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Résume de la thèse en français

Le streaming vidéo est devenu la principale source de trafic dans les réseaux mobiles selon Cisco [17]

et devrait représenter plus de 80% du trafic mobile d’ici 2021. De nouveaux services comme la

TV en ligne et les vidéos immersives contribuent à cette demande croissante. A titre d’exemple,

59% des utilisateurs en 2017 préfèrent regarder des vidéos en direct en ligne que sur une télévision

traditionnelle [79]. D’autres plateformes de streaming en direct telles que YouTube et Facebook

permettent aux utilisateurs d’Internet de visionner un contenu vidéo en temps réel et d’intéragir en

postant des commentaires. Afin que les spectateurs soient à l’abri des spoilers, typiquement lors

des événements sportifs, un très faible délai de latence est alors indispensable.

Le service de diffusion en direct doit fournir un délai très faible entre le moment où une vidéo

est générée et l’instant auquel elle est affichée sur l’écran du client. Ces services sont de plus

en plus basés sur le protocole HTTP. Des technologies de streaming adaptatif ont été mises en

place afin d’ajuster la qualité de la vidéo transmise aux clients aux ressources réseaux disponibles.

Le concept se présente de la manière suivante : Premièrement, la vidéo originale est encodée

en plusieurs niveaux de qualité également appelés représentations. Puis, chaque représentation

est divisée en segments temporels dont la durée est typiquement de 2 s à 10 s. Enfin, au début

de chaque segment vidéo, le client prédit la bande passante disponible et exécute un algorithme

d’adaptation de débit vidéo. Ce qui devrait lui permettre d’ajuster la qualité de la vidéo affichée

aux conditions réseaux.

Pourtant, une mauvaise prédiction de la bande passante peut entrainer un mauvais choix de

représentation ce qui augmente les délais de livraison du segment en cas de surestimation de la

bande passante. C’est notamment le cas dans les réseaux mobiles où la prédiction du débit est
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difficile [64]. Pour absorber les instabilités du réseau survenant au cours de la lecture d’un segment,

les implémentations actuelles intègrent une mémoire tampon dans le lecteur vidéo dont la taille

recommandée est de trois segments vidéo, soit de 6 s à 30 s dans le contexte de la vidéo à la

demande. Par contre, cette taille doit être maintenue aussi petite que possible dans le contexte de

la diffusion en direct. Si la mémoire tampon se vide avant la fin du segment en cours, le client est

contraint au rebuffering, c’est le fait d’interrompre la lecture de la vidéo en attendant de recevoir

plus de données. Des mesures récentes ont montré que 29% des sessions de streaming vidéo

présentent au moins un rebuffering ce qui cause l’accumulation des retards, un dépassement de

la latence tolérée pour les services de streaming en direct et impacte très négativement la qualité

d’expérience des utilisateurs. D’autres mécanismes sont alors nécessaires afin de pouvoir adapter

la qualité vidéo au réseau et éviter le rebuffing en attendant un choix de représentation moins

conséquent pour le segment suivant.

Le rejet de certaines trames vidéo est une des solutions permettant d’alléger la taille des don-

nées d’un flux vidéo transmis. Elle consiste à rejeter volontairement des images vidéo sur le réseau

afin d’éviter l’accumulation des retards. Côté client, le lecteur vidéo ne met pas la vidéo en pause.

il répète généralement la dernière image affichée. Cependant, HTTP/1 ne convient pas à la mise

en œuvre de ces solutions car il ne permet pas d’annuler facilement une partie du flux vidéo qui

a déjà été demandé au serveur sans établir une nouvelle session TCP, ce qui induit trop de délais.

Pour résoudre ce problème, nous proposons dans la première partie de cette thèse des stratégies de

rejet de trames vidéo basées sur le protocole HTTP/2 publié en 2015.

HTTP/2 est désormais implémenté par la plupart des navigateurs principaux comme chrome,

Edge, Firefox et Safari. Bien que HTTP/2 ait été principalement conçu pour les services Web, les

chercheurs ont aussi étudié les fonctionnalités HTTP/2 pour la diffusion vidéo, mais les efforts ont

été particulièrement axés sur la fonctionnalité qui permet au serveur de pousser un contenu au client

avant qu’il l’ait demandé. Parmi ses autres nouvelles fonctionnalités, HTTP/2 considère chaque

requête/réponse comme un flux et multiplexe tous les flux dans une seule session TCP. Il permet

au client de réinitialiser un flux (donc une demande en cours) sans établir une nouvelle session
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TCP. Le client peut aussi donner des priorités à ses requêtes d’une façon statique ou dynamique.

Nous explorons dans cette thèse des solutions basées sur les fonctionnalités de multiplexage et de

réinitialisation des flux HTTP/2 dans un cadre de streaming vidéo en faible latence.

Dans la première partie de cette thèse, nous suggérons d’utiliser le protocole HTTP/2 pour

concevoir une stratégie de rejet d’images vidéo. Nous abordons au chapitre 3 les fonctionnalités

du HTTP/2 qui conviennent à notre proposition. Notre idée principale consiste à ce que le client

demande chaque image vidéo dans un flux HTTP/2 dédié. Il devient alors possible de contrôler la

livraison des images vidéo par appel aux fonctionnalités HTTP/2 au niveau des flux transmettant les

images concernées. Nous utilisons la fonctionnalité de réinitialisation de flux HTTP/2 pour rejeter

des images vidéo. Ensuite, nous proposons un modèle optimal déterminant l’ensemble des trames

vidéo à rejetter qui impacte le moins la qualité. Nous développons aussi d’autres algorithmes

qui peuvent être implémentés en pratique. Nous évaluons nos algorithmes en utilisant des vidéos

dynamiques et statiques et des traces de réseaux cellulaires et WiFi. Nous évaluons nos résultats

avec diverses métriques spatiales et temporelles. Les algorithmes proposés évitent l’accumulation

de retard tout en présentant une qualité acceptable de la vidéo affichée. Ils réduisent la distorsion

de la qualité, en particulier pour les vidéos dynamiques en les comparant avec des statégies du rejet

d’image vidéos uniquement au niveau de la mémoire tampon du client. Nous concluons également

que la fonction de pondération de HTTP/2 n’est pas nécessaire pour nos algorithmes car il n’est pas

nécessaire d’entrelacer les images vidéos mais il vaut mieux les envoyer dans l’ordre de décodage

vidéo en configurant la fonctionnalité de dépendance entre flux HTTP/2.

D’autres services contribuent à la hausse du traffic vidéo mobile comme les vidéos immersives

qui sont devenu un élément clé du domaine de la réalité virtuelle. En 2017, son adoption s’accroît

principalement en raison de l’émergence des casques commerciaux comme Google Daydream et

Samsung Gear VR pour des usages avec smartphones, et l’Oculus Rift et le HTC vive, pour des

usages avec ordinateurs. Une vidéo 360◦ permet à son utilisateur à chaque instant de regarder

une partie seulement de la vidéo sphérique complète. Cette partie, appelée fenêtre d’affichage,

dépend de l’orientation de la tête de l’utilisateur et de la taille de l’écran dans son terminal, appelé
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visiocasque, ou casque HMD. Pour assurer une bonne qualité d’expérience, aussi appelée qualité

d’immersion virtuelle, et pour éviter la cinétose, le terminal de l’utilisateur doit adapter à chaque

instant le contenu audiovisuel dans la fenêtre d’affichage en fonction des mouvements de tête de

l’utilisateur.

Une première technique de diffusion de vidéo à 360◦ consiste à transmettre au terminal de

l’utilisateur l’intégralité du contenu de la sphère vidéo. Le client se charge alors localement

d’extraire de la sphère vidéo la partie à insérer dans la fenêtre d’affichage du casque de l’utilisateur.

Cette technique présente l’inconvénient de transporter une quantité de données très supérieure à

celle qui est réellement exploitée par le terminal de l’utilisateur puisque la fenêtre d’affichage

représente environ 15% seulement de la sphère vidéo complète. Une deuxième technique de diffu-

sion a pour objectif de résoudre ce problème, à savoir réduire la quantité de données transportées.

La sphère vidéo est d’abord projetée sur un plan à deux dimensions (2D). Puis elle est découpée

spatialement en plusieurs parties appelées tuiles, formant par exemple un quadrillage du plan. En-

suite chaque tuile est encodée indépendamment des autres tuiles composant la vidéo. Chaque tuile

peut ainsi être décodée indépendamment des autres tuiles sur le terminal de l’utilisateur. Plus

précisément, chaque tuile est encodée en plusieurs versions correspondant à différents niveaux de

qualités ou à différentes résolutions, par exemple, au moins une version à qualité haute et au moins

une version à qualité basse. La vidéo est découpée temporellement en segments, par intervalle

de temps. La durée des intervalles de temps (et donc la durée des segments) est fixe pour toute

la vidéo, et est typiquement de l’ordre d’une ou plusieurs secondes. Puis, pour chacun des seg-

ments de la sphère vidéo, et au cours de l’intervalle de temps précédant l’affichage du segment,

le client prédit la fenêtre d’affichage pour le segment suivant (c’est-à-dire l’orientation donnée par

la tête de l’utilisateur au visiocasque, au cours du prochain intervalle de temps). Le client doit

ainsi demander et recevoir en qualité haute les tuiles qui recouvrent la fenêtre d’affichage prédite

pour le prochain intervalle de temps et aussi demander et recevoir en qualité basse les autres tuiles

en dehors de la fenêtre d’affichage prédite. Ces tuiles en qualité basse permettent de maintenir

l’affichage, si nécessaire en qualité basse, de la vidéo lorsque l’utilisateur effectue des mouve-
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ments de tête très marqués et imprévus (i.e. en dehors de la fenêtre d’affichage prédite). En effet,

afficher une qualité basse dans toute ou une partie de la fenêtre d’affichage provoque certes une

dégradation de la qualité d’expérience pour l’utilisateur, mais elle est préférable à l’affichage d’une

image fixe ou d’un écran noir. L’inconvénient de cette seconde technique est une dégradation de la

qualité d’expérience ressentie par l’utilisateur lorsque la prédiction n’est pas parfaite. Entre deux

instants d’affichage, plus on attend pour prédire l’orientation du visiocasque susceptible d’être

prise au prochain instant d’affichage, plus cette prédiction est précise, mais moins il reste de temps

au procédé pour émettre les requêtes et recevoir les tuiles nécessaires en réponse.

Nous proposons dans la deuxième partie de cette thèse de remédier à ce problème et de per-

mettre au client de demander les tuiles vidéos suffisamment tôt pour bénéficier de la totalité de

la bande passante disponible tout en tenant compte de l’évolution de la précision de la prédiction

de la fenêtre d’affichage dans le temps. Nous améliorons l’estimation de la fenêtre d’affichage

à l’aide d’au moins une seconde estimation, tout en garantissant la réception de toutes les tuiles

nécessaires. Nous proposons un modèle de diffusion vidéo à 360◦ dans lequel le client demande

toutes les tuiles vidéo en avance d’une seconde et ajuste ensuite ses décisions inappropriées 50ms

plus tard. Notre proposition s’appuie sur HTTP/2. Le client demande et reçoit chaque tuile dans

un flux HTTP/2 différent et utilise les fonctions de priorité, de pondération et de réinitialisation

des flux HTTP/2 pour ajuster la livraison des tuiles au fil du temps. Si après la seconde estima-

tion il ne reste plus suffisamment de temps pour requérir à nouveau toutes les tuiles nécessaires,

la première salve de requêtes garantit la réception des tuiles manquantes, même si elles ne sont

pas forcément toutes du niveau de qualité correspondant à la seconde estimation. Nous détail-

lons dans le chapitre 5 le modèle proposé ainsi que des algorithmes pratiques qui utilisent des

variantes de la fonctionnalité de poids de HTTP/2. Nous les comparons dans le chapitre 6 avec

d’autres algorithmes utilisant une seule occurance de de prédiction de fenêtre d’affichage ou util-

isant HTTP/1. L’évaluation des performances en terme de bande passante consommée et de qualité

des pixels de la fenêtre d’affichage montrent que notre proposition s’adapte automatiquement aux

ressources réseau disponibles et donne la priorité à la livraison des tuiles de la fenêtre d’affichage.
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Nous démontrons également que le choix de la fonction de pondération HTTP/2 est critique afin

de hiérarchiser les tuiles de la fenêtre d’affichage car la fonction de pesage détermine la stratégie

d’entrelacement entre les flux HTTP/2 transportant les tuiles vidéo.

Dans cette thèse, nous avons montré que les systèmes de livraison des contenus pour des ser-

vices à faible latence basés sur HTTP/1 ne peuvent toujours s’adapter aux contraintes du réseau.

Par conséquent, nous avons proposé de nouveaux systèmes s’appuyant sur le protocole HTTP/2

en tirant profit des fonctionnalités de réinitialisation du flux et d’établissement de dépendance et

de poids de priorité entre les flux HTTP/2. Des efforts d’implémentation de ces fonctionalités au

niveau du lecteur vidéo sont nécessaire afin que le le serveur et le client puissent communiquer

en HTTP/2, annuler des demandes en cours et attribuer des pondérations aux flux. HTTP/2 peut

être exploré dans le futur pour concevoir des solutions de livraison des contenus audivisuels en

faible latence. A titre d’exemple, il est intéressant de modéliser des solutions basées sur HTTP/2

et l’encodage en plusieurs niveau (SVC) afin d’ajuster la livraison des niveaux supplémentaires de

la qualité en fonction des ressources réseaux disponibles.

Les travaux de cette thèse ont donné lieu à la publication d’un papier journal et de deux articles

scientifiques dans des conférences internationales. Un brevet concernant la partie 360◦ a aussi été

déposé.

ix





ABSTRACT

The new version of the Hypertext Transfer Protocol (HTTP) standard, namely HTTP/2, is

now supported by most of the leading web browsers. HTTP/2 was developed to make best use of

network resources and, efficiently send and receive data. Among the novelties released in HTTP/2,

only the push feature, that enables the server to push content before the client requests it, has

received the attention of researchers in the multimedia community. However, HTTP/2 also features

a novel mechanism to multiplex the delivery of structured data known as HTTP/2 streams. Its also

enables the client to set priorities among the requests and to reset an ongoing stream.

In this dissertation, we examine the benefits of using the HTTP/2 reset stream and priority fea-

tures in the context of low latency streaming services. Today, HTTP Adaptive Streaming (HAS) is

widely used by Over The Top (OTT) platforms. The video content is encoded at different quality

levels, called representations. The client is equipped with a rate adaptation algorithm that dynami-

cally decides the best representation to request based on a prediction of the bandwidth. However,

inaccurate predictions can happen and may lead to a decrease of the Quality of Experience (QoE).

We propose throughout this study HTTP/2-based delivery strategies in order to deal with the pre-

diction errors and insure a continuous playout for different services.

The first service concerns live streaming for traditional/non-immersive videos in constrained

networks where HAS throughput prediction is prone to errors. In this case, the video playout

may suffer from rebuffering events and an increasing delay between the original video flow and

the displayed one, which decreases the QoE. We propose to use HTTP/2 priority and reset stream

features to insure the delivery of the most important components of the video stream while stopping

the delivery of the least important ones in order to optimize the bandwidth consumption. We design

an optimal algorithm, which computes a posteriori the best scheduling scheme of video frames that

minimizes the distortion, given the awareness of the network variations. It provides an upper bound

of the best achievable displayed video quality, which is useful for performance evaluation. We also

presents heuristic algorithms that can be implemented in practice in any video client. The results
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show that our proposed heuristics behave closely to the optimal algorithm. Our proposed strategy

avoids the accumulation of delay while presenting an acceptable displayed video quality.

