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Abstract

Formation and consolidation of new memories is one of the fundamental charac-
teristics of the brain, responsible for learning and high cognitive behavior. While
important, the process isn’t fully understood to the present day and is the subject of
various studies, spanning from the activity analysis of individual synapses to the re-
construction of brain connectivity maps. In this work, we propose a bold approach,
on which we aim to measure in vivo the activity of every single neuron from the
whole Mushroom body (MB) of the Drosophila melanogaster, in a fully automated
procedure. After a 3D image acquisition over time of the MB by means of confocal
microscopy, an automated detection and tracking of the neurons is performed. The
whole process takes place while the fly is awake and subjected to different odor
stimulations, so that it is possible to associate the activity patterns at the single
cell level to the stimulus that is being received. By comparing the response patterns
from flies that were trained and flies that were not trained to associate an odor with
an electric shock we identified changes in neuronal activity, providing information
on how memory is formed. Beyond the methodological innovation that brought the
possibility to track the activity of a large set of single neurons, this work contributed
to the current understanding of long term memory formation.
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Résumé

La formation et la consolidation de souvenirs est l’une des caractéristiques fonda-
mentales du cerveau, responsable de l’apprentissage et de comportements cognitifs
élevés. Malgré son importance, ce processus n’est pas entièrement compris à ce
jour et fait l’objet de nombreux travaux de de recherche, allant de l’analyse de
l’activité des synapses individuelles à la reconstruction de cartes de connectivité
du cerveau. Dans ce travail, nous proposons une approche intégrée pour mesurer
in vivo l’activité de chaque neurone du corps pédonculé (Mushroom body, MB) de
la Drosophila melanogaster dans une procédure entièrement automatisée. Il s’agit
d’imager en 3D et dans le temps le MB dans sa totalité par microscopie confo-
cale et d’opérer un suivi temporel de la position de chaque neurone afin de relever
leur niveau individuel d’activité. En utilisant cette approche, nous avons découvert
que pendant la formation de la mémoire à long terme, de nouveaux neurones sont
recrutés au sein du corps pédonculés, tandis que l’intensité de la réponse des neu-
rones individuels reste inchangée. Au delà de l’apport méthodologique qui permet
à présent de quantifier automatiquement l’activité d’un grand nombre de neurones,
ce travail a contribué à une meilleure compréhension de la formation de la mémoire
à long terme.
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Chapter 1

Introduction

If the brain were so simple
we could understand it, we
would be so simple we
couldn’t.

Lyall Watson

1.1 Context

The brain is one of the most complex
systems known to mankind. This, at
least, according to the brain itself. It
is common for us to separate our con-
sciousness from it — and in fact this was
the common reasoning for thousands of
years — but all of our thoughts, pas-
sions, desires and beliefs are no much
more than a group of cells firing in the
right order.

But the result of these rather simple
cells working together is something that
is much bigger than the sum of its parts.
The brain likes to label itself as “intel-
ligent”, even though this is a term that
is extremely hard to be objectively de-
fined. One of current interpretations,
structured by Jeff Hawkins on his book
“On Intelligence” [1], is the Memory pre-
diction framework, which states that in-
telligence is nothing more than the abil-
ity to make predictions, based on previ-
ous experiences. Simply put, the brain
is always trying to predict the next stage
of the input signals it is receiving, us-

ing the previously stored memories as
database in this highly nonlinear model.
Thus, for Hawkins, memory is at the
core of intelligent behavior.

In fact, during the past decades we just
started to understand how neurons can
work together to process information.
This brought an enormous impact, not
only because it allows us to better un-
derstand ourselves, but also because it
was the seed that started the current
technological revolution we are experi-
encing, the born and raise of Artificial
Intelligence.

Computers are more and more able to
behave in a way that can be considered
intelligent, and it all started with the
first in silico simulations of neurons, like
perceptrons and simple neural networks
[2]. Since then, the increased compu-
tational power allowed the development
of more elaborated networks, capable of
solving complex problems. This new ap-
proach, termed deep learning [3], is in-
spired by the way neurons connect in
layers within the brain cortex, and is
able of remarkable achievements, as the
recognition of images with high preci-
sion [4] or the simulation of speak pat-
terns in a way that is indistinguishable
from a real human [5]. The core of this
success is the fact that neural networks
are capable of learning from presented
data, thus having a memory stored in
the weights that connect the artificial
neurons. Something like what the real

9



CHAPTER 1. INTRODUCTION

neurons do inside our brains.

None of this would be achievable with-
out an understanding of how neurons are
capable of processing and storing infor-
mation. However, we are still far from
having a complete model of how they are
able of such features, and a better com-
prehension of the mechanisms of mem-
ory could bring astonishing innovations.

The irony is that the brains we need to
learn from are everywhere, waiting to
be investigated. Evolution has shaped
the nervous system for millions of years,
into a superb machine for memorization
and prediction. The problem is that
this machine doesn’t come with an in-
structions manual, and the only way to
understand how it works is by explor-
ing and asking the right questions. And
this is the main objective of this thesis,
to delve into the mechanisms of mem-
ory formation and bring new insights on
how memory works.

1.2 Problematic

The biggest challenge to achieve this
goal is methodological. To have a global
view of the neuronal activity, while
memories are being recalled, we need to
be able to check the activity of individ-
ual neurons in vivo. Furthermore, be-
cause memories are stored in a sparse
distribution within the brain [6], the
whole structure needs to be scanned at
once.

These constrains make two common
approaches, neuronal electrophysiology
[7] and functional magnetic resonance
imaging (fMRI) [8], unqualified. Elec-
trophysiology brings a high resolution,
measuring directly the voltage changes
in the membrane of neurons, but it is
limited to a restricted number of si-

multaneous measurements, as a physical
probe is used for the recordings. On the
other side, fMRI is capable of measuring
the activity over the whole brain (even
for the huge mammal brain), but lacks
the capability of single cell resolution.
During a fMRI scan, the brain activity
is measured by changes associated to the
blood flow, which doesn’t allow a single
cell resolution. Consequently, the the
recorded activity is assigned to a fixed
volume in space, not necessarily a single
cell.

1.2.1 Approach

Therefore, we approach the problem via
fluorescent imaging. Further details will
be given upon Chapter 3, but the ba-
sic idea is that by being able to mea-
sure the Ca2+ changes within neurons,
and also having a nuclei marker to iden-
tify individual cells, we will be able to
know the level of activity at the single
cell level. The downside of this approach
is that the desired field of view should
be imaged, in 3D, fast enough to cap-
ture the responses from the neurons and
with high enough resolution so that indi-
vidual neurons could be detected. The
current state of the art technologies in
microscopy wouldn’t allow the acquisi-
tion of a whole vertebrate brain within
these standards.

Although the complexity of a mammal
brain is indisputable, and much can be
studied from it, the bases of the sys-
tem are well found in other organisms.
In our case, is particularly interesting
the model of the fruit fly, Drosophila
melanogaster. Vastly used in current re-
search for its flexibility, it is one of the
most important animal models nowa-
days, and will be further discussed dur-
ing Chapter 2. Besides having a brain
small enough to fit into a single 3D field

10



CHAPTER 1. INTRODUCTION

of view of a confocal microscope, the
fruit fly is capable of conditioned learn-
ing, making it an ideal model for the
study of associative memory.

The idea is simple: take a group of flies,
make them learn something and record
the brain activity while they remem-
ber the lesson. As control, also record
the brain of another group of flies that
didn’t learned anything. The differences
between these two groups should show
what were the structural changes within
the brain during the learning process.
The details of the protocol will be ex-
plained within Chapters 2 and 3.

1.2.2 Queries

From this, few questions about the
mechanisms of memory can emerge. Are
new neurons recruited to represent the
acquired information? Is the activity of
the neurons that represent the stimulus
increased, in comparison to the group
that didn’t learned? Even simple in-
quires like these were never fully an-
swered in a precise and quantitative way.

Technically challenging, the answer to
these questions rely on the development
of new methodology. For the best of our
knowledge, no research group was able
to perform the extensive 3D recordings
in vivo of a whole Mushroom body, au-
tomatically detect neurons and measure
their activity. The computational tech-
niques that were designed for these goals
are explained in detail during Chapters
4, 5, 6 and 7.

Being in the intersection of state of the
art technologies from both biology and
computer sciences, the work developed
on this Thesis is highly interdisciplinary.
Aspects regarding the biological bases
will be explained within this Chapter,
in Section 1.4 and the computational as-

pects needed to better comprehend the
methods during Section 1.5.

1.3 Work environment

This work was developed within the
laboratory of Computational Bioimag-
ing and Bioinformatics of the Institut de
Biologie de l’Ecole Normale Supérieure
(IBENS), under the supervision of Au-
guste Genovesio. The laboratory devel-
ops projects in different fields of com-
puter sciences, ranging from image anal-
ysis to bioinformatics, in partnership
with several other Parisian institutions.

The project would not have been
possible without the partnership with
the laboratory of Gènes et Dynamique
des Systèmes de Mémoire, directed by
Thomas Preat, at the Ecole Superiéure
de Physique et de Chimie Industrielles
de la Ville de Paris (ESPCI). Their lab-
oratory is deeply involved in the research
of the mechanisms of memory using the
Drosphila melanogaster as a role model.

1.4 Biological aspects

During this Section we’ll explore a few
key points for the better understanding
of the biological aspects of this Thesis.

1.4.1 Memory

For more than a century, one of the
greatest challenges of neuroscience has
been the understanding of the mecha-
nisms of memory formation and restora-
tion. The process of memorization
breaks down into three stages: learning,
storage/consolidation and recall.

Learning is defined as the acquisition of
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information that can be manifested by
a change in behavior based on experi-
ence. The persistence of this behavioral
change over time is the revealer of the
formation of a memory, including the
consolidation phase and the recall phase.

In the human being, memory takes on
different facets. Declarative and non-
declarative memories are generally dis-
tinguished [9]. Semantic memory and
episodic memory, which are two systems
of long-term conscious representation,
constitute the declarative memory.

Semantic memory is based on global
knowledge and knowledge of oneself and
the world [10], while episodic memory fo-
cuses on past moments and events [11].
Nevertheless, episodic memory events
tend to amalgamate to form a seman-
tic corpus. Among the non-declarative
memories, we find the procedural mem-
ory allowing unconscious kinetic au-
tomatisms, to develop skills such as
walking, playing a musical instrument,
or even artistic abilities like drawing [12].
These learnings are unconscious. Fears
learned or dislikes involving the amyg-
dala are also forms of non-declarative
memory [13]

Furthermore, it is possible to categorize
memory according to its time course.
Long-term memories can last for days,
months or years, while short-term mem-
ories will fade away more quickly. In
the extreme, working memory is a very
short-term memory, which stores infor-
mation for a few seconds or tens of
seconds, and needs to be re-mobilized
regularly to last a little longer [14, 15].
The subjectivity of this categorization,
particularly related to human language,
makes it difficult to extrapolate to other
animal species.

In most animal species, the nervous sys-
tem serves as a basis for supporting

these memory processes. Although huge
morphological differences exist between
them, it is possible to compare some ba-
sic principles of functioning of the ner-
vous system, differences and common
points that can be found between dif-
ferent sorts of brains. This can allow
us to be better equipped to compare
the Drosophila to other species such as
mammals.

Further aspects of memory, in specific to
the Drosophila model, will be discussed
upon Chapter 2.

1.4.2 Neuronal morphology & physiology

At the anatomical level, neurons are
rather bipolar in the central nervous sys-
tem of mammals, while invertebrates,
and in Drosophila in particular, they are
unipolar (as seen in Figure 1.1). These
neurons are organized into ganglia in the
nervous system of insects, while verte-
brates are more complex. In the lat-
ter, the cerebral hemispheres of prosen-
cephalic origin have a particular struc-
ture, the cerebral cortex which itself has
a particular diversity across species. In
reptiles like the alligator, the cortex con-
sists of a single layer of neurons, while
up to six layers can be distinguished
in mammals such as rats or humans.
Without seeking to be exhaustive, we
must note that many other differences
exist between animal species at differ-
ent levels in the physiology of the ner-
vous system. For example, the propa-
gation of electrical signals is not in the
form of action potentials in the nema-
tode worm, and in insects, and in par-
ticular Drosophila, the axonal fibers are
not myelinated.

At the neuronal scale, the electrical and
synaptic properties are conserved glob-
ally. Both excitatory neurons and in-
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Axon

Dendrites

Soma

A B

Figure 1.1: Different morphologies of neurons. (A)
Bipolar neuron, where the dendritic compartment is up-
stream of the cell body and downstream is the axonal
compartment. (B) Unipolar neuron, on which the den-
drites and the axon are in continuity, deriving from the
cell body.

hibitory neurons are found in different
species. In a related fashion, most of the
neurotransmitters used in the nervous
system are shared: acetylcholine, glu-
tamate, dopamine, serotonin, GABA,
as well as different neuropeptides [16–

18]. All these homologies result from
the existence of orthologous genes be-
tween the different species. In this
case, the conservation of neurotransmit-
ters comes from a strong conservation in
the biosynthetic enzymes of these neuro-
transmitters [19].

Synaptic plasticity, a fundamental
mechanism for storing information, is
also very well preserved. We can also
note that synaptic retrograde messen-
gers exist in most species: Drosophila,
for example, exhibits NO-dependent
retrograde communication [20]. In
addition, there may also be non-
synaptic connections between neurons,
via communicating junctions, able to
form electrical synapses, including in
Drosophila [21]. Another very common
feature of central nervous systems in
many species, including the fruit fly,

is the presence of glial cells, in greater
or lesser proportion to neurons [22]. If
glial cells, and in particular astrocytes,
are predominant in mammals, glial
cells (astrocytes, cortical glia and glean
“sheathing”) remain a minority in
Drosophila. However, these glial cells
appear to be able to perform functions
equivalent to those of astrocytes in
mammals, as they surround the cell
bodies and proximal neurites, are
coupled to the vascular network and
are closely associated with synapses
[23–25]. Finally, it can also be noted that
many signal transduction pathways
are conserved and that metabotropic
receptors and ionotropic receptors are
found in different species [26, 27].

At the organization level of the neural
networks, one can still note some simi-
larities. Because of the need to explore
the environment and react, sensory neu-
rons associate in an intermediate stage
which itself contacts, downstream, the
motor neurons. Such an organization is
found both in the reflex arc of mammals
and in the innate responses to aversive
odors in Drosophila. Moreover, in differ-
ent organisms, an innate response can
be modulated by learning, involving a
derivation of information to integrating
centers [28, 29].

1.4.3 Classical conditioning

Most of the questions underlying the
formation of memory relates to the
nature, duration, location and mecha-
nisms of changes in the nervous sys-
tem, changes that are also called mem-
ory traces. One of the first neurobiolo-
gists to take an interest in these mech-
anisms was Ivan Pavlov (1849-1936).
Noticing that dogs tended to salivate be-
fore actually making contact with food,
he decided to investigate this “psychic
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secretion” in more detail. Thus, he
discovered the basic laws of acquisi-
tion and the loss of conditional reflexes
(which would later become conditioned
responses) that is, reflex responses, such
as salivation, which do occur only con-
ditionally to specific experimental con-
ditions in the animal [30].

He developed the concept of classical
conditioning, which focuses on the con-
sequences of learning related to the as-
sociation between environmental stim-
uli and the automatic reactions of the
body. This notion of involuntary reac-
tion is the main point that differenti-
ates it from operant conditioning, where
learning leads to a voluntary change in
behavior.

The principle of classical conditioning
has been adapted many times to study
in more detail the mechanisms underly-
ing the formation of these conditioned
reflexes. Initial works, on the study
of the defensive reflexes of Aplysia (a
gastropod mollusc), in response to tac-
tile stimuli has allowed major advances.
The tactile stimulation of the gills and
the siphon located on the back of this
organism causes a reflex of withdrawal.
Repeated application of this stimulus
and its association with another stim-
ulus causes habituation reactions (grad-
ual decrease in the intensity or frequency
of appearance of the conditioned reflex)
and sensitization (gradual increase in in-
tensity or the frequency of appearance of
the conditioned reflex when associated
with an unpleasant stimulus) [31–33].

The results obtained on Aplysia by E.
Kandel (Nobel Prize in Physiology and
Medicine, 2000) have determined that
learning is based on functional changes
in the effectiveness of existing excita-
tory connections [34, 35]. This work
also revealed the importance of the
cyclic 3’-5 ’adenosine monophosphate

(cAMP) pathway [36] and protein kinase
A (PKA) in the formation of short-term
memories (sensitization) [37] and CREB
transcription factor (cAMP -response
element binding protein) in long-term
memory formation [38]. Thus, it has
been proposed that the formation of
short-term memory is based on changes
in synaptic efficiency while long-term
memory induces changes in the number
of these synapses.

The study of learning and memory also
benefited from the contribution of an-
other neurobiologist, Seymour Benzer
(1921-2007). He first became inter-
ested in molecular biology, including the
structure and regulation of genes, and
developed a recombination-based sys-
tem for the systematic study of muta-
tions [39, 40]. He then turned to neu-
roscience, and more particularly to the
neurogenetic mechanisms of behavior in
the fruit fly, Drosophila melanogaster.
Based on its experience in molecular bi-
ology, Benzer has developed the bottom-
up approach for the study of neurobi-
ological mechanisms. This approach is
based on the principle that a point mu-
tation of a given gene has important
consequences on the physiology and be-
havior of the animal. Thus, the study of
a precise mutation makes it possible to
understand molecular and then cellular
mechanisms involved in a mechanism as
complex as learning [41].

Benzer was one of the first to realize
that understanding the genetic mecha-
nisms of behavior in Drosophila would
help understand the functioning of more
complex brains. S. Benzer’s labora-
tory has developed many paradigms for
the study of Drosophila behavior [42].
These have identified a number of ”be-
havioral genes” such as period [43], the
first identified circadian rhythm mutant,
or amnesiac (amn) [44] and dunce (dnc)
[45], both involved in olfactory learning.

14



CHAPTER 1. INTRODUCTION

Nearly 40 years after the identification
of the first mutants, the physiological
role of the genes affected is still far from
being fully elucidated, despite consider-
able progress.

1.4.4 The Fruit fly model

During this thesis, we use the Drosophila
melanogaster as a model organism. Be-
sides its small size, the fruit fly is the
seat of complex neuronal processes, and
it is proving to be a model of choice for
several studies thanks in particular to
the powerful tools of molecular genetics.

A Drosophila can form an aversive or
appetitive associative olfactory memory,
depending on whether an odor is associ-
ated with a punishment or reward. As
an aversive, if the conditioning is re-
peated at least five times with intervals
of rest, the memory is consolidated by
involving protein synthesis de novo and
can then last more than a week, being
called Long Term Memory (LTM). In
the context of the appetitive paradigm,
there is also an LTM dependent on de
novo protein synthesis, but its formation
is engaged in the first cycle of learning.

The Mushroom body is the brain center
where olfactory memory is encoded and
it is composed of about 2000 neurons per
hemisphere, called Kenyon Cells (KCs).
They receive connections from by about
150 cholinergic projection neurons pro-
viding them with olfactory information,
but also by about 130 afferent dopamin-
ergic neurons and only 34 efferent neu-
rons.

The use of Drosophila as a model or-
ganism derives in particular from ma-
jor practical aspects. In the first place,
its breeding is simple, taking place in
bottles or tubes of nutrient medium
placed in incubators with finely con-

trolled conditions (temperature, humid-
ity, day/night cycle). On the other
hand, its reproductive cycle is particu-
larly short: 10 days at 25◦C. This gives
the laboratory the opportunity to obtain
a large number of individuals quickly
and at relative low cost, when compared
to other animal models. The fruit fly
also offers the possibility of performing
routine genetic manipulations (recombi-
nations of two mutations for example)
in relatively short times (a few weeks).
Finally, the short reproductive cycle as-
sociated with behavioral devices that ac-
commodate large Drosophila groups of-
fers an exceptional statistical dimension
to experiments.

Further aspects of memory conditioning,
as well as more specific protocols for the
drosophila model, will be explored dur-
ing Chapter 2

1.5 Computational aspects

This section explores a few important
topics linked to the computational as-
pects of the Thesis.

1.5.1 Image analysis

For us, humans, the vision is usually the
first source of information when trying
to understand a given phenomena. Digi-
tal images are capable of largely expand-
ing the limits of our vision, by broad-
ening the possible frequency spectrum
to wavelengths that our eyes can nor-
mally see, or by revealing small details
that would not usually be distinguish-
able. This makes straightforward the
need to use computers to process digital
images, with the ultimate goal of better
extracting informations from them.

Digital images are composed of a grid
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of units, called pixels. The pixel is
the smallest unit of information storage
within an image, that can usually be en-
coded in 8-bit (values ranging from 0
to 255) or 16-bit (from 0 to 65535). In
microscopy, the amount of pixels within
the image is defined by the camera sen-
sor, which in our case records 512x512
pixels at 16-bit.

To extract the desired information from
these images, innumerous algorithms
and tools have been developed though
the past decades. From spot detection
[46–48] to image segmentation [49–51] or
particle tracking [52–54], classical sub-
jects have been explored for a long time,
but no standard universal approach ex-
ists to solve every problem. Some soft-
ware packages aim to solve the more
common needs with well established al-
gorithms, as ImageJ/Fiji [55], Icy [56] or
CellProfiller [57]. However, usually state
of the art research demand the develop-
ment of new, custom, tools for specific
problems.

When it comes to developing new soft-
ware for image analysis, different pro-
gramming languages can be used, each
with their own strength and weakness.
During the progress of this thesis, we
opted for using Python as a program-
ming language [58]. It is one of the
biggest growing languages in the world
[59], with a solid open-source communi-
ties for fields like image processing [60]

ormMachine learning [61]. The language
makes prototyping relatively easy, al-
lowing a well needed exploratory phase
during scientific research, while having
a relatively high efficiency [62].

Especially challenging, the analysis of
3D images is of great importance. The
majority of the available algorithms and
software are suited only for 2D images,
being some times not possible a direct
extrapolation for a 3D space. In case

the data is truly constituted of a three-
dimensional structure, usual dimension-
ality reductions like axial projections
can lead to wrong interpretations. For
the cases when the data is 3D, but struc-
tures form a 2D-manifold that crosses
the space, the extraction of this man-
ifold directly from the 3D space is of
great help for the further stages of pro-
cessing [63].

1.5.2 Spot detection

Spot detection tools are extensively used
to collect positions of biological ob-
jects and extract quantitative informa-
tion from 3D microscopy images. The
fluorescently labeled objects of interest
can range from tiny biological objects
as individual proteins, viral particles or
endosoms to much larger objects such as
cell nuclei or parasites, depending on the
microscope resolution. This is an im-
portant point, as the methodology cho-
sen to detect a certain kind of structure
can completely change, just based on the
scale of the acquisition.

An interesting example is the case of nu-
clei detection. Depending on the species
or tissue, the nuclei size can vary greatly.
Together with the variation of resolution
of the acquisition, the diameter of an in-
dividual nuclei can vary from just a few
pixels to hundreds, as seen in Figure 1.2.

Figure 1.2: Comparison of nuclei sizes. On the left,
the nuclei from the Mushroom body of the Drosophila
melanogaster ; on the right nuclei from the embryo of
Caenorhabditis elegans. Both images are an axial max
intensity projection, and scale bars are of 10 µm.
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For the case of nuclei the size of the
ones shown for the C. elegans, the pro-
cess would be more properly addressed
as “object” detection, as the structure
is clearly above the resolution of the mi-
croscope. Regarding this case, specific
methodologies have been developed [64,

65].

When analyzing the image of the D.
melanogaster (thus, the data used for
the development of this Thesis), the
structures are barely above the diffrac-
tion limit of the light, resembling true
spots. So, for this case, techniques that
handle sub-resolution spots can be used.

Reliable 3D detection of diffraction-
limited spots in fluorescence microscopy
images is an important task in subcel-
lular observation. In general, fluores-
cence microscopy images are strongly
degraded by noise and non-specific back-
ground, which makes reliable detection
difficult. Several methods have been de-
veloped for this task during the past
years, and have been compared in recent
reviews [66, 67].

1.5.3 Object tracking

Object tracking refers to the identifica-
tion of spots through a sequence of im-
ages to determine their evolution [68] and
it is of great importance for the quanti-
tative analysis of intracellular dynamic
processes from temporal microscopy im-
age data. Since manual detection and
tracking of a large number of individual
particles is not feasible, the development
of automated methods for this task is es-
sential .

An “object” can be anything from a sin-
gle molecule to a macromolecular com-
plex, organelle, virus or microsphere [69].
Currently, dozens of software tools are
available for particle tracking [70]. The

image analysis methods on which they
are based can generally be divided into
two stages: Firstly, a particle detection
(the spatial aspect), in which the spots
that stand out from the background ac-
cording to certain criteria are identified
and their coordinates estimated at each
image of the image sequence. Secondly,
the data association (the temporal as-
pect), in which the detected particles are
connected from one frame to another us-
ing another set of criteria to form tracks.
For each of these steps, many methods
have been developed over the years [71–

76], that sometimes are also derived from
other areas of data analysis [77, 78].

A recent review on tracking methods
[79] indicates that, at present, there is
no universal method of particle track-
ing, and users should be aware that a
method reported to work for some ex-
periments may not be the right choice
for their application. It is advisable to
use synthetic image data mimicking real
data, both to find the best parameters
of a given method and to evaluate its
potential performance. Users should be
especially cautious when the Signal to
Noise Ratio (SNR) of their images is sig-
nificantly less than 4, although in the
case of more diffusive (rather than di-
rected) particle motions, most methods
yield accurate estimates of dynamics for
lower SNR.

The same review also points the impor-
tance of parameter tuning and the op-
timal use of prior knowledge about the
data. The authors defend that the com-
prehension of the basic aspects of the
data is crucial for an successful tracking
of the desired objects.
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1.5.4 3D microscopy

If we want to be completely strict, 3D
microscopy doesn’t exist at all (or at
least, not with current technology). Ev-
ery microscope that uses a camera to
capture photons (as a Charge-coupled
device —CCD— for example) possess a
2D sensor, thus being capable only of ac-
quiring 2D images. What is commonly
called as a 3D image is in fact a stack of
2D acquisitions, at different focal planes.

This fact brings one of the main com-
promises of imaging in depth, the lower
resolution on the axial direction regard-
ing the acquisition plain (as seen in Fig-
ure 1.3. The distance between the focal
planes can be as small as the pixel size
of the camera sensor, but the resolving
power of it will still be limited by the
diffraction limit of the light.

x
z

Figure 1.3: Point spread function obtained from a flu-
orescent bead of size 0.1 µm, schematized in white at
the center of the image. Note how the axial distortion
(vertical axis) is considerably higher than in the XY
plane.

1.5.5 Super-resolution microscopy

Although not directly used for the
data acquisition of the work presented
here, the concept of super-resolution mi-
croscopy is of great importance, as it is a
recent technological innovation that sur-
passed the diffraction limits of light for
microscopy imaging. Besides, the track-
ing methodology exposed in the Chapter
5 is loosely inspired by this methodol-
ogy.

The super-resolution microscopy, which
development brought the 2014 Nobel
Prize of Chemistry to E. Betzig, W. E.
Moerner and S. Hell, aims to exceed the
refraction limit of light by shaping the
excitation beam [80] (STED for Stimu-
lated Emission Depletion), or by sequen-
tially activating the fluorophores present
in the sample [81] (PALM for Pho-
toactivated Localization Microscopy, or
STORM for Stochastic Optical Recon-
struction Microscopy).

Nanoscopy techniques represent one of
the major evolutions for the years to
come, but there are still few in vivo ap-
plications in neurobiology so far. These
studies mainly concern the dendritic
spines of neurons [82]. The main lim-
itations of these techniques for their
application to living imaging are their
low signal-to-noise ratio, the difficulty
of using them deeply in biological tis-
sues, their weak temporal dynamics (for
use in microscopy systems PALM or
STORM), and the use of high laser pow-
ers (especially for STED microscopy).

The image of a point object is not punc-
tual but consists of a diffraction pattern,
called Airy figure for circular pupils,
which is the case of the microscope ob-
jectives used. The obtained Airy figure
is an interference figure that constitutes
the impulse response of the microscope
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otherwise known as point spread func-
tion (PSF). Thus, two objects very close
to one another spatially, separated by a
distance d, will effectively be perceived
as two distinct objects, according to the
Rayleigh criterion [83], only if d is greater
than or equal to the radius r of the spot’s
Airy disk, which corresponds to the cen-
tral ring of the diffraction pattern.

1.5.6 Two-photon microscopy

Two-photon microscopy is based on a
nonlinear physical process of simulta-
neous absorption of two photons by
the fluorophore. This process was the-
oretically planned in 1931 by Maria
Göppert-Mayer but it was only applied
to microscopy much later [84] thanks to
the technological development of lasers.
The absorbed photons have about half
the energy required to transition from
the ground level to the first excited
state, but the fluorescence emitted by
the fluorophore is the same as if it had
been excited by a single-photon absorp-
tion process.

The conditions necessary for the two-
photon absorption are a very high pho-
ton density from a spatial and tempo-
ral point of view to ensure a good ef-
ficiency of simultaneous absorption of
two photons by the fluorophore. Thus,
the excitation sources mainly used for
the two-photon excitation are intense
pulsed lasers emitting in the near in-
frared, pulse duration of the order of
a few tens of femtoseconds: typically it
is often a laser whose amplifier element
is a sapphire crystal doped with tita-
nium ions. The two-photon absorption
quadratically depends on the intensity
of the excitatory light. Thus, the excited
volume will be limited where the laser
beam is the most focused, spatially lim-
iting the effects of photobleaching and

phototoxicity.

Nevertheless, the use of pulsed lasers of
high power can lead to a heating of the
sample limiting the benefits in terms of
phototoxicity of the confinement of the
excitation. This confining characteris-
tic of the excitation, however, makes
biphotonic microscopy intrinsically con-
focal, without the need to use a filtering
hole. Indeed, unlike confocal microscopy
where the photons not coming from the
focal plane are filtered, the two-photon
excitation produces fluorescence only at
the level of the focal volume, thus ensur-
ing a direct optical sectioning.

Typically, to excite EGFP-type fluo-
rophores, the optimal two-photon exci-
tation wavelength is about 930 nm ver-
sus 490 nm for linear single-photon ex-
citation [85]. This shift of the wave-
lengths towards the red will make it
possible to image more deeply because
the exciter light will be less diffused
and absorbed by the out-of-focus sam-
ple planes [85]. In addition, the wave-
length range for the two-photon exci-
tation is less invasive for biological tis-
sues because it corresponds to the ”ther-
apeutic window”, a spectral region typi-
cally between 700 nm and 1 µm in which
tissue absorption biological is minimal.
Despite all the advantages of biphotonic
microscopy presented above, this tech-
nique suffers from the same limitation
as confocal microscopy because the only
difference between these two types of
microscopy is the fluorescence excita-
tion process. A point-by-point scan of
the sample is required to recreate two-
dimensional optical sections, and then
an axial scan to reconstruct a three-
dimensional image of the sample. In
order to overcome this scanning time,
full-field microscopy techniques capable
of optical sectioning, such as light-sheet
microscopy or structured illumination
microscopy, have been developed.
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1.6 Plan

This thesis is divided in Chapters, ex-
plaining the main aspects of what was
developed, as well as annexes of the re-
sulting publications.

During the Chapter 2 — Flies, neurons
& memory — in deep details of the bio-
logical model are explained.

Chapter 3 — Data acquisition — deals
with the methodology and problems en-
countered when acquiring the data we
used for the analysis.

The methodology we developed to de-
tect the neurons from the Mushroom
body is explained during Chapter 4 —
Neuron detection.

