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Résumé 

 

Pendant le développement, la coordination remarquable d’évènements moléculaires et 

cellulaires mène à la production du cortex cérébral qui orchestre les fonctions sensori-

motrices et cognitives. Son développement s’effectue par étapes : les cellules gliales 

radiaires (RGs) – les cellules souches neurales (NSCs) du cerveau en développement – 

et les cellules progénitrices de la zone ventriculaire (VZ) et de la zone sous ventriculaire 

(SVZ) génèrent séquentiellement des vagues distinctes de nouveaux neurones qui 

formeront les différentes couches corticales. Autour de la naissance, les RGs changent 

de devenir et produisent des cellules gliales. Cependant, une fraction d’entre elles persiste 

tout au long de la vie dans la SVZ qui borde le ventricule, perdant au passage leur 

morphologie radiale. Ces NSCs produisent ensuite les différents sous types 

d’interneurones du bulbe olfactif ainsi que des cellules gliales en fonction de leur 

emplacement d’origine et de leur localisation dans la SVZ périnatale. 

 

Ces observations soulèvent d’importantes questions non résolues sur 1) le codage 

transcriptionnel régulant la régionalisation de la SVZ, 2) le potentiel des NSCs postnatales 

à la régénération cellulaire et à la réparation cérébrale, et 3) la relation de lignage et les 

spécificités transcriptionnelles entre les NSCs et leur descendants. 

 

Mon travail de doctorat s’est construit à partir d’une étude transcriptionnelle des différents 

microdomaines de la SVZ postnatale. Cette étude surlignait le haut degré d’hétérogénéité 

transcriptionnelle entre les NSCs et les progéniteurs et identifiait des régulateurs 

transcriptionnels clés soutenant la régionalisation de la SVZ. J’ai développé des 

approches bio-informatiques pour explorer ces banques de données et connecté 

l’expression de facteurs de transcription avec la génération régionale de lignages neuraux 

distincts. J’ai ensuite développé un modèle d’ablation ciblée qui peut être utilisé pour 

étudier le potentiel régénératif des progéniteurs postnataux dans divers contextes. 

Finalement, j’ai participé au développement d’une procédure pour explorer et comparer 

des populations sélectionnées de progéniteurs pré et postnataux à l’échelle de la cellule 

unique. 

 

Objectif 1 : Des expériences de transcriptomique ainsi que de cartographie ont été 

réalisées pour étudier la relation entre l’expression régionale de facteurs de transcription 

par les NSCs et l’acquisition de leur devenir dans des lignages neuraux distincts. Nos 

résultats suggèrent un engagement précoce des NSCs à produire des types cellulaires 

définis selon leur localisation spatiale dans la SVZ et identifient la protéine HOPX comme 

un marqueur d’une sous population biaisé à générer des astrocytes. 
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Objectif 2 : J’ai mis au point un modèle de lésion corticale qui permet l’ablation ciblée de 

neurones de couches corticales définies pour étudier la capacité régénérative et la 

spécification appropriée des progéniteurs corticaux postnataux. Une analyse quantitative 

des régions adjacentes, incluant la partie dorsale de la SVZ, a révélé une réponse 

transitoire de populations de progéniteurs définis. 

 

Objectif 3 : Nous avons développé une lignée de souris transgénique nommée 

Neurog2CreERT2Ai14, qui permet le marquage de façon conditionnelle de cohortes de 

progéniteurs glutamatergiques et de leurs descendants. Nous avons utilisé des approches 

de cartographie et montré qu’une large fraction de ces progéniteurs persiste dans le 

cerveau antérieur postnatal après la fermeture de la période de neurogénèse corticale. Ils 

ne s’accumulent pas pendant le développement embryonnaire mais sont produits par des 

RGs qui persistent après la naissance dans la SVZ et qui continuent de générer des 

neurones corticaux, bien que l’efficacité soit faible. Le séquençage d’ARN sur cellule 

unique a révélé une dérégulation transcriptionnelle qui corrèle avec le déclin progressif 

observé in vivo de la neurogénèse corticale. 

 

Ensemble, ces résultats soulignent le potentiel des études transcriptomiques à résoudre 

mais aussi à soulever des questions fondamentales comme les changements 

trancriptionnels intervenant dans une population de progéniteurs au cours du temps et 

participant aux changements de leur destinée. Cette connaissance sera la clé du 

développement d’approches novatrices pour recruter et promouvoir la génération de types 

cellulaires spécifiques, incluant les sous-types neuronaux dans un contexte pathologique. 
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Abstract 

During development, a remarkable coordination of molecular and cellular events leads to 

the generation of the cortex, which orchestrates most sensorimotor and cognitive 

functions. Cortex development occurs in a stepwise manner: radial glia cells (RGs) - the 

neural stem cells (NSCs) of the developing brain - and progenitor cells from the ventricular 

zone (VZ) and the subventricular zone (SVZ) sequentially give rise to distinct waves of 

nascent neurons that form cortical layers in an inside-out manner. Around birth, RGs 

switch fate to produce glial cells. A fraction of neurogenic RGs that lose their radial 

morphology however persists throughout postnatal life in the subventricular zone that lines 

the lateral ventricles. These NSCs give rise to different subtypes of olfactory bulb 

interneurons and glial cells, according to their spatial origin and location within the 

postnatal SVZ.  

These observations raise important unresolved questions on 1) the transcriptional coding 

of postnatal SVZ regionalization, 2) the potential of postnatal NSCs for cellular 

regeneration and forebrain repair, and 3) the lineage relationship and transcriptional 

specificities of postnatal NSCs and of their progenies. 

My PhD work built upon a previously published comparative transcriptional study of 

defined microdomains of the postnatal SVZ. This study highlighted a high degree of 

transcriptional heterogeneity within NSCs and progenitors and revealed transcriptional 

regulators as major hallmarks sustaining postnatal SVZ regionalization. I developed 

bioinformatics approaches to explore these datasets further and relate expression of 

defined transcription factors (TFs) to the regional generation of distinct neural lineages. I 

then developed a model of targeted ablation that can be used to investigate the 

regenerative potential of postnatal progenitors in various contexts. Finally, I participated to 

the development of a pipeline for exploring and comparing select populations of pre- and 

postnatal progenitors at the single cell level.   

Objective 1: Transcriptomic as well as fate mapping were used to investigate the 

relationship between regional expression of TFs by NSCs and their acquisition of distinct 

neural lineage fates. Our results supported an early priming of NSCs to produce defined 

cell types depending of their spatial location in the SVZ and identified HOPX as a marker 

of a subpopulation biased to generate astrocytes. 

Objective 2: I established a cortical lesion model, which allowed the targeted ablation of 

neurons of defined cortical layers to investigate the regenerative capacity and appropriate 
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specification of postnatal cortical progenitors. Quantitative assessment of surrounding 

brain regions, including the dorsal SVZ, revealed a transient response of defined 

progenitor populations. 

Objective 3: We developed a transgenic mouse line, i.e. Neurog2CreERT2Ai14, which allowed 

the conditional labeling of birth-dated cohorts of glutamatergic progenitors and their 

progeny. We used fate-mapping approaches to show that a large fraction of Glu 

progenitors persist in the postnatal forebrain after closure of the cortical neurogenesis 

period. Postnatal Glu progenitors do not accumulate during embryonal development but 

are produced by embryonal RGs that persist after birth in the dorsal SVZ and continue to 

give rise to cortical neurons, although with low efficiency. Single-cell RNA sequencing 

revealed a dysregulation of transcriptional programs, which correlates with the gradual 

decline in cortical neurogenesis observed in vivo. 

Altogether, these data highlight the potential of transcriptomic studies to unravel but also 

to approach fundamental questions such as transcriptional changes occurring in a 

population of progenitors over time and participating to changes in their fate potential. This 

knowledge will be key in developing innovative approaches to recruit and promote the 

generation of selected cell types, including neuronal subtypes in pathologies. 
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Long Résumé 

Une activité germinale persiste dans le cerveau postnatal des mammifères dans des 

niches spécialisées, à savoir le gyrus denté (DG) de l'hippocampe et la zone sous-

ventriculaire (SVZ) qui entoure le ventricule latéral (LV). Les cellules souches neuronales 

(NSCs) de la SVZ postnatale se divisent et donnent naissance à des progéniteurs 

transitoires (TAPs) qui génèrent des neuroblastes migrant via la voie de migration rostrale 

(RMS) vers le bulbe olfactif (OB), où ils se différencient en neurones. La SVZ génère en 

outre des progéniteurs gliaux qui envahissent le parenchyme local. Récemment, de plus 

en plus de preuves ont mis en évidence la nature hétérogène de la SVZ postnatale en ce 

qui concerne ses différents microdomaines générant des lignages neuraux distincts. Par 

exemple, les progéniteurs des neurones GABAergiques sont principalement dérivés de la 

SVZ latérale (lSVZ), tandis que la production des progéniteurs des neurones 

glutamatergiques est limitée à la SVZ dorsale (dSVZ). De plus, des oligodendrocytes 

postnataux sont générés à partir de la dSVZ. 

Cette hétérogénéité a pour origine le développement embryonnaire précoce et est 

intrinsèquement codée par l'expression de facteurs de transcription (TFs) spécifiques. 

Ainsi, l’expression régionalisée de TFs enrichis dans des régions du cerveau antérieur 

embryonnaire persiste dans les microdomaines correspondants de la SVZ postnatale. 

Nous avons récemment décrit les hétérogénéités transcriptionnelles des différentes 

populations de cellules contenues dans la SVZ postnatale. Ainsi, un nombre élevé et 

inattendu de transcrits (1900) étaient exprimés de manière différentielle dans des NSCs 

et TAPs isolés à partir de microdomaines définis de la SVZ. Nous avions observé que 

l'hétérogénéité transcriptionnelle observée entre les NSCs latérales et dorsales (dNSCs 

et lNSCs) était due à l'expression de facteurs de transcription. Notamment, la protéine 

HOPX a été identifiée avec une expression abondante spécifiquement dans les dNSCs. 

HOPX est une petite protéine atypique (73 acides aminés) de la famille homeobox 

dépourvue de sites de liaison à l'ADN. L'expression d’Hopx est minimale au jour 

embryonnaire 14,5 (E14,5) et atteint un pic autour d’E16,5 avec un gradient rostromédial 

à caudolatéral. La protéine HOPX est exprimée dans les cellules souches du gyrus denté 

de l’hippocampe chez l’adulte, alors qu'elle est décrite comme étant systématiquement 

absente de la SVZ adulte. De plus, HOPX a récemment fait l'objet d'une attention 

croissante en raison de son expression dans les NSCs quiescentes, dans les astrocytes 

matures du DG de la souris adulte (Li et al., 2015), ainsi que dans les cellules de la glie 

radiaire externe (oRG) du cerveau humain en développement (Pollen et al., 2015; 

Thomsen et al., 2015a). 
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Dans mon premier chapitre expérimental, des approches transcriptomiques et de 

cartographie du devenir cellulaire ont été utilisées pour explorer la relation entre 

l'expression régionale de facteurs de transcription par des cellules souches neurales 

(NSCs) et leur spécification dans des lignages neuraux définis. En particulier, nous avons 

caractérisé le lignage et le profil d’expression spatio-temporelle d’HOPX dans la SVZ 

postnatale. J'ai développé en collaboration avec Q. Lo Giudice un outil bio-informatique 

appelé Heatmap Generator qui vise à combiner et à comparer des ensembles de données 

de transcription publiés afin de réaliser une méta-analyse. J'ai également effectué des 

expériences histologiques ainsi qu'une méta-analyse d'une expérience de séquençage 

d'ARN sur cellule unique récemment publiée. Nos résultats démontrent un amorçage 

précoce des NSCs pour la genèse de types cellualires définis en fonction de leurs 

localisations spatiales dans la SVZ et identifient HOPX comme marqueur d'une sous-

population amorcée vers un destin astrocytaire. 

Dans cette étude, les TFs qui régulent des lignages neuronaux distincts ont été 

caractérisées pour leur enrichissement dans des microdomaines spécifiques de la SVZ. 

En sélectionnant l'un de ces transcrits, nous montrons que les NSCs se distinguent 

spatialement et qu'elles sont amorcées dans la différenciation vers des destins neuronaux 

spécifiques. Nos résultats identifient Hopx comme un gène révélant une hétérogénéité 

accrue de la SVZ dorsale (dSVZ) régulant certains aspects de l’astrogenèse. 

La diversité des sous-types de neurones générés par les NSCs de la SVZ après la 

naissance est beaucoup plus grande qu'on ne le pensait. Le concept de régionalisation 

de la SVZ, dans lequel la genèse de lignées neuronales distinctes est régulée 

spatialement et temporellement, est de plus en plus étudié. Les NSCs situées dans les 

microdomaines SVZ proviennent de régions spécifiques du cerveau antérieur en 

développement (Fuentealba et al., 2015a) et génèrent une grande diversité de cellules 

neurales, y compris des sous-types neuronaux, en fonction de l'expression de 

programmes de transcription spécifiques. En conséquence, l'expression des TFs est 

directement corrélée à l'acquisition de destins neuronaux définis, un concept qui a été 

exploré dans cette première étude. 

Nous avons tiré parti du transcriptome du génome entier des NSCs postnatales 

spécifiques aux différentes régions de la SVZ, récemment décrit (Azim et al., 2015). Une 

méta-analyse des TFs exprimés dans les NSCs latérales et dorsales avec des jeux de 

données de sous-populations neuronales et gliales isolées à partir du cerveau antérieur 

(Cahoy et al., 2008) a mis en évidence des réseaux transcriptionels correspondant aux 
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lignages dérivés des NSCs de chaque micro-domaines. Nous démontrons ainsi que 

l’expression précoce de TFs spécifiques amorcent les NSCs dans un destin spécifique. 

Une tel amorçage précoce est corroboré par un séquençage de l’ARN en cellule unique 

des NSCs de la SVZ adulte (Llorens-Bobadilla et al., 2015). L'identification de marqueurs 

de NSCs régionalisées, tels que HOPX, facilitera grandement l'exploration de 

l'hétérogénéité spatiale et de la nature restreinte des NSCs lors de la génération de lignées 

neuronales spécifiques. En utilisant deux approches distinctes, nous démontrons que 

l'expression d’HOPX est limitée à une sous-population de NScs dorsales (dNSCs) alors 

que son expression est minimale dans les NSCs latérales (lNSCs). De plus, nos résultats 

impliquent une association d’HOPX dans le lignage astroglial. De même, au stade 

embryonnaire 17.5 (E17.5), l'ARNm d’Hopx est confiné (20%) à une sous-population de 

cellules gliales radiaires (RGCs) – les cellules souches du cerveau en développement – 

(20%) caractérisée par un enrichissement en marqueurs astrocytaires issus des 

astrocytes de la SVZ adulte. Ceci est en corrélation avec la cartographie récente réalisée 

de manière clonale, du destin des RGCs suggérant une transition neurogénique à 

gliogénique en grande partie incomplète, dans la mesure où seulement une fraction des 

RGCs (estimée à environ 1/6) produit des cellules gliales. Il est important de noter, bien 

que l'expression d’HOPX soit observée dans une sous-population de NSCs produisant 

principalement des astrocytes, HOPX ne peut pas être considérée comme un marqueur 

astrocytaire général. En effet, l'expression d’HOPX est limitée dans l'espace et est donc 

susceptible d'être associée à la génération d'une sous-population d'astrocytes. Des 

études de cartographie de lignage ont révélé que les astrocytes sont localement produits 

selon le site embryonnaire d’origine dans la zone ventriculaire (Tsai et al., 2012). En outre, 

l'analyse transcriptomique d'astrocytes isolés de différentes régions du cerveau révèle une 

expression hétérogène de plusieurs marqueurs astrocytaires. Par exemple, HOPX s'est 

avéré être enrichi dans les astrocytes du cerveau antérieur dorsal (cortex et hippocampe) 

et faiblement exprimé dans les astrocytes des régions sous-corticales (thalamus et 

hypothalamus; Morel et al., 2017). L'hétérogénéité des astrocytes dans le CNS a 

récemment été décrite comme influençant la synaptogenèse et la maturation neuronale 

via la sécrétion de plusieurs protéines de la matrice extracellulaire (Eroglu et Barres, 

2010). De plus, la densité d'astrocytes varie considérablement entre les régions du 

cerveau (Azevedo et al., 2009). Le rôle d’HOPX dans l’acquisition des propriétés et / ou la 

régulation des densités des astrocytes régionaux reste à explorer. 

Les mécanismes par lesquels HOPX assure ses fonctions restent largement inconnus. 

HOPX est un TF atypique qui ne se lie pas directement à l'ADN, mais module d'autres TFs 

et / ou effecteurs de voies de signalisation au niveau post-transcriptionnel. Une interaction 
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d’HOPX avec SRF a été démontrée au cours du développement cardiaque (Shin et al., 

2002), mais il est peu probable qu'elle se produise dans la SVZ où l'expression de SRF 

reste faible (données non présentées). Une fonction plus probable d’HOPX est la 

modulation des voies de signalisation dorsalement actives, telles que les voies BMP et 

WNT (voir aussi Azim et al. 2014; Azim et al. 2017), qui ont été démontrées comme 

raffinant l'astrogenèse avec la neurogenèse au cours de corticogenèse (Gross et al., 1996; 

Takizawa et al., 2001; Tiberi et al., 2012). Une action réciproque entre BMP et WNT a été 

rapportée dans plusieurs populations de progéniteurs (He et al., 2004; Plikus et al., 2008; 

Kandyba et al., 2013; Genander et al., 2014; Song et al., 2014). et peut être intégrée par 

l'expression dHOPX, comme récemment démontré dans les cardiomyoblastes (Jain et al., 

2015). Des études futures visant à manipuler l'activité de ces deux voies de signalisation 

chez les animaux HOPX KO pourraient nous permettre d'aborder ces questions et 

d'étudier le rôle de l'intégration du signal extrinsèque dans la spécification du lignage des 

populations de NSCs voisines. 

Il est intéressant de penser que d'autres voies de signalisation peuvent influencer le profil 

d’expression d’HOPX et pourraient être impliquées dans son évolution chez les primates. 

Curieusement, l'expression d’HOPX dans la SVZ de souris suit la maturation spatio-

temporelle des cellules épendymaires, ce qui peut limiter progressivement le contact des 

RGCs avec le liquide céphalorachidien (Mery et al., 2010). Ceci, combiné à l'expression 

d’HOPX dans les oRGCs, qui manquent de processus apicaux chez les primates, suggère 

qu'un signal inconnu sécrété par dans le liquide céphalo-rachidien pourrait réguler 

l'expression d’HOPX. En résumé, nos travaux démontrent que la dSVZ est beaucoup plus 

hétérogène qu'on ne le pensait auparavant en termes de ségrégation spatiale et 

d’amorçage précoce des NSCs lors de la génération de lignages neuronaux spécifiques. 

L'expression abondante du TF HOPX contribue à l'hétérogénéité intrarégionale de la 

dSVZ chez les rongeurs. 

Dans mon deuxième chapitre expérimental, des approches transcriptomiques et de 

cartographie du devenir cellulaire ont été utilisées pour étudier l’origine, les spécificités 

transcriptionnelles et la compétence des progéniteurs glutamatergiques (Glu) postnataux. 

J'ai établi le pipeline complet de l'isolement des progéniteurs Glu des souris Ng2Creert2Ai14 

- après optimisation des injections de tamoxifène - à l'analyse bioinformatique du 

séquençage d'ARN en cellule unique à l'aide du logiciel Seurat sous R. J'ai également 

effectué des manipulations génétiques in vivo sur des embryons ainsi que sur des 

animaux nouveau-nés pour aborder la question de l'origine et de la compétence des 

progéniteurs Glu. Nos résultats ont montré qu’une grande partie des progéniteurs Glu 
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persistaient dans le cerveau antérieur postnatal après la fermeture de la période de 

neurogenèse corticale. Les progéniteurs postnataux Glu ne s'accumulent pas au cours du 

développement embryonnaire mais sont produits par des cellules gliales radiales 

embryonnaires qui persistent après la naissance dans la zone sous-ventriculaire dorsale 

(dSVZ) et continuent à donner naissance à des neurones corticaux, bien que l’efficacité 

soit faible. Le séquençage d'ARN sur cellule unique révèle une dérégulation des 

programmes transcriptionels corrélée au déclin progressif de la neurogenèse corticale 

observé in vivo. Des manipulations génétiques et pharmacologiques montrent que les 

progéniteurs postnataux sont partiellement permissifs. 

Au cours du développement cortical, les neurones glutamatergiques naissent de 

progéniteurs Glu situés dans la zone ventriculaire (VZ) et la zone sous-ventriculaire (SVZ) 

et s'assemblent pour former les circuits sous-jacents aux fonctions cognitives. Comme 

décrit précédemment, il est généralement admis que la période de neurogenèse corticale 

s’achève autour du jour embryonnaire (E) 17,5 chez la souris, les progéniteurs neuronaux 

changeant alors de destin pour produire des astrocytes (Li et al., 2012). Cependant, une 

fraction importante des progéniteurs neuraux ne change pas de destin. Par exemple, une 

population de progéniteurs subsistant dans la SVZ postnatale contribue à la neurogenèse 

du bulbe olfactif et à la gliogenèse parenchymateuse tout au long de la vie (Doetsch et al., 

1999b). Certains au moins de ces progéniteurs proviennent de cellules de la glie radiaire 

(RGCs) embryonnaires, cyclant lentement ou en quiescence, qui se divisent entre E13.5 

et E15.5 (Fuentealba et al., 2015b; Furutachi et al., 2015). L'analyse de la cartographie de 

leur destinée a montré qu'elles donnaient lieu à des lignages neuronaux et / ou gliaux 

distincts, en fonction de leur localisation dans la SVZ (Fiorelli et al., 2015). Étonnamment, 

plusieurs études suggèrent la persistance des progéniteurs Glu dans la SVZ dorsale 

(dSVZ) jusqu'au début de l'âge adulte (Brill et al., 2009; Winpenny et al., 2011). Nous 

avons utilisé des souris Neurog2Creert2 / tdTom pour marquer de manière permanente et 

spécifique des cohortes synchrones de progéniteurs prénatux et postnataux 

Glutamatergiques afin d'étudier leurs relations de lignage et leurs spécificités 

transcriptionnelles. Nos résultats montrent que les progéniteurs Glu continuent à être 

produits après la fermeture de la période de neurogenèse corticale. Le séquençage d'ARN 

sur cellule unique (scRNA-seq) révèle que les progéniteurs postnataux Glu présentent une 

dérégulation des gènes impliqués dans le métabolisme, la différenciation et la migration, 

parallèlement à un déclin rapide de leur capacité à migrer et à se différencier. Nos données 

suggèrent que cette dérégulation de la transcription chez les progéniteurs de Glu 

postnataux pourrait résulter d'une diminution de la méthylation de la N6-méthyladénosine 

(m6A) de certains gènes proneuronaux. Néanmoins, les progéniteurs postnataux Glu 
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restent partiellement permissifs aux manipulations pharmacologiques et génétiques ce qui 

suggère qu'ils pourraient être recrutés pour une réparation corticale. 

La période périnatale a longtemps été considérée comme une période de gliogenèse 

corticale exclusive associée à la maturation des neurones nés pendant le développement 

embryonnaire et là leur intégration dans des circuits fonctionnels. Cette vision est 

actuellement contestée par la démonstration de la neurogenèse dans des régions 

corticales spécifiques. Ainsi, les progéniteurs GABAergiques s'accumulent dans la 

substance blanche postnatale précoce et donnent naissance à une sous-population 

d'interneurones interstitiels corticaux (Frazer et al., 2017). De plus, il a été démontré que 

la migration des interneurones dans le cortex frontal persistait tôt après la naissance chez 

les rongeurs (Inta et al., 2008; Le Magueresse et al., 2012), ainsi que chez les bébés 

humains (Nogueira et al., 2003). 2017). 

Nos résultats révèlent que cette neurogenèse persistante ne se limite pas à la lignée 

GABAergique mais inclut également les neurones de la lignée glutamatergique. En effet, 

notre travail identifie une petite population de neurones corticaux Satb2/Cux1+ générés à 

la naissance. Les neurones survivants développent des épines et des projections 

axonales intracorticales, favorisant ainsi leur intégration dans les réseaux corticaux. Nos 

résultats indiquent en outre que ces neurones proviennent d'une large population palliale 

de RGCs qui ne basculent pas vers l'astrogenèse et persistent dans la dSVZ. Ces résultats 

sont en accord avec des expériences MADM suggérant que seulement 1 cellule 

neurogénique radiaire sur 6 produit des cellules gliales (Gao et al., 2014a). Nos résultats 

soulignent un déclin rapide de la capacité des progéniteurs Glu à se différencier et à 

migrer, contribuant ainsi à la fermeture de la période de neurogenèse corticale. 

Nos données de scRNAseq ont mis en lumière les mécanismes à l'origine de cette perte 

progressive du pouvoir neurogène. Les changements épitranscriptomiques apparaissent 

comme des mécanismes clés dans la médiation du contrôle temporel sur la progression 

du lignage. La modification de l'ARNm m6A est la modification la plus répandue dans les 

cellules eucaryotes (Desrosiers et al., 1974) et a récemment été suggérée dans la 

régulation de la corticogenèse (Yoon et al., 2017). Nos résultats identifient cette 

méthylation comme un mécanisme possible conduisant à la dérégulation de la 

transcription que nous observons chez les progéniteurs Glu postnataux. Outre ces 

modifications épitranscriptomiques, l'analyse KEGG met en évidence les cahngements de 

plusieurs voies de signalisation clés, telles que celles impliquées dans l'astrogenèse 

(comme les voies de signalisation Jak-Stat et Notch; Rowitch & Kriegstein 2010), 
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suggérant qu'elles peuvent affecter simultanément le potentiel de différenciation des 

progéniteurs de Glu. Une autre voie de signalisation dérégulée est la voie de signalisation 

Wnt. Ceci est en accord avec une étude précédente décrivant une augmentation 

progressive de l'activité de GSK3β à partir de E15.5 et se traduisant par la phosphorylation 

de Neurog2, effecteur du lignage neuronal glutamatergique, affectant ainsi son activité (Li 

et al., 2012). Parallèlement à une activité transcriptionelle réduite de Neurog2, 64% de ses 

gènes cibles (Gohlke et al., 2008) sont régulés négativement à P2, alors que 2% 

seulement sont régulés à la hausse, malgré la persistance de l'expression de Neurog2. 

Il est important de noter que les progéniteurs postnataux Glu semblent toujours être 

permissifs à la manipulation intrinsèque/extrinsèque. Nous montrons que leur prolifération 

et migration Glu peuvent être favorisées par des manipulations génétiques ou 

pharmacologiques. Nos expériences révèlent toutefois que ces manipulations ne sont pas 

suffisantes pour favoriser la survie à long terme des neurones, ce qui suggère que le 

cortex n'est pas permissif à l'intégration de ces neurones nouveau-nés dans des 

conditions physiologiques. Cependant, des observations récentes suggèrent que la 

permissivité de l'environnement pourrait être accrue après une lésion, comme après une 

hypoxie chronique néonatale, où une neurogenèse corticale de novo a été observée 

(Fagel et al., 2009; Bi et al., 2011; Falkner et al., 2011). , 2016; Azim et al., 2017). Il est 

probable que nos résultats fourniront des informations importantes pour orienter les 

recherches futures dans ce contexte. 

Les régions germinales ne sont pas homogènes, mais très hétérogènes, avec des 

différences de transcription conduisant à la production de lignées cellulaires divergentes. 

Récemment, notre laboratoire a contribué à résoudre cette hétérogénéité en démontrant 

un niveau inattendu d'hétérogénéité transcriptionnelle entre la zone sous-ventriculaire 

dorsale et latérale du cerveau antérieur de la souris postnatale, ainsi que dans leurs 

cellules souches neurales et leurs progéniteurs (Azim et al. 2015). Dans le premier 

chapitre de ma thèse, mes résultats ont contribué à décrire et à discuter un nouveau 

niveau d'hétérogénéité régionale et spécifique à la lignée dans la SVZ dorsale basée sur 

l'expression de Hopx (chapitre 1). Ces travaux soutiennent la coexistence de NSCs 

biaisés vers un lignage, les NSCs voisines exprimant des facteurs de transcription distincts 

qui influencent leurs comportements respectifs et les guident tout au long de l'acquisition 

de différents destins. 

Dans le deuxième chapitre de ma thèse, j'ai poursuivi l'exploration de l'hétérogénéité 

régionale et spécifique à la lignée de la SVZ dorsale en caractérisant les progéniteurs des 



XVIII 
 

neurones glutamatergiques corticaux (c.-à-d. Les progéniteurs Glu) dont il a déjà été 

montré qu'ils persistaient après la naissance (Donega et al., 2018a). On pense 

généralement que les progéniteurs de neurones glutamatergiques corticaux changent de 

destin avant la naissance pour produire des astrocytes. Mes résultats montrent que ce 

changement est en grande partie incomplet et qu’une grande partie des progéniteurs Glu 

continue à être produite dans le cerveau antérieur postnatal après la fermeture de la 

période de neurogenèse corticale. Le séquençage d'ARN sur cellule unique révèle 

toutefois une dérégulation transcriptionnelle profonde aux stades postnataux, ce qui est 

en corrélation avec le déclin progressif de la neurogenèse corticale observé in vivo 

(chapitre 2). 

Pris ensemble, mon travail de thèse illustre l’existence d’une profonde hétérogénéité des 

NSCs dans la SVZ postnatale, qui peut être explorée du niveau régional au niveau 

cellulaire. Cela met également en évidence l'intérêt des études transcriptionnelles pour 

explorer la diversité de l'hétérogénéité des NSCs à ces différentes échelles. Il démontre 

enfin la nécessité de l'analyse clonale en histologie et de la transcriptomique unicellulaire 

pour éclairer de manière plus approfondie notre compréhension de l'activité germinative 

du cerveau antérieur aux moments pré et postnataux. Dans la discussion générale de ce 

manuscrit de thèse, je passe en revue la contribution récente des approches unicellulaires, 

y compris les travaux décrits dans cette thèse, sur la progression du lignage et des 

compétences des progéniteurs neuraux tout au long du développement pré et postnatal 

(revue concise soumise et en cours de révision). Enfin, je conclus en examinant 

l’implication de ces résultats dans la réparation du CNS et en proposant un nouveau 

modèle expérimental pour étudier la compétence des progéniteurs neuronaux postnataux 

dans la régénération de sous-types neuronaux définis à la suite d’une lésion cérébrale. 
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1. Regional Heterogeneity and Competence of Neural 
Stem Cells Throughout Development and Postnatal Life 

The central nervous is a tissue of exquisite complexity. It forms in a stepwise manner 

during embryonic development from a population of specialized cells within the ectoderm. 

Here I describe its gradual development and complexification over time, with a special 

emphasis on the forebrain and of the cortex, the regions of interest of this PhD work. 

Germinal activity does not sharply stop at birth, but persists within the subventricular zone 

of the lateral ventricle. In a second part of the introduction, I describe the transformation 

of this germinal region at postnatal stages. I finally describe its specificities and similarities 

compared to its embryonic counterpart, both in term of cellular and regional organization, 

which were both explored further during my PhD.  

1.1. The Developing Forebrain Generates Neuronal Diversity 

The neocortex is by far one of the most complex regions of the mammalian brain, 

characterized by a remarkably diversity of neuronal and non-neuronal cell types, whose 

spatial and temporal coordinated development and function guarantee the execution of 

high-order cognitive, sensory, and motor behaviors. Decoding its heterogeneity have been 

at the core of neuroscientists’ work for decades. In this first part of the introduction I would 

like to introduce some of the key aspects of its organization and development. 

1.1.1 Diversity of the Progenitors during Cortical Neurogenesis 

Once neurulation is completed, the neural tube forms three primary vesicles, namely the 

forebrain, the midbrain and the hindbrain (Figure 1A). The forebrain rapidly evolves in 

further subdivisions to form secondary vesicles including the telencephalon. Its dorsal part 

becomes the pallium where the cerebral cortex derives. 
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Figure 1: Cerebral cortex development and morphogens expression. (A)  The rostral  part 
of the neural tube evolves rostrally into the primary forebrain (FB), midbrain (MB) and 
hindbrain (HB) vesicles while the caudal part gives the spinal cord (SC). The secondary 
vesicles telencephalon (Tel), diencephalon (Di), metencephalon (Met) and myelencephalon 
(Myel) develop from the primary vesicles. (B) The anterior neural ridge (ANR), cortical hem 
(CH) and anti-hem (AH) are secreting centers. ANR secretes  FGFs, CH secretes Wnts/BMPs 
and AH secretes FGF15 morphogens in the telencephalon. Shh is mainly present in the 
ventral part of the telencephalon, where ganglionic eminences are specified and generate 
interneurons that follow dorsal tangential path to invade the developing cortex. All 
morphogens are also found in the CSF secreted by choroid plexus (CP) and fi l l ing t he lateral  
ventricles (LV). (C)  Morphogens gradients in the dorsal telencephalon. Il lustration from 
Agirman et al.,  2017. 

