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Abstract:
The work developed in this PhD thesis is focused on video sequence analysis. The

latter consists of object detection, categorization and tracking. The development of
reliable solutions for the analysis of video sequences opens new horizons for several
applications such as intelligent transport systems, video surveillance and robotics.

In this thesis, we put forward several contributions to deal with the problems of
detecting and tracking multi-objects on video sequences. The proposed frameworks
are based on deep learning networks and transfer learning approaches.

In a first contribution, we tackle the problem of multi-object detection by putting
forward a new transfer learning framework based on the formalism and the theory
of a Sequential Monte Carlo (SMC) filter to automatically specialize a Deep Con-
volutional Neural Network (DCNN) detector towards a target scene. The suggested
specialization framework is used in order to transfer the knowledge from the source
and the target domain to the target scene and to estimate the unknown target distri-
bution as a specialized dataset composed of samples from the target domain. These
samples are selected according to the importance of their weights which reflects
the likelihood that they belong to the target distribution. The obtained special-
ized dataset allows training a specialized DCNN detector to a target scene without
human intervention.

In a second contribution, we propose an original multi-object tracking frame-
work based on spatio-temporal strategies (interlacing/inverse interlacing) and an
interlaced deep detector, which improves the performances of tracking-by-detection
algorithms and helps to track objects in complex videos (occlusion, intersection,
strong motion).

In a third contribution, we provide an embedded system for traffic surveillance,
which integrates an extension of the SMC framework so as to improve the detection
accuracy in both day and night conditions and to specialize any DCNN detector for
both mobile and stationary cameras.

Throughout this report, we provide both quantitative and qualitative results.
On several aspects related to video sequence analysis, this work outperforms
the state-of-the-art detection and tracking frameworks. In addition, we have
successfully implemented our frameworks in an embedded hardware platform for
road traffic safety and monitoring.

Keywords:
Artificial intelligence, Computer vision, Transfer learning, Deep learning, Multi-

object detection, Specialization, Tracking-by-detection, Multi-object tracking, Em-
bedded system.
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Introduction

Contents
1.1 Context of the thesis . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions and organization of the manuscript . . . . . . 3
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

One of the many human capacities is the remarkable ability to understand and
analyze the environment. From the signals provided by their ocular system, the
human being is able to describe the objects that surround them in a very precise
and quick way. We can notably emphasize the capacity of the human being to
locate and categorize objects while characterizing them by their forms, colors and
orientations. One of the many goals of computer vision researchers is to build an
intelligent system capable of efficiently analyzing images as human beings. To be
reliable, the analysis algorithms must adapt to changes in the appearance of objects
related to the context in which they are observed. For example, the appearance
of an object may vary depending on the brightness of the environment or it may
be partially hidden by another object. This is done by taking into account these
constraints, naturally managed by the human brain, which the artificial system must
integrate in order to hope to behave like a true intelligent system.

1.1 Context of the thesis

The work done in this PhD project focuses on multi-object detection and tracking,
which is based on supervised learning for the automatic analysis of video sequences.
Figure 1.1 illustrates different applications of this work. Detecting and tracking ob-
jects remain an important issue because of the number of applications they generate.
Among them, we can cite video-surveillance or robotics.

In the context of surveillance for the security of transport infrastructure, the sys-
tem must be capable of analyzing and monitoring traffic flows in urban or high-speed
areas and collecting statistics, thereby improving safety of road transport. These
include video surveillance applications such as monitoring and securing transport
infrastructure. We can imagine other video surveillance applications using detec-
tion and tracking such as access control, which requires special surveillance and/or
high security (metro stations, supermarkets, government institutions, companies,
airports, hospitals, research laboratories, etc.).
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Figure 1.1: Various applications of the work carried out in this thesis. Detection
and tracking objects in different scenarios. (a) and (b): Object detection in both
day and night conditions. (c): Traffic sign detection. (d): Object detection system
for an autonomous vehicle. (e) and (f): Multi-object tracking in several conditions.

.

Other types of applications are inherent to the implementation of an analysis
system within a vehicle: These are intelligent vehicle applications. These include
driver assistance, automatic parking and self-driving. In this context, the detection
and the tracking of objects present around the intelligent vehicle is necessary. This
predicts the trajectory and speed appropriate to the situation. The constantly
evolving performances of these systems will certainly make it possible in the coming
years to integrate into the transport infrastructures and the autonomous vehicles of
artificial intelligence by vision: a driving system without drivers.

1.2 Problematics

This thesis proposes automatic frameworks for multi-object detection and tracking.
In other words, the input of the developed frameworks is a video scene and a generic
deep detector and the output is a video containing detected and tracked objects.
We have investigated solutions based on transfer learning, deep learning and spatio-
temporal strategies to develop our detection and tracking frameworks. The issues
addressed are:
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• Multi-object detection: It consists in proposing a set of rectangles (bound-
ing boxes) containing target objects. This task is necessary to several computer
vision applications, in particular in object tracking one. Object detection is
a well-studied problem and the main challenges are multiple: occlusion, point
of view from which objects are observed, light condition, deformation, intra-
class variation, confusion with the background variation, and scale variation
(as shown in Figure 2.2).

Figure 1.2: Main challenges on object detection (translated from a presentation of
Andrew Zisserman, VGG, Oxford) [Simonyan 2014].

• Multi-object tracking: The purpose of tracking is to generate the trajec-
tories of objects. Each object has a unique identity assigned to it by the
association algorithm. The correspondence between the positions of an ob-
ject in successive images constitutes the trajectory. In this thesis, we have
addressed tracking-by-detection methods which associate successive detection
of objects.

• Specialization: Generally, the performance of a generic detector decreases
significantly when it is tested on a specific scene due to the large variation
between the source training dataset and the target scene. This problem can
be solved by specialization. The main idea of specialization is to provide a
specialized detector or tracker to a particular scene in order to increase the
detection or tracking performances toward a target scene. Specialization is
referred to by several terms in the literature such as adaptation, contextuali-
sation, etc.

1.3 Contributions and organization of the manuscript

This thesis integrates recent advances in the computer vision domain such as transfer
learning and deep learning techniques in order to enhance the detection and the



4 Chapter 1. Introduction

tracking performances.

In the past five years, deep learning and transfer learning have been widely used
by the computer vision community to solve a lot of tasks. This interest is due to
their ability to extract highly relevant information on images, thus allowing the
training of high-performance models.

In this respect, deep learning and/or transfer learning seems to be suitable for the
construction of multi-object detection and tracking systems. Nevertheless, the very
good results of methods using deep learning and/or transfer learning are intimately
correlated with the number of data used for their learning.

On the basis of this observation, the general contribution of this thesis is to
propose automatic specialization frameworks based on Deep Convolutional Neural
Network (DCNN) model, in order to improve the performances of detection and
tracking objects in video sequences.

This document is organized as follows. In chapter 2, we present the state-of-
the-art in relation with our problematics, namely the deep learning and transfer
learning. Object detection is introduced in section 1. Section 2 presents a detailed
description of supervised learning as well as deep neural networks used throughout
our work. An overview of approaches related to transfer learning is proposed in
section 3.

Chapters 3,4 and 5 present the frameworks developed in addition to the proposed
contributions.

In chapter 3, we propose a DCNN specialization framework based on a Sequen-
tial Monte Carlo (SMC) filter. The idea of this first contribution is to specialize
a generic deep detector towards a target scene based on a transductive transfer
learning model. The suggested specialization framework leads to improve the per-
formance and accuracy of DCNN detectors in each specific scene.

Chapter 4 presents a novel framework for multi-object tracking based on spatio-
temporal strategies and an interlaced DCNN detector. The proposed framework
makes it possible to improve the tracking performances toward a tracking datasets
and to handle the tracking challenges mainly occlusion and intersection.

Chapter 5 presents an applicative contribution: an embedded system for traffic
surveillance that can be performed to operate under challenging conditions such
as congestion, occlusion and lighting night/day and day/night transitions. This
system analyses traffic and particularly focuses on the problem of detecting and
categorizing traffic objects on several traffic scenes. Moreover, it contains a robust
detector produced by an original specialization framework. The proposed specializa-
tion framework presents an extension of the SMC framework mentioned in chapter
3.

Finally, chapter 6 represents the conclusion and the perspectives of this research.

Figure 1.3 presents the outline of the manuscript.
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1.4 Publications
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DETECTION IN TRAFFIC SURVEILLANCE", IEEE transaction on intel-
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2.1 Introduction

The aim of this chapter is to present the state-of-the-art and the work in relation
with our problematics, namely the deep learning and transfer learning. We have
divided this state-of-the-art into several sections. Section 1 refers to the different
strategies of object detection. Section 2 presents the Deep Convolutional Neural
Networks (DCNN) and reviews the existing work performed in deep neural net-
works. After that, a detailed description of transfer learning is provided in section
3. The applications of transfer learning in object detection are described in section
4. Finally, the conclusion of this chapter is given in section 5.
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2.2 Object detection

Object detection is one of the most studied problems in several computer vision
applications such as object tracking [Nam 2016][Wang 2016b], semantic segmen-
tation [Long 2015][Noh 2015] and object recognition [Huang 2012][Taigman 2014].
The aim of object detection is to find in an input image a set of Regions of Inter-
est (RoI) containing target objects. Object detection approaches can be divided
into two categories: single-object detection and multi-object detection. The first
category focuses on detecting only one type of objects. The detector must be
able to decide whether a region of an image corresponds to an object or a back-
ground. The second category concentrates on multi-object detection where the
detector must be able to predict what type of objects is concerned. There are many
public datasets for training and evaluating detectors. We can cite among them Pas-
calVOC [Everingham 2010], KITTI [Geiger 2012], MSCOC [Lin 2014] and ILSVRC
[Deng 2009]. Figure 2.1 illustrates the main objective of object detection.

Figure 2.1: Examples of object detection returned by a multi-object detector. Each
bounding box color corresponds to a class of objects. Source [Ren 2015c]

.

Detection challenges: An object detector faces generally several challenges.
We quote first the computation time: A robust detector is a detector that should
maximize performance while detecting objects as fast as possible. This notion of
computation time is particularly important in the design of multi-class detectors
because of the number, often very large of object classes to be detected.

The second challenge concerns the variation in object appearances. The latter
can vary according to several factors such as: the variation in image resolutions,
the size of objects, the points of view under which objects are observed, and light
condition.

The third challenge is related to the variation in the appearance of regions that
do not correspond to objects (the background). A detector must be able to pre-
dict whether a region corresponds to the background even in images resulting from
complex environments. Figure 2.2 depicts major challenges on object detection.

In the following, we propose more details of the strategies for extracting regions
on which the model will be applied. In the next section, we first develop the detection
by the sliding window then the detection by object proposals.
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Figure 2.2: Detection challenges (translated from a presentation of Ala Mhalla
[Mhalla 2016b], DICTA, Australia).

2.2.1 Detection by sliding window

Sliding-window approaches use a previously learnt classification model which con-
sists of a 2D window with fixed size permitting the discrimination of the background
of objects. The general idea of this type of approaches is to scan the input image
using a sliding window. On the other hand, this window goes over the input im-
age and produces a confidence score in each image position. In what follows we
recall the main steps of the classical sliding window approach based on the pyramid
representation (Figure 2.3).

• Given an input image, an image pyramid is computed. The computation of
this latter consists in resizing an image using several scale factors and several
ratios. The set of these images forms the pyramid and each image corresponds
to one level. It is necessary to compute a pyramid of images because the sliding
window to be applied to the image is of a fixed size. The detection model is
generally learnt for a single scale and a single ratio. However, the objects in
an image can be of different sizes and have variable ratios. In this way, the
objects in the image correspond to the size of the model at least for one level
of the pyramid.

• Visual characteristics are extracted on different levels of the pyramid, which
makes it possible to obtain a feature map for each pyramidal level.
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Figure 2.3: Classical diagram of object detection by sliding window. A pyramid
of images is created from an input image. Visual characteristics are computed. A
model is applied in each position and each pyramid level returns candidate boxes.
An NMS algorithm is then applied to delete the boxes corresponding to the same
object. Source [Suleiman 2017]

• A previously learnt model is applied in each position of the different feature
maps, returning a confidence score for each position and each level of the
pyramid. This step makes it possible to select candidate boxes (those with
the highest confidence scores).

• In detection systems, it is very frequent that candidate boxes are agglomer-
ated around the same object. In other words, several boxes can correspond
to the same object. To remove any redundant detection, the Non-Maxima
Suppression (NMS) algorithm is applied. The idea of this algorithm is based
on the fact that detection cannot spatially overlap beyond a certain threshold
(the overlap). If detected bounding boxes overlap too much, the bounding box
with the best confidence score is kept and the others are removed.

The sliding window strategy has been widely used for object detec-
tion.The different methods that utilized it are distinguished by the nature
of the model to be applied to the pyramid and the used visual charac-
teristics (shape characteristics [Ferrari 2010][Ferrari 2007], Histograms of Ori-
ented Gradients (HOG) [Dalal 2005][Felzenszwalb 2010], deep characteristics
[Sermanet 2013][Szegedy 2013]...).

The sliding window has become unavoidable, especially after the publication of
[Viola 2001a]. The authors introduced an approach based on the boosting concept
[Freund 1995]. The idea of this latter was to scan the image with "weak" classifiers
called Haar filters. The sum of the responses of these weak classifiers enables the
decision making of the detector. This method has long been considered as a reference
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in face detection applications. Its major advantage is computation time. Moreover,
in this method, weak classifiers are used in cascade. In other words, they allow, at
first, the quickly removal of regions that do not contain objects.

For the most problematic regions, the aggregation of weak classifiers makes it
possible to build classifiers that are increasingly robust. Extensions based on boost-
ing have also been introduced in particular to solve the multi-object detection prob-
lem [Torralba 2004][Torralba 2007]. These approaches have proposed to share visual
characteristics between object classes to be detected.

In 2005, the authors of [Dalal 2005] suggested new visual characteristics: the
HOG. These characteristics, based on the gradients of the image made a leap for-
ward in the performance of object detection systems. The authors proposed the
use of the HOGs and the SVMs to separate the learning examples in the space of
characteristics. The HOGs and the SVMs were also used in the deformable part-
model. [Felzenszwalb 2010] approach where the detection model was based on local
and global representations of objects. This method remained a few years in the
state-of-the-art person detection.

Approaches based on the sliding window and the Convolutional Neural Net-
work (CNN) were also introduced. Among them, we can cite [Garcia 2002] and
lately [Sermanet 2013][Szegedy 2013]. In [Sermanet 2013], the authors proposed to
transform a classical neural network by replacing the full connected layers by con-
volutional ones. This allowed the application of the neural network on any image
size, which was very interesting to specially pass in the network images from differ-
ent pyramid levels. The fully convolutional network is trained to return confidence
scores for each class of objects and the four corners of their bounding box. The
CNN theory will be explained in more details in section 2.3.

2.2.2 Detection by object proposal

An alternative to the exhaustive search of objects (the sliding window) is the use
of object proposal algorithms. Recently, the latter had improved the performance
and computation time in object detection systems. The aim of these methods is
to propose boxes with a high probability of being a target object. These boxes
are then extracted and sent to a classifier for the final decision. These methods
reduce the computation time because they considerably decrease the space of search
compared to the exhaustive search methods of the sliding window type: The object
detection model is not applied to all the positions of the image but only on a small
set of regions. In the following, we present the existing methods permitting the
generation of object propositions.

One of the most algorithms for the object proposition is the
selective search introduced in [Uijlings 2013]. Compared to other approaches
[Carreira 2010][Endres 2010], the selective search approach is based on a seg-
mentation of an image at different resolutions. Using the segmentation method
introduced in [Felzenszwalb 2004], selective search segments the input image on
several scales. This produces a first set of RoI. The authors of [Uijlings 2013]
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introduced then a similarity computation between regions based on color, texture,
size and inclusion information. This similarity made it possible to merge redundant
regions (too similar) and to return a set of propositions of relevant objects. Figure
2.4 illustrates the selective search algorithm.

Figure 2.4: Illustration of selective search. On the left, segmentation maps at dif-
ferent resolutions. On the right, different propositions of objects returned by the
algorithm after fusion of regions. Source [Uijlings 2013].

This method was subsequently used in two popular state-of-the-art refer-
ences for object detection by CNN: R-CNN [Girshick 2014a] and Fast R-CNN
[Girshick 2015a]. In the R-CNN [Girshick 2014a], object propositions resulting from
the selective search were extracted in an image and resized to a fixed size. These re-
gions were then used by a CNN to determine their classes. This approach increased
the computation time (for learning and testing) because each region passed through
all layers of the CNN. It allowed extracting regions from the selective search on
a deep feature map; i.e., the entire input image was passed in a CNN providing a
low-resolution feature map (due to the successive pooling). The object propositions
were then extracted on this map and send to a classifier consisting generally of two
hidden layers (full-connected layers) and an output layer enabling the classification
of the object (class of object or background). In these two approaches, an additional
function was learnt by the network making it possible to transform the propositions
of original objects produced by the selective search so that these would stick to the
object as well as possible. This function was called "regression on the boxes".

To further reduce the computing time and increase performance, the object
proposal network [Ren 2015c], "Region Proposal Network (RPN)", was introduced.
The authors in [Ren 2015c] proposed to create a single CNN capable of suggest-
ing interest objects, extracting them on a feature map and classifying each region.
This method for object detection has been widely used and modified [Yang 2016]
[Xiang 2017] [Kong 2016] thanks to its performance and speed on object detection.
Recent work [He 2017] has used the RPN even for the segmentation of instances
and the estimation of person positions. The approach of [Ren 2015c] will be ex-
plained in more details in chapter 3. Other CNN detection algorithms have been
introduced [Liu 2016] [Redmon 2016a]. They are based on the one-shot concept;
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i.e., they no longer use a step of extracting object proposals on the feature maps.
This saves even more computing time when utilizing the CNN on an image. A
very interesting article [Huang 2016b] provides a very thorough analysis of different
state-of-the-art detectors based on CNN [Ren 2015c][Liu 2016] by testing various
CNN architectures.

2.3 Initiation of deep neural network

This section aims to present the Deep Neural Networks (DNN) used throughout this
thesis.

Generally, neural networks encode a mathematical function to be applied to an
input signal (in our case, an image) and making it possible to predict an output
signal. This function is a composition of several nonlinearn or linear functions.
These networks are inspired from the functioning of the human brain. They are
made up of a large number of artificial neurons (introduced for the first time in 1943
by McCulloch et al. [McCulloch 1943]) connected together, which model the running
of biological neurons. Figure 2.5 illustrates the analogy between the human brain
and the neural networks. These networks have existed for a long time (McCulloch
1943, Rosenblatt 1958, Minsky 1969), but their study stagnated until the end of
the 1990s. Since then, they outperformed many methods in several computer vision
applications such as image classification, detection, segmentation and recognition.

Figure 2.5: Analogy between the human brain and neural networks. A signal (here
an image) activates neural responses in series to response (here "cat"). Source
[DiCarlo 2007]

This recent enthusiasm, particularly in the field of computer vision, can be
explained in several ways. First, enormous annotated public databases are cur-
rently available like, Image-Net [Deng 2009], MSCOCO [Lin 2014], YouTube-8M
[Abu-El-Haija 2016] and Cityscapes [Cordts 2016]. These latter datasets make it
possible to learn complex neural networks. For example, the ImageNet dataset
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[Deng 2009] contains approximately 14 million images corresponding to 22,000 ob-
ject classes. Thus, this type of database enabled [Krizhevsky 2012] the winning of
the ImageNet competition in object classification (1.2 million images corresponding
to 1000 classes) by proposing a neural architecture containing 60 million parame-
ters. It is this large number of parameters that differentiates modern neural net-
works from those of the 1990s. The second reason to relaunch the study of neural
networks is the ability of modern machines to perform huge computations in a rea-
sonable time, notably thanks to the use of graphic cards (GPUs). This makes it
possible to build neural networks that are increasingly complex and efficient. Fur-
thermore, the multiplication of deep learning frameworks such as: Caffe [Jia 2014],
Tensorflow [Abadi 2015] and Torch [Collobert 2002], permits the easy development
of automatic learning methods.

In what follows, we will recall the objectives of supervised learning and the
interest of neural networks in relation to classical learning approaches. After that,
we will present the CNN.

2.3.1 Supervised learning and neural networks

Machine learning is a broad subject of research. We can distinguish different learn-
ing families (supervised, semi-supervised, unsupervised, by reinforcement ...). The
purpose of automatic learning is to construct mathematical models to predict an
output given an input signal from a training dataset. Neural networks present tools
for learning these models. In what follows, we will contextualize automatic learning
in the context of computer vision.