Once having the detected neurons, their
tracking through time is needed, a pro-
cess detailed in Chapter 5 — Neuron
tracking.

Chapter 6 — Measuring neuronal activ-
ity — deals with the measurement of
the neuronal activity from the acquired
tracks.

The quantification of this signal, as well
as the identification of the responsive
neurons, is detailed during Chapter 7 —
Memory traces.

General conclusions are given in Chap-
ter 8 — Conclusion — and some remarks
on future works are presented in Chap-
ter 9 — Perspectives.

Chapter 10 — Annexes contains the
publications that were a direct result of
the presented work.

1.7 Conclusion

The global processes that lead to the
encoding of memories are still barely
understood. Deciphering memory for-
mation events remains technically chal-
lenging due to the interconnected nature
of neurons and the sparsity of their re-
sponse to a stimulus. To date, experi-
ments are restricted to partial observa-
tions because researchers need to choose
between monitoring activity of a few in-
dividual neurons at high resolution or
monitoring activity of a larger subset of
the brain at low resolution, without ac-
cess to the individual neuron response.
In any case, we know of no work where
both the observations would be exhaus-
tive enough to encompass every neuron
involved in a given type of stimuli while
being able to capture individual neuron
signal.

However, this combination of dimen-
sions is crucial to further our under-
standing of memory formation. We’ll
demonstrate during the next Chapters
of this thesis how an comprehensive view
of the Mushroom body is possible, and
how it can lead to new insights on the
long-term memory mechanisms.
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CHAPTER 2. FLIES, NEURONS & MEMORY

[Tax] dollars go to projects
that have little or nothing
to do with the public good,
things like fruit fly
research in Paris, France.
I kid you not.

Sarah Palin

It might not be so obvious for the eyes
of someone that is not familiar with
the subject, but the fruit fly, formally
named as Drosophila melanogaster, is
one of the fundamental tools for sev-
eral research fields. From developmen-
tal biology to neuroscience, this small
insect played the main role for six No-
bel prizes, bringing groundbreaking ad-
vances to modern science. Along this
Chapter we’ll explore what makes the D.
melanogaster such an important model,
how its brain is organized and how mem-
ories can be stored and retrieved in such
a simple organism.

2.1 Drosophila melanogaster as a
model organism

The fruit fly (shown in Figure 2.1) has
similarities with humans to an unex-
pected degree, being that we share up to
60% of the same DNA sequences. Fur-
thermore, about 3

4
of the human dis-

ease genes have an ortholog in the D.
melanogaster [86], making it an interest-
ing model for the current studies as, for
example, the research on neurodegener-
ative diseases, especially on the better
understanding of the Alzheimer’s dis-
ease [87–89].

Nevertheless, the use of the fruit fly as a
model organism is not new. It was first
introduced by W. Castle in 1906 [90] and,
since then the amount of publications
involving the D. melanogster increased

3mm

Figure 2.1: Picture of a Drosophila Melanogaster.

exponentially, as seen in Figure 2.2.

2.1.1 Shorter cycles, faster research

One of the main advantages of using
the D. melanogaster as a model is its
short life cycle and fast grow rate. The
flies can be breded and raised in sim-
ple tubes containing a nutritive support
medium, so that thousands of flies lin-
eages can be kept in a rather inexpensive
way. The development is fast, as one life
cycle takes about 30 days at 29◦C, being
that the development from egg to adult
can be achieved in one week (with a lar-
val period of about 4 days) [91]. Just af-
ter 8 to 12 hours succeeding emergence,
the female flies are already receptive to
males, starting a new cycle [92].

This allows researchers to breed specific
transgenic lines rather quickly, when
compared to other species. One new
lineage can be developed in about 2
months, in contrast to the six months
needed for a new mice lineage.
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uncover the role played 

by chromosomes in 
heredity

1946
Hermann Joseph Muller 
used X-ray irradiation to 
increase mutation rates 
in fruit flies

1995
Edward B Lewis, Christiane Nüsslein-

Volhard, and Eric F Wieschaus 
used drosophila to understand 

genetic control of embryonic 
development

2004
 Richard Axel 

concentrated on odour 
receptors and the 

organisation of the olfactory 
system

2011
Jules A Hoffmann
was given the award for his 
research on the activation of 
innate immunity

2017
Jeffrey C Hall, Michael 
Rosbash and Michael W Young 
won the prize for uncovering the 
molecular mechanisms that 
control circadian rhythms

Figure 2.2: Amount of publications containing the term “Drosophila” per decade (source: Google Scholar). The
plot shows how the number of publications increased exponentially (axis in log scale). Pointed are all the Nobel
prizes that included the fruit fly as the model organism.

2.1.2 Unlocked genome

Genetic research using the Drosophila
melanogaster has been progressing for
decades, and is nowadays in highly de-
veloped stage. The fruit fly had its
genome fully sequenced in the year 2000
[93], being composed of about 140 million
base pairs and contains around 15 thou-
sand genes (for comparison, the human
genome has about 3400 million bases
and may have around 22500 genes).

The fact that several genetic systems
that guide basic developmental pro-
cesses are conserved between different
species, makes the Drosophila model
even more interesting, as insights and
discoveries can be directly applied to
vertebrate systems. Several research
projects that use the the Drosophila as
a base for the comprehension of hu-
man diseases exist, as the identifica-
tion of proteins targeted for degrada-
tion by the UBE3A ubiquitin E3 lig-
ase, which is mutated in Angelman syn-
drome, or that antioxidant proteins (as
TSA and PAG) can be candidates for
causing Alzheimer-related diseases [94].

2.2 Savvy flies

The Drosophila melanogaster is a small
and simple insect, but is capable of some
relatively complex behaviors. Besides
innate tasks, as navigation during flight
and sexual court conduct, fruit flies are
also capable of basic learning. For ex-
ample, they can learn to associate new
odors to a source of food or danger.

In total, the brain is made of about
105 neurons, that form a central ner-
vous system. This is an advantage of
the fruit fly as a model when compared
to other simple organisms with a dif-
fuse nervous system, as the C. elegans,
as a more direct comparison with the
ways that a vertebrate brain works is
possible. An anatomical analogy can
not, however, be directly made between
the brains of vertebrates and fruit flies
whose organization is radically differ-
ent, but the basic elements constitut-
ing their nervous system are common:
neurons and glial cells. Communication
between neurons is by the same type
of synapses, and many neurotransmit-
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Figure 2.3: Conditioning protocol for the Drosophila melanogaster, allowing the formation of long term memories.

ters, such as glutamate or GABA (γ-
aminobutyric acid), are identical from
one species to another. The brain of
Drosophila has the advantage of having
simplified neural circuits corresponding
nevertheless to complex functions.

2.2.1 Associative memory

Fruit flies have an ability of basic learn-
ing, as they are capable of making asso-
ciation between different events. Stan-
dard behavioral tests [95] show that the
fruit fly is capable to associate a given
odor to another stimulus, that could be
appetitive or aversive. Being that the
same odor can be associated with both,
we represents a real learning process,
and not just a näıve behavior of the fly.

Associative conditioning is based on the
use of two stimuli called unconditional
stimulus (CS−) and conditional stimu-
lus (CS+). The unconditional stimulus
induces, by itself, a reflex response. In
our case, it is an aversive stimulus, pro-
duced by the sending of electric shocks,
which causes the flight of the Drosophila.
On the contrary, the conditional stimu-
lus, which will be for our experience the
presentation of an odor, does not induce
an answer before learning. Learning in-
volves associating the conditional stim-
ulus followed by the unconditional stim-
ulus.

The layout for a conditioning system
is presented in Figure 2.3. An airflow
is first broadcast for 90 seconds. The
odor Octan-3-ol (OCT), is presented
to the fly and soon after, the aversive
stimulus is presented. Twelve shocks,
lasting one second, are delivered every
five seconds for one minute. OCT, a
conditional stimulus, has a predictive
value because it is diffused shortly be-
fore sending the unconditional stimulus.
The electroshocks and odor are delivered
in a custom made barrel, designed to
be able to deliver at the same time the
conditional stimulus (flow of OCT dif-
fused thanks to pumps) and the uncon-
ditional stimulus (electric shock thanks
to an electrifiable grid covering the walls
of the barrel tubes).

2.3 Mushroom body, the center of
olfactory memory

It is well known from the literature that
a specific part of the fly’s brain is re-
sponsible for the learning of odors: the
mushroom body [96], seen in Figure 2.4.

It extends in a volume of approximately
150 × 100 × 80 µm3 on each of the
hemispheres of the brain. The olfac-
tory stimuli passes through the olfac-
tory neurons whose receptors are lo-
cated at the antennas. These neurons
then project information at the anten-
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Figure 2.4: Schematic view of the olfactory system in
the Drosophila melanogaster, showing the Mushroom
body (colored in orange), the olfactory center of insects.

nal lobes composed of glomeruli. The
information is then relayed in part at
the level of the mushroom body by the
antenno-glomerular tract. The MB is
composed of a dense network of neu-
rons called Kenyon cells, about 2000 per
hemisphere [97]. Cell bodies cast their
dendrites at a region called the calyx,
receiving olfactory information from the
antennal lobes.

2.3.1 Axonal projections

As shown in Figure 2.5, there are three
categories of Kenyon cells whose axonal
projections form different lobes. The α
/ β neurons have their axonal projec-
tions which branch off into a vertical
branch called the α lobe and a horizon-
tal branch, the β lobe. It is the same
for neurons of type α′ / β′ whose axons
bifurcate in two branches forming the α′
and β′ lobes. The γ lobe is formed by
the axons of γ neurons which do not bi-
furcate. Each of these types of neurons
plays a special role in learning processes.
For example, α / β neurons are partic-
ularly involved in the formation of long-
term memory [98]. The cell bodies of
Drosophila neurons are about 2 µm in di-

ameter, small size that makes it difficult
to record their electrical activity by elec-
trophysiology techniques [99, 100]. Opti-
cal imaging approaches for monitoring
neuronal activity are therefore particu-
larly relevant to the Drosophila model
because they potentially allow access to
information at the cellular level within
a global neural network.

2.4 Memory storage and retrieval

The memory allocation is a set of pro-
cesses on which information is stored in
a neural circuit [101]. The majority of
current studies make a in depth analy-
sis of the anatomical structures, physi-
ological processes, and molecular path-
ways necessary for the capacity of mem-
ory storage, but little is still know on
how individual memories are stored in
the brain [102].

The first precise insights in how neurons
could store complex informations, while
keeping its plasticity, where given by
the Hebbian theory [103], usually sum-
marized by the sentence “neurons wire
together if they fire together” [104]. The
idea behind the theory is that neurons
tend to create stronger synaptic bounds
if they are activated within the same
temporal window. As ultimately the
neuronal activation comes from exter-
nal stimuli, this allows the association
of events to be stored, thus allowing the
formation of memories.

2.4.1 Memory engrams

Memories are physically stored in the
brain, in specific populations of neu-
rons that form “memory engrams”, also
called “memory traces” [105].

The idea is not new, coming from the
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Figure 2.5: Schematic view of the Mushroom body, with the projected axons from the Kenyon cells.

beginning of the 20th century, described
in two books of the German scientist
Richard Semon [106, 107]. Semon coined
the term “engram”, which he defined as
“the enduring though primarily latent
modification in the irritable sub-stance
produced by a stimulus (from an expe-
rience)” [106]. The term “Engram” is
an equivalent of “Memory trace”, more
commonly used by contemporary neuro-
scientists.

Engram is the physical and/or chemi-
cal changes that takes places in the neu-
rons during a learning event, while En-
grams cells are defined as a population
of neurons that are activated by this
learning [102]. These cells are known
to be spatially distributed in the brain
in a sparse manner,a concept that can
be clearly verified by memory manipula-
tion experiments in mice using optoge-
netics [108]. By combining the activity-
dependent, doxycycline-regulated c-fos-
tTA system and ChR2-mediated opto-
genetics, the researchers were able to
label with ChR2 a sparse population
of DG neurons in mice that were ac-
tivated by contextual fear conditioning
memory. Subsequently, when these cells
were reactivated by blue light in a con-
text different from the original one used
for the conditioning, these animals dis-

played freezing behavior as evidence of
fear memory recall.

Regarding the Drosophila melanogaster,
when a given odor was paired with an
electric shock, defined neurons within
the olfactory learning pathway, such as
those in the antennal lobes and mush-
room bodies, changed their responses se-
lectively toward the odor used in the
training [98, 108]. This suggests the for-
mation of specific engram cells, that
associate both stimuli. Although, the
memory traces were not identified at the
single cell level, but rather as a global
response change of the lobes.

2.5 Neuronal activity

Neurons are complex cells capable of
electrical and biochemical activity, and
there are many functional imaging
modalities for the analysis of its activ-
ity in vivo. The developments of genet-
ically encoded reporters make it possi-
ble to follow specifically in certain neu-
rons the activation of different molecu-
lar pathways (better described in Sec-
tion 2.6).
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2.5.1 Ca2+ probes

For neurobiology in Drosophila, it is
common to use probes based on calcium
exchange, as intracellular Ca2+ calcium
ions are universal second messengers in-
volved in many physiological processes
including neuronal communication. The
concentration of calcium ions Ca2+ in
the cytoplasm of neurons is about 10
thousand times lower than that of the
extracellular medium, and during the
passage of an action potential, calcium
ions enter the cytoplasm of the neurons,
changing the concentration. To moni-
tor this biochemical signaling pathway is
therefore of great interest for the study
of neuronal activity.

Thus, many calcium indicators have
been developed, such that currently
there are more than a hundred synthetic
or genetically encoded calcium indica-
tors (GECI). All these indicators are
based on the same mode of operation,
namely absorption or emission proper-
ties varying according to the coupling
or not to calcium ions. The most com-
monly used calcium indicators up to
a few years ago were synthetic indica-
tors such as fura-2, fluo-4 or Oregon
Green BAPTA-1 AM ester. This type
of probe for in vivo studies have limita-
tions such as they cannot be expressed
in sub-populations of specific neurons
or in well-defined sub-cellular compart-
ments. It is to overcome this limitation
that many families of calcium probes en-
coded genetically have been developed.
Some of these probes consist of a single
fluorescent protein such as Camgaroo,
Pericam, GECO and G-CaMP and oth-
ers are based on the use of two fluores-
cent proteins and the FRET mechanism
(Förster Resonance Energy Transfer), as
per for example the TN-XXL probe [109]

or the Cameleon probe [110].

The G-CaMP probe is a molecule cre-
ated by fusion of the cpEGFP fluores-
cent molecule with calmodulin (CaM)
and the peptide sequence called M13.
Calmodulin is a molecule that can bind
to four Ca2+ ions. When the intracel-
lular Ca2+ concentration is low, the G-
CaMP molecule is weakly fluorescent be-
cause its chromophore is exposed to the
intracellular medium. During the pas-
sage of an action potential, membrane
channels open, allowing Ca2+ ions from
the extracellular medium to enter the
cytoplasm. The intracellular concentra-
tion of Ca2+ then increases, leading to a
conformational change in the G-CaMP
molecule. This rearrangement results in
a significant variation in its fluorescence
yield [111].

2.6 Genetic tools

The study of memory in the Drosophila
is profoundly assisted by the genetic
tools that allows the precise activation
of genes in specific cell types. For our
study, the expression of mCherry as
a nuclei marker and GCaMP6f as a
neuron activity probe, both expressed
exclusively in the kenyon cells, allows
a global in vivo view of the memory
traces.

2.6.1 UAS/GAL4 system

A transgene is a DNA fragment corre-
sponding to the sequence of the gene
that one wants to express in a differ-
ent organism, and their transfer in the
Drosophila genome is mainly done using
P-elements [112]. For the transgene to be
transmitted to the offspring, it must be
inserted into the germ cells of a young
Drosophila embryo. These P-elements,
also called transposons, lead to the ran-
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dom insertion of the transgene into the
genome. The genetic system allowing
the expression of a transgene in a group
of well-defined neurons, the most com-
monly used in Drosophila, is called UAS
/ GAL4 [113]. A P-element carries the
gene coding for a protein called GAL4.
It is inserted randomly into the genome
of the Drosophila which leads to the
expression of the GAL4 protein under
the control of the endogenous promoter
located upstream of the insertion site.
The expression of this promoter is then
specific for the subgroup of cells where
this promoter is strongly expressed. For
example, if the P-element bearing GAL4
is inserted downstream of an endogenous
promoter of cytoskeletal proteins such
as tubulin or actin, the GAL4 protein
will be expressed in the vast majority of
cells of the body. This is called a ubiqui-
tous promoter. This is only an example;
in our case, the expression drivers used
will allow a precise spatial targeting of
a small subgroup of neurons.

The GAL4 protein is derived from yeast
and is therefore not naturally present
in Drosophila. The endogenous regula-
tory sequences of Drosophila are not ac-
tivated by this protein. The second es-
sential component of the UAS / GAL4
system is the sequence UAS (for ”Up-
stream Activation Sequence”) which is
a regulatory sequence activated by the
GAL4 protein. The UAS / GAL4 ex-
pression system thus makes it possible
to generate transgenic models by ge-
netic crossing as shown in FIG. 1.5.
A first Drosophila, for example a vir-
gin female, carries in its genome the
gene coding for the GAL4 protein down-
stream of a promoter (defined by the
insertion site of the element-P). The
gene is then transcribed into the cells
where the promoter is active and the
GAL4 protein synthesized. But, this
protein alone has no effect. The male

Drosophila carries in its genome a regu-
latory sequence UAS and the gene cod-
ing for the transgene of interest down-
stream thereof. Since the UAS sequence
requires the presence of GAL4 to be ac-
tivated, the transgene is not expressed
in this second Drosophila. By crossing
the two Drosophila presented above, the
genome of the offspring will contain both
the gene coding for the expression of the
GAL4 protein in a cellular subtype but
also the UAS regulatory sequence. The
transgene will therefore be expressed in
the cells where the GAL4 molecule is
present. Originally developed for the
Drosophila model, the UAS / GAL4 ex-
pression system also extends to zebrafish
today.

2.6.2 UAS-mCherry-NLS

For the identification of the single neu-
rons, we used a NLS marker with the red
fluorescent protein mCherry, so that ev-
ery nuclei of the Mushroom body could
be imaged [114].

The mCherry is a red fluorescent pro-
tein (fluorophore) derived from the pro-
tein drFP583 (also known as DsRed).
It is a 28.8 kDa monomer of 236 amino
acids with a peak fluorescent excitation
at 587 nm and emission at 610 nm. It is
stable and realtively resistant to photo-
bleaching.

Nuclear Localization Sequence (NLS), is
a small amino acid sequence (from 8 to
10 amino acids) targeting proteins of the
nucleus of the cell.

2.6.3 UAS-G-CaMP6f

We measure the intracellular Ca2+

concentration of the neurons using
GCaMP6f [115]. It is highly correlated
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with the neuronal activity, as it causes
rapid changes in intracellular free cal-
cium [116, 117].

GCaMP is a calcium sensor protein in
which green fluorescent protein (EGFP),
calmodulin (CaM), myosin light chain
fragment (M13) is genetically linked.
This protein is formed by binding
calmodulin to one side (N terminal side)
of EGFP and myosin light chain M13
fragment to the other side (C termi-
nal side). When calcium ion binds to
calmodulin, the Ca2+ / CaM complex
interacts with M13 to change the con-
formation of EGFP (the fluorophore),
thereby changing the fluorescence inten-
sity.

Several versions of the GCaMP complex
have been developed in recent years, and
for our flies we use the latest variety,
GCaMP6f [117].
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Figure 2.6: Excitation spectrum for the green (EGFP)
and red (RFP) proteins used. Doted lines show the ex-
citation spectrum, and full lines the emission. Note the
gap between both profiles, which allows the simultane-
ous use of both proteins without cross-interference.

2.7 Conclusion

The fruit fly is a humble organism, but
it is this simplicity that we can ex-
ploit to better understand how the mem-
ory works. By using the Drosophila
melanogaster as a model, we are able to
express specific markers for nuclei and
neuronal activity exclusively in the de-

sired Kenyon cells. This will allow us to
verify the behavior of the neuronal net-
work after a process of paired learning,
using the protocols described in the fol-
lowing Chapters.
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You can have data without
information, but you
cannot have information
without data

Daniel Keys Moran

All the information needed to elucidate
our questions about how memories are
stored in the fly’s brain need to be care-
fully acquired. Without well trained
flies, or images acquired with high qual-
ity, none of the processes described in
the following Chapters would be of any
use. During this Chapter we present
how the data were acquired, as well
as the difficulties and problems encoun-
tered.

The processes of creating the experimen-
tal groups, the dissection of the flies
and image acquisition were made by
Mélanie Pedrazzani, PhD student, and
Lisa Scheunemann, post-doc, both from
the laboratory of Genes and Dynamics
of Memory Systems, at ESPCI - Paris,
under the supervision of Thomas Préat
and Paul Tchénio.

3.1 Fly conditioning

Conditioning is fundamental to create
the experimental groups we need to as-
sess the memory traces in the brain.
Two sets of experiments were made,
both using odor stimulation as the con-
ditioned stimulus and electroshocks as
unconditioned.

The conditioned stimulus (CS) is a
stimulus — odor, for our case of olfac-
tory conditioning — that gains mean-
ing following pairing with an uncon-
ditioned stimulus. The Unconditioned
stimulus (US) is the stimulus that gen-
erates an unlearned behavioral response:

the shock or sugar in fly olfactory con-
ditioning.

3.1.1 Odors as CS

Fruit flies are extremely sensitive to
odors, what suits them well for con-
ditioning tests [42]. Here we use
two odors, 3-octanol (OCT) and 4-
methylcyclohexanol (MCH) as condi-
tioned stimulus, that has proven not
to trigger inherent behavioral response.
Thus, they can be both associate with
an appetitive or aversive response, and
have been widely used for conditioning
experiments in Drosophila.

3-octanol (OCT)

Octanol is an organic compound, with
formula C8H18O and molecular weight
of 130.231 g/mol. This molecule is nat-
urally found in spearmint oil, oatmeal,
basil, allspice leaves and truffles, serv-
ing also as an alarm pheromone for some
ants [118].

4-methylcyclohexanol (MCH)

Methylcyclohexanol is an organic com-
pound, with formula C7H14O and molec-
ular weight of 114.188 g/mol. It is a
colorless liquid that is poorly soluble in
water. The substance is slightly irritat-
ing to the eyes and the skin. Exposure
to high vapor concentrations may cause
irritation of the eyes and upper respira-
tory tract.

3.1.2 Electroshocks as US

Electroshocks are commonly used as a
unconditioned stimulus for paired learn-
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Figure 3.1: Molecular structures for (A) 3-octanol and
(B) 4-methylcyclohexanol

ing, and here we use the standard pro-
tocol adapted by Preat [119].

During training, groups of 50–100 flies
were first exposed for 60 seconds to a
first odor (odor A) (either undiluted
OCT or MCH). During this time, they
received an electroshock (ES) (1.5 sec-
ond pulses of DC). After a 45 seconds
rest period, flies were exposed for 60 sec-
onds to the second odor (odor B), which
was not paired with ES. Flies were then
kept in a vial with regular solid food.

3.1.3 Group A (OCT & MCH)

For this first group, the flies were trained
using two different odors, OCT and
MCH, being one of them paired with the
electroshocks and the other left as a con-
trol.

3.1.4 Group B (Only OCT)

This group of flies received only OCT
during the image acquisition

3.2 Dissection protocol

In order to optically follow the brain
activity of the Drosophila, it is neces-
sary to create an optical access to the
brain. The cuticle of the Drosophila be-
ing highly diffusing, a micro-surgery was
carried out under a binocular loupe in
order to reveal the brain. The steps in
the preparation of the live sample are
shown in Figure 3.2.

The fly is first glued on a plastic slide,
pierced in the center, without prior anes-
thesia. The glue used is a biocompat-
ible dental glue (3M ESPE Protemp).
An alignment wire keeps the Drosophila
head in a correct position. The orienta-
tion of the head is adapted to the area of
interest to be imaged so as to minimize
the thickness of tissue traversed by the
light.

The second step consisted of opening the
Drosophila head using very thin scalpels
to remove a rectangular cuticle region,
300 µm by 400 µm, which covers the
brain. Underlying fat tissue was pushed
to the corners of the window, and the
tracheae was cut and pushed to clear the
view of the brain. All actions had to be
performed extremely carefully so as not
to damage the glial cells that surround
the brain, as well as the mushroom body
itself. All stages of microsurgery were
performed in the presence of a physio-
logical fluid to preserve the brain. The
composition of this aqueous solution,
called Ringer’s solution, was as follows:
130 mM NaCl, 5 mM KCl, 2 mM MgCl2,
2 mM CaCl 2, 36 mM C12H22O11 (su-
crose), 5 mM HEPES-NaOH (Sigma-
Aldrich). The pH of the solution is 7.3
[120].
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Figure 3.2: Dissection protocol for imaging the Mushroom body. Special care must be taken during this step, so
that the brain is not damaged during the microsurgery.

3.3 Odor delivery system

The olfactory stimulation system is
shown schematically in Figure 3.3. Up-
stream of the system are two pumps.
One of the two pumps feeds a pipe cir-
cuit controlled by a series of solenoid
valves. These solenoid valves make
it possible to generate different stim-
ulation configurations. The pipes
are immersed in bottles containing
neutral paraffin oil, for “air defect”
and “air control” configurations, or
with added chemical product: 4-
methylcyclohexanol (MCH, purity equal
to 99%, Fluka 66360 Sigma-Aldrich)
or octan-3-ol (OCT, purity greater
than 95%, Fluka 74878, Sigma-Aldrich).
Since these products are hydrophobic,
the solutions are prepared in odor-
less paraffin oil (international VWR,
Sigma-Aldrich). These two chemical
odors are naturally repulsive alcohols
for Drosophila and traditionally used in
all associative conditioning protocols in-
volving olfaction. 3 ml of product is dis-
solved in 100 ml of paraffin oil. The flow
coming out of this part of the assem-
bly corresponds to one third of the total
flow delivered to Drosophila. The other
two thirds of the flow are generated by a
second pump. This second pump is con-
nected to a pipe immersed in a bottle

filled with neutral paraffin oil which cre-
ates a constant main airflow whatever
the chosen stimulation configuration.

Taking into account the dilution of the
chemicals in the paraffin oil as well as
the ratio between the odor flow and
the main air flow, the final concentra-
tion of odor arriving at the level of the
Drosophila antennas is of 1% . Continu-
ous main flow minimizes sudden changes
that could lead to brain activity in the
Mushroom body without this response
being related to olfactory stimulation.
It is to avoid this same artifact that
a configuration called “air control” has
been created. It ensures that the brain
responses observed were not responses
due to air turbulence created by the
mechanical movement of tilting solenoid
valves. This system of sending odors
was coupled to the environmental cell
(a custom-made chamber) placed un-
der the microscope objective, as show in
Figure 3.4.

In order to prevent the odor from stag-
nating in the cell, another pump made
possible to evacuate the odor in order to
avoid desensitization of the olfactory re-
ceptors of the Drosophila. The solenoid
valves were individually controlled by
logic signals from a NI-USB (National
Instrument) card to define the desired
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Figure 3.3: Schematization of the odor delivery system.

pacing configuration

3.4 Image acquisition

In traditional confocal microscopy, the
acquisition of the image is done by laser
scanning techniques, exciting the sam-
ple point by point. This imaging tech-
nique is then limited by the lateral scan
speed of the excitation beam, made ei-
ther with piezoelectric shims or galvano-
metric mirrors.

Nevertheless, even for confocal mi-
croscopy, where the dynamics of the
scanning is optimized by the use of
non-mechanical displacements provided
for example by acousto-optical deflec-
tors [121], the scanning speed is limited
by the brightness of the sample. Indeed,
to perform fast confocal microscopy, the
time spent per pixel must be very low,
imposing a large excitation power in or-
der to collect sufficient fluorescence pho-
tons. This characteristic is a limitation
for in vivo imaging where the sample
must be preserved to the maximum of
the deleterious effects of an excess of
light excitation, as well as decrease of

response signal caused by photobleach-
ing.

3.4.1 Confocal spinning disk

In confocal microscopy, the acquisition
time of an image depends directly on its
size. To follow the neuronal activity, the
duration of a point scanning laser tech-
nique is not adapted to the fast three-
dimensional imaging of a living system
that our project requires. The use of a
multiconfocal spinning disk microscope
allows the excitation beam to be paral-
lelized, thus increasing the temporal dy-
namics of imaging.

The microscope used for our data ac-
quisition is a Zeiss Examiner Z1 Axio,
equipped with an EMCCD (Electron
Multiplying Charge Coupled Device,
Photometrics Delta Evolve). The light
excitation is performed by two diode-
pumped lasers emitting at wavelengths
of 491 nm and 561 nm (maximum power
of 50 mW, Roper Scientific). The sam-
ple is scanned using a CSUX1-M1N-E
confocal head. This Nipkow disc, con-
sisting of a spiral arrangement of 20000
50 µm diameter filtering holes spaced
from each other by 250 µm, rotates at
a maximum speed of 5000 rpm syn-
chronously with a second disc made of
same number of micro lenses of diam-
eter 250 µm. When the discs rotate,
about 1000 laser beams simultaneously
scan the sample.

This parallelization of the scanning laser
beams increases drastically the imaging
speed. The imaging frequency per plane
is limited to 60 Hz, the limit imposed
by the speed of rotation of the disk. A
set of interference optical filters (model
59022 ET - EGFP / mCherry, Chroma)
define the different spectral paths of the
microscope, being that each of the filters
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Figure 3.4: Photos from data the acquisition process. (A) Fly glued on the coverslip, ready for dissection. (B)
Fly after dissection, with coverslip attached to the custom-made chamber. (C) chamber being attached to the
microcope for image acquisition. (D) Close view of the chamber, with air ducts for odor delivery. (E) Global view
of the acquisition system, with the odor delivery mechanism on the background.

consists of two transmission bands. The
dichroic plate is used to reflect the exci-
tatory light to the sample and transmit
the fluorescence emitted to the camera.

Two water immersion microscope ob-
jectives are available on this device:
Zeiss 40x ON 1.0 Vis-IR W apochromat
421462-9900 (working distance: 2.5 mm)
and Zeiss 63x ON 1.0 Vis-IR W apoc-
hromat 421480- 9900 (working distance:
2.1 mm). Although initial tests were
made with the 63x objective, all the data
acquired for this project uses the 40x.
The higher magnification could give us
a better resolution for the detection of
nuclei, but it was not possible to accom-
modate the whole MB within the field
of view of the microscope.

These objectives have a transmission
of the order of 80%, from 400 nm to

900 nm. They were mounted on a piezo-
electric shim of 100 µm stroke (Pifoc P-
721.SL2, PI) allowing a fine axial trans-
lation of the lens, of 5 nm resolution, and
the rapid acquisition of stacks of images
in depth. in the sample. The resonance
frequency of the Pifoc loaded at 200 g
is 180 Hz. The maximum acquisition
rate of 60 Hz does not resonate with
that of the piezoelectric shim. The sam-
ple holder was mounted on a translation
plate in order to adjust its position lat-
erally.

A set of mirrors and filters (Dualview
Photometrics DV2) was mounted on the
transmission path of the microscope, up-
stream of the camera, to allow simulta-
neous acquisition at the camera of two
wavelengths (in our case, the RFP as nu-
clei marker and EGFP for neuronal ac-
tivity).
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Figure 3.5: Microscope during image acquisition. While odor stimulation is being given to the fly through the
custom chamber, the spinning disk microscope records the 3D+Time images of neuronal activity in the Mushroom
body of the Drosophila melanogaster.