 

At the end of the neural tube closure, the neuroepithelium is composed of neuroepithelial 

stem cells (NECs), the earliest progenitors of the cortex. They are organized in a 

pseudostratified neuroepithelium because their nuclei migrate up and down the apical–

basal axis during the cell cycle. NECs show typical epithelial features and are highly 

polarized along their apical–basal axis. These cells initially expand their pool by successive 

symmetric proliferative divisions and later divide asymmetrically to generate radial glial 

cells (RGCs) that sit in the ventricular zone (VZ) of the dorsal part of the telencephalon, 

the most apical cell layer that lines the ventricles. During this process, NECs lose some of 

their epithelial traits to acquire astroglial hallmarks. For example, in contrast to NECs, 

RGCs show several astroglial properties such as the presence of glycogen granules and 

the expression of astrocytic proteins like GLAST, S100β, GFAP, Vimentin and BLBP. This 

transition marks the onset of neurogenesis in mice and occurs throughout most of the brain 

between embryonic days 10 (E10.5) and E12.5. 

RGCs maintain a bipolar morphology with apical and basal processes (Figure 2A) and 

produce most of the neurons in the brain, either directly or indirectly (Haubensak et al., 

2004; Miyata, 2004; Noctor et al., 2004). Cortical neurogenesis which extends from E10.5 

to E18.5 in mice is followed by the gliogenesis period, which terminates after birth. At early 

stage of corticogenesis, RGCs in the pallium divide asymmetrically to self-renew and 

generate a projecting neuron. This process is defined as direct neurogenesis. As 

corticogenesis proceeds, RGCs give rise to intermediate progenitors (IPs) that delaminate 

from the apical surface to invade the subventricular zone (SVZ) (Figure 2B). Contrary to 

RGCs, IPs divide symmetrically to give birth to two identical neurons following further 

round of cell division. This process is defined as indirect neurogenesis and is critical to 

increase the number of neurons that are generated from a given number of RGCs 

(Haubensak et al., 2004). IPs differ from RGCs in terms of genes they express. For 
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example, they specifically express the genes that encode the transcription factor Tbr2 

(Englund, 2005). Newborn neurons generated directly or indirectly from RGCs migrate to 

reach the cortical plate (CP). Early born neurons move basally through somal translocation 

and integrate the deep layers of the cortex (Tabata et al., 2009). In contrast, later born 

neurons transit through multiple morphologies and use the processes of RGCs as a 

scaffold for their locomotion towards the upper cortical layers (Evsyukova et al., 2013; 

Hippenmeyer, 2014). Cortical layering occurs in an ‘inside-out’ fashion whereby earlier 

born neurons populate deep layers and later born neurons progressively occupy upper 

layers (Angevine and Sidman, 1961). These successive waves produce six layers in the 

neocortex. 
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Figure 2: Neural progenitor subtypes and neurogenic phases during cerebral cortex 
development in mice.  (A) RGCs maintain a bipolar morphology with apical and basal 
processes. (B) Sequential  steps of neurogenesis in the mouse: neuroepithelial cells (NECs, 
grey) self-renew by symmetric division, then turn into apical radial glial cells (RGCs, pink) 
that divide either symmetrically to self -renew, or asymmetrically to give rise first to primary 
neurons including Cajal–Retzius cells (dark green) (direct neurogenesis) which migrate to 
the cortical surface to form the marginal zone (MZ), and to intermediate progenitor cells (I PC) 
at E12.5 and onwards; IPCs populate the subventr icular zone (SVZ) and generate cortical  
layer neurons (dark to l ight blue), which migrate along the basal process of RGCs through 
the intermediate zone or subplate (IZ/SP) towards their destined layer. At  later stages, some 
RGCs can undergo final  symmetric divisions generating two neurons  or switch to gliogenesis . 
I l lustration adapted from Jiang and Nardell i ,  2015. 

 

1.1.2 Regionalization of the Developing Brain 

Within the telencephalon, a dorso-ventral polarity rapidly develops leading to the 

emergence of the pallium at its dorsal part. This is due to the reciprocal action of 

transcription factors and morphogens secreted by three signaling centers, the cortical hem 

(CH) in the mediodorsal region, the anti-hem (AH) in the lateral aspect, and the anterior 

neural ridge (ANR) in the anteromedial region (Figure 1B and 1B). These patterning 

molecules diffuse in complementary gradients and induce expression of regionally defined 

transcription factors (TFs). Some of the main TFs involved in the regionalization of the 

embryonic pallium are presented here. Some of these morphogens and their role in neural 

stem cell activity are covered in more details in part 1.3.5. of this introduction.  

The early forebrain patterning in mouse embryo is established around E8.5. Otx2 first 

establishes the forebrain and midbrain territories (Inoue et al., 2012). Then, Emx2 and 

Pax6 functions redundantly to establish the caudal forebrain, which contributes to the 

medial pallium, ventral pallium and diencephalon while Six3 establishes the rostral 

forebrain domain (Lagutin et al., 2003) (Figure 3). The expression of Fgf8 in the anterior 

neural ridge induces Foxg1 in the Six3-expressing domain and establishes the dorsal 

pallium and subpallium (Kobayashi et al., 2002; Lagutin et al., 2003). The boundary 

between the pallium and subpallium is regulated by cross-repression between Gli3 and 

Shh, and Fgf8 expression (Gutin, 2006). Through these interactions, the border between 

the Pax6+ pallium and the Nkx2.1+ subpallium is first established around E9.5 (Shimamura 

and Rubenstein, 1997), which is subsequently replaced by a Pax6/Gsx2 boundary by 

E12.5 (Yun et al., 2001). After this, the entire pallium is defined by Pax6 expression in the 

progenitors and Tbr1 expression in the postmitotic neurons (Puelles et al., 2000), although 

Tbr1 is downregulated in many of the layers II–V neurons (Han et al., 2011). Emx1 further 

delineates an expression boundary between the dorsal and ventral pallium (Puelles et al., 
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2000). Thus, excitatory glutamatergic projection neurons arise from progenitor cells of the 

Emx1-positive dorsal pallial area (Louvi et al., 2007), whereas the subpallium which 

includes the ganglionic eminences (GE) produces inhibitory interneurons (Hébert and 

Fishell, 2008; Moreno et al., 2009). 

Following E9.5 several transcription factors have a clear regionalized expression pattern. 

This is particularly clear for markers of the pallium and the subpallium. Members of the Dlx 

family (Distal-less), namely homeobox genes Dlx1, Dlx2 (Bulfone et al., 1993), Dlx5 and 

Dlx6 (Simeone et al., 1994) are enriched in the ganglionic eminences of the subpallium 

and consistently absent from the pallial domain. Other ventrally enriched genes are Nkx2, 

Nkx6.2, Gsx1 and Gsx2 (Zhong et al., 2008; Zhong and Holland, 2011).  

On the other hand, homeobox genes Emx1, Emx2 and Pax6 show restricted expression 

to the pallium as well as the T-box transcription factors Tbr1 and Tbr2 (also referred as 

Eomes) (Bulfone et al., 1995; Bulfone et al., 1999), as well as the bHLH transcription factor 

Neurog2 (reviewed in Lee, 1997. Expression of these TFs antagonize a subpallial 

expression of the bHLH transcription factor Mash1 (Casarosa et al., 1999).  

 

 

Figure 3: The genetics of early pallial patterning . Coronal view indicates spatial 
subdivisions of the pall ium, where dorsal pall ium lies between the medial and lateral/ventral  
pall ium. In sagittal view, the medial and lateral/ventral pall ium connects at caudal levels. DP, 
dorsal pall ium; LP, lateral pall ium; me, mesencephalon; MP, medial pall ium; pr, 
prosencephalon; SP, subpall ium; VP, ventral pall ium. Adapted from (Kumamoto and 
Hanashima, 2014). 
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1.1.3. Basic Principles of Cortical Organization 

Following embryonic development, the mouse neocortex consists of four primary areas: 

the somatosensory cortex (which processes sensory modalities, such as input from the 

vibrissae), the auditory cortex (which processes sound), the visual cortex (which 

processes the sense of sight), and the motor cortex (which outputs information to control 

fine motor behavior) (Rash and Grove, 2006) (Figure 5A). These primary cortical areas 

occupy most of the cortical surface, unlike in humans where secondary or associative 

cortical areas are more developed. The cortex displays unique cytoarchitectural 

characteristics, which are the result of the organization and composition of the different 

cell types and circuits and vary in an area-specific manner. The neocortex is organized 

into six horizontal layers, historically defined as supragranular (layer I/II–III), granular (layer 

IV), and infragranular (layers V and VI). Layers contain different classes of neurons and 

vary in thickness and tissue architecture depending on their areal identity (Greig et al., 

2013). Neurons can be classified in excitatory glutamatergic projection neurons (PNs) 

(also referred as pyramidal neurons) and GABAergic inhibitory interneurons (INs). 

GABAergic inhibitory interneurons 

Inhibitory INs are approximately 20–30% of the total number of cortical neurons and are 

often referred to as ‘short axons neurons’, although several long projecting INs have been 

recently traced (Tremblay et al., 2016). Aspiny INs are the main inhibitory component of 

neocortical circuits, finely modulating projection neuron activity by regulating both synaptic 

function and the timing of action potential generation (Kepecs and Fishell, 2014). 

Generated from the ventral forebrain progenitors located in medial and caudal ganglionic 

eminences (MGE and CGE), as well as in the preoptic area (POA), inhibitory INs reach 

their final destinations in the appropriate cortical layer through a highly coordinated 

process of tangential migration and radial dispersion in the cortex. The MGE has long been 

regarded as a primary source of cortical interneuron population in mice (~ 60%) (Butt et 

al., 2005) while the CGE has been shown to be the second-greatest contributor of 

interneuron progenitors, producing approximately 30% of all cortical interneurons 

(Anderson et al., 2001). Cortical GABAergic INs are very diverse; they contain subtypes 

that differ in morphology, molecular identity, firing properties, and patterns of local 

connectivity (Wamsley and Fishell, 2017). Although it is far from being an accurate 

representation, neocortical interneurons can be largely classified into several cardinal 

groups based on the expression of key molecular markers (Tremblay et al., 2016), which 

include: parvalbumin (PV), somatostatin (SST) produced mainly by MGE, vasoactive 

intestinal peptide (VIP), serotonin receptor 3a (5HT3aR), calretinin (CR) produced by CGE 
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and others. PV- and SST-positive INs are primarily found in the deep layers of the cortex, 

and 5HT3aR-positive INs preferentially populate the upper layers (Rudy et al., 2011) 

(Figure 4). However, compared with PNs, the laminar distribution of the molecularly 

distinct IN groups is much less precise. 

 

Figure 4:  Schematic representation of the major neocortical interneuron subtypes .  
Schematic representation of the distinct interneuron classes within the six cortical layers. 
Excitatory spiny interneurons display mainly stellate and pyramidal morphology and are 
primarily located in the intragranular layer IV of the somatosensory cortex (barrel cortex, 
shown in the yellow boxes). In contrast, each cortical layer contains dif ferent types of 
inhibitory interneurons with different morphologies and molecular  identit ies. (molecular 
markers are l isted on right). I l lustration from Lodato and Arlotta, 2015. 
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Glutamatergic projection neurons 

On the other hand, PNs are excitatory glutamatergic neurons and make up the vast 

majority of neurons of the cortex population (approx. 80%). They connect the cerebral 

cortex to its distal intracortical, subcortical, and subcerebral targets through their long 

axonal projections. PNs are generated from dorsal forebrain progenitors and can be 

broadly classified into intracortical and corticofugal neurons. Intracortical PNs are present 

in all six layers, but they are predominantly represented in the upper layer II/III and can be 

further divided into associative and commissural PNs (CoPNs) (Figure 5BC). PNs that 

project their axons either to targets in the same hemisphere or to different layers of the 

same area or column are called associative PNs (Molyneaux et al., 2007). By contrast, 

CoPNs project their axons to targets located in the opposite hemisphere, usually in a 

topographic manner, through one of two major fiber commissures: the corpus callosum 

(CC) or the anterior commissure (AC). However most CoPNs connect through the CC and 

are known as callosal PNs (CPNs). Corticofugal PNs are primarily located in the deep 

layers and send their axons to distal targets outside of the cortex and include all 

corticothalamic, corticopontine, corticotectal and corticospinal neurons. Corticothalamic 

PNs are a heterogeneous population of PNs located in layer VI that project to different 

nuclei of the thalamus to modulate incoming sensory information. Subcerebral PNs reside 

in layer Vb across multiple areas and project their axons to distinct targets below the brain, 

predominantly to the pons and other nuclei of the brainstem, in which case they are called 

corticopontine PNs; to the superior colliculus, in which case they are called corticotectal 

PNs (CTPNs); and to the spinal cord, in which case they are called corticospinal motor 

neurons (CSMNs) (Molyneaux et al., 2007). 

1.1.4. Molecular Diversity of Anatomically Defined PNs 

Nevertheless, the full picture of PNs types is incomplete as some of them do not fit into 

these classical classes (Cederquist et al., 2013). Several studies have however recently 

tackled this problem by using single cell resolution approaches (Zeisel et al., 2015; Han et 

al., 2018).The authors revealed an additional level of diversity of intracortical PNs, which 

collectively with previous studies (Molyneaux et al., 2015), provide PN class-specific 

signature genes. Examples are Fezf2, Cntn6, Cad13, Ctip2, Cry-mu, Igfbp4 and Ldb2 for 

layer V and CSMNs, and Cux2, Svet1, Lhx2, Mef2c, Inhba, Btg1, Lpl, Cited2, and PlexinD1 

for CPNs (Arlotta et al., 2005; Molyneaux et al., 2009, 2015; Lodato et al., 2014). Sox5, 

Tle4, FoxP2 are specifically expressed in corticothalamic PNs of layer VI. Molecular 

differences also allow distinguishing between more closely related classes. Several 

important conclusions can be drawn from those profiling studies. First, the identity of a 
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defined neuronal population relies on the expression of multiple class-specific genes rather 

than the expression of specific single genes. Second, it implies also that laminar 

coordinates of a neuron do not fully define its class-specific identity. Third, transcriptional 

profiling suggests a higher degree of heterogeneity within PN subtypes than what it looks 

like from their connectivity pattern. For example the expression of Cux2, Ptn, EphA3 and 

Nnmt parcellate CPNs (Molyneaux et al., 2009, 2015). Finally, class-specific profiles of 

gene expression are temporally dynamic, changing dramatically during neuronal 

maturation. 
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Figure 5: Schematic illustration of the six horizontal layers characteristic of the 
cerebral neocortex. (A ) Schematic representation of primary neocortical areas . (B) Cortical  
columns contain horizontal ly arranged layers with very diverse neuronal compositions. (C)  
Layer II/ III  contains dif ferent classes of commissural neurons, primarily of distinct CPN 
identit ies. Layer V contains CPNs, often maintaining distinctive collaterals to the striatum 
and different classes of subcerebral PNs that connect to the brainstem, spinal cord, and 
superior coll iculus. Layer VI has different classes of CThPNs, connecting to separate 
thalamic nuclei, and CPNs that connect through the CC. Cortical PN subtypes express unique  
gene signatures that in specific combinations identify each class (l isted on right).  
Abbreviations: A1, auditory cortex; CC, corpus cal losum; CPN, callosal projection neuron; 
CTPN, corticotectal projection neuron; CThPN, cort icothalamic; F/M, frontal/moto r cortex; IN, 
interneurons; IT, intratelencephalic; PN, projection neuron; S1, somatosensory cortex; Th, 
thalamus; V1, visual cortex. Il lustration from Lodato and Arlotta, 2015.  

 

With the recent advance of single-cell transcriptomics, it is now possible to tackle the 

fundamental problem of neuronal diversity at the necessary resolution of individual cells. 

Single-cell RNA sequencing technology (scRNA-Seq) had opened new avenue for cell 

type classification and unbiased discovery of cell types (Macosko et al., 2015; Zeisel et 

al., 2015; Tasic et al., 2016). The first unbiased sampling of mouse primary somatosensory 

cortex from Zeisel and colleagues allowed the identification of 7 excitatory and 16 inhibitory 

neuronal cell types that correctly fitted the already identified molecularly-defined classes. 

However, they used an unbiased approach, in which a heterogeneous mixture of cells from 

all cortical layers was subjected to scRNA-Seq without a priori selection, whereas Tasic 

and colleagues combined scRNA-Seq with reporter mice to generate a most complete 

description of cortical neurons although in a more restricted area of the adult mouse cortex 

(i.e. the primary visual cortex). The limit of the former study is the under sampling of rare 

and fragile neurons due to unbiased tissue isolation and single cell dissociation. As a 

result, it favors the most common types of neurons at the expense of the most fragile ones. 

In the later study, the authors purified and sequenced specific subsets of cortical neurons 

using transgenic mouse lines. They identified 19 excitatory and 23 inhibitory neuronal cell 

types. More and more elegant and pioneered studies are recently emerging such as 

integrative approaches of multidimensional profiling to draw a more complete cell-type 

atlas in the mouse cerebral cortex. Activity-induced transcriptional states and 

electrophysiological features followed by scRNA-Seq (P. Hu et al. 2017; Chevée et al. 

2018; Fuzik et al. 2016) are novel strategies that will deepened our understanding of the 

cortical cellular composition.  
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1.2. Germinal Activity Persists in the Postnatal SVZ 

Germinal activity does not stop sharply at birth, but persists in the vicinity of the lateral 

ventricles. In this region, RGCs change their morphology to gradually transform into 

postnatal, then adult NSCs (also named Type B1 cells). They continue proliferating to give 

rise to both glial cells and neurons. Interestingly, although major differences exist in the 

cellular composition and organization of the SVZ when compared to its embryonic 

counterpart, significant similarities are also evidenced. In particular the regionalization of 

postnatal/adult NSCs is inherited from early development, leading to the local production 

of defined progenitor populations. Unraveling the signaling pathway and transcriptional 

correlates of this regionalization has become an active area of research. 

1.2.1. The Postnatal Niche 

The postnatal and adult mouse brain contains several hundreds (estimated to ~1200 in 

young adult mice) of NSCs distributed along the lateral ventricle walls (Ponti et al., 2013). 

These SVZ NSCs are named type B1 cells in adult animals and share characteristics with 

brain astrocytes such as the expression of several glial markers including the glial-fibrillary 

acidic protein (GFAP), glutamate aspartate transporter (GLAST), and brain lipid-binding 

protein (BLBP); morphology, and ultrastructure (Paterson et al., 1973; Doetsch et al., 

1997a, 1999a). Type B1 cells are heterogeneous and exists in a quiescent (qNSCs) or 

activated state (aNSCs) (Codega et al., 2014; Mich et al., 2014). These cardinal features 

underline molecular and cellular differences, which have implications on disease and 

repair ability. For instance, it is important to understand the molecular specificities and 

mechanisms controlling the induction of these two ground states to be able to use adult 

NSCs in therapy without depleting them. Activated type B1 cells give rise to transit 

amplifying progenitors (type C cells), which generate neuroblasts (type A cells) that 

migrate to the OB. Type A cells move along as chains, which are ensheathed by GFAP 

positive cells (Lois 1996; Lois et al. 1996; Wichterle et al. 1997) (Figure 6). This neuroblast 

chain migration defines the rostral migratory stream (RMS) that originates at the anterior 

tip of the SVZ (Doetsch and Alvarez-Buylla, 1996). Inside the OB, neuroblasts then migrate 

radially from the RMS to invade the distinct OB layers where they differentiate into distinct 

interneuron subtypes. They become integrated into functional circuits replacing throughout 

life the older cells. This has been suggested to be important for neuronal plasticity and the 

processing of olfactory information (Cecchi et al., 2001; Petreanu and Alvarez-Buylla, 

2002; Wachowiak and Shipley, 2006; Imayoshi et al., 2008; Lledo et al., 2008; Sakamoto 

et al., 2014). The transcription factors Ascl1 and Dlx2 are used as markers of type C cells 



12 
 

whereas doublecortin (DCX) and polysialylated neural- cell-adhesion molecule (PSA-

NCAM) are expressed by type A cells (Doetsch et al., 1997b). Type B1 cells also give rise 

to oligodendrocytes for the corpus callosum but in a much lower magnitude as compare 

to OB neurogenesis (Menn et al., 2006). Brain injury has also been suggested to induce 

the SVZ to produce astrocytes that migrate to the injury site (Benner et al., 2013). 

Nonetheless, it is still unclear whether type B1 cells are multipotent and, thus, able to 

generate both neurons and glial cells. To address this question, Ortega and colleagues 

isolated single activated NSC in vitro and performed live imaging to continuously track 

them. Their results reveal that while aNSCs can give rise to both astrocytes and neurons, 

none were capable of giving rise to both oligodendroglia and neurons (Ortega et al., 2013). 

While single cell linages tracing studies were later performed in vivo (Calzolari et al., 2015), 

the use of a Glast promoter to induce recombination in a small number of NSCs prevented 

the authors to conclude on the multipotency of adult NSCs. Indeed, Glast is active in NSCs, 

but also in glia cells surrounding the lateral ventricle.  

 

 

Figure 6: The SVZ replenishes olfactory interneurons throughout life . Schematic 
depiction of the neurogenic process along the entire extent of the ventricular system of the 
neonatal/adult rodent forebrain. (A) 3D representation of SVZ neurogenesis. Neural stem 
cells (NSCs) are located in the walls of the lateral  ventricle (LV) and generate an irregular 
network of migratory neuroblasts (orange) that converge into the rostral  migratory stream 
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(RMS). Upon arrival at the olfactory bulb (OB), the neuroblasts migrate radially to reach their 
f inal destination and mature into GABAergic neurons (granule cells and periglomerular 
neurons) and a minor population of glutamatergic neurons in the granule cell  l ayer (GCL) or 
the glomerular layer (GL). (B) Sectioning planes through the OB, RMS and LV show the 
distribution of newly generated neuroblasts in these three forebrain compartments. 
Il lustration from Fiorell i  et al., 2015. 

 

1.2.2. The Radial Glia Origin of Type B1 Cells: 

Type B1 cells and embryonic radial glia share both spatial and morphological similarities. 

The ventricular contact of type B1 cells, their long-term neurogenic potential, and their 

unique apical process containing a primary cilium suggest the direct lineage relationship 

of the two cell types. The original and prevailing model suggested that radial glia transform 

into B1 cells during the first postnatal weeks, after they have produced the neurons and 

glial cells of the forebrain (Kriegstein and Alvarez-Buylla, 2009). This simple view has 

recently been challenged by lineage tracing studies (Fuentealba et al., 2015a; Furutachi 

et al., 2015). The authors of these studies show that postnatal B1 cells are indeed derived 

from embryonic NSCs that produce also neurons and glia for other forebrain regions 

(including cortex, striatum, and septum), but also reveal that the lineage progression of 

NSCs is not linear. Indeed, their results demonstrate that a subpopulation of radial glial 

cells, bifurcates from the main population during embryogenesis (i.e. between E13 and 

E15), and enter quiescence. At postnatal stages, these cells appear to reactivate 

gradually. These new findings suggest that the lineage for postnatal NSCs is not linear, 

but bifurcates in the embryo. I will come back on their origin in more details in the general 

discussion of this manuscript. 

 

1.2.3. Type B1 Cells: A Specialized Astrocyte 

Type B1 cells are located within the ventricular epithelium which form a tight barrier of 

multiciliated ependymal cells to separate the brain parenchyma from the ventricle lumen. 

Type B1 cells make direct contact with the ventricle by extending a thin cellular process 

in-between ependymal cells (Doetsch et al., 1999b) (Figure 7). These apical processes 

contain each a primary cilium and tend to cluster together at the center of a rosette of 

ependymal cells in a repeating “pinwheel” pattern. The integrity of the ependymal cell layer 

as well as the primary cilium and apical contact with the CSF of type B1 cells, are 

primordial for the maintenance of SVZ germinal activity and neurogenesis. Similarly to 
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embryonic NECs and RGCs this cellular structure likely transduces signaling molecules 

present within the CSF. For instance, Shh, Wnts, retinoic acid (RA), and BMPs are all 

found in CSF (Huang et al., 2010; Lehtinen and Walsh, 2011; Lehtinen et al., 2011), and 

these factors regulate SVZ neurogenesis.  

 

 

Figure 7: Cellular composition of the ventricular–subventricular zone (SVZ). (A+B) :  
Representative micrographs of the SVZ (A) and the higher magnification of the lateral  
microdomain (B) show the zone of interest to i l lustrate the SVZ cytoarchitecture.(C+D): 
Cil iated ependymal cells (E; yellow) align the LV and isolate the lumen from the proliferative 
SVZ. NSC (type B1; blue) give rise to type C cells (green) which generate migrating 
neuroblasts (type A; red) ( i l lustrations were modified from Doetsch et al., 1997 and Tong and 
Alvarez-Buylla, 2014). Scale bars: A = 500 µm; B = 100 µm; C = 20 µm. Abbreviations: BV, 
blood vessel; LV, lateral ventricle; SVZ, subventricular zone.  

 

Due to their dynamics, state of activation and close lineage relationship with brain 

astrocytes, the identification of type B1 cells markers remains a major challenge since 

several decades. Several cell surface markers or transcription factors have been identified, 

but are not exclusively expressed in Type B1 Cells. For instance, GFAP is expressed by 

many astrocytes that are not neurogenic and reside outside of the SVZ. The CD133 or 

Prominin-1 cell-surface marker has been used to enrich for SVZ NSCs, but expression of 

CD133 is variable in type B1 cells and is also prominently expressed on ependymal cells 

(Mirzadeh et al., 2008; Beckervordersandforth et al., 2010). LewisX (LeX) or CD15, is a 

cell-surface carbohydrate antigen that has also been found on SVZ NSCs, but this marker 

is also present on many non-GFAP-expressing cells as well as in some type A cells 

(Capela and Temple, 2002; Imura et al., 2006; Shen et al., 2008; Obermair et al., 2010). 

The epidermal growth factor receptor (EGFR) is found on “activated” type B1 cells, but 
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remains highly expressed in type C cells (Pastrana et al., 2009). Similarly, GLAST is found 

in both type B1 cells and some type C cells, as well as in some mature non-neurogenic 

astrocytes. Although high levels of Id1 have been found in type B1 cells, this transcription 

factor is present at lower levels in type C cells (Nam and Benezra, 2009). Finally, VCAM1 

has been found to be expressed on the apical process of type B1 cells and shown to play 

a critical role in NSC maintenance (Kokovay et al., 2012). 

These patterns of protein expression demonstrate the difficulty of identifying unique 

marker of adult NSCs. As a consequence, identification of type B1 cells relies on multiple 

markers which combined and/or differential expression, allows identifying and FAC-sorting 

adult NSCs. While many of these protocols rely on the use of transgenic animals, Daynac 

and colleagues established a FACS protocol based on a combination of cell surface 

markers to isolate type B1 cells from their progenies and to distinguish the quiescent and 

activated state. They used LeX combined with an anti-CD24 antibody to label neuroblasts 

and a fluorescent EGF to label EGFR on actively proliferating cells (Daynac et al., 2014). 

They described 6 cell populations: the type C neuroblast cells as CD24+LeX−EGFR−, the 

immature neuroblasts as CD24+LeX−EGFR+, the TAPS as The CD24−LeX−EGFR+, the 

activated NSCs as CD24−LeX+EGFR+ and finally the Lexbright (CD24−LeX+EGFR-) as the 

quiescent NSCs. Isolation of the two cell populations allowed the transcriptional 

identification of distinct molecular signatures in quiescent and activated NSCs (Morizur et 

al., 2018). This, together with a previous study based on the use of alternative markers 

(Codega et al., 2014), reveal specific interactions of NSCs with their microenvironment 

during quiescence.  

Thanks to advances of sequencing technologies, a recent single cell transcriptomic study 

revealed additional insights in the molecular profiles of adult NSCs (Llorens-Bobadilla et 

al., 2015) by describing in exquisite details their sequential pattern of activation. It 

demonstrated that qNSCs can be divided into 2 further subpopulations: a dormant state 

(qNSC1) preceding a primed-quiescent state (qNSC2) which can be identified based on 

Glast expression level. Indeed, Prom1+ EGFR- Glast+low or Glast+high can distinguish 

qNSC2 from qNSC1, respectively. Moreover, the authors described CD9 as new marker 

of NSCs versus mature parenchymal astrocytes. 

1.2.4. Regionalization and heterogeneity of Postnatal SVZ NSCs 

Three regions of the developing forebrain contribute to the formation of the lateral 

ventricular walls, and therefore to the formation of the SVZ: i.e. the septum, the pallium 

and the ganglionic eminences, that contribute to the medial, dorsal and lateral SVZ, 



16 
 

respectively. This result in NSCs of different embryonic origin being distributed within all 

the 3 walls of the postnatal lateral ventricles. Accumulating evidences have proven that 

their origin (and therefore their location) drives their specification in defined interneuron 

subtypes in the OB (Merkle et al., 2007a; Alvarez-Buylla et al., 2008; Fiorelli et al., 2015). 

Thanks to viral infection, genetic fate mapping or targeted electroporation, several 

landmark experiments revealed that CR+ [expressing calretinin] PGCs are preferentially 

generated by the medial SVZ NSCs (Merkle et al., 2007a; Young et al., 2007; Fernández 

et al., 2011; Fiorelli et al., 2015). Superficial GCs, tyrosine hydroxylase (TH)-expressing 

PGCs and a small number of glutamatergic juxtaglomerular cells are generated by NSCs 

in the dorsal SVZ (Merkle et al., 2007a; Young et al., 2007; Brill et al., 2009; Fernández et 

al., 2011; de Chevigny et al., 2012). In contrast, deep GCs as well as CB+ [expressing 

calbindin] PGCs preferentially originate from NSCs of the lateral wall (Merkle et al., 2007a; 

Young et al., 2007; Fernández et al., 2011). A subsequent studies has more recently 

revealed an extra level of heterogeneity by identifying the site of origin of additional, rare, 

subtypes of interneurons (Merkle et al., 2014). Moreover, it is worth mentioning that rostral 

and medial/dorsal localization primes NSCs to generate neurons that populate more 

superficial layers of the OB, whereas a caudal and lateral origin correlates with deeper 

fates (Fernández et al., 2011; de Chevigny et al., 2012; Fiorelli et al., 2015). 

Taken together, these observations underline that NSCs are not a homogenous population 

and that their regional specification in defined interneuron subtypes originates from early 

embryonic development (Willaime-Morawek et al., 2006; Kohwi et al., 2007; Ventura and 

Goldman, 2007; Young et al., 2007; Willaime-Morawek and Van Der Kooy, 2008; 

Fuentealba et al., 2015b). Indeed, the embryonic NSCs of the septum, the MGE, the LGE 

and the neocortex generate NSCs that respectively populate the medial, ventral, lateral 

and dorsal areas of the adult SVZ. A small level of mixing appears to exist between specific 

walls. Indeed a degree of NSCs migration has been reported between defined SVZ, such 

as dorsal/pallial NSCs which have been described to migrate into the lateral SVZ at 

perinatal timepoints to ventral markers (Willaime-Morawek et al., 2006). Therefore, OB 

neuronal diversity emerges from a broad postnatal germinal zone, organized in 

microdomains that relate to the major subdivisions of the telencephalon. It is likely that 

molecular patterning of each subregion contribute to unique combinations of transcription 

factors. In agreement with their developmental origin, pallial markers (Emx1, Pax6, Tbr2 

(Eomes), Tbr1, Neurog2) are expressed in the dorsal most regions of the neonatal and 

adult LV, whereas subpallial (Dlx1/2/5, Gsx1/2, Ascl1, Nkx2.1, Nkx6.2) and septal (Zic1/3) 

markers are expressed in the lateral and medial walls of the LV, respectively (Kohwi et al., 

2007; Winpenny et al., 2011; Azim et al., 2012a; López-Juárez et al., 2013; Merkle et al., 
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2014). The expression pattern of these TFs can also vary significantly along the 

rostrocaudal extent of the SVZ, a characteristic recently described for Zic1/3, Nkx6.2 and 

Nkx2.1 in the most antero-ventral SVZ producing additional subtypes of OB neurons 

recently revealed (Merkle et al., 2014). A large number of region-specific TFs can be 

observed earlier during development (Flames et al., 2007), suggesting that a greater 

number of differentially expressed TFs might be observed in the SVZ at postnatal ages, 

which remain to be fully explored. Such intrinsic coding programs contribute to the OB 

neuronal diversity. For instance, different combinations of the expression of Pax6, Dlx2 

and Meis2 drive the differentiation of NSCs toward TH+, CB+ or CR+ PGCs (Brill et al., 

2008; Agoston et al., 2014). Other regionally expressed TFs, including Etv1, Nurr1 

(Nr4a2), Sall3, Zic1/3 might be associated with the acquisition of defined neuronal fates 

(Díaz-Guerra et al., 2013). 

