
HAL Id: tel-02175324
https://theses.hal.science/tel-02175324

Submitted on 5 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling self-configuration in Architecture-based
self-adaptive systems

Rim El Ballouli

To cite this version:
Rim El Ballouli. Modeling self-configuration in Architecture-based self-adaptive systems. Artificial In-
telligence [cs.AI]. Université Grenoble Alpes, 2019. English. �NNT : 2019GREAM007�. �tel-02175324�

https://theses.hal.science/tel-02175324
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE LA
COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES

Spécialité : Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Rim El Ballouli

Thèse dirigée par Saddek Bensalem, Université Grenoble Alpes

préparée au sein du Laboratoire Verimag
dans l’École Doctorale Mathématiques, Sciences
et technologies de l’information, Informatique (MSTII)

Modeling Self-configuration in Architecture-based
Self-adaptive systems

Modélisation de la configuration automatique dans
des systèmes auto-adaptifs basés sur l’architecture

Thèse soutenue publiquement le 20 Mars 2019,
devant le jury composé de :

M. Kamel Barkaoui
Professeur, CNAM Paris, Président du jury et Rapporteur

M. Iulian Ober
Maı̂tre de conférence, Université Toulouse Jean Jaurès, Rapporteur

M. Simon Bliudze
Chargé de recherche, INRIA Délégation Lille Nord Europe, Examinateur

M. Martin Wirsing
Professor, Université Louis et Maximilians de Munich, Examinateur

M. Markus Roggenbach
Professor, Université de Swansea au pays de Galles, Examinateur

M. Marius Bozga
Ingénieur de recherche, CNRS Délégation Alpes, Examinateur

M. Saddek Bensalem
Professeur, Université Grenoble Alpes, Directeur de thèse

iii

Acknowledgements

First and foremost, I would like to express my deep gratitude to Professor Saddek
Bensalem whom under his supervision I was given an opportunity to explore a
completely new domain to me. I thank him for highlighting valuable research di-
rection and providing a healthy working environment that helped me achieve this
work.

I am grateful to Dr. Marius Bozga for giving me just enough space to explore
things on my own and stepping in for guidance whenever needed. I thank him for
his availability, constructive criticism and foremost his patience in answering my
repeated questions. A special thanks to Professor Joseph Sifakis, for his valuable
input and for always pushing to bring out only the best of me.

Thanks to colleges at Verimag and friends for their support. A special thanks
to Mona Darwish for being there every step of the way, Zeina Habli for always
bringing me back to my senses and Lina Aliouat who was more excited than I was
for finalizing the dissertation.

Last but not least, I thank my family for their unconditional support, scarifies,
and their continuous encouragement that kept me driving forward despite the
friction.

To my parents,
who whispered in my ears

“knowledge is thy armor”

v

Abstract

Modern systems are pressured to adapt in response to their constantly changing
environment to remain useful. Traditionally, this adaptation has been handled at
down times of the system. there is an increased demand to automate this process
and achieve it whilst the system is running. Self-adaptive systems were intro-
duced as a realization of continuously adapting systems. Self-adaptive systems
are able to modify at runtime their behavior and/or structure in response to their
perception of the environment, the system itself, and their requirements. The fo-
cus of this work is on realizing self-configuration, a key and essential property of
self-adaptive systems. Self-configuration is the capability of reconfiguring auto-
matically and dynamically in response to changes. This may include installing,
integrating, removing and composing/decomposing system elements.

This thesis introduces the Dr-BIP framework, an extension of the BIP frame-
work for modeling self-configuring systems that relies on a model-based and com-
ponent & connector approach to prescribe systems. The combination of both of
these approaches exploits the benefits of each.

A Dr-BIP system model is a runtime model which captures the running sys-
tem at three different levels of abstraction namely behavior, configuration, and
configuration variants. The system’s configuration is captured by component and
connectors. In a component and connector system, self-configuration can have
three different levels of granularity which includes the ability to add or remove
connectors, add or remove components, and add or remove subsystems. Dr-BIP
supports explicit addition and removal of both components and subsystems, but
implicit addition and removal of connectors. The main advantage of relying on
an implicit addition and removal of connectors is the ability to guarantee by con-
struction specific configuration topologies.

To capture the three levels of abstraction, we introduce motifs as primary
structures to prescribe a self-configuring Dr-BIP system. A motif defines a set
of components that evolve according to interaction and reconfiguration rules. A
system is composed of multiple motifs that possibly share components and evolve
together. Interaction rules dictate how components composing the system can
interact and reconfiguration rules dictate how the system configuration can evolve
over time. Finally, we show that the proposed framework is both minimal and
expressive by modeling four different self-configuring systems. Last but not least,
we propose a modeling language to codify the framework concepts and provision
an interpreter implementation.

Keywords: model driven engineering, reconfigurable, dynamic, self-configuring,
self-adaptive, component and connector architectures

vi

Résumé

Pour rester utile, les systèmes modernes doivent s’adapter à leur environnement
qui ne cessent d’évoluer. Traditionnellement, ces adaptations sont traitées en
temps d’interruption du système. La demande pour automatiser ce processus et
pour le réaliser lors du fonctionnement du système est croissante. L’introduction
des systèmes auto-adaptatifs était la réalisation d’un system en permanente adap-
tation. Les systèmes auto-adaptatifs peuvent modifier, au moment de l’exécution,
leur comportement et / ou leur structure en fonction de leur perception de l’environ-
nement, du système même et de leurs exigences. L’objectif de ce travail est de
réaliser l’auto-configuration, une propriété clé et essentielle des systèmes auto-
adaptatifs. L’auto-configuration est la capacité de se reconfigurer automatique-
ment et dynamiquement suite aux changements, tel que l’installation, l’intégration,
le retrait et la composition / décomposition d’éléments du système.

Cette thèse présente le cadre du Dr-BIP, une extension du plan BIP pour la
modélisation des systèmes à configuration automatique qui repose sur une ap-
proche basée sur un modèle et sur des composants et des connecteurs pour pre-
scrire des systèmes. La combinaison de ces deux approches exploite les avantages
de chacune d’elles, faisant de leur combinaison une méthodologie idéale pour la
réalisation des systèmes auto-adaptifs complexes.

Un modèle de système Dr-BIP est un modèle d’exécution qui capture le système
en cours d’exécution à trois niveaux d’abstraction différents, à savoir du comporte-
ment, de configuration et des variantes configurations. La configuration du système
est saisie par des composants et des connecteurs. Dans un système de composants
et de connecteurs, la configuration automatique (l’auto-configuration) peut avoir
trois niveaux de granularité différents, notamment la possibilité d’ajouter ou de
supprimer des connecteurs, d’ajouter ou de supprimer des composants et d’ajouter
ou de supprimer des sous-systèmes. Dr-BIP prend en charge l’ajout et le re-
trait explicites de composants et de sous-systèmes, mais l’ajout et le retrait im-
plicites de connecteurs. L’avantage principal de l’addition et de la suppression
implicite de connecteurs est la capacité de garantir par construction une configu-
ration spécifique de topologies.

Pour capturer les trois niveaux d’abstraction, nous introduisons des motifs en
tant que structures principales pour prescrire un système Dr-BIP à configuration
automatique. Un motif définit un ensemble de composants qui évoluent en fonction
de règles d’interaction et de reconfiguration. Un système est composé de plusieurs
motifs pouvant éventuellement partager des composants et évoluer ensemble. Les
règles d’interaction dictent la manière dont les composants du système peuvent
interagir, tandis que les règles de reconfiguration dictent l’évolution de la configu-
ration du système. Enfin, nous montrons que le cadre proposé est à la fois minime
et expressif en modélisant quatre systèmes différents à configuration automatique.

vii

Finalement, nous proposons un langage de modélisation pour codifier les concepts
du cadre et fournir une implémentation d’interprète.

Keywords: reconfigurable, dynamic, self-configuring, self-adaptive, compo-
nent and connector architectures

Associated Papers

Several chapters in this thesis appeared in several papers in the form of con-
ference articles or Verimag technical reports.

References

[1] DR-BIP - Programming Dynamic Reconfigurable Systems. Tech. rep. TR-
2018-3. Verimag Research Report,

[2] Rim El Ballouli et al. “Four exercises in programming dynamic reconfig-
urable systems: methodology and solution in DR-BIP”. In: International
Symposium on Leveraging Applications of Formal Methods. Springer. 2018,
pp. 304–320.

[3] Rim El Ballouli et al. “Programming Dynamic Reconfigurable Systems”.
In: International Conference on Formal Aspects of Component Software.
Springer. 2018, pp. 118–136.

[4] Four Exercises in Programming Dynamic Reconfigurable Systems: Method-
ology and Solution in DR-BIP. Tech. rep. TR-2018-7. Verimag Research
Report,

1

viii

Contents

I Foundation and Preliminaries 1

1 Introduction 2
1.1 Motivation . 2
1.2 Self-adaptive Systems . 4

1.2.1 Definition . 4
1.2.2 Requirements . 5
1.2.3 The Self-* Properties . 8
1.2.4 Challenges . 8

1.3 Problem Statement . 12
1.4 Contributions . 14
1.5 Thesis Roadmap . 14

2 Existing Methodologies 16
2.1 Approaches and Techniques . 17

2.1.1 Control Engineering . 17
2.1.2 Artificial Intelligence . 19
2.1.3 Software Programming . 19
2.1.4 Software Engineering . 21

2.2 Model-based X Component and Connector 25

ix

x

II Dr-BIP Framework 28

3 Dr-BIP Framework 29
3.1 Overview . 30

3.1.1 Design Pillars . 30
3.1.2 Conceptual Model . 31

3.2 Dr-BIP System Model . 34
3.2.1 Architecture Overview . 36
3.2.2 Components . 40
3.2.3 Motifs . 41
3.2.4 Motif-based Systems . 48

3.3 Dr-BIP as an Extension of BIP . 52
3.3.1 Component-based Systems 52
3.3.2 Existing BIP Extensions for Dynamic Reconfiguration 54

4 Dr-BIP by Examples 56
4.1 Self-configuring Token Ring System 56
4.2 Self-configuring Multicore Task System 59
4.3 Autonomous Highway Traffic System 63
4.4 Self-configuring Robot Colonies . 66

5 Implementation 71
5.1 Overview . 71
5.2 Concrete Syntax . 72

5.2.1 Lexical Structure . 73
5.2.2 Grammar Highlights . 75
5.2.3 An Example Using The Concrete Syntax 79

5.3 Parser . 80
5.4 Interpreter . 81

5.4.1 Parameters . 82
5.5 Execution . 82

III Conclusions and Perspectives 85

6 Conclusion and Perspective 86

A Appendices 95
A.1 Self-adaptive System Definitions . 95

List of Figures

1.1 Conceptual model for a self-adaptive system: dissecting the basic
principles of a self adaptive system 6

1.2 Adaptation loop describes the process adopted by the adaptation
engine to achieve adaptability . 7

2.1 A broad classification of approaches used in designing and develop-
ing self-adaptive systems . 17

2.2 The basis of Dr-BIP approach is the combination of two approaches
namely, the model-based and architecture-based approach 25

3.1 Conceptual model of Dr-BIP framework: dissecting the basic prin-
ciples of a self-configuring system 32

3.2 Adaptation loop describes the process adopted by the Dr-BIP adap-
tation engine to achieve reconfiguration 34

3.3 Dr-BIP system model abstracts the target system at three different
levels of abstraction . 35

3.4 An example of reconfiguration in a motif-based system 37
3.5 Abstract syntax of interaction and reconfiguration rules 37
3.6 An example of a motif definition . 38
3.7 Reconfiguration vs Interaction Steps 39
3.8 An example of a component type 41
3.9 Overview of motifs structure and evolution rules 42
3.10 An example of a motif type . 44

xi

LIST OF FIGURES xii

3.11 An example of a set of multiparty interactions in a motif 46
3.12 An Overview of motif-based systems 49
3.13 An example of a static configuration with BIP 54

4.1 Self-configuring token ring system 57
4.2 Dynamic ring system evolution across 1,000 steps 59
4.3 Self-configuring token ring system’s measurements 59
4.4 Self-configuring multicore task system 60
4.5 Task load across 3000 steps . 62
4.6 Self-configuring multicore task system’s measurements 63
4.7 Automated Highway Traffic System 64
4.8 Automated highway traffic evolution along 13 sampled steps 66
4.9 Automated highway traffic system’s measurements 66
4.10 Self-organizing robot colonies . 68
4.11 Reconfiguration rules of a self-configuring robot system 70

5.1 An overview of the prototype implementation 72
5.2 Partial view of an abstract syntax tree 84

List of Tables

1.1 Variations in the definition of self adaptive system in the first school
of thought . 5

2.1 List of advantages and disadvantages of control-based approach . . 18
2.2 List of advantages and disadvantages of artificial intelligence approach 20
2.3 List of advantages and disadvantages of software programming ap-

proach . 21
2.4 List of advantages and disadvantages of component-based approach 22
2.5 List of advantages and disadvantages of model-based approach . . . 24

5.1 Lexical structure of the Dr-BIP language 74
5.2 Highlight of Dr-BIP grammar rules 76
5.3 Description of options available to cater the execution of the prototype 83

xiii

Part I

Foundation and Preliminaries

1

Chapter

1

Introduction

Contents
1.1 Motivation . 2

1.2 Self-adaptive Systems . 4

1.2.1 Definition . 4

1.2.2 Requirements . 5

1.2.3 The Self-* Properties . 8

1.2.4 Challenges . 8

1.3 Problem Statement . 12

1.4 Contributions . 14

1.5 Thesis Roadmap . 14

1.1 Motivation

Software systems have invaded our lives in the past thirty years [1] and no
downfall can be seen in this regard. In fact, we have become highly dependent on
software systems in our day-to-day tasks and the demand is ever so increasing. For
example, on a typical day one relies on multiple software systems: waking up on

2

CHAPTER 1. INTRODUCTION 3

a digital alarm clock, answering emails through a mobile phone, prepping a meal
with home appliances, etc. The daily dependability on systems has impacted our
expectations from software systems; expecting them to be energy-efficient, flexible,
resilient, customizable, self-optimizing, etc.

The life cycle of a software system typically involves: analysis, design develop-
ment, testing, and deployment. Once the system is deployed, it enters the software
evolution phase by which it is maintained by a system administrator to handle
faults, improve performance, address changes to meet changing requirements, etc.
Such systems are known to have an open-loop structure and require external in-
tervention to evolve. Evolution could be triggered by either internal factors that
stem from the system itself such as failure, or external factors that stem from the
system’s environment such as change in requirements, or emergent of new technol-
ogy that must be integrated. Systems that don’t respond to change factors will
progressively become less useful and hence software evolution is inevitable.

The evolution of some systems has become time consuming and a hassle even
to the most skilled system administrator. This is caused by the exponential growth
in size of such systems leading to a “complexity crisis” [2]. In addition, the cost
of evolution has been steadily increasing and is estimated to be more than 90% of
the total cost of the entire system’s life cycle [3]. Therefore, the demand to achieve
the desired requirements within a reasonable cost and time becomes apparent.

In addition to the “complexity crisis” hindering system’s evolution, a special
type of systems that belong to IOT (Internet Of Things) introduces new dimensions
of complexity. IOT or Industry 4.0 enables heterogeneous embedded systems or
objects in general to sense their surrounding and interact with each other through
a communication network to achieve global goals. Some application examples of
IOT include home or industrial automation, automotive traffic management, smart
cities and many others. An enormous amount of sensor data is generated by such
systems, which must be continuously analyzed in order to adapt to changes in
either the context or environment whilst achieving system goals and requirements.
Such systems must be context-aware as they are subject to unpredictable changes
in context that cannot be anticipated before deployment. Moreover, such systems
are expected to handle the adaptation at runtime as the need arises.

In summary, maintenance that is decoupled from the runtime environment and
performed manually is difficult and expensive due to the size and complexity of
systems. Furthermore, context-aware systems require adaptation to be handled at
runtime. Therefore innovative ways are required to design, develop, and deploy
such software systems.

On the one hand, Autonomous systems came along as a solution to minimize
human intervention and reduce evolution cost in complex software systems. Au-
tonomous systems “manage themselves given high-level objectives from adminis-

CHAPTER 1. INTRODUCTION 4

trators” [4]. In other words, such systems take a major load off system admin-
istrators as they are only required to dictate new objectives. kephart and Chess
argue that autonomous systems are the rightful approach to tackle problems aris-
ing from the “complexity crisis” [4]. On the other hand, self-adaptive systems were
introduced as a realization of continuously adapting context-aware systems. Self-
adaptive systems are “able to modify their behavior and/or structure in response
to their perception of the environment and the system itself, and their require-
ments” [5]. Furthermore, they handle adaptation and evolution at runtime. This
can be achieved by converting an open-loop system to a closed-loop system with
the aid of a feedback loop that adjusts the system at run-time.

Self-adaptive and autonomous systems are strongly related, and it is difficult to
draw distinction between the two terminologies as they are used interchangeably
in the literature. Self-adaptive systems are more specific and have less coverage
than autonomous systems [6]. Consider a software system decomposed into the
conventional layered model consisting of application, middleware, network, oper-
ating system, and hardware. In Self-adaptive systems adaptation covers only the
application and middleware layer, however, in autonomous systems adaptation
covers the application, middleware, network, and operating system layers.

1.2 Self-adaptive Systems

This section presents a general overview of the basic concepts in self-adaptive
systems. First, it briefly discusses different interpretation produced by the re-
search community for the term self-adaptive systems. Next, it elaborate upon the
basic foundations, requirements and challenges of self-adaptive system. Finally,
it introduces four properties that are oath to be characteristics of self-adaptive
systems.

1.2.1 Definition

Self-adaptive systems are still the focus of intense research and development.
There exists an enormous amount of literature contributing to the modeling, de-
sign and development of self-adaptive systems, however there is no consent on its
definition.

One school of thought defines self-adaptive systems as those that adapt in re-
sponse to change. There are slight variations within this school of thought. These
differences arise from three questions: what can be modified/altered, when is the
adaptation triggered (i.e. what are the monitored properties), how is the adapta-
tion performed? In response to what can be modified, three different approaches
exist either by modifying the system’s behavior [7–10], or the system’s structure

CHAPTER 1. INTRODUCTION 5

What
Structure [5, 6, 11, 12]
Behavior [5, 6, 8–10, 12]

When
Environment [5, 6, 8–15]
Requirements [5, 10–13, 15]

System [5, 6, 8–10, 12, 14, 15]
How Run-time [6, 10, 14]

Table 1.1: Variations in the definition of self adaptive system in the first school of
thought

[11], or both [5, 6, 12]. The adaptation is triggered when a change is detected
in the environment [8], requirements [13], system-itself [14] or a combination of
these three [5, 12, 15]. When considering how adaptation takes place, some em-
phasize that it is handled at runt-time [6, 10, 14], while others don’t. A detailed
classification of variations within this school of thought is presented in Table 1.1.

Another school of thought defines self-adaptive systems as those whose main
aim is to meet system requirements despite uncertainties or changes that may
arise in operating conditions [7, 16–18]. In other words, such systems evaluate
performance and whenever they are not accomplishing what they are intended to
do, possibly due to failure or variability in resources, adaptation is triggered.

In comparison, the system requirements, in the first school of thought, can be
variable and are subject to change, but are fixed in the second school of thought.
Furthermore, any change in the system requirements triggers adaptation in first
school of though, while unsatisfied requirements triggers adaptation in the second
school of thought.

Henceforth in this dissertation we utilize the definition of self-adaptive systems
given by [6] as it adheres closely to our proposal. In other words, a self-adaptive
system is one that adapts at runtime to changes in itself and the environment.

1.2.2 Requirements

This section presents the requirements of a self-adaptive system with the aid
of a generic conceptual model adopted by such systems. Furthermore, it describes
the adaptation loop which highlights the fundamental modules required in a self-
adaptive system to attain adaptability. Moreover, this section introduces a set of
terminologies, that are used hereafter in the dissertation.

Conceptual Model

The conceptual model describes the abstract elements composing a self-adaptive
system and the relation between them. In other words, it presents the basic prin-

CHAPTER 1. INTRODUCTION 6

Managed System

E
n
v
iron

m
en
t

Adaptation Engine

Self-adaptive System

sensor
actuator

Figure 1.1: Conceptual model for a self-adaptive system: dissecting the basic
principles of a self adaptive system

ciples of self-adaptive systems. The conceptual model is composed of three ele-
ments: the managed system, adaptation engine, and environment. Hence, a self
adaptive system can be seen as a tuple SAS = (MS,AE,E). Figure 1.1 depicts
the anatomy of the conceptual model and a description of each entity is presented
next.

Managed system. comprises the application code which realizes the function-
ality of the system. In the case of collaborative adaptive systems the managed
system can be thought of as a series of resources such as robots, vehicles, etc. To
support adaptation, the managed system is equipped with actuators. Actuators
enable the execution of adaptation requests selected by the adaptation engine. For
instance, given multiple robots that collaborate to transport an element from point
A to B, the managed system is responsible for the navigation of robots and element
transfer. The actuators may restrict five robots to participate in the transfer of
the element depending on its weight. Different terms are used in the literature
referring the concept of managed system. For example, it is also referred to as
managed element [4], system layer [19], adaptable software [6], managed resources
[20], base-level subsystem [21], and component control layer [11].

Adaptation Engine. supervises and administrates the managed system. It
contains the adaptation logic needed to achieve system requirements or goals. The
adaptation engine is equipped with sensors that monitor both the managed system
and environment and adapts the preceding when necessary. The adaptation engine
analyzes the monitored data and constructs an adaptation plan. For instance,
consider a robot that adapts its navigation strategy depending on the presence of
obstacles (sensed from environment) and its energy level (sensed from the managed
system). Different terms are used in the literature referring to the concept of
adaptation engine. For example, It is also referred to as autonomic manager [4],
architecture layer [19], adaptation logic [20] and reflective subsystem [21].

CHAPTER 1. INTRODUCTION 7

Monitor

Adaptation Engine

Analyze

Plan

Execute

Knowledge

Figure 1.2: Adaptation loop describes the process adopted by the adaptation
engine to achieve adaptability

Environment. refers to the external world with which the system interacts
and is effected by. It includes physical entities such as obstacles on a robot’s path.

In conclusion the conceptual model described above sheds light over self-adaptive
systems with external adaptation approach i.e. having a clear separation between
the adaptation engine and managed system. This separation increases maintain-
ability through modularization and localization [6, 19, 22]. It is worth noting
that other approaches exist where the adaptation engine and managed system are
intertwined into a single unit. Such self-adaptive systems are known to have In-
ternal adaptation approach. With the internal approach the sensors, actuators
and adaptation logic are mixed with the application code, often leading to poor
maintainability and scalability. Empirical evidence in favor of external adaptation
over internal adaptation can be found in [23].

Adaptation Loop

As discussed in section 1.1, self-adaptive systems deploy a closed-loop mech-
anism, also known as adaptation loop [6]. The adaptation loop comprises the
process used by the adaptation engine to achieve adaptability. It is inspired by
the MAPE-K control loop in autonomic computing and it envelopes four steps,
monitoring, analyzing, planing and executing [4]. The effectiveness of the MAPE-
K comes from its intuitive structure in handling the different functions required
for a feed-back loop [16]. Figure 1.2 illustrates the adaptation loop process.

The first step is tomonitor and collect data from the environment and managed
system through sensors. The collected data is processed and knowledge is updated.
Next, up-to-date knowledge is analyzed to determine whether an adaptation is
needed to attain system requirements or goals. Next, if adaptation is mandatory,
a Plan is constructed consisting of one or more adaptation actions. Finally, the
plan is executed by the managed system with the aid of actuators.

To summarize, a self-adaptive system requires sensors to monitor the environ-
ment and managed system. It also requires the presence of an adaptation engine
which has the capability to monitor and collect data, analyze collected information,

CHAPTER 1. INTRODUCTION 8

and construct a convenient adaptation plan. finally, self-adaptive systems demand
the presence of actuators which will aid the managed system in the execution of
the adaptation plan.

1.2.3 The Self-* Properties

A self-adaptive system adapts at runtime to changes in itself and environ-
ment. To achieve this, ideally speaking, systems should have certain adaptive
characteristics known as the self-* properties. These properties are introduced in
autonomic computing [2, 4] and have been here after referred to in the context of
self-adaptation in many works [6, 16] as basis for adaptation. These properties are
composed of four categories, which are discussed in detail next.

– Self-configuring : is the capability of reconfiguring automatically and dy-
namically in response to changes. This may include installing, integrating,
removing and composing/decomposing system elements.

– Self-optimizing : is the capability of managing performance and resource al-
location whilst satisfying user requirement. This includes concerns such as
throughput, response time etc.

– Self-healing : is the capability of discovering, diagnosing, and reacting to
disruptions. This include both reactive or proactive healing. In proactive
healing potential problems are anticipated and acted upon early on to prevent
failure. while self-repairing focuses on recovery from them.

– Self-protecting : is the capability of detecting security breaches and recovering
from their effects. This includes both reactive and proactive protection,
namely recovering from both existing attacks and anticipated ones.