2.3.1.1 Supervised learning

The most used type of automatic learning is the supervised learning, which allows
the machine to learn its parameters using annotated datasets. For example, in an
image classification framework, a model driven by a supervised learning predicts
the type of object (its class) in an input image. In computer vision, the available
datasets are divided on training and testing sets. During the learning, each image of
the training dataset is presented to the model, which will update its parameters to
produce the desired output. The update of these parameters is carried out using the
notion of risk minimization: When a learning example is presented to the model,
the output predicted by the model is compared with the desired output. The error
between the desired output and the predicted output is then computed. The aim of
supervised learning is to find the model parameters that minimize this error in all
the learning dataset examples. In the test phase, a learnt model enables predicting
the output associated with an image that it did not see during the learning phase.
This is called the generalization of the model.

Supervised learning in computer vision is generally divided into two stages. The
first one is the extraction of visual characteristics from the images of the learning
dataset. The purpose of extracting the characteristics is to provide a discriminating
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description in a reduced space compared to the space of the image which is too
large. The learning of linear classifiers on visual characteristic vectors is a well
formulated and solvable problem, for instance with the SVM [Cortes 1995]. Figure
2.6 illustrates schematically the classical process of supervised learning. Once the
model is learnt, it can be used on a new image whose class is unknown. The vector
of visual characteristics is extracted on this image and the model predicts its class.

Figure 2.6: Classical schema of supervised learning for object classification. (a)
A set of images corresponding to two classes (bike and car). (b) The characteris-
tics extracted from these images. The characteristic vector of each image is here
schematized by a 2D point for the legibility of the diagram but is generally of greater
dimension. (c) The separation learnt using a linear classifier to discriminate the two
classes. Source [Malisiewicz 2011]

There are many types of visual characteristics such as the HOG [Dalal 2005],
the Scale-Invariant Features Transform (SIFT) [Lowe 1999], Local Binary Patterns
(LBPs) [Ojala 1996] or the Haar characteristics [Viola 2001b]. These feature ex-
traction approaches make it possible to extract low-level characteristics, based on
primitives of an image such as gradients or contours. These extraction algorithms
are completely external to the learning of a classifier and are computed beforehand
on the images.

2.3.1.2 Differentiation of neural networks

Neural networks present a part of the automatic learning tools and are especially
used for supervised learning. They are part of a logic that is slightly-different from
"classical" learning approaches. Indeed, we previously saw that the learning process
includes a step of extracting visual characteristics from the image. This step was
mostly based on image-processing-oriented algorithms. Although very relevant to
certain vision tasks, these characteristics may prove ineffective depending on the
nature of the problem to be solved. These lead us to ask several questions. What
really characterizes objects ? Are they contours ? or colors ? How can we succeed in
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finding a reduced representation of an image that is as relevant and discriminatory
as possible ?

It is on this point that neural networks mark a technological break. Indeed,
rather than extracting visual characteristics "manually", neural networks allow the
directly use of an input image and learning which visual characteristics are the most
relevant for a given problem. Figure 2.7 depicts this difference. In contrast to the
HOG [Dalal 2005] or SIFT [Lowe 1999] characteristics, which are low-level image
representations, the neural networks permit, by a succession of non-linear functions,
the extraction of increasingly high-level characteristics. It is this succession of func-
tions that gives the name of Deep learning to approaches based on modern neural
networks. The more functions, the deeper the network and the high level of the
extracted visual characteristics.

Figure 2.7: Interest of neural networks for visual feature learning in comparison
with classical supervised learning approaches (translated from a presentation of
Yann LeCun 2016, Paris).

2.3.2 Neural networks: Basic concept

In this section, we propose to expose basic concept of the neural networks. We first
present the basic entity of neural network, the formal neuron. Then we present the
Multi-Layer Perceptron (MLP).

2.3.2.1 The formal neuron:

Formal neuron (or artificial), initially introduced in [McCulloch 1943], is a mathe-
matical modeling of the biological neuron. It consists of a mathematical function to
be applied to a signal and return an activation value. Considering an input signal
X = {x}n=1,..,N , the artificial neuron returns the activation value y. The latter
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value is computed as follows, equation (2.1):

y = f(b+

N∑
n=1

wkxk) (2.1)

In this formulation, wi are commonly called weights and b is called bias. The
function f is called an activation function. In the initial formal neuron, this function
is the signal function, hence returning a binary value at the output of the neuron.
The weights, the bias and the activation function characterize the formal neuron.
Figure 2.8 illustrates how this neuron works.

Figure 2.8: The artificial neuron.

2.3.2.2 Multi-layer perceptron

The neuron has two disadvantages. It expresses only a linear relation between the
inputs and its output. Moreover, its power of expression is limited since it produces
only one output. The MLP was invented to overcome these limitations. First, the
activation function has been modified to include nonlinearity. A popular choice of
this function is the sigmoid one as it is an approximation of the derivable Heaviside
function which is an essential element during learning. The second contribution of
the MLP consists in connecting several neurons together as layers.

An MLP consists of three types of layers:

• An input layer that corresponds to the input data x = [x1, ..., xn].

• An output layer consisting of m neurons and producing the outputs of the
network y = [y1, ..., ym], that is to say the output values associated with the
input data x.

• Hidden layers each consisting of several neurons. These layers allow the non-
linear transformation of the input signal to the output one.

In the framework of the MLP, all the neurons of a layer are connected to the neurons
of the previous layer. Figure 2.9 illustrates an MLP consisting of two hidden layers.
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Figure 2.9: An example of an MLP consisting of two hidden layers. Each circle
represents a formal neuron.

2.3.3 Deep convolutional neural networks

CNNs are a special type of neural networks that can be easily applied to images in
order to extract and classify information spatially. The first CNN was introduced
in the late 1980s by LeCun et al. [LeCun 1989] for image recognition. This network
allowed the recognition of handwritten digits.

The idea is to pass an input image in a succession of convolutional filters (as
shown in Figure 2.10) providing a reduced and relevant description of an image.

Figure 2.10: Examples of convolution filters: 96 filters of the first layer of AlexNet
architecture [Kataoka 2015].

These characteristics are then sent to an MLP composed of hidden layers and
fully connected output ones permitting classification of digits presented in the image.
Convolution filters and fully connected layers are learned simultaneously. Figure
2.11 presents the architecture of a convolutional network.

Because of their convolutional structure, CNN makes it possible to take in input
data of large dimension, which is a limit of the MLP.

For example, an image having three channels (RGB) of size 224×224 pixels rep-
resents an input vector of size 150, 528 for an MLP. This involves 150, 528 weights
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Figure 2.11: A convolutional network for the recognition of handwritten digits.
Source [LeCun 1998]

to learn for each neuron of the hidden layer connected to the inputs, which is com-
plicated to learn. The CNNs can be seen as a series assembly of modules allowing
the extraction of characteristics from the pixels of an image in a hierarchical way.

2.3.3.1 Different modules of CNN

We present here the different modules used in CNNs: convolution, pooling, acti-
vation functions, dropout, batch normalization and standard error functions (loss
functions) used for learning.

Convolution: The core of a CNN is the convolutional layer. The resulting out-
put is called feature map. A convolutional layer is made up of several convolutional
filters (or kernels) to be applied to each position of an input image.

Figure 2.12 shows how the convolution works. In practice, a value (bias) as-
sociated with the convolution filter is added to each position of the output of the
filter. During learning, the values of the weights and biases of the neurons present
the components of these filters that are learnt.

A filter of a convolutional layer is applied to all the positions of an input image,
that is why we speak of shared weights.

Pooling: The pooling layer adds a spatial invariance when extracting fea-
tures, reducing the size of inputs. It can be of different nature but the most
used pooling types are Max Pooling (shown in Figure 2.13) and Average pooling.
Max Pooling permits returning the maximum element of a computation window.
Average Pooling allows returning the average of the elements on a computation
window.

Activation functions: There are different activation functions allowing the
non-linearity in the different CNN layers. The most famous of these functions are
(as shown in Figure 2.14): The sigmoid function, the hyperbolic tangent function
and the ReLU function.

The ReLU activation function is the most used in deep CNNs because it permits
easier optimization. It has the advantage of providing sparse answers and makes it
possible to reduce the problems of gradient disappearance. The ReLU function, for
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Figure 2.12: Convolution illustration. Given an input, a convolution filter (or con-
volution kernel) is applied for each position.The depth of the kernel depends on the
depth of the input to which it is applied: In this example, the input has three chan-
nels, so the depth of the kernel is three. The result for a given position corresponds
to the sum of the multiplication of the kernel elements by those of the input: In this
example, 2× (−4) + 5× 2. In the context of CNNs, the output of a convolution is
called a feature map. The number of feature maps depends on the number of filters
applied to the input. Source [Guerry 2017]

its part, refers to a constant gradient for a large input, enabling faster learning (in
particular networks with a certain depth). There are other activation functions in
the same family as ReLU such as LReLU [Maas 2013], PReLU [He 2015] and eLU
[Clevert 2015].

Dropout: To avoid overfitting, the dropout layer was introduced in
[Srivastava 2014]. This layer is used during learning. It allows randomly deacti-
vate neurons during the different learning iterations. In other words, the dropout
enables the network to learn subnets containing fewer parameters, hence, less overfit-
ting subjects. This way permits learning more generic parameters that do not focus
on the details of the learning dataset. Once the learning is complete, all neurons
are reactivated.

Batch normalization: This technique was presented by Ioffe et al. [Ioffe 2015]
in order to learn the CNNs more quickly and efficiently. It starts from the following
observation: During learning, the distribution of the inputs of the different network
layers changes at each iteration. This induces a permanent adaptation of CNN pa-
rameters to these different distributions, which increases the learning time. The
idea of batch normalization is to normalize the inputs of each layer so that their
distributions are of a zero mean and a unit variance. During learning, the batch
normalization layers learn parameters (a scale factor and a bias) to adjust this nor-
malization: These parameters enable applying a transformation on the normalized
distribution.

Loss functions: There are several loss functions that can be used for learning
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Figure 2.13: Illustration of Max Pooling. In this example, the pooling kernel is of
size 2 × 2 and is applied every two pixels (stride = 2). The maximum of the four
elements on a window of the input matrix is kept. Source [CS2 ]

.

Figure 2.14: The most famous activation functions. (a) sigmoid, (b) hyperbolic
tangent and (c) ReLU function. Source [CS2 ]

neural networks. These functions are dependent on the task that the network must
perform (classification, regression, etc.). Here we list the most used loss functions.

• The Softmax loss function, commonly used for network optimization. It allows
the maximization of the probability that an entry has to belong to one class
rather than another.

• The loss function by sigmoid crossed entropy, allowing a regression on proba-
bilities.

• The loss L1 smooth function, introduced in [Girshick 2015a], which permits a
better optimization for regression problems.

2.3.3.2 Classical neural architectures

We present here the most popular architectures of the CNN used in computer vision
research. It is important to note that the architectures proposed in the literature



24 Chapter 2. State-of-the-Art

have a strong tendency to become more and more deep with the years. In other
words, it seems that the deeper the network is, the better the performances are
(as shown in Figure 2.15). Nevertheless, this depth implies facing certain difficul-
ties, particularly in terms of computation time and optimization during learning.
This is why the community remains very active on the problem of designing CNN
architectures.

Figure 2.15: Error rate of different architectures on ImageNet for object classifica-
tion. Over the years, the classification error has diminished, due to the increasing
depth of architectures. Source [He 2016].

Standard architectures are widely used in vision for two main reasons. The
first is that they allow for an easy comparison of CNN-based methods. In other
words, although some work focuses on the study of neural architectures, the majority
of vision methods reuse already learned CNNs and modify them to design new
architectures that respond to particular tasks. The second reason is related to the
difficulty of learning deep networks because of their large number of parameters.
A common practice is the use of CNNs already learnt on huge databases and then
adapt them to a specific task. This is called "fine-tuning". This practice enables
learning deep networks using an initialization of the weights and bias already very
relevant and generic. The adaptation of these parameters is then carried out during
the phase of learning the specific task that it is desired to carry out. This result in
a much faster learning speed and a virtually guaranteed convergence.

AlexNet: This architecture is the one proposed in [Krizhevsky 2012], which
allows the resurgence of the study of neural networks from 2012, in particular thanks
to the victory at the ImageNet image classification competition. This architecture
uses five layers of convolution and three layers of pooling. The size of the convolution
kernels is variable (11× 11, 5× 5, 3× 3) as a function of the layer in question. The
activation function used between each layer is the ReLU function. After passing the
image in the convolution, pooling and activation layers, a feature map is obtained.
This is sent in an MLP consisting of two hidden layers and one output layer. Figure
2.16 illustrates the architecture of AlexNet.
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Figure 2.16: Illustration of AlexNet architecture [Kataoka 2015].

VGG: This CNN was introduced in [Simonyan 2014]. Instead of using a single
convolution per depth level such as AlexNet, this architecture utilizes convolution se-
quences. In addition, VGG has convolutional filters with small size than in AlexNet
(size 3× 3). Figure 2.17 presents the architecture of the VGG.

Figure 2.17: Illustration of the VGG architecture [Simonyan 2014].

ResNet: This CNN was presented in [He 2016]. It allows the learning of very
deep networks (more than 150 layers). The difficulty in learning such deep networks
is particularly related to the retropropagation of the gradient. The deeper the
network is, the lower the gradient is for updating the weights of the lowest layers
(the first layers). The idea developed in ResNet is the use of residual connections
allowing better optimization of very deep networks. A residual connection makes
it possible to pass the input in two convolution filters but also to pass this input
directly to the following layers. This is done by summing the result of the two
convolution layers and the input, as shown in Figure 2.18.

With this architecture, the authors demonstrate the interest of learning very
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Figure 2.18: Residual connection. [He 2016].

deep networks and propose a way to learn them effectively. Figure 2.19 depicts the
architecture of ResNet.

Figure 2.19: Illustration of ResNet architecture. Source [He 2016].

2.4 Convolutional neural networks for object detection

One of the most uses of CNNs is to localize and detect objects in images. This
last problem, is a more challenging one, and requires to localize in an image sev-
eral objects that can vary on size and pose. Some of the datasets challenges and
competitions have contributed to the development of approaches and other CNNs
architectures able to solve the object detection challenges.

As mentioned in section 2.2.1, initial approaches use well known sliding window
and strategy in combination with CNNs-extracted features and a final classifier.
However, Sermanet et al. provided in their approach [Sermanet 2013] that end-to-
end trained CNN models can also be designed to generate an algorithm to object
localization, detection and recognition. They utlized CNN special characteristics
of location invariance and weights sharing to create an efficient sliding window
approach. They also suggest an original approach that learns to predict object
boundaries to create bounding boxes, all in the same CNN architecture.

Accordingly to section 2.2.2, the recent advancement of region proposal methods
(e.g, [Uijlings 2013]) have suggested new CNNs architectures. An important one,
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was put forward by Girshick et al. [Girshick 2014b], as what is known Region-based
CNNs (R-CNNs). It starts with the selective search strategy that outputs 2000
proposals. Next, it uses a pre-trained AlexNet classification model to extract a 4096
feature vector for each of the regions. Finally, it classifies each region with the SVM
and with the results they fine-tune the CNN for detection.

Further works on object detection with CNNs have focused mainly on reducing
the computations of R-CNNs, which has been achieved successfully by sharing the
convolutions across proposals [Girshick 2015a], [Ren 2015c], [Redmon 2016a]. Dif-
ferently, work done by Shaoqing et al. in [Ren 2015c], directly proposes a fully
convolutional network able to produce the region proposals by adding two convolu-
tional layers to the network.

Some recent research is dedicated to unifying the two-staged approach from
[Ren 2015c] into one stage, avoiding to resample features. Single Shot MultiBox
Detector (SSD) [Liu 2016] uses the strategy of anchors from [Ren 2015c] proposal
network and applies them to several feature maps of different resolution in the
convolution network. This allows the detector to consider image regions at different
sizes and different resolutions for detection objects at multiple scales.

Table 2.2 provides an overview of detection methods by CNN and their results
on Pascal VOC 2007 [Everingham 2010].

Table 2.1: Summary of detection methods by CNN and results on Pascal VOC 2007
[Everingham 2010].

Method frame per second mAP
DSOD [Shen 2017] 17.4 77.7%
MobileNet-SSD [Howard 2017] 93 75.4%
R-CNN OHEM [Shrivastava 2016] – 78.9%
Yolo v2 [Redmon 2016b] 67 76.8%
SSD [Liu 2016] 59 74.3%
Yolo [Redmon 2016a] 45 63.4%
Faster R-CNN [Ren 2015c] 17 73.2%
Fast R-CNN [Girshick 2015a] 10 70.0%
R-CNN [Girshick 2014b] 0.1 62%

2.5 Transfer learning

Several traditional automatic learning methods operate under a common assump-
tion: The learning and test data come from the same feature space and share the
same sample distribution. If the distribution is different, it will be necessary to
resume learning from scratch while collecting new data from the target domain
and handling the tasks differently. However, in many real-world applications, the
collection of new data is costly and sometimes difficult [Pan 2010b].
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Transfer learning aims to solve this situation by developing methods to transfer
knowledge and skills learned in one or more source tasks in order to use it to im-
prove a target task with the consideration of similarity links between these tasks.
Figure 2.20 shows the difference between traditional learning and transfer learn-
ing. The traditional learning starts the learning process from scratch of new task
independently from other tasks. Whereas, the transfer learning techniques use the
knowledge acquired in previous tasks when learning a new one.

Figure 2.20: Differences between traditional learning and transfer learning
[Pan 2010a]

The transfer process begins with a need to learn a target task in a target domain
while knowing that a set of source tasks in a source domain is available and that
there is a set of relationships created at the basis of similarity between the source
and target problems. Defining the target task, available source tasks that can be
beneficial to improve the learning of the target task and the existing similarities
between the source tasks and the target ones are the answer to the question: "Where
is knowledge transfer ?".

Once the source problems, the target problem and the similarity links are spec-
ified, the next step is to decide what to transfer ? How to transfer ? And when
to transfer ?. The question "What to transfer ?" determines the type of knowledge
to be transferred from the source domain to the target one. The question "How to
transfer ?" determines the nature of the transfer, that is to say whether the trans-
ferred knowledge will be used as it is or whether it must undergo transformations
to adapt to the new conditions. It also defines how to use this knowledge during
the learning phase of the new task. The question "When to transfer ?" must assess
the situation in which the transfer may be advantageous. This question seeks to
avoid any case of negative transfer by determining the amount of transfer from the
defined sources. If the source tasks are not similar to the target and/or if there is
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a sufficient amount of data for target task learning, transfer can result in negative
effects instead of improving the learning process [Aytar 2014].

2.5.1 Motivation of transfer learning

The aim of transfer learning is to improve the learning of a target task by bringing
back the knowledge learned about other source tasks. The transfer learning has
several advantages, such as avoiding the manual effort required to annotate a large
amount of data. Figure 2.21 describes three levels of performance improvement of
transfer learning (higher start, upper slope, higher asymptote) by comparison with
the learning method of the target task without transfer.

Figure 2.21: Transfer learning advantages [Tommasi 2013, Aytar 2014]

2.5.2 Different types of transfer learning

According to [Pan 2010a], there are three types of transfer learning based on the
different relationships between the tasks and the source and target domains. Figure
2.22 summarizes the different types of transfer learning.

Figure 2.22: Different types of transfer learning. Translated from a presentation of
Houda MAAMATOU [Maâmatou 2016a], Italy.

Inductive transfer learning: For this type of transfer, the source and target
domains can be similar or not, but the tasks are different. Some annotated target
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data are needed to produce a predicative model to be used in the target domain.
There are two cases:

• Inductive transfer learning with annotated source data: There interest in
transferring source knowledge is to achieve a high performance in the real-
ization of the target task. This type of transfer is similar to the multi-task
learning configuration, with the difference that multi-task learning learns both
source and target tasks simultaneously [Pan 2010a].

• An inductive transfer learning without annotated source data: This is a config-
uration similar to a self-learning case as presented by Raina et al. [Raina 2007].
This is a situation where the source and target label spaces are different and
the knowledge of the source domain cannot be used directly [Pan 2010a].

Transductive transfer learning: The transductive type deals with a target
domain without any labelled data and assumes that the distribution of the source
domain is different from the target one, though they are actually related. Two cases
arise depending on the situation of the source and target domains:

• The characteristic spaces between the source and target domains are different.

• The characteristic spaces between the source and target domains are similar,
but the distributions of marginal probabilities are different. In this type of
transfer, we find the adaptation of a face detector to specific photos for a
good manipulation of the new domain conditions [Jain 2011], we find also the
transfer for text classification [Daume III 2006] and the adaptation of a generic
pedestrian detector to a new scene [Wang 2011] [Maâmatou 2016d].

