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Cette thèse a été réalisée dans la Zone Atelier CNRS (Centre National de Recherche 

Scientifique) de Hwange, au Zimbabwe, qui s’appuie sur le programme historique de 

recherche HERD (Hwange Environmental Research Development), fruit de la collaboration à 

long-terme (depuis 1999) entre le CNRS, le CIRAD (Centre de Coopération Internationale en 

Recherche Agronomique pour le Développement) et la ZPWMA (Zimbabwe Parks and Wildlife 

Management Authority). Cette thèse a bénéficié d’un financement de thèse du Ministère de 

la Recherche français via l’Ecole Doctorale E2M2 de l’Université Claude Bernard Lyon 1, du 

soutien financier du réseau des Zones Ateliers du CNRS et d’un PICS qui a facilité la 

collaboration avec la Wildlife Conservation Research Unit de l’Université d’Oxford. Cette thèse 

de doctorat est rédigée en anglais pour faciliter la restitution de ce travail aux partenaires 

zimbabwéens. 

 

This PhD thesis was conducted in the CNRS (National Centre for Scientific Research) 

Zone Atelier Hwange (CNRS-Hwange LTER), Zimbabwe, based on the long-term (since 1999) 

collaborative HERD programme (Hwange Environmental Research Development), between 

the CNRS, the CIRAD (French Agricultural Research Centre for International Development)) and the 

ZPWMA (Zimbabwe Parks and Wildlife Management Authority). This thesis was supported by 

a grant from the French ‘Ministère de la Recherche’ through the ‘Ecole Doctorale E2M2’ of 

‘Université Claude Bernard Lyon 1’, and funding supports from the CNRS via the French LTER 

network and a PICS that facilitated the collaboration with the Wildlife Conservation Research 

Unit from Oxford University. This PhD thesis is written in English to facilitate the restitution of 

this work to Zimbabwean partners. 
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RRésumé / Abstract 
Les communautés écologiques sont connues pour être des systèmes complexes 

composés de multiple espèces entrant en interaction les unes avec les autres. De nombreux 
modèles théoriques ont été développés pour étudier les communautés. Certains ont souligné 
l’importance des effets indirects que les espèces pouvaient avoir les unes sur les autres, tels 
que les chaînes d’interactions et les modifications d’interactions (par modification du trait 
d’une des espèces en interaction ou de l’environnement où se déroule l’interaction). Bien que 
la science expérimentale vienne confirmer le rôle fondamental que pourrait avoir ces effets 
indirects, peu d’études à l’échelle des communautés en milieu naturel ont été conduites, et 
encore moins chez les grands mammifères.  

Le Parc National de Hwange, au Zimbabwe, est un écosystème de savane arborée semi-
aride caractérisé par une quasi-absence d’eau de surface naturelle (point d’eau, rivière) 
pendant la saison sèche, et ce n’est qu’avec la création de points d’eau artificiels pompés que 
la richesse spécifique des communautés de grands mammifères et les fortes abondances 
animales sont maintenues. De plus, cet écosystème a la remarquable particularité à la fois 
d’abriter l’une des plus fortes densités d’éléphants, et d’être considéré comme l’un des 
bastions africains pour sa population de lions. Le lion est connu comme étant un chasseur à 
l’affût, utilisant les éléments de son habitat (fourrés, souches, hautes herbes, etc.) pour se 
rapprocher au maximum de sa proie et lui bondir dessus par surprise. De plus, cette espèce 
semble profiter de l’agrégation des herbivores aux points d’eau pendant la saison sèche pour 
chasser autour de ces points d’eau. L’éléphant d’Afrique quant à lui est capable d’aménager 
son milieu et est ainsi susceptible de favoriser l’accès à certaines ressources pour les autres 
espèces, telles que des abris ou au contraire une meilleure visibilité. En revanche, de par sa 
masse corporelle exceptionnelle et son régime alimentaire généraliste, il est possible qu’il soit 
un compétiteur clé pour les autres herbivores. Enfin, étant très nombreux dans l’écosystème 
étudié, nécessitant de grandes quantités d’eau, et devenant de plus en plus agressifs au fil de 
la saison sèche, les éléphants influencent l’utilisation des points d’eau par les autres 
herbivores.  

Cette thèse porte donc sur le rôle que peuvent avoir les éléphants sur les interactions 
trophiques entre les lions et leurs proies, via des mécanismes d’effets indirects. Différents axes 
de recherche sont abordés. Le premier porte sur l’effet des éléphants sur la communauté de 
grands herbivores aux points d’eau, et plus particulièrement comment ils peuvent influencer 
leur distribution spatiale, et à terme leur vulnérabilité vis-à-vis des prédateurs. Un évitement 
spatial des éléphants par les autres herbviores en début de saison sèche suggère fortement 
que les éléphants sont de potentiels compétiteurs. Cependant, à la fin de la saison sèche, le 
phénomène s’inverse et certaines espèces d’herbivores se rapprochent fortement des 
éléphants. Deux scénarios portant sur les mécanismes pouvant expliquer ce patron ont été 
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explorés, sans succès : une nécessité croissante d’accéder à de l’eau de meilleure qualité au 
niveau des pompes des points d’eau, et une augmentation du risque de prédation qui pourrait 
rendre les éléphants « attractifs » aux yeux des herbivores, les éléphants adultes étant 
invulnérables à la prédation et capables de les faire fuir par des comportements de 
harcèlement. Le deuxième axe de recherche porte sur l’effet des éléphants sur la distribution 
spatiale des herbivores à l’échelles du paysage et de l’habitat, et sur les conséquences 
possibles que cela peut avoir sur l’écologie spatiale des prédateurs. L’absence de ségrégation 
entre éléphants et herbivores ne supporte pas l’hypothèse d’un effet de compétition par 
exploitation, et l’investigation quant à l’effet sur les prédateurs n’a pas été poussée plus avant. 
Le rôle facilitateur des éléphants, permettant l’accès à une ressource plus abondante et de 
meilleure qualité en cassant les branches et les troncs, semble en revanche être plausible pour 
les impalas qui sélectionnent les habitats utilisés par les éléphants. Le troisième axe de 
recherche s’intéresse à l’effet des éléphants sur la végétation et aux implications de ces 
changements pour la localisation des sites de chasses réussies des lions. Pendant une longue 
période (15 ans) de forte densité de la population d’éléphants, la composition de la végétation 
n’a pas changé pas (composition spécifique, traits fonctionnels) excepté en ce qui concerne 
les espèces rares. De plus, la structure globale de la végétation n’a pas été profondément 
affectée par une forte pression d’herbivorie des éléphants, à part dans la strate de hauteur de 
50-200 cm où une réduction importante de la taille de la couronne des arbres (un proxy du 
volume occupé) est observée. Ces impacts des éléphants se traduisent par une augmentation 
légère de la visibilité et de la distance à un site potentiel d’affût (ex. souche, fourré). Les lions, 
qui tuent leur proie à une petite distance de l’endroit où ils étaient à l’affût, devraient donc 
contre-sélectionner ces habitats impactés par les éléphants et aller dans les habitats où la 
visibilité et la distance à un site d’affût sont plus faible. Cependant, l’inverse est observé à 
large échelle, ce qui pourrait être expliqué par la présence plus abondante de proies dans les 
habitats impactés par les éléphants. A fine échelle, les sites de chasses réussies sont 
néanmoins caractérisés par des habitats avec une plus faible distance à un site d’affût 
comparé aux habitats qui sont disponibles aux alentours. Les éléphants semblent bien avoir 
un effet sur la localisation des sites de chasses réussies, et donc sur leurs interactions 
trophiques, via la modification de l’environnement mais cet effet dépend de l’échelle 
considérée. Cette étude suggère que les effets indirects peuvent agir à l’échelle des 
communautés en milieu naturel. De plus, elle renforce l’idée qu’il est important de prendre 
en compte ces effets indirects pour avoir une compréhension approfondie et une meilleure 
capacité de prédiction quant aux conséquences que peuvent avoir des perturbations sur la 
structure et le fonctionnement des communautés. 
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Species can indirectly affect other species and their interactions. The trophic interaction 
between a predator and its prey can be modified by the presence of a third species either 
through chain interactions (e.g. successive predation link) or through interaction modification.  
However, these indirect effects have received little attention in theorical modelling of food 
web, and very few studies have tried to explore this phenomenon at the scale of natural 
complex communities of large mammals. The role ofelephants as modifiers of lion’s trophic 
interaction is explored in the semi-arid woodland savanna ecosystem of Hwange National 
Park, Zimbabwe. African elephants, as keystone-competitors (male body mass ~ 4000 kg with 
aggressive behaviour) can shape the behaviour of herbivores at waterholes, and adult 
elephants, being invulnerable to predation and able to deter predators such as lion, could 
represent safety for other herbivores. However, spatial and behavioural pattern observed do 
not allow to state on the elephant mediation of lion trophic interaction at waterholes. Further, 
elephants can compete for food resources with other herbivores, or on the contrary by 
enhancing regrowth of new shoots on trees they impact, elephants can facilitate other species. 
We observed that impalas selected habitats more intensively used by elephants, suggesting 
that elephants may facilitate the availability of food resources for impalas. However, no effect 
of facilitation or competition was observed for the other herbivores, which leads to think that 
elephants do not influence lion trophic interaction in that way. Finally, by altering the physical 
environment (i.e. ecosystem engineering), elephants affect the visibility and the availability of 
ambush sites for lions in the woody vegetation and ultimately seem to influence lion kill site 
selection. This study suggests that indirect effects may act at the community level even if their 
observation and quantification are difficult in natural communities. Moreover, it supports the 
observation that it is important to take into account these indirect effects in order to have a 
thorough understanding and a better ability to predict the consequences that disturbances 
may have on the structure and functioning of communities. 

 

Mots - clés : Fonctionnement des communautés, savane semi-aride africaine, grands 
mammifères, éléphant d’Afrique, lion d’Afrique, interactions trophiques, effets indirects, 
chaines d'interactions, modification d'interactions, ingénieur des écosystèmes, compétiteur 
clé. 

 

Keywords: Community functioning, semi-arid African savanna, large mammals, African 
elephant, African lion, trophic interactions, indirect effects, interaction chain, interaction 
modification, ecosystem engineer, keystone-competitor. 
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de fiston, même si ce n’était pas gagné ! Et oui papa, « je me suis bien amusé ! ». 

A Hécate pour avoir fait de moi l’homme que je suis aujourd’hui #lol. 
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Enfin je tiens tout particulièrement à remercier Marion (alias « ma Marion » pour les 
intimes) pour tout ce que tu as fait pour moi ces dernières années et ce jusqu’au bout. Je 
n’en serais tellement pas là aujourd’hui si tu n’avais pas été là. Pour ta présence, ton 
soutien, tous ces moments passés ensemble à rire ou à se réconforter. Je suis extrêmement 
heureux d’avoir pu t’avoir à mes côtés et j’espère que ça restera ainsi pour longtemps. 
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General Introduction 

 

« Alors la trompe du vieil éléphant se redressa, se recourba et un 
barrissement plus sonore, plus aigu, plus effrayant que l'éclat de cent 

trompettes de guerre retentit dans la sérénité de la brousse » 
Le Lion (1958) de Joseph Kessel 
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1- Community functioning and structure 
 

"Ecological communities are among the most complex systems that natural scientists 

attempt to understand, and ecologists continue to search for a conceptualization of 

communities that will enable this understanding." Werner & Peacor (2003). 

 

In the first quarter of the twentieth century, there was considerable debate about the 

nature of an ecological community (Begon et al. 1986, McIntosh 1998). Clements (1916) 

conceived the community as a sort of superorganism whose member species were tightly 

bound together both at a given time and in their common evolutionary history. Thus, 

individuals, populations and communities were intertwined in a way similar to that between 

cells, tissues and organisms. By contrast, the individualistic concept devised by Gleason 

(1926) and others saw the relationships of coexisting species as the result of similarities in 

their requirements and tolerances. The current view considers an ecological community as 

an assemblage of species populations, which co-occur in space and time. Community ecology 

therefore focus on the manner in which assemblages of species are distributed in nature and 

how these assemblages can be influenced, or caused, by the physical forces of their 

environment and by interactions between species (Begon et al. 1986). 
 

2- Interspecific interactions between two species 
Understanding the dynamics of ecological communities depends therefore on a 

thorough knowledge of its member species and their interdependence. This 

interdependence suggests that changes in the abundance of a species in a community will 

affect the species with which it interacts (Wootton 1994). Collectively, these interactions 

determine how effects are transmitted from one species to another and underlie 

community functioning and structure (Dambacher and Ramos-Jiliberto 2007). 

Interactions between at least two individuals from two different species can be placed on 

a continuum of interactions ranging from mutualism to competition according to the 

effects of this interaction on the fitness of the protagonists. Here, we will focus on three 

common interspecific interactions: predation, competition and facilitation. 
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2.1- Trophic interactions 
2.1.1- Predation 

In a food web, energy flows via trophic links (Odum 1968), which are mainly 

represented by predation (carnivory and herbivory). Predation refers to the interaction in 

which individuals of one species kill and are capable of consuming a significant fraction of 

the biomass of individuals of another species (Abrams 2000). A predator’s aim is to feed 

on its prey, whereas the prey’s goal is to avoid being eaten by a predator. Predators and 

prey are therefore caught in arms races and their traits (e.g., behaviour) co-evolved in 

consequence. Predator-prey relationships have been extensively studied, although most 

existing research was done from a prey’s point of view to understand decision-making 

processes (Lima 2002). This body of literature has documented a variety of anti-predator 

behaviours such as increase of vigilance (Caro 1992), grouping (Hamilton 1971), habitat 

shift (Pyare and Berger 2003), temporal niche shift (Valeix et al. 2009a), activity 

adjustment (Berger 2005), etc. Even though studies from a predator’s point of view are 

scarcer (Lima 2002), recent works have addressed this issue in both theoretical (Lima 

2002) and empirical studies (e.g. Kaufmann et al. 2007, Valeix et al. 2011a). It is also 

noteworthy that the characteristics of the habitats where predators and prey live may 

strongly influence predator-prey relationships (e.g. for landscape heterogeneity see 

Kauffman et al. 2007 and Laundré et al. 2014, for moon-light and habitat cover see Prugh 

and Golden 2014). 
 

2.2- Non-trophic interactions 
2.2.1- Competition 

Interspecific competition can occur when two or more species share the same 

resource (food, light, space, time, breeding site, etc.). Species can compete through either 

exploitative or interference competition. Exploitative competition (Park 1954) occurs 

where a species diminishes the availability of a limited resource for another species by 

depleting it. Interference competition occurs where a species inhibits the accessibility to 

a resource for another species (Schoener 1983). Whereas these two different forms of 

competition are easy to apprehend conceptually, they can be difficult to detect and 
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quantify in natural ecosystems, as they can occur through different mechanisms: 

consumptive, preemptive, overgrowth, chemical, territorial, and encounter (Schoener 

1983). Indeed, evidence of interference competition can be difficult to reveal, for instance 

when the outcome is an avoidance without any directly observable signs of agonistic 

behaviour from the interfering species (a process known as cryptic interference 

competition, Gyimesi, Stillman and Nolet 2010). Ultimately, competition is considered as 

one strong driver of community structure and functioning (Case and Gilpin 1974, Tilman 

1982, Begon et al. 1996). 
 

2.2.2- Facilitation 
This interaction is analogous to the commensalism in the sense that one species will 

benefit from the presence of another species, without positive or negative effects on the 

latter. An example is the feeding facilitation between herbivores where the utilization of 

a resource by a species will enhance the access and/or quality of this resource for other 

species (Hempson et al. 2014). Facilitation through increased access to resources was first 

described by Vesey-Fitzgerald (1960). He revealed a grazing succession in tall floodplain 

grasslands in the Rukwa Valley in Tanzania, where trampling and feeding by African 

elephants (Loxodonta africana) exposed medium-height grasses to buffalo (Syncerus 

caffer), which in turn generated shorter grass exploited by topi (Damaliscus lunatus). 

Another example of facilitation through increased quality of the resources is from Gordon 

(1988) who found that red deer (Cervus elaphus) in spring preferred to feed in areas that 

had been grazed previously by cattle (Bos taurus) during the preceding winter. Although 

several facilitation mechanisms have been described (McNaughton 1985), the 

implications of this interaction in community functioning are still largely unknown 

(Arsenault and Owen-Smith 2002) and there were calls for considering its role in ecological 

communities (Stachowicz 2001). 

3- From a species pair to the community: the indirect effects of species interactions 
The interspecific interactions described above were considered for an association 

of two species only. However, natural communities are complex systems regrouping 

multiple species. Interspecific interactions are not isolated and can have indirect effects 
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throughout the community, affecting other species and their interactions. A species can 

therefore affect other species along direct and indirect paths, and it is not uncommon for 

indirect effects to oppose direct effects (Dambacher and Ramos-Jiliberto 2007). For 

instance, a population abundance may increase despite a change in circumstances that 

favors its enemy or diminishes its food (Sih et al. 1985). Two main types of indirect effects 

are distinguished. 

3.1- Interaction chains 
Figure 1A represents indirect effects that result from a series of direct interactions 

between species pairs (Wootton 1993). Thus, one species directly alters the abundance of 

a second species, the change in the second species abundance affects a third species, and 

so on. In mathematical terms, the functions describing the direct interactions between 

species pairs do not change; only the abundances of the species change. This is typically 

the case of trophic cascades whereby a predator indirectly affects the abundance of 

producers by modifying herbivore density (Estes et al. 2011, Ripple et al. 2014). Another 

example known as “mesopredator release” (e.g. Prugh et al. 2009, Ritchie and Johnson 

2009) occurs when the removal of an apex predator leads to the demographic increase of 

smaller predator populations (e.g. with foxes killing weasels Latham 1952), which in turn 

conducts to a decline of the mesopredator prey (e.g. rabbits killed by mongooses killed by 

lynx Palomares et al. 1995). In the literature, such indirect effects have been referred to 

as trophic linkage indirect effects (Miller and Kerfoot 1987), interaction chains (Wootton 

1993), numerical indirect interactions (Janssen et al. 1998), or density-mediated indirect 

interactions (Werner and Peacor 2003). In this thesis, we will refer to these indirect effects 

as interaction chains. 

Box 1 – Competition as an indirect interaction? 
Previously, we considered exploitative competition as a direct non-trophic interaction between two 
species. However, in most cases, this interaction can be considered as a trophic interaction chain, 
where the shared resource is considered as a species and not as an abiotic consumed resource (e.g. 
water for plants). One species C can reduce the abundance of its prey B, thereby reducing the food 
base of the other consumer A of the prey (Fig. 1A). What about interference competition? 
Interference can cover various forms from the aggressive encounter (direct effect) to the disturbance 
of a species (indirect effect) and the distinction between direct and indirect effect could be discussed 
depending on the form taken by the interference. However, regarding the nature of interference 
competition in this thesis, we will consider it as a direct effect between two species.   
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3.2- Interaction modification 
Figure 1B represents indirect effects whereby a change in the density of one species 

alters the nature of a direct interaction between two other species (Wootton 1993). In 

mathematical terms, it changes the function describing the direct interaction between a 

species pair. Therefore, a species that indirectly influences another species in this manner 

directly affects the interaction between two species rather than the abundance of another 

species (Wootton 1993). There is a growing body of ecological literature (Wootton 1993, 

1994, 2002; Werner and Peacor 2003, Arditi et al. 2005, Lin and Sutherland 2014) that 

demonstrates that per capita effects shared between two species are not fixed, but rather 

vary as a function of a third species (as in Figure 1B, where species C modifies the intensity 

of A and B’s interaction). In the literature, these indirect effects have been referred to as 

higher-order interactions (Billick and Case 1994), interaction modifications (Wootton 1993), 

functional indirect interactions (Janssen et al. 1998), or rheagogies (Arditi et al. 2005). In 

this thesis, we will refer to such indirect effects as interaction modifications. 

Interaction modifications can arise from two scenarios (Wootton 2002, Dambacher 

and Ramos-Jiliberto 2007). The first scenario is the trait-mediated interaction modification 

scenario whereby species C influences a phenotypically plastic trait of species A or B. For 

instance, competitive interactions between two ant species appear to be reversed in the 

presence of a phorid fly, a parasitoid of the soldier caste of one of the species (Feener 1981). 

The dominant species in the absence of the fly wins 63% of the confrontations at baits. 

However, in the presence of the fly it wins only 13% of the confrontations. When the fly is 

present, the soldier class of the dominant species hides in the leaf litter or returns to the 

nest instead of engaging the competing ants. The second scenario is environment-mediated 

interaction modifications whereby species C leads to a change in some factor, 

environmental agent, or context involved in the interaction between A and B. Ecosystem 

engineer species typically fall in this last category; Arditi et al. (2005) even designated them 

as “interaction modifiers”. This term designs organisms that “directly or indirectly modulate 

the availability of resources (other than themselves) to other species, by causing physical 

state changes in biotic or abiotic materials” (sensu Jones et al. 1994). For instance, shell 

production by mollusks leads to shell aggregation and create refuges for other species 

(Gutierrez et al. 2003). 
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Figure 1: Diagram depicting the difference between A) interaction chains and B) interaction 
modifications as indirect effects. In this diagram, only trophic interactions (solid-line links with an 
arrow) are considered as direct interactions between species, with size representing the strength 
of the interaction. Trophic interaction modifications are represented either by broken horizontal 
solid-line (environment-mediated) either by entire horizontal solid-line (trait-mediated). Circle 
sizes represent population abundances which are subject to changes in interaction chain but not 
in interaction modifications. Orange and green shapes represent the environments where A, B 
and C inhabit. In the interaction chain example, species C indirectly affects species A through a 
chain of direct interactions (e.g. trophic cascade, exploitative competition). In the case of trophic 
cascade, if C is a large predator, B a meso-predator and A a prey, this interaction chain can lead 
to the “meso-predator release” without species C. In the interaction modification example, 
species C affects the interaction between A and B (e.g. altering the rate at which species A feeds 
on species B) either by modifying a species trait (e.g. vigilance behaviour) represented here by the 
modified colour of letter B, or by modifying the environment (e.g. creation of refuges) 
represented here by the modified colour of the habitat. 
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3.3- Importance of interaction modifications in ecological communities 
The prevalence of interaction modifications in natural communities has been 

recognized in recent years. Werner and Peacor (2003) reviewed the mechanistic basis and 

empirical evidence for the presence of interaction modifications in both aquatic and 

terrestrial ecosystems and found that interaction modifications were widespread in 

ecosystems and often as strong as, or stronger than interaction chains. A meta-analysis 

revealed that the effects of anti-predator behaviour (trait-mediated interaction 

modification) might be as large as the effects from direct consumption by predators on 

prey species (Preisser et al. 2005). Abrams (1995), however, highlighted that comparisons 

of relative magnitudes of direct and indirect interactions should always be interpreted 

with caution, given that trait dynamics (translating to changes in interaction modification 

strength over time) can affect the latter but have rarely been accounted for in empirical 

studies (see also Lin and Sutherland 2014). Empirical and theoretical studies showed that 

both interaction chains and interaction modifications vary widely in their impacts on the 

stability and relative species abundances of ecological communities, depending on the 

relative strengths of direct and indirect effects and the quantitative balance between 

positive and negative feedback loops in ecological networks (Ulanowicz and Puccia 1990, 

Wootton 1994). The importance of embracing interaction modifications in understanding 

the response of real-world communities to global change has recently been highlighted 

(O'Connor and Donohue 2013). 
 

3.4- Trophic interaction modification 
 Trophic interaction modifications are defined as the modification of a consumer-

resource interaction (Wootton 1993) and are therefore a subset of interaction 

modifications. Trophic interaction modification can link a wide range of important 

ecological phenomena as modification of functional responses (Terry et al. 2017). They 

are now considered as widespread and most documented examples on interaction 

modifications are actually about trophic interaction modifications. Again, we find the 

distinction between trait-mediated and environment-mediated trophic interaction 

modifications. Examples of trait-mediated trophic interaction modification include a 

predator causing a behavioural shift in its prey that makes the prey more or less vulnerable 
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to another predator (Dayton 1973), or unpalatable prey species reducing predation 

intensity on palatable prey by reducing foraging profitability in a patch (Pfister and Hay 

1988). Other examples include alternative prey that increases predator handling times, 

and dangerous higher-level predators that inhibit foraging (Golubski and Abrams 2011). 

Examples of environment-mediated trophic interaction modification include a species 

altering the physical environment in which a predator searches for prey, changing the 

predator's foraging efficiency (e.g. light-colored limpet Lottia digitalis appeared more 

cryptic on light-colored goose barnacles Pollicipes polymerus and is less predated by 

American Black Oystercatchers Haematopus bachmani - Wootton 1992). Ecosystem 

engineers are important trophic interaction modifiers by modifying their environment. For 

instance, leaf mines of Eriocrania spp. on Betula pendula when overlapping with the 

central leaf vein decrease the ability of aphids to attack those leaves (Johnson et al. 2002).  
 

Box 2 – Facilitation as trophic interaction modification 
As for exploitative competition, we previously considered facilitation interaction as a direct 

interaction between two species. In the framework of this thesis, this interaction can actually be 
considered as an environment-mediated trophic interaction modification as saw with the Vesey-
Fitzgerald study (1960) where trampling and feeding by elephants exposed medium-height grasses 
to buffalo. Further, facilitation can also be considered as a trait-mediated trophic interaction 
modification, for instance if the facilitation passes through an increase of the resource quality (e.g. 
Gordon 1988, Part 2.2.2 Facilitation).  
 

Studies with small numbers of species have repeatedly demonstrated that trophic 

interaction modifications have the capacity to drive population dynamics (e.g. Werner and 

Peacor 2003; reviewed in Preisser et al. 2005) and to have large quantitative effects on 

the dynamics of simple communities, evidence accumulating from studies (Preisser and 

Bolnick 2008; Beckerman et al. 2010), reviews (e.g. Wootton 2002; Abrams 2010) and 

meta-analyses (Preisser et al. 2005; Preisser et al. 2007). There is growing impetus from 

other recent works to address the challenges of detecting, measuring and testing the 

potential role of trophic interaction modifications in more complex systems such as 

natural communities (e.g. Wootton 1994, Peacor & Werner 2004, Okuyama & Bolker 

2007). A greater understanding of how they influence population dynamics will be a key 

part of improving our ability to forecast how ecosystems will respond to global changes 

(Kéfi et al. 2012) as trophic interaction modifications are often identified as the cause of 

unexpected responses to perturbation (Terry et al. 2017 and references therein). 
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4- African savannas: open-air laboratories to assess trophic interactions in large 
mammal communities 
 

4.1- An ecosystem with very rich large mammal communities 
 

African savannas cover about half of sub-Saharan Africa (du Toit and Cumming 

1999), and host high densities and diversities of large (>5 kg) mammalian herbivores (Fritz 

& Loison 2006) and carnivores (Keast 1969). The herbivore biomass density in some 

protected savanna ecosystems accounts for some of the highest levels of herbivory ever 

quantified in terrestrial ecosystems (McNaughton and Georgiadis 1986). African 

herbivores are characterized by a variety of body sizes (see examples in Table 1, Fig. 2) 

ranging from steenbok Raphicerus campestris (  et : 11 kg) to megaherbivores, i.e. 

herbivores weighting more than 1000 kg (Owen-Smith 1988) such as African elephants 

Loxodonta africana ( : 2 800 kg / : 4 000 kg). There are also characterized by a variety 

of diets with browsers (feeding on leaves, soft shoots or fruits) such as giraffes (Giraffa 

camelopardalis) and greater kudus (Tragelaphus strepsiceros), grazers (feeding on grasses) 

and more precisely woodland grazers such as sable (Hippotragus niger) and roans 

(Hippotragus equinus), grassland grazers such as wildebeests (Connochaetes taurinus) 

and zebras (Equus quagga) and finally mixed-feeders (feed on both) such as elephants 

(Loxodonta Africana) and impalas (Aepyceros melampus, Lamprey 1963, Jarman 1974). 

All carnivores (small, meso- and large carnivores) present in Africa (with the exception of 

the fennec (Fennecus zerda) and the sand cat (Felis margarita)) occur in savanna 

ecosystems (Turpie 1994). This is particularly true for “top-order predators”, term defining 

predators with a range of body sizes that occur at the upper end of the food chains, which 

by their nature are relatively rare in natural ecosystems (Hayward and Somers 2009), such 

as the African lion (Panthera leo) or the spotted hyaena (Crocuta crocuta). Large mammal 

communities in these ecosystems are therefore very rich with diversified and widespread 

interspecific interactions, leading to a complex network where indirect effects are 

certainly playing a major role in the functioning of these communities and ecosystems. 
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African savanna ecosystems are the last terrestrial places where the Pleistocene 

megafauna is still largely intact (Martin 1984), where intact guilds of large carnivores have 

been preserved (IUCN, Ripple et al. 2014), and thus where natural interactions can be 

observed among animals from the top of the trophic web (Sinclair et al. 2010). Top-order 

predators have been extensively studied because they are iconic species (Ripple et al. 

2014), key to understand human-carnivore conflicts (Woodroffe et al. 2005) and because 

of their important role in ecosystem functioning (e.g. Terborgh et al. 1999, Sinclair et al. 

2003, Dalerum et al. 2008, Owen-Smith and Mill 2008,). Therefore, we now have a good 

understanding of the behavioural and evolutionary ecology of top-order predators 

(Somers and Gusset in Hayward and Somers 2009), of their lethal (predation) and non-

lethal effects on prey (Brown et al. 1999) and evidence is accumulating on their effects 

through trophic cascades (Estes et al. 2011, Ripple et al. 2014, Sinclair et al. 2010). 

Megaherbivores too have been the focus of ecological research as they can be keystone 

competitors (Fritz et al. 2002) affecting herbivore community abundance and composition 

and they are ecosystem engineers (sensu Jones et al. 1994) affecting their physical habitat 

favouring or inhibiting other species. However, extremely little is known about the effects 

of each of these two guilds on the other, and we know virtually nothing on the extent to 

which one of these two guilds influence the relationships between the other guild and the 

remaining species of the community (i.e. interaction modification). Direct effect of top-

order predators on megaherbivores has been studied but megaherbivores suffer little or 

no predation (Owen-Smith 1990; Owen-Smith and Ogutu 2003, Sinclair et al. 2010) except 

when environmental constraints (e.g. forage availability) affect their body condition and 

strength (Owen-Smith et al. 2005, Loveridge et al. 2006, Owen-Smith and Mills 2008). To 

our knowledge, nothing is known about the effect of top-order predators on 

megaherbivore trophic interaction (i.e. herbivory) as they do with smaller herbivore 

species (e.g. landscape of fear – sensu Laundré et al. 2001), or if megaherbivores affect 

competition interactions between top-order predators. Today, only a few recent studies 

have started to investigate if megaherbivores can modify the trophic interaction between 

top-order predators and their prey via trait-mediated (Schmitt et al. 2014), and 

environment-mediated trophic interaction modification (Tambling et al. 2013). 
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4.2-Ecosystems under global changes and human practices   

4.2.1- Climate changes 
 

Climate is a major determinant of the natural distribution of species, with evidence 

both from fossil records (Escarguel et al. 2011) and from recently observed trends 

(Parmesan & Yohe 2003). Climate changes, i.e. changes in the trend of a climate variable, 

such as temperature or rainfall, or in the frequency of climatic events, such as floods and 

droughts over time (Okali 2011), therefore may pose a serious threat to species 

persistence (Parmesan 2006, Bellard et al. 2012). Southern Africa is particularly vulnerable 

to aridification (Kusangaya et al. 2014) and warming (Okali et al. 2011). For example, in 

Zimbabwe, extreme weather events, namely droughts, have increased in intensity 

(Chamaillé-Jammes et al. 2007). Such climate changes can affect negatively animal 

populations through effects on demographic rates, such as survival and fecundity (Okali 

et al. 2011), but also through spatial and temporal shift and where animal adapt to the 

new conditions (Bellard et al. 2012). In African savannas, extreme climatic events may 

have dramatic effects such as alteration of birds and mammals’ abundance and diversity, 

especially in semi-arid zones (Okali et al. 2011). However, the main effects induced by 

climate changes on species are indirect. Particularly, through alterations of species 

interactions (Griffith et al. 2017, White et al. 2017), climate change can modify community 

structure and ecosystem functions (Bellard et al. 2012). For instance, changes in growth 

rates can alter body sizes, and influence the outcome of species interactions, Gilman et 

al. 2010). In many wooded and bushed savannas in East and southern Africa, Okali et al. 

(2011) exposed that climate warming is likely to reduce the production of woody plant 

fruits/seeds with negative consequences on the abundance of browser herbivores. In 

order to limit the ecological and economic impacts of such climate changes in African 

ecosystems, Okali et al. (2011) preconized to provide artificial sources of water, to expand 

protected areas to include migration corridors and seasonal feeding areas and to improve 

connectivity of habitats to facilitate dispersal to appropriate habitats. 
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4.2.2- Land use changes and human practices 
While African savanna ecosystems are vulnerable to climate changes, it is not the 

only factor threatening biodiversity in these ecosystems. Rapid human population growth, 

land development and the spread of firearms since colonial times have exterminated 

much of the megafauna in West, South and central Africa (Simon 1962), and will continue 

to be a major threat in the coming years. Protected African savanna areas are becoming 

increasingly isolated as land use changes impinge against their boundaries, increasingly 

restricting the area available for wildlife movements, especially for large wide-ranging 

mammals (Ogutu et al. 2012). Péron & Altwegg (2015) showed for example that land use 

change and ecological succession appear as faster, more direct drivers of passerine 

distribution changes than climate variables themselves in grasslands and savannas. 

Western et al. (2009) considered that current and upcoming sedentarization of 

populations is likely to become the biggest threat to wildlife in the East African savannas 

through the direct displacement of wildlife and the reduction in grass production due to 

permanent grazing. Hunting can also have negative consequences for species living in 

African savannas (Ripple et al. 2016), and particularly for the megafauna. Top-order 

predators are threatened directly by human persecution (Hayward and Somers 2009), 

trophy hunting (Packer et al. 2010), retaliatory killing as a response to livestock 

depredation (Treves & Karanth 2003) and indirectly, as a decline in wild prey will invariably 

lead to a decline in predator abundance through bottom-up limitation (Karanth et al. 

2004; Hayward et al. 2007d). Megaherbivores are also under threat, particularly 

elephants, black (Diceros bicornis) and white rhinoceroses (Ceratotherium simum) 

because of poaching for ivory and rhinoceros horns, which has led to preoccupying 

population declines (Milliken et al. 2009, Maisels et al. 2013, Wittemyer et al. 2014). 
 

4.3- Effects of human disturbances and global changes on indirect effects 
Species abundances and species richness are often proxies used to evaluate the 

state of communities. However, there is a need to take into consideration the 

interdependence between species as they can help us to forecast how ecosystems will 

respond to global changes (Kéfi et al. 2012). Interspecific interactions are more difficult to 

identify and quantify, and yet it was proposed and demonstrated they can be impacted by 
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climate changes (Van der Putten et al. 2010, Gilman et al., 2010) and human practices 

(e.g. predator-prey relationships in Valeix et al. 2012). However, as we saw above, 

ecological communities are complex, and interaction modifications are often identified as 

the cause of unexpected responses to perturbation (Terry et al. 2017 and references 

therein). In addition, indirect effects can lead to surprising responses to perturbations, 

but they can also be modified themselves by the perturbations, leading to feedback loops 

limiting our ability to predict community’s trends and changes in ecosystem functioning 

facing these global changes. That is why it is of importance to study (both theoretically 

and empirically) these indirect effects in natural and complex communities. 
 

