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Abstract

III-Sb materials have demonstrated their potential for multiple opto-electronic devices,

with applications stretching from communications to environment. However, they remain

an almost unexplored segment for classical photovoltaic systems. In this research, we intend

to demonstrate that III-Sb-based devices are promising candidates for high-efficiency, low-

cost solar cells. Their benefits are two-fold: not only do they offer a wide range of lattice-

matched alloys and low-resistivity tunnel junctions, but they also enable direct growth on

Si substrates. We thus investigate the building blocks of a GaSb-based multi-junction

solar cell integrated onto Si. First, we develop the photovoltaic growth and processing by

fabricating homo-epitaxial GaSb cells. Intensity-voltage (J-V) measurements approach the

state of the art with 1-sun efficiency of 5.9%. Then, we integrate a GaSb single-junction cell

on a Si substrate by molecular beam epitaxy (MBE). X-ray diffraction (XRD) and atomic

force microscopy (AFM) analysis show structural and morphological properties close to

the best reported in the literature for similar metamorphic buffers. We further adapt the

cell configuration to circumvent the high defect density at the GaSb/Si interface. The

heteroepitaxial cell results in a reduced efficiency of 0.6%. Nevertheless, this performance

is close the most recent advancements on GaSb heteroepitaxial cells on GaAs, despite a

much larger mismatch. Last, we investigate the epitaxy of AlInAsSb. This alloy could in

theory reach the widest range of bandgap energies while being lattice-matched to GaSb.

However, it presents a large miscibility gap, making it vulnerable to phase segregation.

AlInAsSb only counts few experimental reports in the literature, all referring to unop-

timized growth conditions and abnormally low bandgap energies. We successfully grow

good-quality layers with Al composition xAl ranging from 0.25 to 0.75, showing no macro-

scopic sign of decomposition. Yet, transmission electron microscopy (TEM) observations

point to nanometric fluctuations of the quaternary composition. Photoluminescence (PL)

data is studied to determine the alloy’s electronic properties. We eventually propose and

fabricate a tandem cell structure, resulting in 5.2% efficiency. Quantum Efficiency (QE)

measurements reveal that the top subcell is limiting the tandem performance. Numerical

fits to both J-V and QE data indicate improvement paths for each building block.
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Chapter 1

Introduction

In this chapter, we discuss the current progress in the development of low-cost, high-

efficiency solar cells. First, we tackle the global energy crisis, which is the main driver of

photovoltaic (PV) research. We then give a short review of the progress made with multi-

junction (MJ) solar cells and detail the fabrication methods. We present the benefits of

III-Sb materials for high-efficiency MJ systems and their integration onto silicon (Si) from

the perspective of lower cost. Last, we set out the objectives and strategy of this thesis.

1.1 Energy crisis and solar cells

If we are to succeed in facing tomorrow’s challenges, we need to entirely rethink our modes

of energy production and consumption. France, like other countries, is thus investing in the

development of renewable sources of energy. The 2015 Energy Transition for Green Growth

Law aims to increase the share of renewable energies to 32% of all electricity consumption

by 2030 (only 19.6% in 2016 [2]). In order to meet this objective, renewable energies would

have to make up 40% of the total electricity production [3].

1



1.1.1 Sunlight: a renewable source of energy

In 2009, the remaining fossil resources on Earth were estimated at 1655 Terawatt-years

(TW -yr) [4]. Human activities consume 16 TW -yr yearly, but this quantity is inexorably

rising with changes in industry, technology and demographics. Understandably, it is now

urgent to develop new sources of energy and, preferably, they should be sustainable. For

example, the solar radiation reaching Earth every year is more than 23000 TW -yr, making

solar energy a very promising candidate as an alternative energy source. Admittedly, it is

not a renewable source in that the Sun does not regenerate but, given the time scale, it

can be regarded as such. The data mentioned above are summarized in Figure 1.1.

Figure 1.1: Comparison of finite (total recoverable resources) and renewable (yearly potential)

energy reserves on Earth as described by [4].
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1.1.2 Photovoltaic technologies

The PV effect was discovered by Edmond Becquerel in 1839. He observed the appearance of

a current when shining light on silver-covered platinum electrodes dipped in an electrolyte.

A few decades later, in 1873, the photoconductivity of selenium was discovered, followed by

the fabrication of the first selenium solar cell in 1877. The first Si solar cell was only made

about a century later, in 1954, by Chaplin, Fuller and Pearson at Bell Labs. Its efficiency

was 4.5%, but this quickly improved to 6%. Solar cells started to be commercialized the

next year. In 1958, a satellite was equipped with cells that operated for nearly 7 years [5].

Since the end of the 20th century, solar cell efficiency and output power has continued

to improve. Today, these cells are found on rooftops and in vehicles and the number of

projects to incorporate them into daily-living objects is rising steadily (e.g. Total’s recent

project to build a solar highway). Several programs have also been developed since the

90s to connect high-scale PV production modules to the electric network. Last, solar cells

are still used in spatial applications: the latest Martian rover Spirit is equipped with III-V

semiconductor MJ cells.

1.1.3 Photovoltaic industry

Since its emergence, the PV market has been dominated by Si-based solar cells. Despite

the variety of technological innovations in the PV field, Si cells still make up 93% of

the total production [6]. The most recently reported record efficiency for these cells was

26.7% [7]. In reality, their performance has not significantly improved over the last 25 years

and is not likely to do so as it is approaching the theoretical maximum of 29% calculated

by Shockley and Queisser in 1961 [8]. Nevertheless, the boom in Si technology has led to

substantial cost reduction, as illustrated in Figure 1.2. The price drop is estimated to be

about 10% a year, with current modules around $ 0.25 per watt-peak ($/Wp) [9].

In 2017, PV energy production cost (0.055 /kWh, [10]) dropped below the nuclear

energy production cost (0.060 /kWh, [11]) in France for the first time. Despite this rev-

olution, the PV industry still lags behind other traditional sources of energy and more

mature renewable energies like wind [12]. The installation prices are still considered pro-
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Figure 1.2: Evolution in the price of a PV module [9].

hibitive by individual users and hinder the wide adoption of the technology. The creation

of areas dedicated to the panels, other than agricultural and natural, is also problematic.

As a consequence, PV energy only covered 1.9% of France’s global electricity consump-

tion in 2017 [13]. Research avenues to rectify the drawbacks include the development of

high-efficiency solar cells of reduced size and cost. Not only would such cells enhance the

competitiveness of the terrestrial PV industry, but it would also make an ideal source of

energy for spacecraft, especially nano-satellites.
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1.2 Development of III-V multi-junction solar cells

In the quest for high-efficiency solar cells, MJ solar cells have attracted the most attention.

They are based on optimizing the exploitation of the solar spectrum by combining multiple

subcells into a single solar device. Coupled to a light-concentration optical system, this

type of cell can achieve high power conversion while using a reduced area.

1.2.1 The solar spectrum

Before tackling the topic of MJ solar cells, some preliminary concepts should be presented.

In particular, the term solar spectrum should be clarified. This is the flux of photons

received from the Sun at a certain location. In the context of PV research and depending

on the application of the system, multiple solar spectra can be considered. They are

determined by their air mass (AM), which evaluates the light power reduction in function

of the optical path length of light through the atmosphere. By definition, air mass 0 (AM0)

is the light received outside of Earth’s atmosphere. It is the standard spectrum to consider

for spatial applications. Other AM can be determined by:

AM =
1

cos θ
(1.1)

where θ is the angle of the Sun from the vertical (zenith) angle. The convention for

terrestrial applications, air mass 1.5 (AM1.5), is the radiation received on Earth at an

angle of θ = 48◦. Here again, two AM1.5 should be distinguished: AM1.5D taking into

account direct radiation only and AM1.5G including both direct and diffuse radiation (G

stands for global). AM1.5G amounts to 1000 W/m2. This spectrum is predominantly used

in the remainder of this document.

The above-mentioned standard spectra are represented in Figure 1.3.
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Figure 1.3: Solar spectrum outside (red) and inside (blue) Earth’s atmosphere, compared to the

blackbody emission (green). Source: pveducation.org

1.2.2 Overcoming the Shockley-Queisser limit

Single-junction (SJ) solar cells are not the optimal structure to achieve full-spectrum energy

harvesting: a significant part of the energy is lost in these cells via carrier thermalization

and photon transmission. The former refers to photons with energy that is too high

with respect to the cell’s bandgap that dissipate their excess energy through phonons.

Conversely, the latter refers to photons with energy lower than the bandgap to which the

cell’s material is transparent. Taking into account these two loss mechanisms, Shockley

and Queisser established a theoretical limit for SJ solar cells [8]. This limit is displayed in

Figure 1.4 along with the maximum efficiency reached by various SJ cells.

MJ solar cells are based on the division of the solar spectrum into equally spanned

bands to allow better exploitation of the photon flux. Each subcell has a specific bandgap

energy and targets photons of the corresponding wavelength range. The subcell with the

highest bandgap is placed on top of the system. When impinging the cell, photons of

energy higher than the bandgap are absorbed by the top subcell, while the others go

through to reach the underlying subcells. Since the top subcell filtered the very high

energy photons, thermalization losses are minimized for the subsequent subcells. Once
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Figure 1.4: Maximum theoretical efficiencies for SJ solar cells as a function of the bandgap, also

known as the Shockley-Queisser limit. The gray lines represent 75% and 50% of the limit. The

best experimental efficiencies are also represented. From [14].

again, the second subcell absorbs photons with energy higher than its bandgap and is

transparent to the lower energy photons. In the ideal case of an infinite number of subcells,

all wavelengths are exploited and transmission losses are cut down. In reality, on top of

the added design and fabrication complexity (not to mention the price) for an elevated

number of junctions, other types of losses arise, especially at the interfaces. Systems with

up to five junctions have been realized, for which such parasitic losses have not proven

to be dominant [15]. Systems with six junctions have also shown promising preliminary

results [16]. A comparison between standard Si SJ cells and high-efficiency MJ cells is

drawn in Figure 1.5.

By distributing the incoming photon flux between the different closely spaced bandgaps,

MJ solar cells hence minimize both thermalization and transmission losses. Different ways

of connecting the subcells are possible and will be presented in the following section. It

should be mentioned, however, that in the case of series-connected junctions, care should

be given to current matching between the subcells. In this configuration, the net current
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(a)

(b)

Figure 1.5: AM1.5G spectrum and the parts of it potentially converted by (a) Si solar cells and

(b) Ga0.35In0.65P/Ga0.83In0.17As/Ge solar cells. Taken from [17].
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of the system will be bottlenecked by the minimum current flowing through the subcells.

The current photogenerated in each subcell must therefore closely match the current pho-

togenerated in the others.

1.2.3 Light concentration

Another direction to enhance cell efficiency is to concentrate the incoming sunlight onto a

small area with the help of an optical system. This allows the use of smaller devices, hence it

generates cost reduction. However one has to be careful about possible losses introduced by

the optical system. Requirements for these systems include excellent irradiance uniformity,

wide acceptance angle and high performance. Equipped with highly accurate and reliable

tracking systems, concentrated systems demonstrate higher and more homogeneous energy

production than traditional systems [18]. For now, such systems are not practical to install

on rooftops1 but could be of interest in the land and spatial area. Concentrated photovoltaic

(CPV) systems are still a fairly new technology, without much history of production and

standardization but are nevertheless a promising avenue of research for III-V solar cells.

1.2.4 Literature review

The idea of combining multiple bandgaps within a single device to optimize solar spec-

trum exploitation was first developed by Jackson in 1955 [19]. Early models were then

developed in parallel by James and Moon [20] (Varian Research Institute), Fraas and

Knechtli [21] (Hughes Research Laboratories), Bedair et al. [22] (Research Triangle Insti-

tute) and Cacheux [23] (Centre National d’Etudes Spatiales) in the late 70s. The first

experimental demonstrations followed in 1981 and 1988, at the Research Triangle Insti-

tute [24] and the Varian Research Center [1] when an AlGaAs junction was stacked or

grown on top of a GaAs junction, forming a dual-junction device.

The MJ cell developed at Varian demonstrated a record 1-sun efficiency of 23.9% under

AM1.5G measured in a three-terminal configuration [1]. This was the first time that an MJ

1Possibly in the future: https://actu.epfl.ch/news/an-epfl-startup-makes-residential-solar-panels-twi/
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device demonstrated a higher 1-sun efficiency than an SJ device (previous record 23.7% for

AM1.5 by Spire with a single GaAs junction [25]). It was grown by metal organic vapor

phase epitaxy (MOVPE) and comprised an Al0.35Ga0.65As top cell of bandgap 1.93 eV and

a GaAs bottom cell of bandgap 1.42 eV . The structure, shown in Figure 1.6, allows for

a two- or three-terminal configuration: the metallization of the top cell bottom contact

makes ohmic contact with this cell but is also shorted to the bottom cell top contact ohmic

metal, bypassing the junction between the interconnect layers. The metallization extends

to a busbar which allows access to this middle contact. If this middle contact is not used,

the cells are simply connected in series. If the middle contact is used, on the other hand,

the cells can be operated independently and no matching current condition applies.

A few years later, concurrent GaInP/GaAs dual-junction cells outperformed and sup-

planted the AlGaAs/GaAs cells in the spatial CPV industry. GaInP presents the ad-

vantage of having a direct bandgap up to energies higher than AlGaAs, while still be-

ing closely lattice-matched to GaAs. Spectrolab and NREL, in particular, developed

Ga0.5In0.5P/GaAs dual cells grown on Ge substrates, which eventually turned into triple-

junction Ga0.5In0.5P/GaAs/Ge cells, achieving world record efficiency of 32.3% (AM1.5D,

440 suns) in 2000 [26]. The increased efficiency, along with the replacement of GaAs sub-

strates by low-cost, high-strength Ge substrates, made the cells compatible with large-scale

manufacturing approaching the megawatt level, contributing to Spectrolab’s success. Along

with other technological improvements, including wide bandgap tunnel junctions (TJs) and

passivating windows, the use of Ge as active layers of the solar cell further enhanced the

device’s efficiency. Not only did it improve the solar spectrum division between the sub-

cells, but it also led to a better radiation hardness by reducing the relative importance

of the GaAs subcell. These developments contributed to a revolution in space power sys-

tems: satellites with smaller volume, hence weight, could benefit from high power sources

leading to launches at lower cost. Given that cells for terrestrial applications share designs

and manufacturing operations similar to those of space cells, Spectrolab demonstrated the

attractiveness of MJ technology for cost-effective terrestrial CPV systems.

The following decade was marked by ever-increasing efficiencies for concentrated MJ

cells, as illustrated in Figure 1.7, exceeding the 40% milestone in 2007 [27].
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Figure 1.6: Structure of the first 1-sun record efficiency tandem solar cell [1].
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The current record of efficiency for a cell is held by Soitec, CEA-Leti and Fraunhofer

ISE [28]. Their MJ cell converts 46.1% of solar light into electricity at a concentration of 508

suns. It is a four-junction cell made of GaInP/GaAs wafer-bonded to GaInAsP/GaInAs.

1.3 Approaches to high-efficiency solar cells

The filtering effect of Earth’s atmosphere is such that 99% of the AM1.5D reference spec-

trum lies between 300 and 2500 nm, covering the visible, near-infrared and mid-infrared

wavelengths. Fabricating an efficient solar cell therefore requires selecting and combin-

ing materials addressing this entire spectral range. Part of the attractiveness of MJ solar

cells resides in their straightforward design and optimization. Ideal bandgap energies for

individual subcells can indeed be calculated to maximize the system’s efficiency. In prac-

tice, however, a number of practical constraints should be borne in mind. Most suitable

bandgaps often have different lattice parameters. A compromise thus needs to be found

when designing a MJ device between the crystalline quality of the materials, the achievable

bandgap energies and the optical losses at the interfaces. A variety of techniques, delin-

eated below, can combine subcells into an MJ PV device. Techniques bringing together

subcells originating from different substrates, known as heterogeneous integration, are pre-

sented first. The alternative is monolithic integration, where subcells are grown on top of

each other on the same substrate. The ideal case is the all lattice-matched configuration,

detailed in the following section. The metamorphic approach, a trade-off between design

flexibility and growth-related losses, is then explained. The pros and cons of each technique

are summarized.

1.3.1 Heterogeneous integration

Heterogeneous integration refers to the set of techniques by which two cells originating

from different growths are assembled one on top of the other. These techniques have in

common increased design flexibility as they bypass any lattice matching constraint. They

are detailed in the following, each illustrated by its most recent record efficiency.
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Wafer bonding

In wafer bonding, two samples are brought into close proximity in order to form atomic

bonds at the interface. Such bonding requires a high-quality and smooth crystalline surface

(most preferably grown epitaxially). Additional surface preparation is necessary for high-

quality bonding. High doping levels should be used at the interface to ensure the low

resistance of the junction. The process results in a series-connected stack of cells, which

does not eliminate the need for current matching between the cells. The current solar cell

efficiency record is held by a GaInP/GaAs cell bonded to a GaInAsP/GaInAs cell, with

a total efficiency of 46.1% under 508 suns [28].

Mechanical stacking

Mechanical stacking uses an adhesive interface layer, such as epoxy, to bond together

cells grown separately. The presence of impurities or inhomogeneities inherent to surface

roughness at the interface can hinder the quality of the stack and incur electric losses.

Preparation of the surfaces and adhesive layer are therefore crucial. The adhesive layer

should be conductive if the cells are to be connected in series. It must also be transparent.

The method also offers the possibility of a multi-terminal configuration, which alleviates

the need for current matching between the cells. On the other hand, the resulting systems

suffer from increased interface reflections and poor heat conduction. The record is held by

Essig et al. with a GaInP/GaAs dual-cell stacked on a Si cell, reaching 35.9% efficiency

in a four-terminal configuration and 30.9% efficiency in a two-terminal configuration [29].

The record for series-connected cells was achieved very recently by Cariou et al., also with

a GaInP/GaAs dual-cell stacked on a Si cell (33.3% efficiency) [30].

Transfer printing

Transfer printing uses an epitaxial lift-off to bring the subcells together. The top subcell

comprises a sacrificial layer at the bottom of its active layers stack. By etching this sac-

rificial layer, the micro-subcell can be released (lifted) from its substrate and attached to

a polydimethylsiloxane (PDMS) stamp. It is then stamp-transferred to the other subcell
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on which the adhesive layer has been cast beforehand. A thin thermally conductive and

electrically insulating chalcogenide layer, called a bonding agent, can be cast below the ad-

hesive layer to further reduce losses [31]. The transfer can also be made by direct bonding

without any adhesive or bonding layer [32]. Lumb et al. successfully used transfer printing

to produce a four-terminal, five-junction cell whose mini-module efficiency was estimated

at 41.2% under 744 suns (measured outdoors) [15].

Spectrum splitting

Last, another alternative method is worth mentioning: the “Very High Efficiency Solar Cell

”project that DARPA has been running since 2009 [33]. The method consists of splitting

the incoming light into spectrum-based sections before it reaches the cell. Each section

of the spectrum is then sent directly to the most appropriate subcell. This can be done

using dichroic mirrors or band-pass filters. The highest efficiency achieved with this type

of cell is 39.9% in outdoor conditions, corresponding to AM1.5D, with a four-terminal

GaInP/GaAs/Ge//Si cell [34].

1.3.2 All lattice-matched systems

Conversely to heterogeneous integration, monolithic integration aims at growing the dif-

ferent subcells of a MJ on a single substrate (from the Ancient Greek mónos, “single”

and ĺithos, “stone”). The main benefit of this technique is the augmented quality of the

layers stack and its interfaces. An all lattice-matched configuration would ideally prevent

the generation of misfit dislocations, point defects and resulting electric losses. To achieve

this, III-V alloying offers relative flexibility for bandgap tailoring. Quaternary alloys, in

particular, enable the independent setting of the bandgap energy and the lattice param-

eter. Such alloys, however, are subject to thermodynamic instability and decomposition.

All lattice-matched systems thus face limitations related to the accessibility of the optimal

range of bandgap energies. This notwithstanding, recent work has shown that they can

be compensated by an appropriate choice of thicknesses to optimize the current matching

between the cells [35].
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High efficiencies (27.3%) were achieved as early as 1990 with lattice-matchedGaInP/GaAs

tandem cells [36]. Such cells have recently been engineered as flexible thin-film cells and

achieved an efficiency of 30.8% [37], close to the record efficiency of 31.1% obtained by

Steiner et al. [38]. In terms of three-junction cells, Spectrolab supplanted the 1-sun record

efficiency for a solar cell with a lattice-matched GaInP/GaInAs/Ge triple-junction cell

of 32.0% efficiency (35.2% under 66 suns) [39]. Refinements to the device processing have

led to a more recent record efficiency of 41.6% under 364 suns [40]. Dilute nitrides are a

promising avenue to further increase the efficiency. Solar Junction broke the world record

for solar cell efficiency in 2012 with a 44.0% (942 suns) efficient three-junction made of

GaInP/GaAs/GaInNAs(Sb) grown on an inactive GaAs substrate [41]. The two latter

cells [40] [41] are in fact commercially available. Although the lattice-matched constraint,

considered too demanding, has been dropped by the Fraunhofer Institute [42], dilute ni-

trides are still under study for the development of four- [43] and five-junction cells [44].