While the majority of researchers in the field agree that self-adaptive systems are
expected to embody all of these properties, only few researchers have directed their
focus to more than a single property to aid with realizing self-adaptive systems,
such as [19]. This is because of the difficulty of orchestrating and designing systems
whilst keeping in mind all four properties. Henceforth in this dissertation the focus
will be targeted towards the self-configuring property. In other words the focus of
this dissertation is on self-configuring adaptive systems.

1.2.4 Challenges

Self-adaptive systems pose new challenges to the development and design of
software systems. This section aims to identify the various challenges faced by

CHAPTER 1. INTRODUCTION 9

software engineers in realizing self-adaptive systems. It first tackles challenges
in the broader view of the domain. Next it discusses challenges with respect to
the requirements of a self-adaptive system presented in section 1.2.2, namely the
conceptual model, adaptation loop, and self-* properties.

Framework Challenges. While there is a handful of research dealing with ap-
proaches to reason about realizing self-adaptive systems, there is a lack of language,
tools and integrated frameworks that integrate and embody these concepts. Fur-
thermore, existing frameworks such as Stitch [24] (a language to model repair
strategies in an adaptive system) are usually domain specific and lack general-
ity. A main challenge it to develop frameworks that are generic enough to tackle
problems in various domain, yet expressive enough to model complex problems.
Having a general purpose framework to realize self-adaptive systems facilitate the
integration of these frameworks by the industry.

Trust Challenges. One of the main challenges faced after releasing a self-
adaptive system into industry is lack of trust that users/administrators have when
dealing with such systems. This mainly arises due to three problems. First, the
self-dependence of the system leaves it untraceable and hence the user is left aban-
doned with regards to the actions that the system is choosing/performing. One
way to solve this issue is to report the activities and decisions made by the self-
adaptive system to the administrators. Determining how much information to
expose and what are concise ways to represent such information remains a chal-
lenge to be addressed by system engineers. Second, the lack of user control over the
self-adaptive system encourages users to neglect it. Deciding on how much control
to delicate to users is a challenging question. For instance, when the system’s and
administrator’s decision are conflicting, which action is overridden? and in which
situation can an administrator override the system’s decision? Third, there is no
consent in the literature on a single metric to measure the quality of adaptation.
Such a metric will convey confidence and encourage the acceptance of self-adaptive
systems. To ease the adoption of self-adaptive systems into industry these trust
challenges needs to be addressed.

Conceptual Model Challenges

Adaptation Engine Challenges. While most existing work focuses on a cen-
tralized adaptation engine, few works started addressing decentralization such as
[17]. The authors in [17] investigate the different patterns in decentralizing the
adaptation loop which comprises the main functionalities in the adaptation engine.
Decentralization and distribution of the adaptation engine is inevitable when deal-
ing with complex and scalable systems. Decentralization and distribution bring

CHAPTER 1. INTRODUCTION 10

in new challenges to the table. First, they introduce the need for effective com-
munication protocols to share knowledge across the adaptation engines. Another
issue to consider is latency that might be introduced by communication protocols.
Latency results in temporal inconsistent views of the system. The main challenge
is to develop algorithms that supervise and administrate the managed systems
while tolerating inconsistency.

Managed System Challenges. The managed system is typically modeled into
a representation that reflects the actual systems behavior. The key issue when
modeling a system is picking the right level of abstraction. How much information
to abstract away? If the model is too abstract, it may be easier to control by the
adaptation engine, however it may no longer reflect the actual system. On the
other hand, complex detailed models are difficult to deal with from the adapta-
tion engine’s perspective. Therefore, the consistency between the model and the
managed system must be maintained and this challenging trade off must be taken
into consideration by engineers when designing the managed system model.

Sensor & Actuator Challenges. The sensors and actuators are mainly used by
the adaptation engine to peak into what is happening in the managed system and
to accordingly make changes to it. One key challenge is deciding on what can be
sensed i.e. the exact information needed to make precise and correct adaptation
decision. Other important questions to answer are what actuators are needed to
change the system? Which architecture styles support both sensing and acting?
The sensors and actuators are usually catered to the system’s goal. In other words
the system goal determines what information is needed and what can be modified
in the managed system to reach the goal. A major challenge is addressing goal
change and accounting for new sensors and actuators that might be needed to
achieve new goals.

Environment Challenges. To capture uncertainty in the environment it must
be modeled. Existing work captures modeling of parametric uncertainties where
the value of a certain element in the model is unknown. Some challenging questions
include: How to deal with more complex uncertainties? How to deal with real life
uncertainties whose behavior can’t be completely captured and translated to a
model? One possible solution is to rely on discrepancy modeling. Moreover, It
is also important to think ahead about how to deal with new uncertainties that
might have not been modeled.

CHAPTER 1. INTRODUCTION 11

Adaptation Loop Challenges

Monitoring Challenges. The objective of the monitor is to capture and collect
sensed data. The information being monitored and gathered is usually determined
by the system goal. Gathering and collecting all the information from sensors is
very costly. Furthermore, monitoring for multiple goals may lead to redundant
information and consequently undesirable costs. Hence a challenge to consider
is the tailoring of the monitor depending on the situation being analyzed and
system goal. Finally, majority of existing approaches determine in advance (and
at design time) what to be monitored, however the main challenge is to have
adaptive monitoring, where the monitoring process is updated to account for new
emerging system goals.

Analysis Challenges. Given the monitored information, the main goal of the
analysis is to determine when the system is in a bad state. A bad state typically
refers to an undesired system behavior which requires adaptation. How well it can
detect a bad state and will it be detected soon enough to take proper actions?
These are some of many investigations that should be addressed. The analysis
task to this date is considered a major challenge. In-fact its complexity has lead
researchers to rely on ad-hoc and rule-based techniques for analysis. Promising
approaches are the use of artificial intelligence and data mining techniques to adopt
on-line analysis.

Planning Challenges. The planer takes a screen shot of the system current
state along with the system goals to decided on an adaptation plan that satisfies
the system constraints and goals. The adaptation plan is a sequence of actions
that must take the system from an undesired state to a normal state. Unfortu-
nately, This task is computationally hard and as such, most researchers rely on
off-line planning. In off-line planning a set of plans are created at design time that
can be shown either by construction or by a verification process to satisfy system
constraints. However, the real research challenge lies in on-line planing, where
new plans are synthesized on the fly as the system goals change. Other challenges
include dealing with planning for multiple goals and conflict resolution, account-
ing for incomplete system information in decentralized systems, and insuring the
planned transient behavior is safe.

Execution Challenges. At this stage the managed system executes the adap-
tation plan with the aid of actuators. Matters to consider at this stage are: how
to handle the failure of completing the execution of the adaptation plan and the
interference between the execution of multiple adaptation plans. In addition, an
important step is to validate that the execution of the adaptation plan in-fact is

CHAPTER 1. INTRODUCTION 12

correct and results in the desired behavior. Most of existing approaches rely on
limited examples to show the validity of their approach, however verification is
an essential step. The adaptive behavior of such systems dimensions the need for
static verification and strengths the need for runtime verification. Relying on runt-
time verification for adaptive system is complex due to the several alternatives and
execution paths that are inherent to the nature of self-adaptive systems. A com-
bination of both off-line and on-line verification seems a possible, but challenging,
resolution.

Self-* Property Challenges

Since the focus of this dissertation is on the self-configuring property, this sec-
tion tackles only the challenges that are encountered in realizing self-configuring
adaptive systems. A self-configuring adaptive system is one which allows the in-
stallation, integration, removal and composition/decomposition of system elements
at runtime in response to changes that arise in its environment or itself.

The research challenges are primarily concerned with transient behavior. It is
not only important to make sure that transient behavior is of desirable character-
istics but also that the system safety property is not violated during reconfigura-
tion. In addition, it is essential to advocate seamless integration of new elements
introduced to the system. An associated challenge is to verify that the new con-
figuration in-fact satisfies system constraints. Another crucial point to address
is making sure state information is not lost when configuration is modified. One
possibility to approach this is by making sure that involved system elements are
idle when performing a reconfiguration.

Finally, there are two interesting issues that arise as a result of large and
complex self-configuring systems. First, in complex system its highly likely to have
multiple elements exposing the same behavior. It also possible that you would like
to introduce an element having the exact same behavior. For example, introducing
new servers to address high user demands. This introduces the need for some way
to capture behavioral types which allows the creation of several elements of a
certain type (i.e. behavior). Another fundamental aspect to address in complex
systems are shared elements, more specifically how to handle reconfiguration of
shared elements (i.e. coexisting in multiple subsystems). All these are interesting
complications that emerge as a result of reconfiguring systems.

1.3 Problem Statement

Modern systems are pressured to adapt in response to their constantly chang-
ing environment to remain useful. While traditionally, this adaptation has been

CHAPTER 1. INTRODUCTION 13

handled manually and at down times of the system by system administrators,
there is an increased demand to automate this process and achieve it whilst the
system is running. This is partly because manual adaptation of system has been
estimated to cost more than 90% of the total cost of the entire system’s life cycle
[3].

For instance, consider the integration of an extra server replica to a web-based
system to handle the overload in user demands. Also consider the removal of
a faulty system element that is causing undesirable behavior and its integration
later on after it has been fixed. Consider the removal of an entire subsystem that
is reliant on an old technology and replacing it with one that integrates new a
technology. More concrete examples can be found in systems that belong to IOT
(Internet Of Things). For instance, consider an automated highway system where
a bunch of cars are constantly entering the highway, communicating with each
other in such a way to avoid traffic congesting and to optimize car flow. As each
car reaches the end of the highway it leaves the system. In this way a bunch of cars
are constantly entering and leaving the system. In IOT this behavior is intrinsic
as constantly new devices are being introduced and handling such an adaption
manually is not a practical solution.

All of the above examples involve a special type of adaptation, namely reconfig-
uration. In-fact self-configuration is one of four key attributes (the self-*attributes
in section 1.2.2) intrinsic to self-adaptive systems. Briefly, a system configuration
denotes the composed set of system elements and the connections among them and
a reconfiguration implies the integration, removal, composition or decomposition
of system elements. The focus of this dissertation is directed towards reconfig-
uration i.e. self-configuring adaptive system. A self-configuring adaptive system
is one which allows the installation, integration, removal and composition or de-
composition of system elements at runtime in response to changes that arise in its
environment or itself.

This dissertation introduces Dr-BIP a formal framework for modeling self-
configuring systems that relies on an architecture-based approach. An architecture
based approach provides an appropriate level of abstraction to describe dynamic
change in a system. Furthermore, architectures are scalable and hence they facil-
itate the description of large-scale complex systems. We introduce motifs as the
architecture basis to structure the system and to coordinate its reconfiguration at
runtime. An architectural motif defines a set of components that evolve according
to interaction and reconfiguration rules. A system is composed of multiple motifs
that possibly share elements and evolve together. Interaction rules dictate how
elements composing the system can interact. Reconfiguration rules dictate how
the system configuration can evolve over time. The dissertation lays down the
formal foundation of Dr-BIP, implementation and illustrates its expressiveness on

CHAPTER 1. INTRODUCTION 14

several examples.

1.4 Contributions

This thesis presents Dynamic Reconfigurable BIP (Dr-BIP), a model-based
approach that covers the specification, and execution of self-configuring adaptive
systems. The main contributions are as follows:

– Generality. Proposal of a general framework that relies on common and ef-
fective architecture concepts making it applicable to a wide range of domains.
Therefore, system engineers will not require any specific domain knowledge
to specify self-configuring systems in Dr-BIP.

– Gurantee by construction. Definition of architectures as parametric operators
on components guaranteeing by construction specific structural/functional
properties.

– Semantics. Providing a sound foundation for analysis and implementation
through the definition of formal and rigorous operational semantics in the
form of state transition system. The semantics leverage on existing static
BIP semantics (for component-based systems). A Dr-BIP system can be
seen as a static BIP system as long as it is not executing a reconfiguration.

– Separation of concerns. Keeping separate the system’s functionality from its
self-configuring behavior. This avoids as much as possible blurring the be-
havior of components with information about their execution context and/or
reconfiguration needs and thus enable reasoning about the system’s adaptive
behavior in separation of its functional behavior.

– Coverage. Demonstration of the framework coverage with four example com-
ing from various domains including autonomous systems. We show that the
framework is minimal, reusable and expressive allowing concise modeling.

– Integrated. Definition of a modeling language to accompany the framework
concepts and provisioning of a packaged tool set which includes an interpreter
for the language.

1.5 Thesis Roadmap

The thesis is organized into three main parts. The first part, introduces what
makes up self-adaptive by presenting it’s requirements, properties and challenges.

CHAPTER 1. INTRODUCTION 15

Next, it focuses on how self-adaptive systems are engineered by providing an
overview of approaches and techniques while detailing the advantage and disadvan-
tage of each. Furthermore, it expands on a single approach which is the backbone
and basis of this dissertation, namely the model-based component and connector
architectural approach, by presenting its details and advantageous.

The second part introduces the Dr-BIP framework by detailing, its design pil-
lars, conceptual model, and its architectural elements that are used to compose
a self-configuring Dr-BIP system. Next, it highlights the relation between Dr-
BIP and its predecessor BIP and discusses existing extensions of BIP supporting
self-configuration. After which it presents four examples of self-configuring sys-
tems modeled in Dr-BIP. Each example is first introduced with an explanation of
the intended target system’s behavior and then its modeling using Dr-BIP. Last
but not least, it presents the prototype implementation of the Dr-BIP framework
which includes a concrete syntax to describe motif-based systems, a parser and an
interpreter for the operational semantics.

The third part wraps up the dissertation with a summary of key points from
part 1 and 2 along with possible extensions and future perspectives.

Chapter

2

Existing Methodologies

Contents
2.1 Approaches and Techniques 17

2.1.1 Control Engineering . 17

2.1.2 Artificial Intelligence . 19

2.1.3 Software Programming 19

2.1.4 Software Engineering . 21

2.2 Model-based X Component and Connector 25

In the previous chapter, the focus was on what makes up self-adaptive sys-
tem, along with it’s requirements and challenges. This chapter focuses on how
self-adaptive systems are engineered by providing an overview of approaches and
techniques. It details the advantages and disadvantages of each approach along
with a few example references. Next, it expands on a single approach which is the
backbone and basis of our work, namely the model-based component and connector
architectural approach.

16

CHAPTER 2. EXISTING METHODOLOGIES 17

2.1 Approaches and Techniques

Extensive efforts have been put by engineers and researchers from different dis-
ciplines to realize self-adaptive systems. This section discuses various approaches
that have been developed over time. Each approach is inspired by a specific disci-
pline and as such highlights complementary aspects of realizing self-adaptive sys-
tems. Figure 2.1 lists the different disciplines and the several approaches branching
from each discipline. For instance, developing a self-adaptive system from a con-
trol engineering perspective implies designing a control-based self-adaptive system
whose behavior can change according to a set of well-formed mathematical models
that can be formally analyzed.

A
p
p
roach

Software
Engineering Model-based [19, 25–36]

Architecture-based Component-based
[19, 24, 37, 38]

Software
Programming

Reflection-based [37, 39–44]

Artificial
Intelligence learning-based [45–51]

Utility-based [52–55]

Control
Engineering

Control-based [47, 56–62]

Figure 2.1: A broad classification of approaches used in designing and developing
self-adaptive systems

2.1.1 Control Engineering

Control engineering is a discipline whose focus is on designing systems that
behave as expected with the aid of system controllers. Traditionally, control engi-
neering has been concerned with systems that are governed by the laws of physics,
such as physical control plants. In recent years, the application of control theory to
computing context have been studied in various works [63–65]. Furthermore, the
similarities between physical control plants and self-adaptive systems are evident.
Physical plants are constantly reacting to their environment to reach a certain goal
and so are self-adaptive systems.

In this approach there are two fundamental concepts, namely the target system
and controller. The controller implements a control strategy that dictates the
correct control signal which adapts the target system in order to maintain the
output of the target system sufficiently close to the desired goal. The control

CHAPTER 2. EXISTING METHODOLOGIES 18

signal is typically based on the difference between the previous target system’s
output and the system’s goal. The target system is an analytical model based
on mathematical relationships that relate the effect of the control signal on the
system’s behavior. For more details on the different techniques used to design
target systems and controllers in self-adaptive systems refer to [66, 67].

Advantages
- Provides a formal approach to design systems.
- Has mathematical grounding that enables formal guarantees on the behavior of
the controlled system including four main properties (convergence, robustness,
stability, absence of overshoot).
- Facilitates formal analysis and verification of nonfunctional properties of the
system.

Disadvantages
- Requires control experience as applying of-the-shelf control theories will lack
rigorous assessment of the adequacy of the chosen control strategy.
- Requires a profound mathematical background to understand how to model
the target system and to decide on the right level of abstraction in such a way
to expose the needed behavior of the system without complicating the synthesis
of the controller.
- Translation from system design which is typically based on mathematical for-
mulas into an implementation is non-trivial process and if not done properly,
properties that are guaranteed at design might be lost through the process.

Table 2.1: List of advantages and disadvantages of control-based approach

A control-based system relies on a control loop to incorporate target system’s
output and outside disturbances. One prominent technique for organizing a control
loop in self-adaptive systems is the MAPE-K loop which has been referred to as
adaption loop in Section 1.2.2. In-fact many works emphasize the importance and
application of MAPE-K loop in control-based self-adaptive systems [6, 16, 17, 20,
62]. A detailed description of different patterns to decentralize MAPE control
loop in self-adaptive systems can be found in [17]. Examples of control-based self-
adaptive systems include [47, 56–62]. The works [58, 62] tackle the application of
control theory to design self-adaptive systems. The works [56, 57] focus on control
strategies for self-adaptive systems with multiple goals. The works [47, 59] rely
on a model-based representation of the target system to design of self-adaptive
systems. Finally, the works [60, 61] utilize a supervisory control strategy over
self-adaptive systems. A list of the main advantages and disadvantages of the
control-based approach is highlighted in Table 2.1

CHAPTER 2. EXISTING METHODOLOGIES 19

2.1.2 Artificial Intelligence

AI provides the ability for systems to learn, improve and make decisions in
order to perform complex tasks. The field of AI is broad and ranging from nat-
ural language processing, multi-agent systems, machine learning, utility theory
among others. Self-adaptive systems have common grounds with artificial intelli-
gence, namely dealing with unexpected scenarios. Referencing the adaption loop in
section 1.2.2, which is a basic requirement of self-adaptive systems, artificial intel-
ligence can be found useful in two main elements in the adaption loop, namely the
analyze and plan element. AI techniques can play a central role in self-adaptation
by processing large amounts of data and performing analysis and decision mak-
ing. Artificial intelligence learning techniques can be used to better analyze and
identify patterns in sensed data from the environment. Furthermore it can be
used to make better decisions on the adaptation plan to be executed by learning
from previous experiences. Artificial intelligence can’t be thought of as a unique
solution to realize self-adaptive system, but a supporting solution whom together
with other approaches such as control-based in [47, 48] and component-based in
[51] results in compelling self-adaptive systems.

Utility-based. Utility theory is another profound concept in artificial intelli-
gence. Utility refers to “the quality of being useful” [68]. Utility theory deals with
assigning a utility value for each possible outcome and choosing the best possible
outcome based on maximizing the utility value. For example, the works [52–55]
employ a utility function to optimize dynamic reconfiguration of resources in au-
tonomic systems. A list of advantages and disadvantages of artificial intelligence
to realize self-adaptive systems is highlighted in Table 2.2

Learning-based. Learning algorithms in artificial intelligence such as reinforce-
ment learning [69] and genetic algorithm [70] can be incorporated in the planning
phase by the adaptation engine of a self-adaptive system. In-fact the use of var-
ious learning algorithms to realize self-adaptive systems can be found in [45–51].
In the works [45, 46] reinforcement learning is used in autonomic computing. In
the works [47–49] on-line learning models are used to realize self-adaptive behav-
ior. Finally the works [50, 51] investigate collaborative learning in self-adaptive
systems.

2.1.3 Software Programming

In this approach, general purpose programming languages are utilized to realize
self-adaptive systems. One of the main techniques is known as reflection-based and
is explained in details next.

CHAPTER 2. EXISTING METHODOLOGIES 20

Advantages
- Enhance the analysis of sensed data from the environemnt and planning from
past experiences
- Can be used in combination of other approaches to produce compelling adap-
tive systems

Disadvantages
- Evaluation of the system is necessary due to the heavy reliance on heuristics
and probability in this approach
- Use of Artificial intelligence may result in unpredicted behavior of the system
and lack of behavioral guarantees

Table 2.2: List of advantages and disadvantages of artificial intelligence approach

Reflection-based. Reflection has been introduced to programming language
community with the aim to increase programming flexibility and to allow the de-
velopment of closed software systems, which do not require external interference.
A reflective software system is one which has the ability to examine and modify
both its behavior and structure. A programming language supporting reflection
provides a number of features available at runtime that aid with reflection such as
the creation of new class types at runtime, and instantiation of objects of classes
that where not defined at compile-time. Many general purpose programming lan-
guages already posses reflective abilities such as JAVA, and C#. The ability of
software to adapt itself is an intrinsic characteristic of self-adaptive systems.

Some examples of realizing self-adaptive systems through the use of reflection
include [37, 39–44]. In [39] the authors rely on architectural reflection to realize
self-adaptation. Architectural reflection is the ability of software system to adapt
its structure including components, interconnections, and data types. On the
other hand, the authors in [41] rely on behavioral reflection. Behavioral reflection
is the ability of the software system to change its behavior including communi-
cation mechanism, algorithms etc. The extension of the concept of reflection to
requirements realize self-adaptive system was proposed by [40]. They claim that a
self-adaptive system should be requirements-aware. A requirements-aware system
should be able to observe and react to its requirements in the same way it does
for its structure and behavior.

One of the main disadvantages of the all of the above mentioned work is that
they are platform specific solutions and complex software may be deployed on
heterogeneous hardware, operating systems, etc. This has led to the emergence
of reflective middleware. Middleware sit between the application and the under-
lying operating system and hence provide a level of platform independence. This
provides considerable benefits in terms of interoperability and portability of dis-

CHAPTER 2. EXISTING METHODOLOGIES 21

tributed system services and applications. Plastik [42] is an example of the use
of reflective middleware to capture self-adaptive systems. It integrates OpenCOM
component model and the ACME/ARMANI ADL [37, 44]. Moreover the authors
in [43] use reflective middleware technology to support self-healing systems using
Open ORB.

A summary of advantages and disadvantages of software programming ap-
proaches to realize self-adaptive system can be found in Table 2.3.

Advantages
- Reflection can be a quick and easy fix to add adaptive behavior for small
noncritical systems

Disadvantages
- Reflection inevitably induces additional performance overhead
- Reflection provides unlimited access to the software implementation and this
can lead to changes that affect the integrity of system if not dealt with care

Table 2.3: List of advantages and disadvantages of software programming approach

2.1.4 Software Engineering

Numerous research areas under software engineering have tackled the realiza-
tion of self-adaptive systems. This section sheds light over two such approaches,
one of which is the model-based approach. The model-based approach emerges
from the Model Driven Engineering (MDE) discipline. In MDE, models are treated
as primary entities to design, develop and implement software systems. The sec-
ond approach is the architecture-based approach, where architectures are primary
entities of description. System architectures represent systems using the high-level
elements from which they are made. This can be done in various ways, one of
which relies on components and connectors, also known as the component-based
approach. We discuss both approaches in detail next.

Component-based. In a component-based architecture the system description
is composed of components that encapsulate the system’s functionality and con-
nectors that dictates the interaction between components. Connectors relate one
component to another usually through relationships such as data flow or control
flow.

A component and connector architecture description can aid in the construc-
tion of self-adaptive by allowing the system to keep track of its structure. In
other words, it prompts structural self-awareness, which is specifically important

CHAPTER 2. EXISTING METHODOLOGIES 22

to capture self-configuration behavior. Many component-based approaches repre-
sent the architecture in the form of model and propose a component and connector
description language to accompany the such as STITCH [24], ACME [37], and
COMMUNITY [38]. A comparison of these description languages among others
can be found in [71]. The Rainbow framework [19] is a well-known component-
based framework for self-adaptive systems. It relies on component architecture
models to both monitor and adapt the system. It enables system designers to self-
adaptation capabilities to systems in a cost-effective manner by providing reusable
framework elements also known as architecture styles. A list of advantages and
disadvantages of component-based approaches is highlighted in Table 2.4.

Advantages
- Abstraction that captures the system structure and facilitates the description of
reconfiguration - Encapsulation is a key advantage which supports the separation
of concerns
- Component and connector architectures generally facilitate the description
large-scale complex systems
- component and connectors are common abstract concepts that can be used to
describe self-configuring systems from various domains

Disadvantages
- Component-based architectures are favored for reusability, however the of level
reusability is finely grained since components are not likely to be reused across
systems from different domains
- The system functionality is typically divided across component, which intro-
duces dependability amongst component. Therefore, if any single component
fails, then the entire system is affected. This introduces the need for self-
configuration especifically in component-based systems.

