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Scientific and technical context in the field of food packaging

In the last decades, food packaging R&D attempts were mainly devoted to the
design of new and improved (active and intelligent packaging) barrier materials
(new polymers, complex and multilayer materials) that extend shelf-life while
maintaining and monitoring food safety and quality. Simultaneously, with the global
growing conscience related to the intensive use of petro-sourced plastics in food
packaging applications, a significant interest has been dedicated to the study of
biobased materials [Petersen et al. (1999)]. Despite the increasing number of studies
related to the development of new materials, the main limitation is the absence of
approaches that combine food requirements and materials development for
implementation of “food/packaging systems” into integrated food chain concepts,

from processing to consumption.

One main role of packaging material in food quality and safety preservation is to
contfrol mass fransfer of gases and vapours between the food, the packaging
material and the environmental atmosphere; three types of mass transfer can occur

(figure 1):

+ from the environment through the packaging and tfoward the headspace
and the food product, the permeation of environmental gases and vapour
need to be controlled for the preservation of food quality by avoiding food
degradation reactions;

+ from the packaging toward the food, the migration of undesirable molecules
such as chemical additives should not exceed the maximum limit in order to

be not toxic for human in long term exposure conditions;
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+ from the food product toward the packaging, the sorption and diffusion of
food components such as aroma compound need to be controlled for the

conservation of organoleptic properties of the food product.

\ FOOD F}
N\ /
A > <~ @ \,\
—1—> a S ="
HEADSPACE n
PACKAGING

ENVIRONMENT

@ Environmental gases & vapours (0,, CO,, H;0,...)
A Packaging components (additives, plasticizers, ...)

B Food components & additives

Figure 1: Mass transfer representation in food packaging

An essential step to promote the application of new complex materials, such as
composites for example, by the food packaging industry is to develop decision-aid
numerical tools based on mathematical modelling of mass transfer to favour the
tailoring of composite structures well adapted to the targeted food requirements. In
a perspective of multi-scale modelling an in-depth understanding of the knowledge
of the relationships between structure and mass transfer properties is required based
on the characterization of the composite structures (in-situ size, shape, dispersion,
orientation of the particles), of the particles impact on both polymer matrix structure
and properties, and on the resulting modulation of the mass transfer in the
composites. Each type of particles is unique in terms of size, shape, nature

(impermeable of permeable for example) and so their effects on the mass transfer of
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the composites are not the same. If the effect of impermeable particles addition on
the modulation of mass transfer properties has already proven many times by
experimental approach [Azeredo et al. (2009)], the formalisation (e.g. modelling) of
stfructure and mass transfer relationships remains limited because it is still difficult to
reach an optimal structure and barrier properties characterization due to two major

hindrances:

+ the difficulty to reach a good structural characterization of composite
materials, especially an accurate description of the size, dispersion and
orientation of the particles in-situ in the polymer;

+ the lack of experimental methodologies and tools to characterize mass

fransfer properties in permeable particles.

Actually, there is a wealth of experimental data in the available scientific literature
on the mass transfer properties of composite structures, especially nanocomposites
with impermeable particles. Indeed composite materials represent a promising
source of development for active and intelligent packaging but also for the
development eco-friendly materials based on the use of biopolymers. While the
latter present high sensibility to environmental conditions, such as temperature or
moisture, which limited their use in food packaging to a narrow range of
applications, water and mechanical resistance could be improved by incorporating
fillers [Rhim et al. (2013)] in order to obtain materials with reinforced functional
properties. Such property enhancements are generally attained at low nanoclays
content, less than 5% compared to that of conventional fillers which are in the range
of 10-50%. Nowadays, vegetable fibres are raising interests in food packaging

applications for their affordable convenience; indeed, nanocrystalline cellulose may

13



be only one-tenth as strong as carbon nanotubes but its production cost is 50-1000
times lesser to produce [Faruk et al. (2012)]. Incorporation of vegetal fibres in a
polymer contributes to decrease the overall cost of the material (especially when
high content up to 40wt% of fibres are added) and permits to modulate the mass

transfer properties such as water vapour permeability.

Modelling approach have either been based on the application of analytical
tortuosity-based models or on the development of numerical approach
(computational fluid dynamic modelling (CFD), such as finite element method (FEM))
for the prediction of mass transfer properties in composites. Currently, the use of
analytical models relies on the prediction of the permeability of composites from
experimental structural characterization of few geometrical inputs (aspect ratio,
volume fraction, dispersion and orientation of the particles) supposed constant and
homogeneous for all the material and from the permeability of the neat polymer
matrix. These models were developed for homogeneous distribution of particles and
exhibited restrictions of use for heterogeneous composite structures. Using numerical
approach, more complex structures could be investigated, by applying FEM to 2D or
3D geometries representing the composite structure. For instance, Bhunia et al.
(2012) have developed a model based on finite element method which overcame
the limitations from most of the tortuosity-based by taking into consideration

structural phenomena such as particle orientation or agglomeration.
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Scientific objectives of the PhD project

In this context, my PhD work aimed to contribute to increasing the scientific
knowledge on mass transfer properties in composite materials by reaching a better
understanding of the modulation of the barrier properties with the incorporation of
nano- and micro- permeable and impermeable particles in polymer matrix; and to
developing an innovative multi-scale approach based on finite element method for
the prediction of mass transfer in bi-phasic composites considering both the particle
and the polymer matrix properties with realistic 2D geometry of the composite
structures. This PhD was realized within the framework of the research activities of the
Joint Research Unit "Agropolymer Engineering and Emerging Technologies” and
funded through state resources coming from the French government (Ministry grant).
The innovative aspect of this project was to consider composite with either
impermeable particles or permeable ones (such as vegetal fibres) which hugely
contribute to the overall water vapour mass transport. A composite material based
on a biopolyester matrix and wheat straw fibres was used as a basis to develop the
numerical model and validated it. This composite has been developed within the

EcoBioCAP European Project (http://www.ecobiocap.eu/); using advanced

composite structures based on constituents derived from food industry by-products.
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Scientific questions of the PhD project

To achieve my PhD objectives, several questions should be first answered:

+ What is the impact of the particles nature, shape and size on the composite
permeability?

+ What are the most commonly used models for predicting structure & mass
transfer relationships?e

+ What is the conftribution of the particle to the overall mass transfer in the case
of permeable particles such as vegetal fibres?

+ How can structural characteristics and mass transfer characteristics of
composites, getting from structural and mass transfer analysis, be gathered
and linked to the mass transfer of composite in a multi-scale modelling

approache

Scientific strategy of the PhD project

To answer to the aforementioned questions, the scientific strategy presented in figure
2 was adopted; the PhD work plan is divided in two chapters according to the

nature of the particle either permeable or impermeable.

The first chapter is dedicated to an exhaustive analysis of mass fransfer in composites
and a gathering of all mathematical models proposed for the prediction of mass
transport through composites from data available in the literature. The analysis of
barrier properties lead to the determination of parameters impacting mass transfer in

composites and the analysis of the models highlight the bottlenecks encounter to
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the development of models able to provide good prediction of composite barrier

properties.

The second chapter is first aimed at providing a better understanding of the impact
of permeable fibres on the modulation of water vapour transfer through wheat straw
fibres/biopolyester composites with the help of experimental and modelling support.
It is then intended to present a new mulli-scale approach using COMSOL
Multiphysics Software to predict mass transfer properties in a bi-phasic composite,
considering both mass transfer properties of the permeable particles and polymer

matrix with realistic 2D geometry of the composite structures.

PhD work plan & organization of the manuscript
/ CHAPTER I. IMPERMEABLE PARTICLES \

Understanding of mass transfer properties in composites and comparison of
experimental data with available predictive models

Publication 1: Publication 2:
Analysis of barrier properties Prediction of barrier properties

f CHAPTER Il. PERMEABLE PARTICLES \

In depth understanding of mass transfer properties and development of a 2D
numerical model for the prediction of these properties into composites

Publication 3: Publication 4: Publication 5:
Sorption and diffusion Permeability Modelling of mass
experimental characterization transfer propertiesin
\ characterization and modelling composite materials /

Figure 2: PhD work organization

In order to facilitate the understanding of the different discussions provided in the
next chapters, a glossary with the definitions of the main terms used in the following is

proposed to the reader in the next pages.
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Glossary

+ Analytical tortuosity based-model: predict the permeability of a composite
material exhibiting permeable polymer matrix and impermeable particle,
dependant from the permeability of the polymer matrix and geometrical
input such as particle volume fraction, aspect ratio, dispersion, orientation,
etc...

+ Analytical biphasic model: predict the permeability of a composite material
exhibiting permeable particles and permeable polymer matrix, dependant
from the particles and the matrix permeability, the particle volume fraction
and geometrical input such as the shape and the maximum volume packing
of the particles.

+ Aspect ratio: ratio of the length to the thickness of one particles

+ Composites: materials consisting of at least two non-miscible constituents with
different properties, whose synergism creates properties unavailable from
individual single constituents

+ Effective diffusivity: isotropic diffusion of molecular species through the entire
materials

+ Diffusing molecular species: any molecule other than a polymer chain that
diffuses through the material

+ Diffusion: conductive transport of a chemical species through a single phase
from a macroscopic point of view always occur from a region of high
concentration to a region of low concentration. Diffusion obeys to the
(ohenomenological) Fick’s law.

w Diffusivity (diffusion coefficient / D): constant between the molar flux due to
molecular diffusion and the gradient in the concentration of the species at a
specific section according o Fick’s law

+ Numerical modelling: simulation to predict and reproduce the behaviour of a
system, to explore and gain new insights into new technology and to estimate
the performance of systems too complex for analytical solutions

18



Permeability (permeation coefficient / P): measure of the ability of a material
to allow a molecular specie to pass through it and in the case of permeability
to gases and vapours, the combination of Fick’s first law and Henry's law

Permeation: penetration of a molecular species through a solid and directly
related to the concentration gradient of the permeate and the material
diffusion coefficient

Phenomenological model: relate several different empirical observations of
phenomena to each other, in a way which is consistent with fundamental
theory, but is not directly derived from this theory

Solubility (solubility coefficient / §): amount of diffusing molecular species that
dissolve in a given amount of material and directly proportional to the partial
pressure of the molecular specie above the solvent according to Henry's law

Tortuosity: represents the ratio of the pathway that a molecular specie must
follow through the composite thickness with particles to the pathway through
the neat polymer thickness without particles

Tortuosity factor: parameter that represents the tortuosity and depends on the
aspect ratio, the shape and the orientation of the particles

Transfer: conductive or convective transport of a chemical species between
two phases; in the case of a packaging material, transfer between a material
toward atmosphere

Transport: conductive or convective motion of chemical species through a
single phase

19
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CHAPTER 1: Understanding of mass transfer properties in
composites filled with impermeable particles and comparison of
experimental data with available predictive models
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Publication 1

How various particle shapes affect structure & mass transfer

relationships of nanocomposite materials?

Caroline Wolf, Nathalie Gontard, Valérie Guillard

ABSTRACT: More than 1000 published experimental data of oxygen (O2), carbon
dioxide (CO:2) and water vapour (H20) permeabilities in nanocomposites containing
either spherical, cylindrical or platelet particles were collected, assorted and
compared in order to decipher the role of particle shapes on the reduction of the
relative permeability of the nanocomposite. This paper extensively discussed the
impact of the shape of the particles on the structure and, thus on, permeability
values in order to draw meaningful conclusions on the structure/mass transfer
relationships and fo give directions for the development of next generation of
packaging materials with tailored mass transfer properties. The results generated had
revealed that the expected decrease of permeability due to a fortuosity effect was
not systematically achieved, even for platelets that displayed higher aspect ratio
than spheres and cylinders. Attempts of explanation will be made throughout the

text to explain this unexpected behaviour.

KEYWORDS : Particle shape, Nanocomposites, Structure & mass transfer relationships,
Permeability
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1. Infroduction

1.1. Context

Nanostructuring by different processing techniques is one of the promising directions
in the development of packaging materials with advanced mass fransfer properties.
A lot of reviews present the last advancement in elaboration strategies of
nanocomposites and the resulting functional properties, mainly mechanical
properties [Le Baron et al. (1999), Alexandre et al. (2000), Ray et al. (2003), Ray et al.
(2005), Chung et al. (2007), Cong et al. (2007), Pavlidou et al. (2008), Chivrac et al.
(2009), Faruk et al. (2012)]. Some authors have made a slight focus on the mass
transfer properties [Ray et al. (2003), Ray et al. (2005), Chung et al. (2007), Cong et al.
(2007), Pavlidou et al. (2008), Mittal et al. (2009)] in nanocomposites elaborated with
a given type of particle, i.e. spheres or platelets for instance. In the scope of optimal
food packaging conditions, one of the main purposes is to design and provide food
packaging's able to protect the food from the external environment and to maintain
the quality of the food throughout the shelf life of the foods [Pertersen et al. (1999)].
To optimally achieve this purpose, the properties of composite materials and
especially mass fransfer properties should be understood according to the structure
of the composites, i.e. particles nature, shape, size, dispersion and orientation in
order to respond to the needs of the food. In the field of food packaging, some
reviews [Azeredo et al. (2009), Arora et al (2010), Silvestre et al. (2011), Rhim et al
(2013)] have already dealt with the study of hanocomposites for food packaging
applications, from the choice of the polymers and nano-reinforcements to the
industrial applications and the safety consideration, including the nanocomposites
properties such as mass tfransfer properties. Actually, there is a wealth of information

available in scientific literature on barrier properties of nanocomposites containing
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platelets, spherical or cylindrical particles, but there is a lack of systematic analysis of
all these data in the perspective of deciphering the role of particle shape on the
mass transfer properties of the resulting material. As far as we knew, there is no review
associated with exhaustive analysis of experimental nanocomposite permeabilities

from the open literature.

1.2. General background on mass transport

The transfer of small molecules through a polymer packaging film occurs due to a
random molecular motion of individual molecules where the driving force behind
sorption, diffusion and permeation is the concentration difference between the two
sides of the film. This process can be described by Fick's first law of diffusion,
according to which the flux (J) normal to the direction of the flux is proportional to

the concentration gradient (Z—i):

1=-0(3) o

where (D) is the diffusion coefficient. This equation is applicable when the
concentration does not vary with time. The molecular penetrant sorption, in the case

of fransfer of gases or vapours can be described according to Henry's law:
c=8Xxp [2]

where p is the pressure and S the solubility coefficient. In the steady state and after

integration of equation 1, the flux can be expressed as follow:
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] = D(ei—cy) [3]

where h is the thickness of the packaging film and ¢ and ¢z are the concentration
on the two sides of the film. The combination of equation 2 and equation 3 give the

permeation equation:

J = DS(P;‘IJZ) [4]

where p1 and p2 are the pressure on the two sides of the film. The product P=DxS§
represent the permeability coefficient and then in term of permeability, the flux

equation can be written as:

J = P(p1h—p2) [5]

The relation P=DxS was initially developed for the description of gases permeability in
a homogeneous pure polymer has also been considered for the description of gas
transport properties through a nanocomposites with impermeable, non-porous
particles dispersed in a polymer matrix [Cornelius et al. (2002), Takahashi et al.
(2006)]. This relation in nanocomposites was valid only under the assumption that the
polymer matrix was not affected by the incorporation of nanoparticles, and that the
particles/polymer matrix interactions were strong enough to avoid the creation of an
interphase at the interface particles/polymer matrix. In general, when impermeable
particles are incorporated in a polymer matrix, particles acted as an obstacle to the
permeation of gas molecules which had to follow a more tortuous path and lead to

a decrease of the effective permeability of the nanocomposite. This effect is called
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tortuosity! and depends on the volume fraction of parficles and the shape and the
size of the impermeable particles, i.e. on the aspect ratio (W/t) of the particles. The
tortuosity outcome is forecasted to be particularly efficient in the case of
nanoplatelets, as can be seen in figure 1, due to their large aspect ratios when

compared to other nanoparticle shapes.

L 5 Tortuosity effect
Diffusion direction

Figure 1: Representation of the tortuosity effect in platelet-based composites

1.3. Aim of the paper

With the recent developments in the nanotechnologies and nanosciences field, the
correlation of material mass transfer properties with the nanocomposites structure
has generated much interest. From this standpoint, the objective of the present
article is to comprehensively discuss the role of the particle shape on the modulation
of the mass transfer properties in nanocomposites. In this purpose, more than 700
values (i.e. 100 articles) of the most recently measured values of Oz, CO2 and H20
permeability in agro-, bio and petroleum-based nanocomposites were collected

from the available literature. Particles considered were classified in three categories:

! Tortuosity (1) represents the ratfio of the distance that a molecular specie must follow through the
nanocomposite thickness (d’) to the distance through the neat polymer (d): T =d'/d
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spheres, cylinders and platelets, all belonging to the nanosize except in specific case
such as that of natural vegetal fibres where some particles were more in the
microsize. Aside the meaningful conclusions on the role of particle shape, the main
objective of this paper is to give some recommendations for the design of

nanocomposite packaging materials with tuneable mass transport properties.

In the present work the modulation of the barrier properties is investigated according
to the shape of the particles through (1) a presentation of the particles and the
processing techniques of the composites, (2) general and numerical observations of
the modulation of the permeability and (3) a qualitative analysis of the structure and

mass transfer properties relationships in composites.

2. Overview of the particles type and brief recall of the processing and structures of
the composites

The following section will be focused on particle types and shapes divided in three
main categories (spheres, cylinders and platelets) and on the main elaboration

strategies for (hano)-composites processing.

2.1. Particle type and shape

In the pool of studies collected, most of them dealt with nanoparticles and only
exceptionally with microparticles (case of natural vegetal fibres); therefore the

following section will present principally the nanoparticles the most frequently
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encountered in the present work?2 The particles considered in this review are
impermeable, non-porous ones; zeolites were, for example, excluded of this analysis

and were not described in the present section.

Nanoparticles are defined as inclusions that have at least one dimension in the
range of 1-100nm. Nanoparticles can be divided in three families, depending on
how many dimensions are in the nano-scale. If three dimensions are in the order of
the nanometers, the particles can be considered as spherical particles; if two
dimensions are in the order of the nanometers, the particles can be considered as
elongated cylinder particles and if only one dimension is in the order of the

nanometres, the particle can be considered as platelet particles.

2.1.1. Spherical particles

The two most widely studied non-porous spherical nanoparticles are silicon dioxide
(SiO2) particles and titanium dioxide (TiO2) particles. TiO2 particles haves been used in
food packaging materials [Rhim et al. (2013)], since it is inert, non-toxic, inexpensive,
and environmentally friendly with antimicrobial activity against a wide variety of
microorganisms [Fujishima et al. (200)]. Besides, for membrane applications, TiO2
particles, as SiO2 particles have been widely use and incorporated in dense polymer
matrix in order to modulate the barrier properties of gases and vapours and to
increase the selectivity; one of the most important characteristics a membrane
should reach [Koros et al. (1993)]. These particles could be used in their native form

or synthesized from inorganic precursors through sol-gel method. The average

2 All the information about the composites; type, size and modification of particles, type of polymer
mafrix and processing techniques of the composites were gathered in table 1-2-3. These data were
collected from the material and methods section of the publication analysed in this work.
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diameter of these particles is in the range from 5 to 150nm; the characteristics of the

spherical particles-based composites studied in this paper were gathered in table 1.

2.1.2. Cylinder particles

Cylinder particles could either be synthetic one such as carbon nanotubes (CNT)
which consisted in one-atom thick single wall nanotubes (SWNT) or a number of
concentric tubes called multi-walled nanotubes (MWNT) with respectively average
length in the range from 0.1 to Tum and from 1 to 100um and with respectively
average diameter in the range from 0.8 to 1.4nm and 10-200nm. Due to their
exceptional mechanical, thermal and chemical, carbon nanotubes have been used
as polymer fibre reinforcement to improve the polymer matrix properties [Liu et al.
(2014)]. In the field of food packaging they have recently been used and the
resulting nanocomposites have shown migration levels of simulants below the overall
migration limits required by current legislative standards for food packaging materials
[Yu et al. (2014)]. Cylinder particles included also natural fibres such as cellulose
nanofibres and cellulose nanowhiskers with respectively average length in the range
from 0.1 to Tum and from 20 to 300nm and with respectively average diameter in the
range from 0.8 to 1.4nm and 10-30nm. Natural vegetal fibres are cheaper [Fabruk et
al. (2012)] than most of other nanoparticles since they come from readily available
natural sources. They are therefore often proposed as filler reinforcement agent to
modulate the properties of the composites and particularly fo decrease the cost of
the final material as regard to the high price of the neat polymer matrix. Besides
nanoparticles, micro-particles such as cellulose micro-fibres have also been used as
fillers; all the characteristics of the cylinder particles-based composites studied in this

paper were gathered in table 2.
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2.1.3. Platelets

One of the most widely used nanoplatelets is usually montmorillonite (MMT), i.e.
hydrated alumina-silicate layered clay consisting of in an edge-shared octahedral
sheet of aluminium hydroxide between two silica tetrahedral layers exhibiting
average length, width and thickness in the range from 80 to 300 nm, from 15 to
50 nm and from 1 to 8 nm respectively. Montmorillonites and other nanoplatelets
shaped particles such as cellulose and starch nanocrystals, silicon carbide or boron
nitride were initially incorporated into a polymer matrix to enhance its mechanical
properties. However, researchers very soon realized that they had a great impact on
the improvement of barrier properties, even at very low filler content (< 5 wt/wit%),
provided that a homogeneous exfoliation of the platelets into the neat matrix was
achieved and that the mean aspect ratio of the particle was the highest possible.
The concept of tortuosity makes perfect sense in that case. All the characteristics of
the platelet particles-based composites studied in this paper were gathered in

fable 3.

For the three aforementioned categories, the dispersion state of the particles in the
neat matrix strongly impacts the homogeneity of the structure and the resulting mass
transfer properties. It is all the more important for mass fransfer that even a single
channel in a homogeneous nanostructure could completely counteract the barrier
performance. Bad dispersion of particles could provoke their agglomerations in the
polymer matrix, leading to the formation of particle clusters in the micro-size. The
tortuosity effect is then lost and barrier properties of the composite are the same
than those of the neat matrix or even worse (“permeabilisation” of the neat matrix).

Besides loss of barrier propertfies is enhanced by bad particles/polymer matrix
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interactions which lead fo apparition of an interphase at the interface
particles/polymer matrix [Kim et al. (1998), Chung et al. (2007)], with creation of
defected interface particles/polymer matrix or change in polymer matrix properties
that could favour the diffusion of the molecule [Chaiko et al. (2005), Sanchez-Garcia
et al. (2009)]. By definition, the interphase could be seen as a third compartment at
the interface particle/polymer matrix where the local properties change from the

filler bulk properties to the matrix bulk properties [Kim et al. (1998)].

2.1.4. Native or chemically modified particles

To enhance the dispersion of the particles infto a polymer matrix, a chemical
modification of the particle surface, with the aim to match the polymer matrix
polarity, is often carried out [Ray et al. (2005), Fabruk et al. (2012)]. For instance, in
the case of clay platelets, cationic exchange of the inorganic interlayer cations by
organic ones, such as alkylammonium surfactants, is one of the most common used
techniques. But other original techniques are also used [Alexandre et al. (2000)]. In
the case of spherical particles such as SiO2, the surface of the particles can be
modified with -sylil [Kono et al. (2007), Ahn et al. (2008), Yu et al. (2011)] or with -silane

groups [Joly et al. (1999), Romero et al. (2011), Rafig et al. (2012)].

Besides chemical modification of the particles, dispersion in the polymer matrix
strongly depends on the elaboration process used. Generating ideal and defect-free
nanocomposites structures is very challenging and draws considerable effort. A
necessary condition for acceptable interfacial interaction between the particle and
the matrix is determined by the surface free energy of the two components. Usually

this means that the surface energy of the particle must be greater than that of the
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matrix. For example, in case of solution blending, an ideal system would be one
where the particle has a stronger affinity for the polymer than the solvent, while the
polymer has a stronger affinity for the particle surface than the solvent. These
relations could be quantified with the help of Hildebrand solubility parameters for the
polymer-solvent interaction, using the solvent-particle interaction strength parameter
for the particle, the higher the parameter, the stronger the interaction. This approach
was experimented by (Mahajan & Koros, 2000) on mixed matrix membranes for gas
separation and zeolite and sieve as nanopaticles. Another approach would be to
use measurements of surface free energy (though contact angle measurements) to
predict a work of adhesion, which gives an expression of the thermodynamic work
necessary to separate two solid phases [Berthet et al. (2014)]. However, this
approach is not yet well expanded in the field of packaging science probably
because of the lack of data for the calculation of Hildebrand solubility parameters
for the polymer and nanoparticle encountered in this field. As regard measurement
of work of adhesion, experimental bias prevents an accurate determination of the
free surface energy that prevents the use of this technique to predict compatibility
between particle and matrix. The main elaboration strategies used for

nanocomposites processing will be thus described in the following section.

2.2. Nanocomposites elaboration

Several strategies have been considered for the preparation of nanocomposites and
are gathered in figure 2; the most commonly used preparation techniques can be
divided in three main processes for all the particle types and shapes with the
addition of one particular method for the spherical particle (e.g. sol gel method) and

platelets (e.g. template synthesis).
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All the preparation technologies have already been extensively detailed in reviews
dedicated to specific nanocomposites such as for example, polymer-layered silicate
based-nanocomposites [Alexandre et al. (2000), Ray et al. (2003), Pavlidou et al.
(2008), Mittal et al. (2009)], polymer-natural fibre based-composites [Saheb et al.
(1999), Siqueira et al. (2010)] and polymer-inorganic spherical based
nanocomposites [Cong et al. (2007), Chung et al. (2007)]. Due to the physical and
chemical differences of the polymer matrixes and the particles it is very complicated
to propose one universal processing technique. Indeed the choice of the

nanocomposites processing technique is based on the convenience and ease of
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use of the techniques according to the nature of the raw materials, both the
particles and the polymer matrix. At laboratory scale, solution blending, in-situ
polymerization and melt-processing are very often used. However at industrial scale,
it is very difficult to implement solution blending and in-situ polymerization due to the
huge volume of solvent needed and the complexity of the processing techniques
respectively. Thus at industrial scale, due to the large amount of materials produced,

melt-processing is preferred.

Solution blending. In solution blending, a polymer is dissolved in a solvent and
the particles are dispersed in the solution by stirring; finally the solvent is removed
either by vaporization or by precipitation. In order to reach a good dispersion of the
particles, both the polymer matrix and the particles unmodified/modified chemically
should dissolve in the solvent and thus the experimental conditions, such as the
temperature and the stirring rate should be optimize according to the couple

particles/polymer matrix.

Melt-processing. In melt-processing, the particles are dispersed by thermo-
mechanical mixing in a polymer matrix in the molten state. In order to reach a good
dispersion of the particles the shear conditions should be optimize, requiring in some
cases high processing condifions which could come close to matching the

temperature of degradation of the polymer matrix.

In-situ polymerization. In in-situ polymerization, the native particles or modified
particles with functional groups on their surfaces such as hydroxyl or carbonyl are

dispersed in a solution of monomers. The polymerization is generated by initiating
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radicals, cations or anions under high energy radiation (plasma, heat,...) on the

surface of the particles.

Sol-gel method / Template synthesis. In the sol-gel method for spherical
particles and template synthesis for the platelets, monomers and inorganic
precursors are mixed together in solution. The inorganic precursors hydrolyse and
condense into-well dispersed nanoparticles and get trapped into the polymeric
matrix chains during polymerization. This processing is often used in the cases of
spherical parficles, as can be seen in table 1 but less often used for platelets, and
never used in the publications quoted in the present paper. This fechnique leads to
well-dispersed particles in-situ in the polymeric matrix and seemed to be used in a

large number of works in the membrane science field.

2.2.5. Resulting (nano)-structures

Depending on the process conditions and on the particles/polymer matrix affinity,
different morphologies can be obtained which can be divided in distinct categories
that depend on the particle shape. For spherical and cylinder, there are usually two
possible arrangements: particles are either (i) well-dispersed or (i) agglomerated. For
platelets, three distinct morphologies could be obtained: (i) tactoid (micro-
composites), (i) intercalated or (iii) exfoliated nanocomposites. Tactoid structure
appears when the polymer chains have not penetrated into the inter-layer spacing
due to, mainly, poor particle/polymer matrix affinity and not inefficient shearing.
Intercalated structures are obtained when the polymer chains have diffused
between platelets leading to separation of silicate layer and increasing of interlayer

space. Exfoliated structures display complete delamination and homogeneous
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dispersion of the clay layers. Depending on the process, a random or specific
orientation (for example platelets orthogonal to the diffusion flux) could be

achieved.

In solution blending and melt intercalation, the particles are connected to the
polymer matrix through Van der Waals forces or hydrogen bonds [Cong et al.
(2007)]. If particles/polymer matrix interactions are weaker than the
particles/particles interactions, particles could form clusters and lead to
agglomeration phenomena. Process conditions are generally tentatively optimized
to avoid this phenomenon (e.g. shearing in the extrusion process, type of solvent in
the solution blending, etc ...) concomitantly with the used of chemically modified
particles to fit the polymer polarity. Contfrary to solution blending and melt
intercalation, in-sifu polymerisation and sol-gel method lead to covalent
particle/polymer bonds which usually favour the dispersion of the particles within the
matrix [Cong et al. (2007)] For example, in sol-gel method, based on self-assembly
forces, the polymer aids the nucleation and growth of the inorganic host crystals and
gets trapped within the layers as they grow [Alexandre et al. (2000)]. Therefore, these
two techniques are usually preferred, when possible, to limit particles agglomeration
during nanocomposites elaboration. But in the case of in-situ polymerization, a
complete state of particles exfoliation in the polymer matrix was not always reached
[Gain et al. (2005), Herrera-Alonso et al. (2010)]. Gain et al. (2005) have compared
different processing techniques and showed that the dispersion of the platelets was
greatly improved with in-situ processing if compared to melt-processing. However,
even with a chemical modification of the platelets, they still remained some stacks of

intercalated clays.
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3. Effect of the particles shape on the modulation of mass transport properties

3.1. Explanation of the analysis approach

The publications which were considered in the following part were collected from
peer-reviewed scientific journals in different field of research such as membrane,
materials and packaging sciences. All these papers presented one or more value of
permeability of (nano)-composites material according to the composition of the
composite. Only gases (O2 and CO2) and water vapour permeability data were
considered in the following because of their high interest in food packaging field.
These data were analysed as regard to particle shape (sphere, cylinder, platelet)
and size, (nano and micro), the filler volume fraction used in the composite
formulation, the eventual chemical and functionalization treatments applied to the
particle and elaboration technique used for (nano)-composite processing. Aimost all
the cited papers used nano-size particles and the particles were also considered as

impermeable.

