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Résumé 
L'oxyde nitrique (NO) est un important messager chimique dans l'organisme vivant. Le NO est 

impliqué dans un large éventail de mécanismes de défense immunitaire et de signalisation 

biologiques telles que la communication neuronale, l’activité antitumorale, la régulation de la 

tension artérielle et la défense immunitaire non spécifique. De plus, plusieurs études suggèrent 

que le NO pourrait jouer un rôle clé dans l'apparition et la propagation d'un large éventail de 

maladies telles que les maladies neurodégénératives, les maladies cardiovasculaires, le diabète 

et le cancer. Il est donc crucial de mieux comprendre les mécanismes impliqués dans la 

production de NO, et ainsi développer des pistes pour l’élaboration de nouveaux médicaments 

et traiter les maladies précédemment citées. Le NO est produit par la NO synthase, une enzyme 

pouvant avoir des fonctions biologiques opposées. Son fonctionnement n'est pas encore bien 

compris malgré les nombreuses études sur la NO synthase. L’utilisation de microréacteurs pour 

encapsuler et étudier l'enzyme permettrait d’obtenir un environnement confiné et contrôlé 

mimant celui de la cellule. Cependant, dans la plupart des microréacteurs qui ont été développés 

dans la littérature, les réactions biochimiques sont induites simplement par le mélange des 

différents composants ou dépendent des propriétés de diffusion à travers les membranes des 

microréacteurs. L'étude de la cinétique de ces réactions complexes est donc très difficile, voire 

impossible. 

 

Dans ce contexte, trois enjeux majeurs ont été abordés dans cette thèse : le contrôle de 

la libération et de la concentration des espèces réactives à l'intérieur du microréacteur, la mesure 

de la réponse enzymatique par la détection du NO et la libération contrôlée dans l'espace et dans 

le temps d’espèces au sein des microréacteurs. 

Pour résumer, nous avons décidé de développer un microréacteur compartimenté et sensible à 

la lumière pour étudier le comportement complexe du NOS (Figure 90). 

 



 

 

 

Figure 1: Représentation schématique de la cellule synthétique pour étudier l’activité de la NO 
synthase, basée sur l'encapsulation de nanopolymersomes photosensibles. La modulation des 
substrats enzymatiques et des cofacteurs (L-Arg, BH4) peut être contrôlée par photoactivation. 

Le contrôle de la libération des espèces a été effectué par l'intermédiaire de 

nanopolymersomes photosensibles. Dans un premier temps, plusieurs PEG45-b-PTMC avec 

différentes longueurs de poly(trimethylène carbonate) PTMC ont été synthétisés afin de trouver 

le rapport hydrophile/hydrophobe permettant de former des polymersomes stables. Le PEG45-

b-PTMC81, avec un rapport hydrophile/hydrophobe de 19%, s’auto-assemble en polymersomes 

avec une polydispersité faible. Dans un second temps, une 1ère génération d’un copolymère 

photosensible a été synthétisé : le PEG43-coumarine-b-PTMC81 dont la photosensibilité est basé 

sur une molécule de liaison : la coumarine photoclivable  (Figure 9).  

 

Figure 2: Stratégie utilisée pour contrôler la libération des réactifs dans le temps et dans 
l'espace par l'intermédiaire de polymersomes photosensibles (B), à l’aide des copolymères 
photodégradables (A). 



 

 

La coumarine photosensible a d’abord été synthétisée avec un groupe acide carboxylique et un 

groupe alcyne aux deux extrémités, afin de pouvoir greffer un polymère hydrophile et un 

polymère hydrophobe. L'extrémité de la chaîne d’un PEG43 a été modifiée en une amine afin 

de pouvoir le lier à l’acide carboxylique de la coumarine. Le bloc hydrophobe a été par la suite 

synthétisé. Le trimethylène carbonate (TMC) a été polymérisé pour former du PTMC avec une 

extrémité de chaîne azotée. Le paramètre clé pour obtenir une faible dispersité (1,05) était une 

purification poussée de l'initiateur 3-azido-1-propanol. PEG43-NH2 et PTMC81-N3 ont été 

greffés successivement sur la molécule de liaison coumarine pour donner le copolymère 

amphiphile photosensible de 1ère génération PEG45-coumarine-b-PTMC81. Le copolymère a été 

obtenu avec une dispersité faible de 1,05.  

Les mesures de diffusion de la lumière ont montré que le copolymère pouvait s'auto-assembler 

en particules bien définies avec un rayon hydrodynamique de 150 nm et une polydispersité 

faible (PDI ≈ 0.1). La cryo TEM a montré que ces particules étaient des polymersomes. 

Les polymersomes ont ensuite étaient irradiés sous UV (365 nm) n’entrainant pas de 

modification de leur morphologie ou de leur taille. La mesure de la diffusion de la lumière a 

montré que les particules étaient partiellement déstabilisées ou perdaient partiellement leur 

masse après irradiation (30% de perte de signal après 2,5 heures d'irradiation).  

Cependant, la plupart des nanoparticules (70 %) n'ont pas été déstabilisées par l’irradiation. La 

stabilité des polymersomes pourrait s'expliquer par la dimérisation de la coumarine, elle-même 

favorisée par l'auto-assemblage empêchant la libération du PEG. Afin d'améliorer l'efficacité 

de déstabilisation des nanoparticules, un nouveau copolymère a été synthétisée et analysée. 

La première génération de particules photosensibles n'était pas complètement déstabilisée et il 

a été supposé que la dimérisation, empêchant la libération du PEG, améliorait la stabilité des 

particules. Afin de favoriser la libération du PEG, la conception du copolymère a été modifiée 

de deux façons différentes. L'efficacité du clivage a été améliorée en changeant le groupe 

partant. Le rendement quantique obtenu par irradiation à 365 nm (0,012) était supérieur à celui 

de la 1ère génération (0,0034). Le PEG est libéré plus efficacement avant de dimériser. La 

deuxième modification était la position des polymères sur la coumarine. En effet,  avec le 

deuxième copolymère, seul le PEG est libéré au lieu du PEG-coumarine induisant une libération 

plus efficace du PEG. 

Afin de synthétiser la 2ème génération de PEG43-coumarine-b-PTMC81, la coumarine 

photosensible a été synthétisé avec un groupe hydroxyle et un groupe alcyne aux deux 

extrémités, afin de pouvoir greffer un polymère hydrophile et un polymère hydrophobe. 

L'extrémité de la chaîne PEG43 a ensuite été modifiée en isocyanate afin de pouvoir le lier au 



 

 

groupe hydroxyle de la coumarine. PEG43-NCO et PTMC81-N3 ont été greffés successivement 

sur la molécule de liaison coumarine pour donner le copolymère amphiphile photosensible de 

2ème génération PEG43-coumarine-b-PTMC81 (Figure 3).  

 

 

Figure 3 : Structure chimique du copolymère  PEG43-coumarine-b-PTMC81 photosensible. 

Le copolymère a été obtenu avec une dispersité faible de 1,04. Les mesures de diffusion de la 

lumière ont montré que le copolymère pouvait s'auto-assembler en particules bien définies avec 

un rayon hydrodynamique de 150 nm et une polydispersité faible (PDI ≈ 0.1). Les observations 

par cryo-TEM ont montré des polymersomes et des agrégats de polymersomes. L'irradiation 

des polymersomes a induit un changement de leur morphologie. Après irradiation, le rapport 

Rg/Rh des particules restantes a diminué, ce qui suggère une densification des particules. La 

solution de polymersomes a été irradiée pendant 150 minutes et l'intensité de la lumière diffusée 

a diminué de 71%, suggérant une déstabilisation et une agrégation des particules. Les mesures 

de diffusion de la lumière ont été confirmées par cryo-TEM. Les images obtenues ont montré 

une majorité d’agrégats indéfinis après irradiation des polymersomes. Cette partie a présenté la 

synthèse d’un copolymère photosensible, son auto-assemblage en polymersomes, et la 

photosensiblité des particules formées par irradiation UV.  
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B 

 

Figure 4 : Images cryo-TEM de polymersomes de  PEG43-coumarine-b-PTMC81  A) avant et B) 
après irradiation 
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Une deuxième voie a été explorée pour contrôler la libération d’espèces par irradiation 

: le changement de pression osmotique dans les polymersomes induisant leur déstabilisation. 

L'augmentation rapide de la pression osmotique dans le milieu interne des polymersome n'a pas 

pu être équilibré assez rapidement avec l'eau, ce qui a entraîné la rupture des polymersomes et 

la libération des espèces. L'augmentation de la pression osmotique a été contrôlée par des 

molécules clivables sensibles à la lumière.  

 

 

Figure 5: Stratégie utilisée pour induire l'éclatement des polymersomes. Les polymersomes 
sont stables lorsque la pression osmotique est la même dans le milieu interne et externe (A1). 
L'augmentation de pression osmotique (B1) a été utilisée pour induire la rupture du polymère 
(C1). Le contrôle de la concentration moléculaire permet de contrôler la pression osmotique. 
L'augmentation de la concentration des espèces présentes dans le polymersomes (A2, B2) 
entraîne une augmentation de la pression osmotique et une rupture des polymersomes (C2). 

Deux molécules ayant deux mécanismes de clivage différents ont été étudiées : le clivage 

hétérolylitique de la coumarine et le transfert d'électrons à médiation basée sur le N-alkyl-4-

picolinium-thioxanthone (NAP-th).  

Le NAP-th a été facilement synthétisé en 2 étapes, sa solubilité dans l'eau était le paramètre 

limitant et la concentration maximale de solubilité trouvée était de 1 mM. Plusieurs méthodes 

ont été testées pour augmenter sa solubilité dans l'eau, comme le changement du contre ion ou 

l'ajout d'un groupe hydrophile, mais sans permettre d’augmenter significativement la solubilité 

dans l'eau. Le rendement quantique mesuré en présence du médiateur triéthanolamine était de 

0,16. Cette valeur a montré que le clivage était très efficace.  



 

 

La coumarine modifiée a également été synthétisée avec succès en 6 étapes, deux groupes 

hydrophiles ont été ajoutés pour augmenter la solubilité de la molécule qui a pu être facilement 

mise en solution dans l’eau à des concentrations de l’ordre de 10 mM. Le rendement quantique 

mesuré était de 0,016 pour une illumination à 365 nm et de 0,029 pour 405 nm. Le clivage était 

moins efficace que le NAP-th, mais sa solubilité était meilleure. Une irradiation d'une heure à 

365 nm a induit un clivage de la molécule de 87 %. Ce clivage a libéré une base : de la 

diéthylamine qui a pu être utilisé pour augmenter le pH de la solution. En effet, après seulement 

10 minutes d'irradiation, le pH est passé de 4,5 à 6,5.  

La deuxième étape a consisté à encapsuler les deux molécules à l'intérieur du polymersomes de 

PEO1.3-b-PBut2.5 par la technique de émulsion-centrifugation. La coumarine modifiée a été 

encapsulée dans un polymersome avec une concentration de 10 mM et NAP-th a été encapsulé 

avec une concentration de 1 mM. L'irradiation à 405 nm sous microscope confocal a provoqué 

l'éclatement rapide des polymersomes contenant les deux molécules. Ces systèmes induisant 

une libération rapide et efficace pourraient être utilisés pour initier une réaction dans les 

microréacteurs et ainsi avoir un contrôle précis dans l'espace et le temps de systèmes cellulaires 

artificiels.  

 

Afin de suivre la production de NO directement à l'intérieur du microréacteur, deux 

sondes à NO ont été étudiées. Ces sondes sont basées sur la formation d'une liaison azoïque 

induisant une fluorescence de la molécule, résultant en un signal stable et une sélectivité élevée 

par rapport aux autres composés nitro. Les deux sondes ont été conçues pour avoir des 

propriétés de solubilité différentes (l'une hydrophobe, l'autre hydrophile) afin de détecter le NO 

dans la membrane et dans le milieu aqueux interne du microréacteur. Les sondes ont été 

synthétisées en 5 et 6 étapes (Figure 80 A,B).  

 

 

Figure 6: A)  Sonde de NO fluorescente hydrophobe B) sonde fluorescente hydrophile de NO 
C) BAPTA-NOp 
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 Des étapes critiques ont été rencontrées pour la protection et la déprotection de l'acide 

carboxylique de la sonde hydrophile. Le tert-butyle s'est avéré être un groupe protecteur 

efficace dans les conditions utilisées et le TES a permis d’éviter la dégradation de la sonde 

hydrophile pendant l'étape de déprotection. Afin de tester les propriétés des sondes, plusieurs 

sources de NO ont été testées comme le GSNO, le NO provenant NaNO2 ou le NO gazeux 

provenant d'une bouteille. La concentration de NO obtenue a été mesurée grâce à l’absorption 

de l’hémoglobine. La libération de NO par le GSNO grâce à l’acide ascorbique et sa cinétique 

de libération a été étudiée. Cependant, l'acide ascorbique empêche la formation de la molécule 

fluorescente et le GSNO n'a pu être utilisé. Le NO de NaNO2 a donné des solutions de faible 

concentration, c'est pourquoi a finalement été utilisée, la solution de NO provenant d'une 

bouteille de gaz. La détection du NO par les sondes a été testée. Les sondes ont montré une 

augmentation de l'intensité de fluorescence (lem max= 530 nm, lex max= 440 nm pour la sonde 

hydrophile, (lem max = 530 nm, lex max=440 nm pour la sonde hydrophile) après addition de NO. 

L'intensité de fluorescence obtenue a une excellente corrélation linéaire (R2 = 0,99) en fonction 

de la quantité de NO ajoutée permettant une mesure précise et quantitative de la concentration 

de NO  (Figure 72). Les sondes sont actuellement testées in vitro au laboratoire CITHEFOR 

(Université de Lorraine EA 3452).  
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B 

 

Figure 7: Spectre d'excitation (violet) et d'émission (rouge) de la sonde (A) hydrophile et (B) 
hydrophobe après addition d’une solution de NO. La sonde hydrophile a été solubilisée dans 
du tampon phosphate (50mM, pH 7.4) et la sonde hydrophobe a été solubilisée dans 80% 
tampon phosphate (50mM, pH 7.4) et 20% de DMSO. Les longueurs d'onde d'émission utilisées 
pour les spectres d'excitation étaient de 530 nm pour la sonde hydrophile et de 550 nm pour la 
sonde hydrophobe. La longueur d'onde d'excitation utilisée pour les spectres d'émission était 
de 416 nm pour la sonde hydrophile et de 440 nm pour la sonde hydrophobe. 



