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"The persistence question asks what it takes for something that is a
person at one time to exist at another time as well. It asks what is

necessary and sufficient for any past or future being, whether or not it is a
person then, to be you or I.

[
...
]

Some general metaphysical views suggest
that there is no unique right answer to the persistence question. The

best-known example
[
...
]

says that for every period of time when you
exist, short or long, there is a temporal part of you that exists only then.

This gives us many likely candidates for being you—that is, many
different beings now sitting there and thinking your thoughts."

Eric T. Olson [Ols10]





Acknowledgments

Merci Étienne, Pierre et Guilhem Du. ; vous m’avez motivé à

m’engager dans cette thèse qui s’est révélée riche en rencontres et en

péripéties. Merci Martin, Bruno, Gilles, Frédéric, pour m’avoir accueilli

avec bienveillance au sein de vos équipes, dans RES mais aussi à la CIG,

où j’avais déjà passé quelques années et auprès de laquelle j’avais beau-

coup appris. Merci à toutes les personnes que j’ai rencontrées ou retrou-

vées au laboratoire, et plus particulièrement à Charles, Guillaume F. et

Jules ; merci pour toute votre aide et pour la bonne ambiance.

Je tiens également à remercier H. Theisel, B. Michel, L. Lacassagne et G.

Darche, qui ont aimablement accepté de faire partie de mon jury de thèse,

et surtout les rapporteurs G.-P. Bonneau et V. Natarajan, pour leur retours

et l’intérêt qu’ils ont manifesté pour mon travail. Je ne peux évidemment

pas oublier mes encadrants, Mélanie et Julien T., qui m’ont accompagné

et ont été disponibles à tous moments pendant ces trois ans ; merci de

m’avoir coaché, de m’avoir fait progresser et maturer, dans les multiples

sens du terme.

Merci les amis, 美樹 et ギエム, les mots me manquent pour exprimer

à quel point votre soutien et votre enthousiasme m’ont été précieux. Éloi,

Guillaume D., Julien V., Romain D., merci pour les aventures, les soirées,

les instants de détente, les discussions passionnées, je compte bien qu’on

ne s’en tienne pas là malgré la distance géographique qui nous sépare ;

Pierrick, Sébastien, Gérald, François, merci pour les bons moments, les

échanges, les découvertes ; Xavier D., Adrien, merci d’avoir comblé les

silences quand ils devenaient trop pesants. Merci enfin à mes parents et

ma famille, pour votre support et pour votre aide en toutes circonstances.

Je n’oublie pas tous ceux que je n’ai pas la place de citer ici mais qui

ont eu un impact sur mon travail, mes idées ou mon regard ; nous prenons

chaque saison davantage la couleur de ce qui nous traverse.

v





Publications

International Publications

Conferences

• Maxime Soler, Mélanie Plainchault, Bruno Conche, Julien Tierny,

“Topologically Controlled Lossy Compression”,

IEEE Pacific Conference on Visualization, Kobe, Japan, pp. 46-55,

2018

• Maxime Soler, Mélanie Plainchault, Bruno Conche, Julien Tierny,

“Lifted Wasserstein Matcher for Fast and Robust Topology Tracking”,

IEEE Symposium on Large Data Analysis and Visualization,

Berlin, Germany, 2018,

Best paper honorable mention award

Submitted to Journals

• Maxime Soler, Mélanie Plainchault, Martin Petitfrère, Gilles Darche,

Bruno Conche, Julien Tierny,

“Ranking Viscous Finger Simulations to an Acquired Ground Truth with

Topology-aware Matchings”,

2019

vii



Other

Tutorials

• Guillaume Favelier, Charles Gueunet, Attila Gyulassy, Julien Jomier,

Joshua Levine, Jonas Lukasczyk, Daisuke Sakurai, Maxime Soler,

Julien Tierny, Will Usher, Qi Wu,

“Topological Data Analysis Made Easy with the Topology ToolKit”,

IEEE VIS Tutorial, 2018

Abstract-only national workshops

• Maxime Soler, Mélanie Plainchault, Bruno Conche, Julien Tierny,

“Topologically lossy L∞ compression”,

MATHIAS 2017, Marne-la-Vallée, France

• Maxime Soler, Mélanie Plainchault, Bruno Conche, Julien Tierny,

“Compression avec perte contrôlée par la topologie”,

Journée Visu 2018, Palaiseau, France

• Maxime Soler, Mélanie Plainchault, Bruno Conche, Julien Tierny,

“Suivi topologique rapide et robuste par appariement de Wasserstein aug-

menté”,

Journée Visu 2019, Paris, France

viii



Contents

Acknowledgments v

Publications vii

Contents ix

Notations xiii

1 Introduction 1

1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Scientific Context 7

2.1 Geoscience . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Oil and gas exploration . . . . . . . . . . . . . . . . . . 9

2.1.2 Fluid simulation in porous media . . . . . . . . . . . . . 11

2.1.3 Inherent challenges . . . . . . . . . . . . . . . . . . . . . 12

2.2 Visualization and data analysis . . . . . . . . . . . . . . . 14

2.2.1 Computer science, 3D and visualization . . . . . . . . . . 14

2.2.2 Topology and large data analysis . . . . . . . . . . . . . 16

2.2.3 Large-scale simulations and in-situ . . . . . . . . . . . . 17

3 Theoretical background 21

3.1 Introduction to topology . . . . . . . . . . . . . . . . . . . 23

3.2 A formalism of topology . . . . . . . . . . . . . . . . . . . 25

3.2.1 Preliminary notions . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Domain representation . . . . . . . . . . . . . . . . . . . 28

3.2.3 Topological invariants . . . . . . . . . . . . . . . . . . . 30

3.2.4 Data representation . . . . . . . . . . . . . . . . . . . . . 33

3.3 Topological abstractions . . . . . . . . . . . . . . . . . . . 35

3.3.1 Critical points . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 Persistent Homology . . . . . . . . . . . . . . . . . . . . 38

ix



3.3.3 Persistence diagrams . . . . . . . . . . . . . . . . . . . . 42

3.3.4 Metrics between Persistence diagrams . . . . . . . . . . . 44

3.3.5 Computational aspects . . . . . . . . . . . . . . . . . . . 46

3.4 Other topological abstractions and extensions . . . . 50

4 Topologically controlled data compression 53

4.1 Scientific issues . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Data compression . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Topological control . . . . . . . . . . . . . . . . . . . . . 62

4.3.2 Data encoding . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.3 Pointwise error control . . . . . . . . . . . . . . . . . . . 64

4.3.4 Combination with state-of-the-art compressors . . . . . . 64

4.4 Data decompression . . . . . . . . . . . . . . . . . . . . . . 65

4.4.1 Data decoding . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.2 Combination with state-of-the-art decompressors . . . . . 66

4.4.3 Topological reconstruction . . . . . . . . . . . . . . . . . 66

4.4.4 Topological guarantees . . . . . . . . . . . . . . . . . . . 67

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.1 Compression performance . . . . . . . . . . . . . . . . . 69

4.5.2 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.3 Application to post-hoc topological data analysis . . . . . 74

4.5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Fast and robust topology tracking 81

5.1 Scientific issues . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.1 Assignment problem . . . . . . . . . . . . . . . . . . . . 87

5.2.2 Persistence assignment problem . . . . . . . . . . . . . . 89

5.2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Optimized persistence matching . . . . . . . . . . . . . . . 90

5.3.1 Reduced cost matrix . . . . . . . . . . . . . . . . . . . . 91

x



5.3.2 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.3 Sparse assignment . . . . . . . . . . . . . . . . . . . . . 93

5.4 Lifted persistence Wasserstein metric . . . . . . . . . . . 95

5.5 Feature tracking . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.1 Feature detection . . . . . . . . . . . . . . . . . . . . . . 97

5.5.2 Feature matching . . . . . . . . . . . . . . . . . . . . . . 97

5.5.3 Trajectory extraction . . . . . . . . . . . . . . . . . . . . 98

5.5.4 Handling merging and splitting events . . . . . . . . . . 98

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6.1 Application to simulated and acquired datasets . . . . . 99

5.6.2 Tracking robustness . . . . . . . . . . . . . . . . . . . . 100

5.6.3 Tracking performance . . . . . . . . . . . . . . . . . . . 103

5.6.4 Matching performance . . . . . . . . . . . . . . . . . . . 105

5.6.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Application to parameter fitting in ensembles 109

6.1 Scientific issues . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 Darcy-type porous media simulation . . . . . . . . . . . . 114

6.3 Analysis framework . . . . . . . . . . . . . . . . . . . . . . 116

6.3.1 Feature representation . . . . . . . . . . . . . . . . . . . 117

6.3.2 Metrics between time-varying persistence diagrams . . . 119

6.3.3 In-situ deployment . . . . . . . . . . . . . . . . . . . . . 124

6.3.4 Visual interface . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4.1 Experimental protocol . . . . . . . . . . . . . . . . . . . 125

6.4.2 Framework performance . . . . . . . . . . . . . . . . . . 128

6.4.3 Ranking quality . . . . . . . . . . . . . . . . . . . . . . . 130

6.4.4 Expert feedback . . . . . . . . . . . . . . . . . . . . . . 132

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7 Conclusion 135

7.1 Summary of contributions . . . . . . . . . . . . . . . . . . 135

7.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Bibliography 141

xi





Notations

Topological Data Analysis

∅ empty set

X set

N set of non-negative integers

Z set of integers

{0, 1} set of integers modulo 2

(X, T) topological space

M topological manifold

R set of real numbers

Rd d-dimensional Euclidean space

]a, b[, [a, b] open (resp. closed) interval of R

PL piecewise-linear

K simplicial complex

T triangulation

M PL d-manifold

f :M→ R PL scalar field

St(v) star of a vertex v

Lk(v) link of a vertex v

Lk−(v), Lk+(v) lower link, upper link of a vertex v

f−1(i) level-set of an isovalue i

f−1
−∞(i), f−1

+∞(i) sub-level set, sur-level set of an isovalue i

|| f − g||p p-norm

βp pth Betti number

I critical point index

D( f ) persistence diagram of f

W∞ bottleneck distance

W2 2-Wasserstein distance
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1Introduction

Recent advances in computer science and data analysis powered by

modern hardware have brought at reach many intricate and inacces-

sible problems in various scientific domains. Complex systems and phe-

nomena in nature are often associated with theoretical models, based on

mathematical descriptions. By combining these models with actual mea-

surements, computer simulations can produce forecasts, in the form of

large chunks of scientific data. This enables to check the reliability of such

models, to study the properties and behavior of the associated systems,

and to predict their probable evolutions.

Computer simulations have become an essential tool for studying nat-

ural phenomena in physics, chemistry, biology, as well as human sys-

tems in social sciences and economy. In particular, simulation is central

to the field of geosciences, notably in the oil and gas industry, which is the

applicative background of this academic-industrial Ph.D. thesis (CIFRE).

In this context, it is used to understand the behavior of subsurface fluid

flows. Since computing power kept on increasing in the past few decades,

and more precise tools were available to produce accurate measurements,

more data became available from scientific domains making use of numer-

ical models. One of the last ground-breaking examples is the reconstruc-

tion of a black hole image from petabytes of data [Cas19; Aki+19].

This fast technological growth has brought many challenges in recent

years as scientists are faced with constantly increasing volumes of data

that can be very difficult to analyze. Topological data analysis (TDA) tech-

niques [EH09] have proven their interest in this perspective, because they

allow to capture meaningful structures in scalar data, as topological features.

In a large data context, however, a fundamental problem remains

the limitation of computing infrastructures, with regard to input/output

(I/O) capabilities. Typically, the black hole image reconstruction men-

tioned above [Cas19; Aki+19] required experts to ship hard drives by

1



2 Chapter 1. Introduction

plane by lack of faster data transfer solutions. This is particularly prob-

lematic for simulation data-sets which model time-dependent phenomena,

since a high temporal resolution means a high I/O burden; even more so

with parametric studies which perform many simulations simultaneously.

There is a subsequent need to minimize data movement, for instance by

performing compression, or by extracting minimal structures of interest in

the data (e.g. with topological features).

In this thesis, we propose to model structures of interest in scientific

scalar data with such topological features. First, we address data growth

problematics thanks to a new feature-oriented compression algorithm.

Then, we propose to address data analysis problematics thanks to a new

feature tracking algorithm. Finally, we propose a way to assess the quality

of the features produced by simulations compared to a ground truth, with

a ranking framework which we apply in an industrial case study, using

the in-situ paradigm to answer the data movement problematic.

1.1 Challenges

As scientific data produced by simulations or acquisition instruments

grow in size and intricacy, new ways for exploration and visualization

are needed, in order to extract meaningful knowledge. In particular, the

problem of extracting, representing and measuring structures of interest in

large simulations subject to infrastructure limitations is central to this the-

sis. As this work is inscribed in an academic-industrial partnership with

a major actor of the oil and gas industry, our primary applicative context

will be the simulation of fluid flows in porous media, for which specialists

have to deal with such problematics.

The identification and interpretation of structures in simulations data,

which quite often take the form of scalar (i.e. real-valued) data defined on

some geometrical domain, gives rise to multiple challenges. We propose to

study scalar data in a unified framework, based on topology, that enables

us to tackle four of these scientific challenges, described in the following.

Structure extraction and characterization

When confronted with scalar data, the first step in a scientific analysis

pipeline is to identify which subset of the data is of actual interest. In

this context, topological data analysis (TDA) techniques have been exten-

sively used to perform structure extraction, in a generic, robust and effi-

cient way. The translation of meaningful regions of interest into topolog-
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ical terms, however, greatly varies depending on the applicative domain.

In geosciences and in particular reservoir simulation, this remains to be

explored.

Increasing size and complexity of data

Extracting features of interest can become problematic when data volumes

get larger, as both regular analysis methods and computing infrastructures

begin to show limitations. One of the advantages of TDA techniques is

their ability to define features in a hierarchical way, at multiple “levels of

detail”. Even though, the analysis of very large data becomes prohibitive

due to hardware input/output (I/O) limitations: computing power grows

faster than storage transfer rates. This calls for new ways to reduce data

movement.

Understanding time-varying data

The I/O problematic is particularly important for time-varying data (for

example coming from simulations), where a simple increase in time res-

olution may prohibit analyses which require the full data to be stored to

disk first. Moreover, traditional tools show some limitations for the anal-

ysis of time data (unless the time sampling is very high, which would

lead to I/O issues). For example, when trying to follow structures in a

given simulation at successive time-steps, there may be robustness issues

producing discontinuous jumps in the tracking graph.

Understanding the influence of simulation model parameters

Parametric studies aim at understanding the influence of simulation

model parameters on the produced forecasts, often in order to adjust these

parameters. If going from static to time-varying scalar data can be seen as

adding a dimension of complexity, doing parametric studies can be seen

as adding even more dimensions of complexity; such studies also need to

be adapted to data movement problematics. In addition, a framework for

studying ensembles of simulations using TDA methods need to account

for the problems raised by time-varying data, and also for domain-specific

notions when working with a topological definition of features of interest.

1.2 Contributions

In this thesis, we propose contributions for each of the aforementioned

challenges.
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Structure characterization and comparison with topological features

As a basis for our work, we rely on the theoretical setting of TDA, which

allows to define structures of interest in scalar data, in terms of topolog-

ical features, in a robust and hierarchical way. In particular, an advanta-

geous aspect of TDA is its ability to measure the similarity between fea-

tures across distinct data-sets, based on identifying the underlying dis-

crete topological constructs. Such similarity measures are called topolog-

ical metrics, and are central for data-set comparisons in our context. Our

feature-oriented characterization of structures of interest in the applicative

domain of reservoir simulation is documented in chapter 6.

Data compression which preserves topological features

Considering that topological features reliably capture structures of inter-

est in static data, we introduce a new lossy compression algorithm, with

guarantees on the topological loss, in an effort to address the I/O problem-

atic. The loss can be controlled with respect to topological metrics thanks

to a user-defined threshold. This allows to reduce the size of scientific

data, achieving high compression factors in practice, while preserving the

most salient topological structures of interest. The approach is extended

to optionally enforce a maximum error bound specified by the user, and

we show how it can be used in conjunction with other state-of-the-art

compressors. This contribution has been documented in the publication

[Sol+18b].

Fast tracking of time-varying features

In the context of time-varying data, we propose a new feature tracking

framework that enables a fast tracking of structures throughout time. The

approach is designed to be robust with respect to both noise and tempo-

ral resolution, which allows in practice to consider fewer time-steps and

which consequently contributes to relaxing the IO usage. For that purpose,

we introduce new topological metrics, as well as a new efficient algorithm

to compute them, adapting and adjusting existing TDA metrics which suf-

fered from robustness limitations. The tracking, based on the same topo-

logical definition of features, can be performed on data that was reduced

with our compression method. This contribution has been documented in

the publication [Sol+18a].

Topology-guided industrial parametric case study

Relying on the concepts that we introduced in the context of time-varying
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data, we adapt and extend topological metrics to the needs of an industrial

parametric case study involving reservoir simulation, an essential applica-

tion in the oil and gas industry. Specifically, we introduce a new ranking

framework which evaluates the likeliness of simulation runs in an ensem-

ble given a reference ground truth. Our approach is designed to allow

specialists to quickly determine which are the most physically adequate

parameters in their simulations; its relevance is assessed with feedback

from domain experts. With this case study modeling the viscous fingering

phenomenon arising in reservoir simulation, we demonstrate how topo-

logical features can be used to capture structures of interest, and adapted

to the case of large data, validating our initial motivation. In order to per-

form in the context of very large data and to handle I/O problematics,

we deployed our analysis pipeline following the in-situ paradigm, a recent

technique addressing such infrastructure limitations. This contribution is

documented in the submitted manuscript [Sol+19].

1.3 Outline

The remainder of this manuscript is organized as follows.

In chapter 2, we introduce the scientific context of this thesis, at the

crossroads between geoscience, scientific visualization and topological

data analyis. In particular, we highlight the different problematics inherent

to these scientific domains.

In chapter 3, we present the theoretical prerequisites regarding topol-

ogy and topological data analysis, first in a very general, non-formal man-

ner, then in a precise and formal way.

In chapter 4, we detail our lossy compression scheme for scientific

data-sets, which allows the user to control the topological loss.

In chapter 5, we describe our novel feature tracking framework, de-

signed to detect and follow topological singularities in time-varying sci-

entific data.

In chapter 6, after having introduced some key specifics of reservoir

simulation, we expose our framework for ranking simulation runs to an

acquired ground truth in a viscous fingering parametric study.

Finally, in chapter 7, we summarize the contributions brought by this

thesis and expose some open perspectives.
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In this chapter, we expose the main scientific context of our work: geo-

science and reservoir simulation, and highlight some problematics in-

herent to this domain. We then present an overview of modern scientific

data analysis and visualization; in particular, we introduce techniques re-

lated to Topological Data Analysis and in-situ, which were specifically

designed to address such issues. This gives a general context to the tools

and techniques that will be used throughout this manuscript.

7
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2.1 Geoscience

The field of geoscience includes many scientific domains aiming at un-

derstanding phenomena and mechanisms related to the planet Earth. For

instance, climatology and meteorology are interested in measuring, mod-

eling and predicting phenomena related to the atmosphere; where geology

is focused on studying the lithosphere, the outermost solid rock shell of

the Earth; and geophysics is concerned with physical phenomena such as

vibrations studied by seismology, or the Earth’s magnetic field studied by

geomagnetism. Some of these scientific domains are of central importance

to the oil and gas industry, which is the primary applicative focus of this

thesis and the focus of the present section.

2.1.1 Oil and gas exploration

Subsurface hydrocarbons are commonly contained in porous reservoir

rocks like sandstones or limestones. In the oil industry, the process of

finding and exploiting natural hydrocarbon reservoirs is done in multiple

steps. The first one, called exploration, aims to determining which geo-

graphical zones are the most likely to contain such reservoirs. Exploration

can go through an analysis of aerial photographs, which can be followed

by seismic surveys. On land, seismographs record the ground response

to waves emitted by explosives or seismic vibration trucks; at sea, seismic

vessels shot air guns and record the waves reflected by geologic strata be-

low the seabed with series of hydrophones. The recorded signals must be

processed and interpreted so as to determine the geological structure of

the underground, and to detect the presence of hydrocarbons: this stage

is called seismic interpretation. A geological 3D model of the petroleum

field may then be constructed based on seismic data (Fig. 2.1).

When potential oil and/or gas reservoirs are detected, the available

quantity of hydrocarbons must be assessed. Exploration wells are drilled

in order to analyze more precisely the nature of geological strata. Probes

are lowered into the well to record physical properties of the rock at

different depths: electrical resistivity allows to distinguish between for-

mations containing salty waters (good conductors) and those containing

hydrocarbons (poor conductors); porosity gives a measure of the frac-

tion of pore volume (where hydrocarbons can be found) in a rock vol-

ume; gamma radiation can be used to distinguish between sandstones

(non-radioactive) and shales (containing clays with radioactive isotopes of
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Figure 2.1 – Modern workflow used in the oil and gas industry for the analysis of a

hydrocarbon reservoir, relying on computer capabilities. During the interpretation stage,

recorded seismic signals are transformed into images (integration), then processed and

interpreted by experts to expose geological horizons and faults. During the geomodeling

stage, a 3D model conforming to these geological features is built (structural model), as-

sociated with physical properties (upscaling and gridding), leading to a geological model.

The reservoir model compatible with simulation software is built from the geological

model; finally, simulations and history-match can be performed. Image from [SA14].

potassium) [Dar05]; and many others. Core samples can also be brought

to the surface to be analyzed in labs.

When multiple wells are drilled in the same geographical zone, then

the physical properties recorded by logging instruments may be “ex-

tended” to fill the geological 3D model built from seismic data. Gridded

models are then constructed: they consist of 3D meshes on which the phys-

ical equations modeling fluid displacements are discretized, serving as a

basis for simulation. The simulation process aims to forecast and under-

stand the dynamic behavior of subsurface fluids during the production

stage. The evolution of reservoirs throughout time is recorded and com-

pared to the predictions yielded by simulations, so as to adjust predictive

models and data; this is a process called history match.
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Figure 2.2 – Two-dimensional cross-section of a sandstone (left), where the dark zones

correspond to the porous space where hydrocarbons can be potentially found, and the light

zone is the solid rock. The physics of flow can be captured by directly modeling the rock at

pore-scale (center), or by averaging physical quantities over control volumes at the Darcy

scale (right). Arrows represent velocity vectors and colors represent the volume fraction

of the solid phase. Image from [Sou].

2.1.2 Fluid simulation in porous media

Oil and gas experts are interested in understanding the displacement of

fluids in porous media. These happen at multiple scales, from the pore

scale (nanometers) to full field extents (tens of kilometers). There are mul-

tiple models for simulating flow in porous media, adapted to different

scales. Fig. 2.2 shows two of the main modeling approaches.

As they are extremely computationally expensive and require to pre-

cisely know the pore network, pore-scale simulations cannot be run on

the full scale of petroleum fields; they are typically used in order to un-

derstand flow in specific conditions. For example, PNM (pore network

modeling) approaches [XBJ16] may be used to infer the parameters of

Darcy-type simulations [Lou+18]. The latter methods, which work with

average quantities defined on control volumes, are commonly used for

larger scale simulations.

Among the physical quantities that are modeled in order to describe

the evolution of a reservoir, two of the most important ones are pressure

and saturation, which is the volume fraction of a certain phase (say the oil

phase) at a given control volume in the field. The precise equations at play

in Darcy flow are discussed further in chapter 6.

There are numerous simulation schemes for flow in porous media,

which can be based on an Eulerian or a Lagrangian formulation [BB67],

sometimes both. For example, the method illustrated in Fig. 2.3 first uses

static properties, well locations and initial conditions (Fig. 2.3, left) to solve

the pressure field (Fig. 2.3, center left); then it uses this pressure field to

trace streamlines (Fig. 2.3, center right); finally, it numerically solves the
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Figure 2.3 – Successive simulation steps of a porous flow simulation solver for polymer

floods. Initial conditions and properties at wells (left) are used to compute the pressure

scalar field (center left); which is then used to compute the fluid velocity vector field

and trace streamlines (center right). Transport equations are then solved numerically on

each streamline and their solutions are reported on the static grid, yielding the saturation

scalar field (right). The next time-step can then be computed. Scalar field values range

from blue (low) to red (high). Image from [Thi+10].

Figure 2.4 – 3D model of an oil reservoir from [Pet+10]; top layer view (left), cross-

sections with streamlines colored by regions (right). Producer wells are colored in red;

injector wells are colored in blue. The displayed scalar field is the permeability in the

x-direction, (blue: low values to red: high values). Image from [Thi+10].

1D transport equations numerically on the streamlines and maps them

back to the Eulerian grid (Fig. 2.3, right).

Some of the most important outputs of these simulations are hydrocar-

bon production forecasts at wells. Other outputs, which are not necessarily

saved nor fully exploited, are the scalar fields used as intermediate steps

to compute production data. This is the case of the pressure and satura-

tion scalar fields, for instance, which are defined at each cell of the gridded

simulation model.

2.1.3 Inherent challenges

As mentioned in Sec. 2.2, both computing power and acquisition tech-

niques have quickly evolved in recent years, in such a way that real world

studies involving porous flow simulations kept growing in size and res-

olution. Typical studies involving oil and gas fields with dimensions in

the order of tens of square kilometers can require large meshes displaying

a complex geometry. For example, a model from the Brugge Benchmark

Study [Pet+10] is shown in Fig. 2.4. The shown extent of this model only
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has 60, 048 cells; in recent studies, models with more than a billion of cells

begin to appear. This gives rise to a number of challenges.

Data size and I/O

First, it is prohibitive to save scalar fields to the disk, at multiple time-

steps, for later analyses. The classical approach for data analysis in reser-

voir studies is, as a matter of fact, post-mortem: it requires to save simula-

tion time-steps to the disk before anything. This is due to the historical de-

sign of the engineering workflow and to limitations in traditional analysis

software. Reservoir engineers are thus constrained to select a drastically

reduced subset of the data generated by the simulation for later analysis.

To address this issue, data reduction methods may be required, for ex-

ample compression schemes. Other solutions for limiting data movement

should be investigated, as ways to overcome the limitations of simulation

infrastructures.

Interpretation and extraction of structures

An additional problem arising with huge volumes of data is the need

for techniques to extract the right, meaningful information. Given, for in-

stance, a micro CT scan of a core sample, which could be a very large

3D density scalar field, it is not obvious how to extract the pore network

from this field. As another example, given a time-dependent scalar field

representing the local ratio of oil and water in a core sample which is

submitted to an injection of water, it is unclear how to characterize the

appearance and evolution of probable instabilities (as in the well-known

viscous fingering phenomenon).

Such scientific issues are, however, exclusive to neither reservoir simu-

lation nor geoscience. As all fields of science progressively advanced, the

difficult task of making sense of an ever-growing quantity of scientific data

has lead to the development of scientific visualization and data analysis,

in an effort to understand increasingly complex natural phenomena. In

the following section, we expose and give context to the modern solutions

that were developed in order to address such problematics.
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Figure 2.5 – Maps of Japan: 14th century map from [His18] (left); ca. 1595 map from

[Unn87b] (center, top); 1779 map from [Unn87a], the first to show latitude and longitude

lines (center, bottom); 2011 satellite photograph from [Tea11].

2.2 Visualization and data analysis

2.2.1 Computer science, 3D and visualization

Graphical representations have been used since the earliest ages to com-

municate ideas and knowledge. A reason for their efficiency as a means of

capturing facts and insights about the surrounding world is the innate ca-

pability of humans to reason well with geometrical objects [Pin84]. In fact,

the human brain performs remarkably when dealing with visual objects

and environments, for instance for recognizing and associating shapes or

reasoning about the possible interactions with a physical system. An area

of study concerned with this part of human intelligence is visual cognition

[Pin84]. Relying on these abilities, the idea behind scientific visualization

is to enhance the understanding of abstract scientific data through the use

of (possibly interactive) graphical or sensory representations.

Scientific visualization is arguably at least as old as cartography. Over

the course of centuries, maps have become more and more accurate as

surveying tools and geometrical methods were developed (Fig. 2.5). With

the systematic use of triangulation techniques starting in the sixteenth

century, and the advent of the telescope, navigational instruments and

printing, quite precise maps could be obtained, long before more “direct”

methods such as aerial photography were a possibility. In modern cartog-

raphy, a number of map projection techniques deliberately distort space

to emphasize certain aspects of the data. This is the case of the Mercator

projection, which makes all lines of constant bearing (called loxodromes)

into straight lines.

The idea of gaining visual insight into abstract data is not limited,
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Figure 2.6 – Maxwell’s sketch of Gibbs’ thermodynamic surface (left) from [Gib73], pho-

tograph of Maxwell’s clay model (right) from [Max90]. According to Maxwell, this model,

displaying the possible states of a water-like substance in a volume-entropy-energy 3D

space, allows to represent the features of the substance on a convenient scale.

though, to mapping the data into two-dimensional drawings or maps:

historical examples include a notable sculpture of a three-dimensional sur-

face by Maxwell in 1874 (Fig. 2.6). This would inspire later visualizations,

made possible by computer graphics.

