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I.  Introduction 
 

I.1 General context 

 

In a worldwide context where energy production and exchange take more and more place into the 

human activity, new sources of energy are continuously under investigation within the global research 

field, first under the purely scientific aspect, then gradually entering into the field of industrial mass 

production to become available to a maximum of users.  

In this environment, aside to the conventional energy sources (coal, oil and fission for the most 

active ones) and among the new means of energy production (e.g. photovoltaic), the concept of power 

generation issued from fusion physical mechanism has emerged during the 1950’s as a possible 

component of a future energy mix. The fusion use for civil energy production purpose is intended to be 

established through the exploitation of plasma magnetic confinement and principally aims at developing 

the tokamak-type installations.  

The tokamak approach bears two main advantages: relying on quasi-infinite resources on earth 

(derived from hydrogen fueling for plasma) and carrying marginal risks of uncontrolled and accidental 

dissemination endangering populations (derived from spontaneous plasma extinction tendency).  

On the other hand substantial challenges remain ahead and should also be considered in the tokamak 

strategy. Indeed the control of fusion plasma burning requires high level of technicality and experience 

given the high number of parameters to be mastered to reach steady-state regimes plasma. 

Among these critical components is the magnetic system, keystone of the plasma control (see details 

below). Since several decades the international community has installed and operated many fusion 

installations throughout the world, mainly tokamaks such as TFR (FR), Tore Supra/WEST (FR), 

FT (IT),  ASDEX (DE), TEXTOR (DE), COMPASS (CZ), MAST (UK), JET (UK), TCV (CH), Alcator 

(US), PLT (US), DIII-D (US), TFTR (US), T3 (RU), T10 (RU), SST1 (IN), EAST (CN), KSTAR (KR) 

but also other type of machines like stellarators such as ST (US), W7-X (DE) or heliotrons such as LHD 

(JP). Some of those tokamaks are shown in Figure 1. 

 

 
  

Figure 1 : Images of some major tokamaks. Left: JET -- Middle: Tore Supra/West – right: EAST  

The above list includes tokamaks currently in operation; most of them have mainly scientific scopes 

dedicated to a broad range of thematics, from plasma physics experiments to sub-components 

development (first wall, divertor, diagnostics, heating sources, current drive etc…).  

The next generation of tokamaks is more and more oriented on the demonstration of energy 

production capacities: 

 

 JT-60SA will be operated in Japan around 2020 and is substantially devoted to investigations on 

long plasma pulses relevant to future fusion reactor (DEMO) 

 ITER will be operated in France around 2025 and is principally oriented towards demonstrating 

the operability of long pulses of D-T nuclear plasma  

 

Those two large tokamaks are illustrated in Figure 2. 
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Figure 2 : Left: JT-60SA – right: ITER 

The magnet system being a key component of a tokamak it is important to ensure its reliability 

during operation and therefore to consolidate the best technical and scientific knowledge on it. Another 

noticeable point to be considered is that magnet system is a major cost driver for the whole tokamak 

(about 1/3 of construction investment) and that knowledge mastering is also a component of machine 

merit in this regard. 

 

I.2 Fusion and tokamak  

 

While fission is based on the principle of heavy nuclei splitting into smaller nuclei, fusion is based 

on the merging of two light nuclei into a heavier one. 

 

 

 
Figure 3 : Left: fission reaction – right: fusion reaction 

Both reactions result into creation of energy through a neutron generation, and are therefore 

compatible with energy production strategy.  

While in fission the reaction is self-generated by chain reaction, in the case of fusion the reaction is 

not self-maintained as demanding conditions must be established and sustained to allow the fusion 

between the two nuclei. As an example the coulomb repulsion barrier must be overpassed to allow the 

particles to interact, in a medium where density and temperature must therefore be sufficiently high to 

trigger the reaction. Typically the order of magnitude of the plasma core temperature in its reaction state 

is about hundred millions of Kelvin. 

The fusion reaction is usually based on Deuterium and Tritium atoms, which are the most facilitating 

components for the reaction. The most common fusion reactions producing neutrons are  

 
2D + 3T → n (14.03MeV) + 4He(3.56MeV) 
2D + 2D → n (2.45MeV) + 3He(0.82MeV) 
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In order to allow continuous burn regime, these reactions must be triggered and confined in a closed 

volume. 

We focus here on the specific closed volume formed in a tokamak configuration. The principle of 

tokamak was first established in Russia [1] (tokamak being issued from acronym TOroidal naya KAmera 

MAgnitnaya Katushka or toroidal chamber with magnetic coil) and relies on a torus-shaped plasma 

confined by a discrete number of coils enclosing it, called Toroidal Field coils or TF coils (see Figure 

4). With this configuration, the charged particles moving along those toroidal lines would be subject to 

a drift due to a magnetic field gradient, and would not finally be confined, preventing the configuration 

from generating a stable equilibrium. To cancel this effect, the plasma drives a current which adds a 

poloidal component to the toroidal magnetic field, resulting in helical lines (see Figure 4) that cancel the 

gradient effect: particles are confined and their trajectories explore both high and low field zones.   

The plasma current is induced by transformer effect through the coupling between inner coils 

(further called in our work Central Solenoid or CS system, visible in Figure 4): the current variation in 

CS generates by mutual induction a current in the plasma. This current creates the above-mentioned 

poloidal field component and heats the plasma by Joule effect. The later effect is not sufficient to reach 

the reaction temperature but contributes to it; it has to be assisted by additional heating systems (e.g. 

electromagnetic antennas). Once established, the plasma current is maintained by induction with CS. 

The described TF and CS systems are further complemented by the system of Poloidal Field (PF) 

coils which are located on the edge of the TF outer envelope (see Figure 4) and which drive the plasma 

control by imposing, at each moment of the scenario, the most appropriate plasma magnetic field 

configuration to maintain the plasma stability. As an example of the PF coils roles, the uppermost PF 

coil is mainly devoted to plasma initiation (start of plasma expansion). 

 

 
Figure 4 : General magnetic field configuration of a tokamak. The purely toroidal field lines (green) and the twisted field 

lines (yellow) derived from combination with plasma self-field, are shown. Toroidal Field Coils and Poloidal Field Coils are 
also shown. Here CS and PF systems are respectively figured by “inner poloidal magnetic field coils”  

and “outer poloidal magnetic field coils” 

We have already stressed at this stage that, among the three systems presented, CS and PF ones are 

pulsed (i.e. they generate a time varying magnetic field). Since these two systems are major drivers 

regarding the plasma burn duration and stability (which are crucial for the operation reliability), it is 

important to note that the robustness of the pulsed magnet system must be ensured in a tokamak. This 

is a point supporting the rationale of our research work. 

 

I.3 Superconductivity 

 

The superconductivity aspect is a major characteristic of fusion magnets since the ultimate goal of 

a tokamak is to produce a net electric power; the “balance of plant” aspect is then of central importance. 

In an illustrative approach, the plasma magnetic field (which drives fusion power) being of substantial 

amplitude (order of few teslas) and being established in large volumes (e.g. 840 m3 for ITER), the energy 



12 

 

stored in magnet system is expected to be high. If the magnets were resistive, the electrical power needed 

to energize them and maintain this configuration would be so high that the global power balance would 

become negative and therefore hopeless for any economic model. 

Superconducting technology is consequently unavoidable in the large scale fusion electricity 

endeavor and should therefore be considered as a key component for technical and scientific knowledge 

mastering.  

The basic principles of superconductivity are described below together with the particularities 

attached to the fusion technology. 

 

Superconductivity is characterized by the two main properties of the material when in 

superconducting state: 

1. The zero value of its resistivity inside its volume.  

2. The zero value of the magnetic field inside its volume (Meissner effect). 

 

The property evoked at first point (zero resistivity) derives from a specific interaction between 

electrons and the crystalline network, resulting into a perturbation of their wave function that allows 

electron pairing and further on their mobility into the crystalline network without interaction with this 

latter (no collision between them i.e. no Joule effect). We will not enter into details of these 

considerations that are out of the scope of this work, but as an example the BCS theory [2] well describes 

the physics underlying this phenomenon.  

Note that the present resistive property is not absolute as in reality the superconducting state is valid 

in a domain limited by upper values of three driving parameters: the temperature, the magnetic field and 

the current density. An example of superconducting state operational domain limits is illustrated in 

Figure 5. 

 
Figure 5 : Critical surface for NbTi material (see [3]). The absolute B and T limit parameters  

(critical field and critical temperature) are shown in red. 

These considerations on limits will not be considered in the present work as attached to the current 

transport properties in DC regimes, while our scope is to deal with currents induced in AC regimes. 

However it should be kept in mind that in transient conditions the critical properties are the main drivers 

for anticipating the stability limits in given conditions. As a matter of fact the AC shielding phenomena 

will induce local variations of the three above-mentioned parameters and therefore impose (B, T, J) 

excursions possibly out of the critical surface.  

In addition, the property evoked at second point (full expulsion of magnetic field, i.e. Meissner 

effect) will not be considered in our work since large magnets are using type-II superconductors which 

are in their mixed state during operation (state in which the Meissner effect does not apply anymore). 

We will nevertheless consider that our material is always in superconducting state regarding its 

resistivity. 
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Furthermore, a point should be made clear: since the supercurrents that shield the superconductor 

from any magnetic field – i.e. corresponding to the Meissner effect – will not be considered in our work, 

we will exclusively use the expressions “screening currents” or “shielding currents” throughout the 

present manuscript to designate the currents induced by a magnetic field variation – i.e. corresponding 

to Lenz’s law. 
 

In our work the application of superconductivity principles will be implemented in the specific 

environment of fusion magnets, which embeds specific technology and faces specific operational loads; 

both will be subject of the next section. 

 

I.4 Fusion magnets: Tokamak operation context and CICC technology  

 

As previously mentioned the magnet system is a major component of a tokamak and therefore was 

subject to continuous R&D programs aiming at establishing the most adapted design for the present but 

also future tokamaks. Since the way to power production requires large tokamaks (fusion power 

exponentially increases with size) the projection lies in heavily energized magnets, i.e. carrying high 

currents and subject to high mechanical constraints. 

As an illustration to the context where the work takes place, we here describe more features on ITER 

project. ITER (acronym standing for International Tokamak Experimental Reactor) will be the largest 

tokamak ever built and will be operated at St Paul-lez-Durance near CEA site in France. The reactor 

will be built and operated in the framework of an international collaboration which has also been 

involved since several decades in the fusion research program related to all components of a tokamak, 

including magnets. 

The main scope of ITER is to ultimately demonstrate a maintained combustion of a deuterium-

tritium plasma over long durations (typically 1000 seconds) and with a net fusion power balance gain 

(the ratio between extracted and injected energy) situated between 5 and 10.  

ITER will be the first machine including and operating the major technologies requested for the 

exploitation of a commercial fusion reactor: superconductivity, plasma-facing components, tritium 

breeding components, robotics maintenance and diagnostics.  

 

An illustration of this tokamak can be seen in Figure 6. 

 

 
Figure 6 : ITER tokamak 3D cut view. TF, CS and PF magnet systems are indicated.  

Three PF coils out of the six are pointed by arrows. Human scale at bottom right figures the machine size. 

PF

TF
CS
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The ITER magnet system conductors are based on a specific technology: the Cable-In-Conduit 

Conductor or CICC. This technology is particularly adapted to the main constraints faced by ITER 

magnets: high currents injected, high magnetic field on conductors and therefore large mechanical loads 

on conductors. 

 

The CICC concept main features are: 

 

 A cable made up of a large number of strands twisted in multiple stages. The strands can be of 

different natures (superconducting versus copper) and with different sizes (diameter). A lot of 

combinations of patterns can be included at each stage (bundles with different number of strands 

twisted together). 

 

 Some stages can be wrapped into thin metallic sheets to ensure their compaction and increase the 

inter-stage resistance. 

 

 Cooling channels can be inserted into the cable usually under the form of spirals or tubes. Their 

role is, when hydraulic lengths are important, to relieve the pressure drop while still keeping the 

cable cooling capacity. 

 

 An external thick metallic jacket into which the cable is drawn. The role of this jacket is to confine 

the coolant (helium), ensuring a forced circulation and therefore a more efficient wetting of the 

superconducting strands. But the jacket mainly serves as structural material for absorbing the high 

mechanical efforts developed in the coil. It avoids the cable plasticization and the need for delicate 

technologies such as reinforced strands. On the other hand the external jacket eases the insulation 

integration into the winding, and knowing that ITER coils can experience high voltages during 

currents discharge, this point is also beneficial. 

 

An illustration of typical ITER CICCs is shown in Figure 7. 

 

 
Figure 7 : Two ITER CICC illustrations: (left) view of CS conductor, round cable in square jacket;  

(right) exploded view of TF Model Coil [4] cable, with wrapped petals and central spiral 

 

The smallest integrated element of the CICC is the superconducting strand. The strand provided for 

fusion is of composite type, i.e. it is composed of a mix of different metallic alloys integrated with the 

superconducting material. The metallic part acts as thermal stabilizer, mechanical embedding matrix 

and possible support for surface treatment (coating). 
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The two categories of superconducting material located in the strands are: 

 

 The NbTi, alloy composed of Niobium and Titanium, bears the advantage of being insensitive to 

mechanical strain, and thus is quite adapted for any forming step (twisting, bending etc…) in the 

magnet manufacturing. The NbTi can be used up to magnetic field of about 11T at temperature 

of 1.8 K (superfluid helium). 

 The Nb3Sn, alloy composed of Niobium and Tin, can be operated at much higher fields (about 25 

T at 4.2 K) and therefore is unavoidable for projects with such requirements (large tokamaks). 

This material is obtained after a specific heat treatment that triggers the chemical formation of a 

superconducting phase. The drawback of this material is that, after heat treatment, it bears a 

sensitivity to mechanical deformation, that directly impacts (reversibly but at a certain point 

irreversibly) the critical performances. It should therefore in most cases be formed before the heat 

treatment (always before cabling and mostly before forming) and consequently can require large 

ovens. The complexity of the fabrication process and the demanding QA steps result in a much 

higher price of Nb3Sn compared to NbTi. 

 

In all strands the superconducting material is embedded into a metallic matrix, mostly composed of 

copper, whose role is to stabilize the superconductor against local perturbations thanks to its heat 

absorption capacity. In case of quench, it allows to temporarily delay the discharge of the energy stored 

in the magnet (thanks to the current deviation from superconductor to copper) until the external 

protection circuit is activated. Finally, it allows a good conduction from coolant to superconducting 

material and therefore further contributes to its stability. Other metals can also be integrated, serving as 

resistive barrier or anti-diffusion barrier.  

 

Some views of superconducting strands are shown in Figure 8. 

 

    
Figure 8 : Different types of superconducting strands for fusion magnets.  

From left to right: ITER Nb3Sn internal tin type; ITER Nb3Sn bronze route type; ITER NbTi; JT-60SA NbTi 

 

As an example of selected superconducting material, in ITER project the TF and CS coils 

experiencing about 12-13 T, the Nb3Sn is chosen. Conversely, the PF coils experiencing about 5-6 T, 

the NbTi is selected. For JT-60SA project, since the TF system maximum field is about 6 T, NbTi is 

used. 

 

The strand integration into a CICC follows a specific cabling process: strands are twisted into 

multiplets (e.g. triplet, including 3 strands), then multiplets are twisted, forming the second stage bundle, 

next, the second stage bundles are twisted, forming the third stage bundle, and so on. Following this 

process the cable may contain any number of stages (e.g. 5 stages for ITER). An illustration of cable 

manufacturing steps can be seen in Figure 9. 
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Figure 9 : Examples of successive cabling stages for ITER CICC. Note the addition of wrappings at the 4th stage 

 

Apart from ITER and JT-60SA, the CICC technology has already been integrated in several other 

tokamaks such as EAST (CN) and KSTAR (KR) and other fusion installations such as W7-X (DE) [5] 

and LHD (JP) [6]. The tokamak JT-60SA (which stands for “Japanese Tokamak 60 Super Advanced”), 

which will shortly be operational, also uses CICC technology (see [7]). 

Although the CICC technology has been developed for many years in accordance with the fusion 

magnet needs, it still presents risks which are intrinsic to any superconducting magnet: the appearance 

of instability possibly leading to a quench, i.e. the rapid transition from superconducting state to resistive 

state of the whole cable. Given the high values of energy stored in the magnets, the release of this energy 

remains a serious issue as it can irreversibly induce degradations and lead to underperforming magnets. 

Going more in depth into those sources of instabilities while in tokamak operation context, the 

CICCs can be subject to various load prone to trigger transitions from superconducting to resistive state.  

 

They can be of diverse nature:  

 increase of current density (J), that can be due to an uneven distribution of currents inside the 

cable (e.g. bad connections quality). 

 increase of temperature, that can be caused by an external heating source (e.g. thermal shield 

failure, vacuum loss) or internal one (e.g. current partially entering resistive part of 

superconducting strand). 

 increase of magnetic field, that can be caused by e.g. uneven current distribution leading to local 

field inhomogeneities. 

 decrease of critical properties, that can be due to local damage of superconductor bulk (e.g. caused 

by superconductor filament fracture due to mechanical load). 

 

In the present work we pay attention to specific instability sources: those coming from the pulsed 

variations of magnetic field, leading to the establishment of shielding currents in the CICC, triggering 

both local heating sources and local current density increase. 

As a matter of fact, in order to ensure a stable plasma regime, the tokamak operation requires rapid 

variations of current in the CS and PF systems. As an example, the typical variations of CS and PF are 

illustrated in Figure 10. 
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Figure 10 : Examples of ITER transient current variations in CS (left) and PF (right) system. 

The data refer to ITER baseline 15 MA scenario. 

These rapid current variations (and thus those of magnetic field on conductor) being requested to 

ensure the tokamak operation (e.g. CS breakdown step necessary to initiate the plasma before ramping 

its current up), it is of high importance to assess that they do not systematically induce conductor 

instabilities as this would lead to an inoperable tokamak. 

It is clearly seen here that the mastering of knowledge about the evaluation of consequences issued 

from the shielding current and their associated heat loads, stands as an important point regarding the 

establishment of a secured fusion magnet design. 

 

I.5 Thesis content and associated strategy  

 

During the above-mentioned transient field variations the shielding currents trigger both local 

heating sources (called AC losses) and local over-currents, impacting the stability limit of the conductor. 

In our work we consider the only AC losses due to shielding currents flowing in the resistive part, that 

are called coupling losses. However when CICCs are considered, the ab-initio evaluation of those 

coupling losses is extremely difficult as it combines multiple sources of complexity: 

 

 the coupling currents flow along the strands, but strands trajectories in CICC are difficult to know 

since the combination of twisting stages and cable compaction makes it almost unpredictable 

 

 the shielding currents redistribute in the volume by crossing between strands and therefore 

establish inhomogeneous current 3D distribution in a medium whose discontinuous nature adds 

difficulties for representing the shielding effect 

 

 the coupling currents locally heat and deposit their power through their path inside strands and 

across resistive connections between strands. These resistive paths being highly dependent on the 

inter-strand contact physics, which is non-linear and hardly known, severe difficulties are 

encountered for developing a model 

 

The possible approaches for representing this behavior are of two types: analytical or numerical. 

Fusion community has attempted to address the item through both ways:  

 

 On one side the numerical approach consists in representing, in the more relevant way possible, 

the 3D strands (or bundle of strands) network, figuring then its resistive (strands intersections) 

and inductive (strands mutual coupling) components. The basic equilibrium equations (Maxwell 

equations) are then applied to define at any moment the current in any part of the network. 

Summing up the local heat loads one can then deduce the thermal perturbation imposed to the 
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conductor and can attempt to determine the distance to unstable regimes. The advantage of this 

approach is that it can be conducted down to the smallest scale, leading to a diagnostic considering 

the smallest local effects. Furthermore a predictive approach can be attempted since any design 

can in principle be treated. On the other hand difficulties are also present with this approach, for 

instance the challenge of relevance when representing a complex system containing a large 

number of interacting elementary units, or for large size magnets, the heavy model setting process 

and the demanding CPU time for calculations. In the fusion community EU working groups are 

involved in such approach, for example using the THELMA [8] or JackPot [9] codes (see further 

in the document). 

 

 On the other side the analytical approach is relying on the representation of heat load by analytical 

expressions, dependent on conductor characteristics (e.g. cable time constant, see further) and on 

the magnetic field variation. The usual approach (the “single time constant” approach) consists in 

a simplification of the conductor shielding effect using analogies with classical models of 

transient behavior of superconducting composites. Indeed, in this approach, a single time 

constant, which is the parameter used to classically characterize the coupling losses at strand scale 

(see reference books [10], [11]), is used to represent the coupling losses at conductor scale. The 

single time constant approach then assumes that, although bearing substantial topologic 

differences, the conductor behaves similarly as a strand. The large majority of analyses on AC 

losses at the conductor scale follows this method ([12]-[16]). In addition, two models deviate 

from this “strand-like” analogy. A heuristic one, called MPAS [17], considers that the coupling 

between the different cabling stages can be represented with several weighted time constants: its 

ability to represent the experimental reality has been established, but it is not a predictive model 

as the time constants it considers have to be determined from AC losses measurements at different 

frequencies. The other one [18] provides analytical formulae of coupling currents and losses 

inside conductors from its electrical and geometrical features: it is then a predictive model, but it 

does not take the coupling between the induced currents into account, and therefore its validity 

domain is restricted to slowly time varying magnetic fields. The advantage of these analytical 

models lies in their high versatility of integration into simulation tools (e.g. thermo-hydraulic 

codes); they also consume low CPU resources and thus allow a broad variety of explorations (e.g. 

different magnetic field variations for MPAS). On the other hand their associated drawback is the 

macroscopic nature of their parameters and thus their strong dependence on experimental curves 

(AC losses energy per cycle versus frequency); as a result, their capacity of prediction is strongly 

limited for cable designs other than already existing ones (except for [18], but whose domain of 

prediction is restricted to slowly time varying magnetic fields). 

 

The advantages and disadvantages of the already existing approaches are summarized in Table 1. In 

this table, we have divided the existing approaches in three main categories: analytical, heuristic and 

numerical. The analytical and heuristic approaches are both based on the use of analytical expressions 

but our distinction between them lies in their origins. Indeed, we consider as analytical the approaches 

that have been derived from electromagnetic equations while we consider as heuristic the ones that have 

been derived from observations of experimental results and/or from the extension of an existing 

analytical modeling outside of its initial frame. In addition, for better readability of the table, we have 

chosen to make use of the plus signs to provide a nuanced appreciation of the accuracy of the results 

obtained by the different methods. 
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As an example, the first line of Table 1 indicates that the Multistage cable model [18] 

 

 has been derived from electromagnetic equations  

 can predict the coupling losses of a CICC from measurements of its electrical and geometrical 

parameters and well matches the experimental results 

 requires very light computation given its analytical and explicit nature 

 provides relatively detailed information on the induced coupling currents 

 but is not valid for every magnetic regimes encountered in tokamaks (here, the model is not 

valid for fast transient magnetic regimes) 

 

 

Table 1 

 

Valid for every 
magnetic 

regimes in 
tokamaks 

Prediction of 
losses from 
measured 

features of CICC 

Light 
computing 

time 

Information 
on coupling 

currents 

Analytical approach 
Multistage cable 

model (CEA)  ++ +++ ++ 
Heuristic approach 

«𝒏𝝉» approach 
(most common) 
one time constant   +++  

MPAS model 
(CEA, used at ITER)  
several time constants   +++  

Numerical approach 
THELMA code 
(University of 
Bologna, IT) 

 +++  +++ 

JackPot code 
(University of 
Twente, NL) 

 +++  +++ 
 

Our objective  + ++ + 

 

The purpose of the present work is to develop a model that would somehow stand between [17] and 

[18], thus trying to initiate a bridge between both approaches while remaining at the same time in the 

analytical approach category.  

 

The key point of our strategy is to keep using analytical tools to establish a CICC coupling losses 

model, but which deviates from the single time constant approach and from the MPAS model since we 

consider the CICC electrical and geometrical features as departure point instead of the experimental AC 
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losses results. Our strategy is then similar to that of [18], except that our intention is to establish models 

whose domain of validity is the largest possible, i.e. we aim at covering all possible transient regimes 

regardless of their dynamics with respect to the system time constants (see Table 1). This is an important 

objective as we will try to represent the magnetic shielding effects of a cable in tokamak configuration, 

thus subject to a broad variety of magnetic field regimes (see section I.4 ). 

To achieve this aim, our progress strategy is based on a scale by scale approach: 

 

 First step is conducted at the smallest elementary unit bearing coupling losses: the strand. At 

strand scale, a generalization of the analytical coupling model is conducted, also standing as 

a toolbox for the larger scales. 

 

 Second step is carried out at cable stage, but with the simplest description of a cable, i.e. an 

assembly of single bundles. Here too the generalization to any transient regime is targeted. 

This step as single stage scale also stands as toolbox for the next step. 

 

 Third step is still located at cable stage but integrates an additional geometrical complexity, 

i.e. it considers two cabling stages with independent twist pitches. This step allows the 

improvement of the relevance of the modeling, considering a second degree of detail in the 

cable architecture. 

 

Along the progress across those different steps, continuous confrontation will be carried out between 

the results of our analytical approach and those of previously developed models, i.e. the ones presented 

in Table 1. In addition, throughout this manuscript we have chosen to include the demonstrations leading 

to our analytical results since our methodology differs from the ones used in the previous models. Our 

objective is thus not only to present our analytical results, but also to share the methodology that has led 

us to them. 

 

Nevertheless, being aware that these complex and long analytical demonstrations can make the 

reader lose the thread of the work presented in this manuscript, their objective and location will be 

presented schematically in the “methodology” section of each scale (strand, single stage and two cabling 

stages). In order to further enhance the readability of this document, the objective will be recalled to the 

reader at the beginning of each demonstration. 
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II.  Superconducting composites 
 

Content:   This part is dedicated to the presentation of a general analytical modeling of coupling losses 

in superconducting composites and its associated algorithm. Experimental work (AC losses 

measurements) on strands is also presented as well as comparisons with other analytical 

models. 

Associated publications:  

 A. Louzguiti, L. Zani, D. Ciazynski, B. Turck, F. Topin, Development of an Analytical-Oriented 

Extensive Model for AC Coupling Losses in Multilayer Superconducting Composite, I.E.E.E. Trans. 

on App. Superconductivity, Vol. 26, April 2016, Art. No. 4700905. (reference [40]) 

 A. Louzguiti, L. Zani, D. Ciazynski, B. Turck, F. Topin, Modélisation analytique de la puissance 

thermique générée par les courants de couplage à l’intérieur d’un composite supraconducteur, 

Actes du Congrès de la Société Française de Thermique (SFT), Mars 2017, 8 p. (reference [41]) 

 

II.1 Presentation 

 

II.1.1  Architecture 

 

Superconducting composites are majorly encountered in conductors of large superconducting 

magnets which are needed in tokamaks or particle accelerators. Although their average diameter is less 

than a millimeter, they present a specific and quite complex layout. 

Composites are cylindrical and made of several superconducting filaments (from a few dozens to 

several thousands) whose diameter lies in the range of a dozen of microns; these filaments are lightly 

twisted (usually with a twist pitch lying in the 15-25 mm range) and are located in what is known as the 

filamentary zone of the composite. In this filamentary zone, we also find a metallic - thus resistive - 

matrix which fills every space between the filaments. 

 

Figure 11 : Detailed architecture of a JT-60SA TF conductor strand (0.81 mm diameter) 
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In addition to the filamentary zone, composites may also feature a copper core and multiple external 

resistive layers. The layer located just after the filamentary zone is often called “resistive barrier” as it 

consists of a more resistive material (e.g. CuNi); its role is to reduce both the intrastrand and interstrand 

coupling losses [19]. The most outer one(s) are again made of copper. All these layers are visible on 

Figure 11 and Figure 12. 

Filamentary zones of Nb3Sn composites appear to be slightly different from the ones of NbTi 

composites as the filaments are gathered in bundles (see Figure 12) instead of being uniformly spread 

over the zone; this is due to their different fabrication process. 

 

Figure 12 : Examples of different designs of NbTi (above) and Nb3Sn (below) superconducting composite 

The need for these specific types of architectures essentially arises from the necessity to protect the 

composites against stability issues. 

Indeed, instabilities occur when the local temperature in the superconductor exceeds its critical 

value; the local increase of temperature can be caused by hysteresis losses. Therefore, in order to 

enhance the protection of the superconductor against instabilities, it is recommended to subdivide the 

superconductor into several small filaments instead of having one large filament for at least two reasons: 

 the hysteresis losses per unit volume of superconductor increase with the filament diameter [10]; 

therefore the total losses and associated heat are smaller when the superconductor is divided into 

several small filaments  

 for a given volume of superconductor, the total exchange surface – and thus the cooling – is 

enhanced if the total volume is divided into several small volumes 

Furthermore, the omnipresence of copper inside superconducting composites is needed for several 

reasons. Indeed, thanks to its very good thermal and electrical conductivity, it enhances the stability of 

the composite by: 

 tentatively providing another path for the transport current in case of a local transition; this other 

path is less resistive than the superconductor in its normal state and thus corresponds to a lower 
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local Joule heating. The superconducting filament may then have enough time to cool down and 

recover its superconducting state.  

 improving the cooling effect provided by the refrigerating fluid because its thermal conductivity 

is higher than that of superconductors 

Finally, twisting the filaments is an efficient way to reduce the intrastrand coupling losses since the 

magnetic flux they enclose cancels out every twist pitch; this prevents then the appearance of very strong 

current loops that would exceed the critical current of the filament and generate very strong ohmic losses 

at the ends of the composite when subject to an external time varying magnetic field. 

 

II.1.2  State of the art on coupling losses modeling at composite scale 

 

Before presenting a synthetic historical review and discussion of the previous work accomplished 

on the coupling losses issue at strand scale, we will provide a brief reminder of the different losses 

generated inside superconducting composites under magnetic AC regimes. 

When multifilamentary strands are subject to a time-varying external magnetic field, they develop 

currents in specific zones to shield themselves from this magnetic variation following Lenz’s law. The 

induced currents are flowing through the different materials present in the composite and are due to 

magnetic shielding at different scales: 

 The superconducting filament develops its own peripheral currents to shield itself from any 

magnetic variation; the local critical current density Jc is then temporarily outreached in the outer 

region of the filament which enters into the flux flow regime and thus develops a local resistivity. 

The excess current density (difference between the local current density and Jc) will decay 

because of the local resistivity, and the magnetic variation will penetrate deeper into the filament 

leading also to the penetration of screening currents. Once the local current density has fallen to 

the local Jc, it persists indefinitely because of the zero resistivity of the superconductor and the 

filament develops then persistent magnetization currents. The total ohmic losses generated during 

the transient flux flow regime correspond to the “hysteresis losses” 

 The filamentary zone (containing a large number of superconducting filaments embedded in a 

resistive matrix) develops a supercurrent flowing in its outer edge filaments to shield its enclosed 

volume. This supercurrent will loop back by crossing the resistive matrix and the resistive layers 

of the composite : this will generate the so-called “coupling losses” 

 All the copper present throughout the composite also participates in the magnetic shielding of the 

whole composite by carrying other screening currents classically known as eddy currents whose 

associated ohmic heating are simply named the “eddy currents losses” 

 As described in the previous section, each of these currents directly threatens the superconductor 

with a transition into its normal state (flux jump) : first, because of the creation of local heat sources 

inside (hysteresis losses) and outside (coupling and eddy currents losses) the superconductor, secondly 

because the induced currents (magnetization and coupling currents) will cumulate with any current 

already carried by the filament (transport current), thus creating another local heat source if the 

superconductor enters transitorily into the flux flow regime. 

AC losses therefore play a major role in the composite stability, for this reason they have been deeply 

investigated since the 70’s ([20]-[37]). 
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A complete study both theoretical and experimental [20] has provided an important insight of the 

behavior of superconducting composites with respect to an external time-varying magnetic field. The 

derivation of the magnetization of the composite due to currents shielding the superconductor (i.e. 

magnetization currents) and shielding the entire composite (i.e. coupling currents) is shown together 

with the calculation of their associated losses: hysteresis losses and an approximation for the coupling 

losses for composites in coil configuration. The experimental results are in reasonable agreement with 

the developed theory. 

In the same time period, Morgan [21] has improved the coupling losses modeling by giving the 

complete time-dependent equation of a system composed of two filaments embedded in a copper matrix. 

For a composite containing a large number of filaments, as it is usually the case, the two-filament 

approach seems inappropriate and is then replaced by a macroscopic model considering a supercurrent 

flowing through outer edge filaments and looping back across the resistive matrix. The supercurrent is 

supposed to have a cosine distribution in the cross section of the composite, i.e. of the form 𝐾 =

𝐾0cos(𝜃) with 𝜃 the radial angle and 𝐾0 the amplitude of the current per unit length; this distribution is 

legitimated by the fact that it will produce an internal uniform magnetic field in the opposite direction 

of the applied field. The value of 𝐾0 is then given as a function of the time-variation of the external 

magnetic field 𝐵𝑎 when the supercurrent is not time varying, i.e. when �̇�0 = 0 (the overdot notation 

refers to the time derivative). The external or applied magnetic field 𝐵𝑎 is defined as the magnetic field 

that would exist in the volume of the composite if the composite was removed (or if any shielding effect 

occurring inside the composite was omitted). 

Following this work, Carr [22] and Ries [23] have pushed the modeling of coupling losses one step 

further by providing the macroscopic behavior of a composite composed of a central filamentary zone 

and a copper sheath subject to a transverse magnetic field for any time regime. Even though they have 

derived it with two different approaches, the same homogeneous representation of the filamentary zone 

is used. In his studies, Carr has summarized the electrical properties of the composite in an effective 

transverse conductivity for which he has given approximate formulae for the two extreme values of the 

filament-to-matrix contact resistance [24]. This method provides an efficient way to calculate the 

coupling currents across the resistive matrix and offers then the possibility to represent the response of 

the composite at its scale instead of the filament one. His treatment refers to the shielding accomplished 

by classical resistive conductors together with considerations on the frequency domain of the applied 

magnetic field and the associated skin depths while the alternative approach provided by Ries makes 

use of the effective transverse conductivity to promptly derive the relation verified by the internal 

magnetic field; we will thus here discuss the outcomes of the latter one. 

For the sake of simplicity, the notation F will refer to a composite consisting in a filamentary zone 

only, F/R to composite with a filamentary zone and an outer resistive layer, F/R/R to a composite with 

a filamentary zone and two outer resistive layers and so on. For example, all composites present on 

Figure 12 are represented by F/R/R as they are composed of - starting from their center - a filamentary 

zone, an outer resistive barrier and a copper layer and the layout of the JT-60SA composite on Figure 

11 will then be referred to as R/F/R/R (copper core, filamentary zone, resistive barrier and outer copper 

layer). 

For a composite composed of a central filamentary zone only (F) or with an outer copper layer (F/R), 

the induction 𝐵𝑖 inside the filamentary zone is governed by the first-order differential equation 

𝐵𝑖 + 𝜏�̇�𝑖 = 𝐵𝑎 (1) 
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where 𝐵𝑎 is the magnitude of the transverse applied magnetic field, �̇�𝑖 is the time derivative of 𝐵𝑖 

and 𝜏 is the time constant of the system whose expression is 

𝜏 =
𝜇0
2
(
𝑙𝑝
2𝜋
)

2
1

𝜌𝑡
 (2) 

with 𝑙𝑝 the twist pitch of the filaments and 𝜌𝑡 the effective transverse resistivity (inverse of the 

effective transverse conductivity mentioned above). 

  
                              (a) : Longitudinal view              (b) : Cross-section view 

Figure 13 : Schematic views of coupling currents inside the filamentary zone (only outer edge filaments are represented) 

 

It is interesting to note that equation (1) is valid for both F and F/R, the only difference between 

them lies in the formula of 𝜌𝑡, which in the first case is the effective transverse resistivity of the 

filamentary zone while in the second one, it is a combination of the effective transverse resistivity of the 

filamentary zone and of the transverse resistivity of the outer layer. In fact, in the case of F/R, the outer 

resistive layer is seen as another path for coupling currents flowing in the outer edge filaments to loop 

back (see Figure 14); therefore the total effective conductivity can be expressed as a weighted sum of 

the transverse conductivities of the two zones since they are in parallel. 

To push this idea further, we can also take a look at composites with a central filamentary zone 

surrounded by several resistive layers. Turck has made a detailed investigation on this issue [25] and 

provided the analytical method and formulae enabling the description of the response of composites 

with layouts ranging from F/R to F/R/R/R to a transverse magnetic field. He has quantitatively shown 

that a cupronickel barrier surrounding the filamentary zone was significantly reducing the coupling 

losses. Indeed, the resistivity of the copper sheath being usually lower than the effective matrix 

resistivity of the filamentary zone, the flow of the coupling currents through the copper sheath can be 

responsible for a major part of the dissipated energy if the sheath is thick. The local resistance created 

by the cupronickel barrier enhances the average resistance of the alternative path and thus reduces the 

coupling losses. For composites with several outer resistive layers, the expression of the time constant 

of the composite given by equation (2) is still valid provided that the total effective resistivity is 

computed again with the taking into account of the radii and resistivities of the outer layers. 
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Figure 14 : Coupling currents flowing in the outer edge filaments looping back using the filamentary zone  
and the outer resistive layer in the case of a F/R composite 

The next step is of course to compute the coupling power dissipated in the whole composite. In order 

to do so, two methods giving the same results can be used.  

The first one is simply to integrate the Joule power density 𝐽. �⃗⃗� over the whole volume, with 𝐽 the 

local coupling current density flowing through the resistive parts and �⃗⃗� the local electric field. The other 

one is to compute the magnetization 𝑀 inside the filamentary zone and then to integrate the local density 

power −𝑀�̇�𝑖 over the volume. 

Both methods give the following power per unit volume of filamentary zone [10] (see discussion 

below) 

𝑃 =
𝑛𝜏�̇�𝑖

2

𝜇0
 (3) 

with 𝑛 = 2 for a cylindrical composite. 

Before going any further, a point should be made clear: for composites consisting in a filamentary 

zone only (F types), the only part were coupling currents will generate ohmic power is of course the 

filamentary zone, while for composites of types F/R/…/R (central filamentary zone surrounded by one 

or several resistive layers) the coupling currents will not only dissipate energy inside the filamentary 

zone but also in the outer resistive layers. Therefore, one must not misunderstand equation (3) : 𝑃 

corresponds to the power dissipated in the whole composite divided by the volume enclosed by the outer 

edge filaments (which will often be referred to as “volume of filamentary zone” by abuse of language). 

This expression has only been chosen for its schematic and simple view. 

If we now apply a sinusoidal external magnetic field 𝐵𝑎 = 𝐵𝑝sin(𝜔𝑡), with 𝜔 = 2𝜋𝑓 the angular 

frequency, using (1) we obtain in complex notations 

�̅�𝑖 =
𝐵𝑝𝑒

𝑗𝜔𝑡

1 + 𝑗𝜔𝜏
 (4) 

Then we can readily give the internal magnetic field amplitude |�̅�𝑖| as 

|�̅�𝑖| =
𝐵𝑝

√1 + (𝜔𝜏)2
 (5) 
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Using (3), the associated power density 𝑃 averaged over time (after a time long compared to 𝜏) will 

then be 

𝑃 =
𝐵𝑝

2

2𝜇0

𝑛𝜏𝜔2

1 + (𝜔𝜏)2
 (6) 

 

As a matter of fact, we see from equation (5) that the composite will behave as a low-pass filter with 

regard to the external magnetic field: its low frequency components will penetrate through the composite 

while its high ones will be completely shielded by the outer edge filaments. This leads to the conclusion 

that the power dissipated by hysteresis inside the filaments will also depend on the frequency: at high 

frequencies, the applied transverse field will partly be shielded by the outer edge filaments so that the 

internal filaments will see a smaller excursion of the magnetic field and thus dissipate less energy. 

In addition, equation (6) indicates that the coupling power density 𝑃 will rise as 𝑓2 in the low 

frequency domain and will become constant reaching its maximum for frequencies higher than 1/(2𝜋𝜏) 

as indicated in [22]. 

As it is widely used within the applied superconductivity community, we can also express the losses 

in terms of average losses per cycle 𝑄 per unit volume (of filamentary zone); this can be done very 

quickly multiplying 𝑃 by the period 𝑇 of the cycle. Using (6), we have 

𝑄 =
𝐵𝑝

2

2𝜇0

2𝜋𝑛𝜏𝜔

1 + (𝜔𝜏)2
 (7) 

 

Of course these considerations and formulae are relevant only to the coupling losses generated by a 

transverse field and assume that the outer edge filaments are not saturated and that the composite is not 

carrying any transport current. In case of saturation, we would need to add the penetration losses 

corresponding to the work done by the variation of the magnetic field in the saturated filaments on the 

outer edge which is very similar to hysteresis losses in a single filament but at strand scale [23]. 

Regarding the impact of a transport current on these losses, it has been investigated both theoretically 

[21],[26] and experimentally [27],[28] but we will not detail its nature here. 

From an experimental point of view, Kwasnitza [29] has measured 𝑄 vs 𝑓 curves for a transverse 

sinusoidal applied magnetic field up to roughly 15Hz for composites featuring different twist pitches - 

from 5 to 50 mm. He has experimentally highlighted the global dependence of the time constant of the 

composite as 1/𝑙𝑝
2
 (with 𝑙𝑝 the twist pitch of the filaments) as indicated by equation (2), the time 

constant being here determined by the maximum of each 𝑄 vs 𝑓 curve. The 𝑄(𝑓 = 0) values deduced 

from linear fittings of the measured 𝑄 vs 𝑓 curves in the low frequency domain are all equal to the same 

value which corresponds to the hysteresis losses per cycle. 

According to equation (7), the curve of losses per unit volume per cycle Q versus the angular 

frequency 𝜔 of the sinusoidal applied magnetic field (curve referred to as “𝑄 vs 𝑓 curve” thereafter) 

will exhibit a maximum at 𝜔 = 1/𝜏 and its initial slope will be proportional to 𝑛𝜏. In other words, this 

means that for composite containing only one filamentary zone located at the center of the strand 

(F/R/…/R types), the time constant 𝜏 of the system can be determined using one method or the other. 

However a precision is needed on this point. Indeed, let us note 𝐵𝑟𝑒𝑎𝑐𝑡 the reacting magnetic field 

generated by the supercurrent flowing in the outer edge filament. This field will be proportional to the 
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previously mentioned 𝐾0 (amplitude of the cosine supercurrent distribution) and, by superposition, we 

can say that the internal field 𝐵𝑖 is the sum of the applied field 𝐵𝑎 and of the reacting magnetic field 

𝐵𝑟𝑒𝑎𝑐𝑡, therefore : 𝐵𝑖 = 𝐵𝑎 + 𝐵𝑟𝑒𝑎𝑐𝑡. Equation (1) states that 𝐵𝑖 + 𝜏�̇�𝑖 = 𝐵𝑎 so, replacing 𝐵𝑖 with 

(𝐵𝑎 +𝐵𝑟𝑒𝑎𝑐𝑡), we obtain  𝐵𝑎 + 𝐵𝑟𝑒𝑎𝑐𝑡 + 𝜏(�̇�𝑎 + �̇�𝑟𝑒𝑎𝑐𝑡) = 𝐵𝑎 which leads to 

𝐵𝑟𝑒𝑎𝑐𝑡 + 𝜏�̇�𝑟𝑒𝑎𝑐𝑡 = −𝜏�̇�𝑎 (8) 

where the −𝜏�̇�𝑎 term can be seen as the exciting magnetic field while the 𝜏�̇�𝑟𝑒𝑎𝑐𝑡 one reflects the 

self-induction. 

It is important to point out the fact that 𝜏 is present on both sides of equation (8), but it does not have 

the same meaning at all. In fact, the 𝜏 on the left-hand side reflects the coupling of the supercurrent with 

itself and therefore really corresponds to the definition of time constant of a system; it refers to the time 

needed for the induced supercurrent to relax when the applied field 𝐵𝑎 is no longer time-varying (i.e. 

when the exciting magnetic field −𝜏�̇�𝑎 is zero). Actually it exactly corresponds to the “L/R” time 

constant of a RL circuit, L being the self-inductance and R the resistance. On the other hand, the 𝜏 

present on the right-hand side of equation (8) reflects the coupling between the supercurrent and the 

external source generating the applied field 𝐵𝑎: it therefore does not answer to the definition of time 

constant of a system, it can alternatively be seen as “M/R” where M is the mutual inductance between 

the supercurrent and the external source and R the resistance which is here the same as for the RL circuit. 

The only reason why the 𝜏 on both sides of (8) are equal here is because both the field 𝐵𝑟𝑒𝑎𝑐𝑡 created by 

the supercurrent and the applied field 𝐵𝑎 are uniform and oriented along the y-axis in the volume 

enclosed by the supercurrent: the self-inductance L of the supercurrent and the mutual inductance M 

between the supercurrent and the external source have then here the same value. It thus explains why it 

is possible to measure the time constant of a composite in steady-state or slowly time-varying regimes 

even though the composite cannot express its own time constant in these regimes. 

This point is a very important one as today it is not unusual to encounter values of the “𝑛𝜏” parameter 

- measured on 𝑄 vs 𝑓 curves of conductors - used to deduce the conductor response for regimes other 

than steady-state ones. This “𝑛𝜏” parameter is determined from the initial slope of the measured 𝑄 vs 𝑓 

curve by analogy with the F or F/R composite; indeed in the low frequency region, i.e. for 𝜔𝜏 ≪ 1, 

equation (7) indicates that the 𝑄 vs 𝑓 curve becomes linear with a slope equal to 2𝜋2𝐵𝑝
2𝑛𝜏/𝜇0. 

As a matter of fact, well before reaching the conductor scale, it could be misleading to use the “𝑛𝜏” 

value deduced from the initial slope of the 𝑄 vs 𝑓 curve to extrapolate the response of some composites 

(e.g. featuring a copper core, as the one displayed on Figure 11) at higher frequencies. Indeed, at the 

beginning of the 80’s, Ciazynski has studied the coupling losses occurring in a R/F/R composite [30] 

and has shown that the internal induction 𝐵𝑖 could not be modeled by equation (1). In reality, in addition 

to the supercurrent flowing through the outer edge filaments, another supercurrent is flowing in the inner 

edge filaments; the classical description with a single time constant is therefore no longer valid. To 

model the behavior of these supercurrents, one has to replace the time constant 𝜏 with a two-by-two 

matrix containing four time coefficients which reflect the electromagnetic coupling (self and mutual) 

between the supercurrents; the new time constants of this system are the eigenvalues of the previous 

matrix. Ciazynski has derived the expressions of the four time coefficients and the equation governing 

the supercurrents for any time regime. He has also expressed the power dissipated by the coupling 

currents but only for slowly time-varying regimes. 

As a consequence, when trying to model the response of the JT-60SA TF conductor strand which  is 

of R/F/R/R type (Cu core, filamentary zone, CuNi barrier and outer Cu layer, see Figure 11) for regimes 

other than very slowly time-varying ones, we have realized that there was not any analytical solution to 
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this problem in the literature. This is due to the fact that the design of composites has kept evolving 

because of the more and more challenging environment strands have to face (e.g. larger superconducting 

tokamaks) while the analytical modeling of coupling losses has been abandoned in favor of numerical 

modeling. 

Accordingly we have decided to develop a general analytical modeling of coupling losses generated 

inside composites featuring any number of concentric layers of any nature (filamentary or resistive) in 

order to 

 provide the community with an exhaustive model able to thoroughly describe the magnetic 

behavior of any cylindrical composite  

 

 open the way for the study of the composites stability thanks to the ability of the model to generate 

detailed cartographies of the power density with very low CPU consumption 

 

 create a tool able to rationally design superconducting composites with respect to their coupling 

losses and their magnetic environment 

This general analytical model is presented in the next section. 

 

II.2 Development of the Coupling Losses Algorithm for Superconducting Strands 

 

In this section, we will present the analytical model we have used to determine the main physical 

fields and the coupling losses induced in any axisymmetric composite. The outputs of this model are 

used to build the Coupling Losses Algorithm for Superconducting Strands (CLASS) which aims at 

modeling the magnetic response of a composite to any transverse and uniform magnetic excitation. 

 

II.2.1  Methodology 

 

First of all, we will here describe the methodology we have used to model the response of a 

composite to a time-varying transverse and uniform magnetic field. The nature of this problem could be 

assimilated to the eddy currents one except that the superconducting parts (filaments) of the composite 

play a major role and induces strong differences. Indeed, they have a zero electric field in their volume 

when they are not saturated; therefore they will impose multiple boundary conditions in the composite 

since each filament will exhibit an equipotential in its whole volume.  

In a classical holistic approach of the problem, we would start by considering a conductor of 

resistivity 𝜌 subject to a time-varying magnetic field and derive the equation governing its behavior. If 

we apply the curl operator on both sides of Maxwell-Faraday equation ∇⃗⃗⃗ ×  �⃗⃗� = −�̇⃗⃗�; we then obtain 

∇⃗⃗⃗ × (∇⃗⃗⃗ × �⃗⃗�) = −∇⃗⃗⃗ × �̇⃗⃗� 

which gives, using Maxwell-Ampère equation ∇⃗⃗⃗ ×  �⃗⃗� = 𝜇0J⃗ (the displacement current is 

considered here to be negligible, see assumption A6 after) 
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∇⃗⃗⃗(∇⃗⃗⃗. �⃗⃗�) − ∆⃗⃗⃗�⃗⃗� = −𝜇0𝐽 ̇

If we add the local Ohm’s law �⃗⃗� = 𝜌𝐽, we now have 

∆⃗⃗⃗𝐽 −
𝜇0
𝜌
𝐽̇ = 0⃗⃗ (9) 

Therefore the induced currents are governed by a classical diffusion equation. However due to the 

presence of the multiple boundary conditions imposed by the superconductor and the complex geometry 

(helicoids) of the filaments, this approach seems to be too complex to analytically solve the problem. 

Consequently we propose an alternative vision based on the determination of the spatial form of the 

induced currents; this approach will be used in all our analytical studies at each scale of a 

superconducting cable (from a single composite to any multi-stage bundle). 

When a conductor is subject to a time-varying magnetic field 𝐵𝑎, we know that a set of currents will 

be induced to shield the conductor from this magnetic variation. We can then virtually split the shielding 

currents; indeed, a part of these currents can be seen as shielding the time-variation of the magnetic field 

𝐵𝑎 produced by an external source while the other part of the induced currents will try to shield the time-

variation of the magnetic field 𝐵𝑟𝑒𝑎𝑐𝑡 produced by all the induced currents (the 𝐵𝑟𝑒𝑎𝑐𝑡 field can then be 

seen as a kind of self-field). 

Our method aims at determining the spatial form of the induced currents using the logical chain 

displayed on Figure 15: 𝐵𝑎⃗⃗ ⃗⃗⃗
̇
 creates an electric field 𝐸(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  which gives rise to a spatial distribution of 

currents 𝐽(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗ which in turn produces a magnetic field 𝐵(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗. The time-variation of 𝐵(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗, i.e. 𝐵(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗̇ , creates 

𝐸(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  which generates a distribution of currents 𝐽(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗ which in turn produces a magnetic field 𝐵(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ and so 

on. 

Let us assume that the spatial distribution of currents 𝐽(𝑘)⃗⃗ ⃗⃗ ⃗⃗ ⃗ can be modeled using a linearly 

independent family of 𝑁𝑘 spatial functions (𝑓1
(𝑘)
, 𝑓2
(𝑘)
, … , 𝑓𝑁𝑘

(𝑘)
) and let us call this family 𝐹(𝑘), this 

means that we can write 𝐽(𝑘)⃗⃗ ⃗⃗ ⃗⃗ ⃗ at every point of space 𝑀 and at every instant 𝑡 as 

𝐽(𝑘)⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑀, 𝑡) =∑𝑎𝑖
(𝑘)(𝑡)𝑓𝑖

(𝑘)(𝑀)

𝑛𝑘

𝑖=1

 

where (𝑎𝑖
(𝑘))

1≤𝑖≤𝑛𝑘
 are functions of time only and (𝑓𝑖

(𝑘))
1≤𝑖≤𝑛𝑘

 are the spatial functions constituting 

the 𝐹(𝑘) linearly independent family.  

By definition, the time-variation of 𝐽(𝑘)⃗⃗ ⃗⃗ ⃗⃗ ⃗, i.e. 𝐽(𝑘)⃗⃗ ⃗⃗ ⃗⃗ ⃗̇ , creates the new distribution 𝐽(𝑘+1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  which can be 

modeled using the linearly independent family of spatial functions 𝐹(𝑘+1), this means that the time-

variation of each element 𝑎𝑖
(𝑘)(𝑡)𝑓𝑖

(𝑘)(𝑀) of 𝐽(𝑘)⃗⃗ ⃗⃗ ⃗⃗ ⃗ will produce a sub-distribution which can be expressed 

using the spatial functions of 𝐹(𝑘+1). Our iterative process then stops as soon as the family 𝐹(𝑁) of 

spatial functions of the distribution 𝐽(𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is included in the families (𝐹(𝑘))
1≤𝑘≤𝑁−1

 of spatial functions 

of the previous distributions (𝐽(𝑘)⃗⃗ ⃗⃗ ⃗⃗ ⃗)
1≤𝑘<𝑁

, i.e. when  𝐹(𝑁) ∈ (𝐹(1)⊕𝐹(2)⊕…⊕𝐹(𝑁−1)). 
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Indeed, since 𝐹(𝑁) is included in the (𝐹(𝑘))
1≤𝑘≤𝑁−1

 families, we can express 𝐽(𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  using the spatial 

functions of the (𝐹(𝑘))
1≤𝑘≤𝑁−1

 families, i.e. 𝐽(𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  can be expressed as a linear combination of the 

(𝑎𝑖
(𝑘)(𝑡)𝑓𝑖

(𝑘)(𝑀))
1≤𝑖≤𝑛𝑘,1≤𝑘≤𝑁−1

 elements. However, the time-variation of these elements can, by 

assumption, only produce sub-distributions that can be expressed using the spatial functions of the 

(𝐹(𝑘))
1≤𝑘≤𝑁

 families, thus of the (𝐹(𝑘))
1≤𝑘≤𝑁−1

 families since 𝐹(𝑁) is included in the (𝐹(𝑘))
1≤𝑘≤𝑁−1

 

families. We immediately conclude that the 𝐽(𝑁+1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ distribution generated by 𝐽(𝑁+1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗̇  can be expressed 

using the spatial functions of the (𝐹(𝑘))
1≤𝑘≤𝑁−1

 families only. Applying the same logic to any 𝐽(𝑁+𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 

with 𝑝 a positive integer, we deduce that every (𝐽(𝑘)⃗⃗ ⃗⃗ ⃗⃗ ⃗)
𝑘≥1

 can be expressed using spatial functions of the 

(𝐹(𝑘))
1≤𝑘≤𝑁−1

 families only. 

When the 𝑁𝑡ℎ iteration is reached we are then sure to have found all the spatial functions required 

to model the global distribution of induced currents (in other words, all the spatial modes) and the 

linearly independent family 𝐹 of all the spatial functions is 𝐹 = (𝐹(1)⊕𝐹(2)⊕…⊕𝐹(𝑁−1)); this 

means that the global distribution of induced currents 𝐽 = ∑ 𝐽(𝑘)⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑁
𝑘=1  must be of the form 

𝐽(𝑀, 𝑡) =∑𝑎𝑖(𝑡)𝑓𝑖(𝑀)

𝑛𝐹

𝑖=1

 (10) 

where (𝑎𝑖)1≤𝑖≤𝑛𝐹 are functions of time only and (𝑓𝑖)1≤𝑖≤𝑛𝐹 are the 𝑛𝐹 spatial functions constituting 

the linearly independent family 𝐹. 

Note that there can be cases where 𝑁 is equal to infinity, meaning that new spatial functions will be 

involved at each iteration, it is therefore not possible to find them all in a finite number of iterations. 

However, even in this situation, it may be possible to quickly identify the nature of the spatial functions 

that will be involved in the next iterations. When this occurs we can also say that we have reached the 

end of our analytical procedure as soon as we have identified the nature of the functions induced at each 

new iteration. 

This analytical iterative procedure is very useful as it enables us to find the spatial form of the 

induced currents; it can be seen as another way for solving the Laplacian of equation (9). The main 

difference between both methods lies in the fact that we only consider the spatial modes that will be 

excited, while the solving of the Laplacian will disclose all the allowed spatial modes, even those that 

will not be excited because of the spatial form of the external applied magnetic field. 

As a consequence we will always be able to suppose a solution to equation (9) under the form given 

by (10) which will then simply be reduced to a first-order differential equation in time on the (𝑎𝑖)1≤𝑖≤𝑁𝐹  

functions of (10). 

It is important to point out that our logical procedure does not correspond to what physically occurs 

inside a conductor when shielding its volume. As a matter of fact, all distributions (𝐽(𝑘)⃗⃗ ⃗⃗ ⃗⃗ ⃗)
𝑘≥1

 are induced 

at the same time and our decomposition is a simple view of the mind of the magnetic shielding effect; 

it therefore does not reflect the order of occurrence of the different shielding effects. 
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Figure 15 : Logical chain of calculation of induced currents 

 

As a result, when trying to analytically find the spatial form of the induced currents, we will always 

begin by a study in regimes where all the induced currents are not time-varying. 

First because the solution provided by this study can be extended to commonly encountered regimes 

where the applied magnetic field 𝐵𝑎 is slowly time-varying (e.g. when ramp-up time is long compared 

to the largest time constant of the system) and secondly, because this solution provides the current 

distribution 𝐽1⃗⃗⃗ ⃗ needed in our logical chain. By abuse of language the regimes where all the induced 

currents are not time-varying will be referred to as “steady-state regimes” in the following. Note that in 

these regimes, the applied magnetic field 𝐵𝑎 is supposed to be time varying. 

We have followed this methodology during the study at composite scale and we present here a 

schematic summary of the analytical content of this study (as mentioned in section I.5 ): 

 In section II.2.3  we establish the expression of the electric field due to the time variation of the 

applied magnetic field 𝑩𝒂⃗⃗⃗⃗⃗⃗  and we then deduce the distribution of currents induced in the 

composite in steady-state regime 

 In section II.2.4  we express the magnetic field generated by the distribution of current found 

in steady-state regime (at the end of section II.2.3 ). We then compute the new distribution of 

current induced by the time variation of this magnetic field. Finally, we combine these results 

to those of section II.2.3  to establish the equation of the composite for any time regime 

 In section II.2.5  we evaluate the shielding made by the outer copper sheath and we discuss the 

saturation of filaments 

 In section II.2.6  we compute the power generated by coupling currents as a function of 

coefficients, previously introduced in section II.2.3  

 In section II.2.7  we express the currents and the electric and magnetic fields in the composite 

as a function of the previous coefficients 
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 In section II.2.8  we establish the expression of coupling losses as a function of the previous 

coefficients. We also demonstrate that the coupling losses generated inside complex composites 

can be expressed as a sum of the coupling losses generated inside simple composites; this result 

is important and will be used in the study of a two cabling stages conductor 

 

II.2.2  Assumptions 

 

The main assumptions used in our model are the classical ones: 

A1. The system is invariant by translation along the composite axis (z-axis, see Figure 16) 

 

A2. The external magnetic field 𝐵𝑎 is assumed transverse (along the y-axis, see Figure 16) and 

spatially uniform within the composite 

 

A3. The composite does not carry any transport current 

 

A4. The filaments are not saturated, i.e. 𝐸𝑠⃗⃗⃗⃗⃗ = 0⃗⃗ in the filaments, with 𝑠 the longitudinal direction 

along the filaments. This relation is extended to the whole filamentary zone with the commonly 

used [10],[23],[25], [30] homogeneous representation presented in [22] 

 

A5. The filaments are lightly twisted, i.e. (
2𝜋𝑅

𝑙𝑝
)
2

≪ 1 where 𝑅 is the composite radius and 𝑙𝑝 is the 

twist pitch of the filaments 

 

A6. The time variation of the external magnetic field 𝐵𝑎 is slow enough to neglect the displacement 

current so that ∇⃗⃗⃗. J⃗ = 0 where J⃗ is the current density inside the composite 

 

A7. The time variation of the external magnetic field 𝐵𝑎 is also slow enough to ensure that the copper 

sheath does not magnetically shield its enclosed volume 

 

The following Maxwell’s equation ∇⃗⃗⃗ ×  �⃗⃗� = 𝜇0J⃗ + 𝜇0휀0�̇⃗⃗� can be reduced to ∇⃗⃗⃗ ×  �⃗⃗� = 𝜇0J⃗ if the 

displacement current is negligible compared to the current flowing inside the composite (assumption 

A6). This leads to the following condition: 

𝜇0휀0 ‖�̇⃗⃗�‖

𝜇0‖J⃗‖
=
휀0 ‖�̇⃗⃗�‖

‖J⃗‖
≪ 1 

Using the complex notations we can write ‖�̇⃗⃗�‖~‖�⃗⃗�‖2𝜋𝜔 with 𝜔 the angular frequency. Inside the 

composite, Ohm’s law states that �⃗⃗� = 𝜌J⃗ with 𝜌 the local resistivity, therefore 
‖�̇⃗⃗�‖

‖J⃗‖
~𝜌𝜔. 

The previous condition becomes then 휀0𝜌𝜔 ≪ 1, or alternatively, using 𝜔 = 2𝜋𝑓 

𝑓 ≪
1

2𝜋휀0𝜌
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If we consider the cupronickel resistivity which is within the 10−7𝛺.𝑚 range (usually the highest 

one in the composite), 2𝜋휀0𝜌 is then within the 10−17𝑠 range. 

Consequently, we can neglect the displacement current as long as 

𝑓 ≪ 1017𝐻𝑧 

The classical range of frequencies of magnetic variation considered for coupling losses being largely 

inferior to 1017𝐻𝑧, we can legitimately reduce the previous Maxwell’s equation to 

∇⃗⃗⃗ ×  �⃗⃗� = 𝜇0J⃗ 

In addition, since mathematically ∇⃗⃗⃗. (∇⃗⃗⃗ ×  �⃗⃗�) = 0, we can conclude that ∇⃗⃗⃗. 𝐽 = 0; assumption A6 is 

then justified. 

Assumption A7 will be considered later because we first need to introduce some analytical tools to 

justify it. 

In our approach, conversely to the configurations explored in the previous analytical models that 

were limited in number and/or nature of layers, we allow ourselves to consider any of the possible 

configurations: composite whose cross-section consists of 𝑛 circular concentric layers (see Figure 16) 

either filamentary (i.e. superconducting filaments embedded in a resistive matrix) or purely resistive. 

 

 
Figure 16 : Scheme showing the generic cross-section geometry of composites considered by our model 
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Figure 17 : Scheme showing the trajectories of filaments and their associated local frame (𝒆𝒓⃗⃗⃗⃗⃗, 𝒆𝒏,⃗⃗ ⃗⃗ ⃗⃗ 𝒆𝒔⃗⃗ ⃗⃗ ) inside a R/F/R 
strand 

 

The trajectory followed by each filament is a helix of radius 𝑟 and constant pitch 𝑙𝑝, whose center is 

the center of the composite. The local geometric coordinate system associated to each filament is 

curvilinear and described by (𝑒𝑟⃗⃗ ⃗⃗ , 𝑒𝑛,⃗⃗⃗⃗⃗⃗ 𝑒𝑠⃗⃗⃗⃗ ) which relates to the cylindrical coordinate system (𝑒𝑟⃗⃗ ⃗⃗ , 𝑒𝜃,⃗⃗⃗⃗⃗⃗ 𝑒𝑧⃗⃗ ⃗⃗ ) as 

𝑒𝑟⃗⃗ ⃗⃗ = 𝑒𝑟⃗⃗ ⃗⃗  (11) 

𝑒𝑛⃗⃗⃗⃗⃗ = 𝑐𝑜𝑠𝛼𝑒𝜃⃗⃗⃗⃗⃗ − 𝑠𝑖𝑛𝛼𝑒𝑧⃗⃗ ⃗⃗  (12) 

𝑒𝑠⃗⃗⃗⃗ = 𝑠𝑖𝑛𝛼𝑒𝜃⃗⃗⃗⃗⃗ + 𝑐𝑜𝑠𝛼𝑒𝑧⃗⃗ ⃗⃗  (13) 

with α the angle between 𝑒𝑧⃗⃗ ⃗⃗  and 𝑒𝑠⃗⃗⃗⃗  

α satisfies then the relation 

𝑡𝑎𝑛𝛼 =
2𝜋𝑟

𝑙𝑝
 (14) 

 

Since all the filaments are inside the composite we have 𝑟 < 𝑅 and thus 𝑡𝑎𝑛𝛼 <
2𝜋𝑅

𝑙𝑝
. 

Using assumption A5, we then deduce 

𝑡𝑎𝑛2 𝛼 ≪ 1 (15) 
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II.2.3  Study in steady-state regime 

 

 We will derive here the electric field due to the time variation of the applied magnetic field 𝑩𝒂⃗⃗⃗⃗⃗⃗  

and we will then deduce the distribution of currents induced in the composite in steady-state 

regime. 

By superposition, we can express the magnetic field �⃗⃗� inside the composite as �⃗⃗� = 𝐵𝑎⃗⃗ ⃗⃗⃗ + 𝐵𝑟𝑒𝑎𝑐𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 

with 𝐵𝑎⃗⃗ ⃗⃗⃗ the applied magnetic field and  𝐵𝑟𝑒𝑎𝑐𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ the reacting magnetic field created by the induced currents 

flowing through the composite. Since by assumption the induced currents are not time-varying (we recall 

that the term “steady-state regime” refers to a regime where the induced currents are not time-varying.), 

neither is the reacting magnetic field, then 𝐵𝑟𝑒𝑎𝑐𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗̇ = 0⃗⃗ (0⃗⃗ is the null vector). 

As a result, Maxwell-Faraday equation ∇⃗⃗⃗ ×  �⃗⃗� = −�̇⃗⃗� gives here 

∇⃗⃗⃗ ×  �⃗⃗� = −𝐵𝑎⃗⃗ ⃗⃗⃗
̇
 (16) 

 

The expression of this equation in cylindrical coordinates (𝑟, 𝜃, 𝑧) leads to the following system 

𝜕𝐸𝑧
𝜕𝜃

= −𝑟�̇�𝑎 sin𝜃 (17) 

𝜕𝐸𝑧
𝜕𝑟

= �̇�𝑎 cos𝜃 (18) 

𝜕(𝑟𝐸𝜃)

𝜕𝑟
=
𝜕𝐸𝑟
𝜕𝜃

 (19) 

Equations (17) and (18) give 

𝐸𝑧 = 𝑟�̇�𝑎 cos 𝜃 + 𝐸0 

with 𝐸0 a constant value (we consider here a steady-state regime).  

In a cylinder made of a material of resistivity 𝜌, this longitudinal electric field would give rise to a 

longitudinal current 𝐽𝑧 = 𝐸𝑧/𝜌 whose average over the whole volume would be 𝐸0/𝜌. According to 

assumption A3, the average current should be zero; it follows that 𝐸0 = 0. By analogy, 𝐸𝑧 can then be 

reduced everywhere in the composite to 

𝐸𝑧 = 𝑟�̇�𝑎 cos 𝜃 (20) 

 

In each filamentary zone, the relation 𝐸𝑠⃗⃗⃗⃗⃗ = 0⃗⃗ (coming from assumption A4) implies 𝐸𝑠 = 0 which 

can be alternatively expressed as 𝐸𝑟⃗⃗⃗⃗⃗. 𝑒𝑠⃗⃗⃗⃗ + 𝐸𝜃⃗⃗ ⃗⃗ ⃗. 𝑒𝑠⃗⃗⃗⃗ + 𝐸𝑧⃗⃗⃗⃗⃗. 𝑒𝑠⃗⃗⃗⃗ = 0. Using equation (13), we then obtain 

𝐸𝜃𝑠𝑖𝑛𝛼 + 𝐸𝑧𝑐𝑜𝑠𝛼 = 0 

Making use of equation (14), this is equivalent to 

𝐸𝜃 = −
𝑙𝑝
2𝜋𝑟

𝐸𝑧 (21) 

which, combined with (20), gives 
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𝐸𝜃 = −
𝑙𝑝

2𝜋
�̇�𝑎 cos 𝜃 (22) 

Regarding the calculation of 𝐸𝑟, we first need to introduce another equation. According to the 

homogeneous representation (assumption A4), we can assign an effective transverse resistivity 𝜌𝑡 to the 

filamentary zone; this implies 𝐸𝑡⃗⃗ ⃗⃗ = 𝜌𝑡𝐽𝑡⃗⃗⃗ with 𝐸𝑡⃗⃗ ⃗⃗  the transverse electric field and 𝐽𝑡⃗⃗⃗ the transverse current. 

Since ∇⃗⃗⃗. 𝐽 = 0 from assumption A6, we have ∇⃗⃗⃗. (𝐽𝑡⃗⃗⃗ + 𝐽𝑧⃗⃗⃗ ⃗) = ∇⃗⃗⃗. (
𝐸𝑡⃗⃗⃗⃗⃗

𝜌𝑡
) =

1

𝜌𝑡
∇⃗⃗⃗. (𝐸𝑡⃗⃗ ⃗⃗ ) = 0 because of the 

longitudinal invariance assumed by A1 (i.e. 
𝜕

𝜕𝑧
= 0). This gives the new equation 

∇⃗⃗⃗. 𝐸𝑡⃗⃗ ⃗⃗ = 0 (23) 

 

In cylindrical coordinates, it can be reformulated as 

𝜕(𝑟𝐸𝑟)

𝜕𝑟
+
𝜕𝐸𝜃
𝜕𝜃

= 0 (24) 

 

Together with (19) and (22), we can deduce 

𝐸𝑟 = −
𝑙𝑝
2𝜋
�̇�𝑎 sin 𝜃 +

𝑉0
𝑟

 (25) 

with 𝑉0 a constant value (we consider here a steady-state regime). 

If the considered filamentary zone is central, we can readily conclude that 𝑉0 must be zero in order 

not to obtain a divergent solution at 𝑟 = 0; in the opposite case, we have to retain this value. 

We have now calculated the expression of the transverse electric field in each filamentary zone and 

therefore now need to study that of each resistive zone. 

Using the previously introduced notation 𝐸𝑡⃗⃗ ⃗⃗  and equation (16), we can write ∇⃗⃗⃗ × 𝐸𝑡⃗⃗ ⃗⃗ = 0⃗⃗ since 𝐵𝑎⃗⃗ ⃗⃗⃗
̇
 is 

oriented along the y-axis; we can then conclude that there exists a scalar potential 𝑉𝑡 such that 

𝐸𝑡⃗⃗ ⃗⃗ = −∇⃗⃗⃗𝑉𝑡 
 

(26) 

Combining it with (23), it appears that in each resistive zone, 𝑉𝑡 satisfies Laplace’s equation 

∆𝑉𝑡 = 0 
 

(27) 

Let us note 𝑉𝑡𝑘 the value of 𝑉𝑡 in a resistive layer numbered 𝑘, since it is solution of (27), its general 

form must be 

𝑉𝑡𝑘(𝑟, 𝜃) = ∑ [𝑎𝑘𝑖 cos(𝑖𝜃) + 𝑏𝑘𝑖 sin(𝑖𝜃)]
∞
𝑖=−∞ 𝑅𝑘(𝑟/𝑅𝑘)

𝑖, 𝑎𝑘𝑖 ∈ ℝ, 𝑏𝑘𝑖 ∈ ℝ (28) 

Note that the general formulation of 𝑉𝑡𝑘 is chosen so that the 𝑎𝑘𝑖 and 𝑏𝑘𝑖 coefficients have the 

dimension of an electric field. 

Injecting the expression of 𝑉𝑡𝑘 into equation (26) yields the general forms of the components of the 

transverse electric field in each resistive zone 
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{
 
 

 
 𝐸𝑟𝑘 = − ∑ [𝑎𝑘𝑖 cos(𝑖𝜃) + 𝑏𝑘𝑖 sin(𝑖𝜃)]

∞

𝑖=−∞,𝑖≠0

𝑖(𝑟/𝑅𝑘)
𝑖−1

𝐸𝜃𝑘 = ∑ [𝑎𝑘𝑖 sin(𝑖𝜃) − 𝑏𝑘𝑖 cos(𝑖𝜃)]

∞

𝑖=−∞,𝑖≠0

𝑖(𝑟/𝑅𝑘)
𝑖−1

 (29) 

 

In order to complete the system, we must add the boundary conditions. First, at each interface 

between layers, the continuity of the azimuthal component of the transverse electric field 𝐸𝜃 between 

the layers 𝑘 and 𝑘 + 1 can expressed as 

𝐸𝜃𝑘(𝑅𝑘) = 𝐸𝜃𝑘+1(𝑅𝑘) (30) 

 

Secondly, we have to consider Kirchhoff’s current law; its expression depends on the nature of the 

interface (i.e. resistive/resistive, resistive/filamentary or filamentary/filamentary): 

 For an interface of resistive/resistive type, Kirchhoff’s current law requires the continuity of the 

radial component of the current density 𝐽𝑟 

 

𝐸𝑟𝑘(𝑅𝑘)

𝜌𝑡𝑘
=
𝐸𝑟𝑘+1(𝑅𝑘)

𝜌𝑡𝑘+1
 (31) 

where 𝜌𝑡𝑘 is the transverse resistivity of the layer 𝑘. 

 

 At an interface of resistive/filamentary or filamentary/filamentary type, Kirchhoff’s current law 

must include the additional current flowing through the filaments located on the boundary so that 

it becomes 

 

𝜕𝐾𝑠𝑘
𝜕𝜃

=
𝑙𝑝
2𝜋
[
𝐸𝑟𝑘(𝑅𝑘)

𝜌𝑡𝑘
−
𝐸𝑟𝑘+1(𝑅𝑘)

𝜌𝑡𝑘+1
] (32) 

where 𝐾𝑠𝑘 is the surface current (i.e. in 𝐴.𝑚−1) flowing through all the filaments located at 

𝑟 = 𝑅𝑘. 

If the composite is composed of at least one filamentary zone and one resistive layer, there will 

necessarily be an interface of resistive/filamentary type. Assuming layers 𝑘 and 𝑘 + 1 are respectively 

resistive and filamentary, expressions (22) and (29) and equation (30) implies 

{
 

 𝑏𝑘−1 − 𝑏𝑘1 = −
𝑙𝑝
2𝜋
�̇�𝑎

𝑎𝑘𝑖 = 0, 𝑖 ∈ ℤ
∗

𝑏𝑘𝑖 = 0, 𝑖 ∈ ℤ
∗\{−1,1}

 (33) 

since cos(𝑖𝜃)𝑖∈ℕ∗  and sin(𝑖𝜃)𝑖∈ℕ∗ are linearly independent families. 

Assuming now that layers 𝑘 and 𝑘 + 1 are respectively filamentary and resistive, we obtain 

{
 
 

 
 𝑏𝑘+1−1 (

𝑅𝑘+1
𝑅𝑘

)
2

− 𝑏𝑘+11 = −
𝑙𝑝

2𝜋
�̇�𝑎

𝑎𝑘+1𝑖 = 0, 𝑖 ∈ ℤ
∗

𝑏𝑘+1𝑖 = 0, 𝑖 ∈ ℤ
∗\{−1,1}

 (34) 
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Therefore, in a resistive layer 𝑘 in contact with a filamentary zone, the transverse electric field 

components will be of the form 

{
 
 

 
 𝐸𝑟𝑘 = −[𝑏𝑘−1 (

𝑅𝑘
𝑟
)
2

+ 𝑏𝑘1] sin(𝜃)

𝐸𝜃𝑘 = [𝑏𝑘−1 (
𝑅𝑘
𝑟
)
2

− 𝑏𝑘1] cos(𝜃)

 (35) 

since 𝑏𝑘−1 and 𝑏𝑘1 are the only non-zero coefficients.  

If we consider a resistive layer 𝑘 + 1 (resp. 𝑘 − 1) adjacent to another resistive layer 𝑘 whose 𝐸𝑟𝑘  

and 𝐸𝜃𝑘 expressions are described by (35), boundary conditions (30) and (31) ensure that 𝐸𝑟𝑘+1 (resp. 

𝐸𝑟𝑘−1) and 𝐸𝜃𝑘+1 (resp. 𝐸𝜃𝑘−1) expressions will also have the same form as (35), again because 

cos(𝑖𝜃)𝑖∈ℕ∗  and sin(𝑖𝜃)𝑖∈ℕ∗ are linearly independent families. 

We have thus shown by induction that 𝐸𝑟𝑘  and 𝐸𝜃𝑘  expressions in every resistive layer 𝑘 of the 

composite will share the same form as (35). 

Knowing the general form of the electric field in the resistive layers, we can now deduce from 

equation (32) that the surface current 𝐾𝑠𝑘 flowing through the filaments located at 𝑟 = 𝑅𝑘 (if at least 

one of the layers 𝑘 and 𝑘 + 1 is filamentary) must be of the form 𝐾𝑠𝑘 = 𝐾0𝑘 cos(𝜃) because of the 

expressions of 𝐸𝑟 in the filamentary and resistive zones. In addition, the 𝑉0 term present in equation (25) 

must be zero in order to ensure assumption A3 (no transport current). 

From this exhaustive study, we are now able to give the general expressions of 𝐸𝑟𝑘 , 𝐸𝜃𝑘 and 𝐸𝑧𝑘  in 

each layer together with those of 𝐾𝑠𝑘 for steady-state regimes 

{
 
 
 

 
 
 𝐸𝑟𝑘 = −[𝐸02𝑘−1 (

𝑅𝑘
𝑟
)
2

+ 𝐸02𝑘] sin(𝜃)

𝐸𝜃𝑘 = [𝐸02𝑘−1 (
𝑅𝑘
𝑟
)
2

− 𝐸02𝑘] cos(𝜃)

𝐸𝑧𝑘 = 𝑟�̇�𝑎 cos 𝜃

𝐾𝑠𝑘 = 𝐾0𝑘 cos(𝜃)

 (36) 

 

In order to ease and bring some consistency to the notation we have replaced the 𝑏𝑘−1 and 𝑏𝑘1 

coefficients of a layer 𝑘 respectively with 𝐸02𝑘−1 and 𝐸02𝑘 since they have the dimension of an electric 

field (𝑏𝑘+1−1 and 𝑏𝑘+11 are thus now noted as 𝐸02𝑘+1 and 𝐸02𝑘+2 respectively).  

We can now produce a short summary of the results achieved so far: 

 If the layer 𝑘 is filamentary, we have 

{

𝐸02𝑘−1 = 0

𝐸02𝑘 =
𝑙𝑝
2𝜋
�̇�𝑎

 (37) 

 

 For an interface of resistive/resistive type located at 𝑟 = 𝑅𝑘, boundary equations (30) and (31) 

enable us to write 
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{
 
 

 
 𝐸02𝑘+1 =

1

2
(
𝑅𝑘
𝑅𝑘+1

)
2

(
𝜌𝑡𝑘+1
𝜌𝑡𝑘

+ 1)𝐸02𝑘−1 +
1

2
(
𝑅𝑘
𝑅𝑘+1

)
2

(
𝜌𝑡𝑘+1
𝜌𝑡𝑘

− 1)𝐸02𝑘

𝐸02𝑘+2 =
1

2
(
𝜌𝑡𝑘+1
𝜌𝑡𝑘

− 1)𝐸02𝑘−1 +
1

2
(
𝜌𝑡𝑘+1
𝜌𝑡𝑘

+ 1)𝐸02𝑘

 (38) 

 

Or, alternatively 

{
 
 

 
 𝐸02𝑘−1 =

1

2
(
𝑅𝑘+1
𝑅𝑘

)
2

(
𝜌𝑡𝑘
𝜌𝑡𝑘+1

+ 1)𝐸02𝑘+1 +
1

2
(
𝜌𝑡𝑘
𝜌𝑡𝑘+1

− 1)𝐸02𝑘+2

𝐸02𝑘 =
1

2
(
𝑅𝑘+1
𝑅𝑘

)
2

(
𝜌𝑡𝑘
𝜌𝑡𝑘+1

− 1)𝐸02𝑘+1 +
1

2
(
𝜌𝑡𝑘
𝜌𝑡𝑘+1

+ 1)𝐸02𝑘+2

 (39) 

 

 For an interface of resistive/filamentary type located at 𝑟 = 𝑅𝑘 (i.e. layers 𝑘 and 𝑘 + 1 are 

respectively resistive and filamentary), equation (30) together with expressions (36) and (37) now 

lead to 

−𝐸02𝑘−1 + 𝐸02𝑘 =
𝑙𝑝

2𝜋
�̇�𝑎 (40) 

Alternatively, if the layers 𝑘 and 𝑘 + 1 are interchanged, i.e. 𝑘 is filamentary and 𝑘 + 1 is 

resistive, we have 

−(
𝑅𝑘+1
𝑅𝑘

)
2

𝐸02𝑘+1 + 𝐸02𝑘+2 =
𝑙𝑝
2𝜋
�̇�𝑎 (41) 

 

 In order not to obtain a divergent solution at 𝑟 = 0 we can deduce from expression (36) that 

𝐸01 = 0 (42) 

 

 If the ultimate layer is resistive, the radial current flowing at 𝑟 = 𝑅 (i.e. 𝐽𝑟𝑛(𝑅)) must be zero as 

not net current can escape the composite (if the ultimate layer was filamentary, this radial current 

could flow through the outer edge filaments). Consequently, since 𝐸𝑟𝑛(𝑅) = 𝜌𝑡𝑛𝐽𝑟𝑛(𝑅), we can 

conclude that 𝐸𝑟𝑛(𝑅) = 0, and using (36) 

𝐸02𝑛 = −𝐸02𝑛−1  (43) 

 

 Using equation (32) and the general form of 𝐸𝑟𝑘  and 𝐾𝑠𝑘 present in (36) we can also express each 

𝐾0𝑘 (when they exist, i.e. on the edges of a filamentary zone) as a function of the 𝐸02𝑘−1, 𝐸02𝑘, 

𝐸02𝑘+1 and 𝐸02𝑘+2 coefficients 

𝐾0𝑘 =
1

ρ𝑡𝑘

𝑙𝑝

2𝜋
[𝐸02𝑘−1 + 𝐸02𝑘 −

ρ𝑡𝑘
ρ𝑡𝑘+1

(
𝑅𝑘+1
𝑅𝑘

)
2

𝐸02𝑘+1 −
ρ𝑡𝑘
ρ𝑡𝑘+1

𝐸02𝑘+2] (44) 

 

Note that in case the ultimate zone of the composite is filamentary, we have 𝐽𝑟𝑛+1(𝑅) =

𝐸𝑟𝑛+1(𝑅)/𝜌𝑡𝑛+1 = 0 (i.e. there is no current flowing outside the composite). Using equation (32) 

again, we see that equation (44) is also valid for 𝑘 = 𝑛 after having removed 𝐸02𝑛+1 and 𝐸02𝑛+2, 

i.e. 

𝐾0𝑛 =
1

ρ𝑡𝑛

𝑙𝑝
2𝜋
[𝐸02𝑛−1 + 𝐸02𝑛] (45) 
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We have now derived all the analytical equations required for the determination of every 𝐸02𝑘−1 and 

𝐸02𝑘 coefficients. The method described in Appendix A can then be used to analytically solve the system. 

From another perspective which is more suitable for automating the solving procedure with an 

algorithm, for a composite made of 𝑛 layers, one can express the whole system as a matrix equation 

[𝐴][𝐸0] =
𝑙𝑝

2𝜋
𝐵�̇�[𝑌] where [𝐸0] is the column vector of the 2𝑛 − 1 (𝐸0𝑖)2≤𝑖≤2𝑛

 coefficients (since 𝐸01 =

0).  [𝐴] is a (2𝑛 − 1) × (2𝑛 − 1) square matrix which is automatically built line by line (depending on 

the nature of each interface and on the positions of the filamentary zones) from equations (30), (31) and 

(37) with the general expressions given by (36) and [𝑌] is a column vector whose 2𝑛 − 1 components 

(either 0 or 1) are deduced from equation (37). The method used to automatically build [𝐴] and [𝑌] is 

described in Appendix B. 

The analytical study of the coupling currents induced in steady-state regimes is now achieved and 

we know the spatial form of these currents; the first part of our global methodology is then also achieved 

(first line of Figure 15). We will then make use of this knowledge to push the modeling towards any 

time-varying regimes following the philosophy depicted in Figure 15. 

Again, by abuse of language, the term “time-varying regimes” refers here to regimes where all 

quantities inherent to the composite - in particular the induced currents - can no longer be considered as 

constant over time; they occur when the characteristic time for the external magnetic excitation 𝐵𝑎 to 

vary is comparable to or smaller than the largest time constant of the system. 

 

II.2.4  Study in time-varying regime 

 

 We will express here the magnetic field generated by the distribution of current found in 

steady-state regime (at the end of section II.2.3 ). We will then compute the new distribution of 

current induced by the time variation of this magnetic field. Finally, we will combine these 

results to those of section II.2.3  to establish the equation of the composite for any time regime. 

As mentioned previously, we will make use of the results of our analytical study in steady-state 

regimes to find the spatial solution of the induced currents in time-varying regimes. To make the link 

with the logical chain displayed in Figure 15, the electric field found in the previous analytical study in 

steady-state regimes corresponds to 𝐸(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and the associated distribution of currents to 𝐽(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗ since they are 

due to 𝐵𝑎⃗⃗ ⃗⃗⃗
̇
 only. 