 

1.2.5. Regionalization also applied to gliogenesis 

Regionalization is not restricted to the production of distinct neuronal subtypes. Indeed, 

similar principle apply for macroglial cells, namely astrocytes and oligodendrocytes.  

Astrocytes are generated towards the end of the embryonic development, following the 

period of neurogenesis. The classical model, is that RGCs switch fate and start to produce 

astrocytes precursors that migrate to the cortex and further amplify locally to associate 

with previously generated neurons in so called cortical columns (Ge et al., 2012; Magavi 

et al., 2012; Tabata, 2015). Recent studies indicate that astrocytes production is highly 

regionalized, with newborn astrocyte precursors migrating radially away from their region 

of origin (Tsai et al., 2012). Thus, cortical astrocytes derive from the Emx1-expressing 

pallial VZ, while striatal astrocytes derive from the Dbx1-expressing sub-pallial VZ. It is 

likely that these different origins reflect some phenotypic and functional heterogeneity of 

astrocytes present in distinct brain regions. Indeed, the densities and morphologies of 

astrocytes vary greatly between brain regions (Azevedo et al., 2009). Furthermore, 

astrocyte heterogeneity in the CNS has recently been described to influence neuronal 

synaptogenesis and maturation through secretion of several extracellular matrix proteins 

(Eroglu and Barres, 2010).  

The other macroglia lineage, oligodendrocytes, were long believed to be generated by all 

RGCs, because of their presence in all regions of the forebrain (Richardson et al., 2006). 

Later studies have revealed that they are produced in 3 different temporal and spatial 
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waves. The first wave originates from the MGE around E12.5 and the medial part of the 

ventral forebrain, while the second is more laterally generated by the LGE around E15,5. 

The final third wave appears at perinatal ages from Emx1+ NSCs that reside in the dorsal 

SVZ microdomain (Kessaris et al., 2006). Interestingly, while oligodendrocytes formed by 

all 3 waves are rather homogeneously distributed throughout the forebrain at birth, their 

differential survival results in their heterogeneous distribution at later timepoint. As a result, 

ventral forebrain regions are mainly populated by oligodendrocytes generated from the 

first and second “ventral” waves, while dorsal forebrain regions including the corpus 

callosum are mainly populated by oligodendrocytes generated from the third “dorsal” 

(Kessaris et al., 2006). 

Altogether, these observations indicate that regionalization is not restricted to 

neurogenesis but also embraces gliogenesis. The exact transcriptional mechanisms 

involved in the regional production and functional importance of glial cell heterogeneity 

remains however to be fully explored. 

1.2.6. Signals from the CSF and the niche act in concert to regulate NSCs 

activity and regionalization throughout pre- and postnatal life 

In the developing brain, morphogen signaling have a global influence on the organization 

and development of the cerebral cortex. RGCs harbor at their apical surface a primary 

cilium contacting the cerebrospinal fluid (CSF) within the ventricles (Cohen and Meininger, 

1987). This primary cilium acts like a sensor to probe extracellular signals secreted by the 

choroid plexus and initiate intracellular transduction of specific molecular pathways 

(Tasouri et al., 2013; Lepanto et al., 2016). The CSF composition changes during the 

corticogenesis period, as well as during postnatal life, and contains diffusible morphogens 

that act as key drivers of cortical development (Lehtinen et al., 2011; Silva-Vargas et al., 

2016) including FGFs, Shh, transforming growth factor beta (TGF-β)/BMPs and Wnts.  

Studies have shown that CSF from developing lateral ventricles (E17) is sufficient to 

stimulate progenitor proliferation and maintenance in neocortical explants and in 

neurosphere cultures (Lehtinen et al., 2011). Moreover, secreted factors from the lateral 

ventricle choroid plexus, a primary producer of CSF, directly and dynamically regulate 

multiple aspects of the behavior of adult NSCs, such as quiescence, and their progeny 

throughout the life of the animal (Silva-Vargas et al., 2016). In addition, the basal 

processes of RGCs contact meninges, which secrete regulatory factors for progenitor 

maintenance. β1-integrins anchor RGC basal processes to the extracellular matrix, 

allowing exposure to meningeal-derived trophic signals that maintain progenitor survival 
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and proliferation (Radakovits et al., 2009). Lastly, on the striatal end of the SVZ, the basal 

processes of type B1 cells contact blood vessels at sites that lack unsheathing astrocytes 

or pericytes, facilitating direct access to circulating trophic factors (Tavazoie et al., 2008). 

This intricate constant cross talk between the vasculature and the SVZ has been further 

highlighted by coupling whole-mount preparation with automated 3D analysis of confocal 

images. Immediately underneath the ependymal cell layer the blood vessels form a dense 

plexus that is spatially associated with proliferating NSCs and type C progenitors (Shen et 

al., 2008; Tavazoie et al., 2008). An important component of blood vessels is the 

associated extracellular matrix, which forms extravascular structures named fractones. 

These fractones engulf astrocytic processes, as well as ependymal, microglial and 

progenitor cells, underlying their intimate association with the neurogenic niche and adding 

to the complexity of the NSC environment (Mercier et al., 2002; Shen et al., 2008). This 

specialized cytoarchitecture results in a unique microenvironment in which multiple signals 

act to maintain germinal activity in the adult brain (Ihrie and Álvarez-Buylla, 2011).  

In addition to the CSF, the specialized cellular SVZ microenvironment, or “niche,” in which 

postnatal/adult NSCs reside play a key role in maintaining their activity and regionalization 

at postnatal stages. This is best illustrated by transplantation experiments. Homotopic 

grafts of SVZ cells give rise to large numbers of OB interneurons in the host mouse (Lois 

and Alvarez-Buylla, 1994). In contrast, SVZ cells transplanted to non-neurogenic brain 

regions produce few, if any neurons (Herrera et al., 1999) suggesting that SVZ cells are 

dependent on local environmental cues to promote neurogenesis. Heterotopic 

transplantation however do not support a direct role of the SVZ microenvironment in 

specifying distinct interneuron subtypes. For instance, NSCs isolated from the lateral SVZ 

that give rise to CB+ interneurons, in more dorsal SVZ regions fail to show re-specification 

in TH+ interneurons (Merkle et al., 2007b). It is also unclear if the SVZ niche provide signals 

for long term NSC self-renewal/maintenance. Transplantation experiments demonstrating 

the long-term self-renewal of NSCs are still lacking. Nevertheless, it is likely that fibroblast 

growth factor 2 (FGF-2) and epidermal growth factor (EGF), which are the principal 

mitogens used to maintain SVZ NSC under proliferation in vitro, likely play similar roles in 

vivo. Indeed, SVZ neurogenesis is reduced in mice null for either FGF-2 (Zheng et al., 

2004) or the EGFR ligand-transforming growth factor a (TGF-a) (Tropepe et al., 1999). 

Interestingly, in vitro experiments suggested that local astrocytes can provide these 

proliferative signals for the SVZ niche (Morita et al., 2005). Other factors have been 

implicated in the regulation of the SVZ such as ciliary neurotrophic factor (CNTF) (Scott, 

2006), Heparin-binding EGF (HB-EGF). Although most of these factors act on NSCs 

activation, those involved in maintaining NSCs quiescence remain to be fully explored.  
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I describe in more details below current knowledge on key diffusible and cell contact 

signaling pathways and on their role in NSCs activity and regionalization. 

Sonic hedgehog 

Shh is both a classical morphogen during development and a mitogenic factor for a variety 

of neural precursors (Ruiz i Altaba et al. 2003). Sonic hedgehog (Shh) is a diffusible protein 

that belongs to the hedgehog family members. In the developing forebrain, Shh is mostly 

secreted from the ventral telencephalon into the CSF (Echelard et al., 1993) (Figure 1C). 

Shh binding to its receptor Patched1 (Ptch1) at the primary cilium site induces a signaling 

cascade which leads to the activation of the downstream Gli2 and Gli3 transcription 

factors. They, in turn, activate numerous effectors including Gli1 and Nkx2.1 that 

participate to various aspects of ventral telencephalon specification including the 

generation of oligodendrocytes, astrocytes and GABAergic interneurons. The cortical 

interneurons invade the CP by tangential migration (Fuccillo, 2004). Their intracortical 

dispersion from the tangential migratory streams is controlled by a short primary cilium 

probing Shh signaling  (Graef and Beimler, 1979). In contrast to the ventral telencephalon, 

the developing cortex shows limited sensitivity to Shh signaling whose physiological role 

remained unclear. However, changes (increase or decrease) affecting Shh signaling 

impair the generation of IPs and result in size modification of the dorsal telencephalon 

(Yabut et al., 2015; Wang et al., 2016) and prevent generation of the postnatal progenitors 

in the dentate gyrus (Han et al., 2008). 

In the postnatal/adult SVZ, it appears that Shh has multiple roles and cells responding to 

Shh signaling express Gli1 transcription factor (Bai et al., 2002). Gli1+ cells produce OB 

interneurons and are found in ventral SVZ NSCs (Machold et al. 2003; Palma et al. 2005; 

Ihrie et al. 2011) but also in the dorsal domain producing cells of the oligodendrogilal 

lineage (Tong et al., 2015). Shh mRNA is primarily detected in ventral forebrain neurons, 

suggesting that local expression of Shh activates Gli1 in the ventral SVZ (Ihrie et al., 2011). 

Conditional deletion of Shh in adult mice reduces the production of ventrally derived OB 

interneurons, suggesting that Shh activity underlies type B1 cell regional heterogeneity 

(Ihrie et al., 2011). Dorsal SVZ cells however appear to be resistant to Shh-pathway 

activation, suggesting that the regional identities of type B1 cells are epigenetically 

restricted. This may explain the absence of re-specification observed in heterochronic 

transplantation experiments, as previously discussed (Merkle et al., 2007c).  
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The Wnt/β-catenin signaling pathway 

In neural development, the Wnt family of secreted signaling molecules plays multiple roles 

in stem cell maintenance, cellular proliferation, differentiation, migration, and axon 

guidance (Ille and Sommer, 2005; Harrison-Uy and Pleasure, 2012). Wnt ligands are 

secreted glycoproteins that bind to the receptors Frizzled and LRP 5/6 localized at the 

plasma membrane of APs inducing stabilization of the cytoplasmic β-catenin. Without 

signaling, activation β-catenin is degraded following its phosphorylation by GSK3β. Once 

stabilized, β-catenin translocates into the nucleus and associates to TCF/LEF transcription 

factors family, which become activators and promote the transcription of downstream 

targets (Cadigan, 2012). The cortical hem of dorsomedial telencephalon secretes BMP 

and Wnt (2b, 3a, 5a, 7b, 8b) (Figure 1C)and regulates the patterning of the dorsoventral 

cerebral cortex (Caronia-Brown et al., 2014). Moreover, Wnt signaling plays a major role 

in the regulation of cortical development. During early corticogenesis, the increase of β-

catenin induces proliferation of NECs by decreasing their cell cycle exit and by delaying 

the neurogenic (Hirabayashi, 2004; Wrobel et al., 2007). In contrast, later, it induces the 

expansion of the SVZ, the IPs pool and the neuronal output (Munji et al., 2011). The forced 

repression of the Wnt signaling pathway through genetic ablation of β-catenin during 

midgestation decreases Pax6 expression and leads to the depletion of APs, IPs and 

projection neurons, impairs oligodendrogenesis while increasing astrogliogenesis (Gan et 

al., 2014; Draganova et al., 2015). Indeed, Wnt signaling promotes the generation of 

oligodendrocyte progenitors by RGCs during late embryogenesis, while Shh supports the 

specification of ventrally derived oligodendrocyte progenitors (Langseth et al., 2010). 

Interestingly, these observations highlight the stage dependent activity of the canonical 

Wnt pathway. First it promotes self-renewal of NECs and RGCs and then promotes 

differentiation to IPs and finally induces oligodendrocyte differentiation from RGCs at the 

end of corticogenesis.  

In the postnatal SVZ, Wnt signaling is restricted to the dorsal-most microdomain, in NSCs 

and progenitors that generate oligodendrocytes and OB glutamatergic neurons (Azim et 

al., 2014). Genetic and pharmacological modulation approaches demonstrated that Wnt 

signaling regulates both proliferation and fate specification in the dSVZ (Azim et al., 2014). 

and identify canonical Wnts as the key dorsalizing factor in the postnatal SVZ, opposing 

ventrally localized Shh activity to determine dorso-ventral NSC fate (Backman et al., 2005). 

The highest functional Wnt activity defines the dSVZ-NSCs and their progeny, Tbr2+ NPs 

and Olig2+ OPs. Furthermore, Gli1 expression is not affected in dSVZ-NSCs providing 

further evidence that Wnt signaling exerts a direct dorsalizing effect on the postnatal SVZ. 

In the adult, increased β-catenin by expression of a stabilized form of this protein or 
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inhibition of the GSK3β kinase, which is required for targeting β-catenin for degradation, 

increases the proliferation of Ascl1-expressing SVZ cells. This proliferation is also 

observed in the lSVZ of early postnatal brain but involves other signaling pathways as no 

induction of downstream Wnt target genes have been detected (Azim et al., 2014). In the 

early postnatal dSVZ, increase of β-catenin in NSCs produce more Tbr2 NPs at the 

expense of Dlx2 NPs. It is noteworthy that targeted genetic stimulation of β-catenin activity 

in NSCs of the lSVZ failed to induce Tbr2 expression. This non permissiveness of lSVZ-

NSC appears to be a postnatal acquisition, since embryonic respecification of ventral 

NSCs can be achieved by expression of constitutively active β-catenin, resulting in partial 

expression of dorsally restricted markers in the ventral forebrain (most notably Ngn2) and 

a decrease in expression of ventral-restricted markers (Backman et al., 2005). Recently, 

Non canonical Wnt signaling regulates neural stem cell quiescence during homeostasis 

and after demyelination (Chavali et al., 2018). 

Bone morphogenetic proteins  

Bone morphogenetic proteins (BMPs) are members of the TGF-b superfamily. BMPs (2, 

4, 5, 6, 7) are secreted by the cortical hem and cooperate with Wnts to promote the 

dorsomedial patterning of the telencephalon (Furuta et al., 1997) (Figure 1C) and control 

midline development (Hébert et al., 2002). Without BMPs receptors, cortical progenitor 

specification is preserved and neurogenesis is maintained (Fernandes et al., 2007). In 

contrast, increase of BMP2/4 signaling during cortical development induces premature 

differentiation of RGCs into neurons (Shakèd et al., 2008). During gliogenesis stage, 

overexpression of BMP4 impairs the production of oligodendrocytes by RGCs at the 

expense of astrocytes (Gomes et al., 2003). 

BMPs also regulate adult brain germinal niches such as the SVZ. BMP signaling promotes 

astrocyte differentiation of cultured embryonic neural precursors at the expense of 

oligodendrogliogenesis and neurogenesis (Gross et al., 1996). Adult SVZ cells produce 

BMPs and their receptors (Peretto et al., 2002; Lim and Alvarez-Buylla, 2016). NOGGIN, 

a secreted BMP antagonist, is also locally expressed, most strongly in the ependymal 

cells. This locally derived BMP antagonist may contribute to the neurogenic niche. 

Downregulation of BMP signaling in NSCs impairs neurogenesis (Colak et al., 2008). 

Overexpression of BMP7 in the SVZ suppresses neurogenesis (Lim et al., 2000), and 

overexpression of Noggin from the ependymal suppresses local gliogenesis (Chmielnicki, 

2004). Thus, a “balance” between BMP and their antagonists may control the levels of 

neurogenesis and gliogenesis from NSCs in adult brain niches. In embryonic stem cells, 

BMPs act in concert with leukemia inhibitory factor (LIF) to sustain self-renewal and 
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suppress differentiation (Ying et al., 2003). In the adult, it is possible that the level of their 

expression regulates the fate of type B1 cells into niche astrocytes or self-renewing stem 

cells. For example, overexpression of LIF promotes SVZ NSC self-renewal, expanding the 

population of NSCs in vivo while concomitantly decreasing OB neurogenesis (Bauer and 

Patterson, 2006).  

Fibroblast growth factors  

The fibroblast growth factors (FGFs) family is composed by 22 FGFs arranged into seven 

families (Mason, 2007). The signaling is mediated by four different tyrosine kinase 

receptors: FGFR1 to FGFR4 and promotes downstream activation of distinct pathways 

such as the Ras/Erk1/2 Map kinase, PI3-kinase, the Akt and the PKC pathways. The 

patterns of expression of the different FGFs are tightly regulated and contribute to the 

patterning of the cerebral cortex. At the cellular level, FGFs regulate timely differentiation 

of RGCs (Sahara and O’Leary, 2009). FGF receptors are expressed with specific spatial 

patterns along the progenitor region. However, absence of all FGFRs in the dorsal 

telencephalon leads to precocious neurogenesis, resulting in a reduced cortical surface 

area in both rostral and caudal parts (Kang et al., 2009). In addition, Notch related genes 

are downregulated in FGFR mutants and gain-of-function of Notch signaling can rescue 

the phenotype (Rash et al., 2013), suggesting that Notch lies downstream of FGFR 

signaling in the same pathway regulating cortical neurogenesis. Different FGF ligands can 

either promote progenitor differentiation or self-renewal (Raballo et al., 2000; Borello et 

al., 2008) therefore controlling in fine the normal growth of the brain. FGF signaling also 

participate to some extent to the differentiation of ventral progenitors independently of Shh 

signaling (Gutin, 2006). FGF signals, are required for the specification, survival, 

proliferation, and patterning of progenitor cells in the ventral telencephalon. 

Pharmacological inhibition of FGF signaling in embryos results in an increase in ventral 

apoptosis, loss of ventral gene expression, and ventral expansion of dorsal gene 

expression (Shinya et al., 2001). Thus, FGF signaling participates in patterning the 

telencephalon into ventral and dorsal domains, potentially via regulation of anti-hem 

signals/functions. 

In the postnatal SVZ, FGF2 promotes NSC self-renewal, amplification of TAPs and 

subsequently OB neurons generation (Zheng et al., 2004; Azim et al., 2012b; Li et al., 

2018). Further, direct administration of FGF2 into the lateral ventricle increased the 

generation of oligodendrocyte progenitors (OPCs) throughout the SVZ, both within the 

dSVZ and ectopically in the lSVZ and ependymal wall of the SVZ (Azim et al., 2012b). 
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Besides diffusible factors, other external factors arising from the direct cellular environment 

of NSCs influence their activity in a regional manner. 

Notch signaling 

Notch signaling is activated by interactions between Notch receptors and their ligands. 

The mammalian Notch receptors (Notch1 - Notch4) are transmembrane proteins 

expressed on the cell surface as non-covalently linked heterodimers. The proteins 

comprise of an extracellular domain, which functions as the signal receiver and a 

transmembrane – intracellular domain that functions as the signal transducer. The 

extracellular domain contains epidermal growth factor (EGF)-like repeats, which are 

required for ligand binding (Zhang et al., 2018). The ligands of Notch signaling are 

transmembrane proteins that are present on the surface of neighboring cells. Such as IPs 

or neurons in the developing brain. There are five mammalian Notch ligands; Jagged1, 

Jagged2, Delta-like 1 (DLL1), DLL3 and DLL4, belonging to the Jagged and Delta-like 

families, respectively. As transmembrane ligands, they provide short-range signals. Notch 

in neural stem cells (NSCs) has been implicated in the maintenance of the undifferentiated 

and multipotent state (Lutolf et al., 2002; Nyfeler et al., 2005a; Mizutani et al., 2007; Ehm 

et al., 2010; Imayoshi et al., 2010; Basak et al., 2012), inhibition of neuronal differentiation 

and even terminal differentiation into an astrocyte lineage(Gaiano and Fishell, 2002). Once 

the ligand binds Notch receptor, the transcription of several genes, including the Hairy 

enhancer of split (Hes) genes, are initiated. Hes genes are basic-helix-loop-helix (bHLH) 

transcription factors that repress the expression of proneural genes, further ensuring 

RGCs stemness maintenance (Kageyama et al., 2008). Hes genes expression oscillate 

due to the negative feedback loop on their own promoter (Imayoshi et al., 2013). This 

characteristic pattern is critical for RGCs cell-cycle progression and a sustained Hes 

expression impairs neuronal generation (Baek, 2006). In contrast absence of Hes1, the 

key effector of the Notch signaling, leads to premature neurogenesis (Ishibashi et al., 

1995). The crucial role of Notch signaling is underlined by various loss of function 

mutations in the embryo and in the adult. Conditional loss of Notch signaling in the embryo 

results in precocious differentiation of the RGCs and neurodevelopmental defects, 

including impaired survival as well as aberrant migration of progenitor cells (de la Pompa 

et al., 1997; Stump et al., 2002; Gratton et al., 2003). The RING finger E3 ubiquitin ligase 

mind bomb 1 (MIB1) is essential to activate Notch signaling (Itoh et al., 2003). Interestingly, 

MIB1 is expressed in neurons and  particularly in IPs, indicating that different progenitor 

populations can interact and mutually regulate each other to control the balance between 

self-renewal and  neuronal differentiation in the mouse cortex (Yoon et al., 2008). A recent 

work provided evidence that during neurogenic divisions, MIB1 is asymmetrically localized 
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at the daughter centriole and then inherited by the future neuron, identifying the Notch 

regulator MIB1 as an intrinsic fate determinant (Tozer et al., 2017). Preventing MIB1 

centrosomal association induces reciprocal Notch activation between sister cells and 

promotes symmetric divisions. 

In postnatal/adult NSCs, Notch signaling suppresses neuronal differentiation and 

maintains precursor cell properties (Gaiano and Fishell, 2002). Notch1, Jagged1 and 

Delta1, are expressed in the adult SVZ (Stump et al., 2002; Nyfeler et al., 2005b; Givogri 

et al., 2006). In postnatal and adult SVZ cells, retrovirally transduced activated Notch 

prevents cell migration to the OB, suppresses neuronal differentiation, and decreases 

proliferation, creating an apparently more “quiescent” cell type (Chambers et al., 2001). 

Conversely, inactivation of canonical Notch signaling causes essentially all NSCs in the 

SVZ to differentiate into type C and A cells, leading to the eventual depletion of NSCs from 

this adult region (Imayoshi et al., 2010). Thus, Notch signaling is a critical component of 

type B1 cell maintenance. Interestingly, the ligands Jagged1 and Delta1 are expressed in 

type C and A cells (Givogri et al., 2006; Aguirre et al., 2010) (Givogri et al. 2006; Aguirre 

et al. 2010), which suggest a potential feedback regulation of the SVZ niche. Accumulation 

of newly born type A cells expressing Jagged1 or Delta1 may activate Notch signaling in 

type B1 cells, suppressing differentiation and potentiating self-renewal. 

In the postnatal SVZ, regional differences in the composition of the extracellular matrix 

such as collagens, laminins or fibronectins and differential distribution of their receptors 

will likely contribute to the diffusion and exposition of these diffused molecules. Their role 

in NSCs activity and regionalization remains to be fully explored.  

 

1.3. Transcriptional correlates of SVZ NSCs regionalization 

As described above, a multitude of external factors (diffusible and cell-contact factors) act 

in concert to orchestrate NSCs activity and regionalization throughout pre- and postnatal 

development. Cross-talks exist at multiple levels in between these pathways resulting in 

the regional expression of define gene networks that regulate NSCs activity, as well as 

their production of distinct cell progenies (see for exemple Fiorelli et al., 2015; Azim et al., 

2016). Understanding the transcriptional specificities of postnatal NSCs have proved to 

provide a wealth of information on their regional diversity. 
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Transcriptional profiling of NSCs have classically been performed on a population of cells 

(bulk analysis), even if recently developed RNA-sequencing approaches are now 

becoming more popular and provide additional information (see general discussion). 

For bulk analysis, cell populations of interest are enriched by FACS, based on their 

expression of specific markers. Their mRNA is extracted then analyzed by microarrays, 

qPCR or RNA sequencing approaches. This approach gave deeper insights into 

transcriptional differences that exist in NSCs isolated from different regions, and/or at 

distinct stages of activation. Comparisons of transcriptional profiles of DG (Dentate Gyrus) 

and SVZ NSCs identified IGF2 to be highly enriched in the DG. In this region, IGF2 was 

shown to control the NSCs proliferation through AKT-signaling (Bracko et al., 2012). In the 

SVZ the early expression of neuronal markers in NSCs has been demonstrated, in 

agreement with an early priming of NSCs to differentiate into specific lineage. Further, the 

importance of cilia- and Ca-dependent pathways were emphasized 

(Beckervordersandforth et al., 2010). In another study, EGF receptor expression was used 

to isolate activated and quiescent NSCs from the SVZ. This allowed discovering multiple 

markers for these two stages and uncovered signaling pathways that may be targeted by 

small bioactive molecules to regulate NSCs activity (Codega et al., 2014).  

We recently performed a similar transcriptional analysis to gain insight into the 

transcriptional correlates of SVZ NSCs. In order to probe heterogeneity of the postnatal 

SVZ, we microdissected its dorsal and lateral walls at different postnatal ages and isolated 

NSCs and their immediate progeny based on their expression of Hes5EGFP/Prominin1 

and Ascl1-EGFP, respectively. Whole genome comparative transcriptome analysis 

revealed transcriptional regulators as major hallmarks that sustain postnatal SVZ 

regionalization. This comparative analysis, which was also applied to the NSCs and TAPs 

they contain, revealed the existence of an unsuspected heterogeneity in the postnatal 

SVZ, at both the regional and temporal levels (Azim et al., 2015). This was evidenced by 

the surprisingly high number of genes differentially expressed in the microdissected dorsal 

and lateral SVZ. Roughly, 30% of the genes were age-specific, whereas 30%–40% were 

shared by all three ages analyzed. Classification based on GO terms revealed the 

importance of transcription-related cues that were further abundant in NSCs. We identified 

several other transcriptional regulators aside from TFs. Those include chromatin modifiers, 

epigenetic modulators, downstream signaling mechanisms (nuclear), all of which could act 

in concert to dynamically regulate the diversity of neuronal and glial lineages generated by 

SVZ-NSCs during early postnatal life. 



27 
 

1.4. Objectives of the PhD thesis 

Objectives of my PhD were twice. 

First, to explore further the transcriptional datasets of regionalized NSCs populations we 

have previously produced (Azim et al., 2015), by combining them with transcriptional 

datasets of specific neural lineages produced by others (Cahoy et al., 2008). To use such 

meta-analysis to explore differences in the lineage priming of regionalized NSC 

populations (Azim et al., 2017) and to identify new TFs associated with SVZ NSCs biased 

to acquire specific fate (see experimental chapter 1). 

Second, to explore the origin, fate and transcriptional specificities of cortical progenitors 

that are still present in the dorsal-most domain of the postnatal SVZ, despite of the closure 

of the cortical neurogenic period. In particular, to develop a single-cell RNA-Sequencing 

approach to directly compare the transcriptome of this peculiar progenitor population at 

pre- and postnatal stages. 

To achieve these objectives, I acquired expertise in bioinformatics and developed all the 

scripts necessary to perform those studies. I also remained directly involved in the 

histology inherent to the completion of this work.  
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2. Experimental Chapter 1: HOPX Defines Heterogeneity of 
Postnatal Subventricular Zone Neural Stem Cells 

 

This experimental chapter contains material published in the following manuscript, as well 

as original material that was not included in this publication 

  

Stefan Zweifel, Guillaume Marcy, Quentin Lo Giudice, Deqiang Li, Christophe Heinrich, 

Kasum Azim, and Olivier Raineteau (2018) HOPX Defines Heterogeneity of Postnatal 

Subventricular Zone Neural Stem Cells. Stem Cell Reports, 11(3):770-783. 

 

In this chapter, transcriptomics and fate-mapping approaches were employed to explore 

the relationship between regional expression of transcription factors by neural stem cells 

(NSCs) and their specification in defined neural lineages. I developed in collaboration with 

Q. Lo Giudice a bioinformatic tool called Heatmap Generator (see annexes for the 

complete script), which aims at combining and comparing published transcriptional 

datasets in order to perform a meta-analysis. I also performed histology experiments as 

well as a meta-analysis of a recently published single-cell RNA sequencing experiment. 

The result supports the previous observation regarding the role of HOPX in the astrocytic 

lineage. Our results support an early priming of NSCs for the genesis of defined cell types 

depending on their spatial location in the SVZ and identify HOPX as a marker of a 

subpopulation primed toward astrocytic fates. 

N.B. experiments aimed at investigating the role of HOPX in SVZ NSCs by gain- and loss-

of-function were all performed by S. Zweifel, and were therefore not included in this chapter 

(although they can be found in the published manuscript).  
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2.1. Introduction 

Germinal activity persists in the postnatal mammalian brain in specialized niches, namely 

the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ) that 

surrounds the lateral ventricle (LV). Neural stem cells (NSCs) of the postnatal SVZ divide 

and give rise to transient amplifying progenitors (TAPs) that generate neuroblasts, which 

migrate via the rostral migratory stream (RMS) into the olfactory bulb (OB), where they 

differentiate into neurons (Lois and Alvarez-Buylla, 1994). The SVZ additionally generates 

glial progenitors that invade the local parenchyma (reviewed in Azim et al. 2016). Recently, 

accumulating evidence has highlighted the heterogeneous nature of postnatal SVZ in 

respect to different microdomains generating distinct neural lineages. For example, 

progenitors of GABAergic neurons are predominantly derived from the lateral SVZ (lSVZ), 

while the genesis of glutamatergic neuron progenitors is restricted to the dorsal SVZ 

(dSVZ; Azim et al. 2012; reviewed in Fiorelli et al. 2015). Furthermore, postnatally derived 

oligodendrocytes are generated from the dSVZ (Kessaris et al., 2006). 

This heterogeneity originates from early embryonic development (Fuentealba et al., 

2015b) and is intrinsically encoded by expression of selected transcription factors (TFs). 

Therefore, TFs enriched in specific embryonic forebrain regions are persistent in their 

expression in corresponding microdomains of the postnatal SVZ. Examples of such TFs 

include EMX1 (pallium; dSVZ), GSX1/2 (lateral and medial ganglionic eminence; lSVZ), 

and ZIC1/3 (septum; medial SVZ; reviewed in Fiorelli et al. 2015). We recently resolved 

the transcriptional heterogeneities of different cell populations of the postnatal SVZ, in 

which an unexpected large number of transcripts (i.e. 1900) were differentially expressed 

in NSCs and TAPs sorted from defined SVZ microdomains. Intriguingly, most of the 

transcriptional heterogeneity observed between the dorsal and lateral NSCs (dNSCs and 

lNSCs) was due to the expression of transcriptional cues. Notably, HOPX was identified 

with specific abundant expression in dNSCs (Azim et al., 2015). HOPX is a small (73 amino 

acids) atypical homeodomain protein that lacks DNA binding sites (Chen et al., 2002; Shin 

et al., 2002). Hopx expression is minimal at embryonic day 14.5 (E14.5) and peaks around 

E16.5 with a rostromedial to caudolateral gradient (Mühlfriedel et al., 2005). HOPX 

expression has been found in radial astrocytes of the adult DG, while it is described to be 

consistently absent from the adult SVZ (De Toni et al., 2008). Moreover, the expression of 

HOPX has recently received increasing attention due to its expression in quiescent NSCs, 

in mature astrocytes in the adult mouse DG (Li et al., 2015), as well as in outer radial glia 

(oRG) cells of the developing human brain (Pollen et al., 2015; Thomsen et al., 2015a).  
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Here, we used various approaches to further investigate the regionalization of the 

postnatal SVZ and of resident subpopulations of NSCs. In particular, we characterized the 

spatiotemporal and lineage- specific patterns of HOPX expression in the postnatal SVZ  

 

2.2. Experimental procedures 

Animals and Ethics 

All animal experiments in Zurich were performed according to the Ethics Committee of the 

Veterinary Department of the Canton of Zurich (Approval ID 182/2011). Experiments in 

France were performed in accordance with European requirements 2010/63/ UE and have 

been approved by the Animal Care and Use Committee CELYNE (APAFIS #187 & 188). 

