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Abstract

Computational method and neuromorphic processor design

applied to event-based sensors

Studying how our nervous system and sensory mechanisms work lead to the creation of

event-driven sensors. These sensors follow the same principles as our eyes or ears for exam-

ple. This Ph.D. focuses on the search for bio-inspired low power methods enabling process-

ing data from this new kind of sensor. Contrary to legacy sensors, our retina and cochlea only

react to the perceived activity in the sensory environment. The artificial retina and cochlea

implementations we call dynamic sensors provide streams of events comparable to neural

spikes. The quantity of data transmitted is closely linked to the presented activity, which de-

creases the redundancy in the output data. Moreover, not being forced to follow a frame-rate,

the created events provide increased timing resolution. This bio-inspired support to convey

data lead to the development of algorithms enabling visual tracking or speaker recognition

or localization at the auditory level, and neuromorphic computing environment implemen-

tation. The work we present rely on these new ideas to create new processing solutions. More

precisely, the applications and hardware developed rely on temporal coding of the data in the

spike stream provided by the sensors.
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ABSTRACT

Méthode de calcul et implémentation d’un processeur neuro-

morphique appliqué à des capteurs évènementiels

L’étude du fonctionnement de notre système nerveux et des mécanismes sensoriels a mené

à la création de capteurs événementiels. Ces capteurs ont un fonctionnement qui retran-

scrit les atouts de nos yeux et oreilles par exemple. Cette thèse se base sur la recherche de

méthodes bio-inspirés et peu coûteuses en énergie permettant de traiter les données en-

voyées par ces nouveaux types de capteurs. Contrairement aux capteurs conventionnels,

nos rétines et cochlées ne réagissent qu’à l’activité perçue dans l’environnement sensoriel.

Les implémentations de type « rétine » ou « cochlée » artificielle, que nous appellerons cap-

teurs dynamiques, fournissent des trains d’évènements comparables à des impulsions neu-

ronales. La quantité d’information transmise est alors étroitement liée à l’activité présentée,

ce qui a aussi pour effet de diminuer la redondance des informations de sortie. De plus,

n’étant plus contraint à suivre une cadence d’échantillonnage, les événements créés four-

nissent une résolution temporelle supérieure. Ce mode bio-inspiré de retrait d’information

de l’environnement a entraîné la création d’algorithmes permettant de suivre le déplace-

ment d’entité au niveau visuel ou encore reconnaître la personne parlant ou sa localisation

au niveau sonore, ainsi que des implémentations d’environnements de calcul neuromor-

phiques. Les travaux que nous présentons s’appuient sur ces nouvelles idées pour créer de

nouvelles solutions de traitement. Plus précisément, les applications et le matériel dévelop-

pés s’appuient sur un codage temporel de l’information dans la suite d’événements fournis

par le capteur.
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Introduction

Neuromorphic engineering, both at the sensory [1][2][3] and processing[4][5] levels, have

gained interest in the research community. Initial studies [6] created a rapidly fading trend

and later reference publications [7][8] renewed the interest in the domain. This Ph.D work

focuses mainly on biomimetic event-driven time-based sensors we will reference as Dy-

namic Sensors, such as [1][2], and the development of bio-inspired processing solutions fit-

ting their nature.

Dynamic Sensors such as Dynamic Vision Sensors (biological retina) and Dynamic Audio

Sensors (biological cochlea) are sensible to events in the sensory scene. When legacy sensors

sample the sensory data every fixed amount of time, dynamic sensors only provide events

linked to activity in the sensory scene. By dropping the frame-based scheme, these sensors

produce less redundant data to be later processed. Moreover, dropping this constraint also

allows for previously sub-frame information to be now retrieved.

The first part of the Ph.D. focused on analyzing the characteristics of the obtained event

streams and previously developed processing solutions [9][10] to cope with this sparse asyn-

chronous data. The focus was rapidly made on the methods used to retrieve relevant data

from such sensors and how to process this entity. The first explored subject is the implemen-

tation of lightweight processing algorithms fitting the sensors’ nature to enable low power

processing.

In Chapter 1, we focus on the developed Dynamic Sensors, the bio-inspired pro-

cessing algorithms designed to interface them and their accelerators. We show the various

implementations of bio-inspired sensors available and highlight the base idea and factors

around which they revolve. Depending on the implementation, relevant information can be

retrieved using the spike train rates or relative timings. Keeping in mind the embedded appli-

cation target, classes of bio-inspired processing solutions are depicted and associated with

the corresponding hardware implementations. Neural Networks achieve high efficiency in

multiple fields, and their spiking implementations can fit the event stream format, making

promising candidates.

During this phase we chose to explore promising works based on the implementation of li-

brary of operators based on Spiking Neural Networks. The implemented building blocks can
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leverage machine learning efficiency and offer possibility for pre-processing.

In Chapter 2, we focus on two coding strategy used for implementing such library.

First, we define the implementation based on rate coding, meaning the rate of the events of

a channel define the data conveyed by this channel. The second implementation was op-

timized from [11] and is based on a temporal approach. The data is conveyed as relative

timings in between events with the possibility for operations using few events.

These two approaches are compared with two main metrics, synaptic events usage and re-

sult latency, that help us estimate the hardware cost of such approach. Functionality is

also compared in order to determine which of the proposed solutions is a better fit for pro-

cessing and leveraging machine learning by network conversion. The time coded approach

was found to better suit specifications of dynamic sensors and was used for the rest of the

manuscript.

In Chapter 3, we explore the hardware architecture developed for simulating Spiking

Neural Networks and propose an approach fitting dynamic sensors to be used with Precise

Timing Networks. A Globally Asynchronous Locally Synchronous architecture is proposed

with synchronous clusters of neurons served by an asynchronous network on chip using the

Address Event Representation Protocol. The main choices to be made are the approach used

for scheduling and processing the activity in each cluster. As we analyze the characteristics

of the activity produced by our spiking neural network topologies, we can assert the usage

and footprint of the described solutions.

This analysis lead to the development of a SystemC model of the obtained architecture. Such

a model is essential to enable fast verification and estimations. This model was also used to

size and test the Proof Of Concept.

In Chapter 4, we implement the ideas developed in Chapter 3 in a test chip taped

out in FDSOI 28nm. The chip is composed of a fully synchronous cluster relying on the syn-

chronous implementations of the scheduling and processing modules. It exhibits 26.4 pJ per

synaptic operation while being able to support the topologies exposed in chapter 2.

In Chapter 5, we highlight the conversion and pre-processing capabilities of our

topologies. This was done with two main benchmarks, namely MNIST and N-TIDIGITS18.

MNIST, the handwritten digits classification database, is used as a reference benchmark for

implementing and tweaking classification algorithms. This first database was converted to

spiking inputs and used to perform the conversion of a convolutional neural network. First,

the convolutional neural network is trained with a set of rules to constrain its weights and

2
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dynamics. Then, an equivalent spiking topology is defined to receive the trained weights

and perform the spiking inference.

N-TIDIGITS18, the spoken digits classification database, was obtained by recording the TIDIG-

ITS database with a Dynamic Audio Sensor [12]. With this second database we explore the

conversion of Recurrent Neural Networks using an approach similar to the MNIST one. This

database is already composed of spiking samples, which requires to retrieve features to train

the non spiking bases. This database lead to the development of the first recurrent networks

based on temporal features.

The work presented in this document led to the publications [13][14][15]. The com-

plete list including to be published paper can be found in the Appendix A.
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CHAPTER 1. ASYNCHRONOUS EVENT-BASED SENSING AND PROCESSING

1.1 Introduction

The development of Dynamic Sensors (DS) [16][17][2][18][19][20][1][12][21] allows for new

computing paradigms to be used. They inspire themselves from biological examples using

asynchronous events to convey information. Legacy sensors output complete sensory data

every defined amount of time. This leads to important redundancy, bandwidth requirements

and generated workload [2]. On the other hand, DS are not constrained to frame-based

sensing. Their output event streams are sparse and the resulting bandwidth requirements

decreased. The output redundancy and workload are reduced due to their dynamic sens-

ing nature. Moreover, their implementation provide information on sub-frame rate changes

that could not be processed with legacy sensors. Targeting the same sensitivity with legacy

sensors would lead to greatly increase its frame rate and other drawbacks: data redundancy,

communication bandwidth and processing workload.

This chapter presents event-based approach to vision and audio sensing and pro-

cessing inspired from biological examples. The Dynamic Vision Sensors (DVS) mimic the bi-

ological visual system [17][2][18][3][22] while the Dynamic Audio Sensors (DAS) [1][12][21]

mimic the biological auditory system. Both of these approaches output sensory data in the

form of asynchronous events or spikes that can encode for dynamic change and/or static

information depending on the implementation.

As the output spike streams can follow different rules in term of coding and the

ways they can be exploited, different processing solutions were developed. Data can be re-

trieved and processed from the output events using different coding and computing biology-

inspired approaches that will be presented in this chapter. Each of the described approaches

require different hardware as they use different ideas and hardware notions will also be de-

veloped. The main focus will be made on highlighting combinations that fit the idea devel-

oped by DS: sparse and low power processing.

1.2 Event Driven Sensors

For the reader to better understand the rest of this manuscript, we first depict the sensory

inputs we aim at interfacing with. These DS output streams of events with peculiar char-

acteristics that will be later processed with. The first explored category is the DVS inspiring

themselves from biological visual system and the second category is the DAS inspired from

the biological auditory system.
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1.2.1 Dynamic Vision Sensors

The inspiration for DVS comes from the retina. When legacy sensors are implemented to out-

put complete sensory information at every frame generated at constant timings, the activity

generated by the retina is closely linked to visual changes. DVS implement similar dynamic

sensitivity in order to output event streams linked to visual events. Different ideas can be

retrieved from the retina, and the change sensitivity can be temporal, with events created as

the luminance changes [2][23]. The focus can also be made on edges with gradient-based

sensors [24]. Event-based ideas can also be adapted to optical-flow sensors [25].

P

PP

P

Luminance

Events

Figure 1.1: Luminance change events produced by a dynamic pixel in DVS.

The output data is encoded in asynchronous events using Address Event Represen-

tation (AER) [26] [27]. Each event can be represented by its origin address, the pixel it was

emitted from, and emission time-stamp. The data conveyed by those events can only be re-

trieved by monitoring the timing, order of count of said events. Fig.1.1 shows working prin-

ciple for the luminance changes events used in [2]. When using those differential events,

methods can be applied for tracking of entities in the visual scene [28][29] while having low

processing workload and sub-frame timing resolution.

Moreover, some DVS implementations [2][3] also use asynchronous events to en-

code for the "static" luminance measured by active pixels. Fig.1.2 shows the working princi-

ple of such pixels. Both the change and static luminance events can be complementary: en-

tities and their borders can be tracked using the dynamic information and the determined

region of interest can be used with static luminance events to retrieve information on the

entity itself.
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P3

P1

P0

P2

EventsPixels

Figure 1.2: Static luminance measured by a DVS using active pixel and sent as a couple of events. The

inter-event time interval defines the luminance value.

1.2.2 Dynamic Audio Sensors

The same principles were applied for DAS, inspired from the cochlea. Legacy sensors sample

the auditory data at defined rate function of their use. The cochlea is composed of ranges of

hair cells that are tuned to certain frequency ranges by their location and mechanical prop-

erties. Each set of hair cells corresponding is stimulated when receiving their specific sound

frequency, leading to the emission of neural events via underlying chemical mechanisms.

The DAS implementations use this idea of multiple channels each sensitive to a fre-

quency range and emitting asynchronous events when stimulated with enough energy. Their

implementations [30][31][32][12][33][34][1] are based on cascaded band filters with config-

urable quality factors to implement the different frequency ranges for the different output

channels and mostly perform in the sub-mW range.

The AER EAR [12] was utilized to convert TIDIGITS made in 1993. Samples of spoken

digits and sequences of digits were replayed and recorded [35] using the AER EAR. Using only

output neuron per channel for 1 side of the binaural setup, the obtained event rate is lower

than 2k events per second decreasing greatly the data rate to be processed. Fig.1.3 shows the

chronogram obtained for the sequence "5 8 9 9 2" and the obtained event sparsity result of

the dynamic implementation.

Using binaural system composed of two DAS enables event driven sound location

using the interaural time difference [12][36]. The main characteristics of the output spike

streams have also been exploited for speaker identification [37] or spoken digits recognition

[35].

The DS principle leads to an output data rate and redundancy decrease [2][34]. The

8
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Figure 1.3: Chronogram of the spoken sequence "5 8 9 9 2" from TIDIGITS recorded with the AER EAR

[12].

output stream of events is sent asynchronously using the AER protocol, meaning the output

data has to be retrieved from the timing at which each origin address emitted spikes. The

main problematic when processing such stream of events is choosing appropriate solutions

to fit the nature of data.

1.3 Bio-inspired processing

This section presents the methods inspired from our nervous system that have been im-

plemented in order to use the data retrieved from the DS. Conventional signal processing

methods can be applied in a event driven fashion and this manuscript does not focus on this

branch. This section focuses on the different processing methods inspired from our nervous

system and their application to DS.

The base of our nervous system is the neuron, composed of a soma, input synapses

and dentrites and an output axon as depicted in Fig.1.4. The link between neurons is made

by the synapses having variable stimulating strength. A core potential can be associated

to the soma of the neuron handling the emission of spikes. When this potential reaches a

threshold, the soma emits an action potential through its axon that fires neurotransmitters

and resets the neuron to its rest potential. The pool of synapses connected to the axon each

connect to a postsynaptic neuron. Each synapse receives the action potential and transmits

a signal to its postsynaptic neuron making it more or less likely to fire its action potential.

9
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Axon

Soma

Dendrites

Synapses

Figure 1.4: Simplified drawing of a biological neuron.

The core potential uses temporal and spatial summation, meaning it integrates signals from

each synapse and a leak to its rest potential.

The strength of the stimulation transmitted via synapses when the presynaptic neu-

rons emit its action potential is variable. The Hebb’s rule [38] was the first hypothesis of the

mechanisms of synaptic plasticity and stated that the synaptic efficacy increases when the

presynaptic neuron repeatedly and persistently stimulates the postsynaptic neuron. Later

the Spike Timing Dependent Plasticity was demonstrated [39][40][41] and gave explicit synap-

tic efficacy behavior as a function of the timing difference between the pre and postsynaptic

action potentials.

The behavior presented here is highly simplified compared to the actual neuron dy-

namics leading to a plurality of possible behaviors [42]. These neurons are arranged into

networks such as cortical columns that are still under heavy researches [43]. Even though

part of the brain and their roles can be mapped, their actual underlying mechanisms are not

fully understood. Nevertheless, abstract versions of Neural Networks (NN) can be derived

from these mechanisms and have proven to be efficient in various domains.

1.3.1 Artificial Neural Network - fame-like processing

The first class of NN explored for processing the DS is the Artificial Neural Networks (ANN).

The beginnings of ANN date back to 1958 with the Perceptron [6]. It is the most abstract

model of neuron developed by dropping the timing feature of a spike train. As depicted in

Fig.1.5, each channel holds a static value representing the normalized average firing rate of

the presynaptic neuron. The synapses are only represented by their weight, and the soma is

performing the sum of the weighted firing rates. An activation function is then performed

on the result to compute the output value of the neuron. The activation function can be Lin-

ear, Heaviside, Sign, Rectified Linear Unit (ReLU), Sigmoid, Tanh among other possibilities.

These neurons are arranged in networks having different topologies for different applica-

tions. The Multi Layer Perceptron (MLP) depicted in Fig.1.6 is one of the simplest example,

10
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composed here of 1 input layer, 1 hidden layer and 1 output layer.

𝑤1

𝑤2

𝑤3

𝑥1

𝑥2

𝑥3

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓  

𝑖=1

𝑛

𝑥𝑖𝑤𝑖

Figure 1.5: Perceptron: neuron model using normalized firing rates as data.

Input 
layer

…
…

…

…
…

Hidden layers Output 
layer

Figure 1.6: Multi Layer Perceptron: ensemble of perceptrons arranged in interconnected layers. Each

layer feeds its output as input to the next layer. Layers that are not the output of the input one are

characterized as hidden layers. This MLP has 4 layers of respectively 3, 4, 5 and 4 neurons.

This model of neuron drops the spiking aspect of biological NN and thus cannot

apply a learning rule such as Spike-Timing-Dependent Plasticity (STDP). The learning rule

used and studied for such network is the gradient backpropagation. While the STDP can

be applied at a synapse level, the gradient backpropagation requires to perform a forward

pass through the whole network before performing a learning step. Its principle relies on

performing a backward pass designed to rectify the synaptic weights to force the networks

closer to the desired output. The desired output is compared to the output of the forward

pass and the resulting error is used to modify weights of the last layer. This process then

sweep the layers backward until it reaches the input layer. By repeating this process, inputs

can be associated to required outputs with accuracy dependent on the application and net-

work.

ANNs have already proven to be efficient in multiple domains, achieving highest

software accuracy for the MNIST database (handwritten digit recognition) [44][45][46][47]

and even reaching higher than human accuracy. Their success lead to the development of
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a plurality of turnkey solutions for Computer Aided Design of ANNs [48][49][50][51]. Their

efficiency in audio [35][36], image [52][44] and video processing [53][54] on various tasks

makes them unavoidable candidates. Using derived learning strategies such as Reinforce-

ment Learning, they also achieve great results in more complex and abstract tasks such as

Go and Chess [55] or video games [56][57].

Using ANN with DS requires some gymnastic when handling asynchronous events

to feed a network needing frame-like inputs. The main task is to define how to convert these

events into frames exploitable by the ANN while still maintaining the relevant part of the data

via preprocessing. This task is problematic when using DVS based on luminance change for

instance as the frame creation strategy (counting events per fixed amount of time or using a

fixed number of events per frame for instance) can be countered by the environment (varia-

tions of global event rates and event rates linked to studied entities).

When used with DVS, ANNs have already been exploited for tracking in predator-

prey scenario [58], MNIST classification with sensor fusion [59]. Using purely spiking audio

data, ANNs have already been exploited for spoken digits recognition [35].

Using ANNs with DS brings efficient results when the data is correctly retrieved from

the event stream. However, the computation heavy ANN model does not fit the ideas devel-

oped with DS: sparse event driven sensory data and reduced workload. The next part of this

section focuses on possibilities for networks closer to biology exploiting those properties.

1.3.2 Spiking Neural Networks

This second class of NN is closer to the biological inspiration as it utilizes streams of spikes as

data rather than static values. The Spiking Neural Networks (SNN) rely on sets of equations

handling the behavior of the neuron of the network and interaction. Fig.1.7 describes a sim-

plified model of spiking neuron that can be used. More complex models were developed in

order to mimic the behavior of biological neurons [42] and rely on sets of differential equa-

tions for representing the different biological mechanisms. However, it is still unclear how to

use networks composed of those biologically plausible neurons for a target application.

The SNN explored in this section are composed of much simpler dynamics while

still being powerful enough to answer application needs, mainly the (Leaky) Integrate and

Fire neurons. The events are transmitted via the AER protocol, dropping the action potential

shape from the biological neuron. The synapses include simple mechanisms such as pro-

grammable delay, weight and simple integration mechanisms. As for the biological neuron,

the soma integrates the stimuli coming from its different synapses. The "Leaky" version also

includes a leak pushing the soma potential to its resting potential. As for the biological neu-

ron, when the soma potential reaches its threshold, the neuron emits a spike and resets to
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Integrate and Fire model

Spike streams

Figure 1.7: Example of spiking neuron model: Integrate and Fire. The synapses used here induce

jumps in the membrane potential u(t ). Once u(t ) reaches Vth , the neuron emits a spike and resets to

Vr s .

its resting potential.

Using those basic mechanisms, multiple implementations are possible interfacing

DS. The main idea is to fit the shape of the input spike stream when processing it, avoiding

converting back to frame and potentially retrieving more information [60][61][62]. More-

over, the underlying mechanisms are less computation heavy than their ANN counterparts

based on Tensor calculation. The first possibility explored here is the use of STDP or other

learning methods with SNNs to design networks answering application needs. The following

sections will explore SNN design possibilities using results achieved with ANN and conver-

sion methods relying on different coding strategies.

Learning based networks

In order to reach the results obtained with ANN, it is necessary to develop methods that

give SNN equivalent error rates as their continuous-valued counterparts. The first explored

method relies on bio-inspire learning rules, mainly STDP and Spike Driven Synaptic Plastic-

ity (SDSP), while the second branch of studies relies on adapting supervised learning rules

to SNNs.

The most common implementation of the STDP is using window function at each

synapse. This window function will increase the synapse weight if the presynaptic neuron

fires briefly before the postsynaptic neuron and decrease it otherwise. Several variations of

this principle exist, some being more suitable to hardware usage.

The SNN using STDP and forward connections (no recurrence) have proven effi-

cient in pattern recognition using DVS. Tasks such as traffic [63], digit recognition [64] or
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movement recognition [62] have been explored recently, showing the possibilities for the

use of such SNN with DVS. To the best of our knowledge, no such network was developed for

interfacing with DAS as the topologies of networks required for the corresponding applica-

tions do not support STDP.

STDP is a local unsupervised learning rule, meaning the learning is done at the

synapse level and no global supervision can be made as for the backpropagation. Using

lateral inhibition implementing a winner-takes-all, limited forward-only networks can force

different neurons of the same layer to specialize into different patterns [63][65][66][67]. As

the STDP is local and unsupervised, it makes a great candidate for on-chip and on-line learn-

ing as we will see when exploring hardware implementations. However, the STDP still has is-

sues scaling to greater networks [64] and achieving accuracy achieved by ANNs for the same

tasks.

Spike Driven Synaptic Plasticity (SDSP) was proposed as another learning rule for

SNNs. This rule does not use the timing factor from the STDP, and only monitors the postsy-

naptic membrane potential and average activity to determine correlation and weight modi-

fications [68]. However, at this point no clear results can be retrieved from such rule [68][69]

even in supervised cases.