Unsupervised transfer learning: As for inductive transfer learning, the
source and target tasks are different and the domains may be similar or not. How-
ever in this type of learning there is no data labelled either in the source domain
or in the target one. The target task is often an unsupervised problem such as
grouping, dimension reduction, or density estimation. As an example, we mention
the work of Dai et al., [Dai 2008] which presents an unsupervised transfer approach
for grouping a set of data in the target domain by exploiting a large quantity of
unlabeled data available in the source domain but learning a common feature space
across domains.

In our work, we are interested on the transductive transfer learning type. The
latter allows avoiding data labelling in each scene and offers improving object de-
tection in different sequences. These were the reasons that motivate us to suggest
an original formalization of transductive transfer learning in order to specialize a
generic deep detector to a target domain.

The details of the transductive transfer learning methods are described in the
following sections.
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2.6 Categorization of transductive transfer learning
methods

The existing transfer learning methods are categorized according to the knowledge
transferred. These transfer learning categories will be described in the next subsec-
tions.

2.6.1 Transfer of example

These methods focus on the transfer of source examples that can be reused by
solving the target task. Nevertheless, the source data may not be usable in their
raw forms and may not all be useful, but some examples can reinforce the target
learning process following a ponderation function. Despite the use of source and
target examples, the transfer of examples learns only the target task. There are
several methods of transfer of examples that are described for artificial intelligence
and computer vision applications.

Haung et al. [Huang 2006] proposed a Kernel-Mean Matching (KMM) algorithm
for the direct learning of the ratio of the source distribution to the target distribution
by matching the two averages of the source and target data by producing a Hilbert
kernel space. The main benefit of using the KMM is the ability to avoid the density
estimation for both domains which can be difficult if the dataset is reduced.

Dai et al. [Dai 2007] had a "TrAdaBoost" extension of the basic doping algo-
rithm "Adaboost". It reduces the weight of instances that are poorly predicted in
order to reduce as much as possible their undesirable effect on the learning process.
TrAdaBoost allows the construction of a good quality classification model while us-
ing data of different distributions and quantities: a reduced amount of labeled data
from a target distribution that is generally insufficient for learning a good classifier
and a large amount of data from another source distribution. At each iteration,
if an instance is badly predicted then the algorithm reduces its learning weight to
attenuate its effect at subsequent iterations. In this way, examples that are not
similar to the new data affect the learning process from one iteration to another.
However, older instances that are consistent with recent data help the algorithm
better train the classifier.

Jiang and Zhai [Jiang 2007] proposed a heuristic method to minimize the dif-
ference in the conditional probabilities of the source and target domains by remov-
ing samples that would disrupt target learning. Duan [Jiang 2007] put forward a
"Domain Transfer SVM (DTSVM)" approach for a video classification task. The
DTSVM minimized the SVM structural risk function and the maximum average
divergence. This was the criterion that identified the difference between the distri-
bution of source and target samples by learning an optimized kernel function.

Sugiyama et al. [Sugiyama 2008] put forward an algorithm known as the
Kullback-Leibler Importance Estimation Procedure (KLIEP) to directly estimate
the ratio of source density according to target density based on the minimization of
the Kullback-Leibler divergence. The KLIEP can be integrated into cross-validation
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to automatically perform model selection in two steps: (1) estimating the weights
of the source domain data, and (2) learning models with weighted data.

Wang et al. [Wang 2010] introduced a system of object classification at a max-
imum margin based on the assumption that an object model had to accurately
respond to examples from similar source categories and had to respond negatively
to non-similar ones. Lim et al. [Lim 2011] illustrated the performance improvement
by borrowing and pondering a set of samples from several categories of objects vi-
sually close when learning a target object detector (sofa). Figure 2.23 depicts the
principle of the suggested model. They looked for the right samples to transfer by
associating a weight with each sample and for the right transformations to apply
for each sample in order to increase the transfer flexibility. The transformed exam-
ples in the blue (or red) rectangles are similar in front view (or profile) of the sofa.
Barred images will not be transferred for learning because they have low weights.

Figure 2.23: Illustrated transfer of examples: learning of a sofa detector by transfer
samples from other visually related classes [Lim 2011].

2.6.2 Model transfer

Model transfer consists to transfer the parameters of the model trained on the source
domain. It is based on the assumption that the linked task models must share a
certain number of parameters as well as the distribution of hyperparameters.

Fei-Fei [Fei-Fei 2006] introduced a Bayesian transfer approach that uses the pa-
rameters of the source classifier and learnt the target model by updating the model
parameters utilizing one or more examples of the target category.

Zweig and Weinshall [Zweig 2007] proposed a transfer learning approach that
combines several object classifiers of different hierarchical levels into a single classifier
using a configuration based on object category models. The aim of this method is
to consider various aspects of an object.
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Yang et al. [Yang 2007] presented an adaptive SVM approach for adapting
classifiers to new domains. It is a variant of the transfer learning with a maximal
margin, which takes advantage of the visual knowledge of source data or other forms
of prior knowledge.

Gao et al. [Gao 2008] chose to combine a set of models instead of using a single
model to transfer useful knowledge to the target domain. They proposed to: (i)
approximate the model weights based on various structures in the target domain,
(ii) provide an estimate based on the neighborhood of the graphs, and (iii) provide
a prediction step to propagate labels from the nearest samples. Prediction is useful
if the learning models are unable to provide an accurate response for some samples.

Stark et al. [Stark 2009] suggested a model based on a probabilistic form that
allows the transfer of knowledge on three different levels: the shape and appear-
ance of the parts, the local symmetry between the parts, and of the topology part.
The model enables a partial or complete transfer of knowledge by transferring the
parameters of the model.

Aytar and Zisserman [Aytar 2011] suggested transferring a model from a first
category to a target category: Adapt a motorcycle model to a bike model and a
horse model to a donkey model. In order to avoid learning the target model from
scratch, they introduced the model of the pre-trained source category as a regulator
of the cost function when learning the target category.

Gao et al. [Gao 2012] relied on the assumption that good detectors had to
share some statistical properties. They took low-level statistics of the probability
distributions of a set of random variables through the parameters of a source model.
They proposed to strength these statistics by learning the model of the target task.

2.6.3 Feature transfer

This type of transfer is positioned between the example transfer and the model
transfer. The goal is to find a good representation of the features that simplifies
learning the solution of the target problem. A feature representation minimizes the
domain divergence and the classification or regression model error.

In particular, when the problem of the target has very few examples and gen-
eralization is difficult, this type of transfer makes it possible to better guide the
learning by limiting the space of research of the characteristics into the most signifi-
cant characteristics. The transfer of the representation of the characteristics can be
considered as a step of transition from a low level of characteristics to an average
level. Raina et al. [Raina 2007] suggested applying a scattered coding method. It
was a non-supervised feature construction method for learning high-level charac-
teristics. The disadvantage of this latter was that it was based on high-level bias
vectors. This bias were learned for the source domain and, which might not be
adapted for the target domain.

Fink et al. [Fink 2005] presented a learning method for object classifier using
a single sample. To do this, they gave a high weight to the relevant dimensions of
the characteristics for classification using the available examples of related classes.
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Quattoni [Quattoni 2008] proposed to learn a sparse prototype image representation
from unlabeled data and related visual category data. This approach could exploit
any function of the arbitrary kernel. The method was based on the joint approxi-
mation on the space of prototypes to find a subset of discriminating prototypes.

Saenko [Saenko 2010] introduced a method that adapted specific visual domains
to new image conditions by applying transformations that would minimize the
domain-induced changes in the distribution of features. Yao [Yao 2011] proposed to
represent the image by the assigned responses of a set of classifiers that were trained
in a supervised context. The content of each image was described using a set of ba-
sic actions. Figure 2.24 presents the Yao approach [Yao 2011] for the description of
human actions.

Figure 2.24: Description of human actions: An action is represented as a weighted
sum of a subset of attributes and basic action parts [Yao 2011]

In [Xue 2008], Xue et al. have put forward an algorithm called Topic Proba-
bilistic Latent Semantic Analysis PLSA (TPLSA) to manage the problem of cross-
domain text classification by allowing the transfer of knowledge acquired from docu-
ments from one domain to another one. The algorithm extended the PLSA algorithm
to integrate labelled and unlabelled data from different but linked domains into a
joint probability model.

Pan et al. [Pan 2008] exploited the method of incorporating Maximum Mean
Discrepancy Embedding (MMDE), designated to reduce the dimension of the char-
acteristics, to learn a space of small dimension to reduce the difference between both
source and target distributions. However, this method suffers from a high degree of
complexity. An improvement of the MMDE was suggested by Pan et al. [Pan 2011],
which was an efficient extraction of features known as the transfer component analy-
sis. A similar idea was proposed by Wang et al. [Wang 2008], which was summarized
as a Discriminative Transfer Analysis (TDA). TDA was an algorithm that ran iter-
atively to find the best subspace for the target data. It applied clustering methods
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in order to generate pseudo-class labels for unlabeled target data. Then, it applied
dimension reduction methods to target data and annotated source data.

Douze et al. [Douze 2011] showed that image classification based on a high-
level (attribute-based) representation enhances the image search task. Thus, they
demonstrated that the combination of attributes would increased performance. Song
et al., [Song 2011] proposed to exploit, in an iterative way, the outputs of a task
as high-level characteristics of another task in order to improve object classification
and detection under new conditions.

2.7 Transfer learning applications for object detection

The literature has presented a lot of transfer learning applications for image classifi-
cation and recognition in a target domain [Tommasi 2013],[Pan 2011]. Nevertheless,
in this section we are interested in the works that deal with transfer learning for
object detection. Particularly, object detection must take into consideration a sig-
nificant number of challenges. We cite for example the alignment of learning images
for detector training, considering a set of a priori samples to establish the corre-
spondence between the source and target models. Thus, the different sizes of the
interest object and various points of view between the source and target domains
are taking into account.

Zhang et al. [Zhang 2008] put forward a method for adapting the classifier
by combining the objective function of the source domain with that of the target
domain. They approximated the learning term by a second-order Taylor expansion
to reduce the amount of information needed for adaptation to pedestrian detection.

Aytar and Zisserman [Aytar 2011] suggested applying transfer between categories
of similar objects. Figure 2.25 represents the principle of the method and illustrates
the detection results with the obtained bike detector. They presented a modification
of the objective learning function which retained the convexity and optimization of
SVMmethods and brought the benefit of learning a target model with a few samples.
They presented two applications of the proposed method: an application for transfer
between categories (e.g. transfer of a motorcycle detector to a bicycle detector and
a transfer of a horse detector to a donkey one), and a second transfer application
from a higher class to a subordinate class (transfer of a generic animal detector to
a specific category such as horse, sheep and/or a cow).

Kuzborskij et al. [Kuzborskij 2013] extended the Projective Model Transfer
SVM (PMT-SVM) method developed in [Aytar 2011] to apply the transfer of a
multi-class problem to another multi-class one in an image classification frame-
work. Donahue et al. [Donahue 2013] developed an extension of the PMT-SVM
[Aytar 2011] for multi-class classification with data from several points of view and
for object detection in videos. The elaborate extension integrated a Laplacian reg-
ularization which combined samples traditionally labeled with constraints coded on
the unlabeled samples of the target domain.

Lim et al. [Lim 2011] and Gao et al. [Gao 2012] presented transfer learning
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Figure 2.25: Transfer method of Aytar and Zisserman [Aytar 2011]. Learning a bike
detector based on few bike samples and a motorcycle source detector.

applications between different object categories to improve the learning of a target
category. Wang and Wang [Wang 2011] introduced a transfer learning method to
specialize a generic pedestrian detector toward a target scene (more details are
available in section 2 - chapter 3). Tang et al. [Tang 2012] used binary variables to
weight examples that would be added or excluded from the learning set to adapt a
bicycle, dog or car detector to static images in a detector of the same object in a
video. Wang et al. [Wang 2012b] proposed a non-parametric method that utilized a
vocabulary tree as a binary vector to encode a visual example for fitting a pedestrian
detector to a video.

Table 2.2 summarizes different transductive transfer learning approaches applied
on object detection.

2.8 Conclusion

In this chapter, we have started with a general view on two families of object de-
tection methods. After that, we have presented the deep neural network. Then a
discussion about transfer learning has been provided. In the fifth section, we have
drawn up a state-of-the-art on the categorization of transfer learning methods In
the last section, we have given an overview on some transfer learning applications
for the object detection category.

In the next chapter, we will present the proposed formalization of transfer learn-
ing based on the theory of a sequential Monte Carlo filter so as to automatically
generate a specialized deep detector for multi-object detection.
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Table 2.2: Summarization of different transfer learning approaches applied on object
detection applications.

Method Description Drawbacks
Ye et al. [Ye 2017] - Pedestrian detection - Limited for pedestrian de-

tection
- Scene-specific pedestrian
detection without any an-
notated training sample

- Model performances sen-
sitive to applications

- Can work in any
day/night conditions

- Not label sufficient posi-
tive sample for training

- Robust to occlusions, low
resolution, and appearance
variation

- Need many iterations for
the convergence of the spe-
cialization process

- Self-learning approach
Maamatou [Maâmatou 2016b] - Pedestrian detection - Based on hard-

thresholding rules
- Transductive transfer
learning approach based on
Monte Carlo filter

- Limited for single object
detection

- Transfer source and target
samples

- Selection samples based
on background subtraction
algorithm

- Automatic specialization
without human interven-
tion
- Achieve good perfor-
mance

Mao et al. [Mao 2015] - Pedestrian detection - Risk of drifting during it-
erations

- Transfer only target sam-
ples

- Sensitive to applications

- Selection of positive sam-
ples based on tracklet algo-
rithm

- Classical features to asso-
ciate tracklets

- Iterative training process - Based on hard-
thresholding rules

- Effectiveness to adapt
classifier to specific scenes
without human annota-
tions

Xudong et al. [Xie 2015] - Vehicle detection - Manual annotation of tar-
get samples

- Transfer source and target
samples

- Model performances sen-
sitive to object structure
and point view of objects

- Transfer learning for CNN
classifier

- Not totally automatic and
needs some manual annota-
tions
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In this chapter, we present the proposed formalism of transfer learning based
on the theory of a Sequential Monte Carlo (SMC) filter to automatically specialize
a scene-specific Faster R-CNN detector. The suggested framework uses different
strategies based on the SMC filter steps to approximate iteratively the target distri-
bution as a set of samples in order to specialize the Faster R-CNN detector towards
a target scene. Moreover, we put forward a likelihood function that combines spatio-
temporal information extracted from the target video sequence and the confidence-
score given by the output layer of the Faster R-CNN, to favor the selection of target
samples associated with the right labels.

This work was published at Computer Vision and Image Understanding "CVIU"
journal. We present the best specialization framework on several public datasets.
Compared with the state-of-the-art specialization frameworks, the proposed frame-
work presents encouraging results for both single and multi-object detections.
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Multi-Object Detector

This chapter is organized as follows. Section 3.1 presents an introduction to our
work. Section 3.2 presents our contributions. After that, a detailed description of
our approach is provided in section 3.3. The experiments and results are described
in section 3.4. Section 3.5 provides a discussion about the advantages of our work
over the state-of-the-art specialization frameworks. Finally, the chapter conclusion
is given in section 3.6.

3.1 Introduction

Most state-of-the-art researches have been recently made to iteratively develop
a scene-specific detector, whose training process is aided by generic detectors
for automatically collecting training samples from target scenes without manu-
ally labelling them [Benfold 2011][Wang 2014b][Htike 2014][Maâmatou 2016c]. An
ideal framework can apply a generic detector on some frames in a target scene,
score each detection using some heuristics and then include the most con-
fident positive and negative detections to the original dataset for retraining
[Wang 2012a][Rosenberg 2005][Levin 2003]. Rosenberg et al. [Rosenberg 2005]
opted for a self-training framework based on background subtraction to label scene
samples. Only the samples with high confidence scores were added in a new training
dataset from one iteration to another. Contrarily, there was a risk of introducing a
wrong labelled examples in the training dataset, which may degrade the framework
performance over iterations. In addition, Wang et al. [Wang 2014b] utilized dif-
ferent contextual cues such as visual appearances of objects, motion of pedestrian,
model of road, size and location to select positive and negative samples from the
target scene and to add the last ones in the training dataset for retraining. This
approach proved to be sensitive to the risk of drifting and it can be applied only
onto a particular classifier.

Moreover, some solutions collected the training source dataset with new sam-
ples extracted from the target scene, which increased the time of training and the
size of the dataset during iterations [Aytar 2011][Quanz 2012]. Others were limited
only to the use of samples extracted from the target domain [All 2011][Mao 2015],
which caused the loss of useful samples stored in the source dataset. Htike et al.
[Htike 2014] presented an approach that used only target samples labeled by a back-
ground subtraction algorithm and verified by the tracklet method to train a specific
detector. In the same vein, Mao and Yin [Mao 2015] used tracklet chains to auto-
matically label target information. They associated the proposal samples predicted
by an appearance-object detector into tracklets and they propagated labels to un-
certain tracklets based on a comparison between their features and those of labeled
tracklets. This framework used many manual parameters and several thresholding
rules for every target scene, which can affect the specialization performance.

Other solutions were proposed in [Li 2015b][Maâmatou 2016c][Mhalla 2016b],
which collected new samples from the target scene and the source dataset. Maam-
atou et al. [Maâmatou 2016c] suggested a transfer learning method based on the
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SMC filter to iteratively build a new specialized dataset that was used to train a
new specialized pedestrian detector. This produced dataset consisted of both source
and target samples that were utilized to estimate the unknown target distribution.
Our proposed framework is inspired from this latter.

Addressing the transfer learning with deep learning has gained a growing atten-
tion. Some deep models have been investigated in the unsupervised and transfer
learning challenge [Zeng 2014][Li 2015b]. Transfer learning using deep models has
been turned out to be effective in some challenges [Mesnil 2012][Goodfellow 2012]
like traffic-object detection [Zeng 2014][Li 2015b], emotion recognition [Ng 2015]
and sentiment analysis [Glorot 2011]. In order to take advantage of these types
of detectors, several transfer learning methods have been proposed to specialize a
CNN detector by fine-tuning an ImageNet-pre-trained model with a small target
dataset. Li et al. [Li 2015b] suggested adapting a generic CNN vehicle detector to
a target scene by appropriating the shared filters between source and target data
and updating the non-shared filters. In contrary to [Li 2015b][Oquab 2014], which
needed several manual labeling of data in the target scene, Zeng et al. [Zeng 2014]
proposed to use Wang’s approach [Wang 2014b] to select target samples and utilized
these latter as an input to their CNN deep model to re-weight samples from target
and source domains without manually labeling data from the target scene.

Accordingly, we propose a new formalization of transfer learning based on SMC
filter [Smith 2013] so as to automatically generate a specialized Faster R-CNN de-
tector [Ren 2015c] for multi-traffic object detection, enhancing performances better
than the generic one.

A global synoptic of our framework is illustrated in Figure 3.1.(a). We have
a generic Faster R-CNN detector which is fine-tuned by a source labelled dataset
with labeled information given in the form of traffic-object annotations. Given a
target video sequence where labeled information is not available, an iterative process
estimates both the set of target objects and the parameters of the specialized Faster
R-CNN detector. This latter is automatically and iteratively trained and is called
until a stopping criterion is reached. Then a final specialized Faster R-CNN detector
is produced.

3.2 Contributions

The main contribution of this chapter consists in putting forward a new transfer
learning framework based on the formalism and the theory of the SMC filter for
deep detector specialization. The aim of our formalization is to automatically label
the target data, to favor the selection of the target samples associated with the right
label and to fine-tune a scene specialized Faster R-CNN detector.

Although the use of the SMC filter for transfer learning is obviously not new,
our work extends the SMC framework for deep detector and for multi-traffic object
detection. Moreover, we propose new strategies for transfer learning inspired from
the three steps of the SMC filter :
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(a)

(b)

(c)

(d)

Figure 3.1: (a) General synoptic of the proposed framework. The input of the frame-
work is a generic Faster R-CNN detector fine-tuned on a generic dataset, then given
a target video sequence without any label information, an iterative process automat-
ically estimates both the set of target objects and the parameters to specialize the
Faster R-CNN deep detector; (b) and (c) improvement of specialized scene-specific
detector over generic detector for single-class and (d) multi-class object detection
(left images are generic Faster R-CNN detections and right images are specialized
Faster R-CNN ones).
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(1) Strategy of bounding box proposals: In order to use target samples
for training a scene-specialized detector, the first strategy of the algorithm is to
propose bounding boxes of traffic-object candidates by adapting the architecture of
the Faster R-CNN deep network for only traffic-object detection. This strategy gives
a set of suggestions composed by traffic proposals predicted by the output layers of
the Faster R-CNN.

(2) Strategy of verification: We suggest a verification strategy to correctly
select unlabeled samples from a target scene. This strategy utilizes a combination
between the confidence-scores returned by the output layer of the Faster R-CNN
and the visual context cues extracted from the target video sequence, in order to
favor the selection of positive samples from a target scene and to reduce the risk of
introducing wrong labelled examples in the training dataset.