5- Hwange National Park: the ideal open-air laboratory to assess the role of 
megaherbivores on trophic interactions 
 

5.1- A semi-arid woodland savanna ecosystem modified by water management 
Hwange National Park covers ~15 000 km² of savanna in north-western Zimbabwe 

(Figure 3). As a semi-arid savanna, this park is characterized by a wet season when most 

rains fall (between November and April) and by a dry season (from May to October). The 

long-term mean annual rainfall is 600 mm but is highly variable (CV = 25%, Chamaillé-

Jammes et al. 2007). During the dry season, availability of natural surface water is very 

limited as no permanent river, and only a few pans retain water in an average year (Figure 

3). Indeed, until its creation, almost no surface water was available at the driest period of 

the year in the park (Davison 1967). Since its creation, several artificial waterholes were 

created thanks to the pumping of underground water and animal communities began to 

change with water-dependent wildlife coming into the park (Davidson 1967). These 

artificial waterholes represent therefore key places in the landscape for large mammal 

species (herbivores, Valeix et al. 2009c, Valeix 2011, and predators Valeix et al. 2010, 

Davidson et al. 2012), were interspecific interactions, and ultimately interaction 

modifications, could be enhanced as encounters with other species are more frequent 

there. In the future, the key role of artificial waterholes in the functioning of the large 

mammal community of the park could be exacerbated as droughts are expected to 

become drier (Chamaillé-Jammes et al. 2007). 
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Box 4: The elephants and the water in Hwange National Park (from Valls Fox 2015). 
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Two-third of the park lies on the eastern fringes of Kalahari sands that cover most 

of Botswana. The vegetation is characteristic of the wider region with its semi-arid climate 

and dystrophic soils, being a mix of bushland and patches of Baikiaea plurijuga woodland. 

Monospecific stands of mopane trees Colophospermum mopane cover much of the north 

of the park interspersed with grassland vleis, where the rich-nutrient soils are derived 

from basalt and the climate is more arid (Rogers, 1993). The park is therefore dominated 

by woodland savanna (64%, Rogers 1993, Figure 3), at the opposite of other African open 

grassland savannas such as the very well-studied Seregenti-Masai Mara ecosystem 

(Tanzania-Kenya). 

Hwange National Park is a semi-arid woodland savanna ecosystem superficially 

similar in habitats to other large national parks such as Kruger National Park (South Africa) 

and Chobe National Park (Botswana), but it differs in the way surface water is distributed 

and changes during the season, because in these other parks animals can also access one 

or several permanent rivers. 
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Figure 3: Location of the Hwange National Park, Zimbabwe, with the different administrative 
zones. The main areas studied in this thesis were Ngamo, Main Camp, Sinamatella and Robin. 
Distribution of the surface water in the park (the natural waterholes represented are those keeping 
water during the dry season). Distribution of the main vegetation profiles in the park (Rogers 1993). 
 
 
 
5.2- An elephant and lion stronghold 

Following moratorium on lion trophy hunting, where adult males were primarily 

targeted, imposed by the Zimbabwe Parks and Wildlife Management Authority between 

2005 and 2008, a 62% increase in the total population and a 200% increase in adult male 

density was observed in the lion population of Hwange National Park (Loveridge et al. 

2016). The lion population density is now estimated around 4.3 lions/100 km² in the park 
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(Loveridge et al. 2016), which is now considered as one of the lion stronghold (Riggio et 

al. 2013). In addition, the park is characterized by the overwhelming presence of the 

biggest terrestrial megaherbivore, the African elephant (Blanc et al. 2003, Fritz et al. 

2002). Thanks to the creation of the artificial waterholes, the elephant population 

increased from one thousand at the creation of the park (Davison 1967) to 8000 in the 

60’s (Williamson). Concerns about high elephant densities then arose and a culling 

program was initiated (Cumming 1981) until 1986. Since the stop of the culling, the 

elephant population increased once more to attain one of the highest elephant 

population density of the world. Indeed, the north-western part of the park attains 

densities of more than 4 elephants.km-2 in dry periods (Chamaillé-Jammes et al. 2009) 

and it is possible to see hundreds of elephants coming at waterholes at the end of the day 

during the dry season (pers. obs.).  

As both elephant and lion populations are at high density in the park, the potential 

indirect effects of these two species on each other should be maximized and easier to 

observe than in any other ecosystem where these two species are less abundant. 

 

 

6- Thesis aims and structure 
6.1- Aims 

This thesis focuses on trophic interaction modifications in large mammal 

communities. More precisely, the aim of this work is to investigate the role of 

megaherbivores (here the African elephant) as modifiers of the trophic interactions 

between a top-order predator (here the African lion) and its prey herbivore species. This 

work was carried out in Hwange National Park, whose large mammal community is 

characterized by one of the most abundant elephant population and a large lion 

population (Fritz et al. 2002).  

 

On the one hand, the African lion is a stalk and ambush predator that relies on 

features of the habitat providing concealment (e.g. rocks, termite mounds or dense 

vegetation) to approach and attack their prey (Hopcraft et al. 2005, Loarie et al. 2013, 
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Davies et al. 2016). In addition, they are particularly attracted by waterholes, which 

condition their movements (Valeix et al. 2010, Davidson et al. 2012) and their hunting 

behaviour (Valeix et al. 2009b, Valeix et al. 2011a, Davidson et al. 2012). More than the 

necessity to drink (lions are known to be independent from surface-water; Eloff 1973), 

this is the predictable presence of high prey density around waterholes that explains this 

waterhole-driven spatial behaviour (Valeix et al. 2010).  

 

On the other hand, the African elephant is a particular terrestrial species mainly 

due to its exceptional body mass (Owen-Smith 1988) and is considered as a keystone-

competitor (Fritz et al. 2002) and an ecosystem engineer (Coverdale et al. 2016). Owen-

Smith (1988) pointed out that though elephants may compete with other species 

(because they remove large quantities of resources, or cover, see Jachman and Bell 1985), 

it is possible that feeding and trampling by elephants induces regrowth of new shoots of 

higher quality in both the herb- and the shrub-layer, thus facilitating smaller and more 

selective species (see also the “browsing lawn hypothesis”, Makhabu et al. 2007) with 

consequences for habitat selection by other species (Valeix et al. 2011b). In addition, 

elephants can have profound effect on the vegetation, and its structure, with repercussion 

for the whole ecosystem functioning (e.g. grass-tree coexistence Sankaran et al. 2005, fire 

dynamics van Langevelde et al. 2003, animal biodiversity Pringle 2008). In this thesis, we 

will particularly assess their possible role for predator-prey relationships (see also for 

herbivores Coverdale et al. 2016, and carnivores Loarie et al. 2013, Tambling et al. 2013). 

Due to their body size and their high abundance in the study ecosystem, elephants are 

also expected to dominate all interactions with other herbivores (Owen-Smith 1988). At 

the scale of the waterhole, they are considered as one of the drivers of the waterhole use 

by other herbivores, as they can lead to temporal shift and modification of the behaviour 

of other herbivores at the waterholes (e.g. Valeix et al. 2007, Valeix et al. 2009a). In 

addition, adult elephants are considered invulnerable to predation (Sinclair et al. 2003) 

and are able to deter predators, even lions, by mobbing behaviour (McComb et al. 2011, 

pers. obs.). Elephants could therefore affect lions, their prey or both and have 

consequences for lion trophic interactions, particularly around waterholes. 



GENERAL INTRODUCTION 

    23 

6.2- Thesis structure 
 

This thesis was built around three research axes to assess if elephants can alter lion 

predator-prey relationships.  
 

The first research axis evaluates the effects of elephants on other herbivore 

species, i.e. prey for lions, at the scale of the waterhole, and ultimately investigates the 

implications for lion trophic interactions at waterholes. This first research axis assesses a 

prey trait-mediated trophic interaction modification (Figure 4.1).  In Chapter 1, I explored 

the dynamics of interference competition between elephants and other herbivores for 

the access to water in the dry season (Figure 5-Chapter 1). I used data collected on the 

fine-scale spatial distribution of large herbivores and elephants at waterholes and studied 

their spatial aggregation/segregation patterns. I discussed the dynamic trade-off 

herbivores seem to face over the dry season between costs associated to interference 

competition with elephants and other costs associated either with access to water of 

sufficient quality (“water quality hypothesis”) or with perceived predation risk 

(“bodyguard hypothesis”). To understand the results from Chapter 1, the two different 

hypotheses suggested were investigated in Chapter 2 and Chapter 3 respectively. In 

Chapter 2, to explore the “water quality hypothesis”, I considered that waterholes are not 

homogeneous patches of resource but show a gradient of water quality. I therefore 

assessed if interference competition with elephants occurs for the access to water of high 

quality, not for the access of water in general (Figure 5-Chapter 2). I collected 

observational data on the drinking position of large herbivores and sampled water quality 

in different areas of the waterholes. Chapter 3 represents the first part of the trait-

mediated trophic interaction modification process, whereby elephants could modify the 

anti-predator behaviour of lion’s prey. The rationale of the “bodyguard hypothesis” is that 

elephants, thanks to their body size and their mobbying behaviour, may represent safety 

for smaller herbivores against predation by lions. Thanks to a behavioural experiment, I 

assessed if after an increase of the perceived risk of predation by lions at the waterholes 

zebras benefit from the elephant presence (i.e. aggregating to these lasts and reducing 

their vigilance behaviour, Figure 5-Chapter 3).  
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The second research axis, constituted by Chapter 4, considers elephants either as 

exploitative competitors for food resources (i.e. interaction chain, Figure 4.2A) or as an 

engineer species facilitating availability of resources of higher quality (i.e. trait-mediated 

trophic interaction modification, Figure 4.2B), at the scale of the landscape and of the 

habitat. For some herbivore species, elephants by depleting food resource could lead 

herbivore local abundances to decrease in areas highly used by elephants, which could 

ultimately have consequences for lion local abundance in these habitats (Figure 5 – 

Chapter 4). On the contrary, by breaking twigs and trunks, elephants are likely to enhance 

the growth of many shoots on impacted trees, which may be preferred by other 

herbivores, leading to an increase of herbivore local abundances in the habitats used by 

elephants with subsequent consequences for lion local abundance (Figure 5 – Chapter 4). 

Road count data collected between 2004 and 2014 were analyzed to assess 

segregation/aggregation pattern between elephants and other herbivores at the 

landscape scale to test these hypotheses. 

 

In the third research axis, I studied the effects of elephants on lion foraging 

behaviour through changes in the vegetation structure (environment-mediated trophic 

interaction modification, Figure 4.3). In Chapter 5, I focused on the effects of the long-

term exposure to high elephant densities on woodland structure, species composition and 

functional traits. I first described the dynamics of elephant impacts in 2001, 2008 and 

2015, then assessed if these impacts were linked to species community changes leading 

to functional trait community changes. Finally, I analysed the dynamics of the vegetation 

structure in the 50-200 cm height layer, which is the height zone important for predator-

prey relationships. Data on all woody plant (species, height, crown diameter, and stem 

girth) present in 12 vegetation plots, recorded in 2001, 2008 and 2015, and functional trait 

gathered from plant databases were used for this chapter. In Chapter 6, I finally assessed 

if the habitats impacted by elephants are characterized by a higher visibility and a higher 

distance to a potential ambush site (item behind which lions could hide, e.g. shrub), and 

the role of the presence of elephant impacts, the visibility and the distance to a potential 
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ambush site on the kill site selection by lions. Lion kill site locations were identified thanks 

to GPS radio-collared lions monitored in the framework of Moreangels Mbizah’s DPhil 

work (WildCRU, University of Oxford) between 2014 and 2015. Elephant-induced 

vegetation changes, visibility and distance to a potential ambush site were recorded at 

each kill site, and these data were used for the analyses of this chapter. 

 

The last part of the manuscript discusses the results about the role of elephants in 

some features of the predator-prey relationships of lions, with the limits and the 

perspectives associated to each research axis. A synthesis of the role of elephants in the 

lion trophic interaction, and more generally in the large mammal community is provided. 

Finally, I underline the necessity to consider indirect effects in food webs for the study of 

community structure and functioning. 
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Figure 4: Diagram depicting the different types of indirect effects envisaged to assess the role of 
elephants as modifiers of lion trophic interactions in the three research axes of the thesis. 1) Trait-
mediated trophic interaction modification, with elephants modifying a behavioural trait of the prey. 2) 
A) Exploitative competition (interaction chain) between elephants and other herbivores, leading to a 
decrease of herbivores abundances (and thus predators) in areas with high density of elephants. B) 
Facilitation interaction (represented here as a trait-mediated trophic interaction modification) increasing 
trophic interaction between herbivores and plants affected by elephants, followed by an increase of the 
herbivore abundances (and thus predators) in areas with high elephant density. 3) Environment-
mediated trophic interaction modification, with elephants modifying the vegetation structure, which in 
turn modifies the strength of the predation by lion in habitats modified by elephants.  



GE
NE

RA
L I

NT
RO

DU
CT

IO
N

 

 
 

 
 

 
Fi

gu
re

 5
: R

ep
re

se
nt

at
io

n 
of

 th
e 

di
ffe

re
nt

 ch
ap

te
rs

 o
f t

he
 th

es
is,

 w
ith

 th
e 

di
re

ct
 a

nd
 in

di
re

ct
 e

ffe
ct

s i
nv

es
tig

at
ed

 in
 e

ac
h 

ch
ap

te
r. 



GENERAL INTRODUCTION 

 
28 

References 
Abrams, P. A. (1983). Arguments in favor of higher order interactions. The American Naturalist, 121(6), 

887-891.  

Abrams, P. A. (1995). Implications of dynamically variable traits for identifying, classifying, and 
measuring direct and indirect effects in ecological communities. The American Naturalist, 146(1), 
112-134. 

Abrams, P. A. (1996). Dynamics and interactions in food webs with adaptive foragers. In Food webs (pp. 
113-121). Springer, Boston, MA. 

Abrams, P. A. (2000). The evolution of predator-prey interactions: theory and evidence. Annual Review 
of Ecology and Systematics, 31(1), 79-105. 

Abrams, P. A. (2004). Trait-initiated indirect effects due to changes in consumption rates in simple food 
webs. Ecology, 85(4), 1029-1038. 

Abrams, P. A. (2010). Implications of flexible foraging for interspecific interactions: lessons from simple 
models. Functional Ecology, 24(1), 7-17. 

Arditi, R., Michalski, J., & Hirzel, A. H. (2005). Rheagogies: modelling non-trophic effects in food 
webs. Ecological Complexity, 2(3), 249-258. 

Arsenault, R., & Owen-Smith, N. (2002). Facilitation versus competition in grazing herbivore 
assemblages. Oikos, 97(3), 313-318. 

Beckerman, A., Petchey, O. L., & Morin, P. J. (2010). Adaptive foragers and community ecology: linking 
individuals to communities and ecosystems. Functional Ecology, 24(1), 1-6. 

Begon, M., Harper, J. L., & Townsend, C. R. (1996). The influence of competition on community 
structure. In: Begon, M., Harper, J. L., & Townsend, C. R. (eds.) Ecology: individuals, populations and 
communities. Blackwell Science, Oxford, pp. 775-800. 

Bell, R. H. (1971). A grazing ecosystem in the Serengeti. Scientific American, 225(1), 86-93. 

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change 
on the future of biodiversity. Ecology letters, 15(4), 365-377. 

Berger, J. (2005). Hunting by carnivores and by humans: Is functional redundancy possible and who 
really cares. Large carnivores and the conservation of biodiversity. Island Press, Covello, California, 
316-341. 

Billick, I., & Case, T. J. (1994). Higher order interactions in ecological communities: what are they and 
how can they be detected? Ecology, 75(6), 1529-1543. 

Blanc, J. J., Thouless, C. R., Hart, J. A., Dublin, H. T., Douglas-Hamilton, I., Craig, G. C., & Barnes, R. F. W. 
(2003). African Elephant status report 2002: an update from the African Elephant Database. 
IUCN/SSC/African Elephant Specialist Group, Switzerland. 

Brown, D., Chanakira, R. R., Chatiza, K., Dhliwayo, M., Dodman, D., Masiiwa, M., ... & Zvigadza, S. 
(2012). Climate change impacts, vulnerability and adaptation in Zimbabwe (pp. 1-40). London: 
International Institute for Environment and Development. 

Caro, T. (2005). Antipredator defenses in birds and mammals. University of Chicago Press. 

Case, T. J., & Gilpin, M. E. (1974). Interference competition and niche theory. Proceedings of the 
National Academy of Sciences, 71(8), 3073-3077. 

Chamaillé-Jammes, S., Fritz, H., & Murindagomo, F. (2007). Detecting climate changes of concern in 
highly variable environments: Quantile regressions reveal that droughts worsen in Hwange National 
Park, Zimbabwe. Journal of Arid Environments, 71(3), 321-326. 



GENERAL INTRODUCTION 

 
29 

Chamaillé-Jammes, S., Fritz, H., Valeix, M., Murindagomo, F., & Clobert, J. (2008). Resource variability, 
aggregation and direct density dependence in an open context: the local regulation of an African 
elephant population. Journal of Animal Ecology, 77(1), 135-144. 

Chamaillé-Jammes, S., Valeix, M., Madzikanda, H. & Fritz, H. (2014) Surface Water and Elephant 
Ecology: Lessons from a Waterhole-Driven Ecosystem, Hwange National Park, Zimbabwe. Elephants 
and Savanna Woodland Ecosystems (eds C. Skarpe), J.T. du Toit & S.R. Moe), pp. 118–131. Zoological 
Society of London. 

Clements, F. E. (1916). Plant succession: An analysis of the development of vegetation. Carnegie 
Institute of Washington Publication, Washington, DC. 

Coverdale, T. C., Kartzinel, T. R., Grabowski, K. L., Shriver, R. K., Hassan, A. A., Goheen, J. R., ... & Pringle, 
R. M. (2016). Elephants in the understory: opposing direct and indirect effects of consumption and 
ecosystem engineering by megaherbivores. Ecology, 97(11), 3219-3230. 

Cumming, D.H.M.  (1981) The  management  of  elephant  and  other  large  mammals  in  Zimbabwe. 
Problems in Management of Locally Abundant Wild Mammals. pp. 91–118. Academic Press. 

Dambacher, J. M., & Ramos-Jiliberto, R. (2007). Understanding and predicting effects of modified 
interactions through a qualitative analysis of community structure. The Quarterly review of 
biology, 82(3), 227-250. 

Damiani, C. C. (2003). Reproductive costs of the symbiotic hydroid Hydractinia symbiolongicarpus (Buss 
and Yund) to its host hermit crab Pagurus longicarpus (Say). Journal of Experimental Marine Biology 
and Ecology, 288(2), 203-222. 

Davidson, Z., Valeix, M., Loveridge, A. J., Hunt, J. E., Johnson, P. J., Madzikanda, H., & Macdonald, D. W. 
(2012). Environmental determinants of habitat and kill site selection in a large carnivore: scale 
matters. Journal of Mammalogy, 93(3), 677-685. 

Davies, A. B., Tambling, C. J., Kerley, G. I., & Asner, G. P. (2016). Effects of vegetation structure on the 
location of lion kill sites in African thicket. PloS one, 11(2), e0149098. 

Davison, E. H. (1977). Wankie: The story of a great game reserve. Regal Publishers. 

Dayton, P. K. (1973). Two cases of resource partitioning in an intertidal community: making the right 
prediction for the wrong reason. The American Naturalist, 107(957), 662-670. 

Du Toit, J. T., & Cumming, D. H. (1999). Functional significance of ungulate diversity in African savannas 
and the ecological implications of the spread of pastoralism. Biodiversity & Conservation, 8(12), 
1643-1661. 

Dunham, K. (2015) Aerial Survey of Elephants and Other Large Herbivores in Northwest Matabeleland 
(Zimbabwe) 2014. 

Eloff, F. C. (1973). Water use by the Kalahari lion Panthera leo vernayi. Koedoe, 16(1), 149-154. 

Escarguel, G., Fara, E., Brayard, A., & Legendre, S. (2011). Biodiversity is not (and never has been) a bed 
of roses!. Comptes Rendus Biologies, 334(5-6), 351-359. 

Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W. J., ... & Marquis, R. J. (2011). 
Trophic downgrading of planet Earth. science, 333(6040), 301-306. 

Feener, D. H. (1981). Competition between ant species: outcome controlled by parasitic 
flies. Science, 214(4522), 815-817. 

Fritz, H., & Loison, A. (2006). Large herbivores across biomes. Conservation biology series-
cambridge, 11, 19. 

Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W., & Holt, R. D. (2010). A framework for 
community interactions under climate change. Trends in ecology & evolution, 25(6), 325-331. 



GENERAL INTRODUCTION 

 
30 

Gleason, H. A. (1926). The individualistic concept of the plant association. Bulletin of the Torrey 
botanical club, 7-26. 

Griffith, G. P., Strutton, P. G., & Semmens, J. M. (2018). Climate change alters stability and species 
potential interactions in a large marine ecosystem. Global change biology, 24(1). 

Guerbois, C. (2012) Considérer les aires protégées dans la dynamique des systèmes socio-écologiques 
pour une conservation intégrée et durable de la faune sauvage africaine, 394. 

Gutierrez, J. L., Jones, C. G., Strayer, D. L., & Iribarne, O. O. (2003). Mollusks as ecosystem engineers: 
the role of shell production in aquatic habitats. Oikos, 101(1), 79-90. 

 

Gyimesi, A., Stillman, R. A., & Nolet, B. A. (2010). Cryptic interference competition in swans foraging on 
cryptic prey. Animal Behaviour, 80(5), 791-797. 

Hamilton, W. D. (1971). Geometry for the selfish herd. Journal of theoretical Biology, 31(2), 295-311. 

Hayward, M. W., & Somers, M. (Eds.). (2009). Reintroduction of top-order predators. John Wiley & Sons. 
Hayward, M. W., O’Brien, J., & Kerley, G. I. (2007). Carrying capacity of large African predators: 

predictions and tests. Biological Conservation, 139(1-2), 219-229. 

Hempson, G. P., Archibald, S., Bond, W. J., Ellis, R. P., Grant, C. C., Kruger, F. J., ... & Smit, I. P. (2015). 
Ecology of grazing lawns in Africa. Biological Reviews, 90(3), 979-994. 

Hopcraft, J. G. C., Sinclair, A. R. E., & Packer, C. (2005). Planning for success: Serengeti lions seek prey 
accessibility rather than abundance. Journal of Animal Ecology, 74(3), 559-566. 

IUCN, The IUCN Red List of Species, Version 2012.2, http://www.iucnredlist.org; downloaded April 
2013. 

Jachmann, H., & Bell, R. H. V. (1985). Utilization by elephants of the Brachystegia woodlands of the 
Kasungu National Park, Malawi. African Journal of Ecology, 23(4), 245-258. 

Janssen, A., Pallini, A., Venzon, M., & Sabelis, M. W. (1998). Behaviour and indirect interactions in food 
webs of plant-inhabiting arthropods. Experimental & Applied Acarology, 22, 497–521. 

Jarman, P. (1974). The social organisation of antelope in relation to their ecology. Behaviour, 48(1), 215-
267. 

Johnson, S. N., Mayhew, P. J., Douglas, A. E., & Hartley, S. E. (2002). Insects as leaf engineers: can leaf-
miners alter leaf structure for birch aphids? Functional Ecology, 16(5), 575-584. 

Jones, C. G., Lawton, J. H., & Shachak, M. (1994). Organisms as ecosystem engineers. In Ecosystem 
management (pp. 130-147). Springer, New York, NY. 

Kauffman, M. J., Varley, N., Smith, D. W., Stahler, D. R., MacNulty, D. R., & Boyce, M. S. (2007). Landscape 
heterogeneity shapes predation in a newly restored predator–prey system. Ecology letters, 10(8), 
690-700. 

Keast, A. (1969). Comparisons of the contemporary mammalian faunas of the southern continents. The 
Quarterly review of biology, 44(2), 121-167. 

Kéfi, S., Berlow, E. L., Wieters, E. A., Navarrete, S. A., Petchey, O. L., Wood, S. A., ... & Martinez, N. D. 
(2012). More than a meal… integrating non-feeding interactions into food webs. Ecology 
letters, 15(4), 291-300. 

Kotler, B. P., Brown, J. S., & Mitchell, W. A. (1994). The role of predation in shaping the behavior, 
morphology and community organization of desert rodents. Australian Journal of Zoology, 42(4), 
449-466. 



GENERAL INTRODUCTION 

 
31 

Kusangaya, S., Warburton, M. L., Van Garderen, E. A., & Jewitt, G. P. (2014). Impacts of climate change 
on water resources in southern Africa: A review. Physics and Chemistry of the Earth, Parts A/B/C, 67, 
47-54. 

Lamprey, H. F. (1963). Ecological separation of the large mammal species in the Tarangire Game 
Reserve, Tanganyika. African Journal of Ecology, 1(1), 63-92. 

Latham, R. M. (1952). The fox as a factor in the control of weasel populations. The Journal of Wildlife 
Management, 16(4), 516-517. 

Laundré, J. W., Hernández, L., Medina, P. L., Campanella, A., López-Portillo, J., González-Romero, A., ... 
& Browning, D. M. (2014). The landscape of fear: the missing link to understand top-down and 
bottom-up controls of prey abundance? Ecology, 95(5), 1141-1152. 

Lima, S. L. (1998). Stress and decision making under the risk of predation: recent developments from 
behavioral, reproductive, and ecological perspectives. In Advances in the Study of Behavior (Vol. 27, 
pp. 215-290). Academic Press. 

Lima, S. L. (2002). Putting predators back into behavioral predator–prey interactions. Trends in Ecology 
& Evolution, 17(2), 70-75. 

Lin, Y., & Sutherland, W. J. (2014). Interaction modification effects on ecological networks are affected 
by ratio dependence and network topology. Journal of theoretical biology, 363, 151-157. 

Loarie, S. R., Tambling, C. J., & Asner, G. P. (2013). Lion hunting behaviour and vegetation structure in 
an African savanna. Animal Behaviour, 85(5), 899-906.  

Loveridge, A. J., Hunt, J. E., Murindagomo, F., & Macdonald, D. W. (2006). Influence of drought on 
predation of elephant (Loxodonta africana) calves by lions (Panthera leo) in an African wooded 
savannah. Journal of Zoology, 270(3), 523-530. 

Loveridge, A. J., Valeix, M., Chapron, G., Davidson, Z., Mtare, G., & Macdonald, D. W. (2016). 
Conservation of large predator populations: demographic and spatial responses of African lions to 
the intensity of trophy hunting. Biological Conservation, 204, 247-254. 

Maisels, F., Strindberg, S., Blake, S., Wittemyer, G., Hart, J., Williamson, E. A., ... & Bakabana, P. C. (2013). 
Devastating decline of forest elephants in Central Africa. PloS one, 8(3), e59469. 

Makhabu, S. W., Skarpe, C., & Hytteborn, H. (2006). Elephant impact on shoot distribution on trees and 
on rebrowsing by smaller browsers. Acta oecologica, 30(2), 136-146. 

Martin, P. S. (1984). Prehistoric overkill: the global model. Quaternary extinctions: a prehistoric 
revolution, Tucson: University of Arizona Press, 354-403. 

McNaughton, S. J. (1984). Grazing lawns: animals in herds, plant form, and coevolution. The American 
Naturalist, 124(6), 863-886. 

McNaughton, S. J. (1985). Ecology of a grazing ecosystem: the Serengeti. Ecological monographs, 55(3), 
259-294. 

Miller, T. E., Kerfoot, W. C. (1987). Redefining indirect effects. Predation: Direct and Indirect Impacts on 
Aquatic Communities, Hanover (NH): University Press of New England, 33-37. 

Milliken, T., Emslie, R. H., & Talukdar, B. (2009). African and Asian rhinoceroses–status, conservation 
and trade. In A report from the IUCN Species Survival Commission (IUCN/SSC) African and Asian 
Rhino Specialist Groups and TRAFFIC to the CITES Secretariat pursuant to Resolution Conf (Vol. 9). 

O'connor, N. E., & Donohue, I. A. N. (2013). Environmental context determines multi-trophic effects of 
consumer species loss. Global change biology, 19(2), 431-440. 

Odum, E. P. (1968). Energy flow in ecosystems: a historical review. American Zoologist, 8(1), 11-18. 



GENERAL INTRODUCTION 

 
32 

Ogutu, J. O., Owen-Smith, N., Piepho, H. P., Kuloba, B., & Edebe, J. (2012). Dynamics of ungulates in 
relation to climatic and land use changes in an insularized African savanna ecosystem. Biodiversity 
and Conservation, 21(4), 1033-1053. 

Okali, D., Kowero, G., & Larwanou, M. (2011). Climate change and African forest and wildlife resources. 
Nairobi: African Forest Forum. 

Packer, C., Brink, H., Kissui, B. M., Maliti, H., Kushnir, H., & Caro, T. (2011). Effects of trophy hunting on 
lion and leopard populations in Tanzania. Conservation Biology, 25(1), 142-153. 

Palomares, F., Gaona, P., Ferreras, P., & Delibes, M. (1995). Positive effects on game species of top 
predators by controlling smaller predator populations: an example with lynx, mongooses, and 
rabbits. Conservation Biology, 9(2), 295-305. 

Park, T. (1954). Experimental studies of interspecies competition II. Temperature, humidity, and 
competition in two species of Tribolium. Physiological Zoology, 27(3), 177-238 

Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. 
Evol. Syst., 37, 637-669. 

Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across 
natural systems. Nature, 421(6918), 37-42. 

Périquet, S., Valeix, M., Claypole, J., Drouet-Hoguet, N., Salnicki, J., Mudimba, S., ... & Fritz, H. (2015). 
Spotted hyaenas switch their foraging strategy as a response to changes in intraguild interactions 
with lions. Journal of Zoology, 297(4), 245-254. 

Péron, G., & Altwegg, R. (2015). Twenty-five years of change in southern African passerine diversity: 
nonclimatic factors of change. Global change biology, 21(9), 3347-3355. 

Pfister, C. A., & Hay, M. E. (1988). Associational plant refuges: convergent patterns in marine and 
terrestrial communities result from differing mechanisms. Oecologia, 77(1), 118-129. 

Preisser, E. L., & Bolnick, D. I. (2008). When Predators Don't Eat Their Prey: Nonconsumptive Predator 
Effects on Prey Dynamics1. Ecology, 89(9), 2414-2415. 

Preisser, E. L., Bolnick, D. I., & Benard, M. F. (2005). Scared to death? The effects of intimidation and 
consumption in predator–prey interactions. Ecology, 86(2), 501-509. 

Preisser, E. L., Orrock, J. L., & Schmitz, O. J. (2007). Predator hunting mode and habitat domain alter 
nonconsumptive effects in predator–prey interactions. Ecology, 88(11), 2744-2751. 

Pringle, R. M. (2008). Elephants as agents of habitat creation for small vertebrates at the patch 
scale. Ecology, 89(1), 26-33. 

Prugh, L. R., & Golden, C. D. (2014). Does moonlight increase predation risk? Meta-analysis reveals 
divergent responses of nocturnal mammals to lunar cycles. Journal of Animal Ecology, 83(2), 504-
514. 

Prugh, L. R., Stoner, C. J., Epps, C. W., Bean, W. T., Ripple, W. J., Laliberte, A. S., & Brashares, J. S. (2009). 
The rise of the mesopredator. Bioscience, 59(9), 779-791. 

Pyare, S., & Berger, J. (2003). Beyond demography and delisting: ecological recovery for Yellowstone's 
grizzly bears and wolves. Biological Conservation, 113(1), 63-73. 

Riggio, J., Jacobson, A., Dollar, L., Bauer, H., Becker, M., Dickman, A., ... & Lichtenfeld, L. (2013). The size 
of savannah Africa: a lion’s (Panthera leo) view. Biodiversity and Conservation, 22(1), 17-35. 

Ripple, W. J., Estes, J. A., Beschta, R. L., Wilmers, C. C., Ritchie, E. G., Hebblewhite, M., ... & Schmitz, O. 
J. (2014). Status and ecological effects of the world’s largest carnivores. Science, 343(6167), 
1241484. 



GENERAL INTRODUCTION 

 
33 

Ripple, W. J., Newsome, T. M., & Kerley, G. I. (2016). Does trophy hunting support biodiversity? A 
response to Di Minin et al. Trends Ecol. Evol, 31, 495-496. 

Ritchie, E. G., & Johnson, C. N. (2009). Predator interactions, mesopredator release and biodiversity 
conservation. Ecology letters, 12(9), 982-998. 

Sankaran, M., Hanan, N. P., Scholes, R. J., Ratnam, J., Augustine, D. J., Cade, B. S., ... & Ardo, J. (2005). 
Determinants of woody cover in African savannas. Nature, 438(7069), 846.  

Schmitt, M. H., Stears, K., & Shrader, A. M. (2016). Zebra reduce predation risk in mixed-species herds 
by eavesdropping on cues from giraffe. Behavioral Ecology, 27(4), 1073-1077. 

Schmitz, O. J., Adler, F. R., & Agrawal, A. A. (2003). Linking individual-scale trait plasticity to community 
dynamics. Ecology, 84(5), 1081-1082. 

Schoener, T. W. (1983). Field experiments on interspecific competition. The american naturalist, 122(2), 
240-285. 

Sih, A., Crowley, P., McPeek, M., Petranka, J., & Strohmeier, K. (1985). Predation, competition, and prey 
communities: a review of field experiments. Annual Review of Ecology and Systematics, 16(1), 269-
311. 

Simon, N. (1962). Between the sunlight and the thunder: The wild life of Kenya. Houghton Mifflin. 

Sinclair, A. R. E., Mduma, S., & Brashares, J. S. (2003). Patterns of predation in a diverse predator–prey 
system. Nature, 425(6955), 288-290. 

Sinclair, A. R. E., Metzger, K., Brashares, J. S., Nkwabi, A., Sharam, G., & Fryxell, J. M. (2010). Trophic 
cascades in African savanna: Serengeti as a case study. Trophic Cascades: Predators, Prey and the 
Changing Dynamics of Nature, 255-274. 

Stachowicz, J. J. (2001). Mutualism, facilitation, and the structure of ecological communities: positive 
interactions play a critical, but underappreciated, role in ecological communities by reducing 
physical or biotic stresses in existing habitats and by creating new habitats on which many species 
depend. AIBS Bulletin, 51(3), 235-246. 

Tambling, C. J., Minnie, L., Adendorff, J., & Kerley, G. I. (2013). Elephants facilitate impact of large 
predators on small ungulate prey species. Basic and Applied Ecology, 14(8), 694-701. 

Terry, J. C. D., Morris, R. J., & Bonsall, M. B. (2017). Trophic interaction modifications: an empirical and 
theoretical framework. Ecology letters, 20(10), 1219-1230. 