 

 

Dans une deuxième partie, un autre outil moléculaire a été synthétisé afin d'étudier la NO 

synthase. L'introduction contrôlée de réactifs directement dans le microréacteur pourrait aider 

à suivre l'activité enzymatique et des informations sur le mécanisme de l’enzyme pourrait être 

obtenues. À cette fin, un outil moléculaire a été conçu pour contrôler avec précision le taux de 

production de NO par un processus de rétroaction. Nous avons émis l'hypothèse que la 

combinaison de la sonde BAPTA et de la sonde NO (BAPTA-NOp) pourrait induire une auto-

activation de l'enzyme et pourrait contrôler la production d'oxyde nitrique. NO serait produit 

par l'enzyme et réagirait avec BAPTA-NOp pour donner BAPTA-AZO. En raison de la 

conjugaison plus élevée, le groupe cyano attracteur d'électrons attirerait les électrons de l'amine 

tertiaire du BAPTA, ce qui entraînerait une complexation plus faible du calcium et sa libération. 

Pour vérifier cette hypothèse, BAPTA-NOp et BAPTA-AZO ont été synthétisés en 10 étapes 

et leurs constantes de dissociation Kd ont été mesurées. Le Kd de BAPTA-NOp et de BAPTA-

AZO étaient respectivement de 0,42 µM et 0,52 µM. Les valeurs  des Kd étaient en accord avec 

les valeurs des Kd des BAPTA. Cependant, le Kd de BAPTA-NOp et BAPTA-AZO sont 

relativement proches et le Kd de BAPTA-AZO est relativement faible, ce qui signifie que la 

forme AZO ne libère pas de calcium et que la molécule ne peut être utilisée pour le processus 

de rétroaction. 

 

Finalement, afin d'assurer le contrôle de l'étape d'initiation et de déclencher une réaction 

enzymatique à un endroit et à un moment précis, la libération contrôlée de réactifs dans des 

microréacteurs a été étudiée. Les nanopolymersomes PEG43-coumarine-b-PTMC81 ont été 

encapsulés avec succès dans des microréacteurs composé d’émulsion d’eau stabilisés par des 

copolymères PEO1.3-b-PBut2.5 et observés sous microscope confocal. L'irradiation à 405 nm a 

induit une déstabilisation efficace des nanopolymersomes à l'intérieur du microréacteur. Une 

irradiation de 2 min a induit une diminution de 83% du nombre de nanoparticules (Figure 80).   



 

 

A 

 

 

   

B 

 

 

Figure 8: A) Observation en microscopie confocale d'une émulsion aqueuse stabilisée par 
PEO1.3-b-PBut2.5 contenant des nanopolymersomes PEG43-coumarin-b-PTMC81 
photosensibles irradiés 2 min à 405 nm (80%, 50 mW) (canal vert, lex = 405 nm, 50 mW, 3% 
observation dans la gamme d’émission de la coumarine, 485 nm). B) Observation confocale 
d'une émulsion aqueuse stabilisée par PEO1.3-b-PBut2.5 contenant des polymersomes PEG43-
coumarin-b-PTMC81 avant et après une irradiation de 10 s à 405 nm (80%, 50 mW). La 
fluorescéine a été encapsulée dans les polymersomes (barre d'échelle 20 µm, canal vert lex 

=488 nm, 40 mW, 10%, observation dans la gamme d’émission de la fluorescéine, 520 nm). 

Afin d'étudier la libération des nanopolymersomes PEG43-coumarine-b-PTMC81, de la 

fluorescéine a été encapsulé dans les nanopolymersomes (F-Nano). Afin de mesurer la quantité 

de fluorescéine encapsulée dans les nanopolymersomes, 80% en volume de DMSO a été ajouté 

à une solution de particules pour déstabiliser complètement les nanopolymersomes et libérer la 

fluorescéine. La concentration maximale théorique de fluorescéine que les nanopolymersomes 

pouvaient libérer était de 5,1 µM. Les F-Nano ont ensuite été encapsulés dans des gouttes 

d’émulsion stabilisées par du PEO1.3-b-PBut2.5 formant ainsi un microreacteur. Les 

microréacteurs obtenus ont été irradiés pendant 10 s, entraînant la libération de la fluorescéine 

des F-Nano dans le microréacteur.  

 



 

 

La construction de microréacteurs capables d'imiter certaines fonctions cellulaires de 

base et de développer une cellule synthétique opérationnelle représente l'un des projets les plus 

difficiles de ce siècle. Il reste encore un long chemin à parcourir pour obtenir une cellule 

artificielle polyvalente permettant de reproduire certaines fonctions biologiques ou d’étudier le 

fonctionnement d’enzymes complexes. Cependant, les outils développés dans le cadre de ce 

travail de thèse visaient à aider à se rapprocher un peu plus d’une cellule artificielle 

fonctionnelle. La NO synthase est une enzyme complexe qui nécessite plusieurs substrats et des 

conditions particulières. Dans un premier temps, les outils développés ici pourraient être utilisés 

pour construire des microréacteurs contrôlables contenant des enzymes bien connues telles que 

HRP ou GOX grâce à la microfluidique.  

Les éléments fondamentaux à la base de la vie sont bien connus, mais nous sommes loin de 

comprendre comment ces éléments interagissent, s'auto-organisent, et échangent des 

informations. Les questions fondamentales concernant l’apparition de la vie pourront ainsi être 

posées par les échecs et les succès de la construction d'une cellule artificielle.  
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lem: Emission wavelength 
lex: Excitation wavelength 
AcOH: Acetic acid 
AR: Amplex ® red  
Đ: Dispersity 
DBTL Dibutyltin dilaurate 
DBU: 1,8-Diazabicyclo[5.4.0]undec-7-ene 
DCC: Dicyclohexylcarbodiimide 
DCM: Dichloromethane 
DLS: Dynamic Light Scattering 
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DMF: N,N-Dimethylformamide 
DMSO: Dimethyl Sulfoxide 
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E. coli: Escherichia coli 
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GOX: Glucose oxidase 
HRP: Horseradish peroxidase  
IR: Infra-Red 
kD: kilo Dalton.  
MeCN: Acetonitrile 
MeOH: Methanol 
NBS: N-bromosuccinimide 
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NOS: NO synthase enzyme  
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PEG Polyethylene glycol  
PEG: Poly(ethylene glycol) 
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TEM: Transmission Electron Microscopy 
TES: Triethylsilane 
TFA: Trifluoroacetic acid 
THF: Tetrahydrofuran 
TLC: Thin Layer Chromatography  
TMC: Trimethylcarbonate 
U/mL: Enzyme unit/mL 
UV: Ultra-violet 
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Chapter 1: State of the art 
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1. Introduction 
1.1. Project presentation 

1.1.1. Nitric Oxide function in living organisms 

Nitric oxide (NO) is a major chemical messenger in living organisms [1]. The Nobel prize was 

awarded to L. J Ignarro, R. I. Furchgott and F. Murad in 1998 due to their work on the major 

physiological importance of NO in mammals [2]. Due to its hydrophobic nature, NO can easily 

diffuse through cellular membrane and have antagonist effects. NO is involved in a wide range 

of positive effect in immune defense or signaling mechanisms such as neural communication, 

antitumor activity, blood pressure regulation and non-specific immune defense [3]. Negative 

effects involve large amount of NO that induce oxidative stress [4], cytotoxic activity [5] 

leading to neurodegenerative diseases [4] [6] or cancer [4] [7]. Additionally some negative 

effects are not directly linked to NO but NO by-products. Due to its high reactivity nitric oxide 

can form reactive nitrogen and oxygen species (RNOS) such as peroxinitrite anion (ONOO-) 

[8]. Peroxinitrite, for example, can damage tissues or deactivate proteins due to nitrosation or 

nitration [8]. The balance between the beneficial and deleterious activities of NO would depend 

on the localization and nature of RNOS production. 

Therefore understanding the mechanism involved in NO production has been crucial to find 

new drugs and treat the previously cited diseases. Indeed, NO is produced by NO synthase 

which has different and even opposite biological functions [9] [10] [11]. A better understanding 

of the biological mechanism of NO synthase represents a highly relevant challenge.  

1.1.2. NO synthase and its partially known mechanism 

NO synthase (NOS) is a widespread enzyme discovered in numerous living organisms such as 

mushrooms [12] bacteria [13] invertebrates [14], vertebrates [15] and mammals [16]. NOS has 

three isoforms: inducible, endothelial, and neuronal (e, n and i). The three isoforms have different 

function and locations. All NOSs are homodimeric enzymes containing a catalytic heme group 

(FeIII-protoporphyrin IX). NOSs catalyze two successive steps of oxidation of a single substrate: 

L-Arginine, consuming three exogenous electrons and two molecules of oxygen. Briefly, the 

first step consists in the hydroxylation of the Nω-nitrogen of L-Arg resulting in the formation 

of Nω-hydroxy-arginine (NOHA). The second step corresponds to the oxidation of the 
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hydroxyl-guanidinium group of NOHA into the corresponding urea, L-citrulline with release 

of NO [17] (Fig. 1). 

 

Fig. 1: Proposed mechanism of arginine oxidation by NO Synthase producing NO [17] BH4 is 
a cofactor. 

The exact mechanism of NO catalytic production is still debated especially with regard to 

electron and proton transfer and sources [17]. Moreover, mechanisms underlying the RNOS 

production are poorly understood and are dependent on physiological environments such as 

NO, O2 concentration [17]. Understanding the parameters controlling NO/RNOS balance could 

help to favour beneficial effects against deleterious effects. 

Controlling precisely the enzyme environment, substrate release and monitor the enzyme 

response could help to disentangle the NOS reaction pathway. By mimicking cellular 

encapsulation, the design of a synthetic cell-like microreactor could confer the desired 

environment for the enzyme study, in terms of local concentration, diffusion length and 

interfaces. 

1.1.3. Microreactor 

Cells are extraordinary bio-machines [18] that can process complex synthesis with a high level 

of control. As an example, synthesis of complex molecules, intricate processes or cascade 

biochemical reactions can be performed in cells. In addition, toxic species can be synthesized 

without damaging cells and incompatible species can coexist in the same medium due to 

compartmentalization [19]. All these reactions can be performed with a high level of control in 

space and time. Mimicking some cellular functions would afford access to these complex 

processes. To do so, scientists have been interested in designing microreactors in order to mimic 

the simplest cellular functions such as enzyme synthesis of molecules in a confined space [20]. 

As an example, monodispersed polymersome microreactors were prepared by formation of a 

double emulsion via microfluidic techniques [21]. Polymersome membranes were composed 

of poly(ethylene glycol)-b-poly(lactic acid) (PEG-b-PLA MW 5000 and 10 000 g/mol, 
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respectively). The inner aqueous medium contained biological machinery necessary for protein 

expression that was a mixture of the Escherichia coli ribosomal extract. The polymersome 

microreactor incubation at 32 °C induced DNA transcription into messenger RNA and this 

messenger RNA translation into polypeptides: MreB-RFP. The resulting polypeptide was 

fluorescent and observable under a confocal microscope (Fig. 2).  

 

 

Fig. 2: Protein expression in polymersomes formed by a microfluidic technique. a) schematic 
representation of a polymersome containing the E. coli ribosomal extract and the gene 
expression inducing protein synthesis. b-c-d) Confocal images of the polymersomes after MreB-
RFP production. The protein is situated in the inner aqueous medium and in the membrane e) 
Fluorescence depending on the incubation time that allows to monitor protein production. 

This example showed that artificial cells afford access to complex biological processes. Another 

interesting example used multicompartmentalization or synthetic organelles to induce a three 

step processes in a synthetic cell. Three enzymes, phenylacetone monooxygenase (PAMO), 

Candida antarctica lipase B (CalB), and alcohol dehydrogenase (ADH), were separately 

encapsulated in nanopolymersomes made of polystyrene-b-poly(3-(isocyanao-L-alanyl-

aminoethyl)thiophene (PS-b-PIAT). The nanopolymersomes were then encapsulated in giant 

unilamellar polymersomes(GUV) made of poly(ethylene oxide)-b-polybutadiene (PEO-b-

PBut) (Fig. 3). The final enzymatic microreactor performed a three step cascade enzymatic 

reaction resulting in fluorescent resorufin. This example presents the first 

multicompartmentalization synthetic system that present active synthetic organelles.  
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Fig. 3: A) Schematic representation of a multicompartmentalization microreactor. PAMO, 
CalB, and ADH, were encapsulated in nanopolymersomes of PS-b-PIAT. These 
nanopolymersomes were encapsulated in GUVs made of PEO-b-PBut. B) General reaction 
scheme of the three step catalytic process resulting in resorufin synthesis. 

These examples showed that such a microreactor could mimic a cellular environment and would 

be adapted for NO synthase study. However, in these examples of microreactors and most of 

the others that can be found in the literature, the biochemical reactions are occurring based on 

mixing the different components or depend on diffusion properties through different 

membranes. As such, the study of reaction kinetics is very challenging, if not impossible. To 

this end, the design of stimuli responsive systems that could release reactive species directly in 

the microreactor and trigger the enzymatic reaction would represent very significant progress. 

Light was chosen as an exogenous stimulus, because its application is instantaneous, easy to 

control spatially and temporally, cheap to produce and non-invasive. In addition, the variety of 

light sensitive molecules is tremendous [22] and such activation can be used in situ under 

confocal microscopy.  

Overall, we decided to develop a compartmentalized and light responsive microreactors to 

study the complex behavior of NOS, as schematically depicted in Fig. 4. To this end, the wide 

variety of available light sensitive delivery systems and approaches are reviewed in the next 

sections.  
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Fig. 4: Schematic representation of the NO-synthetic cell, which is based on compartmentalized 
polymersome-in-polymersome self-assembly and designed for the study of enzymatic activities 
of NOS. Modulation of the enzyme substrates and co-factors (L-Arg, BH4) can be controlled 
by photo-activation. 

1.2. Light-activated delivery system  
The use of light as a trigger for species release presents many advantages compared to delivery 

systems based on a response to pH, temperature, or enzymes [23]. Indeed, such delivery triggers 

are often poorly controlled as they depend on physiological parameters and are subject to local 

variations. 

Additionally, light is an attractive trigger, which can be applied with a high degree of temporal 

and spatial accuracy, and whose intensity can be easily controlled. The light spectrum is wide 

and potentially allows triggering different systems at the same time. The variety of light 

sensitive molecules is tremendous and light excitation can target a precise location during a 

specific time. For species delivery applications, light is non-invasive, easy to produce and not 

expensive. 

In the first part, the effect of light at the molecular level will be discussed, together with the 

major mechanisms of action and their limitations. Secondly, the effect of light activation when 

photoactive substances are incorporated into delivery systems will be considered. Scheme 1 

summarized the light-driven processes considered herein, extending from the molecular level 

to the macroscopic level, resulting in payload release. 
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Scheme 1: Light-driven molecular processes responsible for species release from nanocarriers. 

1.2.1. Molecular mechanisms of light-activated delivery system 

1.2.1.1. Physical effects 

Light can induce two major physical effects: (1) increasing the system temperature and (2) 

converting radiation to other wavelengths. In both cases light energy can be used to promote 

species release. 

