resistive parts of the strand
o the distribution of the magnetic field B

inside the composite as function of the (Eok)2<k<2n coefficients and of its electrical (resistivities)
and geometrical (radii of each zone and twist pitch of the filaments) parameters only.

The expressions of the surface current amplitudes (Kok)1<k<n has been given in equation (349)

11
K] = — == [M][E 1
(Kol = =22 [M1[E;] (106)
where [M] isan X (2n — 1) matrix whose coefficients can be computed using the procedure given

in Figure 79.

The formulae of the transverse components of the electric field Ein layer k are visible in (97)
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{(Erk = - [Eozk_1 (%)2 + Eozk] sin(0)
| o = [, ()

The axial component of the electric field E in each layer is also given in (97) but as functions of the
surface current amplitudes (K, )

(107)
- Eozk] cos(0)

i.e.
1<ksn

oboga) e

First, using equations (350) and (352), we can replace the sum terms present in the above expression
as follows

cos(0)

( n
%Z [ST2i[o]
2 Kol R; ? = _Rk ]2k—1[K0]

where [S],x—1 and [S], are the line vectors defined in (351) and (353).

Therefore we now obtain the following expression for E,,

E, =|r (Ba - % [S]zk[f(o]) + RTR% ]2k—1[K0] cos(6)

which can be re-expressed as

: Ry\’ .
Br =7 Bﬁ%([S]ZH (55) —[S]2k> [K] [ cos(®)

Secondly, using the time derivative of equation (106), we finally have
Ri\?

k=T Ba + ___<[5]2k—1 (_) - [5]2k> [M] [Eo] cos(6) (108)

From (107) we can readily derive the transverse components of the current distribution f in each
layer k as
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E,, 1 Ri\* ,
]rk =—=—-—1/Ey,,_, (—) + Ey,, | sin(6)
Pe r (109)

Ri\?
Eo,,_, (T) — Eozk] cos(6)

pfk p_tk

Regarding the axial component of 7, we can only give its expression in the resistive zones from (108)

zk_ 1 . Uo 1 lp & 2_ ‘
Jop = P p—tkT Ba+= e 2n<[5]2k—1(r) [S]ZR) [M][E,] | cos()

the expressions of J, in the filamentary zones require the knowledge of their equivalent longitudinal
resistivities; they must be consistent with their associated equivalent transverse resistivities.

E
(110)

Finally, to complete this review, we will derive here the expressions of the transverse components
of the magnetic field B.

Since the applied field B_,; is oriented along the y-axis, we can deduce that

B,, = B, sin(6)
By, = By cos(0)

Then, from B = V x A and expression (58) of the magnetic vector potential generated by the surface
currents, we have

k-1
1 aAZk I,lo 1 2
rk=;69 =—7 T_ZZ R +ZK0 sm(H)
l=1
-1
0A ol 1
lBg" = __aj" == [r_z ;| cos(8)
i=1 =
Now, superposing the two above systems, we can write
( [ k—1 n
:uO 1 2 .
Brk - Ba - 7 r_z KOi Rl + Z KOL' SIH(B)
| i=1 i=k ]
) [ 1 k-1 n ]
Bg, = |Ba + % = Z Ko, R — Z Ko, || cos(8)
i=1 i=k

As we did in the derivation of E,, , we first can replace the sum terms to have

B,

By,

\

B, +

B, —

%([5]“_1(

%([S]Zk_l(

- [S]2k> [Ko

+ [S]2k> [Ko

]

]| sin(8)

cos(8)
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and then replace [K,] wit 1h [M][E,] using (106) to finally obtain

t1 21

( ) 2
B, =B+ ([S]ZH () —[S]zk) [M][Eo] | sin(®)

YT ;
) : : (111)
11 Ri\?
Bg, = |Bs — %;ﬁ([s]uq (Tk) + [S]Zk) [M][E(] | cos(6)

IL.2.8  Coupling losses per cycle per unit volume of filamentary zone

<* We will establish here the expression of coupling losses as a function of the E, coefficients. We
will also demonstrate that the coupling losses generated inside complex composites can be
expressed as a sum of the coupling losses generated inside simple composites; this result is
important and will be used in the study of a two cabling stages conductor in section IV.3.

In order to remove any ambiguity, let us clarify what we mean by “volume of filamentary zone” or
“volume enclosed by the outer edge filaments”. If we note Ry the radius on which the most outer edge
filaments are located, here are its values for different designs of composite:

 foran F type composite, R = R; = R, (R always refers to the composite radius)

e foran F/R type composite, Ry = Ry

e for an R/F type composite, Rr = R, = R

e for an R/F/R/R type composite (e.g. JT-60SA TF strand displayed on Figure 11), Ry = R,

The volume that we have called “volume of filamentary zone” or “volume enclosed by the outer
edge filaments” throughout the manuscript is in fact the one of a cylinder of radius Ry and length L; this
length is not set to any value as the composite geometry is considered to be invariant along its axis
according to assumption Al. Therefore the coupling losses per cycle per unit volume of filamentary
zone Q correspond to the total energy that has been dissipated over the whole volume of the composite
and during a cycle of a periodic magnetic excitation, divided by the volume of the cylinder of radius R.

After having clearly defined the notion of “coupling losses per cycle per unit volume of filamentary
zone Q”, we will now focus on its determination as function of the frequency f of a sinusoidal magnetic
excitation. This “Q vs f” curve is usually considered in the community as it gives the full
characterization of the frequency response of a composite with regard to any magnetic excitation.

Up to this point, we possess all the elements to produce this curve. Indeed, we have derived the
formulae required to compute the coupling losses generated by any magnetic signal inside a composite.
Therefore, in order to obtain one point of the “Q vs f” curve, we should simulate the time response of
the (Eok)2<k<2n coefficients to a sinusoidal magnetic signal with a specific frequency using equation
(72), deduce the average coupling power density thanks to (105) and compute the associated value of
Q. To produce the full curve we should then repeat this process for different values of the frequency of
magnetic excitation.
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Even though this process can be achieved in a very reasonable time, we propose a faster method
leading to an analytical expression of Q(f).

Let us assume that the composite is subject to the following magnetic signal
B, = B, sin(wt)
with w = 27t f, the angular frequency.

We can first start by deriving the classical expression of Q (w) for a composite made of a filamentary
zone only (F type) given in (7) (with n = 2 for a cylindrical composite) i.e.

sz 2TWT

)= T

from time equation (1), i.e. B; + TB; = B, and from expression (3) of coupling power per unit
volume of filamentary zone which is
ZTBl'Z
Ho

Using equation (1), the expression of B, and the initial condition B;(t = 0) = B,(t = 0) = 0, we
find the following solution for B;

B;(t) = [sin(wt) — wt cos(wt) + wte™ /7|

P
1+ (wt)?

After a time long compared to t (typically for t > 57), we have

Bi(t>» 1) = [sin(wt) — wt cos(wt)]

/4
1+ (w1)?

Therefore

B;(t>»1) = [cos(wt) + wT sin(wt)]

_ Y
1+ (wt)?
In the following, the notation (X (t)) will always corresponds to (X (t)) = %fti)oJ“TX(t)dt.

If we now compute the average of Biz(t) over the time period T = 1/f of the applied magnetic
signal, we have

2

(B2@) = (%) ([cos(wt) + wT sin(wt)]?)