Mice used in this study were: OF1 wild-type (Charles Rivers; France), HES5:EGFP (Basak 

and Taylor, 2009), HOPXCreert2 (Takeda et al., 2011) and Rosa-EYFP mice (Srinivas et al., 

2001). 

Plasmid Preparation and Electroporation 

Plasmids used for electroporation are listed in the Supplemental Experimental Procedures. 

Plasmids were prepared and electroporated as previously described (Fernández et al., 

2011). Immunohistochemistry Mice were sacrificed by an intraperitoneal overdose of 

pentobarbital followed by perfusion with Ringer’s Lactate solution and 4% 

paraformaldehyde (PFA) dissolved in 0.1 M phosphate buffer (PB; pH 7.4). Brains were 

removed and postfixed for 12–48 hr at 4°C in 4% PFA and sectioned in 50-mm thick 

coronal serial sections. When necessary, antigen retrieval was performed for 20 min in 

citrate buffer (pH 6) at 80°C, then cooled for 20 min at room temperature and washed in 

0.1 M PB. Immunostaining was performed as previously described (Azim et al. 2014,Azim 

et al., 2014) 

Plasmids 

The following plasmids were used in this study: pCX-GFP (kind gift of X Morin, ENS, Paris; 

France); pFloxpADsRed express (kind gift of Colette Dehay; INSERM U1208, Bron, 

France); pCAG-Cre (Addgene; 13775); pCMV-Hopx (Open Biosystems; MMM1013-

202767606); pPB-CAG-EmGFP (VB161220-1119syh; VectorBuilder Inc., Cyagen 

Bioscience, Santa Clara, California, USA); pCMV-hyPBase (kind gift of Laura Lόpez-

Mascaraque; Instituto Cajal, Madrid, Spain). Plasmids were purified using the EndoFree 

Plasmid Kit according to the manufacturer’s protocol (Qiagen; 12362). Plasmids were re-

suspended to a final concentration of 5 μg/μl. Dorsal electroporations were performed in 
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P1 to P2 (postnatal day 1 to 2) pups as previously described (Fernández et al., 2011). In 

HopxCreert2 animals subcutaneous tamoxifen (Tam; SIGMAAldrich; T5648) administration 

(1 mg per pup) was performed 2 to 3 hrs after electroporation. 

Primary Antibodies for Immunohistochemistry 

The following primary antibodies were used for immunohistochemical procedures: Rabbit 

anti-Hopx (1:400; Santa Cruz; sc-30216); Mouse anti-Hopx (1:400; Santa Cruz; sc-

398703); Goat anti-DCX (1:500; Santa Cruz; sc-8066); Mouse anti-Olig2 (1:1500; 

Millipore; MABN50); Mouse anti-GFAP (1:500; Millipore; MAB3402); Chicken anti-GFP 

(1:1000; AVES LABS; GFP-1020); Rabbit anti-RFP (1:1500; MBL; PM005); Rabbit anti- 

S100β (1:5000; SWANT); Chicken anti-βGal (1:4000; Abcam; ab9361); Goat anti-Mcm2 

(1:300; Santa Cruz; sc-9839); Mouse anti-Sox2 (1:100; Santa Cruz; sc-365823); Rabbit 

anti-Blbp (1:300; Millipore; ABN14). Blocking was done in TNB buffer (0.1 M PB; 0.05% 

Casein; 0.25% Bovine Serum Albumin; 0.25% TopBlock) with 0.4% triton-X (TNB-Tx). 

Sections were incubated over night at 4°C with gentle shaking the following primary 

antibodies in TNB-Tx. Following extensive washing in 0.1 M PB with 0.4% triton-X (PB-

Tx), sections were incubated with appropriate secondary antibodies conjugated with 

Alexafluor 488, 555 or 647 (1:500; Life Technologies) for 2 hrs at room temperature. 

Sections were washed and counterstained with Dapi (1:5000; Life Technologies; D1306). 

To increase the signal from YFP and βGal, biotinylated secondary antibodies (1:500; 

Jackson) were used in combination with DTAF conjugated streptavidin (1:250; Jackson) 

or a TSA amplification kit according to manufacturer’s protocol (Life Technologies; T-

20932), respectively.  

Fluorescence-Activated Cell Sorting and qPCR 

Hes5::EGFP (with C57BL/6 background) of the age P2-P4 were used for sorting for NSCs 

as previously described and using the exact same parameters (Azim et al. 2015). 4 to 5 

animals of one litter was used for 1 “n” number. Microdissection of SVZ domains (dorso-

medial; dorso-lateral and lateral) was performed in RNase free, sterile conditions. 

Microdissection of SVZ domains (dorso-medial; dorso-lateral and lateral) was performed 

in RNase free, sterile conditions. Tissues were dissociated using a trypsin-based Neural 

Dissociation Kit (Miltenyi Biotec, Bergisch Gladbach, Germany). For additional purification 

of the Hes5-EGFP population, an APC conjugated NSC antibody against the 

transmembrane-protein prominin-1 (1:100; ebiosciences) was applied for 15 mins at RT, 

before suspension was subjected to Fluorescence Activated Cell Sorting (FACS Aria III; 

BD Bioscience, Franklin Lakes, New Jersey, USA). Dead cells were excluded by forward 

and sideward scatter. Gating settings were gained using an EGFP- wildtype animal and a 
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prominin- 1 isotype control conjugated to APC (rat anti-IgG; 1:100, ebiosciences). 

Brightest 30% of EGFP+ cells, which where prominin-1+ were collected directly into RNA 

lysis buffer and snap-frozen for further gene expression analysis. RNA extraction was 

performed using the RNeasy microkit (Qiagen; 74004) following manufacturer’s 

guidelines. RNA amplification of 3 ng input material was done using the Nugene Pico 

Ovation WT kit (NuGen Technologies, Inc., San Carlos, CA) as described previously (Azim 

et al. 2015). qPCR was performed according to the procedures described elsewhere (Azim 

et al., 2012b, 2014)(Azim et al., 2012b, Azim et al., 2014b), with the Light Cycler 480 

(Roche, Basel, Switzerland). All reactions were performed in duplicates or triplicates and 

GAPDH was used as reference gene. Primers used were custom made by Qiagen (EGFP, 

Eomes, Hopx, Pcna, Sp8) or designed with the Primer Express 1.5 software and produced 

by Eurofins (Schönenwerd, Switzerland). 

GAPDH: fw_CGTCCCGTAGACAAAATGGT, rv_TTGATGGCAACAATCTCCAC; 

Aldh1l1: fw_CAGTAAACCTCCTGGCCAAA, rv_CCCTGTTTTCCCTACTTCCC; 

Aqp4: fw_TGAGCTCCACATCAGGACAG, rv_TCCAGCTCGATCTTTTGGAC; 

Dct: fw_GCATCTGTGGAAGGGTTGTT, rv_ACTCCTTCCTGAATGGGACC; 

DCX: fw_CTGACTCAGGTAACGACCAAGAC, rv_TTCCAGGGCTTGTGGGTGTAGA; 

Dlx2: fw_CTTCTTGAACTTGGATCGGC, rv_AGACCCAGTATCTGGCCCTG; 

Ebf1: fw_GGTGGAAGTCACACTGTCGTAC, rv_GTAACCTCTGGAAGCCGTAGTC; 

Fgfr3: fw_ACAGGTGGTCATGGCAGAAGCT, rv_CTCCATCTCAGATACCAGGTCC; 

Gli1: fw_CTCAAACTGCCCAGCTTAACCC, rv_TGCGGCTGACTGTGTAAGCAGA; 

Gli3: fw_CGAGAACAGATGTCAGCGAG, rv_TGAGGCTGCATAGTGATTGC; 

Hes5: fw_GTAGTCCTGGTGCAGGCTCT, rv_AACTCCAAGCTGGAGAAGGC; 

Id3: fw_GCGTGTCATAGACTACATCCTCG, rv_GTCCTTGGAGATCACAAGTTCCG; 

Lef1: fw_CGTCACACATCCCGTCAGATGTC, rv_TGGGTGGGGTGATCTGTCCAACG; 

Olig1: fw_AGCAAGCTCAAACGTTGGTT, rv_GTTCTGTTTTTCAGGCTCGC; 

Olig2: fw_GACGATGGGCGACTAGACA, rv_CAGCGAGCACCTCAAATCTA; 

PDGFRα: fw_AGAAAATCCGATACCCGGAG, rv_AGAGGAGGAGCTTGAGGGAG; 

Plp1: fw_GGGCCCCTACCAGACATCTA, rv_TCCTTCCAGCTGAGCAAAGT; 

Tcf7: fw_TGCCTTCAATCTGCTCATGCC, rv_GTGTGGACTGCTGAAATGTTCG; 

Vax1: fw_CTCTACAGGCTGGAGATGGAGT, rv_GCTTAGTCCGCCGATTCTGGAA. 

 

 

 



36 
 

Meta-Analysis of Transcriptional Profiles 

To generate the lists of TFs that are enriched in dNSCs and lNSCs, we made use of 

previously published datasets (Cahoy et al., 2008; Azim et al., 2015), accessible on the 

Gene Expression Omnibus database (GEO: GSE60905 and GSE9566). We analyzed 

them on the “Gene Expression Omnibus” (https://www.ncbi.nlm.nih.gov/geo/) for 

transcripts that are differentially expressed between dNSCs and lNSCs (≥1.8 fold 

enrichment and p-values <5%). Finally, we selected transcripts for transcription factor 

activity and regulation of transcription using “DAVID Analysis Wizard” 

(https://david.ncifcrf.gov/). Lists of transcripts were analyzed for enrichments in the 

neuronal, astrocytic or oligodendrocytic lineage using the transcriptional dataset of the 

Barres group (Cahoy et al. 2008; GSE9566). Heatmaps were produced using a self-made 

R script “Heatmap Generator” which is described below. 

Heatmap Generator 

We developed a tool to combine different transcriptomic datasets available via the “Gene 

Expression Omnibus” (GEO) and generate heatmaps named HeatMap Generator. This 

tool is a self-made R script that can be run as a local application. The procedure involves 

to compile on the one hand the datasets of interest with their GSE references, and on the 

other hand the genes of interest. Both files should be saved as csv files with the same 

name and placed in a DataSet and Genes folders accordingly. Then the application 

GSEtoHeatmaps.sh can be launch. The software will interrogate the GEO database and 

generate heatmaps of pre-selected genes. The R script is provided as Annex 1. 

Meta-Analysis of Single-Cell RNA Sequencing datasets 

We analyzed the transcriptomes of embryonic cortical cells (E15.5 and E17.5) produced 

by Yuzwa et al. (Yuzwa et al. 2017, GEO: GSE107122.). The Seurat bioinformatic pipeline 

was used for the analysis as follow. We first created a “Seurat object” including cells 

expressing more than 100 genes and genes expressed in more than 2 cells. We next 

performed a Principal Components Analysis (PCA), using the prcomp function of R, after 

scaling and centering of the data across these genes. This ensured robust identification of 

the primary structures in the data. We identified statistically significant principal 

components and used the most significant genes for each of these PCs as input for t-

Distributed Stochastic Neighbour Embedding (t-SNE, R package, “perplexity parameter” 

= 30). To identify clusters, a graph-based clustering approach was used. For the 

subclustering analysis of E17.5 RGCs only we used the astrocyte marker genes described 

in Zywitza et al. (Zywitza et al., 2018) as input for t-SNE. All the codes used to produce 

Figure 11 can be found in Annex 2. 
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Quantifications and Statistics 

Quantifications and Statistics Images were acquired using a Leica DM5500 epifluorescent 

microscope, a Leica TCS SPE II, and a TCS SP5 confocal microscope (Leica 

Microsystems, Wetzlar, Germany). Images were quantified using ImageJ-win64 or 

assembled as representative pictures with LAS X, ImageJ, and Photoshop (CS4). 

Statistical analysis was done with Microsoft Excel 2013 and GraphPad Prism 7. All data 

are shown as mean ± SEM and statistical significance was calculated using the unpaired 

t test (in figures *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). 
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2.3. Results 

Hopx Is Enriched in NSCs of the dSVZ and in Cells of the Astrocytic Lineage. 

In a previous study, we examined the transcriptome of spatially distinct domains of the 

postnatal SVZ and revealed differential transcriptional networks in region-specific NSCs 

(Azim et al., 2015). This heterogeneity was explored further by analysis of TFs and 

transcriptional regulators (termed hereafter as TFs) as well as their association with 

defined neural lineages. Focusing on TFs only, 112 were differentially expressed between 

the regionalized subpopulations of NSCs (dNSCs: 61; lNSCs: 51; Figures 8A and S1A–

S1C). The expression of TFs enriched dorsally was confirmed by examining in situ 

databases (http://www.brain-map.org/), and by immunohistochemistry (Figures 8C and 

7D). Among transcripts enriched in dNSCs (Figure 8B), 5 out of the top 10 (NeuroD6, 

Eomes, NeuroD1, Tbr1, Neurog2) are known major determinants of the glutamatergic 

neuronal lineage (Schuurmans et al., 2004; Hevner et al., 2006; Brill et al., 2009; Winpenny 

et al., 2011). In addition, a meta-analysis was performed on publicly available datasets of 

isolated glial cells and neurons for the characterization of TFs into defined neural lineages 

(Cahoy et al., 2008). Interestingly, this analysis revealed that TFs enriched in dNSCs 

formed at least three clusters corresponding to astroglia (18/61), neurons (15/61), and 

oligodendroglia (11/61; Figure 8E). In contrast, lNSCs enriched TFs identified a single 

large neuronal cluster (42/51), while those of oligodendroglia were relatively fewer (3/51) 

and the astroglial cluster was absent (Figure S1E). These observations underline the 

greater diversity of lineages arising from the dSVZ, whereas the lSVZ generates almost 

exclusively interneurons (reviewed in Fiorelli et al., 2015; Azim et al., 2016). 

We then focused our analysis onto HOPX, an atypical homeodomain protein, which was 

notably enriched in both dNSCs (rank 7; 7-fold enriched in dNSCs) and the astrocytic 

lineage (Figures 8A, 8B, 8D, and 8E). Immunodetection of HOPX confirmed that it was 

not expressed in migrating neuroblasts (DCX+) of the RMS nor in OLIG2+ oligodendrocytes 

of the corpus callosum (CC; Figures 8F and 8G). In contrast, HOPX was expressed by 

astrocytes in the CC (glial fibrillary acidic protein [GFAP]+; Figure 8H). In the dSVZ, HOPX 

expression was evident in astrocyte-like lineages while absent in the other lineages 

(Figures S1F–S1H), in agreement with the transcriptional meta-analysis (Figure 8E). 

Such an expression pattern supports an early expression of HOPX and its association with 

the astroglial lineage. 
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Figure 8. A Meta-Analysis of TFs Enrichment in dNSCs Highlights Their Association 
with Distinct Neural Lineages. (A) Heatmap showing enrichment of 61 TFs in dNSCs 
compared with lNSCs (R1.8-fold and p < 0.05). (B) Top ten TFs enriched in dNSCs.  (C and 
D): Dorsal enrichment of select transcripts was confirmed using the Allen Brain Atlas for 
Eomes (C) and by immunohistochemistry  for HOPX (D). (E) Heatmap of dNSC enriched TFs 
reveals three clusters corresponding to defined neural l ineages: oligodendrocytes (purple, 
11/61); astrocytes (yellow, 18/61); neurons (turquoise, 15/61). Hopx (highlighted in bold) 
associates with the astrocytic l ineage. (F–H)  Confirmation of astroglial  l ineage-specific 
enrichment of HOPX by immunohistochemistry. HOPX is largely absent in neuroblasts of the 
RMS (DCX; F) and oligodendrocytes in the CC (OLIG2; G), but is observed in astrocytes of 
the CC (GFAP; H, arrows indicate double positive cells).  CC, corpus callosum; dNSC, dorsal 
NSCs; lNSC, lateral NSCs; RMS, rostral migratory stream; OPC, oligodendrocyte precursor 
cell; OL, oligodendrocyte. Scale bars, 500 mm (C and D) and 25 mm (H).  
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HOPX Expression Reveals Intraregional Heterogeneity within the dSVZ 

We next focused our analysis on HOPX expression within the dSVZ. Using two different 

antibodies, HOPX protein expression was found to be restricted to the dSVZ, while it was 

consistently absent from its lateral counterpart (Figure 9A; see also Figure S2). 

A high HOPX expression was already detectable throughout the dorsal region of the 

VZ/SVZ at E16. At early postnatal time points (postnatal day 1 [P1] and P4), its expression 

remained high but declined sharply thereafter in the young adult SVZ. Throughout its 

period of expression, a clear mediolateral gradient persisted, with the highest expression 

observed in the medial aspects of the dorsal wall and declining in its lateral aspects (i.e., 

high medial-to-lateral expression), which has not yet been described for any other gene 

(Figure 9A). 

To further investigate HOPX expression within dNSCs we used the HES5:EGFP mouse 

line, which efficiently labels NSCs, as previously reported (Azim et al., 2015; Giachino et 

al., 2014). Quantification of HOPX expression in the dSVZ in this mouse line revealed that 

a large proportion (70.1% ± 5.0%) of EGFP+ NSCs expressed HOPX. Due to the notable 

mediolateral gradient of HOPX expression in the dSVZ, quantifications of EGFP+/HOPX+ 

cells were performed in the medial and lateral subdomains. There was a significantly 

higher overlap in the medial subdomain of the dSVZ (90.9% ± 6.6%; dmSVZ) compared 

with the lateral subdomain (53.7% ± 6.2%; dlSVZ; Figure 9B). These results were 

confirmed by performing electroporations (EPOs) of a GFP-encoding plasmid into the 

dSVZ of pups, which were sacrificed 8 hr later. This enables labeling of cells in direct 

contact with the lumen of the ventricle, i.e., those with radial glia (RG) morphology, as 

previously described (Azim et al., 2015; Tiveron et al., 2017). Similar results were obtained 

with 76.0% ± 2.4% of the electroporated (GFP+) cells expressing HOPX, which were 

significantly larger in the dorsomedial subdomain compared with its dorsolateral 

counterpart (93.0% ± 2.4% versus 69.3% ± 3.4%; Figure 9C). 

Taken together, the gradient of HOPX expression in dNSCs demonstrates intraregional 

NSC heterogeneity within the dSVZ wall and proposes its regulation of NSC identity and 

fate. 
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Figure 9. HOPX Exhibits a Complex Spatial and Temporal Expression Pattern within the 
SVZ Where it Labels a Subpopulation of dNSCs . (A) Representative micrographs of HOPX 
expression in coronal sections at E16, P1, P4, P21, and P60 (top panels). Higher 
magnifications (lower panels) show high expression in the embryo (E16) and at early 
postnatal stages (P1, P4) and a decline thereafter (P21, P60). A clear medial -tolateral HOPX 
expression gradient is apparent in the dSVZ (see also Figure S2 for a more complet e 
rostrocaudal overview at P4). (B and C)  Analysis of HOPX expression in dNSCs was 
performed in HES5:EGFP mice (B; n = 3 animals) and after short -term (8 hr) targeted EPO 
of a pCX-GFP plasmid (C; n = 6 animals). Crops show overlap of HOPX with HES5:EGFP - 
and GFP-positive cells , respectively, which was more pronounced in the medial than lateral 
subdomain of the dSVZ (crops and graphs). EPO, electroporation; dSVZ, dorsal SVZ; lSVZ, 
lateral SVZ; dNSC, dorsal NSC. Error bars represent the SEM. Scale bars in (A) represent 1 
mm (overview) and 500 mm (crops). Scale bars in (B) and (C) represent 200 mm (DAPI 
overview), 100 mm (higher magnification), and 25 mm (crops). *p < 0.05;***p < 0.001.  
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The dSVZ Is Defined by Microdomains with Distinct Lineage Outputs 

Both the astrocytic expression of HOPX and its regional enrichment within a subpopulation 

of dNSCs suggest further transcriptional heterogeneity within the dSVZ microdomains. To 

test this hypothesis, we took advantage of the HES5:EGFP mice and microdissected the 

medial and lateral parts of the dSVZ (dmSVZ and dlSVZ, respectively) and isolated the 

NSCs (dmNSCs and dlNSCs, respectively) based on their EGFP expression, as previously 

described (Azim et al., 2015). qRT-PCR was performed to compare the expression of 

lineage-specific markers in regional NSC populations (Figures 10A and 10B).  

We selected known transcripts enriched in NSCs as well as in defined neural lineages 

(Cahoy et al., 2008; Azim et al., 2015) and compared their expression levels by qPCR. 

Measured transcripts were all enriched in NSCs compared with the dSVZ, thereby 

validating our fluorescence- activated cell sorting strategy. In addition, there was no overall 

regional enrichment of stem cell markers (Hes5, Egfp; Basak & Taylor 2007) and a 

proliferation marker (Pcna) within the different NSC populations, although the neuroblast 

marker Dcx was enriched in lNSCs, consistent with a greater number of neuroblasts 

generated by this SVZ microdomain (Yang et al. 2004; Figure 10A, top panel). Markers 

for the astroglial, oligodendroglial, and neuronal lineages were confirmed using the 

transcriptional datasets from the Barres group (Cahoy et al. 2008; Figure S3). Markers 

that were highly specific to astrocytes (Aqp4, Aldh1l1, Fgfr3, Id3), including Hopx, were 

enriched in dmNSCs (Figure 10B, top panel), and those for oligodendroglial lineage 

(Pdgfra, Plp1, Olig1, Olig2, Dct) were partly enriched in dmNSCs but overall more 

homogeneously distributed (Figure 10B, middle panel). Finally, transcripts of the neuronal 

lineage (Dlx2, Sp8, Eomes, Vax1, Ebf1) were generally enriched in dlNSCs or in lNSCs 

(Figure 10B, bottom panel), implying spatial segregation of lineages in the dSVZ. Taken 

together, Hopx and astroglial markers exhibit expression patterns in the dSVZ that are 

opposite to neuronal markers (Figure 10C). Interestingly, target genes for morphogens, 

i.e., WNT and SHH, showed that WNT signaling is homogenously distributed throughout 

the dorsal wall (Lef1, Tcf7), whereas Gli1 is highly expressed in lNSCs (Figure 10A, 

bottom panel). Another signaling pathway target gene, Id3, used as a readout for bone 

morphogenetic protein (BMP) signaling, showed very marked enrichment in dmNSCs 

(Figure 10B, top panel). Next, to test whether NSCs harbored by those two subdomains 

are biased to generate specific neural progenies, we performed targeted EPO of the 

dmSVZ and dlSVZ (Figure 10D). At a short time point (i.e., 12 hr), EPO of both 

microdomains with a GFP-encoding plasmid resulted in efficient GFP expression in 

numerous RG cells. Accurate spatial targeting was assessed by measuring the GFP 

fluorescence intensity within 50-mm probes distributed along the mediolateral aspects of 
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the dSVZ at 14 days post-electroporation (dpe) (Not shown). This confirmed the precise 

and reliable targeting of NSCs of the dmSVZ and dlSVZ. Both regions had given rise to 

large cohorts of progenies whose distribution and fate appeared to be strikingly different. 

Indeed, in agreement with the transcriptional profile of dlNSCs, a large population of GFP+ 

neurons in the OB (93.3 ± 11.1, average number of cells/section) were found following 

dorsolateral EPO (dlEPO), while those derived from the dorsomedial EPO (dmEPO) 

remained fewer (11.1 ± 1.8; Figures 9E–9G). 

 

 

Figure 10. Lineage-Specific Markers Highlight Acquisition of Divergent Cell Fates by 
NSCs Located in Different dSVZ Subdomains . (A and B)  Heatmaps show enrichment of 
transcripts in NSCs of distinct SVZ regions (dmNSCs, dlNSCs, lNSCs) compared with the 
dorsal environment (dSVZ). Transcripts of stem cell, proliferation, and neurogenesis markers 
(A; top panel) and selected signaling pathways . (A; bottom panel) were analyzed. Selected 
markers of the astroglial (B; top panel),  oligodendroglial (B; middle panel), and neuronal 
l ineage (B; bottom panel) were analyzed. Astrocyte and neuronal markers show regional 
enrichment in dmNSCs and dlNSCs, respectively, while oligode ndroglial markers show partial 
preference for enrichment in dmNSC. Note that HOPX transcripts were enriched in dmNSCs.  
(C) Scheme representing the counter gradients of the expression of Hopx (red) and astroglial  
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markers (yellow) against the expression of neuronal markers (green) in dNSCs. 
Oligodendroglial markers (blue) do not show such a clear spatial gradient.  (D) dmEPO and 
dlEPO highlight divergent l ineage outputs of the two dorsal subdomains. The scheme shows 
the orientation of the electrodes for the ta rgeted EPOs at P2 followed by analysis at 14 dpe.  
(E–G) Representative micrographs of OB sections after dmEPO and dlEPO (E and F). Cell 
counts of OB neurons indicate that neurogenesis of the dSVZ mainly originates from dlNSCs 
(G). (H–J) Representative micrographs of LV containing sections after dmEPO and dlEPO. 
Cells with an astrocytic fate were identif ied according to their morphology and GFAP 
expression (H and I, arrows indicate double positive cells). Quantification of astrocytes 
indicate that astrogenes is of the dSVZ is mainly provided by dmNSCs (J).  (K) Graph showing 
the fractions of astroglial and neuronal progenies from NSCs of these two subdomains. It 
highlights that dmNSCs are primed for generating astrocytes, whilst neurons are derived from 
dlNSCs. dpe, days post electroporation; dSVZ, dorsal SVZ; dmNSCs, dorsomedial NSCs; 
dlNSCs, dorsolateral  NSCs; lNSCs, lateral  NSCs; EPO, electroporation. Animals: (A) 4 –5 per 
n; (B) dmEPO, n = 4; (B) dlEPO, n = 5. Error bars represent SEM. Scale bars in (F) and ( I) 
represent 200 mm (overviews) and 25 mm (crops), and apply also to (E) and (H). *p < 0.05; 
***p < 0.001; ****p < 0.0001.  

 

In contrast, the population of GFP+ astrocytes in the vicinity of the LV (assessed by 

morphology and GFAP expression; Figures 3H and 3I), was substantially larger following 

dmEPO than dlEPO (34.6.5 ± 6.3 versus 16.5 ± 4.1; Figure 10J). Taken together, our data 

reveal that dmNSCs are primed to generate astrocytes (74.9% ± 3.0% astrocytes versus 

25.1% ± 3.0% neurons), whilst dlNSCs generate largely olfactory neurons (15.2% ± 3.8% 

astrocytes versus 84.8% ± 3.8% neurons; Figure 10K). 

Altogether, these findings demonstrate a high degree of heterogeneity within the dSVZ in 

containing specialized NSC populations that generate either astrocytes or neurons 

according to their location. 

HOPX-Expressing dNSCs Are Biased to Acquire an Astroglial Fate 

To confirm a direct relationship between HOPX expression and the generation of distinct 

neural lineages by dNSCs, we fate-mapped HOPX-expressing NSCs. To this end, we co-

electroporated an inducible fluorescent plasmid (pFloxpA-DsRed) with an EGFP plasmid 

(pCX-GFP) in the dSVZ of P1 HOPXCreert2 mice and analyzed brain sections at 7 and 21 

dpe (Figures 11A and 11B). Tamoxifen-mediated activation of the CRE-recombinase in 

HOPX+ NSCs led to DsRed/GFP co-expression (hereafter termed dsRed) in 

electroporated cells and their progenies, whilst the HOPX- lineage expressed EGFP only 

(Figure 11C). Electroporated cell distribution and fate were assessed at both time points 

on serial sections encompassing the LV and the OB (Figures 11D and 11E). These results 

revealed the presence of DsRed+ and GFP+ cells at both 7 and 21 dpe (Figure 11F). 

Remarkably, while the majority of GFP+ cells were found in the OB (7 dpe: 66.2% ± 2.1%; 
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21 dpe: 77.7% ± 2.5%) and acquired the typical morphology of granule neurons, the 

majority of DsRed+ cells remained in close proximity to the dSVZ, i.e., in the CC and the 

cortex (7 dpe: 64.6% ± 5.6%; 21 dpe: 63.8% ± 6.8%) at both time points (Figure 11G). 

The distinct neural fates adopted by HOPX+ or HOPX- NSCs were examined by 

immunolabeling of GFAP in DsRed+ and GFP+-expressing progenies in the periventricular 

regions at 21 dpe. This analysis confirmed that the generation of GFAP+ astrocytes 

produced by HOPX-expressing NSCs was approximately twice as large compared witth 

dNSCs that do not express HOPX (59.2% ± 7.1% versus 32.8% ± 4.3%, Figure 11H). 

These findings confirm HOPX as a marker for a subpopulation of dNSCs primed for 

astrogenesis. 

 

 

Figure 11. Conditional Fate Mapping Reveals HOPX-Expressing NSCs Are Biased to 
Generate Astrocytes. (A–C) Co-electroporation of a pCX-GFP and an inducible pFloxpA-
DsRed plasmid (1:2; A) in HOPX Cr eer t 2 mice, allows l ineage tracing of  HOPX+ and HOPX- 
populations at short term (7 dpe) and long term (21 dpe; B). This approach results in GFP -
only progenies from HOPX+ NSCs, whilst HOPX + NSCs give rise to dsRED/GFP (termed as 
DsRed) progenies (C).  (D and E)  Representative micrographs of an LV (D) and OB (E) section 
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at 21 dpe. Astrocytic fate was assessed according to morphology and GFAP expression (D, 
crops). Neuronal fates were assessed in the OB according to morphology (E, crops; yellow 
arrows indicate DsRed/GFP double positive cells).  (F) Graph of absolute numbers o f 
recombined cells (red) and GFP+ (green) in LV and OB sections at 7 dpe and 21 dpe.  (G) 
Graph showing the fractions of recombined DsRed +  and GFP+ cells harbored by LV and OB 
sections at 7 dpe and 21 dpe.  (H) Graph showing the fractions of cells derived fr om 
recombined DsRed+ and GFP+ populations exhibiting astrocytic traits at 21 dpe in the vicinity 
of the LV. dEPO, dorsal electroporation; dpe, days post electroporation; dSVZ, dorsal SVZ; 
LV, lateral ventricle; NSCs, neural stem cells; OB, olfactory bulb; Tam, tamoxifen. Animals: 
7 dpe, n = 5; 21 dpe, n = 4. Error bars represent SEM. Scale bars in (D) represent 100 mm 
(DAPI overview and fluorescence overview) and 25 mm (crops). Scale bars in (E) represent 
500 mm (DAPI overview), 250 mm (fluorescence overvie w), and 50 mm (crops). *p < 0.05; 
**p < 0.01; ***p < 0.001; ****p < 0.0001.  

 

Hopx-expressing RGCs are Present in the Late Developing pallium and Share 

Transcriptional Featrues with adult Astrocytes 

We next wondered if a subpopulation of dNSCs primed for astrogenesis is already present 

during the embryonic period of cortical neurogenesis. To address this question, we took 

advantage of two recently published single-cell RNA sequencing datasets ((Yuzwa et al., 

2017; Zywitza et al., 2018). We used the dataset of Yuzwa and colleagues, consisting of 

a single cell RNA sequencing analysis of cortical cells at distinct embryonic timepoints, to 

isolate E15.5 and E17.5 radial glia cells. We next used the dataset of Zywitza and 

colleagues, consisting of a large scale single-cell RNA sequencing of the entire SVZ, to 

isolate the list of markers associated to niche astrocytes.  