1.2.1.1.1. General mechanism for conversion of light energy to heat  

It is well known that light can produce heat, especially when interacting with some 

nanomaterials. In this part, materials able to convert light energy to heat energy, deemed 

“nanoheaters”, will be described.  

 In order to convert light energy into heat energy, several photothermal agents or nanoheaters 

can be used such as noble metals, transition metal dichalcogenides, carbon nanotubes (CNT), 

graphene oxide (GO) dye molecules and semiconductors (organic or inorganic). These 

photothermal agents absorb light and consequently their electrons become excited. The energy 

can be dissipated via non-radiative decay channels and heat the immediate environment. Dye 

molecules such as indocyanine green or naphtalocyanine have strong absorption nevertheless 
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they undergo photobleaching, thereby reducing their efficacy. Noble metals do not undergo 

photobleaching and can have absorption cross sections four to five orders of magnitude larger 

than dye molecules [24]. Electromagnetic waves interact with electrons on noble metal surface 

[25]. Indeed, these materials have free electrons on their surface that can oscillate with 

electromagnetic field. This phenomenon is called Surface Plasmon Resonance (SPR) [26]. 

Materials with SPR properties are, for instance, noble metals, transition metal dichalcogenides, 

carbon nanotubes (CNT), graphene oxide (GO) and semiconductors (organic or inorganic). At 

the appropriate electromagnetic resonance, the energy transfer is maximum [27]. The photon 

excites the electron and the energy is absorbed. The electron is then thermalized, the energy is 

transferred to the particles, creating heat that is then transferred to the surrounding medium. For 

metallic particles, their size and shape can be easily tuned to modulate and control the resonant 

wavelengths [28]. 

1.2.1.1.2. Design of nanoheaters for efficient light to heat energy 
transformation 

There are a wide variety of materials that can transform light energy to heat energy and that 

have been developed over the past years.  

The most popular nanoheaters are probably the noble metals like gold, silver, platinum or 

palladium. They have varying optical properties, they are easy to tune and to functionalize [29]. 

These properties make them very interesting for delivery systems. In addition, some organic 

molecules can also convert light into heat, such as porphyrin [30] or trisodium salt copper 

chlorophyllin (488 nm) [31]. 

Moreover, 2D materials have attracted a great interest recently for delivery applications 

because: they have a very large specific surface area so they absorb efficiently NIR and can 

adsorb molecules with aromatic character, such as doxorubicin [32] or chlorin e6 [33] due to 

π-π stacking. As an example graphene oxide and transition metal dichalcogenide are 2D 

materials which have been used as delivery systems [32] [33]. A recent review on stimuli 

responsive graphene oxide emphasized the interest of this kind of delivery system [34]. 2D 

transition metal dichalcogenides have also been recently reviewed [35]. One of them, MoS2 

possesses lower cytotoxicity than graphene oxide, which is better suited for biomedical 

applications. 

Carbon nanotubes (CNT) have other advantages compared to 2D materials. Unlike nanosheets, 

CNT possess an intra-tube empty space where they can encapsulate a wider variety of species 
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(Fig. 5) [36]. Their absorption wavelengths are constant and do not depend on their lengths or 

size, contrary to gold nanoclusters [28]. Nevertheless, several problems should be overcome 

for delivery application, such as residual impurities: metal traces, small fullerenes amorphous 

carbon or their low solubility in aqueous solvent [37]. Also even if several species have been 

encapsulated inside CNTs [37], the only example, from our knowledge of releasing drug from 

their intra-tube empty space thanks to light is described in this review. 

 

  

Fig. 5: Indole release from carbon nanotube after IR irradiation [36] 

Another type of nanoheater is based on inorganic and organic semiconductors, which are 

attracting attention for payload delivery [38]. Indeed, they show a broad absorption in the NIR 

region and good photothermal conversion. They also are stable in vivo, easy to synthesize, low 

cost and insensitive to photobleaching. Huang et al. reported a system with Cu1.75S coated with 

a thermosensitive polymer, which was able to efficiently release doxorubicin under NIR light 

(808 nm) [39]. 

Organic semiconductor polymers were also proposed as a recent class of nanoheater. These 

polymers are better known for their application in organic electronics but some of them can 

also absorb in the NIR region. They are easy to synthesize, flexible, tunable, have a better 

biocompatibility [40]. A polymeric semiconductor poly(diketopyrrolopyrrole-alt-3,4-

ethylenedioxythiophene) and pluronic 127 formed nanoparticles with a hydrodynamic diameter 

of 10 nm, that were successfully integrated in a poly(N-isopropylacrylamide) (pNIPAAM) gel. 

This nanoparticle / hydrogel system was demonstrated to release doxorubicin on demand under 

NIR light (808 nm) to cells in vitro [41]. Another study uses the second NIR window to 

penetrate the skin [42]. A polymeric semiconductor poly(bis(5-oxothieno[3,2-b]pyrrole-6-

ylidene)benzodifurandione)-co-poly(bithiophene) which absorbs NIR light between 1000 and 

1350 nm and converts it to heat was synthesized [43]. This organic semiconductor was self-

assembled with an amphiphilic copolymer into micelles (diameter of 45 nm). These NIR 

sensitive micelles were then used to kill cancer cells due to the heat generated by the 1064 nm 

irradiation.  
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All the aforementioned particles are potentially promising for species delivery, but alone they 

are often insoluble or not biocompatible. The association of nanoheater with functional and 

biocompatible polymers is symbiotic as it allows combination of advantages of both systems: 

light sensitivity and thermosensitivity (Fig. 6).  

 

 

Fig. 6: Representation of gold nanocages coated with thermosensitive polymer chains 
(pNIPAAM-co-pAAM) which release doxorubicin under NIR radiation [44]  

A wealth of polymers can be tuned to be thermoresponsive, biocompatible and biodegradable 

[45] making them suitable as thermosensitive systems for species delivery [46]. Grafting 

polymers can confer thermosensitivity, biocompatibility, and water solubility to the nanoheater. 

Polymers combined with nanoheaters can be used as a medium to encapsulate species. The 

wide variety of polymer and nanoheater offer tremendous possibilities to develop innovative 

new species delivery system.  

As an elegant example of combining IR-sensitive systems that generate heat with temperature-

sensitive systems, N-isopropylacrylamide (NIPAAm) and gold nanoparticles were combined 

[47] In this article nanoshell gold nanoparticles of around 20 nm were incorporated in 

temperature sensitives co-polymers hydrogel nanoparticles: NIPAAm and acryl-amide (AAm). 

Irradiation by NIR light (1064 nm) of the particles could enhance the release of methylene blue 

or model protein (bovine serum albumin). 

1.2.1.1.3. Converting radiation: upconverting nanoparticles 

Upconversion is a phenomenon that converts low energy radiation into high energy radiation 

(e.g. NIR photons into visible and UV photons). In biological applications these particles offer 

access to use of a wide variety of UV-activated molecules [48]. The upconversion mechanism 

involve two ions: one that absorbs the incident light called sensitizer ion, and another that emits 

the energy absorbed called activator ion. Several mechanisms with one or several sensitizers 

ions and one activator ion can result in the conversion of NIR into visible and UV light [49]. 
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Here we describe the case where the sensitizer ion and the activator ion are the same. In this 

case ions that can upconvert radiation can absorb two or more low energy photons (Fig. 7, hn1 

and hn2) and subsequently emit one high energy photon (or transfer the culminated excitation 

energy hn3). To do so, these ions need to have excited states, which are optically active and 

have a long-excited state lifetime (E1). The energy is accumulated and released in the form of 

one high energy photon. Upconverting nanoparticles (UCNPs) are composed of a crystalline 

host and a dopant, usually trivalent lanthanide ions, such as Lu, La, Pr, Nd, Sm, Eu, Gd, Tb, 

Dy, Ho, Er, Tm. The most common lanthanides used are Er3+, Tm3+, and Ho3+. These inorganic 

ions have a lot of advantages such as very low background fluorescence, narrow emission band 

width, high resistance to photobleaching, and their absorbance wavelengths allow deep 

penetration into the tissues [50]. 

To illustrate the use of upconverting nanoparticles, a study used poly(ethylene oxide)-block-

poly(4,5-dimethoxy-2-nitrobenzyl methacrylate) as a UV sensitive copolymer [51]. The 

copolymer formed 100 nm micelles and UCNPs were incorporated inside the self-assemblies 

during their formation. Under NIR irradiation (980 nm) the upconverting nanoparticles 

converted the wavelengths into visible and UV light directly inside the micelles. As a 

consequence o-nitrobenzyl groups were cleaved and the particles were destabilized. The 

disruption of the micelles induced Nile red release. 

As another example, UCNPs composed of NaYF4, Y:25% and Tm:0.5% were synthesized with 

diameter of 20-30 nm [52]. A copolymer of hydrophilic pNIPAAM and hydrophobic 

poly(acrylate) containing spiropyran, was self-assembled on the surface of UCNPs (115 nm in 

diameter). Spiropyran becomes hydrophilic under UV light. These hybrid nanoparticles were 

irradiated with NIR (980 nm), UCNPs converted this radiation into UV and visible light 

(360 nm and 470 nm), spiropyran absorbed UV radiation and became hydrophilic, resulting in 

particle destabilization and coumarin 102 release.  

Another elegant study used UCNPs and UV sensitive ortho-nitrobenzene (ONB) as the 

photocleavable moiety. Jalani et al. used lanthanide-doped UCNPs that were coated with 

hydrogel [53]. The inorganic nanoparticles used have a rhombus plate shape, an average length, 

width and thickness of 78 nm, 52 nm and 7 nm, respectively. These UCNPs can convert NIR 

into UV radiations (347 and 362nm). To form the hydrogel layer, chitosan was grafted on the 

UCNPs surface and then crosslinked thanks to a photocleavable ONB-PEG-ONB functional 

oligomers. A fluorescent protein FITC-BSA was loaded in the hydrogel layer. Then the 

nanoparticles were irradiated with NIR, that was converted into UV radiation. 
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Consequently, the UV radiation cleaved the ONB moiety, the nanogel disintegrated and 

released FITC-BSA protein. 

 

Fig. 7: Schematic representation of an upconverting energy diagram. Energy state E1 is 
optically active and has a long-excited state lifetime. E2 is the energy state from which the 
energy transfer can occur. 

1.2.1.2. Chemical effects 

1.2.1.2.1. Photoinduced chemical cleavage  

Two main families of cleavable molecules based on coumarin (Fig. 8 A) and ONB (Fig. 8 B) 

have been developed. 

 

Fig. 8: The two main cleavable molecules used for delivery application, Lg is the leaving group 
A) Coumarin and possible substitutions, B) ortho-nitrobenzene and possible substitutions. 

The design of efficient cleavable molecules requires the presence of good leaving groups in 

their structure. In addition, the product formed after irradiation should be stable in order to 

avoid any recombination and increase the cleavage efficiency. Therefore leaving groups often 

used are carboxylic acid, carbamate or carbonate [54]. 

The ortho-nitrobenzene family is probably the most popular cleavable group used in the past 

years. In particular o-nitrobenzyl (ONB) derivatives have been widely developed for delivery 

applications despite some major drawbacks. Indeed, their release rates are slower than those of 
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coumarin derivatives [55]. In addition, after irradiation, nitrosoaldehyde is formed and can react 

with amines to form an imine bound, which can especially be a problem for the surrounding 

proteins. Also nitrosoaldehyde can degrade to form brown compounds which act as an internal 

filter, thus decreasing the ONB cleavage efficiency [56] and can be potentially toxic [57]. 

A lot of ONB analogues have been synthesized in order to improve the cleavage efficiency, 

side product formation, solubility, or to tune irradiation wavelength [54]. Nevertheless, the 

substitution nature and position cannot predict the trend on photoreaction efficiency. 

Surprisingly, these analogues have been rarely used for payload delivery applications and most 

of these systems use the classic ONB without substitutions [58] [59] [60] [61] [62] [63]. 

To improve the ONB properties two main chemical substitions were developed on the benzylic 

carbon and the aromatic ring. The benzylic position substitution corrects one drawback: the 

formation of the aldehyde, which leads to imine formation with an amine. Several moieties 

have been tested, especially electron withdrawing moieties. Trifluoromethyl on the benzyl 

position increases the quantum yield from 0.13 to 0.7 [64]. The methyl group also avoids 

aldehyde formation and increases the quantum yield to 0.64 (in MeCN) [65] and this derivative 

has been used in delivery applications [53] [66] [67].  

Substitution on the aromatic ring has also been studied. It has been evidenced that the presence 

of one nitro group on the second ortho position increases the quantum yield significantly. One 

interesting feature of this kind of substitution is to change the absorption wavelengths. As such, 

the substitution with O-nitro-dibenzofuran increases the absorption wavelength maxima [67] 

and the introduction of two methoxy groups allows release of leaving groups at 405 nm (Fig. 9 

A) [68].  

Another class of o-nitrobenzene is o-nitrophenethyl group (Fig. 9 B). These compounds with a 

methyl on the benzylic position present a relatively high quantum yield: 0.35. A new class of 

o-nitrophenethyl group has been synthesized which increases the absorptivity and the release 

rate (Fig. 9 C and D) [69]. 

Coumarins constitute another important class of photochemically-active molecules, which can 

be used both as a crosslinker and as a cleavable group. It has numerous advantages and it is a 

good substitute to ONB, especially because of its faster release rate compared to ONB [55], its 

efficient release of a wide variety of leaving groups, and because it has important molar 

absorption coefficient with a larger absorption than ONB (lmax from 310 nm to 490 nm). 

Depending on their substituent, coumarin derivatives that are released as a byproduct, can be 

toxic [70] or can have beneficial effects [71]. Coumarin derivatives can be easily tuned to adapt 

their toxicity. A lot of analogues have been synthesized to improve solubility or increase its 
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absorption wavelengths and easy structure modifications shift the absorption to the red [54]. As 

an example, 7-aminocoumarin has a lmax between 350-400 nm with a relatively good quantum 

yield: 0.21-0.28. Its relative efficient release made this coumarin derivative an interesting 

candidate for delivery application and it has been used many times for this purpose [72] [73] 

[74] [75]. Feringa and his group covalently attached an antibiotic to the coumarin derivatives 

and after UV irradiation (380 nm) the antibiotic was released in order to control the bacterial 

population. 

Another example used coumarin as the light sensitive moiety in conjunction with well-defined 

hollow mesoporous silica particles (HMS) [74]. The particles (250 nm in diameter) were loaded 

with doxorubicin. In order to obstruct pores and avoid undesired doxorubicin release, a 

copolymer containing coumarin groups was self-assembled and loaded with HMS to form a 

layer that enveloped the particles. This copolymer was synthesized from 2-

hydroxyethylacrylate (HEA), methacrylamide hydrochloride (APMA) and 7-(didodecylamino) 

coumarin-4-yl]methyl methacrylate (DDACMM). A folate group was grafted on APMA, for 

selective cancer targeting and poly(DDACMM) is a poly(methacrylate) bearing hydrophobic 

coumarin derivatives. This polymer is both hydrophobic and light sensitive. The coumarin 

cleavage with UV or NIR light (365 nm or 800 nm with two photon absorption) made the 

copolymer layer hydrophilic, resulting in its solubilization in the medium. The pores were then 

open and as a consequence doxorubicin trapped in the hollow sphere was released. 