The entire system was controlled by the
VisiView 2.1.3 software (Visitron Sys-
tems GmbH) allowing the easy control
of the exposure time or the gain of the
camera, the multidimensional acquisi-
tion of the images (multispectral and de-
pending on the time) as well as the writ-
ing of macros for the control of materials
attached to the microscope by logic sig-
nals.

3.4.2 Dual-view system

To speed-up the imaging process, we
used a DualView Photometrics DV2 sys-
tem. It made possible to image, in two
distinct spectral bands, the same fluo-
rescent object. Its operating principle
is based on the spatial separation, using
mirrors and a diagonal slide, of the two
emission bands.

The dichroic plate reflects the compo-
nent of the lower wavelength emission,
around 520 nm, while the component of
the highest wavelength emission, around
610 nm, is transmitted. Each spectral
component is then imaged simultane-
ously on one half of the EMCCD sensor.

3.4.3 3D+ Time images

Acquiring the images results in a 5 di-
mensional .tiff file, with axis XYZTC
and data recorded at 16-bit format.
Each plane has a size of 256 by 512
pixels, as we use half of the sensor
for each channel (the full resolution
of the camera is of 512x512 pixels).
Each pixel has a size of 0.161 25 µm x
0.161 25 µm, resulting that each slice of
the acquired image has a size of 41.28 µm
by 82.56 µm.
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The step size of the acquisition was de-
fined at 1.5 µm, with 45 slices being
sufficient to cover the whole Mushroom
body. Thus, each stack covers 67.5 µm
in depth.

Every slice had a exposure time of 20 ms,
so that each stack needs 0.9 seconds to
be acquired. Faster acquisitions would
be desired, for a higher temporal resolu-
tion, but a lower number of slices would
compromise the full recording of the
Mushroom body in depth. Although,
this temporal resolution proved to be
enough to capture the GCaMP6f re-
sponse, recorded in about 2 to 3 frames.

3.5 Data artifacts

While acquiring our images, we pushed
the confocal spinning disk system to the
operational limits regarding the speed
of acquisition. Unfortunately, this led
to some artifacts that were sometimes
not completely understood, but needed
to be handled during post-processing.

3.5.1 Axial motion blur

Fast and deep image acquisition is fun-
damental to resolve the signals from the
whole mushroom body. In total, we
acquire 67.5 µm in 0.9 seconds, leaving
only 20 ms per slice. This leads to an
axial motion blur artifact, shown in Fig-
ure 3.8. The Figure shows that when
acquiring images with an exposition of
20 ms, while the camera registered the
data for the first slice, the axial posi-
tion of the microscope was still on the
bottom of the stack (from the previous
time frame). As consequence, between
Slice 1 and 2, the axial position needed
to travel the whole stack from bottom to
the top, leaving a motion blur effect. We
can see, also in Figure 3.8 that having a

higher exposition time of 200 ms solves
the problem, so that we have on the first
slice the data that actually comes from
the good position (with a close look, it
is still possible to notice a subtle motion
blur on the first slice).

20ms

Slice1 Slice2 Slice3 Slice45

Slice1 Slice2 Slice3 Slice45

200ms

...

...

Figure 3.6: Axial motion blur during image acquisition.

This artifact can be quite common in 3D
microscopy, but it remains often unno-
ticed if the data is only checked and/or
analyzed using axial max projections as,
for this case, the actual position of the
slice on the stack is irrelevant. Never-
theless, for a true 3D analysis of the
data, this problem must be taken into
account.

Although, in our case, the 200 ms image
acquisition was far too slow, such that
we would miss the neuronal response.
We circumvented the problem by acquir-
ing at 20 ms per slice, but making sure
that the first and last slices of the stack
contained background only, so no data
would be affected by this issue.

3.5.2 Anchored Z position

This problem is exemplified in Figure
3.7. For the best of our comprehen-
sion, while the microscope scans from
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Figure 3.7: Axial motion blur during image acquisition. The image shows the 3D volumetric reconstruction of the
mCherry channel for three consecutive frames, with the anchored z position being noticeable in the middle frame.
Note that the axial motion blur, described on Subsection 3.5.1, is also present on the top of the image.

the top to the bottom of the stack, the
focal plane gets locked in the same po-
sition for a few frames. Thus, the con-
troller software receives different images
and saves them to consecutive frames,
but they are in fact being acquired at
the same position. This gives the elon-
gated effect that we can see in the mid-
dle panel of Figure 3.7.

One initial hypothesis was that the
problematic slices were just duplicates
of the same acquired image, as result
of a mistake from the software (as a
memory cache problem). However, since
the noise pattern of the “duplicated”
slices was different, we concluded that
they were consecutive acquisitions of the
same plane, and not a simple data du-
plication.

This artifact was hard to reproduce,
happening randomly on about half of
the acquisitions, usually after the 100th

frame and with variable intensity (some-
times just two or three slices, being
hardly noticeable). Also, the technical
assistance of the microscope could not
identify the source of problem, or fix the
issue.

We hypothesize that the problem might
be related to the piezoeletric motor that
controls the focal plane in depth. A me-
chanical problem, or a defective change

in current, might keep the focal plane
at the same position, while the software
acts as if the focal plane was changing.

Not being able to fix the problem di-
rectly on the microscope, we’ve chosen
to detect and ignore the problematic
frames in a post-processing stage, as de-
scribed in Section 6.2.

3.5.3 Laser intensity drop

Frame 22 Frame 23 Frame 24 Frame 25

Figure 3.8: Axial max projection, showing the sudden
decrease of laser intensity for the red channel.

Another issue, less frequent, happening
in just a small fraction of the acquisi-
tions, was the sudden intensity drop of
the laser used for the mCherry channel.
Probably due to some bad contact in the
laser input, the problem was fixed after
a revision of the microscope. Interest-
ingly, the proposed algorithm for nuclei
detection, explained in Chapter 4 was
robust enough to keep a good detection
accuracy even for the frames with low
signal.
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3.5.4 Noise flash

One last problem, found in just a few
examples from the dataset, is that full
random frames could be just filled with
random noise. This would drastically af-
fect the detection and signal measure-
ment, so the problematic frame was
completely removed from the sequence,
and replaced by a copy of the previous
frame. An example of this artifact is
shown in Figure 3.9.

Frame 72 Frame 73 Frame 74 Frame 75

Figure 3.9: Sudden noise frame during a image acquisi-
tion.

3.6 Conclusion

The process of acquiring consistent and
high quality 5-dimensional (XYZCT)
data is a great challenge, but of fun-
damental importance to understand
the mechanisms leading to long-term
memory formation in the Drosophila
melanogaster brain. By using a confocal
spinning disk for a fast 3D acquisition of
two channels (one for nuclei and another
one for neuronal activity), we were able
to record activity from the whole Mush-
room body while the fly experienced a
given odor.

The dissection process, necessary to ex-
pose the brain to the image acquisition,
demanded extreme caution and the pro-
tocol took two and a half years to be
fine-tuned. Also, the odor delivery sys-
tem, that was capable of presenting the
odor during the image acquisition, had
to be precisely adjusted to make sure the

air pressure changes wouldn’t cause an
over-stimulation of the fly.

Thus, the presented protocol for data
acquisition was capable to produce a
precise recording of the mushroom body
while the fly experienced a memory
event, that could be automatically pro-
cessed with the following the protocol
presented in the next Chapters.
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It has long been an axiom
of mine that the little
things are infinitely the
most important.

Arthur Conan Doyle,
The Memoirs of Sherlock Holmes

If we aim to analyze the memory for-
mation event at the single cell level, the
very first step needed is to detect the in-
volved neurons as precisely as possible.
This is an important challenge, as we
face relevant constrains: the high den-
sity of neurons in the Mushroom body;
the low spatial resolution of the images
and the axial distortions that are inher-
ent to the 3D image acquisition [122].
On this chapter we’ll explore the results
of the current state-of-the-art methods
for 3D detection, how they poorly per-
formed on our dataset and the resulting
method that we developed to solve this
issue.

4.1 Cell localization

The olfactory activity of the brain hap-
pens in the Mushroom body, a struc-
ture that is relatively isolated and con-
stituted of about 2000 neurons. Ideally,
each neuron would have a membrane
marker, and a 3D segmentation would
be performed for every cell, that would
allow to precisely measure the Ca2+ ac-
tivity inside the volume via a GCaMP
marker on another channel. However,
this became impracticable for two main
reasons: first, the non regular shape of
neurons drastically increases the com-
plexity of a segmentation task. Sec-
ond, for the resolution that we are con-
strained to, neurons would hardly be
distinguishable from each other by a
membrane marker.

The solution came from the detection of

nuclei, via an mCherry marker. Having
the position of the nuclei allowed us to
estimate a central reference point for the
neuron body, which can be further used
to delimitate a volume for signal mea-
surement.

Here it is important to endorse that the
goal was to detect its central position,
and not to perform a segmentation of
the nuclei. Besides not bringing addi-
tional information for our needs, a seg-
mentation of nuclei (that is, the delim-
itation of its boundaries) would hardly
be precise, as for our resolution the nu-
clei approached the Point spread func-
tion (PSF).

Figure 4.1: Middle slice of a typical Mushroom body,
containing the nuclei marked with fluorescent mCherry.
Scalebar of 5 µm

On Figure 4.1 we can see that one nu-
clei is about 1 µm wide, and it is made
of around 10 pixels. Sizes vary slightly
from nuclei to nuclei, but the average
size remains the same between different
flies.

4.2 Ground truth

The only way to asses with precision the
quality of the detections was to have a
ground truth. This is not obvious for the
Mushroom body, for which the literature
shows that about its made of about 2000
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neurons, but their exact location cannot
be obtained in another way.

4.2.1 Manual annotation

One first possible approach is the man-
ual annotation of the 3D stacks. This
operation can be highly biased, espe-
cially for 3D images, on which the anno-
tation consists of a visual assessment of
the individual slices, truing to determine
which one contains the central position
for every nuclei. The manual annota-
tion was made in one example brain, in-
dependently by two evaluators (myself
and Mélanie Pedrazzani, responsible for
the biological assays during the first half
of the project).

The process used the ImageJ/Fiji plu-
gin Cell Counter [123]. To increase re-
produtibility, the following protocol was
used:

1. Load the 3D stack with Fiji

2. Set the colormap to Grays
(Image→ Lookup Tables→ Grays)

3. Reset the intensity range of the
colormap. Scroll to a slice where
you can see the objects. Then,
click on Image→ Adjust→ Bright-
ness/Contrast → Reset (on the
window that opens)

4. Open the Cell Counter Plugin
(Plugins → Analyze → Cell
Counter → Cell Counter)

5. Click the “Remove” button until
there is only one type of counter
(“Type 1”)

6. Click on the image window to select
it

7. Click on “Initialize”, on the Cell
Counter window

8. Zoom the image up to 400%
(Ctrl + Scroll Up)

9. Select the Counter Type 1

10. Add the annotations by clicking on
the center of the objects.

11. When finished, click “Save Mark-
ers” to save the results.

One initial unanticipated result is that
it wasn’t possible to find the expected
2000 neurons on the image, being that
the two manual annotations found 1078
and 827 nuclei. This fact can be ex-
plained by the lack of axial resolution for
the images, being that it was common to
find “merged” nuclei, which could be the
union of two or more individual nuclei
(also making the annotation less precise
and more subjective). This creates an
important constrain on the idea of hav-
ing the single cell information, that will
be handled on the way we capture the
signal (see Chapter 6)

Figure 4.2: Graphical User Interface of Cell Counter,
ImageJ plugin used for annotation

4.2.2 Synthetic images

Another approach to quantify the accu-
racy of the detection methods consisted
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of generating a synthetic image that re-
sembles the real acquisition. On this
computer generated image, we could
easily verify the precision of the detec-
tions, since the true position of the nu-
clei was known.

The main difficulty of this approach is
to generate an image that’s close enough
to the original, regarding the noise level,
resolution, density of objects, light dif-
fusion and PSF effects.

Overall idea

Initially, a real image was used as a
base for the generation of an correspond-
ing synthetic image. From this, a 3D
volume corresponding to the foreground
(Mushroom body) was extracted, and a
desired number of spheres were gener-
ated inside this volume. These spheres
were convolved by a PSF, noise was
added and the axial resolution simu-
lated. The coordinates of the spheres
was saved as ground truth in a separated
file.

Volume extraction

Firstly, we specified a desired volume
for the synthetic Mushroom body (MB).
Usually 1000 µm3 corresponded roughly
to the structure . The volume can be de-
fined as a set of foreground pixels, but
the intensity threshold that can gener-
ate this foreground, for a given volume,
was initially unknown. To extract the
foreground, an threshold level was iter-
atively increased while the foreground
volume is being checked (basically, the
amount of voxels that pass the thresh-
old multiplied by the individual voxel
volume). The iteration stops when the
desired volume was reached.

Nuclei positioning

On the real MB, the nuclei are approx-
imately distributed in a homogeneous
form. To simulate this, we partitioned
the foreground volume into the num-
ber of desired synthetic nuclei using a
k-means clustering algorithm, k being
the number of desired points. To speed
up the process, a random sub-sampling
of the volume was used, usually taking
1% of the points was enough to obtain
the synthetic nuclei homogeneously dis-
tributed throughout the volume. The
first steps are shown on Figure 4.3.

Synthetic nuclei

The resulting centroids of the k-means
algorithm were used as the central posi-
tion of the synthetic nuclei, marked as
a single voxel on the 3D image (also,
they were saved as the ground truth of
the images, to verify the detection meth-
ods). To simulate the actual nuclei, with
the obtained centroids we used morpho-
logical operations, dilating initial voxels
using an 3D spherical kernel with the de-
sired nuclei size. At this step we allowed
small random variations of the kernel di-
ameter, up to ± 3 pixels.

At this stage, the nuclei were solid
spheres with homogeneous intensity,
that is every voxel had intensity 1. To
simulate the uneven distribution of flu-
orophores inside a nucleus, every voxel
was given a random value between 0 and
1.

Scattering light

The original image was acquired using
a confocal spinning disk microscope, so
by definition its resolution was limited
to the diffraction limit of the light. To
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Figure 4.3: First steps for the generation for synthetic images. From the left to the right: Original image, extracted
foreground and subsampled image.

simulate this constrain, the image con-
taining the synthetic nuclei was then
convolved by a Point spread function
(PSF) [124] extracted from real micro-
scope images (using fluorescent beads
smaller than the microscope resolution).
The extracted PSF is shown at Fig 4.4,
on which we can clearly see the distor-
tion caused by the lower axial resolution.

1.0

0.0

0.5

XY YZ

Figure 4.4: Point spread function used for the convolu-
tion during the creation of synthetic images. The PSF
was extracted by using beads smaller than the micro-
scope resolution.

Additionally, a whole scattering of light
through the MB generates an overall
glow around the foreground. This is
also simulated by adding to the image
an highly blurred version of itself.

Simulated noise

The presence of noise from the cam-
era sensor is inherent to the image ac-
quisition, and this also was taken into
account when generating the synthetic

images. Poisson noise was applied to
reach a chosen level of signal to noise
ratio (SNR, defined by the average sig-
nal intensity divided by the standard
deviation of intensities within the syn-
thetic nuclei only) that corresponds to
the original image.

Axial resolution

Typically, the axial (Z) resolution of a
3D image stack is lower relatively to the
camera sensor (XY) resolution. Until
this step the synthetic image contained
isometric voxels, an “ideal” image. To
simulate the real microscopy condition,
the synthetic image was rescaled to the
same size that had the original image it
was based on. Also, the intensity range
of the synthetic image was scaled to the
same levels as the original one. A com-
parison between the synthetic and real
images is shown on Figure 4.5.

4.2.3 Synthetic videos

The synthetic images described so far
were still frames.Minhui Wu, intern in
the lab from June to August of 2016,
adapted the algorithm to produce a sim-
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Figure 4.5: Comparison between the synthetic image
(left) and the real acquisition (right). It is possible to
preserve the general shape of the Mushroom body, while
having an image where the true position of the nuclei is
known.

ulation over time.

The changes on individual frames were
captured by the foreground extraction,
following the border of the MB for each
frame. In case k-means was performed
independently, the obtained labels of the
centroids wouldn’t match, meaning we
wouldn’t be able to obtain ground truth
tracks of the nuclei. This problem was
solved by using the resulting centroids
of a frame as seed points for the next,
and consecutively. This way, a smooth
adjustment of the centroid positions be-
tween each frame could be produced
from the new extracted volume.

Figure 4.6 shows consecutive frames of
a generated video. From the original file
we could see a natural pulsation of the
brain, that is well reflected on the syn-
thetic video.

4.2.4 Jaccard Index

Once the ground truth both from man-
ual annotations and synthetic images
was obtained, it was possible to assess
the accuracy of any detection algorithm
(as for the state of the art methods that
will be described on section 4.3).

We consider a given detection to be a
True positive if its distance from the
ground truth is smaller than the average
diameter of the nuclei. If no nuclei was
within range, or more than one detec-
tion was close to the same ground truth
points, they were considered False posi-
tives.

As measure of accuracy we used the Jac-
card index [125] J , defined as:

J(D,G) =
|D ∩G|
|D ∪G| (4.1)

where D is the set of resulting detections
of the method, G is the set of ground
truth positions (from manual annota-
tions or synthetic images).

J =
Tp

Fp+ Tp+ Fn
(4.2)

Tp is the true positive count (elements
both in D and G), Fp is the False pos-
itive count (elements in D but not in
G) and Fn is the False negative count
(elements in G but not in D). In case
of a high amount of false positives (Fp)
or missed detections (M), the Jaccard
index approaches zero. Oppositely, in
case of perfect match, the Jaccard index
value is one.

4.3 Spot detectors

As nuclei resembles single spots, the
use of methods developed specifically for
spot detection was rational.

We checked the current state of the art
for 3D spot detection [126], to identify
methods that could identify precisely
the location of spots.
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Figure 4.6: Consecutive time frames from a synthetic video. Note the movement of the brain within the quadrant
D4, on which nuclei move in and out of focus. On the quadrant E3 is possible to notice a movement where an
compression of the MB displaces a big part of the structure to the bottom-right

The need for estimating the position of
nuclei and spot of various size in gen-
eral is not new and has been the sub-
ject of many studies. In 2D, meth-
ods range from local background sub-
traction and linear or morphological im-
age filtering to wavelet-based multiscale
detectors (see [127] for an overview).
While the need is more recent in 3D,
the methods used are in fact much the
same. A recent comparison the about
efficiency of methods was made in 2015
by Štěpka et al. [126]. The 3D mor-
phological maxima (EMAX) presented
by Matula et al. was then suggested
as a method that combines both a high
accuracy and a low number of parame-
ters [128]. Another method, the Undeci-
mated Wavelet transform (UDWT) [129]

is by far the most cited and therefore
probably the most used by the scien-
tific community for quantification. Both
methods are briefly described here.

4.3.1 Undecimated Wavelet (UDWT)

In [129], Olivo-Marin introduced a
method based on the undecimated
wavelet transform. A 3D undecimated
wavelet transform of the image is com-
puted, then non-significant wavelet co-
efficients of selected scales are discarded
by a weighted automated threshold-
ing. Spots are enhanced by com-

puting the product of the denoised
wavelet coefficients. This method re-
quires two parameters: a ”wavelet
scales” matching the sizes of the ob-
jects we aim at detecting and a ”sen-
sitivity” parameter which corresponds
to the thresholding weight (available
here: http://icy.bioimageanalysis.org/
plugin/Spot Detector).

4.3.2 3D morphological maxima (EMAX)

In [128], Matula et al. described a
method based on the 3D morphological
maxima transform. First, noise is sup-
pressed with a 3D Gaussian filter with σ
corresponding to the expected size of the
spots. Then, a morphological maxima
transform is computed. This transform
identifies those local intensity maxima
whose height exceeds a specified thresh-
old h. This method requires two param-
eters: a ”smoothing” σ and a ”height” h
(available here: http://cbia.fi.muni.cz/
acquiarium.html).

4.3.3 Parameter scanning and results

As described on subsections 4.3.2 for
EMAX and 4.3.1 for UDWT, both
methods depend on user tuned param-
eters to properly realize the detection.
To avoid any sort of bias when check-
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ing the accuracy of the methods, a range
of parameters that would maximize the
Jaccard index were scanned, and only
the best parameter set was used for the
index calculation.

Results for UDWT

The detection was performed using the
ICY implementation of the algorithm
[56].

The scale of the wavelet is a free param-
eter, but it was fixed according to the
size of the object being detected, as de-
scribed by their authors. However, an-
other parameter called sensitivity had to
be adjusted, and it was scanned to max-
imize the Jaccard Index.

The detection results were compared
with the two manual annotations of the
Mushroom body (section 4.2.1), and the
algorithm with optimal parameter set
obtained an average of 335 False posi-
tives, 50 True positives and 902.5 False
negatives, resulting in a Jaccard index
of 4%.

For the synthetic image containing 2000
objects, 146 False positives, 103 True
positives and 1897 False negatives were
obtained, resulting in a Jaccard index of
5%

Results for EMAX

We used an implementation of the al-
gorithm given by the software package
Acquiarium [130]. Two parameters were
used, an intensity value for thresholding
and a sigma value for Gaussian blurring
for noise removal.

When comparing to the manual anno-
tations, on the average we obtained 483
False positives, 122 True positives and

830.5 False negatives, resulting in a Jac-
card index of 8%. For the synthetic im-
age, the results were 586 False positives,
226 True positives and 1774 False nega-
tives, resulting in a Jaccard index o 9%.

4.4 SMAX 3D spot detection

Regarding the low Jaccard indices ob-
tained by both UDWT and HMAX, we
considered the state of the art methods
for spot detection inappropriate for our
data-set. Thus, we proposed a new spot
detection method Smax, able to handle
the peculiarities of our system.

4.4.1 Method description

As we mentioned earlier, 3D stacks in
confocal microscopy are made of series
of 2D image acquisitions, as the camera
is composed of a 2D array of sensors.
This usually results in a 3D image with
a lower resolution in the z direction (ax-
ial to the acquisition). This lower reso-
lution is partly due to the fact that the
distance between the acquired 2D im-
ages is always higher than the pixel size
in the x and y directions. It is also due
to the Point Spread Function (PSF) of
such an optical system that is typically
wider in the z direction than in the x or
y directions.

A simple but crucial solution to this
anisotropy issue consists in using the ac-
quisition metadata and a cubic spline in-
terpolation [131] in the z direction to gen-
erate intermediary plans to obtain vox-
els with equal size on x, y and z direc-
tions. This difference in scale can be
better understood on Figure 4.8, on wich
the left voxel spans a whole 1.5 µm step
of the microscope. Filling the missing
data with synthetic interpolated plans
does not bring additional information
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Figure 4.7: Summary of SMAX, the proposed method for spot detection. (a) An image stack of the Mushroom body
of Drosophila acquired with a spinning disk microscope (b) Detail of a nucleus (c) A good approximation of the
nucleus diameter (the single input parameter of the method) can be obtained by the Full Width at Half Maximum
(FWHM) of a Gaussian fit on an intensity profile. (d1-3) Stages of the Smax algorithm. (d1) Image interpolation
(d2) Weighted maxima denoising using Gaussian Mixture Model (GMM) followed by maxima accumulation. (d3)
Maxima accumulation image is then convolved with a kernel corresponding to the targeted nucleus size, final local
maximas are extracted. All processes are performed in 3D.

but makes possible a proper use of iso-
metric 3D kernel and neighborhood in
the following image analysis steps, while
allowing a sub-resolution precision for
the axial direction.

Following this anisotropy correction, a
standard deviation σ is computed from
a diameter value provided by the user.
For that purpose, it is considered that
this diameter is ideally obtained from
the Full Width Half Maximum (FWHM)
[132] of a Gaussian that would be fit
on an average spot intensity profile (see
Figure 4.7c). This fit measured is done

on a subsample of isolated nuclei, and
measured on the xy plane (minimizing
the PSF effects). Therefore, σ is re-
versely obtained using:

σ =
diameter

2
√

2 ln 2
(4.3)

This value can be divided by the pixel
size (extracted from the file metadata)
in case the diameter is provided in µm.

A bank of 10 Gaussian filters that span
[σ− σ

2
;σ+ σ

2
] was created to detect slight

variations of size around the average nu-
cleus diameter provided. The number of
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Figure 4.8: Comparison of scale between the voxel on
the original image (left) and an isometric voxel (right)

filters was set to 10 because we observed
that for most combination of spot sizes
and noise levels related to real applica-
tions, Jaccard indices were not improved
above 3 to 5 filters in the bank, depend-
ing on datasets, as shown by Figure 4.9
for simulations using synthetic images
containing 1000 objects. Therefore, a
higher number would in most cases in-
creases the computational cost without
improving the precision. Figure 4.9 also
illustrates that Smax is less accurate on
a dataset with a higher variability of ob-
ject sizes. For each filter, local max-
ima were detected and collected using
a 3× 3× 3 spherical neighborhood.

At this stage, for each filter, the lo-
cal collected maxima were produced by
actual bright objects or by background
noise. Therefore the distribution of in-
tensities associated to maxima is most
often bimodal (considering that every
object have a similar intensity distri-

bution, that is greater than the back-
ground). The two components of this
distribution were then identified for each
scale using a Gaussian Mixture Model
(GMM) with a two components fit us-
ing the Expectation-Maximization algo-
rithm. A threshold automatically de-
fined as the value where both compo-
nents are intersecting such as the max-
ima associated with intensities above
this threshold are kept while the max-
ima associated with intensities below
this threshold are discarded. This pro-
cess offers a stringent denoising process,
independent for each filter scale (see Fig-
ure 4.7d2).

Following this step, all remaining max-
ima collected for each filter were ac-
cumulated into a single 3D array. As
objects were supposed to be further
apart than resolution (that is, above the
Nyquist sampling rate of the microscope
[133]), this array should contain local ac-
cumulations of maxima mostly in vol-
umes that are about the size of a nu-
cleus. Therefore, an ultimate 3D Gaus-
sian filtering using σ was applied. This
filtering was supposed to merge accumu-
lated detections that belong to the same
object into a single Gaussian blob. Fi-
nally, 3D local maxima from this filtered
array were identified, representing the fi-
nal detections, and saved to disk in a
.csv file (see Figure 4.7d3).

The described protocol for Smax can be
summarized in Algorithm 1.

4.4.2 High 3D density

The high density of nuclei on the Mush-
room body makes the detection task
more complex, as the PSF merges nuclei
that are too close together, specially if
they are stacked on the axial direction.
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Figure 4.9: Evolution of Smax results with the number of scales used in the filter bank for three level of object sizes
variability within a given dataset. The plot shows the Jaccard indices obtained on a synthetic images containing
1000 objects of 7 pixels in diameter, with sizes randomly varying from one to three pixels (curves from top to
bottom) around that diameter. The dashed line indicates the chosen number of scales used as a default for the filter
bank of Smax.

Algorithm 1: SMax

input : 3D Image I, Full Width at Half Maximum s
output: array of (x,y,z) spot positions Ifinal

Iiso ← CubicSplineInterpolationInZ(I);
σ ← 0;
Iacc ← 0;
repeat

Iσ ← GaussianConvolution(Iiso,σ);
Idetections ← MaxDetection(Iσ, s);
Iacc ← Iacc + Denoising(Idetections);
σ ← σ +∆σ

until σ < σmax;
Ifinal ← MaxDetection(Iacc, s)

4.4.3 Single measurable parameter

An advantage of the proposed method
is that it requires only a single param-
eter from the user. Furthermore, this
parameter is a physical quantity: the
average diameter of the object we aim
to detect. This value can be easily esti-
mated from the data by computing the
Full Width at Half Maximum (FWHM)
of a Gaussian fit on the average profile
of a set of randomly chosen objects (see
Figure 4.7c). This is typically the way
empirical Point Spread Functions (PSF)
are constructed albeit with under reso-
lution beads while our approach is typ-
ically suited to packed objects that can

be distinguished.

4.4.4 Slight variations in size

The method we propose is meant to be
used to detect a large set of packed ob-
jects of similar size. By similar size we
mean that there may be a slight vari-
ation in the population of object size
around the expected value but its vari-
ance is assumed small. This is the case
for 3D nuclei: they don’t have all the
exact same size, but for an adult popu-
lation, and without the possibility of cell
division, the difference in size should me
minimal. This slight variation is cap-
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Figure 4.10: Volumetric reconstruction of the nuclei signal together with the resulting detections.

tured by scanning a tight range of values
around the specified diameter. Filters
that approximately match a nucleus size
will produce maxima in a close vicinity
of each other, thus producing a signal
accumulation that can be clustered in
an ultimate aggregation step.

4.4.5 Supplemental datasets

Smax was developed with the detec-
tion of nuclei on the Mushroom body in
mind, but the method should be generic
and applicable to other sort of 3D im-
ages, once regarding the fact that the de-
sired objects reassemble spots above the
microscope resolution and no other kind
of objects (filaments or cell borders, for
example) are present in the image. We
tested the method (together with the
two other methods presented in section
4.3) with three other datasets, presented
bellow. The real images were manu-
ally annotated using the same procedure
as explained in Section 4.2.For the syn-
thetic image, the ground truth was used

for the Jaccard index calculation. This
allowed a more extensive comprehension
on the weakness and strengths of the
methods, as analyzed in Section 4.5.

Early embryo

A 3D image of an early C. elegans em-
bryo was used to test the efficacy of
the method for objects that were big-
ger than the ones observed in the Mush-
room body (max projection on Figure
4.11). Altough being a realtively sim-
ple case, images of this kind are still be-
ing manually annotated today, and new
methodologies are still being developed
to increase eficiency and accuracy [134].
For this particular case, all the methods
we compared performed relatively well.

Synthetic image with large objects

To better understand the detection of
large objects, another synthetic image
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Figure 4.11: Axial max projection of the C.elegans em-
bryo.

was generated. This image had 50 ob-
jects and was based on the C. elegans
embryo image, following the size mea-
sured from the embryo nuclei. The max
projection of the image can be seen on
Figure 4.12.

Figure 4.12: Axial max projection of the synthetic im-
age containing large objects, based on the C.elegans
embryo.

Centrioles

For this image, a 3D stack from centri-
oles, the algorithm was tested for the de-
tection of points in different densities, as
well in a condition with a high level of
noise. The objects had a more similar
size than in the images of the Mushroom
body, but they tend to form clusters (as
seen on Figure 4.13). Also, as the im-
age is a sectional crop of an much larger

image, about 1
3

of the stack is composed
of only background, which stresses the
ability of the algorithms to ignore back-
ground noise.

Figure 4.13: Axial max projection of image containing
centrioles, especially interesting to test the detection of
clustered objects and resilience to noise.

4.5 Methods comparison

Smax was compared to the state of the
art methods using the 4 datasets pre-
sented. The results can be found in
Figure 4.15. Using the Jaccard index
to assess the accuracy of the detections,
we were able to conclude that for ev-
ery dataset Smax performs equably or
with a higher accuracy, especially for
densely packed objects on a uniform
background.

For the datasets with relatively larger
objects (C. elegans embryo and Syn-
thetic image with 50 objects) the per-
formance is close to 100%, regardless of
the method. These cases present spots
that are composed of several voxels in
diameter, with a relatively high distance
between them, thus being relatively eas-
ier to detect.

For the other datasets (Mushroom body,
synthetic image with 2000 objects and
Centrioles), the accuracy of Smax was
significantly higher than the compared
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methods. The smaller size of the ob-
jects, their relative high proximity and
their stacked position in z made the de-
tection less trivial.

None of the methods from the state of
the art takes into account the lack of
isometry of the image, and we realized
that this feature had an important im-
pact on the accuracy. When correcting
for the isometry of the images before ap-
plying the methods, by using the same
interpolation as for Smax, we obtained
a significant increase in accuracy for the
other methods, sometimes with a Jac-
card index 15× higher, as seen in Figure
4.16, almost reaching the accuracy lev-
els of Smax. This shows that the isom-
etry correction is neglected by the state
of the art methods, despite playing an
important role for the accuracy of the
detection.