Supervised learning rules give ANNs part of their efficiency and were adapted to

SNNs. Multiple methods were created around this idea[70][71][72][73][74][75][76] including

SPAN[77], Chronotron[78] or ReSuMe[79].

Successful approaches include direct training of SNNs using spike-based supervised

gradient descent backpropagation [74], the SNN classifier layers using stochastic gradient

descent [76]. [75][80] allow STDP usage and backpropagation. [77] and [70] approximate

the behavior of spiking neurons to enable backpropagation usage. Finally, [71] produced an

algorithm to calculate the network weights.

While the results are promising, these novel methods have yet to mature to the state

where training increasingly important spiking architectures becomes possible, and the same

state-of-the-art error rate as the equivalent ANN is achieved. While training directly SNN is

not yet mature, training ANNs and converting them to SNNs using set of operators or math-

ematical equivalence might prove key to success.

ANN conversion

Taking advantage of the efficiency developed with ANNs, the conversion approach relies on

taking the parameters of a pre-trained ANN and to map them to an SNN using methods

guaranteeing the mathematical equivalency of both networks. Early work [81] presented
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conversion of Convolutional Neural Networks (CNN) [8] to biologically inspired SNN units

to interface DVS.

One of the factors differentiating conversion methods is the data encoding in spike

trains. Data can be stored in a spike train in multiple ways [61][60]. The most commonly

used strategy is rate coded, meaning the spiking rate of a channel is holding its data. Other

strategies use time based approaches, where the information is stored in relative or absolute

timings of spikes. Table 1.1 enumerates coding strategies using 10 channels on 10 ms with

a time precision of 1 ms. The count strategy refers to counting the spike in each channel,

leading to similar to rate coded results for 10 spikes at most. The Binary approach would

associate 1b of data to the presence of a spike in a channel. The time based approaches can

retrieve the data from the time window at which each spike was emitted. The rank approach

monitors the order in which each spike arrived only, not the time window they belong. Fi-

nally the rate coded approach is a generalization of the count method for n bits of informa-

tion.

Coding Bit/10ms Bit/Spk

Count 3.46 0.346

Binary 10 1

Time > 33 > 3

Rank > 21 > 2.1

Rate* n 1/2n

Table 1.1: Comparing spike coding: using 10 channels allowed to spike at most 1 time in a 10ms time

window with 1ms discernible intervals. *The Rate coded approach uses at most 2n spikes.

In order to convert ANNs, one has to first choose a coding strategy and implement

the needed operators to enable the network conversion. The two most used and developed

approaches are the rate coded and time coded families we will explore.

1.3.3 Rate coded networks

The first approach explored, and the most widely used, is the rate coded network. [82] pre-

sented the link between the transfer function of a spiking neuron (relation between the input

current and the output firing rate) and the activation of a ReLU widely used in ANN training.

While the implementation is quite limited as it did not include bias and only average pool-

ing layers, the results still showed possibilities for rate based conversion. [83] uses the same

principle adding weight normalization to achieve loss-less conversion. The first implemen-

tation had accuracy loss due to neurons firing at too high or low rates, leading to errors in

output results.
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Using LIF neurons and noise injection during training, [84] produces SNNs more

robust to approxiation errors that were solved in [83]. [85] uses ANN with binary weights

and restricted connectivity to be converted to SNN and used with the TrueNorth chip [4].

As rate coded networks can be spike consuming, [86] used firing threshold balancing while

converting in order to reduce the number of spikes required to encode the information.

The previously described approaches achieve high accuracy on MNIST but scaling

up to higher difficulty databases such as CIFAR-10 is not possible. As mentioned, the number

of available ANN mechanisms that can be converted to SNN is quite limited. For example,

accuracy can be gained by using max-pooling layers, changing activation functions or also

using batch-normalization. Thus, previously described methods do not obtain SoA ANN

results as they cannot mimic their behavior. [87] solves this issue by SNN building blocks

performing equivalent operations. They achieved the best results in term of accuracy but

are still not able to reach SoA ANNs.

Another approach is based purely on developing SNN operators able to perform

mathematical function and build any pre-processing or ANN functions around it. For exam-

ple, the multiplication of input firing rates can be achieved by using a coincidence detector

[88]. This approach was further developed in [9] [89] with associated hardware support [10]

and influence [13]. However, this framework was not intended to perform ANN conversion

and do not include building blocks needed for it. As mentioned, [87] achieves the best re-

sults as they produced the important building blocks needed in an ANN. Equivalent method

could be developed with building blocks from [9][89] and should be investigated. Another

issue of the resulting rate coded SNN is often the number of spike used which was mitigated

in [86]. The time based approaches solve that issue naturally.

1.3.4 Time coded networks

The time coded networks revolve around using spike timing in order to convey information.

This approach was used in [90] with Time To First Spike (TTFS). TTFS encodes the informa-

tion in the timing or arrival of the first spike of each channel, meaning only 1 spike is used to

convey the luminance information for instance. This method creates SNN using 7-10x fewer

operations than their ANN counterparts at the cost of less than 1% accuracy loss.

Another possibility was created by the work of X. Lagorce [28][11] creating a frame-

work of linear and non linear time coded operators using relative spike timing as data. Sim-

ilar to [9][89] for the rate coded side, this method allow pre-processing as the implemented

building blocks are designed to perform linear and non linear operations. Moreover, the

implementation of logic and memorization operators creates new possibilities for ANN con-

version. However, this framework was not implemented to perform ANN conversion and no
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efficiency can be estimated.

We depicted the main existing bio-inspired possibilities for interfacing DS. We are

now going to explore the designed hardware support corresponding to previous solutions

for a better understanding of the cost of each solution.

1.4 Neuromorphic architectures

The networks developed in previous sections require different type of hardware to support

them. This section will present the main chips and ideas developed to host the presented

network shown.

1.4.1 Artificial Neural Network

ANN typically require Floating-Point Multiply ACcumulate (MAC) to compute stimulation

sum to be used with the activation function. Those operations can be assembled layer wide

to form Matrix or Tensor operations. The most optimized common hardware when it comes

to performing this type of operation is the Graphics Processing Unit (GPU). It performs those

operations efficiently in parallel, but their power consumption can prohibit their use in em-

bedded applications. A considerable effort is currently dedicated to developing hardware

accelerators and algorithmic improvements in order to bring ANNs within reach of embed-

ded devices power budget.

In the race for minimal TOPS/W, the Tensor Processing Unit [91] is one of the most

advanced and used product, composed mainly of 8-bit MACs. Other implementations aim

at lower budget networks, imposing limits in terms of accuracy to lower the output TOPS/W

result. [92] implemented low power ANN accelerator for binary ANN, making essentially

every computation a boolean logic operation.

GPUs and their derivative are still heavy optimization subjects in order to fit the

low power envelop required for embedded applications. Moreover, the hosted ANN would

require feature extraction from the input spike stream leading to power consumption over-

head.

1.4.2 Spiking Neural Network

On the SNN side, the most computed operation for the simplest IF model is the addition,

adding the input stimulation to the membrane potential. The hardware implementation
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differs greatly from the ANN ideas. Machine learning solution designed to be performed

with SNN can be resource demanding when executed with frameworks such as [93][49] on

conventional hardware. The need for SNN solutions in embedded application lead to the

development of SNN accelerators, some of the flagships being explored in this section.

When comparing SNN accelerator implementation, multiples factors have to be

taken into account. The main recurring figure in SoA chips is the energy per Synaptic Event,

corresponding to the energy needed to integrate an incoming event in the soma. More-

over, the chips capacities for supporting networks have to be taken into account, i.e. its

target application, supported mechanisms, number of neurons and synapses and target

approach. The main ideas used when implementing SNN accelerators can be retrieved

from flagships implementing large-scale hardware SNN supports. Two mixed signal im-

plementations, BrainScales[94] and Neurogrid[5], and three fully digital implementation,

TrueNorth[4], SpiNNaker[95] and Loihi[95] are shown in Tab.1.2.

Work TrueNorth[4] Loihi[96] BrainScaleS[94] Neurogrid[5] SpiNNaker[95]

Techno 28nm 14nm FinFET 180nm 180nm 130nm

Implem Digital Digital Mixed Mixed Digital

Time Discretized Discretized Discretized Real time Discretized

Learning No Multiple STDP No Multiple

Neurons 106 < 131k < 180k 65k 16k

Syn./neur. 256 16−16k 256−16k 16 1k

En/syn. evt. 27pJ >105pJ 174pJ 180pJ 27nJ

Table 1.2: Flagship neuromorphic chip comparison.

Among the digital implementations, SpiNNaker [95] is using a set of ARM cores and

memory linked by a network. While being highly re-configurable and flexible SNN wise, its

energy efficiency is the worst among the presented chips. BrainScaleS [94] and Neurogrid

[5] were both implemented in 180 nm technology with mixed signal implementations. Both

revolve around analog implementation of bio-realistic neural models and digital commu-

nication using the AER protocol. Their aim is to better model and understand neural and

network mechanisms.

The two last implementations, also the most efficient energy wise, use the most ad-

vanced technologies among the studied chips. Truenorth [4] is the most efficient fully digital

implementation. It uses time multiplexing for the neural update during the step-by-step net-

work simulation. Each simulation time step lasts 1ms enabling the 256 neurons of each core

to be updated and communicates their output spikes. Finally, the Loihi processor [96] pro-

duced by Intel is designed to be a flexible support for large scale SNN learning and inference.

It integrates learning rules and possibilities for multiple neural models. The implemented

mechanisms allow multiple approaches and coding strategies to be used. Its creation is also
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aimed at pushing research on SNNs and their possibilities.

1.4.3 Discussion and conclusion

The DS inspire themselves from our nervous system providing event driven data of the sen-

sory scene. Both the visual and auditory branches allow for dynamic information to be re-

trieved, lowering the resulting data rate and processing workload to be used if handled cor-

rectly.

Bio-inspired solutions were also developed to process mentioned visual and audi-

tory data among other possibilities. Their most abstract model, the ANN, has the most ad-

vanced results in every field due to their efficient learning rules. However, its working princi-

ple does not fit advantages retrieved from the dynamic sensors. ANN are computation heavy

and need frame-based data thus requiring conversions from the input spike stream. GPUs

and theirs ANN optimization while very efficient do not match the embedded application

requirements.

SNN on the other hand have the possibility to reduce considerably the energy con-

sumption of Neural Network inference while interfacing Dynamic Sensors. Their nature

makes them fit perfectly the asynchronous data sent from the sensors and their accelera-

tors exhibit promising energy efficiency for specialized hardware. However, designing SNNs

is not as straight forward. While STDP based approaches enable on-chip and online learn-

ing, the resulting efficiency is still far from SoA ANNs. SNNs following supervised learning

rules inspired from ANN ideas are making great progress.

The most promising approach might reside in converting SoA ANN using SNN op-

erators. Building blocks for rate coded operators and time-coded operators could enable

high coverage of the needed building blocks for ANN conversion. Moreover, these building

blocks also allow for data pre-processing while remaining in the spiking domain. The rest of

this manuscript will focus on the investigation of such methods at the theoretical, hardware

and application levels.
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2.1 Introduction

This chapter will focus on different implementations of logic and arithmetic functions using

spiking neural network as building blocks. The ideas explored here were cited in chapter

1[1][2], using simple neuron model to build operator library using rate coding or tempo-

ral coding approaches. The main goal is to assert possibilities for both implementations to

process the input data and have a high coverage in terms of functionality needed for con-

verting ANNs. SNNs and neuron models defined here do not include learning rules as STDP

or SDSP, and revolve around simple neuron models, mainly Leaky Integrate and Fire (LIF)

and Integrate and Fire (IF) neurons.

Using simple mechanisms, we implement networks designed to compute any sig-

nal processing function on the input spike streams. Every network described in this section

was implemented using XNet, part of N2D2 [3] developed in CEA-List. XNet is an event-

based simulator for designing SNNs and was used to verify the functionalities and imple-

ment all studied networks with configurable neural parameters. Using this tool, we explore

two main coding scheme for retrieving the data contained in spike trains: the rate coding

and the Precise Timing (PT) coding. Rate coding means the input data is retrieved from the

input spiking frequency, while precise timing uses the intervals in between spikes to retrieve

data. The designed networks compute mathematical operations on those values and output

spike streams conveying the results.

Implementing efficient signal processing and primitives for ANN conversion relies

mainly on the Multiply ACcumulate implementation. In order to compare both approaches,

we will first set the notations used in this chapter and expose the basic operator implemen-

tation leading to the MAC function in both strategies. Then we will use target functions to be

implemented using both approaches and compare the obtained topologies and their char-

acteristics. Using a set of metrics estimating energy, latency and functionality, we defined

the most suitable approach to implement low power signal processing using SNNs.

2.2 Conventions

In this section, we are going to set the notations and conventions that we will be using for

the rest of the paper at the data encoding and neural topologies levels. We will then define

coding functions, conventions for spiking neural network definitions and the operators they

implement.
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2.2.1 Encoding and decoding functions

The first notion we need to define is the coding function. This function will be the one defin-

ing the relation between the data we want to compute on, and the way they are encoded with

spikes. Let s ∈ S = [smi n , smax] ⊂R be the data we are monitoring. s is contained within some

known boundaries which are needed to define the boundaries of the spiking side. Using a

rate coding for example, we can define a function c converting data the following way:

c : R −→ F

s 7−→ fs .s + f0
(2.1)

where F is the rate space, f0 would be the spike train rate coding for a null signal and fs the

slope defining the relation between data and rate.

This is one of many examples that can be used in order to encode data in rate coded

spike trains. Multiple inputs can be coded using multiple coding functions. Converting s ∈
Rn , one can use an ensemble of n coding functions (c1, · · · ,cn) that can be set according to

our needs:
c : Rn −→ Fn

(s1, . . . , sn) 7−→ (c1(s1), . . . ,cn(sn))
(2.2)

Once the data is translated into spikes, it is sent to the SNN performing its operation defined

by the function f . The output of the used network is thus defined by:

f : Fn −→ Fm

( f1, . . . , fn) 7−→ ( fo,1, . . . , fo,m)
(2.3)

The set of output values ( fo,1, . . . , fo,m) defines the result of the implemented operator. They

still need to be decoded, reversing the coding process:

d : Fm −→ Rm

( f1, . . . , fm) 7−→ (s1, . . . , sm)
(2.4)

Finally, the operation performed by the whole network can be defined by:

F : Rn −→ Rm

(s1, . . . , sn) 7−→ (s1, . . . , sm)
(2.5)

with

F = d ◦ f ◦ c (2.6)

2.2.2 Spike train shape

Encoding and decoding functions have to be complemented by the definition of the spike

train distribution. While keeping the same target rate, multiple “shapes” of spike trains can
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be explored. The main spike train shape we will be using in this section are the regular spike

train and Poisson process. For a regular spike train of frequency f , the definition of the inter-

spike interval T is straightforward :

T = 1/ f (2.7)

However, modeling inputs as regular spike trains is not relevant when interfacing

with spiking sensors. We will also use Poissonian spike trains for which the probability dis-

tribution P handling intervals in between spikes is defined by:

P(T > τ) = e− f τ (2.8)

This distribution is memoryless, meaning the time to next event does not depend

on the time elapsed since last event. At any time, the probability for a spike to arrive at a

channel defined by the frequency f in the next τ interval is defined by:

p = P(δt < τ) = 1−P(δt > τ) = 1−e− f τ (2.9)

This type of spike train is often cited to model biologically realist spike trains. The notations

and distributions we will use in this section are now defined. We will now develop basis for

describing our networks.

2.2.3 Neural models

The incoming spikes conveying data are sent to the synapses corresponding to their target

neurons. As previously mentioned, networks defined here mainly use LIF or IF neurons. The

main function defining the behavior of such neurons is linked to their membrane potential.

We here use a neuron with N inputs, each associated to a synapse of weight wi i ∈
[1,N]. We define the input activity function A, such that Ai (t ) is worth 1 if the input channel i

receives a spike at time t , otherwise 0. We then define I the input “current” at the membrane

potential and V the membrane potential.

I(t ) =
N∑

n=1
wn An(t ) (2.10)

V̇ = I−V/τ (2.11)

where τ is defining the time constant of the leak associated to our LIF neuron. By remov-

ing the −V/τ term, we obtain the equation of an IF neuron as no leak is involved. Then, a

threshold Vth is defined such as:
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V > Vth ⇒
{

V = 0

The neuron emits a spike.
(2.12)

Some neurons will also be allowed to have a negative output channel implementing

a negative threshold:

V <−Vth ⇒
{

V = 0

The neuron emits a negative spike.
(2.13)

Another type of synapse will be used in later sections when implementing precise

timing computation: the Linear integration synapses. Let P be the ensemble of regular or

Punctual synapses and L be the ensemble of linear synapses. Previously defined I is modified

as follow:

I(t ) = ∑
i∈P

wi Ai (t )+∑
i∈L

wi Li (t ) (2.14)

where Li defines the activity of the linear synapse i such as:

Li (0) = 0

Linear synapse i receives a spike ⇒ Li = Li +1

Target neuron spikes ⇒ Li = 0

(2.15)

This set of equations will handle the behavior of every neuron from our networks

for the following sections and chapters.

2.2.4 Neural networks notations

The base element of our network is the neuron, or node, which will be defined using the

Fig.2.1.

N1

Figure 2.1: Simple node with name N1

Output links from neurons will be defined one of the 3 ways defined in Fig.2.2. The

links in-between neurons are always described by the direction and the synapse characteris-

tics. For Punctual synapses, only the weight will be used describing links as shown in Fig.2.3.

When implementing the precise timing networks, we will add to the weight notation

the type T (Punctual or Linear) and delay δt , time after which the input stimulus has to be

itegrated, as depicted in Fig.2.4.
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N1

(a) Simple output link for “positive” spikes.

N1

(b) Two simple output link for “positive” and “nega-

tive” spikes.

Figure 2.2: Output links notations.

N2N1
w

Figure 2.3: Link of weight w from N1 to N2

N2N1
(T, w, δt)

Figure 2.4: Link of type T, weight w and delay δt

Every networks defined in the following sections will be using those norms. As oper-

ators get larger, entities will be created in order to build hierarchically. Synthesized operators

will keep their inputs and outputs as shown in Fig.2.5.

O1

O2

H1

H2

H3

I1

I2

wh1,1

wh2,1

wh3,1

wh1,2

wh2,2

wh3,2

wo1,1

wo2,1

wo1,2

wo2,2

wo1,3

wo2,3

(a) Elementary network with 2 inputs, 3 hidden neu-

rons and 2 outputs

I1 O1

Op

I2 O2

(b) Resulting operator

Figure 2.5: Synthesizing Network

The network used in Fig.2.5a is summarized as an operator using the same inputs

I1, I2 and outputs O1, O2 in Fig.2.5b. Now that the notations used for the rest of this section

are defined, we will explore rate coding based operators.
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2.3 Rate coding computation basics

This section will depict how we can encode and process input information by the use of

spike train frequency conveying data [4][1][5][6]. As mentioned in Chap.1, using the fre-

quency of spike trains to convey data has been widely used and ANN characteristics can be

abstracted from it[7]. The coding c and decoding d functions are as described in section 2.2.

The threshold potential Vth will be given the value 1 and the synaptic weight corresponding

to a full neuron charge (0 to Vth) will also be given the value 1.

2.3.1 Addition

The most basic operation that can be done with input frequencies is the addition. In order

to add frequencies, one just has to use an IF neuron and set every input synapse to stimulate

the target neuron to its threshold potential as described in Fig.2.6.

N1

i1

F

i2 F

in

F

o1

(a) n input network

+

(b) Operator

Figure 2.6: Adding n input frequencies from i1 to in channels. F stands for full threshold potential.

The function constructed with this operator is defined by f :

f : Fn −→ F

( f1, · · · , fn) 7−→ ∑n
i=0 fi

(2.16)

where ( fn) are respectively the rate of the input channels i1 to in .

Operations performed by those adders hold as long as the operation ranges are re-

spected. Rate addition is respected as long as the result does not reach the maximum ad-

mitted spiking rate of the neuron. The order of incoming spikes do not influence the output

results, and any spike train shape can be used. Moreover, if both inputs are Poisson pro-

cesses then the output will also be a poisson process. However, regular spike trains as inputs

do not create a regular spike train at the output.
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2.3.2 Subtraction

Subtracting frequencies is not as straightforward as adding them. First, if negative mem-

brane potentials are not allowed, implementations as shown in Fig.2.7 will only output f1

as the negative weighted input will have no effect. Allowing negative membrane potentials

and negative spiking using the same setup will only lead to f1 being generated at the positive

output and f2 being generated at the negative input.

N1

i1

F

i2

−F

o1

Figure 2.7: Intuitive subtraction.

In order to correctly compute the subtraction, one has to use intermediate states.

Let n be the number of positive states we are going to use before spiking. Then, instead of

using full weights, the new subtraction uses 1/n weights as shown in Fig.2.8.

N1

i1

F/n

i2

−F/n

o+
o−

(a) Subtraction of f1 and f2.

-,n

(b) Operator

Figure 2.8: Subtraction implementation with parameter n.

While using regular spike train as inputs, the output rate will either be distributed

on the positive of negative channel and be worth:

fo = f1 − f2

n
(2.17)

This result holds for Poisson process. Intermediate states can be analyzed as a Markov

chain of length 2n −1 as depicted in Fig.2.9. This Markov chain represents a variant of the

“Birth and Death” problem with “borders” looping to the reset state. Assuming both inputs

are Poisson process of respective rates λ and µ, the probabilities p+ and p− are defined the

following way:

p+ = λ
λ+µ p− = µ

λ+µ (2.18)

37



CHAPTER 2. IMPLEMENTING BASIC SIGNAL PROCESSING WITH SPIKING NEURAL
NETWORKS

−n−1
n − 1

n 0 1
n

n−1
n

· · · · · ·
p−p−p−p−p−

p−

p−

p+ p+ p+ p+ p+
p+

p+

Figure 2.9: Markov process handling subtraction neuron’s states.