In order to red shift the absorption wavelength and improve the compatibility of radiation with 

cells, new coumarin molecules have been described. Three molecules with interesting 

photochemical properties have been identified: red shifted absorption with maximum 

absorption (lmax) up to 487 nm and significant release rate with blue-cyan light [76]. Electron-

withdrawing groups were introduced at the coumarin 2- and 3- positions such as sulfur or cyano 

groups. In Fig. 9, coumarin derivative E has lmax=472 nm, F has lmax=443 nm and G has 

lmax=487 nm. 

One side-reaction was reported as a drawback for the release of a thiol where the molecule 

underwent an isomerization instead of a cleavage [67]. The goal of the study was to protect 

cysteine on a peptide with a coumarin photo-removable group. Instead of thiol cleavage after 

irradiation, the coumarin isomerized and the thiol group was grafted on position 2. The final 

product is not photocleavable and consequently, the protecting group cannot be removed. 
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Fig. 9: Light-sensitive compounds that undergo cleavage under irradiation. These molecules 
have been designed in order to red shift their absorption. A) ONB with two methoxy groups B) 
o-nitrophenethyl and possible substitutions C) and D) o-nitrophenethyl derivatives with better 
release rate and absorptivity E) F) and G) Coumarin derivatives with significant release with 
blue-cyan light. 

In this part, we mainly reported two main families of photocleavable molecules based on O-

nitrobenzyl and coumarin. They have been widely studied and their properties were greatly 

improved to optimize their development for biological applications. In addition to these 

important derivatives, other cleavable molecules have been reported. A summary of these 

different classes of photocleavable molecular building blocks is presented in table 1. 

Molecules lirra (nm) Quantum yield Examples 

O-nitrobenzyl 

 

254-365 [54] 0.0013-0.7 [54] 
[53] [58] [59] [60] [61] [62] [63] 

[66] [67] 

Coumarin 

 

310-490 [54]  0.005-0.28 [54] [72] [73] [74] [75] [76] [77] 
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Ruthenium 

polypyridine 

 

473 or 532 0.23 
[78] [79] [80] 

 

BODIPY 

 

450 to 575 [81] 0.15 in methanol [81][82]  

Pyrene 

 

300-375 [83] 
0.22 for phosphate 

release in MeOH [84] 
[83] 

Perylene 

 

300-450 [85] 

0.072-0.093 in 

H2O/MeCN for alcohol 

and carboxylic acid [86] 

[62] 

Azo linker 

 

365 [87]  [87] 

amino-1,4-

benzoquinone 

 

590 [88] 
0.003-0.007 in 30% aq. 

CH3CN [88] 
[88] 

Table 1: List of the main important classes of photocleavable molecules that have been 
developed for biomedical applications in recent years.  
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1.2.1.2.2. Isomerization and rearrangement 

Azobenzene 

 

Azobenzene is a popular molecular switch that has been used in delivery systems because it 

can be efficiently and reversibly isomerized between trans- and cis- forms. Indeed, upon UV 

irradiation (365 nm) the thermodynamically stable trans- form isomerizes into the cis- form. 

This isomer is metastable and has a substituent-dependent half-life of up to two days [89]. If 

irradiated with visible light (450 nm), azobenzene quickly returns to the trans- isomer [90] (Fig. 

10 A). 

  

Fig. 10: A) Reversible azobenzene trans-cis isomerization under UV and visible light B) o-
Fluoro-azobenzene showing a red shift in absorption and a stable cis isomer (t1/2=2 years) 
[91] C) Azobenzene derivative showing particularly large red shifting [92]. 

This molecular switch is reversible over multiple cycles without deterioration. In delivery 

application this transformation is useful in inducing polymer or peptide property changes [93]. 

To improve the release, a range of derivatives has been developed to tune two major 

photochemical properties of azobenzene: the absorption wavelengths required to switch 

between the cis- and trans- forms and the isomer’s thermal stability. For in vivo applications, 

light absorption should be in the near infrared in order to go deeply through the skin. In addition, 

thermal stability, characterized by the half-life of the less thermodynamically stable form, can 

be tuned depending on the system needs. A short half-life provides a fast back isomerization in 

the dark and an efficient on/off switch. A long half-life assures longterm system modifications. 
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Substitutions on the para- and ortho- positions have also been widely explored [94]. The para- 

position is often used to attach molecules of interest such as peptides or polymers [95]. The 

ortho- position red-shifts the absorption and tunes the thermal stability of the two isomers. A 

wide variety of groups have been tested including the amino [96] and chloro group [97]. 

Substitutions with four fluorines at the ortho- positions showed a significant red-shifting and 

an improvement in the thermal stability [91]. The irradiation of the trans- form with green light 

(>500nm) showed 90% Z isomerization and a half-life of circa 2 years (Fig. 10 B). 

Substitution with 4 o-methyl groups showed significant red-shifting, with absorption up to 

680 nm [92] (Fig. 10 C). Unfortunately these molecules are sensitive to reduction by 

glutathione which can be a problem for delivery applications [93]. The tetra-ortho-methoxy-

substituted azobenzene has been used to release doxorubicin with red light [98]. These 

azobenzene derivatives show a great potential for payload delivery due to their long absorption 

wavelengths and excellent fatigue resistance. 

 

Hydrophobicity / Hydrophilicity switch molecules 

 

Certain molecules undergo hydrophobicity / hydrophilicity switching upon irradiation, which 

can be either reversible or irreversible. Three molecular derivatives were identified for delivery 

applications: spiropyran [99], 2-diazo-1,2-naphthoquinone (DNQ) [100] [101] and more 

recently donor-acceptor Stenhouse adducts (DASAs) [102]. These molecules can be 

incorporated into polymers, for example on the polymer backbone. After switching they can 

induce a significant change in the polymer property such as polymer hydrophobicity. This 

property is a key factor for some nanoparticle or gel stability. Changing the property at the 

molecular level can change the property at the macromolecular level and thus destabilize gels 

or nanoparticles [103] [104] [105] [106].  

Under UV light, the closed ring form of spiropyran undergoes a C-O bond cleavage, resulting 

in the zwitterionic merocyanine form. The merocyanine can reversibly lead to the hydrophobic 

ring-closed form under blue light (420 nm) (Fig. 11 A). Spiropyran is biocompatible and can 

be easily grafted onto any matrix. Even if the response is fast, this molecular switch presents 

one major drawback, as after several switch cycles the molecule undergoes photodegradation 

[107].  
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Fig. 11: Switch between hydrophobic isomer and hydrophilic isomer A) Spiropyran and 
merocyanine forms, B) Irreversible DNQ rearrangement induces hydrophilicity C) DASA 
molecular switch inducing hydrophilicity, Y=O,NCH3 ; X=O,(CH3)2. 

DNQ has attracted a lot of attention because of its ability to act as a hydrophilicity switch that 

can be activated by UV or by NIR light in a two photon process [100] [101] [104] [106] [108]. 

Under these radiations DNQ undergoes an irreversible Wolff rearrangement [109] leading to a 

carboxylic acid with a pKa of 4.5 [110] (Fig. 11 B) that is charged and thus hydrophilic in 

physiological conditions (pH=7.4). DNQ has been tested on cells and was interestingly shown 

to be cytocompatible [104] [106].  

DASA is a relatively new class of molecules that have been developed for hydrophilicity 

switch. DASA photoswitches under visible light (Fig. 11 C), the reaction being reversible and 

displaying excellent fatigue resistance [102]. The two forms have important property 

differences. Without illumination, the molecule is hydrophobic and compact, and becomes 

zwitterionic and extended after irradiation. These differences lead to efficient particle 

destabilization for cargo release [103]. One example of controlled release reported the 

incorporation of DASA in the backbone of an amphiphilic copolymer [111]. To this end PEG 

was used as an initiator for the copolymerization of pentafluorophenyl methacrylate and hexyl 

methacrylate. Then DASA was grafted on the hydrophobic blocks. The resulting amphiphilic 

copolymer was self-assembled into polymersomes (30–100 nm). HRP was loaded in the 

polymersomes to form photoresponsive nanoreactors. Thanks to DASA switching, 

permeability of polymersome membranes were controlled under visible light irradiation (630 

nm and 525 nm) thus enabling the control of the nanoreactors. 
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Dimerization and dimer cleavage 

 

In a context of delivery application, dimerization processes have been proposed to form gels or 

stabilize particles before release [61] [112]. To induce the release of a loaded specie, the gel or 

particles are irradiated, uncrosslinked and, as a consequence, lose their stiffness or structural 

integrity [113] [114] [115] [116]. Three molecules are used as dimers for such application: 

coumarin [113] [114], cinnamate [115], and anthracene [116]. However, such release 

mechanisms by dimer cleavage is not really adapted for applications involving enzymes. 

Indeed, UV exposure typically leading to hydrogel scission is too long for enzyme viability, 

reactions are not complete with side reactions and the process is not resistant to fatigue. 

1.2.2. Release mechanisms 

In the previous part, the effect of light at the molecular level was discussed, together with the 

major mechanisms of action and their limitations. We now shift our focus to the effect of light 

activation when photoactive substances are incorporated into payload delivery systems. One 

can highlight two major mechanisms to induce and control specie release profiles: (1) a 

complete destabilization of the carrier / particle leading to a complete payload release, or (2) an 

acceleration of the species diffusion through the carrier (membrane permeation or gel 

shrinkage).  

1.2.2.1. Light-induced structural changes inducing species carrier 
destabilization  

A relevant question at this stage is: how can payload release be induced through carrier 

disruption? To answer this question, the underlying mechanisms responsible for the 

stabilization of the carrier structure have to be understood. With this in mind, two different 

classes of delivery system can be proposed: (1) particles which are stabilized thanks to 

hydrophilic / hydrophilic interactions (such as micelles or vesicles) and (2) gels that have a 3-

dimensional structure that is maintained due to physical [117] [118] or chemical crosslinking 

[119] [120]. 
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1.2.2.1.1. Self-assembled nanoparticles 

Polymer nanoparticles such as micelles, worm-like micelles or polymersomes are 

thermodynamically or dynamically stable self-assemblies as a result of copolymer amphiphilic 

properties. Indeed, in order to minimize the interaction of the hydrophobic blocks with water, 

block copolymers assemble into well-defined structures. Micelles and worm-like micelles are 

nanoparticles that are composed of a hydrophobic core surrounded by a hydrophilic shell. The 

difference between these two structures is the shape: micelles are spherical nanoparticles and 

worm-like micelles are cylindrical and elongated nanoparticles. Polymersomes are small 

artificial vesicles enclosing an aqueous solution separated by a bilayer membrane made of 

amphiphilic block copolymers. A key property to obtain and stabilize these structures is the 

hydrophobic to hydrophilic ratio of the two blocks [121]. Depending on this ratio, different 

structures or no specific structure can be obtained. 

As an interesting example, a hydrophilic block poly(glycerol monomethacrylate) (PGMA) was 

used as a chain transfer agent to polymerize in water 2-hydroxypropylmethacrylate (HPMA), a 

hydrophilic monomer [122], resulting in the formation of a well-defined amphiphilic diblock 

copolymer. During the HPMA polymerization, the hydrophobic ratio of the diblock increased 

leading the formation of different structures over time. The amphiphilic block starts to form 

micelles then worms and finally vesicles over time, depending on the ratio. This example shows 

how important the hydrophobic to hydrophilic ratio is in defining the structures formed. As a 

consequence, inducing a change in this equilibrium can destabilize the structure. 

 

There are two ways to change the balance between the two chains of the amphiphilic polymer, 

either by modifying the hydrophobic to hydrophilic ratio [100] [103] or by separating the two 

blocks [123]. As far as we know, only one example of block separation has been reported for 

cargo delivery [123]. In this study poly(g-methyl-e-caprolactone) is used as the hydrophobic 

block and poly(acrylic acid) (PAA) as the hydrophilic block with a photo-cleavable o-

nitrobenzyl (ONB) inserted between the two blocks. The amphiphilic block can self-assemble 

into polymersomes and micelles with a hydrodynamic radius of 83 nm and 31 nm, respectively. 

After UV irradiation (365 nm), the two structures were disrupted and aggregates were formed.  

The second way to disrupt particles is to play with the change in the hydrophobic balance. The 

conversion of the hydrophobic blocks into hydrophilic blocks is the most popular mechanism 

found in the literature. This change is induced at the molecular level by cleavage, switching 

hydrophilic / hydrophobic properties, or azobenzene isomerization. 
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As an example for cleavage-inducing destabilization, Jiang et al. synthesized amphiphilic 

copolymers of poly(ethylene oxide) and poly(methacrylate) bearing a hydrophobic pyrene 

moiety in the side group (PEO-b-PPy) [83]. These diblocks were able to self-assemble into 

micelles with an average diameter of 15 nm. Under UV irradiation, the pyrene ester moiety is 

cleaved, and the hydrophobic PPy is converted into hydrophilic poly(methacrylic acid). Thus, 

after irradiation of the micelle solution for 15 min with UV (365 nm), the micelles were 

destabilized and the Nile red previously loaded was released (Fig. 12).  

 

Fig. 12: Release of a hydrophobic group induced particle by destabilization [83]. 

Equally, an amphiphilic block of poly(benzyl carbamate) for the hydrophobic part and 

poly(N,N-dimethylacrylamide) as the hydrophilic part (PBC-b-PDMA) was employed. PBC 

exhibits, after chain-end cleavage, head to tail cascade depolymerization, which is also called 

self-immolation [62]. The hydrophobic block depolymerization induces a huge change in the 

hydrophilic to hydrophobic ratio of the copolymer. In this example the end chains are 

photocleavable thanks to perylen-3-yl (visible-light sensitive: 420 nm) and 2-nitrobenzylbenzyl 

(UV sensitive: 365 nm) groups. The PBC-b-PDMA can also self-assemble into vesicles with 

hydrodynamic diameters of around 250 nm. The combination of all these properties results in 

light-sensitive self-immolative polymersomes. As a consequence, after irradiation at the 

appropriate wavelength (depending on the light-sensitive moiety) the chain end is cleaved 

inducing depolymerization, polymersome destabilization and Doxorubicin release, which was 

previously encapsulated. 

The two previous examples illustrate how photo-cleavage can destabilized self-assembled 

particles.  
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Switching molecular hydrophobicity is a popular way to destabilize nanostructures by changing 

the hydrophilic to hydrophobic ratio. To this end, molecules presented in Fig. 11 have been 

widely used such as spiropyran [52] [105] [124] [125], DNQ [100] [101] [104] [108] and DASA 

(Fig. 14) [102][103].  