Table 2.4: List of advantages and disadvantages of component-based approach

Model-based. A model is a representation of the system at some level of ab-
stractions. A model can represent the system’s requirement, architecture, imple-
mentation, or development, depending on the concern at hand the model captures
only relevant information with respect to the model concern. Other type of models
encapsulate nonfunctional properties of a system such as performance, tolerance,
and security etc. A model is described using a modeling language, which is typ-
ically composed of abstract syntax, concrete syntax, and semantics. The abstract
syntax describes the concepts of the language and their composition to create a
model. The concrete syntax is a textual or graphical notation used to describe
a model. The semantics employ the meaning of the language i.e. the interpre-

CHAPTER 2. EXISTING METHODOLOGIES 23

tation of a model written in the corresponding language. The semantics can be
either defined formally using mathematical notations or informally using natural
language.

Models can be used in two different ways, either as development models or
runtime models. Development models start from the abstract model describing
the system’s requirements which is then systematically transformed and refined
to architecture, design, implementation and deployment model until reaching the
final running system. In other words, development models bridge the gap between
the problem space and solution space where the problem space is the application
domain and the solution space is the domain of implementation. However due to
changing conditions in systems environment and insufficient information at design
time relying on development models is not sufficient to realize complex systems,
especially self-adaptive systems which are constantly adapting to the environment
or their-self. This has lead to the extension of MDE to runtime, such models are
known as models@runtime or runtime models.

A runtime model is a casually connected representation of system’s structure,
behavior or goals. A model is said to be causally connected to a running system if
it is linked in such a way that if either the model or running system changes, this
leads to a corresponding effect on the other. In other words, a casual connection is
established in a bidirectional manner with the running system. In the first direc-
tion, the runtime model is kept up to date with the running system i.e. the model
is an exact reflection of the running system at all times. In the opposing direction,
the connected model can be used to effect change in the running system i.e. a
change triggered at the model level is an equivalent change at the running system
level. The primary advantage of Runtime models enable automatic monitoring and
analysis of the system whilst its running. A complete list of advantages and dis-
advantages of model-based approach to realize self-adaptive systems is highlighted
in Table 2.5.

The model-based approach have been sufficiently studied in the context of re-
alizing self-adaptive systems [19, 25–36]. Some researchers rely on architecture
models to represent the system [19]. An architecture model captures the struc-
tural architecture of the system in various representations including components
or layers. Others rely on feature models to represent the system [25–27, 34]. A fea-
ture model captures potential variants of the system. Feature models offer a way
of reasoning about adaptation by representing all possible configurations of self-
adaptive system. Goal models can also be used to realize self-adaptive systems as
in [28, 29]. A goal model captures system’s requirements, once these requirements
are not fulfilled an adaptation is triggered. It is often the case that a single runtime
model is not enough to represent complex system and as such some researchers rely
on multiple models at runtime. For example, a combination of both feature and

CHAPTER 2. EXISTING METHODOLOGIES 24

Advantages
- Models are modular and abstract representations of the system making them
easier to handle and maintain than a system’s actual implementation, this is
especially relevant in large complex systems
- Models can be used to automate the construction of a system implementation
and to automate verification a system at runtime
- Models are platform independent, and as such reduce both cost and time that
may be needed to target various specific platforms

Disadvantages
- When multiple models are used at runtime it is challenging to maintain explicit
relations across conflicting models making analysis and reasoning demanding
- A model-based approach must be accompanied by other approaches for com-
plete realizing of self-adaptive systems
- Models if not accompanied with formal semantics can not be used for analysis
or reasoning about the system

Table 2.5: List of advantages and disadvantages of model-based approach

architecture models to realize self-adaptation can be seen in [30]. Moreover, a com-
bination of both architecture and behavior models to realize self-adaptation can
be seen in [31, 32]. When utilizing multiple runtime models it becomes essential
to maintain the relation between these models especially in the case of conflicts
and overlap. For example, an adaptation triggered by one runtime model may
violate constraints in another model. It is important to make relations between
multiple runtime models explicit as to facilitate automatic analysis and reasoning.
In fact, [33] proposes Euroma, a megamodel language to manage multiple models
and their relation at runtime in self-adaptive system.

Similar to the AI approach, the model-based approach can’t be considered
alone as a solution for realizing self-adaptation in systems, but rather an assisting
approach that needs to be accompanied with additional approaches in-order to
support change in the running system. For example, a model-based approach
can be accompanied with aspect-oriented approach [34], service-oriented approach
[35], architecture-based approach [19], or component-based approach [36] to realize
self-adaptive systems.

This list of approaches is meant to shed light on the variability of methods
available in realizing self-adaptive systems and is not by any means exhaustive or
complete. In fact there are other approaches such as the agent-based approach
which emerges from the artificial intelligence discipline. In addition, several other
alternative approaches emerge from the network computing discipline. We refer
the interested reader to the following surveys [6, 16, 20, 72] for more information

CHAPTER 2. EXISTING METHODOLOGIES 26

and upgrade. To summarize an architecture-based approach endorse generality,
abstraction, scalability, maintainability, and adaptability of systems making it an
ideal choice for modeling complex self-configuring systems.

There are multiple types of architectural elements that maybe considered when
describing system architectures such as services, components, etc. The most com-
mon and fundamental architectural element to consider as base for architectural
description is a component. In a component-based architecture, the system de-
scription is composed of components and connectors. Components encapsulate
functionality of the systems and connectors dictates the interaction between com-
ponents i.e. it relates one component to another usually through relationships
such as data flow or control flow. One of the main benefits of component and
connector architectures is encapsulation. It supports separation of concerns by
keeping separate the system behavior (functionality) from the system architecture
(the interaction between components). This allows the separation of the adap-
tive behavior from the non-adaptive one making the system easier to specify and
more emendable to automated analysis. For example, components do not need
to know under which interaction patterns they will be used, as long as their local
interaction constraints are satisfied. Another benefit of component and connector
architectures is reusability, as they allow one to specify the general case of an inter-
action pattern (connector) or a component behavior and reuse it. To summarize
a component-based approach to architecture design endorses encapsulation, and
reusability. It is for these reasons that Dr-BIP relies on component and connector
architectural description.

In addition to the component and connector architecture approach, Dr-BIP also
utilizes a model-based approach. In a model-based approach, a runtime model,
which is a representation of the system, is casually connected to the actual running
system facilitating runtime reconfiguration. More details on this approach can be
found in section 2.1. An instance of a model-based approach aids in its adoption
by the industry. This is because models are generic and platform independent.
Moreover, these models can be automatically translated into general purpose pro-
gramming languages) to target different platforms or devices, which reduces both
cost and time required for system design and development. In addition, since mod-
els are representations of the running systems they enable system monitoring and
hence offer early predictions about system’s behaviors and properties. By formal-
izing models and clarifying the formalisms used, a model-based approach not only
facilitate monitoring of the system, but also automatic analysis and verification
of the system during operation. To summarize a runtime model-based approach
endorses industrialization, system monitoring, and automatic reasoning

Component and connector architecture description languages (C&C ADLs) is
one solution that combines both component-based and model-based approaches

CHAPTER 2. EXISTING METHODOLOGIES 27

to enable composition of system’s architectural models from component. A C&C
ADL is a formalism which is used to describe system architectures based on com-
ponents and connectors. Tens of formal C&C ADLs have been proposed, each
characterized by different conceptual architectural elements, syntax and seman-
tics. Some C&C ADLs support only static configuration such as ArchFace [73],
C3 [74], COSA [75], MontiArc [76]. In a static configuration, the system configura-
tion is known at design time and is fixed through out its execution. Others support
dynamic configuration i.e. self-configuration, such as ACME [37], RAINBOW [19],
Dynamic Wright [77]. In a dynamic configuration the system is changing dynam-
ically at runtime. Several surveys present a detailed comparison of C&C ADLs
supporting dynamic reconfiguration [78–80].

Dr-BIP proposes a formal C&C ADL to aid in the modeling of self-configuring
adaptive systems. The Dr-BIP framework relies on key concept of architectural
motif as the elementary unit of description of self-configuring systems. A motif
encapsulates (i) behavior, as a set of components, (ii) interaction rules between
components (i.e. connectors) and (iii) reconfiguration rules about creating/delet-
ing or moving components. Systems are constructed as a superposition of several
motifs, possibly sharing their components, and evolving altogether.

In summary, Dr-BIP relies on an architecture-based approach. More precisely,
it relies on a component & connector architecture to mitigate away from the com-
plexity of system design. It also relies on a model-based approach, where by it
proposes a formal C&C ADL to ease the modeling of self-configuring systems. The
combination of these two approaches exploits the benefits of each.

Part II

Dr-BIP Framework

28

Chapter

3

Dr-BIP Framework

Contents
3.1 Overview . 30

3.1.1 Design Pillars . 30

3.1.2 Conceptual Model . 31

3.2 Dr-BIP System Model 34

3.2.1 Architecture Overview 36

3.2.2 Components . 40

3.2.3 Motifs . 41

3.2.4 Motif-based Systems . 48

3.3 Dr-BIP as an Extension of BIP 52

3.3.1 Component-based Systems 52

3.3.2 Existing BIP Extensions for Dynamic Reconfiguration . 54

The previous chapter, surveyed existing methodologies in the literature for
realizing self-configuration. It further affirmed the need for a general integrated
framework that is applicable to different self-configuration problems from various
domains. The integrated framework aims to aid system engineers to not only
design self-configuring systems, but also to monitor and reason about them. It

29

CHAPTER 3. DR-BIP FRAMEWORK 30

aims to help system engineers to add self-configuration abilities to systems in a
cost effective manner that saves engineers both time and effort.

To accomplish this, we introduce Dr-BIP, an integrated framework accompa-
nied with a language and an interpreter that codifies its concepts. The underlying
principle is to maintain the separation between the system’s functionality and its
adaptive behavior (i.e self-configuration). To achieve this, Dr-BIP respects a strict
separation between component behavior and its coordination. This separation is
crucial to facilitate maintainability, and more importantly to reason about and
analyze the system’s adaptive behavior in separation of its functional behavior.

This chapter introduces Dr-BIP framework by first detailing its design pillars
and conceptual model. Next, it introduce the Dr-BIP runtime system model by
first presenting the architectural elements that can be used to compose a Dr-BIP
model and then describes how they can be composed to model a self-configuring
system. Finally, it highlights the relation between Dr-BIP and its predecessor BIP
and discusses existing extensions of BIP supporting reconfiguration.

3.1 Overview

This section provides an overview of the Dr-BIP framework. It first introduces
the foundation principles behind the framework. Next, it presents the concep-
tual model of Dr-BIP and relates it to the general self-adaptive system conceptual
model introduced in section 1.2.2. Finally, it exposes the various processes em-
bodied in the Dr-BIP adaptation engine that form an adaptation loop and relates
it to the general adaption loop introduced in section 1.2.2.

3.1.1 Design Pillars

The Dr-BIP framework aims to cover, as much as possible, the current needs in
the design of self-configuring systems. The Dr-BIP framework is built on concrete
foundation pillars that are explained in details next.

General. A general framework allows to model problems of various complex-
ities and problems coming from different domains. In other words, it enhances
the coverage of problems that can be modeled and designed with such a frame-
work. Moreover, system engineers utilizing a general framework will not require
very specific domain knowledge to design systems. Dr-BIP endorses generality by
relying on common, but effective, architecture abstractions such as component and
connectors to model the system. Components capture the system’s functionality
and connectors capture multi-party interactions between components.

CHAPTER 3. DR-BIP FRAMEWORK 31

Rigorous. A rigorous framework provides sound foundation for analyzing and
implementing the system. Dr-BIP relies on a well-defined operational semantics,
leveraging on existing models (from its predecessor BIP) for rigorous component-
based design.

Separation of concerns. A framework supports separation of concerns if it sep-
arates the system’s behavior (functionality) from the system’s adaptive behavior
(self-configuration). Such a separation helps to avoid blurring the behavior of com-
ponents with information about their execution context and/or reconfiguration
needs. Dr-BIP achieves this by using exogenous global coordination rules which
allows to reason separately about the system function and its adaptive behavior.

Support Runtime Models. A framework supports models at runtime by main-
taining an abstraction of the target system that is casually connected to the run-
ning system. Runtime models facilitates to monitor, adapt, and reason about the
system whilst its running. Dr-BIP support runtime system models which capture
the target system at three different levels of abstraction. They capture behavior,
configuration and possible configuration variants of the system. The Dr-BIP model
is like a living concept, that can be updated at runtime using dedicated primitives.

Guarantee by construction. A framework can guarantee by construction spe-
cific behavior if it enforce architectural constraints/styles. Dr-BIP allows the def-
inition of configurations as parametric operators on components guaranteeing by
construction specific properties. This is possible due to the runtime system model
which captures, not only the system configuration, but also the possible configu-
ration variants at design.

3.1.2 Conceptual Model

The conceptual model describes the abstract elements composing the Dr-BIP
framework and the relation between them. In other words, it presents the broad
picture of self-configuring systems modeled in Dr-BIP by introducing the frame-
work’s underlying concepts and new terminologies that will frame future discus-
sions. The conceptual model is composed of two elements: the system model, and
the adaptation engine. Figure 3.1 depicts the anatomy of the conceptual model.
A description of each entity is presented next.

System Model. The system model is a representation of the running system.
It is a form of runtime model, which provides a view on the running system and
enables its adaptation. More information can be found on runtime models and

CHAPTER 3. DR-BIP FRAMEWORK 33

tion, i.e. running system to model, reflective techniques can be used to introspect
a running system and identify the exact changes made, which consequently can
be used to update the system model. Maintaining the consistency in this way is
inefficient and interferes with the performance of the system by introducing over-
head. Dr-BIP avoids the hassle by capturing the system’s architecture in its model
and if we suppose that a mapping between components in the model and imple-
mentation modules is recorded. Then the mapping will enable changes specified
in terms of the system model (addition/removal of component/connector) to be
effective changes in the implementation and vice versa. In this manner, an up to
date mapping maintains the correspondence between the system model and the
implementation.

Adaptation Engine. In a nut shell, the adaptation engine monitors and con-
trols the system model. It is responsible for continuously sensing the need for a
reconfiguration, or a coordinated interaction between components. It does so by
computing the set of enabled interactions and reconfigurations, deciding on an
valid step (i.e. interaction or reconfiguration) and effecting the decision in the
system model. The steps involved in the adaptation engine form an adaptation
loop that is elaborated upon in the coming section.

The Dr-BIP conceptual model is similar to the general conceptual model pro-
posed in 1.2.2 for self-adaptive systems. The managed system is represented in
Dr-BIP by two elements, the system model and the running system. More over,
the environment is implicitly captured in Dr-BIP ’s system model by constrained
configuration variants. For example, a server experiencing an enormous amount of
tasks from users (environment) must adapt by delegating tasks to another server.
In Dr-BIP this can be handled in the system model with a constrained reconfig-
uration rule, that migrates tasks to other servers when a server’s load reaches a
maximum value. Therefore, it is important to sufficiently study the environment
of a system and how it behaves in order to capture it in the system model to
account for and respond to any environmental change.

Adaptation Loop

The adaptation loop comprises the processes adopted by the adaptation engine
to achieve self-configuration in Dr-BIP. Figure 3.2 illustrates the three main ele-
ments involved in self-configuration. The model manager maintains an up to date
status of the system model. This up to date view is used to evaluate the current
enabled interactions and reconfigurations. To compute the enabled interactions
and reconfigurations, the constraint evaluator evaluates the constraints associated
with each interaction and reconfiguration rule, which dictate its applicability (i.e.
under which condition it applies). After evaluating the set of enabled steps, the

CHAPTER 3. DR-BIP FRAMEWORK 34

step executor is responsible for deciding on a step and directing the effect of ac-
tions associated with this step to the model manager which consequently affects
the change in the system model through actuators.

Adaptation Engine

Model Manager

Constraint
Evaluator

Step
Executer

SensorActuator

Interaction

Reconfigurations
or

Figure 3.2: Adaptation loop describes the process adopted by the Dr-BIP adap-
tation engine to achieve reconfiguration

The Dr-BIP adaptation loop is similar to the MAPE-K loop described in sec-
tion 1.2.2. The monitoring is handled by the model manager which keeps a con-
sistent view of the current system model. Moreover, the analyzer is embedded
in the constraint evaluator, however in Dr-BIP the analyzer is looking for a pre-
defined patterns (enabled constraints) that trigger either a reconfiguration or an
interaction. Each interaction/reconfiguration rule comes in a constraint, action
pair. Therefore, the planning is inherently embedded in the interaction/reconfigu-
ration rules. Once a step is chosen its set of associated actions are made effective
in the system model. In summary, Dr-BIP relies on offline planning to achieve
self-configuration. Finally the execution of action by the system model is made
effective through the model manager and actuators.

3.2 Dr-BIP System Model

Dr-BIP framework utilizes runtime models to represent the running system.
The use of runtime models to achieve self-adaptation have been discussed in details
in section 2.1. In addition, an elaborate list of advantages for using runtime models
to achieve self-configuration can be found in section 2.2. This section tackles the
basic structure of a Dr-BIP system model and its composing elements. Henceforth,
the words Dr-BIP model and system model will be used interchangeably used to
signify the runtime abstraction model of the running system.

A Dr-BIP system model is an abstraction of the running system at three dif-
ferent levels of abstraction. Figure 3.3 summaries the three abstractions. The first

CHAPTER 3. DR-BIP FRAMEWORK 35

level captures the running system’s functionality. For example in a client server
system, the functionality of each server is captured by this layer. The Dr-BIP
model captures system’s behavior with the aid of automata extended with data
and ports.

The second level abstracts the system configuration by encapsulating system’s
behavior in components and dictating their connections. For example, in a client
server system, all clients and servers may be represented as components and an
interaction may be used to to signal a connection between a client and server.
The Dr-BIP model employs interaction rules to represent multiparty interaction
between components.

The third level captures the variability in the system configuration. A system’s
configuration is determined by its components and their connections. A change
in either the set of components or connections is said to be a reconfiguration that
results in a new configuration of the system. The first type of reconfiguration that
is responsible for changing the set of components in the system is handled explicitly
by this layer. For example, in a client server system, a faulty server component
may be removed and a new back up server may be introduced to cover up for
the loss. Dr-BIP handles this type of reconfiguration by explicitly allowing the
addition/removal of components through the definition of reconfiguration rules.

S
y
stem

M
o
d
el

Behavior

Configuration

V ariability Running
System

Figure 3.3: Dr-BIP system model abstracts the target system at three different
levels of abstraction

The second type of reconfiguration which is responsible for modifying the con-
nection/interaction between components is handled implicitly in Dr-BIP. Consider
for example a client server system where only premium clients may be given access
to servers with extra functionality. In other words, only premium client compo-
nents can have a connection/interaction with special server components. Moreover,
any new premium client must maintain such a connection. These constraints on
connections are handled in Dr-BIP through parametric interaction rules, which
belong to the second layer of abstraction, namely the configuration layer. An
interaction rule can dictate that any client component that is of type premium
must connect to server component of type x with special functionality. This rule

CHAPTER 3. DR-BIP FRAMEWORK 36

is applicable on all current premium clients in the system and will be applicable
on any new premium clients introduced. In this way, the effect of reconfiguring
the connection can only be seen in action once the component set in the system
is changed by the introduction of a new premium client with the aid of reconfig-
uration rules. Therefore, as soon as a premium client component is introduced,
its corresponding connection with other component servers is implicitly initiated
according to interaction rules.

Therefore, reconfiguration is captured implicitly by the configuration layer
(varying connection) and explicitly by the variability layer (varying components).
Together these two layers capture the configuration space and possible configura-
tion alternatives of the system.

3.2.1 Architecture Overview

To capture all three levels of abstractions discussed in section 3.2, the Dr-BIP
framework introduces architectural motif as a key concept and an elementary unit
of description for self-configuring systems. A motif encapsulates (i) behavior, as
a set of components, (ii) interaction rules between components and (iii) reconfig-
uration rules about creating/deleting or moving components. A System is con-
structed as a superposition of several motifs, possibly sharing their components,
and evolving altogether. The ability of components to move between motifs is a
technique adopted by Dr-BIP to implicitly add/remove connectors. Connections
between components in a motif is dictated by the motif’s interaction rules. Dr-BIP
employs a restricted approach that allows the ability to add/remove connectors
implicitly, which in turn guarantees by construction certain configurations.

Figure 3.4 provides an overall view on the structure and evolution of a motif-
based system (i.e. Dr-BIP model). The initial configuration on the left consists
of six interacting components organized using three motifs. Motifs are indicated
with dotted lines. The central motif contains components b1 and b2 connected in a
ring. The upper motif contains components b1, c1, c2, c3, with b1 being connected
to all others. The lower motif contains connected components b2, c4.

The second system configuration in the middle shows a new configuration of
the system after performing a reconfiguration. Component c3 moved from the
upper motif to the lower motif and Therefore, c3 was implicitly disconnected from
b1 and connected to b2 according to c3’s new motif’s interaction rules. Note that
the central motif is not impacted by the move.

The third system configuration on the right shows the system configuration
after performing an additional reconfiguration. Two new components, b3 and c5,
have been created. The central motif now contains an additional component, b3,
that is connected to b1 and b2, forming a larger ring. In addition, a new motif is
housing the two newly created components b3 and c5.

CHAPTER 3. DR-BIP FRAMEWORK 37

c2c1 c3

b1

b2

c4 c3c4

c2c1

b1

b2

c3c4

b2

c2c1

b1 b3

c5

Figure 3.4: An example of reconfiguration in a motif-based system

The example above contains two types of motifs, a ring and star motifs. Motif
types are defined by the types of hosted components along with parametric inter-
actions and reconfiguration rules. Therefore, systems are described by superposing
a number of such motifs on a set of components. In this manner, the overall system
architecture captures specific configuration and functional properties by design.

Figure 3.6 depicts the definition of motifs in Dr-BIP. Motifs are structurally
organized as the deployment of component instances on a logical map. Maps
are arbitrary graph-like structures consisting of interconnected positions. Deploy-
ments relate component instances to positions on the map. Finally, the definition
of the motif is completed by two sets of rules, defining respectively interactions
and reconfiguration actions. Interaction rules defines a set of interactions between
component instances. Reconfiguration rules defines reconfiguration actions to up-
date the motif’s components, map and/or deployment. The abstract syntax for
both rules is presented in Figure 3.5.

interaction-rule ::= reconfiguration-rule ::=
sync-rule-name(formal-args) ⌘ do-rule-name(formal-args) ⌘

[when rule-constraint] [when rule-constraint]
sync interaction-ports do reconfiguration-action+

[interaction-guard !
interaction-action+]

Figure 3.5: Abstract syntax of interaction and reconfiguration rules

Both sets of rules are interpreted on the current motif structure. Formal-args
denotes (sets of) component instances and defines the scope of the rule. Rule-
constraint defines the conditions under which the rule is applicable. Constraints
are essentially boolean combinations on deployment and map constraints built

CHAPTER 3. DR-BIP FRAMEWORK 38

from formal-args. An interaction rule also defines the set of interacting ports
(interaction-ports), the interaction guard (interaction-guard) and the associated
interaction actions (interaction-action). The guard and the action define respec-
tively a triggering condition and an update of the data of components participating
in the interaction. Finally, a reconfiguration rule defines reconfiguration actions
(reconfiguration-action) to update the content of the motif. Such actions include
creation/deletion of component instances, and change of their deployment on the
map as well as change of the map itself, i.e. adding/removing map positions and
their interconnection.

Behavior

Interaction rules :

Deployment

Map

when D(x1) 7! D(x2)

bi
in out

rcv

Reconfiguration rules :
...

ci

snd

sync x1.out x2.in

b1

Ring Motif

b2 b3

Behavior

Interaction rules :

Deployment

Map

when D(x1) 7! D(x2)

Reconfiguration rules :
...

sync x1.rcv x2.snd

b1

Star Motif

c1 c3

Figure 3.6: An example of a motif definition

The Ring motif illustrated on the left in Figure 3.6, defines the first type of
motif used in the previous example. Three components b1, b2, b3 are deployed into
a three-position circular map. Given some deployment function D, the interaction
rule reads as follows: for components x1, x2 deployed on adjacent nodes D(x1) 7!
D(x2) connect their ports x1.out and x2.in. This rule defines three interactions
between the b’s components namely b1.out b3.in, b3.out b2.in, b2.out b1.in that
correspond to the ring shown in Figure 3.4 on the right.

The ”Star” motif illustrated on the right in Figure 3.6 defines the second type.
Here, three components are deployed into a two-position map. The rule reads as
follows: for components x1, x2 deployed on adjacent nodesD(x1) 7! D(x2) connect
their ports x1.rcv and x2.snd. Given the current motif structure, the rule defines
two interactions, namely b1.rcv c1.snd and b1.rcv c2.snd, also illustrated in Figure
3.4 on the middle and right configurations.

CHAPTER 3. DR-BIP FRAMEWORK 39

Maps and deployments are chosen as a means for structuring components in a
motif due to their simplicity. On one hand, maps and deployments are common
concepts, easy to understand, manipulate and formalize. On the other hand, they
adequately support the definition of arbitrarily complex sets of interactions over
components by relating them to connectivity properties (neighborhood, reacha-
bility, etc). Moreover, maps and deployments are orthogonal to the behavior.
Therefore they can be manipulated/updated independently and provide also a
very convenient way to express various forms of reconfiguration.