Solving the Markov chain for given input rates λ and µ provides the equilibrium

distributions and shows the influence of the parameter n with this subtraction using Poisson

process. We define the matrix P composed of Pi , j defining the probability for a state i to state

j transition:

P =



0 p+ 0 · · · p−

p−
. . . . . . . . .

0
. . .
. . .

0 p− 0 p+ 0
. . .
. . . 0

. . . . . . . . . p+
p+ · · · 0 p− 0



(2.19)

We define p(k) the probability vector at step k. ∀k ∈N, the probabilities follow those

equations:

p(k +1) = p(k)P (2.20)

∀i ∈ {0, · · · ,2(n −1)},
2(n−1)∑

j=0
Pi , j = 1 (2.21)

with the equilibrium distribution p being defined by the relation:

p = pP (2.22)

Solving equation 2.22 with equation 2.21 gives us the following pi equilibrium val-

ues corresponding to the probability to be in the state i /n at any time:

∀i ∈ {−n +1,0}pi =
X−i ∑i

j=−n+1 X j−n+1

(n+1)
∑n−1

j=0 X j

∀i ∈ {0,n −1}pi =
∑n−1−i

j=0 X j

(n+1)
∑n

j=0 X j

(2.23)
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We can now compute the probability of state pn−1:

pn−1 = 1

(n +1)
∑n−1

j=0 X j
(2.24)

or pn−1 = 1−X

(n +1)(1−Xn+1)
for X 6= 1 (2.25)

(2.26)

And

p0 = 1

(n +1)
(2.27)

The frequency of the positive output is given by λpn−1:

λpn−1 = λ−µ

(n +1)(1−Xn+1)
for X 6= 1 (2.28)

leading to the following cases for n great enough:

fo+ = λ−µ
(n+1) for X ¿ 1

fo+ = 0 for X À 1

(2.29)

Providing λ and µ are different enough and n is great enough, the output frequency

will be the difference of the two input frequencies. Three main issues arise from this im-

plementation. Firstly, for input rate leading to cases close to X = 1, we have the following

distributions:

λpn−1 =µp−n+1 = µ

(n +1)2
for λ=µ (2.30)

Meaning for low n implementations and close to equal frequencies spikes can be

emitted from both the positive and negative output channels.

Secondly, the result accuracy is closely linked to the number of intermediate states

n to spike. Greater accuracy means greater n but also means lower output frequency as it

scales with 1/(n +1). This scaling is necessary for correct output result but costly in terms of

inputs needed to get the desired precision.

Finally, using this implementation with spike trains coming from the output of other

operators which do not preserve the spike train shape can lead to undetermined behavior.

As all of the operators do not maintain spike train shapes, measures have to been taken when

implementing larger operators.
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2.3.3 Multiplication per α ∈R

Multiplication is crucial for implementing any mathematical operator. An efficient multipli-

cation operator is mandatory. In order to multiply an input frequency by a factor α we are

going to use a part of its binary representation:

α= 2m
n∑

k=1
αk 2−k with m such as α1 = 1 (2.31)

Then, we are going to split input channels using pre-charged neurons as shown in

Fig. 2.10a. The upper neuron is half charged, spiking with the odd input spikes. The lower

neuron is not pre-charged, meaning it will spike only with even spikes.

N1,H

H

N2,0

H

(a) Splitting odd and even spikes from input channel.

Sp

(b) Splitting operator

Figure 2.10: Operator used to split an input spike train in 2 trains containing respectively odd and

even numbered events. H stands for Half the threshold potential.

Using the previously defined splitting network, we can use the binary coding of α to

send a fraction of the input spikes corresponding to this factor as depicted in Fig. 2.11. The

first splitting will send 1/2 spike to the adder with with coefficient α1, the second sends 1/4

spike with coefficient α2 and the same goes for every other splitting until the last one having

only 1 output sending 1/2n spikes from the input train to the adder with coefficient αn . Thus,

the output frequency can be defined the following way:

λ fo =
n∑

i=1

αi

2i
f = f

n∑
i=1

αi

2i
= f α

2m
(2.32)

As for the subtraction operator, the multiplication operator used here will have dif-

ferent scale on the output and input sides depending on the used α coefficient. It is proven

by construction to output the fraction of the input spike train corresponding to the binary

representation of the weight. However, the multiplication implementation used here does

not maintain the spike train shapes.
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Sp

Sp

+

Sp

α1

α2

αn

Figure 2.11: Split and add to implement frequency multiplication per α2−m .

2.4 Precise Timing computation basics

In this section, the information conveyed by a spike train will be contained in the intervals

in between spikes and their respective timings. The base for our operators was taken from

[2] and some ideas will remain in our implementation.

The data encoded by 2 spikes coming from the same or different channels can be

decoded the following way:

d : T −→ R

δt 7−→ aδt +b
(2.33)

T being the interval space. This interval space is discretized using time windows, meaning

two spikes arriving in the same timing interval will be labeled with the same time-stamp.

Thus, the interval space T can be seen as N using the number of time windows in between

two events.

The base mechanism used in this section are defined in 2.2.3. We will be using non

leaky Integrate and Fire neurons with Punctual and Linear synapses. Only positive thresh-

olds are considered in this implementation.

2.4.1 Input separation

The first elementary operator we use is splitting the input spike trains in two spike trains.

This operator resembles the Splitting operator used for rate coding. Its aim is to create two

distinct channels, the first one holding the first spike for every interval used for PT compu-

tation and the second one holding the second spike.
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N1,H

H

N2,0

H

(a) Splitting input spike train into 2 spike trains hold-

ing interval information.

Sp

(b) Splitting operator

Figure 2.12: Same splitting operator as used in the rate-coded approach.

In later defined operators, the input channel denoted as “firsts” or + will hold spikes

considered to be first and the “lasts” or - channel will hold spikes considered to be the second

when coding intervals. Using separate channels for both first and second spikes can also

provide room for “negative” intervals values.

2.4.2 Addition

Adding timing intervals is not as straight forward as adding frequencies. The operation can

be done with Linear synapses charging a target neuron during the input δt . The result is

then stored into the membrane potential of the target neuron and can be recalled with the

use of another Linear Synapse. Fig. 2.13a shows the basic idea for the PT adder. P stands for

Punctual synapse and L stands for Linear synapse. The weight e represents the elementary

weight step used in the membrane potential.

i1,+ A

i2,+

i1,−

i2,− S R

(L,e,1)

(L,e,1)

(L
,−e,1)

(L
,−e,

1)

(P,H,1)

(P,H,1)

(L,e,1)

(L,e,1)

(a) Splitting input spike train into 2 spike trains holding interval infor-

mation. e stands for elementary weight. + inputs holds the first spike

and − the second one for each interval.

+

(b) Adder

Figure 2.13: Operator used to add input intervals from two channels.

Fig.2.14 shows the operator computing basic interval addition. Two events are con-

sidered for both input channels. The first events are inducing a linear charge of elementary

weight in the neuron (A) (Accumulation). The last events are stopping this linear charge at
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neuron (A). When both last events have arrived, the neuron S for Synchronization will have

received half its threshold potential twice and thus emits a spike. The output spike from (S)

is recalling the value stored in (A) and starts charging (R) (Recall). The output value of the

operator is encoded in between the first event coming from (A) and last event coming from

(R).

Figure 2.14: Adder chronogram.

This adder can be used with n inputs with n ≤ Vth(S)/e. The number of states the

synchronization neuron (S) can hold is the limit for the number of channels it can synchro-

nize. The Accumulation neuron threshold potential has to be adjusted in function of the

input data range in order to avoid overflowing the operator as seen in Fig. 2.15.

2.4.3 Subtraction

Implementing the subtraction of input intervals can be easily done using the previously ex-

plained Addition. One only has to reverse the elementary weight connections in order to

have negative integration on one of the intervals.

Once again, the output interval is coded in between events from (A) and (R) in Fig.

2.16a. One noticeable difference from the implementation in [2] is that we do not constraint

ourselves to use the same channel for both the first and last spikes coding the interval inside

our operators. This leads to dramatic reduction of the logic needed when output spikes are
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Figure 2.15: Adder chronogram including fixed-point addition overflow denoted by the accumulating

neuron spiking before being recalled by the synchronization neuron.

i1,+ A

i2,+

i1,−

i2,− S R

(L,e,1)

(L,−e,1)

(L
,−e,1)

(L
,e

,1
)

(P,H,1)

(P,H,1)

(L,e,1)

(L,e,1)

(a) Subtraction generated by negative linear integration from the first

spike of input 2.

-

(b) Subtraction operator

Figure 2.16: Operator used to subtract input time intervals from 2 channels.

supposed to encode for the data 0 for which both output spikes are needed to output during

the same simulation interval.

In our implementation, negative values are coded with “negative” intervals, mean-

ing if the output spike from (R) is sent before the output spike from (A) then the coded output

value is negative as shown in Fig. 2.17.
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Figure 2.17: Subtraction chronogram.

2.4.4 Multiplication per α ∈R

i1,+ A

i1,− R

(L,α,1)

(L,e−
α,1)

(L,e,1)

(a) Multiplication per α using linear synapse and 2 neurons.

.α

(b) Multiplication operator

Figure 2.18: Operator used to multiply input interval per α.

Input intervals multiplication per α also uses the linear integration synapse in or-

der to store the result value in the membrane potential of the accumulating neuron (A) as

shown in Fig. 2.18a. This operator only has one input and thus does not need a synchroniza-

tion neuron. The output value can directly be retrieved after the couple of spikes has been

received from the input channels. Fig.2.19 shows the implemented operator function. Con-

straints to be respected on the threshold potential are also dependent on the input interval

range and input weight.
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Figure 2.19: Multiplication chronogram.

2.4.5 Logic, memory and synchronization

The base framework [2] also offers possibility for signal synchronization, memorization and

logic. Memory and synchronization examples were already used in the previously explained

addition, subtraction and multiplication operators. In order to store and synchronize n in-

put intervals, the topology shown in Fig.2.20a can be used. This simplified version of the

synchronization originally proposed gives a common last spike to the n input channel with-

out changing their value as shown in Fig.2.21

i1,+ A1 o1,+

i2,+ A2 o2,+

in,+ An on,+

i1,−

i2,− S R o−

in,−

(L,e,1)

(L,e,1)

(L,e,1)

(L
,−e,

1)
(L

,−e,
1)

(L
,−e,1

)

(P,Vth /n,1)
(P,Vth/n,1)

(P,V th/n,1)

(L,e,1)

(L,e,1)

(a) Synchronization operator: store each value in a membrane poten-

tial and recall once channel transmitted its data. The output events

have a shared second spike comming from o−.

Sync

(b) Synchronization operator

Figure 2.20: Operator used to synchronize events in-between n channels.
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Figure 2.21: Synchronization chronogram.

PT also gives the possibility to compare input data and act accordingly which is not

possible using a rate coded strategy. Fig.2.22a shows the topology used to compute the max-

imum of two input intervals. The first spike of each interval has to be synchronized in order

to output the maximum of both intervals. This can be done with modifying the previous

synchronization topology in order to output intervals synchronized on their first events.

i1||2,+ o+

i1,− M o−

i2,−

(P,H,1)

(P,H,1)

(a) Maximum operator. The M neuron will spike once it receives 2 in-

put spikes.

Max

(b) 2-inputs maximum operator

Figure 2.22: Operator used to output the maximum of two intervals synchronized on the first spike.

Fig.2.23 shows the computation performed by the topology in Fig. 2.22a. As ex-

pected, the output interval is the maximum of both input intervals.

Interestingly, linking the neuron performing the Max operation to both first chan-

nels and synchronizing input intervals on the last event will result in performing the mini-

mum operation.
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𝐼1

𝐼2

𝐴𝑐𝑐

𝛿𝑡1

𝛿𝑡2

𝛿𝑡1

𝑡

𝑉(𝑡)
𝑉𝑡ℎ

Figure 2.23: Maximum chronogram.

2.5 MAC and functionality comparison

The purpose of the topologies described in the previous part is to be able to perform digital

signal processing and mimic ANN behavior interfacing with dynamic sensors. Those topolo-

gies naturally exploit the data contained in the spike trains sent by these sensors. Sensory

data can be retrieved from the input events and conventional signal processing can be mim-

icked. Digital signal processing and ANN applications are essentially composed of Multiply

ACcumulate (MAC) when used with Digital Signal Processor (DSP) or GPU. Typical Digital

Signal Processing applications essentially use filtering, Fourier transform to extract valuable

information. Filters 2.34 and transforms such as DFT 2.35 are essentially composed of Linear

Combination performing the convolution of the input sensory data by filter weights:

M∑
m=0

am yn−m =
N∑

k=0
bk xn−k (2.34)

Xk =
N−1∑
n=0

xn .e− 2πi
N kn (2.35)

Various spiking topologies (rate or timing coded) let us perform basic arithmetic

including Linear Combination, which is essentially a set of MACs. In order to determine the

best approach to be used when performing event based signal processing we will compare

the implementation of this basic element in both approaches: rate and timing.
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2.5.1 Linear combination implementation and analysis

Basic examples of signal processing 2.34 2.35 can be performed assembling topologies de-

fined in sections 2.3 and 2.4. In order to compare those implementations we need to define

the metrics we are going to use.

Comparison metrics

As explained in section 1.4.2, the main metric used for hardware spiking neural network is

the energy used per synaptic event. The energy consumption being dominated by synaptic

weight storage and usage, building a metric linked to the future hardware usage of synaptic

storage is natural. Then, for the same required output precision for our operators we define

as first metric the average number of synaptic events used to provide the result.

The second metric is linked to the time resolution and delay of the implemented

operators. For a set type of input and precision, we will compare the delay linked to the use

of rate coding and precise timings. This metric can be expressed as a function of the time

needed to encode desired data range and precision at the input.

Frequency coded implementation

Implementing the Linear Combination of input frequency can be done using the previously

defined Multiplication, Addition and Subtraction operators as shown in Fig.2.24. It shows

the topology corresponding to the following equation:

fo =
m∑

k=0
αk fk −

n∑
k=m+1

αk fk with ∀k ∈ {1,n},αk > 0 (2.36)

mimicking for instance a filter with m positive weights and n −m negative weights.

In order to calculate both metrics, we will set a few conditions representing realistic

operating conditions. First, for simplification purposes, we assume the multiplications do

not use scaling factors (α coefficients are in between 0 and 1). We also assume that the posi-

tive and negative intermediate results stay within range of the maximal frequency, meaning

the partial sum do not exceed the maximum spiking frequency allowed. The scaling included

in the subtraction however has to be taken into account as it is mandatory to get correct re-

sults. We are able to calculate the scaling coefficient in between the input maximal frequency

and the output maximal frequency.

Beginning with the multiplication operator, the first splitting unit uses 2 fi events

per second, the second one 2 fi /2, the last one 2 fi /2nn−1. The associated adder uses αi fi
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i1 .α1

+

im .αm

-,k

im+1 .αm+1

+

in .αn

Figure 2.24: Full Linear Combination implementation using frequency coded operators.

events per second as it was designed to. The subtraction uses the sum of all events coming

from the adders, meaning the sum of all αi fi .

As shown in Fig.2.25, operators can be removed when their operation can be mixed

with the next one. Here for instance, we use the subtraction operator in order to perform the

previous addition thus saving αi fi for all channels. The number of events needed per second

by this linear combination for N bits precision can be computed as follows:

f =
n∑

i=0
fi

((
N−1∑
j=0

2

2 j

)
+αi

)
(2.37)

Evaluating this equation for a given output precision also depends on the parameter k used

for the subtraction. A N bits precision at the output of the operation requires taking into

account the 1/k subtraction scaling.

We define the input scale as 1. The scale entering the subtraction is equal to the

sum of the filter weights, which is lower than max(n −m,m). The scale at the output of

the subtraction is equal to the sum of filter weights divided by k. Then, in order for our

operator to maintain N bit precision at the output, the integration has to be held during a

time proportional to the input scale. The relation between input and output scales can be

defined as follow:

Scale(out ) ≤ max(m,n −m)

k
Scale(i n) (2.38)
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i1 .α1

im .αm

-,k

im+1 .αm+1

in .αn

Figure 2.25: Simplified Linear Combination implementation using frequency coded operators.

Requiring N bits precision at the output will mean requiring at least a 2Nk/max(m,n−
m) spike range possibility at the input. The number of synaptic events used can then be

computed averaging input weights. Simplifying, we can round the following result :

5 ≥
((

N−1∑
j=0

2

2 j

)
+αi

)
≥ 3 for N ≥ 2 (2.39)

as the sum of powers of 1/2 will tend to 2 and (αn) are contained in [0,1].

Then, the number of spikes used for N bits output is greater than 3 times the scaled

number of input spikes used:

SPK ≥ 3
k.2N

max(m,n −m)
(2.40)

Setting k close to the number of positive or negative weighted channels, we have a number

of spikes used at least equal to 3.2N.

In terms of time to result, setting k according to the number of inputs will lead to

similar frequency range at the input and output, leading to an integration time proportional

to the time needed on the input side to encode information.

Precise Timing implementation

We will now perform the same operation using Precise Timing operators. The same operator

can be used adding splitting operators as pre-processing layer. Fig.2.26 shows this first naive

implementation using all the operators previously defined.
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i1 Sp .α1

+

im Sp .αm

-

im+1 Sp .αm+1

+

in Sp .αn

Figure 2.26: Naive Linear Combination implementation using time coded operators.

Fig.2.27a shows a more compact operator. As for the frequency coded side, suc-

cessive operations can be concatenated into fewer operators when possible. All the mul-

tiplication, addition and subtraction can here be done using a single Linear Combination

operator. The splitting cost will be counted in the metrics, but can be reduced for multiple

layer operators as the first and last spikes will not be held again by the same channel using

our topologies.

i1,+ A

in,+

i1,−

in,− S R

(L,α1,1)

(L,−αn,1)

(L
,−α

1
,1)

(L
,α

n
,1

)

(P, 1
n ,1)

(P, 1
n ,1)

(L,e,1)

(L,e,1)

(a) All operations from linear combination can be done using only few

neurons.

LC(αn)

(b) Linear Combination operator

with weights (αn)

Figure 2.27: Simplified linear combination using time-coded operators.

The number of spike used per operation is easier to compute. As our data are en-

coded in spike intervals, input data is always held by couple of spikes. The splitting layer
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consumes 4n synaptic events. Then, neuron A consumes 2n +1 synaptic events, neuron S

n events and neuron R 1 event. Thus, the total number of synaptic events used is 7n +2 no

matter the required output precision. The result delay is directly linked to the input interval

range and output interval range. This means if we use N bits data at the input and require N

bits fixed-point result, the output result is given after 2 maximum input intervals for storing

and recalling the result.

2.5.2 Other metrics - Functionality

The two first metrics used give us estimates about the power consumption and output la-

tency for the same operators. However, those metrics only do not provide information about

the other advantages offered by each strategy: resiliency, logic, memorization or synchro-

nization.

Sparsity advantage

Computing using the precise timing of the input spikes can be seen as using approximates of

the instantaneous frequency. Dynamic sensors can produce typically low input event rates

as in [8] with event rates lower than 2 kevts/s. Performing computation using instantaneous

frequency estimates can utilize these sparse data situations in which rate coded networks

would not always be able to retain information.

Moreover, synapses used in the time coded approach allow for data to be kept in

membrane potential and logic operations to be performed on these. This can bee useful

when implementing operations dependent of previous results. Possibilities to retain rates in

rate coded network are quite limited. Using synaptic delays proportional to the time to code

for information [9], output rates can be reused in later operations. Yet, those delays are fixed

when implementing the network and cannot depend on logical operations for instance.

Room for improvements

However, time coded networks implemented for signal processing also have their draw-

backs. First, in order to retrieve the result of any operation, a delay proportional to the output

precision is needed.

Another advantage of the rate coded network is its resiliency to spike loss. The loss

of input or internal spikes in rate coded networks is equivalent to change in the Least Signif-

icant Bit (LSB) of the data and the generated error is quite low. Loosing spikes in time coded
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networks is destructive as it is equivalent to doubling the input data for locally regular spike

trains for example.

2.5.3 Summary

Table 2.1 summarizes the metrics, advantages and drawbacks of both strategies when imple-

menting base filter examples. Using the time needed at the input side to encode information

as reference, both strategies have equivalent time to result ratios with delays linked to the

time needed to represent input data. However, the number of synaptic events is linked to

completely different factors in function of the coding used. The rate-coded approach uses

a number of events linked to the target precision, while the precise timing approach is only

linked to the number of inputs. Fig.2.28 shows the influence of the precision needed over

the number of synaptic events used for a 4-input linear combination. The number of events

used in the precise timing scheme is constant as precision increases while it increases expo-

nentially in the rate coded scheme. SNN implementation based on rate coding requires care

when sizing the neurons parameters not to consume as many synaptic events [10]. Using

equivalent delay to result and fewer events per operation at fixed precision, using the data

contained in the input intervals rather than their frequency will lead to energy savings.

Coding (N bits linear Rate Time

combination n inputs)

Range in spikes/data {0,2N} 2

Synaptic events 3x2N 7n +2

Output delay ∝ output range ∝ output range

Output retention Limited[9] ++

Sparse events - ++

Short features - ++

Logic - ++

Spike train dependent ++ -

Spike loss/variation resilient + -

Safe operation (over/underflow) Inherent -

Table 2.1: Comparison of both strategies when implementing arithmetic and signal processing.