In the first half of the twentieth century, advances in the electrical sci-

ences and engineering permitted the invention of new interactive visual-

ization instruments, such as cathode-ray tubes (CRTs) in the 1950s, which

were used in oscilloscopes, televisions and computer monitors. CRTs may

produce images line by line on a screen by magnetically bending a focused

electron beam, in a process called raster scan. As advances in computing

led to the emergence of interactive graphical systems, the new capabilities

provided by computers drew interest from the aerospace, automotive and

energy industries in the early 1960s.

The late 1960s and 1970s witnessed foundational work in graphics

and a growing interest of the animation and entertainment industries.

Major breakthroughs notably include hidden-surface algorithms [SSS74],

Gouraud [Gou71] and Phong [Pho75] shading models (see Fig. 2.7), tex-

ture [Cat74] and bump [Bli78] mapping. Though these (mostly ad-hoc) in-

teractive techniques essentially concerned raster-based graphics because

of hardware constraints at that time, ways to produce physically accurate

images by formulating [Kaj86] and solving the global illumination prob-

lem were already investigated, which prefigures modern photo-realistic

rendering (Fig. 2.7, bottom right), as well as volume rendering. In the lat-

ter, light rays are cast into volumetric data; these ray interact with matter

according to a user-defined function (called a transfer function), allowing

to visually explore large and occluded data.

In the 1980s and later decades, computer technology became available
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Figure 2.7 – Computer-generated images of a sphere. Lighting can be efficiently computed

with ad-hoc raster-based methods: flat shading (top left), Phong shading (top right). As

the physical light interacts between objects, ray-tracing methods [Whi05] can be used to

compute shadows cast by the light source (bottom left). As light bounces many times over

different objects, modern path-tracing methods can be used to render physically plausible

images (bottom right, obtained with Blender’s Cycles renderer [Fou15]).

to the larger public with the proliferation of home computers. The fast

growth of visualization and graphical techniques, with the help of Moore’s

law until the very recent years, gave rise to many ways of efficiently rep-

resenting abstract data, in numerous scientific domains and industries. In

parallel, scientific data equally kept growing in size and intricacy, thanks

to the advancement in acquisition and simulation techniques. New meth-

ods were needed for dealing with very large data, for example for ex-

tracting features from massive acquisitions (CT scans, astrophysical data,

seismic acquisitions, etc.) or for assessing the influence of parameters and

uncertainties in chaotic systems (in meteorology, parametric studies, etc.).

2.2.2 Topology and large data analysis

Topological data analysis (TDA) techniques [EH09; Pas+10; Hei+16; De

+15] have been used over the course of recent years because of their abil-

ity to hierarchically identify features in scalar data in a generic, robust

[ELZ02; CEH05] and efficient manner. They have been applied in vari-

ous scientific domains, such as computational fluid dynamics [Kas+11;

FGT16b], turbulent combustion [Bre+11], material sciences [Gyu+15],

biological imaging [CSP04; Boc+18], chemistry [Bha+18; Gue+14], as-
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Figure 2.8 – In a matter density data-set (left), the cosmic web can be extracted by

querying the “most persistent 1-separatrices of the Morse-Smale complex” connected to

local maxima of density (center). The “2-separatrices” of this topological object produce a

segmentation of the space (right). Image from [Sou11].

trophysics [Shi+16; Sou11], ensemble clustering [Fav+19], compression

[Sol+18b] or feature tracking [Sol+18a].

One of the reasons for the successful applications of TDA is the possi-

bility for experts to easily translate high-level domain-specific notions in

terms of topological data structures, which are abstractions related to geo-

metrical aspects or discrepancies in the data. Among such abstractions are

persistence diagrams [EH08; ELZ02], contour trees [CSA03], Reeb graphs

[Pas+07; Bia+08; Tie+09], Morse-Smale complexes [Gyu+08]. An example

application in astrophysics is given in Fig. 2.8. Similar TDA applications

can be found in the above examples.

Another possible application of TDA is the automatic definition of

transfer functions for volume rendering [Wil17]. As a matter of fact, across

different scientific domains, volumetric datasets may display a sensibly

different distribution of features of interest. For large volumes of data, it

is impractical to manually explore the parameter space of transfer func-

tions to find the best possible representation. Fortunately, with TDA tech-

niques, it is possible to automatically detect the most important regimes

of features and adjust the transfer function to highlight them.

For a more detailed exposition of the underlying theoretical concepts

of TDA, the reader is referred to chapter 3, which exposes in detail our

formal setting.

2.2.3 Large-scale simulations and in-situ

As major industrial and academic actors display a clear ambition to reach

toward exascale computing in the forthcoming years [Son+14; Com13], it

is expected that the strong coupling between high performance computing

and data analysis will have a significant impact over analysis and visual-
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Figure 2.9 – Data flow from simulation to visualization. Two approaches are possible

for the analysis of data generated by numerical simulations: post-mortem, whose data

flows, displayed in red, are potentially critical analysis bottlenecks if a consequent number

of simulation time-steps must be saved; and in-situ (by extension, in-transit), whose data

flows, displayed in green, are not an analysis bottleneck. Image from [SA16].

ization algorithms, software infrastructures, hardware architectures and

the workflow of research engineers.

For example, current trends in super-computing indicate an increase

of the computing power that evolves faster than memory, IO and net-

work bandwidth. Therefore, new paradigms for scientific simulation are

needed. The simulation of flow in porous media, of key importance in

the context of the work presented in this manuscript (for example for

studying a phenomenon called viscous fingering), is particularly affected

by data movement problematics, as models keep increasing in size, and

high-resolution time sampling is required for producing realistic simula-

tions.

Over recent years, solutions for limiting data movement were devel-

oped in this perspective, such as in-situ [Yu+10; Riv+12; Ras+11; OLe+16;

Aya+16] and in-transit [Ben+12; Mor+11] models, described in this section.

In the in-situ approach, computing resources (HPC nodes) are used

during the numerical simulation process to contribute to the analysis (or

visualization) of the data being generated. The classical approach would

require to perform the numerical simulation independently, then to save

a certain number of simulated time-steps on the disk, then to perform

visualization and analysis task on the saved data. This approach is called

post-mortem.
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A complementary notion is often associated to in-situ: in-transit. In this

approach, the data computed using simulation nodes is transfered to com-

puting nodes specialized in analysis and visualization tasks (hence not

impacting initial simulation resources), without requiring to disk storage.

Fig. 2.9 summarizes these two models.

Software infrastructures have been developed to enable in-situ. One

such example is Paraview Catalyst [Aya+15; Bau+16], which was notably

used for the visualization of a large-scale computational fluid dynamics

simulation [Ras+14] (256, 000 MPI processes on the Mira [Kum16] Blue

Gene/Q supercomputer). Paraview Catalyst has also been used in the con-

text of parametric studies and sensitivity analysis [LFR13; Ter+17].

We believe that this in-situ paradigm is of central importance to sci-

entific studies involving large data, and that new analysis methods, for

instance relying on TDA, should be developed while keeping in mind the

technical challenges that a possible in-situ deployment would raise.





3Theoretical background

Contents

3.1 Introduction to topology . . . . . . . . . . . . . . . . . . . . . 23

3.2 A formalism of topology . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Preliminary notions . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Domain representation . . . . . . . . . . . . . . . . . . . . . 28

3.2.3 Topological invariants . . . . . . . . . . . . . . . . . . . . . 30

3.2.4 Data representation . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Topological abstractions . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Critical points . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 Persistent Homology . . . . . . . . . . . . . . . . . . . . . . 38

3.3.3 Persistence diagrams . . . . . . . . . . . . . . . . . . . . . . 42

3.3.4 Metrics between Persistence diagrams . . . . . . . . . . . . 44

3.3.5 Computational aspects . . . . . . . . . . . . . . . . . . . . . 46

3.4 Other topological abstractions and extensions . . . . . 50

This chapter introduces the concepts and modern formalisms of topol-

ogy and topological data analysis (TDA), which are of central impor-

tance to this thesis. We first give some intuitive context to the versatility

and convenience of topology-based tools. We then present a modern for-

malism of topology and proceed to introduce important TDA concepts,

following and extending the elements of [Tie16] and [EH09]. The reader

who is already familiar with these concepts may jump to the important

definitions outlined in boxes (from Sec. 3.2 on), or directly to chapter 4

which exposes our first contributions and applications relying on TDA.
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3.1 Introduction to topology

Figure 3.1 – The surface of a doughnut (top left) can be “continuously” deformed until

it resembles the surface of a mug (top right), whereas it cannot be “continuously” trans-

formed into a two dimensional sphere (bottom left). Spaces which can be morphed into

one another (top row, bottom row) are considered “equivalent”.

Extracting knowledge from large amounts of abstract data, whether

of geometrical nature or not, is a difficult task. By contrast with historical

scientific experiments and observations, which could simply involve notes

on sheets of paper, modern science have to deal with such challenges.

As underlined in chapter 2, it is common for scientists to try to visually

represent their abstract data with shapes or drawings.

However, there is a certain independence between the shape of objects

and some of their structural properties. For instance, the geometrical shape

of a network can be modified without changing anything for an observer

which would be within the network, and whose only observable universe

would be the network itself. As the geometrical representation of objects

is dependent on their embedding space, which can be distorted, and from

the point of view of an external observer, it is sometimes difficult to cap-

ture structural discrepancies between them. The idea behind topology is

to characterize such objects from a fundamental, structural point of view,

without relying a priori on measurements or geometric representations.

A common image of topology in popular culture is that it states a

mug is equivalent to a doughnut (Fig. 3.1), using the notion of continuous

deformation. By continuous, it is intuitively meant that the shape is not

allowed to undergo tearing or merging. In accordance to this idea, topol-

ogy investigates the fundamental structural properties of objects, that can
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be identified by looking at the said object regardless of any geometrical

representation or measure. For that purpose, homeomorphism is a central

concept, based on the notion of continuity, that allows to construct a topo-

logical characterization, so as to group objects, called topological spaces,

in equivalence classes. Nonetheless, it proves quite difficult in practice to

demonstrate that two objects are homeomorphic using only continuity.

Topologists would rather make use of the concept of invariants, which are

computable quantities or algebraic structures that stay the same for all

objects that are homeomorphic to one another. It can be seen as a way to

introduce back the concept of measure, in a more fundamental sense, to

study topological objects.

The study of topology can bring out coarse truths about problems

(not necessarily formulated in terms of geometry), and can lead to un-

derstand deep properties that a broad class of geometric or continuous

objects can or cannot have. The interest of topology, though, is not limited

to proving the existence or non-existence of solutions to abstract, theoreti-

cal problems. A recently developed field of topology involving continuous

functions, called Morse theory [Bot88], popularized by Milnor [Mil63] and

which found many applications in computing [EH09] proved very useful

to the understanding of large data.

Topology can indeed provide insights about spaces as well as func-

tions defined on spaces. In engineering and scientific applications, large

volumes of data are often found in the form of a well-known (geometrical

or topological) space, on which scalar fields or vector fields are defined. The

question often asked is to analyze the properties of such fields.

Interestingly, there are deep relations between functions and the space

on which they are defined. The field of Morse theory which examines this

relationship, relies on the central notions of manifold, continuity, homeomor-

phism, critical points, which are formally introduced in the following sec-

tion (Sec. 3.2). In other words, if one knows some properties concerning a

given function (obeying to certain conditions), but nothing about the space

where it resides, then properties of this function can be used to study the

“shape” of the space it is defined on. This may sound abstract, but in

some cases, scientists may know properties concerning functions but not

the space where they are defined. The study of robotic arms is a notorious

example [TW84; Far08], where the configuration space of robot manipula-

tors can be investigated with the help of Morse theory [Got88; Hau91], as

presented in Fig. 3.2. In this domain, one of the challenges for engineers

doing inverse kinematics is to deal with singularities, or critical points, of
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the function giving the position of the end effector from the configuration

space of the robotic arm [BHB84]. Such considerations have applications

to the study of molecules [GK12]. In graphics, Morse theory has also in-

teresting applications, for example to study implicit shapes [Har98; SH05;

SKK91], or for visualization and mesh compression [LLT04].

Figure 3.2 – A robotic arm (left, Canadarm2 [Nok07] - NASA 2005). Some degenerate

configurations of a 3-arm (right, from [BHB84]), corresponding to critical points of the

function giving the position of the end effector from the angles of joints.

The study of functions defined on known spaces (quite often on ge-

ometrical meshes) is, nonetheless, much more common. In recent years,

topological data analysis, based on the same theoretical framework (Morse

theory), has been broadly used because of its ability to perform feature

extraction [ELZ02; CEH05] from functions defined on known spaces in a

robust, hierarchical manner. A few of its numerous applications are briefly

discussed in Sec. 2.2.2 of chapter 2.

In the following section, the topological notions illustrated here in an

intuitive and non-formal manner are exposed in a more rigorous setting.

3.2 A formalism of topology

In this section, we introduce a modern formalism of topology. There is not

only one valid formalism; the one presented in the following starts from

the concepts of open sets, though other formalisms can build up from the

concept of neighborhood. The reader can be referred to [EH09] and [DL14]

for further readings on the subject.

3.2.1 Preliminary notions

Definition 3.1 (Topological space) Let X be a set. (X, T) is a topological space if T is a

collection of subsets of X such that:
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– ∅ and X belong to T;

– Any union of elements of T belongs to T;

– Any finite intersection of elements of T belongs to T.

Some reference books remark that the first condition requiring ∅ and X

to be in T is redundant [Bou07]; this actually depends on the terminology

used to define sub-collections of sets [Bou06]. We use standard definitions

concerning sets and partitions.

Definition 3.2 (Open set) If (X, T) is a topological space, then elements of T are called open

sets.

Similarly, elements of X are called points. For example, considering R the

set of real numbers, and B the set of all open intervals of R, (R,B) is not

a topological space, because the union ]0, 1[∪]2, 3[ is not in B. Instead, let

S be the set containing all the elements of B, and closed under the opera-

tions of arbitrary union and finite intersection. Then, (R,S) is a topological

space and ]0, 1[∈ S is an example of an open set. Open sets are used to

build the concept of neighborhood:

Definition 3.3 (Neighborhood) Let (X, T) be a topological space and x ∈ X. Then, N ⊂ X is

a neighborhood of x if there is an open set in N that contains x.

Informally, a neighborhood of a point x is a set that contains all elements

that are “arbitrarily” close to x; any set that contains a neighborhood of x

is itself a neighborhood of x. An open set can be seen as a set which is a

neighborhood of all of its points. In this sense, the union of any family of

open sets is also open.

The next definitions introduce the notion of homeomorphism between

topological spaces.

Definition 3.4 (Function) Let (X1, T1) and (X2, T2) be two topological spaces. A function

f : X1 → X2 associates each element of X1 with a unique element of X2.

Definition 3.5 (Bijection) A function f : X1 → X2 is a bijection if for each element x2 ∈ X2

there is a unique element x1 ∈ X1 such that f (x1) = x2.

Definition 3.6 (Injection) A function f : X1 → X2 is an injection if for each element x2 ∈ X2

there is at most one element x1 ∈ X1 such that f (x1) = x2.
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Definition 3.7 (Continuous function) Let (X1, T1) and (X2, T2) be two topological spaces.

The function f : X1 → X2 is continuous if for each open set t2 ∈ T2,

f−1(t2) is an open set of T1.

Definition 3.8 (Homeomorphism) Let (X1, T1) and (X2, T2) be two topological spaces. The

function f : X1 → X2 is an homeomorphism if f is a bijection and f and

f−1 are continuous. The topological spaces are said homeomorphic.

In general topology, homeomorphisms are used to characterize the struc-

ture of topological spaces: two spaces are considered equivalent if they are

homeomorphic. Quite often in the domain of scientific visualization, the

data is defined on some geometrical domain. The next definitions intro-

duce the concept of topological manifold, adapted in this case.

Definition 3.9 (Unit Euclidean ball) The unit Euclidean ball of dimension d is the set Bd =

{x ∈ Rd, ||x||2 < 1}, where || · ||2 denotes the Euclidean (L2) norm.

Definition 3.10 (Unit Euclidean half-ball) The unit Euclidean half-ball of dimension d is the

set Bd
1/2 = {x = (x1, . . . , xd) ∈ Rd, ||x||2 < 1 and x1 ≥ 0}.

Definition 3.11

(Manifold) A topological space M is a d-manifold if every point of M

has an open neighborhood homeomorphic to either the unit Euclidean

ball of dimension d or the unit Euclidean half-ball of dimension d.

Definition 3.12 (Manifold boundary) Let M be a d-manifold. The set of points of M which

have a neighborhood homeomorphic to Bd
1/2 is called the boundary of M.

Manifolds without a boundary are called closed. Fig. 3.3 illustrates this

distinction. A d-manifold can be seen as a curved space, which is locally

equivalent to the Euclidean space of dimension d (except on its boundary)

but with a possibly more complicated global structure.

Figure 3.3 – Two 2-manifolds (surfaces), with boundary (left, the boundary is colored in

orange), and without boundary (right).
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3.2.2 Domain representation

The main focus of this manuscript is the analysis of scalar fields, which

are one-dimensional scientific data defined on a geometrical domain. In

this subsection, we formally introduce the domain representation that was

chose in the context of this work.

Definition 3.13 (Convex set) A set C of a d-dimensional Euclidean space Rd is convex if,

for any pair of points x, y ∈ C, the point tx + (1− t)y is also in C, for all

t ∈ [0, 1].

In other words, a set is convex if all pairs of points in the set define a

straight line segment which is also in the set (Fig. 3.4).

Figure 3.4 – Two 3-manifolds (volumes), a convex one (left) where any two points can be

linked by a segment that is still in the domain; and a non-convex one (right), for which it

is not the case.

Definition 3.14 (Convex hull) The convex hull of a set of points P of an Euclidean space

Rn is the minimal convex set containing all points of P .

Definition 3.15 (Simplex) A d-dimensional simplex is the convex hull of d + 1 affinely in-

dependent points of an Euclidean space Rn (with n ≥ d).

A simplex is the generalization of a triangle or a tetrahedron to any di-

mension. It is a basic combinatorial brick that we will be using to represent

neighborhoods. Each simplex σ of dimension d contains d + 1 simplices of

dimension d− 1 as illustrated in Fig. 3.5. The lower dimensional simplices

of σ are called its faces.

Definition 3.16 (Vertex) A vertex is a 0-dimensional simplex.

Definition 3.17 (Edge) An edge is a 1-dimensional simplex.

Definition 3.18 (Triangle) A triangle is a 2-dimensional simplex.
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Definition 3.19 (Tetrahedron) A tetrahedron is a 3-dimensional simplex.

Definition 3.20 (Face) A face τ of a d-dimensional simplex σ is a simplex containing a

non-empty subset of the points of σ. An i-dimensional face is noted τi.

Definition 3.21 (Simplicial complex) A simplicial complex K in Rd is a set of simplices of

Rd verifying the following two properties:

– for all s ∈ K, every face of s is in K;

– for all s1, s2 ∈ K, the intersection s1 ∩ s2 is either empty or it is face

of both s1 and s2.

A simplicial complex is therefore a combinatorial assembly obtained by

gluing simplices along their faces.

Definition 3.22 (Star) Let K be a simplicial complex. The star St of a simplex σ ∈ K is

the set of simplices of K that contain σ as a face. The set of d-simplices of

St(σ) is noted Std(σ).

Definition 3.23 (Link) Let K be a simplicial complex. The link Lk of a simplex σ ∈ K is

the set of faces of the simplices of St(σ) that are disjoint from σ. The set of

d-simplices of Lk(σ) is noted Lkd(σ).

Figure 3.5 – Some d-simplices, from left to right: vertex (red sphere, d = 0), edge (orange

segment, d = 1), triangle (yellow surface, d = 2) and tetrahedron (translucent volume,

d = 3).

Definition 3.24 (Triangulation) Let (X, T) be a topological space and let K be a simplicial

complex. Then K is a triangulation of X if there exists an homeomorphism

between X and the union of all simplices of K.

The set of topological data analysis techniques and algorithms that we will

review in the later sections have been chosen to operate on triangulations.

This is a practical basis as any usual mesh representation can indeed be

transformed into a triangulation, by subdividing their cells into simplices.

For regular grids (i.e. regular tessellations whose cells are quadrilaterals
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in dimension 2 and cuboids in higher dimensions), an associated triangu-

lation can be implicitly defined and adjacency relations can be retrieved

on-the-fly [Tie+17]. Plus, the convexity of simplices make them easy to

deal with when interpolating scalar fields, as we will see in the following

subsection.

A triangulation can be efficiently represented in software, as a list of d-

simplices with their stars and links for each dimension d. In the remainder

of this work, we will represent the domain with triangulations of mani-

folds, called piecewise-linear manifolds.

Definition 3.25
(Piecewise Linear manifold) Let M be a manifold. A triangulation of M is

called a piecewise linear manifold and notedM.

3.2.3 Topological invariants

In general, it is very difficult to prove that there exists a homeomorphism

between two topological spaces. For that reason, topological invariants

have been introduced.

Definition 3.26 (Topological invariant) A topological invariant of a topological space is a

property that is preserved under homeomorphism.

There are a number of topological invariants. For example, all surfaces ob-

tained by subdivision can be structurally characterized according to their

number of connected boundaries, their genus and their orientability factor,

thanks to a theorem in [Gri81]. However, the complete characterization

of objects in three dimensions and higher is much more challenging. For

this, it is necessary to introduce more powerful topological invariants. The

remainder of this subsection introduces and formalizes some important

notions and invariants, such as homology groups and Betti numbers, which

are central to the definition of powerful tools in TDA.

Definition 3.27 (Path) Let (X, T) be a topological space. A path p : [0, 1] → C ⊂ X is a

continuous function from the unit interval to a subset of X.

Definition 3.28 (Connectedness) A topological space (X, T) is connected if for any pair of

points in X there exists a path between them.

Definition 3.29 (Connected components) The connected components of a topological space

are its largest connected subsets.

This definition is instrumental to Homology Theory [Hat02]. The idea be-
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hind this theory is to associate topological spaces with algebraic structures

(groups). Then, two spaces are considered equivalent if their homology

groups are isomorphic.

Homology

Here we introduce more precisely the notions of homology group and Betti

numbers, which are the topological invariants on which the work presented

in this manuscript mostly relies.

Definition 3.30 (p-chain) Let T be a triangulation and Tp the set of its p-simplices. A p-

chain of T is a modulo 2 formal sum f of p-simplices: f : Tp → Z.

Property 3.1 The set of all p-chains of a triangulation is an abelian group under the

operation of addition.

Definition 3.31 (Incidence function) Let T be a triangulation. An incidence function is a

function γ defined by:

γ : T × T → {0, 1}
(σ, τ) 7→ 1 if τ is a face of σ

0 otherwise

Definition 3.32 (Boundary operator) Let T be a triangulation and Cp the set of its p-chains.

A boundary operator is defined by:

∂p : Cp→ Cp−1

c 7→ ∑τ∈T τ × γ(c, τ)

In other words, ∂p sends a p-simplex to the set of (p− 1)-simplices which

constitute its boundary.

Definition 3.33 (p-cycle) Let T be a triangulation and c a p-chain of T. If ∂p(c) = 0 then c

is a p-cycle.

Alternatively, a p-cycle is a p-chain without boundary. The boundary of a

p-chain is therefore a (p− 1)-cycle: it has no boundary.

Property 3.2 For any p-chain c, ∂p−1 ◦ ∂p(c) = 0.

Property 3.3 The set of all p-cycles of a triangulation is a subgroup of the group of its

p-chains.
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Definition 3.34 (Group of p-cycles) The group of all p-cycles of a triangulation T is noted

Zp(T ).

Definition 3.35 (p-boundary) Let T be a triangulation. A p-boundary of T is the boundary

of a (p + 1)-chain of T .

Property 3.4 The set of all p-boundaries of a triangulation is a subgroup of the group

of its p-cycles.

Definition 3.36 (Group of p-boundaries) The group of all p-boundaries of a triangulation T

is noted Bp(T ).

Definition 3.37 (Homology group) Let T be the triangulation of a topological space. The

pth homology group of T is the quotient group of its p-cycles modulo its

p-boundaries: Hp(T ) = Zp(T )/Bp(T ).

Equivalently, Hp(T ) = ker(∂p)/im(∂p+1). More informally, p-cycles are

grouped in a given homology class if they can be “continuously” trans-

formed into one another. Classes thus obtained can be identified to a repre-

sentative p-cycle, called a generator. By counting the number of generators

of a homology group, we get topological invariants called Betti numbers.

Definition 3.38
(Betti number) Let T be the triangulation. The pth Betti number of T is

the rank of its pth homology group, noted βp(T ).

The topology of T can be described with its Betti numbers βi, which corre-

spond in 3D to the numbers of connected components (β0), non collapsible

cycles (β1) and voids (β2).

Definition 3.39 (Reduced Betti number) Let T be a triangulation and βp its Betti numbers.

The reduced Betti numbers β̃p are defined by:

β̃p = βp for all p ≥ 1

β̃0 = β0 − 1 if T is non-empty

β̃−1 = 1 if T is empty

This comes from the definition of reduced homology groups [EH09], a

slight modification that is useful to ensure that β0 counts the number of

components, and if there is no component, then there is no hole. This

comes in handy when defining the concept of critical point index as we will

see later in the next section.
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3.2.4 Data representation

Now that we have formally introduced the domain on which scientific

data may be defined, we formalize our representation of the data itself.

Definition 3.40 (Barycentric coordinates) Let p be a point in Rd and σ a d-simplex. Then

p can be expressed as a linear combination of the 0-simplices of σ, with

coefficients αi, 0 ≤ i ≤ d. If the coefficients αi sum to 1, they are called the

barycentric coordinates of p relative to σ.

This holds as the vertices of a d-simplex are all affinely independent.

Property 3.5 The barycentric coordinates of a point of Rd relative to a d-simplex are

unique.

Property 3.6 A point p ∈ Rd belongs to a d-simplex σ if and only if all of its barycentric

coordinates are in [0, 1].

Definition 3.41

(Piecewise linear scalar field) Let T be a triangulation and h a function

mapping the vertices of T to R. A piecewise linear (PL) scalar field is a

function mapping the points of T to R, linearly interpolated from h.

The linear interpolation of f from h can be constructed in the following

way: for all points p in a d-simplex σ, f (p) = ∑i αih(τi), where τi is the

ith vertex of σ. In this way, a PL scalar field is constructed by taking a

function valued on the 0-simplices of T and linearly interpolating on the

higher dimensional simplices of T , as illustrated in Fig. 3.6. This linear

interpolation can be computed efficiently on modern hardware.

Definition 3.42 (Lower link) Let f be a PL scalar field. The lower link of a simplex σ rela-

tively to f is the subset of the link Lk−(σ) ⊂ Lk(σ) whose vertices v have

a strictly lower value f (v) than the vertices of σ.

Conversely, we define the upper link Lk+(σ) as the subset of σ’s link

whose vertices all have a strictly higher value by f .

To classify Lk without ambiguity into either lower or upper links, the

restriction of f to the vertices ofM is assumed to be injective. This can be

easily enforced in practice by a variant of simulation of simplicity [EM90].

This is achieved by considering an associated injective integer offsetO f (v),

which initially typically corresponds to the vertex position offset in mem-

ory. Then, when comparing two vertices, if these share the same value f ,

their order is disambiguated by their offset O f .
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Figure 3.6 – A piecewise linear scalar field constructed on a piecewise linear manifold

M, using linear interpolation. Values are first defined on the vertices of M (top left),

then linearly interpolated at edges (top right), triangles (bottom left), and in tetrahedra

(bottom right).

Definition 3.43 (Sub-level set) The sub-level set L−(i) of an isovalue i with respect to a PL

scalar field f :M→ R is the set {p ∈ M, f (p) ≤ i}.

Conversely, the sur-level set L+(i) of i is the set {p ∈ M, f (p) ≥ i}. These

two objects serve as segmentation tools in multiple analysis tasks [Bre+11;

CSP04; Boc+18].

Definition 3.44 (Level set) The level-set f−1(i) of an isovalue i ∈ R with respect to a PL

scalar field f : M → R is the preimage of i onto M by f : f−1(i) = {p ∈
M, f (p) = i}

Level-sets of PL scalar fields have interesting properties. In the 3-

dimensional case, within every tetrahedra the level-sets of a PL function

are parallel 2-dimensional surfaces. This allows to extract them efficiently

in practice, for example with the Marching Tetrahedra algorithm [DK91].

Definition 3.45 (Contour) Let f : T → R be a PL scalar field and i ∈ R an isovalue. The

connected components of the level-set f−1(i) are called contours.
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3.3 Topological abstractions

In scientific visualization, geometrical objects such as level-sets and con-

tours are essential, as they allow to extract meaningful or representative

regions in the data.

They are fundamental objects for the segmentation of regions of inter-

est in data where direct visualization is difficult (like compact or occluded

data). One of the main ideas of Topological Data Analysis is to perform

a segmentation of the data into regions where level-sets and contours are

homogeneous from a topological point of view. These regions of interest

then form topological features, which often bear a different specific mean-

ing, depending on the scientific applicative domain from which the data

is coming.

In this section, we define, in its formal context, the principal topologi-

cal abstraction, for scalar fields, that will serve as a basis for the work pre-

sented in this manuscript: the persistence diagram. Its definition is closely

related to the distribution of critical points of the scalar field.