In order to follow our logical chain we will now calculate the magnetic field 𝐵(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ created by 𝐽(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗, 

i.e. created by the distribution of currents induced by 𝐵𝑎⃗⃗ ⃗⃗⃗
̇
. The distribution of currents 𝐽(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗ can be 

subdivided into two sub-distributions : the first one corresponds to the currents flowing through the 

resistive parts of the composites thus in its cross-section while the second one corresponds to the currents 

flowing through the superconducting filaments located on the edges of each filamentary zone.  

Since the first sub-distribution of currents is exclusively flowing in the cross-section plane of the 

composite, it will have a tendency to produce a magnetic field oriented along the z-axis while the 

magnetic time-variation 𝐵𝑎⃗⃗ ⃗⃗⃗
̇
 produced by an external source is supposed to be along the y-axis; this sub-
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distribution will thus not take part in the magnetic shielding of the inside of the composite and will 

therefore be omitted for this reason in the following. 

Consequently we will consider that the magnetic field 𝐵(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ is exclusively produced by the second 

sub-distribution of currents, i.e. the currents flowing through the superconducting filaments located on 

the edges of each filamentary zone, and we will now focus on its determination assuming that each 

supercurrent flowing at 𝑟 = 𝑅𝑘 can be seen a surface current of the form 𝐾𝑠𝑘 = 𝐾0𝑘 cos(𝜃). 

Before determining the magnetic field 𝐵(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ produced by all the surface currents (𝐾𝑠𝑘)1≤𝑘≤𝑛
, we will 

briefly calculate the magnetic field produced by only one surface current 𝐾𝑠𝑘 = 𝐾0𝑘 cos(𝜃) located at 

𝑟 = 𝑅𝑘. 

Maxwell-Ampère equation ∇⃗⃗⃗ ×  �⃗⃗� = 𝜇0J⃗ combined with the relation between the magnetic field �⃗⃗� 

and the magnetic vector potential 𝐴, i.e. �⃗⃗� = ∇⃗⃗⃗ × 𝐴 leads to ∆⃗⃗⃗𝐴 = −𝜇0J⃗ considering the Coulomb 

gauge, that is to say ∇⃗⃗⃗. 𝐴 = 0. 

The supercurrent 𝐾𝑠𝑘 = 𝐾0𝑘 cos(𝜃) flowing through the filaments located at 𝑟 = 𝑅𝑘 is oriented 

along the 𝑠 direction (longitudinal direction along the filaments) and can thus be decomposed as 𝐾𝑠𝑘𝑒𝑠⃗⃗⃗⃗ =

𝐾𝜃𝑘𝑒𝜃⃗⃗⃗⃗⃗ + 𝐾𝑧𝑘𝑒𝑧⃗⃗ ⃗⃗  with 𝐾𝜃𝑘 = 𝐾0𝑘 cos(𝜃) 𝑠𝑖𝑛𝛼 and 𝐾𝑧𝑘 = 𝐾0𝑘 cos(𝜃) 𝑐𝑜𝑠𝛼 using the relation 𝑒𝑠⃗⃗⃗⃗ =

𝑠𝑖𝑛𝛼𝑒𝜃⃗⃗⃗⃗⃗ + 𝑐𝑜𝑠𝛼𝑒𝑧⃗⃗ ⃗⃗  given by (13). 

From the Biot-Savart law 𝐴(𝑀) =
𝜇0

4𝜋
∬

𝐾𝑠𝑘𝑑𝑆

𝑃𝑀



𝑃∈𝑆
𝑒𝑠⃗⃗⃗⃗ , we see that the magnetic vector potential 𝐴(𝑀) 

created by the supercurrent 𝐾𝑠𝑘 = 𝐾0𝑘 cos(𝜃) can also be decomposed as 

𝐴(𝑀) =
𝜇0𝐾0𝑘𝑠𝑖𝑛𝛼

4𝜋
∬

cos(𝜃)𝑑𝑆

𝑃𝑀



𝑃∈𝑆

𝑒𝜃⃗⃗⃗⃗⃗ +
𝜇0𝐾0𝑘𝑐𝑜𝑠𝛼

4𝜋
∬

cos(𝜃) 𝑑𝑆

𝑃𝑀



𝑃∈𝑆

𝑒𝑧⃗⃗ ⃗⃗ = 𝐴𝜃(𝑀)𝑒𝜃⃗⃗⃗⃗⃗ + 𝐴𝑧(𝑀)𝑒𝑧⃗⃗ ⃗⃗  

where 𝑆 is the surface where the supercurrent is flowing.  

We then have 

𝐴𝜃
𝐴𝑧

= 𝑡𝑎𝑛𝛼 (46) 

 

Making use of assumption A5 which implies 𝑡𝑎𝑛2 𝛼 ≪ 1, to the first order, we can consider that the 

azimuthal component 𝐴𝜃 of the magnetic vector potential created by the supercurrent is negligible 

compared to its axial component 𝐴𝑧. We can then suppose that the magnetic vector potential 𝐴 is reduced 

to its axial component only: 𝐴 = 𝐴𝑧𝑒𝑧⃗⃗ ⃗⃗ .  

Using ∆⃗⃗⃗𝐴 = −𝜇0J⃗, we can deduce that, inside and outside the supercurrent (i.e. respectively for 𝑟 <

𝑅𝑘 and 𝑟 > 𝑅𝑘), 𝐴𝑧 satisfies Laplace’s equation 

∆𝐴𝑧 = 0 (47) 

Let us note 𝐴𝑧𝑖𝑛𝑡  and 𝐴𝑧𝑒𝑥𝑡  the values of 𝐴𝑧, the magnetic vector potential due to the supercurrent 

𝐾0𝑘 cos(𝜃) flowing at 𝑟 = 𝑅𝑘, respectively inside and outside the supercurrent. Since 𝐴𝑧𝑖𝑛𝑡  and 𝐴𝑧𝑒𝑥𝑡  

are solutions of (47), their general form must be 
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{
 
 

 
 𝐴𝑧𝑖𝑛𝑡(𝑟, 𝜃) =∑[𝑎𝑖𝑛𝑡𝑖 cos(𝑖𝜃) + 𝑏𝑖𝑛𝑡𝑖 sin(𝑖𝜃)]

∞

𝑖=0

𝑅𝑘(𝑟/𝑅𝑘)
𝑖, 𝑎𝑘𝑖𝑛𝑡𝑖 ∈ ℝ, 𝑏𝑘𝑖𝑛𝑡𝑖 ∈ ℝ

𝐴𝑧𝑒𝑥𝑡(𝑟, 𝜃) = ∑ [𝑎𝑒𝑥𝑡𝑖 cos(𝑖𝜃) + 𝑏𝑒𝑥𝑡𝑖 sin(𝑖𝜃)]

0

𝑖=−∞

𝑅𝑘(𝑟/𝑅𝑘)
𝑖, 𝑎𝑘𝑒𝑥𝑡𝑖 ∈ ℝ, 𝑏𝑘𝑒𝑥𝑡𝑖 ∈ ℝ

 (48) 

 

Note that 𝑎𝑖𝑛𝑡𝑖 and 𝑏𝑖𝑛𝑡𝑖 are zero for 𝑖 < 0 and that 𝑎𝑒𝑥𝑡𝑖 and 𝑏𝑒𝑥𝑡𝑖 are zero for 𝑖 > 0 to avoid any 

divergence at 𝑟 = 0 and 𝑟 → ∞. The general formulations of 𝐴𝑧𝑖𝑛𝑡  and 𝐴𝑧𝑒𝑥𝑡  are chosen so that the 𝑎𝑖𝑛𝑡𝑖, 

𝑎𝑒𝑥𝑡𝑖,𝑏𝑖𝑛𝑡𝑖 and 𝑏𝑒𝑥𝑡𝑖 coefficients have the dimension of a magnetic field. 

Using �⃗⃗� = ∇⃗⃗⃗ ×𝐴, we can also give the general formulation of the magnetic field inside and outside 

the supercurrent using the general expressions given by (48) 

{
 
 
 
 
 

 
 
 
 
 𝐵𝑟𝑖𝑛𝑡(𝑟, 𝜃) =∑[−𝑎𝑖𝑛𝑡𝑖 sin(𝑖𝜃) + 𝑏𝑖𝑛𝑡𝑖 cos(𝑖𝜃)]𝑖(𝑟/𝑅𝑘)

𝑖−1

∞

𝑖=1

𝐵𝑟𝑒𝑥𝑡(𝑟, 𝜃) = ∑ [−𝑎𝑒𝑥𝑡𝑖 sin(𝑖𝜃) + 𝑏𝑒𝑥𝑡𝑖 cos(𝑖𝜃)]𝑖(𝑟/𝑅𝑘)
𝑖−1

−1

𝑖=−∞

𝐵𝜃𝑖𝑛𝑡(𝑟, 𝜃) = −∑[𝑎𝑖𝑛𝑡𝑖 cos(𝑖𝜃) + 𝑏𝑖𝑛𝑡𝑖 sin(𝑖𝜃)]𝑖(𝑟/𝑅𝑘)
𝑖−1

∞

𝑖=1

𝐵𝜃𝑒𝑥𝑡(𝑟, 𝜃) = − ∑ [𝑎𝑒𝑥𝑡𝑖 cos(𝑖𝜃) + 𝑏𝑒𝑥𝑡𝑖 sin(𝑖𝜃)]𝑖(𝑟/𝑅𝑘)
𝑖−1

−1

𝑖=−∞

 (49) 

 

In addition, the expressions of the magnetic field must also satisfy the interface conditions at 𝑟 =

𝑅𝑘. On the one hand, the continuity of the component normal to the interface which here corresponds to 

the radial component of the magnetic field (i.e. 𝐵𝑟), leads to 

𝐵𝑟𝑖𝑛𝑡(𝑅𝑘 , 𝜃) = 𝐵𝑟𝑒𝑥𝑡(𝑅𝑘, 𝜃), 𝜃 ∈ ℝ (50) 

 

On the other hand, the component tangent to the interface which here corresponds to the azimuthal 

component of the magnetic field (i.e. 𝐵𝜃), must satisfy 

𝐵𝜃𝑒𝑥𝑡(𝑅𝑘 , 𝜃) − 𝐵𝜃𝑖𝑛𝑡(𝑅𝑘 , 𝜃) = 𝜇0𝐾0𝑘 cos(𝜃) , 𝜃 ∈ ℝ (51) 

 

Since cos(𝑖𝜃)𝑖∈ℕ∗ and sin(𝑖𝜃)𝑖∈ℕ∗ are linearly independent families, using equation (50), we can 

deduce that 

{
𝑎𝑖𝑛𝑡1 = 𝑎𝑒𝑥𝑡−1
𝑏𝑖𝑛𝑡1 = −𝑏𝑒𝑥𝑡−1

 (52) 

and from equation (51), that 

{
𝑎𝑖𝑛𝑡1 + 𝑎𝑒𝑥𝑡−1 = 𝜇0𝐾0𝑘

𝑏𝑖𝑛𝑡1 = 𝑏𝑒𝑥𝑡−1
 (53) 
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The combination of systems (52) and (53) leads to the conclusion that 

{
𝑎𝑖𝑛𝑡1 = 𝑎𝑒𝑥𝑡−1 = 𝜇0𝐾0𝑘/2

𝑏𝑖𝑛𝑡1 = 𝑏𝑒𝑥𝑡−1 = 0
 (54) 

 

Consequently, using the general expressions given by (48) and (49), we now have 

{
 

 𝐴𝑧𝑖𝑛𝑡(𝑟, 𝜃) =
𝜇0𝐾0𝑘
2

𝑟 cos(𝜃)

𝐴𝑧𝑒𝑥𝑡(𝑟, 𝜃) =
𝜇0𝐾0𝑘
2


𝑅𝑘
2

𝑟
cos(𝜃)

 (55) 

And 

{
 
 
 
 

 
 
 
 𝐵𝑟𝑖𝑛𝑡(𝑟, 𝜃) = −

𝜇0𝐾0𝑘
2

sin(𝜃)

𝐵𝑟𝑒𝑥𝑡(𝑟, 𝜃) = −
𝜇0𝐾0𝑘
2

(
𝑅𝑘
𝑟
)
2

sin(𝜃)

𝐵𝜃𝑖𝑛𝑡(𝑟, 𝜃) = −
𝜇0𝐾0𝑘
2

cos(𝜃)

𝐵𝜃𝑒𝑥𝑡(𝑟, 𝜃) =
𝜇0𝐾0𝑘
2

(
𝑅𝑘
𝑟
)
2

cos(𝜃)

 (56) 

 

Using system (56), we can also express the 𝑥 and 𝑦 components of the magnetic field as 

{
 
 
 

 
 
 

𝐵𝑥𝑖𝑛𝑡(𝑟, 𝜃) = 0

𝐵𝑥𝑒𝑥𝑡(𝑟, 𝜃) = −
𝜇0𝐾0𝑘
2

(
𝑅𝑘
𝑟
)
2

sin(2𝜃)

𝐵𝑦𝑖𝑛𝑡(𝑟, 𝜃) = −
𝜇0𝐾0𝑘
2

𝐵𝑦𝑒𝑥𝑡(𝑟, 𝜃) =
𝜇0𝐾0𝑘
2

(
𝑅𝑘
𝑟
)
2

cos(2𝜃)

 (57) 

 

We must keep in mind that the components of the magnetic field calculated above are the 

components of the magnetic field created by a surface current of the form 𝐾0𝑘 cos(𝜃) flowing on the 

surface of the cylinder described by the equation 𝑟 = 𝑅𝑘. 

We have here found that the magnetic field inside a cosine distributed surface current 𝐾0 cos(𝜃), 

flowing on the surface of a cylinder, is uniform and oriented along the y-axis; this result is well known, 

especially in the accelerator community.  

For a composite consisting in a filamentary zone only, using equations (37) and (45), the 

supercurrent flowing through the outer edge filaments is found to be equal to 
1

𝜌𝑡
(
𝑙𝑝

2𝜋
)
2

�̇�𝑎 cos(𝜃). With 

the 𝐾0 cos(𝜃) notation, this leads to 𝐾0 =
1

𝜌𝑡
(
𝑙𝑝

2𝜋
)
2

�̇�𝑎, and therefore, according to equation (57), 𝐵𝑦𝑖𝑛𝑡 =

−
𝜇0

2

1

𝜌𝑡
(
𝑙𝑝

2𝜋
)
2

�̇�𝑎 = −𝜏�̇�𝑎 with 𝜏 given by equation (2). If �̇�𝑎 is positive, the internal reacting magnetic 
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field 𝐵𝑦𝑖𝑛𝑡  will then be negative, thus trying to shield the interior of the composite; this result is therefore 

physically consistent and corroborates previous analytical studies. 

Furthermore, since a composite can feature multiple surface currents (on the edges of each 

filamentary zone), we can now express, by superposition, the magnetic vector potential 𝐴𝑧𝑘
(1)

 created by 

all the surface currents inside a layer 𝑘 as 

𝐴𝑧𝑘
(1)(𝑟, 𝜃) =

𝜇0
2
[
1

𝑟
∑𝐾0𝑖

𝑘−1

𝑖=1

𝑅𝑖
2 + 𝑟∑𝐾0𝑖

𝑛

𝑖=𝑘

] cos(𝜃) (58) 

where 𝐾0𝑖 is the amplitude of the surface current flowing at 𝑟 = 𝑅𝑖. Note that for an interface of 

resistive/resistive type, the formula above is still valid replacing the 𝐾0𝑖 of the considered interface with 

zero since there is no filament. 

Following our logical chain, we can now compute the axial electric field 𝐸𝑧𝑘
(2)

 generated in each layer 

𝑘 by the time-variation of the surface currents using the following alternative formulation of Maxwell-

Faraday equation 

𝐸𝑧𝑘
(2)
= −�̇�𝑧𝑘

(1)
 (59) 

 

From equation (21), i.e. 𝐸𝜃 = −
𝑙𝑝

2𝜋𝑟
𝐸𝑧, the new azimuthal component of the electric field in a 

filamentary zone is 

𝐸𝜃𝑘
(2)
=

𝑙𝑝

2𝜋𝑟
�̇�𝑧𝑘
(1)

 (60) 

 

In reality, we should also consider the azimuthal component 𝐴𝜃𝑘
(1)

 of the magnetic vector potential 

created by the supercurrents and have 𝐸𝜃𝑘
(2)
=

𝑙𝑝

2𝜋𝑟
�̇�𝑧𝑘
(1)
− �̇�𝜃𝑘

(1)
 instead of (60). If we note 𝐴𝑧𝑘𝑖

(1)
 and 𝐴𝜃𝑘𝑖

(1)
 

the contributions of each supercurrent 𝐾𝑠𝑖, we see that 

𝐸𝜃𝑘
(2)
=∑[

𝑙𝑝
2𝜋𝑟

�̇�𝑧𝑘𝑖
(1)
− �̇�𝜃𝑘𝑖

(1)
]

𝑛

𝑖=1

 

And, according to equation (46), we can calculate the ratio of the second to the first term in the 

above sum: 

�̇�𝜃𝑘𝑖
(1)

𝑙𝑝
2𝜋𝑟

�̇�𝑧𝑘𝑖
(1)
=
2𝜋𝑟

𝑙𝑝

�̇�𝜃𝑘𝑖
(1)

�̇�𝑧𝑘𝑖
(1)

=
2𝜋𝑟

𝑙𝑝
𝑡𝑎𝑛𝛼 = 𝑡𝑎𝑛2 𝛼 ≪ 1 

since 𝑡𝑎𝑛𝛼 =
2𝜋𝑟

𝑙𝑝
  from equation (14).  

Therefore the reduction of the magnetic vector potential 𝐴𝑘
(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

 created by the supercurrents to its axial 

component 𝐴𝑧𝑘
(1)

 only is all the more justified since the taking into account of its azimuthal component 

𝐴𝜃𝑘
(1)

 has a largely negligible effect. 
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Now, replacing 𝐴𝑧𝑘
(1)

 in equation (60) with its expression given in equation (58), in each filamentary 

zone we have 

𝐸𝜃𝑘
(2)
=
𝜇0
2

𝑙𝑝

2𝜋
[
1

𝑟2
∑ �̇�0𝑖

𝑘−1

𝑖=1

𝑅𝑖
2 +∑�̇�0𝑖

𝑛

𝑖=𝑘

] cos(𝜃) (61) 

It should be noted that expression (61) of 𝐸𝜃𝑟𝑒𝑎𝑐𝑡𝑘 can be rewritten using the formulation present in 

(36) i.e. 

𝐸𝜃𝑘
(2)
= [𝐸02𝑘−1

(2)
(
𝑅𝑘
𝑟
)
2

− 𝐸02𝑘
(2)
] cos(𝜃) 

 

(62) 

with, by identification 

{
 
 

 
 
𝐸02𝑘−1
(2)

=
𝜇0
2

𝑙𝑝

2𝜋
∑ �̇�0𝑖

𝑘−1

𝑖=1

(
𝑅𝑖
𝑅𝑘
)
2



𝐸02𝑘
(2)

= −
𝜇0
2

𝑙𝑝
2𝜋
∑�̇�0𝑖

𝑛

𝑖=𝑘

 

 

(63) 

Using the previously introduced notation 𝐸𝑡
(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

 and Maxwell-Faraday equation  

∇⃗⃗⃗ × 𝐸(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = −𝐵(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗̇ , we can write ∇⃗⃗⃗ × 𝐸𝑡
(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
= 0⃗⃗ since we have seen that the magnetic field 𝐵(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ produced 

by the surface currents did not have any axial component (i.e. along the z-axis). 

From the considerations presented in our analytical study in steady-state regimes for the calculation 

of 𝐸𝑟𝑘 in the filamentary zones and the expression of 𝐸𝜃𝑘
(2)

 given by (61), we can immediately deduce 

that, in each filamentary zone, 𝐸𝑟𝑘
(2)

 will be given by 

𝐸𝑟𝑘
(2)
= −[𝐸02𝑘−1

(2)
(
𝑅𝑘
𝑟
)
2

+ 𝐸02𝑘
(2)
] sin(𝜃) (64) 

where 𝐸02𝑘−1
(2)

 and 𝐸02𝑘
(2)

 are also given by (63). 

Again using considerations from the study in steady-state regimes, we can also deduce that the 

expressions of the transverse electric field components (𝐸𝑟𝑘
(2)

 and 𝐸𝜃𝑘
(2)

) in the resistive zones of the 

composite are also given by 

{
 
 

 
 𝐸𝑟𝑘

(2)
= −[𝐸02𝑘−1

(2)
(
𝑅𝑘
𝑟
)
2

+ 𝐸02𝑘
(2)
] sin(𝜃)

𝐸𝜃𝑘
(2)
= [𝐸02𝑘−1

(2)
(
𝑅𝑘
𝑟
)
2

− 𝐸02𝑘
(2)
] cos(𝜃)

 (65) 

Note that here the 𝐸02𝑘−1
(2)

 and 𝐸02𝑘
(2)

 coefficients are not given by (63) because the formulae presented 

in (63) are only valid for filamentary zones. 

Since the electric field 𝐸(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  shares the same spatial form as the previous one found for steady-state 

regimes, we can deduce using Kirchhoff’s current law (32) that the new supercurrents will also have the 

same form as the previous ones, i.e. 𝐾𝑠𝑘
(2)
= 𝐾0𝑘

(2)
cos(𝜃). 
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From these observations and the considerations of section II.2.1 , we can say that we have now 

reached the end of our logical chain because the new distribution of currents 𝐽(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗, i.e. the new surface 

currents (𝐾𝑠𝑘
(2)
)
1≤𝑘≤𝑛

, shares the same spatial form as the previous one, i.e. the previous surface currents 

(𝐾𝑠𝑘)1≤𝑘≤𝑛
, found for steady-state regimes. 

We are now sure that, for any time-varying regime, the spatial form of the components of the 

transverse electric field in each layer 𝑘 (𝐸𝑟𝑘  and 𝐸𝜃𝑘) and of the supercurrents (𝐾𝑠𝑘)1≤𝑘≤𝑛
 will be given 

by (36), i.e. 

{
 
 

 
 𝐸𝑟𝑘 = −[𝐸02𝑘−1 (

𝑅𝑘
𝑟
)
2

+ 𝐸02𝑘] sin(𝜃)

𝐸𝜃𝑘 = [𝐸02𝑘−1 (
𝑅𝑘
𝑟
)
2

− 𝐸02𝑘] cos(𝜃)

𝐾𝑠𝑘 = 𝐾0𝑘 cos(𝜃)

 (66) 

 

The complete basis of spatial functions enabling the description of the system being established, we 

can now formulate the global equation of the system as a time-dependent only equation. 

Indeed, we now consider that the 𝐸02𝑘−1 and 𝐸02𝑘 coefficients associated to the transverse electric 

field in each filamentary zone 𝑘 are due both to �̇�𝑎, i.e. the time-variation of the magnetic field created 

by an external source, and to the time-variation of the magnetic field created by the surface currents 

(𝐾𝑠𝑘)1≤𝑘≤𝑛
. The contribution of �̇�𝑎 in the 𝐸02𝑘−1 and 𝐸02𝑘 coefficients of each filamentary zone has 

been given through equations (37) while the contribution of the time-variation of the surface currents 

(𝐾𝑠𝑘)1≤𝑘≤𝑛
 is given by equations (63). Therefore for every filamentary layer 𝑘, we can now, by 

superposition, write 

{
 
 

 
 
𝐸02𝑘−1 =

𝜇0
2

𝑙𝑝

2𝜋
∑ �̇�0𝑖

𝑘−1

𝑖=1

(
𝑅𝑖
𝑅𝑘
)
2



𝐸02𝑘 =
𝑙𝑝
2𝜋
�̇�𝑎 −

𝜇0
2

𝑙𝑝
2𝜋
∑�̇�0𝑖

𝑛

𝑖=𝑘

 (67) 

which can alternatively be written as 

{
 
 

 
 
𝐸02𝑘−1 −

𝜇0
2

𝑙𝑝
2𝜋
∑ �̇�0𝑖

𝑘−1

𝑖=1

(
𝑅𝑖
𝑅𝑘
)
2

= 0

𝐸02𝑘 +
𝜇0
2

𝑙𝑝
2𝜋
∑�̇�0𝑖

𝑛

𝑖=𝑘

=
𝑙𝑝
2𝜋
�̇�𝑎

 (68) 

 

We can also express 𝐸𝑧𝑘 in every zone as 

𝐸𝑧𝑘 = [𝑟 (�̇�𝑎 −
𝜇0
2
∑�̇�0𝑖

𝑛

𝑖=𝑘

) −
1

𝑟

𝜇0
2
∑ �̇�0𝑖

𝑘−1

𝑖=1

𝑅𝑖
2] cos(𝜃) (69) 
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superposing the expressions of 𝐸𝑧𝑘 given in (36) and obtained by the combination of equations (58) 

and (59). 

In addition, in our study in steady-state regime, we have derived the expressions of the (𝐾0𝑖)1≤𝑖≤𝑛
 

as functions of the 𝐸02𝑘−1 and 𝐸02𝑘 coefficients; they are given by equations (44) and (45). We have also 

seen that the 𝐸02𝑘−1 and 𝐸02𝑘 coefficients of the resistive zones could be expressed as functions of the 

𝐸02𝑘−1 and 𝐸02𝑘 coefficients of the filamentary zones only and this fact is independent of the regime 

considered because the coefficients are linked by boundary conditions. 

Now let us consider a composite made of 𝑛𝑓 filamentary zones and 𝑛𝐼𝑛𝑡𝑓 interfaces between 

filamentary layers, we know that there will be 2𝑛𝑓 𝐸02𝑘−1 and 𝐸02𝑘 coefficients (or 2𝑛𝑓 − 1 if the first 

layer is filamentary, because 𝐸01 is always zero) for the filamentary zones and 𝑛𝐼𝑛𝑡𝑓 boundary conditions 

due to the continuity of the azimuthal component 𝐸𝜃 of the electric field between filamentary layers; it 

is therefore possible to express all the 𝐸02𝑘−1 and 𝐸02𝑘 coefficients of the filamentary zones as functions 

of only 2𝑛𝑓 − 𝑛𝐼𝑛𝑡𝑓 of these coefficients (or 2𝑛𝑓 − 1 − 𝑛𝐼𝑛𝑡𝑓 if the first layer is filamentary). This is 

not a coincidence, because the number of edges of filamentary zones, thus the number of existing surface 

currents, is exactly equal to 2𝑛𝑓 − 𝑛𝐼𝑛𝑡𝑓 (or 2𝑛𝑓 − 1 − 𝑛𝐼𝑛𝑡𝑓 if the first layer is filamentary). We have 

then shown that the system could be expressed using a set of only 2𝑛𝑓 − 𝑛𝐼𝑛𝑡𝑓 (or 2𝑛𝑓 − 1 − 𝑛𝐼𝑛𝑡𝑓 if 

the first layer is filamentary) variables which can be chosen to be either the reduced number of 𝐸02𝑘−1 

and 𝐸02𝑘 coefficients of the filamentary zones or the 𝐾0𝑖 amplitudes of surface currents. 

Consequently, replacing the time derivatives of the (𝐾0𝑖)1≤𝑖≤𝑛
 amplitudes of surface currents in the 

set of equations (68) for 1 ≤ 𝑘 ≤ 𝑛 with their expressions as functions of the time derivatives of the 

reduced number of 𝐸02𝑘−1 and 𝐸02𝑘 coefficients of the filamentary zones, the system can be expressed 

as 

[𝐸0𝑓𝑟𝑒𝑑] + [𝑇𝑓𝐸] [�̇�0𝑓𝑟𝑒𝑑] = �̇�𝑎[𝑌𝑓𝐸] (70) 

where [𝐸0𝑓𝑟𝑒𝑑] is the column vector of the 2𝑛𝑓 − 𝑛𝐼𝑛𝑡𝑓 (or 2𝑛𝑓 − 1 − 𝑛𝐼𝑛𝑡𝑓 if the first layer is 

filamentary) reduced number of 𝐸02𝑘−1 and 𝐸02𝑘 coefficients of the filamentary zones, [𝑇𝑓𝐸] is a 2𝑛𝑓 −

𝑛𝐼𝑛𝑡𝑓(or2𝑛𝑓 − 𝑛𝐼𝑛𝑡𝑓 − 1) square matrix whose coefficients have the dimension of time and [𝑌𝑓𝐸] is a 

column vector having the same size as [𝐸0𝑓𝑟𝑒𝑑] and whose coefficients can be calculated analytically 

from the previous considerations.  

Alternatively, replacing all the 𝐸02𝑘−1 and 𝐸02𝑘 coefficients present in the set of equations (68) for 

1 ≤ 𝑘 ≤ 𝑛 with their expressions as functions of the non-zero 𝐾0𝑖 amplitudes of surface currents, it is 

also possible to express the global equation of the system as 

[𝐾0𝑓] + [𝑇𝑓𝐾] [�̇�0𝑓] = �̇�𝑎[𝑌𝑓𝐾] (71) 

where [𝐾0𝑓] is the column vector of the 2𝑛𝑓 − 𝑛𝐼𝑛𝑡𝑓 (or 2𝑛𝑓 − 1 − 𝑛𝐼𝑛𝑡𝑓 if the first layer is 

filamentary) non-zero amplitudes of surface currents, [𝑇𝑓𝐾] is a 2𝑛𝑓 − 𝑛𝐼𝑛𝑡𝑓(or2𝑛𝑓 − 𝑛𝐼𝑛𝑡𝑓 − 1) 

square matrix whose coefficients have the dimension of time and [𝑌𝑓𝐾] is a column vector having the 

same size as [𝐾0𝑓] and whose coefficients can also be calculated analytically from the previous 

considerations. 
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Both formulations have advantages and disadvantages: equation (70) will preferably be chosen for 

the derivation of coupling losses generated inside the composite while equation (71) has a more 

enlightening physical meaning. Indeed, it is much easier to understand that the system can be represented 

with an equation on the surface currents only rather than on some electric field coefficients, because we 

physically understand that the surface currents are actually trying to shield the composite from the time-

variations of the magnetic field created by an external source and that they are linked both electrically 

(through resistances) and magnetically (through inductances). 

It is also interesting to note that [𝑇𝑓𝐸] and [𝑇𝑓𝐾] are actually similar matrices and they therefore share 

the same eigenvalues which physically represent the time constants of the system. 

Another important point is that the number of time constants of a composite is therefore always 

equal to the number of edges of filamentary zones it contains; we are now able to determine the number 

of time constants of a composite with a short glimpse at its design. 

As we have already presented a detailed analytical procedure for the derivation of the equation of 

the system in our study in steady-state regime, we will simply provide a summary of the new analytical 

procedure for time-varying regimes: 

We express all the 𝐸02𝑘−1  and 𝐸02𝑘 coefficients of every resistive zone as functions of those of the 

filamentary zones using equations (38), (39), (42), (43) and (343). If there exist interfaces between 

filamentary layers, we make use of equation (343) at these interfaces to express one of the 𝐸02𝑘−1 and 

𝐸02𝑘 coefficients of the filamentary zones adjacent to the interfaces as function of the others. We then 

have a basis for the 𝐸02𝑘−1 and 𝐸02𝑘 coefficients that we call (𝐸0𝑓𝑟𝑒𝑑): indeed the 𝐸02𝑘−1 and 𝐸02𝑘 

coefficients of every layer can be expressed as a linear combination of the 𝐸02𝑘−1 and 𝐸02𝑘 coefficients 

contained in (𝐸0𝑓𝑟𝑒𝑑) only. Similarly let us call (𝐾0𝑓) the family of the non-zero 𝐾0𝑖 amplitudes of 

surface currents (i.e. those located on the edge of a filamentary zone). The expressions of the amplitudes 

contained in (𝐾0𝑓) being given by equations (44) and (45), we can also express these amplitudes as 

functions of the 𝐸02𝑘−1 and 𝐸02𝑘 coefficients of (𝐸0𝑓𝑟𝑒𝑑) only; these coefficients can reciprocally be 

expressed as functions of the amplitudes of (𝐾0𝑓). Finally from the set of equations (68) for 1 ≤ 𝑘 ≤ 𝑛, 

we only keep those featuring the 𝐸02𝑘−1 and 𝐸02𝑘 coefficients contained in (𝐸0𝑓𝑟𝑒𝑑) and then replace 

the �̇�0𝑖 present in the remaining equations with their expressions as functions of the time-derivatives of 

the coefficients contained in (𝐸0𝑓𝑟𝑒𝑑) and thus obtain matrix equation (70); indeed the relations between 

the elements of (�̇�0𝑓) and (�̇�0𝑓𝑟𝑒𝑑) are the same as the ones between elements of (𝐾0𝑓) and (𝐸0𝑓𝑟𝑒𝑑). 

In order to obtain matrix equation (71), we start from matrix equation (70) and replace the coefficients 

contained in (𝐸0𝑓𝑟𝑒𝑑) with their expressions as functions of the elements of (𝐾0𝑓). 

In our study in steady-state regime, we have provided the logical tree to build the [𝐴] matrix and the 

[𝑌] column vector which are needed to express the equation of the system as in equation (348), i.e. 

[𝐴][𝐸0] =
𝑙𝑝

2𝜋
𝐵�̇�[𝑌]. We will not provide here the logical tree to build the [𝑇𝑓𝐸], [𝑇𝑓𝐾] matrices and the 

[𝑌𝑓𝐸], [𝑌𝑓𝐾] column vectors of matrix equations (70) and (71) since it would feature too many exceptions, 

making it quite unattractive. 

Alternatively, we have chosen to express the equation of the system as 



50 

 

[𝐴][𝐸0] +
𝜇0
2
(
𝑙𝑝

2𝜋
)

2
1

𝜌𝑡1
[𝐵][�̇�0] =

𝑙𝑝

2𝜋
�̇�𝑎[𝑌] (72) 

where [𝐴] and [𝑌] are exactly the same as the ones used in steady-state regime and [𝐵] is another 

square matrix whose coefficients are dimensionless and whose derivation is shown through Appendix 

C. 

It is important to point out that matrix equation (72) does not have the same size as matrix equations 

(70) and (71), i.e. [𝐴] and [𝐵] are 2𝑛 − 1 square matrices while [𝑇𝑓𝐸] and [𝑇𝑓𝐾] are 2𝑛𝑓 − 𝑛𝐼𝑛𝑡𝑓 (or 

2𝑛𝑓 − 𝑛𝐼𝑛𝑡𝑓 − 1 if the first layer is filamentary) square matrices. This means that the system described 

by matrix equations (70) and (71) will have (2𝑛𝑓 − 𝑛𝐼𝑛𝑡𝑓) or (2𝑛𝑓 − 𝑛𝐼𝑛𝑡𝑓 − 1) time constants 

(eigenvalues) while the system described by matrix equation (72) will have (2𝑛 − 1) time constants; 

this seems to be physically inconsistent as these three matrix equations are describing the same system. 

In reality, there will only be (2𝑛𝑓 − 𝑛𝐼𝑛𝑡𝑓) or (2𝑛𝑓 − 𝑛𝐼𝑛𝑡𝑓 − 1) physical time constants (eigenvalues) 

in matrix equation (72); the other eigenvalues will be artificial and all equal to 
𝜇0

2
(
𝑙𝑝

2𝜋
)
2 1

𝜌𝑡1
. We employ 

the term “artificial” here because the additional eigenvalues are a consequence of our mathematical 

manipulation and do not correspond to any physical process occurring inside the strand. In fact, the 

appearance of these extra eigenvalues is due to the fact that we have duplicated some lines of the [𝐴] 

matrix into the [𝐵] matrix to render it invertible. Indeed, the continuity equations on 𝐸𝜃 and 𝐽𝑟 which 

are represented by some lines of the [𝐴] matrix are still valid after a derivation with respect to time; we 

have therefore duplicated these lines into [𝐵] without physically changing the system (the multiplication 

by 
𝜇0

2
(
𝑙𝑝

2𝜋
)
2 1

𝜌𝑡1
 has no effect since the right-hand terms of continuity equations (343), (344) and (345) 

are zero). In reality, the extra eigenvalues correspond to the eigenvectors that will always be zero; this 

explains why they have no incidence on the physical behavior of the composite. As mentioned 

previously, we have chosen this formulation over matrix equations (70) and (71) as it is much more 

adequate for the development of a general algorithm. 

 

II.2.5  Discussion about specific assumptions of the model 

 

 We will evaluate here the shielding made by the outer copper sheath and we will discuss the 

saturation of filaments to establish the domain of validity of the model. 

II.2.5.1  Discussion about shielding by the outer copper sheath 

 

Now that we have completed the derivation of the equations governing any composite with 𝑛 

cylindrical concentric layers either filamentary or purely resistive for a time-varying regime, we can 

discuss assumption A7 which states that “the time variation of the external magnetic field 𝐵𝑎 is slow 

enough to ensure that the copper sheath does not magnetically shield its enclosed volume”. 

In order to do so, we will establish a simplified equation governing the currents induced in the copper 

sheath making use of the results of the previous sections. This simplified approach requires the thickness 

𝑒 of the copper sheath to be small compared to the composite radius 𝑅 so that these currents can be 

represented to good approximation by a surface current 𝐾𝐶𝑢 located at 𝑟 = 𝑅 − 𝑒/2 as displayed on 

Figure 18 and flowing in the axial direction (i.e. along the z-axis). 
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This approach will enable us to give an estimate of the frequency domain in which our model is 

valid. 

 

 

Figure 18 : Scheme of an external copper sheath 

 

If an external time-varying magnetic field 𝐵𝑎 is applied to the copper sheath alone, an axial electric 

field 𝐸𝑧 = 𝑟�̇�𝑎cos(𝜃) will be created according to equation (20) which in turn will give rise to a local 

axial current density 𝐽𝑧 =
𝐸𝑧

𝜌𝐶𝑢
 with 𝜌𝐶𝑢 the copper resistivity. We therefore have 

𝐽𝑧 =
𝑟�̇�𝑎
𝜌𝐶𝑢

cos(𝜃) (73) 

 

We consider that the distribution of current density 𝐽𝑧 can be alternatively seen as flowing through 

a thin sheet of current 𝐾𝐶𝑢 located at 𝑟 = 𝑅 −
𝑒

2
, i.e. at the middle of the sheath as indicated on Figure 

18. This assumption implies that 

𝐾𝐶𝑢 = ∫ 𝐽𝑧(𝑟)𝑑𝑟
𝑅

𝑅−𝑒

 (74) 

 

Combining equations (73) and (74), we obtain 

𝐾𝐶𝑢 =
�̇�𝑎
𝜌𝐶𝑢

cos(𝜃)∫ 𝑟𝑑𝑟
𝑅

𝑅−𝑒

≃
𝑅𝑒�̇�𝑎
𝜌𝐶𝑢

cos(𝜃) (75) 

since 𝑒 is assumed to be small compared to 𝑅. 

From the previous equation we see that 𝐾𝐶𝑢 can also be written as 𝐾𝐶𝑢 = 𝐾0𝐶𝑢 cos(𝜃) with 
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𝐾0𝐶𝑢 =
𝑅𝑒�̇�𝑎
𝜌𝐶𝑢

 (76) 

 

Following our logical chain displayed on Figure 15, we now have to compute the reacting magnetic 

vector potential 𝐴𝑧
(1)

 created by the sheet of current 𝐾𝐶𝑢. Since 𝐾𝐶𝑢 can be written as 𝐾0𝐶𝑢 cos(𝜃), we 

can use equations (55) so that 

𝐴𝑧
(1)
=

{
 
 

 
 

𝜇0𝐾0𝐶𝑢
2

𝑟 cos(𝜃) 𝑓𝑜𝑟𝑟 ≤ 𝑅 −
𝑒

2

𝜇0𝐾0𝐶𝑢
2


(𝑅 −

𝑒
2
)
2

𝑟
cos(𝜃) 𝑓𝑜𝑟𝑟 ≥ 𝑅 −

𝑒

2

 (77) 

 

Knowing 𝐴𝑧
(1)

, we can now compute the axial electric field 𝐸𝑧
(2)

 generated by the time-variation of 

the surface current 𝐾𝐶𝑢 using the alternative formulation of Maxwell-Faraday equation as we did for the 

derivation of equation (59) 

𝐸𝑧
(2)
= −�̇�𝑧

(1)
 (78) 

In addition local Ohm’s law indicates that 𝐽𝑧
(2)
=

𝐸𝑧
(2)

𝜌𝐶𝑢
. Then, making use of equations (74), (77) and 

(78), the new current sheet 𝐾𝐶𝑢
(2)

 is 

𝐾𝐶𝑢
(2)
= ∫ 𝐽𝑧

(2)
(𝑟)𝑑𝑟

𝑅

𝑅−𝑒

= −
𝜇0�̇�0𝐶𝑢
2𝜌𝐶𝑢

cos(𝜃)[∫ 𝑟𝑑𝑟
𝑅−

𝑒
2

𝑅−𝑒

+ (𝑅 −
𝑒

2
)
2

∫
𝑑𝑟

𝑟

𝑅

𝑅−
𝑒
2

] (79) 

We can compute and reduce the first term in brackets as follows 

∫ 𝑟𝑑𝑟
𝑅−

𝑒
2

𝑅−𝑒

=
(𝑅 −

𝑒
2
)
2
− (𝑅 − 𝑒)2

2
=
𝑅𝑒

2
(1 −

3

4

𝑒

𝑅
) ≃

𝑅𝑒

2
 

since we have supposed 
𝑒

𝑅
≪ 1 

The second term leads to 

(𝑅 −
𝑒

2
)
2

∫
𝑑𝑟

𝑟

𝑅

𝑅−
𝑒
2

= −(𝑅 −
𝑒

2
)
2

𝑙𝑛 (1 −
𝑒

2𝑅
) ≃ (𝑅 −

𝑒

2
)
2 𝑒

2𝑅
≃
𝑅𝑒

2
 

using the Taylor series expansion of 𝑙𝑛 (1 −
𝑒

2𝑅
) to the first order since 

𝑒

𝑅
≪ 1. 

From these calculations, we can now simplify equation (79) 

𝐾𝐶𝑢
(2)
= −

𝜇0𝑅𝑒

2𝜌𝐶𝑢
�̇�0𝐶𝑢 cos(𝜃) (80) 

 

We now see that it is also possible to write 𝐾𝐶𝑢
(2)

 as 𝐾𝐶𝑢
(2)
= 𝐾0𝐶𝑢

(2)
cos(𝜃) with 
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𝐾0𝐶𝑢
(2)

= −
𝜇0𝑅𝑒

2𝜌𝐶𝑢
�̇�0𝐶𝑢  (81) 

 

Since 𝐾𝐶𝑢
(2)

 shares the same spatial form as 𝐾𝐶𝑢 we can now legitimately suppose that the currents 

induced in the copper sheath can be expressed as 𝐾𝐶𝑢 = 𝐾0𝐶𝑢 cos(𝜃). Then, we can give, by 

superposition, the equation governing the spatial amplitude 𝐾0𝐶𝑢 of the surface current 𝐾𝐶𝑢 flowing at 

𝑟 = 𝑅 −
𝑒

2
 using equations (76) and (81) 

𝐾0𝐶𝑢 +
𝜇0𝑅𝑒

2𝜌𝐶𝑢
�̇�0𝐶𝑢 =

𝑅𝑒

𝜌𝐶𝑢
�̇�𝑎 

which can be written as 

𝐾0𝐶𝑢 + 𝜏𝐶𝑢�̇�0𝐶𝑢 =
2

𝜇0
𝜏𝐶𝑢�̇�𝑎 (82) 

with 

𝜏𝐶𝑢 =
𝜇0𝑅𝑒

2𝜌𝐶𝑢
 (83) 

Note that this formula is fully consistent with the one given in [31]. 

By superposition, the internal magnetic field 𝐵𝑖 in the volume enclosed by the copper sheath, i.e. for 

𝑟 ≤ 𝑅 − 𝑒 (see Figure 18) will be given by 

𝐵𝑖 = 𝐵𝑎 −
𝜇0𝐾0𝐶𝑢
2

 

according to equation (57). This is equivalent to 

𝐾0𝐶𝑢 =
2

𝜇0
(𝐵𝑎 − 𝐵𝑖) 

Replacing 𝐾0𝐶𝑢 with 
2

𝜇0
(𝐵𝑎 − 𝐵𝑖) in equation (82) and multiplying both sides by 

𝜇0

2
 leads to 

𝐵𝑖 + 𝜏𝐶𝑢�̇�𝑖 = 𝐵𝑎 (84) 

which is identical to (1). 

The condition to ensure that the copper sheath does not magnetically shield its enclosed volume can 

be expressed as 

|
�̇�𝑖

�̇�𝑎
| ≃ 1 

We can use the complex notation and equation (84) to write 

�̅�𝑖 =
�̅�𝑎

(1 + 𝑗𝜔𝜏𝐶𝑢)
 

In addition, we have 
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�̇̅�𝑖 = 𝑗𝜔�̅�𝑖 = 𝑗𝜔
�̅�𝑎

(1 + 𝑗𝜔𝜏𝐶𝑢)
=

𝑗𝜔�̅�𝑎
(1 + 𝑗𝜔𝜏𝐶𝑢)

=
�̇̅�𝑎

(1 + 𝑗𝜔𝜏𝐶𝑢)
 

which enables us to write 

|
�̇�𝑖

�̇�𝑎
| = |

�̇̅�𝑖

�̇̅�𝑎
| = |

1

1 + 𝑗𝜔𝜏𝐶𝑢
| =

1

√1 + (𝜔𝜏𝐶𝑢)
2
 

The previous condition is then equivalent to 

1

√1 + (𝜔𝜏𝐶𝑢)
2
≃ 1 

For |�̇�𝑖| to not differ from more than 1% from |�̇�𝑎|, we need 

1

√1 + (𝜔𝜏𝐶𝑢)
2
≥ 0.99 

which leads to 

𝜔𝜏𝐶𝑢 ≤
√1 − 0.992

0.99
≃ 0.142 (85) 

 

To give a relevant estimate of 𝜏𝐶𝑢, we choose the following parameters which are relevant for several 

strands used in fusion: 𝜌𝐶𝑢 = 2.10
−10𝛺.𝑚, 𝑅 = 0.5𝑚𝑚 and 𝑒 = 𝑅/4, using (83), we obtain the 

following value for 𝜏𝐶𝑢 

𝜏𝐶𝑢 ≃ 0.2𝑚𝑠 (86) 

 

Replacing the angular frequency 𝜔 with 2𝜋𝑓 and 𝜏𝐶𝑢 with 0.2𝑚𝑠, condition (85) implies 

𝑓 ≤ 113𝐻𝑧 (87) 

Note that this value is not as high as we can expect, and this frequency range could be encountered 

in tokamaks during ELMs. 

We can also easily derive a condition of minimum duration of a rising or falling ramp of 𝐵𝑎 to ensure 

that the magnetic shielding accomplished by the copper sheath is negligible. 

First, we can differentiate equation (84) with respect to time in order to obtain 

�̇�𝑖 + 𝜏𝐶𝑢�̈�𝑖 = �̇�𝑎 (88) 

 

We immediately see that equation (88) is in fact the equation of a first-order system and, in the case 

of a rising (or falling) ramp going from 0 to 𝐵𝑚 (or −𝐵𝑚) in a time 𝑇𝑎, we have |�̇�𝑎| = 𝐵𝑚/𝑇𝑎. We can 

therefore conclude that a time of 5𝜏𝐶𝑢 is needed for |�̇�𝑖| to go from an initial zero value to |�̇�𝑎|; indeed 

5𝜏𝐶𝑢 is the time for |�̇�𝑖| to reach 99% of its final value, i.e. |�̇�𝑎|, because  

1 − 𝑒−5 ≃ 0.99. 
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Considering that the magnetic shielding accomplished by the copper sheath is negligible if it occurs 

for less than 1% of the total ramp duration 𝑇𝑎, we can write the following condition 

5𝜏𝐶𝑢 ≤
𝑇𝑎
100

 (89) 

which, with 𝜏𝐶𝑢 = 0.2𝑚𝑠, leads to 

𝑇𝑎 ≥ 0.1𝑠 (90) 

 

The ranges of maximum frequencies and minimum ramp durations found by our simple model where 

the copper sheath might shield its enclosed volume are seldom the ones experienced by magnets in 

tokamaks. Some exceptions can be met in very specific cases such as plasma disruption and ELMs, or 

the rapid breakdown step in CS; in this cases specific analyses should be led. 

 

II.2.5.2  Discussion about the saturation of filaments 

 

Before deriving the formulae needed for the computation of the power dissipated by coupling 

currents, we also need to give a limit for the validity of assumption A4. Indeed, in order for the 

superconducting filaments not to be saturated, they must carry a current inferior to their critical current. 

Let us call 𝜆 the proportion of superconductor in a filamentary zone, the maximum local current 𝐼𝑙𝑜𝑐𝑚𝑎𝑥 

that an elementary area of length 𝑟𝑑𝜃 and thickness 𝑑𝑟 can carry is 

𝐼𝑙𝑜𝑐𝑚𝑎𝑥 = 𝜆𝐽𝑐𝑟𝑑𝜃𝑑𝑟 (91) 

where 𝐽𝑐 is the critical current density of the superconducting material. 

On another side, the local coupling current 𝐼𝑙𝑜𝑐 carried by the same elementary area is 

𝐼𝑙𝑜𝑐 = 𝐾0cos(𝜃)𝑟𝑑𝜃 (92) 

 

To ensure the validity of assumption A4, we therefore need |𝐼𝑙𝑜𝑐| ≤ |𝐼𝑙𝑜𝑐𝑚𝑎𝑥|, i.e. 

|𝐾0 cos(𝜃)| ≤ 𝜆𝐽𝑐𝑑𝑟 (93) 

using equations (91) and (92). 

The most critical case is reached in the midplane for which 𝜃 = 0 or 𝜃 =
𝜋

2
, i.e. for |cos(𝜃)| = 1. 

Consequently, the maximum surface current amplitude 𝐾0𝑚𝑎𝑥 allowed without saturating more than the 

first ring of filaments is then 

𝐾0𝑚𝑎𝑥 = 𝜆𝐽𝑐𝑑𝑓 (94) 

according to condition (93) for 𝑑𝑟 = 𝑑𝑓, with 𝑑𝑓 the filaments diameter. 

Beyond this limit, we can reasonably consider that the analytical formulae derived in our approach 

still hold for relatively small values of 𝑑𝑟, i.e. when 𝑑𝑟 does not exceed more than 10% of the 

filamentary layer thickness. 

For an interface of R/F type located at 𝑟 = 𝑅𝑘, condition (94) becomes then 

𝐾0𝑚𝑎𝑥 = 0.1(𝑅𝑘+1 − 𝑅𝑘)𝜆𝐽𝑐 (95) 
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And for an interface of F/R type located at 𝑟 = 𝑅𝑘, condition (94) becomes 

𝐾0𝑚𝑎𝑥 = 0.1(𝑅𝑘 − 𝑅𝑘−1)𝜆𝐽𝑐 (96) 

with 𝑅𝑘−1 = 0 if 𝑘 = 1, i.e. if the filamentary layer is located at the center of the composite. 

 

II.2.6  Power dissipated by coupling currents 

 

 We will compute here the power generated by coupling currents as a function of the 𝑬𝟎𝒌 

coefficients introduced in section II.2.3 . 

We will first remind the expressions of each component of the electric field in every layer 𝑘 from 

equations (66) and (69) 

{
 
 
 

 
 
 𝐸𝑟𝑘 = −[𝐸02𝑘−1 (

𝑅𝑘
𝑟
)
2

+ 𝐸02𝑘] sin(𝜃)

𝐸𝜃𝑘 = [𝐸02𝑘−1 (
𝑅𝑘
𝑟
)
2

− 𝐸02𝑘] cos(𝜃)

𝐸𝑧𝑘 = [𝑟 (�̇�𝑎 −
𝜇0
2
∑�̇�0𝑖

𝑛

𝑖=𝑘

) −
1

𝑟

𝜇0
2
∑ �̇�0𝑖

𝑘−1

𝑖=1

𝑅𝑖
2] cos(𝜃)

 (97) 

 

To compute the local power density 𝑃𝑘 dissipated by coupling currents in each layer 𝑘, we use the 

following formula 

𝑃𝑘 = 𝐽𝑘. �⃗⃗�𝑘  (98) 

Decomposing vectors 𝐽𝑘 and �⃗⃗�𝑘 in the cylindrical frame (𝑒𝑟⃗⃗ ⃗⃗ , 𝑒𝜃,⃗⃗⃗⃗⃗⃗ 𝑒𝑧⃗⃗ ⃗⃗ ), equation (98) becomes 

𝑃𝑘 = 𝐽𝑟𝑘𝐸𝑟𝑘 + 𝐽𝜃𝑘𝐸𝜃𝑘 + 𝐽𝑧𝑘𝐸𝑧𝑘  (99) 

 

We have previously assumed 𝐸𝑟𝑘 = 𝜌𝑡𝑘𝐽𝑟𝑘 and 𝐸𝜃𝑘 = 𝜌𝑡𝑘𝐽𝑟𝑘, where 𝜌𝑡𝑘 is the effective transverse 

resistivity of layer 𝑘. We can also define 𝜌𝑙𝑘 as being the effective longitudinal resistivity of each layer 

𝑘 so that we have 𝐸𝑧𝑘 = 𝜌𝑙𝑘𝐽𝑧𝑘. 

Note that in each resistive layer 𝜌𝑡𝑘 = 𝜌𝑙𝑘 since metals are isotropic materials. However, in the 

filamentary zones, the effective transverse and longitudinal resistivities are different from one another, 

but they are of the same order of magnitude. 

As a consequence, in each filamentary zone 𝑘, equation (99) leads to 

𝑃𝑘 =
𝐸𝑟𝑘
2 + 𝐸𝜃𝑘

2

𝜌𝑡𝑘
+
𝐸𝑧𝑘
2

𝜌𝑙𝑘
 (100) 

 

The ratio of the second to the first term of equation (100) can be majored as follows 
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𝐸𝑧𝑘
2

𝜌𝑙𝑘
𝐸𝑟𝑘
2 + 𝐸𝜃𝑘

2

𝜌𝑡𝑘

=
𝐸𝑧𝑘
2

𝐸𝑟𝑘
2 + 𝐸𝜃𝑘

2

𝜌𝑡𝑘
𝜌𝑙𝑘

≤
𝐸𝑧𝑘
2

𝐸𝜃𝑘
2

𝜌𝑡𝑘
𝜌𝑙𝑘

 (101) 

 

Using relation (21), i.e. 𝐸𝜃 = −
𝑙𝑝

2𝜋𝑟
𝐸𝑧, valid in each filamentary zone, we can deduce 

𝐸𝑧𝑘
2

𝐸𝜃𝑘
2

𝜌𝑡𝑘
𝜌𝑙𝑘

= (
2𝜋𝑟

𝑙𝑝
)

2
𝜌𝑡𝑘
𝜌𝑙𝑘

≪ 1 

since (
2𝜋𝑟

𝑙𝑝
)
2

≪ 1 according to assumption A5 and because 𝜌𝑡𝑘 and 𝜌𝑙𝑘 are of the same order of 

magnitude. 

We can therefore reduce equation (101) in each filamentary zone to the following 

𝑃𝑘 =
𝐸𝑟𝑘
2 + 𝐸𝜃𝑘

2

𝜌𝑡𝑘
 (102) 

 

On another side, in the resistive zones relation (21), i.e. 𝐸𝜃 = −
𝑙𝑝

2𝜋𝑟
𝐸𝑧, is not valid but we can still 

consider that 𝐸𝑧𝑘
2 ≪ 𝐸𝑟𝑘

2 + 𝐸𝜃𝑘
2 . Indeed, we can legitimately assume that first, the values of 𝐸𝜃 are of the 

same order of magnitude in the resistive zones and in the filamentary zones and secondly, that the values 

of 𝐸𝑧 are also of the same order of magnitude in the resistive and filamentary zones. The ratio of 𝐸𝑧𝑘
2 /𝐸𝜃𝑘

2  

being negligible in the filamentary zones, we can deduce that it is also the case in the resistive zones; 

we can therefore use formula (102) to evaluate the power density dissipated in each layer of the 

composite. 

Replacing 𝐸𝑟𝑘 and 𝐸𝜃𝑘 by their expressions given by (97) in formula (102), we obtain 

𝑃𝑘(𝑟, 𝜃) =

[𝐸02𝑘−1 (
𝑅𝑘
𝑟 )

2

+ 𝐸02𝑘]

2

sin2(𝜃) + [𝐸02𝑘−1 (
𝑅𝑘
𝑟 )

2

− 𝐸02𝑘]

2

cos2(𝜃)

𝜌𝑡𝑘
 

which reduces to 

𝑃𝑘(𝑟, 𝜃) =
1

𝜌𝑡𝑘
[𝐸02𝑘−1

2 (
𝑅𝑘
𝑟
)
4

+ 𝐸02𝑘
2 − 2𝐸02𝑘−1 (

𝑅𝑘
𝑟
)
2

𝐸02𝑘 cos(2𝜃)] (103) 

 

The average power density �̅� dissipated in a length 𝐿 of composite is equal to 

�̅� =
1

𝜋𝑅2𝐿
∑∭𝑃𝑘(𝑟, 𝜃)𝑑𝑉



𝑉𝑘

𝑛

𝑘=1

=
1

𝜋𝑅2𝐿
∑∫ ∫ ∫ 𝑃𝑘(𝑟, 𝜃)𝑟𝑑𝑟𝑑𝜃𝑑𝑧

2𝜋

𝜃=0

𝑟=𝑅𝑘

𝑟=𝑅𝑘−1

𝐿

𝑧=0

𝑛

𝑘=1

 (104) 

 

Combining equations (103) and (104), we finally obtain 
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�̅� =
1

𝜌𝑡1
(
𝑅1
𝑅
)
2

𝐸02
2 +∑

1

𝜌𝑡𝑘
(
𝑅𝑘
𝑅
)
2

([(
𝑅𝑘
𝑅𝑘−1

)
2

− 1]𝐸02𝑘−1
2 + [1 − (

𝑅𝑘−1
𝑅𝑘

)
2

]𝐸02𝑘
2)

𝑛

𝑘=2

 (105) 

 

Note that the formula of the average power density is not given here per unit volume of filamentary 

zone as it has been done in (3) but per unit volume of composite. 

 

II.2.7  Calculation of coupling currents and of electric and magnetic fields in the 

composite 

 

 We will express here the currents and the electric and magnetic fields in the composite as a 

function of the 𝑬𝟎𝒌  coefficients. 

Our main objective here is to produce analytical tools which are able to compute every physical 

quantity inherent to a composite subject to a transverse time-varying magnetic field as this situation is 

commonly encountered in large superconducting devices (e.g. tokamaks, particle accelerators, etc.). 

However since it is not possible to give an expression of these quantities without the preliminary 

knowledge of the composite design, we have decided to build a general algorithm (CLASS : Coupling 

Losses Algorithm for Superconducting Strands) able to compute them using mainly analytical formulae 

and the electrical and geometrical parameters of the strand. This choice of an analytical oriented 

algorithm is motivated by the fact that it ensures a very fast and light computation of the composite 

response to time-varying magnetic field: this is an important point in an environment where heavy 

computation times are required by other physics (e.g. thermal sciences, mechanics, etc.). It also has the 

benefit to be easily reproducible since all the formulae required for the calculation of the composite 

response are explicitly given in this manuscript. 

We will now give a review of the expressions of each of the following physical quantities 

 the surface current amplitudes (𝐾0𝑘)1≤𝑘≤𝑛
 flowing through the edges of the filamentary zones 

 the distribution of the electric field �⃗⃗� 

 the distribution of the transverse current 𝐽 flowing through the resistive parts of the strand  

 the distribution of the magnetic field �⃗⃗� 

inside the composite as function of the (𝐸0𝑘)2≤𝑘≤2𝑛
 coefficients and of its electrical (resistivities) 

and geometrical (radii of each zone and twist pitch of the filaments) parameters  only. 

The expressions of the surface current amplitudes (𝐾0𝑘)1≤𝑘≤𝑛
 has been given in equation (349) 

[𝐾0] =
1

𝜌𝑡1

𝑙𝑝
2𝜋
[𝑀][𝐸0] (106) 

where [𝑀] is a 𝑛 × (2𝑛 − 1) matrix whose coefficients can be computed using the procedure given 

in Figure 79. 

The formulae of the transverse components of the electric field �⃗⃗� in layer 𝑘 are visible in (97) 
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{
 
 

 
 𝐸𝑟𝑘 = −[𝐸02𝑘−1 (

𝑅𝑘
𝑟
)
2

+ 𝐸02𝑘] sin(𝜃)

𝐸𝜃𝑘 = [𝐸02𝑘−1 (
𝑅𝑘
𝑟
)
2

− 𝐸02𝑘] cos(𝜃)

 (107) 

 

The axial component of the electric field �⃗⃗� in each layer is also given in (97) but as functions of the 

surface current amplitudes (𝐾0𝑘)1≤𝑘≤𝑛
 i.e. 

𝐸𝑧𝑘 = [𝑟 (�̇�𝑎 −
𝜇0
2
∑�̇�0𝑖

𝑛

𝑖=𝑘

) −
1

𝑟

𝜇0
2
∑ �̇�0𝑖

𝑘−1

𝑖=1

𝑅𝑖
2] cos(𝜃) 

 First, using equations (350) and (352), we can replace the sum terms present in the above expression 

as follows 

{
 
 

 
 𝜇0

2
∑�̇�0𝑖

𝑛

𝑖=𝑘

=
𝜇0
2
[𝑆]2𝑘[�̇�0]

−
𝜇0
2
∑ �̇�0𝑖

𝑘−1

𝑖=1

𝑅𝑖
2 =

𝜇0
2
𝑅𝑘

2[𝑆]2𝑘−1[�̇�0]

 

where [𝑆]2𝑘−1 and [𝑆]2𝑘 are the line vectors defined in (351) and (353).  

 

Therefore we now obtain the following expression for 𝐸𝑧𝑘  

𝐸𝑧𝑘 = [𝑟 (�̇�𝑎 −
𝜇0
2
[𝑆]2𝑘[�̇�0]) +

𝑅𝑘
2

𝑟

𝜇0
2
[𝑆]2𝑘−1[�̇�0]] cos(𝜃) 

which can be re-expressed as 

𝐸𝑧𝑘 = 𝑟 [�̇�𝑎 +
𝜇0
2
([𝑆]2𝑘−1 (

𝑅𝑘
𝑟
)
2

− [𝑆]2𝑘) [�̇�0]] cos(𝜃) 

Secondly, using the time derivative of equation (106), we finally have 

𝐸𝑧𝑘 = 𝑟 [�̇�𝑎 +
𝜇0
2

1

𝜌𝑡1

𝑙𝑝
2𝜋
([𝑆]2𝑘−1 (

𝑅𝑘
𝑟
)
2

− [𝑆]2𝑘) [𝑀][�̇�0]] cos(𝜃) (108) 

 

From (107) we can readily derive the transverse components of the current distribution 𝐽 in each 

layer 𝑘 as 
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{
 
 

 
 𝐽𝑟𝑘 =

𝐸𝑟𝑘
𝜌𝑡𝑘

= −
1

𝜌𝑡𝑘
[𝐸02𝑘−1 (

𝑅𝑘
𝑟
)
2

+ 𝐸02𝑘] sin(𝜃)

𝐽𝜃𝑘 =
𝐸𝜃𝑘
𝜌𝑡𝑘

=
1

𝜌𝑡𝑘
[𝐸02𝑘−1 (

𝑅𝑘
𝑟
)
2

− 𝐸02𝑘] cos(𝜃)

 (109) 

 

Regarding the axial component of 𝐽, we can only give its expression in the resistive zones from (108) 

𝐽𝑧𝑘 =
𝐸𝑧𝑘
𝜌𝑡𝑘

=
1

𝜌𝑡𝑘
𝑟 [�̇�𝑎 +

𝜇0
2

1

𝜌𝑡1

𝑙𝑝
2𝜋
([𝑆]2𝑘−1 (

𝑅𝑘
𝑟
)
2

− [𝑆]2𝑘) [𝑀][�̇�0]] cos(𝜃) (110) 

the expressions of 𝐽𝑧 in the filamentary zones require the knowledge of their equivalent longitudinal 

resistivities; they must be consistent with their associated equivalent transverse resistivities. 

Finally, to complete this review, we will derive here the expressions of the transverse components 

of the magnetic field �⃗⃗�. 

Since the applied field 𝐵𝑎⃗⃗ ⃗⃗⃗ is oriented along the y-axis, we can deduce that 

{
𝐵𝑟𝑘 = 𝐵𝑎 sin(𝜃)

𝐵𝜃𝑘 = 𝐵𝑎 cos(𝜃)
 

Then, from �⃗⃗� = ∇⃗⃗⃗ × A⃗⃗⃗ and expression (58) of the magnetic vector potential generated by the surface 

currents, we have 

{
 
 

 
 
𝐵𝑟𝑘 =

1

𝑟

𝜕𝐴𝑧𝑘
𝜕𝜃

= −
𝜇0
2
[
1

𝑟2
∑𝐾0𝑖

𝑘−1

𝑖=1

𝑅𝑖
2 +∑𝐾0𝑖

𝑛

𝑖=𝑘

] sin(𝜃)

𝐵𝜃𝑘 = −
𝜕𝐴𝑧𝑘
𝜕𝑟

=
𝜇0
2
[
1

𝑟2
∑𝐾0𝑖

𝑘−1

𝑖=1

𝑅𝑖
2 −∑𝐾0𝑖

𝑛

𝑖=𝑘

] cos(𝜃)

 

 

Now, superposing the two above systems, we can write 

{
  
 

  
 
𝐵𝑟𝑘 = [𝐵𝑎 −

𝜇0
2
(
1

𝑟2
∑𝐾0𝑖

𝑘−1

𝑖=1

𝑅𝑖
2 +∑𝐾0𝑖

𝑛

𝑖=𝑘

)] sin(𝜃)

𝐵𝜃𝑘 = [𝐵𝑎 +
𝜇0
2
(
1

𝑟2
∑𝐾0𝑖

𝑘−1

𝑖=1

𝑅𝑖
2 −∑𝐾0𝑖

𝑛

𝑖=𝑘

)] cos(𝜃)

 

As we did in the derivation of 𝐸𝑧𝑘, we first can replace the sum terms to have 

{
  
 

  
 
𝐵𝑟𝑘 = [𝐵𝑎 +

𝜇0
2
([𝑆]2𝑘−1 (

𝑅𝑘
𝑟
)
2

− [𝑆]2𝑘) [𝐾0]] sin(𝜃)

𝐵𝜃𝑘 = [𝐵𝑎 −
𝜇0
2
([𝑆]2𝑘−1 (

𝑅𝑘
𝑟
)
2

+ [𝑆]2𝑘) [𝐾0]] cos(𝜃)

 



61 

 

and then replace [𝐾0] with 
1

𝜌𝑡1

𝑙𝑝

2𝜋
[𝑀][𝐸0] using (106) to finally obtain 

{
  
 

  
 
𝐵𝑟𝑘 = [𝐵𝑎 +

𝜇0
2

1

𝜌𝑡1

𝑙𝑝
2𝜋
([𝑆]2𝑘−1 (

𝑅𝑘
𝑟
)
2

− [𝑆]2𝑘) [𝑀][𝐸0]] sin(𝜃)

𝐵𝜃𝑘 = [𝐵𝑎 −
𝜇0
2

1

𝜌𝑡1

𝑙𝑝

2𝜋
([𝑆]2𝑘−1 (

𝑅𝑘
𝑟
)
2

+ [𝑆]2𝑘) [𝑀][𝐸0]] cos(𝜃)

 (111) 

 

II.2.8  Coupling losses per cycle per unit volume of filamentary zone 

 

 We will establish here the expression of coupling losses as a function of the 𝑬𝟎𝒌  coefficients. We 

will also demonstrate that the coupling losses generated inside complex composites can be 

expressed as a sum of the coupling losses generated inside simple composites; this result is 

important and will be used in the study of a two cabling stages conductor in section IV.3 . 

In order to remove any ambiguity, let us clarify what we mean by “volume of filamentary zone” or 

“volume enclosed by the outer edge filaments”. If we note 𝑅𝑓 the radius on which the most outer edge 

filaments are located, here are its values for different designs of composite: 

 for an F type composite, 𝑅𝑓 = 𝑅1 = 𝑅, (𝑅 always refers to the composite radius) 

 for an F/R type composite, 𝑅𝑓 = 𝑅1 

 for an R/F type composite, 𝑅𝑓 = 𝑅2 = 𝑅 

 for an R/F/R/R type composite (e.g. JT-60SA TF strand displayed on Figure 11), 𝑅𝑓 = 𝑅2 

The volume that we have called “volume of filamentary zone” or “volume enclosed by the outer 

edge filaments” throughout the manuscript is in fact the one of a cylinder of radius 𝑅𝑓 and length 𝐿; this 

length is not set to any value as the composite geometry is considered to be invariant along its axis 

according to assumption A1. Therefore the coupling losses per cycle per unit volume of filamentary 

zone 𝑄 correspond to the total energy that has been dissipated over the whole volume of the composite 

and during a cycle of a periodic magnetic excitation, divided by the volume of the cylinder of radius 𝑅𝑓. 

After having clearly defined the notion of “coupling losses per cycle per unit volume of filamentary 

zone 𝑄”, we will now focus on its determination as function of the frequency 𝑓 of a sinusoidal magnetic 

excitation. This “𝑄 vs 𝑓” curve is usually considered in the community as it gives the full 

characterization of the frequency response of a composite with regard to any magnetic excitation. 

Up to this point, we possess all the elements to produce this curve. Indeed, we have derived the 

formulae required to compute the coupling losses generated by any magnetic signal inside a composite. 

Therefore, in order to obtain one point of the “𝑄 vs 𝑓” curve, we should simulate the time response of 

the (𝐸0𝑘)2≤𝑘≤2𝑛
 coefficients to a sinusoidal magnetic signal with a specific frequency using equation 

(72), deduce the average coupling power density thanks to (105) and compute the associated value of 

𝑄. To produce the full curve we should then repeat this process for different values of the frequency of 

magnetic excitation. 
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Even though this process can be achieved in a very reasonable time, we propose a faster method 

leading to an analytical expression of 𝑄(𝑓). 

Let us assume that the composite is subject to the following magnetic signal 

𝐵𝑎 = 𝐵𝑝 sin(𝜔𝑡) 

with 𝜔 = 2𝜋𝑓, the angular frequency. 

We can first start by deriving the classical expression of 𝑄(𝜔) for a composite made of a filamentary 

zone only (F type) given in (7) (with 𝑛 = 2 for a cylindrical composite) i.e. 

𝑄(𝜔) =
𝐵𝑝

2

𝜇0

2𝜋𝜔𝜏

1 + (𝜔𝜏)2
 

from time equation (1), i.e. 𝐵𝑖 + 𝜏�̇�𝑖 = 𝐵𝑎, and from expression (3) of coupling power per unit 

volume of filamentary zone which is 

𝑃 =
2𝜏�̇�𝑖

2

𝜇0
 

Using equation (1), the expression of 𝐵𝑎 and the initial condition 𝐵𝑖(𝑡 = 0) = 𝐵𝑎(𝑡 = 0) = 0, we 

find the following solution for 𝐵𝑖 

𝐵𝑖(𝑡) =
𝐵𝑝

1 + (𝜔𝜏)2
[sin(𝜔𝑡) − 𝜔𝜏 cos(𝜔𝑡) + 𝜔𝜏𝑒−𝑡/𝜏] 

After a time long compared to 𝜏 (typically for 𝑡 > 5𝜏), we have 

𝐵𝑖(𝑡 ≫ 𝜏) =
𝐵𝑝

1 + (𝜔𝜏)2
[sin(𝜔𝑡) − 𝜔𝜏 cos(𝜔𝑡)] 

Therefore 

�̇�𝑖(𝑡 ≫ 𝜏) =
𝐵𝑝𝜔

1 + (𝜔𝜏)2
[cos(𝜔𝑡) + 𝜔𝜏 sin(𝜔𝑡)] 

In the following, the notation 〈𝑋(𝑡)〉 will always corresponds to 〈𝑋(𝑡)〉 =
1

𝑇
∫ 𝑋(𝑡)𝑑𝑡
𝑡0+𝑇

𝑡0
. 

If we now compute the average of �̇�𝑖
2
(𝑡) over the time period 𝑇 = 1/𝑓 of the applied magnetic 

signal, we have 

〈�̇�𝑖
2
(𝑡)〉 = (

𝐵𝑝𝜔

1 + (𝜔𝜏)2
)
2

〈[cos(𝜔𝑡) + 𝜔𝜏 sin(𝜔𝑡)]2〉 

= (
𝐵𝑝𝜔

1 + (𝜔𝜏)2
)
2

[〈cos2(𝜔𝑡)〉 + (𝜔𝜏)2〈sin2(𝜔𝑡)〉 + 2𝜔𝜏〈sin(𝜔𝑡) cos(𝜔𝑡)〉] 

= (
𝐵𝑝𝜔

1 + (𝜔𝜏)2
)
2 1

2
[1 + (𝜔𝜏)2] 
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=
1

2

𝐵𝑝
2𝜔2

1 + (𝜔𝜏)2
 

As a consequence, since 𝑄 = 〈𝑃(𝑡)〉𝑇 and 𝑇 =
2𝜋

𝜔
, using (3) we have 

𝑄(𝜔) =
2𝜏

𝜇0
〈�̇�𝑖

2
〉 𝑇 =

𝐵𝑝
2

𝜇0

2𝜋𝜔𝜏

1 + (𝜔𝜏)2
 

 

Now that we have derived the expression of 𝑄 as function of 𝜔 for F type composites, we will focus 

on its determination for other types of composite. 

Since we know the expression of the (spatial) average power density �̅� dissipated in any composite 

as function of the (𝐸0𝑘)2≤𝑘≤2𝑛
 coefficients from (105), we can first begin by rewriting it in the following 

abbreviated form 

�̅�(𝑡) =∑𝛽𝑗𝐸0𝑗
2(𝑡)

2𝑛

𝑗=2

 (112) 

with, by identification 

{
 
 
 

 
 
 𝛽2 =

1

𝜌𝑡1
(
𝑅1
𝑅
)
2

𝛽2𝑗−1 =
1

𝜌𝑡𝑗
(
𝑅𝑗

𝑅
)
2

[(
𝑅𝑗

𝑅𝑗−1
)

2

− 1] 𝑓𝑜𝑟2 ≤ 𝑗 ≤ 𝑛

𝛽2𝑗 =
1

𝜌𝑡𝑗
(
𝑅𝑗

𝑅
)
2

[1 − (
𝑅𝑗−1

𝑅𝑗
)

2

] 𝑓𝑜𝑟2 ≤ 𝑗 ≤ 𝑛

 (113) 

 

From equation (112), it is possible to express the coupling losses per cycle per unit volume of 

filamentary zone 𝑄 as 

𝑄(𝜔) = (
𝑅

𝑅𝑓
)

2

〈�̅�(𝑡)〉𝑇 =
2𝜋

𝜔
(
𝑅

𝑅𝑓
)

2

∑𝛽𝑗 〈𝐸0𝑗
2(𝑡)〉

2𝑛

𝑗=2

 

 
 

(114) 

Note that the term (
𝑅

𝑅𝑓
)
2

comes from the fact that �̅� has been defined per unit volume of composite 

while 𝑄 is defined per unit volume of filamentary zone. 

To complete the process, we now need to analytically solve equation (72), i.e. 

[𝐴][𝐸0] +
𝜇0
2
(
𝑙𝑝
2𝜋
)

2
1

𝜌𝑡1
[𝐵][�̇�0] =

𝑙𝑝
2𝜋
�̇�𝑎[𝑌] 

for the time dependence of the (𝐸0𝑘)2≤𝑘≤2𝑛
 coefficients. 
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In order to do so, we begin by re-expressing time equation (72) as 

[𝐸0] + [𝜏][�̇�0] =
𝑙𝑝
2𝜋
�̇�𝑎[𝐴]

−1[𝑌] (115) 

where [𝜏] is a (2𝑛 − 1) × (2𝑛 − 1) matrix whose coefficients have the dimension of time and which 

is defined as 

[𝜏] = [𝐴]−1[𝐵] (116) 

 

Assuming that [𝜏] is a diagonalizable matrix, we can express it as 

[𝜏] = [𝑉][𝜏𝑐][𝑉]
−1 (117) 

where [𝜏𝑐] is the diagonal matrix containing the eigenvalues of [𝜏] and [𝑉] is the matrix containing 

the eigenvectors of [𝜏]. 

Replacing [𝜏] with [𝑉][𝜏𝑐][𝑉]
−1 in (115) leads to 

[𝐸0] + [𝑉][𝜏𝑐][𝑉]
−1[�̇�0] =

𝑙𝑝
2𝜋
�̇�𝑎[𝐴]

−1[𝑌] 

The multiplication on each side by [𝑉]−1 gives 

[𝑋] + [𝜏𝑐][�̇�] = �̇�𝑎[𝑌𝑏] (118) 

with 

[𝑋] = [𝑉]−1[𝐸0] (119) 

and 

[𝑌𝑏] =
𝑙𝑝
2𝜋
[𝑉]−1[𝐴]−1[𝑌] (120) 

 

Equation (118) can alternatively be written, for 1 ≤ 𝑘 ≤ 2𝑛 − 1, as 

[𝑋]𝑘 + 𝜏𝑐𝑘[�̇�]𝑘 = �̇�𝑎
[𝑌𝑏]𝑘 (121) 

where [𝑋]𝑘 and [𝑌𝑏]𝑘 are respectively the 𝑘𝑡ℎ component of the column vectors [𝑋] and [𝑌𝑏], and 

𝜏𝑐𝑘 = [𝜏𝑐]𝑘𝑘 is the 𝑘𝑡ℎ diagonal element of [𝜏𝑐], i.e. the 𝑘𝑡ℎ eigenvalue of [𝜏]. 

By analogy with the previous resolution of equation (1), we can give the solutions of equations (121) 

as 

[𝑋]𝑘(𝑡) =
[𝑌𝑏]𝑘𝐵𝑝𝜔

1 + (𝜔𝜏𝑐𝑘)
2 [cos(𝜔𝑡) + 𝜔𝜏𝑐𝑘 sin(𝜔𝑡)] (122) 

These solutions are obtained considering the initial conditions ([𝑋]𝑘(𝑡 = 0) = 0)1≤𝑘≤2𝑛−1 and are 

valid after a time long compared to the greatest value of  (𝜏𝑐𝑘)1≤𝑘≤2𝑛−1
. 

Inverting relation (119), we have [𝐸0] = [𝑉][𝑋] which leads to 

𝐸0𝑗(𝑡) = ∑ [𝑉]𝑗−1𝑘[𝑋]𝑘(𝑡)

2𝑛−1

𝑘=1

 (123) 
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Remember that since 𝐸01 is always zero, the first component of the [𝐸0] (2𝑛 − 1) × 1 column vector 

is 𝐸02 and its 𝑗𝑡ℎ component is in fact 𝐸0𝑗−1. To avoid any confusion, we note [𝐸0]𝑗 the 𝑗𝑡ℎ component 

of column vector [𝐸0] and 𝐸0𝑗 the 𝑗𝑡ℎ coefficient of the (𝐸0𝑗)2≤j≤2𝑛
; we therefore have [𝐸0]𝑗 = 𝐸0𝑗−1. 

The combination of equations (122) and (123) enables us to write 

𝐸0𝑗
2(𝑡) = (𝐵𝑝𝜔)

2
[cos(𝜔𝑡) ∑

[𝑉]𝑗−1𝑘[𝑌𝑏]𝑘

1 + (𝜔𝜏𝑐𝑘)
2

2𝑛−1

𝑘=1

+ sin(𝜔𝑡) ∑ 𝜔𝜏𝑐𝑘
[𝑉]𝑗−1𝑘[𝑌𝑏]𝑘

1 + (𝜔𝜏𝑐𝑘)
2

2𝑛−1

𝑘=1

]

2

 

Thus, the average of 𝐸0𝑗
2(𝑡) over one cycle of duration 𝑇 is 

〈𝐸0𝑗
2(𝑡)〉 =

(𝐵𝑝𝜔)
2

2
([∑

[𝑉]𝑗−1𝑘[𝑌𝑏]𝑘

1 + (𝜔𝜏𝑐𝑘)
2

2𝑛−1

𝑘=1

]

2

+ [∑ 𝜔𝜏𝑐𝑘
[𝑉]𝑗−1𝑘[𝑌𝑏]𝑘

1 + (𝜔𝜏𝑐𝑘)
2

2𝑛−1

𝑘=1

]

2

) 

since 〈cos2(𝜔𝑡)〉 = 〈sin2(𝜔𝑡)〉 =
1

2
 and 〈cos(𝜔𝑡)sin(𝜔𝑡)〉 = 0. 

This average can be factorized, using 𝐴2 + 𝐵2 = (𝐴 − 𝑖𝐵)(𝐴 + 𝑖𝐵) with 𝑖 the imaginary unit, as 

〈𝐸0𝑗
2(𝑡)〉 =

(𝐵𝑝𝜔)
2

2
[∑

[𝑉]𝑗−1𝑘[𝑌𝑏]𝑘

1 + (𝜔𝜏𝑐𝑘)
2 (1 − 𝑖𝜔𝜏𝑐𝑘)

2𝑛−1

𝑘=1

] [ ∑
[𝑉]𝑗−1𝑘[𝑌𝑏]𝑘

1 + (𝜔𝜏𝑐𝑘)
2 (1 + 𝑖𝜔𝜏𝑐𝑘)

2𝑛−1

𝑘=1

] 

To make the above expression lighter we will temporarily note the terms appearing in the sums as 

𝑎𝑘 and 𝑏𝑘 respectively, i.e. 

{
 
 

 
 𝑎𝑘 =

[𝑉]𝑗−1𝑘[𝑌𝑏]𝑘

1 + (𝜔𝜏𝑐𝑘)
2 (1 − 𝑖𝜔𝜏𝑐𝑘)

𝑏𝑘 =
[𝑉]𝑗−1𝑘[𝑌𝑏]𝑘

1 + (𝜔𝜏𝑐𝑘)
2 (1 + 𝑖𝜔𝜏𝑐𝑘)

 

Thus 〈𝐸0𝑗
2(𝑡)〉 can be expressed as 

〈𝐸0𝑗
2(𝑡)〉 =

(𝐵𝑝𝜔)
2

2
[∑ 𝑎𝑘

2𝑛−1

𝑘=1

] [ ∑ 𝑏𝑘

2𝑛−1

𝑘=1

] 

In addition, we have 

[ ∑ 𝑎𝑘

2𝑛−1

𝑘=1

] [ ∑ 𝑏𝑘

2𝑛−1

𝑘=1

] = [∑ 𝑎𝑘

2𝑛−1

𝑘=1

] [ ∑ 𝑏𝑙

2𝑛−1

𝑙=1

] = ∑ ∑ 𝑎𝑘𝑏𝑙

2𝑛−1

𝑙=1

2𝑛−1

𝑘=1

=
1

2
∑ ∑ (𝑎𝑘𝑏𝑙 + 𝑎𝑙𝑏𝑘)

2𝑛−1

𝑙=1

2𝑛−1

𝑘=1

 

since summation indices 𝑘 and 𝑙 can be interchanged, and 

𝑎𝑘𝑏𝑙 + 𝑎𝑙𝑏𝑘 =
[𝑉]𝑗−1𝑘[𝑌𝑏]𝑘

1 + (𝜔𝜏𝑐𝑘)
2

[𝑉]𝑗−1𝑙[𝑌𝑏]𝑙

1 + (𝜔𝜏𝑐𝑙)
2 [(1 − 𝑖𝜔𝜏𝑐𝑘)(1 + 𝑖𝜔𝜏𝑐𝑙) + (1 − 𝑖𝜔𝜏𝑐𝑙)(1 + 𝑖𝜔𝜏𝑐𝑘)] 
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= 2[𝑉]𝑗−1𝑘[𝑌𝑏]𝑘[𝑉]𝑗−1𝑙[𝑌𝑏]𝑙
1 + 𝜔2𝜏𝑐𝑘𝜏𝑐𝑙

[1 + (𝜔𝜏𝑐𝑘)
2
] [1 + (𝜔𝜏𝑐𝑙)

2
]
 

Thus 

〈𝐸0𝑗
2(𝑡)〉 =

(𝐵𝑝𝜔)
2

2
∑ ∑ [𝑉]𝑗−1𝑘[𝑌𝑏]𝑘[𝑉]𝑗−1𝑙[𝑌𝑏]𝑙

1 + 𝜔2𝜏𝑐𝑘𝜏𝑐𝑙

[1 + (𝜔𝜏𝑐𝑘)
2
] [1 + (𝜔𝜏𝑐𝑙)

2
]

2𝑛−1

𝑙=1

2𝑛−1

𝑘=1

 

Moreover, using a partial fraction decomposition, it appears that 

1 + 𝜔2𝜏𝑐𝑘𝜏𝑐𝑙

[1 + (𝜔𝜏𝑐𝑘)
2
] [1 + (𝜔𝜏𝑐𝑙)

2
]
=

1

𝜏𝑐𝑘 + 𝜏𝑐𝑙
[

𝜏𝑐𝑘

1 + (𝜔𝜏𝑐𝑘)
2 +

𝜏𝑐𝑙

1 + (𝜔𝜏𝑐𝑙)
2] 

Therefore we can conclude that 

〈𝐸0𝑗
2(𝑡)〉 =

(𝐵𝑝𝜔)
2

2
∑ ∑

[𝑉]𝑗−1𝑘[𝑌𝑏]𝑘[𝑉]𝑗−1𝑙[𝑌𝑏]𝑙

𝜏𝑐𝑘 + 𝜏𝑐𝑙
[

𝜏𝑐𝑘

1 + (𝜔𝜏𝑐𝑘)
2 +

𝜏𝑐𝑙

1 + (𝜔𝜏𝑐𝑙)
2]

2𝑛−1

𝑙=1

2𝑛−1

𝑘=1

 

which reduces to 

〈𝐸0𝑗
2(𝑡)〉 = (𝐵𝑝𝜔)

2
∑ ∑

[𝑉]𝑗−1𝑘[𝑌𝑏]𝑘[𝑉]𝑗−1𝑙[𝑌𝑏]𝑙

𝜏𝑐𝑘 + 𝜏𝑐𝑙

𝜏𝑐𝑘

1 + (𝜔𝜏𝑐𝑘)
2

2𝑛−1

𝑙=1

2𝑛−1

𝑘=1

 

splitting the previous double sum into two double sums and interchanging 𝑘 and 𝑙 in the second one. 