Table 2.1 also summarizes the main characteristics that will influence the capacities

of the implemented topologies. The PT approach is able to compute features encoded by

few spikes and has memorization and logic operators. The rate coded approach does not

implement logic operators and can retain data for fixed period of time [9] dependent on the

synaptic delay used. The rate coded implementation also revolves around precisely defined

spike train shapes which it cannot always maintain through layered operators leading to un-
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Figure 2.28: Number of synaptic events needed versus required precision for a 4-input linear combi-

nation.

determined behaviors. Thus, the PT approach offers more building blocks for implementing

signal ANN essential functions such as max pooling, further validating our choice.

On the other hand, the rate coded approach is inherently safe to spike loss or input

delay variations and also naturally performs secure operations as the output frequency is

limited by the neuron itself. The PT approach uses couple of spikes to encode the informa-

tion, meaning any variation of the inter-spike interval will influence the output result, and

does not naturally implement secure Fixed Point operations.

2.5.4 Time Coding: issues and solutions

Table 2.1 exhibits the drawbacks associated with using timing to convey and compute data.

This section is dedicated to solving the issues presented, mainly being sensitivity to spike

variation and loss, output delay reductions and secure operations.

Input spike variations

Our topologies perform fixed-point operations on one-shot sensory inputs coded as inter-

vals in between events. Thus, they exhibit important sensitivity to input variations and input

spike loss or delay variations can greatly affect computed results.

Input intervals can be averaged on multiple consecutive inputs. Fig.2.29a shows
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averaging operator based on an a modified adder. The neuron (B) used to start the operation

need to be pre-charged so the first incoming spike will make trigger it. We use here n + 1

consecutive events to load the synchronization neuron (S) which recalls the value stored in

the accumulating neuron (A) with a linear synapse of weight n − e. It is modular and can be

modified to use any number of inputs. Proofs can be found in Appendix B. This operator

can be modified to average n input intervals coded with 2n input events to match data from

active pixels in DVS for instance.

i B,F n−1
n A

S R

(P,F/n,1)

(L,F/n,1)

(L,e,1)

(L,n−e,1)

(L,n,1)

(a) The neurons B and S acts as a splitting operator filtering 1s t and

nt h spikes. These are used to start the accumulation and start recalling

the stored value.

Av.n

(b) n intervals average operator.

Figure 2.29: Operator used to average n consecutive intervals.

Using this topology, input delay variations can be mitigated at the cost of lower input

sensitivity and higher delay to retrieve the result. Compromises can be made varying the

value of n. Variation and loss sensibility will be mitigated by a factor n at the expanse of an

increased delay to retrieve data.

Safe operations

A Ov C1

S R C2
(L,e,1)

(L,e,1) (P,−F,1)

(P,−2F,1)

(P,F,1)

(P,−F,1)

(P,F,1)

(P,F,2)

Figure 2.30: Overflow detection and filtering setting up a race between A and S. F weights denotes

the full threshold potential. S spiking first inhibits the Overflow neuron Ov . A spiking first makes Ov

spike to signal overflow.

Sizing neurons’ and operators’ parameters according to input data is not always suf-

ficient to take care of overflow issues. The fixed point arithmetic introduces the possibility to

report overflow spikes as shown in Fig.2.15. As we are also able to implement logic, another
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way to implement secure operations is to flag an overflow. To do so, we setup a race in-

between the Synchronization (S) neuron which is present in arithmetic operations and the

linked Accumulation (A) neuron(s). The resulting topology is shown in Fig.2.30 and complete

proof given in Appendix B. Any output spike sent before the synchronization neuron spikes

will not be transmitted to the following operator as the Overflow (Ov) neuron will inhibit the

Output (O) neuron. The Accumulation neuron has to wait for the Synchronization neuron

to spike, stimulating the intermediate Output neuron and inhibiting the Overflow neuron.

In those conditions only the Spike emitted from the output neuron will be transmitted to the

next layer.

Result delay

One of the main drawbacks of our topologies is the link between result precision and the

delay to recall result. As the output precision grows, the delay needed to retrieve result grows.

This can be an issue on both the input and output side: multi-layer computation will be

further delayed as latency stacks and new events can be sent to the topology when it did not

finish yet previous input computation.

One solution is to split time intervals into coarse grain intervals and fine grain data.

Perform parallel low precision operators and use logic to rearrange result. We use an input

interval δt coded on 2N bits and a weight α on 2N bits. Then, we can split data and weights

to form N bits packets:

δt1 = δt div 2N and δt2 = δt mod 2N

α1 = α div 2N and α2 = α mod 2N
(2.41)

We then use 3 Linear Combination operators operating on N bits to perform the

following operations corresponding to 3 N bits results.

o1 = α1δt1

o2 = α2δt1 +α1δt2

o3 = α2δt2

(2.42)

The 3 linear combinations need to be linked in order to transfer overflow from lower

operators corresponding to the carry. Fig.2.31 simplifies the link between accumulators (op-

erators computing LSB overflow spikes towards operators dedicated to Most Significant Bit

(MSB)). The complete topology description for this operator is available in Appendix B. In

this implementation, the accumulating neurons need to keep their linear synapse active

even when spiking to continue the operation. Therefore, spiking equations are modified:

V > Vth ⇒


V = V −Vth

The neuron emits a spike.

Linear synapses maintain their values.

(2.43)
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The local carries are filtered with topologies equivalent to the overflow filter seen

in Fig.2.30. Thus, carries are only transmitted to lateral operators and the output result is

provided only when the synchronization neuron spikes.

P

A1

A2

A3

S R

(P,e,1)

(P,e,1)

(P,e,1)

(L,e,1)

(L,e,1)

Figure 2.31: Carry in between linear combination operator 1,2 and 3. Carry from 1 goes to neuron P

for 4N bits result. S and R are common in between the 3 linear combinations.

The principle shown here is enough for 1-input operations or unsigned fixed point

operations. Multiple input signed implementations of the same operator needs two sets of

operators computing the positive and negative components of the result. Then subtraction

can be used at the output of each pair of positive and negative operation. The result sign is

determined by the highest pair having non null result and time intervals are communicated

accordingly.

As we split the data in two parts, the time needed to encode data and retrieve result

is decreased by a 2N ratio in term of number of elementary simulation time. However, this is

at the expanse of higher number of synaptic events spent per operation. Input data are en-

coded in 2 couples of spikes sent to 3 operators with carry transferred in between them and

output logic for result reconstruction. The number of synaptic events used is then highly de-

pendent on the data and weights, being dominated by carry between operators. Using such

topologies can be effective when requiring fast high precision results but should generally be

avoided when aiming at low power applications.

2.5.5 Discussion

Precise Timing networks offer multiple advantages when compared to rate coded networks

for low power applications generating sparse asynchronous events. They adapt to sparse

event environments in which their rate coded counterparts cannot always extract the rele-

vant information. Main drawbacks inherent to the precise timing topologies were mitigated
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implementing specialized topologies. Depending on the application specification, the same

neural mechanisms can implement different operations in order to adapt themselves to var-

ious operating conditions, leading to a flexible framework.

Table 2.2 updates the original results with new implemented features. The fixed-

point operators can adapt to various environments using different neuron parameters and

topologies. We show here that the Precise Timing approach makes a good candidate as it

leads to lower number of synaptic operation required and covers higher number of essential

points for converting ANNs. This base precise timing implementation will be further ana-

lyzed in the next chapter in order to implement low power hardware.

Coding (N bits linear Rate Time

combination n inputs)

Range in spikes/data {0,2N} 2

Synaptic events 3x2N 7n +2

Output delay ∝ output range ∝ output range

Decrease possibility

Output retention Limited[9] ++

Sparse events - ++

Short features - ++

Logic - ++

Spike train dependent ++ -

Spike loss/variation resilient + Implemented

Safe operation (over/underflow) Inherent Implemented

Table 2.2: Updated comparison with enhanced precise timing possibilities.
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3.1 Introduction

Computing data contained in the intervals in between asynchronous events was proven effi-

cient in term of synaptic events used in the previous and functionality in the previous chap-

ter. A modified set of topologies was implemented using XNet in order to cope with the main

drawbacks inherent to computing with precise timing information.

We now aim at developing hardware architectures taking advantage of the devel-

oped topologies and their characteristics. In order to define our generic support architec-

ture, we give a number of possibilities and measure their footprints. Aiming at low power

architectures, we will then analyze each of the possibilities explored using characteristics

retrieved from our topologies.

A SystemC model was implemented based on the architecture we optimize for our

topologies. The designed model represents the complete Globally Asynchronous Locally

Synchronous (GALS) architecture and can be used for fast topology support verification, us-

age estimations and sizing. The generic architecture and developed model complete our

design flow: create SNNs from application specifications or ANN (chapter 5), simulate those

SNNs with the systemC model to size the needed chip and retrieve hardware characteristics

estimations.

This first part of this chapter will be dedicated to depicting the possible solutions for

our GALS architecture. The choices made will be justified using topologies from chapter 2

and retrieving their characteristics for efficient hardware usage. Finally, the SystemC model

implementation and some results will be depicted.

3.2 Architecture - Storing topologies and scheduling activity

The topologies obtained aiming at time computing using SNNs generate a special set of char-

acteristics. As it is the case for rate coded SNNs, the input is asynchronous using the AER

protocol. The global ideas and modules will be developed here and the choices justified by

analyzing the characteristics of our topologies. Considering those differences, we will now

explain choices made at the architecture level.

The complete GALS picture is given in Fig.3.1. The main idea is to split the neurons

composing our networks into multiple clusters in which the shared computation is time-

multiplexed during each simulation. The synchronization of the simulation steps system-

wide is done by the rendezvous bus, ensuring correct network simulation. The hardware

time allocated to compute a simulation step will be called a Tick. Choices leading us to

implement the shown architecture will be explained in the next sections. We now depict our
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Figure 3.1: GALS architecture.

implementation following an input spike path, thus starting with the Asynchronous Network

on Chip (NoC).

3.2.1 Asynchronous Network On Chip

The input spike is defined by its origin address and the timestamp at which it was emitted.

The transmitted events are typically asynchronous and sparse [1][2][3]. The most efficient

communication scheme for handling these sparse inputs is the asynchronous scheme.

An Asynchronous Network On Chip (ANOC)[4][5] distributed communication ar-

chitecture fits the GALS paradigm. The served resources are implemented with the standard

synchronous design methodologies and each belong to independent frequency and voltage

domains. The GALS paradigm thus naturally offers possibility to implement local Dynamic

Voltage and Frequency Scaling (DVFS) taking advantage of the frequency and voltage decou-

pling by construction in between the synchronous clusters.

Regarding power consumption, asynchronous design techniques show interesting

dynamic power savings, as they are by definition un-clocked. They take advantage of local

handshaking transactions as shown in Fig. 3.2. It offers the possibility for asynchronous

circuits to be in a standby state when not solicited. The asynchronous logic scheme offers

thus the equivalent of both Register Transfer Level (RTL) clock gating and architectural clock

gating, but without the need of any additional software.
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Figure 3.2: 4-phases handshake. Data is guaranteed valid in-between REQ and ACK being pulled up.

The 4-phase handshake is performed as depicted in Fig. 3.2. First, the side initi-

ating the transaction is pulling the Request (REQ) channel up, asking to transfer data. The

receiver side retrieves mentioned data and acknowledges reception with the Acknowledge

(ACK) channel. Then, the emitter side acknowledges data reception resetting REQ. The last

step is the receiver notifying the emitter it is aware of the end of data transfers resetting ACK.

Header Flit

Data Flits

BoP(1)EoP(0) Control (14b) Path to target(16b)

BoP(0)EoP(0) Data (30b)

End Flit BoP(0)EoP(1) Data (30b)

Figure 3.3: Packet composed of 2 flits of 32 bits.

The data communication can be defined on multiple levels, from bit to flit to packet.

As shown in Fig. 3.3 a Flit is a defined amount of bits to be sent in between resources and

a packet is an ensemble of flits. A packet is usually formed by a header flit (Beginning of

Packet = 1), data flits and an end flit (End of Packet = 1). The header flit contains the control

sequence (what to do, where in the module) and routing scheme (to what module deliver the

data). The routing scheme is shown in Fig.3.4. The 4 directions North, East, South and West

are respectively coded by 00, 01, 10 and 11. Local is coded by going in reverse as shown in

Fig.3.4 where south encode Local when coming from south. Path To Target (PTT) is shifted 2

bits at every router until arrived at destination, permitting up to 7 jumps with 16 bits.

We use AER data during inference, meaning the data contained in an event are its

origin and timing. Therefore, we can simplify the packet format to a single flit that ensures
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both timing and origin information are maintained. Fig.3.5 shows the reduced flit size fitting

AER.

1-Flit AER packet

AER Flit AER(1) Reduced PTT(2(K+1)b)Data(N b)

Reduced PTT @

Reduced PTT @

Reduced PTT @

Config Flit AER(0) Reduced PTT(2(K+1)b)Config(N+1 b)

TP 

Figure 3.5: Mono-flit packet supporting AER. Timing is respected with the Tick parity bit and origin is

determined with the data (neuron ID) and reconstructed PTT (cluster ID).

Using AER, the data are contained in the timing and origin addresses, two informa-

tion we have to maintain. For the timing information, we have to ensure the flit is sent and

received in the same time window defined as simulation tick. This is not an issue for flits

being sent early in the simulation ticks but can become one when flits are sent late in the

simulation tick, generating the possibility for those flits to be received at the beginning of

the next simulation tick and thus conveying wrong timing values. The first measure ensur-

ing a flit is conveying the correct timing value is using a Tick Parity (TP) bit. Each cluster

knows the parity of the simulation step count or tick count and receiving a flit not matching

the current bit count will induce special mechanisms for this flit to be processed in priority.

On the other side, the origin address is also maintained. The Data part being trans-

ferred in the flit is composed of the local ID of the origin node. This origin node can be part of

a cluster of the architecture or part of the input channels arriving from the processed sensor.

Retrieving the information of the input context can be made using the path-to-target infor-

mation. As the flit is sent to different routers, the path-to-target part is undergoing circular

rotation by 2 bits at every router as shown in Fig.3.5. Each router performs a routing oper-

ation and gives the prepared routing information to the next router by making the rotation.
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This is used to retrieve the origin information when arrived at target cluster. The resulting

path-to-target packet is then converted to origin ID and combined with the ID contained in

the data.

We use the defined simplified AER packet to ensure both timing and address in-

formation are maintained. The same flit format can be used before inference in order to

configure the different clusters. The sizing of the architecture will be developed later in this

document.

3.2.2 Storing synaptic stimuli and updates

As data input a cluster, the corresponding origin ID is extracted and the path-to-target con-

verted back to the origin cluster ID. For an incoming spike, we need to retrieve the group of

target synapses and corresponding delays in order to know during which later tick we have to

integrate our synaptic potentials. The main objective here is double: first, from a given input

ID, retrieve and schedule the different synaptic stimuli to be sent to different target neurons.

Then, after the corresponding synaptic delay, integrate the stimuli at the target neurons in

target ID order. Retrieving and integrating all the stimuli targeting the same neuron at once

allows us to retrieve its variables and compute its update only once per simulation step.

The main constraints we have to cope with here is the activity and connectivity

heterogeneity specified in section 3.3, associated with multiple synaptic delays and possi-

bility for multiple connections with different synaptic delay, type and weight in between 2

neurons. We thus implemented custom solutions that will be compared to reference de-

signs sized for our needs. The main solutions explored for our needs are the synapse matrix,

Content-Addressable Memory (CAM) based approaches and First In, First Out (FIFO) based

approaches.

Synapse matrix

Synapse matrix has been used in multiple SNNs hardware [6][7][8][9][10] as it is generic

enough to support multiple kinds of networks, the most demanding connection being the

Fully Connected (FC) with usage close to 100%. Fig.3.6 summarizes the principle used here.

This principle can be used with n physical neurons or 1 physical computing unit

time multiplexed to compute the update of the n neurons. The matrix is composed of n +
m columns, the n first columns being used for the recurrent connections and the m last

columns for the links from nodes outside this cluster. Input spikes arrive at the decoder and

stimulate the column of synapses corresponding to its ID. At each simulation steps, neurons

at the end of each row integrates the synaptic stimulation scheduled for this simulation step.
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Figure 3.6: Synapse matrix enables high connectivity.

This enables fully connectivity from the n +m origin neurons to the n neurons composing

this cluster. This base implementation uses n(n +m) synapses of 2W bits. At each synapse,

d +1 supplementary bits have to be used for the corresponding synaptic delays.

CAM-based approaches

An approach giving more flexible storing capacities is using Content Addressable Memory

(CAM) [11]. We use here the simplified origin ID as an address to access the synapse memory

and retrieve synaptic stimuli to be used at later simulation times. Fig. 3.7 shows the principle

applied.
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Figure 3.7: CAM oriented synapses handling enables flexible connectivity.

The input ID is used to retrieve target stimuli. Ternary CAMs can also be used for

groups of inputs [11]: use only part of the input ID to match targets, essentially creating

hierachical groups of neurons to be stimulated. The memory footprint can be extracted from

Fig. 3.7. Each synapse has to include the following data:
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• Input ID: In order to have the same input capacities as the synapse matrix implemen-

tation in which the number of input supported is m+n, we will here use M bits for the

input ID storage. Each memory slot has comparison logic for retrieving stored data

when the corresponding input ID is fed to the CAM.

• Synapse characteristics: here we store the synaptic stimuli information. The 3 charac-

teristics that have to be stored are the type, weight and delay. When a synapse is stimu-

lated, the delay has to be retrieved in order to schedule update at later simulation step.

This leads to each synapse being composed of [Ty pe(1),Wei g ht (P),Del ay(D)] bits to

store the synapse value and [d +1] to store its scheduled activation.

• Target ID: Allocating a fixed number of synapses to every neuron leads to highly in-

efficient storage usage. We thus need to store the target ID in order to decouple the

number of synapses used from the number of neurons used. Doing so, we can allocate

only 1 synapse to logic neurons for instance, increasing greatly the occupation rates of

the synaptic storage memory. The target ID occupies N bits.

The CAM implementation thus uses M+ (P +D+ 1)+ (d + 1)+N bits per synapse.

Each synapse has its comparison logic and stores scheduling information when stimulated.

The Priority Encoderis responsible for ordering the operations that have to be done during

a simulation step. It sends input stimuli ordered by ID and keeps track of the updates that

have to be performed for neurons with active linear synapses.

FIFO-based approaches

This last set of implementations is based on asynchronous-synchronous FIFOs designed to

make the transition in between the asynchronous communication and conversion part and

the synchronous process. This method was designed to lower the overhead generated by the

input comparison logic and overall memory footprint used for storing synaptic stimuli and

scheduling them.

Fig. 3.8 gives the base principle of this implementation. The conversion Static Ran-

dom Access Memory (SRAM) are used for global and internal IDs to synapse ranges com-

posed of the first slot to retrieve and the number of slots to be stimulated. The second SRAM

is storing the synapse characteristics which are here its type, weight, delay and target ID.

The stimuli are then stored in the asynchronous synchronous FIFOs according to

the target ID and synaptic delay. The Priority Encoder is used to synchronously retrieve the

FIFOs’ data. This version uses less inputs than the one used in the CAM based implementa-

tion which took as many inputs as there are synapses. Here as stimuli are already ordered by
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Figure 3.8: SRAMs + FIFOs implementation enables flexible connectivity.

target neuron, the priority encoder only sends the address of the last non empty FIFO and

its data to the synchronous process.
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Figure 3.9: Dynamically allocable FIFOs are allocated when the regular FIFO to be written in is full.

The number of FIFO slots available per neuron should be equal to the maximum

number of synaptic stimuli a neuron can receive during a simulation step, leading to FIFOs

targeting logic neurons to be always near empty and inefficient. A second implementation

shown in Fig.3.9 is used with static ID FIFOs (linked to a fixed neuron) of reduced size able

to receive average input activity and few dynamically allocable FIFOs to be allocated when a

static ID FIFO is full.

There are two main differences in between these implementations and the previous

CAM based approach. First, the target synapses are not determined by comparing the input

ID to each slot’s address but by reading a set of synapses in the second SRAM. This implies

retrieving the input stimuli uses as many successive reading operations as there are synapses

to stimulate while performing no comparison. Secondly, the output information is retrieved

per neuron ID and not monitoring the state of each synapse in the cluster lowering the cost

of the output scheduling logic.
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The presented approaches can each achieve good performances in specific cases.

The correct usage of such architecture depends on the supported topologies and their char-

acteristics. In order to determine which solution could be appropriate for us, we have to

keep in mind topology constraints.

3.3 Topology aware scheduling modules

Each of the previously defined scheduling modules could simulate the implemented topolo-

gies and applications. However, they are based on different approaches and may not per-

fectly fit our characteristics. Thus, the first step is withdrawing the main characteristics gen-

erated by the implemented topologies. We can model generic DSP/GPU computation using

an array of Linear Combinations performing filter operations. Fig. 3.10 shows the topology

obtained implementing an array k of linear combination using n input each. The Linear

combinations used here have two accumulators mimicking the strategy used in 2.5.4 ensur-

ing full precision while still keeping low delay. This does not represent exactly a filter or an

ANN layer but is quite relevant to the average DSP/GPU usage.

i1 Sp

i2 Sp LC1 o1

LC2 o2

im Sp

im+1 Sp

Figure 3.10: Array of Linear Combination used for extracting main characteristics of topologies im-

plementing signal processing.

For simplification purposes, the linear combination coefficients are not given in the

graph shown in Fig.3.10. As it is composing the main part of the computation performed

by ANNs and DPSs, main characteristics and differences with respect to more conventional

neural network will be extracted from this topology.
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3.3.1 Connectivity heterogeneity

Biological neural networks have high connectivity, with an average number of input con-

nections of 10,000. Topologies used in machine learning also use a high number of input

connections per neurons. For example, each neuron belonging to a Fully Connected (FC)

layer will by connected to every neuron of the previous layer. CNN reduces this number of

connection implementing fixed size kernels in order to extract progressively larger features.

Depending on the size of the kernels used, the number of input connections per neuron can

also be important.