Thrash, I., Theron, G. K., & Bothma, J. D. P. (1995). Dry season herbivore densities around drinking 
troughs in the Kruger National Park. Journal of Arid Environments, 29(2), 213-219. 

Tilman, D. (1982). Resource Competition and Community Structure. Princeton, NJ: Princeton University 
Press. 

Turpie, T. M. (1994). Patterns of distribution, diversity and endemism of larger African mammals. 
African Zoology, 29(1), 19-32. 

Ulanowicz, R.E., Puccia, C.J., 1990. Mixed trophic impacts in ecosystems. Coenoses 5 (1), 7–16 

Valeix, M. (2011). Temporal dynamics of dry-season water-hole use by large African herbivores in two 
years of contrasting rainfall in Hwange National Park, Zimbabwe. Journal of Tropical Ecology, 27(2), 
163-170. 

Valeix, M., Chamaillé-Jammes, S., & Fritz, H. (2007). Interference competition and temporal niche 
shifts: elephants and herbivore communities at waterholes. Oecologia, 153(3), 739-748.  

Valeix, M., Chamaillé-Jammes, S., Loveridge, A. J., Davidson, Z., Hunt, J. E., Madzikanda, H., & 
Macdonald, D. W. (2011a). Understanding patch departure rules for large carnivores: lion 



GENERAL INTRODUCTION 

 
34 

movements support a patch-disturbance hypothesis. The American Naturalist, 178(2), 269-275. 

Valeix, M., Fritz, H., Canévet, V., Le Bel, S., & Madzikanda, H. (2009a). Do elephants prevent other 
African herbivores from using waterholes in the dry season ? Biodiversity and conservation, 18(3), 
569-576. 

Valeix, M., Fritz, H., Loveridge, A. J., Davidson, Z., Hunt, J. E., Murindagomo, F., & Macdonald, D. W. 
(2009b). Does the risk of encountering lions influence African herbivore behaviour at 
waterholes? Behavioral Ecology and Sociobiology, 63(10), 1483-1494. 

Valeix, M., Fritz, H., Matsika, R., Matsvimbo, F., & Madzikanda, H. (2008). The role of water abundance, 
thermoregulation, perceived predation risk and interference competition in water access by African 
herbivores. African Journal of Ecology, 46(3), 402-410. 

Valeix, M., Fritz, H., Sabatier, R., Murindagomo, F., Cumming, D., & Duncan, P. (2011b). Elephant-
induced structural changes in the vegetation and habitat selection by large herbivores in an African 
savanna. Biological Conservation, 144(2), 902-912.  

Valeix, M., Hemson, G., Loveridge, A. J., Mills, G., & Macdonald, D. W. (2012). Behavioural adjustments 
of a large carnivore to access secondary prey in a human-dominated landscape. Journal of Applied 
Ecology, 49(1), 73-81. 

Valeix, M., Loveridge, A. J., Chamaillé-Jammes, S., Davidson, Z., Murindagomo, F., Fritz, H., & 
Macdonald, D. W. (2009c). Behavioral adjustments of African herbivores to predation risk by lions: 
spatiotemporal variations influence habitat use. Ecology, 90(1), 23-30. 

Valeix, M., Loveridge, A. J., Davidson, Z., Madzikanda, H., Fritz, H., & Macdonald, D. W. (2010). How key 
habitat features influence large terrestrial carnivore movements: waterholes and African lions in a 
semi-arid savanna of north-western Zimbabwe. Landscape Ecology, 25(3), 337-351. 

Valls Fox, H. (2015). To drink or not to drink? The influence of resource availability on elephant foraging 
and habitat selection in a semi-arid savanna. PhD. 

Van der Putten, W. H., Macel, M., & Visser, M. E. (2010). Predicting species distribution and abundance 
responses to climate change: why it is essential to include biotic interactions across trophic 
levels. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1549), 2025-2034. 

Vandewalle, M.E. & Alexander, K.A. (2014) Guns, Ivory and Diseas: Past Influences on the Present Status 
of Botswana’s Elephants and their Habitats. Elephants and Savanna Woodland Ecosystems, First Edit 
(eds C. Skarpe), J.T. du Toit & S.R. Moe), Zoological Society of London. 

Van Langevelde, F., Van De Vijver, C. A., Kumar, L., Van De Koppel, J., De Ridder, N., Van Andel, J., ... & 
Prins, H. H. (2003). Effects of fire and herbivory on the stability of savanna ecosystems. Ecology, 
84(2), 337-350. 

Vesey-FitzGerald, D. F. (1960). Grazing succession among East African game animals. Journal of 
Mammalogy, 41(2), 161-172. 

Werner, E. E., & Peacor, S. D. (2003). A review of trait-mediated indirect interactions in ecological 
communities. Ecology, 84(5), 1083-1100. 

Werner, E. E., Gilliam, J. F., Hall, D. J., & Mittelbach, G. G. (1983). An experimental test of the effects of 
predation risk on habitat use in fish. Ecology, 64(6), 1540-1548. 

Western, D., Groom, R., & Worden, J. (2009). The impact of subdivision and sedentarization of pastoral 
lands on wildlife in an African savanna ecosystem. Biological Conservation, 142(11), 2538-2546. 

White, J. D., Sarnelle, O., & Hamilton, S. K. (2017). Unexpected population response to increasing 
temperature in the context of a strong species interaction. Ecological Applications. 

Williamson, B. R. (1975). Seasonal distribution of elephant in Wankie National Park. Arnoldia, 11, 1-16. 



GENERAL INTRODUCTION 

 
35 

Wilson, D.E. & Mittermeier, R.A. eds (2011). Handbook of the Mammals of the World. Vol 2. Hoofed 
Mammals. Lynx Edicions, Barcelona. 

Wittemyer, G., Northrup, J. M., Blanc, J., Douglas-Hamilton, I., Omondi, P., & Burnham, K. P. (2014). 
Illegal killing for ivory drives global decline in African elephants. Proceedings of the National 
Academy of Sciences, 111(36), 13117-13121. 

Woodroffe, R., Thirgood, S., & Rabinowitz, A. (Eds.). (2005). People and wildlife, conflict or co-
existence? (No. 9). Cambridge University Press. 

Wootton, J. T. (1992). Indirect effects, prey susceptibility, and habitat selection: impacts of birds on 
limpets and algae. Ecology, 73(3), 981-991. 

Wootton, J. T. (1993). Indirect effects and habitat use in an intertidal community: interaction chains 
and interaction modifications. The American Naturalist, 141(1), 71-89. 

Wootton, J. T. (1994). The nature and consequences of indirect effects in ecological 
communities. Annual review of ecology and systematics, 25(1), 443-466. 

Wootton, J. T. (2002). Indirect effects in complex ecosystems: recent progress and future 
challenges. Journal of Sea Research, 48(2), 157-172.

  



AXIS 1

 
36 

 

 

 

AXIS 1.  

Effect of elephants on herbivore’s  
behaviour at waterholes 

« Le coassement des grenouilles n'empêche pas l'éléphant de boire. » 



AXIS 1 

 
37 

Proverbe africain
 

Chapter 1: Interspecific interference competition at the resource patch scale: do 
large herbivores spatially avoid elephants while accessing water? 
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Abstract 
1. Animals may anticipate and try to avoid, at some costs, physical encounters with other 

competitors. This may ultimately impact their foraging distribution and intake rates. Such 
cryptic interference competition is difficult to measure in the field, and extremely little is 
known at the interspecific level.  

2. We tested the hypothesis that smaller species avoid larger ones because of potential costs 
of interference competition and hence expected them to segregate from larger 
competitors at the scale of a resource patch. We assessed fine-scale spatial segregation 
patterns between three African herbivore species (zebra Equus quagga, kudu Tragelaphus 
strepsiceros and giraffe Giraffa camelopardalis) and a megaherbivore, the African elephant 
Loxodonta africana, at the scale of water resource patches in the semi-arid ecosystem of 
Hwange National Park, Zimbabwe.  

3. Nine waterholes were monitored every two weeks during the dry season of a drought year, 
and observational scans of the spatial distribution of all herbivores were performed every 
15 min. We developed a methodological approach to analyse such fine-scale spatial data.  

4. Elephants increasingly used waterholes as the dry season progressed, as did the probability 
of co-occurrence and agonistic interaction with elephants for the three studied species. All 
three species segregated from elephants at the beginning of the dry season, suggesting a 
spatial avoidance of elephants and the existence of costs of being close to them. However, 
contrarily to our expectations, herbivores did not segregate from elephants the rest of the 
dry season but tended to increasingly aggregate with elephants as the dry season 
progressed.  

5. We discuss these surprising results and the existence of a trade-off between avoidance of 
interspecific interference competition and other potential factors such as access to quality 
water, which may have relative associated costs that change with the time of the year. 

 
Keywords: Loxodonta africana; asymetric interaction; contest competition; distance analysis; 
megaherbivore; savanna; spatial-constrained null model; waterhole use 
 



Chapter 1: Interspecific interference competition at the resource patch scale:  
do large herbivores spatially avoid elephants while accessing water? 

 
38 

Introduction 
Interspecific interference competition, that is when a species reduces the ability of other 

species to make use of a shared resource through its presence or agonistic interactions, is 

ubiquitous in nature (Amarasekare 2002). It has been documented in a wide range of taxa (e.g. 

Ziv et al. (1993) for rodents, Caro & Stoner (2003) for large mammalian carnivores, Elliott (2003) 

for insects, Razgour, Korine & Saltz (2011) for bats, Colman et al. (2012) for large mammalian 

herbivores) and can impact individual behaviour (e.g. spatial distribution – Berger & Gese 2007; 

Broekhuis et al. 2013), individual fitness (e.g. Eccard & Ylönen 2002), species coexistence (e.g. 

Case & Gilpin 1974; Amarasekare 2002) and character displacement (e.g. Grether et 

al. 2009, 2013). In addition to the risk of injury or death during agonistic interactions (e.g. 

Palomares & Caro 1999; Berger-Tal, Mukherjee & Kotler 2009), interference competition can 

carry costs that are extremely difficult to evaluate in the field. This is the case when interference 

competition leads to reduced intake rates (Abramsky, Rosenzweig & Subach 2001) due to 

apprehension (i.e. attention redirected from foraging to predator/competitor detection in a 

manner that lowers both risk and feeding rate, Kotler, Brown & Dall 2002) or to a reduced access 

to resources resulting from avoidance behaviour (a process known as cryptic interference 

competition as such responses are often difficult to observe in the field, Gyimesi, Stillman & 

Nolet 2010). The need to account for the possibility that animals anticipate and try to avoid, at 

some costs, physical encounters with other competitors when studying intake rates and 

foraging distributions has recently been highlighted (Bijleveld, Folmer & Piersma 2012). This 

may indeed underlie the spatial distribution of animals and their foraging tactics at the 

community level, and while this has started to be studied at the landscape scale (Vanak & 

Gompper 2010), and at the inter-patches scale (Razgour, Korine & Saltz 2011), extremely little 

is known at the finer scale of the resource patch. 

Interspecific interactions are often asymmetrical, and smaller species often lose 

aggressive contests for resources with larger species that are often characterized by stronger 

traits (e.g. strength, weapons (Peters 1983), see also Durant (2000) for large mammalian 

carnivores, Cioni & Gherardi (2004) for decapods, Grangier & Lester (2011) for ants and wasps). 

Therefore, smaller subordinate species are expected to adjust their behaviour to decrease the 

risk of interference competition with dominant species. Avoidance of dominant competing 

species can occur at both spatial (Durant 2000; Tannerfeldt, Elmhagen & Angerbjörn 2002) and 

temporal scales (Ziv et al. 1993; Valeix, Chamaillé-Jammes & Fritz 2007). However, overall 



Chapter 1: Interspecific interference competition at the resource patch scale:  
do large herbivores spatially avoid elephants while accessing water? 

 
39 

spatial and temporal avoidance of interference competitors may prevent animals from using 

very valuable patches of resources. Thus, fine spatio-temporal scale responses should play a 

crucial role in adjusting the trade-off between avoidance of competitors and access to high-

quality resources. This fine-scale spatio-temporal avoidance of interference competition has yet 

rarely been explored in the field at the interspecific level. 

Here, we assessed fine-scale spatial segregation patterns between three African herbivore 

species and a megaherbivore, the African elephant Loxodonta africana, which is expected to 

dominate all interactions with other herbivores (Owen-Smith 1988), at the scale of a water 

resource patch. To our knowledge, this intra-patch scale has never been investigated. In arid 

and semi-arid savannas, surface water resources become scarcer as the dry season progresses 

and are vital resource patches for water-dependent species survival. This leads to a high level of 

herbivore aggregation around the remaining water sources at the end of the dry season 

(Valeix 2011), which can lead to interference behaviour. Behavioural interactions between 

elephants and other species sometimes lead to other herbivores being chased away from the 

waterhole area (Valeix, Chamaillé-Jammes & Fritz 2007), and other more extreme interactions 

can even be the cause of injuries or fatalities, but these are extremely rare (M. Valeix, pers. obs., 

see also Slotow & van Dyck 2001). Hence, herbivores may anticipate and try to avoid being close 

to elephants. Understanding the impact of elephant presence and abundance on other 

herbivore species at key resource patches, such as waterholes, is crucial in a context where 

elephant populations have reached high densities in several southern African ecosystems 

causing concern about their influence on other forms of biodiversity and questioning adequate 

management options (e.g. Van Aarde & Jackson 2007; Kerley et al. 2008). Manipulating surface 

water distribution has been suggested as an efficient tool to manage high elephant population 

densities (Chamaillé-Jammes, Valeix & Fritz 2007; Hilbers et al. 2015). In this study, we assessed 

the extent to which cryptic interspecific interference competition between elephants and other 

herbivores contributes to animal spatial distribution at waterholes and consequently may 

influence access to water when this resource becomes crucial. The study took place in Hwange 

National Park, Zimbabwe, an ecosystem characterized by scarce water sources in the dry season 

(Chamaillé-Jammes, Fritz & Murindagomo 2007a) and one of the largest African elephant 

populations (Chamaillé-Jammes et al. 2008). To assess the fine-scale segregation spatial 

patterns between elephants and other herbivores, we recorded the distribution of elephants 

and other herbivores around waterholes, and without previous reference studies, we also 
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developed a methodological approach to analyse such fine-scale spatial data on 

aggregation/segregation patterns with short term dynamics as well as seasonal changes. We 

tested the hypothesis that interference competition with elephants is a key driver of herbivore 

spatial distribution at waterholes and herbivores avoid elephants once at waterholes. We 

predicted that as the dry season progresses and surface water becomes scarcer, (i) elephants 

should increasingly use waterholes, (ii) the co-occurrence between elephants and other 

herbivores at waterholes as well as the frequency of agonistic interactions between them should 

increase, and (iii) other herbivores should spatially segregate from elephants around waterholes 

and this pattern should increase throughout the dry season. 
 

Materials and methods 
Study site 

The study was carried out in Hwange National Park in the north-western part of 

Zimbabwe. This ecosystem covers ~15 000 km² of semi-arid dystrophic savanna, mostly on 

nutrient-poor Kalahari sands. Most rain falls between November and April. The long-term 

mean annual rainfall is 600 mm but is highly variable (CV ≈ 25%). The study took place during 

the dry season (i.e. from May until the first rains in October) of a drought year (2003) which 

received only 474 mm of annual rainfall and followed below average rainfall in 2002 with 

363 mm. Hence, the study was carried out under extremely dry conditions. During the dry 

season, water is only available at artificial waterholes as natural waterholes dry up and 

appears to be a limiting resource as the increase in the number of artificially pumped 

waterholes has led to the increase of almost all herbivore populations (Davison 1967). Animals 

gather at high densities near waterholes in the dry season (Valeix 2011), and elephants 

represent 80–90% of the herbivore biomass (Fritz et al. 2011). Water depletion at the scale of 

a waterhole is reduced in the dry season when ground water is actively pumped into water 

troughs that then fill the artificial waterholes (Appendix S1a, Supporting Information). Thanks 

to this quasi-permanent renewal of surface water at the end of the dry season, which is the 

critical period for herbivores in terms of water acquisition, Hwange National Park is an ideal 

site to study interference mechanisms. 
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Figure 1. Map of the distribution of artificial waterholes (dots) in Hwange National Park, Zimbabwe, showing the 
location of the monitored artificial waterholes (triangles) for this study.  
 
Data 

From May to October 2003, we monitored every two weeks nine artificial waterholes 

(average diameter of a waterhole: 100 m) during the daytime (from 6 h until 18 h), in the 

northern part of Hwange National Park (Fig. 1). This represents 1296 h of observation. There 

were few herbivore observations at these artificial waterholes at the beginning of the dry 

season, that is in May and June. We pooled data from these 2 months as they were 

characterized by similar climatic conditions and natural water was still available in the 

landscape. We thus have five periods (one-2-month and four-1-month) with similar number 

of observations for the subsequent analyses.  
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During the waterhole monitoring, each 

herbivore group entering the waterhole area 

(defined as a ~200-m-radius circle around the 

waterhole) was recorded (species and group 

size) as well as all agonistic interactions 

between elephants and other herbivores 

(ranging from intimidation with trumpeting to 

an aggressive chase). Observational scans of 

the spatial distribution of all herbivores in the 

waterhole area (scans hereafter) were 

performed every 15 min in order to describe 

the spatial distribution of herbivores and 

ultimately assess the potential for cryptic 

interference competition. At each scan, the 

location of animals was recorded on a grid 

composed of 24 cells representing the 

waterhole area (Fig. 2 a). For each waterhole, 

the cells where the water trough was located 

were recorded. Observations were done from 

a reasonable distance from the waterhole not 

to disturb the animals (either from a viewing 

platform, a tree platform or a vehicle parked 

at a distance) but not further than 200 m to 

respect of good visibility condition for 

observers. The statistical unit considered was 

the group of individuals of the same species in 

the same cell (group hereafter). The study 

focused on the spatial response of three 

herbivore species to the presence and 

abundance of elephants: giraffe (Giraffa 

camelopardalis – average body 

mass = 750 kg), greater kudu (Tragelaphus 

Figure 2. Spatial sampling design. (a) Representation 
of the waterhole area divided into four concentric 
circles: (i) the waterhole itself (cell 0 in pale blue at the 
centre) where there was most of the time no herbivore 
except elephants that regularly bath, (ii) the water-
access area (cells 1–8, between 0 and 5 m from the 
waterhole edge) which represents the area where 
herbivores come into contact with water and can 
drink, (iii) the intermediate area (cells 9–16, between 
5 and 55 m from the waterhole edge) and (iv) the area 
further away from the waterhole (cells 17–24, 
between 55 and 205 m from the waterhole edge). For 
the third and fourth circle, distances were preliminary 
measured in the field for all study waterholes and 
specific items in the landscape were used to assess the 
limits between the different circles of the grid (e.g. a 
bush, a big hole, a termite mound). (b) Representation 
of a portion of the weighted spatial graph. Weights 
were assigned as the distances computed using the 
average size of the study waterholes. 
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strepsiceros – average body mass = 135 kg) and plains zebra (Equus quagga – average body 

mass = 200 kg). We restricted our analyses to these three species because they were the three 

only species for which the sample size in co-occurrence with elephants was reasonable for 

each month and overall allowed for a statistical test of their spatial pattern related to elephant 

location throughout the dry season. In the dry season, zebra, which is a grazer, is more water 

dependent than the two other species, which are browsers (Western 1973). 
 

Temporal and spatial dynamics of waterhole use by elephants 
 Three variables were used to assess the seasonal dynamics of waterhole use by 

elephants: (i) the number of elephants that visited a waterhole per day, (ii) the percentage of 

scans with elephants, indicating the amount of time that elephants were present, and (iii) the 

number of elephants present for each scan, indicating the level of elephant local abundance. 

We then studied the seasonal dynamics of three other variables describing the spatial use of 

waterholes by elephants: (i) the number of elephants in the cells 0–8 for each scan, indicating 

the abundance of elephants potentially drinking or bathing, (ii) the proportion of the cells 0–

24 occupied by elephants, indicating the level of homogeneity in the spatial use of the 

waterhole area by elephants, and (iii) the proportion of the cells 0–8 occupied by elephants, 

indicating the level of homogeneity in the spatial use of the water-access area by elephants. 
 

Temporal dynamics of co-occurrence and interactions between elephants and herbivores 
 We investigated the co-occurrence of elephants and other herbivores at waterholes 

by performing for each study species a logistic regression (dependent variable was 1 for 

situations of co-occurrence and 0 for situations with no elephant) to test for the increased 

probability of co-occurrence with elephants at waterholes as the dry season progresses, 

assuming independence between scans. We then assessed the seasonal dynamics of agonistic 

behaviours of elephants towards other herbivores by calculating the number of aggressive 

interactions per month standardized by the number of scans with co-occurrences. 
 

Spatial response of herbivores to waterhole use by elephants 
A least-cost path approach 
 We considered the distance between a herbivore and an elephant as an inversed proxy 

of the interaction risk with elephants: the closer the herbivore to an elephant, the riskier the 

situation in terms of a costly interaction. We modelled the waterhole area using a weighted 
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spatial graph (Dale & Fortin 2010) where each cell corresponds to a node (Fig. 2a). Edges were 

defined using a queen specification (i.e. polygons that shared common boundaries and 

vertices) and weighted by the associated Euclidean distances between the centres of cells 

(Fig. 2b). We then computed distances among nodes (i.e. cells) as the least-cost path on the 

weighted spatial graph using the Dijsktra's algorithm (‘igraph’ package for r statistical 

software 3.3.0, The R Foundation for Statistical Computing, Vienna, Austria, http://www.r-

project.org). We thus obtained a spatial distance matrix containing the length of least-cost 

paths for all pairs of cells. For each scan, this distance matrix was used to compute distances 

between herbivores and elephants. The observed distance of interest in this study and 

noted Dobs is, for scans with one group of the study herbivore species, the distance connecting 

herbivores to the nearest group of elephants. For scans with several groups of the study 

herbivore species, we calculated the mean minimum observed distance (Dobs) as the average 

of all groups’ minimum observed distance weighted by the number of individuals of each 

group of herbivores (Fig. 3a). For each scan with co-occurrence between elephants and the 

other study herbivores, we thus obtained only one value of observed distance (Dobs), whatever 

the number of groups on the scan. This value represented the average behaviour of the study 

herbivore species in the context of the considered scan. 

 

Spatially constrained null model 
The observed intensity of spatial aggregation/segregation for a given scan was 

evaluated by comparing the statistics Dobs to values obtained under the null hypothesis of 

random distribution of herbivores. We developed a spatially constrained procedure that 

randomizes the position of the herbivores relative to the elephants but preserves both the 

locations of elephant groups and the spatial configuration of herbivores (hence the potential 

for intraspecific interactions) (Fig. 3b). Hence, instead of complete randomization of cells, we 

rotated and translated the cells occupied by the study herbivore groups but did not modify 

the spatial distribution of elephants (see Fig. 3c–e for a detailed description of the procedure). 

Depending on the observed spatial configuration of herbivores, this randomization procedure 

can provide up to 24 random values (eight rotations and two translations) and allows to 

compute the mean (Drandom-MEAN), maximum (Drandom-MAX) and minimum (Drandom-MIN) possible 

values that could be obtained if herbivores distribute randomly. We repeated this procedure 

for all scans.  
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Figure 3. Illustration of the different steps to calculate the spatial aggregation–segregation index. The occupation 
of cells is represented as follows : empty cells are white, cells with elephants are grey and cells with zebra are 
black striped. (a) For each group of the study herbivore species (here zebra), the least-cost path to the closest 
group of elephants is calculated with the Dijsktra's algorithm (green lines), and the mean of these paths 
corresponds to the observed distance (Dobs) for this scan. (b) For the randomization procedure, we applied a 
combination of rotations (black arrows) and translations (red arrows) when possible. Green lines represent the 
new least-cost paths calculated under this randomized scenario. Translations are not always performed in order 
to preserve the spatial configuration between groups (hence the potential intraspecific interactions). In (c), 
zebras occupy only one circle, two translations (red arrow) are thus possible without breaking the spatial 
configuration, whereas in (d), they occupy two circles and only one translation is allowed. If we perform another 
translation, the spatial configuration of the zebra groups is not respected. Finally, in situation (e) where zebras 
occupy the two extreme circles, no translation is possible and only eight rotations were then performed. (f) There 
was a need to take into account the spatial availability in our approach. While in (a) and (f), zebras are at the 
same distance from a group of elephants, the context is different: in (a), zebras are close to the elephants but 
have the possibility to occupy a large portion of the waterhole area remaining far enough from the elephants, 
whereas in (f) they have no other choice than being close to an elephant group, leading to different biological 
interpretations. 
 
Analysis of spatial aggregation/segregation patterns between herbivores and elephants 

To assess variations in aggregation/segregation patterns over the dry season, results 

were compiled per month (but detailed results for each scan characterized by co-occurrence 

are provided in Appendix S2). As the range of possible values (defined by math formula and 

math formula) varies between scans, a value of Dobs has no meaning per se (compare Fig. 3a 

and f for an illustration). We thus developed a spatial aggregation/segregation index 

(hereafter distance index) that rescales the statistics Dobs according to the range of possible 

values so that it was possible to compare and compile results among scans.  
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Hence, for each scan, we computed: 

 
Iobs is the observed distance index whereas Irandom is the expected value under the null 

hypothesis for a given scan. The index ranges from −1 (when Dobs = Drandom-MAX; i.e. maximal 

segregation) to 1 (when Dobs = Drandom-MIN; i.e. maximal aggregation). Changes in this index over 

the course of the dry season would indicate a modification of the aggregation / segregation 

behaviour. For instance, an increased avoidance of elephants by herbivores as the dry season 

progresses would imply Iobs to decrease and tend to −1 in a more pronounced way than Irandom. 

As the response of herbivores can be elephant-density-dependent, we also developed an 

approach to take into account the average density of elephants around the herbivore group 

rather than the distance to the closest elephant group (Appendix S3 for details). Results 

provided by both approaches were similar and thus only results on distance are presented 

hereafter (Appendix S3 for the results on the impact of the local density of elephants). 

 

Ranks and probability combination test of Stouffer 
The statistical significance of the observed segregation/aggregation patterns was 

evaluated for each month and for each of the three species. For each scan, we determined 

the rank of the observed distance (Dobs) among all random distances (from Drandom-

MIN to Drandom-MAX) computed for the scan. We then calculated a P-value as the probability 

among these random distances to be equal or superior to the observed distance. Finally, we 

used the unweighted Z-transform test (Stouffer et al. 1949; Whitlock 2005) to combine the P-

values obtained in a given month for a given species. As the Fisher's combined probability test, 

this test allows combining the P-values from k independent tests of the same null hypothesis 

to calculate a new statistic test that provides ‘the significance of the aggregate’ of 

the k independent tests. 
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Results 
 

Temporal and spatial dynamics of waterhole use by elephants 
We observed two phases in the dynamics of elephant use of waterholes. The first 

phase of the dry season corresponded to a strong increase in the use of waterholes by 

elephants with the daily number of elephants per waterhole more than tripling between May–

June and August, with, respectively (mean ± SE), 126·3 ± 34·6 elephants and 439·6 ± 137·7 

elephants (Fig. 4a). The second phase of the dry season (between August and October) 

corresponded to a plateau with a mean of 350 ± 56 elephants per day at a waterhole, which 

is significantly higher than during the first phase (KS test = 0·239, P < 0·05). Similar patterns 

were observed for the dynamics of the percentage of scans with elephants with nearly 50% of 

the scans with elephants between August and October (Fig. 4b, χ2 = 148·85, P < 0·001). 

Regarding the number of elephants per scan, it started with 17·5 ± 1·3 elephants per scan in 

May–June, peaked in August with 31·5 ± 2·0 elephants per scan and decreased after until 

22·4 ± 1·4 elephants per scan in October (Fig. 4c). Once again the second phase is significantly 

higher than the first phase concerning the number of elephants per scan (KS 

test = 0·117, P < 0·001). Although there were more elephants per scan as the dry season 

progressed, the elephant number in the water-access area of waterholes (cells 0–8) did not 

increase (Fig. 4d). In addition, the proportion of cells occupied, and therefore, the surface area 

used by elephants, did not increase neither in the entire waterhole area (cells 0–24) nor in the 

water-access area (cells 0–8) (Fig. 4e,f). 

 

Temporal dynamics of co-occurrence and interactions between elephants and herbivores 
The probability of co-occurrence with elephants significantly increased over the dry 

season for the three study species (zebra: β = 0·437, P < 0·001; kudu: β = 0·397, P < 0·001; 

giraffe: β = 0·278, P < 0·001; see also Fig. 5a–c, respectively). In addition, there was an 

increase in the percentage of agonistic interactions between elephants and other herbivores 

reaching almost one-fifth of the scans characterized by co-occurrence between elephants and 

other herbivores at the end of the dry season (Fig. 5d). 
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Figure 4. Dry season dynamics of waterhole use by elephants in Hwange National Park, Zimbabwe, with (a) the 
mean elephant number (± SE) per day per waterhole, (b) the percentage of scans with elephants, (c) the mean 
elephant number (± SE) in the waterhole area per scan, (d) the mean elephant number (± SE) in the water-access 
area (cells 0–8) per scan, (e) the percentage (± SE) of all cells (0–24) occupied by elephants, (f) the percentage (± 
SE) of cells in the water-access area (0–8) occupied by elephants. Red numbers indicate the number of surveys 
for (a), the total numbers of scans for (b) and the number of scans with elephants for (c–f). 
 

 
Figure 5. Dry season dynamics of the percentage of scans with co-occurrence between elephant and (a) zebra, 
(b) kudu and (c) giraffe at waterholes in Hwange National Park, Zimbabwe. Red numbers for (a), (b) and (c) 
indicate the total number of scans. (d) Dry season dynamics of the percentage of scans during which there was 
an aggressive interaction (charge, intimidation, etc.) from elephants against the other herbivores. Red numbers 
for (d) indicate the number of scans with co-occurrence. 
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Spatial response of herbivores to waterhole use by elephants 
All three study species tended to segregate from elephants at the beginning of the dry 

season (see comparison of the median of Iobs with the median of Irandom in Fig. 6), and this 

pattern was significant for zebras in May–June only (Stouffer test S = 2·95; P = 0·002; Fig. 6a). 

Contrarily to our expectations, herbivores did not segregate from elephants the rest of the dry 

season but tended to increasingly aggregate with elephants as the dry season progressed (see 

changes in the median of Iobs and changes in the statistics of Stouffer test). This was 

particularly the case for zebra and kudu for which the median of the observed distance index 

increased from Iobs = −0·31 for zebras and −0·41 for kudus in May–June to 0·62 for zebras and 

0·60 for kudus in October (Fig. 6a,b). The distribution of all the observed distance indices with 

their associated expected value under the null hypothesis of random distribution of herbivores 

are provided for each month and each study species in Appendix S2. Information on the 

geographic distance between herbivores and elephants are also provided in Appendix S4. 

 
Figure 6. Dry season dynamics of the spatial aggregation/segregation patterns between herbivores and 
elephants at waterholes in Hwange National Park, Zimbabwe. White boxplots represent the distribution of the 
observed distance index Iobs. Grey boxplots represent the distribution of the random distance index Irandom from 
the null models. Red numbers indicate the number of scans with co-occurrence. S and P-values are the statistics 
of Stouffer tests for segregation patterns, and stars indicate results which are significant at the P-value of 0·05. 
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Discussion 
Use of waterholes by elephants: a heterogeneous spatial use of the waterhole area 

In our study, which was during a drought, elephants increasingly used waterholes as the 

dry season progressed. Not only were elephants more numerous at a given time (higher 

elephant abundance per scan), but they also used a larger time window (more scans with 

elephants). The fact that elephants exhibited a larger temporal niche at the end of the dry 

season corroborates previous findings at the inter-annual scale (Valeix, Chamaillé-Jammes & 

Fritz 2007), and suggests that elephants, by widening their temporal niche at waterholes, may 

attempt to avoid intraspecific competition when dry conditions lead to increased elephant 

abundance. Interestingly, our results revealed that this growing number of elephants at 

waterholes is associated neither with an increase in their use of the entire waterhole area (cells 

1–24), nor with an increase in their use of the waterhole access area (cells 1–8), which indicates 

that elephants aggregate in some specific sectors of the waterhole area. Because animals are 

expected to be choosier if there is a strong heterogeneity in the resource quality (Sih & Del 

Giudice 2012), we believe our results could be explained by a strong heterogeneity in the quality 

of the drinking water between water troughs (where ground water is actively pumped) and the 

waterhole, and within the waterhole depending on how far animals drink from the area where 

the pumped water flows from the water troughs to the waterhole. Elephants are indeed known 

to be sensitive to the quality of the water they drink and, for example, seem to be actively 

looking for sodium-rich water (Weir 1972). Additionally, because of the growing concentration 

of animals at waterholes, there are significant quantities of faeces, urine and evacuated toxins 

that accumulate in waterholes as the dry season progresses, leading to higher concentrations 

of ammonium and a deterioration of the drinking water (F. Hulot, unpublished data). Hence, it 

is likely that, at the peak of the dry season, elephants are attracted by the good-quality water 

available in the water troughs, where clear water is pumped from underground water-table. 

Alternatively, they would use areas of the waterhole close to where the pumped clear water 

flows. These preferences would easily explain their aggregation in some sectors of the 

waterhole area and the fact that they do not use the entire waterhole perimeter (Appendix S1). 

Some additional results showed that elephants stayed throughout the dry season closer to 

water troughs than expected under the hypothesis of a random distribution of elephants in the 

waterhole area (Appendix S5). Consequently, a density-dependent competition phenomenon is 

likely to occur around water troughs and not at the scale of entire waterhole areas. 
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Signs of cryptic interference competition: herbivores segregate from elephants at the 
beginning of the dry season 

As expected, co-occurrence between elephants and other herbivores, as well as 

agonistic interactions between them, increased over the course of the dry season, confirming 

the increased potential for interspecific interference competition between elephants and other 

herbivores. Our prediction regarding the segregation between other herbivores and elephants 

during the whole dry season was surprisingly not confirmed as the only significant segregation 

pattern was in May–June for zebras. However, it is interesting to note that all three study species 

showed a tendency to segregate from elephants at the beginning of the dry season and that the 

low sample size for kudus in May–June may have reduced our ability to detect a significant 

pattern. Hence, herbivores seem to globally segregate from elephants at the beginning of the 

dry season, suggesting a spatial avoidance of elephants, but not the rest of the dry season. This 

result does not support a scenario whereby there would be no cost at all of being close to 

elephants, and provides support for the existence of a moderate cryptic interference 

competition between elephants and other herbivores. Some potential costs of interference 

competition with elephants have already been revealed through herbivore temporal niche shifts 

in dry years to reduce temporal overlap with elephants at waterholes (Valeix, Chamaillé-Jammes 

& Fritz 2007). Spatial responses to the risk of interference competition with larger competitors 

have already been revealed at the inter-patch scale (see Razgour, Korine & Saltz (2011) for an 

example on desert bat communities at waterholes), and our study provides useful insights into 

how similar mechanisms may occur at the intra-patch scale. 