We first focused our analysis on E15.5 and E17.5 isolated cortical cells. Genes with high 

variance were used to compute principal components as input to visualize cells in two 

dimensions using t-distributed stochastic neighbor embedding (t-SNE). To identify RGCs 

at both time points we identified cells with Sox2 expression, representing Sox2 relative 

expression as a color gradient, with grey indicating no detectable mRNA and red indicating 

the highest mRNA level detected (Figure 12A). This resulted in the identification of 334 

radial glial cells at E15.5 and 76 at E15.5. We combined the 2 populations together (Figure 

12B) and identified differentially expressed genes (386 and 639 enriched genes at E15.5 

and E17.5 respectively, bimod test and threshold 0.25). A functional clustering analysis 

was performed using the DAVID software, which revealed enrichment of cell cycle related 

genes (Figure 12C) and neuronal related genes (Figure 12D) in E15.5 RGCs, whereas 

astroglial-related genes such as Sparcl1 were enriched in E17.5 RGCs (Figure 12E, 

Annex 3), in agreement with the neurogenic to gliogenic switch occurring at this late 

embryonic timepoint. These results are consistent with the known developmental 

trajectories described during development. 
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Figure 12. Single-cell RNA Sequencing Meta-analysis Reveals Hopx-expressing RGCs 
Share Transcriptional Features with Adult Astrocytes.  (A)  t-SNE of E15.5 cortical cells 
(left panel) and E17.5 cortical cells (right panel) generated from Yuzwa et al . raw datasets 
and Feature Plots showing Sox2 expression (in red) identifying the RGCs cluster at both 
timepoints. (B) t -SNE of E15.5 and E17.5 RGCs indicating transcriptional changes occur over 
embryonic development. (C-E) E15.5 RGCs show higher cell cycle activity as indi cated by 
enrichment of cell cycle gene ontologies (C), as well as higher neurogenic potential, as 
i l lustrated by NeuroD6 expression. (D) In contrast, E17.5 RGCs show astrogl ial potential as 
indicated by Sparcl1 expression (E), correlating with the neurogen ic to astrogenic switch 
occurring at this late embryonic time point. (F-G) t-SNE of E17.5 RGCs using adult astrocytes 
marker from Zywitza et al.  as input genes, reveals 2 identif ied clusters (F). Cluster 1 contains 
44% of the astrocyte markers l ist whereas  Cluster 2 contains only 7% (G). (H) Feature Plots 
showing Aldh1l1 expression, a classical astrocytic marker, as i l lustration.  
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We next asked whether subpopulations of RGCs coexist at E17.5. We first attempted at 

identifying RGCs clusters using the graph-based clustering method from the Seurat R 

package. However, no significant cluster emerged through this unbiased strategy (Not 

shown). We next reasoned that if a subpopulation of RGCs was biased to produce 

astrocytes, they should share some of the genes associated with adult astrocytes. We 

used a list of 254 astrocytes specific genes (Annex 4), described in a recent single-cell 

RNA sequencing study of the entire SVZ (Zywitza et al., 2018) (Figure S4A), to visualize 

cells in a new t-SNE. The graph-based clustering method identified 2 clusters (Figure 

12F). Strikingly, 44% of the Zywitza astrocyte markers were present in cluster 1 enriched 

genes, such as the classical astrocyte marker Aldh1l1 (Figure 12GH), whereas only 7% 

were present in cluster 2 enriched genes. This result suggest that cluster 1 contains RGCs 

primed toward the astroglial lineage. Remarkably, enriched genes in cluster 1 which 

contains Aqp4, ApoE, Aldoc, Id3, Clu (Figure S4B and Annex 5) also include Hopx. This 

indicates that Hopx defines a subpopulation of pallial RGCs primed towards astrogenesis, 

as early as E17.5 a timepoint corresponding to the neurogenic to gliogenic switch. 

 

2.4. Discussion 

In this study, the expression hallmarks of TFs that regulate distinct neural lineages were 

further characterized for their enrichment in specific microdomains of the SVZ. By selecting 

one of these transcripts, we show that NSCs are spatially segregated and primed to 

differentiate toward specific neural fates. Our results identify Hopx as a gene that unravels 

further heterogeneity of the dSVZ in mediating aspects of astrogenesis and suggest its 

association with the emergence of germinal traits observed in higher-order mammals. 

The diversity of neural subtypes generated by SVZ-NSCs after birth is much larger than 

first believed. The concept of SVZ regionalization whereby the genesis of distinct neural 

lineages are spatially and temporally regulated is being increasingly investigated 

(reviewed in Fiorelli et al. 2015; Azim et al., 2016). NSCs located in SVZ microdomains 

originate from specific regions of the developing forebrain (Fuentealba et al., 2015a), and 

generate a large diversity of neural cells, including neuronal subtypes, depending on the 

expression of particular transcriptional programs. Consequently, the expression of TFs 

directly correlates with the acquisition of defined neural fates, a concept that was explored 

in the present study. 
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We took advantage of the whole-genome transcriptome of region-specific postnatal NSCs 

that were recently resolved (Azim et al., 2015). A meta-analysis of TFs expressed in dorsal 

and lateral NSCs with datasets of isolated forebrain neuronal and glial subpopulations 

(Cahoy et al., 2008) highlighted transcriptional networks that correspond to microdomain-

specific NSC derived lineages. Therein, we demonstrate that NSCs are primed to acquire 

specific fates by the early expression of lineage-specific TFs. Such an early priming is 

supported by a recent single-cell RNA-sequencing characterization of adult SVZ NSCs 

(Llorens-Bobadilla et al., 2015). Exploring the spatial heterogeneity and restricted nature 

of NSCs in generating specific neural lineages will be greatly facilitated by the identification 

of regionalized NSC markers, such as HOPX. Using two separate approaches, we 

demonstrate that HOPX expression is confined to a subpopulation of dNSCs whilst it is 

minimally expressed in lNSCs. Additionally, our findings imply an association of HOPX 

with the astroglial lineage. Similarly, Hopx mRNA is confined to a subpopulation of E17.5 

RGCs (20%) characterized by an enrichment of astrocytic markers expressed in adult SVZ 

niche astrocytes. This correlates with recent clonal fate mapping suggesting that this 

neurogenic to gliogenic transition is largely incomplete, as only a fraction of RG cells 

(estimated to roughly 1/6), switch to produce glial cells. Importantly, although HOPX 

expression is observed in a subpopulation of NSCs that mainly produces astrocytes, it 

cannot be considered a pan-astrocytic marker. Indeed, HOPX expression is spatially 

restricted and is therefore likely to be associated with the generation of a subpopulation of 

astrocytes. Fate-mapping studies revealed that astrocytes are allocated to spatial domains 

in accordance with their embryonic sites of origin in the ventricular zone (Tsai et al., 2012). 

Furthermore, transcriptomic analysis of astrocytes isolated from various brain regions 

reveals heterogeneous expression of several astrocytic markers. For instance, HOPX was 

shown to be enriched in astrocytes of the dorsal forebrain (cortex and hippocampus) and 

lowly expressed in astrocytes of subcortical regions (thalamus and hypothalamus; Morel 

et al., 2017). Astrocyte heterogeneity in the CNS has recently been described to influence 

neuronal synaptogenesis and maturation through secretion of several extracellular matrix 

proteins (Eroglu and Barres, 2010). In addition, the densities of astrocytes vary greatly 

between brain regions (Azevedo et al., 2009). The role of HOPX in influencing regional 

astrocytes properties and/or densities remains to be explored. 

Recently, a number of key studies have reported HOPX expression in human oRG (Pollen 

et al., 2015; Thomsen et al., 2015b). Furthermore, ectopic overexpression of the hominoid-

specific gene Tbc1d3 into RG in rodents induces HOPX-expressing oRG that contribute 

to cortical folding (Ju et al., 2016). In line with these observations, our overexpression 
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results (not presented here, see Zweifel et al. 2018) suggest an instructive role for HOPX 

in oRG cell formation. 

The mechanisms by which HOPX mediates its functions remain largely unknown. HOPX 

is an atypical TF that does not bind to DNA directly, but modulates other TFs and/or 

effectors of signaling pathways at the posttranscriptional level. An interaction of HOPX 

with SRF has been demonstrated during cardiac development (Shin et al., 2002), but is 

unlikely to occur in the SVZ where SRF expression remains low (data not shown). A more 

likely function of HOPX is the modulation of dorsally active signaling pathways, such as 

the BMP and WNT pathways (see also Azim et al. 2014; Azim et al. 2017), which have 

been demonstrated to fine-tune astrogenesis with neurogenesis during corticogenesis 

(Gross et al., 1996; Takizawa et al., 2001; Tiberi et al., 2012). Reciprocal signaling 

between BMP and WNT has been reported in multiple progenitor populations (He et al., 

2004; Plikus et al., 2008; Kandyba et al., 2013; Genander et al., 2014; Song et al., 2014), 

and may be integrated by HOPX expression, as recently demonstrated in cardiomyoblasts 

(Jain et al., 2015). Future studies aimed at manipulating the activity of these two signaling 

pathways in HOPX KO animals may allow us to address these questions and investigate 

the role of extrinsic signal integration in lineage fate specification of neighboring 

populations of NSCs. 

It is interesting to speculate that other signaling pathways may influence the pattern of 

HOPX expression and may be implicated in its evolution in primates. Intriguingly, HOPX 

expression in the mouse SVZ follows the spatiotemporal maturation of ependymal cells, 

which may gradually restrict RG cell contact with the cerebrospinal fluid (Mery et al., 2010). 

This, combined with the expression of HOPX in oRG, which lack apical processes in 

primates, suggests that an unknown cerebrospinal fluid-derived signal may regulate HOPX 

expression. Such signals might modulate SHH signaling that has been recently identified 

in regulating oRG cell formation (Wang et al., 2016). In agreement, SHH manipulation in 

mice results in oRG and gyri formation in the medialmost aspect of the cortex, where high 

HOPX expression is evident. Expression of HOPX in primate oRG might have evolved 

from this original pattern of expression for the dual coupling of oRG cells and cortex 

expansion. In summary, our work demonstrates that the dSVZ is much more 

heterogeneous than previously thought in terms of spatial segregation and early priming 

of NSCs in generating specific neural lineages. The abundant expression of the TF HOPX 

contributes to the intraregional heterogeneity of the dSVZ in rodents. 
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2.5. Supplementary Figures 

Supplementary Figure S1 

Figure S1. Analysis of TFs enriched in regionally separated NSC population.  Related to 
Figure 8. (A, B): Heatmaps confirming the enrichment of selected TF transcripts in dNSC 
(vs. lNSCs; A) and lNSCs (vs. dNSCs; B), including the tran scriptional profi le in TAPs and 
the environment (SVZ) of those two regions.  (C): Heatmap of in P4 lNSCs enriched TFs  
compared to their dorsal counterparts (≥1,8 folds and p value <0,05).  
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Supplementary Figure S2 

 

 

Figure S2. Spatial heterogeneity of Hopx expression at P4. Related to Figure 9. (A-C): 
Representative pictures demonstrate Hopx expression in a P4 animal along  the rostro-caudal 
axis. The top and middle panel show overviews (A)  and higher magnification pictures (B) of 
t issue stained with the rabbit anti Hopx antibody. The bottom panel shows higher 
magnification pictures of tissue stained with the mouse anti Hopx  antibody  (C).  Note that 
both antibodies exhibit the same spatial  pattern of Hopx expression.Scale bars: A, B = 1 mm; 
C = 500 μm. 
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Supplementary Figure S3 

 

 

Figure S3. Confirmation of lineage specificity of selected transcripts using the dataset 
from the Barres group. Related to Figure 10. 5 transcripts of the oligodendrocytic l ineage 
(PDGFRa, Dct, Plp1, Olig1, Olig2 ), 5 of the neuronal l ineage (Ebf1, Dlx2, Eomes, Sp8, Vax1 ) 
and 5 of the astrocytic l ineage ( Id3, Aldh1l1, Hopx, Aqp4, Fgfr3 ) were selected. 
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Supplementary Figure S4 

 

 

 

Figure S4. Hopx and astrocytic markers identified by Zywitza et al. identify a 
subpopulation of “astrogenic” RGCs at E17.5. Related to figure 12. (A) t-SNE plot of 
9,804 cells colored by cluster annotation and t -SNE plots of cells colored by expression of 
selected marker genes, which were used for the identif ication of astrocytes (Zywitza et al. 
2018). (B) Additional Feature Plots i l lustrating the presence of various astrocytes markers, 
including Hopx, in cluster 1.  
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3. Experimental Chapter 2: Transcriptional Dysregulation in 
Postnatal Glutamatergic Progenitors Contributes to Closure of 
the Cortical Neurogenic Period 

 

The material presented in this experimental chapter was published in the following 

manuscript: 

 

Vanessa Donega, Guillaume Marcy, Quentin Lo Giudice, Stefan Zweifel, Diane Angonin, 

Roberto Fiorelli, Djoher Nora Abrous, Sylvie Rival-Gervier, Muriel Koehl, Denis Jabaudon, 

and Olivier Raineteau (2018) Transcriptional Dysregulation in Postnatal Glutamatergic 

Progenitors Contributes to Closure of the Cortical Neurogenic Period. Cell Reports 

22(10):2567-2574  

 

 

In this second chapter, transcriptomics and fate-mapping approaches were employed to 

investigate the origin, transcriptional specificities and competence of postnatal 

glutamatergic (Glu) progenitors. I established the complete pipeline from isolating Glu 

progenitors from Ng2Creert2Ai14 mice – following TAM injections optimization – to single-

cell RNA sequencing bioinformatics analysis using the Seurat R package. I also performed 

genetic manipulations in vivo in embryos as well as newborn animals to address the 

question of the Glu progenitors origin and competence. Our results showed that a large 

fraction of Glu progenitors persists in the postnatal forebrain after closure of the cortical 

neurogenesis period. Postnatal Glu progenitors do not accumulate during embryonic 

development but are produced by embryonal radial glial cells that persist after birth in the 

dorsal subventricular zone and continue to give rise to cortical neurons, although with low 

efficiency. Single- cell RNA sequencing reveals a dysregulation of transcriptional programs 

which correlates with the gradual decline in cortical neurogenesis observed in vivo. 

Rescuing experiments show that postnatal progenitors are partially permissive to genetic 

and pharmacological manipulations. 
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3.1. Introduction 

During neocortical development, glutamatergic neurons are born from progenitors (Glu 

progenitors) located in the ventricular zone (VZ) and subventricular zone (SVZ) and 

assemble to form the circuits that underlie cognitive functions. It is classically accepted 

that the period of cortical neurogenesis closes around embryonic day (E)17.5 in the 

mouse, with neuronal progenitors switching fate to produce astrocytes (Li et al., 2012). 

However, a significant fraction of neural progenitors do not switch fate. For instance, a 

population of progenitors remain in the postnatal SVZ, contributing to olfactory bulb 

neurogenesis and parenchymal gliogenesis throughout life (Doetsch et al., 1999b). At least 

some of these progenitors arise from slow cycling/ quiescent embryonal radial glial cells 

that divide between E13.5 and E15.5 (Fuentealba et al., 2015b; Furutachi et al., 2015). 

Fate-mapping analysis demonstrated that they give rise to distinct neuronal and/or glial 

lineages, depending on their location in the SVZ (Fiorelli et al., 2015). Surprisingly, several 

reports suggest the persistence of Glu progenitors in the dorsal SVZ (dSVZ) until early 

adulthood (Brill et al., 2009; Winpenny et al., 2011). We used Neurog2Creert2/tdTom mice 

to permanently and specifically label synchronous cohorts of prenatal and postnatal Glu 

progenitors to study their lineage relationship and transcriptional specificities. Our results 

show that Glu progenitors continue to be produced after closure of the period of cortical 

neurogenesis. Single-cell RNA sequencing (scRNA-seq) reveals that postnatal Glu 

progenitors show dysregulation in genes involved in metabolism, differentiation, and 

migration, which parallels a rapid decline in their capacity to migrate and differentiate. Our 

data suggest that this transcriptional dysregulation in postnatal Glu progenitors may result 

from decreased N6-methyladenosine (m6A) methylation of certain proneural genes. 

Nevertheless, postnatal Glu progenitors remain partially amenable to pharmacological and 

genetic manipulations. 

 

3.2. Experimental Procedures 

Ethical Statement 

All animal experiments were performed in accordance with international guidelines from 

the EU directive 2012/63/EU and approved by the Animal Care and Use Committee 

CELYNE (APAFIS#187 & #188). 
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Animals 

The Neurog2Creert2 transgenic mouse line was crossed with the reporter line RosatdTomato 

(tdTom) (Madisen et al., 2010), allowing the specific labeling of Glu progenitors and their 

immediate progeny. For fate mapping of birthdated cohorts of Glu progenitors, tamoxifen 

was administered to Neurog2Creert2/tdTom transgenic mice at various embryonal and 

postnatal time points. The morning when a plug was observed was considered as E0.5, 

and the day of birth was defined as P0. 

Tamoxifen injections 

Tamoxifen (Sigma-Aldrich, T5648-16, St. Louis Missouri, USA) and progesterone (Sigma-

Aldrich, P8783-1G) were dissolved in Corn oil (Sigma-Aldrich, C8267) at final 

concentration of 20mg/ml and 10mg/ml, respectively. Pregnant Neurog2Creert2 / tdTom 

females were administrated 0.5mg tamoxifen and 0.25mg progesterone by gavage at 

E13.5, E15.5 or E17.5. The morning when a plug was observed was considered as E0.5 

and the day of birth is defined as P0. Mouse pups were injected subcutaneously with 1mg 

tamoxifen at P1 and were terminated at P2, P3, P5, P7, P11, P21 or P45. 

In Utero Electroporation 

In utero electroporation was performed at E13.5 or E15.5 to investigate the embryonal 

origin of postnatal Glu progenitors, using a mixture of transposon pPB-EBFP-P2A-GFP 

and hyperactive piggyBac transposase. 

E13.5 or E15.5 timed-pregnant OF1 females were anesthetized with isoflurane (induction 

4.5%; maintenance 2.5%), and the uterine horns were exposed by laparotomy. A mixture 

of transposon pPB-EBFP-P2A-GFP and hyperactive piggyBac transposase (1:2 with a 

concentration of 1.5μg/μl in PBS) together with the dye Fast Green (0,01mg/mL) (Sigma-

Aldrich) to visualize the injection site, was injected into the lateral ventricles of the embryos 

with a pulled glass capillary. Uterine horns were soaked with PBS and embryos were held 

carefully between tweezer-type circular electrodes (10mm diameter, Nepa Gene, Chiba, 

Japan). For the electroporation, five electrical pulses (amplitude, 40V (for E13.5) or 45V 

(for E15.5); duration, 50ms; interval, 1sec) were delivered with an electroporation 

generator (CUY21 type 2, Nepa Gene). Following electroporation, uterine horns were 

placed back inside the abdominal cavity and the OF1 female was placed on a heating 

plate to recover.  
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Immunohistochemistry 

Animals were sacrificed with an overdose of pentobarbital and fixed by transcardial 

perfusion with PBS followed by 4% paraformaldehyde (PFA; w/v). Brains were dissected 

and post-fixed in 4% PFA at 4°C. Free-floating vibratome serial sections were cut at a 

thickness of 50 mm. Immunostainings were performed as described previously. 

For immunostainings, sections were blocked in TNB solution for 2 hrs at room temperature 

and incubated overnight at 4°C with primary antibodies diluted in TNB with 0.4% Triton-X. 

The following primary antibodies were used: FoxP2 (rabbit, 1:1000, Millipore), Cux1 

(rabbit, 1:500, Santa Cruz C-20), Ki67 (mouse, 1:1500, Abcam ab6526), Olig2 (mouse, 

1:1000, EMD Millipore MABN50), PCNA (mouse, 1:400, Dako, Denmark), Satb2 (mouse, 

1:200, Abcam ab51502), Tbr2 (rabbit, 1:1000, Abcam ab23345). After thorough washing, 

sections were incubated for 2 hrs at room temperature with the corresponding secondary 

antibodies conjugated to Alexa-488, Alexa-555 or Alexa-647 (1:1000, Invitrogen). Nuclear 

counterstaining was done with 4’,6- diamidino-2-phenylindole (DAPI) (Life Technology 

T20932). Fate mapping Serial sections cut at a thickness of 50μm (with an interval of 

250μm between sections) were stained with DAPI and images were taken on an Axio 

Scan.Z1 microscope (Zeiss, Cambridge) at 20x/0.8NA objective (Plan- Apochromat 

20x/0.8 M27) with a resolution of 1024μmx1024μm.  

Fate mapping 

Serial sections cut at a thickness of 50μm (with an interval of 250μm between sections) 

were stained with DAPI and images were taken on an Axio Scan.Z1 microscope (Zeiss, 

Cambridge) at 20x/0.8NA objective (Plan- Apochromat 20x/0.8 M27) with a resolution of 

1024μmx1024μm. Positive cells were marked on corresponding brain sections from the 

Allen Brain Atlas. 

Quantifications 

Images were taken on a Leica SPE confocal laser microscope using 10x/0.3 NA, 20x/0.75 

NA, or 40x/1.25 NA oil objectives (HCPL Fluotar) and the software LAS (Leica 

Microsystems, v3.1.2.16221). Quantifications were performed on coronal sections by 

counting the number of cells either by eye from confocal images or from z stack mosaic 

images of the entire dSVZ on ImageJ. Depending on the analysis, quantifications were 

done either on an entire series of sections or on at least 3 equally spaced sections of the 

SVZ. Images for Sholl analysis were taken with a z-step of 0.29 mm and a resolution of 

1,024 3 1,024. Sholl analysis was performed on Neurolucida 360 software (MBF 

Bioscience). Images were using Photoshop (CC2015.5, Adobe Systems Software). 
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Statistical Analysis 

Data are expressed as mean ± SEM (n ≥ 3). Significance was tested on GraphPad Prism 

7 by using an unpaired t test or 2-way ANOVA followed by Bonferroni post hoc test. 

Single cell capture, cDNA library preparation and sequencing 

The brains of E15 and P2 mice were harvested and placed on ice-cold Hank’s balanced 

salt solution (HBSS). The region of intense tdTomato expression (i.e. dorsal pallium) were 

then microdissected and cells were finally chemically (Trypsin-EDA 0,05%) and manually 

(500 μl pipet) dissociated. After filtering on a 70μm cell strainer, the cell suspension was 

FAC-sorted on a BD® FACS Aria to isolate tdTom+ cells (Annex 6) which were confirmed 

to belong to the glutamatergic lineage, as expected (Annex 7). For each condition, tissue 

collection, FAC-sorting and cell isolation were performed in two independent replicates to 

ensure biological significance. Single cells were isolated with the C1 Single-Cell Auto Prep 

System, and validated by a visual check on an inverted microscope. A total of 230 cells 

were obtained (121 at E15.5 and 109 at P2). Reverse transcription and pre-amplification 

of the single-cell cDNAs were done within the integrated fluidic circuit (IFC) chip using the 

SMARTer Ultra Low RNA kit for Illumina (Clontech) according to the C1 protocol. Upon 

termination of the run, amplified cDNA was harvested, and the concentration of cDNA was 

assessed on a SpectraMax Gemini Fluorimeter (Molecular Devices). The typical yield of 

cDNA for each cell is expected to be about 0.8ng cDNA per μl. RNA-seq libraries of the 

harvested cDNA were prepared using the Illumina Nextera XT DNA Sample Preparation 

Kit. Libraries were muliplexed and sequenced using the Illumina HiSEQ500 platform (see 

pipeline in Annex 8) as 75bp single reads using the Illumina HiSEQ500 platform at a 

depth of 7M reads. 

Quality control, identification of outliers and analysis 

The obtained RNA-seq data were prepared and analyzed as previously described (Telley 

et al., 2016). Briefly, sequenced reads were aligned on the latest mouse reference genome 

assembly (GRCm38) using STAR (Spliced Transcripts Alignment to a Reference) (Dobin 

et al., 2013) (See summary report in Table 1) and the number of reads per transcript 

calculated with FeatureCounts (Liao et al., 2014). For each cell, Reads per Million (RPM) 

are divided by the length of the gene to obtain normalized Reads Per Kilobase Million 

(RPKM) and transformed in log2 when necessary. Identification of progenitors, nascent 

neurons, and transcripts was performed using the Seurat bioinformatic pipeline as follows: 

We first created a “Seurat object” including cells expressing more than 500 genes and 

genes expressed in more than 2 cells, identifying 11.718 genes across 228 cells. We next 

performed a Principal Components Analysis (PCA), using the prcomp function of R, after 
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scaling and centering of the data across these genes. This ensured robust identification of 

the primary structures in the data. We identified statistically significant principal 

components and used the most significant genes for each of these PCs as input for t-

Distributed Stochastic Neighbour Embedding (t-SNE, R package, “perplexity parameter” 

= 30). To identify clusters, a density clustering approach was used. Single-Cell Differential 

Expression (SCDE; Kharchenko et al. 2014) was used to identify differentially expressed 

genes across progenitors and nascent neurons between developmental time-points (cut 

off: absolute Z score ≥ 2, corresponding to a classical P value ≤ 0.05). 

 

Table 1. Sequencing Report .  Sequencing depth (Reads/cell) and % of assigned reads are 
consistent in P2 and E15.5 progenitors.  

 

Gene ontology enrichment analyses 

GO analysis were performed in identified dysregulated genes with the GO biological 

process complete annotation set from PANTHER (v12) (http://pantherdb.org/). Kegg 

pathway analysis was performed with a homemade R code querying the Kegg pathway 

database (http://www.kegg.jp/kegg/pathway.html). The proteinprotein interaction (PPI) 

analysis was performed in differentially regulated transcripts using Enrichr web-based 

tools (Chen et al., 2013; Wang et al., 2018) (http://amp.pharm.mssm.edu/Enrichr/). 

Data and Software Accessibility 

The accession numbers for the data reported in this paper are GEO: GSE109556 and 

have been posted to Mendeley at https://doi.org/10.17632/k659jr9gvv.1.  

m6A dot blot assay 

The pallium and dSVZ were isolated (n=4) at E15.5 and P2, respectively. mRNA was 

harvested using the Dynabeads mRNA Direct Purification Kit (61011, ThermoFisher, 

Waltham USA). 3.5μl and 1μl dots were applied to an Amersham Hybond-N+ membrane 

P2 Number of Reads / Cell % of Unique Reads % of Assigned Reads

Average 6036057 79 43

Median 5660906 80 43

Max 10792752 87 63

Min 2189408 6 4

E15.5 Number of Reads / cell % of Unique Reads % of Assigned Reads

Average 6943141 73 41

Median 6806643 75 43

Max 11424623 82 61

Min 2563824 46 14

http://amp.pharm.mssm.edu/Enrichr/
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(Amersham, UK) as 20ng mRNA per 1μL. After complete drying, the mRNA was 

crosslinked to the membrane by placing it at 80°C for 2hrs. The membrane was blocked 

with 5% skim milk (PBS-Tween20 0.1%) for 2hrs and then incubated with primary antibody 

m6A (mouse, 1:500, 212B11 Synaptic Systems, Goettingen Germany) diluted in blocking 

buffer for 2hrs at room temperature. Membranes were washed three times in PBS-T, and 

incubated with the secondary antibody ECL HRPconjugated (sheep-anti-mouse, 1:5000, 

Amersham) in blocking buffer for 2hrs at room temperature. After washing three times with 

PBS-T, the membrane was visualized using the Supersignal West Femto Maximum 

Sensitivity Substrate (34096, Thermo Scientific). Equal mRNA loading was confirmed by 

staining the membrane with a 0.02% methylene blue in 0.3 M sodium acetate solution (pH 

5.2). m6A signal was quantified with ImageJ. 

Pharmacological activation of the canonical Wnt signaling pathway 

50μL intraperitoneal injections were given between P1-P2, twice a day (a total of four 

injections of 10 μL each), with a final concentration of 5mM (dissolved in sterile PBS). 

Bcl11a gain of function 

Briefly, P2 mouse pups were anesthetized on ice and were fixed on a plate placed in a 

stereotaxic rig. A mixture of Bcl11a or control plasmid (LacZ) (final concentration 3μg/μL) 

and the dye Fast Green (0.2μL) was prepared. Injection (2μL) was done at the level of the 

right lateral ventricle at a depth of 2mm from the surface of the skull using a Hamilton 

syringe with a 34G needle (Nevada, USA). Successfully injected mice were subjected to 

five electrical pulses (95V, 50ms, separated by 950ms intervals) using the ECM CUY21 

type 2 electroporator (NepaGene, Chiba, Japan). 

 

3.3. Results 

Fate Mapping of Birth-Dated Cohorts of Glutamatergic Neurons 

The recombination efficiency and specificity of the Neurog2Creert2/tdTom mice was verified 

by injecting tamoxifen (Tam) at different embryonal time points (i.e., E13.5 and E15.5) and 

examining brains after 12 and 24 hr (Figures 13A and 13B). 

The recombined cells initially expressed the Glu progenitor marker, Tbr2, and the 

proliferation marker Ki67, and rapidly translocated from the VZ to the cortical plate. Fate 

mapping of recombined cells was assessed at postnatal day (P)21. Tam injections at either 
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E13.5, E15.5, or E17.5 labeled neurons in subcortical and cortical brain regions in 

accordance with their date of birth (Figure S5). 

To confirm the precise labeling of birth-dated cohorts of glutamatergic neurons, we 

performed a more detailed analysis of recombined cells in the cortex. Tam injection at 

E13.5 labeled neurons in the deep cortical layers (i.e., L5–L6), which expressed the deep 

cortical layer marker FoxP2, (Figures 13C–13E).  

In contrast, recombination at E15.5 labeled neurons in L3–L4, which expressed the upper 

layer marker Cux1 (Figures 13C–13E). Importantly, only a few glial-like cells were labeled 

(<1% of total tdTom+ cells) from E15.5 on. These glial cells were found in clusters, 

suggesting that only a very limited number of progenitors switched from a glutamatergic 

to an astrocytic fate (Figure S5). Altogether, these observations confirm that 

Neurog2Creert2/tdTom mice allow the specific labeling of birth-dated cohorts of 

glutamatergic neurons.  

 

 

Figure 13. Neurog2Creer t 2 /tdTom Mice Allow Fate Mapping of Birth-Dated Cohorts of Glu 
Progenitors and Reveal Their Persistence at  Postnatal Stages .  (A) In situ hybridization 
from the Allen Brain Atlas showing Neurog2 expression in the VZ and SVZ at E15.5.  (B)  
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Specific recombination of Glu progenitors  in the SVZ following Tam injection at E15.5.  (C 
and D)  Representative coronal sections (C)  and drawings i l lustrating the distribution of 
recombined neurons at P21 after Tam injection at E13.5 and E15.5 (D).  (E)  Immunodetection 
and quantif ication of layer marker expression by recombined cortical neurons (see arrows) 
following Tam at E13.5 and E15.5.  (F) Tam injection at P1 reveals a large population of Glu 
progenitors in the dSVZ (arrows indicate migrating cells) (see also Figures S1 and S2).  (G)  
Recombined cells express the Glu progenitor marker Tbr2 but not Olig2.  (H) Some 
recombined cells express the proliferative marker Ki67 24 hr post -Tam injection but exit cell 
cycle by 48 hr.  (I  and J) Fate mapping of P0.5 recombined cells at various postnatal t ime 
points (I)  i l lustrating the disappearance of recombined cells in the dSVZ, while cortical  
neuron number increases and stabil izes by P21 (J) (see also Figure S2).  (K and L)  High-
magnification image showing co-localization of tdTom+ cells with Cux1 and Satb2 (see 
arrows) in L2–L3 (K) or L5–L6 (L) at P45 (see also Figure S3).  (M–O)  Only a fraction of 
tdTom+ neurons located in upper cortical layer survive at P45 (M), which correlates with their 
faster maturation (N and O) (see also Figure S4).  TAM, tamoxifen. Scale bars: 500 mm in 
(B); 1,000 mm in (C); 50 mm in (F); 25 mm in (E), (G), (K), and (L); and 20 mm in (N). Data 
are presented as mean ± SEM. See also Figures S5, S6, S7, and S8. 

 

A Large Population of Glu Progenitors Persist in the Postnatal SVZ 

Having established the lineage and temporal specificity of recombination in the 

Neurog2Creert2/tdTom mice, we performed Tam injections in postnatal mice. Recombination 

at P0.5 revealed that a large pool of Glu progenitors persist in the early postnatal dSVZ 

and subcallosal zone (SCZ), despite closure of the cortical neurogenic period (Figure 13F; 

Figure S6A). 

Recombined cells were confirmed to be Glu progenitors by their expression of Tbr2 

(Figure 13G) but exclusion of other lineage markers (e.g., Olig2). Twenty-four hours 

following recombination, 20% of Glu progenitors were still actively cycling, but most had 

exited the cell cycle by P3 (Figure 13H). 

To follow the long-term fate of these progenitors, we injected Tam in P0.5 pups and 

sacrificed them at various time points. At P2, most recombined cells were observed in the 

dSVZ, but their number gradually decreased with age, disappearing by P21 (Figure 13I). 

In parallel, Glu progenitors gave rise to a cohort of migrating neurons that transiently 

increased in the corpus callosum and cingulum, as they left the dSVZ and migrated toward 

the cortex (Figures 13I and 13J). At P21, tdTom+ neurons were observed in the cortex, in 

the dentate gyrus, and in some subcortical nuclei (Figure 13J; Figure S6B). 

The number of recombined cortical neurons increased from frontal to caudal brain sections 

(Figure S6C), with most neurons located in sensory rather than motor regions (Figure 

S2D). A marked decrease in the number of recombined neurons was observed over time. 

Indeed, comparison of the number of tdTom+ cells at short and long survival times (i.e., 12 
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hr post-Tam injection or at P21, respectively), revealed a large decrease (81.3%) following 

a P0.5 Tam injection. In comparison, a marginal drop was observed in the number of cells 

recombined at E15.5 (11.8%), indicating that while most recombined embryonal 

progenitors produce neurons that efficiently survive until P21, only a fraction do so at 

postnatal time points. 