2

Byw 2 2/ cin2 :
= (m) [{(cos?(wt)) + (wT)“(sin“(wt)) + 2wt(sin(wt) cos(wt))]

2

B 1
- (1 n I(fr)Z) 7 1+ (@0’
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1 B,’w?
T 21+ (wr)?

As a consequence, since Q = (P(t))T and T = %” using (3) we have

B 2 2nwr

0w = T = oy

Now that we have derived the expression of Q as function of w for F type composites, we will focus
on its determination for other types of composite.

Since we know the expression of the (spatial) average power density P dissipated in any composite
as function of the (Eok) coefficients from (105), we can first begin by rewriting it in the following
abbreviated form

2<k<2n

2n
P(t) = Z BjEo,2(0) (112)
with, by identification =
( Ri\?
=5 (%)
R;
{ Ba2j- 1—p— - (R—> for2<j<n (113)
1 /R;
B2j ZE(E]> [1—(#) for2<j<n

From equation (112), it is possible to express the coupling losses per cycle per unit volume of
filamentary zone Q as

2 2n

Q(w)=< ) (Pt )>T——( ) Zﬁ,wo, O)

(114)

2
Note that the term (Ri) comes from the fact that P has been defined per unit volume of composite
f

while @ is defined per unit volume of filamentary zone.

To complete the process, we now need to analytically solve equation (72), i.e.

to Ly ’1 w1
[A][Eo] + 2( >p—t1[3][E0]—2_p

21

for the time dependence of the (Eq, ),_, .~ coefficients.
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In order to do so, we begin by re-expressing time equation (72) as

[Eo] + [7][ o] = 52 Bal41 ] (115)

where [t] isa (2n — 1) X (2n — 1) matrix whose coefficients have the dimension of time and which
is defined as

[z] = [A]7*[B] (116)

Assuming that [7] is a diagonalizable matrix, we can express it as
[z] = V][zI[V]™ (117)
where [t.] is the diagonal matrix containing the eigenvalues of [t] and [V] is the matrix containing
the eigenvectors of [z].

Replacing [z] with [V][z.][V]~1 in (115) leads to

. L, .
[Eol + V1lzcl V1™ [Eo] = 5 BalAl7[Y]

The multiplication on each side by [V]~1 gives

(4] + [rcl[%] = Bl (19)
with
] = V11 5o (19)
and
%] = VI 4]y (120)
T

Equation (118) can alternatively be written, for 1 < k < 2n —1, as

[X1i + ¢, [X], = BalYslk (121)
where [X], and [Y, ] are respectively the k" component of the column vectors [X] and [Y}], and
Tc, = [Tclk x is the k" diagonal element of [7.], i.e. the k*" eigenvalue of [z].

By analogy with the previous resolution of equation (1), we can give the solutions of equations (121)
as

[V, ] Byw _
(X1, (®) = Lpz [cos(wt) + wt, sin(wt)] (122)
1+ (wrck)
These solutions are obtained considering the initial conditions ([X],(t = 0) = 0);<kx<2n—1 and are

valid after a time long compared to the greatest value of (rck)1<k<2n_1.
Inverting relation (119), we have [E,] = [V][X] which leads to

2n-1

Bo,(®) = ) V]2 lXIe(® (123)

k=1
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Remember that since E, is always zero, the first component of the [E,] (2n — 1) x 1 column vector
is Eo, and its j th component is in fact Eo,_,- To avoid any confusion, we note [E,]; the j th component

of column vector [E,] and Ey, the j th coefficient of the (on) ; we therefore have [Ey]; = Eo,_,-

2<j<2n
The combination of equations (122) and (123) enables us to write

2n—-1 2n-1

2
Yy Y,
EO; (®) = (Bp “)) [cos(wt) Z L]+ sin(wt) Z wT CRM
1+ (wrck) 1+ (chk)
Thus, the average of Eq,*(t) over one cycle of duration T is

2n— 1 2
(Eo 2 (1)) = (’”“’) [z ISV 1"[”’]"] +

=1 1+ (“)Tck)z

2n-1 2
AT=PIAP

Z WT, —
1+ (chk)

k=1

since (cos?(wt)) = (sin?(wt)) = %and (cos(wt)sin(wt)) = 0.

This average can be factorized, using A2 + B2 = (A — iB)(A + iB) with i the imaginary unit, as

2 2n 1 2n— 1
[Y,] [Y,]
( p ) ] lk b [ ] 1k b2 (1+leCk)]

11+( ) =1 14 (0,

To make the above expression lighter we will temporarily note the terms appearing in the sums as
a and by, respectively, i.e.

(Eo,*(0)) = — (1-iwrg,)

( _ [V]j—1k[Ypli 1—i
Ay 1+ (chk)z ( leCk)
R\ATETIAR
b = —HR (1 4 iwr,,
kT 1+ (wrck)z ( e )

Thus (onz(t)) can be expressed as

(Eo,*(©) = a|| D b
k=1

In addition, we have
2n—1 2n—1 2n—1 2n—1 2n—12n-1 1 2n—12n-1
[z ay [Z bk]—lz ak” z]zz Zakbl=zz z(akbl‘l'albk)
k=1 k=1 k=1 1=1 k=1 1=1

since summation indices k and [ can be interchanged, and

=T AIAT= AT ! [(1 _ la)Tck)(I + iwrcl) +(1- iwrcl)(l + ia)‘rck)]

a.b, + a;b,, =
LT 1+(rck) 1+ (wze,)
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1+ w? Te ey

[1 + (chk) ] [1 + (qu) ]

= 2[V]j_1k[yb]k[v Jj- 1l

Thus

22n—-12n—
) _ 1+ w? TeyTe;
(Eo, 2 (1)) Z Z j—1kYolelV1j—1 1Y ] [ + (010, ][1+(wrcl) ]

k=1
Moreover, using a partial fraction decomposition, it appears that

1+ w?te, 7, 1
[1 + (wrck)z] [1 + (wrcl)z] Tep, +7¢

Therefore we can conclude that

Tey

7t 2
1+ (chk) 1+ (qu)

22n-12n- 1
(p ) Z 2 lj-1k Yb V1j-1:[Ys i Te,
+Tc,

(onz(t))

7t 2
1+ (wrck) 1+ (chl)

which reduces to

2n-12n-1

V11 eYplelV]j—1:[Yp ] Ty
k=1 1=1 Ta T Tey I+ (“’Tck)z

(Eo,(®) = (Byw)®

splitting the previous double sum into two double sums and interchanging k and [ in the second one.

Finally, we obtain

2n 1 2n-1

[,] o N Wl
=1 kA

The combination of equations (114) and (124) enables us to write

2n— 1 2n—-1

_z2n lj—1 kY] chk V]j—1:[Yp ]
Q@) ( )23,(3 w)’ 2 1 (ur Z P——
which can be re-expressed as
22n-1[2n-12n-1
B]-I-l ]k ]I[Yb]l[Yb]k anTck
Q(w) =B < ) (125)
P z Z Z o T Te, 1+ (chk)z

We have now derived the analytical expression of Q(w) for any composite for any magnetic
excitation B, of the form B, = B,sin(wt).