Last, there is growing interest in systems lattice-matched to InP. Current work still involves

modeling [45], epitaxy [46] and processing [47] studies and no successful MJ has yet been

experimentally demonstrated.

1.3.3 Metamorphic cells

Metamorphic solar cells draw on the compromise between maintaining a single lattice pa-

rameter over the whole structure and using the optimal bandgap energies for an MJ design.

On the one hand, this type of cell makes it possible to reach better-suited bandgap ener-

gies. On the other hand, because these cells tolerate a small difference in lattice parameter,

they are likely to incorporate dislocations that could hinder device performance. Careful

structure design and excellent growth quality are therefore necessary for the absorption

gain to overbalance the recombination losses.

Typical subcells are a few micrometers thick. At such thicknesses, the layers are fully

relaxed and the strain incurred by lattice-mismatch, even slight, is released via the cre-

ation and glide of dislocations. These could be threading dislocations, propagating along

the growth direction through the different layers, or misfit dislocations, elongating at the
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interface. Dislocations are detrimental since they act as recombination centers for mi-

nority carriers, reducing their diffusion length and hindering the cell performance. The

controlled formation of strain-relieving dislocations in a buffer layer, prior to the growth

of the photoactive region, is therefore necessary. The last layer of the buffer should ideally

be strain-free so that the recombination losses are minimized in the subcell. In practice,

Yamaguchi et al. showed that a dislocation density below 3 × 105 cm−2 was necessary to

drastically limit non-radiative recombination losses in metamorphic solar cells [48]. At this

dislocations density, the spacing between dislocations becomes larger than the minority

carrier diffusion length, which significantly reduces the recombination losses.

The controlled formation and reduction of strain-relieving dislocations is possible using

a few techniques, such as compositionally graded buffers. These buffers consist of a stack

of layers whose lattice parameter progressively varies from the substrate’s to the desired

one. The aim of this technique is to achieve progressive strain relief by dislocation glide.

If the dislocations will not realistically glide to the very edge of the wafer, they might

still achieve a sufficient glide length to minimize carrier recombination. They could also

encounter other dislocations and be annihilated. Kinetic models of strain relaxation by

Dodson [49] and Fitzgerald [50] have shown that dislocation glide is encouraged by the

material’s glide velocity, a low growth rate, a high growth temperature and a low misfit

grading rate (percentage of strain per thickness). It is thus strongly dependent on the

choice of buffer material. It is noteworthy that using III-V compounds with an important

miscibility gap is a challenging and risky task. Indeed, compositional variations across

the compound and occasional phase separation can induce strain field variation in the

layer, leading to increased dislocation nucleation and pinning of the existing ones. Surface

roughness is another parameter that can influence the dislocation glide. Last, if located

between two subcells, the buffer should be highly conductive and transparent. Careful

structure design and excellent growth quality are therefore necessary for the absorption

gain to overbalance the recombination losses. A more detailed description of metamorphic

cell architecture can be found in [51]. The article presents two design options in greater

detail: upright metamorphic solar cells and inverted metamorphic solar cells, where the

subcells are grown in inverted order and the substrate is later removed. The current
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efficiency record for a three-junction cell was achieved with an inverted metamorphic solar

cell made of InGaP (1.9 eV ), GaAs (1.4 eV ) and InGaAs (1.0 eV ). It reached an efficiency

of 44.4% under 302 suns [52]. For a four-junction cell, the record was once more achieved

with an inverted metamorphic design using InGaP (1.8 eV ), GaAs (1.4 eV ), InGaAs (1.0

eV ) and InGaAs (0.7 eV ). The efficiency was 45.7% under 234 suns [53].

1.3.4 Comparison

The current overall efficiency record for a MJ solar cell was attained by combining multiple

technologies: the cell consisted of a GaAs lattice-matched AlGaInP (1.9 eV ) / GaAs (1.4

eV ) tandem, wafer-bonded to a lower InP lattice-matched GaInAsP (1.1 eV ) / GaInAs

(0.7 eV ) tandem. The four-junction cell reached an efficiency of 46.1% under 508 suns [28],

not far from the best results obtained by the lattice-matched and metamorphic solar cells

described above. More generally, performance-wise, the heterogeneous integration methods

yield results comparable to monolithic cells [54]. Heterogeneous integration offers enhanced

design flexibility as it eliminates the need for lattice-matching in MJ cells. Many of the pre-

sented techniques also alleviate the need for current matching between the subcells. This is

a serious advantage for terrestrial applications, where changes in illumination (realistic out-

doors conditions) can have a significant impact on the efficiency of a series-connected stack.

Nonetheless, this comes at the cost of increased complexity, volume and cost. Moreover,

when brought under concentration, the heterogeneous interfaces may experience thermo-

mechanical stress, which could hinder device performance. Other drawbacks include the

potential presence of holes and unsticking parts, an increased risk of contamination com-

pared with heteroepitaxial interfaces, and the need for very high alignment accuracy. Last,

the scalability of heterogeneous techniques is limited by the size of the III-V substrate. As

a consequence, the most commonly available MJ cells are monolithically grown (Spectro-

lab, Solar Junction). In the remainder of this thesis, we thus focus on this latter approach.

Among monolithic solar cells, although metamorphic MJ cells have the highest efficiencies

to date, lattice-matched cells are close behind ( [41], [53]). Metamorphic solar cells allow

for more flexibility when optimizing the bandgap combination. However, the buffer layer

design significantly increases the growth and manufacturing complexity, volume and cost.
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Lattice-matched structures are thus preferred for commercial solar cells and in this work.

1.4 Potential of III-Sb solar cells

1.4.1 Ideal bandgaps and materials systems

Detailed balance calculations [8] and augmented models [55] [56] [57] allow the estimation

of the ideal bandgap combinations for MJ cells. Such combinations, optimized for AM0 (1

sun), AM1.5G (1 sun) and AM1.5D (500 suns), are represented in Figure 1.8, 1.9 and 1.10

respectively for two, three and four junctions. In the figures, each set of color bands

represents the ideal bandgap combination for two, three and four junctions under a certain

spectrum. More detailed results for up to six junctions are summarized in Table 1.1, 1.2

and 1.3.

Figure 1.8: Ideal bandgap energy combinations for two-, three- and four- junction solar cells

under AM0 (1 sun) as calculated by [58].
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Figure 1.9: Ideal bandgap energy combinations for two-, three- and four- junction solar cells

under AM1.5G (1 sun) as calculated by [58].

Figure 1.10: Ideal bandgap energy combinations for two-, three- and four- junction solar cells

under AM1.5D (500 suns) as calculated by [58].
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It appears clearly from these calculations that the materials with the most suitable

bandgaps often have different lattice parameters. In practice, the choice of the substrate

will considerably confine the range of bandgap possibilities. A popular option is to choose

the substrate’s material as the bottom cell’s material, allowing homoepitaxy of the first

subcell of the structure, maximizing its quality and performance. Thereafter, selecting

other subcell materials within the substrate’s lattice parameter range tremendously en-

hances the overall efficiency. An all lattice-matched configuration would ideally prevent

the generation of misfit dislocations and resulting electric losses. III-V alloys offer incom-

parable flexibility for bandgap tailoring. Quaternary alloys, in particular, make it possible

to independently set the bandgap energy and the lattice parameter. Most alloys, however,

are subject to thermodynamic instability and decomposition. Great care should thus be

taken while determining their growth conditions.

1.4.2 III-Sb for high-efficiency solar cells

According to the above analysis, the design of an all lattice-matched system starts with

the choice of a lattice parameter. Existing III-V material systems and their alloys are

presented below.

GaAs

Among the available substrates, the GaAs system has riveted most of the III-V PV com-

munity’s attention. However, the lack of an obtainable alloy between the Ge and the GaAs

bandgaps hinders the capacity of such cells to exploit the full solar spectrum. Furthermore,

the associated TJs require high doping levels, which remain hard to achieve.

InP

The InP material system has, in turn, been increasingly investigated. The available alloys

at this lattice constant, from GaInAs to AlAsSb, should enable reaching all ideal bandgap

energies [59]. This system has long suffered from the high doping levels required by its
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TJs, until recent work demonstrated that low-loss high-voltage InP/AlInAs TJs can be

easily achieved by MOVPE [60].

GaSb/InAs

Last, the GaSb/InAs system has not yet been extensively studied within the PV frame-

work. The highest ideal bandgap energies are out of range for alloys at this lattice param-

eter. Nevertheless, the use of quaternary alloys such as AlGaAsSb and AlInAsSb should

allow access to a wide range of bandgap energies, between 0.29 and 1.64 eV [61]. The main

advantage of this system is inherent to the natural broken-gap alignment of its GaSb/InAs

TJ, which facilitates the tunneling [62].

Comparison

The potential of the three aforementioned material systems for MJ PV is summarized in

Table 1.4.

Table 1.4: Main III-V material systems for PV applications.

Material systems GaAs InP GaSb/InAs

Lattice constant
5.6535 Å

5.8688 Å
6.0954 Å

5.6579 Å 6.0585 Å

Calculated attainable direct bandgap energies 1.42− 1.94 eV 0.74− 1.87 eV 0.29− 1.64 eV

Substrate’s bandgap energy at 300 K
0.66 eV (Ge)

1.34 eV (InP )
0.35 eV (InAs)

1.42 eV (GaAs) 0.73 eV (GaSb)

Bandgap alignment of the available tunnel junctions Type I Type I, II Type III

Record mono-junction efficiency under 1 sun 28.8% [63] 24.2% [64] 5.5% [65]

From this analysis, it appeared relevant to investigate GaSb-based solar cells. These

cells were very recently studied to serve as the subcells of MJ solar cells [15] [66]. A

detailed literature review will be provided in Chapter 3. The following subsection will show

another benefit of III-Sb materials for high-efficiency, low-cost solar cells: their potential

for monolithic integration onto Si.
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1.4.3 Integration onto Si

Motivation

Unlike Si, most III-V materials exhibit a direct bandgap. The development of technologies

such as CPV has enabled the reduction in size required for a solar cell, opening new op-

portunities for these more expensive, yet more efficient, materials. The superior radiation

resistance and thermal stability of III-V materials makes them particularly favorable can-

didates for solar applications in space. Also, they have lower temperature coefficients than

Si: III-V-based solar cell efficiency decreases by approximately 0.2%/◦C against 0.5%/◦C

for Si-based solar cells [67]. However, despite steady increases in their reported record

efficiencies [68], III-V solar cells have faced economic difficulties in recent years [69]. The

power gain that III-V cells generate does not yet balance the added fabrication costs. Al-

though the use of solar concentrators has reduced the cost of III-V systems down to 0.59

$/Wp (whole module), it is still well above the 0.24 $/Wp of a standard Si panel [70].

The pros and cons of each material system are summarized in Table 1.5.

Table 1.5: Pros and cons of Si and III-V materials for solar cells.

Material III-V Si

Pros

Better radiation hardness Less expensive

Better thermal stability Highly available

Broad range of energy bandgaps Well-known processing

lattice-matched to a techniques

variety of substrates

Cons

Expensive, although Indirect bandgap, hence

partly compensated part of the photoenergy lost

by concentration through phonons emission

The option of combining the advantages of both materials is an interesting one, allowing

cost reduction and facilitating higher production volumes. The monolithic integration
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of III-V cells on Si substrates, in particular, is eagerly awaited. Such integration has

mainly been investigated for the InGaP/GaAs material system so far. Their bandgap

combination, more favorable than a combination with Ge, should reach efficiencies in excess

of 40% [71] [72]. However, this analysis does not take into account losses stemming from

the Si indirect bandgap, the TJ or other types of interfaces, or the dislocations within the

active regions. III-V-on-Si solar cells nowadays reach efficiencies in the 30% range but keep

improving. A detailed description of the state of the art will be presented in Chapter 5.

III-Sb on Si

Unlike arsenides [73] [74] [75] [76] [77] [78] and phosphides [79] [80], antimonides have re-

ceived only limited attention in the context of PV research. This is mainly due to their

complex growth conditions (narrow growth temperature window) and interface chemistry.

Moreover, the theoretical ideal single-junction efficiency of GaSb and InAs cells is less

advantageous than their GaAs counterpart (cf Figure 1.4). The limited attention is par-

ticularly true in the case of III-V-on-Si solar cells, yet III-Sb materials have already demon-

strated their potential for other integrated opto-electronic devices [81] [82] [83] [84]. Such

materials take advantage of the creation of a 90◦ misfit dislocation array when using an

AlSb initiation layer on the Si, as illustrated in Figure 1.11 [85]. This interfacial mis-

fit dislocation array (IMF) efficiently relieves the strain at the interface. IMF have also

been studied in other highly mismatched material systems, such as InAs/GaAs [86] and

GaSb/GaAs [87].

Akahane et al. also highlighted the contribution of the AlSb nucleation layer in terms of

surface morphology [88]. Rodriguez et al. further enhanced the template material quality,

lowering the full width at half maximum (FWHM) value down to 235 arcsec for a 1 µm

GaSb-on-AlSb-on-Si layer, close to the values obtained for similar thicknesses of Ge-on-

Si [89] and GaAs-on-Si [90]. This is in spite of a significantly larger lattice-mismatch

between the III-V compound and the Si (≈ 12% vs ≈ 4% for Si). Threading dislocation

densitys (TDDs) in the 109 cm−2 range were evaluated for these thin samples [91]. We

thus believe such materials constitute a promising alternative to explore for the monolithic

integration of III-V solar cells onto Si.
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Figure 1.11: Transmission electron microscopy (TEM) images of AlSb grown on 5◦ miscut Si

(001) substrate under (a) low-resolution and (b) high-resolution conditions. (c) is a close-up of

the section highlighted in (b). All three images feature an interfacial misfit array. Taken from [85].

1.5 Objectives and organization of the thesis

1.5.1 Summary

In this chapter, we discuss the advantages of the PV resource as a key element of the energy

transition. We show that, in spite of tremendous progress in terms of production costs, the

PV industry still lags behind more conventional sources of energy or other mature renewable
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energies. Efforts have thus been put into the development of high-efficiency solar cells and

their integration on cheaper and more accessible substrates. We present several approaches

to these high-efficiency and low-cost solar cells. More specifically, we give an overview of

MJ solar cells and their fabrication techniques. We also show that, although heterogeneous

integration methods yield slightly higher efficiencies, they add to the complexity and cost

of PV systems. This has motivated the choice of an all lattice-matched system for this

thesis work. We further discuss the benefits of the GaSb/InAs material system for solar

cells. The wide range of achievable bandgaps it provides, combined with its low-loss TJ,

make this material system a very strong candidate for an all lattice-matched MJ structure.

Moreover, it offers the possibility of combining the high efficiency of III-V materials and

the mature Si technology platform. We show the potential of III-Sb integration on Si by

direct growth, taking advantage of the formation of an interfacial misfit array to reduce the

density of dislocations. We have thus decided to explore this option to make high-efficiency

and low-cost solar cells.

1.5.2 Objectives and organization

The aim of this thesis is to evaluate the potential of III-Sb materials for high-efficiency solar

cells and their integration onto Si. We aim to propose an all lattice-matched MJ solar cell,

directly grown onto Si. The objective is particularly to demonstrate all the building blocks

of such a system. Thus, we will first present the elaboration and characterization of a stand-

alone GaSb solar cell. Second, we will tackle the topic of III-Sb MJ cells. In particular,

we will present the growth and characterization study of the AlInAsSb quaternary alloy,

chosen as the base material for higher efficiency cells. Next, we will describe our progress

on monolithic integration of such a cell on Si. The final chapter will draw a conclusion on

the potential of III-Sb-based materials for III-V-on-Si solar cells.
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Chapter 2

Experimental details

2.1 Material growth and characterization

In this section, we introduce the growth and material characterization tools. We provide

basic information about their operation, along with a description of the equipment used in

this project.

2.1.1 Molecular beam epitaxy

Molecular beam epitaxy (MBE) is a deposition technique where high-purity molecular

beams are directed at a substrate under ultra-high vacuum (UHV). The atoms adsorb,

diffuse, nucleate on the surface or incorporate at kink sites, forming a high-quality film

called epilayer, or re-evaporate. The growth process kinetics can be appreciated through

a set of quantitative parameters such as the arrival rate, the thermal accommodation

coefficient and the incorporation rate of the deposited atoms to the surface. Many books

exist in literature that will satisfy the reader’s curiosity for further detail on technical

information [92] [93] [94] [95].

The MBE reactor used in this project, the Varian GENII system, is composed of three

modules presented in Figure 2.1. Each module is equipped with its own pumping system
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and is separated from the others by UHV gate valves.

Figure 2.1: Varian GENII MBE system of the University of Montpellier MBE Laboratory. Zone

1 is the load-lock, zone 2 the buffer and zone 3 the growth module.

Group-III beam equivalent pressure (BEP) were cross-calibrated with reflection high-

energy electron diffraction (RHEED) oscillations and X-ray diffraction (XRD) measure-

ments from AlSb/AlAsSb and InAs/InAsSb superlattices to provide the growth rate-flux

characteristics of the MBE apparatus. The substrate temperature was measured with

cross-calibrated thermocouple and pyrometer and confirmed with the GaSb (001)–(2× 5)

to (1× 3) change of reconstruction, as observed with RHEED [96].

2.1.2 Reflection high-energy electron diffraction

RHEED makes it possible to monitor the growth process with accuracy: it can provide in-

formation on the growth rate, surface reconstruction, as well as surface roughness. RHEED
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uses an electron gun to send high-energy electrons at a grazing incidence to the substrate.

For the system used in this project, the electron acceleration voltage can be set in the

range 0.5 − 30 kV , its intensity 0.01 − 100 µA, enabling a focus spot on the substrate

smaller than 100 µm (minimum 50 µm). In the experiments described here, the voltage

was maintained at 30 kV and the intensity at 1.8 µA. Thanks to their wave character, the

electrons are diffracted off the surface and form characteristic diffraction patterns on the

phosphorescent screen on the other side of the chamber. For rough surfaces, thanks to the

very small angle of incidence (from about 0.5◦ to 5◦), the electrons penetrate volumetric

surface features, which produce diffraction typical of TEM, i.e. individual diffraction spots

characteristic of the 3D crystalline structure of the layer. In the case of smooth crystalline

surfaces, the surface reconstruction can be inferred from the analysis of the diffraction pat-

terns. The spacing between the streaks on the fluorescent screen is inversely proportional

to the size of the unit cell of the reconstructed surface in the direction perpendicular to the

beam incidence direction. Furthermore, it has been discovered by J.J. Harris [97] that the

intensity of individual spots forms damped oscillations resulting from periodic smoothing

and roughening of the surface as individual atomic layers are being deposited. These oscil-

lations give direct measure of the growth rate since their period corresponds to the growth

of 1 monolayer (ML). The exact characteristics of these oscillations are still a hot debate

but RHEED studies in MBE have underpinned much of a progress in surface science over

the past four decades. RHEED oscillations are often used to calibrate the growth rates.

In close feedback, they can be used to control the layer thickness to a fraction of atomic

layer.

2.1.3 X-ray diffraction

XRD is the technique of choice to study the structural properties of crystals, as described

in [98] or [99]. An XRD system is comprised of an X-ray source, a beam conditioner to

control the beam wavelength and divergence, a goniometer to manipulate the sample, a

detector to measure the intensity of the scattered X-ray beam and a collimator to limit

the divergence of the measured beam. When impinging the sample’s surface, the incident

rays are diffracted by the different crystal planes (rows of atoms). The scattered rays can
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interfere with each other. The condition for constructive interferences for a beam scattered

by parallel lattice planes is known as Bragg’s law and can be written as:

2d sin θ = nλ (2.1)

with n an integer, d the interplanar spacing between adjacent parallel planes, θ the

incidence angle on the substrate and λ the ray wavelength. The diffraction pattern of

a single crystal thus displays a line at the so-called Bragg reflection angles, satisfying

Equation 2.1.

Figure 2.2 presents the rotation axis of a typical XRD system. In particular, the incident

angle ω is defined between the X-ray source and the sample surface. The angle 2θ is the

angle between the incident beam and the detector axis. φ is the rotation angle around the

substrate’s normal. Different scan modes are possible. The ones used in this project are:

• Coupled scan: plot of scattered beam intensity vs 2θ while varying ω so that ω =
2θ
2

at anytime. A coupled scan shows intensity peaks whenever ω fulfills Bragg’s

law. Each peak can be ascribed to a specific phase by computing the interplanar

spacing from the peak position using Bragg’s law. The potential shift of a peak from

its expected position reflects the layers’ strain or tilt with respect to the substrate

surface. So-called symmetric scans only reveal planes parallel to the substrate surface.

Asymmetric scans, where the sample is tilted compared to the substrate’s normal

(ω = θ + χ), can be used to measure different crystallographic directions.

• Rocking curve: plot of scattered intensity vs ω, keeping 2θ constant. In a rocking

curve, the detector is parked at a determined Bragg angle and the sample is tilted so as

to vary ω. If the material is a perfect single crystal (perfect parallelism of the planes),

only one set of parallel planes will generate a Bragg reflection and a very sharp peak

will be observed. However, if the substrate is made of multiple crystallites slightly

tilted with respect to each other, a broader peak will be observed. Such disruptions

in the perfect parallelism of the atomic planes can result from dislocations, mosaicity

and curvature.
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Figure 2.2: XRD apparatus showing the different scan (rotation) axis. Adapted from [98].