We next looked in more detail at the location and phenotype of recombined cortical 

neurons. Most recombined glutamatergic neurons were located in upper cortical layers 

L2–L3, and a few were located in L5–L6 (Figures S7A–S7D). By P45, most recombined 

neurons expressed the marker Satb2. While recombined neurons located in L2–L3 also 

expressed the upper layer marker Cux1, those in L5–L6 did not express the markers of 

deep cortical layers, Ctip2 or FoxP2 (Figures 13K and 13L; Figure S7E). 

By P45, the decrease in number of recombined neurons was more pronounced in deeper 

cortical layers than in superficial layers (Figure 13M), as around 1% of the total number 

of tdTom+ neurons were located in L5–L6 (i.e., 30–48 cells per brain). This decreased 

survival correlated with a slower maturation of surviving neurons in deep cortical layers 

(Figures 13N and 13O). Nevertheless, surviving glutamatergic neurons of both upper and 

deep layers developed spines (Figure S8A), thereby suggesting proper integration of 

newborn glutamatergic neurons. In contrast to neurons produced at E13.5, which formed 

corticofugal (i.e., internal capsule or corticospinal) projections, postnatally born neurons 

only formed intracortical projections, as shown by the presence of axons in the corpus 

callosum (Figure S8B). 

Taken together, these results reveal that closure of the cortical neurogenic period is not 

due to the disappearance of Glu progenitors but rather to a gradual decline in their capacity 

to differentiate and survive. 

ScRNA-Seq Reveals Transcriptional Dysregulation in Postnatal Glu Progenitors 

We next investigated the origin and transcriptional specificities of postnatal Glu 

progenitors. Injection of Tam at E13.5 or E15.5 failed to label Glu progenitors at P2 

(Figures 14A–14F). In contrast, in utero electroporation of a transposon-GFP plasmid 

(Siddiqi et al., 2014) at either E13.5 or E15.5 revealed a large pool of GFP+ cells that 

persisted in the postnatal dSVZ and continued generating proliferating Tbr2+ cells at P2 

(Figures 14G and 14H) as well as at P21 (Figures 14I and 14J). 

Together, these results indicate that postnatal Glu progenitors do not accumulate during 

embryonic development but are produced by embryonic radial glial cells (RGCs) that 
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persist after birth in the dSVZ, in accordance with recent studies (Fuentealba et al., 2015b; 

Furutachi et al., 2015). 

 

Figure 14. Postnatal Glu Progenitors Originate from a Pool of Slow -Cycling RGCs that 
Accumulate in the SVZ during Corticogenesis . (A–F) tdTom+ cells recombined at 
embryonal time points do not remain in the postnatal dSVZ (C–D’) but generate the different 
Glu projection neurons embryonally.  tdTom+ cells in the pall ium 24 hr after TAM injection (A 
and B) and at P2 or P21 in L5–L6 (C and E) or L2–L3 (D and F) are indicated. (G–J)  In utero 
electroporation (IUE) of transposon-GFP in the pall ium at embryonal time points E13.5 (G) 
and E15.5 (I and J) highlight persisting RGCs (see arrows) in the dSVZ that continue giving 
rise to proliferating Tbr2 +  cells at P2 (G and H) as well as at the later postnatal t ime point 
P21 (in I and J). Scale bars: 500 mm in (E) and (F); 200 mm in (C), (D), and (I); 100 mm in 
(A), (B), (C’), and (D’); and 25 mm in (G) and (J). Data are presented as mean ± SEM.  

 

To explore the mechanisms of the decreased neurogenic capacity of postnatal Glu 

progenitors, we performed scRNA-seq of tdTom+ cells isolated by flow cytometry from 

microdissected pallium at E15.5 or P2. Unbiased clustering combined with interrogation of 

cell-cycle and post-mitotic markers revealed several cell clusters (Figures 15A and 15B), 

corresponding to actively cycling recombined cells (i.e., progenitors) and their immediate 

progeny (i.e., nascent neurons) (Figure 15B and Annex 9). Expression of lineage-specific 
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transcripts, such as Neurog2 and Tbr2, confirmed their Glu identity (Figure 15C). 

Transcriptional differences increased during differentiation, with 597 (8%) and 1.425 (20%) 

genes being differentially regulated between E15.5 and P2 progenitors and nascent 

neurons, respectively (Figures 15D and 15E; see Table S1 in online supporting material 

of the article and see https:// genebrowser. lyon.inserm.fr/ for an interactive dataset). Thus, 

while the vast majority (90%) of E15.5 top 1,000 expressed genes were also expressed in 

P2 progenitors, only 40% of the E15.5 top 1,000 genes were similarly expressed in nascent 

neurons at P2 (Figure 15F). 

Interestingly, transcripts enriched in Glu progenitors (i.e., Sox2, Pax6, Neurog2, and Tbr2) 

were upregulated at P2, suggesting a transcriptional dysregulation leading to the 

persistence of progenitor traits in nascent neurons (Figure 15G). 

Knowing that m6A methylation plays a role in cortical neurogenesis by regulating the 

expression of proneural transcripts (Yoon et al., 2017), we assessed whether this mRNA 

modification was decreased in postnatal Glu progenitors. Transcriptional analysis 

confirmed a downregulation of transcripts coding for proteins of the methyltransferase 

complex, Mettl3 and Mettl14 (Figure 15G), while expression of YTHDF2, which has been 

shown to localize m6A-tagged transcripts to decay sites (Wang et al., 2015), was not 

changed (data not shown). To assess m6A methylation level in Glu progenitors, we 

performed an mRNA dot blot assay to detect m6A modifications (Figures 15H and 15I). 

Our results reveal a 65% decrease in m6A level in the postnatal dSVZ, compared to the 

E15.5 pallium. 

All together, these data suggest that epitranscriptomic modifications participate in the 

transcriptional dysregulation observed in postnatal Glu progenitors and their immediate 

progeny. 
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Figure 15. Dysregulation of Neurogenic Transcriptional Coding in Postnatal Glu 
Progenitors. (A and B)  Hierarchical clustering (A) and t -SNE of individual cells recombined 
at E15.5 and P2 allows distinguishing 2 clusters of cells, actively cycling cells (i.e.,  
progenitors), and their immediate progeny (i.e.,  nascent neurons) (B).  (C) Feature plot 
showing the expression of transcripts of the Glu l ineage.  (D) Venn diagrams showing the 
number of differentially expressed transcripts in progenitors or nascent neurons . (E and F)  
Transcriptional differences increase as differentiation progresses, as reflected by the 
percentage of transcripts differentially expressed between E15.5 and P2 (E), as well as the 
gradual loss of transcripts expressed at E15.5 in P2 -sorted cells (F).  (G)  Feature plots 
showing downregulation of methyltransferases Mettl3 and Mettl14 in P2 progenitors and 
upregulation of m6A-tagged transcripts Sox2, Pax6, Neurog2, and Tbr2.  (H) Dot blot showing 
decreased m6A levels at P2 and methylene blue staining confirming equal mRNA loading on 
membrane. (I)  Quantif ication of m6A levels.  (J) GO showing downregulation in P2 progenitors 
of transcripts involved in transcription and metabolism.  (K) GO analysis showing 
downregulation of migration, differentiation, and cell death in P2 nascent neurons.  (L) KEGG 
pathway analysis highlighting dysfunctional signaling pathways.  Data are presented as mean 
± SEM. 
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Postnatal Glu Progenitor Differentiation Can Be Partially Rescued 

We next focused on the transcriptional specificities of P2 Glu progenitors and nascent 

neurons. Classification of transcripts differentially expressed in Glu progenitors highlighted 

depressed transcriptional and metabolic activities at P2 that correlates with reduced 

potential of Glu progenitors to differentiate postnatally (Figure 16J). Classification of 

differentially expressed transcripts in nascent neurons highlighted downregulation of 

generic programs of differentiation and migration, and an upregulation of genes involved 

in neuronal death (Figure 16K), in line with our histological observations. A KEGG analysis 

further highlighted paralleled perturbation of several key signaling pathways, such as Wnt 

canonical signaling (Figure 16L), as previously suggested (Li et al., 2012). 

A more detailed analysis into downregulated GO terms, revealed a decrease in several 

genes, including Ctnnb1 (i.e., β-catenin) and other Wnt signaling transcripts such as, Fzd1 

and Lef1 (Figures 16A and 16B). Protein-protein interaction (PPI) analysis further 

emphasized the central role of β-catenin, as most of the downregulated genes at P2 

encode for proteins that interact with it (Figure 16C). 

To assess if migration and differentiation of postnatal Glu progenitors could be reactivated, 

we performed experiments to rescue downregulated signaling and transcriptional 

pathways. We first used a glycogen synthase kinase 3β (GSK3β) inhibitor, AR-A014418, 

to activate the canonical Wnt signaling pathway. Our results showed increased tdTom+ 

cells in the dSVZ, which was paralleled by increased proliferation (Figures 16D–16F). 

Next, we selected Bcl11a as a candidate gene for overexpression, as this transcription 

factor is among the top 10 differentially expressed (i.e., downregulated) transcription 

factors at P2 (Figure 16G). Bcl11a has been shown to regulate both migration and fate 

specification during embryonic development (Wiegreffe et al., 2015; Greig et al., 2016). 

Overexpression of Bcl11a increased proliferation in the dSVZ (Figure 16H). In addition, 

our results show a significant increase in migration towards the cortex and increased 

number of cells that adopted bipolar morphologies (Figures 16H–16J). 

Together, these results demonstrate that Glu progenitors remain permissive to both 

pharmacological and genetic manipulation.  
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Figure 16. Partial Rescue of Impaired Migration and Differentiation of Postna tal Glu 
Progenitors by Pharmacological and Genetic Manipulations . (A)  Feature plot showing 
decreased expression Ctnnb1 (β-catenin) in P2 nascent neurons.  (B) Feature plots showing 
altered expression of two Wnt-signaling transcripts.  (C) PPI analysis showing the top 10 
proteins to interact with proteins coded by genes downregulated at P2.  (D–F’)  
Pharmacological activation of  the Wnt canonical pathway increases the (D) number and (E) 
proliferation (Ki67) of tdTom + cells in the dSVZ at 72 hr. (F and F’) .  Representative images 
showing tdTom+  progenitors migrating away from the  dSVZ. (G) Feature plot showing 
decreased expression of Bcl11a in P2 nascent neurons.  (H) Overexpression of Bcl11a 
increases proliferation in the dSVZ while promoting cell migration and bipolar cell morphology 
outside the dSVZ. (I–J’)  Representative images after electroporation of control plasmid 
(LacZ) (I–I’ ) or Bcl11a (J–J’) overexpression.  Scale bars: 100 mm in (F); 50 mm in (J); and 
25 mm in (F’) and (J’). *p < 0.05; **p < 0.005. Data are presented as mean ± SEM.  

 

3.4. Discussion 

Our work highlights the persistence of a large population of Glu progenitors in the postnatal 

forebrain, after the closure of the cortical neurogenic period. Fate mapping and scRNA-

seq reveal a dysregulation of transcriptional and signaling pathways that contribute to 

restricting the neurogenic potential of postnatal Glu progenitors early after birth. Rescuing 

experiments, however, show that postnatal progenitors remain partially permissive to 

genetic and pharmacological manipulations, suggesting that they could be recruited for 

cortical repair. The perinatal period has long been considered as a period of exclusive 

cortical gliogenesis associated with the maturation of embryonically born neurons into 

functional circuits. This view is currently challenged by the demonstration of neurogenesis 
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in specific cortical regions. Thus, GABAergic progenitors accumulate in the early postnatal 

white matter and give rise to a subpopulation of cortical interstitial interneurons (Frazer et 

al., 2017). In addition, the migration of interneurons into the frontal cortex has been shown 

to persist early after birth in rodents (Inta et al., 2008; Le Magueresse et al., 2012), as well 

as in human babies (Nogueira et al., 2017). 

Our results reveal that this persisting neurogenesis is not restricted to the GABAergic 

lineage but also includes neurons of the glutamatergic lineage. Indeed, our work identifies 

a small population of cortical Satb2/Cux1+ neurons that are generated at birth. Surviving 

neurons develop spines and intracortical axonal projections, supporting their integration 

into cortical networks. Our results further indicate that these neurons arise from a large 

population of pallial RGCs that do not switch fate toward astrogenesis and persist in the 

dSVZ. These results are in line with recent mosaic analysis with double markers (MADM) 

experiments suggesting that only 1 out of 6 neurogenic RGCs produce glia (Gao et al., 

2014a). Our results underline a rapid decline in the capacity of Glu progenitors to 

differentiate and migrate, thereby contributing to the closure of the period of cortical 

neurogenesis. 

Our scRNAseq data shed light on the mechanisms mediating this gradual loss of 

neurogenic potency. Epitranscriptomic changes are emerging as key mechanisms in 

mediating temporal control over lineage progression. m6A is the most prevalent mRNA 

modification in eukaryotic cells (Desrosiers et al., 1974) and has recently been suggested 

to regulate transcriptional prepatterning during corticogenesis (Yoon et al., 2017). Our 

results identify m6A methylation as a possible mechanism leading to the transcriptional 

dysregulation that we observe in postnatal Glu progenitors. In addition to these 

epitranscriptomic modifications, KEGG pathway analysis highlights changes in several key 

signaling pathways, such as those involved in astrogenesis (i.e., Jak-Stat and Notch 

signaling pathways; Rowitch & Kriegstein 2010), suggesting that they may concomitantly 

affect the differentiation potential of Glu progenitors. Another signaling pathway that is 

dysregulated is the Wnt signaling pathway. This is in agreement with a previous study 

describing a gradual increase in GSK3β activity from E15.5 on, which results in the 

phosphorylation of Neurog2, thereby affecting its activity (Li et al., 2012). In line with a 

decreased transcriptional activity of Neurog2, 64% of its target genes (Gohlke et al., 2008) 

are downregulated at P2, while only 2% are upregulated, despite the persistence of 

Neurog2 expression. 
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Importantly, postnatal Glu progenitors appear to be still permissive to intrinsic/extrinsic 

manipulation. We show that proliferation and migration of postnatal Glu progenitors can 

be promoted by genetic or pharmacological manipulations. Our experiments, however, 

reveal that these manipulations are not sufficient for promoting long-term neuron survival, 

suggesting that the cortex is not permissive to the integration of these newborn neurons 

under physiological conditions. However, recent observations suggest that 

permissiveness of the environment might be increased following injury, such as after 

neonatal chronic hypoxia, where cortical de novo neurogenesis has been observed (Fagel 

et al., 2009; Bi et al., 2011; Falkner et al., 2016; Azim et al., 2017). It is likely that our 

results will provide important information to guide future research in this context.  
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3.4. Supplementary Figures 

Supplementary Figure S5 

 

 

Figure S5. Related to Figure 13. Neurog2Cr eer t 2/tdTom transgenic mouse line allows 
detailed analyses of cell morphology . Representative high magnification images of 
recombined neurons following Tam injection at either E13.5, E15.5 or E17.5 and sacrificed 
at P21. Scale bar 25μm. Abbreviations: TAM = tamoxifen; Mi = Mitral  layer; Pir = Piriform 
cortex; HY = Hypothalamus; BLA = Basolateral Amygdala; EPI = External Plexiform layer; 
CA1 pyr = Cornu Ammonis 1 pyramidal layer; GL = Glomerular layer; S2 = Somatosensory 
cortical region 2.  
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Supplementary Figure S6 

 

 

Figure S6. Related to Figure 13. Postnatal Glu progenitors mainly give rise to 
glutamatergic projection neurons of sensory cortical regions.  (A) Drawings i l lustrating 
the distribution of recombined cells on serial sections of the forebrain following Tam injection 
at P0.5 and sacrificed 48hrs la ter. Numerous recombined cells can be seen in the dSVZ, as 
well as in the SCZ and SGZ. (B) Drawings i l lustrating the distribution of recombined cells 
following Tam injection at P0.5 and sacrificed at P21. Recombined cells are absent from the 
SVZ, SGZ and SCZ, but are observed in the OB and cortical regions.  (C) The number of 
tdTom+ cells increases from frontal to caudal sections.  (D) Schematic top view of the brain 
showing a heat-map distr ibution of tdTom + cells per brain region. Note the increase from 
medial to lateral regions.  Abbreviations: TAM = tamoxifen; TER = terminated. Data are 
represented as mean ± SEM. 
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Supplementary Figure S7 

 

 

Figure S7. Related to Figure 13. Neurog2Creer t 2/tdTom mice reveal a late wave of 
corticogenesis early postnatally.  (A-E) tdTom+ cells in both upper and deeper cortical  
layers express markers of glutamatergic projection neurons.  (A) Overview showing the 
expression of Satb2 throughout cortical layers and Ctip2, which is strongly expressed in L5 -
6. (B-C)  Examples of tdTom+Satb2+ cells.  (D) The majority of tdTom+  cells express Satb2, 
but not the deep cortical layer marker Ctip2 at P7.  (E)  Quantif ication of the percentage of 
tdTom+ cells that express Cux1, Satb2, Ctip2 and FoxP2 at P45.  Scale bars 75μm (A); 25μm 
(B-C). Data are represented as mean ± SEM.  
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Supplementary Figure S8 

 

 

Figure S8. Related to Figure13. Postnatally born glutamatergic neurons develop 
intracortical projections and dendritic spines. (A)  High magnification showing spine 
formation on postnatally born Glu neurons of both upper and deeper cortical layers at P45.  
(B)  Postnatally born Glu neurons develop intracortical projections through the corpus 
callosum. Scale bars 1000μm (Tiled image B); 25μm (A; high magnif ication B); 5μm (high 
magnification A).  Abbreviations: TAM = tamoxifen; TER = terminated.  
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4. General Discussion 

 

 4.1. Summary and Opened Questions 

Germinal regions are not homogeneous, but rather highly heterogeneous with 

transcriptional differences driving the production of divergent cell lineages. Recently our 

lab contributed to resolve this heterogeneity by demonstrating an unexpected level of 

transcriptional heterogeneity between the dorsal and lateral subventricular zone of the 

postnatal mouse forebrain, as well as in their neural stem cells and transient amplifying 

progenitors (Azim et al. 2015). In the first chapter of my thesis, my results contributed to 

describe and discuss a new level of regional and lineage-specific heterogeneity in the 

dorsal SVZ based on Hopx expression (Chapter 1). This work support the co-existence of 

lineage-biased NSC, with neighboring NSCs expressing distinct transcription factors that 

influence their respective behaviors and guide them through the acquisition of different 

fates. 

In the second chapter of my thesis, I continued exploring regional and lineage-specific 

heterogeneity in the dorsal SVZ, by characterizing progenitors of cortical glutamatergic 

neurons (i.e. Glu progenitors) that we have previously shown to persist after birth (Donega 

et al., 2018a). Progenitors of cortical glutamatergic neurons are usually thought to switch 

fate before birth to produce astrocytes. My results show that this switch is largely 

incomplete and that a large fraction of Glu progenitors continues to be produced in the 

postnatal forebrain after closure of the cortical neurogenesis period. Single cell RNA-

sequencing however reveals a profound transcriptional dysregulation at postnatal stages, 

which correlates with the gradual decline in cortical neurogenesis observed in vivo 

(Chapter 2).  

Taken together, my work illustrates the existence of a profound NSCs heterogeneity in the 

postnatal SVZ, which can be explored from the regional to the single cell levels. It further 

highlights the benefit of transcriptional studies in exploring the diversity of NSCs 

heterogeneity at these different scales. It finally demonstrates the necessity of clonal 

analysis in histology and single cell transcriptomic in shedding new lights on our 

understanding of forebrain germinal activity at pre- and postnatal time points. In this 

general discussion, I review recent contribution of single cell approaches, including the 

work described in this thesis, in probing neural progenitors lineage progression and 

competence throughout pre- and postnatal development (concise review submitted and 
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under review). Finally, I conclude by discussing implication of these findings for CNS repair 

and propose a new experimental model to investigate the competence of postnatal neural 

progenitors in regenerating defined neuronal subtypes following brain injury.  

 

4.2. Contributions of Single cell Approaches to Probe Neural 

Progenitor’s Heterogeneity and Dynamics 

The forebrain is the result of a remarkable coordination of molecular and cellular 

embryonic events, which transform the simple neuroepithelium (E10) into complex neural 

networks orchestrating sensorimotor and cognitive functions of the body. Development of 

the forebrain occurs in a stepwise manner. Neural progenitors (NPs) first form the 

pseudostratified epithelium of the ventricular zone. They initially divide symmetrically, 

undergoing interkinetic nuclear migration as they progress through the cell cycle, to 

expand their pool. Around E11.5 in the mouse, NPs acquire a radial morphology to form 

the Radial Glia (RG) that function as the primary neural stem cells of the developing CNS 

(Figure 15A). RGs have a bipolar morphology with apical and basal contacts with the 

surface of the ventricle and of the brain, respectively. They sequentially produce distinct 

subtypes of neurons before generating glial cells around birth. Later, germinal activity, 

including neurogenesis, persists throughout life in restricted forebrain regions, in particular 

the subventricular zone that lines the lateral ventricles.  

Although this stepwise progression through competence states is well accepted at the 

population level, it is still debated if it applies to all NPs or if subpopulations of fate-biased 

NPs coexist. Clonal analyses in histology or transcriptomics have recently emerged as 

approaches to explore NPs lineage progression and competence. Here I discuss recent 

single cell studies made in the developing forebrain to probe the spatial and temporal 

neural progenitor’s identity specification. I also discuss how single cell studies are 

contributing to our understanding of pre- and postnatal neural progenitor’s changes in their 

competence and distribution over time. 

 

4.2.1. Clonal Techniques in Histology and Transcriptomic 

The recent single cell studies involve different set of tools which I describe in this 

paragraph as a technical box. 
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Barcoding (Golden et al., 1995) 

Barcoded GFP-expressing retroviral library, in which infection of progenitor cells of a given 

region is achieved by local expression of an avian virus receptor (Fuentealba et al., 2015b; 

Mayer et al., 2018). This approach is superior to lineage tracing methods based on the 

use of fluorescent reporters of different colors in that it provides the complexity in tag 

diversity to unequivocally demonstrate that two cells in different regions are derived from 

a single progenitor. It may, however, underestimate clone size and/or complexity, because 

of viral inactivation and partial recovery of barcode sequence in laser microdissected cells. 

MADM (Gao et al., 2014b; Mayer et al., 2015a; Beattie et al., 2017) 

A key feature of this approach is the ability to induce clones of distinctly labeled neurons 

originating from a single dividing progenitor cell in a temporally defined fashion using 

tamoxifen. This approach also allows introduction of gene mutations allowing clonal two-

color labeling with concomitant genetic manipulation. It however relies on transgenic 

animals and requires very low number of clones for conclusive analysis, which makes it 

both expensive and time consuming.  

Multicolor Approaches (García-Marqués and López-Mascaraque, 2013; Roy et al., 
2014; Figueres-Onãte et al., 2016) 

Spectral fluorescent protein variants are stochastically expressed in cells of interest (by 

transgenesis, plasmid transfection or viral transduction), which both highlight cells of a 

tissue and differentiate them from one another when expressed in a mosaic manner. The 

main limitation of this approach is that juxtaposed clones labeled with a same color (due 

to limited number of possible colors or of their detection) cannot be distinguished and must 

be taken into account by modeling approaches 

Single-cell RNA sequencing (Prakadan et al., 2017) 

Single-cell RNA sequencing (scRNA-seq) allows the analysis of the transcriptome from 

individual cells, and is ideal to address the complexity and dynamics of transcriptional 

changes occurring during neural stem cell differentiation. There are multiple experimental 

approaches to capture and sequence single cells, which lead to different levels of cellular 

and tissue coverage. Currently, the two most popular technologies are the Drop-Seq 

(Yuzwa et al., 2017; Mayer et al., 2018) and the integrated fluidic circuits (IFC) 

(Nowakowski et al., 2017). An advantage of droplet-based approaches is their scale and 

speed at the expense of sequencing depth and RNA capture efficiency (Macosko et al., 

2015) whereas valve-based systems (IFCs) still provide the greatest molecular efficiency 

and are useful for applications in which the highest-quality transcriptomes are needed at 

moderate scale. 

Visualizing and clustering tools 

Several methods have been developed to visualize the high dimensionality of the scRNA-

Seq data. The two most popular data reduction methods are the Principal Component 

Analysis (PCA) and the t-Stochastic Neighbor Embedding (t-SNE) tools. Due to the 

tremendous increase number of cells analyzed, t-SNE method which puts similar cells 

together appears to be more suitable and has become the most common and used 

method. Recently, the Weighted Correlation Network Analysis (WGCNA), which analyzes 

relationships between co-expressed genes instead of level of expression and can be used 

as a clustering method as well. 
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4.2.2. Contributions of Single Cell Approaches to Probe Spatial Identity 

Specification 

Following an initial period of symmetric division, neuroepithelial precursors transform into 

radial glial cells (i.e. RGs) around E11. RGs are heterogeneous in terms of fate, with pallial 

and subpallial RG generating distinct subtypes of neurons, based on the expression of 

defined transcription factors (TFs) (EMX1, GSH2…). In mice, inhibitory interneurons are 

entirely derived from the subpallium.  

Original attempts at clonal RGs fate mapping made use of retroviral vectors. In the pallium, 

analysis of clones 1 to 3 days following viral transduction revealed that neurons migrate 

along clonally-related RG to form radial units. While some degree of dispersion occurs, 

the majority of clones populate columns thereby contributing to the functional radial 

organization of the neocortex (Noctor et al., 2001). Similar conclusions were reached in 

more recent studies relying on near clonal recombination (Magavi et al., 2012), as well as 

more recently by MADM clonal analysis (Gao et al., 2014a).  

Similar principles are likely to apply in the subpallium. Thus, radial clusters composed of 

a radial cell, IPCs and newborn neurons are observed < 4 days post viral transduction at 

E12.5 in the MGE (Harwell et al., 2015). Subpallial RGs appear to be the primary neural 

stem cells, dividing asymmetrically to produce IPCs that subsequently divide symmetrically 

to expand their numbers, or more frequently, to produce pairs of neurons (Magavi et al., 

2012; Mayer et al., 2015b). Similarities however stop there, as interneurons produced by 

RG from distinct ganglionic eminences then migrate tangentially rather than radially to 

invade distinct telencephalic regions (review Hu et al., 2017a, see also Wichterle et al., 

2001). Clonal analysis in the MGE, which contributes to 60% of cortical interneuron 

(Miyoshi et al., 2007), reveal a dramatic dispersion of sibling interneurons. Thus, 

interneurons migrate to widespread regions within the telencephalon, although they do not 

cross the segmental boundary of the diencephalon nor the midline (Magavi et al., 2012; 

Mayer et al., 2015b).  

scRNA-Seq studies have investigated the transcriptional identity of both pallial and 

subpallial RGs and the lineages they are producing. A direct comparison of results 

obtained in various studies is made difficult by differences in the methods of cell capture, 

sequencing depth, and methods of analysis (Table 2). For instance, while the VZ and SVZ 

are separated in some studies, this is not always the case. Important and convergent 

conclusions however emerge from this work.  
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Table 2. ScRNA-Seq experiments and their parameters 

 

First, it appears that transcriptional differences between RGs that reside in distinct pallial 

and subpallial regions are small and rely on a rather restricted number of genes 

(Novotortsev et al., 2010; Mayer et al., 2018; Mi et al., 2018). For instance, only 16 TFs 

are differentially expressed within mitotic progenitors of MGE vs. CGE, while the majority 

of dynamically expressed genes follow robust and highly reproducible sequential waves 

of gene expression in both eminences (Mayer et al., 2018). Similarly, in the pallium, RGs 

from the PFC and V1 cortical areas have only 68 differentially expressed genes and share 

a common molecular differentiation program (Nowakowski et al., 2017). The subtle 

transcriptional differences which distinguish progenitors get likely superimposed onto a 

large pan-developmental program and therefore render the threshold of detection of 

progenitor subtypes rather tedious and variable between studies (Mayer et al., 2018; Mi et 

al., 2018). A second observation is that clearly distinctive transcriptional programs are only 

consistently emerging at the postmitotic level when newborn neurons from distinct 

germinal regions initiate migration and maturation (Nowakowski et al., 2017; Mayer et al., 

2018; Mi et al., 2018). 

Altogether, these observations support a model for emergence of neuronal diversity in 

which small differences across cycling progenitors are sufficient to drive neuronal diversity, 

which amplifies over time in postmitotic neurons (Figure 17BC). The small differences 

across cycling progenitors might appear disconcerting, however previous studies have 

References 
Germinal 

zone 
Age Capture  

Number 

of cells  
Genes/cell 

Mi D et al, 2018 GE E12.5 / E14.5 C1 Fluidigm 2 003 3 200 

Mayer C et al, 

2018 
GE 

E13.5 (MGE) 

E14.4 (CGE + 

LGE) 

DropSeq 20 788 > 700 

Donega V et al, 

2018 
Pallium E15.5 / P2 C1 Fluidigm 220 2 000 

Yuzwa SA et al, 

2017 
Pallium 

E11.5 / E13.5 

/ E15.5 / E17.5 
DropSeq 11 000 

1 000 - 1 

500 

Nowakowski TJ et 

al, 2017 
Pallium pcw 5 to 37 C1 Fluidigm 4 261 > 1 000 

Telley L et al, 

2016 
Pallium E14.5 C1 Fluidigm 326 3 000 
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shown that swapping of individual TFs from subpallial to pallial progenitors is sufficient to 

re-specify them (Parras et al., 2002), illustrating the critical impact of a small number of 

genes on cell fate.  

The introduction of an approach (i.e. flashtag) allowing labeling of isochronic cohorts of 

RGs and of their progeny, offers an extra level of refinement to these transcriptomic studies 

(Telley et al., 2016; Mayer et al., 2018). Labeled cells can be isolated at distinct time points 

following injection and tracked during their differentiation, thereby giving a precise 

overview of transcriptional waves regulating the acquisition of neuronal identity (Telley et 

al., 2016). This approach demonstrates the importance of the proper sequence of 

transcriptional waves for normal progression through neuronal differentiation and the 

relative high degree of their overlap. In the first hours following their labeling, RGs rapidly 

repress proliferation-associated transcripts while upregulating transcripts associated with 

protein translation. Later transcriptional waves include transcripts associated with DNA 

repair, revealing a critical period following mitosis during which neocortical neurons are 

susceptible to somatic mutations. As early as twelve hours post-labeling, differentiation 

programs unravel with transcriptional waves initiating late-occurring processes such as 

synaptogenesis. The early occurrence and overlapping nature of these transcriptional 

waves suggest an early priming of terminal differentiation events and provide discrete time 

windows during which specific transcriptional complexes are present simultaneously and 

can interact (Nowakowski et al., 2017).The same approach was applied by Mayer and 

colleagues, which conclude of common dynamics in all three eminences (Gao et al., 

2014b). 
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Figure 17: (A)  Schematic representation of the organization of the periventricular 
germinal niche at pre- and postnatal  timepoints.  The terminology used to define neural 
progenitors at pre- and postnatal t imepoints is summarized. The multiple  layers of the 
embryonic periventricular germinal region merge fol lowing birth and become separated from 
the ventricular lumen by ependymal cells. Radial Glia (also termed basal progenitors) are 
the bona fide neural stem cells. They generate neurons direct ly or through intermediate 
progenitors, as well  as glial cells, ependymal cells and adult  neural stem cells. Different 
colors and shades of blue are used to i l lustrate their heterogeneity in term of fate and 
transcriptional profi les, as discussed in this review. Adapted with permission of Development.  
(B) Schematic representation of the germinal regions of the embryonic forebrain. Distinct 
neuronal subtypes emerge from neural progenitors located in defined pall ial  and subpall ial 
regions. Gradients represent  the transcriptional differences observed between these neural 
progenitor populations. Note that transcriptional differences are minimal in neural progenitors 
and exacerbated during differentiation. (C) Schematic representation of transcriptional 
programs superimposition during cellular di fferentiation. While some transcriptional 
programs are generic to all cells (generic genes), others are expressed at di fferent stages of 
their differentiation but remain generic to all  l ineages (stage specific genes). Line age 
specification is coded by a small number of genes which progressively increase with the 
acquisition of defined morphology, connectivity and functions. Clustering sensitivity following 
single cell RNA-Sequencing rely on dif ferentially expressed genes wh ich only become clearly 
distinctive between distinct neuronal l ineages at the post -mitotic level. It is therefore highly 
dependent on sequencing depth and number of cells analyzed.   
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4.2.3. Contributions of Single cell Approaches to Probe Temporal Identity 

Specification 

Neural progenitors change over time to contribute to the generation of cell diversity, a 

process termed as temporal identity specification. Thus, while RGs initially undergo 

proliferative divisions to amplify their pool, they later switch into a differentiating mode of 

division to produce specialized cells.  