Finally, we obtain 

〈𝐸0𝑗
2(𝑡)〉 = (𝐵𝑝𝜔)

2
∑

[𝑉]𝑗−1𝑘[𝑌𝑏]𝑘𝜏𝑐𝑘

1 + (𝜔𝜏𝑐𝑘)
2 ∑

[𝑉]𝑗−1𝑙[𝑌𝑏]𝑙

𝜏𝑐𝑘 + 𝜏𝑐𝑙

2𝑛−1

𝑙=1

2𝑛−1

𝑘=1

 (124) 

 

The combination of equations (114) and (124) enables us to write 

𝑄(𝜔) =
2𝜋

𝜔
(
𝑅

𝑅𝑓
)

2

∑𝛽𝑗(𝐵𝑝𝜔)
2
∑

[𝑉]𝑗−1𝑘[𝑌𝑏]𝑘𝜏𝑐𝑘

1 + (𝜔𝜏𝑐𝑘)
2 ∑

[𝑉]𝑗−1𝑙[𝑌𝑏]𝑙

𝜏𝑐𝑘 + 𝜏𝑐𝑙

2𝑛−1

𝑙=1

2𝑛−1

𝑘=1

2𝑛

𝑗=2

 

which can be re-expressed as 

𝑄(𝜔) = 𝐵𝑝
2 (

𝑅

𝑅𝑓
)

2

∑ [∑ ∑
𝛽𝑗+1[𝑉]𝑗𝑘[𝑉]𝑗𝑙[𝑌𝑏]𝑙[𝑌𝑏]𝑘

𝜏𝑐𝑘 + 𝜏𝑐𝑙

2𝑛−1

𝑙=1

2𝑛−1

𝑗=1

]
2𝜋𝜔𝜏𝑐𝑘

1 + (𝜔𝜏𝑐𝑘)
2

2𝑛−1

𝑘=1

 (125) 

 

We have now derived the analytical expression of 𝑄(𝜔) for any composite for any magnetic 

excitation 𝐵𝑎 of the form 𝐵𝑎 = 𝐵𝑝sin(𝜔𝑡). 

If we take a close look at formula (125) we notice that it is very similar to the formula (7) of 𝑄(𝜔) 

for F type composites, i.e. 
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𝑄(𝜔) =
𝐵𝑝

2

𝜇0

2𝜋𝜔𝜏

1 + (𝜔𝜏)2
 

In order to highlight the resemblance between formulae (7) and (125) we will introduce another 

function 𝑄𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙(𝜔, 𝜏) defined as 

𝑄𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙(𝜔, 𝜏) =
𝐵𝑝

2

𝜇0

2𝜋𝜔𝜏

1 + (𝜔𝜏)2
 (126) 

which represents the average coupling losses per cycle of magnetic excitation 𝐵𝑝sin(𝜔𝑡) per unit 

volume of filamentary zone for a composite with only one time constant 𝜏. 

Using this new function, it is then possible to formulate equation (125) as 

𝑄(𝜔) = ∑ 𝛼𝑘𝑄𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙(𝜔, 𝜏𝑐𝑘)

2𝑛−1

𝑘=1

 (127) 

with 

𝛼𝑘 = 𝜇0 (
𝑅

𝑅𝑓
)

2

∑ ∑
𝛽𝑗+1[𝑉]𝑗𝑘[𝑉]𝑗𝑙[𝑌𝑏]𝑙[𝑌𝑏]𝑘

𝜏𝑐𝑘 + 𝜏𝑐𝑙

2𝑛−1

𝑙=1

2𝑛−1

𝑗=1

 (128) 

where 𝛽 is defined in (113), [𝑉] and [𝜏𝑐] are obtained diagonalizing [𝜏], and[𝑌𝑏] is defined in (120). 

Formula (127) is a very meaningful physical result as it clearly indicates that the coupling losses of 

a complex strand with 𝑁 multiple time constants can be seen as a cumulation of the coupling losses 

generated by 𝑁 elementary strands (i.e. F type strands) having specific effective time constants and 

effective volumes. Indeed, instead of formula (127), we could write 

𝑄(𝜔) = ∑ (
𝑅𝑓𝑘
𝑅𝑓
)

2

𝑄𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙(𝜔, 𝜏𝑐𝑘)

2𝑛−1

𝑘=1

 

where 𝑅𝑓𝑘  would be defined as 𝑅𝑓𝑘 = 𝑅𝑓√𝛼𝑘 and would represent the radius of the effective 

shielded volume of each elementary strand. In this regard we can straightforwardly realize that the 

coupling between the screening currents leads to the modification of the shielding accomplished by each 

screening current if it was isolated; the notion of partial shielding can therefore be observed down to the 

strand scale. 

Furthermore, we have previously mentioned that a strand with 𝑛 layers did not really have 2𝑛 − 1 

time constants; the number of time constants it possesses is equal to the number of edges of its 

filamentary zones. The apparent surplus of time constants in formula (127) seems to be inconsistent with 

this fact. However we have also mentioned that among the 2𝑛 − 1 time constants, some were artificial 

ones because their presence was due to our modeling. This paradox is solved by the fact that the 𝛼𝑘 

coefficients associated with the artificial time constants are zero (we will not demonstrate this point here 

but we have observed it for every design we tested). 

Another point is that the sum of the 𝛼𝑘 coefficients is equal to 1. In order to demonstrate this, let us 

consider an F type composite with its outer edge filaments located at 𝑟 = 𝑅𝑓 subject to a step-type 

variation of the applied magnetic field from 0 to 𝐵𝑠. The energy stored per unit length of strand 𝐸𝑙 just 

after the step is equal to 
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𝐸𝑙 =
𝐵𝑠
2

𝜇0
𝜋𝑅𝑓

2 

After the step, the currents induced inside the strand will start to decrease until they reach zero; the 

final energy stored in the strand will then also be zero. The only dissipative phenomena we consider 

here are coupling losses, therefore we can deduce that the integral over time of the coupling losses per 

unit length of strand after the step will then be equal to 𝐸𝑙 to ensure the conservation of energy. 

If we apply the same step change of 𝐵𝑎 on a composite with multiple time constants and with the 

same 𝑅𝑓, the energy stored per unit length of this composite just after the step will also be equal to 𝐸𝑙. 

Indeed, the change of 𝐵𝑎 being instantaneous, the magnetic shielding of the composite will exclusively 

be accomplished by its outer edge filaments located at 𝑟 = 𝑅𝑓; it is only when the current they carry 

start to decay that the internal edge filaments (located at 𝑟 < 𝑅𝑓) begin to develop their own screening 

currents. 

Since the coupling losses of a strand with 𝑁 multiple time constants correspond to the sum of those 

generated by 𝑁 F type strands having their outer edge filaments located at 𝑟 = 𝑅𝑓𝑘 (1 ≤ 𝑘 ≤ 𝑁), we 

deduce that 𝐸𝑙 can also be expressed as 

𝐸𝑙 =∑
𝐵𝑠
2

𝜇0
𝜋𝑅𝑓𝑘

2

𝑁

𝑘=1

 

Consequently, we have 

∑𝑅𝑓𝑘
2

𝑁

𝑘=1

= 𝑅𝑓
2 

which is equivalent to 

∑(
𝑅𝑓𝑘
𝑅𝑓
)

2𝑁

𝑘=1

= 1 

And since 𝛼𝑘 = (𝑅𝑓𝑘/𝑅𝑓)
2
, we have thus demonstrated that 

∑𝛼𝑘

𝑁

𝑘=1

= 1 

Finally it also important to notice that in a strand with 𝑁 distinct time constants, the (𝛼𝑘)1≤𝑘≤𝑁 

depend on the transverse resistivities of the different zones. Indeed the (𝛼𝑘)1≤𝑘≤𝑁 are given by formula 

(128) in which appear the coefficients of 𝛽, [𝑉], [𝑌𝑏] and the time constants (𝜏𝑐𝑘)1≤𝑘≤𝑁
; all these 

parameters depend on the transverse resistivities of the different zones. The only exception is for strands 

with a single time constant, in this case there will only be one non zero 𝛼𝑘 coefficient which must be 

equal to 1 and therefore does not depend on the transverse resistivities of the different zones. 
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II.3 Comparisons with literature analytical models 

 

In this section we will show that the formulae derived in our analytical modeling are fully consistent 

with those issued from previous analytical studies found in the literature. 

 

II.3.1  F type composite 

 

 

Figure 19 : Scheme of cross-section of F type composite 

In the case of a composite consisting in a unique zone of filamentary type (displayed on Figure 19), 

we can give the equation governing 𝐸02 using equation (72) and the relevant expressions of [𝐴], [𝑌] and 

[𝐵] that we have previously derived (i.e. [𝐴] = [𝑌] = [𝐵] = 1) 

𝐸02 +
𝜇0
2
(
𝑙𝑝
2𝜋
)

2
1

𝜌𝑡1
�̇�02 =

𝑙𝑝
2𝜋
�̇�𝑎 

 

In this case there will be a supercurrent, whose spatial amplitude is 𝐾01 =
1

𝜌𝑡1

𝑙𝑝

2𝜋
𝐸02, flowing 

through the superconducting filaments located on the edge of the composite. According to equation (57), 

we know that this supercurrent will create a reacting magnetic field 𝐵𝑟𝑒𝑎𝑐𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = −
𝜇0𝐾01
2

𝑒𝑦⃗⃗⃗⃗⃗ inside the 

composite. By superposition, the total internal magnetic field �⃗⃗�𝑖 will be given by 

�⃗⃗�𝑖 = 𝐵𝑎⃗⃗ ⃗⃗⃗ + �⃗⃗�𝑟𝑒𝑎𝑐𝑡 = 𝐵𝑎𝑒𝑦⃗⃗⃗⃗⃗ −
𝜇0𝐾01
2

𝑒𝑦⃗⃗⃗⃗⃗ = 𝐵𝑖𝑒𝑦⃗⃗⃗⃗⃗ 

with 

𝐵𝑖 = 𝐵𝑎 −
𝜇0𝐾01
2
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Replacing 𝐾01 with 
1

𝜌𝑡1

𝑙𝑝

2𝜋
𝐸02 in the expression above leads to 

𝐵𝑖 = 𝐵𝑎 −
𝜇0
2

1

𝜌𝑡1

𝑙𝑝
2𝜋
𝐸02 

which is equivalent to 

𝐸02 =
2

𝜇0
𝜌𝑡1

2𝜋

𝑙𝑝
(𝐵𝑎 − 𝐵𝑖) 

If we now replace 𝐸02 by 
2

𝜇0
𝜌𝑡1

2𝜋

𝑙𝑝
(𝐵𝑎 − 𝐵𝑖) in the equation on 𝐸02, we have 

2

𝜇0
𝜌𝑡1

2𝜋

𝑙𝑝
(𝐵𝑎 − 𝐵𝑖) +

𝑙𝑝
2𝜋
(�̇�𝑎 − �̇�𝑖) =

𝑙𝑝
2𝜋
�̇�𝑎 

Multiplying both sides by 
𝜇0

2

1

𝜌𝑡1

𝑙𝑝

2𝜋
, after some manipulations, we finally obtain 

𝐵𝑖 +
𝜇0
2
(
𝑙𝑝
2𝜋
)

2
1

𝜌𝑡1
�̇�𝑖 = 𝐵𝑎 

which is exactly the classical equation governing the internal induction inside a composite composed 

of a filamentary zone only (see equations (1) and (2) in the “state of the art” section). 

 

II.3.2  R/F/R type composite 

 

We will now derive the equations governing R/F/R type composites (see Figure 20) and compare 

them to those developed by Ciazynski [30]. 

 

Figure 20 : Scheme of cross-section of R/F/R type composite 
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For this geometry, we will not use equation (72) as the associated expressions of [𝐴], [𝑌] and [𝐵] 

will be quite heavy and not easy to manipulate. We will then start by writing equations (68) for 𝑘 = 2 

and 𝑛 = 3 as it is a much more convenient way : 

{
 
 

 
 𝐸03 −

𝜇0
2

𝑙𝑝
2𝜋
∑�̇�0𝑖

1

𝑖=1

(
𝑅𝑖
𝑅2
)
2

= 0

𝐸04 +
𝜇0
2

𝑙𝑝
2𝜋
∑�̇�0𝑖

3

𝑖=2

=
𝑙𝑝
2𝜋
�̇�𝑎

 

This leads to 

{
 
 

 
 

𝐸03 =
𝜇0
2

𝑙𝑝
2𝜋
(
𝑅1
𝑅2
)
2

�̇�01 

𝐸04 = −
𝜇0
2

𝑙𝑝

2𝜋
�̇�02 +

𝑙𝑝

2𝜋
�̇�𝑎

 

given the fact that 𝐾03 = 0 since there is no filament at 𝑟 = 𝑅3 in the R/F/R composite (see Figure 

20). Using the expressions of 𝐾01 and 𝐾02 as functions of the (𝐸0𝑘)2≤𝑘≤6
 given by (44) for 𝑘 = 1 and 

𝑘 = 2, we have 

{
 
 

 
 𝐾01 =

𝑙𝑝
2𝜋
[
1

ρ𝑡1
𝐸02 −

1

ρ𝑡2
(
𝑅2
𝑅1
)
2

𝐸03 −
1

ρ𝑡2
𝐸04]

𝐾02 =
𝑙𝑝
2𝜋
[
1

ρ𝑡2
𝐸03 +

1

ρ𝑡2
𝐸04 −

1

ρ𝑡3
(
𝑅3
𝑅2
)
2

𝐸05 −
1

ρ𝑡3
𝐸06]

 

We also have to consider the two continuity equations of 𝐸𝜃 at 𝑟 = 𝑅1 and 𝑟 = 𝑅2 given by (343) 

for 𝑘 = 1 and 𝑘 = 2 

{
 
 

 
 −𝐸02 − (

𝑅2
𝑅1
)
2

𝐸03 + 𝐸04 = 0

𝐸03 − 𝐸04 − (
𝑅3
𝑅2
)
2

𝐸05 + 𝐸06 = 0

 

as well as the boundary condition 𝐸𝑟3(𝑅3) = 0 given by (43)  

𝐸06 = −𝐸05 

The combination of these equations enables us to express 𝐸02, 𝐸05 and 𝐸06 as functions of 𝐸03 and 

𝐸04 

{
 
 
 

 
 
 𝐸02 = −(

𝑅2
𝑅1
)
2

𝐸03 + 𝐸04

𝐸05 =
𝑅2

2

𝑅2
2 + 𝑅3

2 (𝐸03 − 𝐸04)

𝐸06 =
𝑅2

2

𝑅2
2 + 𝑅3

2 (−𝐸03 + 𝐸04)
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Injecting these new relations into the formulae of 𝐾01 and 𝐾02 above leads to 

{
 
 

 
 𝐾01 =

1

ρ𝑡2

𝑙𝑝

2𝜋
[− (

𝑅2
𝑅1
)
2

(
ρ𝑡2
ρ𝑡1

+ 1)𝐸03 + (
ρ𝑡2
ρ𝑡1

− 1)𝐸04]

𝐾02 =
1

ρ𝑡2

𝑙𝑝

2𝜋
[(1 −

ρ𝑡2
ρ𝑡3

𝑅3
2 − 𝑅2

2

𝑅3
2 + 𝑅2

2)𝐸03 + (1 +
ρ𝑡2
ρ𝑡3

𝑅3
2 − 𝑅2

2

𝑅3
2 + 𝑅2

2)𝐸04]

 

 

Finally, replacing 𝐸03 and 𝐸04 with their expressions as functions of �̇�01, �̇�02 and �̇�𝑎 in the new 

formulae of 𝐾01 and 𝐾02, we obtain 

{
 
 

 
 𝐾01 + (

ρ𝑡2
ρ𝑡1

+ 1) 𝜏𝑐�̇�01 + (
ρ𝑡2
ρ𝑡1

− 1) 𝜏𝑐�̇�02 = (
ρ𝑡2
ρ𝑡1

− 1)
2

𝜇0
𝜏𝑐�̇�𝑎

𝐾02 + (
𝑅1
𝑅2
)
2

(
ρ𝑡2
ρ𝑡3

𝑅3
2 − 𝑅2

2

𝑅3
2 + 𝑅2

2 − 1) 𝜏𝑐�̇�01 + (
ρ𝑡2
ρ𝑡3

𝑅3
2 − 𝑅2

2

𝑅3
2 + 𝑅2

2 + 1)𝜏𝑐�̇�02 = (
ρ𝑡2
ρ𝑡3

𝑅3
2 − 𝑅2

2

𝑅3
2 + 𝑅2

2 + 1)
2

𝜇0
𝜏𝑐�̇�𝑎

 

with 

𝜏𝑐 =
𝜇0
2
(
𝑙𝑝
2𝜋
)

2
1

ρ𝑡2
 

These equations can be turned into the following matrix equation 

[
𝐾01
𝐾02

] + [
𝜏11 𝜏12
𝜏21 𝜏22

] [
�̇�01
�̇�02

] =
2

𝜇0
[
𝜏𝑒𝑥𝑡1
𝜏𝑒𝑥𝑡2

] �̇�𝑎 

with 

{
 
 
 
 

 
 
 
 𝜏11 = (

ρ𝑡2
ρ𝑡1

+ 1) 𝜏𝑐

𝜏12 = (
ρ𝑡2
ρ𝑡1

− 1) 𝜏𝑐

𝜏21 = (
𝑅1
𝑅2
)
2

(
ρ𝑡2
ρ𝑡3

𝑅3
2 − 𝑅2

2

𝑅3
2 + 𝑅2

2 − 1)𝜏𝑐

𝜏22 = (
ρ𝑡2
ρ𝑡3

𝑅3
2 − 𝑅2

2

𝑅3
2 + 𝑅2

2 + 1) 𝜏𝑐

 

and 

{
 
 

 
 𝜏𝑒𝑥𝑡1 = 𝜏12 = (

ρ𝑡2
ρ𝑡1

− 1)𝜏𝑐

𝜏𝑒𝑥𝑡2 = 𝜏22 = (
ρ𝑡2
ρ𝑡3

𝑅3
2 − 𝑅2

2

𝑅3
2 + 𝑅2

2 + 1)𝜏𝑐
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These results are exactly the same as those found by Ciazynski [30]; our general approach is thus 

consistent. 

It is interesting to note that 𝜏𝑒𝑥𝑡1 = 𝜏12 and 𝜏𝑒𝑥𝑡2 = 𝜏22; this means that the coupling between 𝐾01 

and �̇�02 is identical to the one between 𝐾01 and 
2

𝜇0
�̇�𝑎. Indeed the magnetic field created by the second 

surface current (i.e. 𝐾02) in its enclosed volume is perfectly uniform and equal to −
𝜇0

2
𝐾02 according to 

(57); the first surface current (i.e. 𝐾01) feels then its time-variation it in the exact same way it feels �̇�𝑎. 

It is also interesting to note that, in case 𝜌𝑡1 = 𝜌𝑡2, we have 𝜏𝑒𝑥𝑡1 = 𝜏12 = 0, and the new time 

equation on the spatial amplitudes of the surface currents 𝐾01 and 𝐾02 becomes 

[
𝐾01
𝐾02

] + [
𝜏11 0
𝜏21 𝜏22

] [
�̇�01
�̇�02

] =
2

𝜇0
[
0

𝜏𝑒𝑥𝑡2
] �̇�𝑎 

Therefore, if the initial value of 𝐾01 is zero, it will remain zero no matter the time variations of 𝐵𝑎. 

This result makes sense as, in case 𝜌𝑡1 = 𝜌𝑡2, the continuity of 𝐽𝑟 at 𝑟 = 𝑅1 will always be ensured and 

thus there would be no need for an axial surface current at 𝑟 = 𝑅1 to balance the radial current flow. 

Consequently, in case 𝜌𝑡1 = 𝜌𝑡2, the time equation can be reduced to 

𝐾02 + 𝜏22�̇�02 =
2

𝜇0
𝜏𝑒𝑥𝑡2�̇�𝑎 

and there will only be one time constant equal to 𝜏22. 

Furthermore, in steady-state regimes, i.e. when the surface currents are not time-varying (�̇�01 =

�̇�02 = 0), we have 

{
 
 

 
 𝐾01 = (

1

ρ𝑡1
−
1

ρ𝑡2
)(

𝑙𝑝

2𝜋
)

2

�̇�𝑎

𝐾02 = (
1

ρ𝑡3

𝑅3
2 − 𝑅2

2

𝑅3
2 + 𝑅2

2 +
1

ρ𝑡2
)(

𝑙𝑝

2𝜋
)

2
1

ρ𝑡2
�̇�𝑎

 

When ρ𝑡1 > ρ𝑡2, the first surface current is flowing in the opposite direction to the second one. At 

first sight this seems quite unintuitive; indeed assuming 𝐵𝑎 is increasing with time, we expect both 

surface current amplitudes 𝐾01 and 𝐾02 to be positive in order to screen the strand from the time variation 

of 𝐵𝑎. 

In reality, 𝐾02 will be positive while 𝐾01 will be negative, this can be explained saying that the 

current induced between any pair of filaments located at 𝑟 = 𝑅2 will use the filaments located at 𝑟 = 𝑅1 

to shunt the central zone (of resistivity ρ𝑡1 higher than ρ𝑡2), i.e. they prefer to temporarily flow through 

the filaments located at 𝑟 = 𝑅1 to loop back in the second zone rather than directly crossing the central 

zone. 

Therefore, in addition to the currents induced between filaments located at 𝑟 = 𝑅1 - which would 

give a positive 𝐾01 if they were alone - there exists a surplus of current due to filaments located at 𝑟 =

𝑅2 which can make the global 𝐾01 (corresponding to the superposition of the two contributions) negative 

if ρ𝑡1 > ρ𝑡2. 
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The configuration for which the central resistive zone is replaced with a hole allows an easy 

understanding of this phenomenon. Indeed, in this case the currents induced between two distant 

filaments located at 𝑟 = 𝑅2 would have no choice but to circulate through the filaments located at 𝑟 =

𝑅1 to loop back. In the configuration featuring a central hole, we would have ρ𝑡1 → ∞, thus 1/ρ𝑡1 = 0, 

and 𝐾01 = −
1

ρ𝑡2
(
𝑙𝑝

2𝜋
)
2

�̇�𝑎 which would be negative for a rising ramp of 𝐵𝑎. 

Consequently, we can deduce that the part of the induced currents due to the filaments located at 

𝑟 = 𝑅1 in the expression of 𝐾01 above, is 
1

ρ𝑡1
(
𝑙𝑝

2𝜋
)
2

�̇�𝑎, while the other one (i.e. due to the filaments 

located at 𝑟 = 𝑅2) is −
1

ρ𝑡2
(
𝑙𝑝

2𝜋
)
2

�̇�𝑎. 

 

II.4 Applications 

 

II.4.1  Simulations of Q vs f curves for F/R and R/F type composites 

 

In order to give a more practical vision of the outputs of our analytical modeling, we have chosen to 

compute the 𝑄 vs 𝑓 curves of both R/F and F/R type composites (see Figure 21). In order to do this, we 

will choose the following geometrical parameters for both strands (representative of ITER and JT-60SA 

strands) 

{

𝑅2 = 𝑅 = 0.81/2𝑚𝑚 = 0.405𝑚𝑚

𝑅1 = 𝑅/√2 ≃ 0.286𝑚𝑚
𝑙𝑝 = 15𝑚𝑚

 

so that the area of the first zone equals that of the second zone, i.e. 𝜋𝑅1
2 = 𝜋(𝑅2

2 − 𝑅1
2). 

 

 

Figure 21 : Schemes of cross-sections of F/R (left) and R/F (right) type composites 
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We are here interested in the values of the 𝜌𝑡2/𝜌𝑡1 ratio rather than in the absolute values of 𝜌𝑡1 and 

𝜌𝑡2, therefore we will set 𝜌𝑡1 to the following realistic value (which corresponds to the resistivity of 

copper with 𝑅𝑅𝑅 = 150 at 𝑇 = 4.2𝐾 and 𝐵 = 1𝑇) 

𝜌𝑡1 = 1.5 × 10
−10𝛺.𝑚 

We have explored several cases resulting into a total of ten 𝑄 vs 𝑓 curves which correspond to the 

following values of the  𝜌𝑡2/𝜌𝑡1 ratio (which covers about 2 orders of magnitude) 

𝜌𝑡2/𝜌𝑡1 =

{
 
 

 
 
1/9
1/3
1
3
9

 

We have considered a sinusoidal magnetic excitation 𝐵𝑎 = 𝐵𝑝𝑠𝑖𝑛(𝜔𝑡), with 𝐵𝑝 = 2𝑇 for both 

strands; the results for the F/R type strand are displayed in Figure 22 and those of the R/F in Figure 23. 

Note that the curves displayed on Figure 22 correspond to coupling losses per cycle per unit volume 

of strand (they are not per unit volume of filamentary zone). 

These curves have been computed using formulae (127) and (128); in the case of the F/R composite 

they are fully consistent with the formula found in [25], i.e. 

𝑄(𝜔) = (
𝑅𝑓

𝑅
)
2 𝐵𝑝

2

𝜇0

2𝜋𝜔𝜏

1 + (𝜔𝜏)2
 

with 

𝜏 =
𝜇0
2
(
𝑙𝑝

2𝜋
)

2

[
1

𝜌𝑡1
+
1

𝜌𝑡2
(
𝑅2

2 − 𝑅1
2

𝑅2
2 + 𝑅1

2)] 

For each value of the 𝜌𝑡2/𝜌𝑡1 ratio, we have obtained only one non zero 𝛼𝑘 coefficient, equal to 1. 

This is consistent with our previous discussions since the F/R type composite has only one time constant. 

We can also notice that the maximum of the curves are all equal to one another and that they are 

shifted to the right with increasing 𝜌𝑡2/𝜌𝑡1 ratio. 

From equation (126), we can see that the 𝑄 vs 𝑓 curves corresponding to strands with only one time 

constant 𝜏 reach their maximum for 𝜔 = 1/𝜏; this maximum does not depend on 𝜏 and is equal to 

𝑄𝑚𝑎𝑥 = (
𝑅𝑓

𝑅
)
2 𝐵𝑝

2𝜋

𝜇0
 

Note that the (𝑅𝑓/𝑅)
2
 term is needed here to give the coupling losses per cycle per unit volume of 

strand instead of unit volume of filamentary zone. 
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Figure 22 : Q vs f curves of F/R type composite with different values of 𝝆𝒕𝟐/𝝆𝒕𝟏 for 𝑩𝒂 = 𝑩𝒑𝒔𝒊𝒏(𝝎𝒕), 𝑩𝒑 = 𝟐𝑻 

 

For an F/R type composite, there is only one time constant 𝜏 which is inversely proportional to the 

total effective transverse resistivity of the strand. This total effective resistivity consists in a combination 

of the effective transverse resistivity of the filamentary zone and of the transverse resistivity of the outer 

layer (we have already discussed this point in section II.1.2 ). When the resistivity of the second zone 

(R) increases, the total effective transverse resistivity also increases, as a consequence, the time constant 

𝜏 decreases and the maximum of the 𝑄 vs 𝑓 curve is then shifted to the right. There even exists a limit 

to the minimum value of 𝜏: it is reached when the resistivity of the second zone (R) is infinitely higher 

than that of the first layer (F). In this case, the F/R type strand actually corresponds to an F type strand 

and we obtain 𝜏 = 23.9𝑚𝑠 using the parameters of our example. 

The 𝑄 vs 𝑓 curves displayed on Figure 23 are also coupling losses per cycle per unit volume of 

strand (not per unit volume of filamentary zone). 

These curves have also been computed using formulae (127) and (128) but this time, unlike the case 

of the F/R type composite, we can see that there are two 𝛼𝑘 coefficients per curve (except for the third 

curve) and that their values are sensitive to the 𝜌𝑡2/𝜌𝑡1 ratio. This clearly supports our discussion on the 

dependence of the 𝛼𝑘 coefficients on the transverse resistivity of the different zones for strands with 

more than one time constant. 

In addition, conversely to the F/R type composites, we can notice that the maxima of each curve are 

all different from one another even though they are also shifted to the right with increasing 𝜌𝑡2/𝜌𝑡1 ratio. 
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Figure 23 : Q vs f curves of R/F type composite with different values of 𝝆𝒕𝟐/𝝆𝒕𝟏 for 𝑩𝒂 = 𝑩𝒑𝒔𝒊𝒏(𝝎𝒕), 𝑩𝒑 = 𝟐𝑻 

 

As a remark, we can see that the third curve is the only one with a single time constant and a single 

𝛼𝑘 coefficient. This comes from the fact that 𝜌𝑡2 = 𝜌𝑡1 for this curve and, in this case, the R/F type 

composite has no longer two time constants but only one (as previously mentioned in the R/F/R case). 

As a matter of fact, when 𝜌𝑡2 = 𝜌𝑡1, the first surface current normally flowing at 𝑟 = 𝑅1 has not any 

specific role and both zones are electrically equivalent, so virtually merge. Therefore the composite 

features only one surface current flowing at 𝑟 = 𝑅2 with only one 𝛼𝑘 coefficient equal to 1 and there is 

only one time constant left. 

The fifth curve is interesting as it deviates in shape from the other ones. For this reason we have 

displayed it on Figure 24 together with its decomposition as a weighted sum of two classical (i.e. single 

time constants) 𝑄 vs 𝑓 curves, as indicated in formula (127). This means that, in addition to curve 5, we 

have plotted 𝛼1𝑄𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙(𝜏𝑐1) and 𝛼2𝑄𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙(𝜏𝑐2) such that curve 5 is equal to 𝛼1𝑄𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙(𝜏𝑐1) +

𝛼2𝑄𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙(𝜏𝑐2). The fact that it deviates in shape from the other curves is majorly due to the fact that 

the values of its 𝛼1 and 𝛼2 coefficients are close from one another (respectively 0.562 and 0.438) while 

in the other curves, 𝛼1 predominates. Since the two 𝛼𝑘 coefficients are in the same range and the two 

time constants quite far apart we can observe that the convolution of the two contributions results in a 

curve with a maximum rather “flat”, unlike the curves usually expected from the “single time constant” 

approach for representing the strand behavior. 
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Figure 24 : Q vs f curve of R/F type composite with 𝝆𝒕𝟐/𝝆𝒕𝟏 = 𝟗 (curve 5) and  

its decomposition into two classical curves for 𝑩𝒂 = 𝑩𝒑𝒔𝒊𝒏(𝝎𝒕), 𝑩𝒑 = 𝟐𝑻 

 

This observation can have very practical consequences: measurements of 𝑄 vs 𝑓 curves are usually 

carried out up to a certain frequency range which sometimes imposes to stay within the linear part of 

the 𝑄 vs 𝑓 curve (i.e. for 𝜔𝜏 ≪ 1). If the measured strand features more than one time constant, as 

shown in this particular case, the extrapolation of its behavior at high frequencies upon the fitting with 

classical formula (126) of the measurements made in the linear part of the 𝑄 vs 𝑓 curve would result in 

substantial gaps. 

In order to quantify this consideration, we will extrapolate curve 5 at high frequencies from its linear 

part and using the classical formula (126).  

In order to do so, we consider that the R/F type composite has only one time constant and therefore 

assume that its associated coupling losses per cycle per unit volume of filamentary zone can be described 

by formula (126) which is equivalent to 

𝑄𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙(𝑓, 𝜏) = (
𝑅𝑓

𝑅
)
2 𝐵𝑝

2

𝜇0

4𝜋2𝑓𝜏

1 + (2𝜋𝑓𝜏)2
 

per unit volume of strand. 

For small values of 𝑓 satisfying 2𝜋𝑓𝜏 ≪ 1, we can assume that the 𝑄𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙(𝑓, 𝜏) function is well 

described by the following linear function 

𝑄𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙(𝑓 ≪ 1/(2𝜋𝜏), 𝜏) ≃ 4𝜋2𝜏 (
𝑅𝑓

𝑅
)
2 𝐵𝑝

2

𝜇0
𝑓 
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And it is then possible to compute the time constant 𝜏 of the strand from the slope at origin 𝑎 of 

curve 5 as 

𝜏 =
𝜇0

4𝜋2𝐵𝑝
2 (

𝑅

𝑅𝑓
)

2

𝑎 

Using this formula and the slope at origin of curve 5, we have obtained 𝜏 = 13.3𝑚𝑠 and have then 

extrapolated curve 5 at high frequencies using this τ; both curve 5 and the extrapolation from its linear 

part are displayed in Figure 25. 

 

 

Figure 25 : Q vs f curve of R/F type composite with 𝝆𝒕𝟐/𝝆𝒕𝟏 = 𝟗 (curve 5) for 𝑩𝒂 = 𝑩𝒑𝒔𝒊𝒏(𝝎𝒕), 𝑩𝒑 = 𝟐𝑻 

and corresponding curve with single time constant approach 

We clearly see a disagreement between these two curves at frequencies higher than 2𝐻𝑧. The 

discrepancy between both curves is clear: it reaches a factor 1.5 for 𝑓 = 11𝐻𝑧 and generally shows that 

for most of the high frequencies important over-evaluations or under-evaluations are made between the 

two approaches. We can also note that curve 5 reaches its maximum at 𝑓 = 30𝐻𝑧 while its extrapolation 

reaches its maximum at 𝑓 = 12𝐻𝑧. 

 

II.4.2  Study on the effect of the layout of a composite on coupling losses 

 

When designing a composite, the total amount of superconductor inside the composite is a key 

parameter as it will ensure the ability of the strand to produce the desired current, but it is not the only 

one. The Cu/NonCu ratio is also an important parameter as it will ensure the stability of the composite 

while guaranteeing also its integrity in case of quench. The filaments diameter plays a significant role 

in the protection of the composite against flux jumps too and should not be too large for this reason. 
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With the knowledge of the main design parameters of the composite, it is possible to propose a 

geometry that will meet given design requirements. 

There can be more than one acceptable geometry since the number and sequencing of the layers are 

usually not fixed. These parameters might be optimized with respect to coupling losses. 

In order to draw a tentative contribution to those considerations we have carried out a study on the 

response of composites meeting the same design requirements, but with different layouts, to sinusoidal 

magnetic excitations. 

We have therefore chosen the four different layouts displayed on Figure 26: F, F/R, R/F and R/F/R. 

 

Figure 26 : The four different layouts considered in our study 

We have chosen realistic design requirements (inspired from the design of JT-60SA TF conductor) 

and have therefore set the radius 𝑅 of the composites to 𝑅 = 0.405𝑚𝑚, the filaments diameter to 𝑑𝑓𝑖𝑙 =

20𝜇𝑚 and the Cu/NonCu ratio to 1.5. We assume that the superconductor is the only non-copper 

material inside the composites; the overall proportion 𝜆 of superconductor in each composite is then 

𝜆 =
1

1 + Cu/NonCu
= 0.4 

For layouts 2 to 4 which feature several layers, the radii of each of their internal zones are set as 

below (these assumptions are considered as examples for possible design constraints). 

For layout 2, 𝑅1 is such that the surface of layer 2 (copper) is equal to half that of layer 1 

(filamentary), we then have 𝑅1 = 𝑅√2/3. 

For layout 3, we have set 𝑅1 such that the surface of layer 1 (copper) is equal to half that of layer 2 

(filamentary), therefore 𝑅1 = 𝑅/√3. 

For layout 4, we have set 𝑅1 and 𝑅2 such that the surface of layer 1 (copper) is equal to that of layer 

3 (copper) and one fourth that of layer 2 (filamentary), thus 

{
𝑅1 = 𝑅/√6

𝑅2 = 𝑅√5/6
 

The resistivity of copper is set to 
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𝜌𝐶𝑢 = 1.5 × 10
−10𝛺.𝑚 

which again corresponds to the resistivity of copper with 𝑅𝑅𝑅 = 150 at 𝑇 = 4.2𝐾 and 𝐵 = 1𝑇. 

We now have to compute the effective transverse resistivities of the filamentary zone of each strand. 

In order to do so, we will use the formula given by Ciazynski [30] which is in agreement with the two 

extreme values of the filament-to-matrix contact resistance given by Carr [24]. In his formula Ciazynski 

assumes that the filament-to-matrix contact can be represented by a small resistive barrier of thickness 

𝑒𝑏 and resistivity 𝜌𝑏 surrounding the filaments; we assume this barrier to be thin enough so that his 

formula can be written as in [32] 

𝜌𝑡 = 𝜌𝑚
1 − 𝜆𝐹 + 𝜒(1 + 𝜆𝐹)

1 + 𝜆𝐹 + 𝜒(1 − 𝜆𝐹)
 

with 

𝜒 =
𝜌𝑏𝑒𝑏
𝜌𝑚𝑟𝑓𝑖𝑙

 

𝑟𝑓𝑖𝑙 is the radius of the filaments and 𝜌𝑚 is the resistivity of the matrix in the filamentary zone, but 

since the matrix is supposed to be exclusively made of copper, we have here 𝜌𝑚 = 𝜌𝐶𝑢.  

Turck [33] has estimated the 𝜌𝑏𝑒𝑏 parameter to be close to 

𝜌𝑏𝑒𝑏 = 6 × 10
−15𝛺.𝑚2 

which is consistent with the measurements presented in [38]. 

We have chosen this value for each of the four composites because since we assume this parameter 

is related to the fabrication process, it should be the same for every strand. 

𝜆𝐹 is the proportion of superconductor in the filamentary zone; it is therefore not always equal to 𝜆 

depending on the layout. Let us note 𝜆𝐹
(𝑘)

 the proportion of superconductor in the filamentary zone of 

the composite with layout 𝑘, in order to conserve the have the same amount of superconductor in each 

composite we must have 

{
 
 

 
 𝜆𝐹

(1)𝜋𝑅2 = 𝜆𝜋𝑅2

𝜆𝐹
(2)𝜋𝑅1

2 = 𝜆𝜋𝑅2

𝜆𝐹
(3)𝜋(𝑅2 − 𝑅1

2) = 𝜆𝜋𝑅2

𝜆𝐹
(4)𝜋(𝑅2

2 − 𝑅1
2) = 𝜆𝜋𝑅2

 

which is equivalent to 

{
 
 
 
 

 
 
 
 𝜆𝐹

(1) = 𝜆

𝜆𝐹
(2) = 𝜆 (

𝑅

𝑅1
)
2

𝜆𝐹
(3) = 𝜆

𝑅2

𝑅2 − 𝑅1
2

𝜆𝐹
(4) = 𝜆

𝑅2

𝑅2
2 − 𝑅1

2
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We now have all the elements to compute the effective transverse resistivities of the filamentary 

zone of each composite. 

Table 2 and Table 3 summarize the geometrical and electrical parameters of the composites 

computed using the previous considerations for the four different layouts. 

Table 2 

Common parameters 

N

ame 

Compo

site radius 

R 

Proportion 

of 

superconductor

𝜆 

Twist pitch of 

filaments 𝑙𝑝 

Filaments 

radius 𝑟𝑓𝑖𝑙 

Resistivities of 

copper 𝜌𝐶𝑢 and 

matrix 𝜌𝑚  

V

alue 
𝟎. 𝟒𝟎𝟓𝒎𝒎 𝟎. 𝟒 𝟏𝟓𝒎𝒎 𝟏𝟎𝝁𝒎 𝟏. 𝟓 × 𝟏𝟎−𝟏𝟎𝜴.𝒎 

 

Table 3 

Specific parameters for the different layouts 

Layout number 1 2 3 4 

Type F F/R R/F R/F/R 

𝝀𝑭 𝟎. 𝟒 𝟎. 𝟔 𝟎. 𝟔 𝟎. 𝟔 

Radii of zones 𝑅1 𝑅1 𝑅2 𝑅1 𝑅2 𝑅1 𝑅2 𝑅3 

Value (𝝁𝒎) 𝟒𝟎𝟓 𝟑𝟑𝟏 𝟒𝟎𝟓 𝟐𝟑𝟒 𝟒𝟎𝟓 𝟏𝟔𝟓 𝟑𝟕𝟎 𝟒𝟎𝟓 

Transverse 

resistivities of zones 
𝜌𝑡1 𝜌𝑡1 𝜌𝑡2 𝜌𝑡1 𝜌𝑡2 𝜌𝑡1 𝜌𝑡2 𝜌𝑡3 

Value 

(× 𝟏𝟎−𝟏𝟎𝜴.𝒎) 
𝟐. 𝟒𝟓 𝟑. 𝟏𝟗 𝟏. 𝟓 𝟏. 𝟓 𝟑. 𝟏𝟗 𝟏. 𝟓 𝟑. 𝟏𝟗 𝟏. 𝟓 

 

Using the parameters presented in Table 2 and Table 3 we have been able to produce the 𝑄 vs 𝑓 

curves for the four layouts; they are plotted on Figure 27. 

 

Figure 27 : Q vs f curves for composites with common design parameters and different layouts  
for 𝑩𝒂 = 𝑩𝒑𝒔𝒊𝒏(𝝎𝒕), 𝑩𝒑 = 𝟐𝑻 
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First of all, it is quite clear that, under our design assumptions, the F/R layout seems to be the best 

configuration with respect to coupling losses while the F one is the worst : there is a factor 1.5 between 

the maxima of the 𝑄 vs 𝑓 curves of the F and F/R type composites. In between these two extremes, are 

the R/F/R and R/F type composites. 

The obtained results are not intuitive at all and are quite difficult to predict qualitatively. Indeed, the 

different parameters of each strand have several effects that are competing with each other in the 

phenomenon of coupling losses. 

Actually two antagonistic effects enter into competition. First, the radius 𝑅𝑓 on which the outer edge 

filaments are located defines the volume to shield, therefore the larger the radius 𝑅𝑓, the larger the 

volume to shield and thus the larger the losses. Secondly, for a given variation of applied magnetic field 

𝐵𝑎, the smaller the total effective transverse resistivity, the higher the induced currents and consequently 

the larger the losses. 

If we now take a look at the parameters of the F and F/R type composites present in Table 3, we 

observe that the F composite has an effective transverse resistivity of 𝜌𝑡 = 2.45 × 10
−10𝛺. 𝑚 while the 

F/R one has a higher transverse resistivity in its filamentary zone (𝜌𝑡1 = 3.19 × 10
−10𝛺.𝑚) and a lower 

one in its copper sheath (𝜌𝑡2 = 1.5 × 10
−10𝛺.𝑚). The first difficulty is to compute the total effective 

transverse conductivity (i.e. 1/𝜌𝑡𝑡𝑜𝑡) of the F/R type composite as it consists in a weighted sum of the 

effective transverse conductivities of its two layers (i.e. 1/𝜌𝑡1 and 1/𝜌𝑡2). The two weighting 

coefficients depend on the geometrical parameters of the strand but they cannot be trivially derived, 

therefore we will not calculate them here. However given the values of the different resistivities and the 

geometry of both strands we can assume that the total effective transverse resistivity of the F/R type 

composite should be close to that of the F strand. Knowing that the time constant of an F or an F/R type 

strand is inversely proportional to its total effective transverse resistivity (see section II.1.2), our 

previous conjecture is confirmed by the fact that the time constants of both strands are very close from 

one another (14.6𝑚𝑠 for F and 16𝑚𝑠 for F/R). As a consequence, from considerations on the 

resistivities of both strands, we expect their respective coupling losses to be very similar and yet this is 

not what we observe. 

Regarding the location of the outer edge filaments we see that the F/R type composite has an 

advantage on its counterpart. Indeed the ratio of the shielded volumes of both strands is here equal to 

2/3 and is in favor of layout 2 (F/R); this therefore explains the relative positions of their 𝑄 vs 𝑓 curves. 

Finally, in order to produce a qualitative explanation for the positions of the different 𝑄 vs 𝑓 curves, 

we have displayed in Table 4 the ratio of the shielded volume to the strand volume for the four layouts. 

Table 4 

Ratio of shielded volume to strand volume for the different layouts 

Layout number 1 2 3 4 

Type F F/R R/F R/F/R 

𝑟𝑎𝑡𝑖𝑜 1 2/3 1 5/6 

Maximum of 

Q(f) (𝟏𝟎𝟔𝑱/𝒄𝒎𝟑/
𝒄𝒚𝒄𝒍𝒆) 

10.0 6.67 9.70 8.17 
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A posteriori we see that the shielded volume is the parameter that mainly impacts the coupling losses 

: the order of the ratios of Table 4 is consistent with the relative positions of the curves. 

In summary, the results of our study have shown that when designing a composite, if the factor of 

merit includes the coupling losses, it would be better to minimize the radius on which the outer edge 

filaments are located. 

Our study only considers coupling losses so the conclusions might differ when other parameters 

(critical performances, ease of assembly at manufacturing stage, stability of the composite in self-field, 

cost, etc…) are taken into account in the design requirements of a composite; these considerations could 

lead to the choice of another type of composite (different from F/R) with respect to the design 

constraints. 

Since this section aims only at spotting the general trends among different options, we go into a 

more quantitative approach by studying a particular design in the following section. 

 

II.4.3  Study on JT-60SA TF strand 

 

In this section we will present a detailed study of the electromagnetic behavior of the strand to be 

integrated into the Toroidal Field Coil of JT-60SA tokamak [39] when subject to a transverse time-

varying magnetic field. This strand is the K006-01C and was manufactured by Furukawa. 

As shown on Figure 11, this composite features a copper core surrounded by a filamentary zone 

containing NbTi filaments embedded in a copper matrix. The filamentary zone is enclosed in a CuNi 

barrier which is surrounded by a copper shell; this strand is thus of R/F/R/R type. 

II.4.3.1  Determination of the filament-to-matrix contact 𝜌𝑏𝑒𝑏 parameter 

 

First of all, we have to determine the effective transverse resistivity of its filamentary zone (i.e. 𝜌𝑡2). 

In order to do so, we will use the coupling losses measurements that we have carried out on this strand 

in the Speedy facility at CEA; they are presented in section II.5.2.1 . 

However, since we have not directly measured its effective resistivity, we have to express the 

coupling losses of this strand as function of 𝜌𝑡2 to be able to deduce its value. 

The measurements were made for trapezoidal cycles consisting in a succession of rising ramps, 

plateaus and falling ramps; we can then consider that the measurements were made in steady state regime 

since the durations of the ramps and plateaus were long compared to the large time constant of the JT-

60SA TF strand (see section II.5.2.1 ). 

As a consequence we will derive the formula of coupling losses inside this strand for steady state 

regime. 

Since the strand is of R/F/R/R type, it features 𝑛 = 4 layers and we therefore have 2𝑛 − 1 = 7 

electric field coefficients to determine i.e. (𝐸0𝑘)2≤𝑘≤8
. 

The second layer being filamentary, we can use equation (37) for 𝑘 = 2 which gives 
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{

𝐸03 = 0

𝐸04 =
𝑙𝑝
2𝜋
�̇�𝑎

 

At 𝑟 = 𝑅1 there is an interface of resistive/filamentary type, according to equation (40) for 𝑘 = 1 

we can thus write 

−𝐸01 + 𝐸02 =
𝑙𝑝
2𝜋
�̇�𝑎 

which reduces to 

𝐸02 =
𝑙𝑝
2𝜋
�̇�𝑎 

since 𝐸01 is always zero. 

The ultimate layer of the composite is resistive, for 𝑛 = 4 equation (43) indicates that 

𝐸08 = −𝐸07 

The filamentary/resistive interface located at 𝑟 = 𝑅2 leads, from equation (41) for 𝑘 = 2, to 

−(
𝑅3
𝑅2
)
2

𝐸05 + 𝐸06 =
𝑙𝑝

2𝜋
�̇�𝑎 

Finally since there is an interface between two resistive layers at 𝑟 = 𝑅3, we can use equation (39) 

for 𝑘 = 3 and the fact that 𝐸08 = −𝐸07 to obtain 

{
 
 

 
 𝐸05 =

1

2
(
𝑅4
𝑅3
)
2

(
𝜌𝑡3
𝜌𝑡4

+ 1)𝐸07 +
1

2
(
𝜌𝑡3
𝜌𝑡4

− 1)𝐸08 = 𝑠1𝐸07

𝐸06 =
1

2
(
𝑅4
𝑅3
)
2

(
𝜌𝑡3
𝜌𝑡4

− 1)𝐸07 +
1

2
(
𝜌𝑡3
𝜌𝑡4

+ 1)𝐸08 = 𝑠2𝐸07

 

with 

{
 
 

 
 𝑠1 =

1

2
[(
𝑅4
𝑅3
)
2

(
𝜌𝑡3
𝜌𝑡4

+ 1) + 1 −
𝜌𝑡3
𝜌𝑡4
]

𝑠2 =
1

2
[(
𝑅4
𝑅3
)
2

(
𝜌𝑡3
𝜌𝑡4

− 1) − 1 −
𝜌𝑡3
𝜌𝑡4
]

 

 

The combination of these expressions with the equation on 𝐸05 and 𝐸06 above gives 

𝐸07 =
𝑅2

2

𝑠2𝑅2
2 − 𝑠1𝑅3

2

𝑙𝑝
2𝜋
�̇�𝑎 
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We can now give the expressions of the (𝐸0𝑘)2≤𝑘≤8
 coefficients 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝐸02 =

𝑙𝑝
2𝜋
�̇�𝑎

𝐸03 = 0

𝐸04 =
𝑙𝑝
2𝜋
�̇�𝑎

𝐸05 =
𝑠1𝑅2

2

𝑠2𝑅2
2 − 𝑠1𝑅3

2

𝑙𝑝

2𝜋
�̇�𝑎

𝐸06 =
𝑠2𝑅2

2

𝑠2𝑅2
2 − 𝑠1𝑅3

2

𝑙𝑝
2𝜋
�̇�𝑎

𝐸07 =
𝑅2

2

𝑠2𝑅2
2 − 𝑠1𝑅3

2

𝑙𝑝
2𝜋
�̇�𝑎

𝐸08 =
−𝑅2

2

𝑠2𝑅2
2 − 𝑠1𝑅3

2

𝑙𝑝

2𝜋
�̇�𝑎

 

Using formula (112) we can express the instant power per unit volume of strand as 

�̅�(𝑡) =∑𝛽𝑗𝐸0𝑗
2(𝑡)

8

𝑗=2

= [𝛽2 + 𝛽4 +
(𝑠1

2𝛽5 + 𝑠2
2𝛽6 + 𝛽7 + 𝛽8)𝑅2

4

(𝑠2𝑅2
2 − 𝑠1𝑅3

2)
2 ] (

𝑙𝑝
2𝜋
)

2

�̇�𝑎
2

  

 

For a trapezoidal magnetic cycle falling from 𝐵𝑚 to −𝐵𝑚 in a time of 2𝜏𝑎 and rising again to 𝐵𝑚 

after a plateau of duration 𝑇𝑝, we can calculate the coupling losses per unit volume of strand as 

𝑄 = ∫ �̅�(𝑡)𝑑𝑡
2𝜏𝑎

0

+∫ �̅�(𝑡)𝑑𝑡
𝑇𝑝+2𝜏𝑎

𝑇𝑝

= [𝛽2 + 𝛽4 +
(𝑠1

2𝛽5 + 𝑠2
2𝛽6 + 𝛽7 + 𝛽8)𝑅2

4

(𝑠2𝑅2
2 − 𝑠1𝑅3

2)
2 ](

𝑙𝑝

2𝜋
)

2
4𝐵𝑚

2

𝜏𝑎
 

𝑄 is therefore a linear function of 1/𝜏𝑎 and can alternatively be written as 

𝑄 = 𝑎/𝜏𝑎 

With the expression of 𝛽4 given by (113) for 𝑗 = 2, we can now derive 𝜌𝑡2 as function of 𝑎 

𝜌𝑡2 =
𝑅2

2 − 𝑅1
2

𝑅4
2 [

𝑎

4𝐵𝑚
2 (
2𝜋
𝑙𝑝
)
2

− 𝛽2 −
(𝑠1

2𝛽5 + 𝑠2
2𝛽6 + 𝛽7 + 𝛽8)𝑅2

4

(𝑠2𝑅2
2 − 𝑠1𝑅3

2)
2 ]

 

From the measurements (see section II.5.2.1 ), we have determined 

𝑎 = 6.34 × 105𝐽.𝑚−3. 𝑠 

for a trapezoidal cycle with a 𝐵𝑚 of 3𝑇. 

The average magnetic field amplitude during the −3/+3𝑇 trapezoidal cycle being 1.5𝑇, we have 

set  

𝜌𝐶𝑢 = 2.278 × 10
−10𝛺.𝑚 
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which corresponds to the resistivity of copper with 𝑅𝑅𝑅 = 100 at 𝑇 = 4.2𝐾 and 𝐵 = 1.5𝑇. 

The third layer of the composite is a cupronickel barrier of 13 wt% (weight percent) Ni; the 

resistivity values of CuNi present in [32] has led us to 

𝜌𝐶𝑢𝑁𝑖 = 1.730 × 10
−7𝛺.𝑚 

We now have the transverse resistivities needed to compute 𝜌𝑡2, i.e. 

{

𝜌𝑡1 = 2.278 × 10
−10𝛺.𝑚

𝜌𝑡3 = 1.730 × 10
−7𝛺.𝑚

𝜌𝑡4 = 2.278 × 10
−10𝛺.𝑚

 

The geometrical parameters of the K006-01C JT-60SA TF strand are the following 

{
 
 

 
 
𝑅1 = 185𝜇𝑚
𝑅2 = 327𝜇𝑚
𝑅3 = 346𝜇𝑚
𝑅4 = 405𝜇𝑚
𝑙𝑝 = 15𝑚𝑚

 

These information, combined with the measured value of 𝑎, has led us to 

𝜌𝑡2 = 2.096 × 10
−10𝛺.𝑚 

which is very close to the value of 𝜌𝐶𝑢, i.e. to the values of 𝜌𝑡1 and 𝜌𝑡4. 

From the formulae presented in the previous section, it is also possible to deduce 𝜌𝑏𝑒𝑏 as function 

of 𝜌𝑡2 

𝜌𝑏𝑒𝑏 = 𝜌𝑚𝑟𝑓𝑖𝑙
(1 − 𝜆𝐹)𝜌𝑚 − (1 + 𝜆𝐹)𝜌𝑡2
(1 − 𝜆𝐹)𝜌𝑡2 − (1 + 𝜆𝐹)𝜌𝑚

 

For the considered composite, 𝑟𝑓𝑖𝑙 = 9.5𝜇𝑚, 𝜆𝐹 = 0.86 and 𝜌𝑚 = 𝜌𝐶𝑢 [39] . We therefore obtain 

𝜌𝑏𝑒𝑏 = 2 × 10
−15𝛺.𝑚2 

 

II.4.3.2  Simulated Q vs f curve for JT-60SA TF strand 

 

Knowing all the electrical and geometrical parameters of K006-01C JT-60SA TF strand, we have 

been able to instantly compute its 𝑄 vs 𝑓 curve for 𝐵𝑎 = 𝐵𝑝sin(2𝜋𝑓𝑡) with 𝐵𝑝 = 3𝑇 using CLASS 

algorithm - which features analytical formula (127) - and the measurements made in the low frequency 

region with CEA SPEEDY facility, i.e. with 𝜌𝑡2 = 2.096 × 10
−10𝛺.𝑚, see section II.5.2.1 ; the curve 

is displayed on Figure 28. 
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Figure 28 : Simulated Q vs f curve for K006-01C JT-60SA TF composite and 𝑩𝒂 = 𝑩𝒑𝒔𝒊𝒏(𝝎𝒕), 𝑩𝒑 = 𝟑𝑻 from 

measurements made in the low frequency region with CEA SPEEDY facility (i.e. with 𝝆𝒕𝟐 = 𝟐. 𝟎𝟗𝟔 × 𝟏𝟎
−𝟏𝟎𝜴.𝒎) 

Since K006-01C JT-60SA TF composite features two interfaces between filamentary and resistive 

zones (see Figure 11), it has two time constants. As shown on Figure 28, CLASS algorithm has obtained 

the following time constants 𝜏𝑐𝑘 and 𝛼𝑘 coefficients for the K006-01C JT-60SA TF composite with the 

previous electrical and geometrical parameters: 

{
𝜏𝑐1 = 17.0𝑚𝑠𝑤𝑖𝑡ℎ𝛼1 = 0.998

𝜏𝑐2 = 33.3𝑚𝑠𝑤𝑖𝑡ℎ𝛼2 = 0.002
 

This clearly indicates that even if the K006-01C JT-60SA TF composite has two time constants, the 

first one i.e. 𝜏𝑐1 = 17.0𝑚𝑠 is largely predominant. Indeed, its weighting in the losses is worth 99.8% 

while the other one (𝜏𝑐2 = 33.3𝑚𝑠) only weights 0.2%. From this information we can readily deduce 

that, for an average magnetic field of 1.5 T (+/- 3T cycles), the K006-01C JT-60SA TF composite 

behaves as if it only had one time constant : this is due to the fact that here 𝜌𝑡2 ≃ 𝜌𝑡1 (see discussion in 

section II.3.2 ). 

Note that the value of the average magnetic field seen by the composite is important because it has 

an influence on the transverse resistivities of the different zones and thus can affect the values of the 

time constants 𝜏𝑐𝑘 and 𝛼𝑘 coefficients. 

The results of CLASS algorithm on this specific case are consistent with the ones that would be 

classically derived from the experimental losses. Indeed the composite is subject to +/- 3T trapezoidal 

cycles whose ramps last 2𝜏𝑎 and whose plateaus last 𝑇𝑝 (both 𝜏𝑎 and 𝑇𝑝 are greater than the largest time 

constant of the strand), therefore the coupling losses per cycle per unit volume of strand 𝑄 can be 

determined from (3) assuming that for most of the cycle �̇�𝑖 = �̇�𝑎, i.e. 

𝑄 = (
𝑅𝑓

𝑅
)
2

[∫
𝑛𝜏�̇�𝑖

2

𝜇0
𝑑𝑡

2𝜏𝑎

0

+∫
𝑛𝜏�̇�𝑖

2

𝜇0
𝑑𝑡

𝑇𝑝+2𝜏𝑎

𝑇𝑝

] ≃ (
𝑅𝑓

𝑅
)
2 𝑛𝜏�̇�𝑎

2

𝜇0
4𝜏𝑎 
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Now, using the fact that 𝑛 = 2 for cylindrical composites and that here �̇�𝑎
2
= (𝐵𝑚/𝜏𝑎)

2 with 𝐵𝑚 =

3𝑇, we can derive 

𝑄 ≃ (
𝑅𝑓

𝑅
)
2 8𝜏𝐵𝑚

2

𝜇0

1

𝜏𝑎
 

which can be expressed as 

𝑄 = 𝑎/𝜏𝑎 

with 

𝑎 ≃ (
𝑅𝑓

𝑅
)
2 8𝜏𝐵𝑚

2

𝜇0
 

Therefore using 𝑎 = 6.34 × 105𝐽.𝑚−3. 𝑠 determined from measurements, we can deduce 

𝜏 ≃ (
𝑅

𝑅𝑓
)

2
𝜇0𝑎

8𝐵𝑚
2 ≃ 17.0𝑚𝑠 

which is fully consistent with the results obtained with CLASS. 

It is very important to understand that the case of the K006-01C JT-60SA TF composite is a specific 

one. Indeed, although having two time constants, it here behaves exactly as if it had only one time 

constant, but there is no guarantee that it will keep this behavior for any magnetic field amplitude. 

Considering it a single time constant strand under any circumstances could lead to appreciable 

discrepancies. 

Erratum: In [40] and [41] we have presented the same application but the associated results at the 

time of the publications were different than those discussed in the present manuscript; an error was made 

on the determination of the effective transverse resistivity. Consequently, the discrepancy between the 

single time constant approach and the CLASS algorithm has been significantly reduced on this particular 

case (JT-60SA TF strand). 

In order to highlight again the difference in behavior between single time constant strands and 

multiple time constants ones, we have also computed another 𝑄 vs 𝑓 curve assuming this composite had 

an arbitrary but realistic 𝜌𝑏𝑒𝑏 value of 

𝜌𝑏𝑒𝑏 = 6 × 10
−15𝛺.𝑚2 

This modification of the 𝜌𝑏𝑒𝑏 value also has an impact on the effective transverse resistivity of the 

second zone which is now quite different from 𝜌𝑡1, i.e. 

𝜌𝑡2 = 5.367 × 10
−10𝛺.𝑚 

The new 𝑄 vs 𝑓 curve computed by CLASS (“Qtot”) is displayed on Figure 29. It is interesting to 

note that it is no longer possible to see the K006-01C JT-60SA TF strand as a single time constant 

composite. Indeed the new values of time constants 𝜏𝑐𝑘 and 𝛼𝑘 coefficients are : 

{
𝜏𝑐1 = 8.3𝑚𝑠𝑤𝑖𝑡ℎ𝛼1 = 0.876

𝜏𝑐2 = 21.1𝑚𝑠𝑤𝑖𝑡ℎ𝛼2 = 0.124
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and here 𝜏𝑐1 is not as predominant as before (weight of 87.6%). 

 

Figure 29 : Simulated Q vs f curve for K006-01C JT-60SA TF composite and 𝑩𝒂 = 𝑩𝒑𝒔𝒊𝒏(𝝎𝒕), 𝑩𝒑 = 𝟑𝑻 with  

𝝆𝒃𝒆𝒃 = 𝟔 × 𝟏𝟎
−𝟏𝟓𝜴.𝒎𝟐 and thus 𝝆𝒕𝟐 = 𝟓. 𝟑𝟔𝟕 × 𝟏𝟎−𝟏𝟎𝜴.𝒎 

In order to visualize the error made considering a two time constant strand as a single time constant 

one, we have plotted two additional 𝑄 vs 𝑓 curves on Figure 29. The first one “Q determined from slope” 

is computed assuming the strand has only one time constant : the value of the time constant is determined 

from the behavior of “Qtot” in the low frequency linear region (i.e. in the steady state region). The 

second one “Q determined from maximum” is computed assuming the strand has only one time constant 

: the value of the time constant is determined from the location of the maximum of “Qtot” (i.e. when 

𝜔𝜏 = 1). 

II.4.3.3  2D cartographies of main physical quantities for JT-60SA TF strand 

 

With the knowledge of the electrical and geometrical parameters of a strand, it is also possible to 

simulate its time response to any magnetic signal and to produce detailed cartographies of all the 

physical quantities inherent to this strand in a very short computation time using CLASS algorithm 

issued from our analytical modeling. 

Indeed, after the numerical solve of the matrix equation of the system (72), equations (103) to (111) 

are used to compute the time dependent solutions of the screening currents and of the spatial average of 

the losses as well as instant detailed cartographies of the electric field, of the transverse currents, of the 

magnetic field and of the coupling losses inside the composite. 

We have therefore used CLASS algorithm to simulate the response of K006-01C JT-60SA TF strand 

to the following sinusoidal magnetic field with 𝐵𝑝 = 3𝑇 and 𝑓 = 1𝐻𝑧 

𝐵𝑎 = 𝐵𝑝sin(2𝜋𝑓𝑡) 

The computed time dependent solutions of the screening currents, of the magnetic field at the center 

of the strand and of the spatial averages of the losses are displayed on Figure 30. Note that in principle 
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for K006-01C JT-60SA TF strand there are only two screening currents located at 𝑟 = 𝑅1 and 𝑟 = 𝑅2 

while on Figure 30 we see that there are four of them. In reality the two additional screening currents 

𝐾03 and 𝐾04 are always zero since there are no superconducting filaments at the interfaces located at 

𝑟 = 𝑅3 and 𝑟 = 𝑅4 (this point has previously been discussed). 

 

 

Figure 30 : Simulated time solutions of screening currents, magnetic fields and average losses  
for K006-01C JT-60SA TF composite and 𝑩𝒂 = 𝑩𝒑𝒔𝒊𝒏(𝟐𝝅𝒇𝒕) with 𝑩𝒑 = 𝟑𝑻, 𝒇 = 𝟏𝑯𝒛 

 

Using CLASS algorithm, we have also been able to generate detailed cartographies at three different 

instant corresponding to the color markers displayed on Figure 30; they are shown from Figure 81 to 

Figure 92 in Appendix D. The objective of these figures is to show the large variations of the main 

physical quantities during a cycle of magnetic excitation as well as the potential of the CLASS tool. 

 

 
(a) : First instant (Figure 84) 

 
(b) : Second instant (Figure 88) 

 
(c) : Third instant (Figure 92) 

Figure 31 : Examples of the different holders with superconducting composite and copper pick-up coils 
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These cartographies are interesting as they provide both time and spatial variations of the physical 

quantities inside the composite. In our example, we clearly see that the power density cartographies 

produced at three different instants of the simulation (see Figure 31) show major differences between 

them. We can see that the power dissipated is here higher in the filamentary zone (second layer) than in 

the copper core and that the power dissipated in the two outer layers (CuNi barrier and copper shell) is 

almost negligible because of the presence of the CuNi barrier. 

Furthermore, for illustrative purposes, we have also simulated the response of K006-01C JT-60SA 

TF strand to a ramp going from 0𝑇 to 3𝑇 in 1𝑠 followed by a plateau and to the same rising ramp but 

this time followed by an exponential decay with a characteristic time of 0.1s (this value lies in the range 

of the time constant of the composite); the results are displayed through Figure 93 to Figure 96 in 

Appendix D. 

All these cartographies exhibit a large heterogeneity of the power density spatial distribution inside 

the composite; they clearly differ one from another either in terms of distribution or in terms of 

magnitude. This fact stresses that the stability of a strand can be impacted differently according to the 

operating conditions and that dedicated analyses e.g. with the present tool must be conducted in order 

to finely assess the risk of quench in given conditions. 

Conversely to the analytical approach which currently prevails in the community of superconducting 

magnets and which considers that the power is homogeneously dissipated inside superconducting 

strands, our model allows to predict the spatial variation of the power deposition at any time with very 

low CPU consumption thanks to its analytical nature. This characteristic makes it attractive because it 

can be quickly integrated in any multiphysics platforms that must scan thousands of scenario point; it 

would have a marginal impact on studies complexity or computation time. 

Regarding stability studies, our model can provide one of the source terms of the heat equation 

which are essential to any thermal study. It therefore stands as a first step towards the development of 

an integrated model dedicated to stability diagnostics. 

 

II.5 Experimental work 

 

II.5.1  Presentation of Speedy facility 

 

II.5.1.1  Speedy 

 

The Speedy facility has existed at CEA for many years and has thoroughly been described in [42]. 

The Speedy facility is located at IRFM CEA Cadarache and is used for measuring the magnetization 

cycles of superconducting composites, which allow the determination of their hysteresis and coupling 

losses. It features a liquid helium bath in which the superconducting coil responsible for the application 

of a magnetic field on the composite to be tested is immersed (see Figure 32). 
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Figure 32 : Superconducting coil used for the application of a magnetic field on the tested composite 

The composite is tested with the compensated pick-ups method and is therefore wound on a 

cylindrical sample holder. An inner pick-up copper coil called reference coil is wound on a “finger 

holder” and inserted inside the sample holder. An outer pick-up copper coil is used as a measurement 

coil and is wound on a “sheath holder” which encloses the sample holder. The different holders which 

are about ten centimeters high, the pick-up coils and the position of the composite to be tested are 

presented in Figure 33. 

 

 
(a) : Example of a sample holder 

with a composite wound on it 

 
(b) : Example of a finger holder 

with the inner pick-up coil wound on 
it 

 
(c) : Example of a sheath holder 

with the outer pick-up coil wound on 
it 

Figure 33 : Examples of the different holders with superconducting composite and copper pick-up coils 

 

The three holders are designed in an accurate way so that they can exactly fit in each other. Their 

assembly is displayed on Figure 34. 
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(a) : The three holders dissociated 
(b) : The three holders 

assembled 

(c) : Schematic view of pick-up 
coils and composite for assembled 

holders 
Figure 34 : Assembly of the different holders with their pick-up coils and the superconducting composite 

Once assembled, the three holders and their coils are integrated onto a rod that will be placed in the 

central hole of the superconducting coil visible on Figure 32 which is immersed in a liquid helium bath. 
Figure 35 displays a complete overview of the Speedy facility. We see that the superconducting coil 

creates a magnetic field called 𝐵𝑎⃗⃗ ⃗⃗⃗ : it corresponds to the magnetic field that would exist inside the 

superconducting coil if its enclosed volume was empty (i.e. without the composite to be tested). 

 

 

Figure 35 : Schematic overview of the Speedy facility 

 

It is important to note that the ends of the superconducting composite to be tested are not connected 

to avoid it behaving as a small coil once immersed in the magnetic field generated by the 

superconducting coil of Figure 32. The reasons why the sample is coil shaped are that: 

 it allows the measurement of the composite response to a transverse time varying magnetic field 

 the different turns increase the total measured magnetization and therefore enhance the quality of the 

measurement 



95 

 

On the other hand, the ends of both the inner and outer pick-up coils are connected through a 

Wheatstone bridge whose electrical scheme can be seen on Figure 36. 
 

 
Figure 36 : Electrical scheme of the Wheatsone bridge used in Speedy facility 

This bridge features two electrical resistances noted 𝑅𝑖 and 𝑅𝑒 and is designed so that the voltage 

induced in the inner coil (reference) by the time variation of the applied magnetic field 𝐵𝑎⃗⃗ ⃗⃗⃗ can 

compensate that induced in the outer coil (measurement). Indeed, when the bridge is balanced, these 

voltages cancel each other out and 𝑉𝑚 can be directly linked to the time variation of the magnetization 

of the composite. According to the electric scheme of Figure 36, we have 

 

𝑉𝑚 =
𝑅𝑖𝑉𝑒 − 𝑅𝑒𝑉𝑖
𝑅𝑖 + 𝑅𝑒

 

 

We can now decompose the voltage induced in each pick-up coils as a sum of the voltage due to the 

time variation of the applied magnetic field (i.e. due to �̇�𝑎) and of the voltage due to the time variation 

of the magnetization of the composite (i.e. due to �̇�). This consideration leads to the following 

equations: 

 

{
𝑉𝑖 = 𝑉𝑖�̇�𝑎

+ 𝑉𝑖�̇� = 𝑛𝑖𝜋𝑟𝑖
2�̇�𝑎 + 𝑉𝑖�̇�

𝑉𝑒�̇�0
= 𝑉𝑒�̇�𝑎

+ 𝑉𝑒�̇� = 𝑛𝑒𝜋𝑟𝑒
2�̇�𝑎 + 𝑉𝑒�̇�

 

where 𝑛𝑖 and 𝑛𝑒 are the number of turns of the inner and outer pick-up coils respectively and 𝑟𝑖 and 

𝑟𝑒 are their respective winding radii. 

Now replacing 𝑉𝑖 and 𝑉𝑒 in the expression of 𝑉𝑚, we obtain 

 

𝑉𝑚 =
𝑅𝑖𝑉𝑒�̇� − 𝑅𝑒𝑉𝑖�̇�

𝑅𝑖 + 𝑅𝑒
+
𝑛𝑒𝜋𝑟𝑒

2𝑅𝑖 − 𝑛𝑖𝜋𝑟𝑖
2𝑅𝑒

𝑅𝑖 + 𝑅𝑒
�̇�𝑎 

In order for the Wheatstone bridge to be balanced, the second term in 𝑉𝑚 expression must be zero, 

so that the measured value of 𝑉𝑚 only relates to the time variation of the magnetization of the composite. 

 

Therefore the balancing condition of the Wheatstone bridge is 

 

𝑛𝑒𝜋𝑟𝑒
2𝑅𝑖 = 𝑛𝑖𝜋𝑟𝑖

2𝑅𝑒 
 

which can be alternatively expressed as 

 

𝑅𝑖
𝑅𝑒
=
𝑛𝑖𝑟𝑖

2

𝑛𝑒𝑟𝑒
2
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When the Wheatstone bridge is balanced, 𝑉𝑚 only depends on the time variation of the magnetization 

of the composite �̇� and is equal to 

 

𝑉𝑚 =
𝑅𝑖𝑉𝑒�̇� − 𝑅𝑒𝑉𝑖�̇�

𝑅𝑖 + 𝑅𝑒
 

 

We will derive the expressions of 𝑉𝑖�̇� and 𝑉𝑒�̇� as functions �̇� of in the next section. 

 

II.5.1.2  Measurement method of magnetization 

 

We will here derive the expression which links the energy dissipated during a magnetic cycle to the 

measured voltage 𝑉𝑚 presented in the previous section. 

This calculation has already been carried out by Ciazynski [30] for a composite having only one 

screening current (i.e. having only one interface between resistive and filamentary zones, see section 

II.2.3 ). However, in our modeling, we have considered composites with any number of screening 

currents (i.e. with any number of interfaces between resistive and filamentary zones), therefore we had 

to derive again the relation between the energy dissipated during a magnetic cycle and the measured 

voltage 𝑉𝑚 for these configurations. 

First of all, we know that the energy density 𝑄𝑣𝑜𝑙 dissipated during a cycle of the external magnetic 

excitation is equal to 

𝑄𝑣𝑜𝑙 = −∫ �⃗⃗⃗�. 𝑑�⃗⃗�𝑖



𝑐𝑦𝑐𝑙𝑒

 

where �⃗⃗⃗� is the magnetization inside the strand and �⃗⃗�𝑖 the induction inside the strand. 

Splitting �⃗⃗�𝑖 as �⃗⃗�𝑖 = �⃗⃗�𝑎 + �⃗⃗�𝑟𝑒𝑎𝑐𝑡 where �⃗⃗�𝑟𝑒𝑎𝑐𝑡 is the reacting magnetic field, i.e. the magnetic field 

due to the induced currents, we can alternatively write 

𝑄𝑣𝑜𝑙 = −∫ �⃗⃗⃗�. 𝑑�⃗⃗�𝑖



𝑐𝑦𝑐𝑙𝑒

= −∫ �⃗⃗⃗�. 𝑑�⃗⃗�𝑎



𝑐𝑦𝑐𝑙𝑒

−∫ �⃗⃗⃗�. 𝑑�⃗⃗�𝑟𝑒𝑎𝑐𝑡



𝑐𝑦𝑐𝑙𝑒

 

In addition we have 

�⃗⃗�𝑖 = 𝜇0(�⃗⃗⃗� + �⃗⃗⃗�) = 𝜇0(�⃗⃗⃗�𝑎 + �⃗⃗⃗�𝑑 + �⃗⃗⃗�) 

where 𝜇0�⃗⃗⃗�𝑎 = �⃗⃗�𝑎 is the applied field and �⃗⃗⃗�𝑑 is the demagnetizing field. We can therefore express 

�⃗⃗�𝑟𝑒𝑎𝑐𝑡 as 

�⃗⃗�𝑟𝑒𝑎𝑐𝑡 = 𝜇0(�⃗⃗⃗�𝑑 + �⃗⃗⃗�) 

Finally, the relation between �⃗⃗⃗�𝑑 and �⃗⃗⃗� can be written as 

�⃗⃗⃗�𝑑 = −𝑁𝑑 �⃗⃗⃗� 

where 𝑁𝑑 is known as the coefficient of demagnetization (it can also be a tensor if the relation 

between �⃗⃗⃗�𝑑 and �⃗⃗⃗� is anisotropic). 
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Using the previous relations, it is now possible to write 

�⃗⃗�𝑟𝑒𝑎𝑐𝑡 = 𝜇0(1 − 𝑁𝑑)�⃗⃗⃗� 

and thus 

−∫ �⃗⃗⃗�. 𝑑�⃗⃗�𝑟𝑒𝑎𝑐𝑡



𝑐𝑦𝑐𝑙𝑒

= −𝜇0(1 − 𝑁𝑑)∫ �⃗⃗⃗�. 𝑑�⃗⃗⃗�


𝑐𝑦𝑐𝑙𝑒

= −𝜇0(1 − 𝑁𝑑)
1

2
[𝑀𝑒𝑛𝑑

2 −𝑀𝑠𝑡𝑎𝑟𝑡
2] 

where 𝑀𝑒𝑛𝑑 is the magnetization at the end of a cycle and 𝑀𝑠𝑡𝑎𝑟𝑡 is the magnetization at the 

beginning of the same cycle. 

After the first magnetic cycle, we are sure that the magnetization is the same at the beginning and at 

the end of each cycle, consequently 𝑀𝑒𝑛𝑑 = 𝑀𝑠𝑡𝑎𝑟𝑡 and 

−∫ �⃗⃗⃗�. 𝑑�⃗⃗�𝑟𝑒𝑎𝑐𝑡



𝑐𝑦𝑐𝑙𝑒

= 0 

As a result, 𝑄𝑣𝑜𝑙 can be reduced to 

𝑄𝑣𝑜𝑙 = −∫ �⃗⃗⃗�. 𝑑�⃗⃗�𝑎



𝑐𝑦𝑐𝑙𝑒

 

We will now compute the magnetization inside a cylinder carrying a surface current �⃗⃗⃗� =

𝐾0cos(𝜃)𝑒𝑧⃗⃗ ⃗⃗  on its outer surface. In the following, this distribution of current will be referred to as a 

“circular dipole”. According to (57), we know that the magnetic field components inside and outside the 

cylinder of radius 𝑅 are given by 

{
 
 
 

 
 
 

𝐵𝑥𝑖𝑛𝑡(𝑟, 𝜃) = 0

𝐵𝑥𝑒𝑥𝑡(𝑟, 𝜃) = −
𝜇0𝐾0
2

(
𝑅

𝑟
)
2

sin(2𝜃)

𝐵𝑦𝑖𝑛𝑡(𝑟, 𝜃) = −
𝜇0𝐾0
2

𝐵𝑦𝑒𝑥𝑡(𝑟, 𝜃) =
𝜇0𝐾0
2

(
𝑅

𝑟
)
2

cos(2𝜃)

 

Outside the cylinder, we have �⃗⃗�𝑒𝑥𝑡 = 𝜇0�⃗⃗⃗�𝑒𝑥𝑡 and inside, we have �⃗⃗�𝑖𝑛𝑡 = 𝜇0(�⃗⃗⃗�𝑖𝑛𝑡 + �⃗⃗⃗�). Given the 

spatial form of the magnetic field inside the cylinder, we can assume that 

{
�⃗⃗⃗�𝑖𝑛𝑡 = 𝐻𝑖𝑛𝑡𝑥𝑒𝑥⃗⃗⃗⃗⃗ + 𝐻𝑖𝑛𝑡𝑦𝑒𝑦⃗⃗⃗⃗⃗

�⃗⃗⃗� = 𝑀𝑥𝑒𝑥⃗⃗⃗⃗⃗ + 𝑀𝑦𝑒𝑦⃗⃗⃗⃗⃗
 

where 𝐻𝑖𝑛𝑡𝑥,𝐻𝑖𝑛𝑡𝑦, 𝑀𝑥 and 𝑀𝑦 do not depend on 𝑟 and 𝜃. 

The continuity equation of �⃗⃗⃗� at 𝑟 = 𝑅 leads to 

𝑒𝑟⃗⃗ ⃗⃗ × [�⃗⃗⃗�𝑒𝑥𝑡(𝑅, 𝜃) − �⃗⃗⃗�𝑖𝑛𝑡(𝑅, 𝜃)] = [
𝐾0
2
cos(𝜃) + 𝐻𝑖𝑛𝑡𝑥 sin(𝜃) − 𝐻𝑖𝑛𝑡𝑦 cos(𝜃)] 𝑒𝑧⃗⃗ ⃗⃗ = 0⃗⃗ 
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Therefore 

{

𝐻𝑖𝑛𝑡𝑥 = 0

𝐻𝑖𝑛𝑡𝑦 =
𝐾0
2

 

Using the fact that �⃗⃗�𝑖𝑛𝑡 = 𝜇0(�⃗⃗⃗�𝑖𝑛𝑡 + �⃗⃗⃗�), we can deduce 

{
𝑀𝑥 = 0
𝑀𝑦 = −𝐾0

 

We will now compute the magnetic flux due to a vertical row of circular dipoles of radius 𝑅 enclosed 

by each pick up coil. 

According to (55), the magnetic vector potential 𝐴𝑧𝑑  at (𝑥, 𝑦) created by a circular dipole of radius 

𝑅𝑑 located at (𝑥𝑑 , 𝑦𝑑) with a surface current amplitude 𝐾0𝑑 is equal to 

𝐴𝑧𝑑(𝑥, 𝑦) =
𝜇0𝐾0𝑑
2

𝑅𝑑
2 𝑥 − 𝑥𝑑
(𝑥 − 𝑥𝑑)

2 + (𝑦 − 𝑦𝑑)
2
 

For a vertical row of 2𝑛 + 1 circular dipoles spaced 2𝑎 apart (see Figure 37) and centered on 𝑦 =

𝑦𝑑0 with −𝑎 ≤ 𝑦𝑑0 ≤ 𝑎, we have 

𝐴𝑧𝑑𝑟𝑜𝑤(𝑥, 𝑦) =
𝜇0𝐾0𝑑
2

𝑅𝑑
2(𝑥 − 𝑥𝑑) ∑

1

(𝑥 − 𝑥𝑑)
2 + (𝑦 − 𝑦𝑑0 − 2𝑘𝑎)

2

𝑛

𝑘=−𝑛

 

The height of the wound sample in the vertical direction (i.e. 4𝑛𝑎 along the y-axis) being large 

compared to the heights of the pick-up coils (see Figure 34), we can assume that the magnetic vector 

potential felt by the pick-up coils at any 𝑦 is constant and given by 

〈𝐴𝑧𝑑𝑟𝑜𝑤〉(𝑥) =
1

2𝑎
∫ 𝐴𝑧𝑑𝑟𝑜𝑤(𝑥, 𝑦)𝑑𝑦
𝑎

𝑦=−𝑎

 

which is equal to 

〈𝐴𝑧𝑑𝑟𝑜𝑤〉(𝑥) =
𝜇0𝐾0𝑑 𝑅𝑑

2(𝑥 − 𝑥𝑑)

4𝑎
 ∑ ∫

𝑑𝑦

(𝑥 − 𝑥𝑑)
2 + (𝑦 − 𝑦𝑑0 − 2𝑘𝑎)

2

𝑎

𝑦=−𝑎

𝑛

𝑘=−𝑛

 

The integral inside the sum being equal to 

1

(𝑥 − 𝑥𝑑)
[arctan(

𝑦𝑑0 + (2𝑘 + 1)𝑎

𝑥 − 𝑥𝑑
) − arctan(

𝑦𝑑0 + (2𝑘 − 1)𝑎

𝑥 − 𝑥𝑑
)] 

we can simplify the sum as 

1

(𝑥 − 𝑥𝑑)
[arctan(

𝑦𝑑0 + (2𝑛 + 1)𝑎

𝑥 − 𝑥𝑑
) − arctan(

𝑦𝑑0 − (2𝑛 + 1)𝑎

𝑥 − 𝑥𝑑
)] 

since it is a telescopic sum. 

Assuming that (2𝑛 + 1)𝑎 ≫ |𝑥 − 𝑥𝑑| and that (2𝑛 + 1)𝑎 ≫ |𝑦𝑑0|, we can deduce 
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〈𝐴𝑧𝑑𝑟𝑜𝑤〉(𝑥) =
𝜇0𝐾0𝑑 𝑅𝑑

2𝜋

4𝑎
𝑠𝑖𝑔𝑛(𝑥 − 𝑥𝑑) 

For 𝑥 = −ℎ𝑖 or 𝑥 = ℎ𝑒, the assumption (2𝑛 + 1)𝑎 ≫ |𝑥 − 𝑥𝑑| is valid since the half-height of the 

sample (several centimeters in the vertical direction, see Figure 34) is much larger than the distance 

between the sample and the pick-up coils in the (𝑂𝑥𝑧) plane (this distance is usually comparable to the 

radius of the tested composite, i.e. about half a millimeter). In addition, since the sample is wound with 

a large number of turns 𝑛 (see Figure 34) and |𝑦𝑑0| ≤ 𝑎, the assumption (2𝑛 + 1)𝑎 ≫ |𝑦𝑑0| is also 

valid. 

The magnetic flux 𝛷𝑖𝑑𝑟𝑜𝑤  due to a vertical row of circular dipoles with radius 𝑅 and current 𝐾0𝑑 

enclosed by the internal pick-up coil which has a winding radius 𝑟𝑖 and 𝑛𝑖 turns is then 

𝛷𝑖𝑑𝑟𝑜𝑤 = −2𝜋𝑟𝑖𝑛𝑖〈𝐴𝑧𝑑𝑟𝑜𝑤〉(𝑥 = −ℎ𝑖) = 2𝜋𝑟𝑖𝑛𝑖
𝜇0𝐾0𝑑𝑅𝑑

2𝜋

4𝑎
 

Note that the flux of a magnetic field oriented along the y-axis through the inner pick-up coil is 

counted as positive here. 