(3) Strategy of sampling: We suggest a sampling strategy that collects use-
ful samples from target datasets according to their weights importance, reflecting
the likelihood that they belong to the target distribution. The main role of this
strategy is to build the specialized dataset with samples produced by the strategy
of verification. To do this, we use the Importance Sampling (IR) algorithm inspired
from the theory of the SMC filter [Doucet 2001]. This algorithm transforms the
weight on a number of repetitions, through repeating the samples associated to a
high weight by numerous ones and repeating the samples associated to a low weight
by few ones. This strategy makes the suggested framework applicable to specialize
any detector and avoids the distortion of the specialized dataset, while selecting
training samples according to the importance of their weights without modifying
the training function.

Another contribution is to make a comparative evaluation of the proposed frame-
work to the state-of-the-art specialization frameworks on several public datasets and
with new more challenging annotations.

In the following section, we provides a detailed description of our specialization
framework.

3.3 Proposed specialization framework

In this section, we present the proposed framework for specializing the Faster R-
CNN model to a target scene based on SMC filter steps. Figure 5.4 shows the block
diagram representation corresponding to one iteration of our suggested SMC Faster
R-CNN. First, a generic Faster R-CNN network (R0,F0) is fine-tuned on a generic
dataset (eg: PASCAL VOC). Given the videos taken by a stationary camera in
target scenes, at a first iteration (k = 1), the generic detector (R0,F0) is applied in
the prediction step by using the strategy of bounding box proposals to suggest a set
of traffic-object proposals in each individual image. Then an update step based on
the likelihood function is used to favor the selection of the positive samples from a
target scene by associating weight to each proposal sample returned by the prediction
step. By utilizing the sampling strategy, the sampling step determines which samples
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should be included in the specialized dataset according to their weights. A new
specialized detector (Rk,Fk) is trained by using the training strategy in the fine-
tuning step. This specialized one will become the input of the prediction step in the
next iteration. The scene-specific detector is automatically and iteratively trained
and is called until reaching a stopping criterion, for example a fixed number of
iterations. When the number of iterations is reached, a final specialized detector
(RK ,FK) will be generated.

In what follows, we first describe the specialization of the Faster R-CNN model
based on the theory of the SMC filter.

3.3.1 Faster R-CNN specialization based on SMC filter

Given a source dataset, from which a generic Faster R-CNN detector can be trained
from this source dataset, and a video sequence of a target scene, then a specialized
Faster R-CNN detector will be generated. This latter is the output of the distribu-
tion approximation provided by the formalism of the SMC filter and the fine-tuning
step. To do this, let us define:

• It
.
= {I(i)}Iii=1 is a set of unlabelled images extracted uniformly from a video

sequence of a target scene.

• Dk
.
= {x(n)

k }
Nk
n=1 is a specialized dataset at iteration k, where x(n)

k is a target ob-
ject sample to be detected in each target image of the set {I(i)}Ii=1. This sam-
ple is defined by: x

(n)
k

.
= {p(n)

k , y
(n)
k , s

(n)
k } where p

(n)
k

.
= {u(n)k , v

(n)
k , w

(n)
k , h

(n)
k }

is the position of an object, with (u
(n)
k , v

(n)
k ) being the upper left coordinates

of the object bounding box and (w
(n)
k , h

(n)
k ) being the width and the height of

the object bounding box, y(n)k is the object class label and s(n)k is an associated
score.

• {x(n)}Nn=1 = Θ({I(i)}Iii=1;R,F) is a function that applies the Faster R-CNN
detector using the RPN network modelR for the localization task and the Fast
R-CNN network model F for detection. For both localization and detection,
a set of candidate objects with associated scores is provided.

• {R̃, F̃} = f({I(i)}Iii=1, {x(n)}Nn=1;R,F) is a fine-tuning function that returns
the new parameters R̃ and F̃ of the Faster R-CNN network. The fine-tuning is
performed from the Faster R-CNN network with initial R parameters for the
RPN and initial F parameters for the Fast R-CNN, utilizing a training dataset
given by the set of images {I(i)}Iii=1 and the associated objects {x(n)}Nn=1

We define xk to be a hidden random state vector associated to a joint distribution
between labels and features of dataset samples at an iteration k and zk a random
measure vector associated to information extracted from the target scene (i.e. visual
spatio-temporal information). Based on our assumption, the target distribution can
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              Prediction step 

 Bounding box proposals 

strategy 

Update step 

 Verification strategy 

   Sampling step 

 Sampling strategy 

Detections list  

Stopping 

criterion   Yes 

  No 

Specialized network 

detector (𝑅𝐾 , 𝐹𝐾) 
Output 

  k = 0 

  k = k+1 

 

Generic network detector 

(𝑅0, 𝐹0) 

   Fine-tuning step 

 Training strategy 

 

 

Target dataset 

 

Specialized dataset 𝐷𝑘 

 

 

Weighted target dataset 

 

 

SMC filter step  

Figure 3.2: Block diagram of proposed approach: At the first iteration, our generic
detector (R0,F0) which is fine-tuned by the source dataset is utilized in the first
prediction step by using bounding box proposals strategy to produce a list of traffic-
object bounding boxes from the target scene, and then an update step based on the
likelihood function is used to favor the selection of positive samples from a target
scene. The sampling step determines which samples will be included in the special-
ized dataset by using the sampling strategy. A new specialized detector (Rk,Fk) is
fine-tuned by utilized training strategy in the fine-tuning step, which will become
the input of the prediction step in the next iteration k = k + 1. A final specialized
detector (RK ,FK) is called when a predefined number of iterations is reached. The
red rectangles in the output image of update step mean that samples have a high
weights attributed by our suggested likelihood function and a blue ones mean that
samples have a low weights.
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be approximated by iteratively applying equation (3.1):

p(xk|z0:k) = C.p(zk|xk)
∫
xk−1

p(xk|xk−1)p(xk−1|z0:k−1)dxk−1 (3.1)

where C is a normalisation factor: C = 1/p(Zk|Z0:k).
The SMC filter estimates the probability distribution p(xk|zk) by a set of N

particles (samples in this case), according to equation (3.2):

p(xk|zk) ≈
N∑
n=1

π
(n)
k δ

x
(n)
k

(xk) (3.2)

• δ represents the Dirac function (3.3):

δ
x
(n)
k

(xk) =

{
1 if xk = x

(n)
k

0 otherwise
(3.3)

• π(n)k ∈ [0, 1] is the weight associated to sample n at iteration k and N is the
number of target samples (3.4):

πnk =
πnk−1 p(zk|xk = xnk)∑N
n=1 π

n
k−1 p(zk|xk = xnk)

(3.4)

It is important to note that the sum of the weights of all the samples is equal
to (3.5):

N∑
n=1

π
(n)
k = 1 (3.5)

All notations mentioned above are introduced in [Smith 2013].
Therefore, the formalism of the SMC filter is used to approximate the unknown

joint distribution of traffic objects by a set of samples that are initially unknown. We
suppose that the iterative process selects relevant samples for the specialized dataset
from one iteration to another, leading to converge to the right target distribution,
and making the resulting Faster R-CNN detector more and more efficient.

The resolution of equation (3.1) is divided into three steps: prediction, update
and sampling. These steps are similar to the popular particle filter framework,
widely used to solve the tracking problems in computer vision [Mei 2011][Smal 2007].
The details of the three main steps are described in the following subsections.

3.3.1.1 Prediction step

The prediction step consists in applying the Chapman-Kolmogorov equation (3.6):

p(xk|z0:k−1) =

∫
xk−1

p(xk|xk−1)p(xk−1|z0:k−1)dxk−1 (3.6)
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Equation (3.6) uses the system dynamics term p(xk|xk−1) between two iterations
in order to suggest a specialized dataset Dk

.
= {x(n)

k }
Nk
n=1 producing the approxima-

tion (3.7):

p(xk|z0:k−1) ≈ {x̃
(n)
k }

Ñk
n=1 (3.7)

We suggest to extract the proposal set {x̃(n)
k }

Ñk
n=1 from the set of proposals produced

by the Faster R-CNN fine-tuned by {x(n)
k−1}

Nk−1

n=1 (the target set at iteration k − 1),
as follows (3.8):

{x̃(n)
k }

Ñk
n=1 = Θ({I(i)}Iii=1;Rk−1,Fk−1) (3.8)

with a first iteration (k = 1) that uses an initial generic network (R0,F0).

3.3.1.2 Update step

This step defines the likelihood term (3.9) by utilizing a likelihood function. This
latter assigns a weight π̃ to each proposal sample {x̃(n)

k }
Ñk
n=1 returned by the Faster

R-CNN at the prediction step.

p(zk|xk = x̃nk) ∝ π̃nk (3.9)

The likelihood function employs visual contextual cues extracted from the target
video sequence and the confidence scores given by the output layer of the Faster R-
CNN, to attribute a weight for each sample. More details about the likelihood
function are given in section 3.3.2. The update step gives as an output a set of
weighted target samples, which will be referred to as "the weighted target dataset"
hereafter (3.10):

{(x̃(n)
k , π̃

(n)
k )}Ñk

n=1 (3.10)

where {x̃(n)
k , π̃

(n)
k } represents a target sample with its associated weight and Ñk is

the number of weighted samples.

3.3.1.3 Sampling step

The aim of this last recursive-filter step is to build a new specialized dataset by
deciding, according to the strategy of sampling (defined in the contribution), which
samples will be included in the produced dataset Dk = {x(n)

k }
Nk
n=1 at the iteration k

from the weighted dataset {x̃(n)
k , π̃

(n)
k }

Ñk
n=1. A sampling strategy is applied in order

to generate a new unweighted dataset which has the same number of samples as the
weighted one. To do this, we apply the IR algorithm, according to equation (3.11):

Dk = {x(n)
k }

Nk
n=1 = IR

(
{x̃(n)

k , π̃
(n)
k }

Ñk
n=1

)
(3.11)

This step generates a new set Dk by drawing samples according to the weight π̃(n)k

Furthermore, we can apply the sampling strategy to select confidence images
instead of the confidence samples from target dataset. The ideas consists to apply
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the IR algorithm to select the confidence images relevant to the weights of their
samples. To this, we calculate a weight of each image by 3.12:

γ̃
(i)
k =

∑N
n=1 π̃

(n)
k

N
(3.12)

where γ̃(i)k presents the weight of an image, π̃(n)k is the weight of sample and N

presents the number of samples in that image.
According to equation 3.13, we use the IR algorithm to transform the weight on

a number of repetitions, by the repeating the images associated to a high weight
using numerous ones and by repeating the images associated to a low weight by few
ones. This solution permits to generate a new set Dk of images by drawing images
according to their weights γ̃(i)k .

Dk = IR
(
{Ĩ(i)k , γ̃

(i)
k }

Ĩk
i=1

)
(3.13)

3.3.2 Likelihood function

In order to choose the correct proposal, we put forward a likelihood function based
on the verification strategy, which assigns a weight π(n)k for each sample x̃

(n)
k re-

turned by the prediction step. Our specifically designed likelihood function not only
incorporates the confidence scores given by the output layer of the Faster R-CNN
but also adds a spatial-temporal cues, to prioritize the selection of the correct sam-
ples and to reduce the risk of including wrong proposal samples in the specialized
dataset.

Summarising the tests carried out on different databases, it is noticed that the
generic Faster R-CNN is robust to generate true positive samples with a high score,
and its selection of these ones will start to fail when the score of samples is lower
than the score threshold αk. For this reason, we keep the samples which have a
confidence score greater than or equal to αk and we propose an observation function
fL to assign a weight to each proposal sample that has a score lower than αk,
according to (3.14):

π
(n)
k =

{
s
(n)
k if s

(n)
k ≥ αk

fL(x̃
(n)
k ) if s

(n)
k < αk

(3.14)

Accordingly, we choose a dynamic threshold through iterations to avoid the
problem of integrating negative samples into the specialized dataset. We are not
limited to a fixed predefined threshold because the choice will be dynamic and will
be related to the following equation (3.15):

αk =


s̃k

s̃k−1
αk−1 if k 6= 0

α0 if k = 0

(3.15)

where α0 is the initial value of the score threshold (fixed to 0.5 for our experiments)
and s̃k is the mean value of s(n)k at iteration k.
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Figure 3.3: The red rectangle presents the area in pixels of the considered RoI, the
green rectangle is the foreground area, and the rectangle filled in blue is the area of
intersection.

Lower than αk, the deep detector will start to fail and it will become unable to
correctly select positive samples from a specific scene. To solve this problem, we
propose an observation function fL in order to favor the selection of positive samples
using the information extracted from the target scene. This function is based on
the visual spatio-temporal cue "Background extraction overlap score", to attribute
a weight for each sample.

In a traffic scene, it is rare for a traffic object to stay fixed for a long time, and
a good detection occurs on a foreground blob; whereas, false positive background
detections give some RoIs that appear over time at the same location and with the
same size.

To assign a weight for each sample, we calculate an overlap_score λo (equation
3.16) that compares the RoI associated to one sample with the output of a binary
foreground extraction algorithm.

λo
.
=

2(RoI_AR × FG_AR)

RoI_AR+ FG_AR
(3.16)

where RoI_AR is the area in pixels of the considered RoI and FG_AR is the
foreground area at the RoI position (see Figure 3.3).

The background subtraction algorithm used in the proposed observation function
is adopted from [Zivkovic 2006] and was called the ”BackgroundSubtractorMOG2”

algorithm. This latter is a Gaussian mixture-based background/Foreground segmen-
tation algorithm.

One important property of this algorithm is that it chooses the appropriate
number of Gaussian distribution for each pixel. It provides better adaptability to
illumination changes. In our work, to ameliorate the result generated by the back-
ground subtraction algorithm mentioned above, we put forward some improvements
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such that:

• We apply several morphological filtering operations like erosion and dilation
to the result of this algorithm so as to remove unwanted noise.

• We remove the blobs which have a surface area less than 100 pixels.

The observation function (Algorithm 1) will assign a high weight to a positive
proposition if it has an overlap_score λo that exceeds a fixed threshold αp, which is
determined empirically.

Algorithm 1 Observation function

Set {x̃(n)
k }

Ñk
n=1 with associated RoI position {p(i)

k }
Ñk
i=1 into the target video-

sequence
Target video sequence It
αp: overlap threshold
Set {π̃(i)k }

Ñk
i=1 of weights associated to samples

————————————————————————————–
for i = 1 to Ñk do

π̃
(i)
k ← 0

/* Visual contextual cue computation */

λo =
2(RoI_AR × FG_AR)

RoI_AR+ FG_AR
/* Weight assignment */
if (λo > αp) then
π̃
(i)
k ← λo

Considering the likelihood function, the favoring of sample associated to the
right label becomes efficient and easier.

3.3.3 Fine-tuning step

In the proposed framework, the aim of the fine-tuning step is to specialize the RPN
and the Fast R-CNN deep networks to a specific scene. Accordingly, we use the
target detection boxes included in the specialized dataset Dk and the RPN fine-
tuning process mentioned in [Ren 2015c].

To do this, we use a sliding window approach to generate k bounding boxes for
each position on the feature map produced by the last convolutional layer, where
each bounding box is centered on the sliding window and is associated with an
aspect ratio and a scale (see Figure 3.4). The intersection-over-Union (IoU) overlap
between each box of the specialized dataset Dk and the bounding boxes is then
computed. A bounding box is designated as a positive training example if it has
an IoU overlap greater than a predefined threshold with any Dk box, or if it is the
bounding box that has the highest IoU with a Dk box. A proposal is designated as
a negative example to a non-positive bounding box if its maximum IoU ratio with
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Figure 3.4: Description of training strategy for the RPN fully-convolutional network

all boxes of the specialized dataset Dk is less than another predefined threshold.
The bounding boxes that are neither positive nor negative do not contribute to the
training.

Note that, the RPN fine-tuning process mentioned above does not consider that
there might exist multiple copies (maximum twice) of the target detection box in
the specialized dataset Dk because the main objective of using the IR algorithm
proposed in the sampling strategy is not to increase the size of the database with
samples which have high weights but to decrease the risk of distorting the specialized
dataset Dk with wrong labelled examples because it is possible that the weighted
target dataset contains wrong samples classified as traffic objects because their λo
>= αp.

After training the RPN, these proposals are used to train the Fast R-CNN.
Figure 3.4 illustrates the training strategy of the RPN fully-convolutional network.

Therefore, a new specialized RPN network and the Fast R-CNN one are gen-
erated being fine-tuning with the specialized dataset. These networks will become
the input of the prediction step in the next iteration and will generate new object
proposals (bounding boxes) in the target scene.

{Rk,Fk} = f(It,Dk;Rk−1,Fk−1) (3.17)

The suggested SMC Faster R-CNN framework is summarized in Algorithm 2.
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Algorithm 2 SMC Faster R-CNN
Generic network (R0,F0)

Number of iterations: K
Number of target samples Ñk

Unweighted target dataset: W̃k

Target video sequence It
Specialized network (RK ,FK)

Specialized dataset DK
————————————————————————————–
for k=1,...,K do

/* Prediction step */

{x̃(n)
k }

Ñk
n=1 = Θ({I(i)}Iii=1;Rk−1,Fk−1)

/* Update step */

W̃k = {x̃(n)
k , π̃

(n)
k }

Ñk
n=1

/* Sampling step */
for n = 1 to Ñk do
Draw a sample: {x̃(n)

k }
Ñk
n=1 , according to the weight π̃(n)k

/* Fine-tuning step */
{Rk,Fk} = f(It,Dk;Rk−1,Fk−1)

{RK ,FK} = (Rk,Fk)

3.4 Experimental results

This section presents the experiments that have been achieved in order to compare
the SMC Faster R-CNN with the relevant frameworks on several public and private
datasets for single and multi-traffic object detection.

3.4.1 Implementation details

We describe the implementation details of the SMC Faster R-CNN algorithm.
We use the pre-trained VGG16 model [Simonyan 2014] to initialize the Faster
R-CNN network, which is used in most recent state-of-the-art approaches
[Girshick 2015a][Girshick 2014b].

Both RPN and Fast R-CNN are fine-tuned end-to-end by back-propagation and
stochastic gradient descent [LeCun 1989] with a weight decay of 0.0005 and a mo-
mentum of 0.9. We use the alternating training algorithm [Ren 2015c] for Faster
R-CNN training from one iteration to another. The Faster R-CNN is fine-tuned on
a NVIDIA GeForce GTX TITAN X GPU with a 12GB memory.

Following multiple experiments, we chose 9 as the number of bounding boxes
(3 aspect ratios [2:1, 1:1, 1:2] and 3 scales [1282, 2562, 5122]) generated on each
position of the sliding windows. We also chose 0.7 as the threshold of the IoU to
select the positive samples and 0.3 for the negatives to build the training dataset.

The parameter K (number of iterations of the SMC process) is fixed to K = 2.
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Figure 3.7 shows that the specialization converges after two iterations for both car
and pedestrian detection applied on the MIT Traffic dataset (introduced in the next
section).

3.4.2 Datasets

The PASCAL VOC 2007 dataset [Everingham 2010] was utilized to learn the generic
Faster R-CNN. This dataset consists of about 5,011 trainval images and 4,952 test
ones over 20 object categories. In our experiments, we use only 713 annotated cars,
2,008 pedestrian, 186 buses and 245 for motorbikes, to fine-tune the generic Faster
R-CNN.

The evaluation is achieved on three target datasets (two public ones and a private
one):

• CUHK Square dataset [Wang 2012a]: This is a video sequence of road traf-
fic which lasts 60 minutes. 352 images are utilized for specialization, uniformly
extracted from the first half of the video. 100 images are used for the test,
extracted from the latest 30 minutes. Annotations were provided by Wang
[Wang 2012a] for pedestrian detection (called CUHK_WP after). However,
we notice that some annotation errors are made in the public ground truth
and we suggest a new annotation (called CUHK_MP after) (see Figure 3.5.a).

• MIT Traffic dataset [Wang 2009]: This is a 90-minute video. We use 420
images from the first 45 minutes for specialization. 100 images are uniformly
sampled from the last 45 minutes for the test. Annotations are available
for pedestrians [Wang 2009] (called MIT_WP) and cars [Li 2015b] (called
MIT_LV). Since some annotation errors are present, we propose new annota-
tions (called MIT_MV) (see Figure 3.5.b).

• Logiroad Traffic dataset: This is a private video sequence of road traffic
which lasts 20 minutes. We utilize 600 images for specialization, extracted
uniformly from the first 15 minutes of the video. 100 images are used for
the test, extracted from the latest 5 minutes. Annotations are available for
vehicles (called Logiroad_MV).