 

Aggregation at the end of the dry season: a trade-off between interspecific interference 
competition avoidance and access to quality water? 

Unexpectedly, herbivores got closer to elephants as the dry season progressed despite 

the increased level of potential aggressive interactions from elephants. This was particularly 

the case for zebras and kudus for which there was a clear tendency to aggregate with 

elephants in the very dry months. These surprising results are rather counter-intuitive, but we 

can suggest two possible hypotheses to explain the emergence of these aggregation patterns. 

First, predation risk is high around water sources in semi-arid savanna ecosystems (Valeix et 

al. 2009a,b; De Boer et al. 2010) and is known to strongly influence herbivore behaviour 

(Lima 1998; Périquet et al. 2010). The aggregation of prey whether at the intraspecific level 

(Lima 1995) or at the interspecific level (Pays, Ekori & Fritz 2014; Schmitt et al. 2014) is a 
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widespread anti-predator response to increase detection of predators and a dilution effect. 

We cannot rule out a scenario whereby herbivores would actively get close to elephants to 

feel less vulnerable from predators as elephants are rarely attacked by predators and can 

often chase them away. Unfortunately, this hypothesis could not be explored in this work. 

Secondly, it is possible that the decrease in water quality in most of the waterhole at the end 

of the dry season led herbivores to seek the good-quality water found in water troughs and in 

the waterhole access area where the pumped water arrives. Under this scenario, which is 

similar for elephants, the herbivores would end up being close to elephants just because both 

are attracted by the sector around the water troughs, and the observed aggregation patterns 

would then be a mechanism of passive aggregation. Some additional results are consistent 

with this hypothesis since we observed an increasing spatial aggregation of herbivores around 

the water trough over the dry season (Appendix S6). Altogether, our results could suggest the 

existence of a trade-off between the costs associated with interspecific interference 

competition highlighted by the avoidance of elephants by herbivores (which seems to be the 

most important constraint at the beginning of the dry season and explains the segregation 

patterns) and the costs associated with the access to good-quality water (which seems to be 

the most important constraint at the end of the dry season). Further, there might be costs 

associated with waiting for elephants to move away from the clear water since (i) this 

ultimately decrease the time dedicated to foraging, (ii) there are thermoregulatory costs 

associated with staying in open areas (see also Valeix, Chamaillé-Jammes & Fritz 2007), and 

(iii) it is likely that increased time at waterholes increase herbivore vulnerability to predation 

as lions are known to ambush their prey around waterholes (Valeix et al. 2009b), and further 

work will be needed to assess their importance. 

 

Conclusions 
The aggregation patterns observed at the end of the dry season could then be 

explained by the decrease in water quality over the course of dry season leading to higher 

costs associated with good-quality water deprivation, which would ultimately exceed those 

associated to interference competition with elephants. While herbivores can afford to avoid 

elephants at the beginning of the dry season, which clearly indicates that there are some 

potential costs associated to interspecific interference competition with elephants, they have 

no choice than being close to them at the end of the dry season to access some good-quality 
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drinking water. This study illustrates the importance of studying interference phenomena over 

large temporal windows as the shift in segregation/aggregation patterns over the course of 

the dry season allowed us to identify this possible trade-off. To our knowledge, our work is 

one of the first studies to highlight such trade-off in the field. The logical next step to this study 

is to determine the impact of both avoidance of interference and good-quality water 

deficiency in terms of physiological/energetic costs in order to quantify the costs of 

interference competition (e.g. Abramsky, Rosenzweig & Subach (2001) in laboratory). Our 

results also encourage for further studies on the heterogeneity of water quality in water 

sources and on the associated implications in terms of attractiveness for wildlife. It paves the 

way for a reflection on the impact of water trough design on wildlife (see also Machado 

Filho et al. (2004) for livestock). 

This study also seems to suggest that different ecological constraints lead to different 

trade-offs between avoidance of interference competition and access to good-quality water. 

Indeed, giraffe is the only species that did not get close to elephants and appeared to maintain 

a minimum distance from elephants. Our results also revealed that they tended to avoid areas 

of the waterhole characterized by high surrounding elephant abundances. This is consistent 

with the fact that giraffe is the only of the three study species to react negatively to the 

abundance of elephants for the probability of drinking once at a waterhole (Valeix et al. 2007). 

This may be explained by the fact that giraffes are known to be less water dependent than the 

two other species (Western 1975) and could thus afford to wait for longer periods before 

accessing water. Moreover, drinking is the only activity when giraffes are vulnerable to costly 

interactions such as predation or interference competition because of their splay-legged 

posture. Our results further revealed a high variability in the fine-scale spatial responses at 

the population level for the three studied species, illustrating high group variability 

(Appendix S2). Some individuals are more risk-prone than others depending on their body 

condition (Mikolajewski, Johansson & Brodin 2004), physiology (Leary et al. 2004) or 

personality (Quinn et al. 2012), and this may influence group decision. This also constitutes an 

important field of investigation for future research. 

Ultimately, our work provides useful information into the impact of high elephant 

population densities on other herbivores, particularly in the context of increasing frequency 

and magnitude of droughts (Holmgren et al. 2006; Chamaillé-Jammes, Fritz & 

Murindagomo 2007b) as the frequency and strength of interspecific interactions at water 
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sources are expected to increase. Understanding the impact of these interactions on the 

functioning of animal communities is important to improve conservation and management 

policies (Van der Putten, Macel & Visser 2010). This is especially true in Hwange National Park, 

which has been characterized by a strong increase in elephant densities (Chamaillé-Jammes et 

al. 2008) and where most of the other herbivore species have shown declines in their 

populations (Valeix et al. 2008) rising concerns about the impact of elephants on other 

herbivore species. Our work shows that while there seem to be some costs associated to 

cryptic interference competition with elephants, these costs are not high enough to prevent 

other herbivores from accessing high-quality resources at the peak of the dry season when 

water requirements are crucial. Our work provides an original contribution by pointing out the 

potential importance of water troughs and water quality provisioning. We hope this will be 

useful for a better understanding of the role of the interaction between elephants and water 

in the functioning of herbivore communities and savanna ecosystems and ultimately a better 

designing of surface water management plans in arid and semi-arid ecosystems (Smit, Grant 

& Devereux 2007; Hilbers et al. 2015). 
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Supporting information 
Appendix S1: (a) Elephants drinking at a water-trough. The pumped water is then directed to the 
waterhole. (b) Elephant aggregation around a water-trough area.  
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Appendix S2: Distribution of the observed distance index with their associated expected value under 
the null hypothesis of random distribution of herbivores for each month and each study species. Note 
the shift for kudus and particularly zebras in the distribution of the observed distance index from 
negative towards positive values as the dry season progresses. 
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Appendix S3: Analysis of the spatial response of herbivores to the surrounding elephant local 
abundance. 

To calculate the density indices, two adjustments were made to the method used to calculate the distance 
indices. First, we used the mean density of elephants around the study herbivores, i.e. we calculated the mean 
of the densities in all cells adjacent to the cell occupied by the group of the study herbivores. Second, the index 
was slightly modified as follows to keep the same logic as the distance index (i.e. ranging from -1 to +1 with 
negative values indicating avoidance of high elephant local densities and positive values indicating preference 
for high elephant local densities). 

 

 

Ranks and probability combination test of Stouffer were also performed.  
In the figure below, white boxplots represent the distribution of the observed density index Iobs. Grey boxplots 
represent the distribution of the random density index Irandom from the null models. Red numbers indicate the 
number of scans with co-occurrence. S and P values are the statistics of Stouffer tests for segregation patterns 
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Appendix S4: Distances (in m) between elephants and other herbivores throughout the dry season. 
White boxplots represent the distribution of the observed distances, and grey boxplots represent the 
distribution of distances under random distribution of herbivores. Red numbers indicate the number 
of scans with co-occurrence. 

 



Chapter 1: Interspecific interference competition at the resource patch scale:  
do large herbivores spatially avoid elephants while accessing water? 

 
62 

Appendix S5: Analyses of the spatial relationship between elephants and water-troughs in Hwange 
National Park, Zimbabwe. (a) Dry season dynamics of the mean elephant number (+/- se) at the water-
trough. (b) Dry season dynamics of the proportion of scans with elephants present at the water-trough. 
(c) Dry season dynamics of the distance between elephant groups and water-troughs. White box plots 
represent the distribution of the observed distances and grey boxplots represent the distribution of 
the distances under the null hypothesis of random distribution of elephants. Red numbers indicate the 
number of scans with elephants. 
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Appendix S6: Dry season dynamics of the distance between herbivore groups and water-troughs. 
White box plots represent the distribution of the observed distances for herbivore groups and grey 
boxplots represent the distribution of the distances under the null hypothesis of random distribution 
of herbivores. Red numbers indicate the number of scans with herbivores. 
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Abstract 
In many semi-arid savanna ecosystems, surface water provided in artificial pumped 

waterholes represent the only source of surface water available to animals at the end of the 

dry season. This scarcity of water generates aggregation of a wide range of herbivores around 

artificial waterholes, inducing interspecific competition between species simultaneously 

exploiting water resources. Evaporation and accumulation of herbivore faeces and urine in 

waterholes as the dry season progresses gradually decrease the overall quality of the water. 

In artificial waterholes, this could lead herbivores to seek for good-quality water where the 

clear pumped water arrives, conducing elephants and other herbivores to aggregate near the 

trough. Studies about impacts of the quality of water resources for wild animals are rare and 

virtually nothing is known on the role of the heterogeneity of water quality in waterholes. 

Here, we studied the positioning of different herbivore species when they drink and the 

quality of the water in different areas of artificial waterholes in the semi-arid savanna of 

Hwange National Park, Zimbabwe. We identified a gradient of water quality in the waterhole 

at the end of the dry season. We did not detect interference competition between elephant 

and zebras or kudus for the access to water of better quality, but we showed that elephants, 

and to a lesser extent roans and sables, drank the water that flowed from the trough whereas 

other species drank farer in the waterhole. We conclude that this species-dependent drinking 

position certainly have with implications for African mammal’s health should be an issue for 

wildlife management and conservation.  

 

Keywords: Water quality, resource quality heterogeneity, waterholes, interference competition, 
large African herbivores, spatial aggregation, semi-arid savannah 
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Introduction 
 

Species distribution patterns depend on the spatial distribution of resources (O'neill et 

al. 1988, Pearson 1993). Patches of resources represent attractive areas in the landscape, 

around which animals are likely to aggregate and may temporarily form mixed-species groups 

(Waser 1982, Stendland et al. 2003). The co-occurrence of different species can lead to 

interspecific competition (exploitative or interference, Schoener 1983), forcing some species 

to avoid more competitive ones at both spatial (Durant 2000, Tannerfeldt et al. 2002) and 

temporal scales (Ziv et al. 1993, Valeix et al. 2007). The intensity of these competition 

processes increases as resource quantity or accessibility decreases. This is typically the case of 

surface water resources in arid and semi-arid ecosystems, as they dry up as the dry season 

progresses. In many arid and semi-arid savanna ecosystems, surface water during the dry 

season is mainly provided through artificial pumping of underground water. These artificial 

waterholes often represent the only source of surface water available to animals at the end 

of the dry season. This scarcity of water leads to the aggregation of a wide range of large 

mammal species around artificial waterholes, sometimes at very high levels of abundance 

(Weir & Davison 1965, Valeix 2011).  

 

While several studies have focused on the use of artificial waterholes by large wild 

mammal species (Western 1975, Redfern et al. 2003, Hayward & Hayward 2012), our 

understanding of the underlying processes of the setting up of co-occurrence patterns of 

different species is still incomplete. Interspecific competition is likely to be a major process 

taking place between species simultaneously exploiting water resources. For example, Valeix 

et al. (2007) showed a temporal avoidance of African elephants Loxodonta africana by several 

other herbivores species. However, a recent study revealed that when zebras Equus quagga, 

and to a lesser extent kudus Tragelaphus strepsiceros, co-occur with elephants around 

artificial waterholes at the end of the dry season, they tend to all aggregate in the same 

specific sections of the waterhole area (Ferry et al. 2016). One hypothesis suggested to explain 

this unexpected result is that it is not only the presence or the quantity of the resource that 

matters but its quality. The documented patterns may result from a passive species 

aggregation; all these species are attracted by the same characteristics of the water, e.g. 

quality, in particular areas of the waterholes. Numerous studies have reported that animals 
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select patches with food of higher quality (e.g., Langvatn & Hanley 1993; Wilmshurst et 

al.1995, Van der Wal et al. 2000, Hochman & Kotler 2006). However, studies on the influence 

of the quality of water resources on wild animals drinking behaviour are rare (but see Wanke 

& Wanke 2006, Chamaillé-Jammes et al. 2007). At a fine scale, nothing is really known about 

the role of the spatial heterogeneity of water quality in waterholes on drinking choices and 

surface water use. Herbivores are active carriers of nutrients when they urinate and defecate 

in water (Naiman & Rogers, 1997, Masese et al. 2015, Subalusky et al. 2015, Hulot et al. in 

prep). It is therefore possible that the combined effect of evaporation and accumulation of 

herbivore faeces and urine in waterholes as the dry season progresses leads to a decrease in 

overall quality of the water in most waterholes (e.g. Gereta & Wolanski 1998, Strauch 2013, 

Msiteli-Shumba et al. in press) and to a spatial gradient of water quality in artificial waterholes. 

In these artificially pumped waterholes, the presence of an area where the clean pumped 

water arrives couldlead herbivores to actively seek for good-quality water (Wanke & Wanke 

2006). Under this water quality hypothesis, elephants and most other herbivores are expected 

to end up being aggregated as the dry season progresses just because the water coming from 

the trough attracts them all.  

 

Here, we studied the quality of the water in different areas of artificial waterholes in 

the semi-arid savanna of Hwange National Park, Zimbabwe, where we also monitored the 

positioning of different herbivore species when they drink at these waterholes. We tested the 

hypothesis that the heterogeneity of the quality of water in a waterhole explains aggregation 

patterns at attractive areas of the waterhole, and ultimately may lead to interference 

competition between elephants and other herbivore species. We predicted (i) the existence 

of a water quality gradient at the waterhole scale at the end of the dry season, (ii) the 

attraction of trough where pumped underground water emerges, represented by a low 

distance between drinking herbivores and the trough, and (iii) an interference competition 

between elephants (the largest and a potentially aggressive species – Valeix et al. 2007) and 

other herbivore species for the access to water of better quality, resulting in a higher distance 

to the trough when drinking in the presence of elephants compared to situations without 

elephant.   
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Materials and methods 
Study site 

The study area (~7 000km²) is located in the northern region of Hwange National Park 

which covers ~15 000 km² of semi-arid dystrophic (low nutrient soil) savanna in northwestern 

Zimbabwe (19°00’ S, 26°30’ E; Fig. 1). The vegetation is primarily woodland and bushland 

savanna. The long-term mean annual rainfall is ~ 600 mm, which falls primarily between 

November and April, and the dry season stretches from May to October. Waterholes are 

depressions that are fed by rainwater runoff during the rainy season and, for artificial 

waterholes, by pumped groundwater pumping during the dry season. The surface water 

available to animals is found in natural as well as artificial waterholes. However natural water 

bodies dry up during the dry season and only artificial waterholes offer drinking water all over 

the year. This study focused on four artificial waterholes and addressed eight herbivore 

species: two browsers (giraffe Giraffa Camelopardalis and greater kudu), two mixed-feeders 

(African elephant and impala Aepyceros melampus) two woodland grazers (roan antelope 

Hippotragus equinus, and sable antelope Hippotragus niger) and two grassland grazers 

(warthog Phacochoerus africanus and Burchell’s zebra). 

 

 
Figure 1: Map of the four monitored artificial waterholes in Hwange National Park, Zimbabwe. 
Locations B and C (in blue) and A (in red, corresponding to the trough) for each waterhole. Aerial 
photos of the waterholes were taken from Google Map.  
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Data 
Water quality – The quality of the water has been sampled in four monitored artificial 

waterholes (Fig. 1) in October 2017, i.e. at the end of the dry season. A water sample was 

collected in three different areas for each waterhole. The first sample was taken in the water 

near the trough (A), the second at the furthest location from the trough (C), and the third at 

an intermediate distance (B) (Fig. 1). For the four waterholes, the mean distance between A 

and C is 73.2 m (ranging from 61m at Shapi to 87 m at Guvalala) and represented the maximal 

distance to the trough when animals are drinking. Water samples were taken before 12 a.m. 

to minimize variability in the time of the day. We measured near the shoreline temperature, 

dissolved oxygen concentration, pH, turbidity and chlorophyll a concentration with a YSI 6600 

VZ Multiparameter water quality probe. Conductivity was measured with a Hanna HI 98312 

portable conductivity meter. Water samples for laboratory analyses were collected on site at 

the deepest point with a bottle fastened to a 3 m pole. Water was stored on ice in one-litre 

polyethene bottles. Water was filtered with GF/F 47 mm filters. Total nitrogen and total 

organic carbon concentrations and water hardness were determined from unfiltered water 

samples. Ammonium, nitrite, nitrate and orthophosphate concentrations were determined 

from filtered water samples. Chemical analyses were realized with a Hach DR 3900 portable 

data logging spectrophotometer and reagents in accordance with the manufacturer’s 

procedure. 

 

Drinking position – Observations of drinking herbivores were made at the same four 

monitored artificial waterholes (Fig. 1) between August and November 2016, i.e. at the end of 

the dry season. Every day, observations were done from 6 a.m. until 6 p.m at one of the 

artificial waterhole. Observers were inside a car parked at approximatively 100m from the 

waterhole as a compromise between disturbance and quality of the observation. Each time a 

herbivore or a group of herbivores drank at the waterhole, the position of the closest 

individual to the trough (focal individual) was recorded. In order to calculate the distance 

between the drinking focal individual and the trough, we recorded the angle to the north (with 

a compass) and the distance from the car (with a range finder) of the focal individual and the 

trough. For all drinking observations of the herbivores, we recorded if elephants were present 

at waterholes or not. 
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 Drinking position and water quality were not studied the same year, but 2016 and 2017 

were characterized by similar annual rainfall (438.3 and 477 mm respectively). Water 

availability depends on rainfall during the rainy season and evaporation and pumping during 

the dry season. Morphological characteristics (depth, shape) of the waterholes and trough 

position did not change between 2016 and 2017, we therefore assume that water had a 

comparable quality and quality gradient between these two years.  

 

Analyses 

Analyses were conducted using R v. 3.3 software (R Development Core Team, 2004). 

 

Water quality  

In order to assess the existence of a gradient of water quality inside waterholes, we 

performed multivariate analyses. First, a Principal Component Analysis (PCA, package ade4, 

Dray & Dufour 2007) was performed on the thirteen variables. We then removed the effect of 

the heterogeneity between waterholes with a within-class analysis and performed a between-

class analysis to estimate the percentage of the remaining variability explained by the 

differences between the three locations A, B and C. 

 

Drinking position 

We first assessed the difference of position where animals drank at the waterhole 

between each study herbivore species by performing a mixed-model (package lmer, Bates 

2008) on the distance to the trough when drinking. The species was considered as a fixed 

effect and the waterhole monitored as a random effect. A pairwise post-hoc comparison was 

then performed on the mixed-model between each pair of species (package lsmeans, Lenth 

2016). The p-values were adjusted with the Tukey method. We then assessed the influence of 

elephant presence on the drinking position of other herbivores species. We performed a 

mixed-model with the distance to the trough when drinking as the dependant variable. The 

interaction between the presence of elephants when drinking and the herbivore species was 

introduced as an explanatory term in the fixed part of the model. This analysis could be carried 

out for kudus and zebras only as these two species were the only ones recorded both in the 

absence of elephants and with elephants at the study waterholes. The waterhole monitored 

was considered as a random effect.  
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Results 
Water quality  

After the within-class analysis removed the variability due to differences between 

waterholes, the between-class analysis revealed that 31% of the remaining variability was 

explained by differences of water quality between the locations A, B and C. As the distance to 

the trough increases (from A to C), the concentration of total organic carbon, dissolved 

oxygen, total nitrogen and ammonium, and the conductivity increased whereas the 

temperature, the turbidity and the nitrate concentration decreased (Fig. 2).  

 

Figure 2: Graphical results of the between-class principal component analysis.  Left: position of the 
four waterholes (black dots) with confidence ellipses around the categories defined by the distance to 
the trough (A, B and C). Right: position of the thirteen variable: dissolved oxygen (DO), total organic 
carbon (TOC), total nitrogen (N), ammonium (NH4+), nitrite (NO2), nitrate (NO3), orthophosphate 
(PO4) and chlorophyll a (Chl.a) concentration and conductivity (Conductivity), hardness (Hardness), 
turbidity (Turbidity) and temperature (Temperature). 
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Drinking position 
The mixed model allowed to estimate the mean (± SE) drinking distance to the trough 

for the eight study species, which ranged from 15.5 m to 58.5 m (Fig. 3). Post-hoc tests 

revealed three different groups: (i) elephants, which drank the closest to the trough, (ii) roans 

and sables, which drank at intermediate distances from the trough, and (iii) all other study 

herbivore species (zebras, kudus, impalas, giraffes and warthogs), which drank the furthest 

from the trough (Fig. 3). No effect of the presence of elephants on the drinking distance from 

the trough was observed neither for zebras (β ± SE = 0.77 ± 6.56, t = 0.118, p = 0.9), nor for 

kudus (β ± SE = -1.11 ± 8.23, t = -0.13, p = 0.9). 

 
Figure 3: Estimated mean (± SE) of the distance to the trough for drinking individuals of the nine study 
herbivore species that visited the 4 study artificial waterholes in Hwange National Park, Zimbabwe. 
The number of observations (n) for each species is provided. Different letters (a, b, c) indicate 
significant differences obtained by pairwise post-hoc comparison on the mixed-model between each 
pair of species. Red line indicates maximum distance averaged between the four waterholes. 
 
Discussion 

In this study, we successfully identified a gradient of water quality at the scale of the 

waterhole at the end of the dry season. We then showed that elephants, and to a lesser extent 

roans and sables, drank the water that flowed from the trough but that a large number of 

species drank farer in the waterhole. Finally, we did not detect any spatial patterns indicative 

of interference competition for the access to water of better quality between elephant and 

zebras or kudus.  
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Our results revealed the existence of a gradient of water quality in artificial waterholes 

at the end of the dry season. Indeed, troughs are set up between the outlet of the pump and 

the waterhole and provide water of the same quality as the underground water to the animals 

because the trough is continually flushed (Wanke & Wanke, 2007). This water is generally less 

salty and conductive than free water. Given that there is no input of rainwater in the dry 

season, evaporation and changes due to fauna activity lead to variations of the physico-

chemical characteristics of the water in the waterhole (Wanke & Wanke 2007, Msiteli-Shumba 

et al. in press) in particular concentration of ions which lead to an increase in conductivity and 

salinity.  

Far from the trough, the water is enriched in organic matter (high concentration of 

total organic carbon, total nitrogen) and degradation product (ammonium). This organic 

matter may be inherent to microorganisms in the pan such as phytoplankton and zooplankton 

(Strauch 2013) which communities change in relation to physico-chemical characteristics 

discussed above (Msiteli-Shumba et al. 2017), and bacteria and protists (Strauch 2013). 

Organic matter may be also free in the water or stored in sediments and resuspended by wind 

or water movements created by the fauna (Gereta & Wolanski 1998), but also related to 

faeces of the numerous animals drinking in the waterhole. This last source of contamination 

is indeed frequently mentioned in the literature (e.g. Gereta & Wolanski 1998, Strauch 2013). 

The study site host one of the world’s largest elephant population (Chamaillé-Jammes et al. 

2008), that generate a high density of faeces deposition around waterholes (mean density of 

elephant dungs of 18.89 (± 26.04) g/m²/day in October 2014; Hulot et al. in prep). These 

organic matter inputs may lead to the water eutrophication observed in Hwange National Park 

(Msiteli-Shumba et al. in press) and can intensify heterogeneity of water quality between 

trough and remaining waterhole.  

 

At the trough outlet, the pumped water has been in the ground aquifer for a long time 

after infiltration into the soil where the oxygen is quickly consumed (Strauch 2013). Water at 

the other side of the waterhole, thanks to its longer residence time in contact with the air, is 

newly oxygenate and concentrates the mineral salts thanks to evaporation (Wanke & Wanke 

2007, Msiteli-Shumba et al. in press). The higher turbidity found at the trough outlet may be 

due to the water flushing that splashes around and induces sediment resuspension. This 
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constant flushing also repulses from the outlet suspended matter and associated micro-

organisms that break down this matter. Flushing might impact water quality and create a 

gradient in the vicinity of the outlet. For instance, it is hypothesized that constant flushing 

might prevent the development of cyanobacteria in waterholes (Msiteli-Shumba et al. 2017). 

 

Unfortunately, the influence on animals of most of the parameters studied here has 

not been investigated in the literature, but some parameters not studied here have been 

studied more extensively. For example, Auer (1997) showed that an increase of the water 

salinity led herbivores to sniff and taste the water extensively, try many positions at the 

waterhole, and sometimes leave the waterhole without drinking. Wolanski & Gereta (2001) 

further showed that surface water with high salinity may initiate the migration of zebras in 

the Serengeti National Park, Tanzania. Ramey et al. (2013) investigated total coliform bacteria 

and showed that elephants dig to access less contaminated drinking water. Stommel et al. 

(2016) studied the response of some African mammals to total aerobic bacterial load and 

suggested that digging is an adaptation to avoid poor quality water and potentially pathogenic 

microbes.  

 

Our results showed that three species, roans, sables and particularly elephants, drank 

the water from the outlet of the trough, whereas other species drank farer in the waterholes. 

This species-dependent preference did not seem to be related to water dependency. Species 

considered as more water-dependent are elephants, warthogs and zebras (Hayward & 

Hayward 2012), because of the short time between successive waterhole visits (1-2 days; see 

Cain et al. 2012 for zebras, Chamaillé-Jammes et al. 2014 for elephants, frequency unknown 

for warthogs but see Estes 1991). Species considered as less water-dependent are impala (2-

3, days; Young 1970 in Gaylard et al. 2003) and sable (2-4 days; Cain et al. 2012). No 

information is available for kudu, giraffe and roans. In each of these groups, occurred species 

preferring or neglecting fresh water coming from the trough. The water consumption per 

waterhole visit of elephant (35 and 77 litters for female and male respectively; Young 1970 in 

Gaylard et al. 2003) could explain its preference for the water close to the trough, in order to 

avoid the too high bacterial load (Epaphras et al. 2008, Ramey et al. 2013) that could be 

associated to the high volume of water consumed in other areas of waterholes. In addition, 

elephants’ ability to drink directly into the trough (Young 1970 in Gaylard et al. 2003) prevents 
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them from having to dig (Ramsey et al. 2013, Stommel et al. 2016). However, other large-

bodied species did not show a water-trough preference associated to the water consumption. 

Giraffe, kudu, zebra and impala (mean volume drunk per visit of resp. 10.6, 5, 4.7 and 0.9 

litres; Young 1970 in Gaylard et al. 2013) neglected water-trough, whereas sable (4.6 litters; 

Young 1970 in Gaylard et al. 2013) selected water-trough (no information available for roans 

and warthog). Cain et al. (2012) suggested that the digestive system could explain differences 

of water-dependency between zebra and sable. It would be interesting to assess if the 

digestive system differences (e.g. stomach microbiota tolerances to bacterial loads) could also 

explain the species-dependent preferences for water of better quality. Auer (1997) have 

indeed shown that zebra was the most tolerant species to increased salinities. Such result 

could explain that some species better tolerate drinking low-quality water and therefore do 

not drink nearby the trough.  

 

 A previous study revealed that elephants do not prevent other herbivores from 

drinking at waterholes (Valeix et al. 2009). Here, we show that they do not prevent zebras and 

kudus from drinking close to trough as these two species did not drink closer to the trough 

when elephants were absent. The water-quality hypothesis seems unlikely to explain the 

spatial aggregation patterns observed by Ferry et al. (2016). Regarding the other herbivore 

species, we did not highlight any interference competition for the access of quality water as 

they almost always drank when elephants were absent and yet they did not drink at the 

trough. Only sables and roans are likely to face interference competition with elephants as 

they are the only ones drinking relatively close to the trough. Sables and roans almost never 

drank at waterholes when elephants were present, which would confirm that they temporally 

avoid elephants (Valeix et al. 2007).   

 

At the end of the dry season, waterholes are characterized by a heterogeneous quality 

of the water, with a gradient from the trough to the opposite side of the waterhole. It would 

be interesting in future research to evaluate the temporal dynamics of the heterogeneity in 

water quality both at within- and between-year scales and assess the link between water 

quality and African mammal’s health. The species-dependent preference for higher-quality 

water only starts to be unravelled and should be a major issue for wildlife management.  
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Abstract 
Mixed-species groups can result from voluntary associations with other specific species 

for anti-predator advantages, for example with species able to deter predators. In arid and 

semi-arid African savanna ecosystems, limited surface water lead to the aggregation of a wide 

range of large mammal species around water sources, forming prey hotspots for large 

carnivores. Previous studies revealed an increasing aggregation pattern of zebras and African 

elephants Loxodonta africana at waterholes as the dry season progressed and suggested that 

a possible underlying mechanism could be a protective effect of elephants, called here the 

“bodyguard hypothesis”. Here, we designed a field playback experiment to test this 

hypothesis in evaluating zebra behaviour in response to playback of lion roaring in presence 

and in absence of elephant. We therefore investigated the effects of elephant’s presence on 

the aggregative, vigilance and drinking behaviours of zebras. We showed that zebras vigilance 

increased with perceived predation risk, with the presence or the absence of elephants. We 

also showed that zebras responded to the presence of elephants by increasing their vigilance 

after the control treatment. Contrary to our expectations, after the playback of lion, the 

presence of elephant did not result in a decrease of the vigilance response level of zebras. In 

addition, zebras never aggregated to elephants after lion roaring. The “bodyguard 

hypothesis”, under which thanks to their mobbing behaviour elephants are considered as 

pledge of security against predators at the waterhole, is not supported by our results. On the 

contrary the presence of elephants would be a source of increased vigilance for zebras. 

 

Keywords: Predation risk, Predator deterrence, Vigilance, Anti-dredator strategy, Loxodonta 

Africana, Equus Quagga   
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Introduction 

Mixed-species groups are observed in various ecosystems and across a wide range of 

taxa (e.g. ungulates, Fitzgibbon 1990; cetaceans, Frantzis & Herzing 2002; birds, Caro 2005, 

primates, Cords 1990), and these associations occur between closely related species as well 

as between species from different orders (Au & Pitman 1986, Stensland et al. 2003).  

Different hypotheses explaining mixed-species groups have been suggested (see the 

review Stensland et al. 2003). These associations could (i) result from the same attracting 

stimulus (e.g. resource) for different species moving independently (Waser 1982), (ii) be due 

to species that are voluntary associating with other specific species to take advantage of their 

biological abilities for foraging (Minta et al. 1992; Pays et al. 2014), or (iii) be due to species 

that are voluntary associating with other specific species for anti-predator advantages 

(Heymann & Buchanan-Smith 2000, Schmitt et al. 2016; Pays et al. 2014).  In the case of anti-

predator advantages, multi-species groups are assumed to allow the species within the group 

to take more advantages than in monospecific group by (i) the detection ability of the other 

species (Bshary & Noë 1997, Heyman & Buchana-Smith 2000, Lea et al. 2008 Schmitt et al. 

2016), (ii) the “dilution” effect without an increase of the competition for resources if species 

have different food niches (Stensland et al. 2003) by decreasing the risk of being predated 

with the presence of a more preferred preyed (Schmitt et al. 2014), and (iii) the strong ability 

of the other species for predator deterrence (i.e. the “confusion effect” Krause & Ruxton 2002, 

Landeau & Terborgh 1986, or mobbing behaviour Curio 1978; Struhsaker 1981, Gautier-Hion 

1988). As assumed at the intraspecific level with larger group size (Pulliam 1973, Bednekoff 

and Lima 1998), multi-species association is expected to allow individuals to decrease the time 

allocated to anti-predator behaviours such as vigilance (Schmitt et al. 2016).  

In arid and semi-arid African savanna ecosystems, surface water is a resource that 

becomes scarcer and limiting as the dry season progresses, leading to the aggregation of a 

wide range of large mammal species around these few remaining water sources (Redfern et 

al. 2003, Valeix 2011). Because large herbivores are predictably aggregated around these 

water sources, they represent prey hotspots in the landscape that attract large carnivores, 

such as the African lion Panthera leo, which select the habitats around waterholes (Valeix et 

al. 2010, Davidson et al. 2012) and make most of their kills there (Valeix et al. 2009a, Davidson 

et al. 2012). Waterholes are therefore places where herbivores have to deal with both water 
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requirements and heavy predation pressure, which are increasing over the dry season (Valeix 

et al. 2009b). It was suggested that even if mixed-species group are formed just by chance, it 

does not mean that species within these groups could not get the advantages discussed above 

(Stensland et al. 2003). To our knowledge, only one study focused on mixed-species groups 

and the associated effects on vigilance behaviour in this context (Périquet et al. 2010). Ferry 

et al. (2016) revealed an increasing aggregation pattern of zebras and African elephants 

Loxodonta africana at waterholes as the dry season progressed and suggested that a possible 

underlying mechanism could be a protective effect of elephants, called here the “bodyguard 

hypothesis”. Indeed, African elephants are megaherbivores (>1000kg, sensu Owen-Smith 

1988) and whereas calves are susceptible to be predated (Loveridge et al. 2007a) adults are 

able to deter predators such as lions Panthera leo by mobbing behaviour (McComb et al. 2011; 

pers. obs.). Zebras, which are preyed by lions (Davidson et al. 2013) could therefore take 

advantage of this mobbing behaviour by being close to the elephants, leading to a decreased 

perceived predation risk. This would result in lower period allocated to vigilance behaviour. 

 Here, we designed a field play-back experiment to test this “bodyguard hypothesis”. 

To determine how elephant presence affects perceived predation risk and antipredator 

response, we tested how zebras behave in response to playback of roaring of lion in presence 

and in absence of elephant. We predicted that, after the lion roaring, vigilance level will be 

lower in presence of elephants than when they are absent. In addition, we predicted that 

zebras will aggregate to elephants after the lion roaring. We further assess if the zebra drinking 

behaviour was impacted. 

Materials and methods 

Study site 

Hwange National Park (HNP hereafter) covers ~15 000 km² of semi-arid dystrophic (low 

nutrient soil) savanna in northwestern Zimbabwe (19°00’ S, 26°30’ E). The vegetation is 

primarily woodland and bushland savanna. The long-term mean annual rainfall is ~ 600 mm, 

which falls primarily between October and April. The surface water available to animals is 

found in natural as well as artificial waterholes. The study area is located in the northern 

region of HNP where lion density is estimated around 4.3 individuals/100 km² (Loveridge et 

al. 2016), elephant density is estimated above 2 individuals/km² (Chamaillé-Jammes et al. 