The second service is about streaming 360◦ videos in accordance with the viewer head move-

ments. A 360◦ video allows the viewer to move around the camera giving him control of what he

sees, also called viewport. However, it presents two major technical challenges: network resource

consumption and the quality of the viewport. Dynamically adapting the content delivery process

to the user behavior is a promising approach to ensure both important network resource savings

and satisfying experiences. However, predicting the user behavior is challenging. In this thesis,

we propose to leverage HAS, tiled-based 360◦ video encoding and HTTP/2 features to implement

a dynamic content delivery process. The 360◦ video stream is spatially encoded into tiles and tem-

porally divided into segments. The client executes two viewport predictions for each segment, one

before and one during its delivery. Upon every prediction, the client decides on a priority and a

quality level for each tile; tiles overlapping with the predicted viewport get higher priorities and

quality levels. Then, we exploit the reset stream feature of the HTTP/2 protocol to save network

resources. The results show that our strategy provides a high quality on the viewport pixels, a

low ratio of the delayed viewport pixels in bandwidth-constrained networks, and a reduction of

the bandwidth consumption, up to 12% compared to the alternative schemes exploiting 2 viewport

predictions per video segment.
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Chapter 1

Introduction

“Prediction is very difficult,

especially if it’s about the future."

- Niels Bohr -

Contents

1.1 Motivation and problem description . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Video streaming has become the major source of traffic in mobile networks and is expected to

represent more than 80% of mobile traffic by 2021 according to Cisco [17]. In 2016, Youtube lists

more than 4 billion videos watched a day and Facebook more than 8 billion. New services like Over

The Top (OTT) live streaming and 360◦ video streaming (also called panoramic or omnidirectional

videos) are recently contributing to this increasing demand.

Live streaming should provide a very low delay between the time a video is generated and

the time it is displayed at the client side. OTT live streaming systems through the public internet

network are based on the Hypertext Transfer Protocol (HTTP) protocol. They are gradually replac-

ing the traditional live TV. According to Koeppel Direct Blog [53], 59% of users prefer watching

live video online than on a traditional live TV in 2017. Besides, live streaming platforms such as
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Youtube and Facebook allow Internet users to view a video content in real time and interact with

the video by asking questions or writing comments [100]. In 2017, over 360 million users regularly

watch Facebook live sessions and about 200 million regularly watch Instagram live sessions [66].

Sport and competition events represent 29% of the online consumed content [53] and they require

a low latency delays so that viewers are safe from online spoilers.

Video streaming is an ongoing challenge in the way videos are produced, consumed, and

distributed via the network. The principal actors of the video streaming market are the Con-

tent Providers (CPs), the Internet Services Providers (ISPs) and the Content Delivery Networks

(CDNs). CPs such as media companies and e-commerce vendors ask CDN Providers to deliver

their content to their end-users. CDNs are widely deployed to improve the performance and scal-

ability of video streaming. They were originally used to reduce the delivery latency experienced

by the end users by redirecting their requests to surrogate servers, which also lighten the load on

the origin ones. 39% of the Internet traffic was carried by CDNs in 2014. This percentage should

increase to 62% in 2019 [17]. In turn, a CDN can host its servers in data centers of ISPs.

Several steps are needed for video streaming as described in Figure 1.1. First, the video is

captured and sent to an origin server. This server encodes the video which compresses its volume

and facilitates its delivery. Second, a client player requests the video content. In order to enable

a scalable video delivery, this client request is redirected to an intermediate CDN server (using

Domain Name System (DNS) or HTTP based redirection methods). Third, the CDN ingests the

content from the remote origin server. Finally, the CDN server sends the content as a response to

its request to the client player which decodes the video before displaying it. It is important to give

users a real-time service despite the complexity of the end-to-end media pipeline and the variations

of the network resources [25, 72].

Several techniques aim to adapt the video content to the network performances such as HTTP

Adaptive Streaming (HAS) [18, 100]. HAS introduces a client-controlled delivery of the video in

order to dynamically adapt it to varying bandwidth and to the viewing device characteristics. HAS

presents the advantages of being CDN friendly which drastically reduces the load on source servers
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Figure 1.1: A general call flow of a video streaming service including a CDN

and increases scalability. There are several existing HAS implementations, such as the proprietary

Adobe HTTP Dynamic Streaming (HDS), Apple HTTP Live Streaming (HLS), Microsoft Smooth

Streaming (MSS), and the only international standardized solution Dynamic Adaptive Streaming

over HTTP (DASH). All of them follow nearly the same principle that we briefly describe in Fig-

ure 1.2.

Figure 1.2: Simplified concept of HAS

First, the original video is encoded into several quality levels also called representations. Then,

each representation is divided into temporal segments which duration is typically of 2 s to 10 s [59].

Finally, based on a bandwidth prediction mechanism, a HAS client executes a rate adaptation
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algorithm to request each video segment so that the quality of the video matches the network

performance. In this thesis, we analyze the impact of inaccurate bandwidth prediction on the video

display and we propose solutions to reduce the streaming latency.

360◦ video streaming is another service that has emerged recently and has become a key com-

ponent of the Virtual Reality (VR) services. Since 2017, its popularity is increasing primarily

due to commercial headsets like the Oculus Rift and HTC Vive, designed for computers [93] and,

Google Daydream and Samsung Gear VR, designed for mobile phones [24, 82].

A 360◦ video allows the viewer to look in all the directions of a captured sphere across a multi-

tude of yaw, pitch, and roll angles as described in Figure 1.3. The viewer can control his viewport

by moving his head, which offers him a more immersive experience compared to traditional videos.

The portion of the video watched by the viewer at any given time is known as the viewport and

must be immediately available at a good quality when the viewer moves his head in order to ensure

a good Quality of Experience (QoE).

Figure 1.3: Head movement orientation of a 360◦ video viewer

360◦ video streaming presents two major technical challenges: network resource consumption

and QoE [35]. In fact, streaming the entire video at the same quality, while the viewer only watches

a spatial portion of it, leads to limit the video quality on the viewport and is also considered as a

waste of bandwidth due to the delivery of the unwatched portions. 360◦ video streaming brings an

additional adaptation challenge: the video content should also match the viewer’s head movements.

Encoding techniques based on tiling refer to a spatial partitioning of a video where tiles cor-
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respond to independently decodable video streams [32]. A HAS client is then able to select and

retrieve spatial video portions that are relevant to the user experience. When tiling is combined

with viewport prediction algorithms, the client may request the viewport of a 360◦ video at a high

quality and the rest of it at a low quality. In this case, HAS client can adapt to both the viewer be-

havior and the network performances, which aim to maximize the QoE and reduce the bandwidth

consumption.

1.1 Motivation and problem description

The proper functioning of adaptive streaming solutions depends on its accuracy to predict external

factors such as the bandwidth and also the viewport in the specific case of immersive video stream-

ing. However, these predictions are not perfect and are prone to errors which penalize the entire

process of adaptation [42].

Poor bandwidth prediction, notably in mobile networks where throughput prediction is hard [64,

87], may increase segment delivery delays [65]. If a HAS client notices that the video quality over-

loads the network, it opts for a lower representation for the next segment. To absorb network insta-

bilities occurring in a segment duration, the current implementations integrate a buffer in the video

player which recommended size is conservatively set to the duration of three video segments, so 6 s

to 30 s [69, 97]. If the buffer gets drained before the end of the current segment, the client is forced

to rebuffering. While it is identified as the most impacting factor of QoE degradation [55, 62, 89],

recent measures showed that 29% of the video streaming sessions exhibit at least one video re-

buffering [19]. This issue is aggravated in the case of live streaming, where the client buffer has to

be kept as small as possible as advocated by Swaminathan and Wei [95] and Bouzakaria et al. [12].

Rebuffering causes the accumulation of delays, which then exceed the maximum tolerated latency

threshold for live streaming services and negatively impacts the QoE [29].

In the case of 360◦ videos, predicting the viewport should enable the client to request in ad-

vance the right portions of the video sphere (which are in the viewport) at a high quality. However,

the viewport prediction is also challenging since it depends on several factors such as the head ori-
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entation, the movement speed, and the audio-visual content [7, 84, 108, 110]. Viewport prediction

is prone to errors and its accuracy depends on the time scale of the prediction. According to Bao

et al. [7], an accurate viewport position can be predicted in a time scale ranging from 100ms to

500ms in advance before the start of the segment display. However, a HAS client needs to request

the next segment to be displayed no later than a segment duration in advance which is at least

equal to 1 s typically. So, the client cannot wait until its viewport prediction becomes accurate

to request the next video segment since the requested data may exceed the available network re-

sources. Therefore, the client shall request the next segment to display before the availability of an

accurate viewport prediction which may lead to incorrect quality distribution among the requested

tiles and may badly impact the QoE.

For both the bandwidth and the viewport predictions, the client may realize it has made bad

choices a few milliseconds later. However, HTTP/1 does not enable the client to stop an ongoing

request without setting a new TCP/HTTP session, which causes too much delay. The HTTP/1

client must thus complete all requests before being able to issue another requests. Fortunately,

since 2015, a new version of the HTTP standard, called HTTP/2 was published [10] and it is now

supported by most leading browsers (Chrome, Edge, Firefox and Safari) [13]. Among the novel

features released in HTTP/2, the reset stream feature enables the client to cancel an ongoing request

and the priority feature enable a client to specify a priority guideline of its requests to the server.

Although HTTP/2 has been primarily designed for web services, researchers have studied HTTP/2

features for video delivery but the efforts were particularly focused on the feature that enables the

server to push content [16, 104, 107].

This thesis addresses open questions in the area of meeting the requirements of low latency

streaming services by using HTTP/2 priority and reset stream features. We focus on the DASH

implementation of HAS. However, the findings of our work are valuable for all HAS implementa-

tions.
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1.2 Contributions

The main contributions of this thesis are in the field of efficient and adaptive techniques to deliver

low latency streaming videos in constrained networks. We contribute to improve the state-of-the-

art of traditional and immersive video streaming over HAS by using HTTP/2 protocol. In the

following we list the two major contributions made in this thesis.

HTTP/2-based solutions for traditional video streaming with low latency requirement: The

main question of this part is about how to avoid rebuffering events during a video display and keep

the delay between an original and a displayed video streams small in constrained networks.

Our main idea take profit from HTTP/2 features in order to prioritize the delivery of important

video frames in case of bandwidth fluctuation. We propose a video frame discarding model by

leveraging the concept of HTTP/2 stream, and the associated features of reset stream, dependency,

and priority. HTTP/2 streams enable the client to act on the delivery of structured data. We propose

to send each encoded video frame in a different HTTP/2 stream. We develop an optimal model

which decides the best set of video frames to drop taking into account their importance. We also

propose practical algorithms that can be implemented in practice and we evaluate our proposals by

extensive tests based on real network and video traces.

HTTP/2-based solutions for viewport-adaptive immersive video streaming: The main ques-

tion of this part is about how to enable the client to request the 360◦ video portions early enough

to benefit from the totality of the available bandwidth while taking into account the accuracy evo-

lution of its viewport prediction over time.

We propose a 360◦ video delivery model where the client requests all video tiles 1 s in advance

and then adjusts its inappropriate decisions 500ms later. Our proposal leverages the HTTP/2

priority, weight and reset stream features to handle the tiles delivery over time. We propose to send

each tile in a different HTTP/2 stream. We develop practical algorithms that use different weight

strategy in order to schedule the video delivery of tiles. We evaluate these algorithms with intensive
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simulation tests. We demonstrate that the choice of the HTTP/2 weight function is a critical factor

since it determines the interleaving strategy between appropriate and inappropriate tiles.

1.3 Thesis outline

The following parts of this dissertation are organized as follows. In Chapter 2, we familiarize the

reader with the research fields of this thesis. Then, we detail our contribution in the context of live

streaming in Part I and in the context of immersive video streaming in Part II.

In Part I, we present the main principles of our proposed HTTP/2-based frame discarding model

in Chapter 3 and we propose optimal and practical algorithms. In Chapter 4, we evaluate our

proposals with intensive tests. We describe our simulation environment and the datasets we use

as well as the results we obtain. In Part II, we describe in Chapter 5 the main principles of our

proposal to enhance the viewport-dependent 360◦ video streaming. In Chapter 6, we describe our

simulation environments and we conduct a performance evaluation. Finally, we summarize this

dissertation and discuss future works in Chapter 7.
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Chapter 2

Background

“Science never solves a problem without creating ten more.”

- George Bernard Shaw -

Contents

2.1 Dynamic adaptive streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Bandwidth adaptive streaming . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 A reality check of the throughput-based rate adaptation mechanism . . . 12

2.2 Video encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Temporal compression . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Application layer protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 The limitations of HTTP/1 . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 HTTP/2 protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Reality check of the implementation of HTTP/2 features . . . . . . . . . . . . 19

The contributions of this thesis exploit specific features from modern video coding techniques,

HAS, and HTTP/2. We present them in the following in order to underline the main aspects of

these techniques.
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2.1 Dynamic adaptive streaming

Adaptive streaming technologies, and DASH in particular, enable dynamical adaptation of the

video quality to external conditions. The MPEG-DASH standard was published as ISO/IEC

23 009-1:2012 in April 2012 [43]. Its core principles are the following. The audiovisual con-

tent is encoded into several versions called representations, each with a specific video quality level

and resolution. Each representation then goes through a segmentation process to make the content

available as a set of web objects.

Two key types of files are generated by the server and used by the client in DASH-based

content delivery: (i) the Media Presentation Description (MPD), which provides a set of meta data

information about the video content; and (ii) the video segments, which contain the media data

that is fetched by clients as web objects (with HTTP GET requests).

2.1.1 Bandwidth adaptive streaming

A DASH client executes a rate-adaptation algorithm at each new request to make the video rep-

resentation bitrate match the network bandwidth. The rate adaptation algorithms are not part of

the standard and depend on the vendor implementations [4, 56]. Rate adaptation algorithms can

take into account several input information such as throughput prediction [47, 61, 113], the buffer

fullness state [40, 78, 91] and the network characteristics [8, 90].

Karagkioules et al. [49] conduct a comparison study of rate-adaptation algorithm. They show

that buffer-based approaches may lack in stability for small buffers, which is common in live

streaming services. In this case, buffer-based algorithms are more probable to experience a re-

buffering event. Spiteri et al. [92] conclude similar results. The buffer in low latency streaming

must be smaller than the targeted latency bound. They show that throughput-based adaptation

algorithms are the most appropriate for low latency scenarios.

Throughput-based adaptation algorithms differ in how they predict the throughput [56]. Ac-

cording to Spiteri et al. [92], the current implemented rate-adaptation algorithm in dash.js and in

hls.js for low latency streaming predicts the average throughput, noted b, based on the history of
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the past successfully downloaded segments and selects for the next video segment the representa-

tion (quality level) with the highest available bitrate yet lower than 0.9 ∗ b. However, Karagkioules

et al. [49] have also mentioned that throughput-based algorithms present insufficiency to match the

representation to the available throughput due to the significant throughput variation, particularly

in mobile networks.

2.1.2 A reality check of the throughput-based rate adaptation mechanism

As an introduction to our research studies, we have conducted an experiment with state-of-the-

art DASH algorithms and standard mobile network conditions to check whether it is common in

mobile networks to experience situations where the bitrate of the requested video representation

is higher than the network throughput. We call throughput deficit the difference between the re-

quested representation bitrate and the network throughput, and throughput deficit event such a

situation. The experimentation is based on the following configuration:

• Rate-adaptation algorithm: In this simulation, we use a throughput-based adaptation algo-

rithm. It estimates the average throughput, noted b, from the previous video segment delivery

and selects for the next video segment the representation with the highest bitrate yet lower

than 0.9 ∗ b.