As an example with spiropyran, this hydrophobic light-sensitive molecule was grafted with a 

hydrophilic, hyperbranched polyglycerol (SP-hb-PG) resulting in an amphiphilic polymer (Fig. 

13) [105]. Moreover, this polymer can self-assemble into well-defined micelles with an average 

hydrodynamic diameter of 30 nm. When these nanoparticles were irradiated with UV light 

(365 nm), the neutral hydrophobic spiropyran was isomerized into the hydrophilic zwitterionic 

merocyanine changing the hydrophilic ratio. As a consequence, micelles were destabilized and 

released pyrene, a hydrophobic test molecule. 

 

 

Fig. 13: Spiropyran hydrophilicity switch inducing particles destabilization [105]. 

Wang et al. used DNQ as light sensitive moiety to disrupted particles [101]. In this study a 

diblock of poly(ethylene glycol)-block-poly(dimethylaminoethyl methacrylate). (PEG-b-

PDMAEMA) was synthesized by ATRP. In addition, DNQ was grafted on the PDMAEMA 

block making it hydrophobic. As a result, an amphiphilic diblock (PEG-b-PDMAEMA@DNQ) 

was obtained. This diblock can self-assemble into micelles with an average diameter of 150 nm. 

Irradiation by UV or NIR (365 nm or 808 nm) leads DNQ to undergo a Wolf rearrangement 

and conversion of the hydrophobic block into a hydrophilic block. As a consequence of the 

hydrophilic ratio change, micelles are disrupted and 60% of coumarin 102, chosen as a 

hydrophobic model drug, was released at pH=7.  
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As an example that uses DASA, two hydrophobic n-heptane groups were grafted on DASA and 

a PEG at the other molecular extremity resulting in amphiphilic blocks that can self-assemble 

into micelles [103]. Irradiation with visible light (530 nm to 570 nm) leads to the DASA 

conversion into its zwitterionic form, changes the copolymer hydrophilic ratio and releases Nile 

red or Paclitaxel. 

These examples showed three light sensitive hydrophobicity switch molecules, which change 

the hydrophobic ratio of amphiphilic copolymers and disrupted self-assembled structures.  

 

Fig. 14: DASA hydrophilicity switch inducing particles destabilization [103]. 

The azobenzene isomerization can also induce particle disruption. Azobenzene isomers (Z and 

E) have different dipole moments and as a consequence the cis- isomer is more hydrophilic than 

trans-isomer [126]. When azobenzene is integrated in polymer chains this hydrophobicity 

difference is enough to disrupt micelles or vesicles. As an example, amphiphilic block 

copolymers of poly(methacrylate) containing-azobenzene as the hydrophobic block and as the 

hydrophilic block a statistical copolymer of poly(acrylic acid) and poly(tert-butyl acrylate) 

(PAzoMA-b-PAA-PtBA)), were synthesized [127]. Depending on the block sizes, copolymers 

self-assembled into micelles (15 nm with PAzoMA31-b-PAA33-PtBA19) or vesicles (100-

300 nm with PAzoMA74-b-PAA22-PtBA46). Under UV light (360 nm, 10 min) azobenzene 

grafted on the hydrophobic polymer chain isomerized into its cis- form leading to micelle or 

vesicle disruption. Azobenzene isomerization is reversible and the copolymer solution 

previously irradiated self-assembled again into micelle or vesicles under visible light (440 nm, 

3 min). Having been reset, this process can be repeated several times.  
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1.2.2.1.2. Giant polymersomes 

Mechanisms involved in the release of species from giant polymersomes (whose size is >1 µm) 

are somewhat different than nano-polymersomes. Three examples, that may be considered 

particularly relevant and original, are presented here. Mabrouk et al. produced light sensitive 

asymmetric polymersomes that burst under a light stimulus [95]. The property differences 

between the inner and outer leaflet under UV irradiation induces membrane frustration and 

destabilization. To produce these micrometric asymmetric polymersomes, the emulsion-

centrifugation [128] technique was used. This method consists in stabilizing water emulsion 

droplets in an organic solvent (in this case toluene) thanks to an amphiphilic block copolymer. 

After centrifugation, emulsion droplets crossed the interface of a water / organic phase, also 

stabilized by an amphiphilic block copolymer. With this technique, two different copolymers 

can be used for the emulsion and the interface in order to generate an asymmetric membrane. 

While the emulsion droplets cross the interface from the organic phase to the water phase, a 

second leaflet of copolymer is added around the droplets, thus forming polymersomes. In this 

study the two copolymers used were poly(ethylene glycol)-b-polybutadiene (PEG-b-PBD) and 

a liquid crystalline copolymer PEG-b-poly(4-butyloxy-2′-(4-(methacryloyloxy)butoxy)-4′-(4-

butoxybenzoyloxy)azobenzene) (PEG-b-PMAazo444). The hydrophobic part consisted in a 

poly(methacrylate) bearing a modified azobenzene group. Without UV irradiation, azobenzene 

is in its thermodynamically stable trans- form and acts as a well-ordered liquid crystalline. 

Under UV irradiation azobenzene isomerizes into its cis- form. The leaflet containing PEG-b-

PMAazo444 has a disordered state, its projected area increases and swells compared to the other 

leaflet. This induces a membrane tension increase and, consequently, in order to relax this 

tension, the membrane collapses and the polymersome bursts releasing its content. 

In another study a ferritin protein, that stores and releases iron in cells, was encapsulated in 

PEG-b-PBD polymersomes (around 10 µm) and adsorbed in the inner leaflet of the membrane 

[30]. In addition, bis[(porphinato)zinc] (PZn2) was embedded in the polymersome membrane. 

This chromophore absorbs in the near UV, visible, and NIR light. The system was irradiated at 

488 nm, 543 nm or 633 nm where the PZn2 absorbs strongly. As a consequence, morphological 

changes in vesicles such as budding of smaller vesicles and vesicle rupture was induced. Indeed, 

the synergy of the ferritin and the PZn2 converted light energy into heat energy that generated 

differential rigidification in the membrane, stressed the membrane and ruptured or budded 

vesicles. To demonstrate photorelease, biocytin was encapsulated and 25 - 50% was released 

after irradiation. 
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Recently, Peyret et al. loaded three photocleavable molecules in giant polymersomes, namely 

calcein, methylene blue and a coumarin derivative using an emulsion-centrifugation method 

[129]. These molecules served to rapidly increase the osmotic pressure inside the polymersome 

lumen by increasing the number of species after photocleavage under irradiation. Calcein 

polymersomes, methylene blue polymersomes and coumarin derivative polymersomes were, 

respectively, irradiated at 488 nm, 633 nm and 405 nm in a confocal microscope, which 

induced fast polymersome bursting, in the range of milliseconds to seconds. Indeed, as 

polymersomes are impermeable to water, rapid osmotic pressure change cannot be 

compensated, which results in membrane stress and consequently polymersome rupture. 

Polymersomes encapsulating the different aforementioned dyes, rendering them sensitive to 

different irradiation wavelengths, were burst independently with high specificity and temporal 

precision in the same medium. These light-sensitive polymersomes were further able to release 

nano-polymersomes and nano-liposomes. This approach can obviously be used to release any 

kind of loaded cargoes in a very precise manner. 

1.2.2.1.3. Gels 

Gels are effective delivery systems, having high loading capacity, stability and often good 

biocompatibility when inert hydrophilic segments are used. Gels are generally robust, 

especially in the case of chemically crosslinked 3D gels, can be formulated into large pieces 

(macro gels) that can be implanted or small nanoparticles (nanogels) that can circulate in the 

blood stream [130]. Nanogels can also be combined with inorganic nanoparticles to form a shell 

[53]. Gels are either chemically [119] [120] or physically crosslinked [117] [118]. Physical gels 

are reversible gels that are crosslinked via molecular interactions or secondary forces such as 

van der Waals, ionic or hydrophobic interactions. As an example of a physical gel, a triblock 

ABA was prepared with hydrophilic PEG as the B block and hydrophobic photolabile poly([6-

bromo-7-hydroxycoumarin-4-yl]methyl methacrylate) (PBHCMM) as a the A block resulting 

in PBHCMM-b-PEG-b-PBHCMM [117]. The ABA triblock was used to prepare a macro 

hydrogel. As shown in Fig. 15, the hydrophobic interactions of the A blocks are responsible for 

the formation of a 3D network. In another example, a polysaccharide, the polymaltotriose (or 

pullulan), bearing a hydrophobic cholesteryl group was used to form nanogel particles with a 

hydrodynamic diameter of 18 nm [118]. The hydrophobic moiety acts as the physical link to 

create the polymer network and the gel. Chemical gels or permanent gels are held with covalent 
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bonds. An example of chemical gel is presented in Fig. 17: a 4-armed PEG tetra coumarin 

bearing an azido group and a 4-armed PEG tetra-alkyne were synthesized [119]. The two 4-

armed polymers in water undergo a Huisgen click reaction using the azido group, the alkyne 

and copper as a catalyst, creating covalent junctions resulting in a macro hydrogel. To induce 

release of the drug previously loaded in the hydrogel, the method widely used is to dissolve and 

disintegrate hydrogels by rupture of the chemical or physical junctions responsible for the 

network. 

 

 

Fig. 15: Example of a light sensitive physical gel [117]. 

For physical gels, destabilization can be induced by cleavage of the hydrophobic moiety 

responsible for the physical junctions. As an example, we cited above the case of the triblock 

PBHCMM-b-PEG-b-PBHCMM [117]. Each end-chain of the triblock bears one cleavable 

hydrophobic coumarin. Under UV or NIR irradiation (365 nm or 740 nm) the coumarin is 

uncaged and the hydrophobic PBHCMM transforms into hydrophilic poly(methacrylic acid) 

(PMMA), thus destabilizing the hydrogel (Fig. 16). In another interesting example cited above, 

the hydrophobic cholesteryl group was covalently-linked to the hydrophilic polysaccharide by 

a photocleavable ONB [118]. FITC-insulin was encapsulated in the nanogel. A film was formed 

with the FITC-insulin nanogel particles and under UV irradiation (365 nm, 50 min) the 

cholesteryl group was cleaved. Consequently, the physical bonds are ruptured, the nanogel film 

is disrupted and FITC-insulin is released.  
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Fig. 16: Photocleavage of PBHCMM-b-PEG-b-PBHCMM inducing destabilization of the 
physical hydrogel [117]. 

In the case of chemical gels, destabilization occurs via covalent bond rupture (Fig. 17). These 

bonds can be cleaved using of coumarin [119] [131], ONB [53] [120] or a diazo linker [87].  

In an aforementioned study, 4-armed PEG bearing photo-cleavable coumarin moieties were 

crosslinked [119]. The macro hydrogel was irradiated with UV light (365 nm or 

405 nm), inducing coumarin cleavage and chemical junction rupture, resulting in the hydrogel 

destabilization (Fig. 17). Coumarin was further used as a crosslinker to form a polystyrene 

microgel by emulsion polymerization [131]. The final microgel particles were between 100 nm 

and 200 nm and under UV light (365 nm) the coumarin was cleaved, the hydrogel was degraded 

and Nile red was released. 

 

 

Fig. 17: Example of the destabilization of a chemically crosslinked gel [119]. 

In a last recent and very elegant example concerning light-sensitive degradable hydrogels, 

Badeau et al. reported gel junctions that behave according to Boolean logic. Three cleavable 

molecules which respond to different stimuli were chosen: one sensitive to light (ONB), one 

sensitive to reduction (disulfur bond) and one sensitive to an enzyme (metalloproteinase). By 
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connecting cleavable groups in series or in parallel (Fig. 18), they managed to tune the junctions 

sensitivity with AND/OR connectors, then crosslinked with the junction 4-armed PEG and 

formed a hydrogel with the same sensitivity. For example (Fig. 18), they synthesized a hydrogel 

that undergoes degradation after light irradiation (A) AND (reduction OR presence of the 

enzyme) [132]. 

 

Fig. 18: Logic connector which can destabilize gel with AND and OR stimuli [132]. 

1.2.2.2. Light-induced increase of diffusion speed (Heat 
generation / permeability modification) 

In contrast to the previous section, the systems described here can release their content while 

maintaining their structure. Release is induced by changing the diffusion properties from the 

carrier. 

A simple way to increase the diffusion rate is based on temperature. As seen in part 1, 

nanoheaters increase system temperature due to light radiation. To have a light sensitive 

delivery system, nanoheaters can be combined with thermosensitive carriers. There are a wide 

variety of nanoheaters and a wide variety of thermosensitive polymers [133] [134] and 

consequently there are tremendous possibilities to combine them both to design of light 

sensitive delivery systems with appropriate properties.  

In this review, we will focus on a few demonstrative examples that we consider the most 

relevant. Two different approaches are presented here, based on (1) polymers with a lower 

critical solution temperature (LCST) and (2) hydrophobic polymers that undergo phase 

transition. 

1.2.2.2.1. Polymer / Gel shrinkage (solubility change) 

The LCST is the temperature above which the component becomes insoluble in a given solvent. 

In water, when the temperature is increased above this critical temperature, the polymer chains 
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pass from a hydrophilic swollen state to hydrophobic shrunken state [133]. For payload delivery 

applications, species are trapped in the carrier swollen state. When light is activated the 

nanoheater increases the temperature above the LCST and the carrier shrinks. As a result of the 

resulting volume reduction, the payload is released [46]. To have an efficient delivery system 

the polymer LCST should be a slightly larger than the body temperature (37°C). The LCST can 

depend on the molar mass, component concentration or pH [133]. The most important polymers 

used for thermally sensitive delivery systems are poly(N-isopropylacrylamide) (pNIPAAM), 

copolymers of poly(ethylene oxide), poly(propylene oxide) (often referred as pluronics or 

jeffamine [135]) and elastin-like polypeptides (ELP [136]). However, mainly pNIPAAM 

combined with nanoheaters has been used for light sensitive delivery systems. pNIPAAM has 

interesting properties: its LCST only slightly depends on its molar mass, pH or concentration 

[137]. Its LCST that is around the body temperature (30°C to 35°C) has to be tuned to be higher. 

With this in mind, interesting gels based on the copolymerization of NIPAAM with methacrylic 

acid (MAA) and N,N'-methylene-bis-acrylamide (MBA) (crosslinker), were obtained with an 

appropriate LCST. These gels were polymerized directly around nanoheaters (Cu1.75S 

nanocrystals) and when the system was irradiated with NIR (808 nm) it efficiently released 

doxorubicin that was previously trapped in the polymer blend (Fig. 19) [39].  

 

 

Fig. 19: Cu1.75S nanocrystals encapsulated in a temperature-responsive polymer [39]. 