Finally, the operational semantics of motif-based systems is defined in a com-
positional manner. Every motif defines its own set of interactions based on its local
structure. This set of interactions and the involved components remain unchanged
as long as the motif does not execute a reconfiguration action. Hence in absence
of reconfigurations, the system keeps a fixed static architecture. The execution of
interaction has no effect on the architecture. In contrast to interactions, reconfigu-
rations rules are used to define explicit changes to the architecture, however, these
changes have no impact on components. Therefore, all running components pre-
serve their state although components may be created/deleted. This independence
between execution steps is illustrated in Figure 3.7. A more concise definition of
operational semantics for motifs and motif-based systems is provided in section
3.2.3.

Reconfiguration

Configuration

Behavior

m0

m
Interaction

⇢

↵

b b0

Figure 3.7: Reconfiguration vs Interaction Steps

In summary, Dr-BIP system model relies on motifs as a basic architecture unit
of description. Dr-BIP systems are described by superposing a number of such
motifs on a set of components. Therefore before elaborating on motif types and
instances, the coming section first introduces component types and instances.

CHAPTER 3. DR-BIP FRAMEWORK 40

3.2.2 Components

Definition 1. A component type Bt is an extended labeled transition system
(L, P, V, T), where

– L is a finite set of control locations,

– P is a finite set of ports,

– V is a finite set of data variables,

– T ✓ L ⇥ P ⇥ G(V) ⇥ F(V) ⇥ L is a finite set of labeled transitions, where
G(V) and F(V) are respectively Boolean guards and update functions defined
over variables V .

Every transition ⌧ = (`, p, g, f, `0) 2 T is equivalently denoted as ⌧ = `
p g f
−−−!

`0 2 T . For every port p 2 P , we associate a subset of variables Vp ✓ V exported
and available for interaction through p.

The set of states Q of a component type Bt = (L, P, V, T) is defined by Q =
L ⇥V where V is the set of all valuations defined on V . A valuation of a set of
variables V is a function v : V ! D, where D is an underlying domain of data
values. The semantics of a component type Bt is defined as the labeled transition
system [[Bt]] = (Q,Σ,−!) where the set of labels Σ = {p(vp) | vp 2 Vp} and
transitions −!✓ Q⇥ Σ⇥Q are defined by the rule:

⌧ = `
p g f
−−−! `0 2 T g(v) v00

p 2 Vp v0 = f(v[v00
p/Vp])

Bt : (`,v)
p(v00

p)
−−−! (`0,v0)

Therefore, (`0,v0) is a successor of (`,v) labeled by p(v00
p) iff (1) ⌧ = `

p g f
−−−! `0

is a transition of T , (2) the guard g holds on the current state valuation v, (3)
v00
p is a valuation of exported variables Vp and (4) v0 = f(v[v00

p/Vp]), which means
that the next-state valuation v0 is obtained by applying f on v previously updated
according to v00

p . Whenever a p-labeled successor exists in a state, we say that p is
enabled in that state.

Example 1. Figure 3.8 illustrates graphically a component type. It has three
ports (in, out, rcv) attached with variables respectively u, v, and w. It has two
control locations, namely (idle, busy) and three transitions labeled by its ports. For
example, the transition labeled by in changes control location from idle to busy
while performing the computation v := u+ w.

We consider a finite set of component types, fixed a priori. The component
types facilitate the ability to describe parametric system coordination for arbitrary
number of instances of component types. For example, systems with m Producers
and n Consumers or Rings formed from n identical components etc.

CHAPTER 3. DR-BIP FRAMEWORK 41

idle

outin

rcv

busy

u v

u

v := u+ w

rcv

in

out

Figure 3.8: An example of a component type

Definition 2. A component instance b is a couple (Bt, k) for some k 2 N. We
denote respectively by ports(b), states(b), labels(b) the set of ports, states and labels
associated with the instance b which are determined by its type.

A system constructed from such component instances result in a BIP sys-
tem [82, 83], which is later extended with motifs (Dr-BIP) to account for self-
configuration. Motifs are detailed next in next section 3.2.3 and section 3.3 presents
the semantics of a BIP component-based system.

3.2.3 Motifs

Motifs are dynamic structures composed of interacting components. The struc-
ture of a motif is expressed as a combination of three concepts namely, behavior,
map and deployment. The behavior consists of a set of components. The map
is an underlying logical structure (backbone) used to organize the interaction of
components. The deployment provides the association between the components
and the map. The components within a motif run in parallel and synchronize
using multiparty interactions. The set of multiparty interactions is defined by in-
teraction rules evaluated on the structure of the motif. Finally, the motif structure
is also evolving. Any of the three constituents can be modified i.e., components
can be added/removed to/from the motif, the map and/or the deployment can
change. The motif evolution is expressed using reconfiguration rules, which evalu-
ate and update the motif structure accordingly. Figure 3.9 graphically represents
the underlying concepts of a motif and the relation between them. The motif’s
behavior has been introduced in the previous section 3.2.2 through the descrip-
tion of component types and instances. This section introduces formally all the
remaining motif-related concepts.

CHAPTER 3. DR-BIP FRAMEWORK 42

Reconfiguration rules

Motif Concept

Interaction rules

Behavior

Deployment

Map

Structure

Figure 3.9: Overview of motifs structure and evolution rules

Maps and Deployments

Maps and deployments are abstract concepts used to organize the motifs. Maps
denote arbitrary dynamic collections of inter-connected nodes (positions). They
are defined as particular instances of generic map types.

Definition 3. A map type H t is characterized by (N(H t), Ω(H t),L(H t)), where

– N(H t) is the underlying domain of nodes,

– Ω(H t) is a set of primitives to update/access the map content, and

– L(H t) is a logic to express constraints on the map content.

We use maps as dynamically changing data structures (objects). The set of
nodes of a map H is denoted by dom(H). The dotted notation H.op(· · ·) is used to
denote the update and/or access to the mapH according to op 2 Ω(H t). Moreover,
H |= denotes that the constraint is satisfied on map H for any 2 L(H t).

Example 2. In this example, we use a directed graph (V,E) as a map. Vertices
V denote the positions and edges E ✓ V ⇥ V express the connectivity between
these positions. Such a map type (i) has the domain V , (ii) can be manipulated
explicitly using primitives such as addVertex, remVertex, addEdge, remEdge and
(iii) has predicate constraints such as edge constraints · 7! ·, path constraints
· 7!⇤ ·), etc, with the usual meaning.

Example 3. Figure 3.10 to the right, illustrates a map type with a specific type
of graph, namely, a cyclic graph, whose (i) vertices compose the domain and (ii)

CHAPTER 3. DR-BIP FRAMEWORK 43

primitives include initialize, extend, remove to respectively initialize, extend by one
vertex and remove one vertex from it whilst keeping the cycling structure.

Maps and behavior (component instances) are related through deployments.
Deployments are partial mappings of a set B of component instances to the nodes
of a map H, formally D : B ! dom(H) [{?}. Deployments are dynamic data
structures defined as particular instances of a generic deployment types Dt. A Dt

maintains a a set of primitives Ω(Dt) to update and/or access the deployment as
well as a logic L(Dt) to express constraints on deployments.

Motif types

Definition 4. A motif type M t is a tuple ((B,H,D), IR, RR) where,

– the triple (B,H,D) are motif meta-variables used to maintain respectively
the set of component instances, the map and the deployment of component
instances to the map,

– IR is a set of motif interaction rules of the form (Z, Ψ, PI , GI , FI) where
Z is a set of rule parameters, Ψ is a rule constraint, and (PI , GI , FI) is the
interaction specification, namely the set of ports of involved components, the
guard and the data transfer, and

– RR is a set of motif reconfiguration rules of the form (Z, Ψ, GR, ZL, AR)
where Z is a set of rule parameters, Ψ is a rule constraint, GR is a re-
configuration guard, ZL are local rule parameters, and AR is a sequence of
reconfiguration actions.

The structure of a motif is defined by a consistent valuation of meta-variables
B, H, D respectively as B, a set of components instances, H a map, and D :
B ! dom(H) [{?} a deployment. The structure can dynamically change as the
meta-variables are being updated when reconfiguration rules are executed. We
elaborate upon the meaning of these rules in subsequent sections.

Example 4. Figure 3.10 presents a definition of the Ring motif type presented in
section 3.2.1. The motif type contains one interaction rule denoted as sync-inout
and three reconfiguration rules denoted respectively do-init, do-insert and do-remove.
The motif structure is presented to the right of the figure. It is composed of a set
of six component instances B = {bi}i=1,6, the map H defined as the cyclic graph
of six nodes {ni}i=1,6, and the deployment D = {bi 7! ni}i=1,6.

CHAPTER 3. DR-BIP FRAMEWORK 44

sync-inout(x1: C, x2 : C) ⌘ when D(x1) 7! D(x2)
sync x1.out x2.in / true ! x2.u := x1.v

do-init() ⌘ when B = ;
do x1 := B.create(C, busy),

x2 := B.create(C, idle), H.init(),
n1 := H.extend(), D(x1) := n1

n2 := H.extend(), D(x2) := n2

do-insert() ⌘ do x := B.create(C, idle),
n := H.extend(), D(x) := n

do-remove(x : C) ⌘ when |B| ≥ 3 ^ x.idle
do n := D(x), B.delete(x), H.remove(n)

b2

b4

b1

b3

b6 b5

n1

n6 n5

n4

n3n2

B

D

H

Figure 3.10: An example of a motif type

Interaction and Reconfiguration Rule constraints

A motif evolves according to its interaction and reconfiguration rules, which
are respectively defined by the tuple (Z, Ψ, PI , GI , FI), and (Z, Ψ, GR, ZL, AR).
Before expanding on the syntax and meaning of each, we formally define the rule
constraints Ψ in this section.

Rule constraints, Ψ, are boolean combinations of map constraints, deployment
constraints and basic constraints built using parameters in Z and meta-variables
B, H, D. The rule parameters denoted by Z include typed symbols denoting (sets
of) component instances or map nodes, which are interpreted as (subsets) elements
of B or dom(H) respectively. More precisely, Ψ is defined as follows:

Ψ ::= 0 | H | D | Ψ1 ^Ψ2 | ¬Ψ

In the above definition, 0 denotes a basic constraint built from equality and/or
cardinality constraints on the parameters, H denotes a constraint on the map
(conforming to the map logic L(H t)) and H denotes a constraint on the deploy-
ment (conforming to the deployment logic L(Dt)).

Given a motif structure in terms of B,H,D, and an interpretation ⇣ of param-
eters, the satisfaction of a constraint B,H,D, ⇣ |= Ψ is defined recursively on the
structure of Ψ as follows:

B,H,D, ⇣ |= 0 iff ⇣ [[B/B, H/H, D/D] |= 0

B,H,D, ⇣ |= H iff H, ⇣ [[B/B, D/D] |= H

B,H,D, ⇣ |= D iff D, ⇣ [[B/B, H/H] |= D

B,H,D, ⇣ |= Ψ1 ^Ψ2 iff B,H,D, ⇣ |= Ψ1 and B,H,D, ⇣ |= Ψ2

B,H,D, ⇣ |= ¬Ψ iff B,H,D, ⇣ 6|= Ψ

CHAPTER 3. DR-BIP FRAMEWORK 45

In plain English, basic constraints are evaluated on the interpretation ⇣ extended
with the current valuation of meta-variables B, H, and D in the usual way. Map
constraints are evaluated on the map H and the interpretation ⇣ extended with the
valuation of meta-variables B, and D as defined by their underlying logic L(H t).
Deployment constrains are evaluated on the deployment D and the interpretation
⇣ extended with the valuation of meta-variables B, and H, as defined by their un-
derlying logic L(Dt). Finally the evaluation of the conjunction of rule constraints
is done in a compositional manner.

Interactions rules

Interaction rules are used to define multiparty interactions on the components
instances within a motif. The syntax of the interaction specification part is as
follows:

ports: PI ::= x.p | X.p | PI PI

guard: GI ::= true | eI | GI ^GI | ¬GI

action: FI ::= ✏ | x.v := eI | X.v := eI | aI , aI
expression: eI ::= x.v | X.v | op(eI , · · · , eI)

The symbols x, and X are rule parameters denoting respectively component
instances or sets of component instances. Moreover, p is a component port, v is a
component (exported) data variable and op is an operation on data values. A rule
is syntactically well-formed iff all parameter names used in expressions (part of the
guard or data transfer) are also used as part of the interacting port specification.
In other words only data from components participating in the interaction can be
used.

The set of multiparty interactions Γ(r) corresponding to an interaction rule
r = (Z,Ψ, PI , GI , FI), for a given B, H and D of a motif is defined as:

Γ(r) =

8

<

:

(Pa, Ga, Fa)
B,H,D, ⇣ |= Ψ

Pa = PI(⇣), Ga = GI(⇣), Fa = FI(⇣)
(Pa, Ga, Fa) well formed

9

=

;

The triple Pa, Ga, Fa is considered well formed iff it conforms to the definition of
multiparty interactions, namely if Pa does not contain replicated or multiple ports
of the same components, as well as if Ga and Fa use and update only variables
exported on ports in Pa.

Example 5. The ring motif type illustrated in Figure 3.10 has one interaction
rule denoted by sync-inout. The rule connects the out port of a component x1 to
the in port of the component x2 deployed next to it on the map. The resulting
interactions are depicted in Figure 3.11.

CHAPTER 3. DR-BIP FRAMEWORK 46

b1
outin b2

outin

b3
out

in

b5
out

inb4out
in

b3
out

in

out in

true −! u := v

u v

Figure 3.11: An example of a set of multiparty interactions in a motif

Reconfiguration rules

Reconfiguration rules are used to define actions that modify the structure of the
motif. These actions essentially include creating/deleting component instances,
updating the map and/or the deployment of component instances to the map.
They are expressed as specific updates on the meta-variables B, H, D. For en-
hanced expressiveness, reconfiguration rules might use additional local parameters
(that is, the local context ZL) with arbitrary types (data, component instances,
map nodes, etc). The local context is updated using standard assignments. The
syntax of reconfiguration guards and actions is as follows:

guard: GR ::= GI

action: AR ::= ✏ | x := B.create(Bt, q) | B.delete(x) |
H.op1(...) | D.op2(...) | z := e | AR, AR

The symbol x denotes a rule parameter interpreted as component instance, z is an
arbitrary local rule parameter and e is an arbitrary expression built on parameters
and available operators. The intuitive meaning of reconfiguration actions is as
follows. The action ✏ denotes an empty action with no effect. The action x :=
B.create(Bt, q) denotes the creation of a new component instance of type Bt with
an initial state q. The newly created instance is x and is added to the set of
components instances B. The parameter q denotes the initial state for the instance.
The action B.delete(x) denotes the deletion of the component x from the motif,
that is, the removal of the component instance x from the set B. The action
H.op1(...) denotes an update of the map according to an operator op1 from Ω(H t)
and specific parameters. Similarly, the action D.op2(...) denotes an update of the
deployment according to an operator op2 from Ω(Dt). Finally, the action z := e
denotes an update of a rule parameter according to the expression e.

Formally, the semantics [[AR]] of a reconfiguration action AR is defined as a
function updating the motif structure (B, H, D), the set of component instances

CHAPTER 3. DR-BIP FRAMEWORK 47

b = hb 7! q | b 2 B, q 2 states(b)i and the parameter interpretation ⇣, in the
following manner:

[[✏]](B,H,D,b, ⇣) = (B,H,D,b, ⇣)
[[x := B.create(Bt, q)]](B,H,D,b, ⇣) = (B [{b}, H,D0,b0, ⇣ 0)

where b = (Bt, k), D0 = D[b 7! ?],b0 = b[b 7! q], ⇣ 0 = ⇣[x 7! b]
[[B.delete(x)]](B,H,D,b, ⇣) = (B \ {b}, H,D|B\{b},b, ⇣) where b = ⇣(x) 2 B
[[H.op1(...)]](B,H,D,b, ⇣) = (B,H 0, D|H0 ,b, ⇣) where H 0 = H.op1(...)
[[D.op2(...)]](B,H,D,b, ⇣) = (B,H,D0,b, ⇣) where D0 = D.op2(...)
[[z := e]](B,H,D,b, ⇣) = (B,H,D,b, ⇣[z 7! e(⇣ [(B/B, H/H, D/D))])
[[AR1, AR2]](B,H,D,b, ⇣) = ([[AR2]] ◦ [[AR1]])(B,H,D,b, ⇣)

Example 6. The ring motif type illustrated in Figure 3.10 contains three reconfig-
uration rules. The rule do-init initializes the motif with a ring of two components
by first creating two components, initializing the map and extending it with two
vertices’s, and finally setting the deployment of the new components. The rule
do-create adds a new component in the ring by creating a component of type C and
adjusting the motif ’s map and deployment accordingly. The rule do-remove(x) re-
moves an idle component x from the ring, only if the ring contains more than 3
components. The motif ’s map and deployment are adjusted accordingly.

Operational semantics

A motif evolves by performing two categories of steps, namely interactions and
reconfigurations. Interactions are defined by interaction rules and are executed by
motif components. Reconfiguration are defined by reconfiguration rules.

Formally, the semantics of a motif type M t = ((B,H,D), IR,RR) is defined
as the labeled transition system [[M t]] = (Q,Σ,−!) where

– the states of set Q correspond to motif structure B, H, D consistently ex-
tended with configurations for all component instances b = hb 7! q | b 2
B, q 2 states(b)i,

– the labels of Σ correspond to valid interactions ↵ constructed on components
and reconfiguration actions ⇢,

– the transitions −!=−!
I

[−!
R

correspond to execution of respectively multi-

party interactions as defined by interaction rules (−!
I
) and reconfiguration

actions, as defined by reconfiguration rules (−!
R
), formally

CHAPTER 3. DR-BIP FRAMEWORK 48

(Mot-I)
Γ = [r2IRΓ(r) Γ(B) : b

↵
−! b0

M t : (B,H,D,b)
↵
−!
I

(B,H,D,b0)

(Mot-R)

(Z,Ψ, GR,ZL, AR) 2 RR B,H,D, ⇣ |= Ψ

GR(⇣)(b) = true [[AR]](B,H,D,b, ⇣) = (B0, H 0, D0,b0, ⇣ 0)

M t : (B,H,D,b)
⇢
−!
R

(B0, H 0, D0,b0)

In plain English, (Mot-I) says that the motif executes a multiparty interaction
↵ and changes the configuration of components instances from b to b0 iff (1) ↵
belongs to the set of valid interactions Γ defined from the interaction rules and
(2) a valid step labeled by ↵ is indeed allowed between b and b0 according to the
component-based semantics discussed in 3.3. The rule (Mot-R) says that the
motif executes a reconfiguration if (1) some reconfiguration rule is enabled at the
current motif structure, and both constraint Ψ and guards GR are satisfied for the
given interpretation of parameter ⇣ and configurations of component instances b
and (2) the current and next motif configuration are related according to the se-
mantics of the action AR. The dichotomy between interaction and reconfiguration
steps ensures separation of concerns for execution within a motif as previously
discussed in section 3.2.1 and illustrated in Figure 3.7.

3.2.4 Motif-based Systems

A Dr-BIP system is defined as a collection of motifs sharing a set of com-
ponents. In such systems, every motif can evolve independently of the others,
depending on its internal structure and associated interaction and reconfiguration
rules. In addition, several motifs can also synchronize altogether and perform a
joint reconfiguration over the system. Coordination between motifs is therefore
possible either implicitly by means of shared components or explicitly by means
of inter-motif reconfiguration rules. The inter-motif reconfiguration rules allow a
joint reconfiguration of several motifs. In addition to the actions defined for recon-
figuration rules, inter-motif reconfiguration rules introduce two additional types of
actions, namely the creation and deletion of motif instances, and the exchange of
component instances between motifs. Figure 3.12 illustrates the logical view of
motif-based system. This section introduces formally inter-motif reconfiguration
and defines the operational semantics of motif-based systems. We consider a finite
set of motif types, fixed a priori and a motif instance m to be a tuple of the form
(M t, k) for some k 2 N.

CHAPTER 3. DR-BIP FRAMEWORK 49

Reconfiguration rules

Interaction rules

Behavior

Deployment

Map

...

Reconfiguration rules

Reconfiguration rules

Interaction rules

Behavior

Deployment

Map

Figure 3.12: An Overview of motif-based systems

Inter-motif reconfiguration rules

Inter-motif reconfiguration rules, are similar to similar to local motif reconfigu-
ration rules, and are defined as tuples of the form (Z?,Ψ?, G?, Z?

L, A
?
R) . However,

the set of rule parameter Z? might include additional symbols denoting motif
instances (y). Moreover, the constraints Ψ⇤ are defined by the grammar:

Ψ
⇤ ::= Ψ

0⇤ | hy : Ψi | Ψ⇤
1 ^Ψ

⇤
2 | ¬Ψ⇤

In the above definition, Ψ
0⇤ denotes basic equality and cardinality constraints

expressed on parameter’s interpretation, hy : Ψi denotes a local constraint Ψ to
be checked in the context of the motif instance y.

These constraints are evaluated on motif configuration extended with context
parameters. Motif configurations are tuples (M,m) where M is a set of motif
instances and m = hm 7! (B,H,D) | m 2 Mi provides the structure of these
instances in terms of behavior, map and deployment. The constraints are evaluated
as follows:

M,m, ⇣ |= Ψ
0⇤ iff ⇣m |= Ψ

0⇤

M,m, ⇣ |= hy : Ψi iff B,H,D, ⇣m |= Ψ where m 7! (B,H,D) 2 m, ⇣(y) = m
M,m, ⇣ |= Ψ

⇤
1 ^Ψ

⇤
2 iff M,m, ⇣ |= Ψ

⇤
1 and M,m, ⇣ |= Ψ

⇤
2

M,m, ⇣ |= ¬Ψ⇤ iff M,m, ⇣ 6|= Ψ
⇤

In the above definition, ⇣m denotes an extended context, including valuations for
all meta-variables B, H, D accessed using parameters y of ⇣. ⇣m is defined as

CHAPTER 3. DR-BIP FRAMEWORK 50

follows:

⇣m = ⇣ [hy.B 7! B, y.H 7! H, y.D 7! D | ⇣(y) = m, m 7! (B,H,D) 2 mi

Inter-motif reconfiguration guards and actions are defined by:

guard: G?
R ::= GI

action: A?
R ::= ✏ | y := M.create(M t, (eB, eH , eD)) | M.delete(y) |

y.B.migrate(x) | hy : ARi | z := e | A?
R, A

?
R

In plain English, guards are the same as the guards of interaction rules. The action
y := M.create(M t, (eB, eH , eD)) denotes the creation of a new motif instance y of
type M t, with initial structure defined by the valuation of eB, eH , eD. The action
M.delete(y) denotes the deletion of the motif instance y, that is, its removal from
the set of motif instances. The action y.B.migrate(x) denotes the insertion of
an existing component instance x within the set of component instances of the
motif y. Finally, the action hy : ARi denotes any local reconfiguration action to
be executed in the context of the motif instance y.

Formally, the semantics [[A⇤
R]] of inter-motif reconfiguration actions is defined as

a function updating motif configurations (M,m), component configurations (B,b)
and context parameters (⇣), as follows:

[[y := M.create(M t, (eB, eH , eD))]](M,m, B,b, ⇣) = (M [{m},m0, B,b, ⇣ 0)
where m = (M t, k), m0 = m [hm 7! (eB, eH , eD)(⇣m)i, ⇣ 0 = ⇣[y 7! m]

[[M.delete(y)]](M,m, B,b, ⇣) = (M \ {m},m|M\{m}, B,b, ⇣)
where m = ⇣(y) 2M

[[y.B.migrate(x)]](M,m, B,b, ⇣) = (M,m0, B,b, ⇣)
where m = ⇣(y) 2M,m 7! (B1, H,D) 2 m, ⇣(x) 7! b 2 B,
m0 = m[m 7! (B1 [{b}, H,D[b 7! ?])]

[[hy : ARi]](M,m, B,b, ⇣) = (M,m0, B0,b0, ⇣ 0)
where m = ⇣(y) 2M,m 7! (B1, H,D) 2 m,

[[AR]](B1, H,D,b, ⇣) = (B0
1, H

0, D0,b0, ⇣ 0)
where m0 = m[m 7! (B0

1, H
0, D0)], B0 = B [B0

1

[[z := e]](M,m, B,b, ⇣) = (M,m, B,b, ⇣[z 7! ⇣m(e)])
[[A⇤

R1, A
⇤
R2]](M,m, B,b, ⇣) = ([[A⇤

R2]] ◦ [[A
⇤
R1]])(M,m, B,b, ⇣)

Example 7. An example of a inter-motif reconfiguration rule that merges two ring
motifs is presented below.

do-merge(y1, y2 : Ring) ⌘
when y1.B \ y2.B = ; and |y1.B| + |y2.B| 10
do B = y1.B [y2.B, D = y1.D [y2.D, H = merge-cycle(y1.H, y2.H),

M.create(Ring, (B, H, D)), M.delete(y1), M.delete(y2)

CHAPTER 3. DR-BIP FRAMEWORK 51

The rule allows the merging of two Ring motif instances y1, y2 into a single one,
whenever their sets of component instances are disjoint and the cardinality of both
motifs together does not exceed 10 component instances. The new motif is created
by taking the union of component instances, the union of deployments and the
merging of the two underlying cyclic maps. Finally, The original motifs y1 and y2
are deleted.