A mushroom body of an adult D.
melanogaster should contain about 2000
neurons, according to the literature [135],
and for this reason we used a synthetic
image containing 2000 objects. How-
ever, our detection found only 319 True
positives points for the MB (from a to-
tal of 604 detections), with a Jaccard
index of 23%. Although a low value, it
is an improvement of 280% when com-
pared to the state of the art methods.
The missing and inaccurate points were
mainly the result of the low axial reso-
lution of the image, limited both by the
diffraction limit of the light and by the
low number of slices that we were con-
strained to acquire because of the tem-
poral resolution.

4.6 Conclusion

The current state of the art methods
couldn’t perform accurately enough for
the detection of nuclei on the Mushroom

body of the Drosophila melanogaster.
Our proposed method, Smax, although
not perfect, but dedicated to our con-
text, increased the accuracy consider-
ably. This allowed us to proceed with
the next step of the process, the neuron
tracking.
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Figure 4.14: Resulting detections of the Smax algorithm for one Mushroom body. From this Figure we can clearly
see how the common aproach of having a axial max projection of the data can cause a huge loss of data. As the
MB is a 3D structure, and a considerable number of neurons are stacked on top of each other, a truly 3D analysis
is fundamental if we seek a comprehensive understanding of the memory patterns inside the brain.
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Figure 4.15: Quantitative comparison of Smax with two state of the art approaches. Smax is compared to UDWT
and eMax approaches using 5 3D stack datasets. From left to right: image of distinguishable nuclei in Caenorhabditis
elegans manually annotated, image of centrioles in mice ependymal cells manually annotated, image of a large
amount of packed nuclei in Drosophila’s mushroom body manually annotated and synthetic images containing 50
objects and 2000 objects for which ground truths are known. From top to bottom a 3D rendering view of the dataset,
a maximum intensity projection on the z axis and the quantitative comparison of spot detection algorithms. Each
box of result indicates from left to right the values of false positives, true positives, false negatives (colored bars
indicating the proportion for each case) and the Jaccard index. A detection is considered as positive when it fall
in a sphere of nucleus size around any of the original objects positions. Smax sole parameter was set to an average
nucleus diameter. Parameters for the two other methods were systematically scanned in order to choose the best
Jaccard Index which in principle unfavors our method (see Figure 4.16).
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Figure 4.16: UDWT and Emax parameter scanning for comparison with Smax. (A) Jaccard indices obtained
by scanning the “sensitivity” parameter of the Icy spot detector (UDWT) for original and image with corrected
anisotropy. Full line shows the average Jaccar index obtained by the the two manual annotations (+ and × symbols).
Note that the synthetic images use the computer generated ground truth, not an manual annotation. The scale
for the parameter scan was chosen as matching the objects size (as specified by the authors). The values obtained
demonstrate that the quality of the Icy spot detection can be improved for every case, except the embryo image,
by interpolating the image in the z direction prior detection (although, without reaching the accuracy obtained by
Smax). However, the same interpolation step decreases the accuracy of the same detector in the case of the real C.
elegans embryo image, as the False positive rate increases drastically, lowering down the Jaccard index. (B) Jaccard
indices (mean for the two ground truths for manual annotations) obtained by scanning the two parameters of eMax,
applied directly on original images (left side of group) or after anisotropy correction (right side of group). Gray
squares indicate cases where the provided implementation of the algorithm couldn’t perform the detection. Color
ranges from red to green, rescaled using all Jaccard index values obtained on each dataset. For both methods, the
parameters corresponding to the best Jaccard index for raw and anisotropy corrected images are emphasized.
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I’m on the right track baby
I was born this way.

Stefani Joanne Angelina Germanotta
(Lady Gaga)

The previous chapter shows how we were
able to detect nuclei from the neurons in
the Mushroom body, with a relatively
high precision. However, these detec-
tions were independent through time,
and if we were willing to measure the
signal from the individual neurons, de-
tected nuclei from the different time
frames needed to be linked accordingly.

If the brain was perfectly still through
time, and every nuclei correctly detected
at all the time frames, the tracking task
would be consisted of finding the closest
detection in the next time frame. Un-
fortunately, none of these assumptions
was true. As the flies were imaged in
vivo, there was a natural movement of
the brain, and the nuclei detection were
not consistent for most nuclei during the
whole acquisition. In this Chapter we
present how we minimized the move-
ments of the brain using registration, in
order to correctly track neurons through
time.

5.1 Brain movement

The fact that we acquired in vivo im-
ages was one of the fundamental aspects
of this research project. This allowed us
to observe the brain as close as possi-
ble to its natural behavior, giving us the
unique change to look deep into how the
memory is organized. But making an in
vivo study came with a price, as we also
needed to deal with the natural move-
ments of the brain. Two strategies could
take place here: first, trying to minimize
the movement of the brain before the ac-
quisition. Second, perform a numerical

post-processing stage. Although being
the first option the common choice for
the majority of current studies regard-
ing the Mushroom body, we discovered
that it may lead to artifacts and behav-
ioral changes, as they will be describes
throughout this chapter.

5.1.1 Origins of movement

During the dissection process, the fly
was properly glued to the coverslip,
avoiding global head movements. How-
ever, this process alone wasn’t able to
cancel all the movements of the brain.
Two main factors may induce move-
ments on the brain: first, the expan-
sion and contraction of the proboscis can
considerably push the whole brain struc-
ture. Second, the pulsatile organ, that
allows the air diffusion through the linfa
of the fly, can generate contractions that
were noticable during the image acquisi-
ton.

Another category of movement that was
encountered in about 10% of the flies
was a relatively huge axial drift, unre-
lated to the movement described above.
In this case, the whole structure drifted
downwards, especially during the first
third of the acquisition. A reason might
be the settling of the fly with an un-
finished fixation process, as the fly was
held only by the glue during the acqui-
sition. This drift needed to be corrected
in post processing, as described in the
Section 5.2.

5.1.2 Techniques for limiting the move-
ment

As the origin of the movement is known,
it is common to apply several different
techniques during the experiment prepa-
ration to minimize its effects.
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For the first cause, the proboscis expan-
sion, the most common approach is the
fixation using biocompatible glue dur-
ing the fly preparation on the coverslip.
This step is done for all of our flies, and
it is common through the bibliography
[136].

The second source of movement is more
complex, and several techniques can be
found to try to minimize it.

Rupture of the muscle

One approach, rather drastic, is to cut
through a cirurgical process the muscle
responsible for the movement of the pul-
satile organ. This technique, although
used by several works [135–137], is ex-
tremely difficult to be performed (in-
creasing the rate of flies that present ar-
tifacts) and might induce unknown fea-
tures to the behavior of the brain. Thus,
we decided to not perform this process
on our work.

Temperature cooling

Reducing the temperature of the fly, by
the use of dry ice, is a common method
[137–139]. It is used specially when per-
forming the dissection, as the movement
of the fly greatly increases the difficulty
of the process. Although, in our case, we
decided not to perform the ice cooling,
as its effects on how the memory traces
are expressed on the brain are unknown.

Neuromuscular blockers

The chemical use of neuromuscular
blockers, as Philanthotoxin [140], a
blocker of muscular glutamate receptors
was also proposed [139], but its use pro-
motes changes in behavior for neuronal

activity [141, 142], so it wasn’t indicated
for our case.

Agarose fixation

One promising approach was the fixa-
tion of the brain using agarose. After so-
lidification, it drastically minimized the
movement of the brain, making the ac-
quisition much more stable. However,
after several experimentations, we re-
alized that it possibly caused artifacts
on the brain activity, as increased spo-
radic activity of the brain. This might
be caused by the fact that the agarose
needs to be applied at high temperature,
causing unspecified damage to the neu-
rons.

At the end, only the physical fixation
of the proboscis was used during our
specimen preparation. All the remain-
ing movement of the brain was fixed via
computational means, as explained in
the following sections

5.2 Brain registration

By registration we mean the process of
matching two different sets of points. In
our case, this means to match the nu-
clei detection from two different time
frames, regardless of the spacial defor-
mation that occurred between them. It
is worth to remind that not only the
movements of the brain were a issue
here, but also the inherent imprecision
of the detection process. Not every nu-
clei was detected at every single time
frame, which created the necessity for
the registration process to handle noise
and missing points.

It is important to state that the regis-
tration process is done by mathematical
transformations of the point-cloud con-
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stituted by the detected nuclei. Two
kinds of transformations exists, rigid
and non-rigid. For the rigid transfor-
mation only translation, scaling and ro-
tation are allowed, thus being that the
general aspect of the point cloud is not
changed. Non-rigid transformations al-
low operations that do change the shape
of the point cloud, as shearing for exam-
ple. The deformations observed on the
brain required a non-rigid transforma-
tion, as usually the deformation was not
similar on every part of the Mushroom
body. Our registration process is com-
posed of two steps, first an affine regis-
tration to handle the coarse movements,
and then a Coherent-Point-drift [143] to
make the fine adjustments.

A B

C

Figure 5.1: Schematic representation of an registration
process. (A) is the base image, used as reference, and
(B) is the image to be registered. (C) shows the result
of a rigid transformation on (B), using rotation and
translation to match the two set of points. Note that
outliers are possible within the registration process, as
it is driven by the global cost minimization of the points
match.

5.2.1 Affine registration

The affine transformation preserves the
collinearity of the points, so that if a
set of points belongs to a line before
the transformation, they will still be-
long to a line (a different one, tough) af-
ter the process [144]. This doesn’t mean
that the affine transformation is rigid, as
deformations as translation, scaling, re-
flection, rotation, shear mapping or any
combination of those are possible.

The operation for the affine transforma-
tion can be defined in a single matrix,
that once multiplied by the point cloud,
returns the transformed set of points.

Initially, our first attempt was to set the
middle frame of the acquisition as ref-
erence, and register all the other frames
to it. For the majority of cases this ap-
proached worked well, but for the flies on
which the axial drift was too important,
the cost minimization usually would fall
into a local minima, as the two point
clouds are initially too far apart.

The solution arose by means of a chained
registration. We still kept the middle
frame as final reference point, but the
registration was done sequentially be-
tween frames until the reference frame
was reached. As the process involved
redundant calculations for when regis-
tering different time frames, the speed
of calculation was significantly increased
by saving the intermediary transforma-
tion matrices that were common be-
tween intervals that intersect, as seen in
Figure 5.2.

The final result mostly minimizes the
axial drift of the image. Although be-
ing an improvement, the contractions
caused by the pulsatile organ of the fly
are still present, as they were highly
non-rigid deformations that could not be
solved by the affine transformation.
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Ref.
Framet1 t2 t3 t4 t6 t7 t8 t9

M4-5M2-3

M3-4M1-2 M6-5

M7-6

M8-7

M9-8

Figure 5.2: Schematic representation of the chained reg-
istration process, where each box represents one time
frame t. For the registration of t4, the matrix M4-5 is
computed. But for the registration of t3, only the ma-
trix M3-4 needs to be computed, as the second needed
matrix, M4-5, was already calculated and stored.

5.2.2 Coherent point drift

The registration through affine transfor-
mation was able to correct the coarse
part of the movement, as the axial drift,
but it wasn’t capable of fixing the small
local deformations of the brain, as they
were highly non-rigid.

As the registration isn’t done on the
raster image itself, but rather on the
point cloud that results from the nu-
clei detection, the problem was in fact
a point-set registration. Several algo-
rithms proposed ways to register a set
of points, but the Coherent Point Drift
(CPD) [143], proposed by A. Myronenko
and X. Song, was well indicated in our
case, as it is capable of handling 3D
information, perform local deformations
and is robust to noise, outliers or miss-
ing data.

The method considers the alignment of
the two point-sets as a probability es-
timation problem, where the set to be
registered represents the centroids of a
Gaussian Mixture Model (GMM), which
are fitted to the reference point-set by
maximizing the likelihood. The strength
of the method is that the GMM are con-
strained to move coherently as a group,
preserving the overall topological struc-
ture, while allowing for local deforma-
tions.

The process isn’t parameter free tough.
Three free parameters exists: ω, λ and
β. The parameter ω varies between 0

A B

C D

Figure 5.3: Schematic representation of a non-rigid,
with local deformation, registration process. (A) is the
base image, used as reference, and (B) is the image to be
registered. (C) Is the superimposition of (A) and (B),
without registration. (D) shows the result of a coherent
point drift. Note that here also, outliers are allowed.

and 1, representing an assumption on
the amount of noise present in the data.
λ represents the trade-off between the
regularization and the overall goodness
of fit. β is the width of the Gaus-
sian used for the GMM model, and the
higher the value, the more the transfor-
mation approaches a rigid registration.

The parameters ω and λ where left to
the default settings of the algorithm,
while β was manually adjusted based on
the visual match between different time
frames to reference point. The lack of
ground truth for linking detections made
an automated parameter scanning un-
feasible. The parameter was scanned
to allow small corrections on the point
cloud, as the coarse part of the move-
ment was already corrected by the pre-
vious affine transformation. However, in
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Before non-rigid registration After non-rigid registration

Figure 5.4: Cost minimization process of the CPD algorithm. In blue we see the point cloud used as reference, and
black crosses are the points submitted to registration. On the left the two point-sets on the same 3D space, after
the affine registration, where we can see some mismatch, specially on the bottom right corner. On the right side,
after the CPD registration, the point-set is morphed, better matching the reference frame but without losing the
overall structure of the Mushroom body.

case future work (based on the synthetic
videos described on Section 4.2.3) would
be able to generate realistic movement
of 3D stacks, we predict that the auto-
matic scanning of the three parameters
needed for CPD could make the affine
registration not needed.

On Figure 5.4 we can see the result
of the minimization process from CPD,
for two frames once the affine registra-
tion was applied. As the two point
clouds were already globally registered,
the process converged rather quickly, us-
ing just a few seconds per frame.

5.3 Nuclei tracking

Once achieved, the registration process
made that for a given nucleus, the de-
tected points overt time were closer in
the 3D space between different frames.
However, these points were not yet
linked, as the detections were indepen-
dent for each time frame. A näıve strat-
egy of linking the closest points between
frames would give better results than
before the registration process, but still
would fail because of noise and missing

detections (as there is not guaranteed
that every nuclei produce a detection at
every time frame).

After the registration, the point cloud
made of detections of an individual nu-
cleus over time was much more dense
than before, and the distance be-
tween clouds of distinct nuclei displayed
a higher distance between themselves.
Also, “real” nuclei presented a point
cloud more dense than random noise.
These features allowed us to use a den-
sity based clustering method to identify
the individual nuclei.

The tracking process is summarized in
Algorithm 2

5.3.1 Clustering

To use a clustering method for track-
ing the detections may not be the most
common approach from the literature,
as seen in Section 1.5.3, but taking in
consideration certain aspects of our data
model, it becomes clear how it was an
interesting approach for the tracking of
nuclei.
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Algorithm 2: ClusterTracks

input : Detections from Smax, D
output: Labeled data frame, Dlabeled

repeat
Dregistered ← AffineRegistration(D, t, tref);
Dregistered ← CPDregistration(Dregistered, t, tref) ;
t ← t +1 ;

until t < tfinal;
Dlabeled ← DBSCAN(Dregistered) ;
Dlabeled ← ClusterFix(Dlabeled) ;
Dlabeled ← TrackSmoothing(Dlabeled) ;

Usually, tracking algorithms make the
assumption that a given point needs
to be linked to another in a different
time frame. Then, hypothesis are built
on how the point position might evolve
though space, taking in consideration
parameters that are know from the data
(as maximum movement speed, possibil-
ity of duplication, maximum displace-
ment etc) [145].

In our case, the clustering approach al-
lows to limit the number of hypothesis
that would need to be set on a usual
tracking scheme. We know that divi-
sion of the tracks are not expected, as
the short time of acquisition don’t al-
low cell division. Also, because of the
non-rigid registration of the Mushroom
body, we can assume that detections
from a given nucleus over time are co-
localized, within the precision of the
spot detection method (Chapter 4).

Thus, our approach consisted in per-
forming a clustering on the 3D space
that contains the points from every time
frame, a time projection of all points
into a singe space, from 4D (3D+time)
to 3D. On this time projection, the de-
tected points should form dense clusters,
if the nuclei were detected for the major-
ity of the time frames, and noise should
appear as sparse points.

DBSCAN

Density-based algorithm for discovering
clusters in large spatial databases with
noise (DBSCAN) [146] is a clustering
method that uses the notion of density
from the dataset to form clusters, largely
used by recent works as one of the usual
clustering methods [147–149]. It is by de-
sign able to handle noise, meaning that
not every point on the data-set is forced
to be part of a given cluster. These
characteristics made the method highly
adapted to our problematic. After the
registration process, detections that cor-
responded to a true nucleus over time
were likely to co-localize, forming dense
clouds of points (thus, easily detected
by DBSCAN). Points corresponding to
noise were not expected to be part of
any cluster, so the fact that the method
is able to label point as noise, was in our
favor.

The method consists in an iterative
scheme that uses two parameter for
the definition of density, ε (distance
measurement) and minPts (amount of
points). Firstly, the algorithm defines a
point set classified as core points, called
p, that must have at least minPts neigh-
bors closer than the ε distance. A set
of connected core points defines a clus-
ter. Any other point within ε distance
to a cluster (directly reachable by a core
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point) is grouped to the same cluster.
Points further than ε to any core point
are labeled as noise.

F

A

B

C
D

E

G

Figure 5.5: Illustration of the DSCAN definition of clus-
ters. The ε distance value is defined by the radius of the
circles, and for this schematic, the mimPts value is 2.
The points A, B, C and D form the core points, as each
one have at least minPts closer than ε. The point E is
part of the cluster, because is reachable from C, but it is
not a core point. F and G are labeled as noise, as they
cannot be reached by any core point (G is reachable by
E, but E is not a core point of the cluster). Thus, the
final cluster is shown by the dotted red line.

5.3.2 Parameter estimation

As stated, DBSCAN isn’t a parameter
free method. However, as we posses
some prior information on the data be-
havior, it is possible to estimate the best
parameters for the clustering.

Core point distance

The ε value is directly correlated with
the size of the nuclei, as the distance
between detections over time from the
same nucleus derivates mainly from the

detection imprecision. Thus, we apply
the FWHM value used during the nuclei
detection as ε (see Chapter 4).

Minimum number of points

The minimum number of points can-
not be directly estimated as the ε value,
mainly because it depends on some un-
controlled factors as the movement of
the brain and proportion of missing de-
tections on certain frames.

We approached the problem through an
iterative process. First, we assumed
that the final number of detected clus-
ters should be close to the median num-
ber of detections through all the frames.
This supposition is possible because the
real number of neurons does not change
through time, making the process of
independent detections for every time
frame an estimation of the “detectable”
neurons.

Then, the DBSCAN algorithm is ap-
plied for a range ofminPts values, start-
ing with one. The value is iteratively
increased, and the final number of clus-
ters measured. The minPts value that
reaches a number of clusters closer to
the median amount of detections is cho-
sen as parameter for the DBSCAN.

5.3.3 Fixing clusters

The clustering process, as described so
far, ignores completely the information
that each point had about the time
frame it was acquired. For example, it is
possible that a given cluster have two de-
tections for the same time frame. How-
ever, we know that this should not be
the case, as each cluster should corre-
spond to an unique nucleus, thus having
only one detection per time frame.
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Two process may lead to this: First, by
chance a noise can be detected close to
a real nucleus, thus being part of the
cluster after the DBSCAN. This process
should be rather sporadic, and not hap-
pen often. Second, it is possible that
two groups of points were too close to-
gether, and the two clouds were merged
in a single cluster.

The whole process was computed inde-
pendently for each cluster, but the iden-
tification of the condition begins with
the same query: for every cluster, a dis-
tribution of the number of points for the
same time frame, and the median value
of this distribution is taken.

Median 0

A median value of zero means that
the cluster has, for the majority of the
frames, missing detection. For this case,
the cluster is excluded from the rest of
the process (all the points are marked as
noise)

Median 1

A median value of one means that for
the majority of time frames the cluster
have only one detection. It is still pos-
sible that some frames have more than
one detection, and on this case the point
closer tho the centroid of the cluster is
chosen, and the other is labeled as noise.

Median 2 or higher

If the median is higher than one, this
means that we have a case of merged
clusters, being that the number of
merged clusters is equal to the measured
median. For this case, the cluster was

divided using a k-means algorithm [150],
with k as the median value.

The whole process repeats iteratively,
until no cluster contains a median value
higher than one. Figure 5.6 illustrates
the process.

5.3.4 Missing data

Because of the natural movement of the
brain, photo-bleaching of neurons and
noise of the acquisition, it is most of-
ten the case that a given neuron will not
have a detection for every time frame. It
is rather common that for a given track
few points are missing.

As the tracks are going to be used for the
signal measurement (Chapter 6), they
need to be retrieved at every time point.
The missing points are solved by means
of a linear interpolation [151] between the
neighbors in time.

This interpolation approach is possible
for two main reasons: first, the missing
detections are rather sporadic, because
the clusters that weren’t dense enough
were already removed during the DB-
SCAN step, making that if a track still
persists until this stage, it has at least
more than half of the time frames rep-
resented. Second, because of the regis-
tration that was performed prior to the
clustering, we don’t expect big move-
ments from the detected nuclei.

Note that the actual signal that needs
to be measured isn’t registered, it fol-
lows the “real” coordinates of the points.
The interpolation is made both on the
registered and non-registered spaces (as
a given point have the same label for
both). But, for the measurement of the
signal, the tracks on the “real” space are
used.
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Figure 5.6: Using time information to increase the quality of clusters. (A) Schematic representation of a case where
the median value is 2, and thus the cluster is divided. (B) Real data from a case with median 1, so that duplicates
(one example shown being conected by a dashed line) are marked as noise (black dots on the right image) and the
point closer to the centroid is kept. (C) Real data for a case where the median is 2, and the resulting split cluster.

5.3.5 Track smoothing

The inherent imprecision of the detec-
tion, together with smaller movements
that could not be corrected by the reg-
istration process, end up by resulting on
tracks that may sometimes have a con-
siderable noise level. Tracks with low
consistency with the real path of the
neurons is likely to cause artifacts when
we measure the neuron GCaMP signal
(see Chapter 6).

We approach this problem by a sim-
ple, dimension independent, smoothing
of the spatial coordinates vector for ev-
ery neuron. Every track is smoothed by
a convolution with a gaussian kernel, us-
ing the same σ value of 1. This process
is able to correct the noise of the tracks,
while keeping the normal movement of
the brain

5.3.6 Track validation

As for the detection of nuclei, the track-
ing must be validated. For this, we per-
formed a similar approach, were both
manual annotations were made and a
synthetic sequence of images was con-
structed.

Fro comparison, the tracking was oper-
ated independently by 3 software pro-
gram 1) ours: memotrack, 2) ICY [152]

and 3) TrackMate [153]. ICY and Track-
Mate were chosen both because they
were available online and because they
received good evaluations from a recent
spot tracking performance review [152].
After tracking, trajectories that were in-
terrupted (that is their duration were
shorter than the total sequence) were
discarded as the complete sequence was
needed to read the GFP signal. Dis-
tances between the remaining trajecto-
ries and annotated ground truth (man-
ual or synthetic) were computed and
a trajectories with an average distance
over time from its closest ground truth
larger than 3 times the nucleus size was
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Original Affine CPD
A B C

 labels noise

D E F

Figure 5.7: Summary of the neuron tracking process. (A) Shows the original set of detected points, color coded
by time. (B) Result of the Affine registration, which mainly corrects the larger drifts of the data. (C) After the
Coherent-Point-Drift (CPD) non-rigid registration, detections are well aligned and can be clustered. (D) Result
of the DBSCAN clustering, with clusters in color and noise in black. (E) Noise is ignored and missing points are
interpolated, making the final tracks. (F) Detail for one of the clusters, showing that the cluster is a collection of
points from every time frame, thus making a track of the nucleus through time.

considered wrong (mostly to allow for
the imprecision in the axial direction).

Correct trajectories defined this way
represented the true positives (TP) in
supplementary figures 5.8 and 5.9. False
Negative (FN) were defined as ground
truth nuclei that did not match any tra-
jectories. False Positive (FP) were soft-
ware defined trajectories that did not
match any ground truth. Note that this
last category is unavailable for manu-
ally annotated data as it would neces-
sitate to annotate all nuclei of a 3D se-
quence over time (about 250,000 data
points!), which is virtually impossible
for a human being. Finally, note that
there was not such a thing as True
Negative (TN) as software program do
not generally output trajectories corre-

sponding to spurious objects that we
anyway wouldn’t have annotated.

The validation leads to the conclusion
that our suggested method has a high
accuracy for detecting the tracks of neu-
rons in the Mushroom body. This is
mainly possible because our method in-
cludes prior knowledge of the data, as
the natural deformations of the brain
and the fact that tracks should not
split or disappear through the whole se-
quence.

5.4 Conclusion

The strategy of registration followed by
clustering, rather than a conventional
tracking approach, allowed us to make
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Figure 5.8: Validation of our tracking approach Memotrack against two other methods, ICY and TrackMate, using
manual annotated and synthetic 3D+time sequences. A. Results obtained using manual annotations and considering
only complete trajectories along the whole sequence. That is, if the duration of a trajectory provided by a software
program was less than the length of the sequence, it was discarded. This is because the signal needs to be captured
along the whole sequence, not during a subpart of it. TP is True Positive, FP is False Positive, FN is False Negative,
Result is the output of a software and Ground is the ground truth. Note that False Positive are not available for
manual annotation because it was impossible to annotate exhaustively all trajectories of a 3D+time sequence.
Memotrack, our method, outperforms other methods with 18 out of the 19 annotated trajectory correctly retrieved.
B. Results obtained using manual annotations and considering trajectories with length at least as long as half of
the whole sequence. This relax in stringency increases the number of successfully tracked nuclei by other software.
Those results would not be acceptable or even useful as such to monitor the signal all along the sequence but they
enable to understand partly the weakness of the other approaches. Other approaches cannot track nuclei over a
long time period without failing because of the low accuracy of spot detection. Our approach, that rely on the non
rigid registration of the whole sequence is very robust to detection errors and actually tracks all nuclei that were
successfully detected enough time to form a cluster. For the same reason, the length threshold cannot improve the
result obtained by our approach as all trajectories retrieved is the length of the full sequence. C. Results obtained
using synthetic annotations and considering only complete trajectories along the whole sequence. Memotrack, our
method, outperforms other methods. D. Results obtained using synthetic annotations and considering trajectories
with length at least as long as half of the whole sequence. Interestingly, while unusable, we see here that this relax in
stringency increases the number of tracked nuclei by other methods but also increases the number of false positive,
indicating that even small trajectories provided by those software program are not necessarily correct.

use of the prior knowledge we have on
how the data behaves, minimizing the
amount of assumptions and parameters
we would need to scan for a more clas-
sical tracking technique.

The proposed approach should work ac-
cordingly for other datasets with similar
characteristics, such as in vivo tissues
with non-rigid deformations, on which
point clouds are detected. The algo-
rithm has a few inherent restrictions, as
the inability to handle tracks that di-
vide through time (as cells in division)
or points that move freely through the
space (as free particles in solution) How-
ever, for a considerable number of bio-
logical applications (almost every spot

detection for tissues in vivo or in cell
culture), these constrains are just the
nature of the data.
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Figure 5.9: Visualization of manually annotated nuclei trajectories (in black, see online methods) and their corre-
sponding trajectories obtained by the tracking software (in color). Top row: only complete trajectories that last
the whole sequence were kept, it is the case we were interested in to monitor the single cell signal all along the
sequence. We can see that, beyond the fact our method tracks correctly most manually annotated nuclei, the closest
trajectories provided by ICY may in fact match other nuclei and be False Positives, an hypothesis that cannot
be validated or unvalidated because it was impossible to manually annotate all trajectories in the sequence of 3D
stacks. Bottom row: result when we allowed the length of the trajectories to be shorter but at least as long as half
of the sequence. Again, those trajectories could not be used for the analysis as they are too short but underline the
main limitation of other approaches: other approaches cannot track object stably over a long period of time due to
the unreliability of the spot detection step.
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CHAPTER 6. MEASURING NEURONAL ACTIVITY

And of course, the brain is
not responsible for any of
the sensations at all.

Aristotle

The processes described in Chapters 4
and 5 serve as necessary base for mea-
suring the brain activity at the single
cell level. Once having the tracks of indi-
vidual neurons, it is possible to measure
the actual GCaMP activity, thus bring-
ing a direct measurement on how the
brain operates conditioned to a given
stimulus.

6.1 Signal localization

Our dataset is acquired in two chan-
nels, the first (mCherry) acts as nu-
clei marker, and was used so far for
the detection of neurons. The second
(GCaMP) is the actual activity of the
neurons, and should be measured and
linked to the corresponding nuclei.

On Figure 6.1 we show how the neuronal
activity is not exactly colocalized with
the nuclei signal. The top panel shows
the correlation between the base level for
both channels. Bottom panel shows how
during an Octan-3-ol (OCT) stimulus,
the increase of GCaMP intensity doesn’t
happens where we had the highest in-
tensity of mCherry which corresponds
to the center of the nuclei. The mid-
dle range of the GCaMP signal, when
compared to the mCherry, show that the
response is localized around the nuclei,
and not on the center of it.

This means that even tough we tracked
the nuclei, the position of the tracks is
not where we should measure the signal
from the neurons.

4000

3000

2000

1000

0

G
Ca

M
P 

si
gn

al
 in

te
ns

ity

10000

mCherry (nuclei) intensity

0 20000 30000 40000 50000 60000

Before OCT

4000

3000

2000

1000

0

G
Ca

M
P 

si
gn

al
 in

te
ns

ity

10000

mCherry (nuclei) intensity

0 20000 30000 40000 50000 60000

During OCT

Figure 6.1: Intensity co-localization between mCherry
(nuclei) and GCaMP (neuronal activity), shown as 2D
histograms.

6.1.1 Space tessellation

Although not perfectly co-localized, the
response signal of a given neuron should
be within its vicinity. Hence, we proceed
with a Voronoi tessellation [154] of the
space, using as seed points the detected
nuclei.

This allowed a discrete repartition of the
3D space. However, a standard tessel-
lation divides the whole space, which
causes a problem on the borders of the
Mushroom body, as the nuclei on the
extremities would have a much higher
volume, that extends until the edges of
the image. To counter this problem,
we limit the tessellation around each
nucleus to a maximum distance of two
times the average nuclei diameter. This
allows to have an fairly tessellated MB,
without causing artifacts on the borders.
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Figure 6.2: Volumetric visualization of the 3D tessella-
tion. Each neuron is defined by a unique volume in the
3D space, without intersections.

6.2 Track quality

Because of the artifacts that randomly
degraded the image during the acquisi-
tion (as described on Section 3.5.2) not
every time frame could be used for sig-
nal measurement. Thus, we developed
a methodology that could identify the
problematic frames, and interpolate the
dubious data from the neighboring time
frames that don’t present the artifact.

6.2.1 Center of mass stability

The process consists on the following
assumption: during a normal acquisi-
tion, the center of mass of the Mush-
room body (based on the detected nu-
clei) should move only slightly through
space. During the artifact, as a consid-
erable part of the MB is missing, the
center of mass should shift rather dras-
tically for one time frame. Thus, we
measured the derivative of the centroid
position through time, value then nor-
malized between 0 and 1.