The objective of the study was to decipher the role of the particle shapes on the
obtained variation of composite permeability compare to that of the neat matrix as
a function of filler volume fraction and in the light of the composite structure
achieved. To do that, the modulation of the permeability was represented through
the evaluation of the relative permeability, i.e. the ratio of the composite
permeability to the matrix permeability (P/Po) as function of particle volume fraction
(pval). Generally, in experimental work, the weight fraction (pwt) of particles was
given instead of volume fraction. However, ¢vol is always the main input in fortuosity

based model [Nielsen (1957), Cussler et al. (1988), Baradwaj (2001) ...] used to
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predict effect of particles addition on the permeability of nanocomposite based-
materials, and therefore, volume fraction was preferred in this study. This implied to
convert all the @wt given in the original papers. In order to calculate the particle
volume fraction, the density of both particles and polymer matrix was needed but in
most of the publications these values were not provided and it was therefore
necessary to extract the information in other publications, in supplier data sheets or
even to approximate the value. ¢vo could be calculated from the weight fraction

and the density of both particle and polymer using the following expression:

w
D = prartliclesi_w [6]

}
Pparticles Pmatrix

where Pmatix ANd Pparticles Are the density of the matrix and the particles respectively
and w the weight fraction of particles. This conversion and hypothesis made to do it
leads to unavoidable uncertainty on the ¢va. To further analysis evolution of
composite permeability, plots of P/Po as a function of ¢va were done for each

particle shape.

3.2. Modulation of mass transport properties in nanocomposites (global evolution of
P/Po) : first screening approach

While a lot of experimental work has been performed in the area of polymer-based
nanocomposites, the challenge is yet to reach the understanding on how
nanoparticles with  various shapes can affect the permeability of the
nanocomposites. As can be seen from figure 3, the evolution of the relative
permeability as function of particle volume fraction is really complex and do not
follow the same trend according to the nanoparticles shapes.
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Due to the high number of studies found for each particle shapes, for O2, CO2 and
H-O permeability, the figures are not actually readable but they permit to draw the
general tendencies of P/Poas function of @vo and to give an idea of the amplitude of
variation of the P/Po ratio depending on the particle shape. Most of the studies of Oo,
CO2 and H2O permeability in nanocomposites were carried out in platelets-based
nanocomposites with about 100 publications on the topic resulting in a total of 710
permeability values. All of them have been represented in Figure 2c leading to a
scatter graph in which each individual study could not, of course, be distinguished.
For comparison, 45 publications were found for spheres-based nanocomposites and
35 for cylinder-based nanocomposites resulting in about 380 and 190 values of

permeability respectively (Figures 2a and 2b).

These figures, aside their overloaded aspect that underlined the intensive works on

the topic, permit to draw general trends on P/Po variation as a function of @vor:

- As it can be observed in figure 2a and 2b the ¢vo range investigated remains
always higher for spherical and cylinder particles than for platelets with a
maximal ¢@vol Value reaching 40 vol% and 45 vol% respectively against 15 vol%
only for platelets (figure 2c). We noted that for platelet-based nanocomposites,
only 3 publications (i.e. 11 permeability values) were in the range of 15 to
40 vol% (not shown in Figure 2c). This feature could be ascribed to the fact that,
usually only a small platelets volume fraction (generally between 1 to 5 wt%) is
necessary to gain an effect on the material functional properties [Lange et al.

(2013)].
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- The amplitude of variation of P/Po depends on the particle shape. Figures 2a
and 2b permit to point out that spheres and cylinders addition in a polymer
generally provoke either a monotonic decrease or increase of P/Po with
amplitude of variation of 0.15 to 16 and 0.1 to 18 respectively. This leads to a
scatter graph of P/Po with a general aspect in herringbones centred on P/Po =1.
On the contrary, figure 2c shows that for platelets, except one or two cases, the

relative permeability values remains always below P/Po equal to 1.

- The maximum drop in P/Pois much higher for platelets-based nanocomposites,
with a P/Po reaching a minimum value of 0.01, i.e. up to 10 folds lower than the
minimum value that could be reached with cylinder and particles, and in spite

of the lower filler volume fractions used.

- For all kinds of particles, some non-monotonic variations of P/Po were noted
with simultaneously increase and decrease of the relative permeability for the
nanocomposites. It represents approximately 12% of the studies for spherical
nanoparticles, 21% of the study for cylinder nanoparticles and only 7% of the

studies for platelets.

Among the aforementioned conclusions of this first general analysis of P/Po evolution

in nanocomposites, some frends were expected as in the fact that platelets

generate, more often and with higher amplitude than the cylinders and/or the

spheres, a decrease of the permeability. This could be easily ascribed to the particle

geometry and the more pronounced tortuosity effect induced by platelets compare

to spheres and cylinders. This analysis has also revealed that the behaviour of P/Po

was more complex than expected with non-monotonic behaviours especially in the
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case of cylinders. However, straightaway it could be asserted that the evolution of
the relative permeability and thus the modulation of the barrier properties were
affected by the shape of the nanoparticles. Some general tendencies have
emerged for each kind of particles that will be in depth analysed in the following

sections.

4. In-depth investigation and understanding of the modulation of the permeability of
nanocomposites

Some material properties such as mechanical properties have already been in-
depth studied [Jordan et al. (2005), Al-Saleh et al. (2011)], Suvorova et al. (2013)] and
have provided a better understanding of the relationships between nanocomposites
properties and structures. But among these functional properties, mass transfer
properties were never extensively analysed in the perspective of comparing effect of
particle shape on permeability. In the following section the evolution of the relative
permeability P/Po will be in depth investigated by first, a statistical analysis of
available data according to the shape and volume fraction of particles and second,
an attempt of qualitative explanation case by case of the modulation of the
permeability according to particles morphology by focusing on the (nano)structure

obtained and ifs relationship with mass transfer properties.

4.1. Statistical analysis of the modulation of mass transport properties

In order to perform a quantitative analysis of “performance” of each particle shape

to modulate/change the permeability value of the neat matrix, all the permeability
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data collected were gathered on a histogram showing the number of studies per
class of modulation represented by a range of value for the relative permeability
P/Po. The maximum number of permeability values for spheres (43%), for cylinders
(29%) and for platelets (30%) was obtained for the classes 1 < P/Po <2, 1 < P/Po < 2,
and 0.6 < P/Po < 0.8 respectively, confirming the fact that only platelets leads to

largely decrease of permeability (figure 4).
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Figure 4: Representation of the number of permeability value in composites (%) according to
the particle shapes (spheres: light-grey, cylinders: dark-grey and platelets: black) as function
of the classes of the relative permeability P/Po evolution

Besides this main impact, secondary peaks were observed in figure 4. In the case of
spherical particles, 17% of values were obtained for the class 2 < P/Po <3 and 14% for
0.8 < P/Po <1 indicating that permeability in spheres-based nanocomposites could be
either multiply by a factor 3 in a significant number of times as well as slightly
decrease of 20%. This feature confirms well the herringbone scatter graph observed

when all data of P/Po are represented as a function of ¢var (figure 3a). In the case of
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cylinders, 17% permeability values belonged to the class 0.6 < P/Po < 0.8 and once
again 17% to the class 0.8 < P/Po < 1, indicated that even if the main effect is a week
increasing permeability up to a factor 2, addition of cylinders could statistically
decreased the permeability of cylinders-based nanocomposites. In the case of
platelets, their overall frend of decreasing permeability was confirmed with
secondary peaks which reveal that 23% of permeability values were obtained for

0.4 <P/P0 0.6 and 21% of for 0.8 < P/Po < 1 in platelet-based nanocomposites.

To verify if the conclusions of this global analysis were sfill confirmed for different filler
fractions, permeability values were also apportioned intfo classes of filler fraction in
addition to the classes of P/Po values. Classes chosen for filler fractions were 0 to
S vol%, 5 to 10 vol%, 10 to 20 vol% and 20 to 30 vol%. Resulting plots are shown in
figure 5. Compared to figure 4, the P/Po were limited to a maximal value of 3
considering that higher increase of the permeability ratfio is an exceptional behaviour
(less than 6 % of the studies whatever the particle shape) and result in great structural

changes of the nanocomposites.

According to figure 5a, an increase up to a factor 2 of the permeability of the neat
matrix was globally obtained in almost 45% of cases whatever the filler faction
considered: that means that the same evolution of P/Po was obtained for each filler
fraction in the case of spherical particles. This regularity was not observed anymore
for cylinders and platelets which displayed some differential behaviour depending
on the filler fraction. For cylinders-based nanocomposites, the same trend of P/PO
evolution was obtained than in Figure 4b for volume fraction until 20vol% with a main
peak (between 25 and 30%) centred for P/Po values ranging between 1 to 2. At a

volume fraction higher than 20 vol% the curve was offset to higher decrease of the
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relative permeability but presented a more disordered shape of the curve. For
platelets-based nanocomposites the same trend of P/Po evolution was obtained
than in Figure 4c for particle volume fraction lower than 5 vol% with a main peak
(30%) centred for P/Po values in the range from 0.6 to 0.8. This main peak was shifted
to higher decrease of the relative permeability for particle volume fraction ranging
between 5 to 10 vol%, with a main peak (38%) for P/Po values in the range from 0.4 to
0.6 while for volume fraction > 10 vol%, the decreasing effect on the permeability
was not confirmed anymore. We noted that studies conducted with such high
amount of platelets (> 10 vol%) were scarce and it is thus difficult fo generalize the

effect of high volume fraction of platelets on P/Po of the resulting nanocomposites.

To sum up, this statistical analysis has revealed that:

- Whatever the volume fraction, the addition of spherical parficles did not
statistically impact so much the permeability of the nanocomposites;

- Decrease of permeability could be achieved by either cylinders and platelets
addition but for different volume fraction of particles; more than 20 vol% are
necessary to achieve a significant decrease of P/Po in cylinders based
nanocomposites while less than 10 vol% are required when platelets are used
instead of cylinders;

- Increasing volume fraction of particles between 5 and 10 vol% in platelet-
based nanocomposites decreases the P/Po ratio more sharply than filler

fraction lower than 5 vol% .

Therefore, the modulation of the permeability is clearly affected by the shape of the

particles. In the following, lines of explanation will be tentatively brought in order to
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relate this “shape effect” to the morphology of the particle and the (nano)-structure

of the composite.

4.2. Qualitative analysis of the relationship between mass transfer properties and
structure of the composites

In this section, in order to reach a better understanding of the structure and mass
transfer properties relationships, we will try to explain the general tendencies
previously observed of the modulation of the permeability relying on a critical
discussion of explanation lines provided by the author in their study. In the three
following sub-section, three cases will be considered:
“ideal” case of monotonic decrease of P/Po;
- monotonic increase of P/Po;

- non-monotonic behaviour.

4.2.1. Decrease of the permeability induced by a “tortuosity-based effect”

In theory the incorporation of impermeable particles which present good
compatibility with the polymer matrix should favour the decrease of the permeability
of gases and water vapour, mainly due to the increase of the tortuous path for the
diffusing molecules. Such “ideal” cases were largely observed in data collected
from literature as illustrated in figure 3. For instance, for the incorporation of
impermeable various shape of nano- and micro-particles, spherical such as TiO2 [Hu
et al. (1997)] and SiO2 particles [Zoppi et al. (2000), Patel et al. (2003), Patel et al.
(2004), Vladimorov et al. (2006), Vassiliou et al. (2007), Zhu et al. (2007), Sadhegi et al.
(2013), Sadhegi et al. (2011),], cylinder such as cellulose fibre [Azeredo et al. (2009),

Chang et al. (2010)], cellulose nanocrystals [George et al. (2012)], cellulose
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nanowhiskers [Saxena et al. (2009), Sanchez-Garcia et al. (2010), Bilbao-Sainz et al.
(2011)], cellulose micro-fibres [Fendler et al. (2007)], wheat bran micro-fibres [Fama et
al. (2009)] and platelet such as montmorillonites [Straewhecker et al. (2000), Chang
et al. (2002), Xu et al. (2002), Choi et al. (2004), Chien et al. (2006), Yeh et al. (2006),
Herrera et al. (2010), Katyiar et al. (2010), Aloofetileh et al. (2013), Abdollahi et al.
(2013)], rectorite silicate [Wang et al. (2005)], and mica silicate [Sanchez et al. (2010],
cellulose nanocrystals [Fortunati et al. (2012)], waxy maize [Angellier et al. (2005)],
boron nitride [Swain et al. (2013), Kisku et al. (2012)], silicon carbide [Kisku et al.
(2014), Dash et al. (2013)] led to a decrease of the gases and vapours permeability.
The amplitude of this decrease largely depends on the particle shape and/or
particle volume fraction used. In most cases, the authors attributed this effect to the
nanostructure created by the incorporation of an impermeable particle (tortuosity
effect) and/or in a lesser extend to the impact of particle addition onto the polymer
maftrix network, or to the modification of the availability of specific sorption sites for

the sorption of the diffusing molecule.

Tortuosity effect. Tortuosity effect could be related to the in-situ size aspect
ratio of the particle: high size aspect ratio favouring a more tortuous pathway. For
example, Gatos et al. [Gatos et al. (20007)] created nanocomposites via melt
processing using two different sizes of particles, octadecylamine modified
montmorillonites with a size aspect ratio of 100 and synthetic fluorohectorite with size
aspect ratio of 200 (measured by fransmission electronic microscopy). Both particles
were well exfoliated into the hydrogenated acrylonitrile butadiene rubber polymer
matrix. The higher decrease of oxygen permeability was achieved using the
fluorohectorite composites and it could be related to its highest aspect ratio. It is

obvious that, size aspect ratio of a sphere is lower than that of a cylinder which is, in
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turn, usually, lower than that of platelets leading to more tortuous pathway in

nanoplatelets-based nanocomposites, as can be seen in figure 6.
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Figure 6: Representation of the tortuous path according to the particle shape and aspect
rafio (a=1 for spherical particles, a=10 for cylindrical particles and a=100 for platelets). The
calculation of mean aspect ratio was done based on the experimental observations of the
size of the in-situ particles made from the authors quoted in table 2 and table 3

The in-situ size aspect ratio, i.e the aspect ratio of the particles ones embedded in
the polymer matrix after processing, in turn, strongly depends on the particles
dispersion state. For instance, in platelets-based systems, different state of dispersion
have been identified; exfoliated, intercalated, both intercalated and exfoliated, and
tactoid structures. Sanchez et al. [Sanchez et al. (2007)] have demonstrated that the
decrease of oxygen permeability was higher in PHBV-PCL nanocomposites
displaying exfoliated structure. Koh et al. [Koh et al. (2008)] obtained the same results
in their study comparing the effect of three different montmorillonites organo-
modifications in PLA. They observed that the highest decrease of the oxygen and
carbon dioxide permeability was obtained for the exfoliated structure. Sun et al. [Sun
et al. (2008)] also observed that a higher degree of particle exfoliation lead to higher
decrease of oxygen permeability in a-zirconium phosphate/epoxy resin
nanocomposites compare to samples where only intercalafion or mix of

intercalation/exfoliation was achieved. In intercalated structures, the platelets
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remained in stacks; therefore the apparent size aspect ratio (length to thickness) is
much lower than that of the single platelet layer. The structure achieved is thus less

tortuous than in case of a full-exfoliated structure.

Complete exfoliation or dispersion of the particles in the polymer matrix was really
complicated to achieve and was strongly related to the processing conditions. The
main elaboration techniques used in the papers collected in this work were solution
blending and melt processing. Takahashi et al. (2006) pointed out that the final
structure of SiO2/poly(ether-imide) depend on the processing technique by
comparing the structures according to the process, melt-processing and solution
casting. They showed that in the case of the melt-processing the particles were
better dispersed than in solution casting process due to the higher shearing forces
which caused the stretching of the polymer chain and then favoured the dispersion
of the nanoparticles between them. Hence in melt processing, the shear forces
encountered could highly influenced the dispersion state as proved by many authors
such as for example Monsivais-Barron et al. (2013) who pointed out that the barrier
properties of montmorillonites/high density polyethylene was impacted by the shear
rates during extrusion. In solution blending complete exfoliation and dispersion was
dependant to the couple particle/polymer matrix in order to reach the better
matching between the particles and the polymer matrix [Cornelius et al. (2002)] and
to avoid the formation of “interfacial void” at the interface particles/polymer matrix
[Chung et al. (2007)]. In both cases, incomplete dispersion, either by melt-processing
[Bharadwaj et al. (2002), Balachadrin et al. (2010), Meera et al. (2012)], or by solution
casting [Rhim et al. (2009), Kumar et al. (2010), Kasirga et al. (2012)] is usually

achieved such as in the study of Luecha et al. Luecha et al. (2010) who showed that
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either solution casting or blown extrusion lead to coexistence of intercalated and

exfoliated structures in montmorillonites /corn zein matrix.

Dispersion state is more difficult to achieve, when the filler content increase due to,
agglomeration phenomena as evidenced by Rhim et al. (2011) Bharadwaj et al.
(2002), Picard et al. (2007) in agar/Montmorillonite, in polyester/montmorillonite and
in polyamide/montmorillonite nanocomposites. In the same line, Chang et al. (2001)
demonstrated that oxygen permeability was highly dependent on the filler volume
fraction in organomodified montmorillonites/polyimide nanocomposites and
exhibited non-linear dependency between P/Po and particle volume fraction with a
less decrease of the ratio P/Po at high clay content due to, according to the authors,
clay aggregation. From figure 3c, it was highlighted that a lot of curve representing
the decrease of the ratio P/Po as function of the particle volume fraction exhibited
this breaking in the decrease of the curve which lead to constant P/Po value at
higher particle volume fraction. Even for chemical modified particles, agglomeration
still could occur at high loading as evidenced by Zhu et al (2007) with modified SiO2

particles in poly(vinyl chloride) matrix.

Some techniques would tend to be more effective to gain a good dispersion than
solution and melt processing. As exposed previously, spherical and platelet
nanoparticles can be synthesized during the processing of the nanocomposites itself
(sol-gel or template synthesis) even if for platelets this process was very unusual. |t
should favour the dispersion of the particle by the establishment of covalent bonding
between polymer and particle. Hu et al (1997) in-situ processed TiO2 particles and
Zoppi et al. (2000) SiO2 particles in a poly(amide) matrix via sol gel method and

obtained a well-dispersion of parficles. In-situ polymerization would be another
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solution to reach complete exfoliation [Messersmith et al. (1995), Ke et al. (2005),
Herrera et al. (2010)]. Nevertheless in some cases complete exfoliation was not reach
even with this processing technique and there still remained presence of small
agglomerates, as shown by Gain et al. (2004) in poly(e-caprolactone) polymer matrix

in siftu polymerized.

Aside the elaboration technique, another strategy to enhance the dispersion state is
the improvement of particles/polymer matrix interaction through the use of chemical

modification or compatibilizer addition.

Another way to achieve good adhesion between the particles and the polymer
matrix is fo chemically modify the surface of the spherical [Patel et al. (2003), Patel et
al. (2004)], and platelet particles [Fortunati et al. (2012), Choi et al. (2011), Zhang et
al. (2012)]. Rhim et al. (2009) showed that the use of montmorillonite without
chemical modification lead to an increase of the permeability if compared to the
permeability of the neat poly(L-lactide); and when the surface of the particles were
organically modified, the permeability of the composite decreased. Aside particle
surface modifications, the use of a compatibilizer could improve the dispersion and
the adhesion between the particles and the polymer matrix [Osman et al. (2005),

Jacquelot et al. (2006), Lee et al. (2005), Horst et al. (2007)].

The orientation of the particles also led to the modulation of the permeability; well-
oriented particles perpendicular to the permeation flux have more impact on the
decrease of the permeability that disoriented particles as regard the tortuosity
effect. This feature is of value for cylinder and platelets only and of course, for

particles with high size aspect ratio. Importance of the particle orientation was
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experimentally and theoretically (with the use of predictive modelling of the
permeability) demonstrated by Dunkerley et al (2013) in polystyrene/montmorillonites
nanocomposites. The orientation of the particles could be related to the process of
the composites, Messersmith et al (2005) showed that the montmorillonites adopted
a planar orientation in the poly(e-caprolactone) polymer matrix after in-situ-
polymerization and solution casting processing. Besides Sanchez et al (2007)
demonstrated that the orientation of montmorillonites in PHBV-PCL polymer matrix
adopted different orientation after melt-processing and compression moulding. And
Osman et al (2007) highlighted that the incorporation of montmorillonite in
polypropylene polymer matrix through melt-processing and compression moulding
could lead to partial orientation of the particles. Thus the orientation of the particles
seemed to be highly dependent from the composite preparation techniques but

nevertheless difficult to master.

Modification of the polymer matrix. Addition of the particle itself could modify
the properties of the polymer which thus could contribute to the decrease in P/PO
ratio. This was many related to increase in crystallinity or in free volume in the polymer
when used in nanocomposites. Effect on free volume was reported by Sadhegi et al.
(2013) polycaprolactone based polyurethane-silica nanocomposites mainly due
without doubts to the preparation technique of the nanocomposites via sol-gel
method which lead to a reduction of the polymer chain mobility in the amorphous

phase.

Impact on cristallinity was reported by Vliadimorov et al. (2006) and Vassiliou et al.
(2007) for spherical particles, by Fendler et al. (2007) and Fama et al. (2009) for

cylinder particles and by Sanchez et al. (2007) and Gashemi et al. (2012) for platelets
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particles. Particles can act as nucleating agent and lead to an increase of the
crystallinity which decrease the permeability of the polymer in the nanocomposites.

Indeed cristallinity acts as an obstacle to migrant diffusion.

Decrease of polymer sorption site. Initially the particles were modified to reach
better adhesion and dispersion in the polymer matrix. The secondary effect of this
modification is lesser available sites for the sorption especially for highly interactive
water molecules due to specific intferactions between the particle and the matrix for
example montmorillonites and wheat gluten [Tunc et al. (2006)] and montmorillonites
and soy protein [Lee et al. (2010)]. Slavutsky et al. [Slavutsky et al. (2014)] went further
on the explanation of the modulation of the permeability, making the assumption
that the interactions between montmorillonites could hinder the passage of water

molecules through the composite film.

4.2.2. Increase of the permeability influenced by imperfect structuring of the
composites

No significant modification of permeability or increase of the relative permeability
P/Po in nanocomposites were related to (1) lack of efficient tortuosity, (2) occurrence
of structural defects in the material such as particles agglomeration, (3) significant
modification of the polymer matrix and (4) increasing migrant sorption induced by

particles (case of water vapour for example).

Lack of tortuosity. In term of modulation of the permeability Tunc et al. (2007)
showed that the presence of stacked silicates layers in wheat gluten polymer matrix
did not lead to a tortuosity effect sufficient enough to disturb the diffusion pathway

of a small molecule as O2 and the permeability stayed more or less constant. In the
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same article, the authors have demonstrated that for bigger molecule such as
aroma compounds the same nanostructure display efficient tortuosity to decrease
the diffusion of that molecule. This highlighted that the nature, molecular weight
and/or steric hindrance of the migrant would be important in addition to that of the
particle. Besides Dogan et al. (2007) also noticed no significant change of the water
vapour permeability with the addition of microcrystalline cellulose particles, in the
range from 0.5 to 3 um, hydroxyl propyl methyl cellulose polymer matrix. Although
they expected a decrease of the diffusion coefficient in the composites, they
assumed that this frend could be explained by higher water affinity of the materials
due to the presence of the particles which could lead to enhance water sorption
which could counteract the decrease of the diffusion; this outcome will be discussed

in the following.

Structural defects. Agglomeration phenomena could be considered as
structural defects which play a major role in the increase of P/Po. In spherical-based
composites [Cornelius et al. (2002)] and cylinders-based composites [Bilbao-Sainz et
al. (2011)] highlighted the presence of both nanosized and microsized particles
representing the particle agglomerates. These agglomeration phenomena could be
related to a bad dispersion of the particle which is mainly ascribed to (1) inefficiency
of the elaboration technique and/or (2) mismatching of the particle polarity

compare to that of the polymer.

For example, insufficient shearing forces during the melt processing could cause
agglomeration of particles. During casting, sol-gel method and in-situ polymerisation,
coalescence of the particles during drying of the solution could appear through

insufficient particle/particle interactions (*lbad compatibility”). This last phenomenon
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could be triggered by chemical modification of the surface of the particles when the
effect of the chemical modification was wrongly anticipated [Zhu et al. (2007)]. Due
to agglomeration phenomena, void spaces could be created at the interface
particle/polymer matrix and led to the formation of a narrow gap around the

agglomerates [Rafig et al. (2012)].

Interphase at the interface particles/polymer matrix could be created due to weak
interfacial interaction between the particles and the polymer matrix. Interphase,
defined as a third component in the composite materials was evidenced in
spherical-based composites by Matteucci et al. (2008) and Moghadam et al. (2011),
and in cylinder-based composites by [Pradahan et al. (2012)]. It could be assimilated
as a “third compartment” with its own properties. Interphase could participate to the
overall mass transport properties and strongly disturb the permeability of the
composite. For instance, Liang et al. (2012) in platelet-based composites noticed
that because of poor adhesion between hydrophobic poly(ethersulfone) and
hydrophilic  parficles, huge ftransfer could happen at the interphase

particles/polymer matrix.

Modification of the polymer matrix. Changes of the polymer matrix properties
following the incorporation of particles could lead to an increase of the permeability.
The incorporation of particles could be linked to the disruption of polymer chain
packing which caused an increase of polymer matrix free volume in spherical-based
composites [Matteucci et al. (2008), Dougnac et al. (2010), Moghadam et al. (2011),
Romero et al. (2011)] and in cylinder-based composites [Murali et al. (2010)].
Increase of free volume was also observed by Mittal et al (2007) following the use of

compatibilizer due to bad compatibility between the compatibilizer and the surface
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freated particles. This led fo a lesser decrease of the permeability than expected. In
the same trend, Zhong et al. (2007) observed an increase of the permeability due to
the use of a compatibilizer that modulate the space between the polymeric chains

and thus an increase of the polymer matrix free volume.

Besides the addition of particles in a polymer matrix could lead to a decrease of the
crystallinity because particles could play a role in hindering the crystallisation process

[Dougnac et al. (2010)].

Interaction migrant/composite constituents. Another phenomenon responsible
for the increase of permeability was the interaction between the molecular
penetrant and the composites constituents. In some composites, interaction
between the molecular migrant such as water vapour should be considered due to
the hygroscopic nature of the particles [Bracho et al. (2012), Dougnac et al. (2010),
Dogan et al. (2007)]. Moreover interactions between the organo-modification of the
particles and the molecular penetrant such as O2 should be taken info
considerations [Chang et al. (2002), Iwata et al. (2002)] which are also responsible of

an increase of the permeability.

4.2.3. Non-monotonic variation of P/Po

The gases and water vapours permeability did not always monotonically
increase or decrease but could follow more complicated tendencies. For example,
in the work of Sanchez et al. (2009) on platelets-based composites, the permeability
first decrease due to, according to the authors, the tortuosity effect but from 5%

volume fraction of particle the permeability began to increase due to the formation
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of agglomerates as supposed by the authors. In cylinders-based nanocomposites
[Dogan et al. (2007), Saxena et al. (2009), Paralikar et al. (2008)] and
microcomposites [Sanchez et al. (2010)], the same trend was observed with the
formation of particle agglomerates at high particle volume fraction (generally
> 10 vol%). This agglomeration phenomenon led in nanocomposites [Ismail et al.
(2011)] to the formation of “interface voids” at the interface particle/polymer matrix
and to the formation of a preferential pathway for the migration of molecular
penetfrant. The formation of void space at the interface particles/polymer matrix
could also appear due to bad compatibility and poor adhesion between the
particle and polymeric maftrix and also lead to an increase of the permeability from
a given particle fraction [Zoppi et al. (2000)]. Aside agglomeration that could reverse
the trend of variations of P/Po, some extensive cracking of the composite film could
occur and lead to a complete loss of barrier properties [Chaiko et al. (2005)], which
was attributed by the authors to excessive particle agglomeration at high particle

fraction.

Another observed but more rarely evolution of the permeability was first an increase
of the water vapour permeability caused by enhanced affinity between molecular
penetfrant such as water vapour and composite components due to the hydrophilic
nature of the components of the cellulose nanocrystals/poly(e-caprolactone
composites and, second, a decrease of the permeability induced by the tortuosity

effect [Follain et al. (2013)].
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4.2.4. Explanation of the evolution of the permeability in line with the evolution of
solubility and diffusivity coefficient

Face to the complex evolution of P/Po as a function of filler content, the authors tried
to found an explanation and to do that, broke down the permeability into diffusivity
and solubility through the well- known relation P=DxS. They determined in addition to
the permeability, the diffusivity and solubility coefficients in the composite under

study.

Permeability is governed by the evolution of both the diffusivity coefficient and the
solubility coefficient. In nanocomposites, when P decreases, diffusivity and solubility
should do the same because of the formation of a more tortuous path (influence on
D) and, the diminution of specific area for the sorption of gases or vapours and of
the total amount of free volume which hindered the dissolution of gas molecules and
numerous interactions between the particle and the matrix which decrease sorption
sites [Cornelius et al. (2002)] (influence on S). For instance [Muller et al. (2009)]
observed a decrease of the solubility due to interaction between the fibres and the
hydrophilic sites of starch polymer chain which substituted the starch - water vapour
interactions that predominates in films without fibres. Decrease of both D and §
coefficient is the ideal case. Anyhow this ideal case was not always observed and
there was rather a competition between an increase of the solubility and a

decrease of the diffusivity.

Indeed, solubility remained sometimes at the same value in the composite compare
to that of the neat matrix as observed by [Kim et al. (2001), Cong et al. (2007)] in
silica particles/poly(amide-6-b-ethylene oxide) and silica particle/brominated

poly(2,6-diphenyl-1,4-phenylene oxide) nanocomposites, or even increase with the
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addition of particles. As evidenced by Sadheg et al. (2009) in silica
particles/polybenzimidazole composites for carbon dioxide molecular penetrant, he
solubility could increase because of interactions of the molecular penetrant with
functional groups of the particles. This well evidenced that if the particles could be
considered as impermeable (D=0), it is not true for their solubility. Increase of S could
also be related to the progressive uncovering of active sorption sites in the polymer
matrix as a consequence of particle addition and to the creation of specific sites at
the interface particle/polymer matrix that favour the sorption of molecular penetrant

[Sadhegi et al., Suzuki et al.(2005)].

For the diffusivity coefficient, the expected behaviour is a decrease due to the
restriction of the motion of molecular penetrant and the creation of a more tortuous
path caused by the presence of the particles [Sadhegi et al. (2009), Suzuki et
al.(2005)]. Kim et al. (2001) showed that, in poly(amide-é-b-ethylene oxide), in spite of
the presence of agglomerated particles, the tortuosity effect still lead to a decrease
of the diffusivity coefficient. Besides an increase in the crystallinity of the composite
with the incorporation of particles could act as an obstacle for the diffusion of the
molecular penefrant and then led to a decrease of the diffusivity coefficient. The
opposite phenomenon could also happen. Sadhegi et al. (2008), seeking to
understand the increase of the permeability in polyvinyl acetate with the addition of
particles, made the assumption that the diffusivity coefficient could increase either
due to a reduction of the packing density of the composite which provide further
open structures for the diffusion of CO2 or due to a reduction of the impermeable
crystalline region in composites which could boost the diffusion of CO2. The latter
effect was also demonstrated by Kono et al (2007) and Ahn et al. (2008). The

diffusivity could also remain constant with the addition of impermeable particles

61



[Muller et al. (2009)]. Due to bad adhesion or compatibility particles/polymer matrix,
the creation of interconnected cavities/channels could be formed at the interface
particles/polymer matrix and thus led to an increase of the diffusivity coefficient

[Suzuki et al. (2005), Kim (2001), Cong et al. (2007)].