In another study, NIPAAM and acrylamide (AAM) were copolymerized to tune the LCST. The 

obtained copolymers were covalently anchored on gold nanocages (Fig. 6). These cages have 

pores that are obstructed when the polymer is in its swollen state (below LCST). After 

irradiation in the NIR, the gold nanocages locally heated the polymer chains that collapsed and 

shrank. The pores were no longer obstructed leading to doxorubicin release [44]. 

Temperature change is not the only way to induce polymers or gels shrinkage. Hydrophobic 

transition thanks to cleavage or the introduction of hydrophobicity switched molecules can also 

provoke a volume transition in materials. In this context, a hydrophobic coumarin moiety was 
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grafted on a hyaluronic acid (HA) hydrogel (Fig. 20). This gel formed well-defined 

nanoparticles that could efficiently load doxorubicin due to the hydrophobic interactions with 

coumarin. After UV irradiation (315-400 nm) the hydrophobic coumarin derivatives were 

cleaved, making the HA nanogels more hydrophilic, thus allowing its swelling and the release 

of doxorubicin [75].  

 

 

Fig. 20: Coumarin release induces gel swelling [75]. 

In another study the transition from the hydrophobic spiropyran form to the hydrophilic 

zwitterionic merocyanine form was also shown to shrink micelle particles (Fig. 21). This 

shrinkage allows a faster release of drugs and a deeper tissue penetration [99]. Spiropyran (SP) 

linked to a lipidic chain (thus fully hydrophobic) (SP-C9) and 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-poly(ethylene glycol) (DSPE- PEG) were nanoprecipitated together 

resulting in hybrid micelle formation. These nanoparticles had a very low dispersity (PDI = 

0.03) with a hydrodynamic diameter of 150 nm. Moreover, they were irradiated under UV light 

(365 nm) and the hydrophobic chain of SP-C9 became amphiphilic. Consequently, the micelles 

shrunk to a size of 47 nm (PDI = 0.05). Different species were successfully loaded in these 

micelles: rhodamine B, coumarin 6, cyanine 5 (Cy5), paclitaxel, docetaxel, proparacaine, and 

doxorubicin, up to 10 wt%. Particle shrinkage induced release of encapsulated species. Another 

major advantage of such particle shrinkage was demonstrated in this study: after UV irradiation, 

diffusion of the nanoparticles into collagen tissues increased due to their reduced sizes. Finally, 

the authors used the micelles to successfully deliver Cy5 into porcine cornea thanks to their 

reduced sizes after irradiation.  
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Fig. 21: Spiropyran hydrophilicity switch induces nanoparticle shrinkage [99]. 

1.2.2.2.2. Glass transition and melting induced release 

Two intrinsic polymer properties are mainly controlling the species diffusion rate in a self-

assembled polymer system: their glass transition (Tg) and melting (Tm) temperatures. The glass 

transition temperature is the temperature at which the polymer goes from an amorphous state 

(hard and brittle) to a rubbery or liquid viscous one. Melting temperature is the temperature at 

which the crystalline part of a polymer becomes liquid. These polymers can be associated with 

nanoheaters and the heat generated during the irradiation can increase the diffusion rate.  

Poly(lactic-co-glycolic acid) (PLGA) is an amorphous polymer with a Tg above 37°C [138]. 

Above its Tg the polymer is softened and more permeable to species. An interesting example 

took advantage of the low Tg of PLGA. PLGA nanoparticles containing doxorubicin were 

formed thanks to nanoemulsion technique [139]. Gold nanospheres were fixed around the 

PLGA nanoparticles, an additional gold layer was added, resulting in PLGA loaded particles 

surrounded by a gold nanoshell with diameter of 80 nm (Fig. 22). Anti-EGFR(epithermal 

growth factor receptor) antibody (Cetuximab) was grafted on the gold nanoshell in order to 

target epithelial cancer cells. Irradiation with NIR laser (820 nm) increased the gold nanoshell 

temperature. The heat produced was transferred to the polymer matrix and rose its temperature 

above its Tg. As a consequence, the polymer matrix was softened and doxorubicin diffusion 

was accelerated compared to non-irradiated nanoparticles. These PLGA loaded doxorubicin 

nanoparticles with a gold nanoshell and antibody were then tested on cells. Nanoparticles 

showed a significantly greater affinity with cells expressing a high level of EGFR. In addition, 

irradiated cells with nanoparticles presented a 69.8% lower cell viability compared to non-

irradiated cells with nanoparticles, showing the system efficacy. Another study used the same 

principle using PLGA loaded doxorubicin nanoparticles with a gold nanoshell and antibody 

[140]. In addition, these nanoparticles were tested on mice showing an active targeting of the 
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tumor. As a result, the tumor was completely destroyed thanks to both heat and delivered 

doxorubicin. 

  

Fig. 22: PLGA surrounded with gold nanocarriers and NIR induced doxorubicin release [139]. 

Agarose gel was also used to release protein with visible light due to heating from gold 

nanospheres incorporated inside the gel (Fig. 23) [141]. In this example, gold nanospheres, with 

a diameter of 70 nm, were incorporated in a macroscopic agarose hydrogel loaded with 

bevacizumab, a protein used for its anti-angiogenic properties. Under visible light (400–500 

nm) the gold nanospheres convert light energy into heat energy and transfer it to the hydrogel. 

The temperature increase induced a softening effect of the agarose gel and as a consequence 

increased the diffusion rate of the therapeutic protein. The softening effect is reversible, thus 

the system can be turned on and off for several cycles. This system was injected in bovine eyes 

and after visible light irradiation protein release was detected. 

 

 

Fig. 23: Agarose gel releases protein under light stimulus [141]. 
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Melting temperature is the second intrinsic parameter that can be used to increase the diffusion 

rate. In this case, two polymers are particularly well-adapted due to their low melting 

temperature and biocompatibility: PTMC and PCL, with melting temperatures of 37°C and 

52°C, respectively [133]. To the best of our knowledge these polymers have not been used for 

light sensitive systems, even if a similar concept consisting in a local heating induced by 

magnetic hyperthermia has shown selective release of doxorubicin from PTMC based 

polymersomes [142].  

1.2.3. Pore blocking / unblocking 

One way to trigger release from nano-carriers is through pores, which offers a way for cells to 

release species [143]. This can be highly selective [144] and triggered with different stimuli, 

like light [97]. Forming or unblocking pores can be achieved via cleavage, isomerization, 

hydrophobicity switched molecules or nanoheaters.  

In an example using isomerization for pore unblocking, azobenzene was used to open pore 

proteins in a cell membrane (Fig. 24). In this case the final study purpose was to control cellular 

chemistry. This example is detailed being an interesting proof-of-concept. An amino acid-

sensitive membrane channel that opens in the presence of glutamate was used. The goal of this 

study is to be able to open the channel on demand thanks to light and to have a precise control 

of cellular chemistry in space and time. To do so, tetra-ortho substiuated azobenzene was used 

because of its stability, red-light switching and its cis- to trans- thermal relaxation presented a 

relative long half-life at 37°C: 3.5 h. This azobenzene derivative was modified to bear one 

glutamate molecule on one extremity. The other extremity was used to graft the azobenzene 

derivative on the protein channel and two azobenzene derivatives were grafted on the protein 

channel. Without light, the azobenzene is in its trans- isomer form, glutamate is too far from 

the receptor to be activated and the channel remains closed. After UV or red-light irradiation 

the trans- isomer switched to the cis- isomer the glutamate gets closer to the receptor and 

activates it, resulting in its opening. Several wavelengths have been tested from 340 nm to 640 

nm, and the systems shows responses up to 640 nm. The switching was reversible with blue 

light (440 nm) [97]. 
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Fig. 24: Light induced azobenzene isomerization and pore opening [97]. 

In another example using azobenzene isomerization, mesoporous silica nanoparticles (MSNs) 

with length and width of 200 nm and 150 nm, whose pores were blocked with azobenzene and 

cyclodextrin, were used. The azobenzene has 4-methoxy substitutions to shift the isomerization 

wavelength to the red. Due to the azobenzene trans-form geometry, b-cyclodextrin can envelop 

this isomer and form a complex. The azobenzene was linked to pores, as a consequence, due to 

the presence of b-cyclodextrin and the resulting complex, pores were obstructed. An interesting 

property of this complex is that the cis- isomer of azobenzene can no longer form a complex 

with b-cyclodextrin, therefore under visible light (625 nm) the b-cyclodextrin is released from 

azobenzene cis- form and pores were unblocked. This mechanism allowed to release 

doxorubicin stuck inside the pores [98]. 

Besides isomerization, cleavage have been used to unblock pores for delivery applications. 

Ruthenium complexes ([Ru(bpy)2(PPh3)Cl]Cl) were covalently linked to the MSN walls and 

obstructed the pores [79]. In this study, MSNs had diameters of 100-200 nm and their pores 

sizes were 2.2 nm. In addition, the ruthenium complex measured about 1.5 nm and was able to 

obstruct the MSNs pores. Under visible light (455 nm) the ruthenium complex was cleaved, 

released, the pores were opened and sulforhodamine 101 dye was released. 

Additionally, polymer LCST have been used to unblock pores. As an example, stimuli-

responsive pNIPAAM-co-pAAM was used to obstruct pores of gold nanocage [44] (Fig. 6). 

Gold nanocage sizes were around 50 nm and their pores on the edges measured between 5 nm 

and 10 nm. The pores were closed due to swollen pNIPAAM-co-pAAM covalently linked to 

the cage and the layer of copolymer at its swollen state had a thickness of 5 nm that was 

sufficient to obstruct the pores. As mentioned previously, pNIPAAM has a LCST around the 

body temperature. A Ti:sapphire laser was used to irradiate NIR on the gold nanocage-

copolymer system. As a result, the gold nanocage increased the copolymer temperature, which 

consequently shrunk. The copolymer thickness was reduced, the pores were no longer 

obstructed and previously loaded doxorubicin was released.  
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An alternative to pore unblocking is to directly create pores in the carrier. To this end 

isomerization hydrophobicity / hydrophilicity switch molecules and nanoheaters have been 

used. As an example, azobenzene isomerization was used to induce pore formation. A cationic 

azobenzene derivative: 4-cholesterocarbonyl- 4′-(N,N,N-triethylamine butyloxyl bromide) 

azobenzene and surfactant sodium dodecyl sulfate were self-assembled into unilamellar and 

multilamellar vesicles with an average hydrodynamic diameter of 250 nm. The UV irradiation 

(365 nm) triggered azobenzene isomerization and increased the inter-lamellar spacing. This 

nano-structural changes in the membrane induced pores formation and doxorubicin release 

[145]. This system was tested on rat retinas and could efficiently release drug and maintain high 

level of drug concentration for 8 hours. 

Equally spiropyran was used to create pores in the delivery system. For self-assembled particles 

such as polymersomes, hydrophobic blocks prevent the specie from leaving the payload 

carriers. A slight change in the hydrophilic balance of the block can induce a permeability 

increase without disturbing the payload carriers. This permeability change can be induced by a 

molecular hydrophobicity switch like spiropyran. In one article, spiropyran was grafted on an 

amphiphilic block copolymer PEG-b-PMMA using carbamate linkage: PEG-b-PSPA (Fig. 25). 

This copolymer was self-assembled into well-defined vesicles (70 nm or 450 nm depending on 

the block lengths and PDI<0.1). Irradiation with UV light (365 nm) induces switching of 

spiropyran incorporated in the vesicle membranes and conversion of the spiropyran into the 

hydrophilic merocyanine. This switch increased the membrane permeability without 

destabilizing it. The carbamate hydrogen bonding helped to maintain the structure, which was 

destabilized by a significant hydrophilicity change in the membrane. After irradiation, the 

vesicles released small hydrophilic molecules 2′-deoxy-5-fluorouridine an anticancer drugs 

[146]. Permeability change of the vesicle membrane was reversible under visible light (530 

nm). 
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Fig. 25: PEG-b-PSPA self-assembled into light-sensitive polymersomes, whose permeability 
can be modulated under light irradiation using a spiropyran group [146]. 

Another group of particles made of gold sphere crosslinked together were used as a delivery 

systems [147]. Gold nanospheres (10 nm) were self-assembled and formed hollow spheres with 

an average hydrodynamic diameter of 65 nm. Then the gold nanospheres were crosslinked with 

a dithiol-PEG in order to increase the stability in water. Visible or NIR light (532 nm and 790 

nm) irradiation induces a temperature increase of the gold nanospheres. As a consequence, the 

size of the nanogaps between the gold nanosphere increased from 2.5 nm to 4 nm while 

maintaining the hollow sphere structure thanks to the crosslinking. The difference of sizes with 

or without irradiation is enough to induce cargo leakage. The Rhodamine B dye and 

doxorubicin were loaded in the hollow spheres and under visible or NIR light, were released. 

Besides spiropyran, DASA was used as a hydrophobicity switch molecule to increase 

permeability in polymersome membranes under visible light irradiation. In a very recent 

example PEG was used as a macro chain transfer with RAFT radical polymerization to extend 

the chain with the hydrophobic monomers pentafluorophenyl methacrylate (PFPMA) and hexyl 

methacrylate (HMA) both randomly distributed [111]. The backbone was then modified to graft 

on the PFPMA two different DASA moiety: Meldrum’s acid based furan adduct (MELD) and 

a novel five-membered ring pyrazolone-based furan adduct. As a result two different 

amphiphilic block copolymer were synthesized and can self-assemble into vesicles between 30 

nm and 200 nm depending on the copolymer used. MELD and PYRA polymersomes showed 

fast hydrophilic switching kinetics, membrane permeability increase and dye release under 

irradiation with respectively green light (λem = 525 nm) and red light (λem = 630 nm). GOx and 

HRP enzymes were encapsulated separately in these polymersomes which are sensitive to two 



 

 39 

different wavelengths.. On mixing together the nanoreactors cascade reactions activated by red 

and green light at the same time could be performed. 

1.3. Conclusion 
The development of innovative delivery systems, able to control the appropriate dose both 

spatially and temporally, is still very challenging. Long lasting delivery of molecular species 

and even macromolecules is rather well controlled, especially using biocompatible and 

biodegradable polymers. Indeed, many polymers and biopolymers have been designed over the 

past decades and are now widely used as biomaterials. Exogenous triggers are of particular 

interest as they can be activated on demand. Many different external stimuli have been 

developed, the most popular being temperature, magnetic/electric fields, hyperthermia, or 

ultrasound. In addition, light is attracting increasing attention and presents many advantages as 

a trigger for delivery systems. Its application is instantaneous, easy to control spatially and 

temporally, cheap to produce and non-invasive. The different molecular and physical 

mechanisms induced by light irradiation have been reviewed, that is, which molecules and 

systems are involved in light-sensitive delivery system and what is the effect of light on them. 