6.2.2 Ignoring artifacts

The quality measurement works then as
an indirect way to asses the frames on
which we had the microscope artifact.
We still need to set a threshold as the
minimum quality level that can still be
used for the analysis, and by visual com-
parison of the quality measurement and
the behavior of the 3D stacks the value
was set at 80%. Thus, frames with lower
values were removed, and the values in-
terpolated from the closest neighbors in
time.

6.3 Signal measurement

Once we have a certain volume assigned
to each one of the detected neurons, it is
possible to measure the activity of indi-
vidual cells through time. For each time
frame, and for each volume, we measure
the intensity level on the 99 percentile
and keep it as the neuron activity for
the given time frame.

The measurement of the 99 percentile
instead of an average or the maximum
intensity value is able to avoid certain
artifacts.

In case of the average (or even the me-
dian) the measured value would be sen-
sitive to the size of the volume, espe-
cially on the borders of the Mushroom
body, where a considerable part of the
volume may not have the base back-
ground level that is present on the cen-
tral region of the MB. Thus, the average
(or median) would be abnormally lower
on the borders.

The measurement of the maximum
value within the volume would be highly
sensitive to noise. Avoiding the ab-
solute maximum value also minimizes
the crosstalk signal between neighbor-
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no limitx 5x 2x1 x 3

Figure 6.3: Tessellation limits. Increasing the maximum distance for the tessellation allows the inclusion of the
space between nuclei, but values too high might cause problems on the borders. For the final tessellation we use the
value of 2 times the nuclei diameter (second panel). All images show the middle slice of the tessellated volume.

Figure 6.4: Raw signals from a näıve fly. (A) shows the measured signals for a group of 432detected neurons. Each
line has its opacity proportional to the standard deviation of the signal. The two groups of peaks correspond to the
response to the OCT stimulus. (B) Isolated tracks of 6 different neurons. On the left we can see that the two peaks
are usually formed by the same group of neurons that respond twice. On the right, three examples of neurons that
don’t respond to the stimulus, forming the baseline of the response.

ing neurons, because the edges of the
voronoi tessellation are probably close,
but not a perfect match, of the cell bor-
ders.

6.3.1 Noise filtering

The noise level of the measured signal
is more complex than just the Poisson
noise [155] derived from the camera sen-
sor. Small incongruences between the
detected track and the real path of the

cells may also increase the noise level,
because of the mismatch between the
measured region and the real signal.

We minimize the noise level, while keep-
ing the peaks relatively sharp by using
a low-pass Butterworth filter [156].

6.3.2 Signal normalization

Normalization of the signal is fundamen-
tal for the correct interpretation of the
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neuronal responses, and to enable the
comparison of activity between different
flies.

We use the standard normalization
methodology for GCaMP activity in
neurons [157], shown in Equation 6.1:

F (t) =
∆F

F0

(6.1)

The fluorescence intensity F for a given
time frame t is defined as the variation
of intensity ∆F divided by the baseline
of the signal, F0.

We use as baseline the median of a mov-
ing window of 10 frames before and 10
frames after the time t. This value
was chosen so that the neuron response
wouldn’t interfere with the baseline, as
usually the responses are no longer than
3 time frames. Having a moving base-
line, instead of a fixed baseline on the
beginning of the acquisition, also com-
pensates for the natural photo-bleaching
of the fluorescent marker.

6.4 Odor stimulation regions

Figures 6.4 and 6.5 also show hashed re-
gions, for which the fly was exposed to
a certain stimulus, and thus a response
from the brain might be expected. For
every case, the stimulation window took
5 seconds, and the following order was
used:

1. Nothing (S)
During this window, nothing is pre-
sented to the fly, it is a control for
the base level of the brain.

2. Air (A)
Here the fly is exposed to a neu-
tral air flow, without any odor be-

ing diluted. Although the fly is con-
stantly receiving an air flow, dur-
ing this time window the flux is
switched to another air bottle. This
window can be used as control for
the effects of pressure change, that
are unrelated to the actual odor
stimulation

3. Octanol (O)
This stimulation window is the only
one where we expect peak responses
from the detected neurons. How-
ever, not all neurons should respond
during this window, just a subset of
the whole mushroom body.

4. Air (A)
A second air stimulation allows to
verify if the brain returns to a rest-
ing state after the octanol stimula-
tion.

5. Octanol (O)
A second Octanol stimulation win-
dow is important to check the con-
sistency of the brain, as the same
neurons (at a similar intensity level)
should respond to both stimulus.

6. Nothing (S)
The sequence ends with another
control window without any sort
of stimulation, so that the resting
state of the brain after the stimula-
tions can be verified.

6.5 Conclusion

By having the neurons of the Mushroom
body to express a GCaMP marker to-
gether with a mCherry NLS, we were
able to measure the neuronal activity at
the single cell level.

Because the data was subject to acqui-
sition artifacts that made some frames
unreliable, we developed an automated
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Figure 6.5: Normalization process for a näıve fly. Each line is the signal of an individual neuron, and the opacity is
proportional to the standard deviation of the signal. (A) The raw signal, measured for 432 neurons. (B) Frequency
filtered signal. (C) Signals after moving baseline normalization.

system to detect the problematic frames
and interpolate the missing data from
the neighborhood frames. We were then
able to tessellate the 3D space using the
detected nuclei as seeds, thus creating a
volume in which we could measure the
Ca2+ ions change of the individual neu-
rons.

The raw data needed to be normalized,
and this was done by a frequency fil-
ter followed by a base-line normaliza-
tion. This allowed comparison of peaks
between different flies, opening the way
for a series of possible analysis, explored
in the following Chapters.
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To observe attentively is to
remember distinctly

Edgar Allan Poe

The methodology explored in the pre-
vious Chapters allowed us to observe
in an automated way the whole Mush-
room Body, at the single neuron level,
while the fly experiences an stimulus.
For the best of our knowledge, this has
never been accomplished before. This
opens several opportunities to better un-
derstand how the brain process infor-
mation, and how long term memory is
stored. The ability to measure the ac-
tual memory traces directly from the
individual neurons grants us the abil-
ity to solve in a quantitative way open
questions of the neuroscience commu-
nity: does learning involves an increased
response from the Kenyon cells ? Does it
involve the recruitment of new neurons
? How is the memory trace distributed
spatially in the brain ?

7.1 Responsive neurons

State of the art work regarding the mem-
ory in the Drosophila’s Mushroom Body
make use of manually selected neurons
that are responding to the stimulus,
identified by a region of interest defined
by the user [135]. This creates an im-
portant margin for biased results, as the
users could be cherry-picking the signals
they want to analyze.

Here, we made an automated detec-
tion of every neuron in the Mushroom
body (strictly speaking, every resolv-
able neuron. For details check Chapter
4). This rules out the human interfer-
ence from the data analysis, but brings a
small issue: as expected, the majority of
the neurons were not responding to the

stimulus, remaining at the level of the
background noise. Any sort of compari-
son between the test and control groups
would be affected by this as, in fact, the
interesting neurons (the ones that re-
spond to the stimulus) are the outliers
of the distribution. The distribution of
all neurons can be seen on Figure 7.3A.

To tackle this issue, we needed an au-
tomated way to identify the responsive
neurons from the ones that remained at
the level of background signal. A thresh-
old could be set as a filter, so that only
neurons with a peak higher than the de-
fined threshold within the octanol stim-
ulation window would be kept for the
future steps of analysis.

Figure 7.3A displays no obvious bimodal
distribution, making a precise assump-
tion of the threshold value not evident
from the data. Thus, we kept the thresh-
old at an arbitrary value of 10%, based
on the expected increased response of
GCaMP6f [117] and the noise baseline
observed from the data.

The usage of this threshold gave us the
distribution observed at Figure 7.3B.
Note that now there is a more clear sep-
aration between the peaks from the two
air and oct windows, indicating that
we are selecting a sub-set of the ensem-
ble that is responding to the stimulus.

7.1.1 Spacial distribution

Following the literature, responsive neu-
rons from the mushroom body should
be organized in a stochastic way [158,

159]. A general characteristic of sen-
sory systems is that dense representa-
tions by neurons tuned by the sensory
periphery are transformed into sparse
representations by neurons tightly fit-
ting into deeper layers. More specifi-
cally, in the olfactory system, olfactory
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Figure 7.1: Tracks of responsive neurons for unpaired control. The volumetric reconstruction on the left shows
the nuclei marker together with the GCaMP activity during the OCT response, while the volume on the right shows
the detected neurons. Light gray spheres and lines show neurons that were not responsive, and dark gray indicates
responsive neurons (for a 10% intensity gain threshold). Three neurons were highlighted in blue, pink and yellow
to exemplify the signal in different parts of the Mushroom body. The plot shows the normalized signal from the
individual neurons, indicating also the stimulation windows.

receptive neurons (ORNs) respond to a
wide range of different odors [160] and
synapse on projection neurons (PNs)
of the antennal lobe within structures
called glomeruli . At this layer, synap-
tic and circuit mechanisms produced
even larger tuning curves in PNs [161]

while making the responses of different
glomerular channels more independent
from each other [162]. Thus, in the an-
tennal lobe, the identity of the odor is
represented by a dense code consisting
of only about 51 different PN types.

Hence, the detected responsive neurons
were likely to be uniformly distributed
through the Mushroom body. This can
be verified in two examples shown in
Figures 7.1 & 7.2, in which the respon-
sive neurons are shown in dark gray,
and the non-responsive in white. Tracks
corresponding to each neuron are also
shown.

7.2 Consistency of response

It is well known from the literature that
if the same stimulus is presented differ-
ent times to the fly, the same set of neu-
rons should respond [135]. The idea be-
hind this fact is that the group of neu-
rons that respond to the stimulus is the
spatial representation of that particular
set of inputs to the mushroom body. So,
when receiving the same stimulus for the
second time, the same pattern of acti-
vation should emerge in the Mushroom
body.

As our system allows the tracking of sig-
nal from all the individual neurons, this
assumption can be verified. We expect
the same (or, at least, a very similar)
set of neurons to respond when the OCT
stimulation is presented twice.

Experimentally, the fly received a stim-
ulation sequence in the following order:
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Figure 7.2: Tracks of responsive neurons for paired conditioning. The volumetric reconstruction on the left shows
the nuclei marker together with the GCaMP activity during the OCT response, while the volume on the right shows
the detected neurons. Light gray spheres and lines show neurons that were not responsive, and dark gray indicates
responsive neurons (for a 10% intensity gain threshold). Three neurons were highlighted in blue, pink and yellow
to exemplify the signal in different parts of the Mushroom body. The plot shows the normalized signal from the
individual neurons, indicating also the stimulation windows.

1. No stimulation (S)

2. Only air (A)

3. Octanol stimulation (O)

4. Only air (A)

5. Octanol stimulation (O)

6. No stimulation (S)

This sequence, saoaos, allow us to ver-
ify if the response is really caused by the
odor, as we have the air stimulus inter-
calated with the octanol. To compare
the responses from the different octanol
stimulations, first we identify the set of
responsive neurons, the ones that have
a peak response higher than 10% for the
normalized signal.

Afterwards, the set of signals is treated
as a n dimensional dataset, where each
dimension is one responsive neuron and
each feature the peak value of the given

neuron within the window of stimula-
tion.

This creates, for each stimulation win-
dow from saoaos, a n dimensional vec-
tor that represents the current state of
activity of the brain. Thus, on this
space, the proximity means similar ac-
tivity pattern of the brain.

A distance matrix between the vectors
of each stimulation window can be done,
by calculating the distance between each
pair of vectors u and v. As measure-
ment, we use a cosine distance, defined
as:

1− u · v
‖u‖2 ‖v‖2

(7.1)

Where u ·v is the dot product of the two
vectors, u and v. By using the cosine
distance, we limit the effects of the high
dimensionality on the space [163]. More
common measurements, as an Euclidean
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Figure 7.3: Distribution of peaks for air and octanol windows, for all flies with paired conditioning of the dataset (A)
Without any threshold, the distribution of intensities is similar in both windows, being just sightly slanted for the
octanol (blue) because of the few responsive neurons. (B) Distribution showing only the neurons with normalized
peak higher than 0.1, making a clear separation between both distributions.

distance for example, loose meaning on
higher dimensions becauseof the curse
of dimensionality [164]. The resulting
signals and matrices for two examples
of flies (control and test groups) can be
seen in Figure 7.4.

It is possible to conclude that similar
patterns of activation of the brain are
seen when the fly experiences the same
stimulus, as the distance between the
two OCT is relatively small when com-
pared to the rest of the acquisition.

7.3 Responsive neuron count

The single neuron tracking allows us to
measure, in a robust and non-biased
way, the amount of neurons that re-
spond to a given stimulus. By count-
ing the number of neurons that re-
spond above the 10% threshold, we can
make the distribution shown in Fig-
ure 7.5, that shows a significant dif-
ference between the Paired condition-
ing and Unpaired control groups (p-
value: 0.001421, Mann-Whitney two-
sided test).
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This rather simple test is only possi-
ble because of the developed methodol-
ogy, and brings, in a quantitative way,
the answer to a fundamental question:
The formation of Long-term memories
within the Mushroom body is depen-
dent on the recruitment of new neu-
rons. Further implications of this dis-
covery will be discussed within Chapter
8.

7.4 Neuron intensity

Interestingly, intensities of responding
neurons were not different between the
paired and unpaired groups, which could
be one of the mechanisms for storing
the memory traces within the Mush-
room body. The results of this analysis
can be seen on Figure 7.6

This conclusion can only be brought by
the single cell analysis. In case this same
experiment were to be verified by a mea-
surement of global intensity change in
the whole MB, the conclusion would be
that, for the paired conditioning, there
was an increase in intensity. But what
truly happens is that more neurons are
being recruited, with the same level of
intensity. Further aspects will also be
discussed within Chapter 8.

7.5 Signal cross-talk

It is also important to verify whether the
additional neuron count of the octanol
paired group could result from a cross-
talk of signal.

If the intensity of responsive neurons
increased after conditioning, the in-
creased GCaMP signal could scatter
to the neighborhood, causing a signal
crosstalk. This would mean that ad-

ditional signal could be detected in an
area in which it would be accounted for a
different neuron. Thus, if this neighbor
neuron also surpass the threshold level,
the neuron count would artificially in-
crease.

To test for this possibility, we identi-
fied the signals of neighboring neurons
closer than 2 times the diameter of the
soma and only the neuron with the high-
est response was kept for neuron count.
With this filter applied, neuron count
for the octanol paired group was still
significantly higher compared to the un-
paired group, while MCH paired and un-
paired group did not differ in neuron
count (Figure 7.7).

7.6 Conclusion

The comprehensive 3D tracking of single
neuron activity allowed us to explore the
memory traces in the mushroom body in
ways that weren’t possible before.

By measuring the signal of every neu-
ron through time, we could verify that
the same activity pattern of the brain
emerges when a stimulus is presented
twice to the same fly, which confirms
the current understanding of how the
Kenyon cells receive their inputs.

Regarding the intensity level of response
from the single neurons, we can conclude
that the long-term memory formation
has no impact on it. For the two groups
analyzed, unpaired control and paired
conditioning, no statistical significance
was observed for the intensities.

However, flies from the paired group
showed a significantly higher number of
responsive neurons, leading to the con-
clusion that the long-term memory for-
mation implies neuron recruitment.

81



CHAPTER 7. MEMORY TRACES

Unpaired control
ID: 01299L

Paired conditioning
ID: 10272R

Figure 7.4: Consistency of response to OCT, shown for two examples of flies. On the left we see the tracks of
individual neurons from a single experiment with sequence saoaos, where for visualization the tracks are split so
that the alignment of the stimulation windows is noticeable. On the right we see the distance matrix for each case,
having as labels a number representing the order of the stimulation (1 to 6) and a letter for the category. On the
matrices is observable the proximity of both OCT stimulations, showing that a similar pattern of brain activation
was measured.
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Paired
conditioning

Unpaired
control

**

Figure 7.5: Count of responsive neurons, showing a
significant difference between the Paired conditioning
and Unpaired control groups (p-value: 001421, Mann-
Whitney two-sided test).

ns

Paired
conditioning

Unpaired
control

Figure 7.6: Distribution of mean signal for responsive
neurons from the two groups, showing no statistical dif-
ference (t-test with p-value: 0.24848).

83



CHAPTER 7. MEMORY TRACES

A

Detected neurons Responsive neurons Cross-talk checked

B C

** ns ** ns

Figure 7.7: Verification of signal crosstalk for all the flies of the dataset. To verify the effects of crosstalk on our
signal measurement, for every responsive neuron we checked the signal of the neighbours closer than 2 times the
diameter of the soma, and only the highest of them was kept. (A) summary of the dataset, where light gray shows
the number of detected neurons, dark gray the amount of responsive neurons (in average, 13.5% of total detections)
and green only the neurons that passed the crosstalk check (in average, 62.9% of the responsive neurons). (B)
Distribution of dataset for responsive neurons (dark gray in A) showing significant difference between the test group
(p-value: 001421) and no significant different for the control group (p-value: 0.323919). (C) Distribution after the
crosstalk check, on which the significance in test group is kept (p-value: 0.001890) and no difference for control
group (p-value: 0.323753). For all cases, a Mann-Whitney two-sided test was performed.
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I am turned into a sort of
machine for observing
facts and grinding out
conclusions.

Charles Darwin

Understanding the formation of long-
term memories is a great challenge, and
a large active field of research in neu-
roscience. The work presented on this
thesis brings to the scientific commu-
nity a new quantitative insight on how
the brain is capable of storing long-term
memories as, for the best of our knowl-
edge, for the first time we were able
to quantitatively measure, in vivo and
through time, the total ensemble of neu-
rons that forms the Mushroom body of
the Drosophila melanogaster, while the
fly experiences a memory recall.

From this quantitative analysis, we were
able to achieve two important conclu-
sions: Firstly, the paired conditioning
of the flies results in the recruitment
of new neurons for the representation
of long-term memories. Secondly, this
same process doesn’t change the level of
activity on the individual neronal level.

Those are straightforward conclusions,
that wouldn’t have be possibly drawn
without the extensive methodology that
was developed, both on the computa-
tional and experimental sides.

8.1 Main aspects

A few points distinguish our protocol
from the current methodologies, giving
us an unique setting on which new in-
sights can be achieved.

8.1.1 Single cell analysis

One of the main contributions of the
presented methodology when compared
to the state-of-the-art approaches, is the
fact that we are able to detect the signals
at the single cell level. While the usual
approach within the field is to measure
the signal from a limited number of cells,

8.1.2 Automated detection

Another point that is a strong advantage
of the methodology here proposed is the
fact that the process is fully automated.
Other state of the art methodologies
uses manual or semi-automated proce-
dures for detecting the neurons [135],
which might cause biases and strongly
decreases the throughput of the analy-
sis.

8.1.3 Parallelization

The whole process can run indepen-
dently for each fly, making a paralleliza-
tion possible. This is important, as it al-
lows us to process the complete database
(more than a hundred flies) in a relative
small time, usually of one to two days
for a complete analysis.

8.1.4 Open Source

No great achievement can be done
by one person alone, and this is not
different for the work presented here
on this thesis. The methodology we
present was only made possible be-
cause it is based on free & open-
source tools that compose the elemen-
tal bricks needed to construct the soft-
ware. Thus, we also make available to
the community all that was here de-
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Figure 8.1: All the code needed for the analysis pre-
sented on this thesis can be found on GitHub, on the ad-
dress https://github.com/biocompibens/memotrack or
by scanning the QRcode above.

veloped, on the GitHub online reposi-
tory at the address https://github.com/
biocompibens/memotrack. Besides the
analysis itself, the presented code also
generates as report the majority of visu-
alizations seen throughout this thesis.

8.2 Data acquisition

One of the biggest challenges encoun-
tered throughout this Thesis was the
proper acquisition of data that could
sustain our inquiries.

The majority of current research done
in long-term memory of the Mushroom
body make use of a single 2D plane, usu-
ally acquired via 2-photon microscopy.
This provides an image with high spatial
resolution, but lacks the temporal preci-
sion needed for the analysis when cap-
turing the whole 3D structure. Thus,
we make use of a confocal spinning
disk for the acquisition of 5 dimensional
(XYZCT) image stacks.

Also, the preparation of the flies for im-
age acquisition differs in some points
from the previously used protocols. To
keep the physiological responses as close
as possible from the real operational
conditions of the brain, two main factors
were important, and made our method
different from the others.

Firstly, we avoided the use of anesthetics
procedures, as CO2, before the dissec-
tion. This increases the difficulty of the
micro-surgery, but minimizes the possi-
bility of having alterations on the nor-
mal behavior o the brain.

Another important aspect is that we
don’t make use of the rupture of muscles
to diminish the brain movement. This
also minimizes the possibility of having
artifacts on the acquired signal, but the
increased movement makes so that the
tracking of neurons is more challenging.

Since the beginning of the project,
counting the stages of standardization
of the method, 292 flies were imaged,
resulting in about 2.5 TB of raw data.
About half of the initial data was used
for the standardization of the dissec-
tion and odor stimulation protocols, and
could not be used for the final analysis.

8.3 Detection & tracking

The relative low spatial resolution of our
data, and the fact that we aim to handle
the whole 3D structure of the MB, while
still having the resulting movements of
the in vivo acquisition, made the detec-
tion and tracking of every neuron par-
ticularly demanding.

When testing current state of the
art methods for nuclei detection, we
couldn’t obtain a suitable precision.
The high density of objects, together
with the large anisotropy of the data,
made necessary the development of a
methodology designed specifically for
the characteristics of our data.

For the final dataset, composed of 122
flies and used for the final analysis,
our method detected an average of 408
neurons per Mushroom body (as seen
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Figure 8.2: Distribution of detected number of neurons
for each fly, between the different test groups, showing
no significant difference between datasets. This allow us
to verify that the difference in the count of responsive
neurons is not related to the total number of detected
neurons.

in Figure 8.2). Despite being well
known from the literature that the MB
should have about 2000 Kenyon cells,
we proved, by means of synthetic im-
ages and manual annotations, that our
method is close to the actual limit of
objects that can be identified, regarding
the resolution of our data. The details
can be found in Chapter 4.

We made sure that, besides the incom-
plete set of detected neurons, all the sig-
nal response was measured by means of
a 3D tessellation of the space surround-
ing each detection. Furthermore, be-
cause the number of responsive neurons
is usually much inferior than the total
set of 2000 cells, associated with the fact
that the response is known to be sparse,
limited impact can be expected by this
shortage of detections.

The tracking stage can be also under-
stood as the process of giving a label to
each one of the neurons, which is funda-
mental if we aim to analyze their indi-
vidual signals.

Most of the current tracking method-
ologies are adapted for tracking spots
that have an important displacement

through space, with a relatively low
dense set of objects. The common
tracking algorithms are also usually set
to deal with splitting tracks or objects
crossing each other paths. None of these
assumptions were true in our dataset,
where the density of objects is relatively
high, and the movement is the result of
a more global deformations of the brain,
and not the individual displacement of
the neurons. This created the need for
specific tracking methodology, that we
developed to handle these peculiarities,
as explained during Chapter 5.

Figure 8.3: Result of the tracking for one Mushroom
body. On the left, each color shows one track (labeled
neuron) and each cloud is the ensemble of positions of
that given neuron through time. On the right we see the
detail of one of the detected neurons, with the tracks
linking the positions through time.

8.4 Memory traces

By getting the correct detection and
tracking of the neurons from the Mush-
room body, we were able to measure the
response of the flies to the odor stimu-
lation.

We used two groups of flies to identify
the memory traces: for the first group,
that received a paired conditioning, flies
were trained to associate the odor to an
electroshock, by receiving the two stim-
ulus together. The second group was
the unpaired control, which also receives
both stimulus, but with a time delay be-
tween them, in a way that the associa-
tion was not made possible.
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These groups allowed us to investigate
which are the changes in neuronal activ-
ity that encode the memory traces rep-
resenting the association between odor
and electroshock. A direct compari-
son between brains of flies from the two
groups was not directly possible, as the
axonal inputs of the MB are spatially
arbitrary. Thus, spatial correlations of
response wouldn’t reflect the actual dif-
ferences between groups.

However, global comparisons are possi-
ble. For example, the memory trace can
be encoded in newly recruited neurons,
or in a increased response of the same
set of neurons. Our methodology, al-
lowing the measurement and identifica-
tion of the subset of neurons that are
are activated by the odor stimulation,
could identify that, in fact, the long-
term memory stored within the mush-
room body is the result of the recruit-
ment of a new set of neurons exclusively.
Regarding the intensity of response, we
could verify that the activity level of
individual neurons remained unchanged
between the two groups. This discov-
ery, beyond the method itself, is a ma-
jor contribution of this thesis as, for the
best of our knowledge, no other research
group so far was able to achieve this sort
of response quantification from the total
ensemble of neurons from the Mushroom
body.

8.5 Overview

Technically challenging, the in vivo
single neuron analysis of the whole
Mushroom body of the Drosophila
melanogaster was made possible by the
methodology developed through this
Thesis. Besides revealing that long-term
memories are encoded by the recruit-
ment of new neurons, we make the com-
putational tools needed for this analy-

sis available to the scientific community,
opening the possibility for new findings
on how memories are organized within
the brain.
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CHAPTER 9. PERSPECTIVES

Carry on my wayward son,
For there’ll be peace when
you’re done.

Kerry Livgren
(Kansas)

The work developed in this thesis open
the way for several improvements in the
current state of the art for the study of
memory. In this Chapter we’ll discuss
some principles of improvement for the
method, as well as some future applica-
tions that could bring other insights on
the memory formation.

9.1 Back projection

The precision of the detected nuclei po-
sition is of great importance for the fi-
nal accuracy of the measured signal from
the Kenyon cells in the Mushroom body.
It is from these positions that we cre-
ate the individual volumes for the mea-
surement of neuronal activity, so impre-
cise positions would lead to wrong signal
measurement.

However, the precision of the detection
is limited by the actual resolution of the
data. Because of the PSF and close dis-
tance between the nuclei, we can only
assume that the detected position had a
probability of being the true position of
the nuclei.

During the nuclei tracking stage, de-
scribed on Chapter 5, we made use of a
registration procedure to minimize the
movements of the brain. Ideally, after
the registration step, every detection of
a given nuclei should match perfectly in
space, forming a single spot. In real-
ity, we observe that the detections form
a cloud with characteristics of a normal
distribution. This cloud of points is in

fact a multiple sampling of the same nu-
clei through time, it is possible to as-
sume that the center of the cloud cor-
responds to a more precise estimation
of the nuclei position in this registered
space.

The registration procedure purpose is
only to label the neurons. Once each
point is tracked, the labels are passed
to the coordinates of the original detec-
tions. This way we completely lose the
estimation of the real position that could
be done via the centroid of the 3D cloud
in the registered space. We hypothesize
that it is possible to use this information
in a proccess we call back projection:

Since we can assume that the brain is
an rather elastic and stable tissue, not
allowing the free movement of the neu-
rons (but only local deformations), the
process would be constituted of the steps
presented in Algorithm 3.

This process might be able to increase
the precision of the detections. Ini-
tial trials were partially successful, only
showing artifacts in regions where the
obtained tetrahedron is almost coplanar,
what interferes with the calculation of
the barycentric coordinates.

9.2 Graph features

Although the process to obtain the brain
responses with single neuron precision
is rather complex, as described through-
out this thesis, the final conclusions we
obtain from it are based on two sim-
ple measurements: the count of respon-
sive neurons and the intensity of the re-
sponses.

We predict that a more in depth analy-
sis of the data can bring new insights on
the way memory is spatially organized in
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Figure 9.1: Initial trials for the backprojection algorithm. Black arrows indicate examples of cases on which the
barycentric coordinates couldn’t be precisely calculated, resulting in artifacts.

the brain. One of the ways we can be-
gin to search for patterns is through the
creation of spatial graphs from the de-
tected neurons. From the graphs, hav-
ing the response intensity stored on the
edges or nodes, we could measure a set of
features, that could lead to new insights
on how the responsive neurons are orga-
nized. One example of how this graph
can be build can be seen in Figure 9.2.
Examples of three features extracted di-
rectly from the graphs can be found in
Figure 9.3.

Especially interesting would be the pos-
sibility to compare the obtained features
between different flies. A direct rela-
tionship of the patter of response be-
tween different individuals is not ex-
pected, but since the features obtained
from the graph can be spatially indepen-
dent, a direct comparison between two
brains would be made possible.

9.3 Training under the microscope

All the work and data described within
this thesis is based on the long term
memory obtained from the flies. This
means that initially the fly is trained and
is able to construct the associative mem-
ory and, only afterwards a consolidation
period it is submitted to the dissection
and imaged for analysis.

One interesting alternative would be to
actually see the activity of the neurons
during the memory formation. This
could lead to exciting discoveries on
temporal patterns of activation between
the Keynon cells that receive the pro-
jections from the antennal lobe and the
ones that receive the aversive (shock) in-
formation.

To accomplish this, little would need to
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Algorithm 3: Backprojection

input : Labeled dataframe, Dinitial

output: Backprojected dataframe, Dback

DistTree ← BuildDistanceTree(Dinitial) ;
t ← 0 ;
repeat

Cluster ← 0 ;
repeat

Pointsclosest ← GetClosestPoints(DistTree, t, Cluster) ;
BarycentricWeights ← GetBarycentricWeights(Pointsclosest) ;
Dback ← UpdateCluster(BarycentricWeights, Cluster) ;
Cluster ← Cluster +1 ;

until Cluster < Clusterfinal;
t ← t +1 ;

until t < tfinal;

Figure 9.2: Example of graph built from the detected
neurons. The edges are constructed using a Delaunay
triangulation, and store as information the intensity of
the responses (width of the edges). Edges with values
lower than a threshold are pruned, resulting in a graph
that represents the response from the brain to the stim-
ulus.

be adapted on the detection & tracking
methods. However, the process of im-
age acquisition needs to be highly cus-
tomized to support the delivery of elec-
troshocks to the fly during the acquisi-
tion itself.

This is a great technical challenge, that
the laboratory of Thomas Préat started
to tackle together with Mélanie Pedraz-
zani, during her thesis work. A custom

made chamber, as shown in Figure 9.4
was schematized. It would allow the
delivery of electroshocks for conditional
pairing with the odor stimulation. This
way, it would be possible to see the fly’s
brain response while the association is
being formed.

9.4 Genes knockout

From a genetic point of view, humans
and the fruit fly have significant similari-
ties, as about 60% of genes are conserved
between the two species. According to a
recent analysis, 77% of the genes associ-
ated with identified human diseases have
a homologue in the Drosophila genome
[165]. Thus, the Drosophila melanogaster
is used as a genetic model for various hu-
man diseases including Parkinson’s dis-
ease and Huntington’s disease.

The system developed during this thesis
allows the precise measurement of the
neuronal activity during memory recall.
Being so, it would be also possible to
knockout or modify genes related to hu-
man diseases and better study how their
actions change the activity patterns of
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Figure 9.3: Example of three features extracted from graphs. Initial tests showed that features extracted directly
from the graphs can lead to similar conclusions as the neuron count.

Chamber for 
physiological fluid

Mobile arms for 
electrical 

stimulationAir flux entrance

Air flux exit

Figure 9.4: Custom made chamber for electroshock stimulation during odor delivery. This device would allow the
paired conditioning of flies while the activity of the Mushroom body is being recorded. Image courtesy of Mélanie
Pedrazzani.

neuronal activity within the brain.
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SOFTWARE

Smax: accurate detection of packed resolvable
objects in 3D fluorescence microscopy
Felipe Delestro1, Mélanie Pedrazzani2, Paul Tchenio2†, Thomas Preat2 and Auguste Genovesio1*

Abstract

Background: 3D spot detection tools are heavily used to collect positions of biological objects and extract
quantitative information from 3D microscopy images. The fluorescently labeled objects of interest can range
from tiny biological objects as individual proteins, viral particles or endosoms to much larger such as cell nuclei
or parasites depending on the microscope resolution. While general approaches to spot detection showed some
success, especially with diffraction limited objects, anisotropy of 3D microscopy image stacks and object
specificity are almost systematically overlooked while non-obvious parameters tuning is often required. We
show on some examples that those aspects can have dramatic and silent effects on the localization accuracy of
resolvable, albeit densely packed, objects of similar size such as nuclei in a 3D tissue.