The PANalytical X’Pert 3 MRD system and the PANalytical X’Pert Epitaxy software

were used to assess the samples in this project.
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2.1.4 Photoluminescence spectroscopy

Photoluminescence (PL) is a process by which a semiconductor absorbs and re-emits pho-

tons, carrying information about the material’s electronic structure. Valence band electrons

are excited with a photon flux of energy higher than the bandgap (typically a laser). The

excited electrons return to the lower energy state after emission of a phonon, photon or

Auger electron. PL spectroscopy studies the re-emitted photons. In this case, the analysis

of the emitted signal allows to estimate the bandgap of the material. The experimental

setup used in this work is shown in Figure 2.3). The Fourier-transform infrared spectrom-

eter is a Thermo Nicolet Nexus 870. It was used with a 780 nm pump laser-diode, a

nitrogen-cooled InSb detector and a KBr beam-splitter. Whenever the samples required

low-temperature measurements, they were placed in cryostats under vacuum.

Figure 2.3: PL apparatus used in this project.

The extracted PL spectrum displays peaks corresponding to the different materials

penetrated by the laser beam. For direct bandgaps, the material bandgap energy can be

estimated from the position of the PL peak maximum with the equation: [100]
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Egap = Epeak − 1/2kBT (2.2)

where Egap is the estimated bandgap energy, Epeak is the observed PL peak energy, kB

is the Boltzmann constant and T is the measurement temperature.

2.1.5 Other metrology tools

Other metrology tools used in this project include ion gauges, thermocouples, pyrometry,

mass spectrometry for in-situ measurements. ex-situ measurements consisted of profilom-

etry and optical, atomic force and electron (scanning and transmission) microscopy.

2.2 Clean room micro-fabrication

In this section, we present the photomasks developed for this project, in collaboration

with III-V lab. Two mask configurations were used. The first one is the classic front-back

configuration where one metallic contact is taken at the top of the solar cell and the other

one is covering the whole back side of the wafer (non-illuminated side). The second one

has both contacts taken on the front side of the cell: one at the top of the cell and one on

parts of the samples where the material has been etched until reaching the substrate. This

front-front configuration has been developed specifically for solar cells on Si, in order to

avoid the high defect density at the III-V/Si interface. Further information can be found

in Chapter 5.

The front-back and front-front configuration process flows are detailed below. Last, the

clean room techniques used in this project are briefly introduced.

2.2.1 Grid and photomask set presentation

Samples were typically processed as quarters of 2-inch wafers containing each multiple 0.5

cm × 0.5 cm solar cells. All masks are designed for 2-inch wafers. They were elaborated

on the basis of similar photomasks designed by G. Hamon and S. Soresi at III-V lab.
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The contacts’ fingers have a width of 10 µm and the contacts’ busses have a width of

600 µm. Three different shading factors are studied:

• cells with a fingers spacing of 100 µm (shading factor of 10%)

• cells with a fingers spacing of 200 µm (shading factor of 5%)

• cells with a fingers spacing of 300 µm (shading factor of 3.3%)

The masks also contain quantum efficiency (QE) and transmission line measurement

(TLM) cells. Two types of TLM patterns are used:

• big (diameter 400 µm) : patterns of 8, 16, 24, 32, 40, 48, 64, 80, 96, 112 µm

• small (diameter 200 µm) : patterns of 4, 8, 12, 16, 20, 24, 32, 40, 48, 56 µm

The various sets of masks used in this work are presented in the following. Detailed

process flows are shown in the appendices.

Front-back configuration

The masks contain:

• 26 solar cells

• 2 (identical) QE measurement units

• 2 (identical) TLM measurement units

There are 3 mask levels: front contacts, mesas and anti-reflective coating (ARC). Fig-

ure 2.4 shows a quarter of each mask.
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(a) Front contacts mask. (b) Mesas mask. (c) ARC opening mask.

Figure 2.4: Set of masks used in this work for solar cells on GaSb processing (quarter view).

Front-front configuration

The masks contain:

• 24 solar cells

• 2 (identical) QE measurement units

• 2 (identical) TLM measurement units

There are 3 mask levels: mesas, ARC and metallization. Figure 2.5 shows a quarter of

each mask.

(a) Mesas mask. (b) ARC opening mask. (c) Metallization mask.

Figure 2.5: Set of masks used in this work for solar cells on Si processing (quarter view).
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2.2.2 Used techniques

Standard clean room techniques were employed, that are detailed in this subsection.

Photolithography

Photolithography is the technique by which a geometric pattern is transferred from an

optical mask to a thin film or substrate. Using UV light, it imprints the pattern from the

mask to a light sensitive photoresist applied to the sample. This new resist mask allows

the etching or material deposition according to the geometrical pattern onto the sample.

Photolithography was employed at almost every fabrication step, following this procedure:

• The photolithographic mask was cleaned in 4 subsequent ultrasonic baths: 3 min in

acetone, 3 min in ethanol, 3 min in isopropanol 3 min in deionized (DI) water. It

was then blow dried with nitrogen.

• The sample’s surface was cleaned under the solvent hood: it was dipped 90 s in

acetone, 90 s in ethanol and 90 s in isopropanol. It was then blow dried with

nitrogen.

• The sample was heated for a 5 min dehydration at 110◦C under the photolithography

hood.

• The resist was spin-coated at 4000 rotations per minute (rpm) for 30 s.

• The sample was soft-baked according to the photoresist specifications.

• The sample was aligned on the SUSS MicroTec MJB4 manual mask aligner and

exposed to light for the exposure time corresponding to the used resist.

• When necessary, the sample underwent a post-exposure bake (negative photoresist).

• The sample was dipped in AZ 726 developer for the required amount of time and

rinsed under DI water flow for 2 min before being blow dried with nitrogen.
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• The sample was observed under optical microscope. In the case of resist bilayer, the

length of the undercut was noted.

• The resist thickness was assessed by profilometer.

Reactive ion etching

Reactive ion etching (RIE) is the most employed etching technique in micro-electronics. It

is a plasma etching technique implying both ion sputtering and chemical reactions. First,

a plasma is generated with chemicals prone to react with the sample. These chemicals are

transferred from the plasma to the surface of the sample on which they adsorb and react.

The volatile byproduct of the reaction further desorbs from the surface and is evacuated by

the pumping system of the reactor. In this project, the inductively coupled plasma (ICP)

mode of the RIE was employed. This mode uses RF energy to create a high-density plasma

of ionized atoms and reactive gas radicals, providing a greater tunability of the etching

process (rate, profile). The system was also equipped with a laser interferometer enabling

etching depth control. The machine used in this project was an OXFORD Plasmalab

system 100. Prior to each dry etch, we used a cleaning plasma to get rid of potential

contaminants in the reactor. Then, we conditioned the chamber with the dry etching

recipe acting on a dummy Si wafer for a few minutes. Eventually, we installed the sample,

whose back was coated with oil to ensure a good thermal conductivity, on a Si holder and

loaded it into the vacuum chamber to undergo dry etching. The recipe used in this project

involved a mixture of BCl3 : Cl2 : Ar on a sample cooled at 10◦C. The etching rate for

GaSb was estimated to 370 nm/min.

Plasma enhanced chemical vapor deposition

Plasma-enhanced chemical vapor deposition (PECVD) is a thin film deposition technique

involving chemical reactions between gas precursors and the substrate. It uses a plasma

to activate the gas decomposition into radicals that are adsorbed on the surface. There,

the chemical reaction takes place and the film forms. Eventually, the reaction byproducts

desorb from the surface and are evacuated away from the sample. PECVD makes it possible
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to use low deposition temperatures (below 300◦C) which are critical in many applications

where high temperatures could damage the devices being fabricated. PECVD offers very

low levels of impurities and deposition rates in the 10 and 100 Å/s range. The equipment

used in this work is the CORIAL D 250. It served to deposit dielectric films of SiO2 and

SiNx : H at 200 and 280◦C. The composition of the SiNx : H approached Si3N4, however

this exact stoichiometry has not been confirmed.

Metal deposition

Prior to metal deposition, the oxide was removed from the surface with a 30 s dip in

hydrochloric acid (HCl) diluted in DI water (20 : 5 mL), followed by a DI water rinse and

nitrogen blow dry. In this work, two metal deposition techniques were employed:

Electron gun evaporation

Evaporation is a physical vapor deposition technique where the material to be deposited

is evaporated from a crucible heated at high temperature. The source was heated by an

electron beam, offering fast deposition rates (between 1 and 20 Å/s) and low levels of

impurities. Once heated, the source material is transported onto the sample through gas

phase and condensed onto the surface. Evaporation uses low-energy atoms in high vacuum,

leading to few impurities and a high directionality. This anisotropy makes it good for lift-

off but the sample must be tilted and rotated for step coverage. The equipment used in

this work is the UNIVEX 350 electron-beam evaporator.

Sputtering

Sputtering is another physical vapor deposition technique where the substrate and the

source materials (targets) are placed on two parallel electrodes in a chamber filled with inert

gas. High voltages are applied to the electrodes causing a plasma to form in between and

energetic particles to impinge on the target and eject material from it onto the substrate.

Sputtering uses higher-energy atoms (and ions) than evaporation and should thus lead

to a better adhesion of the materials to the sample surface. Sputtering has a smaller

directionality than evaporation and offers good step coverage and film uniformity. It does

not require high vacuum levels. The deposition rates are in the 100 Å/s range for metals.

The equipment used in this work is the UNIVEX 450 B.

41



2.2.3 Anti-reflective coating

The ARC layer is a thin dielectric layer deposited on top of the emitter aiming at trapping

light inside the cell and suppressing light reflection by the surface. It is typically made

of SiN or SiO2. ARC is engineered so that the reflected rays at the air-ARC and at

the ARC-emitter interfaces are out of phase, generating destructive interferences (i.e. no

reflection). This involves a specific choice of refractive index and thickness for the layer:

• Since the reflectivity at an interface is given by R = n1−n2

n1+n2

2
, where ni is the refractive

index of region i, the optimum refractive index for the ARC is given by [101]:

nARC =
√
nair/glassncell (2.3)

where nair/glass is the refractive index of either air or glass depending on the type of

PV device and ncell is the refractive index of the material the topmost cell is made of.

• In order to obtain destructive interferences between the reflective rays, a special

thickness is chosen:

t =
λ0

4nARC
(2.4)

where λ0 is the wavelength of incident light. For PV applications, λ0 is often set to

0.6 µm since it corresponds to the peak intensity of the solar spectrum. Another popular

option is a double-layered ARC (ZnS + MgF2 or SiN). However, one has to be careful not

to make these layers too thick and generate more optical losses than they should suppress.

The possibility to add hydrogen to the SiN layer makes it a strong candidate for a good

coating. On top of being an ARC, the layer will indeed passivate the dangling bonds at

the interface with hydrogen.

In this project, we used OPAL 2 software to optimize the choice of ARC materials and

thicknesses [102]. This software takes into account the variation of the refractive index
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with the wavelength. It assumes ideal coatings and total reflection from the rear surface.

More information can be found in the provided reference. OPAL 2 uses data libraries taken

from the literature (such as the n− k values found by Aspnes and Studna for GaSb [103])

or allows the user to input its own experimental data. It estimated the following optimal

ARC thicknesses for a SJ GaSb cell:

• 123 nm for SiO2

• 86 nm for Si3N4

• 94 nm for SiNx : H

2.2.4 Metallic contacts

The metal-semiconductor interface forms a Schottky barrier, which thickness can be re-

duced by highly doping (favoring electrons tunneling). On the n side, the doping of GaSb

is limited to the 1E18 cm−3 range [104] [105]. This relatively low doping level limits the

contact quality. To overcome this issue, n-type GaSb solar cells where the contact to the n

side is made by full-wafer back-side deposition are generally favored. It is the case in this

work. Annealing of the contact after metal deposition enables metal diffusion within the

semiconductor, creating a highly-doped surface layer which reduces the Schottky barrier

at the interface. However, annealing was not done in this work, in order to avoid damage

to the heterostructures.

n-type contacts

Best contacts in the literature were obtained by Robinson et al. with Pd/In/Pd/Pt/Au

and a double anneal: first 1− 2 min at 125◦C and then 10 min at 350◦C [106]. Claimed

resistivity was 2.4 × 10−6 Ω cm2. Ikossi et al. also reached a resistivity of 1.4 × 10−6 Ω

cm2 with Pd/Ge/Pd/In/Pd (1 min anneal at 350◦C) and one of 3.8 × 10−6 Ω cm2 with

Pd/Ge/Pd (1 min anneal at 400◦C) [107]. Based on the availability of materials in the

clean room, we have used Ti/Au 30/250 nm for this contact.
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p-type contacts

For low-doping GaSb (1E17 range), best contacts were obtained by Tadayon et al. with

a Au contact of 25 nm annealed at 200◦C for 1 min, reaching a resistivity of 1.4− 7.8 ×
10−8 Ω cm2 [108]. At higher doping levels (1E20 range), resistivities of 6.5 × 10−8 Ω cm2

were obtained by Soldatenkov et al. with Pt/Ag contacts annealed at 160 and 185◦C for

15 to 60 s [109]. Based on the availability of materials in the clean room, we have used

Pd/AuGeNi 5/200 nm for this contact when it was a back contact. When the top-top

contact configuration was used, we deposited Ti/Au 30/250 nm for both contacts.

2.3 Device characterization

Solar cell performance is typically characterized both electrically and optically. On the first

hand, the study of the current density - voltage (J-V) characteristic allows to determine

the cell efficiency and estimate the parasitic resistances. On the other hand, the spectral

response of the cell reflects on the exploitation of the incoming light by the cell and the

corresponding losses. Both measurements are detailed in the following.

2.3.1 J-V curve

The experimental J-V setup is presented in Figure 2.6. In this work, solar cells were

characterized at the University of Montpellier (France) using a Newport ORIEL Sol 3A

solar simulator. The lamp was calibrated using a reference Si cell, and equipped with

a filter to provide an AM1.5G illumination. A Keithley 2400 Source Meter was used to

measure the electrical parameters of the cells. The cells were mounted on a Peltier element

to maintain a temperature of 25◦C upon illumination. GaSb-on-GaSb solar cells were

also characterized at the University of Lancaster (United Kingdom) with a LOT ORIEL

LS0106 solar simulator.

The study of the intensity-voltage characteristic allows to extract a number of electrical

metrics:
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Figure 2.6: Electrical characterization setup at the University of Montpellier.

• The short-circuit current density JSC is the current density through the solar cell

when the voltage across the device is zero. It corresponds to the maximum cur-

rent density which may be drawn from the solar cell. JSC strongly depends on the

generation rate and diffusion length of the carriers.

• The open-circuit voltage VOC is the voltage across the device when the net current

through the cell is zero. It corresponds to the amount of forward bias on the cell due

to bias of the junction under illumination. VOC strongly depends on the saturation

current of the device, hence on the amount of recombination.

• The fill factor FF is defined as the ratio of the maximum output power to the product

of ISC and VOC : FF = VMP IMP

VOCISC
. It is a good measure of the ideality of the solar cell.

• The cell’s efficiency η is defined as the ratio of the total energy output over the

total energy input. The standard Pinput used is 1 kW/m2. The efficiency is given by
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η = VOC×ISC×FF
Pinput

= Pmax

Pinput

2.3.2 Diode models

Numerical fits to both the illuminated and dark J-V curves make it possible to estimate

additional parameters. The single-diode equation provides a simplified description of the

intensity-voltage characteristic of a solar cell:

J = J0(exp
qV

nkBT −1) (2.5)

with J the net current density flowing through the diode, J0 the dark saturation current

density (leakage current density in the absence of light), n the ideality factor of the diode,

V the voltage applied across the junction, q the absolute value of electron charge, kB the

Boltzmann constant and T the temperature. J0 is a measure of the recombination in the

device. It increases with T and decreases as the material quality decreases. n is another

important parameter of the device as it indicates how close to an ideal diode it is.

In the single-diode equation model, this parameter is assumed to be constant. In reality,

it depends on the voltage V . At high voltage, recombinations at the surfaces and in the

bulk predominate and the ideality factor approaches 1. At low voltage, however, the cell

operation is dominated by recombination at the junction and the ideality factor is close

to 2. A double-diode model can therefore describe the device more accurately by adding

a second diode of ideality factor 2, taking into account deviations from the ideal diode

operation. The device then follows Equation 2.6 (solar cell in the dark):

J = J01(exp
q(V−JRs)

kBT −1) + J02(exp
q(V−JRs)

2kBT −1) +
V − JRs

Rsh

(2.6)

where Rs and Rsh are respectively the series and shunt resistances associated with the

model.

The corresponding electrical model is shown in Figure 2.7.

In Chapter 3, we use the two-diode lumped model to characterize the solar cells. In

Chapter 5, a more complex solver is used, involving as well fitting to the QE curve. This
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Figure 2.7: Circuit diagram of the double-diode model of the solar cell. Source: pveducation.org

solver was developped by Frédéric Martinez from the M@csee group at the University

of Montpellier. Fits to the experimental curves presented in this work were realized by

Stéphanie Parola from the same group.

2.3.3 Quantum efficiency

The QE is defined as the ratio of carriers collected by the cell to the total incident photons

of a given energy. External and internal QE are both used in optical characterization.

External quantum efficiency (EQE) includes the effects of reflection and transmission,

whereas internal quantum efficiency (IQE) only takes into account light that reaches the

inside of the cell. The IQE can therefore be viewed as the collection probability due to

the generation profile of a single wavelength, integrated over the device thickness and

normalized to the incident number of photons. It can be calculated from the EQE and

transmission/reflectance spectrum of the cell.

Similar to the QE, the spectral response (SR) is also used to characterize a solar cell.

It is the ratio of photogenerated current to the incident power for a considered wavelength.

The two parameters are related by:
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SR =
qλ

hc
QE =

QE

λ(nm)
× 1239.8 (2.7)

The spectral response of the cells was acquired at the University of Montpellier with a

setup made of a Xenon lamp and an Acton ARC AM-505F spectrometer. The equipment

was calibrated with a reference Si photodiode (BN-DSR-100F, Gigahertz-Optik) and a Ge

photodiode (FDG03-CAL, Thorlabs) for the infrared wavelengths. The experimental setup

is shown in Figure 2.8.

Figure 2.8: Optical characterization setup at the University of Montpellier.
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2.4 Summary

In this chapter, we present the growth, processing, and characterization techniques used

in this project. For each of them, a rapid description is provided. Detailed process flows

can be found in the appendices.
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Chapter 3

GaSb-on-GaSb solar cells

The first building block of this project is the elaboration of a state-of-the-art stand-alone

GaSb solar cell. In this chapter, we first review the literature and investigate the cell design

with simulations. Then, we detail the fabrication process. Last, we present the electrical

and spectral characterization of the devices.

3.1 GaSb-based solar cells

3.1.1 Literature review

This review focuses on GaSb-based solar cells for PV applications only. Such cells have

also been extensively studied for thermophotovoltaic applications, which fall beyond the

scope of this work. GaSb solar cells were investigated as early as 1989 in the context of

cascaded tandem cells. GaSb “booster” cells, as referred to in [110], were expected to en-

hance GaAs cell performance by 6%. Using a mechanical stack of the two cells, the Boeing

High Technology Center achieved a record 32.6% efficiency under 100 suns (AM1.5D). The

bottom GaSb subcell efficiency was thus 9.3% under AM1.5D at 84 suns. About twenty

years later, Andreev et al. enriched this GaAs/GaSb stack with an upper GaInP [111]

or AlGaAs [112] cell. The module efficiency attained 24.7% under concentration, falling
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short of the projected 36%. The discrepancy between theory and experiment can largely

be attributed to optical losses, inherent to the spectrum splitting technique used. Mechan-

ical stacks involving GaInP and GaInAs with GaSb have also been investigated. Bett et

al. were able to attain 33.5% efficiency at 308 suns [113] and Shvarts et al. 35% at 50

suns [114]. All of the aforementioned modules used four-or-more- terminal configurations.

Although these modules are less sensitive to chromatic aberrations and variations in the so-

lar spectrum, they are also heavier and more cumbersome than two-terminal devices. Other

epitaxial approaches, such as inverted metamorphic cells involving thick buffer layers, have

also been investigated. Nelson et al. recently made progress toward the monolithic inte-

gration of the GaInP/GaAs/GaSb triple-junction cell [65]. The homoepitaxial GaSb cell

had a 1-sun efficiency of 5.5% (AM1.5G) with an open-circuit voltage (VOC) of 282 mV , a

short-circuit current density (JSC) of 33.9 mA/cm2, and a fill factor (FF) of 59%. Although

encouraging, attempts to integrate the cell on a GaAs substrate significantly degraded the

efficiency to 1.0%. Similar results were obtained by Mansoori et al. with GaSb solar cells

grown on GaAs substrates using AlSb dislocation filters [115]. The homoepitaxial GaSb

cell had VOC of 230 mV , JSC of 33.5 mA/cm2, and FF of 50%. Once more, the integration

onto GaAs significantly degraded the performance of the cell with VOC of 145 mV , JSC of

21.7 mA/cm2, and FF of 29%. Last, a lattice-matched double-junction GaSb/InGaAsSb

cell was also studied by [15] to be stacked with a GaAs-based triple-junction. Under a 1.2

concentration ratio, the GaSb solar cell exhibited 5.3% efficiency, VOC of 315 mV , and FF

of 58%. The low fill factors reported in the aforementioned pieces of work probably result

from elevated parasitic resistances (due to the low quality of contacts, passivation and

unoptimized grid designs). There is therefore room for improvement in these directions.