If we take a close look at formula (125) we notice that it is very similar to the formula (7) of Q (w)
for F type composites, i.e.
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In order to highlight the resemblance between formulae (7) and (125) we will introduce another
function Q;ussicar (w, T) defined as

sz 2TWT

Qeassical(w,7) = EW (126)

which represents the average coupling losses per cycle of magnetic excitation B,sin(wt) per unit
volume of filamentary zone for a composite with only one time constant 7.
Using this new function, it is then possible to formulate equation (125) as

2n-1

Q(w) = Z achlassical(w: Tck) (127)
with =

22n-12n-1

ak_”0< > Z Zﬂ]ﬂ ]k +]T1[Yb]l[Yb]k (128)

where g is defined in (113), [V] and [TC] are obtamed diagonalizing [t], and [Y}] is defined in (120).

Formula (127) is a very meaningful physical result as it clearly indicates that the coupling losses of
a complex strand with N multiple time constants can be seen as a cumulation of the coupling losses
generated by N elementary strands (i.e. F type strands) having specific effective time constants and
effective volumes. Indeed, instead of formula (127), we could write

2n-1

R 2
Q(w) = Z (RL;) chassical(w' Tck)

k=1

where Ry, would be defined as Ry, = Rf\/a—k and would represent the radius of the effective
shielded volume of each elementary strand. In this regard we can straightforwardly realize that the
coupling between the screening currents leads to the modification of the shielding accomplished by each
screening current if it was isolated; the notion of partial shielding can therefore be observed down to the
strand scale.

Furthermore, we have previously mentioned that a strand with n layers did not really have 2n — 1
time constants; the number of time constants it possesses is equal to the number of edges of its
filamentary zones. The apparent surplus of time constants in formula (127) seems to be inconsistent with
this fact. However we have also mentioned that among the 2n — 1 time constants, some were artificial
ones because their presence was due to our modeling. This paradox is solved by the fact that the a;
coefficients associated with the artificial time constants are zero (we will not demonstrate this point here
but we have observed it for every design we tested).

Another point is that the sum of the «;, coefficients is equal to 1. In order to demonstrate this, let us
consider an F type composite with its outer edge filaments located at r = R subject to a step-type
variation of the applied magnetic field from 0 to B,. The energy stored per unit length of strand E; just
after the step is equal to
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After the step, the currents induced inside the strand will start to decrease until they reach zero; the
final energy stored in the strand will then also be zero. The only dissipative phenomena we consider
here are coupling losses, therefore we can deduce that the integral over time of the coupling losses per
unit length of strand after the step will then be equal to E; to ensure the conservation of energy.

If we apply the same step change of B, on a composite with multiple time constants and with the
same Ry, the energy stored per unit length of this composite just after the step will also be equal to E;.
Indeed, the change of B, being instantaneous, the magnetic shielding of the composite will exclusively
be accomplished by its outer edge filaments located at 7 = Rg; it is only when the current they carry

start to decay that the internal edge filaments (located at < Rf) begin to develop their own screening
currents.

Since the coupling losses of a strand with N multiple time constants correspond to the sum of those
generated by N F type strands having their outer edge filaments located at r = R, (1 < k < N), we
deduce that E; can also be expressed as

B
E; = Z Lankz
e— Ho
Consequently, we have

N

2 _ 2
Z Ry,” =Ry
k=1

which is equivalent to

And since @, = (Ry, /Ry)”, we have thus demonstrated that

N
Eak=1

k=1

Finally it also important to notice that in a strand with N distinct time constants, the (@) 1<k<y
depend on the transverse resistivities of the different zones. Indeed the (ay ), <k<y are given by formula

(128) in which appear the coefficients of B, [V], [V,] and the time constants (Tck)1<k<N; all these

parameters depend on the transverse resistivities of the different zones. The only exception is for strands
with a single time constant, in this case there will only be one non zero «;, coefficient which must be
equal to 1 and therefore does not depend on the transverse resistivities of the different zones.
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I1.3 Comparisons with literature analytical models

In this section we will show that the formulae derived in our analytical modeling are fully consistent
with those issued from previous analytical studies found in the literature.

I1.3.1  F type composite

Figure 19 : Scheme of cross-section of F type composite

In the case of a composite consisting in a unigue zone of filamentary type (displayed on Figure 19),
we can give the equation governing E,, Using equation (72) and the relevant expressions of [A], [Y] and
[B] that we have previously derived (i.e. [A] = [Y] = [B] = 1)

2
Mo [ Lp 1 . L, .
Eo, + |52 ] —Eo, =28
02 2<2n> o 2 2m @

In this case there will be a supercurrent, whose spatial amplitude is K, = pi;—iEoz, flowing
t1
through the superconducting filaments located on the edge of the composite. According to equation (57),
HoKo; —

we know that this supercurrent will create a reacting magnetic field Beqer = —— e inside the

composite. By superposition, the total internal magnetic field §l- will be given by

3 _B LB ., HoKo, _, —
B; = By + Breqct = Bay — *e, = Bje,
with
K
B, =B, — #02 0,
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. . l . .
Replacing K, with piﬁEoz in the expression above leads to
t1

o 1 1
Bi=B,———
L a 2 ptl 27_[ 02
which is equivalent to
2 21
Ey, = 'u_optl N (Ba — By)
If we now replace E,, by ”ipt1 j—” (B, — B;) inthe equation on Ej,, we have
0 P

2 21

Lo Ly,
Eptlg(Ba - Bi) +%(Ba - Bi) =-—B,

21

bo 1

l . . . .
=2 — L after some manipulations, we finally obtain
2 'Dtl 2T

o [ 1 21

0 D .
Bi+—|=—] —B; =B
L2 <27‘[> Pt, ' @

which is exactly the classical equation governing the internal induction inside a composite composed
of a filamentary zone only (see equations (1) and (2) in the “state of the art” section).

Multiplying both sides by

I1.3.2  R/F/R type composite

We will now derive the equations governing R/F/R type composites (see Figure 20) and compare
them to those developed by Ciazynski [30].

Figure 20 : Scheme of cross-section of R/F/R type composite
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For this geometry, we will not use equation (72) as the associated expressions of [A4], [Y] and [B]
will be quite heavy and not easy to manipulate. We will then start by writing equations (68) for k = 2
and n = 3 as it is a much more convenient way :

L, < R;\2
Uo tp (l)
Ep. — =LY Ky, (=) =0
03 2 2mLly %R,
=1
3
ﬂolpz- Ly
Ey, + =) K, =B
"4+22n,2 % " op e
i=

This leads to

ol Ry
937 2 2n\R,) ™

kol L, .
lEo‘* =g 20 T b
given the fact that K, = 0 since there is no filament at r = R5 in the R/F/R composite (see Figure
20). Using the expressions of K, and K, as functions of the (Eok)2<k<6 given by (44) for k = 1 and

k = 2, we have

2

b1, 1, 1<R3)2E L,
kOZ_ZT[ Pe, 0 Pe, O Pe; \Rz Os Pe, %

(o W[l 1(R2>2E L,
{ 017 2m P, 02 Pe, Ry 0 Pt O

We also have to consider the two continuity equations of Eg at r = R; and r = R, given by (343)
fork=1andk =2

R\?
_EOZ - (R_l) E03 +E04 == 0

R3\?
E03 _E04 - (R_) EOS +E06 = 0
2
as well as the boundary condition E,., (R3) = 0 given by (43)

EO = _EOS

6

The combination of these equations enables us to express E,,, Eo_ and E,_ as functions of E,_ and

Ey,
( R,\?
EOZ = — (R_) E03 + E04
1

R,?