In summary, although a decrease of the relative permeability P/Po should be observe
with the addition of impermeable particles due to a decrease of the diffusivity and
solubility coefficient whatever the particle nature or shape and the kind of molecular
migrant, but sometimes an increase of P/Po occurred. This evolution could be
generally explained by an increase of S while D decrease in accordance with
tortuosity principle, even if both S and D increase could be observed in some cases.
Non-monotic changes of P/Po, in peculiar, decrease of P/Po following by an increase
for higher particle volume fraction, could be ascribed to an increase of S that could,
from a threshold value of particle volume fraction, counteracts the decrease of D

(and vice et versa).

5. Conclusion

The recently-measured values of Oz, CO2 and H20 permeability in agro-, bio- and
synthetic-based composites have been comprehensively reviewed with emphases
on the link between their microstructures and their barrier performance. From this
analysis it concluded that the shape of the particle had a great inlfuence on the
modulation of the relative permeability (P/Po); while spherical and cylindrical
particles lead to both increase and decrease of P/Po, the platelet particles mainly
lead to a decrease P/Po. In any event, the addition of impermeable particles in a

polymer matrix is expected to decrease the permeability by both a decrease of the
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solubility and diffusivity coefficient due to the diminution of specific area for the
sorption of gases and vapours and the formation of a more tortuous path
respectively. To explain the deviatfion of the permeability, structural aspects, related
to both the particle nature, size and shape and the composite processing
techniques, have been discussed. Good dispersion or exfoliation of the particles
should lead to a tortuosity effect, reponsible of the dercease of the permeability.
However in some cases, the particles tended to agglomerate upset that tortuosity
effect by the creation of specifi channel for a faster permeation of the molecular
penefrant. Another reason to an unexpected behaviour of the permeability is
changes in the polymer matrix behaviour which came along with for exemple an
increase of the diffusivity coefficient due to a decrease of the polymer chain
packing density. One additional phenomena which favour the increase of the
permeability with the incorporation of particles is the creation of specific sites for the
sorpfion of the molecular penetrant. To complete this study, it should be pointed out
that not only the particle shape played a role on the modulation of the permeability
but also the composites processing techniques which will results in various composite
structures exhibiting different impact on the mass transfer properties of gases and

vapours.
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Publication 2

State of the art and beyond, on multi-scale modelling of structure

& mass transfer relationships in nanocomposite materials

Caroline Wolf, Valérie Guillard, Nathalie Gontard

ABSTRACT: Modelling mass fransfer properties of nanocomposite which mostly result
from the dispersion of impermeable nanoparticles in permeable polymer matrixes
have been discussed with a special emphasis on how the shape of the particles (e.q.
spherical, cylindrical and platelet nanoparticles) is handled in the models. Analytical
and numerical models available in the literature have been reviewed. The
convenience of a given model to consider the geometrical complexity of the
sfructure, such as the in-situ particle aspect ratio, particle dispersion and orientation,
has been examined in terms of model definition and on the basis of validity
conditions; existence (quantity and quality) of experimental model validation was
also considered. The prediction of selected analytical tortuosity-based models were
then compared to a large panel of experimental data (more than 700 permeability
values) among those collected in a previous work [Wolf et al. (forthcoming (a))]. The
suitability of the listed models to predict the observed decrease of permeability was
discussed according to the shape of the particles; it was concluded that the
numerical simulations were more reliable for the prediction of mass fransfer in
nanocomposites since they could take info consideration the complex structure of
these materials and address the lack of data of the tortuosity-based model related

to the structure.

KEYWORDS : Modelling, Nanocomposites, Particle shape, Structure & mass transfer
relationships, Permeability
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1. Infroduction

Since the past twenty years, wide-ranging of research activities have been
dedicated to the development of nanocomposite materials consisting of two
phases; continuous polymeric matrix and dispersed particles of nano-sized. These
particles are mostly of inorganic nature (e.g. silicate layers, carbon nanotubes, silica
nanoparticles) but could also be of organic nature (e.g. cellulose-based
reinforcements, starch crystals). Nanoparticles are infroduced in polymeric matrices
to enhance their mechanical thermal and barrier properties towards gas and
vapours [Ray et al. (2003)]. Considering this last category of functional properties,
the impermeable particles act by creating a tortuous pathway that increases the
distance to be covered by the diffusing molecule. This last feature is particularly
applied in the food packaging field where high barrier properties can be required,
for example to protect sensitive food against oxidation [Azeredo et al. (2009),
Silvestre et al. (2011)]. The most appropriate nanoparticles shape for this role being
platelets, the impact of clays on the diffusion and/or on the permeation properties
has been extensively studied [Xu et al. (2006), Choudalakis et al. (2009), Kumar et al.
(2011) and Mittal et al. (2013)]. Most of the reviews on the topic dealt mainly with the
predictive modelling of hanocomposites barrier properties and listed the different
available models with confrontation to a set of experimental data judiciously chosen
for its marked effect of platelets addition on the nanocomposite permeability (i.e. a
decrease of P/Po as a function of filler volume fraction). On a recent paper tried the
impact of the particle shape (spheres, cylinders or platelets) on the relative variation
of barrier properties was deciphered by an exhaustive collection and analysis of the
literature experimental data [Wolf et al. forthcoming (a)]. Collecting more than 700

permeability values confirmed that platelets were globally more efficient than
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spheres and cylinders to decrease the relafive permeability of nanocomposites
toward O2, CO2 and H20O (only these migrants investigated). However, it was noted
that a decrease of the permeability of the nanocomposite compare to the neat
matrix was not systematically achieved by addition of platelets. Indeed non-
significant variation or sometimes unexpected increases, of the relative permeability
were related to the heterogeneous structure obtained after processing: lack of
particles dispersion, occurrence of agglomeration phenomena, and creation of an
interphase at the particle/polymer interface. Experimentally, a nanostructure,
optimally targeted towards high barrier property is ascribed to the nature of the raw
materials (compatibility of polymer matrix and particles), and to processing
conditions (e.g. physical dispersion of the particles within the polymer). To increase
and to propose predictive modelling approach of the nanocomposite permeability,
mathematical modelling has emerged for more than 50 years and was recently
upgraded via the development of numerical approach (figure 2). All these
modelling approaches are based on the hypothesis that mass transfer in the
composite materials obeys to Fick’s law and that the impact of the structure on the
permeability coefficient could be entirely represented by means of geometrical
input parameters. Therefore, all modelling approaches tried to predict the
permeability of the composite (P) from the permeability of the polymer matrix (Po),
and from different additional factors related to the structure of the composites such
as for example the particle volume fraction, the mean size aspect ratio of the
particles, the in-situ particle dispersion (regular or random arrangement) and

orientation tfowards the flux direction.

In front of the huge effect of the addition of platelet shaped particles on the

composite permeability, most of the modelling approaches have focus on the
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prediction of mass transport properties of platelets based-materials (e.g. considered
as infinite ribbons or lamellae, or as flakes or disks, etc.); such as for instance the
studies of the group of Cussler [Cussler et al. (1988), Falla et al. (1996) and Derocher
et al. (2005)]. Among platelet shape, some authors focused precisely on polymer-
layered silicate nanocomposites [Bharadwaj et al. (2001), Xu et al. (2006), Sorrentino
et al. (2007) and Choudalakis et al. (2009) ]. Compare to platelets, the impact of
spherical or cylindrical particles on composite permeability has conducted to less
modelling development, only one model for cylinders and three for spheres against

more than 12 for platelefts.

Historically, these models derived from other fields of science such as the prediction
of dielectric properties in composites and nanocomposite materials [Maxwell et al.
(1873), Higushi et al. (1958)] and were further adapted for the prediction of the
permeability on the basis that both properties behaved in the same manner. A little
later on, Barrer and Petropoulos (1961) proposed a first calculation of the diffusivity of
membranes in which a second, permeable phase is dispersed in regular
arrangement. Therefore, they took into account the diffusivity of the dispersed phase
in their calculation, but their approach could be easily extrapolated to impermeable
particles by considering that the diffusivity of the dispersed phase was null. In the
same time, Nielsen and co-workers (1967) first infroduced the concept of tortuosity in
a mathematical expression of the relafive permeability of the nanocomposite
related to the permeability of the polymer matrix. Starting from this work, several
other analytical tortuosity-based models have been derived. Last developments in
the field were the numerical 2D and 3D models based in majority on the use of Finite
Difference Method (FEM) [Greco et al. (2013, 2014) or Finite Volume Method [Minelli

et al. (2009, 2011)].
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The objective of this paper is to list and analysis the analytical tortuosity-based
models available in the literature in terms of conditions of use, applicability and
validity. Three types of particles were for the first time considered together: spheres,
cylinders and platelets. A comparison of the prediction done by the most quoted
models with an exhaustive set of data of the literature on Oz, CO2 and H20
permeability, collected in a previous work [Wolf et al. fothcoming (a)] was then
carried out which was never done previously. This will permit to confront the models
to the variability of the results obtained for agro-, bio- or synthetic polymers and
different nature and shape of particles. A special emphasis was put on the
examination of the limitations of these models to well predict the experimental data.
Then in a last step, the more recent numerical approaches were presented and

discussed with an emphasis on multi-scale modelling approach.

2. Basics on mass transfer

Mass transfer in a homogeneous polymer matrix is supposed to obey to Fick's law
which related the flux (J) to the gradient of concentration through a proportionality

coefficient, (D):

1=-0(3) u

where D is a kinetic or mobility parameter which characterizes the mobility of

molecular species as they diffuse through the materials.

Henry's law gives the correspondence between the concenfration (c) and the

partial pressure (p) for dilute system:
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c=Sxp 2]

where § is the solubility coefficient, a thermodynamic parameter which characterizes
the number of molecular species sorbed onto and into the material.
By combining equations (1) and (2), the first Fick’'s law could be expressed for a

monodirectional flux through a plane sheet film as follows:

J = DS(Z’;‘PZ) [3]

where p1 and p2 are the pressure on the two sides of the film and h is the thickness of

the film.

Mass fransfer phenomena in the polymer matrix film could be then represented by a
solution-diffusion mechanism described by the three coefficients i.e. solubility (S),
diffusivity (D) and permeability (P). The permeability coefficient combines the effects

of diffusion and solubility:

P=DxS [4]

Providing that several assumptions are required, mass transfer phenomena in the
nanocomposites could be described by the same mechanism of solufion-diffusion
than in the neat polymer [Barrer et al. (1961)]. The assumptions made are thus:
- first, the polymer matrix infrinsic properties are not affected by the presence of
the nanoparticles;
- second, the nanoparticles/polymer matrix interactions are strong enough to

avoid free volume creation at the interphase nanoparticles/polymer matrix.
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Considering that nanoparticles are impermeable, the solubility of the

nanocomposite could be predicted by knowing the solubility in the neat polymer

matrix (So) and the particle volume fraction (p). Thereby, gas solubility of a
polymer-based composite can be expressed as:

S=(1-d) xS, [5]

Then, considering that nanoparticles act as an obstacle for the migration of

molecular species that have to follow a more tortuous path to diffuse through the

nanocomposites, diffusion coefficient is decreased and can be expressed as:

p="= [6]

where D and Do are the diffusion coefficient of the neat polymer matrix and of the

nanocomposites and T1is the tortuosity as defined in figure 1.

The permeability of the nanocomposite deduced from equation (4) becomes:

P=""2xP, [7]

where P and Po are the permeability coefficient of the neat polymer matrix and of

the composite.
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Figure 1: Representation of the tortuosity effect through nanoplatelets-based composites

According to equation 7, the predominant parameters in the modulation of the
permeability in nanocomposites system are the tortuosity and the nanoparticles
volume fraction. It is indeed obvious that for higher @ and 71, the permeability of the
nanocomposite decreases. Considering that in most of the systems, especially the
nanocomposites containing layered-silicates, the particle volume fraction is usually
low (less than 1 vol%), the decrease of permeability relies mainly on the tortuosity,
which appears to be the main degree of freedom to modulate the barrier properties
of the nanocomposites. But, contrary to the volume fraction of nanoparticles, which
is supposed to be perfectly characterizable, the tortuosity is a more arbitrary
concept. Actually the tortuosity factor is defined as the rafio of the distance a
molecular penetrant must travel to diffuse through a fim when nanoparticles are
present to the distance it must pass through without particles (i.e. thickness of the
film). This factor is expressed as the contribution and the resistance infroduced by an
average number of particles to the diffusion of molecular specie. The purpose in all

the modelling approaches attempted in the past, was to propose the most accurate
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estimation of this parameter. Nielsen et al. (1957) and later on Cussler et al. (1988),
two of the initial authors who proposed tortuosity-based models for the prediction of
the permeability in composites, first attempted to express tortuosity from the
geometrical characteristic of the nanocomposites in the case of regular
arrangement of parallel platelets (infinite ribbon). In these simplified conditions of size
(particles identical in size), dispersion (regular) and orientation (orthogonal to the

flux), this tortuosity factor was related to the in-situ size aspect ratio of the particles.

3. General overview of available analytical tortuosity-based model for permeability
prediction

3.1. History, evolutions, principles and conditions of validity of tortuosity-based
models

A list as exhaustive as possible of the analytical tortuosity based-models is proposed
in Table 1 and 2. Models in table 1 are dedicated to nanoplatelets while those in
table 2 to spheres and cylinders nanoparticles. In table 1, the presented models are
classified considering their increasing complexity as regard the alignment (regular or
random) and the orientation (perpendicular to the flux or not) as described
previously. In table 1 and table 2 every model was represented by the mathematical
expression of the tortuosity factor with the list of the parameters required for a
simulation, its condition of validity, its number of citations taken from the WOS and its
experimental validation with precision if it has been realised by the authors of the

model themselves or other feames.
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Table 2: Description of different tortuosity-based models for spherical and cylindrical-based

composites implemented on the basis of geometrical inputs with their conditions of validity

and model validation if achieved
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The conditions of validity refer fo the maximum volume fraction of particles that the
model could consider for a reliable prediction of the relative permeability P/Po. In the
case of platelets, this maximum parficle volume fraction depends on the in-situ
aspect ratio of the particle. Therefore, in table 1, the condition of validity is
sometimes given as the product of ¢ with a. It is admitted that ¢a << 1 corresponds
to a dilute regime of concentration for the particle in an oriented disk composite, i.e.
disks are spaced by a mean distance that exceeds the disk radius. On the contrary,
@a >> 1 corresponds to a semi-dilute regime where the disks are strongly overlapping
due to their great aspect ratio [Choudalakis et al. (2009)]. In the case of spheres and
cylinders, the maximum particle volume fraction is defined under the assumption
that the flux pattern around one particle is not affected by the presence of

neighbour particles.

3.1.1. Chronology of the modelling theories

Before the 20t century, models developed were dedicated to the prediction of
electro-magnetic properties in polymers filled with spherical particles, cylindrical and
ellipsoidal particles. A little later on, some of these models, such as the Maxwell
model [Maxwell (1873)], the Bruggeman model [Petropoulos et al. (1985), Bouma et
al. (1997)] or the Strutt model [Strutt (1892), were extended to predict mass transfer
properties in nanocomposites with the postulate that as electro-magnetic properties,
the permeability was affected only by the particle volume fraction. However, these

“mono-parameter” models were restrictive to composites containing spherical,
cylindrical or ellipsoidal particles (table 2) and could not be extrapolated to other
type of particle shapes, especially with the emergence, in the 50s, of nanocomposite

filled with platelets (e.g. nanoclay).
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Figure 2: Spatial-temporal axis representing the chronology of development of the main
analytical tortuosity-based models and more recently numerical simulations applied for the
prediction of mass transfer in composite materials according to the shape of the particles

Further chronological developments were then dedicated to the prediction of
permeability intfo nanocomposites containing nanoplatelets. Increasing complexity in

the geometry (figure 3) was considered in those successive developments:

- regular arrangement of parallel nanoplatelets or flakes [Nielsen (1967), Barrer
et al. (1961), Aris et al. (1986), Cussler et al. (1988), Falla et al. (1996)]. Most of
the aforementioned theories assumed that the platelets were aligned like long
ribbons of finite thickness d and width W and infinite length. Only the finite
thickness and width were visible in the section plane fransverse to the diffusion
direction in the nanocomposite. Infinite particle length justified that diffusion

was considered as two-dimensional. Alternatively, some theories have
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considered further finite flakes and three-dimensional diffusion but always in
regular platelets arrangement [Moggridge et al. (2003)]. The same equation
than that of Cussler (equation C in table 1) was proposed by Moggridge et al.
(2003) except a corrective factor, 2/27, added in the formula to take into

account the specific platelet shape (equation Fin table 1);

Transversal 2D cut 3D geometry

Figure 3: Example of possible arrangement of schematic platelet particles into 2D and 3D
nanocomposite structures considered in analytical tortuosity-based models; the particle
should be considered as either lamellae or ribbon (with finite/infinite length L), or hexagonal
or disk flakes. (a) regular arrangement of parallel particles / (b) random spatial positioning of
parallel particles / (c) random spatial positioning of same oriented particles / (d) random
spatial positioning of randomly orientated particles
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- random spatial positioning of parallel nanoplatelets or flakes [Aris et al. (1986)
Brydges et al. (1975); Cussler et al. (1988), Lape et al. (2004)]. Brydges et al.
(1975) first considered the case of deviation from the periodicity of the
alignment by infroducing a stacking parameter (y), defining the horizontal
offset of each ribbon layer with respect to the layer underneath it. Cussler and
co-workers, themselves, enriched their modelling approach by examining the
case of randomly positioned parallel platelets. Indeed Y the chief limitation of
their initial theory (equation C in table 1) was the assumption that the flakes
were regularly spaced. Hence, in an upgrading of their theory, they assumed
that the flakes could be randomly spaced and infroduced the geometrical
parameter (u) equal to 2 in order to take into account this randomly

arrangement.

1.00
0.80 -
0.60 r

0.40 -

Relative permeability P/P,

0.20 ¢

Cussler regular arrangement of parallel nanoplatelets

— — = = Cussler random spatial positioning of parallel nanoplatelets
0.00 .

0 0.02 0.04 0.06 0.08 0.1
Nanoparticule volume fraction

Figure 4: Prediction of Cussler model (equation C) for regular (solid line) and random spatial
positioning (equation H) (dash line) of parallel nanoplatelets as function of particle volume
fraction for a mean aspect ratio value equal to 20.
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As shown in figure 4, the hypothesis of regular or random arrangement of the
platelets significantly changes the prediction of the relative permeability of
the nanocomposite by the Cussler model. A higher decrease of P/Po was
obtained when the nanoplatelets were regularly positioned compare to when
they were randomly positioned. Keeping in mind that the platelets played the
role of obstacle for the diffusion of molecular species through a composite
material, when the particles are randomly positioned, area without particles
should be considered as favourable channel for the diffusion of the molecular
species. Face to the importance of taking into account the spatial
arrangement of the particle; several other authors have considered the case
of random spatial positioning such as Fredrickson et al. (1999) who proposed a
model for the prediction of the diffusion coefficient in composites containing
randomly arranged, impermeable disks oriented perpendicularly to the
diffusion flux. In the same objective of analysis the impact of random spatial
positioning, Gusev et al. (2001) developed a 3D computational model for the

prediction of the permeability in a random array of parallel circular disks;

random spatial positioning of randomly orientated nanoplatelets or flakes. The
case of random orientation was first considered by [Bharadwaj et al. (2001)]
who proposed a modified form of the Nielsen's equation in order to take into
account the angle of orientation (6) of the platelets with the surface of
diffusion. In their theory, they modified Nielsen equation to relate the
dependence of the tortuosity factor on the mean orientation of the sheets in
a contfinuous manner by introducing the order parameter (S). On the same
basis, Dunkerley et al. (2010) proposed a progression of all existing tortuosity-

based models, developed for parallel platelets, with a more generalized
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mathematical relatfion of the tortuosity factor taking into account the
average angle of orientation of the platelet (table 1). This approach
permitted to use former models for the case of randomly oriented particles-
based composites. Maksimov et al (2008) proposed an empirical relation for
the prediction of the permeability in nanocomposites with randomly (3D)
oriented platelets. Although several models have been proposed for the
random orientation of the particles, the work of Bharadwaj (386 in the WQOS,
table 1) remains definitively the most quoted one even if numerical simulations
permit nowadays to consider geometries with arbitrarily oriented lamellae

[Bhunia et al. (2012), Greco et al. (2013)].

More recently (2005-2014), numerical models, based for example on Finite Element
Method (FEM) or Finite Volume Method (FVYM) have been developed in order to take
into account more complex geometries. The first step of these models study was to
compare their prediction to those obtained by the analytical tortuosity-based
models, therefore, in relative simplified geometries. For example, Minelli et al. (2011)
showed that their model prediction was proven to be fairly close to the prediction of
Lape model [Lape et al. (2004)] in the case of geometrical configuration for which it
was originally proposed (random spatial positioning of parallel nanoplatelets). Greco
et al. (2014) showed that their model prediction was in good agreement with that of
Bharadwaj model [Bharadwaj et al. (2001)] for non-oriented particles (S=0 in
equation M, table 1). Once these models were validated in the case of simplified
geometries, they could be used to represent and model the case of more
heterogeneous geometries. It is the case for (Greco & Maffezzoli, 2013; Greco, 2014)
who used their FEM model to simulate the diffusion info polymer nanocomposites in

2D and 3D geometries based on a random distribution of non-interpenetrating
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impermeable lamellae with an arbitrary average orientation angle for each platelet
(case din Figure 3).

As listed in Table 1 and 2, different parameters were used to calculate the relative
permeability ratio in the nanocomposite. In the models for spheres and cylinders and
the number of input parameters is very low in case of spheres and cylinders and
mostly limited to the volume fraction (table 2). Aside the particle volume fraction ()
which was used in all models whatever the geometry of the nanoparticles, the size
aspect ratio is one the more important parameter. In the specific case of platelets,
theories of increasing complexity have necessitated the intfroduction of several other
input parameters to describe the specific geometry of platelets such as the aspect
ratio (a) of the particle, the slit aspect ratio (o), a geometric factor (u) infroduced by
Cussler et al. (1988), as explained above, to describe the arrangement (random or
regular) of the nanoparticles, a stacking parameter (y) infroduced by Brydges et al.

(1975), (S) an orientation parameter intfroduced by Bharadwaj et al. (2001).

3.1.2. Role of the “in-situ” aspect ratio of the particles

All the aforementioned platelet-based tortuosity models included a key player: the
size aspect ratio of the particles added into the polymer matrix. The aspect ratfio of a
sphere is unity but for nanoplatelets it could reach more than 100 [Publication 1].
Hence at this stage the concept of “native” and “in-situ” aspect ratio should be
distinguished, the former corresponding to the size of the particle before its
incorporation in the polymer matrix while the latter corresponds to the aspect ratio of
the particle after its incorporation in the polymer. Besides the “native” aspect ratio is

usually known while the “in-situ” one is not. The efficiency of the dispersion of
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nanoparticles within a polymer matrix depends on the affinity of the particle for the
matrix and of the elaboration strategy [Publication 1]. In case of lack of particle
dispersion, spherical or cylindrical particles could agglomerate leading to an
apparent “bigger” particle in the material than the native one. Therefore the in-situ
aspect ratio of the particle is higher than that of the native one. The same
phenomenon occurs with platelets and is related to their exfoliation. From a practical
point of view, complete exfoliation of platelets remains difficult to achieve,
especially at high volume fraction. Therefore the actual “in-situ” aspect ratio is much
lower than the “native one” and the efficiency of the nanostructure on the reduction
of permeability is usually less than that predicted by the fortuosity-based models

using the “native” aspect ratio.

As already mentioned above, in the case of spherical and cylindrical particles, the in
situ size aspect ratio does not intervene in the predictive models. However, several
studies listed in Publication 1 have observed that agglomeration phenomena
strongly impacted the resulting permeability of the nanocomposite. Improvement of
the predictive modelling approach should be carried out in a next future to take into

account the in situ arrangement of cylinders and spheres.

3.1.3. Experimental validation of the models

When a model is developed, a validation step is needed in order to validate the
efficiency of the model to predict, for example in the case of tortuosity-based

model, the permeability of composite materials.
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Some authors validated their model in the same paper where the model was
presented as for example, Moggridge et al (1996) who validated their model with
two particles/polymer matrix system, i.e. a PVA/mica and a PC/mica system. Other
ones, such as Cussler et al. (1988) validated their model afterward [Eitzelmann et al.
(1996)] on a silicone-PC/vermullite system. Although Nielsen and Bharadwaj models
have not been validated by the authors themselves, they have been used later on
by several authors (tablel) and principally for identification of the aspect ratio.
Bharadwaj et al. (2002) did not manage to validate his theory himself because of
unexpected frouble in the processing of his nanocomposite. Indeed due to
montmorillonite aggregation within the polyester matrix he investigated, the
experimental data of permeability did not follow the same trend than the predicted
one, if he considered only one single value for the size aspect ratfio. This well-
illustrated the limits of the developed theories to depict real cases and especially the

particle polydispersity of size.

3.1.3. Impact of the polydispersity of size aspect ratio, dispersion and orientation

Almost all the models above assumed parficles of uniform size. Ones of the first
authors who examined the effect of the particle size polydispersity (effect of
coexistence of several widths in the material) were Lape et al. (2004) (equation | and
J). On the basis of their experimental and modeling works on mica
particles/poly(vinyl alcohol) they showed that larger flakes played a key role on the
permeability decrease if compared to small ones. Moreover, they pointed out that a
greater polydispersity resulted in better barrier property. Afterwards, Picard et al.
(2007) proposed an extension of the Lape model in order to consider both the

polydispersity of the width and the thickness of the particles. Their model was proved
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more appropriate than the Lape one for the cases of high loading of particles where
due to insufficient exfoliation, there was a distribution in the values of the aspect
ratio.

In such analytical models, polydispersity of width and/or length parameters, could
be represented either by a continuous distribution of sizes, e.g. Gaussian, if known, or
by a discrete function, sum of the respective conftribution of several classes or

fractions (i) of same size to the overall size aspect ratio, such as for example:

zm, 18]

where wi and ti are the width and the thicknesses of the fractions (i) of the platelefts.
In 2D/3D numerical approached, the real polydispersity of size could be considered
since each particle could be individually drawn and considered in the geometry
(see for example definition of geometry in commercial COMSOL software). Some
equation of distribution could be required to generate, through reconstruction
algorithm, the observed geometry. In all cases, the difficulty is to gain the information
on this polydispersity from experimental observations which is as for the in-situ size
aspect ratio, fricky to analyze.

Polydispersity of in-situ particle orientation was also detected; some analytical
models have considered the orientation of the particle in the matrix but only
acknowledge an average orientation [(Bhardawaj et al. (2001), Dunkerley et al.
(2010) Maksimov et al. (2008)]. It is obvious in figure 5 that the decrease of the
relative permeability is function of the particle as evaluated by using the Bharadwaqj
model. When several orientations are coexisting in a nanocomposite, the real curve
relating their impact on the prediction of the relative permeability lies somewhere

between the two extrema of the Bharadwaj simulations (S=-1/2 et S=1). The higher
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decrease of the permeability is observed for perpendicularly to the diffusion flux
oriented particles (S=1), which corresponded to the orientation related to the
maximum effect of the tortuosity. On the opposite, the decrease in permeability is
the lowest for platelets oriented parallel to the flux. To represent the polydispersity of
the orientation, i.e. a random orientation, Bharadwaj proposed an intfermediate case
with $=0. The coexistence in the material of different zones with their own particles
orientation could not be considered by using this model. Only numerical approach

permits to depict such complex case of polydispersity of orientation.
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Figure 5: Predictions of Bharadwaj models according to the orientation of the particles as
function of particle volume fraction for a mean aspect ratio value equal to 20.

3.1.4. Comparison of models’ prediction: impact of particle shape and arrangement

To corroborate the impact of the particle shape on the prediction of the relative
permeability, a comparison of different model predictions from table 1 and 2 is given

in figure 6.
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Figure 6: Predictions of Nielsen, Cussler, Maxwell and Strutt-Rayleigh models as function of
particle volume fraction for a mean aspect ratio value equal to 20.

As anticipated, the impact of spherical or cylindrical particles on the decrease of the
relative permeability, represented by the Maxwell and the Strutt-Rayleigh models
respectively, was much lower than that of platelets, represented by the Nielsen and
Cussler models respectively, for an aspect ratio equal to 20. Even if Strutt-Rayleigh
model predictions are lower than that of Maxwell model they follow the same trend
as function of particle volume fraction. Besides, when the aspect rafio was
considered equal to 1, Nielsen model converged toward Maxwell model;
nevertheless the consideration of such a low value of aspect ratio did not sound very
realistic for platelets. In Maxwell (equation N in table 2) and Strutt-Rayleigh
(equation Q in table 2) equation, the relative permeability was related to the particle
volume fraction only; therefore, high particle volume fractions were required to
achieve a significant decrease of the relative permeability. The very limited number
of models available for spherical and cylinder particles prevented us to study in a
constructive and instructive manner the reliability of predictive modelling in

nanocomposites with spherical and cylindrical particles.
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In figure 6, it was shown that the decrease of the permeability predicted from both
Nielsen (equation A in table 1) and Cussler (equation B in table 2) models developed
for platelet-based composites did not display the same tendency. This discrepancy
was previously observed. Choudalakis et al. (2009) in their review on the permeability
of polymer/clay nanocomposites proposed a comparison of the predictions of most
of the models listed in table 1 for three different aspect ratio (a=10, a=100 and a=100)
(simulations not reproduced here). Main conclusions that could be picked up from
this comparison are that (1) high discrepancies lie between the simulations of the
different models tested (Nielsen, Cussler for regular arrangement, Fredrickson &
Bicerano and Gusev & Lusti) especially for a =10 and a =100; and (2) for a =1000,

simulations tend to converge at particle volume fraction higher than 6 vol%.

In the comparison made by Choudalakis et al. (2009), the Nielsen and Cussler
models were for regular arrangement of ribbon and that of the Fredrickson &
Bicerano and Gusev & Lusti ones for random arrangement of disks. Nevertheless this
difference on the basements of each theory did not suffice to explain the high
discrepancy observed between simulations. These authors concluded that the
comparison of the models was not straightforward because the definition of the
aspect ratio of the platelets sometimes diverge from one theory to another and must
be adapted when disks instead of ribbons are considered. They advised therefore to
use the product of the aspect ratio (a) by the particle volume fraction (¢) as the
significant parameter. Nevertheless, even for the two simplest theories, Nielsen and
Cussler, a divergence of more than 20% was noticed for ¢=0.06; Nielsen prediction
being lower than that of Cussler. This analysis pointed out that the choice of a theory
is not so easy and that, for a given geometry, different models could be alternatively

chosen leading to different results.
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After this comparison between models themselves, next part of the present work will
be dedicated to the comparison of the model predictions with experimental data

collected from the literature.