The important characteristic to be extracted here is that these networks all have

quite homogeneous figures in term of number of input connections per neuron belonging to

the same layer. Emulating neurons’ behavior on GPUs, FPGAs or ASICs is facilitated as every

node uses comparable number of input weights that can sometimes be shared.

The previous operator defined in Fig.3.10 is also able to perform kernel computation

neurons from a convolutional layer would perform. The first main difference here is the

number of connections used per neuron. Table 3.1 gives the average number of connection

used per neurons for each type of neuron of this implementation.

Operator Neuron Input connections Output connections

Splitters First 1 k

Last 1 2k

Linear Combination Acc1 2k 2

Acc2 2 2

Synchronization k 5

Recall 1 2o

Output filtering Carry 2 1

Transfer 2 o

Table 3.1: Number of input and output connection per neuron. Topology from Fig.3.10. k is the

number of input, o the number of outputs.

As shown in Table 3.1, the number of input connection per neuron is heteroge-

neous. Emulating the implemented topologies using an Application Specific Integrated Cir-

cuit (ASIC) requires carefully designing synaptic stimuli storage capacities not to waste re-

sources.

Another point not shown in this table is the possibility to have multiple connections

in between the same pair of neurons. Fig. 2.30 from section 2.5.4 illustrates the need for

multiple connections in between two neurons, which is mainly used to check the arrival

of 2 signals at the same time step at the target neuron. This is another characteristic that
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differs from conventional ANNs and that will need special care when designing the hardware

support. Section 3.2 will explore solutions to this issue and clearly exhibit the downside of

homogeneous storage solutions.

3.3.2 Activity heterogeneity and secure timing operations

In this section we analyze the activity generated by our topologies in order to determine

scheduling capacities specifications. We use the topology defined in Fig.3.10 with different

target precision and retrieve average activity per simulation step on the different channels.

Figure 3.11: Activity for an 8b Linear Combination with 4b inputs.

Fig.3.11 shows the activity generated by a 8b Linear Combination with 4b input pre-

cision and 4 inputs simulated with XNet. Each neuron of the operator emits only 1 to 2 spikes

while computing the result with the exception of the first accumulator which transmits carry

to the second accumulator. This operator has result delay equivalent to the input delay as its

output interval is divided into two channels.

The simulation using time steps as done with XNet will be kept at the hardware level.

Meaning a fixed amount of hardware time will be dedicated to the update of the whole net-

work for one step which corresponds to the elementary time step used in simulation. The

hardware time step length depends on the application and the implemented operators. We

can thus explore activity generated per time step with XNet in order to know the required

hardware event scheduling capacities.

Table 3.2 shows average activities observed for N bit precision operation. As we use

precise timing to encode data, the amount of spikes used per channel per operation is at
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Operator Neuron Average input activity Spk per synapse

Splitters First 2 2

Last 2 2

Linear Combination Acc1 2k 1

Acc2 2N−2 1

Synchronization k 1

Recall 1 1

Output filtering Carry 1−2N−1 1−2N−2

Transfer 1−2N−1 1−2N−2

Table 3.2: Network activity per computation. Topology from Fig.3.10 used with N bit operators.

most 2 for regular operators. Thus, the generated number of synaptic events per synapse per

operation is also low, and the number of input spikes per neuron directly dependent on its

number of inputs.

Each operator thus contains neurons having various needs in terms of activity. Some

being more solicited as the accumulator neuron and other being only stimulated once per

operation, mainly the Recall neuron. The hardware scheduling of neuron updates and stim-

uli integration needs to be able to update only currently active neurons and also retrieve only

stimulated synapses.

The last point concerning activity is the synaptic delay and number of available con-

nections in between 2 given neurons. As explained in chapter 2 the implemented operators

can have synaptic delays varying from 1 to multiple elementary simulation steps. This as-

pect is essential for implementing logic operators. The second point here is the need for

any given couple of neurons to use two links having the same direction with two distinct

synapses. This is important for implementing punctual stimulation followed by inhibition

needed for coincidence detection or condition checking as shown in chapter 2.

We thus have networks having heterogeneous connectivity and activity rates. In or-

der to fully take advantage of those aspects, the implemented synaptic stimuli storage and

scheduling modules will have to be carefully designed to minimize energy consumption and

usage. Heterogeneous connectivity will be proven efficiently exploited by asynchronous het-

erogeneous synaptic stimuli storage allocating synapses to any neuron per cluster. Hetero-

geneous activity will affect both synaptic stimuli storage and scheduling units in order to

minimize the activity generated per active neuron at each simulation step.
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3.3.3 Scheduler analysis

Topology constraints

The synapse matrix based implementation does not fulfill all the needs corresponding to our

topologies. We have seen in chapter 2 that some logic operators need couples of neurons

(A,B) with 2 (A → B) links with different synapses and delays.

Implementing those double connections can be done multiple different ways, each

given with their respective overhead using synapse matrix:

• Double the number of synapse at each slot. Overhead: at most 1 double connection

per row is used, leading to under 1/(n +m) second slot occupation rate.

• Modify our topologies to include intermediate neurons. Each oriented couple having

2 links will be replaced by 3 neurons. The inserted dummy neuron is used to avoid

having double links. Overhead: inserted neurons use a neuron and its n +m potential

synapses for only 1 input connection.

• Modify hardware to be able to locally allocate 2 rows to 1 neuron. Overhead: as for the

previous solution, one row is almost empty.

• Modify hardware to be able to locally allocate 2 columns to 1 input neuron ID. Over-

head: same as previous versions, this column will only be used for 1 of its coefficients.

None of the solutions specified above permit a compact implementation fulfilling

our needs. Moreover, not all nodes in our topology need the provided input connectivity. The

connectivity heterogeneity demonstrated previously will greatly influence the occupation

rates of this type of structure. Assuming 40% logic involved neuron in a typical network, the

maximal filling rate of our synapse matrix drops to around 60%. Arithmetic involved neurons

are also impacting negatively this occupation rate as the number of synapses used is directly

linked to the number of inputs of the implemented operator. The same point can be made

for synchronization neurons.

The CAM based implementation solves the occupation rate issues at the cost of

higher memory footprint per synapse and computational cost. It is flexible enough to al-

locate any given number of synapse to a neuron and allow double connection in between a

single pair of neurons.

Compared to the CAM-based implementation, the FIFO-based implementation is

as flexible. However, the method used to retrieve groups of target synapses to be stimulated

uses no matching logic a CAM would use. The expense here would be longer time to retrieve

all mentioned stimuli, but the activity sparseness helps us mitigate such delay cost.
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Occupation rates, footprint and other metrics

We now characterize and compare the previously defined approaches according to a set of

metrics of interest. Those metrics will include occupation rates, memory footprint, the ac-

tivity generated per an input spike, the activity generated retrieving the output stimuli and

updates to be integrated. Those metrics provide hints about the efficiency of the usage and

efficiency of our synaptic storage capacities. We define the following variables:

• n the number of neurons per cluster (2N = n).

• nbi the number of allowed inputs (2NBi = nbi ).

• s the number of synapses (2S = s).

• p the synaptic weight levels (2P = p).

• T, W and D the synapse characteristics (2D = d).

• t ar the number of targets of an input spike (2TAR = t ar ).

• st i the number of stimuli to retrieve.

Strategy Matrix CAM Static FIFOs S. + dyn. FIFOs

Memory footprint n.nbi .(T+W s.(NBi +D+d nbi (S +TAR)+ nbi (S +TAR)+
+D+d +1) +1+T+W +N) s(D+T+W +N) s(D+T+W +N)

FIFOs footprint - - n.(d +1) n.(d +1)

.t ar.(T+W) .t ar.(T+W)

Occupation rate ¿40% Up to 100% Up to 100% Up to 100%

Average syn/neur nbi s/n s/n s/n

Peak allowed syn/neur nbi s s s

Time to convert input O(1) O(1) O(t ar ) O(t ar )

Activity per input - s comp. +t ar.R t ar.R/W +1R t ar.R/W +1R

Time to retrieve stimuli O(st i ) O(st i ) O(st i ) O(st i )

Activity per stimulus 1R 1R+PE(s) 1R+PE(n) 1R+PE(n)

Table 3.3: Comparing the efficiency of the synaptic stimuli and update scheduling modules.

Table 3.3 gives the comparison of the implemented synaptic stimuli and update

storage and scheduling modules. We can see the influence of the different parameters in

the memory footprint here. For CAM and FIFO based implementation, the number of al-

lowed inputs is not constrained by a static synapse-to-neuron partition. The occupation

rates shown here suppose proper sizing of the storage module using the topology metrics

and arithmetic over logic ratios determined previously.
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The more compact CAM and FIFO based implementations also induce overheads.

For both of them, priority encoders are needed at the output to schedule the process. The

priority encoder used for the CAM based implementation takes the s synapses as inputs

when the one used in the FIFO based implementation uses data from n FIFOs.

Using realistic figures, we can compare both compact approaches. We will use here

clusters of 512 neurons admitting up to 512 inputs, two synaptic types with 5 bits signed

weights and 1 bit of delay. The peak reception capacity per neuron per simulation step is

fixed at 32 stimuli. Each cluster includes 8192 synapses, for an average of 16 synapses avail-

able per neuron. The peak permitted number of targets per input spike is fixed at 32. Static

FIFOs in the first implementation will have 32 slots when static and the 32 dynamic FIFOs in

the second implementation will have 4 slots.

Strategy Matrix CAM Static FIFOs Static + dyn. FIFOs

Memory footprint 5120 kb 232 kb 146 kb 146 kb

FIFOs footprint - - 288 kb 38.25 kb

Total 5120 kb 232 kb 434 kb 184.25 kb

Scale 27.78 1.26 2.36 1

Average syn/neur 1024 16 16 16

Peak allowed syn/neur 1024 8192 8192 8192

Time to convert input - comp. time up to 33 R up to 33R

Activity per input - 8192 comp.+ <32R 1R + <32R/W 1R + <32R/W

Time to retrieve stimuli O(st i ) O(st i ) O(st i ) O(st i )

Activity per stimulus 1R 1R+PE(8192) 1R+PE(512) 1R+PE(512)

Table 3.4: Example implementation.

Table 3.4 shows implementation characteristics for the 4 approaches with the given

figures. Allowing 1024 input addresses requires having a 512x1024 synapses matrix with

the first implementation, which is highly ineffective for our topologies. CAM and FIFO ap-

proaches both satisfy the low average number of synapse per neuron and high potential peak

synapse per neuron taking advantage of the connectivity heterogeneity. Both the CAM and

Dynamically allocable FIFOs cases have comparable total memory footprint

The main overhead of the CAM based approach is the use of input comparison logic,

larger output PE and memory footprint. FIFO based approaches on the other hand have to

retrieve synapses characteristics one by one and store them in the intermediate FIFOs. The

FIFO-based approach including the dynamically allocable FIFOs will be used for the rest of

this chapter as Scheduling module.
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3.4 Architecture - Synchronous process and scaling conditions

We exhibited the choices made for the AER protocol, event reception and stimuli scheduling.

The next step is to proces the scheduled stimuli given by the scheduler.

3.4.1 Pipelined update

The conversion and scheduling modules shown in previous sections are designed to send

synaptic stimuli grouped by target ID after their synaptic delay is elapsed. The output of

the conversion + scheduler modules is handled by the Priority Encoder and engages a syn-

chronous 4-stage pipeline. Fig. 3.12 shows the output of our FIFO based implementation.

Cycles

ID Type Weight

476 Punctual 5

476 Linear 3

476 Punctual 4

450 Punctual 0

449 Linear 5

422 Linear 4

422 Linear -4

412 Punctual 16

400 Punctual -16

322 Linear 7

Figure 3.12: Output of the scheduler module during a simulation step.

Data received synchronously from the scheduler begins a 4-stage pipeline to pro-

cess the network update. The pipeline process is described in Fig.3.13

As synapse stimuli are grouped by target ID, we need at most 1 read and write of the

neuron variables per simulation step. The first step of the synchronous process is making the

memory requests to retrieve synaptic stimuli when a new target neuron ID is met. This part

is done by the manager module, designed to monitor changes of target IDs and send requests

to the memory accordingly. When a synaptic stimulus arrives, the synapse’s characteristics

are kept to be sent to the computation unit a cycle later corresponding to the cycles needed

to retrieve the neuron variables if we encounter a new target ID. If the target ID changes,

the manager also sends an update order to notify the computation unit it has to write back

variables into the DPRAMs.
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Scheduler: retrieves stimuli

Manager: memory request

Manager: 

stimulus to 

compute

DPRAM: 

variables to 

update

Computation unit:

update neuron state

Figure 3.13: Stimulus processing pipeline, from the scheduler to the computation unit.

The shared computation unit is performing the following operations for each active

neuron:

• Receive the neuron variables including the neuron membrane potential and the linear

synapse level.

• Receive 0 to st i synaptic stimuli and update the corresponding variables. Punctual

synapses add their weight to the membrane potential and Linear synapses add their

weights to the linear synapse level.

• Receive 1 update order, add the new linear synapse level to the new membrane poten-

tial.

• If the linear synapse level is not null, sends this information to the scheduler in order

to be recalled to update it at later simulation steps.

The computation unit also checks if the neuron emitted a spike or not. It compares

the updated membrane potential to the threshold value and:

• If lower, just writes back updated membrane potential and linear synapse values.

• If higher, checks if the neuron has to be resetted or not when spiking and act accord-

ingly. Resetting a neuron means setting their membrane potential and linear synapse

levels to 0. Not resetting a neuron while still spiking means subtracting the threshold

potential to its membrane potential and keep the same linear synapse level.
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Each active neuron generates at least 1R and 1W to the DPRAMs setting the neuron

variables and computes 1 addition on the membrane potential or linear synapse level per

synaptic stimuli and update processed. Fig.3.14 shows the output of the computation unit

for a simulation step using random activity. The left part represents the input data from both

the manager and DPRAMs, the center part represents the operation performed during the

current cycle and the right part represents the outputs. Using the Scheduler and manager

we achieve 100% usage of the computation unit during the update of the active neurons of

the network. This means the workload that has to be processed during a given simulation

step can be known in advance monitoring the number of slots taken by the synaptic stimuli

and updates in the scheduler.

Cycles

To NI To DPRAM To Scheduler

ID Spike ID En_w Core Linear Update

476 - 476 0 - - -

476 - 476 0 - - -

476 1 476 1 4 0 0

450 0 450 1 5 5 1

449 0 449 1 0

422 - 422 0 - - -

422 1 422 1 3 7 1

412 0 412 1 0

400 0 400 1 0

322 0 322 1 1

Figure 3.14: Computation and decisions made by the computation unit. It stores intermediate values

until it is told to update the neuron state. When updating, it decides if the neuron spikes or not and

in which conditions.

The spikes produced by the computation unit naturally code AER events. The ori-

gin ID is given by the computation unit to the network interface which sends as much flits

as there are target clusters for this given neuron. As seen before the timing information is

preserved.

3.4.2 Scaling up

The main constraint using one cluster is to maintain its frequency high enough so that the

processing workload can be processed during the intended time of the simulation step. The

maximal target frequency that would be needed is defined by the number of allowed synap-
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tic stimuli to be processed and the time corresponding to a simulation tick. Using n neurons

with s synapses and time steps of duration T, the maximum target frequency for the syn-

chronous processing part has to be over s/T.

As we limit the number of neurons per cluster, we need to use multiple clusters in

order to simulate larger operators. Each cluster must respond to the same constraints plus

we have to carefully synchronize simulation steps in between clusters and take into account

communication overhead. Fig.3.15 shows example of loosely constrained cluster synchro-

nization. Each cluster has a TP information which is copied in the spikes sent to the ANOC.

Scenario (1) is intended as the spikes are sent and received during the same simulation step,

thus generating no error. Scenario (2) is taken care of using the TP bit in the 1-Filt AER event

conveyed by the ANOC. It generates priority processing at the target cluster. However, loosely

synchronized clusters could also generate scenario (3). In this scenario, with current imple-

mentation, the receiving side will receive a spike with different TP bit and understand it was

sent during the previous simulation step leading to a difference of 2 simulation steps in the

timing value carried by the spike.

Cluster 1

Cluster 2

Secure Destructive

AER events

TP0

TP0

TP1

TP1 TP0

TP0

(1) (2) (3)

Figure 3.15: Synapse matrix enables high connectivity.

We thus use a synchronization bus, named “rendezvous” which is essentially per-

forming the simulation step synchronization in between each cluster and the input set con-

ditions. The rendezvous module is designed to wait for each cluster to finish processing the

current step and the outside condition to be met. Waiting for each cluster to finish process-

ing avoids scenario (3) from Fig.3.15, while waiting for the outside condition to be met let us

satisfy simulation step duration coherence with the input spike stream.

Monitoring the reception FIFOs for a given simulation step, we know the exact amount

of cycles that will have to be spent in the synchronous process. As the target hardware time

per simulation step is fixed and linked to the input spike stream, we can setup local DVFS

[12]. The main consequence will be reducing the power consumption of the chips by flat-

tening the activity in each cluster for their respective processing time to be equal to the sim-

ulation length. The second consequence is flattening the generated spike communication at

system level as they will be generated homogeneously through the simulation step.

We defined the main parts of our system. Sizing and designing an ASIC responding
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to specific needs using specific topologies is not straightforward just based on those mod-

ules. We thus implement a SystemC model of our architecture in order to retrieve the main

usage figures and allow quick application to hardware characterization.

3.5 SystemC model

SystemC [13] is a set of C++ classes and macros, providing to the designer an event-driven

simulation environment. It enables the designer to simulate multiple concurrent processes

in C++ and offers bases for system development. It is quite flexible and can under certain cir-

cumstances be compared to VHDL or Verilog as an hardware description language while still

being able to be used at a system-level. It is used for a wide variety of applications, includ-

ing architectural exploration, performance modeling, functional verification, and high-level

synthesis.

The designed SystemC model can be used on multiple parts of the design flow. First,

once a defined set of efficient topologies is designed for an application, we are able to simu-

late those topologies on the generic hardware based on the previously explained implemen-

tation. Simulating those topologies for cluster parameters gives optimal sizing information

for target application. Later, simulated or measured hardware characteristics can be inserted

in the model in order to perform accurate power estimations based on the cluster character-

istics.

The different parts of our system do not require the same accuracies in terms of

modeling. We will mainly use a Transaction-Level Modeling (TLM) for the asynchronous

part and a Cycle-Accurate, Bit-Accurate (CABA) one for the synchronous parts.

3.5.1 TLM ANOC

TLM [14][15] is a high-level approach to modeling digital systems. It abstracts the commu-

nication among modules and separates it from the details of the implementation of each

units or of the communication architecture. The transaction level focuses more on what is

being transferred and in-between which points, than on how it is transferred and its imple-

mentation. The usual communication mechanisms such as FIFOs or buses are replaced by

channels and presented to resources using the SystemC interface classes.

An Asynchronous NoC was implemented using TLM 2.0 [16]. This model was sim-

plified for our use. Data packets were converted to perform AER event communication

which was described in 3.2.1. The only parameters that have to be set in this implemen-

tation are the number of neurons used and clusters in order to determine the number of bits
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composing the data being transferred. We recall here that the “data” part in an AER event

is composed of the origin address and the time at which the event was created. As said in

previous sections, timing is kept using a tick parity bit.

We use the previously defined 1-Flit packet which represents the AER event. The

origin address is maintained in two parts. The origin neuron ID is the data part of the Flit.

The cluster IF is retrieved from the circular shifting of the PTT part.

The list of parameters that have to be defined for the TLM ANOC is the following:

• The number of neurons per cluster, determining the size of the data to be sent.

• The path size limitation. For a PTT of size 2l , the maximum number of target clusters is

defined by the number of clusters the flit can reach in l−1 steps. There is a compromise

to be found here between the number of possible target neurons and size of the PTT

to be conveyed and shifted.

• The router delay, determining the communication latency.

The following metrics can be retrieved for each ANOC router:

• Average and peak number of spikes conveyed per simulation steps.

• Average latency generated.

As the frequency of each cluster will ultimately be controlled by the local DVFS tar-

geting maximum activity rates during operation, the rendezvous bus is also implemented in

asynchronous logic. Once a flit is received in a cluster, it is processed and stored consuming

a delay proportional to the number of targets to be stimulated in this cluster.

3.5.2 CABA synchronous parts

Modeling using cycle accurate and bit accurate behavior is an essential step between the

high level algorithms, defining the way neurons have to be updated and their mechanisms,

and the implementation in custom silicon devices, whether it is FPGA or ASIC [17]. It of-

fers hardware aware simulation possibilities that are not always present when performing

network simulations using C++ or Matlab.

In order to confidently study the effects of different topologies, the fine grain im-

plementation of the synchronous processing parts using the SystemC environment and ac-

curate behaviors is necessary. This approach allows us to perform functional verification for
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the implemented modules and the topologies they support. It also allows us to have a precise

idea of the bottleneck of our architecture and the usage of each part of the design.

Each previously described module is modeled at the cycle level with intended be-

havior. Each cluster updates its synchronous resources with its respective clock in order to

enable local DVFS possibilities.

The parameter used for the cluster resources are the following:

• Main clock period, defining the clock period needed for proper function at any input

activity.

• Precision needed for the synaptic weights used in the supported topologies.

• Precision needed for the neuron variables.

• The number of available neurons and synapses per cluster.

• The number of allowed input and number of allowed targets per input.

• The number of synaptic stimuli slot per FIFO.

• The number of dynamically allocable FIFOs and their number of slots.

• The maximum number of delays available.

Once parameters, topologies and inputs are provided to the model, the neurons are

placed onto the hardware. The neuron placement can be done in multiple ways in order

to try and minimize ANOC communication or flatten cluster activity while always respect-

ing the set limitations (number of neurons, synapses and targets per cluster). One can for

instance use a link-aware simulated annealing neuron placement algorithm, trying to min-

imize ANOC communication or use an activity-aware algorithm based on the XNet mean

activity in order to minimize activity heterogeneity in between clusters.