3 EOS = RZZ +R32 (E03 - EO4—)
R,?

kEOG = R22 + R32 (_E03 + E04-)
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Injecting these new relations into the formulae of K, and K, above leads to

[ g G (o) (1)
Ky, =—== ( ) 24+ 1)Ey, +|—=2—-1)E
{ o Pe, 2T Ry Pt, 0 P, O

11 P, R3® — R,? pe, R3® — R,®

— p 3 2 3 2
kKOZ = o <1 —> Eo, + <1 +—————| ko,

ptz 4 pt3 R3 +R2 p[:3 R3 +R2

Finally, replacing E,, and E,, with their expressions as functions of I'(Ol, I'{OZ and B, in the new
formulae of K,,, and Kj,, we obtain

( Pt . Pe . Pt 2 R
K, 2+1> K, +<—2— )TK =<—2— >—TB
! o (pt1 feltoy Pty 702 Pe, Ho ¢
R.%> —R,? . 32— R,? R:% —R,? 2 .
lKOZ (R ) <pt2 =z _ 1) Ko, + (ptz =4 1) 1Ko, = <—pt2 o 1)—cha
2 pt3 R3 + R2 pt3 R3 + R2 pt3 R3 + RZ ,u()
with

2
¢ 2\2n) py,

These equations can be turned into the following matrix equation

Kol] T11 T12 [Kol] Textl
llo

Ko, Tz 1 T2 2 Textz Ba
with
p;
T11 = (ﬁ + 1) TC
Pt,
T12 = (ﬁ - 1) Tc
) Pt,
( ) <Pt2 R3 - Rz >
Ty = — -1,
R2 pt3 R3 + R2
Pe, R3™ — R,
Typ = (Jﬁ +1 Tc
\ pt3 R3 + R2
and

( Pe,
J Text1 = T12= | — — Tc
Pe,

2 2
Pe, R3™ — R,
LText2=T22:<p_t2m+1 Tc
3
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These results are exactly the same as those found by Ciazynski [30]; our general approach is thus
consistent.

It is interesting to note that 7,y 1 = Ty 2 aNd Texe 2 = T3 2; this means that the coupling between K

and I'(OZ is identical to the one between K, and HiBa. Indeed the magnetic field created by the second
0

surface current (i.e. Ky, ) in its enclosed volume is perfectly uniform and equal to — Fo k.. according to
2 2
(57); the first surface current (i.e. K,,) feels then its time-variation it in the exact same way it feels B,.

It is also interesting to note that, in case p;, = p;,, We have 7,1 = 7;, = 0, and the new time
equation on the spatial amplitudes of the surface currents K, and K, becomes

R | il R MR
B,
Koz Tz 1 T2 2 ,uo Text 2

Therefore, if the initial value of K is zero, it will remain zero no matter the time variations of B,,.
This result makes sense as, in case p;, = p,, the continuity of /,. at v = R; will always be ensured and
thus there would be no need for an axial surface current at r = R, to balance the radial current flow.
Consequently, in case p;, = py,, the time equation can be reduced to

Ko

2

and there will only be one time constant equal to 7, 5.

Furthermore, in steady-state regimes, i.e. when the surface currents are not time-varying (I{’o1 =

K,, = 0), we have
1 1\/L\ .
o <pf1 pfz) (ZT[) ¢
1RZ2-R,2 1\(L) 1.
lKoz =\s 22 5z2t57)\3,;) 5 Ba
When p;, > p,,, the first surface current is flowing in the opposite direction to the second one. At
first sight this seems quite unintuitive; indeed assuming B, is increasing with time, we expect both

surface current amplitudes K, and K, to be positive in order to screen the strand from the time variation
of B,.

In reality, Ko, will be positive while K, will be negative, this can be explained saying that the
current induced between any pair of filaments located at r = R, will use the filaments located at r = R,
to shunt the central zone (of resistivity p,, higher than p.,), i.e. they prefer to temporarily flow through

the filaments located at » = R, to loop back in the second zone rather than directly crossing the central
zone.

Therefore, in addition to the currents induced between filaments located at » = R; - which would
give a positive K, if they were alone - there exists a surplus of current due to filaments located at r =

R, which can make the global K, (corresponding to the superposition of the two contributions) negative
if pe, > pe,-
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The configuration for which the central resistive zone is replaced with a hole allows an easy
understanding of this phenomenon. Indeed, in this case the currents induced between two distant
filaments located at » = R, would have no choice but to circulate through the filaments located at r =
R, to loop back. In the configuration featuring a central hole, we would have p, — oo, thus 1/p;, = 0,

2,
and K, = —i (zl_;) B, which would be negative for a rising ramp of Bj,.
2

Consequently, we can deduce that the part of the induced currents due to the filaments located at

. . . 1,\2 . . . .
r = R, in the expression of K, above, is i(ﬁ) B,, while the other one (i.e. due to the filaments

pfl

— R.Vis — L () £
located at v = R,) is . ( )Ba.

ty 21

1.4 Applications
IL.4.1  Simulations of Q vs f curves for F/R and R/F type composites

In order to give a more practical vision of the outputs of our analytical modeling, we have chosen to
compute the Q vs f curves of both R/F and F/R type composites (see Figure 21). In order to do this, we
will choose the following geometrical parameters for both strands (representative of ITER and JT-60SA

strands)
R, =R =0.81/2mm = 0.405 mm
R, = R/V2 ~ 0.286 mm
l, =15mm

s0 that the area of the first zone equals that of the second zone, i.e. TR, * = m(R,* — R, ?).

Figure 21 : Schemes of cross-sections of F/R (left) and R/F (right) type composites
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We are here interested in the values of the p;, /p;, ratio rather than in the absolute values of p, and
pe,, therefore we will set p,, to the following realistic value (which corresponds to the resistivity of
copper with RRR = 150 atT = 4.2K and B = 1T)

pr, = 1.5x1071%02.m

We have explored several cases resulting into a total of ten Q vs f curves which correspond to the
following values of the p,,/p;, ratio (which covers about 2 orders of magnitude)

(1/9

!1/3
Pe,/Pt, =4 1
3

9

We have considered a sinusoidal magnetic excitation B, = By,sin(wt), with B, = 2T for both
strands; the results for the F/R type strand are displayed in Figure 22 and those of the R/F in Figure 23.

Note that the curves displayed on Figure 22 correspond to coupling losses per cycle per unit volume
of strand (they are not per unit volume of filamentary zone).

These curves have been computed using formulae (127) and (128); in the case of the F/R composite
they are fully consistent with the formula found in [25], i.e.

_ R 2Bp2 2mTwT
Q) = (f) y_ol + (w71)?

wo (L[ 1 g <R22—-R12>]
T==\=—| |—t+—\——
2\2n) [pt, Pe, \R,>+Ry®
For each value of the p;, /p., ratio, we have obtained only one non zero a;, coefficient, equal to 1.
This is consistent with our previous discussions since the F/R type composite has only one time constant.

with

We can also notice that the maximum of the curves are all equal to one another and that they are
shifted to the right with increasing p;, /p, ratio.