Using the fact that the magnetization inside the dipole is 𝑀𝑑 = −𝐾0𝑑, we have 

𝛷𝑖𝑑𝑟𝑜𝑤 = −2𝜋𝑟𝑖𝑛𝑖
𝜇0𝑀𝑑𝑅𝑑

2𝜋

4𝑎
 

Similarly, the magnetic flux 𝛷𝑒𝑑𝑟𝑜𝑤 enclosed by the external pick-up coil which has a winding radius 

𝑟𝑒 and 𝑛𝑒 turns is then 

𝛷𝑒𝑑𝑟𝑜𝑤 = −2𝜋𝑟𝑒𝑛𝑒〈𝐴𝑧𝑑𝑟𝑜𝑤〉(𝑥 = ℎ𝑒) = −2𝜋𝑟𝑒𝑛𝑒
𝜇0𝐾0𝑑𝑅𝑑

2𝜋

4𝑎
= 2𝜋𝑟𝑒𝑛𝑒

𝜇0𝑀𝑑𝑅𝑑
2𝜋

4𝑎
 

Again the flux of a magnetic field oriented along the y-axis through the outer pick-up coil is counted 

as positive here. 

 

Figure 37 : Schematic cross-section of three turns of sample in Speedy facility 
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In a composite, there exist several circular dipoles with different internal magnetizations 𝑀𝑑 and 

radii 𝑅𝑑. Indeed, the magnetization currents flowing through the superconducting filaments which are 

responsible for the hysteresis losses can be seen as dipoles with a radius equal to that of a filament (𝑅ℎ =

𝑟𝑓𝑖𝑙). In addition, the currents flowing through the edge filaments of each filamentary zone are also 

circular dipoles with a radius equal to the radial localization of the currents. 

Therefore we can define an average magnetization 𝑀0 over the whole volume of a composite of 

radius 𝑅 as 

𝑀0 =
1

𝑅2
∑𝑀𝑑𝑅𝑑

2



𝑑

 

In order to take into account the contribution of every circular dipole existing inside the composite 

in the magnetic flux enclosed by each pick-up coil, we have to sum the previous relations over every 

dipole, i.e. 

{
 
 

 
 𝛷𝑖𝑀0 =∑𝛷𝑖𝑑𝑟𝑜𝑤 



𝑑

= −2𝜋𝑟𝑖𝑛𝑖
𝜇0𝜋

4𝑎
∑𝑀𝑑𝑅𝑑

2



𝑑

𝛷𝑒𝑀0 =∑𝛷𝑒𝑑𝑟𝑜𝑤 



𝑑

= 2𝜋𝑟𝑒𝑛𝑒
𝜇0𝜋

4𝑎
∑𝑀𝑑𝑅𝑑

2



𝑑

 

This leads to 

{
 

 𝛷𝑖𝑀0 = −𝑟𝑖𝑛𝑖
𝜇0𝜋

2

2𝑎
𝑀0𝑅

2

𝛷𝑒𝑀0 = 𝑟𝑒𝑛𝑒
𝜇0𝜋

2

2𝑎
𝑀0𝑅

2

 

It is interesting to note that, from the point of view of each pick-up coil, there is absolutely no 

distinction between the effects of several circular dipoles with different radii inside the composite and a 

circular dipole with a radius equal to that of the composite (i.e. 𝑅) and a magnetization 𝑀0 equal to the 

surface weighted average of the magnetizations of every circular dipoles in the composite. 

Finally we can deduce that the voltage induced in each pick-up coil by the variation of 𝑀0 is 

{
 

 𝑉𝑖�̇�0
= −�̇�𝑖𝑀0 = 𝑟𝑖𝑛𝑖

𝜇0𝜋
2

2𝑎
�̇�0𝑅

2

𝑉𝑒�̇�0
= −�̇�𝑒𝑀0 = −𝑟𝑒𝑛𝑒

𝜇0𝜋
2

2𝑎
�̇�0𝑅

2

 

 

Now, using the relation of the Wheatstone bridge given in the previous section, we have 

𝑉𝑚 =
𝑅𝑖𝑉𝑒�̇�0

− 𝑅𝑒𝑉𝑖�̇�0
𝑅𝑖 + 𝑅𝑒

= −
𝜇0𝜋

2𝑅2

2𝑎
[
𝑛𝑒𝑟𝑒𝑅𝑖 + 𝑛𝑖𝑟𝑖𝑅𝑒

𝑅𝑖 + 𝑅𝑒
] �̇�0 

assuming the bridge is balanced. We can now give the relation between the measured voltage 𝑉𝑚 

and the average magnetization 𝑀0 as 
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𝜇0𝑀0 = −𝑓𝑔𝑒𝑜∫𝑉𝑚𝑑𝑡 

with 

𝑓𝑔𝑒𝑜 =
2𝑎

𝜋2𝑅2
[

𝑅𝑖 + 𝑅𝑒
𝑛𝑒𝑟𝑒𝑅𝑖 + 𝑛𝑖𝑟𝑖𝑅𝑒

] 

 

To compute the energy per unit volume of strand dissipated during a magnetic cycle, we can now 

replace �⃗⃗⃗� with 𝑀0𝑒𝑦⃗⃗⃗⃗⃗ and �⃗⃗�𝑎 with 𝐵𝑎𝑒𝑦⃗⃗⃗⃗⃗ in 𝑄𝑣𝑜𝑙 = −∫ �⃗⃗⃗�. 𝑑�⃗⃗�𝑎


𝑐𝑦𝑐𝑙𝑒
. This leads to 

𝑄𝑣𝑜𝑙 = −∫ 𝑀0𝑑𝐵𝑎



𝑐𝑦𝑐𝑙𝑒

= ∫
𝑓𝑔𝑒𝑜

𝜇0
(∫𝑉𝑚𝑑𝑡) 𝑑𝐵𝑎



𝑐𝑦𝑐𝑙𝑒

 

The expression we have obtained is almost equal to that of Ciazynski [30] because the taking into 

account of the additional screening currents does not modify the relation between the energy and 𝑉𝑚 

(the difference is about 5% and is due to the different approaches we have used to average the magnetic 

vector potential felt by the pick-up coils). Indeed, we have seen that the pick-up coils make no distinction 

between the contributions of every circular dipoles in the composite and that of an equivalent circular 

dipole with radius 𝑅 and magnetization 𝑀0 equal to the surface weighted average of the magnetizations 

of every circular dipoles in the composite. However this calculation had to be carried out in order to 

assess the effect of the additional screening currents in the relation between the measured voltage 𝑉𝑚 

and the magnetization of the composite. 

 

II.5.2  Measurements 

 

In this section we will present the results issued from the AC losses measurements we have carried 

out in the Speedy facility on the two strands displayed on Figure 38. 

  

(a) : K006-01C JT-60SA TF strand (NbTi) (b) : F 0796-1 ITER TF strand (Nb3Sn) 

Figure 38 : Strands measured in the Speedy facility 
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As a reminder K006-01C JT-60SA TF strand [39] has been manufactured by Furukawa and contains 

a copper core surrounded by a filamentary zone which consists of twisted NbTi superconducting 

filaments embedded in a copper matrix. The filamentary zone is enclosed in a CuNi barrier which is 

surrounded by a copper shell. 

The F 0796-1 ITER TF strand [43] has been manufactured by Oxford Instruments Superconducting 

Technology (OST) by means of the Internal Tin Diffusion Process. It features 19 sub-elements each 

containing a tin core surrounded by twisted Nb3Sn superconducting filaments embedded in a bronze 

matrix (originally the matrix is made of copper but is transformed into a bronze matrix during the tin 

diffusion process). The 19 sub-elements are assembled together and are surrounded by a tantalum 

diffusion barrier; outside the barrier is a copper shell. 

The AC losses of K006-01C JT-60SA TF strand have been measured at CEA in 2011 [44] for 

trapezoidal cycles which were slowly time-varying. According to our analytical modeling, this strand is 

supposed to exhibit two time constants because it features two interfaces between filamentary and 

resistive zones but this behavior cannot be observed in slowly time-varying regimes. Consequently our 

original objective was to measure the AC losses of this strand for fast time-varying magnetic regimes in 

order to produce its 𝑄 vs 𝑓 curve and to verify if the strand was indeed exhibiting two time constants 

instead of one as it is usually admitted within the community for any strand. The fast regimes were 

supposed to be explored using sinusoidal signal excitation, tentatively implemented for the first time in 

CEA Speedy facility. 

However, we have encountered two difficulties which have prevented us from observing this 

behavior: 

 The power supply used in the Speedy facility is limited to 800 A in current and 30 V in voltage; 

it is therefore not powerful enough to explore sufficiently fast time-varying regimes because of 

the complex impedance due to the self-inductance of the Speedy superconducting coil. Knowing 

that it would not be possible to reach frequencies high enough to overpass the maximum of the 𝑄 

vs 𝑓 curve of K006-01C JT-60SA TF strand, our original plan was just to measure the AC losses 

outside the linear region of the 𝑄 vs 𝑓 curve. Unfortunately, it appeared that the sinusoidal 

magnetic field 𝐵𝑎 = 𝐵𝑝sin(2𝜋𝑓𝑡) that the power supply and the coil could produce was limited 

to 𝐵𝑝 = 17𝑚𝑇 at 𝑓 = 10𝐻𝑧 and to 𝐵𝑝 = 1𝑚𝑇 at 𝑓 = 20𝐻𝑧; with these amplitudes, it is not 

possible to have trustworthy magnetization signals (values close to HC1 value and complex way 

to discriminate coupling and hysteresis losses). Consequently it was then not possible to explore 

out of the linear region of the 𝑄 vs 𝑓 curve. 

 

 After having measured the AC losses of K006-01C JT-60SA TF strand for slow time-varying 

regimes, we have been able to deduce the effective transverse resistivity of its filamentary zone 

(see section II.4.3 ) : it appeared that this resistivity was very close to that of the copper core so 

that the screening current flowing at the interface between the copper core and the filamentary 

zone was too weak. This implies that K006-01C JT-60SA TF strand almost behaves as a single 

time constant strand and therefore it would have been very difficult to distinguish the contribution 

of a second time constant in the measurements. 

Despite these difficulties we have been able to take profit of the experiments by measurements of 

the AC losses of K006-01C JT-60SA TF strand for trapezoidal cycles with different magnetic field 

amplitudes and for sinusoidal cycles until 𝑓 = 1𝐻𝑧 also with different magnetic field amplitudes; we 

will present these results further. 
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Regarding the F 0796-1 ITER TF strand, it appears that there is no record of measurement of any 

Nb3Sn strand coupling losses while the hysteresis losses of ITER TF-type strands have systematically 

been measured [45] in the production QA flow. For this reason we have chosen to measure this strand 

to evaluate its time constant. 

 

II.5.2.1  NbTi strand (JT-60SA TF) 

 

II.5.2.1.1 Trapezoidal cycles 

 

We have first measured the AC losses of K006-01C JT-60SA TF strand generated during symmetric 

magnetic trapezoidal cycles. These cycles are routinely specified for a strand fabrication and therefore 

accordingly used by manufacturers for the characterization of superconducting strands during 

manufacture. 

Each trapezoidal cycle started from +𝐵𝑚, fell to −𝐵𝑚 in a time 2𝜏𝑎, then stayed at −𝐵𝑚 for a time 

𝑇𝑝 (typically around 5s), then went back to +𝐵𝑚 again in a time 2𝜏𝑎 and finally stayed at +𝐵𝑚 for a 

time 𝑇𝑝. The pattern of the trapezoidal cycle can be seen on Figure 39. Both 𝜏𝑎 and 𝑇𝑝 are long compared 

to the largest time constant of the strand so that we can consider the magnetic trapezoidal cycles as slow 

time-varying regimes. 

For this strand, we have carried out several series of measurement for three different values of 𝐵𝑚 : 

1.5𝑇, 2.5𝑇 and 3𝑇. For each value of 𝐵𝑚 we have also made several measurements of losses for different 

values of 𝜏𝑎 between 2s and 20s. 

 

Figure 39 : Schematic pattern of a trapezoidal magnetic cycle 

Finally, in order to increase the reliability of the measured losses, for each (𝐵𝑚, 𝜏𝑎) couple we have 

submitted the strand to 5 consecutive cycles and only kept the average of the losses over these 5 cycles. 

For each value of 𝐵𝑚, we will display both the magnetization cycles we have measured in the Speedy 

facility and the curve of AC losses per cycle per unit volume of strand 𝑄 as function of 1/𝜏𝑎. This curve 

is important as it enables us to distinguish the hysteresis losses from the coupling losses and to deduce 
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the time constant of the strand. Indeed we can split the total measured losses 𝑄 as a sum of the hysteresis 

losses 𝑄ℎ𝑦𝑠𝑡 and of the coupling losses 𝑄𝑐𝑜𝑢𝑝 

𝑄 = 𝑄ℎ𝑦𝑠𝑡 + 𝑄𝑐𝑜𝑢𝑝 

We first express the instant power per unit volume of strand 𝑃𝑐𝑜𝑢𝑝 during a ramp of a trapezoidal 

cycle using equation (3) and considering that �̇�𝑎 ≃ �̇�𝑖 since the ramps are long enough (i.e. much longer 

that the highest time constant of the strand) 

𝑃𝑐𝑜𝑢𝑝 ≃
2𝜏�̇�𝑎

2

𝜇0
(
𝑅𝑓

𝑅
)
2

=
2𝜏

𝜇0
(
𝐵𝑚
𝜏𝑎
)
2

(
𝑅𝑓

𝑅
)
2

 

where 𝑅𝑓 is the external radius of the filamentary zone, 𝑅 the radius of the composite and 𝜏 is either 

the time constant of the strand if it is a single time constant strand or the equivalent time constant of the 

strand for slowly time-varying regimes if it is a multiple time constants strand (in this case the equivalent 

time constant will then be a linear combination of the time constants of the strand). 

Consequently, since the total duration of the ramps in a trapezoidal cycle is equal to 4𝜏𝑎, we can 

deduce that 

𝑄𝑐𝑜𝑢𝑝 ≃ 4𝜏𝑎
2𝜏

𝜇0
(
𝐵𝑚
𝜏𝑎
)
2

(
𝑅𝑓

𝑅
)
2

=
8𝜏𝐵𝑚

2

𝜇0
(
𝑅𝑓

𝑅
)
2 1

𝜏𝑎
 

The hysteresis losses are independent of the rate of variation of the applied magnetic field 𝐵𝑎, 

therefore for trapezoidal cycles with a fixed value of 𝐵𝑚, they will always be the same. It is then now 

possible to express 𝑄 as function of 1/𝜏𝑎 

𝑄 (
1

𝜏𝑎
) = 𝑄ℎ𝑦𝑠𝑡 + 𝑄𝑐𝑜𝑢𝑝 =

8𝜏𝐵𝑚
2

𝜇0
(
𝑅𝑓

𝑅
)
2 1

𝜏𝑎
+𝑄ℎ𝑦𝑠𝑡 

From the expression above we immediately see that the measured curve of 𝑄 (
1

𝜏𝑎
) should be a linear 

function of 1/𝜏𝑎 that can be expressed as 

𝑄 (
1

𝜏𝑎
) = 𝑎

1

𝜏𝑎
+ 𝑏 

with 

{
𝑎 =

8𝜏𝐵𝑚
2

𝜇0
(
𝑅𝑓

𝑅
)
2

𝑏 = 𝑄ℎ𝑦𝑠𝑡

 

Finally, from the experimental value of 𝑎, we can compute the time constant 𝜏 as 

𝜏 =
𝜇0

8𝐵𝑚
2 (

𝑅

𝑅𝑓
)

2

𝑎 (129) 

The total losses per unit volume of strand per cycle are proportional to the areas of the measured 

magnetization cycles displayed on Figure 97, Figure 99 and Figure 101 in Appendix E. We clearly see 

that the lower τa the higher the area of the measured magnetization cycle and thus the higher the total 

losses. 
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In reality, for a fixed value of 𝐵𝑚, the area corresponding to the hysteresis losses is the same for 

each magnetization cycle because it does not depend on 𝜏𝑎 while the area of the coupling losses increases 

with decreasing 𝜏𝑎.  

This is logical as the rate of change of the applied magnetic field 𝐵𝑎, and thus the coupling losses, 

are higher if 𝜏𝑎 is lower. 

From the different experimental values of the losses per unit volume of strand per cycle and their 

linear fitting, we can now deduce the hysteresis losses of K006-01C JT-60SA TF strand and its time 

constant for the different values of 𝐵𝑚 using equation (129) with 𝑅𝑓 = 327𝜇𝑚 and 𝑅 = 405𝜇𝑚 (see 

section II.4.3.1 ); they are displayed on Table 5. 

Table 5 

Experimental hysteresis losses and time constant of K006-01C JT-60SA TF strand 

for trapezoidal cycles with different values of 𝑩𝒎 

𝐵𝑚(𝑇) 1.5 2.5 3 

𝑄ℎ𝑦𝑠𝑡(𝑚𝐽/𝑐𝑚
3/𝑐𝑦𝑐𝑙𝑒) 

per unit volume of strand 
98.9 134.1 145.3 

𝝉(𝒎𝒔) 20.9 17.6 17.0 

 

The values of hysteresis losses and of time constant measured for a trapezoidal cycle with 𝐵𝑚 = 3𝑇 

are consistent with those measured at CEA in 2011 [44]. 

Regarding the other values of 𝐵𝑚, we can clearly see that the time constant decreases with increasing 

𝐵𝑚 : this is explained by the fact that when 𝐵𝑚 is higher, the average magnetic field felt by the strand 

during the cycle is also higher and thus the average magnetoresistance of copper increases. 

Consequently, the equivalent transverse resistivity of the whole strand increases and thus its time 

constant decreases (see section II.1.2 ). 

 

II.5.2.1.2 Positive trapezoidal cycles 

 

We will present here the experimental AC losses of K006-01C JT-60SA TF strand measured for 

positive trapezoidal cycles; these cycles are used here because they will also be used in a later section 

focused on the AC losses of JT-60SA TF conductor that we have measured in Josefa facility at CEA 

Cadarache. 

The positive trapezoidal cycles are trapezoidal cycles in which the applied magnetic field 𝐵𝑎 is 

always positive; their pattern is displayed on Figure 40. 

Again, for each value of 𝐵𝑚 (either 1𝑇 or 1.5𝑇), both the magnetization cycles and the curve of AC 

losses per cycle per unit volume of strand 𝑄 as function of 1/𝜏𝑎 we have measured in the Speedy facility 

are displayed through Figure 103 to Figure 106 in Appendix E. 
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Figure 40 : Schematic pattern of a positive trapezoidal magnetic cycle 

The hysteresis losses and the time constant are deduced using the same methodology; the only 

difference lies in the adaptation of equation (129) which becomes 

𝜏 =
𝜇0

4𝐵𝑚
2 (

𝑅

𝑅𝑓
)

2

𝑎 (130) 

because the total duration of the ramps in a positive trapezoidal cycle is to 2𝜏𝑎 instead of 4𝜏𝑎. 

As we did previously, we can deduce the hysteresis losses and time constant from the different 

experimental values of the losses per unit volume of strand per cycle and their linear fitting using 

equation (130); they are displayed on Table 6. The time constants measured here are consistent with the 

previous measurements made with the symmetric trapezoidal cycles. 

Table 6 

Experimental hysteresis losses and time constant of K006-01C JT-60SA TF strand 

for positive trapezoidal cycles with different values of 𝑩𝒎 

𝐵𝑚(𝑇) 1 1.5 

𝑄ℎ𝑦𝑠𝑡(𝑚𝐽/𝑐𝑚
3/𝑐𝑦𝑐𝑙𝑒) 

per unit volume of strand 
31.5 42.7 

𝝉(𝒎𝒔) 20.4 18.8 

 

II.5.2.1.3 Sinusoidal cycles 

 

We have also measured the experimental AC losses of K006-01C JT-60SA TF strand for sinusoidal 

cycles with frequencies up to 1𝐻𝑧. This constitutes an innovation for the Speedy facility as so far it was 

not able to produce sinusoidal magnetic excitations. 

We have carried out four series of measurements where the sinusoidal magnetic excitations are all 

given by 

𝐵𝑎 = 𝐵𝑝 sin(2𝜋𝑓𝑡) + 𝐵𝑜𝑓𝑓  
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The first three series of measurements were made for 𝐵𝑜𝑓𝑓 = 0𝑇 and 𝐵𝑝 = 1.5𝑇, 𝐵𝑝 = 2.5𝑇, 𝐵𝑝 =

3𝑇 and the last series was made for 𝐵𝑜𝑓𝑓 = 1.5𝑇 and 𝐵𝑝 = 1.25𝑇. The experimental results 

(magnetization cycles and curves of losses 𝑄 vs 𝑓) are displayed though Figure 107 to Figure 114 in 

Appendix E. 

Since the magnetic excitation is here different from ramps we have to express the instant power per 

unit volume of strand 𝑃𝑐𝑜𝑢𝑝 during a sinusoidal cycle using equation (3) and considering that �̇�𝑎 ≃ �̇�𝑖 

since the time periods of the sinusoids are long enough (i.e. much longer that the highest time constant 

of the strand) 

𝑃𝑐𝑜𝑢𝑝(𝑡) ≃
2𝜏�̇�𝑎

2

𝜇0
(
𝑅𝑓

𝑅
)
2

=
2𝜏

𝜇0
(2𝜋𝑓𝐵𝑝)

2
(
𝑅𝑓

𝑅
)
2

cos2(2𝜋𝑓𝑡) 

Since 𝑄𝑐𝑜𝑢𝑝 = ∫ 𝑃𝑐𝑜𝑢𝑝(𝑡)𝑑𝑡
𝑇

0
 where 𝑇 = 1/𝑓 is the time period of the sinusoidal magnetic 

excitation, we can deduce that 

𝑄𝑐𝑜𝑢𝑝 ≃
2𝜏

𝜇0
(2𝜋𝑓𝐵𝑝)

2
(
𝑅𝑓

𝑅
)
2

∫ cos2(2𝜋𝑓𝑡)𝑑𝑡
𝑇

0

=
2𝜏

𝜇0
(2𝜋𝑓𝐵𝑝)

2
(
𝑅𝑓

𝑅
)
2 𝑇

2
=
4𝜋2𝐵𝑝

2𝜏

𝜇0
(
𝑅𝑓

𝑅
)
2

𝑓 

We can now express 𝑄 as function of 𝑓 

𝑄(𝑓) = 𝑄ℎ𝑦𝑠𝑡 + 𝑄𝑐𝑜𝑢𝑝 =
4𝜋2𝐵𝑝

2𝜏

𝜇0
(
𝑅𝑓

𝑅
)
2

𝑓 + 𝑄ℎ𝑦𝑠𝑡 

From the expression above we immediately see that the measured curve of 𝑄(𝑓) should be a linear 

function of 𝑓 that can be expressed as 

𝑄(𝑓) = 𝑎𝑓 + 𝑏 

with 

{
𝑎 =

4𝜋2𝐵𝑝
2𝜏

𝜇0
(
𝑅𝑓

𝑅
)
2

𝑏 = 𝑄ℎ𝑦𝑠𝑡

 

Finally, from the experimental value of 𝑎, we can compute the time constant 𝜏 as 

𝜏 =
𝜇0

4𝜋2𝐵𝑝
2 (

𝑅

𝑅𝑓
)

2

𝑎 (131) 

 

As we did previously, we can deduce the hysteresis losses and time constant from the different 

experimental values of the losses per unit volume of strand per cycle and their linear fitting using 

equation (131); they are displayed on Table 7. 
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Table 7 

Experimental hysteresis losses and time constant of K006-01C JT-60SA TF strand 

for sinusoidal cycles with different values of 𝐁𝐩 and 𝐁𝐨𝐟𝐟 

𝐵𝑝(𝑇)/𝐵𝑜𝑓𝑓(𝑇) 1.5 / 0 2.5 / 0 3 / 0 
1.25 / 

1.5 

𝑄ℎ𝑦𝑠𝑡(𝑚𝐽/𝑐𝑚
3/𝑐𝑦𝑐𝑙𝑒) 

per unit volume of strand 
101.1 134.5 150.5 78.5 

𝝉(𝒎𝒔) 21.3 18.0 17.1 14.9 

 

The values of hysteresis losses and of time constant measured for sinusoidal cycles are fully 

consistent with those measured for trapezoidal cycles (displayed on Table 5). 

 

II.5.2.2  Nb3Sn strand (ITER TF) 

 

We have also measured the AC losses of F 0796-1 ITER TF strand generated during magnetic 

trapezoidal cycles and sinusoidal cycles in order to deduce its time constant; the experimental results 

are displayed in the following. 

 

II.5.2.2.1 Trapezoidal cycles 

 

The trapezoidal cycles we have used for the measurements of the AC losses of F 0796-1 ITER TF 

strand are identical to these we have used for K006-01C JT-60SA TF strand. 

The experimental results (magnetization cycles and AC losses per unit volume of strand per cycle) 

are displayed though Figure 115 to Figure 120 in Appendix F. 

For each value of 𝐵𝑚, we can clearly see that the magnetization curves we have measured for 

different values of 𝜏𝑎 are really close from one another. This means that the hysteresis losses of F 0796-

1 ITER TF strand are largely predominant over its coupling losses. As a consequence the experimental 

determination of its time constant is not easy since the magnetization signal of its coupling losses appears 

to be negligible compared to that of its hysteresis losses. 

Despite this difficulty, we have deduced the hysteresis losses of F 0796-1 ITER TF strand and its 

time constant for the different values of 𝐵𝑚 from the experimental values of the losses per unit volume 

of strand per cycle and their linear fitting using equation (129) with 𝑅𝑓 = 293𝜇𝑚 and 𝑅 = 410𝜇𝑚 

[43]; they are displayed on Table 8. 
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Table 8 

Experimental hysteresis losses and time constant of F 0796-1 ITER TF strand for 

trapezoidal cycles with different values of 𝐁𝐦 

𝐵𝑚(𝑇) 1.5 2.5 3 

𝑄ℎ𝑦𝑠𝑡(𝑚𝐽/𝑐𝑚
3/𝑐𝑦𝑐𝑙𝑒) 

per unit volume of strand 
137.7 190.5 212.7 

𝝉(𝒎𝒔) 1.4 1.2 1.0 

 

The values of hysteresis losses of F 0796-1 ITER TF strand we have measured in Speedy facility 

appear to be lower than those measured for other ITER TF-type strands [45] but the ratios 𝑄ℎ𝑦𝑠𝑡(𝐵𝑚 =

1.5𝑇)/𝑄ℎ𝑦𝑠𝑡(𝐵𝑚 = 3𝑇) and 𝑄ℎ𝑦𝑠𝑡(𝐵𝑚 = 2.5𝑇)/𝑄ℎ𝑦𝑠𝑡(𝐵𝑚 = 3𝑇) are consistent with the results 

presented in [45]. 

Given the fact that the coupling losses of F 0796-1 ITER TF strand are very small compared to its 

hysteresis losses, the values of its time constant we have measured should only be considered as an 

estimate of its real value. 

 

II.5.2.2.2 Sinusoidal cycles 

 

We have also measured the AC losses of F 0796-1 ITER TF strand for sinusoidal cycles up to 𝑓 =

1𝐻𝑧 in order to produce a better estimate of its time constant. 

The sinusoidal magnetic excitation was of the form 

𝐵𝑎 = 𝐵𝑝 sin(2𝜋𝑓𝑡) + 𝐵𝑜𝑓𝑓  

with 𝐵𝑜𝑓𝑓 = 1.5𝑇 and 𝐵𝑝 = 1.4𝑇. 

The experimental results (magnetization cycles and AC losses per unit volume of strand per cycle) 

are displayed on Figure 121 and Figure 122 in Appendix F. 

We can see that the magnetization curves we have measured for different values of 𝑓 are again close 

from one another but less than for the trapezoidal cycles; this means that the coupling losses have here 

a stronger impact on the total losses than they did for the trapezoidal cycles. 

We have then deduced the hysteresis losses of F 0796-1 ITER TF strand and its time constant from 

the experimental values of the losses per unit volume of strand per cycle and their linear fitting using 

equation (131) with 𝑅𝑓 = 293𝜇𝑚 and 𝑅 = 410𝜇𝑚 [43]; they are displayed on Table 9. 
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Table 9 

Experimental hysteresis losses and time constant of F 0796-1 ITER TF strand 

for sinusoidal cycles 

𝐵𝑝(𝑇)/𝐵𝑜𝑓𝑓(𝑇) 1.4 / 1.5 

𝑄ℎ𝑦𝑠𝑡(𝑚𝐽/𝑐𝑚
3/𝑐𝑦𝑐𝑙𝑒) 

per unit volume of strand 
86.5 

𝝉(𝒎𝒔) 0.9 

 

II.6 Synthesis 

 

In this part of our work, we have established a new and fully generalized analytical description of 

the magnetic response of a given axisymmetric superconducting composite subject to any time variation 

of transverse magnetic field. The associated developed CLASS algorithm produces, in this regard, 

complete 2D cartographies of the coupling currents, the electric and magnetic fields and the local power 

density dissipated inside the composite at any time of transient magnetic field regime. This algorithm 

being based on analytical formulations, it requires very low CPU resources and can thus be easily 

implemented into multiphysics platforms. Further to its exhaustive and innovative aspect, the present 

achievement represents a step towards broader modeling objectives, e.g. the evaluation of composites 

stability limits (associated with thermal models). Besides, the CLASS tool can quantify coupling losses 

vs. frequency dependence and thus possibly be of a help to design optimized composites. 

Aside to the modeling activities, we have also addressed an experimental work with AC losses 

measurements in CEA Speedy facility on JT-60SA TF and ITER TF strands. The results found 

(hysteresis losses, but mainly time constants) are compatible with those found in the literature for similar 

superconducting composites. Additional measurements could be carried out in order to build a fairly 

populated database and confront our model under a statistical approach. 

Finally, we have recently developed a finite element model in collaboration with Aix-Marseille 

University to predict the effective transverse resistivity of filamentary zones which cannot be assimilated 

to infinite periodic lattices (e.g. filamentary zone of ITER TF strand, see Figure 38b); the outputs of this 

model will be confronted to the effective transverse resistivity deduced from the AC losses 

measurements of ITER TF Nb3Sn strand. 
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III.  Analytical study of the shielding due to a single stage of a CICC 
 

Content:   This part is dedicated to the presentation of an analytical modeling of a single cabling stage 

conductor. Comparisons with other analytical models are also presented. 

Associated publication:  

A. Louzguiti, L. Zani, D. Ciazynski, B. Turck, JL. Duchateau, A. Torre, F. Topin, AC Coupling 

Losses in CICCs: Analytical Modeling at Different Stages, I.E.E.E. Trans. on App. Superconductivity, 

Vol. 27, June 2017, Art. No. 0600505. (reference [46]) 

 

III.1 Presentation 

 

In the previous section, we have studied the magnetic behavior of a single straight superconducting 

composite subject to a transverse time-varying magnetic field. Once having comprehensively addressed 

the elementary scale of a CICC (strand scale) and in the aim of progressing on the building of an 

extensive analytical representation of a multi-stage CICC, we now consider the next step of 

complexification, i.e. taking the features of a CICC into account. At this stage, the simplest 

representation of a CICC is to consider it as composed of an assembly of its last stages (petals) 

interacting all together, forming then at this level, a single stage CICC. We will consequently treat the 

problem by taking into consideration a bundle of elements twisted together into a round cable. 

The definition of “element” can either be a strand, a group of strands or a petal (i.e. multiple strands 

twisted in several cabling stages). Therefore, even if our strategy aims at representing the CICC scale, 

our present approach is also applicable to a group of any type of twisted elements regardless of the scale. 

The purpose of the approach is to analyze the shielding due to a specific cabling stage as we aim 

at improving the physical understanding of coupling losses observed at this scale. In a group of twisted 

elements, the magnetic shielding established by the elements bears many similarities with what occurs 

with filaments in the composite. However, a major difference lies in the fact that we consider a finite 

number of filaments while in the composite the edge filaments are considered as having an infinitely 

small size (i.e. forming a continuous ring at filamentary zone edges). The extra complexity of the present 

step comes from the discretization of the zone which carries the shielding currents. In other words, we 

are here entering into the first stage of the topological decomposition of the CICC towards its real 

geometry (ultimately a multi-stage assembly of strands). 

 

III.2 N-uplet model 

 

III.2.1  Methodology 

 

In order to study the magnetic response of a group of twisted elements to a time-varying transverse 

and uniform magnetic field (N-uplet model), we make profit of the work already addressed at the strand 

scale following the methodology described in section II.2.1 : 
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 In section III.2.3  we first begin by formulating the fundamental equations of the system 

 In section III.2.4  we compute the currents induced in steady-state regime, i.e. when these 

currents are not time-varying 

 In section III.2.5 , knowing the spatial form of the currents induced in steady-state regime, we 

follow the logical chain displayed on Figure 15 until the spatial form of the currents induced 

for any time-varying regime is defined; these expressions will enable us to reduce the equations 

of the system to a simple first-order differential equation 

 In section III.2.6 , knowing the spatial form of the currents induced for any time regime, we 

attempt to establish the most analytical expression of the coupling power dissipated in a group 

of twisted elements in any time-varying regime 

 In section III.2.3  we address the specific case of two twisted elements (i.e. a doublet) 

 

During the study in time-varying regime, we put in central place of our mathematical architecture 

the magnetic vector potential generated by the induced currents. Along this calculation based on the use 

of the Biot-Savart law, we deal with complex integrals that cannot be solved analytically. Consequently, 

extending the resolution itself, we attempt to find a purely analytical expression of this magnetic vector 

potential using an alternative method while keeping a high reliability. This complement is motivated by 

an intention to provide a tool that can easily be integrated in usual thermo-hydraulic codes (e.g. THEA 

code) which are not designed to integrate intermediate calculations such as complex integrals. 

 

III.2.2  Assumptions 

 

The geometry we consider in our modeling features a group of 𝑁 elements twisted together with a 

pitch equal to 𝑙𝑝 and a cabling radius equal to 𝑅𝑐. Since the element can either represent a strand, a 

group of strands or a petal, we simply consider it as a cylinder of radius 𝑅 containing a thin 

superconducting shell of radius 𝑅𝑓 (see Figure 41). Regarding the resistive component of the model, we 

consider that in a slice of thickness 𝑑𝑧 there exists a local effective conductance between adjacent 

elements which is noted 𝑑𝐺 = 𝜎𝑙𝑑𝑧 where 𝜎𝑙 is the transverse conductance per unit axial length (i.e. 

expressed in 𝑆/𝑚) and considered constant along the N-uplet axis. The current flowing longitudinally 

through the superconducting shell of element 𝑘 at 𝑧 is noted 𝐼𝑘(𝑧) and the current flowing transversely 

in a slice 𝑑𝑧 from element 𝑘 − 1 to element 𝑘 at 𝑧 is noted 𝐼𝑘−1𝑘(𝑧). The below list depicts the overall 

assumptions considered in the present modeling: 

 The external magnetic field 𝐵𝑎 is transverse (along the y-axis, see Figure 41) and 

spatially uniform within the group of twisted elements 

 

 The transport current is zero 

 

 The geometry is infinitely long along the z-axis 

 

 The superconducting shell is not saturated and thus the electric field is zero along the 

trajectory of an element 

 

 The current 𝐼𝑘(𝑧) carried by the superconducting shell of element 𝑘 at 𝑧 is uniformly 

distributed over its circumference 
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 The elements are lightly twisted, i.e. (2𝜋𝑅𝑐/𝑙𝑝)
2
≪ 1 where 𝑅𝑐 is the cabling radius 

of the elements and 𝑙𝑝 their twist pitch 

 

 The time variation of the external magnetic field 𝐵𝑎 is slow enough to neglect the 

displacement current so that Kirchhoff’s current law applies 

 

Figure 41 : Scheme showing the cross-section geometry of a triplet (𝑵 = 𝟑) 

Finally, the position (𝑥𝑘, 𝑦𝑘) of the center of element 𝑘 at 𝑧 is given by 

 

(
𝑥𝑘(𝑧)

𝑦𝑘(𝑧)
) = (

𝑅𝐶 cos(
2𝜋𝑧
𝑙𝑝

+
2𝜋(𝑘 − 1)

𝑁 )

𝑅𝐶 sin(
2𝜋𝑧
𝑙𝑝

+
2𝜋(𝑘 − 1)

𝑁 )
) (132) 

 

Note that we have assumed that the induced current carried by an element was located on an 

infinitely thin shell of superconductor. If the element is a composite this assumption is justified by the 

fact that the induced current is seen by the composite as a transport current and we know that the 

transport current does not penetrate the interior of a composite as long as the first shell of filaments is 

not saturated. If the element is a substage (i.e. a bundle of strands), we assume that the radius of the 

superconducting shell corresponds to the cabling radius of the last cabling stage of the bundle. 
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III.2.3  Equations of the system 

 

 We will formulate here the fundamental equations of the system using Kirchhoff’s current law, 

Ohm’s law and Faraday’s law of induction. 

We will here derive the equations governing a single cabling stage conductor starting by the case 

𝑁 ≥ 3. The case of the doublet (i.e. 𝑁 = 2) - presenting some specificities - will be treated afterwards 

in section III.2.7 . 

 

III.2.3.1  Electrical equations 

 

Each element is carrying the current 𝐼𝑘(𝑧) in its superconducting shell along its trajectory. In 

addition, 𝐼𝑘−1𝑘(𝑧) is the local current flowing transversely in a slice 𝑑𝑧 from element 𝑘 − 1 to 𝑘 and 

𝐼𝑘𝑘+1(𝑧) is the local current flowing transversely in a slice 𝑑𝑧 from element 𝑘 to 𝑘 + 1. Consequently, 

Kirchhoff’s current law enables us to write 

𝑑𝐼𝑘
𝑑𝑧

(𝑧) =
1

𝑑𝑧
[𝐼𝑘−1𝑘(𝑧) − 𝐼𝑘𝑘+1(𝑧)] (133) 

 

In the following, we will consider that the current 𝐼𝑘(𝑧) flowing in the superconducting shell of 

element 𝑘, thus along the helicoid of element 𝑘, is exclusively oriented along the z-axis since we have 

assumed that the elements were lightly twisted, i.e.(
2𝜋𝑅𝑐

𝑙𝑝
)
2

≪ 1. This assumption is similar to the one 

we have used in the composite study. 

Using Ohm’s law, we have 

𝐼𝑘𝑘+1(𝑧) = 𝑑𝐺𝑈𝑘𝑘+1(𝑧) = 𝜎𝑙𝑑𝑧𝑈𝑘𝑘+1(𝑧) 

where 𝑈𝑘𝑘+1(𝑧) is the local transverse voltage existing at 𝑧 between the centers of elements 𝑘 and 

𝑘 + 1. It can alternatively be expressed as 

1

𝑑𝑧
𝐼𝑘𝑘+1(𝑧) = 𝜎𝑙𝑈𝑘𝑘+1(𝑧) (134) 

 

III.2.3.2  Magnetic equations 

 

Now, let us note 𝛷𝑘𝑘+1(𝑧) the magnetic flux enclosed between the center of element 𝑘 and that of 

element 𝑘 + 1 from 𝑧 = 0 to 𝑧. 

It then comes 

𝛷𝑘𝑘+1(𝑧) = ∮𝐴. 𝑑𝑙⃗⃗⃗⃗  (135) 

where 𝐴 has to be integrated along the red path displayed on Figure 42. 
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From Biot-Savart law, we know that the magnetic vector potential 𝐴 is collinear to the distribution 

of current it is associated with if the distribution of current has a constant orientation in space. This 

means that the 𝑥 component 𝐴𝑥 of 𝐴 is exclusively due to the 𝑥 component of the current distribution, 

and so on for 𝑦 and 𝑧. From the relation �⃗⃗� = ∇⃗⃗⃗ × 𝐴, we also know that the magnetic field associated 

with 𝐴𝑥 will have a zero 𝑥 component 𝐵𝑥 and so on for 𝑦 and 𝑧. Since we consider that the time-variation 

of the applied magnetic field 𝐵𝑎⃗⃗ ⃗⃗⃗ is along the 𝑦 axis, we can deduce that the components of the current 

distribution that will actually play a role in the magnetic shielding of the conductor are the 𝑥 and 𝑧 ones. 

But since we have assumed that the elements were lightly twisted, the 𝑥 component of the current carried 

by an element is negligible in front of its 𝑧 component. As a consequence, the problem is reduced to the 

𝑧 component of the current distribution and thus we assume that the magnetic vector potential is given 

by 

𝐴 = 𝐴𝑧𝑒𝑧⃗⃗ ⃗⃗  

Using this assumption, equation (135) reduces to 

𝛷𝑘𝑘+1(𝑧) = ∫ (𝐴𝑧𝑘+1(𝑧′) − 𝐴𝑧𝑘(𝑧′))𝑑𝑧′
𝑧

0

 (136) 

where 𝐴𝑧𝑘(𝑧) is the axial component of the magnetic vector potential at the center of element 𝑘 at 

𝑧. 

 

Figure 42 : Scheme showing the integration path of equation (135) 

 

Differentiating equation (136) with respect to 𝑧 and time, we now obtain 

𝑑

𝑑𝑧
�̇�𝑘𝑘+1(𝑧) = �̇�𝑧𝑘+1(𝑧) − �̇�𝑧𝑘(𝑧) (137) 

where the overdot notation represents differentiation with respect to time. 

 

III.2.3.3  Electromagnetic equations 

 

Furthermore, Faraday’s law of induction enables to write 

∮ �⃗⃗�. 𝑑𝑙⃗⃗⃗⃗ = −�̇�𝑘𝑘+1(𝑧) (138) 
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where �⃗⃗� also has to be integrated along the previous red path displayed on Figure 42. 

Since we have considered that the electric field was zero along the trajectory of an element, we can 

reduce ∮ �⃗⃗�. 𝑑𝑙⃗⃗⃗⃗  to 

∮ �⃗⃗�. 𝑑𝑙⃗⃗⃗⃗ = 𝑈𝑘𝑘+1(𝑧 = 0) − 𝑈𝑘𝑘+1(𝑧) (139) 

where 𝑈𝑘𝑘+1(𝑧) is again the transverse voltage existing at 𝑧 between the centers of elements 𝑘 and 

𝑘 + 1.  

Equation (138) combined to equation (139) leads to 

𝑈𝑘𝑘+1(𝑧 = 0) − 𝑈𝑘𝑘+1(𝑧) = −�̇�𝑘𝑘+1(𝑧) 

The differentiation of this equation with respect to 𝑧 gives 

𝑑𝑈𝑘𝑘+1
𝑑𝑧

(𝑧) =
𝑑

𝑑𝑧
�̇�𝑘𝑘+1(𝑧) (140) 

Once combined to equation (137), equation (140) enables us to obtain 

𝑑𝑈𝑘𝑘+1
𝑑𝑧

(𝑧) = �̇�𝑧𝑘+1(𝑧) − �̇�𝑧𝑘(𝑧) (141) 

 

III.2.3.4  Global equations 

 

We have now written the basic equations of the system, i.e. equation (133) coming from Kirchhoff’s 

current law, equation (134) coming from Ohm’s law and equation (141) coming from Faraday’s law of 

induction; they are recalled here 

{
 
 

 
 
𝑑𝐼𝑘
𝑑𝑧

(𝑧) =
1

𝑑𝑧
[𝐼𝑘−1𝑘(𝑧) − 𝐼𝑘𝑘+1(𝑧)]

1

𝑑𝑧
𝐼𝑘𝑘+1(𝑧) = 𝜎𝑙𝑈𝑘𝑘+1(𝑧)


𝑑𝑈𝑘𝑘+1
𝑑𝑧

(𝑧) = �̇�𝑧𝑘+1(𝑧) − �̇�𝑧𝑘(𝑧)

 (142) 

 

Combining the first equation of (142) to the second one enables us to write for 1 ≤ 𝑘 ≤ 𝑁 

𝑑𝐼𝑘
𝑑𝑧

(𝑧) =
1

𝑑𝑧
[𝐼𝑘−1𝑘(𝑧) − 𝐼𝑘𝑘+1(𝑧)] = 𝜎𝑙[𝑈𝑘−1𝑘(𝑧) − 𝑈𝑘𝑘+1(𝑧)] 

 

Finally, differentiating this equation with respect to 𝑧 and combining it to the last equation of (142) 

leads us to the following equation of the system 

𝑑2𝐼𝑘
𝑑𝑧2

(𝑧) = 𝜎𝑙 [
𝑑𝑈𝑘−1𝑘
𝑑𝑧

(𝑧) −
𝑑𝑈𝑘𝑘+1
𝑑𝑧

(𝑧)] = 𝜎𝑙[�̇�𝑧𝑘(𝑧) − �̇�𝑧𝑘−1(𝑧) − (�̇�𝑧𝑘+1(𝑧) − �̇�𝑧𝑘(𝑧))] 

which can be written as 
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𝑑2𝐼𝑘
𝑑𝑧2

(𝑧) = 𝜎𝑙[2�̇�𝑧𝑘(𝑧) − �̇�𝑧𝑘−1(𝑧) − �̇�𝑧𝑘+1(𝑧)] 
(143) 

Similarly to what we did in the study of the magnetic shielding accomplished by a superconducting 

composite, we can split by superposition the magnetic vector potential present in the equation of the 

system, i.e. equation (143), as a sum of two terms 

𝐴𝑧𝑘(𝑧) = 𝐴𝑧𝑎𝑘
(𝑧) + 𝐴𝑧𝑟𝑘

(𝑧) 

where 𝐴𝑧𝑎𝑘
(𝑧) is the axial component of the magnetic vector potential at the center of element 𝑘 at 

𝑧 due to the applied magnetic field 𝐵𝑎⃗⃗ ⃗⃗⃗ and 𝐴𝑧𝑟𝑘
(𝑧) is due to the currents induced in the superconducting 

shell of every element, i.e. due to the (𝐼𝑘)1≤𝑘≤𝑁. 

We know that the magnetic vector potential 𝐴 corresponding to a uniform magnetic field 𝐵𝑎⃗⃗ ⃗⃗⃗ = 𝐵𝑎𝑒𝑦⃗⃗⃗⃗⃗  

must satisfy ∇⃗⃗⃗ × 𝐴 = −𝐵𝑎⃗⃗ ⃗⃗⃗ ; it is therefore everywhere equal to 

𝐴 = −𝑥𝐵𝑎𝑒𝑧⃗⃗ ⃗⃗  

where 𝑥 is the abscissa visible on Figure 41. 

Since 𝐴𝑧𝑎𝑘
(𝑧) is exclusively due to 𝐵𝑎⃗⃗ ⃗⃗⃗ and is felt at the center of element 𝑘 at 𝑧, we can write 

𝐴𝑧𝑎𝑘
(𝑧) = −𝑥𝑘(𝑧)𝐵𝑎 

where 𝑥𝑘(𝑧) is the abscissa of the center of element 𝑘 at 𝑧. 

We have previously assumed that 

𝑥𝑘(𝑧) = 𝑅𝑐 cos(
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) 

we can therefore conclude that 

𝐴𝑧𝑎𝑘
(𝑧) = −𝑅𝑐𝐵𝑎 cos(

2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) (144) 

 

Replacing 𝐴𝑧𝑘(𝑧) in the equation of the system, i.e. in equation (143), with its decomposition, we 

have 

𝑑2𝐼𝑘
𝑑𝑧2

(𝑧) − 𝜎𝑙 [2�̇�𝑧𝑟𝑘
(𝑧) − �̇�𝑧𝑟𝑘−1

(𝑧) − �̇�𝑧𝑟𝑘+1
(𝑧)]

= 𝜎𝑙 [2�̇�𝑧𝑎𝑘
(𝑧) − �̇�𝑧𝑎𝑘−1

(𝑧) − �̇�𝑧𝑎𝑘+1
(𝑧)] 

(145) 

 

Injecting equation (144) in the right-hand term of equation (145), after some mathematical 

manipulations we have 

𝜎𝑙 [2�̇�𝑧𝑎𝑘
(𝑧) − �̇�𝑧𝑎𝑘−1

(𝑧) − �̇�𝑧𝑎𝑘+1
(𝑧)] = 2𝜎𝑙𝑅𝑐�̇�𝑎 [cos (

2𝜋

𝑁
) − 1] cos(

2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) 
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which simplifies to 

𝜎𝑙 [2�̇�𝑧𝑎𝑘
(𝑧) − �̇�𝑧𝑎𝑘−1

(𝑧) − �̇�𝑧𝑎𝑘+1
(𝑧)] = −4𝜎𝑙𝑅𝑐�̇�𝑎 sin

2 (
𝜋

𝑁
) cos(

2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) 

As a result, the equation of the system can finally be expressed as 

{
 
 

 
 𝑑

2𝐼𝑘
𝑑𝑧2

(𝑧) + 𝜎𝑙 [�̇�𝑧𝑟𝑘−1
(𝑧) + �̇�𝑧𝑟𝑘+1

(𝑧) − 2�̇�𝑧𝑟𝑘
(𝑧)]

= −4𝜎𝑙𝑅𝑐�̇�𝑎 sin
2 (
𝜋

𝑁
) cos(

2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
)

 (146) 

 

Similarly to what was done at the composite scale we will now initiate the global calculation strategy 

starting with the steady-state regime study. 

 

III.2.4  Study in steady-state regime 

 

 We will calculate here the currents induced in steady-state regime. We will simply start from 

the system equation derived at the end of the previous section and we will solve it considering 

that the coupling currents are not time-varying. 

III.2.4.1  Equations of the system in steady-state regime 

 

We here consider steady-state regimes for coupling currents, that is to say that the currents induced 

in the elements are, by assumption, not varying, i.e. we consider that for any 𝑧 and for 1 ≤ 𝑘 ≤ 𝑁 

𝐼�̇�(𝑧) = 0 

 

Since 𝐴𝑧𝑟𝑘
(𝑧) is exclusively due to the induced currents, we can also conclude that for any 𝑧 and for 

1 ≤ 𝑘 ≤ 𝑁 

�̇�𝑧𝑟𝑘
(𝑧) = 0 

And therefore, from equation (146), we see that the equation of the system is, in steady-state regime, 

simply reduced to 

𝑑2𝐼𝑘
𝑑𝑧2

(𝑧) = −4𝜎𝑙𝑅𝑐�̇�𝑎 sin
2 (
𝜋

𝑁
) cos(

2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) (147) 

 

The double integration of equation (147) with respect to 𝑧 leads to 

𝐼𝑘(𝑧) = 𝐼0 cos (
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) + 𝑐𝑘𝑧 + 𝑑𝑘 (148) 

with 
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𝐼0 = 4𝜎𝑙𝑅𝑐�̇�𝑎 𝑠𝑖𝑛
2 (
𝜋

𝑁
)(

𝑙𝑝

2𝜋
)

2

 (149) 

 

The (𝑐𝑘)1≤𝑘≤𝑁 and (𝑑𝑘)1≤𝑘≤𝑁 are integration constants that have to be determined. 

 

III.2.4.2  Determination of the solutions for an infinitely long conductor 

 

In a first step we start the resolution considering an infinitely long conductor, which is somehow 

relevant of the magnet configuration, having long lengths exposed to varying magnetic field. 

We have assumed that the system was not carrying any transport current, therefore at any 𝑧, we must 

have 

∑𝐼𝑘(𝑧)

𝑁

𝑘=1

= 0 

Using solution (148), this implies for any 𝑧 

∑[4𝜎𝑙𝑅𝑐�̇�𝑎 𝑠𝑖𝑛
2 (
𝜋

𝑁
)(

𝑙𝑝
2𝜋
)

2

cos (
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) + 𝑐𝑘𝑧 + 𝑑𝑘]

𝑁

𝑘=1

= 0 

Since ∑ cos (
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘−1)

𝑁
) = 0𝑁

𝑘=1 , we can deduce that 

{
 
 

 
 ∑𝑐𝑘

𝑁

𝑘=1

= 0

∑𝑑𝑘

𝑁

𝑘=1

= 0

 

In addition, we can notice that the position of the center of element 𝑘 at 𝑧 + 𝑙𝑝/𝑁 corresponds to 

that of the center of element 𝑘 + 1 at 𝑧, indeed 

(

 
𝑥𝑘 (𝑧 +

𝑙𝑝
𝑁)

𝑦𝑘 (𝑧 +
𝑙𝑝
𝑁))

 =

(

 
 
 
 
 𝑅𝑐 cos(

2𝜋 (𝑧 +
𝑙𝑝
𝑁)

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁 )

𝑅𝑐 sin(
2𝜋 (𝑧 +

𝑙𝑝
𝑁)

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁 )

)

 
 
 
 
 

= (

𝑅𝑐 cos(
2𝜋𝑧
𝑙𝑝

+
2𝜋𝑘
𝑁 )

𝑅𝑐 sin(
2𝜋𝑧
𝑙𝑝

+
2𝜋𝑘
𝑁 )

) = (
𝑥𝑘+1(𝑧)

𝑦𝑘+1(𝑧)
) 

As a consequence, the current 𝐼𝑘(𝑧 + 𝑙𝑝/𝑁) carried by the superconducting shell of element 𝑘 at 

𝑧 + 𝑙𝑝/𝑁 must be equal to the current 𝐼𝑘+1(𝑧) carried by the superconducting shell of element 𝑘 + 1 

at 𝑧, i.e. 

𝐼𝑘(𝑧 + 𝑙𝑝/𝑁) = 𝐼𝑘+1(𝑧) 
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Using solution (148), this implies for any 𝑧 and for 1 ≤ 𝑘 ≤ 𝑁 

𝑐𝑘(𝑧 + 𝑙𝑝/𝑁) + 𝑑𝑘 = 𝑐𝑘+1𝑧 + 𝑑𝑘+1 

Using this relation at 𝑧 = 0 and at 𝑧 = −𝑙𝑝/𝑁, we can deduce that for 1 ≤ 𝑘 ≤ 𝑁 

𝑐𝑘+1 = 𝑐𝑘 

Since ∑ 𝑐𝑘
𝑁
𝑘=1 = 0, we immediately conclude that for 1 ≤ 𝑘 ≤ 𝑁 

𝑐𝑘 = 0 

which in turn implies that for 1 ≤ 𝑘 ≤ 𝑁 

𝑑𝑘+1 = 𝑑𝑘 

which also gives for 1 ≤ 𝑘 ≤ 𝑁 

𝑑𝑘 = 0 

As a result, the integration constants (𝑐𝑘)1≤𝑘≤𝑁 and (𝑑𝑘)1≤𝑘≤𝑁 are all equal to zero and the solution 

of the system in steady-state regime is 

𝐼𝑘(𝑧) = 𝐼0 cos (
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) (150) 

with 

𝐼0 = 4𝜎𝑙𝑅𝑐�̇�𝑎 𝑠𝑖𝑛
2 (
𝜋

𝑁
)(

𝑙𝑝
2𝜋
)

2

 (151) 

 

III.2.4.3  Determination of the solutions for a finite length of conductor 

 

We here investigate the effect of a finite length of conductor on the induced currents. This situation 

is typically relevant to the configuration encountered in sample tests, where short lengths (few 

decimeters to meters) are exposed to varying magnetic field. 

Let us consider a piece of conductor of length 𝐿 so that the ends of the conductor are located at 𝑧 =

−𝐿/2 and 𝑧 = 𝐿/2. 

For this geometry, the currents induced in each element must be zero at both ends of conductor. This 

implies the following boundary conditions for 1 ≤ 𝑘 ≤ 𝑁 

{
𝐼𝑘(−𝐿/2) = 0
𝐼𝑘(𝐿/2) = 0

 

Using solution (148), this implies for 1 ≤ 𝑘 ≤ 𝑁 

{
 
 

 
 𝐼0 cos (−

𝜋𝐿

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) − 𝑐𝑘

𝐿

2
+ 𝑑𝑘 = 0

𝐼0 cos (
𝜋𝐿

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) + 𝑐𝑘

𝐿

2
+ 𝑑𝑘 = 0
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The solutions of this system are for 1 ≤ 𝑘 ≤ 𝑁 

{
 
 

 
 𝑐𝑘 =

2

𝐿
𝐼0 sin(

𝜋𝐿

𝑙𝑝
) sin (

2𝜋(𝑘 − 1)

𝑁
)

𝑑𝑘 = −𝐼0 cos (
𝜋𝐿

𝑙𝑝
) cos (

2𝜋(𝑘 − 1)

𝑁
)

 

 

As a result, the solution of the system in steady-state regime for a conductor of length 𝐿 is for 1 ≤

𝑘 ≤ 𝑁 

𝐼𝑘(𝑧) = 𝐼0 [cos (
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) +

2𝑧

𝐿
sin(

𝜋𝐿

𝑙𝑝
) sin (

2𝜋(𝑘 − 1)

𝑁
)

− cos (
𝜋𝐿

𝑙𝑝
) cos (

2𝜋(𝑘 − 1)

𝑁
)] 

(152) 

where 𝐼0 is again given by equation (151). 

 

III.2.5  Study in time-varying regime 

 

 Since we now know the spatial form of the currents induced in steady-state regime, we will 

follow the logical chain displayed on Figure 15 until the spatial form of the currents induced 

for any time-varying regime is defined (this is achieved through III.2.5.1 to III.2.5.3 ). These 

expressions will then enable us to reduce the equations of the system to a simple first-order 

differential equation in III.2.5.4 . Finally, we will present an alternative approach leading to a 

simpler expression of the system equation in III.2.5.5 . 

We are now studying the magnetic response of the conductor when the induced currents are time-

varying, i.e. we now consider that for any 𝑧 and for 1 ≤ 𝑘 ≤ 𝑁 

𝐼�̇�(𝑧) ≠ 0 

This also implies that for any 𝑧 and for 1 ≤ 𝑘 ≤ 𝑁 

�̇�𝑧𝑟𝑘
(𝑧) ≠ 0 

Therefore we now have to take into account the contribution of the magnetic vector potential due to 

the induced currents in the equation of the system which is now written as 

𝑑2𝐼𝑘
𝑑𝑧2

(𝑧) + 𝜎𝑙 [�̇�𝑧𝑟𝑘−1
(𝑧) + �̇�𝑧𝑟𝑘+1

(𝑧) − 2�̇�𝑧𝑟𝑘
(𝑧)]

= −(
2𝜋

𝑙𝑝
)

2

𝐼0𝑒𝑥𝑡cos(
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) 

(153) 

with 

𝐼0𝑒𝑥𝑡 = 4𝜎𝑙𝑅𝑐�̇�𝑎 𝑠𝑖𝑛
2 (
𝜋

𝑁
)(

𝑙𝑝
2𝜋
)

2

 (154) 
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In order to do so, we will begin by evaluating 𝐴𝑧𝑟𝑘
(1)
(𝑧) due to the spatial distribution of current found 

in steady-state regime and which is noted (𝐼𝑘
(1)(𝑧))

1≤𝑘≤𝑁
. 

In doing so, we are actually following the analytical methodology we have described in section 

III.2.1 . 

First, we have assumed that the current 𝐼𝑘(𝑧) carried by the superconducting shell of element 𝑘 at 𝑧 

was uniformly distributed over its circumference, i.e. we consider that the superconducting shell of 

element 𝑘 is in fact carrying a uniform surface current 𝐾𝑘(𝑧) at 𝑧 with 

𝐾𝑘(𝑧) =
𝐼𝑘(𝑧)

2𝜋𝑅𝑓
 (155) 

where 𝑅𝑓 is the radius of the infinitely thin superconducting shell. 

The current distribution (𝐼𝑘
(1)(𝑧) = 𝐼0

(1)
cos (

2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘−1)

𝑁
))
1≤𝑘≤𝑁

 found in steady-state regime 

then leads to the following distribution of surface currents (𝐾𝑘
(1)(𝑧))

1≤𝑘≤𝑁
 

𝐾𝑘
(1)(𝑧) =

𝐼𝑘
(1)(𝑧)

2𝜋𝑅𝑓
=

𝐼0
(1)

2𝜋𝑅𝑓
cos (

2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) (156) 

 

according to (155). 

 

III.2.5.1  Calculation of the magnetic vector potential due to the current flowing in 

one element 

 

Let us note 𝐾𝑝
(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
= 𝐾𝑝

(1)
𝑒𝑠𝑝⃗⃗ ⃗⃗ ⃗⃗  the surface current flowing through the superconducting shell of element 

𝑝 at 𝑧 which has been found in steady-state regime. Using equation (156), we have 

𝐾𝑝
(1)(𝑧) =

𝐼0
(1)

2𝜋𝑅𝑓
cos (

2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑝 − 1)

𝑁
) (157) 

 

𝑠𝑝(𝑧) is the abscissa along the trajectory of the center of element 𝑝 at 𝑧 and 𝑒𝑠𝑝⃗⃗ ⃗⃗ ⃗⃗ (𝑧) is the unit vector 

tangent to the trajectory of center of element 𝑝 at 𝑧. 

Let us note 𝐴𝑧𝑟(𝑝)
(1)

(𝑀𝑘) the axial component of the magnetic vector potential felt at the center of 

element 𝑘 at 𝑧 (the center is noted 𝑀𝑘) and due to 𝐾𝑝
(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

. We recall that we are only interested in its axial 

component because we have neglected the contributions of the other components (see section III.2.3.2 

). 

Using the Biot-Savart law, we can write 
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𝐴𝑧𝑟(𝑝)
(1)

(𝑀𝑘) =
𝜇0
4𝜋
∬

𝐾𝑝
(1)
𝑒𝑠𝑝⃗⃗ ⃗⃗ ⃗⃗ (𝑧𝑃). 𝑒𝑧⃗⃗ ⃗⃗

𝑃𝑀𝑘
𝑑𝛴



𝑃∈𝛴

 (158) 

where 𝑃 is the source point (see Figure 41) whose axial coordinate is 𝑧𝑃 and which has to be 

integrated over the area 𝛴 corresponding to the localization of the surface current 𝐾𝑝
(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

, i.e. to the external 

area of the hollow cylinder of radius 𝑅𝑓 whose center follows the center of element 𝑘 (see green surface 

on Figure 43). 

 

Figure 43 : Scheme showing the integration area 𝚺 of equation (158) 

The position of the center of element 𝑝 at 𝑧𝑃 noted 𝑂𝑝 is given by (132) 

𝑂𝑂𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ = (

𝑥𝑝(𝑧𝑃)

𝑦𝑝(𝑧𝑃)
𝑧𝑃

) =

(

  
 
𝑅𝑐 cos(

2𝜋𝑧𝑃
𝑙𝑝

+
2𝜋(𝑝 − 1)

𝑁
)

𝑅𝑐 sin(
2𝜋𝑧𝑃
𝑙𝑝

+
2𝜋(𝑝 − 1)

𝑁
)

𝑧𝑃 )

  
 

 

Given the geometry, the elementary area 𝑑𝛴 is equal to 

𝑑𝛴 = 𝑅𝑓𝑑𝛹𝑃𝑑𝑠𝑝(𝑧𝑃) 

where 𝛹𝑃 is the angle between 𝑒𝑥⃗⃗⃗⃗⃗ and 𝑂𝑃𝑃⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ in the (𝑂𝑥𝑦) plane (see Figure 41) so that 

𝑂𝑃𝑃⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ = 𝑅𝑓cos(𝛹𝑃)𝑒𝑥⃗⃗⃗⃗⃗ + 𝑅𝑓sin(𝛹𝑃)𝑒𝑦⃗⃗⃗⃗⃗ 

assuming the elements are lightly twisted (𝑂𝑃 is the center of element 𝑝 at 𝑧𝑃 and 𝑃 is the source 

point located on the superconducting shell of element 𝑝 at 𝑧𝑃). 

𝑠𝑝(𝑧𝑃) being the abscissa corresponding to the position of 𝑂𝑃 along the trajectory of the center of 

element 𝑝 at 𝑧𝑃, we can thus write 

𝑑𝑠𝑝(𝑧𝑃) = ‖𝑑𝑂𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖ 
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Since 𝑒𝑠𝑝⃗⃗ ⃗⃗ ⃗⃗ (𝑧𝑃) is the unit vector tangent to the trajectory of the center of element 𝑝 at 𝑧𝑃 and 𝑂𝑃 is 

the center of element 𝑝 at 𝑧𝑃, we have 

𝑒𝑠𝑝⃗⃗ ⃗⃗ ⃗⃗ (𝑧𝑃) =
𝑑𝑂𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

‖𝑑𝑂𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖
 

Consequently, the term 𝑒𝑠𝑝⃗⃗ ⃗⃗ ⃗⃗ (𝑧𝑃). 𝑒𝑧⃗⃗ ⃗⃗ 𝑑𝛴 in equation (158) can be expressed as 

𝑒𝑠𝑝⃗⃗ ⃗⃗ ⃗⃗ (𝑧𝑃). 𝑒𝑧⃗⃗ ⃗⃗ 𝑑𝛴 =
𝑑𝑂𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

‖𝑑𝑂𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖
. 𝑒𝑧⃗⃗ ⃗⃗ 𝑅𝑓𝑑𝛹𝑃‖𝑑𝑂𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖ = 𝑑𝑂𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . 𝑒𝑧⃗⃗ ⃗⃗ 𝑅𝑓𝑑𝛹𝑃 = 𝑅𝑓𝑑𝛹𝑃𝑑𝑧𝑃 

Therefore replacing 𝑒𝑠𝑝⃗⃗ ⃗⃗ ⃗⃗ (𝑧𝑃). 𝑒𝑧⃗⃗ ⃗⃗ 𝑑𝛴 with the expression above and  

𝐾𝑝
(1)(𝑃) with its expression given by (157) for 𝑧 = 𝑧𝑃 into the formula of 𝐴𝑧𝑟(𝑝)

(1)
(𝑀𝑘) given by (158), 

we now obtain 

𝐴𝑧𝑟(𝑝)
(1)

(𝑀𝑘) =
𝜇0𝐼0

(1)

8𝜋2
∫ ∫

cos(
2𝜋𝑧𝑃
𝑙𝑝

+
2𝜋(𝑝 − 1)

𝑁 )

𝑃𝑀𝑘(𝑧, 𝑧𝑝, 𝛹𝑝)

2𝜋

𝛹𝑝=0

+∞

𝑧𝑝=−∞

𝑑𝛹𝑃𝑑𝑧𝑃 (159) 

 

Let us now express the distance 𝑃𝑀𝑘(𝑧, 𝑧𝑃 , 𝛹𝑃). 

Since 𝑃 is the source point located on the superconducting shell of element 𝑝 at 𝑧𝑃 and 𝑀𝑘 is the 

center of element 𝑘 at 𝑧, their coordinates in the (𝑒𝑥⃗⃗⃗⃗⃗, 𝑒𝑦,⃗⃗⃗⃗⃗⃗ 𝑒𝑧⃗⃗ ⃗⃗ ) basis are given by 

{
𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ = 𝑂𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝑂𝑃𝑃⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ = [𝑥𝑝(𝑧𝑃) + 𝑅𝑓𝑐𝑜𝑠(𝛹𝑃)]𝑒𝑥⃗⃗⃗⃗⃗ + [𝑦𝑝(𝑧𝑃) + 𝑅𝑓𝑠𝑖𝑛(𝛹𝑃)]𝑒𝑦⃗⃗⃗⃗⃗ + 𝑧𝑃𝑒𝑧⃗⃗ ⃗⃗

𝑂𝑀𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑥𝑘(𝑧)𝑒𝑥⃗⃗⃗⃗⃗ + 𝑦𝑘(𝑧)𝑒𝑦⃗⃗⃗⃗⃗ + 𝑧𝑒𝑧⃗⃗ ⃗⃗
 

 

Consequently, we have 

𝑃𝑀𝑘(𝑧, 𝑧𝑃 , 𝛹𝑃)
2 = [𝑥𝑘(𝑧) − 𝑥𝑝(𝑧𝑃) − 𝑅𝑓𝑐𝑜𝑠(𝛹𝑃)]

2
+ [𝑦𝑘(𝑧) − 𝑦𝑝(𝑧𝑃) − 𝑅𝑓𝑠𝑖𝑛(𝛹𝑃)]

2
+ [𝑧 − 𝑧𝑃]

2 

After some mathematical treatment involving trigonometric simplifications, we can express 

𝑃𝑀𝑘(𝑧, 𝑧𝑃 , 𝛹𝑃)
2 as 

𝑃𝑀𝑘(𝑧, 𝑧𝑃 , 𝛹𝑃)
2 =

{
 
 

 
 4𝑅𝑐

2 sin2 (
𝜋(𝑧 − 𝑧𝑃)

𝑙𝑝
+
𝜋(𝑘 − 𝑝)

𝑁
)

+4𝑅𝑐𝑅𝑓 sin (
𝜋(𝑧 − 𝑧𝑃)

𝑙𝑝
+
𝜋(𝑘 − 𝑝)

𝑁
) sin (

𝜋(𝑧 + 𝑧𝑃)

𝑙𝑝
+
𝜋(𝑘 + 𝑝 − 2)

𝑁
− 𝛹𝑃)

+𝑅𝑓
2 + (𝑧 − 𝑧𝑃)

2

 

In order to ease the mathematical treatment of integral (159), we will use the notation 

𝑓(𝑧, 𝑧𝑃 , 𝛹𝑃) =

cos (
2𝜋𝑧𝑃
𝑙𝑝

+
2𝜋(𝑝 − 1)

𝑁 )

𝑃𝑀𝑘(𝑧, 𝑧𝑃 , 𝛹𝑃)
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Following this notation, integral (159) is now simply expressed as 

𝐴𝑧𝑟(𝑝)
(1)

(𝑀𝑘) =
𝜇0𝐼0

(1)

8𝜋2
∫ ∫ 𝑓(𝑧, 𝑧𝑝, 𝛹𝑝)

2𝜋

𝛹𝑝=0

+∞

𝑧𝑝=−∞

𝑑𝛹𝑃𝑑𝑧𝑃 (160) 

 

We will now carry out the following changes of variable in integral (160) 

{

𝑧′ = 𝑧𝑃 − 𝑧

𝛹′ = 𝛹𝑃 − [
𝜋(𝑧 + 𝑧𝑃)

𝑙𝑝
+
𝜋(𝑘 + 𝑝 − 2)

𝑁
]
 

This implies 

{
𝑑𝑧′ = 𝑑𝑧𝑃
𝑑𝛹′ = 𝑑𝛹𝑃

 

The interval of integration of 𝑧𝑃 being infinite, the new interval of integration of 𝑧′ also remains 

infinite, i.e. from −∞ to +∞. In addition, 𝑓(𝑧, 𝑧𝑃 , 𝛹𝑃) is a 2𝜋-periodic function of 𝛹𝑃, thus even with 

the change of variable of 𝛹𝑃 into 𝛹′, we choose to keep the same interval of integration for 𝛹′ which 

is [0; 2𝜋]. 

As a result, it is now possible to re-express integral (160) as 

𝐴𝑧𝑟(𝑝)
(1)

(𝑀𝑘) =
𝜇0𝐼0

(1)

8𝜋2
∫ ∫

cos (
2𝜋(𝑧′ + 𝑧)

𝑙𝑝
+
2𝜋(𝑝 − 1)

𝑁
)

𝑔𝑝𝑘(𝑧
′, 𝛹′)

2𝜋

𝛹′=0

+∞

𝑧′=−∞

𝑑𝛹′𝑑𝑧′𝑒𝑧⃗⃗ ⃗⃗  
(161) 

 

where 𝑔𝑝𝑘(𝑧
′, 𝛹′) is given by 

√4𝑅𝑐
2 sin2 (

𝜋𝑧′

𝑙𝑝
+
𝜋(𝑝 − 𝑘)

𝑁
) + 4𝑅𝑐𝑅𝑓 sin(

𝜋𝑧′

𝑙𝑝
+
𝜋(𝑝 − 𝑘)

𝑁
) sin(𝛹′) + 𝑅𝑓

2 + 𝑧′2 (162) 

 

The cosine term at the numerator of (161) can be expressed as 

cos(
2𝜋(𝑧′ + 𝑧)

𝑙𝑝
+
2𝜋(𝑝 − 1)

𝑁
) = cos (

2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
+
2𝜋𝑧′

𝑙𝑝
+
2𝜋(𝑝 − 𝑘)

𝑁
) 

Developing it, we can now write 𝐴𝑧𝑟(𝑝)
(1) (𝑀𝑘) as 

{
 
 
 

 
 
 𝜇0𝐼0

(1)

8𝜋2

[
 
 
 
cos (

2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
)∫ ∫

cos (
2𝜋𝑧′

𝑙𝑝
+
2𝜋(𝑝 − 𝑘)

𝑁 )

𝑔𝑝𝑘(𝑧
′, 𝛹′)

2𝜋

𝛹′=0

+∞

𝑧′=−∞

𝑑𝛹′𝑑𝑧′

−sin(
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
)∫ ∫

sin(
2𝜋𝑧′

𝑙𝑝
+
2𝜋(𝑝 − 𝑘)

𝑁 )

𝑔𝑝𝑘(𝑧
′, 𝛹′)

2𝜋

𝛹′=0

+∞

𝑧′=−∞

𝑑𝛹′𝑑𝑧′

]
 
 
 

 (163) 
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III.2.5.2  Calculation of the magnetic vector potential due to the currents flowing in 

all the elements 

 

Let us note (𝐾𝑝
(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
(𝑧) = 𝐾𝑝

(1)
𝑒𝑠𝑝⃗⃗ ⃗⃗ ⃗⃗ )

1≤𝑝≤𝑁
 the current distribution flowing through the superconducting 

shell of all the elements which has been found in steady-state regime. 

Let us note 𝐴𝑧𝑟
(1)
(𝑀𝑘) the magnetic vector potential felt at the center of element 𝑘 at 𝑧 (noted 𝑀𝑘) 

and due to the current distributions (𝐾𝑝
(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
(𝑧) = 𝐾𝑝

(1)
𝑒𝑠𝑝⃗⃗ ⃗⃗ ⃗⃗ )

1≤𝑝≤𝑁
. 

Following the definition of 𝐴𝑧𝑟(𝑝)
(1)

(𝑀𝑘) and 𝐴𝑧𝑟
(1)
(𝑀𝑘), by superposition, we have 

𝐴𝑧𝑟
(1)(𝑀𝑘) = ∑𝐴𝑧𝑟(𝑝)

(1) (𝑀𝑘)

𝑁

𝑝=1

 (164) 

 

Since 𝐴𝑧𝑟𝑘
(1)
(𝑧) is by definition the axial component of the magnetic vector potential felt at the center 

of element 𝑘 at 𝑧 due to the total current distribution found in steady-state regime, we can write 

𝐴𝑧𝑟
(1)(𝑀𝑘) = 𝐴𝑧𝑟𝑘

(1)
(𝑧) 

in order to be consistent with the previous notations. 

Making use of formula (163), we then obtain 

𝐴𝑧𝑟𝑘
(1)
(𝑧) =

{
 
 
 

 
 
 𝜇0𝐼0

(1)

8𝜋2

[
 
 
 
cos (

2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
)∫ ∫ ∑

cos (
2𝜋𝑧′

𝑙𝑝
+
2𝜋(𝑝 − 𝑘)

𝑁
)

𝑔𝑝𝑘(𝑧
′, 𝛹′)

𝑁

𝑝=1

2𝜋

𝛹′=0

+∞

𝑧′=−∞

𝑑𝛹′𝑑𝑧′

−sin (
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
)∫ ∫ ∑

sin (
2𝜋𝑧′

𝑙𝑝
+
2𝜋(𝑝 − 𝑘)

𝑁
)

𝑔𝑝𝑘(𝑧
′, 𝛹′)

𝑁

𝑝=1

2𝜋

𝛹′=0

+∞

𝑧′=−∞

𝑑𝛹′𝑑𝑧′

]
 
 
 

 (165) 

where 𝑔𝑝𝑘(𝑧
′, 𝛹′) is still given by (162). 

 

Note that in the notation 𝑔𝑝𝑘(𝑧
′, 𝛹′), 𝑝 and 𝑘 are both modulo 𝑁, i.e. for 1 ≤ 𝑝 ≤ 𝑁 and 1 ≤ 𝑘 ≤

𝑁, we have 𝑔𝑝+𝑁𝑘(𝑧
′, 𝛹′) = 𝑔𝑝𝑘(𝑧

′, 𝛹′) and 𝑔𝑝𝑘+𝑁(𝑧
′, 𝛹′) = 𝑔𝑝𝑘(𝑧

′, 𝛹′). 

 

We will now focus on the second integral of equation (165), i.e. on 

∫ ∫ ∑

sin (
2𝜋𝑧′

𝑙𝑝
+
2𝜋(𝑝 − 𝑘)

𝑁 )

𝑔𝑝𝑘(𝑧
′, 𝛹′)

𝑁

𝑝=1

2𝜋

𝛹′=0

𝑑𝛹′𝑑𝑧′
+∞

𝑧′=−∞
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We can first split it as 

∫ ∫ ∑

sin(
2𝜋𝑧′

𝑙𝑝
+
2𝜋(𝑝 − 𝑘)

𝑁
)

𝑔𝑝𝑘(𝑧
′, 𝛹′)

𝑁

𝑝=1

2𝜋

𝛹′=0

𝑑𝛹′𝑑𝑧′
0

𝑧′=−∞

+∫ ∫ ∑

sin(
2𝜋𝑧′

𝑙𝑝
+
2𝜋(𝑝 − 𝑘)

𝑁
)

𝑔𝑝𝑘(𝑧
′, 𝛹′)

𝑁

𝑝=1

2𝜋

𝛹′=0

𝑑𝛹′𝑑𝑧′
+∞

𝑧′=0

 

 

In the first integral (i.e. from 𝑧′ = −∞ to 0), we can choose to shift 𝛹′ from any angle without 

changing the value of the integral because the function inside it is a 2𝜋-periodic function of 𝛹′ which 

is integrated over its whole period. We then choose to shift 𝛹′ from 𝜋 which makes the first integral 

now equal to 

∫ ∫ ∑

sin (
2𝜋𝑧′

𝑙𝑝
+
2𝜋(𝑝 − 𝑘)

𝑁
)

𝑔𝑝𝑘(𝑧
′, 𝛹′ + 𝜋)

𝑁

𝑝=1

2𝜋

𝛹′=0

𝑑𝛹′𝑑𝑧′
0

𝑧′=−∞

 

which after changing 𝑧′ in −𝑧′ can alternatively be expressed as 

∫ ∫ ∑

sin(−
2𝜋𝑧′

𝑙𝑝
+
2𝜋(𝑝 − 𝑘)

𝑁 )

𝑔𝑝𝑘(−𝑧
′, 𝛹′ + 𝜋)

𝑑𝛹′𝑑𝑧′
𝑁

𝑝=1

2𝜋

𝛹′=0

+∞

𝑧′=0

 

 

Thanks to these mathematical operations, we can now write the second integral of equation (165) as 

∫ ∫ ∑ℎ𝑝𝑘(𝑧
′, 𝛹′)

𝑁

𝑝=1

2𝜋

𝛹′=0

+∞

𝑧′=0

𝑑𝛹′𝑑𝑧′ (166) 

with 

ℎ𝑝𝑘(𝑧
′, 𝛹′) =

sin (−
2𝜋𝑧′

𝑙𝑝
+
2𝜋(𝑝 − 𝑘)

𝑁 )

𝑔𝑝𝑘(−𝑧
′, 𝛹′ + 𝜋)

+

sin (
2𝜋𝑧′

𝑙𝑝
+
2𝜋(𝑝 − 𝑘)

𝑁 )

𝑔𝑝𝑘(𝑧
′, 𝛹′)

 
(167) 

 

In addition, from the expression of 𝑔𝑝𝑘(𝑧
′, 𝛹′) given by equation (162), for 𝑝 = 𝑘 − 𝑗 with 𝑗 ∈ ℤ, 

we have 

𝑔𝑘−𝑗𝑘(−𝑧
′, 𝛹′ + 𝜋) = 𝑔𝑘+𝑗𝑘(𝑧

′, 𝛹′) (168) 

 

Therefore, using equation (167) for 𝑝 = 𝑘 − 𝑗 with 𝑗 ∈ ℤ and equation (168), we have for any 𝑧′ 

and any 𝛹′ 

ℎ𝑘−𝑗𝑘(𝑧
′, 𝛹′) + ℎ𝑘+𝑗𝑘(𝑧

′, 𝛹′) = 0 (169) 

 

Using equation (168) for 𝑗 = 0, we can also deduce that 

ℎ𝑘𝑘(𝑧
′, 𝛹′) + ℎ𝑘𝑘(𝑧

′, 𝛹′) = 0 
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which implies 

ℎ𝑘𝑘(𝑧
′, 𝛹′) = 0 (170) 

 

If 𝑁 is even, using equation (168) for 𝑗 = 𝑁/2, we can also deduce that 

ℎ𝑘−𝑁/2𝑘(𝑧
′, 𝛹′) + ℎ𝑘+𝑁/2𝑘(𝑧

′, 𝛹′) = 0 

and since 𝑝 is modulo 𝑁 in ℎ𝑝𝑘(𝑧
′, 𝛹′), we see that in reality 

ℎ𝑘−𝑁/2𝑘(𝑧
′, 𝛹′) = ℎ𝑘−𝑁/2+𝑁𝑘(𝑧

′, 𝛹′) = ℎ𝑘+𝑁/2𝑘(𝑧
′, 𝛹′) = 0 (171) 

 

Now let us consider the sum present in equation (166) : 

 If 𝑁 is odd, the sum can be expressed as 

∑ℎ𝑝𝑘(𝑧
′, 𝛹′)

𝑁

𝑝=1

= ℎ𝑘𝑘(𝑧
′, 𝛹′) + ∑[ℎ𝑘+𝑗𝑘(𝑧

′, 𝛹′) + ℎ𝑘−𝑗𝑘(𝑧
′, 𝛹′)]

𝑁−1
2

𝑗=1

 

 

 If 𝑁 is even, the sum can be expressed as 

∑ℎ𝑝𝑘(𝑧
′, 𝛹′)

𝑁

𝑝=1

= ℎ𝑘𝑘(𝑧
′, 𝛹′) + ℎ𝑘+𝑁/2𝑘(𝑧

′, 𝛹′) + ∑[ℎ𝑘+𝑗𝑘(𝑧
′, 𝛹′) + ℎ𝑘−𝑗𝑘(𝑧

′, 𝛹′)]

𝑁
2
−1

𝑗=1

 

In both cases, from relations (169) to (171), we see that the sum will be zero for any 𝑧′ and any 𝛹′, 

therefore the second integral of equation (165) will also be zero and thus 𝐴𝑧𝑟𝑘
(1)
(𝑧) is reduced to 

𝐴𝑧𝑟𝑘
(1)
(𝑧) = 𝛾𝑘𝐼0

(1) cos(
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) (172) 

with 

𝛾𝑘 =
𝜇0
8𝜋2

∫ ∫ ∑

cos (
2𝜋𝑧′

𝑙𝑝
+
2𝜋(𝑝 − 𝑘)

𝑁 )

𝑔𝑝𝑘(𝑧
′, 𝛹′)

𝑁

𝑝=1

2𝜋

𝛹′=0

+∞

𝑧′=−∞

𝑑𝛹′𝑑𝑧′ (173) 

where 𝑔𝑝𝑘(𝑧
′, 𝛹′) is still given by (162). 

We will now show that in reality 𝛾𝑘 does not depend on 𝑘.  

Indeed, according to (173), for 𝑘𝜖ℤ we have 

𝛾𝑘+1 =
𝜇0
8𝜋2

∫ ∫ ∑

cos (
2𝜋𝑧′

𝑙𝑝
+
2𝜋(𝑝 − 𝑘 − 1)

𝑁 )

𝑔𝑝𝑘+1(𝑧
′, 𝛹′)

𝑁

𝑝=1

2𝜋

𝛹′=0

+∞

𝑧′=−∞

𝑑𝛹′𝑑𝑧′ 
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From the expression of 𝑔𝑝𝑘(𝑧
′, 𝛹′) given by (162), we see that 𝑔𝑝𝑘(𝑧

′, 𝛹′) does not directly 

depends on 𝑝 and 𝑘 but on the difference 𝑝 − 𝑘. Therefore, since the difference between 𝑝 and 𝑘 + 1 is 

identical to that between 𝑝 − 1 and 𝑘, we can conclude that for any 𝑧′ and any 𝛹′ 

𝑔𝑝𝑘+1(𝑧
′, 𝛹′) = 𝑔𝑝−1𝑘(𝑧

′, 𝛹′) (174) 

 

Consequently, we can now express 𝛾𝑘+1 as 

𝛾𝑘+1 =
𝜇0
8𝜋2

∫ ∫ ∑

cos (
2𝜋𝑧′

𝑙𝑝
+
2𝜋(𝑝 − 𝑘 − 1)

𝑁
)

𝑔𝑝−1𝑘(𝑧
′, 𝛹′)

𝑁

𝑝=1

2𝜋

𝛹′=0

+∞

𝑧′=−∞

𝑑𝛹′𝑑𝑧′ 

Changing the index of summation 𝑝 to 𝑝′ = 𝑝 − 1, we now have 

𝛾𝑘+1 =
𝜇0
8𝜋2

∫ ∫ ∑

cos(
2𝜋𝑧′

𝑙𝑝
+
2𝜋(𝑝′ − 𝑘)

𝑁
)

𝑔𝑝′𝑘(𝑧
′, 𝛹′)

𝑁−1

𝑝′=0

2𝜋

𝛹′=0

+∞

𝑧′=−∞

𝑑𝛹′𝑑𝑧′ 

Since in both the cosine term at the numerator and 𝑔𝑝′𝑘(𝑧
′, 𝛹′), the index of summation 𝑝′ is 

modulo 𝑁, the term 𝑝′ = 0 corresponds to the term 𝑝′ = 𝑁, and it is thus possible to write 

𝛾𝑘+1 =
𝜇0
8𝜋2

∫ ∫ ∑

cos (
2𝜋𝑧′

𝑙𝑝
+
2𝜋(𝑝′ − 𝑘)

𝑁
)

𝑔𝑝′𝑘(𝑧
′, 𝛹′)

𝑁

𝑝′=1

2𝜋

𝛹′=0

+∞

𝑧′=−∞

𝑑𝛹′𝑑𝑧′ = 𝛾𝑘 

As a result, since for 1 ≤ 𝑘 ≤ 𝑁 we have 𝛾𝑘+1 = 𝛾𝑘, we can immediately conclude that for 1 ≤

𝑘 ≤ 𝑁 𝛾𝑘 = 𝛾1. Thus 𝛾𝑘 does not depend on 𝑘 and will now simply be noted it as 𝛾 (𝛾 is equal to 𝛾1). 