• Network traffic traces: We use publicly available network traces captured by terminal de-

vices on 4G network [103]. These traces provide the average network throughput every

second. The average throughput is 30Mbps and it varies from 1Mbps to 70Mbps.

• Video representations: We consider six video representations, with bitrates ranging from

5Mbps to 30Mbps.

We apply the selected throughput-based adaptation algorithm on 60 s-long period of the net-

work traces. We check every second whether the network throughput is lower than the selected

representation bitrate, which corresponds to what we call a (one-second long) throughput deficit
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event. Then, for each trace period, we calculate the mean and the median of the throughput deficit

in these events. We show results in Table 2.1.

Segment

duration

% of seconds with

deficit

% of deficit amplitude

Mean Median

2 s 23.5 23.8 17.7

4 s 23.1 24.8 18.9

6 s 19.0 25.0 22.7

8 s 19.0 25.0 21.2

10 s 15.4 26.3 18.2

Table 2.1: Throughput deficit on DASH experimentation

These results show that the video player experiences one-second long throughput deficit events

one fifth of the time. A standard video player does not necessarily pause the video display to

re-fill its buffer on each throughput deficit event, but they may jeopardize the video experience

in low-latency scenarios with small buffer sizes. Furthermore, the throughput deficit represents a

significant proportion of the video bitrate (around one quarter 25%) during these events.

Houze et al., Swaminathan and Wei [38, 95] propose to set shorter segments to switch faster

between representations and avoid the accumulation of delays. However, short segments also lead

to an excessive rate of switching between representations. Karagkioules et al. [49] and Duanmu

et al. [30] conclude that frequent switching between representations decreases the client satisfac-

tion. We conclude that traditional throughput-based adaptation algorithms can be insufficient to

mitigate throughput deficit events.

2.2 Video encoding

Without video compression, the video streaming that revolutionized the Internet would not have

been possible [45]. The advancement of video compression enables to minimize redundant digital

information from a raw video sequence by making it a coded video stream. Video compression

algorithms must specify an encoder for compressing the video, and a decoder for reconstructing

the original one [96]. The encoder and the decoder together constitute a codec.
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Video compression reduces the memory consumption and the cost of delivery. A codec should

encode a series of images in the lowest possible number of bits while insuring a trade-off between

compression rate and reconstruction error. The number of video frames (encoded images) compos-

ing a 1 s-video segment is known as the frames per second (fps). Usually, it ranges from 25 fps to

30 fps for traditional videos and it is recommended to range from 60 fps to 90 fps for high quality

immersive videos [57].

Video compression uses modern coding techniques, such as MPEG-4 Part 10 Advanced Video

Coding (H264)/AVC [105] and H265/High Efficiency Video Coding (HEVC) [44], to reduce re-

dundancy in video data. However, HEVC exhibits efficient video compression by reducing the

video file size up to 50% as compared to H264. It also enables tile-based streaming [68, 94, 112],

which is particularly interesting for efficient delivery of immersive videos.

2.2.1 Temporal compression

Since there are small changes and so redundant information between successive video frames, en-

coders use temporal redundancy to compress the video. An encoded video is composed of Groups

of Pictures (GoPs), each containing Intra-predicted (I) frames, Inter-predicted (P) frames, and

Bidirectional-predicted (B) frames. The I frame can be decoded independently of any other frame.

In contrast, the P frame depend on data from previous frames - I or P frames - to be decoded and,

the B-frame can use data from both preceding and future frames [96]. A GoP can be represented as

a binary tree, as in Figure 2.1. Its display order is I0B1B2B3P4B5B6B7P8B9B10B11P12B13B14B15

while its decoding order is I0P4B2B1B3P8B6B5B7P12B10B9B11B14B13B15. When a video is de-

livered over a network to a given client, each video frame has a display time, as well as a decoding

deadline, which is the minimum display time of the video frames depending on it.

A missing video frame induces spatial and temporal video quality distortion. The distortion

depends not only on the missing frame (especially its type) but also on its position in the GoP and

the implementation of the decoder. When a video frame is missing, a player may replace it with

the last displayed one or with a black screen. The decoding process of video stream presenting a

14



I0

P4

B2

B1 B3

P8

B6

B5 B7

P12

B10

B9 B11

B14

B13 B15

Figure 2.1: Structure representation of video frames inside a displayed GoP in the decoding order

with a binary tree. B2 is a children of P4 means that B2 cannot be decoded before the decoding of

P4

missing video frame depends on the player implementation. This process may result on a presence

of artifacts on the displayed video since a part of the frame information is lost as we describe

in Figure 2.2. When the missing video frame is an I frame, the player drops all the GoP.

Figure 2.2: Illustration of coding dependencies between video frames

Modeling the distortion function is complex as it is not an additive function of the frames.

The distortion caused by a set of missing frames close to each other is greater than the sum of

the distortion induced by the isolated loss of the same frames [14]. Previous studies investigated

simple ways to assign to each video frame several indicators of their relative importance on the

display quality. Corbillon et al. [22] proposed to model the importance of video frames as a multi-

criteria linear function taking into account three indicators: frame type, dependent frames, and

frame size. We consider in Part I such a function as an input of our optimal scheduler to decide

which video frames have to be discarded upon adverse network conditions.

Previous studies have used the Peak Signal to Noise Ratio (PSNR) and the Multi-Scale Struc-

tural Similarity for IMage (MS-SSIM) [21, 27, 33] to measure the spatial quality distortion due
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to missing video frames. Assessing the temporal distortion (discontinuity) (known as video jit-

ters) [41, 51, 79] is more challenging since it depends on the video content motion, the encoding

structure and the frame rate. Previous studies showed that, for a large number of missing frames,

the output video can be similar to a series of snapshots instead of a continuous stream.

Kester et al. [51] showed that a jitter of two consecutive frames is enough to be perceived by

humans, while Huynh-thu and Ghanbari [41] observed that 20% of users do not perceive a jitter

of three missing consecutive video frames. The QoE degradation is also a function of the video

bitrate and the video content type. Kester et al. [51] estimate that the Mean Opinion Score (MOS)

decreases from 5 to 4 (respectively from 4 to 3 and from 3 to 2.5) for a jitter duration up to 150ms

(respectively 600ms and 1400ms).

We refer to these studies in Part I to evaluate our results in terms of PSNR, MS-SSIM as spatial

perceptual metrics and in terms of frequency and duration of jitters as temporal perceptual metrics.

2.3 Application layer protocols

Low latency streaming on the Internet primarily used muticast and Real Time Streaming Protocol

(RTSP) with a limited number of available video qualities (one Standard Definition (SD) and one

High Definition (HD)). Then, in the last decade, HAS has become the main technology to stream

live and Video On Demand (VOD) contents on Internet. Actually, HTTP-based streaming allows

to use CDNs to improve the client-server communications. Furthermore, since the streaming tech-

nology is built on top of HTTP, the packets easily traverse potential obstacles such as firewalls and

Network Address Translation (NAT) devices. Besides, the client can maximize the video quality

in accordance with the available bandwidth by choosing the adequate representation.

2.3.1 The limitations of HTTP/1

Despite the popularity of HTTP, the HTTP/1 version suffers from inefficiencies. An HTTP/1.0

client, should wait for the response of its request before being able to send the next one, which

leads to an accumulation of Round Trip Times (RTTs) and increases the end to end delay as shown
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Figure 2.3: An illustration of the HTTP/1.0 and the HTTP/1.1 request/response mechanisms be-

tween a client and a server

in Figure 2.3. HTTP/1.1 has been designed in 1990. It enables the pipelining feature; the client can

send a new request before receiving the response of the previous one which reduces the end to end

latency. However, even with HTTP/1.1 pipelining, the server should response to a request n before

processing the request n+ 1. As illustrated in Figure 2.4, if a response of a request is blocked, the

responses for all the next requests are also delayed/blocked, which is known as the HTTP head of

line blocking problem [20].

HTTP/1 does not enable the client to prioritize its requests neither to stop an ongoing response

without setting a new Transmission Control Protocol (TCP)/HTTP session. Besides, the HTTP/1

server only answers to the user requests and is not able to push appropriate content in advance.

The new version of HTTP aims to address these limitations.

2.3.2 HTTP/2 protocol

The specifications of HTTP/2 were published in May 2015 [9]. HTTP/2 breaks down the HTTP

protocol communication into an exchange of binary-encoded frames. These HTTP/2 frames con-

vey messages that belong to a particular stream and all streams are multiplexed within a single

TCP connection as represented in Figure 2.5.

It is also possible to set priorities among the streams. Priority can be controlled by setting

17



Figure 2.4: An illustration of the HTTP head of line blocking problem with HTTP/1.1

Figure 2.5: An illustration of an HTTP/2 connection with the priority feature activated
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explicit dependency and weights to streams. We refer to stream Si as a parent of stream Sj and to

stream Sj as a sibling of stream Si if the delivery of stream Sj depends on the delivery of stream Si.

The HTTP/2 weights set the relative proportion of resources to allocate to sibling streams sharing

the same parent. Each stream has a weight; the higher the weight is, the more network resources

are allocated to that stream. Moreover the client can update dependencies and weights at any

time, which enables further optimization by reallocating resources in response to user interaction.

Besides, the client can terminate an HTTP/2 stream without closing the underlying TCP session.

2.4 Reality check of the implementation of HTTP/2 features

The specifications of the HTTP/2 protocol in the Request for Comments (RFC) document let a

part of freedom to the developers in the implementation of the features. Moreover, some of these

stream management features are not considered as core features, and thus may not be developed in

priority in practice.

To conform our proposal to real HTTP/2 server and client implementations, we developed

an HTTP/2 server/client platform and checked the implementation of the main features that we

leverage in our proposal. We installed the H2O server library,1 which is presented as compatible

with HTTP/2. On the client side, we developed a native C library using the libcurl library,2 which

is also supposed to respect the RFC specifications for the HTTP/2 protocol. At the date of Fall

2017, we analyzed different HTTP/2 specific requests between the client and the server and we

observe the following:

Cancellation H2O server respects the RFC specification of the reset stream feature. Once a client

asks to end a stream, the server cancels its transmission.

Dependency H2O server respects the RFC specification of the dependency feature. A client can

set dependencies between HTTP/2 streams. The server sends the streams according to the

client recommendations. Exclusive and default dependencies [10] are supported by H2O

1H2O — an optimized HTTP server with support for HTTP/1.x and HTTP/2: https://github.com/h2o/

h2o
2libcurl — the multiprotocol file transfer library: https://curl.haxx.se/libcurl/
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Figure 2.6: HTTP/2 tree-priority implementation. Each HTTP/2 stream Si>0 has a parent, siblings,

a weight and delivers a specific HTTP/2 frame number.

server and libcurl client. When a content of a stream is entirely sent, the dependent streams

share the liberated allocated resources according to their weights. H2O server supports the

dependency change. A specific dependency configuration enable the sending of the HTTP/2

streams content in a First In First Out (FIFO) order. For example, we suppose that we have

three streams where S2 depends on S1 and S3 depends on S2. The server entirely delivers the

content of S1 then the content of S2, and finally the content of S3 to avoid the interleaving

between the different HTTP/2 streams. H2O server chooses the smallest number of HTTP/2

frames to satisfy the resource sharing between HTTP/2 streams with respect to their weights

and dependencies when the interleaving is active.

Weight If two HTTP/2 streams share the same parent, H2O server sets the weight of 16 to all

HTTP/2 streams and the interleaving is active. If the client attributes a weight to a particular

stream, H2O server affects the weight of 16 to all others streams. It is not possible to activate

the interleaving for only a set of the HTTP/2 active streams. If the weight is set by the

client, all the active streams share the available network resources with respect to the client

recommended weights. H2O server supports weight change.

Dependencies and weights allow the client to provide the server with a “prioritization strategy”,

ensuring optimal delivery of high-priority responses, as shown in Figures 2.6 to 2.8. Wijnants
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Figure 2.7: HTTP/2 First Come First Served (FCFS)-priority implementation. HTTP/2 weights

have no impact on the delivery since streams Si>0 have no siblings but only a parent.

Figure 2.8: HTTP/2 Round Robin (RR)-priority implementation. Each HTTP/2 stream Si>0 has

only siblings. It is assigned a weight and it delivers a specific HTTP/2 frame number.

et al. [106] describe three current implementations of the HTTP/2 priority features.

Firefox uses the tree priority as shown in Figure 2.6. The sibling parent streams are delivered

first, then the resources are allocated to their children in accordance with their weights.

Chrome and Opera use a FCFS priority implementation as shown in Figure 2.7. Each HTTP/2

stream depends on the previously requested one and has no siblings. FCFS is the standard per-

TCP-connection behavior of HTTP/1. Yet, with HTTP/2 it is possible to cancel a specific ongoing

stream without canceling the whole TCP connection.

Safari and Internet Explorer implement non-exclusive dependencies on the default stream S0

for all HTTP/2 streams as shown in Figure 2.8. Streams have no children but only siblings, ex-

cept stream S0, which is the parent of all the other streams and a default stream dedicated to

the HTTP/2 session. All streams concurrently share the available resources in proportion to their
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weights. When a uniform default weight of 16 is applied to all streams, this RR model is the default

prioritization logic of HTTP/2, and it ensures a fair distribution of the network resources consump-

tion among HTTP/2 streams. The order in which the HTTP/2 frames are interleaved becomes a

critical performance consideration.

In this thesis, we explore the advantages of using these dependency, weight and reset stream

features in a context of low latency streaming. We focus on live streaming and immersive VOD

service.
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Part I

HTTP/2-based frame discarding strategies

for low latency streaming
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“You can’t win unless you learn how to lose."

- Kareem Abdul Jabbar -

Introduction

The DASH adaptation algorithms for low latency streaming can be insufficient to mitigate the

varying throughput of mobile networks (refer to Section 2.1.2). Alternative solutions are needed

to avoid rebuffering and maintain continuous video display until the end of the throughput deficit

event.

Video frame discarding is a solution to lighten the data size of a transmitted video stream. It

consists in voluntary dropping video frames on the server, network or player sides in order to avoid

the accumulation of delays. At the client side, the video player does not pause the video; it deals

with the missing video frames, typically by repeating the last displayed one [41].

In this part, we briefly describe the related works about video frame discarding strategies. Then,

we detail an HTTP/2-based frame discarding scheme that we propose which enables the client to

avoid rebuffering events.

Related works on video frame discarding

The implementation of video frame discarding strategies has been the focus of several studies in

the past. Thang et al. [97] emphasizes the importance of modeling solutions that offer a good

trade-off between maximizing the video quality representation, minimizing the buffer size and

avoiding the rebuffering events. These solutions include video frame discarding. Kalampogia

and Koutsakis [48] propose a Markovian model to predict the size of B-frames and to selectively

discard these frames. Mehdian and Liang [67] propose a recursive optimal model to decide which

video frames to discard for minimizing the video quality distortion. They do not propose a practical

implementation of their scheme. Darabkh et al. [28] studies a policy that controls and maintains

the buffer occupancy of network elements. This policy relies on User Datagram Protocol (UDP)

and uses the sixth and seventh bits of the IPv4 type-of-service header field to represent the I, P,
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B-frames. They reduce the number of B and P-frames to ensure the successful reception of the I-

frames. Gangadharan et al. [33] study a trade-off between frame discarding, buffer size and video

quality. They design a droppable part at the receiver buffer side where the video frame discarding

may occur. This approach does not free bandwidth resources to enable a faster delivery of the

next video frames but it ensures a faster decoding process. Darabkh et al. [27] present network

and buffer based-models for frame discarding policies. Corbillon et al. [21] and Houze et al. [38]

focus on the video frames prioritization delivery in the context of multi-path deliveries. All of

these studies [15, 21, 22, 26, 27, 38] have shown that the video frame discarding approach can

temporarily reduce the bitrate while maintaining a high QoE.