Results: in this work, we propose a tool that couple a straightforward anisotropy correction with an iterated
maxima accumulation to detect position of similar objects in 3D image stacks. While a simple approach, we
demonstrate quantitatively, using real and synthetic data, that it significantly outperforms state of the art
methods to the task of detecting the position of a large number of densely packed objects in a 3D image.

Conclusions: while universal methods in spot detection achieved some success, we show evidences that a
dedicated approach to the detection of the positions of densely packed objects is required to reach a
satisfactory level of accuracy. Importantly, the proposed approach implemented in an open source package
doesn’t require parameter tunning but a single accessible physical input value: the approximated object
diameter.

Keywords: 3D imaging; high density; nuclei; spot detection

Introduction
In 3D fluorescence microscopy, spot detection is widely
used as one of the fundamental steps to extract quan-
titative information from biological scenes. Several
methods and software programs have been proposed,
and regularly compared, to achieve this task in a
generic fashion [1–3]. Methods range from local back-
ground subtraction and linear or morphological image
filtering to wavelet-based multiscale detectors (see [4]
for an overview). To our knowledge, the most recent
and complete comparison of methods for 3D spot de-
tection was made in 2015 by Štěpka et al. [3]. In this
review, two methods, the 3D morphological maxima
(EMax) [5] and the Undecimated Wavelet transform
product (UDWT) [6] were shown to combine a good
accuracy with a low number of parameters. On one
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1Computational Bioimaging and Bioinformatics, IBENS, ENS INSERM

CNRS, PSL, 46 rue d’Ulm, 75005 Paris, France

Full list of author information is available at the end of the article
†PT deceased in July 2015

hand, the straightforward EMax introduced by Mat-
ula et al. simply consists in a denoising step using a
3D Gaussian smoothing followed by a morphological
maxima transform. Local intensity maxima exceeding
a given height are then retained. This approach re-
quires two parameters: a ”smoothing” σ and a ”thresh-
old” h (implementation available from http://cbia.

fi.muni.cz/acquiarium.html). On the other hand,
UDWT introduced by Olivo-Marin is a more sophis-
ticated approach implemented in Icy. It is by far the
most cited and therefore probably the most used by
the scientific community for quantification. Briefly,
a 3D undecimated wavelet transform of the image
is computed, then non-significant wavelet coefficients
of selected scales are discarded by a weighted auto-
mated thresholding. Spots are enhanced by comput-
ing the product of the denoised wavelet coefficients.
This method requires two parameters: a set of ”wavelet
scales” matching the sizes of the objects we aim at
detecting and a ”sensitivity” parameter which cor-
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responds to the thresholding weight (implementation
available from http://icy.bioimageanalysis.org/

plugin/Spot_Detector). As assessed by their perfor-
mance in recent comparison [3], both methods can be
considered as state of the art in biological spot detec-
tion.

Note that considered objects to be detected can be
of very different nature and their size can range from
under-resolution scales such as in the cases of proteins,
viral particles or endosoms to much larger resolvable
scales such as in the cases of nuclei or parasites whose
size are often higher than the microscope resolution.
However in practice, the same algorithms are blindly
used by end users whatever the objects, because there
is necessarily a scale for which any of those objects can
appear as a fluorescent blob. Despite of the variabil-
ity of objects types and properties, the aforementioned
approaches showed some success and provides a good
solution especially for applications where inter objects
distance is close to the resolution of the microscope
[7, 8] or when the objects are large and distinguish-
able while their number is relatively low [9]. They are
also useful when the precision of the objects’ position
is not crucial to reach the final aim. This is the case
for instance when those positions are used for initial-
izing further cell segmentation algorithm such as the
seeded watershed [10] to detect nuclei or cell contours.
Then, in this case, the final result is robust to slight
variation in the seed location and possible inaccuracy
in the determination of the last has little consequence
on the final aim.

However, many applications still require the spot de-
tection to provide precise location. This is the case
when spot positions are further used to construct
tracks of objects over time in order to compute dy-
namic quantities such as speed or diffusion coefficient
[11]. It is also the case when the aim is to extract pre-
cise and individual fluorescence emission over time of
another marker from a densely packed set of nuclei,
as when quantifying individual neuron activity for in-
stance. In practice, while testing the two best avail-
able tools previously described on 3D image stacks
containing a high number of packed objects, we ob-
served large positional inaccuracies. Those inaccura-
cies were mainly introduced by two factors. First, in
most dataset, z resolution is lower than the x,y resolu-
tion. While obvious, this aspect is in practice loosely
taken into account by most tools. One of the reason
may be that the consequence on spot detection be-
come apparent only when the density of spots is high.
This is also an effect that was not properly estimated
in recent reviews because, in these works, 3D spots
in synthetic images were generated along x-y rather
than on top of each other in the z direction [3, 12].

Second, in available tools, parameter settings is often
overlooked and left to the user choice while their val-
ues can drastically change the final results. However,
the aim of object detection is to obtain the positions
of every object in the image rather than letting the
user fine tune parameters to select a subjective set of
objects.

Here, we propose a method that addresses those two
aforementioned issues in the context of a large set of
densely packed resolvable objects (see Figure 1 for an
overview and Methods for details). “Densely packed”
means that objects are close to each other, including in
the z direction. “Resolvable” means that distance be-
tween objects is supposed to be above the resolution of
the microscope in x/y directions as we do not claim to
solve the case where those objects would not be resolv-
able. However, some objects, resolvable in x/y direc-
tions, may not be resolvable in the z direction. Those
hypothesis are typically met when imaging a very large
number of nuclei in a 3D living tissue over time with a
fluorescent microscope. Indeed, in this case, technical
constraints as the use of a spinning disk microscope,
impose detection of thousands of 3D nuclei of similar
size in a 3D volume at a low resolution.

Results
Smax improves object detection accuracy

The proposed method was compared to state of the
art using both annotated ground truth and synthetic
datasets. Figure 2 reports that all methods performed
similarly well when objects were spread and clearly
distinguishable. In contrast, the proposed approach en-
abled to obtain significantly better results on both real
and synthetic data sets when a large number of nuclei
or centrioles were packed together in a full 3D tissue.
In particular, a large amount of objects were missed
by the UDWT and eMax methods.

Smax requires a single physical measurable parameter

An advantage of the proposed method is that it re-
quires only a single parameter from the user. Further-
more, this parameter is a physical quantity: the av-
erage diameter of the object we aim to detect. This
value can be easily estimated from the data by com-
puting the Full Width at Half Maximum (FWHM) of
a Gaussian fit on the average profile of a set of ran-
domly chosen objects (see Figure 1c). This is typically
the way empirical Point Spread Functions (PSF) are
constructed albeit with under resolution beads while
our approach is typically suited to packed objects that
can be distinguished.
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Smax can capture slight variations in size
The method we propose is meant to be used to detect
a large set of packed objects of similar size. By simi-
lar size we mean that there may be a slight variation
in the population of object size around the expected
value but its variance is assumed small. This is the
case for instance for 3D nuclei: they don’t have all the
exact same size. This slight variation is captured by
scanning a tight range of values around the specified
diameter. Filters that approximately match a nucleus
size will produce maxima in a close vicinity of each
other, thus producing a signal accumulation that can
be clustered in an ultimate aggregation step (see the
Methods section for more details).

Discussion
Unbiased comparison using parameter scanning
The sole parameter input in our method, the nucleus
diameter, is unambiguous and can be easily estimated.
In contrast, in alternative methods, the choice of pa-
rameters is not systematically obvious or related to
a physical entity. For instance, there is a“sensitivity”
parameter in the Icy spot detector plugin that is non
straightforwardly related to a quantity that could be
estimated, and therefore this parameter requires tun-
ing by the user. In order to ensure that an arbitrary
choice of parameters could not unfavor the other meth-
ods in our systematic comparison, we scanned all com-
binations of parameters and selected the one that max-
imized the Jaccard index. The results are summarized
in Figue 3. Note that knowing the ground truth is re-
quired to compute the Jaccard Index. Therefore, in
turn, this approach disfavored our own method as in
real case scenario ground truth would obviously not be
available and parameters would have to be manually
set in a non optimal way. Figure 3 shows that Emax
and UDWT with an optimal parameter settings were
as accurate as our approach for unambiguous images
with large nuclei. However, it also shows that what-
ever the parameter settings both methods performed
poorly compared to the proposed approach in the case
of images with a densely pack set of objects.

Impact of anisotropy correction
Further analysis showed that a significant fraction
of errors produced by the two other methods came
from inaccuracies in the Z direction and that correct-
ing anisotropy prior using those methods could in-
crease the accuracy (see Figure 3). However, correcting
anisotropy alone is not sufficient to reach the level of
accuracy of Smax. In order to check what was the part
of improvement brought by the anisotropy correction
alone we applied it prior using the other methods. Note
that, as we recalled earlier, these approaches do not

propose such an option. So we simply computed an in-
terpolated image of all datasets prior running another
complete parameter scan for both existing methods.
The results compiled in Figure 3 shows that in the
case of eMax it systematically improves the results for
the five datasets while the improvement is less obvi-
ous in the case of UDWT for which results get worse
for the C. elegans embryo image. Indeed, in this case,
interpolating seems to produce additional false posi-
tive. In any case the results never reach the accuracy
obtained by the proposed approach.

Restrictions of the proposed approach
Smax is not applicable to any type of object. Specif-
ically, it has two limitations: it can not be applied in
cases where other type of structures, as filaments for
instance, would be present and it cannot either be ap-
plied in case objects are of obviously various size. Smax
assumes that the image is made of a foreground that
mainly consists of a packed set of quasispherical ob-
jects of similar size lying on a possibly noisy but rather
uniform background. However, this case should encom-
pass a large set of applications as fluorescent stain are
in principle specific to a given protein or organel.

Conclusions
Precise estimation of objects positions in cell tissues
is of great importance to the field of bioimage analy-
sis. In this paper, we demonstrated that some generic
methods, by overlooking the anisotropy of image stack,
ignoring the object specificity, and allowing for ad-hoc
parameter tuning, could produce poor results. We pro-
pose a method with a single meaningful parameter that
can be easily estimated and we show using manually
annotated and synthetic datasets that it significantly
outperforms existing methods to detect a large set of
packed nuclei or centrioles. We demonstrated quantita-
tively that this approach is more relevant than generic
methods for a set of applications of interest to the
bioimaging community.

Methods
Spot detection algorithm
3D stacks in confocal microscopy are made of series
of 2D image acquisitions. This usually results in a 3D
image with a lower resolution in the z direction (axial
to the acquisition). This lower resolution is partly due
to the fact that the distance between the acquired 2D
images is always higher than the pixel size in the x and
y directions. It is also due to the Point Spread Function
(PSF) of such an optical system that is typically wider
in the z direction than in the x or y directions.

A simple but crucial solution to this anisotropy is-
sue consists in using the acquisition metadata and a
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cubic spline interpolation in the z direction to gener-
ate intermediary plans to obtain voxels with equal size
on x, y and z directions. Filling the missing data with
synthetic interpolated plans does not bring additional
information but makes possible a proper use of isomet-
ric 3D kernel and neighborhood in the following image
analysis steps.

Following this anisotropy correction, a standard de-
viation σ is computed from a diameter value provided
by the user. For that purpose, it is considered that this
diameter is ideally obtained from the Full Width Half
Maximum (FWHM) of a Gaussian that would be fit
on an average spot intensity profile (see Figure 1c).
Therefore, σ is reversely obtained using:

σ =
diameter

2
√

2 ln 2
(1)

This value can be divided by the pixel size in case the
diameter is provided in µm.

A bank of 10 Gaussian filters that span [σ− σ
2 ;σ+ σ

2 ]
is created to detect slight variations of size around the
average nucleus diameter provided. The number of fil-
ters is set at 10 because we observed that for most com-
bination of spot sizes and noise levels related to real
applications, Jaccard indices were not improved above
3 to 5 filters in the bank, depending on datasets, as
shown by Figure 4 for one of our synthetic 3D stack.
Therefore, a higher number would in most cases in-
creases the processing time without improving the pre-
cision. Figure 4 also illustrates that Smax is less accu-
rate on a dataset with a higher variability of object
sizes. For each filter, local maxima are detected and
collected using a 3× 3× 3 spherical neighborhood.

At this stage, for each filter, the local collected max-
ima are produced by actual bright objects or by back-
ground noise. Therefore the distribution of intensities
associated to maxima is most often bimodal. The two
components of this distribution are then identified for
each scale using a Gaussian Mixture Model (GMM)
with a two components fit using the Expectation-
Maximization algorithm. A threshold is defined as the
value where both components are intersecting such
as the maxima associated with intensities above this
threshold are kept while the maxima associated with
intensities below this threshold are discarded. This
process offers a stringent denoising process indepen-
dent for each filter (see Figure 1d2). Following this, all
remaining maxima collected for each filter are accumu-
lated into a single 3D array. As objects are supposed
to be further apart than resolution, this array should
contain local accumulations of maxima mostly in vol-
umes that are about the size of a nucleus. Therefore,
an ultimate 3D gaussian filtering using σ is applied.
3D local maxima from this filtred array are the final
detections (see Figure 1d3).

Synthetic datasets
The synthetic images were generated using the fore-
ground mask of an actual image stack. First, the isome-
try is corrected via interpolation on the axial direction.
Then, a chosen amount of nuclei positions is uniformly
sampled onto the foreground and relocated evenly us-
ing the k-means algorithm to ensure they are spread
as nuclei and above resolution. After convergence, the
center of each partition is dilated to the desired nu-
cleus size (allowing slight variation). At this point the
image is binary, so the heterogeneity of fluorescence is
simulated by an additive Gaussian noise centered on
zero on foreground voxels. The 3D stack is then con-
volved with the point spread function measured from
the microscope on isolated micro beads. An additional
glow is produced to better simulate the light scattering
through the tissue, and subsequently a Poisson noise
is applied to reach a chosen signal to noise ratio of 4
corresponding to the camera sensor (SNR is defined by
the average signal intensity divided by the standard de-
viation of intensities within the synthetic nuclei only).
Finally, to simulate the low resolution in the z axis, the
stack size is downsampled back to the number of slices
of the original image. Two synthetic images were used
for evaluation, one with 50 large objects, based on a
image of C. elegans embryo and another one with 2000
small and packed objects, based on D. melanogaster ’s
mushroom body.

Manually annotated images
The detection algorithms were also compared using
manually annotated ground truth performed by two
different people. The annotations were made in 3D,
with the help of the Cell Counter ImageJ plugin
(https://imagej.nih.gov/ij/plugins/cell-counter.html).
It consisted in scanning the image visually and mark-
ing the center of each nucleus. In the case of the
embryo image, where the nuclei are large and well
separated, the annotation was straightforward as the
distances between nuclei were larger than the nuclei
themselves. On the other hand, the manual annota-
tion of the mushroom body (MB) nuclei could contain
a few mistakes as the nuclei were smaller and packed
at a higher density, making the distinction between
different nuclei in 3D visually challenging, especially
on the axial direction (according to the literature, the
MB can have up to 2000 nuclei[13]).

Accuracy evaluation
To evaluate and compare the accuracy of all the meth-
ods, a detection is considered a true positive when it
falls within a sphere of the object size around each ob-
ject position referred in the ground truth (note that if
two objects are detected in the same sphere only one
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is accounted as correct, the other is accounted as in-
correct). As measure of accuracy we used the Jaccard
index J , defined as:

J(D,G) =
|D ∩G|
|D ∪G| =

Tp

Fp+ Tp+M
(2)

where D is the set of resulting detections of the
method, G is the set of ground truth positions (from
manual annotations or synthetic images), Tp is the
true positive count (elements both in D and G), Fp
is the False positive count (elements in D but not in
G) and M is the missed detections count (elements in
G but not in D). In case of a high amount of false
positives (Fp) or missed detections (M), the Jaccard
index will approach zero. Oppositely, in case of perfect
match, the Jaccard index value is one.
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10. Wählby, C., SINTORN, I.-M., Erlandsson, F., Borgefors, G.,

Bengtsson, E.: Combining intensity, edge and shape information for 2d

and 3d segmentation of cell nuclei in tissue sections. Journal of

Microscopy 215(1), 67–76 (2004)

11. Genovesio, A., Liedl, T., Emiliani, V., Parak, W.J., Coppey-Moisan,

M., Olivo-Marin, J.-C.: Multiple particle tracking in 3-d+t microscopy:

method and application to the tracking of endocytosed quantum dots.

IEEE Trans. Image Process. 15(5), 1062–1070 (2006)

12. Chenouard, N., Smal, I., de Chaumont, F., Maška, M., Sbalzarini, I.F.,
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Figure 1 Summary of the method. (a) An image stack of the Mushroom body of Drosophila acquired with a spinning disk
microscope (b) Detail of a nucleus (c) A good approximation of the nucleus diameter (the single input parameter of the method)
can be obtained by the Full Width at Half Maximum (FWHM) of a Gaussian fit on an intensity profile. (d1-3) Stages of the Smax
algorithm. (d1) Image interpolation (d2) Weighted maxima denoising using Gaussian Mixture Model (GMM) followed by maxima
accumulation. (d3) Maxima accumulation image is then convolved with a kernel corresponding to the targeted nucleus size, final
local maximas are extracted. All processes are performed in 3D.
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Figure 2 Quantitative comparison with two state of the art approaches. Smax is compared to UDWT and eMax approaches using 5
3D stack datasets. From left to right: image of distinguishable nuclei in Caenorhabditis elegans manually annotated, image of
centrioles in mice ependymal cells manually annotated, image of a large amount of packed nuclei in Drosophila’s mushroom body
manually annotated and synthetic images containing 50 objects and 2000 objects for which ground truths are known. From top to
bottom a 3D rendering view of the dataset, a maximum intensity projection on the z axis and the quantitative comparison of spot
detection algorithms. Each box of result indicates from left to right the values of false positives, true positives, false negatives
(colored bars indicating the proportion for each case) and the Jaccard index. A detection is considered as positive when it fall in a
sphere of nucleus size around any of the original objects positions. Smax sole parameter was set to an average nucleus diameter.
Parameters for the two other methods were systematically scanned in order to choose the best Jaccard Index which in principle
unfavors our method (see Figure 3).



Delestro et al. Page 8 of 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.2

0.4

0.6

0.8

1

1.2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

anisotropy correctionoriginal image
A

Synthetic 2000

Synthetic 50

Mushroom body

Centrioles

Early embryo

B

Ja
cc

ar
d

 in
d

ex
Ja

cc
ar

d
 in

d
ex

Ja
cc

ar
d

 in
d

ex
Ja

cc
ar

d
 in

d
ex

Ja
cc

ar
d

 in
d

ex

25 50 75 100 125

Sensitivity Sigma

anisotropy correction

original image

50

100

500

1000

5000

In
te

ns
it

y

0.025 0.025

0.190

0.357 0.176

0.777 0.704

0.444 0.775

0.000 0.017

0.490 0.229

0.669 0.366

0.619 0.811

0.223 0.677

0.000 0.017

0.665 0.388

0.769 0.556

0.523 0.847

0.157 0.550

0.000

Early embryo

0.008

0.014 0.009

0.035 0.057

0.028 0.190

0.014 0.536

0.023 0.035

0.020 0.051

0.018 0.143

0.011 0.307

0.009 0.492

0.015 0.065

0.014 0.087

0.011 0.227

0.011 0.354

0.3560.0090.028 0.055

0.132

Centrioles

50

100

500

1000

5000

In
te

ns
it

y

0.045 0.111

0.029

0.068 0.022

0.075 0.179

0.049 0.166

0.022 0.063

0.087 0.060

0.086 0.124

0.050 0.160

0.040 0.138

0.009 0.037

0.064 0.112

0.058 0.137

0.038 0.122

0.021 0.107

0.0180.003

Mushroom body

50

100

500

1000

5000

In
te

ns
it

y

0.149

0.472 0.237

0.980 0.980

1.000 1.000

0.000 0.000

0.794 0.420

0.980 0.781

1.000 1.000

1.000 1.000

0.000 0.000

0.980 0.833

0.980 0.980

1.000 1.000

1.000 1.000

0.0000.000 0.000

1.000

Synthetic 50

50

100

500

1000

5000

In
te

ns
it

y

0.069 0.267

0.034

0.064 0.041

0.085 0.305

0.075 0.313

0.043 0.128

0.087 0.172

0.087 0.270

0.073 0.333

0.060 0.288

0.014 0.099

0.065 0.309

0.055 0.338

0.046 0.290

0.037 0.235

0.0660.005

Synthetic 2000

50

100

500

1000

5000

In
te

ns
it

y

0.50 1.00 1.50 2.00

0.50 1.00 1.50 2.00

0.50 1.00 1.50 2.00

0.50 1.00 1.50 2.00

0.50 1.00 1.50 2.00

25 50 75 100 125

25 50 75 100 125

25 50 75 100 125

25 50 75 100 125

Figure 3 UDWT and Emax parameter scanning for comparison with Smax. (A) Jaccard indices obtained by scanning the
“sensitivity” parameter of the Icy spot detector (UDWT) for original and image with corrected anisotropy. Full line shows the
average Jaccar index obtained by the the two manual annotations (+ and × symbols). Note that the synthetic images use the
computer generated ground truth, not an manual annotation. The scale for the parameter scan was chosen as matching the objects
size (as specified by the authors). The values obtained demonstrate that the quality of the Icy spot detection can be improved for
every case, except the embryo image, by interpolating the image in the z direction prior detection (although, without reaching the
accuracy obtained by Smax). However, the same interpolation step decreases the accuracy of the same detector in the case of the
real C. elegans embryo image, as the False positive rate increases drastically, lowering down the Jaccard index. (B) Jaccard indices
(mean for the two ground truths for manual annotations) obtained by scanning the two parameters of eMax, applied directly on
original images (left side of group) or after anisotropy correction (right side of group). Gray squares indicate cases where the
provided implementation of the algorithm couldn’t perform the detection. Color ranges from red to green, rescaled using all Jaccard
index values obtained on each dataset. For both methods, the parameters corresponding to the best Jaccard index for raw and
anisotropy corrected images are emphasized. Parameters corresponding to the best Jaccard index for raw images were used for the
comparison with Smax provided in Figure 2.
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Figure 4 Evolution of Smax results with the number of scales used in the filter bank for three level of object sizes variability within a
given dataset. The plot shows the Jaccard indices obtained on a synthetic images containing 1000 objects of 7 pixels in diameter,
with sizes randomly varying from one to three pixels (curves from top to bottom) around that diameter. The dashed line indicates
the chosen number of scales used as a default for the filter bank of Smax.



In vivo memory trace analysis by large-scale 
automated tracking of single neuron activity 
 
Felipe Delestro1☆, Lisa Scheunemann2☆, Mélanie Pedrazzani2, Paul Tchenio2, Thomas Preat2* 
and Auguste Genovesio1* 
 
1 Computational Bioimaging and Bioinformatics, IBENS, ENS, INSERM, CNRS, PSL, 46 rue d’Ulm, 75005 Paris, France.  
2 Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL, 10 Rue Vauquelin, 75005 Paris, 
France. 
 
☆ equal contribution 
 * co-correspondence: auguste.genovesio@ens.fr, thomas.preat@espci.fr 
 
 

Abstract 
Long-term memory (LTM) formation is a fundamental function of the brain. However, much             
of this complex process remains to be understood, thus constituting an active research area.              
Impediments to progress are primarily due to critical experimental barriers. Indeed, the LTM             
research community has not yet succeeded in devising an in vivo approach that can              
combine the advantages of exhaustively observing all neurons dedicated to a given type of              
stimulus, and simultaneously achieve a resolution that is precise enough to capture            
individual neuron activity. Current experimental data from in vivo observations are either            
restricted to a few dozen single neurons, or are based on larger brain volumes but at a low                  
spatial resolution. Consequently, fundamental questions such as whether LTM formation          
increases the response level of responsive neurons or if it recruits new neurons remain to be                
answered. In Drosophila melanogaster, the mushroom body (MB) represents the olfactory           
memory center of the brain. In this work we present an experimental setup coupled with a                
computational method that provides in vivo measurements of the activity of hundreds of             
single neurons, by exploiting confocal 3D imaging over time of the whole MB cell body layer                
in vivo while it is exposed to olfactory stimulation. Our fully automated procedure enabled the               
high-throughput analysis of approximately 500 single neurons from the whole MB cell body             
layer of each of the 216 flies in various conditions. Using this approach, we identified for the                 
first time an increase in responsive neurons count after LTM formation and a stable single               
neuron signal, suggesting neuronal recruitment. We predict that this method, which should            
further enable studying the population pattern of neuronal activity, has the potential to             
uncover fine details of memory formation and plasticity. 

Introduction 
The uniqueness of each human being is largely defined by what is learned and remembered               
during a lifetime. However, we are still far from deriving an integrated view of the dynamic                
actions that occur during a single memorization event. In particular, the specific plasticity             
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changes that take place during the consolidation and remodeling of long-term memories are             
poorly understood 1. LTM is thought to be stored in neuronal populations showing physical or               
chemical changes as a result of a learning event, and whose activation by the original stimuli                
results in memory recall 1,2. The existence of these so-called memory engrams was first              
proposed a century ago3. Since then, neuropsychologists and neurobiologists have made           
great efforts in identifying and characterizing memory engram cells in the brain 1.             
Deciphering how stable neuronal information is coded remains one of the greatest            
challenges in neuroscience due to the hundreds of thousands of highly interconnected            
neurons that compose a memory network in humans and mammalian model systems. 
  
In the context of detecting memory traces, genetic approaches including immediate early            
gene-based strategies have clearly advanced our understanding of how neural activity           
underlies behavior, i.e. how the functional dissociation of short-term memory and long-term            
memory (LTM) may be realized within different brain structures 1,3. For example, it is widely               
accepted that activation of the transcription factor CREB represents an indispensable step in             
commencing the structural synaptic changes necessary for LTM formation 4. Additionally,           
recent developments in the field of in vivo imaging tools have allowed neuroscientists to              
characterize cellular and molecular processes underlying memory formation with         
unprecedented precision 5. But since memory encoding generally takes place in a subset of              
sparsely distributed neurons within a larger assembly, the network dynamics during memory            
consolidation remains difficult to tackle. A principle bottleneck comes from the lack of a              
suitable methodology to study memory-specific biochemical processes in heterogeneous         
neuron assemblies. Despite immense improvements regarding in vivo imaging techniques,          
recording neuronal activity that combines high temporal and spatial resolution with a            
large-scale population analysis remains unrealized to date. In addition to these technical            
limitations, addressing plasticity changes that occur within a whole memory network at a             
single-cell resolution is difficult in rodent models due to the size of brain structures such as                
the hippocampus or neocortex. 
  
To overcome these limitations, we used the spinning disk imaging technology and developed             
a dedicated 3D tracking algorithm to detect single cells from a neuronal network and monitor               
activity changes from the cell body of individual neurons, which allowed to characterize a              
memory engram in vivo. To demonstrate the power of this novel approach, we proposed to               
answer a fundamental question in the field: during memory recall of a trained stimulus, is the                
LTM engram characterized by an increased intensity of responding neurons or an increased             
number of responsive neurons 6 (Figure 1A)? We applied this method using the Drosophila              
model, which is compelling in respect of size, behavioral complexity and tractability of             
cellular processes 7–9 (Figure 1B). 
  
The mushroom body (MB), the olfactory memory center of the fruit fly Drosophila             
melanogaster, is comparatively small but highly organized. Each MB hemisphere consists of            
approximately 2,000 Kenyon cells (KCs), whose cell bodies are densely packed at the MB              
calyx and whose axons first bundle within the peduncle and then form 5 discrete lobular               
structures (from the α/β, α’/β’ and γ neurons) 7. The KCs receive input from cholinergic               
projection neurons (PN) that transmit odor information coming initially from olfactory           
receptors neurons (ORNs) in the antennae and the maxillary palps, which then relay their              
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information to PNs in the antennal lobe (AL) 10 (Figure 1B). The ease of genetic manipulation                
in Drosophila has contributed to its development as a successful model organism, especially             
in the field of neuroimaging. Using in vivo imaging techniques with genetically encoded             
activity reporters, i.e. the calcium probe GCaMP 8, odor responses have been demonstrated             
at the level of the KC cell bodies that can be detected with single-cell resolution 11. Several                 
studies have shown that odor responses at the level of the MB are sparse 11,12. Because                
projections neurons are randomly connected to KC in each fly, the activity that a given odor                
elicits in the MB is not stereotypic, revealing global differences between individuals 13. The              
MB lobes are innervated by a complex but highly structured modular network of             
dopaminergic neurons that transmit information about positive or negative stimuli 14. These            
dopaminergic neurons modulate MB intrinsic activity and tightly regulate behavioral outputs.           
Thus, the MB displays important features of a memory network: its sparse and             
non-hardwired coding is thought to be essential for accurate learning, since it minimizes the              
overlap between input stimuli and allows for plastic changes 15. Notably, the MB displays              
functional homologies to the hippocampus 16, and its consolidation processes are very            
similar to those of humans and mammals 4,9. 
  
Using a well-established conditioning paradigm, Drosophila can robustly learn to avoid an            
odor that was previously paired with electric shocks 7. Stable protein synthesis-dependent            
LTM is exclusively formed when fruit flies are exposed to 5x spaced training cycles, which is                
a specific conditioning pattern during which the training cycle is repeatedly experienced with             
intervening resting intervals 9. The MB is innervated by a well characterized pattern of              
anatomically discrete dopaminergic neurons (DANs) that provide the shock information          
during associative learning 17,18. Dopamine release modulates cAMP-dependent signals of          
odor-evoked activity in MB intrinsic Kenyon cells (KCs), which shapes plasticity of specific             
output synapses from the MB network that drive the behavioral avoidance response 19–21             
(Figure 1C). This unique situation permits researchers working in the field of Drosophila             
memory research to control the basic network that builds LTM and the plasticity changes at               
the level of odor-activated KC cell bodies directly reflect memory-dependent traces.           
However, although recent work has described MB anatomy in very fine detail 14, a qualitative               
and quantitative analysis of individual MB neurons remains difficult, since its defined            
sub-classes are functionally heterogeneous and odor responses are sparse. Several studies           
have found activity signatures that are specific to LTM 22,23. In detail, these studies identified               
increased calcium responses to the trained odor in the axons of specific subpopulations of              
KC, representing an early LTM-specific activity signature in α/β neurons and a late-phase             
signature in γ neurons. Nevertheless, these studies analyzed large sets of neurons at the              
MB lobes level, and measured a global increase in odor response intensity after LTM              
training. Consequently, the underlying mechanism remains inconclusive and it is still           
unknown if this results from an increase in odor responsive neurons or if additional neurons               
are recruited into the LTM engram. MB neurons at the axonal level are beyond individual               
resolution of current 3D in vivo imaging approaches. Therefore, we focused on the cell body               
layer of the MB to analyse memory traces on a single cell level. Since cellular calcium                
signals should reflect back-propagating neuronal activity from the axons, response patterns           
of MB cell bodies to a learned odor are thought to represent the plasticity changes that have                 
occured during LTM formation.  
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To summarize, the fact that KCs are organized in a very dense structure together with the                
functional heterogeneity and sparse responses of the MB memory network has hindered any             
detailed investigation of the significance, as well as the formation dynamics, of identified             
LTM traces. Technically, these constraints originate, on one hand, from the use of             
two-photon microscopy, which offers a good resolution but is too slow to image a complete               
set of MB neurons during a single odorant presentation in 3D and over time. On the other                 
hand, population analysis of the entire MB can only be achieved by an automated algorithm               
that tracks the approximately 2,000 MB cell bodies in 3D and over time, a challenge that has                 
remained unsurpassed to date 24. 
  