3.5.3 Monitored execution

We first monitor the execution for proper execution of the supported SNN topologies. Mul-

tiple levels of debug are available at each module for assessing unwanted behaviors.

The second important part to be retrieved from monitoring the usage of each mod-

ule is the hardware usage. This allows us to design optimal reception capacities for any given

application. For a given application, target precision and set of topologies responding to the

defined need, we can retrieve here the optimal number of slots per FIFO and number of

dynamically allocable FIFOs in order to have minimum energy consumption.
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Each resource outputs its metrics at the end of the simulation, composed of the

following figures:

• Total time, simulation steps and time per simulation steps spent.

• Average and peak active and idle cycles used per simulation step.

• Average and peak activity percentage.

• Total number of spikes sent and received.

• Total number of flits sent.

• Peak and average use per FIFO in the synaptic stimuli storage module.

• Peak and average usage per Dynamically allocable FIFO.

• Activity per neuron ID.

• Average and peak number of individual neuron’s variable read and write.

Application Specification

Xnet: Precise timing topology 

design

ASIC implementation

SystemC: Hardware 

simulation and sizing 

Figure 3.16: Design flow using XNet to design topology answering the application needs and the Sys-

temC model to estimate and size hardware.

Those metrics allow the designer to estimate hardware usage for a given set of pa-

rameters and later estimate power consumption. This model integrates itself in the design

flow as shown in Fig.3.16. The following section will depict the application of this model to

basic Linear Combination networks for sizing the generic architecture.
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3.5.4 Example with Linear combinations

We use in this section the topology defined in Fig.3.10 with our hardware model. We use

200 operators of 8 inputs for 8 bit operations. This necessitates 1800 neurons if used with

no delay limitation, 2800 if we limit delays to 1 elementary simulation step and use dummy

neurons to simulate longer delays. We split those neurons randomly onto 9 clusters each

simulating 512 neurons and 4096 synapses, thus allowing an average of 8 input connection

per neuron.

First, we can analyze ANOC usage to verify its proper function. We set the time steps

to 100µs to represent sparse inputs and monitor the flits sent per router at each simulation

time to determine ANOC capacities needed. Fig.3.17 shows average and peak ANOC usages.

As we use a 3x3 mesh, we can determine the average path length and thus the needed av-

erage and maximal throughput which would be here respectively 202 Mb/s and 418 Mb/s

using 21b (9b ID and 10b PTT) 1-Flit packets. However, this is only an example and placing

neurons randomly throughout the architecture is not efficient communication-wise. More

effective placement strategies will be explored when needed in the chapter 5.
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Figure 3.17: ANOC average and peak load, influence per cluster.

The next part of this example will help us size the Hardware Proof of Concept pre-

sented in chapter 4. We here explore the sizing of each Cluster for supporting arrays of Linear

Combinations. We can explore two main factors, the first one being the number of available

synaptic delays for our synapses.

Decreasing the maximum available delay to 1 increases the number of neurons per

operator from 9 to 14 but also decreases by 33% the size needed for the synaptic stimuli

storage. When comparing the generated activity, the topologies using synaptic delays going
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up to 2 simulation steps are using 29% less spikes. The dummy neurons used to reduce

hardware requirements are placed on channels conveying more spikes and thus the activity

is more important. The use of dummy neurons to simulate longer synaptic delays creates a

neuron with only 1 input and 1 output, meaning it lowers the number of synapses needed per

neuron at the expense of having more neurons per cluster. The Proof of Concept designed

in chapter 4 will be using up to 2 synaptic delays with the possibility to limit to 1 for further

comparison.

We use 4096 synapses for 512 neurons in order to allow 8 average synapses per neu-

ron. We now size the FIFOs used in the synaptic stimuli storage module and the number of

dynamic FIFOs to be used. Fig.3.18 shows the distribution of synaptic stimuli slots used per

active accumulator neuron per simulation step. Neurons belonging to operators in the first

layer, interfacing directly with the AER events from the sensor, are not subject to spike syn-

chronization. For 8 inputs, the number of synaptic stimuli to be integrated during a simula-

tion step rarely crosses 4 stimuli. One of the issue here is the synchronization performed per

operators for the output spikes. Neurons belonging to operators further in the network will

for the same number of inputs receive 8 synchronized inputs and thus need 8 FIFO slots. The

peak number of stimuli to be integrated per neuron is defined per the number of synapses

linked to it which is linked to the number of inputs used and was defined in table 3.1.
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Figure 3.18: FIFO slots used for active accumulator neurons for 8 inputs, at network input vs after

synchronization.

In order to reduce the area and consumption of the synaptic stimuli storage module,

the number of slots in the regular FIFOs is set to 4 and we allocate 32 dynamically allocable

FIFOs of 4 slots in order to allow Accumulator and Synchronization neurons to punctually

have more than 4 inputs at a time. The next chapter will focus on the Hardware implemen-

tation and testing of a Proof of Concept using sizing results shown here.
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4.1 Introduction

We explored in chapter 3 the architectural solutions available for supporting the SNN topolo-

gies obtained in chapter 2. Using the hardware model, we implement a Proof Of Concept

(POC) in Fully Depleted Silicon On Insulator (FDSOI) 28nm composed of 1 fully synchronous

cluster integrating 512 neurons and 4096 synapses. The POC is implemented to support the

explored Linear Combination topologies that represent the greatest part of DSP and ANN

computations. The first part of this chapter focuses on the POC hardware implementation

and its differences compared to the cluster to be integrated in a GALS system. The second

part focuses on the characterization of the fabricated chip and comparison to SOA chips for

the main figures of merit.

4.2 Implementation

The functions of the main pipeline of the architecture developed in chapter 3 will be first

shortly summarized. As we receive asynchronous spikes during our hardware simulation

steps, we want to be able to store the generated stimulus for an arbitrary amount of time de-

pending on the synaptic delay. Once the number of time steps corresponding to the synaptic

delay is elapsed, we want to retrieve the stimulus and integrate it in the core level of the neu-

ron according to its type. The retrieving of stimulus is ordered by target ID not to use multiple

read and write operations for the same neuron variables during a simulation step.

Once the stimuli arrive at the computation unit, they are integrated and lead to dif-

ferent mechanisms depending on the type of the synapses used. At the end of the stimuli

for a neuron, an update is performed deciding if the neuron spikes or not and what to write

back in memory. The output spikes are then sent to the ANOC and looped back for targeting

the neuron in the same cluster.

As our implementation is fully synchronous here and uses only 1 cluster, the previ-

ously explored architecture was modified for simplicity purposes. The Proof of Concept is

fully synchronous implying the Network Interface, Controller and Scheduler modules were

modified. As it does not provide the support for AER events, those were simulated using

input FIFOs loaded at the configuration step and output FIFOs for retrieving output spikes.

Fig.4.1 shows the micro-architecture of the Proof of Concept. The main modifications with

respect to the previous chapter are highlighted in blue. The implementation and difference

of the modules shown here will be discussed on the following sections, starting with the

computing unit.
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Figure 4.1: Micro architecture of INSPIRE.

4.2.1 Synchronous computation

The modules responsible for the synchronous computation were intended to be used in a

synchronous manner. This is composed of 3 main parts: the manager making memory re-

quest, the memory itself and the computation unit. The computation unit includes a Finite

State Machine (FSM) handling outputs sent to the different neighbor modules. The FSM can

be described as follows:

• Receive the stimulus characteristics (type, weight, update order, target).

• Receive the neuron’s variables (neuron core potential and linear synapse level).

• Compute intermediate results: adds punctual integration weights to the core potential

and linear integration weights to the linear synapse level.

The manager module making the memory requests monitors the target ID and pro-

cess completion. When the target ID changes or if the synchronous process is complete for

this simulation step (no more stimuli to be retrieved), then the manager sends an update

request to the computation unit for the current ID inducing the following steps:

• Compute the updated neuron core potential from the previous one and the linear

synapse level and compare to the threshold potential.

• If superior, emit a spike and check if the neuron has to reset when spiking or not. If it

resets, store rest potential and rest linear synapse level. Otherwise, store the updated
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neuron core potential minus the threshold potential and the updated linear synapse

level.

• If the stored linear synapse level is not null, then the neuron being processed will have

to be updated at later simulation steps in order to perform the linear integration. In

this case, the computation unit notifies the Scheduler which activates the "To be up-

dated" register for the current neuron ID.

The output spikes are sent with the current ID to the Controller. The implementa-

tion of the Controller slightly differs from the previous chapter and will be depicted in the

next section.

4.2.2 Controller

The Controller module earns more roles in this implementation. First, it converts the ad-

dresses to synapse groups to be stimulated. It includes a FSM monitoring the ID from the

internal events generated by the computation unit and the input events generated at config-

uration time. Both types of events are stored in FIFOs, input events having time stamps as-

sociated to know when to use them. When those events arrive, the origin ID is used with the

corresponding SRAM (Input or Internal) depending on where the spike comes from. From

this memory is retrieved the address of the first synapse to be stimulated and the number of

synapses directly after the first one in memory which will also be used. The FSM then han-

dles memory calls to the 3rd SRAM which outputs the synapses characteristics: type, weight,

delay and target ID. Fig. 4.2 summarizes this first role with the different possible scenarios.

Secondly, this module handles the simulation tick changes. The input from the ren-

dezvous bus described in section 3.4.2 corresponds to the "start" input from Fig.4.1. Its role

in handling the simulation flow is to wait for the current tick to be finished and for the start

signal to be activated. This allows us to have 2 modes of operation: either toggle the start

signal to control the simulation tick duration or activate it to create a new tick as soon as the

previous one is over.

Finally, we use FIFOs to store input and output events as the chip is not handling

AER protocol. These FIFOs can be read by SPI and store the origin ID and tick count of

emission. The input events are stored in input time-stamp order at configuration time to

be able to retrieve them with the controller when they need to be converted into synaptic

stimuli. For this POC, the Controller thus needs a tick counter to know when to introduce

input spikes in the SNN. This tick counter is also used for writing time-stamp of emission

associated with the ID of spiking output neurons in the output FIFO.

The synaptic stimuli retrieved by the Controller are sent to the Scheduler that will
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Figure 4.2: FSM handling the 3 SRAMs for ID to synapses conversion. Monitors the Input FIFO and

Internal spike FIFO for activity. Retrieves the set of synapses using the corresponding first slot and

number of targets to be stimulated.

take care of storing the stimuli until they have to be retrieved ordered by target ID.

4.2.3 Scheduler - Synaptic Stimuli Storage

The Scheduler is designed to synchronously receive synapse characteristics, store the useful

information in the correct FIFO and retrieve the stored information when the stimulus has to

be processed. As specified at the end of the previous chapter, for the considered topologies,

we use in this module 512 FIFOs of 4 slots each plus 32 dynamically allocable FIFOs of 4 slots

each per FIFO array. This allows every neurons of the network to receive and integrate its

average input activity at each simulation step and also allows peak number of input events

for a subset of neurons.

The chip integrates 3 arrays with such arrangement. At each simulation step, data

from one array will be used to stimulate the neurons while the 2 other arrays will be filled

with events to be processed at time+1 and time+2. When the step changes, the roles of the

arrays are shifted in a circular manner. Time+1 becomes the one to be used for stimulation,

time+2 becomes time+1 and the previous array used for stimulation becomes time+2.
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This allows the synapses to have delays going up to 2 simulation steps. One of the

array can also be ignored in order to limit the synaptic delay to 1 simulation step and exper-

iments done with such technique will deduct the power consumption of the dummy array.

Fig. 4.3 summarizes the synchronous storing process. Each array stores the events for a

simulation step. As the first array is currently being processed, the second one stores event

having a synaptic delay of 1 simulation step and the third array stores the events having a

synaptic delay of 2 simulation steps. The target address gives the address of the FIFO used to

store the synaptic weight and type. If the corresponding FIFO is full, a dynamically allocable

FIFO is used in order to extend the reception capacities for the target neuron. The first un-

used dynamically allocable FIFO gets the ID if the current FIFO is full: the weight and type

are stored in it.
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Figure 4.3: Synchronous storing of synaptic stimuli using the synaptic delay to determine in which

array and the target ID to determine in which FIFO. F and DF are respectively the regular FIFOs and

Dynamically allocable FIFOs (associated with a target ID register).

Fig. 4.4 shows the same configuration a simulation step later. The array that was

previously storing events for the next simulation step is now being processed in order. The

order is defined by the Priority encoder, going through the following steps:

• Determine the highest ID of the non empty FIFO.

• Determine the highest dynamic ID of the non empty dynamic FIFO.

• Determine the highest ID of the neuron that has to be updated (having active linear

synapses).

• Retrieve the stimulus from the highest ID of both regular and dyn. FIFOs.

The synapse weight, type and target ID are then sent to the manager handling the

memory calls. If a scheduled update and an input stimuli are found for the same target ID,
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neurons having active linear synapse(s).

both operations are concatenated sending only the stimulus to the manager. In this im-

plementation, the amount of cycles spent processing each simulation step is known when

the simulation step starts. However, no strategy was implemented in order to perform local

DVFS accordingly. The synchronous processing starts with the priority encoder unloading

stimuli from the FIFOs. The synchronous processing ends with the retrieving of the last stim-

ulus from the current array of FIFOs, cycle during which the Scheduler notifies the Controller

the stimuli were all sent.

4.2.4 Configuration and inputs

The configuration of the chip is done using Serial Peripheral Interface (SPI), a serial com-

munication protocol. The SPI slave module handling the communication on the chip side is

linked to a configuration module responsible for handling read and write operations at the

different addresses. The following elements can be accessed via SPI, as illustrated in Fig.4.1:

• Controller module: 2 SRAMs for converting the input and internal addresses to synapses

ranges, 1 SRAM for the synapses themselves, a 1-hot register denoting if the corre-

sponding neuron has to send its spikes to the output of the cluster, 2 FIFOs for input

and output events and the simulation tick counter.

• Neurons’ memory: 2 DPRAMs storing the neurons’ core potential and linear synapses

values.

• Computation unit: a 1-hot register denoting if the corresponding neuron has to reset
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when emitting a spike or not.

The SPI requests for the chip configurations are generated using the SystemC model.

We translate the neuron and synapse placement that was performed for the model into SPI

requests that will configure the topology simulated in the model onto the chip. This chip is

not designed to be interfacing with Dynamic Sensors as it does not support asynchronous

communications scheme. The timing and origin address of the input events is loaded at

configuration time. These events are stored in a FIFO to be used at simulation time.

4.2.5 Design

In order to implement our Proof of Concept, we use the digital synchronous conception flow.

Table 4.1 shows the different tools used at each step of the process. The chip was imple-

mented using the LVT FDSOI 28nm technology provided by ST Microelectronics.

Tool Step

Questasim 10.5c Behavioral, RTL, postbackend simulation

DC compiler K-2015.06-SP2 Synthesis

Innovus 15.24 Place and route

Virtuoso I/O Ring, checks, top level simulation

Table 4.1: EDA tools.

The design is split in between two Power Domain (PD) for power consumption mea-

surements. The first PD corresponds to the modules that were intended to be used syn-

chronously: from the Priority encoder to the output of the computation unit, including

the DPRAMs for the neurons’ variables. The second PD corresponds to the Controller and

Scheduler modules that will ultimately be asynchronous. The chip is composed of 235k cells

and 85.56kb of memory for a silicon area of 0.8mm2. Fig.4.5 shows the layout of the chip and

the area used by the different modules in this implementation. The greatest module area-

wise is the Scheduler as the FIFO based implementation is less compact than a set of SRAMs

for the same memory footprint.

The chip was designed and simulated to reach 75 MHz in nominal conditions @0.9VDD

@0VBB @25C. When used at 75 MHz the chip is capable to simulate more than 18k simula-

tion steps per second at its maximal workload. Verification steps were performed with the

topologies explored in the previous chapters at each step of the design.
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Figure 4.5: Layout of the POC INSPIRE.

4.3 Test

The chip, named INSPIRE, has been fabricated in LVT FDSOI 28nm technology and oper-

ates from 0.45 to 1V with a Back Bias from -0.3 to 1.3V (Fig.4.6). It was packaged in QFN 28

integrated onto PCB. Fig.4.7 shows the setup for testing the chip.

Techno FDSOI 28nm LVT

Neurons 512

Synapses 4096

Area 0,8mm²

VDD range 0,45 – 1,2 V

VBB range -0,3 – 1,3 V

Cells 235K

Controller Scheduler

Manager
Comp. Unit

Memory Controller

Dummy circuit

SPI

Figure 4.6: Chip characteristics.

4.3.1 Topologies

The chip is measured while using n-input 8b signed Linear Combination topologies each

corresponding to n MAC operations. These operations were chosen as they represent the

majority of the computation performed in conventional applications and ANN inference.

Fig. 4.8 recalls the type of networks used for linear combinations. Those operators will also

be used with different parameters and inputs while still staying within the possibilities of the

chip (6b signed weights, 8b signed core and linear synapse levels) exploring the energy used

per operation.
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Figure 4.7: Test setup for INSPIRE.

i1 Sp

i2 Sp LC1 o1

LC2 o2

im Sp

im+1 Sp

Figure 4.8: Array of Linear combination used for testing the INSPIRE chip.
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4.3.2 Power analyzes

During the tests, the tick length is set to 36.8 µs corresponding to an emulated sparse activity

of 66 k events/s using the 128 inputs available, within realistic spiking sensor rate range. As

mentionned before, the tick length can either be controlled manually or via the Controller

ranging up to 4100 clock cycles. As shown in Fig. 4.9, the circuit’s maximum frequency is

60MHz@1V and 4MHz@0.45V.
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Figure 4.9: Maximum frequency versus VDD @(-0.3;0;0.3) VBB.

The energy per synaptic event is the main metric in spiking neurons architecture

and corresponds to the energy needed to integrate an incoming spike and is measured dur-

ing computation from the Controller to the computation unit in one cycle. As shown in

Fig.4.10, the minimum energy is 29pJ/cycle @0.5VDD @-0.3VBB corresponding to 26.4pJ

@0.5VDD @-0.3VBB per synaptic event. These results were obtained for topologies having

a maximum synaptic delay of 1: only 2 of the 4 arrays of the scheduler was used and thus its

power consumption was deduced of the total.

In these conditions, it exhibits 115µW (42.8µW leakage), 92% of the power is con-

sumed by the Controller storing topologies and Scheduler storing synaptic stimuli. Con-

sumption being dominated by Synapses storage and utilization is common among neuro-

morphic architectures. In order to perform a MAC 8bits, 127 synaptic events are required,

corresponding to 3.3 nJ/op in our circuit.

Fig. 4.11 shows the power consumption breakdown per PD in function of the fre-

quency @-0.3VBB. The power consumption of the computation unit and neurons’ variable

memory represents less than 13% of the total consumption of the chip. The dynamic power

generated by the Controller and Scheduler represents the majority of the power consump-
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Figure 4.10: Energy per cycle and per synaptic events versus VDD @-0.3VBB.

tion of the chip with 55 to 83% of the total.
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Figure 4.11: Power breakdown @-0.3VBB. The Power Domain 1 (PD1) (SPI + Controller + Scheduler)

dominates the power consumption of the chip.

Contrary to usual DSP/GPU cores, our approach is, by nature, approximate as shown

in Fig.4.12 where energy is scaled with respect to MAC accuracy. As the need for precision

decreases, the tick length can be increased in order to keep operating on the same events but

at lower accuracy. Using modular MAC operators, we prove in Fig.4.12 that the energy used

by our approach scales with accuracy needs. This approach is thus very suitable to flexible

spiking sensors interfaces as it can adapt to different specifications.

Even if no Spiking Neural Networks architectures are comparable to our approach
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Figure 4.12: Computation unit cycles used and synaptic energy per operation versus accuracy.

(sized for usual Neural Network applications), we can fairly compare energy per synaptic

events as shown in Tab. 4.2. Our proposed variable tick length fits sparse activity generated

by our topologies, leading to power savings in energy per tick. The main difference remains

in precise timing computation (with respect to rate coding in SoA) allowing to compute using

less spikes, for example 8x8bits MAC operations require 1.1k spikes with precise timing and

66k spikes with rate coding, saving energy while computing an equivalent DSP computation.

This comparison will be extended at the application level in the next chapter and compared

to other temporal approaches [1].

Chip SpiNNaker [2] TrueNorth[3] INSPIRE

Techno 130nm (ARM) 28nm 28nm FDSOI

Coding Rate Rate Precise Timing

Neurons 16k 1M 512

Type Prog LIF IF

Synapses 16M 256M 4096

Power 1W 72mW 115µW including 42.8µW leakage

En./syn. evt. 10nJ 25pJ 26.4pJ

Tick length 1ms(var.) 1ms 36.4µs(var.)*

En./tick (512 neurs) - 34.18nJ 4.23nJ

Table 4.2: Approach comparison with SOA chips.

*benchmark: 8b MAC operators @0.5VDD @-0.3VBB @4MHz
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4.4 Discussion

As emerging Spiking sensors provide new solutions for low power sensing, no matching pro-

cessing solution has been proposed yet. Their main purpose is to send events only when it

receives information, dropping the frame notion. This leads to few events being transmit-

ted and lower processing workload. The implemented Proof of Concept can be seen as a

DSP chip able to perform any required mathematical operation directly on data contained

in the timing of the input events. Temporal precision is limited by the hardware simula-

tion tick length which can be set according to sensor needs. Our proof of concept, INSPIRE,

is fully synchronous but already exhibits promising performances compared to other neu-

romorphic chips. Our topologies specifications lead to a chip integrating 512 neurons for

4096 synapses and using down to 26.4pJ per synaptic events. Moreover, it also requires less

of them compared to its frequency coded counterpart leading to consequent power savings.

Considering timing approaches rather than rate coded approaches for future spiking sensors

is thus a promising way for breakthrough in low power processing.