From equation (126), we can see that the Q vs f curves corresponding to strands with only one time

constant 7 reach their maximum for w = 1/t; this maximum does not depend on t and is equal to

Qmax

2p 2
- (2
R Ho

Note that the (Rf/R)2 term is needed here to give the coupling losses per cycle per unit volume of
strand instead of unit volume of filamentary zone.
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x 10° Q vs f curves for different values of the ratio of resistivities for F/R type composite
I I I I

—Curve 1, ratio=19:a0=1andt=95.5ms
< —Curve 2, ratio=1/3:a=1and 1 =47.7 ms|
Curve 3, rato=1:a=1and t=31.8 ms
\ Curve 4, ratio=3:a=1and t=26.5ms
—Curve 5 ratio=9:a0=1andt=24.8 ms

Average losses per cycle per unit volume of strand (J/r’?l/cycle)

| | |
0 5 10 15 20 25 30 35 40
Frequency of magnetic excitation (Hz)

Figure 22 : Q vs f curves of F/R type composite with different values of p,,/p;, for B, = Bpsin(wt), B,, = 2T

For an F/R type composite, there is only one time constant t which is inversely proportional to the
total effective transverse resistivity of the strand. This total effective resistivity consists in a combination
of the effective transverse resistivity of the filamentary zone and of the transverse resistivity of the outer
layer (we have already discussed this point in section 11.1.2 ). When the resistivity of the second zone
(R) increases, the total effective transverse resistivity also increases, as a consequence, the time constant
T decreases and the maximum of the Q vs f curve is then shifted to the right. There even exists a limit
to the minimum value of 7: it is reached when the resistivity of the second zone (R) is infinitely higher
than that of the first layer (F). In this case, the F/R type strand actually corresponds to an F type strand
and we obtain T = 23.9 ms using the parameters of our example.

The Q vs f curves displayed on Figure 23 are also coupling losses per cycle per unit volume of
strand (not per unit volume of filamentary zone).

These curves have also been computed using formulae (127) and (128) but this time, unlike the case
of the F/R type composite, we can see that there are two «a;, coefficients per curve (except for the third
curve) and that their values are sensitive to the p;, /p, ratio. This clearly supports our discussion on the

dependence of the «;, coefficients on the transverse resistivity of the different zones for strands with
more than one time constant.

In addition, conversely to the F/R type composites, we can notice that the maxima of each curve are
all different from one another even though they are also shifted to the right with increasing p;, /p;, ratio.
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x 10° Q vs f curves for different values of the ratio of resistivities for R/F type composite
14 \

=0.126 and T, = 370.5 ms, o, = 0.874 and T, = 83.1ms
——Curve 2, ratio=1/3: o, = 0.084 and T, = 126.6 ms, a, = 0.916 and T, = 405 ms

——Curve 1, ratio=1/9: a,

Curve 3,ratio=9:a=1and t=23.9ms
Curve 4, ratio= 3 : a, = 0.276 and T, = 28.8 ms, a, = 0.724 and T, = 11 ms

10

——Curve 5, ratio=9: o, = 0.438 and T, = 25.3 ms, a, = 0.562 and T, = 3.9ms M

| | |
0 10 20 30 40 50 60
Frequency of magnetic excitation (Hz)

Average losses per cycle per unit volume of strand (J/rﬁ/cycle)

Figure 23 : Q vs f curves of R/F type composite with different values of p,,/p;, for B, = Bpsin(wt), B, = 2T

As a remark, we can see that the third curve is the only one with a single time constant and a single
ay, coefficient. This comes from the fact that p., = p;, for this curve and, in this case, the R/F type
composite has no longer two time constants but only one (as previously mentioned in the R/F/R case).
As a matter of fact, when p,, = p, , the first surface current normally flowing at » = R; has not any
specific role and both zones are electrically equivalent, so virtually merge. Therefore the composite

features only one surface current flowing at r = R, with only one «;, coefficient equal to 1 and there is
only one time constant left.

The fifth curve is interesting as it deviates in shape from the other ones. For this reason we have
displayed it on Figure 24 together with its decomposition as a weighted sum of two classical (i.e. single
time constants) Q vs f curves, as indicated in formula (127). This means that, in addition to curve 5, we

have plotted a; Qciassicat (Tc, ) aNd @2 Qassicar(Te,) Such that curve 5 is equal to a3 Qeigssicar (Te,) +
a5 Qc1assical (‘L’Cz). The fact that it deviates in shape from the other curves is majorly due to the fact that

the values of its @, and a, coefficients are close from one another (respectively 0.562 and 0.438) while
in the other curves, a; predominates. Since the two «; coefficients are in the same range and the two
time constants quite far apart we can observe that the convolution of the two contributions results in a
curve with a maximum rather “flat”, unlike the curves usually expected from the “single time constant”
approach for representing the strand behavior.
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x 10° Q vs f curve for a ratio of resistivities equal to 9 for R/F type composite
10 | | _ICurve 5 ratio=9: dtot =a 1*Q;:Iassical(-r;)+oc2*QcIalssicaI(-:2)
o a1*QcIassicaI(r1) with o, = 0.438 and T, = 253 ms
= —aQ*QcIassicaI(rZ) with Oy = 0.562 and T, = 3.9ms

| 4 | | | |
0 10 20 30 40 50 60 70 80 90 100
Frequency of magnetic excitation (Hz)

0 ‘ | | |

Average losses per cycle per unit volume of strand (J/r?l/cycle)

Figure 24 : Q vs f curve of R/F type composite with p,,/p,, = 9 (curve 5) and
its decomposition into two classical curves for B, = B, sin(wt), B, = 2T

This observation can have very practical consequences: measurements of Q vs f curves are usually
carried out up to a certain frequency range which sometimes imposes to stay within the linear part of
the Q vs f curve (i.e. for wt «< 1). If the measured strand features more than one time constant, as
shown in this particular case, the extrapolation of its behavior at high frequencies upon the fitting with
classical formula (126) of the measurements made in the linear part of the Q vs f curve would result in
substantial gaps.

In order to quantify this consideration, we will extrapolate curve 5 at high frequencies from its linear
part and using the classical formula (126).

In order to do so, we consider that the R/F type composite has only one time constant and therefore
assume that its associated coupling losses per cycle per unit volume of filamentary zone can be described
by formula (126) which is equivalent to

Ry

Qeiassicat(f, 1) = (F)

ZBLf Am?fr
o 1+ (2nf1)?

per unit volume of strand.

For small values of f satisfying 2rmf7 <« 1, we can assume that the Q.;qssicai (f, T) function is well
described by the following linear function

R
chassical (f K 1/(21TT), T) = 41‘[2‘[ (%)

2p 2
BLf
Ho
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And it is then possible to compute the time constant T of the strand from the slope at origin a of

curve 5 as
2
4m2B,* \Ry

Using this formula and the slope at origin of curve 5, we have obtained T = 13.3 ms and have then
extrapolated curve 5 at high frequencies using this t; both curve 5 and the extrapolation from its linear
part are displayed in Figure 25.

Q vs f curve for a ratio of resistivities equal to 9 for R/F type composite
x 10° and extrapolation from its linear part

10F

— Qclassical(t) with t = 13.3 ms

o] ——Curve 5, ratio = 9 : Qtot = a1*QcIassicaI(r1)+oz2*QcIassicaI(-rz) H

Average losses per cycle
per unit volume of strand (J/r'r13/cycle)

0 | | | | | |

| | |
0 10 20 30 40 50 60 70 80 90
Frequency of magnetic excitation (Hz)

Figure 25 : Q vs f curve of R/F type composite with p;,/p,, = 9 (curve 5) for B, = B,sin(wt), B, = 2T
and corresponding curve with single time constant approach

We clearly see a disagreement between these two curves at frequencies higher than 2 Hz. The
discrepancy between both curves is clear: it reaches a factor 1.5 for f = 11Hz and generally shows that
for most of the high frequencies important over-evaluations or under-evaluations are made between the
two approaches. We can also note that curve 5 reaches its maximum at f = 30Hz while its extrapolation
reaches its maximum at f = 12Hz.