Our formal setting is that of Morse theory [Mil63], which, as briefly

outlined in Sec. 3.1, relates the topology of manifolds to functions with

sufficiently nice properties (called Morse functions) defined on them.

3.3.1 Critical points

In multivariable calculus, the critical points of a function are defined as

the locations in the domain where the gradient of the function vanishes.

This formulation does not translate well to the case of piecewise-linear

scalar fields.

Instead, we use a result from Morse theory, which states that the crit-

ical points of a function f are the only points p ∈ M where the Betti

numbers of f−1
−∞( f (p)− ε) differs from those of f−1

−∞( f (p) + ε) for ε → 0.

Intuitively, when one takes progressively increasing threshold values, the

topology of sub-level sets with respect to the threshold changes when

crossing critical points. In the piecewise-linear setting, critical points have

handy properties.

Definition 3.46

(Critical point) Let f be a PL scalar field on a triangulation T and v a

vertex of T . If Lk+(v) and Lk−(v) are simply connected, v is a regular

point. Otherwise, v is a critical point of f and f (v) is called a critical

isovalue.
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Property 3.7 Let f be a PL scalar field on a triangulation T . If the restriction of f to

the vertices of T is injective, then the set of critical points of f is finite and

only contains isolated critical points.

Definition 3.47 (Maximum and minimum) Let v be a critical point of a PL scalar field f .

If Lk+(v) is empty, then v is a maximum. If Lk−(v) is empty, then v is a

minimum.

Definition 3.48 (Saddle) Let v be a critical point of a PL scalar field f . If v is neither a

minimum nor a maximum, then it is a saddle.

Fig. 3.7 illustrates this distinction between critical points. For increasing

threshold values a, the number of connected components of the level set,

given by β0( f−1(a)), augments by one when passing a minimum, de-

creases by one when passing a maximum, and does not change when

passing regular points.

Figure 3.7 – Points of the domain of a 2-dimensional PL scalar field (left), classified

according to the connectivity of their lower links (blue) and upper links (green). The links

of a minimum (a), regular point (b), saddle (c), maximum (d) are shown. From [TP12].

Definition 3.49 (Saddle multiplicity) Let v be a saddle of a PL scalar field f , and k is the max-

imum value of β0(Lk−(v)) and β0(Lk+(v)). The multiplicity of a saddle is

k− 1.

A saddle whose multiplicity is 1 is called a simple saddle; a saddle whose

multiplicity is higher than 1 is called a multi-saddle, or a degenerate critical

point. Fig. 3.8 illustrates this case.

Definition 3.50

(Critical point index) Let v be a non-degenerate critical point of a PL

scalar field f . v is a critical point of index I(v) = p if the only non-zero

reduced Betti number of its lower link is β̃p−1.

Remember that the reduced Betti numbers are given by β̃p = βp and

β̃0 = β0− 1, except when the triangulation is empty (in which case β̃0 = β0

and β̃−1 = 1). For example, given a PL scalar field f defined on a 2-

triangulation, maxima have index 2; saddles have index 1; and minima
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Figure 3.8 – Saddle points (blue spheres) of a 2-dimensional PL scalar field. A regular

saddle (left) has an upper (resp. lower) link consisting of two connected components;

whereas a multi-saddle may have more (right, three in this case).

have index 0. In practice, the computation and classification of critical

points according to their index can be done efficiently.

Definition 3.51 (Critical points) Let f be a PL scalar field on a triangulation T . The set of

critical points of index i of f is noted C i
f .

Definition 3.52 (PL Morse scalar field) Let f be a PL scalar field. f is a PL Morse scalar field

if:

– f has no degenerate critical point;

– all the critical points of f have a distinct f value.

Considering PL Morse scalar fields instead of PL scalar fields potentially

containing multi-saddles allows to classify its critical points in a robust

and consistent way. A PL scalar field can be made into a PL Morse scalar

field with a slight numerical perturbation. The first condition in Def. 3.52

can be enforced with a process called multi-saddle unfolding [EH09]; the

second condition can be enforced by requiring the restriction of f to the

vertices of T to be injective, with simulation of simplicity [EM90].

The basis for that is an important result of Morse theory in the smooth

setting, which states that all smooth functions f : M → R (for which PL

scalar fields are a special case), can be approximated by a smooth function

g which has no degenerate critical point (corollary 6.8 in [Mil63]). More

formally, the set of Morse functions form a dense subset of all smooth

functions. In the discrete case, however, the class of PL Morse scalar fields

is not dense among the class of all PL scalar fields; therefore, it may be

sometimes required to locally alter the triangulation before the scalar field

can be Morse.
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Other important results of Morse theory in the smooth case still hold

in the piecewise-linear case. For example, as discussed in the Sec. 3.1,

the critical points of a PL scalar field are related to the topology of the

domain; this is illustrated by notorious results such as the Morse-Euler

relation [Ban70].

In many scientific applications, the critical points of scalar fields are them-

selves features of interest. In 2D fluid flow, for instance, extrema of the

vertical component of the curl can be used to determine geometrical zones

where the flow is turbulent. However, in many practical cases, acquired or

simulated scientific data can be noisy. This means that scalar fields can be

subject to small oscillations due to numerical or acquisition artifacts, po-

tentially leading to an explosive increase in the number of critical points.

This observation is the main motivation of the framework developed

by Persistent Homology, which associates a measure of “importance” with

each critical point, called persistence.

3.3.2 Persistent Homology

The critical points extracted from scientific data cast into a PL Morse scalar

field can be important features of interest. However, as the data may be

noisy, it is important to distinguish between the critical points which are

due to small, insignificant oscillation, and those which are actual features.

In the present subsection, we introduce the framework of Persistent Homol-

ogy, developed in this perspective.

The Elder Rule

Let T be a (connected) triangulation and f a PL Morse scalar field on a

triangulation T . The sub-level sets of f form a family of nested sets Ta ⊆
Tb for real values a ≤ b. This family of sets can be pictured by considering

the sub-level set Ta, parametrized by a threshold value a, which evolves as

the value of a increases.

Now the evolution of the connectedness of Ta can be visualized, by

drawing each connected component of Ta (for a given value of a) as a

point. As the threshold a continuously takes all the possible values of

f , a 1-dimensional graph G( f ) is progressively drawn. For example, this

graph can be drawn by taking a from the lowest to the highest value of f .

As the value of a increases, the connected components of Ta get larger, in

such a way that the arcs on the corresponding graph can merge but never
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split. When a reaches the maximum value of f , we are left with a single

component (recall that T is connected).

Therefore G( f ) does not contain any cycle, and it is referred to as a

merge tree. Constructing the merge tree from the bottom up, G( f ) can be

decomposed into paths that grow monotonically with the value of f , and

that merge at points called junctures. When two paths merge at a juncture,

we consider the one whose other endpoint has a lower value to be the

oldest one; the other is the youngest one.

Definition 3.53 (Elder Rule) At a juncture between merging paths, the older path continues

and the younger path ends.

The Elder Rule generates a unique path decomposition for (PL) Morse

scalar fields. Considering Ta ⊆ Tb, for any two thresholds a ≤ b, this

decomposition is the only one for which the number of paths spanning

[a, b] is the number of components of Ta that have a non-empty intersection

with Tb.

Persistent homology group

The concept of persistence arises from the formulation of the Elder Rule for

the set of homology groups. This is the (more general) algebraic counter-

part of the fact illustrated with merge trees. We first need to proceed with

the definition of filtrations and group homomorphisms.

Definition 3.54 (Filtration) Let f̂ : T → R be an injective scalar field defined on a triangula-

tion T , so that for each face τ of each simplex σ ∈ T , f̂ (τ) < f̂ (σ). Let n be

the number of simplices in T ; let L−i the sub-level set of f by the ith value

in the sorted set of simplex values. Then L−0 ⊂ L
−
1 ⊂ · · · ⊂ L

−
n−1 = T is a

sequence of sub-complexes of T , called the filtration of f̂ .

The filtration of f̂ can be seen as a progressive construction of T which

adds simplices by chunks. The criterion f̂ (τ) < f̂ (σ) is enforced so that

the sequence of L− consists only of sub-complexes. For that the function

f̂ also associates simplices of dimension higher than 0 to a scalar value.

In practice, for PL scalar fields, the filtration we will be using is the

lower star filtration, described in the following. Recall that the star of a

vertex v is St(v) = {σ ∈ T , v is a face of σ}. By extension, the lower star

with respect to a PL scalar field f is St−(v) = {σ ∈ St(v), f (σ) ≤ f (v)}.
The lower star is generally not a simplicial complex; however, by adding

the missing faces, on obtains the closed lower star, which is a sub-complex

of T . Provided the restriction of f to the vertices of T is injective, each
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simplex has a unique vertex of maximum value and then belongs to a

unique lower star. Therefore, the set of all lower stars form a cover of

T . Furthermore, if Ki is defined as the set of all simplices of T whose

vertices all have a lower value than the ith vertex (in the ordering induced

by f ), then Ki is the union of the first i lower stars. This defines a filtration

K0 ⊂ K1 ⊂ · · · ⊂ Kn−1 = T , called the lower star filtration. The upper star

filtration can be defined symmetrically (by taking the upper star).

Definition 3.55 (Homomorphism) Given two groups (G, ∗) and (H, ·), a homomorphism is

a map h : G → H such that for all u, v ∈ G, h(u ∗ v) = h(u) · h(v).

A homomorphism is a map between groups that preserves the group op-

eration. Now a filtration is a sequence of nested complexes, each of which

is associated with homology groups Hp (for each dimension p). A filtration

induces a sequence of homology groups linked by homomorphisms:

Hp(L0)→ Hp(L1)→ · · · → Hp(Ln−1) = Hp(T ) (3.1)

New homology classes appear when going from Li−1 to Li (correspond-

ing, for instance, to newly created connected components), and some dis-

appear (when, for instance, two classes merge with each other). The idea

is then to group together classes that are present between two threshold

values i ≤ j, with the help of persistent homology groups.

Definition 3.56 (Persistent homology group) The pth persistent homology groups induced by

a filtration are the images of the homomorphisms induced by inclusion,

denoted Hi,j
p , for 0 ≤ i ≤ j ≤ n− 1.

Property 3.8 (Persistent homology group) Let Hi,j
p be the pth persistent homology group

induced by a filtration L0 ⊂ · · · ⊂ Ln. Then, Hi,j
p = Zp(Li)/(Bp(Lj) ∩

Zp(Li)).

Thus, for i ≤ j, the persistent homology groups Hi,j
p consist of the homol-

ogy classes of Li that are still present, or alive, at Lj. The ranks of persistent

homology groups are called persistent Betti numbers.

Definition 3.57 (Persistent Betti number) The pth persistent Betti numbers are the ranks of

the persistent homology groups: β
i,j
p = rank(Hi,j

p ).

As an example, let us examine the 0th persistent Betti number. Recall that

the 0th homology group describes connected components. Let L(i) ⊂ L(j)

be two nested complexes with i < j. Now let L(i, j) be the complex con-



3.3. Topological abstractions 41

taining the connected components of L(j) having non-empty intersection

with the connected components of L(j). Then the 0th homology group of

L(i, j) consists of the classes of the 0th homology group which existed at

the ith filtration step and have persisted to exist at the jth filtration step. It is

a persistence homology group, noted Hi,j
0 .

Fig. 3.9 shows this mechanism. The 0th Betti numbers of the jth and kth

filtration steps in this figure are β0(j) = 3 and β0(k) = 3. A new class has

appeared in L(k). The 0th persistent Betti number on the interval [j, k] is

β0(i, j) = 2: there are two classes which have persisted from L(j) to L(k).

Figure 3.9 – Some nested complexes induced by the lower-star filtration of a PL scalar

field (valuing from red to yellow) defined on a PL 3-manifold (the dragon’s head). Sub-

complexes are shown in opacity at three filtration levels i (top right) < j (bottom left) < k

(bottom right). A new connected component has appeared from L(i) to L(j), just before

it disappears at L(k). Another new connected component appears in L(k).

The appearance or disappearance of classes as the filtration unfolds

correspond to changes in the Betti numbers of sub-level sets of a scalar

field f . As outlined in Sec. 3.3.1, these changes precisely occur at the loca-

tion of critical points of f . Persistent homology classes can then be asso-

ciated with pairs of critical points of f , the critical point with the lowest f

value corresponding to the birth of the homology class, and the one with

the highest f value corresponding to its death. Such pairs are called persis-
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tence pairs; the absolute difference of the two critical point values through

f is called the persistence of the pair. More practically speaking, we show

some of the most prominent persistence pairs associated to filtrations in-

duced by a height function in Fig. 3.10.

When two classes merge, one of the two classes dies at the advantage

of the other. By applying the Elder Rule (Def. 3.53), we choose the most

persistent class (the one with the highest persistence value) to subsist.

Once this is fixed, then all critical points of a PL Morse scalar field can be

put into persistence pairs without ambiguity.

In this way, Persistent Homology offers a sound framework for defin-

ing topological features (in the case of the 0th homology group, these are

connected components, but this is applicable for all pth homology groups),

and for associating them with a measure of importance: persistence.

3.3.3 Persistence diagrams

In this subsection, we present the topological abstraction called a persis-

tence diagram, closely related to the notion of persistence pairs. Let f be a

PL Morse scalar field from which we want to analyze critical points.

From this point on, we will consider critical point pairs induced by the

star filtrations (Def. 3.54) of f ; the lower star filtration yields minimum-

saddle pairs and and the upper star filtration gives us saddle-maximum

pairs.

As a reminder, by applying the Elder Rule (Def. 3.53), critical points

can be arranged in a set of pairs, such that each critical point appears in

only one pair (ci, cj) with f (ci) < f (cj) and I(ci) = I(cj)− 1. Such a pair-

ing indicates that a topological feature of f−1
−∞(i) (connected component,

cycle, void, etc.) created at critical point ci dies at the critical point cj. For

example, as the value i increases, if two connected components of f−1
−∞(i)

meet at a given saddle cj of f , the youngest of the two (the one with the

highest minimal value, ci) dies at the advantage of the oldest (the one with

the lowest minimal value). Critical points ci and cj form a persistence pair.

Then, the distribution of critical points of f can be represented visually

by the persistence diagram [ELZ02; CEH05]. The persistence diagram D( f )

embeds each pair (ci, cj) in the plane such that its horizontal coordinate

equals f (ci), and the vertical coordinate of ci and cj is f (ci) and f (cj),

corresponding respectively to the birth and death of the pair. The height of

the pair P(ci, cj) = | f (cj)− f (ci)| is called the persistence and denotes the

life-span of the topological feature created at ci and destroyed at cj. Thus,
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Figure 3.10 – A PL scalar field defined on a PL 2-manifold (the dragon’s surface) as a

height function ranging from red to yellow (top). Some critical points are shown as spheres

(center; blue: minima, green: maxima, gray: saddles). Using the Elder Rule, critical points

are associated in persistence pairs (bottom).
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features with a short life span (for example, noise) will appear in D( f ) as

low persistence pairs near the diagonal (Fig. 3.11).

In three dimensions, the persistence of the pairs linking critical points

of index (0, 1), (2, 3) and (1, 2) denotes the life-span of connected compo-

nents, voids and non-collapsible cycles of f−1
−∞(i).

The practical interest of this visual representation is that it quickly

hints at the distribution and relative importance of critical points. Small

oscillations due to noise in the input data are typically represented by

pairs with low persistence, in the vicinity of the diagonal. In contrast, the

most prominent topological features are associated with large vertical bars

(Fig. 3.11, b). In many applications, persistence diagrams help users as a

visual guide to interactively tune simplification thresholds in topology-

based, multi-scale data segmentation tasks based on other topological ab-

straction, such as the Reeb graph [Ree46; CSP04; Pas+07; Tie+09; Gue+16;

TC16], or the Morse-Smale complex [Gyu+08; Gyu+14; RWS11]. These two

topological data structures are discussed in Sec. 3.4.

Figure 3.11 – A smooth (top row) and a noisy (bottom row) scalar field, defined on a

2D domain (left), with their 3D terrain representation (middle) and persistence diagrams

(right). Critical points are represented as spheres (red: maxima, orange: saddles, yellow:

minima). The largest pairs in the diagrams correspond to the two main hills.

3.3.4 Metrics between Persistence diagrams

In practical applications it is useful to evaluate the distance between two

scalar fields f , g : M → R. Multiple metrics have been defined in this

perspective; the Lp-norm || f − g||p is a classical example.
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Reflecting the idea of comparing scalar fields, multiple metrics

[CEH05; Cha+09] have been introduced to compare two persistence di-

agrams D( f ) and D(g). In the context of this thesis, such metrics are key

to:

• Assessing to what extent the topology of a scalar field has been dec-

imated through compression (chapter 4);

• Identifying zones in the data which are similar to one another (chap-

ter 5);

• Ordering a set of scalar fields with respect to a reference via a quan-

titative measure of similarity (chapter 6).

Wasserstein and bottleneck distances

Critical point pairs in persistence diagrams can be associated with a point-

wise distance, noted dp, inspired by the Lp-norm. Given two persistence

pairs a = (ax, ay) ∈ D( f ) and b = (bx, by) ∈ D(g), dp can be defined as:

dp(a, b) =
(
|ax − bx|p + |ay − by|p

)1/p (3.2)

The Wasserstein distance [Mon81; Kan42] or Wasserstein metric, noted Wp,

between persistence diagrams D( f ) and D(g) is then defined as:

Wp
(
D( f ),D(g)

)
= min

φ∈Φ

(
∑

a∈D( f )
dp
(
a, φ(a)

)p
)1/p

(3.3)

where Φ is the set of all possible assignments φ mapping each persistence

pair a ∈ D( f ) to a persistence pair b ∈ D(g) with identical critical indices

I or to its diagonal projection, noted diag(a) – which corresponds to the

removal of the corresponding feature from the assignment, with a cost

dp(a, diag(a)). It is illustrated in Fig. 3.12.

Taking the limit as p goes to infinity, one obtains the bottleneck distance,

W∞
(
D( f ),D(g)

)
, given by:

W∞
(
D( f ),D(g)

)
= min

φ∈Φ

(
max

a∈D( f )

(
d∞
(
a, φ(a)

)))
(3.4)
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Figure 3.12 – Persistence diagrams of two distinct 2D scalar fields (a, b), whose persis-

tence pairs are associated by the Wasserstein metric (c, matching pairs are linked together

with red segments). The third hill of (b), captured by the rightmost persistence pair, is

discarded by the matching.

An important stability result states that the bottleneck distance be-

tween two persistence diagrams is bounded by the maximum norm be-

tween the two functions [CEH05]:

W∞
(
D( f ),D(g)

)
≤ || f − g||∞ (3.5)

This stability result implies that a small perturbation of amplitude ε of

the function (|| f − g||∞ = ε) will at most imply a bottleneck distance of ε

between the two persistence diagrams. This further motivates the practical

usage of persistence diagrams as a stable and compact representation of

the topological features of a scalar field. This important result also mo-

tivated the investigation of the reciprocal question, which addresses the

problem of reconstructing a function g from the diagram of f , from which

persistence pairs below ε would have been removed. This problem is gen-

erally called combinatorial reconstruction [EMP06; Att+13]; some approaches

for solving it are discussed in Sec. 3.3.5. Note that the Wasserstein distance

does not have the same strong stability properties as the bottleneck dis-

tance.

3.3.5 Computational aspects

In this subsection we discuss the practical implications of computing and

comparing persistence diagrams.

Persistence diagram

Given a PL scalar field f defined on a PL d-manifold M, the persistence
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diagram of f is usually computed in two steps: (i) critical point extraction

and (ii) association of critical points in pairs.

Step (i) can be done in a single pass over all the stars of simplices of

M. As this processing is local, it can be trivially parallelized. Step (ii) can

be done with the algorithm by Edelsbruner [ELZ02]. If n is the number of

simplices ofM, then this is done in O(n3).

If we restrain to extrema-saddle pairs, then step (ii) can be done more

efficiently. The classical approach for doing this amounts to computing

merge trees as described in Sec. 3.3.2. It requires to perform a sequence

of breadth-first searches to find critical point pairs, for instance based on

a union-find data structure; the resulting complexity is O(n log n + mαm)

with n the number of vertices of M, m its number of edges and α the

inverse Ackermann function [TV98; CSA03].

For the case where d = 2 or d = 3, the algorithm can be parallelized by

tasks [Gue+17] and extended to non-linear interpolants [Nuc+17]. In the

studies presented in the remainder of this manuscript, we use the parallel

implementation by Gueunet et al. [Gue+17].

Bottleneck distance

Finding the bottleneck distance between two diagrams D( f ) and D(g),

with |D( f )| ≤ |D(g)|, can be seen as assigning tasks (i.e. persistence pairs

from D( f )) to parallel machines (i.e. persistence pairs from D(g)) so as

to minimize the latest completion time (i.e. the highest pairwise distance

between assigned pairs). This is called the bottleneck assignment problem,

a special case of the assignment problem. The time required for a machine

to perform a task models the pairwise distance between pairs of the two

diagrams.

Times, or assigment costs, can be summarized in a rectangular cost ma-

trix (rij). The problem then amounts to choose a set of |D( f )| elements

from this matrix (rij), with no two elements sharing the same row or the

same column (they are called independent elements), so that the largest of

these elements is minimal.

There are multiple approaches for solving the bottleneck assignment

problem, which can be grouped into thresholding and augmenting path al-

gorithms [BC99]. Thresholding algorithms consider an increasing thresh-

old cost c∗, build an intermediary matrix (r̄ij) containing the elements

of (rij) smaller than c∗, and ∞ instead of elements larger than c∗; then,

check whether there is a perfect matching in the graph with adjacency

matrix (r̄ij) (for instance by using the Hopcroft-Karp algorithm [HK73]).
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The concept of a perfect matching in the associated graph of a cost matrix is

illustrated in Fig. 3.13. The bottleneck distance is obtained for the minimal

threshold cost c∗ yielding a perfect matching in the associated graph.

Figure 3.13 – A cost matrix whose seven lowest elements are associated to a graph (top).

The fifth dot on the left, corresponding to the fifth row of the matrix, is not linked to any

other dot, so there can be no perfect matching. Taking the eight lowest elements (bottom),

one can find a perfect matching in the associated graph (shown in red), so the bottleneck

distance in this case is 8.

An efficient exact implementation of this strategy is the Gabow-Tarjan

algorithm [GT88], which combines Hopcroft-Karp rounds in a binary

search. If the cost matrix is a square of n× n elements, and m ≤ n2 is the

number of finite entries in the matrix, then its complexity is O(m
√

n log n).

This is the algorithm we implemented and used during the experiments

conducted in chapter 4.

Wasserstein distance

The Wasserstein distance can be computed by solving a modified assign-

ment problem between diagrams. Namely, the modification comes from the

possibility for a pair to be mapped to itself by the assignment with a cost

(corresponding to the distance to the diagonal). This optimization problem

is discussed in detail in chapter 5.

The seminal exact approach for computing an optimal assignment is

the Kuhn-Munkres algorithm [Mun57]; adaptations to the case of per-

sistence diagrams have been proposed [Mor10]. In chapter 5, we revisit

this approach and further optimize it with arguments based on sparsity,
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achieving speedups of 1 to 2 orders of magnitude. Especially, our adap-

tation is faster than even approximate methods for small persistence dia-

grams.

However, the Kuhn-Munkres algorithm is O(n3), which can quickly

become prohibitive for very large persistence diagrams (more than a few

thousands of pairs). Approximate methods have been proposed to ease

this constraint. Among these, there is the Auction algorithm [BC89], which

can be easily implemented and parallelized. Adaptations of the Auction

algorithm to the case of persistence diagrams have also been proposed

[KMN17]; their performance can be further increased by using lookup

acceleration structures, such as KD trees.

Combinatorial reconstruction

Stability results regarding persistence diagrams raise the question of com-

binatorial reconstruction. Concretely, let D( f ) be the persistence diagram of

a scalar field f and Dε( f ) the persistence diagram obtained by remov-

ing all persistence pairs from D( f ) whose persistence is less than a given

threshold ε. Then, combinatorial reconstruction is the problem of comput-

ing a function g, so that:

• g is sufficiently close to f (i.e. || f − g||∞ is small);

• D(g) = Dε( f ).

Several approaches to the combinatorial reconstruction problem have

been proposed for the case of persistence pairs of index (0, 1) and

(d − 1, d), which is precisely our setting. Such approaches address the

PL case [EMP06; TP12], filtrations [Att+09] or discrete Morse functions

[BLW12].

The algorithm by Tierny and Pascucci [TP12] is noted by dint of its

ease of implementation. Typically, this algorithm is given as an input the

list of minima and maxima to maintain (in our setting, extrema involved

in persistence pairs larger than ε) and it produces a function g, along with

its corresponding vertex integer offset function Og, which admits the sim-

plified version of the persistence diagram of f , W∞
(
D( f ),D(g)

)
≤ ε, and

therefore, thanks to the stability result of Eq. 3.5, which is close to the in-

put function f , || f − g||∞ ≤ ε. This procedure can be seen as a function

reconstruction process, from critical point constraints with combinatorial

guarantees. As discussed in the following, it plays a key role in our com-

pression scheme (presented in chapter 4).
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Figure 3.14 – Four gaussians defined on a 2D plane (top left) and the associated persis-

tence diagram (right); three gaussians defined on a 3D volume (bottom left) with persis-

tence diagram (right). Critical point pairs belonging to the diagrams are also embedded

in the domain.

3.4 Other topological abstractions and extensions

In this section, we briefly present some other tools from TDA which arise

from the definition of Persistent Homology, and have important practical

applications.

Embedded persistence diagram

In Sec. 3.3.3, we saw that persistence diagrams are combinatorial struc-

tures establishing a robust, hierarchical relation between critical points in

a scalar field. These critical points initially lie in the definition domain of

the scalar function. By plotting persistence pairs using the initial coordi-

nates of critical points (instead of locating them in the birth-death space),

one obtains another possible representation of the persistence diagram

(Fig. 3.14). We call this representation the embedded persistence diagram.

No computational overhead is required to obtain this embedding from

the persistence diagram (except the cost of storing the coordinates of crit-

ical points).

Persistence curve

When challenged to analyze data with a rich underlying topology (which

is typically the case of noisy data), often it is not possible to have a clear,

comprehensive overview of the distribution of critical points by looking

only at the persistence diagrams. In practical cases, it may be difficult

to estimate the number of small persistence pairs; moreover, persistence

pairs can often be stacked on top of one another in the birth-death space.

Using the embedded persistence diagram is not a convenient solution ei-

ther, when the dimension of the domain is greater than two.

To easily visualize populations of persistence pairs, an alternate rep-
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Figure 3.15 – Von Kármán Vortex street phenomenon, showing the turbulence of a fluid

flow behind a solid obstacle [Tie16]. Extrema (spheres, blue: minima, green: maxima) of

the the orthogonal component of the flow curl are shown (left). The persistence curve

(right) shows populations of critical point pairs in the field; by selecting the most persis-

tent ones (those on the right of vertical cuts of the curve), we can define a hierarchy of

critical point sets (left, from top to bottom).

resentation, called the persistence curve, is preferred. It is a 2D plot of the

function whose input is a threshold value, τ, and whose output is the

number of persistence pairs with persistence smaller than τ. This is shown

in Fig. 3.15. Persistence curves are used in practice to detect discontinuities

in the distribution of topological features and, consequently, to separated

the regimes corresponding to noise from those corresponding to actual

features of interest.

The topological abstractions arising from the concepts discussed in

this chapter constitute the fundamental toolbox of topological data anal-

ysis. They have been widely used, in a number of scientific domains (see

Sec. 2.2.2 of chapter 2 for some examples).

In the following chapters, we will show how to capture characteris-

tic structures, in scientific datasets, by making use of these topological

abstractions. In particular, the advantages provided by the persistence di-

agram, namely its robustness, its ability to capture features in a concise

and hierarchical way, and the possibility to compute similarity measures,

are of critical interest for the applications we are targeting.
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In a first effort to address the problematic growth in size of scientific

data, we present in this chapter a new algorithm for the lossy compres-

sion of scalar data defined on 2D or 3D regular grids, with topological

control. Certain techniques allow users to control the point-wise error in-

duced by the compression. However, in many scenarios, it is desirable to

control in a similar way the preservation of higher-level notions, such as

topological features, in order to provide guarantees on the outcome of

post-hoc data analyses.

This chapter presents the first compression technique for scalar data

which supports a strictly controlled loss of topological features. It provides

users with specific guarantees both on the preservation of the important

features and on the size of the smaller features destroyed during com-

pression. In particular, we present a simple compression strategy based

on a topologically adaptive quantization of the range. Our algorithm pro-

vides strong guarantees on the bottleneck distance between persistence

diagrams of the input and decompressed data, specifically those associ-

ated with extrema. A simple extension of our strategy additionally en-

ables a control on the pointwise error. We also show how to combine our

approach with state-of-the-art compressors, to further improve the geo-

metrical reconstruction.