In order to detect and record activity changes of the KCs in this work, we simultaneously                
expressed a nuclear marker (mcherryNLS) and an activity reporter (the genetically encoded            
calcium reporter GCamp6f) and acquired their two spectral channels in 3D over time. By              
using a spinning disk microscope 25, we were able to overcome the temporal limitations and               
record the total assembly of MB cell bodies. To analyze the responses from a maximum               
number of MB cell bodies, we then developed a 3D tracking algorithm that simultaneously              
addressed three main challenges: the high number of densely packed somata, the 3D             
confocal anisotropy, and the presence of erratic and non rigid movements in living flies.              
Single nuclei detections and tracking could then be used to monitor activity and record odor               
responses from individual neurons of whole MB cell bodies in several conditions. To             
demonstrate the potential of this system, we have quantitatively assessed that after LTM             
formation, more neurons respond to the trained odor, while response intensities remain            
unchanged, suggesting that LTM is supported by a recruitment of neurons.  

Results 
Conditioning and 3D+time multiconfocal imaging of mushroom       
bodies in vivo 

In order to image a large cellular population with a spatial and temporal resolution that allows                
detection of activity from single cells, we needed to overcome the speed limitations imposed              
by point scanning and two-photon microscopes. For this, we used a spinning disk             
microscope that offered a faster acquisition at the cost of a slightly lower resolution 26.               
Indeed, such a short stimulus response duration for odorants in the MB imposed a high               
frequency of 3D stack acquisition, thus defining the maximum number of 2D images that              
could be obtained in a 3D stack at a given time point. Conversely, in order to obtain the most                   
information given the resolution limit imposed by the point spread function (PSF) in the axial               
direction, a maximum z-step size between 2D images was imposed (see online methods for              
details). After optimization, acquisition of the entire population of the Drosophila memory            
center (i.e. the KCs of the MB) at the cell body level was made possible. To analyze and                  
compare memory-dependent activity in these cells, we trained two groups in parallel. One             
group was exposed to an associative conditioning that paired the odor octanol with electric              
shocks, following a well-established spaced paradigm for inducing LTM in Drosophila 9            
(Figure 1D). The second group received the odorant and electric shock stimuli with a time               
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delay that does not allow the formation of associative memory, which served as the unpaired               
control (Figure 1D). After a 24-h consolidation phase following LTM conditioning, flies were             
dissected to allow direct access to their brains, which were then imaged under the              
microscope, while simultaneously presenting octanol odor pulses. In this manner, we could            
record KC activity during memory recall (Figure 1D). For dissection, flies were affixed ventral              
side up on a coverslip and the head position was stabilized using an alignment wire (Figure                
1E). We then turned the coverslip over to open a small window in the coverslip, which                
allowed us to open the cuticle at the back of the head while leaving the rest of the fly intact 8.                     
Underneath the cuticle, the brain is surrounded by fat tissue and a thin layer of trachea that                 
hinder direct observation of the KC cell bodies. In order to maintain a high degree of normal                 
brain function, we gently cut the trachea and pushed both the fat and trachea aside, without                
removing either tissue (Figure 1E). Another important issue is the pulsatile organ (i.e. the              
heart tube), which terminates at the posterior edge of the brain. The rhythmic activity of the                
pulsatile organ can strongly move the brain, which is deleterious for in vivo brain imaging.               
Contrary to our procedure, imaging studies that aim single cell resolution disrupt the             
physiological function of the pulsatile organ by disconnecting its innervating muscles, which            
may affect brain physiology 11. Interestingly, our dissection technique prevents strong activity            
in this organ, and the remaining fat tissue serves as a physiological buffer that minimizes               
shifting of the brain. Using this procedure, we obtained a level of brain movement that could                
be corrected using image processing, allowing us to record brain activity in the presence of a                
functional pulsatile organ (Figure 1E). 
 
This fly preparation provides direct optical access to the MB neurons. Taking advantage of              
the precise genetic targeting techniques available in Drosophila, we co-expressed the           
nucleus marker NLSmcherry (red) and the calcium sensor GCaMP6f (green) in all KCs for              
subsequent cell detection and response analysis, respectively. This step ensures that only a             
small part of the brain is labeled, minimizing the out-of-focus background. We then             
confirmed that expressing these fluorescent reporters in the MB did not interfere with LTM              
formation (Supplementary Figure 1). Next, the fly preparation was positioned within a            
custom-built odor delivery system under the microscope (Figure 1F). This system uses serial             
air dilutions to maintain a constant airflow of 1.25 L/min at the level of the fly’s antennae.                 
Switching between clean and odorized air streaming using synchronous two-way valves           
creates odor or air pulses; the odor concentration was thus set to 1/500. The open head                
capsule, covered in Drosophila Ringer’s solution and fully isolated from the odor delivery             
system, was positioned under the objective of the microscope (Figure 1F). All flies were              
exposed to the same sequence of stimuli, alternating between 5s of odor stimuli or air               
control pulses and 35s of no stimuli (see online methods). We acquired both spectral              
channels in parallel, with red NLS mcherry labeling for KC nuclei and green GCaMP6f for               
calcium activity. By using an acquisition speed of 20 ms per 2D image, we could obtained                
3D stack of 45 2D images every 900ms. This ensured that the 3D stack covered the whole                 
3D zone of the KC somata continuously, with z-step size of 1.5 µm between two 2D images.                 
This also ensured that any event lasting longer than 900ms could be captured. The volume               
rendering of a raw 3D stack as well as some maximum intensity projections are displayed in                
Figure 1F and Supplementary Video 1. This demonstrates that imaging the entire Drosophila             
memory center, i.e. the MB cell body network, at a single-cell resolution is feasible, and               
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opens the door to an unmatched analysis of full population activity dynamics underlying             
memory-dependent plasticity. 
 
 

 
Figure 1. Biological model and data acquisition. (A) In naïve flies, a small population of neurons                
are activated upon odor stimulation (represented by green dots). LTM conditioning consists in a              
repeated presentation of an odor paired with electric shock. After LTM formation, the overall signal               
was shown to increase. Therefore, to illustrate the capability of our method, we seek to measure if                 
LTM traces was either made from an increased population of responding neurons, or from the               
increased intensity of the originally responding neuron. (B) Frontal view of the Drosophila             
melanogaster olfactory system. Olfactory receptor neurons of the antennal nerve project to individual             
glomeruli of the antennal lobes, where they synapse with projection neurons and with local              
interneurons. From the antennal lobes, the olfactory information is conveyed by projection neurons to              
the mushroom body (MB), the olfactory learning and memory center, and to the lateral horn. Upon                
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odor stimulation, a stereotypic pattern of glomeruli activity is observed in the antennal lobe, while the                
pattern of responses of Kenyon cells is not stereotypic because projections neurons are randomly              
connected to Kenyon cells in each fly. (C) Details of the MB innervation, where the Kenyon cells                 
receive odor inputs from projection neurons as well as aversive shock information via dopaminergic              
inputs. Briefly, a specific population of dopaminergic cells from the PPL1 cluster, namely MV1, V1 and                
α3, is thought to convey the shock information to axons comprising the horizontal lobes of the MB (α,                  
α’ and γ heel). The co-activation of KCs then leads to plastic changes at the level of the KC and KC                     
output synapses, and LTM is retrieved by the specific MB output neurons (MBONs), V2. (D) The                
spaced conditioning protocol, which allows flies to pair the odor information to the electric shocks and                
forms a long-term Memory (LTM). (E) Details of the dissection process, in which the MB is exposed                 
for imaging. (F) Top-left : odor delivery system which simultaneously allows image acquisition and              
odor delivery to the fly. Bottom-left: 3D volume rendering of a 3D stack after acquisition. Right:                
maximum intensity projections of nuclei and signal channels along Z axis (top) and Y axis (bottom) of                 
a 3D stack. Scale bar is 10µm 

Fully automated monitoring of densely packed single neuron        
activity 
 
After image acquisition, a single 3D movie consisted of 120 consecutive 3D stacks of 45 2D                
images each. The tracking algorithm consisted in four steps: 1) anisotropy correction, 2)             
spots detection, 3) rigid and non rigid registrations of those detections and 4) reconstruction              
of trajectories through density based clustering of those registered detections. First, the            
uneven shape of the 3D Point Spread Function (PSF) and the distance between two 2D               
images (1.5µm) being 10 times larger than between two pixels within a 2D image (0.16µm),               
made that the resolution was much lower in the z axis than in the x/y axes. Anisotropy of 3D                   
stacks in fluorescence microscopy is common. However, it is often overlooked in subsequent             
image analysis leading to suboptimal precision of 3D spot detection algorithms, especially in             
the axial direction. The first step of our approach lowers down the aforementioned effect:              
void between consecutive 2D images in a 3D stack was artificially filled with 9 interpolated               
2D images using cubic splines (see the left panel of Figure 2A). This could not correct for the                  
anisotropy of the PSF but produced cubic voxels more relevant to the 3D convolutions              
performed at the second step. For the second step (spot detection), in order to capture small                
variations in nucleus volume, the interpolated 3D stacks were convolved with a bank of 10               
isotropic 3D Gaussian filters ranging in size around the average nucleus diameter. This             
process produced, for each input 3D stack, 10 output 3D stacks (one per filter), each               
emphasizing a slightly different spot size (see Figure 2A). The average nucleus size, the              
sole parameter of the spot detection step, could easily be estimated from isolated nuclei. 3D               
local maxima were then identified from each of those output 3D stacks and partitioned into               
background noise or actual nuclei signal thanks to a two component Gaussian mixture             
model fit based on their intensity level. Indeed, local maxima in theory should follow a               
bimodal intensity distribution since those located on nuclei are expected to be significantly             
brighter than those found in the background noise. Remaining maxima corresponding to            
nuclei on each filtered 3D stack were drawn with their original intensity into a single empty                
3D stack. This aggregated signal was then merged by convolution with a Gaussian filter              
matching the average nucleus size. These processes, at end, enabled reconstruction of a             
3D stack with denoised spots. 3D maxima locations (x,y,z) extracted from these artificial 3D              
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stacks were found to be much closer to the ground truth than the one obtained with any                 
other existing methods, as assessed by comparison made on synthetic simulations and on             
manually annotated data (see Figure 2A describing the spot detection method and            
Supplementary Figure 2 describing the evaluation against other methods). However, even           
with this efficient approach, the nuclei were so densely packed that many of them were               
frequently undetected over time leading to blinking detections and available multi-target           
tracking software to fail dramatically. We observed that those poor performances were            
mainly due to the inability of current tracking methods to reconstruct a correct linkage in the                
presence of a large amount of missing detections. Indeed the flickering of detections through              
time made it difficult to recover trajectories without further assumption on the content of the               
scene, a typical lack in broadspectrum application software. In order to overcome these             
issues and obtain reliable trajectories from this large set of scattered detections, we took              
advantage of the fact that the MB cell body layer is a tissue; thus even if the fly can move                    
with erratic movements and the tissue can bend locally, the distance between any two              
closeby nuclei should remain almost still in average during sequence acquisition. For            
instance, we do not expect nuclei to move in a way that they could cross each others or                  
exchange position. Therefore, as a third step, a rigid registration between all detected 3D              
points at all time steps was first performed to remove the global shift due to the large                 
movements of the fly (Figure 2A-B). Then this first coarse alignment was followed by a more                
precise elastic registration (see online methods and Figure 2C). After this procedure, all             
detections over time for each single neuron resulted in a clearly identifiable cluster, even if               
they would not contain detection for all time steps. Each of these clusters in this 3D+time                
registered dataset corresponded to a single trajectory in the unregistered images.           
Identification of each cluster was subsequently obtained in a fourth and last step by applying               
a 3D density-based clustering (DBSCAN) in the 3D+time registered dataset (Figure 2D).            
DBSCAN is a clustering method that offers several advantages. It automatically identifies the             
number of clusters, takes into account the local density and disregards isolated points             
considered as spurious detection or background noise without associating them to a group.             
Interestingly, we were able to estimate the optimal DBSCAN parameters from the data             
(Supplementary Figure 3). Once each detection was either associated to a cluster and             
therefore to a trajectory or dismissed as isolated background noise, missing detections in             
each trajectory could easily be reconstructed by interpolation in the original coordinates            
(Figure 2E). In addition, merged trajectories of N objects could also easily be identified as               
those clusters containing about N times the right amount of detections, be split and              
individually recovered (Supplementary Figure 4). A careful evaluation of the tracking           
algorithm using both manually annotated and synthetic datasets demonstrated that it           
outperforms currently available software for this task (see online methods and           
supplementary figure 12, 13 and 14). Complete extraction of the raw signal intensity in the               
GCaMP channel was subsequently obtained by gathering the average intensity in           
non-intersecting volumes around all successive positions along each trajectory. Figure 2           
shows the raw (Figure 2F) and normalized (Figure 2G) signals for all neurons tracked in a                
single fly (see online methods for signal normalization). Since the process was fully             
automated, it was possible to run the same analysis in parallel on many fly acquisitions using                
a computing cluster. As a validation step, 23 naïve flies that had never been exposed to                
octanol were each exposed to 45 seconds of no events, then 5s of air, then 35s of no event                   
then 5s of octanol then air again as described in Figure 2F-G (see online methods for full                 
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details). The full sequence was simultaneously imaged and automatically analyzed. The           
results indicate that an average of 500 neurons per fly were tracked (Figure 2H). From our                
evaluation on manually annotated and synthetic datasets, we could assess that almost all of              
them were true positives matching real neurons (see supplementary figure 13). Furthermore,            
comparing the neuron count responding in the air window versus the neuron count             
responding in the octanol window revealed a significant difference, demonstrating that the            
odor signal could be captured by monitoring the single-cell signal of KC soma (Figure 2I). 
 

 
Figure 2. Detection, tracking and signal measurement for densely packed single-neuron           
analysis. (A) 3D nuclei detection method with anisotropy correction, multiscale detection and filtering             
that produces 3D spots locations. While we show that results are more accurate than the one                
obtained with available spot detection methods for this task, they still contain spurious detection or               
regularly miss detecting nuclei along the whole sequence leading tracking software to fail in this               
context. (B) Detected positions of nuclei in 3D for every time frame of a 3D+time sequence grouped                 
together. Colormap represents time and the bottom image is a zoom in the center of the cloud. (C)                  
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The same 3D+time point cloud after rigid and non-rigid registrations forms visible clusters. (D)              
Clustering of dense region by DBSCAN enables to identify those clusters and remove noise. (E) Final                
nuclei trajectories in the original spatial coordinates are identified by successive individual detections             
over time with the same cluster id (here the same color). Merged trajectories and missing detection                
can easily be reconstructed at this point (see Supplementary Figure 4) (F) For each detected nucleus,                
the raw GCaMP signal is measured over time in a volume around the nuclei. 500 individual neurons                 
signal from the same MB cell bodies are displayed here. (G) Normalized signal displayed only for                
responsive neurons selected has having a peak above 0.1 (see online methods). (H) Count of               
responsive neurons per fly for a group of 23 naïve flies. (I) Mean intensity of responsive neurons per                  
fly during air and OCT stimulation windows showing a highly significant difference (Wilcoxon             
signed-rank test, p-value: 7.3089e-68). 
 

Long-term memory formation is supported by an increase of         
responsive neurons  
 
Next, we asked whether this method would allow analyzing whole population memory traces             
in the Drosophila MB. For this, flies were exposed to the 5x spaced training cycles of octanol                 
and electric shock pairings that are classically used to induce LTM (Figure 1D). As an               
unpaired control, a second group of flies received non-overlapping odor and shock            
presentations, which does not allow for the formation of associative memory (Figure 1D).             
After the 24-h consolidation phase, flies were dissected and the entire KC cell body              
population was imaged as previously described for the naïve group. Here, presenting            
octanol during image acquisition resembles the situation during memory retrieval. Data           
analysis was performed automatically, identically and in parallel for the two groups.  
 
A minority of flies displayed either no clear increase of neuronal activity in response to the                
odorant presentation, or non-specific KC activity. We therefore developed an automated           
quality control for odor responses that we used as a filter to identify responsive flies, and we                 
excluded non-responsive flies from our analysis. The number of excluded flies was close             
between the different conditions: out of 36 fly acquisitions in the paired condition and 40 in                
the unpaired condition, a total of 29 paired flies and 27 unpaired flies passed our automated                
quality control (Supplementary Figure 5). The results from the automated analyses are            
presented for two examples from the unpaired control group (Figure 3A) and the paired              
group (Figure 3B). The volumetric reconstruction of the KC cell bodies shows the GCaMP              
activity during the octanol (OCT) response window, with time traces showing the normalized             
signal from the individual neurons over the whole acquisition time (Figure 3A-B). At any time               
point, the response level of an individual neuron can be assessed and located within the KC                
population (Figure 3A-B, additional examples can be seen in Supplementary Figure 6 and             
Supplementary Video 2). When comparing responsive neurons from the paired and unpaired            
groups, more neurons seem to respond to octanol in the paired group. Indeed, plotting the               
count for responsive neurons from both groups demonstrates that the number of neurons             
responding to octanol in the paired group is significantly higher (and almost doubled) as              
compared to the unpaired control (Figure 3C). In addition, the mean intensity of responding              
neurons was not significantly different between the paired and unpaired groups (Figure 3D).  
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We wondered whether this effect could possibly result from the fluorescent glow produced             
by an increased GCaMP signal in neighboring cells. If this were the case, an increased               
neuron response intensity would create an artificial increase in the responsive neuron count.             
To test this hypothesis, we temporarily excluded from the analysis the signal of several              
responsive neurons, such that none of the remaining neurons could be closer to one another               
than a distance equivalent to twice the size of an individual soma. When iteratively removing               
neurons that were too close to one another, the dimmest was always selected first in order                
to remain consistent with our hypothesis. Once the responding neurons were filtered in this              
way, the neuron count for the octanol-paired group remained significantly higher than for the              
unpaired group (Supplementary Figure 8). This demonstrates that the increase in neuron            
count cannot be explained by a glowing effect due to a hypothetical increase in the intensity                
of the GCaMP signal.  
 
To control if this increased neuron count from the wild-type octanol-paired group could be              
specific to the trained odor and not due to the LTM conditioning in general, we trained flies to                  
pair an electric shock with a second odor, methylcyclohexanol (MCH). Again, we trained one              
group by pairing MCH with shocks, and a second unpaired control group received MCH and               
electric shocks at separate time points. During image acquisition, OCT was presented to the              
flies 24h later and the responsive cell count was not found to be significantly different               
(Supplementary Figure 7). Thus, the increase in responsive neurons observed in Figure 3C             
was specific to an LTM association between OCT and  electric shock. 
 
A hallmark of LTM across phyla is the requirement of repeated training cycles with resting               
intervals, while the presentation without resting intervals, i.e. massed training, will not lead to              
protein-synthesis-dependent LTM 27. In flies, 5x massed training leads to a memory called             
long-term anesthesia-resistant memory (LT-ARM) that is not sensitive to the inhibition of            
translation 9. We therefore tested the neuron count of odorant-responsive cells after 5x             
massed training and again compared the paired with the unpaired group as it was done for                
5x spaced training (Figure 3C). Importantly, no increase in the number of responsive             
neurons was observed for the paired 5x massed group demonstrating the specificity of             
additional responding neurons to LTM formation (Figure 3C).  
 
To further prove the specific role of neuronal recruitment for LTM, we targeted the              
knockdown of the protease crammer (Cer) in the MB by RNA interference (RNAi). Cer              
belongs to the cathepsin family, an important regulator of gene expression and specifically             
involved in LTM formation leaving short-term as well as LT-ARM performances unperturbed            
28. If the recruitment of neurons is specific to LTM formation, we expected to observe no                
increase in responsive neurons in these flies after LTM training. Indeed, when we imaged              
Cer knockdown flies after 5x spaced training, no increase in the count of odor-responsive              
neurons was detected between paired and unpaired trained flies (Supplementary Figure 11).            
However, we suggest that response pattern to the naive odor stimuli after Cer knockdown              
was altered because, while there was no difference between groups, we found a high level               
of overall odorant responding neurons. Importantly, in all of these tests, the number of KC               
detected using the mCherry reporter did not differ between the different conditions            
(Supplementary Figure 9).  
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Altogether, we described a 3D imaging and automated response tracking method for an             
entire memory center that allows quantitatively and qualitatively capturing odor responses.           
By using this system to compare odor traces from individual neurons, we suggest that              
neurons are recruited during LTM consolidation to participate within the memory engram that             
encodes the behavioral response. 
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Figure 3. Detection of responsive neurons from spaced and massed trained flies. (A) An              
illustrative sample from the unpaired control group after 5x spaced training. The volumetric             
reconstruction on the left shows the mCherry nuclei signal together with GCaMP activity during the               
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OCT response. On the right, the GCaMP signal is shown together with the detected nuclei. The plot                 
shows the normalized signal from the individual neurons. Light gray spheres and lines represent              
neurons that did not respond, and the dark gray color indicates neurons that responded. Three               
neurons are highlighted in pink, yellow and blue (with the corresponding signal of the same color) to                 
show that the signal of individual neurons can be monitored in different parts of the mushroom body.                 
(B) An illustrative sample from the paired 5x spaced conditioning group using the same visualization               
as in panel A. (C) Comparison of the numbers of responsive neurons per fly between the paired 5x                  
spaced conditioning to form LTM (n=29) and the unpaired control (n=27) groups (Mann-Whitney             
two-sided test p-value: 0.001098) as well as between the paired 5x massed conditioning to form               
LT-ARM (n=14) and the unpaired control (n=16) groups (Mann-Whitney two-sided test p-value:            
0.97894). Results show that the number of responsive neurons increases after paired conditioning but              
not after massed paired conditioning. (D) Comparison of the mean intensity of responsive neurons per               
fly at stimulus time in the same flies and conditions as in panel C. Statistical tests could not reject the                    
null hypothesis of an equal mean distribution of intensity (t-test p-value 5x spaced paired vs unpaired                
p-value: 0.882074 and t-test p-value 5x massed paired vs unpaired p-value: 0.5291736). 
 

Discussion 
 
The search for the memory engram remains one of the most challenging goals in modern               
neuroscience 1,2. Experimental attempts to identify specific memory engram-bearing cells          
have proven largely inconclusive due to methodological limitations 1. Recent “memory           
engram technology” developed in mammals allows the labeling and subsequent          
manipulation of specific memory engrams in particular brain regions 3. Nevertheless, most of             
these technologies require better temporal and spatial resolutions. Interestingly,         
“three-dimensional imaging of intact brains to study the functional properties of engram            
circuits in vivo by calcium imaging of engram cell activity in multiple brain regions” has been                
proposed as a future research direction in the field by a recent review on memory engrams 1. 
 
Here, we implemented 3D live imaging of the whole Drosophila melanogaster MB cell bodies              
and subsequently developed a fully automated neuron tracking and monitoring system to            
quantitatively compare memory traces on a large scale. The sparsity of the neuron response              
dictated that a 3D volume containing the whole mushroom body cell bodies should be              
acquired at single-cell resolution, and at a time frequency fast enough to image the odor               
responses. These strong constraints pushed the spinning disk confocal imaging to its limits             
and produced 3D stacks containing many densely packed fluorescent spots. For this reason,             
available generic spot detection methods produced highly inaccurate results, which did not            
permit obtaining reliable 3D positions of soma29–31. As a consequence, none of the current              
state of the art algorithms used to track multiple spots through time could produce              
satisfactory results. To address these issues, we developed dedicated methods for densely            
packed spot detection and tracking that took advantage of our specific context. We first              
proposed a dedicated spot detection approach that could perform a maxima accumulation            
across multiple scales of anisotropy-corrected 3D stacks. This method, particularly efficient           
on densely packed spots laying on a uniform background, made it possible to retrieve many               
more spot locations than current state of the art methods as assessed quantitatively on both               
synthetic and real manually annotated 3D stacks (see supplementary figure 2). However, the             
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ability of spot detection to constantly and accurately detect all nuclei along the whole              
sequence remained unreached. Indeed, blinking detections made long time tracking of           
individual nuclei difficult with classical linkage methods. Based on this initial set of noisy              
detections, we then developed a robust multi-tracking approach that takes advantage of the             
fact that nuclei are not freely moving but belong all to the same tissue, and therefore remain                 
in average at a relatively still distance from their direct neighbors even when the tissue is                
bending or shift altogether. We then made the reasonable assumption that nuclei cannot             
cross each other and that registering in a non rigid way all 3D detection overtime should                
form local clusters corresponding each to most positions of a trajectory. Indeed, after rigid              
and non rigid registrations, so as to cancel the effect of large global spatial shifts and                
non-rigid deformations of the tissue, all detections of the same nucleus over time were closer               
together, while detections from different nuclei were spread apart from each other. A             
density-based clustering performed on this registered dataset enabled us to group and label             
all detections of individual soma over time. In this setup, it was possible to recover many                
individual trajectories, to split artificially merged spots into individual soma, and to            
reconstruct all missing detections. Furthermore, thanks to these identified trajectories, it was            
possible to retrieve the intensity signal of individual neurons through time from the GCamp              
channel. Importantly, we demonstrated using manually annotated and synthetic 3D+time          
datasets that our approach outperformed any other existing methods to the purpose of             
tracking densely packed nuclei (see supplementary figure 13 and 14). 
 
Our approach made it possible to robustly recover the signal of approximately 500 single              
neurons from the whole MB cell body layer for each one of the 216 flies in vivo. This level of                    
throughput, which has never been attained before, offers new perspectives as it is             
large-scale (encompassing the whole MB cell bodies) and can operate with single-neuron            
precision. Although the MB contains approximately 2,000 neurons per hemisphere, our           
imaging conditions could only successfully resolve about a 1,000 neurons by manually            
counting NLS-mCherry-positive neurons (Supplementary Figure 2C: TP+FN in Smax         
represent the manual count of all nuclei in one 3D stack at a fixed time point). Furthermore,                 
synthetic simulations demonstrated that when processing artificial MB populated with 2,000           
labeled neurons, our system was able to track robustly about a 1,000 neurons, almost all of                
them being true positive (see Supplementary Figure 13C). Therefore, we estimate that our             
approach, limited by the resolution constraint, is capable of tracking correctly about half of              
the 1,000 manually identified MB neurons within our acquisitions and do not generate false              
positive. In total, this suggests that we can locally detect about one in four neurons.               
Nevertheless, this subsampling is uniformly distributed over the whole mushroom body, and            
provides access to a broad view with unprecedented precision. Moreover, given that we             
were able to capture the GCaMP signal from our entire acquisition, we are confident that our                
method can be used to describe a comprehensive response pattern of MB neurons to a               
given odor.  
 
By comparing flies that had either undergone an LTM-specific associative training or an             
unpaired protocol (in which training stimuli were presented with a time lapse that did not               
allow any association), we discovered for the first time that during LTM retrieval (in contrast               
to other memory components tested by massed training) more neurons respond to the             
trained odor. We therefore hypothesize that new neurons are recruited within the MB             
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network to build an LTM engram. This effect was specific to the trained odor, since               
presentation of the control odor that was given without electric shock during conditioning did              
not differ between the paired and unpaired groups. Moreover, we could show that interfering              
specifically with LTM formation using an RNAi-mediated knockdown of Cer, we lost the effect              
of an increased number in odorant-responding neurons during LTM retrieval. Taken           
together, our approach made it possible to robustly follow odor responses over time on a               
single-cell level, as well as answer a fundamental question about the temporal evolution of              
the memory engram network. 
 
Contrary to short-term memory, it is well established that LTM is dependent on             
CREB-dependent signaling and de novo protein synthesis across phyla 4. However,           
questions about the ongoing reorganization and recruitment of neurons into the LTM engram             
continue to be highly debated 6,32. In recent years, the combination of transgenics and              
optogenetics has allowed neuroscientists to identify memory engram cells by detecting and            
tagging specific populations of cells that are active during different learning phases 3. In              
agreement with our results, one recent study found an activation of neurons in the prelimbic               
cortex during the retrieval of fear memory in mice in addition to those neurons active during                
stimulus presentation or early memory recalls 33. However, this study, like most studies on              
genetic tagging and whole population engram analyses in rodents, was performed in fixed             
samples, which lack temporal resolution and do not permit a qualitative analysis of the              
signals. 
  
In contrast to these findings, other studies have demonstrated that a consolidated memory             
trace, representing memory-dependent structural or molecular changes, can be restricted to           
neurons that were previously activated by the stimuli presented during associative learning            
6,34. Our own results demonstrate that during LTM retrieval, the intensity of responding             
neurons does not differ in paired flies as compared to the unpaired control. Thus, it is                
unlikely that LTM-dependent plasticity changes solely result from an increased excitability in            
stimulus-responding neurons.  
  
How can new odorant-responsive neurons be recruited into the memory engram? In            
mammals, it has been proposed that GABAergic interneuron dendrite dynamics play a            
potential role in cortical function and long-term circuit plasticity in mammals35. Release of             
inhibition by GABAergic interneurons in the hippocampus could also be used to define the              
sparse representation of learning stimuli in the hippocampus, and to determine which            
neurons participate in a given engram 36. Likewise, the sparse representation of odor             
responses in MB neurons is thought to be brought about by a GABAergic feedback loop 37.                
This GABAergic input to the MB is executed by the anterior paired lateral neuron (APL), and                
disruption of the APL-MB feedback averts sparse odor representations in the MB 37.             
Interestingly, mild interference with APL inhibition, which causes a moderate increase in the             
number of odor responding neurons in the MB, leads to memory enhancement 38.             
Additionally, a recent study provides evidence for a direct inhibitory connection from            
dopaminergic neurons involved in aversive memory formation to the APL that likewise leads             
to memory enhancement. 39. Even though the involvement in LTM retrieval remains to be              
shown, neuronal recruitment as a result of LTM consolidation could be mediated by APL              
inhibition of MB activity. 
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A principal component of LTM across phyla is the spacing effect, training sessions need to               
be spaced by resting intervals in order to initiate LTM-dependent plastic changes 27. Thus,              
the spacing effect could act specifically on GABAergic feedback and release inhibition of MB              
neurons after LTM training. Another possible mechanism is the accumulation of           
subthreshold traces that could lead to a decrease in input resistance, thereby pulling             
neurons above the response threshold after spaced training. Indeed, it has been            
demonstrated that brief subthreshold events can act as Hebbian signals for long-term            
plasticity 40. Interestingly, several studies have demonstrated that neurons with high CREB            
activity are preferentially recruited into LTM engrams 41. Possibly, these neurons do not             
respond to naïve stimuli, but are more likely activated by an accumulation of subthreshold              
events during the repeated presentations of spaced training. Along these lines, one            
interesting direction for future studies would be to determine the dynamic evolution of the              
recruitment of MB neurons during memory consolidation. 
 
Altogether, we used the Drosophila MB as a unique memory network model and developed              
an imaging and activity tracking method that allows addressing whole population plasticity            
changes by following individual neurons in 3D and over time. Importantly, this method will              
also make automated 3D detection and activity tracking possible for many additional            
samples. Our approach offers the potential to acquire a precise count of responsive neurons,              
as well as to capture the spatial organization of responsive and non-responsive neurons.             
Although future studies will focus on performing acquisition during conditioning, the           
application of this approach should also open the door for dedicated rich euclidean             
graph-based spatial analyses of the memory engram. 
 