As shown in Fig. 4.11, the majority of the power consumption of the chip comes

from the dynamic power generated by the synchronous Controller and Scheduler. The POC

INSPIRE was designed to prove feasibility and show advantages when processing timing fea-

tures compared to rate features, but it was not designed to be integrated in a GALS archi-

tecture. Designing a cluster to be integrated in a GALS architecture requires implementing

the Controller and Storing part of the Scheduler in asynchronous logic. As the input activ-

ity is sparse, the generated dynamic power will be mitigated. The power consumed by the

synchronous processing will have the same characteristics and the energy consumed will be

reduced by the local DVFS strategies [4].

We proved the interest that resides in processing timing data from inputs spike streams

with our SNN topologies. We also implemented custom hardware both flexible enough to

take advantages of the special characteristics of our topologies and competitive with SOA

chips in terms of energy per synaptic events. Moreover, the main source of energy consump-

tion is identified and its impact will be mitigated in the GALS implementation. The next

chapter will focus on applying the developed topologies and models to a set of applications

and more precisely conversion of Artificial Neural Networks.
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Application of the Framework
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5.1 Introduction

We developed in previous chapters the tools for quickly mapping application. The library

of Fixed-Point operators enables exploring SNN topologies for a set of constraints and the

SystemC model enables fast hardware simulation of the designed topologies. The developed

proof of concept already reaches SOA efficiency while being fully synchronous and thus sub-

optimal.

In this chapter, we use the developed tools in order to design topologies answering

specific applications. As mentioned, the library of operators handles Fixed Point operations

that can be assembled to process streams of spikes for which the timing of the event is im-

portant.

The applications used in this chapter mainly revolve around the use of ANN as

designing base. These networks have already proven efficient in multiple fields and we

aim here at converting their efficiency to the spiking domain using our operators. ANN to

SNN conversions were already performed for different neural coding including rate coded

[1][2][3][4] and Time-To-First-Spike [5]. The aim of this chapter is threefold: implement a

precise timing-ready training scheme for ANNs; show how the developed topologies enable

design of more complex converted ANNs than other coding strategies and prove the benefits

of using this conversion. The highlight here is not focused on high classification accuracy,

but mainly on the conversion method and its comparison to baseline implementations.

5.2 MNIST

This first section will focus on the MNIST database and the conversion of CNN trained on it.

The MNIST database is composed of images of handwritten digits "0" to "9". It is composed

of a training set of 60,000 examples and a test set of 10,000 examples. Fig5.1 shows examples

of the 28x28 pixel images included in this database.

It is a good database for experiencing with machine learning and implement proof

of concepts. It is commonly used as a recognition benchmark for ANN topologies and tweaks

in their hyperparameters. State of the Art NNs achieve under 0.3% error rate [6][7][8] when

classifying images from the MNIST database. Also this part will not be focused on achieving

the highest accuracy, but rather on the method used for converting the trained CNN into a

Spiking CNN.
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Figure 5.1: Handwritten digits from the MNIST database.

5.2.1 Convolutional Neural Networks

Multi-layers fully connected networks have proven efficient when used with gradient de-

scent for classification tasks. Their ability to learn complex non-linear mapping enables high

classification rates. However, they also present weaknesses which are mainly contained in

their structure. First, as their name indicates, fully connected networks rely on complete

connectivity in-between layers. MNIST images are 28x28 which already represents 784 in-

put pixels that have to be connected to each neuron of the first layer of the network. The

trained network are naturally heavy memory-wise. The second weakness is sensitivity to

translations and local distortions. As neurons specialize to certain features, they are linked

to specific coordinates of the input images. In order to detect the same translated feature,

another neuron will specialize with the same weight pattern translated on the input image.

Using this mechanism, large fully connected networks could be resilient to translations and

local distortion at the cost of weight redundancy.

In order to cope with those issues, CNN are used [9]. They have a layered structure

with shared weights and partial connectivity in-between layers. They are composed of 3

main types of layers: the convolution layer, the pooling layer and the fully connected layer.

A convolution layer is defined by a set of kernels trained by gradient descent. Each kernel is

applied to the whole input image resulting in kernel dedicated channels as shown in Fig.5.2.

For a kernel of size k, the computation performed at each neuron (x,y) of the convolution

layer is the following:

o(K,x,y) = f (
x+k−1∑

i=x

y+k−1∑
y= j

I(i , j )WK,(i−x, j−y)) (5.1)
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where f is the activation function (sigmoid, tanh, ReLU, SeLU...), I is the input activation

matrix and W the kernel tensor. The shared kernels each specializes into specific features

that are detected through the whole input channel. The pooling layer is designed to reduce

the size of the input channels while still maintaining the relevant information. Each neuron

of this layer essentially performs a chosen operation (average, max...) on a fixed number of

input neurons from the same channel. Performing this operation divides the input dimen-

sions by the pooling size while still maintaining the presence of features within this region.

Thus, it also participates to resilience to local distortion and translations.
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22
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. =

6x6 input map

3x3 kernel 3x3 result
4x4 output map

Figure 5.2: Convolution performed with a 3x3 kernel on a 6x6 input map with stride 1 gives an output

map of size 4x4. The results follow equation 5.1.

Using multiple pairs of convolutional and pooling layers, the input image dimen-

sions can be reduced to few pixels distributed on multiple channels. Such network when

trained with gradient descent can already perform classification tasks as the successive lay-

ers hierarchically extract more and more complex features. A fully connected layer is gen-

erally added as classifier at the end. It uses the output of every neurons from every kernel-

dedicated channel and performs the classification using as many neurons as there are classes

to classify. Fig.5.3 shows the global structure of a 5-layer CNN including 2 convolution layers

of 5 and 10 kernels, 2 pooling layers and a fully connected layer for the classification. This

type of 5-layers CNN is enough to achieve over 95% recognition using the MNIST database

and will be used for this section.

5.2.2 Baseline training

For simplification purposes, the size of the MNIST images was reduced to 18x18 pixels and

the number of grey levels reduced from 256 to 16. The aim is not to achieve particularly high

accuracy but rather demonstrate our method and such degraded input images are sufficient.

The network topology used here is the mentioned 5-layer CNN using the following

parameters:
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Figure 5.3: 5-layer CNN using 18x18 input images. Conv1 is composed of 6 kernels and conv2 16

kernels. The classifier is Fully Connected layer of 10 neurons.

• 18x18 input images using 16 grey levels

• C1 convolutional layer with 6 (3x3) kernels using the ReLU activation function

• P1 max pooling of size (2x2)

• C2 convolutional layer with 16 (3x3) kernels using the ReLU activation function

• P2 max pooling of size (2x2)

• Fc1 10 fully connected neurons for classification

The ReLU activation function performs the Maximum operation between the input and zero.

It is used to accelerate the learning using gradient descent and in this example will be eas-

ily converted using our operators. The number of kernels for the convolutional layers was

chosen arbitrarily. The pooling function chosen here is the maximum function which fits the

examples implemented in Chap.2.

The gradient descent training is done using N2D2, a Neural Network Computer-

Aided Design (CAD) tool developed in CEA [10]. It integrates both a framework for designing

and training ANNs and XNet for the SNN design and inference. The first training step is done

using double weights and 8b grey level 18x18 images. The resulting network achieves 97.06%

recognition rate.

Then, in order to prepare the network for exporting weights to our precise timing

topology, we need to quantize the grey levels and weights of our network. Thus we perform

a second training step while down-scaling the weights to 5b signed and grey level to 4b. The

starting point used for this phase is the network obtained during the first training step. This

quantization step achieves 96.91% accuracy which will be used for the conversion to precise

timing domain.
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5.2.3 Building Precise Timing CNNs

We now need to define a network topology that will receive the weights learned in the pre-

vious steps. To do so, we use the equations computed by the different layers and convert

them using the operators defined in Chap.2. The main function we have to implement is the

following:

o(K,x,y) = max(
x+k−1∑

i=x

y+k−1∑
y= j

I(i , j )WK,(i−x, j−y),0) (5.2)

We will thus define hierarchically networks computing the previous equations up to the

complete CNN topology.

Kernel computation

The first computation to be made is the Kernel convolution. This step can be performed

using the Linear Combination defined in Chap.2 with minimal requirements with respect to

sign. As only positive results will be sent to the next layer, negative results do not have to be

kept. Fig.5.4 shows the topology used for the kernel computation performing the equation:

o(x,y) =
x+k−1∑

i=x

y+k−1∑
y= j

I(i , j )Wk,i−x, j−y (5.3)
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Figure 5.4: Topology used for Kernel computation.

The Maximum computation performed for the ReLU activation function can be per-

formed in the max pooling layer, saving neurons and network activity.

Max pooling computation

As we use 2x2 max pooling, we have to perform here a 5 input maximum following this equa-

tion:

o(x,y) = max(i(x,y), i(x+1,y), i(x,y+1), i(x+1,y+1),0) (5.4)
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We can derive this operator from the 2-input maximum operator developed in Chap.2. Fig.5.5

shows the obtained topology for this equation.

I1

I2

I3 M

I4

I5

(P,F,1)
(P,−4F,1)

Figure 5.5: 5-input maximum operator used as max pooling unit. 5 neurons will stimulate M for each

operation. The first stimulation makes it spike and inhibit itself. The 4 other stimuli reset the neuron

to its rest potential.

Operator concatenation

The convolutional units and pooling units can readily be assembled into layers to perform

CNN computations. However, it is better to concatenate operators used per pooling unit

in order to save neurons and activity. This concatenation uses 1 max pooling operator and 4

kernel computation operators to form a new unit performing the computation of both layers.

Fig.5.6 shows the resulting unit. This unit will perform both equations defined previously in

a more efficient way.
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16 ,1)x16
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(P,F,1)x4

(P,F,1)

(P,−4F,1)

Figure 5.6: Convolution + pooling unit. The synchronization neuron (S) uses the second spike from

the 16 input pixel in the max pooling zone. The spikes from the accumulators (A) are directly sent to

the neuron (M) performing the maximum operation with the null signal being sent from (R).

The synchronization neurons are merged into 1 serving the 4 kernel operators. This

synchronization neuron recalls the 4 accumulators when their stimulation is complete for

the current input. The output time of the 4 accumulators are compared to the null interval

value generated by the merged recall neuron used for the maximum computation.
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Fully Connected

The fully connected layer is essentially composed of 10 linear combination operators per-

forming the classification. As for conventional CNNs, the result class is given by the output

operator having the largest interval. Fig.5.7 is a reminder of the principle of the operator with

its main links to previous layers.
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Figure 5.7: Topology used for FC layer computation.

The defined layers once assembled form the complete operator described in section

5.2.2. We can now export the learned weights into our topology and perform the spiking

inference.

5.2.4 Precise Timing CNN inference

Once the weights are loaded into our topology, two more points have to be explored. The

first one is the conversion from the 18x18 4b grey level to stream of spikes to be integrated

by our SNN. The second one is the intermediate results range: the second training step here

only performs quantization of the input activation levels and weights, but does not control

the range of intermediates results which could not fit our Fixed-Point operators.

MNIST conversion

The conversion from the reduced MNIST database requires associating couples of event per

pixel. Each pixel has to emit 2 events defining its grey level, each event having an origin ID

associated to a timestamp. This creates the AER events that will be sent to our network for

the inference.

First, the pixels are mapped to IDs to be used as input channels for the operator.

Then, couple of spikes are created using the following encoding function for the intervals:

δt (x) = b x

16
c (5.5)
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where x represents the pixel intensity. This encodes the pixel intensity in 16 linearly dis-

tributed grey levels. A δt of 1 corresponds to a white pixel and a δt of 16 corresponds to a

black pixel. Fig.5.8 summarizes the conversion used for the MNIST images.

t

P0

P1

P2

P3

P0 P1

P2 P3

Spikes

Figure 5.8: Converting MNIST database to inter spike interval values. Brighter pixel have narrower

intervals.

Range

The implemented operators compute using Fixed-Point arithmetic. The training done in

N2D2 corresponds to Floating Point operations done with quantized weights and input acti-

vation but does not constrain the intermediate results in terms of precision. In order to keep

the same precision with precise timing SNN, one would have to use different capacities for

the neurons of the different layers.

The first convolutional + pooling layer performs the intended operation using in-

tervals coded on 4b and signed weights on 5b. The output of the first couple of layers can

thus be contained on 11b timing intervals, which requires the accumulator neurons to have

membrane potentials defined on 11b and the further layers to have increasingly important

capacities. In order to keep homogeneous capacity requirements neuron-wise, the interme-

diate results are forced on 4b down-scaling the obtained results. The rounding have to be

done after the accumulation phase, when the results are recalled and compared to 0. Fig.5.9

shows the modification needed in order to round the intervals obtained. The linear synapse

with elementary weight that was used to recall the values stored in the accumulators and

the empty neuron is changed to have a 27 weight, meaning the intermediate accumulation

result stored on 11b is partly ignored as only the 4 MSB will have an impact on the output

interval sent to further layers.
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Figure 5.9: Rounding is computed when recalling the values stored in the accumulators and the recall

neuron with the updated weight 27.

5.2.5 Results

As explained in the previous section, the intermediate results need to be rounded in order

to fit uniform neuron capacities. This leads the accuracy achieved by the spiking CNN to

drop to 92.8% recognition rate. It uses 11b for neurons variables, 8b for synapses, including

synapse type, delay and weight.

When the equivalent rate coded network would use 2,122 neurons with average

pooling leveraging ReLU activation functions, we use here 3,706 neurons (C1: 1,536 neu-

rons, P1: 1,152, C2: 576, P2: 432 and Fc:10). The average Fan-in required is 43% higher in

the time-coded version (31.9 input connections per neuron) than in the rate coded network

(22.3 input per neuron).

However, our temporal approach use at most 4,344 spikes per classification as when

the amount of spikes used with rate coding is higher. In order to determine the recognized

class in the rate coded version, a specific class has to output N more spikes than any other, N

being a parameter. Setting a difference of 20 spikes (N = 20) to keep accuracy over 96% leads

to 273% increase in the total number of spikes used compared to the time-coded version (for

a total averaging at 11,885 spikes).

5.2.6 Discussion

Precise timing is a promising solution for lightweight spiking CNN implementation as they

consume fewer spikes than their rate coded counterpart to achieve equivalent accuracy.

Such conversion and comparison were also explored with rate coded SNNs [11], performing

92% accuracy on Field-Programmable Gate Array (FPGA), or TTFS SNNs [5], achieving ac-

curacy equivalent to their ANN counterpart while only using 1 spike per neuron. Moreover,

when timing based strategies give us the possibility for short input integration and one-shot

operations, rate coding will only compute accurately only if the features are present for a

long enough time at the input.
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Using Precise Timing networks in order to mimic CNN operations is a promising

way to improve its energy efficiency. Compared to a rate coded approach, the same accu-

racy can be reached using less synaptic events and fewer input spikes. The precise timing

approach is closely related to the TTFS coding that also uses timings to encode the informa-

tion. When TTFS uses a common "Start" signal and 1 "Stop" per channel for the intervals,

the precise timing approach computes the intervals from each channels independently. The

proposed conversion method provides accurate precise timing CNNs and can be extended

to other types of ANNs.

We acknowledge the fact that the example chosen here is not fitting the use of DVS

which provides both differential events and grey level event pairs. The MNIST conversion

reduces the DVS model to its grey level event pairs using only static images, thus not fully

utilizing its capacities. Moreover, some improvements can be made for this particular ex-

ample. First, using ReLU activation function will inevitably lead to a non negligible pro-

portion of null intermediate results. Those null results have to be sent to the next layer as

two events having the same timestamp, generating unnecessary activity. Nevertheless, those

events are needed in this operator implementation as they trigger the synchronization neu-

rons designed to recall results when all the input events are arrived. By using external control

neurons being able to automatically synchronize the layer computations, the events coding

for the null interval can be avoided at each layer.

Secondly, the training of the down-scaled version did not include rounding, leading

to a 4.11% accuracy drop when performing the SNN inference. This drop due to informa-

tion loss in-between layers can be mitigated. The down-scaled training step has to integrate

range monitoring in order to optimize the rounding performed in-between layers. The next

conversion developed will use this point and a more realistic application.
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5.3 N-TIDIGITS18

This section will focus on the conversion of Recurrent Neural Networks (RNN) designed to

classify spoken digits. The database used for this application is N-TIDIGITS18 [12][13] that

was recently created. It is composed of spoken digits from TIDIGITS [14][15] recorded using

the DAS AER EAR [16]. The 25,102 resulting spiking samples represents men, women, boys

and girls pronouncing digits or sequence of digits. The mentioned digits are “oh”, “zero” and

“1” to “9”.

The database can be extracted from an HDF5 file [17] containing the different se-

quences as streams of AER events. As specified before, these AER events are coupled of data

representing the origin channel ID and emission timestamp. As described in Chap.1 the

lower channel ID represents the lower tones and highest IDs the highest tones, following a

logarithmic distribution in frequencies. Fig.5.10 gives an example of input chronogram for

the input sequence 5 8 9 9 2. For our application, we extract only the digits from the database.

This represents a total of 2,464 training samples and 2,486 testing samples.

Figure 5.10: Input chronogram for the sequence "5 8 9 9 2".

5.3.1 Long Short Term Memory, Gated Recurrent Unit and Recurrent Neu-

ral Networks

In order to classify audio samples, the dynamics of each channel has to be taken into ac-

count. One could use the obtained chronogram as an image to be classified with CNNs rec-
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ognizing patterns in the channels dynamics. For a network to grasp the input dynamics, it

has to keep information about the previous states. For this purpose, Recurrent Neural Net-

works use previous results in future computations with weights trained by gradient descent.

The recurrent connection training is done "unfolding" the network along the time axis, con-

sidering the same network at the previous input as a different one linked with the synapses

to be trained.

Different classes of recurrent networks will be used to tackle spoken digit recogni-

tion in this section. The simpler recurrent network model is the Recurrent Neural Network.

For this topology, each recurrent unit is composed of 1 neuron and the output of each unit of

the layer is connected to the input of each unit from the same layer. The computed equation

at each layer is the following:

ht = f (Wx xt +Whht−1 +bh) (5.6)

where h is the output, ht−1 the previous state, xt the input activation, bh the bias, Wx the

input weights and Wh the recurrent weights. f denotes the activation function (sigmoid,

tanh, ReLU...). For this section, the ReLU activation function will be chosen for the precise

timing RNN implementation.

Another recurrent network implementation is the Gated Recurrent Unit (GRU). Its

principle is based on having the choice to update or reset the output value in function of

internal gates values. The GRU equations [18] used are as follows:

zt =σz(Wxz xt +Whz ht−1 +bz) (5.7)

rt =σr (Wxr xt +Whr ht−1 +br ) (5.8)

g t = t anh(Wxg xt +Whg (rt ¯ht−1)+bg ) (5.9)

ht = (1− zt )¯ht−1 + zt ¯ g t (5.10)

where z and r are respectively the update and reset gates. h is the activation function, sum

of the weighted previous value ht−1 and new candidate g t

The last recurrent network implementation that will be explored in this section is

the Long Short Term Memory (LSTM). As for the GRU, it contains internal gates deciding if

the LSTM unit forgets its current value, updating it to a new candidate value, or not. The

LSTM equations used for our training are those of the LSTM with a forget gate [19]:

it =σi (Wxi xt +Whi ht−1 +bi ) (5.11)

ft =σ f (Wx f xt +Wh f ht−1 +b f ) (5.12)

ot =σo(Wxo xt +Who ht−1 +bo) (5.13)

g t = t anh(Wxg xt +Whg ht−1 +bg ) (5.14)
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ct = it ¯ g t + ft ¯ ct−1 (5.15)

ht = t anh(ct )¯ot (5.16)

where i , f anf o are respectively the input, forget and output gates. c and h are respectively

the cell state and hidden state. The new ct value is calculated as the centroid of the ct−1 value

weighted by the forget gate ft and the candidate g t value weighted by the input gate it . The

new ht is calculated using this new ct cell value and the output gate ot .

5.3.2 Baseline training

The training was done using Torch NN with the dataset restricted to digits only. The trained

topologies are all composed of 1 to 3 successive recurrent layers of 100 to 200 units. These

recurrent layers are connected to a FC layer of size 11 performing the classification. As speci-

fied before, the classic RNN-based networks will be using ReLU activation functions for con-

version to precise timing topologies purposes.

The training was done using a categorical cross entropy objective on the output of

the FC at each "frame". The Adam optimizer was used on 100 epochs with a learning rate

starting at 0.001. A validation run was performed using the testing samples every epoch to

monitor performances. The topologies performing the best validation scores for each set of

parameters were saved.

In [12], the FC layer is solicited only once per digit at the end of the sample to clas-

sify. Compared to this approach, the FC layer in our networks outputs a result at every frame

rather than once per digit. This changes both the training and inference behavior. During

training, the presence of input activity due to a spoken digit is given as information to the

network. If the current input is not part of a digit (mainly beginning and ending voids and

artifacts), the network is trained to recognize a temporary twelfth class associated to noise

and that will be dropped for the inference phase. The network is thus trained to recognize

that the current input activity is part of the phonemes of the current label. During the in-

ference process, input activity bulks can be found and for each such block a poll is made at

the output of the network. As the input frames loaded with data from the digit phonemes

go through the network, a trained network’s output will converge to an output class and the

polling policy will determine which class was recognized.

Features

As we intend to use ANN with spiking samples, we need to convert back those AER events

to have a frame format that can be exploited by ANNs. We use the same 5 ms per frame as

in [12] that was determined to be optimal for their features. The spiking samples are thus
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split into 5 ms time windows and for each time window an input vector of size 64 is created.

The slots of the created vector contain the number of spikes that were received from the

corresponding input channel during the current time window.
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Figure 5.11: Constant time bins features: for each 5 ms window, count the number of event per chan-

nel and create an input vector.