3.2. Comparison of the model’s prediction with an experimental set of data taken
from the literature

In figure 7, the predictions of the most used model (Nielsen, Maxwell, Strutt) and the
most quated (Cussler, Bharadwaj) quoted models listed in table 1 and 2 for spherical,
cylindrical and platelets were compared to a set of data collected in a previous
work [Publication 1]. Seeing that no tortuosity-based models predicted an increase
of the permeability with the addition of impermeable particles, all the experimental
relative permeability (P/Po) value higher than 1 were neglected, i.e. almost half of
the data in case of spherical and cylindrical-based nanocomposites. As explained in
a previous work [Wolf et al. (forthcoming (a)] the incorporation of impermeable
particles within a permeable matrix should lead to a decrease of the permeability;
however, it has been demonstrated for some researches that an increase of the
permeability occurred. This evolution was hypothetically explained by (1) particle
agglomeration in the polymeric matrix which created specific channel favourable to
the diffusion of the molecular species, (2) formation of an interphase at the interface
particles/polymer matrix which exhibit different barrier properties mainly due to
changes of the polymer properties induced by the particle (free volume, crystallinity,
etc) or (3) sorption of the molecular diffusing species at the surface of the particles
because of the presence of available specific sites for their sorption. Hence in the
following, only the decrease of the relative permeability was taken info account for

the comparison with the model prediction.
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Chapter 1: Prediction of barrier properties
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Figure 7: Representation of the model prediction and comparison with the set of permeability
data gathered in [Wolf et al. (forthcoming (a)] according to the shape of the particles; (a)

spherical, (b) cylindrical and (c) platelets particles
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For spherical and cylindrical particles, the model predictions showed huge
discrepancies with the experimental data. As already mentioned, there are only few
models for spherical and cylindrical-based nanocomposites and they only
considered a single input parameter, the filler volume fraction. Consequently some
authors fried to predict the properties of cylinder-based nanocomposites with
tortuosity-based model initially developed for platelets-based composites. For
example Svagan et al. (2009) showed that Strutt model could not predict the
relationship between the moisture diffusivity and the nanofibres (e.g. cylindrical
particles) content; therefore they applied Aris model for the prediction of the
diffusivity. As shown in figure 7, with such model predictions, very high loading of
particle (>0.1 vol%) are required to achieve a significant but low decrease of the
relative permeability (less than 20% of decrease for 0.1 vol% with the Maxwell model)
which definitively did not match the experimental data and did not represent the
disparity of the experimental permeability data. For cylindrical based-
nanocomposites, much deeper initial decrease of the relative permeability was
obtained experimentally than with the Strutt and Rayleigh model. In figure 7 a and b,
experimental P/Po rapidly decrease and/or after a given particle volume fraction
(approximately below 10 vol%) increased again. The tortuosity-based models of
Table 2 are simply unable to represent the non-monotonic variations of experimental
P/PO with the volume filler fraction often observed in spherical and cylindrical-based

nanocomposites.

For platelet particles, all the range of experimental data could be covered by the
predictions of the most famous models (Nielsen, Cussler and Bharadwaj) for aspect
ratio in the range of 10 to 500. For a given set of data it is unlikely that a model

prediction will match the data for a given aspect ratfio. As for spherical and
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cylindrical particles, the non-monotonic behaviour of P/PO as a function of ¢ could
not be represented by the models because they correspond to a failure in the
tortuosity concept (e.g. due to agglomeration phenomena). Among all the data
collected on platelet-based nanocomposites, a large number of them display this
non-monotonic behaviour with a small increase of P/Po after a threshold value of .

From these observations it seemed very complicated to reach a general conclusion
of availability of predictive models to predict P/Po in the case of platelets. It is
doubtlessly highlighted that, among all, and in the case of monotonic decrease of
P/Po, the reliable prediction of the nanocomposite permeability is a matter of the

aspect rafio representation.

In the following, it was therefore decided to focus on one set of experimental data in
order to analyse the prediction of the different models of table 1 and provide

general guidelines on the choice of a predictive model for P/Po.

3.2.1. Choice of the tortuosity-based model adapted to one permeability set of data

Shah et al. (2006) have characterized the oxygen, carbon dioxide and nitrogen
permeability of a montmorillonites/low density polyethylene process through melt-
mixing and film-blowing. They observed a monotonic decrease of their experimental
P/Po (figure 8). They measured the in-situ aspect ratio by using a methodology they
developed [Vermogen et al. (2007)] and found values between 10 and 30; for the
following discussion, the mean aspect ratio would be taken equal to 20. From their
work, we decided to compare the prediction of different tortuosity-based models for
a mean fixed aspect ratio. In their paper, there was no information on the dispersion

state (regular or not) and orientation of the platelets. It is likely that platelets were
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randomly placed and oriented in the material. Nevertheless, in the following, all type
of models were considered for comparison with their data, for regular (Nielsen and
Cussler) or random arrangement (Yang, Fredrickson & Bicerano, Gusev & Lutsi) of
particle oriented perpendicularly to the flux direction and for random orientated
particles (Bharadwaj). In figure 8a, it has been shown that the model prediction
failed for all considered models; Fredrickson model prediction was the closest to the
experimental permeability data. Large discrepancies were noted between the 6
model predictions tested. Shah et al. (2006) reached the same conclusion by using
the Nielsen model on their data. They explained the discrepancy as the results of the
assumptions built info the permeability model and the problems associated with the
calculation of the particle aspect ratio from TEM micrographs. They then decided to
adjust the Nielsen model on their experimental data in order to identify a more
reliable value of alpha: the decrease of the relative permeability could not be
described with on value of aspect ratio; they found a range of predicted aspect
ratio from 80 to 140 against 10 to 30 as determined experimentally. At volume
fraction equal to 0.5 and 1.4 vol% the value of the aspect ratio was approximately
equal to 140 and 80 respectively. The decrease of the aspect ratio could be

aftributed to agglomeration phenomena.

Doing the same, we decided to fit all the above models to the experimental data, in
order to identify the aspect ratio value (figure 8b). All models succeeded in fitting the
experimental data of Shah et al. (2006) with more discrepancy for Cussler and Yang
models than the other model but aspect ratio could however be identified and
equal to 72, 51, 73, 87, 143 and 217 for Nielsen (eq. A), Cussler (eq. C), Yang (eqg. H),

Fredrickson (eq. K), Gusev (eq. L) and Bharadawaj (eq. M) respectively. All these
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values were very far from the experimental size aspect ratio experimentally

measured.

In some cases, the model prediction matched the experimental data. Indeed,
Picard et al. (2011) and Chien et al. (2008) studied permeability of oxygen and water
vapour respectively of montmorillonite/polylactide and montmorillonites/poly(vinyl
acetate) composites respectively. Both groups of authors have characterized the in-
situ aspect ratio in order to be able to apply and compare their experimental data
to a model prediction. Experimentally, with the investigation of microscopy pictures,
they found aspect ratio equal to 24 and 300 respectively. By comparison with the
identified aspect ratio value, by fitting the Bharadwaj model to their data, they
found a value of 24 and 327 for Picard et al. (2011) and Chien et al. (2008)
respectively which are very close to the experimental ones. In the same approach,
Angellier-Coussy et al. (2013) found a good match between their experimental data
of water vapour diffusivity in montmorillonites/wheat gluten nanocomposite with the

Bharadwaj model for a mean aspect ratio of 23.

This analysis highlighted that the application of a theory for the prediction of one set
of experimental data is not so easily done. The characterization of the in-situ aspect
ratio is not so surely accessible and most of the time, the model chosen is fitted and
the aspect ratio is identified. Besides the decrease of the permeability may not only
be governed by a tortuosity factor but also by additional structural effects; this will be

discussed in the following.
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permeability data (Shah et al. (2006)); (a) model predictions with a mean aspect ratio equal
to 20 and (b) models prediction with fitted aspect ratio

3.2.2. Limitations of the analytical tortuosity-based models

The geometrical input parameters of the tortuosity-based models are often very
difficult fo reach. One of the most important parameter is the aspect ratio; a lot of
work as already been dedicated to the in-situ characterization of this parameter
[Vermogen et al. (2007), Angellier-Coussy et al. (2013)]. Indeed, to allow a correct

interpretation of the size of the particles within the polymer matrix, intensive pictures
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analysis need to be achieving in order to get a mean aspect ratio of the particles. To
overcome this difficulty, and as shown in the above section, models are often used
with arbitrary chosen values of alpha or even fit on the experimental data to identify
the aspect ratio value. For example Osman et al. (2005) have validated Gused &
Lusti model for an aspect ratio arbitrary taken between 50 and 150 in aligned disk
and in misaligned disk particles without experimentally studying the average aspect
ratio obtained in montmorillonites/polyethylene nanocomposites. Chaiko et al.
(2005) in their study, identified the aspect ratio values by using fit of the Nielsen and
Cussler models and found values equal to 3000-9500 and 240-250. Although Cussler
aspect ratio values were in the range of experimental characterized aspect ratio
values, Nielsen aspect ratio values did not sound very realistic and were well beyond
the expected value. An easy shortcut is thus to conclude that the Cussler model is
more adapted to the Nieslen one in the study of Chaiko et al. (2005). In the same
way, Meera et al. (2012) idenfified aspect ratio values from experimental
permeability in montmorillonite/natural rubber nanocomposites with Nielsen, Cussler
and Bharadwaj model; they also found different aspect ratio values. Other authors
succeeded in measuring the experimental aspect ratio and to validate the theory
they chose [Picard et al. (2011), and Chien et al. (2008)]. These findings let think that,
in some cases, the aspect ratio would be not the only key parameter for obtaining
an accurate prediction of P and that additional phenomena would counteract and

provoke failure of the tortuosity-based theories.

Another point is the presence of empirical fitting parameter as in Higushi model with
K, an experimental constant for a given migrant. For example, Sadhegi et al.
validated Higushi model on two systems, a silica nanoparticles/polybenzimidazole

(PBI) (2009) and a silica nanoparticles/polyurethane (PU) (2011) composite systems

109



for the permeation of nitrogen. The fitted parameter Ku(N2) was different according
to the composite systems, equal to 3.8 and 3.58 in PBI and PU respectively.
Furthermore, in PU systems, these parameters were found to vary also according to

the migrant (oxygen, carbon dioxide and methane) ranging from 2.6 to 3.58.

In addition to the difficulty to experimentally assess the mean aspect ratio and other
model input parameter that must, therefore, be identified from experimental data,
numerous case of non-validation of the models could be explained due to changes
of the nanocomposite structure which are not taken into account by the predictive
models. Alexandre et al. (2009) and Balachandran et al. (2012) have shown
discrepancies between experimental and predicted permeability from a particle
volume fraction of 3vol% in montmorillonite/poly(amide) and 4 vol% in
montmorillonites/nitrile rubber. Alexandre et al. (2009) explained this evolution by an
increase of the permeability from 3 vol% due to the decrease of the crystalline
volume fraction in the nanocomposites and the clay/polymer matrix interface
conftribution which permit the sorption of water vapour molecular species. On their
side, Balanchandran et al. (2012) justified the deviation between experimental and
predicted permeability values with the presence of particles agglomerates within the
polymer matrix which lead to coexistence of multiple particle aspect ratio in the
same fime in the material that was not defined by Nielsen model. The problem of
coexistence of multiple particle aspect ratio could be easily overcome by taking info
account the polydispersity of size as done by Lape et al. (2004) and Picard et al.
(2007). Of course this required to know the polydispersity distribution (see discussion

above).
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As regard the modification of polymer matrix with the addition of particles, the
formation of an interphase at the interface particles/polymer matrix could prevent
the use of the tortuosity-based model because of a likely change of mass transfer
properties in this specific area. The creation of an interphase between particle and
matrix was already observed in mixed matrix membrane used for gas separation. In
such type of material, where particles could be porous one such as zeolite, sieve, etc

, inferphase could be representative of interfacial voids, area with rigidified
polymer chain layer or region where pores of the particle were blocked [Vinh-Thang
et al. (2013)]. In order to take info account this interphase in their predictive model of
membrane performance, based on permeability, some authors in the field have
infroduced a third constituents in addition to the continuous and dispersed phases,
the interphase that has its own geometrical and mass transfer properties [Gonzo et
al. (2006), Hashemifard et al. (2010), Mahajan et al. (2000), Pal et al. (2008), Vinh-
Tang 2013)]. As far as we knew, this approach was never attempted in the field of

packaging science for nanocomposite with impermeable particles.

4. Toward a multi-scale modelling of the structure / mass transfer properties
relationship

4.1. Modelling at different scales: an overview

Theory and modelling method can be categorized into four groups (figure 9),
depending on the time and the length scale on which there are defined [Gubbins et
al. (2010)]. The first group, the electronic level of description, in which the matter is
regarded as made up of fundamental particles such as electrons, protons, etc... is

described by quantum mechanics. The second group, the atomistic level of
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description in which the matter is made up of atoms whose behaviour obeys to the
laws of statical mechanics. The third and the fourth groups are the mesoscale and
the continuum level in which the matter is regarded as composed of beds of matter
in the former and as a continuum medium respectively in the latter. In the continuum
level, the recognized macroscopic (or phenomenological) laws, such as Fick’s law
for mass flow can be applied. The electronic scale requires no experimental input,
only the knowledge of all the species involved in the phenomena. The atomistic
scale is described by methods such as Monte Carlo or molecular dynamics
simulation enabling systems of thousands and millions of atoms to be studied over
fime intervals of nanoseconds. The mesoscale is described by methods based on
coarse graining and are extended in time and space if compared to the atomistic
scale; systems of in the range of 100 nanometers to 100 micrometres to be studied

over time intervals of micron and micro seconds.

The continuum scale, compared to the other scales, is not limited in terms of length
and time scales and is rigorously based on macroscopic observations. In this level the
physical, chemical and mechanical law are based on conservation laws which
assume that the matter is a continuum that can be subdivided in space and time.
Continuum methods for physical problems on mass fransfer can be based on
analytical or numerical solutions of the constitutive equation governing diffusion
(Fick’s law). This law is the basis of all the aforementioned theories (§ 3). One of the
commonly methods for numerically solving these equations is the finite element

method [Hughes (1987)].
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Figure 9: Theory and simulation scales from nanoscale to macroscale

The most common approach to reach a computational solution, in confinuum
methods, is to discretize the space so that the unknown functions, such as the
concenftration which varies confinuously in the system is now represented by discrete
values at lattice points. The differential problem becomes then an algebraic one
which can be easily solved. In the confinuum methods, the phenomenological
coefficients that derive from atomic or subatomic properties such as diffusion
coefficients must be obtained separately, either from experiment or from calculation
performed at a lower scale such as molecular dynamics. Diffusion or permeability
coefficients could be also determined using one of the above theories (see § 3).
Usually, input parameters are directly identified from experimental data by fitting of
the model to these data. Therefore, calculations at the continuum scale require

extensive experimental input.

113



4.2. Modelling of the structure / mass transfer properties: current issues in polymer
nanocomposite research

One of the most important issues in computational materials research is the multi-
scale simulation, namely the bridging of length and time scales, and the linking of
computational methods to predict macroscopic properties and behaviour from
fundamental molecular processes [Charpentier et al. (2002)]. Currently, multi-scale
modelling approach is based on simulations realized at the nano- and molecular
scale, simulations supporting a mesoscale simulation step aimed at bridging the gap
between the disconfinuous nano-scale structure and the continuum macroscale
models ; itself used as the basis for macroscale simulations of effective material
properties where structural elements are observed at lower scales [Scocchi et al.

(2007)].

Computational materials science based on multiscale approach is very promising in
the domain of the nanoscience and especially on the modelling of the structure and
properties relationships in nanostructures materials [Fermaglia et al. (2009), Jancar et
al. (2010)]. Indeed, Jancar et al. (2010) reported that there has been a considerable
interest in the utilisation of reliable models capable of bridging the gap between
macroscale mechanical and barrier properties of nanocomposites, and their
nanoscale structural variables. Besides, Fermaglia et al. (2009) reported that a
general good agreement in the comparison of the simulation with experimental
literature data of mechanical properties and morphologies is obtained and that
mulfiscale modelling was an appropriate tool for the design of new structure
responding to materials property’s needs. In conclusion, multiscale simulation can be
defined as enabling technology of science and engineering that links phenomena,

models, and information between various scales of complex systems. However,
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despite the fremendous advance made in the modelling of structural, thermal,
mechanical and fransport properties of the materials at macroscopic level, such as
for example the use of finite element analysis of complicated structures, there
remains crucial uncertainty about how to predict macroscopic properties of

industrial interest, related to the performance of the materials.

Currently multiscale modelling of structure and mass transfer relationships is achieved
for the prediction of macroscopical properties from structural information gained at
the microscale. The founding work in that field was that of Falla et al. in 1996 that
used Monte Carlo simulations for modelling the diffusivity in 2D nanocomposites filled
with flakes. Their work was extended to 3D structures by Swannack et al. (2005) and
by Gusev et al. (2001) for disks. More recently, interest of Finite Element Method (FEM)
was explored by Goodyer et al. (2007, 2009) for 3D modelling of mass transfer
properties in nanocomposites filled with impermeable particles. Minelli et al. (2011)
did the same using finite volume algorithm (a method derived of FEM). All the
aforementioned computational modelling attempts were done for platelets
perfectly perpendicular to the direction of the flux for comparison purpose with
tortuosity based models. Bhunia et al. (2012) first infroduced the effect of the
orientation in its 2D finite element model, followed by Greco and co-workers (2013
and 2014) who worked on 2D and 3D models based on random distribution and
orientation of non-interpenetrating impermeable lamellae. These numerical models
were generally compared and found more powerful than analytical tortuosity based

models such as that of Bharadwaj (Bharadwaij, (2001)).
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5. Conclusion

Modelling of mass transport properties of nanocomposite systems resulting from the
dispersion of impermeable nanoparticles in permeable polymer matrixes have been
widely discussed in this article with a special emphasis on the shape of the particles
(e.g. spherical, cylindrical and platelet nanoparticles). From this analysis it should be
drawn that spherical and cylindrical particles tortuosity-based models for the
prediction of mass fransfer properties were most of the time re-used from other fields
of science and they are fewer than platelets-based models. More recently, the latter
models were developed considering the particle volume fraction, the particle shape
(ribbons, flakes, lamellaes,...) and the aspect ratio, and the dispersion and the
orientation of the particle in-situ the polymer matrix. The particle volume fraction and
the aspect ratio are the main parameters; while the volume fraction is easily
experimentally characterizable, the aspect ratio needs tough microscopy pictures
analysis. According to the shape of the particles it has been demonstrated that the
prediction of platelets-based models lead to betfter enhancement of the
permeability than the spherical and the cylindrical particles tortuosity-based models.
Numerical simulation, initially developed to take into account the geometrical
complexity of the nanocomposites, such a as particle orientation or agglomeration
have proven to be promising tool for the design of new materials whose properties

are influenced by the structure at the nanoscale.
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PERSPECTIVES

Through the analysis of the studies dealing with nano- impermeable particle based-
composites designed for general engineering, membrane and packaging
applications, it appears that the permeability can be modulated within a broad
range. Indeed the nature, size and shape of the particles, the matching
particles/polymer matrix and the structuration of the composites have an influence
on the evolution of the permeability. Although until now, most of the studies were
conducted in the objective of seeking a decrease of the permeability of gases and
vapours with the addition of impermeable particles, a lot of studies have revealed
that permeability was not decreased and in some cases, was even increased in the
composites compare to that of the neat matrix, especially in the case of cylinders
and spheres. Besides, some non-monotonic variations were noted in the case of
platelets. These unexpected behaviours experimentally observed were related
mainly to inhomogeneous dispersion of the particles in the matrix which was itself
linked to lack of affinity between the particle and the matrix causing particles

agglomeration, interphase, cracks etc.

Of course these peculiar behaviours were not represented at all by the tortuosity-
based models that all predict a decrease of permeability in the composite compare
to that of the neat polymer. According to the shape of the particles, it has been
shown that the predictions of platelets tortuosity-based models lead to beftter
enhancement of the permeability than the spherical and the cylindrical particles
tortuosity-based models. While the main parameters of these models are the particle

volume fraction and aspect ratio, the latter parameter is hardly experimentally
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characterizable due to tough microscopy picture analysis work. The prediction of
these models has thence been considered as a tool for identifying of the aspect

ratio of the composites.

One of the main conclusions arising of this extensive state of the art is that particles
were always considered as impermeable. Therefore, particles never participate to
the overall mass transfer which, in practice, is not always the case, especially when
vegetal fibres are used as filler. Through the lack of experimental data and predictive
modelling of mass transfer properties of composite with permeable particles, the
next part of this manuscript will be devoted to this type of material. In this purpose,
deeper experimental and modelling investigation on the structure and the mass
transfer properties of these bi-phasic permeable materials was conducted with a
special emphasis on the characterizihg of mass transport within the individual
particle which was never attempted up to now. This exercise was realised on water
vapour as diffusing molecule and on wheat straw fibres/biopolyester system as
composite material. As regard to the analytical tortuosity-based models discussed in
the first part, it will not be possible to achieve prediction of the permeability in bi-
phasic permeable composites with these models. Some existing analytical biphasic
models will be tested and a numerical model based on finite element method will be

developed to predict and describe water vapour transfer in WSF/PHBYV composites.
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CHAPTER 2: In depth understanding of mass ftransfer and
development of a 2D numerical model for the prediction of these
properties into composites filled with permeable particles
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Publication 3

Water vapour sorption and diffusion in wheat straw fibres and

impact on mass transfer in PHBV based bio-composites

Caroline Wolf, Nathalie Gontard, Ghizzi Da Silva Gabriela, Valérie Guillard

ABSTRACT: The contribution of matrix and vegetal fibrous constituents to the transfer
properties of composites was deciphered by investigating water vapour sorption (S)
and diffusion (D) of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) matrix,
grinded wheat straw fibres (WSF) and resulting composites containing 10 wt% and
20 wt% WSF at 20°C. A peculiar interest has been devoted to the key point of
accurate WSF water vapour diffusion assessment, which was performed on single
pieces of fibre, and to the study of water interactions in PHBV, WSF and WSF-based
composites. The increase of WSF percentage led to an increase of the water vapour
sorption isotherm of composites, which was atfributed to the high water vapour
sorption of WSF if compared to the neat PHBV matrix. As expected, water vapour D
in WSF was much higher than in PHBV. However, in all composites, D was always
lower than in WSF and PHBV. The main discussed hypothesis to explain this
unexpected behaviour, are the changes of structure and properties of the WSF
particle once embedded in the polymer matrix and the representativeness of water

vapour diffusion, which is difficult fo assess on this type of individual constituent.

KEYWORDS : Particle shape, Nanocomposites, Structure & mass transfer relationships,
Permeability
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1. Infroduction

Composites are materials consisting of at least two non-miscible constituents with
different properties, whose synergism creates properties unavailable from individual
single constituents. Due to increasing environmental concerns, a great attention has
been paid during the last decade, to the study of manufacture, structure and
properties of biocomposites composed of bio-mass based matrix and fibres
[Mukherjee et al. (2011)]. For example poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
(PHBV) is considered to be a good alternative for non-biodegradable synthetic
polymers because it is an environmental friendly material issued from renewable
resources and moreover biodegradable. Its production is now possible from liquid
effluents of food industry [[Albuquerque et al. (2012), Duque et al. (2014), Carvahlo
et al. (2013)]. However its high manufacturing costs are still hampering the market
growth of this material. Provided they are highly compatible with the matrix, vegetal
fibres are attractive for their high strength, low environmental and economic cost
and non-food origins. The incorporation of cheap fillers such as wheat straw fibres
(WSF) in the PHBV matrix was already considered to overcome the drawback of
PHBV cost [Faruk et al. (2012)]. A potentially undesirable effect of infroducing vegetal
fibres in a polymer matrix is the higher water sensibility of the resulting composites.
Moisture transfer in the bio-composite could lead to a substantial alteration of the
material functional properties, especially under usage conditions, due fo an
accelerated degradation of the constituents in the presence of water molecules
[Cho et al. (2010), Mannberg et al. (2014)]. On other hand, in the field of food
packaging applications, fresh and respiring foods such as fruits and vegetables or
cheeses need to be packed with materials presenting sufficiently high moisture and

gases transfer [Cagnon et al. (2013), Gontard et al. (2010)].
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Recently, WSF have been specifically studied for their ability to increase composite
permeability in order to fit the requirements of respiring fresh food produces. In the
case of PHBV matrix, the incorporation of up to 20 wt% of WSF in PHBV polymer matrix
was proved to modulate mass transfer properties of the composite while maintaining
its mechanical properties [Berthert et al (2014)]. Whether needed or not, moisture
sensitivity and transfer in bio-composites containing vegetal fibres is important and a
good knowledge of the impact of each constituents on the water transfer in
composites is required to design materials which are tailored to the targeted
applications. A significant number of publications have already been devoted to the
study of liquid water fransfer in biocomposites and constituting biopolymers and
fiores. For example, after immersion in liquid water, Srubar Il et al. (2012)
demonstrated that due to the presence of hydrophilic wood fibres both the water
content at equilibrium and the identified liquid diffusion coefficient increased in the
PHBV-based composites. However, in literature, transfer properties of water in its
vapour form, were very little discussed for fibres-based bio-composites, and
especially the impact of individual constituents. Corradini et al. (2013) showed the
same trend of vapour and liquid water absorption increase for PHBV and green
coconut fibres based composites. However the comparison between liquid water
and water vapour transfer is difficult because of the qualitative and quantitative
differences of physical phenomena involved (e.g. loss of soluble substances from
constituents in liquid water which does not occur in the presence of water vapour).
In many usage conditions, foods packaging materials are not in contact with
aqueous liguid but exposed to different humidity of solid foods and external

atmosphere during its life cycle.
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In order to improve the knowledge of moisture fransfer in composite materials, the
present study aims at deciphering water vapour transfer mechanisms in a PHBV/WSF
bio-composite, which was previously developed for food packaging applications
using a thermal processing representative of industrial shaping conditions. For a
better understanding of the behaviour of the composite, the water vapour sorption
and water vapour diffusion of PHBV containing two different percentages of WSF,
were experimentally evaluated and discussed in relationship with their physical-
chemical characteristics and with the sorption and diffusion properties of the
individual PHBV and wheat straw constituents. A specific effort was dedicated to a

better evaluation of the diffusion properties of the fibres constituent.

2. Experimental

2.1. Materials

Commercial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was supplied by
Tionan under the reference Y1000P with HV content 3%. Wheat straw (Triticum
aestivum cv. Apache) was provided by Fernand Meaux (Saint Jean du Salés,
Aveyron, France), harvested in 2007 and was ground to obtain wheat straw fibres.
The wheat straw fibres (WSF) were impact-milled at a size of 100-150 um and the
median diameter of the fibre is around 62 um using a process previously developed

[Ghizzi D. Silva et al. (2012)] and recently re-use [Berthet et al. (forthcoming)].
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2.2. Preparation of the PHBV and the PHBV-based composites

PHBV and PHBV-based composites with 10 wit% and 20 wit% fibre weight fraction
(PHBV10 and PHBV20) were prepared by extrusion using a lab-scale twin-screw
extruder (Eurolab from ThermoFisher Scientific). After extrusion, the obtained pellets
were dried in an oven at 60 °C for at least 8 h. Then, the compounds were heated
5min at 170 °C between two Teflon-coated plates and then thermo-moulded for
Smin at 150 bar and 170 °C with a heated hydraulic press (PLM 10 T, Techmo,

Nazelles, France) to obtain films [Berthet et al. (2014)].].

2.3. Sample preparation and conditioning

Before water sorption experiments, PHBV and PHBV-based composite films were
respectively cut intfo discs of 0.8 cm diameter and stored at 0% RH on P.Os at room
temperature for at least 10 days before use. Native wheat straw fibres were
prepared for sorption experiment with a first perpendicular cut to its height in order to
obtain a cylinder of 0.5 mm height, which was in turn cut itself vertically by it middle.
The resulting half cylinder was then easily mechanically flattened into a square piece
of approximately 0.5 x 0.5 cm? by putting it underweight (around 200 N.m2 during
1 week) as described in figure 1. Wheat straw fibres were prepared in such conditions
in order to characterize their water vapour sorption and to identify water vapour

diffusivity coefficients.
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Figure 1: Explanation of the cutting procedure for the preparation wheat straw fibre films for
DVS experiment

2.4. Characterization of the WSF, PHBV and PHBV-based composites

The apparent density of the dry films was calculated at room temperature from the
ratio of the weight of dry matter to the corresponding volume of total material; the
films were dried in an oven 24 h at 105 °C. The thickness of the films was measured
using a micrometer (Braive Instruments, Chécy, France) in a dry state.

The real weight and volume particle fractions were determined by ash content
analysis; measurements were performed using a Thermolyse 6000 device from
Furnace, at a temperature of 190 °C during 2 hours. The samples, with a mass in the
range between 2 and 5 g, were heated in quartz incineration pans. After two hours
in the oven, the pans were put in a desiccator at room temperature under dry CaClz
during 30 minutes before weighting. The exact weight filler fraction (w) was

calculated from the respective inorganic residue at 200 °C as:

Rcomposite= Rmatrix ['l]

w =
Rfiller_ Rmatrix

where Rcomposite, Rmatix aNd  Rfler are the inorganic residue of the PHBV-based
composites, PHBV and WSF. Then the real volume filler fractions (¢p) were calculate

with the following equation:
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pf‘:‘l/ler [2]
b =————

Pfiller Pmatrix

where priler and Pmatrix Are respectively the WSF and PHBV density and w the exact
weight fraction of WSF previously measured.

Differential scanning calorimetry (DSC) were performed using a thermo-modulated
calorimeter (Q200 modulated DSC, TA Instruments, New Castle, USA) on PHBV and
PHBV-based composites dry material. The weight samples of the DSC sample were
between 6 and 9 g. The samples were placed in open aluminium pan which were
immediately hermetically sealed. Sample were first heated from 40 °C to 190 °C with
a ramp rate of 50 °C.min"' in order to erase the thermal history of the sample. The
sample were then cooled with a cooling rate of 10 °C.min-1 to -40 °C and after
heated with heating rate of 10 °C.min-1 to 190 °C using N2 as the purging gas. The
crystallization temperature (Tc), melting temperature (Tm), melting enthalpy (AHs) and
enthalpy of crystallization (AHc) were determined from the DSC curves. The

crystallinity of the PHBV was calculated with the following equations:

AHf(PHBV) 100
4o = HeHEn) /3
AH°(PHBV) Wpygy

where AH°(PHBV) is the enthalpy of melting per gram of 100% crystalline (146 J.g)

[Avella et al. (2000)], and wehsv the weight fraction of PHBV in the composite.
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2.5. Microscopic observations

Internodes, nodes and leaves were humidified for 2 days at 4°C with deonised water
under vaccum in a dessicator. 50 and 100 um thick fransverse sections were
prepared with a vibratome Microcut H1200 (Bio-Rad, UK). These fresh sections were
observed in a stereomicroscope MVX 10 (Olympus, JP) equipped to observe

fluorescence (Optical objective x1.6, optical zooms x1 and x2).