2008) and zebra density is estimated at 0.6 individuals/km² (Grange et al. 2015).  
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Experimental design  

Experiments were performed in 2016 (annual rainfall = 438.3 mm) at the end of the 

dry season (between August and November) at four artificial waterholes. Playback 

experiments with simulated predator presence (lion roaring) or control treatment (car engine 

sound) were conducted in two elephant-contrasted situations (presence/absence). We 

avoided any temporal effect during our experiments by randomly distributed the different 

playbacks across the study period. To avoid habituation, a minimum period of 2 days was left 

between playbacks to the same waterhole. The behavioural responses of the adult zebras to 

playback were recorded on video, alongside live commentary, using a camera. Observers were 

inside the stationary car parked at approximatively 100m from the waterhole to minimize 

disturbance while maximizing the quality of the video recording.  Data were filmed mainly by 

one observer (N.F.) and were supplemented by a second observer who recorded the zebra' 

behaviour. We started to film when a zebra group entered the “waterhole area”, defined with 

the spatial boundary set where grasses are replaced by sand, avoiding potential foraging 

activity of zebra during the observation. Zebra group size, presence of elephants and wind 

strength were recorded. The playback was played when one of the zebras from the focal group 

started drinking and lasted for 1 minute. The stimulus of presence of predators consisted in 

lion roaring, and the control treatment was the sound of 4x4 car engine, as this sound is 

assumed to be neutral for herbivores in the context of a protected area with touristic 

activities. We matched the acoustic properties (i.e. frequency characteristics and temporal 

structure) of the roaring and sound of car engine playbacks by visually comparing their 

spectrograms. We checked that there were no differences in the overall frequency 

characteristics between the two playbacks (see Appendix 1). Recordings were in 16-bit WAV 

format and analysed with Avisoft SASLab software (Avisoft Bioacoustics, Berlin, Germany). 

Four shared acoustic properties were measured on each call sound track: (1) peak frequency 

(the frequency for which amplitude (Hz) is maximum); (2) maximum frequency (highest 

frequency of the call in Hz); (3) minimum frequency (lowest frequency of the call in Hz); (4) 

frequency bandwidth (differences in Hz between maximum frequency and minimum 

frequency measure on a linear amplitude spectrum (threshold -20 dB)) (Fast Fourier 

Transformation (FFT) length of 1024 samples). We stopped filming when all zebras had left 

the waterhole area. The experiments were performed in two elephant-contrasted situations: 

when elephants were absent and when elephants were present. Four experiment 
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combinations were therefore conducted: (i) zebras only with control treatment (n=8), (ii) 

zebras only with lion treatment (n=9), (iii) zebras and elephants with control treatment (n=7), 

and (iv) zebras and elephants with lion treatment (n=8). We conducted only one playback 

experiment per waterhole per day in order to avoid monitoring zebras that were near the 

waterhole during a previous experiment and would have already been affected by the 

stimulus. Tests involved a mean of 11.4 individuals per video experiment. The ranges of group 

sizes of zebra-only and zebra with elephant groups were similar (i.e. from 2 to 20 and 6 to 20 

individuals, respectively). 

Choice of Experimental Stimuli and Playback Materials 

 We broadcast sound tracks using MegaVox Pro MEGA—7500 loudspeaker (Anchor®). 

Concerning the signal used during playback, we used roaring and sounds of 4x4 car obtained 

from online sound banks. To avoid pseudoreplication (Hurlbert, 1984; Kroodsma, 1989, 1990), 

roaring from 3 lions and sounds from 3 car engines were used. Playback sequences were 

constructed using Avisoft-SASLap Pro software. 

Spatial data 

In the situation with elephants, the aggregation behaviour of zebras was assessed by 

recording, with a telemeter and a compass, the distance from the car and the angle to the 

north of the pair of closest zebra-elephant. Euclidean distances between individual zebras and 

the nearest elephant were then calculated. This distance was calculated just before the 

beginning of the playback and after the playback, if zebras had moved closer to elephants.  

Vigilance and drinking data 

From video analysis, we assessed two principal behaviors that described the responses 

of each individual (up to ten random individuals were monitored per group) in the focal group: 

the induced vigilance (sensu Blanchard & Fritz 2007) and the drinking behaviour. This analysis 

was performed with JWatcher software (Blumstein et al. 2006) by 1 identifiers (E.M.). We then 

obtained for each individual, the number of events for each behaviour and the duration of 

each event, the total duration and the proportion of time for each of the four behaviours. 

Because we were interested in whether there are fine-scale differences in vigilance and 

drinking behaviors in response to different playbacks, we analyzed each response variable 

separately.  



Chapter 3: Does the presence of African elephants Loxodonta africana                                
reduce the predation risk perceived by plains zebra Equus quagga at waterholes? 

  
84 

Analyses 

Spatial analyses - Spatial data were eventually not analysed because zebras never got closer 

to elephants after the playback treatment (lion or control). 

Vigilance and drinking analyses – We first assessed the effect of the stimulus of the presence 

of lions on zebra induced vigilance behaviour by performing three mixed models on: (i) the 

logit-transformed proportion of time spent in induced vigilance, (ii) the number of events of 

induced vigilance, and (iii) the mean duration of an induced vigilance event. Explanatory 

variables were the zebra group size, the period (before vs. after stimulus), the treatment 

(control vs. lion) and the situation (zebra only vs. zebra with elephant). A two-way interaction 

was tested between group size and period, and a three-way interaction was tested between 

period, treatment and situation. We then assessed the effect of the stimulus of the presence 

of lions on zebra drinking behaviour by performing three mixed-models on: (i) the logit-

transformed proportion of time spent drinking, (ii) the number of drinking event, and (iii) the 

mean duration of a drinking event. We considered the same explanatory variables as in the 

models for induced vigilance except the period (before vs after stimulus) which was removed 

as stimulus was played when zebras began to drink. The only interaction in this model was the 

two-way interaction between treatment and situation. In all analyses, we considered the focal 

group and the playback used as random effects.  For all the analyzes, mixed-models were 

performed except for the number of events were generalized mixed-models with poisson 

family were done (log-normal function link). These analyses were performed with the package 

lme4 (Bates et al. 2007), and p-values were estimated using the package lmerTest (Kuznetsova 

et al. 2015) based on the Satterthwaite approximation for denominator degrees of freedom. 

Analyses were done on R statistical software 3.3.2 (The R Foundation for Statistical 

Computing, Vienna, Austria). 

 

Results 

Induced vigilance –There was no difference in the proportion of time spent in vigilance before 

the stimulus whatever the treatment and the situation (Tab. 1, Fig. 1). The control treatment 

increased the time spent in vigilance when there were zebras only (i.e. no elephant, βPeriod = 

0.447, t = 2.35), and this increase was higher in presence of elephants (βPeriod *Situation = 0.70, t 

= 3.15). The lion treatment had a higher effect than the control treatment on the time spent 
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in vigilance (βPeriod *Treatment = 0.42, t = 2.01) and this effect was independent of the presence 

or absence of elephants (i.e. no significant three-way interaction). The group size effect on the 

proportion time spent in induced vigilance was detected only after the treatment (lion or 

control) as only the interaction group size-period was significant (βGroup size*Period = -0.037, t = -

2.46). Results on number of events of vigilance and mean duration per event are presented in 

Appendix 2. We observed the same pattern for the number of events of vigilance, but not for 

the mean duration per event.  

Table 1: Results from the mixed-model with logit-proportion of time passed in vigilance. Bolded variables are 
those with significant p-value. 

Variables Estimate SE t  P-value 
Period 0.45 0.19 2.35 0.02 
Treatment 0.05 0.31 0.16 0.88 
Situation -0.21 0.28 -0.77 0.45 
Period*Treatment 0.42 0.21 2.01 0.045 
Period*Situation 0.70 0.22 3.15 0.002 
Treatment*Situation -0.53 0.38 -1.39 0.18 
Period*Treatment*Situation 0.31 0.31 1 0.32 
Group size 0.02 0.02 1.08 0.29 
Group size*Period -0.04 0.01 -2.46 0.014 

 

Figure 1 : Proportion of time passed in vigilance upon the treatment (control vs lion), the situation (zebra vs zebra 
+ elephant) and the period (before vs after). The box and whisker plots display the median value and 25 and 75% 
quartiles; the whiskers are extended to the most extreme value inside the 1.5-fold interquartile range.   
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Drinking – We did not detect any significant effect of the group size, treatment (lion or control) 

and situation (with elephant and without elephant) and the interaction between treatment 

and situation neither on the logit-transformed proportion of time spent drinking, neither on 

the number of drinking event nor on the mean duration of the drinking event.  

 

Discussion 
In the present study, we tested the effects of elephant’s presence on the vigilance and 

drinking behaviours of zebras. We showed experimentally that zebras vigilance increases with 

perceived predation risk, with the presence or the absence of elephants. We also showed that 

zebras responded to the presence of elephants by increasing their vigilance after the control 

treatment. We did not observe any change in the drinking behaviour (as observed in Périquet 

et al. 2010). 

Reactive adjustments occur when prey have detected an immediate threat, i.e. 

encountered either the predator or cues of its presence (Creel and Winnie 2005, Wirsing & 

Ripple 2010). Prey species alter their behaviour in response to predation risk (Turchin and 

Kareiva 1989) by retreating to safe habitats (Kotler et al. 1991, Sih 1997), altering group size 

(Caro 2005, Creel and Winnie 2005), or increasing vigilance (Brown & Kotler 2004). Zebra 

population of Hwange National Park, seems to be under top–down control by lions and 

currently declining due to a high predation pressure (Grange et al. 2015) even if they are not 

the main prey of lions (Davidson et al. 2013). In this system, lions represent therefore one of 

the main threats zebras can face during they daily activity, particularly areas surrounding 

waterholes (Valeix et al. 2010). During our experiment, zebras responded to the lion roaring.  

This response was not represented by fleeing behaviour after the lion roaring (except during 

the only situation where we observed a zebra alone which directly fled away from the 

waterhole, pers. obs.). It seems to confirm results from Courbin et al. (2016), where zebras 

were less prone to flee away after an encounter with lion in open area such as grassland 

whatever the distance from waterholes. Regarding the two other anti-predator behaviours 

(vigilance and group size change), in our situation, grouping is considered as a proactive 

response to the use of dangerous habitats (Creel et al. 2014) letting zebras to adjust their anti-

predator behaviour only with vigilance. Périquet et al. (2010) did not observed vigilance 

increase from zebras when lions were in the vicinity of waterholes (< 2km) whereas we 
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observed an increase of the vigilance level after the lion roaring. It is unlikely that this vigilance 

increase was only due to the emission of sound as we controlled it with the car engine sound. 

An explanation could be that zebras react negatively to the presence of lions (as see in Courbin 

et al. 2016) but either i) zebras did not detect lion’s presence in Périquet et al. (2010), although 

kudus seemed to do detect it, either ii) zebras detect lions but respond negatively only to 

direct visual/auditory signal of the presence of lions. Interestingly, zebra’s vigilance increased 

after the car treatment, whereas it was assumed to be neutral in term of predation (poaching 

being very limited inside the park for zebras). It confirms the importance to disentangle 

between the response to the simple emission of a signal (kind of “surprise effect” and the 

response to the real stimulus (here lion roaring) in such experimental field studies. It is 

interesting to note that the differences of time proportion passed in induced vigilance are 

owing to the number of event and not to the duration of the event (Appendix 1). 

 

Contrary to expectations, after the playback of lion, the presence of elephant did not 

result in a decrease of the vigilance response level of zebras. In addition, zebras never 

aggregated to elephants after lion roaring. The “bodyguard hypothesis”, under which thanks 

to their mobbing behaviour elephants are considered as pledge of security against predators 

at the waterhole, is not supported by our results which do not explain the aggregation pattern 

observed in Ferry et al. (2016). Further, it was observed (Ferry N. pers. obs) that in rare 

occasions, after the treatment (control or lion) elephants fled away from the waterhole when 

zebras stayed. These results would tend to the conclusion that zebras would not take 

advantage of the presence of elephants at waterholes in this context. On the contrary the 

presence of elephants would be a source of increased vigilance for zebras when a sound is 

played. Indeed, zebras were more vigilant after the control treatment when elephants were 

present. Interestingly, this increase was not more important when the treatment was lion 

roaring (contrarily of the situation without elephants were the increase of vigilance was more 

important with lion roaring than with control treatment). Either, elephant presence does not 

have the same effect for zebras upon the auditory cues, either they reached a maximum 

threshold of vigilance level and cannot pass beyond.  
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Supporting information 
Appendix 1  

Frequency characteristics of the roaring and the sounds of car 
Treatement Frequency characteristics (Hz) 
  Peak Minimum Maximum Bandwith 
roaring 140 113 1190 1076 
car 120 26 1040 1015 

 
Appendix 2  
a) Results from the generalized mixed-model with number of event passed in vigilance. b) 
Results from the mixed-model with mean duration of event passed in vigilance. 

a)     

Variables Estimate SE z  P-value 

Period 0.61 0.09 7.1 < 0.001 

Treatment -0.01 0.19 -0.07 0.94 

Situation -0.3 0.28 -0.07 0.94 

Period*Treatment 0.25 0.09 2.7 0.006 

Period*Situation 0.37 0.1 3.56 < 0.001 

Treatment*Situation -0.26 0.29 -0.92 0.35 

Period*Treatment*Situation 0.38 0.15 2.6 0.009 

Group size 0.02 0.01 1.69 0.09 

Group size*Period -0.02 0.007 -3.5 < 0.001 

b)     

Variables Estimate SE t  P-value 

Period -15.96 10.7 -1.49 0.14 

Treatment -10.4 17.4 -0.6 0.57 

Situation -16.88 17.76 -0.95 0.35 

Period*Treatment 11.68 11.68 1 0.32 

Period*Situation 26.9 12.5 2.1 0.03 

Treatment*Situation -10.68 24.6 -0.43 0.67 

Period*Treatment*Situation -2.68 17.7 -0.15 0.88 

Group size 0.26 1.17 0.22 0.83 

Group size*Period -0.51 0.84 -0.62 0.54 
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AXIS 2.   

Indirect effect of elephants on lion’s spatial distribution, 

through competition/facilitation with other herbivores. 
 

  
« L'homme qui marche derrière un éléphant n'a rien à 

redouter de la rosée. » 
Massa Makan Diabaté 
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Chapter 4: Assessment of food competition between African elephants and other 
large herbivore species through spatial segregation at multi-scale level. 

 
 
 
This chapter combines results based on road censuses carried out for 10 years (from 2004 to 2014) in 3 study 
areas of Hwange National Park to assess the spatial distribution of African elephants Loxodonta africana and 
other large mammalian herbivores, and discuss interspecific competition mechanisms in light of the spatial niche 
partitioning observed. This work is a collaborative work between Elise Say-Sallaz1 and Nicolas Ferry1, under the 
supervision of Stéphane Dray1, Hervé Fritz1 and Marion Valeix1.  
1CNRS UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université Claude Bernard Lyon 1 
 
 

Abstract 
 In community ecology, interspecific spatial patterns allow exploring the existence of 

interspecific interactions, such as competition or facilitation. Studies of spatial patterns are 

very insightful especially when experiments are too difficult to carry out, which is typically the 

case of large mammalian communities in protected areas. Here, we tested the hypothesis that 

the African elephant (Loxodonta africana), a megaherbivore, has a competitive effect on other 

herbivore species in a semi-arid savanna ecosystem. As interspecific competition leads to 

niche partitioning, we assessed the impact of elephants on other herbivore species at three 

scales: (i) landscape-scale spatial segregation, (ii) habitat partitioning, and (iii) fine-scale 

spatial segregation. We did not find any landscape-scale spatial segregation between 

herbivores and elephants. We did not find neither any habitat partitioning, and unexpectedly 

impalas selected habitats that were intensively used by elephants. Finally, we did not 

demonstrate any within-habitat scale spatial segregation. At this point, no competitive effect 

of elephants on other herbivores has been demonstrated, but it does not mean that it does 

not exist at all. This effect might happen at two other dimensions of niche partitioning not 

investigated in this work: resource partitioning and temporal segregation. 

 

Keywords: spatial pattern analysis, niche partitioning, interspecific competition, Loxodonta 

africana, large mammalian herbivores 
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Introduction 
Interspecific competition is an important biotic filter leading in some circumstances to 

competitive exclusion (Chase et al. 2002), which is translated by local extinctions or a change 

in the resources used by the non-dominant species (Volterra 1926; Gause 1934; Hardin 1960). 

Nowadays, interspecific competition is recognised as a major process in the establishment and 

structuring of communities (Cornell & Lawton 1992; Amarasekare 2002). Two types of 

interspecific competition exist: exploitative competition and interference competition (Case 

& Gilpin 1974; Connell 1983; Schoener 1983). Exploitative competition is an indirect process 

where some species, by using some resources, are cutting off associated benefits to 

competitors (Schoener 1983). Interference competition is a direct process where individuals 

are preventing their competitors to have access to a resource, by the mean of their presence, 

physical aggression, or by releasing toxic chemicals (Schoener 1983; Gyimesi et al. 2010). It 

induces numerous costs such as injuries (Janson & Van Schaik 1988) or a decrease of the intake 

rate, which is difficult to measure in the field as it is due to an avoidance behaviour (Janson & 

Van Schaik 1998; Gyimesi et al. 2010).  

 

To avoid or minimize the costs of competition and thus coexist, competing species can 

use the environment differently (e.g., in space or time) and specialise on different resources. 

This is the concept of niche partitioning (Schoener 1974; Connell 1980). Niche partitioning can 

be effective on different resources shared by the competitors, and can lead to (i) spatial 

segregation, whereby one species spatially avoids the competing species (Connell 1980; e.g. 

Stewart et al. 2002 for cattle and rocky Mountain mule deer and elk), (ii) habitat partitioning, 

whereby two species can be found in the same area if they do not use the same habitat 

(Connell 1980; e.g. depth that plant roots are occupying in the soil), (iii) resource partitioning 

whereby two species use the same habitat but different types of resources or different 

resource items (Schoener 1974; e.g. seed size for species with a granivore diet), or (iv) 

temporal partitioning, whereby two competing species are found in the same area, use the 

same habitat, and potentially the same resources, but not at the same time (e.g. Kotler et al. 

(1992) showed that two competing species of gerbils used the same resource patches but at 

different times of the night). Species are thus involved in complex interspecific interactions 

that can occur along different niche axes (Di Bitetti et al. 2010).  
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This study focuses on the role of interspecific interactions in a community of large 

mammalian herbivores (herbivores hereafter). Herbivory has important impacts on 

ecosystems (Ripple et al. 2015) including impacts on plant diversity, plant tolerance to 

herbivory, and nutrient cycle (Augustine & McNaughton 1998). Among herbivores, 

megaherbivores (> 1000 kg) have interesting characteristics: they are generalists and 

ecosystem engineer species (Owen-Smith 1992; Ripple et al. 2015; Coverdale et al. 2016). 

Ecosystem engineers can physically transform the abiotic or biotic material (Jones et al. 1994; 

Wright et al. 2002; Soulé et al. 2005), and other species are expected to respond to these 

environmental changes, which can thus affect the distribution and abundance of other species 

in ecosystems (i.e. niche construction Odling-Smee 2003). While threatened by poaching in 

several African ecosystems (Wittemeyer et al. 2014; Chase et al. 2016), some populations of 

African elephants (Loxodonta africana) remain stable or are increasing in southern and 

eastern Africa (Chase et al. 2016), due to habitat fragmentation (Archie et al. 2012; Ripple et 

al. 2015) and efficient conservation (creation of protected areas). In these ecosystems, 

elephant populations can reach high densities and concerns have arisen about their impact on 

the structure and functioning of communities and ecosystems because of the large amount of 

vegetation they process and their potential important role as ecosystem engineers (Paine 

1992; Soulé et al. 2005). A growing number of studies have therefore focused on the role of 

elephants in their ecosystems. For instance, it has been suggested that elephants can have a 

negative effect on browsers (i.e. species feeding on ligneous vegetation) by decreasing trophic 

resource availability (Fritz et al. 2002; Valeix et al. 2008; de Boer et al. 2015). Contrarily, other 

studies have shown that elephants can have facilitative effects on browsers on the short term. 

Indeed, when elephants break trees, these broken trees tend to resprout and the number of 

shoots produced by the plant at a height available for browsers such as impala (Aepyceros 

melampus) increases (this is the concept of browsing lawns - Rutina et al. 2005; Makhabu et 

al. 2006; Fornara & du Toit, 2007). Elephants might also have a direct competitive effect on 

water acquisition for other herbivores when water resources are scarce during the dry season 

(Valeix et al. 2007; Ferry et al. 2016). 
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In Hwange National Park, Zimbabwe, since culling stopped in 1986, the elephant 

population doubled in less than ten years, and its abundance is now fluctuating around 30 000 

individuals (Chamaillé-Jammes et al. 2008). At the same time, changes in the abundance of the 

populations of other herbivore species were observed. Some species abundances increased 

before 1986 and started decreasing after elephant culling stopped. Other species abundances 

decreased when the elephant population abundance increased and stabilized when the 

elephant population abundance stopped increasing and started to stabilize and fluctuate (Valeix 

et al. 2008). These changes in species abundances can result from the climatic conditions that 

occurred between 1985 and 1995 in Hwange National Park (low dry season rainfall), but a 

competitive effect of elephants cannot be ruled out (Valeix et al. 2008). In this study, we 

therefore tested the hypothesis that elephants have a competitive effect on other herbivore 

species, particularly browsers, which would result in niche partitioning between these species 

and elephants. We specifically investigated spatial avoidance (at different scales) and habitat 

segregation. Using a transect-based long-term study (10 years), we focused on habitat and 

spatial use by elephants and the other sympatric herbivore species. We first described spatio-

temporal variation of the composition of herbivore communities at the landscape scale to assess 

if spatial segregation occurs between elephants and other herbivore species at a large scale. We 

then considered environmental data to study habitat selection and detect habitat segregation 

between elephants and other herbivore species. Finally, we investigated at finer spatial scales 

whether herbivores avoid being close to elephants when using the same area at the same time 

as elephants. 
 

Material and methods 

Study site  

The study site was carried out in Hwange National Park in northwestern Zimbabwe 

(19°00’S, 26°30’E) (Fig.1). The park covers ~ 15 000 km2 of dystrophic semi-arid savanna mainly 

composed of woodlands and bushlands (Dudley et al. 2001; Appendix 1A). The dominant 

vegetation species in the park are Acacia spp., Colophospermum mopane, Combretum spp., 

Baikiaea plurijuga and Terminalia sericea (Rogers 1993). There are two contrasting seasons, the 

dry season, from May to October, and the rainy season, from November to April. The long-term 

mean annual rainfall is ~ 600mm, and the long-term mean dry season rainfall is 8,7mm. There 

is no perennial water in the park, although a few rain-fed pans hold water for much of the year 

in an average rainfall year. Water is artificially supplied to some waterholes during the dry 
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season (Appendix 1B). Most of the artificial waterholes, and hence most animals in the dry 

season, are in the northern sector of the park (Appendix 1B). In this study, we focused on three 

areas in this northern sector: (from West to East) Sinamatella, Main Camp and Ngamo (Appendix 

1). These three areas cover about 4 000km2 of the park. 

 
Figure 1: geographic position of Hwange National Park (green) in Zimbabwe (http://www.za-hwange.cnrs.fr/) 
 

Data 
Road censuses  

Road censuses were carried out during 10 years, from 2004 to 2014, to assess the 

abundance and spatial distribution of herbivores in the three study areas. The censuses 

followed the line-transect method and most available roads of the study areas were 

considered as transects (Appendix 1B). All observations of herbivores (species, group size) 

along transects were reported with the GPS coordinates of the observers on the transect, the 

angle to the North of the observation, the distance to the road of the animal(s), in order to 

calculate the exact positions of observations. The transect number, the activity of the 

herbivores (e.g. foraging, resting, moving), the perpendicular distance to the road, the date, 

and the time of the observation were consistently recorded. Two census sessions were carried 

out per year: one in May/June corresponding to the beginning of the dry season and one in 

September/October corresponding to the end of the dry season. For each session, two 

repetitions by transect were done. 
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Environmental data 
Environmental data were extracted from a map of the artificial waterholes and a raster 

map (raster format) of the different vegetation types (Appendix 1). The vegetation raster map 

was created based on satellites images (see Courbin et al. 2016 for details). Seven categories 

mainly based on openness were considered: grassland, open bushland, bushland-mopane, 

bushland-other, woodland-mopane, woodland-evergreen (mainly composed of Acacias spp.) 

and woodland-other. The proportion of each vegetation category for each transect in a buffer 

of 50m was determined with the QGIS software (QGIS 2.14.5). Similar method was performed 

to evaluate for each transect the proportion of four classes of distance to water (0-1km, 1-

2km, 2-5km, >5km). Distance to water and proportion of grassland, which is the most open 

habitat in the Hwange ecosystem, were correlated with grasslands predominantly found close 

to waterholes (Appendix 2). Therefore, collinearity between vegetation type and distance to 

water were assessed in further analyses. 

 

Analyses 
All statistical analyses were performed with open source Software R 3.3.1 (R 

Development Core Team 2014) unless otherwise specified. 
 

Detection probability 
We first computed the detection probability function for each herbivore species using 

Distance Sampling software (Thomas et al. 2010). As most of Hwange ecosystem is 

characterized by rather densely wooded habitats, detection probabilities decreased rapidly 

with the distance to the road. Therefore, for our analyses, we selected observations that were 

in a buffer zone of 50m from the road in order to have a detection probability of at least 0.7 

for all species (with the exception of the very small species, such as steenbok (Raphicerus 

campestris) and duiker (Sylvicapra grimmia) that have a detection probability of only 20% at 

this distance, so these species will not be used for analysis). 
 

Landscape-scale spatial segregation 
 We first investigated (1) spatial segregation between elephants and other herbivore 

species, and (2) relationships between environmental factors (distance to waterhole, 

vegetation type) and species communities in the study areas. Multivariate analyses were 

performed (ade4 package, Dray & Dufour 2007) on the species abundance, on each transect 

for a given session.  
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We preliminarily performed a classical Principal Component Analysis (PCA) on the log-

transformed species abundances. We then assessed the temporal variability of the herbivore 

community between year by performing a between-class PCA with “Year” as factor. Spatial 

variability between transect was assessed in similar way, with “Transect” as explanatory 

variable. Finally, a Principal Component Analysis with respect to Instrumental Variable (PCAIV) 

was performed on the spatial between-class PCA to quantify the proportion of the total spatial 

variability explained by the environment. Three zones were highlighted that correspond to the 

three study areas, i.e. Sinamatella, Main Camp and Ngamo. Sinamatella is very different from 

the two other areas in terms of both vegetation composition (Appendix 3a) and herbivore 

community composition (see after). Only data from the Main Camp and Ngamo areas were 

therefore used for subsequent analyses. In addition, analyses were performed on the five 

most common species: two mixed-feeders (elephant and impala), two browsers (giraffe 

(Giraffa Camelopardalis and kudu Tragelaphus strepsiceros), and one grazer (zebra Equus 

quagga, Appendix 3b). 

 

Habitat selection and partitioning 

Habitat selection of the five herbivore species was assessed, as well as whether the 

intensity of elephant utilization affects habitat selection of other herbivores in Main Camp and 

Ngamo areas. Only observations when herbivores foraged were used. Resource Selection 

Functions (RSF, Manly et al. 2007) were performed for each herbivore species (with presence 

of animal(s)= 1 and available = 0). We define (sp package, Bivand et al. 2013) available habitat 

with random locations (same number as the real observations) in the 50m buffer along 

transects. We used four explanatory variables: vegetation type, distance to water, sampling 

season (May and October), and the intensity of elephant utilisation. For this last variable, the 

locations and the abundance of elephant were used to build a raster layer of the intensity of 

utilization by elephants (ranging from 0 to 400 elephants for each pixel). This last variable was 

not used for the analysis of elephant habitat selection. To select the best model, we used the 

Bayesian Information Criterion (BIC) that selects for the most consistent and parsimonious 

model, whereas the Akaike Information Criterion (AIC) maximise the accuracy (Aho et al. 

2014). Model parameters were then estimated with a model averaging (on models with Δ BIC 

< 2, MuMIn package, Bartoń 2016, Burnham & Anderson 2004). Estimates of the model 
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parameters were used to calculate the selection strength (or relative probability of selection) 

for each variable. In order to avoid collinearity issues due to the structure of the habitat 

(Appendix 2), we calculated the variance inflation factor (VIF package, Lin 2012) for 

parameters in every model. All the VIF values were below 4, so we considered that the 

correlation between the proportion of grassland and the distance to the water was not a 

statistical issue (O’brien 2007). 

 
 

Fine-scale spatial segregation 

Fine scale spatial segregation was assessed between elephants and the four other most 

common herbivore species (giraffe, kudu, impala, zebra) in Main Camp and Ngamo areas. 

Considering one focal species, for each observation of this species the distance to the closest 

elephant (Delephant) was calculated, as well as the distance to the closest individual of each of the 

three other species when possible (Dother; up to three measures of Dother can therefore be 

recorded). For each observation, only observations recorded on the same transect during the 

same day were used to calculate distances (Fig. 2). Because all herbivores tend to aggregate in 

the vicinity of waterholes in the dry season (Redfern et al. 2003; Valeix et al. 2009), segregation 

was expected at a certain distance to water and distance to elephant (Delephant) was considered 

according to distance to water. Similar process was used for the distance to the other species 

(Dother). In order to compare the two distributions, the distance to elephant (Delephant) was ranked 

according to all the Dother relevant on the same transect the same day. The probability to be 

equal or inferior to the Delephant was then calculated. For each of the four classes of distance to 

water (0-1km, 1-2km, 2-5km, >5km), we combined all the probabilities by performing an 

unweighted Z-transform test (Stouffer et al. 1949). This test allows combining probabilities from 

k independent tests with identic null hypothesis and calculate a Z value that indicates whether 

the segregation between herbivores and elephants is significant.  
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Figure 2: Example of observations of herbivores inside the buffer (dotted grey lines) of 50 m from the transect 
(solid grey line). In this example, the species of interest is the zebra, the red line represents the Euclidean distance 
to the closest elephant observation (Delephant), and black lines represent the Euclidean distances to the closest 
observation of all other herbivore species (Dother). In this example, Delephant would occupy the 3rd rank (after impala 
and kudu) regarding the distances calculated, the probability to be equal or inferior would therefore be 0.75. 
 
 

Results 
Landscape-scale spatial segregation 
 The PCA revealed a temporal stability of the herbivore community composition 

between seasons (Appendix 4) and between years (Appendix 4). The between-year PCA 

confirmed this temporal stability at the inter-annual scale, with only 3% of the total variability 

explained by differences between years. Regarding spatial variability, the PCA revealed a 

spatial structuration of the community to a certain level, corroborated by the between-

transect PCA where 30.1% of the total variability is explained by differences between 

transects. The PCAIV highlighted that 60% of these 30.1% are due to environmental factors. 

Impalas are located in environments that are different from the environments of all other 

herbivore species (Fig. 3a). They are indeed preferentially located in areas characterized by 

mopane vegetation, which is typical of the West of the park in the Sinamatella area (Fig. 3c). 

All the other species are preferentially located in the Eastern part of the park (Main Camp and 

Ngamo areas, Fig. 3c), characterized by all the other vegetation types (Fig. 3b, c; see also 

Appendix 3). The second PCAIV's axis allowed to identify a second group of species (giraffe 

and kudu) preferentially located in the Main Camp area (Fig. 3d), where woodland vegetation 

dominates (Fig. 3b). All other species appear to co-occur in the same areas. Overall, no spatial 

segregation between elephants and other herbivore species appeared at the landscape scale.  
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Figure 3: a) Factorial map of the PCAIV, the first axis is explaining 82.2% of the total variability and the second 
one is explaining 10.8% of the total variability. B) Correlation circles with environmental parameters (distance to 
water and vegetation classes). C) Spatial representation of PCAIV's first axis distinguishing impalas and other 
species. d) Spatial representation of PCAIV's second axis distinguishing kudus and giraffes. 

 
 

 

Habitat selection and partitioning   
 

The model selection approach indicated that elephants did not select any type of 

vegetation. In addition, neither the season nor the distance to water seemed to influence 

elephant habitat selection (the null model was the best model; Appendix 5A), which confirmed 

that elephants are generalists. Regarding the four other species, models including season as 

an explanatory variable were never selected. For giraffe, the best model to explain habitat 

selection was the null model (Appendix 5B). For kudu, habitat selection was best explained by 

the model with the variable ‘distance to water’ only (Appendix 5C).  

d = 50000

−0.3 −0.1 0.1 0.3 0.5 0.7

(c) d = 50000

−0.15 −0.05 0.05 0.15 0.25

(d)



Chapter 4 : Assessment of food competition between African elephants and other                             
large herbivore species through spatial segregation at multi-scale level 

  
103 

For impala, two best models were selected: one including ‘distance to water’ and the 

interaction between ‘vegetation type’ and ‘the intensity of use by elephants’, and another 

including ‘distance to water’ only (Appendix 5D). Model averaging was therefore performed 

for impala. For zebra, the best model to explain habitat selection was the model with the 

additive effect of ‘distance to water’ and ‘vegetation type’ (Appendix 5E). 

 
Distance to water influenced habitat selection for zebra (estimate ± SE = -3.453e-04 ± 

8.595e-05; fig. 4a), impala (estimate ± SE = -3.72e-04 ± 1.05e-04; fig. 4b) and to a lesser extent 

kudu (estimate ± SE = -2.62e-04 ± 8.17e-05; fig. 4c). All species selected habitats close to water 

but the effect was weak for kudus. 

 
Figure 4: Selection strength according to the distance to water for a) zebra, b) impala, and c) kudu.  
 
 

Vegetation type had an effect on both impala and zebra habitat selection. Both species 

selected grassland over other vegetation types (estimate ± SE = 1.29 ± 0.6 and 1.51 ±0.31 for 

impala and zebra respectively; fig. 5). Further, for impalas the vegetation type was in 

interaction with the intensity of elephant utilisation where impalas selected area with higher 

intensity of elephant utilisation (Fig. 5a). Finally, the other species did not avoid or select areas 

intensively used by elephants.  
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Figure 5: Selection strength of a habitat for a) impala according to the intensity of the elephant utilization and 
vegetation type, and b) zebra according to the type of vegetation only.  

 

Finer-scale spatial segregation 
No segregation from elephant was revealed at finer scales neither. For all the species 

and all the classes of distance to water, the Z-values had non-significant p values, which means 

that no spatial segregation could be demonstrated (fig. 6). Even though non-significant, there 

seems to be a trend for segregation between giraffes and elephants when close to a 

waterhole.  
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Figure 6 Distributions of the distances to the closest elephant observation (Delephant - red boxplots) and of the 
distances to the closest other herbivore observation (Dother - white boxplots) for a) giraffe, b) impala, c) kudu, and 
d) zebra according to distance to water. Distances were calculated for real time observations, i.e. animals present 
the same day on the same transect.  
 