3.4.3 Descriptions of experiments

Evaluation is performed in terms of recall False Positives Per Image (FPPI) curves.
The PASCAL 50 percent overlap criterion [Everingham 2010] was utilized to give
a score for the detection bounding boxes. The SMC Faster R-CNN framework is
compared with several state-of-the-art frameworks:

• Generic Faster R-CNN: It is a detector fine-tuned on the generic dataset. This
is the baseline for our comparison.
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(a)

(b)

Figure 3.5: Some annotations provided by Wang [Wang 2014b] ground truth on
CUHK dataset ((a) left image), Li [Li 2015b] ground truth on MIT Traffic dataset
((b) left image) and our annotations ((a), (b) right images). There are several
missing objects in the baseline annotations: This is why we propose an updated
version.
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• Maamatou (2016) [Maâmatou 2016c]: An SMC framework was applied to
specialize a generic HOG-SVM classifier to a particular video sequence for
traffic object detection.

• Xudong Li (2015) [Li 2015b]: A deep learning domain adaptation framework
was proposed for vehicle detection with manually annotated data from the
target scene. Unlike other methods, the latter was not totally automatic and
requires some manual annotations.

• Mao (2015) [Mao 2015]: A framework was suggested to automatically train
scene-specific pedestrian detectors based on tracklets.

• Htike (2014) [Htike 2014]: A non-iterative domain adaptation framework was
used to adapt a pedestrian detector to video scenes.

• Zeng (2014) [Zeng 2014]: A deep learning domain adaptation framework was
proposed to automatically select training samples from target scenes without
manual labelling for pedestrian detection.

• Wang (2014) [Wang 2014b]: A specific-scene detector was trained on only
relevant samples collected from both source and target datasets.

• Nair (2004) [Nair 2004]: An iterative self-training framework for detector
adaptation was opted for using a background subtraction algorithm.

3.4.4 Results and analysis for single-traffic object

Given each dataset and its annotation, we present the ROC curves (Figure 3.6)
of the generic Faster R-CNN, the SMC Faster R-CNN and the available state-of-
the-art frameworks. The ROC curves present the comparison between the true
detection rate and the false positive detection rate per image. Furthermore, we give
two comparative synthetic tables: one for pedestrian detection (cf. Table 3.1) and
the other for vehicle detection (cf. Table 3.2). In addition, on the last line of both
tables, the improvement between the generic Faster R-CNN and the SMC Faster
R-CNN is given.

• Comparison with generic detector: Figure 3.6 shows that the specialized
Faster R-CNN detector significantly outperforms the generic one on all public
and private datasets with several annotations. The median improvement is
51%.

• Comparison with state-of-the-art: According to the ROC curves at the
top of Figure 3.6, for the CUHK pedestrian detection, the SMC Faster R-CNN
outperforms all other state-of-the-art frameworks. Besides, the detection rate
achieved with our proposed annotations on CUHK_MP is nearly 90% for 0.5
FPPI. However, despite of the wrong annotations given by Wang (left curve
in the top of Figure 3.6), the SMC Faster R-CNN also exceeds the six other
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specialized detectors of Nair (2004), Wang (2014), Zeng (2014), Htike (2014),
Mao (2015) and Maamatou (2016) respectively by 24%, 45%, 53%, 49%, 58%
and 62%.

For the MIT pedestrian detection MIT_WP in Table 3.1), the specialized deep
detector proposed by Zeng (2014) exceeds the SMC Faster R-CNN detector
for an 0.5 FPPI, which is less than 0.9.

Despite the wrong annotations given by Li et al. [Li 2015b], Figure 3.6 (right
curve in the middle) shows that for the MIT car detection (MIT_LV), the
proposed SMC Faster R-CNN clearly outperforms the specialized CNN detec-
tor proposed by Li (2015) which trained with manual data labeling from the
target scene. According to Table 3.2), for the MIT and Logiroad car detection
with the proposed annotations, the SMC Faster R-CNN is ranked first and
exceeds the specialized detector suggested by Maamatou (2016).

One can notice that the generic Faster R-CNN, fine-tuned on the PASCAL
VOC 2007 dataset, has a poor detection rate resulting in a limitation of the
size of the specialized dataset.

Table 3.1: Comparison of detection rate for pedestrian with state of the art (at 0.5
FPPI)

XXXXXXXXXXXApproach
Dataset CUHK_WP CUHK_MP MIT_WP

Nair [Nair 2004] 0.24 – 0.35
Wang [Wang 2014b] 0.45 – 0.42
Zeng [Zeng 2014] 0.53 – 0.58
Htike [Htike 2014] 0.49 – –
MAO [Mao 2015] 0.58 – –
Maamatou [Maâmatou 2016c] 0.62 0.58 0.40
Generic Faster R-CNN [Ren 2015c] 0.60 0.69 0.07
SMC Faster R-CNN 0.65 0.88 0.47
Improvement / Generic (%) 8% 28% 571%

Table 3.2: Comparison of detection rate for car with state of the art (at 1 FPPI)
XXXXXXXXXXXApproach

Dataset MIT_LV MIT_MV Logiroad_MV

Li [Li 2015b] 0.77 – –
Maamatou [Maâmatou 2016c] – 0.29 0.47
Generic Faster R-CNN [Ren 2015c] 0.68 0.38 0.40
SMC Faster R-CNN 0.77 0.80 0.70
Improvement / Generic (%) 13% 110% 75%

• Effect of likelihood function: To show the effectiveness of our likelihood
function, the ROC curves in Figure 3.8 show the comparison between using



3.4. Experimental results 57

Figure 3.6: ROC curves for several public and private datasets and with different
annotations
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Figure 3.7: ROC curves for convergence of specialization process

Figure 3.8: Effect of the likelihood function in our specialization framework on MIT
Traffic dataset for both pedestrian and car detections.

the likelihood function based only on confidence score predicted by the Faster
R-CNN and our proposed one on two datasets.

The red curves in Figure 3.8 present our proposed likelihood function based
on the combination between the confidence score and the spatio-temporal cue,
and the blue ones indicate the use of the confidence score only, which is given
by the output layer of the Faster R-CNN. The results demonstrate that the
proposed likelihood function based on using the verification strategy improves
the detector performance and accelerates the convergence of the specialization
process. Furthermore, we cannot say that this choice is the best because it is
possible to ameliorate the suggested framework by proposing other strategies
for the SMC steps. For example, we can improve the likelihood function with
more complex visual cues like tracking, optical flow or contextual information
to enhance the weighting of positive samples.
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3.4.5 Results and analysis for multi-traffic object

We evaluate the proposed approach for multi-traffic objects on two datasets, the
MIT Traffic dataset and the Logiroad one using two evaluation criteria: namely the
ROC curves and the confusion matrix (classical metrics for object detection).

For the MIT Traffic dataset, we select 2 classes {’pedestrian’, ’car’} and 4 classes
for the Logiroad Traffic dataset {’pedestrian’, ’car’, ’bus’, ’motorbike’}.

The results are reported in Table 3.3. The SMC Faster R-CNN presents a
median improvement of 89% related to the generic detector. Moreover, Tables 3.4
and 3.5 provide the associated similarity matrix. We show that some confusion
may occur between motorbikes and cars or between buses and cars. Furthermore,
these results illustrate that our framework has a robust performance for multi-traffic
object detection. This indicates that it is useful to run our specialization algorithm
whenever we have a new sequence and we want to automatically generate a much
better deep detector than the generic one.

Table 3.3: Detection rate for multi-traffic object detection with SMC Faster R-CNN
(at 1 FPPI)
XXXXXXXXXXXApproach

Dataset Logiroad-Car Logiroad-Per Logiroad-Moto MIT-Car MIT-Per

Generic Faster RCNN 0.28 0.24 0,065 0.32 0.05
SMC Faster RCNN 0.60 0.36 0.18 0.73 0.30
Improvement/Generic 114% 50% 176% 128% 500%

Table 3.4: Illustration of similarity matrix between traffic object categories on Lo-
giroad Traffic dataset (diagonal row shows the accuracy to recognize traffic objects
of its own class)

hhhhhhhhhhhhhhhhActual class
Predicted class Pedestrian Car Motorbike Bus

Pedestrian 140/97% 12/1.5% 5/14% 0
Car 0 750/96% 1/3% 1/2.5
Motorbike 5/3% 12/1.5% 30/83% 1/2.5%
Bus 0 7/1% 0 38/95%
Total 145 781 36 40

Table 3.5: Illustration of similarity matrix between traffic object categories on MIT
Traffic dataset

hhhhhhhhhhhhhhhhActual class
Predicted class Pedestrian Car

Pedestrian 342/99.7% 7/1.6%
Car 1/0.3% 420/98.4%
Total 343 427



60
Chapter 3. SMC Faster R-CNN: Toward a Scene-Specialized

Multi-Object Detector

3.5 Discussion

This section provides a discussion about the advantages of our work over the state-
of-the-art scene specialization frameworks and the main difference between the SMC
framework proposed by Maamatou et al. [Maâmatou 2016c] and the suggested one.

Most of the specialization frameworks cited above are based on hard-thresholding
rules and are very sensitive to the risk of drifting during iterations, or they are
applied only to particular classifiers or few detectors like the HOG-SVM. In fact,
several frameworks are limited only for mono-traffic object detection, or they need
many iterations for the convergence of the specialization process.

Differently from the existing works, we put forward an iterative process based
on the formalism of the SMC filter to specialize the Faster R-CNN deep detector for
multi-traffic object detection. Accordingly, our proposed framework allows reducing
the risk of drifting by using efficient strategies during iterations and it can be used
to specialize any deep detector like the Fast R-CNN [Girshick 2015a] and the R-
CNN [Girshick 2014b]. Furthermore, this framework may be applied using several
strategies on each step of the SMC filter. Particularly, we cite some advantages of
the suggested framework:

• We propose a likelihood function based on an efficient strategy of verification.
This latter is used to favor the selection of samples associated to the right
label from a target scene, to decrease the risk of drifting the detector over
iterations by reducing the introduction of mislabeled examples in the training
dataset.

• The suggested framework automatically specializes a generic detector to a
target scene. This framework iteratively estimates the unknown target dis-
tribution as a specialized dataset by selecting only relevant samples from the
target dataset. These samples are selected to re-train a specialized detector
that increases the detection accuracy in the target scene. Contrarily, several
state-of-the-art frameworks have aimed to collect samples from both source
and target datasets to improve accuracy by augmenting the training dataset.
These frameworks have led to extend the size of the training dataset and to
slightly decrease the performance of the detector during iterations.

• To permit training an accurate specialized detector with the same function as
the generic one and avoiding the distortion of the specialized dataset, we sug-
gest a sampling strategy which uses the IR algorithm to select the confidence
samples relevant to their weight returned by the likelihood function. This
makes our framework applicable to specialize any deep detector, while train-
ing the treating samples according to the importance of their weight without
modifying the training function, as done by [Wang 2014b] [Wang 2012a].

• We derive a generic transfer learning framework in which many strategies can
be integrated in the SMC steps.
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Table 3.6 provides a comparison over the SMC framework proposed by Maam-
atou et al.[Maâmatou 2016c] and our suggested one.

Table 3.6: Description of the difference between the work of Maamatou et al.
[Maâmatou 2016c] and our proposed one.

@
@
@

Maamatou et al. [Maâmatou 2016c] Our framework

Generic detector HOG-SVM Faster R-CNN
Transfer learning Positive & negative samples Positive samples
Specialized dataset Source & target samples Target samples
Output Specialized SVM SMC Faster R-CNN
Specialized process SMC steps SMC steps & fine-tuning step
Traffic objects Pedestrian Multi-traffic object

The advantages of our specialization framework over the SMC framework
[Maâmatou 2016c] are:

• In [Maâmatou 2016c], for each iteration, they selected relevant samples from
both source and target domains to create a specialized dataset. In contrast,
our proposed framework selects only the relevant samples from target domains
according to the importance of their weights to create a specialized dataset.
This solution enables a faster learning of detector and leads to an increase in
detection accuracy.

• The specialized framework proposed in [Maâmatou 2016c] was very sensitive to
the risk of drifting because they used only a background subtraction algorithm
to assign weights to the target samples. Indeed, several static objects or
those with similar background appearances were classified as negative samples,
and mobile background objects were labeled as objects of interest. On the
other hand, to avoid the distortion of the specialized dataset with mislabeled
samples, we propose a likelihood function based on the verification strategy,
which combines the confident-score given by the output layer of the Faster
R-CNN network with spatial-temporal cues in order to attribute confidence
weights to target samples.

• The work of Maamatou et al.[Maâmatou 2016c] was limited for only single-
traffic object detection, but our proposed one is extended for multi-traffic
objects like cars, pedestrians, buses, motorbikes...

• Differently from the work in [Maâmatou 2016c], we put forward new strategies
for transfer learning inspired from the three steps of the SMC filter to specialize
the Faster R-CNN deep detector.

• It is important to say that we need only two iterations for the conver-
gence of our specialization process, whereas the framework suggested in
[Maâmatou 2016c] required at least 4 iterations for this convergence.
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• The proposed approach in [Maâmatou 2016c] was limited to specialize the
SVM classifier, in contrary, our framework is applicable to specialize some deep
detector like the Fast R-CNN [Girshick 2015a], the Faster R-CNN [Ren 2015c]
and the R-CNN [Girshick 2014b].

3.6 Conclusion

In this chapter, we have put forward an efficient framework based on the formalism of
the SMC filter to specialize the Faster R-CNN deep detector for multi-traffic object
detection. This framework approximates the unknown target distribution by select-
ing relevant samples from target datasets. These samples are utilized to fine-tune a
specialized deep detector in order to decrease the detection rate in the target scene.
Given a generic detector and a target video sequence, this framework automatically
provides a robust specialized detector. Moreover, the proposed framework allows re-
ducing the risk of drifting by using efficient strategies during iterations and it can be
used to specialize any deep detector. The extensive experiments have demonstrated
that the suggested framework has produced a specialized detector that performs
much better than the generic one for both single and multi-traffic object detections
in different scenes. Furthermore, the results show that the framework outperforms
the state-of-the-art specialization ones on several challenging datasets.

In the next chapter, we will present a novel tracking framework that proposes to
built an intermediate interlaced video-sequence and an associated DCNN detector
in order to improve the tracking performance.
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In this chapter, we propose an original framework for Multi-Object Tracking
(MOT). This is a novel spatio-temporal-based model and a specialized deep object
detector. Our MOT framework models the spatio-temporal variation of objects
in interlaced images. A specialized interlaced DCNN detector is then trained to
detect such new objects and a classical association step produces output targets.
Since interlaced objects are built to increase overlap during the association step,
the resulting framework improves the MOT performances comparing to the same
detector/association algorithm applied on non interlaced images.

The effectiveness of this contribution is demonstrated through experiments on
popular tracking-by-detection datasets such as the PETS 2009 and TUD datasets.
Experimental results demonstrate that the "power of video-interlacing" outperforms
several state-of-the-art tracking frameworks in multiple object context.

This work was submitted at European Conference on Computer Vision (ECCV
2018).

The structure of the chapter is organized as follows. Section 4.1 presents the
context of our work and gives the contributions of this chapter. Section 4.2 provides
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the related work performed in the field of object tracking. A detailed description
of our tracking framework is presented in section 4.3. Section 4.4 describes the
experimentation details and provides the experimental results. Finally, a conclusion
of this chapter is given in section 4.5.

4.1 Introduction to visual tracking

Visual tracking for multiple objects in video sequences has been extensively studied
for several practical applications such as road traffic control, driving assistance,
behaviour analysis and video surveillance [Dehghan 2017][Mhalla 2017].

Multi-target tracking aims to find the trajectories of moving objects in a video
sequence. This problem is generally formulated as a data association task where
a generic detector localizes object bounding boxes in each frame and then a data
association algorithm associates corresponding detection boxes across frames.

Visual tracking approaches can be performed offline [Milan 2014][Wang 2014c]
by simultaneously exploiting all the images of a processed video, or online
[Shu 2012][Naiel 2014][Danelljan 2017] by limiting themselves to past images. The
online approaches are selected when the real-time aspect is paramount and produce
results that are fairly comparable to offline approaches as detailed in some arti-
cles [Bae 2014][Dehghan 2017]. Since recent deep object detectors have high per-
formances, recent tracking approaches have mostly followed tracking-by-detection
techniques: it consists in using a detector of the tracked-object classes to estimate
the positions of the targets at each frame, following by an association step.

Lately, these techniques have gained significant interest in the research com-
munity and they are becoming more and more popular for visual tracking ap-
plications. Several approaches based on tracking-by-detection theories have been
proposed by research groups in the world to solve the problems of multi-object
tracking [Kim 2015][Dorai 2017][Tang 2017]. Among these approaches, we quote in
particular the tracklet algorithms [Wang 2016a][Dorai 2017] which take a sequence
of frames with their respective detections. Afterward, a tracklet association method
associates target objects in a video sequence. Other tracking algorithms have been
focused on using appearance models to estimate the tracks in each frame. In most
cases, these models are learned online and utilized to estimate an affinity score for
any track-detection pair. Some of the most popular work has suggested using more
reliable and robust appearance models in order to differentiate objects of similar
appearance [Shu 2012][Bae 2014].

Despite these efforts, existing multi-object tracking frameworks still suffer from
various challenges such as noisy detections, occlusions and inaccurate detections
in crowded scenes. Such issues frequently affect the tracking performance in real
world-scenarios.

In recent years, deep learning techniques have achieved the state-of-
the-art performance in several computer vision applications such as ob-
ject detection [Liu 2016][Shen 2017][Mhalla 2017], semantic segmentation
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[Kalogerakis 2017][Rota Bulo 2017] and object tracking [Nam 2016][Wang 2016b]
[Wang 2017]. Yet, the performances of the existing tracking frameworks based on
deep learning [Leal-Taixé 2016][Wang 2016a][Milan 2017] are limited and are not
as competitive as the approaches based on hand-crafted features. In this chapter,
we propose to build an interlaced representation of an input video sequence that
combines several frames in an interlaced one. The resulting interlaced video
provides for each frame spatio-temporal information that should be learnt into
a DCNN. By detecting moving objects, the network learns to associate several
temporal instances of the object in the same interlaced frame. The produced
detection is then easier to associate because it is naturally overlapped between
successive interlaced frames.

The main contributions of this chapter can be summarized as:

• An original interlaced model combined with a specialized object detector
which improves the performances of the tracking-by-detection based MOT
algorithms.

• A set of comparative experiments on the PET2009 and TUD benchmarks,
which achieves competitive results with current state-of-the-art tracking
frameworks.

4.2 Existing work

In this section, we are interested in the related multi-object tracking frameworks
proposed to automatically track objects in video sequences.

In the recent years, tracking framework has attracted a lot of research
groups in developing state-of-the-art theories and novel applications in several
domains like robotics, video surveillance and intelligent transportation systems
[Wang 2014c][Szegedy 2015][Wang 2016b][Milan 2017]. Several tracking frame-
works have been suggested by research community in the world to solve the problems
of multi-object tracking [Yoo 2017][Tang 2017][Danelljan 2017]. Some of them have
been based on recursive Bayesian filters such as the Kalman filter [Lee 2004] and
the Sequential Monte Carlo one [Vermaak 2005] in order to handle data association
problems.

Other recent approaches have been based on matching object hypothe-
ses obtained by detection between two consecutive frames using their char-
acteristics like the size, the representation, the appearance and the position
[Kim 2015][Yoo 2017][Valmadre 2017][Wang 2017]. On the other hand, tracking
frameworks based on local data association (between two consecutive frames)
have had critical limitations in resolving occlusion problems and therefore
tend to generate short trajectories. Differently, some multi-object tracking
frameworks build a set of trajectories through global or delayed optimization
[Wu 2013][Bae 2014][Badie 2014] in order to handle occlusion problems and noisy
detection in tracking sequences.
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Cox et al.[Cox 1996] suggested a classic Multiple Hypothesis Tracking (MHT),
in an effort to delay association decisions until they were resolved. However, the
number of hypotheses grew exponentially. An improved version of the MHT was
proposed by [Han 2004] which incorporated an appearance model to solve this issue.
Kim et al. [Kim 2015] introduced a revisited version of the standard MHT by
including an online appearance model for multiple hypothesis tracking. This new
formulation led to prove substantial performance gains over the old versions of the
MHT by generating tracking hypotheses at each interlaced image with a prediction
training model. The tracking hypotheses would conflict when attempting to assign
different identifiers to the same object. The resolution of these conflicts generated
global hypotheses with associated scores, and the best hypothesis was chosen to
produce the final result.

Other methods used an appearance model or features for tracking. Danelljan
et al. [Danelljan 2014] put forward an on-line tracking framework based on adap-
tive color channels. This framework resolved several types of real-word scenarios,
but it failed at scaling. Thus, the authors in [Danelljan 2017] proposed solution to
this problem. Ma et al. [McLaughlin 2015] employed a novel deep learning based
characteristics trained on object recognition datasets to enhance the tracking per-
formance.