3.1.2 GaSb stand-alone cell simulation

We propose the GaSb cell structure presented in Figure 3.1. Preliminary simulations were

made with SCAPS software to provide an estimate of the performance [116]. It is worth

noting that this software assumes pristine crystal quality, independently of the doping

level. In reality, elevated doping levels tend to introduce defects into the crystal. The

p-type residual doping (2− 5 × 1016 cm−3) is also ignored in the simulation. We used for
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the simulation a high series resistance of 2.0 Ω cm2, in accordance with our measurements

on contacts to GaSb samples. This consistently limits the performance of the cell.

Figure 3.1: Schematic structure of the GaSb-on-GaSb solar cell.

For the structure shown in Figure 3.1, we compute 7.78% efficiency, with VOC of 345

mV , JSC of 41 mA/cm2, and FF of 55.3% (Figure 3.2). According to the software, changes

to the base and emitter thicknesses would only enhance the cell efficiency by a few tenths

of a percent. Also, we did not at first consider the use of window layers of higher bandgap.

Such layers indeed include high Al contents, making them particularly vulnerable to ox-

idation. We wanted to ensure good control of the processing steps before incorporating

sensitive materials into the structure. Window layers in the proposed design are therefore

only made of highly doped GaSb.
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Figure 3.2: Simulated J-V curve for a GaSb-on-GaSb solar cell in SCAPS.

The simulated theoretical performance was higher than what has been observed in the

literature thus far [15] [65] [115]. Given that the cell is homoepitaxial and judging by the

reduced reported VOC and JSC , improvements to the passivation (assumed ideal in the

simulation) to limit surface recombination seem crucial to bridge the gap with theory.
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3.2 Solar cell fabrication

3.2.1 Solar cell epitaxy

Lattice-matched GaSb solar cells were grown by MBE in the Varian GENII reactor. Upon

loading into the growth reactor, 2-inch epi-ready n-type (001) GaSb : Te substrates were

deoxidized under Sb flux at 550 ◦C. After 20 minutes of deoxidation, the temperature was

lowered to 500 ◦C to grow a 200-nm GaSb buffer layer. The solar cell growth was then

initiated at the same temperature. The GaSb growth rate, set by the Ga growth rate, was

1 ML/s. The V/III growth rate ratio was kept close to 2. Be and Te were used for p- and

n-type doping, respectively. The solar cell structure is shown in Figure 3.1. It is made of a

500-nm back surface field (BSF), a 1500-nm base, a 500-nm emitter and a 30-nm window

layer. The structure was eventually capped with a p-doped 10-nm contact layer, which

also provided protection to the active region during the subsequent processing steps.

The surface was monitored during growth with RHEED. As expected for homoepitaxial

growth, streaky patterns were observed throughout the growth, indicative of a smooth

surface. The crystalline quality was subsequently confirmed with XRD, with the ω-2θ scan

displaying only a narrow peak. The FWHM was evaluated at 38 arcsec, very close to the

usual 30 arcsec of a substrate peak.

3.2.2 Solar cell processing

After growth, 0.5-cm × 0.5-cm SJ GaSb solar cells were fabricated in the class 10000 clean

room of the University of Montpellier. The procedure comprised four steps represented in

Figure 3.3. First, Ti/Au 30/250 nm was deposited by electron beam evaporation for the

front contacts. Then, 2-µm deep trenches were opened by ICP RIE to isolate the cells

from each other. A 214-nm thick SiNx : H passivation/ARC layer was later deposited on

the top and sides of the active surface. On some samples, a 291-nm thick SiO2 layer was

used instead. The ARC was subsequently etched on top of the bus bars to open access

to the metallic contact for electrical wiring. PECVD and ICP RIE were employed for

this step. Last, Pd/AuGeNi 5/200-nm layers were deposited by sputtering on the whole
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back surface. At the end of processing, the samples were cleaved into individual cells and

mounted on TO − 8 holders with silver paint. The solar cell bus bars and back contacts

were connected to the TO − 8 pins by micro-welding.

Figure 3.3: Schematic illustration of the processing steps for the fabrication of the GaSb-on-

GaSb solar cell. For each step, a picture of the corresponding photolithography mask is displayed

(right).

The resulting cell is shown in Figure 3.4.
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Figure 3.4: Fabricated GaSb-on-GaSb solar cell.

3.3 Device characterization

3.3.1 J-V parameters

Initial results

In order to produce a state-of-the-art GaSb stand-alone cell, we conducted an extensive

study of the device to ensure the stability of the cells over time and the impact of the

passivation/ARC. All of the cells mentioned below originated from the same epitaxial

sample and were processed at the same time. Three types of cells were fabricated: SC012

cells with a SiNx : H passivation, SC015 cells with a SiO2 passivation, and SC013 cells with

no passivation. Table 3.1 shows a comparison of the results obtained at both measurement

sites. The best control solar cell demonstrated a 1-sun efficiency (η) of 5.90%, indicating

reasonably high material quality [65]. The cell had VOC of 280 mV , JSC of 36 mA/cm2, and

FF of 58.9%. The same cell exhibited similar characteristics when measured in Lancaster,

four months later, with an efficiency of 5.84%, VOC of 286 mV , JSC of 37 mA/cm2, and FF

of 55.1%. The shading factor of this particular cell was 5%. The repeated measurements
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were consistent for all types of cells, demonstrating the stability of the devices and the

reliability of the measurement setups. While this was expected for the passivated cells, it is

interesting to note that there was not much degradation between the parameters measured

in July and November for the unpassivated SC013 cell. This indicates that any oxidation

process occurring at the surface of the cell is almost complete from the very beginning

and does not worsen significantly over time. Still, we observed that the passivation layer

reduced the dispersion of the J-V curves (current density-voltage, observed over 8 samples),

making cell characteristics more reproducible.

Influence of passivation

Results concerning the influence of the passivation layer are shown in Table 3.2, correspond-

ing to cells with a shading factor of 5%. The associated J-V curves, shown in Figure 3.5,

provide additional data concerning the impact of passivation.

It appears that the SiNx : H passivation/ARC yields higher efficiencies. The dark J-V

data were fitted to the two-diode lumped model for an abrupt pn junction [117]. Ideality-

of-one dark current J01, ideality-of-two dark current J02, and an estimate of the shunt

resistance Rsh were extracted. The passivated cells exhibited higher shunt resistance (Rsh

of 1.7× 103 Ω cm2 and 1.3× 103 Ω cm2 for SC012a and SC015b, respectively, vs 5.3× 102

Ω cm2 for SC013b), indicating reduced leakage currents on the surface and edges of the

mesas. Particularly, in forward bias, the generation-recombination current was lower on

the passivated samples (J02 of 1.3 × 10−5 A/cm2 and 1.6 × 10−5 A/cm2 for SC012a and

SC015b, respectively) than on the unpassivated one (J02 of 3.10×10−5 A/cm2 for SC013b),

indicating a longer carrier lifetime. The two types of passivation achieved very similar

results and could not really be distinguished. The added benefit of the SiNx : H on the

1-sun curve(s) can therefore be attributed to its anti-reflective action. As dark J-V curves

were similar for SC012a and SC015b in the forward regime, the better performance of

the SC012a cell under illumination was due only to the increased generated photocurrent.

This was expected from the better transmission pattern of the 214 nm SiNx : H coating

(shape similar to that of the 291-nm SiO2 coating, with higher intensity), as indicated by

in-house ellipsometry measurements.
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Table 3.1: Correlation between the distinct sites measurements. 1-sun efficiency (η), fill factor

(FF ), short-circuit current density (JSC) and open-circuit voltage (VOC) measured for control

cells in Montpellier (July 2017) and Lancaster (November 2017).

Cell Measurement site η (%) FF JSC (mA/cm2) VOC (mV )

SC012a
Montpellier 5.90 0.59 36 280

Lancaster 5.84 0.55 37 286

SC015a
Montpellier 4.86 0.51 34 280

Lancaster 4.75 0.48 35 280

SC013a
Montpellier 4.21 0.54 28 280

Lancaster 4.31 0.52 31 270

Table 3.2: J-V parameters measured for 5% shading GaSb-on-GaSb solar cells. 1-sun efficiency

(η), fill factor (FF ), short-circuit current density (JSC), and open-circuit voltage (VOC) measured

for all types of cells: with SiNx : H passivation (SC012), with SiO2 passivation (SC015), and

with no passivation (SC013). These measurements were made at the University of Lancaster.

Cell type η (%) FF JSC (mA/cm2) VOC (mV )

SC012a (SiNx : H) 5.84 0.55 37 286

SC015b (SiO2) 4.47 0.47 34 280

SC013b (�) 4.40 0.52 32 270
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(a)

(b)

Figure 3.5: Measured (a) 1-sun and (b) dark J-V curves for all types of control solar cells: with

SiNx : H passivation (red), with SiO2 passivation (blue), and with no passivation (green).59



Influence of the shading factor

In terms of shading factor, no clear tendency could be discerned from the results. The

compromise between the higher JSC (lower shading factor) and the lower VOC (lower shad-

ing factor) was too fine and the pool of samples too small to provide any conclusion. The

maximum relative change in efficiency with shading factor was around 10%, corresponding

to a 0.4% absolute change. Detailed results are listed in Table 3.3. We expect a more

significant impact on measurements under concentration, but these measurements are out

of the scope of this exploratory work.

Table 3.3: J-V parameters measured for GaSb-on-GaSb solar cells. 1-sun efficiency (η), fill

factor (FF ), short-circuit current density (JSC) and open-circuit voltage (VOC), depending on

the shading factor, measured for all types of cells: with SiNx : H passivation (SC012), with SiO2

passivation (SC015), and with no passivation (SC013). These measurements were made at the

University of Lancaster.

∗The cell was damaged upon cleaving.

Cell type Shading factor (%) η (%) FF JSC (mA/cm2) VOC (mV )

SC012 (SiNx : H)

3.3 NA∗ NA∗ NA∗ NA∗
5 5.84 0.55 37 286

10 5.24 0.54 33 290

SC015 (Si02)

3.3 4.75 0.48 35 280

5 4.47 0.47 34 280

10 4.32 0.47 32 290

SC013 (�)

3.3 3.95 0.45 33 270

5 4.40 0.52 32 270

10 4.31 0.52 31 270

3.3.2 Quantum efficiency

Figure 3.6 shows the experimental EQE curve of the highest efficiency GaSb-on-GaSb cell.

The EQE values exceeded 70% over the 1150− 1540-nm wavelength range. The resulting
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maximum IQE, shown in Figure 3.6, was computed to be 81.6% at 1150 nm, indicating an

efficient carrier collection in the base. Both EQE and IQE values reflect the device suitable

material quality. However, the values at short wavelengths reveal important losses, pointing

to poor carrier collection on the front surface. High bandgap materials such as AlGaAsSb

or AlInAsSb alloys, lattice-matched to GaSb, could provide a well-suited window layer.

Optimization of the emitter thickness could also improve high-energy collection, as we used

a thick emitter compared with the standard values for PV applications ( [15] [65]). The

difference between the EQE and IQE curves further shows that the ARC layer thickness

can be improved.

Figure 3.6: Measured EQE for the highest efficiency GaSb-on-GaSb solar cell (bright red). The

reflectivity (R) is shown in gray. The resulting IQE is shown in dark red.
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3.4 Summary and proposition of an improved struc-

ture

In this chapter, we present our results on the development of a state-of-the-art GaSb

stand-alone solar cell. Efficiencies close to the best reported in the literature [15] [65] [115]

were achieved and confirmed through measurements at two sites. Fitting the curves to

the two-diode lumped model enabled us to highlight the benefits of SiNx : H passivation

and extract resistance values that will serve as a comparison baseline in the following

chapters. The cell performance, however, is still below theoretical expectations, as shown

in Table 3.4.

Table 3.4: Performance of experimental ( [15] [65] [115] and this work) and theoretical (SCAPS

simulations) GaSb-on-GaSb solar cells. All reported parameters are for the AM1.5G spectrum,

except those of [15].

Cell η (%) FF JSC (mA/cm2) VOC (mV )

[15] (1.2 suns) 5.3 0.58 not specified 315

[65] 5.5 0.59 34 282

[115] 3.9 0.50 34 230

This work 5.9 0.59 36 280

Initial design simulation 7.8 0.55 41 345

Improved design simulation 9.3 0.60 39 395

Given that the homoepitaxial material was of pristine quality, the discrepancy between

theory and experiment seems to indicate that passivation needs to be improved to decrease

surface recombination (and increase the VOC). Small changes to the cap layer thickness also

had an impact on the cell efficiency in the simulations. The optimal cap thickness remains

to be found that can withstand all fabrication steps without absorbing too much of the

incoming photon flux. The analysis of the spectral response of our cell indicated further

improvement pathways, such as a change in window layer and the optimization of the ARC

thickness. Preliminary simulations in SCAPS showed that using 1 eV AlGaAsSb window

layers would achieve 8.81% efficiency (compared with 7.78% for the previous simulation),
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with VOC of 393 mV , JSC of 37 mA/cm2, and FF of 60.7%. Further change in the ARC

could achieve 9.30% efficiency with VOC of 395 mV , JSC of 39 mA/cm2, and FF of 60.0%

(Figure 3.8). Further improvement to the FF could be achieved by a detailed contact

study, which is out of scope for this work. At the time of writing this manuscript, the

improved cell displayed in Figure 3.7 was being fabricated and tested.

Figure 3.7: Schematic structure of the improved GaSb-on-GaSb solar cell.

Figure 3.8: Simulated J-V curve for the improved GaSb-on-GaSb solar cell in SCAPS.
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Chapter 4

III-Sb multi-junction cells

The second building block of this project is the investigation of high-efficiency lattice-

matched MJ structures on GaSb. First, we investigate a tandem cell design and iden-

tify the materials needed for this structure. We then present our epitaxial study of the

AlInAsSb alloy, which is essential to this project. Last, we detail our attempt (processing

and characterization) at a GaSb-based tandem cell and conclude on the potential of III-Sb

alloys for high-efficiency MJ cells.

4.1 Structure design

In this section, we present the initial steps of the conception of a III-Sb MJ solar cell:

estimation of the required bandgaps, selection of adequate materials and structure of the

TJs. We focus here on a tandem cell design as a proof of concept of high-efficiency III-Sb

solar cells, which could later evolve into a three- or four-junction cell.
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4.1.1 GaSb-based quaternary alloys and required bandgaps

Preliminary calculations

We performed a preliminary analysis of a GaSb-based tandem solar cell design in order to

identify the required bandgap range. Given a tandem cell with a top cell Etop
g bandgap

and a bottom cell Ebottom
g bandgap, the photocurrent density of each subcell is given by:

J bottomph =

∫ Etop
g

Ebottom
g

qΦdE (4.1)

J topph =

∫ E∞g

Etop
g

qΦdE (4.2)

where q is the electron charge and Φ the incident spectral photon flux.

The photocurrent density of the tandem cell is given by the minimum of these two

values (current-matching condition for series-connected cells):

Jph = min(J bottomph , J topph ) (4.3)

For each subcell, the open-circuit voltage VOC is computed from [118]:

V subcell
OC =

Esubcell
g

q
− kT

q
× ln

(
qwBNCNV

Jsubcellph

)
(4.4)

with w the thickness of the solar cell base, B the radiative recombination coefficient,

NC the effective density of states in the conduction band, and NV the effective density of

states in the valence band.

The total VOC is the summation of the VOC of the subcells:

VOC = V bottom
OC + V top

OC (4.5)

The power per unit area can be estimated by:
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Ptandem = Jph × VOC × FF (4.6)

For simulation purposes, a realistic FF of 85% is used.

The efficiency η of the cell is then given by:

η =
Ptandem
Psun

(4.7)

where Psun is the incident solar power.

Setting the bottom cell’s bandgap to that ofGaSb, the optimal top cell bandgap appears

to be 1.45 eV . This bandgap, combined with the parameters listed in Table 4.1, should

allow the tandem cell to reach a 1-sun efficiency of 38% and a 1000-sun efficiency of 47%.

Table 4.1: Parameters used in the simulation of the GaSb-based tandem cell under 1 sun. The

base of both subcells is assumed to be 1-µm thick.

Parameter Bottom cell Top cell

Eg 0.73 eV 1.45 eV

Jph 27.2 mA cm−2 26.9 mA cm−2

B 8.5× 10−11 cm3 s−1 7.2× 10−10 cm3 s−1

NC 2.1× 1017 cm−3 4.5× 1017 cm−3

NV 1.8× 1019 cm−3 9.5× 1018 cm−3

VOC 422 mV 1090 mV

This preliminary calculation provides good insight into the bandgap we should target

for the top subcell. We thus suggest the design presented in Figure 4.1 for the tandem cell.
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Figure 4.1: Structure proposed for a III-Sb tandem cell based on preliminary calculations. The

III-Sb top cell should target a bandgap of 1.45 eV .

Choice of the quaternary alloy

As mentioned in Chapter 1, quaternary alloys offer numerous bandgap engineering oppor-

tunities. The (III,III-V,V) alloys, in particular, offer the independent tunability of the

bandgap energy and the lattice parameter by the selection of an appropriate combination

of III and V elements. In the case of lattice matching to GaSb, AlGaAsSb, GaInAsSb, and

AlInAsSb, all enable an extended range of bandgaps. AlGaAsSb and GaInAsSb, how-

ever, can only access bandgaps respectively higher or lower than that of GaSb. AlInAsSb

is the only alloy that provides access to both ranges while staying lattice-matched to GaSb,

which makes it an interesting candidate for optimized MJ designs. Moreover, it seems that

this alloy presents direct bandgap energies higher than those of AlGaAsSb [61].

Early theoretical models of the influence of AlxIn1−xAsySb1−y
1 composition on the

bandgap and lattice parameter were made in the 80s by Glisson et al. and are shown

1In the following, AlxIn1−xAsySb1−y and AlInAsSb can be used interchangeably.
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in Figure 4.2 [119]. The calculations were based on rare available experimental data and

interpolation from binary and ternary compound bandgaps and lattice parameters. The

results were computed according to Moon’s procedure with known bowing parameters and

extrapolations from experimental data for the others [120]. These estimations were re-

evaluated by Adachi in 2009 [61]. The author used an interpolation matrix to compute the

band parameters of AlInAsSb from the known constituent ternary and binary compound

parameters. He calculated the band diagrams of AlInAsSb, AlGaAsSb and GaInAsSb

lattice-matched to GaSb shown in Figure 4.3.

Figure 4.2: Bandgap energies (plain curves) and lattice parameters (dashed lines) of

AlxIn1−xAsySb1−y depending on the composition of III and V elements. Adapted from [119].
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Figure 4.3: Energies of the lowest direct E0 and indirect gaps EIDg vs x for

AlxIn1−xAsySb1−y/GaSb, AlxGa1−xAsySb1−y/GaSb and GaxIn1−xAsySb1−y/GaSb (left to

right). Adapted from [61].

It is clear from these simulations that AlInAsSb is the most promising material to

achieve high-energy direct bandgaps. According to the results, the direct-indirect cross-

over should occur around an Al composition of xAl = 0.77 for AlInAsSb, corresponding to

a bandgap energy of 1.64 eV , much higher than for AlGaAsSb or GaInAsSb. For these

reasons, we have set our focus on the AlInAsSb alloy.

4.1.2 AlInAsSb in the literature

AlInAsSb, which can be lattice-matched to InP , InAs or GaSb substrates, is an in-

teresting candidate for Sb-based epi-structures. It has recently been proposed for micro-

and opto-electronic applications including high-frequency field effect transistors [121], mid-

infrared (MIR) multi-quantum well lasers [122], heterojunction bipolar transistors [123],

PV systems [124], mid to long wavelength infrared (LWIR) detectors [125] and staircase

avalanche photodiodes [126]. However, it has not yet aroused much enthusiasm in the

literature. This is likely due to a very large and robust thermodynamic miscibility gap: for

layers that are lattice-matched to GaSb, it covers the whole xAl ∈ [0.05; 0.96] composition

range at 400◦C, and still extends from xAl = 0.14 to xAl = 0.87 at 1000◦C [127]. This
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difficulty can be partially overcome by using of non-equilibrium techniques such as MBE,

which allows the growth in metastable and unstable regions [128].

We only focus in this section on the epitaxy of AlInAsSb on GaSb substrates, including

some results on InP . Other works concerning InAs-matched alloys ( [129] [130] [131]) and

6.2 Å alloys ( [123] [132]) are not considered. The epitaxy of AlInAsSb on GaSb was first

reported by Washington-Stokes et al. [133]. Quaternary compounds were grown lattice-

matched to GaSb, with various compositions having xAl ∈ [0.37; 0.73]. RHEED, XRD and

X-ray photoelectron spectroscopy (XPS) all demonstrated that high-quality structures with

smooth interfaces could be grown within the predicted miscibility gap at low growth tem-

perature (Tsub = 355◦C), although sizeable composition variations occurred for substrate

temperature variations of ±5◦C. The PL properties of the samples were not investigated.