The feature created using all of the created frames will be referred as “Constant time

bins” (Fig.5.11). Another set of ANN features was created essentially removing the empty

frames from the first set of frames. This second set of inputs containing only frames having

activity will be referred as the “Event driven constant time bins” (Fig.5.12), meaning that the

size of the time window is still constant but the usage of the frame is determined by whether

it has activity or not.
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Figure 5.12: Event Driven Constant time bins features: for each 5 ms window, count the number of

event per channel and create an input vector if not empty (green).

Quantization

The quantization step performed for the CNNs in sec.5.2 is also performed here for the

RNNs. Once the ReLU RNN has followed the training process, the obtained network is ex-

ported and its weights are quantized to prepare for conversion. In this section, the interme-

diate result range is monitored and the output of the recurrent layers rounded during the

re-training of the quantized RNN to mitigate accuracy loss.
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The quantization method is thus composed of 3 main points here, starting from the

32b float RNN:

• Round input weights, recurrent weights and bias to 5b signed.

• Round the output of RNN units to 8b.

• Monitor the range of the intermediate results.

The intermediate result rounding is done using 8b in this implementation. This does guar-

antee the precision of the Fixed-Point operations to be respected but does not guarantee

overflow protection which is performed monitoring the range of the intermediate results.

The training phase of the quantized RNNs is done as follows:

• Start from the best 32b float RNN with the same dimensions (layers and size) and use

quantization.

• Train on 32b precision for the weights while keeping the rounding at the output of RNN

units.

• Perform weight and bias quantization before every validation run.

Results

Table 5.1 summarizes the accuracy achieved by the previously defined topologies for the

different feature used. As one can expect, at fixed network size, the gated units outperform

RNNs and the RNNs perform better than their quantized versions.

The network composed of gated units seems to be able to retrieve further infor-

mation from the length of the silences contained within digits as they perform better using

“Constant time bins”. On the other hand, RNNs have a difficult time maintaining relevant

information for multiple frames as shown with the 60.56% accuracy achieved by the RNN

using Constant time bins. As the information about past phonemes can by erased during

silences within digits, they achieve better accuracy using “Event driven constant time bins”

with 75.46% for the same topology size.

5.3.3 Building Recurrent SNNs

We will now detail the implementation of the SNN topology used to perform the RNN com-

putation using precise timing. The main points that will have to be explored are the feature
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Table 5.1: Summary of investigated recurrent topologies and comparison to state of the art. (layers x

size)

Sensor Feature type Network Accuracy(%)

[20] AMS1b[16] Constant time bins GRU 82.82

(N-TIDIGITS18) CNN 87.65

[12] 1 AMS1b Constant time bins GRU(2x100) 86.4

(N-TIDIGITS18) Exponential features GRU(2x100) 90.9

AMS1c[21] Constant time bins GRU(2x100) 88.6

Exponential features GRU(2x100) 91.1

This work 2 AMS1b Constant time bins LSTM(1x100) 85.72

(N-TIDIGITS18) GRU(1x100) 84.67

RNN(1x100) 60.56

Event driven LSTM(1x100) 82.78

constant time bins GRU(1x100) 81.77

RNN(1x100) 75.86

Quant. RNN(1x100) 75.46

1 GRU(2x100) here is followed by a Dense layer of size 100 and a Fully Connected layer of

size 11. Classification is performed once per sample
2 Our topologies are followed by a Fully Connected Layer of size 11. Classification is

performed every frame of the sample and polling decides the result

conversion, the recurrence implementation and the different update scheduling possibili-

ties.

Feature conversion

First, the recurrent networks were trained using features based on counting the number of

events per channel in 5 ms windows. Using such time windows with low event rates, the

information contained in the number of event per frame per channel is close to the average

inter spike interval that could be used in our topologies.

Nevertheless, for the conversion to be fitting exactly the trained networks, we need

to convert the spike count to timing data that can be used in our operators. Fig.5.13 shows

the operator principle: for each channel, a pair of neurons (A,R) is used to count the incom-

ing spikes. When the count stored in the pair is recalled, the count is naturally converted to

an interval to be processed in the recurrent layers. The (C) neuron controls the presence of

input for this particular channel. If no spike was received during the period, the (C) neuron

will not emit a spike when stimulated at the “Full - Elementary” potential. Thus no interval

will be sent to further layers, reducing the number of synaptic events used.
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Figure 5.13: Counting input events and sending the result to the recurrent layers when recalled by the

Control1 channel.

Recurrence

The second principle used in the spiking RNN is the recurrence. The main issue we have

here is that accumulating neurons cannot both compute and output a result at the same

time. Two distinct phases have to be used for both the accumulating phase for the computa-

tion and the recalling phase for the computation. Thus, when the result for frame t is being

recalled, the interval being outputted cannot be used directly in the same operator for the

recurrence. This leads to the implementation of copy neurons. Fig.5.14 shows the imple-

mentation of a copy neuron. The copy implementation requires 3 input synapses, 2 for the

incoming interval to be copied and 1 for recalling the interval stored.

h+ C

h− R

Contr ol 1

(L,e,1)

(L,−e,1)

(L
,e

,1
)

(L,e,1)

Figure 5.14: Copying timing intervals for reuse purposes. This operator receives an interval from the

result of the previous computation and sends the copied result to the whole layer.

We can now reuse the Linear Combination operator and add a max operator and

the copy principle for implementing the RNN unit. Fig5.15 shows the complete RNN unit.

The Control channels are common to every unit and are responsible for the different steps

scheduling. As shown in Fig.5.16, each neuron has specified accumulating and recalling

phases. In contrast to the CNN implementation which used local Synchronization neurons

to perform local scheduling, this implementation uses global control scheme updating all

the units in phases.

The recurrent layer is composed of 100 to 200 units shown in fig5.15. The output of

the copy neuron in each unit is also used as input in every unit from the same layer, forming
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Figure 5.15: Unit used for the spiking RNN topology. The accumulation is performed by the neuron

(A), the maximum operation by the neurons (0) and (P) and the copy by the neuron (C). The control

channels are responsible for calling the stored values. The value copied in the (C) neuron is sent to

every unit from the same layer as input data.
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Figure 5.16: Scheduling RNN update. The topology used for this example is 1 RNN layer followed

by the FC layer. The green phases represents accumulating the inputs and the red phases represent

recalling the stored values. Scheduling the different phases is done using the Control channels.

the recurrence.

Control channels

The RNN update scheduling has to fit the used features during training. For the "Constant

time bins", one has to setup a loop using 3 neurons and linear synapses as defined in Fig.5.17.

Using a simulation step length of 5ms/512 and neurons having 10b internal variables here,

the length of the loop in terms of simulation ticks is 1024. This means two distinct phases of

512 simulation ticks are formed by the neurons C1 and C2 controlling the channels Control

1 and Control 2.

For the event driven constant time bins features, this loop has to start only if input

activity was found in the 5 ms window. This can be done setting a condition on the output of

the signals of the loop. Using the topology described in Fig.5.18, the control signals from the
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Figure 5.17: Control loop initiated via the "Start" event. This loop will send spikes to the recurrent

and FC layers every defined amount of simulation steps.

loop are sent if and only if the frame is not empty.
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Figure 5.18: A condition is added to the Control Loop. The loop will continue only if it received at

least one input spike. If it didnt receive any it will stop and wait for activity.

Fully Connected

The FC layer is essentially the same as the one used for the CNN using 11 classifying neurons.

However, for each spiking sample from N-TIDIGITS18 the result of the FC layer is computed

and stored. When the sample is over, we use polling over the bulk of the frames susceptible

to contain the digit in order to decide which class was recognized by the network.

5.3.4 Recurrent Precise Timing SNN inference

Table 5.2 summarizes the accuracy achieved by the quantized RNNs and their spiking coun-

terparts. In this case there is no accuracy drop as the training phase done before exporting

the weights to the spiking topology integrated every constraints for Fixed Point arithmetic.

Only the event driven approach was kept for the conversion step as it was proven more effi-

cient for the RNNs here and generates less computation as empty frames are removed.
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Table 5.2: Summary of investigated spiking Recurrent Networks. (layers x size)

Feature type (Update mode) Network Accuracy(%)

[12] Raw Spiking data Phased LSTM 87.75

This work Event driven LSTM(1x100) 82.78

constant time bins GRU(1x100) 81.77

Quantized RNN(1x100) 75.46

Quantized RNN(1x150) 76.31

Quantized RNN(2x100) 77.96

Quantized RNN(2x150) 78.60

Raw Spiking data Event Converted RNN(1x100) 75.46

driven Converted RNN(1x150) 76.31

update Converted RNN(2x100) 77.96

Converted RNN(2x150) 78.60

In order to compare the operation per second used per our spiking topologies and

baseline GRU and LSTM for the same size, we use the synaptic event as operation for the

SNN. On the other hand, GRUs and LSTMs use a majority of 32b MAC that are counted as

2 operations here. Fig5.19 shows the comparison in terms of achieved accuracy versus the

number of events per second used.
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Figure 5.19: Accurary versus MOps required for real time processing @1x100 recurrent layer size. 32b

MAC for GRU and LSTM are counted as 2 operations. Synaptic events are counted as 1 operation for

the Spiking RNN.
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The baseline GRU and LSTM implementations using only non-empty frames use

320 to 1091% more Ops than the Spiking RNN while achieving 6.31 to 7.31% more accuracy.

When retrieving information from all the frames from the samples, GRU and LSTM use 947

to 2855% more Ops than the event driven spiking RNN and achieve 9.21 to 10.26% higher ac-

curacy. The accuracy of the RNN can be enhanced using more layers or more units per layers

as shown in Fig.5.20. For every topology size, the two data points represent minimum and

maximum activity. The minimum activity characterizes frames with low number of events

while the maximum activity represents frames with at least one event per channel.

75

75.5

76

76.5

77

77.5

78

78.5

79

79.5

80

0 2 4 6 8 10

A
c
c
u

ra
c
y
 (

%
)

MOps

1x100

1x150

2x100

2x150

Figure 5.20: Accurary versus MOps required for real time processing. Comparison of Spiking RNNs of

different sizes.

5.3.5 Discussion

The spiking RNNs have proven to maintain the same accuracy as their quantized counter-

parts while generating low activity. The main advantages compared to the gated units is

their simplicity which enables low cost spiking implementation. Compared to their ANN

implementation, the spiking RNN interface itself naturally with raw spiking data and man-

ages to consume less operations. Using precise timing is key for this implementation, as the

developed mechanisms including memorization and synchronization are essential for the

recurrence contained in the RNN.

Rate coded spiking RNNs have been implemented [22] by linking the neuron to it-

self with a sufficient delay. This delay represents the time needed to encode the input data
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Table 5.3: Summary of investigated spiking Recurrent Networks @80%train 20%test for N-

TIDIGITS18.

Feature type (Update mode) Network Accuracy(%)

This work Constant time bins Quantized RNN(1x100) 80.73

Quantized RNN(1x150) 86.27

Raw Spiking data Constant Converted RNN(1x100) 80.73

time update Converted RNN(1x150) 86.27

Event driven Quantized RNN(1x100) 85.22

constant time bins Quantized RNN(1x150) 91.11

Raw Spiking data Event driven Converted RNN(1x100) 85.22

update Converted RNN(1x150) 91.11

in this implementation, guarantying proper function of the recurrent link. However, this im-

plementation has its limitations and cannot reproduce the principles achieved by precise

timing. For instance, the ability to maintain data for an arbitrary amount of time is manda-

tory for the "Event driven constant time bins" features and is not within reach of rate coded

networks.

Accuracy-wise, the RNNs are naturally outperformed by the gated units. They lack

the ability to maintain relevant data for long period of times and the ability to generalize from

small training sets. Tab.5.3 explores the accuracy achieved using the same topologies as de-

fined before but modifying the train/test ratio. For this example, 80% of the original database

was used as training samples and 20% as test samples. The RNNs trained this way still use

the same MOps defined before to process the input spike stream, but can achieve accuracy

higher than 90%, figures that were only possible with gated units on the origin database dis-

tribution. The RNN, although quite simple in mechanism, has the ability to achieve high

accuracy but cannot generalize it from low sample size.
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Discussion and Perspectives

The work presented in this document highlights the possibilities created by Spiking Neural

Network exploiting timing information. The obtained topologies, conversion methods and

hardware were implemented targeting interfacing Dynamic Sensors for embedded applica-

tions. Even if the retrieved data from those sensors can be converted back to frame-based

content and processed conventionally, we showed how to fully exploit its nature to perform

low power processing.

Legacy sensors fall short in comparison to Dynamic sensors due to several limita-

tions. They follow a sampling rate to capture the whole sensory data. This affects the data

retrieved in 2 ways: events in the sensory scene that would happen at a sub-frame level can-

not be captured and the absence of events or slow events lead to highly redundant data. Any

global change of the sampling rate will affect both aspects in an opposite manner. Another

consequence of the complete sensory data being outputted at every sampling is the quan-

tity of data to be processed. Using Dynamic sensors, the output events are directly linked

to input events: pixel in Dynamic Vision Sensors will emit multiple events as they perceive

luminance changing rapidly. Using this mechanism, sub-frame information can be retrieved

and the absence of input events that would cause redundancy with Legacy sensors will lead

to no event to be produced.

We showed during this Ph.D. that, using the right coding strategy, we can process

the relevant information from such a stream of events, using a low number of operations

per second. Moreover, we exhibited specialized hardware support for such an approach for

which the complexity overhead does not create energy consumption overhead compared to

SoA chips.

However, there are still points to explore. Further gains can be retrieved from de-

signing a chips containing the full Globally Asynchronous Locally Synchronous architecture

depicted in chapter 3 as the power consumption of the Proof of Concept shown in Chapter

4 is dominated by the dynamic power of the scheduling and routing modules. Moreover,

such system would be a good candidate for local Dynamic Voltage and Frequency Scaling

as the activity of each cluster is not correlated and known in advance. Another source of

gain available hardware-wise is the conversion of the generic cluster into a mixed signal im-
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plementation with analog neurons and synapses, lowering even more the energy required

to simulate the network. However, the timing and diversity constraints generated by the

topologies would not make this implementation an easy task.

By developing methods for conversion from Artificial to Spiking Neural Network,

we retrieve some of the efficiency achieved by Machine Learning and make it possible for

Spiking solutions perfectly fitting Dynamic Sensors to reach such efficiency. It led to the

first implementation of a Spiking Recurrent Neural Network using temporal coding and can

lead to other implementations not studied in this paper. The exploration around MNIST

initially proves the conversion capabilities for Convolutional Neural Networks, but does not

make for a concrete application, as it would make no sense to use Dynamic Sensors on com-

pletely static inputs. The robustness of the conversion method and pre-processing was fur-

ther proved using data from N-TIDIGITS18 and Recurrent Neural Networks. However, this

database is small and despite containing noise artefacts does not represent real applications

yet.

The challenges for next years will be adapting to plurality of new Dynamic Sensor

implementations and use the developed techniques in more practical environments. As the

sensors’ specification change, the output time resolution, data rate and nature of the event

can change. To cope with those new challenges, we produced multiple tools enabling fast

SNN and hardware design. The operators and conversion methods use Xnet, part of N2D2

in C++, and the hardware model for generic cluster sizing and evaluation is implemented in

SystemC, C++ too. A designer can use both tools to implement topologies suiting application

need and use the obtained network and sensor activity to simulate hardware usage before

implementing it.
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Appendix B

Proofs

In this section, we exhibit functionality and proofs for the topologies shown at the end of

Chapter 2. Neuron B is used to start the operation, neuron S recalls the stored value with a

linear weight corresponding to the number of consecutive intervals used.

B.1 Variation mitigation

We here show chronogram and proof for the averaging operator exhibited in Fig.B.1.

i B,F n−1
n A

S R

(P,F/n,1)

(L,F/n,1)

(L,e,1)

(L,n−e,1)

(L,n,1)

Figure B.1: Operator used to average n consecutive intervals.

Fig.B.2 shows the chronogram for the described operator with 4 inputs. As stated

in chapter 2, the neuron (B) needs to be pre-charged to trigger as the first spike enters the

operator. Let M be the value that was stored in the membrane potential of A when the neuron

(S) starts recalling the result. The created output interval is defined by the respective times

at which (A) and (R) emit a spike. This difference is created by the difference of membrane

potential and the weight used to recall the stored value.

The potential difference is converted to a time difference using the weight n. Es-

sentially, the neuron (A) will spike (F − M)/n time steps after being recalled and neuron

(R) will spike F/n time steps after being recalled. The output interval is thus defined by
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Figure B.2: Chronogram for averaging 4 intervals.

F/n − (F−M)/n which approximates M/n.
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B.2 Overflow flag

For flagging overflow while computing addition, multiplication or any other operation re-

quiring accumulation of intervals, we need to set a condition for the output events to be

transmitted. Fig.B.3 shows the topology used here for flagging on overflow.

A Ov C1

S R C2
(L,e,1)

(L,e,1) (P,−F,1)

(P,−2F,1)

(P,F,1)

(P,−F,1)

(P,F,1)

(P,F,2)

Figure B.3: Overflow detection topology.

We exhibit two chronograms focused on these neurons and the neuron (S) and (A)

creating the condition. Fig.B.4 shows (A) spiking before (S) and the flag being transmitted.

The overflow flag inhibits the output neurons (C1) and (C2), preventing false results to be

transmitted. Fig.B.5 shows normal conditions with (S) spiking before (A) and the output

signal being transmitted. This operator is secure and will transmit overflow signal if reached.

Figure B.4: Overflow chronogram: flagging on overflow.

This topology does not treat instances in which (A) and (S) would spike at the same

simulation step. This case should not be able to happen and would still be considered as

overflow. Fig.B.6 shows a topology in which the neuron (C) spikes if (A) and (S) emit a spike

during the same simulation step. The neuron (C) essentially acts as a coincidence detector.

Both (A) and (S) will half charge the neuron (C) for 1 simulation step only and if both half
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Figure B.5: Overflow chronogram: normal operation mode.

charges happen at the same time then (C) is triggered. The link from (C) to itself is used

when (C) is triggered to compensate for the inhibitions to come from A and S (+Full -Half

-Half).

A

C

S

(P,H,1)(P,−H,2)

(P,H,1)

(P,−H,2)

(P,F,1)

Figure B.6: Coincidence detection topology.

B.3 Delay mitigation

The delay mitigation implementation is based on the fact that the result delay is defined by

the precision of the operation: when the result is recalled, the output neurons often have a

linear synapse with elementary weight activated leading to delays proportional to the output

precision required.

This delay can be mitigated for any precision by splitting the input intervals and

using parallel operators for the different result ranges. The accumulation neurons for each

operator use similar logic to the one in B.3 to filter local carries to upper operators as simpli-

fied in Fig.B.7.
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P

A1

A2

A3

S R

(P,e,1)

(P,e,1)

(P,e,1)

(L,e,1)

(L,e,1)

Figure B.7: Carry in between linear combination operator 1,2 and 3. Carry from 1 goes to neuron P

for 4N bits result. S and R are common in between the 3 linear combinations.

The logic used to filter carry from actual result is shown in Fig.B.8. The neuron

(Ca) transmits the carry as long as the synchronization neuron (S) does not spike. When

(S) spikes, (Ca) is inhibited and (T) (Transmit) can be triggered to retrieve the stored result.

For these operators, the accumulation neurons are set to not reset the value of their

synapses when spiking. Thus, each accumulation neuron will spike as many times as its

current result requires. The output filtering logic is the same as the one defined for the over-

flow flagging: carries will be transferred as long as the Synchronization neuron did not spike.

When the synchronization neuron emits a spike, values in each accumulator is recalled. In

order to retrieve coherent result in signed operations using this method, the sign of the result

have to be checked and sub-results changed accordingly.
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AMSB

S Ca

A T

CaLSB

(P,−F,1)

(L,e,1)

(P,e,1)

(P
,F,1)

(P,F,2)

(P,−F,1)

(P,e,1)

Figure B.8: Logic used to transmit carries as long as the synchronization neuron S does not spike.
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List of acronyms

AER Address Event Representation. 7

ANN Artificial Neural Networks. 10

ANOC Asynchronous Network On Chip. 64

ASIC Application Specific Integrated Circuit. 72

CABA Cycle-Accurate, Bit-Accurate. 82

CAD Computer-Aided Design. 112

CAM Content-Addressable Memory. 67

CNN Convolutional Neural Networks. 15, 72, 109, 110

DAS Dynamic Audio Sensors. 6

DS Dynamic Sensors. 6

DSP Digital Signal Processor. 48

DVFS Dynamic Voltage and Frequency Scaling. 64

DVS Dynamic Vision Sensors. 6

FC Fully Connected. 72

FDSOI Fully Depleted Silicon On Insulator. 92

FIFO First In, First Out. 67

FPGA Field-Programmable Gate Array. 117

IX



LIST OF ACRONYMS

FSM Finite State Machine. 93

GALS Globally Asynchronous Locally Synchronous. 63

GPU Graphics Processing Unit. 17

GRU Gated Recurrent Unit. 120

IF Integrate and Fire. 31

LIF Leaky Integrate and Fire. 31

LSB Least Significant Bit. 53

LSTM Long Short Term Memory. 120

MAC Multiply ACcumulate. 17

MLP Multi Layer Perceptron. 10

MSB Most Significant Bit. 57

NN Neural Networks. 10

PD Power Domain. 98

POC Proof Of Concept. 92

PT Precise Timing. 31

PTT Path To Target. 65

ReLU Rectified Linear Unit. 10

RNN Recurrent Neural Networks. 119

RTL Register Transfer Level. 64

SDSP Spike Driven Synaptic Plasticity. 14

SNN Spiking Neural Networks. 12

SPI Serial Peripheral Interface. 97

SRAM Static Random Access Memory. 69

STDP Spike-Timing-Dependent Plasticity. 11

TLM Transaction-Level Modeling. 82
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TP Tick Parity. 66, 81

TTFS Time To First Spike. 16, 117
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