Thus, the different physical mechanisms are light energy converted into heat thanks to 

nanoheaters, upconversion, and the different molecular mechanisms involved are cleavage, 

isomerization and hydrophobicity / hydrophilicity switch. The property changes at the 

molecular level induced macromolecular effects on delivery system structure such as 

destabilization, shrinkage, permeabilization and pore opening. Several delivery applications 

have been successfully developed. Equally, nanoheaters such as gold nanoparticles combined 

with temperature responsive polymers such as pNIPAAM are an interesting and advanced 

approach. Light sensitive delivery systems have to face several challenges, such as reduced 

unwanted species leakage and control the encapsulation quantity, the most important being the 

design of efficient systems. This implies finding functional molecules with enhanced light 

absorption and quantum yield/efficiency of photoconversion and/or seeking different and less 

energy-demanding mechanisms to effect switching and consequently perturb the carrier.  
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2. Light-sensitive Nano-polymersomes 
2.1. Introduction 

Cells are extraordinary bio-machines [1] that can process complex synthesis with a high level 

of control. As an example, synthesis of complex molecules, intricate processes or cascade 

biochemical reactions can be performed in cells [2]. All these reactions can be performed with 

a high level of control in space and time. Mimicking some cellular functions would afford 

access to these complex processes. To do so, scientists have been interested in designing 

microreactors in order to mimic the simplest cellular functions such as enzyme synthesis of 

molecules in a confined space [3]. This work aims to lay the foundation for temporal and spatial 

control of enzyme function by controlling substrate release. Polymersomes are ideal candidates 

to tackle this challenge. Indeed, they have a thick membrane which reduces uncontrolled 

release, they are relatively more stable than liposomes, and a wide variety of copolymers can 

be used and tuned to form polymersomes with appropriate properties [4]. Light was chosen as 

an exogenous stimulus, because its application is instantaneous, it is easy to control spatially 

and temporally, cheap to produce, non-invasive and the variety of light sensitive molecules is 

tremendous [5]. The different physical mechanisms induced by light irradiation, are light 

energy converted into heat via nanoheaters, upconversion, and the different molecular 

mechanisms involved are cleavage, isomerization and hydrophobicity / hydrophilicity switch. 

Property changes at the molecular level induced macromolecular effects on polymersome 

structure, such as destabilization, shrinkage, permeabilization and pore opening [5]. The 

strategy presented in this chapter to effect controlled release is to destabilize polymersomes by 

block separation, induced by copolymer photocleavage (Figure 9). 

  

Figure 9: Strategy used to control reactant release temporally and spatially via light-sensitive 
polymersomes (B), comprising photodegradable diblock copolymers (A). 
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A light cleavable molecule is inserted between the two blocks of an amphiphilic copolymer, 

such that under photoirradiation at the appropriate wavelength the blocks would be separated 

(Figure 9 A). Due to its amphiphilic property, the diblock can self-assemble into polymersomes 

and, under irradiation, the copolymers which compose the polymersome are also cleaved, 

resulting in polymersome destabilization (Figure 9 B). This strategy was chosen because it 

should induce fast destabilization and thus release [5]. Moreover light sensitive molecule and 

polymer choices are not restricted: any polymer chains can be grafted onto the light sensitive 

molecule. This strategy was previously used, resulting in an efficient light-sensitive system [6]. 

An o-nitrobenzyl linker was used as a junction between poly(g-methyl-e-caprolactone) and 

poly(acrylic acid). The resulting amphiphilic copolymer could self-assemble into 

polymersomes that was destabilized under UV irradiation. However we decided to use a more 

efficient photocleavable molecule based on a coumarin derivative [7] and to modify it in order 

to be cleaved under typical excitation wavelength of commercial confocal microscopes. This 

chapter presents the synthesis, and the self-assembly study of the light sensitive copolymer as 

well as the irradiation effects on the copolymer and the resulting polymersomes.  

2.2. Coumarin synthesis (a light-sensitive cleavable 
molecular synthon) 

2.2.1. Light-sensitive amphiphilic block copolymer design. 

Several photocleavable species exist as presented in chapter 1. Coumarin was chosen because 

it has fast and efficient cleavage and is amenable to a double functionalization. On introduction 

of an amino substituent, it can absorb light at 405 nm [7], which represents a typical excitation 

wavelength on commercial confocal microscopes. The target coumarin derivative 10 (Scheme 

2) was designed in order to be able to accommodate the grafting of two different copolymer 

blocks. 

 

Scheme 2: Photocleavable linker of the light-sensitive block copolymer.  

 The orthogonal grafting reactions were chosen in order to provide high yield and no side 

reactions. The first coupling reaction of choice was the copper-catalyzed Huisgen (“click”) 1,3-
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cycloaddition between an azide and a terminal alkyne [8], the second type of coupling being 

amide formation between an amine and an acid chloride (derived from a carboxylic acid) [9]. 

Thus, coumarin was modified to have both carboxylic acid and alkyne groups.  

The polymers chosen were first poly(trimethylene carbonate) (PTMC), as the hydrophobic 

block. This polymer is biocompatible, biodegradable, has low toxicity and is well-defined [10]. 

The hydrophilic block chosen was the poly(ethylene glycol), (PEG), due to its known 

biocompatibility, availability and facile functionalization [11]. Polymer lengths have been 

chosen to have the appropriate hydrophilic:hydrophobic ratio to allow self-assembly into 

polymersomes in aqueous media [12]. These sizes were selected based on a study presented in 

part 2.5. 

2.2.2. Synthesis 

The synthetic route to the ditopic target coumarin synthon is shown in Scheme 3. The synthesis 

started with the commercially-available 3-aminophenol (1), which was reacted with ethyl 

chloroformate. This reaction introduced a carbamate link in order to protect the amine 

moiety[13]. The protected 3-aminophenol (2) was obtained in almost quantitative yield (98%). 

This amine protection allows grafting of a single methyl group on the amine later on in the 

synthetic pathway. 2 was reacted with 1-ethoxybutane-1,3-dione under acidic conditions 

forming the coumarin skeleton [14]. Transesterification of the dione with the phenol followed 

by cyclization yielded the protected 7-amino-4-methylcoumarin (3) in 70% yield. The protected 

amine bearing the aromatic ring does not react during coumarin formation. The introduction of 

a methyl on the protected amine of 3 was achieved by adding sodium hydride (a strong base) 

and methyl iodide. The deprotonated amine reacted with the methyl iodide. Methylation gave 

the modified coumarin 4 in 54% yield after crystallization in ethanol. The methylation at this 

point allows selective introduction of only one carboxylic acid bearing group on the coumarin 

later on. The tertiary amine group of 4 was deprotected under acidic conditions and high 

temperature (125°C) leading to the 4-methyl-7-(methylamino)coumarin (5) in 91% yield. The 

newly formed secondary amine was used to introduce the carboxylic acid grafting group. To 

that end, 5 was reacted with tert-butyl 2-bromoacetate to alkylate the amine under basic 

conditions. The carboxylic acid-protected coumarin derivative (6) was obtained in 34% yield. 

The tert-butyl protects the carboxylic acid during subsequent oxidation and reduction steps. The 

first grafting group was introduced, then the alkyne (the second grafting group) was added onto 

the coumarin. To that end, the methyl in the 4-position was used to introduce a hydroxyl group 
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in two steps described in previous studies [15]. First the methyl was oxidized with selenium 

dioxide to obtain an aldehyde (7) in almost quantitative yield (98%) and used without further 

purification other than removing metal waste. The aldehyde was then reduced into an alcohol 

with sodium borohydride to obtain the modified 4-hydroxy-methylcoumarin (8) in 52% yield. 

The newly formed alcohol was used to introduce the alkyne group. To that end, 8 was reacted 

with propargyl bromide to give the desired coumarin, linked to the alkyne (9). Several sets of 

parameters have been tested to perform this nucleophilic addition. Due to the highly water-

sensitivity of NaH, solvent and reactant were dried before use. DMSO was not used as a solvent 

here because explosions have been reported when combined with NaH [16]. The first set of 

parameters 

Table 2 n°1) used was: DMF as the solvent, an excess of NaH and an excess of alkyne at room 

temperature. Also the reaction mixture was not heated to avoid NaH reacting with DMF [16]. 

The resulting reaction was not complete. In order to be able to heat and increase the reaction 

rate, the DMF solvent was replaced by THF. Several sets of parameters with THF as the solvent 

(Table 2 n°2, 3 and 4) were tested but none gave the desired product. As DMF is known to 

promote nucleophilic substitution reactions [17], DMF was used with moderate heating (Table 

2 n°5-6). Several side products were obtained because of the 72 hour reaction time. Under 

optimized conditions, 9 could be obtained in 31% yield on heating at a temperature of 60°C in 

DMF with an excess of NaH, propargyl bromide and a 24 hour reaction time (Table 2 n°6).  

 

N° Temperature Solvent Reaction time 
NaH 

equivalent 

Propargyl 

bromide 

equivalent 

Results 

1 RT DMF 24h 3 1.25 Substrate 

2 RT THF 72h 3 1.25 Substrate 

3 65°C THF 72h 3 3 Substrate 

4 65°C THF 72h 5 5 Substrate 

5 60°C DMF 72h 3 3 No more substrate 

but several side 

products 

6 60°C DMF 24h 2 3 Product 

 
Table 2: Sets of parameters used for the alkyne addition on the coumarin to obtain 9. 

The last step to obtain the target modified coumarin as photosensitive linker of the two polymers 

blocks was to deprotect the carboxylic acid. The desired carboxylic acid allows grafting of an 
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amine-terminated polymer onto the coumarin by formation of an amide bond. To that end, 9 

was deprotected in acidic conditions using TFA. Nevertheless the desired product turned out to 

be sensitive to acidic conditions. Two TFA:DCM ratios (1:1 and 1:2) were tested without 

diminishing the observed degradation. Reaction time was the key parameter, long enough to 

deprotect the carboxylic acid yet not too long to avoid degradation. A reaction time of 6 hours 

degraded the product and 2 hours was found to be a good compromise. Finally, coumarin 10, 

bearing a carboxylic acid and an alkyne, was obtained in 82% yield in the final step. 

 

 

Scheme 3: Synthetic route for the coumarin photo-cleavable group, the linker between the two 
amphiphilic polymers.  
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2.3. Polymer synthesis and chain-end modifications 

2.3.1. TMC polymerization to obtain well-defined PTMC 

2.3.1.1. Introduction to Ring Opening Polymerization 

In order to use light-sensitive particles in the presence of enzymes, and more generally speaking 

in a biological context, the hydrophobic block has to be biocompatible and non-toxic, thus 

PTMC was chosen. PTMC is also biodegradable, easy to synthesize and well-defined [10]. The 

synthesis of PTMC from a ring opening polymerization (ROP) mechanism depicted on Scheme 

4 allows to directly obtain the right end group on the chain. 

 

 

Scheme 4: General scheme for the trimethylene carbonate (TMC) ring opening polymerization 
catalyzed with DBU and cocatalyzed with TU. 

This polymerization method is widely used to synthesize a wide variety of polymers such as 

polycaprolactone, polylactides or PEG [18]. This is a controlled and living polymerization that 

affords low dispersity polymers. The chain-end functionality can be controlled thanks to the 

initiator (here an initiator containing an azido group was used). This initiator is activated to 

polymerize the TMC.  

2.3.1.2. Initiator synthesis 

 

Scheme 5: General scheme for the functional initiator synthesis. 
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The first step was to synthesize the initiator that bears an azide group, the commercially- 

available 3-bromo-1-propanol (11) was reacted with sodium azide to replace the bromine with 

an azide and thus obtain 3-azido-1-propanol (12). The hydroxyl function of 12 allows initiation 

of the TMC ring opening polymerization and to lead to a PTMC bearing an azido group at one 

chain end. DMF was initially used [19], however DMF traces remained and a low yield was 

obtained. One key parameter to control the polymerization was the reactant purity, thus a 

mixture of acetone / water was used [8] and was fully removed. The polymerization is also very 

sensitive to water [20]. In order to have a living polymerization, all water traces were removed 

by drying 12 with CaH2 overnight and double cryo-distillation to purify it. Three carbons were 

necessary between the azido group and the alcohol because it renders the initiator less explosive 

[21]. 

2.3.1.3. Polymerization mechanism 

In order to obtain well-defined PTMC, and avoid metal-containing reagents, organocatalysts 

were used to polymerize TMC. The final goal is to use PTMC in the presence of enzyme, thus 

metal traces could reduce its biocompatibility [22]. Also organocatalysts yield narrow 

dispersity, predictable end chain groups and polymer lengths [10]. The polymerization 

mechanism is a three step process: initiation, propagation and termination (Scheme 6). The first 

step starts with the initiator (12), via deprotonation by a catalyst. A wide range of catalysts have 

been tested in previous studies [10], such as N-heterocyclic carbenes; 1,5,7-triazabicyclo-

[4.4.0]dec-5-ene (TBD). The best dispersity (Đ) obtained was with 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU): 1.04 [10]. DBU has a pKa of 24.3 [23], allowing it to 

deprotonate the alcohol of 12 to obtain the corresponding alkoxide. In the second propagation 

step, the TMC monomer undergoes a nucleophilic attack by the alkoxide. This attack opens the 

ring to form a new alcohol. Then the catalyst deprotonated the newly formed alcohol and the 

same process is repeated. The last step is the termination. Acetic acid or methanol were used as 

terminating agent. The ROP active center is nucleophilic (that permits the polymerization) and 

also acts as a base. Acetic acid or methanol protonate the active center and terminate the 

polymerization [24].  
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Scheme 6: Ring opening polymerization mechanism of TMC. 

The resulting polymer was analyzed by 1H NMR. The resonances associated with TMC 

monomer protons in CDCl3 shifted from 4.44 ppm (g) to 4.22 ppm (c) and 2.13 ppm (h) to 2.04 

ppm (d) after polymerization (Scheme 7 and Figure 10).  

 

Scheme 7: General scheme for the trimethylene carbonate (TMC) ring opening polymerization 
with an azido chain end. 

In order to remove the unreacted monomers, PTMC was purified by precipitation in cold 

methanol (0°C) three times. To confirm that no monomers remained, 1H NMR in CDCl3 was 

used, and resonances associated with TMC monomer protons (4.44 ppm and 2.13 ppm) 

disappeared after precipitation.  

2.3.1.4. Polymerization Kinetic and DP measurement 

Considering a PEG molar mass of 2000 g/mol and a hydrophilic:hydrophobic ratio of 19 wt% 

a DP of 81 for the PTMC block was targeted in order to form vesicles (this ratio was determined 

from the part 2.5.1). 80% conversion was targeted and 48 hours were required to obtain the 

desired DP with only DBU. In order to increase the polymerization kinetics, a cocatalyst was 

used: N′-[3,5-bis(trifluoromethyl)phenyl]-N-cyclohexylthiourea (TU) [25]. This cocatalyst 

activates the monomer electrophilic carbonyl by hydrogen bonding, as shown in Scheme 8. 
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Scheme 8: TU activation of the monomer carbonyl via hydrogen bonding.  