The digital alloy epitaxy technique was also investigated by Vaughn et al. in 2005 in

the search for type I mid-infrared multi-quantum well structures using AlInAsSb barri-

ers and InAsSb wells [134]. Digital alloys were preferred over random alloys since, below

400 − 430◦C, unpredictable atomic ordering is known to occur in InAsSb layers [135].

Digital alloys were grown as a sequence of binary compounds, nominally AlSb, InSb and

InAs. Binaries with only one group-V element were chosen in order to avoid competition

between the group-V elements, which is hard to control. This was expected to make the

layers more reproducible and uniform. The composition and lattice matching to the sub-

strate was determined by the ratio of the binary thicknesses. Layers stable both through

time and annealing were obtained in this fashion. Following on [134], Fu [136] and Mad-

dox et al. [137] recently reported an in-depth study of AlInAsSb digital alloys. They

complemented the structural analysis with PL observations for xAl ranging from 0 to 0.8.

Samples were grown following a procedure similar to Vaughn’s at a temperature of 480◦C.

PL was observed at room temperature for xAl up to 0.75 with bandgap energies ranging

from 0.25 eV to 1.24 eV . A significant discrepancy between these observations and the

theoretical models ([119] [61]) was noted and attributed to self-ordering effects in digital

alloys. However, similar observations were also recently made on random AlInAsSb alloys

grown on InP substrates. In 2015, Hirst et al. obtained good-quality bulk AlInAsSb

layers lattice-matched to InP , grown at 325◦C and 450◦C [46]. PL observations revealed

that the bandgap energies were lower than expected. Careful examination of the peak
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shape and position showed that this may have been due to carrier localization stemming

from composition fluctuations within the material [138]. The PL spectra exhibited a sub-

bandgap tail indicating that the photo-emission would be dominated by long-wavelength

states. This in turn would induce a decrease in the open circuit voltage, hence the efficiency.

Post-growth thermal treatment proved to enhance the quality of the layer [139] [140]. This

came with a blue-shift of the PL emission, translating the observed bandgap energies closer

to their expected values. No change in the lattice constant was observed. Furthermore

it was noted that the sub-bandgap tail of the spectrum significantly decreased for rapid

thermal annealing (RTA) above 500◦C, indicating that the material’s quality improved.

The presence of atom-scale composition fluctuations has been confirmed by atom probe

tomography studies since then [141]. The amplitude of the fluctuations was later shown

to depend on the growth temperature [142].

Before ending this literature review, we should also mention the recent work of Lyu et

al., which consisted of a comparative study of digital vs random alloys of AlInAsSb [143].

The digital alloys used were close to the ones used in [134]. The use of migration-enhanced

epitaxy (MEE) at the InSb-type interfaces proved to reduce the digital alloy surface rough-

ness more than thirty times. An improved root mean square (RMS) roughness of 0.197

nm was estimated for 400 nm of Al0.7In0.3AsSb digital alloy. A similar structure using a

random alloy of the same composition achieved an RMS roughness of 0.112 nm. However,

scanning transmission electron microscopy (STEM) revealed the presence of periodical

structures in the random alloys with a period of 4.06 nm for Al0.4In0.6AsSb and 4.32 nm

for Al0.7In0.3AsSb. The authors suggested that the phase decomposition of the alloys was

not complete since only two satellite peaks appeared in XRD and the STEM lattice pattern

was faint to the naked eye. These observations were repeated on multiple samples, ruling

out growth or measurement artifacts. Unfortunately, no PL measurements were made.

According to the literature, only digital-alloy AlInAsSb layers lattice-matched to GaSb

have demonstrated PL. The discrepancy between the observed and theoretical values of

the energy bandgaps was attributed to the digital alloying technique, but no comparison

to random alloys has yet been reported.
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4.1.3 InAs/GaSb tunnel junctions

TJs are the linking elements between the subcells of an MJ solar cell. Without TJs, the

interface between the n-doped top region of the bottom subcell and the p-doped bottom

region of the top subcell would make a PN junction opposite to those of the subcells, acting

as a parasitic diode and generating photocurrent losses. TJs minimize losses by using a

broken-gap (type III) band alignment through which carriers can tunnel. TJs typically

require high levels of doping to achieve the appropriate band alignment. However, such

levels are sometimes difficult to achieve and can also incorporate defects in the device.

The GaSb/InAs(Sb) system naturally has a broken-gap alignment (illustrated in Fig-

ure 4.4), allowing the electrons to tunnel easily at the interface without requiring extremely

high doping levels and leading to low resistivities [144] [62]. Moreover, GaSb and InAs have

low effective masses, which enhances the tunneling probability [145]. Using a GaSb/InAs

TJ, Vizbaras et al. achieved a resistivity of 2.8 × 10−7 Ωcm2, which is ten times better

than an InP -based TJs [145]. The structure of the junction was 20 nm of Si-doped n−-

InAs (1 × 1019 cm−3) followed by 20 nm of Si-doped p+- GaSb (1 × 1019 cm−3). InAs

was used rather than InAsSb in order to avoid segregation in the layer. The interface

shutter sequence was the following:

• Growth of the InAs : Si layer

• Stopping both In and As (and Si): the surface is slightly In-rich

• Letting Sb flow to create an InSb−GaSb interface

• Opening Ga (and Si), to grow the GaSb : Si layer

The only disadvantage of the GaSb/InAs TJ for solar cells is that the bandgap of InAs

is smaller than that of GaSb, leading to a small absorption by the junction. To address

this issue, Lumb et al recently proposed a broken-gap quantum-well tunnel junction (BG-

QWTJ), including an 8-nm InAs quantum well (QW) within a GaSb homojunction [146].

Because the QW is very thin, the InAs absorption is therefore minimized while facilitating

the tunneling between the n- and p-type sides of the TJ.
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Figure 4.4: Band alignment of a GaSb/InAs heterojunction simulated with the NRL MULTI-

BANDS modeling software. Adapted from [146].

4.1.4 Summary

As a proof of concept of an all lattice-matched III-Sb MJ cell, we intend to fabricate a

tandem cell on GaSb. According to preliminary calculations, a bandgap of 1.45 eV is

required for the top cell. To achieve this target, we selected the AlInAsSb quaternary

compound, whose growth still remains challenging and electronic properties unsure. We

selected an InAs/GaSb TJ which presents a natural broken-gap alignment. The suggested

structure is shown in Figure 4.5
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Figure 4.5: Structure proposed for a III-Sb tandem cell showing the selected materials.

4.2 AlInAsSb epitaxy study

Before tackling the tandem cell growth, we studied the growth of the AlInAsSb quaternary

alloy and its electronic properties.

4.2.1 Growth conditions

All samples were grown by MBE on GaSb substrates. After deoxidation and the growth

of a GaSb buffer, AlInAsSb layers with thicknesses ranging from 50 nm to 100 nm were

grown at various temperatures. Thin 20-nm AlSb barrier layers were grown directly below

and above the quaternary material in order to block carrier diffusion toward the GaSb

buffer layer and surface and enable the observation of PL emission. For all experiments,

the growth rate of the quaternary compound was 1 ML/s, obtained by summing up the
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group-III growth rates. The As-valve opening was kept constant while the Sb-valve opening

was varied in order to adjust the composition. The V/III BEP ratio was kept between 6

and 9. All structures were capped with 50-nm GaSb to prevent oxidation.

In a first set of samples, we studied the effect of growth temperature on composition

and structural properties for fixed element fluxes. Then, we grew a second set of samples

with different element fluxes, at a fixed growth temperature of 400◦C.

Effect of temperature

First, we grew a series of samples at 400◦C and 430◦C while keeping the BEPs constant for

all elements. Given that group-III incorporation is not affected by temperature between

400◦C and 430◦C, the group-III BEPs corresponded to xAl = 0.53. AlxIn1−xAsySb1−y

lattice-matching to GaSb, estimated with Vegard’s law, occurs for y = 0.3835−0.3439x
0.4211+0.0530x

. We

show in Figure 4.6 the XRD curves taken from two samples, together with the best fits

that could be achieved. The compositions derived from the fits were Al0.53In0.47As0.43Sb0.57

and Al0.53In0.47As0.48Sb0.52 for layers grown at 430◦C and 400◦C, respectively. Clear Pen-

dellösung fringes indicated high quality and sharp interfaces. Wide-angle scans (20◦ range)

did not show any extra peak above noise level, suggesting that the grown layer was a single

phase. Figure 4.6 thus confirms that the growth temperature affects group-V incorporation.

The RHEED behavior was identical for nucleation at 400◦C and 430◦C. After an initial

weakening of the RHEED streaks, their intensity started to be gently modulated. How-

ever, while they eventually smoothed out in the case of the samples grown at 400◦C, the

modulated streaks of the 430◦C samples gradually turned into spots, indicating surface

roughening. Atomic force microscopy (AFM) (Figure 4.7) indicated only a slightly higher

RMS of the sample grown at 430◦C (RMS = 0.5 nm), as compared to the sample grown

at 400◦C (RMS = 0.2 nm). However, it is clear from the scans that the morphologies

were different, with a factor 10 between the two vertical scales. This confirms the RHEED

observations, showing a much rougher surface for the growth at 430◦C.
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Figure 4.6: XRD symmetric ω − 2θ coupled scans of 100-nm thick Al0.53In0.47As1−ySby layers

grown on GaSb at 430◦C (solid blue) and 400◦C (solid red). Best fits (shifted for clarity) are

shown by dashed lines.

Figure 4.7: 5×5 µm AFM scans of samples containing 100-nm thick Al0.53In0.47As1−ySby layers

grown on GaSb at 430◦C (a) and 400◦C (b).
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Last, the samples grown at 430◦C did not demonstrate any PL at 300 K, in contrast

to those grown at 400◦C. These results indicate that the use of a low growth temperature,

around 400◦C, leads to a higher quality of the material. We therefore pursued our study

with samples grown at this temperature.

Growth of multiple compositions

We then grew a second set of AlxIn1−xAsySb1−y layers lattice-matched to GaSb with

xAl ∈ [0.25; 0.75] at Tsub = 400◦C. The strategy for each composition calibration was:

• using group-III element growth rates (as calibrated with RHEED oscillations) to set

the group-III element composition

• inferring the group-V element composition from XRD

• adjusting group-V element fluxes (valves opening) accordingly

• extrapolating to other compositions

The evolution of the Sb content 1−y with the ratio q of the Sb BEP to group-V BEP is

shown in Figure 4.8. The experimental data can be well fitted by the following polynomial

law: 1− y = −2.89q2 + 2.58q + 0.13.

This allows setting the conditions for the growth of any lattice-matched composition in

the xAl ∈ [0.25; 0.75] range.

4.2.2 Electronic properties

As-grown layers were further characterized by PL spectroscopy. PL was observed at 300

K for Al compositions up to 60%. For higher Al content (compositions of 70% and 75%),

PL was only observed at low temperature (70 K and 10 K, respectively). The observed

spectra are shown in Figure 4.9. The curves were normalized to the GaSb peak intensity.

Although no trend in the peak linewidth (FWHM) was observed, their intensity decreased
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Figure 4.8: Sb content in the AlInAsSb layers grown lattice-matched to GaSb at 400◦C as a

function of the ratio of Sb BEP to total group-V BEP. The compositions were estimated by

fitting the XRD curves.

with increasing Al content, especially for x > 0.53. All AlInAsSb PL peaks were rather

broad at 300 K: their FWHM was in the 83–94 meV range, whereas the substrate PL-line

FWHM was around 57 meV . At 70 K, the AlInAsSb PL peak FWHM was in the 50–82

meV range. This suggested composition fluctuations in the samples.

We estimated the material bandgap energy from the position of the PL-peak maxima

using the equation:

Egap = Epeak − 1/2kBT (4.8)

where Egap is the estimated bandgap energy, Epeak is the observed PL peak energy,

kB is the Boltzmann constant, and T is the measurement temperature. The results are

summarized in Table 4.2.
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(a)

(b)

Figure 4.9: Observed PL spectra at 300 K (a) and 70 K (b) for various compositions of AlInAsSb

layers lattice-matched to GaSb. The curve noted with a (*) on (b) was actually collected at 10

K. All curves were normalized to the GaSb peak.
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Table 4.2: Effect of a 1 hr anneal at Tsub = 470− 475◦C on PL peak position.

Sample Composition Initial PL peak position PL peak position after anneal

V2452 Al0.53In0.47AsSb 0.93 eV 1.00 eV

V2465 Al0.60In0.40AsSb 1.09 eV 1.17 eV

V2463 Al0.75In0.25AsSb 1.37 eV 1.47 eV

Although random and digital alloys are grown in different ways, the Egap values derived

above for random alloys are fully consistent with the values reported by Fu [136] and

Maddox et al. [137] for digital alloys, especially for low Al concentrations (xAl < 0.60).

Once again, the observed bandgap energies proved to be well below the bandgap energies

predicted in the literature.

The following interpolation matrix is generally used to compute the band parameters

of AlxIn1−xAsySb1−y from the known constituent ternary (C) and binary (B) compound

parameters:

Q(x, y) =
(
y y(1− y) 1− y

) BInAs CAlInAs BAlAs

CInAsSb DAlInAsSb CAlAsSb

BInSb CAlInSb BAlSb


 1− x
x(1− x)

x

 (4.9)

There is very little information in the literature on estimating the quaternary bowing

parameter DAlInAsSb. A summary of the existing reports is presented in Table 4.3.

Table 4.3: Values found for DAlInAsSb in the literature.

Value Reference

0 [61]

−1.2 [122]

−2.5± 1.1 eV [147]

There was a significant discrepancy between the experimental bandgap energies and

those computed considering a null quaternary bowing parameter, as shown by Figure 4.10.

In fact, much better agreement was achieved when the quaternary bandgap was calculated
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Figure 4.10: Direct and indirect bandgap energies calculated at 300 K for AlInAsSb alloys lattice-

matched to GaSb for different values of the quaternary bowing parameter (for the Γ-valley only,

the others being set to 0): DAlInAsSb = 0 eV (dashed blue curve) [61] and DAlInAsSb = −2.5 eV

(solid blue curve) [147]. Experimentally observed values by Fu [136] and Maddox et al. and this

work are indicated on both models.

using the non-zero quaternary bowing parameter DAlInAsSb = −2.5eV proposed by Donati

et al. [147] (Figure 4.10).

Maddox et al. observed room temperature PL from AlInAsSb digital alloys for compo-

sitions up to xAl = 0.75 [137]. Further, they identified a transition from direct to indirect

bandgap at xAl = 0.72 (corresponding to a bandgap of 1.18 eV ), based on the drop in

the PL intensity. It is notable, however, that theoretical calculations estimate a direct-

to-indirect cross-over near xAl = 0.8, with or without a quaternary bowing parameter

(Figure 4.10).
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4.2.3 Impact of annealing

Annealing procedure

The samples were then annealed in order to test their thermal stability. Selected samples

were cleaved with one part kept as-grown and the other one annealed in the MBE reactor

for 1 hr at 475◦C under a Sb flux. XRD investigations did not show any peak splitting or

degradation (peak intensity diminution or FWHM increase), in contrast to what would be

expected for phase decomposition.

Measurements

Contrary to the XRD data, the PL peaks demonstrated significant shifts toward higher

energies. The results obtained at 70 K are summarized in Figure 4.11 and displayed in

Table 4.2. This shift could be explained by a smoothing-out of local composition fluc-

tuations and/or a relaxation of stressed bond configurations arising from the low growth

temperature, as previously seen with other material systems [141] [140]. It is notable that

PL could be observed up to 70 K with the annealed Al0.75In0.25As0.26Sb0.74 layer, which

revealed a significant material improvement.

Last, we grew a 1-µm thick Al0.75In0.25As0.26Sb0.74 layer following the procedure de-

scribed previously. The bandgap energy derived from the PL measurement of this sample

at 70 K is displayed in Figure 4.11. It should be noted that this bandgap is close to the

value of the annealed 100-nm thick layer of the same composition. Indeed, when a thick

layer is grown, the early deposited material gets annealed until the end of the growth.

4.2.4 Electron microscopy observations

The samples were then sent to the University of Cadiz for electron microscopy analysis.

The measurements and analysis were made by the INNANOMAT team, under the super-

vision of Professor Sergio Molina. The samples were characterized by (S)TEM techniques.

The images were acquired under either high-resolution transmission electron microscopy
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Figure 4.11: Direct and indirect bandgap energies calculated at 70 K for AlInAsSb lattice-

matched to GaSb using DAlInAsSb = −2.5 eV and experimental values derived from PL measure-

ments at 70 K.

(HRTEM) or aberration-corrected high-angle annular dark-field (HAADF) imaging condi-

tions. Additional spectroscopic techniques, i.e., electron energy loss spectroscopy (EELS)

and energy-dispersive X-ray spectroscopy (EDX), were used to establish chemical maps

of the distribution of constituents. The compound shown in Figures 4.12 and 4.13 corre-

sponds to a composition of Al0.60In0.40As0.39Sb0.61. The quaternary was studied as-grown

and annealed (1 hr at 475◦C, as described previously).The as-grown sample did not show

any particular pattern under the microscope, whereas phase segregation clearly appeared

for the annealed sample (Figure 4.12).
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Figure 4.12: Dark-field HRTEM image of the annealed Al0.60In0.40As0.39Sb0.61 sample showing

phase decomposition. The intensity profile along the white arrow of the TEM images is shown

below. Courtesy of M. de la Mata, A.A. Khan and S.I. Molina (University of Cadiz).
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Figure 4.13: EDX analysis of an annealed Al0.60In0.40As0.39Sb0.61 sample, illustrating the phase

segregation of the alloy. The upper panel collects intensity maps of the constituents (green, red,

purple and brown for Sb, As, Al and In, respectively) and some of their RGB combinations, and

the bottom row displays the atomic percentage of each element. Courtesy of M. de la Mata, A.A.

Khan and S.I. Molina (University of Cadiz).
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Clear composition fluctuations are visible in the images. The period of the resulting

superlattice was estimated at 3.8 nm (approximately 13 ML). This thickness unfortunately

corresponds to the rotational peaks in the XRD scans (peaks due to the rotation of the

sample during the growth); hence, it went unnoticed in our XRD analysis. The EDX

analysis (Figure 4.13) established the presence of alternating As- and Sb-rich regions (about

5% change in composition). The reader might recall that similar observations were made

by Lyu et al. in [143] (Figure 4.14).

Figure 4.14: XRD and STEM of AlInAsSb random alloys with different Al fractions confirm

their superlattice configuration due to phase segregation. Average line profiles of STEM images

are shown in the inset. Fitting periods from XRD peaks are given, which are in accordance with

the results of STEM. Adapted from [143].

Although we did not observe these patterns on the as-grown samples, we believe that

they also present phase segregation. Higher-resolution techniques such as atom probe

tomography might be required to bring it to light. By facilitating diffusion, annealing
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probably increases the compositional fluctuations, making them visible to the naked eye

(on the TEM pictures). Such observations are also consistent with the results reported for

AlInAsSb layers grown on InP [141] [142].

4.2.5 Reproducibility and digital alloy technique

Due to mechanical issues with the Varian GENII As-valve opening system, we attempted

the random alloy growth in a Riber Compact 21 reactor. Although the grown samples

exhibited mirror-like surfaces and satisfactory RHEED patterns, the XRD scans displayed

broad alloy peaks. Scans taken at distinct points of the same sample further indicated a

non-uniformity of the AlInAsSb composition through the wafer. This might have been

due to the extreme sensitivity of the alloy to the growth temperature and a few degrees

of difference between the center and the edge of the wafer. The growth of thick layers

resulted in even broader alloy peaks, possibly due to the rising As background, impacting

the incorporation of group-V elements. This hypothesis was verified by the growth of

AlInAsSb digital alloys.

Because we were unable to reproduce good-quality random alloy growth in a different re-

actor, we decided to investigate the digital alloy technique. Targeting theAl0.75In0.25As0.26Sb0.74

composition, we used the following growth sequence: 6 ML of AlSb, 3 s of As soak and

2 ML of InAs. The growth rate was O.5 ML/s and the growth temperature 430◦C. We

observed that the longer the growth, the higher the As incorporation in the layers. We

attributed this to the As not being evacuated as efficiently as the other components and

building a non-negligible background throughout the growth. To counterbalance this effect,

we systematically opened the As valve prior to growth and let the As level stabilize. The

XRD scan of a 1.6-µm AlInAsSb layer grown on GaSb and sandwiched by 25-nm AlSb

layers is shown in Figure 4.15. A thin, high-intensity AlInAsSb peak is clearly visible,

although not exactly lattice-matched to the substrate. The satellite peaks correspond to

a lattice period of 2.36 nm vs 2.44 nm expected (8 ML). Taking into account the 10%

accuracy of the XRD apparatus, the alloy is close to lattice-matching.

At the time this thesis was being written, this sample was under morphological and

electronic characterization. Tandem cells incorporating digitally grownAlInAsSb were also
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Figure 4.15: XRD ω − 2θ scan of an AlInAsSb digital alloy.

being grown and processed for comparison with the cell that is presented in the remainder

of this chapter.