2.6. Moisture sorption kinetics of WSF, PHBV and PHBV-based composites

Water vapour sorption experiments were carried out at 20 °C over a wide range of
water activities (aw) from 0 to 95% relative humidity using a controlled atmosphere
microbalance apparatus (Surface Measurement System Ltd., London, UK) described
in previous publications [Guillard et al. (2003)]. The tested samples, in the form of flat
films, were first equilibrated at 0% relative humidity in a desiccator containing P20s for
at least 8 days. The samples were then put info the microbalance in quartz sample
pan and re-equilibrated at 0% relative humidity for a fime frame of 24 h to establish a
dry mass (Md). The samples were exposed to different relative humidity by a
contfinuous air stream of a specific relative humidity. Mass equilibrium was reached
at each humidity level by measuring the percent of mass change with respect to
time (dm/dt < 0.002) for WSF or by imposing a time frame for each relative humidity
step for PHBV and PHBV-based composites. Once the equilibrium was achieved, the
experiment proceeded to the next programmed humidity stage. The values of water
content at each equilibrium were used to build the sorption isotherm. The moisture

content at equilibrium (X) was calculated as follows:
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X = MoMa 4]

where Mw (g) is the mass of the wet sample at equilibrium state and Maq (g) the dry
mass. All adsorption tests were performed at least three times to verify the

repeatability of the measurement.

2.7. Modelling of water vapour sorption isotherm

2.7.1. Sorption models

Water sorption isotherm equations are convenient for predicting water sorption
properties and allowed to provide further information on the interaction of water
vapour with the materials according to the water vapour activity. In the literature
several models [Al-Muhtsabeb et al. (2004)] have been proposed for the description
of water vapour sorption but in the case of water vapour sorption in polymer matrixes
and composites the most used sorption models were GAB and Park models. GAB
model considers that water molecules condense layer by layer on adsorption
surfaces such as external surfaces, specific sites or infernal surfaces of cavities or

pores:

— Xm Cq K.ay [5]
(1-K .ay)(1-K.ay1+C4.K .ay)

where X is the water content at equilibrium as calculated by equation 4, Xm is the
monolayer of water content, Cq is the Guggenheim constant and K is the constant

relative to the adsorption energies of second and subsequent layers which lie
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somewhere between the monolayer adsorption energy and the pure adsorptive

liguefaction energy [Quirijns et al. (2005)].

Park model corresponds to a multi-sorption mode which could be divided in three
steps. The first step, at low water activities, describes the Langmuir physical
absorption assuming a first monolayer of water molecules adsorbed at the surface of
sorption specific sites. The second step, at medium water activities, related to Henry's
law, represents random adsorption by dissolution and diffusion of the water
molecules inside the materials. And finally the third step, at higher water activities,
represents water clustering phenomenon. The corresponding equation can be

written as follows:

X= m’ﬁ +ky.ay, +Kg.al [6]
with AL the Langmuir capacity constant, br the Langmuir affinity constant, ku the
Henry's solubility coefficient, Ka the equilibrium constant for the clustering reaction
and n the mean number of water molecules per cluster. The mathematical models
were fitted to the experimental water vapour isotherm using the GRG nonlinear
solver from Excel 2010. In order to evaluate the fit of each model to the experimental
data, the regression coefficient (R?2) and mean relative percentage of deviation
modulus (E) were determined. The mean relative percentage of deviation modulus is
one of the most used criteria to evaluate quality of model fitting in scientific

publications dealing with water sorption; a modulus value below 10% is usually an

indicator for a good fit [Lomauro et al. (1985)].
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2.7.2. Water interactions in WSF, PHBV and PHBV-based composites

Two theories have been investigated and applied in order to quantify the water
interactions in WSF, PHBV and PHBV-based composites. Zimm and Lundberg [Zimm et
al. (1956)], based on statistical mechanics, have developed a theory to determine
the degree of clustering defined under the name of clustering function which is
defined as the ratio of the clustering integral (Gww) to the partial molecular volume
of water (Vw) and was calculated from the equation of the water vapour sorption

isotherm.

S = —(h%)[@]—l 7l

w

where @1 and ai are the water volume fraction and activity. Negative values of the
clustering function (Gww/Vw < -1) indicate that water vapour molecules are dissolved
randomly in the polymer and positive values (Gww/Vw > 1) indicate that the
concentration of water vapour near a given water molecule is greater than the
average concentration of water vapour molecules in the polymer. Besides, the
qguantity Gww.pw/Vw represent the mean number of water vapour molecules in
excess in the neighbourhood of a given molecules. The mean cluster size is defined

as:

MCS=1+% [8]
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ENSIC model [Favre et al. (1996)], based on a probabilistic and a mechanistic
approach, has been developed in order to describe different types of molecular
interactions in solvent-polymer systems. The model considers the probability of
insertion of one molecule in a polymer matrix containing only the polymer and the
previously sorbed molecules. The parameters taken into account in this model are
the affinity between the non-polymeric molecule and the polymer (kp) or the
previously sorbed molecules (ks). The increase of sorbed solvent molecule number

(dns) due to an increase of the pressure (dP) in the gaseous phase can be related as:

d
dng = (kyn, + keng) (P—f) [9]

where ns and np represents the solvent and the polymer cell number in the polymer.
The relation is verified on the basis that the volume change in the polymer is
negligible with the addition a solvent molecule. Assuming the gas phase as ideal,

integration of equation 9 lead to the following expression:

elis )y [10]

P = (ks=kp)/kp

where ¢pw and aw are the water volume fraction and activity.

ENSIC equation was fitted to the average values of experimental water vapour
sorption isotherm comprising three replicates for PHBV and PHBV-based composites

and six replicates for WSF.
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2.8. Effective moisture diffusivity identification

Effective moisture diffusivity values at different water activities were identified for
WSF, PHBV and PHBV-based composites from moisture sorption kinetics measured
using the DVS apparatus. The material samples, in the form of flat fiims, used in the
DVS apparatus were thin enough for the water vapour diffusion to be considered as
one-dimensional in the axial direction. The procedure, used in this study for the
identification of the diffusivity coefficient (Deft), was the same than that developed
and presented by Guillard et al. [Guillard et al. (2003] and successfully applied to
starch based-films [Chivrac et al. (2010)] and to wheat gluten-based films [Guillard et
al. (2013)]. The moisture sorption kinetic within the samples, assuming that the film did
not swell, that the diffusivity coefficient remained constant for a given water activity
stage, that the flux was equal to zero at the interface sample/DVS pan and that the
film surface was instantaneously equilibrated at the surrounding aw, could be

modelled using the following equation [Crank (1975)]:

Mt oo
—=1-)>
Meo Yozo (2n+1)2n2

(—Deff(2n+1)2n2t) [11]

412

where Mt (g.g(dry basis)!) denotes the total amount of water vapour which has
entered the film at time t, M (g.g(dry basis)') the quantity of water vapour content

after an infinite time and | the film thickness (m).
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3. Results and discussion

3.1. Water vapour sorption isotherms of PHBV, WSF and resulting PHBV-based
composites

Water vapour sorption isotherm curves of WSF, PHBV and WSF-based composite films
were obtained from water vapour sorptfion kinetics using a conftrolled atmosphere
microbalance (DVS). Water vapour sorption isotherms of WSF and PHBV films
(figure 2a) clearly highlighted the fact that the WSF films are more hydrophilic than
the PHBV films; at a water activity equal to 0.95 the water content in WSF films was
approximately 36 fold higher if compared to PHBV films. Water vapour sorption results
were coherent with the only previous published result on moisture sorption of PHBV
[Miguel et al. (1999)], which found in PHBV (8% HV), at 30 °C, a moisture content of
3.5x103%g.g(dy bassy! at 50% RH and 7.0 x 103Q.Q(ary bessy! at 925%RH, against
2.05 +0.47 x 103 g.g(dry basis)' and 5.43 + 1.05 x103 g.9(dry basis)”! for our PHBV (3%HV) at
the same water activities but at a temperature of 20°C. Both studies (Miguel et al.
and the present one) showed that the moisture sorption as function of relative
humidity of PHBV film was almost linear until 80% RH and then exhibited a slightly

higher slope at higher water activity.

Determination of water vapour sorption isotherms either on bulk or on single cut
pieces of fibres, did not lead to any significant difference between the curves, as
expected; figure 2a represents the average of all data obtained. The water vapour
sorption isotherm of WSF curve displayed a sigmoidal evolution which was
characteristic of hydrophilic materials and corresponded to type Il of the sorption
modes from Brunauer classification [Brunauer et al. (1940)]. This sigmoid shape was

already presented in previous publications from the literature for different fibres of
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various botanical species; agave fibres [Bessadok et al. (2009)], cellulose whisker
[Belbekouche et al. (2011)], flax fibres [Alix et al. (2009)], [Gouanvé et al. (2006)] and
could be described as multi-stages sorption. The present outcome highlighted the
hydrophilic character of WSF which might be due to the presence of hydrophilic
groups, such as hydroxyl groups of cellulose [Bessadok et al. (2009)] especially at the

surface of the fibres or polar sites or micro-voids in materials [Follain et al. (2013)].
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Figure 2: Water vapour sorption isotherms of PHBV (circle) and WSF (square) with the fitting of
GAB equation (5) for PHBV and the fitting of Park equation (6) for WSF (dotted line) (2a), and
(2b) water vapour sorption isotherm of PHBV10 (cross) and PHBV20 (triangle) with the fitting of
Park (6) equation for PHBV10 and PHBV20 (dotted line), and prediction of the rule of mixture

(solid line)
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Water vapour sorption isotherms of resulting composites, PHBV10 and PHBV20 were
shown in figure 2b and displayed the same sigmoid shape than WSF; curves with less
pronounced upturns at higher water activities. As expected, the hydrophilic nature
of WSF play a major role on water vapour sorption behaviour of composites as shown
by the increase of water vapour content in the composites compared to neat PHBV,
over the whole range of water activity. As anticipated, this effect is more
pronounced at 20% WSF than 10%. These observations are in good agreement with
previously published observations on water vapour sorption in poly(e-caprolactone)
(PCL)/cellulose nanocrystals composite [Follain et al. (2013)]. In order to further
understand the contribution of each constituent, PHBV and WSF, the rule of mixtures
(equation 12) was applied to predict water vapour sorption in the composite from

the water vapour sorption of PHBV and WSF.

XC = Wfo + Wpo [1 2]

where Xc is the water vapour content in the PHBV-based composites, wr and wp the
weight fraction of WSF and PHBV, and X and Xp the water vapour content of WSF

and PHBV at each water activity in the range from 0 to 0.95.

Resulting plots were illustrated in figure 2b for both PHBV10 and PHBV20. In a general
way, the rule of mixture permitted to approximate the water vapour sorption of the
composite but most often overestimated water vapour sorptfion. A significant
discrepancy between calculated and experimental curves shape is observed,
especially for 20% WSF with an overestimation at RH lower than 80% and an
underestimation for higher relative humidity. This means that the rule of mixture failed

on representing the sigmoidal part of the sorption isotherm at high RH related to
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fibres intrinsic properties. The water vapour sorption behaviour of composites can be
concluded to not result from a simple addition of the contribution of each single
constituent, which suggests that processing constituents into a composite could

therefore modify their individual water vapour sorption behaviour.

3.2. Modelling of water vapour sorption isotherms of PHBV, WSF and resulting PHBV -

based composites

Water vapour sorption could be considered as complex mechanism in PHBV-based
composites. In order to clarify this mechanism, sorption models were applied to
reach a better understanding of water vapour sorption at different water activity
stages and a deeper insight on water interactions. Hence, GAB (equation 5) and
Park (equation 6) were fitted to the average values of experimental water vapour
sorption isotherm comprising three replicates for PHBV and PHBV-based composites
and six replicates for WSF. Results are shown in figure 2 and identified parameters in
table 1 with regression coefficient (R2) and mean relative percentage of deviation
modulus (E). GAB and Park models both fit experimental sorption data, with satisfying
R2 (all higher than 0.99) and E (all below 8%) values with, however a very slight

advantage to the GAB model.

Table 1: GAB and Park fitting parameters which were identified from the water vapour
sorption isotherm of the neat polymer matrix (PHBV), wheat straw fibres (WSF) and
PHBV-based composites (PHBV 10, PHBV20) at 20°C

GAB parameters PARK parameters
Samples A )
Xm Ce K R E (%) AL b, Ky K, n R E (%)
PHBV 0.004 1.388 0.571 0.999 2.26 0.033 0.034 0.002 0.003 3.262 0.998 2.85
WSF 0.065 4.090 0.736 1.000 1.37 0.259 0.345 0.068 0.091 6.151 1.000 1.78
PHBV10 0.007 2.227 0.748 0.998 4.63 0.068 0.070 0.007 0.011 5.026 0.998 6.50
PHBV20 0.009 2.652 0.850 0.999 4.76 0.079 0.083 0.015 0.034 6.714 0997 7.87
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From the GAB model, the first part of the isotherm, was described essentially by the
parameters Xm (water content at the monolayer) and Cg (adsorption energy of the
first layers of adsorbed water); the values obtained for the composite lied logically
between the values of the individual constituents (PHBV and WSF). For the last part of
the isotherm, the K value was predominant by representing the adsorption energy of
the second and subsequent water molecules layers. The values of K for the
composite were higher than the K of WSF and pure PHBV. As previously suggested
with the rule of mixture, the sorption in the composite at high aw was confirmed to

be a “non-additivity” result of each individual constituent property.

For the Park model, the parameters AL and b. were much lower for PHBV than WSF,
indicating that the hydrophobic PHBV constituent did not own many specific sites for
water vapour sorption compared to the hydrophilic WSF constituent. As anticipated
the addition of WSF in PHBV results in an increase of the parameters AL and bt in
PHBV-based composites, which however still remained lower than the WSF
parameter, these two parameters representing specific hydrophilic groups able to
absorb superficial water vapour molecules. The parameter kn which described the
random water vapour molecules dissolufion in the materials based on Henry's law,
was higher in PHBV-based composites than in PHBV and might be interpreted as the
creation, by WSF presence, of specific sites for the adsorption of water vapour
molecules. The parameter Ko and n, representing the formation of water clusters at
high water activity, increased for WSF-based composites in comparison with PHBV. It
is interesting to note that the parameter n, which is related to the cluster size (number
of clustered water molecules), is higher for the 20%WSF composite (6.714) than for
the individual constituents PHBV (3.262) and WSF (6.151). Large size clusters formation

could be favoured by interfacial phenomena between polymer matrix and fibres.
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Since water clustering can have a great influence on the water vapour transport
properties [29], the clustering of water vapour molecules was more in depth

investigated.

To this purpose Zimm-Lundberg's theory of water clustering in polymer and the
engaged species induced clustering (ENSIC) model have been used to determine

the extent of water vapour clustering in PHBV, WSF-based composites and WSF. From

the Zimm-Lundberg’s theory, the clustering function (%) and the mean cluster size

(MCS) have been calculated using GAB and PARK fitting parameters for the
representation of the sorption isotherm equation for respectively PHBV, WSF and
PHBV/WSF composites. Significant water clustering started at water vapour activity
equal to zero in PHBV, at a water activity of respectively 0.2 and 0.3 for PHBV10 and
PHBV20 and 0.6 for WSF. This pointed out that PHBV formed water clusters as soon as
relative humidity increased in its surrounding atmosphere confirming its

hydrophobicity: due to the lack of sorption sites in PHBV, water interacted with itself.

According to figure 3, and confirming the results obtained with the Park model,
water vapour molecules aggregates appeared to be larger in PHBV20 than in
PHBV10, and larger in PHBV10 than in PHBV. Conftrary to what it was expected
through Park n parameter, WSF displayed the lowest mean cluster size with the Zimm-

Lundberg’s theory.
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Figure 3: Application of the Zimm and Lundberg’s theory (equation 8) to evaluate the mean
cluster size of PHBV (a), PHBV10 (b), PHBV20 (c) and WSF (d) as function of the water vapour

activity at 20°C

Water vapour clustering was also investigated with the ENSIC theory to evaluate the

water-water (ks) and water-material interactions (kp) and resulting ks/kp rafio was

calculated in PHBV, WSF and PHBV-WSF composites. According to the results shown

in table 2, the ks/kp ratio was much lower in WSF (12.64) than in PHBV10 and PHB20,

and much lower than in PHBV.

Table 2: ENSIC fitting parameters, which were identified from the water vapour sorption
isotherm of the neat polymer matrix (PHBV), wheat straw fibres (WSF) and PHBV-based

composites (PHBV10, PHBV20) at 20°C

ENSIC parameters

Sample

ko ks R’ E ke/Kp
PHBY 0.002 1.661 0.995 6.98 705.69
WSF 0.104 1.321 0.991 9.08 12.64
PHBV10 0.007 1.880 0.994 592 260.15
PHBV20 0.009 2.759 0.988 13.26 299.48
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According Park, Zimm & Lundberg and ENSIC theories, developed under various
hypotheses, the results were not consistent to predict in which materials water
clustering would be the more important. In any case, it was highlighted that water
clustering phenomena occurred in PHBV, WSF and WSF-composites with greater or
lesser extent. Water vapour clustering could have an impact on water vapour mass

transfer, even in the composites, by modulating the diffusivity coefficient.

3.2. Effective water vapour diffusivity

The effective moisture diffusion coefficients (Def) of PHBV, WSF-based composites
and WSF were identified at 20°C from the water sorption kinetics by using
equation 11. As the model used was not strictly representative of the various
mechanisms of water transport prevailing in PHBV and WSF films, the identified
diffusion coefficient was considered as an effective diffusivity. According to figure 4,
water vapour diffusivity could be considered as constant in PHBV and WSF-based
composites in the whole range of water vapour activity. In WSF, water vapour
diffusivity first increased and then decreased until water vapour activities of
respectively 0.3 and 0.95. This phenomenon was already observed by Gouanvé et al.
(2006) in flax fibres and could be explained by a first increase of water vapour
diffusivity due to an increase of the molecular mobility and then a decrease due to
the formation of water clusters in WSF whose size was large enough to behave
similarly as bulk liquid water [Modesti et al. (2004)] at higher water activity. However
in our study while Dert decreased from aw > 0.6, the mean cluster size in WSF did not

significantly increase. The decrease of Dett sShould be attributed to other phenomena.

141



LE-10 ¢
NE' - % % % ] i ] @ 0
e 1E1 o
2 g @
£ ¢
(%] % i x
*E 1E12 | % K . X 2 = %
z g
£
a

1.E-13 S

0 0.2 0.4 0.6 0.8 1

Water activity

Figure 4: Effective water vapour diffusivity of PHBV (circle), PHBV 10 (cross), PHBV20 (triangle)
and WSF (square) identified with equation (11)

In comparison with water vapour diffusivity in other natural fibre species (table 3), De
in the WSF was lower. It should be mentioned that the methodology used in all these
published studies are different from the current one. In all previously published data
of diffusion in vegetal fibres, experimental data were mostly obtained on an amount
of numerous fibres, which could be as such, or shaped by different processes
(compression, aqueous casting, dry laying...). Whatever the method used, the
sample always contain a significant amount of air, and is more representative of a
mixture of air and fibres, than of fibres alone. A higher water vapour diffusion
coefficient could be explained by the presence of air, which could favour the
overall water transport and thus increase the apparent diffusivity through the
contribution of water vapour diffusion in the continuous gas phase (for instance

water vapour diffusivity in the air equal to 2.2x10-> m2.s7).
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Table 3: Water vapour diffusivity coefficients of different vegetal fibres, which were
determined from water vapour sorpfion experiments performed on large piles of numerous
fibres (data from the literature). Only the last one (present study) was obtained by testing a
single piece of wheat straw

Experimental

. References
conditions

Samples Diffusivity coefficient (m”.s™) Environment

. . _ -8
sisal cellulose First half sorption D; = 12.60 x 10

whisker films Second half sorption D, = 1.58 x 10 Dynamic gravimetric Belbekouche

water vapour sorption 25°C, 80%RH (frorf]zgrlalp)hical
" . -8
Sisal microfibrillated First half sorption D, = 2.51 x 10 balance (DVS) lecture)

cellulose films Second half sorption D, = 0.50 x 10

Hemp fibre bundles 0.02x10°®
Jute fibre bundles 0.04x10°% Gravimetric water
. 5 vapour sorptionin a 24°C, 80%RH Célino (2011)
Flax fibre bundles 0.02 x 10 climatic chamber
Sisal fibre bundles 0.01x10°®

First half sorption D; = 0.46 x 10°®
25°C, 75%RH
Second half sorption D,=2.24x 1078 Dynamic gravimetric
water vapour sorption

balance (IGA)

Bessadok

Agave fibres (2009)

First half sorption D; = 0.29 x 10°®
. 25°C, 84%RH
Second half sorption D, = 1.60x10°

Nonwovens flax fibres

Dynamic gravimetric

Gouanvé (2006)

. 1.26 x10* water vapour sorption 25°C, 79%RH (from graphical
films
(IGA) lecture)
First half sorption D; = 79.40 x 10 Dynamic gravimetric Alix (2009)

Flax fibre fibres water vapour sorption 25°C, 80%RH (from graphical

Second half sorption D, = 179.00x10° balance (DVS) lecture)

Dynamic gravimetric

. water vapour sorption
0.00116 + 0.00016 x 10 (DVS)

.8 ° 0
0.00146 + 0.00024 x 10 20°C, 75%RH This study

Wheat straw fibre films
20°C, 85%RH

Although Dett was higher in WSF than in PHBV, the addition of WSF in PHBV lead to
unexpectedly lower Deff in PHBV10 and PHBV20 if compared to Dest in PHBV. A reason
to this change could be related to a change in the PHBV properties, such as an
increase of crystallinity. Crystals act as obstacles, and slow down the diffusion of
water molecules. From the DSC measurements (table 4) it could be asserted that the
addition of WSF in PHBV matrix did not have a significant impact on the crystallinity
rate which stayed constant whatever the WSF content. Therefore, the unexpected
trend of Dest in the composite would not be linked to PHBV changes but more

probably to WSF structural change once the filler is embedded in the polymer matrix.
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Table 4: Characteristics of the neat polymer matrix (PHBV), wheat straw fibres (WSF) and
composites (PHBV 10, PHBV20)

Density (g.cm™) Particle fraction (%) Crystallinity
Sample Exp;rim.ental Calcula.lted Weight Volu.me 1. (°C) AH, (1.8 X (%)
ensity density fraction fraction

PHBV 1.12+0.01 122.55+0.08 101.67 £ 0.87 69.64 + 0.60
WSF 1.69 +0.03°

PHBV10 1.13+0.03 1.16 £ 0.02 7.58 +1.44 5.14 £ 0.98 118.60 £ 0.04 92.05+0.24 68.22 £0.18
PHBV20 1.16 £ 0.02 1.20+0.02 16.30+ 1.69 11.40+1.20 116.11 £ 0.05 81.21+0.54 66.45 +0.44
PHBV30 1.18 £ 0.04 1.25+0.02 26.85+2.31 19.52+1.72 115.34+0.14 72.30+0.39 67.70+0.37

Hence the identification of water vapour diffusivity on a piece of flat WSF and not on

a single milled WSF might not reflect the same Dest than in single miller WSF. Indeed as

shown in figure 5a-b, the structure of a piece of WSF exhibit specific porous guide

beam, such as phloem, xylem and perivascular fibres which could accelerate the

diffusion of water vapour if compared the structure of single milled WSF. Hence, De

in single milled WSF dispersed in the PHBV polymer matrix could exhibit a lesser water

vapour diffusivity coefficient and might be lower than Des in PHBV.

Fibres

Parenchyme

Epiderme

Sclerenchyme

faisceaux
conducteurs

Figure 5: Fluorescence microscopy observation of a WSF node (3a) and internode (3b) cross
sections [Ghizzi D. Silva, PhD work (2011)]
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4. Conclusion

Investigating water vapour mass transfer properties of PHBV, WSF-based composites
and WSF was proposed through the study of water vapour sorption and diffusion.
From the water vapour sorption isotherm, it was noticed that the hydrophilic
character of WSF predominantly contributed to the water vapour sorption in WSF-
based composites which presented the sigmoidal shape. Contribution of both PHBV
and WSF to the composite water sorption isotherm did not follow the rule of mixture,
revealing the existence of other effects contributing to water vapour sorption, such
as water vapour clustering, change in sorption properties of each individual
component when put together in a composite structure. Based on Park, Zimm
Lundberg and ENSIC theories, it was demonstrated that water clustering occurred in
all materials but was not conclusive due divergence between the theories.
Concomitantly, although the water vapour diffusivity coefficient was higher in the
WSF than in PHBV, Deff in the composites was always lower than in the PHBV. This
peculiar phenomenon could be explained by the structural differences between
single milled WSF and flat piece of WSF, used for the identification of Der. On that
account Def in single milled WSF might be lower than Des in flat piece of WSF, and
lower than Deft in the PHBV. The evolution of Dest in the composite could thus be
understandable. In this perspective future research study should focus on a
methodology to identify Dest in single milled WSF dispersed in PHBV polymer matrix

either through experimental or modelling works.
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Publication 4

Prediction of water vapour permeability in biocomposites using

theoretical models

Caroline Wolf, Nathalie Gontard, Valérie Guillard

ABSTRACT: Water vapour permeability (P) of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
(PHBV) matrix, grinded wheat straw fibres (WSF) and resulting PHBV-based composites
containing 10 wt%, 20 wt% and 30 wt% of WSF was investigated. The increase of WSF
percentage in PHBV led to an increase of the water vapour P of the composites, which was
attributed to the high water vapour P of the WSF particles, estimated, due to technical
limitations for the characterization of their P, from the product of its water vapour diffusivity
coefficient (D) and its solubility coefficient (S). For predicting PHBV-based composite P from
constituents’ P, available models for bi-phasic materials were critically analysed, applied and
compared to experimental P of the different composites. All models with and without fitting
parameters successfully predicted the experimental data up to a WSF content of 20 wt%. The
failure of all models in predicting the high P of composite containing 30 wt% of WSF was

attributed to a deterioration of the barrier properties of the matrix at high WSF content.

KEYWORDS : Fibres, Polymer-matrix composites, Transport properties, Modelling; water
vapour permeability
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1. Infroduction

In the past few years, composite materials came out to be suitable structures for the
design of food packagings [Azeredo et al. (2009), Arora et al. (2010), Silvestre et al.
(2011), Rhim et al. (2013)]. Hence a lot of researches, in both industrial and
academic fields, have been carried out in order to broaden the knowledge on
composites manufacturing, structures and properties. With regard to the global
growing conscience linked to the misuse of non-biodegradable petroleum-based
plastics, biopolymers [Siracusa et al. (2008)] and biocomposites [Johansson et al.
(2012)] could be good alternatives. However, the biopolymers and biocomposites
should exhibit the same mechanical, thermal and barrier properties than the
synthetic ones. For example poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV),
an eco-friendly biopolyester, offers good barrier properties against water vapour
transmission, similar to those of conventional thermoplastic of moderate
hydrophobicity such as PVC and PET [Miguel et al. (1999), Cava et al. (2006)]. Indeed
mass fransfer properties are of major importance in the field of food packaging as
regard to food preservation and conservation. A lot of publications have already
dealt with the experimental study of water vapour mass transfer in biopolymer-based
composites [Rhim et al. (2009), Sanchez-Garcia et al. (2010), Katiyar et al. (2011),
Fortunati et al. (2012)] but only a few on water vapour transfers in vegetal fibres-
based biocomposites. Among the rare studies on water vapour transfer on fibres-
based composite, Alix et al. (2008) and Pardo-lbanez et al. (2014) have studied the
importance of fibres transfer properties (flax for Alix et al. and keratin for Pardo-
Ilbanez et al.), of fibres distribution in the polymer matrix and of fibres effect on matrix
characteristics (such as crystallinity), on final biocomposites water vapour sorption

and permeability properties.
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In contrast with permeable fibres based composite, numerous papers have been
published on assessment and modelling of mass transfer properties of composite
containing impermeable nano-particles [Choudalakis et al. (2009), Nazarenko et al.
(2007), Picard et al. (2007), Alexandre et al. (2009)]. In theory, incorporation of
impermeable particles in a polymer matrix lead to a decrease of the permeability
due to an increase of the path length that the penetrant molecule needs to follow,
i.e. a tortuosity effect due to the presence of the particles. Nevertheless when these
particles are permeable, these models are no more useable for the prediction of
barrier properties because they did not take info account the permeability of the
particles. For predicting the permeability in particulate composites (for separative
membrane applications) with two permeable phases, mathematical models initially
developed for the prediction of dielectrics [Maxwell (1873)], thermal and
mechanical [Lewis et al. (1970), Nielsen et al. (1973)] properties in bi-phasic materials
were adapted to the prediction of permeability in parficulate composites with two
permeable phases, [Gonzo et al. (2006), Pal et al. (2008), Aroon et al. (2010), Petsi et

al. (2012)].

In order to improve the knowledge and prediction of water vapour transport in bi-
phasic composite materials, and favour their applications as food packaging, the
present study aims at providing a better understanding of water vapour permeability
in the promising WSF-based composites. In this perspective, an analysis of available
models for predicting properties of bi-phasic permeable composites was carried out
and the ability of these models to predict the impact of particle volume fraction on
water vapour permeability of PHBV/WSF biocomposites were discussed based on

experimental data.
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2. Theory on analytical biphasic models

Since the 1990s a lot of experimental studies have been carried out in the membrane
area and especially in composites due to their high technological potential in term
of barrier properties [Koros et al. (2013), George et al. (2001)]. These membranes
exhibited heterogeneous structures consisting in the dispersion of inorganic particles
in a polymer matrix and were used in many applications such as H2 separation, O2/N2
separation, natural gas separation such as removing of CO2, vapours separation and
dehydration of air [Hwang et al. (2011)]. Indeed these materials were very effective
in that field because they allowed good gas separation and the access to high
selectivity; one of the major objectives in membrane sciences. In order to avoid
systematic experimental characterization of each new composite materials, need of
mathematical modelling approach has emerged for prediction of permeability in
composites. From analogy between electrical/thermal conductivity properties and
permeability properties, models have been proposed to predict the effective
permeability of composites. Petropoulos et al. in 1985 was one of the first authors who
reviewed these theoretical approaches and compared the models to experimental
gas permeability values in polymer blends. Afterwards Aroon et al. (2012) proposed a
review on the study of gas separation efficiency of mixed matrix membranes by
discussing the different predictive models according to the nature of the particle
and by addressing particle/polymer matrix interfacial defects. Besides Gonzo et al.
(2006) and Pal et al. (2008) have listed some models and Petsi et al. (2012) have
developed a new numerical computational model for the prediction of effective
permeability in mixed matrix membranes. Hashemifard et al. (2010) discussed the gas
permeabilities, such as oxygen, carbon dioxide, nitrogen and methane in these

membranes filled zeolites NaA and NaX with using theoretical models and the results
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were compared with the published experimental data; they demonstrated Felske
model Felske et al. (2004), which take into consideration the interphase

particles/polymer matrix, provided the better agreement with experimental data.