Discussion 
Landscape-scale spatial segregation  

We initially made the hypothesis that elephants have a competitive effect on herbivores 

species that can lead to niche partitioning. At the landscape scale, we assessed whether there is 

spatial niche segregation between elephants and herbivores. The multivariate analyses 

highlighted the temporal stability of the herbivore community composition over the 10-year study 

period (2004-2014), which is consistent with previous work focusing on community composition 

at waterholes in the park (Chamaillé-Jammes et al. 2016). Our analyses further revealed that the 

herbivore community had a spatial structure. Sinamatella, the most western study area 

characterized by mopane vegetation on rich basaltic soil, showed a very specific species 

community dominated by impalas contrarily to the two other study areas (Main Camp and 

Ngamo), which were dominated by elephants and on Kalahari sands, which are poor quality soils. 

Because elephants and impalas are both mixed feeders, this result may suggest the existence of a 

spatial segregation between these two species at large scale. However, our results on habitat 



Chapter 4 : Assessment of food competition between African elephants and other                             
large herbivore species through spatial segregation at multi-scale level 

  
106 

selection showed that impalas selected sites intensively used by elephants in Main Camp and 

Ngamo areas, and therefore provide little support for a competitive scenario between these two 

species. Instead, the Jarman-Bell principle states that mammalian herbivores with a large body 

mass can afford to eat lower quality food (but needed in large quantities) compared to smaller 

herbivores that have to eat higher quality food (but can afford low quantities) (Bell 1971, Jarman 

1974, Müller et al. 2013). Indeed, larger species can increase their intake without increasing their 

basal metabolism compared to smaller ones (Müller et al. 2013). Considering the body mass gap 

between impala (female body mass = 45 kg) and elephant (female body mass = 2800 kg), this could 

explain why impalas are preferentially found in the area with the soil of better quality and 

elephants in the areas with the soil of poorer quality. Impalas are preferentially found in 

Sinamatella area, as they seem to preferentially select plant species found in the Mopane habitat 

type (Kos et al. 2012).  

Results from the multivariate analyses also showed that most of the other herbivore 

species were preferentially located in Main Camp and Ngamo areas, despite some of them having 

small body masses. A hypothesis could be that elephants, through their trophic activities, increase 

the quality of the trophic resources for other herbivores and allow them to strive on poor quality 

soils. This would corroborate the findings on the facilitative effects of elephants for browsers 

through the creation of browsing lawns (Makhabu et al. 2006). Hence, contrary to our predictions, 

no spatial segregation occurred between elephants and other herbivores at the landscape scale.  

 

 

Habitat selection and partitioning 
The fact that the null model was selected for elephant habitat selection corroborates 

that the elephant is a habitat generalist (Owen-Smith 1992). Indeed, as megaherbivores, 

elephants have a capacity to digest a wide range of vegetal species, due to their long digestive 

tractus (Demment & Van Soest, 1985). However, we cannot rule out a scenario whereby 

elephants would normally select for a certain habitat type but given the very high abundances 

encountered in Hwange, it is likely that intraspecific competition is high and a portion of the 

elephant population is constrained to sub-optimal habitats. Overall, other species cannot 

segregate their habitat selection from elephant habitat selection as elephants are found in all 

habitats. However, the PCAIV presented in the first section of results was based on 

abundances and suggested that the density of elephants in the park is slightly uneven over 
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Main Camp and Ngamo areas. It also highlighted the fact that elephant abundance is 

constrained by short distances to waterholes. One explanation would be that using 

presence/availability data is not as effective to model habitat selection as using abundance 

data.  

 

 There was no effect of distance to water on giraffe habitat selection and only a weak 

effect for kudu. This may result from the fact that both species are browsers feeding on leaves 

that supply water, especially during the dry season (Owen-Smith 1979; du Toit et al. 1990; 

Omphile & Powell 2002). For zebra and impala, our results showed a selection strength that 

increased when the distance to water decreased. These two species are recognized as water-

dependant species (Redfern et al. 2003).  

 

 Interestingly, whereas giraffe and kudu were preferentially found in the Main Camp 

area, vegetation type did not influence habitat selection for these two browser species. 

Giraffes mainly eat Acacia spp. (du Toit et al. 1990; Parker & Bernard 2005), which is likely to 

be present in different vegetation types especially in grasslands and open bushlands which 

are dominant in Main Camp and Ngamo areas (Rogers 1993). This might explain why we do 

not find any pattern of habitat selection for that species at that scale. A limit of our study is 

that when herbivores were foraging, we do not know on which plant species they were 

foraging, and the available vegetation map is mainly a vegetation structure map so 

information on plant species composition is lacking. For both impala and zebra, vegetation 

type influenced their habitat selection. Impala selected more intensively grasslands and 

bushlands, which makes sense because impala is a mixed feeder spending the rainy season 

grazing, and the dry season browsing. Zebra selected more intensively grasslands and open 

bushlands, the two most open habitats where it is easier to graze.  

 

 Finally, for impala, for which the elephant-related explanatory variable was in the best 

habitat selection model, the selection strength of a habitat type increased with the intensity 

of utilization by elephants, which was contrary to our expectations. This result does not 

support a hypothesis of a competitive effect of elephants on impalas. It does support however 

results from previous works in the Chobe ecosystem, Botswana, where elephant-induced 
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browsing lawns have been revealed suggesting a short term facilitative effect of elephants on 

other browsers in non-Mopane woodlands (Rutina et al. 2005; Makhabu et al. 2006). The fact 

that we did not show an impact of elephant on other herbivore habitat selection does not 

mean that elephants have no competitive effect at all as this may occur at a finer scale of the 

niche (trophic resources, resource items) or temporally. Some studies highlighted the fact that 

there is a very small resource overlap between elephants and other herbivore species for the 

plant that they browse on at the Chobe riverfront in Bostwana (Makhabu 2005). In fact, there 

is a differentiation in the species eaten by herbivores along a C3/C4 gradient (Tilman & Borer 

2015). If there is a resource partitioning, herbivores are not eating the same species as their 

competitor and that allows coexistence between them and no habitat segregation (Tilman & 

Borer 2015). With our data, we cannot assess if there is resource partitioning between 

herbivores and elephants, as we do not have the information about what trophic resource 

they eat.  

 

Finer scale spatial segregation 
The goal of this last section was to determine if there is spatial segregation between 

elephants and other herbivores at a finer scale than the habitat, which would be linked to 

interference competition mechanisms. In African savanna large mammalian communities, 

studies on interference are rare and the few existing studies were carried out at waterholes. 

They revealed temporal segregation between elephants and other herbivore species (Valeix 

et al. 2007), and fine-scale spatial segregation for some species only at the onset of the dry 

season (Ferry et al. 2016). Here, we expected a negative impact of elephants on other 

herbivores due to interference in habitats away from waterholes (as we focused on the 

habitats that species used to forage), which would result in a spatial avoidance of elephants 

by other herbivores at fine scales away from waterholes (Chesson 2000; Amarasekare 2003). 

We were not able to detect any segregation from elephants, and we did not highlight any 

spatial aggregation to elephants either.  

 

 

 



Chapter 4 : Assessment of food competition between African elephants and other                             
large herbivore species through spatial segregation at multi-scale level 

  
109 

Conclusion 
In this study, we focused on herbivore spatial distribution patterns and interpreted our 

results in the light of possible interactions with elephants. Overall, we did not find any spatial 

segregation pattern between elephants and other herbivores (whether at the landscape scale, 

at the habitat scale or at a finer scale). Our results therefore do not support our predictions 

based on a competitive effect of elephants on other herbivores. This can arise from the 

absence of competition between elephants and other herbivores (facilitation even seems to 

be suggested between elephants and impalas from our results on habitat selection) or 

because competition occurs along niche axes that are not investigated in this work (e.g. 

resource items, time). This work underlines the importance of scales when studying spatial 

patterns and inferring what may cause them.  
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Supporting information 
Appendix 1: A) Raster layer used to extract environmental data (QGIS software). It represents the seven 
general types of habitat (i.e. vegetation types) that can be found in the park. The border of the park and he 
transects of the study site are represented in black. The three areas of the study site, Sinamatella, Main Camp 
and Ngamo are circled. At this level the differential composition in vegetation type between Sinamatella and 
Main Camp and Ngamo is notable. Indeed, the Mopane habitat type (Bushland Mopane and Woodland 
Mopane) appears to be dominant in Sinamatella area. B) Map of Hwange National Park, Zimbabwe, with 
transects (black lines), the artificial waterholes (blue dots), and the three study areas (black circles). The map 
was created with the QGIS software. 

A) 

 
B) 
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Appendix 2: barplot of the proportion of each habitat type according to distance classes to a waterhole. 
Vegetation types are sorted along a gradient of habitat’s openness, from the more open (Grassland) to the more 
closed habitat (Woodland-other).  
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Appendix 3: A) Vegetation composition for each study area. Sinamatella area  is composed of 80% of Mopane 
vegetation, which clearly differs from Main Camp and Ngamo areas. Although Ngamo is more open than Main 
Camp, the same vegetation types characterize these two areas. B) Proportion of observations for the ten most 
abundant herbivore species in the study site over the years of the study. 
A) 

 
B) 
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Appendix 4: Results of PCA applied on abundance data. Factor map is illustrated by a) sessions, and b) years.  
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Appendix 5: Table of the four best habitat selection models in Main Camp and Ngamo areas for A) elephants, B) 
giraffes, C) kudus, D) zebras, and E) impalas. The best model is indicated in bold. Distance to water is the distance 
to the closest waterhole, season represents the two sampling sessions (May and October), and vegetation stands 
for vegetation structure types. If there are models with a delta BIC value inferior to two, a model averaging was 
performed to estimate average parameters. 
A)           Explicative variables BIC Delta BIC Weight 

null 949.2 0.00 0.880 

distance to water 954.1 4.86 0.077 

season 955.7 6.52 0.034 

vegetation 959.7 10.46 0.005 

    

B)            Explicative variables BIC Delta BIC Weight 

null 488.3 0.00 0.653 

distance to water 490.8 2.54 0.184 

elephant_use 492.5 4.20 0.080 

season 494.1 5.85 0.035 

    

C)            Explicative variables BIC Delta BIC Weight 

distance to water 488.3 0.00 0.654 

null 490.8 2.49 0.188 

distance to water + elephant_use 492.5 5,16 0.050 

distance to water + season 494.1 5.20 0.049 

    

D)            Explicative variables BIC Delta BIC Weight 

distance to water 488.3 0.00 0.654 

null 490.8 2.49 0.188 

distance to water + elephant_use 492.5 5,16 0.050 

distance to water + season 494.1 5.20 0.049 

    

E)              Explicative variables BIC Delta BIC Weight 
distance to water + elephant_use * vegetation 291.2 0.00 0.406 

distance to water 291.5 0.30 0.350 

distance  to water + vegetation 295.2 3.97 0.056 

distance to water + elephant_use 295.7 4.53 0.042 
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AXIS 3.  

Indirect effect of elephants on lion foraging 
behaviour through vegetation modification  

 

 
 

« Quand l'éléphant trébuche, ce sont les fourmis qui en pâtissent. » 
Proverbe africain 
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Abstract 
Herbivory is known to strongly shape African savanna ecosystems. Among herbivores, 

the effect of the African elephant Loxodonta Africana, considered as a megaherbivores (>1000 

kg) and an ecosystem engineer, on the vegetation was extensively studied. Debate are still 

ongoing about the negative or positive effect elephants could have on diversity and structure 

which seems to be context-dependent. However, very few studies assessed the long-term 

dynamic of the vegetation constantly exposed to high elephant densities. Elephants impacts 

on woody vegetation and correlated effect on structure, species and functional trait 

composition were monitored during a long period of high elephant density (2001, 2008 and 

2015) in Hwange National Park, Zimbabwe. We showed that elephant impacts (mainly broken 

trunk) accumulated over the years but was not correlated to changes neither in dominant 

species neither in mean functional trait. However, we observed changes in composition of 

rare species. Finally, we did not reveal strong changes in the vegetation structure (height, 

crown diameter and stem girth), except in the 50-200 cm height layer where the crown 

diameter was highly reduced in almost all vegetation type considered. Our study suggests that 

under high elephant pressure, impacts on woody vegetation accumulate but do not lead to 

global modification of the vegetation. 

 

Key-words: vegetation dynamics, species and functional trait composition, vegetation 

structure, high African elephant density, ecosystem engineer.  
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Introduction 
 

Savanna ecosystems are complex and heterogeneous landscapes with a high diversity 

of habitats and plant species shaped by different interacting factors such as soil, rainfall, frost, 

fire and herbivory (Sankaran et al. 2005).  Due to their very high plant biomass consumption 

(Owen-Smith 1988), African elephants Loxodonta africana are known to exert strong top-

down control on the vegetation in savanna ecosystems (see reviews in Kerley and Landman 

2006, Guldemond and van Aarde 2008). They are generalists in their diet with a wide range of 

food items (grass, leaves, twigs, roots, bark; Barnes 1982, O'Connor et al. 2007)., and have the 

physical potential to significantly impact trees (from pollarding to breaking trunks and 

uprooting trees, O'Connor et al. 2007). For all these reasons, African elephants are considered 

as ecosystem engineers (sensu Jones et al. 1994) and have the ability to significantly alter their 

environment.  

 

Adult African elephants are virtually immune to natural predation (Sinclair et al. 2003), 

but because of their body size and the growing demand for ivory, they are particularly 

vulnerable to human threats (e.g. habitat fragmentation, human-wildlife conflicts, hunting, 

poaching; Macdonald et al. 2013). African elephant populations have changed tremendously 

in the past century with some populations collapsing due to poaching for ivory (Chase et al. 

2016) while others in well protected populations have increased to very high densities (Blanc 

et al. 2005). Increasing elephant populations have led to profound changes in African savanna 

ecosystems (Skarpe et al. 2004). Concerns have been raised regarding elephant-induced 

vegetation changes as they can influence a wide range of processes, such as grass-tree 

coexistence (Sankaran et al. 2005), fire dynamics (Langevelde et al. 2003), habitat selection by 

other species (Valeix et al. 2011), animal biodiversity (Pringle 2008), and predator-prey 

relationships (Loarie et al. 2013).  

 

 Several previous key studies have shown elephants to negatively (sensu Guldemond & 

van Aarde 2008) affect vegetation structure, diversity and composition (the so-called 

“elephant problem”; Laws 1970, Caughley 1976), however it is now recognized that elephant 

effects are complex and dependent on the spatio-temporal scales considered (Guldemond & 

van Aarde 2008, Coverdale et al. 2016). Many of these studies showing elephants to exert 
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strong negative effects on the vegetation were conducted in small and closed reserves 

(O'Connor & Page 2014) in contrast to open systems where elephants naturally use wide areas 

to roam (Loarie et al. 2009). These results are difficult to generalize as long-term studies in 

fenced areas seem to show more negative impacts from elephants than studies in non-fenced 

areas (Guldemond & van Aarde 2008). Furthermore, many of these previous studies were 

either once-off (Ben-Shahar 1993) or short-term (Ben-Shahar 1998) and failed to assess the 

long-term vegetation dynamics. Longer-term studies that have been conducted were often 

carried out during periods of changing elephant populations (Conybeare 1991, Mosugelo 

2002, van de Vijver et al. 1999).  The long-term effects of consistently high elephant densities 

on vegetation dynamics are still not clear. Debates are still ongoing, and given the rapid 

changes occurring in many elephant populations, there is an urgent need to better understand 

how elephants affect woody vegetation (species composition, functional traits and structure) 

over the long-term in large natural savanna ecosystems.  

 

To our knowledge, few studies have assessed the long-term cumulated impacts of high 

elephant densities on community compositions and structure in large areas, and even fewer 

have focused on the functional trait compositions of the woody plant communities (Wigley et 

al. 2016). In this study, we use field data from twelve long-term (15 years) vegetation plots set 

up in areas of very high elephant densities in Hwange National Park, Zimbabwe, to specifically 

test for the long-term effect of consistently high African elephant densities on savanna 

woodland species and trait composition, as well as structure. With an estimated average 

elephant population density > 2 individuals.km-1 (Chamaillé-Jammes et al. 2008) over the last 

two decades, Hwange National Park, offers an excellent opportunity to study the long-term 

cumulated effects of elephant on woody vegetation. 

 

Previous studies have found that elephants feed selectively on woody plant species 

(Guy 1976, Viljoen 1989, O’Connor et al. 2007), with food selection being mainly driven by 

plant functional traits such as leaf chemistry (Jachman & Bell 1985, Jachman 1989, Holdo 

2003).  If we assume that most of elephant impacts on trees (e.g. broken trunk, uprooted tree) 

result from foraging processes and not from other behaviour (e.g. musth for the male, Poole 

1987), we expect elephant impacts to be greater in preferred plants (hypothesis ES1 Table 1). 

Further, if elephants select plant species according to their functional traits, e.g. leaf nutrient 
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content, the intensity of impact is expected to be related to these traits (hypothesis ES2 Table 

1). As consequences of this continuous selection, we expect the woodland plant community 

to change, especially because woody plant species are also expected to be differentially 

vulnerable to elephants (O’Connor et al. 2007). This raises concerns about plant diversity 

losses as well as landscape changes (Owen-Smith et al. 2006, Landman et al. 2007, O’Connor 

& Page 2014; Coetsee & Wigley 2016). Holdo (2007) used a simulation model to investigate 

the possible effects of elephants, fire and frost on vegetation composition during a 50-year 

period. In his model, Holdo (2007) showed a shift of the community composition towards 

species highly resistant to disturbances, mainly unpalatable scrub vegetation such as Ochna 

pulchra and Erythrophleum africanum.  We expect that the continuous pressure by elephant 

has selected communities dominated by unpalatable species or species responding well to 

damages (hypothesis CS1 Table 1).  If elephants select woody plant species according to their 

functional traits, with even potential extirpation (O’Connor et al. 2007), the loss of diversity in 

the functional trait composition of the community (hypothesis CS2 Table 1) could have 

important consequences for the ecosystem functioning (Augustine & McNaughton 1998, Diaz 

& Cabido 2001).  

 

For structural changes, the effects of elephant can be major in these semi-arid savanna 

woodlands, mostly through decrease in the total basal area, crown area and tree density (e.g. 

Conybeare 1991, Mosugelo 2002, Holdo 2007). According to Holdo (2007), elephants were 

not expected to convert woodland to complete grassland as often suggested/observed in East 

African savannas (Beuchner & Dawkins 1961, Laws 1970), but revert and maintain the 

vegetation at a scrub phase. Holdo (2007) suggested an asymptotic relationship between 

elephant impacts on vegetation structure and elephant density, which allows to predict a 

structural change in favour of shrub canopy cover as well as lower total tree cover (hypotheses 

S1 and S2, Table 1). This change in structure could be associated with changes in the 

availability of resources such as refuges for some species (Pringle 2008), or food items for 

other browsing species (Fornara & du Toit 2007), as well as habitat features important for 

predator-prey relationships (e.g. visibility, Tambling et al. 2013). We therefore tested 

specifically if the most significant changes in vegetation structure occured in the height layer 

functionally critical to other large mammals (i.e. the 50-200 cm height layer, hypothesis S3, 

Table 1). 
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Material and methods: 
Study site 

Hwange National Park (HNP hereafter) covers an area of 14 600km², extending from 

18°30’ to 19°50’N and from 25°45’ to 27°30’E. The study took place in the Main Camp area, in 

the North-eastern part of HNP in 2001, 2008 and 2015. Rainfall is markedly seasonal, from 

November to March, with an annual mean of ≈ 600 mm and a range of 324 to 1160 mm 

(Appendix 1). The mean annual temperature is 20.3°C. October is the hottest month with a 

mean daily maximum of 33.2°C, and July is the coldest with a mean daily minimum of 4.1°C.  

In the Main Camp area, the four dominant vegetation types monitored are Baikiaea plurijuga 

woodland, Combretum bushed-woodland, Colophospermum mopane bushland and Acacia / 

Terminalia bushed-woodland (Rogers 1993). Elephant population in Main Camp area were 

estimated at more than 2 individual / km² and stayed around this level until 2015 (Chamaille-

Jammes et al. 2008, Fritz 2015). 

 

Data 
In each of the four vegetation types, three plots of 25x 50 m were monitored between 

May and August in 2001 and 2015. In 2008, only plots in the Baikiaea plurijuga woodland and 

Combretum bushed-woodland were monitored. Each plot was delimited and marked by two 

concrete blocks: one block was placed in the middle of the plot (GPS coordinates are provided 

in Appendix 2), the other block marked the north-western corner. Each plot was defined in 

area assumed to be intensively used by elephants in late dry season (close to permanent 

waterholes, mean distance to water = 1271 m, Table S1).  

 

Vegetation structure, composition and elephant impacts 
To determine the vegetation species composition and structure an exhaustive 

inventory of woody plants was conducted in each plot. For each woody plant, we recorded 

the species, height, two perpendicular measures of the crown diameter to calculate an 

average crown diameter and stem diameter measured at breast height (DBH hereafter) and 

recorded for woody plants with a stem girth > 6 cm. For individuals with a height <1.5m, 

heavily damaged and/or with several stems, diameter was measured on the largest stem, at 

the height of the first twig. In addition, for each plant the degree of utilization by elephants 

was recorded through several binary variables: trunk broken, twigs browsed, uprooted, root 
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used, bark removed (between 1.5m and 5m in height, according to the height potentially 

reachable by elephant, Höft and Höft, 1995) and dead tree. If twigs were browsed or bark 

removed on the plant, a quantitative assessment of the impact was recorded (percentage of 

twigs browsed/ bark removed). A last variable was “Used” if at least one elephant impact was 

present on the plant. The different impacts were qualified as old or young (less than one-year-

old, see Coetzee et al. 1979 and Ben-Shahar 1998 for the age classification method). 

 

Functional traits  
Six functional traits were measured: three physiological traits; percentage of leaf nitrogen (N), 

carbon (C) and phosphorous (P) and three anatomical traits; the leaf dry matter content 

(LDMC), the stem density (SD) and the type of spinescence (no spines, spine or thorn). 

Functional traits data were gathered from a combination of sources which included the TRY 

database, the Global 15N Database (Craine et al. 2009), the Seed Information Database, TROBIT 

West Africa (Domingues et al. 2010), The Americans N&P Database (Kerkhoff et al. 2006), 

Global Wood Density Database (Zanne et al. 2009), William Bond’s database. Species for which 

data were missing were filled by a fieldwork session in May, 2016, according to the methods 

outlined in Wigley 2013. Functional trait data were gathered for a total of 26 species which 

accounted for 90% of the standing abundance in the plots (Appendix 3).  

 

Analyses 
All analyses were performed using R Software (R Development Core Team, 2004). 

Dynamics of elephant impacts  
To evaluate whether elephant impacts on the woody vegetation increased over the 

study period (hypothesis EI, Table 1), we performed a mixed logistic model (using the “lme4” 

package, Bates et al. 2015), with the binary variable “Used” as the response variable (1= “Yes”, 

0= “No”), the variable “Plot” as a random effect and the variable “Year” as a fixed effect.  

 

Species and functional trait preference 
Species preference - For each species, a Jacobs’ index (Jacobs 1974) was calculated (Eq. 1) for 

each plot and for each year, based on the variable “Used”, to get a descriptive overview of the 

differential utilization of the vegetation species by elephants (hypothesis ES1, Table 1).  

 (Eq. 1) 
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Where rij is the proportion of the total number of plants used by elephant for the species i in 

the combination plot-year j and pij is the proportional availability of the species i in the 

combination plot-year plot j. Jacobs index ranges between -1 (highly avoided), 0 (used in 

proportion to availability) and 1 (highly selected). A weighted mean of this Jacob's index was 

calculated for each species (Eq. 2).  

 (Eq. 2) 

Where Ni is the total abundance of the species i, Dij is the Jacobs index and nij the abundance 

of the species i in the combination plot-year. Only species with at least 30 individuals were 

kept to calculate the index representing 34 species in total for this analysis. Further, we 

assessed if the weighted Jacob's index was correlated to the difference of abundance between 

2001 and 2015. 
 

Functional trait preference - To evaluate whether elephants select for functional traits 

(hypothesis ES2, Table 1), we performed a linear model with the weighted Jacob’s index as the 

response variable and the six functional traits as fixed effects.  
 

Species and functional trait composition dynamics 
Species composition dynamics - We performed a co-inertia analysis (Dolédec & Chessel, 1994) 

to evaluate the link between the two tables describing species composition and elephant 

impacts (per plot per year, hypothesis CS1, Table 1). Species abundances were log-

transformed and within-class analyses were applied prior to co-inertia analysis to remove the 

effect of ‘plot’ on the variations in species compositions or elephant impacts. Analysis were 

performed with the ade4 package for R (Dray and Dufour 2007). 
 

Functional trait composition dynamic - We applied a partial-RLQ analysis (Wesuls et al. 2012), 

using the “ade4” package (Dray & Dufoure 2007) to determine how functional trait 

composition varied with elephant impact (Hypothesis CS2, Table 1) after controlling for plot 

differences. This allowed us to identify if and which types of elephant impacts mainly drive 

differences in functional traits among communities. Rao’s quadratic entropy index (RQE) was 

also calculated for each combination plot-year to evaluate the functional trait composition 

diversity dynamics, as follows: 
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Where i is the i-th combination plot-year, s is the number of species in the plot-year; pj and pk 

are the proportion of respectively j-th and k-th species in the plot-year, djk is the dissimilarity 

of species j and k (djj = 0, i.e. dissimilarity of each species to itself is zero). 
 

Effect of elephant impacts on vegetation abundance and structure 
Vegetation abundance - A paired Wilcoxon test was performed comparing species 

abundances between 2001 and 2015 in all plots, with the simple alternative hypothesis of a 

difference between the two years (Hypothesis S1, Table 1). 
 

Vegetation structure - For these analyses, all trees below 50cm height were removed as we 

assumed that they did not substantially affect the structure of the habitat and would therefore 

not influence predator-prey relationships. Furthermore, these small plants can bias analyses 

on height, stem diameter and crown surface.  We distinguished the stratum above 200 cm 

height and the one between 50 and 200 cm height for the crown surface as this variable could 

have a particular effect on visibility for herbivores and predators. In each plot, for the height, 

the stem diameter at breast height and the crown surface (> 200 cm height), a non-

parametrical Jonkheere test of global trend was performed (Jonckheere 1954) with a decrease 

over time as the alternative hypothesis (hypothesis S2, Table 1). For the variable “Crown 

Surface – 50-200cm height” the alternative hypothesis was a simple difference (hypothesis S3, 

Table 1).  

 

Results 
Dynamics of elephants impacts 

The proportion of plants used by elephants increased over the study period (Fig. 1) in 

2008 and in 2015 (β2001-2008 = 0.53, z2001-2008 = 9.2, β2001-2015 = 0.82, z2001-2015 = 21.3), with an 

overall increase in the proportion of broken plants. Over the year, the main impact by 

elephants was trunks broken with 87% of the “Used” trees in 2001, 85% in 2008 and 88% in 

2015. The other impacts were browsed twigs with 21 % of the used plant being browsed in 

2001 (37% in 2008 and 58% in 2015), and bark utilization with only 1% of the used plant having 

bark partially removed in 2001 (2.7% in 2008 and 2.6% in 2015). Uprooted trees and root 

utilisation were almost never recorded. Indeed, only 12 individual plants uprooted were 



Chapter 5: Effects of long-term exposure to high elephant densities                             
on semi-arid African savanna woodland structure, species composition and functional traits 

  
128 

observed in 2001, 2 in 2008 and 5 in 2015 and only 1 plant in 2001 and 1 plant in 2015 were 

observed with root utilised. 

 
Figure 1: Height density distribution for the three plots monitored (1, 2 and 3) for each of the four vegetation 
types (B = Baikiaea plurijuga woodland, C = Combretum bushed-woodland, M = Colophospermum mopane 
bushland and T = Acacia/Terminalia bushed-woodland). Red density distributions represent 2001 and blue 
density distributions represent 2015, for visual convenience 2008 was not represented here. Simple lines 
represent density distributions for all plants whereas full-coloured density distribution represents plants used by 
elephants. 
 
Species and functional trait preference 
Species preference 

Of the 34 plant species considered, Colophospermum mopane was the only species to 

be highly selected for by elephants (Jacob’s index >0.5, Fig. 2.a), while 11 other species were 

slightly selected for (Jacob’s index >0 but <0.5). Nine species were highly avoided (Jacob’s 

index < -0.5) and 12 were slightly avoided (Jacob’s index <-0.5 but <0). There was no significant 

relationship between the change in abundance between 2001 and 2015 of each species and 

the Jacob’s index of each species (t=1,7, df = 32, cor = 0.29, Fig. 2b). 

 

Functional trait preference 
Elephants avoided species with higher leaf N concentrations (β = -0.26, z = -2.65, p = 

0.01). They did not select for nor avoid any of the other considered traits.  
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Figure 2: a) Weighted mean Jacob’s selection index per species, with error bar corresponding to standard error. 
Jacob’s index ranged from -1 to 1, representing respectively a negative and a positive selection for the species. 
b) Relationships between the weighted mean Jacobs index  and temporal dynamics of each species (absolute 
difference between 2015 and 2001 on y-axis and relative difference index with the size and color of points). 
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Species and functional trait composition dynamics 
Species composition dynamics 

After the variability between plots had been removed (70% for the species composition 

table and 48% for the elephant impacts table), there was a slight temporal shift in the 

composition of the vegetation which was correlated to an increase in elephant impact on the 

first axis representing 25.7% of the remaining variability (permutation test p.value < 0.001, 

Fig. 3). This temporal trend was related to an increase in elephant impacts (percentage of 

broken trees, of browsed trees and of converted trees) and corresponded mainly to a shift in 

the rare species of the communities.  More than 20 species (e.g. Tricalysia allenii, Combretum 

Zeyheri, Comniphora edulis and Pterocarpus rotundifolius) disappeared from the plots while a 

few new species (e.g. Mundulea sericea, Gardenia volkensii, Lonchocarpus capassa and 

Erythroxylum zambesiacum) appeared on the plots. Common species such as Diospyros 

lycioides, Burkea africana, Baphia massaiensis, Combretum hereoense did not change 

drastically.  

 
Figure 3: Co-inertia analysis plot with first axis mainly represented by temporal variation with species abundances 
modification and an increase of the elephant impact. Upper left, each point represents a plot a year (e.g. Baikiaea 
1 2001). Lower left, each elephant impact variable was calculated per plot per year (e.g. Perc.Broken represents 
the % of tree broken in each plot*year, and so on for the other variables). Lower right, eigen values barplot, 
showing that the first axis captures the large part of the inertia. 
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Functional trait composition dynamics 
When looking at the functional trait composition, no temporal change was detected 

(permutation test 1 p > 0.05, permutation test 2 p = 0.78). After variations among plots had been 

removed, there was no temporal shift in the functional trait composition of the vegetation 

resulting from an increase in elephant impacts. In addition, when looking at the Rao’s quadratic 

entropy index, no change in the functional trait diversity was observed over the years.  

  
 

Effect of elephant impacts on vegetation abundance and structure 
Vegetation abundance  

No significant difference of plant abundance was observed between 2001 and 2015 for 

all species combined (W = 38, p = 0.97, see Appendix 4 for detailed abundances). 

 

 

Vegetation structure 
There was a slight alteration of the vegetation structure when considering the height 

(in 4 plots the height decreased, see Table 2 for the height median in 2001 and 2015 for these 

plots, Fig. 1), but almost no change was observed when looking at the DBH (Table 2, Table S4) 

and the crown surface for >200cm height trees (Table 2, Fig. 4). However, a strong decrease 

of the crown surface for trees between 50-200 cm height was observed in almost all plots, 

except in Mopane plots where an increase was observed (Table 2, Fig. 4).  
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Discussion 
Elephant impact dynamics 

The elephant population was already high in 2001 (Chammaillé-Jammes 2008) and so 

were elephants impacts, showing a strong cumulated effect of elephants on all vegetation 

types considered, mostly through broken tree trunks. Most of the observed impacts were 

qualified as old whereas few were characterized as fresh, as these impacts can be observed 

for a long time after they appeared (e.g. broken trunk). This supports our hypothesis that the 

observed increase in elephant impacts is an accumulation of these over the years rather than 

an increase in the elephant impacts rate during the study period.  

 

Species and functional trait preference 
Among the main species present in the study plots, only Colophospermum mopane was 

highly selected for. Mopane is a species which is known to be subject to high rates of elephant 

utilization (Ben-Shahar 1998) and is almost exclusive in the Mopane plots (>90% of relative 

abundance). It is interesting to note that Colophospermum mopane which was the most 

utilized species was also the species for which we observed the strongest abundance increase. 

However, as Colophospermum mopane is known as a wind dispersed species and not as an 

animal dispersed species the role of elephant in this increase in abundance remains unclear, 

although   elephants are known to be crucial in the fruit dispersion of some woody species 

(Campos-Arceiz & Blake 2011). Other species were clearly avoided (such as Dalbergia 

melanoxylon contrarily to what was observed in van de Vijver et al. 1999, Wigley et al. 2014). 

However, 70% of the 34 considered species were neither selected for, nor avoided (Jacob’s 

index between -0.5 and 0.5) suggesting opportunistic foraging behaviour by elephants (not 

supporting ES1). This tendency of a generalist feeding behaviour is also observed when 

focusing on the slection for functional traits: contrary to other studies on elephant preferences 

(Jachman & Bell 1985, Jachman 1989, Holdo 2003), we did not detect associations between 

elephant selection and the functional plant traits measured in this study (not supporting ES2). 

However, our results corroborate previous studies at the population level of Colophospermum 

mopane. (Anderson & Walker 1974, Thomson 1975; see also Ben-Shahar & Macdonald 2002). 

An avoidance of species with high N leaf content was nevertheless observed in complete 

opposition to expected herbivore preferences (Crawley 1983, Herms & Mattson 1992, Pérez-

Harguindeguy et al. 2003). An explanation of this surprising result could be that the 
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composition of N in the leaf could be associated with other functional traits (e.g.  secondary 

metabolite compounds, Herms & Mattson 1992) which would lower the palatability of the 

species with high leaf N leaf content. However, we did not have the data to assess this 

hypothesis.  
 

Species and functional trait composition dynamics 
We revealed a slight shift in the plant community composition over the fifteen-year 

period which was highly correlated with increased elephant impacts. At the species level, plant 

species selected for or avoided by elephants are not those characterized by the most important 

absolute or relative abundance change between 2001 and 2015 (Fig. 2b). Elephant impacts 

appear to have led to shifts in community compositions, not for the common species such as 

Colophospermum mopane (despite this species being highly selected), Baphia massaiensis and 

Dyospiros lycioides (highly avoided), but for the rare species (e.g. Mundulea sericea, Trycalia 

alleni, partially confirming hypothesis CS1, Fig. 3). One explanation about the absence of 

modification of common species could be that habitat vegetation would have already been 

modified before 2001 when elephant density was already high and would have attain a 

equilibrium state with the current elephant pressure. However, these results suggest that work 

on vegetation community response to elephant impacts should be particularly careful about 

rare species (Lombard et al. 2001), which seem to be more sensitive to long period of relatively 

heavy elephant utilization. The overall functional trait composition did not experience a 

significant shift correlated to elephant impact increase (not supporting hypothesis CS2), 

certainly because the dominant species remained mostly the same during the study period. 