We can finally conclude that 𝐴𝑧𝑟𝑘
(1)
(𝑧) is given by 

𝐴𝑧𝑟𝑘
(1)
(𝑧) = 𝛾𝐼0

(1) cos (
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) (175) 

with 

𝛾 =
𝜇0
8𝜋2

∫ ∫ ∑

cos (
2𝜋𝑧′

𝑙𝑝
+
2𝜋(𝑝 − 1)

𝑁 )

𝑔𝑝(𝑧
′, 𝛹′)

𝑁

𝑝=1

2𝜋

𝛹′=0

+∞

𝑧′=−∞

𝑑𝛹′𝑑𝑧′ (176) 

where 𝑔𝑝(𝑧
′, 𝛹′) is now given by 

√4𝑅𝑐
2 sin2 (

𝜋𝑧′

𝑙𝑝
+
𝜋(𝑝 − 1)

𝑁
) + 4𝑅𝑐𝑅𝑓 sin(

𝜋𝑧′

𝑙𝑝
+
𝜋(𝑝 − 1)

𝑁
) sin(𝛹′) + 𝑅𝑓

2 + 𝑧′2 (177) 

 

We recall that 𝐴𝑧𝑟𝑘
(1)
(𝑧) is the axial component of the magnetic vector potential felt at the center of 

element 𝑘 at 𝑧 which is due to the current distribution induced in the system in steady-state regime. 
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III.2.5.3  Calculation of the new spatial form of the current induced in the elements 

 

In the previous section we have computed the term 𝐴𝑧𝑟𝑘
(1)
(𝑧) due to the current induced in the 

elements in steady-state regime. Following our analytical procedure described in section III.2.1 , we 

now have to compute the new distribution of currents induced by the time-variation of 𝐴𝑧𝑟𝑘
(1)
(𝑧). 

From the equation of the system given by (153), we see that the new distribution of currents 

(𝐼𝑘
(2)(𝑧))

1≤𝑘≤𝑁
 will satisfy for 1 ≤ 𝑘 ≤ 𝑁 

𝑑2𝐼𝑘
(2)

𝑑𝑧2
(𝑧) = 𝜎𝑙 [2�̇�𝑧𝑟𝑘

(1)
(𝑧) − �̇�𝑧𝑟𝑘−1

(1)
(𝑧) − �̇�𝑧𝑟𝑘+1

(1)
(𝑧)] (178) 

 

Replacing 𝐴𝑧𝑟𝑘
(1)
(𝑧), 𝐴𝑧𝑟𝑘−1

(1) (𝑧) and 𝐴𝑧𝑟𝑘+1
(1)

(𝑧)  with their expressions given by (175) in the right-hand 

term of equation (178) and using trigonometric simplifications, we have 

𝜎𝑙 [2�̇�𝑧𝑟𝑘
(1)
(𝑧) − �̇�𝑧𝑟𝑘−1

(1)
(𝑧) − �̇�𝑧𝑟𝑘+1

(1)
(𝑧)] = 𝜎𝑙𝛾𝐼0̇

(1)4 sin2 (
𝜋

𝑁
) cos (

2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) (179) 

and thus 

𝑑2𝐼𝑘
(2)

𝑑𝑧2
(𝑧) = 𝜎𝑙𝛾𝐼0̇

(1)4 sin2 (
𝜋

𝑁
) cos (

2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) (180) 

 

This equation is almost identical to the one derived in the steady-state regime, i.e. equation (147). 

The only difference between these equations is that −𝑅𝑐�̇�𝑎 has been replaced with 𝛾𝐼0̇
(1)

. Consequently, 

to obtain the solution of (180) we just have to replace −𝑅𝑐�̇�𝑎 with 𝛾𝐼0̇
(1)

 in the solution of (147) which 

is given by (150) and (151), i.e. 

𝐼𝑘
(2)(𝑧) = 𝐼0

(2) cos(
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) (181) 

with 

𝐼0
(2) = −4𝜎𝑙𝛾𝐼0̇

(1) 𝑠𝑖𝑛2 (
𝜋

𝑁
)(

𝑙𝑝
2𝜋
)

2

 (182) 

We have demonstrated that the spatial form of the new current distribution (𝐼𝑘
(2)(𝑧))

1≤𝑘≤𝑁
 induced 

by the time-variation of the current distribution (𝐼𝑘
(1)(𝑧))

1≤𝑘≤𝑁
 obtained in steady-state regime exactly 

corresponds to that of (𝐼𝑘
(1)(𝑧))

1≤𝑘≤𝑁
. Hence, similarly to the composite methodology, we can affirm 

that we have reached the end of our analytical procedure and that we now know the spatial form of the 

current distribution (𝐼𝑘(𝑧))1≤𝑘≤𝑁 induced for any time-varying regime, which is given by 

(𝐼𝑘(𝑧))1≤𝑘≤𝑁 = (𝐼0 cos (
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘−1)

𝑁
))
1≤𝑘≤𝑁

, where 𝐼0 is a function of time only. 
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III.2.5.4  Reduction of the global equation of the system for any time-varying 

regime 

 

In the global equation of the system, i.e. equation (153), we can now replace 𝐼𝑘(𝑧) with 

𝐼0 cos(
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) 

and from equation (179), we can also replace the term 

𝜎𝑙 [2�̇�𝑧𝑟𝑘
(𝑧) − �̇�𝑧𝑟𝑘−1

(𝑧) − �̇�𝑧𝑟𝑘+1
(𝑧)] 

with 

𝜎𝑙𝛾𝐼0̇4 sin
2 (
𝜋

𝑁
) cos (

2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) 

The new global equation of the system is thus reduced to 

𝐼0 + 4𝜎𝑙𝛾 sin
2 (
𝜋

𝑁
)(

𝑙𝑝

2𝜋
)

2

𝐼0̇ = 4𝜎𝑙 𝑠𝑖𝑛
2 (
𝜋

𝑁
) (

𝑙𝑝

2𝜋
)

2

𝑅𝐶�̇�𝑎 (183) 

and can now simply be expressed as 

𝐼0 + 𝜏𝐼0̇ =
𝜏𝑒𝑥𝑡𝑅𝐶�̇�𝑎

𝜇0
 (184) 

with 

{
 
 

 
 𝜏 = 4𝜎𝑙𝛾 sin

2 (
𝜋

𝑁
)(

𝑙𝑝

2𝜋
)

2

𝜏𝑒𝑥𝑡 = 4𝜎𝑙𝜇0 sin
2 (
𝜋

𝑁
)(

𝑙𝑝

2𝜋
)

2 (185) 

and 

𝛾 =
𝜇0
8𝜋2

∫ ∑cos(
2𝜋𝑧′

𝑙𝑝
+
2𝜋(𝑝 − 1)

𝑁
)

𝑁

𝑝=1

[∫
1

𝑔𝑝(𝑧
′, 𝛹′)

2𝜋

𝛹′=0

𝑑𝛹′] 𝑑𝑧′
+∞

𝑧′=−∞

 (186) 

where, according to equation (177), 𝑔𝑝(𝑧
′, 𝛹′) is equal to 

√4𝑅𝑐
2 sin2 (

𝜋𝑧′

𝑙𝑝
+
𝜋(𝑝 − 1)

𝑁
) + 4𝑅𝑐𝑅𝑓 sin(

𝜋𝑧′

𝑙𝑝
+
𝜋(𝑝 − 1)

𝑁
) sin(𝛹′) + 𝑅𝑓

2 + 𝑧′2 (187) 

 

We have now reduced the global equation of the system to its simplest form. However, the 𝛾 

coefficient appearing in the time constant 𝜏 of the system has a complicated expression which has to be 

computed numerically. 

We will thus here present an alternative approach leading to an explicit analytical expression 

approximating the value of the 𝛾 coefficient. This approach is motivated by our will to provide 

expressions that can easily be integrated in already existing thermal modeling codes. 
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III.2.5.5  Alternative calculation of the 𝜸 coefficient 

 

In order to provide a simpler and explicit analytical expression of the γ coefficient, we will here give 

another method to compute the magnetic vector potential due to the current distribution (𝐼𝑘(𝑧))1≤𝑘≤𝑁 =

(𝐼0 cos (
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘−1)

𝑁
))
1≤𝑘≤𝑁

. 

The elements are assumed to be lightly twisted, i.e. 

(
2𝜋𝑅𝑐
𝑙𝑝

)

2

≪ 1 

where 𝑅𝑐 is the cabling radius of the elements and 𝑙𝑝 their twist pitch and thus the current flowing 

along one element is also slowly varying in space. 

Consequently, we can approximate the magnetic vector potential Azrk
(z0) created by the considered 

current distribution at the center of element k at z0 by the one created by a set of N straight infinite 

hollow tubes of current (see Figure 44), each tube being located at the position of the elements at 𝑧0 and 

carrying the current Ik(z0) constant along the z-axis. The exercise below is shown to consolidate this 

intuition. 

The set of 3 straight infinite hollow tubes of current (in black) which are used to compute the 

magnetic vector potential Azrk
(𝑧0) created by the current distribution (in green) of a triplet (𝑁 = 3) are 

displayed on Figure 44. The considered infinite hollow tubes (in black) are intercepting the 

superconducting shells (in green) of the elements at 𝑧 = 𝑧0. We also consider that each tube carries a 

current constant along the z-axis whose value corresponds to the value locally carried by the 

superconducting shell it intercepts. 

Note that, after some bibliographic research, it appeared that this kind of approximation had already 

been made by Morgan in [21]. The only difference is that he originally applied it to a set of two elements 

instead of 𝑁 elements. 

The magnetic vector potential 𝐴𝑡𝑢𝑏𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑀) created at a point 𝑀(𝑟, 𝜃, 𝑧) by an infinite hollow tube 

centered on 𝑟 = 0 with radius equal to 𝑅𝑓 and carrying a current 𝐼 constant along the z-axis is given by 

𝐴𝑡𝑢𝑏𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑀) = 𝐴𝑧𝑡𝑢𝑏𝑒(𝑟, 𝜃, 𝑧)𝑒𝑧⃗⃗ ⃗⃗  (188) 

with 

𝐴𝑧𝑡𝑢𝑏𝑒(𝑟, 𝜃, 𝑧) = {

0𝑖𝑓𝑟 ≤ 𝑅𝑓

−
𝜇0𝐼

2𝜋
ln (

𝑟

𝑅𝑓
) 𝑖𝑓𝑟 > 𝑅𝑓

 (189) 
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Figure 44 : Scheme showing the considered infinite tubes of current for a triplet (𝑵 = 𝟑) 

Now let us note 𝐴𝑧𝑝(𝑀𝑘) the magnetic vector potential felt at point 𝑀𝑘 (center of element 𝑘 at 𝑧0) 

and due to the infinite hollow tube 𝑝 which is centered on (𝑥𝑝(𝑧0), 𝑦𝑝(𝑧0)) with radius equal to 𝑅𝑓 and 

carrying a current 𝐼𝑝(𝑧0) = 𝐼0 cos (
2𝜋𝑧0

𝑙𝑝
+
2𝜋(𝑝−1)

𝑁
) constant along the z-axis. Using (189), we then have 

𝐴𝑧𝑝(𝑀𝑘) = {

0𝑖𝑓𝑟𝑝𝑘(𝑧0) ≤ 𝑅𝑓

−
𝜇0𝐼0
2𝜋

cos (
2𝜋𝑧0
𝑙𝑝

+
2𝜋(𝑝 − 1)

𝑁
) ln(

𝑟𝑝𝑘(𝑧0)

𝑅𝑓
) 𝑖𝑓𝑟𝑝𝑘(𝑧0) > 𝑅𝑓

 (190) 

where 𝑟𝑝𝑘(𝑧0) is the distance between the centers of elements 𝑝 and 𝑘 at 𝑧 = 𝑧0. 

In the plane given by equation 𝑧 = 𝑧0, we know that the centers of elements 𝑝 and 𝑘 are located on 

a circle of radius 𝑅𝑐 and that the angle 𝜃𝑝𝑘 between the rays going from the center of the circle to the 

positions of the centers of elements 𝑝 and 𝑘 is equal to 

𝜃𝑝𝑘 =
2𝜋(𝑝 − 𝑘)

𝑁
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From this geometrical consideration, we can deduce that the distance 𝑟𝑝𝑘(𝑧0) between the centers 

of elements 𝑝 and 𝑘 at 𝑧 = 𝑧0 is given by 

𝑟𝑝𝑘(𝑧0) = 2𝑅𝑐 sin |
𝜃𝑝𝑘
2
| = 2𝑅𝑐 sin |

𝜋(𝑝 − 𝑘)

𝑁
| (191) 

  

Considering that the superconducting shells of two elements cannot penetrate each other, using 

equations (190) and (191), we can now conclude that for any 𝑧0 and for 1 ≤ 𝑘 ≤ 𝑁, 1 ≤ 𝑝 ≤ 𝑁 

𝐴𝑧𝑝(𝑀𝑘) = {

0𝑖𝑓𝑝 = 𝑘

−
𝜇0𝐼0
2𝜋

cos (
2𝜋𝑧0
𝑙𝑝

+
2𝜋(𝑝 − 1)

𝑁
) ln (

2𝑅𝑐
𝑅𝑓

sin |
𝜋(𝑝 − 𝑘)

𝑁
|) 𝑖𝑓𝑝 ≠ 𝑘

 (192) 

 

By superposition, we can now express the magnetic vector potential 𝐴𝑧(𝑀𝑘) felt at point 𝑀𝑘 (center 

of element 𝑘 at 𝑧0) and due to all the tubes as 

𝐴𝑧(𝑀𝑘) = ∑𝐴𝑧𝑝(𝑀𝑘)

𝑁

𝑝=1

 (193) 

 

Using equations (192) and (193), we finally obtain 

𝐴𝑧(𝑀𝑘) = −
𝜇0𝐼0
2𝜋

∑ cos(
2𝜋𝑧0
𝑙𝑝

+
2𝜋(𝑝 − 1)

𝑁
) ln (

2𝑅𝑐
𝑅𝑓

sin |
𝜋(𝑝 − 𝑘)

𝑁
|)

𝑁

𝑝=1
𝑝≠𝑘

 (194) 

 

Similarly to what we did previously in the calculation of 𝛾 with Biot-Savart law, we can express the 

cosine term of (194) as 

cos (
2𝜋𝑧0
𝑙𝑝

+
2𝜋(𝑝 − 1)

𝑁
) = cos(

2𝜋𝑧0
𝑙𝑝

+
2𝜋(𝑘 − 1)

𝑁
+
2𝜋(𝑝 − 𝑘)

𝑁
) 

Then (194) can be expressed as 

𝐴𝑧(𝑀𝑘) = −
𝜇0𝐼0
2𝜋

[
 
 
 

cos (
2𝜋𝑧0
𝑙𝑝

+
2𝜋(𝑘 − 1)

𝑁
)∑ 𝑎𝑝𝑘

𝑁

𝑝=1
𝑝≠𝑘

− sin (
2𝜋𝑧0
𝑙𝑝

+
2𝜋(𝑘 − 1)

𝑁
)∑ 𝑏𝑝𝑘

𝑁

𝑝=1
𝑝≠𝑘 ]

 
 
 

 (195) 

with 

{
 
 

 
 𝑎𝑝𝑘 = cos (

2𝜋(𝑝 − 𝑘)

𝑁
) ln (

2𝑅𝑐
𝑅𝑓

sin |
𝜋(𝑝 − 𝑘)

𝑁
|)

𝑏𝑝𝑘 = sin(
2𝜋(𝑝 − 𝑘)

𝑁
) ln(

2𝑅𝑐
𝑅𝑓

sin |
𝜋(𝑝 − 𝑘)

𝑁
|)

 (196) 
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Now let us consider the two sums present in equation (195) : 

 If 𝑁 is odd, the sums can be expressed as 

{
 
 
 
 

 
 
 
 

∑𝑎𝑝𝑘

𝑁

𝑝=1
𝑝≠𝑘

= ∑[𝑎𝑘+𝑗𝑘 + 𝑎𝑘−𝑗𝑘]

𝑁−1
2

𝑗=1

∑𝑏𝑝𝑘

𝑁

𝑝=1
𝑝≠𝑘

= ∑[𝑏𝑘+𝑗𝑘 + 𝑏𝑘−𝑗𝑘]

𝑁−1
2

𝑗=1

 

 If 𝑁 is even, the sums can be expressed as 

{
 
 
 
 

 
 
 
 

∑𝑎𝑝𝑘

𝑁

𝑝=1
𝑝≠𝑘

= 𝑎𝑘+𝑁/2𝑘 +∑[𝑎𝑘+𝑗𝑘 + 𝑎𝑘−𝑗𝑘]

𝑁
2
−1

𝑗=1

∑𝑏𝑝𝑘

𝑁

𝑝=1
𝑝≠𝑘

= 𝑏𝑘+𝑁/2𝑘 +∑[𝑏𝑘+𝑗𝑘 + 𝑏𝑘−𝑗𝑘]

𝑁
2
−1

𝑗=1

 

From equation (196), we see that 

{
𝑎𝑘+𝑗𝑘 + 𝑎𝑘−𝑗𝑘 = 2cos (

2𝜋𝑗

𝑁
) ln (

2𝑅𝑐
𝑅𝑓

sin |
𝜋𝑗

𝑁
|)

𝑏𝑘+𝑗𝑘 + 𝑏𝑘−𝑗𝑘 = 0

 

and 

{
𝑎𝑘+𝑁/2𝑘 = − ln(

2𝑅𝑐
𝑅𝑓
)

𝑏𝑘+𝑁/2𝑘 = 0

 

Consequently, after some mathematical operations, we obtain 

∑𝑎𝑝𝑘

𝑁

𝑝=1
𝑝≠𝑘

=

{
 
 
 
 

 
 
 
 

− ln(
2𝑅𝑐
𝑅𝑓
)

[
 
 
 

1 − 2∑ cos (
2𝜋𝑗

𝑁
)

𝑁
2
−1

𝑗=1
]
 
 
 

+ 2∑ cos (
2𝜋𝑗

𝑁
) ln (sin |

𝜋𝑗

𝑁
|)

𝑁
2
−1

𝑗=1

𝑖𝑓𝑁𝑖𝑠𝑒𝑣𝑒𝑛

ln (
2𝑅𝑐
𝑅𝑓
)

[
 
 
 

2∑ cos (
2𝜋𝑗

𝑁
)

𝑁−1
2

𝑗=1
]
 
 
 

+ 2∑ cos(
2𝜋𝑗

𝑁
) ln (sin |

𝜋𝑗

𝑁
|)

𝑁−1
2

𝑗=1

𝑖𝑓𝑁𝑖𝑠𝑜𝑑𝑑

 (197) 

and 

∑𝑏𝑝𝑘

𝑁

𝑝=1
𝑝≠𝑘

= 0 (198) 
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In addition, from some analytical calculations we have carried out, we have 

{
 
 
 

 
 
 

∑ cos (
2𝜋𝑗

𝑁
)

𝑁
2
−1

𝑗=1

= 0𝑖𝑓𝑁𝑖𝑠𝑒𝑣𝑒𝑛

∑ cos(
2𝜋𝑗

𝑁
)

𝑁−1
2

𝑗=1

= −1/2𝑖𝑓𝑁𝑖𝑠𝑜𝑑𝑑

 

As a result, we can simplify (197) as 

∑𝑎𝑝𝑘

𝑁

𝑝=1
𝑝≠𝑘

= − ln(
2𝑅𝑐
𝑅𝑓
) + 2 ∑ cos (

2𝜋𝑗

𝑁
) ln (sin |

𝜋𝑗

𝑁
|)

𝑓𝑙𝑜𝑜𝑟(
𝑁−1
2
)

𝑗=1

 (199) 

 

Using equations (195) and (198), we can now express 𝐴𝑧(𝑀𝑘) as 

𝐴𝑧(𝑀𝑘) = −
𝜇0𝐼0
2𝜋

cos(
2𝜋𝑧0
𝑙𝑝

+
2𝜋(𝑘 − 1)

𝑁
)∑ 𝑎𝑝𝑘

𝑁

𝑝=1
𝑝≠𝑘

 (200) 

where  ∑ 𝑎𝑝𝑘
𝑁
𝑝=1
𝑝≠𝑘

 is given by (199). 

We have now provided another formula for the magnetic vector potential felt at the center of element 

𝑘 at any 𝑧0 and due to the current distribution (𝐼𝑘(𝑧))1≤𝑘≤𝑁 = (𝐼0 cos (
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘−1)

𝑁
))
1≤𝑘≤𝑁

 using the 

infinite straight hollow tubes approach. 

In formula (175), 𝛾 has been defined so that 

𝐴𝑧𝑟𝑘
(𝑧) = 𝛾𝐼0 cos (

2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) 

Since 𝐴𝑧(𝑀𝑘) corresponds to 𝐴𝑧𝑟𝑘
(𝑧0), using equation (200) the new formula of 𝛾 obtained using 

the infinite straight hollow tubes approach is then 

𝛾 = −
𝜇0
2𝜋

∑ 𝑎𝑝𝑘

𝑁

𝑝=1
𝑝≠𝑘

 

which using (199) leads to 

𝛾 =
𝜇0
2𝜋

[
 
 
 

ln (
2𝑅𝑐
𝑅𝑓
) − 2 ∑ cos (

2𝜋𝑗

𝑁
) ln (sin |

𝜋𝑗

𝑁
|)

𝑓𝑙𝑜𝑜𝑟(
𝑁−1
2
)

𝑗=1
]
 
 
 

 (201) 
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III.2.5.6  Comparison between the values of 𝜸 coefficient obtained with both 

approaches 

 

In order to evaluate the discrepancy between the infinite straight hollow tubes approach and the 

Biot-Savart one, we have chosen to compute the relative error between the values of 𝛾 obtained with 

equations (176) and (201) (which are also valid for 𝑁 = 2, see section III.2.7 ) for two sets of realistic 

values of 𝑅𝑐 (cabling radius of the elements), 𝑅𝑓 (radius of the superconducting shell), 𝑙𝑝 (twist pitch of 

the elements) and𝑁 (number of elements). 

The first set of 𝑅𝑐, 𝑅𝑓 and 𝑙𝑝 values is representative of the first cabling stage of JT-60SA TF 

conductor: the composites (elements) have a radius of 𝑅 = 0.405𝑚𝑚, the outer radius of their 

filamentary zone (superconducting shell) is 𝑅𝑓 = 0.327𝑚𝑚 and their cabling twist pitch is 𝑙𝑝 =

45𝑚𝑚. In addition the first cabling stage is composed of 𝑁 = 3 strands but we will make the number 

of elements vary between 𝑁 = 2 and 𝑁 = 6 and suppose that the elements are always tangent to each 

other so that 𝑅𝑐 = 𝑅/𝑠𝑖𝑛(𝜋/𝑁). The relative errors between the values of 𝛾 computed using both 

approaches are displayed on Table 10. 

 

Table 10 

Relative errors on 𝜸 value for 𝑹 = 𝟎. 𝟒𝟎𝟓𝒎𝒎, 𝑹𝒇 = 𝟎. 𝟑𝟐𝟕𝒎𝒎 and 𝒍𝒑 = 𝟒𝟓𝒎𝒎 

Number of elements 𝑁 2 3 4 5 6 

𝑅𝑐 (𝑚𝑚) 0.405 0.468 0.573 0.689 0.810 

Relative error (%) 1.645 0.248 0.073 0.022 0.001 

 

 

The second set of 𝑅𝑐, 𝑅𝑓 and 𝑙𝑝 values is representative of the edge filaments of K006-01C 

composite: the filaments (superconducting shells) have a radius of about 𝑅𝑓 = 10𝜇𝑚, the outer radius 

of the filamentary zone (cabling radius of the elements) is 𝑅𝑐 = 0.327𝑚𝑚 and the twist pitch of the 

filaments is 𝑙𝑝 = 15𝑚𝑚. In this case, the relative error between the values of 𝛾 computed using 

both approaches is 𝟎. 𝟎𝟔% for 𝑁 = 50 and 𝟎. 𝟎𝟒% for 𝑁 = 100. We can now conclude that the 

straight hollow tubes approach is really consistent with the Biot-Savart one and that the values of 𝛾 

computed using equation (201) can be trusted. 

We can now conclude that the straight hollow tubes approach is a trustworthy analogy, which 

analytically converges with the Biot-Savart one with a marginal deviation. The values of 𝛾 computed 

using equation (201) can therefore be considered as fully relevant and are thus used in the following for 

calculation. 
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III.2.6  Power dissipated by coupling currents 

 

 From the knowledge of the spatial form of the currents induced for any time regime, we will 

establish the analytical expression of the coupling power dissipated in a group of twisted 

elements. 

The local transverse current flowing from element 𝑘 to the adjacent element 𝑘 + 1 at 𝑧 has 

previously been noted 𝐼𝑘𝑘+1(𝑧). 

The local power 𝑑𝑃𝑘𝑘+1(𝑧) dissipated in a slice of thickness 𝑑𝑧 by the flow of 𝐼𝑘𝑘+1(𝑧) is expressed 

as 

𝑑𝑃𝑘𝑘+1(𝑧) =
𝐼𝑘𝑘+1

2(𝑧)

𝑑𝐺
=
1

𝜎𝑙
(
𝐼𝑘𝑘+1(𝑧)

𝑑𝑧
)

2

𝑑𝑧 (202) 

 

Therefore the total local power 𝑑𝑃(𝑧) dissipated in a slice of thickness 𝑑𝑧 by the flow of all the local 

transverse currents (𝐼𝑘𝑘+1(𝑧))1≤𝑘≤𝑁 is 

𝑑𝑃(𝑧) = ∑𝑑𝑃𝑘𝑘+1(𝑧)

𝑁

𝑘=1

=
1

𝜎𝑙
∑(

𝐼𝑘𝑘+1(𝑧)

𝑑𝑧
)

2𝑁

𝑘=1

𝑑𝑧 (203) 

and the total power dissipated from 𝑧 = 0 to 𝑧 is then 

𝑃(𝑧) = ∫
𝑑𝑃(𝑧′)

𝑑𝑧
𝑑𝑧′

𝑧

0

=
1

𝜎𝑙
∫ ∑(

𝐼𝑘𝑘+1(𝑧′)

𝑑𝑧
)

2𝑁

𝑘=1

𝑑𝑧′
𝑧

0

 (204) 

 

From our previous considerations, we know that for any time regime, the current 𝐼𝑘(𝑧) flowing 

along element 𝑘 at 𝑧 is given by 

𝐼𝑘(𝑧) = 𝐼0 cos (
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) 

where 𝐼0 depends on time only. Using equation (133), we can deduce that for 𝑁 ≥ 3 

𝐼𝑘𝑘+1(𝑧)

𝑑𝑧
=
𝐼𝑘−1𝑘(𝑧)

𝑑𝑧
+
2𝜋

𝑙𝑝
𝐼0 sin(

2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) (205) 

 

which immediately gives the following relation 

𝐼𝑘𝑘+1(𝑧)

𝑑𝑧
=
𝐼12(𝑧)

𝑑𝑧
+
2𝜋

𝑙𝑝
𝐼0∑sin(

2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑗 − 1)

𝑁
)

𝑘

𝑗=2

 

The calculation of the sum gives 

∑sin(
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑗 − 1)

𝑁
)

𝑘

𝑗=2

=
1

2 sin (
𝜋
𝑁)

[cos(
2𝜋𝑧

𝑙𝑝
+
𝜋

𝑁
) − cos(

2𝜋𝑧

𝑙𝑝
+
(2𝑘 − 1)𝜋

𝑁
)] 
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thus 

𝐼𝑘𝑘+1(𝑧)

𝑑𝑧
=
𝐼12(𝑧)

𝑑𝑧
+
2𝜋

𝑙𝑝

𝐼0

2 sin (
𝜋
𝑁)

[cos(
2𝜋𝑧

𝑙𝑝
+
𝜋

𝑁
) − cos(

2𝜋𝑧

𝑙𝑝
+
(2𝑘 − 1)𝜋

𝑁
)] (206) 

 

From Kirchhoff’s voltage law, we can see that 

∑𝑈𝑘𝑘+1(𝑧)

𝑁

𝑘=1

= 0 

combining this relation with equation (134), we can deduce that 

∑
𝐼𝑘𝑘+1(𝑧)

𝑑𝑧

𝑁

𝑘=1

= 0 (207) 

since 𝜎𝑙 is by assumption identical between every element. 

Using equations (206) and (207), we obtain 

𝐼12(𝑧)

𝑑𝑧
= −

1

𝑁

2𝜋

𝑙𝑝

𝐼0

2 sin (
𝜋
𝑁)

∑ [cos (
2𝜋𝑧

𝑙𝑝
+
𝜋

𝑁
) − cos(

2𝜋𝑧

𝑙𝑝
+
(2𝑘 − 1)𝜋

𝑁
)]

𝑁

𝑘=1

 

and since 

∑cos(
2𝜋𝑧

𝑙𝑝
+
(2𝑘 − 1)𝜋

𝑁
)

𝑁

𝑘=1

= 0 

we then have 

𝐼12(𝑧)

𝑑𝑧
= −

2𝜋

𝑙𝑝

𝐼0

2 sin (
𝜋
𝑁)

cos (
2𝜋𝑧

𝑙𝑝
+
𝜋

𝑁
) 

which combined to (206) leads to 

𝐼𝑘𝑘+1(𝑧)

𝑑𝑧
= −

2𝜋

𝑙𝑝

𝐼0

2 sin (
𝜋
𝑁)

cos (
2𝜋𝑧

𝑙𝑝
+
(2𝑘 − 1)𝜋

𝑁
) (208) 

 

Now that we have determined the local transverse current 𝐼𝑘𝑘+1(𝑧) flowing from element 𝑘 to the 

adjacent element 𝑘 + 1 at 𝑧, we can compute the local power 𝑑𝑃(𝑧) dissipated in a slice 𝑑𝑧 using (203) 

and (208), i.e. 

𝑑𝑃(𝑧) =
1

𝜎𝑙
∑(

𝐼𝑘𝑘+1(𝑧)

𝑑𝑧
)

2𝑁

𝑘=1

𝑑𝑧 =
1

𝜎𝑙
(
2𝜋

𝑙𝑝
)

2
𝐼0
2

4 sin2 (
𝜋
𝑁)

∑ cos2 (
2𝜋𝑧

𝑙𝑝
+
(2𝑘 − 1)𝜋

𝑁
)

𝑁

𝑘=1

𝑑𝑧 
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Since 

∑cos2 (
2𝜋𝑧

𝑙𝑝
+
(2𝑘 − 1)𝜋

𝑁
)

𝑁

𝑘=1

=
𝑁

2
 

the local power 𝑑𝑃(𝑧) is thus given by 

𝑑𝑃(𝑧) =
1

𝜎𝑙
(
2𝜋

𝑙𝑝
)

2
𝑁𝐼0

2

8 sin2 (
𝜋
𝑁)

𝑑𝑧 (209) 

 

The total power dissipated by the coupling currents in a 𝑁-uplet with 𝑁 ≥ 3 from 𝑧 = 0 to 𝑧 is then 

𝑃(𝑧) = ∫
𝑑𝑃(𝑧′)

𝑑𝑧
𝑑𝑧′

𝑧

0

=
1

𝜎𝑙
(
2𝜋

𝑙𝑝
)

2
𝑁

8 sin2 (
𝜋
𝑁)

𝐼0
2𝑧 (210) 

 

As a result, the power per unit length of conductor is 

𝑃𝑙(𝑧) =
𝑃(𝑧)

𝑧
=
1

𝜎𝑙
(
2𝜋

𝑙𝑝
)

2
𝑁

8 sin2 (
𝜋
𝑁
)
𝐼0
2 (211) 

 

III.2.7  Specific case of the doublet 

 

 We will address here the specific case of two twisted elements (i.e. a doublet) following the same 

approach than for a 𝑵-uplet with 𝑵 ≥ 𝟑. 

Morgan has studied the magnetic response of a strand having two filaments in [21] and has expressed 

the time constant of the system and the average power dissipated during a sinusoidal excitation. In order 

to compare our model to his approach, we first have to adapt the N-uplet model to a doublet. 

However it is not directly possible to replace 𝑁 with 2 in the expressions we have previously derived 

for 𝑁 ≥ 3. Indeed, since the doublet has only one transverse current flowing from the first element to 

the second one, the Kirchhoff’s current law we have derived in the 𝑁-uplet model is not valid anymore. 

As a result, we have to derive the equation governing the doublet following the methodology we have 

used in the 𝑁-uplet. 

 

III.2.7.1  Global equation of the system 

 

In the case of a doublet, there is only one local transverse current 𝐼12(𝑧) which flows from the first 

element to the second one; according to Kirchhoff’s current law, it must satisfy 

𝐼12(𝑧)

𝑑𝑧
= −

𝑑𝐼1
𝑑𝑧
(𝑧) (212) 

instead of (133) for 𝑁 ≥ 3. 
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Equations (134) and (141) derived for the case 𝑁 ≥ 3 (i.e. Ohm’s law and Faraday’s law of 

induction) being still valid for 𝑁 = 2, the set of equations of the doublet is then 

{
 
 

 
 

𝐼12(𝑧)

𝑑𝑧
= −

𝑑𝐼1
𝑑𝑧
(𝑧)

1

𝑑𝑧
𝐼12(𝑧) = 𝜎𝑙𝑈12(𝑧)


𝑑𝑈12
𝑑𝑧

(𝑧) = �̇�𝑧2(𝑧) − �̇�𝑧1(𝑧)

 (213) 

 

Once combined, equations (213) leads to the global equation of the system 

𝑑2𝐼1
𝑑𝑧2

(𝑧) = 𝜎𝑙[�̇�𝑧1(𝑧) − �̇�𝑧2(𝑧)] 
(214) 

 

Since the doublet does not carry any transport current, we have 𝐼2(𝑧) = −𝐼1(𝑧), therefore all the 

equations and solutions will only be given for 𝐼1 as 𝐼2 is simply the opposite of 𝐼1. 

As we did it previously for 𝑁 ≥ 3, 𝐴𝑧𝑘 can be split as 𝐴𝑧𝑘 = 𝐴𝑧𝑎𝑘
+ 𝐴𝑧𝑟𝑘

 with 𝐴𝑧𝑎𝑘 = −𝑥𝑘𝐵𝑎.  

This leads to the following equation 

𝑑2𝐼1
𝑑𝑧2

(𝑧) − 𝜎𝑙 [�̇�𝑧𝑟1
(𝑧) − �̇�𝑧𝑟2(𝑧)] = −2𝜎𝑙𝑅𝑐�̇�𝑎 cos (

2𝜋𝑧

𝑙𝑝
) (215) 

 

III.2.7.2  Study in steady-state regime 

 

In steady-state regime, we then have 

𝑑2𝐼1
𝑑𝑧2

(𝑧) = −2𝜎𝑙𝑅𝑐�̇�𝑎 cos(
2𝜋𝑧

𝑙𝑝
) (216) 

 

The solutions of this equation can be quickly determined from the case 𝑁 ≥ 3 as 

𝐼1(𝑧) = 𝐼0 cos (
2𝜋𝑧

𝑙𝑝
) (217) 

for an infinitely long conductor or  

𝐼1(𝑧) = 𝐼0 [cos (
2𝜋𝑧

𝑙𝑝
) − cos (

𝜋𝐿

𝑙𝑝
)] (218) 

for a conductor of length 𝐿. In both cases 𝐼0 is given by 

𝐼0 = 2𝜎𝑙𝑅𝐶�̇�𝑎 (
𝑙𝑝
2𝜋
)

2

 (219) 

Note that this expression of 𝐼0 is not equal to the one obtained replacing 𝑁 with 2 in the formula of 

the 𝑁-uplet, i.e. equation (149). 
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III.2.7.3  Study in time-varying regime 

 

The current distribution found in steady-state regime for the doublet is consistent with that found 

for the 𝑁-uplet, i.e. it is given by (𝐼𝑘(𝑧) = 𝐼0 cos (
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘−1)

𝑁
))
1≤𝑘≤𝑁

 for = 2 . Consequently, the 

formula of the magnetic vector potential due to this distribution of current is directly given by equations 

(175) to (177) for 𝑁 = 2, i.e. 

𝐴𝑧𝑟𝑘
(1)
(𝑧) = 𝛾𝐼0

(1)
cos(

2𝜋𝑧

𝑙𝑝
+ 𝜋(𝑘 − 1)) (220) 

with 

𝛾 =
𝜇0
8𝜋2

∫ ∫ ∑

cos(
2𝜋𝑧′

𝑙𝑝
+ 𝜋(𝑝 − 1))

𝑔𝑝(𝑧
′, 𝛹′)

2

𝑝=1

2𝜋

𝛹′=0

+∞

𝑧′=−∞

𝑑𝛹′𝑑𝑧′ 
(221) 

 

where 𝑔𝑝(𝑧
′, 𝛹′) is now given by 

√4𝑅𝑐
2 sin2 (

𝜋𝑧′

𝑙𝑝
+
𝜋

2
(𝑝 − 1)) + 4𝑅𝑐𝑅𝑓 sin(

𝜋𝑧′

𝑙𝑝
+
𝜋

2
(𝑝 − 1)) sin(𝛹′) + 𝑅𝑓

2 + 𝑧′2 (222) 

  

Using equations (215) and (220), we see that the new distribution of currents 𝐼1
(2)(𝑧) induced by the 

time-variation of the current distribution (𝐼𝑘
(1)(𝑧) = 𝐼0

(1)
cos (

2𝜋𝑧

𝑙𝑝
+ 𝜋(𝑘 − 1)))

1≤𝑘≤2

 found in steady-

state regime will satisfy 

𝑑2𝐼1
(2)

𝑑𝑧2
(𝑧) = 2𝜎𝑙𝛾𝐼0̇

(1) cos (
2𝜋𝑧

𝑙𝑝
) (223) 

 

Using previous considerations, the solution of this equation is 

𝐼1
(2)(𝑧) = 𝐼0

(2) cos(
2𝜋𝑧

𝑙𝑝
) (224) 

with 

𝐼0
(2) = −2𝜎𝑙𝛾𝐼0̇

(1)
(
𝑙𝑝
2𝜋
)

2

 (225) 

 

Once again we have reached the end of our analytical procedure and we now know that the spatial 

form of the current distribution 𝐼1(𝑧) induced in a doublet for any time-varying regime is given by 

𝐼1(𝑧) = 𝐼0 cos (
2𝜋𝑧

𝑙𝑝
), where 𝐼0 is a function of time only. 
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III.2.7.3.1 Reduction of the global equation of the system for any time-varying regime 

 

Using the fact that 𝐼1(𝑧) = 𝐼0 cos (
2𝜋𝑧

𝑙𝑝
) and equations (215) and (220), the new global equation of 

the doublet can be reduced to 

𝐼0 + 2𝜎𝑙𝛾 (
𝑙𝑝
2𝜋
)

2

𝐼0̇ = 2𝜎𝑙 (
𝑙𝑝
2𝜋
)

2

𝑅𝐶�̇�𝑎 (226) 

 

and can now simply be expressed as 

𝐼0 + 𝜏𝐼0̇ =
𝜏𝑒𝑥𝑡𝑅𝐶�̇�𝑎

𝜇0
 (227) 

with 

{
 
 

 
 𝜏 = 2𝜎𝑙𝛾 (

𝑙𝑝

2𝜋
)

2

𝜏𝑒𝑥𝑡 = 2𝜎𝑙𝜇0 (
𝑙𝑝
2𝜋
)

2 (228) 

and 

𝛾 =
𝜇0
8𝜋2

∫ ∑cos(
2𝜋𝑧′

𝑙𝑝
+ 𝜋(𝑝 − 1))

2

𝑝=1

[∫
1

𝑔𝑝(𝑧
′, 𝛹′)

2𝜋

𝛹′=0

𝑑𝛹′] 𝑑𝑧′
+∞

𝑧′=−∞

 (229) 

 

where, according to equation (222), 𝑔𝑝(𝑧
′, 𝛹′) is equal to 

√4𝑅𝑐
2 sin2 (

𝜋𝑧′

𝑙𝑝
+
𝜋

2
(𝑝 − 1)) + 4𝑅𝑐𝑅𝑓 sin(

𝜋𝑧′

𝑙𝑝
+
𝜋

2
(𝑝 − 1)) sin(𝛹′) + 𝑅𝑓

2 + 𝑧′2 (230) 

 

Note that the expressions of 𝜏 and 𝜏𝑒𝑥𝑡 of the doublet are not equal to the one obtained replacing 𝑁 

with 2 in the formulae of the 𝑁-uplet, i.e. equation (185). 

 

III.2.7.3.2 Alternative calculation of the 𝜸 coefficient 

 

Formula (201) of the γ coefficient derived for the 𝑁-uplet using the straight infinite hollow tubes 

approach is still valid for the doublet but with 𝑁 = 2, i.e. 

𝛾 =
𝜇0
2𝜋
ln(

2𝑅𝑐
𝑅𝑓
) (231) 
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III.2.7.4  Coupling power dissipated in a doublet 

 

Using the fact that 𝐼1(𝑧) = 𝐼0 cos (
2𝜋𝑧

𝑙𝑝
) and equation (212), we have 

𝐼12(𝑧)

𝑑𝑧
=
2𝜋

𝑙𝑝
𝐼0 sin(

2𝜋𝑧

𝑙𝑝
) 

The local power 𝑑𝑃(𝑧) dissipated in a slice of thickness 𝑑𝑧 is 

𝑑𝑃(𝑧) =
𝐼12

2(𝑧)

𝑑𝐺
=
1

𝜎𝑙
(
𝐼12(𝑧)

𝑑𝑧
)

2

𝑑𝑧 (232) 

which combined to the previous relations leads to 

𝑑𝑃(𝑧) =
1

𝜎𝑙
(
2𝜋

𝑙𝑝
)

2

𝐼0
2 sin2 (

2𝜋𝑧

𝑙𝑝
)𝑑𝑧 (233) 

 

Finally, the total power dissipated by the coupling currents in a doublet from 𝑧 = 0 to 𝑧 is then 

𝑃(𝑧) = ∫
𝑑𝑃(𝑧′)

𝑑𝑧
𝑑𝑧′

𝑧

0

=
1

𝜎𝑙
(
2𝜋

𝑙𝑝
)

2

𝐼0
2 𝑧

2
[1 − sinc (

4𝜋𝑧

𝑙𝑝
)] (234) 

where sinc(𝑥) = sin(𝑥) /𝑥. And the power per unit length of conductor is 

𝑃𝑙(𝑧) =
𝑃(𝑧)

𝑧
=
1

𝜎𝑙
(
2𝜋

𝑙𝑝
)

2
𝐼0
2

2
[1 − sinc (

4𝜋𝑧

𝑙𝑝
)] (235) 

 

Note that in the case of a doublet, the power dissipated by the coupling currents per unit length of 

conductor depends on the length of conductor considered while for a 𝑁-uplet with 𝑁 ≥ 3 it does not. 

 

III.2.7.5  Comparison with Morgan’s expressions 

 

In [21], Morgan has derived the time constant governing a strand with two filaments and the average 

power per unit length dissipated during a sinusoidal excitation. In order to compare his expressions to 

ours, we first have to make the link between his notations and ours: 

 𝑝 is the twist pitch of the filaments, we thus have 𝑝 = 𝑙𝑝 

 𝐿 is one fourth of the pitch, thus 𝐿 = 𝑙𝑝/4 

 𝑑 is the diameter of the filaments, thus 𝑑 = 2𝑅𝑓 

 𝑎 is the distance between the two filaments, thus 𝑎 = 2𝑅𝑐 

 𝜌𝑒 is an effective resistivity such that 𝑑ℛ = 𝜌𝑒/𝑑𝑧is the local transverse resistance between the 

two filaments, we then have ℛ = 1/𝑑𝐺 = 1/(𝜎𝑙𝑑𝑧) and thus 𝜌𝑒 = 1/𝜎𝑙 

 

 



145 

 

The time constant derived by Morgan in [21] is the following 

𝜏𝑀𝑜𝑟𝑔𝑎𝑛 =
𝜇0
𝜋𝜌𝑒

(
2𝐿

𝜋
)
2

ln (
2𝑎 − 𝑑

𝑑
) =

𝜇0𝜎𝑙
𝜋

(
𝑙𝑝
2𝜋
)

2

ln (
2𝑅𝑐 − 𝑅𝑓

𝑅𝑓
) 

The time constant we have derived is given by (228), i.e. 

𝜏 = 2𝜎𝑙𝛾 (
𝑙𝑝
2𝜋
)

2

 

Since Morgan has used the straight infinite tubes approach, we will replace 𝛾 with expression (231) 

we have found using the same approach, this leads to the following time constant 

𝜏 =
𝜇0𝜎𝑙
𝜋

(
𝑙𝑝
2𝜋
)

2

ln (
2𝑅𝑐
𝑅𝑓
) 

We can see that our expression is almost identical to that derived by Morgan, the only difference 

lies in the presence of the term 2𝑅𝑐 − 𝑅𝑓 instead of 2𝑅𝑐 in the logarithm. This difference is simply 

explained by the fact that Morgan has considered filaments while we have chosen to consider elements 

that can be strands or groups of strands. Indeed, when computing the change of magnetic flux enclosed 

by the two filaments, Morgan has chosen not to take into account the part of the change of flux that was 

inside the volume of the filaments because of their superconducting nature (they directly shield that part 

developing their own screening currents, these currents correspond to the currents responsible for the 

hysteresis losses in superconducting filaments). In our approach, we have not made use of this 

assumption because the elements are not supposed to be able to instantly shield the change of magnetic 

flux in their own volume; this is the reason for the slight difference between both models. 

Having now found an agreement between the time constants calculated by both models, we will now 

carry on the comparison on the average power per unit length dissipated during a sinusoidal excitation. 

In [21], Morgan has also computed the following power per unit length averaged over one fourth of 

the twist pitch (i.e. 𝐿 = 𝑙𝑝/4) and averaged over one cycle of sinusoidal magnetic excitation 𝐵𝑎 =

𝐵𝑝sin(𝜔𝑡) 

𝑃𝑙𝑀𝑜𝑟𝑔𝑎𝑛 =
1

4𝜌𝑒
(
2𝐿

𝜋
)
2

𝐵𝑝
2(𝑎 − 𝑑)2

𝜔2

1 + 𝜔2𝜏𝑀𝑜𝑟𝑔𝑎𝑛
2
= 𝜎𝑙 (

𝑙𝑝

2𝜋
)

2

𝐵𝑝
2(𝑅𝑐 − 𝑅𝑓)

2 𝜔2

1 + 𝜔2𝜏𝑀𝑜𝑟𝑔𝑎𝑛
2

 

From equation (235), the power per unit length averaged over one fourth of the twist pitch we have 

computed is 

𝑃𝑙(𝑧 = 𝑙𝑝/4) =
1

𝜎𝑙
(
2𝜋

𝑙𝑝
)

2
𝐼0
2

2
 

where 𝐼0 is governed by equation (227).  
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In section II.2.8 , we have computed the average of �̇�𝑖
2
(𝑡) governed by the equation 𝐵𝑖 + 𝜏�̇�𝑖 = 𝐵𝑎 

over the time period 𝑇 = 1/𝑓 of an applied magnetic field 𝐵𝑎 = 𝐵𝑝sin(𝜔𝑡) and we have found 

〈�̇�𝑖
2
(𝑡)〉𝑐𝑦𝑐𝑙𝑒 =

𝐵𝑝
2

2

𝜔2

1 + (𝜔𝜏)2
 

Differentiating equation 𝐵𝑖 + 𝜏�̇�𝑖 = 𝐵𝑎 with respect to time leads to �̇�𝑖 + 𝜏�̈�𝑖 = �̇�𝑎. We can notice 

that this equation is very similar to the one satisfied by 𝐼0 i.e. 𝐼0 + 𝜏𝐼0̇ = 𝜏𝑒𝑥𝑡𝑅𝐶�̇�𝑎/𝜇0. 

Consequently, replacing �̇�𝑖 with 𝐼0 and 𝐵𝑝 with 𝐵𝑝𝜏𝑒𝑥𝑡𝑅𝐶/𝜇0 in the expression of 〈�̇�𝑖
2
(𝑡)〉𝑐𝑦𝑐𝑙𝑒 

above, we can directly conclude that the average of 𝐼0
2 over the time period 𝑇 = 1/𝑓 of an applied 

magnetic field 𝐵𝑎 = 𝐵𝑝sin(𝜔𝑡) is given by 

〈𝐼0
2(𝑡)〉𝑐𝑦𝑐𝑙𝑒 =

(𝐵𝑝𝜏𝑒𝑥𝑡𝑅𝐶/𝜇0)
2

2

𝜔2

1 + (𝜔𝜏)2
=
𝐵𝑝

2

2
𝑅𝑐

2 (
𝜏𝑒𝑥𝑡
𝜇0
)
2 𝜔2

1 + (𝜔𝜏)2
 

 

Replacing 𝜏𝑒𝑥𝑡 with its expression given by (228), we finally obtain 

〈𝐼0
2(𝑡)〉𝑐𝑦𝑐𝑙𝑒 = 2𝐵𝑝

2𝑅𝑐
2𝜎𝑙

2 (
𝑙𝑝

2𝜋
)

4
𝜔2

1 + (𝜔𝜏)2
 

Therefore, we can deduce that 

〈𝑃𝑙(𝑧 = 𝑙𝑝/4)〉𝑐𝑦𝑐𝑙𝑒 =
1

𝜎𝑙
(
2𝜋

𝑙𝑝
)

2 〈𝐼0
2(𝑡)〉𝑐𝑦𝑐𝑙𝑒

2
= 𝜎𝑙 (

𝑙𝑝
2𝜋
)

2

𝐵𝑝
2𝑅𝑐

2 𝜔2

1 + (𝜔𝜏)2
 

 

We can see that the expressions 𝑃𝑙𝑀𝑜𝑟𝑔𝑎𝑛  and 〈𝑃𝑙(𝑧 = 𝑙𝑝/4)〉𝑐𝑦𝑐𝑙𝑒 computed by both models are 

almost identical, again the difference lies in the presence of the term (𝑅𝑐 − 𝑅𝑓)
2
 instead of 𝑅𝑐

2 which 

is again due to the fact that Morgan does not take into account the part of the change of magnetic flux 

that is inside the volume of the filaments. 

 

III.2.8  Summary 

 

For any time-varying regime the currents induced along the elements of the 𝑁-uplet are given by 

𝐼𝑘(𝑧) = 𝐼0cos(
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘 − 1)

𝑁
) 

where 𝐼0 is a function of time only governed by the equation 

𝐼0 + 𝜏𝐼0̇ =
𝜏𝑒𝑥𝑡𝑅𝐶�̇�𝑎

𝜇0
 (236) 

with 
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𝜏 =

{
 
 

 
 2𝜎𝑙𝛾 (

𝑙𝑝

2𝜋
)

2

𝑓𝑜𝑟𝑁 = 2

4𝜎𝑙𝛾 sin
2 (
𝜋

𝑁
)(

𝑙𝑝

2𝜋
)

2

𝑓𝑜𝑟𝑁 ≥ 3

 (237) 

and 

𝜏𝑒𝑥𝑡 =

{
 
 

 
 2𝜎𝑙𝜇0 (

𝑙𝑝
2𝜋
)

2

𝑓𝑜𝑟𝑁 = 2

4𝜎𝑙𝜇0 sin
2 (
𝜋

𝑁
) (

𝑙𝑝
2𝜋
)

2

𝑓𝑜𝑟𝑁 ≥ 3

 (238) 

 

For 𝑁 ≥ 2, the 𝛾 coefficient can be approximated by the following explicit formula 

𝛾 =
𝜇0
2𝜋

[
 
 
 

ln (
2𝑅𝑐
𝑅𝑓
) − 2 ∑ cos (

2𝜋𝑗

𝑁
) ln (sin |

𝜋𝑗

𝑁
|)

𝑓𝑙𝑜𝑜𝑟(
𝑁−1
2
)

𝑗=1
]
 
 
 

 (239) 

 

III.3 Adaptation of the N-uplet model to the MPAS model 

 

III.3.1  The MPAS model 

 

Having derived the equation governing a conductor described by the 𝑁-uplet model, we will now 

express it differently as we will try to provide a physical interpretation of its behavior. 

In doing so we are actually making the link with the Multizone Partial Shielding (MPAS) model 

[17]; this heuristic approach considers that every cabling stage of a conductor, if taken alone, can be 

seen as a magnetic circular dipole (see section II.5.1.2 ) partially screening the external magnetic field. 

We recall that the term “circular dipole” refers to a cosine distribution of current on the outer radius of 

the cross-section of a cylinder; this distribution is encountered when a composite with a central 

filamentary zone shields its enclosed volume from the time variation of an applied transverse magnetic 

field. 

In the MPAS approach, each cabling stage of a CICC is considered to behave like a superconducting 

composite partially shielding the external magnetic excitation, this means that the isolated cabling stage 

𝑗 is governed by the classical equation 

𝐵𝑖𝑛𝑡𝑗 + 𝜏𝑗�̇�𝑖𝑛𝑡𝑗 = 𝐵𝑎 (240) 

where 𝐵𝑎 is the amplitude of the transverse applied magnetic field, 𝐵𝑖𝑛𝑡𝑗 is the part of the induction 

inside cabling stage 𝑗 which is collinear to 𝐵𝑎 and 𝜏𝑗 is the time constant of the cabling stage 𝑗 if taken 

alone (i.e. without considering the magnetic interactions with the other cabling stages). 

The MPAS model also considers that the power density dissipated in an isolated cabling stage 𝑗 is 

equal to 
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𝑃𝑣𝑜𝑙 =
𝑛𝑘𝑗𝜏𝑗�̇�𝑖𝑛𝑡𝑗

2

𝜇0
 (241) 

where 𝑛𝑘𝑗 is known as the partial shielding coefficient. Note that in the case of a composite with a 

central filamentary zone, the 𝑛𝑘𝑗 coefficient is 𝑛𝑘𝑗 = 2 according to equation (3). 

Finally, this model also considers that when the totality of the magnetic couplings are taken into 

account, the coupling losses per cycle per unit volume of cable envelope of a CICC with 𝑁 cabling 

stages can be expressed as 

𝑄𝑣𝑜𝑙 =∑
𝑛𝜅𝑗𝜃𝑗�̇�𝑖𝑛𝑡𝑗

2

𝜇0

𝑁

𝑗=1

 (242) 

where the 𝑛𝜅𝑗 and 𝜃𝑗 are respectively the new time constants and new partial shielding coefficients 

of the system which depend on the previous 𝑛𝑘𝑗, 𝜏𝑗 and on the volume fractions in which the different 

stages are shielding the applied magnetic field: they reflect the magnetic coupling between the different 

cabling stages. 

The previous equations assumed by the MPAS model seem to be in line with the experimental 

observations as it is possible to adjust the 𝑛𝜅𝑗 and 𝜃𝑗 so that the experimental losses can be described 

with equation (242). 

However, these considerations have never been demonstrated theoretically. In the next section we 

will thus show that it is indeed possible to represent the magnetic behavior of single cabling stage 

conductor with equations (240) and (241). We will also derive the analytical formulae of its 𝑛𝑘𝑗 and 𝜏𝑗 

parameters using the results of the 𝑁-uplet model. 

This point is very important as it consolidates on one side, the MPAS model which is consistent with 

the experimental reality but which features considerations that have not been reinforced on a theoretical 

ground and, on the other side, the 𝑁-uplet model which is derived from purely theoretical considerations 

without any link -even indirect- with experimental reality. 

 

III.3.2  Adaptation to the MPAS model 

 

Let us start with the equation of the 𝑁-uplet, i.e. equation (184) which is 

𝐼0 + 𝜏𝐼0̇ =
𝜏𝑒𝑥𝑡𝑅𝐶�̇�𝑎

𝜇0
 

In steady-state regime, i.e. when the coupling currents are not time-varying, at any time 𝑡 we have 

𝐼0̇(𝑡) = 0 and according to the equation above we have 

𝐼0(𝑡) =
𝜏𝑒𝑥𝑡𝑅𝐶�̇�𝑎(𝑡)

𝜇0
 

From a physical point of view, this means that at any time 𝑡 the time-variation of a transverse and 

uniform internal magnetic field 𝐵𝑖(𝑡) give rise to currents of the form 𝐼𝑘(𝑧) = 𝐼0 cos (
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘−1)

𝑁
) 

inside the elements with 
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𝐼0(𝑡) =
𝜏𝑒𝑥𝑡𝑅𝐶�̇�𝑖(𝑡)

𝜇0
 

In time-varying regime, the internal magnetic field �⃗⃗�𝑖 in the volume enclosed by the elements (i.e. 

in the cylinder of radius 𝑅𝑐) corresponds to the superposition of the applied magnetic field �⃗⃗�𝑎 which is 

transverse and uniform and of the reacting magnetic field  𝐵𝑟𝑒𝑎𝑐𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ which is the magnetic field produced 

by the currents flowing in the elements. We will not compute the magnetic field created by the 𝐼𝑘(𝑧) =

𝐼0 cos (
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘−1)

𝑁
) current distribution but it is quite obvious that it is not uniform in the volume 

enclosed by the elements. As a result the internal magnetic field �⃗⃗�𝑖 cannot be uniform either and the 𝑁-

uplet cannot be described by the classical equation 

𝐵𝑖 + 𝜏�̇�𝑖 = 𝐵𝑎 

However, we can introduce an equivalent internal uniform magnetic field 𝐵𝑖𝑒𝑞 that we define as the 

internal uniform magnetic field collinear to 𝐵𝑎⃗⃗ ⃗⃗⃗ whose time-variation would create, at any time 𝑡, the 

same distribution of current 𝐼𝑘(𝑧) = 𝐼0(𝑡) cos (
2𝜋𝑧

𝑙𝑝
+
2𝜋(𝑘−1)

𝑁
) than the one given by the 𝑁-uplet model 

i.e. obtained with equation (184). It would therefore satisfy the relation 

𝐼0(𝑡) =
𝜏𝑒𝑥𝑡𝑅𝐶�̇�𝑖𝑒𝑞(𝑡)

𝜇0
 (243) 

Replacing 𝐼0 with the expression above in equation (184) leads to 

𝜏𝑒𝑥𝑡𝑅𝐶�̇�𝑖𝑒𝑞

𝜇0
+ 𝜏

𝜏𝑒𝑥𝑡𝑅𝐶�̈�𝑖𝑒𝑞

𝜇0
=
𝜏𝑒𝑥𝑡𝑅𝐶�̇�𝑎

𝜇0
 

Multiplying both sides with 𝜇0/(𝜏𝑒𝑥𝑡𝑅𝐶) and integrating in time, we obtain 

𝐵𝑖𝑒𝑞 + 𝜏�̇�𝑖𝑒𝑞 = 𝐵𝑎 (244) 

where 𝜏 is given by (237). 

This result is important as it shows that it is in fact possible to characterize the response of a single 

cabling stage conductor to a transverse magnetic field with an equation very similar to the one 

encountered in superconducting composites with a central filamentary zone. The only difference with 

the composite lies in the fact that we approximate the non-uniform internal magnetic field with an 

equivalent uniform one. 

From equations (211) and (235) giving the power dissipated per unit length of conductor 𝑃𝑙, we can 

express the average power density 𝑃𝑣𝑜𝑙 inside the 𝑁-uplet dividing 𝑃𝑙 by the circumscribed surface 

𝜋(𝑅𝑐 + 𝑅)
2 (i.e. surface of the circumscribed circle on Figure 41) as 

𝑃𝑣𝑜𝑙(𝑧) =

{
 
 

 
 1

𝜎𝑙
(
2𝜋

𝑙𝑝
)

2
𝐼0
2

2𝜋(𝑅𝑐 + 𝑅)
2
[1 − sinc(

4𝜋𝑧

𝑙𝑝
)] 𝑓𝑜𝑟𝑁 = 2

1

𝜎𝑙
(
2𝜋

𝑙𝑝
)

2
𝑁

8𝜋(𝑅𝑐 + 𝑅)2 sin2 (
𝜋
𝑁)

𝐼0
2𝑓𝑜𝑟𝑁 ≥ 3

 

Replacing 𝐼0 with its expression given by (243) in the equation above and using (238) giving 𝜏𝑒𝑥𝑡, 

we obtain 
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𝑃𝑣𝑜𝑙(𝑧) =

{
 
 

 
 𝜎𝑙 (

𝑙𝑝

2𝜋
)

2
2

𝜋
(

𝑅𝑐
𝑅𝑐 + 𝑅

)
2

�̇�𝑖𝑒𝑞
2
[1 − sinc (

4𝜋𝑧

𝑙𝑝
)] 𝑓𝑜𝑟𝑁 = 2

𝜎𝑙 (
𝑙𝑝

2𝜋
)

2

sin2 (
𝜋

𝑁
)
2𝑁

𝜋
(

𝑅𝑐
𝑅𝑐 + 𝑅

)
2

�̇�𝑖𝑒𝑞
2
𝑓𝑜𝑟𝑁 ≥ 3

 (245) 

 

Expressing 𝑃𝑣𝑜𝑙(𝑧) as in the MPAS model, i.e. as 

𝑃𝑣𝑜𝑙(𝑧) =
𝑛𝑘𝜏�̇�𝑖𝑒𝑞

2

𝜇0
 

and using the formulae of 𝜏 given by (237), we can deduce that 

𝑛𝑘 =

{
 
 

 
 𝜇0
𝛾𝜋
(

𝑅𝑐
𝑅𝑐 + 𝑅

)
2

[1 − sinc (
4𝜋𝑧

𝑙𝑝
)] 𝑓𝑜𝑟𝑁 = 2

𝜇0𝑁

2𝛾𝜋
(

𝑅𝑐
𝑅𝑐 + 𝑅

)
2

𝑓𝑜𝑟𝑁 ≥ 3

 

where 𝛾 is given by (239).  

Note that for the doublet the value of 𝑛𝑘 depends on the length of the conductor.  

In addition, assuming the elements of the 𝑁-uplet being tangent to each other, we would have the 

following relation on 𝑅 and 𝑅𝑐 

𝑅 = 𝑅𝑐 sin (
𝜋

𝑁
) 

Therefore, we then have 

𝑛𝑘 =

{
 
 
 

 
 
 

1

2 ln (
2𝑅𝑐
𝑅𝑓
)
𝑓𝑜𝑟𝑁 = 2, 𝑓𝑜𝑟𝑎𝑙𝑒𝑛𝑔𝑡ℎ𝑜𝑓𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟𝑤ℎ𝑖𝑐ℎ𝑖𝑠𝑎𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑜𝑓𝑙𝑝/4

𝑁/ [1 + sin (
𝜋
𝑁)]

2

[ln (
2𝑅𝑐
𝑅𝑓
) − 2∑ cos (

2𝜋𝑗
𝑁 ) ln (sin |

𝜋𝑗
𝑁 |)

𝑓𝑙𝑜𝑜𝑟(
𝑁−1
2
)

𝑗=1
]

𝑓𝑜𝑟𝑁 ≥ 3

 (246) 

 

III.3.3  Discussion about the values of nk 

 

We have plotted on Figure 45 the values of 𝑛𝑘 as function of the superconducting shell radius to 

element radius ratio 𝑅𝑓/𝑅 and of the number of elements 𝑁. 

First it can be seen that 𝑛𝑘 values are always lower than 2, which is one of the basic hypotheses of 

MPAS model in an axisymmetric configuration. 

Furthermore, it is also very interesting to notice that 𝑛𝑘 = 2 for a large number of elements (for 

𝑁 = 1000 on Figure 45). Indeed when 𝑁 is large, the elements are actually arranged like edge filaments 
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in a composite and we have previously mentioned that for a composite, the partial shielding coefficient 

𝑛𝑘 was equal to 2. 

The last two points, established for the configuration with single stage CICC, assess the 

robustness of the analytical model we have built. It ensures in fact that the assumptions considered (e.g. 

the distribution of currents in elements) do not degrade the relevance of our model as it aligns with the 

already existing approaches which are experimentally validated. 

 

Figure 45 : 𝒏𝒌 values as function of 𝑹𝒇/𝑹 ratio and of 𝑵 

 

III.4 Comparison with another analytical model 

 

Another analytical model [18] (introduced in section I.5 ) considers the following average instant 

power per unit volume of composite �̅� in a 𝑁-uplet of composite (one stage cable) under constant 

magnetic excitation (i.e. constant �̇�𝑎) 

�̅� =
2𝛹𝑅

𝜌𝑏𝑒𝑏𝜋
(
𝑝1
2𝜋
)
2

�̇�𝑎
2
[1 −

𝑅𝑓𝑝
∗

𝑅𝑝1
]

2

 (247) 

where 𝑝1 is the twist pitch of the first stage, 𝑝∗ the effective twist pitch of filaments in the composite, 

𝛹 is the average angular thickness of contacts between two strands, 𝑒𝑏 is the thickness of the resistive 

barrier surrounding each composite and 𝜌𝑏 is its resistivity. 

 

It is then interesting to compare our expression of the power to that of this model. But first, we have 

to express the power per unit axial length of conductor for a constant magnetic excitation from equations 

(149) and (256). This gives 

𝑃𝑙(𝑧) = 2𝜎𝑙 (
𝑙𝑝

2𝜋
)

2

𝑁𝑅𝑐
2 sin2 (

𝜋

𝑁
) �̇�𝑎

2
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Then, in order to obtain the power per unit volume of composite, we have to divide this expression 

by the area of composites 𝑁𝜋𝑅2, therefore we obtain 

�̅� =
2

𝜋
𝜎𝑙 (

𝑙𝑝
2𝜋
)

2

(
𝑅𝑐 sin (

𝜋
𝑁
)

𝑅
)

2

�̇�𝑎
2
 

Since, the composites are considered tangent in [18], we have the relation 𝑅𝑐 sin(𝜋/𝑁) = 𝑅, and 

thus 

 

�̅� =
2

𝜋
𝜎𝑙 (

𝑙𝑝
2𝜋
)

2

�̇�𝑎
2
 (248) 

 

We now have to convert the parameters of [18] into ours. Since in [18], the interstrand resistance is 

assumed to be exclusively due to the resistive barrier surrounding the filaments, the transverse 

conductance 𝑑𝐺 between adjacent elements considered by our model corresponds to 

𝑑𝐺 =
𝛹𝑅

𝜌𝑏𝑒𝑏
𝑑𝑧 

In our model, we have 𝑑𝐺 = 𝜎𝑙𝑑𝑧, therefore 
𝛹𝑅

𝜌𝑏𝑒𝑏
= 𝜎𝑙 

Consequently, the power per unit volume of composite �̅� derived in [18] and given by (247), is 

expressed in our notations, as 

�̅� =
2

𝜋
𝜎𝑙 (

𝑙𝑝
2𝜋
)

2

�̇�𝑎
2
[1 −

𝑅𝑓𝑝
∗

𝑅𝑙𝑝
]

2

 (249) 

which is very similar to our expression given by (248), except that in (249), an additional factor is 

included. 

 

In fact, in our model, we consider the 𝑁-uplet at the element scale (here composites) while [18] 

considers it down to the filament scale. Therefore, the additional factor in (249) is due to the fact that 

[18] only considers the magnetic flux variation enclosed between the closest filaments of adjacent 

composites (i.e. filaments of adjacent composites directly facing each other) while we consider the 

magnetic flux variation between the centers of adjacent composites. 

 

Note that we have already discussed this point in section III.2.7.5 . In reality, the expression of the 

power must be somewhere in between these two expressions because: 

 [18] has an optimistic approach considering that only the closest filaments of adjacent composites 

contributes to the shielding and thus to the losses (the transverse conductances between filaments 

of adjacent composites that are not directly facing each other are neglected, and so is their 

contribution in the losses) 
 

 Our model has a conservative approach considering that the transverse conductances between 

filaments of adjacent composites are all identical and set to the average one (we will discuss in 

further detail the effect of this consideration in section IV.4.3 ) 
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III.5 Synthesis 

 

In this section, we have established the 𝑁-uplet model which is relevant to the analytical 

representation of the magnetic shielding occurring in a single cabling stage of a conductor. We have 

shown that it can be described, as in the simplest approach at strand scale, by a single time equation with 

a single time constant 𝜏 and that its associated coupling power could be expressed considering a partial 

shielding due to coupling (in analogy with MPAS model). The partial shielding coefficient 𝑛𝑘 was 

expressed together with analytical expressions of 𝜏. The comparison of the 𝑁-uplet model with other 

analytical models issued from the literature [18],[21] have shown a good consistency, thus consolidating 

our approach. 

This achievement constitutes a significant step towards the modeling of coupling losses in CICCs 

as it shows that the losses are mainly driven by a very few number of parameters and its dependence on 

these parameters have now been identified. Furthermore the fact that the assumption of the MPAS model 

is in agreement with the analytical output of the 𝑁-uplet model is substantial because, at the same time, 

it provides a theoretical background to the MPAS model and it reinforces the consistency of our model 

since the MPAS approach has proved its ability to describe the experimental reality. 

As previously mentioned at strand scale, the single-stage CICC scale stands as a step towards a more 

elaborated representation of a cable, i.e. the integration of complexity due to the multiple stages. In this 

objective, we up scale this model in the next section, addressing a two-stage cable. 
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IV.  Analytical study of the shielding due to two stages of a CICC 
 

Content:  This part is dedicated to the presentation of an analytical modeling of a two cabling stages 

conductor. Experimental work (AC losses measurements and X-ray tomography) on 

conductors is also presented as well as comparisons with other models (analytical and 

numerical). 

Associated publication:  

A. Louzguiti, L. Zani, D. Ciazynski, B. Turck, JL. Duchateau, A. Torre, F. Topin, M. Bianchi, AC. 

Ricchiuto, T. Bagni, V.A. Anvar, A. Nijhuis and I. Tiseanu, Development of a new generic analytical 

modeling of AC coupling losses in cable-in-conduit conductors, I.E.E.E. Trans. on App. 

Superconductivity, Vol. 28, April 2018, Art. No. 4700405. 

 

IV.1 Presentation 

 

In the previous section, we have studied the magnetic behavior of a single cabling stage subject to a 

transverse time-varying magnetic field. In order to further investigate the dynamics of magnetic coupling 

occurring in a CICC, we now reach a higher level of complexity by considering the coupling effects 

occurring between different cabling stages of the CICC. We will therefore address the magnetic 

shielding in a two cabling stages conductor as it reveals the magnetic coupling between two consecutive 

cabling stages of a CICC. 

The geometry we will consider here is a twisted group of twisted elements. Again the “element” can 

either be a strand, a group of strands or even a petal (i.e. multiple strands twisted in several cabling 

stages) because our approach aims at modeling the magnetic coupling between two consecutive cabling 

stages regardless of the scale. 

In this section we will derive the equation governing the conductor as well as the power generated 

inside it and compare the outputs of our modeling to those of two reference numerical models 

(THELMA and JackPot) on two simplified geometries representative of ITER CS and JT-60SA TF 

conductors. 

In addition, we will present the experimental losses of a sample of JT-60SA TF conductor we have 

measured in JOSEFA facility at CEA and its effective geometrical parameters (i.e. cabling radii and 

twist pitches) extracted via X-ray tomography from other samples of the same conductor. 

The objective is then to investigate the possibility of representing the experimental losses with those 

predicted by our 𝑁2-uplet of 𝑁1-uplets model using the effective geometrical parameters of the 

conductor and adjusting the effective transverse conductances considered in our approach. 
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IV.2 N2-uplet of N1-uplets model 

 

IV.2.1  Methodology 

 

In order to study the magnetic response of a group of groups of twisted elements to a time-varying 

transverse and uniform magnetic field (𝑁2-uplet of 𝑁1-uplets model), we will follow the methodology 

we have presented in the study of a one cabling stage conductor (see section III.2.1 ): 

 In section IV.2.3  we first begin by formulating the fundamental equations of the system at each 

scale 

 In section IV.2.4 we compute the currents induced in steady-state regime, i.e. when these 

currents are not time-varying 

 In section IV.2.5, knowing the spatial form of the currents induced in steady-state regime, we 

follow the logical chain displayed on Figure 15 until the spatial form of the currents induced 

for any time-varying regime is defined; these expressions will enable us to reduce the equations 

of the system to a simple first-order differential equation 

 In section IV.2.6, knowing the spatial form of the currents induced for any time regime, we 

express the coupling power dissipated in a group of groups of twisted elements as a function of 

the currents 

 In section IV.2.7  we assess the relevance of the inductive part of our model through a study in 

purely inductive regime 

 

IV.2.2  Assumptions 

 

The geometry we consider in our modeling features 𝑁2 twisted groups (with a pitch equal to 𝑙𝑝2 and 

a cabling radius equal to 𝑅𝑐2) of 𝑁1 twisted elements (with a pitch equal to 𝑙𝑝1 and a cabling radius equal 

to 𝑅𝑐1). As in the 𝑁-uplet model, the element can either represent a strand, a group of strands or a petal, 

we simply consider it as a cylinder of radius 𝑅 containing a thin superconducting shell of radius 𝑅𝑓 (see 

Figure 46). 

In addition, we consider that in a slice of thickness 𝑑𝑧 there exists a local effective conductance 

between adjacent substages which is noted 𝑑𝐺2 = 𝜎𝑙2𝑑𝑧 where 𝜎𝑙2 is the transverse conductance of the 

superstage per unit axial length (i.e. expressed in 𝑆/𝑚). We also consider that in a slice of thickness 𝑑𝑧 

there exists a local effective conductance between adjacent elements of a substage which is noted 𝑑𝐺1 =

𝜎𝑙1𝑑𝑧 where 𝜎𝑙1 is the transverse conductance per unit axial length (i.e. expressed in 𝑆/𝑚). Both 𝜎𝑙1 and 

𝜎𝑙2 are considered constant along the axis of the conductor. The current flowing through the 

superconducting shell of element 𝑘1 of substage 𝑘2 at 𝑧 is noted 𝐼𝑘1𝑘2(𝑧), the current flowing 

transversely in a slice 𝑑𝑧 from substage 𝑘2 to substage 𝑘2 + 1 at 𝑧 is noted 𝐼𝑘2𝑘2+1(𝑧) and the current 

flowing transversely in a slice 𝑑𝑧 from element 𝑘1 of substage 𝑘2 to element 𝑘1 + 1 of substage 𝑘2 at 𝑧 

is noted 𝐼𝑘1𝑘1+1
〈𝑘2〉 (𝑧). Furthermore, we consider that: 

 The external magnetic field 𝐵𝑎 is transverse (along the y-axis, see Figure 46) and spatially uniform 

within the conductor 
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 The transport current is zero 

 

 The geometry is infinitely long along the z-axis 

 

 The superconducting shell is not saturated and thus the electric field is zero along the trajectory 

of an element 

 

 The current 𝐼𝑘1𝑘2(𝑧) carried by the superconducting shell of element 𝑘1 of substage 𝑘2 at 𝑧 is 

uniformly distributed over its circumference 

 The substages and elements are lightly twisted, i.e. (
2𝜋𝑅𝑐2
𝑙𝑝2

)
2

≪ 1 and (
2𝜋𝑅𝑐1
𝑙𝑝1

)
2

≪ 1 

 

 The time variation of the external magnetic field 𝐵𝑎 is slow enough to neglect the displacement 

current so that Kirchhoff’s current law applies 

 

 The number of elements in each substage is at least 3, i.e. 𝑁1 ≥ 3 and the number of substages is 

at least 3, i.e. 𝑁2 ≥ 3. These assumptions are made here because of the specificity of the doublet 

case (see section III.2.7 ). 

 

Figure 46 : Scheme showing the cross-section geometry of a triplet of triplets (𝑵𝟐 = 𝟑,𝑵𝟏 = 𝟑) 
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Finally, the position (𝑥𝑘1𝑘2 , 𝑦𝑘1𝑘2) of the center of element 𝑘1 of substage 𝑘2 at 𝑧 is given by 

(
𝑥𝑘1𝑘2(𝑧)

𝑦𝑘1𝑘2(𝑧)
) = (

𝑥𝑘2
(𝑠𝑢𝑝𝑒𝑟)

(𝑧)

𝑦𝑘2
(𝑠𝑢𝑝𝑒𝑟)

(𝑧)
) + (

𝑥𝑘1
(𝑠𝑢𝑏)

(𝑧)

𝑦𝑘1
(𝑠𝑢𝑏)

(𝑧)
) (250) 

with 

(
𝑥𝑘2
(𝑠𝑢𝑝𝑒𝑟)

(𝑧)

𝑦𝑘2
(𝑠𝑢𝑝𝑒𝑟)

(𝑧)
) = (

𝑅𝐶2 cos (
2𝜋𝑧
𝑙𝑝2

+
2𝜋(𝑘2 − 1)

𝑁2
)

𝑅𝐶2 sin (
2𝜋𝑧
𝑙𝑝2

+
2𝜋(𝑘2 − 1)

𝑁2
)
) (251) 

and 

(
𝑥𝑘1
(𝑠𝑢𝑏)

(𝑧)

𝑦𝑘1
(𝑠𝑢𝑏)

(𝑧)
) = (

𝑅𝐶1 cos (
2𝜋𝑧
𝑙𝑝1

+
2𝜋(𝑘1 − 1)

𝑁1
)

𝑅𝐶1 sin (
2𝜋𝑧
𝑙𝑝1

+
2𝜋(𝑘1 − 1)

𝑁1
)
) (252) 

 

Note that Figure 46 shows a scheme which is representative of a two cabling stages conductor before 

compaction, but note that our approach can also be used to model the magnetic behavior of a compacted 

two cabling stages conductor whose scheme is displayed in Figure 47. 

 

 

Figure 47 : Scheme showing the cross-section geometry of a compacted triplet of triplets (𝑵𝟐 = 𝟑,𝑵𝟏 = 𝟑) 

 

IV.2.3  Equations of the system 

 

 We will formulate here the fundamental equations of the system at each scale using Kirchhoff’s 

current law, Ohm’s law, Faraday’s law of induction. We will then combine them to express the 

global equation of the system. 
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We will here derive the equations governing a two cabling stages conductor. The main difficulty 

with respect to the development of the 𝑁-uplet model, is that the geometry considered in the 𝑁2-uplet 

of 𝑁1-uplets is not necessarily periodic because 𝑙𝑝2 is not necessarily an integer multiple of 𝑙𝑝1. 

We assume that the current 𝐼𝑘1𝑘2(𝑧) flowing along each element can be decomposed as 

𝐼𝑘1𝑘2(𝑧) = 𝐼𝑘2(𝑧)/𝑁1 + 𝐼𝑘1
〈𝑘2〉(𝑧) (253) 

where 𝐼𝑘2(𝑧) is the current induced in substage 𝑘2 to shield the superstage and 𝐼𝑘1
〈𝑘2〉(𝑧) is the current 

induced in element 𝑘1 of substage 𝑘2 to shield substage 𝑘2. 

Again we assume that the magnetic vector potential 𝐴 can be reduced to its axial component 𝐴𝑧 only 

for the same reasons than those mentioned in section III.2.3 . We now have 

𝐴 = 𝐴𝑧𝑒𝑧⃗⃗ ⃗⃗  

and the notation 𝐴𝑧𝑘1𝑘2
(𝑧) will refer to the value of the axial component of the magnetic vector 

potential at the center of element 𝑘1 of substage 𝑘2 at 𝑧. 

 

IV.2.3.1  Equations at the substage scale 

 

Regarding the substage scale, we can directly adapt the equations of the 𝑁-uplet model for 1 ≤ 𝑘2 ≤

𝑁2 and 1 ≤ 𝑘1 ≤ 𝑁1 as 

{
  
 

  
 𝑑𝐼𝑘1

〈𝑘2〉

𝑑𝑧
(𝑧) =

1

𝑑𝑧
[𝐼𝑘1−1𝑘1
〈𝑘2〉 (𝑧) − 𝐼𝑘1𝑘1+1

〈𝑘2〉 (𝑧)]

1

𝑑𝑧
𝐼𝑘1𝑘1+1
〈𝑘2〉 (𝑧) = 𝜎𝑙1𝑈𝑘1𝑘1+1

〈𝑘2〉 (𝑧)


𝑑𝑈𝑘1𝑘1+1

〈𝑘2〉

𝑑𝑧
(𝑧) = �̇�𝑧𝑘1+1𝑘2

(𝑧) − �̇�𝑧𝑘1𝑘2(𝑧)

 (254) 

 

Once combined, the equations of (254) enable us to write for 1 ≤ 𝑘2 ≤ 𝑁2 and 1 ≤ 𝑘1 ≤ 𝑁1 

𝑑2𝐼𝑘1
〈𝑘2〉

𝑑𝑧2
(𝑧) = 𝜎𝑙1 [2�̇�𝑧𝑘1𝑘2

(𝑧) − �̇�𝑧𝑘1−1𝑘2(𝑧) − �̇�𝑧𝑘1+1𝑘2] 
(255) 

 

IV.2.3.2  Equations at the superstage scale 

 

Regarding the superstage scale, we first consider that the average voltage 𝑈𝑘2𝑘2+1(𝑧) between 

substages 𝑘2 and 𝑘2 + 1 at 𝑧 is equal to the difference between the average electric potential of the 

elements of substage 𝑘2 𝑉𝑘2(𝑧) and that of the elements of substage 𝑘2 + 1 𝑉𝑘2+1(𝑧) at 𝑧, i.e. 

𝑈𝑘2𝑘2+1(𝑧) = 𝑉𝑘2(𝑧) − 𝑉𝑘2+1(𝑧) 

with 
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𝑉𝑘2(𝑧) =
1

𝑁1
∑ 𝑉𝑘1𝑘2(𝑧)

𝑁1

𝑘1=1

 

where 𝑉𝑘1𝑘2(𝑧) is the electric potential of element 𝑘1 of substage 𝑘2 at 𝑧. 

These considerations lead to the following relation 

𝑈𝑘2𝑘2+1(𝑧) =
1

𝑁1
2 ∑ ∑ 𝑈𝑘1𝑘2𝑗1𝑘2+1(𝑧)

𝑁1

𝑗1=1

𝑁1

𝑘1=1

 

where 𝑈𝑘1𝑘2𝑗1𝑘2+1(𝑧) is the local transverse voltage between element 𝑘1 of substage 𝑘2 and element 

𝑗1 of substage 𝑘2 + 1 at 𝑧, which, according to equation (141) of the 𝑁-uplet model, must satisfy the 

equation 

𝑑𝑈𝑘1𝑘2𝑗1𝑘2+1

𝑑𝑧
(𝑧) = �̇�𝑧𝑗1𝑘2+1

(𝑧) − �̇�𝑧𝑘1𝑘2
(𝑧) 

The combination of the previous relations leads to 

𝑑𝑈𝑘2𝑘2+1

𝑑𝑧
(𝑧) =

1

𝑁1
∑ [�̇�𝑧𝑘1𝑘2+1

(𝑧) − �̇�𝑧𝑘1𝑘2
(𝑧)]

𝑁1

𝑘1=1

 

We can now adapt the equations of the 𝑁-uplet model to the write the equations of the superstage 

scale for 1 ≤ 𝑘2 ≤ 𝑁2 as 

{
 
 
 

 
 
 

𝑑𝐼𝑘2
𝑑𝑧

(𝑧) =
1

𝑑𝑧
[𝐼𝑘2−1𝑘2(𝑧) − 𝐼𝑘2𝑘2+1(𝑧)]

1

𝑑𝑧
𝐼𝑘2𝑘2+1(𝑧) = 𝜎𝑙2𝑈𝑘2𝑘2+1(𝑧)


𝑑𝑈𝑘2𝑘2+1

𝑑𝑧
(𝑧) =

1

𝑁1
∑ [�̇�𝑧𝑘1𝑘2+1

(𝑧) − �̇�𝑧𝑘1𝑘2
(𝑧)]

𝑁1

𝑘1=1

 (256) 

 

Once combined, the equations of (256) enable us to write for 1 ≤ 𝑘2 ≤ 𝑁2 

𝑑2𝐼𝑘2
𝑑𝑧2

(𝑧) = 𝜎𝑙2
1

𝑁1
∑ [2�̇�𝑧𝑘1𝑘2

(𝑧) − �̇�𝑧𝑘1𝑘2−1(𝑧) − �̇�𝑧𝑘1𝑘2+1
(𝑧)]

𝑁1

𝑘1=1

 (257) 

 

IV.2.3.3  Global equations 

 

Using equations (253), (255) and (257), we can derive the global equations of the system for 1 ≤

𝑘2 ≤ 𝑁2 and 1 ≤ 𝑘1 ≤ 𝑁1 as 
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𝑑2𝐼𝑘1𝑘2
𝑑𝑧2

(𝑧) =

{
 
 

 
 𝜎𝑙1 [2�̇�𝑧𝑘1𝑘2

(𝑧) − �̇�𝑧𝑘1−1𝑘2
(𝑧) − �̇�𝑧𝑘1+1𝑘2

(𝑧)]

+
𝜎𝑙2
𝑁1

2 ∑ [2�̇�𝑧𝑗1𝑘2
(𝑧) − �̇�𝑧𝑗1𝑘2−1

(𝑧) − �̇�𝑧𝑗1𝑘2+1
(𝑧)]

𝑁1

𝑗1=1

 (258) 

 

As we did previously, we can split the magnetic vector potential 𝐴𝑧𝑘1𝑘2
(𝑧) felt at the center of 

element 𝑘1 of substage 𝑘2 at 𝑧 by superposition as 

𝐴𝑧𝑘1𝑘2
(𝑧) = 𝐴𝑧𝑎𝑘1𝑘2

(𝑧) + 𝐴𝑧𝑟𝑘1𝑘2
(𝑧) 

where 𝐴𝑧𝑎𝑘1𝑘2
(𝑧) is the part of the magnetic vector potential 𝐴𝑧𝑘1𝑘2

(𝑧) which is due to the applied 

magnetic field 𝐵𝑎 and 𝐴𝑧𝑟𝑘1𝑘2
(𝑧) is the other part which is due to the currents (𝐼𝑘1𝑘2)1≤𝑘1≤𝑁1,1≤𝑘2≤𝑁2

 

induced in all the elements. 