Chari et al. [Chari 2015] put forward pairwise costs to reinforce a min-cost net-
work flow framework, which effectively handled overlapping problems and track-
ing enhancements. [Dehghan 2015] also followed the network flow framework.
McLaughlin et al. [McLaughlin 2015] improved this min-cost network flow algo-
rithm so that the tracking problem could be reduced in two steps. Firstly, an initial
result was estimated without motion information, and secondly it was then combined
with a motion feature to generate a more reliable tracking solution.

Other state-of-the-art tracking frameworks have aimed to associate the detec-
tions by introducing a similarity function between detections based on the CNN.
The triplet network mentioned in [Wang 2014a][Hoffer 2015] and Siamese network
[Chopra 2005] were efficiency techniques to measure the similarity between two ob-
jects. The Siamese network utilized a contrastive loss function to train the neu-
ral network, which helped the network to have small distances between the pair
detections that belonged to the same objects while forcing the object with differ-
ent identities to have large distances. This network is used to face recognition
[Taigman 2014][Sun 2014], single object tracking [Tao 2016] and multi-target track-
ing [Wang 2016b][Leal-Taixé 2016]. The triplet network, an enhanced version of
Siamese network, was more robust to intra-class variations [Hoffer 2015], since it
used a new loss function for network training. It was utilized for characteristic
learning [Hoffer 2015][Kumar 2016] and object re-identification [Cheng 2016]. Also,
generalized versions of the triplet network using higher order relationships were sug-
gested [Zhang 2016][Huang 2016a] and these approaches were useful for fine-grained
feature representation learning. Accordingly, Wang et al.[Wang 2016a] proposed
an original deep model for tracklet association which could join the Siamese CNN
network learning and the temporal metrics so as to improve tracklet models.
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Here, we propose to enhance the performance of classical data association al-
gorithms and help to recover objects in complex videos including occlusion, strong
motion and intersection, by using an interlacing intermediate video representation
model as well as a specialized DCNN detector.

4.3 Multi-object detection and tracking using interlaced
video

This section presents the principle of the multi-object tracking using interlaced
videos.

A global synoptic of the suggested framework is illustrated in Figure 4.1. Given
a video input, an interlacing model is applied to create an intermediate set of inter-
laced images. Then a specialized DCNN detector fine-tuned by interlaced datasets
provides objects on each interlaced frame. Targets (object trajectories) are produced
by a classical association algorithm from interlaced detections. Finally, a reverse in-
terlacing model is applied to extract final trajectories into the initial video-sequence.

Figure 4.1: General synoptic of the proposed framework: Given a video sequence,
the suggested framework uses an interlacing strategy to create interlaced images.
A generic deep detector fine-tuned by interlaced datasets provides objects for each
interlaced frame. Next, a data association algorithm links detection on consecu-
tive interlaced frames. Finally, estimated trajectories of objects are produced from
interlaced ones by an inverse interlacing strategy.

In what follows we describe in details the main steps of the suggested tracking
framework. In subsection 4.3.1, we describe the proposed interlacing and inverse
interlacing models. Subsection 4.3.2 shows how to train the interlaced DCNN de-
tector.
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4.3.1 Interlacing and inverse interlacing models

We present the interlacing and inverse interlacing mathematical models that serve
as a basis of this work. Given a set of temporal images I .

= {Ik}k=1,...K extracted
from the input video sequence, we propose to build an interlaced image set Ĩ .

=

{Ĩk̃}k̃=1,...K̃ . The tilde (~) notation is used for variables related to the interlaced
video/image. If Ik(x, y) is the value of the (x,y) pixel (gray level or colour) of an
image k, the interlaced set of images are generated by equation (4.1):

Ĩk̃(x, y)
.
=

∑
d=0,..,(D−1)

I(kg+ds)(x, y).δ(y[D]− d) (4.1)

• δ(.) represents the Kronecker Delta function (4.2):

δ(n) =

{
1 for n = 0

0 otherwise
(4.2)

• y[D] is the modulo operator (y mod D), D is the depth (number of images
in one interlaced image), g is a global step (difference between two successive
interlaced images), and s is a local step (the gap between the frames which
are combined for an interlaced image). Figure 4.2 depicts the interlacing step.

Figure 4.2: Interlacing step. The top images are temporal frames extracted from
a video sequence. The bottom images present results from interlaced model and
combine several video frames: objects appears several times in interlaced image.

Several strategies can be proposed. The key idea is that good strategies should
produce a high overlap between interlaced detections. Figure 4.3 shows examples of
interlaced strategies for several sets of parameters (D, s, g).

Since the aim of this work is to detect and track objects, we define the bounding
box associated to the object i at frame k by equation (4.3):

oik
.
= (p

(i,1)T
k ,p

(i,2)T
k ,p

(i,3)T
k ,p

(i,4)T
k )T (4.3)
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where pi,.k
.
= (x

(i,.)
k , y

(i,.)
k )T is the position of the four corners (upper left, upper right,

lower right and lower left) of the bounding box. Similarly, let us define the bounding
boxes extracted from a tracking process applied on the interlaced video by equation
(4.4):

õi
k̃

.
= (p̃

(i,1)T

k̃
, p̃

(i,2)T

k̃
, p̃

(i,3)T

k̃
, p̃

(i,4)T

k̃
)T (4.4)

The object bounding box oik is associated to the interlaced bounding box õi
k̃
with

equation (4.5):
k̃ = bk/gc (4.5)

Some interlaced strategies may produce interlaced images with a high redun-
dancy; i.e., one original object for a given time can be extracted from several inter-
laced images. In this case, an average object position can be computed.

Figure 4.3: Examples of interlaced strategies with four sets of parameters (D, s, g).

We consider a constant object velocity between two interlaced images. For a
depth D, an interlaced image encodes objects D times. An estimation of the object
bounding box oik in the original image k can be extracted by interpolation between
the interlaced bounding box õi

k̃
and the interpolated interlaced bounding box õi

k̃+αk
.

Figure 4.4 illustrates the estimation of õi
k̃+αk

. The latter box is computed by equa-
tion (4.6):

õi
k̃+α

= õi
k̃

+ α∆õi
k̃

(4.6)

with:
α
.
=
s(D − 1)

g
(4.7)

and
∆õi

k̃
= õi

k̃+1
− õi

k̃
(4.8)

where ∆õi
k̃
is the displacement of interlaced bounding boxes between two successive

interlaced frames.
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Figure 4.4: Estimation of bounding boxes by interpolation strategy. The interpo-
lation makes it possible to determine the size of an object that is assumed to be
constant over all the interlacing strategies.

The next step consists in extracting the object bounding box oi
gk̃+D

from the

intersection between the interpolated object õi
k̃+α

and õi
k̃
(k = gk̃), according to

equation 4.9:
oi
gk̃+D

= õi
k̃
∩ õi

k̃+α
(4.9)

∩ is the intersection operator between the two detections oik∩ = oik1 ∩ oik2 defined
by (4.10): 

x
(i,1)
k∩

= max(x
(i,1)
k1

, x
(i,1)
k2

)

x
(i,2)
k∩

= min(x
(i,2)
k1

, x
(i,2)
k2

)

y
(i,3)
k∩

= max(y
(i,3)
k1

, y
(i,3)
k2

)

y
(i,4)
k∩

= min(y
(i,4)
k1

, y
(i,4)
k2

)

(4.10)

with x(i,4)k∩
= x

(i,1)
k∩

, x(i,3)k∩
= x

(i,2)
k∩

, y(i,2)k∩
= y

(i,1)
k∩

and y(i,4)k∩
= y

(i,3)
k∩

.

In the same way, the object oi
gk̃

is extracted from the intersection between õi
k̃−α

and õi
k̃
, according to equation (4.11):

oi
gk̃

= õi
k̃
∩ õi

k̃−α (4.11)

Object ROIs for k ∈ {gk̃, gk̃ + 1, .., gk̃ + D} (k̃ = bk/gc) are estimated using
linear interpolation :

oik = oi
gk̃

+ β∆oi
gk̃

(4.12)
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with: 

β =
k − gk̃
Ds

and

∆oi
gk̃

= oi
gk̃+D

− oi
gk̃

(4.13)

4.3.2 Interlaced deep detector

The interlaced deep detector is a DCNN detector which allows to detect interlaced
objects in the interlaced images. To do this, we specialize the Faster R-CNN detec-
tor [Ren 2015a] with a specific interlaced dataset. The specialization of the Faster
R-CNN is done by adapting its network parameters by fine-tuning with the inter-
laced dataset generated by the interlacing step (see Figure 4.1). The specialized
Faster R-CNN deep detector consists of two stages. The first one is called Region
Proposal Network (RPN) which is specialized to propose interlaced object bounding
boxes. The second stage, which is Fast R-CNN [Girshick 2015b], extracts features
using a RoIPool layer from each interlaced object box and performs classification
and bounding-box regression. A fine-tuning of the Faster R-CNN is applied using
annotated interlaced images built from several public datasets.

Given an annotated video dataset in which the trajectory of each object is la-
belized by a set of bounding boxes, we generate a new interlaced video dataset with
annotated bounding boxes. Each object provides D "views" in an interlaced image.
The interlaced bounding box is defined as the smallest bounding box that includes
all bounding boxes of object "views". Figure 4.5 illustrates this step.

Figure 4.5: Building an annotated interlaced video: Two images extracted from
an interlaced video (D = 2) with object bounding boxes in black and interlaced
bounding boxes in color.
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4.4 Experimentation

This section presents the various tests performed to evaluate the performance of our
multi-object tracking framework.

4.4.1 Evaluation datasets

Our framework has been evaluated on several varied public datasets: PETS 2009
[Ferryman 2009] and TUD [Andriluka 2008] sequences. These datasets are mainly
differentiated in terms of number of tracking objects and fields of views. Figure 4.6
shows example images of the evaluated datasets.

• S2L1, S2L2 and S2L3 are video sequences extracted from the PETS2009
dataset: This is pedestrian tracking captured by a static video-surveillance
camera with a sparse crowd for S2L1, medium density crowd for S2L2 and
dense crowd for S2L3.

• TUD-Stadtmitte sequence is a video captured by a static camera at about a
2-meter height. This sequence shows walking people on the street.

• TUD-Crossing sequence is a road crossing from a side view.

• TUD-Campus sequence is a short video scene with side-view pedestrians.

We demonstrate the evaluation results on testing sequences in order to verify the
effectiveness of our framework.

Figure 4.6: Image examples of evaluated datasets: (a), (b), (c): Images from the
PETS 2009 dataset. (d), (e), (f): Images from the TUD dataset.
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4.4.2 Implementation Details

In what follows, we will describe the implementation details of the proposed tracking
framework.

As mentioned in section 4.3.2, the detection step is achieved by a Faster R-CNN
deep detector [Ren 2015a]. This network is initialized with a pre-trained VGG16
model [Simonyan 2014]. The fine-tuning of the Faster R-CNN is applied using an-
notated interlaced images built from several public datasets from ETH [Ess 2008],
PETS2009 [Ferryman 2009] and TUD [Andriluka 2008].

The association between detected interlaced bounding boxes is performed by
the revisited version of MHT [Kim 2015]: This association method is ranked third
on 2D MOT 2017 challenge. This new formulation of the standard MHT was put
forward by including both an online appearance and spatio-temporal models for
multiple hypothesis tracking. It has shown a substantial performance gain over the
old versions of MHT. The suggested framework has been tested with this association
algorithm and we only use the spatio-temporal model. However, our framework is
totally generic and it can be tested with other association algorithms.

The resulting proposed MOT framework, called "FRCNNVI-MHT", is composed
by: 1) a video-interlacing model, 2) a Faster R-CNN deep interlaced detector, 3) a
MHT-DAM association algorithm, and 4) a video-inverse interlacing model. Default
parameters for video-interlacing are set to (D = 2, s = 2, g = 1) resulting in a cross
validation approach (see Table 4.1).

4.4.3 Evaluation metrics

Performance evaluation is achieved using CLEARMOT metrics defined for visual
multi-target tracking and detailed in [Bernardin 2008]. The following metrics are
taken into account: the MOT Accuracy (MOTA), the multiple MOT Precision
(MOTP), the number of identity changes (IDS), the number of False Positives (FP)
and the number of Missing Positions (MS). The MOTP considers only the local-
ization precision of individuals without taking into account identity changes. The
MOTA is a score which takes into consideration false negatives, false positives and
identity switches of output trajectories. The MOTA metric is considered as the
most important metric to evaluate the quality of the tracking. In addition to these
metrics, the number of Mostly Lost (ML) targets, Fragmentation (FM) and Mostly
Tracked (MT) targets are also reported.

4.4.4 Description of experiments

The proposed tracking framework (FRCNNVI-MHT) is compared with several state-
of-the-art MOT frameworks:

• FRCNN-MHT: It is a Faster R-CNN detector and an revisited MHT (MHT-
DAM) association method (using only the spatio-temporal model) without
interlacing strategy. This is the baseline for our comparison. It is important
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to note that the same sequences are used to fine-tune the baseline FRCNN-
MHT and the proposed FRCNNVI-MHT.

• DO (2017) [Dorai 2017]: A tracking method was proposed for multi-object
tracking with a tracklet association algorithm.

• NF (2016) [Chari 2015]: A tracking framework suggested a pairwise cost to
enforce tracklets, which effectively handled overlapping problems and tracking
enhancements. The detection set is provided by the MOT challenge.

• MHT-DAM (2015) [Kim 2015]: This is the same association algorithm that
we use in FRCNNVI-MHT and FRCNN-MHT but the detections are given by
the MOT Challenge and an appearance model is combined with the spatio-
temporal one.

• Milan (2013) [Milan 2013]: A tracking framework was suggested to formulate
the tracking problem by first selecting tracklets and then connecting them
using a learned a conditional random field. The detection set is provided by
the MOT challenge.

4.4.5 Results and analysis

This section presents the experiments realized in order to show the performances of
the proposed video-interlacing strategy for the MOT. After testing several sets of
parameters for the video-interlacing model, we compare the MOT framework with
the baseline method and state-of-the-art tracking frameworks. The last experiment
indicates that video-interlacing can be used to reduce the computation time using
a set of parameters to produce an image skipping strategy.

Since the main objective of the suggested video interlacing strategy is to increase
MOT performances, a first experiment is proposed to compare, for several sets
of interlaced parameters, the benefit of our contribution. Table 4.1 presents the
MOTA evaluation metric for several selected configurations. Results show that
if some configurations improve the MOTA comparing with the baseline method
(last column), others provide weak performance. Best results are obtained with the
configuration: D = 2, s = 2, and g = 1. This configuration will be set by default.

Table 4.1: MOTA comparison for several interlacing strategies on several sequences
of TUD public dataset. The best configuration is D = 2, s = 2, g = 1

Sequence (D=2,s=2,g=1) (2,2,2) (2,8,1) (4,2,1) (2,2,4) (1,1,1)
TUD-Stadtmitte 92.8% 93.5% 69.3% 85.5% 87.5% 87.5%
TUD-Campus 88.1% 64% 45.4% 70.8% –% 79%
TUD-Crossing 84.8% 69.2% 33.1% 65.5% –% 84.4%
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Table 4.2 shows the performances of the proposed MOT framework compared
with the baseline "Faster R-CNN & MHT-DAM" and state-of-the-art tracking
frameworks. For a fair comparison, the ground truth annotations and the evalu-
ation script provided by [Milan 2013] are used. The MOTA increases for all tested
datasets. The red value on the last line of each row of Table 4.2 represents the im-
provement of our interlacing framework over the baseline one (without interlacing).
The median improvement is 4.8% in all evaluation datasets. Figure 4.7 illustrates
a comparison between our proposed framework (FRCNNVI-MHT) and the base-
line one (FRCNN-MHT) on two challenging situations: occlusion and pedestrian
crossing.

Compared to the state-of-the-art tracking frameworks (PETS2009 and TUD
sequences), the Faster R-CNN combined with the MHT-DAM association algorithm
[Kim 2015] is very competitive. Our framework has significant improvements and
enhances the result of the MHT-DAM algorithm by about 12.5% on average as
a MOTA evaluation metric (31.4% for TUD-Stadtmitte sequence). However, for
sequence S2L3, which represents a dense crowd, the Faster R-CNN gives poor results
compared to the detection set provided by the MOT challenge (MHT-DAM).

Figure 4.8 illustrates four interesting interlacing strategies that produce frame
skipping; i.e., for (D = 2, s = 6, g = 3), odd images are never processed, resulting
in a reduced computation time and for (D = 2, s = 10, g = 5), 25% of the images
are processed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9- 10 10-11 11-12 12-13 13-14 14-15 15-16 16-17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1-4 4-7 7-10 10-13 13-14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1-5 5-9 9-13 13-17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1-5 6-11 11-16

(a)

(b)

(c)

(d)

Figure 4.8: Frame skipping strategy with four different sets of parameters for inter-
laced model: (a) D = 2, s = 2, g = 1, (b) D = 2, s = 6, g = 3, (c) D = 2, s = 8, g = 4

and D = 2, s = 10, g = 5. The top row with grey images represents the original
video sequence, and the bottom row with blue images represents the interlaced video
sequence. These images are never processed (skipped images)
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Figure 4.9 presents examples of the output of the interlaced specialized object
detector for the four interlacing strategies mentioned above.

Figure 4.9: Output examples of the interlaced specialized object detector for four
interlacing strategies.

The results are provided in Table 4.3. The MOTA for the interlacing strat-
egy (FRCNNVI-MHT) is represented in black while the MOTA for the baseline
method (FRCNN-MHT) applied with frame skipping is represented in blue. Please
notice that the MHT-DAM association fails from two skipped images. The main
reason is that our implementation of the MHT-DAM uses only a spatio-temporal
model for tracking, which will fail when there is no overlap between detection. The
proposed interlacing strategy produces overlapped detection, which improves the
performances of the association.

Table 4.3: MOTA evaluation metric for several interlacing strategies selected to
produce frame skipping on TUD dataset. The performance results using the inter-
laced strategy are presented in black color, and without the interlaced strategy (but
with frame skipping) are in blue.

Interlacing configurations
Sequence Method (D=2,s=2,g=1) (2, 6, 3) (2, 8, 4) (2, 10, 5)
TUD-Stadtmitte FRCNNVI 92.8% |87.5% 92.7% | –% 79.8% | –% 74% | –%
TUD-Campus FRCNNVI 88.1% |79% 61.7% | –% 30.8% | –% 20.4% |–%
TUD-Crossing FRCNNVI 84.8% |84.4% 36.6% |–% 30.3% | –% 21.7% |–%
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As mentioned in Table 4.3, for TUD-Stadmitte, the MOTA performance for
four skipped frames decreases by about 20% compared to the non skipped frames
strategy. Since video-interlacing and reverse video-interlacing are very low CPU
time consuming related to the detector, skipping frame strategies provide an efficient
way to decrease the computation time of the MOT while maintaining competitive
performances.

However, the FRCNN-MHT applied with frame skipping gives bad results (as
shown by –% in Table 4.3) due to the limitation of the Faster R-CNN detector to
detect objects on crowded sequences (see Figure 4.10).

Figure 4.10: Examples of FRCNN-MHT failures (with interlacing strategy (D=2,
s=6, g=3)). The reason of that is due to wrong detection provided by specialized
Faster R-CNN detector: The left image shows the detection results provided by
a specialized interlaced detector and the right one for the Faster R-CNN. In dense
crowd, the interlaced video mixes pedestrians resulting to a limitation of the method.

4.5 Conclusion

In this chapter, we have presented a new MOT framework which proposes to built an
intermediate interlaced video-sequence and an associated DCNN detector. The re-
sulting MOT algorithm improves the tracking performance. Our suggested tracking
framework is generic and can be used with other association algorithms. More-
over, we have demonstrated that some interlacing strategies can be proposed to
skip frames and reduce complexity during tracking, while maintaining a good per-
formance.

The proposed framework implies that annotated video sequences have to be
available to train the specialized interlaced DCNN.

In the next chapter, we will present the application of our frameworks in the
context of traffic surveillance. We will propose an embedded traffic surveillance
system which is based on an extension of the SMC Faster R-CNN framework.
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In this chapter, we put forward an embedded system for traffic surveillance based
on an extension of the SMC framework presented in chapter 3. This applicative con-
tribution consists to analyse traffic and particularly focuses on the problem of de-
tecting and categorizing traffic objects in both day and night conditions. Moreover,
it includes a robust detector produced by an original specialization framework. The
experiments demonstrate that the proposed system presents encouraging results for
multi-traffic object detection and outperforms the state-of-the-art frameworks on
several public traffic datasets.