4.3 Device fabrication and characterization

4.3.1 Solar cell epitaxy

AlInAsSb/GaSb cells were grown by MBE in the Riber Compact 21 reactor. Upon loading

into the growth reactor, 2-inch epi-ready n-type (001) GaSb : Te substrates were deoxidized

under Sb flux at 550◦C. After 20 minutes of deoxidation, the temperature was lowered to

500 ◦C to grow a 200-nm GaSb buffer layer. The solar cell growth was then initiated at the

same temperature. Be and Te were used for p- and n-type doping, respectively. The solar
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Figure 4.16: Schematic structure of the AlInAsSb/GaSb tandem solar cell. ”‘W”’ stands for

window.
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cell structure is shown in Figure 4.16. The bottom subcell was made of a 25-nm GaSb

BSF, a 3000-nm GaSb base, a 100-nm GaSb emitter, and a 25-nm AlInAsSb window

layer. The growth temperature was lowered to 400◦C for the window layer and remained

at that value until the end of growth. A 20/20-nm GaSb/InAs TJ served to connect the

subcells. The second subcell was made of a 25-nm AlInAsSb BSF, a 1500-nm AlInAsSb

base, a 100-nm AlInAsSb emitter, and a 25-nm AlSb window layer. The composition used

in the whole structure was Al0.75In0.25As0.26Sb0.74. The structure was eventually capped

with a p-doped 10-nm GaSb contact layer, which also provided protection to the active

region during the subsequent processing steps.

The ω − 2θ XRD scan of the tandem cell is shown in Figure 4.17. A scan of the top

subcell structure (grown on a GaSb substrate in similar conditions) is also shown. The

broadness of the quaternary peak in the tandem scan suggested a gradient in composition

throughout growth. The quaternary alloy was not lattice-matched and simulation of the

top subcell scan estimated its composition at Al0.75In0.25As0.29Sb0.71. Still, the RHEED

pattern was streaky and the surface appeared smooth (mirror-like with some defects). We

thus decided to proceed to cell fabrication.

4.3.2 Cell processing

The procedure for tandem AlInAsSb/GaSb solar cells was similar to the one used in

Chapter 3 for homoepitaxial GaSb cells. The process comprised four steps: front contact

metallization, mesa etching, surface and side passivation, and back contact metallization.

For the front contact, Ti/Au 30/250-nm was deposited by electron beam evaporation. The

cells were then isolated from each other via 5-µm high trenches for MJ cells. These were

realized by ICP RIE using a BCl3 : Cl2 : Ar gas mixture. Once the cells were isolated, a

SiNx : H film was deposited by PECVD at 200 ◦C on the full sample. An ARC thickness

of 106 nm was targeted. The ARC was subsequently etched on top of the bus bars to

open access to the metallic contact for electrical wiring. For this step, ICP RIE was again

employed. Last, Pd/AuGeNi 5/200-nm layers were deposited by sputtering on the whole

back surface. At the end of the processing, the samples were cleaved into individual cells

and mounted on TO-8 holders with silver paint.
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Figure 4.17: XRD ω− 2θ scan of the AlInAsSb/GaSb tandem cell (blue) and the AlInAsSb top

subcell (black) grown in the Riber Compact 21 reactor.

4.3.3 Device characterization

Electrical characterization

Table 4.4: Measured J-V parameters for the double-junction AlInAsSb/GaSb cell: 1-sun effi-

ciency (η), fill factor (FF ), short-circuit current density (JSC) and open-circuit voltage (VOC).

Parameters for the stand-alone GaSb cell are also recalled.

Cell type η (%) FF JSC (mA/cm2) VOC (mV )

GaSb 5.9 0.59 36 280

AlInAsSb/GaSb 5.2 0.48 12 900

The cell’s electrical parameters are summarized in Table 4.4 and the resulting curve is

shown in Figure 4.18. Under AM1.5G, the tandem cell was 5.2% efficient, with VOC of 900
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Figure 4.18: Measured J-V curves for mono-junction GaSb cell and double-junction

AlInAsSb/GaSb cell.

mV , JSC of 12 mA/cm2, and FF of 48%. This performance was poorer than expected,

despite a significant increase in VOC . As a reminder, the GaSb cell studied in Chapter 3

had an efficiency of 5.9% with JSC of 36 mA/cm2. The efficiencies of the single- and

double-junction were of the same order of magnitude, indicating that the addition of the

top subcell did not degrade the tandem device. It is premature at this point to state that

the top subcell is limiting, although we suspect it. It takes additional optical character-

ization, presented below, to confirm this hypothesis. Last, we should mention that the

10-nm GaSb cap layer was not thick enough to withstand all fabrication steps. This led to

partial oxidation of the high-Al-content alloys, as displayed in Figure 4.19, possibly adding
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to current losses.

Figure 4.19: Optical microscope picture showing the oxidation of the processed AlInAsSb surface

(mesa top).

Optical characterization

The optical characterization of the device was delicate since it is impossible to isolate the

subcells. If blue light is shone on the cell, for example, it will be absorbed by the top

subcell, leaving the bottom subcell non-illuminated. The bottom subcell will not produce

any current and will limit the combined cell output, resulting in a reduced QE. Optical and

voltage biases are necessary to provide a better estimation of the tandem cell measurement.

Added to the monochromatic probe, blue-light bias is used to obtain the bottom subcell

QE and red-light bias to obtain the top subcell QE. A voltage bias approximately equal

to half the tandem VOC under biased illumination also ensures that the limiting cell is at

short circuit and prevents over-estimation of the QE. For further detail, the reader can

refer to [148] and [149]. For the measurements presented in Figure 4.20, a halogen lamp
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with a high-pass filter at 1000 nm was used to measure the top subcell and a green laser

(540 nm) to measure the bottom subcell. The green laser wavelength seemed to correspond

to the high-QE region of the top subcell.

Figure 4.20: Preliminary QE measurements for the tandem cell.

The measurements showed a limiting top subcell with an approximate JSC of 11.5

mA/cm2, close to what was observed in the J-V characterization. However, the measure-

ments on multiple cells originating from the same epitaxial sample were not consistent,

indicating that the optical biases were insufficient to isolate the subcells entirely. The bot-

tom subcell QE intensity was also much lower than the QE of the stand-alone GaSb cell

studied in Chapter 3, suggesting some experimental limitation. Still, interesting informa-

tion could be drawn from these preliminary measurements. The QE estimated for the top

subcell increased until 640 nm and then decreased. For the wavelengths shorter than 640
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nm, the QE losses were likely due to the unoptimized ARC along with absorption losses

in the cap (if it still exists) and window layers. For wavelengths longer than 640 nm, the

decrease in QE could be due to a low carrier diffusion length or to a small base thickness.

Measurements made on cells with similar bottom subcells and with top subcells of close

atomic composition all showed a limiting top subcell with a maximum QE between 1.88

and 1.97 eV and signal extinction between 1.28 and 1.33 eV . We present these points in

Figure 4.21.

Figure 4.21: Summary of bandgap reports for AlInAsSb.

These data points are, once again, coherent with the observations reported in the

literature, with an inferred bandgap energy lower than predicted. The lower bandgap

value would induce an unbalanced distribution of the photogenerated current, making

the bottom subcell limiting and reducing the total current of the series-connected device.

Thus far, however, this has not been a concern since the design and/or quality of the top
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subcell seems still insufficient to provide enough photocurrent. Improving the top subcell

is therefore primordial before adapting the tandem cell design to the reported electronic

properties.

4.4 Summary

In this chapter, we investigate aGaSb-based MJ structure. First, we estimated the bandgap

required to optimize a tandem cell design. Then, taking into account recent progress in

the literature, we selected the appropriate materials. The top cell, in particular, should be

made with AlInAsSb. This quaternary presents a considerable miscibility gap and there

is a discrepancy between theory and experimental observations of its electronic properties.

We conducted our own growth and PL study of AlInAsSb, achieving good-quality layers.

We also report the first PL demonstration from random alloys. The results are consistent

with the observations in the literature( [143] [141] [142]): the alloy seems to exhibit phase

decomposition, forming a natural superlattice of As- and Sb-rich regions. The resulting

solar cell achieves a performance lower than expected. This likely stems from a low carrier

diffusion length and/or a small base thickness in the top subcell. Nevertheless, this work

is a first step toward the development of GaSb all lattice-matched MJ solar cells. We show

that high bandgaps are achievable and low-loss tunnel junctions available at this lattice

parameter. Fabrication and characterization of stand-alone AlInAsSb subcells is currently

in progress to improve the top subcell.
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Chapter 5

GaSb-on-Si solar cells

The third building block of this project is the integration of the SJ GaSb cell onto a Si

substrate, in order to lower the cell’s fabrication costs. The challenges of this approach were

briefly introduced in Chapter 1. In the first part of this chapter, we explore in details the

growth aspects of III-Sb onto Si. We also provide an in-depth review of the integration of

III-V solar cells onto Si. Then, we present the adapted fabrication (epitaxy and processing)

procedure for the hybrid solar cell and, last, we assess the cell’s performance and compare

it to that of the stand-alone GaSb cell.

5.1 III-V solar cells on Si

5.1.1 Challenges

Heteroepitaxy corresponds to the growth of a sequence of layers of different materials,

all in at least partial registry with each other. Assuming similar crystal structures (e.g.,

face-centered cubic), a simple assessment of the potential geometric matching is the direct

comparison of the lattice constants of the two materials. The lattice mismatch parameter
∆a
a

is defined in percentage as:
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∆a

a
=
aepi − asub

asub
(5.1)

where aepi is the lattice constant of the grown material and asub is the lattice constant

of the substrate. The lattice mismatch parameters between the materials used in this work

are summarized in Table 5.1.

Table 5.1: Material parameters. Source: [150].

III-Sb compound
Lattice parameter Mismatch with Si Thermal expansion

(Å) (%) (Å/K)

Si 5.4310 0 1.41× 10−5

GaSb 6.09593 12.24 4.72× 10−5

AlSb 6.1355 12.98 2.60× 10−5

InSb 6.47937 19.30 3.48× 10−5

GaAs 5.65330 4.09 3.88× 10−5

AlAs 5.66139 4.22 2.90× 10−5

InAs 6.0583 11.54 2.74× 10−5

When a good arrangement cannot be achieved while bringing the two surfaces into con-

tact (by rotation of a lattice for example), the bonds at the interface are highly perturbed

and have to relax in some way. This is the case for common binary III-V compounds on

Si. If the mismatch is not too high, it can be contained up to a certain so-called critical

thickness where the layers are strained. Above the critical thickness, however, the stress

is relaxed through the formation of dislocations so that the crystal can lower its energy.

Depending on the level of strain, Stranski-Krastanov growth could occur, where the stress

is elastically relaxed through the formation of islands, before generation of dislocations.

Islands formation and coalescence also occur in the Volmer-Weber growth mode, driven

by surface energy, possibly leading to the creation of defects such as micro-twins1 as well

as dislocations. For III-V materials, there is also a significant thermal mismatch with

Si which can lead to cracks and wafer bowing under high changes in temperature (to be

1Crystallites sharing lattice points and growing in distinct symmetrical orientations.
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considered in CPV applications) [151]. Typical heteroepitaxial defects are summarized in

Figure 5.1. The majority of these defects are responsible for the increased broadness of the

epitaxied material XRD peak. The FWHM of the rocking curve is thus a good indicator of

the crystalline quality. In the case of solar cells, dislocations are particularly detrimental

for device performance. If the threading dislocations propagate into the active region of

the solar cell, they can act as non-radiative recombination centers, reducing the minority

carrier lifetime. The TDD is therefore an important criterion to estimate the grade of III-V

layers on Si.

Figure 5.1: Defects created to relieve strained layers in heteroepitaxy. Adapted from [152].

In addition to these geometric considerations, the distinct crystallographic structures

of III-V alloys and Si raise the issue of the growth of a polar material on a non-polar

material, inducing the creation of anti-phase domains (APDs) at the boundaries of which

non-radiative recombination can also occur [153]. The emergence of APDs can be prevented

by the use of miscut substrates that create a double-stepped starting surface [154] [155].
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5.1.2 Heteroepitaxy techniques for III-Sb on Si

The first attempts at integrating III-V on Si date back to the 80s. The epitaxy of GaAs

on Si was then widely studied [156] [157] [158] [159]. In contrast, very few groups have

studied the growth of GaSb on Si. The first report was presented by Malik et al. in

1986 [160], drawing on previous findings on the growth of GaSb on GaAs [161] [162] [163].

The authors used a 600-nm thick AlSb buffer layer and multilayers of AlSb and GaSb.

Optical devices were grown on top of the structure and proved to be operational. Since

then, multiple growth techniques have been developed to produce strain free III-V layers

on Si with low TDDs. In the following, we present a selection of methods and their main

achievements, focusing on the epitaxy of III-Sb on Si. This review deals with standard

MBE growth only, not including recent advancements in MOVPE or selective area epitaxy.

AlSb nucleation layer

Following the work of Malik et al. [160], Akahane et al. suggested that AlSb islands could

block the diffusion of Ga atoms on the Si surface, enabling subsequent 2D growth of

GaSb and limiting the generation and propagation of dislocations [164] [88]. The optimum

parameters for the nucleation layer were found to be: Tsub = 500◦C and tAlSb = 5 nm.

FWHM below 550 arcsec (rocking curve) were observed for 500-nm thick GaSb layers

grown with an AlSb nucleation layer, vs 707 arcsec for a 500-nm thick GaSb layer directly

grown on Si. Below 450◦C, the surface migration was suppressed and, above 560◦C, Sb

desorbed. The authors also highlighted the contribution of the AlSb nucleation layer in

terms of surface morphology: the AFM study estimated the RMS roughness of GaSb-on-Si

buffers above 100 nm, vs 2 nm only for GaSb-on-AlSb on Si buffers (1-µm thickness).

Kim et al. [165] [166] and Huang et al. [85] further evidenced the formation of a 90◦

misfit dislocation array at the AlSb/Si interface, efficiently relieving the strain. Following

the example of other authors, we refer to this array as the IMF. The growth mechanisms

of AlSb on Si were studied in detail by Balakrishnan et al. [167] [168] and Vajargah et

al. [169], confirming that AlSb is a suitable template for the growth of III-Sb on Si. Very

recently, Rodriguez et al. proposed optimal nucleation conditions of 4 ML of AlSb at
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450◦C prior to the growth of GaSb [170]. Post-growth annealing further enhanced the

material quality, lowering the FWHM value down to 235 arcsec (rocking curve) for a 1-µm

thick GaSb layer. TDDs in the 109 cm−2 range were evaluated for these thin samples [91].

Buffer layers

Buffer layers are commonly used to obtain high-quality material. In heteroepitaxy, their

first purpose is to accommodate the mismatch between the active zone and the substrate

by letting the dislocations propagate and annihilate through the buffer thickness. For

example, Vernon et al. presented a study of the evolution of the TDD in a GaAs solar cell

grown on Si as a function of the buffer thickness in [73]. For GaSb on Si more specifically,

Rodriguez et al. showed a significant reduction in the FWHM (GaSb rocking curve) with

increasing buffer thickness [170]. Another merit of buffer layers is that they incorporate and

bury contaminants potentially present at the substrate surface or in the growth reactor,

leaving a clean environment for the growth of subsequent layers.

Thick (≥ 2 µm) buffer layers are generally employed to reduce the TDD in the active

zone of III-V devices grown on Si [73] [76]. The resulting TDDs are estimated in the

106− 108 cm−2 range. However, such thick layers can also induce higher electrical (carrier

collection) and absorption losses in solar cells, especially in MJ cells. Obviously, if Si

is to be used as an inactive substrate only, the thickness of the buffer is less of an issue.

Last, thick buffer layers are time (and money)-consuming and sometimes require additional

polishing steps. A compromise thus has to be found between adding up losses and/or

complexity and reducing the TDD with increasing buffer thickness.

We mentioned the compositionally graded buffer approach in Chapter 1. Making use of

the flexibility of III-V alloying, graded buffers consist of superimposed layers of increasing

(or decreasing) lattice parameters, or of a layer whose lattice parameter varies continuously.

The resulting composition gradient induces increasing strain, creating and propagating

dislocations until they annihilate by encountering others. This technique is widely used

in metamorphic solar cells. However, in the specific case of GaSb on Si, the significant

mismatch (∼ 12%) implies highly complex buffer structures. As a comparison point,

to accommodate the 4% mismatch between GaAs and Si, Dimroth et al. used a 1-µm
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thick graded GaAsyP1−y buffer made of seven steps [171]. The authors estimated that

the resulting TDD at the top of the buffer was still superior to 108 cm−2. To achieve an

improved TDD of 5.25 × 106 cm−2, Yaung et al. used a 40-nm GaP nucleation layer,

followed by a 550-nm GaP buffer and a 3.6-µm graded GaAsyP1−y buffer made of 28

steps [79]. The graded buffer approach therefore seems barely scalable to the mismatch

between III-Sb and Si.

Thermal cycle growth and annealing

Thermal cycle growth (TCG) and thermal cycle annealing (TCA) can be used to further

encourage the dislocation glide and annihilation. TCA has been used in studies of the

heteroepitaxy of GaAs on Si [172] [73] [74] [173] [174][175]. They consist of multiple post-

growth anneals at high temperature to reduce the dislocation density. With the rapid

changes in temperature, the grown films undergo multiple compression and tension forces,

forcing the dislocations to move in several directions and increasing their chance to meet

other dislocations. On top of the added growth complexity, two major drawbacks should

be noted for this technique: first, in highly mismatched systems, the difference in thermal

properties can generate more dislocations or even cracks in the material; and second,

the high temperatures can induce interdiffusion between the substrate and the epilayer,

adding contaminants hence potential non-radiative recombination centers. In the specific

case of GaSb on Si layers, post-growth annealing proved to enhance the crystalline quality,

although no cycling was employed [170].

Two-step growth

Simpler than the TCG and TCA techniques, the two-step growth technique is widely

employed for III-V growth on Si [156] [90]. The first step is only a few nm thick and

made at low temperature. The use of a low temperature makes it possible to hinder

the mobility of the deposited atoms and makes the coverage more uniform, reducing the

likelihood of island formation. Even though a layer grown at low temperature contains

more defects, these punctual defects are easier to eliminate than planar defects and the
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dislocations generated by the coalescence of islands. Subsequent annealing improves the

quality of the nucleation layer. The rest of the growth proceeds at high temperature. For

the first step, techniques such as alternating layer MBE3 ( [176] [177]) and solid-phase

epitaxy4 ( [178] [179]) have been employed. In the case of III-Sb growth on Si, Rodriguez

et al. made an extensive study of the impact of the nucleation layer growth temperature

on the structure’s crystalline quality [170]. The authors showed that the optimal growth

temperature depended on the nucleation layer thickness. The best results were given by

nucleation in the 450− 500◦C range.

Advanced dislocation filtering layers

The influence of a constraint like a heterogeneous interface on a threading dislocation is

characterized by its Peach-Koelher force [180]. When the force is null or insufficient, the

dislocation pursues its propagation across the material. When the force becomes higher

than a critical value, it bends the dislocation, forcing it to propagate transversally until

it meets another dislocation, potentially annihilating or merging into a single propagating

dislocation. The dislocation can also bend back toward the substrate. Hetero-interfaces

are also helpful in eliminating segregating contaminants. By offering many heterogeneous

interfaces, superlattices are an efficient filter for dislocations. They were first used as such

by Matthews et al. in 1974 [181]. In the context of III-V growth on Si, GaAsP/GaAs

strained-layer superlattices (SLSs) [182] and quantum dots (QDs) filtering [183] have been

used with success. These techniques have also been applied to the growth ofGaSb onGaAs,

presenting similar characteristics to the growth of GaSb on Si (large lattice mismatch and

formation of an IMF). GaSb/AlSb SLSs in particular have proven to reduce the TDD from

the 109 cm−2 range down to the 107 cm−2 range, acting more efficiently than thick GaSb

buffer layers [184]. Similar TDDs have been achieved recently by Mansoori et al. with

plain AlSb blocking layers [115]. For the case of III-Sb on Si, multiple pieces of work

have combined AlSb blocking layers, GaSb/AlSb SLSs and/or InSb QD layers to produce

3Alternative deposition of group III and V monolayers. This technique helps to ensure a better control

of the III-V/Si interface composition.
4Use of an amorphous nucleation layer further annealed and recrystallized.
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metamorphic buffers [185] [186] [187]. For example, Sasaki et al. recently achieved a TDD

just below 108 cm−2, still four times higher than in similar structures grown on GaAs [188].

Summary

The reader might recall that a TDD below 3× 105 cm−2 is needed to drastically limit non-

radiative recombination losses in metamorphic solar cells [48]. Despite the cornucopia of

innovations, this target is barely achievable in practice. Recently, Yaung et al. achieved an

impressive TDD of 5.25×106 cm−2 with a 40-nm GaP nucleation layer, followed by a 550-

nm GaP buffer and a 3.6-µm graded GaAsyP1−y buffer made of 28 steps [79]. Concerning

III-Sb growth on Si more specifically, research groups are still struggling to fall below the

108 cm−2 TDD range, even with the help of complex dislocation filtering structures [188].

Simpler methods employing two-step growth and an AlSb nucleation layer exhibit TDDs

in the 109 cm−2 range.

5.1.3 III-V-on-Si solar cells: state of the art

Interest in III-V-on-Si solar cells initially arose four decades ago. Research efforts were

unfortunately quickly discouraged by the poor outputs, due to the complex mismatched

growth. Recent developments in metamorphic buffer epitaxy, as well as in stacking and

bonding techniques, have revived interest in these hybrid systems. Promising results have

been achieved over the past years, which are summarized in this section, excluding research

on dilute nitrides. Solar cells where Si is used as a bottom cell, and solar cells where it is

only used as an inactive substrate, are both considered. Whenever the measurement con-

ditions are not mentioned, the considered spectrum is AM1.5G. Otherwise, the spectrum

is specified. This review is based on the works by [189] and [190].