The models, gathered in table 1, related the effective permeability of the composite
Pert as function of the permeability of the polymer matrix Pc which is considered as
the continuous phase, the permeability of the particles P4 which is considered as the
dispersed phase and at least the volume fraction of the particles ¢qa. Most of these
models directly depicted the permeability of the composite as function of the
volume fraction of particles but other models needed first to be numerically solved
before obtaining the permeability of the composite as function of the particle
volume fraction as explained in the previous section [Banhegyi et al. (1986), Bouma
et al. (1997), Pal et al. (2008)]. Some other models could also have additional fitting
parameters such as the maximum volume packing of the particles ¢m [Lewis et al.
(1970), Nielsen et al. (1973), Pal et al. (2008)], the percolation threshold constant ¢, a
shape factor, n, related to the geometry of the particle [Banhegyi et al. (1986),

Bouma et al. (1997)] or even a fully empirical constant Ku [Higushi et al. (1958)].

The first well-known models applied for the prediction of material properties, such as
mechanical, thermal and barrier properties, were the series (equation A) and
parallels (equation B) models. In the case of mass transfer and whatever the shape
of the particles, spherical or ellipsoids, the values predicted by these two models
were usually considered as respectively the minimum and the maximum values of
the effective permeability. In case of a dilute dispersion of spheres or ellipsoids, fully
oriented along the axis of the diffusion direction, the permeability of the composite

membrane could be expressed with the Maxwel-Wagnar-Sillars equation

151



(equation C). In equation C, the parameter n represented the shape factor of the
particle and took different values according to the geometry of the particles; for
prolate ellipsoids, i.e. the longest axis of the ellipsoid is directed along the diffusion
direction 0< n < 1/3, for spherical particle n = 1/3, for oblate ellipsoids, i.e. the shortest
axis of the ellipsoids is directed along the diffusion direction 1/3 <n < 1. For spherical
particle, when n=1/3, equation C could be rewritten and simplified as equation D.
The so-called Maxwell model has been widely used in membrane applications for
the prediction of permeability in bi-phasic systems. However, its used is restricted to
filler volume fraction lower than about 20% under the assumption that the flux
pattern around one particle was not affected by the presence of neighbour
particles [Maxwell (1873), Banhegyi et al. (1986), Bouma et al. (1997)]. Like the
Maxwell model, the Bottcher model (equation E) and the Higushi model (equation F)
were used for the prediction of permeability properties in composites at low particle
volume fraction with random dispersion of spheres. The parameter Ky in Higushi
model was treated as an empirical constant and assigned to a value of 0.78 by
Higushi himself on the basis of experimental data. The Bruggeman model (equation
G) was particularly appropriate for the prediction of composite permeability when
there were small differences between the matrix and the particle permeability and,
contrary to the Higushi and the Maxwell model, for higher particle loading higher

than 20% [Bruggeman (1935), Banhegyi et al. (1986), Bouma et al. (1997)].

Based on the percolation theory (equation H), Chiew et al. (1983) have proposed an
extension of the Maxwell model represented by (equation |, J) in Table 1. The second
term (3Pqd) of the equation represented the interaction between particles and the
polymer matrix and the third term (Kpq2) the interaction between the particles

themselves. Instead of applying the percolation theory to describe the maximum
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volume concenftration of particles, another possibility is to use the theory of the
maximum packing volume of particles represented by the parameter ¢om, which is
function of the particle size distribution, shape and aggregates. Lewis-Nielsen model
(equation K) and Pal model (equation L) gave accurate prediction of the effective
permeability of the composite until the maximum packing volume fraction of

particles.

The aforementioned models assumed ideal contact between the particles and the
matrix, i.e. a well-defined interface. But in some cases, the interphase
polymer/particles presented defects as for example interfacial void space between
the two phases due to bad adhesion between polymer and particles. Besides
polymer matrix changes has been observed when the polymer molecules in direct
contact with the particle surface became more rigidified in comparison to the bulk
polymer molecules [Chung et al. (2007), Cong et al. (2007)]. In order to take into
account the presence of defected interphase in composites, several authors have
tried to propose more complex model to predict the effective permeability of the
composites. For example, Mahajan et al. (2002), working on a zeolite/polyimide
system, have put in evidence the existence of an infterphase parficles-polymer
matrix. Confirming this, by applying the Maxwell model on their results, they observed
some deviations between modelled and experimental data at high particles
contents even if they obtained a satisfactory prediction at low particles contents up
to 15vol% [Mahajan et al. (2000)] As a consequence, they proposed an extension to
the Maxwell model by considering the existence of a third phase, i.e. an interphase,
a polymer region near the particle/polymer matrix interface owing its own
permeability value [Mahajan et al. (2002)]. In the present case, the authors assumed

that the interphase displayed a reduced permeability compare to that of the neat
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polymer due to chain immobilization in the inferphase. Other authors have focussed
on the prediction of permeability in multi-phase composites, with at least three

phases [Pal et al. (2008), Felske et al. (2004), Shariati et al. (2011)].

The experimental determination of the permeability of the dispersed phase, i.e. the
particle in the case of composites, and if necessary, that of the interphase
particle/polymer could hinder the prediction of permeability in composites with
these last models. To overcome this difficulty, the models have often been fit to the
experimental data by adjusting the ratio Pa/Pc [Gonzo et al. (2006)] and the
permeability at the interphase [Pal et al. (2008)] considered therefore, as fitting
parameters. In some rare studies, the permeability of the dispersed phase has been
successfully experimentally measured, either on native inorganic materials before
being milled in zeolites [Mahajan et al. (2002)] or on native vegetal material before
being milled in fibres [Wolf et al. (forthcoming (c))]. However, the aforementioned

studies remain some rare cases for this kind of determination.
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3. Experimental

3.1. Materials

Commercial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was supplied by
Tionan under the reference Y1000P with HV content 3%. Wheat straw (Triticum
aestivum cv. Apache) was provided by Fernand Meaux (Saint Jean du Salés,
Aveyron, France), harvested in 2007 and was ground to obtain wheat straw fibres.
The wheat straw fibres (WSF) were impact-milled at a size of 100-150 um and the
median diameter of the fibre is around 62 um using a process previously developed

by [Ghizzi D. Silva et al. (2012)] and re-use recently by [Berthet et al. (2014)].

3.2. Materials and film preparation

PHBV and PHBV-based composites with 10 wit%, 20 wit% and 30 wi% fibre weight
fraction (PHBV10 and PHBV20) were prepared by extrusion using a lab-scale twin-
screw extruder (Eurolab from ThermoFisher Scientific). After extrusion, the obtained
pellets were dried in an oven at 60 °C for at least 8 h. Then, the compounds were
heated 5min at 170°C between two Teflon-coated plates and then thermo-
moulded for 5 min at 150 bar and 170 °C with a heated hydraulic press (PLM 10 T,

Techmo, Nazelles, France) to obtain films [Berthet et al. (2014)].
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3.3. Optical microscopy

Optical microscopy observations of PHBV20 cross-sections were performed on thin
samples (cuts of approximately 3 uym) obtained after the cut with a microtome of
composite samples previously embedded in Technovit ® hydroxyethylmethacrylate

resin. A Leica MacroFluo Leica Z6 APO 16:1 was used for the observations.

3.4. Water vapour permeability

Experimental water vapour permeability (WVP(exp)) were gravimetrically
determined at 20 °C for a relative humidity difference of 100% using a modified ASTM
procedure [Gontard et al. (1993)]. The samples (discs of 33 mm diameter) were
hermetically sealed (with Teflon seals) in a glass permeation cell containing distilled
water. The permeation cells were placed in a desiccator containing P20s, thus
obtaining a relative humidity (RH) gradient equal to 100% (assuming that the relative
humidity on P20s is negligible). The water vapour transfer through the exposed film
area (8.55 cm?) was measured from the cell weight loss as a function of time. The
cells were weighed using a four-digit balance every 48 hours over a 20 days period
after a steady-state vapour flow had been reached. Six samples of each type of fim
were tested and the water vapour permeability (mol.m-.s'.Pa') was calculated

from the following equation:

_ 6x1 1
WVP(exp) = YU [
where 0 is the slope of the weight loss versus time (g.s'), | is the film thickness at

equilibrium measured at the end (m), A is the area of exposed film (m2), and AP is

the water vapour pressure differential across the fim at 20°C and AP= 2338 Pa.
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The calculated water vapour permeability (WVP(calc)) was obtained by the

following relation:

WVP(CalC) = Scalc X Deff [2]

The solubility coefficient (Scac) was calculated from the water sorption isotherm
measured in [Wolf et al. (forthcoming (c))] by using the relation previously

established by Bourlieu et al (2006):

_ Prum ( X1—X3 ) [3]

cale M.p,, \aw;—aw,

where Xi is the moisture content (9.9(ary besis)!) of the film at awr and X2 the moisture
content (g.9(ary basis)') at awe, p is the film density (g.m3) and pw the saturated water

vapour pressure (Pa) at a constant temperature (20 °C).

The effective diffusivity coefficient (Deff) was taken from previous work [Wolf et al.
(forthcoming (c))] It was determined from transient water vapour sorption kinetic. A
Deft value was obtained for each RH step experimentally assayed. For each material,
PHBV, WSF and PHBV-based composites, Deif was averaged on the whole range of

water activity from 0 to 0.95.
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3.5. Numerical implementation of the analytical bi-phasic models

Equation D, F and K were implemented in Excel 2010 for the identification of the
fitting parameters n, kH and ¢m respectively. Fitting in Excel was carried out by using
the GRG nonlinear solver (table3).

Equation E, G and K, were numerically solved on Matlab software. The equation was
rewritten in order to get a polynomial equation of degree 2 for equation E and of
degree 3 for equation G and K, with Pe#t/Pc as polynomial indefinite. The real and
positive root of the polynome was calculated for each filler content. The
identification of parameter on Matlab software was done using a Levenberg-
Marquardt method for equation K (table 3).

The identification either in Excel or in Matlab was performed from the experimental
relative permeability values by minimizing the root mean square of the deviation
between simulated and experimental results. In order to evaluate the goodness of
the fit of each model to the experimental data, the RMSE value was determined for

Excel and Matlab identification.

4. Results and discussion

4.1. Water vapour permeability experimental data

The water vapour permeability of PHBV, PHBV10, PHBV20 and PHBV30 were
experimentally determined at 20°C from a modified ASTM method for a 0-100%
relative humidity (RH) gradient. The relative water vapour permeability, i.e. the ratio
of the permeability of PHBV10, PHBV20 and PHBV30 to PHBV as function of the
particle volume fraction were reported in figure 1 and the absolute values of water

vapour permeability were reported in table 2.
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Figure 1: Prediction of the relative permeability as function of parficle volume fraction with
analytical (quoted in table 1) for the first set of data up to 19.52 vol% until 30 vol% (a) and unfil
15 vol% (b)

Table 2: Characteristics of polymer matrix (PHBV), wheat straw fibres (WSF) and PHBV-based
composites (PHBV10, PHBV20) at 20 °C

Solubility coefficient Diffusivity coefficient Experimental wa't'er Calculated waj((.ar v(ca)pour
sample from DVS from DVS vapour permeability permeability
(mol.m™Pa’) (m’sY) WVP(exp) WVP(calc)
T ) (mol.m™.s™.pa”) mol.m™.s".Pa”)

PHBV 1.583 +0.280x 10™*®  2.615+0.351x 10™* 1.096 +0.257 x 10™ 0.414 +0.092 x 10™
WSF 90.656 +3.498 x 10" ® 18395 +3.78 x 10™ 1.668 +0.349 x 10
PHBV10 6.068+0.282x10™®  1344+0.288x10™ 1.317+0.334x 10" 0.816 +0.179 x 10™
PHBV20 1.512 + 0.107 10°® 1.283 +0.259 x 10™ 1.735+0.283 x 10™ 1.940 +0.416 x 10
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As expected an increase of the permeability as function of particle volume fraction
was observed; 1.20 + 0.43, 1.58 £ 0.47, and 5.22 + 1.36 fold higher in PHBV10, PHBV20
and PHBV30. From Publication 1, it was found that the water vapour sorption and
diffusion in WSF was 36 and 7 times higher than in PHBV respectively. Hence, WSF

provided the main conftribution in the overall mass fransfer of the composites.

However the standard deviation of the experimental data for the composites was
very high and overlapped for PHBV, PHBV10 and PHBV20. This result could be
explained by the heterogeneity of the composites, i.e. the size, the shape, the
dispersion and the orientation of the wheat straw particles within the polymer matrix

as revealed by optical microscopy pictures in figure 2.

Indeed during the process of composites, wheat straw fibres might not be well-
dispersed and during film forming the distribution of wheat straw fibres within the film
would not be homogeneous resulting in samples with heterogeneous repartition and
content of fibres. This was supported by the ash content results which served to
precisely determine the filler volume fraction from the inorganic residue mass. From
ash content determination presented in [Wolf et al. (forthcoming (c))], the exact filler
volume weight fraction was found equal to 7.5 £ 1.44 wit%, 16.30 £ 1.69 wt% and 26.85
*+ 2.31 wi% equivalent to 5.14 £ 0.98 vol%, 11.40 £ 1.20 vol% and 19.52 £ 1.72 vol% for
PHBV10, PHBV20 and PHBV30 respectively. For all weight fractions, the exact filler
content (estimated from a representative mass of material 2-5 g) was lower than the
expected experimental filler content and was subjected to high standard deviation

underlining the heterogeneity of the samples [Wolf et al. (forthcoming (c))].
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5 pm 10 um

Magnification factor: 10 Magnification factor: 20

Figure 2: Optical microscopy observations at 10 and 20 magnification of PHBV20 composites
cross-section cutting

In order to use the predictive permeability models previously quoted, the
permeability of the wheat straw fibre was needed but was not directly
experimentally accessible. Considering the solution-diffusion mechanism, P=DxS, the
permeability (WVP(calc)) in the particle has been calculated as the multiplication of
the solubility and diffusivity coefficient. This relation could be applied on the
assumption that the addition of WSF in PHBV matrix would not have an influence on
the polymer matrix. The solubility was calculated using equation 3 from the water
sorption isotherm previously determined on a piece of wheat straw [Wolf et al.
(forthcoming (c))]. Dett was taken in the same previous work, was averaged on the

whole range of water activity and was found equal to 18.395+ 3.78 x 1012 m2.s’!.

In the same way the WVP(calc) in neat PHBV and PHBV-based composite were
calculated for a 0-95% RH difference for further comparison with WVP (exp). All results
were gathered in Table 2. WVP(calc) and WVP(exp) were not significantly different

for PHBV-based composite while WVP(calc) of PHBV was significantly lower (around
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two times) than the corresponding WVP(exp). This discrepancy for neat PHBV could
be ascribed to the uncertainty relying on the Det and S determination for this
polymer. Indeed, the high hydrophobicity of the polymer has hampered the
accurate determination of the water sorption kinetics (measured using a controlled
Cahn microbalance). Indeed, the mass uptake by the PHBV for each RH step
imposed by the balance to the material to build the sorption curve was too low and

thus in the limit of sensitivity of the balance.

In the literature, Crétois et al. (2014) and Fabra et al. (2014) have found water vapour
permeability equal to 4.99x020x 10" and 3.88+0.39 x 1018 mol.m-.s'.Pa!
respectively at 25°C and 0-100%RH on the same neat PHBV materials also processed
through melt-compounding and compression moulding. The discrepancies in the
values could arise from the different method of water vapour permeability
characterization; home built apparatus with a permeation cell [Crétois et al. (2014)]
or cup method [Fabra et al. (2014)]. However the values was higher than our for both
WVP(exp) at 20 °C and 0-100%RH and WVP(calc) at 20 °C and 0-925%RH. Zembouai
et al. (2013) have found a water permeability equal to 1.28 x 1013 mol.m-'.s".Pa at
23°C and 0-50%RH for film prepared through melt-mixing and compression
moulding, and water vapour permeability characterized with the cup cell method.
Although the relative humidity gradient across the film was not the same, this value

was more in agreement with ours.

The WVP(calc) for the piece of wheat straw was 100 fold higher than that of neat
PHBV. This confirmed that the WSF particles were much more permeable than the
PHBV matrix and that they highly contributed to the overall mass transport in the

composite material and especially when fibres volume fractions increased. In the
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following WVP(calc) in the WSF (namely P4 in the models) and WVP(exp) in PHBV
(namely Pc) were considered in the biphasic models for the prediction of the

permeability in WSF-based composites.

4.2. Predicting permeability in PHBV-based composites with analytical biphasic
models

Once all the input parameters were determined, i.e. the permeability in the polymer
matrix (Pc), the permeability in the wheat straw fibres (Pqd), the polymer volume
fraction (pc) and the partficle volume fraction (pa), all the models from table 1 were
tentatively used to predict the experimental permeability of the composite as
function of particle volume fraction; resulting plots were represented in figure 2.
Among all the models used, only the series and parallels laws (equation A,B) and
Chiew and Glandt model (equation J) could be applied without any adjustment
while Maxwell, Higushi and Lewis-Nielsen models (equation C,G, K) required the fit of
at least one parameter, n, ki or ¢om namely the shape factor, an empirical
parameter and the maximum packing volume for the particles. Contrary to the
aforementioned models (Maxwell, Higushi and Lewis-Nielsen) which are explicit
relationships, Bruggeman (equation E), Bdéttcher (equation F) and Pal (equation L)

models required a numerical solving on Matlab software.

As expected, series and parallels models were positioned at the extremes of the
graph in figure 1, parallel model predicting the highest ratios while the series model
the lowest ones. However the prediction of permeability from the series model was
better and located in the bottom of the standard deviation error bars for the PHBV,

PHBV1O and PHBV20 experimental permeability values. In fact and after opftical
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microscopy pictures investigation (figure 2) of the composite structures, the particles
seemed to be oriented perpendicularly to the diffusion flux and thus the series model
was more appropriate for the prediction of the permeability than the parallels ones.

The prediction of permeability from Chiew and Glandt, Bruggeman, and Béttcher
models, without any adjustments of any parameters, were in good agreement with
the experimental data until a wheat straw fibres content of 11.40 vol%. At higher
loading there were discrepancies between the prediction of the permeability of
PHBV30 with the models and the experimental relative permeability values; the
predicted values at 19.52 vol% was 34%, 36% and 44% lower than the experimental

value for Chiew and Glandt, Bruggeman and Béttcher models respectively.

Maxwell, Higushi and Lewis-Nielsen models were then used and for this purpose, n, knx
and ¢m were identified from the fit of the model to the experimental permeability
values. As expected, the fit on the whole set of experimental data failed confirming
the change in WVP behaviour between 11.40 vol% and 19.52vol%. Therefore, the fit of
these models was carried out in two steps: first fit on experimental data up to
19.52 vol% and second fit with all the data up to 11.40 vol%; all the resulting fitting
parameters were gathered in table 3. The prediction of Higushi and Maxwell models
were quasi equivalent as evidenced by the superposition of the curves in figure 2.
The fitting parameter in Higushi model was the empirical constant Ky equal to 0.78 in
the initial model building. In the case of the present fits, Ky was found equal to 0.78
and 0.14 for respectively the first and second set of data. This result was not a proof
that the prediction was better for the first set of data because the 0.78 value had no
geometrical or physical meaning. Indeed in another previous study [Sadhegi et al.
(2011)], Sadhegi et al. used the Higushi model for the prediction of gas permeability

in membranes made up of silica nanoparticles/polyether-based polyurethane and in
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their system, the value of Ky was comprised between 2 and 3 according to the gas
nature. The Ku value might be more related to the nature of the migrant than the

geometry of the particle.

The fitting parameter in Maxwell model was, as presented previously, a constant
related to the geometry of the particles. In the present case, the fit of the first set of
data was obtained for n equal to 0.08 while the fit of the second set of data gave a
n value equal to 0.29. In line with the opftical microscopy observations and previous
work of [Berthet et al. (forthcoming)], the wheat straw fibres used in this study
exhibited spherical and cylinder shape with an average diameter of 62 um and a
mean aspect ratio of 2. The two fits of Maxwell model with the corresponding
identified n values confirmed that globally the WSF particles were not spherical but
rather ellipsoidal (n comprised between 0 and 1/3). However, a steep change of this
shape factor occurred between 11.40 vol% and 19.52 vol% which remained at
present unexplained.

As the Maxwell model, the Lewis-Nielsen model considered a geometrical
parameter, the maximum volume packing fraction of particles m. As previously
sated by Petropoulos et al. (1985), the maximum volume packing in the case of
spherical particles system is equal to 0.64 and in cylinder particles system equal to
0.79. In the present case, the fit of the first set of data was obtained for pm equal to
0.36 while the fit of the second set of data was obtained for ¢m equal fo 0.46.

Pal model, as Lewis-Nielsen was fitted to the experimental data using the maximum
volume packing fraction of particles. Hence, the fit of the first set of data was
obtained for pm equal to 0.31 while the fit of the second set of data was obtained for
®m equal to 0.22. Even if, the Lewis-Nielsen and Pal models considered the same

geometrical parameter, the resulting identified ¢m value differed from one model to
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the other (Table 3). Moreover the evolution of the fitting parameter did not follow the
same trend, for the Lewis-Nielsen model an increase of ¢m value between the first to
the second fit while for the Pal model a decrease of ¢m value between the first to
second fit was decreased. The representative of this ¢m parameter remained

questionable in the case of our biocomposites.

Table 3: Resulting fitting parameters from the prediction of the permeability in bi-phasic
material with analytical model for the first set of data up to 19.52 vol% and the second set of
data up to 11.40 vol%

First set of data Second set of data
Model Fitting up to 19.52vol%  Fitting up to 11.40vol%
of particle (PHBV30) of particle (PHBV20)
Maxwell (equation C) 0.08 0.29
Higushi (equation F) 0.78 0.14
Lewis-Nielsen (equation K) 0.36 0.46
Pal (equation L) 0.31 0.22

Most of the models from table 1, with or without fitting parameters, well-predicted
the experimental water vapour permeability data for PHBV10 and PHBV20 but clearly
underestimated the WVP value of PHBV30. The first hypothesis for such discrepancies
could arise from the fact that these analytical models did not take info account
structural heterogeneities, such as various particle shapes and sizes, different particle
state of dispersion and orientation. It is easily understandable that high filler contents
(30wt% for instance) favoured the occurrence of heterogeneities in the composite
stfructure that hampered the prediction of the permeability by the analyfical
biphasic models. The second hypothesis could derive from the existence of a
particle/polymer matrix interphase, i.e. creation of interfacial voids, area of
rigidification and/or change of the crystallinity of the polymer matrix, which exhibit
different barrier properties than both PHBV and WSF. This interphase would be much

more important in the case of high filler content (> 20w1%). In such cases predictive
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models [Pal et al. (2008), Mahajan et al. (2002), Felske et al. (2004), Shariati et al.
(2011)] which considered the interphase as a third constituent, should be preferred
for the prediction of the water vapour permeability. Nevertheless, it is experimentally

difficult to get aright idea of the area and properties of this interphase.

5. Conclusion

The incorporation of WSF in PHBV polymer matrix lead to an increase of water vapour
permeability in WSF-based composite and more especially in PHBV filled with WSF up
to 19.52 vol% in accordance with the hydrophilic character of the WSF. Prediction of
permeability by using analytical bi-phasic models required to known permeability of
the continuous phase (polymer matrix) and, trickier, that of the dispersed phase. An
estimation of the Pq in WSF was done from the product of D by S and confirmed the
contribution of WSF to the overall water vapour transfer in the composite; P4 of WSF
was 100 folds higher than that of the neat matrix PHBV. Prediction of permeability by
using analytical bi-phasic models necessitated in most cases the adjustment of at
least one parameter. Only three models were applied as they stand; predictive
modelling of P by these three models was successful only up to a loading 11.40 vol%
of WSF in WSF-based composites. When the volume fraction of particles was higher
than 11.40 vol%, structural changes could occur and disrupted the barrier properties.
Furthermore the fit of the other kinds of models gave the same conclusion: the value
of the fitting parameter changed between 11.40 vol% and 19 vol% with no physical

meaning.
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PERSPECTIVES

Within the objective to elucidate the role of the vegetal fibre in the overall water
vapour fransfer of a composite material (WSF/PHBV), water vapour transfers (e.g.
water vapour solubility, diffusivity and permeability) have been characterized in the
permeable particles (WSF), the polymer matrix (PHBV) and the resulting WSF/PHBV
composites. A dedicated experimental strategy has been used to explore the water
vapour transfer in the WSF particles. The structure has been explored through optical
microscopy and it can be concluded that the structure of the WSF/PHBV composites
present particle size and particle shape heterogeneity. Bi-phasic model, with or
without fitting parameters, failed in the prediction of permeability in the WSF/PHBV
composites for the entire range of filler volume fraction investigated (from 0 to
30 wt%). The reason for this failure was ascribed to the heterogeneity of the structure.
Along with, we noted that the permeability of the particle, required as input in the
analytical bi-phasic model was based on an estimation based on the diffusivity and
solubility value measured on a piece of wheat straw material and not on the
embedded particle. These values may be not representative of the mechanisms that
prevail in the particle placed in-situ in the polymer. From this starting point and in
order to encounter this complex problem, a new numerical modelling approach has
been proposed in order to predict global macroscopic mass transfer in biphasic-

permeable composites from structural information gained at the microscopic scale.
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Publication 5

A numerical model for predicting mass transfer in bio-composites: assessment

of the permeable particles impact on the water vapour properties

Caroline Wolf, Nathalie Gontard, Valérie Guillard

ABSTRACT: A model based on Finite Element Method (FEM) has been developed to
predict water vapour flux in composite materials containing fibre-type particles and
fo analyse its modulation according to the particle shape, size and volume fraction.
Morphology of the permeable particle was modelled considering either, spherical,
ellipsoidal and platelet shapes and its mean aspect ratio (a) has been varied
considering realistic values (from « = 1 fo 100). Input parameters for mass transfer
properties, water vapour diffusivity and solubility for each constituent of the
composite, were taken from a previous work for poly(3-hydroxybutyrate-co-3-
hydroxyvalerate) (PHBV) as confinuous phase and wheat straw fibres (WSF) as
dispersed phase [Wolf et al. (forthcoming (c))].Impact of particle shapes was first
investigated and it was determined that for a lower than 4 the modelled shape of
the particle had no influence on the measured flux through the composite for a
given volume fraction (pvor=5%). Comparison of the present numerical model with
existing analyfical one of the literature (Maxwell model) was then performed and has
revealed a sfrong discrepancy between the two predictions probably related to
different hypothesis in the building of each model as regard the geometry
considered. In a third step, the numerical model was tentatively validated for a
PHBV/WSF biocomposite containing 20 wt% of WSF and by comparison with
experimental water vapour permeability. This validation step has revealed that the
model was very sensitive to the water vapour diffusivity of the particle, which could
not be determined directly on the WSF particle but only on a macroscopic piece of
wheat straw. Value gained on this macroscopic sample could not be extrapolated
to WSF particle dispersed in the PHBV matrix and therefore, diffusivity of WSF particle
value must be identified by adjusting predicted water vapour permeability to the
measured one.

KEYWORDS : Numerical modelling, Finite Element Method, Water vapour flux,
Geometry composites, Permeable dispersed phase
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1. Infroduction

In the last ten years a serious interest has been devoted to the modelling of mass
transfer properties of composite materials and more particularly of their permeability
toward gases and vapours. This last parameter is very important in the food
packaging field because it determines the ability of the packaging material to
regulate the transfer of gases (O2/CO2) and vapours such as water vapour in the
food/packaging system and thus, the preservation of food quality during storage
[Guillaume et al. (2011), Cagnon et al. (2013)]. Composites materials are obtained
with the addition of at least two non-miscible constituents with different properties,
whose synergism creates properties unavailable from individual single constituents. A
lot of work has been carried out on the incorporation of nano-sized particles either
inorganic (e.g. clays) or organic (e.g. starch nanowhiskers) in either synthetic
polymer matrix [Alexandre et al. (2000), Ray et al. (2003), Mittal (2009)] or biopolymer
[Ray et al. (2005), Sorrentino et al. (2007), Arora et al . (2010)] leading to the
elaboration of nanocomposites. Incorporation of (nano)particles in a continuous
polymer phase permits to significantly modulated the mass transfer properties of the
resulting composite and makes this strategy very attractive for the food packaging
field. For example, incorporation of impermeable nanoparticle such as nanoclays in
a polymer matrix could lead to a significant decrease of the permeability of the
nanocomposite compare to that of the neat matrix (review 1) while incorporation of
permeable particles (e.g. vegetal fibres) could deeply increase the permeability of
the composite [Wolf et al. (forthcoming (a))]. Indeed, the design of new tailored
composite structures corresponding to the food requirements as regard to mass

transfer properties is very crucial [Azeredo et al. (2009)].
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A lot of work has been carried out on modelling of mass fransfer properties in
nanocomposites containing impermeable particles. Some analytical, tortuosity-
based models [Nielsen (1957), Cussler et al. (1988)] were developed in the past and
then, used to predict permeability of nanocomposites displaying well dispersed
and/or exfoliated nanostructure with more or less success [Wolf et al.
(forthcoming (b))]. However, these models could not be used for predicting
permeability in bi-phasic material where the particle significantly contributes to the
overall mass fransport, as for example natural fibre-based composite. Some
analytical bi-phasic models have been extrapolated from other science field, such
as electrics and thermo-mechanics, for the prediction of mass transfer through bi-
phasic membranes containing permeable particles [Maxwell (1873), Lewis et al.
(1970)] but they have never been used in the field of packaging except one rare
study [Wolf et al. (forthcoming (d))]. It is worth noticing that the study of mass transfer
properties of composite materials in packaging science is almost a blank field from a

modelling as well as an experimental point of view.

For predicting the overall permeability of the composite, existing analytical bi-phasic
models required to know the respective permeability of each component which is
not so evident to experimentally access for the particle. One this first botftleneck is
unlocked, the second one is related to the shape of the particle which must be
specifically characterized and considered homogenous and constant in the entire
composite. Except for perfectly spherical particles, the shape parameter is not often
known and it should thus be identified by fitting the analytical bi-phasic model to
experimental data, represented by the evolution of the relative permeability P/Po as
a function of filler content [Wolf et al. (d)]. This feature prevents the use of these

models for predictive modelling of permeability and considerably restricts their
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interest as explicative modelling to reach a good understanding of the impact of

particle dimensions (shape and size) on the composites mass transfer properties.