IL.4.2  Study on the effect of the layout of a composite on coupling losses

When designing a composite, the total amount of superconductor inside the composite is a key
parameter as it will ensure the ability of the strand to produce the desired current, but it is not the only
one. The Cu/NonCau ratio is also an important parameter as it will ensure the stability of the composite
while guaranteeing also its integrity in case of quench. The filaments diameter plays a significant role
in the protection of the composite against flux jumps too and should not be too large for this reason.
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With the knowledge of the main design parameters of the composite, it is possible to propose a
geometry that will meet given design requirements.

There can be more than one acceptable geometry since the number and sequencing of the layers are
usually not fixed. These parameters might be optimized with respect to coupling losses.

In order to draw a tentative contribution to those considerations we have carried out a study on the
response of composites meeting the same design requirements, but with different layouts, to sinusoidal
magnetic excitations.

We have therefore chosen the four different layouts displayed on Figure 26: F, F/R, R/F and R/F/R.

Layout 1: F Layout 2: F/R Layout 3:R/F Layout 4:R/F/R

Figure 26 : The four different layouts considered in our study

We have chosen realistic design requirements (inspired from the design of JT-60SA TF conductor)
and have therefore set the radius R of the composites to R = 0.405 mm, the filaments diameter to dg;; =
20 um and the Cu/NonCu ratio to 1.5. We assume that the superconductor is the only non-copper
material inside the composites; the overall proportion A of superconductor in each composite is then

1
A=r——r———— =04
1 + Cu/NonCu

For layouts 2 to 4 which feature several layers, the radii of each of their internal zones are set as
below (these assumptions are considered as examples for possible design constraints).

For layout 2, R, is such that the surface of layer 2 (copper) is equal to half that of layer 1
(filamentary), we then have R; = R,/2/3.

For layout 3, we have set R, such that the surface of layer 1 (copper) is equal to half that of layer 2
(filamentary), therefore R, = R/+/3.

For layout 4, we have set R; and R, such that the surface of layer 1 (copper) is equal to that of layer
3 (copper) and one fourth that of layer 2 (filamentary), thus

{R1=R/\/5
R, =R\/5/6

The resistivity of copper is set to
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Peu = 1.5%x1071°0.m
which again corresponds to the resistivity of copper with RRR = 150 at T = 4.2K and B = 1T.

We now have to compute the effective transverse resistivities of the filamentary zone of each strand.
In order to do so, we will use the formula given by Ciazynski [30] which is in agreement with the two
extreme values of the filament-to-matrix contact resistance given by Carr [24]. In his formula Ciazynski
assumes that the filament-to-matrix contact can be represented by a small resistive barrier of thickness
ep and resistivity p, surrounding the filaments; we assume this barrier to be thin enough so that his
formula can be written as in [32]

1= x(1+ )
Pe = P ¥ 1 (1= 2p)

with
_ P
PmTril
77, is the radius of the filaments and py, is the resistivity of the matrix in the filamentary zone, but
since the matrix is supposed to be exclusively made of copper, we have here p,,, = pcy.

Turck [33] has estimated the p,e;, parameter to be close to
ppep = 6 X 107150, m?
which is consistent with the measurements presented in [38].

We have chosen this value for each of the four composites because since we assume this parameter
is related to the fabrication process, it should be the same for every strand.

Ag is the proportion of superconductor in the filamentary zone; it is therefore not always equal to A

depending on the layout. Let us note AF("") the proportion of superconductor in the filamentary zone of
the composite with layout k, in order to conserve the have the same amount of superconductor in each
composite we must have

( 2:YrR? = AnR?
2:PnR,? = AnR?
21x®1(R? — Ry?) = AnR?
1r®1(Ry? — R,?) = AnR?

which is equivalent to

( P =2

R 2

=)

F R,

RZ

R2 —R,?
RZ

RZZ _R12

1 4@ =2

A =2
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We now have all the elements to compute the effective transverse resistivities of the filamentary
zone of each composite.

Table 2 and Table 3 summarize the geometrical and electrical parameters of the composites
computed using the previous considerations for the four different layouts.

Table 2
Proportion T
N site?g(rjr;ﬂg of Twist pitch of Filaments CORG;S“V'“aez dOf
ame superconductor filaments ,, radius 7y PREr Py
R 1 matrix p,,
alu\e/ 0.405 mm 0.4 15mm 10 um 1.5x1071°2.m
Table 3
Specific parameters for the different layouts
Layout number 1 2 3 4
Type F FIR RIF R/IF/R
Ap 0.4 0.6 0.6 0.6
Radii of zones R, R, R, R, R, R, R, R
Value (um) 405 331 405 234 405 165 | 370 | 405
Transverse
resistivities of zones Py Py Pr, Py P, Pro | Ptz | Pry
Value
(x 1010 0. m) 2.45 3.19 1.5 1.5 3.19 1.5 [ 3.19| 1.5

Using the parameters presented in Table 2 and Table 3 we have been able to produce the Q vs f
curves for the four layouts; they are plotted on Figure 27.

«10° Q vs f curves for different layouts with common design parameters
| - . . . : .
—Layout 1 (F): a=1and t=14.6 ms
12 ——Layout2 (F/R):a=1and 1=16 ms
Layout 3 (R/F) : a, = 0.104 and T, = 32.9 ms, a, = 0.896 and T, = 13.4 ms
10- Layout 4 (RIF/R) : o, = 0.073 and T, = 34 ms, o, = 0.927 and T, = 14.5 ms||
8, -

Average losses per cycle per unit volume
of strand (Jirnalcycle)

| | |
20 25 30
Frequency of magnetic excitation (Hz)

15 35 40 45 50

Figure 27 : Q vs f curves for composites with common design parameters and different layouts
for B, = B,sin(wt), B, = 2T
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First of all, it is quite clear that, under our design assumptions, the F/R layout seems to be the best
configuration with respect to coupling losses while the F one is the worst : there is a factor 1.5 between
the maxima of the Q vs f curves of the F and F/R type composites. In between these two extremes, are
the R/F/R and R/F type composites.

The obtained results are not intuitive at all and are quite difficult to predict qualitatively. Indeed, the
different parameters of each strand have several effects that are competing with each other in the
phenomenon of coupling losses.

Actually two antagonistic effects enter into competition. First, the radius Ry on which the outer edge
filaments are located defines the volume to shield, therefore the larger the radius Ry, the larger the
volume to shield and thus the larger the losses. Secondly, for a given variation of applied magnetic field
B, the smaller the total effective transverse resistivity, the higher the induced currents and consequently
the larger the losses.