Epitaxial approaches

We have detailed above the three main challenges of the heteroepitaxial integration of

III-V compounds on Si: the lattice mismatch generating numerous threading dislocations,
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the growth of a polar material on a non-polar material inducing the creation of APDs and

anti-phase boundarys (APBs), and the discrepancy in thermal properties leading to cracks

and film bending. Thus far, efforts have mainly focused on reducing the TDD.

SJ cells with Si as an inactive substrate

Early attempts at growing GaAs SJ cells on Si employed complex TCG procedures such

as the one used in [73]. The resulting solar cell efficiency culminated at 17.6% under 1

sun and 21.3% under 200 suns [74]. Even more sophisticated growth sequences, involving

InGaAs and AlGaAs SLSs, reached similar results with 20% efficiency cells [75]. The

aforementioned works still hold the record for SJ III-V-on-Si solar cells but were abandoned

due to their growth complexity. Since then, researchers have aspired to reproduce these

results with simpler structures. In 2005, Andre et al. used SixGe1−x graded buffers to

accommodate the mismatch between Si and GaAs, and chemical-mechanical polishing to

smooth the surface [76]. The GaAs-on-Si cell achieved 18.1% efficiency and the TDD at

the top of the buffer was estimated at 1 × 106 cm−2. The total thickness of the buffer

layers was not mentioned but similar works have used 10- to 12-µm thick buffers [77]. In

2017, Wang et al. used a much thinner (2 µm) Ge buffer layer to accommodate the lattice

mismatch and reduce the TDD below 5× 106 cm−2 [78]. The buffer layer was first grown

at low temperature (400◦C) to ensure smooth nucleation and this was followed at high

temperature (650◦C). The sample then underwent TCA prior to the III-V cell growth.

The SJ GaAs cell resulted in 11.9% efficiency, which could be further improved, given that

it had no ARC. All of the works mentioned thus far have employed MOVPE. In 2017,

Vaisman et al. demonstrated a 15.3% efficiency GaAsP SJ cell grown on Si by MBE [80].

The authors used a 40-nm GaP nucleation layer, followed by a 0.55-µm GaP buffer and a

3.6-µm graded GaAsP buffer made of 28 steps. The step-graded buffer had been optimized

by the group over the years to achieve a 5.25 × 106 cm−2 TDD [79]. This result is still

below the record efficiency GaAs SJ cells on Si ( [73] [74] [75]) but presents the advantage

of using a simplified growth procedure to achieve a similar TDD.

Two-junction cells with Si as an inactive substrate

Pioneer work was achieved by Lueck et al. in 2006 with GaInP/GaAs dual-junction solar

cells grown onto Si with SixGe1−x buffer layers [191]. A 10-µm graded SiGe buffer was
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deposited by UHV chemical vapor deposition on a Si wafer. The resulting TDD was

estimated at 1.8 × 106 cm−2. The final device exhibited 16.8% efficiency. The rest of

the layers were grown by MBE. In a comparative study between direct growth and wafer

bonding for the fabrication of III-V tandem cells on Si, Dimroth et al. demonstrated a

similar 16.4% efficiency GaInP/GaAs dual-junction cell grown on Si [171]. In this work, a

60-nm GaP nucleation layer was first grown on the Si substrate by MOVPE, followed by a

seven-step graded GaAsxP1−x buffer layer to accommodate the mismatch between Si and

GaAs. The total buffer thickness amounted to a few microns. Several analysis methods

estimated the resulting TDD to the order of 108 cm−2. Other works have investigated the

growth of GaAsP/SiGe tandem cells on Si. Wang et al., for instance, demonstrated 20.6%

efficiency for such a cell in a three-terminal configuration [192]. The graded SixGe1−x buffer

used in the structure was around 5-µm thick and was grown by reduced-pressure chemical

vapor deposition. The rest of the device was grown by MOVPE.

Two-junction cells with Si as an active cell

The record efficiency for MJ cells made of III − V materials grown on Si was long held

by Soga et al. with an AlGaAs/Si tandem cell of 21.2% efficiency under AM0 [193].

The authors used complex TCG procedures to achieve sufficient MOVPE epitaxial quality.

More recently, Grassman et al. demonstrated a functioning GaAsP/Si dual-junction cell

with an efficiency of 13.1% grown by MOVPE [194]. The device employed a GaP nucleation

layer and a step-graded GaAsxP1−x buffer layer whose thicknesses were not specified. TDD

was estimated to the order of 107 cm−2.

Three-junction cells with Si as an active cell

The record efficiency for III-V MJ cells directly grown on Si was very recently broken by

the Fraunhofer institute [195] [196]. Their GaInP/GaAs/Si cell had an efficiency of 22.3%

and used a GaP nucleation layer and a GaAsyP1−y metamorphic buffer grown by MOVPE.

Non-epitaxial approaches

Although they circumvent the problems related to the high lattice mismatch between III-V

materials and Si, the non-epitaxial approaches face several challenges as well. On top of

the difficulty of finding an appropriate optically transparent bonding layer, one should also
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bear in mind the discrepancy in thermal properties between the materials. The process

temperature should be compatible with both materials and minimize the bowing of the

films and the formation and propagation of cracks in the sample. In the following, both

two-terminal and three-/four-terminal configurations were used to characterize the cells,

which gives a fair idea of the electric losses at the interfaces. The measurement conditions

are mentioned for each result.

SJ cells with Si as an inactive substrate

No SJ solar cells heterogeneously integrated on Si have been reported thus far.

Two-junction cells with Si as an inactive substrate

In 2014, Dimroth et al. used wafer bonding to stack a dual-junction GaInP/GaAs solar

cell on an inactive Si substrate [171]. The device demonstrated an efficiency of 26.0% in a

two-terminal configuration. This wafer-bonded cell outperformed a similar GaInP/GaAs

cell grown on Si as a comparison point (efficiency of 16.4%).

Two-junction cells with Si as an active cell

Tanabe et al. demonstrated in 2012 the first direct fusion bonding forming an optically

transparent and electrically conductive ohmic heterojunction between GaAs and Si [197].

As part of their demonstration, they proposed a tandem cell made of an AlGaAs top cell

and a Si bottom cell. The device achieved 25.2% efficiency in a two-terminal configu-

ration. Mechanical stacking has also been investigated to integrate III-V cells onto Si.

Using mainly electrically insulated adhesive layers, this process is usually associated with

four-terminal configuration measurements that provide higher efficiencies but increase the

complexity of the PV module installation. Nowadays, the efficiency record is held by Essig

et al. with GaInP//Si and GaAs//Si mechanically-stacked tandem cells with respective

efficiencies of 32.5% and 32.8% (four-terminal) [29].

Three-junction cells with Si as an active cell

In 2013, Derendorf et al. used the direct wafer-bonding technique to connect a dual-

junction GaInP/GaAs cell with a Si bottom cell [71]. The device demonstrated 20.5%

efficiency in a two-terminal configuration. A year later, the novel direct metal interconnect

method was used to stack a GaInP/InGaAs dual-junction cell on a Si cell [72]. The

three-junction device exhibited 25.5% efficiency in a two-terminal configuration and 27.3%
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in a three-terminal configuration. More recently, Essig et al. fabricated a three-junction

cell made of a lattice-matched dual-junction GaInP/GaAs cell mechanically stacked onto

a Si cell [29]. The three-junction device reached 35.9% efficiency in the four-terminal

configuration but only 30.9% efficiency in a two-terminal configuration. The losses were

mainly attributed to a photocurrent limitation by the bottom cell. The record for measure-

ments in the two-terminal configuration is now held by Cariou et al. with a dual-junction

GaInP/GaAs top cell wafer-bonded to a Si bottom cell [30]. The device achieved 33.3%

efficiency.

5.1.4 Summary

In this section, we presented in detail the challenges of the heteroepitaxy of III-Sb on

Si, along with the growth techniques. We then reviewed the main achievements in the

integration of III-V solar cells onto Si for both epitaxial and non-epitaxial approaches. To

our knowledge, no integration of III-Sb cell on Si has been attempted thus far.

5.2 Adapted fabrication process

5.2.1 Substrate preparation

Chemical treatment

Conversely to the GaSb substrates, Si substrates require chemical treatment prior to load-

ing into the MBE. Whenever quarters were needed for the growths, Si 2-inch wafers were

diced with a diamond saw. The first step of the chemical preparation was a tri-solvent

clean with (CH3)2CO, C2H6O and C3H8O (90 s each). We then proceeded to chemi-

cal deoxidation. The technique used during this project combined the strengths of both

oxide- and H-passivation, taking advantage of the self-etching Si oxidation process (see

Figure 5.2).

We followed the procedure described in [199]. The authors studied cycles of HF dips

and O2 plasma exposure. The former removes hydrocarbons and any contaminants trapped
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Figure 5.2: Two-step model for Si oxide desorption. Adapted from [198].

in the oxide layer while the latter creates a controlled oxide film on the surface, capturing

residual impurities without adding external contaminants. By repeating the process several

times, and because O diffuses into Si to create the oxide, the interface moves deeper into

the substrate where impurities have not been previously exposed to cleaning. This allows

the removal of contaminants that could be buried in the superficial layers of the wafer. It
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was shown that two cycles are enough to obtain high-quality surfaces with a superficial

layer left by HF thin enough to desorb easily once in the growth system.

In this work, after two cycles of HF dip and O2 plasma were realized on the samples, the

substrates were dipped in HF one last time in order to passivate the surface. From there,

they were loaded into the MBE system within 10 min using plastic tweezers. During

the entire substrate preparation, the Si samples were only manipulated with dedicated

containers and tweezers to avoid cross-contamination.

Thermal treatment

Once transferred to the growth module, the substrates required a higher temperature for

thermal cleaning, which could not be monitored accurately with the tools available in

the system. Instead, the improvement in the sharpness of the RHEED pattern and the

increase in the residual gas partial pressure of C on the quadrupole mass spectrometer

(QMS) served as indicators of the passivation layer desorption. Si substrates were heated

according to the following protocol:

1. Heat to 800 ◦C at 3 %/min (power)

2. When the substrate reaches 800 ◦C, cool immediately back down to 450◦C at 3%/

min (power) and let the thermocouple stabilize

Madiomanana et al. [199] showed that a short annealing at 800◦C formed smooth

surfaces with a sharp streaky RHEED pattern. Long anneal times, on the other hand, led

to a re-contamination of the surface with contaminants emanating from the hot sources

enclosed in the system (cells).

Nucleation steps

After thermal cleaning, the substrate temperature was lowered to 450◦C and left to sta-

bilize. First, 4 ML AlSb were grown at 0.35 ML/s, followed by a 50-nm GaSb cap at 1

ML/s. Then, the Ga shutter was closed and the substrate temperature raised to 480◦C
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under Sb overpressure. For the second part of the epitaxy, a 1000-nm GaSb buffer was

grown at 480◦C. At the end of this buffer, the RHEED pattern displayed sharp streaks

indicative of a smooth surface.

5.2.2 Solar cell epitaxy

Procedure

Figure 5.3: Schematic structure of the GaSb-on-Si solar cell.

The solar cell structure was grown on top of the buffer as shown in Figure 5.3. A

500-nm InAs0.91Sb0.09 contact layer was grown at 430◦C to serve as the bottom contact

and capped with 50 nm of GaSb. This alloy composition, lattice-matched to GaSb, will
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simply be referred to as InAsSb below. The temperature was then raised back to 480◦C

for the remainder of the growth, consisting of a 1000-nm BSF, a 1500-nm base, a 500-nm

emitter, a 30-nm window and a 10-nm cap/contact layer. Once again, Be and Te were

used for p- and n-type doping, respectively. The InAsSb growth rate was 0.31 ML/s.

Material characterization

The surface was monitored during growth with RHEED. The crystalline quality was also

assessed with XRD and AFM prior to processing. The ω−2θ scan is shown in Figure 5.4 on

which the Si, GaSb and InAsSb peaks can clearly be identified. The position of the GaSb

peak corresponds to a 101% relaxed GaSb layer. This extra 1% is likely due to the thermal

stress undergone by the material upon cooling. It can be noted that the InAsSb is not

exactly lattice-matched to GaSb. A rocking curve of the sample was also measured, which

allowed us to estimate the GaSb FWHM at 295 arcsec, close to the values mentioned in

the literature review. The measured value is very similar to the best ones reported in [170]

and around 100 − 200 arcsec higher than the ones reported for Ge-on-Si [89] and GaAs-

on-Si [90]. Last, the morphology of the sample was assessed with AFM (Figure 5.5). The

RMS roughness was evaluated at 2 nm (size of the scan: 10 µm × 10 µm), again close

to the values mentioned in the literature (in the lower range of [170], still above the < 1

nm of [89]). As a baseline for comparison, according to our own measurements on such

samples, the typical value of RMS roughness for a homoepitaxial GaSb-on-GaSb structure

is in the 0.1-nm (sub-monolayer) range. The rougher morphology observed is expected

because of the increased mismatch and because the substrate used in this work was an

on-axis sample. As mentioned previously, on-axis substrates generate APDs and APBs.

APDs exhibit dissimilar growth rates, leading to rougher surfaces.

5.2.3 Solar cell processing: the front-front contact configuration

The fabrication procedure had to be adapted to circumvent the high defect density at

the Si/III-Sb interface. Keeping the back of the substrate as a bottom contact would

indeed induce many electric losses via the hetero-interface. We therefore decided to bring
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Figure 5.4: ω − 2θ XRD scan of the GaSb-on-Si solar cell.

Figure 5.5: AFM 10 µm × 10 µm scan of the GaSb-on-Si sample prior to processing. The

estimated RMS roughness is 2 nm.
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both contacts to the front of the sample, leaving one at the very top of the solar cell and

setting the other one at its base, as shown in Figure 5.3. The new process flow (shown in

Figure 5.6) comprised three steps, namely mesa etching, surface and side passivation, and

metallization (Ti/Au 30/250 nm, top and bottom simultaneously).

It was decided here to proceed first to passivation and then to contact deposition to

avoid any metal from depositing on the sides of the solar cells, leading to electrical short.

At the end of processing, the samples were cleaved into individual cells and mounted on

TO-8 holders with silver paint. The solar cell bus bars and bottom contacts were connected

Figure 5.6: Schematic illustration of the processing steps for the fabrication of the GaSb-on-

Si solar cell. For each step, a picture of the corresponding photolithography mask is displayed

(right).
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to the TO-8 pins by micro-welding.

The resulting cell is shown in Figure 5.7.

Figure 5.7: Fabricated GaSb-on-Si solar cell.

5.3 Device characterization

5.3.1 Electrical characterization

Figure 5.8 compares the J-V curves of the control and the best fabricated hybrid solar cell.

The best fabricated hybrid cell showed a significantly reduced 1-sun efficiency of 0.60%

with 80 mV VOC , 23 mA/cm2 JSC and 31.3% FF . The extremely low value of the FF and

VOC reflects the high non-radiative recombination rate. Nevertheless, these parameters

are close to the recently reported progress on GaSb-on-GaAs cells. In particular, the

measured JSC and FF are between the values reported in [65] and [115]. Both references

used front-back contact configurations. The front-front contact configuration used in this

work circumvents the highest defect density zone, i.e., the III-Sb/Si interface. It seems

that this partially compensated for the much larger lattice mismatch (∼ 12% vs ∼ 8%
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(a)

(b)

Figure 5.8: Measured (solid lines) and modeled (dashed lines) 1-sun (a) and dark current (b) J-V

curves for the GaSb-on-GaSb control solar cell (red) and GaSb-on-Si hybrid solar cell (purple).116



in the case of GaSb-on-GaAs cells). The use of a thicker buffer (two or more times as

thick as the ones used in [65] and [115]) also likely contributed to the lattice mismatch

compensation. However, the VOC is lower in both cases, suggesting a still higher TDD in

the active zone.

5.3.2 Comparison with stand-alone GaSb solar cells

To gain a deeper understanding, the dark and 1-sun J-V curves of the control and hybrid

solar cells were compared, as shown in Figure 5.8. To do so, we used an in-house MATLAB

code solving the coupled semiconductor equations (Poisson and continuity equations) in

one dimension to fit the experimental curves. The optical generation was calculated with a

transfer-matrix-based method, involving optical properties (n,k) taken from the literature

(GaSb: [200]) or from experimental ellipsometry measurements (SiNx : H). The bandgap

and effective density values were taken from the literature [65] [201]. The mobility values

were taken from measurements made during the doping calibration stage, fitted to a simple

impurity-dependent model [202]. The parameters extracted from these simulations are

listed in Table 5.2. They are valid for dark and 1-sun J-V data, along with QE data. The

measured and modeled J-V curves are presented in Figure 5.8. They are in satisfactory

agreement, both for the control GaSb-on-GaSb and the hybrid GaSb-on-Si solar cells.

The significantly reduced values of the effective minority carrier lifetime in the hybrid

solar cell reflect the poorer material quality. The degraded value of the shunt resistance of

the hybrid cell further reveals a higher number of short circuit paths. This corroborates

the aforementioned material characterizations, as both the density of APDs [203] and the

TDD (in the case of dislocations crossing the space-charge region) [204] directly impact

the value of the shunt resistance. Last, the hybrid solar cell curve is largely dominated

by shunt resistance, making the estimation of the series resistance difficult to provide.

We nevertheless suggest that the improvement in the series resistance (4.0 × 10−1 Ω cm2)

compared with that of the control cell (2.0 Ω cm2) can be correlated with the benefit of using

an InAsSb contact layer. Overall, the resistance values estimated with this analysis are

in good agreement with previous results on thermophotovoltaic GaSb-on-GaAs cells [205],

despite the increased lattice mismatch.
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Table 5.2: Parameters used for the GaSb cells simulation.

Parameter Value

Bandgap, EG 0.726 eV

Effective density of states in the conduction band, NC,eff 2.1 × 1017 cm−3

Effective density of states in the valence band, NV,eff 1.8 × 1019 cm−3

Electron lifetime, τn,eff GaSb-on-GaSb fit 0.4 ns

Electron lifetime, τn,eff GaSb-on-Si fit 0.02 ns

Hole lifetime, τp,eff GaSb-on-GaSb fit 24 ns

Hole lifetime, τp,eff GaSb-on-Si fit 0.15 ns

Shunt resistance, Rsh GaSb-on-GaSb fit 2.0 × 103 Ω cm2

Shunt resistance, Rsh GaSb-on-Si fit 6.7 Ω cm2

Series resistance, Rs GaSb-on-GaSb fit 2.0 Ω cm2

Series resistance, Rs GaSb-on-Si fit 4.0 × 10−1 Ω cm2

5.3.3 Quantum efficiency

Measured and modeled QEs of both solar cells are presented in Figure 5.9. The hybrid

GaSb-on-Si solar cell EQE is significantly lower (around 30%) than the control GaSb-on-

GaSb solar cell EQE. This result is consistent with a reduced effective minority carrier

lifetime in the emitter and base. The one-dimensional simulation does not allow dissociat-

ing bulk from surface recombination, as it does not take into account surface recombination

occurring at the mesa sidewalls. However, since the structure (thicknesses, doping) and

passivation of the two cells are similar, we can consider their surface recombination veloc-

ities to be equivalent. The much poorer effective carrier lifetimes estimated in the hybrid

cell (one or two orders of magnitude lower) can consequently be attributed to a higher

volumetric non-radiative recombination rate. This would imply that the degradation of

the hybrid cell performance dominantly stems from losses in the bulk, likely induced by

the elevated TDD.
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(a)

(b)

Figure 5.9: Measured (solid lines) and modeled (dashed lines) EQE (a) and IQE (b) curves for

the GaSb-on-GaSb control solar cell (red) and the GaSb-on-Si hybrid solar cell (purple). The

reflectance is also plotted in gray.
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5.3.4 Avenues of research

Using a simple model by Yamaguchi et al., we can approximate the minimum TDD at

the bottom of the hybrid solar cell by 4
π3L2

p
, where Lp is the minority carrier diffusion

length [206]. With Lp = 2.41 × 10−5 cm estimated by our simulation, we compute a

minimum TDD in the 2 × 108 cm−2 range, higher than in the case of [206]. This value is

still far from the target. Other works, mentioned in the literature review, have employed

much thicker buffer layers (10 − 15 µm vs 1 µm used in this work) to achieve TDDs in

the 106 cm−2 range. One avenue of research would thus be to increase the GaSb buffer

thickness below the InAsSb contact layer to move the active region further away from

the high defect density region. At this point, we are not considering the SLS and TCA

techniques, for the sake of simplicity.

Another avenue of research is the comparison between the front-back and front-front

contact configurations for the hybrid solar cell. As explained previously, we used the front-

front configuration here to circumvent the high-defect-density region at the hetero-interface

and suppress associated losses. However, by doing so, and because the cells are 5 mm wide,

we require that the carrier diffusion length is superior to 2.5 mm to enable total collection.

According to the above calculus, this is far from being the case. It is therefore possible that

the hybrid solar cell performs better with a front-back configuration, in spite of having a

high-defect-density region within its active zone.