To overcome the limitations of current analytical approaches and develop more
mechanistic and explicative modelling approach, numerical model could be
convenient. The pioneering work in that field was that of Falla et al. in 1996 who used
Monte Carlo simulations for modelling 2D regular arrangement of impermeable
flakes in a matrix. Their work was extended to 3D structures by Swannack et al. (2005)
and to randomly placed particles by Gusev et al. (2001). More recently, interest of
Finite Element Method (FEM), a numerical technique used to find approximate
solutions for differential equations, was explored by Goodyer et al. (2007, 2009) for 3D
modelling of mass transfer properties in nanocomposites filled with impermeable
particles. Minelli et al. (2011) did the same using finite volume algorithm (a method
derived of FEM) and studied in addition to their predecessors, effect of platelet
shape and filler loading on the effective coefficient of diffusion. All the
aforementioned computational modelling attempts were done for platelets
perfectly perpendicular to the direction of the flux. Bhunia et al. (2012) first
infroduced the effect of the orientation in its 2D finite element model, followed by
Greco and co-workers (2013 and 2014) who worked on 2D and 3D models based on
random distribution and orientation of non-interpenetrating impermeable lamellae.
These numerical models were generally compared and found more powerful than
analytical tortuosity based models such as that of Bharadwaj [Bharadwaj et al.
(2001)] because particles with different orientation could be considered
simultaneously while only a mean particle orientation could be dealt with at the
same time for analytical model such as that of Bharadwaj, represented by one

constant parameter. Nevertheless, in all the aforementioned studies, particles were
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always impermeable. Such type of numerical approaches was, as far as we knew,
never applied to composites containing permeable particles that hugely contribute
to the overall mass transport. However, such approach would permit to solve the
complex mathematics of fransport phenomena by taking into account the property
of both the continuous (e.g. polymer matrix) and the dispersed phase (e.g. particle)
and by defining precisely the particle morphological (e.g. shape, size, volume
fraction) and its dispersion (e.g. regular or random arrangement, agglomeration,

orientation).

In practice, this implies to know precisely the mass fransport properties of each
component, in that case, solubility and diffusivity as well as the partition between
particle and matrix. As for previously developed FEM models, the geometry of the
composite represented by the polydispersity of the particle shape and the size (e.g.
polydispersity of the aspect ratio), the state of dispersion of the particles must be
known. If it is not the case, hypothesis on the structure of the materials should be
done. One main advantage of FEM modelling approach is that successive
hypothesis on the structure could be emitted, tested, validated or not until the right

one was reached.

In this context, the objective of this paper was to propose a 2D numerical model to
describe and predict mass fransport infto composite materials where particle were
permeable and widely contributed to the overall mass transport. This model was
applied to biocomposites made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
(PHBV) as continuous phase and wheat straw fibres (WSF) as dispersed phase and for
water vapour as diffusing molecule. WSF particles being hydrophilic, they

participated a lot to the water vapour flux if compared to the hydrophobic PHBV
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maftrix, and as a consequence, water vapour permeability of biocomposites
increased as a function of filler content [Wolf et al. (d)]. The implementation of the
2D FEM model will be first presented. Then, second, the model will be used to (1)
theoretically investigate the effect of particle shape and size, volume fraction and
positioning in the neat matrix on the simulated water vapour flux, (2) compare the
numerical simulation to analytical ones performed using the Maxwell model from the
literature and (3) validate numerical simulations in the PHBV/WSF biocomposites by

comparison with experimental water vapour permeability data.

2. Mathematical modelling and simulation

The numerical Finite Element Method (FEM) model has been developed in 2D using
the Transport of Diluted Species physics interface of the Chemical Reaction

Engineering module included in the COMSOL Multiphysics 4.3b software.

2. 1. Definition of the geometry

The composite film structures were drawn within the COMSOL interface and were
composed of two domains; the matrix (Qmatix1) and the particle (Qparticle2) QS
represented in figure 5. Various particle shapes (spheres, ellipsoids, platelets) and
sizes (aspect ratio a) could be represented. To go further in the definition of the
geometry, random or oriented and aligned distribution of the particles were
achieved in the composites. In order to minimise computational cost, modelling was

restricted to 1000 um of length for the material and 300 um of thickness.
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2.2. Governing equation

The un-steady water vapour diffusion in composite materials was described by Fick's

transport equation in both the matrix (i=1) and the particle domains (i=2):

6ci

3t + V.(D;.Vc;) =0, in Qmatix and Qparticle [1]

where D1 and D2 (m2.s!) were respectively the diffusivity coefficient in the matrix and
the parficle domains and c¢i1 and c2 (mol.m=3) respectively the water vapour
concenfration in the maftrix and the particle domains. The transport could be
considered as diffusion-governed, i.e. penetrant diffuse through the thickness of the
composite materials (L) due to concentration differences between the upper and

the lower boundary of the film.

2.3. Boundary conditions

The diffusion mechanism was based on the fact that diffusion occurred through the
permeable domains of the composite materials from the upper bound (0Qinm/p) tO

the lower bound (0Qout.m/p).

The upper bound (0Qinm/p) and the lower bound (0Qout.m/p) boundary conditions were

defined as follow:

{Cin = Cin;
Cout =0

at dQinmp and Qout,m/p [2]

where ¢;,, was the concentration of water vapour at the upper surface of the
material obtained for a fixed relative humidity, RH.
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The composite films were considered as planar sheet and the lateral flux at the

bound (6Qax.mp and dQaxm/p) Ccould be neglected:

(—Dchi).n =0 at 0Qax,m/p ANd dQaxrm/p [3]

where n is the normal vector to the boundary.

The boundary condition at the interface matrix/particle was defined as follow:

(_DvaZ).n = M(K 1 — Cz) [4]

where K was the dimensionless partition coefficient calculated as follows:

_ Cleg
K=— [5]

and M the water vapour stiff-spring velocity (m.s') which was supposed equal to 103,
Stiff-spring equilibrium boundary condition [Comsol tutorial (2011)] has already been
used for calculating fluxes in membrane [Shehni et al (2011)] and food packaging
[Cerisuelo et al (2013)] and was used in this study in order to concurrently encounter
concentration disconfinuities and to allow continuous flux at the inferface

matrix/particle and more generally flux continuity across the composite film.
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2.4. Initial conditions

The initial water vapour concentration in each domain, matrix (Qmatix) and particle

(Qparticle), Was assumed to be constant:

Cini = Cini; 1IN Qmatrix AN Qparticie [6]

2.5. Numerical implementation and calculations

The mesh used for this study was free triangular elements and was refined manually,
by changing the size of the mesh for each geometry, to get a mesh independent
solution (figure 5b). The fime of simulation, linked to the refining of the mesh was
taken info account but the main parameter considered was the convergence of the
model. The solver Paradiso was used because it is preferable for 2D modelling of
diffusion law, and combined to a backward differentiation formula (BDF) used to
determine the time steps calculation. The solver was ran with a relatfive tolerance, an
absolute tolerance and an initial time stepping respectively equal to 0.01, 0.001

and 0.01. One result of simulation is shown in figure 5c.

2.6. Calculation of model output

The model validation was achieved with the comparison of experimental
PHBV/wheat straw fibre permeability and that calculated from the flux coming from

the output of the FEM simulation:

NXL
P2 —P1

P= [7]

where H the thickness of the film, P the water vapour permeability (mol.m-1.s7.Pa)

and p1 and p2 the water vapour pressure across the film.
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3. Materials and experimental modelling parameters determination

The numerical model was applied to a PHBV/WSF biocomposites, where vapour
diffusivity and water vapour concentration were determined in both PHBV and WSF.
Water vapour diffusivity and concentrations was also determined in the composite
PHBV/(20 wi%)WSF for the experimental validation step. Most of the data used in the
current paper were taken from a previous work [Wolf et al. (c)] and were
recalculated in line with the objective of the 2D numerical simulation. Details on the
composite processing and obtaining of the data required for calculated the model

input parameters were briefly recalled in the following.

3.1. Materials and composite preparation (film processing)

Commercial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was supplied by
Tionan under the reference Y1000P with HV content 3%. Wheat straw (Triticum
aestivum cv. Apache) was provided by Fernand Meaux (Saint Jean du Salés,
Aveyron, France), harvested in 2007 and was ground to obtain wheat straw fibres.
The wheat straw fibres (WSF) were impact-milled at a size of 100-150 ym and the
median diameter of the fibre is around 62 um using a process previously developed
by [Ghizzi D. Silva et al. (2012)] and re-use recently by [Berthet et al. (2014)]. PHBV
and PHBV/(20 wt%)WSF composites (PHBV20) were prepared by extrusion and film
thermo-pressing [Berthet et al. (forthcoming)]. All the samples were stored at 0% RH

on P20Os at room temperature for at least 10 days before use.
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3.2. Calculation of input parameters

3.2.1. Water vapour concentrations in matrix and particles

Initial and boundary condition for each domain (matrix and particle), namely water
concentration, were determined from the water vapour sorption isotherm. This water
vapour sorption isotherm was obtained from dynamical water vapour sorption
experiments carried out at 20 °C over a wide range of water activities (from 0 to 95%
relative humidity) using a controlled atmosphere microbalance apparatus (DVS)
(Surface Measurement System Ltd., London, UK). The moisture content at equilibrium

(9.9 basis') at a given temperature was calculated as follows:

X = MM 18]

where Mw (g) is the mass of the wet sample at equilibrium state and Maq (g) the dry

Mass.

For the purpose of numerical simulations in COMSOL, the moisture content at
equilibrium (X) was converted in water vapour concentration (mol.m-=3) using the

following expression:

c=—"—xp [9]

Mp2o

where Mu2o is the water molar mass (g.mol') and p the material density (g.m3). The
material densities were equal to 1.11 £0.006, 1.156 £ 0.021 and 1.692 +0.031 g.cm-3

for respectively PHBV, PHBV20 and WSF [Wolf et al. (c)].
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3.2.2. Water vapour partition at particle / matrix interface

As regard to the internal boundary condition at the interface particle/matrix, the
parameter K, which relates the relationship between the water concentration in the
particle (c2) and that in the matrix (c1), is required. To calculate that, the equations of
water sorption isotherm for both components, matrix and particle, were used. GAB
equation (equation 10) and Park model (equation 11) were applied with respect to
previous findings [Wolf et al. (c)] for modelling water vapour sorption isotherm of

PHBV and WSF respectively.

Both equations provide an expression of water vapour concentration as function of
water vapour activity. They were then used to graphically represent the evolution of
c2 a function of ¢ for aw values from 0 to 0.95 (results not shown) resulting in straight
lines for aw values between 0.15 and 0.25, between 0.45 and 0.55, between 0.65 and
0.75 and 0.90 and 1 which slopes corresponded to K values at aw equal to 0.2, 0.5,

0.7 and 0.95 (table 1).

co = Xm Cq .K.ay v p [10]
1 7 A-K.aw)(1-K.ayl+CgK .ay) ~ Mpzo
AL .bL.ay n) p 1
¢, =|————+ ky.a K,.aly) X 1]
2 (1+bL .y + H-w + a-=w Myo0
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3.2.3. Effective moisture diffusivity

Effective moisture diffusivity values at different water activity were identified for PHBV
and WSF using DVS moisture sorption experiments. The procedure of identification
was dlready submitted by Wolf et al. (c), the identification was achieved on four
relative humidity steps. All the inputs parameters were gathered in table 1 and

figure 2.

Table 1: Experimental initial and boundary modelling input parameters (20°C)

Initial conditions Boundary conditions
Gradient Mean Upper boundary  Upper boundary
°hf ’e'?;_“’e ;e'aft'i‘{e Diffusivity coefficient Diffusivity coefficient ~Concentrationat concentrationat partition
umidity umidity Qumatre (1) Qparticte (2) aQin m/p inn m/p coefficient K
(%RH) (%RH) (mz 5»1) (mz 5-1) 4 4 (di ionless)
- : 0manrix (1) Qpartic\e (2) Imensionless
(mol.m?) (mol.m?®)
0-20% 15 2.39 +0.41x10™ 27.71+0.34x10™ 40.84 2777.22 67.63
0-50% 45 2.49+0.15x10™" 18.99 +0.30x10™ 120.72 6817.41 56.36
0-70% 65 2.65 +0.08x10™" 17.14 +0.36x10™ 193.83 10050.89 51.88
0-95% 92.5 2.16 £ 0.34x10™ 6.91+0.76x10™ 33291 18326.10 55.11

All parameters were determined in [Wolf et al. (c)]

3.3. Experimental validation

Water vapour permeability (WVP) of the composite material containing 20 wt% of
WSF presented in Publication 4 was used to validate the numerical simulation. This
experimental water vapour permeability (WVP(exp)) gravimetrically determined at
20 °C for a relative humidity difference of 0-100% using a modified ASTM procedure

was compare to the calculated one by using equation 7.

As it was previously demonstrated that this experimental value did not completely
match the theoretically value obtained via product of the diffusivity coefficient (D)

by the solubility coefficient (S), a calculated water vapour permeability (WVP(calc))
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was estimated by using the aforementioned relationship (WVP(calc)=D*S). As D and
S were known for each aw step investigated in the DVS, the WVP(calc) was
estimated for different relative humidity steps, namely 0-20, 0-50, 0-70 and 0-95%.

Resulting WVP(calc) are gathered in table 2.

Table 2: Water vapour solubility, diffusivity and calculated permeability coefficient of PHBV20
at 20°C

Gradient of Mean relative - . e . Permeability coefficient
relative humidity humidity Sollzzgtyn??if:!f)lent D|ﬁu5|\l(|::2¢:591e)ff|C|ent WVP(calc)

(%RH) (%RH) R ’ (mol.m™.s™.Pa’)
0-20% 15 1.15 x 10™ 1.56 x 10™ 1.79x10™
0-50% 45 2.98x10" 1.16 x 10™ 3.47x10"
0-70% 65 4.68x10" 1.12 x 10™ 5.24x10"
0-95% 92.5 12.10x 10" 1.32x10™ 15.90x 10"

All parameters were determined in [Wolf et al. (c)]

4. Results and discussion

4.1. Modelling results: effect of particles size shape, fraction and positioning

The numerical model solved using COMSOL Multiphysics® software succeeded in
predicting the evolution with time (24 hrs) of the water vapour flux through the
composite material of 300 um thickness in less than 10 min of computation time (on
Intel® Core™ |7 CPU at 2.7 GHz, 8GB RAM). The composite considered contains
various amount of permeable WSF. These particles were more sensitive to water than
the neat matrix as revealed by the observation of water sorption isotherms in figure 1,
therefore they highly contributed to the overall mass transport. The water vapour flux
in the composite was then always higher than that in the neat matrix in all the

configurations studied in the following.
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Figure 1: Representation of water vapour sorption isotherm and water vapour diffusivity
coefficient in PHBV (square), WSF (circle) and PHBV20 (triangle) as function of water activity
(from [Wolf et al. (c)]at 20°C)

The results obtained from the finite element simulation were first exploited in order to
compare the water vapour flux in composites exhibiting various particles sizes and
shapes (represented by the aspect ratio named «), and filler fractions (¢p) and

positioning in the maitrix; the results are shown in figure 2.

The relative flux, Nest/No, with Nett the effective flux in the composites and No the flux in
the polymer matrix, in spherical and platelets-based composites with particles
displaying a mean aspect ratio (a) of 1 were first examined as function of particle.
fraction and positioning in the matrix. For simplification purpose, only one single
particle was considered in the geometry as previously done by Minelli et al. (2011).
The relative flux values in spherical and platelets-based composites were not
significantly different whatever the position of the particle in the polymer, either in
contact with the top or the bottom of the film or centred in the film. Even when the
aspect ratio increased for the platelet from 20 to 100, the relative flux value did not

change according to the position of the particles.
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Chapter 2: Modelling of mass transfer properties
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Figure 2: Representation of the relative flux for various particles shapes (spheres, platelets)
exhibiting different aspect ratio in the range from 1 to 100 and positioned differently in the
polymer matrix, either in contact with the upper and/or lower bound or centred in the
polymer matrix
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For platelets, the effect of simultaneous increase of the particle fraction and of the
aspect ratio was investigated on the relative flux Nert/No (figure 3). Particle fraction
ranged from 1 to 10 vol% and mean aspect ratio of the particle from 1 to 100 on the
basis of previous values found in the literature [Wolf et al. (a)]. The relative flux was
enhanced with increasing particle aspect ratio and filler fraction. For example,
Nefi/No increased from 7.5 to 41 at a=1 and increased from 94 to 356 at a= 100 as ¢
increased from 0.01 to 0.1, representing a 5.5 and 3.8 fold higher value of the relative
flux at a=1 and a=100 respectively. For a given filler fraction, for example ¢=0.01, the
relative flux increases 13 times (from 7.5 to 94) when the aspect ratio is multiplied by
100. In the particular case of ¢=0.1, for a=100, the flux value was around ten fimes
higher than in the case of a=1 (figure 2). The effect of increasing aspect ratio was

even higher than that of increasing filler content.

The increase of the relative flux with an increase of particle fraction was easily
comprehensible; indeed by taking into account that the particle was more
permeable than the matrix, an increase of particle filler fraction, i.e. filler surface in
the 2D, FEM representation, lead logically to an increase of the flux value of the
composite. As regard to the effect of increasing mean aspect ratio, for a given filler
fraction, it could be related to the higher specific front line of exchange between
the particle and the matrix when a is high. For example at ¢=0.01 the surface of
particle is equal to 1.00 x 10 m? and the perimeter for the particle at a=1 and a=100
were equal to 1.26 x 104 m and 6.39 x 104 m and respectively. The higher perimeter
at a=100 promoted the diffusion of water vapour molecules and explained the
increase of the relative flux value, which was approximately ten fimes higher. In
figure 2 this effect was well represented in the case of spheres. At @=0.1, when ten

spheres were dispersed instead of a single one, representing the same particle

187



surface but a perimeter of 1.12x 103 m instead of 3.54 x 104 m for a single, big

sphere, the relative flux was 1.5 times higher for the dispersion of ten spheres.

400 -
350 ~
300
250
200 -
150 +

100

Relative flux NefffNO

0.1

Z-leve '15’12 0.05

80 1m0 o . .
‘I I 4 Aspect ratio Particle volume fraction

Figure 3: Influence of the particle fraction (¢) and particle aspect ratio (a) on the relative flux
Neft/No in platelets-based composites

According to the coefficient of variation obtained on the experimental
measurement of water vapour flux which was estimated to be around 50%
[Publication 4], the relative flux value became significantly higher when it exceeded
50. Although for a=1 the value of Nest/Nowas not significantly different up to 10wt% of
particles, for a=100 the Ne#t/No value was higher than 50 even at very low loading
(@=0.01). At @=0.05 and at a=1, Nesi/No is equal to around 26, at a=4 it exceeded 50
and at a=20 Neft/No is equal to around 105 (figure 2). Hence there is a dividing line
among the couples (a, ¢): on one side of this line, given the values of (a, ¢), the
increase of Neft/No value is not significant (e.g. for low size aspect ratio or low filler
fraction) and on the other side, the increase of Nest/No value is significantly higher
than 50. This line is given in figure 3 by the intercept between the plan of Net/No=50

and the response surface.
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4.2. Modelling results: comparison of the numerical model with the Maxwell model

In a second step, the numerical model proposed in the current study was compared
with the prediction of an analytical bi-phasic model of the literature, the Maxwell
model. The Maxwell model [Maxwell (1873)] allowed to calculate the permeability of
a composite material by taking intfo account the permeability of both permeable
particle and the one of the matrix, the filler volume fraction and a shape factor, n,

representing the morphology of the particle:

P ) [n Pg+(1-n)P.+(1-n)®y3(P4—Pc)
eff = tc | Pq+(1-n)Pc—ndg(Pq—Pc)

[12]

with Peft, Pc, Pa the permeability of the composite, the matrix and the particle and ¢q
the volume fraction of particles. Of course, if the particle is impermeable the same

model could be used and therefore, Ps=0.

This model was already successfully used in a previous work to fit experimental water
vapour permeability in PHBV/WSF composites [Wolf et al. (d)] for filler fraction ranging
from 0 to 20 vol%. The fit of the model with the adjustment of the parameter n was in
good agreement with experimental data until a particle weight fraction of 11.5vol%.
In this paper, for comparison purpose with the numerical model and to simplify the
geometry, the parameter n was considered equal to 1/3, i.e. for the case of
spherical particles according to [Maxwell (1873)]. Then the permeability Per of the
composite was calculated for increasing ¢d by using Pc and P4 equal to 4.10 x 1013

and 1.65 x 107 mol.m-'.s1.Parespectively (Table 1).
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In the numerical model, some spherical particles will be considered to be in
agreement with the Maxwell model for n=1/3. These particles were well aligned and
dispersed in the matrix. The upper and lower boundaries were fixed at respectively
95% and 0% of relative humidity corresponding to one of the conditions of table 1.
The output of the model was a water vapour flux. For comparison with the Maxwell
model, the calculated flux was converted into a permeability value by using

equation 7.

The relative permeability Pewt/Po obtained from the FEM simulations and those
predicted by the Maxwell model were plotted together against the particle fraction
in figure 4. Two case studies were investigated: (1) case of permeable particles with
Pa equal to the permeability value of WSF piece and (2) case of impermeable
particles (P4=0). From figure 5 it was shown that the prediction of the Maxwell model

matfched to the prediction of the FEM model in the case of impermeable particles.

Similar good agreement between FEM simulation and Maxwell model in the case of
impermeable lamellae was already reported by Greco and Maffezzoli (2013).
However for permeable particles, high discrepancies were found and deviation was
observed between the FEM simulation values and the Maxwell model. For instance,
at low particle fraction, ¢=0.01, Pert/Po was higher than 10, against 1.03 for the Pett/Po
predicted by the Maxwell model, and therefore was not displayed in the graph

(figure 4).
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Figure 4: Comparison of relative permeability Peri/Po estimated from Maxwell model for
permeable and impermeable particles (straight line) and the FEM simulation from this study
(circle) as function of particle volume fraction ()

This high discrepancy between the predictions of the FEM model and that of the
Maxwell model could be ascribed to differences in the main hypothesis used in
model basements. The Maxwell model even with n=1/3 may not fully represent
permeability of a composite with spherical particles dispersed in a continuous phase

as done in the trial of figure 4.

4.3. Model validation

Third step of this study was to experimentally validate the proposed numerical model.
To do that, predicted water vapour permeability value in a PHBV20 composite was
compared to that experimentally measured equal to 1.74 x 1012 mol.m-'.s'.Pa! at 0-
100%RH. The experimental mean aspect ratfio of the particle was found equal to 2
[Berthet et al. (2014)]. According to the aforementioned results, for this aspect ratio
and the filler content equal to 11.40 vol% investigated, the shape of the particle

drawn in the FEM geometry has no significant impact on the result.
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Figure 5: Representation of (a) the geometry of the composite with the domains, initial &
boundary conditions and the experimental conditions, (b) the associated meshed
computational geometry and (c) dimensionless concentration and streamline profile of water
vapour in randomly dispersed ellipsoid-based composites

Therefore, spheres (a=1) and ellipsoid particles (a=2) were chosen to represent the
WSF particle shape. The polydispersity of the particle size was neglected. Numerical
simulations were carried out at four different upper boundary relative humidities (O-
20%, 0-50%, 0-70% and 0-95%) with input parameters given in table 1 and in six
different composite structures exhibiting various arrangements of non-
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interpenetrating particle, (a) well-aligned particles, (b) particles in alternating
gridlines and (c) random dispersion of particles (figure 5). The estimated permeability
value after FEM simulation was deduced from the flux value with equation 7 and
compared to the experimental water vapour permeability (WVP(exp)) and the
calculated water vapour permeability (WVP(calc)). All the results are shown in

figure 6 together with a schematized representation of the FEM geometry.
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Figure 6: Comparison of FEM simulation permeability results in spherical and ellipsoidal
particles-based composite loaded with 11.40 vol% particles and WVP(exp) of PHBV20 at 20 °C
and WVP(calc) of PHBV20 calculated from D(PHBV20) and S(PHBV20) at 20 °C and at
different relative humidity (0-20, 0-50, 0-70, 0-95 %RH)
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At first sight, the numerical model considerably overestimated the WVP(exp),
determined for 0-100% RH; experimental permeability value was almost ten fimes
lower than the numerical one. If we considered the WVP(calc), calculated using the
product of diffusivity with solubility obtained in the composite material (table 2), we
noted that the value calculated for 0-25% RH, which is the closest representative of
the conditions encountered during experimental WVP test was in agreement with
the WVP(exp) one. This WVP(calc) was consequently around 10 times lower than that
predicted by the numerical model whatever the RH step considered 0-20, 0-50, 0-70

and 0-95%.

Moreover, WVP(calc) values monotonically increased with an increase of relative
humidity step while the numerical value first increased for 0-20% to 0-70% and
decreased for 0-95% RH. Contrary to WVP(calc), which was estimated using D and S
for the PHBV20 composite, numerical predicted permeability value was calculated
using the FEM model by using D and S for each individual component, i.e. matrix and
particle. Therefore, the FEM simulations covered (of) the variations of D and S for
each individual component. For instance, at high relative humidity, WSF exhibited a
lower water vapour diffusivity coefficient compare to that obtained for lower RH. This
decrease in D counteracted the high solubility of WSF. In the composite, the
diffusivity value did not vary according to relative humidity (table 2) and did not
cover this specific behaviour of the WSF explaining why WVP(calc) and numerical
predicted permeability values did not vary in the same tfrend as a function of RH step

investigated.
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The overestimation of the numerical model could be ascribed to (1) modification of
matrix properties when used in the composite material and/or (2) change in particle
properties when included in the PHBV. Indeed, addition of particles could lead to
modification of the polymer matrix (e.g. change in crystallinity, in polymer free
volume, etfc). The water vapour sorption properties of the composite were relevant
with the predicted one from those of the neat PHBV and the pure WSF using mixture
rule [Wolf et al. (c)]. Therefore sorption properties of each component seemed to be
not modified in the composite. One first hypothesis would be that the D of the PHBV
would be modified in the composite. Besides the addition of particles did not
change the crystallinity of the PHBV polymer matrix, one parameter which could
induce changes in the barrier properties of the polymer. In the light of the
aforementioned features, we can conclude that D(PHBV) was not significantly
modified by addition of WSF particles. A second hypothesis to interpret the
overestimation of the numerical model compared to experimental values could be
explained by a significant change of the water vapour diffusivity coefficient of the
WSF when embedded in the matrix. Indeed the D(WSF) was identified on a piece of
wheat straw material considered as a planar film and not on a single fibre
embedded in PHBV polymer matrix. Thus WSF was able to swell in all directions during
dynamical water vapour sorption and was not under mechanical constraints as the

single fibres in-situ in the PHBV polymer matrix.

In order to estimate a more realistic diffusivity value for the embedded WSF particle,
the numerical model for 0-20% and 0-95% RH step and a composite structure
represented by a random dispersion of ellipsoids was fitted to the WVP(calc). The
identified diffusivity coefficient was found to be equal to 0.41 x 1012 m2.s1 compared

to 27.71 x 1072 and 0.57 x 1072 m2.s1 compared to 6.91 x 1012 m2.s1 respectively.
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The water vapour diffusivity of an embedded WSF particle would be thus respectively
68 and 12 times lower than the experimental value measured on a piece of wheat
straw depending on the relative humidity step (RH). The two identified diffusivity
values did not vary a lot according to the RH step whereas those identified through
water sorption experiments could differ from a factor 4. Hence, this tendency would
confirm that the embedded WSF particle in the matrix would not be able to swell a

lot through water sorption.

5. Conclusion

This study presented a new FEM model for the multi-scale description and prediction
of structure/mass transfer relatonship for composites containing permeable particles.
This model was confronted to experimental measurement of water vapour flux and
permeability data in a PHBV20 composite material. Results have shown a relatively
strong dependance of the relative flux on the particle fraction and aspect ratio for
couples of (p,a) above given threshold values. The application of the model pointed
out the experimental difficulty to characterize mass transfer properties in the
permeable particle; for example, in the case of vegetal fibres, such as the WSF
investigated in the current work, the diffusivity value measured on a piece of wheat
straw was not representative of the diffusion in an embedded WSF particle. The FEM
model developed in this study was more relevant than analytical model such as the
Maxwell model for the prediction of barrier properties for composite structures where
the distribution of particles in the polymer matrix could be relatively more complex
compared to ordered structures and where mass transfer properties (e.g. diffusivity
and solubility) should be taken into consideration in both component polymer matrix

and particles. The developed 2D model could be seen as premise work waiting for
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the generation of 3D composite structures based on experimental observation in
future research. 3D FEM model would be reliably used in food packaging

applications for the design and the development of packaging films.
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PERSPECTIVES

Considering a hydrophobic biopolyester (PHBV) and hydrophilic wheat straw fibers
(WSF), two composite constituents exhibiting totally opposite behaviour as regard
water vapour, the convergence of the model was even ensured under continuous
flux assumption at the interface particles/polymer matrix. While it has been
demonstrated that the water vapour properties in piece of WSF were different than
that of single WSF embedded in PHBV polymer matrix, the crystallinity of the PHBV
matrix was assessed to be unchanged with the addition of WSF in PHBV. However, it
has been recently demonstrated by Berthet et al. (2014) that the crystallinity
decreased with the incorporation of WSF in PHBV through WAXS experiments. Thus
with the objective to reach a validation level of the numerical models with PHBV/WSF
composite systems, each constituent should be first well-characterized in-situ the

composites.
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CONCLUDING REMARKS AND GENERAL DISCUSSION

199



Despite the growing interest of composite structures for the design of tailor-made
materials responding to the requirement of food product in terms of barrier
properties, the understanding of mass transfer through composites materials
remained a challenge for the future. On one hand due to experimental hindrance
the three-dimensional structure characterization of composite materials and the
characterization of barrier properties of permeable particles still remained difficult,
and on the other hand due to a lack of efficient modelling approach. This PhD
project was centred on the investigation of mass transfer of gases and vapours in
nano- and micro-composites containing impermeable or permeable particles
(impact of type, shape and size etc.) and on the development of a numerical 2D

modelling of the structure/mass transfer relationships in composite materials

First part of this work was expended on the study of existing data of the literature on
gases and vapours permeabilities in nano- and micro-composites and to the review
of current predictive modelling approaches of these permeabilities. O2, CO2 and H20
permeabilities in nano- and micro-composites with different kind of particles
(inorganic and organic such as cellulose nanowhiskers), and various particle shapes
(e.g. spherical, cylindrical and platelets). Scientific publications were listed and their
results were compared and discussed in order to elucidate the role of the particle
shape and size on the composite permeability value. In all the references collected,
the nanoparticles added were considered impermeable and were added to
modulate and mainly to decrease the permeability of the composite compare to
that of the neat matrix. According to the shape of the particles; for spherical and
cylindrical particles the permeability could either increase or decrease with the
incorporation of impermeable particles. However, when platelet particles were

considered, only an overall decrease of the permeability was observed and
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sometimes the decrease was non-monotonic, i.e. a decrease and after that, for high
filler content, an increase of the relative permeability of the composite. In the case
of platelets, the high permeability reduction could be explained by the creation of a
more tortuous pathway for the diffusing molecular species. But the modulations of
the barrier properties, especially the enhancement of these barrier properties which
is the main target when impermeable nanoparticles are added, were tfremendously
related to the structure of the composites. In fact, when the structure of the
composite exhibited good particle dispersion, the decrease of the permeability was
larger than in the case of mixture of well-dispersed and agglomerated particles. This
feature was also demonstrated with the application of the torfuosity-based models
for the prediction of the permeability of composites. When the particles were well-
dispersed, the predictions of the models were sometimes in good agreement with
the experimental data. However in case of particles agglomeration, the models
were in limit of their validity conditions and discrepancies appeared between
predicted and experimental permeability. Actually dispersion strongly depends on
the chemical modification of the particle surface and on the opfimization of the
composite processing techniques which have been of great importance in order to
reach well-dispersed particles within the polymeric matrix. Other tortuosity-based
model limitations on the use include the difficulty to experimentally evaluate the in-
situ aspect ratio of the particles, thus in most of the cases, the models help in the
identification of this geomeftrical parameter. In general the geometrical hypothesis
used for the development of the models are oversimplified and do not represent the
heterogeneous structural reality of the composites, i.e. the polydispersity of the
particle shape, size, dispersion and orientation. Moreover it is very complicated to
choose the accurate tortuosity-based model for the prediction of mass fransfer of

one specific set of experimental permeability data; the application of several
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theories is realizable but their predictions do not converge towards the same results,
except for high filler content, due to the too simplistic basic premises of the models.
Finally few models are available for the prediction of mass transfer properties in
spherical and cylindrical based composites; they also do not allow predicting an
increase of the permeability of the composites, frequently observed in experimental

work.