This work was accepted at IEEE Transactions on Intelligent Transportation
Systems journal.

This chapter is organized as follows. Section 5.1 presents an introduction and
provides the contributions of this chapter. Section 5.2 reviews the existing work
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performed in the field of traffic surveillance system and object detection. A discus-
sion about the advantages of our work over the state-of-the-art approaches is given
in section 5.3, followed by a detailed description of our approach in section 5.4.
The experiments and results are described in section 5.5. The implementation of an
embedded system for traffic object detection is discussed in section 5.6. Finally, a
conclusion is given in section 5.7.

5.1 Introduction

Intelligent traffic systems for traffic surveillance and monitoring have become a topic
of great interest to some cities in the world. Generally, the existing traffic surveil-
lance systems are made up of costly equipments with complicated operation pro-
cedures and have difficulties with congestion, occlusion and lighting night/day and
day/night transitions. Figure 5.1 illustrates major challenges on traffic applications.

Figure 5.1: Main challenges on traffic applications. (a) presents an example of
congestion, (b) an example of occlusion and (c) an example of day/night transitions.

Over the past decade, there has been a significant effort dedicated to the
development of traffic surveillance systems, which is intended to raise safety by
monitoring the on-road environment. Moreover, numerous sensing modalities
have become available for traffic surveillance, including radar, lidar and cameras
[Ohn-Bar 2015][Matti 2017]. Concurrently, the computing power has increased dra-
matically. Besides, we have seen the emergence of computing platforms geared to-
wards parallelization, such as graphical processing units and multi-core processing.
Such hardware advances allow the computer vision approaches for traffic surveil-
lance to follow up on real-time implementation. However, the performance of the
existing systems depends much on their traffic object detector and it is notable that
a traffic surveillance system becomes more reliable if it has a robust detector.

Recently, traffic object detection has been a topic of great interest to researchers
[Abdulrahim 2016][Redmon 2016b] and a significant progress has been achieved in
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(a)

(b)

(c)

Figure 5.2: (a) General synoptic of specialization framework. Given a generic de-
tector trained by the source labelled dataset and a target video sequence as input,
the proposed framework estimates automatically the set of target objects and the
parameters of the specialized deep detector. Finally, after a predefined number of
iterations, a final specialized detector is generated. (b) and (c) present the im-
provement of the specialized deep detector in both day and night conditions: left
images show the detection results for the generic detector and the right ones for the
specialized detector in several datasets.
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the recent years [Li 2015b][Maâmatou 2016c][Mhalla 2016b]. Despite the research
advances in computer vision, the performance of learning-based traffic object detec-
tors is often limited and decreases significantly when tested on a specific scene due
to the large variations between the source training dataset and the target scene. A
solution of these problems is to exploit transfer learning approaches. These latter
help to build a scene-specialized detector that provides a superior performance than
a generic one. Consequently, various transfer learning methods were proposed to
develop scene-specific detectors, whose iterative training process is aided by generic
detectors to select training samples automatically from target scenes without la-
belling them manually [Htike 2014][Mao 2015][Maâmatou 2016c][Mhalla 2016a].

This chapter provides an embedded system for traffic surveillance which inte-
grates an extension of our specialization framework by new likelihood function based
on tracking algorithm, and a new DCNN detector adopted from the Faster R-CNN
deep model for multi-traffic object detection, so as to enhance the detection rate in
different scenarios.

A global synoptic of the specialization framework is given in Figure 5.2.(a). A
generic deep detector is fine-tuned by a source labelled dataset with labeled informa-
tion given in the form of traffic-object annotations. Given a target video sequence
where labeled information is not available, an iterative process will estimate both
the set of target objects and the parameters of the specialized deep detector. This
latter is automatically and iteratively trained until a stopping criterion is reached.
A final specialized deep detector is then generated, which has performed better than
the generic one (see Figure 5.2.(b) and (c)).

The main contributions of this chapter are summarized below:

• A new deep detector for multi-traffic object detection based on the Faster
R-CNN deep model

• A new likelihood function based on a tracklet that is used to correctly select
unlabeled samples from a specific scene

• An embedded system implemented on an NVIDIA Jetson platforms for traffic
surveillance

5.2 Existing work related to video surveillance system
and object detection for Intelligent Transportation
Systems

This section describes the related work in video surveillance system and in traffic
object detection.

The problem of detecting and tracking traffic objects is part of the field of
traffic surveillance, which is a subfield of Intelligent Transport Systems (ITS). ITS
is known as one of the keys that helps to create the future of the urban world
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[Abdulrahim 2016][Sivaraman 2013]. It really attracts a lot of research groups in
developing state-of-the-art theories and novel applications.

Several systems have been proposed by research groups in the world to solve the
problems of traffic object detection and tracking in a traffic surveillance systems.
Some of them have been described in the work of Sivaraman et al. [Sivaraman 2013],
Neelima et al. [Neelima 2012] and Abdulrahim et al. [Abdulrahim 2016]. These
systems use motion detection to recognize traffic objects as moving blobs and to
track those blobs for a number of subsequent frames. Approximately, most of the
systems belong to three categories, based on features [Han 2006][Cheng 2006], clas-
sifiers [Wu 2007][Huang 2005] and models [Wei Zheng 2013][Jin 2007].

The first category focuses on extracting the specific features by a classical de-
scriptor to represent the traffic object for classification (e.g., HOG [Dalal 2005],
Sobel edges [Gao 2010], SIFT [Bay 2008]). Han et al. [Wu 2007] took into account
the special property of the image patch of a traffic object and proposed to extend
HOG features that would incorporate the spatial locality in the standard HOG
features [Dalal 2005]. Cheng et al.[Cheng 2006] put forward the boosted Gabor fea-
tures whose parameters were learnt from some samples to give a good response for
a traffic object candidate. Zheng et al. [Wei Zheng 2013] considered relatively con-
sistent structural components of a traffic object and suggested image strip features
that represented various kinds of basic local elements of the traffic object such as
bumpers, pillars and wheels.

The second category concentrates on designing the classifier. Wu et al.
[Wu 2007] proposed the cluster-boosted classifier which was automatically con-
structed for a multi-view traffic object detection. This method employed an un-
supervised clustering to divide the sample space. In the same vein, the similar
classifier model was purported by Huang et al. [Huang 2005] which needed a pre-
defined knowledge of the intra-class sub-categorization.

The last category focuses on designing the descriptor and the classifier by using
DCNN models to detect traffic objects. Li et al. [Li 2015a] suggested a generic
DCNN traffic-object detector which detected pedestrians with different spatial scales
by using a large-size sub-network and a small-size one into a unified architecture.
Tian et al. [Tian 2015] proposed a novel deep model trained by multiple tasks and
datasets to give a robust detector for traffic object detection.

However, the performance of these above methods depends a lot on their training
dataset and drops significantly when it is applied to a new scene due to the large
variations between the source training dataset and the samples from the target scene.
This problem can be resolved by transfer learning which is known as cross-domain
adaptation. This latter helps to specialize a generic detector into a specific scene.
As mentioned in the chapter 3, transfer learning has become an important topic in
computer vision research, mainly in image detection and recognition. Thanks to
their superior performance and computation efficiency in object detection, we are
incorporate this recent approach in the system presented in this chapter.

Over the past decades, several methods have been suggested for transfer learning
in traffic object detection [Mhalla 2016b][Maâmatou 2016c][Ye 2017]. Please refer
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to section 3.1 in chapter 3 for more details description of the related transfer learning
frameworks.

Addressing this problem with deep learning has recently attracted growing
attention by researchers. Several deep models have been suggested in the un-
supervised and transfer learning models [Guyon 2011], owing to its robust per-
formance in various tasks like metric learning [Hu 2015] and face recognition
[Huang 2012][Taigman 2014]. Moving in this direction, we put forward an extension
of the SMC specialization framework based on a new likelihood function, which is
developed to automatically generate a robust specialized deep detector for multi-
traffic object detection in both day and night conditions. The suggested framework
proposes some advantages and several improvements over the related specialization
frameworks. In the next section, we discuss the differences and the advantages of
the proposed framework related to existing ones.

5.3 Framework proposition

In this section, we present a discussion about the advantages and the differ-
ences of our work over the related approaches like the Faster R-CNN deep de-
tector [Ren 2015b] and the SMC specialization approach [Mhalla 2016b]. The pro-
posed deep detector is developed based on the popular Faster R-CNN deep model
[Ren 2015b] given its superior performance and computation efficiency in detect-
ing general objects. Table 5.1 presents various differences between proposed deep
detector "MF R-CNN" and baseline Faster R-CNN.

Table 5.1: Description of the difference between the Faster R-CNN deep neural
network architecture [Ren 2015b] and the MF R-CNN one.

hhhhhhhhhhhhhhhhSpecification
Architecture Faster R-CNN [Ren 2015b] MF R-CNN

Number of pooling layers 4 3
Types of pooling layer Max-Pooling Stochastic
Objects General objects Traffic objects

We put forward several improvements over the architecture of the Faster R-CNN
[Ren 2015b] such that:

• We remove the fourth MAX-Pooling layer in the Faster R-CNN model for
training and testing the network to produce larger feature maps for small-size
object proposals.

• We replace the Max-pooling layers by Stochastic pooling ones. These latter
preserve much more information than the other pooling strategies and provide
flexibility in choosing the output image size.

In what follows, we provide a discussion about the advantages of our framework
over the state-of-the-art scene specialization frameworks.
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Most of the specialization frameworks in the literature have been based on hard-
thresholding rules and have been sensitive to the risk of drifting during iterations,
or they have been applied only to specific classifiers like the HOG-SVM.

Differently from the existing work and the SMC frameworks [Mhalla 2016b], we
propose an iterative framework to specialize any deep detector for traffic object
detection. Accordingly, the suggested framework proposes some advantages over
the related ones [Maâmatou 2016a][Mhalla 2016b][Maâmatou 2016a][Mhalla 2017],
we cite in particular:

• We extend the likelihood function suggested in the SMC framework by utilizing
an efficient tracking algorithm based on tracklets, so as to assign a weight for
each proposal sample. The tracklet method is used to decrease the risk of
detector drifting during iterations by reducing the possibility of introducing
wrong labelled examples in the training dataset.

• We can apply our framework to specialize any deep detector for both mobile
and stationary cameras. Whereas, the related specialization frameworks can
be used only with stationary cameras.

• We show that the proposed framework is able to specialize a traffic object
detector in both day and night conditions. In contrast, this is impossible
with the related SMC Faster R-CNN framework because it uses a likelihood
function based on a background-subtraction spatial-temporal cue to favor the
selection of the positive samples from a specific scene; this one does not work
with the nighttime conditions.

Table 5.2 provides a comparison over the SMC Faster R-CNN framework pro-
posed in chapter 3 and our suggested specialization one.