Online methods 
Fly conditioning 
For the training protocols, we used the odors 3-octanol (OCT) and 4-methylcyclohexanol            
(MCH) as the conditioned stimuli. The two odors, which have been widely used for              
conditioning experiments in Drosophila, can both be associated with an appetitive or            
aversive response.  
 
During training, groups of 50–100 flies were initially exposed for 60 seconds to the first odor                
(odor A: either 0.36 mM OCT or 0.325 mM MCH diluted in paraffin oil), during which time                 
they received 12 consecutive electric shocks (ES) corresponding to 1.5-second pulses of            
DC. After a 45-second rest period, flies were exposed for 60 seconds to the second odor                
(odor B), which was not paired with ES. This training cycle was repeated 5 times, with a                 
15-min resting interval. Flies were then kept in a vial with regular solid food. 
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Dissection protocol 
Flies were glued on a plastic slide using a biocompatible dental glue (3M ESPE Protemp)               
and pierced in the center, without any prior anesthesia. An alignment wire was used to               
maintain the Drosophila head in a correct position. The orientation of the head was adapted               
to the area of interest to be imaged so as to minimize the thickness of tissue the light must                   
travel through.  
 
Next, Drosophila heads were opened using very fine scalpels to remove a rectangular cuticle              
region (300 µm x 400 µm) covering the brain. The underlying fat tissue was pushed to the                 
corners of this window, and the tracheae were cut and pushed aside to obtain a clear view of                  
the brain. In general, all actions must be performed extremely carefully so as not to damage                
the glial cells that surround the brain, as well as the MB itself. All microsurgery was                
performed in the presence of a physiological fluid (Ringer's solution) to preserve the brain.              
The composition of this aqueous solution is as follows: 130 mM NaCl, 5 mM KCl, 2 mM                 
MgCl2, 2 mM CaCl2, 36 mM C12H22O11 (sucrose), and 5 mM HEPES-NaOH (Sigma-Aldrich).             
The pH of the solution is 7.38. 

Odor delivery system 
Two pumps were positioned upstream of the odor delivery system, one of which feeds a pipe                
circuit controlled by a series of solenoid valves. These valves made it possible to generate               
different stimulation configurations. The pipes were either immersed in bottles containing           
neutral paraffin oil for “air defect” and “air control” configurations, or bottles with added              
chemical product: 4-methylcyclohexanol (MCH, purity equal to 99%, Fluka 66360,          
Sigma-Aldrich) or octan-3-ol (OCT, purity greater than 95%, Fluka 74878, Sigma-Aldrich).           
Since these products are hydrophobic, the solutions were prepared in odorless paraffin oil             
(International VWR, Sigma-Aldrich); we used 1 mL of product dissolved in 100 mL of              
paraffin oil. The flow exiting this part of the assembly corresponds to one-third of the total                
flow delivered to the fly. The other two-thirds of the flow were generated by a second pump.                 
This second pump is connected to a pipe immersed in a bottle filled with neutral paraffin oil,                 
which creates a constant main airflow regardless of the chosen stimulation configuration.            
The final odor concentration arriving at the Drosophila antennae was 1/500.  
 
In order to prevent the odor from stagnating in the delivery chamber, another pump was               
used to evacuate the odor and avoid desensitization of the Drosophila olfactory receptors.             
The solenoid valves were individually controlled by logic signals from a NI-USB (National             
Instruments) card to define the desired pacing configuration. 

Image acquisition and odor presentation 
In our experiments, a Zeiss Examiner Z1 Axio microscope was used for data acquisition,              
equipped with an EMCCD (Electron Multiplying Charge Coupled Device, Photometrics Delta           
Evolve). The light excitation was performed by two diode-pumped lasers that emit at 491 nm               
and 561 nm (maximum power: 50 mW, Roper Scientific). The sample was scanned using a               
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CSUX1-M1N-E confocal head. This Nipkow disc, consisting of a spiral arrangement of            
20,000 50-µm diameter filtering holes each spaced at an interval of 250 µm, rotates at a                
maximum speed of 5,000 rpm synchronously with a second disc made of the same number               
of micro lenses (diameter: 250 µm). When the discs rotate, approximately 1,000 laser beams              
simultaneously scan the sample. A set of interference optical filters (model 59022 ET - EGFP               
/ mCherry, Chroma) were used to define the different spectral paths of the microscope, with               
each of the filters consisting of two transmission bands. The dichroic plate was used to               
reflect the excitatory light to the sample and transmit the emitted fluorescence to the camera.  
 
A set of mirrors and filters (Dualview Photometrics DV2) were mounted on the transmission              
path of the microscope upstream of the camera to allow simultaneous acquisition at the              
camera of two wavelengths (here, mCherryRFP as a nuclei marker and GCamPEGFP to             
monitor neuronal activity). Two water immersion microscope objectives are available on this            
device: Zeiss 40x ON 1.0 Vis-IR W apochromat 421462-9900 (working distance: 2.5 mm)             
and Zeiss 63x ON 1.0 Vis-IR W apochromat 421480-9900 (working distance: 2.1 mm).             
Although the initial tests were made with the 63x objective, all of the acquired data used the                 
40x. Finally, the entire system was controlled by the VisiView 2.1.3 software (Visitron             
Systems GmbH). 
 
Sequences of 3D stacks were saved in a 5-dimensional .tiff file, with axis XYZTC and data                
recorded in a 16-bit format. Each plane was 256 x 512 pixels, as we only used half of the                   
sensor for each channel (the full resolution of the camera is 512 x 512 pixels). The pixel size                  
was 0.16125 µm x 0.16125 µm, and the total size of each 2D image was 41.28 µm x 82.56                   
µm. The acquisition step size was defined as 1.5 µm, with 45 2D images being sufficient to                 
cover the depth of the whole MB. Therefore, each 3D stack can cover a depth of 67.5 µm.                  
Every 2D image had an exposure time of 20 ms, meaning that each 3D stack required 0.9                 
seconds to be acquired. Due to the high frequency of acquisition, we did observe an artifact                
that corrupted the 3D stack acquisition at random times (Supplementary Figure 10). As this              
issue arose in a sporadic manner, it was easy to deal with its detection, and the affected                 
time frames were automatically excluded from the analysis and replaced by interpolated            
data.  
 
In parallel to the image acquisition, flies where exposed to the octanol and air control stimuli                
as follows: 45 s of airflow - 5 s of air control pulse - 40 s of airflow - 5 s of octanol pulse - 40                          
s of airflow - 5 s of air control pulse - 40 s of airflow - 5 s of octanol pulse - 40 s of airflow.                          
The whole acquisition time was 225 s (250 frames). To capture odor responses for LTM               
retrieval, we used only the first air control pulse and octanol pulse for analysis (108 s / 120                  
frames). 
 

Rigid and non-rigid registration 
After spot detection is applied independently on each 3D stack of a sequence. The 3D point                
sets obtained are aligned over time using rigid, then non rigid registration algorithms. The              
purpose of the rigid registration is to cancel large shifts due to erratic movements of the fly                 
caused for instance by the pulsatile organ. The purpose of the non-rigid registration is to               
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correct for the movement caused by the elastic property of the tissue. Overall, the aim to                
align all 3D detections overtime is to form clusters in order to detect them and use them to                  
further identify, correct, split and complete trajectories. The rigid registration find a rotation             
and a translation that minimizes the sum of distance between couples of points from two               
consecutive time frames. Those couples of point are previously identified using the            
Hungarian algorithm. The non rigid registration uses the Coherent Point Drift algorithm 42 that              
considers the two data point set to register being realisations of closeby Gaussian Mixture              
Models (GMM). The algorithm forces the GMM to move from one set to the other coherently                
as a group to preserve the topological structure of the point sets.  

Manual annotation 
Manual annotation of 3D stacks were performed using the ImageJ “Cell counter” plugin 43.              
Two separate annotations were performed. One for the validation of the spot detection on              
static 3D stacks, and another one for the 3D tracking over time. For the spot detection, all                 
nuclei in one 3D stacks were annotated independently by two experts. It consisted in              
marking the central position in 3D of every nuclei present in the Mushroom body              
(mCherryRFP signal). The XY position was relatively easier to be assessed with accuracy,             
while the lower axial (Z) resolution of the 3D stacks makes the process more difficult. For this                 
last reason, annotated ground truth in 3D cannot be considered as a perfect. For tracking,               
manual annotations are typically time consuming and don’t guarantee a high accuracy 44]. In              
our case, it was impossible to annotate every individual object, even in one dataset in an                
exhaustive manner. Instead, 10 random nuclei were annotated by two experts along a             
sequence of 250 3D stacks for a total of 5000 data points. One nucleus happened to be                 
chosen by both annotators leading to 19 single nuclei annotated in total. In both cases               
(detection and tracking) the ground truth was exported in a XML file, so that a               
straightforward comparison could be done similarly against the results provided by ours and             
others methods (see supplementary Figures 12, 13, 14). 

Synthetic data 
Static and dynamic 3D stack were artificially designed to validate the spot detection and              
tracking algorithms. For static 3D stack, a real interpolated 3D stack was used to delineate a                
foreground using an otsu thresholding. A specified number of spheres were drawn into a              
similar sized volume and evenly spaced using the k-mean algorithm. These spheres were             
then convolved with a PSF measured from isolated spots in the original 3D stack to render a                 
fluorescent microscopy 3D stack. Anisotropy was obtained by subsampling the obtained 3D            
stack in the axial direction. Gaussian noise was finally added and the known coordinates of               
the spheres were saved as ground truth in a separated file. To generate sequences of 3D                
stacks to validate the tracking, we used the same approach than with static 3D stacks except                
that seed points used to generate the 3D stack at time t were the positions obtained at time                  
t-1. In this way the evolution of the outer bounds surrounding the foreground (that is the                
shape of the MB) would govern the movements of all somata in a smooth way resembling                
the natural movements and deformations of the MB during acquisition (see supplementary            
figure 12 and supplementary video 3). The known coordinates of all the spheres overtime              
were saved as ground truth in a separated file. A straightforward evaluation of our methods               
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and two other methods could then be performed by comparison of all results with this ground                
truth (see supplementary Figures 13 and 14). 
 

Quantitative evaluation for spot detection 
To evaluate and compare the accuracy of the spot detection methods, a detection is              
considered a true positive (TP) when it falls within a sphere of 1.5x nucleus radius around                
each annotated ground truth position. A detection is considered false positive (FP) when it              
falls outside all spheres. Note that if two detections fall in the same sphere, only one is                 
accounted as TP, the other one is accounted as FP. A sphere that enclose no detection is                 
accounted a False Negative (FN). There is no True Negative (TN) as no other object than                
nuclei are annotated and no tracking software result contains anything else than nuclei             
trajectories. As measure of accuracy we used the Jaccard index, a similarity index defined              
as the ratio between the intersection and the union of two sets. In our case the two sets are                   
defined by the detection results and the ground truth and the Jaccard index value is then                
TP/(FP+TP+FN). When the intersection of the detection results and the ground truth            
translates in a high amount of FP or FN relative to the TP, the Jaccard index approaches                 
zero and the detection results is considered bad quality. Oppositely, if perfect match             
between the detection results and the ground truth, FP=FN=0 and the Jaccard index value is               
one. The results for this validation can be seen in Supplementary Figure 2, for both synthetic                
and manually annotated images. 
 

Quantitative evaluation for tracking 
Tracking was operated by 3 software program 1) ours: memotrack, 2) ICY 45 and 3)               
TrackMate 46. ICY and TrackMate were chosen both because they were available online and              
because they received good evaluations from a recent spot tracking performance review 44.             
After tracking, trajectories that were interrupted (that is their duration were shorter than the              
total sequence) were discarded as the complete sequence was needed to read the GFP              
signal. Distances between the remaining trajectories and annotated ground truth (manual or            
synthetic) were computed and a trajectories with an average distance over time from its              
closest ground truth larger than 3 times the nucleus size was considered wrong (mostly to               
allow for the imprecision in the axial direction). Correct trajectories defined this way             
represented the true positives (TP) in supplementary figures 13 and 14. False Negative (FN)              
were defined as ground truth nuclei that did not match any trajectories. False Positive (FP)               
were software defined trajectories that did not match any ground truth. Note that this last               
category is unavailable for manually annotated data as it would necessitate to annotate all              
nuclei of a 3D sequence over time (about 250,000 data points!), which is virtually impossible               
for a human being. Finally, note that there was not such a thing as True Negative (TN) as                  
software program do not generally output trajectories corresponding to spurious objects that            
we anyway wouldn’t have annotated. 
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Signal normalization 
 
Raw single neuron signal was normalized prior selecting responsive neuron in order to align              
the background signal for all flies of a batch. Raw signal was smoothed (using a Butterworth                
frequency filter at 20% of the Nyquist frequency) and normalized the standard way with              
(F-F0)/F0 where F is the raw signal and F0 is the value of a moving average of radius 10                   
around the point being normalized (windows of 20 time frames). Neurons with normalized             
signal containing a peak in an OCT stimulation window with a value higher than 0.1 were                
considered responsive neurons. 

Batch alignment 
All samples in this study were acquired in three different batches separated by periods of               
time, modifications and moving of the spinning disk microscope. Therefore we performed a             
correction to minimize batch to batch variations also known as batch effect. Correcting for              
batch effect after acquisition by reference alignment is common in high throughput            
experiments as microarray gene expression 47 or high content screening 48. Each of the three               
batches contained different conditions. However, batches could be adjusted two by two            
using alignment of common references. The first batch contained naïve, spaced paired            
(OCT-OCT), spaced unpaired (OCT-OCT), spaced paired (MCH-OCT) and spaced unpaired          
(MCH-OCT) flies. The second batch performed after the manuscript review contained only            
the massed control, for both unpaired and paired flies. The third batch operated two months               
later contained spaced paired (OCT-OCT), spaced unpaired (OCT-OCT), massed control          
and the Crammer knockdown control flies. Alignment of batch 2 and 3 was possible using               
the massed control group as common reference. Alignment of these two batches to batch 1               
was possible using the spaced unpaired group (OCT-OCT) as common reference. As the             
scale of intensities of the peak of responding neurons for the same reference group had a                
tendency to vary per batch, the correction itself consisted in simply aligning the 99              
percentiles of those distributions and applying the correcting ratio similarly to all neuron             
signal of the remaining condition of the batch. We performed the alignment using the 99               
percentiles and not the max of the distribution to avoid outliers.  
 
  

Statistical tests 
When the statistic to be tested could be considered approximately Gaussian (as the mean              
intensity) we performed t-tests except when the data points were paired, then we performed              
a Wilcoxon signed-rank test. When distribution could not be considered approximately           
Gaussian (as cell count), we used the Mann-Whitney U test when comparing two conditions              
and the Kruskal-Wallis H tests when comparing more than two conditions together. All tests              
were two sided. N are mentioned either on the plot or the figure captions. 
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Code availability 
The entire code that enables using this method, reproducing these results and the tracking              
evaluation on annotated and synthetic data is available on Github at the following address:              
https://github.com/biocompibens/memotrack.   
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Supplementary material 
Supplementary Figures 
 
 

 
 
Supplementary Figure 1. Long-term memory scores for wild-type and transgenic flies used during             
conditioning and image acquisition. A value of zero indicates a random decision of the fly between the                 
paired and control odors. Transgenic flies displayed normal LTM performances. 
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Supplementary Figure 2. Quantitative comparison of our spot detection method alone (without            
tracking) against two other state of the art spot detection methods on a range of examples. Our                 
approach, called Smax here, is compared to the UDWT 31 and eMax 49 using 5 datasets to                 
demonstrate that it is particularly efficient at adressing the case where nuclei are densely packed. The                
two other methods were promoted in a recent review on spot detection 29. They are considered                
efficient and only require a few parameters. Importantly, they are widely used. (A) A 3D stack of C.                  
elegans with manual annotation of distinguishable nuclei. (B) A synthetic reproduction where ground             
truth is known. (C) A 3D stack of a Drosophila mushroom body with a large quantity of manually                  
annotated packed nuclei. (D) A synthetic reproduction where ground truth is known. (E) A set of                
manually annotated centrioles from ependymal cells. A volumetric reconstruction and an axial            
maximum intensity projection are shown for each 3D stack. In each row, the results box indicates                
(from left to right) the values of false positives (FP), true positives (TP), false negatives (FN; colored                 
bars indicating the proportion for each case) and the Jaccard index (Jacc). TP+FN is either the ground                 
truth count for synthetic data or is assessed manually for real 3D stack. FP+TP corresponds to the                 
detected objects count. A detection is considered positive when it falls in a sphere the size of a                  
nucleus, around any of the original nuclei positions. The sole parameter of Smax was set to the                 
average nucleus diameter which can be easily estimated from the data. Parameters for the two other                
methods were chosen to be the best possible: a large range of parameters were tried automatically in                 
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order to choose the combination that produces the detections that best match the ground truth (best                
Jaccard index). Importantly, the ground truth must then be known to systematically scan for              
parameters and choose the best set, so in principle choosing the parameters of the two others                
method this way disadvantaged our own approach that does not require any parameter settings. We               
chose to scan parameter ranges such that the difference of results which looks large could not be                 
blamed on missettings the other methods’ parameters: we objectively selected the best ones for the               
two other approaches. 
 
 
 
 

 
Supplementary Figure 3. Parameters estimation for the density-based algorithm DBSCAN. DBSCAN           
is a clustering algorithm that computes local density to identify clusters. This method is also able to                 
handle noise by design, meaning that not every point in the dataset will necessarily be part of a given                   
cluster in opposition to widely used algorithms such as k-means or Gaussian mixture models. These               
characteristics make this approach highly relevant to our problematic. The algorithm consists in an              
iterative process that uses two parameters to define density: ε (a distance measurement) and              
min_samples (a minimum amount of points). From our data, it was possible to estimate the best                
parameters for clustering. ε is directly related to the size of the nuclei, so we set it to the FWHM                    
obtained from the average nucleus size at the detection step. On the other hand, the minimum                
number of points could not be directly estimated as the ε value, mainly because it depends on several                  
uncontrolled factors such as the movement of the brain and the proportion of missing detections in a                 
given time frames. We solved this problem through an iterative process. First, we assumed that the                
final number of detected clusters should be close to the median number of detections over time. This                 
is a reasonable hypothesis since the number of neurons does not change through time. Then, the                
DBSCAN algorithm is iteratively applied for increasing values of min_samples. The min_samples            
value that best match the median number of detections over time is chosen as parameter for                
DBSCAN (indicated by the pink dot in the figure example). 
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Supplementary Figure 4. Time information improves the quality of clusters. (A) A schematic             
representation of a case where the median number of time frames in a cluster is 2, meaning it                  
contains 2 trajectories. The cluster is then automatically split. (B) Real cluster where the median               
number of time frames is 1, meaning it contains only one trajectory. Then duplicates (the points                
connected by a dash line) are marked as noise (black dots on the right image) and the point closest to                    
the centroid cluster is kept while the other is discarded from the trajectory. (C) Real cluster where the                  
median number of time frames is 2, with the resulting split cluster (in blue and red).  
 
 

 
Supplementary Figure 5. Automated fly filter. In some acquisitions, the KCs did not show any               
response to the odor, while other acquisitions displayed a continuously erratic response. These are              
invalid acquisitions that were presumably caused by errors during the fly preparation. To avoid the               
bias of a manual selection of the datasets, we developed an automated procedure to sort the flies. It                  
consisted in comparing the distribution of responsive neurons within the window of octanol stimulation              
and the initial control window at the beginning of the sequence, using a Mann-Whitney rank test. Flies                 
with a p-value higher than 0.01 were excluded (“Fail”), the remaining flies were used for the analyses                 
(“Pass”). This process guaranteed that the analysis was performed using flies that showed a              
biological response. 
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Supplementary Figure 6. Visualization of a few examples of analyzed flies. The top group shows               
examples from the unpaired control, whereas the bottom group shows flies subjected to paired              
conditioning. The 3D scatterplot illustrates the tracked detections for each fly (comprising a projection              
of all time frames to the 3D space); each track is individually colored. The line plot directly under each                   
scatterplot shows the normalized signal measured for each neuron. The three hashed bars indicate              
the control regions: the first is no stimulus, the second is air and the third is octanol. 
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Supplementary Figure 7. Responsive neurons of flies trained with MCH and tested with OCT. Left:               
There is no significant difference in the count of OCT-responding neurons between the group trained               
with MCH and its unpaired control (Mann-Whitney test two-sided, p-value: 0.363336). During the             
conditioning, flies that received MCH also received OCT (albeit without the presentation of shocks).              
Right: Response intensities do not differ significantly between the MCH-trained paired and unpaired             
group (Mean signal comparison t-test p-value: 0.067987). The sample sizes is 11 for the paired and                
15 for the unpaired group. 
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Supplementary Figure 8. In this control, we rule out the possibility for the observed increase in                
neuron count to be an artefact due to an increase in neighboring neuron intensity by applying a                 
“crosstalk filter”. From each group of closeby responsive neurons (defined as neurons closer than              
twice the diameter of the soma), only the neuron with the highest signal was kept. Thus the crosstalk                  
filter discarded possibly suspectful neuron from the analysis, artificially ensuring that no neuron             
counted as responsive could be located close to one another. (A) Summary of the dataset, where                
each column corresponds to one fly. The light gray color shows the number of detected neurons, dark                 
gray is the amount of responsive neurons (17.1% of total detections in average), and green               
represents only those neurons that passed the so called crosstalk filter, or in other words were kept                 
(63% of the responsive neurons in average). (B) The same distributions as in Figure 3, after applying                 
the crosstalk filter (and thus removing with high stringency nuclei that might be erroneously selected               
as responsive), show that the difference in count between the group trained with OCT and its control                 
is conserved (p-value: 0.0014992), and that the difference in count remains non-significant for the              
control group with massed training (p-value: 0.881899). A Mann-Whitney two-sided test was            
performed in both cases. (C) Similar conclusion can also be drawn for the mean signal intensities                
from responsive neurons that shows no statistically significant differences. The sample sizes from the              
4 groups (from left to right) are 29, 27, 14 and 16.  
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Supplementary Figure 9. The total number of detected neurons is stable before and after applying               
our quality control filter. (A) The total amount of soma detected using the Gal4-driver channel for all                 
tested groups does not show any significant difference between the datasets (Kruskal-Wallis H-test             
p-value: 0.303595). The sample sizes from the 9 groups (from left to right) are 23, 37, 44, 22, 23, 24,                    
22, 16 and 18. (B) The same distributions as in (A), but restricted to the flies that passed the                   
automated quality control filter (Kruskal-Wallis H-test p-value: 0.1549522). The sample sizes from the             
9 groups (from left to right) are 14, 30, 31, 12, 15, 16, 17, 12 and 17. 
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Supplementary Figure 10. Detection of 3D stack artifacts. A 3D volumetric reconstruction of the              
mCherry channel is shown for three consecutive time frames; the artifact of an anchored z position is                 
noticeable in the middle time frame. To automatically detect the artifact, we made the following               
assumptions: 1) during a normal acquisition, the mushroom body center of mass (based on the set of                 
detected nuclei) should only move slightly. 2) Since a considerable part of the MB was missing when                 
this artifact arose, there should be drastic shift in the center of mass at this time frame. Thus, we                   
measured the derivative of the centroid position through time, normalized to a range between 0 and 1.                 
This quality measurement can then work as an indirect way to identify the time frames in which there                  
was a microscope artifact. A threshold must still be set as the minimum quality level that can be used                   
for the analysis; by visually comparing the quality measurement and the 3D stacks, the value was set                 
at 80%. Time frames with lower values were thus removed, and the missing neuron positions               
interpolated in time. 
 
 
 
 

 
Supplementary Figure 11. Detection of responsive neurons from 5x spaced trained flies after Cer              
knockdown. The UAS-Cer-RNAi was targeted by VT30559-Gal4 simultaneously with the two reporter            
UAS-GCaMP6f and UAS-NLS-mCherry. Left: Comparison of distribution for the count of responsive            
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neurons between the paired conditioning (n=11) and unpaired control (n=15) groups (Mann-Whitney            
two-sided test p-value: 0.56800). Right: Distribution of mean signal for responsive neurons from the              
two groups, showing no statistical difference (t-test p-value: 0.388411). 
 
 

 
Supplementary Figure 12. Synthetic 3D+time stacks of densely packed nuclei to evaluate            
the tracking performance against other methods. (A) Maximum intensity projection of a real             
3D stack that provides a foreground region to generate synthetic somata, along the Z axis.               
(B) Maximum intensity projection of the same 3D stack along the Y axis. (C) 2000 generated                
trajectories in successive volumes over time (see online methods). (D) Detail of a central              
region of the generated trajectories. (E) Maximum intensity projection of a synthetic 3D+time             
sequence generated by convolution and noise addition from the generated trajectories,           
along the Z axis. (F) Maximum intensity projection of the same synthetic 3D stack along the                
Y axis. Scale bars are 10µm. Although synthetic 3D + time sequences are close to the real                 
3D + time sequences, they are of course not similar, but a great advantage over manual                
annotation is that the ground truth is known and all (2000) nuclei are then annotated.               
Therefore they enable to provide satisfactory quantitative comparisons between algorithms          
for detection and tracking. Importantly, they enable to quantify False Positive (see            
supplementary figure 13). 
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Supplementary Figure 13. Validation of our tracking approach Memotrack against two other            
methods, ICY and TrackMate, using manual annotated and synthetic 3D+time sequences.           
A. Results obtained using manual annotations and considering only complete trajectories           
along the whole sequence. That is, if the duration of a trajectory provided by a software                
program was less than the length of the sequence, it was discarded. This is because the                
signal needs to be captured along the whole sequence, not during a subpart of it. TP is True                  
Positive, FP is False Positive, FN is False Negative, Result is the output of a software and                 
Ground is the ground truth. Note that False Positive are not available for manual annotation               
because it was impossible to annotate exhaustively all trajectories of a 3D+time sequence.             
Memotrack, our method, outperforms other methods with 18 out of the 19 annotated             
trajectory correctly retrieved. B. Results obtained using manual annotations and considering           
trajectories with length at least as long as half of the whole sequence. This relax in                
stringency increases the number of successfully tracked nuclei by other software. Those            
results would not be acceptable or even useful as such to monitor the signal all along the                 
sequence but they enable to understand partly the weakness of the other approaches. Other              
approaches cannot track nuclei over a long time period without failing because of the low               
accuracy of spot detection. Our approach, that rely on the non rigid registration of the whole                
sequence is very robust to detection errors and actually tracks all nuclei that were              
successfully detected enough time to form a cluster. For the same reason, the length              
threshold cannot improve the result obtained by our approach as all trajectories retrieved is              
the length of the full sequence. C. Results obtained using synthetic annotations and             
considering only complete trajectories along the whole sequence. Memotrack, our method,           
outperforms other methods. D. Results obtained using synthetic annotations and considering           
trajectories with length at least as long as half of the whole sequence. Interestingly, while               
unusable, we see here that this relax in stringency increases the number of tracked nuclei by                
other methods but also increases the number of false positive, indicating that even small              
trajectories provided by those software program are not necessarily correct. 
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Supplementary Figure 14. Visualization of manually annotated nuclei trajectories (in black,           
see online methods) and their corresponding trajectories obtained by the tracking software            
(in color). Top row: only complete trajectories that last the whole sequence were kept, it is                
the case we were interested in to monitor the single cell signal all along the sequence. We                 
can see that, beyond the fact our method tracks correctly most manually annotated nuclei,              
the closest trajectories provided by ICY may in fact match other nuclei and be False               
Positives, an hypothesis that cannot be validated or unvalidated because it was impossible             
to manually annotate all trajectories in the sequence of 3D stacks. Bottom row: result when               
we allowed the length of the trajectories to be shorter but at least as long as half of the                   
sequence. Again, those trajectories could not be used for the analysis as they are too short                
but underline the main limitation of other approaches: other approaches cannot track object             
stably over a long period of time due to the unreliability of the spot detection step. 
 

Supplementary Videos 
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Supplementary Video 1. Volumetric rendering of the raw acquired data. The videos on the left 
represent the nuclei of the mushroom body neurons, while the videos on the right portray the GCaMP 
activity of those neurons. The appearance of ‘OCT’ at the top right of each row corresponds to the 
time when flies received an octanol stimulation. 
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Supplementary Video 2. Volumetric rendering of GCaMP activity together with tracked neurons. The             
top row shows the signal for three flies from the unpaired control group, while the bottom row shows                  
three flies from the group that received the paired conditioning. Flies received the octanol stimulation               
starting at frame 90 (corresponding to the appearance of ‘OCT’ at the top right of each row). 
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Supplementary Video 3. Generation of synthetic sequence of 3D stacks. Left column 
shows the middle 2D image (not a maximum intensity projection) from a real 3D stack, in XY 
(top) and XZ (bottom) views over time. Panels in the middle column shows the generated 
synthetic coordinates (see online methods) based on the real 3D stack on the left. The top 
panel shows an overview of all generated 3D positions overtime corresponding to the MB 
cell bodies on the left. The bottom panel shows a zoomed version inside the synthetic cloud 
and synthetic trajectories are drawn over time. Right column shows the middle image of the 
resulting synthetic sequence obtained by convolving the synthetic positions with the PSF of 
the microscope, adding noise and a similar subsampling to reproduce the anisotropy of the 
real sequence of 3D stacks, in XY (top) and XZ (bottom) views over time.  
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RÉSUMÉ

La formation et la consolidation de souvenirs est l’une des caractéristiques fondamentales du cerveau, responsable
de l’apprentissage et de comportements cognitifs élevés. Malgré son importance, ce processus n’est pas entièrement
compris à ce jour et fait l’objet de nombreux travaux de de recherche, allant de l’analyse de l’activité des synapses in-
dividuelles à la reconstruction de cartes de connectivité du cerveau. Dans ce travail, nous proposons une approche
intégrée pour mesurer in vivo l’activité de chaque neurone du corps pédonculé (Mushroom body, MB) de la Drosophila
melanogaster dans une procédure entièrement automatisée. Il s’agit d’imager en 3D et dans le temps le MB dans sa
totalité par microscopie confocale et d’opérer un suivi temporel de la position de chaque neurone afin de relever leur
niveau individuel d’activité. En utilisant cette approche, nous avons découvert que pendant la formation de la mémoire à
long terme, de nouveaux neurones sont recrutés au sein du corps pédonculés, tandis que l’intensité de la réponse des
neurones individuels reste inchangée. Au delà de l’apport méthodologique qui permet à présent de quantifier automa-
tiquement l’activité d’un grand nombre de neurones, ce travail a contribué à une meilleure compréhension de la formation
de la mémoire à long terme.

MOTS CLÉS

Drosophile, mémoire, 3D, détection, suivi

ABSTRACT

Formation and consolidation of new memories is one of the fundamental characteristics of the brain, responsible for learn-
ing and high cognitive behavior. While important, the process isn’t fully understood to the present day and is the subject
of various studies, spanning from the activity analysis of individual synapses to the reconstruction of brain connectivity
maps. In this work, we propose a bold approach, on which we aim to measure in vivo the activity of every single neuron
from the whole Mushroom body (MB) of the Drosophila melanogaster, in a fully automated procedure. After a 3D image
acquisition over time of the MB by means of confocal microscopy, an automated detection and tracking of the neurons is
performed. The whole process takes place while the fly is awake and subjected to different odor stimulations, so that it is
possible to associate the activity patterns at the single cell level to the stimulus that is being received. By comparing the
response patterns from flies that were trained and flies that were not trained to associate an odor with an electric shock
we identified changes in neuronal activity, providing information on how memory is formed. Beyond the methodological
innovation that brought the possibility to track the activity of a large set of single neurons, this work contributed to the
current understanding of long term memory formation.

KEYWORDS

Drosophila, memory, 3D, detection, tracking
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