Furthermore, the rare species which did show changes in their relative abundance, were not 

present in the functional trait analyses or had lower weightings in the mean functional trait 

composition and in the quadratic entropy index of Rao than common species such as 

Colophospermum mopane and Diospyros lycioides. This study was limited in the number and 

diversity of functional traits analysed, as we were limited to functional traits that were 

previously available. The addition of missing important functional traits would most likely 

improve our understanding of elephant impacts on species and functional trait composition at 

the study sites. In addition, in further studies it would be needed to get functional trait 

measurements on monitored plant and not from database as these functional traits are known 

to be plastic and change according to their environments and disturbance (Albert et al. 2011). 
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Vegetation structure dynamic 
Our results revealed that, during the study period, elephants did not strongly alter the 

plant abundance and the height, the crown surface for plants above two meters and the stem 

diameter distribution (hypotheses S1 and S2) contrarily to what was expected from Holdo’s 

model (2007). As for results on species composition and functional trait composition, we could 

not conclude if these results are due either to relatively weak effect on vegetation structure 

from elephants, even at very high density, either due to the fact the vegetation may have 

already been altered prior to 2001 as elephant densities were already high. However, our 

study conducted during fifteen years of high elephant density did not reveal the opening 

pattern of the vegetation structure as already observed in the literature (Laws 1970, Caughley 

1976). We assumed that these studies were conducted in East Africa where woody savannas 

are dominated by Acacia species and were not supported in studies done in the Chobe 

National Park, in the Kruger National Park and the Hwange National Park, in Southern Africa, 

where woody savannas are more diversified (Childes & Walker 1987, Ben-Shahar 1998).  

 

Finally, the crown surface distribution in the 50-200 cm layer changed strongly in all 

plots (confirming hypothesis S3). Except in Colophospermum mopane bushland where it 

increased, the crown surface decreased in all the plots of Baikiaea plurijuga woodland, 

Combretum bushed-woodland and Acacia/Terminalia bushed-woodland. The crown surface, 

with the height, is highly related to above-ground tree volume and biomass (Popescu et al. 

2003). This observed decrease of the crown surface would therefore be linked to a diminution 

of the spatial volume occupied by trees in the 50-200 cm layer and could lead higher visibility 

in this height layer in these habitats. As the visibility influence the anti-predator behaviour of 

prey species (Fitzgibbon 1994, Gorini et al. 2012, Panzacchi et al. 2010) and the hunting 

behaviour of predator species (Husseman et al. 2003, Mills et al. 2004), these changes in 

crown surface could have consequences on predator-prey relationships, and ultimately on 

ecosystem functioning. 
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Abstract 

Ecosystem engineers can affect interspecific interactions by modifying habitats 

structure. Here, we assessed whether African elephants (Loxodonta africana), by affecting 

vegetation, can influence kill site selection by African lions (Panthera leo), a stalk-and-ambush 

predator. During two years, we monitored kill sites of GPS-collared lions in Hwange National 

Park, Zimbabwe, and characterized the visibility, the distance to a potential ambush site and 

the presence of elephant impacts at these sites (n=209). We first showed that elephant-

impacted sites had slightly higher visibility and longer distance to a potential ambush site than 

non-impacted sites. We then assessed lion kill site selection (1) at a large scale, by comparing 

lion kill sites to random sites distributed in habitats intensively used by lions, and (2) at a fine 

scale, by comparing each lion kill site to a paired random site in the nearby habitat (within a 

150m radius). At the large scale, lions killed more in elephant-impacted habitats when 

compared to other intensively used habitats. However, at the fine scale, lion kills were located 

in sites with lower distance to a potential ambush site than the available nearby habitat. Our 

study suggested that ecosystem engineers can indirectly mediate trophic interactions, but 

that mechanisms are scale-dependent. 

 

 

Keywords: ecosystem engineer, ecosystem functioning, habitat structure, large carnivores, 
megaherbivores, predator-prey relationships. 
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Introduction 
 

Species cohabiting in an ecosystem are linked by a network of interspecific interactions 

(e.g. predation, competition, facilitation), which ultimately drives ecosystem functioning 

(Wardle et al., 2004). There is an increasing awareness that these interactions are dynamic 

and can be mediated by both abiotic (e.g. climate change - Tylianakis et al., 2008; van der 

Putten et al., 2010) and biotic factors (e.g. parasitism - Hatcher et al., 2006; non-lethal 

predator effects mediating interspecific prey competition - Preisser & Bolnick, 2008). In these 

cases, the interaction between two species can be modified by a third species (hereafter 

“interaction modification”, Wootton 1993). Further, this process can appear through change 

of a plastic trait of one of the two main species interacting (i.e. trait-mediated interaction 

modification) or through alteration of the environment within which the interaction takes 

place (i.e. environment-mediated interaction modification, Wootton 1993, 2002, Dambacher 

& Ramos-Jiliberto 2007).  

Questions have arisen about how habitat changes (diversity and/or physical structure) 

may affect interspecific interactions (Petren & Case, 1998). In the current context of 

biodiversity loss, many studies have focused on anthropogenic alterations of the habitat (e.g. 

Tylianakis et al., 2007), but other ecosystem engineer species (Jones et al., 1994) can deeply 

affect habitats (Crooks, 2002), and ultimately interspecific interactions (Marquis & Lill, 2007). 

Arditi et al. (2005) even designated ecosystem engineer species as “interaction modifiers” 

thanks to their capacity to modulate their environment. Interaction modifications were shown 

to drive population and community’s dynamics in system with few species (Werner & Peacor, 

2003; Preisser et al., 2007; Abrams, 2010). There is now growing impetus from other recent 

works to address the challenges of detecting, measuring and testing the potential role of 

interaction modifications in complex systems such as natural communities (e.g. Wootton 

1994, Peacor & Werner 2001, Okuyama & Bolker 2007). A greater understanding of how they 

influence population dynamics will be a key part of improving our ability to forecast how 

ecosystems will respond to global changes (Kéfi et al. 2012) as interaction modifications are 

often identified as the cause of unexpected responses to perturbation (Terry et al. 2017 and 

references therein). 
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The African elephant (Loxodonta africana) is considered a keystone (sensu Bond, 1994) 

and ecosystem engineer species. While the effects of elephants on vegetation structure 

through their foraging activity and movements start to be well understood (Guldemond & van 

Aarde, 2008), the consequences of elephant-induced vegetation changes on the whole 

ecosystem remain obscure as a diversity of indirect effects is documented (Pringle, 2008; 

Valeix et al., 2011; Coverdale et al. 2016). In particular, almost nothing is known about the 

environment-mediated trophic interaction modification by elephants (but see Tambling et al., 

2013), in spite of the importance of predation as an ecosystem process with cascading effects 

down the food chain (Estes et al. 2011), and in spite of the fact that predation is well-known 

to be strongly mediated by physical features of habitats (Bell, 1991; Kauffman et al., 2007). 

Here, we investigated whether elephants, through their impacts on vegetation 

structure, can influence predator-prey interactions between African lions (Panthera leo) and 

their prey in savanna ecosystems. Lions are stalk-and-ambush predators that rely on features 

of the microhabitat (typically dense vegetation) providing concealment to approach and 

attack their prey (Hopcraft et al., 2005; Loarie et al., 2013; Davies et al., 2016). Therefore, 

microhabitat characteristics are expected to play an important role in kill site selection by lions 

(the ambush-habitat hypothesis - Hopcraft et al., 2005). This has been illustrated in Kruger 

National Park, South Africa, where lions kill their prey within nine meters of a potential 

ambush site (Loarie et al., 2013). Elephants were observed to decrease crown diameter of 

trees and shrubs between 50 cm and 200 cm over a 15-year period of monitoring in Hwange 

National Park, Zimbabwe (Ferry et al. unpublished data). The crown surface, with the height, 

is highly related to above-ground tree volume and biomass (Popescu et al. 2003). By modifying 

vegetation structure, elephants are therefore expected to affect the visibility and the distance 

to a potential ambush site (DPAS hereafter), and are thus likely to affect where lions hunt 

and/or successfully hunt (i.e. kill) their prey. The aim of this study is two-fold: (1) to confirm 

that elephant impacts on the vegetation are associated with an increased visibility and an 

increased distance to potential ambush sites as often assumed in the existing literature, and 

(2) to test the hypothesis that lions kill less in areas impacted by elephants (as we expect them 

to kill more in areas with denser vegetation and associated lower visibility, and more potential 

ambush sites, and thus greater opportunities for concealment). This second part was 

investigated at two different scales: (i) at a large scale, we assessed if among all habitats used 
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by lions (represented by random sites within areas where lions killed and rested), kill sites, 

were characterized by denser vegetation and no elephant impact, and (ii) at a fine scale, we 

assessed if lions killed more in closed habitats that were not impacted by elephants compared 

to the surrounding habitat directly available (< 150 m). Together, the results will allow 

assessing to which extent elephants can induce environment-mediated trophic interaction 

modification. 

Material and methods 
Study site - Study site - Hwange National Park covers ~15 000 km² of semi-arid dystrophic (low 

nutrient soil) savanna in western Zimbabwe (19°00’ S, 26°30’ E). The vegetation is primarily 

woodland and bushland savanna. The long-term mean annual rainfall is ~ 600 mm, which falls 

primarily between October and April. The surface water available to animals is found in natural 

as well as artificial waterholes. The study area is located in the northern region of Hwange 

National Park (~7 000km²) where lion density is estimated around 4.3 individuals/100 km² 

(Loveridge et al., 2016), and elephant density is estimated above 2 individuals/km² (Chamaillé-

Jammes et al., 2008).  

Data – We collected data between 2014 and 2015 from 12 female and 15 male lions from 

different coalitions and prides equipped with GPS radio-collars. The lions’ locations were 

available hourly and for some lions every two hours, day and night. Potential lion kill sites 

were attained by identifying clusters of coordinates that had more than 4 hours of sequential 

locations within a defined proximity (150 m, see also Tambling et al., 2010). These clusters 

were searched for carcasses in a 50m radius around the GPS point identified as the start of 

the cluster. Clusters were classified as kill sites based on the forensic evidence of a kill. We 

confirmed 209 lion kills using several supporting indicators including: lion tracks, hair and 

scats, indications of a struggle visible in broken and trampled vegetation, the positioning of 

the carcass remains and the condition of any remaining hide bearing claw and bite marks 

typical of lion predation. Carcasses found at clusters were classified to species based on the 

presence of identifiable material, such as horns, jaws, bones and hair and teeth wear. We 

recorded for each cluster (confirmed or not as a kill site) a paired random site (with a random 

direction and random distance between 50 and 150m from the GPS point identified as the 

start of the cluster). For each kill site and random site, the DPAS (most of the time a dense 

bush in the study ecosystem), and the visibility. Visibility at each site was assessed by using 
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two 50 cm x 50 cm white boards. The two boards were set so that one board was at 10–60 cm 

(representative of the height of a siting lion) and the other was at 100–150cm (representative 

of a standing lion). One person stood at the location of the carcass for a kill site or at the centre 

of the random site, while another person held the boards, walked away from the centre in the 

four cardinal directions and recorded the distance at which the person at the centre of the 

site could not see each board anymore. The four distances obtained from the four cardinal 

directions were then averaged (“visibility” hereafter). Elephant impacts were assessed within 

25m radius of the site (Appendix 1). The extent of elephant impact was determined by the 

definition of five classes of percentage of trees impacted by elephants (broken, coppiced 

and/or uprooted): 0 - no impact, 1 - ]0;25], 2 - ]25;50], 3 - ]50;75] and 4 - ]75;100]. For each of 

these classes, the number of study sites (kill sites and random sites) was respectively: 197, 97, 

76, 34, and 12. 

Analyses – Kill sites from grassland habitat were removed from the analyses as there is very 

little woody vegetation, and we were interested in the elephant impacts on the woody 

vegetation, which are the ones modifying the structure of habitats. Hence, 168 kill sites were 

used in the analyses (Appendix 2). Proximity to water is commonly thought to influence the 

level of herbivore impacts on the vegetation (i.e. the “piosphere effect”, Lange 1969), but this 

has recently been debated in wild protected areas (Chamaillé-Jammes, Fritz & Madzikanda 

2009). We therefore preliminarily checked the existence of a link between distance to water 

and the existence of elephant impacts on the vegetation and found that sites (random sites 

and kill sites) impacted by elephants were not located closer to waterholes than sites not 

impacted by elephants (Kruskal-Wallis test, χ2 = 5.51, df = 3, p-value = 0.14). 

Effect of elephants on habitat structure - Visibility at 100-150cm was highly correlated to 

visibility at 10-60cm (r = 0.96, t = 139.65, df = 1587), so only results on the visibility at 10-60cm 

(visibility hereafter) were considered in the subsequent analyses. We assessed the effect of 

the level of elephant impacts on (1) the visibility with a simple linear model performed on log-

transformed data and on (2) the DPAS with a truncated linear regression as data distribution 

was left truncated at 0 m (‘truncreg’ package from open source Software R 3.3.1 R. 

Develoment Core Team, 2014).  

Kill site selection of lions - For the analyses on kill site selection by lions, two scales were 

considered. First, we focused on a large scale by comparing characteristics of the habitats of 
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lion kill sites with characteristics of the habitats across a range of sites intensively used by lions 

(represented by all random sites). We used logistic regressions to develop resource selection 

functions (RSF), with the dependent variable being 1 for kill sites and 0 for random sites. 

Explanatory variables were the level of elephant impacts, the visibility and the DPAS, without 

interaction between them. No strong correlation was observed between these three variables 

which were therefore kept for the analyses. (Pearson’s correlation coefficient: Impacts-

Visibility = 0.15, Impacts-DPAS = 0.18, Visibility-DPAS = 0.38). A model selection was 

performed using the function “dredge” (‘MuMin’ package) using the Bayesian Information 

Criterion (BIC) for a compromise between the explanation power and the parsimony of the 

models and model averaging was performed on the 95% confidence set (Burnham & 

Anderson, 2004). Second, we focused on kill site selection by lions at a fine scale, by comparing 

the characteristics of habitats of lion kill sites with the characteristics of the direct surrounding 

habitat available (represented by the random site associated to each kill site). A paired 

Generalized Estimating Equations (GEE) model was performed using the package “gee” to 

remove all the variability between the pairs (kill versus paired random) and focus only of the 

variability within each pair (Liang & Zeger, 1986). For this analysis, the quasi-likelihood 

criterion (QIC) was used (Liang & Zeger, 1986) and a model averaging was performed on the 

95% confidence set. 

 

Results 
Kills were not evenly distributed upon the habitat openness (Appendix 2). 27% of the 

prey killed by lions were greater kudu Tragelaphus strepsiceros, 20% African buffalo Syncerus 

caffer and 12% plains zebra Equus quagga (Appendix 2). DPAS and visibility for each species 

killed are presented in Appendix 3. 

Effect of elephant on habitat structure - The effect of the level of elephant impacts was assessed 

on each habitat variable. Log-visibility was higher when the level of elephant impacts increased 

(estimate ± SE = 0.09 ± 0.026, t = 3.322, p < 0.001, Table 1a, Fig. 1a). Log-transformed DPAS was higher 

when the level of elephant impacts increased (estimate ± SE = 0.12 ± 0.03, t = 3.78, p = 0.001, Table 

1b, Fig. 1b). In this last case, we observed a particular increase of the log-DPAS with the higher level of 

elephant impact. 
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a) 

 
b) 

 
Figure 1: Distribution of a) the visibility and b) the distance to a potential 
ambush site (DPAS) according to the level of elephant impacts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 
2.5   
% Mean 

97.5
% 

0 – None 16.5 18.1 19.7 

1 - ]0,25] 16.5 20.9 26.5 

2 - ]25,50] 16.1 20.7 26.5 

3 - ]50,75] 16.6 22.7 30.9 

4 - ]75,100] 19.8 30.9 47.9 

 

 

 

b 
2.5   
% Mean 

97.5
% 

0 – None 3.3 3.7 4.3 

1 - ]0,25] 3.2 4.6 6.5 

2 - ]25,50] 3.5 5.1 7.3 

3 - ]50,75] 2.6 4.5 7 

4 - ]75,100] 5.8 10.5 18.5 

 

 

Table 1: Estimated mean and 

confidence interval at 95% 

for each level of elephant 

impactsof (a) the visibility 

(m) and (b) the DPAS (m).
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Kill site selection by lions - For these 

analyses, the sites in Colophospermum 

mopane were removed as they did not 

show any response to elephant impacts. 

At the large scale, model averaging over 

the 95% confidence set of best-ranked 

logistic models revealed that the 

presence of elephant impacts was the 

only variable to clearly explain lion kill 

site selection (Table 1a). Lion kills were 

preferentially located in habitats 

impacted by elephants (estimate ± SE = 

0.69 ± 0.21, Fig. 2a). At the fine scale, 

model averaging over the 95% 

confidence set of best-ranked logistic 

models revealed that the DPAS was the 

only variable to clearly explain lion kill 

site selection (Table 1b). Lion kill sites 

were preferentially located in habitat 

characterized by a reduced DPAS 

(meanKill = 5.8 m) compared to the direct 

nearby habitat available (meanRandom = 

7.6m, estimate ± SE = -0.42 ± 0.24, Fig. 

2b).  
 

Table 1: 95% confidence set of best-ranked logistic models (models whose cumulative BIC weight, bcc wi, ≤0.95 
(a) and models whose cumulative QIC weight, qcc wi, ≤0.95 (b)) examining the effect of the presence of elephant 
impacts (Ele), visibility (Vis) and distance to a potential ambush site (DPAS) on lion kill site selection a) at the 
habitat scale and b) at the microhabitat scale. Model-averaged estimates for the three habitat variables parameters 
± standard error.  

a Candidate models df BIC ∆i wi bcc wi 
1 Ele 2 696.6 0.00 0.618 0.618 
2 Ele + Vis  3 699.9 3.30 0.119 0.737 
3 Ele + Vis + DPAS 4 700 3.40 0.113 0.85 
4 Ele + DPAS 3 701 4.42 0.068 0.918 

Figure 2: (a) (a) Relationship between the level of elephant 
impacts and the strength of kill site selection for lions at the 
large scale. (b) Relationship between the log-transformed 
DPAS (for DPAS ranging from 0 to 50m) and the strength of 
kill site selection for lions at the fine scale. The selection 
strength is exp ( 0+ 1*level of elephant impacts) at the large 
scale and exp ( 0+ 1*log(DPAS+1)) at the fine scale, where 

0 is the intercept estimate and 1 is the estimated 
coefficient for the level of elephant impacts at the large scale 
and for log(DPAS+1) at the fine scale. 
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 Ele Vis DPAS  
β (± SE) 0.27 (± 0.08) 0.0.9 (± 0.19) -0.06 (± 0.14)  

b Candidate models QIC ∆i wi qcc wi 
1 DPAS + Ele + Vis 310.4 0.00 0.233 0.233 
2 DPAS + Vis 310.5 0.07 0.225 0.458 
3 DPAS 310.6 0.21 0.210 0.668 
4 DPAS + Ele 310.9 0.49 0.184 0.852 
5 Vis 312.7 2.29 0.074 0.926 
 Ele Vis DPAS  

β (± SE) 0.10 (± 0.12) -0.32 (± 0.27) -0.46 (± 0.21)  
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Discussion 
We assessed the effects of elephants on features of habitat structure that can be key 

for the ecology of predator-prey interactions. Elephant-induced vegetation changes tend to 
be associated with an increase in visibility (see also Valeix et al., 2011) and in DPAS. On 
average, there was a difference of 12.8m for the visibility (mean Level 0 = 18.1m, mean Level 
4 = 30.9m) and 6.8m for the DPAS (mean Level 0 = 3.7, mean Level 4 = 10.5m) between habitats 
not impacted by elephants and those with the highest level of elephant impacts. However, 
habitats with the highest level of elephant impacts represented few sites in this study (n = 12) 
compared to other habitats. Even though these average differences were not very large, they 
can make a difference in dense habitats considering the visibility scale for lions when killing 
their prey (e.g. within 9 meters of a potential ambush site - Loarie et al., 2013). Further, 
elephants, by altering visibility and DPAS, are likely to affect where lions choose to hunt and/or 
where they happen to hunt successfully. Following the ambush-habitat hypothesis (Hopcraft 
et al., 2005), lions should kill more in habitats with lower level of elephant impacts and 
characterized by lower visibility and a shorter DPAS, thus more favourable to lion hunting 
success (Fig. 3a). 

In this study, we were limited on the inferences we could make because of two main 
limitations in our data. The first one is that we were not able to identify hunts in which lions 
failed, which prevented us from assessing whether there were more kills in a habitat because 
lions hunted more in this habitat or had a higher hunting success there. The second limitation 
is the lack of information about the contextual abundance and distribution of herbivores 
during the hunt, which could influence the kill site location as expected under the prey-
abundance hypothesis. To partly fill these gaps, we suggest a conceptual framework with 
different scenarios that could explain the patterns of kill site selection observed based on four 
different parameters: probability of prey presence, probability to hunt depending on prey 
presence and/or habitat openness, and probability to hunt successfully and kill a prey in the 
different habitats (Fig. 3b). Following the ambush-habitat hypothesis, our initial hypothesis 
assumed an equal probability of presence of prey in all habitats and a probability to hunt not 
linked to the probability of prey presence. However, it stated that lions would have either a 
higher probability to hunt in closed habitats (Fig. 3b – Patterns 9), either a higher probability 
to kill in closed habitats (Pattern 3), either both (Pattern 11), observing therefore more kills in 
less elephant-impacted habitats (Fig. 3a – 1). 
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Figure 3: A) Representation of the expected pattern under our initial hypotheses and the 
observed pattern. 1) Under our initial hypotheses, we expected higher visibilities and DPAS in 
habitats with higher levels of elephant impacts, as well as more lion kill sites in habitats 
characterized by a lower visibility and a shorter DPAS, and thus more kills in non-impacted 
habitats. 2) An increased visibility and DPAS were effectively observed with the increase of the 
level of elephant impacts but not as strongly as expected (see the shape of the green area). At 
the large scale, lion kills were, unexpectedly, more in highly elephant-impacted habitats. At 
the fine scale, lion kill sites were more in habitat characterized by a lower DPAS. B) 
Representation of the different scenarios envisaged to explain the observed pattern. We 
played on the combination of four variables : 1) the probability of prey presence, depending 
on if herbivores select for elephant-impacted habitat (Patterns 1, 3, 5, 7, 9, 11, 13, 15)  either 
via vegetation engineering by elephants (following findings from Valeix et al. 2011), either by 
coincidence or not (Patterns 2, 4, 6, 8, 10, 12, 14, 16), 2) the probability that a hunt will occur, 
with lions hunting more in high prey abundance habitat (following the prey-abundance 
hypothesis, Patterns 5-8, 13-16) or not (Patterns 1-4, 9-12), 2) the probability that a hunt will 
occur, with lions hunting more in closed habitats (following the ambush-habitat hypothesis, 
Patterns 9-16) or not (Patterns 1-8) and 3) the probability of a successful hunt, i.e. of a kill, 
with lions having a higher success rate in closed habitat (following the ambush-habitat 
hypothesis; Patterns 3, 4, 7, 8, 11, 12, 15, 16) or not (Patterns 1, 2, 5, 6, 9, 10, 13, 14). Patterns 
8, 14 and 16 appear to be the most likely to explain the observed pattern. 

 

At the large-scale, contrary to our expectations, lion kills were more located in habitats 
characterized by higher levels of elephant impacts, associated with a higher visibility and a 
higher DPAS. Because lions are more efficient hunters in closed environments (van Orsdol, 
1984), this result suggests that other factors than habitat structural features drive lion hunting 
behaviour at this scale. Patterns 6, 8, 14 and 16 are the only ones to show this pattern, with 
more kills in habitats highly impacted by elephant. In these scenarios, we expect a higher 
probability to hunt in habitats where there are more prey, following therefore the prey-
abundance hypothesis, but we also expect prey to be more present in habitat impacted by 
elephants. Browsers (e.g. kudu - one of the favorite prey species of lions in Hwange (Davidson 
et al., 2013) -, giraffe, and steenbok) and mixed-feeders (impala) have been indeed shown to 
select for elephant-impacted habitats in the study ecosystem (Valeix et al., 2011). The 
underlying mechanism is still unclear and this selection pattern may arise either from a 
coincidence with elephants and other herbivores using the same habitats, or from a facilitative 
effect of elephants through the creation of browsing lawns (Fornara & du Toit, 2007) or from 
a reduced perceived risk of predation in elephant-impacted habitats due to the higher visibility 
in these habitats (Underwood, 1982, Valeix et al., 2011). Hence, the fact that lion kills were 
preferentially found in elephant-impacted habitats could be explained by a selection for areas 
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where prey are abundant. Elephants could be considered as interaction modifiers if they 
influence prey habitat selection, which would be the case in they create browsing-lawns (as 
suggested by Rutina, Moe & Swenson 2005) or if they reduce the perceived predation risk in 
areas where they break trees(as suggested by Valeix et al., 2011). Evidences about the role of 
elephants in other herbivore habitat selection at this scale still need to accumulate.  

At the fine scale, lion kills were not preferentially located in habitats highly impacted 
by elephants anymore. At this finer scale, lion kill sites were preferentially located in habitats 
characterized by a shorter DPAS.  Interestingly, the visibility did not seem to be a factor as 
important as the DPAS. An explanation could be that, whatever the visibility, the presence of 
few bushes / broken trees as potential ambush sites is sufficient to lead to a higher probability 
of kill even in habitats with a high visibility. At this scale, Patterns 3, 4, 7-16 would be the more 
likely to explain the observed pattern with more kills in habitat with lower visibility and/or 
DPAS. All of these scenarios are conditioned by a same process: a higher probability to hunt 
and/or to successfully hunt (i.e. kill) in closed habitat supporting here our second hypothesis 
on the role of prey catchability (ambush-habitat hypothesis). Finally, when combining the two 
different scales, the only Patterns to explain the observed pattern with both more kills in 
impacted habitat at large scale and more kills in closed habitat at fine scale are Patterns 8, 14 
and 16. These lasts share the same processes: more prey in elephant-impacted habitats and a 
higher probability to hunt in habitat with more prey (prey-abundance hypothesis). However, 
they differ in term of probability to hunt or to kill in closed habitat. Pattern 8 needs a higher 
probability to kill in closed habitat, Pattern 14 needs a higher probability to hunt in closed 
habitat and Pattern 16 needs both of them, suggesting therefore that lions are influenced by 
habitat structure during the hunting process (ambush-habitat hypothesis). 

Therefore, our results together with our theoretical framework suggest that the main 
driver of kill site selection for lions is likely to be prey abundance at a large scale of selection, 
and prey catchability at the fine scale of the direct nearby habitat available (<150 m). As 
suggested in previous studies, the prey-abundance and the ambush-habitat hypotheses are 
not exclusive and could interact with one another to explain lion hunting behavior (Davidson 
et al., 2012). Therefore, by affecting the vegetation structure, elephants could play an 
important role in the predator-prey relationships although in complex ways, as they could act 
on both predators and prey’s behaviour and apparently depending on the scale considered. 
We encourage future research to confirm that herbivores select habitats impacted by 
elephants because of the elephant’s engineering process and not because of simple 
coincidence or shared. Further, a focus on identifying unsuccessful hunts will be needed. As 
for example here, identifying which Pattern between 8, 14 and 16 is the most likely would 
help to disentangle between the probability to hunt and the probability to kill in closed 
habitats, and therefore would help to know which process is influenced by the vegetation 
structure during the lion hunt. This task is both conceptually and practically a challenging one, 
although perhaps it can be accomplished through the deployment of GPS-collars with 
integrated tri-axial accelerometer-magnetometer (see for example Fröhlich et al., 2012).  
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Despite remaining questions regarding the underlying mechanisms, our study revealed 
that (1) at the scale of the sites intensively used by lions, kill sites are preferentially found in 
habitats characterized by high elephant impacts, (2) visibility and DPAS increase as the level 
of elephant impact increases, and (3) DPAS is an important driver in lion kill site selection at a 
fine-scale. Hence, our study suggests that elephants have the potential to influence predator-
prey interactions in their ecosystem. In a context of rapidly changing elephant populations 
worldwide (Chase et al., 2016), it is of importance to understand their indirect role on 
interspecific interactions. Our results reinforce the idea that elephants, through their role of 
ecosystem engineer, could act on a multitude of broad-scale ecological processes in wooded 
savannas (Kerley & Landman, 2006). Finally, whereas previous studies of ecosystem engineers 
have highlighted their effects on other species abundance and richness (Jones et al., 1997), 
our findings suggest the importance of their indirect effect on interspecific interactions (see 
also Arditi et al., 2005; Marquis & Lill, 2007 and references therein). To our knowledge, our 
study is one of the first to assess the environment-mediated trophic interaction modification 
in a natural large mammal community. By showing the complexity in this process, our study 
clearly shows that more efforts are needed in natural ecosystems for a better understanding 
of ecosystem functioning.
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Supporting information 
 

Appendix 1: Illustration of two sites with contrasted elephant impact: a) non-impacted habitat 
and b) elephant-impacted habitat.   

 

 
Appendix 2: Distribution of the lion kills per prey species and habitat type (BW: Baikiaea 
woodland, ABW: Acacia/Baikiaea woodland, BEW: Burkea/Erythrophleum woodland, CBG: 
Combretum bushed grassland, MBG: Mopane bushed grassland, MW: Mopane woodland, 
OG/FPR: Open Grassland / Flood plain riverine). Data of lion kills in Open grassland / Flood 
plain riverine are presented here but were not used in analyses. 
 BW ABW BEW CBG MBG MW OG/FPR Total 
Buffalo 5 3 9 13 0 5 15 50 
Cattle 0 0 0 1 0 0 0 1 
Eland 0 1 0 0 0 0 1 2 
Elephant 4 1 3 1 0 0 3 12 
Giraffe 7 3 0 4 1 0 0 15 
Impala 0 1 1 11 0 0 0 13 
Greater kudu 20 4 5 11 1 4 5 50 
Reedbuck 0 0 0 1 0 0 0 1 
Roan 1 0 2 0 1 0 0 4 
Sable 0 0 1 2 0 0 0 3 
Steenbok 1 0 0 0 0 0 0 1 
Warthog 1 0 1 4 0 0 0 6 
Waterbuck 1 0 1 1 0 1 2 7 
Wildebeest 2 6 0 2 0 0 8 18 
Zebra 4 1 6 7 2 0 8 28 
Total 46 20 29 57 5 11 41 209 
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Appendix 3: Distance to potential ambush site (m) and visibility (m) for each species killed by 

lions. 
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 « Un éléphant, c'est très encombrant. Chez moi, c'est tout petit. » 
Le Petit Prince (1943), Antoine de Saint-Exupéry 
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In this thesis, I assessed the role of the African elephant as a modifier of predator-prey 

relationships. I focused on three possible ways. 

 The first research axis evaluates the effects of elephants on other herbivore species, 

i.e. prey for lions, at the scale of the waterhole, and ultimately investigates the implications 

for lion trophic interactions at waterholes. This first research axis assesses a prey trait-

mediated trophic interaction modification (General introduction - Figure 3.1).   

The second research axis, constituted by Chapter 4, considers elephants either as 

exploitative competitors for food resources (i.e. interaction chain, General introduction - 

Figure 3.2A) or as an engineer species facilitating availability of resources of higher quality (i.e. 

trait-mediated trophic interaction modification, General introduction - Figure 3.2B), at the 

scale of the landscape and of the habitat.  

In the third research axis, I studied the effects of elephants on lion foraging behaviour 

through changes in the vegetation structure (environment-mediated trophic interaction 

modification, General introduction - Figure 3.3). 

 

1 – The African elephant, a modifier of predator-prey relationships? 

1.1- On prey behaviour at waterholes 

1.1.1- The African elephant, unfair competitor or involuntary bodyguard? 

We begin to reach a better understanding of interspecific interactions between 

herbivores and elephants at waterholes, as well as how water availability shapes these 

interactions. First, there is an obvious contrast between dry years and wet years, with more 

elephants, coming sooner and staying longer at waterholes during dry years (Valeix et al. 

2007b). Hence, during dry years, the probability to co-occur with elephants at waterholes is 

five to twenty times higher and there are five times more interactions with elephants (Valeix 

et al. 2007b, Table 1). These interactions are relatively often costly during dry years (sensu 

Valeix et al. 2007b, Table 1). In addition, at the intra-annual scale, the number of aggressive 

interactions increases as the dry season progresses (Ferry et al. 2016). Co-occurrence with 

elephants could therefore be costly for other herbivores in terms of time budget, stress 

response, etc. All the species facing this “elephant reality” should therefore tend to avoid 

temporally or spatially elephants at waterholes.  
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Here, I synthetize the findings from the existing studies on waterhole use by elephants 

and other herbivore species, together with the findings from the first research axis of my 

thesis. Overall, different patterns of waterhole utilisation have been revealed and three 

groups of herbivore species can be distinguished. For convenience, results presented below 

refer to Table 1 within which associated Chapters or studies are referenced. Results for which 

I explicitly cite the associated Chapter or study are not presented in Table 1. 

 

The first group of herbivore species that emerges comprises impalas, warthogs, roans 

and sables. They are the only species for which the probability to have an interaction (or a 

costly interaction) increases with the number of elephants. No information about their spatial 

behaviour in the presence of elephants is available as they shift their circadian activity at 

waterholes during dry years and probably do so at the intra-annual level too (during the dry 

year in 2003, they experienced less co-occurrence with elephants as the dry season 

progressed). Additionally, in my 2016 observations, almost no simultaneous observation of 

these species with elephant at waterholes was recorded (Chapter 2). For these species, results 

support the hypothesis of competition for access to water with elephants, as these species 

appear to avoid temporally elephants to decrease the risk of interference competition with 

them. This group can further be separated into two sub-groups. The first sub-group comprising 

impalas and warthogs, which would compete with elephant for access to water in general. 

The second sub-group comprising roans and sables, which would compete with elephant for 

access to the water of good quality. Indeed, sables and roans drank close to water-troughs, 

almost like elephants, whereas impalas and warthogs drank further from the water-trough, 

almost at the maximum distance allowed by the waterhole configuration (Chapter 2). 

 

The second group of herbivore species that emerges comprises kudus and zebras 

which had the same overall responses facing elephants. At the beginning of the dry season, 

both species spatially segregate from elephants, suggesting the existence of a competition 

with elephant for the two species. Results which seem to be confirm for kudu as they shift 

their circadian activity during dry years, but not for zebras. However, as the dry season 

progresses, co-occurrence with elephants increases and the two species are closer to them 

than expected if distributed randomly in the waterhole area. This suggests the existence of 

benefits associated to be close to elephants that are higher than the possible costs associated 
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to the increasing aggressive interaction frequency. Neither kudus, nor zebras drink close to 

the water-trough, even when elephants are absent from the waterhole, which does not 

support the “water quality hypothesis”. A “bodyguard hypothesis” was also explored, 

whereby even though elephants can be aggressive towards other herbivores, they may also 

represent safety from predators as they are very big and able of mobbing behaviour against 

lions. However, the playback experiment performed in this thesis did not confirm this 

hypothesis for zebras. After a stimulus of lion presence, zebras did not come close to 

elephants. They were more vigilant indicating they responded as expected to an increase of 

the perceived predation risk. However, the presence of elephants did not allow decreasing 

the time allocated to vigilance, suggesting that the perceived predation risk did not decrease 

with the presence of elephants. 