Operational semantics

A motif-based system S is defined as a tuple ((Bt
i)i, (M

t
j)j,RR⇤)) consisting of

a set of component types (Bt
i)i, a set of motif types (M t

j)j and a set of inter-motif
reconfiguration rules RR⇤.

A motif-based system evolves either by executing local interactions and/or
reconfiguration within any of the motifs, or by executing an inter-motif reconfigu-
ration. Formally, the semantics of motif-based systems S is defined as the labeled
transition system [[S]] = (Q,Σ,−!) where:

– the set Q of system configuration contains tuples (M,m, B,b) where M =
{m1,m2, ...} is a set of motif instances, m = hmj 7! (Bj, Hj, Dj) | mj 2
M, Bj ✓ Bi are the motif configurations, B is the set of components in-
stances, and b = hb 7! q | b 2 B, q 2 states(b)i are the component configu-
rations,

– the set of labels Σ correspond to valid interactions ↵ on component instances,
local reconfiguration actions ⇢ and inter-motif reconfiguration actions ⇢⇤,

– the set of transitions −!=−!
I

[−!
R

[−!
R⇤

correspond to execution of re-

spectively multiparty interactions as defined by interaction rules (−!
I
), local

reconfiguration as defined by local reconfiguration rules (−!
R
) and global re-

configuration actions (−!
R?

), formally

(M-I)

mj 7! (Bj, Hj, Dj) 2 m M t
j : (Bj, Hj, Dj,bj)

↵
−!
I

(Bj, Hj, Dj,b
0
j)

b0 = b[Bj 7! b0
j]

S : (M,m, B,b)
↵
−!
I

(M,m, B,b0)

(M-R1)

mj 7! (Bj, Hj, Dj) 2 m M t
j : (Bj, Hj, Dj,bj)

⇢
−!
R

(B0
j, H

0
j, D

0
j,b

0
j)

m0 = m[(B0
j, H

0
j, D

0
j)/mj] B0 = B [B0

j b0 = b[b0
j/B

0
j]

S : (M,m, B,b)
⇢
−!
R

(M,m0, B0,b0)

CHAPTER 3. DR-BIP FRAMEWORK 52

(M-R2)

(Z⇤,Ψ⇤, G⇤,Z⇤
L, A

⇤
R) 2 RR⇤ M,m, ⇣ |= Ψ

⇤ G⇤(⇣)(b) = true
[[A⇤

R]](M,m, B,b, ⇣) = (M 0,m0, B0,b0, ⇣ 0)

S : (M,m, B,b)
⇢⇤

−!
R?

(M 0,m0, B0,b0)

In plain English, the rules (M-I) and (M-R1), respectively define the interaction
and reconfiguration steps allowed within the motifs at the level of the system. The
rule (M-R2) handles inter-motif reconfiguration. These transitions are allowed if
(1) some inter-motif reconfiguration rule is enabled and (2) the current and next
system configurations are related by the semantics of A⇤

R.

3.3 Dr-BIP as an Extension of BIP

Dr-BIP is an extension to the BIP framework [82, 83] which facilitates the
modeling of self-configuring component-bases systems. In BIP, systems are con-
structed from components, which are finite state automata, extended with data
and ports. Communication between components is dictated by multiparty inter-
actions with data transfer. BIP systems are static in the sense that components
and interactions are fixed at design time and do not change during system execu-
tion. In other words, the system’s configuration is known and fixed at design time.
Transitioning from static systems to dynamic systems raises interesting questions.
Is it possible to define a dynamic modeling language as an extension of a static
modeling language? What is the relation between static and dynamic systems? In
principle a dynamic system is more general, where by each intermediate configura-
tion of a dynamic system actually corresponds to a static configuration. Therefore,
any dynamic model can be converted to a static one, however such a conversion
can lead to very complex systems. Dynamic system models result in more precise
and concise models. Next, we briefly recall the key BIP concepts and their opera-
tional semantics. In addition we elaborate on existing BIP extensions for dynamic
reconfiguration.

3.3.1 Component-based Systems

In BIP systems are composed of component instances and connector operators
defining their interactions. An interaction is defined by a set of ports from various
components. An interaction is enabled if there exists a set of enabled transitions
labeled by its ports. The execution of an enabled interaction is followed by the
completion of the involved transitions, which means the execution of their asso-
ciated actions along with the change of the state of involved components to the
target state. A formal definition is presented below.

Definition 5. A system of components Γ(B) is a tuple (B,Γ) where,

CHAPTER 3. DR-BIP FRAMEWORK 53

– B = {b1, ..., bn} is a finite set of component instances, and

– Γ is a finite set of multiparty interactions. A multiparty interaction a is a
triple (Pa, Ga, Fa), where

– Pa ✓
Sn

i=1 ports(bi) is a set of ports, Pa must use at most one port of
every component in B, that is, |Pi \ Pa| 1 for all i 2 {1..n}. We
denote Pa = {bi.pi}i2I , where I ✓ {1..n} contains the indices of the
components involved in a and for all i 2 I, pi 2 ports(bi),

– Ga is a Boolean guard defined on the variables exported by ports in Pa

(i.e.,
S

p2Pa
Vp), and

– Fa is an update function defined on the variables exported by ports in
Pa (i.e.,

S

p2Pa
Vp).

The semantics of a system S = Γ(B) is defined as the labeled transition system
[[S]] = (Q,Σ,−!) where the set of states Q = hb 7! q | b 2 B, q 2 states(b)i, the set
of labels Σ ✓ P(ports(B)⇥P(V)) contains the ports and sets of values exchanged
on interactions and transitions −! are defined by the rule:

a = ({bi.pi}i2I , Ga, Fa) 2 Γ Ga({vpi}i2I) {v00
pi
}i2I = Fa({vpi}i2I)

8i 2 I.

✓

Bt
i : (`i,vi)

pi(v
00
pi
)

−−−−! (`0i,v
0
i)

◆

8i 62 I. (`i,vi) = (`0i,v
0
i)

Γ(B) : hb1 7! (`1,v1), . . . , bn 7! (`n,vn)i
{bi.pi(v

00
pi
)}i2I

−−−−−−−−!
hb1 7! (`01,v

0
1), . . . , bn 7! (`0n,v

0
n)i

In plain English, for each i 2 I, vpi above denotes the valuation vi restricted
to variables of Vpi . The rule expresses that S can execute an interaction a 2 Γ
enabled in state ((`1,v1), . . . , (`n,vn)), iff (1) for each pi 2 Pa, the corresponding
component instance bi can execute a transition labeled by pi, and (2) the guard
Ga of the interaction holds on the current valuation vpi of exported variables on
ports in a. Execution of a triggers first the update function Fa which modifies
exported variables Vpi . The new values obtained, encoded in the valuation v00

pi
, are

then used by the components’ transitions. The states of components that do not
participate in the interaction remain unchanged.

The semantics above provide the implementation basis of the BIP engine, which
coordinates interactions between components. The engine is aware of the static
set of interactions modeling the system. Therefore, it repeatedly executes the
following three-step protocol: 1) each component sends the ports of its enabled
transitions; 2) the engine computes the set of feasible interactions 3) the engine
nondeterministically chooses an interaction and sends the names of ports involved
for each involved components in the interaction. Figure 3.13 illustrates a static

CHAPTER 3. DR-BIP FRAMEWORK 54

p

p

q

q

r

r

p

p q q r

Engine

q rp q rq

Figure 3.13: An example of a static configuration with BIP

system composed of three components, with three communication ports p,q,r, and
defined by the interactions pq and qr.

3.3.2 Existing BIP Extensions for Dynamic Reconfigura-
tion

Dy-BIP. Dy-BIP [84] has been introduced as a initial solution accounting for
dynamic behavior in systems. While in BIP the set of interactions characterizing
a system is static, in Dy-BIP it is dynamically changing. Dynamic systems are
modeled in Dy-BIP as the composition of instances of component types. Dy-BIP
relies on component types to represents a set of component instances having the
same behavior and interface. This is particularly useful for systems that are built
from multiple instances of components of different types.

To realize dynamic interactions, Dy-BIP introduces interaction constraints and
history variables. An interaction constraints dictates how a component can inter-
act with other component instances in the system. More precisely, it dictates
which component ports are required, which component ports are optional (accept),
and finally which component ports are excluded (unique), from an interaction.
To concisely describe interaction constraints, Dy-BIP introduces an interaction
constraint logic extended with first order logic and quantification over component
instances. Formulas in this logic use port names as logical variables to characterize
sets of interactions. A feasible interaction is any set of ports assigned true by a
valuation which satisfies the formula.

Furthermore, Dy-BIP introduces history variables to keep track of executed
interactions. History variables allow interactions to be enabled only if other in-
teractions have been executed in the past. For example, consider a master slave
system, where a master requests to work with two slaves, then the master must

CHAPTER 3. DR-BIP FRAMEWORK 55

interact with only the two accepting slaves. Therefore, history variables are used
to parametrize interaction constraints. In other words, an interaction constraint
may state the requirement of a certain port to be in the history variable for an
interaction to be enabled.

In Dy-BIP, a component instance is an automaton extended with history vari-
ables and transitions on history variable. Each transition is labeled with a port,
interaction constraint and history variable update. In other words, each compo-
nent keeps track of the interactions it participated in within its history variable.
Moreover, each port p of a component is now associated with an interaction con-
straints Cp, which describes the set of possible interaction involving that port.
Therefore, the state of a component instance is dependent on its current control
location and the valuation of its history variable (l,u). At each computational step
component instances define their state constraint. A state constraint defines the
set of possible interactions of a component at (l,u).

A Dy-BIP system consists of finitely many instances for each component type.
The operational semantics of such a system are presented in [84]. The operational
semantics are used to implement an engine which coordinates interaction between
components by repeatedly executing the following three-steps: (1) each component
instance sends its current state interaction constraint, (2) the engine builds the
global system constraint by taking the conjunction of all state constraints and finds
the set of maximally satisfying interactions (3) One of the maximal interaction is
selected and executed by the involved components.

A Dy-BIP system can be seen an extension of BIP and a more general solu-
tion, since any static system modeled in BIP can be represented in Dy-BIP. For
example, A BIP model with a static configuration constraint C, can be repre-
sented as a Dy-BIP model such that the constraint Cp associated with each port
p is the set of interactions of C involving p. While Dy-BIP successfully introduces
dynamic behavior to BIP systems, it still has major drawbacks. Dy-BIP assumes
a finite set of component instances which are fixed a priori. Recall from section
1.2.2, that self-configuration of a system encompasses not only the dynamic change
of connections between component, but also the dynamic change (creation/dele-
tion) of component instances in the system. Dy-BIP tackles only the first type of
self-configuration as it allows to model reconfiguration while varying connectivity
between components. In Dr-BIP we encompass Dy-BIP and extend its expressive-
ness to all degrees of self-configuration.

Chapter

4

Dr-BIP by Examples

Contents
4.1 Self-configuring Token Ring System 56

4.2 Self-configuring Multicore Task System 59

4.3 Autonomous Highway Traffic System 63

4.4 Self-configuring Robot Colonies 66

This chapter presents four examples of self-configuring systems modeled in Dr-
BIP. Each example is first introduced with an explanation of the intended target
system’s behavior and coordination. Next, motif structures along with component
types are proposed to cater and compose a system model. Finally, interaction
and reconfiguration rules are devised to achieve the target systems’s behavior and
coordination. Some examples are further accompanied with performance evalua-
tions resulting from experiments with the Dr-BIP interpreter. The implementation
details of Dr-BIP framework will be discussed in the coming chapter.

4.1 Self-configuring Token Ring System

Target System. A token ring consists of two or more identical components in-
terconnected using uni-directional communication links according to a ring topol-

56

CHAPTER 4. DR-BIP BY EXAMPLES 57

ogy. A number of tokens are circulating within the ring. A component is busy
when it holds a token and idle otherwise. A component can do specific internal
actions depending on its state, busy or idle. It can receive a token from the in-
coming link only if its idle. Moreover, it can send its token on the outgoing link
only when its busy. A token ring is said to be self-configuring if idle components
are allowed to leave the ring at any time leaving at least two components in the
ring. In addition, new idle components are allowed to enter the ring at any time
(as long as the maximal allowed ring size is not reached). A token ring system
consists of one or more, pairwise disjoint, token rings. A token ring system is said
to be self-configuring if every ring is self-configuring, and moreover, two rings are
allowed to merge into a single one provided their overall size is not exceeding the
maximal allowed ring size.

b1

b5

b4

b2 b3

b6

B

D

H

C

out in

in out
idle

Ring

Component
type

Motif
structure

busy

sync-ring-inout(x1, x2 : C) ⌘ when D(x1) 7! D(x2)
sync x1.out x2.in

do-ring-insert() ⌘ do x := B.create(C, idle), n := H.extend(), D(x) := n
do-ring-remove(x : C) ⌘ when |B| ≥ 2 ^ x.idle

do n := D(x), B.delete(x), H.remove(n)
do-ring-merge(y1, y2 : Ring) ⌘ when y1.B \ y2.B = ; ^

|y1.B| + |y2.B| 10
do B = y1.B [y2.B, D = y1.D [y2.D, H = merge-cycle(y1.H, y2.H),

create(Ring, (B, H, D)), delete(y1), delete(y2)

Figure 4.1: Self-configuring token ring system

Component Type. We propose a component type C whose behvaior is depicted
in 4.1. It has two ports labeled in, and out, two control locations labeled idle, and

CHAPTER 4. DR-BIP BY EXAMPLES 58

busy and two transitions labeled by its ports. For example, the transition labeled
by in changes control location from idle to busy.

Motif structure. We propose a Ring motif type whose structure is depicted in
Figure 4.1. The behavior B of the motif is a set of component instances of type
C. The map H is a ring of locations, i.e. an instance of a cyclic directed graph
map type. The map type’s primitives include init, extend, remove, merge-cycle to
respectively initialize, extend by one new location, remove one location and merge
two cyclic directed maps. Moreover, the map type’s predicates include · 7! · to
denote the presence of an outwards edge going from one location to the other. The
deployment D function assigns components to locations in a bijective manner.

Interaction rules. We define a single interaction rule sync-ring-inout(x1, x2 :
C), which connects the out port of a component x1, of type C, to the in port of
the component x2, of type C, deployed next to it on the map. The syntax of the
interaction rule can be found in Figure 4.1

Reconfiguration rules. The motif reconfiguration is defined by three rules whose
syntax can be found in Figure 4.1. The rule do-ring-insert creates a new compo-
nent of type C having an initial state idle. The new component x is inserted in the
ring by extending the motif’s map and updating its deployment. The rule do-ring-
remove(x : C) removes an idle component x of type C from the ring, provided that
the ring contains more than 2 components. Finally, the inter-motif reconfiguration
rule do-ring-merge merges two ring instances y1, y2 into a single ring, whenever
their sets of component instances are disjoint and together do not exceed 10. The
new ring motif is created by taking the union of component instances, the union
of deployments and the merging of the two underlying cyclic maps. The original
rings y1 and y2 are deleted.

Figure 4.2 illustrates the execution of a dynamic ring system initialized with 10
ring motifs, each having 2 component instances. At each step, either an interaction
or a reconfiguration (either within a motif or an inter-motif reconfiguration) is
randomly executed. We remark that the number of ring motif instances decreases
along the execution as idle components are removed and rings are enabled to merge
into a single ring. The number of component instances varies across the execution
between 6 and 20 as the do-ring-insert and do-ring-remove reconfiguration rules
are executed.

Figure 4.2 summarizes the execution of the self-configuring ring system for dif-
ferent initial configurations, where the x-axis indicates the number of rings in the
initial configuration and the y-axis is indicated at the top of each plot. We eval-
uate the performance and track the system evolution while varying the number

CHAPTER 4. DR-BIP BY EXAMPLES 59

0 200 400 600 800 1,000
0

10

20 component instance count
motif instance count

Figure 4.2: Dynamic ring system evolution across 1,000 steps

of initial rings from 10 to 100. Each configuration is simulated for 1000 random
steps. As the system grows in size and the computation of enabled interactions
and reconfigurations gets more complex, the execution time increases reaching a
maximum of 14 seconds (first plot). The average ratio of the number of executed
interactions vs reconfigurations along the run is around 0.45 (second plot). Fi-
nally, the minimum and maximum number of motif and component instances are
depicted in the third and fourth plots.

50 100

5

10

15

Exec Time (sec)

50 100
0

0.2
0.4
0.6
0.8
1

I/R ratio

50 100
0

50

100

Motifs

50 100
0

100

200

Components

Figure 4.3: Self-configuring token ring system’s measurements

4.2 Self-configuring Multicore Task System

Target System. This example considers task management for a multicore plat-
form. Usually, tasks running on a multicore shall be evenly distributed amongst
the cores so as to optimize the performance of the overall system. Task migration
can be therefore seen as the result of a load balancing algorithm that aims at
continuously improving the distribution of tasks amongst the cores. The multi-
core processor uses a scheduling algorithm to distribute the tasks over the cores.
Therefore, a multicore task system consists of a fixed n⇥ n grid of interconnected
homogeneous cores c, each executing a finite number of tasks. A task can either
be running or completed. Running tasks are executed on their associated cores
and eventually get completed. The load of a core is defined as the number of its
associated tasks including both running and completed tasks. A multicore task

CHAPTER 4. DR-BIP BY EXAMPLES 60

system is self-configuring if the overall number of tasks and their allocation to
cores may change over time. More specifically, new running tasks may enter the
system at the core c11 and completed tasks may be withdrawn from the system at
the core cnn. Moreover, any task is allowed to migrate from its core to any of the
neighboring cores (left, right, top or bottom) in the grid, provided the load of the
receiving core is smaller than the load of the departing core minus some constant
(K).

t2t1 t3

c11

t6t5

c21

t4

c12

c8t7

c22

Processor

CoreTask CoreTask

CoreTask CoreTask

Core

w

work

work

exec fin

r

c

exec

fin

Component type Motif structure System structure

t6t5c21 B

D

H

CoreTask

c12

c21

c11 B

D

H

Processor

c22

Task

sync-coretask-exec(x1 : Core, x2 : Task) ⌘ sync x1.work x2.exec
sync-coretask-fin(x : Task) ⌘ sync x.fin

do-migrate(y1, y2 : CoreTask, y3 : Processor, x1, x2 : Core, x3 : Task) ⌘
when h y1 : x1 2 B i ^ h y2 : x2 2 B i ^ h y3 : D(x1) D(x2) i ^

|y1.B| > |y2.B| + K ^ x3 2 y1.B
do y2.migrate(x3), y1.delete(x3)

Figure 4.4: Self-configuring multicore task system

Component type. We define two component types Core and Task whose be-
havior is depicted in Figure 4.4. The Core type has one control location labeled
w, one port labeled work, and one cyclic transition labeled by its port. A core
is continuously working to complete its associated task. The Task type has two
control location r, and c, signifying respectively a running and a completed task.

CHAPTER 4. DR-BIP BY EXAMPLES 61

It also has two ports labeled exec, and fin and two transitions labeled by its port.

Motif structure. We introduce two motif types, Processor and CoreTask, whose
structure is depicted in Figure 4.4. The Processor motif type houses multiple inter-
connected core component instances (B). Their interconnecting topology reflects
the architecture of the platform (e.g., a 2 ⇥ 2 grid in the Figure 4.4). The inter-
connection between cores is enforced with a grid-like map (H). The map type’s
predicate include · · to signify the presence of an edge between two location
in the grid. The deployment (D) assigns the core component instances to loca-
tions in the map in a bijective manner. The CoreTask motif type is used to gather
every core with its assigned tasks. In other words, its behvaior (B) is a set of
component instances including a core and it’s assigned tasks. The map (H) is
composed of two locations connected with an edge. The deployment (D) assigns
all task components to one location on the map, and the core component to the
other location.

Interaction rules. We introduce two interaction rules to the CoreTask motif
type. The first, sync-coretask-exec(x1 : Core, x2 : Task), synchronizes the execu-
tion of a task by its core. The second, sync-coretask-fin(x : Task), captures the
completion of a task. The syntax of both interaction rules is presented in Figure
4.4.

Reconfiguration rules. The migration of a task from one core to another is
modeled using an inter-motif reconfiguration rule, do-migrate(y1, y2 : CoreTask, y3
: Processor, x1, x2 : Core, x3 : Task), which involves three distinct motifs. The
syntax of the rule is presented in Figure 4.4. The rule reads as follows in plain
English, a task x3 migrates from motif y1 (of type CoreTask) to motif y2 (of type
CoreTask) if the core x1 of y1 is connected to the core x2 of y2 (according to the
processor motif Processor) and if the number of tasks in y1 exceeds the number of
tasks in y2 by constant K. To simplify notations in reconfiguration rules, we rely
hence forth on sandwiching constraint/guard/action with angle brackets to specify
the scope. For example hy1 : x1 2 Bi is a constraint stating that x1 is a component
instance in motif y1. As the addition and removal of component instances to a
motif has been illustrated in the previous example, we omit here for simplicity the
reconfiguration rules which add tasks and remove tasks from the the top and rear
core.

Figure 4.5 illustrates the execution of the self-configuring multicore task system
with 3⇥ 3 cores by presenting the task load of each core across 3000 steps. Each
core is initialized with a random load between 1 and 20. Moreover, The constant
K is set to 3, hence tasks are allowed to migrate to neighboring cores (left, right,

CHAPTER 4. DR-BIP BY EXAMPLES 62

0 500 1,000 1,500 2,000 2,500 3,000

5

10

15

20
c11

c33

c12c21
c13c22c31c23c32

Steps

T
as
k
L
oa
d

c11 c12 c13
c21 c22 c23
c31 c32 c33

Figure 4.5: Task load across 3000 steps

top or bottom) that differ in task load by at least 3 tasks. The cores c11, and c33
are used to respectively create new tasks and withdraw completed tasks. Note that
the legend relates the core position to a color. The cores c11, and c33 retain the
maximum and minimum load. As tasks migrate, the task load of cores converges
and balances along the execution resulting in at most a difference of 3 tasks between
neighboring cores. As an example of task migration, take the core c21 whose
task load is initially 6, and eventually reaches 14 as the execution continues. As
expected the cores (c21, and c12) closest to c11 maintain a high task load and as we
move away from c11 the core’s task load gradually decreases. This highlights the
task migration process cascading from the top left core to the bottom right core.

Figure 4.6 summarizes the execution of the self-configuring multicore task sys-
tem for different initial configurations, where the x-axis indicates the number of
motifs in the initial configuration (i.e. n2 + 1 for n = 2, 3, 4, 5, 6) and the y-axis
is indicated at the top of each plot. We vary the number of cores in the proces-
sor from 4 to 36 cores. Each core is initialized with a random load as discussed
above. The system’s initial size varies between 46 and 482 component instances
as depicted in the figure. Each configuration is simulated for 1000 random steps.
As the number of cores increases in size the execution time increases reaching a
maximum of 7.3 seconds. The motif instance count remains constant across each
configuration, however the component instance count varies as tasks are being
created and deleted once completed. Also note that the average ratio of executed
interactions vs reconfigurations is 0.7, since the task loads of cores eventually con-
verges, leading to a similar value across cores and therefore resulting in less task
migrations (i.e. reconfigurations).

CHAPTER 4. DR-BIP BY EXAMPLES 63

10 20 30 40
0

2

4

6

8

Exec. Time (sec)

10 20 30 40
0

0.2
0.4
0.6
0.8
1

I/R Ratio

10 20 30 40

10

20

30

40

Motifs

10 20 30 40
0

200

400

Components

Figure 4.6: Self-configuring multicore task system’s measurements

4.3 Autonomous Highway Traffic System

Target system. This example is inspired from autonomous traffic systems for
automated highways [85]. The system consists of a single-lane one-way road where
an arbitrary number of autonomous homogeneous self-driving cars are moving in
the same direction, at different cruising speeds. Cars are organized into platoons,
i.e. groups of cars cruising at the same speed and closely following a leader car.
Platoons may self-configure by merging or splitting. A merge takes place if two
platoons are close enough, i.e. the distance between the tail car of the first platoon
and the leader car of the second is smaller than some constant K. After the merge,
the speed of the new platoon is set to the speed of the first platoon. A platoon
may split when an arbitrary car requests to leave the platoon e.g., in order to
perform some specific maneuver. After the split, the leading platoon will increase
its speed by 2% whereas the tail platoon will reduce its speed by 2%.

Component type. We propose a component type Car whose behavior is pre-
sented in 4.7. The Car type has three control location, each location signals the
status of the car. For example, in the first state the car is in the moving state.
In the second state, the car can update its speed according to its leader. Finally,
the last state signals that the car has requested for a split. The initial control
location is marked with an arrow head. Each Car maintains its position pos and
speed v. Moreover, the Car has five ports move, getSpeed, SetSpeed, split, ackSplit,
and 7 transitions labeled by its ports. The position pos is updated on the move
transition. The transitions setSpeed and ackSplit are used by leader cars only to
respectively define the platoon speed (i.e. update v) and acknowledge a request
for a platoon split. Similarly, transitions getSpeed and split are used by follower
cars only to respectively synchronize on the leader speed and initiate a platoon
split.