However, these proposal solutions need a cross layer design between the application and the

network layers, which can be hard to implement. Besides, HTTP/1 does not suit the implementa-

tion of client-based frame discarding solutions since it does not allow to easily cancel a part of the

video stream that has been already requested without establishing a new TCP session.

In this thesis, we suggest to use the HTTP/2 protocol to design a video frame discarding scheme

on the application layer [11]. We discuss in Chapter 3 the HTTP/2 features that are suitable for

our proposal. Then, we present the video frame discarding model we propose as well as differ-

ent optimal and practical algorithms. Besides, we evaluate the performances of these algorithms

in Chapter 4, by running simulations based on real videos and network traces.
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Chapter 3

HTTP/2-Based Solutions for Video Frame

Scheduling
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In this chapter, we propose several ways to control the video frames delivery by leveraging

the HTTP/2 stream-control features. Our main idea consists on requesting each video frame in a
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dedicated HTTP/2 stream. It becomes then possible to control the delivery of the video frames by

invoking the stream-level control features defined in the HTTP/2 standard.

3.1 HTTP/2 features for video frame delivery

We describe in the following the advantages of requesting each video frame in an HTTP/2 stream.

HTTP/2 HPACK compression Requesting separately each video frame results in HTTP headers

that often carry the same values. HTTP/2 standard comes along with an algorithm named

HPACK [80], which specifies how to compress the HTTP headers and reduce the HTTP

overhead.

Cancel HTTP/2 stream The reset stream command enables the client to cancel the delivery of an

HTTP/2 stream, which in our case means to cancel the delivery of a video frame. By using

this command, the client saves network resources by avoiding the delivery of a video frame

with no chance to be downloaded and displayed on time.

Set HTTP/2 stream priorities The commands controlling the priorities among the HTTP/2 streams

enable the client to manage priorities among the transported video frames. These commands

set dependencies and weights on the HTTP/2 streams. The server has no obligation to strictly

respect the priority guidance of the client but usually the server takes it into consideration un-

less an object is not available, so the server operates the next requests as to avoid additional

latencies due to the head of line blocking. The priority features are described as follow:

Set HTTP/2 stream dependencies The main idea consists in setting the HTTP/2 depen-

dencies among the HTTP/2 streams in accordance with the decoding requirements of

video frames. We consider two possible dependency strategies, named FIFO and Inter-

leaving (see Figure 3.1).

The FIFO dependency strategy delivers the video frames in a FIFO mode in accordance

with their decoding order. To apply this strategy, the dependency of each HTTP/2
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(a) FIFO dependency strategy

(b) Interleaving dependency strategy

Figure 3.1: HTTP/2 streams along with their video frames and dependencies for different depen-

dency strategies

stream delivering the nth encoded video frame is set so that it must depend on the

HTTP/2 stream delivering the (n−1)th encoded video frame, as shown on Figure 3.1a.

The Interleaving dependency strategy sets the dependencies on the HTTP/2 streams in

accordance with the video frame dependency tree, as shown on Figure 3.1b. In this

latter strategy, the interleaving is activated between two streams if they share the same

parent, as presented in Figure 2.6. The client must therefore adjust the weights of the

HTTP/2 streams carefully to control the order in which video frames are received.

Set HTTP/2 stream weights When the Interleaving dependency strategy is applied, the

server automatically attributes a weight of 16 to all the streams, which results in de-

laying the delivery of video frames, as the weight attributed by the server does not

consider the video frame deadline. The priority command enables the client to set and

modify the weight of any HTTP/2 stream at any time. The weight of each HTTP/2
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stream must be an integer between 1 (lowest priority) and 256 (highest). In case of

bandwidth shortage, the client may decide to increase the weight of the most important

video frames so that the HTTP/2 multiplexing algorithm increases the fraction of the

traffic carrying data of these video frames in an attempt to increase the probability that

these important video frames arrive at the decoder on time.

3.2 HTTP/2-based video frame scheduling policies

When the DASH adaptation algorithm miss-estimates the available bandwidth, the delivery of the

video segment and the display of the video session is jeopardized. Several triggers enable the

client to detect these troubles, such as an abrupt reduction of the amount of data in the client buffer

and a reduction of the delay between the reception time of the data composing the concerned

video frames and their display times. A client detecting a trouble can decide to apply strategies

to prioritize the delivery of a set of video frames by discarding or delaying another set of video

frames.

In order to choose an appropriate implementation of the HTTP/2 priority, we analyze and

compare two different scheduling policies: i) the cancel-based scheduling policy which relies

on the FIFO dependency strategy and the HTTP/2 reset stream feature, and ii) the weight-based

scheduling policy which relies on the Interleaving dependency strategy and the HTTP/2 weight

feature.

As shown on Figures 3.2 and 3.3, first the client requests, gets and parses the MPD, via an

HTTP/2 stream. When the client requests a video segment, it extracts from the parsed video meta-

data the positions (byte ranges) of the video frames within each GoP, typically with the technique

introduced by Houze et al. [38]. Then the client associates each video frame with an HTTP/2

stream and sets the dependencies of the HTTP/2 streams in accordance with any of the two above-

described dependency strategies (FIFO or Interleaving). Then the client starts to request and fetch

video frames over their associated HTTP/2 streams: video frame I0 on HTTP/2 stream S2, video

frame B2 on HTTP/2 stream S3, and so on.
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Figure 3.2: Cancel-based scheduling policy

3.2.1 Cancel-based policies

The cancel-based policy relies on the FIFO dependency strategy. The client receives the video

frames sequentially in the decoding order. Upon adverse network condition, it takes the decision

to completely discard a set of the less important video frames. This scheduling strategy is similar

to the traditional video frame discarding policies as the client only asks the server to completely

drop a set of video frames.

For example, as described in Figure 3.2, the client decides to cancel the HTTP/2 stream S3

which transports the video frame B2. Since video frames B1 and B3 depend on B2 (see Figure 2.1),

canceling the delivery of the video frame B2 jeopardizes the successful decoding of both video

frames B1 and B3. So the client also asks the server to reset the HTTP/2 streams S4 and S5, which

carry respectively the video frames B1 and B3. The server reallocates the network resources of the

canceled HTTP/2 streams S4 and S5 to the HTTP/2 stream S6, which enables an earlier delivery

of the video frame P4 and increases the probability of P4, as well as the following video frames, to

be decoded on time at the client side.
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Figure 3.3: Weight-based scheduling policy

3.2.2 Weight-based policies

In a varying network, the bandwidth may decrease and then increase suddenly, which means that

the client may drop a set of video frames that could have been received successfully without jeop-

ardizing the delivery of the most important ones. The cancel-based policy does not enable the

client to temporarily reduce the network resources allocated to a video frame delivery until the full

reception of the more important ones or a bandwidth increase.

Weight-based policy enables a simultaneous delivery of a set of video frames as it relies on the

Interleaving dependency strategy. The client sets the dependencies between the HTTP/2 streams

with regards to the video frame dependency tree represented in Figure 2.1 and manage the re-

sources distribution among the simultaneous delivery of video frames by changing the HTTP/2

weights. The client sets and updates the weight of each HTTP/2 stream during the HTTP/2 ses-

sion.

In Figure 3.3, we suppose that adverse network conditions have delayed the delivery of the

video frame B2. The video frame B2 will probably arrive after its display deadline, which also
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jeopardizes the timely delivery and display of its dependent video frames B1 and B3. Moreover

the useless delivery of the video frame B2 delays the delivery of the more important video frames

P4 and P8. In this case, updating the HTTP/2 stream weights — decreasing the weight of stream

S3 and increasing the weight of stream S6 — allows a faster delivery of video frames P4 and P8

and a slower delivery of the less important video frames B2, B1 and B3 without ending their

transmissions. If the network throughput increases again, this will trigger another update of the

weights, causing a faster delivery of all the video frames B1, B2, B3, P4 and P8.

3.2.3 Challenges of the weight-based policies

Weight-based policies are in practice highly sensitive to the weights and hard to control. If the

client does not attribute a weight to a particular stream, the server sets the weight of 16 to all others

stream by default. However, the weight should depend on an importance function that the client

computes for each video frame. The importance function should take into account factors such as

the dependency, the total size, the received size of the video frame and the delay until its display

deadline. Besides, current HTTP/2 implementations do not allow to activate the interleaving for a

specific set of HTTP/2 streams without updating the dependency tree. The client cannot attribute

a weight of 0 to an HTTP/2 stream: the weight must be an integer between 1 and 256.

In the above-described illustration (Figure 3.3), even in good network conditions, the deliv-

ery of video frames B1, B2, B3 gets delayed by the delivery of portions of video frames P4 and

P8, which increases the risk of dropping video frames B1, B2, B3 while the network is able to

successfully deliver all of video frames in a FIFO order.

The weight scheduling policies are complex to implement and manage. Wijnants et al. [106]

show that weight-based policies may lead to an excessive sharing of the network resources among

HTTP/2 streams and cause delays in the completion of dependent tasks. Therefore, we only focus

on the cancel-based policies, based on the well-implemented reset stream feature in the remaining

of this dissertation.

34



Input Meaning

H Set of HTTP/2 frames successfully received by the client

V Set of video frames

P v Set of video frames on which the video frame v depends

sv Number of HTTP/2 frames needed to transmit video frame v
tvdisplay Display time of video frame v

gv Relative importance of video frame v on the entire video quality

yv State of the video frame v, 1 displayed, 0 not displayed

hsize HTTP/2 frame size

vsize Video frame v size

thr Arrival time of HTTP/2 frame h at the client side

Decision Meaning

xv
h

equal to 1 if HTTP/2 frame h contains data relative to video frame v and 0

otherwise

yv equal to 1 if video frame v is displayed and 0 otherwise

Table 3.1: Notations for inputs and decision variables

3.3 Cancel-based policies: model and algorithms

Our proposal is entirely client-based. The client decides to drop a set of video frames to avoid the

video rebuffering while impacting the less the video quality. To describe the different algorithms in

the following, we use the notations listed in Table 3.1. Current video players discard a video frame

if it is not displayed at time. They do not keep it in order to decode its dependent video frames.

Hence, to be displayed at the client side, a video frame v must meet the following requirements:

(a) v must be entirely received before its display time tvdisplay

(b) All of its parent video frames (i.e., vp ∈ P v ) must be entirely received and decoded before

v display time tvdisplay

(c) Each of its parent video frames (i.e., vp ∈ P v ), if any, must be displayed on their display

time t
vp
display.

In this section, we introduce the following main categories of our proposed algorithms:
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1. The first category is the optimal scheduler, modeled with an Integer Linear Programming

(ILP). The optimal scheduler provides an upper bound on the achievable displayed video

quality. It determines the optimal set of video frames to discard. It takes as inputs the

records of a complete HTTP/2 traffic session, which includes the times at which the HTTP/2

frames are successfully received at the client side, and the meta-data of a selected video

sequence. The meta-data includes the size, type, dependencies and display time of each of

its video frames.

2. The second category is the basic FIFO scheduler, where the server deliver all the video

frames one after the other in the decoding order. The sever does not discard any frame. At

the client side, no rebuffering is allowed. When a video frame is not received on time, the

last displayed video frame replaces it. A delayed video frame is discarded at the client buffer.

Only, successfully delivered video frames are displayed.

3. The third category consists on heuristics of the optimal scheduler. The client does not

have a prior knowledge on the network resources but it decides to discard a set of video

frames depending on several parameters. We denote these heuristics as the practical R-S-T

algorithms, which we detail in Section 3.3.2.

3.3.1 Optimal scheduler

The optimal scheduler determines the best set of video frames to discard depending on their impor-

tances as well as a perfect knowledge of the network resources. We model the optimal scheduler

as an ILP as described in Algorithm 3.1.

Inputs

We denote by H the set of HTTP/2 frames that are successfully received by the client for the whole

transmission. Each HTTP/2 frame h ∈ H is characterized by its reception time at the client side,

denoted by thr , which takes into account the initial buffering time. We denote by V the set of video

frames that have to be streamed from the server to the client. Each video frame v ∈ V should be

36



displayed by the application at the client side at a given time, denoted by tvdisplay. The transmission

of a video frame v requires the transmission of sv different HTTP/2 frames. We consider packet

padding if the size of the video frame is not a multiple of the maximum HTTP/2 frame size denoted

by hsize, h ∈ H . We assume that the size of the HTTP/2 frames is chosen such that the the padding

is minimum. We denote by P v the set of video frames, parents of a video frame v. We denote by

gv the mathematical relative importance of the video frame v, computed with the method presented

by Corbillon et al. [22].

Optimization objectives

We aim to maximize the importance of the successfully displayed video frames in order to maxi-

mize the video quality, formally:

max
∑

v∈V

gvyv

Decision variables

The main decision variable of our model is xv
h, which indicates whether HTTP/2 frame h transports

data for video frame v. The decision variable yv, v ∈ V , is equal to 1 if the video frame v is

displayed on-time and is equal to 0 if the video frame v is discarded.

Integer Poblem Modeling

The formulation of the ILP is described in Algorithm 3.1.

It can be interpreted as follows. Each HTTP/2 frame transports data related to a given video

frame. A video frame is received if it is transported by sv HTTP/2 frames. A video frame v is

successfully received, decoded and displayed if (i) sv HTTP/2 frames carrying data related to v

are sent; (ii) The latest of these frames arrives before tvdisplay; And (iii) all video frames in P v are

displayed on-time.

Equation (3.1) means that every successfully sent and displayed video frame v must use exactly

sv HTTP/2 frames. Equation (3.2) means that every HTTP/2 frame h delivers data related to a
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Algorithm 3.1 Optimal scheduler Modeling

max
∑

v∈V

gvyv

subject to
∑

h∈H

xv
h = svyv ∀v ∈ V (3.1)

∑

v∈V

xv
h ≤ 1 ∀h ∈ H (3.2)

yv ≤ yvp , ∀v ∈ V ∀vp ∈ P v (3.3)

if tvdisplay ≤ t
vp
display

then thrx
vp
h ≤ t

vp
display(1− yv) + yvtvdisplay (3.4)

∀v ∈ V, ∀vp ∈ P v ∀h ∈ H

if thr ≥ tvdisplay

then xv
h = 0 ∀v ∈ V, ∀h ∈ H (3.5)

unique video frame v. Equation (3.3) means that all the video frames on which v depends must

be also successfully sent and displayed on their display times. Equation (3.4) means that all the

parent video frames vp ∈ P v relative to a video frame v ∈ V must be received before the display

time of v if v is successful. Equation (3.5) means that data of v is sent in an HTTP/2 frame h only

if h is received before the video frame v display time.

3.3.2 Practical algorithms

We present now practical algorithms to discard video frames that can hardly be decoded on time.

The re-allocation of the freed network resources gives more chance to the other video frames to

meet their decoding deadlines. We design several variants of these algorithms by considering the

following two parameters.

• The minimum temporal margin for a video frame to be received TMmin: When the client

estimates that a video frame will be received late, it discards it as well as all its children. A

video frame is considered as late when the margin between its display time and the time the

client takes the decision is less than a minimum bound denoted by TMmin. We consider

two types of algorithms: the Reset-Reactive algorithms (R−R), which sets TMmin to zero,
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and the Reset-Predictive algorithms (R − P ), which requires an estimation of the network

throughput to compare with positive values of TMmin. Various approaches are possible

to predict the network bandwidth (for instance the average throughput for the latest TCP

packets).