Extensive experiments, for comparable compression rates, demon-

strate the superiority of our algorithm in terms of the preservation of

topological features. We show the utility of our approach by illustrating

the compatibility between the output of post-hoc topological data analysis

pipelines, executed on the input and decompressed data, for simulated or

acquired data sets. We also provide a lightweight VTK-based C++ imple-

mentation of our approach for reproduction purposes. This contribution

has been documented in the publication [Sol+18b].
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4.1 Scientific issues

Data compression is an important tool for the analysis and visualization

of large data sets. In particular, in the context of high performance com-

puting, current trends and predictions [Son+14] indicate increases of the

number of cores in super-computers which evolve faster than their mem-

ory, IO and network bandwidth. This observation implies that such ma-

chines tend to compute results faster than they are able to store or transfer

them. Thus, data movement is now recognized as an important bottleneck

which challenges large-scale scientific simulations. This challenges even

further post-hoc data exploration and interactive analysis, as the output

data of simulations often needs to be transferred to a commodity work-

station to conduct such interactive inspections. Not only such a transfer is

costly in terms of time, but data can often be too large to fit in the mem-

ory of a workstation. In this context, data reduction and compression

techniques are needed to reduce the amount of data to transfer.

While many lossless compression techniques are now well established

[Huf52; ZL77; ZL78; LI06], scientific data sets often need to be compressed

at more aggressive rates, which requires lossy techniques [Lak+11; Lin14]

(i.e. compression which alters the data). In the context of post-hoc analysis

and visualization of data which has been compressed with a lossy tech-

nique, it is important for users to understand to what extent their data has

been altered, to make sure that such an alteration has no impact on the

analysis. This motivates the design of lossy compression techniques with

error guarantees.

Several lossy techniques with guarantees have been documented, with

a particular focus on pointwise error [LI06; IKK12; DC16]. However, point-

wise error is a low level measure and it can be difficult for users to ap-

prehend its propagation through their analysis pipeline, and consequently

its impact on the outcome of their analysis. Therefore, it may be desirable

to design lossy techniques with guarantees on the preservation of higher-

level notions, such as the features of interest in the data. However, the

definition of features primarily depends on the target application, but also

on the type of analysis pipeline under consideration. This motivates, for

each possible feature definition, the design of a corresponding lossy com-

pression strategy with guarantees on the preservation of the said features.

In this work, we introduce a lossy compression technique that guarantees

the preservation of features of interest, defined with topological notions,
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hence providing users with strong guarantees when post-analyzing their

data with topological methods.

For instance, we detail in subsection 4.5.3 two analysis pipelines based

on topological methods for the segmentation of acquired and simulated

data. In the first case, features of interest (bones in a medical CT scan)

can be extracted as the regions of space corresponding to the arcs of the

split tree [CSA03] which are attached to local maxima of CT intensity. In

this scenario, it is important that lossy compression alters the data in a

way that guarantees to preserve the split tree, to guarantee a faithful seg-

mentation despite compression and thus, to enable further measurement,

analysis and diagnosis even after compression. Thus, it is necessary, for

all applications involving topological methods in their post-hoc analysis,

to design lossy compression techniques with topological guarantees.

This chapter presents, to the best of our knowledge, the first lossy

compression technique for scalar data with such topological guarantees.

In particular, we introduce a simple algorithm based on a topologically

adaptive quantization of the data range. We carefully study the stability of

the persistence diagram [ELZ02; CEH05] of the decompressed data com-

pared to the original one. Given a target feature size to preserve, which

is expressed as a persistence threshold ε, our algorithm exactly preserves

the critical point pairs with persistence greater than ε and destroys all

pairs with smaller persistence. We provide guarantees on the bottleneck

and Wasserstein distances between the persistence diagrams, expressed

as a function of the input parameter ε. Simple extensions to our strat-

egy additionally enable to include a control on the pointwise error and

to combine our algorithm with state-of-the-art compressors to improve

the geometry of the reconstruction, while still providing strong topologi-

cal guarantees. Extensive experiments, for comparable compression rates,

demonstrate the superiority of our technique for the preservation of topo-

logical features. We show the utility of our approach by illustrating the

compatibility between the output of topological analysis pipelines, exe-

cuted on the original and decompressed data, for simulated or acquired

data (subsection 4.5.3). We also provide a VTK-based C++ implementation

of our approach for reproduction purposes.

4.1.1 Related work

Related existing techniques can be classified into two main categories, ad-

dressing lossless and lossy compression respectively.
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Figure 4.1 – Rayleigh-Taylor instability compressed with ZFP. Compression factors vary

from 1 (left) to 64 (right); the provided guarantees are not topological, which means the

connectivity of bubbles can change undesirably through compression. From [Lin14].

Regarding lossless compression, several general purpose algorithms

have been documented, using entropy encoders [HV91; Gol66; BW94;

Huf52], dictionaries [ZL77; ZL78] and predictors [BR07; CW84]. For in-

stance, the compressors associated with the popular file format Zip rely on

a combination of the LZ77 algorithm [ZL77] and Huffman coding [Huf52].

Such compressors replace recurrent bit patterns in the data by references

to a single copy of the pattern. Thus, these approaches reach particularly

high compression rates when a high redundancy is present in the data.

Several statistical [ILS05; LI06] or non-statistical [RKB06] approaches have

been proposed for volume data but often achieve insufficient compression

rates in applications (below two [Lin14]), hence motivating lossy compres-

sion techniques.

Regarding lossy compression, many strategies have been documented.

Some of them are now well established and implemented in international

standards, such as GIF or JPEG. Such approaches rely for instance on vec-

tor quantization [SW03] or discrete cosine [LM97] and related block trans-

forms [Lin14]. However, relatively little work, mostly related to scientific

computing applications, has yet focused on the definition of lossy com-

pression techniques with an emphasis on error control, mostly expressed

as a bound on the pointwise error. For instance, though initially intro-

duced for lossless compression, the FPZIP compressor [LI06] supports

truncation of floating point values, thus providing an explicit relative er-

ror control. The Isabela compressor [Lak+11] supports predictive temporal

compression by B-spline fitting and analysis of quantized error. The fixed
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rate compressor ZFP (see Fig. 4.1), based on local block transforms, sup-

ports maximum error control by not ignoring transform coefficients whose

effect on the output is more than a user defined error threshold [LCL16].

More recently, Di and Cappello [DC16] introduced a compressor based on

curve fitting specifically designed for pointwise error control. This control

is enforced by explicitly storing values for which the curve fitting exceeds

the input error tolerance. Iverson et al. [IKK12] also introduced a compres-

sor, named SQ, specifically designed for absolute error control. It supports

a variety of strategies based on range quantization and/or region growing

with an error-based stopping condition. For instance, given an input error

tolerance ε, the quantization approach segments the range in contiguous

intervals of width ε. Then, the scalar value of each grid vertex is encoded

by the identifier of the interval it projects to in the range. At decompres-

sion, all vertices sharing a unique interval identifier are given a common

scalar value (the middle of the corresponding interval), effectively guar-

anteeing a maximum error of ε (for vertices located in the vicinity of an

interval bound).

Such a range quantization strategy is particularly appealing for the

preservation of topological features, as one of the key stability results on

persistence diagrams states that the bottleneck distance between the di-

agrams of two scalar functions is bounded by their maximum pointwise

error (Eq. 3.5), meaning that all critical point pairs with persistence higher

than ε in the input will still be present after a compression based on range

quantization. However, a major drawback of this strategy is the constant

quantization step size, which implies that large parts of the range, possi-

bly devoid of important topological features, will still be decomposed into

contiguous intervals of width ε, hence drastically limiting the compression

rate in practice.

In contrast, our approach is based on a topologically adaptive range

quantization which precisely addresses this drawback, enabling superior

compression rates. We additionally show how to extend our approach

with absolute pointwise error control. As detailed in Sec. 4.3.3, this strat-

egy preserves persistence pairs with persistence larger than ε, exactly. In

contrast, since it snaps values to the middle of intervals, simple range

quantization [IKK12] may alter the persistence of critical point pairs in the

decompressed data, by increasing the persistence of smaller pairs (noise)

and/or decreasing that of larger pairs (features). Such an alteration is par-

ticularly concerning for post-hoc analyses, as it degrades the separation of

noise from features and prevents a reliable post-hoc multi-scale analysis,
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as the preservation of the persistence of critical point pairs is no longer

guaranteed. Finally, note that a few approaches also considered topologi-

cal aspects [BS98; BPZ99; TR98] but for the compression of meshes, not of

scalar data.

4.1.2 Contributions

This chapter presents the following contributions:

1. Approach: We present the first algorithm for data compression

specifically designed to enforce topological control. We present a

simple strategy and carefully describe the stability of the persistence

diagram of the output data. In particular, we show that, given a tar-

get feature size (i.e. persistence) to preserve, our approach minimizes

both the bottleneck and Wasserstein distances between the persis-

tence diagrams of the input and decompressed data.

2. Extensions: We show how this strategy can be easily extended to

additionally include control on the maximum pointwise error. Fur-

ther, we show how to combine our compressor with state-of-the-art

compressors, to improve the average error.

3. Application: We present applications of our approach to post-hoc

analyses of simulated and acquired data, where users can faithfully

conduct advanced topological data analysis on compressed data,

with guarantees on the maximal size of missing features and the

exact preservation of the most important ones.

4. Implementation: We provide a lightweight VTK-based C++ imple-

mentation of our approach for reproduction purposes.

4.2 Preliminaries

This section briefly recalls our formal setting and presents an overview of

our approach.

4.2.1 Background

Our compression method is based on persistence diagrams. One of the

essential property of this topological abstraction, namely its stability, is

illustrated in Fig. 4.2.
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Figure 4.2 – Critical points (spheres, blue: minima, white: saddles, green: maxima) and

persistence diagrams of a clean (top) and noisy (bottom) 2D scalar field (from blue to

green). From left to right: original 2D data, 3D terrain representation, persistence dia-

gram. The diagrams clearly exhibit in both cases two large pairs, corresponding to the

two main hills. In the noisy diagram (bottom), small bars near the diagonal correspond to

noisy features in the data. In this scenario, the bottleneck distance between the diagrams

is exactly equal to the persistence of the largest unmatched feature (red pair in the zoomed

inset, center right) while the Wasserstein distance is the sum of the persistence of all

unmatched pairs.

In the rest of the chapter, when discussing persistence diagrams, we

will only consider critical point pairs of index (0, 1) and ((d− 1), d). The

impact of this simplification is discussed in Sec. 4.5.4.

Distances

In order to evaluate the quality of compression algorithms, several met-

rics have been defined to evaluate the distance between the decompressed

data, noted g : M → R, and the input data, f : M → R. The p-norm,

noted || f − g||p, is a classical example:

|| f − g||p =
(

∑
v∈M
| f (v)− g(v)|p

) 1
p

(4.1)

Typical values of p with practical interests include p = 2 and p → ∞. In

particular, the latter case, called the maximum norm, is used to estimate the

maximum pointwise error:

|| f − g||∞ = max
v∈M
| f (v)− g(v)| (4.2)
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In the compression literature, a popular metric is the the Peak Signal to

Noise Ratio (PSNR), where |σ0| is the number of vertices inM:

PSNR = 20 log10

(√|σ0|
2
× maxv∈M f (v)−minv∈M f (v)

|| f − g||2

)
(4.3)

As highlighted in chapter 3, in the context of topological data analysis,

several metrics [CEH05] have been introduced too, in order to compare

persistence diagrams. In our context, such metrics will be instrumental to

evaluate the preservation of topological features after decompression. The

bottleneck distance [CEH05], noted W∞
(
D( f ),D(g)

)
, is a popular example.

Intuitively, in the context of scalar data compression, the bottleneck

distance between two persistence diagrams can be usually interpreted as

the maximal size of the topological features which have not been main-

tained through compression (Fig. 4.2). A simple variant of the bottleneck

distance, that is slightly more informative in the context of data compres-

sion, is the Wasserstein distance (see Eq. 3.3). In contrast to the bottleneck

distance, the Wasserstein distance will take into account the persistence of

all the pairs which have not been maintained through compression (not

only the largest one).

4.2.2 Overview

An overview of our compression approach is presented in Fig. 4.3. First,

the persistence diagram of the input data f : M → R is computed so

as to evaluate noisy topological features to later discard. The diagram

consists of all critical point pairs of index (0, 1) and (d− 1, d). Next, given

a target size for the preservation of topological features, expressed as a

persistence threshold ε, a simplified function f ′ :M→ R is reconstructed

[TP12] from the persistence diagram of f , D( f ), from which all persistence

pairs below ε have been removed (Fig. 4.3(a)). Next, the image of M,

f ′(M), is segmented along each critical value of f ′. A new function f ′′ :

M → R is then obtained from f ′ by assigning to each vertex the mid-

value of the interval it maps to. This constitutes a topologically adaptive

quantization of the range (Fig. 4.3(c)). This quantization can optionally be

further subdivided to enforce a maximal pointwise error (Fig. 4.3(d)). At

this point, the data can be compressed by storing the list of critical values

of f ′′ and storing for each vertex the identifier of the interval it maps to.

Optionally, the input data f can be compressed independently by state-of-

the-art compressors, such as ZFP [Lin14] (Fig. 4.3(e)).
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Figure 4.3 – Overview of our topologically controlled lossy compression scheme on a 2D

elevation example. First the input data f : M → R is pre-simplified into a function

f ′ ((a), from top to bottom) to remove all topological features below a user persistence

tolerance ε (as illustrated by the persistence diagram (b)). The compression is achieved by

a topologically adaptive quantization of the range, which is segmented along the critical

values of f ′ (c). A quantized function f ′′ is constructed ((c), bottom) to only use a finite

set of possible data values for regular vertices, hence guaranteeing data compression,

while still enforcing original values at critical points. This approach can be extended with

point wise error control ((d)), by refining each quantization interval of f ′ larger than a

target width ((d), bottom). Moreover, our approach can be combined with any third party

compressor (e) to further improve the geometry of the compressed data.

At decompression, a first function g′ : M → R is constructed by re-

assigning to each vertex the mid-value of the interval it maps to. Option-

ally, if the data has been compressed with a third-party compressor, such

as ZFP [Lin14], at decompression, each vertex value is cropped to the ex-

tent of the interval it should map to. Last, a function g : M → R is

reconstructed from the prescribed critical points of f ′ [TP12], to remove

any topological feature resulting from compression artifacts.

4.3 Data compression

This section presents our topologically controlled compression scheme. In

addition to topological control (Sec. 4.3.1), our approach can optionally

support pointwise error control (Sec. 4.3.3) as well as combinations with

existing compressors (Sec. 4.3.4). The format of the files generated by our

compressor is described in Sec. 4.3.2.

4.3.1 Topological control

The input of our algorithm is the input data, f : M → R, as well as the

size of the topological features to preserve through compression. This size

is expressed as a persistence threshold ε.

First, the persistence diagram of the input data, noted D( f ) is com-

puted. Next, a simplified version of the input data, noted f ′ : M→ R, is
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constructed such that f ′ admits a persistence diagram which corresponds

to that of f , but from which the critical point pairs with persistence smaller

than ε have been removed. This simplification is achieved by using the

algorithm by Tierny and Pascucci [TP12], which iteratively reconstructs

sub-level sets to satisfy topological constraints on the extrema to preserve.

In particular, this algorithm is given as constraints the extrema of f to pre-

serve, which are in our current setting the critical points involved in pairs

with persistence larger than ε. In such a scenario, this algorithm has been

shown to reconstruct a function f ′ such that || f − f ′||∞ ≤ ε [TP12]. At this

point, f ′ carries all the necessary topological information that should be

preserved through compression.

In order to compress the data, we adopt a strategy based on range

quantization. By assigning only a small number n of possible data val-

ues on the vertices of M, only log2(n) bits should be required in prin-

ciple for the storage of each value (instead of 64 for traditional floating

point data with double precision). Moreover, encoding the data with a

limited number of possible values is known to constitute a highly favor-

able configuration for post-process lossless compression, which achieves

high compression rates for redundant data.

The difficulty in our context is to define a quantization that respects

the topology of f ′, as described by its persistence diagram D( f ′). To do so,

we collect all critical values of f ′ and segment the image ofM by f ′, noted

f ′(M), into a set of contiguous intervals I = {I0, I1, . . . In}, all delimited

by the critical values of f ′ (Figure 4.3, second column, top). Next, we create

a new function f ′′ :M→ R, where all critical points of f ′ are maintained

at their corresponding critical value and where all regular vertices are

assigned to the mid-value of the interval Ii they map to. This constitutes

a topologically adaptive quantization of the range: only n possible values

will be assigned to regular vertices. Note that although we modify data

values in the process, the critical vertices of f ′ are still critical vertices

(with identical indices) in f ′′, as the lower and upper links (Sec. 4.2.1) of

each critical point are preserved by construction.

4.3.2 Data encoding

The function f ′′ is encoded in a two step process. First a topological index

is created. This index stores the identifier of each critical vertex of f ′′ as

well as its critical value, and for each of these, the identifier i of the interval

Ii immediately above it if and only if some vertices of M indeed project



64 Chapter 4. Topologically controlled data compression

to Ii through f ′′. This strategy enables the save of identifiers for empty

intervals.

The second step of the encoding focuses on data values of regular

vertices of f ′′. Each vertex ofM is assigned the identifier i of the interval

Ii it projects to through f ′′. For nv vertices and ni non-empty intervals

between nc critical points, we store per-vertex interval identifiers (nv words

of log2(ni) bits), critical point positions in a vertex index (nc words of

log2(nv) bits), critical types (nc words of 2 bits) and critical values (nc

floats).

Since it uses a finite set of data values, the buffer storing interval as-

signments for all vertices ofM is highly redundant. Thus, we further com-

press the data (topological index and interval assignment) with a standard

lossless compressor (Bzip2 [Sew17]).

4.3.3 Pointwise error control

Our approach has been designed so far to preserve topological features

thanks to a topologically adaptive quantization of the range. However,

this quantization may be composed of arbitrarily large intervals, which

may result in large pointwise error.

Our strategy can be easily extended to optionally support a maximal

pointwise error with regard to the input data f : M→ R, still controlled

by the parameter ε. In particular, this can be achieved by subdividing

each interval (Sec. 4.3.1) according to a target maximal width w, prior to

the actual quantization and data encoding (Sec. 4.3.2). Since the topolog-

ically simplified function f ′ is guaranteed to be at most ε-away from f

(|| f − f ′||∞ ≤ ε, Sec. 4.3.1), further subdividing each interval with a max-

imum authorized width of w will result in a maximum error of ε + w/2

when quantizing the data into f ′′. For instance, a local maximum of f of

persistence lower than ε can be pulled down by at most ε when simplify-

ing f into f ′ [TP12] (Fig. 4.4, center) and then further pulled down by up

to w/2 when being assigned the mid-value of its new interval (of width w,

Fig. 4.4, right). In practice, for simplicity, we set w = ε. Hence, a maximum

pointwise error of 3ε/2 is guaranteed at compression (|| f − f ′′||∞ ≤ 3ε/2).

4.3.4 Combination with state-of-the-art compressors

The compression approach we presented so far relies on a topologically

adaptive quantization of the range (with optional pointwise error control).

The compression is achieved by only allowing a small number of possi-
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Figure 4.4 – Topologically controlled compression with pointwise error control. When

pre-simplifying the input data f : M → R (left) into f ′ (center), the value variation

of each simplified extremum e equals the persistence P of the pair it belongs to, which is

bounded by construction by ε: | f (e)− f ′(e)| = P ≤ ε [CEH05; TP12]. When adding

pointwise error control, each interval is subdivided such that its width does not exceed ε

(right). Thus, when constructing the quantized function f ′′ which maps each vertex to the

middle of its interval, each simplified extremum e of f may further move by a snapping

distance s to the middle of its interval, which is itself bounded by half the width of the

interval (ε/2). Thus, | f (e)− f ′′(e)| = P + s ≤ ε + ε/2.

ble scalar values in the compressed data, which may typically result in

noticeable staircase artifacts. To address this, our method can be option-

ally combined seamlessly with any state-of-the-art lossy compressor. For

our experiments, we used ZFP [Lin14]. Such a combination is straight-

forward at compression time. In particular, in addition to the topological

index and the compressed quanta identifiers (subsection 4.3.2), the input

data f : M → R is additionally and independently compressed by the

third-party compressor (ZFP).

4.4 Data decompression

This section describes the decompression procedure of our approach,

which is symmetric to the compression pipeline described in the previ-

ous section (Sec. 4.3). This section also further details the guarantees pro-

vided by our approach regarding the bottleneck (W∞) and Wasserstein

(W2) distances between the persistence diagrams of the input data and the

decompressed data, noted g :M→ R (Sec. 4.4.4).

4.4.1 Data decoding

First, the compressed data is decompressed with the lossless decompres-

sor Bzip2 [Sew17]. Next, a function g′ : M → R is constructed based on

the topological index and the interval assignment buffer (Sec. 4.3.2). In

particular, each critical vertex is assigned its critical value (as stored in the

topological index) and regular vertices are assigned the mid-value of the

interval they project to, based on the interval assignment buffer (Sec. 4.3.2).
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4.4.2 Combination with state-of-the-art decompressors

If a state-of-the-art compression method has been used in conjunction with

our approach (Sec. 4.3.4), we use its decompressor to generate the function

g′ : M → R. Next, for each vertex v of M, if g′(v) is outside of the

interval Ii where v is supposed to project, we snap g′(v) to the closest

extremity of Ii. This guarantees that the decompressed data respects the

topological constraints of D( f ′), as well as the optional target pointwise

error (Sec. 4.3.3).

4.4.3 Topological reconstruction

The decompressed function g′ may contain at this point extraneous critical

point pairs, which were not present in D( f ′) (Sec. 4.3.1). For instance, if

a state-of-the-art compressor has been used in conjunction with our ap-

proach, arbitrary oscillations within a given interval Ii can still occur and

result in the apparition of critical point pairs in D(g′) (with a persistence

smaller than the target interval width w, Sec. 4.3.3) which were not present

in D( f ′). The presence of such persistence pairs impacts the distance met-

rics introduced in Sec. 4.2.1, and therefore impacts the quality of our topol-

ogy controlled compression. Thus, such pairs need to be simplified in a

post-process.

Note that, even if no third-party compressor has been used, since

our approach is based on a topologically adaptive quantization of the

range, large flat plateaus will appear in g′. Depending on the vertex offset

Og′ : M → R (used to disambiguate flat plateaus, Sec. 4.2.1), arbitrarily

small persistence pairs can also occur. Therefore, for such flat plateaus,

Og′ must be simplified to guarantee its monotonicity everywhere except

at the desired critical vertices (i.e. those stored in the topological index,

Sec. 4.3.2).

Thus, whether a state-of-the-art compressor has been used or not, the

last step of our approach consists in reconstructing the function g :M→
R from g′ by enforcing the critical point constraints of f ′ (stored in the

topological index) with the algorithm by Tierny and Pascucci [TP12]. Note

that this algorithm will automatically resolve flat plateaus, by enforcing

the monotonicity of Og everywhere except at the prescribed critical points

[TP12]. Therefore, the overall output of our decompression procedure is

the scalar field g : M → R as well as its corresponding vertex integer

offset Og :M→N.
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Figure 4.5 – Compression of the noisy 2D data set from Fig. 4.2 ((a), 80,642 bytes,

top: 2D data, bottom: 3D terrain). In all cases (c-e), our compression algorithm was

configured to maintain topological features more persistent than 20% of the function

range, as illustrated with the persistence diagrams ((b), top: original noisy data D( f ),

bottom: decompressed data D(g)). Our topology controlled compression (c), augmented

with pointwise error control (d), and combined with ZFP [Lin14] ((e), one bit per scalar)

yields compression rates of 163, 50 and 14 respectively.

4.4.4 Topological guarantees

The last step of our decompression scheme, topological reconstruction

(Sec. 4.4.3), guarantees that D(g) admits no other critical points than those

of D( f ′) (specified in the topological index). Moreover, the corresponding

critical values have been strictly enforced (Sec. 4.4.1). This guarantees that

W∞
(
D(g),D( f ′)

)
= 0, and thus:

W∞
(
D(g),D( f )

)
≤W∞

(
D(g),D( f ′)

)
+ W∞

(
D( f ′),D( f )

)
≤W∞

(
D( f ′),D( f )

) (4.4)

Since we know that f ′ is ε-away from the original data f (Sec. 4.3.1)

and due to the stability of persistence diagrams [CEH05], we then have:

W∞
(
D(g),D( f )

)
≤ || f − f ′||∞ ≤ ε (4.5)

Thus, the bottleneck distance between the persistence diagrams of the in-

put and decompressed data is indeed bounded by ε, which happens to

precisely describe the size of the topological features that the user wants

to preserve through compression.

SinceD( f ′) ⊂ D( f ) and W∞
(
D(g),D( f ′)

)
= 0, we haveD(g) ⊂ D( f ).

This further implies that:

W∞
(
D(g),D( f )

)
= max

(p,q)∈
(
D(g)

a
D( f )

) P(p, q) (4.6)

where P(p, q) denotes the persistence of a critical point pair (p, q) and

where D(g)
a
D( f ) denotes the symmetric difference between D(g) and
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D( f ) (i.e. the set of pairs present in D( f ) but not in D(g)). In other words,

the bottleneck distance between the persistence diagrams of the input and

decompressed data exactly equals the persistence of the most persistent

pair present inD( f ) but not inD(g) (in red in Fig. 4.2). This guarantees the

exact preservation of the topological features selected with an ε persistence

threshold.

As for the (2-)Wasserstein distance, with the same rationale, we get:

W2
(
D(g),D( f )

)
= ∑

(p,q)∈
(
D(g)

a
D( f )

) (P(p, q)
)2 (4.7)

In other words, the Wasserstein distance between the persistence diagrams

of the input and decompressed data will be exactly equal to sum of the

persistence of all pairs present in D( f ) but not in D(g) (small bars near

the diagonal in Fig. 4.2, bottom), which corresponds to all the topological

features that the user precisely wanted to discard.

Finally, for completeness, we recall that, if pointwise error control was

enabled, our approach guarantees || f − g||∞ ≤ 3ε/2 (Sec. 4.3.3).

4.5 Results

This section presents experimental results obtained on a desktop computer

with two Xeon CPUs (3.0 GHz, 4 cores each), with 64 GB of RAM. For the

computation of the persistence diagram and the topological simplifica-

tion of the data, we used the algorithms by Tierny and Pascucci [TP12]

and Gueunet et al. [Gue+17], whose implementations are available in the

Topology ToolKit (TTK) [Tie+17]. The other components of our approach

(including bottleneck and Wasserstein distance computations) have been

implemented as TTK modules. Note that our approach has been described

so far for triangulations. However, we restrict our experiments to regu-

lar grids in the following as most state-of-the-art compressors (including

ZFP [Lin14]) have been specifically designed for regular grids. For this, we

use the triangulation data-structure from TTK, which represents implicitly

regular grids with no memory overhead using a 6-tet subdivision.

Fig. 4.5 presents an overview of the compression capabilities of our ap-

proach on a noisy 2D example. A noisy data set is provided on the input.

Given a user threshold on the size of the topological features to preserve,

expressed as a persistence threshold ε, our approach generates decom-

pressed data-sets that all share the same persistence diagram D(g) (Fig-

ure 4.5(b), bottom), which is a subset of the diagram of the input data D( f )
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Figure 4.6 – Performance analysis of our compression scheme (topological control only).

Left: Compression rate for various 3D data sets, as a function of the target persistence

threshold ε (percentage of the function range). Right: bottleneck distance between the per-

sistence diagrams of the input and decompressed data, W∞
(
D( f ),D(g)

)
, for increasing

target persistence thresholds ε.

(Figure 4.5(b), top) from which pairs with a persistence lower than ε have

been removed, and those above ε have been exactly preserved. As shown

in this example, augmenting our approach with pointwise error control or

combining it with a state-of-the-art compressor allows for improved geo-

metrical reconstructions, but at the expense of much lower compression

rates. Note that the Figure 4.5(e) shows the result of the compression with

ZFP [Lin14], which has been augmented with our topological control. This

shows that our approach can enhance any existing compression scheme,

by providing strong topological guarantees on the output.

4.5.1 Compression performance

We first evaluate the performance of our compression scheme with topo-

logical control only on a variety of 3D data sets all sampled on 5123 reg-

ular grids. Fig. 4.6 (left) presents the evolution of the compression rates

for increasing target persistence thresholds ε expressed as percentages of

the data range. This plot confirms that when fine scale structures need to

be preserved (small ε values, left), smaller compression rates are achieved,

while higher compression rates (right) are reached when this constraint

is relaxed. Compression rates vary among data sets as the persistence di-

agrams vary in complexity. The Ethane Diol dataset (topmost curve) is a

very smooth function coming from chemical simulations. High compres-

sion factors are achieved for it, almost irrespective of ε. On the contrary,

the random dataset (bottom curve) exhibits a complex persistence dia-

gram, and hence lower compression rates.

In between, all data sets exhibit the same increase in compression rate

for increasing ε values. Their respective position between the two extreme
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Table 4.1 – Detailed computation times on 5123 regular grids (ε = 5%), with and

without compression-time simplification. P, S, Q and L stand for the persistence diagram,

topological simplification, topological quantization and lossless compression efforts (%).

Data-set With compression-time simplification No simplification Decompr.