If we now take a look at the parameters of the F and F/R type composites present in Table 3, we
observe that the F composite has an effective transverse resistivity of p, = 2.45 x 10~1° 2. m while the
F/R one has a higher transverse resistivity in its filamentary zone (p;, = 3.19 X 1071° 2.m) and a lower
one in its copper sheath (p,, = 1.5 X 10719 2.m). The first difficulty is to compute the total effective
transverse conductivity (i.e. 1/p;, ,) of the F/R type composite as it consists in a weighted sum of the
effective transverse conductivities of its two layers (i.e. 1/p,, and 1/p;,). The two weighting
coefficients depend on the geometrical parameters of the strand but they cannot be trivially derived,
therefore we will not calculate them here. However given the values of the different resistivities and the
geometry of both strands we can assume that the total effective transverse resistivity of the F/R type
composite should be close to that of the F strand. Knowing that the time constant of an F or an F/R type
strand is inversely proportional to its total effective transverse resistivity (see section 11.1.2), our
previous conjecture is confirmed by the fact that the time constants of both strands are very close from
one another (14.6 ms for F and 16 ms for F/R). As a consequence, from considerations on the
resistivities of both strands, we expect their respective coupling losses to be very similar and yet this is
not what we observe.

Regarding the location of the outer edge filaments we see that the F/R type composite has an
advantage on its counterpart. Indeed the ratio of the shielded volumes of both strands is here equal to
2/3 and is in favor of layout 2 (F/R); this therefore explains the relative positions of their Q vs f curves.

Finally, in order to produce a qualitative explanation for the positions of the different Q vs f curves,
we have displayed in Table 4 the ratio of the shielded volume to the strand volume for the four layouts.

Table 4
Ratio of shielded volume to strand volume for the different layouts
Layout number 1 2 3 4
Type F FIR RIF RIFIR
ratio 1 2/3 1 5/6
Maximum of
Q(f) (106 J/cm3/ 10.0 6.67 9.70 8.17
cycle)
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A posteriori we see that the shielded volume is the parameter that mainly impacts the coupling losses
: the order of the ratios of Table 4 is consistent with the relative positions of the curves.

In summary, the results of our study have shown that when designing a composite, if the factor of
merit includes the coupling losses, it would be better to minimize the radius on which the outer edge
filaments are located.

Our study only considers coupling losses so the conclusions might differ when other parameters
(critical performances, ease of assembly at manufacturing stage, stability of the composite in self-field,
cost, etc...) are taken into account in the design requirements of a composite; these considerations could
lead to the choice of another type of composite (different from F/R) with respect to the design
constraints.

Since this section aims only at spotting the general trends among different options, we go into a
more quantitative approach by studying a particular design in the following section.

I1.4.3  Study on JT-60SA TF strand

In this section we will present a detailed study of the electromagnetic behavior of the strand to be
integrated into the Toroidal Field Coil of JT-60SA tokamak [39] when subject to a transverse time-
varying magnetic field. This strand is the KO06-01C and was manufactured by Furukawa.

As shown on Figure 11, this composite features a copper core surrounded by a filamentary zone
containing NbTi filaments embedded in a copper matrix. The filamentary zone is enclosed in a CuNi
barrier which is surrounded by a copper shell; this strand is thus of R/F/R/R type.

[1.4.3.1 Determination of the filament-to-matrix contact p, e, parameter

First of all, we have to determine the effective transverse resistivity of its filamentary zone (i.e. p;,).
In order to do so, we will use the coupling losses measurements that we have carried out on this strand
in the Speedy facility at CEA; they are presented in section 11.5.2.1 .

However, since we have not directly measured its effective resistivity, we have to express the
coupling losses of this strand as function of p., to be able to deduce its value.

The measurements were made for trapezoidal cycles consisting in a succession of rising ramps,
plateaus and falling ramps; we can then consider that the measurements were made in steady state regime
since the durations of the ramps and plateaus were long compared to the large time constant of the JT-
60SA TF strand (see section 11.5.2.1).

As a consequence we will derive the formula of coupling losses inside this strand for steady state
regime.

Since the strand is of R/F/R/R type, it features n = 4 layers and we therefore have 2n—1 =7
electric field coefficients to determine i.e. (Eo, ),_, _.-

The second layer being filamentary, we can use equation (37) for k = 2 which gives
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At r = R, there is an interface of resistive/filamentary type, according to equation (40) for k = 1
we can thus write

L, .
_Eol + EOZ = EBa

which reduces to

since E,, is always zero.
The ultimate layer of the composite is resistive, for n = 4 equation (43) indicates that
E08 = —E07
The filamentary/resistive interface located at r = R, leads, from equation (41) for k = 2, to

R3\* L, .
_(R_Z) E05+E06 :EBa

Finally since there is an interface between two resistive layers at r = R, we can use equation (39)
for k = 3 and the fact that E,, = —E_, to obtain

[ 1 (Ry\* (pe 1/(pe
EOSZ_(R_?,) (p_tj‘l'l E07+E _3_1 E08251E07

2 P,

1 /R, 2<pt > 1<pt
E =—(—) — E, +=—|—=2+1|E, =s,E
0% ~— 5 R, ot 0, 75 pr, 0g 2bo,

with
1[/R4\2
s =—[(—4’) <&+1>+1—&
2\R3 Pe, Pe,

1[/R,\?
G
2]\R3 Pt, Pt,

The combination of these expressions with the equation on E,_ and E,_ above gives

R,? L .
By =——2 PR
o7 s2R,” — s;Rs* 21 ¢
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We can now give the expressions of the (Eok)2<k<8 coefficients

L .
P g

.
EOZ :% a
E03 = 0
L .
E04 = EB(I
2
SlRZ lp .
E,. = 23
) 0s 2Ry — s1Rs2m ¢
2
SyR, L, .
E, = —B
O s,R,%2 — s R;% 21 °
5 - R,? Iy .
. s,R,2 — s R;% 21 °
—R,* 1, .
Ep,=—— 2 2p
Os 52R22—51R322T[ .

Using formula (112) we can express the instant power per unit volume of strand as

512Bs + 5,286 + B7 + B)R:*| (1, \* .

51 g ¢ 1Bt 52 Bt Br 4 bR () 2
2 2)2 27

(52R2 —51R3)

8
P(t) = Zﬁon,.z(t) =
j=2

]
For a trapezoidal magnetic cycle falling from B, to —B,, in a time of 2t, and rising again to B,,
after a plateau of duration T,,, we can calculate the coupling losses per unit volume of strand as
2
(51%Bs + 522Bs + B7 + Be)R:*| [ 1\ 4B
B2+ Ba + S ) P
(Ssz —S1R3 ) T

Ta

Tp+2tq

Q= fozraﬁ(t)dHfT

Q is therefore a linear function of 1/7, and can alternatively be written as

P(t)dt =

Q=a/tq
With the expression of 8, given by (113) for j = 2, we can now derive p,, as function of a
R22 - R12
Pt, = 5 3 3 ’
R2|a_(2m\" _ 5 _(51?Bs +52°B6 + B7 + BIR,
4 2\] ﬁZ 2 N2
4By, P (Ssz —s1R3 )

From the measurements (see section 11.5.2.1 ), we have determined
a=634x10°.m3.s

for a trapezoidal cycle with a B,,, of 3T.
The average magnetic field amplitude during the —3/+3T trapezoidal cycle being 1.5T, we have

set
Peu = 2278 X 107100, m
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which corresponds to the resistivity of copper with RRR = 100 at T = 4.2K and B = 1.5T.