• The decision time interval T decision: In theory, the client can apply discarding decisions

after the reception of each HTTP/2 frame. However, it generates more processing, which

may burden the client. In our algorithm, we let the client check the status of frame delivery

and take discarding decisions in a periodic manner, every T decision. In the evaluation, we

study the impact of varying this time interval T decision from 0ms to 200ms.

For a generic description of our practical algorithms in the following parts, we denote them as R−

S − T algorithms, where S ∈ {R,P} and T = T decision. We denote by R − R the R − R

algorithm where the decision time is taken at the reception of each HTTP/2 frame. We summarize

in Table 3.2 the different parameters described above.

Possible values for different R− S − T algorithms

Parameters Meaning R-R R-R-T R-P-T

T decision

period between con-

secutive discarding

decisions

at the recep-

tion of every

HTTP/2 frame

a fixed T (chosen

between 40ms
and 200ms)

a fixed T (chosen

between 40ms
and 200ms)

TMmin

A video frame v is

late when:

T decision − tvdisplay <
TMmin

0 s 0 s

estimation of

the time needed

to fetch video

frame v

Table 3.2: Parameters T decision and TMmin for R− S − T algorithms

We evaluate the performance of our proposed frame discarding algorithms in Chapter 4 using

intensive simulations that combine real video and network traces.
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Chapter 4

Evaluation of Video Frame Discarding Algorithms
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We developed two simulators to evaluate the performance of the proposed scheduler; a sim-

ulator based on the Java GNU Linear Programming Kit (GLPK) solver1 for the optimal algo-

rithm 3.3.1 and a Java simulator for the heuristic algorithms listed in Table 3.2 to combine network

traces and video datasets.

1GLPK — GNU Linear Programming Kit: https://www.gnu.org/software/glpk/

41

https://www.gnu.org/software/glpk/


4.1 Datasets

We describe in this section the network dataset and video dataset prepared for the simulations,

which results are reported in Section 4.2. We collected cellular and WiFi network traces using our

own platform. We used six representative videos (publicly available at [109]) to test our proposal.

Our simulations considered 6480 delivery scenarios using 12 network traces classified in 2 types,

6 videos encoded in 12 different bitrates (6 for each network type), and 15 algorithms. Then, we

used a publicly available code [21] to measure performance and evaluate the video quality of the

obtained video segments.

4.1.1 Network datasets

We collected WiFi and cellular network traces, which we have made publicly available on our web-

site 2 to enable further researches. We used in Section 2.1.2 some network traces [103]. However,

these traces do not suit for our simulations. Indeed these traces give information about the network

bandwidth only. In contrast, our simulations need the sequence number, the reception timestamp,

and the size of each TCP packet in order to deduce the order, the reception timestamp and the size

of each HTTP/2 frame. Besides we aim to assess the performance of our video frame discarding

algorithms on two types of wireless networks: WiFi and cellular networks.

To collect the real network traces of TCP traffic, we set up a platform composed of a CDN

edge server from a French telecom operator and a client running on an Ubuntu 16.04 machine. We

achieved two series of 65 s long network captures. Then we extracted network captures lasting 6 s

(which is the HAS segment duration of the videos considered in our simulation). In the first series

the client is connected to a 4G cellular network, and in the second series to the WiFi interface

of an xDSL residential gateway. The captures are done with the Wireshark tool while the client

downloads a file from the CDN server.

Throughput variations are significant in mobile networks [87], where various factors (e.g. the

fading, the number of the simultaneous connected users, the density of the deployed cellular cells

2WiFi and cellular network traces —http://dash.ipv6.enstb.fr/acmtomm2018/
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in an area and the user speed) may result in abrupt changes in network conditions. WiFi networks

present a steadier throughput than cellular networks. However, WiFi networks may suffer from

instantaneous throughput drops that are difficult to detect when only the average throughput over

the duration of segments is analyzed. The cellular throughput varies from 0.5Mbps to 7Mbps.

The WiFi throughput varies from 3Mbps to 6Mbps. Our proposal is meaningful when there is a

deficit between the video representation selected by DASH client and the real available bandwidth

at each video frame reception time.

We present in Figure 4.1 the average throughput variation of two different network traces sam-

pled at the display time of every video frame (ie. 1/30 s). In our simulation, we extracted 6

different traces from each network capture with average throughput values of 5Mbps for WiFi

networks and 3.3Mbps for cellular networks.

(a) for cellular network (b) for WiFi network

Figure 4.1: Average throughput sampled every 30ms during 6 s.

4.1.2 Video datasets

Our video dataset comes from a public repository [109]. The six selected video sequences are listed

in Table 4.1; they range from small moving regions of interest on static background to fast moving

sport clips. We achieved a first set of preparatory operations on these video sequences to generate

a set of 6 s long video segments and to classify them. Using H264, we encoded the video clips at

a fixed frame-rate of 30 fps. Then, we extracted from each video clip a 6 s long video segment,

which corresponds to the considered HAS segment duration in our simulations. The applied time
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Figure 4.2: Ratio of the relative data size of frames I, P and B

offsets are also reported in Table 4.1. We encoded the extracted video segments at a resolution of

1920×1080 pixels and with a GoP structure MN, with M = 7 (distance between two successive I

or P frames) and N = 25 (number of frames in a GoP).

Figure 4.2 represents the average ratio of data contained in each encoded bit stream dedicated

to frames I, P and B for video segments encoded at 3Mbps. Encoded bit streams dedicated to

frames B in dynamic video segments are larger than in static video segments. We encoded the

video segments at different bitrates to generate several deficits (up to 1Mbps). The chosen video

bitrates create a relative deficit amplitude varying from 0% to 27% for the cellular networks and

from 0% to 16% for the WiFi networks. For cellular networks, we encoded the 6 videos at bitrates

ranging between 3.2Mbps and 4.2Mbps. For the WiFi networks, the bitrate ranges from 4.8Mbps

to 5.8Mbps. Our goal is to evaluate the behavior of our proposed algorithms for different deficits

for low-latency scenarios. In order to respect the 1 s targeted latency, we set the initial buffering to

1 s.

Name Offset Category

Netflix-bar-scene 0 s Static

Netflix-dinner-scene 9 s Static

Amazon-HDR-education 171 s Static

Touchdown-pass 6 s Dynamic

Aspen 3 s Dynamic

Speed-bag 9 s Dynamic

Table 4.1: Parameters summary
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4.2 Performance evaluation

We first evaluate the HTTP/2 overhead generated by requesting every video frame in an HTTP/2

stream. Then, we evaluate the performance of our proposed algorithms using three different type

of metrics.

Video Flow Importance Ratio The frame importance (introduced by Corbillon et al. [22]) is

computed from the features of each frame (size, type, and dependencies). We used the ra-

tio of the sum of the importance of successfully displayed frames over the total importance

of all frames. This metric is based on the received and original encoded videos; it is thus

independent of the decoder strategy for the missing frame replacement.

Spatial Quality Degradation We computed the PSNR and MS-SSIM metrics to get the spatial

quality of the videos. We rebuilt the encoded received streams to compute these metrics. To

replace missing frames, the decoder displays the last decoded frame.

Jitter and Temporal Degradation We evaluate the temporal distortion by analyzing the number,

type and duration of the jitters in the received encoded video stream.

4.2.1 HTTP/2 multi-stream overhead

We estimate the protocol overhead resulting from requesting and delivering a 6 s-long video seg-

ment. We consider two cases: (i) the mono-stream case: the video segment is requested and

delivered over a single HTTP/2 stream; (ii) the multi-stream case: each video frame of the video

segment is requested and delivered over a dedicated HTTP/2 stream. From the reference software

described in Section 2.4, we extracted the size of the HTTP/2 protocol headers. The size of the

payload downstream (the video segment) is 18Mbits. The estimations of the downlink and uplink

protocol overheads (expressed as the ratio of the HTTP/2 overhead to the total amount of delivered

data) are reported in Table 4.2.

The overhead in the HTTP/2 mono-stream case is consistent with the state-of-the-art [70, 99].

Our video frame discarding algorithms implement the HTTP/2 multi-stream case. This strategy
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Download Upload

multi-stream mono-stream multi-stream mono-stream

Size Number Size Number Size Number Size Number

Uncompressed header 114 1 114 1 31 1 31 1

Compressed headers 15 179 0 0 16 179 0 0

Data Frame headers 8 180 8 138 5 10 0 0

Settings 2 3 6 3 18 3 18 3

Windows_update 4 2 4 2 4 32 4 100

Total overhead 5.76% 4.34% 2.34% 0.95%

Table 4.2: HTTP/2 protocol overheads for video streaming

slightly increases the total overhead on the downlink; however, it always remains below 6% thanks

to the HTTP/2 HPACK compression mechanism and the variability of the HTTP/2 frame size. The

overhead increase is more significant on the uplink, but the client is barely constrained on the

uplink bandwidth. We conclude that the overhead of our multi-stream strategy offers more control

on the delivery at the expense of a moderate and affordable overhead.

4.2.2 Video flow importance

We define and simulate a set of video delivery scenarios to assess the performance of our video

frame discarding strategy with the Video Flow Importance Ratio metric. Each video delivery

scenario is characterized by a triplet: a video frame discarding algorithm, a network trace and

a video segment. The results of each simulation are the list of the video frames successfully

displayed on the client and the computed value of the video flow importance ratio metric.

The simulation results are reported in Figure 4.3, Figure 4.4, and Figure 4.5. On each box-plot

the colored surface represents the Interquartile Range (IQR): it encompasses all the values of the

video flow importance ratio metric that ranges from the first quartile to the third quartile. Inside

this surface, the horizontal line and the point represent, respectively, the median and the average

values of the video flow importance ratio metric. The whiskers extending from either side of the

box represent the ranges of the bottom 15% and top 15% values of the video flow importance ratio

metric.
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Figure 4.3: Flow importance ratio of the basic FIFO, optimal, R-R, and R-R-60ms algorithms for

cellular and WiFi networks

Figure 4.3 presents the results of the simulations on each network (WiFi and cellular) for the

following video scheduling algorithms: Basic FIFO, optimal, R-R, and R-R-60ms. Each box-plot

on Figure 4.3 corresponds to a network (WiFi or cellular) and a video scheduling algorithm; it

presents the distribution of the video flow importance ratio obtained by simulating all the video

delivery scenarios (i.e. the whole video dataset and all the network traces). The box-plots show

a wide distribution on this metric, even if the median values are at the same level on the WiFi

network, regardless of the algorithm. The median and average values are always higher on the

WiFi network than on the cellular networks. The optimal algorithm provides an upper bound to

evaluate the other algorithms. The performance of our video scheduling algorithms is much closer

to the optimal than to the basic FIFO. Typically, the R−R and R−R−60ms algorithms manage to

reach at least 80% of the video flow importance ratio in all scenarios, while the optimal algorithm

reaches around 90% on both networks, and the basic FIFO 60% on the WiFi network and only

40% on the cellular network. Moreover, the optimal, R-R and R-R-60ms algorithms show more

stable performance results than the basic FIFO, as their box-plots have smaller IQR. The basic

FIFO does not react as well as our video scheduling algorithms to network changes.

We report in Figure 4.4 the results per category of video segments (static vs. dynamic video
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Figure 4.4: Flow importance ratio of the basic FIFO, optimal, R-R, and R-R-60ms algorithms for

static and dynamic videos

segments categories). The basic FIFO presents better performances on the static videos than on

the dynamic ones, while we observe the opposite behavior with the optimal algorithm. This can

be explained by the relative cumulative size of the B video frames, which is more important in the

dynamic videos. The delivery performance on dynamic videos are more sensitive to the network

resource variations and to the frame scheduling and discarding policies. In contrast, the B frames

are smaller in the static videos; so discarding them does not always suffice to free enough network

resources for on-time delivery of the most important video frames. The R-R and R-R-60ms algo-

rithms provide better performance than the basic FIFO on both static and dynamic video categories,

and have a similar size of IQR for both categories.

Finally we analyze the impact of the parameter T decision on the performance of the R-S-T al-

gorithms (both the reactive R-R-T and the predictive R-P-T algorithms) for the flow importance

ratio. We considered only the simulations on the dynamic videos, since they are the most sensitive

to the network resource variations and to the frame scheduling and discarding policies. The results

reported in Figure 4.5 show that both algorithms are not sensitive to the parameter T decision, at least

for values below 200ms. Indeed the bottom whisker of the R-S-T box-plot decreases by less than

5% when the parameter T decision increases from 40ms to 200ms. We conclude that the proposed
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Figure 4.5: Impact of T decision on the flow importance ratio, for R-S-T algorithms and dynamic

videos

algorithms can tolerate a delay to discard a late video frame of up to 200ms, without major im-

pact on the system performances. Network delays may contribute to increase delays in the frame

discarding decisions, but RTT are rarely higher than 150ms, even in cellular networks. Besides,

both algorithms behave the same way. It means that estimating the network throughput and taking

account of this estimation, as done in the R-P-T algorithms, do not improve the performances of

the video scheduling algorithms. So the reactive R-R-T algorithms, being easier to implement, are

more attractive.

4.2.3 Spatial quality distortion

We exploit the simulations of 6480 video delivery scenarios, especially the list of video frames that

are decoded on time at the client side to rebuild the videos as they should be displayed, i.e. without

the missing video frames. Then we compare the corresponding rebuilt and original videos with

two objective metrics: the PSNR and the MS-SSIM.
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(a) dynamic videos with cellular networks

(b) static videos with cellular networks

(c) dynamic videos with WiFi networks

(d) static videos with WiFi networks

Figure 4.6: Cloud of points representing the average PSNR of dynamic or static videos combined

to cellular or WiFi networks
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PSNR

Figure 4.6 shows the average PSNR of each algorithm for different combinations of video content

(dynamic or static) and network type (WiFi or cellular). The x-axis represents the bitrate of the

considered video segments. The PSNR is computed with regards to the original video with bitrate

7Mbps. The video encoding bitrates are 3.2Mbps, 3.4Mbps, 3.6Mbps, 3.8Mbps, 4.0Mbps and

4.2Mbps for the cellular network, and 4.8Mbps, 5.0Mbps, 5.2Mbps, 5.4Mbps, 5.6Mbps and

5.8Mbps for the WiFi network. We show here the average value of the PSNR for each video

scheduling algorithm, each category of videos (static and dynamic), and each of the 6 video en-

coding bit rates.

Figure 4.6 shows that the average value of the PSNR is a decreasing function of the video

encoding bitrate, since the bi-rate is related to the throughput deficit. Indeed, there is no throughput

deficit on the cellular (respectively WiFi) network in the video delivery scenarios in which the

video encoding bite rate is 3.2Mbps (respectively 4.8Mbps), so the PSNR is here only due to

video encoding. The larger is the video bitrate, the higher is the throughput deficit. The frame

discarding scheme then applies, with a higher impact on dynamic videos, because, as already

reported in Section 4.2.2, the dynamic videos are more sensitive to video scheduling than static,

and also because two consecutive frames in the static videos present smaller differences. The

average PSNR of the optimal algorithm decreases slightly (by 2 dB for the dynamic videos and

by 1 dB for the static videos). This demonstrates that our strategy has the potential to guarantee a

smooth video playback until the end of the segment even in the case of severe mis-prediction of the

bitrate (more than 25% throughput deficit). On the contrary, applying the basic delivery scheme

(basic FIFO algorithm) results in severe quality drops on both the cellular and the WiFi networks,

and especially for the dynamic videos (up to 11 dB). In contrast, the R-S-T algorithms perform

closely to the optimal ILP.