With this decomposition, equations (258) now become for 1 ≤ 𝑘2 ≤ 𝑁2 and 1 ≤ 𝑘1 ≤ 𝑁1 

{
 
 
 
 
 

 
 
 
 
 
𝑑2𝐼𝑘1𝑘2
𝑑𝑧2

(𝑧) − 𝜎𝑙1 [2�̇�𝑧𝑟𝑘1𝑘2
(𝑧) − �̇�𝑧𝑟𝑘1−1𝑘2

(𝑧) − �̇�𝑧𝑟𝑘1+1𝑘2
(𝑧)]

−
𝜎𝑙2
𝑁1

2 ∑ [2�̇�𝑧𝑟𝑗1𝑘2
(𝑧) − �̇�𝑧𝑟𝑗1𝑘2−1

(𝑧) − �̇�𝑧𝑟𝑗1𝑘2+1
(𝑧)]

𝑁1

𝑗1=1

=

𝜎𝑙1 [2�̇�𝑧𝑎𝑘1𝑘2
(𝑧) − �̇�𝑧𝑎𝑘1−1𝑘2

(𝑧) − �̇�𝑧𝑎𝑘1+1𝑘2
(𝑧)]

+
𝜎𝑙2
𝑁1

2 ∑ [�̇�𝑧𝑎𝑗1𝑘2
(𝑧) − �̇�𝑧𝑎𝑗1𝑘2−1

(𝑧) − �̇�𝑧𝑎𝑗1𝑘2+1
(𝑧)]

𝑁1

𝑗1=1

 (259) 

 

From previous considerations, we now that the magnetic vector potential 𝐴𝑎⃗⃗ ⃗⃗ ⃗ associated with the 

applied magnetic field 𝐵𝑎 is given everywhere in space by 

𝐴𝑎⃗⃗ ⃗⃗ ⃗ = −𝑥𝐵𝑎𝑒𝑧⃗⃗ ⃗⃗  

Using (250) we can thus deduce that 

𝐴𝑧𝑎𝑘1𝑘2
(𝑧) = −𝑥𝑘1𝑘2(𝑧)𝐵𝑎 = −[𝑥𝑘2

(𝑠𝑢𝑝𝑒𝑟)(𝑧) + 𝑥𝑘1
(𝑠𝑢𝑏)

(𝑧)] 𝐵𝑎 

where 𝑥𝑘2
(𝑠𝑢𝑝𝑒𝑟)(𝑧) and 𝑥𝑘1

(𝑠𝑢𝑏)
(𝑧) are given by (251) and (252). 

Consequently we have 

2�̇�𝑧𝑎𝑘1𝑘2
(𝑧) − �̇�𝑧𝑎𝑘1−1𝑘2

(𝑧) − �̇�𝑧𝑎𝑘1+1𝑘2
(𝑧) = [−2𝑥𝑘1

(𝑠𝑢𝑏)
(𝑧) + 𝑥𝑘1−1

(𝑠𝑢𝑏)
(𝑧) + 𝑥𝑘1+1

(𝑠𝑢𝑏)
(𝑧)] �̇�𝑎 

Using (252) and after some mathematical manipulations, we can write 

2�̇�𝑧𝑎𝑘1𝑘2
(𝑧) − �̇�𝑧𝑎𝑘1−1𝑘2

(𝑧) − �̇�𝑧𝑎𝑘1+1𝑘2
(𝑧) = −4𝑅𝑐1�̇�𝑎 sin

2 (
𝜋

𝑁1
) cos(

2𝜋𝑧

𝑙𝑝1
+
2𝜋(𝑘1 − 1)

𝑁1
) 
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Using the same methodology and (251), we can also write 

∑ [�̇�𝑧𝑎𝑗1𝑘2
(𝑧) − �̇�𝑧𝑎𝑗1𝑘2−1

(𝑧) − �̇�𝑧𝑎𝑗1𝑘2+1
(𝑧)]

𝑁1

𝑗1=1

= −4𝑁1𝑅𝑐2�̇�𝑎 sin
2 (
𝜋

𝑁2
) cos(

2𝜋𝑧

𝑙𝑝2
+
2𝜋(𝑘2 − 1)

𝑁2
) 

From equations (259), we can now express the global equations of the system for 1 ≤ 𝑘2 ≤ 𝑁2 and 

1 ≤ 𝑘1 ≤ 𝑁1 as 

{
 
 
 
 
 

 
 
 
 
 
𝑑2𝐼𝑘1𝑘2
𝑑𝑧2

(𝑧) − 𝜎𝑙1 [2�̇�𝑧𝑟𝑘1𝑘2
(𝑧) − �̇�𝑧𝑟𝑘1−1𝑘2

(𝑧) − �̇�𝑧𝑟𝑘1+1𝑘2
(𝑧)]

−
𝜎𝑙2
𝑁1

2 ∑ [2�̇�𝑧𝑟𝑗1𝑘2
(𝑧) − �̇�𝑧𝑟𝑗1𝑘2−1

(𝑧) − �̇�𝑧𝑟𝑗1𝑘2+1
(𝑧)]

𝑁1

𝑗1=1

=

−4𝜎𝑙1𝑅𝑐1�̇�𝑎 sin
2 (
𝜋

𝑁1
) cos(

2𝜋𝑧

𝑙𝑝1
+
2𝜋(𝑘1 − 1)

𝑁1
)

−4
𝜎𝑙2
𝑁1
𝑅𝑐2�̇�𝑎 sin

2 (
𝜋

𝑁2
) cos(

2𝜋𝑧

𝑙𝑝2
+
2𝜋(𝑘2 − 1)

𝑁2
)

 (260) 

 

IV.2.4  Study in steady-state regime 

 

 We will calculate here the currents induced in steady-state regime. We will simply start from 

the system equations derived at the end of the previous section and we will solve them 

considering that the coupling currents are not time-varying. 

IV.2.4.1  Equations of the system in steady-state regime 

 

In steady-state regimes for coupling currents, the currents induced in the elements are, by 

assumption, not time varying, i.e. we consider that for any 𝑧 and for 1 ≤ 𝑘2 ≤ 𝑁2 and 1 ≤ 𝑘1 ≤ 𝑁1 

𝐼�̇�1𝑘2(𝑧) = 0 

 

Since 𝐴𝑧𝑟𝑘1𝑘2
(𝑧) is exclusively due to the induced currents, we can also conclude that for any 𝑧 and 

for 1 ≤ 𝑘2 ≤ 𝑁2 and 1 ≤ 𝑘1 ≤ 𝑁1 

�̇�𝑧𝑟𝑘1𝑘2
(𝑧) = 0 

And therefore, from equation (260), we see that the equation of the system is, in steady-state regime, 

simply reduced to 

𝑑2𝐼𝑘1𝑘2
𝑑𝑧2

(𝑧) =

{
 
 

 
 −4𝜎𝑙1𝑅𝑐1�̇�𝑎 sin

2 (
𝜋

𝑁1
) cos(

2𝜋𝑧

𝑙𝑝1
+
2𝜋(𝑘1 − 1)

𝑁1
)

−4
𝜎𝑙2
𝑁1
𝑅𝑐2�̇�𝑎 sin

2 (
𝜋

𝑁2
) cos(

2𝜋𝑧

𝑙𝑝2
+
2𝜋(𝑘2 − 1)

𝑁2
)

 (261) 
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Splitting again 𝐼𝑘1𝑘2(𝑧) as in (253), i.e. as 𝐼𝑘1𝑘2(𝑧) = 𝐼𝑘2(𝑧)/𝑁1 + 𝐼𝑘1
〈𝑘2〉(𝑧), we have 

{
 
 

 
 𝑑

2𝐼𝑘1
〈𝑘2〉

𝑑𝑧2
(𝑧) = −4𝜎𝑙1𝑅𝑐1�̇�𝑎 sin

2 (
𝜋

𝑁1
) cos(

2𝜋𝑧

𝑙𝑝1
+
2𝜋(𝑘1 − 1)

𝑁1
)

𝑑2𝐼𝑘2
𝑑𝑧2

(𝑧) = −4𝜎𝑙2𝑅𝑐2�̇�𝑎 sin
2 (
𝜋

𝑁2
) cos(

2𝜋𝑧

𝑙𝑝2
+
2𝜋(𝑘2 − 1)

𝑁2
)

 (262) 

 

IV.2.4.2  Determination of the solutions for an infinitely long conductor 

(assumption of the model) 

 

Equations (262) being identical to equations (147) of 𝑁-uplet model, we can directly adapt the 

solutions given by (150) and (151) as 

{
 
 

 
 𝐼𝑘1

〈𝑘2〉(𝑧) = 𝐼01 cos (
2𝜋𝑧

𝑙𝑝1
+
2𝜋(𝑘1 − 1)

𝑁1
)

𝐼𝑘2(𝑧) = 𝐼02 cos(
2𝜋𝑧

𝑙𝑝2
+
2𝜋(𝑘2 − 1)

𝑁2
)

 

with 

{
 
 

 
 𝐼01 = 4𝜎𝑙1𝑅𝑐1�̇�𝑎 sin

2 (
𝜋

𝑁1
) (
𝑙𝑝1
2𝜋
)

2

𝐼02 = 4𝜎𝑙2𝑅𝑐2�̇�𝑎 sin
2 (
𝜋

𝑁2
) (
𝑙𝑝2
2𝜋
)

2 

As a result, for an infinitely long conductor the solutions of equations (261) are for 1 ≤ 𝑘2 ≤ 𝑁2 

and 1 ≤ 𝑘1 ≤ 𝑁1 

𝐼𝑘1𝑘2(𝑧) = 𝐼01 cos(
2𝜋𝑧

𝑙𝑝1
+
2𝜋(𝑘1 − 1)

𝑁1
) +

𝐼02
𝑁1
cos (

2𝜋𝑧

𝑙𝑝2
+
2𝜋(𝑘2 − 1)

𝑁2
) (263) 

with 

{
 
 

 
 𝐼01 = 4𝜎𝑙1𝑅𝑐1�̇�𝑎 sin

2 (
𝜋

𝑁1
)(
𝑙𝑝1
2𝜋
)

2

𝐼02 = 4𝜎𝑙2𝑅𝑐2�̇�𝑎 sin
2 (
𝜋

𝑁2
) (
𝑙𝑝2
2𝜋
)

2 (264) 

 

IV.2.4.3  Determination of the solutions for a finite length of conductor 

 

Let us consider a piece of conductor of length 𝐿 so that the ends of the conductor are located at 𝑧 =

−𝐿/2 and 𝑧 = 𝐿/2. 

Again, equations (262) being identical to equations (147) of 𝑁-uplet model, we can directly adapt 

the solutions given by (151) and (152) as 
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{
 
 

 
 𝐼𝑘1

〈𝑘2〉(𝑧) = 𝐼01 [cos (
2𝜋𝑧

𝑙𝑝1
+
2𝜋(𝑘1 − 1)

𝑁1
) +

2𝑧

𝐿
sin(

𝜋𝐿

𝑙𝑝1
) sin (

2𝜋(𝑘1 − 1)

𝑁1
) − cos (

𝜋𝐿

𝑙𝑝1
) cos (

2𝜋(𝑘1 − 1)

𝑁1
)]

𝐼𝑘2(𝑧) = 𝐼02 [cos(
2𝜋𝑧

𝑙𝑝2
+
2𝜋(𝑘2 − 1)

𝑁2
) +

2𝑧

𝐿
sin(

𝜋𝐿

𝑙𝑝2
) sin (

2𝜋(𝑘2 − 1)

𝑁2
) − cos(

𝜋𝐿

𝑙𝑝2
) cos (

2𝜋(𝑘2 − 1)

𝑁2
)]

 

where 𝐼01 and 𝐼02 are given in (264). 

As a result, the solutions 𝐼𝑘1𝑘2(𝑧) of equations (261) for a conductor of length 𝐿 are for 1 ≤ 𝑘2 ≤

𝑁2 and 1 ≤ 𝑘1 ≤ 𝑁1 

{
 
 

 
 𝐼01 [cos (

2𝜋𝑧

𝑙𝑝1
+
2𝜋(𝑘1 − 1)

𝑁1
) +

2𝑧

𝐿
sin (

𝜋𝐿

𝑙𝑝1
) sin (

2𝜋(𝑘1 − 1)

𝑁1
) − cos (

𝜋𝐿

𝑙𝑝1
) cos (

2𝜋(𝑘1 − 1)

𝑁1
)]

+
𝐼02
𝑁1
[cos (

2𝜋𝑧

𝑙𝑝2
+
2𝜋(𝑘2 − 1)

𝑁2
) +

2𝑧

𝐿
sin (

𝜋𝐿

𝑙𝑝2
) sin (

2𝜋(𝑘2 − 1)

𝑁2
) − cos (

𝜋𝐿

𝑙𝑝2
) cos (

2𝜋(𝑘2 − 1)

𝑁2
)]

 (265) 

where 𝐼01 and 𝐼02 are still given by (264). 

 

IV.2.5  Study in time-varying regime 

 

 Since we now know the spatial form of the currents induced in steady-state regime, we will 

follow the logical chain displayed on Figure 15 until the spatial form of the currents induced 

for any time-varying regime is defined (this is achieved through IV.2.5.1  to IV.2.5.3 ). These 

expressions will then enable us to reduce the equations of the system to a first-order differential 

equation in IV.2.5.4 . 

We are now studying the magnetic response of the conductor when the induced currents are time-

varying, i.e. we now consider that for any 𝑧 and for 1 ≤ 𝑘2 ≤ 𝑁2 and 1 ≤ 𝑘1 ≤ 𝑁1 

𝐼�̇�1𝑘2(𝑧) ≠ 0 

This also implies that for any 𝑧 and for 1 ≤ 𝑘2 ≤ 𝑁2 and 1 ≤ 𝑘1 ≤ 𝑁1 

�̇�𝑧𝑟𝑘1𝑘2
(𝑧) ≠ 0 

Therefore we now have to take into account the contribution of the magnetic vector potential due to 

the induced currents in the equations of the system which are now written for 1 ≤ 𝑘2 ≤ 𝑁2 and 1 ≤

𝑘1 ≤ 𝑁1 as 

{
 
 
 
 
 

 
 
 
 
 
𝑑2𝐼𝑘1𝑘2
𝑑𝑧2

(𝑧) − 𝜎𝑙1 [2�̇�𝑧𝑟𝑘1𝑘2
(𝑧) − �̇�𝑧𝑟𝑘1−1𝑘2

(𝑧) − �̇�𝑧𝑟𝑘1+1𝑘2
(𝑧)]

−
𝜎𝑙2
𝑁1

2 ∑ [2�̇�𝑧𝑟𝑗1𝑘2
(𝑧) − �̇�𝑧𝑟𝑗1𝑘2−1

(𝑧) − �̇�𝑧𝑟𝑗1𝑘2+1
(𝑧)]

𝑁1

𝑗1=1

=

−(
2𝜋

𝑙𝑝1
)

2

𝐼01𝑒𝑥𝑡cos(
2𝜋𝑧

𝑙𝑝1
+
2𝜋(𝑘1 − 1)

𝑁1
)

−(
2𝜋

𝑙𝑝2
)

2
𝐼02𝑒𝑥𝑡
𝑁1

cos(
2𝜋𝑧

𝑙𝑝2
+
2𝜋(𝑘2 − 1)

𝑁2
)

 (266) 

with 
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{
 
 

 
 𝐼01𝑒𝑥𝑡 = 4𝜎𝑙1𝑅𝑐1�̇�𝑎 sin

2 (
𝜋

𝑁1
)(
𝑙𝑝1
2𝜋
)

2

𝐼02𝑒𝑥𝑡 = 4𝜎𝑙2𝑅𝑐2�̇�𝑎 sin
2 (
𝜋

𝑁2
)(
𝑙𝑝2
2𝜋
)

2 (267) 

 

In order to follow our analytical methodology (described in section IV.2.1 ), we now have to 

calculate the effect of the time-variation of the current distribution we have found in steady-state regime. 

But we see that this time, conversely to the 𝑁-uplet model, we have to take into account, by 

superposition, the contributions of two different current distributions instead of one, which are 

(𝐼𝑘1
〈𝑘2〉(𝑧) = 𝐼01𝑒𝑥𝑡cos(

2𝜋𝑧

𝑙𝑝1
+
2𝜋(𝑘1−1)

𝑁1
))

1≤𝑘1≤𝑁1

 and (𝐼𝑘2(𝑧) =
𝐼02𝑒𝑥𝑡
𝑁1

cos(
2𝜋𝑧

𝑙𝑝2
+
2𝜋(𝑘2−1)

𝑁2
))

1≤𝑘2≤𝑁2

. 

To carry out this operation in an efficient way, we will first calculate the magnetic vector potential 

due to a current distribution of the following general form 

(𝐼𝑘1𝑘2(𝑧) = 𝐼0
(𝛼) cos(𝛼𝑧 + 𝜑𝑘1𝑘2))1≤𝑘1≤𝑁1,1≤𝑘2≤𝑁2

 

where 𝐼0 is a function of time only, 𝛼 is a spatial frequency (corresponding to 2𝜋/𝑙𝑝1 and 2𝜋/𝑙𝑝2 in 

the previous current distributions) and 𝜑𝑘1𝑘2 is an initial phase shift (corresponding to 2𝜋(𝑘1 − 1)/𝑁1 

or 2𝜋(𝑘2 − 1)/𝑁2 in the previous current distributions). 

 

IV.2.5.1  Calculation of the magnetic vector potential due to the current flowing in 

one element 

 

Let us note 𝐾𝑝1𝑝2
(𝛼)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

= 𝐾𝑝1𝑝2
(𝛼)

𝑒𝑠𝑝1𝑝2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  the surface current flowing through the superconducting shell of 

element 𝑝1 of substage 𝑝2 having the general form 𝐾𝑝1𝑝2
(𝛼)

(𝑧) = 𝐾0
(𝛼)
cos(𝛼𝑧 + 𝜑𝑝1𝑝2) with 

𝐾0
(𝛼)

=
𝐼0
(𝛼)

2𝜋𝑅𝑓
 

𝑠𝑝1𝑝2(𝑧) is the abscissa along the center of element 𝑝1 of substage 𝑝2 at 𝑧 and 𝑒𝑠𝑝1𝑝2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑧) is the unit 

vector tangent to the trajectory of the center of element 𝑝1 of substage 𝑝2 at 𝑧). 

Let us note 𝐴𝑧𝑟(𝑝1𝑝2)
(𝛼)

(𝑀𝑘1𝑘2) the axial component of the magnetic vector potential felt at the center 

of element 𝑘1 of substage 𝑘2 at 𝑧 (the center is noted 𝑀𝑘1𝑘2) and due to 𝐾𝑝1𝑝2
(𝛼)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

. We recall that we are 

only interested in its axial component because we have neglected the contributions of the other 

components (see section IV.2.3 ). 

Using the Biot-Savart law, we can write 

𝐴𝑧𝑟(𝑝1𝑝2)
(𝛼)

(𝑀𝑘1𝑘2) =
𝜇0
4𝜋
∬

𝐾𝑝1𝑝2
(𝛼) (𝑃)𝑒𝑠𝑝1𝑝2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑧𝑃). 𝑒𝑧⃗⃗ ⃗⃗

𝑃𝑀𝑘1𝑘2
𝑑𝛴



𝑃∈𝛴

 (268) 
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where 𝑃 is the source point (see Figure 46) whose axial coordinate is 𝑧𝑃 and which has to be 

integrated over the area 𝛴 corresponding to the localization of the surface current 𝐾𝑝1𝑝2
(𝛼)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

, i.e. to the 

external area of the hollow cylinder of radius 𝑅𝑓 whose center follows the center of element 𝑝1 of 

substage 𝑝2 (see green surface on Figure 48). 

 

Figure 48 : Scheme showing the integration area 𝚺 of equation (268) 

The position of the center of element 𝑝1 of substage 𝑝2 at 𝑧𝑃 noted 𝑂𝑃 is given by equations (250) 

to (252) 

𝑂𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = (

𝑥𝑝1𝑝2(𝑧𝑃)

𝑦𝑝1𝑝2(𝑧𝑃)
𝑧𝑃

) =

(

  
 
𝑅𝑐2 cos (

2𝜋𝑧𝑃
𝑙𝑝2

+
2𝜋(𝑝2 − 1)

𝑁2
) + 𝑅𝑐1 cos(

2𝜋𝑧𝑃
𝑙𝑝1

+
2𝜋(𝑝1 − 1)

𝑁1
)

𝑅𝑐2 sin (
2𝜋𝑧𝑃
𝑙𝑝2

+
2𝜋(𝑝2 − 1)

𝑁2
) + 𝑅𝑐1 sin(

2𝜋𝑧𝑃
𝑙𝑝1

+
2𝜋(𝑝1 − 1)

𝑁1
)

𝑧𝑃 )

  
 

 

Given the geometry, the elementary area 𝑑𝛴 is equal to 

𝑑𝛴 = 𝑅𝑓𝑑𝛹𝑃𝑑𝑠𝑝1𝑝2(𝑧𝑃) 

where 𝛹𝑃 is the angle between 𝑒𝑥⃗⃗⃗⃗⃗ and 𝑂𝑃𝑃⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ in the (𝑂𝑥𝑦) plane (see Figure 46) so that 

𝑂𝑃𝑃⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ = 𝑅𝑓cos(𝛹𝑃)𝑒𝑥⃗⃗⃗⃗⃗ + 𝑅𝑓sin(𝛹𝑃)𝑒𝑦⃗⃗⃗⃗⃗ 

assuming the elements are lightly twisted (𝑂𝑃 is the center of element 𝑝1 of substage 𝑝2 at 𝑧𝑃 and 𝑃 

is the source point located on the superconducting shell of element 𝑝1 of substage 𝑝2 at 𝑧𝑃). 

𝑠𝑝1𝑝2(𝑧𝑃) being the abscissa corresponding to the position of 𝑂𝑃 along the trajectory of the center 

of element 𝑝1 of substage 𝑝2 at 𝑧𝑃, we can thus write 

𝑑𝑠𝑝1𝑝2(𝑧𝑃) = ‖𝑑𝑂𝑂𝑃
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖ 

Since 𝑒𝑠𝑝1𝑝2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑧𝑃) is the unit vector tangent to the trajectory of the center of element 𝑝1 of substage 

𝑝2 at 𝑧𝑃 and 𝑂𝑃 is the center of element 𝑝1 of substage 𝑝2 at 𝑧𝑃, we have 

𝑒𝑠𝑝1𝑝2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑧𝑃) =
𝑑𝑂𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

‖𝑑𝑂𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖
 

Consequently, the term 𝑒𝑠𝑝1𝑝2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑧𝑃). 𝑒𝑧⃗⃗ ⃗⃗ 𝑑𝛴 in equation (268) can be expressed as 
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𝑒𝑠𝑝1𝑝2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑧𝑃). 𝑒𝑧⃗⃗ ⃗⃗ 𝑑𝛴 =

𝑑𝑂𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

‖𝑑𝑂𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖
. 𝑒𝑧⃗⃗ ⃗⃗ 𝑅𝑓𝑑𝛹𝑃‖𝑑𝑂𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖ = 𝑑𝑂𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . 𝑒𝑧⃗⃗ ⃗⃗ 𝑅𝑓𝑑𝛹𝑃 = 𝑅𝑓𝑑𝛹𝑃𝑑𝑧𝑃 

Therefore replacing 𝑒𝑠𝑝1𝑝2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑧𝑃). 𝑒𝑧⃗⃗ ⃗⃗ 𝑑𝛴 with the expression above and 𝐾𝑝1𝑝2

(𝛼)
(𝑃) with 𝐾0

(𝛼)
cos(𝛼𝑧𝑃 +

𝜑𝑝1𝑝2) into the formula of 𝐴𝑧𝑟(𝑝1𝑝2)
(𝛼)

(𝑀𝑘1𝑘2) given by (268), we now obtain 

𝐴𝑧𝑟(𝑝1𝑝2)
(𝛼)

(𝑀𝑘1𝑘2) =
𝜇0𝐼0

(𝛼)

8𝜋2
∫ ∫

cos(𝛼𝑧𝑃 + 𝜑𝑝1𝑝2)

𝑃𝑀𝑘1𝑘2(𝑧, 𝑧𝑝, 𝛹𝑝)

2𝜋

𝛹𝑝=0

+∞

𝑧𝑝=−∞

𝑑𝛹𝑃𝑑𝑧𝑃 (269) 

 

Let us now express the distance 𝑃𝑀𝑘1𝑘2(𝑧, 𝑧𝑃 , 𝛹𝑃). 

Since 𝑃 is the source point located on the superconducting shell of element 𝑝1 of substage 𝑝2 at 𝑧𝑃 

and 𝑀𝑘1𝑘2 is the center of element 𝑘1 of substage 𝑘2 at 𝑧, their coordinates in the (𝑒𝑥⃗⃗⃗⃗⃗, 𝑒𝑦 ,⃗⃗⃗⃗⃗⃗ 𝑒𝑧⃗⃗ ⃗⃗ ) basis are 

given by 

{
𝑂𝑃⃗⃗⃗⃗ ⃗⃗ = 𝑂𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝑂𝑃𝑃⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ = [𝑥𝑝1𝑝2(𝑧𝑃) + 𝑅𝑓𝑐𝑜𝑠(𝛹𝑃)]𝑒𝑥⃗⃗⃗⃗⃗ + [𝑦𝑝1𝑝2(𝑧𝑃) + 𝑅𝑓𝑠𝑖𝑛(𝛹𝑃)]𝑒𝑦⃗⃗⃗⃗⃗ + 𝑧𝑃𝑒𝑧⃗⃗ ⃗⃗

𝑂𝑀𝑘1𝑘2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑥𝑘1𝑘2(𝑧)𝑒𝑥⃗⃗⃗⃗⃗ + 𝑦𝑘1𝑘2(𝑧)𝑒𝑦⃗⃗⃗⃗⃗ + 𝑧𝑒𝑧⃗⃗ ⃗⃗

 

 

In order to ease the expression and the manipulation of 𝑃𝑀𝑘1𝑘2(𝑧, 𝑧𝑃 , 𝛹𝑃), let us note 𝑤(𝑧) the 

complex affix of a point with coordinates (𝑥, 𝑦, 𝑧) in the plane orthogonal to the z-axis such that 

𝑤 = 𝑥 + 𝑖𝑦 

where 𝑖 is the imaginary unit. 

Consequently, using equations (250) to (252), the complex affix 𝑤𝑀𝑘1𝑘2
(𝑧) of the point 𝑀𝑘1𝑘2 is 

𝑤𝑘1𝑘2(𝑧) = 𝑥𝑘1𝑘2(𝑧) + 𝑖𝑦𝑘1𝑘2(𝑧) = 𝑅𝑐2𝑒
𝑖[
2𝜋𝑧
𝑙𝑝2

+
2𝜋(𝑘2−1)

𝑁2
]
+ 𝑅𝑐1𝑒

𝑖[
2𝜋𝑧
𝑙𝑝1

+
2𝜋(𝑘1−1)

𝑁1
]
 (270) 

and the complex affix 𝑤𝑃(𝑧𝑃 , 𝛹𝑃) of the source point 𝑃 is 

𝑤𝑃(𝑧𝑃 , 𝛹𝑃) = [𝑥𝑝1𝑝2(𝑧) + 𝑅𝑓𝑐𝑜𝑠(𝛹𝑃)] + 𝑖[𝑦𝑝1𝑝2(𝑧) + 𝑅𝑓𝑠𝑖𝑛(𝛹𝑃)]

= 𝑅𝑐2𝑒
𝑖[
2𝜋𝑧𝑃
𝑙𝑝2

+
2𝜋(𝑝2−1)

𝑁2
]
+ 𝑅𝑐1𝑒

𝑖[
2𝜋𝑧𝑃
𝑙𝑝1

+
2𝜋(𝑝1−1)

𝑁1
]
+ 𝑅𝑓𝑒

𝑖𝛹𝑃  

Making use of this notation, we can now write 

𝑃𝑀𝑘1𝑘2(𝑧, 𝑧𝑃 , 𝛹𝑃)
2 = |𝑤𝑘1𝑘2(𝑧) − 𝑤𝑃(𝑧𝑃, 𝛹𝑃)|

2
+ [𝑧 − 𝑧𝑃]

2 

where the notation |𝑋| refers to the modulus of 𝑋. 

Replacing 𝑤𝑘1𝑘2(𝑧) and 𝑤𝑃(𝑧𝑃 , 𝛹𝑃) with their expressions, after some manipulations, 

𝑃𝑀𝑘1𝑘2(𝑧, 𝑧𝑃 , 𝛹𝑃)
2 can be expressed as 
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𝑃𝑀𝑘1𝑘2(𝑧, 𝑧𝑃 , 𝛹𝑃)
2 =

{
 
 

 
 [𝑧 − 𝑧𝑃]

2 + 𝑅𝑐2
2 |(1 − 𝑒

𝑖[
2𝜋(𝑧𝑃−𝑧)

𝑙𝑝2
+
2𝜋(𝑝2−𝑘2)

𝑁2
]
−
𝑅𝑓

𝑅𝑐2
𝑒
𝑖[𝛹𝑃−

2𝜋𝑧
𝑙𝑝2

−
2𝜋(𝑘2−1)

𝑁2
]

+
𝑅𝑐1
𝑅𝑐2

𝑒
𝑖[2𝜋𝑧(

1
𝑙𝑝1

−
1
𝑙𝑝2

)+2𝜋(
𝑘1−1
𝑁1

−
𝑘2−1
𝑁2

)]
(1 − 𝑒

𝑖[
2𝜋(𝑧𝑃−𝑧)

𝑙𝑝1
+
2𝜋(𝑝1−𝑘1)

𝑁1
]
))|

2  

 

We will now carry out the following changes of variable in integral (269) 

{

𝑧′ = 𝑧𝑃 − 𝑧

𝛹′ = 𝛹𝑃 − [
2𝜋𝑧

𝑙𝑝2
+
2𝜋(𝑘2 − 1)

𝑁2
]
 

This implies 

{
𝑑𝑧′ = 𝑑𝑧𝑃
𝑑𝛹′ = 𝑑𝛹𝑃

 

The interval of integration of 𝑧𝑃 being infinite, the new interval of integration of 𝑧′ also remains 

infinite, i.e. from −∞ to +∞. In addition, 𝑃𝑀𝑘1𝑘2(𝑧, 𝑧𝑝, 𝛹𝑝) is a 2𝜋-periodic function of 𝛹𝑃, thus even 

with the change of variable of 𝛹𝑃 into 𝛹′, we choose to keep the same interval of integration for 𝛹′ 

which is [0; 2𝜋]. 

As a result, it is now possible to re-express integral (269) as 

𝐴𝑧𝑟(𝑝1𝑝2)
(𝛼)

(𝑀𝑘1𝑘2) =
𝜇0𝐼0

(𝛼)

8𝜋2
𝑅𝑒 (∫ ∫

𝑒𝑖𝛼(𝑧
′+𝑧)+𝜑𝑝1𝑝2

𝑔𝑝1𝑝2𝑘1𝑘2(𝑧, 𝑧
′, 𝛹′)

2𝜋

𝛹′=0

𝑑𝛹′𝑑𝑧′
+∞

𝑧′=−∞

) (271) 

where 𝑅𝑒(𝑋) refers to the real part of complex number 𝑋 and 𝑔𝑝1𝑝2𝑘1𝑘2(𝑧, 𝑧
′, 𝛹′) is given by 

𝑔𝑝1𝑝2𝑘1𝑘2
2(𝑧, 𝑧′, 𝛹′)

=

{
  
 

  
 𝑧′

2
+ 𝑅𝑐2

2 |(1 − 𝑒
𝑖[
2𝜋𝑧′

𝑙𝑝2
+
2𝜋(𝑝2−𝑘2)

𝑁2
]
−
𝑅𝑓

𝑅𝑐2
𝑒𝑖𝛹

′

+
𝑅𝑐1
𝑅𝑐2

𝑒
𝑖[2𝜋𝑧(

1
𝑙𝑝1

−
1
𝑙𝑝2

)+2𝜋(
𝑘1−1
𝑁1

−
𝑘2−1
𝑁2

)]
(1 − 𝑒

𝑖[
2𝜋𝑧′

𝑙𝑝1
+
2𝜋(𝑝1−𝑘1)

𝑁1
]
))|

2 
(272) 

 

From the expression of 𝑔𝑝1𝑝2𝑘1𝑘2(𝑧, 𝑧
′, 𝛹′) given by equation (272), we can see that it is a 𝑙-periodic 

function of 𝑧 with 

𝑙 =
1

𝑙𝑝1
−
1

𝑙𝑝2
 (273) 

 

Note that 𝑙 actually corresponds to the distance that separates two consecutive contacts between 

elements of adjacent substages. 
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We can therefore conclude that the function 1/𝑔𝑝1𝑝2𝑘1𝑘2(𝑧, 𝑧
′, 𝛹′) inside integral (271) is also a 𝑙-

periodic function of 𝑧 and can thus be expanded in Fourier series as 

1

𝑔𝑝1𝑝2𝑘1𝑘2(𝑧, 𝑧
′, 𝛹′)

= ∑ 𝑐𝑛(𝑧
′, 𝛹′)𝑒𝑖

2𝜋𝑛𝑧
𝑙

+∞

𝑛=−∞

 (274) 

with 

𝑐𝑛(𝑧
′, 𝛹′) =

1

𝑙
∫

𝑒−𝑖
2𝜋𝑛𝑧′′

𝑙

𝑔𝑝1𝑝2𝑘1𝑘2(𝑧
′′, 𝑧′, 𝛹′)

𝑑𝑧′′
𝑙/2

𝑧′′=−𝑙/2

 (275) 

In order to lighten the formulae, we will now use the complex notation 𝐴𝑧𝑟(𝑝1𝑝2)
(𝛼)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝑀𝑘1𝑘2) such that  

𝐴𝑧𝑟(𝑝1𝑝2)
(𝛼)

(𝑀𝑘1𝑘2) = 𝑅𝑒 (𝐴𝑧𝑟(𝑝1𝑝2)
(𝛼)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝑀𝑘1𝑘2)) 

 

(276) 

As a result, using integral (271) and equations (274) and (276), we have  

𝐴𝑧𝑟(𝑝1𝑝2)
(𝛼)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝑀𝑘1𝑘2) =
𝜇0𝐼0

(𝛼)

8𝜋2
∑ 𝑒

𝑖[(𝛼+
2𝜋𝑛
𝑙
)𝑧+𝜑𝑝1𝑝2]

+∞

𝑛=−∞

𝑋𝑛𝑝1𝑝2𝑘1𝑘2
(𝛼)

 (277) 

with 

𝑋𝑛𝑝1𝑝2𝑘1𝑘2
(𝛼)

=
1

𝑙
∫ 𝑒𝑖𝛼𝑧

′
∫ 𝑒−𝑖

2𝜋𝑛𝑧′′

𝑙 ∫
1

𝑔𝑝1𝑝2𝑘1𝑘2(𝑧
′′, 𝑧′, 𝛹′)

𝑑𝛹′
2𝜋

𝛹′=0

𝑑𝑧′′
𝑙/2

𝑧′′=−𝑙/2

𝑑𝑧′
+∞

𝑧′=−∞

 
(278) 

 

where 𝑙 is given by (273) and 𝑔𝑝1𝑝2𝑘1𝑘2(𝑧
′′, 𝑧′, 𝛹′) is given by 

𝑔𝑝1𝑝2𝑘1𝑘2(𝑧
′′, 𝑧′, 𝛹′) =

{
  
 

  
 [𝑧′

2
+ 𝑅𝑐2

2 |1 − 𝑒
𝑖[
2𝜋𝑧′

𝑙𝑝2
+
2𝜋(𝑝2−𝑘2)

𝑁2
]
−
𝑅𝑓

𝑅𝑐2
𝑒𝑖𝛹

′

+
𝑅𝑐1
𝑅𝑐2

𝑒
𝑖[
2𝜋𝑧′′

𝑙
+2𝜋(

𝑘1−1
𝑁1

−
𝑘2−1
𝑁2

)]
(1 − 𝑒

𝑖[
2𝜋𝑧′

𝑙𝑝1
+
2𝜋(𝑝1−𝑘1)

𝑁1
]
)|

2

]

1/2 (279) 

 

This result is important as we have shown that the magnetic vector potential generated by a current 

with any spatial frequency 𝛼 flowing in an element of the conductor contains the following spatial 

frequencies 

(𝛼 + 2𝜋𝑛 (
1

𝑙𝑝1
−
1

𝑙𝑝2
))

𝑛∈ℤ

 

Indeed, without this knowledge, we would not be able to solve the equations of the system, i.e. 

equations (266). 
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IV.2.5.2  Calculation of the magnetic vector potential due to the currents flowing in 

all the elements 

 

Let us note (𝐾𝑝1𝑝2
(𝛼)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

= 𝐾𝑝1𝑝2
(𝛼)

𝑒𝑠𝑝1𝑝2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )

1≤𝑝1≤𝑁1,1≤𝑝2≤𝑁2

 the surface currents flowing through the 

superconducting shells of all the elements having the general form 𝐾𝑝1𝑝2
(𝛼)

(𝑧) = 𝐾0
(𝛼)
cos(𝛼𝑧 + 𝜑𝑝1𝑝2) 

with 

𝐾0
(𝛼)

=
𝐼0
(𝛼)

2𝜋𝑅𝑓
 

Let us note 𝐴𝑧𝑟
(𝛼)
(𝑀𝑘1𝑘2) the magnetic vector potential felt at the center of element 𝑘1 of substage 

𝑘2 at 𝑧 (noted 𝑀𝑘1𝑘2) and due to the current distributions (𝐾𝑝1𝑝2
(𝛼)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

= 𝐾𝑝1𝑝2
(𝛼)

𝑒𝑠𝑝1𝑝2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )

1≤𝑝1≤𝑁1,1≤𝑝2≤𝑁2

. 

Following the definition of 𝐴𝑧𝑟(𝑝1𝑝2)
(𝛼)

(𝑀𝑘1𝑘2) and 𝐴𝑧𝑟
(𝛼)
(𝑀𝑘1𝑘2), by superposition, we have 

𝐴𝑧𝑟
(𝛼)
(𝑀𝑘1𝑘2) = ∑ ∑ 𝐴𝑧𝑟(𝑝1𝑝2)

(𝛼)
(𝑀𝑘1𝑘2)

𝑁1

𝑝1=1

𝑁2

𝑝2=1

 

Again using the complex notation 𝐴𝑧𝑟
(𝛼)̅̅ ̅̅ ̅̅
(𝑀𝑘1𝑘2) such that  

𝐴𝑧𝑟
(𝛼)
(𝑀𝑘1𝑘2) = 𝑅𝑒 (𝐴𝑧𝑟

(𝛼)̅̅ ̅̅ ̅̅
(𝑀𝑘1𝑘2)) 

 

(280) 

we can write 

𝐴𝑧𝑟
(𝛼)̅̅ ̅̅ ̅̅
(𝑀𝑘1𝑘2) = ∑ ∑ 𝐴𝑧𝑟(𝑝1𝑝2)

(𝛼)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
(𝑀𝑘1𝑘2)

𝑁1

𝑝1=1

𝑁2

𝑝2=1

 

Using the expression of 𝐴𝑧𝑟(𝑝1𝑝2)
(𝛼)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝑀𝑘1𝑘2) given by (277), we now have 

𝐴𝑧𝑟
(𝛼)̅̅ ̅̅ ̅̅
(𝑀𝑘1𝑘2) =

𝜇0𝐼0
(𝛼)

8𝜋2
∑ 𝑒

𝑖(𝛼+
2𝜋𝑛
𝑙
)𝑧

+∞

𝑛=−∞

∑ ∑ 𝑋𝑛𝑝1𝑝2𝑘1𝑘2
(𝛼)

𝑒𝑖𝜑𝑝1𝑝2

𝑁1

𝑝1=1

𝑁2

𝑝2=1

 (281) 

 

In order to be consistent with the previous notations, let us note 𝐴𝑧𝑟𝑘1𝑘2

(𝛼)
(𝑧) the axial component of 

the magnetic vector potential felt at the center of element 𝑘1 of substage 𝑘2 at 𝑧 and due to the current 

distributions (𝐾𝑝1𝑝2
(𝛼)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

= 𝐾𝑝1𝑝2
(𝛼)

𝑒𝑠𝑝1𝑝2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )
1≤𝑝1≤𝑁1,1≤𝑝2≤𝑁2

. Using again the complex notation, we have 

𝐴𝑧𝑟𝑘1𝑘2

(𝛼)̅̅ ̅̅ ̅̅ ̅̅ ̅
(𝑧) = 𝐴𝑧𝑟

(𝛼)̅̅ ̅̅ ̅̅
(𝑀𝑘1𝑘2) 
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IV.2.5.3  New currents induced by the time-variation of currents flowing in all the 

elements 

 

We now know the expression of the magnetic vector potential generated by surface currents flowing 

through the superconducting shells of all the elements and having the general form 𝐾𝑝1𝑝2
(𝛼)

(𝑧) =

𝐾0
(𝛼)
cos(𝛼𝑧 + 𝜑𝑝1𝑝2). 

Using equation (281), we can then write 

[2�̇�𝑧𝑟𝑘1𝑘2

(𝛼)̅̅ ̅̅ ̅̅ ̅̅ ̅
(𝑧) − �̇�𝑧𝑟𝑘1−1𝑘2

(𝛼)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
(𝑧) − �̇�𝑧𝑟𝑘1+1𝑘2

(𝛼)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
(𝑧)]

=
𝜇0𝐼0̇

(𝛼)

8𝜋2
∑ 𝑒

𝑖(𝛼+
2𝜋𝑛
𝑙
)𝑧

+∞

𝑛=−∞

∑ ∑ 𝐶𝑛𝑝1𝑝2𝑘1𝑘2
(𝛼)

𝑒𝑖𝜑𝑝1𝑝2

𝑁1

𝑝1=1

𝑁2

𝑝2=1

 

(282) 

with 

𝐶𝑛𝑝1𝑝2𝑘1𝑘2
(𝛼)

= 2𝑋𝑛𝑝1𝑝2𝑘1𝑘2
(𝛼)

− 𝑋𝑛𝑝1𝑝2𝑘1−1𝑘2
(𝛼)

− 𝑋𝑛𝑝1𝑝2𝑘1+1𝑘2
(𝛼)

 (283) 

and 

∑ [2�̇�𝑧𝑟𝑗1𝑘2

(𝛼)̅̅ ̅̅ ̅̅ ̅̅ ̅
(𝑧) − �̇�𝑧𝑟𝑗1𝑘2−1

(𝛼)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
(𝑧) − �̇�𝑧𝑟𝑗1𝑘2+1

(𝛼)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
(𝑧)]

𝑁1

𝑗1=1

=
𝜇0𝐼0̇

(𝛼)

8𝜋2
∑ 𝑒

𝑖(𝛼+
2𝜋𝑛
𝑙
)𝑧

+∞

𝑛=−∞

∑ ∑ 𝐶𝑛𝑝1𝑝2𝑘2
(𝛼)

𝑒𝑖𝜑𝑝1𝑝2

𝑁1

𝑝1=1

𝑁2

𝑝2=1

 

(284) 

with 

𝐶𝑛𝑝1𝑝2𝑘2
(𝛼)

= ∑ [2𝑋𝑛𝑝1𝑝2𝑗1𝑘2
(𝛼)

− 𝑋𝑛𝑝1𝑝2𝑗1𝑘2−1
(𝛼)

− 𝑋𝑛𝑝1𝑝2𝑗1𝑘2+1
(𝛼)

]

𝑁1

𝑗1=1

 (285) 

 

According to the equations of the system, i.e. equations (266), and to equations (282) and (284), we 

see that the time-variation of surface currents of the form (𝐾𝑝1𝑝2
(𝛼)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

= 𝐾0
(𝛼)
cos(𝛼𝑧 +

𝜑𝑝1𝑝2) 𝑒𝑠𝑝1𝑝2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )
1≤𝑝1≤𝑁1,1≤𝑝2≤𝑁2

 will give rise to new distributions of currents 𝐼𝑘1𝑘2
̅̅ ̅̅ ̅̅ (𝑧) such that for 1 ≤

𝑘2 ≤ 𝑁2 and 1 ≤ 𝑘1 ≤ 𝑁1 

𝑑2𝐼𝑘1𝑘2
̅̅ ̅̅ ̅̅

𝑑𝑧2
(𝑧) =

𝜇0𝐼0̇
(𝛼)

8𝜋2
∑ 𝑒

𝑖(𝛼+
2𝜋𝑛
𝑙
)𝑧

+∞

𝑛=−∞

∑ ∑ 𝐷𝑛𝑝1𝑝2𝑘1𝑘2
(𝛼)

𝑒𝑖𝜑𝑝1𝑝2

𝑁1

𝑝1=1

𝑁2

𝑝2=1

 (286) 

with 

𝐷𝑛𝑝1𝑝2𝑘1𝑘2
(𝛼)

= 𝜎𝑙1𝐶𝑛𝑝1𝑝2𝑘1𝑘2
(𝛼)

+
𝜎𝑙2
𝑁1

2 𝐶𝑛𝑝1𝑝2𝑘2
(𝛼)

 (287) 

where again 𝐼𝑘1𝑘2
̅̅ ̅̅ ̅̅ (𝑧) is the complex notation associated with 𝐼𝑘1𝑘2(𝑧) such that 

𝐼𝑘1𝑘2(𝑧) = 𝑅𝑒 (𝐼𝑘1𝑘2
̅̅ ̅̅ ̅̅ (𝑧)) 
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The double integration of equation (286) with respect to 𝑧 leads to 

𝐼𝑘1𝑘2
̅̅ ̅̅ ̅̅ (𝑧) = −

𝜇0𝐼0̇
(𝛼)

8𝜋2
∑

𝑒
𝑖(𝛼+

2𝜋𝑛
𝑙
)𝑧

(𝛼 +
2𝜋𝑛
𝑙
)
2

+∞

𝑛=−∞

∑ ∑ 𝐷𝑛𝑝1𝑝2𝑘1𝑘2
(𝛼)

𝑒𝑖𝜑𝑝1𝑝2

𝑁1

𝑝1=1

𝑁2

𝑝2=1

 (288) 

 

This result is important as it shows that the time-variation of surface currents with spatial frequency 

𝛼 will induce new currents with the following infinity of spatial frequencies 

(𝛼 + 2𝜋𝑛 (
1

𝑙𝑝1
−
1

𝑙𝑝2
))

𝑛∈ℤ

 

Note that, according to equation (288), the amplitude associated with the spatial frequency 𝛼 +

2𝜋𝑛 (
1

𝑙𝑝1
−

1

𝑙𝑝2
) features a term in 1/ (𝛼 +

2𝜋𝑛

𝑙
)
2
. Therefore the higher the order of the spatial frequency, 

i.e. the higher 𝑛, the smaller its amplitude. 

In addition, since the currents induced in steady-state regime feature the spatial frequencies 2𝜋/𝑙𝑝1 

and 2𝜋/𝑙𝑝2, their time-variation will induce currents with spatial frequencies (
2𝜋

𝑙𝑝1
+ 2𝜋𝑛 (

1

𝑙𝑝1
−

1

𝑙𝑝2
))

𝑛∈ℤ

 and (
2𝜋

𝑙𝑝2
+ 2𝜋𝑛 (

1

𝑙𝑝1
−

1

𝑙𝑝2
))

𝑛∈ℤ

. 

 

In order to lighten the future expressions we will now use the following notation for any 𝑛 ∈ ℤ  

𝛼𝑛 =
2𝜋

𝑙𝑝1
+ 2𝜋(𝑛 − 1)(

1

𝑙𝑝2
−
1

𝑙𝑝1
) (289) 

so that 

{
 
 

 
 𝛼1 =

2𝜋

𝑙𝑝1

𝛼2 =
2𝜋

𝑙𝑝2

 

Therefore the previous families are now noted as 

(
2𝜋

𝑙𝑝1
+ 2𝜋𝑛 (

1

𝑙𝑝1
−
1

𝑙𝑝2
))

𝑛∈ℤ

= (𝛼1−𝑛)𝑛∈ℤ 

and 

(
2𝜋

𝑙𝑝2
+ 2𝜋𝑛 (

1

𝑙𝑝1
−
1

𝑙𝑝2
))

𝑛∈ℤ

= (𝛼−𝑛+2)𝑛∈ℤ 

We can notice that these two families are actually identical and equal to (𝛼𝑛)𝑛∈ℤ. Indeed, we have 
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(𝛼1−𝑛)𝑛∈ℤ = (𝛼1−(𝑛′−1))
𝑛′∈ℤ

= (𝛼2−𝑛′)𝑛′∈ℤ = (𝛼2−𝑛)𝑛∈ℤ = (𝛼𝑛)𝑛∈ℤ 

Therefore the time-variation of the currents induced in steady-state regime (featuring the spatial 

frequencies 2𝜋/𝑙𝑝1 and 2𝜋/𝑙𝑝2) will induce currents with spatial frequencies (𝛼𝑛)𝑛∈ℤ. 

Following the logical chain displayed on Figure 15 in section II.2.1 , we now have to determine the 

currents that will be induced by the time-variation of the currents with a spatial frequency belonging to 

the family (𝛼𝑛)𝑛∈ℤ. Since we know that the time-variation of currents with any spatial frequency 𝛼 will 

induce currents with the spatial frequencies (𝛼 + 2𝜋𝑛 (
1

𝑙𝑝1
−

1

𝑙𝑝2
))

𝑛∈ℤ

, we can deduce that the time-

variation of the currents with a spatial frequency 𝛼𝑘 , 𝑘 ∈ ℤ will induce currents with the spatial 

frequencies (𝛼𝑘 + 2𝜋𝑛 (
1

𝑙𝑝1
−

1

𝑙𝑝2
))

𝑛∈ℤ

, 𝑘 ∈ ℤ. This family is again equal to (𝛼𝑛)𝑛∈ℤ, because for any 

𝑘 ∈ ℤ, we have 

(𝛼𝑘 + 2𝜋𝑛 (
1

𝑙𝑝1
−
1

𝑙𝑝2
))

𝑛∈ℤ

= (
2𝜋

𝑙𝑝1
+ 2𝜋(𝑘 − 𝑛 + 1)(

1

𝑙𝑝2
−
1

𝑙𝑝1
))

𝑛∈ℤ

= (𝛼𝑘−𝑛)𝑛∈ℤ = (𝛼𝑛)𝑛∈ℤ 

We can now conclude that we have reached the end of our analytical procedure described in section 

II.2.1  because we have demonstrated that the currents that will be induced in the 𝑁2-uplet of 𝑁1-uplets 

conductor during any time varying regime will necessarily feature the spatial frequencies of the family 

(𝛼𝑛)𝑛∈ℤ. 

Consequently, we now know that the currents induced during any time-varying regime will be given 

for 1 ≤ 𝑘1 ≤ 𝑁1 and 1 ≤ 𝑘2 ≤ 𝑁2 by 

𝐼𝑘1𝑘2
̅̅ ̅̅ ̅̅ (𝑧) = ∑ 𝐼0𝑘1𝑘2

(𝛼𝑛)̅̅ ̅̅ ̅̅ ̅
𝑒𝑖𝛼𝑛𝑧

+∞

𝑛=−∞

 (290) 

where the 𝐼0𝑘1𝑘2
(𝛼𝑛)̅̅ ̅̅ ̅̅ ̅

 for 𝑛 ∈ ℤ are complex functions depending on time only. 

Note that if 𝛼1 ≠ 𝛼2 the elements of the family (𝛼𝑛)𝑛∈ℤ are all distinct from each other (if 𝛼1 = 𝛼2, 

the family (𝛼𝑛)𝑛∈ℤ is simply reduced to 𝛼1). 

Indeed, for 𝑘 ∈ ℤ and 𝑛 ∈ ℤ, the equation 𝛼𝑘 = 𝛼𝑛 leads to (𝑘 − 𝑛)(𝛼2 − 𝛼1) = 0; the solution 

must then be 𝑘 = 𝑛 if 𝛼2 − 𝛼1 ≠ 0. 

 

IV.2.5.4  Reduction of the global equations of the system for any time-varying 

regime 

 

 We have now established the expression of the magnetic vector potential as a function of the 

coupling currents; we also know the spatial form of these currents for any time-varying regime. 

First, we will make use of this knowledge to reformulate the global equation of the system, 

which will be presented at the end of IV.2.5.4.1. We will then use an invariance of the system 

and different considerations and approximations to finally reduce the system equation to a 

simple 4x4 matrix equation (this is achieved through IV.2.5.4.2 to IV.2.5.4.4). 
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IV.2.5.4.1 Expression of the system equations using the determined spatial form of the induced 

currents 

 

Let us now express the equations of the system in complex notations from equations (260), we have 

for 1 ≤ 𝑘1 ≤ 𝑁1 and 1 ≤ 𝑘2 ≤ 𝑁2 

{
 
 
 

 
 
 

𝑑2𝐼𝑘1𝑘2
̅̅ ̅̅ ̅̅

𝑑𝑧2
(𝑧) − 𝜎𝑙1 [2�̇�𝑧𝑟𝑘1𝑘2

̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑧) − �̇�𝑧𝑟𝑘1−1𝑘2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑧) − �̇�𝑧𝑟𝑘1+1𝑘2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑧)]

−
𝜎𝑙2
𝑁1

2 ∑ [2�̇�𝑧𝑟𝑗1𝑘2
(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − �̇�𝑧𝑟𝑗1𝑘2−1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑧) − �̇�𝑧𝑟𝑗1𝑘2+1
(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]

𝑁1

𝑗1=1

=

−4𝜎𝑙1𝑅𝑐1�̇�𝑎 sin
2 (
𝜋

𝑁1
) 𝑒

𝑖[
2𝜋𝑧
𝑙𝑝1

+
2𝜋(𝑘1−1)

𝑁1
]
− 4

𝜎𝑙2
𝑁1
𝑅𝑐2�̇�𝑎 sin

2 (
𝜋

𝑁2
) 𝑒

𝑖[
2𝜋𝑧
𝑙𝑝2

+
2𝜋(𝑘2−1)

𝑁2
]

 (291) 

 

To simplify these equations, we will now make use of the knowledge of the spatial form of the 

currents induced during any time-varying regime given by (290) which is 

𝐼𝑘1𝑘2
̅̅ ̅̅ ̅̅ (𝑧) = ∑ 𝐼0𝑘1𝑘2

(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅
𝑒𝑖𝛼𝑘𝑧

+∞

𝑘=−∞

 

In order to do so, we will replace the expressions on the left-hand side of equations (291) with their 

new expressions. First, we have 

𝑑2𝐼𝑘1𝑘2
̅̅ ̅̅ ̅̅

𝑑𝑧2
(𝑧) =

𝑑2

𝑑𝑧2
( ∑ 𝐼0𝑘1𝑘2

(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅
𝑒𝑖𝛼𝑘𝑧

+∞

𝑘=−∞

) = ∑ 𝐼0𝑘1𝑘2
(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅ 𝑑

2

𝑑𝑧2
(𝑒𝑖𝛼𝑘𝑧)

+∞

𝑘=−∞

= ∑ −𝛼𝑘
2𝐼0𝑘1𝑘2
(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅

𝑒𝑖𝛼𝑘𝑧
+∞

𝑘=−∞

 

 

Then, applying again the methodology of section IV.2.5.1 , we can adapt equation (277) to give the 

following expression of the magnetic vector potential 𝐴𝑧𝑟(𝑝1𝑝2)
(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝑀𝑘1𝑘2) generated by a current flowing 

through element 𝑝1 of substage 𝑝2 of the form 𝐼𝑝1𝑝2
̅̅ ̅̅ ̅̅ (𝑧) = 𝐼0𝑝1𝑝2

(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅
𝑒𝑖𝛼𝑘𝑧 with 𝑘 ∈ ℤ 

𝐴𝑧𝑟(𝑝1𝑝2)
(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝑀𝑘1𝑘2) =
𝜇0𝐼0𝑝1𝑝2

(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅

8𝜋2
∑ 𝑒

𝑖(𝛼𝑘+
2𝜋𝑛
𝑙
)𝑧
𝑋𝑛𝑝1𝑝2𝑘1𝑘2
(𝛼𝑘)

+∞

𝑛=−∞

=
𝜇0𝐼0𝑝1𝑝2

(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅

8𝜋2
∑ 𝑒𝑖𝛼𝑘−𝑛𝑧𝑋𝑛𝑝1𝑝2𝑘1𝑘2

(𝛼𝑘)

+∞

𝑛=−∞

 

 

Therefore, by superposition, the magnetic vector potential 𝐴𝑧𝑟(𝑝1𝑝2)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑀𝑘1𝑘2) generated by a current 

flowing through element 𝑝1 of substage 𝑝2 of the form 𝐼𝑝1𝑝2
̅̅ ̅̅ ̅̅ (𝑧) = ∑ 𝐼0𝑝1𝑝2

(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅
𝑒𝑖𝛼𝑘𝑧+∞

𝑘=−∞  is given by 

𝐴𝑧𝑟(𝑝1𝑝2)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑀𝑘1𝑘2) =

𝜇0
8𝜋2

∑ 𝐼0𝑝1𝑝2
(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅

∑ 𝑒𝑖𝛼𝑘−𝑛𝑧𝑋𝑛𝑝1𝑝2𝑘1𝑘2
(𝛼𝑘)

+∞

𝑛=−∞

+∞

𝑘=−∞
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Again by superposition, the magnetic vector potential 𝐴𝑧𝑟𝑘1𝑘2
̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑧) generated at the center of element 

𝑘1 of substage 𝑘2 at 𝑧 by all the currents flowing through the 𝑁2-uplet of 𝑁1-uplets conductor during 

any time varying regime is thus in complex notation 

𝐴𝑧𝑟𝑘1𝑘2
̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑧) = 𝐴𝑧𝑟

̅̅ ̅̅ (𝑀𝑘1𝑘2) =
𝜇0
8𝜋2

∑ ∑ ∑ 𝐼0𝑝1𝑝2
(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅

∑ 𝑒𝑖𝛼𝑘−𝑛𝑧𝑋𝑛𝑝1𝑝2𝑘1𝑘2
(𝛼𝑘)

+∞

𝑛=−∞

𝑁1

𝑝1=1

𝑁2

𝑝2=1

+∞

𝑘=−∞

 (292) 

 

The term 

[2�̇�𝑧𝑟𝑘1𝑘2
̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑧) − �̇�𝑧𝑟𝑘1−1𝑘2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑧) − �̇�𝑧𝑟𝑘1+1𝑘2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑧)] 

present in the equations of the system, i.e. equations (291), can now be replaced with 

𝜇0
8𝜋2

∑ ∑ ∑ 𝐼̇0𝑝1𝑝2
(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅

∑ 𝑒𝑖𝛼𝑘−𝑛𝑧𝐶𝑛𝑝1𝑝2𝑘1𝑘2
(𝛼𝑘)

+∞

𝑛=−∞

𝑁1

𝑝1=1

𝑁2

𝑝2=1

+∞

𝑘=−∞

 

where 

𝐶𝑛𝑝1𝑝2𝑘1𝑘2
(𝛼𝑘) = 2𝑋𝑛𝑝1𝑝2𝑘1𝑘2

(𝛼𝑘) − 𝑋𝑛𝑝1𝑝2𝑘1−1𝑘2
(𝛼𝑘) − 𝑋𝑛𝑝1𝑝2𝑘1+1𝑘2

(𝛼𝑘)  (293) 

and the term 

∑ [2�̇�𝑧𝑟𝑗1𝑘2
(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − �̇�𝑧𝑟𝑗1𝑘2−1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑧) − �̇�𝑧𝑟𝑗1𝑘2+1
(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]

𝑁1

𝑗1=1

 

also present in the equations of the system can now be replaced with 

𝜇0
8𝜋2

∑ ∑ ∑ 𝐼̇0𝑝1𝑝2
(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅

∑ 𝑒𝑖𝛼𝑘−𝑛𝑧𝐶𝑛𝑝1𝑝2𝑘2
(𝛼𝑘)

+∞

𝑛=−∞

𝑁1

𝑝1=1

𝑁2

𝑝2=1

+∞

𝑘=−∞

 

where 

𝐶𝑛𝑝1𝑝2𝑘2
(𝛼𝑘) = ∑ [2𝑋𝑛𝑝1𝑝2𝑗1𝑘2

(𝛼𝑘) − 𝑋𝑛𝑝1𝑝2𝑗1𝑘2−1
(𝛼𝑘) − 𝑋𝑛𝑝1𝑝2𝑗1𝑘2+1

(𝛼𝑘) ]

𝑁1

𝑗1=1

 (294) 

The 𝑋𝑛𝑝1𝑝2𝑘1𝑘2
(𝛼𝑘)  are given by (278) with 𝛼 = 𝛼𝑘. 

As a result, we can now replace the global term  

{
 
 

 
 𝜎𝑙1 [2�̇�𝑧𝑟𝑘1𝑘2

̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑧) − �̇�𝑧𝑟𝑘1−1𝑘2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑧) − �̇�𝑧𝑟𝑘1+1𝑘2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑧)]

+
𝜎𝑙2
𝑁1

2 ∑ [2�̇�𝑧𝑟𝑗1𝑘2
(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − �̇�𝑧𝑟𝑗1𝑘2−1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑧) − �̇�𝑧𝑟𝑗1𝑘2+1
(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]

𝑁1

𝑗1=1

 

of equations (291) with 
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𝜇0
8𝜋2

∑ ∑ ∑ 𝐼̇0𝑝1𝑝2
(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅

∑ 𝑒𝑖𝛼𝑘−𝑛𝑧𝐷𝑛𝑝1𝑝2𝑘1𝑘2
(𝛼𝑘)

+∞

𝑛=−∞

𝑁1

𝑝1=1

𝑁2

𝑝2=1

+∞

𝑘=−∞

 

where 

𝐷𝑛𝑝1𝑝2𝑘1𝑘2
(𝛼𝑘) = 𝜎𝑙1𝐶𝑛𝑝1𝑝2𝑘1𝑘2

(𝛼𝑘) +
𝜎𝑙2
𝑁1

2 𝐶𝑛𝑝1𝑝2𝑘2
(𝛼𝑘)  (295) 

 

Using these substitutions, the equations of the system can now be expressed for 1 ≤ 𝑘1 ≤ 𝑁1 and 

1 ≤ 𝑘2 ≤ 𝑁2 as 

 

{
 
 

 
 
∑ 𝛼𝑘

2𝐼0𝑘1𝑘2
(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅

𝑒𝑖𝛼𝑘𝑧
+∞

𝑘=−∞

+
𝜇0
8𝜋2

∑ ∑ ∑ 𝐼̇0𝑝1𝑝2
(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅

∑ 𝑒𝑖𝛼𝑘−𝑛𝑧𝐷𝑛𝑝1𝑝2𝑘1𝑘2
(𝛼𝑘)

+∞

𝑛=−∞

𝑁1

𝑝1=1

𝑁2

𝑝2=1

+∞

𝑘=−∞

=

4𝜎𝑙1𝑅𝑐1�̇�𝑎 sin
2 (
𝜋

𝑁1
) 𝑒

𝑖
2𝜋(𝑘1−1)

𝑁1 𝑒𝑖𝛼1𝑧 + 4
𝜎𝑙2
𝑁1
𝑅𝑐2�̇�𝑎 sin

2 (
𝜋

𝑁2
) 𝑒

𝑖
2𝜋(𝑘2−1)

𝑁2 𝑒𝑖𝛼2𝑧

 (296) 

 

IV.2.5.4.2 Invariance of the system  

 

We will now make use of an invariance of the system to reduce equations (296). Indeed from 

equation (270), we know that for 1 ≤ 𝑘1 ≤ 𝑁1 and 1 ≤ 𝑘2 ≤ 𝑁2 the complex affix 𝑤𝑘1𝑘2(𝑧) of the 

center of element 𝑘1 of substage 𝑘2 at 𝑧 in the plane orthogonal to the z-axis is 

𝑤𝑘1𝑘2(𝑧) = 𝑅𝑐2𝑒
𝑖
2𝜋(𝑘2−1)

𝑁2 𝑒𝑖𝛼2𝑧 + 𝑅𝑐1𝑒
𝑖
2𝜋(𝑘1−1)

𝑁1 𝑒𝑖𝛼1𝑧 

 

The complex affix of the center of element 𝑘′1 + 𝑘1 − 1 of substage 𝑘′2 + 𝑘2 − 1 at 𝑧 is then 

𝑤𝑘′1+𝑘1−1𝑘′2+𝑘2−1(𝑧) = 𝑅𝑐2𝑒
𝑖
2𝜋(𝑘2−1)

𝑁2 𝑒
𝑖
2𝜋(𝑘′2−1)

𝑁2 𝑒𝑖𝛼2𝑧 + 𝑅𝑐1𝑒
𝑖
2𝜋(𝑘1−1)

𝑁1 𝑒
𝑖
2𝜋(𝑘′1−1)

𝑁1 𝑒𝑖𝛼1𝑧 

 

Let us note 

{
 

 𝑧𝑘1𝑘2 =
2𝜋

𝛼1 − 𝛼2
[
𝑘2 − 1

𝑁2
−
𝑘1 − 1

𝑁1
]

𝜃𝑘1𝑘2 =
2𝜋

𝛼1 − 𝛼2
[𝛼1 (

𝑘2 − 1

𝑁2
) − 𝛼2 (

𝑘1 − 1

𝑁1
)]

 (297) 

So that 

{
 

 𝜃𝑘1𝑘2 − 𝛼1𝑧𝑘1𝑘2 =
2𝜋

𝛼1 − 𝛼2
[(
𝑘2 − 1

𝑁2
) (𝛼1 − 𝛼1) − (

𝑘1 − 1

𝑁1
) (𝛼2 − 𝛼1)] =

2𝜋(𝑘1 − 1)

𝑁1

𝜃𝑘1𝑘2 − 𝛼2𝑧𝑘1𝑘2 =
2𝜋

𝛼1 − 𝛼2
[(
𝑘2 − 1

𝑁2
) (𝛼1 − 𝛼2) − (

𝑘1 − 1

𝑁1
) (𝛼2 − 𝛼2)] =

2𝜋(𝑘2 − 1)

𝑁2
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Thus, replacing 2𝜋(𝑘1 − 1)/𝑁1 with 𝜃𝑘1𝑘2 − 𝛼1𝑧𝑘1𝑘2 and 2𝜋(𝑘2 − 1)/𝑁2 with 𝜃𝑘1𝑘2 − 𝛼2𝑧𝑘1𝑘2 in 

the expression of 𝑤𝑘′1+𝑘1−1𝑘′2+𝑘2−1(𝑧), we can write 

𝑤𝑘′1+𝑘1−1𝑘′2+𝑘2−1(𝑧) = 𝑒
𝑖𝜃𝑘1𝑘2 [𝑅𝑐2𝑒

𝑖
2𝜋(𝑘′2−1)

𝑁2 𝑒𝑖𝛼2(𝑧−𝑧𝑘1𝑘2) + 𝑅𝑐1𝑒
𝑖
2𝜋(𝑘′1−1)

𝑁1 𝑒𝑖𝛼1(𝑧−𝑧𝑘1𝑘2)] 

And therefore, we have 

𝑤𝑘′1+𝑘1−1𝑘′2+𝑘2−1(𝑧) = 𝑒
𝑖𝜃𝑘1𝑘2𝑤𝑘′1𝑘′2(𝑧 − 𝑧𝑘1𝑘2) (298) 

 

 The term 𝑤𝑘′1+𝑘1−1𝑘′2+𝑘2−1(𝑧) of equation (298) corresponds to the position of the center of 

element 𝑘′1 + 𝑘1 − 1 of substage 𝑘′2 + 𝑘2 − 1 at 𝑧 in the plane orthogonal to the z-axis 

 

 The term 𝑤𝑘′1𝑘′2(𝑧 − 𝑧𝑘1𝑘2) of equation (298) corresponds to the position of the center of 

element 𝑘′1 of substage 𝑘′2 at 𝑧 − 𝑧𝑘1𝑘2 in the plane orthogonal to the z-axis 

 

 The term 𝑒𝑖𝜃𝑘1𝑘2  of equation (298) corresponds to a rotation of 𝜃𝑘1𝑘2 around the z-axis, therefore 

the term 𝑒𝑖𝜃𝑘1𝑘2𝑤𝑘′1𝑘′2(𝑧 − 𝑧𝑘1𝑘2) corresponds to the position of the center of element 𝑘′1 of 

substage 𝑘′2 at 𝑧 − 𝑧𝑘1𝑘2 after a rotation of the conductor of 𝜃𝑘1𝑘2 around its axis 

As a result, equation (298) means that the position of element 𝑘′1 + 𝑘1 − 1 of substage 𝑘′2 + 𝑘2 −

1 at 𝑧 corresponds to the position of element 𝑘′1 of substage 𝑘′2 at 𝑧 − 𝑧𝑘1𝑘2 after a rotation of the 

conductor of 𝜃𝑘1𝑘2 around its axis. If we choose 𝑘′1 = 𝑘
′
2 = 1, equation (298) means that the position 

of element 𝑘1 of substage 𝑘2 at 𝑧 corresponds to the position of element 1 of substage 1 at 𝑧 − 𝑧𝑘1𝑘2 

rotated from 𝜃𝑘1𝑘2 around the conductor axis; this example is illustrated on Figure 49. 

These geometrical considerations are important as they imply that element 𝑘1 of substage 𝑘2 at 𝑧 is 

in the same geometrical configuration than element 1 of substage 1 at 𝑧 − 𝑧𝑘1𝑘2 with respect to the other 

elements. 

Furthermore, we can see on Figure 49 that if the applied magnetic field was 𝐵𝑎
′⃗⃗ ⃗⃗⃗ instead of 𝐵𝑎⃗⃗ ⃗⃗⃗, element 

1 of substage 1 at 𝑧 − 𝑧𝑘1𝑘2 would exactly be in the same magnetic configuration than element 𝑘1 of 

substage 𝑘2 at 𝑧 with 𝐵𝑎⃗⃗ ⃗⃗⃗ and would thus carry the exact same induced current. Note that 𝐵𝑎
′⃗⃗ ⃗⃗⃗ corresponds 

to 𝐵𝑎⃗⃗ ⃗⃗⃗ but rotated from −𝜃𝑘1𝑘2 around the z-axis (see Figure 49), therefore 𝐵𝑎
′ = ‖𝐵𝑎

′⃗⃗ ⃗⃗⃗‖ = ‖𝐵𝑎⃗⃗ ⃗⃗⃗‖ = 𝐵𝑎. 

Let us note 𝐼𝑘1𝑘2
′ (𝑧) the induced current carried by element 𝑘1 of substage 𝑘2 at 𝑧 with 𝐵𝑎

′⃗⃗ ⃗⃗⃗ instead of 𝐵𝑎⃗⃗ ⃗⃗⃗ 

with 

𝐼𝑘1𝑘2
′̅̅ ̅̅ ̅̅ (𝑧) = ∑ 𝐼0𝑘1𝑘2

′(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅
𝑒𝑖𝛼𝑘𝑧

+∞

𝑘=−∞

 

We then have 𝐼𝑘1𝑘2(𝑧) = 𝐼11
′ (𝑧 − 𝑧𝑘1𝑘2), and more generally, from equations (298) we can deduce 

that 𝐼𝑘′1+𝑘1−1𝑘′2+𝑘2−1(𝑧) = 𝐼𝑘′1𝑘′2
′ (𝑧 − 𝑧𝑘1𝑘2). 

We will now establish the equation satisfied by 𝐼11
′ (𝑧) with the applied magnetic field 𝐵𝑎

′⃗⃗ ⃗⃗⃗ instead of 

𝐵𝑎⃗⃗ ⃗⃗⃗. In order to do so, we consider a new geometric coordinate system (𝑂, 𝑒𝑥′⃗⃗ ⃗⃗ ⃗⃗ , 𝑒𝑦′⃗⃗ ⃗⃗ ⃗⃗ , 𝑒𝑧⃗⃗ ⃗⃗ ) corresponding to 
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the geometric coordinate system (𝑂, 𝑒𝑥⃗⃗⃗⃗⃗, 𝑒𝑦⃗⃗⃗⃗⃗, 𝑒𝑧⃗⃗ ⃗⃗ ) used so far but rotated from −𝜃𝑘1𝑘2 around the z-axis 

(see Figure 49). Using again the complex notations �̅� and 𝑥 ′̅ such that 𝑥 = 𝑅𝑒(�̅�) and 𝑥′ = 𝑅𝑒(𝑥 ′̅), we 

have 

𝑥 ′̅𝑒−𝑖𝜃𝑘1𝑘2 = �̅�𝑥 ′̅ = �̅�𝑒𝑖𝜃𝑘1𝑘2  

We now have to express the axial component of the magnetic vector potential 𝐴𝑎
′⃗⃗ ⃗⃗ ⃗ associated with 

𝐵𝑎
′⃗⃗ ⃗⃗⃗ in the geometric coordinate system (𝑂, 𝑒𝑥⃗⃗⃗⃗⃗, 𝑒𝑦⃗⃗⃗⃗⃗, 𝑒𝑧⃗⃗ ⃗⃗ ). Since, in the new geometric coordinate system 

(𝑂, 𝑒𝑥′⃗⃗ ⃗⃗ ⃗⃗ , 𝑒𝑦′⃗⃗ ⃗⃗ ⃗⃗ , 𝑒𝑧⃗⃗ ⃗⃗ ), 𝐵𝑎
′⃗⃗ ⃗⃗⃗ is along the 𝑦′-axis, we know that 𝐴𝑧𝑎

′  is given in complex notation by 

𝐴𝑧𝑎
′̅̅ ̅̅̅ = −𝑥 ′̅𝐵𝑎

′  

And since 𝑥 ′̅ = �̅�𝑒𝑖𝜃𝑘1𝑘2 , in the previous geometric coordinate system (𝑂, 𝑒𝑥⃗⃗⃗⃗⃗, 𝑒𝑦⃗⃗⃗⃗⃗, 𝑒𝑧⃗⃗ ⃗⃗ ), we thus have 

𝐴𝑧𝑎
′̅̅ ̅̅̅ = −�̅�𝑒𝑖𝜃𝑘1𝑘2𝐵𝑎

′  

 

 

Figure 49 : Example of the geometrical meaning of equation (298) for 𝒌′𝟏 = 𝒌
′
𝟐 = 𝟏 

 

The equations of the system, i.e. equations (296), have been established for the applied magnetic 

field 𝐵𝑎⃗⃗ ⃗⃗⃗ for which we had 𝐴𝑧𝑎
̅̅ ̅̅̅ = −�̅�𝐵𝑎. Since now 𝐴𝑧𝑎

′̅̅ ̅̅̅ = −�̅�𝑒𝑖𝜃𝑘1𝑘2𝐵𝑎
′ , we just have to replace 𝐵𝑎 by 
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𝐵𝑎
′ 𝑒𝑖𝜃𝑘1𝑘2  in the first equation of (296) (i.e. the one obtained for 𝑘1 = 𝑘2 = 1) to derive the equation 

governing 𝐼11
′ (𝑧). This operation leads to 

{
 
 

 
 
∑ 𝛼𝑘

2𝐼011
′(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅

𝑒𝑖𝛼𝑘𝑧
+∞

𝑘=−∞

+
𝜇0
8𝜋2

∑ ∑ ∑ 𝐼̇0𝑝1𝑝2
′(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅

∑ 𝑒𝑖𝛼𝑘−𝑛𝑧𝐷𝑛𝑝1𝑝211
(𝛼𝑘)

+∞

𝑛=−∞

𝑁1

𝑝1=1

𝑁2

𝑝2=1

+∞

𝑘=−∞

=

4𝜎𝑙1𝑅𝑐1�̇�𝑎𝑒
𝑖𝜃𝑘1𝑘2 sin2 (

𝜋

𝑁1
) 𝑒𝑖𝛼1𝑧 + 4

𝜎𝑙2
𝑁1
𝑅𝑐2�̇�𝑎𝑒

𝑖𝜃𝑘1𝑘2 sin2 (
𝜋

𝑁2
) 𝑒𝑖𝛼2𝑧

 

 

The equation verified by 𝐼11
′ (𝑧 − 𝑧𝑘1𝑘2) is then 

{
 
 

 
 
∑ 𝛼𝑘

2𝐼011
′(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅

𝑒𝑖𝛼𝑘𝑧𝑒−𝑖𝛼𝑘𝑧𝑘1𝑘2

+∞

𝑘=−∞

+
𝜇0
8𝜋2

∑ ∑ ∑ 𝐼̇0𝑝1𝑝2
′(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅

∑ 𝑒𝑖𝛼𝑘−𝑛𝑧𝑒−𝑖𝛼𝑘−𝑛𝑧𝑘1𝑘2𝐷𝑛𝑝1𝑝211
(𝛼𝑘)

+∞

𝑛=−∞

𝑁1

𝑝1=1

𝑁2

𝑝2=1

+∞

𝑘=−∞

=

4𝜎𝑙1𝑅𝑐1�̇�𝑎𝑒
𝑖𝜃𝑘1𝑘2 sin2 (

𝜋

𝑁1
) 𝑒𝑖𝛼1𝑧𝑒−𝑖𝛼1𝑧𝑘1𝑘2 + 4

𝜎𝑙2
𝑁1
𝑅𝑐2�̇�𝑎𝑒

𝑖𝜃𝑘1𝑘2 sin2 (
𝜋

𝑁2
) 𝑒𝑖𝛼2𝑧𝑒−𝑖𝛼2𝑧𝑘1𝑘2

 

 

In addition, since we have 

𝐼𝑘′1+𝑘1−1𝑘′2+𝑘2−1(𝑧) = 𝐼𝑘′1𝑘′2
′ (𝑧 − 𝑧𝑘1𝑘2) 

we can write for any 𝑧  

∑ 𝐼0𝑘′1+𝑘1−1𝑘′2+𝑘2−1
(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑒𝑖𝛼𝑘𝑧
+∞

𝑘=−∞

= ∑ 𝐼0𝑘′1𝑘′2
′(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑒𝑖𝛼𝑘𝑧𝑒−𝑖𝛼𝑘𝑧𝑘1𝑘2

+∞

𝑘=−∞

 

 

Since the elements of (𝛼𝑘)𝑘∈ℤ are all distinct from each other, the (𝑒𝑖𝛼𝑘𝑧)
𝑘∈ℤ

 functions are linearly 

independent and we can conclude that for 𝑘 ∈ ℤ 

𝐼0𝑘′1+𝑘1−1𝑘′2+𝑘2−1
(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

= 𝐼0𝑘′1𝑘′2
′(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑒−𝑖𝛼𝑘𝑧𝑘1𝑘2  

 

We can now use these equalities in the equation verified by 𝐼11
′ (𝑧 − 𝑧𝑘1𝑘2) to finally obtain 

{
 
 

 
 
∑ 𝛼𝑘

2𝐼0𝑘1𝑘2
(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅

𝑒𝑖𝛼𝑘𝑧
+∞

𝑘=−∞

+
𝜇0
8𝜋2

∑ ∑ ∑ 𝐼̇0𝑝1+𝑘1−1𝑝2+𝑘2−1
(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

∑ 𝑒𝑖𝛼𝑘−𝑛𝑧𝑒𝑖𝑛(𝛼2−𝛼1)𝑧𝑘1𝑘2𝐷𝑛𝑝1𝑝211
(𝛼𝑘)

+∞

𝑛=−∞

𝑁1

𝑝1=1

𝑁2

𝑝2=1

+∞

𝑘=−∞

= 4𝜎𝑙1𝑅𝑐1�̇�𝑎 sin
2 (
𝜋

𝑁1
) 𝑒𝑖𝛼1𝑧𝑒

𝑖
2𝜋(𝑘1−1)

𝑁1 + 4
𝜎𝑙2
𝑁1
𝑅𝑐2�̇�𝑎 sin

2 (
𝜋

𝑁2
) 𝑒𝑖𝛼2𝑧𝑒

𝑖
2𝜋(𝑘2−1)

𝑁2

 

Because 𝑒−𝑖𝛼𝑘−𝑛𝑧𝑘1𝑘2 = 𝑒−𝑖𝛼𝑘𝑧𝑘1𝑘2𝑒𝑖𝑛(𝛼2−𝛼1)𝑧𝑘1𝑘2 , 𝑒𝑖𝜃𝑘1𝑘2𝑒−𝑖𝛼1𝑧𝑘1𝑘2 = 𝑒
𝑖
2𝜋(𝑘1−1)

𝑁1  and 

𝑒𝑖𝜃𝑘1𝑘2𝑒−𝑖𝛼2𝑧𝑘1𝑘2 = 𝑒
𝑖
2𝜋(𝑘2−1)

𝑁2 . 
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Note that the invariance of the system has enabled us to divide by 𝑁1𝑁2 the number of 𝐷 coefficients. 

Indeed, the 𝐷 coefficients were previously depending on 𝑘1, 𝑘2, 𝑝1 and 𝑝2 while, now, they only depend 

on 𝑝1 and 𝑝2. This reduction of coefficients has an important impact on the future computing time 

needed to determine them numerically. 

IV.2.5.4.3 Reduction of the system equations to a first-order differential equation 

 

For further needs, we will now express the equations of the system as 

{
 
 

 
 
∑ 𝛼𝑘

2𝐼0𝑘1𝑘2
(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅

𝑒𝑖𝛼𝑘𝑧
+∞

𝑘=−∞

+
𝜇0
8𝜋2

lim
𝑁→∞

∑ ∑ ∑ ∑ 𝐼̇0𝑝1+𝑘1−1𝑝2+𝑘2−1
(𝛼𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑒𝑖𝛼𝑝−𝑛𝑧𝑒𝑖𝑛(𝛼2−𝛼1)𝑧𝑘1𝑘2𝐷𝑛𝑝1𝑝211
(𝛼𝑝)

𝑁1

𝑝1=1

𝑁2

𝑝2=1

+∞

𝑝=−∞

𝑁

𝑛=−𝑁

= 4𝜎𝑙1𝑅𝑐1�̇�𝑎 sin
2 (
𝜋

𝑁1
) 𝑒𝑖𝛼1𝑧𝑒

𝑖
2𝜋(𝑘1−1)

𝑁1 + 4
𝜎𝑙2
𝑁1
𝑅𝑐2�̇�𝑎 sin

2 (
𝜋

𝑁2
) 𝑒𝑖𝛼2𝑧𝑒

𝑖
2𝜋(𝑘2−1)

𝑁2

 

where 𝑁 is the maximum order of the decomposition in Fourier series. 