P (%) S (%) Q (%) L (%) Total (s) Compr. Rate Total (s) Compr. Rate Time (s)

Combustion 8.4 89.3 0.7 1.6 593.9 121.3 64.1 111.1 213.3

Elevation 14.6 84.1 1.2 0.1 157.0 174,848.0 25.3 174,848.0 211.5

EthaneDiol 12.6 86.7 0.5 0.2 490.0 2,158.6 63.0 2,158.6 228.9

Enzo 9.5 86.7 1.0 2.7 695.6 24.5 91.8 19.8 204.0

Foot 12.6 81.9 1.6 3.8 380.6 12.1 68.4 7.75 205.7

Jet 22.2 75.7 0.6 1.5 451.3 315.6 111.1 287.6 220.3

Random 15.9 76.0 2.8 5.3 1357.1 1.5 307.7 1.5 101.2

configurations of the spectrum (elevation and random) depend on their

input topological complexity (number of pairs in the persistence diagram).

Fig. 4.6 (right) plots the evolution of the bottleneck distance between

the input and decompressed data, W∞
(
D( f ),D(g)

)
, for increasing target

persistence threshold ε, for all data sets. This plot shows that all curves

are located below the identity diagonal. This constitutes a practical val-

idation of our guaranteed bound on the bottleneck distance (Eq. 4.5).

Note that, for a given data set, the proximity of its curve to the diagonal

is directly dependent on its topological complexity. This result confirms

the strong guarantees regarding the preservation of topological features

through compression.

Table 4.1 provides detailed timings for our approach and shows that

most of the compression time (at least 75%, S column) is spent simplifying

the original data f into f ′ (section 4.3). If desired, this step can be skipped

to drastically improve time performance, but at the expense of compres-

sion rates (Table 4.1, right). Indeed, as shown in Figure 4.7, skipping this

simplification step at compression time results in quantized function f ′′

that still admits a rich topology, and which therefore constitutes a less fa-

vorable ground for the post-process lossless compression (higher entropy).

Note however that our implementation has not been optimized for execu-

tion time. We leave time performance improvement for future work.

4.5.2 Comparisons

Next, we compare our approach with topological control only to the SQ

compressor [IKK12], which has been explicitly designed to control point-

wise error. Thus, it is probably the compression scheme that is the most

related to our approach. SQ proposes two main strategies for data com-

pression, one which is a straight range quantization (with a constant step
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Figure 4.7 – Topologically controlled compression with (b) and without (c) compression-

time simplification. Topological simplification (c to d) removes all critical point pairs not

present in the topological index (red circles) and exactly maintains the others [TP12].

Thus, simplifying the data only at decompression (d) yields identical decompressed data

(d vs b). The quantized function then admits a richer topology (c vs b), which deteriorates

compression rates.

size ε, SQ-R) and the other which grows regions in the 3D domain, within

a target function interval width ε (SQ-D). Both variants, which we imple-

mented ourselves, provide an explicit control on the resulting pointwise

error (|| f − g||∞ ≤ ε). As such, thanks to the stability result on persis-

tence diagrams [CEH05], SQ also bounds the bottleneck distance between

the persistence diagrams of the input and decompressed data. Each pair

completely included within one quantization step is indeed flattened out.

Only the pairs larger than the quantization step size ε do survive through

compression. However, the latter are snapped to admitted quantization

values. In practice, this can artificially and arbitrarily reduce the persis-

tence of certain pairs, and increase the persistence of others. This is partic-

ularly problematic as it can reduce the persistence of important features

and increase that of noise, which prevents a reliable multi-scale analysis

after decompression. This difficulty is one of the main motivations which

led us to design our approach.

To evaluate this, we compare SQ to our approach in the light of the

Wasserstein distance between the persistence diagrams of the input and

decompressed data, W2
(
D( f ),D(g)

)
. As described in Sec. 4.2.1, this dis-

tance is more informative in the context of compression, since not only

does it track all pairs which have been lost, but also the changes of the
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Figure 4.8 – Comparison to the SQ compressor [IKK12] (green: SQ-D, blue: SQ-R, red:

our approach). Left: average normalized Wasserstein distance between the persistence

diagrams of the input and decompressed data, for increasing compression rates. Right:

average compression factors for increasing target persistence thresholds ε.

pairs which have been preserved. Fig. 4.8 (left) presents the evolution of

the Wasserstein distance, averaged over all our data sets, for increasing

compression rates. This plot shows that our approach (red curve) achieves

a significantly better preservation of the topological features than SQ, for

all compression rates, especially for the lowest ones. As discussed in the

previous paragraph, given a quantization step ε, SQ will preserve all pairs

more persistent than ε but it will also degrade them, as shown in the

above experiment. Another drawback of SQ regarding the preservation

of topological features is the compression rate. Since it uses a constant

quantization step size, it may require many quantization intervals to pre-

serve pairs above a target persistence ε, although large portions of the

range may be devoid of important topological features. To illustrate this,

we compare the compression rates achieved by SQ and our approach, for

increasing values of the parameter ε. As in Fig. 4.6, increasing slopes can

be observed. However, our approach always achieves higher compression

rates, especially for larger persistence targets.

Next, we study the capabilities offered by our approach to augment a

third party compressor with topological control (Secs. 4.3.4 and 4.4.2). In

particular, we augmented the ZFP compressor [Lin14], by using the orig-

inal implementation provided by the author (with 1 bit per vertex value).

Fig. 4.9 (left) indicates the evolution of the compression rates as the tar-

get persistence threshold ε increases. In particular, in these experiments,

a persistence target of 100% indicates that no topological control was en-

forced. Thus, these curves indicate, apart from this point, the overhead of

topological guarantees over the ZFP compressor in terms of data storage.

These curves, as it could be expected with Fig. 4.6, show that compres-
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Figure 4.9 – Augmenting a third party compressor, here ZFP [Lin14] (1 bit per vertex

value), with topological control. Left: Compression factors for increasing persistence tar-

gets ε. Right: PSNR for increasing persistence targets ε. In these plots (left and right), a

persistence target of 100% indicates that no topological control was enforced.

sion rates will rapidly drop down for topologically rich data sets (such as

the random one). On the contrary, for smoother data sets, such as Ethane

Diol or Jet, high compression rates can be maintained. This shows that

augmenting a third party compressor with topological control results in

compression rates that adapt to the topological complexity of the input.

Fig. 4.9 (right) shows the evolution of the PSNR (Sec. 4.2.1) for decreas-

ing persistence targets ε. Surprisingly, in this context, the enforcement of

topological control improves the quality of the data decompressed with

ZFP, with higher PSNR values for little persistence targets. This is due to

the rather aggressive compression rate which we used for ZFP (1 bit per

vertex value) which tends to add noise to the data. Thanks to our topolog-

ical control (Sec. 4.4.3), such compression artifacts can be cleaned up by

our approach.

We evaluate in Table 4.2 the advantage of our topology aware com-

pression over a standard lossy compression, followed at decompression

by a topological cleanup (which simplifies all pairs less persistent than

ε [TP12]). In particular, this table shows that augmenting a third party

compressor (such as ZFP) with our topological control (second line) re-

sults in more faithful decompressed data (lower Wasserstein distances to

the original data) than simply executing the compressor and topologically

cleaning the data in a post-process after decompression (first line). This

further motivates our approach for augmenting existing compressors with

topological control.

Finally, Table 4.3 provides a comparison of the running times (for com-

parable compression rates) between our approach and SQ and ZFP. ZFP

has been designed to achieve high throughput and thus delivers the best

time performances. The running times of our approach are on par with
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Table 4.2 – Wasserstein distance between the persistence diagrams of the original and

decompressed data (ε = 1%). First line: ZFP 1bit/scalar, followed by a topology cleanup

procedure. Second line: ZFP 1bit/scalar, augmented with our approach.

Data-set W2

Combustion Elevation EthaneDiol Enzo Foot Jet

ZFP + Cleanup 18.08 0.00 1.53 189.66 520,371 351.97

Topology-aware ZFP 13.73 0.00 0.40 131.11 506,714 153.45

Table 4.3 – Time performance comparison between ZFP, SQ and our approach on 5123

regular grids.

Data-set Time (s).

ZFP SQ-R SQ-D Ours

Combustion 4.6 37.6 242.9 64.1

Elevation 7.2 31.4 204.2 25.3

EthaneDiol 4.7 34.4 197.1 63.0

Enzo 4.7 33.0 229.5 91.8

Foot 2.9 18.2 198.0 68.4

Jet 4.7 31.4 203.4 111.1

Random 4.1 31.6 182.7 307.7

other approaches enforcing strong guarantees on the decompressed data

(SQ-R and SQ-D).

4.5.3 Application to post-hoc topological data analysis

A key motivation to our compression scheme is to allow users to faith-

fully conduct advanced topological data analysis in a post-process, on the

decompressed data, with guarantees on the compatibility between the out-

come of their analysis and that of the same analysis on the original data.

We illustrate this aspect in this sub-section, where all examples have been

compressed by our algorithm, without pointwise error control nor combi-

nation with ZFP.

We first illustrate this in the context of medical data segmentation with

Fig. 4.10, which shows a foot scan. The persistence diagram of the orig-

inal data counts more than 345 thousands pairs (top left). The split tree

[Bre+11; CSA03] is a topological abstraction which tracks the connected

components of sur-level sets of the data. It has been shown to excel at

segmenting medical data [CSP04]. In this context, users typically compute

multi-scale simplifications of the split tree to extract the most important

features. Here, the user simplified the split tree until it counted only 5

leaves, corresponding to 5 features of interest (i.e. the 5 toes). Then, the
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Figure 4.10 – Topology driven data segmentation with multi-scale split trees, on the

original data (left) and the data compressed with our approach (right). Top to bottom:

persistence diagrams, sliced views of the data, output segmentations. The analysis yields

compatible outcomes with and without compression, as shown with the bottom row, which

exhibits identical segmentations (compression rate: 360).

segmentation induced by the simplified split tree has been extracted by

considering regions corresponding to each arc connected to a leaf. This

results immediately in the sharp segmentation of toe bones. (Fig. 4.10,

bottom left). We applied the exact same analysis pipeline on the data com-

pressed with our approach. In particular, since it can be known a priori

that this data has only 5 features of interest (5 toes), we compressed the

data with a target persistence ε such that only 5 pairs remained in the per-

sistence diagram (top right). Although such an aggressive compression

greatly modifies data values, the outcome of the segmentation is identical

(Table 4.4), for an approximate compression rate of 360.

Next, we evaluate our approach on a more challenging pipeline

(Fig. 4.11), where features of interest are not explicitly related to the per-

sistence diagram of the input data. We consider a snapshot of a simulation

run of viscous fingering and apply the topological data analysis pipeline
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Figure 4.11 – Topology driven data segmentation (right) on a viscous fingering simula-

tion (left) on the original data (top) and the data compressed with our approach. Compat-

ible fingers are extracted after compression (compression rate: 56).

described by Favelier et al. [FGT16a] for the extraction and tracking of

viscous fingers.

This pipeline first isolates the largest connected component of sur-level

set of salt concentration. Next it considers its height function, on which

persistent homology is applied to retrieve the deepest points of the geom-

etry (corresponding to finger tips). Finally, a distance field is grown from

the finger tips and the Morse complex of this distance field is computed to

isolate fingers. In contrast to the previous example, the original data un-

dergoes many transformations and changes of representation before the

extraction of topological features. Despite this, when applied to the data

compressed with our scheme, the analysis pipeline still outputs consistent

results with the original data (Fig. 4.11, compression rate: 56). Only slight

variations can be perceived in the local geometry of fingers, but their num-

ber is unchanged and their overall geometry compatible. Table 4.4 pro-

vides a quantitative estimation of the similarity between segmentations,
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Table 4.4 – Rand index between the outputs of a data segmentation pipeline based on

topological methods (subsection 4.5.3), before and after compression, for several methods

at compatible compression rates.

Experiment Rand index

Ours SQ-R SQ-D ZFP

Foot scan 1.000 0.913 0.895 0.943

Viscous fingers 0.985 0.977 0.977 0.973

before and after compression with several algorithms. This table shows

that our approach enables the computation of more faithful topological

segmentations (higher rand index) compared to SQ and ZFP, which fur-

ther underlines the superiority of our strategy at preserving topological

features.

4.5.4 Limitations

Like all lossy techniques, our approach is subject to an input parameter

that controls the loss, namely the persistence threshold ε above which

features should be strictly preserved. While we believe this parameter to

be intuitive, prior domain knowledge about the size of the features to

preserve may be required. However, conservative values (typically 5%)

can be used by default, as they already achieve high compression rates

while preserving most of the features.

In some applications, ad-hoc metrics [CSP04] may be preferred over

persistence. Our approach can be used in this setting too as the simpli-

fication algorithm that we use [TP12] supports an arbitrary selection of

the critical points to preserve. However, it becomes more difficult then to

express clear guarantees on the compression quality in terms of the bottle-

neck and Wasserstein distances between the persistence diagrams of the

input and decompressed data.

When pointwise error control is enabled, the ∞-norm between the in-

put and decompressed data is guaranteed by our approach to be bounded

by 3ε/2. This is due to the topological simplification algorithm that we

employ [TP12], which is a flooding-only algorithm. Alternatives combin-

ing flooding and carving [BLW12; TGP14] could be considered to reach a

guaranteed ∞-norm of ε.

Finally, our approach only considers persistence pairs corresponding

to critical points of index (0, 1) and (d-1, d). However (1, 2) pairs may have

a practical interest in certain 3D applications and it might be interesting

to enforce their preservation throughout compression. This would require
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an efficient data reconstruction algorithm for (1, 2) pairs, which seems

challenging [Att+13].

4.6 Summary

In this chapter, we presented the first compression scheme, to the best

of our knowledge, which provides strong topological guarantees on the

decompressed data. In particular, given a target topological feature size to

preserve, expressed as a persistence threshold ε, our approach discards all

persistence pairs below ε in order to achieve high compression rates, while

exactly preserving persistence pairs above ε. Guarantees are given on the

bottleneck and Wasserstein distances between the persistence diagrams of

the input and decompressed data. Such guarantees are key to ensure the

reliability of any post-hoc, possibly multi-scale, topological data analysis

performed on decompressed data. Our approach is simple to implement;

we provide a lightweight VTK-based C++ reference implementation.

Experiments demonstrated the superiority of our approach in terms

of topological feature preservation in comparison to existing compressors,

for comparable compression rates. Our approach can be extended to in-

clude pointwise error control. Further, we showed, with the example of the

ZFP compressor [Lin14], how to make any third-party compressor become

topology-aware by combining it with our approach and making it benefit

from our strong topological guarantees, without affecting too much isosur-

face geometry. We also showed that, when aggressive compression rates

were selected, our topological approach could improve existing compres-

sors in terms of PSNR by cleaning up topological compression artifacts.

We finally showed the utility of our approach by illustrating, qualitatively

and quantitatively, the compatibility between the output of post-hoc topo-

logical data analysis pipelines, executed on the input and decompressed

data, for simulated or acquired data sets. Our contribution enables users

to faithfully conduct advanced topological data analysis on decompressed

data, with guarantees on the size of missed features and the exact preser-

vation of most prominent ones.

In the future, practical aspects of our algorithm could be improved, for

in-situ deployment and to handle time-varying datasets. Runtime limita-

tions should be investigated, with the objective to mitigate the effects of

using (or not) a sequential topological simplification step, and to deter-

mine how many cores are necessary to outperform raw storage. A stream-

ing version of the algorihm, which would not require the whole dataset to
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be loaded at once would be of great interest in this framework. Finally, as

our approach focuses on regular grids, a possible extension to the case of

unstructured meshes ought to be investigated.

In the following chapter, we show a new tracking approach, demon-

strating how persistence diagrams can be used to perform efficient feature

tracking, and motivating further the utility of enforcing guarantees on the

topological loss when performing data compression.
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In this chapter, we increase the dimensionality of the targeted scientific

data by considering time-varying scalar data. In this case, the I/O bot-

tleneck is much more problematic, as a high temporal resolution would

mean a high read/write throughput. One solution would be to decrease

this temporal resolution, which would make later analyses, for example

structure tracking, more difficult.

We then present, in this chapter, a robust and efficient method for

tracking topological features in time-varying scalar data. Structures are

tracked based on the optimal matching between persistence diagrams with

respect to the Wasserstein metric. This fundamentally relies on solving the

assignment problem, a special case of optimal transport, for all consecutive

timesteps. Our approach relies on two main contributions.

First, we revisit the seminal assignment algorithm by Kuhn and

Munkres which we specifically adapt to the problem of matching per-

sistence diagrams in an efficient way. Second, we propose an extension

of the Wasserstein metric that significantly improves the geometrical sta-

bility of the matching of domain-embedded persistence pairs. We show

that this geometrical lifting has the additional positive side-effect of im-

proving the assignment matrix sparsity and therefore computing time.

The global framework computes persistence diagrams and finds optimal

matchings in parallel for every consecutive timestep. Critical trajectories

are constructed by associating successively matched persistence pairs over

time. Merging and splitting events are detected with a geometrical thresh-

old in a post-processing stage.

Extensive experiments on real-life datasets show that our matching ap-

proach is up to two orders of magnitude faster than the seminal Munkres

algorithm. Moreover, compared to a modern approximation method, our

approach provides competitive runtimes while guaranteeing exact results.

We demonstrate the utility of our global framework by extracting crit-

ical point trajectories from various time-varying datasets and compare

it to the existing methods based on associated overlaps of volumes. Ro-

bustness to noise and temporal resolution downsampling is empirically

demonstrated. This contribution has been documented in the publication

[Sol+18a].
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Figure 5.1 – Topological segmentation of burning regions in a combustion simulation

at multiple time-steps; then identification and tracking of these regions with a tracking

graph. The burning cell displayed in red is shown to prorgressively split into smaller cells

throughout the process. Image from [Bre+11].

5.1 Scientific issues

Performing feature extraction and object tracking is an important topic

in scientific visualization, for it is key to understanding time-varying data.

Specifically, it allows to detect and track the evolution of regions of interest

over time, which is central to many scientific domains, such as combustion

(see Fig. 5.1), aerodynamics [HT94], oceanography [Rin+13] or meteorol-

ogy [ZFL07]. With the increasing power of computational resources and

resolution of acquiring devices, efficient methods are needed to enable the

analysis of large datasets.

Topological data analysis has been used in the last decades as a ro-

bust and reliable setting for hierarchically defining features in scalar data

[EH09]. In particular, its successful application to time-varying data [SB06;

Bre+10] makes it a prime candidate for tracking. Both topological analysis

and feature tracking have been applied in-situ [Zha+12; Lan+14], which

demonstrates their interest in the context of large-scale data. Nonetheless,

major bottlenecks of state-of-the art topology tracking methods are still

the high required computation cost as well as the need for high temporal

resolution.

In this chapter, we propose a novel feature-tracking framework, which

correlates topological features in time-varying data in an efficient and

meaningful way. It is the first approach, to the best of our knowledge,

combining the setting of topological data analysis with optimal transport

for the problem of feature tracking. More precisely, the key idea is to use

combinatorial optimization for matching topological structures (namely,

persistence diagrams) according to a fine-tuned metric. After exposing our

formal setting (Sec. 5.2), we introduce an extension of the exact assignment

algorithm by Kuhn and Munkres [KY55; Mun57] that we adapt in an effi-
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cient way to the case of persistence diagrams (Sec. 5.3). We highlight the

issues raised by the classical Wasserstein metric between diagrams, and

propose a robust lifted metric that overcomes these limitations (Sec. 5.4).

We then present the detailed tracking framework (Sec. 5.5). Extensive ex-

periments demonstrate the utility of our approach (Sec. 5.6).

5.1.1 Related work

Our framework encompasses the definition, correlation and tracking of

topological features in scalar fields. As such, it is related to topological

data analysis of scalar fields, tracking techniques, the definition of metrics

and combinatorial optimization.

Feature tracking

Topology has been used for feature extraction and tracking in the context

of vector fields [Tri+02; Pos+03; Rei+12], mostly relying on stream lines,

path lines [TS03; The+04; The+05; K S+06; Shi+09], or tracking punctual

singularities [KE07]. For the latter, a forward streamline integration of crit-

ical points is performed in a specific scale space, which adapted for time-

varying data would require knowledge about the evolution of the field,

and for instance to compute time-derivatives.

For scalar data, features are defined based on attributes that are ei-

ther geometric (isosurfaces, thresholded regions), or topological (contour

trees, Reeb graphs). Similarly, tracking approaches either rely on geomet-

rical (volume overlaps, distance between centers of gravity) or topological

extracts (Jacobi set, segment overlap).

Geometrical approaches are based on thresholded connected com-

ponents [SW99], glyphs [RPS01], cluster tracking [Gro+07], petri nets

[Oze+14], or propose a hierarchical representation [GW11]. Similarly, the

core methodology for associating topological features for tracking is of-

ten based on overlaps of geometrical domains along with other attributes

[SW17; Bre+10; Bre+11; SB06; Sil95; SW96; SW97; SW98], on tracking Ja-

cobi sets [EH04], or matching isosurfaces in higher-dimensional spaces

[JS04; JSW03].

Such approaches usually test features in two consecutive timesteps

against one another for potential overlaps, then draw the best correspon-

dence between features according to some criterion. Typical criteria in-

clude optimizing the overlapping volume, mass, distance between cen-

troids, or a combination of these [Sam+94; RPS01]. For this to work, the
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temporal sampling rate of the underlying data must be such that features

in two consecutive timesteps effectively overlap. This first criterion is thus

not very robust to temporal downsampling.

Other approaches rely on global optimization [JS06], using the Earth

Mover’s distance [LB01] between geometrical features with various at-

tributes such as centroid position, volume and mass. This does not, how-

ever, benefit from the natural definition of features offered by topological

data analysis, nor from the possibility to simplify features in a hierarchi-

cal way. This is a real drawback in the context of noisy data as it implies

dealing with large, computation-intensive optimization problems between

every pair of timesteps.

Once features have been defined, and a methodology established to as-

sociate them in consecutive timesteps, the tracking representation is quite

independent of whether geometrical or topological arguments have been

used. Most often, graphs are used [RJR00; Wid+15; Lan+06], such as Reeb

graphs [Web+11; Ede+04] and nested tracking graphs [Luk+17b]. Many

popular graph structures are accounted for in [WT17]. An inconvenience

of extracting rich tracking structures such as these without taking care-

ful attention to potential noise is that it makes the interpretation quite

difficult. In [Bre+11], the tracking graph is dense and intricate, making

exploration impractical. It is therefore mandatory to do filtering and sim-

plification in a post-processing stage, or to cleverly discard noisy events

beforehand.

Assignment problems

Since we revisit the original algorithm by Kuhn and Munkres, we discuss

here some related work in combinatorial optimization. The assignment

problem is the discrete optimization problem consisting of finding a per-

fect matching of optimal cost in a weighted bipartite graph [Mun57; Ber98;

BDM09]. In other terms, the problem is to find an optimal one-to-one cor-

respondence between discrete entities (such as singularities in a scalar

field at two different timesteps), with a cost associated to each possible

correspondence. It can be solved with the seminal Kuhn-Munkres algo-

rithm [Mun57]. The auction algorithm [Ber98; BC89; KMN17] is another

popular approach for solving the assignment problem with a user-defined

error threshold on the resulting assignment cost. In practice, this threshold

is often set to 1% of the scalar range. A more general, continuous formu-

lation of this problem is at the heart of Transportation theory [Mon81;

Kan42; Vil08]. Modern techniques [Cut13] have attracted acute interest for
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making this theoretical setup central to shape correlation [Sol+16] and in-

terpolation [Sol+15], which do bear resemblance to feature tracking.

Metrics

Since we introduce a new metric for the matching of persistence dia-

grams, we discuss in the following existing metrics traditionally used in

topological data analysis. The bottleneck and the interleaving distances

have been widely investigated to study the stability of persistence dia-

grams. These metrics have been notably adapted in the context of kernel

methods [Rei+15; CCO17] in machine learning. We discussed in chap-

ter 3 the bottleneck distance, and the more general Wasserstein distance,

applied to diagram points. The standard approach for computing this

discrete Wasserstein metric relies on solving the associated assignment

problem, either with an exact Kuhn-Munkres approach [Mor10; Wea13] or

with an auction-based approximation [KMN17]. However, as discussed in

Sec. 5.4, when these methods (metric-based [Cha+09; CEH05] or kernel-

based [Rei+15; CCO17]) are applied as-is for tracking purposes, a high

geometrical instability occurs which impairs the tracking robustness, as

already observed in the case of vineyards [CEM06]. Our work (see Sec. 5.4)

addresses this issue.

5.1.2 Contributions

This chapter presents the following contributions:

1. Approach: We present a sound and original framework, which is

the first combining topology and transportation for feature track-

ing, comparing favorably to other state-of-the-art approaches, both

in terms of speed and robustness.

2. Metric: We extend traditional topological metrics, for the needs of

time-varying feature tracking, notably enhancing geometrical stabil-

ity and computing time.

3. Algorithm: We extend the assignment method by Kuhn and

Munkres to solve the problem of persistence matchings in a fast

and exact way, taking advantage of our metric.
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5.2 Preliminaries

This section gives some background on how the Wasserstein distance

can be computated by solving the assignment problem, and presents an

overview of our approach.

5.2.1 Assignment problem

The assignment problem is the problem of choosing an optimal assign-

ment of n workers w ∈ W to n jobs j ∈ J, assuming numerical ratings are

given for each worker’s performance on each job.

Given ratings r(wx, jy) are summed up in a cost matrix (rxy), finding

an optimal assignment means choosing a set of n independent entries of

the matrix so that the sum of these elements is optimal. Independent means

than no two such elements should belong to the same row or column (i.e.

no two workers should be assigned to the same job and no worker should

be given more than one job). In other words, one must find a map σ : W →
J of workers and jobs for which the sum ∑x(r(wx, σ(wx))) is optimal.

There are n! possible assignments, of which several may be optimal, so

that an exhaustive search is impractical as n gets large.

Similarly, the unbalanced assignment problem is the problem of find-

ing an optimal assignment of n workers to m jobs, where some jobs or

workers might be left unassigned. This is the case of assignments between

sets of persistence pairs; where costs are defined for leaving specific pairs

unassigned.

The Hungarian algorithm [KY55; Mun57] is the first polynomial algo-

rithm proposed by Kuhn to solve the assignment problem. It is an iterative

algorithm based on the following two properties:

Theorem 1 If a number is added or subtracted from all the entries of any one row or column of

a cost matrix, then an optimal assignment for the resulting cost matrix is also an

optimal assignment for the original cost matrix.

This means that the cost matrix (rij) can be replaced with (rij)− ui− vj

where ui (resp. vj) is an arbitrary number which is fixed for the ith row

(resp. the jth column).

Theorem 2 If R is a matrix and m is the maximum number of independent zeros of R (i.e.

number of entries valued at 0), then there are m lines (row or columns) which

contain all the zeros of R.
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Figure 5.2 – Matrix reduction phase. Subtracting the minimum element from each of the

n rows and columns might not be sufficient to make a set of n independent zeros appear.

In the above example, initially detected independent zeros are first starred. All columns

containing a 0* are then covered (left). An uncovered zero which has a 0* in its row is

found and primed; its row is covered and the column of the 0* is uncovered (center). At

this point, all zeros are covered by construction. Let ε be the smallest uncovered value.

Add ε to every covered row; subtract ε from every uncovered column. This amounts

to decreasing uncovered elements by ε and increasing twice-covered elements by ε. The

sum of the elements of the matrix has been decreased and a new zero has appeared in an

uncovered zone.

This allows to determine whether an optimal assignment has been

found and thus constitutes the stop criterion.

The algorithm iteratively performs additions and subtractions on lines

and columns of the cost matrix, in a way that globally decreases the matrix

cost, until the optimal assignment has been found, that is, until the matrix

contains a set of min(m, n) independent zeros.

In the remainder we consider the O(min(m, n)2max(m, n)) unbalanced

Kuhn-Munkres algorithm [Mun57; BL71], an improvement over Kuhn’s

original version which follows the same principles, with an enhanced

strategy for finding independent elements. The goal is always to reduce

the cost matrix and find a maximal set of independent zeros. These in-

dependent zeros are marked with a star: they are candidates for the op-

timal assignment. Zeros which are candidates for being swapped with a

starred zero are marked with a prime. Throughout the algorithm, rows

and columns of the matrix are marked as covered to restrict the search for

candidate zeros.

The algorithm can be seen as two alternating phases: a matrix reduc-

tion phase (Fig. 5.2) which makes new zeros appear, and an augmenting

path phase (Fig. 5.3) which augments the number of marked (starred) in-

dependent zeros.
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Figure 5.3 – Augmenting path phase. After the first non-covered zero (left) is primed

and covers updated, there is one non-covered zero Z1 in the matrix (center), which is then

primed. Let Z2 be the 0* in the column of Z1 (if any), let Z3 be the 0’ in the row of Z2

(there is one). Consider the series consisting of 0* (Z2i) and 0’ (Z2i+1) until it ends at a

0’ that has no 0* in its column. Unstar each 0*, star each 0’ of the series. The number of

starred zeros has increased by one.

5.2.2 Persistence assignment problem

The assignment problem for persistence pairs is very similar to the stan-

dard unbalanced assignment problem, except additional costs are defined

for not assigning elements (i.e. matching persistence pairs with the diag-

onal). The assignment between diagrams P and Q then involves rij the

numerical rating associated with assigning pi ∈ P with qj ∈ Q, along with

ri,−1 (resp. r−1,j) the numerical rating associated with matching pi (resp.

qj) with the diagonal.