5.4 Summary and proposition of an improved struc-

ture

In this chapter, we focus on the integration of a GaSb solar cell on Si. First, we explain the

challenges of this integration and detail the available techniques for III-Sb materials. Then,

we present the adapted fabrication procedure, which circumvents the high defect density

region at the hetero-interface. Although the electrical performance of the hybrid cell is

– as expected – drastically reduced compared with the stand-alone GaSb cell, the results

are close to those obtained for GaSb-on-GaAs solar cells, despite a much larger lattice
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mismatch. We further discuss possible improvements to both the growth (buffer thickness)

and process flow (front-back contact configuration). We thus suggest the improved hybrid

structure displayed in Figure 5.10.

Figure 5.10: Schematic structure of the improved GaSb-on-Si solar cell.
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Chapter 6

Conclusion and future outlook

It is clear today that PV energy is a key resource for our future. From this perspective, the

research focus has been on developing of high-efficiency solar cells and integrating them on

inexpensive substrates. MJ structures based on III-V semiconductors were elaborated to

provide high-performance solar cells. These architectures involve a variety of fabrication

techniques. We identified the all lattice-matched architecture as the best way to achieve

greater efficiency without adding significantly to the complexity and cost of the system.

We further proposed III-Sb materials as a basis for a high-efficiency and low-cost solar cell.

The goal of this thesis was to demonstrate the advantages of the 6.1 Å materials system

for MJ design and its integrability on a Si substrate.

6.1 Key accomplishments

In order to assess the potential of III-Sb materials for PV applications, we studied several

aspects of the materials.

• We fabricated a GaSb stand-alone solar cell whose performance is close to the best

reported in the literature. This cell served as a control cell for the subsequent devel-

opments.
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• We identified potential structures for all lattice-matched GaSb-based MJ solar cells.

In particular, we studied the AlInAsSb alloy, whose growth remains challenging and

whose electronic properties remain uncertain. The resulting cell exhibited an effi-

ciency lower than expected but constitutes a proof of concept for all lattice-matched

GaSb-based MJ solar cells.

• We demonstrated the first monolithic integration of a GaSb solar cell onto Si, taking

advantage of the formation of an IMF at the III-V/Si interface. Although the cell’s

performance was drastically reduced compared with that of the homoepitaxial cell,

we achieved results close to the latest progress made on GaSb-on-GaAs, despite the

much larger lattice mismatch.

This exploratory work lays the foundation for an all lattice-matched GaSb-based MJ

solar cell monolithically integrated onto Si. Each one of the research directions presented

above, i.e., the cell structure, the development of novel materials, and the heteroepitaxy

is thus a building block toward the development of high-efficiency and low-cost solar cells.

6.2 Conclusion

The various aspects of III-Sb materials studied in this work let us conclude on their po-

tential for PV applications. A basis GaSb solar cell was obtained with reasonable quality

using standard growth and processing techniques. We further proposed AlInAsSb as the

cornerstone of 6.1 Å MJ solar cells. We demonstrated that the alloy was able to attain

a wide range of bandgap energies, although its electronic properties diverged from their

theoretical estimations. Combined with a low-loss GaSb/InAs TJ, it should facilitate the

targeting of high efficiencies. Our first attempt at a tandem AlInAsSb/GaSb cell did not

show significant improvement over the SJ GaSb cell. Nevertheless, it demonstrated its

feasibility and pointed to the still insufficient quality of the alloy. Last, we showed that the

GaSb cell could be integrated onto Si by adapting the growth and processing techniques.

Although the hybrid cell demonstrated significantly reduced performance, it is notable that

it achieved results close to that of GaSb-on-GaAs cells despite a much larger mismatch.

This result is encouraging for the monolithic integration of III-V solar cells on Si.
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The AlInAsSb alloy ( [46][137] [143]) and III-Sb growth on Si ( [169] [170] [187] [188])

have both regained attention over the past years, leading us to conclude that the III-Sb

materials system has potential for the development of high-efficiency, low-cost solar cells.

6.3 Prospects of future research

Paths of improvement were identified for each research axis in this project.

Optimization of the cell structure, notably the window layers, is the first applicable

step. This work is currently being pursued in collaboration with the M@csee team of IES.

It consists of simulating the proposed structures with different doping and thicknesses in

order to identify their optimal combination. An in-house TCAD solver and the SCAPS

software are used for these simulations. Also, contact resistivities have not been investi-

gated in this work but would enhance cell performances. Last, a detailed study of surface

passivation is required: double-layer ARCs could be considered and the uniformity of the

mesa passivation should be verified.

For the MJ cells, it is fundamental to first improve the quaternary alloy quality. Dur-

ing our epitaxy attempts, we observed that the alloy composition was very sensitive to

temperature. A good research direction would thus be to adapt the growth technique to

ensure temperature uniformity through the wafer and over time. The incorporation of As,

whose background level is known to increase over a long growth, has also to be monitored

and counterbalanced to ensure more homogeneous layers. Post-growth treatments could

be investigated in greater detail to bring the quaternary bandgap energy closer to the

ideal. Once sufficient progress has been made on the material side, the cell design could

be improved with simulations adapted to the observed electronic properties. A study of

p-type metallic contacts to AlInAsSb would also be of interest, along with changes in the

passivation layer.

Concerning the integration onto Si, we intend to first change the mask configuration to

switch back to a front-back metallization. There is indeed a compromise needed between

circumventing the defects at the III-V/Si interface and enhancing carrier collection with a

thicker cell. Preliminary study on metallic contacts to n-type Si would be required. Once
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the optimal contact configuration is determined, changes in the buffer structure could

be implemented. Further work includes improvements to the substrate preparation and

nucleation sequence.

6.4 Scope and future outlook

GaSb-based all lattice-matched structures have been proposed in other works in the quest

for high-efficiency solar cells [207] [66]. Lim et al. in particular proposed to complement

III-Sb subcells with ZnCdSeTe alloys to overcome bandgap energy limitations [207]. These

alloys, lattice-matched to GaSb, could also be used in the TJs to minimize absorption. To

our knowledge, however, an all lattice-matched MJ to the lattice parameter of GaSb has

not yet been demonstrated. The AlInAsSb alloy that we investigated is also of interest

for InP all lattice-matched MJ solar cells [124]. Combined efforts to enhance the alloy

quality should help in developing these promising PV devices in the near future. There is

also good hope that III-Sb solar cells could be integrated onto Si with the same quality

as other hybrid devices ( [81] [82] [83] [84]). Such developments would help to reduce the

cost of PV systems, making them more competitive than other energy sources.
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Cellule GaSb/GaSb : 
 

Cap – GaSb(p) @1.5E19 – 10nm 

Window – GaSb(p) @1.5E19 – 30nm 

Emitter – GaSb(p) @1E18 – 500nm 

Base – GaSb(n) @2E17 – 1500nm 

BSF/Buffer – GaSb(n) @1.5E18 – 500nm 

Substrat – GaSb(n) 
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Photolithography 

 # Step Operation Equipment Date Remarks 

 1 
Photomask L1.1 

cleaning 
(Acetone + Ethanol 

+ IPA + DI water)  
Ultrasonic 

bath 
  

 2 Surface cleaning 
(Acetone + Ethanol 

+ IPA) 
Solvent 

hood 
  

 3 Photoresist application 

Dehydration  Hot plate 

  Spincasting Spin coater 

Prebake  Hot plate 

 4 Mask L1.1 exposure Exposure MJB4  Soft contact 

 5 Post exposure bake Anneal Hot plate  Do not forget ! 

 6 Developing Developer 
Developing 

hood 
 

Etching rate 
GaSb 3 nm/min 

 7 Rinsing DI water 
Developing 

hood 
  

 8 
Photomask L1.1 

cleaning 
(Acetone + Ethanol 

+ IPA + DI water)  
Ultrasonic 

bath 
  

 9 
Photoresist application 
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microscope 

 

Take image -
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undercut 
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 10 
Photoresist thickness 

verification 
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Marks etching 

 # Step Operation Equipment Date Remarks 

 1 Marks etching 
Recipe 

GaSb slow 
RIE ICP  

Etching rate  
GaSb : 365-370 

nm/min 
 

 

Comments:  
Careful to cover the whole back with oil to avoid heating and polymerization during RIE. 
Careful to remove the oil without contaminating the front surface afterwards. 

 

 2 Photoresist removal 

(Acetone + 
Ethanol + IPA) 

Solvent 
hood 

 
 

Plasma Ar:O2 
Plasma 

Nanomir 
 

 3 
Mesa etching 
verification 
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 Take image 
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Front side metallization (p) 
 

 

 

Photolithography 

 # Step Operation Equipment Date Remarks 

 1 Photomask L2 cleaning 
(Acetone + Ethanol 

+ IPA + DI water) 
Ultrasonic 

bath 
  

 2 Surface cleaning 
(Acetone + Ethanol 

+ IPA) 
Solvent 

hood 
  

 3 Photoresist application 

Dehydration Hot plate 

  Spincasting Spin coater 

Prebake Hot plate 

 4 Mask L2 exposure Exposure MJB4  Soft contact 

 5 Post exposure bake Anneal Hot plate  Do not forget ! 

 6 Developing Developer 
Developing 

hood 
 

Etching rate 
GaSb 3 nm/min 

 7 Rinsing DI water 
Developing 

hood 
  

 8 Photomask L2 cleaning 
(Acetone + Ethanol 

+ IPA + DI water) 
Ultrasonic 

bath 
  

 9 
Photoresist application 

verification 
 

Optical 
microscope 

 

Take image -
Observe the 

undercut 
profile 

 10 
Photoresist thickness 

verification 
 

Profilometer 
DEKTAK 

  

 

 

Comments:  
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Metallization p 

 # Step Operation Equipment Date Remarks 

 1 Oxide removal HCl : H2O  Acid hood   

 2 Ti/Au deposition  Evaporation  
 Without 
rotation 

 

 

Comments: 

 

 
 
 

Lift-off 

 # Step Operation Equipment Date Remarks 

 1 Lift-off 

Acetone 
(dip+wash 

bottle+syringe 
if needed) 

Solvent hood   

 2 Rinsing 
Ethanol +     

IPA 
Solvent hood  

Careful to 
redeposition 

 3 Lift-off verification  Optical microscope  Take image 

 

 

Comments: 
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 4 
Photoresist 

leftovers removal 
Plasma Ar:O2 Plasma Nanomir   

 5 

Photoresist 
removal 

verification 
 Optical microscope  Take image 

 6 
Contacts thickness 

verification 
 

Profilometer 
DEKTAK 

  

 

 

Comments:  
 

 

 

 
 
We do not use a RTA afterwards to avoid damaging the GaSb. To investigate once we have satisfying 
results. 
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Mesas etching 
 

 

 

Photolithography 

 # Step Operation Equipment Date Remarks 

 1 Photomask L4 cleaning 
(Acetone + Ethanol + 

IPA + DI water) 
Ultrasonic bath   

 2 Surface cleaning 
(Acetone + Ethanol + 

IPA) 
Solvent hood   

 3 
Photoresist 
application 

Dehydration  Hot plate 

  Spincasting Spin coater 

Prebake  Hot plate 

 4 Mask L4 exposure Exposure MJB4  
Soft 

contact 

 5 Developing 
Developer 

 
Developing 

hood 
 

Etching 
rate 

GaSb 3 
nm/min 

 6 Rinsing DI water 
Developing 

hood 
  

 7 Photomask L4 cleaning 
(Acetone + Ethanol + 

IPA + DI water) 
Ultrasonic bath   

 8 
Photoresist 

application verification 
 

Optical 
microscope 

 Take image 

 9 
Photoresist thickness 

verification 
 

Profilometer 
DEKTAK 

  

 

 

Comments: 
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Mesa etching 

 # Step Operation Equipment Date Remarks 

 1 Mesa etching 
Recipe 

GaSb slow 
RIE ICP  

Etching rate  
GaSb : 365-370 

nm/min 

 2 
Mesa etching 
verification 

 
Optical 

microscope 
 Take image 

 3 
Mesa depth 
verification 

 
Profilometer 

DEKTAK 
  

 

 

Comments:  
Careful to cover the whole back with oil to avoid heating and polymerization during RIE. 
Careful to remove the oil without contaminating the front surface afterwards. 

 

 4 Photoresist removal 

(Acetone + 
Ethanol + IPA) 

Solvent 
hood 

 
 

Plasma Ar:O2 
Plasma 

Nanomir 
 

 5 
Mesa etching 
verification 

 
Optical 

microscope 
 Take image 

 6 
Mesa depth 
verification 

 
Profilometer 

DEKTAK 
  

 

 

Comments: 
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ARC deposition 
 

 

 

Dielectric deposition 

 # Step Operation Equipment Date Remarks 

 1 Oxide removal HCl:H2O Acid hood   

 2 ARC deposition   PECVD  
Deposition rate :  

~ 170 nm/min 
 

 

Comments:                                                            
 
 

 

 
 

Photolithography 

 # Step Operation Equipment Date Remarks 

 1 
Photomask L5 

cleaning 

(Acetone + 
Ethanol + IPA + 

DI water) 

Ultrasonic 
bath 

  

 2 
Photoresist 
application 

Dehydration Hot plate 

  Spincasting Spin coater 

Anneal Hot plate 

 3 Mask L5 exposure Exposure MJB4  Soft contact 

 4 Developing Developer 
Developing 

hood 
 

Etching rate 
GaSb 3 nm/min 

 5 Rinsing DI water 
Developing 

hood 
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 6 
Photomask L5 

cleaning 

(Acetone + 
Ethanol + IPA + 

DI water) 

Ultrasonic 
bath 

  

 7 

Photoresist 
application 
verification 

 
Optical 

microscope 
 Take image 

 8 

Photoresist 
thickness 

verification 
 

Profilometer 
DEKTAK 

  

 

 

Comments: 

 

 
 
 

Dielectric etching (opening to contacts) 

 # Step Operation Equipment Date Remarks 

 1 ARC etching Recipe Atemi SiN  RIE ICP Corial  
End point 
detection 

 2 
ARC etching 
verification 

 
Optical 

microscope 
 Take image 

 3 
ARC thickness 

verification 
 

Profilometer 
DEKTAK 

  

 

 
Comments:  
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 4 
Photoresist 

removal 

(Acetone + 
Ethanol + IPA) 

Solvent hood 

  

Plasma Ar:O2 
 

Plasma 
Nanomir 

 5 
ARC etching 
verification 

 
Optical 

microscope 
 Take image 

 6 
ARC thickness 

verification 
 

Profilometer 
DEKTAK 

  

 

 

Comments:  

 

 
 
The edges passivation is done. 



12/12 
 

Back side metallization (n) 
 

 

 

Metallization n 

 # Step Operation Equipment Date Remarks 

 1 Oxide removal HCl : H2O Acid hood   

 2 Pd/AuGeNi deposition  Sputtering   

 

 

Comments:  
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Single junction solar cell on Si 
 
 

Structure des échantillons 
 
 
 
 

Cellule GaSb/Si: 
 

 

Cap – GaSb(p) @3E19 – 10nm 

Window – AlGaAsSb(p) @3+E19 – 25nm 

Emitter – GaSb(p) @1.4E18 – 100nm 

Base – GaSb(n) @2.5E17 – 3000nm 

BSF/Buffer – GaSb(n) @1.5+E18 – 25nm 

Buffer – GaSb (n) @1.5E18 – 50 nm 

(Contact – InAsSb (n) @4.5E18 – 500 nm) 

Buffer – GaSb (n) @1.5E18 – 5000 nm 

Buffer – GaSb – 50+500 nm 

Nucleation – AlSb – 4 ML 

Substrat – GaSb(n)/Si 
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Alignment marks 
 

 

 

Photolithography 

 # Step Operation Equipment Date Remarks 

 1 
Photomask L1.1 

cleaning 
(Acetone + Ethanol 

+ IPA + DI water) 
Ultrasonic 

bath 
  

 2 Surface cleaning 
(Acetone + Ethanol 

+ IPA) 
Solvent 

hood 
  

 3 Photoresist application 

Dehydration Hot plate 

  Spincasting Spin coater 

Prebake Hot plate 

 4 Mask L2 exposure Exposure MJB4  Soft contact 

 5 Post exposure bake Anneal Hot plate  Do not forget ! 

 6 Developing 
Developer 

 
Developing 

hood 
 

Etching rate 
GaSb 3 nm/min 

 7 Rinsing DI water 
Developing 

hood 
  

 8 Photomask L2 cleaning 
(Acetone + Ethanol 

+ IPA + DI water)  
Ultrasonic 

bath 
  

 9 
Photoresist application 

verification 
 

Optical 
microscope 

 

Take image -
Observe the 

undercut 
profile 

 10 
Photoresist thickness 

verification 
 

Profilometer 
DEKTAK 

  

 

 

Comments:  
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Marks etching 

 # Step Operation Equipment Date Remarks 

 1 Marks etching 
Recipe 

GaSb slow 
RIE ICP  

Etching rate  
GaSb : 365-370 

nm/min 
 

 

Comments:  
 

 

 2 Photoresist removal 

(Acetone + 
Ethanol + IPA) 

Solvent 
hood 

 
 

Plasma Ar:O2 
Plasma 

Nanomir 
 

 3 
Mesa etching 
verification 

 
Optical 

microscope 
 Take image 

 

 

Comments: 
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Front side metallization (p) 
 

 

 

Photolithography 

 # Step Operation Equipment Date Remarks 

 1 Photomask L2 cleaning 
(Acetone + Ethanol 

+ IPA + DI water)  
Ultrasonic 

bath 
  

 2 Surface cleaning 
(Acetone + Ethanol 

+ IPA) 
Solvent 

hood 
  

 3 Photoresist application 

Dehydration Hot plate 

  Spincasting Spin coater 

Prebake Hot plate 

 4 Mask L2 exposure Exposure MJB4  Soft contact 

 5 Post exposure bake Anneal Hot plate  Do not forget ! 

 6 Developing 
Developer 

 
Developing 

hood 
 

Etching rate 
GaSb 3 nm/min 

 7 Rinsing DI water 
Developing 

hood 
  

 8 Photomask L2 cleaning 
(Acetone + Ethanol 

+ IPA + DI water)  
Ultrasonic 

bath 
  

 9 
Photoresist application 

verification 
 

Optical 
microscope 

 

Take image -
Observe the 

undercut 
profile 

 10 
Photoresist thickness 

verification 
 

Profilometer 
DEKTAK 

  

 

 

Comments:  
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Metallization p 

 # Step Operation Equipment Date Remarks 

 1 Oxide removal HCl : H2O Acid hood   

 2 Ti/Au deposition  Evaporation  
 Without 
rotation 

 

 

Comments: 

 

 
 
 

Lift-off 

 # Step Operation Equipment Date Remarks 

 1 Lift-off 

Acetone 
(dip+wash 

bottle+syringe 
if needed) 

Solvent hood  
Avoid brush and 

ultrasons 

 2 Rinsing 
Ethanol +     

IPA 
Solvent hood  

Careful to 
redeposition 

 3 Lift-off verification  Optical microscope  Take image 

 

 

Comments: 
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 4 
Photoresist 

leftovers removal 
Plasma Ar:O2 Plasma Nanomir   

 5 

Photoresist 
removal 

verification 
 Optical microscope  Take image 

 6 
Contacts thickness 

verification 
 

Profilometer 
DEKTAK 

  

 

 

Comments:  
 

 

 

 
 
We do not use a RTA afterwards to avoid damaging the GaSb. To investigate once we have satisfying 
results. 
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Mesas etching 
 

 

 

Photolithography 

 # Step Operation Equipment Date Remarks 

 1 Photomask L4 cleaning 
(Acetone + Ethanol + 

IPA + DI water) 
Ultrasonic bath   

 2 Surface cleaning 
(Acetone + Ethanol + 

IPA) 
Solvent hood   

 3 
Photoresist 
application 

Dehydration Hot plate 

 1.8 µm Spincasting Spin coater 

Prebake  Hot plate 

 4 Mask L4 exposure Exposure MJB4  
Soft 

contact 

 5 Developing 
Developer 

 
Developing 

hood 
 

Etching 
rate 

GaSb 3 
nm/min 

 6 Rinsing DI water 
Developing 

hood 
  

 7 Photomask L4 cleaning 
(Acetone + Ethanol + 

IPA + DI water) 
Ultrasonic bath   

 8 
Photoresist 

application verification 
 

Optical 
microscope 

 Take image 

 9 
Photoresist thickness 

verification 
 

Profilometer 
DEKTAK 

  

 

 

Comments: 
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Mesa etching 

 # Step Operation Equipment Date Remarks 

 1 Mesa etching 
Recipe 

GaSb slow 
RIE ICP  

GaSb etching:  
365-370 
nm/min 

Laser 
monitoring 

 2 
Mesa etching 
verification 

 
Optical 

microscope 
 Take image 

 3 
Mesa depth 
verification 

 
Profilometer 

DEKTAK 
  

 

 

Comments:  
 

 

 4 Photoresist removal 

(Acetone + 
Ethanol + IPA) 

Solvent 
hood 

 
 

Plasma Ar:O2 
Plasma 

Nanomir 
 

 5 
Mesa etching 
verification 

 
Optical 

microscope 
 Take image 

 6 
Mesa depth 
verification 

 
Profilometer 

DEKTAK 
  

 

 

Comments: 
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