The third layer of the composite is a cupronickel barrier of 13 wt% (weight percent) Ni; the
resistivity values of CuNi present in [32] has led us to

peuni = 1.730 X 10770.m

We now have the transverse resistivities needed to compute py,, i.e.

pr, = 2.278 x 1071°02.m
p, = 1.730 x 107702.m
pr, = 2.278 X 1071°0.m

The geometrical parameters of the KO06-01C JT-60SA TF strand are the following

{Rl =185 um
R, =327 um
R; =346 um
| Ry =405 um

l, =15mm

These information, combined with the measured value of a, has led us to
pr, = 2.096 X 1071°0.m
which is very close to the value of p¢,, i.e. to the values of p, and p,, .

From the formulae presented in the previous section, it is also possible to deduce p,e;, as function
of p¢,

e = Do 7o (1= 2Ap)pm — (1 + AF)ptz
ol = Pmlft e, — (L + A5)pm

For the considered composite, 7¢; = 9.5 um, A = 0.86 and p,, = p¢,, [39] . We therefore obtain

ppep = 2 X 107150.m?

11.4.3.2 Simulated Q vs f curve for JT-60SA TF strand

Knowing all the electrical and geometrical parameters of KO06-01C JT-60SA TF strand, we have
been able to instantly compute its Q vs f curve for B, = B,sin(2rft) with B, = 3T using CLASS
algorithm - which features analytical formula (127) - and the measurements made in the low frequency
region with CEA SPEEDY facility, i.e. with p,, = 2.096 x 107'% 2. m, see section 11.5.2.1 ; the curve
is displayed on Figure 28.
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Average losses Q per cycle per unit volume of strand
x 10° vs sinusoidal magnetic excitation frequency f
15 T \ \

Qot obtained with CLASS, strand has 2 time constants:

a, = 0.998 and T, = 17.0ms
ay = 0.002 and T, = 33.3ms
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Average losses per cycle
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Figure 28 : Simulated Q vs f curve for K006-01C JT-60SA TF composite and B, = B, sin(wt), B,, = 3T from
measurements made in the low frequency region with CEA SPEEDY facility (i.e. with p,, = 2.096 X 1071°0.m)

Since K006-01C JT-60SA TF composite features two interfaces between filamentary and resistive
zones (see Figure 11), it has two time constants. As shown on Figure 28, CLASS algorithm has obtained
the following time constants 7., and a; coefficients for the K0O06-01C JT-60SA TF composite with the
previous electrical and geometrical parameters:

T¢, = 17.0 ms with a; = 0.998
T¢, = 33.3 ms with a, = 0.002

This clearly indicates that even if the KO06-01C JT-60SA TF composite has two time constants, the
first one i.e. 7, = 17.0 ms is largely predominant. Indeed, its weighting in the losses is worth 99.8%
while the other one (., = 33.3 ms) only weights 0.2%. From this information we can readily deduce
that, for an average magnetic field of 1.5 T (+/- 3T cycles), the K006-01C JT-60SA TF composite
behaves as if it only had one time constant : this is due to the fact that here p;, ~ p, (see discussion in
section 11.3.2).

Note that the value of the average magnetic field seen by the composite is important because it has
an influence on the transverse resistivities of the different zones and thus can affect the values of the
time constants 7., and a; coefficients.

The results of CLASS algorithm on this specific case are consistent with the ones that would be
classically derived from the experimental losses. Indeed the composite is subject to +/- 3T trapezoidal
cycles whose ramps last 27, and whose plateaus last T,, (both 7, and T;, are greater than the largest time
constant of the strand), therefore the coupling losses per cycle per unit volume of strand Q can be
determined from (3) assuming that for most of the cycle B; = By, i.e.

Re\? | 2% nB;” Tp+2%a nzB,? Rp\? B,
Q= (—) f dt +f dt| = (—) — 41,
R 0 Ho Ty Ho R Ho
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Now, using the fact that n = 2 for cylindrical composites and that here Baz = (B,,/t4)? With B,,, =
3T, we can derive

~

(Rf)z 87B,,% 1

R Ho Ta

which can be expressed as
Q=a/t,

with

Y (&)2 81B,,”
R Ho

Therefore using a = 6.34 x 10°].m™3. s determined from measurements, we can deduce

R\’ UpQ
r:(—) 0 ~17.0ms
Ry) 8By

which is fully consistent with the results obtained with CLASS.

It is very important to understand that the case of the K006-01C JT-60SA TF composite is a specific
one. Indeed, although having two time constants, it here behaves exactly as if it had only one time
constant, but there is no guarantee that it will keep this behavior for any magnetic field amplitude.
Considering it a single time constant strand under any circumstances could lead to appreciable
discrepancies.

Erratum: In [40] and [41] we have presented the same application but the associated results at the
time of the publications were different than those discussed in the present manuscript; an error was made
on the determination of the effective transverse resistivity. Consequently, the discrepancy between the
single time constant approach and the CLASS algorithm has been significantly reduced on this particular
case (JT-60SA TF strand).

In order to highlight again the difference in behavior between single time constant strands and
multiple time constants ones, we have also computed another Q vs f curve assuming this composite had
an arbitrary but realistic p, e, value of

ppep = 6 X 107150, m?

This modification of the p,e; value also has an impact on the effective transverse resistivity of the
second zone which is now quite different from p,_, i.e.

pr, = 5.367 X 1071°0.m

The new Q vs f curve computed by CLASS (“Qtot”) is displayed on Figure 29. It is interesting to
note that it is no longer possible to see the KO06-01C JT-60SA TF strand as a single time constant
composite. Indeed the new values of time constants 7, and a; coefficients are :

T¢, = 8.3 mswitha, = 0.876
Tc, = 21.1ms with a, = 0.124

89



and here 7 is not as predominant as before (weight of 87.6%).

Average losses Q per cycle per unit volume of strand
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16 I I I L L T T T
— Qtot obtained with CLASS, strand has 2 time constants
g 14 > —a,"Q(r,)with e, =0.876 and t, =8.3 ms
E | | —a,"Q(r,) with @, = 0.124 and =, =21.1 ms
= 12 . S Q determined from slope, 1 = 9.9 ms
= ! I O Q determined from maximum, t = 8.9 ms
2210 B -
2.2 / K )
2 = f
33 8 f R .
C o e
2 B T
% 6 T .
&5 L1 T ——
5 4 N ]
® I
o I
z 2 i .
I
0 | | 1 1 | | | | | [ I
0 10 20 30 40 50 60 70 80 90 100

Frequency (Hz)

Figure 29 : Simulated Q vs f curve for K006-01C JT-60SA TF composite and B, = B),sin(wt), B, = 3T with
prep = 6 X 107150.m? and thus p,, = 5.367 x 1071°0.m

In order to visualize the error made considering a two time constant strand as a single time constant
one, we have plotted two additional Q vs f curves on Figure 29. The first one “Q determined from slope”
is computed assuming the strand has only one time constant : the value of the time constant is determined
from the behavior of “Qtot” in the low frequency linear region (i.e. in the steady state region). The
second one “Q determined from maximum” is computed assuming the strand has only one time constant
: the value of the time constant is determined from the location of the maximum of “Qtot” (i.e. when
wt =1).

11.4.3.3 2D cartographies of main physical quantities for JT-60SA TF strand

With the knowledge of the electrical and geometrical parameters of a strand, it is also possible to
simulate its time response to any magnetic signal and to produce detailed cartographies of all the
physical quantities inherent to this strand in a very short computation time using CLASS algorithm
issued from our analytical modeling.

Indeed, after the numerical solve of the matrix equation of the system (72), equations (103) to (111)
are used to compute the time dependent solutions of the screening currents and of the spatial average o