If P and Q are sets of persistence pairs such that card(P) = n

and card(Q) = m, then it is possible to solve the persistence assign-

ment problem using the standard Kuhn-Munkres algorithm with the

(n+m)× (n+m) cost matrix described by Eq. 5.1, as proposed in [Mor10]:

rij =



dν(pi, qj) if 0 < i ≤ n, 0 < j ≤ m

dν(qj, diag(qj)) if n < i ≤ m + n, 0 < j ≤ m

dν(pi, diag(pi)) if 0 < i ≤ n, m < j ≤ m + n

0 if n < i ≤ m + n, m < j ≤ n + m

(5.1)

The first line corresponds to matching pairs from P to pairs from Q;

the second one corresponds to the possibility of matching pairs from P

to the diagonal; the third one is for matching pairs of Q to the diagonal

and the last one completes the cost matrix. The drawback of this approach

is that it requires to solve the assignment problem on a (n + m)2 cost

matrix (that potentially contains two non-sparse blocks where persistence

elements are located, see Fig. 5.4), though the number of distinct elements

is at most (n + 1)× (m + 1). As seen in Sec. 5.3, our algorithm addresses

this issue.
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5.2.3 Overview

This section presents a quick overview of our tracking method, which is

illustrated in Fig. 5.9. The input data is a time-varying PL scalar field f

defined on a PL d-manifoldM with d ≤ 3.

1. First, we compute the persistence diagram of the scalar field for ev-

ery available timestep.

2. Next, for each pair of two consecutive timesteps t and t + 1, we

consider the two corresponding persistence diagrams D( ft) and

D( ft+1). For each couple of persistence pairs (pi, qj) ∈ D( ft) ×
D( ft+1), we define a distance metric corresponding to the similar-

ity of these pairs: dν(pi, qj) (see Sec. 5.4).

3. For each pair of consecutive timesteps, we compute a matching func-

tion M. Every persistence pair pi of D( ft) is associated to to M(pi),

which is either a persistence pair qj in D( ft+1) or diag(pi) so as

to minimize the total distance ∑i d(pi, M(pi)). Finding the optimal

M involves solving a variant of the classical Assignment Problem,

as presented in Sec. 5.2.2. Only persistence pairs involving critical

points of the same index are taken into account.

4. We compute tracking trajectories starting from the first timestep.

If at timestep t the matching associates pi with Mt(pi) = qj, then

a segment is traced between pi and qj. If Mt(pi) = diag(pi), the

current trajectory ends. Trajectories are grown following this princi-

ple throughout all timesteps. Properties are associated to trajectories

(time span, critical index), and to trajectory segments (matching cost,

scalar value).

5. Finally, trajectories are post-processed to detect feature merging or

splitting events with a user-defined geometric threshold.

5.3 Optimized persistence matching

This section presents our novel extension of the Kuhn-Munkres algorithm,

which has been specifically designed to address the computation time

bottleneck described in Sec. 5.2.1.
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Figure 5.4 – Cost matrices for a balanced assignment problem (left, n × n elements);

for a persistence assignment problem with [Mor10] (center, R with 2n× 2n elements –

Eq. 5.1); and for the same persistence assignment problem with our proposed approach

(right, R′ with (n + 1)× n elements – Eq. 5.2). Persistence elements in R induce two

redundant non-sparse blocks (top-right and bottom-left).

5.3.1 Reduced cost matrix

The classical persistence assignment algorithm based on Kuhn-Munkres

considers R, a (n+m)2 cost matrix. We propose to work instead with R′, a

reduced (n+ 1)×m matrix defined in Eq. 5.2, where every zero appearing

in the last row is considered independent. This amounts to considering

that persistence pairs corresponding to rows are not assigned by default.

Fig. 5.4 summarizes the matrices considered by each assignment method.

r′ij =

dν(pi, qj)− dν(diag(pi), pi) if 0 < i ≤ n, 0 < j ≤ m

dν(diag(qj), qj) if i = n + 1, 0 < j ≤ m
(5.2)

This last row, emulating the diagonal blocks of Fig. 5.4-b requires a

specific handling in the optimization procedure. In particular, it requires

the first step of the algorithm to subtract minimum elements from columns

(and not rows) so as not to have negative elements in the matrix.

As a reminder, the original algorithm proceeds iteratively in two alter-

nating phases: matrix reduction that makes new zeros appear, and aug-

menting path that finds a maximal set of independent zeros. At the ith

iteration, the current maximal set of independent zeros is made of starred

zeros. After a matrix reduction, new zeros appeared that can potentially

belong to the new maximal set of independent zeros. Such candidates are

primed. A single augmenting path (as in Fig. 5.3) replaces a set of n starred

zeros with n + 1 primed zeros, forming a new set of independent zeros

with one more element. Rows and columns of the matrix are marked as

covered to restrict the search for candidates in the augmenting path phase.

Blue blocks of Algorithm 1 indicate our extension of the Kuhn-Munkres

algorithm.
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In this novel extension, an augmenting path constructed in the corre-

sponding phase can start from a starred zero in the last row (and then

potentially find a primed zero in its column), but such a path can never

access a starred zero in the last row at another step, for the corresponding

column would have been covered prior to this (and thus cannot contain

a primed zero, see Algorithm 1). A starred zero in the last row can then

never be unstarred.

The Kuhn-Munkres approach has the property to only increase row

values (and only decrease column values). When our algorithm working

on the reduced matrix R′ ends, it is therefore not possible that the elements

on the top-right corner of the corresponding full matrix R be negative.

Furthermore, given Theorem 1, the resulting matrix corresponds to the

same assignment problem.

5.3.2 Optimality

Working with the reduced matrix R′, however, does not necessarily yield

an optimal assignment. When assignments are found in the bottom row,

if there has been additions to the matrix rows, then the corresponding R

matrix would contain a top-right block that is not zero, and a top-left block

that is not zero either. Thus, the stop criterion stated by Theorem 2 may

not be respected when k = min(m, n) lines are covered (as the real number

of independent zeros in R is m + n). Moreover, in our setup, a starred zero

in the last column can never be unstarred; this is allowed in the approach

on R, owing to the bottom-right block, initially filled with zeros.

We therefore use the criterion stated in Eq. 5.3 to ensure that if, at

any given iteration of the algorithm, a zero is starred in the last row of

column j, the cost of assigning the corresponding persistence pair to any

other pair is higher than the cost of leaving both unassigned (0 for the jth-

column pair and the residual value ρi for ith-row pairs – see Algorithm 1).

This specificity is illustrated in Fig. 5.5.

∀i ∈ J0, nK, ri,j > ρi ⇒ rn+1,j = 0∗ (5.3)

The (Eq. 5.3) criterion is checked whenever a zero appears on the last

row after a subtraction is performed on a column by the algorithm. If it

is observed, the corresponding column is removed from the problem and

the persistence pair is set unassigned.

If the criterion is not respected, we have to report back the reduced

problem onto the full matrix (missing banned columns and with reported
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Figure 5.5 – In our setup, every element in the last row is considered independent,

so that it can contain multiple starred zeros (left). This emulates the behavior of the

bottom-left matrix block in the classical approach. During an ε-reduction phase (center),

we keep track of the (always positive) quantities that were added to matrix rows, hence

increasing the top-right block in the classical approach, initially filled with only zeros. If

a zero is starred in the last row and jth column, let ρi be the sum of quantities added

to row i throughout the algorithm (right). If for all i, rij > ρi, then the persistence pair

associated with column i is assigned to the diagonal. If not (which never happened in our

experiments), row residuals ρi and the equivalent residuals for columns ρj are used to

report the partial optimization onto the matrix of the exact classical approach.

found residuals ρ). For this, we need to keep track of residuals, that is,

values that have been added or subtracted from each row and column

throughout the course of the algorithm. Once these residuals have been

reported onto the full matrix, there can be no negative element, and all of

the optimization work has been reported (so that we do not start all over

again from the beginning, but we start from the optimized output of the

first phase).

In practice for persistence diagrams, we always observed that the first

phase is sufficient to find an optimal assignment. Using this approach

prevents from working with two potentially large blocks of persistence

elements, typically occurring with the complete matrix for i ∈ Jn + 1, m +

nK and j ∈ Jm + 1, m + nK. This property is further motivated by the use of

geometrical lifting (Sec. 5.4). The approach is detailed in Algorithm 1.

5.3.3 Sparse assignment

In practice, it is often observed that some assignments are not possible,

and that reordering columns in the associated cost matrix would enable

faster lookups and modifications [Cui+16], using sparse matrices. With

persistence diagrams, the following simple criterion (Eq. 5.4) can be used

to discard lookups for potential matchings.

dν(p, q) > dν(p, diag(p)) + dν(q, diag(q)) (5.4)
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Algorithm 1: Our algorithm for sparse persistence matching. Blue

sections allow to emulate the behavior of the three original non-

sparse blocks on one single row, while ensuring optimality thanks

to the residuals column. Black sections are common with the unbal-

anced Kunk-Munkres algorithm.

Data: R′ = (rij), an (n + 1)×m persistence cost matrix,

R the full (n + m)2 matrix with non-sparse blocks.

Result: S a set of starred independent zeros

∀i, ρi ← 0 // row residuals

∀j, ρj ← 0 // column residuals

B← ∅ // banned columns

Subtract the persistence element from every row and ρi

Transpose R′ if n > m and let k = min(m, n)

Subtract the min element from every column of R′ and ρj

Star independent zeros and cover their columns

while number of covered columns < k do
Find a non-covered zero Z1 and prime it

if Z1 is in the last row or there is no 0* in its row then
Augmenting path phase (Fig. 5.3)

Erase all primes, reset all covers

Cover each column of containing a starred zero
else

Let Z′1 be the 0* in the row of Z1

Cover this row and uncover the column of Z′1
if there is no uncovered zero left then

Matrix ε-reduction phase (Fig. 5.2)

ρi ← ρi + ε for modified rows i

ρj ← ρj − ε for modified columns j

if ∃j|rn+1,j = 0 and ∀i ∈ J1, nK, ri,j > ρi then
rn+1,j is starred

B← B ∪ j

if ∃j /∈ B|rn+1,j = 0∗ and ∃i|ri,j < ρi then
Kuhn-Munkres(R′′ij = Rij + ρi + ρj) with j /∈ B.
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Figure 5.6 – Persistence diagrams D1 and D2 showing in color small persistence pairs

that will never be assigned in an optimal matching. The light blue pair p ∈ D2 is such

that d(p, diag(p)) + d(q, diag(q)) < d(p, q) for any q ∈ D1 which is neither light

blue nor the first large persistence pair. This results in the cost matrix (right, D1 pairs

are rows and D2 pairs are columns), where gray elements correspond to pairs (p, q) s.t.

d(p, q) > d(p, diag(p)) + d(q, diag(q)).

Working with our version of the Kuhn-Munkres algorithm then be-

comes interesting for many assignments verify Eq. 5.4 (Fig. 5.6), hence

greatly reducing the lookup time for zeros, minimal elements, and the

access time for operations performed on rows or columns.

On the contrary, the original full-matrix version of Kuhn-Munkres

deals with non-sparse blocks which have to be accessed and modified

constantly throughout the course of the algorithm.

5.4 Lifted persistence Wasserstein metric

This section highlights the limitations of the natural Wasserstein metric

applied to time-varying persistence diagrams and presents an extension

that enhances its geometrical stability. Geometrical considerations are mo-

tivated, in terms of accuracy and performance.

Persistence diagrams can be embedded into the geometrical domain

(Fig. 3.14). Doing so, one easily sees how different embeddings can corre-

spond to similar persistence diagrams in the birth-death space. Working in

this 2D space does yield irrelevant matchings: as can be seen in Fig. 5.7,

when only the birth-death coordinates of persistence pairs are considered, a

matching can be optimal even if it happens between geometrically distant

zones. As a consequence, the distance metric between persistence pairs

must be augmented with geometrical considerations.

To address this, we propose instead of dν (Eq. 3.2) to use the distance

defined in Eq. 5.5:



96 Chapter 5. Fast and robust topology tracking

Figure 5.7 – Scalar field f with persistence diagram D( f ) (left), matched with a scalar

field g with a similar persistence diagram D(g), but an embedding that swaps the po-

sition of the light blue pair with that of the dark blue pair. Matched pairs are displayed

with the same color using the non-geometric (center) and geometric Wasserstein metric

(right). The latter takes the geometrical embedding into account, preventing similar pairs

(regarding persistence) to be assigned if they are geometrically distant.

dli f t,ν(p, q) = (αδν
birth + βδν

death + γ1δν
x + γ2δν

y + γ3δν
z )

1/ν (5.5)

where δx, δy and δz correspond to geometric distances between the extrema

involved in the persistence pairs on a given axis. We process diagonal

projections as follows (Eq. 5.6):

dli f t,ν(p, diag(p)) =(α |px|ν + β
∣∣py
∣∣ν +

γ1(δ
p
x )

ν + γ2(δ
p
y )

ν + γ3(δ
p
z )

ν)1/ν
(5.6)

where the terms δ
p
x , δ

p
y and δ

p
z correspond to the geometric distance be-

tween the critical points of a given pair p. Intuitively, it accounts for the

distance between the critical points to cancel.

A lifted distance is considered by augmenting the geometric distance

with coefficients α, β, γi. This aims at giving more or less importance to

the birth, death or some of the x, y, z coordinates during the matching,

depending on applicative contexts. For instance, in practice it is desir-

able to give less importance to the birth coordinate when dealing with

d-(d− 1) persistence pairs (in other words, for tracking local maxima, see

Fig. 5.8). For the remainder of the chapter and the experiments, we used

(α, β, γi) = (0.1, 1, 1) for maxima and (α, β, γi) = (1, 0.1, 1) for minima, for

normalized geometrical extent and scalar values. We observed that using

a lifted metric further increases the cost matrix sparsity, resulting in extra

speedups.
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Figure 5.8 – Lifting the birth coordinate. 2D scalar fields with two gaussians (a, b), where

the bottom (resp. top) gaussian has the maximum value (a) (resp. b). Using the geometri-

cal metric alone (c) is not sufficient, as the birth coordinate px misleadingly equalizes the

persistence term of pairs of the same color in (a, b): δa
p,yellow = δb

p,yellow, δa
p,blue = δb

p,blue,

potentially overcoming the geometrical factor. Lifting the birth coordinate with a small

coefficient for associating maxima yields the correct matching (d).

5.5 Feature tracking

This section describes the four main stages of our tracking framework,

relying on the discussed theoretical setup. Without loss of generality, we

assume that the input data is a time-varying 2D or 3D scalar field de-

fined on a PL-manifold. Topological features are extracted for all timesteps

(Fig. 5.9, a-b), then matched (Fig. 5.9, c); trajectories are built from the suc-

cessive matchings (Fig. 5.9, d) and post-processed to detect merging and

splitting events.

5.5.1 Feature detection

First, we compute persistence diagrams for each timestep. We propose

using the algorithm by Gueunet et al. [Gue+17], in which only 0-1 and

d-(d− 1) persistence pairs are considered.

When the data is noisy, it is possible to discard pairs of low persis-

tence (typically induced by noise) by applying a simple threshold. In prac-

tice, this amounts to only considering the most prominent features. Using

such a threshold accelerates the matching process, where for approaches

based on overlaps, removing topological noise would require a topological

simplification of the domain (for example using the approach in [TP12]),

which is computationally expensive.

5.5.2 Feature matching

If P1, P2 are two sets of persistence pairs taken at timesteps t and t+ 1, then

we use the algorithm described in Sec. 5.3, with the appropriate distance
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Figure 5.9 – Overview of our tracking approach on a dataset consisting of eight whirling

gaussians: persistence diagram computations for two consecutive timesteps (a) and (b);

matching of persistence pairs of two timesteps (c), propagation of matchings and con-

struction of a trajectory (d).

metric, as discussed in Sec. 5.4, to associate pairs in P1 and P2. A given pair

p1 ∈ P1 might be associated to one pair p2 ∈ P2 at most, or not associated,

and symmetrically.

5.5.3 Trajectory extraction

Trajectories are constructed by simply attaching successively matched seg-

ments. For all timesteps t, if the feature matching associates pi with

Mt(pi) = qj, then a segment is traced between qj and pi, and is po-

tentially connected back to the previous segment of pi’s trajectory. If

Mt(pi) = diag(pi), the current trajectory ends. Properties are associated

to trajectories (time span, critical point index) and to trajectory segments

(matching cost, scalar value, persistence value, embedded volume).

5.5.4 Handling merging and splitting events

Given a user-defined geometrical threshold ε, we propose to detect

events of merging or splitting along trajectories in the following man-

ner. If T1, T2 : I ⊂ N → R3 are two trajectories spanning throughout

[ti, ti+n] and [tj, tj+m] respectively, and if for some k ∈ [i, i + n] ∩ [j, j + m],
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Figure 5.10 – Merging process. Tracking is performed on two gaussians moving from left

to right (a). The post-process detects a merging event with a geometrical threshold, then

propagates the component identifier of the oldest component (b) and properly reconnects

the matching segment. If the oldest component has already the right identifier (c) nothing

is done. This process is proposed by analogy with building persistence diagrams.

dli f t,ν(T1(tk), T2(tk)) < ε, where dli f t,ν is a lifted distance, then an event of

merging (or splitting) is detected. We consider that a merging event occurs

between T1 and T2 at time k, when neither T1 nor T2 start at tk. We then

consider that the oldest trajectory takes over the youngest. For example, T1

and T2 meet (according to the ε criterion) at tk the last timestep of T2, and

T2 started before T1, then we disconnect the remainder of T1 from the tra-

jectory before tk and we connect it so as to continue T2 until T1’s original

end. Similarly, a splitting event occurs between T1 and T2 at time k, when

neither T1 nor T2 end at tk. The process is illustrated in Fig. 5.10. It is done

separately for distinct critical point types: minima, maxima and saddles

are not mixed.

5.6 Results

This section presents experimental results obtained on a desktop com-

puter with two Xeon CPUs (3.0 GHz, 4 cores each), with 64 GB of RAM.

We report experiments on 2D and 3D time-varying datasets, that were ei-

ther simulated with Gerris [Pop03] (von Kármán Vortex street, Boussinesq

flow, starting vortex), or acquired (Sea surface height, Isabel hurricane).

Persistence diagrams are computed with the implementation of [Gue+17]

available in the Topology ToolKit [Tie+17]; the tracking is restricted to 0-1

and (d− 1)-d pairs. We implemented our matching (Sec. 5.3) and tracking

approaches (Sec. 5.5) in C++ as a Topology ToolKit module.

5.6.1 Application to simulated and acquired datasets

We applied our tracking framework to both simulated and acquired time-

varying datasets to outline specific phenomena.

In Fig. 5.11, we present the results of the tracking framework applied
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Figure 5.11 – Sea surface height (SSH) captured over 365 days, 1 timestep every day.

Local maxima are tracked in the region corresponding to the Agulhas Current, near South

Africa (a); it is observed they are slowly drifting towards the west. SSH maxima are also

drifting west in the less contrasted zone of the West Australian Current (b). Tracking in

the region of the Kuroshio Current, near Japan (c), demonstrates a whirling behavior of

local maxima.

to an oceanographic dataset. The scalar field (sea surface height) is defined

on 365 timesteps on a triangular mesh. We can see interesting trajectories

corresponding to well-known oceanic currents. Drifting (a, b) and turbu-

lent behaviors (c) of local extrema are highlighted. In Fig. 5.12, tracking is

performed on the vorticity of highly unstable Boussinesq flow. Thanks to

our analysis, trajectories can be filtered according to their temporal lifes-

pan, revealing clearly different trajectory patterns among the turbulent

features. This kind of analysis may be easily performed based on other

trajectory attributes, depending on applicative contexts. In Fig. 5.13, we

show our approach on a 3D hurricane dataset whose temporal resolution

is such that a method based on overlaps of split-tree leaves (see Sec. 5.6.3)

could not extract trajectories. In Fig. 5.14, our tracking framework correctly

follows local extrema of the vorticity field in a simulated vortex street.

5.6.2 Tracking robustness

In the following two sections, we demonstrate the robustness and perfor-

mance of our tracking framework.

We compare to the greedy approach based on the overlap of volumes

[Bre+10; Bre+11; SB06; SW17] of split-tree leaves, which amounts to track-
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Figure 5.12 – Boussinesq flow generated by a heated cylinder (a). Feature tracking is

performed (b) on the fluid vorticity. Some vortices exist over a long period of time (c), as

others vanish more rapidly (d), sometimes akin to noise (e). Feature trajectories can easily

be filtered from their lifespan.

ing local maxima. In this approach, for every pair of consecutive timesteps

(t, t + 1), split-tree segmentations St and St+1 are computed (these are a

set of connected regions). Overlap scores are then computed for every pair

of regions (si, sj) ∈ St × St+1, as the number of common vertices between

si and sj. Scores are sorted and si is considered matched to the highest

positive scoring sj such that sj has not been matched before. Trajectories

are extracted by repeating the process for all timesteps.

The robustness of our tracking framework is first assessed on a syn-

thetic dataset consisting of whirling gaussians, on which we applied noise

(Fig. 5.15). Identified trajectories are sensibly the same with a perturba-

tion of 10% of the scalar range. The 75% most important features are still

correctly tracked after a 25% random perturbation has been applied to the

data.

In Fig. 5.14, our method is compared to the greedy approach, based

on overlaps, while decreasing the temporal resolution. The overlap ap-

proach yields trajectories corresponding to noise (Fig. 5.14-e), which can

be filtered by applying topological simplification beforehand (this would
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Figure 5.13 – Tracking performed on the wind velocity on a 3D Isabel hurricane dataset

before (left), and after (right) temporal downsampling (1 frame every 5 timesteps). The

global maximum is tracked successfully despite the high instability displayed by the scalar

field.

have a significant computational cost as it requires to modify the original

function), or by associating the scalar value of the function to every point

in the trajectory and then filtering the trajectory in a post-process step. In

our setup, is is much simpler to discard this noise, by using a threshold for

discarding small persistence pairs before the matching (implying a faster

matching computation). When downsampling the temporal resolution to

only 20% of the timesteps, our approach still gives the correct results

(Fig. 5.14, d vs. e). With 15% of the timesteps, our approach (Fig. 5.14-

f) still agrees with the tracking on the full-resolution data (Fig. 5.14-b),

until preceding features begin to catch up, resulting in a zig-zag pattern.

By comparison, the overlap method fails to correctly track meaningful

regions from the beginning of the simulation to its end; it is indeed de-

pendent on the geometry of overlaps, which is unstable. It can be argued

that the locality captured by overlaps is emulated in our framework by

embedding and lifting the Wasserstein metric, when the overlap method

does not take persistence into account when matching regions. Also note

that if the saddle component of persistence pairs associated to maxima is

ignored (i.e. if α = 0 in Eq. 5.5 and Eq. 5.6) during the matching, then

the geometrical distance can be insufficient for correctly tracking these

persistence pairs (c). Therefore, the problem of matching persistence pairs

for tracking topological features cannot be reduced to the (unbalanced)

problem of assigning critical points in 4 dimensions (3 for the geometrical

extent, one for the scalar value).

Fig. 5.13 further illustrates the robustness of our approach when down-

sampling the data temporal resolution. In hurricane datasets, local max-

ima can be displaced to geometrically distant zones between timesteps

if those are taken at multiple-day intervals. This unstable behavior and
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Figure 5.14 – Simulated von Kármán vortex street (a), on which minima and maxima

of the vorticity are tracked with our approach and 1% persistence filtering (b). Only

taking the geometry and scalar value into account while doing the matchings (i.e. com-

pletely ignoring the birth in the lifted metric), is not sufficient to correctly track features

(c). Maxima only are tracked considering 1 frame every 5 timesteps (d). With the same

temporal resolution, the overlap-based approach (e) does capture small trajectories corre-

sponding to noise, displayed with thinner lines, that have to be filtered for instance using

topological simplification [TP12]. Considering 1 frame every 7 timesteps (f) still yields

correct trajectories up to the point where, every other frame, optimal matchings for the

metric are between a feature and the preceding one, due to features traveling fast. The

overlap approach (g) is less stable in this case as it extracts erroneous trajectories from the

very first stages of the simulation to the end.

the absence of obvious overlaps makes it particularly difficult to track ex-

trema; nevertheless, our framework managed to track them at a very low

time-resolution.

5.6.3 Tracking performance

We then compare our framework with our implementation of the ap-

proach based on overlaps [Bre+11] on the ground of performance. Figures

are given in Tab. 5.1. Note that our approach has the advantage of taking

persistence diagrams as inputs, so it can be applied to unstructured or

time-varying meshes, for which overlap computations are not trivial. Our
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Figure 5.15 – Lifted Wasserstein tracking performed on a set of whirling 2D gaussians

(a). With noise accounting for 10% of the scalar range (b), feature trajectories are still

correctly detected. For 25% noise (c), 75% of the features (namely, the 6 most prominent

out of the initial 8) are still correctly tracked despite heavy perturbations.

Table 5.1 – Time performance comparison (CPU time in seconds) between the approach

based on overlaps of volumes [Bre+11] and our lifted Wasserstein approach. Tracking is

performed over 50 timesteps, on structured 2D (Boussinesq, Vortex street), structured 3D

(Isabel), and unstructured 2D (Sea surface height) meshes. The pre-processing step (FTM)

computes the topology of the dataset. The post-processing step extracts the tracking mesh,

computes its attributes, and handles splitting and merging events. We observe a parallel

speedup ranging from 4 to 6 for our approach on 8 threads (FTM and matching phases).

Data-set Pre-proc (s) Matching (s) Post-proc

FTM [Bre+11] ours (s)

Boussinesq 116 75 18 4.7

Vortex street 45 23 18 2.8

Isabel (3D) 863 >3k 17 162

Sea height 568 N.A. 277 113

approach is also relatively dimension-independent: though in 3D, com-

puting overlaps is very time-consuming (Fig. 5.1-Isabel), the complexity

of the Wasserstein matcher, which only takes embedded persistence dia-

grams as inputs, for a given number of persistence pairs is sensibly equiv-

alent. For both Isabel and Sea surface height datasets, we applied a 4%

persistence filtering on input persistence diagrams. As the experiments

show, our approach is faster in practice than the overlap method with

best-match search.
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Table 5.2 – Time performance comparison between the state-of-the-art Munkres-based

approach [Wea13], and our modified sparse approach.

Data-set Sizes of diagrams Time (s)

[Wea13] ours

Starting vortex 473− 489 68.6 1.26

Isabel 465− 413 72.2 3.58

Boussinesq 1808− 1812 11.1k 102

Sea height 1950− 5884 26.5k 155

Figure 5.16 – Running times in seconds of different matching approaches, for decreasing

persistence thresholds expressed in percentage of the scalar range. The initial two dia-

grams containing 14,082 and 14,029 pairs are filtered to remove pairs whose persistence

is less than the defined threshold, then a matching is computed with our new method, the

reference exact method [Wea13], the approximate method [BC89], first with 1% accuracy,

then with an accuracy of 10−4% of the scalar range.

5.6.4 Matching performance

Next, we compare the performance of the matching method we introduced

in Sec. 5.3 to two other state-of-the art algorithms.

We compare it to the reference approach for the exact assignment prob-

lem [Wea13] based on the Kuhn-Munkres algorithm, and to our imple-

mentation of the approximate approach based on the auction algorithm

[BC89; KMN17], on the ground of performance.

Tab. 5.2 shows that our new assignment algorithm is up to two orders

of magnitude faster than the classical exact approach [Wea13]. In partic-

ular, the best speedups occur for the larger datasets which indicates that

our approach also benefits from an improved scaling.

It is often useful in practice to discard low-persistence pairs prior to

any topological data analysis as these correspond to noise. Fig. 5.16 com-

pares the running times of our approach, [Wea13] and [BC89] as more and
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more low-persistence pairs are taken into account. When removing pairs

whose persistence is below 5% of the scalar range, which is commonly ac-

cepted as a conservative threshold, our approach is faster than all compet-

ing alternatives. When considering more low-persistence features, below

4%, our approach is competitive with the approximated auction approach

with 1% error. Below 2%, only noise is typically added in the process. The

performance of our algorithm becomes comparable to that of the high-

precision auction approximation although our approach guarantees exact

results.

5.6.5 Limitations

As we described, our framework enables the tracking of 0-1 and d-(d− 1)

persistence pairs. It would be interesting to extend it to support the track-

ing of saddle-saddle pairs (in 3D) and see its application to meaningful

use cases.

Besides, the lifting coefficients proposed in our metric (Eq. 5.5) might be

seen as supplementary parameters that have to be tuned according to the

dataset and applicative domain. Nonetheless, we observed in our experi-

ments that these parameters do not require fine-tuning to produce mean-

ingful tracking trajectories. The extent to which these can be enhanced by

fine-tuning is left to future work.

The lifted distance can be generalized to take other parameters, such

as the geometrical volume, mass, feature speed, into account, and be fine-

tuned to answer the specificity of various scientific domains. Merging and

splitting might also be enhanced, or given more flexibility, for instance

with additional criteria. We also believe that the performance of the post-

processing phase can be improved.