Table 5.2: Description of difference between the SMC Faster R-CNN framework and
proposed approach

````````````̀Specifications
Approach SMC Faster R-CNN Our approach

Generic detector Faster R-CNN [Ren 2015b] MF R-CNN
Likelihood function Background subtraction Tracklets
Daytime conditions Day Day and night

5.4 Proposed Approach

The suggested specialization framework is an improvement of the SMC Faster R-
CNN one (mentioned in chapter 3), which is able to specialize the proposed deep
detector toward each traffic scene with a precise classification and in both day and
night conditions. The specialized MF R-CNN framework suggests a new architecture
of the Faster R-CNN and a novel likelihood function based on a tracklet tracking
algorithm.



88
Chapter 5. An Embedded Computer-Vision System for Multi-Object

Detection in Traffic Surveillance

5.4.1 Architecture of proposed detector

Figure 5.3 illustrates the architecture of the MF R-CNN in details. The MF R-CNN
architecture is a single, unified network for traffic-object detection which is inspired
from the Faster R-CNN one [Ren 2015b]. According to this latter, the proposed
detector is composed of two modules. The first module is an RPN that provides a
set of rectangular object proposals from an input image. The second module is the
Fast R-CNN deep model [Girshick 2014b] which takes as inputs this set of object
proposals and then uses them for classification. For more details, an RPN is a fully-
convolutional network that is constructed by adding two additional convolutional
layers: one that encodes each convolutional map position into a short feature vector
and another that outputs, at each convolutional map position, an objectness score
and regress bounds for the region proposals relative to various scales and aspect
ratios at that location. The RPN shares the rest of convolutional layers with the
Fast R-CNN network.

According to Figure 5.3, the MF R-CNN passes the input image into several
convolutional layers and stochastic pooling ones (shared layers) to extract a feature
map. Then the RPN fully-convolutional network, inspired from [Ren 2015b], is
learned specifically to localize traffic objects into the feature map produced by the
last convolutional layer of the pre-trained VGG16 model [Simonyan 2014].

After that, the RoI pooling layer (inspired from the Fast R-CNN network) is
utilized to pool the feature maps of each input object proposal which is fed into a
sequence of fully connected layers, into a fixed-length feature vector. The network
finishes with two output layers that produce two output vectors per object proposal.
Specially, one layer outputs classification scores over a T traffic-object class plus a
"background" class. The other one is the bounding box regressor which outputs
refined bounding-box positions for each T class.
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5.4.2 Specialization of the MF R-CNN

This section presents the specialization of the MF R-CNN deep detector towards a
target scene.

The diagram in Figure 5.4, demonstrates the specialization steps based on the
SMC Faster R-CNN framework. First, a generic detector is trained on a generic
dataset. Given the videos taken by a stationary or mobile cameras in specific scenes,
at a first iteration (k = 0), the generic detector is applied in a prediction step to
detect traffic object candidates in each individual image, which may include a lot
of positive and negative detections. Then a likelihood function is applied based
on a tracklet tracking algorithm in the update step, which is used to associate
a weight to each proposal sample from a specific scene. Then a sampling step
determines which samples should be included in the specialized dataset by using an
IR algorithm (detailed in chapter 3) inspired from the theory of the Monte Carlo
filter [Doucet 2001]. The IR algorithm transforms each weight produced by the
likelihood function in the previous step on a number of repetitions, by repeating the
samples associated to a high weight by numerous ones and replacing the samples
linked to a low weight by few ones. At the training step, a new specialized detector is
fine-tuned by the specialized dataset, and it will become the input of the prediction
step in the next iteration. The scene-specific detector is automatically and iteratively
trained and is called until a stopping criterion is reached. Please refers to chapter 3
for more details about the SMC steps for specialization.

In what follows, we will describe the new proposed likelihood function based on
the tracklet tracking algorithm.

5.4.3 Likelihood function

In order to choose the correct proposal, we put forward a likelihood function based
on a tracking method, which assigns a weight π(n)k for each sample x̃

(n)
k returned

by the prediction step. The aim of this function is to favor the selection of the
correct samples and reduce the risk of including wrong proposal samples in the
specialized dataset. The output of this function is a set of weighted target samples
that approximates the posterior probability function, according to equation (5.1):

π
(n)
k = fL(x̃

(n)
k ) (5.1)

where fL is the likelihood function and π(n)k is the weight assigned to each sample
x̃
(n)
k .
The likelihood function is based on a tracking method called "tracklet", to assign

weights to target samples according to their importance. The tracklet tracking
algorithm used in the proposed likelihood function is inspired from [Dorai 2016].

Based on the set of samples produced by the prediction step, we are able to
track/link them into tracklets (a tracklet is a chain of samples belonging to the same
object over time) by adopting the multi-object tracking algorithm in [Dorai 2016].
This association-based tracking provides tracklets to favor the selection of positive
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Figure 5.4: Block diagram of proposed approach: At the first iteration, our generic
detector (R0,F0) which is fine-tuned by the source dataset is utilized in the first
prediction step to produce a list of detections from the target scene, and then a
likelihood function based on tracklets in the update step is used to favor the selection
of positive samples from a specific scene. The sampling step determines which
samples will be included in the specialized dataset by using an IR algorithm. A
new specialized detector (Rk,Fk) is fine-tuned by the specialized dataset in the
training step, which will become the input of the prediction step in the next iteration
k = k + 1. A final specialized detector (RK ,FK) is generated when a number of
iterations is reached. The red rectangles in the output image of update step mean
that samples are selected by our suggested likelihood function and the blue ones
mean that samples are removed.
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Figure 5.5: Description of tracklet steps. Given a set of samples, a feature extraction
block allows to define the characteristics of each sample. The latter is character-
ized by a position and an appearance information determined by a color histogram
(HSV). After that, a tracklet generation block is used to construct initial tracklets
by association of samples. The association between the samples is done according
to calculate IoU overlap and appearance similarity between samples in successive
frames. Next, after initial tracklet constructions, we associate the tracklets having
similar signatures. A signature contains the characteristics of appearance, position,
speed and size. The output of the association step is a set of RoI associated to
target objects.

samples. The tracklet tracking method is divided into three main steps: extraction
of features, tracklet generation and tracklet association. The details of the three
main steps are described in the following three points.

5.4.3.1 Feature extraction

According to Figure 5.5, each target sample produced by the prediction step is passed
through the extraction feature block to define the characteristics of each sample.
The latter is characterized by a position produced by the output layer (bounding
box regressor layer) of our MF R-CNN detector and the characteristic vector that
contains appearance information determined by a color histogram (HSV).

5.4.3.2 Tracklet generation

After feature extraction step, initial tracklets (object trajectories) are constructed
by association of samples. The association between the samples is done according
to the IoU overlap and the appearance similarity between the successive frames.
Subsequently, the IoU overlap is calculated by comparing the bounding boxes of
samples in successive frames. After that, we compare the appearance similarity
between the overlapped samples in successive frames. Accordingly, the appearance
similarity is provided by calculating the distance between the two HSV histogram
vectors associated to the overlapped samples.

5.4.3.3 Tracklet association

After initial tracklet constructions, we associate the tracklets having similar signa-
tures. In addition, a signature contains the characteristics of speed determined by a
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Figure 5.6: The red rectangle presents the area in pixels of the considered RoI, the
green rectangle is the area generated by the tracklet tracking algorithm.

Kalman filter [Lee 2004], appearance information determined by a color histogram
(HSV), position and size of each tracklet.

The output of the association step is a set of RoIs associated to target objects
(as depicted in Figure 5.5), each RoI is defined by: {a(n)k , b

(n)
k , c

(n)
k , d

(n)
k , id}, where

(a
(n)
k , b

(n)
k ) are the upper left coordinates of the RoI, (c

(n)
k , d

(n)
k ) are the width and the

height of the RoI box and id is the identifier of object. To assign a weight for each
sample, we calculate an overlap (equation 5.2) that compares the RoI associated to
one sample in the frame n with the outputs of the association step in that frame.

π
(n)
k

.
=

2(RoI_AR × RoI_AR1)

RoI_AR+RoI_AR1
(5.2)

where RoI_AR is the area in pixels of the sample x̃(n)
k in the frame n and RoI_AR1

is the area of each RoI generated by the tracklet tracking algorithm in that frame
(see Figure 5.6).

The likelihood function assigns a high weight to a positive samples if it has a
weight value π(n)k that exceeds a fixed threshold αp, which is determined empirically.
Otherwise, it will be associated to zero (as shown in equation 5.3).

π
(n)
k =

{
π
(n)
k if π

(n)
k ≥ αp

0 if π
(n)
k < αp

(5.3)

Considering the proposed likelihood function, the selection of samples associated
to the right label and the removal of the false samples become efficient. The output
of this function is a set of weighted target samples.
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5.5 Experiments

In this section, we evaluate the effectiveness of the proposed specialized framework
with the relevant ones on several public and private datasets including the CUHK
[Wang 2012a], Logiroad [Mhalla 2016b] and Traffic Night datasets.

5.5.1 Datasets

The PASCAL VOC 2007 dataset [Everingham 2010] is utilized to train the proposed
generic MF R-CNN. In the experiments, we use 713 annotated cars and 2,008 people,
to fine-tune the generic MF R-CNN detector.

The evaluation is achieved on three datasets:

• CUHK Square dataset [Wang 2012a]: This is a public video sequence of
road traffic which lasts 60 minutes. 352 images are used for specialization,
uniformly extracted from the first half of the video. 100 images are utilized for
the test, extracted from the latest 30 minutes. The annotations are provided by
Wang [Wang 2012a] for pedestrian detection (noted CUHK_WP). However,
we notice that some strong annotation errors were made in the public ground
truth, so we use the annotation provided by Mhalla [Mhalla 2016b] (noted
CUHK_MP).

• Logiroad Traffic dataset [Mhalla 2016b]: This is a private video sequence
of road traffic which lasts 20 minutes. We use 600 images for specialization,
extracted uniformly from the first 15 minutes of the video. 100 images are
utilized for the test, extracted from the latest 5 minutes. the annotations are
available for cars (Logiroad_MV)

• Traffic Night dataset: This is a private video sequence of road traffic at
nighttime which lasts 4 minutes. We use 300 images for specialization, ex-
tracted uniformly from the first 3 minutes of the video. 100 images are utilized
for the test, extracted from the last minute. The annotations are available for
cars (noted NightRoad_MV)

5.5.2 Implementation details

We use the pre-trained VGG16 deep network [Simonyan 2014] to initialize the
MF R-CNN, which has been used in several state-of-the-art detection approaches
[Girshick 2015b][Ren 2015b]. The first seven convolutional layers and the three max
pooling layers of the VGG16 network are used as shared convolutional layers to pro-
duce feature maps from the entire input image. The remaining layers of the VGG16
network are used to initialize the MF R-CNN. The fourth max pooling layer is re-
moved to produce larger feature maps. We change the rest of the max pooling layers
by stochastic pooling ones.

Following the Faster R-CNN network [Ren 2015b], the last max pooling layer of
the VGG16 network is replaced by the RoI pooling layer to pool the feature maps
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of each object proposal into a fixed resolution (7*7). The final fully connected layer
and softmax are replaced with two sibling fully-connected layers. The MF R-CNN
is trained with a stochastic gradient descent with a momentum of 0.9 and a weight
decay of 0.0005. The MF R-CNN is implemented based on the publicly available
Caffe platform [Jia 2014]. For training, the first four convolutional layers in the
network keep constant parameters initialized from the pre-trained VGG16 model.

For the training parameters and the number of iterations of the specialization
process, we utilize the same ones detailed in chapter 3. Please refer to section 3.4.1
in chapter 3 for more implementation details.

5.5.3 Evaluated algorithms

Performance evaluation is done in terms of recall False Positives Per Image (FPPI)
curves. The PASCAL 50 percent overlap criteria [Everingham 2010] are used to give
a score for the detection bounding boxes. The specialization framework is compared
with several state-of-the-art ones:

• Wang (2014) [Wang 2014b]: A specific-scene detector was trained on only
relevant samples chosen from both source and target datasets.

• Htike (2014) [Htike 2014]: A non-iterative specialization framework was used
to specialize a pedestrian detector to video scenes.

• Mao (2015) [Mao 2015]: A specialization framework was proposed to auto-
matically train scene-specific pedestrian detector based on tracklets.

• Faster R-CNN (2015) [Ren 2015b]: A generic detector used a deep convolu-
tional network for both localization and detection of general objects.

• Maamatou (2016) [Maâmatou 2016c]: A specialized framework was applied
to specialize a generic HOG-SVM classifier to a specific video sequence for
detecting traffic objects.

• SMC Faster R-CNN (2016) [Mhalla 2016b]: A specialization framework was
based on the SMC filter to specialize a generic Faster R-CNN detector.

• Generic MF R-CNN: It is the proposed detector which is fine-tuned on the
generic dataset. This is the baseline for our comparison.

5.5.4 Results and analysis

Given each annotation dataset, we present the ROC curves of the generic MF R-
CNN, the specialized MF R-CNN and the available state-of-the-art algorithms. For
comparison, two synthetic tables are given: Table 5.3 for pedestrian detection and
Table 5.4 for car detection. The true detection rate is compared to the constant
FPPI in several methods related to several datasets and annotations. Furthermore,
the two last lines of both tables give the improvement between the generic MF R-
CNN and the generic Faster R-CNN, and the second one gives the improvement
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between the generic MF R-CNN and the specialized one. The latter has a better
detection rate than the generic detector in all the achieved experiments. The median
improvement is 40% in all traffic datasets.

• Comparison between generic Faster R-CNN and generic MF R-
CNN:

Table 5.4 and the ROC curves in Figure 5.8 show that the suggested generic
MF R-CNN detector outperforms the generic Faster R-CNN on all public and
private datasets with several annotations. The median improvement is 20%.

• Comparison with state-of-the-art specialization frameworks:

According to Table 5.4, for the CUHK pedestrian detection, the specialized MF
R-CNN outperforms all the other state-of-the-art specialization frameworks.
Besides, the detection rate achieved with Mhalla [Mhalla 2016b] annotations
on CUHK_MP is nearly 90% for 0.5 FPPI. However, despite the wrong anno-
tations given by Wang (CUHK_WP in Table 5.4), the specialized MF R-CNN
also exceeds the six other specialized detectors of Wang (2014), Htike (2014),
Mao (2015), Maamatou (2016) and Mhalla (2016) respectively by 45%, 49%,
58%, 62% and 65%. For the Logiroad car detection (Table 5.4) with the anno-
tations given by [Mhalla 2016b], the specialized MF R-CNN is ranked first and
exceeds the SMC Faster R-CNN [Mhalla 2016b] and the specialized detector
suggested by Maamatou (2016).

Table 5.3: Comparison of detection rate for pedestrian with state of art (at 0.5
FPPI)

XXXXXXXXXXXApproach
Dataset CUHK_WP CUHK_MP

Wang [Wang 2014b] 0.45 –
Htike [Htike 2014] 0.49 –
MAO [Mao 2015] 0.58 –
Generic Faster R-CNN [Ren 2015b] 0.60 0.69
Maamatou [Maâmatou 2016c] 0.62 0.58
SMC Faster R-CNN [Mhalla 2016b] 0.65 0.88
Generic MF R-CNN 0.71 0.74
Specialized MF R-CNN 0.75 0.90
Improvement/MF R-CNN & Faster R-CN 18% 6%
Improvement/Generic MF R-CNN 6% 22%

Figure 5.7 shows the improvement of the specialized MF R-CNN detector in
detecting small-sized traffic objects and in removing the false positive samples com-
pared to the SMC Faster R-CNN one [Mhalla 2016b].

One can notice after multiple experiments that the generic MF R-CNN, fine-
tuned on the PASCAL VOC 2007 dataset, has a poor detection rate resulting in a
limitation of traffic-object annotations.
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Table 5.4: Comparison of detection rate for car with state of art (at 1 FPPI)
XXXXXXXXXXXApproach

Dataset Logiroad_MV

Generic Faster R-CNN [Ren 2015b] 0.40
Maamatou [Maâmatou 2016c] 0.47
SMC Faster R-CNN [Mhalla 2016b] 0.70
Generic MF R-CNN 0.48
Specialized MF R-CNN 0.75
Improvement /MF R-CNN & Faster R-CNN 20%
Improvement /Generic MF R-CNN 57%

Figure 5.7: Improvement of our proposed specialization framework in detecting
small-sized objects and in removing the false positive samples on the Logiroad Traffic
dataset: The left image shows the detection results for the specialized MF R-CNN
detector and the right one for the SMC Faster R-CNN[Mhalla 2016b].

• Effect of likelihood function:

The results demonstrate that the proposed likelihood function based on the
tracklet tracking algorithm improves the detector performance and accelerates
the convergence of the specialization process. Figure 5.9 presents the efficiency
of the suggested likelihood function to correctly select positive samples from a
target scene. Furthermore, we cannot say that this choice is the best because
it is possible to improve the likelihood function with more spatio-temporal
information like contextual information or optical flow.

5.5.5 Results and analysis in nighttime conditions

Table 5.5 provides the working of our specialization framework in nighttime condi-
tions with a superior performance on the Traffic Night dataset.

The specialized MF R-CNN outperforms the generic one, and the median im-
provement is 57%.
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(a)

(b)

(c)

Figure 5.8: ROC curves for comparison between generic Faster R-CNN detector
(magenta curves) and proposed MF R-CNN one (red curves), performed on (a)
CUHK_WP, (b) Logiroad_MV and (c) CUHK_MP datasets.
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Figure 5.9: Efficiency of proposed likelihood function. The red blobs in the left
image present the inputs of the likelihood function and the blue ones in the right
image are the outputs.

Table 5.5: Comparison of detection rate for Traffic Night dataset with state of art
(at 1 FPPI)

XXXXXXXXXXXApproach
Dataset NightRoad _MV

Generic Faster R-CNN [Ren 2015b] 0.27
SMC Faster R-CNN [Mhalla 2016b] —
Generic MF R-CNN 0.38
Specialized MF R-CNN 0.60
Improvement /MF R-CNN & Faster R-CNN 40%
Improvement /Generic MF R-CNN 57%

5.6 Proposed embedded system

This section details the implementation of our proposed system "Traffic system" for
multi-traffic object detection.

Due to the performance and computation efficiency of the multi-traffic object
detector generated by our specilalization framework, we propose to deploy our frame-
work on a small and power efficient device like the NVIDIA Jetson embedded plat-
form with a powerful GPU onboard, in order to provide an embedded system for
traffic surveillance. In this section, we analyze the Jetsonâs suitability by bench-
marking the run-time of our specialized detector in comparison to a high perfor-
mance GPU. Exemplary, we port to this platform an embedded traffic system for
Traffic analysis and particularly focuses on the problem of detecting and categorizing
traffic objects on several traffic scenes.

For the hardware components (Figure 5.10) of the proposed embedded system,
we use the recent mobile device, the Tegra TX2 board. The Tegra TX2 device is
a technology developed by NVIDIA in the embedded system category. This device
delivers the performance required for the latest visual computing applications. It is
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built around an NVIDIA Pascal-family GPU and loaded with 8 GB of memory and
59.7 GB/s of memory bandwidth , 64-bit CPUs, and a camera with 5 mega pixels.
Table 5.6 provides more technical specification of the hardware components.

Table 5.6: Technical specification details of hardware components
Component Specification
Camera 5 mega pixel
GPU NVIDIA Pascal, 256 CUDA cores
CPU HMP Dual Denver 2/2 MB L2 + Quad ARM A57
Operating system Ubuntu Linux 16.04 LTS
Memory 8 GB 128 bit LPDDR4 59.7 GB/s
CSI Up to 6 cameras | 1400 Mpix/s
Connectivity Connects to 802.11ac Wi-Fi
Networking 1 Gigabit Ethernet
Storage 16 GB eMMC, SDIO, SATA

To run our specialized deep detector on the NVIDIA Jetson TX2 device, we
use the Caffe deep learning framework [Jia 2014] compiled for GPU and Python
programming language. The specialized MF R-CNN network is able to recognize
up to 4 classes of traffic objects including pedestrians, cars, buses and motorbikes.

In this part, we explore the running of the DCNN architectures including :
VGG16 [Simonyan 2014], ZF [Zeiler 2014] and CNN_M_1024 [Chatfield 2014] for
multi-object detection on the NVIDIA Jetson TX2 embedded platform. In Table 5.7,
we summarize the running time of our suggested specialized detector on NVIDIA
Jetson TX2 and the performance of different deep architectures explored in our
work. According to Table 5.7, to run our embedded system with the NVIDIA Jetson

Table 5.7: Description of running our specialized detector on the NVIDIA Jetson
TX2 through different deep architectures

hhhhhhhhhhhhhhhhSpecification
Architecture VGG16 ZF CNN_1024

Running time — 5 fps 2.5 fps
Performance (mAP%) 85.1 83.3 69.2

TX2, we choose the ZF architecture for the suggested deep detector thanks to its
performance and speed on object detection. As mentioned in Table 5.7, the NVIDIA
Jetson TX2 embedded platform can not run with the VGG16 deep architecture.

In order to obtain a traffic surveillance system which runs in real-time, we spe-
cialize other recent detectors like SSD 300 [Liu 2016] and SSD with MobileNet archi-
tecture [Howard 2017]. After that, we deploy these latter on the NVIDIA embedded
platform. Table 5.8 summarizes the obtained results.

According to Table 5.8, we illustrate that our proposed embedded system can
work on real-time with a specialized MobileNet-SSD detector (20 fps).

The resulting product provides an intelligent system for monitoring and securing
transport infrastructure. It is composed of several processing blocks, allowing both
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Figure 5.10: Image of hardware components of proposed embedded system

Table 5.8: Description of running specialized detectors on the NVIDIA platform.
````````````̀Specification

Detector MobileNet-SSD MF R-CNN SDD 300

Running time 20 fps 5 fps 9 fps
Performance (mAP%) 85.5 83.3 80.0

the analysis and automatic interpretation of observed scenes as well as a self-decision
system. We mainly target our system toward transport infrastructure (road, high-
way ...) and intelligent vehicles.

5.7 Conclusion

In this chapter, we have put forward an embedded system for multi-object detection
in traffic surveillance, which includes a new architecture of a deep detector adopted
from the Faster R-CNN and an extension of the SMC specialization framework for
a traffic object detector. Given a generic detector and a target video sequence, this
framework automatically provides a specialized traffic-object detector. The exten-
sive experiments have demonstrated that the proposed approach has produced a
robust traffic object detector which is superior in detecting traffic objects in differ-
ent scenes and in both day and night conditions. This detector has surpassed the
state-of-the-art performance on several challenging benchmarks.
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Conclusion
In this PhD thesis, we have been interested in video sequence analysis; particularly,
we have been focused on the problem of detecting and tracking multi-objects in
video sequences. This thesis integrates three main contributions.

First, we have presented a transfer learning contribution based on the formalism
and the theory of the SMC filter to specialize a DCNN detector to a particular
scene, taking into account the advantages of deep learning and transfer learning as
well as the need for specialization of a deep detector. Given the significant drop in
the performance of a generic detector when applied to a specific scene due to the
large variation between the source training dataset and the target scene, we have
proposed an automatic specialization framework in order to specialize a generic deep
detector.

The suggested framework uses different strategies based on the SMC filter steps
to approximate iteratively the target distribution as a specialized dataset composed
of samples from the target domain. These samples are selected according to their
importance of weights, reflecting the likelihood that they belong to the target dis-
tribution. Actually, the specialized dataset is used to fine-tune a DCNN detector to
increase the detection performance in the target scene.

Furthermore, the suggested framework uses a likelihood function which utilizes
an efficient combination between the information given by the output layer of the
DCNN model and spatio-temporal information extracted from the target sequence,
to favor the weighting of target samples associated to the right label. This function
permits decreasing the risk of introducing wrong labelled examples in the specialized
dataset and accelerating the convergence of the specialization process.

Given a generic detector and a target video sequence, the proposed framework
automatically provides a robust specialized detector. The experiments have shown
that the performance of the specialized detector outperforms the generic one and
the state-of-the-art performance on three challenging datasets for multi-object de-
tection. Moreover, the suggested framework is a generic transfer learning framework
in which many strategies can be integrated in the SMC steps to increase the detec-
tion accuracy. Also, the proposed framework is generic and can be applied with any
DCNN detector.

In addition, some improvements can be applied to ameliorate the suggested
framework by proposing other strategies for the SMC steps. For example, the likeli-
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hood function can be improved with more complex visual cues like the optical flow
or the contextual information to enhance the weighting of positive samples.

The second contribution is focused on tracking multi-objects based on exploiting
the concept of interlaced videos. The proposed MOT framework is based on an
interlacing strategy, which is utilized to combine frames with different interlacing
configurations, and an interlaced DCNN detector, which is specialized to detect
objects in interlaced images. In particular, by interlacing multiple frames, a DCNN
detector is encouraged to exploit an implicit temporal cue, despite processing a single
input at a time. Moreover, some interlacing strategies can be proposed to skip frames
and reduce complexity during tracking, while maintaining good performance.

The MOT framework consists in improving the tracking performances and to op-
erate under tracking challenges such as occlusion, intersection and congestion. The
proposed framework implies that annotated video sequences have to be available
to train the specialized interlaced DCNN. Nevertheless, the results demonstrate
that the performance of the MOT framework outperforms the baseline one and
the state-of-the-art tracking performance on several challenging datasets. The sug-
gested tracking framework is generic and can be utilized with different association
algorithms.

The last contribution is considered as an applicative contribution that presents
an extension of the SMC specialization framework with a new verification strategy
based on a tracking algorithm, which is used to correctly select positive samples
from the target scene, and a new DCNN detector adopted from the Faster R-CNN
model. The proposed improvements over the related SMC framework is to extend
the likelihood function suggested in the SMC framework by utilizing an efficient
tracking method based on tracklets, so as to assign a weight for each proposal
sample. The tracklet method is used to decrease the risk of detector drifting during
iterations by reducing the possibility of introducing wrong labelled examples in the
specialized dataset. Furthermore, we put forward a new deep detector inspired from
the Faster R-CNN detector which performs better in detecting small-sized objects.

Moreover, we can apply our framework to specialize detectors for both mobile
and stationary cameras and in both day and night conditions. On the contrary, the
related SMC specialization framework can be used only with stationary camera and
only in day time due to the limitation of its likelihood function which is based on a
classical background subtraction algorithm.

Extensive experiments have demonstrated that the proposed contribution has
produced a robust traffic object detector in different scenes and in both day and night
conditions. This specialized detector has surpassed the generic one and the state-
of-the-art performance on several challenging benchmarks. Taking into account
the performance of the new specialized detector in several traffic scenes, we have
deployed the latter in an embedded system for traffic surveillance applications.
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Perspectives
Based on the obtained results, the proposed automatic frameworks allow improving
the detection and tracking performances in a specific scene without human interven-
tion. These frameworks are generic and can be used with any DCNN detector and
with any association algorithms. However, several perspectives can be envisaged.

As mentioned in chapter 4, the suggested MOT framework implies that anno-
tated video sequences have to be available to train the specialized interlaced DCNN.
Accordingly, if we want to apply the MOT framework on new videos, we must find
a way to generate these annotations automatically.

As a first perspective, we will propose an automatic specialization system using
domain adaptation algorithms for the MOT. The main idea consists in utilizing the
SMC specialized framework to automatically generate the annotated input tracking
video to perform the interlacing dataset for training the interlaced deep detector.
A global synoptic of the suggested automatic specialization system for the MOT is
illustrated in Figure 6.1. The proposed system includes two parts: The first one
aims to automatically generate the input video annotations by exploiting the SMC
framework for interlaced detector specialization. The second part of the proposed
system is the MOT tracking framework provided in chapter 4.

As a second perspective, we propose to study the parameters of each stage of the
suggested specialization framework, a specifically the update and sampling stages,
so as to improve the performance of specialization and accelerate its convergence.
Accordingly, we will deal with an extension of the framework to improve the likeli-
hood function by using a new strategy of verification based on more complex visual
cues like the optical flow or the contextual information. Besides, we will study the
possibility of injecting some spatio-temporal information into the Faster R-CNN
network in order to enhance the detection performance.

As a third perspective, we will study the interlacing configurations in the tracking
framework to reduce the computation time and to maintain a good performance.

In our work, we have studied the scientific contributions of multi-object special-
ization in the detection and tracking tasks. One more perspective is to perform
the study of a set of components of our chain that influence time and accuracy
information, so as to improve the stability, precision and speed of our proposed
chain.
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Another interesting perspective is to extend our work to other types of sensors
like 3D cameras, Kinect, thermal imaging camera, Dynamic Vision Sensor (DVS)
and lidar. Figure 6.2 shows examples of images captured with various types of sen-
sors on which we will study the possibility of applying our specialization framework
for detection and tracking tasks. Also, we will evaluate the specialization frame-
works with other types of public datasets such as Kitti [Geiger 2012] and Pascal3D+
[Xiang 2014].

Figure 6.2: Examples of images captured with different types of sensors. (a) Image
captured by DVS. (b) Image captured by lidar sensor. (c) Image captured by thermal
imaging camera.

As a sixth perspective, we will propose to extend the transfer learning to special-
ize DCNN semantic segmentation algorithms to a specific scene in order to improve
its segmentation performance in that scene. Differently from our previous work, the
idea consists in suggesting a new specialization framework inspired from the Monte
Carlo filter to automatically specialize a scene-specific segmentation algorithm. The
proposed framework will use different strategies based on the SMC filter steps to
approximate iteratively the target distribution as a set of binary masks that say
whether or not a given pixel is part of an object, to specialize the segmentation
algorithm towards a target scene. Moreover, we will put forward a new likelihood
function based on the optical flow, which will be utilized to favor the selection of
pixels associated to the right label. These pixels are selected according to their
importance of weights, reflecting the likelihood that they belong to the target dis-
tribution. The weight of each pixel is related to a combination between a the optical
flow information extracted from the target sequence and the confidence score of each
pixel given by the output layer of the DCNN segmentation algorithm. Figure 6.3
illustrates the semantic segmentation task.

Another perspective of our work is the extension of our frameworks to online spe-
cialization, which seems to be an interesting idea since our specialization frameworks
will be carried out online for detection and tracking tasks.

As a final applicative perspective, we will address the possibility of deploying
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Figure 6.3: Illustration of semantic segmentation task. (a) depicts the input image
and (b) is the output one generated by an instance segmentation algorithm.

the generated specialized deep detector or tracker in embedded devices with limited
resources such as embedded devices based on CPUs, mobile phone and FPGAs with
only several megabyte resources. The idea consists in proposing new acceleration
and compression method to reduce the complexity of the DCNN specialized detector
network. In our case, our application needs compacted models from pretrained
models so the best solution is to use the pruning strategy which can be applied to
explore the redundancy in the specialized-model parameters.
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