In the pallium, RGs progressively change their fates to sequentially produce deep-layer, 

then upper-layer neurons before generating glial cells at late embryonic times (Okano and 

Temple, 2009). While it was originally proposed that subtype of fate-biased RG cells co-

exist, recent clonal studies have revealed that pallial RGs follow a deterministic behavior 

and unitary production of projection neurons. Thus, RGs from the neocortex appear to 

invariably produce combinations of layer specific subtypes of cortical neurons (Gao et al., 

2014a), implying that the behavior of individual RG is remarkable predictable across 

developmental stages and cortical areas. RGs first undergo symmetric divisions for 

several rounds before transiting to asymmetrical division and producing 8 to 9 neurons in 

different cortical layers. Towards the end of the embryonic period, RGs then change fate 

and produce astrocytes that migrate to the cortex, where they amplify locally (Ge et al., 

2012), to form clones (García-Marqués and López-Mascaraque, 2013) and associate to 

defined cortical columns (Magavi et al., 2012). Interestingly, recent clonal fate mapping 

suggest that this neurogenic to gliogenic transition is largely incomplete, as only a fraction 

of RG cells (estimated to roughly 1/6), switch to produce glial cells. Other pallial RGs 

appear to continue producing IPCs (Tbr2/Neurog2 positive), whose contribution to cortical 

neurogenesis rapidly declines postnatally (Donega et al., 2018b), but continue producing 

a small population of glutamatergic interneurons in the periglomerular cell layer of the 

olfactory bulb for several weeks after birth (Brill et al., 2009). Finally a population of pallial 

RGs, identified by Emx1 expression, change fate to contribute to the generation of 

calretinin-expressing GABAergic, as well as dopaminergic interneurons in the olfactory 

bulb (Kohwi et al., 2007; Fuentealba et al., 2015b). 

The advantage but also inherent limitation of clonal fate-mapping studies is the low number 

of cells that can be analyzed at once. On the other hand, scRNA-Seq experiments analyze 

genes expression of a large number of cells across the embryonic development allowing 

the investigation of temporal transcriptional heterogeneity. Is transcriptional profiling using 

scRNA-Seq supporting clonal analysis observations? In line with clonal histology 

experiments, the analysis of RGs transcriptional profile at different developmental stages, 
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indicates a single linear trajectory of RGs from E13,5 to E17,5 (Yuzwa et al., 2017), 

reflecting a gradual shifting of the population of RGs, rather the co-existence of divergent 

fated subpopulations. In line with fate mapping studies, emergence of gliogenic related 

genes are observed later in the development (Novotortsev et al., 2010). Although this has 

not been systematically addressed in the subpallium, current evidences however support 

the existence of a subtle heterogeneous RGs population in the MGE from E12.5 to E14.5 

whereas in the CGE RGs appear more homogeneous (Mi et al., 2018). This likely reflects 

the larger GABAergic neuron diversity, and sequential generation of PV and SST 

interneurons by the MGE. Future studies making use of the “flashmap” to label isochronic 

cohorts of RGs and of their progeny throughout embryonic development will be necessary 

to investigate in detail the transcriptional changes occurring in a population of RGs while 

it gives rise sequentially to distinct subtypes of neurons. 

How can we explain then that relatively transcriptionally close RGs sequentially give rise 

to distinct neuronal subtypes? Noticeably, layer specific genes, encoding for layer specific 

proteins (such as Cux1 or Ctip2), are highly co-expressed in RGs throughout the 

neurogenic period (>70% coexpression) (Zahr et al., 2018). This situation contributes to 

the relative homogeneity of RGs and sheds light on a strong post-transcriptional regulation 

of RGs fate (Zahr et al., 2018). The authors identified 4E-T/Pum2 complex as a major 

player regulating fate specification of neurogenesis through post-transcriptional repression 

of appropriate mRNAs. In absence of this complex, aberrant specification of neurons is 

observed (Zahr et al., 2018). Other epitranscriptomic changes mediating temporal control 

over lineage progression, include m6A methylation, recently suggested to regulate 

transcriptional pre- patterning during corticogenesis (Yoon et al., 2017). The observation 

of a large decrease in m6A level in cortical progenitors persisting at birth suggest that 

epitranscriptomic modifications participate in the closure of the period of cortical 

neurogenesis (Donega et al., 2018a). Taken together, these studies highlight that the 

temporal production of defined neuronal subtypes is the result of numerous regulating 

mechanisms, not restricted to the mRNA expression revealed by scRNA-Seq, but 

including post-translational modifications of histones, DNA modifications and chromatin 

remodeling (Albert and Huttner, 2018; Sokpor et al., 2018; Stricker and Götz, 2018). 
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4.2.4. Contributions of Single cell Approaches to Probe Adult NSCs 

Origin and Biology 

The persistence of a germinal activity in the ventricular zone of the postnatal and adult 

forebrain prompted the question of the origin of these NSCs. While original studies had 

suggested a continuum in the differentiation of RGs in adult NSCs at perinatal times 

(Tramontin et al., 2003), recent clonal fate mapping studies revealed that adult NSCs 

derive from embryonic RGCs, which are distinct from those contributing to the neuronal 

and glial lineage of the developing forebrain (Figure 18).  

Two distinct approaches were used to demonstrate that a subpopulation of RG slow their 

proliferation and segregate from the rest of RG that continue proliferating. Label retaining 

protocols demonstrate the prevalent emergence of a slowly dividing NPC population 

between E14.5 and E16.5 (Fuentealba et al., 2015b; Furutachi et al., 2015). This time 

points coincides with cell cycle exit of a subpopulation of RG biased to generate 

ependymal cells (Spassky et al., 2005). While this timing coincides, it is still unclear if they 

are generated by a common pool of RGs. Interestingly, the level of labels retained in young 

adult NSCs were higher than in ependymal cells, suggesting that if NSCs and ependymal 

cells are produced sequentially by the same RG population, then NSCs may be produced 

first (Furutachi et al., 2015). Bar coding tagging of RG at distinct embryonic time points 

resulted in similar conclusions (Fuentealba et al., 2015b).  

Interestingly, the induction of RG quiescence is not homogeneous along the lateral 

ventricle and is likely to explain the persistence of germinal activity to restricted regions of 

the lateral ventricle at adult ages. Indeed, while label-retaining cells are frequently 

observed in the ganglionic eminences, in particular the LGE, they are rare in the pallium 

(Tramontin et al., 2003). This goes in line with the different dynamics observed in the 

generation of pallial (i.e. Tbr2+) and subpallial (i.e. DLX2+) progenitors observed at 

postnatal stages. Thus, while Tbr2 progenitors continue to be produced by pallial RGs at 

early postnatal timepoints (Donega et al., 2018a), their production rapidly decreases over 

time to become almost extinguished by P90 (Brill et al., 2009). On the contrary, DLX2+ 

progenitors continue being produced throughout adulthood, in agreement with the 

preferential accumulation of quiescent NSCs in the lateral SVZ (Furutachi et al., 2015).  

In the adult, quiescent NSCs reactivate asynchronously to divide symmetrically. While 1/5th 

self-renew in P21 mice, the remaining population generate type C cells that cycle 3 times 

before generating neuroblasts that undergo one or two additional cycles (Ponti et al., 2013; 

Obernier et al., 2018). This results in a fast clonal expansion but limited self-renewal of 
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adult NSCs as demonstrated by clonal analysis (Calzolari et al., 2015). The rapid 

consequent depletion of activated NSCs explain the sparsity of clones containing both B1 

cells and OB interneurons following bar coding tagging of RGs during embryonic 

development (Fuentealba et al., 2012). Thus, a population of NSCs self-renew to dampen 

their early depletion, while a second population reactivates to produce a progeny before 

rapidly extinguishing (Calzolari et al., 2015; Obernier et al., 2018). The asynchronous 

activation of adult NSCs allows SVZ germinal activity to persist throughout life, despite of 

a gradual decline. This asynchronous, gradual activation is further supported by the 

observation that E15.5 label retaining NSCs produce a neuronal progeny with 

undisguisable BrdU levels at different postnatal ages (Fuentealba et al., 2015b). It is still 

unclear if NSCs then produce glial cells following their final division, as the transgenic mice 

used in these studies did not allow discriminating between NSCs and surrounding glial 

cells.  

Single cell transcriptomic studies revealed that RGs from the subpallium (regardless of the 

eminence of origin), as well as from the pallium, have different maturation statuses but no 

sign of fate bifurcation (Nowakowski et al., 2017; Mayer et al., 2018). A transcriptional 

variance is however observed across RGs, which primary origin is developmental and cell 

cycle progression. This likely reflects multiple modes of divisions (symmetric vs. 

asymmetric) at distinct embryonic stages (Mayer et al., 2018), as well as the cell cycle exit 

of some RGs. Analysis of a larger number of cells, indeed reveal the co-existence of mitotic 

vs. non-mitotic RGs within the pallium as early as E13 (Yuzwa et al., 2017). Additional 

analyses are required to define if these include RGs which have exited the cell cycle to 

engage towards specific fates, i.e. ependymal cells or adult NSCs. Detection of ependymal 

cells transcripts (e.g. GemC1/Lynkeas and McIdas) may reveal early priming in a cluster 

of non-mitotic RGs towards this lineage, even if this might be hindered by the largely 

postnatal differentiation of this cell type (Tramontin et al., 2003). Detection of 

transcriptional similarities between slowly/non mitotic embryonic RGs from E13.15 to 

quiescent adult SVZ support the existence of the subpopulation of quiescent cells 

accumulating over development, to be reactivated in adulthood. Further investigations will 

reinforce the extent of transcriptional overlap of these RGs with quiescent NSCs isolated 

from the adult brain (Codega et al., 2014; Llorens-Bobadilla et al., 2015). 

Single cell transcriptomic approaches were recently applied to adult NSCs (Llorens-

Bobadilla et al., 2015) to reveal the co-existence of NSCs in multiple states of activation. 

Similar to the sequential transcriptional waves observed newborn neurons in the mouse 

neocortex (Telley et al., 2016), it reveal that NSC activation and early lineage progression 
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is organized as a continuum of molecular events, along which cells express sets of co-

regulated genes. This work highlighted an association of NSCs quiescence with high 

glycolytic and lipid metabolism, as well as with the previously reported high expression of 

transcripts encoding membrane receptors (Codega et al., 2014). Further, NSCs activation 

and differentiation correlated with a progressive up-regulation of the protein synthesis 

machinery. Interestingly, this single cell transcriptomic analysis provides important 

information on the priming of individual adult NSCs towards specific lineages. Indeed, the 

postnatal and adult SVZ is regionalized in respect to different microdomains generating 

distinct neural lineages. This regionalization appears to originate from early embryonic 

development (Fuentealba et al., 2015b) and is intrinsically encoded by expression of 

selected TFs (reviewed in Fiorelli et al. 2015). Single cell analysis identified single cells 

exhibiting expression of oligodendroglial or neuronal subtype-specific TF combinations, 

thereby revealing the early priming of adult NSCs towards specific fates (Llorens-Bobadilla 

et al., 2015). This observation is in line with ex vivo lineage tracing of individual cells 

showing that neurogenic and oligodendrogenic NSCs constitute distinct lineages, while 

both can produce astrocytes. Recent lineage tracing of a subpopulation of dorsal NSCs 

expressing the TF HOPX at early postnatal timepoints, however suggests the existence of 

a NSCs population biased to produce astrocytes (Zweifel et al., 2018). Thus, the 

production of distinct cell types by adult NSCs relies on the co-existence of fate-biased 

NSCs, which are heterogeneously distributed along the wall of the lateral ventricle.  

 

In conclusion, single cell approaches contribute to our understanding of NSC biology and 

of their specification into distinct cell types at defined developmental and postnatal stages. 

Future developments are likely to allow integrating emerging approaches to investigate 

the three-dimensional genomic organization (e.g. Chi-C mapping) or chromatin 

accessibility (e.g. ATAC-Seq) at the single cell level. This will provide a complete picture 

of transcriptional and epigenetic changes occurring in neural progenitors. Extension of 

these methods to pathological situations will inform on mechanisms involved in NSC 

activation and will guide research in their priming towards specific fate for the development 

of regenerative therapies. 
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Figure 18: A unifying scheme of pre- and postnatal germinal activity, integrating single 
cell findings discussed in this review . (A) Schematic representation of the germinal region 
of the embryonic forebrain and of their evolution during postnatal l i fe. (B) During 
development, neural progenitors from the pall ium and subpall ium generate distinct neuronal 
subtypes. Whereas the coding of this diversity is primarily spatial in the subpall ium, it is 
temporal in the pall ium with the sequential generation of deep, then upper layer neurons. 
Ependymal cells are produced from a subpopulation of neural progenitors around E14.5, in 
a time course concomitant to the generation of adult NSCs in the subpall ium. Around birth, 
a fraction of neural progenitors change fate to produce astrocytes in both regions, while 
others continue generating a small population of glutamatergic neurons in the cortex. 
Following birth, germinal activity remains sustained in SVZ regions originating from the 
subpall ium (i.e. mSVZ and to a larger extent lSVZ), while it gradually disappears from those 
derived from the pall ium (dSVZ). Abbreviations: LGE: lateral ganglionic eminence; MGE: 
medial ganglionic eminence; dSVZ, lSVZ, mSVZ: dorsal, lateral  and medial subv entricular 
zone. 
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 4.3. Implication for Brain Repair 

4.3.1 Are embryonic and Postnatal/adult NSCs Representing Distinct 

Populations in term of Diversity and Competence?  

Original studies supported a progressive restriction in the competence of NSCs in 

producing distinct cell lineages during forebrain development. For instance, in vitro studies 

demonstrated that cortical progenitors sequentially produce deep layer, then upper layer 

neurons, before producing glial cells (Qian et al., 2000, Shen et al., 2006) . Further, the 

competence of cortical progenitors appears to become increasingly restricted. Noticeably, 

mid-gestational progenitors can still be manipulated to generate early neuronal fates, while 

late-gestational progenitors have lost this competence (Shen et al., 2006). This 

progressive loss of competence has also been illustrated in vivo, by transplantation 

experiments. Early heterochronic transplantation approaches have found that the potential 

of different progenitor populations to generate distinct neuronal subtypes becomes 

gradually restricted over time (for review Gaiano and Fishell, 1998). For instance, cycling 

progenitors from late stages of the ferret corticogenesis, keep their intrinsic restriction, 

even if transplanted into an early stage environment. Indeed they keep generating upper 

layer neurons and fail to produce deep cortical layers, which are normally generated at 

this age (Frantz and McConnell, 1996). In contrast, early progenitors are able to adapt to 

the host environment to generate upper layer neurons, when transplanted into a late stage 

environment (Gümüssoy et al., 2009). These original experiments support a gradual fate 

restriction of cortical progenitors during embryogenesis, a model that is still largely 

accepted today. 

Accumulating observations however suggest that this fate restriction might not apply to 

postnatal and adult NSCs. For example, in vitro experiments demonstrated that adult 

NSCs remain bipotent, with individual clones consisting of neurons and astrocytes or 

oligodendrocytes and astrocytes (Ortega et al., 2013). Further, heterochronic 

transplantation experiments have shown that postnatal SVZ progenitors can migrate and 

differentiate within multiple levels of the developing neuraxis, when transplantated into 

embryonic mouse brain ventricles at day 15 of gestation (Lim et al., 1997). Although 

expression of subtype specific markers was not assessed, their acquisition of 

morphologies typical of resident neurons support their capacity to generate other neurons 

subtypes than those they normally produce within the olfactory bulb. Finally, ex vivo 

experiments showed that postnatal and adult SVZ explants have the capacity to generate 

pyramidal neurons. In these experiments, adult SVZ explants were exposed to an 
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embryonic environment by juxtaposing them to organotypic slices of the pallium. Neurons 

were produced by the SVZ explants, which invaded the pallium. Their expression of Tbr1 

suggested their acquisition of a glutamatergic phenotype, although their maturation could 

not be investigated at long term (Sequerra et al., 2010).  

Taken together, these observations challenge the model of gradual fate restriction 

observed during embryogenesis. They rather suggest that embryonic and postnatal/adult 

NSCs represent distinct populations in term of diversity and competence to generate 

various cell types. The recent demonstration that postnatal/adult NSCs derive from 

embryonic RGCs that are distinct from those contributing to the neuronal and glial lineage 

of the developing forebrain, support this hypothesis (Fuentealba et al., 2015b; Furutachi 

et al., 2015). Further, single cell studies discussed above provide a roadmap to guide 

postnatal/adult NSCs to differentiate into defined cell types, and give insight in the 

mechanisms at play that restrict their recruitment and successful differentiation. 

Unravelling the diversity and competence of postnatal/adult NSCs to produce distinct 

neural cell types is of major importance for further considering them as a potential source 

for cellular repair. Unravelling their diversity relies on the identification of markers 

expressed in subpopulation of NSCs biased to acquired defined fate. To this end, the 

identification of markers expressed in SVZ microdomains giving rise to distinct cell lineage 

represent a powerful approach, as illustrated in Chapter 1. This work resulted in the 

identification of HOPX as a marker of NSCs within the dorsal SVZ, biased to acquire an 

astrocytic fate. Unravelling their competence to generate diverse neural cell types relies 

on understanding the transcriptional changes that occur in neural progenitors over time, 

as illustrated in Chapter 2. It finally relies on testing their capacity to participate to forebrain 

development, or to participate to its regeneration. While the former can be achieved by 

heterochronic transplantation, as previously (Lim et al., 1997) the later relies on 

establishment of new models in which define cell types are ablated at early postnatal time 

points, when its regenerative potential is maximal. Please find below a description of such 

model. 

 

4.3.2. Targeted Neuronal Ablation as a Model to Study Competence of 

Postnatal NSCs for Cortical Repair 

Early brain injury following perinatal insults such as hypoxic–ischemic episodes, often 

result in severe neurological disabilities. The common feature of these lesions is the 
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massive death of various cell types including neurons and glial cells (Ferriero, 2004; Kaindl 

et al., 2009; Deng, 2010). The capacity of the adult mammalian cerebral cortex to 

compensate adequately for neuronal and glial loss appears limited. Indeed, there are only 

few evidences of a significant contribution of germinal regions to brain repair in the adult. 

Nonetheless, this situation appears to be strikingly different during the early postnatal 

period (Plane et al., 2004; Ong et al., 2005). Convergent observations indicate that 

neonatal trauma can lead to regenerative cortical neurogenesis. Newly generated neurons 

appear to arise from the rostral subventricular zone (SVZ), to be recruited to the damaged 

cortex (Jin et al., 2003; Saha et al., 2012; Thomsen et al., 2014). However, although de 

novo neurogenesis is well documented in newborn, fundamental questions remain to be 

addressed to fully appreciate the inner capacity of the neonatal forebrain to repair. In 

particular, the capacity of newborn neurons to specify in appropriate neuronal subtypes 

have not been studied in details because only generic markers have been used in most of 

the studies (Saha et al., 2013). Thus, do newborn neurons correctly specify in neuronal 

subtypes and functionally integrate? This open question is of particular interest, as an 

incorrectly specification and integration of these neurons may result adverse effects.  

Different cortical lesion models have been developed over the years, in order to test the 

capacity of the neural tissue to regenerate in newborn rodents. In 2008, Kadam and 

colleagues, used a hypoxic-ischemia model to induce a diffuse cortical lesion (Kadam et 

al., 2008). In 2011, Bi and colleagues described a chronic hypoxia model in 3-days-old 

mice Bi et al., 2011. Other models include ischemic insults (Biran et al., 2011). Importantly, 

all of these models result in diffuse injuries, characterized by the loss of various cell types 

often accompanied by a severe disorganization of the tissue. Thus, these models are not 

appropriate to study the recruitment of specific progenitor populations, nor their 

specification and integration.  

I aimed at developing a versatile injury model that circumvent most of these limitations by 

developing a model of targeted ablation of specific neuron populations. This approach is 

based on the targeting of select cohorts of cortical progenitor during embryonic 

development, and the control of the onset of ablation through diphtheria toxin (DT) and 

diphtheria toxin receptor (DTR) system (Petrenko et al., 2015). Although I did not manage 

to complete this project due to time constrains, I obtained encouraging data showing that 

DT-mediated apoptotic death of select neuronal population is efficient and sufficient to 

induce a proliferative response of progenitors in the dSVZ. This model present several 

advantages that will prove to be of interest to test repair capacity under various contexts, 

the spatio-temporal control of ablation and the restrained inflammation response. 
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Although, generation of new cortical neurons was not spontaneously observed, this model 

might be used to test strategies to recruit Glu progenitors, as discussed in Chapter 2. 

Results 

Diphtheria toxin is a well-characterized bacterial toxin composed of an A and a B chain. 

The toxin can only enter into the cell by endocytosis if a specific receptor (DTR), bound by 

the B chain, is expressed on the cell surface. Inside the cell the A (DTA) chain inactivates 

elongation factor 2 via ADP ribosylation, leading to cessation of protein synthesis and 

subsequent cell death. Rodent cells are naturally resistant to DT, due to the absence of 

DTR on their membrane (Buch et al., 2005). Sensitivity of select neuronal populations to 

DT can therefore be induced by selective DTR expression. We focused on layer IV cortical 

neurons, which integrates thalamic inputs into cortical networks. Due to the sequential 

generation of cortical neurons, neurons of select cortical layers can be efficiently 

electroporated by in utero electroporation at defined embryonic timepoints. Electroporation 

at E14.5 of a DTR-GFP plasmid (at 1.5µM) resulted in an efficient transfection of a large 

number of layer IV neurons, i.e. 30% of Cux1+ layer IV neurons in our average (Figure 

19A-D). Electroporated neurons were distributed over a large area, covering in average 

8.5 mm² of cortex. Five days following a single intraperitoneally DT injection, at the 

concentration of 25ng/g in P2 animals, we observed a significant 20% decrease of CUX1+ 

upper layer thickness (Figure 19G) which demonstrates that number of dead neurons is 

sufficient to induce a clear and robust phenotype. Despite an important apoptosis, our 

results showed a mild inflammation at the lesion site, in agreement with previous studies 

(Petrenko et al., 2015), as revealed by an increase of microglia (Iba1+) and astrocytes 

(GFAP+) in the cortex several days following the induction of the lesion (Figure 19I-J). 

Nevertheless, those cells kept a clear organization and did not form a scar as observed in 

more invasive injury models. The timecourse and possible persistence of this inflammation 

remains however to be fully assessed. 

I next focused on the dorsal SVZ to investigate the consequence of the cortical ablation 

on cellular proliferation 5 and 12 days later. An increased proportion of Ki67+ cells was 

observed in the dorsal SVZ, five days following DT injection, when compared to controls 

(Figure 20AB). This demonstrated that the severity of the lesion was sufficient to induce 

a rapid proliferative response, which attenuated over time. The number of Glu progenitors, 

identified by Tbr2 immunolabeling, did not vary following DT injection (Figure 20AB). In 

contrast, the number of oligodendrocyte progenitors identified by Olig2 immunolabeling, 

increased rapidly and persistently following ablation (Figure 20AB). This could be due to 
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an important axonal degeneration following targeted cortical ablation, resulting in a 

reactive oligodendrogenesis.  

 

Figure 19: Specific Targeting of Layer IV Cortical Neurons induces fast and efficient 
neuronal ablation. (A) 3D reconstruction of DTR-GFP electroporated brains representing 
the average surface of the targeted area based on GFP expression. (B-C) Representative 
images of coronal brain sections showing localization of GFP electroporated cells at low and 
high magnification using epifluorescent ( B) and confocal microscopy (C), respectively. In 
panel C, co-immunolabeling of GFP with Cux1, a upper layers marker, and Ctip2, a lower 
layer marker, were used to define borders of cortical layers. (D)  High magnification of 
GFP/Cux1 immunolabeling image shows that all GFP+ cells are Cux1+  upper cortical neurons. 
In average, GFP+ cells represent 30% of the total number of layer IV Cux1 +  neurons (Not 
shown). (E) Representative image of GFP targeted neurons co -expressing the Diphtheria 
toxin (DT) receptor detected with a HB-EGF antibody (Heparin Binding EGF-like Growth 
Factor). Note that all electroporated neurons express the DT receptor. (F-G) Representative 
image of pyknotic Dapi + cells in targeted area (F) resulting in a 20% decrease of Cux1 +  
thickness 5 days following ablation induction (G) and demonstrating efficiency of the ablation 
approach. (I-J) Representative images of brain response 5 days following DT injection. GFAP 
expression, a marker of astroglial reactivity, is increased at the lesion site (I), such as Iba1+  
cells number, a marker of responsive microglia (J).  Arrow indicating GFP+ cells engulfed by 
a microglia. UL, upper layers; DL, deeper layers. Scale bars: 500 µm in (B); 50 µm in (B); 
10 µm in (C), 20 µm in (E/J) and 100 µm in (I).  ***p < 0.00 1, data are presented as mean ± 
SEM from n=3 animals.  
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I next assessed if de novo cortical neurogenesis was observed following targeted cortical 

ablation. The mitotic marker BrdU was administered at the time of DT injection to label the 

cohort of Glu progenitors and the presence of BrdU+/NeuN+ newborn neurons assessed 

within cortical layer 12 days post ablation. Strikingly, no BrdU+/NeuN+ newborn neurons 

were observed indicating that spontaneous neurogenesis does not occur in this model, 

although this still need to be confirmed with the use of additional neuronal markers (e.g. 

Dcx, Cux1…).  

I finally assessed if a pharmacological activation of canonical Wnt signaling could promote 

recruitment of Tbr2+ progenitors. The GSK3β inhibitor AR-A014418 was then administered 

for 3 days in P2 control animals to confirm that the relative proportion of Ki67+ and Tbr2+ 

cells 5 days post-treatment efficiently increases, as previously reported (Azim et al., 2014, 

2017; Donega et al., 2018a) (Figure 20C). Similarly, DT-injected animals were treated for 

3 days following the start of ablation with AR-A014418. This resulted in a significant 

increase of Tbr2+ cells (Figure 20D). In parallel, a significant reduction of GFAP 

expression was observed around the site of neuronal ablation (Figure 20E). These 

observations support a regenerative potential for Wnt/β-catenin stimulation following 

neonatal brain injuries, which remains to be fully explored. For instance, it will be 

interesting to study if this activation of Tbr2+ progenitors translate into cortical 

neurogenesis. If new neurons are observed, their appropriate specification in layer IV 

cortical neurons can then be assessed. 

Altogether this work demonstrates that DT-induced cortical ablation may prove to be an 

interesting model to study the competence of postnatal progenitors to produce select 

neuronal subtypes following injury. 
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Figure 20: Targeted cortical ablation induces progenitor responses within the dSVZ. 
(A) Representative pictures of Tbr2 (red, top panel), Ki67 (red, bottom panel) and Olig2 
(green, bottom panel) immunostaining in the dSVZ, 5 days post -ablation. (B) Histograms 
showing the proportion of Ki67 +, Tbr2+ and Olig2+ cells 5 days and 12 days following ablation 
induction, relative to control animals. The relative numbers of proliferat ive progenitors 
(Ki67+) and oligodendrocyte progenitors (Olig2 +) increase at 5 days, whereas only the Olig2 + 
increase persists at 12 days. The relative number of glutamatergic progenitor (Tbr2 +) do not  
vary at any time points. (C) Administration of AR-A014418 in control animal efficiently 
increases the relative proportion of Ki67 + and Tbr2+ cells 5 days post -treatment, as previously 
described (see experimental chapter 2; Azim et al . 2014), thereby validating the 
pharmacological Wnt-signaling pathway activation. (D) Histogram showing the efficient 
increase of Tbr2+  progenitor following DT injection and AR-A014418 administration. (E)  
Histograms of GFAP optical density within the cortical lesion site reveal  a significant 
decrease in GFAP+  reactive astrogliosis following AR-A014418 treatment, indicating a 
potential effect on tissue inflammation.  
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5. Annexes 

Annex 1: R Script To Run HeatMaps Generator Software Related 

to Figure 8 and S1 

 
# library("stringr", lib.loc="/usr/local/lib/R/site-library") 
# # source("http://bioconductor.org/biocLite.R") 
# # biocLite("affy") 
# # biocLite("oligo") 
# # biocLite("limma") 
# library(oligo) 
library(affy) 
library(stringr) 
library(pheatmap) 
library(stringr) 
library(gplots) 
library(GEOquery) 
library(mouse4302.db) 
library(R.utils) 
# library(affyio) 
# install.packages("/home/affxparser_1.48.0.tar.gz", repos = NULL, type="source") 
# install.packages("/home/xps_1.36.1.tar.gz", repos = NULL, type="source") 
 
########################### Define Genes : 
 
# setwd("~/Desktop/Quentin/heatmaps sur GEO gsm/") 
setwd("./") 
pathex = getwd() 
 
for(w in list.files("./DataSet/")){ # Loop on file name 
  # w = list.files("./DataSet/")[1] 
  setwd(pathex) 
  inputf = read.csv(paste0("./DataSet/",w)) # Open a dataset file containing GSM 
  # ## checker :  
  # colnames(inputf) 
  # list.dirs() 
  # dir.create(paste0("./",str_split_fixed(w,".csv",2)[1])) 
  # setwd(paste0("./",str_split_fixed(w,".csv",2)[1])) 
  for(o in 1:dim(inputf)[2]){ ## Loop on column number 
    # o = 1 
    setwd(pathex) 
    setwd("./temp/") 
    file.remove(list.files()) 
    setwd("../GSM/") 
    # setwd(paste0("./",str_split_fixed(w,".csv",2)[1])) 
    # dir.create(paste0("./",colnames(inputf)[o])) 
    # setwd(paste0("./",colnames(inputf)[o])) 
    for(i in as.character(inputf[,o])){  
      # i = as.character(inputf[,o])[1] 
      if(nchar(i)!=0){ # If there is no empty GSM 
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        if(!((paste0(i,".CEL") %in% list.files()) || (paste0(i,".CEL") %in% 
str_split_fixed(list.files(),"_",2)[,1]))){ ## If file already here, no download 
          # getGEOSuppFiles(i,makeDirectory = F) 
           
           
          try(getGEOSuppFiles(i,makeDirectory = F)) 
           
           # Check file names with too many letters, select them and rename them as 
GSMxxxxxxx, looping if several 
          if(length(list.files()[which(nchar(list.files())>14)])>0){ 
          for(s in 1:length(list.files()[which(nchar(list.files())>14)])){ 
            file.rename(list.files()[which(nchar(list.files())>14)][s]    ,    
paste0(str_split_fixed(list.files()[which(nchar(list.files())>14)][s],"_",2)[1],".CEL.gz")) 
                                                                         } 
                                                                   } 
          # gunzip(paste0(i,".CEL.gz")) 
          system(paste0("gunzip ",paste0(i,".CEL.gz"))) 
           
          if (!(paste0(i,".CEL") %in% list.files())){ # If download fails, do it again 
            try(getGEOSuppFiles(i,makeDirectory = F)) 
             
            # Check file names with too many letters, select them and rename them as 
GSMxxxxxxx, looping if several 
            if(length(list.files()[which(nchar(list.files())>14)])>0){ 
              for(s in 1:length(list.files()[which(nchar(list.files())>14)])){ 
                file.rename(list.files()[which(nchar(list.files())>14)][s]    ,    
paste0(str_split_fixed(list.files()[which(nchar(list.files())>14)][s],"_",2)[1],".CEL.gz")) 
              } 
            } 
            # gunzip(paste0(i,".CEL.gz")) 
            system(paste0("gunzip ",paste0(i,".CEL.gz"))) 
          } 
           
          if(!(paste0(i,".CEL") %in% list.files())){ # If download still fails, error message 
            cat("ERROR GSM not Downloaded : ") 
            cat(i) 
            cat("   \n") 
          } 
           
          # downl = 
paste0("ftp://ftp.ncbi.nlm.nih.gov/geo/samples/",str_sub(i,1,6),"nnn/",i,"/suppl/",i,"%2ECE
L%2Egz") 
          # download.file(downl,destfile = paste0("./",i,".CEL.gz")) #download files matching 
GSM 
        }} 
 
       
      system(paste0("gunzip ",paste0(i,".CEL.gz"))) 
      # gunzip(paste0(i,".CEL.gz")) 
      file.copy(paste0(i,".CEL"),"../temp/") 
       