Additionally, we believe that the approximate auction algorithm can

also take the lifted persistence metric into account by performing Wasser-

stein matchings between persistence pairs in 5 dimensions, and possi-

bly benefit from geometry-based lookup accelerations, as suggested in

lower dimension in [KMN17]. It remains to be clarified how the quality

of the matchings is affected in practice by using an approximate matching

method, and how sparsity can enhance the research phase for the auction

algorithm.

We note that the theoretical complexity of our matching method is,

as the Munkres method, cubic; however, the two orders of magnitude

speedups demonstrated in our experiments allow to study more challeng-



5.7. Summary 107

ing datasets. For very large case studies, the use of persistence thresholds

could prove quite helpful for controlling the computing time of matchings.

Among other non-trivial tracking methods, some graph matching meth-

ods are based on graph-edit distances [Gao+10; Bek+14]. Their adaptation

to the case of persistence diagrams or other topological structures (such

as contour trees and Reeb graphs) may enable an additional structural

regularization, this ought to be investigated in future work.

5.7 Summary

In this chapter, we presented an original framework for tracking topologi-

cal features in a robust and efficient way. It is the first approach combining

topological data analysis and transport for feature tracking. As the kernel

of our approach, we proposed a sparse-compliant extension of the semi-

nal assignment algorithm for the exact matching of persistence diagrams,

leveraging in practice important speedups. We introduced a new metric

for persistence diagrams that enhances geometrical stability and further

improves computation time. Overall, in comparison with overlap-based

techniques, our approach displays improved performance and robustness

to temporal downsampling, as experiments have shown.

We released the implementation of our tracking framework open-

source as a part of TTK [Tie+17]; we hope that it will be useful to the

community with an interest for efficient tracking methods. We look for-

ward to adapting it to tracking phenomena in in-situ contexts, where the

large-scale time-varying data is accessed in a streaming fashion. As we

are also interested in larger datasets, industrial partners are currently car-

rying out scaling tests on complex physical case studies for which one

needs specifically adapted rendering techniques [Luk+17b] to apprehend

the resulting graphical complexity of the topology evolution.

We also believe that the application potential of our matching frame-

work can be studied for tasks other than time-tracking, for instance, self-

pattern matching and symmetry detection [TN14]. As we will see in the

next chapter, one particularly promising application for the newly devel-

oped metrics is feature comparison in ensemble data.
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In this chapter, we further increase the dimensionality of the targeted

data, by considering a parametric study, that is, a survey involving

a number of simulation runs obtained with varying model parameters,

where a single run is an independent time-varying scalar data-set. In such

studies, pertinent analyses leveraging the potential of all available data

are difficult, notably because the I/O problematic becomes a major bot-

tleneck, which reduces the range of possible analyses. A typical analysis

109
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scientists would be interested in is assessing the quality of a simulation

run, compared to the ground truth.

As in our applicative context, we are specifically interested in fluid

flow in porous media, we present, in this chapter, a novel framework,

based on topological data analysis, for the automatic evaluation and rank-

ing of viscous finger simulation runs in an ensemble with respect to a ref-

erence aquisition. Individual fingers in a given time-step are associated

with critical point pairs in the distance field to the injection point, forming

persistence diagrams. Different metrics, based on optimal transport, for

comparing time-varying persistence diagrams in this specific applicative

case are introduced.

We evaluate the relevance of the rankings obtained with these metrics,

both qualitatively thanks to a lightweight web visual interface, and quan-

titatively by studying the deviation from a reference ranking suggested by

experts. Extensive experiments show the quantitative superiority of our

approach compared to traditional alternatives. Our web interface allows

experts to conveniently explore the produced rankings.

We show a complete viscous fingering case study demonstrating the

utility of our approach in the context of porous media fluid flow, where

our framework can be used to automatically discard physically-irrelevant

simulation runs from the ensemble and rank the most plausible ones. We

document an in-situ implementation to lighten I/O and performance con-

straints arising in the context of parametric studies. This contribution has

been documented in the submitted manuscript [Sol+19].
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6.1 Scientific issues

The chaotic nature of fluid flows makes it difficult to account for the prop-

agation of initial uncertainties in numerical models, or uncertainties in

model parameters. To predict uncertain phenomena, thanks to the in-

crease in computing power in recent years, Monte Carlo methods have

been broadly used, for instance in climate modeling, forecasts, statistical

physics, chemistry and astrophysics. The idea is to compute a large num-

ber of simulations, called an ensemble, while densely sampling the space

of input parameters. A post-mortem comparison (i.e. performed after sim-

ulations have been completed) to experimentally acquired data can then

determine which simulations produced the most realistic outcomes and

how input parameters affect their variability.

Specifically, in reservoir engineering, an area of petroleum engineer-

ing concerned with fluid flow through porous media, it is important to

quantitatively predict well productions, i.e. the quantity of oil that can be

extracted, in order to estimate the available reserves and to design surface

facilities. Numerical models are subject to parameter uncertainties, and

can be tuned by launching randomly sampled ensemble simulations. Usu-

ally, reference production rates and well pressures are history-matched

with the simulated ensembles, which ideally would allow domain experts

to restrict the space of input parameters. This history match procedure

is usually applied at the field scale (oil and gas reservoirs), but also at

the core scale (a few decimeters) when lab engineers want to match the

behavior of experimental corefloods.

In practice, notably in the domain of Darcy-type simulations at the

core scale, production and pressure data is not sufficient to infer model

parameters. Further measuring tools have been recently integrated in lab

experiments in order to constrain the parameter space, by monitoring

the saturation scalar fields through X-rays, so as to obtain information on

phase velocities and residual saturations. Here the saturation measures the

volume fraction of a given phase in the geometrical domain. Observing

these scalar fields seems relevant when the fluid behaves in a particularly

chaotic way, so that simulations which are not physically adequate could

be detected. The case of the viscous fingering phenomenon, an instability

which occurs at the interface between two fluids of distinct viscosity in

porous media, is of particular interest.

In this context, for all simulations quantitatively reproducing produc-

tion and pressure data, experts have to visually inspect each member of
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the ensemble to further discard non-physical simulations. This process

is currently performed manually and can be time consuming. Moreover,

the viscous fingering process involves a notoriously chaotic and unstable

geometry. In particular, two different viscous fingering simulations can

both be realistic from an expert’s point of view (and yield valid physical

properties for reservoir exploitation) even though saturation would admit

fingers with a drastically different shape and distribution in space. This

high geometrical variability makes it particularly challenging to derive a

meaningful distance metric to compare saturation scalar fields between a

simulation and a ground truth.

For studying scalar fields, topological data analysis (TDA) has been

used in recent years as a robust and reliable setting, allowing to hier-

archically define features of interest in the data [EH09]. Its applicability

to time-varying data [SB06; Bre+10], ensembles [Fav+19] and comparisons

[Sol+18a] makes it a reliable candidate for assessing the likeliness of simu-

lations in an ensemble given a ground truth. Although several approaches

have explored the promising potential of TDA for extracting and charac-

terizing the features of interest in viscous fingering simulations [FGT16b;

Luk+17a], no approach has been proposed to estimate the similarity be-

tween two time-varying viscous fingerings based on topological represen-

tations.

In this chapter, we address the aforementioned issues by proposing

a novel framework, based on topological data analysis, for quantitatively

ranking simulations from an ensemble with respect to a ground truth in

a viscous fingering case study. This framework allows experts to easily

separate the most realistic simulations from the most unrealistic ones. It is

based on a new approach for comparing temporal sequences of persistence

diagrams, specifically adapted to the problem of viscous fingering. Exten-

sive experiments quantitatively show the superiority of our approach com-

pared to traditional alternatives. The framework also includes an interac-

tive visual system for exploring the output rankings. Finally, we report a

complete case study for which the presented approach has been applied

in-situ (i.e. during the simulation).

6.1.1 Related work

Viscous fingering

Viscous fingering, sometimes known as the Saffman-Taylor instability, is



6.1. Scientific issues 113

a well-known instability encountered in soils and porous media [ST58],

arising from the unfavorable mobility ratio between an injected fluid and

the fluid in place, for instance when injecting water in a highly viscous

oil. These phenomena have been studied in the context of petroleum engi-

neering at multiple scales [Ska+14; Gao11]. Other factors than the viscos-

ity ratio are at play, such as properties inherent to the medium in which

the fingering takes place [Hom87; TSJ15; Ska+11; TJC16]. In practice, per-

forming waterflood in highly viscous oil can lead to physical instabilities

resulting in fingering patterns, with water flowing in preferential paths

and bypassing large quantities of oils. To prevent this phenomenon, poly-

mer can be injected in order to increase the water viscosity, therefore mak-

ing the injection front more stable, and leading to increased macroscopic

oil recovery [Lou+18]. There are multiple numerical models that can de-

scribe the evolution of fluids in the context of water floods; some have

been qualitatively compared to acquisitions [Ria+07; SIK12; Lou+18], but

the literature lacks robust ways to quantitatively compute their difference.

Topological data analysis techniques have been used to study the vis-

cous fingering phenomenon, for instance in ensembles of particle simula-

tions, to determine how the resolution affects fingers [FGT16b; Luk+17a]

or to provide frameworks for their visual exploration and interpretation

[Luc+19]; but never, to our knowledge, for the purpose of comparing sim-

ulations, in particular with a reference. TDA techniques have also been ap-

plied in-situ [Lan+14], which demonstrates their interest and relevance in

the context of large-scale simulations. However, to the best of our knowl-

edge, no data analysis method has yet been proposed for the in-situ anal-

ysis of viscous fingers.

Feature-oriented distances

For comparing simple discrete scalar fields such as images, intuitive ap-

proaches are point-wise geometric distances such as the Euclidean and

chord distances, or distances with a statistic awareness such as the Ma-

halanobis distance or correlation coefficients [CC05] (note that this is dis-

tinct from distances assessing a compression loss, as seen in chapter 3).

In specific applicative domains, however, the experts’ knowledge should

be accounted for to gain a more precise insight of what is of actual in-

terest in the data and which patterns or subsets are interesting to com-

pare. Consequently, feature-oriented distance definitions are exposed in

the remainder of this section. Associating geometrical loci in scalar data

based on a high-level definition of features of interest often relies on com-
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puting the overlap of geometrical sub-domains [SW17; Bre+10; Bre+11;

SB06; Sil95; SW96; SW97; SW98]. Such methods are used for feature track-

ing in time-varying data [SW99]. On another note, Transportation the-

ory offers an important continuous formulation of this problematic, with

the notion of a Wasserstein and Earth mover’s distance [LB01], which has

gained interest in recent years [Cut13; Sol+16; Sol+15; Lav+18]. In the dis-

crete setup, when applied to topological structures such as persistence

diagrams, transport-based matching methods suffer from instabilities in

the geometrical domain [CEM06], for which the underlying metric can

be specifically corrected [Sol+18a] depending on the context. Though this

family of approaches for computing distances between features based on

transport seems promising for the problem of comparing viscous fingers,

there is, to our knowledge, no work studying such an application.

6.1.2 Contributions

This chapter makes the following new contributions:

1. Approach: we present a novel analysis framework allowing to select

relevant members in a simulated ensemble given a ground truth.

The system yields a ranking that allows to visually explore the most

likely simulations and discard the most unrealistic ones.

2. Metrics: new topological metrics for comparing time-varying vis-

cous fingers are introduced, based on the Wasserstein matching of

persistence diagrams, specifically tuned for the viscous fingering

phenomenon and integrated over time.

3. Case study: a complete case study of a viscous fingering simula-

tion ensemble is documented, along with a proof-of-concept in-situ

implementation of our approach.

4. Evaluation: the metrics and ranking framework are qualitatively

evaluated with feedback from domain experts. The quantitative per-

formance of our approach is also analyzed and its superiority over

traditional alternatives is demonstrated.

6.2 Darcy-type porous media simulation

This section describes the context of reservoir simulation. As highlighted

in chapter 2, there are multiple models for simulating flow in porous me-

dia. Though our viscous finger analysis framework is not limited to a
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specific simulation model, we introduce here Darcy-type simulations, for

which the physics is governed by quantities averaged over control vol-

umes. We consider diphasic flow with oil and water.

Eq. 6.1 describes mass conservation, where i ∈ {o, w} denotes the oil

and water phase; φ is the porosity of the medium; ρi is the mass density of

phase i; Si is the saturation of phase i (it stands for the volume fraction of

phase i); qi is the well source term (injection/production) of phase i; and

vi is the velocity of phase i. If Vtot denotes the total volume, then the mass

of component i is given by mi = VtotφρiSi.

∂

∂t
(φρiSi) = −∇ · ρivi + qi (6.1)

Darcy’s law is an equation that describes fluid flow in porous media,

determined experimentally by H. Darcy in 1856 for one phase [Dar56], and

which can be derived from the Stokes equations [Whi86]. Its extension to

multiphasic flow is given in Eq. 6.2, where vi is the velocity of phase i; K is

the absolute permeability tensor of the porous medium; µi is the viscosity

of i; g is the acceleration of gravity; Pi is the pressure of phase i; kri is the

relative permeability of phase i. In our model, kri is a function of water

saturation.

vi = −K
kri

µi
(
−→∇Pi − ρig) (6.2)

Furthermore, as shown in Eq. 6.3, oil saturation can be simply ex-

pressed in terms of water saturation, and water pressure can be expressed

in terms of oil pressure, with Pc being the capillary pressure, a function of

water saturation. Sw = 1− So

Pw = Po − Pc

(6.3)

In this model, the unknowns are the saturations Si and pressures Pi.

The system formed by Eq. 6.1, 6.2, and 6.3 can then be solved numerically

to yield the evolution of fluid in porous media under Darcy’s approxima-

tion. Moreover, models exist [Lev41; Tho60; BC64] for expressing Pc as a

function of Sw, which can be obtained experimentally through centrifugal

fan experiments. Relative permeabilities kro and krw, also functions of Sw,

are more elusive. Numerous models have been proposed in the literature

in various contexts [Cor54; CR56; Chi84; Kil76; Car81; ALE99; FB98], and
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there is a number of methods for building them from interpretation of lab

experiments [OBT90; Mac+93; DAB00; Ric+52; Hag80]. Their correct defi-

nition, however, is key to a realistic description of flow in porous media,

and can be quite difficult to obtain depending on the recovery mecha-

nism, especially in processes involving severe viscous fingering patterns

(in which case Darcy’s law can become approximate) or when dealing with

an extra fluid phase, like an injected gas phase [Bak88], notably because

of the limited availability of experimental measurements. In the remainder

of this work, relative permeabilities are considered as an input parameter

of simulations.

Most of reservoir simulators are based on finite volumes discretizations

of Eq. 6.1, 6.2, 6.3 on a gridded 2D or 3D model, in which independent

variables are constant in each grid block. These quantities must be de-

termined at each time-step by solving the sets of non-linear conservation

equations. The results shown in the experiments section were obtained in

the 2D case with an in-house research reservoir simulator [Pat+14; JML14]

using an IMPES scheme (IMplicit Pressure, Explicit Saturation) [CHL04],

which separately computes saturation with an explicit time approxima-

tion, and pressure with an implicit one. At every time-step, scalar data de-

fined on control volumes is updated. As there are multiple variables, the

simulator outputs multiple fields, like phase pressures and saturations.

The pressure field is very diffusive, and in the diphasic case the saturation

is constrained by Eq. 6.3. Thus, a good indicator of the simulation state is

the scalar field of water saturation Sw, which we will use as input data in

the following.

6.3 Analysis framework

This section describes the problem of representing viscous fingers appear-

ing in time-varying saturation fields, comparing them across simulations,

and our approach for addressing this problem. In the following, we will

note each time step of the reference ground-truth acquisition At and each

time step of a simulation run St. Then, the goal of our framework is to

efficiently compute relevant similarity measures, to rank simulation runs

in order of increasing distance to the acquisition, so as to present to the ex-

perts the most plausible simulations for further inspection (Fig. 6.1). Note

that the number of available acquired time steps At is in practice signifi-

cantly lower than the number of simulated time steps St. The simulator

is thus set up to output additional time steps corresponding to a specific
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Figure 6.1 – Overview of the ranking framework. An ensemble of viscous fingering

simulation runs S1, S2, S3 is launched, and the persistence diagram of newly available

time-steps can be computed in-situ (left). Only persistence diagrams for which there is a

matching ground truth image (center, top) are computed. Diagrams of every simulation

are compared with the diagrams of the ground truth (center, bottom) at matching time-

steps. This comparison, based on a metric Ŵ2 combining the notions of persistence and

geometry, outputs a distance measurement, which can be integrated over time to form

the metric dŴ2
. This produces a final ranking (right) which characterizes the quality of

simulations, allowing experts to select and explore best performing runs automatically.

set of volumes of injected water, which were recorded for each time step

At. This physical criterion allows to reliably match in time acquired and

simulated time steps.

6.3.1 Feature representation

As discussed in the introduction, trying to reproduce the viscous finger-

ing phenomenon with Darcy-type simulation software is very challenging

because the fingering geometry greatly varies when one modifies input

parameters, even slightly. In particular, the input parametersconsidered

here are the relative permeabilities kri. When comparing a simulation to

an acquired ground-truth, this great geometrical variability challenges tra-

ditional image based distances, either point-wise based (L2 norm) or mor-

phing based [Cut13]. Moreover, the raw geometry of the viscous fingers

can be insufficient in practice to identify all plausible simulations. Indeed,

two geometrically different simulations can be deemed equally plausible

by the experts if they share more abstract similarities, involving the num-

ber of fingers, their prominence and their progress in the porous medium.

Thus, a proper feature representation, capable of abstracting these infor-

mations, is required to correctly represent the viscous fingering. Fig. 6.2

illustrates the extent to which the geometry of fingers may vary across

simulations and how clearly distinct simulations can be judged as equally

plausible by the experts.

The water saturation scalar field allows to visually identify fingers,
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Figure 6.2 – Late time-steps of two Darcy-type simulation runs launched with different

model parameters (left column). The ground truth obtained with X-rays is contoured in

white (right column, superimposed). Runs exhibit a very chaotic finger geometry.

because they form a clear, sharp frontier with the background (as the ge-

ometric domain was initially filled with oil). The first step for identifying

fingers then consists in extracting a sub-level set f−1
−∞(w) of water satura-

tion, for an isovalue w chosen properly (typically 0.12 in our experiments),

to extract the geometric domain M where fingers are effectively present.

Let F = f−1
−∞(w) be that sub-part ofM. The same workflow can be applied

on acquired X-ray images.

To compare a simulation to an acquired ground-truth, a naive strategy

consists in estimating overlaps between the sub-level sets of saturation of

the simulation and the acquisition, for a given time-step, and use the area

of such an overlap as a measure of likeliness. However, this purely geo-

metric approach appears to be inadequate in practice due to the important

variability in the number and shape of fingers, which then would not be

accounted for, as illustrated in Fig. 6.2.

A natural way of characterizing fingers while taking their shape into

consideration is to provide F with a descriptive scalar field, for instance

a geodesic distance from the injection point. Here, the injection point is

the left boundary of the domain, so the scalar field can simply be the x

geometrical coordinate. Local maxima of this new scalar field would then

correspond to the tips of viscous fingers, and saddles to valleys between

fingers. Since they correspond to finger tips, maxima of the x geometrical

coordinate provide a useful information to represent the progress of each

finger in the porous medium. Moreover, in this setting, the persistence

of the pair involving each maximum directly represents the length of the

corresponding finger, which can be used as a reliable measure of impor-

tance given this application, to distinguish the main fingers from noise.
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Figure 6.3 – Simulated time-steps (left column, a and b) and the matching ground truth

image (left column, c). Critical points are represented with spheres, and the corresponding

persistence diagram is shown on the right. As every critical point belongs to only one

persistence pair, the color of spheres encodes their persistence pair; and their diameter

encodes its height (the larger, the higher the persistence). The most important fingers can

clearly be identified by looking at the most persistent pairs in diagrams (right column).

For instance, we can see that the three most important fingers in the acquisition are the

purple, green and yellow ones.

The persistence diagram directly captures this information, in a robust

and hierarchical setting. Fig. 6.3 illustrates the correspondence between

fingers in the domain and pairs of critical points in persistence diagrams.

In this context, persistence diagrams seem to be a promising feature repre-

sentation for viscous fingers, since they efficiently describe their number,

progress through the porous medium as well as their prominence.

6.3.2 Metrics between time-varying persistence diagrams

Considering that viscous fingers are captured by persistence diagrams,

computing the similarity of a simulation with respect to a ground truth

would require, in a first step, to compute distances between persistence

diagrams. As outlined in the introduction, metrics have been introduced

for this purpose, notably the (2-)Wasserstein distance in the birth-death

space, noted W2 (Eq. 3.3).
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A drawback of W2 is that it does not take into consideration geomet-

rical information, other than coming from the birth-death space. Fig. 6.4

illustrates this limitation. To avoid this problem, a lifted adaptation of W2,

noted Ŵ2, including geometrical components can be considered, as we

introduced in chapter 5 (see Eq. 5.5). It is subject to input parameters in-

dicating the importance given to each geometrical component. Note that,

the Earth mover’s distance [LB01], noted EMD, which is an alternative of

interest too for our application, is a special case of Ŵ2, for αx = αy = 0. It

is similar to W2, but it only operates on the geometrical space instead of

the birth-death space. Thus, the lifted Wasserstein distance Ŵ2 can be in-

terpreted as a compromise between the W2 distance in the diagram birth-

death space and the EMD in the geometrical domain.

In practice, an important characteristic of a viscous fingering simula-

tion run is the moment when the longest finger arrives at the right bound-

ary, called breakthrough time. Correctly predicting this event is essential

because once it is reached, it means a preferential path has been formed,

allowing water to easily flow through, therefore impacting production.

Consequently, the position of local maxima (i.e. fingertips) is more impor-

tant than the position of saddles (i.e. finger branchings).

Then, given a time-step t, to compare the persistence diagrams coming

from a simulation St and the acquisition At, metrics should be more sensi-

tive to the advancement of fingertips, then to the global extent of fingers,

and lastly to their y location in the domain. Thus, at this point, we propose

to select the following metrics:

• The Earth mover’s distance for local maxima: EMD(St, At)

• The 2-Wasserstein distance: W2(St, At)

• The 2-Wasserstein distance, lifted to include geometrical information

(the position of critical points): Ŵ2(St, At). As in this application,

the advancement of fingertips is much more important than their

vertical position in the domain, we only consider the x-coordinate of

critical points. Thus, lifting coefficients (cf. Eq. 5.5) are βx = 10/γ (γ

being the extent of the geometrical domain), βy = 0, and αx = αy =

1/ρ (ρ being the range of the scalar function).

Characterizing the evolution of fingers through time raises the necessity to

integrate these metrics, as they are intended to evaluate the proximity be-

tween persistence diagrams for a single time-step t. Thus, to measure the

distance from a time-varying simulation S to the time-varying acquired
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Figure 6.4 – Limitations of matching methods based on geometry only (a, b) and match-

ing methods based on persistence only (c, d). As the Earth mover’s distance (top) only

considers the geometrical location of extrema, it can incorrectly associate critical points

belonging to unrelated fingers. For instance, the large pair in the acquisition, represented

with a blue segment (a, (1)), is matched to a pair with low persistence (b, (3)) because

their maxima are geometrically close; and the large red finger in the middle of a simula-

tion (b, (4)) is matched to a small protrusion (a, (2)) attached to the largest finger in the

acquired image. On the bottom, the reference metric for matching persistence diagrams,

the 2-Wasserstein metric, is shown to associate the bottom finger in the acquisition (c, (1))

to a finger in the middle of a simulation (d, (2)), because their persistence is comparable.

Taking both geometry and persistence into account, a lifted version of the Wasserstein

metric associates (c, (1)) to (d, (3)), which is farther away in terms of persistence, but has

the nearest maximum, and is qualitatively the best match.
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ground truth A, we introduce time-integrated versions, based on the L2

norm, of the metrics mentioned above:

• dEMD(S, A) =
(

∑t
(
EMD(St, At)

)2
)1/2

• dW2(S, A) =
(

∑t
(
W2(St, At)

)2
)1/2

• dŴ2
(S, A) =

(
∑t
(
Ŵ2(St, At)

)2
)1/2

As suggested by the experts, the displacement speed of the saturation

front is key to predicting breakthrough time. They suggested to match

in priority simulations which display compatible fronts in terms of ve-

locity during the experiment. Given fingers are captured by persistence

diagrams, a possibility for appreciating their evolution with respect to

that suggestion would be to compute the sequence of distances between

diagrams in successive time steps. In other words, for each couple of con-

secutive time steps t and t + 1, compute a distance between St and St+1

(subsection 3.3.4), and integrate for all time steps. Here the chaotic behav-

ior displayed by fingers when input simulation parameters change need

not be taken into account: we are considering a unique simulation run,

which has temporal coherence, therefore it is easier to choose a fitting

metric.

As highlighted in Fig. 6.5, a working solution is the 2-Wasserstein

distance, lifted to give more importance to the y coordinate of maxima:
|W2(St, St+1), with lifting coefficients βx = 0, βy = 10/γ, αx = αy = 1/ρ (γ

is the geometrical extent; ρ is the scalar range). Because of the variability

in the number of fingers, however, considering the difference of traveled

distances alone could be problematic, for many little fingers going slow

could compare close to few fast fingers. We then consider the mean trav-

eled distance per finger. Thus, if nAt (resp. nSt ) denotes the number of

fingers in the acquisition (resp. simulation) at time-step t, we propose to

evaluate the velocity-oriented difference given by:

• d
|W2
(S, A) =

(
∑t
( 1

nSt

|W2(St, St+1)− 1
nAt

|W2(At, At+1)
)2
)1/2

Fig. 6.6 summarizes the different metrics discussed in this subsection.

Then, given an ensemble of time-varying viscous fingering simulations,

each run S can be compared to the reference acquired ground-truth A and

runs can be ranked in increasing order of distance to A and presented to

the experts for further visual inspection.
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Figure 6.5 – Critical point trajectories based on optimal matchings. Within a given sim-

ulation (or the acquisition, bottom), the geometrical coherence of fingers allows to use

a lifted version (that gives importance to the y-coordinate of fingers) of the Wasserstein

metric to correctly track the evolution of persistence pairs. Comparing the mean distance

traveled by fingers between simulations and the acquisition, for each pair of time-steps, is

proposed as a velocity-aware metric.

Figure 6.6 – Proposed metrics. Three consecutive time-steps are represented in yellow,

cyan and purple (a, c, d). The Earth mover’s distance (a) only considers the geometrical

position of critical points for identifying fingers between the simulation and acquisition.

The Wasserstein distance (b) only considers persistence pairs in the birth-death space.

The lifted Wasserstein distance (c) considers both the geometry and persistence during the

matchings. The velocity-oriented distance (d) compares the mean transport of persistence

pairs between the acquisition and the simulation.
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6.3.3 In-situ deployment

Doing feature extraction and comparisons can be problematic for very

large numbers of simulations, in terms of data movement. Fortunately,

computing the metrics we just presented does not require to have all time-

steps available at once, and hence may be done in a progressive fashion.

We propose, within our framework, to implement the computation of met-

rics comparing the acquired reference to the simulation in-situ, that is,

without storing time-steps to the disk first. Precomputed persistence dia-

grams for the acquisition are first loaded in memory. Whenever the sim-

ulation attains a time for which there is a corresponding acquisition time

step, the saturation scalar field is passed to our analysis pipeline, which

applies a threshold, extracts the persistence diagram, and computes the

per time step distance to the acquisition diagram (for instance Ŵ2(St, At)).

The distance can then be accumulated as the simulation unfolds. The in-

situ application of our pipeline is optional: time-steps can still be saved to

the disk and the pipeline applied post-mortem if desired.

6.3.4 Visual interface

Each metric previously mentioned naturally produces a ranking of sim-

ulations, from the most to the less plausible ones. We propose a way to

visually inspect those rankings with a lightweight HTML+Javascript ap-

plication, as illustrated in Fig. 6.7. We use the same interface, as we will

see in Sec. 6.4.1, to allow experts to rank and label simulations in order

to form a reference ranking. This visual interface offers linked views of the

saturation scalar fields, to visually compare simulations runs, for a given

time step t which can be interactively selected. If needed (in particular to

generate a reference ranking, cf. Sec. 6.4.1), the experts can interactively

modify the suggested ranking by displacing a selected run up or down

the ranking, either by unit or long jumps (typically skipping 10 or 50 po-

sitions).

6.4 Case study

This section exposes our experimental setting, details a complete viscous

fingering use case and summarizes the results of our approach in terms of

performance and quality, compared to other classical methods.
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Figure 6.7 – Lightweight web interface for exploring and modifying simulation rankings.

An ordered list of runs can be loaded as an input. Time-steps of runs are then displayed

on the left pane; they can be hovered with the mouse to be compared with the matching

acquired image. A slider allows to select the time-step to compare. Users can edit the rank-

ing with swapping buttons. For each run, kr curves (input parameters of the simulation

model) are displayed on the right.

6.4.1 Experimental protocol

The behavior of a slab, initially filled with oil and water at connate water

saturation, then subject to a water injection in reservoir conditions is cap-

tured through X-rays: X-ray images are processed in order to be converted

to maps of the fluid saturations within the slab. 2D simulations are then

launched with varying input parameters in order to match the simulation

results to the experimental measurements and to the fluid saturation maps

derived from X-ray images. The resemblance of fingers can be taken into

account manually by experts, involving an interpretation of X-rays and an

assessment of likeliness according to their expertise. A reference ranking

of simulations is then produced by the experts with the help of our vi-

sual interface (Sec. 6.3.4), and is compared to the rankings generated by

the metrics proposed in our framework (Sec. 6.3.2). The performance and

quality of our approach are then evaluated.