CHAPTER 4. DR-BIP BY EXAMPLES 64

ci+1ci ci+2 ci+n

Road

Platoon

t6t5c21 B

D

H
Platoon

c3c2c1

move getSpeed setSpeed

split ackSplit

Car

setSpeed
setS

peed

getSpeed split

move
pos := pos+ v ·∆t

ackSplit
v := v + 2%v

v := v − 2%v

Platoon

... ...

move

cj cj+n...
speed

split

Component type Motif structure

...

System structure

sync-road-move(X : Car) ⌘ when X=B sync X.move
sync-platoon-speed(x : Car, X : Car) ⌘ when X=B \ x ^ D(x) = H.head

sync x.setSpeed X.getSpeed do X.v = x.v
sync-platoon-split(x1, x2 : Car) ⌘ when D(x1) = H.head ^ x1 6= x2

sync x1.ack split x2.split

do-platoon-merge(y1, y2 : Platoon, x1, x2 : Car) ⌘
when hy1 : D(x1) = H.taili ^ hy2 : D(x2) = H.headi ^

|x1.pos −x2.pos| < K
do B := y1.B [y2.B, H := append(y2.H, y1.H), D := y1.D [y2.D,

create(P, (B, H, D)), delete(y1), delete(y2)
do-platoon-split(y : Platoon, x : Car) ⌘

do hy : H1 := H.sublist(0, D(x)), B1 := D−1(H1),
D1 := D.restrict(H1), D2 := D.restrict(H2),
H2 := H.sublist(D(x), H.length), B2 := D−1(H2) i,
create(P , (B1, H1, D1)), create(P , (B2, H2, D2)), delete(y)

Figure 4.7: Automated Highway Traffic System

CHAPTER 4. DR-BIP BY EXAMPLES 65

Motif Structure. We propose two motif types Road, and Platoon. A Road
motif type contains all cars (B) and has no specific structure. Its map (H) is
composed of a single node and its deployment (D) maps all cars to the same
node. Due to its simplicity the motif structure of a Road is omitted from Figure
4.7. The Platoon motif type contains a bunch of cars forming a platoon (B).
Its map is of a linear chain graph type (H) as shown in the motif structure in
Figure 4.7. Moreover, the map type’s primitives include head, tail, append, sublist
and length. The head, and tail point to the leader and tail node, namely the
beginning and end of the chain graph. the primitive append links two chain maps
by appending them one after the other.The length returns the length of the chain.
Finally, the sublist creates a sublist from a given chain map. The deployment (D)
assigns each car in a platoon to a position on the map in a bijective manner. The
deployment’s primitive include restrict, which restricts a deployment by keeping
only the mappings of components in a given map and removes the rest. Note that
while D(x) returns the node to which x is mapped, the inverse function D−1(H)
returns the components that are deployed in a map H. This will deem useful when
creating a sub platoon when a split is performed.

Interaction rules. The Roadmotif defines a single interaction by the rule sync-
road-move, which synchronizes the move ports of all cars and therefore performing
a joint update of their positions according to their speed. The Platoonmotif defines
interactions by two rules sync-platoon-speed and sync-platoon-split. The first rule
synchronizes the speed of the leading car with the speed of all follower cars by
setting the speed of all cars to the leader’s speed. The second rule allows any
non-leader car to initiate a split maneuver and become a leader in a newly created
platoon. The syntax of these rules can be found in the Figure 4.7.

Reconfiguration rules. We define one reconfiguration rule do-platoon-split and
one inter-motif reconfiguration rule do-platoon-merge to respectively split and
merge platoons. The syntax of each rule can be found in 4.7. The do-platoon-split
defines the structure of two motifs B1, H1, D1 and B2, H2, D2 which respectively,
contain the cars, map and deployment of the sub-platoons. The motif structures
are then used to create two newly platoons, and finally the existing platoon is
deleted. The do-platoon-merge also constructs a motif structure composed of the
union of the two platoon’s behaviors B and deployments D. Moreover the pla-
toon’s maps are appended together (H). Finally, a new motif Platoon is created
with reference to the created motif structure.

Figure 4.8 illustrates the evolution of the system involving 200 cars along 2000
sampled steps. Each line describes a configuration of the system. We show 13
sampled nonconsecutive configurations. A thin black rectangle represents a pla-

CHAPTER 4. DR-BIP BY EXAMPLES 66

toon. Its length is proportional to the number of cars contained. Its position in
the line corresponds to its position on the road. For reference, we show the evo-
lution of a particular car by highlighting it in yellow. Initially, all the cars belong
to the same platoon. As the system evolves the initial platoon splits into several
platoons, which then keep splitting/merging back, etc.

Figure 4.8: Automated highway traffic evolution along 13 sampled steps

Figure 4.9 summarizes the execution of several initial configurations, where the
x-axis indicates the number of cars in the initial configuration and the y-axis is
indicated at the top of each plot. We evaluate the performance and track the
system evolution while varying the number of cars in the initial platoon from 200
to 600 cars. Each configuration is simulated for 3000 random steps. Notice that
the component instance count remains constant across each configuration as cars
only rearrange within different platoons. However the motif instance count varies
as platoons merge/split. Finally, execution time increases reaching a maximum
of 5 minutes and the average ratio of executed interactions vs reconfigurations is
0.77.

200 400 600

100

200

300

Exec. Time (sec)

200 400 600
0

0.2
0.4
0.6
0.8
1

I/R Ratio

200 400 600
0

20

40

60

Motifs

200 400 600
200

400

600

Components

Figure 4.9: Automated highway traffic system’s measurements

4.4 Self-configuring Robot Colonies

Target system. This exercise is inspired by swarm robotics [86]. A number of
identical robots are randomly deployed on a field and have a mission to locate an

CHAPTER 4. DR-BIP BY EXAMPLES 67

object (the prey) and moves it near another object (the nest). The robots know
neither the position of the nest nor the position of the prey. They have limited
communication and sensing capabilities, i.e. they can display a status (by turning
on/off some colored leds) and can observe each other as long as they are physically
close in the field. We consider hereafter the swarm algorithm proposed in [86]. In
a first phase, the robots self-organize into an exploration path starting at the nest.
The first robot detecting the nest initiates the path, i.e. stops moving and displays
a specific (on-path) status. Any robot that detects (robots on) the path, begins
moving along the path towards its tail, explores a bit further its neighborhood
and gets connected as well (i.e. becomes the new tail, stops moving and displays
the on-path status). Two cases may occur, either no new robot gets connected to
the path within some delay, hence the tail robot disconnects and moves randomly
(away from the path), or the tail robot detects the prey and the second phase
starts. The path stays in place while additional robots converge near the prey.
When enough robots have converged, they start pushing the prey along the path
towards the nest. The path gets consumed, and the system will stop when the
prey gets close enough to the nest.

Component type. We propose three component types Nest, Pray, and Robot
whose behavior is presented in Figure 4.10. The Nest and Pray have similar be-
haviors. They maintain their position in the arena, two control location, two ports
(connect, and disconnect), and two transition on their ports. Once a robot is close
enough to a nest/pray, it connects to it through an interaction with the connect
port. The robot disconnects from the nest if no new robots connect to it through
an interaction with the disconnect port. Each Robot component keeps track of its
position, angle of movement, number of robots in its neighborhood, target position,
a boolean to indicate whether it is on the path or not.

Motif structure. We propose three motif types Arena, Neighborhood and Path.
The Arenamotif contains all the robots, the nest and the prey component instances
(B). Its map is composed of a single node (H), with no specific structure. The
deployment maps all component instances to the singleton map location (D). Each
robot component is contained within a Neighborhood motif, which represents its
visibility range. In other words, the Neighborhoodmotif contains a robot along with
the set of robot instances that are physically close to it (B). The Neighborhood’s
map is composed of two connected nodes. The deployment maps the center robot
to the first location, and all neighboring robots are mapped to the second location.
The map’s primitives include center, neighbor. The center, and neighbor primitives
points to, respectively, the node which the center or neighbor robot is deployed to.
Moreover, the deployment is accompanied with a primitive remove, which removes

CHAPTER 4. DR-BIP BY EXAMPLES 69

or to a specific value computed by the angle between two positions pos (position of
robot) and targetPos (position of an observed robot on path). The targetPosition
is updated when the robot observes a robot on the path in its neighborhood. The
angle assignment is handled internally within the robot using internal actions on
its transitions. The Arena defines another global interaction explore used to model
the synchronous passage of time along with the exploration of the robots within
the arena. When this interaction is triggered the robots update their positions
according to the current position, and target angle. These actions are handled on
internal transition of a robot type.The motif Neighborhood defines four interaction
rules initObserve, observer, free, and reset. The initobserve defines a set of binary
interactions which are used by a robot to initiate the observing stage, a stage by
which a robot updates its information from its neighbors. The updateStatus defines
a set of binary interactions which are used by a robot to collect all the available
information from its neighbors. This interaction updates the robot’s targetPos.
Once the robot has observed all its neighborhood, it releases its neighborhoods in
order to continue exploring, it does so through the free interaction rule. Moreover,
if a robot does not wish to initiate an observation of its neighborhood it resets,
using the reset interaction so that robots can continue computing their angle of
direction and exploring the arena. Finally, the Path motif defines a set of binary
next, and prev interactions which are used to communicate along the path.

Reconfiguration rules. Reconfiguration rules are used to redefine the content
of the Neigborhood and Path motifs. The syntax of these rules is presented in
Figure 4.11. As robots are moving in the arena, they continuously enter or leave
the visibility range of other robots. We use two inter-motif reconfiguration rules
to update the neighborhood information, namely do-neighborhood-enter, and do-
neighborhood-leave. The rules above describe the reconfiguration allowing any
robot x2 to enter (resp. leave) the neighborhood y1 of any different robot x1
whenever the distance between x1 and x2 is smaller than Rmin (resp. greater than
Rmax). The evolution of the Path is also described by two reconfiguration rules,
namely do-path-connect, and do-path-disconnect. These rules capture respectively
the connection of a robot to the tail of a path At any time, and its disconnection.

CHAPTER 4. DR-BIP BY EXAMPLES 70

do-neighborhood-enter(y1 : Neighborhood, y2 : Arena, x1, x2: Robot) ⌘
when hy1 : D(x1) = H.center ^ x2 62 Bi

^ hy2 : x2 2 B i ^ dist(x1, x2) Rmin

do y1.migrate(x2), hy1 : D(x2) := H.neighbor i
do-neighborhood-leave(y1 : Neighborhood, x1, x2: Robot) ⌘

when hy1 : D(x1) = H.center ^ x2 2 Bi
^ x1 6= x2 ^ dist(x1, x2) ≥ Rmax

do hy1 : D.remove(x2), B.delete(x2) i
do-path-connect(y1 : Path, y2 : Neighborhood, x1, x2 : Robot) ⌘

when hy1 : D(x1) = H.tail ^ x2 62 B i
^ hy2 : D(x1) = H.center ^ x2 2 Bi
do y1.migrate(x2), hy1 : n = H.extend(), D(x2) := n i

do-path-disconnect(y1 : Path, x1 : Robot) ⌘
when hy1 : D(x1) = H.tail i ^ hy1 : x1.timeout = true i

do hy1 : n := D(x1), B.delete(x1), H.remove(n) i

Figure 4.11: Reconfiguration rules of a self-configuring robot system

Chapter

5

Implementation

Contents
5.1 Overview . 71

5.2 Concrete Syntax . 72

5.2.1 Lexical Structure . 73

5.2.2 Grammar Highlights . 75

5.2.3 An Example Using The Concrete Syntax 79

5.3 Parser . 80

5.4 Interpreter . 81

5.4.1 Parameters . 82

5.5 Execution . 82

5.1 Overview

The Dr-BIP framework employs a model-based approach, where by models
are the primary artifacts of description. A model is typically expressed with a
modeling language, which comprises an abstract syntax, concrete syntax and se-
mantics. Chapter 3 presented the framework concepts along with the abstract

71

CHAPTER 5. IMPLEMENTATION 72

syntax and semantics of the modeling langauge. Chapter 4 illustrated how various
self-configuring systems can be modeled in Dr-BIP whistling utilizing the abstract
syntax. This chapter introduces our prototype implementation of the Dr-BIP
framework which includes a concrete syntax to describe motif-based systems, a
parser and an interpreter for the operational semantics.

model Interpreter
instance

prameter

trace
Parser

Dr-BIP

Phase 1 Phase 2 Phase 3

Figure 5.1: An overview of the prototype implementation

Figure 5.1 illustrates the prototype implementation across three phases. The
first phase, introduces a concrete syntax which defines rules on how to textually
describe a motif-based system. A system description/code that conforms to the
concrete syntax is presented in the Figure as a file with “.drbip” extension. The
second phase introduces a parser that scans the input file (i.e. system descrip-
tion code) and outputs an instance of a system model that corresponds to the
input description. Finally, the third phase introduces an interpreter that uses the
framework’s operational semantics to interpret a given model instance. The inter-
preter requires certain parameters such as the number of steps to execute. A step
could either be an enabled reconfiguration or interaction. Other parameters will
be presented later on. These three phases are described in details respectively in
section 5.2, 5.3, and 5.4. Both the parser and interpreter have been developed in
JAVA and together form over 10,800 lines of code divided across 226 classes and
22 packages.

5.2 Concrete Syntax

This section takes the syntax proposed in chapter 3 from an abstract level to
a more concrete level. A concrete syntax assigns textual notations or syntactical
constructs to elements that are defined in the abstract syntax. This implies that
our concrete syntax will dictate how to syntactically define motif-based systems,
which includes the definition of component types/instances, motif types/instances,
interaction rules, and reconfiguration rules etc. The smallest unit of a concrete
syntax is a lexeme. A lexeme –also known as a token– is a sequence of characters.
A Dr-BIP system description can be viewed as a stream of lexemes. Therefore,

CHAPTER 5. IMPLEMENTATION 73

the creation of a concrete syntax involves two steps, 1) specifying what are the
lexemes of a language, and 2) how these lexemes can be grouped and arranged.

The following section (5.2.1) tackles the first step by introducing the lexical
structure, which lists the lexemes of the concrete syntax. Section 5.2.2 tackles the
second step by introducing a grammar, which is a set of rules that defines how
lexemes can be arranged. Finally, section 5.2.3 presents an example of a Dr-BIP
system defined using the concrete syntax.

5.2.1 Lexical Structure

The lexical units can be broadly categorized into integers, identifiers, special
symbols, keywords, and white space. Each category defines a set of Lexemes,
which are summarized in Table 5.1.

Integers, Identifiers and Special notation. Integers (INT) are strings with dig-
its between [0-9]. Identifiers (ID) are strings consisting of a letter followed by let-
ters, or digits. For example, identifiers include port names, component and motif
type names, component data names, component state names etc. The special sym-
bols (SPECIAL-SYMBOLS) include brackets, mathematical operator, boolean
operators and others given in Table 5.1.

keywords. Keywords (KEY-WORDS) are reserved identifiers. Dr-BIP con-
crete syntax includes keywords such as system, component, port, motif, for,
each, interaction, in, initial, to, from, on, where, true, false, int, boolean
and others defined in Table 5.1. Note that keywords are case sensitive. For exam-
ple, System, and SySTem are not treated as keywords.

white space. White space (WS) consists of any sequence of the characters
composed of blank, \n, \r carriage return, or \t.

comments. We extend the lexical structure with two forms of comments to
aid system designers with adding textual content that will not be parsed and
interpreted i.e. will not be considered part of the Dr-BIP system description. The
first defines a single line comment and is composed of any characters between two
forward slashes (//) and the next newline or carriage return. The second defines a
multi-line comment (i.e. spans multiple lines) and is composed of any characters
between /* ... */.

CHAPTER 5. IMPLEMENTATION 74

DIGIT : [0-9]
INT : DIGIT+
LETTER : [a-z | A-Z]
ID : LETTER (LETTER | DIGIT)*
SPECIAL-SYMBOL : , | . | .. | : | MATH-OP | BOOLEAN-OP |

IMPLIES | BRACKETS
MATH-OP : + | − | ∗ | / | % | ˆ | :=
BOOLEAN-OP : = | > | >= | < | <= | & | |
IMPLIES : − >
BRACKETS : { | } | (|) | [|]
KEYWORDS : system | end | component | motif | type | initial |

from | to | on | port | int | boolean | motif |
for | each | where | RECONFIG-ACTION |
LITERALS | OTHER-OP

RECONFIG-ACTION : create | join | leave | delete
LITERALS : true | false | null
OTHER-OP : not | max | min | avg | random | dist | sin |

angle | cos | indexOf | size
WS : [\t \r \n]+
COMMENTS : // .⇤? (\r | \n)
COMMENT : / ∗ .⇤? ∗ /

Table 5.1: Lexical structure of the Dr-BIP language

CHAPTER 5. IMPLEMENTATION 75

5.2.2 Grammar Highlights

This section presents the grammar that specifies how a Dr-BIP system is de-
fined by a system designer. More precisely, a grammar is a set of production rules
that defines how lexems introduced earlier can be arranged to create a Dr-BIP sys-
tem description. It specified how lexems can be grouped to describe a component
type, motif type, interaction rule, and reconfiguration rule etc. Each production
rule is of the form S ! w, where S is a nonterminal symbol and w is a string of
terminals and/or nonterminals or epsilon. A terminal symbol typically refers to a
lexeme and a nonterminal symbol refers to a production rule.

Table 5.2 highlights the prominent grammar rules. To simplify grammar rules
we utilize regular expression symbols *, +, and ? to categories the appearance
count of a nonterminal symbol. For example, the rule S ! w* implies that w can
occur zero or more times and is a short hand for the rules S ! w and w ! βw |
✏ where β is a terminal symbol. Moreover, the rule S ! w+ implies that w can
occur one or more times and is a short hand for the rules S ! w and w ! βw |
β. Finally, the rule S ! w? implies that w can occur zero or one times and is a
short hand for the rules S ! w and w ! β | ✏. We elaborate next only on the
relevant grammar rules that define a Dr-BIP system, component and motif types,
interaction rules, and reconfiguration rules.

Dr-BIP System. A Dr-BIP system description is composed of a nonempty list
of component type definitions, followed by a nonempty list of motif type defini-
tions. furthermore, it is optionally followed by a list of inter motif reconfiguration
rules. Each system has a name defined by its ID. The corresponding grammar rule
describing the syntax of a system is labeled by system, and is defined in Table 5.2.
Therefore, system description has the form:

system ID

<component_type_list>

<motif_type_list>

[<inter_reconfiguration_rule_list>]
end

where the notation [..] denotes an optional construct.

Component Types. A component type defines a nonempty list of ports and
its behavior. Each component type will have a name specified with its ID. More-
over, each component type optionally maintains a list of data. The corresponding
grammar rule, labeled by componentType, is defined in Table 5.2. Therefore, a
component type definition has the form:

CHAPTER 5. IMPLEMENTATION 76

system ! system ID componentType+ motifType+
interReconfigurationRule* end

componentType ! component type ID data* port+ behavior end
behavior ! initTransition transition*
data ! type ID (, ID)*
type ! (int | boolean)
port ! port ID (, ID)*
initTransition ! initial to ID guardActionPair
guardActionPair ! guard ! action
guard ! [expr]
action ! { expr (COMMA expr)* } | { }
transition ! on ID from ID to ID guardActionPair
motifType ! motif type ID componentInstance+ rules* end
componentInstance ! component ID ID [expr]?
rules ! interactionRule | reconfigurationRule
interactionRule ! nested-iterators? interaction id+ where

portAssign guardActionPair
nestedIterators ! iterator+
iterator ! forEachIterator | forIterator
forEachIterator ! for each ID ID : expr?
forIterator ! for ID in {expr .. expr } : expr? guardActionPair
reconfigurationRule ! nestedIterators guardActionPair
expr ! expr-literal

| expr-variable
| expr-unary
| expr-binary

...

Table 5.2: Highlight of Dr-BIP grammar rules

component type ID

[<data_list>]
<port_list>

<behaviour>

end

A component type may define a list of data which holds its attributes. Each data
has a type and a name defined by its ID. A data type can either be an integer
(int), or a boolean (boolean). The corresponding grammar rule labeled by data,
in Table 5.2, defines a set of data having the same type. Therefore, A component

CHAPTER 5. IMPLEMENTATION 77

data definition has the form:

<type> ID [, ID ...]

A component type also defines its ports which are dedicated to interact with other
components. Each port is defined by its ID. The grammar rule labeled by port
defines. The port names for a component type use the form:

port ID [,ID ...]

A component type defines its behavior in a form of a transition system. A com-
ponent type will have multiple states, one of which is the initial state determined
by its initial transition. Transitions are defined from one state to the other. Each
transition has a guard expression which determines when the corresponding tran-
sition is enabled. In addition, each state transition rule defines a set of action
expressions which are executed after a successful execution of the state transition
rule. The corresponding grammar rules labeled by initTransition and transition
define respectively describe the syntax of an initial transition and a transition
which together dictate the behavior of a component type. The grammar rules are
defined in table 5.2. Therefore, a component behavior definition has the following
form, where each ID is an identifier representing a state name.

initial to ID [<expr>] -> {<expr> [, <expr> ...]}
on ID from ID to ID [<expr>] -> {<exp> [, <expr> ...]}
on ID from ID to ID [<expr>] -> {<exp> [, <expr> ...]}
...

on ID from ID to ID [<expr>] -> {<exp> [, <expr> ...]}

Motif Types. The current prototype sets restrictions on maps and deploy-
ments. Maps are restricted to simple graphs e.g., chain, cyclic, star. To achieve
this, the current implementation utilizes array lists to aid the representation of a
map. Component instances can be deployed on an array list using indexes. This
represents the deployment. Various indexing patterns can be used to simulate
different simple map like structures such as a ring, line, square etc.

A motif type is defined by a nonempty list of component instances and an
optional list of rules. A rule can either be an interaction or a reconfiguration
rule. Moreover, each motif type has a name defined by its ID. The corresponding
grammar rule defining the syntax of a motif type is labeled by motifType and is
defined in Table 5.2. Therefore a motif type definition has the form:

motif type ID

<component_instance_list>

CHAPTER 5. IMPLEMENTATION 78

[<rules_list>]
end

A component instance must refer to a component type which dictates its be-
havior, data and ports. A component instance is therefore defined by two ID’s
the first ID refers to the name of its component type and the second refers to
the name of the component instance itself. A component instance can either be
a typed array list of component instances, where all the elements in the array are
component instances of the same type or a singleton component instance. In the
case of a typed array, an expression determines the size of the array. A component
instance array list definition has the form:

component ID ID[<expr>]

Where as a single component instance definition has the form:

component ID ID

Interaction Rules. An interaction rule dictates possible interactions between
two or more components. It utilizes iterators to enable the definition of multiple
interactions with a single rule. The grammar rule corresponding to the definition of
an iterator is labeled by iterator in Table 5.2. The interaction rule first defines an
optional list of iterators, followed by the set of involved ports of each participating
component followed by a guard expression that must also evaluate to true for
an interaction to be enabled. Hence an interaction is enabled if the ports of its
involved components are enabled and if the guard expression evaluates to true.
Finally, an interaction rule defines an optional list of action expressions. These
action expression must be executed upon the completion of an interaction rule.
The grammar rule corresponding that defines an interaction rule is labaled by
interactionRUle in Table 5.2. An interaction rule definition has the form:

[<iterator_list>]
interaction ID .. ID

where ID := ID.<portID> [, ID := ID.<portID> ...]
[<expr>] -> {[<expr> ...]}

Reconfiguration rules. Similar to interaction rules, reconfiguration rules define
an optional list of iterators that facilitate the definition of multiple reconfigura-
tions within a single rule. The list of iterators is followed by a guard expression
and an optional list of action expressions. Action expressions in a reconfiguration

CHAPTER 5. IMPLEMENTATION 79

rule differ than those in an interaction rule in that they allow the creation/dele-
tion/migration of components/motif. The corresponding grammar rule defining a
reconfiguration is labeled by reconfigurationRule in Table 5.2. A reconfiguration
rule defintion has the form:

[<iterator_list>]
[<expr>] -> {[<expr> ...]}

5.2.3 An Example Using The Concrete Syntax

In this section, we present an example of a system description/code that con-
forms to the concrete syntax. The code presented below reflects the source file
presented in Figure 5.1. Dr-BIP code is organized into systems. Each system
must be contained in a single source file. Multiple systems may not be defined in
the same file. The example below demonstrates the code for the self-configuring
ring system example presented in section 4.1.

In summary, a self-configuring ring system has one component type Element
and a Ring motif type. A ring motif type is initialized with three element. Two
elements compose the ring structure, and the third element is a dummy element
that is there to get the token passing started. The motif type has one interaction
rule for token passing and two reconfiguration rules to respectively add and remove
an element from the ring. Finally, the system has one inter-motif reconfiguration
rule that merges two rings together.