Again, since the (𝑒𝑖𝛼𝑘𝑧)
𝑘∈ℤ

 functions are linearly independent, we can project the equations of the 

system on the basis formed by the (𝑒𝑖𝛼𝑘𝑧)
𝑘∈ℤ

 functions. For any 𝑘 ∈ ℤ, the projection of the left-hand 

side of the equation on 𝑒𝑖𝛼𝑘𝑧 leads to 

𝛼𝑘
2𝐼0𝑘1𝑘2
(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅

+
𝜇0
8𝜋2

lim
𝑁→∞

∑ ∑ ∑ 𝐼̇0𝑝1+𝑘1−1𝑝2+𝑘2−1
(𝛼𝑘+𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑒𝑖𝑛(𝛼2−𝛼1)𝑧𝑘1𝑘2𝐷𝑛𝑝1𝑝211
(𝛼𝑘+𝑛)

𝑁1

𝑝1=1

𝑁2

𝑝2=1

𝑁

𝑛=−𝑁

 

because the only index 𝑝 for which we have 𝑒𝑖𝛼𝑝−𝑛𝑧 = 𝑒𝑖𝛼𝑘𝑧 must satisfy 𝑝 − 𝑛 = 𝑘 and is thus 

𝑝 = 𝑘 + 𝑛. Therefore, we can now write the equations of the system for any 𝑘 ∈ ℤ as 

 For 𝑘 = 1 

{
 
 

 
 
𝐼0𝑘1𝑘2
(𝛼1)̅̅ ̅̅ ̅̅ ̅

= −
𝜇0
8𝜋2

1

𝛼1
2
 lim
𝑁→∞

∑ ∑ ∑ 𝐼̇0𝑝1+𝑘1−1𝑝2+𝑘2−1
(𝛼1+𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑒𝑖𝑛(𝛼2−𝛼1)𝑧𝑘1𝑘2𝐷𝑛𝑝1𝑝211
(𝛼1+𝑛)

𝑁1

𝑝1=1

𝑁2

𝑝2=1

𝑁

𝑛=−𝑁

+4𝜎𝑙1𝑅𝑐1�̇�𝑎 sin
2 (
𝜋

𝑁1
)
1

𝛼1
2
𝑒
𝑖
2𝜋(𝑘1−1)

𝑁1

 (299) 

 

 For 𝑘 = 2 

{
 
 

 
 
𝐼0𝑘1𝑘2
(𝛼2)̅̅ ̅̅ ̅̅ ̅

= −
𝜇0
8𝜋2

1

𝛼2
2
 lim
𝑁→∞

∑ ∑ ∑ 𝐼̇0𝑝1+𝑘1−1𝑝2+𝑘2−1
(𝛼2+𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑒𝑖𝑛(𝛼2−𝛼1)𝑧𝑘1𝑘2𝐷𝑛𝑝1𝑝211
(𝛼2+𝑛)

𝑁1

𝑝1=1

𝑁2

𝑝2=1

𝑁

𝑛=−𝑁

+4
𝜎𝑙2
𝑁1
𝑅𝑐2�̇�𝑎 sin

2 (
𝜋

𝑁2
)
1

𝛼2
2
𝑒
𝑖
2𝜋(𝑘2−1)

𝑁2

 (300) 

 

 For 𝑘 ∈ ℤ\{1; 2} 

𝐼0𝑘1𝑘2
(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅

= −
𝜇0
8𝜋2

1

𝛼𝑘
2
 lim
𝑁→∞

∑ ∑ ∑ 𝐼̇0𝑝1+𝑘1−1𝑝2+𝑘2−1
(𝛼𝑘+𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑒𝑖𝑛(𝛼2−𝛼1)𝑧𝑘1𝑘2𝐷𝑛𝑝1𝑝211
(𝛼𝑘+𝑛)

𝑁1

𝑝1=1

𝑁2

𝑝2=1

𝑁

𝑛=−𝑁

 (301) 
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From equations (299), the exciting terms (featuring �̇�𝑎) enable us to deduce that 

{
 

 𝐼0𝑘1𝑘2
(𝛼1)̅̅ ̅̅ ̅̅ ̅

= 𝐼0
(𝛼1)𝑒

𝑖
2𝜋(𝑘1−1)

𝑁1

𝐼0𝑘1𝑘2
(𝛼2)̅̅ ̅̅ ̅̅ ̅

= 𝐼0
(𝛼2)𝑒

𝑖
2𝜋(𝑘2−1)

𝑁1

 

which implies 

{
 

 𝐼̇0𝑝1+𝑘1−1𝑝2+𝑘2−1
(𝛼1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= 𝐼0̇
(𝛼1)𝑒

𝑖
2𝜋(𝑝1−1)

𝑁1 𝑒
𝑖
2𝜋(𝑘1−1)

𝑁1

𝐼̇0𝑝1+𝑘1−1𝑝2+𝑘2−1
(𝛼2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= 𝐼0̇
(𝛼2)𝑒

𝑖
2𝜋(𝑝2−1)

𝑁2 𝑒
𝑖
2𝜋(𝑘2−1)

𝑁2

 

Then substituting these terms in equations (301) enables us to find the dependences of the other 

𝐼0𝑘1𝑘2
(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅

 amplitudes on 𝑘1 and 𝑘2 after several iterations. This procedure has led us for any 𝑘 ∈ ℤ to  

𝐼0𝑘1𝑘2
(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅

= 𝐼0
(𝛼𝑘)𝑒

𝑖𝜑
𝑘1𝑘2

(𝛼𝑘)

 (302) 

where the 𝐼0
(𝛼𝑘) are real functions depending on time only and 

𝜑𝑘1𝑘2
(𝛼𝑘) = 2𝜋 (

𝑘1 − 1

𝑁1
) + (𝑘 − 1) [2𝜋 (

𝑘2 − 1

𝑁2
) − 2𝜋 (

𝑘1 − 1

𝑁1
)] (303) 

 

Note that if we write 

{
 

 𝜑𝑘1 = 2𝜋 (
𝑘1 − 1

𝑁1
)

𝜑𝑘2 = 2𝜋 (
𝑘2 − 1

𝑁2
)

 

according to (303) we have 

𝜑𝑘1𝑘2
(𝛼𝑘) = 𝜑𝑘1 + (𝑘 − 1)[𝜑𝑘2 − 𝜑𝑘1] 

which is very similar to the expression of 𝛼𝑘 given by (289). 

Finally, we can now replace the 𝐼0𝑘1𝑘2
(𝛼𝑘)̅̅ ̅̅ ̅̅ ̅

 amplitudes with their expressions given by (302) in equations 

(299) to (301) to obtain 

{
 
 
 
 

 
 
 
 
𝐼0
(𝛼1) +

𝜇0
8𝜋2

1

𝛼1
2
 lim
𝑁→∞

∑ 𝐼0̇
(𝛼1+𝑛) ∑ ∑ 𝑒𝑖𝜑𝑝1𝑝2

(𝛼1+𝑛)

𝐷𝑛𝑝1𝑝211
(𝛼1+𝑛)

𝑁1

𝑝1=1

𝑁2

𝑝2=1

𝑁

𝑛=−𝑁

= 4𝜎𝑙1𝑅𝑐1�̇�𝑎 sin
2 (
𝜋

𝑁1
)
1

𝛼1
2

𝐼0
(𝛼2) +

𝜇0
8𝜋2

1

𝛼2
2
 lim
𝑁→∞

∑ 𝐼0̇
(𝛼2+𝑛) ∑ ∑ 𝑒𝑖𝜑𝑝1𝑝2

(𝛼2+𝑛)

𝐷𝑛𝑝1𝑝211
(𝛼2+𝑛)

𝑁1

𝑝1=1

𝑁2

𝑝2=1

𝑁

𝑛=−𝑁

= 4
𝜎𝑙2
𝑁1
𝑅𝑐2�̇�𝑎 sin

2 (
𝜋

𝑁2
)
1

𝛼2
2

𝐼0
(𝛼𝑘) +

𝜇0
8𝜋2

1

𝛼𝑘
2
 lim
𝑁→∞

∑ 𝐼0̇
(𝛼𝑘+𝑛) ∑ ∑ 𝑒𝑖𝜑𝑝1𝑝2

(𝛼𝑘+𝑛)

𝐷𝑛𝑝1𝑝211
(𝛼𝑘+𝑛)

𝑁1

𝑝1=1

𝑁2

𝑝2=1

𝑁

𝑛=−𝑁

= 0, 𝑓𝑜𝑟𝑘 ∈ ℤ\{1; 2}

 (304) 
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Note that equations (304) are still written in complex notation and have been derived from complex 

equations (291) using linear operations only. Since the real part of complex equations (291) correspond 

to the true equations of the system which are given by (260), we can affirm that only the real part of 

complex equations (291) are needed to fully describe the system. As a result, we can deduce that only 

the real part of complex equations (304) are governing the system. 

Since the 𝐼0
(𝛼𝑘) are real functions, the equations of the system are thus reduced to 

𝐼0
(𝛼𝑘) + lim

𝑁→∞
∑ 𝜏(𝛼𝑘)(𝛼𝑘+𝑛)𝐼0̇

(𝛼𝑘+𝑛)

𝑁

𝑛=−𝑁

= 𝐼0𝑒𝑥𝑡
(𝛼𝑘) (305) 

where the 𝐼0𝑒𝑥𝑡
(𝛼𝑘) are given by 

𝐼0𝑒𝑥𝑡
(𝛼𝑘) =

{
 
 

 
 4𝜎𝑙1𝑅𝑐1�̇�𝑎 sin

2 (
𝜋

𝑁1
)
1

𝛼1
2
𝑓𝑜𝑟𝑘 = 1

4
𝜎𝑙2
𝑁1
𝑅𝑐2�̇�𝑎 sin

2 (
𝜋

𝑁2
)
1

𝛼2
2
𝑓𝑜𝑟𝑘 = 2

0𝑓𝑜𝑟𝑘 ∈ ℤ\{1; 2}

 (306) 

and the 𝜏(𝛼𝑘)(𝛼𝑘+𝑛) are time constants given by 

𝜏(𝛼𝑘)(𝛼𝑘+𝑛) =
𝜇0
8𝜋2

1

𝛼𝑘
2
𝑅𝑒 (∑ ∑ 𝑒𝑖𝜑𝑝1𝑝2

(𝛼𝑘+𝑛)

𝐷𝑛𝑝1𝑝211
(𝛼𝑘+𝑛)

𝑁1

𝑝1=1

𝑁2

𝑝2=1

) (307) 

where 𝑅𝑒(𝑋) refers to the real part of complex number 𝑋 and the expressions of 𝛼𝑘, 𝐷𝑛𝑝1𝑝211
(𝛼𝑘+𝑛)  and 

𝜑𝑝1𝑝2
(𝛼𝑘+𝑛) are given in (289), (295) and (303) respectively. 

Using the expressions of 𝐷𝑛𝑝1𝑝2𝑘1𝑘2
(𝛼𝑘)  given by (295), we can alternatively express the time constants 

𝜏(𝛼𝑘)(𝛼𝑘+𝑛) as 

𝜏(𝛼𝑘)(𝛼𝑘+𝑛) = 𝜎𝑙1
𝜇0
8𝜋2

1

𝛼𝑘
2
𝐸𝑛1
(𝛼𝑘)(𝛼𝑘+𝑛) + 𝜎𝑙2

𝜇0
8𝜋2

1

𝛼𝑘
2
𝐸𝑛2
(𝛼𝑘)(𝛼𝑘+𝑛) (308) 

 

From the expressions of 𝐶𝑛𝑝1𝑝2𝑘1𝑘2
(𝛼𝑘)  and 𝐶𝑛𝑝1𝑝2𝑘2

(𝛼𝑘)  given in (293) and (294) and those of 𝑋𝑛𝑝1𝑝2𝑘1𝑘2
(𝛼𝑘)  

given in (278), we can write 

{
 
 

 
 𝐸𝑛1

(𝛼𝑘)(𝛼𝑘+𝑛) = 𝑅𝑒 (
1

𝑙
∫ 𝑒𝑖𝛼𝑘+𝑛𝑧

′
∫ 𝑒−𝑖

2𝜋𝑛𝑧′′

𝑙 𝐹1(𝑧
′′, 𝑧′)𝑑𝑧′′

𝑙/2

𝑧′′=−𝑙/2

𝑑𝑧′
+∞

𝑧′=−∞

)

𝐸𝑛2
(𝛼𝑘)(𝛼𝑘+𝑛) =

1

𝑁1
2 𝑅𝑒 (

1

𝑙
∫ 𝑒𝑖𝛼𝑘+𝑛𝑧

′
∫ 𝑒−𝑖

2𝜋𝑛𝑧′′

𝑙 𝐹2(𝑧
′′, 𝑧′)𝑑𝑧′′

𝑙/2

𝑧′′=−𝑙/2

𝑑𝑧′
+∞

𝑧′=−∞

)

 (309) 

where 𝛼𝑘+𝑛 = 𝛼1 + (𝑘 + 𝑛 − 1)(𝛼1 − 𝛼2), 𝑙 = 2𝜋/(𝛼1 − 𝛼2), 𝛼1 = 2𝜋/𝑙𝑝1, 𝛼2 = 2𝜋/𝑙𝑝2 and 

{
  
 

  
 
𝐹1(𝑧

′′, 𝑧′) = ∑ ∑ 𝑒𝑖𝜑𝑝1𝑝2
(𝛼𝑘+𝑛)

∫ ℎ1𝑝1𝑝2
(𝑧′′, 𝑧′, 𝛹′)𝑑𝛹′

2𝜋

𝛹′=0

𝑁1

𝑝1=1

𝑁2

𝑝2=1

𝐹2(𝑧
′′, 𝑧′) = ∑ ∑ 𝑒𝑖𝜑𝑝1𝑝2

(𝛼𝑘+𝑛)

∫ ℎ2𝑝1𝑝2
(𝑧′′, 𝑧′, 𝛹′)𝑑𝛹′

2𝜋

𝛹′=0

𝑁1

𝑝1=1

𝑁2

𝑝2=1

 (310) 
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The expressions of the ℎ1𝑝1𝑝2
(𝑧′′, 𝑧′, 𝛹′) and ℎ2𝑝1𝑝2

(𝑧′′, 𝑧′, 𝛹′) functions are 

{
 
 

 
 ℎ1𝑝1𝑝2

(𝑧′′, 𝑧′, 𝛹′) =
2

𝑔𝑝1𝑝211(𝑧
′′, 𝑧′, 𝛹′)

−
1

𝑔𝑝1𝑝2𝑁11(𝑧
′′, 𝑧′, 𝛹′)

−
1

𝑔𝑝1𝑝221(𝑧
′′, 𝑧′, 𝛹′)

ℎ2𝑝1𝑝2
(𝑧′′, 𝑧′, 𝛹′) = ∑ [

2

𝑔𝑝1𝑝2𝑗11(𝑧
′′, 𝑧′, 𝛹′)

−
1

𝑔𝑝1𝑝2𝑗1𝑁2(𝑧
′′, 𝑧′, 𝛹′)

−
1

𝑔𝑝1𝑝2𝑗12(𝑧
′′, 𝑧′, 𝛹′)

]

𝑁1

𝑗1=1

 (311) 

where the 𝑔𝑝1𝑝2𝑘1𝑘2(𝑧
′′, 𝑧′, 𝛹′) functions are given by (279).  

The current 𝐼𝑘1𝑘2(𝑧) flowing though element 𝑘1 of substage 𝑘2 at 𝑧 is, from equations (290) and 

(302), equal to 

𝐼𝑘1𝑘2(𝑧) = ∑ 𝐼0
(𝛼𝑘) cos (𝛼𝑘𝑧 + 𝜑𝑘1𝑘2

(𝛼𝑘))

+∞

𝑘=−∞

 (312) 

 

Note that we have assumed 𝐼𝑘1𝑘2(𝑧) = 𝐼𝑘2(𝑧)/𝑁1 + 𝐼𝑘1
〈𝑘2〉(𝑧) (see equation (253) in section IV.2.3 ) 

where 𝐼𝑘2(𝑧) is the current induced in substage 𝑘2 to shield the superstage and 𝐼𝑘1
〈𝑘2〉(𝑧) is the current 

induce in element 𝑘1 of substage 𝑘2 to shield substage 𝑘2. Thus we have 

∑ 𝐼𝑘1
〈𝑘2〉(𝑧)

𝑁1

𝑘1=1

= 0 

because all the 𝐼𝑘1
〈𝑘2〉(𝑧) currents are shielding the same substage, therefore their sum must be zero. 

As a result, we have 

∑ 𝐼𝑘1𝑘2(𝑧)

𝑁1

𝑘1=1

= ∑ 𝐼𝑘1
〈𝑘2〉(𝑧)

𝑁1

𝑘1=1

+ ∑
𝐼𝑘2(𝑧)

𝑁1

𝑁1

𝑘1=1

= 𝐼𝑘2(𝑧) 

which leads to 

𝐼𝑘2(𝑧) = ∑ ∑ 𝐼0
(𝛼𝑘) cos (𝛼𝑘𝑧 + 𝜑𝑘1𝑘2

(𝛼𝑘))

+∞

𝑘=−∞

𝑁1

𝑘1=1

= ∑ 𝐼0
(𝛼𝑘) ∑ cos (𝛼𝑘𝑧 + 𝜑𝑘1𝑘2

(𝛼𝑘))

𝑁1

𝑘1=1

+∞

𝑘=−∞

 

Since, according to (303), 𝜑𝑘1𝑘2
(𝛼𝑘) = (𝑘 − 1)2𝜋 (

𝑘2−1

𝑁2
) + (2 − 𝑘)2𝜋 (

𝑘1−1

𝑁1
), we can deduce that 

∑ cos (𝛼𝑘𝑧 + 𝜑𝑘1𝑘2
(𝛼𝑘))

𝑁1

𝑘1=1

= {

0𝑖𝑓𝑘 ≠ 2 + 𝑝𝑁1, 𝑝 ∈ ℤ

𝑁1 cos(𝛼𝑘𝑧 + (𝑘 − 1)2𝜋 (
𝑘2 − 1

𝑁2
)) 𝑖𝑓𝑘 = 2 + 𝑝𝑁1, 𝑝 ∈ ℤ

 

So 

𝐼𝑘2(𝑧) = ∑ 𝐼0
(𝛼2+𝑝𝑁1)𝑁1 cos(𝛼2+𝑝𝑁1𝑧 + (1 + 𝑝𝑁1)2𝜋 (

𝑘2 − 1

𝑁2
))

+∞

𝑝=−∞

 (313) 
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The currents induced through each substage to shield the superstage are thus a combination of cosine 

functions of space with spatial frequencies (𝛼2+𝑝𝑁1)𝑝∈ℤ
. 

We can immediately conclude that the currents induced through each element of a substage to shield 

it are a combination of cosine functions of space with the remaining spatial frequencies, i.e. with 

(𝛼𝑘)𝑘≠2+𝑝𝑁1,𝑝∈ℤ. Indeed from the previous equations, we have 

𝐼𝑘1
〈𝑘2〉(𝑧) = 𝐼𝑘1𝑘2(𝑧) −

𝐼𝑘2(𝑧)

𝑁1
= ∑ 𝐼0

(𝛼𝑘) cos (𝛼𝑘𝑧 + 𝜑𝑘1𝑘2
(𝛼𝑘))

+∞

𝑘=−∞
𝑘≠2+𝑝𝑁1,𝑝∈ℤ

 (314) 

 

We have now expressed both the part of the induced currents shielding the superstage and the one 

shielding each substage and reduced the system equations to a first-order differential equation on the 

𝐼0
(𝛼𝑘) amplitudes which depend on time only. The system equation, which is now given by (305), is an 

infinite matrix equation having the following form 

[
 
 
 
 
 
 
 
⋮
⋮
⋮

𝐼0
(𝛼1)

𝐼0
(𝛼2)

⋮
⋮
⋮ ]
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
⋱ ⋱ 𝜏(𝛼1)(𝛼0) 𝜏(𝛼1)(𝛼1) 𝜏(𝛼1)(𝛼2) ⋱ ⋱ ⋱
⋱ ⋱ ⋱ 𝜏(𝛼2)(𝛼1) 𝜏(𝛼2)(𝛼2) 𝜏(𝛼2)(𝛼3) ⋱ ⋱

⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
⋮
⋮
⋮

𝐼0̇
(𝛼1)

𝐼0̇
(𝛼2)

⋮
⋮
⋮ ]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
0
⋮
0

𝐼0𝑒𝑥𝑡
(𝛼1)

𝐼0𝑒𝑥𝑡
(𝛼2)

0
⋮
0 ]
 
 
 
 
 
 
 
 

 

We clearly see that the two spatial modes which are directly excited by the time-variation of the 

applied magnetic field 𝐵𝑎 are the spatial frequencies 𝛼1 and 𝛼2. The other modes are only excited by 

the time-variation of the currents with the spatial frequencies 𝛼1 and 𝛼2. 

 

IV.2.5.4.4 Expression of the system equation for N=1 

 

The maximum order of the Fourier series of the 1/𝑔𝑝1𝑝2𝑘1𝑘2(𝑧, 𝑧
′, 𝛹′) function has been noted 𝑁 

in the previous section. Therefore the notation 𝑁 = 1 indicates that the Fourier series is stopped at the 

first order, i.e. we only take into account the terms obtained for −1 ≤ 𝑛 ≤ 1; the others are considered 

to be zero.  

In the previous section we have shown that the system equation was described by an infinite matrix 

equation; it thus cannot be solved numerically. 

The infinite nature of the matrix is due to two different facts: 

 First, the currents induced in the elements are described by an infinity of cosine 

functions of space having the spatial frequencies (𝛼𝑘)𝑘∈ℤ 

 Secondly, the decomposition in Fourier series we have used in section IV.2.5.1  to 

express the 1/𝑔𝑝1𝑝2𝑘1𝑘2(𝑧, 𝑧
′, 𝛹′) function (see equation (274)) is, by nature, infinite 
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The time constant 𝜏(𝛼𝑘)(𝛼𝑘+𝑛) which links the amplitude 𝐼0
(𝛼𝑘) (amplitude of the cosine function with 

spatial frequency 𝛼𝑘) to 𝐼0̇
(𝛼𝑘+𝑛)  (time variation of the amplitude of the cosine function with spatial 

frequency 𝛼𝑘+𝑛) is expressed in equation (308) as  

𝜏(𝛼𝑘)(𝛼𝑘+𝑛) = 𝜎𝑙1
𝜇0
8𝜋2

1

𝛼𝑘
2
𝐸𝑛1
(𝛼𝑘)(𝛼𝑘+𝑛) + 𝜎𝑙2

𝜇0
8𝜋2

1

𝛼𝑘
2
𝐸𝑛2
(𝛼𝑘)(𝛼𝑘+𝑛) 

We can first notice that 𝜏(𝛼𝑘)(𝛼𝑘+𝑛) is proportional to 1/𝛼𝑘
2 and since 𝛼𝑘 = 𝛼1 + (𝑘 − 1)(𝛼2 − 𝛼1), 

we can conclude that for 𝑘 ≫ 1 the time constants 𝜏(𝛼𝑘)(𝛼𝑘+𝑛) will tend towards zero for any 𝑛 ∈ ℤ. This 

means that the amplitudes 𝐼0
(𝛼𝑘) with 𝑘 ≫ 1 will be decoupled from the time variation of any 𝐼0

(𝛼𝑘), 𝑘 ∈

ℤ, and since 𝐼0𝑒𝑥𝑡
(𝛼𝑘) = 0 for 𝑘 ∈ ℤ\{1; 2}, we can see that it will in fact be possible to neglect the 

amplitudes 𝐼0
(𝛼𝑘) for 𝑘 ≫ 1. In other words, we can consider only a finite number of spatial frequencies 

𝛼𝑘, and thus only a finite part (in the vertical direction) of the infinite 𝜏 matrix, without changing the 

physical behavior of the system. 

Furthermore, we have also investigated the values of the coefficients due to the decomposition in 

Fourier series of the 1/𝑔𝑝1𝑝2𝑘1𝑘2(𝑧, 𝑧
′, 𝛹′) function, i.e. the 𝐸𝑛1

(𝛼𝑘)(𝛼𝑘+𝑛) and 𝐸𝑛2
(𝛼𝑘)(𝛼𝑘+𝑛) coefficients 

appearing in the expression of 𝜏(𝛼𝑘)(𝛼𝑘+𝑛). Indeed, we have numerically computed them for different 

values of 𝑘 and 𝑛 and for two different set of (𝑅𝑓 , 𝑅𝑐1 , 𝑅𝑐2 , 𝑙𝑝1 , 𝑙𝑝2 , 𝑁1, 𝑁2) parameters which are 

representative of the first two and last two cabling stages of JT-60SA TF conductor; they are displayed 

from Figure 50 to Figure 57. 

 

First set of parameters : first two cabling stages of TF JT-60SA conductor 

The first set of parameters, which is representative of the first two cabling stages of JT-60SA TF 

conductor, is deduced from the results of section IV.5.4 :  

(𝑅𝑓 = 0.327𝑚𝑚,𝑅𝑐1 = 0.49𝑚𝑚,𝑅𝑐2 = 0.82𝑚𝑚, 𝑙𝑝1 = 45.4𝑚𝑚, 𝑙𝑝2 = 66.7𝑚𝑚,𝑁1 = 3,𝑁2 = 3) 

The 𝑅𝑓 value corresponds here to the outer radius of the filamentary zone of JT-60SA TF strand (see 

section II.4.3 ). 

Figure 50 displays the values of the 𝐸𝑛1
(𝛼𝑘)(𝛼𝑘+𝑛) computed numerically for −1 ≤ 𝑘 ≤ 4 and −5 ≤

𝑛 ≤ 5. We can see that, for each spatial frequency 𝛼𝑘, the maximum absolute value of 𝐸𝑛1
(𝛼𝑘)(𝛼𝑘+𝑛) is 

always reached between 𝑛 = −1 and 𝑛 = 1. We can also observe that the 𝐸𝑛1
(𝛼𝑘)(𝛼𝑘+𝑛) coefficients are 

all zero for 𝛼𝑘 = 𝛼−1 and 𝛼𝑘 = 𝛼2. 

Figure 51 displays, the values of 𝐸𝑛1
(𝛼𝑘)(𝛼𝑘+𝑛) normalized to the maximum absolute value of 

𝐸𝑛1
(𝛼𝑘)(𝛼𝑘+𝑛) for each spatial frequency 𝛼𝑘 (if the coefficients are not zero for every 𝑛). 

For example, for 𝛼𝑘 = 𝛼0, the normalized coefficient |𝐸𝑛1𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
(𝛼0)(𝛼0+𝑛) | = |𝐸𝑛1

(𝛼0)(𝛼0+𝑛)/

max(|𝐸𝑛1
(𝛼0)(𝛼0+𝑛)|)

−5≤𝑛≤5
| corresponds to the absolute value of the 𝐸𝑛1

(𝛼0)(𝛼0+𝑛) coefficients divided by 

the maximum absolute value of 𝐸𝑛1
(𝛼0)(𝛼0+𝑛) obtained for −5 ≤ 𝑛 ≤ 5.  
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Therefore Figure 51 also shows that the maximum absolute value of 𝐸𝑛1
(𝛼𝑘)(𝛼𝑘+𝑛) is always reached 

between 𝑛 = −1 and 𝑛 = 1 (when the ratio is equal to 100%) and that the values of the 𝐸𝑛1
(𝛼𝑘)(𝛼𝑘+𝑛) 

coefficients strongly decrease with increasing 𝑛 (they are all below 25% of their maximum absolute 

value for |𝑛| ≥ 2). 

 

Figure 50 : 𝑬𝒏𝟏
(𝜶𝒌)(𝜶𝒌+𝒏)coefficients for different values of k and n for the first set of parameters 

 

 

Figure 51 : 𝑬𝒏𝟏
(𝜶𝒌)(𝜶𝒌+𝒏) normalized coefficients for different values of k and n for the first set of parameters 
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Figure 52 : 𝑬𝒏𝟐
(𝜶𝒌)(𝜶𝒌+𝒏)coefficients for different values of k and n for the first set of parameters 

 

 

 

Figure 53 : 𝑬𝒏𝟐
(𝜶𝒌)(𝜶𝒌+𝒏)normalized coefficients for different values of k and n for the first set of parameters 

Figure 52 and Figure 53 are the equivalent of Figure 50 and Figure 51 but for the 𝐸𝑛2
(𝛼𝑘)(𝛼𝑘+𝑛) 

coefficients. We also see that the maximum absolute value of 𝐸𝑛2
(𝛼𝑘)(𝛼𝑘+𝑛) is always reached between 

𝑛 = −1 and 𝑛 = 1 and that the absolute values of the 𝐸𝑛2
(𝛼𝑘)(𝛼𝑘+𝑛) coefficients strongly decrease with 

increasing 𝑛 (they are all below 5% of their maximum absolute value for |𝑛| ≥ 2). We can observe that 

the 𝐸𝑛2
(𝛼𝑘)(𝛼𝑘+𝑛) coefficients are all zero for 𝛼𝑘 = 𝛼0, 𝛼𝑘 = 𝛼1, 𝛼𝑘 = 𝛼3 and 𝛼𝑘 = 𝛼4. 
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Second set of parameters : last two cabling stages of TF JT-60SA conductor   

The second set of parameters, which is representative of the last two cabling stages of JT-60SA TF 

conductor, is also deduced from the results of section IV.5.4 :  

(𝑅𝑓 = 1.62𝑚𝑚,𝑅𝑐1 = 2.31𝑚𝑚,𝑅𝑐2 = 7.75𝑚𝑚, 𝑙𝑝1 = 185.2𝑚𝑚, 𝑙𝑝2 = 285.7𝑚𝑚,𝑁1 = 3,𝑁2 = 6) 

The 𝑅𝑓 value corresponds here to the cabling radius of the third cabling stage of JT-60SA TF conductor 

because here 𝑅𝑐2 is the fifth and last cabling stage of the conductor and 𝑅𝑐1 is the fourth cabling stage 

of the conductor (see section IV.5.4 ). 

Figure 54 to Figure 57 are the equivalent of Figure 50 to Figure 53 but for the second set of 

parameters. 

As we have observed it for the first set of parameters, the maximum absolute value of 𝐸𝑛1
(𝛼𝑘)(𝛼𝑘+𝑛) 

and 𝐸𝑛2
(𝛼𝑘)(𝛼𝑘+𝑛) is always reached between 𝑛 = −1 and 𝑛 = 1 and the absolute values of the 𝐸𝑛1

(𝛼𝑘)(𝛼𝑘+𝑛) 

and 𝐸𝑛2
(𝛼𝑘)(𝛼𝑘+𝑛) coefficients strongly decrease with increasing 𝑛. Indeed for |𝑛| ≥ 2, they are all below 

25% of their maximum absolute value for 𝐸𝑛1
(𝛼𝑘)(𝛼𝑘+𝑛) and below 10% for 𝐸𝑛2

(𝛼𝑘)(𝛼𝑘+𝑛)).  

Again we can notice on Figure 54 that the 𝐸𝑛1
(𝛼𝑘)(𝛼𝑘+𝑛) coefficients are all zero for 𝛼𝑘 = 𝛼−1 and 

𝛼𝑘 = 𝛼2, and on Figure 56 that the 𝐸𝑛2
(𝛼𝑘)(𝛼𝑘+𝑛) coefficients are all zero for 𝛼𝑘 = 𝛼0, 𝛼𝑘 = 𝛼1, 𝛼𝑘 = 𝛼3 

and 𝛼𝑘 = 𝛼4. 

We recall that the time constant 𝜏(𝛼𝑘)(𝛼𝑘+𝑛) reflects the coupling between 𝐼0
(𝛼𝑘) and 𝐼0̇

(𝛼𝑘+𝑛) and that 

it is a linear combination of 𝐸𝑛1
(𝛼𝑘)(𝛼𝑘+𝑛) and 𝐸𝑛2

(𝛼𝑘)(𝛼𝑘+𝑛). The 𝐸𝑛1
(𝛼𝑘)(𝛼𝑘+𝑛) coefficients are in fact giving 

the link between the 𝐼0
(𝛼𝑘) induced in each element of a substage to shield it from the time variation of 

the 𝐼0
(𝛼𝑘+𝑛) flowing through every element while the 𝐸𝑛2

(𝛼𝑘)(𝛼𝑘+𝑛) gives the link between the 𝐼0
(𝛼𝑘) induced 

in each substage to shield the superstage from the same variation. In the previous section we have seen 

that the currents induced in each substage to shield the superstage, i.e. the 𝐼𝑘2, only featured the spatial 

frequencies (𝛼2+𝑝𝑁1)𝑝∈ℤ
 and that the currents induced in each element of a substage to shield it, i.e. the 

𝐼𝑘1
〈𝑘2〉, only featured the spatial frequencies (𝛼𝑘)𝑘≠2+𝑝𝑁1,𝑝∈ℤ. Consequently, the time variation of the 

𝐼0
(𝛼𝑘+𝑛) does not induce currents with spatial frequencies different from (𝛼2+𝑝𝑁1)𝑝∈ℤ

 in the 𝐼𝑘2 and does 

not induce currents with spatial frequencies (𝛼2+𝑝𝑁1)𝑝∈ℤ
 in the 𝐼𝑘1

〈𝑘2〉; therefore the 

(𝐸𝑛1
(𝛼2+𝑝𝑁1)(𝛼2+𝑝𝑁1+𝑛))

𝑝∈ℤ
 and the (𝐸𝑛2

(𝛼𝑘)(𝛼𝑘+𝑛))
𝑘≠2+𝑝𝑁1,𝑝∈ℤ

 are zero. 

For the two different geometries we have chosen, we had 𝑁1 = 3, thus the 𝐸𝑛1
(𝛼𝑘)(𝛼𝑘+𝑛) are zero for 

𝑘 = 2 + 3𝑝, 𝑝 ∈ ℤ and the 𝐸𝑛2
(𝛼𝑘)(𝛼𝑘+𝑛) are zero for 𝑘 ≠ 2 + 3𝑝, 𝑝 ∈ ℤ. Since we have chosen 𝑘 such 

that −1 ≤ 𝑘 ≤ 4, the 𝐸𝑛1
(𝛼𝑘)(𝛼𝑘+𝑛) are zero for 𝑘 = {−1; 2} and the 𝐸𝑛2

(𝛼𝑘)(𝛼𝑘+𝑛) are zero for 𝑘 =

{0; 1; 3; 4}; this is exactly what we have observed on Figure 50, Figure 52, Figure 54 and Figure 56. 
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Figure 54 : 𝑬𝒏𝟏
(𝜶𝒌)(𝜶𝒌+𝒏)coefficients for different values of k and n for the second set of parameters 

 

 

 

Figure 55 : 𝑬𝒏𝟏
(𝜶𝒌)(𝜶𝒌+𝒏)normalized coefficients for different values of k and n for the second set of parameters 
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Figure 56 : 𝑬𝒏𝟐
(𝜶𝒌)(𝜶𝒌+𝒏) coefficients for different values of k and n for the second set of parameters 

 

 

 

Figure 57 : 𝑬𝒏𝟐
(𝜶𝒌)(𝜶𝒌+𝒏) normalized coefficients for different values of k and n for the second set of parameters 
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This numerical evaluation of the (𝐸𝑛1
(𝛼𝑘)(𝛼𝑘+𝑛), 𝐸𝑛2

(𝛼𝑘)(𝛼𝑘+𝑛)) coefficients for geometries at two very 

different scales (one representative of the first two cabling stages and the other representative of the last 

two cabling stages of TF JT-60SA conductor) has shown us that the coefficients obtained for |𝑛| > 1 

were negligible in front of those obtained for |𝑛| ≤ 1. 

In other words, this means that the coupling between the 𝐼0
(𝛼𝑘) and the 𝐼0̇

(𝛼𝑘+𝑛) can be neglected when 

|𝑛| > 1. 

Therefore, we can now be confident about the fact that stopping the Fourier series of the 

1/𝑔𝑝1𝑝2𝑘1𝑘2(𝑧, 𝑧
′, 𝛹′) function at the first order (i.e. for 𝑁 = 1) will not induce high differences in the 

modeling of the two cabling stage conductor. This step is an important one as we have assessed here 

that the analytical expression we have chosen along a trade-off between mathematical complexity and 

relevancy, finds our model still strongly reliable and stays in the guideline of our global model 

development strategy. 

In addition, the assumption 𝑁 = 1 implies that the 𝜏 matrix describing the coupling between the 

different amplitudes is tridiagonal but still infinite. In this case, the matrix equation leads to the following 

equations for any 𝑘 ∈ ℤ 

𝐼0
(𝛼𝑘) + ∑ 𝜏(𝛼𝑘)(𝛼𝑘+𝑛)𝐼0̇

(𝛼𝑘+𝑛)

1

𝑛=−1

= 𝐼0𝑒𝑥𝑡
(𝛼𝑘) 

which can alternatively be expressed, using the complex notation  𝐼0
(𝛼𝑘)̅̅ ̅̅ ̅̅

= 𝐼0
(𝛼𝑘)𝑒𝑖𝜔𝑡,  as 

𝐼0
(𝛼𝑘)̅̅ ̅̅ ̅̅

=
1

1 + 𝑖𝜔𝜏(𝛼𝑘)(𝛼𝑘)
𝐼0𝑒𝑥𝑡
(𝛼𝑘)̅̅ ̅̅ ̅̅

−
𝜔𝜏(𝛼𝑘)(𝛼𝑘−1)

1 + 𝑖𝜔𝜏(𝛼𝑘)(𝛼𝑘)
𝐼0
(𝛼𝑘−1)̅̅ ̅̅ ̅̅ ̅̅

−
𝜔𝜏(𝛼𝑘)(𝛼𝑘+1)

1 + 𝑖𝜔𝜏(𝛼𝑘)(𝛼𝑘)
𝐼0
(𝛼𝑘+1)̅̅ ̅̅ ̅̅ ̅̅

 (315) 

 

Since the only non-zero 𝐼0𝑒𝑥𝑡
(𝛼𝑘) are obtained for 𝑘 = 1 and 𝑘 = 2, we can deduce that 𝐼0

(𝛼1) and 𝐼0
(𝛼2) 

are the only amplitudes that are directly excited by the time variation of the applied magnetic field 𝐵𝑎. 

For a slowly time varying applied magnetic field 𝐵𝑎, the coupling between the 𝐼0
(𝛼𝑘) is negligible and 

the only non-zero 𝐼0
(𝛼𝑘) are obtained for 𝑘 = 1 and 𝑘 = 2. When the coupling is maximum, i.e. when 

𝜔𝜏(𝛼𝑘)(𝛼𝑘) ≫ 1 for any 𝑘 ∈ ℤ, equation (315) becomes 

𝐼0
(𝛼𝑘)̅̅ ̅̅ ̅̅

≃
−𝑖

𝜔𝜏(𝛼𝑘)(𝛼𝑘)
𝐼0𝑒𝑥𝑡
(𝛼𝑘)̅̅ ̅̅ ̅̅

+ 𝑖
𝜏(𝛼𝑘)(𝛼𝑘−1)

𝜏(𝛼𝑘)(𝛼𝑘)
𝐼0
(𝛼𝑘−1)̅̅ ̅̅ ̅̅ ̅̅

+ 𝑖
𝜏(𝛼𝑘)(𝛼𝑘+1)

𝜏(𝛼𝑘)(𝛼𝑘)
𝐼0
(𝛼𝑘+1)̅̅ ̅̅ ̅̅ ̅̅

 

Using our previous considerations on the (𝐸𝑛1
(𝛼𝑘)(𝛼𝑘+𝑛), 𝐸𝑛2

(𝛼𝑘)(𝛼𝑘+𝑛)) coefficients and equation (308), 

we have 

𝜏(𝛼𝑘)(𝛼𝑘−1)/𝜏(𝛼𝑘)(𝛼𝑘) = {
𝐸−11
(𝛼𝑘)(𝛼𝑘−1)/𝐸01

(𝛼𝑘)(𝛼𝑘)𝑖𝑓𝑘 ≠ 2 + 𝑝𝑁1, 𝑝 ∈ ℤ

𝐸−12
(𝛼𝑘)(𝛼𝑘−1)/𝐸02

(𝛼𝑘)(𝛼𝑘)𝑖𝑓𝑘 = 2 + 𝑝𝑁1, 𝑝 ∈ ℤ
 

 According to Figure 50 and Figure 57, it appears that those terms are almost always much smaller 

than 1; using the complex equation above, this indicates that the main contribution to 𝐼0
(𝛼𝑘) is the source 
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term 𝐼0𝑒𝑥𝑡
(𝛼𝑘) even when the coupling is maximum. As a result, we realize that there is no need to consider 

every 𝐼0
(𝛼𝑘)since their amplitudes rapidly decreases for 𝑘 < 1 and 𝑘 > 2 even in fully coupled regimes. 

Consequently, for 𝑁 = 1, we have decided to only consider the four amplitudes (𝐼0
(𝛼𝑘))

0≤𝑘≤3
 and 

have reduced the equation to 

[
 
 
 
 
 𝐼0
(𝛼0)

𝐼0
(𝛼1)

𝐼0
(𝛼2)

𝐼0
(𝛼3)]

 
 
 
 
 

+

[
 
 
 
 
𝜏(𝛼0)(𝛼0) 𝜏(𝛼0)(𝛼1) 0 0

𝜏(𝛼1)(𝛼0) 𝜏(𝛼1)(𝛼1) 𝜏(𝛼1)(𝛼2) 0

0 𝜏(𝛼2)(𝛼1) 𝜏(𝛼2)(𝛼2) 𝜏(𝛼2)(𝛼3)
0 0 𝜏(𝛼3)(𝛼2) 𝜏(𝛼3)(𝛼3)]

 
 
 
 

[
 
 
 
 
 𝐼0̇
(𝛼0)

𝐼0̇
(𝛼1)

𝐼0̇
(𝛼2)

𝐼0̇
(𝛼3)]

 
 
 
 
 

=

[
 
 
 
 
0

𝐼0𝑒𝑥𝑡
(𝛼1)

𝐼0𝑒𝑥𝑡
(𝛼2)

0 ]
 
 
 
 

 (316) 

where the 𝜏(𝛼𝑘)(𝛼𝑘+𝑛) are given by equation (308) with 𝐸𝑛1
(𝛼𝑘)(𝛼𝑘+𝑛) = 0 for 𝑘 = 2 and 𝐸𝑛2

(𝛼𝑘)(𝛼𝑘+𝑛) =

0 for 𝑘 = {0; 1; 3} and the 𝐼0𝑒𝑥𝑡
(𝛼𝑘) are given by equation (306). 

 

IV.2.6  Power dissipated by coupling currents 

 

 We will now express the coupling power dissipated in a group of groups of twisted elements as 

a function of the 𝑰𝟎
(𝜶𝒌) amplitudes of the coupling currents. 

IV.2.6.1  General expression 

 

In section IV.2.3.1 , we have noted 𝐼𝑘1𝑘1+1
〈𝑘2〉 (𝑧) the local transverse current flowing in substage 𝑘2 

from element 𝑘1 to the adjacent element 𝑘1 + 1 at 𝑧. The local power 𝑑𝑃𝑘1𝑘1+1
〈𝑘2〉 (𝑧) dissipated in a slice 

of thickness 𝑑𝑧 by the flow of 𝐼𝑘1𝑘1+1
〈𝑘2〉 (𝑧) is then given by 

𝑑𝑃𝑘1𝑘1+1
〈𝑘2〉 (𝑧) =

𝐼𝑘1𝑘1+1
〈𝑘2〉

2
(𝑧)

𝑑𝐺1
=
1

𝜎𝑙1
(
𝐼𝑘1𝑘1+1
〈𝑘2〉 (𝑧)

𝑑𝑧
)

2

𝑑𝑧 (317) 

 

In section IV.2.3.2 , we have noted 𝐼𝑘2𝑘2+1(𝑧) the local transverse current flowing from substage 

𝑘2 to the adjacent substage 𝑘2 + 1 at 𝑧. 

The local power 𝑑𝑃𝑘2𝑘2+1(𝑧) dissipated in a slice of thickness 𝑑𝑧 by the flow of 𝐼𝑘2𝑘2+1(𝑧) is then 

𝑑𝑃𝑘2𝑘2+1(𝑧) =
𝐼𝑘2𝑘2+1

2(𝑧)

𝑑𝐺2
=
1

𝜎𝑙2
(
𝐼𝑘2𝑘2+1(𝑧)

𝑑𝑧
)

2

𝑑𝑧 (318) 

Therefore the total local power 𝑑𝑃(𝑧) dissipated in a slice of thickness 𝑑𝑧 by the flow of all the local 

transverse currents (𝐼𝑘1𝑘1+1
〈𝑘2〉 (𝑧))

1≤𝑘1≤𝑁1
1≤𝑘2≤𝑁2

 and (𝐼𝑘2𝑘2+1(𝑧))1≤𝑘2≤𝑁2
 is 

𝑑𝑃(𝑧) = 𝑑𝑃𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑎𝑔𝑒(𝑧) + 𝑑𝑃𝑠𝑢𝑏𝑠𝑡𝑎𝑔𝑒(𝑧) (319) 

with 
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{
  
 

  
 
𝑑𝑃𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑎𝑔𝑒(𝑧) = ∑ 𝑑𝑃𝑘2𝑘2+1(𝑧)

𝑁2

𝑘2=1

𝑑𝑃𝑠𝑢𝑏𝑠𝑡𝑎𝑔𝑒(𝑧) = ∑ ∑ 𝑑𝑃𝑘1𝑘1+1
〈𝑘2〉 (𝑧)

𝑁1

𝑘1=1

𝑁2

𝑘2=1

 (320) 

Using equations (254) and (256), we have 

𝑑𝐼𝑘1𝑘2(𝑧)

𝑑𝑧
= [

𝐼𝑘1−1𝑘1
〈𝑘2〉 (𝑧)

𝑑𝑧
−
𝐼𝑘1𝑘1+1
〈𝑘2〉 (𝑧)

𝑑𝑧
] +

1

𝑁1
[
𝐼𝑘2−1𝑘2(𝑧)

𝑑𝑧
−
𝐼𝑘2𝑘2+1(𝑧)

𝑑𝑧
] (321) 

which enables us to write 

∑
𝑑𝐼𝑘1𝑘2(𝑧)

𝑑𝑧

𝑁1

𝑘1=1

= [
𝐼𝑘2−1𝑘2(𝑧)

𝑑𝑧
−
𝐼𝑘2𝑘2+1(𝑧)

𝑑𝑧
] 

In addition, from equation (312), we know that for any time regime 

𝑑𝐼𝑘1𝑘2(𝑧)

𝑑𝑧
= ∑ −𝛼𝑘𝐼0

(𝛼𝑘) sin (𝛼𝑘𝑧 + 𝜑𝑘1𝑘2
(𝛼𝑘))

+∞

𝑘=−∞

 

Thus 

∑
𝑑𝐼𝑘1𝑘2(𝑧)

𝑑𝑧

𝑁1

𝑘1=1

= ∑ −𝛼𝑘𝐼0
(𝛼𝑘) ∑ sin(𝛼𝑘𝑧 + 𝜑𝑘1𝑘2

(𝛼𝑘))

𝑁1

𝑘1=1

+∞

𝑘=−∞

 

 

Since from (303), 𝜑𝑘1𝑘2
(𝛼𝑘) = (𝑘 − 1)

2𝜋(𝑘2−1)

𝑁2
+ (2 − 𝑘)

2𝜋(𝑘1−1)

𝑁1
, we can deduce that 

∑ sin (𝛼𝑘𝑧 + 𝜑𝑘1𝑘2
(𝛼𝑘))

𝑁1

𝑘1=1

= {
𝑁1 sin(𝛼𝑘𝑧 + (𝑘 − 1)

2𝜋(𝑘2 − 1)

𝑁2
) 𝑖𝑓𝑘 = 2 + 𝑝𝑁1, 𝑝 ∈ ℤ

0𝑖𝑓𝑘 ≠ 2 + 𝑝𝑁1, 𝑝 ∈ ℤ

 

Therefore 

[
𝐼𝑘2−1𝑘2(𝑧)

𝑑𝑧
−
𝐼𝑘2𝑘2+1(𝑧)

𝑑𝑧
] = ∑ −𝛼𝑘𝐼0

(𝛼𝑘)𝑁1 sin(𝛼𝑘𝑧 + (𝑘 − 1)
2𝜋(𝑘2 − 1)

𝑁2
)

+∞

𝑘=−∞
𝑘=2+𝑝𝑁1,𝑝∈ℤ

 

With the method we have used in section III.2.6  to derive equation (208) and from the equation 

above, we can write for 1 ≤ 𝑘2 ≤ 𝑁2 

𝐼𝑘2𝑘2+1(𝑧)

𝑑𝑧
= ∑ 𝛼𝑘𝐼𝑘2𝑘2+1

(𝛼𝑘) (𝑧)

+∞

𝑘=−∞
𝑘=2+𝑝𝑁1,𝑝∈ℤ

 (322) 

with 
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𝐼𝑘2𝑘2+1
(𝛼𝑘) (𝑧) =

{
 

 𝐼𝑡02
(𝛼𝑘) cos [𝛼𝑘𝑧 + (𝑘 − 1)

𝜋(2𝑘2 − 1)

𝑁2
] 𝑖𝑓𝑘 ≠ 𝑗𝑁2 + 1, 𝑗 ∈ ℤ

𝐼0
(𝛼𝑘)𝑁1 (𝑘2 −

𝑁2 + 1

2
) sin(𝛼𝑘𝑧) 𝑖𝑓𝑘 = 𝑗𝑁2 + 1, 𝑗 ∈ ℤ

 (323) 

where the 𝐼𝑡02
(𝛼𝑘) are functions depending on time only equal to 

𝐼𝑡02
(𝛼𝑘) =

−𝐼0
(𝛼𝑘)𝑁1

2 sin ((𝑘 − 1)
𝜋
𝑁2
)

 
(324) 

Now, going back to equation (321), for 1 ≤ 𝑘2 ≤ 𝑁2, we have 

[
𝐼𝑘1−1𝑘1
〈𝑘2〉 (𝑧)

𝑑𝑧
−
𝐼𝑘1𝑘1+1
〈𝑘2〉 (𝑧)

𝑑𝑧
] =

𝑑𝐼𝑘1𝑘2(𝑧)

𝑑𝑧
−
1

𝑁1
[
𝐼𝑘2−1𝑘2(𝑧)

𝑑𝑧
−
𝐼𝑘2𝑘2+1(𝑧)

𝑑𝑧
] 

Using the previous relations, this leads to 

[
𝐼𝑘1−1𝑘1
〈𝑘2〉 (𝑧)

𝑑𝑧
−
𝐼𝑘1𝑘1+1
〈𝑘2〉 (𝑧)

𝑑𝑧
] = ∑ −𝛼𝑘𝐼0

(𝛼𝑘) sin (𝛼𝑘𝑧 + 𝜑𝑘1𝑘2
(𝛼𝑘))

+∞

𝑘=−∞
𝑘≠2+𝑝𝑁1,𝑝∈ℤ

 

Again, with the method we have used in section III.2.6  to derive equation (208) and from the 

equation above, we can write for 1 ≤ 𝑘2 ≤ 𝑁2 and 1 ≤ 𝑘2 ≤ 𝑁2 

𝐼𝑘1𝑘1+1
〈𝑘2〉

𝑑𝑧
= ∑ 𝛼𝑘𝐼𝑡01

(𝛼𝑘) cos [𝛼𝑘𝑧 + 𝜑𝑘1𝑘2
(𝛼𝑘) + (2 − 𝑘)

𝜋

𝑁1
]

+∞

𝑘=−∞
𝑘≠2+𝑝𝑁1,𝑝∈ℤ

 (325) 

where the 𝐼𝑡01
(𝛼𝑘) are functions depending on time only equal to 

𝐼𝑡01
(𝛼𝑘) =

−𝐼0
(𝛼𝑘)

2 sin ((2 − 𝑘)
𝜋
𝑁1
)

 
(326) 

 

The local power 𝑑𝑃𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑎𝑔𝑒(𝑧) dissipated in a slice of thickness 𝑑𝑧 by the flow of the interbundle 

(between substages) currents can be expressed using equations (318), (320) and (322) as 

𝑑𝑃𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑎𝑔𝑒(𝑧) =
1

𝜎𝑙2
∑

(

 
 

∑ 𝛼𝑘𝐼𝑘2𝑘2+1
(𝛼𝑘) (𝑧)

+∞

𝑘=−∞
𝑘=2+𝑝𝑁1,𝑝∈ℤ )

 
 

2

𝑁2

𝑘2=1

𝑑𝑧 (327) 

with from (323) 

𝐼𝑘2𝑘2+1
(𝛼𝑘) (𝑧) =

{
 

 𝐼𝑡02
(𝛼𝑘) cos [𝛼𝑘𝑧 + (𝑘 − 1)

𝜋(2𝑘2 − 1)

𝑁2
] 𝑖𝑓𝑘 ≠ 𝑗𝑁2 + 1, 𝑗 ∈ ℤ

𝐼0
(𝛼𝑘)𝑁1 (𝑘2 −

𝑁2 + 1

2
) sin(𝛼𝑘𝑧) 𝑖𝑓𝑘 = 𝑗𝑁2 + 1, 𝑗 ∈ ℤ

 (328) 

where 𝐼𝑡02
(𝛼𝑘) is given by (324). 
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And the local power 𝑑𝑃𝑠𝑢𝑏𝑠𝑡𝑎𝑔𝑒(𝑧) dissipated in a slice of thickness 𝑑𝑧 by the flow of the 

intrabundle (inside each substage) currents using equations (317), (320) and (325) 

𝑑𝑃𝑠𝑢𝑏𝑠𝑡𝑎𝑔𝑒(𝑧) =
1

𝜎𝑙1
∑ ∑

(

  
 

∑ 𝛼𝑘𝐼𝑡01
(𝛼𝑘) cos [𝛼𝑘𝑧 + 𝜑𝑘1𝑘2

(𝛼𝑘) + (2 − 𝑘)
𝜋

𝑁1
]

+∞

𝑘=−∞
𝑘≠2+𝑝𝑁1
𝑝∈ℤ )

  
 

2

𝑑𝑧

𝑁1

𝑘1=1

𝑁2

𝑘2=1

 (329) 

where 𝐼𝑡01
(𝛼𝑘) is given by (326). 

 

IV.2.6.2  Expression for 𝑁 = 1 

 

In section IV.2.5.4.4, we have seen that it was possible to take into account only four of the 

(𝐼0
(𝛼𝑘))

𝑘∈ℤ
 amplitudes for 0 ≤ 𝑘 ≤ 3. From equation (327), we can now write 

𝑑𝑃𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑎𝑔𝑒(𝑧) =
1

𝜎𝑙2
∑

(

 
 

∑ 𝛼𝑘𝐼𝑘2𝑘2+1
(𝛼𝑘) (𝑧)

3

𝑘=0
𝑘=2+𝑝𝑁1,𝑝∈ℤ )

 
 

2

𝑁2

𝑘2=1

𝑑𝑧 

The relative integer 𝑝 must satisfy 0 ≤ 2 + 𝑝𝑁1 ≤ 3 and thus −
2

𝑁1
≤ 𝑝 ≤

1

𝑁1
, since by assumption 

𝑁1 ≥ 3, the only possible relative integer is 𝑝 = 0 which corresponds to 𝑘 = 2. Therefore, from (323) 

and (324), since 𝑁2 ≥ 3, we have 

𝑑𝑃𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑎𝑔𝑒(𝑧) =
1

𝜎𝑙2

𝛼2
2𝐼0
(𝛼2)

2
𝑁1

2

4 sin2 (
𝜋
𝑁2
)
∑ cos2 [𝛼2𝑧 +

𝜋(2𝑘2 − 1)

𝑁2
]

𝑁2

𝑘2=1

𝑑𝑧 

Since the sum of the squared cosines gives 𝑁2/2, we finally have 

𝑑𝑃𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑎𝑔𝑒(𝑧)

𝑑𝑧
=

𝛼2
2𝑁1

2𝑁2

8𝜎𝑙2 sin
2 (
𝜋
𝑁2
)
𝐼0
(𝛼2)

2
 (330) 

 

Regarding the local power due to the substage scale, from equation (329), we can write 

𝑑𝑃𝑠𝑢𝑏𝑠𝑡𝑎𝑔𝑒(𝑧) =
1

𝜎𝑙1
∑ ∑

(

 
 

∑ 𝛼𝑘𝐼𝑡01
(𝛼𝑘) cos [𝛼𝑘𝑧 + 𝜑𝑘1𝑘2

(𝛼𝑘) + (2 − 𝑘)
𝜋

𝑁1
]

3

𝑘=0
𝑘≠2+𝑝𝑁1,𝑝∈ℤ )

 
 

2

𝑑𝑧

𝑁1

𝑘1=1

𝑁2

𝑘2=1

 

Since 𝑘 = 2 was the only possible value of 𝑘 with respect to the condition 𝑘 = 2 + 𝑝𝑁1, 𝑝 ∈ ℤ, we 

can deduce that the values of 𝑘 between 0 and 4 that satisfy the condition 𝑘 ≠ 2 + 𝑝𝑁1, 𝑝 ∈ ℤ are 𝑘 =

{0; 1; 3}. Therefore, from (326), we have 
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𝑑𝑃𝑠𝑢𝑏𝑠𝑡𝑎𝑔𝑒(𝑧) =
1

4𝜎𝑙1
∑ ∑

(

 
 
∑

𝛼𝑘𝐼0
(𝛼𝑘)

sin((2 − 𝑘)
𝜋
𝑁1
)

cos [𝛼𝑘𝑧 + 𝜑𝑘1𝑘2
(𝛼𝑘) + (2 − 𝑘)

𝜋

𝑁1
]

3

𝑘=0
𝑘≠2 )

 
 

2

𝑑𝑧

𝑁1

𝑘1=1

𝑁2

𝑘2=1

 

The term inside the brackets features crossed cosines, which after the sum over 𝑘1, leads to 

𝑑𝑃𝑠𝑢𝑏𝑠𝑡𝑎𝑔𝑒(𝑧)

𝑑𝑧
=
𝑁2𝑁1
8𝜎𝑙1

∑
𝛼𝑘

2

sin2 ((2 − 𝑘)
𝜋
𝑁1
)

𝐼0
(𝛼𝑘)

2
3

𝑘=0
𝑘≠2

 
(331) 

Finally, from equation (319), we have 

𝑑𝑃(𝑧)

𝑑𝑧
=

𝛼2
2𝑁1

2𝑁2

8𝜎𝑙2 sin
2 (
𝜋
𝑁2
)
𝐼0
(𝛼2)

2
+
𝑁2𝑁1
8𝜎𝑙1

∑
𝛼𝑘

2

sin2 ((2 − 𝑘)
𝜋
𝑁1
)

𝐼0
(𝛼𝑘)

2
3

𝑘=0
𝑘≠2

 
(332) 

and the instant power per unit axial length generated inside the 𝑁2-uplet of 𝑁1-uplets is 

𝑃𝑙(𝑧) =
𝛼2

2𝑁1
2𝑁2

8𝜎𝑙2 sin
2 (
𝜋
𝑁2
)
𝐼0
(𝛼2)

2
+
𝑁2𝑁1
8𝜎𝑙1

∑
𝛼𝑘

2

sin2 ((2 − 𝑘)
𝜋
𝑁1
)

𝐼0
(𝛼𝑘)

2
3

𝑘=0
𝑘≠2

 
(333) 

 

IV.2.7  Study in inductive regime 

 

 We will now assess the relevance of the inductive part of our model through a study in purely 

inductive regime. 

In order to assess the relevance of 𝑁2-uplet of 𝑁1-uplets model with the assumption 𝑁 = 1, we have 

carried out a comparison of the results in purely inductive regime with a simplified analytical approach. 

The purely inductive regime occurs when the conductor is subject to an infinite variation of the 

applied magnetic field 𝐵𝑎, i.e. when 𝐵𝑎 behaves as a step function. 

The simplified analytical approach considers that the two cabling stages conductor can be 

represented, at a given position 𝑧 along the 𝑧-axis, by 𝑁2 groups of 𝑁1 infinite straight tubes whose 

positions in the cross-sectional plane correspond to the positions of the elements at the same z. The 

geometry considered here is identical to the one displayed on Figure 44 but for 𝑁2 groups of 𝑁1 elements 

instead of 𝑁 elements; its cross-section is displayed on Figure 58 

The simplified analytical approach consists in computing the inductance matrix per unit axial length 

[𝐿] of the 𝑁2 groups of 𝑁1 infinite straight tubes using the analytical formulae of self and mutual 

inductances per unit length between tubes and in assuming that the tubes are subject to a step function 

of 𝐵𝑎. 

This inductance matrix per unit axial length [𝐿] is used in the equation 

[𝐿][𝐼]̇ = −[𝑥]�̇�𝑎 
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where [𝐼]̇ is the column vector of the time variation of the currents flowing through the infinite 

straight tubes and [𝑥] is the column vector of the positions of the infinite straight tubes along the x-axis. 

Note that the left-hand term of this equation corresponds to the time variation of the magnetic flux per 

unit axial length felt by the tubes and due to the currents in the tubes; the right-hand term is the time 

variation of the magnetic flux per unit axial length felt by the tubes and due to the applied magnetic field 

variation. 

 

Figure 58 : Cross-section positions of the infinite straight tubes for a sextuplet of triplets 

 

This equation enables us to compute the currents induced in the infinite straight tubes by an infinitely 

fast variation of 𝐵𝑎 (step function) as 

[𝑑𝐼] = −[𝐿]−1[𝑥]𝑑𝐵𝑎 

In our model, in purely inductive regime, the system equation, given by (316), can be reduced to 

[
 
 
 
 
𝜏(𝛼0)(𝛼0) 𝜏(𝛼0)(𝛼1) 0 0

𝜏(𝛼1)(𝛼0) 𝜏(𝛼1)(𝛼1) 𝜏(𝛼1)(𝛼2) 0

0 𝜏(𝛼2)(𝛼1) 𝜏(𝛼2)(𝛼2) 𝜏(𝛼2)(𝛼3)
0 0 𝜏(𝛼3)(𝛼2) 𝜏(𝛼3)(𝛼3)]

 
 
 
 

[
 
 
 
 
 𝐼0̇
(𝛼0)

𝐼0̇
(𝛼1)

𝐼0̇
(𝛼2)

𝐼0̇
(𝛼3)]

 
 
 
 
 

=

[
 
 
 
 
0

𝐼0𝑒𝑥𝑡
(𝛼1)

𝐼0𝑒𝑥𝑡
(𝛼2)

0 ]
 
 
 
 

 

because the time-variations of 𝐵𝑎 and of the current amplitudes (𝐼0
(𝛼𝑘))

0≤𝑘≤3
  are supposed to be 

infinitely greater than the current amplitudes (𝐼0
(𝛼𝑘))

0≤𝑘≤3
. 
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Multiplying both sides of the equation by 𝑑𝑡 and using (306), (308) and our previous considerations 

on the (𝐸𝑛1
(𝛼𝑘)(𝛼𝑘+𝑛), 𝐸𝑛2

(𝛼𝑘)(𝛼𝑘+𝑛)) coefficients we obtain 

[
 
 
 
 
𝜎𝑙1𝑀(𝛼0)(𝛼0) 𝜎𝑙1𝑀(𝛼0)(𝛼1) 0 0

𝜎𝑙1𝑀(𝛼1)(𝛼0) 𝜎𝑙1𝑀(𝛼1)(𝛼1) 𝜎𝑙1𝑀(𝛼1)(𝛼2) 0

0 𝜎𝑙2𝑀(𝛼2)(𝛼1) 𝜎𝑙2𝑀(𝛼2)(𝛼2) 𝜎𝑙2𝑀(𝛼2)(𝛼3)

0 0 𝜎𝑙1𝑀(𝛼3)(𝛼2) 𝜎𝑙1𝑀(𝛼3)(𝛼3)]
 
 
 
 

[
 
 
 
 
 𝑑𝐼0

(𝛼0)

𝑑𝐼0
(𝛼1)

𝑑𝐼0
(𝛼2)

𝑑𝐼0
(𝛼3)]

 
 
 
 
 

=

[
 
 
 
 
 

0

4𝜎𝑙1𝑅𝑐1 sin
2 (
𝜋

𝑁1
)
1

𝛼1
2

4𝜎𝑙2
𝑅𝑐2
𝑁1

sin2 (
𝜋

𝑁2
)
1

𝛼2
2

0 ]
 
 
 
 
 

𝑑𝐵𝑎 

with 

𝑀(𝛼𝑘)(𝛼𝑘+𝑛) =

{
 

 
𝜇0
8𝜋2

1

𝛼𝑘
2
𝐸𝑛1
(𝛼𝑘)(𝛼𝑘+𝑛)𝑖𝑓𝑘 = {0; 1; 3}

𝜇0
8𝜋2

1

𝛼𝑘
2
𝐸𝑛2
(𝛼𝑘)(𝛼𝑘+𝑛)𝑖𝑓𝑘 = 2

 

This system can simply be solved diving both sides of the first, second and fourth lines of the matrix 

equation by 𝜎𝑙1, and the third line by 𝜎𝑙2 and then inversing the obtained matrix on the left-hand side. 

The variations of currents due to the step of 𝐵𝑎 (here chosen as 𝑑𝐵𝑎 = 1𝑇) computed using this 

procedure and the straight infinite tubes approach on the sextuplet of triplets of Figure 58 are displayed 

on Figure 59. We can see the good agreement between the results; the inductive part of the model is 

then consistent for realistic geometries. 

 

 

Figure 59 : Variations of currents induced in the sextuplet of triplets displayed on Figure 58 computed using the 
straight infinite tubes approach (solid lines) and the 𝑵𝟐-uplet of 𝑵𝟏-uplets model (dashed lines) 
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IV.3 Adaptation of the N2-uplet of N1-uplets model to the MPAS model 

 

Having derived the equation governing a conductor described by the 𝑁2-uplet of 𝑁1-uplets model 

as well as the coupling power generated by unit length of conductor, we will show that it is possible to 

express the coupling losses per cycle per unit volume of conductor envelope (i.e. circumscribed volume) 

as in the MPAS model (see section III.3 ). 

We first start by expressing the coupling power generated by unit volume of conductor envelope 

𝑃𝑣𝑜𝑙. In order to do so, we simply have to divide the coupling power generated by unit length of 

conductor - which is given by equation (333) - by the surface of the conductor envelope which is 

𝜋(𝑅𝑐2 + 𝑅𝑐1 + 𝑅)
2
 where 𝑅 is the radius of the elements of the 𝑁2-uplet of 𝑁1-uplets (see section IV.2.2 

). 

Consequently, from equation (333), we have 

𝑃𝑣𝑜𝑙 =
𝑃𝑙

𝜋(𝑅𝑐2 + 𝑅𝑐1 + 𝑅)
2 =∑𝛿𝑗𝐼0

(𝛼𝑗)
2

3

𝑗=0

 (334) 

where 

{
 
 
 
 
 
 

 
 
 
 
 
 𝛿0 =

𝑁2𝑁1𝛼0
2

8𝜎𝑙1 sin
2 (
2𝜋
𝑁1
)𝜋(𝑅𝑐2 + 𝑅𝑐1 + 𝑅)

2

𝛿1 =
𝑁2𝑁1𝛼1

2

8𝜎𝑙1 sin
2 (
𝜋
𝑁1
)𝜋(𝑅𝑐2 + 𝑅𝑐1 + 𝑅)

2

𝛿2 =
𝑁2𝑁1

2𝛼2
2

8𝜎𝑙2 sin
2 (
𝜋
𝑁2
)𝜋(𝑅𝑐2 + 𝑅𝑐1 + 𝑅)

2

𝛿3 =
𝑁2𝑁1𝛼3

2

8𝜎𝑙1 sin
2 (
𝜋
𝑁1
)𝜋(𝑅𝑐2 + 𝑅𝑐1 + 𝑅)

2

 (335) 

 

Let us note [𝐼0] the column vector of the (𝐼0
(𝛼𝑘))

0≤𝑘≤3
 current amplitudes such that for 1 ≤ 𝑘 ≤ 4, 

[𝐼0]𝑘 = 𝐼0
(𝛼𝑘−1). According to equation (316), the equation governing [𝐼0] can be written as 

[𝐼0] + [𝜏][𝐼0̇] = [𝑌]�̇�𝑎 (336) 

with 

[𝜏] =

[
 
 
 
 
𝜏(𝛼0)(𝛼0) 𝜏(𝛼0)(𝛼1) 0 0

𝜏(𝛼1)(𝛼0) 𝜏(𝛼1)(𝛼1) 𝜏(𝛼1)(𝛼2) 0

0 𝜏(𝛼2)(𝛼1) 𝜏(𝛼2)(𝛼2) 𝜏(𝛼2)(𝛼3)
0 0 𝜏(𝛼3)(𝛼2) 𝜏(𝛼3)(𝛼3)]

 
 
 
 

 and [𝑌] =

[
 
 
 
 

0

4𝜎𝑙1𝑅𝑐1 sin
2 (

𝜋

𝑁1
) /𝛼1

2

4
𝜎𝑙2
𝑁1
𝑅𝑐2 sin

2 (
𝜋

𝑁2
) /𝛼2

2

0 ]
 
 
 
 

�̇�𝑎 

where the 𝜏(𝛼𝑘)(𝛼𝑘+𝑛) are given by equation (308). 

As we did in the composite modeling in section II.2.8 , assuming that [𝜏] is a diagonalizable matrix, 

we can express it as 
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[𝜏] = [𝑉][𝜏𝑐][𝑉]
−1 (337) 

where [𝜏𝑐] is the diagonal matrix containing the eigenvalues of [𝜏] and [𝑉] is the matrix containing 

the eigenvectors of [𝜏]. 

By analogy with the calculations we have carried out in section II.2.8 , we can immediately conclude 

that it is possible to express the coupling losses per cycle of magnetic excitation 𝐵𝑝sin(𝜔𝑡) per unit 

volume of conductor envelope 𝑄 adapting equations (126), (127) and (128) to 

𝑄(𝜔) =∑𝑛𝜅𝑗
𝐵𝑝

2

𝜇0

𝜋𝜔𝜏𝑐𝑗

1 + (𝜔𝜏𝑐𝑗)
2

4

𝑗=1

 (338) 

with 

𝑛𝜅𝑗 = 2𝜇0∑∑
𝛿𝑘−1[𝑉]𝑘𝑗[𝑉]𝑘𝑙[𝑌𝑏]𝑙[𝑌𝑏]𝑗

𝜏𝑐𝑗 + 𝜏𝑐𝑙

4

𝑙=1

4

𝑘=1

 (339) 

where the (𝛿𝑗)0≤𝑗≤3
 are given in (335), [𝑉] and [𝜏𝑐] are obtained diagonalizing [𝜏], and[𝑌𝑏] is 

defined as 

[𝑌𝑏] = [𝑉]
−1[𝑌] (340) 

 

In addition, using the fact [𝜏] = [𝑉][𝜏𝑐][𝑉]
−1 and that [𝑌𝑏] = [𝑉]

−1[𝑌], we can express equation 

(336) as 

[𝑉]−1[𝐼0] + [𝜏𝑐][𝑉]
−1[𝐼0̇] = [𝑌𝑏]�̇�𝑎 

which is equivalent to 

[𝑉𝑏][𝐼0] + [𝜏𝑐][𝑉𝑏][𝐼0̇] = [

1
1
1
1

] �̇�𝑎 

with, for 1 ≤ 𝑗 ≤ 4, [𝑉𝑏]𝑗 = [𝑉]𝑗
−1/[𝑌𝑏]𝑗; the notation [𝑋]𝑗 refers to the jth line of [𝑋]. 

From this equation, it is legitimate to introduce a vector of magnetic fields (𝐵𝑖𝑒𝑞𝑗)1≤𝑗≤4
 noted 

[𝐵𝑖𝑒𝑞] such that [𝑉𝑏][𝐼0] = [�̇�𝑖𝑒𝑞]; integrating the equation with respect to time leads for 1 ≤ 𝑗 ≤ 4 to 

𝐵𝑖𝑒𝑞𝑗 + 𝜏𝑐𝑗�̇�𝑖𝑒𝑞𝑗 = 𝐵𝑎 (341) 

where 𝜏𝑐𝑗 refers to the jth diagonal element of [𝜏𝑐], and thus to the jth eigenvalue of [𝜏].  

Following the definition of 𝐵𝑖𝑒𝑞 we have introduced in the 𝑁-uplet model in section III.3.2 , we can 

say that 𝐵𝑖𝑒𝑞𝑗 is the equivalent internal uniform magnetic fields collinear to 𝐵𝑎⃗⃗ ⃗⃗⃗ whose time-variation 

would create, at any time 𝑡, the same distribution of current (𝐼0
(𝛼𝑗−1) cos (𝛼𝑗−1𝑧 + 𝜑𝑘1𝑘2

(𝛼𝑗−1)))
1≤𝑘1≤𝑁1
1≤𝑘2≤𝑁2

 

than the one given by the 𝑁2-uplet of 𝑁1-uplets model. 
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We have therefore shown that a two cabling stages conductor could be described as in the MPAS 

model, i.e. with a set of local internal magnetic fields 𝐵𝑖𝑒𝑞𝑗
 associated with time constants 𝜏𝑐𝑗 (the 𝜏𝑐𝑗 

are analogous to the 𝜃𝑗 of the MPAS model in section III.3 ).  

Note that we have found here that the 𝑁2-uplet of 𝑁1-uplets was described by a set of four time 

constants instead of two considered by the MPAS model. 

However the MPAS model initially also considers that there are more than two time constants for a 

two cabling stages conductor, it simply reduces them to only two in order to simplify the approach. We 

have also chosen to reduce the number of time constants of the 𝑁2-uplet of 𝑁1-uplets because we have 

previously seen that theoretically there exists an infinity of time constants. 

Again, this point is important as it consolidates both the MPAS model, which is consistent with the 

experimental reality, and our model because our theoretical results are in agreement with the 

assumptions of the MPAS model. 

 

IV.4 Comparisons with numerical models 

 

In this section, we will compare the results of the 𝑁2-uplet of 𝑁1-uplets model with those of the 

reference numerical models THELMA and JackPot on two different simplified geometries which are 

respectively representative of ITER CS and JT-60SA TF conductors.  

For both comparisons, we have considered geometries which consist in a group of groups of cable 

elements (as in the 𝑁2-uplet of 𝑁1-uplets model) and slowly-time varying regimes of the applied 

transverse magnetic field 𝐵𝑎 so that we can assess the relevance of the resistive part of our model.  

In each comparison, we will start by extracting the effective geometrical parameters of the 

trajectories of the cable elements generated by the code (either THELMA or JackPot); these parameters 

are the cabling radii and the twist pitches of the substage and superstage scales, i.e. 𝑅𝑐1, 𝑅𝑐2, 𝑙𝑝1 and 𝑙𝑝2. 

We will then extract the effective electrical parameters of the conductor from the conductance network 

generated by the code; these parameters are the transverse conductances per unit axial length of the 

substage and superstage scales, i.e. 𝜎𝑙1 and 𝜎𝑙2. Having determined the effective parameters needed in 

the 𝑁2-uplet of 𝑁1-uplets model, we will then be able to compute the losses dissipated in the conductor 

and to compare it to the value computed by the code.  

 

IV.4.1  THELMA 

 

The THELMA code was developed to analyze the electromagnetic and thermo-hydraulic transients 
of superconducting CICCs for fusion magnets [8], [47]. In this work, the electromagnetic part of the 
code [48] has been applied to the analysis of the CS ITER conductor, through the same 24-sub-cable 
model adopted for the analysis of AC losses in the CS Insert experiment [49]. 
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IV.4.1.1  Assumptions of the comparison 

 
 

The comparison between the outputs of our analytical modeling and those of THELMA was 
carried out on a simplified representation of the last two stages of ITER CS conductor subject to a cyclic 
transverse and uniform magnetic excitation. 

 
The considered geometry was then a sextuplet of quadruplets, i.e. six bundles of four elements (with 

diameter of 6.49mm) each, and the cycles were +/- 0.2T triangles with frequency set to 0.1 Hz.  
 

IV.4.1.2  Determination of the effective geometrical parameters 

 

We consider that the trajectory of any element can be described by the following formula which is 

similar to that given by equations (250) to (252) 

(
𝑥(𝑧)

𝑦(𝑧)
) = (

𝑅𝐶2 cos (
2𝜋𝑧
𝑙𝑝2

+ 𝜑2) + 𝑅𝐶1 cos (
2𝜋𝑧
𝑙𝑝1

+ 𝜑1)

𝑅𝐶2 sin (
2𝜋𝑧
𝑙𝑝2

+ 𝜑2) + 𝑅𝐶1 sin (
2𝜋𝑧
𝑙𝑝1

+ 𝜑1)
) (342) 

 

In the expression above, 𝑅𝐶2 and 𝑙𝑝2 are the cabling radius and twist pitch of the superstage while 

𝑅𝐶1 and 𝑙𝑝1 are those of the substage; 𝜑2 and 𝜑1 are initial phase shifts. 

In order to find the effective geometrical parameters of the trajectories generated by THELMA, we 

have developed an algorithm which iteratively processes a given set of trajectories of elements. It first 

generates complex trajectories out of the real trajectories of the elements with the relation 𝑤(𝑧) =

𝑥(𝑧) + 𝑖𝑦(𝑧), where 𝑥(𝑧) and 𝑦(𝑧) are the positions of the center of the element along the x-axis and 

the y-axis respectively at given axial position 𝑧. It then computes the Fourier transform of each complex 

trajectory and processes them to extract the cabling radii 𝑅𝑐𝑘 (from the values of the maximum 

amplitudes of the Fourier transform) and the twist pitches 𝑙𝑝𝑘 (from the spatial frequencies of each of 

the maximum amplitudes of the Fourier transform) associated with each cabling stage 𝑘. 

The effective cabling radii and twist pitches we have found with our algorithm (whose values are 

displayed on Table 11) were in almost perfect agreement with the trajectories generated by THELMA 

since they consisted in a combination of perfect helicoids.  

This is shown on Figure 60 which displays the trajectory of cable element 1 (CE1) generated by 

THELMA and the one determined from the effective cabling radii and twist pitches we have found with 

our algorithm and from the fit of the initial phase shifts 𝜑2 and 𝜑1 using equation (342). 

 

Table 11 

Effective geometrical parameters extracted from THELMA trajectories 

Name Rc1 Rc2 lp1 lp2 

Value (mm) 𝟑. 𝟖𝟔 𝟏𝟏. 𝟒𝟗 𝟏𝟏𝟐. 𝟓 𝟒𝟓𝟎. 𝟎 
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Figure 60 : Fit of the trajectory of CE 1 generated by THELMA using our effective geometrical parameters 

 

IV.4.1.1  Determination of the effective electrical parameters 

 

In the 𝑁2-uplet of 𝑁1-uplets model, we consider the following electrical scheme for each cross-

section of the geometry considered in the present comparison. 

 

Figure 61 : Electrical scheme of a cross-section of a sextuplet of quadruplets (𝑵𝟐 = 𝟔, 𝑵𝟏 = 𝟒) 
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Each element is only in electrical contact with its direct neighbors (no diagonal contacts). We recall 

that in the model we consider a local transverse conductance 𝑑𝐺1 between two adjacent elements of the 

substage which is given for a slice of conductor of thickness 𝑑𝑧 by 

𝑑𝐺1 = 𝜎𝑙1𝑑𝑧 

where 𝜎𝑙1 is the transverse conductance per unit axial length of the substage scale. 

Similarly, the local transverse conductance 𝑑𝐺2 between two adjacent substages (i.e. bundles) is 

given for a slice of conductor of thickness 𝑑𝑧 by 

𝑑𝐺2 = 𝜎𝑙2𝑑𝑧 

where 𝜎𝑙2 is the transverse conductance per unit axial length of the superstage scale. 

The conductance network generated by THELMA for the considered geometry is a 3D matrix whose 

𝜎𝑙𝑘𝑗(𝑧) coefficients correspond to the local transverse conductance per unit axial length between Cable 

Elements 𝑘 and 𝑗 at 𝑧.  

It is important to note that THELMA considers diagonal contacts between each CE of the same 

bundle while these contacts are considered as non-existent in the 𝑁2-uplet of 𝑁1-uplets model. 

Therefore, in order to be able to extract the effective electrical parameters of the conductor (i.e. 𝜎𝑙1 and 

𝜎𝑙2) from the conductance network generated by THELMA, we first have to convert the electrical circuit 

considered by THELMA which features adjacent and diagonal contacts inside each bundle into one with 

adjacent contacts only (as shown in Figure 62). 

 

 

Figure 62 : Conversion of the electrical circuit considered by THELMA 

  

The transverse conductance per unit axial length between diagonal CEs of the same bundle is noted 

𝜎𝑑 and the one between adjacent CEs of the same bundle is noted 𝜎𝑣. In the conductance network 

generated by THELMA, the 𝜎𝑑 values are identical for all the bundles and for any position along the z-
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axis. The 𝜎𝑣 values are also identical for all the bundles and for any position along the z-axis but are 

different from the 𝜎𝑑 values. 

Using electrical circuit laws we can derive 

𝜎𝑙1 =
3

4
(𝜎𝑣 + 𝜎𝑑) 

According to the data generated by THELMA we have 𝜎𝑣 = 1.73 ∗ 10
7𝑆.𝑚−1 and 𝜎𝑑 = 1.41 ∗

107𝑆.𝑚−1 which using the previous formula leads to the value of 𝜎𝑙1 displayed in Table 12. 

 

Regarding the average transverse conductance per unit axial length between adjacent bundles, i.e. 

𝜎𝑙2, it is computed using the following procedure: for each group of adjacent bundles, we set all CEs of 

the first bundle to an electric potential 𝑉 and all CEs of the second bundle to a zero electrical potential, 

then we compute the current 𝐼 flowing from the first bundle to the second one and deduce an average 

conductance per unit length dividing 𝐼 by 𝑉 and by the length of conductor. Finally we average the 

values of conductance per unit length obtained for each group of adjacent strands. 

The procedure leads to the following relation 

𝜎𝑙2 =
1

𝑁2
[∑ ∑ ∑ 〈𝜎𝑙𝑘𝑗(𝑧)〉𝑧

𝑁1(𝑖+1)

𝑗=𝑖𝑁1+1

𝑖𝑁1

𝑘=𝑁1(𝑖−1)+1

𝑁2−1

𝑖=1

+∑ ∑ 〈𝜎𝑙𝑘𝑗(𝑧)〉𝑧

𝑁1𝑁2

𝑗=𝑁1(𝑁2−1)+1

𝑁1

𝑘=1

] 

the notation 〈𝑋(𝑧)〉𝑧 refers to the average of 𝑋 over 𝑧.  

Using the conductance network generated by THELMA, this formula has led us to the value of 𝜎𝑙2 

displayed in Table 12. 

Table 12 

Effective electrical parameters extracted from THELMA conductance network 

Name 𝜎𝑙1 𝜎𝑙2 

Value (𝟏𝟎𝟕𝑺.𝒎−𝟏) 𝟐. 𝟑𝟔 𝟔. 𝟓𝟎 

 

 

IV.4.1.2  Comparison on the coupling power 

 

In the comparison with THELMA, the conductor was subject to +/- 0.2T triangular cycles of 

transverse magnetic field with frequency set to 0.1 Hz. We have chosen to compare the value of the 

coupling stationary power generated at the end of a rising ramp computed using the 𝑁2-uplet of 𝑁1-

uplets model with that given by THELMA. 

Since we consider a stationary regime at the end of a rising ramp, the coupling currents are not time-

varying and the system equation given by equation (316) is simply reduced to 
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[
 
 
 
 
 𝐼0
(𝛼0)

𝐼0
(𝛼1)

𝐼0
(𝛼2)

𝐼0
(𝛼3)]

 
 
 
 
 

=

[
 
 
 
 
0

𝐼0𝑒𝑥𝑡
(𝛼1)

𝐼0𝑒𝑥𝑡
(𝛼2)

0 ]
 
 
 
 

 

Using the expressions of 𝐼0𝑒𝑥𝑡
(𝛼1) and 𝐼0𝑒𝑥𝑡

(𝛼2) given by (306), we have 

{
 

 𝐼0
(𝛼1) = 4𝜎𝑙1𝑅𝑐1�̇�𝑎 sin

2 (
𝜋

𝑁1
)
1

𝛼1
2

𝐼0
(𝛼2) = 4

𝜎𝑙2
𝑁1
𝑅𝑐2�̇�𝑎 sin

2 (
𝜋

𝑁2
)
1

𝛼2
2

 

where 𝛼1 = 2𝜋/𝑙𝑝1 and 𝛼2 = 2𝜋/𝑙𝑝2 

Since 𝐼0
(𝛼0) = 0 and 𝐼0

(𝛼3) = 0, from equation (333), the coupling power per unit axial length is 

𝑃𝑙(𝑧) =
𝛼1

2𝑁1𝑁2

8𝜎𝑙1 sin
2 (
𝜋
𝑁1
)
𝐼0
(𝛼1)

2
+

𝛼2
2𝑁1

2𝑁2

8𝜎𝑙2 sin
2 (
𝜋
𝑁2
)
𝐼0
(𝛼2)

2
 

which combined with the expressions of 𝐼0
(𝛼1) and 𝐼0

(𝛼2) above leads to 

𝑃𝑙(𝑧) = 2𝑁2 [𝜎𝑙1𝑁1𝑅𝑐1
2 sin2 (

𝜋

𝑁1
)(
𝑙𝑝1
2𝜋
)

2

+ 𝜎𝑙2𝑅𝑐2
2 sin2 (

𝜋

𝑁2
)(
𝑙𝑝2
2𝜋
)

2

] �̇�𝑎
2
 

For a rising ramp going from 0 to 0.2T in 2.5s, the time variation of the applied magnetic field is 

�̇�𝑎 = 0.08𝑇. 𝑠
−1. Using 𝑁1 = 4, 𝑁2 = 6 and the values of the effective parameters given in Table 11 

and Table 12, we have computed the following coupling stationary power per unit length of conductor 

𝑃𝑙 = 862𝑚𝑊.𝑚
−1 

We have found this value to be about 30% higher than the one computed by THELMA which was 
around 667𝑚𝑊.𝑚−1 (between 662𝑚𝑊.𝑚−1 and 673𝑚𝑊.𝑚−1 depending on the length of cable 
considered by THELMA). 

 

IV.4.1.3  Comparison on the induced currents 

 

In addition to the calculation of the coupling stationary power, we have also computed the 

longitudinal current induced in the first element of the first bundle 𝐼𝐶𝐸1(𝑧) at the end of a rising ramp 

and compared it with the one obtained by THELMA; the results are displayed on Figure 63. 

 

In order to compute 𝐼𝐶𝐸1(𝑧), we have adapted equation (312) such that 

𝐼𝐶𝐸1(𝑧) = 𝐼0
(𝛼1) cos(𝛼1𝑧 + 𝜑1) + 𝐼0

(𝛼2) cos(𝛼2𝑧 + 𝜑2) 

where 𝜑1 and 𝜑2 are the initial phase shifts that we have found to be 𝜑1 = 0 and 𝜑2 = 0 when we 

have fitted the trajectory of CE 1. 
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However, THELMA has considered that the applied magnetic field was along the x-axis while our 

formulae are valid for an applied magnetic field along the y-axis. After having applied the relevant 

modifications on our formulae, the expression above becomes 

𝐼𝐶𝐸1(𝑧) = 𝐼0
(𝛼1) sin(𝛼1𝑧) + 𝐼0

(𝛼2) sin(𝛼2𝑧) 

Using 𝑁1 = 4, 𝑁2 = 6, the values of the effective parameters given in Table 11 and Table 12 and 

the formulae of 𝐼0
(𝛼1) and 𝐼0

(𝛼2) of the previous section, we have found 

{
𝐼0
(𝛼1) = 4.7𝐴

𝐼0
(𝛼2) = 76.6𝐴

 

 

Figure 63 : Current induced in CE 1 computed by THELMA (red curve) and by our model (blue curve) 

We can see on Figure 63 the good agreement between the calculations of 𝐼11(𝑧) by both models 

(the difference lies in the range of 15% maximum). 

However our expression of 𝐼11(𝑧) only consists of two sinusoids with spatial periods 𝑙𝑝1 and 𝑙𝑝2 

while the one computed by THELMA features an additional signal (smaller than the sinusoids). 