Acquisition

The acquisition process is long (several months) and expensive. The de-
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Figure 6.8 – Schematic view of the slab used for the acquisition (left, experimental pro-

tocol described in [Lou+18]). It is disposed vertically during the capture. On the right, a

typical X-ray scanning device for imaging flow in porous media is shown. Though it was

not the case for the captures shown in this chapter, acquisitions can be operated on cores

subject to subsurface reservoir conditions, at high pressures (more than 600 bars).

tailed experimental setup is that of [Lou+18; Fab+15], further described

in [Ska+14; Ska+09; Ska+12]. We consider slabs of Bentheimer sandstone,

of dimension 30×90×2.45 cm, with porosity of approximately 23% and

absolute permeability of 2.5 Darcy (when Sw = 1). The slab is coated with

two epoxy layers. Three grooves are cut into the first epoxy layer on the ex-

treme faces, and connected to injection and production rails. It is mounted

vertically in a 2D X-ray scanning rig (Fig. 6.8).

Slabs first undergo cleaning and calibration processes. A tracer test vali-

dates the homogeneous behavior of the slab, then oil is injected to reach

initial conditions. The system is then aged at 50
◦C and ambient pressure

for a month, in order to get closer to field conditions.

The experiment takes place at near-atmospheric pressure (2 to 3 bars).

The water injection rate is kept constant at 3 cm3/h, which corresponds

to the velocity in fields far from wells. One of the fluids is doped with

an X-ray absorbing chemical for increasing the contrast. The X-ray scan-

ner is equipped with an X-ray source (40 to 60 kV at maximum 0.4 mA)

and a camera capturing a slice of 0.5×11.5 cm. The camera moves in hor-

izontal rows along the slab. An image scan for a 30×30 cm sample takes
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Figure 6.9 – De-noised X-ray capture (top) and segmented fingers (bottom). Fingers were

manually detoured by experts.

4-5 min, during which the fluid has moved by about 0.1 to 0.2 mm. The

captured images, which are noisy and exhibit severe vertical and horizon-

tal artifacts, are filtered [Ska+12], and manually segmented by an expert

(Fig. 6.9) to differentiate fingers from the background, hence forming a

reference finger geometry FA.

Simulations

The input parameters of the 2D simulations are relative permeabilities (krw

and kro). In our model, they are a function of water saturation Sw. We con-

sider relative permeabilities in the form of simple Corey curves (Fig. 6.10,

see Eq. 6.4, [BC64]), subject to parameters kr0
o (oil relative permeability

endpoint), Sor (residual oil saturation), and power law exponents nc and

nw. Other quantities like Swc (connate water saturation) and kr0
w (water

relative permeability endpoint) are determined by measurement.
kro(Sw) = kr0

o × ( 1−Sw−Sor
1−Sor−Swc

)nc

krw(Sw) = kr0
w × ( Sw−Swc

1−Sor−Swc
)nw

(6.4)

The varying parameters of these curves, kr0
o , Sor, nc and nw, were ran-

domly sampled and selected using the algorithm by Wootton, Sergent,

Phan-Tan-Luu [SCS12] to ensure a good initial covering of the space. The

geometrical domain is discretized on a regular grid of 290×890 blocks. 200

runs were launched on 400 simulation nodes (2 MPI ranks per run), then
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Figure 6.10 – Typical relative permeability curves: for oil (red) and water (blue). In this

graph, the abscissa is water saturation Sw. Intuitively, it represents the extent to which

the flow of a phase (say the flow of oil) is inhibited by the presence of another (say the

presence of water).

time-steps for which there was a corresponding X-ray image were saved

(8 available segmented images).

Expert ground truth

Images of the water saturation scalar field were captured for each simu-

lation at available X-ray time-steps, for experts to manually form a refer-

ence ranking. During this process, experts would quickly discard runs that

seem too far from the acquired X-ray image (either because fingers are ad-

vancing too slow, too fast, or in a too diffusive fashion). Then, they would

closely look at the shape and advancement of fingers when comparing two

close runs. We propose to use our lightweight web based visual interface

(Sec. 6.3.4), presented in Fig. 6.7, to alleviate this tedious process. Note that

images from all simulations were necessary for the experts to form the ref-

erence ranking, so the corresponding simulated time-steps were saved to

the disk. Once this reference is formed, later analyses can be done in-situ.

6.4.2 Framework performance

In this section, we evaluate the quantitative gains of using our approach

in-situ (Sec. 6.3.3), in terms of time and storage.
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Table 6.1 – Time performance comparison (CPU time in seconds), for a single time-

step, between the in-situ implementation (everything is computed during the simulation

using the local CPU’s memory) and the post-mortem implementation (the scalar fields

are analyzed and compared in a post-processing stage).

Step CPU time (s) Detailed CPU time (s)

in-situ post-mortem

Simulation iteration 3.096 3.096

Time step storage 0.076

Catalyst analysis 1.111 0.063 Persistence diagram

0.002 Distance

0.001- Distance storage

1.046 Catalyst overhead

Data transfer 0.021 Lustre to workstation

Data conversion 0.246 .unrst to .vtk

Paraview analysis 2.189 0.084 Persistence diagram

0.002 Distance

2.085 Paraview overhead

Analysis time 1.111 2.532

Total processing 4.207 5.628

Tab. 6.1 provides a CPU time comparison of our analysis pipeline

based on the lifted 2-Wasserstein metric (Sec. 6.3.2), for the two differ-

ent strategies: (i) in-situ, where the analysis is run on the fly during the

simulation and without data storage and (ii) post-mortem, where selected

time steps are stored to disk to be analyzed after the simulation has fin-

ished. Persistence diagrams are computed using the algorithm by Gueunet

et al. [Gue+17], and Wasserstein distances are computed using the exact

approach by Soler et al. [Sol+18a], both available in the Topology ToolKit

(TTK, [Tie+17]). The in-situ implementation is based on Paraview Catalyst

[Aya+15], which is called by the simulation code at selected time steps to

run a python script instantiating our analysis pipeline.

The numbers are given for a single simulation time-step, therefore at

the finest possible time resolution (about ten thousand time-steps are re-

quired to complete a run). Figures are averages on the time-steps of a typ-

ical run. In-situ computations are done on a supercomputer (among the

51st of TOP500 Nov. 2018) with Xeon(R) E5-2680v3 processors; the post-

process is done on a local workstation with a Xeon(R) E5-2640v3 processor,

so the performance is not the same for computing persistence diagrams.
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Ideally, overheads due to different data layouts and conversions (lines

“Catalyst overhead” and “Paraview overhead”, Tab. 6.1) in the simulator and

VTK/ParaView would not enter into account (if the simulator were to

directly output a VTK data array). We are left with two unneeded stages

in the post-mortem approach: time step writes and data transfer. Selecting 8

time-steps from 200 simulations, this amounts to 155.2 s. of IO time versus

approximately 0.6 ms. necessary to write the 1, 600 doubles in the in-situ

case (the 1, 600 distance estimations), which is 260, 000 times faster.

In terms of data storage, the post-mortem strategy requires to store and

potentially transfer 3.28 GiB (2.1 MiB per time-step) of data, versus 12.5

KiB for 1, 600 doubles (representing the 1, 600 distance estimations), which

is 275, 000 times lighter.

Thus, overall, the in-situ instantiation of our framework reduces data

movement by 5 orders of magnitude, while dividing by 2.3 the time re-

quired to analyze a time-step (line “Analysis time”, Tab. 6.1).

6.4.3 Ranking quality

In this section, we evaluate quantitatively the relevance of the rankings ob-

tained with each of the metrics discussed in Sec. 6.3.2, and compare them

to rankings obtained with overlap methods, traditionally used for associat-

ing geometrical sub-domains [SW17; Bre+10; Bre+11; SB06; Sil95].

Let FAt be the acquired finger geometry (Sec. 6.4.1) and FSt be the

sub-level set of the simulated water saturation at time step t. The overlap

O(At, St) between At and St is the volume of FAt ∩ FSt divided by the

volume of FAt ∪ FSt . From this we can define a distance:

• dO(A, S) =
(

∑t
(
1−O(At, St)

)2
)1/2

Integrating the overlap qOt(S) = 1−O(St, St+1) between St and St+1 for

a single simulation and comparing it to the integrated overlap for the

acquisition yields a velocity-oriented version:

• d
qO(A, S) =

(
∑t
(
qOt(S)− qOt(A)

)2
)1/2

At this point, we need to compare different rankings to the reference

ranking constituted by experts. Let R1 and R2 be two rankings of n simula-

tions. One of the most commonly used methods for computing a degree of

similarity between R1 and R2 is Kendall’s τ [CD10; GI11]: for all couples

(ri, rj) ∈ R2
1 and (si, sj) ∈ R2

2:

τ =
2

n(n− 1) ∑
i<j

sign(ri − rj)sign(si − sj) (6.5)
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Table 6.2 – Quality of rankings. Kendall coefficients between each ranking and the refer-

ence ground truth formed by experts are computed (closest to 1 is best). Since the order

in which the poorest runs are ordered in the expert’s ranking is arbitrary, coefficients are

also computed for the (50 and 25) best simulations according to each method. The best

coefficient for each case is shown in bold.

Method O W2 Ŵ2 EMD qO |W2

All 0.37 0.25 0.26 0.15 0.12 0.41

Top 50 0.22 0.46 0.66 0.47 -0.29 0.46

Top 25 0.13 0.29 0.84 0.70 -0.13 0.42

It corresponds to the number of pairs (i, j) for which ri and rj in R1 have

the same ordering as si and sj in R2 minus the number of pairs for which

the orderings in R1 and R2 are different. In other words, it is the difference

between the number of concordant pairs and the number of discordant

pairs. The closer this number is to 1 in absolute value, the more compatible

the rankings, τ being close to −1 indicates that the two rankings are in

reverse order.

Over the 200 examined runs, many were quickly discarded by experts

during the manual ranking, because they were too far from the acquisition.

Thus, as the order of the poorest runs is not important to the experts, we

also compute the similarity with the reference ranking for the best (top 50

and top 25) identified runs according to each method. Resulting Kendall

coefficients are exposed in Tab. 6.2.

Observing lines 2 and 3 in Tab. 6.2, we can first note that the overlap

method (column “O”) does not perform well. This behavior was expected

because of the very chaotic geometry of fingers. The Wasserstein method,

which is the traditional reference metric for comparing persistence dia-

grams, is shown in column “W2”. The Earth mover’s distance method

(column “EMD”) only takes the geometrical information of extrema into

account, regardless of their persistence. It seems to perform better than

W2, which is unexpected, because EMD can wrongly associate small-scale

details to large-scale ones. The lifted Wasserstein method, which includes

persistence information and favors a geometrical direction, is shown in

column “Ŵ2”. As it achieves the best overall Kendall coefficients, it seems

that Ŵ2 manages to combine the advantages of both EMD and W2, not

just being a simple compromise between the two. Lastly, metrics based on

the difference of distances traveled by fingers (columns qO and |W2) do not

appear to be able to produce relevant rankings.
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Table 6.3 – Appreciation of rankings for the 25 best runs (the 25 first of each method’s

ranking). Diffuse runs, slow runs and runs in common with the expert’s ranking are

counted for each method. Each ranking is shown to an expert using our web interface and

their appreciation is noted.

Method O W2 Ŵ2 EMD qO |W2

too diffuse 0 4 0 5 0 7

too slow 0 0 0 0 17 0

common 0 10 21 18 0 11

appreciation poor good best poor wrong wrong

6.4.4 Expert feedback

In this section we expose a qualitative appreciation, collected from experts,

and a discussion of ranking results.

We show in Tab. 6.3 the qualitative appreciation of rankings. The poor

performance of velocity-based metrics ( qO and |W2) was unexpected. Look-

ing at the rankings, we see that aberrant runs are considered close to the

ground truth by these two metrics. There are three types of aberrant runs:

too slow, too fast, and too diffusive (i.e. whose finger tips grow large and

do not form a very sharp frontier with the background, as illustrated in

Fig. 6.11). qO gives a good score to runs that are too slow, and |W2, on the

contrary, scores highly runs that are too diffusive.

The number of slow runs is counted in Tab. 6.3. The qO approach, which

computes overlaps in consecutive time-steps, does not discard them. The

reason for this is that in simulations, the water saturation front is very

smooth though in the acquisition fingers display a quite dendritic struc-

ture. Therefore, the overlap between successive time-steps of smooth fin-

gers going slow compares close to the overlap between successive time-

steps of thin fingers going fast.

The number of runs which exhibit a very diffusive behavior is also

counted. These diffuse fingers seem to give trouble to the |W2 metric (and

also to EMD and W2). This is because in the set of available simulations,

among all which are diffuse some inevitably end up at the exact same

advancement as the acquisition when the threshold stage (introduced in

Sec. 6.3.1) is applied. Taking into account the number of fingers (|W2) or

considering their branching events (W2) is apparently insufficient to dis-

card them. Note that the Ŵ2 metric (and even W2) were well appreci-

ated by the experts because the top simulations in their rankings display
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Figure 6.11 – Diffuse run example. The tips of fingers grow wider than their base, form-

ing a sort of inverted funnels. The saturation field does not exhibit a very sharp frontier

with the background.

Figure 6.12 – Input relative permeability curves of all 200 simulations (left, with random

colors) and for the 25 best selected runs (right, darker is closest to ground truth). No clear

pattern was seen that could discriminate relative permeability curves yielding the best

fingers.

fingers whose tips are quite close to the acquisition near breakthrough

time, though for W2, there seems to be a higher distance variability. As

for the basic overlap method O, it fails to identify the real best simula-

tions, though it does not incorrectly bring out aberrant runs either (be it

too diffuse or too slow). Its ranking, though, feels random to the experts.

Overall, the best performing metric seems to be Ŵ2, as confirmed quanti-

tatively and qualitatively.

Taking a step back, the approach we proposed is appealing to experts

because it allows them to include geometrical information into their para-

metric studies, in an autonomous and systematic way (instead of manu-

ally inspecting and checking runs). Using the Ŵ2-based ranking results,

we present in Fig. 6.12 all permeability curves and those yielding the best

simulation runs. We see no clear pattern arising, either visually or numer-

ically with respect to L2 or Haussdorff [Mun14] distances between curves.

This confirms the well-known difficulty of calibrating kr curves.
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6.5 Summary

In this chapter, we presented a framework for enabling the automatic com-

parison and ranking of simulation runs to an acquired ground truth. We

presented a set of metrics specifically adapted to this task in the case of

viscous fingering in porous media. After evaluation, we identified the best

fitting approach (the Ŵ2 metric, which computes a geometrically tuned

Wasserstein distance between simulation and acquisition persistence dia-

grams, on a per-time-step basis). This quantitative measurement method

supplements the expert’s, and allows them to automatically form a subjec-

tive ranking close to one they would have manually produced. We demon-

strated the possibility and showed the advantage of implementing the

computation of this metric in-situ, speeding up the analysis pipeline by

a factor of 2.3 and reducing data movement by 5 orders of magnitude.

We proposed a lightweight web interface to explore automatically gener-

ated rankings and manually edit them. As with the best metric Ŵ2, there

are still some diffuse runs in the ranked best fifty, we believe it could be

further enhanced, for instance by considering the sharpness of the water

saturation front, or by augmented the persistence diagram with the indi-

vidual volume of fingers. Future experiments should assess how sensitive

the ranking is to such a modification of the lifting, as well as modifications

of the lifting coefficients. Besides, though in our experimental setting, sim-

ulations took place in a 2D domain, nothing in our approach is restrictive

to this case: in future work, this methodology can be applied to 3D cases.

On another note, on the set of 200 simulations, we were not able to

identify a regime of best-matching input parameters. The combination of

our metric with production and pressure data (at injectors/producers) in a

follow-up study would be interesting in this regard. Trying to understand

the influence of the space of input parameters, here kr curves, proves quite

challenging. In our study, only four parameters (power law exponents and

endpoints) were sampled, yielding a four-dimensional space, but the num-

ber of sampled parameter may be significantly higher. In particular, this

study may be extended to permeability curves other than based on simple

Corey power laws.

We think it would be insightful to develop a visual interface for explor-

ing such spaces of model parameters. We hope to see, in future studies,

how accounting for the geometrical and topological quality of a modeled

phenomenon can be used to infer or restrict model parameters.
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In this thesis, we proposed different methods, based on topological

data analysis, and in particular persistence-oriented constructs, in order to

address modern problematics concerning the increasing difficulty in the

analysis of scientific data.

We first introduced in chapter 2 the scientific domains in which this

work is inscribed: reservoir simulation for oil and gas exploration, sci-

entific visualization and topological data analysis. We highlighted some

modern problematics inherent (but not exclusive) to these fields, that are

the focus of this thesis. In particular, we emphasized on the difficulty to

analyze modern data-sets, on the one hand due to the increase in data

volumes, and on the other hand due to their growing complexity, from

static scalar data, to time-varying data, to multi-parameter studies.

Next, in chapter 3, we exposed the theoretical foundations and back-

ground of topology and topological data analysis. We presented the cen-

tral concept of topological persistence, which offers a hierarchical charac-

terization of structures of interest in the data; we then reviewed state-

of-the-art methods allowing to compute and compare persistence-based

characterizations from scalar data. Specifically, we discussed the bottleneck

metric (yielding “coarse” topological comparisons), and the Wasserstein

metric (yielding “finer” topological comparisons).

From then on, we presented the following new contributions.

7.1 Summary of contributions

With the later purpose of applying our methods to industrial data (e.g.

linked to reservoir simulation), under a unified framework, we devised

the approach of this thesis with the idea of defining structures of interest

in scalar data as topological constructs based on the notion of persistence.

More accurately, we expressed them as topological features, consisting of

persistence pairs in persistence diagrams. Henceforth, we focused on the
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problematics raised in the context of data reduction and analysis as fol-

lows:

Lossy compression with topological guarantees (chapter 4)

In a first effort to address the issue of data volume growth, we proposed

a new lossy compression scheme. We designed our method with strong

topological guarantees concerning the bottleneck metric, so that the topo-

logical features we defined could be preserved through the compression

process. We empirically showed that the approach could compress the

data with favorable topological accuracy with respect to the Wasserstein

metric as well, as compared to other state-of-the-art compression algo-

rithms. We showcased the method on concrete examples, yielding in prac-

tice high compression factors (56 and 360, for CDF and medical scan data,

respectively). We proposed two extensions to our approach, one offering

additional control over geometrical error (e.g. the point-wise error), an-

other allowing to use our method conjointly with existing lossy compres-

sors in order to enforce topological control.

These contributions were integrated within the Topology Tool-Kit (TTK

[Tie+17]) and released open-source on github.

Feature tracking in time-varying data (chapter 5)

Drawing on the advantages of topological persistence, we then proposed

to address the problem of analyzing more involved scientific data, in the

present case time-varying data. For that we designed a new method for

following, or tracking, topological features over time. This raised robust-

ness and performance challenges. To overcome the limitations of the stan-

dard Wasserstein metric in this regard, we proposed an extension of that

metric, as well as a new efficient way to compute it, gaining orders of

magnitude speedups over the state-of-the-art exact approach and prov-

ing faster in practice than approximate methods for small diagrams. We

demonstrated the applicability and robustness of our tracking solution on

2D and 3D time-varying data-sets.

Notice that using a unified framework, based on persistence diagrams,

is advantageous for it allows to use conjointly the tracking method we

proposed with our compression approach, as the latter offers guarantees

on the preservation of topological features. This novel feature tracking

approach, as well as the enhanced method for computing Wasserstein

distances and extensions, were also integrated within TTK and released

open-source on github.
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Ranking simulation runs to a ground truth in parametric studies (chap-

ter 6)

Finally, we targeted even more challenging scientific data, with a para-

metric study related to reservoir simulation: the modeling of the viscous

fingering phenomenon in porous media. We showed on this practical case

how to capture precise structures of interest in scalar data (sets of viscous

fingers), with the help of persistence-based topological abstractions. We

then further adapted the topological metrics that we defined in the con-

text of generic time-varying data, to the case of viscous fingers, for the

purpose of capturing discrepancies between simulation runs and X-ray

images acquired in lab experiments.

We evaluated the proposed metrics with feedback from experts. Fi-

nally, based on the best evaluated topological metric, we constituted a

ranking framework for rating the fidelity of simulation runs with respect

to the ground truth. The framework is implemented in an in-situ environ-

ment, with the purpose of addressing the data movement problematic that

arises in such parametric studies due to infrastructure limitations.

7.2 Perspectives

The technical contributions brought in this thesis are integrated in TTK,

which is an open-source BSD-licensed framework (published on github),

under active development, and used by both industrial and academics.

This is a sound basis for many evolution perspectives thanks to an active

open-source community.

This thesis was also partially inscribed in the AVIDO project, aimed at

exploring “in situ analysis and visualization for large scale numerical sim-

ulations”, involving industrial (EDF SA, Kitware, Total SA) and academic

(CNRS, INRIA) partners. Its success lays the ground for more future col-

laborations between these partners, and indicates a growing interest of

the industry in topological data analysis (in particular persistence-based

methods) for scientific data analysis and visualization.

We suggest hereafter some open problems and directions that we iden-

tify as a pertinent continuation of the work presented in this thesis.

Industrial in-situ integration and deployment

As the persistence-driven feature definition, and consequently the

ranking and comparison methods seem adapted to the study of viscous
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fingers, we believe it would benefit from a tighter integration between the

reservoir simulation software and TTK.

For example, a follow-up viscous fingering study combining the new

proposed topological metrics with pre-existing metrics (which consider

one-dimensional history data but not scalar fields) would be interesting.

Another interesting example for domain experts would be the cou-

pling of our compression algorithm with the simulator in an in-situ en-

vironment, allowing to conduct persistence-driven analysis on reduced

data, post-mortem. This raises multiple challenges as, first, the topological

simplification step is sequential, and, second, our compression algorithm

should be adapted to handle multi-block datasets, which is mandatory in

the case of large field simulations launched on many MPI ranks.

A further possible development of topology-aware compression would

be its direct application to time-varying data, as does ISABELA [Lak+11],

benefiting from the topological proximity between successive time-steps,

and its adaptation to the case of unstructured meshes.

Generalization to other topological abstractions

Throughout this thesis, we showed how metrics relating to persistence

diagrams could be adapted for the needs of (i) topological loss evaluation,

(ii) time-varying feature tracking, (iii) comparing simulation runs.

As a proper definition of these metrics is done by fine-tuning lifting

coefficients, which should be done depending on the geometry of the

studied phenomenon, the precisely quantified effects of changing these

coefficients should be further studied in a first step, especially regarding

our ranking framework.

Then, we believe that these essential metrics could be adapted and

applied to other, richer TDA constructs, such as the Reeb graph [Ree46],

which may capture richer discrepancies in the topological changes of con-

tours (with applications, for instance, in molecular dynamics); or the 1-

skeleton of the Morse-Smale complex [Gyu08], which operates based on

the scalar field gradient (with applications, for instance, in the extraction

of the topological skeleton of porous networks).

These structures may require more involved comparison metrics, such

as Levenshtein distances [Lev66] or graph-edit distances [SF83; Sri+18].

The computational aspect is important in this regard, and we believe that

these metrics could benefit greatly from the persistence formalism, which

allows to consider topological features at coarse (hence computationally

reachable) levels.
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Figure 7.1 – 3D CT-scan of a rock containing fossils (left); segmentation induced by 20%

of the most persistent features (center); segmentation induced by the four most persistent

features (right). Image from [PT16].

Figure 7.2 – Wormhole structure in porous media (top), whose topological skeleton was

extracted by computing the 1-separatrices of the Morse-Smale complex (middle); the most

persistent separatrices capture the wormhole structure (bottom). From [PT16].

Industrial perspectives

Considering the issues raised by data growth in size and intricacy, we

believe that efforts should be made to reach towards both data reduction

and an in-situ applicability of new analysis methods. In the longer run,

we would be interested to see the methods presented here and their pos-

sible extension to other topological structures applied to different types of

scientific studies.

In the context of the academic-industrial partnership of this thesis,

TDA techniques were presented to experts of other scientific domains

linked to oil and gas applications. For example, in the field of Digital

Rock Physics, specialists were able to perform segmentations of microfos-

sils from 3D CT-scans (Fig. 7.1), and to characterize wormhole structures

in porous media (Fig. 7.2).

This demonstrates the growing interest of the industry for topology-

based solutions for the analysis and reduction of large data, which seems

particularly promising for future potential applications.
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Mislav Baloković, John Barrett, Dan Bintley, et al. “First M87

Event Horizon Telescope Results.” In: The Astrophysical Jour-

nal Letters 875.1 (2019) (cit. on p. 1).

[ALE99] Faruk O Alpak, Larry W Lake, and Sonia M Embid. “Valida-

tion of a modified Carman-Kozeny equation to model two-

phase relative permeabilities”. In: SPE Annual Technical Con-

ference and Exhibition. Society of Petroleum Engineers. 1999

(cit. on p. 115).

[Att+09] D. Attali, M. Glisse, S. Hornus, F. Lazarus, and D. Morozov.

“Persistence-sensitive simplification of functions on surfaces

in linear time”. In: TopoInVis Workshop. 2009 (cit. on p. 49).

[Att+13] D Attali, U Bauer, O Devillers, M Glisse, and A Lieutier. “Ho-

mological reconstruction and simplification in R3”. In: Proc.

of ACM Symposium on Computational Geometry. 2013 (cit. on

pp. 46, 78).

[Aya+15] Utkarsh Ayachit, Andrew Bauer, Berk Geveci, Patrick

O’Leary, Kenneth Moreland, Nathan Fabian, and Jeffrey

Mauldin. “Paraview catalyst: Enabling in situ data analysis

and visualization”. In: Proc. of the First Workshop on In Situ In-

frastructures for Enabling Extreme-Scale Analysis and Vis. ACM.

2015 (cit. on pp. 19, 129).

[Aya+16] Utkarsh Ayachit, Andrew Bauer, Earl PN Duque, Greg Eisen-

hauer, Nicola Ferrier, Junmin Gu, Kenneth E Jansen, Burlen
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Réduction et Comparaison de Structures d’Intérêt dans des Jeux de Données Massifs par

Analyse Topologique

Dans cette thèse, nous proposons différentes méthodes, basées sur l’analyse topologique de

données, afin de répondre aux problématiques modernes concernant l’analyse de données scien-

tifiques. Dans le cas de données scalaires, extraire un savoir pertinent à partir de données statiques,

de données qui varient dans le temps, ou données d’ensembles s’avère de plus en plus difficile.

Nos approches pour la réduction et l’analyse de telles données reposent sur l’idée de définir des

structures d’intérêt dans les champs scalaires à l’aide d’abstractions topologiques. Dans un premier

temps, nous proposons un nouvel algorithme de compression avec pertes offrant de fortes garanties

topologiques, afin de préserver les structures topologiques tout au long de la compression. Des

extensions sont proposées pour offrir un contrôle supplémentaire sur l’erreur géométrique. Nous

ciblons ensuite les données variables dans le temps en proposant une nouvelle méthode de suivi des

structures topologiques, basée sur des métriques topologiques. Ces métriques sont étendues pour

être plus robustes. Nous proposons un nouvel algorithme efficace pour les calculer, obtenant des

accélérations de plusieurs ordres de grandeur par rapport aux approches de pointe. Enfin, nous ap-

pliquons et adaptons nos méthodes aux données d’ensembles relatives à la simulation de réservoir,

dans un cas de digitation visqueuse en milieu poreux. Nous adaptons les métriques topologiques

pour quantifier l’écart entre les simulations et la vérité terrain, évaluons les métriques proposées

avec le retour d’experts, puis implémentons une méthode de classement in-situ pour évaluer la

fidélité des simulations.

Large Data Reduction and Structure Comparison with Topological Data Analysis

In this thesis, we propose different methods, based on Topological Data Analysis, in order to

address modern problematics concerning the increasing difficulty in the analysis of scientific data.

In the case of scalar data defined on geometrical domains, extracting meaningful knowledge from

static data, then time-varying data, then ensembles of time-varying data proves increasingly chal-

lenging. Our approaches for the reduction and analysis of such data are based on the idea of defining

structures of interest in scalar fields as topological features. In a first effort to address data volume

growth, we propose a new lossy compression scheme which offers strong topological guarantees,

allowing topological features to be preserved throughout compression. The approach is shown to

yield high compression factors in practice. Extensions are proposed to offer additional control over

the geometrical error. We then target time-varying data by designing a new method for tracking

topological features over time, based on topological metrics. We extend the metrics in order to over-

come robustness and performance limitations. We propose a new efficient way to compute them,

gaining orders of magnitude speedups over state-of-the-art approaches. Finally, we apply and adapt

our methods to ensemble data related to reservoir simulation, for modeling viscous fingering in

porous media. We show how to capture viscous fingers with topological features, adapt topological

metrics for capturing discrepancies between simulation runs and a ground truth, evaluate the pro-

posed metrics with feedback from experts, then implement an in-situ ranking framework for rating

the fidelity of simulation runs.