1 system selfConfiguringRing

2 component type Element

3 boolean idle

4 port inPort, outPort

5
6 initial to q0 [true] -> {idle := true}

7 on inPort from q0 to q1 [true] -> {idle := false}

8 on outPort from q1 to q0 [true] -> {idle := true}

9 end

10
11 motif type Ring

12 component Element elements[2]

13 component Element dummy[1]

14
15 // interaction rule get ring started

16 interaction inn1 inn2

17 where inn1 := dummy.inPort, inn2 := elements[0].inPort

CHAPTER 5. IMPLEMENTATION 80

18 [true]->{}

19
20 //interaction rule for token passing

21 for i in {0 .. elements.size-1}:

22 for j in {0 .. elements.size-1}:j = mod(i+1,elements.size)

23 interaction out inn

24 where out := elements[i].outPort, inn := elements[j].inPort

25 [true] -> { }

26
27 // delete an element in ring

28 for i in {0 .. elements.size-1}:

29 [(elements.size > 2) & (elements[i].idle = true)] ->

30 {delete(elements[i])}

31
32 // create a new element in Ring

33 for i in {0 .. 0}:

34 [true] -> {create(Element, temp), join(temp, elements)}

35
36 end

37 //inter motif reconfiguration merge rings

38 for each Ring r1:

39 for each Ring r2: not(r1 = r2) &

40 ((r1.elements.size + r2.elements.size) < 10)

41 [not(r1.elements in r2.elements)] ->

42 { join(r1.elements,r2.elements),

43 leave(r1.elements, r1.elements),

44 delete(r1)}

45 end

5.3 Parser

The previous sections presented the first phase of the prototype implementa-
tion. They introduced the concrete syntax, and an example of a system description
conforming to it. This section presents the second phase of the prototype imple-
mentation, the parsing phase. In a nut shell, the parser takes as input a system
description/code that conforms to the concrete syntax and produces an instance
of a Dr-BIP model.

To build the parser we used Antlr 4 [87], a powerful language recognition
framework. The parsing is completed with three steps. First, the input stream is

CHAPTER 5. IMPLEMENTATION 81

scanned one character at a time and characters ar grouped into lexemes that are
defined by the lexical structure in section 5.2.1. Next, the stream of lexemes is
scanned to build an abstract syntax tree (AST) based on the grammar defined in
5.2.2. Figure 5.2 illustrates a partial view of an abstract syntax tree that results
from parsing the example presented in section 5.2.3. Its worth noting that in order
to generate a parse tree, direct and indirect left recursions found in grammar rules
have been eliminated. This is because left recursion can lead to infinite parsing
specifically in a top-down parser. Finally, the AST tree is traversed to create a
model instance that corresponds to the input code.

A model instance is a JAVA object of type system that has as attributes a list
of component and motif types and a bunch of motif and component instances etc.
Traversing the AST typically calls for the creation of an object instance at each
node, where the object type corresponds to the node. For example when the node
in the AST refers to an expression an Expression object is instantiated. Therefore,
all the framework concepts have been encapsulated into classes in JAVA enabling
the creation of a model instance.

To simplify testing we introduce input parameters that specify how many motif
instances are there initially of each motif type. Parameters allow the creation of
multiple model instances of the same system but with varying initial configurations.
For example, parameters can be used to generate a self-configuring ring model with
10, or 50 rings. Therefore, the parser takes as input both a system description file
and parameters in order to generate a model instance.

5.4 Interpreter

The operational semantics introduced in chapter 3 describe the behavior rather
than the structure of a system model. They provide a meaning to the modeling
language concepts and thus, supports the interpretation of models expressed in the
language. In other words, the interpretation gives the model a meaning by map-
ping its language concepts to the semantic domain. Consequently, the semantics
are implicitly encoded in the implementation of an interpreter. The interpreter
corresponds to the last phase of the prototype implementation.The interpreter is
developed in JAVA. In a nut shell, it allows the computation of enabled interac-
tions and reconfigurations in a model instance, and their execution according to
predefined policies (interactive, or random).

Initially, the interpreter requests the status of the model instance. The model
instance status is composed of the status of all its motif instances and the status
of their constituting component instances. Once the interpreter has a current view
of the system, it computes the enabled interactions and reconfigurations by eval-
uating the corresponding rules in accordance with the semantics defined earlier.

CHAPTER 5. IMPLEMENTATION 82

Next, the interpreter nondeterministically picks a step i.e. either a reconfiguration
or an interaction to be executed. The model instance is updated in accordance
with the chosen step. For example, if the chosen step is an interaction, the involved
motif and participating components are informed and the interaction is executed.
The execution of an interaction implies the execution of the corresponding actions
followed by a state change for participating components determined by their be-
havior. If the chosen step is a reconfiguration, then the involved motifs are notified
and reconfiguration associated actions ar executed.

In summary, given the current system view the interpreter evaluates the inter-
action and reconfiguration rules at every computational step and decides on the
allowed steps. By default the interpreter will choose randomly a step to execute
and will execute 100 such steps, unless specified otherwise by input parameters.
We discuss parameters in details next.

5.4.1 Parameters

To facilitate and increase the flexibility during testing we introduce parameters
that alter the default execution of the interpreter. These parameters are bound
at runtime and can be defined using command options discussed in the following
section. There are three main parameters. The first one alters the number of runs
executed. This is practically useful for interpreting multiple instance models of
the same system. The second parameter alters the number of steps executed in
each run. The default value for this parameter is set to 100. The third parameter
alters the selection choice for the upcoming step. By default, the interpreter
nondeterministically choses the next step, however this could be changed so that
the next step is chosen interactively by the user.

5.5 Execution

The parser and interpret are grouped into a single jar file. Running the jar
file will therefore require a JAVA run time environment to be installed on the
system. The latest Java Runtime can be found on www.oracle.com. The following
command is the most general one that will execute with predefined default values.

java -jar drbip.jar -i <file path> -m <motif type name>

<instance count>

. The command will direct parser to create a model instance from the the input file
specified. The model instance will have a number of motif instances as specified
by the command. Next the interpreter will perform a single run over the model

CHAPTER 5. IMPLEMENTATION 83

instance and it nondeterministically choses the next 100 steps. It is possible to
cater the command with the options presented in the table below.

Options Description
-i, - -input <file path> define the input file path

-m, - -motif <motif name> <instance count>
sets the number of instances to
instantiate for a motif type

-r, - -runs <run count>
specify the number of runs
the system makes, the default
value is set to 1

-s, - -steps <step count>
specify the count of steps
in each run, the default value
is set to 100

-n, - -nondeterministic <boolean value>
system picks random interaction
if true, otherwise user picks the
next interaction to be executed

-d, - -debug prints debugging logs
-h, - -help prints help message

Table 5.3: Description of options available to cater the execution of the prototype

For example, to make 1000 steps while interactively picking the next step,
instead of having the next step nondeterministically chosen use the command
below.

java -jar drbip.jar -i <file path> -m <motif type name>

<instance count> -s 1000 -n false

CHAPTER 5. IMPLEMENTATION 84

Figure 5.2: Partial view of an abstract syntax tree

Part III

Conclusions and Perspectives

85

Chapter

6

Conclusion and Perspective

This chapter concludes the thesis with a summary for each part, and a peak
into the future identifying plausible potential directions.

Conclusion

Part 1. Modern systems are pressured to adapt in response to their constantly
changing environment to remain useful. Traditionally, this adaptation has been
handled manually and at down times of the system. The cost of such an adaptation
has been steadily increasing and is estimated to be more than 90% of the total
cost of the entire system’s life cycle [3]. There is an increased demand to automate
this process and to achieve it whilst the system is running. Self-adaptive systems
were introduced as a realization of continuously adapting.

We surveyed existing interpretations for the term self-adaptive systems in the
literature, we highlighted discrepancy and similarities in the definitions. We con-
cluded with two major school of thoughts. In the first, adaptation is triggered in
response to change, while in the second adaptation is triggered when the system
is not achieving its goals and requirements. This disagreement in the literature
on a single definition results in contrasting system design. In the first school of
thought, systems will monitor things that change which typically include the envi-
ronment, system, or requirement. In the second school of thought, the system will

86

CHAPTER 6. CONCLUSION AND PERSPECTIVE 87

most likely monitor a quantification measure of how well the system achieves its
requirements. We ally our proposal with the first school of thought where systems
adapt at runtime to changes in themselves and their environment.

Next, We presented the requirements of a self-adaptive system in the form
of a conceptual model. A self-adaptive system is typically composed of three
elements an adaptation engine, managed system and environment. The adaptation
engine supervises and administrates the managed system. The adaptation engine
is responsible for monitoring and affecting adaptation in the managed system and
the environment. It does so by relying on a closed MAPE-K loop, where itmonitors
and collects data from both the managed system and the environment, after which
it analysis the collected data. Next, it decides on an adaptation plan, which it
executes later on. The managed system comprises the system’s main functionality
and it accommodates actuators which enable its adaptation by the adaptation
engine. Together these three elements orchestrate self-adaptation in systems.

Self-adaptive systems are known to have four main properties, which are self-
configuration, self-optimization, self-healing, and self-protection. Designing and
modeling self-adaptive systems that realize all these properties remains an inter-
esting challenge to be explored in future research. Self-configuration was the main
property of interest in this work as it is an essential property. Self-configuration
is the capability of reconfiguring automatically and dynamically in response to
changes. This may include installing, integrating, removing and composing/de-
composing system elements. The importance of self-configuration is brought to
light by understanding that it is essential to attain the remaining properties. For
example, a system could isolate an infected element in order to self-protect itself.
Similarly, a system may require the installation of new elements to handle high
system load i.e. self-optimize.

The process of realizing self-adaptive system poses various challenges that we
introduce in relation to the conceptual model. Some of these challenges include
developing a framework that is generic enough to tackle problems in various do-
main, yet expressive enough to model complex problems. Another challenge is
picking the right level of abstraction when modeling the managed system. The
preliminary question to answer is how much to abstract away from the running
system without loosing the system’s integrity? Moreover, It is not only important
model dynamically adapting systems but also to have the ability to assure that
their new and transient behavior conforms to the system’s safety property. In part
2, we show how we addressed some of these challenges.

Consequently, we presented a road map of various approaches used in the liter-
ature to realize self adaptive system. In addition, We highlighted the advantages
and disadvantages of each. For instance, developing a self-adaptive system from
a control engineering perspective implies designing a control-based self-adaptive

CHAPTER 6. CONCLUSION AND PERSPECTIVE 88

system whose behavior can change according to a set of well-formed mathematical
models that can be formally analyzed. Most of the mentioned approaches are used
in combination with others to achieve self-adaptation. For instance, the interplay
of the model-based and component & connector approach sets the backbone of
our framework. On the one hand, a model-based approach to self-adaptation em-
ploys runtime models as a representation of the running system. Such an approach
endorses, automatic reasoning, and system monitoring. On the other hand, a com-
ponent & connector based approach focuses on the architecture of the underlying
system and hence encapsulation, abstraction, reusability, and scalability are pri-
mary advantages of such an approach. In a component & connector approach,
the system description is composed of components and connectors. Components
encapsulate functionality of the systems and connectors dictates the inter- action
between components.

Part 2. We proposed the DR-BIP framework as a solution for modeling self-
configuring adaptive systems. Conceptually, the framework is composed of a cen-
tralized engine and a runtime system model. The engine administrates the system
model. It determines the need for a reconfiguration/interaction and reflects the
chosen adaptation in the system model. The system model is a representation of
the running system at three different levels of abstraction, namely behavior, config-
uration and configuration variant. We introduced architectural motifs to capture
the three levels of abstractions. A motif encapsulates (i) behavior, as a set of com-
ponents, (ii) interaction rules and (iii) reconfiguration rules. A system model is
a superposition of motifs. Describing systems as superposition of motifs endorses
enhanced flexibility and abstraction where, each motif alone is a self-configuring
architecture with its own coordination rules i.e interaction and reconfiguration
rules. Hence the membership of a component in a motif determines the way it
interacts with other components and the reconfiguration rules it is subject to.

We introduced behavioral types (component types) to facilitate the description
of complex and large systems with multiple elements exposing the same behavior.
Behavioral types allow the creation of several elements of a certain behavior (i.e.
type). For instance, introducing new servers to address high load. More impor-
tantly, behavioral types allow the definition of parametric interactions, where a
single interaction rule can define multiple interactions based on behavioral types
for a given motif.

A component in a motif must therefore refer to a component type which defines
its behavior. To structure components in motifs, we proposed maps and deploy-
ment. Maps are graph-like structure consisting of interconnected positions. De-
ployments relate components to positions on the map. Maps are used to naturally
express mobility and dynamically changing environments. They prove to be very

CHAPTER 6. CONCLUSION AND PERSPECTIVE 89

useful for both the parametrization of interactions and the mobility of components.
It is important to note that a map can have either a purely logical interpretation,
or a geographical one or a combination of both. For instance, a purely logical map
is needed to describe the functional organization of the coordination in a ring or
a pipeline. A map with geographical interpretation is needed to describe mobility
rules of cars on a highway. Such a map will represent the structure of highway
with fixed and mobile obstacles. Finally, a map with both logical and geographic
connectivity relations is needed to express coordination rules for cars on a highway,
where coordination rules depend not only on the physical environment but also on
the logical communication features available.

Dr-BIP supports self-configuration at three different levels of granularity, namely
components, connectors and subsystems. It supports the explicit addition and re-
moval of components and subsystems (i.e. motifs). However the addition and
removal of connectors is implicit. The main advantage of relying on an implicit
addition and removal of connectors is the ability to guarantee by construction spe-
cific configuration topologies. When a new component is added to the system, its
interaction is implicitly defined depending on its type and predefined coordination
rules of the motif it belongs to. Therefor, there is no need to explicitly specify
interactions/connectors for new components. Moreover, the interaction of existing
components in the system can implicitly change in two ways. First, through the
migration of components to other motifs that define different interaction rules.
Second, through the dynamic change of the deployment of a component. The sec-
ond way is possible only if interaction rules are dependent on connectivity rules in
the map.

The conceptual model of the Dr-BIP framework is similar to the generic con-
ceptual model proposed in part 1 for self-adaptive systems. The main difference
lies in modeling the system’s environment. The system model implicitly captures
the environment with the aid of reconfiguration rules. For example, when a server
is experiencing a high load as a result of many user requests (environment) it is
expected to adapt by delegating tasks to another server. To handle this in Dr-
BIP a reconfiguration rule is defined that migrates tasks to other servers when
a server’s load reaches a certain value. In conclusion, the system’s environment
must be studied thoroughly in advance, and corresponding reconfiguration rules
must be defined to account for and respond to any environmental change.

To summarize the Dr-BIP framework is designed to address some of the chal-
lenges mentioned in part 1 by ensuring that the framework is built with specific
design pillars in mind. First and foremost, Dr-BIP endorses generality by rely-
ing on common, but effective, architecture abstractions such as component and
connectors to model systems. Such abstractions are generic and consequently
they are applicable to a wide range of domains. Moreover, Dr-BIP relies on a

CHAPTER 6. CONCLUSION AND PERSPECTIVE 90

well-defined operational semantics. Its semantics leverage on existing models for
rigorous component-based design (from its predecessor BIP). In addition, Dr-BIP
can guarantee by construction specific properties through the definition of config-
urations as parametric operators on components. Finally, One of the main assets
of the framework is separation of concerns. Dr-BIP relies on exogenous global
coordination rules which allows to reason separately about the system function
and its adaptive behavior. To the best of our knowledge, there is no exogenous
coordination language such as an ADL addressing all these modeling issues in such
a methodologically rigorous manner.

We demonstrated that the proposed framework is minimal and expressive al-
lowing concise modeling with the aid of four example. Each example was presented
by first defining the intended target system behavior followed by its correspond-
ing modeling in Dr-BIP . We showed that Dr-BIP is designed with autonomy in
mind with the examples on autonomous highway traffic system and Self-organizing
robot colonies that demonstrate the power of its structuring concepts (motifs).
Designing systems as a superposition of motifs with their own coordination rules
tremendously simplifies the description of autonomous behavior.

Last but not least, as a proof of concept we developed a prototype implemen-
tation with restrictions on maps and deployments. Maps are restricted to simple
graphs e.g., chain, cyclic, star. We first defined the concrete syntax of the modeling
language with the aid of lexical structure and grammar rules, after which we built
a top-down parser using both Antlr and JAVA. The parser takes as input a sys-
tem description code, conforming to the concrete syntax, and outputs an instance
of the system model. Technically, the model instance is a JAVA Object repre-
senting a Dr-BIP system. Finally we built an interpreter, also in JAVA, which
takes as input a model instance and outputs a trace summarizing the executed
steps. In a nut shell, the interpreter will compute the enabled interactions and
reconfigurations for a given model instance, decide on an enabled step (either an
interaction or reconfiguration), and assure the execution of the chosen step by the
model instance.

Perspective

We categorize future work by elements of the framework’s conceptual model
proposed in section 3.1.2, namely the engine and system model. We propose
potential extension of the engine and system model, after which we suggest the
addition of a tool-set to accompany the framework.

CHAPTER 6. CONCLUSION AND PERSPECTIVE 91

Engine

Decentralization. Decentralization of the engine is an essential expansion that
is specifically useful for modeling self-configuring complex systems whose main re-
quirement is scalability. Decentralization is mainly concerned with how adaptation
decisions in a self-adaptive system are coordinated regardless of the distribution
the system. Typically, if the system is deployed on a single location, then the
adaptation engine is most likely to be centralized. In a centralized approach, the
engine maintains a global view of the system and has full control over it, which
simplifies the adaptation decisions making. However this is not suitable for large
systems because of the size and real time constraints. Similarly, when the system
is distributed, it is most likely that the adaptation engine is decentralized.

IOT systems are an example of self-configuring systems that intrinsically re-
quire a decentralized engine, as their system elements are most likely to be dis-
tributed and deployed at various locations. It is therefore important to address this
issue to facilitate the adoption of Dr-BIP by industry. Most of existing work in the
literature focuses on a centralized self-configuring engine, that is partly because
decentralization poses interesting new challenges. For instance, the need arises for
effective coordination and communication between engines. Moreover, dependen-
cies among system elements poses another dimension of complexity. These issues
are more prominent in endogenous coordination models where the adaptive behav-
ior and non-adaptive are mixed together. For example, reconfiguration description
can be specified within the component behavior description. In an endogenous co-
ordinated system global coordination mechanisms do not have to be defined, but
this introduces dependencies between components.

The Dr-BIP framework with its exogenous coordination and its structuring
constructs (motifs) mitigates away from the complexity of decentralization. Each
motif maintains its coordination rules, and as such each motif can evolve alone
according to its rules. Therefore, decentralization naturally manifests itself in a
motif-based system. However there are still important issues to address that arise
as a result of shared components even in the simplest form of decentralization,
namely the fully decentralized approach. In a fully decentralized approach each
subsystem (i.e. a motif) has its own engine. Such decentralized coordination is or-
ganized as follows: each motif’s engine collects the status of its motif’s constituent
components, communicates with other motifs to collect up to date knowledge
about shared components, computes the enabled interaction and reconfiguration
according to its rules, coordinates with other engines when needed to synchronize
their actions.

Such a decentralization requires effective communication across engines to share
knowledge, which may introduce latency. Latency can lead to inconsistent views
of the system. To combat this and reduce latency we consider the situations

CHAPTER 6. CONCLUSION AND PERSPECTIVE 92

that will inevitably require a communication across motifs which are two. The
first scenario involves a regional interaction i.e an interaction which involves some
shared component. The second scenario is a inter-motif reconfiguration involving
two motifs. Therefore, local interaction (involving only exclusive components in a
motif) or reconfiguration may be executed without requiring communication with
other motif engines. It might also be appropriate to consider a hybrid approach,
which combines both centralized and decentralized to combat latency. The authors
in [17] investigate the different patterns in decentralizing the adaptation engine.
This work could be a kick starting point.

System Model

History variables. One of the main benefits of the framework is separation
of concerns which keeps separate the component behavior from its coordination.
Moreover it keeps its interaction coordination separate from its reconfiguration
coordination. The dichotomy between interaction and reconfiguration steps en-
sures separation of concerns for execution within a motif as previously discussed
in section 3.2.1 and illustrated in Figure 3.7. However this separation of concerns
comes with some consequences. Consider a reconfiguration action that requires
some form of multi party interaction among components. For instance, in the pla-
toon example in section 4.3, the split action is defined by the target system as: a
request from an arbitrary car to leave the platoon and when the split is performed
the leading platoon will increase its speed by 2% whereas the tail platoon will
reduce its speed by 2%. Due to the separation of concerns, this is modeled in
Dr-BIP with two separate rules. The first rule is an interaction rule labeled by
sync-platoon-split which sets the new speed for both platoons. The second rule is
a reconfiguration rule labeled by do-platoon-split which reconfigures the motif and
splits the platoon.

Logically, the split reconfiguration step must be enabled only if the split in-
teraction has been executed. This calls for some form of relation or dependency
between interaction and reconfiguration that is not captured by the current frame-
work. In fact, the split reconfiguration is always enabled in the current framework.
To solve this issue we propose the use of history variables that keep track of the
executed interactions. In addition, we can redefine reconfiguration rule constraints
to include history variable constraints that comply a specific interaction to be in
the history variable for a reconfiguration to be enabled.

Priorities. In the previous section we proposed the use of history variables
to define dependability between reconfigurations and interactions. History vari-
ables have solved the issue of enabling the split reconfiguration only when needed,

CHAPTER 6. CONCLUSION AND PERSPECTIVE 93

however there is still another issue to consider here. Assume that a platoon split
interaction has been executed, then (with the aid of history variables) this will
enable the corresponding split reconfiguration. However, keep in mind that other
steps might be enabled too and since the engine picks the next step nondeter-
ministically, if the engine executes the sync-platoon-split interaction, there is no
guarantee that the corresponding split configuration will be executed immediately
after.

Therefore it is essential to have some form of priority policy that will filter
out other enabled steps in such a situation. A priority policy defined as a partial
order between the steps, will put some enabled steps in favor over other enabled
steps. Therefore, at any given state, the engine executes only the steps with
maximal priority amongst those currently enabled according to the interaction and
reconfiguration rules. For instance, we can define the priority policy for the platoon
example in such a way that split reconfiguration is given higher priority over all
other steps (interaction and reconfigurations). Hence, given multiple platoons that
performed a split interaction, the split reconfiguration step for all platoons will be
of highest priority, and the engine will pick nondeterministically between them.

Framework

Toolset Extension. We have shown the validity of the framework with four
examples, however this is not sufficient. Verification is a primary requirement
of self-configuring systems as it is important to verify that the execution of re-
configuration satisfies system’s nonfunctional properties such as liveness, deadlock
freedom, and safety. For instance, it is essential to verify that the integration of
new components does not introduce deadlock. Therefore future work aims at ex-
tending the framework with a verification toolset that will unlock the potential of
Dr-BIP beyond the academic setting.

In [88], the authors survey 75 studies for the use of formal methods in self-
adaptive systems. They inspect the various modeling languages used for formal-
ization including transition system, markov models, petri nets, and process algebra
etc. Moreover, they survey the specification languages used by these studies to
formally specify system properties including graph grammar, logic (first order logic
and linear temporal logic etc.), and others. Finally they inquiry the different sys-
tem properties that are verified. They conclude with the increase attention of for-
mal methods in the domain of self-adaptive system, however despite this increase
the absolute number of studies employing formal verification remains low. That
is partly because of the challenges that arise as a result of extending traditional
verification techniques such as model checking to self-adaptive systems.

Model checking is one of the prominent strategies that automatically checks
whether a given property is met by a system model through exploring its state

CHAPTER 6. CONCLUSION AND PERSPECTIVE 94

space. Self-adaptive system’s state space can grow quit large in size due to the in-
herent nature of these systems i.e. having several possible alternatives. Therefore,
Model checking can be infeasible for self-adaptive systems due to the state-space
explosion. This is why [88] proposes a way to dissect the state space of self-adaptive
systems through the introduction of zones. The zone based approach presents an
interesting starting point to better understand modeling checking of self-adaptive
systems. They propose four zones normal behavior, adaptation behavior, unde-
sired behavior, and invalid behavior. The normal behavior zone includes the set
of states where the system is performing its domain functionality. The adaptive
behavior zone includes the set of states where the system is recovering from an
undesired behavior (state). The undesired behavior zone is the set of states where
the system requires adaptation due to some concern such as failure etc. The in-
valid behavior zone corresponds to states that the system must not reach such as
a deadlock state. In other words it represents the behavior that the system should
not exhibit. They claim that various system properties such as liveness and dead-
lock map to transitions between these four zones. The aforementioned work and
[89] are good starting point for a holistic approach for verification of Dr-BIP .

For the time being, it is possible reason about verification of a Dr-BIP system
in a compositional manner. Naturally, the non-configuring parts of the system
(i.e. motif-based system without reconfiguration rules) can be verified using tra-
ditional verification techniques levering from static BIP. To verify correctness of
the parametric interacting system with the assumption that dynamic connectors
correctly enforce the sought coordination, it remains to show that restricting the
behavior of deadlock-free components does not introduce deadlocks. To achieve
this, the DFinder [90] can be extended for parametric systems which requires the
solution of parametric Boolean equations. D-Finder uses compositional approach
to verify component-based systems described in static BIP. DFinder implements
deadlock detection by computing incrementally stronger invariants and applying
proof strategies to eliminate potential deadlocks.