This additional signal is very likely to come from the discretization of the inter-bundle (superstage 

scale) conductance network. Indeed, in our model we have averaged this network and, by doing this, we 

have also removed its local variations. The effect of the discretization of the intra-bundle (substage 

scale) conductance network may also play a role in the additional signal but with a smaller weight since 

we have seen that 𝐼0
(𝛼1) was around 6% of 𝐼0

(𝛼2). 

 

IV.4.2  JackPot 

 

JackPot AC/DC is a numerical model developed at the University of Twente [9]. It is an 
electromagnetic and thermal model that describes the AC/DC performance of CICCs and joints at strand 
level detail [50]. This model is used to study effects of current distribution non-uniformity, optimization 
of cable patterns and ITER and DEMO conductor and joint stability [51]. 
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IV.4.2.1  Assumptions of the comparison 

 
We here present the comparison we have carried out with the University of Twente on a simplified 

geometry of the last two stages of JT-60SA TF conductor: sextuplet of triplets of elements with diameter 
of 4.21mm. The conductor was subject to a +/- 1T sinusoidal transverse magnetic field with frequency 
set to 0.05 Hz. 

 

IV.4.2.2  Determination of the effective geometrical parameters 

 

Using the algorithm we have discussed in section IV.4.1.2  and the set of trajectories generated by 

JackPot we have determined the effective geometrical parameters displayed on Table 13. 

 

 

Figure 64 : Cross-section (a) and 3D geometry (b) generated by JackPot 

 

Table 13 

Effective geometrical parameters extracted from JackPot trajectories 

Name Rc1 Rc2 lp1 lp2 

Value (mm) 𝟑. 𝟎 𝟔. 𝟔 𝟏𝟖𝟕. 𝟎 𝟐𝟗𝟎. 𝟐 

 

 

 

Using the effective cabling radii and twist pitches of Table 13, we have adjusted the initial phases 

of CE 1, i.e. 𝜑2 and 𝜑1 of equation (342), with respect to the trajectory of CE 1 generated by JackPot. 

 

Both our representation of the trajectory of CE 1 and the one generated by JackPot are displayed on 

Figure 65.  
 

JackPot having the ability to simulate the compaction of a cable, the trajectories it generates are not 

exactly combinations of perfect helicoids (see Figure 64). Therefore our representation of the trajectory 

of CE 1 is not exaclty the same that the one generated by JackPot though we can see on Figure 65 that 

it is very close to it. 
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Figure 65 : Fit of the trajectory of CE1 generated by JackPot using our effective geometrical parameters 

 

IV.4.2.3  Determination of the effective electrical parameters 

 

The conductance network generated by JackPot for the considered geometry is a 3D matrix whose 

𝑑𝐺𝑘𝑗(𝑧) coefficients correspond to the local transverse conductances between Cable Elements 𝑘 and 𝑗 

at 𝑧. We can therefore write 𝑑𝐺𝑘𝑗(𝑧) = 𝜎𝑙𝑘𝑗(𝑧)𝑑𝑧 where 𝜎𝑙𝑘𝑗(𝑧) is the local transverse conductance 

per unit axial length between Cable Elements 𝑘 and 𝑗 at 𝑧. 

Conversely to the conductance network generated by THELMA, there are no diagonal contacts 

between elements of the same bundle and the local transverse conductances between adjacent elements 

of the same bundle are not identical for all the bundles and for any position along the z-axis in the 

conductance network generated by JackPot. 

We recall that the 𝑁2-uplet of 𝑁1-uplets model considers the electrical scheme displayed on Figure 

66 for each cross-section of the geometry considered in the comparison. 

In order to extract the effective electrical parameters of the conductance network generated by 

JackPot, i.e. 𝜎𝑙1 and 𝜎𝑙2, we use the procedure described below. 

We first compute the global transverse conductances between each CE by summing the 𝑑𝐺𝑘𝑗(𝑧) 

given by JackPot over the cable length 𝐿. This gives us the global transverse conductance matrix 𝐺 

between each CE whose coefficients are equal to 

𝐺(𝑘, 𝑗) = ∑𝑑𝐺𝑘𝑗(𝑧)

𝐿

𝑧=0
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Figure 66 : Electrical scheme of a cross-section of a sextuplet of triplets (𝑵𝟐 = 𝟔, 𝑵𝟏 = 𝟑) 

 

From this 𝐺 matrix, we compute the “intrabundle” average transverse conductance 𝐺1̂ which 

corresponds to the average transverse conductance between adjacent CEs of the same bundle. 

Following the definition of 𝐺1̂ and 𝜎𝑙1 we then have 𝜎𝑙1 = 𝐺1̂/𝐿. 

Using the conductance network generated by JackPot, the procedure has led us to the value of 𝜎𝑙1 

displayed in Table 14. 

Regarding the calculation of 𝜎𝑙2, we first have to build an “interbundle” transverse conductance 

matrix 𝐺2 (𝑁2 × 𝑁2 matrix) which gives the transverse conductance between every bundle. 

The transverse conductance between bundle 𝑘 and bundle 𝑗 (“interbundle” conductance) is equal to 

the sum of the transverse conductances between every CE of bundle 𝑘 and every CE of bundle 𝑗. 

Therefore the expression of 𝐺2 coefficients is 

𝐺2(𝑘2, 𝑗2) = ∑ ∑ 𝐺((𝑘2 − 1)𝑁1 + 𝑘1, (𝑗2 − 1)𝑁1 + 𝑗1)

𝑁1

𝑗1=1

𝑁1

𝑘1=1

 

From this 𝐺2 matrix, we compute the “interbundle” transverse average conductance 𝐺2̂ which 

corresponds to the average transverse conductance between adjacent bundles. 

Following the definition of 𝐺1̂ and 𝜎𝑙1 we then have 𝜎𝑙2 = 𝐺2̂/𝐿. 



211 

 

Using the conductance network generated by JackPot, the procedure has led us to the value of 𝜎𝑙2 

displayed in Table 14. 

Table 14 

Effective electrical parameters extracted from JackPot conductance network 

Name 𝜎𝑙1 𝜎𝑙2 

Value (𝟏𝟎𝟕𝑺.𝒎−𝟏) 𝟏. 𝟑𝟖 𝟓. 𝟗𝟐 

 

IV.4.2.4  Comparison on the coupling power 

 

In the comparison with JackPot, the conductor was subject to +/- 1T sinusoidal cycles of transverse 

magnetic field with frequency set to 0.05 Hz. We have chosen to compare the value of the coupling 

losses per sinusoidal cycle computed using the 𝑁2-uplet of 𝑁1-uplets model with that given by JackPot. 

In order to do so, we first assume that the frequency of 0.05 Hz is small enough to neglect the 

magnetic coupling between the currents induced in all the elements. This implies that the 

(𝜏(𝛼𝑘)(𝛼𝑘′)
𝐼̇0
(𝛼𝑘′))

0≤𝑘≤4
0≤𝑘′≤4

 terms of system equation (316) can be neglected so that we again have 

{
 

 𝐼0
(𝛼1) = 4𝜎𝑙1𝑅𝑐1�̇�𝑎 sin

2 (
𝜋

𝑁1
)
1

𝛼1
2

𝐼0
(𝛼2) = 4

𝜎𝑙2
𝑁1
𝑅𝑐2�̇�𝑎 sin

2 (
𝜋

𝑁2
)
1

𝛼2
2

 

and 𝐼0
(𝛼0) = 𝐼0

(𝛼3) = 0. 

Therefore, the instant coupling power per unit axial length is also given by 

𝑃𝑙(𝑧) = 2𝑁2 [𝜎𝑙1𝑁1𝑅𝑐1
2 sin2 (

𝜋

𝑁1
)(
𝑙𝑝1
2𝜋
)

2

+ 𝜎𝑙2𝑅𝑐2
2 sin2 (

𝜋

𝑁2
)(
𝑙𝑝2
2𝜋
)

2

] �̇�𝑎
2
 

Since we have agreed with the University of Twente to compare the results of the 𝑁2-uplet of 𝑁1-

uplets model and of JackPot on the coupling losses per sinusoidal cycle per unit axial length 𝑄𝑙, we have 

to make use of the relation 

𝑄𝑙(𝑧) = ∫ 𝑃𝑙𝑑𝑡
𝑇

0

 

where 𝑇 is the time period of the sinusoidal cycles (𝑇 = 1/𝑓 with 𝑓 = 0.05𝐻𝑧). 

Since 

∫ �̇�𝑎
2
𝑑𝑡

𝑇

0

= 2𝐵𝑝
2𝜋2𝑓 

where 𝐵𝑝 = 1𝑇 is the amplitude of the sinusoidal cycles, from the expression of 𝑃𝑙 above we have 
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𝑄𝑙 = 4𝐵𝑝
2𝜋2𝑓𝑁2 [𝜎𝑙1𝑁1𝑅𝑐1

2 sin2 (
𝜋

𝑁1
)(
𝑙𝑝1
2𝜋
)

2

+ 𝜎𝑙2𝑅𝑐2
2 sin2 (

𝜋

𝑁2
) (
𝑙𝑝2
2𝜋
)

2

] 

 

Using 𝑁1 = 3, 𝑁2 = 6 and the values of the effective parameters given in Table 13 and Table 14, 

we have computed the following coupling losses per sinusoidal cycle per unit axial length 

𝑄𝑙 = 19.22𝐽.𝑚
−1/𝑐𝑦𝑐𝑙𝑒 

We have found this value to be about 40% higher than the one computed by JackPot which was 
13.35𝐽.𝑚−1/𝑐𝑦𝑐𝑙𝑒. 

 

IV.4.3  Discussions 

 

In order to understand the origin of the differences between the results of the 𝑁2-uplet of 𝑁1-uplets 

model and those of the numerical codes, several numerical effects have been investigated (changes of 

spatial discretization, length of conductor and initial phase shifts between elements) but none of them 

were responsible for the 30-40% discrepancy. 

 

As a matter of fact, it appears that, for both geometries, the coupling power is almost exclusively 

due to the inter-bundle currents (i.e. superstage); the difference is then bound to come from 

considerations made at the superstage scale. 

In our approach, the local transverse voltages and conductances between any element of a bundle and 

any element of an adjacent bundle are all set to their respective average 𝑈𝑎𝑣𝑔 and 𝜎𝑎𝑣𝑔. We then tend to 

underestimate the local transverse conductance 𝜎𝑙𝑜𝑐 (compared to the one of JackPot or THELMA) and 

overestimate the local transverse voltage 𝑈𝑙𝑜𝑐 between close elements of adjacent bundles and vice versa 

for distant elements. The local power dissipated between elements of adjacent bundles being equal to 

𝑃𝑙𝑜𝑐 = 𝜎𝑙𝑜𝑐𝑈𝑙𝑜𝑐
2, it is legitimate to expect that the antagonistic effects cancel each other out so that 

the average power dissipated between adjacent bundles would be close to 𝑃𝑎𝑣𝑔 = 𝜎𝑎𝑣𝑔𝑈𝑎𝑣𝑔
2. However 

𝜎𝑙𝑜𝑐, and thus 𝑃𝑙𝑜𝑐, are always zero between distant elements in THELMA and JACKPOT but this is 

not the case in our model. Consequently, we slightly overestimate the total coupling power computed 

by the numerical codes. 

 

Therefore, our model turns out to be a conservative one and, although probably systematically 

overestimating the overall heat load deposited in the conductor as compared to the numerical prediction, 

it will rather lead to an over-dimensioning of the magnets, which, on the point of view of their 

operability, remains on the safe side.  

Furthermore, since we have compared our analytical model on two different geometries with two 

different reference numerical codes, we can be fairly confident about the fact that the overestimation of 

our model is very likely to remain in the range found, i.e. about 30-50% more than the values computed 

by the numerical codes. 

Knowing this characteristic of the model is precious and consistent with our objective of 

providing a rational analytical tool of conductor design with respect to coupling losses. 
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In addition, in the comparison with THELMA, we have also seen that the agreement on the 

induced currents lies in the range of 15%; this is also an important point as it shows that our analytical 

model is also legitimate for the study of the stability of a conductor.  

To make an overall comment, at this stage of development, we have established an analytical 

model which possesses the expected features on the point of view of mathematical expression simplicity 

and ease of implementation. The present benchmarking exercise has shown that, when compared to the 

numerical approaches currently available, it still keeps its relevancy at the expense of some 

conservativeness. Therefore, the model can actually be trusted and, to a large extent, used for 

calculations when a two-stage cable description is adapted. 

The future improvements remaining would aim at reducing the gap of our model with the numeric 

approaches, for example by considering correction factors for the potential map, depending on the stage 

considered. In this regard model refinements will be interesting to conduct. 

 

IV.5 Experimental work 

 

IV.5.1  Presentation of Josefa facility 

 

The Josefa facility is located at IRFM CEA Cadarache and is used both for characterizing the critical 

current of a conductor with respect to the magnetic field and to the temperature to which it is subject, 

and for measuring the magnetization cycles of the conductor, which allow the determination of its 

hysteresis and coupling losses.  

It features two liquid helium baths: one in which the superconducting dipole coil responsible for the 

application of a magnetic field on the conductor is immersed (its temperature is fixed to 4.2K), and one 

in which the conductor to be tested is immersed (its temperature can be adjusted for the characterization 

of the critical current of the conductor). 

In the following we will focus the presentation of the Josefa facility on its configuration for AC 

losses measurement. In this configuration, the temperature of the liquid helium bath in which the 

conductor to be tested is immersed, is fixed to 4.2K. 

The length of conductor that can be tested in Josefa facility is limited to 300mm. It is integrated into 

a sample holder as shown through Figure 67. The sample holder is then immersed in a liquid helium 

bath in the middle of the dipole coil. 

We can see on Figure 67 (a) that a replica in epoxy resin of the conductor is also integrated into the 

sample holder and that magnetization pick-up coils are wound both on the conductor and on its replica. 

The replica is used to ensure that the voltage induced in its magnetization pick-up coil by the time 

variation of a uniform magnetic field is the same than the one induced in the magnetization pick-up coil 

wound on the conductor. The difference between the voltages induced in both pick-up coils is then 

proportional to the magnetization of the conductor when subject to a time-varying applied magnetic 

field. 
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(a) : Conductor to be tested (above) and its replica in epoxy resin (below) together with their magnetization pick-

up coils 

 
 

 
(b) : Integration of the conductor to be tested and its replica in epoxy resin into the sample holder 

 
 

 
(c) : Conductor to be tested and its replica in epoxy resin fully integrated into the sample holder 

 

Figure 67 : Scheme of the assembly of the conductor and of its replica in epoxy resin into the sample holder 
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IV.5.2  Measurement method of magnetization 

 

First of all, we have seen in section II.5.1.2  that the energy density Qvol dissipated during a cycle 

of the external magnetic excitation is equal to 

𝑄𝑣𝑜𝑙 = −∫ �⃗⃗⃗�. 𝑑�⃗⃗�𝑎



𝑐𝑦𝑐𝑙𝑒

 

where �⃗⃗⃗� is here the magnetization inside the conductor and �⃗⃗�𝑎 is the magnetic field applied on the 

conductor. 

We note 𝑉𝑖 the voltage induced in the magnetization pick-up coil wound on the conductor and 𝑉𝑒 the 

voltage induced in the magnetization pick-up coil wound on the replica in epoxy resin of the conductor. 

Again, by superposition, we can split 𝑉𝑖 and 𝑉𝑒 as 

{
𝑉𝑖 = 𝑉𝑖�̇�𝑎

+ 𝑉𝑖�̇�0
𝑉𝑒 = 𝑉𝑒�̇�𝑎

+ 𝑉𝑒�̇�0
 

where 𝑉𝑖�̇�𝑎
 is the voltage in the pick-up coil of the conductor due to the time variation of the applied 

magnetic field 𝐵𝑎 and 𝑉𝑖�̇�0
 is the voltage (in the same pick-up coil) due to the time variation of the 

magnetization 𝑀0 of the conductor. 𝑉𝑒�̇�𝑎
 and 𝑉𝑒�̇�0

 follow the same definition than 𝑉𝑖�̇�𝑎
 and 𝑉𝑖�̇�0

 but for 

the pick-up coil of the replica. 

Since the pick-up coil wound on the replica has the same characteristics that the one wound on the 

conductor, we have 

𝑉𝑒�̇�𝑎
= 𝑉𝑖�̇�𝑎

 

As in the Speedy facility, the magnetization pick-up coils are also connected via a Wheatstone bridge 

such that the measured voltage 𝑉𝑚 is equal to 

𝑉𝑚 =
𝑅𝑖𝑉𝑒 − 𝑅𝑒𝑉𝑖
𝑅𝑖 + 𝑅𝑒

 

where 𝑅𝑖 and 𝑅𝑒 are the electrical resistances of the Wheatstone bridge (see Figure 36). 

Given the fact that we have 𝑉𝑒�̇�𝑎
= 𝑉𝑖�̇�𝑎

, we have set 𝑅𝑖 and 𝑅𝑒 such that 𝑅𝑖 = 𝑅𝑒 = 𝑅0 = 981𝛺. 

Consequently 

𝑉𝑚 =
𝑉𝑒�̇�0

− 𝑉𝑖�̇�0
2

 

 

In order to determine the links between 𝑉𝑒�̇�0
 and �̇�0 and 𝑉𝑖�̇�0

 and �̇�0, we have developed an 

algorithm whose principle is described below. 

We first represent the conductor with a large number of infinite straight tubes located on its most 

outer surface. We then compute the inductance matrix per unit axial length [𝐿] of these infinite straight 
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tubes using the analytical formulae of self and mutual inductance between infinite straight tubes (as in 

section IV.2.7 ). 

This inductance matrix per unit axial length [𝐿] is used in the equation 

[𝐿][𝐼]̇ = −[𝑥]�̇�𝑎 

where [𝐼]̇ is the column vector of the time variation of the currents flowing through the infinite 

straight tubes and [𝑥] is the column vector of the positions of the infinite straight tubes along the x-axis. 

This equation enables us to compute the currents induced in the infinite straight tubes by an infinitely 

fast variation of 𝐵𝑎 (step function) as 

[𝑑𝐼] = −[𝐿]−1[𝑥]𝑑𝐵𝑎 

Assuming the initial currents flowing through the infinite straight tubes to be zero, we can compute 

the energy 𝐸𝑙 stored in the system per unit axial length after the step variation 𝑑𝐵𝑎 of 𝐵𝑎 as 

𝐸𝑙 = [𝑑𝐼]
𝑇 [𝐿][𝑑𝐼] 

where the notation [𝑑𝐼]
𝑇  refers to the transposition of the column vector [𝑑𝐼] into a line vector. 

At the same time we can write 

𝐸𝑙 = −
𝑑𝑀0𝑑𝐵𝑎

2
𝑆 

where 𝑆 is the area of superconducting composites in the conductor and 𝑑𝑀0 is the step variation of 

the magnetization per unit area 𝑆. 

From the relation above, we can determine 𝑑𝑀0 as 

𝑑𝑀0 = −
2𝐸𝑙
𝑑𝐵𝑎𝑆

 

 

In parallel, we compute the flux changes 𝑑𝛷𝑖 = 𝑉𝑖𝑑𝑡 and 𝑑𝛷𝑒 = 𝑉𝑒𝑑𝑡 in each of the pick-up coils 

due to the variations [𝑑𝐼] of the currents flowing through the infinite straight tubes and deduce the value 

of 𝑉𝑚𝑑𝑡. 

 Finally, diving the value of 𝑉𝑚𝑑𝑡 by that of 𝑑𝑀0, we determine the coefficient linking 𝑉𝑚 to �̇�0. 

 

IV.5.3  Measurements on JT-60SA TF conductor 

 

In this section we will present the results issued from the AC losses measurements we have carried 

out in the Josefa facility on a sample of JT-60SA TF conductor whose photograph is displayed on Figure 

68. This conductor is made of 486 strands : 324 NbTi superconducting composites and 162 copper 

strands [39]. 
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Figure 68 : Photograph of a cross-section of a sample of JT-60SA TF conductor  

The magnetic system of Josefa facility composed of the power supply and of the dipole coil can only 

generate a magnetic field on the conductor in one direction; we have therefore measured the AC losses 

dissipated in a sample of JT-60SA TF conductor during positive trapezoidal cycles.  

We recall that a positive trapezoidal cycle starts from 0T, rises to +𝐵𝑚 in a time 𝜏𝑎, then stays at 

+𝐵𝑚 for a time 𝑇𝑝 (typically around 5s), and finally goes back to 0T again in a time 𝜏𝑎; the pattern is 

displayed again on Figure 69. We have carried out two series of measurements for 𝐵𝑚 = 1𝑇 and 𝐵𝑚 =

1.5𝑇 and for each series we have used 12 different values of 𝜏𝑎, between 1.58𝑠 and 25𝑠. Again, in order, 

to increase the reliability of the measured AC losses, for each (𝐵𝑚, 𝜏𝑎) couple we have submitted the 

conductor to 5 consecutive cycles and only kept the average of the AC losses over these 5 cycles. 

The curves of AC losses per cycle per unit volume of conductor 𝑄 as function of 1/𝜏𝑎 we have 

measured in Josefa facility are displayed through Figure 70 to Figure 73. 

 

 

Figure 69 : Schematic pattern of a positive trapezoidal magnetic cycle 
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IV.5.3.1  Measurement series for 𝐵𝑚 = 1𝑇 

 

 

Figure 70 : AC losses of JT-60SA TF conductor per unit volume of superconducting composites per cycle 
measured in Josefa facility for positive trapezoidal cycles with 𝑩𝒎 = 𝟏𝑻 

 

 

Figure 71 : Zoom on the low frequency region of Figure 70 
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IV.5.3.2  Measurement series for 𝐵𝑚 = 1.5𝑇 

 

 

Figure 72 : AC losses of JT-60SA TF conductor per unit volume of superconducting composites per cycle 
measured in Josefa facility for positive trapezoidal cycles with 𝑩𝒎 = 𝟏. 𝟓𝑻 

 

 

Figure 73 : Zoom on the low frequency region of Figure 72 
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IV.5.3.3  Hysteresis losses and apparent time constant 𝑛𝜏 

 

It is usually admitted in the community that the instant coupling power per unit volume of 

superconducting composites 𝑃𝑐𝑜𝑢𝑝 generated in a conductor is given by 

𝑃𝑐𝑜𝑢𝑝 =
𝑛𝜏�̇�𝑎

2

𝜇0
 

where 𝑛𝜏 is the apparent time constant in the system. 

Note that this approach is only valid when the applied magnetic field 𝐵𝑎 is slowly time varying so 

that the coupling between the screening currents is negligible. 

For these regimes, the hysteresis losses per unit volume of superconducting composites 𝑄ℎ𝑦𝑠𝑡 per 

cycle do not depend on the rate of change of the applied magnetic field 𝐵𝑎; it therefore does not depend 

on 𝜏𝑎. 

The total AC losses 𝑄 dissipated in the conductor per unit volume of superconducting composites 

during a cycle of applied magnetic field 𝐵𝑎 are then given by 

𝑄 = ∫ 𝑃𝑐𝑜𝑢𝑝(𝑡)
𝑇

0

𝑑𝑡 + 𝑄ℎ𝑦𝑠𝑡 

where 𝑇 is the time period of a cycle. 

For a positive trapezoidal cycle, �̇�𝑎
2
 is constant during the rising and falling ramps and equal to 

�̇�𝑎
2
= (

𝐵𝑚
𝜏𝑎
)
2

 

 The total duration of the ramps being 2𝜏𝑎, we can write 

∫ 𝑃𝑐𝑜𝑢𝑝(𝑡)
𝑇

0

𝑑𝑡 = 2𝜏𝑎
𝑛𝜏

𝜇0
(
𝐵𝑚
𝜏𝑎
)
2

=
2𝑛𝜏𝐵𝑚

2

𝜇0

1

𝜏𝑎
 

 

Therefore, we can deduce that 𝑄 is a linear function of 1/𝜏𝑎 

𝑄 (
1

𝜏𝑎
) = 𝑎

1

𝜏𝑎
+ 𝑏 

with 

{
𝑎 =

2𝑛𝜏𝐵𝑚
2

𝜇0
𝑏 = 𝑄ℎ𝑦𝑠𝑡
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Using the experimental values of 𝑎 and 𝑏 given in Figure 71 and Figure 73, we have determined the 

hysteresis losses and the apparent time constant 𝑛𝜏 of the sample of JT-60SA TF conductor we have 

measured in Josefa facility; the results are displayed in Table 15. 

 

Table 15 

Experimental hysteresis losses and apparent time constant 𝒏𝝉 of a sample of JT-

60SA TF conductor for positive trapezoidal cycles with different values of 𝑩𝒎 

𝐵𝑚(𝑇) 1.0 1.5 

𝑄ℎ𝑦𝑠𝑡(𝑚𝐽/𝑐𝑚
3/𝑐𝑦𝑐𝑙𝑒) 

per unit volume of superconducting composites 
29.6 39.0 

𝒏𝝉(𝒎𝒔) 375 412 

 

Note that the hysteresis losses of the sample of JT-60SA TF conductor are consistent with those of 

K006-01C JT-60SA TF strand measured in Speedy facility for the same trapezoidal cycles. 

 

IV.5.3.4  Determination of the average transverse conductance 

 

In this part, we assume that the sample of JT-60SA TF conductor can be modeled with the 𝑁2-uplet 

of 𝑁1-uplets model and we will determine the average transverse conductance per unit axial length of 

the superstage scale, i.e. 𝜎𝑙2, using 

 the value of the average transverse conductance per unit axial length of the substage 

scale, i.e. 𝜎𝑙1, we have extracted from the JackPot conductance network 

 

 the effective geometrical parameters of the last two cabling stages of a sample of JT-

60SA TF conductor which are issued from the results of section IV.5.4   

 

 the coupling losses of the sample of JT-60SA TF conductor we have measured in 

Josefa facility 

 

In section IV.4.2.4 , we have given the analytical formula of the instant coupling power per unit 

axial length generated by a slowly time variation of the applied magnetic field 𝐵𝑎 as 

𝑃𝑙 = 2𝑁2 [𝜎𝑙1𝑁1𝑅𝑐1
2 sin2 (

𝜋

𝑁1
)(
𝑙𝑝1
2𝜋
)

2

+ 𝜎𝑙2𝑅𝑐2
2 sin2 (

𝜋

𝑁2
)(
𝑙𝑝2
2𝜋
)

2

] �̇�𝑎
2
 

Since 𝑃𝑐𝑜𝑢𝑝 is the instant coupling power per unit volume of superconducting composites, we have 

the following relation 
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𝑃𝑙 = 𝑃𝑐𝑜𝑢𝑝𝑆 

 where 𝑆 = 𝑁𝑠𝑐𝜋𝑅
2 is the area of superconducting composites in the conductor. 𝑁𝑠𝑐 is the 

number of superconducting composites inside the conductor which is equal to 𝑁𝑠𝑐 = 324, and 𝑅 is the 

radius of the superconducting composites which is equal to 𝑅 = 0.405𝑚𝑚. 

In addition, we have 

𝑃𝑐𝑜𝑢𝑝 =
𝑛𝜏�̇�𝑎

2

𝜇0
 

Therefore, we can write 

𝜎𝑙2 =
𝑛𝜏𝑆

𝜇0

1

2𝑁2𝑅𝑐2
2 sin2(𝜋/𝑁2)

− 𝜎𝑙1𝑁1 (
𝑅𝑐1
𝑅𝑐2

)

2

[
sin(𝜋/𝑁1)

sin(𝜋/𝑁2)
]

2

(
𝑙𝑝1
𝑙𝑝2
)

2

 

Using the following values 

{
 
 
 
 

 
 
 
 
𝜎𝑙1 = 1.38 ∗ 10

7𝑆/𝑚

𝑆 = 167𝑚𝑚2

𝑛𝜏 = 412𝑚𝑠
𝑅𝑐1 = 2.31𝑚𝑚

𝑅𝑐2 = 7.75𝑚𝑚

𝑙𝑝1 = 185.2𝑚𝑚

𝑙𝑝2 = 285.7𝑚𝑚

𝑁1 = 3
𝑁2 = 6

 

we find 

𝜎𝑙2 = 1.42 ∗ 10
8𝑆/𝑚 

Note that the order of magnitude of the computed value of 𝜎𝑙2 is consistent with those extracted from 

the conductance networks of THELMA and JackPot (see sections IV.4.1.1  and IV.4.2.3 ). 

In addition, in the computation of 𝜎𝑙2 we have considered that the coupling power generated inside 

JT-60SA TF conductor was exclusively due to the last two cabling stages, while in reality it is due to 

the five cabling stages and to the composite stage of JT-60SA TF conductor. Therefore, the value of 𝜎𝑙2 

we have computed using the 𝑁2-uplet of 𝑁1-uplets model is bound to be higher than the real one because 

the coupling power of the superstage scale also includes here the coupling power of the first three cabling 

stages and of the composite stage. 

This comparison is the first one, actually not too much developed for reason of time. However, it 

opens towards a broad analysis with free parameters for both conductances, in order to check the 

reliability of a two-stage cable description. Furthermore, the actual modeling and conductances sizing 

would be substantially consolidated by experimental data coming from interbundle resistance 

measurements. Such extensions are left for future investigations. 
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IV.5.4  X-ray tomography 

 

The knowledge of the internal architecture of a Cable-In-Conduit Conductor is of precious use since 

its geometrical characteristics largely influence the electromagnetic behavior of the conductor. 

However, the strong compaction of the CICCs prevents any mechanical method from revealing its inner 

structure without modifying the initial strands configuration. There is then a need for a non-destructive 

analysis; one method particularly adapted to this problematic is the X-ray microtomography [52]. 

In the framework of a collaboration with the INFLPR Bucharest, several samples of JT-60SA TF 

conductor have been scanned by 2D X-ray microtomography. To reconstruct the internal architecture of 

each conductor, the following procedure has been implemented: 

 several 2D transverse images are generated along the axis of the sample using the data issued 

from the X-ray microtomography 

 

 these images are automatically processed to identify the positions of the strands in each slice 

of the conductor 

 

 from this set of strand positions along the conductor axis, the strand trajectories are 

reconstructed 

Even though the procedure seems to be achievable without any difficulty, several facts have to be 

pointed out. Indeed, the CICCs exhibit a thick steel sheath which strongly attenuates the X-rays and thus 

prevents the 2D images of the transverse plane of the conductor from having an optimal contrast (see 

Figure 74); this makes the automatic strand detection quite challenging. In addition, the X-ray 

microtomography of a slice of conductor being quite time consuming, the 2D transverse images are only 

obtained every millimeter along the conductor axis; this implies a substantial displacement of each 

strand from a slice to the next one and thus the covering between its positions in two consecutive slices 

is weak.  

The INFLPR Bucharest has worked both on the automatic detection of the strand positions in each 

slice of the sample and on the trajectories reconstruction while we have mainly focused on the second 

point; because of the specificities of the problem, we had to develop our own reconstruction method: 

the Iterative Velocity-Oriented Reconstruction Algorithm (IVORA). 

 

Figure 74 : Slice of JT-60SA TF conductor obtained by X-ray tomography 
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IV.5.4.1  Strategy of the IVORA algorithm 

 

Initially, because of the low contrast of the 2D images obtained via X-ray tomography, the automatic 

strand detection in each slice of the sample was not 100% reliable even though it had a very good success 

rate (more than 98%). An example of strand detection in a slice of JT-60SA TF conductor is displayed 

on Figure 75; we can see a false strand detection on the bottom right-hand corner (red circle on the 

conductor wrapping) and a missing one the bottom left-hand corner. 

 

Figure 75 : Slice of JT-60SA TF conductor obtained by X-ray tomography  

with detected strand positions 

As a result, our first objective was to develop an algorithm able to reconstruct the strand trajectories 

with a set of strand positions featuring a very small number of missing positions or false detections. In 

order to do so, we have developed a strategy based on the global consistency of the strands displacement 

from one slice to the next one. It is sequenced as follows: 

 Between strand positions of slice n and those of slice n+1, we apply a first restrictive logical rule 

mainly based on the closest neighbor approach: this creates a first set of associations between 

positions of slice n and slice n+1 which does not include the totality of the strands 

 

 From this set we create a 2D displacement field (that we call velocity field) between slice n and 

n+1, we then use it as a tool to associate the strands left aside by the first rule; we use the new 

complete set of associations to create a new velocity field 

 

 We then average the different velocity fields associated with each group of two consecutive slices 

to generate an average velocity field which constitutes our global association tool 

 

 The previous sets of associations are then cleared and we start over the association process but 

this time using the average velocity field 

 

 Every trajectory which is complete (i.e. continuous) after these new associations, are saved and 

removed from the pool of strand positions so that we are left with the strands that have disappeared 

(missing or not associated) for at least one slice 
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 To deal with these strands we create a new average velocity field between slices n and n+2 using 

the set of associations which are both validated between slices n and n+1 and between slices n+1 

and n+2  

 

 After the new associations between slices n and n+2, we are left with the strands that have 

disappeared (missing or not associated) for at least two consecutive slices 

 

 We then repeat the process until we have created the average velocity field between slices n and 

n+5 as we have observed that beyond, we do not get any extra complete trajectory 

 

An example of velocity field generated between slice 1 and slice 2 of a sample of JT-60SA TF 

conductor is displayed on Figure 76. 

 

Figure 76 : Velocity field between slice 1 and slice 2 of a sample of JT-60SA TF conductor 
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IV.5.4.2  Results of the IVORA algorithm 

 

On a 56mm long sample, the IVORA algorithm has been able to reconstruct 100% of the trajectories 

using 100% complete strand detection while on a 292mm long one it has led to 80% of complete 

trajectories using also 100% complete strand detection; note that the remaining strand positions are part 

of fragments of trajectories which are not 292mm long. An example of the reconstruction of strand 

trajectories is displayed on Figure 77. 

 

 

Figure 77 : Reconstructed strand trajectories of a sample of JT-60SA TF conductor 

 

Using the iterative Fourier transform algorithm described in section IV.4.1.2  and the 80% of 

complete trajectories of the 292mm long sample, we have been able to extract the effective geometrical 

parameters of JT-60SA TF conductor (i.e. cabling radii and twist pitches of the different cabling stages); 

they are displayed on Table 16 together with the cable specifications [39]. 

Table 16 

Cabling radii and twist pitches of JT-60SA TF conductor  

extracted from X-ray tomography 
Cabling stage 1 2 3 4 5 

Cabling radii (mm) 0.49 0.82 1.62 2.31 7.75 

Twist pitches (mm) 45.4 66.7 120.2 185.2 285.7 

Twist pitches 

specifications [39] 

(mm) 

45 70 120 190 290 
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We can notice on Table 16 the good consistency between the twist pitches issued from our treatment 

of the X-ray tomography of a sample of JT-60SA TF conductor and their specifications. In addition, the 

first cabling stage of JT-60SA TF conductor being a triplet of strands having a radius of 0.405mm, we 

expect its cabling radius to be near 0.405𝑚𝑚/sin(𝜋/3) ≃ 0.47𝑚𝑚, which is close to the radius issued 

from our treatment (0.49mm). 

Furthermore, we have also initiated a comparison with the INFLPR algorithm which is based on the 

minimization of the total length of the strand trajectories. We have observed a global consistency 

between the two approaches but with some local disagreements; this comparison will be continued. 

 

IV.6 Synthesis 

 

In this third and last part of our work, we have established the 𝑁2-uplet of 𝑁1-uplets model which 

represents the behavior of a two cabling stages conductor when subject to any transverse time varying 

magnetic field. We have seen that the inductive part of our model was consistent as it provides results 

close to the response of a set of straight infinite tubes (representative of the behavior of the cable in 

purely inductive regime). 

Our work has shown that the currents induced in a two cabling stages conductor can be reduced 

from an infinite basis of cosine spatial functions (impossible to handle simply) to only four elements 

(i.e. four cosine functions with four different spatial frequencies, simple to possibly handle for 

evaluation). This was assessed on two different geometries representative of the first and last cabling 

stages of JT-60SA TF conductor. In addition, we have analytically defined the expression of coupling 

losses per cycle in analogy with the MPAS model approach. The difference lies in the number of time 

constants needed to represent the conductor: two in the MPAS model and four in ours. This point is 

important as it shows both the consistency of the MPAS model, which is in line with the experimental 

reality (i.e. the losses of conductor can be represented with a reduced set of time constants), and of our 

model, whose outputs are dependent upon the cable features, and finally found in line with the 

assumptions of the MPAS model. 

Moreover the comparison of the results of the 𝑁2-uplet of 𝑁1-uplets model with those of two 

reference numerical models (THELMA and JackPot) on two different geometries has shown a fair 

agreement (30-40% range for losses and 15% for induced currents) and assessed that our model is 

slightly conservative. 

For all the above-mentioned reasons, we can remain confident in the capacity of our 𝑁2-uplet of 𝑁1-

uplets model to represent the magnetic behavior of a cable subject to transient magnetic field. Although 

surely bearing improvement margins, the present analytical model is sufficiently advanced to form a 

robust basis for further developments. 

Besides, on the experimental side, the AC losses measurements we have carried out in CEA Josefa 

facility on a sample of JT-60SA TF conductor have led to hysteresis losses consistent with those of its 

composite measured in Speedy and to an apparent time constant (𝑛𝜏 parameter) which is in a realistic 

range. We have also developed an algorithm (IVORA) to reconstruct the strand trajectories of a 

conductor from the data of its X-ray tomography. It has shown interesting abilities which have allowed 

the extraction of the effective geometrical parameters of JT-60SA TF conductor; these parameters were 

consistent with the cable specifications.  
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V.  Conclusions and prospects 
 

In the overall work described in this document, we attempted to address the representation of the 

coupling losses in a multistage cable with two strategy elements kept along the whole work: 

encompassing the model expression under the most advanced possible analytical approach and 

establishing models with a “generic” validity (i.e. for any transient magnetic field regime). In this regard 

the cable modeling was built increasing step by step the representation scale (strand to CICC) and the 

cable geometry complexity (single to dual-staged CICC). Although the theoretical way to the 

development of the CICC analytical model in a sort of ab-initio approach constitutes the major part of 

the work outcome, other thematic extensions were investigated: the purely numerical way (applicative 

scripts for the models developed, benchmarking with EU numerical codes, strands trajectories 

reconstruction out of tomography database) and the purely experimental way (coupling losses 

measurements at strand scale and at CICC scale). This variety of approaches gives a broader view to the 

scientific research outcomes obtained in this doctoral project and furthermore allows to more widely 

open possible paths for the future investigations complementing the present achievements. 

During this thesis, we tried to develop our work from the theoretical/analytical side up to the 

development and implementation of actual working tools directly usable for integration in wider 

framework (CLASS, IVORA). In the following paragraphs, a complete summary of the present work 

along with concluding remarks is given. It is reorganized along three main lines: analytical/theoretical 

works, 3D imaging tools, experimental investigations. An additional specific emphasis is put on 

numerical models lately developed during this thesis. 

 

V.1 Analytical modeling 

 

V.1.1  Composite strand model development and implementation into CLASS 

 

We have established an original fully generalized analytical representation of the magnetic behavior 

of a given axisymmetric superconducting composite subject to any time variation of transverse magnetic 

field. This achievement makes available for the first time a comprehensive analytical model representing 

composite strands valid for any geometry and any field transient. The associated ad-hoc developed 

CLASS algorithm produces in this regard complete 2D cartographies of the coupling currents, the 

electric and magnetic fields and the local power density dissipated inside the composite at any time of 

transient magnetic field regime. This algorithm being based on analytical formulations, it is easily 

implementable in multiphysics codes and requires very low CPU resources to be run. Further to its 

exhaustive and innovative aspect, the present achievement represents a step towards broader modeling 

objectives, e.g. the evaluation of composites stability limits (associated with thermal models). Besides, 

the CLASS tool can quantify coupling losses vs. frequency dependence and thus possibly be of a help 

to design optimized composites. 
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V.1.2   “Basic” CICC modeling and comparison 

 

We have established and implemented the 𝑁-uplet model which is relevant to the analytical 

representation of the magnetic shielding occurring in a single cabling stage of a conductor. This 

configuration is the lowest level of complexity in the CICC representation besides the composite 

analogy.   

The achievement of the modeling at this scale constitutes a significant step towards the modeling of 

coupling losses in CICCs as it shows that the coupling losses are mainly driven by a very few number 

of cable parameters and their dependence on these parameters has been identified. Furthermore, the fact 

that the assumption of the MPAS model is in agreement with the analytical output of the 𝑁-uplet model 

is central since, at the same time, it provides a theoretical background to the MPAS model and it 

reinforces the consistency of our model since the MPAS approach has proved its ability to describe the 

experimental reality. 

 

V.1.3  Entering into the multistage cable configuration 

 

We have established and implemented the 𝑁2-uplet of 𝑁1-uplets model which represents the 

behavior of a two cabling stages conductor when subject to any transverse time varying magnetic field. 

Although surely bearing improvement margins, our model is, in its current version, sufficiently 

advanced to form a robust basis for further developments, still keeping in line its analytical nature.    

We have analytically defined the expression of coupling losses per cycle in analogy with the MPAS 

model approach. The difference lies in the number of time constants needed to represent the conductor: 

two in the MPAS model and four in ours. This point is important as it shows both the consistency of the 

MPAS model, which is in line with the experimental reality (i.e. the losses of conductor can be 

represented with a reduced set of time constants), and of our model, whose outputs are dependent upon 

the cable features, and finally found in line with the assumptions of the MPAS model.  Moreover the 

comparison of the results of the 𝑁2-uplet of 𝑁1-uplets model with those of two reference numerical 

models (THELMA and JackPot) on two different geometries has shown a fair agreement (30-40% range 

for losses and 15% for induced currents) and assessed that our model is slightly conservative.  

 

V.2 Experimental validations 

 

Several attempts have been carried out in order to obtain reference values of several strand and cable 

properties and consolidate our model validity. Unfortunately, technical limitations of the existing facility 

used during this thesis, have prevented the use of the output data for our models validation. 

Nevertheless, AC losses measurements have been carried out in CEA Speedy facility on JT-60SA 

TF and ITER TF strands and the results found (hysteresis losses but mainly time constants) are finally 

compatible with those found in the literature for similar superconducting composites. More tests could 

be conducted to build a fairly populated database and confront our model along a statistical approach.  
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AC losses measurements have also been carried out in CEA Josefa facility on a sample of JT-60SA TF 

conductor; they have led to hysteresis losses consistent with those of its strand measured in Speedy and 

to an apparent time constant (𝑛𝜏 parameter) which lies in a realistic range.  

 

V.3 Numerical approach 

 

V.3.1  3D CICC morphology and effective properties  

 

We have also developed and implemented an ad-hoc algorithm (IVORA) to reconstruct the strand 

trajectories of a conductor from the data of its X-ray tomography. 

Results obtained from the tomography of real samples have been validated. A satisfying agreement 

between the effective geometrical parameters of JT-60SA TF conductor extracted from the reconstructed 

trajectories and the specifications of this cable has been obtained.  

This algorithm needs to keep being improved to reach a systematic 100% reconstruction rate in order 

to generate the real 3D conductance and inductance network of any conductor from its X-ray 

tomography. This will then open the path for highly representative numerical simulations and will also 

provide information about pending questions such as the evolution of AC losses in a conductor along 

mechanical cycles (with insights on modification of its inner geometry).  

 

V.3.2  Numerical simulation 

 

In the view of future investigations of the AC losses measurements, a finite element model was 

recently developed to quantify the effective transverse resistivity of macroscopic filamentary zones from 

actual geometries which deviate from the periodic representation (e.g. filamentary zone of ITER TF 

strands). This complementary approach to the CLASS development provides insight to further extend 

the strand analytical model and its applicability to other geometries. A first step will be the prediction 

of effective transverse resistivity, to be further confronted to the one deduced from the AC losses 

measurements of ITER TF Nb3Sn strand. 

 

V.4 Summary and recommendations 

 

As an overall synthesis, we have established at the conductor scale an analytical model representing 

the coupling currents and coupling losses inside two types of cable: single-staged and double-staged 

ones. Their comparisons with various models (analytical, numerical and heuristic) for different 

geometries and different time regimes have robustly assessed the global consistency of our approach 

and exhibited its conservative tendency which is fully compatible with the requirements associated with 

conductor design and risk assessments. In addition, the analytical nature of the achieved studies exhibits 

a simple form which enhances the physical understanding of the coupling losses phenomenon.  
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In a more general view, the integration of tailored designed superconducting magnets is essential for 

the safe and efficient operation of fusion reactors. Optimization of their design (e.g. conductor shape, 

size and architecture) regarding factors of merit such as electromagnetic or thermo-hydraulic 

performances is of major importance. The work presented here is included in this long-term framework 

and, based on the outcomes previously discussed and in complement of the actual state of the art, some 

prospective remarks can be drawn. 

First, our development and implementations could easily be integrated into multiphysics platforms 

and constitute first rational design tools of conductors with respect to their AC losses. 

Secondly, these models can also be considered as a strong building material for the study of 

conductor stability since they are dealing with all the elements of the elaborated modeling (thermal, 

currents).  

And thirdly, our work would be the keystone of the up scale approach on CICC modeling. As a 

matter of fact, since CICCs feature more than two cabling stages, the sophistication of the representation 

of their magnetic shielding behavior considering number of stages beyond the 𝑁2-uplet of 𝑁1-uplets 

geometry, is to be explored. Due to the complexity of the analytical calculations involved in the 

development of the 𝑁2-uplet of 𝑁1-uplets model, a strict replication of the presented approach on a three 

cabling stages conductor might reveal high difficulties. As tentative suggestion, two options could be 

considered:  

 condense the magnetic shielding effects of two consecutive cabling stages into a single “effective” 

one with the appropriate partial shielding coefficient and then consider the third stage contribution 

 

 consider only the magnetic coupling between consecutive cabling stages assuming/checking low 

coupling effect between non-consecutive cabling stages. 

Another way to use the outputs of the 𝑁2-uplet of 𝑁1-uplets model would consist in extrapolating 

the electrical potential at the positions of each strand from the one given by the 𝑁2-uplet of 𝑁1-uplets 

model at the center of gravity of the last but one cabling stage of a conductor. 

Finally, we have contributed, at our level, to improve knowledge and representation of coupling 

losses in superconducting cables, providing to the community analytical concepts as well as various 

tools on this subject. Considering the importance of this phenomenon in the fusion magnet operation, 

which is, among others, linked to tokamaks safety aspects, this investigation domain should keep the 

attention of the fusion community. Hopefully further investigations will be carried out on coupling 

losses, in the aim to consolidate the future fusion reactor operation. 
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Appendices 
 

A. Method for the analytical solving of the E0 coefficients in steady-state regimes 

 

We can express the 𝐸02𝑘−1 and 𝐸02𝑘 coefficients of each filamentary zone with equation (37) and 

then use equations (38) to (43) to iteratively calculate the 𝐸02𝑘−1 and 𝐸02𝑘 coefficients of every resistive 

layers by substitution. Indeed, let us consider a subsequence of consecutive resistive layers inside the 

composite, only three different cases are actually possible: 

 Case 1 : The subsequence goes from the first layer of the strand to the first filamentary zone 

 

Let 𝑓 be the number of the first filamentary zone inside the strand (e.g. if the first filamentary 

zone of the strand is the 5th layer then 𝑓 = 5); the subsequence of resistive layers goes then from 

𝑘 = 1 to 𝑘 = 𝑓 − 1, and therefore consists of 𝑓 − 1 layers. There are two coefficients per layer 

so 2𝑓 − 2 coefficients have to be determined. As mentioned above, we have 𝐸01 = 0 so we now 

have only 2𝑓 − 3 coefficients left to compute. The considered subsequence features 𝑓 − 2 

interfaces between resistive layers and one interface of resistive/filamentary type, which makes 

2(𝑓 − 2) + 1 = 2𝑓 − 3 boundary equations. There are as many unknowns as equations; the 

subsystem can then be solved. 

 

From (42) we know that 𝐸01 = 0, using equation (38) iteratively from 𝑘 = 1 to 𝑘 = 𝑓 − 1, we 

can express all the (𝐸0𝑖)3≤𝑖≤2𝑓−2
 as a function of 𝐸02. Then, replacing 𝐸02𝑓−3 and 𝐸02𝑓−2 with 

their expressions as a function of 𝐸02 in equation (40) for 𝑘 = 𝑓 − 1, we can easily calculate 𝐸02 

and thus all the (𝐸0𝑖)3≤𝑖≤2𝑓−2
 coefficients. 

 

 Case 2 : The subsequence is located between two filamentary zones 

 

Let 𝑓1 be the number of a filamentary zone inside the strand and 𝑓2 the number of the next 

filamentary zone; the subsequence of resistive layers goes then from 𝑘 = 𝑓1 + 1 to 𝑘 = 𝑓2 − 1, 

so there are 2(𝑓2 − 𝑓1 − 1) coefficients to determine. The considered subsequence features 𝑓2 −
𝑓1 − 2 interfaces between resistive layers and 2 interfaces of resistive/filamentary type, which 

makes 2(𝑓2 − 𝑓1 − 2) + 2 = 2(𝑓2 − 𝑓1 − 1) boundary equations. There are as many unknowns 

as equations; the subsystem can then be solved. 

 

Using system (38) iteratively from 𝑘 = 𝑓1 + 1 to 𝑘 = 𝑓2 − 1, we can express all the 

(𝐸0𝑖)2𝑓1+3≤𝑖≤2𝑓2−2
 as a function of 𝐸02𝑓1+1 and 𝐸02𝑓1+2 . Then, replacing 𝐸02𝑓2−3 and 𝐸02𝑓−2 with 

their expressions as a function of 𝐸02𝑓1+1 and 𝐸02𝑓1+2 in equation (40) for 𝑘 = 𝑓2 − 1, we can 

easily calculate 𝐸02𝑓1+1 and 𝐸02𝑓1+2 with the use of equation (41) for 𝑘 = 𝑓1, and thus all the 

(𝐸0𝑖)2𝑓1+3≤𝑖≤2𝑓2−2
 coefficients. 

 

 Case 3 : The subsequence starts after the last filamentary zone 

 

Let 𝑓 be the number of the last filamentary zone inside the strand; the subsequence of resistive 

layers goes then from 𝑘 = 𝑓 + 1 to 𝑘 = 𝑛, and therefore consists of 𝑛 − 𝑓 layers, so there are 

2(𝑛 − 𝑓) coefficients to determine. The considered subsequence features 𝑛 − 𝑓 − 1 interfaces 

between resistive layers, one interface of resistive/filamentary type and one interface with the 

outer region, which makes 2(𝑛 − 𝑓 − 1) + 1 + 1 = 2(𝑛 − 𝑓) boundary equations. There are as 

many unknowns as equations; the subsystem can then be solved. 
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Using equation (39) iteratively from 𝑘 = 𝑛 − 1 to 𝑘 = 𝑓 + 1 and equation (43), we can express 

all the (𝐸0𝑖)2𝑓+1≤𝑖≤2𝑛−1
 as a function of 𝐸02𝑛. Then, replacing 𝐸02𝑓+1 and 𝐸02𝑓+2 with their 

expressions as a function of 𝐸02𝑛 in equation (41) for 𝑘 = 𝑓, we can easily calculate 𝐸02𝑛 and 

thus all the (𝐸0𝑖)2𝑓+1≤𝑖≤2𝑛−1
 coefficients. 

 

B. Method for the automatic generation of [A] and [Y] 

 

Equation (30) which represents the continuity of the azimuthal component 𝐸𝜃 of the electric field at 

𝑟 = 𝑅𝑘, i.e. 𝐸𝜃𝑘(𝑅𝑘) = 𝐸𝜃𝑘+1(𝑅𝑘), can be rewritten, using the general expression of 𝐸𝜃𝑘 given by (36), 

as 

𝐸02𝑘−1 − 𝐸02𝑘 − (
𝑅𝑘+1
𝑅𝑘

)
2

𝐸02𝑘+1 + 𝐸02𝑘+2 = 0, 𝑓𝑜𝑟1 ≤ 𝑘 < 𝑛 (343) 

 

Similarly, equation (31) which represents the continuity of the radial current density 𝐽𝑟 of the electric 

field at an interface between two resistive layers located at 𝑟 = 𝑅𝑘, i.e.  
𝐸𝑟𝑘

(𝑅𝑘)

𝜌𝑡𝑘
=

𝐸𝑟𝑘+1
(𝑅𝑘)

𝜌𝑡𝑘+1
, can be rewritten, using the general expression of 𝐸𝑟𝑘 given by (36), as 

𝐸02𝑘−1 + 𝐸02𝑘 −
ρ𝑡𝑘
ρ𝑡𝑘+1

(
𝑅𝑘+1
𝑅𝑘

)
2

𝐸02𝑘+1 −
ρ𝑡𝑘
ρ𝑡𝑘+1

𝐸02𝑘+2 = 0, 𝑓𝑜𝑟1 ≤ 𝑘 < 𝑛 (344) 

 

If the ultimate layer (layer 𝑛) is resistive, the additional condition given by equation (43) implies 

𝐸02𝑛−1 + 𝐸02𝑛 = 0 (345) 

 

Finally, equations (37) state that for a layer 𝑘 which is filamentary, we have 

𝐸02𝑘−1 = 0 (346) 

𝐸02𝑘 =
𝑙𝑝

2𝜋
�̇�𝑎 (347) 

 

According to equation (42), the first coefficient 𝐸01 is always zero, we are then now able to express 

the system under the form 

[𝐴][𝐸0] =
𝑙𝑝
2𝜋
𝐵�̇�[𝑌] (348) 

with [𝐸0] the column vector of the 2𝑛 − 1 (𝐸0𝑖)2≤𝑖≤2𝑛
 coefficients,  [𝐴] a (2𝑛 − 1) × (2𝑛 − 1) 

square matrix and [𝑌] a column vector whose 2𝑛 − 1 components are either 0 or 1, using exclusively 

equations (343) to (347).  

The logical tree to build [A] and [Y] is schematically described through Figure 78; the [𝐴]𝑖 and [𝑌]𝑖 

notations respectively represent lines 𝑖 of [𝐴] and [𝑌]. 
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(a) : Expressions of the first line of [𝑨] and [𝒀] if n>1, the counter 𝒊 is initialized to one 

 

 
(b) : Iterative expressions of the lines of [𝑨] and [𝒀], the “𝟐𝒌 − 𝟐” or “𝟐𝒌 + 𝟏” notations give the position of the 

coefficients inside the line vector [𝑨]𝒊 

 

 
(c) : Expressions of the last line(s) of [𝑨] and [𝒀] 

Figure 78 : Logical trees used to build [𝑨] and [𝒀] 

We will give an example of application of the logical tree to build [A] and [Y]. Let us choose a 

“R/F/R” composite; this means that the composite is composed of a resistive core, then of a filamentary 

zone and finally of another resistive layer. 

For this type of geometry, we have 𝑛 = 3 and thus have to determine the 2𝑛 − 1 = 5 (𝐸0𝑖)2≤𝑖≤6
 

coefficients, therefore [𝐴] will be a 5 × 5 matrix and [𝑌] will be a column vector with 5 lines. 

To build [𝐴] and [𝑌] we start with 𝑖 = 1 and since 𝑛 > 1 we use Figure 78 (a): the first interface is 

of “R/F” type, thus [𝐴]1 = [−1 −(
𝑅2

𝑅1
)
2

1 0 0] , [𝑌]1 = 0 and 𝑖 = 2. 

The second interface (i.e. for 𝑘 = 2) is of “F/R” type, using Figure 78 (b), we can deduce that [𝐴]2 =

[0 1 0 0 0], [𝑌]2 = 0 and 𝑖 = 3 because here 2𝑘 − 2 = 2 ∗ 2 − 2 = 2, then we have [𝐴]3 =

[0 0 1 0 0], [𝑌]3 = 1 and 𝑖 = 4 because 2𝑘 − 1 = 3, and [𝐴]4 =

[0 1 −1 −(
𝑅3

𝑅2
)
2

1] , [𝑌]4 = 0 and 𝑖 = 5. 

The ultimate layer is of “R” type therefore, using Figure 78 (c), we finally conclude that [𝐴]5 =

[0 0 0 1 1], [𝑌]5 = 0. 



240 

 

For a “R/F/R” composite, we obtain the following [𝐴] matrix and [𝑌] column vector 

[𝐴] =

[
 
 
 
 
 
 
 −1 −(

𝑅2
𝑅1
)
2

1 0 0

0 1 0 0 0
0 0 1 0 0

0 1 −1 −(
𝑅3
𝑅2
)
2

1

0 0 0 1 1]
 
 
 
 
 
 
 

, [𝑌] =

[
 
 
 
 
0
0
1
0
0]
 
 
 
 

 

Using equation (348), we can finally give the matrix equation governing the “R/F/R” composite in 

steady-state regime 

[
 
 
 
 
 
 
 −1 −(

𝑅2
𝑅1
)
2

1 0 0

0 1 0 0 0
0 0 1 0 0

0 1 −1 −(
𝑅3
𝑅2
)
2

1

0 0 0 1 1]
 
 
 
 
 
 
 

[
 
 
 
 
 
𝐸02
𝐸03
𝐸04
𝐸05
𝐸06]

 
 
 
 
 

=
𝑙𝑝
2𝜋
𝐵�̇�

[
 
 
 
 
0
0
1
0
0]
 
 
 
 

 

which can be solved for the (𝐸0𝑖)2≤𝑖≤6
 coefficients. 

Note that if 𝑛 = 1, that is to say if the composite considered consists in a unique zone, it will 

necessarily be of “F” type since the composite must feature at least one filamentary zone. In this case 

there will be only one coefficient to determine which is 𝐸02  and using Figure 78 (c) we have [𝐴] = 1 

and [𝑌] = 1. The first equation given by the “F” branch of Figure 78 (c) is out of interest here since it 

would give an equation on 𝐸01 which, by assumption, is always zero. 

 

C. Method for the automatic generation of [B] 

 

In order to provide the logical tree needed to build the [𝐵] matrix, we first have to express the 

amplitudes of the surface currents located on the edges of each filamentary zones - thus these contained 

in (𝐾0𝑓) - using the formulae given by equations (44) and (45). In addition, to simplify the construction 

of the [𝐵] matrix, we consider that there also exist surface currents at every other interface but with zero 

amplitudes if there are no superconducting filaments to transport them. It is therefore possible to express 

the relation between the (𝐾0𝑖)1≤𝑖≤𝑛
 amplitudes and the (𝐸0𝑘)2≤𝑘≤2𝑛

 coefficients as 

[𝐾0] =
1

𝜌𝑡1

𝑙𝑝

2𝜋
[𝑀][𝐸0] (349) 

where [𝐾0] is the column vector of the 𝑛 amplitudes of surface currents located at each interface and 

[𝑀] is then a 𝑛 × (2𝑛 − 1) matrix whose coefficients are dimensionless. 

Using equations (44) and (45) and the previous considerations, we can derive the expressions of 

lines 𝑖 of [𝑀] matrix which are given in Figure 79; the [M]i notation represents line 𝑖 of [𝑀]. 
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Figure 79 : Logical tree used to build [𝑴] 

We will give an example of application of the logical tree to build [𝑀] as we have done it previously 

for [𝐴] and [𝑌]; we choose the same “R/F/R” composite. 

In our example 𝑛 = 3 and thus [𝑀] will be a (2𝑛 − 1) × 𝑛 = 5 × 3 matrix. We start with 𝑘 = 1 

and since 𝑛 > 1 we use Figure 79 (a): the first interface is of “R/F” type, thus [𝑀]1 =

[1 −
𝜌𝑡1
𝜌𝑡2
(
𝑅2

𝑅1
)
2

−
𝜌𝑡1
𝜌𝑡2

0 0]. Then for 𝑘 = 2, we have an interface of “F/R” type, using Figure 79 

(b) we have [𝑀]2 = [0
𝜌𝑡1
𝜌𝑡2

𝜌𝑡1
𝜌𝑡2

−
𝜌𝑡1
𝜌𝑡2
(
𝑅2

𝑅1
)
2

−
𝜌𝑡1
𝜌𝑡2
] because here 2𝑘 − 2 = 2 ∗ 2 − 2 = 2 and 

2𝑘 + 1 = 2 ∗ 2 + 1 = 5. The ultimate layer is of “R” type therefore, using Figure 79 (c), we finally 

conclude that [𝑀]3 = [0 0 0 0 0] and that 

[𝑀] =

[
 
 
 
 
 1 −

𝜌𝑡1
𝜌𝑡2

(
𝑅2
𝑅1
)
2

−
𝜌𝑡1
𝜌𝑡2

0 0

0
𝜌𝑡1
𝜌𝑡2

𝜌𝑡1
𝜌𝑡2

−
𝜌𝑡1
𝜌𝑡2

(
𝑅2
𝑅1
)
2

−
𝜌𝑡1
𝜌𝑡2

0 0 0 0 0 ]
 
 
 
 
 

 

Note that if 𝑛 = 1, there will be only one coefficient (𝐸02) as mentioned previously, therefore we 

have to take only the last coefficient of [𝑀]𝑛 given by the “F” branch of Figure 79 (c) and obtain [𝑀] =

1 because the next-to-last one is multiplying 𝐸01 which, by assumption, is always zero. 
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We now need to express the sums −
𝜇0

2

𝑙𝑝

2𝜋
∑ �̇�0𝑖
𝑘−1
𝑖=1 (

𝑅𝑖

𝑅𝑘
)
2
 and 

𝜇0

2

𝑙𝑝

2𝜋
∑ �̇�0𝑖
𝑛
𝑖=𝑘  present in equation (68) 

as scalar products. In order to do so, we also need to build line vectors [𝑆]2𝑘−1 and [𝑆]2𝑘 of length 𝑛 to 

account for these terms. Indeed, we can write −
𝜇0

2

𝑙𝑝

2𝜋
∑ �̇�0𝑖
𝑘−1
𝑖=1 (

𝑅𝑖

𝑅𝑘
)
2
 under the form 

−
𝜇0
2

𝑙𝑝
2𝜋

∑ �̇�0𝑖

𝑘−1

𝑖=1

(
𝑅𝑖
𝑅𝑘
)
2

=
𝜇0
2

𝑙𝑝
2𝜋
[𝑆]2𝑘−1[�̇�0] (350) 

with 

 

(351) 

and 
𝜇0

2

𝑙𝑝

2𝜋
∑ �̇�0𝑖
𝑛
𝑖=𝑘  under the form 

𝜇0
2

𝑙𝑝
2𝜋
∑�̇�0𝑖

𝑛

𝑖=𝑘

=
𝜇0
2

𝑙𝑝
2𝜋
[𝑆]2𝑘[�̇�0] (352) 

with 

 

(353) 

If we now make use of the derivative with respect to time of equation (349) which links the 

(𝐾0𝑖)1≤𝑖≤𝑛
 amplitudes to the (𝐸0𝑘)2≤𝑘≤2𝑛

 coefficients, and of equations (350) and (352), we can finally 

rewrite equation (68) as 

{
 
 

 
 𝐸02𝑘−1 +

𝜇0
2
(
𝑙𝑝
2𝜋
)

2
1

𝜌𝑡1
[𝑆]2𝑘−1[𝑀][�̇�0] = 0

𝐸02𝑘 +
𝜇0
2
(
𝑙𝑝
2𝜋
)

2
1

𝜌𝑡1
[𝑆]2𝑘[𝑀][�̇�0] =

𝑙𝑝
2𝜋
�̇�𝑎

 (354) 

We must keep in mind that these equations are only valid if layer 𝑘 is a filamentary zone; the other 

equations needed to complete the system are the time-derivatives of continuity equations (343), (344) 

and (345) multiplied by 
𝜇0

2
(
𝑙𝑝

2𝜋
)
2 1

𝜌𝑡1
 (in order for all coefficients of [𝐵] to be dimensionless), i.e. 

𝜇0
2
(
𝑙𝑝

2𝜋
)

2
1

𝜌𝑡1
[�̇�02𝑘−1 − �̇�02𝑘 − (

𝑅𝑘+1
𝑅𝑘

)
2

�̇�02𝑘+1 + �̇�02𝑘+2] = 0, 𝑓𝑜𝑟1 ≤ 𝑘 < 𝑛 (355) 

 

𝜇0
2
(
𝑙𝑝
2𝜋
)

2
1

𝜌𝑡1
[�̇�02𝑘−1 + �̇�02𝑘 −

ρ𝑡𝑘
ρ𝑡𝑘+1

(
𝑅𝑘+1
𝑅𝑘

)
2

�̇�02𝑘+1 −
ρ𝑡𝑘
ρ𝑡𝑘+1

�̇�02𝑘+2] = 0, 𝑓𝑜𝑟1 ≤ 𝑘 < 𝑛 (356) 

 

{

[𝑆]1 = 0 𝑖𝑓 𝑛 = 1                                                                                                          

[𝑆]2𝑘−1 = −[(
𝑅1
𝑅𝑘
)
2

 (
𝑅2
𝑅𝑘
)
2

 … (
𝑅𝑘−1
𝑅𝑘

)
2

0 …   0]  𝑖𝑓 𝑛 > 1,  1 ≤ 𝑘 ≤ 𝑛
 

1 2 𝑘 − 1 𝑘 𝑛 

{
[𝑆]2 = 1 𝑖𝑓 𝑛 = 1                                                   
[𝑆]2𝑘 = [0 …   0 1 …   1] 𝑖𝑓 𝑛 > 1,  1 ≤ 𝑘 ≤ 𝑛

 

1 𝑘 − 1 𝑘 𝑛 
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𝜇0
2
(
𝑙𝑝

2𝜋
)

2
1

𝜌𝑡1
[�̇�02𝑛−1 + �̇�02𝑛] = 0 (357) 

 

We now possess all the elements required, i.e. equations (354) to (357), to give the expression of the 

[𝐵] matrix appearing in the equation of the system (72). The logical tree used to build [𝐵] (consistent 

with the construction of [𝐴] and [𝑌] provided in Figure 78) is schematically described through Figure 

80; once again, the [𝐵]𝑖 notation represents lines i of [𝐵]. 

 
(a) : Expression(s) of the first line(s) of [𝑩] if n>1, the counter 𝒊 is initialized to one 

 
 

 
(b) : Iterative expressions of the lines of [𝑩], the “𝟐𝒌 − 𝟐” or “𝟐𝒌 + 𝟏” notations give the position of the 

coefficient inside the line vector [𝑩]𝒊 

 

 
(c) : Expression(s) of the last line(s) of [𝑩] 

 

Figure 80 : Logical tree used to build [𝑩] 

We will now give an example of application of the logical tree to build [𝐵] as we have done it 

previsouly for [𝐴], [𝑌] and [𝑀]; we continue with the same “R/F/R” composite. 
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The [𝑀] matrix has been built following the procedure given in Figure 79 and we can now build 

[𝐵]: we start with 𝑖 = 1 and since 𝑛 > 1 we use Figure 80 (a), the first interface is of “R/F” type, thus 

[𝐵]1 = [−1 −(
𝑅2

𝑅1
)
2

1 0 0] and 𝑖 = 2. 

The second interface (i.e. for 𝑘 = 2) is of “F/R” type, using Figure 80 (b), we can deduce that [𝐵]2 =

[𝑆]3[𝑀] and 𝑖 = 3 because here 2𝑘 − 1 = 2 ∗ 2 − 1 = 3, then we have [𝐵]3 = [𝑆]4[𝑀] and 𝑖 = 4 

because 2𝑘 = 2 ∗ 2 = 4, and [𝐵]4 = [0 1 −1 −(
𝑅3

𝑅2
)
2

1]and 𝑖 = 5. 

The ultimate layer is of “R” type therefore, using Figure 80 (c), we finally conclude that [𝐵]5 =

[0 0 0 1 1]. According to expression (351) with 𝑘 = 2, we have [𝑆]3 = −[(
𝑅1

𝑅2
)
2

0 0] and 

according to expression (353) with 𝑘 = 2, we have [𝑆]4 = [0 1 1]. 

Using the expressions of [𝑀], [𝑆]3 and [𝑆]4, we can now give the explicit expressions of [𝐵]2 =

[𝑆]3[𝑀] and [𝐵]3 = [𝑆]4[𝑀]: [𝐵]2 = [−(
𝑅1

𝑅2
)
2 𝜌𝑡1

𝜌𝑡2

𝜌𝑡1
𝜌𝑡2
(
𝑅1

𝑅2
)
2

0 0] and [𝐵]3 =

[0
𝜌𝑡1
𝜌𝑡2

𝜌𝑡1
𝜌𝑡2

−
𝜌𝑡1
𝜌𝑡2
(
𝑅2

𝑅1
)
2

−
𝜌𝑡1
𝜌𝑡2
]. 

For a “R/F/R” composite, we can then give the following [𝐵] matrix 

[𝐵] =

[
 
 
 
 
 
 
 
 
 
 −1 −(

𝑅2
𝑅1
)
2

1 0 0

−(
𝑅1
𝑅2
)
2 𝜌𝑡1

𝜌𝑡2

𝜌𝑡1
𝜌𝑡2

(
𝑅1
𝑅2
)
2

0 0

0
𝜌𝑡1
𝜌𝑡2

𝜌𝑡1
𝜌𝑡2

−
𝜌𝑡1
𝜌𝑡2

(
𝑅2
𝑅1
)
2

−
𝜌𝑡1
𝜌𝑡2

0 1 −1 −(
𝑅3
𝑅2
)
2

1

0 0 0 1 1 ]
 
 
 
 
 
 
 
 
 
 

 

Using equation (72), we can finally express the matrix equation governing the “R/F/R” composite 

for any time-varying regime 

[
 
 
 
 
 
 
 −1 −(

𝑅2
𝑅1
)
2

1 0 0

0 1 0 0 0
0 0 1 0 0

0 1 −1 −(
𝑅3
𝑅2
)
2

1

0 0 0 1 1]
 
 
 
 
 
 
 

[
 
 
 
 
 
𝐸02
𝐸03
𝐸04
𝐸05
𝐸06]

 
 
 
 
 

+
𝜇0
2
(
𝑙𝑝
2𝜋
)

2 1

𝜌𝑡1

[
 
 
 
 
 
 
 
 
 
 −1 −(

𝑅2
𝑅1
)
2

1 0 0

−(
𝑅1
𝑅2
)
2 𝜌𝑡1

𝜌𝑡2

𝜌𝑡1
𝜌𝑡2

(
𝑅1
𝑅2
)
2

0 0

0
𝜌𝑡1
𝜌𝑡2

𝜌𝑡1
𝜌𝑡2

−
𝜌𝑡1
𝜌𝑡2

(
𝑅2
𝑅1
)
2

−
𝜌𝑡1
𝜌𝑡2

0 1 −1 −(
𝑅3
𝑅2
)
2

1

0 0 0 1 1 ]
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
�̇�02
�̇�03
�̇�04
�̇�05
�̇�06]

 
 
 
 
 
 

=
𝑙𝑝
2𝜋
𝐵�̇�

[
 
 
 
 
0
0
1
0
0]
 
 
 
 

 

which can be numerically solved for the time dependency of the (𝐸0𝑖)2≤𝑖≤6
 coefficients. 

Once again, note that if 𝑛 = 1, the only coefficient to determine will be 𝐸02. Using Figure 80 (c) we 

have [𝐵] = [𝑆]2[𝑀] and since in this case we have seen that [𝑀] = 1, we have [𝐵] = 1 because 

[𝑆]2 = 1 when 𝑛 = 1 according to (353). The first equation given by the “F” branch of Figure 80 (c) 

is out of interest here since it would give an equation on �̇�01 which, by assumption, is always zero. 
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D. Examples of 2D cartographies generated with CLASS 

 

 

Figure 81 : Simulated cartography of transverse currents at the first instant of Figure 30 
for K006-01C JT-60SA TF composite and 𝑩𝒂 = 𝑩𝒑𝒔𝒊𝒏(𝟐𝝅𝒇𝒕) with 𝑩𝒑 = 𝟑𝑻, 𝒇 = 𝟏𝑯𝒛 

 

Figure 82 : Simulated cartography of magnetic field at the first instant of Figure 30 
for K006-01C JT-60SA TF composite and 𝑩𝒂 = 𝑩𝒑𝒔𝒊𝒏(𝟐𝝅𝒇𝒕) with 𝑩𝒑 = 𝟑𝑻, 𝒇 = 𝟏𝑯𝒛 
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Figure 83 : Simulated cartography of axial electric field at the first instant of Figure 30 
for K006-01C JT-60SA TF composite and 𝑩𝒂 = 𝑩𝒑𝒔𝒊𝒏(𝟐𝝅𝒇𝒕) with 𝑩𝒑 = 𝟑𝑻, 𝒇 = 𝟏𝑯𝒛 

 

 

Figure 84 : Simulated cartography of power density at the first instant of Figure 30 
for K006-01C JT-60SA TF composite and 𝑩𝒂 = 𝑩𝒑𝒔𝒊𝒏(𝟐𝝅𝒇𝒕) with 𝑩𝒑 = 𝟑𝑻, 𝒇 = 𝟏𝑯𝒛 
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Figure 85 : Simulated cartography of transverse currents at the second instant of Figure 30 
for K006-01C JT-60SA TF composite and 𝑩𝒂 = 𝑩𝒑𝒔𝒊𝒏(𝟐𝝅𝒇𝒕) with 𝑩𝒑 = 𝟑𝑻, 𝒇 = 𝟏𝑯𝒛 

 

 

Figure 86 : Simulated cartography of magnetic field at the second instant of Figure 30 
for K006-01C JT-60SA TF composite and 𝑩𝒂 = 𝑩𝒑𝒔𝒊𝒏(𝟐𝝅𝒇𝒕) with 𝑩𝒑 = 𝟑𝑻, 𝒇 = 𝟏𝑯𝒛 
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Figure 87 : Simulated cartography of axial electric field at the second instant of Figure 30 
for K006-01C JT-60SA TF composite and 𝑩𝒂 = 𝑩𝒑𝒔𝒊𝒏(𝟐𝝅𝒇𝒕) with 𝑩𝒑 = 𝟑𝑻, 𝒇 = 𝟏𝑯𝒛 

 

 

Figure 88 : Simulated cartography of power density at the second instant of Figure 30 
for K006-01C JT-60SA TF composite and 𝑩𝒂 = 𝑩𝒑𝒔𝒊𝒏(𝟐𝝅𝒇𝒕) with 𝑩𝒑 = 𝟑𝑻, 𝒇 = 𝟏𝑯𝒛 
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Figure 89 : Simulated cartography of transverse currents at the third instant of Figure 30 
for K006-01C JT-60SA TF composite and 𝑩𝒂 = 𝑩𝒑𝒔𝒊𝒏(𝟐𝝅𝒇𝒕) with 𝑩𝒑 = 𝟑𝑻, 𝒇 = 𝟏𝑯𝒛 

 

 

Figure 90 : Simulated cartography of magnetic field at the third instant of Figure 30 
for K006-01C JT-60SA TF composite and 𝑩𝒂 = 𝑩𝒑𝒔𝒊𝒏(𝟐𝝅𝒇𝒕) with 𝑩𝒑 = 𝟑𝑻, 𝒇 = 𝟏𝑯𝒛 
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Figure 91 : Simulated cartography of axial electric field at the third instant of Figure 30 
for K006-01C JT-60SA TF composite and 𝑩𝒂 = 𝑩𝒑𝒔𝒊𝒏(𝟐𝝅𝒇𝒕) with 𝑩𝒑 = 𝟑𝑻, 𝒇 = 𝟏𝑯𝒛 

 

 

Figure 92 : Simulated cartography of power density at the third instant of Figure 30 
for K006-01C JT-60SA TF composite and 𝑩𝒂 = 𝑩𝒑𝒔𝒊𝒏(𝟐𝝅𝒇𝒕) with 𝑩𝒑 = 𝟑𝑻, 𝒇 = 𝟏𝑯𝒛 
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Figure 93 : Simulated time solutions of screening currents, magnetic fields and average losses  
for K006-01C JT-60SA TF composite for a ramp going from 𝟎𝑻 to 𝟑𝑻 in 𝟏𝒔 followed by a plateau at 𝟑𝑻 

 

 

Figure 94 : Simulated cartography of power density at the instant corresponding to the marker displayed on 
Figure 93 for K006-01C JT-60SA TF composite for a ramp going from 𝟎𝑻 to 𝟑𝑻 in 𝟏𝒔 followed by a plateau at 𝟑𝑻 
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Figure 95 : Simulated time solutions of screening currents, magnetic fields and average losses  
for K006-01C JT-60SA TF composite for a ramp going from 𝟎𝑻 to 𝟑𝑻 in 𝟏𝒔  

followed by an exponential decay with a characteristic time of 𝟎. 𝟏𝒔 

 

 

Figure 96 : Simulated cartography of power density at the instant corresponding to the marker displayed on  
Figure 95 for K006-01C JT-60SA TF composite for a ramp going from 𝟎𝑻 to 𝟑𝑻 in 𝟏𝒔 

followed by an exponential decay with a characteristic time of 𝟎. 𝟏𝒔 
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E. Magnetization and AC losses measurements in JT-60SA NbTi strand 

 

Experimental results for trapezoidal cycles with 𝑩𝒎 = 𝟏. 𝟓𝑻 

 

Figure 97 : Magnetization cycles of K006-01C JT-60SA TF strand measured in Speedy facility  
for trapezoidal cycles with 𝑩𝒎 = 𝟏.𝟓𝑻 

 

Figure 98 : Losses of K006-01C JT-60SA TF strand per unit volume of strand per cycle 
measured in Speedy facility for trapezoidal cycles with 𝑩𝒎 = 𝟏.𝟓𝑻 
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Experimental results for trapezoidal cycles with 𝑩𝒎 = 𝟐. 𝟓𝑻 

 

Figure 99 : Magnetization cycles of K006-01C JT-60SA TF strand measured in Speedy facility  
for trapezoidal cycles with 𝑩𝒎 = 𝟐.𝟓𝑻 

 

Figure 100 : Losses of K006-01C JT-60SA TF strand per unit volume of strand per cycle 
measured in Speedy facility for trapezoidal cycles with 𝑩𝒎 = 𝟐.𝟓𝑻 
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Experimental results for trapezoidal cycles with 𝑩𝒎 = 𝟑𝑻 

 

Figure 101 : Magnetization cycles of K006-01C JT-60SA TF strand measured in Speedy facility  
for trapezoidal cycles with 𝑩𝒎 = 𝟑𝑻 

 

Figure 102 : Losses of K006-01C JT-60SA TF strand per unit volume of strand per cycle 

measured in Speedy facility for trapezoidal cycles with 𝐁𝐦 = 𝟑𝐓 
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Experimental results for positive trapezoidal cycles with 𝑩𝒎 = 𝟏𝑻 

 

Figure 103 : Magnetization cycles of K006-01C JT-60SA TF strand measured in Speedy facility  
for positive trapezoidal cycles with 𝑩𝒎 = 𝟏𝑻 

 

Figure 104 : Losses of K006-01C JT-60SA TF strand per unit volume of strand per cycle 
measured in Speedy facility for positive trapezoidal cycles with 𝑩𝒎 = 𝟏𝑻 
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Experimental results for trapezoidal cycles with 𝑩𝒎 = 𝟏. 𝟓𝑻 

 

Figure 105 : Magnetization cycles of K006-01C JT-60SA TF strand measured in Speedy facility  
for positive trapezoidal cycles with 𝑩𝒎 = 𝟏. 𝟓𝑻 

 

Figure 106 : Losses of K006-01C JT-60SA TF strand per unit volume of strand per cycle 
measured in Speedy facility for positive trapezoidal cycles with 𝑩𝒎 = 𝟏. 𝟓𝑻 
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Experimental results for sinusoidal cycles with 𝑩𝒑 = 𝟏. 𝟓𝑻 and 𝑩𝒐𝒇𝒇 = 𝟎𝑻  

 

Figure 107 : Magnetization cycles of K006-01C JT-60SA TF strand measured in Speedy facility  
for sinusoidal cycles with 𝑩𝒑 = 𝟏. 𝟓𝑻 and 𝑩𝒐𝒇𝒇 = 𝟎𝑻  

 

Figure 108 : Losses of K006-01C JT-60SA TF strand per unit volume of strand per cycle 
measured in Speedy facility for sinusoidal cycles with 𝑩𝒑 = 𝟏. 𝟓𝑻 and 𝑩𝒐𝒇𝒇 = 𝟎𝑻 
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Experimental results for sinusoidal cycles with 𝑩𝒑 = 𝟐. 𝟓𝑻 and 𝑩𝒐𝒇𝒇 = 𝟎𝑻  

 

Figure 109 : Magnetization cycles of K006-01C JT-60SA TF strand measured in Speedy facility  
for sinusoidal cycles with 𝑩𝒑 = 𝟐. 𝟓𝑻 and 𝑩𝒐𝒇𝒇 = 𝟎𝑻  

 

Figure 110 : Losses of K006-01C JT-60SA TF strand per unit volume of strand per cycle 
measured in Speedy facility for sinusoidal cycles with 𝑩𝒑 = 𝟐. 𝟓𝑻 and 𝑩𝒐𝒇𝒇 = 𝟎𝑻 
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Experimental results for sinusoidal cycles with 𝑩𝒑 = 𝟑𝑻 and 𝑩𝒐𝒇𝒇 = 𝟎𝑻  

 

Figure 111 : Magnetization cycles of K006-01C JT-60SA TF strand measured in Speedy facility  
for sinusoidal cycles with 𝑩𝒑 = 𝟑𝑻 and 𝑩𝒐𝒇𝒇 = 𝟎𝑻  

 

Figure 112 : Losses of K006-01C JT-60SA TF strand per unit volume of strand per cycle 
measured in Speedy facility for sinusoidal cycles with 𝑩𝒑 = 𝟑𝑻 and 𝑩𝒐𝒇𝒇 = 𝟎𝑻 

y = 3157,1x + 150,54
R² = 1

0

50

100

150

200

250

300

350

400

450

500

0 0,02 0,04 0,06 0,08 0,1 0,12

Lo
ss

e
s 

p
e

r 
u

n
it

 v
o

lu
m

e
 o

f 
st

ra
n

d
 p

e
r 

cy
cl

e
 

(m
J/

cm
3 /

cy
cl

e
)

f (Hz)

Sinusoidal cycles Bp = 3,0 T and Boff = 0T

Experimental points

Linear fitting



261 

 

Experimental results for sinusoidal cycles with 𝑩𝒑 = 𝟏. 𝟐𝟓𝑻 and 𝑩𝒐𝒇𝒇 = 𝟏. 𝟓𝑻  

 

Figure 113 : Magnetization cycles of K006-01C JT-60SA TF strand measured in Speedy facility  
for sinusoidal cycles with 𝑩𝒑 = 𝟏. 𝟐𝟓𝑻 and 𝑩𝒐𝒇𝒇 = 𝟏. 𝟓𝑻  

 

Figure 114 : Losses of K006-01C JT-60SA TF strand per unit volume of strand per cycle 
measured in Speedy facility for sinusoidal cycles with 𝑩𝒑 = 𝟏. 𝟐𝟓𝑻 and 𝑩𝒐𝒇𝒇 = 𝟏. 𝟓𝑻 
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F. Magnetization and AC losses measurements in ITER Nb3Sn strand 

 

Experimental results for trapezoidal cycles with 𝑩𝒎 = 𝟏. 𝟓𝑻 

 

Figure 115 : Magnetization cycles of F 0796-1 ITER TF strand measured in Speedy facility  
for trapezoidal cycles with 𝑩𝒎 = 𝟏.𝟓𝑻 

 

Figure 116 : Losses of F 0796-1 ITER TF strand per unit volume of strand per cycle 
measured in Speedy facility for trapezoidal cycles with 𝑩𝒎 = 𝟏.𝟓𝑻 
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Experimental results for trapezoidal cycles with 𝑩𝒎 = 𝟐. 𝟓𝑻 

 

Figure 117 : Magnetization cycles of F 0796-1 ITER TF strand measured in Speedy facility  
for trapezoidal cycles with 𝑩𝒎 = 𝟐.𝟓𝑻 

 

Figure 118 : Losses of F 0796-1 ITER TF strand per unit volume of strand per cycle 
measured in Speedy facility for trapezoidal cycles with 𝑩𝒎 = 𝟐.𝟓𝑻 

y = 23,703x + 190,51
R² = 0,9691

0

50

100

150

200

250

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35

Lo
ss

e
s 

p
e

r 
u

n
it

 v
o

lu
m

e
 o

f 
st

ra
n

d
 p

e
r 

cy
cl

e
 

(m
J/

cm
3
/c

yc
le

)

1/𝜏a (Hz)

Trapezoidal cycles Bm = 2,5 T

Experimental points

Linear fitting



264 

 

Experimental results for trapezoidal cycles with 𝑩𝒎 = 𝟑𝑻 

 

Figure 119 : Magnetization cycles of F 0796-1 ITER TF strand measured in Speedy facility  
for trapezoidal cycles with 𝑩𝒎 = 𝟑𝑻 

 

Figure 120 : Losses of F 0796-1 ITER TF strand per unit volume of strand per cycle 
measured in Speedy facility for trapezoidal cycles with 𝐁𝐦 = 𝟑𝐓 
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Experimental results for sinusoidal cycles with 𝑩𝒑 = 𝟏. 𝟒𝑻 and 𝑩𝒐𝒇𝒇 = 𝟏.𝟓𝑻  

 

Figure 121 : Magnetization cycles of F 0796-1 ITER TF strand measured in Speedy facility  
for sinusoidal cycles with 𝑩𝒑 = 𝟏. 𝟒𝑻 and 𝑩𝒐𝒇𝒇 = 𝟏. 𝟓𝑻  

 

Figure 122 : Losses of F 0796-1 ITER TF strand per unit volume of strand per cycle 
measured in Speedy facility for sinusoidal cycles with 𝑩𝒑 = 𝟏. 𝟒𝑻 and 𝑩𝒐𝒇𝒇 = 𝟏. 𝟓𝑻 
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