We evaluate the parameter T decision set in the R-S-T algorithms on the PSNR metric. We show

in Figure 4.7 the box-plot of the PSNR over all dynamic video delivery scenarios. All box-plots

show similar distributions, which confirms the conclusion in Section 4.2.2 about the limited impact
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Figure 4.7: PSNR comparison of R-S-T algorithms for dynamic videos combined with all network

traces

of T decision on the performance of the scheduling algorithms.

MS-SSIM

We apply the same process to compute the MS-SSIM metric. Figure 4.8 presents the average values

of the MS-SSIM obtained with the dynamic videos and the different video scheduling algorithms

over, respectively, the cellular network (Figure 4.8a), and the WiFi network (Figure 4.8b). The MS-

SSIM ranges between 0 and 1, and humans barely notice qualiyt difference for MS-SSIM above

0.9. The optimal algorithm presents values of MS-SSIM higher than 0.9 in all cases, although the

basic video delivery (basic FIFO algorithm) can have video quality as low as 0.5. The R−R and

R-R-60ms algorithms perform closely to the optimal algorithm with MS-SSIM higher than 0.86

on the cellular network and 0.88 on the WiFi network. We conclude that the proposed HTTP/2-

based video scheduling algorithms significantly enhance the spatial video quality compared to

basic video delivery algorithm.
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(a) dynamic videos with cellular networks (b) dynamic videos with WiFi networks

Figure 4.8: Cloud of points representing the average MS-SSIM of dynamic videos combined with

cellular and WiFi networks

4.2.4 Jitters and temporal degradation

We now analyze the temporal degradation caused by the adverse network conditions and the video

frame discarding process: jitters and rebuffering. Each video segment contains 6 seconds of video

content and is encoded at 30 fps.

A traditional video player displays all video frames of a video segment; it pauses the video

display when a video frame is missing, and resumes playback when this video frame has been

received (rebuffering). We observed that rebuffering may result in an additional delay of up to 2 s

between the original video stream and the displayed video stream (excluding the initial buffer).

In contrast, our video frame discarding algorithms always meet the 1 s low-latency requirement,

at the price of some jitters, i.e. temporal discontinuities on the video display. We evaluate in the

remaining the severity, the frequency and the duration of the jitters. We distinguish jitters regarding

their duration as follows:

• Small jitter: if 3 to 5 consecutive video frames are missing

• Medium jitter: if 6 to 15 consecutive video frames are missing

• Long jitter: if 15 to 40 consecutive video frames are missing
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Classification of the perceived video quality

Algorithm Entirely received With jitters and no crash With crash

Basic FIFO 34% 44% 23%

ILP 34% 66% 0%

R-R 34% 65% 1%

R-R-60ms 34% 63% 3%

Table 4.3: Ratio of videos with different anomalies per algorithm

(a) Jitter frequency for no-crash video (b) Sum of jitters duration for no-crash videos

Figure 4.9: Temporal distortion per algorithm for video/network combinations which we classify

into two categories, a first category for whom the basic FIFO does crash

• Crash: if more than 40 consecutive video frames are missing

We also distinguish the videos into categories based on the worst type of QoE anomaly: (i)

entirely received videos, (ii) videos with small-medium-long jitters, and (iiii) videos with at least

one crash. For each video scheduling algorithm we compute the percentage of videos owning to

each category. A video crash corresponds to a jitter longer than 1370ms which decreases the MOS

below 2 according to Kester et al. [51]. In light of this observation, the results reported in Table 4.3

indicate that our proposed algorithms significantly reduces the video experiencing crashes, from

23% for the traditional delivery to only 3% for the R−R−60ms algorithm. The optimal ILP

completely eliminates crashes.

Second, we compare the the frequency and the duration of the jitters, with the basic FIFO
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(a) Jitter frequency for crash videos (b) Sum of jitters duration for crash videos

Figure 4.10: Temporal distortion per algorithm for video/network combinations which we classify

into two categories, a second category for whom the basic FIFO does not crash

algorithm. We classify again the videos into categories: (i) the videos that do not experience

any crash with the basic FIFO algorithm, and (ii) the others. We analyze then the jitters for

both categories by determining the average frequency and the sum of the duration of the jitters.

The results are presented in Figures 4.9 and 4.10. Figures 4.9a and 4.9b focuses on the no-crash

videos while Figure 4.9b shows that these videos present on average a cumulative duration of jitters

higher than 500ms, which decreases the video quality to poor according to Kester et al. [51].

The proposed algorithms decrease both the cumulative duration and the frequency of the jitters

of the videos owning to this first category. The optimal ILP shows that a theoretical optimal

implementation manages to have jitters below 500ms, which is considered as a good-fair quality

by Kester et al. [51]. Figures 4.10a and 4.10b focuses on crash videos. The proposed algorithms

almost eliminates crashes without increasing the average frequency of jitters, at the expense of

longer jitters.

It is also worth mentioning that our proposed algorithms always decrease the frequency and

the duration of the jitters on the dynamic videos. In contrast, for static videos, our algorithms

decrease the frequency and the duration of jitters on the no-crash videos, but only decrease the
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duration of jitters on the crash videos. These results are still not sufficient to fully evaluate the

QoE. They show that our proposed algorithms enhance the video quality with lower frequency and

cumulative duration of jitters. The results motivate future works on conducting subjective tests and

on evaluating the QoE.

Conclusion

Our proposal aims to avoid DASH video delivery rebuffering events while ensuring a low latency

delay between the displayed and the original video flows. We propose in this part to use a novel

approach to deal with bandwidth shortage occurring during a video segment delivery: the imple-

mentation of video frame discarding policies with HTTP/2 until the end of segment. We leverage

the HTTP/2 reset stream feature to discard video frames. We evaluate our algorithms by combining

dynamic and static videos with cellular and WiFi network traces. We propose an optimal ILP and

practical algorithms. We evaluate our results with various spatial and temporal metrics. The pro-

posed algorithms avoid the accumulation of delay while presenting an acceptable displayed video

quality. They reduce the quality distortion especially for dynamic videos. The proposed algorithms

behave closely to the optimal solution. We also conclude that the HTTP/2 weights feature is not

necessary for our algorithms since there is no need for interleaving frames.

For future work, it is interesting to conduct subjective video quality tests because the QoE

measured with spatial and temporal objective metrics is not sufficient to assess how humans re-

act to jitters in addition to HAS rate-adaptation. It is also important to study the best trade-off

between the chunk size selection, the representation switching frequency and the video frame dis-

carding scheme to maximize the QoE. We showed in our paper [11] that investing on the capacity

of decoders to deal with missing frames brings advantages. The performance of our algorithms

depends on the video encoding (number and size of frames B) and also on the decoder strategy.

Besides, HTTP/2 have other features such as server push. The server push can be used to fetch the

video frames from the server to the client and avoid the frequent client requests of video frames.

However, this optimization needs implementation efforts on the server side and a complementary
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communication mechanism between the client and the server.

This part opens various perspectives. In particular, interleaving may be useful for immersive

videos, where tiles (spatial video parts) can be decoded independently of each others and have

different importance with respect to the client point of view. We study this perspective is part II of

this dissertation.
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Part II

HTTP/2-based viewport adaptive strategies

for 360
◦ streaming
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“You can have it all. Just not all at once.”

- Oprah Winfrey -

Introduction

An efficient 360◦ video streaming not only requires to adapt the content to the network resources

but it also takes into account the viewer viewport in order to maximize the QoE. A 360◦ video

is first captured by multiple video cameras. Then, the contents are stitched together by using

various methods to determine the overlapping regions [39] to provide a 360◦ × 180◦ degrees of

field of view [83]. Today’s coders are not able to process three-dimensional structured content.

To cope with this issue, the 360◦ video is then projected into a two-dimensional plan to enable

its processing by traditional 2D codecs [111]. Several works address efficient 360◦ video 2D-

projections following different projection schemes such as equirectangular [24, 50, 85, 101, 102]

and cubemap projections [36, 60].

Once the video is projected, it goes through traditional compression techniques such as tem-

poral and spatial compression. There is usually a high correlation between neighboring pixels of

an image. Encoders uses intra-prediction techniques to reduce the spatial redundancy inside each

of the images composing the video which enables efficient spatial compression and reduce the

overall size of the video. The most popular technique, which is adopted by many standards, is

the transform technique where each image is split into blocks and the transform is applied to each

block [5, 63].

Encoding techniques based on tiling enable to encode an image into independently decodable

parts. Tiling presents the advantages of dividing the picture into rectangular and regular size parts

known as tiles. It enables efficient parallel processing and provides entry points for local access

as explained by Misra et al. [68]. It is important to find the appropriate size of tiles that cover the

Region of Interest (RoI) without significantly exceeding it. Large tiles enable a better compression

rate but requires a higher quality since the data in the tiles covering the RoIs should be encoded

with the same bitrate [88]. Figure 4.11 shows an example of a 6×4 grid tiled-picture.
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Figure 4.11: A 6×4 tiles grid encoded picture

Several studies propose to use tiling to stream 360◦ videos [32, 34, 37, 73]. Tiled media enables

the client to retrieve and render the portion watched by the client (the viewport) in a faster way

compared to untiled 360◦ media [52]. Without tiling, the entire content must be decoded before

extracting and rendering the viewport [58]. Then, the portion of the video watched by the viewer is

extracted and rendered on the client device according to its Field of View (FoV). A FoV dimension

depends on the headset but it is usually about 110◦ × 90◦.

Modern encoders such as HEVC are able to compress the video as a set of tiles [44, 58, 77, 86,

112]. The resulting tiles (spatially independent sub-videos of each segment) are then encoded into

multiple quality levels. The client can select the proper quality distribution over tiles in accordance

with his viewport. The client predicts the viewer head orientation for the next segment and requests

it in advance to meet the latency requirements. The tiles overlapping with the predicted viewport

are transmitted at high bitrate, and others are transmitted at low bitrate.

Several techniques allow a HAS client to request a set of tiles at relevant resolutions in accor-

dance with the viewer head orientation. Le Feuvre and Concolato [58] propose to add additional

packaging information on the ISO Base Media File Format (ISOBMFF) to enable a tile-based

encapsulation and byte range-based delivery of tiles. Niamut et al. [77] present the Spatial Rep-

resentation Description (SDR) feature of the MPEG DASH standard [1]. It extends the MPD of
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DASH by describing spatial relationships between associated pieces of video content. The chal-

lenging question remains to decide the set of tiles the client should request in advance as well as

their qualities which depends on the viewport prediction.

Due to the presence of the response delay, the client should estimate the viewport in the future

in order to make decisions. Viewport prediction should enable the client to estimate the viewer head

orientation for the next video segment. Jeong et al. [46] predict the user’s viewport by utilizing

the location information of the sound sources in the 360◦ video. Aladagli et al. [2] have analyzed

the correlation between real viewer head movements and sequential fixations predicted from a

saliency model of the video. They show that predicting the viewport based only on the saliency

map is insufficient. Ban et al. [6] consider user’s personalized information and the behaviors of

other users watching the same video to predict future viewport. Fan et al. [31] combine the history

of the user headset orientations and the saliency of the video content to predict the viewport for the

n next video frames. They have reached 89% of accuracy in the best cases.

Viewport prediction is challenging due to its random nature and it is prone to errors. Nguyen

and Yun [76] show that the error levels get higher as the prediction interval increases. According to

Bao et al. [7], a viewer position can be accurately predicted in a maximum time scale of 500ms in

advance. However, without an accurate viewport prediction, viewers may watch lower resolution

pixels when they change their motion which decreases the QoE. Nguyen et al. [74] show that

a viewport-independent streaming may outperform all considered viewport-adaptive methods in

case of long buffer (exceeding 2 s) and inaccurate viewport predictions since HTTP/1 suffers from

long response delays to the client urgent requests of viewport tiles.

Viewport prediction in large time scale is prone to errors. The client should predict the viewport

late enough to obtain a high accuracy, but also early enough to request and receive the tiles of the

video segment in time. In case of erroneous predictions, the client should correct its decision,

but with HTTP/1, it needs to receive the inappropriate quality levels of the video parts before

requesting the appropriate ones. For example, the client can receive video tiles in wrong quality

levels, which leads to a useless over-consumption of the network resources or a video frame after
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its deadline, which enforces rebuffering and decreases the QoE.

In this part, we propose to enable the client to benefit from the totality of the available network

resources as well as of the enhancement of its viewport prediction accuracy over time. For each

video segment, the client selects the quality level of tiles according to a first viewport prediction,

and it adjusts its decisions later on time based on HTTP/2 priority and reset stream features and

by running a second viewport prediction. We briefly describe the related works about viewport-

dependent streaming on the following.

Related works on immersive streaming

Viewport-adaptive solutions have recently captivated the research community [24, 34, 37, 73, 84].

Corbillon et al. [24] propose to create seven different copies of the same 360◦ video content based

on pre-defined positions of the viewport. For each copy, they decrease the quality level of the

background and maximize the quality level of a specific viewport. Then, each copy is encoded

into several quality levels so as to match the bandwidth. Authors in [37, 73] propose tile-based

viewport-dependent adaptive streaming approaches. The 360◦ video is divided into tiles, each tile

being encoded at multiple different quality levels. Each video segment is therefore composed of

different spatial video tiles. Only the tiles that overlap the viewport are streamed at the highest

quality while tiles of the background are delivered at a lower quality. Graf et al. [34] describe an

implementation of tiles as specified within modern video codecs such HEVC/H.265 and VP9 so as

to enable the tile-based viewport-dependent adaptive streaming solutions.

Recent studies [75, 81] propose to use HTTP/2 protocol for 360◦ video streaming. Nguyen

et al. [75] propose to send each 360◦ video tile in an HTTP/2 stream and assign higher weights

to streams that deliver viewport tiles in order to ensure that they are received and decoded first by

the client. They propose an RR-policy-based implementation of the HTTP/2 priority since tiles

are completely independent. However, this solution brings benefits only in the case of bandwidth

insufficiency, where some tiles may arrive late. This solution may also suffer from inaccurate

viewport predictions which accidentally leads to prioritize tiles of the background and increases
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the risk of delaying the delivery of real viewport tiles. Nguyen et al. propose to use the HTTP/2

stream termination feature to cancel the delivery of delayed tiles before requesting tiles of the next

video segment which reduces rebuffering events and saves bandwidth. Petrangeli et al. [81] focus

on the k-push HTTP/2 feature. In order to reduce the impact of high RTT on the video delivery

over constrained networks, only one request is sent from the client to the server, specifying the

quality levels of tiles. Tiles are consequently pushed by the server to the client using the FCFS-

policy-based priority implementation.

Qian et al., Xie et al. [84, 108] show that the viewport accuracy gets higher with shorter predic-

tion intervals. According to Bao et al. [7], an accurate viewport position can be predicted in a time

scale lower than 500ms in advance. All the aforementioned works, dealing with the viewport-

dependent adaptive streaming, consider only one viewport prediction per video segment. Since

they do not exploit the enhancement of the viewport prediction accuracy over time, their proposed

systems may suffer from the prediction’s errors.

In this part, we propose to run two predictions at the client side to request a video segment.