 

Finally, the last group includes giraffe only. The presence of elephants does not appear 

beneficial to giraffes as they have a lower drinking probability when the elephant number 

increases, and they spend more time to access water when elephants are present. However, 

they did not shift their circadian activity during dry years and they experienced more co-

occurrence at the end of the dry season in 2003, with more aggressive interactions. This 

absence of temporal avoidance at the intra-annual scale was not compensated for by a spatial 

avoidance. Altogether, these results suggest that giraffe have some costs associated to with 

the presence of elephants (e.g. time budget), but either they are not high enough to lead to 

niche shift (temporal or spatial), or another constraint forces them to be at waterholes when 

elephants are present. Overall, giraffes tend to drink far from elephants and are particularly 

vulnerable when drinking.  

 

We do not have enough information to conclude for the remaining herbivore species 

(buffalo, wildebeest and waterbuck). The absence of temporal avoidance, of interactions (and 

costly interactions) with elephants, and the apparent indifference toward elephant presence 

when drinking (drinking probability, time spent accessing water) would nevertheless suggest 

no cost associated to be with elephants for wildebeest and waterbuck. More information is 

needed concerning these species’ spatial and drinking behaviour.  
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1.1.2- Limits and perspective 
 

We begin to have a deeper understanding of the interactions between elephants and 

other herbivores at waterholes. First, it seems that during wet years (e.g. 2004, 785 mm 

rainfall), these interactions are very rare as herbivores are not using waterholes intensively. 

Almost all interactions take place during dry years and particularly at the end of the dry season 

(between August and October), when surface water becomes very limiting in the landscape. 

The results from 2003 could be considered as exceptional. Indeed, 2003 was characterized by 

a very low annual rainfall (376 mm) and succeeded to 2002, which was also a dry year (397 

mm rainfall). However, as dry years are expected to be drier in the future (Chamaillé-Jammes 

et al. 2007), two consecutive dry years or even one extreme dry year are expected to become 

frequent and the interspecific interactions between elephants and other herbivore species 

will thus occur more often.  

 

Regarding the effects of elephant on predator-prey relationships at waterholes, the 

test of the “bodyguard hypothesis” carried out in this thesis did not suggest any evidence of 

such indirect effects. Indeed, we did not observe any effect of elephant presence on  zebra’s 

behavioural traits (i.e. vigilance, mixed-species grouping behaviour). Does it mean that the 

“bodyguard hypothesis” should be definitively rejected?  

 

First, only one prey species, zebras, was studied here (chapter 3). Kudus showed the 

same aggregation pattern with elephants at waterholes at the end of the dry season as zebras 

(chapter 1). They were not selected as a focal species for our playback experiment because 

the number of kudu observations was lower than for zebras in 2003. We therefore preferred 

to monitor zebras to guarantee enough statistical power for our experimental design. 

However, kudus are under heavier predation pressure from lions than zebras in Hwange 

National Park (Davidson et al. 2013) and were shown to have a vigilance behaviour particularly 

susceptible to an increased perceived predation risk and the presence of other herbivores at 

waterholes (Périquet et al. 2010). It would be interesting to test the “body-guard hypothesis” 

for this species in the future and see if the presence of elephants decreases the level of 

vigilance more than the presence of other herbivores in a context of high perceived predation 

risk.  
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Second, we focused on prey’s trait related to anti-predation behaviour. By definition, 

the trophic interaction modification could also occur by a modification of a predator’s trait. 

For instance, does the presence of numerous elephants at a waterhole leads lions to neglect 

at least temporarily, or even avoid, the waterhole? Fine temporal scale analysis of movements 

of GPS radio-collared lions (e.g. distance covered, path tortuosity, Valeix et al. 2010) near 

waterholes, contrasting waterholes where elephants are present with waterholes with no 

elephant, could answer this question.  

 

Third, as herbivores are mainly predated within 2 km from waterholes (Valeix et al. 

2009), does the presence of elephants modify the predation pressure on other herbivores, 

particularly when elephants are numerous? All the propositions above could help us assess 

this “bodyguard hypothesis”, but only partially. In Chapter 3, we focused only on prey’s trait 

related to anti-predator behaviour, and the propositions above are made out of the same 

wood: either monitoring a prey’s trait again, or a predator’s trait. One gap will still need to be 

filled: the effect on the predator-prey interactions per se. Future research will therefore need 

to address the link between elephant presence/abundance and the real risk of predation for 

other herbivores to fully test the “body-guard hypothesis”. This link is not an easy one to tackle 

but one possible way forward would be to combine (i) analysis of lion hunting behaviour 

(number of hunts, probability of a successful hunt, number of kills) thanks to accelerometer 

data (as discussed in Chapter 5), and (ii) contextual data of the lion hunts particularly regarding 

elephant presence from camera traps placed around waterholes.  

 

Finally, it is possible that the temporal niche shift of waterhole use by herbivores 

between wet and dry years, due to competition with elephants, may lead prey species to 

travel in the “risky area” (2 km around waterholes – see Valeix et al. 2009) at different times 

of the day that my influence their availability for lions as lions are nocturnal hunters that start 

to hunt late afternoon and may hunt until early morning hours (Schaller 2009). Does this prey’s 

trait modification leads lions to shift their foraging activities or their diet? Comparison of kill 

site repartition through the day and night hours between wet years and dry years could be a 

first step to investigate this point. 
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1.2- On prey and predator distribution in the landscape 
 

1.2.1- The African elephant, voracious neighbour (competition) or innkeeper (facilitation)? 
 

In chapter 4, no spatial segregation pattern between elephants and other herbivores 

was detected neither at the landscape scale, nor at the habitat scale. As discussed in this 

chapter, these results suggest that either no competition for resources occurs between 

elephants and other herbivores, or competition occurs along niche axes that were not 

investigated in this work (e.g. food Tilman and Borer 2015, time Schoener 1974). It has been 

hypothesized that facilitation happening during the growing season (i.e. wet season) in 

savanna ecosystems between grazing herbivores can compensate for the effects of 

exploitative competition during the dry season (Arsenault & Owen-Smith 2002). Assuming this 

hypothesis is true for browsing herbivores, we should expect aggregation patterns at the 

beginning of the dry season, and segregation or random patterns at the end of the dry season. 

However, no seasonal effect was detected. In addition, it is interesting to notice that neither 

elephants, nor impalas, which are mixed-feeders (Cerling et al. 2004 and Sonheimer et al. 2003 

respectively) eating preferentially grasses at the beginning of the dry season and reporting on 

woody plants at the end of the dry season, showed different habitat selections when foraging 

according to season. Responses to elephant presence and local abundance could be species-

dependent, and could differ according to diet and body mass (Fritz et al. 2002), nevertheless, 

according to these results, we cannot conclude that elephants are key competitors for food 

for any of the species studied. Further, regarding impalas, the results suggested a facilitation 

effect by elephants as impalas selected habitats intensively used by elephants (as reported by 

Rutina et al. 2005). Eventually, as we showed no general spatial pattern regarding the effect 

of elephants on other herbivore species spatial distribution at both the landscape and the 

habitat scales, we did not expect the spatial distribution of predators to be influenced by 

elephants and we did not investigate further the indirect effects of elephants on predator 

distribution. 
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1.2.2- Limits and perspectives 
 

The road census data available for this study limited the investigation of niche 

partitioning along the resource and time axes, where competition could occur. Indeed, 

information about the resource consumed by herbivores during foraging activities was not 

collected. Better understanding trophic resource overlaps between herbivores and elephants 

could help assessing resource partitioning. This can be done through DNA barcoding in faecal 

samples (Kartzinel et al. 2015). However, if browser herbivores feed on different plant species 

than elephants, this is not represented here by a spatial segregation, meaning that the 

different species used by herbivores are in the same habitats. We therefore should not expect 

an indirect effect of elephants on predator distribution. 

 

If competition occurs along the time axis, with temporal partitioning, it would be 

observed at the circadian scale as community spatial structure and herbivore habitat selection 

were shown to be stable over year and season. If this is the case, this would suggest the 

existence of interference competition rather than exploitative competition. Indeed, 

herbivores used the same habitats as elephants, whatever the season of the year considered. 

If elephants would deplete food resources (leaves, twigs, grasses) to the extent of impacting 

other species ecological niche, we should not observe a fine-scale temporal partitioning as 

food resources would not have time to regenerate at the scale of the day. We should observe 

either a habitat partitioning or a temporal partitioning at larger-scale than the day (i.e. month, 

season or year), which were not observed. If temporal competition for food resources occurs, 

it would therefore lead to circadian partitioning of the foraging activity of herbivores, as 

observed for waterhole utilisation (Valeix et al. 2007). This temporal partitioning could be 

observed either through observational studies or by elaborating a network of camera traps at 

resource patches to evaluate when different species use the same resources. Finally, if 

competition occurs due to elephant at the daytime scale, questions could arise about the 

effects of elephant-induced temporal partitioning of other herbivores’ foraging activities on 

predator circadian activities. 
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1.3- On elephant-induced vegetation changes and predator kill site selection 
 

1.3.3- The African elephant, engineer of the landscape of fear? 
In Chapter 4, we did not observe any profound change associated to elephant impacts 

of the woody plant diversity and of the functional trait composition of the plant community. 

In addition, even with the increase of the observable damages over the years (accumulation 

and/or increase damage rate) mainly represented by the main stem broken by elephants, the 

overall structure (tree abundance, height, stem diameter, crown diameter) remained almost 

the same across the whole study period (2001-2015). Elephants did not “open the landscape” 

in this woodland savanna ecosystem (Laws 1970a), in spite of the very high elephant 

population density. Valeix et al. (2007a) compared vegetation structure at the landscape scale 

when elephant density was low and when it experienced a 16-fold increase, and they observed 

the same result. Neither when elephant populations are exploding, nor when they are 

stabilizing at high density the “extern morphology” of the woodland changes (Fig. 1 A-B).  

 

However, we observed a strong decrease of the crown diameter for the 50-200 cm 

height layer. As the crown diameter is a good proxy of the volume occupied by the trees, it is 

expected to be directly linked to the visibility. In our system, and on the temporal scale 

considered, the elephants, by breaking trees and twigs, open the vegetation at the height of 

the main African herbivores, from the steenbok Raphicerus campestris (50 cm at shoulder 

height) to the greater kudu (160 cm at shoulder height). Our results therefore strongly suggest 

that the main impacts of elephants on woodland savanna are about the “intern morphology” 

of the woodland (Fig. 1 C-D). This is confirmed when looking at the visibility and distance to a 

potential ambush site in the vegetation impacted by elephants. Even if the size effect does not 

seem strong (+ 2 m for distance to potential ambush site, Chapter 6), it could represent a huge 

change in the perception of herbivores and predators (e.g. for the distance to potential 

ambush site; Fig. 2). 
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Figure 2: A) Distribution of the distance to a potential ambush site (m) for the habitats impacted by elephant (in 
red) and the habitats not impacted by elephants (in green). B) Representation of the difference of the distance 
to a potential ambush site between impacted habitat (7m, on the right) and non-impacted habitat (5m, on the 
left), assuming that the plants are homogeneously distributed. Green shape represents the potential ambush 
sites (e.g. shrubs). 
 

When we compared the habitats where lions killed (kill sites) against the whole habitat 

they used and where they could have killed (used random), we observed that lions killed more 

in the vegetation impacted by elephants (Fig. 3 A). However, when comparing the kill sites 

against the directly surrounding vegetation (paired random), we observed that lions killed 

more in habitats with a lower distance to potential ambush sites (Fig. 3 B). While the second 

result could be explained by the ambush-habitat hypothesis, the first could not. It would be 

more likely that the lion kill site pattern is driven by the habitat selection of its prey. Under 

this scenario, lions would be disadvantaged by the elephant activity. Lions would be forced to 

hunt where their prey are, in the impacted habitat, but would have to deal with less ambush 

site and higher visibility to catch their prey. Thus, by altering the structure of the vegetation 

in the 50-200 cm height layer, elephants have the potential to diminish the strength of 

predator-prey relationships in woodland savanna habitats. 
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1.3.4- Limits and perspectives 
As discussed in Chapter 5, we do not know what the respective roles of herbivores and 

predators are in the observed lion kill site patterns. Do elephant-induced vegetation changes 
affect predator-prey relationships by affecting prey or predators, or both? A possible way to 
disentangle this would be to identify the unsuccessful lion hunts. Being therefore able to 
identify all hunts and calculate predator hunting success would allow us to disentangle 
whether it is the hunting probability that is higher in elephant-impacted habitats, or the 
hunting success associated to these habitats, or both. A step further would then be to quantify 
the contextual density of herbivores when the hunt occurred. Indeed, when there are more 
hunts in a specific habitat, we do not know if it is a pattern driven by herbivore habitat 
selection or predator hunting ground selection. An alternative method to disentangle the roles 
of herbivores and predators would be to quantitatively model the different scenarios (and not 
qualitatively as in Chapter 5) taking into account the probability of prey presence, the hunting 
probability and the hunting success probability. If modelled patterns are well contrasted, we 
could identify the best model matching the observed patterns. 

So far, we cannot rule out a scenario whereby there would be no causal link between 
elephant-induced vegetation changes and other herbivore habitat selection, and whereby 
herbivores would select elephant-impacted habitats only because these herbivores and 
elephants select the same foraging habitats. Unfortunately, we do not have experimental 
blocks as in Tambling et al. (2013) where we could assess if the resources used by herbivores 
and elephants are present both in the elephant-impacted and elephant-free blocks. However, 
Valeix et al. (2011) showed that elephant-impacted habitats with many broken plants present 
less leaves of lower quality and higher visibility. In addition, whereas the food indices did not 
influence habitat selection by the herbivores, the visibility indices did. These results therefore 
tend to support a hypothesis of herbivore habitat selection towards elephant-impacted 
habitats, specifically for their structure features, and do not support a hypothesis of co-
occurrence of elephants and other herbivores in the same habitats because of independent 
selection of the same resources. 

Elephants therefore have the potential to modify the landscape of fear for prey (and 
inversely the “landscape of hunger” for predators). By altering the structure of the vegetation 
in the 50-200 cm height layer, mainly by reducing the crown diameter, elephants can alter 
visibility and distance to ambush sites, and hence can modify, and in our study system 
decrease, the strength of the predator-prey relationships in woodland savanna habitats. 
However, this conclusion does not concord with findings from Tambling et al. (2013). Even if 
the patterns revealed between the two studies are similar (i.e. lions select woody habitats 
that are impacted by elephants), in their study, elephants would influence predator-prey 
relationships by facilitating lion’s access to dense and thorny vegetation where smaller prey 
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species hide. How elephants, through their impacts on vegetation, can shape predator-prey 
relationships is therefore not straightforward and might be context dependent. Indeed, the 
environment where predators and their prey live and interact can influence the response of 
predator-prey relationships in face of elephant activity. Starting from a very dense habitat, 
elephants by opening it could favour predators by increasing the accessibility to hunt small 
species, whereas starting from a less dense habitat, elephants by opening it could favour 
larger prey by increasing the visibility. However, it is difficult to compare the elephant-
impacted habitats and the “intact” habitats between studies, as proxies of vegetation 
structure are various (e.g. visibility, tree abundances, canopy cover, etc.). Standardized 
protocols could help overcome this obstacle such as airborne Light Detection and Ranging 
(LiDAR) methods (e.g. reviewed in Bergen et al. 2009).  
 
1.4- What have we learnt so far? General perspectives 

The first part of this section synthesizes briefly the progresses regarding the objectives 
described in the general introduction and the missing steps to accomplish them. The second 
part presents general perspectives about indirect effects of elephants on predator-prey 
relationships.  

In research axis 1, I studied the effect of elephants on some prey’s trait at waterholes 
which could modify the strength of predator-prey interactions.  I did not reveal changes in the 
anti-predator behaviour of the main study prey species (zebra). Knowledge about possible 
trait-mediated trophic interaction modifications by elephants at waterholes is therefore still 
missing, and the first step of trait modification is lacking (Fig. 4-1 – Dotted red circle) before 
assessing the change on trophic interactions (Fig. 4-1 – Grey dotted link). In research axis 2, I 
studied the competitive / facilitative effect of elephants on herbivore spatial distribution and 
habitat selection to ultimately assess the indirect effects of elephants on predator spatial 
distribution.  I did not detect any spatial and habitat segregation between elephants and other 
herbivores (except for impala, Fig. 4-2 B), which suggests that it is unlikely that elephants 
indirectly affect the spatial distribution of predators through these processes (Fig. 4-2 A and B 
– Grey dotted arrow and gray circle). Finally, in research axis 3, I investigated the environment-
mediated trophic interaction modification by elephants. I showed that elephants modify the 
structure of the vegetation in the 50-200 cm layer, increasing slightly the visibility and the 
distance to potential ambush sites (Fig. 4-3 Green shape), and could have potential effects on 
predator hunting behaviour (here kill site selection). However, more information is needed to 
know whether the trophic interaction modification is driven by the response of predators to 
elephant-induced vegetation changes, or if prey are the main driver (Fig. 4-3 – Grey arrow).   
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Future research on the effects of elephants on trophic interactions could and should 

be carried on other predators than lions, particularly regarding the modification of the 

vegetation. Prey availability and hunting success are results of the continuous arms race in 

predator-prey systems resulting in a variety of predator and anti-predator adaptations 

(Matter and Mannan 2005). Habitat heterogeneity, by modifying prey availability along the 

predation process (search, encounter, kill, consumption), affects this arms race (Endler 1986). 

Predators select habitats that will maximize their hunting success (Hopcraft et al. 2005). For a 

stalk-and-ambush predator, the cover between itself and the prey is important (Gorini et al. 

2012). In this thesis, I therefore assumed lions should select closed habitats, less open that 

those impacted by elephants. However, for pursuit, cursorial predators, the terrain through 

which they chase their prey is more important for hunting success than vegetation cover 

(Husseman et al. 2003, Gorini et al. 2012). For these predators, such as the spotted hyaena 

Crocuta crocuta, which makes up more of the predator biomass than lions in Hwange National 

Park (Fritz et al. 2011), we could expect that if elephants affect their trophic interactions 

through their modification of the vegetation structure, it would be the opposite way than for 

lions. Further, as hyaenas and lions have a high prey overlap (Hayward 2006), consequences 

of trophic interaction modifications by elephants on the shared prey could be confused, as 

these two predators would respond differently.       

Finally, African elephants could influence predator-prey relationships (of lions and 

hyaenas) through trophic interaction chains, if they are considered as food resource in the 

food web. This scenario was never investigated as adult elephants are considered invulnerable 

to predation (Sinclair et al. 2003) and in most ecosystems elephants do not appear to be 

predated by large carnivores (e.g. Kruger, Ngorongoro and Serengeti National Parks, Fritz et 

al. 2011).  However, in Hwange National Park, elephants, which represents more than 80% of 

the herbivore biomass, belong actively to the food web (Fritz et al. 2011). First, elephant 

carcasses due to natural mortality represent a large amount of food resource for lions and 

hyaenas, which are both opportunist scavengers. In addition, predation on elephants was 

shown to be dynamics, with elephant calves and sub-adults being more predated (active hunt 

or scavenging) by lions and spotted hyaenas during dry years (Loveridge et al. 2006 and 

Salnicki et al. 2001 respectively). Are trophic links on other herbivores also dynamics and are 

they synchronized to the changes in predation strength on elephants? Do predators shift their 

diet according to the availability of elephants as prey and do this leads predation strength on 

the remaining large herbivore community to be enhanced during wet years when elephants 

are less available for predators (Fig. 5)?  
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Figure 5: Expected shift of strength of the predator-prey relationships between lions and hyaenas 
and their prey. During dry years, sub-adult and calves’ elephants are expected to represent the main 
food resource for these large carnivores through hunting or scavenging. During wet years, lions and 
hyaenas are waited to shift their diet toward smaller species (e.g. buffalo, kudu, impala, zebra) as 
elephants would be less available, due to higher conditions. 

 

2 – One species to rule them all 
This section of the discussion will, without surprise, focus on the role of African 

elephants, and its provocative title does not have the aim to minimize the effects of abiotic 

factors (such as fire, frost, rainfall and soil, Sankaran et al. 2005) and other species (e.g. impala 

Moe et al. 2014) on the structure and functioning of African savanna communities and 

ecosystems. 

 

The African elephant is an iconic and charismatic species and the subject of a very 

profuse literature. A large part of this literature obviously concentrates on elephant itself (its 

physiology, behaviour, demography). More integrated views of the elephant as a component 

of its ecosystem have also been developed, where elephants are considered as responders to 

ecological changes (e.g. habitat loss Lee and Graham 2006, temporal variation of forage 

quality Wooley et al. 2009) or as agents of change in the ecosystem (e.g. on broad ecological 

processes, Boshoff et al. 2001). When looking at this last category of studies, a striking 

observation is the impressive attention paid to the impact of elephants on vegetation (but see 

Chapter 5).  
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In comparison, very little is known on the effects of elephants on other animal species, and 

the few existing studies were conducted through the role of elephant-induced vegetation 

changes. Laws (1970b) was the first who suggested that elephants could affect the animal 

community which they belong to. He raised concerns about the depletion of other wildlife in 

Tsavo National Park, Kenya, through elephant impacts. Barnes (1983) stated that major 

changes in woody vegetation density will have important implications for birds, and Hall-

Martin (1990) claimed drastic reductions in bird diversities due to elephant activities in Tsavo, 

but as noticed by Herremans (1995) no evidence supported it. Nothing was known about 

elephant impact on animal communities that elephants were already labelled as agents of 

diversity loss... Is it the case? Debates are still ongoing (Owen-Smith et al. 2006) but a recent 

counter-view emerged as with the hypothesis of increasing species diversity and abundance 

thanks to ecosystem engineering by elephants.  

 

2.1- Indirect effects of elephants on species diversity and abundance  
2.1.1 On various taxa  

Herremans (1995) observed a change in the bird community composition correlated 

to elephant impacts on vegetation in Chobe National Park, Botswana, but did not reveal a 

drastic loss in bird species diversity. Further, Stokke et al. (2014), showed in the same park a 

positive correlation between gallinaceous bird diversity and long-term elephant impact.  

Similar patterns were reported in the Addo Elephant National Park, South Africa (Chabie 

1999). On the contrary, a loss of species richness for birds and ants (but not of bats) in 

elephant-impacted woodland was observed in the Zambesi Valley, Zimbabwe (Cumming et al. 

1997). Pringle (2008) showed experimentally that the local density of the arboreal gecko 

(Lygodactylus keniensis) increased with the abundance of elephant-impacted trees. Further, 

he demonstrated that the creation of refuges attracts geckos on the impacted trees (and not 

increase of food resource, or just coincidence). Investigating the mechanisms underlying the 

patterns observed is a much-needed approach which is often lacking in such studies that 

mainly lead to assumptions.  
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2.1.2 On large mammal communities 
Regarding large mammal communities, some studies highlighted correlations between 

elephant population changes or impacts on vegetation and changes in the population 

abundance of other herbivore species. In the Addo Elephant National Park, in elephant 

exclosure, the numbers of Cape grysboks (Raphicerus melanotis), bushbucks and bushpigs 

(Potamochoerus porcus) declined (Novellie et al. 1996). In Lake Manyara National Park, 

Tanzania, buffalo population growth rate increased after the removal of African elephants 

(through poaching), and a strong effect of resource competition on the fitness of buffalo was 

suggested (Prins 1996). In Amboseli basin, Kenya, an increase in the grazer biomass (zebra, 

wildebeest, Thomson’s gazelle Eudorcas thomsonii and buffalo) and a decrease in the browser 

and mixed-feeder biomass (giraffe, impala, Grant’s gazelle Nanger granti) were shown when 

elephants reduced woodlands and expanded grasslands (Western 1989). Hwange National 

Park and Chobe National Park have both experienced a rise of the elephant population, 

making them as an ideal “experiment” for studying the impact of changes in elephant 

abundance on ungulate communities. Historical data on herbivore population size are 

nevertheless often scarce and the population estimate can be far from accurate (Skarpe et al. 

2014). Additionally, elephant abundance is not the only factor influencing other herbivore 

populations (e.g. dry season rainfall, Valeix et al. 2008). Yet, changes in the abundance of 

herbivore populations have been reported and occurred concurrently with the increase in the 

elephant population. In Chobe National Park, the abundance of buffalo and impala 

populations increased, and of bushbuck Tragelaphus scriptus population decreased in parallel 

to the increase of the elephant population abundance (Taolo 2003, Rutina et al. 2005, Dipotso 

2007). In Hwange National Park, a striking synchrony between the strong increase of the 

elephant population abundance and the decline of other large herbivores species populations 

was observed after the stop of elephant culling in 1986. Indeed, mixed-feeder (impala), 

browser (kudu, steenbok) and grazer species (buffalo, warthog, roan, reedbuck Redunca 

arundinum, waterbuck) declined during this period (Valeix et al. 2008). Further, by comparing 

31 natural ecosystems from East and Southern Africa, Fritz et al. (2002) observed negative 

relationships between the abundance of elephants and the abundance of mixed-feeders and 

browsers and suggested a strong competitive effect of elephants on mesoherbivores in 

savanna ecosystems with poor nutrient status. 
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 The studies presented above mainly highlighted indirect effects of elephants on 

species diversity or species abundance. Hence, these studies focused on variations of the 

nodes (species abundance) only, and the links between the nodes (interactions) are often 

missing or unclear. Recent studies have been conducted to understand the role of the 

elephants in the observed patterns, and the processes through which elephants can affect the 

abundance of other species. Some hypotheses about these processes, such as competition for 

water (Valeix et al. 2007) or facilitation (Rutina et al. 2005, Makhabu et al. 2006, Valeix et al. 

2011), were suggested and investigated.  

 

2.2- Indirect effects of elephants on interspecific interactions 
In Laikipia district, Kenya, elephants appear to reduce the competition effect of cattle 

on zebras. In the presence of cattle, elephants seem to facilitate the abundance of zebras by 

suppressing bite rates by cattle (trophic interaction inhibition), which leave the areas occupied 

by elephants (Young et al. 2005). The Addo Elephant National Park was the place of several 

studies focused on this issue (Kerley and Landman 2006) and are presented hereafter. 

Musgrave and Compton (1997) observed an increase of the phytophagous insect damages on 

woody plant exposed to elephant browsing, compared to woody plant in exclosures. However, 

we do not know if this increase is due to higher insect abundance or higher preference for 

impacted trees. The authors suggested an increase of the quality of browsed plants through a 

decline in secondary chemical compounds (e.g. tannins) but did not tested it. As Mason (1999) 

demonstrated that leopard and angulate tortoises preferred open habitats and avoided dense 

thicket, Kerley et al. (1999) hypothesized that elephants may increase habitat availability for 

tortoises, through their path and the creation of more open habitats. Kerley and Landman 

(2006) highlighted that the reduction of vegetation cover and density by elephants resulted in 

a change of the potential browse availability for black rhinoceros Diceros bicornis. The increase 

in elephant paths associated with expanded elephant densities, initially facilitates access to 

browse by black rhinoceros, but the subsequent dominance of the landscape by these paths 

results in a loss of foraging opportunities. Does this environment-mediated modification of 

the trophic interaction (here between rhinoceros and plants) could lead to population change 

in rhinoceros? In Chobe National Park, Makhabu et al. (2006) observed that elephants 

increased the number of shoots at low height levels (20-260 cm) by affecting trees. Kudus 

(browsers) and impalas (mixed-feeders) were observed to feed selectively on impacted trees 
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and at the height level with many shoots, suggesting a facilitative effect from elephants (also 

reported by Rutina et al. 2005 for impala). This food facilitation hypothesis was supported by 

Valeix et al. (2011) study but only for steenbok which used preferentially vegetation site 

modified by elephant characterized by higher leaf abundance. Kudus, giraffes, impalas and 

zebras all selected habitat modified by elephant but characterized by a higher visibility and 

not a higher leaf abundance. Finally, as already seen in Chapter 5, elephants could increase 

(Tambling et al. 2013) or inhibit (Chapter 5) predation strength on other herbivores by opening 

the vegetation. 

 

2.3- Indirect effects of elephants on large mammals can lead to cascading effects 
 
“Surprisingly, in the light of the history of concerns about elephant impacts in the Addo 

Elephant National Park, little attention has been paid to the phenomenon of ecological 

cascades.” Kerley and Landman (2006). 

 
 

As mentioned by these authors, cascading effects of elephant indirect effects 

on communities were rarely investigated. For instance, if elephant activity leads to an 

improved access to thicket vegetation by tortoises (as hypothesised above), this could in turn 

increases the browsing pressure by tortoises on the low-growing succulent and geophyte flora 

(Mason 1999). Moe et al. (2014) also suggested such cascading effects in Chobe National Park, 

where elephants have facilitated the impala population whose density increased. This led to 

repercussions on the whole ecosystems (some were observed others were supposed). These 

cascading effects include (i) interaction chains, with facilitation and exploitative competition 

with other herbivore species (e.g. competition with Chobe bushbuck Tragelaphus scriptus 

ornatus, Dipotso et al. 2007), or maintain of rare predators feeding mainly on impala (leopard 

Panthera pardus and wild dog Lycaon pictus), and (ii) interaction modification, with reduction 

of grass cover (impala being grazers most of the year), and associated decreased in the 

abundance of small mammals (Saetnan and Skarpe 2006), with repercussions on the 

abundance of raptors and small mammalian predators (Moe et al. 2014).  
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In this second part of the discussion, I investigated indirect effect of elephants on other 

animals, mainly through vegetation alteration. For consistency with the topic of the thesis and 

because there are already lot of things to say, I considered here only interactions between 

organisms, and not biotic-abiotic interactions. I did not therefore encompass the effect of 

elephants on ecosystem processes (e.g. nutrient cycle du Toit et al. 2014) which could also 

alter communities structure and functioning. However, we can already note that much works 

remains to understand how elephants, beyond modifying the plant community, can indirectly 

affect the whole animal communities. 

 

 

3 – The importance of indirect effects in communities 
 

3.1- From food-webs to interaction-webs. 
The idea that ecological communities can be viewed as linear chains of interacting 

carnivores, herbivores and plants (i.e. the Hairston-Smith-Slobodkin hypothesis, Hairston et 

al. 1960, or Green World Hypothesis, Pimm 1991) is considered as one of the most powerful 

conceptualizations of modern community ecology (Fretwell 1987, Schmitz et al. 2004). 

However, food webs exclude the many non-trophic interactions known to profoundly affect 

community structure and functioning (Pearson 2010). Community interaction webs were 

developed to incorporate non-trophic interactions into community-assembly theory (Paine 

1980), but they remain underutilized (Ohgushi 2008). Food-web complexity has been 

addressed by partitioning webs into sub-compartments or motifs to examine the influence of 

different motifs on community outcomes (Rip et al. 2010). Conceptually, food webs could be 

expanded into interaction webs by incorporating hybrid motifs that include non-trophic 

interactions (Pearson 2010). Evidences on the importance of non-lethal, trait-mediated 

predator effects in trophic interactions (Peacor and Werner 2001) and trophic cascades 

(Schmitz et al. 2004, Ripple et al. 2016) reinforced this view. A broader integration will be 

achieved once it is recognized that food webs are merely a class of motifs that provide the 

scaffolding for more complex interaction webs (Pearson 2010, e.g. multiple plant-insect 

interactions on the willow Salix miyabeana, Ohgushi 2005, Fig. 5).  
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Figure 5: Comparison between a food web (top) and its associated indirect interaction web (bottom) 
of herbivorous insects on the willow Salix miyabeana. Solid and broken lines show direct and indirect 
effects, respectively. + and - signs indicate positive and negative effects from an initiator to a receiver 
species, respectively. The spittlebug Aphrophora pectoralis is a specialist insect herbivore on the 
willow. In autumn, females lay eggs in the distal part of current shoots, which die within one week 
because of mechanical damage. This damage induces a compensatory shoot growth in the next year, 
producing longer shoots with a greater number of leaves. This enhanced shoot growth resulted in the 
increased density of 23 species of leafrolling caterpillars in early spring. After leafrolling caterpillars 
hatched and left their leaf shelters, most leaf shelters were colonized by other insects, in particular, 
the aphid Chaitophorus saliniger, which is highly specialized for utilizing leafrolls. These aphids were 
subjected by three species of ant that harvested aphid honeydew. The increased number of ants, in 
turn, reduced the larval survival of the leaf beetle Plagiodera versicolora. From Ohgushi and references 
therein (2005). 
 

 

3.2- From predator emphasis to herbivore reconsideration in interaction webs 
As I discussed in this thesis, herbivores can be potential initiators of interaction chains 

and interaction modifications. Despite recognition that indirect effects initiated by large 

herbivores are likely to have profound impacts on ecological community structure and 

function (Danell et al. 2006), the existing literature on indirect effects focuses largely on the 

role of predators (Pringle et al. 2007). The first studies assessing the role of indirect effects in 
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food webs focused on the paramount role of predators (Hairston et al. 1960, Pain 1966), and 

this perhaps paved the way for the following studies on indirect effects which remained largely 

top-down and predator-centric (Kagata and Ohgushi 2006). This emphasis was not without 

justification, with empirical studies demonstrating spectacular ecological modifications in the 

absence of top predators (Terborgh et al. 2001, Estes et al. 2011, Ripple et al. 2014). 

 

While such a top-down control in which a higher trophic level dominates populations 

and/or communities of lower trophic levels has been widely accepted, lower trophic levels can 

also propagate upward to nonadjacent higher trophic levels (‘‘cascading upward’’ Hunter and 

Price 1992). Hunter and Price (1992) suggested a model that synthesized the top-down and 

bottom-up concepts for terrestrial food webs. They suggested that species at any trophic level 

can dominate other trophic levels due to feedback loops of top-down and bottom-up 

cascading effects (Hunter and Price 1992). Paine, whose work was critical in establishing the 

concepts of keystone predation and trophic cascades, predicted that mammalian herbivores 

would be found to exert “rampant indirect effects” and urged ecologists to test for them 

(Paine 2000). Interaction chains and interaction modifications have however been 

underutilized, and non-trophic interactions could therefore be more fully incorporated into 

ecology by simply loosening the predator-centric view of HSS (Pearson 2010). Pringle et al. 

(2007) in their study endorsed this view and observed herbivore-initiated interaction cascades 

on plants, arthropods and insectivorous lizards representing several trophic levels. These 

authors indicated that large herbivore declines can have cascading ramifications comparable 

with those observed in other systems after the loss of predators and thus, that large-bodied 

herbivores, where they still exist, might be equally critical to ecosystem function. Although 

remaining rare, studies of the indirect effects of herbivores on other species gain in 

importance (Côté et al. 2004, Goheen et al. 2004, Vázquez and Simberloff 2004, McCauley et 

al. 2006, Schmitz 2008, Fig. 5) and these indirect effects are increasingly recognized to exert 

powerful influences on communities and ecosystems (Foster et al. 2014, Daskin and Pringle 

2016).  
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