Given that we have proven the correctness of the parametric interacting motif-
based system, verifying the correctness of reconfiguration operations remains a
process of proving that the motif’s architecture style is preserved by reconfigu-
ration actions which modify the number of components, their connectivity, their
deployment, and maps. Therefore, the architecture style can be seen as in invari-
ant of the coordination structure. This can be proven by structural induction,
where the architecture style of a motif can be characterized by a configuration
logic formula φ as in [91]. Therefore, we have to prove that if a model m of the
system satisfies φ, then after the application of a reconfiguration operation the
resulting model m1 satisfies φ.

Appendix

A

Appendices

A.1 Self-adaptive System Definitions

Self-adaptive systems have been defined differently in the literature. This list
highlights the similarities and differences in defintions. A compact comparison is
presented in section 1.2.1. Self-adaptive systems are:

“ systems that are able to modify their behavior and/or structure in
response to their perception of the environment and the system itself,
and their requirement ”

De Lemos et al. [5]

“ [systems that are able to] adjust various artifacts or attributes in
response to changes in the self and in the context of a software system.
By self, we mean the whole body of the software, mostly implemented
in several layers, while the context encompasses everything in the oper-
ating environment that affects the system’s properties and its behavior
”

Salehie and Tahvildari [6]

95

APPENDIX A. APPENDICES 96

“ systems that are able to adjust their behaviour in response to their
perception of the environment and the system itself ”

Cheng et al. [8]

“ [systems that] modifies its own behavior in response to changes in
its operating environment. By operating environment, we mean any-
thing observable by the software system, such as end-user input, exter-
nal hardware devices and sensors, or program instrumentation ”

Oreizy et al. [9]

“ systems [..] which can modify their behavior at run-time due to
changes in the system, its requirements, or the environment in which
it is deployed ”

Andersson et al. [10]

“ [systems] which components automatically configure their inter-
action in a way that is compatible with an overall architectural specifi-
cation and achieves the goals of the system ”

Kramer and Magee [11]

“ systems endowed with the ability to respond to a variety of changes
that may occur in their environment, goals, or the system itself by
adapting their structure and behaviour at run-time in an autonomous
way ”

Cámara et al. [12]

“ systems that respond to change by evolving in a self-managed
manner while running and providing service ”

Calinescu et al. [13]

“ [systems that] dynamically adapt its behavior at run-time in re-
sponse to changing conditions in the supporting computing, commu-
nication infrastructure, and in the surrounding physical environment
”

Zhang and Cheng [14]

“ [systems that] can identify, decide and perform required activities
appropriately in situation for software context responding to sophisti-
cated hardware and difficult prediction for various change properties
”

Cha, Kim, and Jeong [15]

Bibliography

[1] Rob Kitchin and Martin Dodge. Code/space: Software and everyday life. Mit
Press, 2011.

[2] Autonomic Computing et al. “An architectural blueprint for autonomic com-
puting”. In: IBM White Paper 31 (2006), pp. 1–6.

[3] Len Erlikh. “Leveraging legacy system dollars for e-business”. In: IT profes-
sional 2.3 (2000), pp. 17–23.

[4] Jeffrey O Kephart and David M Chess. “The vision of autonomic comput-
ing”. In: Computer 36.1 (2003), pp. 41–50.

[5] Rogério De Lemos et al. “Software engineering for self-adaptive systems: A
second research roadmap”. In: Software Engineering for Self-Adaptive Sys-
tems II. Springer, 2013, pp. 1–32.

[6] Mazeiar Salehie and Ladan Tahvildari. “Self-adaptive software: Landscape
and research challenges”. In: ACM transactions on autonomous and adaptive
systems (TAAS) 4.2 (2009), p. 14.

[7] Javier Cámara et al. “Adaptation impact and environment models for architecture-
based self-adaptive systems”. In: Science of Computer Programming 127
(2016), pp. 50–75.

97

BIBLIOGRAPHY 98

[8] Betty H. C. Cheng et al. “Software Engineering for Self-Adaptive Systems:
A Research Roadmap”. In: Software Engineering for Self-Adaptive Systems.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 1–26. isbn: 978-3-
642-02161-9. doi: 10.1007/978-3-642-02161-9_1. url: https://doi.
org/10.1007/978-3-642-02161-9_1.

[9] Peyman Oreizy et al. “An architecture-based approach to self-adaptive soft-
ware”. In: IEEE Intelligent Systems and Their Applications 14.3 (1999),
pp. 54–62.

[10] Jesper Andersson et al. “Modeling dimensions of self-adaptive software sys-
tems”. In: Software engineering for self-adaptive systems. Springer, 2009,
pp. 27–47.

[11] Jeff Kramer and Jeff Magee. “Self-managed systems: an architectural chal-
lenge”. In: 2007 Future of Software Engineering. IEEE Computer Society.
2007, pp. 259–268.

[12] Javier Cámara et al. “Testing the robustness of controllers for self-adaptive
systems”. In: Journal of the Brazilian Computer Society 20.1 (2014), p. 1.

[13] Radu Calinescu et al. “Self-adaptive software needs quantitative verification
at runtime”. In: Communications of the ACM 55.9 (2012), pp. 69–77.

[14] Ji Zhang and Betty HC Cheng. “Model-based development of dynamically
adaptive software”. In: Proceedings of the 28th international conference on
Software engineering. ACM. 2006, pp. 371–380.

[15] Jung-Eun Cha, Jeong-Si Kim, and Young-Joon Jeong. “Architecture Based
Approaches Supporting Flexible Design of Self-Adaptive Software”. In: Com-
putational Science and Computational Intelligence (CSCI), 2016 Interna-
tional Conference on. IEEE. 2016, pp. 1424–1425.

[16] Danny Weyns. “Software engineering of self-adaptive systems: an organised
tour and future challenges”. In: Chapter in Handbook of Software Engineering
(2017).

[17] Danny Weyns et al. “On patterns for decentralized control in self-adaptive
systems”. In: Software Engineering for Self-Adaptive Systems II. Springer,
2013, pp. 76–107.

[18] Mazeiar Salehie and Ladan Tahvildari. “Towards a goal-driven approach to
action selection in self-adaptive software”. In: Software: Practice and Expe-
rience 42.2 (2012), pp. 211–233.

[19] David Garlan et al. “Rainbow: Architecture-based self-adaptation with reusable
infrastructure”. In: Computer 37.10 (2004), pp. 46–54.

http://dx.doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1007/978-3-642-02161-9_1

BIBLIOGRAPHY 99

[20] Christian Krupitzer et al. “A survey on engineering approaches for self-
adaptive systems”. In: Pervasive and Mobile Computing 17 (2015), pp. 184–
206.

[21] Danny Weyns, Sam Malek, and Jesper Andersson. “FORMS: Unifying ref-
erence model for formal specification of distributed self-adaptive systems”.
In: ACM Transactions on Autonomous and Adaptive Systems (TAAS) 7.1
(2012), p. 8.

[22] Jacqueline Floch et al. “Using architecture models for runtime adaptability”.
In: IEEE software 23.2 (2006), pp. 62–70.

[23] Danny Weyns, M Usman Iftikhar, and Joakim Söderlund. “Do external feed-
back loops improve the design of self-adaptive systems?: a controlled experi-
ment”. In: Proceedings of the 8th International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems. IEEE Press. 2013, pp. 3–
12.

[24] Shang-Wen Cheng and David Garlan. “Stitch: A language for architecture-
based self-adaptation”. In: Journal of Systems and Software 85.12 (2012),
pp. 2860–2875.

[25] Carlos Cetina et al. “Autonomic computing through reuse of variability mod-
els at runtime: The case of smart homes”. In: Computer 42.10 (2009).

[26] Mathieu Acher et al. “Modeling context and dynamic adaptations with fea-
ture models”. In: 4th International Workshop Models@ run. time at Models
2009 (MRT’09). 2009, p. 10.

[27] Ahmed Elkhodary, Naeem Esfahani, and Sam Malek. “FUSION: a frame-
work for engineering self-tuning self-adaptive software systems”. In: Proceed-
ings of the eighteenth ACM SIGSOFT international symposium on Founda-
tions of software engineering. ACM. 2010, pp. 7–16.

[28] Heather J Goldsby et al. “Goal-based modeling of dynamically adaptive
system requirements”. In: Engineering of Computer Based Systems, 2008.
ECBS 2008. 15th Annual IEEE International Conference and Workshop on
the. IEEE. 2008, pp. 36–45.

[29] Mira Vrbaski et al. “Goal models as run-time entities in context-aware sys-
tems”. In: Proceedings of the 7th Workshop on Models@ run. time. ACM.
2012, pp. 3–8.

[30] Brice Morin et al. “Models@ run. time to support dynamic adaptation”. In:
Computer 42.10 (2009).

BIBLIOGRAPHY 100

[31] Carlo Ghezzi, Andrea Mocci, and Mario Sangiorgio. “Runtime monitoring
of functional component changes with behavior models”. In: International
Conference on Model Driven Engineering Languages and Systems. Springer.
2011, pp. 152–166.

[32] Cyril Ballagny, Nabil Hameurlain, and Franck Barbier. “Mocas: A state-
based component model for self-adaptation”. In: Self-Adaptive and Self-
Organizing Systems, 2009. SASO’09. Third IEEE International Conference
on. IEEE. 2009, pp. 206–215.

[33] Thomas Vogel and Holger Giese. “Model-driven engineering of self-adaptive
software with eurema”. In: ACM Transactions on Autonomous and Adaptive
Systems (TAAS) 8.4 (2014), p. 18.

[34] Brice Morin et al. “An aspect-oriented and model-driven approach for man-
aging dynamic variability”. In: international conference on Model Driven
Engineering Languages and Systems. Springer. 2008, pp. 782–796.

[35] Daniel Menasce, Hassan Gomaa, Joao Sousa, et al. “Sassy: A framework for
self-architecting service-oriented systems”. In: IEEE software 28.6 (2011),
pp. 78–85.

[36] Nelly Bencomo and Gordon Blair. “Using architecture models to support
the generation and operation of component-based adaptive systems”. In:
Software engineering for self-adaptive systems. Springer, 2009, pp. 183–200.

[37] David Garlan, Robert T Monroe, and David Wile. “Acme: Architectural
description of component-based systems”. In: Foundations of component-
based systems 68 (2000), pp. 47–68.

[38] Michel Wermelinger, Antónia Lopes, and José Luiz Fiadeiro. “A graph based
architectural (re) configuration language”. In: ACM SIGSOFT Software En-
gineering Notes 26.5 (2001), pp. 21–32.

[39] Jim Dowling and Vinny Cahill. “The k-component architecture meta-model
for self-adaptive software”. In: International Conference on Metalevel Archi-
tectures and Reflection. Springer. 2001, pp. 81–88.

[40] Pete Sawyer et al. “Requirements-aware systems: A research agenda for re
for self-adaptive systems”. In: Requirements Engineering Conference (RE),
2010 18th IEEE International. IEEE. 2010, pp. 95–103.

[41] Éric Tanter et al. “Partial behavioral reflection: Spatial and temporal selec-
tion of reification”. In: ACM SIGPLAN Notices 38.11 (2003), pp. 27–46.

[42] Thais Batista, Ackbar Joolia, and Geoff Coulson. “Managing dynamic recon-
figuration in component-based systems”. In: European workshop on software
architecture. Springer. 2005, pp. 1–17.

BIBLIOGRAPHY 101

[43] Gordon S Blair et al. “Reflection, self-awareness and self-healing in OpenORB”.
In: Proceedings of the first workshop on Self-healing systems. ACM. 2002,
pp. 9–14.

[44] Robert T Monroe. Capturing Software Architecture Design Expertise with
Armani Version 1.0. Tech. rep. CARNEGIE-MELLON UNIV PITTSBURGH
PA SCHOOL OF COMPUTER SCIENCE, 1998.

[45] Mehdi Amoui et al. “Adaptive action selection in autonomic software us-
ing reinforcement learning”. In: Autonomic and Autonomous Systems, 2008.
ICAS 2008. Fourth International Conference on. IEEE. 2008, pp. 175–181.

[46] Gerald Tesauro. “Reinforcement learning in autonomic computing: A mani-
festo and case studies”. In: IEEE Internet Computing 11.1 (2007).

[47] Sherif Abdelwahed, Nagarajan Kandasamy, and Sandeep Neema. “A control-
based framework for self-managing distributed computing systems”. In: Pro-
ceedings of the 1st ACM SIGSOFT workshop on Self-managed systems. ACM.
2004, pp. 3–7.

[48] Werner Brockmann, Nils Rosemann, and Erik Maehle. “A framework for con-
trolled self-optimisation in modular system architectures”. In: Organic Com-
puting—A Paradigm Shift for Complex Systems. Springer, 2011, pp. 281–294.

[49] Holger Prothmann et al. “Organic control of traffic lights”. In: International
Conference on Autonomic and Trusted Computing. Springer. 2008, pp. 219–
233.

[50] Dominik Fisch, Edgar Kalkowski, and Bernhard Sick. “Collaborative learn-
ing by knowledge exchange”. In: Organic Computing—A Paradigm Shift for
Complex Systems. Springer, 2011, pp. 267–280.

[51] Jim Dowling and Vinny Cahill. “Self-managed decentralised systems using
K-components and collaborative reinforcement learning”. In: Proceedings of
the 1st ACM SIGSOFT workshop on Self-managed systems. ACM. 2004,
pp. 39–43.

[52] William E Walsh et al. “Utility functions in autonomic systems”. In: Au-
tonomic Computing, 2004. Proceedings. International Conference on. IEEE.
2004, pp. 70–77.

[53] Craig Boutilier et al. “Towards cooperative negotiation for decentralized re-
source allocation in autonomic computing systems”. In: IJCAI. 2003, pp. 1458–
1459.

BIBLIOGRAPHY 102

[54] Gerald Tesauro et al. “A multi-agent systems approach to autonomic com-
puting”. In: Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems-Volume 1. IEEE Computer Soci-
ety. 2004, pp. 464–471.

[55] Vahe Poladian et al. “Dynamic configuration of resource-aware services”.
In: Software Engineering, 2004. ICSE 2004. Proceedings. 26th International
Conference on. IEEE. 2004, pp. 604–613.

[56] Antonio Filieri, Henry Hoffmann, and Martina Maggio. “Automated multi-
objective control for self-adaptive software design”. In: Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering. ACM.
2015, pp. 13–24.

[57] Stepan Shevtsov and Danny Weyns. “Keep it simplex: Satisfying multiple
goals with guarantees in control-based self-adaptive systems”. In: Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. ACM. 2016, pp. 229–241.

[58] Antonio Filieri, Henry Hoffmann, and Martina Maggio. “Automated de-
sign of self-adaptive software with control-theoretical formal guarantees”. In:
Proceedings of the 36th International Conference on Software Engineering.
ACM. 2014, pp. 299–310.

[59] Viraj Bhat et al. “Enabling self-managing applications using model-based
online control strategies”. In: Autonomic Computing, 2006. ICAC’06. IEEE
International Conference on. IEEE. 2006, pp. 15–24.

[60] Gregoris Tziallas and Babis Theodoulidis. “A controller synthesis algorithm
for building self-adaptive software”. In: Information and Software Technology
46.11 (2004), pp. 719–727.

[61] Gabor Karsai et al. “An approach to self-adaptive software based on su-
pervisory control”. In: International Workshop on Self-Adaptive Software.
Springer. 2001, pp. 24–38.

[62] Yuriy Brun et al. “Engineering self-adaptive systems through feedback loops”.
In: Software engineering for self-adaptive systems. Springer, 2009, pp. 48–70.

[63] Joseph L Hellerstein et al. Feedback control of computing systems. John Wiley
& Sons, 2004.

[64] Mary Shaw. “Beyond objects: A software design paradigm based on pro-
cess control”. In: ACM SIGSOFT Software Engineering Notes 20.1 (1995),
pp. 27–38.

BIBLIOGRAPHY 103

[65] Tarek Abdelzaher et al. “Introduction to control theory and its application to
computing systems”. In: Performance Modeling and Engineering. Springer,
2008, pp. 185–215.

[66] Antonio Filieri et al. “Control strategies for self-adaptive software systems”.
In: ACM Transactions on Autonomous and Adaptive Systems (TAAS) 11.4
(2017), p. 24.

[67] Tharindu Patikirikorala et al. “A systematic survey on the design of self-
adaptive software systems using control engineering approaches”. In: Soft-
ware Engineering for Adaptive and Self-Managing Systems (SEAMS), 2012
ICSE Workshop on. IEEE. 2012, pp. 33–42.

[68] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach.
Malaysia Pearson Education Limited, 2016.

[69] Richard S Sutton, Andrew G Barto, Francis Bach, et al. Reinforcement learn-
ing: An introduction. MIT press, 1998.

[70] Lawrence Davis. “Handbook of genetic algorithms”. In: (1991).

[71] Jeremy S Bradbury et al. “A survey of self-management in dynamic soft-
ware architecture specifications”. In: Proceedings of the 1st ACM SIGSOFT
workshop on Self-managed systems. ACM. 2004, pp. 28–33.

[72] Frank D Maćıas-Escrivá et al. “Self-adaptive systems: A survey of current
approaches, research challenges and applications”. In: Expert Systems with
Applications 40.18 (2013), pp. 7267–7279.

[73] Naoyasu Ubayashi, Jun Nomura, and Tetsuo Tamai. “Archface: a contract
place where architectural design and code meet together”. In: Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering-
Volume 1. ACM. 2010, pp. 75–84.

[74] Abdelkrim Amirat and Mourad Oussalah. “C3: A metamodel for architecture
description language based on first-order connector types”. In: 11th Interna-
tional Conference on Enterprise Information Systems (ICEIS 2009). 2009,
pp. 76–81.

[75] Adel Smeda, Adel Alti, and Abbdellah Boukerram. “An environment for
describing software systems”. In: WSEAS Transactions on Computers 8.9
(2009), pp. 1610–1619.

[76] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. “Montiarc-architectural
modeling of interactive distributed and cyber-physical systems”. In: arXiv
preprint arXiv:1409.6578 (2014).

BIBLIOGRAPHY 104

[77] Robert Allen, Remi Douence, and David Garlan. “Specifying and analyzing
dynamic software architectures”. In: International Conference on Fundamen-
tal Approaches to Software Engineering. Springer. 1998, pp. 21–37.

[78] Nenad Medvidovic and Richard N Taylor. “A classification and compari-
son framework for software architecture description languages”. In: IEEE
Transactions on software engineering 26.1 (2000), pp. 70–93.

[79] Arvid Butting et al. “A classification of dynamic reconfiguration in compo-
nent and connector architecture description languages”. In: 4st International
Workshop on Interplay of Model-Driven and Component-Based Software En-
gineering (ModComp) 2017 Workshop Pre-proceedings. 2017, p. 13.

[80] Yang Lingling and Zhao Wei. “An Overview of Software Architecture De-
scription Language and Evaluation Method”. In: Proceedings of the 2012
International Conference on Communication, Electronics and Automation
Engineering. Springer. 2013, pp. 895–901.

[81] Frank Budinsky et al. Eclipse modeling framework: a developer’s guide. Addison-
Wesley Professional, 2004.

[82] Ananda Basu, Marius Bozga, and Joseph Sifakis. “Modeling Heterogeneous
Real-time Systems in BIP”. In: SEFM’06 Proceedings. IEEE Computer So-
ciety Press, 2006, pp. 3–12.

[83] Ananda Basu et al. “Rigorous Component-Based System Design Using the
BIP Framework”. In: IEEE Software 28.3 (2011), pp. 41–48.

[84] Marius Bozga et al. “Modeling dynamic architectures using Dy-BIP”. In:
International Conference on Software Composition. Springer. 2012, pp. 1–
16.

[85] Carl Bergenhem. “Approaches for facilities layer protocols for platooning”.
In: Intelligent Transportation Systems (ITSC), 2015 IEEE 18th Interna-
tional Conference on. IEEE. 2015, pp. 1989–1994.

[86] Shervin Nouyan et al. “Teamwork in self-organized robot colonies”. In: IEEE
Transactions on Evolutionary Computation 13.4 (2009), pp. 695–711.

[87] Terence Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.

[88] Danny Weyns et al. “A survey of formal methods in self-adaptive systems”.
In: Proceedings of the Fifth International C* Conference on Computer Sci-
ence and Software Engineering. ACM. 2012, pp. 67–79.

[89] Gabriel Tamura et al. “Towards practical runtime verification and validation
of self-adaptive software systems”. In: Software Engineering for Self-Adaptive
Systems II. Springer, 2013, pp. 108–132.

BIBLIOGRAPHY 105

[90] Saddek Bensalem et al. “Compositional verification for component-based
systems and application”. In: IET software 4.3 (2010), pp. 181–193.

[91] Anastasia Mavridou et al. “Configuration logics: Modeling architecture styles”.
In: Journal of Logical and Algebraic Methods in Programming 86.1 (2017),
pp. 2–29.

Modeling Self-configuration in Architecture-based Self-adaptive systems

Modern systems are pressured to adapt in response to their constantly changing environment
to remain useful. Self-adaptive systems are able to modify at runtime their behavior and/or
structure in response to their perception of the environment, the system itself, and their
requirements. The focus of this work is on realizing self-configuration, a key and essential
property of self-adaptive systems. Self-configuration is the capability of reconfiguring auto-
matically and dynamically in response to changes. This may include installing, integrating,
removing and composing/decomposing system elements. This thesis introduces the Dr-BIP
framework, an extension of the BIP framework for modeling self-configuring systems that
relies on a model-based and component & connector approach to prescribe systems.

A Dr-BIP system model is a runtime model which captures the running system at three

different levels of abstraction namely behavior, configuration, and configuration variants. To

capture the three levels of abstraction, we introduce motifs as primary structures to prescribe

a self-configuring Dr-BIP system. A motif defines a set of components that evolve accord-

ing to interaction and reconfiguration rules. A system is composed of multiple motifs that

possibly share components and evolve together. Interaction rules dictate how components

composing the system can interact and reconfiguration rules dictate how the system configu-

ration can evolve over time. Finally, we show that the proposed framework is both minimal

and expressive by modeling four different self-configuring systems. Last but not least, we

propose a modeling language to codify the framework concepts and provision an interpreter

implementation.

Modélisation de la configuration automatique dans des systèmes

Pour rester utile, les systèmes modernes doivent s’adapter à leur environnement qui
ne cessent d’évoluer. Les systèmes auto-adaptatifs peuvent modifier, au moment de
l’exécution, leur comportement et / ou leur structure en fonction de leur perception de
l’environnement, du système même et de leurs exigences. L’objectif de ce travail est de
réaliser l’auto-configuration, une propriété clé et essentielle des systèmes auto-adaptatifs.
L’auto-configuration est la capacité de se reconfigurer automatiquement et dynamiquement
suite aux changements, tel que l’installation, l’intégration, le retrait et la composition /
décomposition d’éléments du système. Cette thèse présente le cadre du Dr-BIP, une exten-
sion du plan BIP pour la modélisation des systèmes à configuration automatique qui repose
sur une approche basée sur un modèle et sur des composants et des connecteurs pour prescrire
des systèmes.
Un modèle de système Dr-BIP est un modèle d’exécution qui capture le système en cours
d’exécution à trois niveaux d’abstraction différents, à savoir du comportement, de configu-
ration et des variantes configurations. Pour capturer les trois niveaux d’abstraction, nous
introduisons des motifs en tant que structures principales pour prescrire un système Dr-BIP
à configuration automatique. Un motif définit un ensemble de composants qui évoluent en
fonction de règles d’interaction et de reconfiguration. Un système est composé de plusieurs
motifs pouvant éventuellement partager des composants et évoluer ensemble. Les règles
d’interaction dictent la manière dont les composants du système peuvent interagir, tandis
que les règles de reconfiguration dictent l’évolution de la configuration du système. Enfin,
nous montrons que le cadre proposé est à la fois minime et expressif en modélisant quatre
systèmes différents à configuration automatique. Finalement, nous proposons un langage de
modélisation pour codifier les concepts du cadre et fournir une implémentation d’interprète.R
é
su

m
é

A
b
st

r
a
c
t

	I Foundation and Preliminaries
	Introduction
	Motivation
	Self-adaptive Systems
	Definition
	Requirements
	The Self-* Properties
	Challenges

	Problem Statement
	Contributions
	Thesis Roadmap
	Existing Methodologies
	Approaches and Techniques
	Control Engineering
	Artificial Intelligence
	Software Programming
	Software Engineering

	Model-based X Component and Connector

	II Dr-BIP Framework
	Dr-BIP Framework
	Overview
	Design Pillars
	Conceptual Model

	Dr-BIP System Model
	Architecture Overview
	Components
	Motifs
	Motif-based Systems

	Dr-BIP as an Extension of BIP
	Component-based Systems
	Existing BIP Extensions for Dynamic Reconfiguration

	Dr-BIP by Examples
	Self-configuring Token Ring System
	Self-configuring Multicore Task System
	Autonomous Highway Traffic System
	Self-configuring Robot Colonies

	Implementation
	Overview
	Concrete Syntax
	Lexical Structure
	Grammar Highlights
	An Example Using The Concrete Syntax

	Parser
	Interpreter
	Parameters

	Execution

	III Conclusions and Perspectives
	Conclusion and Perspective
	Appendices
	Self-adaptive System Definitions