By using the HTTP/2 priority and reset stream features at the second prediction, the client adapts

the delivery of the ongoing tiles in accordance with the most recent predicted viewport and band-

width. We develop adaptive streaming algorithms based on 1-viewport-prediction and 2-viewport-

predictions with different HTTP/2 weight functions. Before concluding, we compare the algo-

rithms and evaluate their performance in chapter 6.
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Chapter 5

A viewport-dependent streaming solution based on

2-predictions and a HTTP/2 viewport-weight

function

Contents
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5.2.2 Decisions of the HTTP/2 client . . . . . . . . . . . . . . . . . . . . . . . 73

In this chapter, we propose a new adaptive streaming system, which enables the client to control

the video tiles delivery by leveraging the HTTP/2 stream-control features. Our main idea consists

on requesting each video tile in a dedicated HTTP/2 stream, running two viewport predictions, and

then control the delivery of the video tiles by invoking the stream-level control features defined in

the HTTP/2 standard.
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Figure 5.1: General principles of our proposed scheme. During the display of the sth video seg-

ment, the client manages the delivery of the (s+1)th video segment using two consecutive viewport

predictions

5.1 System model for immersive video delivery

Our solution is client-based. Figure 5.1 shows the general scheme of our proposed system. At the

display time of a video segment s, the client executes a first viewport prediction for the next video

segment s + 1. It selects the quality levels of future tiles in accordance with the first viewport

prediction. Then, it requests each video tile in an HTTP/2 stream. Later, the client runs a second

viewport prediction and, based on it, the client adapts the ongoing delivery of video tiles by using

the HTTP/2 stream features. Finally, the client decodes the received tiles, reconstructs the 360◦

video content, extracts and displays the viewport corresponding to the user viewing direction. The

main keys of our proposal are the following:

• Our proposed scheme is generic: it works with any HAS technology, with any number of

tiles, and it is orthogonal to the viewport prediction model.

• The client runs two viewport predictions.

• At each prediction, the client divides the video sphere into regions depending on the pre-
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dicted viewport, as we describe in section 5.1.1.

• We describe the tile quality selection mechanism in section 5.1.2. The selected video quality

of tiles depends on the viewport prediction occurrence and also on the state of the network.

• At both predictions, the client prioritizes the viewport tiles delivery (tiles overlapping with

the viewport) by assigning dynamic HTTP/2 weights as we describe in section 5.1.3.

• At the second prediction, the client can stop the delivery of a set of tiles and also request

new ones according to the relative tiles position to the predicted viewport as we detail later

in Table 5.3.

5.1.1 Viewport-dependent regions division

The probability of tiles to be in the real viewport varies in accordance with the distance to the

predicted viewport center and the prediction accuracy. We propose to divide the video into four

regions at each viewport prediction. Figure 5.2 shows an illustration of the four regions and a grid

of 6 × 4 tiles overlapping. We denote by NbT the number of the resulting tiles (for example, 24

tiles in the grid shown in Figure 5.2). We define the regions as follow:

Figure 5.2: Overlapping between video regions and a 6×4 tiles grid for an equirectangular pro-

jection

68



1. The viewport area: In this dissertation, usually we refer to the predicted viewport as the

viewport, unless we state that we refer to the real displayed one. We define as the viewport

tiles, the tiles overlapping entirely or partially with the real viewport.

2. The extension area. It corresponds to small spatial region of the video frames surrounding

the viewport. The extension area has high chances to overlap with the future viewport within

a short time due to natural small head movements of the viewer. Almquist et al. [3] show that

using a small extra safety margin protect against fast back-and-forth directional changes. We

define then the extended area which is the set of the viewport and the extension ones.

3. The immediate background area. When the prediction is accurate, this part of the video

is not expected to be displayed in the Head Mounted Display (HMD) in a near future, but

since prediction is prone to errors, it should nevertheless be delivered to the client in case of

an unexpected sudden head movement.

4. The far background area. This region is the opposite of the viewport in the sphere. During

one segment length, the probability that an abrupt head movement makes that the viewport

overlaps these tiles is low. If the prediction is accurate, this region has no chances to be

required by the viewer.

We denote by the extended area the set of region 1 and 2, while the background area refers to

regions 3 and 4 in the following. We define as the extended viewport tiles, the tiles overlapping

entirely or partially with the extension area and by the background tiles the tiles overlapping with

the background area.

At each prediction, the client exploits its viewport to calculate the ratio of the extended area

pixels of each video frame overlapping with each tile t. Then, it computes its average value over

all the frames of segment s, as described in Equation (5.1). We denote by pki,s,t the ratio of the

predicted extended area pixels of the ith frame of the video segment s overlapping with tile t. The
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integer k represents the viewport prediction occurrence on segment s.

pks,t =
1

n

∑

i∈[1,n]

pki,s,t (5.1)

Secondly, the client classifies the tiles into extended viewport tiles if pks,t > 0, and to back-

ground tiles otherwise. In order to compute the far background tiles, the client replaces the normal

dimension of the viewport by very large dimensions ( for example 180 × 180 degrees instead of

110× 90 degrees). In this case, pks,t = 0 represents a tile of the far background.

5.1.2 Tile quality level selection

At the first prediction, the client first attributes the lowest possible quality level to the background

tiles. Then, it predicts the remaining available network resources and assigns the highest quality

level to the extended viewport tiles (tiles of viewport + extension areas) as a margin of security.

At the second prediction, the viewport prediction is more accurate, however, the client can be

limited by the network resources. When the network resources are sufficient enough to receive

tiles of regions (1, 2 and 3) at time, the client requests the new extended viewport tiles (ie. tiles

overlapping with the viewport at the second prediction but not at the first prediction) at a high

quality, otherwise it keeps the delivery of these tiles at a low quality.

5.1.3 Tiled media delivery with HTTP/2

One of our main contributions is our proposal to deliver each video tile in an HTTP/2 stream and

set priorities between streams. Figure 5.3 illustrates an HTTP/2 communication between a server

and a client. First, the client requests the MPD file. It extracts information about the video and

then requests each video tile in an HTTP/2 stream.

In order to optimize the viewport tiles delivery, the client not only assigns a high quality level

to the extended viewport tiles, but it also assigns high HTTP/2 weights to streams transmitting ex-

tended viewport tiles so as to prioritize their delivery. We use an RR-implementation for HTTP/2-
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Figure 5.3: HTTP/2 client to server communication example. Each HTTP/2 Si has a weight wi

and contains a video tile Ti

priority as described in Figure 2.8 since the video tiles are completely independent. The server

multiplexes the streams with respect to the weights set by the client. At any time, the client can

manage the resource allocation between streams.

At the first viewport prediction for segment s, the client assigns for each video tile t a weight

equal to either 256 × p1s,t if it is in the extended area, or 1 if it is in the background area. At

the second viewport prediction for the same segment s, the client updates the stream weights

depending on the values of the viewport pixels ratio per tile p2s,t, t ∈ {1, . . . , NbT}. Other weight

functions can be attributed to the stream, which we investigate in chapter 6.

Our HTTP/2-based proposal allows the client to upgrade or degrade the quality level of a tile

while being delivered, by first canceling the current delivery, and then requesting this tile with

another quality level.

In Figure 5.3, the client decides to double the weight of stream S3 so the server adjusts the

resources distribution by assigning 2
5

of network resources to S3, 2
5

to S2 ,and 1
5

to S1. Then, the

client decides to cancel stream S1, so the server stops S1 delivery and adjusts the resource sharing

with 1
2

to S3 and 1
2

to S2. We detail the different possible delivery scenarios as well as the client
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decisions in Section 5.2.

5.2 Practical HTTP/2-based Algorithms

5.2.1 Viewport Prediction Accuracy Model

Figure 5.4: Axis of the sphere

Category Er1z values Er1y values

Small class [15,35] [10,20]

Medium class [45,65] [25,35]

Big class [75,95] [40,50]

Table 5.1: Viewport prediction errors per error class

in degrees

Our scheme is compatible with any viewport prediction system that enhances its accuracy over

time. In this work, we do not propose a particular viewport prediction model. We assume that

a video segment is composed of a set of n frames. For each frame i ∈ [1, n] and a prediction

p ∈ [1, 2],1 we define the deviation errors Erpi as a couple of (Erz, Ery) values. Erz and Ery

denote respectively the deviation around the z-axis and the y-axis between the center of the real

and predicted viewports, as shown in Figure 5.4. The deviation errors decrease between the first

and the second viewport predictions. We classify the deviation errors into small, medium and big

classes as described in Table 5.1

1We set only two prediction updates for the sake of simplicity but our proposal can run with any number of

consecutive predictions.
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Accuracy Accuracy assumptions

model name 1 s before 500ms before

First model: segment-based prediction All video frames of a segment

present the same viewport pre-

diction error class

Perfect

Second model: frame-based prediction Viewport prediction error class

per frame depends on the video

frame ID (order) in the segment

Perfect

Table 5.2: Two viewport accuracy models: 1) per video segment and 2) per video frame.

We distinguish between two models of the accuracy enhancement of viewport prediction over

time as shown in Table 5.2. For the first model, we consider that all the predicted viewports per

frame in the segment have the same error class. For the second model, we consider that frame i

has a higher viewport prediction accuracy than frame i+ 1 since video frame i is displayed before

video frame i + 1, which is more realistic. Viewport errors only concerns the first prediction. We

suppose that the second prediction is accurate.

5.2.2 Decisions of the HTTP/2 client

We present in the following the algorithms that we propose for an HTTP/2 viewport-based scheme

with two consecutive viewport predictions per video segment. We denote by tdisplays the display

time of the video segment s. In this paper, without loss of generality, we consider that the first pre-

diction of the viewport for segment s is done one second before tdisplays and the second prediction

is made 500ms later. Let tps, p ∈ {1, 2} be both prediction times for segment s. In future work,

we will explore different number of consecutive predictions and various time differences between

these predictions.

Since the viewport prediction improves over the time, the second prediction is more accurate

than the first one. In constrained networks, our proposal allows the client to cancel the ongoing
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delivery of the far background area tiles of segment s if it does not completely receive these tiles

at t2s. Besides, at t2s the client may upgrade or degrade some video tiles according to the evolution

of their viewport ratio pps,t from prediction p = 1 to prediction p = 2. We summarize in Table 5.3

these different possible scenarios.

Tile position Completely received at t2s
Prediction 1 Prediction 2 Yes No

Background area Extended area Upgrade Algorithm

Extended area Extended area No actions Update weight

Background area Background area No actions Update weight

Any area Far background No actions Cancel stream

Extended area Immediate Background No actions Degrade Algorithm

Table 5.3: Actions of the HTTP/2 client at the second prediction t2s for segment s

We detail in Algorithms 5.1 and 5.2 the different network conditions considered by the client

while taking a decision of upgrading or degrading a tile quality level. We denote by SLow
t and SHigh

t

the total size of tile t at respectively the high and the low quality levels. We denote by SQ,r
t the

remaining amount of data for tile t that the client should still receive at quality Q ∈ {low, high}.

We denote by Br the expected remaining available bandwidth between t2s and tdisplays , by Bup the

remaining bandwidth available to request viewport tiles in a high quality level and by Poolup the

set of the viewport tiles that need to be upgraded.

Algorithm 5.1 Degrade Algorithm:

1: if SHigh,r
t > SLow

t then

2: Cancel tile t delivery

3: Request tile t with a Low quality

4: else

5: Keep the ongoing delivery of tile t
6: Update the remaining size SQ,r

t of the requested tile t

In Algorithm 5.1, the client cancels a tile delivery to request it with a low quality only when

this action enables a bandwidth saving. It is possible that a video tile of the background is already

entirely or almost entirely received with a high quality due to an erroneous first viewport prediction.
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In this case, the HTTP/2 reset stream feature does not bring any bandwidth saving; therefore the

client does not use it.

Algorithm 5.2 Upgrade Algorithm

1: Bup = Br −
∑

t 6∈{Poolup∪OppositeArea} S
Q,r
t {The client first ensures the correct delivery of tiles

that do not need to be upgraded}

2: while
∑

t∈Poolup S
High
t > Bup and Bup > 0 do

3: Find tmin ∈ Poolup/{p2s,tmin
6 p2s,t∀t ∈ Poolup}

4: Remove tile tmin from Poolup

5: Bup = Bup − SLow,r
tmin

{The client checks if it is possible to upgrade all tiles of Poolup. If

not, it keeps the delivery of the least important video tiles at the low quality level and try to

upgrade the quality of the remaining tiles.}

6: Cancel the delivery of all tiles of Poolup

7: Request all tiles of Poolup with high quality level

In Algorithm 5.2, the client checks the available bandwidth resources before deciding whether

to upgrade tiles’ quality levels. First, it prioritize the complete delivery of all video tiles (except

for the far background area tiles). Then, it upgrades the quality of the most important video tiles

with respect to bandwidth constraints.

We evaluate our proposed scheme in terms of quality of viewport pixels and network consump-

tion in Chapter 6 and we compare it to different HTTP/2 and HTTP/1-based algorithms.
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Chapter 6

Evaluation of viewport-dependent streaming

algorithms
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In this chapter, we aim to answer two main questions; the first question concerns the effects of

considering two successive viewport predictions for a video segment instead of only one prediction.

We analyze its impact on the video quality and on the network resources consumption. The second

question is about the effects of using HTTP/2 protocol to stream each video tile in an HTTP/2

stream compared to HTTP/1-based streaming solutions. We evaluate the benefits and challenges

of the HTTP/2 reset stream and the priority features. In order to answer these questions, we

compare our proposed solution, named 2-predictions HTTP/2 viewport weight-based algorithm, to

four different algorithms described in Section 6.1.

6.1 Reference Algorithms

We compare the performance of our proposal with the following algorithms:
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1-prediction HTTP/1 The client runs only one viewport prediction at t1s = 1 s before the segment

display. It selects the quality level of the tiles and requests them in the FCFS order.

2-predictions HTTP/1 The client runs a first viewport prediction for segment s at t1s = 1 s and

second one at t2s = 0.5 s. It cannot cancel any ongoing delivery, nor prioritize the delivery.

However, it can request at higher quality a tile in the extended area that was mistakenly

predicted in the background and so previously requested at low quality.

2-predictions HTTP/2 default weight The client behaves as in our proposed solution. However,

it does not attribute weights to the HTTP/2 streams. The server automatically assigns weight

equal to 16 to all streams, which enables a fair network resource sharing [9].

2-predictions HTTP/2 sized weight The client behaves as in our proposed scheme. However, it

assigns weights to the HTTP/2 streams so that all video tiles are received at the same time.

We denote by wi the weight of stream Si delivering a video tile t and by T the set of all video

tiles. The weight function is given by eq. (6.1).

Wi,t =
SQ,r
t

mink∈T (S
Q,r
k )

(6.1)

6.2 Datasets

We developed a Python 3 simulator to evaluate the performance of our proposal and to combine

the video datasets, the traces of the users’ viewport behavior, the prediction errors, and the network

resources.

We consider three publicly available 360◦ videos [23]. The first one is the RollerCoaster video

which was captured in front of a moving roller-coaster car. Corbillon et al. [23] observes that

viewers aim to have a quite fixed head orientation while watching the RollerCoaster video, which

usually makes the viewport prediction accurate. The second video is a virtual reconstruction of

Venice with a flying camera, named Venice. Viewers usually move their head softly as to look at

the different parts of the city. The third one is the Timelapse video which presents a series of scene
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cuts including many fast moving objects. Viewers usually moves fast their head orientations while

watching this video, which makes an accurate viewport prediction challenging.

Real viewers’ viewport traces are publicly available [23]. We randomly select 9 users (3 users

per video). For the purpose of assessing our proposal, we generate erroneous viewport predictions

the following way. For a specific 360◦ video content and a specific user, the dataset provides the

user head orientation on each video frame. We transform the real viewport by introducing random

errors to generate inaccurate viewport predictions in accordance with fig. 5.4 as to simulate of the

results of a real viewport prediction mechanism. Changing the user’s head orientation very often

during a video segment time scale imposes to display more tiles at the highest quality level. The

viewer head movements frequency and speed depend on both the video content and the viewer.