      } 
 
    setwd("../temp/") 
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    # Read in the CEL files in the directory, then normalize the data 
    data=ReadAffy() 
    eset <- affy::rma(data,verbose = T) 
    data2 = eset@assayData$exprs 
     
    if(data@cdfName!="Mouse430_2"){ 
      cat("ERROR WITH GENE NAMES") 
      print("ERROR WITH GENE NAMES") 
    } 
    # library("annotate") 
    # library("mouse4302.db", lib.loc="~/R/x86_64-pc-linux-gnu-library/3.3") 
    # biocLite("mouse4302.db") 
    # Affymetrix Mouse Genome 430 2.0 Array annotation data (chip mouse4302) 
    # Verify that experiments match chip 
    setwd("../tables/") 
    if(!(paste0(colnames(inputf)[o],".csv") %in% 
list.files(paste0("./",str_split_fixed(w,".csv",2)[1])))){ 
      # Test if exit table exists 
      dir.create(paste0("./",str_split_fixed(w,".csv",2)[1])) 
      setwd(paste0("./",str_split_fixed(w,".csv",2)[1])) 
       
      namesreplace = select(mouse4302.db,rownames(data2),"SYMBOL") 
      namesnondoublets = NULL 
      for(i in rownames(data2)){ 
        namesnondoublets = 
c(namesnondoublets,namesreplace[which(namesreplace$PROBEID == i)[1],2]) 
      } 
      rownames(data2)<-namesnondoublets  ## Warning : generate nbers and not names 
       
      colnames(data2)<-
str_c(paste0(colnames(inputf)[o],"_"),as.character(1:dim(data2)[2])) 
      # columns(mouse4302.db) 
      write.csv(data2,paste0("./",colnames(inputf)[o],".csv")) 
    } 
       
  }#End of the loop on columns 
    # load the affy library 
   
    ## Normalize experiments 
  setwd(paste0("./",str_split_fixed(w,".csv",2)[1])) 
  dir.create("./TablesPurif/") 
  tablestab = list.files(paste0("./",str_split_fixed(w,".csv",2)[1],"/"),pattern = 
".csv",include.dirs = T) 
  for(i in tablestab){ #lecture des tableaux crÃ©Ã©s 
    # i = tablestab[1] 
    if(!(i %in% list.files("./TablesPurif/"))){ # Test if file already exists 
      a = read.csv(paste0("./",i)) 
      a = na.omit(a) 
             
      for(z in unique(as.character(read.csv(paste0("../../genes/",w),header = F)$V1))){ #loop 
on gene names 
        # z = "Tcf" 
        if(z %in% a[,1]){ # check if gene already exist 
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        if(length(which(a$X == z))!=1){ ## test if genes already exist 
          if(dim(a)[2]>2){     
            temp = rowMeans(a[which(a$X == z),-1]) # Mean of gene expression 
            names(temp) = which(a$X == z) 
            indice = which(temp==max(temp)) # indice to keep, max value of the gene 
             
            # temp = a[which(a$X == z),] 
            if(length(indice)>1){# If two have same mean 
              indice=indice[1]   
            } 
            a = a[-c(as.integer(names(temp))[-indice]),] ## remove doublet lines excluding the 
indice to keep 
             
          }else{ # if table has one cell : 
            temp = (a[which(a$X == z),-1]) # mean of gene expression 
            names(temp) = which(a$X == z) 
            indice = which(temp==max(temp)) # indice to keep, max value for this gene 
             
            # temp = a[which(a$X == z),] 
            if(length(indice)>1){# If two have same mean 
              indice=indice[1]   
            } 
            a = a[-c(as.integer(names(temp))[-indice]),] ## remove doublet lines excluding the 
indice to keep 
            # cat("\n#########",z,"#########\n") 
            # cat("\n#########",dim(a),"#########\n") 
          } 
        } 
        } 
      } 
      # a[which(a$X==unique(as.character(read.csv(paste0("../../genes/",w),header = 
F)$V1))),] 
      akeep=NULL 
      for(b in unique(as.character(read.csv(paste0("../../genes/",w),header = F)$V1))){ # 
loop on gene name of current table 
        akeep = c(akeep,which(a$X == b)) 
      } 
      a<-a[akeep,] 
      rownames(a)<-a$X 
      write.csv(a,paste0("./TablesPurif/",i)) 
       
    } 
  } 
  ListGenes=  
as.character(read.csv(paste0("../../genes/",str_split_fixed(w,".csv",2)[1],".csv"),header = 
F)[,1]) 
  # ListGenes = 
c("Hdac2","Emx1","Hopx","Gfap","Slc39a12","Aqp4","Slc14a1","2900052N01Rik","Chrdl1
","Aldh1a1","S100b","2900052N01Rik-
203","Ttr","Ddn","Hpcal4","Scn4b","Syndig1l","Rasd2","Rasgef1a","Camk2a","Ermn","Mal
","Mog","Mobp","") 
   
  ## Experiments list conssitent with inputf table 
  setwd("./TablesPurif/") 
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  experiences = str_c("./",colnames(inputf),".csv") 
   
  # ListGenes = 
c("Neurod6","Eomes","Neurod1","Zic1","Zic5","Tbr1","Hopx","Dmrta2","Tfap2c","Neurog2
") 
  results = c(1:length(ListGenes)) # initializing result 
  namescol = NULL 
  for(j in experiences){ # loop on table and combine results 
    fic = read.csv(j,row.names = c(1)) 
    results = cbind(resultats,fic[ListGenes,-1]) 
    namescol=c(namescol,colnames(fic)[-1]) 
  } 
   
  results = results [,-1] # Remove unwanted columns 
  colnames(results)<-namescol # cell identification of the table 
   
  results = na.omit(results) 
      
    jpeg(paste0("../../../",str_split_fixed(w,".csv",2)[1],"_heatmap.jpeg"),width = 1000,height 
= 1000) 
  pheatmap(as.matrix(results), 
           Rowv=NULL, 
           Colv=NULL, 
           col=redgreen(256), 
           labRow="" ,border_color = "black",scale = "row",clustering_distance_cols = 
'correlation') 
  dev.off() 
} 
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Annex 2: R Scripts Used for Meta-Analysis of E17.5 Hopx 

Expressing RGCs. Related to Figure 12 

 
Raw data : 
1. Read counts are available in the supplementary information of Yuzwa et al. 2017 
2. Astrocyte markers are available in supplementary information of Zywitza et al. 
 
I used the R Seurat package (V2.3) for unbiased clustering and gene expression 
analysis 
 

t-SNE Generation Related to Figure 12A. 

library(Seurat) 
library(dplyr) 
setwd("D:/Yuzwa") 
 
#########E15.5########## 
# Load the dataset E15.5 
yuzwaE15.data = 
read.table("GSE107122_E155_Combined_Only_Cortical_Cells_DGE.csv", sep=",", 
header = TRUE, row.names = 1) 
yuzwaE15_seurat = CreateSeuratObject(raw.data = yuzwaE15.data, min.cells = 2, 
min.genes = 100, project = "YuzwaE15.5", names.field = 1) 
yuzwaE15_seurat <- NormalizeData(object = yuzwaE15_seurat, normalization.method = 
"LogNormalize", scale.factor = 10000) 
yuzwaE15_seurat <- FindVariableGenes(yuzwaE15_seurat ,mean.function = ExpMean, 
dispersion.function = LogVMR, x.low.cutoff = 0.0125, x.high.cutoff = 5, y.cutoff = 1.5) 
length(yuzwaE15_seurat@var.genes) 
yuzwaE15_seurat <- ScaleData(object = yuzwaE15_seurat, vars.to.regress = NULL) 
yuzwaE15_seurat <- RunPCA(yuzwaE15_seurat, pc.genes = 
yuzwaE15_seurat@var.genes, do.print = FALSE) 
PCAPlot(object = yuzwaE15_seurat, dim.1 = 1, dim.2 = 2) 
yuzwaE15_seurat <- JackStraw(object = yuzwaE15_seurat, num.replicate = 100, 
display.progress = FALSE) 
JackStrawPlot(yuzwaE15_seurat, PCs = 1:12) 
yuzwaE15_seurat <- RunTSNE(yuzwaE15_seurat, dims.use = 1:12, do.fast = TRUE, 
perplexity = 30) 
TSNEPlot(yuzwaE15_seurat, do.label = FALSE, pt.size = 4) 
yuzwaE15_seurat = SetAllIdent(yuzwaE15_seurat, "orig.ident") 
pt.size = 3, reduction.use = "tsne") 
FeaturePlot(yuzwaE15_seurat, "Sox2", pt.size = 5, cols.use = c("grey", "red")) 
 
#########E17.5########## 
# Load the dataset E17.5 
yuzwaE17.data = read.table("GSM2861514_E175_Only_Cortical_Cells_DGE.csv", 
sep=",", header = TRUE, row.names = 1) 
yuzwaE17_seurat = CreateSeuratObject(raw.data = yuzwaE17.data, min.cells = 2, 
min.genes = 100, project = "YuzwaE17.5", names.field = 1) 
yuzwaE17_seurat <- NormalizeData(object = yuzwaE17_seurat, normalization.method = 
"LogNormalize", scale.factor = 10000) 
yuzwaE17_seurat <- FindVariableGenes(yuzwaE17_seurat ,mean.function = ExpMean, 
dispersion.function = LogVMR, x.low.cutoff = 0.0125, x.high.cutoff = 5, y.cutoff = 1.8) 
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length(yuzwaE17_seurat@var.genes) 
yuzwaE17_seurat <- ScaleData(object = yuzwaE17_seurat, vars.to.regress = NULL) 
yuzwaE17_seurat <- RunPCA(yuzwaE17_seurat, pc.genes = 
yuzwaE17_seurat@var.genes, do.print = FALSE) 
PCAPlot(object = yuzwaE17_seurat, dim.1 = 1, dim.2 = 2) 
yuzwaE17_seurat <- JackStraw(object = yuzwaE17_seurat, num.replicate = 100, 
display.progress = FALSE) 
JackStrawPlot(yuzwaE17_seurat, PCs = 1:12) 
yuzwaE17_seurat <- RunTSNE(yuzwaE17_seurat, dims.use = 1:12, do.fast = TRUE, 
perplexity = 30) 
TSNEPlot(yuzwaE17_seurat, do.label = FALSE, pt.size = 4) 
FeaturePlot(yuzwaE17_seurat, "Sox2", pt.size = 5, cols.use = c("grey", "red")) 
 
 

t-SNE Generation on RGCs Related to Figure 12B. 

yuzwaE15_seurat <- FindClusters(object = yuzwaE15_seurat, reduction.type = "pca", 

dims.use = 1:12, resolution = 1.2, print.output = FALSE, save.SNN = TRUE, force.recalc 

= TRUE) 

TSNEPlot(yuzwaE15_seurat, do.label = FALSE, pt.size = 3) 

#RP cells = cluster 4 

yuzwaE17_seurat <- FindClusters(object = yuzwaE17_seurat, reduction.type = "pca", 

dims.use = 1:12, resolution = 0.5, print.output = FALSE, save.SNN = TRUE, force.recalc 

= TRUE) 

TSNEPlot(yuzwaE17_seurat, do.label = FALSE, pt.size = 3) 

#RP cells = cluster 3 

 

#Analysis only in RGCs 

RPE15.cells=WhichCells(yuzwaE15_seurat, 4) 

RPE17.cells=WhichCells(yuzwaE17_seurat, 3) 

 

#RPE15 vs RPE17 

yuzwaE15RPcellsRename.data = yuzwaE15.data[,RPE15.cells] 

yuzwaE17RPcellsRename.data = yuzwaE17.data[,RPE17.cells] 

yuzwaAll.data = cbind(yuzwaE15RPcellsRename.data[row.names(GenesAll),], 

yuzwaE17RPcellsRename.data[row.names(GenesAll),]) 

yuzwaAll_seurat = CreateSeuratObject(raw.data = yuzwaAll.data, min.cells = 0, 

min.genes = 100, project = "YuzwaEAll", names.field = 1, names.delim = "_") 

yuzwaAll_seurat <- NormalizeData(object = yuzwaAll_seurat, normalization.method = 

"LogNormalize", scale.factor = 10000) 

yuzwaAll_seurat <- FindVariableGenes(yuzwaAll_seurat ,mean.function = ExpMean, 

dispersion.function = LogVMR, x.low.cutoff = 0.0125, x.high.cutoff = 5, y.cutoff = 1.5) 

length(yuzwaAll_seurat@var.genes) 

yuzwaAll_seurat <- ScaleData(object = yuzwaAll_seurat, vars.to.regress = NULL) 

yuzwaAll_seurat <- RunPCA(yuzwaAll_seurat, pc.genes = yuzwaAll_seurat@var.genes, 

do.print = FALSE) 

PCAPlot(object = yuzwaAll_seurat, dim.1 = 1, dim.2 = 2) 

yuzwaAll_seurat <- JackStraw(object = yuzwaAll_seurat, num.replicate = 100, 

display.progress = FALSE) 

JackStrawPlot(yuzwaAll_seurat, PCs = 1:12) 

yuzwaAll_seurat <- RunTSNE(yuzwaAll_seurat, dims.use = 1:12, do.fast = TRUE, 

perplexity = 30) 
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TSNEPlot(yuzwaAll_seurat, do.label = FALSE, pt.size = 3) 

RPE17E15.markers <- FindMarkers(yuzwaAll_seurat, ident.1 = "E17", thresh.use = 0.25, 

min.pct = 0.20, test.use = "bimod",only.pos = F) 

write.table(RPE17E15.markers, "RPE17E15.markers.csv", sep = ",") 

 

t-SNE Generation on E17.5 RGCs with Zywitza Markers Related to Figure 12. 

##Download first astrocytes markers from Zywitza et al. 
AstroGenes.data = read.table("AstroGenes.csv", sep=",", header = TRUE, row.names = 

1) 

yuzwaZywitza_seurat = CreateSeuratObject(raw.data = yuzwaRPE17.data, min.cells = 

2, min.genes = 100, project = "yuzwaZywitza.data", names.field = 1, names.delim = "_") 

yuzwaZywitza_seurat <- NormalizeData(object = yuzwaZywitza_seurat, 

normalization.method = "LogNormalize", scale.factor = 10000) 

yuzwaZywitza_seurat@var.genes = AstroGenes 

yuzwaZywitza_seurat <- ScaleData(object = yuzwaZywitza_seurat, vars.to.regress = 

NULL) 

yuzwaZywitza_seurat <- RunPCA(yuzwaZywitza_seurat, pc.genes = 

yuzwaZywitza_seurat@var.genes, do.print = FALSE) 

PCAPlot(object = yuzwaZywitza_seurat, dim.1 = 1, dim.2 = 2) 

yuzwaZywitza_seurat <- JackStraw(object = yuzwaZywitza_seurat, num.replicate = 100, 

display.progress = FALSE) 

JackStrawPlot(yuzwaZywitza_seurat, PCs = 1:12) 

yuzwaZywitza_seurat <- RunTSNE(yuzwaZywitza_seurat, dims.use = 1:4, do.fast = 

TRUE, perplexity = 25) 

TSNEPlot(yuzwaZywitza_seurat, do.label = FALSE, pt.size = 3) 

FeaturePlot(yuzwaZywitza_seurat, c("Sulf1"), pt.size = 6, cols.use = c("grey", "red")) 

##Clustering 

yuzwaZywitza_seurat <- FindClusters(object = yuzwaZywitza_seurat, reduction.type = 

"pca", dims.use = 1:3, resolution = 1, print.output = FALSE, save.SNN = TRUE, 

force.recalc = TRUE) 

#Result: cluster 1 = “0” 

TSNEPlot(yuzwaZywitza_seurat, do.label = FALSE, pt.size = 6) 

##Markers 

yuzwaZywitzaE17.markers <- FindMarkers(yuzwaZywitza_seurat, ident.1 = 0, thresh.use 

= 0.25, min.pct = 0.20, test.use = "bimod",only.pos = F) 

write.table(yuzwaZywitzaE17.markers, "yuzwaZywitzaE17.markers.csv", sep = ",") 

 

FeaturePlot(yuzwaZywitza_seurat, c("Aldh1l1"), pt.size = 6, cols.use = c("grey", "red")) 
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Annex 3: Top Genes Enriched in E17.5 and E15.5 RGCs. Related 

to Figure 12 

Top 200 Genes Enriched in E17.5 RGCs 
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Top 200 genes enriched in E15.5 RGCs 
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Annex 4: Astrocyte Markers From Zywitza et al. 2018. Figure S4 
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Annex 5: List of Genes Differentially Expressed in Clusters 1 and 

2. Related to Figure 12 

Primed E17.5 RGCs (cluster 1)

 

 

Name avg_logFC Name avg_logFC Name avg_logFC Name avg_logFC Name avg_logFC

Apoe 2.029 Atp1a2 0.915 Hmgcs1 0.743 Klf7 0.642 Dtx3 0.578

Slc9a3r1 1.602 Ptprz1 0.914 Plekho1 0.742 Csnk1d 0.641 Aacs 0.578

Lxn 1.570 Clptm1 0.907 Sp3 0.741 Acss1 0.638 1700011J10Rik0.577

Smpdl3a 1.530 Hes5 0.901 Dclk1 0.740 Arfrp1 0.637 Camta1 0.576

Slc4a4 1.508 Pdlim4 0.898 Kcnk2 0.739 Cyfip1 0.634 Tbrg1 0.575

Gstm1 1.411 Tmx3 0.892 Sirt2 0.739 Tpp1 0.634 Fads2 0.571

Aldoc 1.393 Hsdl2 0.887 Selm 0.735 Nrarp 0.632 Rfc1 0.570

Sparcl1 1.391 Cd9 0.884 Itga6 0.734 Mras 0.631 Ppp1r12a 0.570

Ttyh1 1.384 Dtna 0.882 Nfe2l2 0.732 Vegfa 0.625 Tmem47 0.569

Mt3 1.329 Gpt2 0.881 Ppap2b 0.730 Ufl1 0.624 1810058I24Rik0.568

Nkain4 1.301 Micu1 0.879 Uba5 0.727 Rab10 0.621 Fuz 0.567

Mgst1 1.273 Arhgef26 0.876 Asrgl1 0.722 Ostm1 0.619 Cuedc2 0.562

Cpe 1.263 S100a16 0.872 Hepacam0.719 Appl2 0.618 Chmp2b 0.561

Cyp51 1.250 Clu 0.872 Acot1 0.712 Trappc2l 0.618 Osgep 0.557

Csdc2 1.237 Ptn 0.863 Dars 0.710 Leprot 0.617 Ppp1r9a 0.557

Psat1 1.219 Pygb 0.863 Suco 0.708 Ctnna2 0.617 Fads1 0.557

Aldh1l1 1.216 Abhd4 0.862 Polr3f 0.706 Magi1 0.616 Faim 0.557

Sc4mol 1.196 Snx4 0.852 Aamdc 0.701 Immt 0.614 Ilk 0.554

Paqr7 1.176 Fgf13 0.847 Tspan13 0.698 Clpp 0.614 Tmem176b 0.553

Slc15a2 1.172 Adhfe1 0.843 Ndrg2 0.697 Mier1 0.612 Kcnj10 0.553

Glul 1.166 Trim9 0.831 Ifitm2 0.696 Dbi 0.611 BC031181 0.552

Aqp4 1.163 Glud1 0.830 Pdpn 0.695 Pih1d1 0.611 Tmem167b 0.549

Fgfbp3 1.157 Scg3 0.829 Erp44 0.691 Klf15 0.609 Bnip3l 0.548

Myo6 1.145 Emc3 0.827 Sat1 0.689 Mbnl2 0.608 Glt8d1 0.548

Kif21a 1.131 Alcam 0.827 Rsu1 0.686 Rab9 0.608 Hopx 0.547

Emp2 1.124 Ppp2r2b 0.826 Lfng 0.686 Id1 0.606 Hexb 0.547

Mlc1 1.102 Fmo1 0.826 Gm177500.685 Cxadr 0.605 Macf1 0.545

Atp1b2 1.101 Car2 0.824 Zfand2b 0.682 Anxa2 0.605 Prdx3 0.545

Vcan 1.084 Ndufs4 0.820 Smc5 0.682 Crot 0.605 Polb 0.544

Tnc 1.078 Acsbg1 0.807 Stard4 0.678 Ntm 0.604 Magt1 0.542

Ak3 1.072 Kbtbd11 0.805 Mpst 0.674 Mrps28 0.602 4931406C07Rik0.542

Cst3 1.063 Timp3 0.804 Larp7 0.670 Lrrc42 0.601 Prkag1 0.541

Fabp7 1.063 Kcne1l 0.800 Malsu1 0.668 Il18 0.596 Thap3 0.541

Id4 1.054 Gpr19 0.800 Cenpc1 0.661 Pmm1 0.596 Plxnb1 0.540

40057.000 1.041 Elovl5 0.796 Grb2 0.661 Tiprl 0.594 Mff 0.540

Fam13c 1.022 Fbln2 0.794 Hsd17b4 0.659 Maf1 0.593 Atp6v1e1 0.537

Med31 1.019 Gdpd2 0.789 Mid1ip1 0.657 Taf7 0.592 Atxn10 0.537

Ncan 1.018 Usf2 0.788 Fxyd6 0.656 Ctsd 0.592 Fam76a 0.536

Prdx6 1.011 Cetn2 0.782 Stoml2 0.656 Mphosph60.590 Tspan7 0.536

Id3 1.010 Ap3s1 0.782 Htra1 0.655 Fkbp8 0.590 Itm2b 0.532

Cntnap2 1.003 Rhoc 0.781 Nudt16l1 0.647 Eid2b 0.585 Grcc10 0.531

Oat 0.994 Fgfr1 0.780 Nim1 0.647 Pld3 0.585 Polr3h 0.531

Plat 0.991 Plxnc1 0.780 Fjx1 0.646 Camk2n10.584 Dcaf8 0.529

Bcan 0.971 Kdelr1 0.778 Klf13 0.646 Pqbp1 0.583 Zcchc18 0.528

Phyhipl 0.967 Plgrkt 0.765 Mapre2 0.646 Tm7sf2 0.583 Aldh2 0.528

Scd2 0.960 Mmp14 0.764 Lgmn 0.646 Nelfcd 0.582 Mpv17 0.526

Slc1a3 0.955 Aldoa 0.764 Lamp2 0.645 Nsdhl 0.582 Golim4 0.525

Vimp 0.946 Cd63 0.763 Gpm6b 0.644 Lman1 0.581 Deb1 0.524

Fstl5 0.923 Npdc1 0.756 Msi2 0.644 Aplp2 0.578 Ccni 0.524
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Non Primed E17.5 RGCs (cluster 2)

 

 

Name avg_logFC Name avg_logFCName avg_logFC Name avg_logFCName avg_logFC

Gadd45g -1.899 Ppp2r2d -0.695 Fam92a -0.622 Mcm3 -0.576 Erh -0.537

Pdgfra -1.196 Taf1 -0.693 Cops8 -0.621 Nap1l4 -0.573 Hnrnpa3 -0.535

Gnl3 -1.084 Lmnb1 -0.691 Ptrh2 -0.619 Prmt1 -0.573 Atp5j -0.533

Erbb2ip -1.064 Eny2 -0.687 Tfap2c -0.618 Hmgb2 -0.573 Gm10263 -0.533

Tpm1 -1.063 Ubald2 -0.686 Hnrnpm -0.618 Glyr1 -0.572 Ppil2 -0.533

Lima1 -1.038 Hnrnpab -0.686 2610017I09Rik-0.617 Ctnnb1 -0.570 Eif3m -0.532

Gas1 -1.019 Cdon -0.684 Trp53 -0.617 Cct8 -0.569 Glod4 -0.532

Hes6 -0.988 Rps19 -0.683 Crbn -0.613 Aimp2 -0.568 Tial1 -0.531

Ppp1r14b -0.980 Smim7 -0.682 Cox5a -0.612 Snrnp48 -0.567 Rpp30 -0.530

Ccnd1 -0.973 Akirin2 -0.680 Usp22 -0.608 Eef1d -0.567 Dek -0.530

Olig2 -0.945 Rps3 -0.680 Gtf3c6 -0.606 Mthfd1 -0.566 H2afy2 -0.530

Rpl31 -0.903 Gtf2h5 -0.676 Rps26 -0.606 Polr2j -0.566 Rpl36 -0.530

Smarca5 -0.902 Rplp0 -0.676 Heatr3 -0.606 Yars -0.565 Trpm7 -0.529

Cdca8 -0.867 Gspt1 -0.675 Rrs1 -0.605 Gars -0.565 Rplp1 -0.528

Tbl1x -0.825 Mcm6 -0.674 Nsg2 -0.605 Dctpp1 -0.563 Phlda1 -0.528

Serpine2 -0.819 Pak1ip1 -0.673 Set -0.604 Denr -0.561 Got2 -0.527

Dync1li1 -0.812 Chd7 -0.672 Clns1a -0.604 Gas5 -0.560 Mettl10 -0.527

Cdk2ap1 -0.812 Ddb1 -0.668 Rcor2 -0.603 Pes1 -0.560 Gripap1 -0.527

Ebna1bp2 -0.812 Golm1 -0.668 Nhp2l1 -0.603 Gpx1 -0.560 Elf2 -0.527

Mycn -0.811 Ascl1 -0.668 Abhd14a -0.602 Hp1bp3 -0.559 Pa2g4 -0.526

Ddx39 -0.809 Nfix -0.668 Cct3 -0.602 B3gat2 -0.556 Wdr12 -0.525

Ckap5 -0.808 Ptma -0.666 Pam -0.602 Tmsb10 -0.556 Rps21 -0.524

Nop14 -0.800 Xrcc6 -0.665 Nop56 -0.602 Rplp2 -0.553 Atp5f1 -0.523

Nop58 -0.797 Cdca7 -0.662 Dync1h1 -0.601 Cxxc1 -0.553 Adsl -0.517

Slc7a6os -0.796 Sfpq -0.661 Naca -0.601 Lias -0.553 Actr1a -0.517

1700025G04Rik-0.777 Whsc1 -0.660 Rrm1 -0.600 Ddx52 -0.553 Eef1e1 -0.516

Sf3b2 -0.771 Med4 -0.659 Fam32a -0.597 Eef1b2 -0.551 mt-Rnr1 -0.514

Serf1 -0.770 1500012F01Rik-0.656 Cd164 -0.596 Mrpl33 -0.550 Pbdc1 -0.514

Lpcat1 -0.759 Eif5b -0.655 Rbm25 -0.593 Tsnax -0.550 Hnrnph1 -0.513

Hmgb1 -0.756 Pttg1 -0.654 Lsm12 -0.593 Hist1h2bc-0.549 Ptp4a2 -0.513

Ypel3 -0.749 Ddx21 -0.651 Atp5k -0.591 Ppa1 -0.548 Aplp1 -0.512

Trim28 -0.748 Hint1 -0.650 Gm10275-0.589 Ezh2 -0.547 Ranbp3 -0.511

Las1l -0.747 Bzw1 -0.650 Rpl38 -0.589 Dkc1 -0.547 Stmn3 -0.509

Lig3 -0.744 Kpna4 -0.647 Setd8 -0.588 Rps5 -0.545 Fscn1 -0.508

Ncl -0.742 Rps26-ps1-0.644 Yme1l1 -0.587 Kif5b -0.545 Psmd8 -0.507

Rps3a3 -0.736 Hdgf -0.644 Pou6f1 -0.587 Wdr77 -0.543 Zmynd8 -0.507

Ccar1 -0.733 Eef1a1 -0.643 Ash1l -0.585 Ankrd11 -0.543 Rps28 -0.507

Paics -0.725 Zcchc17 -0.635 Miat -0.584 Clip3 -0.542 Rpl37 -0.507

C1qbp -0.725 Nol12 -0.635 Uchl5 -0.584 Pcna-ps2 -0.540 Ddx42 -0.506

Eif3e -0.718 Npm1 -0.634 Tnpo3 -0.584 A430005L14Rik-0.539 Immp1l -0.506

Midn -0.717 Hdgfrp3 -0.634 Dpm3 -0.583 Usp10 -0.539 Gm16286 -0.505

Epb4.1 -0.712 Sox4 -0.632 Srrt -0.583 Gm3940 -0.539 Hnrnpc -0.505

Ssrp1 -0.712 Tipin -0.631 Slc25a39 -0.582 Exosc8 -0.538 Asnsd1 -0.505

Olig1 -0.708 Gm10288-0.629 Ran -0.582 Arhgef2 -0.538 Ak2 -0.502

Tle1 -0.707 Mif -0.628 Pou3f2 -0.579 Mrpl2 -0.537 Lbh -0.502

Rps11 -0.706 Gm8730 -0.628 Epha4 -0.578 Kpnb1 -0.537 Alyref -0.502

Eid2 -0.705 Upf3a -0.627 Sar1b -0.578 Tcp1 -0.537 Fam50a -0.501

Smarcc1 -0.701 Gm10073-0.626 Ccp110 -0.577 Bzw2 -0.537 Mios -0.501

Lsm2 -0.700 Snrpe -0.624 Scpep1 -0.576 Hdac2 -0.537 Snhg5 -0.500
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Annex 6: FAC-sorting of Tomato+ Glu Progenitors 
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Annex 7: QPCR Validation of Isolated Tomato+ Progenitors 
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Annex 8: Bioinformatics Pipeline 
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Annex 9: Feature Plots of E15 and P2 progenitors 

Generic Progenitor Markers 
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Generic Nascent Neurons Markers 
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Identity Markers (1) 
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Identity Markers (2) 
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P2 Enriched Genes 

 

E15 Enriched Genes 
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Résumé 
Lors du développement, la coordination 

d’évènements moléculaires et cellulaires mène 

à la production du cortex cérébral. Son 

développement s’effectue par étapes : les 

cellules gliales radiaires (RGs), cellules 

souches neurales (NSCs) du cerveau en 

développement, génèrent séquentiellement 

des nouveaux neurones qui formeront les 

couches corticales. Autour de la naissance, les 

RGs changent de devenir et produisent des 

cellules gliales. Cependant, une fraction 

persiste tout au long de la vie dans la zone sous 

ventriculaire (SVZ) bordant le ventricule et 

produisent ensuite les différents interneurones 

du bulbe olfactif ainsi que des cellules gliales 

en fonction de leur origine spatiale. 

Ces observations soulèvent d’importantes 

questions non résolues sur 1) le codage 

transcriptionnel régulant la régionalisation de la 

SVZ, 2) le potentiel des NSCs postnatales dans 

la réparation cérébrale, et 3) le lignage et les 

spécificités transcriptionnelles entre les NSCs 

et leurs descendants. 

J’ai développé des approches bio-

informatiques pour connecter l’expression de 

facteurs de transcription avec la genèse 

régionale de lignages neuraux distincts et pour 

comparer des progéniteurs pré et postnataux à 

l’échelle de la cellule unique. 

Ces résultats soulignent le potentiel des études 

transcriptomiques à résoudre des questions 

fondamentales comme les changements 

moléculaires intervenant dans une population 

de progéniteurs au cours du temps et 

participant aux changements de leur destinée. 

Cette connaissance sera la clé d’approches 

novatrices pour recruter et promouvoir des 

types cellulaires spécifiques, incluant les sous-

types neuronaux dans un contexte 

pathologique. 

 

Abstract 
During development, remarkable coordination 

of molecular and cellular events leads to the 

generation of the cortex, which orchestrates 

most sensorimotor and cognitive functions. Its 

development occurs in a stepwise manner: 

radial glia cells (RGs) - the neural stem cells 

(NSCs) of the developing brain - sequentially 

give rise to distinct waves of nascent neurons 

that form cortical layers. Around birth, RGs 

switch fate to produce glial cells. A fraction of 

neurogenic RGs however persists throughout 

postnatal life in the subventricular zone (SVZ) 

that lines the lateral ventricles. These NSCs 

give rise to different subtypes of olfactory bulb 

interneurons and glial cells, according to their 

spatial origin within the postnatal SVZ.  

These observations raise important unresolved 

questions on 1) the transcriptional coding of 

postnatal SVZ regionalization, 2) the potential 

of postnatal NSCs for cellular regeneration and 

brain repair, and 3) the lineage relationship and 

transcriptional specificities of postnatal NSCs 

and of their progenies. 

I developed bioinformatics approaches to 

relate expression of defined transcription 

factors to the regional generation of distinct 

neural lineages and to explore and compare 

select populations of pre- and postnatal 

progenitors at the single cell level.   

These data highlight the potential of 

transcriptomic studies to unravel fundamental 

questions such as transcriptional changes 

occurring in a population of progenitors over 

time and participating to changes in their fate 

potential. This knowledge will be key in 

developing innovative approaches to recruit 

and promote the generation of specific cell 

types, including neuronal subtypes in 

pathologies. 
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