In the literature a lot of study dealt with impermeable particles, and only rare studies
were found dealing with permeable particles such as vegetal fibres. In the case of
water vapour transfer, vegetal fibre such as wheat straw fibres could no longer be
considered as impermeable. As regard predictive modelling of permeability of
composites filled with permeable particles that hugely contribute to the overall mass
transfer, and as far as we know, no scientific researches were carried on that topic in
the packaging field at the beginning of that work. Therefore the second part of this
PhD work was thus dedicated to the study of mass transfer in a composite material
with permeable particles and to the development of a numerical model to predict

mass transfer in such systems.

Due to obvious technical bottlenecks, because of the size and shape of the particle
that limit its handling and disposal in diffusion and permeation cells, water vapour
sorption, diffusion and permeability could not be assayed on one single milled WSF.
Consequently the water vapour sorption experiment has been explored on a piece
of native WSF, which did not exhibit the same structure than single milled WSF. If
compared to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) polymer matrix,
the sorption in WSF was around 40 times higher and it has therefore been proven that

WSF improved the water vapour permeability of the resulting WSF/PHBV
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biocomposites due to their hydrophilic character. Although the experimental water
vapour transfer in WSF was not representative of the embedded particle, it permitted
to determine the solubility coefficient and the diffusivity coefficient to access the
permeability coefficient of WSF necessary for the application of bi-phasic model for
the prediction of the permeability in bi-phasic permeable composites. From the
model prediction, it has first been highlighted that almost half of the models required
the fitting of at least one parameter to the experimental data (e.g. evolution of P/Po
as a function of filler fraction). Once fitted to the experimental data, these models of
course satisfactory represented the data with a given uncertainty but could not be
extrapolated. However, they showed inconclusive findings and discrepancies with
experimental permeability values at higher particle content (>10 vol%). Similarly for
model which did not required any adjustment, differences between experimental
and predicted permeability of the composites appeared at higher particle content.
As consequence, the use of analyfical bi-phasic model was not suitable to our
heterogeneous composite structures. In this sense, the development of a new 2D
modelling approach has been proposed for the prediction of barrier properties in bi-
phasic permeable composite based on finite element method. The model allowed
the calculation of barrier properties (e.g. from a flux value in the composite) in
relation with the structural parameters of the particles dispersed in the polymeric
phase. The model was built by considering initial and boundary concentrations and
diffusivity coefficients in both the matrix and the particles with simplified and realistic
2D geometry (e.g. random dispersion of ellipsoids) of the composite structures.
COMSOL Multiphysics was used for the approximate calculation of the flux within the
drawn composite structure. The model was implemented with mass transfer input
parameters obtained experimentally for water vapour. The simulation results

indicated that the composite flux increased with both an increase of the volume
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fraction and aspect ratio. However at low particle volume fraction (e.g. around ¢
less than 2.5 vol%) and low aspect ratio (e.g. a around 5) the increase of the flux was
not significant considering the experimental uncertainty obtained on a measure of
water vapour flux. A trial of model validation was performed on a random dispersion
of ellipsoids with different gradient of relative humidity across the composite film (for
example 0-95%RH) with experimental input at 0-95% relative humidity. The predicted
permeability value in the composite was approximately ten times higher than the
experimental one. According to the rule of mixture, the prediction of the sorption in
composites was in good agreement with the experimental sorption in WSF/PHBV
composites and thus the initial and boundary conditions were confirmed in PHBV
and WSF. Notwithstanding as said before, the WSF water vapour diffusivity coefficient
was identified on a piece of native wheat straw and not on a single WSF. Once
embedded in the PHBV matrix the milled WSF probably encountered mechanical
constraints that prevent them to swell during water absorption as in the sorption
experiment perform on a piece of wheat straw. This feature likely led to a
modification of the diffusivity of water vapour of the WSF once in the composite
structure. Confirming that, identification of, the diffusivity coefficient of water during
the numerical simulation gave value 12 times lower than the experimental one, i.e.
equal 0.57 x 1012 m2.s1 against 6.21 x 102 m2s1 as calculated from the product of
DxS measured in the piece of wheat straw. This result showed the difficulty encounter
for the characterization of mass transfer in a single milled particle. Indeed in order to
improve the precision of the measure, it could be useful to develop a technology to

monitor the mass transfer in-situ in the particle after its inclusion in the matrix.
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While it has been proven that numerical simulation granted successful prediction of
mass fransfer in composites made up with constituents exhibiting totally opposite
behaviour as regard water vapour transfer properties for example, the convergence
of the model could sfill be ensured by defining contfinuous flux condition at the
interface particle/polymer matrix. To reach the next level, by developing a 3D
numerical model to predict mass transfer in bi-phasic composites by mimicking the
realistic 3D structure, a complete characterization of the composite structure will be

needed with the dispersion and the orientation of the particles in three dimensions.
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Contexte scientifique et technique dans le domaine de

I'emballage alimentaire

Durant les dernieres décennies, les recherches menées dans les centres de
recherches et développement ont été majoritairement consacrées au design de
matériaux barrieres améliorés qui permettent d’augmenter la durée de vie tout en
maintenant et en ayant un suivi en continu de la sécurité et de la qualité des
aliments. Parallelement, avec la prise de conscience internationale liée a I'usage
intensif de plastiques dérivés de I'industrie pétrochimique dans les applications en
emballage alimentaire, un intérét considérable a eté dédieé a I'étude des
biomatériaux [Petersen et al. (1999)]. Malgré le nombre croissant d’'études associées
au développement de nouveaux matériaux, la principale limitation est I'absence
d’approches combinant & la fois les exigences des aliments et le développement
de matériaux pour la mise en ceuvre de « systeme aliment/emballage » intégrés aux

filieres alimentaires, du traitement a la consommation.

Un des rbles principal du matériau d’'emballage en terme de qualité et de
préservation des aliments est le contréle des transferts de gaz et de vapeurs entre les
aliments, le matériau d'emballage et I'environnement externe ; frois types de

transferts peuvent avoir lieu (figure 1) :

+ de I'environnement externe au fravers de I'emballage, vers I'espace de téte
et I'aliment, la perméation de gaz et de vapeurs doit étre contrélée pour la
préservation de la qualité de I'aliment en  évitant les réactions de

dégradation de I'aliment ;
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+ de I'emballage vers I'aliment, la migration de molécules indésirables comme
les additifs chimiques ne doivent pas excéder une limite maximum afin de ne
pas étre toxique pour les humains lors de I'exposition a long terme & ces
éléments ;

+ de l'dliment vers le matériau d'emballage, la sorption et la diffusion de
composés de l'aliment comme les composés d'arbme qui doivent étre

contrélés pour la conservation des propriétés organoleptiques des aliments.

< ™
=
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PACKAGING

ENVIRONMENT

@ Environmental gases & vapours (O,, CO5, H,0,...)
A Packaging components (additives, plasticizers, ...)

M Food components & additives

Figure 7: Représentation des transferts de matiére au travers de I'emballage

Pour des applications en emballage alimentaire, une étape essentielle pour la
proposition de nouveaux matériaux complexes, comme les composites par
exemple, est le développement d'outils numériques d'aide a la décision basés sur
la modélisation mathématique des fransferts de matiere afin de favoriser des
structures composites adaptées aux besoins des aliments. Dans la perspective de
modélisation multi-échelle, une compréhension plus en détail de la relation entre

structure et transferts de matiere, est nécessaire et établie & partir de la
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caractérisation de la structure des composites (taille et forme de la parficule in-situ la
matrice polymérique, dispersion et orientation des particules), de I'impact des
particules sur la structure et les propriétés de la matrice polymérique, de la
modulation des fransferts de masse dans le composites. Chaque particule est unique
en terme de taille, de forme, de nature (imperméable ou perméable par exemple)
et leurs effets sur les transferts de matiére dans les composites ne sont pas les
mémes. Méme si les effets des particules imperméables sur la modulation des
transferts de matiere a déja été prouvés a de nombreuses reprises a I'aide
d'approches expérimentales [Azeredo et al. (2009)], la formalisation (c.a.d. la
modélisation) de la relation entre structure et transferts de matiere demeure
cependant limitée du fait de la difficulté d'atteindre une caractérisation optimale
de la structure des propriétés de transfert O cause de deux verrous scientifiques

majeurs :

+ la difficulté d’atteindre une bonne caractérisation structurelle des matériaux
composites, principalement une description précise de la taille, de la forme,
de la dispersion et de |'orientation des particules a I'intérieur de la matrice
polymérique ;

+ le mangue de méthodologies et d'oufils expérimentaux pour Ila

caractérisation des transferts de matieres dans des particules perméables.

A I'état actuel, une richesse de données expérimentales sur les propriétés barrieres
des composites est disponible dans la littérature scientifique, et plus spécifiquement
sur les nanocomposites renforcés avec des particules imperméables. En effet, les
matériaux composites représentent une source de développement prometteuse

pour les emballages actifs et intelligents mais aussi pour le développement
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d’emballages respectueux de I'environnement avec I'utilisation de biopolymeres.
Alors que ces derniers présentent une grande sensibilité aux conditions extérieures,
comme la température ou I'hnumidité qui peuvent limiter leur utilisation pour des
applications en emballage alimentaire, la résistance a I'eau et mécanique peut étre
améliorés en ajoutant des fillers. [Rhim et al. (2013)] afin d'obtenir des matériaux
avec des propriétés renforcées. De telles propriétés sont généralement atteintes a
faible taux d’'argiles, inférieur a 5% en comparaison aux fillers conventionnels qui
présentent des taux entre 10 et 50%. Actuellement, les fibres végétales suscitent un
grand intérét pour des applications dans le domaine de I'emballage alimentaire du
fait de leur large accessibilité ; en effet la cellulose nanocristalline est dix fois moins
résistante mais des coUlts de production qui sont 50 & 1000 fois plus faible [Faruk et al.
(2012)]. L'incorporation de fibres végétales dans des matrices polymériques
contribue a la diminution du coGt du matériau, surtout avec de forts taux de renforts
allant jusqu'a 40wit%, et permets de moduler les propriétés de transfert du composite

comme par exemple la perméabilité d la vapeur d'eau.

Pour la prédiction des propriétés de transferts dans les composites, les approches de
modélisation ont été basées sur soit I'application de modéeles analytiques ou le
développement de modele numériques (modélisation de la dynamique des fluides
computationnelle (CFD) comme par exemple la méthode des éléments finis). A
présent, [|'utilisation des modeéles analytiques repose sur la prédiction de la
perméabilité du composite a partir de la caractérisation de la structure composite
avec pour entrées des modeles des parameétres géométriques (facteur de forme,
fraction volumique, dispersion et orientation des particules), supposés étre constant
et homogene dans tout le matériau et a partir de la perméabilité de la matrice

polymérique. Ces modeles ont été développées pour des distributions homogenes
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de particules et exhibent des restrictions d’utilisation pour des composites présentant
des structures hétérogenes. En ayant recours a des approches numériques, des
structures plus complexes peuvent étre abordées et étudiées en appliquant la
méthode des €léments finis a des geométries 2D ou 3D représentant la structure du
composites. Bhunia et al. (2012), entre autres, ont développés un modele sur la base
des éléments finis qui a permis de surmonter les limitations de la plupart des modéles
analytiques en considérant des phénomenes structuraux complémentaires comme

I'orientation et I'agglomération des particules.

Objectifs scientifiques du projet de thése

Dans ce contexte, I'objectif de mon travail de thése a été de contribué &
I'amélioration de la connaissance scientifique des fransferts de matiere dans des
matériaux composites en atteignant une meilleur compréhension de la modulation
des propriétés barrieres avec l'incorporation de nano- et micro- perméables et
imperméables particules dans des matrices polymériques. ; et développer une
approche multi-échelle innovante pour la prédiction des transferts de matiere dans
des composites biphasés, & partir de la méthode des éléments finis, en considérant &
la fois les propriétés des particules et de la matrice polymérique dans des structures
réalistes 2D du composites. Ce fravail de thése a été dans le cadre des activités de
recherche de I'équipe de recherche Ingénierie des Agropolymeres et des
Techniques Emergentes et financée & I'aide d'une bourse ministérielle (bourse
MENRT) délivrée par le gouvernement francais. L'aspect innovant de ce projet a été
de considérer des composites avec soit des particules perméables ou imperméables
(comme des fibres végétales par exemple) qui contribuent de facon remarquable
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au transfert global de vapeur d'eau. Un composite, crée a partir d’'une matrice
biopolyesther et de fibre de paille de blé, a été employé comme matériau modéele
pour le développement et la validation d'un modéle numérique. Ce composite é
été développé au sein du projet européen  EcoBioCap  (htfp:

//www.ecobiocap.eu/); proposant des structures composites de pointes basées sur

des constituants dérivés des sous-produits de I'industrie alimentaire.

Questions scientifiques du projet de these

Afin d’'atteindre les objectifs de ma these, plusieurs réponses ont dU étre trouvées

aux questions suivantes :

+ quel est I'impact de la nature, de la forme, de la taille des particules sur la
perméabilité du composite 2

+ quels sont les modeles communs les plus utilisés pour la prédiction des
relations entre structure et transferts de matiere 2

+ quelle est la contribution des particules perméables, comme les fibres
végétales par exemple, sur les transferts globaux de matiere 2

+ comment les caractéristiques structurales et les propriétés barrieres, obtenues
a partir de I'analyse de la structure et des transferts de matiére, peuvent étre
réunis et liés aux transferts de matiere dans un composite a I'aide d'une

approche multi-échelle 2
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Stratégies du projet de these

Afin de répondre aux questions relevées précédemment, la stratégie scientifique
suivie, présentée dans la figure 2 a été adopté : le plan de travail de ce projet de
these est divisé en deux chapitres selon la nature de la particule soit imperméable,

soit perméable.

PhD work plan & organization of the manuscript
/ CHAPTER I. IMPERMEABLE PARTICLES \

Understanding of mass transfer properties in composites and comparison of
experimental data with available predictive models

Publication 1: Publication 2:
Analysis of barrier properties Prediction of barrier properties

/ CHAPTER Il. PERMEABLE PARTICLES \

In depth understanding of mass transfer properties and development of a 2D
numerical model for the prediction of these properties into composites

Publication 3: Publication 4: Publication 5:
Sorption and diffusion Permeabhility Modelling of mass
experimental characterization transfer propertiesin
\ characterization and modelling composite materials /

Figure 8: Organisation du travail de these

Le premier chapitre a été dédié a une analyse exhaustive des transferts de matiere
dans des composites et au listing de tous les modeles mathématiques proposés dans
la littérature pour la prédiction des transferts de matiére dans les composites.
L'analyse des propriétés barrieres a permis de déterminé les parametres impactant
les transferts de matiere dans les composites et I'analyse des modéles a mis en
évidence les verrous scientifiques rencontrés pour le développement de modeles

permettant une bonne prédiction des propriétés barrieres des composites.
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Le second chapitre a été premierement visant & fournir une meilleure
compréhension de I'impact des particules perméable a la modulation des transferts
de vapeur d'eau au fravers d'un composite fibre de paille de blé/biopolyester a
I'aide de supports expérimentaux et de modélisation. Il a été par la suite tenté de
présenter d'une nouvelle approche multi-échelle, utilisant COMSOL Multiphysics
Software, pour la prédiction des propriétés de transferts dans un composite biphasé ;
en considérant a la fois les propriétés de transferts des particules perméables et de la

matrice polymérique dans des structures réalistes 2D de composites.
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Conclusion et discussion générale

Malgré I'intérét croissant des structures composites pour le design de matériaux sur
mesure répondant aux exigences des produits alimentaires en termes de propriétés
barrieres, la compréhension des transferts de matiéres au fravers des matériaux
composites reste un challenge pour le futur. D'une part, a cause de limitations
expérimentales a la caractérisation tridimensionnelle de la structure des composites
et la caractérisation des propriétés barrieres des particules perméables reste difficile,
d'autre part d cause du mangque de méthode de modélisation efficace. Ce projet
de these a été centré sur I'étude des transferts de gaz et de vapeurs dans les nano-
et micro-composites contenant des particules imperméables et perméables (impact
de la nature, taille, forme, etc.) et le développement d’'un modele numérique 2D
pour la prédiction des relations structure/transferts de matiere dans des matériaux

composites.

La premiere partie de ce travail a été consacrée a I'étude de données disponible
dans a littérature sur la perméabilité a I'oxygene, au dioxyde de carbone et a lI'eau
dans les nano- et micro-composites avec différentes types de particules
(inorganique et organique comme le nanowhiskers de cellulose), et différentes
formes de particules (c.d.d sphérique, cylindrique et plaquettaire) et a I'examen des
approches de modélisation prédictive de ces perméabilités. Les publications
scientifiques ont été répertoriées et leurs résultats ont été comparés et discutés de
facon a élucider le role de la forme et de la taille des particules sur la perméabilité
du composite. Dans toutes les références collectées, les nanoparticules incluses dans

les matrices polymériques ont été considérés imperméable et ont été ajoutées afin
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de moduler et principalement de diminuer la perméabilité du composite en
comparaison a celle de la matrice polymérique. Pour les particules sphériques ou
cylindrigues, la perméabilité a soit augmenté ou diminué avec I'agjout de particules
imperméables. Cependant pour les particules plaguettaires, uniquement une
diminution, parfois non-monotonique (c.d.d une diminution et ensuite une
augmentation & taux de renfort plus élevé) de la perméabilité a été observée. Dans
le cas des particules plaquettaire, la plus grande réduction de perméabilité pourrait
étre expliquée par la création d'un parcours plus tortueux pour les espéeces
diffusantes. Néanmoins, la modulation des proprietés barrieres, notamment
I'amélioration de ces propriétés, a été particulierement reliée a la structure du
composite. En effet, quand la structure du composite présente une bonne dispersion
des particules, la diminution de la perméabilité est plus grande que dans le cas de
mélange de particules bien dispersées et agglomérées. Lorsque les particules sont
bien dispersées dans la matrice polymériques, la prédiction des modeéles analytiques
a été dans certain cas en bon accord avec les données expérimentales.
Cependant en présence de particules agglomérées, les modeles ont été en limites
de leurs conditions de validité et des écarts entre valeurs prédites et valeurs
expérimentales ont été relevés. La dispersion des particules dépend fortement des
modifications chimiques de la surface des particules et de I'opfimisation des
techniques de fabrication des composites qui sont de grandes importances pour
accéder a des structures composites avec des particules bien dispersées dans une
maftrice polymérique. D’autres limitations d'utilisation des modeles analyfiques
comprennent la difficulté d'évaluer expérimentalement le facteur de forme des
particules in-situ la matrice polymérique ; ainsi dans la plupart des cas, les modeles
prédictifs ont été appliqués afin d’'identifier ce parametre géométrique. En général,

les hypothéses reliées a la géométrie du composite dans ces modeles sont trop
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simplifices et ne représentent pas I'hétérogénéité des structures réelles des
composites ; la polydispersité de la taille, de la forme, de la dispersion et de
I'orientation des particules. De plus il est fres compligué de choisir un modéle
analytique précis pour la prédiction des transferts de matiere d'une série spécifique
de données expérimentales ; I'utilisation de plusieurs théories est possible mais leurs
prédictions ne convergent pas vers le méme résultat, excepté pour les forts taux de
renforts compte tenu des hypotheéses de base trop simplistes. De plus peu de
modeles sont disponibles pour la prédiction des transferts de matiere dans des
composites avec des particules sphériques et cylindriques et ces modeles ne
permettent pas de prédire des augmentations de perméabilité dans les composites ;

augmentations frequemment observées dans les résultats expérimentaux.

Dans la littérature, un grand nombre d'études traite des particules imperméables et
seulement peu d'études avec des particules perméables. Dans le cas des fransferts
de vapeur d’eau, les fibres végétales comme par exemple les fibres de paille de blé
ne peuvent plus étre considérées comme imperméables. Pour autant que nous
sachions en ce qui concerne la modélisation prédictive de la perméabilité de ces
composites renforcés avec des particules perméables qui contfribuent énormément
aux transferts globaux, aucune recherche scientifique n'a été menée a ce sujet
dans le domaine de I'emballage alimentaire au début de ce travail. Par conséquent
la deuxieme partie de ce tfravail de these a été dédie a I'étude des tfransferts de
matiere dans un matériau composite contenant des particules perméables et au

développement d'un modele numérique pour prédire ces propriétés.
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Du fait d'incapacité technique étant donné la taille et la forme des particules qui
limitent leurs manipulations dans des cellules de perméabilité, la sorption, la diffusion
et la perméabilité a la vapeur d'eau n'ont pas pu étre analysées sur une particule
élémentaire de paille de blé. Par conséquent, les tests de sorption & la vapeur d’eau
ont été menés sur un morceau de paille de blé qui n'exhibe pas la méme structure
que celle des pailles de blé broyées. En comparaison avec la matrice polymérique
poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), la sorption dans la paille de
blé (PdB) est environ 40 fois plus grande et il a donc été démontré que les PdB
améliorent la perméabilité dans les biocomposites PdB/PHBV du fait de leur
caractere hydrophile. Bien que les transferts de vapeur d’eau dans le morceau de
paille de blé n'est pas représentatif de ceux dans les PdB inclus dans la matrice
polymérique, cela a permis de déterminer le coefficient de solubilité et de diffusivité
et d'accéder au coefficient de perméabilité nécessaire pour I'application des
modeéles biphasés pour la prédiction de la perméabilité dans des composites
perméables biphasés. A partir de la prédiction des modéles, il a été mis en évidence
que plus de la moitié des modeles nécessitent I'ajustement d’au moins un parametre
aux données expérimentales (c.d.d I'évolution de P/PO en fonction de la fraction
volumique de particules). Une fois ajusté aux données expérimentales, ces modeles
ont bien évidement convenablement représenté ces données avec une certaine
incertitude mais n'ont pas pu étre extrapolés. En réalité, ces modeles ont montrés
des résultats peu concluants et des écarts avec les perméabilités expérimentales &
de taux de renforts supérieurs a 10vol%. Similairement pour les modéles ne
nécessitant aucun ajustement, des différences entre les valeurs prédites et les valeurs
expérimentales sont apparus a plus forts taux de particules. Par conséquent
I'utilisation de ces modeles analytiques biphasés n'est pas adaptée a nos structures

composites hétérogenes. En ce sens, le développement d'une nouvelle approche
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de modélisation 2D, reposant sur la méthode des éléments finis, a été proposé pour
la prédiction des propriétés barrieres des composites. Le modele permet le calcul de
la perméabilité & partir d'une valeur de flux dans un composite, en relation avec des
parametres structuraux des particules dispersées dans une matrice polymérique. Le
modeéele a été construit en prenant en compte les concentrations initiales et aux
limites et les coefficients de diffusivité a la fois dans Ia matrice polymérique et dans
les particules avec des représentations géométriques simplifiees (c.a.d. dispersion
aléatoire d’ellipsoides) dans des structures composites. COMSOL Multiphysics a été
utilis€é comme logiciel pour le calcul approché du flux dans des structures
composites établies. Le modeéele a été mis en place avec pour entrées des données
de transferts de vapeur d'eau dans les biocomposites PAB/PHBV. Les résultats de
simulation ont montré que le flux dans les composites augmente avec une
augmentation de la fraction volumique de particules ¢ et le facteur de forme a de
ces particules. Cependant, a faible fraction volumique (c.d.d environ inférieure &
2.5vol%) et a faible facteur de forme (c.a.d environ 5) I'augmentation de la valeur
du flux n'est pas significative en tenant en compte des incertitudes expérimentales
obtenues lors de la mesure du flux de vapeur d’eau. Un essai de validation du
modele a été effectué sur une dispersion aléatoire d’ellipsoides avec différents
gradient d’humidité relative au travers du composite avec des données
expérimentales. La valeur prédite de perméabilité dans le composite est
approximativement dix fois plus élevées que la valeur expérimentale. Selon la regle
des mélanges, la prédiction de la sorption dans les composites est en bon accords
avec la sorption expérimentale dans les biocomposites PAB/PHBYV, les conditions
inifiales et aux limites ont donc été confirmées dans les PdB ef le PHBV. Néanmoins
comme énoncé précédemment, le coefficient de diffusivité dans les PdB a été

identifié sur un morceau de paille de blé et non pas sur une fibre élémentaire. Une
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fois incluse dans la matrice polymérique PHBV, la fibre broyée rencontre
probablement des contraintes mécaniques qui I'empéchent de gonfler sous I'effet
de la vapeur d’'eau comme lors des tests de sorption sur des morceaux de paille.
Cette caractéristique conduit a une modification du coefficient de diffusiviteé des
PdB une fois incluses dans la structure composite. En confirmant ce fait, le
coefficient de diffusivité identifié lors de simulations numériques a conduit & une
valeur 12 fois plus faible que la valeur expérimentale, égale a 0.57 x 1072 m2s
comparée a la valeur 6.91 x 10-2m2.s! calculée a partir du produit DxS mesuré sur
un morceau de paille de blé. Ce résultat montre la difficulté rencontré pour la
caractérisation des transferts de matiére dans une particule élémentaire broyée. En
effet, de facon a améliorer la précision de la mesure, il pourrait étre opportun de
développer une technologie afin de suivre les transferts de matiere dans une

particule apres son incorporation dans une matrice polymérique.

Tandis qu'il a été prouvé que les simulations numériques accordent une
remarquable prédiction des propriétés barrieres dans les composites composés de
constituants présentant des comportements totalement opposés pour ce qui est des
propriétés de transferts de vapeur d’'eau, la convergence du modele a pu étre
garantie en définissant une condition de continuité du flux a linterface
particule/matrice polymérique. Pour atteindre le niveau supérieur en développant
un modeéle numérique 3D pour la prédiction des transferts de matiere dans des
composites biphasés en simulant une structure 3D réelle, une caractérisation
tridimensionnelle complete de la structure des composites avec la dispersion et

I'orientation des particules sera primordiale.
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MULTI-SCALE MODELLING OF STRUCTURE AND MASS TRANSFER PROPERTIES RELATIONSHIPS IN
NANO- AND MICRO-COMPOSITES FOR FOOD PACKAGING

ABSTRACT: Despite the global growing interest in the food packaging field for the design of tailored
composite structures with controlled mass fransfer properties, the understanding of the modulation of
the mass fransfer properties with the incorporation of particles in polymer sfill remains very complex. In
order to throw light on this scientific problem, the thesis work was focused on the following parts:

- providing a befter understanding of mass transfer in composites. In this purpose an analysis of
all experimental gas and vapour permeability data available in the literature has been carried out in
nano- and micro- composites and a comparison of these data with predictions from tortuosity models
based on few geometrical inputs has been achieved;

- performing a detailed study of water vapour mass transfer in composites (wheat straw
fibres/bio-polyester). These data were compared with the prediction of bi-phasic analytical models
coming from other disciplinary fields. This part of the work has highlighted the lack of comprehensive
and complete models for the prediction of permeability in composite with permeable particles;

- developing of an innovative multi-scale approach for the prediction of mass transfer in bi-
phasic composites considering both the particle and the polymer matrix properties with realistic 2D
geometry of the composite structures has been proposed. For the sake of reaching a satisfactory
validation level of the model, some experimental improvements are still needed to increase the
accuracy of input parameters such as diffusivity of the particles.

This new modelling approach open the way for the creation of a reverse-engineering toolbox for the
design of tailor made composites structures, tightly adjusted to barrier properties requirements of the
packed food.

Keywords: Multi-scale modelling, Nano- and micro-composites, Mass transfers, Structure

MODELISATION MULTI-ECHELLE DES RELATIONS ENTRE STRUCTURE ET PROPRIETESDE TRASNFERT
DE MATIERE DANS DES NANO- ET MICRO-COMPOSITES POUR L'EMBALLAGE

Abstract: Malgré l'intérét croissant que représente dans le domaine de I'emballage alimentaire la
conception raisonnée de structures composites aux propriétés de transfert contrélées, la
compréhension des transferts de gaz et de vapeurs avec I'ajout de particules dans des polymeéres reste
complexe. En vue d'apporter un nouvel éclairage a ce verrou scientifique, les fravaux de thése se sont
focalisés sur les trois parties suivantes :

- contribuer & une meilleure compréhension des transferts de matiére dans les composites. Pour
ce faire, une analyse exhaustive des données expérimentales de transfert de gaz et de vapeurs
disponibles dans la littérature a été menée pour les nano- et micro-composites et une comparaison de
ces données a été réalisée avec des modeles de tortuosité, basés sur des parametres géométriques ;

- comprendre et modéliser la perméabilité dans des composites avec deux phases
perméables. Pour cela, les transferts de vapeur d’'eau dans un composite (fibre de paille/bio-polyester)
chargé avec des particules perméables ont été mesurés et décrits en détail, et une comparaison de
ces données avec des modéles analytiques issus d’autres champs disciplinaires, prenant en compte la
perméabilité dans la particule et dans la matrice, a été menée. Cette étude a mis en avant le manque
de modéles adaptés pour la prédiction de P dans les composites contenant des particules
perméables ;

- développer une nouvelle approche multi-échelle pour la prédiction de la perméabilité dans
des composites prenant en compte les propriétés de transfert dans les particules et dans la matrice
polymérique avec une représentation 2D de la structure du composite. Afin d'atteindre un niveau
satisfaisant de validation du modéle, la détermination des paramétres expérimentaux tels que la
diffusion dans les particules doit étre améliorée.

Cette nouvelle approche de modélisation ouvre la voie & la création d'outils d'ingénierie inverse pour
le design de structures composites, ajustés aux besoins des aliments en termes de propriétés barrieres.

Mots clés: Modélisation multi-échelle, Nano- et micro-composites, Transfer de gaz et de vapeur,
Structure