For each video, we consider the first 60 s. We used the open-source Kvazaar [54] software

to encode each video with an average bitrate target of 5Mbps and 18Mbps and a resolution of

3840 × 1920. Then, we split the video into 6 × 4 tiles and into one-second video segments. We

extracted the size of each encoded tile and used it as input of our simulator. For each scenario, we

consider a constant bandwidth ranging from 8Mbps to 18Mbps.

6.3 Performance evaluation

For each algorithm and each prediction accuracy model (as described in Table 5.2) we evaluate the

network resource consumption as well as the status of each pixel of the viewport. Three status are

possible:

• Viewport pixels received at a high quality

• Viewport pixels received at a low quality

• Unreceived viewport pixels

When a set of pixels of the viewport is not received because tiles containing these pixels are de-

layed, the player displays a green bloc instead of it, which badly impacts the QoE. It is important
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to highlight that we only consider pixels of the real viewport in our performance evaluation and

not pixels of the extended viewport.

We represent in Figure 6.1 the impact of different prediction errors levels on the viewport pixels

status of each of the studied algorithms. We consider the Timelapse video, a mean of the results

of the three viewers we randomly selected and the segment-based viewport prediction accuracy

model (Table 5.2). Results show that the more important prediction errors are, the higher the ratio

of the unreceived viewport pixels (black blocs) is. We observe that running two predictions with

HTTP/1 only enhances the performances for bandwidth values higher than 13Mbps. However, our

proposed 2 predictions HTTP/2 viewport weight scheme always decreases the ratio of unreceived

viewport pixels for all errors levels as well as the ratio of low quality viewport pixels. We also

observe that the HTTP/2 default weight and sized weight functions significantly decrease the video

quality especially for small prediction errors and should be avoided.

Besides, Figure 6.2 shows that running two predictions with HTTP/1 always consumes more

network resources that running only one prediction. The additional network consumption for

bandwidth values lower than 13Mbps is a total waste since the video quality is not enhanced

as described in Figure 6.1. However, our proposed 2 predictions HTTP/2 viewport weight scheme

always decreases the network resource consumption comparing to the 2-predictions HTTP/1 al-

gorithm and also saves bandwidth resources compared to the 1-predictions HTTP/1 algorithm for

bandwidth values lower than 13Mbps. Besides it consumes only 13% more network resources

than the 1-prediction HTTP/1 in the worst cases. In fact, our proposed 2 predictions HTTP/2 view-

port weight automatically adapts the tiles delivery and quality levels to the bandwidth resources

due to the weight functions-based algorithms we propose (ref to section 5.2).

Figure 6.3 show that all 2 predictions HTTP/2 based algorithms consume the same network

resources. We conclude that considering two consecutive predictions in the tiles’ request and

delivery process, as enforced in our proposal smartly consumes the network resources. However,

Figure 6.1 also shows the importance of considering an appropriate HTTP/2-weight function based

on viewport predictions in order to enhance the status of the viewport pixels and the overall video
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Figure 6.1: Ratio of viewport pixels incorrectly or badly received per algorithm and per predic-

tion error level, for the Timelapse video. The viewport ratio of correctly received pixels is the

complement until 1.
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Figure 6.2: Bandwidth consumption for the Timelapse video, using the segment-based viewport

prediction accuracy model

Figure 6.3: HTTP/2-based algorithms bandwidth consumption for the Timelapse video, using the

segment-based viewport prediction accuracy model
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quality.

Figure 6.4: Viewport pixels received with the highest quality

Figure 6.5: Representation with box-plots of the viewport pixels status of all the video segments

watched by all users and for all viewport error classes

We use box-plots in Figure 6.5 to represent the results for all the viewers and the videos of our

datasets. On each box-plot the colored surface represents the distribution of the viewport pixels’

quality status for all video segments, users, videos and errors taking into account the segment-

based viewport prediction accuracy model. Inside this surface, the horizontal line and the point

represent, respectively, the median and the average values. The whiskers extending from either

side of the box represent the ranges of the bottom 15% and top 15% values. Our proposal shows

stable performance results. It always presents a higher ratio of high quality viewport pixels and

significantly decreases the ratio of unreceived ones.

We also evaluate the performance of our proposal when the frame-based accuracy model is

applied, as introduced in Table 5.2. We consider that at the first prediction video frames displayed
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in the first 330ms have small error predictions, then frames of the next 330ms have medium error

predictions and the rest ones have big error predictions.

Figure 6.6: Unreceived and low quality received pixels of the real viewport area for the frame-

based viewport accuracy scheme and for different videos and users

Figures 6.6 and 6.7 show the results for different videos and viewers. Our proposed scheme

always increases the overall quality of the viewport pixels. It also decreases the bandwidth con-

sumption, up to 12% in the best cases compared to the HTTP/1-viewport adaptive schemes, and

up to 35% compared to delivering the entire video segment with the highest quality level (18Mbps

in the case of our study).

Besides, the performance related to the Timelapse video show the advantages of our proposal.

Figure 6.7 shows an increase of the consumed bandwidth for the Timelapse video compares to the

Venice and the RollerCoaster ones. Indeed, our proposal is remarkably interesting for dynamic

videos where the user often moves his head and a high number of tiles is required for display. The

RollerCoaster is easy to predict but in our study we applied the same rules for all the videos in
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order to understand the functioning of all the algorithms in different scenarios, so introduced the

same errors than the other contents, which justifies the high unreceived viewport pixels observed

for the RollerCoaster video.

Figure 6.7: Bandwidth consumption for the frame-based viewport prediction accuracy scheme and

for different videos and users

We also observed that the HTTP/2 default and sized weight-based algorithms reduce the band-

width consumption but can decrease the video quality. The results are similar to those of segment-

based viewport prediction accuracy model. Since the overall quality of the viewport pixels is not

always enhanced with the sized and the weight-based algorithms, the choice of an appropriate

HTTP/2 weight function is a crucial parameter of our proposal.

Conclusion

In this part, we described our proposed scheme to increase the QoE on 360◦ video streaming by

using a novel approach that exploits the enhancement of the viewport prediction over the time. We

propose to request each tile in HTTP/2 stream and we leverage the HTTP/2 and priority features

to handle the tiles delivery. We evaluate our scheme in terms of quality of viewport pixels and net-

work consumption and we compare it to different HTTP/2 and HTTP/1-based algorithms. Results

show that our proposal automatically adapts to the available network resources and prioritizes the

delivery of viewport tiles. We also demonstrate that the choice of the HTTP/2 weight function is

critical in order to prioritize the viewport tiles since the weigh function determines the interleaving

scheme between the HTTP/2 streams delivering the video tiles.

In order to benefit from the reset stream and priority features, implementation efforts should
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be done on the client side so that it can communicate with the server, cancel ongoing requests

and attribute weights to the streams. In the best of our knowledge, there is no commercial players

supporting the HTTP/2 weight feature in 2018. However, TiledMedia, a company that was founded

in 2016, has developed a player supporting the reset stream feature of HTTP/2. This work was

lead in partnership with Akamai and Harmonic companies in the context of optimizing 360◦ video

streaming but they do not explore the benefits of the HTTP/2 weight features [98].

Future studies can focus on studying the best trade-offs on the available network resources

and the time the second viewport prediction occurs. Indeed, short prediction period makes the

system more sensitive to bandwidth variations while a long prediction period results in a lower

viewport quality. Besides, the client can run several predictions, it would be interesting to study the

optimal number of viewport predictions to run separately in order to achieve the best performance.

Subjective video quality tests to assess how human viewers experience the unreceived and the low

quality viewport pixels are also of a great value and should be conducted.
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Chapter 7

Future Directions

“Design is a way of life, a point of view."

- Paul Rand -

Contents
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7.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

The emergence of the low latency services, like live OTT or immersive videos, has created

new challenges for the HTTP-based streaming systems. These services not only require fast data

delivery, but they also require good video quality leading to important data volumes. However,

existing systems have mechanisms that use aggressively the available network resources which

usually leads to rebuffering events and a decrease of the QoE. Since 2015, HTTP/2 offers inter-

esting features that can be used to better utilize the network resources and reduce the end to end

latency.

In this thesis, we have showed that the HTTP/1-based low latency streaming systems cannot

always adapt to the network constraints. Hence, we have proposed new systems to enhance the

video delivery by leveraging the HTTP/2 reset stream and priority features. We summarize the

main parts of this thesis in section 7.1. Then in section 7.2, we discuss possible future works.
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7.1 Achievements

The aim of this dissertation is the description of possible ways to use HTTP/2 features to enhance

the performances of low latency streaming services.

In Chapter 1, we generally introduced the subject and described the motivations of our work. In

Chapter 2, we detailed the key technical elements of the video streaming system and we introduced

the HTTP/2 protocol. Then, we divided our main contributions in two parts.

In Part 1, we focused on improving the QoE of live streaming sessions where the DASH adapta-

tion mechanism miss-estimates the available bandwidth. We started the part with a brief description

of related works about video frame discarding strategies. Then, we proposed HTTP/2-based frame

discarding strategies in order to avoid the accumulation of rebuffering delays in Chapter 3. We

presented the main concept of our proposal and we detailed optimal and heuristics algorithms of

video frame discarding. In Chapter 4, we described the simulation environment and we presented

the performance evaluation of our proposal. The results show that our proposed scheme avoid

the accumulation of delay between the displayed and the original video flows while presenting an

acceptable displayed video quality.

In Part 2, we focused on the service of 360◦ video streaming. We proposed to improve the

viewport pixels quality of immersive videos by refining the tiles delivery in accordance with the

available bandwidth and the viewer head orientation. The part begins with a description of the

related works about the viewport-dependent adaptive streaming. In Chapter 5, we presented the

main element of our proposal which enables the client to control the 360◦ video tiles delivery

by leveraging the HTTP/2 stream-control features. In Chapter 6, we described the simulation

environment and the findings of the performance evaluation. Our proposal automatically adapts

to the available network resources and prioritizes the delivery of viewport tiles when the HTTP/2

weight function is set in a dependent way of the viewport prediction.
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7.2 Perspectives

In this Ph.D dissertation, we proposed some ideas to enhance the QoE of low latency services with

HTTP/2 reset stream and priority features.

The results of our work present a motivation to conduct subjective tests in order to assess

how viewers perceive the temporal jitters in the case of the traditional live streaming, and the

viewport-adaptive video streaming. Besides, the findings of this thesis motivates to develop players

supporting the HTTP/2 priority and reset stream features. Still, the effectiveness of canceling an

HTTP/2 stream instead of establishing a new TCP connection depends on the implementation and,

especially of the configured size of the application layer buffer on the server side. When this buffer

is not short enough, a reset stream will not be efficient since a number of HTTP/2 frames of the

concerned stream would already have been pushed to the server buffer.

There are still plenty of open questions and existing scientific problems to be solved to provide

HTTP-based streaming systems with low latency and enhance the QoE at minimum cost. Further

HTTP/2-based ideas can be explored in future works. We briefly describe two of them in the

following.

It would be interesting to model HTTP/2-based solutions in order to efficiently deliver Scalable

Video Codec (SVC) encoded content. SVC encodes a high-quality video bitstream with one or

more subset layers, each enhancing the basic low quality. The client can improve the video quality

in the viewport by requesting enhancement layers. Nasrabadi et al. [71] use a SVC-based solution

to efficiently stream 360◦ videos. They show that SVC-based tile delivery helps reducing the cost

of updating the quality of already downloaded low quality viewport tiles. However, they do not

use the HTTP/2 protocol. The HTTP/2-client can request each SVC layer in an HTTP/2 stream,

and then reset the inappropriate streams or prioritize the most important ones in accordance with

the evolution of the viewport prediction accuracy and the bandwidth status.

Recently, the Common Media Application Format (CMAF) standard has also captivated the

attention of the multimedia research community. However, simply using CMAF segments is not

enough to reduce latency. To obtain low end-to-end latency, the CMAF-based systems must be

90



paired with encoders, CDNs and modified client behaviors so that the overall system enables low

latency. The currently proposed systems are based on HTTP/1.1 chunked transfer encoding. The

chunked transfer encoding feature was however removed from the HTTP/2 protocol. It would be

interesting to conduct a research study to explore the benefit and the inconvenient of building a

low latency CMAF system based on the HTTP/2 protocol, typically by taking benefits from the

multiplexing and the push server features.
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Titre :  Solutions de Transmission Vidéo avec Faible Latence Basées sur HTTP/2 

Mots clés :  Diffusion à faible latence, HTTP/2, vidéos immersives 

Résumé : Les techniques adaptatives de transmission vidéo s’appuie t su  u  o te u ui est 
encodé à différents niveaux de qualité et divisé en segments temporels. Avant de télécharger un 

seg e t, le lie t ex ute u  algo ith e d’adaptatio  pou  d ide  le eilleu  iveau de ualit  à 
considérer. Selon les services, ce niveau de qualité doit correspondre aux ressources réseaux 

dispo i les, ais aussi à d’aut es l e ts o e le ouve e t de t te d’u  utilisateu  
regardant une vidéo immersive (à 360°) afin de maximiser la qualité de la portion de la vidéo qui 

est regardée. L’efficacité de l’algo ith e d’adaptation a un impact direct sur la qualité de 

l’exp ie e fi ale. En cas de mauvaise sélection de segment, un client HTTP/1 doit attendre le 

téléchargement du prochain segment afin de choisir une qualité appropriée. Dans cette thèse, 

ous p oposo s d’utilise  le p oto ole HTTP/2 pou  e die  à e p o l e. Tout d’a o d, nous 

nous focalisons sur le service de vidéo en direct. Nous concevons une st at gie de ejet d’i ages 
vidéo ua d la a de passa te est t s va ia le afi  d’ vite  les a ts f ue ts de la le ture 

vid o et l’a u ulatio  des eta ds. Le client doit demander chaque image vidéo dans un flux 

HTTP/2 dédié pour contrôler la livraison des images par appel aux fonctionnalités HTTP/2 au 

niveau des flux concernées. Ensuite, nous optimisons la livraison des vidéos immersives en 

fi ia t de l’a lio atio  de la p di tio  des ouve e ts de t tes de l’utilisateu  g â e aux 
fo tio alit s d’i itialisatio  et de p io it  de HTTP/2. Les sultats o t e t ue HTTP/2 pe et 
d’opti ise  l’utilisatio  des essou es seaux et de s’adapte  aux late es exig es pa  ha ue 
service. 

 

Title :  Low Latency Video Streaming Solutions based on HTTP/2  

Keywords : low-latency streaming, HTTP/2, video delivery, immersive video 

Abstract : Adaptive video streaming techniques enable the delivery of content that is encoded 

at various levels of quality and split into temporal segments. Before downloading a segment, the 

client runs an adaptation algorithm to determine the level of quality that best matches the 

network resources. For immersive video streaming this adaptation mechanism should also 

consider the head movement of a user watching the 360° video to maximize the quality of the 

viewed portion. However, this adaptation may suffer from errors, which impact the end use ’s 
quality of experience. In this case, an HTTP/1 client must wait for the download of the next 

segment to choose a suitable quality. In this thesis, we propose to use the HTTP/2 protocol 

instead to address this problem. First, we focus live streaming video. We design a strategy to 

discard video frames when the bandwidth is very variable in order so as to avoid the rebuffering 

events and the accumulation of delays. The customer requests each video frame in an HTTP/2 

stream which allows to control the delivery of frames by leveraging the HTTP/2 features at the 

level of the dedicated stream. Besides, we use the priority and reset stream features of HTTP/2 

to optimize the delivery of immersive videos. We propose a strategy to benefit from the 

improvement of the use ’s head movements prediction overtime. The results show that HTTP/2 

allows to optimize the use of network resources and to adapt to the latencies required by each 

service. 
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