The polymerization is thus activated twice: DBU activates the initiator and the resulting alcohol 

and TU activates the monomer. Consequently, to obtain a PTMC with a DP 81, 48 hours were 

necessary without the cocatalyst whereas only 3 hours were necessary with TU. To measure 

the DP by 1H NMR, protons a and b were used as references (Figure 10). Owing to their 

proximity with the alcohol and the azido groups, a and f protons signals are shifted compared 

to the main resonance c. 

 

Figure 10: 1H NMR in CDCl3 of PTMC with a DP of 81 and an azide group as chain end group. 

Polymerization kinetics were studied by collecting several samples during the polymerization 

process. These samples were quenched directly after being collected and analyzed by 1H NMR 

and Size Exclusion Chromatography (SEC) in THF. In order to verify the living nature of the 

polymerization, the logarithm of [M0]/[M] (ratio of the initial monomer concentration over the 

monomer concentration) depending on the reaction time was plotted (Figure 11 A). The linear 

fit proved the first order living nature of the polymerization ([26]). The controlled nature of the 
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polymerization was verified by plotting the PTMC molar mass depending on the conversion 

(Figure 11 B). The linear fit proved the controlled nature of the polymerization ([26]). The 

optimized reaction time, as judged by the kinetic study, to obtain the desired DP (81) was 3 h. 

The proton resonance of c in 1H NMR, integrated for 324 (DP of 81) compared to the chain-

end signals (Figure 10). 

 

    

A 

 

B 

 

Figure 11: Kinetic study of TMC polymerization. The molar mass was determined by NMR: A) 
logarithm of [M0]/[M]: (ratio of the initial monomer concentration over the monomer 
concentration) depending on the reaction time showing the living nature of the polymerizaion; 
B) PTMC molar mass depending on the TMC conversion. showing the controlled nature of the 
polymerization. 

2.3.1.5. Unwanted diblock: possible mechanism of formation 

The PTMC obtained by ROP was analyzed by Size Exclusion Chromatography (SEC) in THF. 

The SEC traces (Figure 12) showed that the polymer obtained had a bimodal distribution. 
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Figure 12: SEC in THF analysis of TMC polymerization at different reaction times. 

An uncontrolled bimodal distribution could compromise the end chain fidelity and furthermore 

the copolymer formation. The unwanted shoulder had a mass twice larger than the main peak, 

showing that a diblock was formed. In previous studies of TMC polymerization with such an 

organocatalyst, no bimodal distribution were mentioned. [10] [20]. Thus several hypotheses 

were tested. In order to avoid any contaminant, TMC was recrystallized twice, the initiator was 

distilled twice, solvents were dried and distilled and all the glassware was flame dried under 

vacuum three times. Also the reactants were mixed in a glovebox.  

2.3.1.5.1. Side reactions  

Side reactions during polymerization have been considered. Several side reactions have been 

reported for polycarbonate and polyester [27][28]. The first one is polymer degradation. As 

explained, PTMC is biodegradable [28]. During polymerization the backbone chain could 

undergo hydrolysis and create new reactive sites. A small polymer fraction could have two 

reactive sites and polymer growth could be bidirectional. The polymer grows twice as fast, 

resulting in a higher molar mass and bimodal distribution. The hydrolysis reaction is sensitive 

to temperature [28]. In order to test this hypothesis, the reaction was performed at 17°C instead 

of room temperature (Table 3 n°2 and 6). However, the polymer molar mass was not affected 

and the bimodal distribution was still observed.  

Another hypothesis was the transcarbonation. The reactive site attacks the polymer backbone 

chain instead of TMC. This side reaction exists for polyester also referred to as 

transesterification in that case [29]. Two polymer chains could be combined and give molar 

masses higher than expected. To avoid this side reaction, monomer concentration was 

increased, and to obtain a DP of 81 the conversion was lowered (Table 3 n°3 to 6). The reaction 

mixture was also diluted (Table 3 n°7). However, polymer molar mass was not affected and the 

peak with higher mass was still observed by SEC.  
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REACTION N° CONDITIONS RESULTS 

1 Conversion 80% RT Multimodal 

2 Conversion 80% 17°C Multimodal 

3 Conversion 60% RT Multimodal 

4 Conversion 30% RT Multimodal 

5 Conversion 30% RT Multimodal 

6 Conversion 30% 17°C Multimodal 

7 Diluted twice 25°C Multimodal 

8 Deoxygenated acetic acid Multimodal 

9 Deoxygenated Methanol Multimodal 

10 
Use of bromopropanol as 

initiator 
Multimodal 

Table 3: Summary of conditions tested to avoid side reactions during the ROP of TMC. 

2.3.1.5.2. O2 coupling  

The other hypothesis explored was O2 coupling. In a previous study, the authors found that 

secondary reactions could happen during the deactivation reaction, especially for anionic 

processes and polymers with OH functional groups [30]. The side reaction pathway is described 

in Scheme 9. 

 

R-+O2à R•+O2-àR-R 

Scheme 9: O2 coupling reaction that could induce the bimodal distribution of PTMC. 

Thus O2 presence in acid acetic and methanol, during the deactivation reaction could generate 

PTMC diblocks. To test this hypothesis, before deactivation, acetic acid or methanol were 

deoxygenated to prevent block coupling (Table 3 n°8 and 9). After SEC analysis, a bimodal 

distribution was still observed.  

2.3.1.5.3. Post-functionalization 

Post-functionalization has been used in previous studies ([31]) to introduce an azide group. 3-

Bromo-1-propanol (11) was used as initiator to polymerize TMC and then modified to obtain 

the azide group with the same reaction described in Scheme 5. The resulting polymer was 

analyzed by SEC in THF. The PTMC obtained also had a similar bimodal distribution.  
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2.3.1.5.4. Reactant purity 

During the polymerization, traces of water or impurities could affect the polymer dispersity. In 

order to obtain a monomodal polymer distribution, reactants and solvent were highly purified 

for all the previous described polymerizations: TMC was recrystallized in toluene twice under 

inert conditions to remove water and trace impurities. Toluene removed water due to azeotrope 

formation. Solvents such as toluene or DCM, were dried over CaH2 overnight and then distilled. 

The initiator as described above was also dried over CaH2 overnight and distilled twice. 

Further investigations revealed an almost undetectable impurity in the initiator mixture after 

distillation. The impurity was first detected in bromopropanol (11) mixture by thin Layer 

Chromatography (TLC) as shown in Figure 13 A.  

 

A 

 

B 

 

Figure 13: Bromopropanol silica TLC (A) before and (B) after silica column purification 
(B).The spots were revealed with phosphomolybdic acid.  

The spots were revealed with phosphomolybdic acid. A closer look on 1H NMR spectra of the 

azido propanol (12) also showed non-attributed signals hidden by the main peak (arrow in 

Figure 14 A). In order to remove this impurity from the 3-azido-1-propanol (12), 3-bromo-1-

propanol was purified before initiator synthesis by column chromatography on a silica 

stationary phase (Figure 13 B). The resulting oil was then distilled. 12 was then synthesized 

using pure 11, dried with CaH2 overnight and distilled twice. The impurity was successfully 

removed from 12 as shown on the 1H NMR spectra in Figure 14 B.  
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A 

 

 
  

B 

 

 

Figure 14: 1H NMR in CDCl3 of 3-azido-1-propanol (A) before and (B) after silica column 
purification. The arrow indicates an undefined impurity (a) that was removed via 
chromatographic purification. 

The pure initiator was then used to polymerize TMC, the dispersity of the PTMC obtained was 

greatly improved (PTMC n°2). The diblock proportion decreased from 27% before initiator 

purification (PTMC n°1) to 5% after initiator purification (PTMC n°2) (Figure 15).  
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Figure 15: SEC in THF traces of PTMC81-N3 with unpurified initiator3-azido-1-propanol 
(PTMC n°1) and purified initiator (PTMC n°2). 

Thanks to the previous kinetic study, the resulting polymer had a DP of 81, a molar mass of 

8200g/mol and a narrow dispersity of 1.05. 

2.3.1.6. PTMC end chain analysis, alcohol benzylic PTMC formation 
and IR spectra comparison 

The next step of the copolymer synthesis, which is the PTMC grafting on the coumarin, requires 

control over the PTMC end chain. The PTMC azide group will click with the alkyne group of 

the coumarin. High end chain-functionalization rate and end chain fidelity had to be verified. 

To that end, PTMC was analyzed by infrared spectroscopy. The typical signal of the azido 

group appeared at 2100 cm-1 [32] as shown by the black arrow in Figure 16 A. The high molar 

mass of the PTMC (8200 g/mol) compared to the chain end molar mass explains the signal 

strength difference. To ensure that the weak signal not an artefact, the same polymer was 

synthesized with a different end chain. TMC was polymerized with benzyl alcohol as the 

initiator as shown in Scheme 10.  
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Scheme 10: General scheme for the trimethylene carbonate (TMC) ring opening polymerization 
with a benzyl chain-end.  

The two IR spectra were compared in Figure 16 B, and these spectra clearly showed the 

difference at 2100 cm-1 due to the azido group end chain on the synthesized PTMC81 13. 
A 

 

B 

 

  

Figure 16: A) Azide terminated PTMC81 IR spectra. The arrow indicated the typical azide 
signal (2100 cm-1) B) IR spectra comparison between benzyl-terminated and azido-terminated 
PTMC. 

A high degree of functionalization was verified by 1H NMR spectroscopy. The resonance of 

the alpha proton (a) of the azido group in Figure 10 proved that 95% of the end chain groups 

were functionalized.  

MALDI-TOF mass spectra were difficult to obtain and not sufficiently precise to be able to 

unambiguously identify the end chain group molar mass (Figure 17).  

 

Figure 17: Characteristic MALDI-TOF spectrum of PTMC81-azide. 
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However, the molar mass measured of the main peak was 8200 g/mol and the difference 

between the peaks was 102.0 g/mol, which corresponds to one TMC monomer added. 

2.3.1. PEG45-OH end chain modification 

The hydrophilic block (PEG) end chain group was then modified in order to graft this block 

onto the photocleavable coumarin molecule (Scheme 11). 

 

 

Scheme 11: General scheme for PEG45-OH end chain modification to obtain PEG45-NH2.  

An amine-terminated PEG45 was necessary to be able to form an amide bond by reacting with 

the coumarin carboxylic acid later in the synthesis. Commercially-available bifunctional 

methoxy-PEG45-OH (15) was used. The two different end groups allow modification of only 

one PEG chain end.  

2.3.1.1. Tosylation  

Alcohols are poor leaving groups, the methoxy-PEG45-OH was thus converted into a more 

reactive tosylate [33] (Scheme 11). This moiety is a good leaving group and favours the SN2 

reaction later on in the synthesis. To that end, methoxy-PEG45-OH was reacted with tosyl 

chloride under basic conditions. The reaction achievement was easy to follow by 1H NMR 

spectroscopy. The aromatic protons of the tosylate shift compare the aromatic proton of the 

unreacted tosyl chloride from 7.47 ppm and 7.11 ppm to 7.79 and 7.48 ppm. After reaction 

overnight, the reaction was not complete, prompting us to use Me3N.HCl as a catalyst [34]. 

These new reaction conditions were tested, giving full conversion after one night to give 
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methoxy-PEG45-tosylate (14) in 65% yield. This relatively low yield was caused by the 

precipitation in diethyl ether that can be improved.  

2.3.1.2. Azide formation 

Methoxy-PEG45-tosylate was reacted with sodium azide in order to replace the tosylate group 

with an azido group [33] (Scheme 11). The tosylate undergoes a nucleophilic attack by the azide 

anion to give methoxy-PEG45-N3 (15) in 90% yield. The progression of the reaction was 

verified by disappearance of the aromatic tosylate proton resonance in NMR experiments. 

2.3.1.3. Amination  

In the next step, the azido group was hydrogenated to give an amine group [33] (Scheme 11). 

Macromolecule 15 was reacted with triphenylphosphine to give the methoxy-PEG45-NH2 (16) 

in 58% yield. In order to verify that the previous reactions did not modify PEG molar mass 

distribution, SEC in THF analysis was performed on the PEG45-NH2 showing the distribution 

was still monomodal. 

2.4. Polymer grafting on the light-sensitive coumarin linker  

2.4.1.  Amidation reaction 

The light sensitive linker was synthesized with two grafting groups. OH-PTMC81-N3 could not 

be grafted first because during the next step (amide formation to graft PEG45), EDCI would 

activate the carboxylic acid on the coumarin of HO-PTMC-coumarin and the hydroxyl group 

of PTMC81 would react with the activated carboxylic acid [35]. Therefore the PEG45-NH2 was 

firstly coupled onto the coumarin. To this end, PEG45-NH2 (15) was reacted with the modified 

coumarin (10) using coupling agents DMAP and EDCI to give PEG45-coumarin (17) in 28% 

yield (Scheme 12). 
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Scheme 12: General scheme for PEG45-NH2 coupling on the coumarin by amide bond 
formation.  

 EDCI was used to activate the carboxylic acid and the resulting urea is water soluble [9], so 

can be removed easily with solution phase chemistry.  
1H NMR spectroscopy showed that the reaction was not complete. 50% of the PEG45-NH2 

remained unfunctionalized with the coumarin. After silica column purification, the percentage 

of functionalized PEG45-NH2 was slightly better: 80%. Separation of the coumarin 

unfunctionalized PEG from the functional PEG is difficult because of a similar molar mass. 

However, after PTMC81-N3 grafting on the PEG45-coumarin, the remaining unreacted PEG 

could be easily removed by dialysis due to the molar mass difference (10 000 g/mol for the 

copolymer again 2000 g/mol for the unreacted PEG) as it will be evidenced later. 

In order to verify that the coumarin was grafted on the PEG45-NH2, SEC analysis was performed 

on the newly-formed polymer. Due to the coumarin group the PEG signal absorbed in the UV 

[36], contrary to the PEG before reaction, as shown in Figure 18 A. Also the signal in UV and 

RI in SEC analysis overlap perfectly, as shown in Figure 18 B. These SEC analyses confirmed 

that coumarin was grafted on the PEG45-NH2 chain-end. 

 

A 

 

B 

 

Figure 18: A) SEC in THF traces of PEG45-coumarin before (no signal) and after (signal) 
coumarin coupling. B) SEC in THF traces of PEG45-coumarin, monitoring changes in RI and 
UV absorption. The two traces overlaid perfectly. 

O ON

O

+ O ON
O

O

O NH2n
O

H
N
nHO

O

Dry DCM
N2 atmosphere

DMAP EDCI
rt, 28%

1910 18

1.5 eq 1 eq



 

 70 

2.4.2. Copper-catalyzed Huisgen (“click”) 1,3-cycloaddition 

PTMC81-N3 (13) was then grafted on the PEG45-coumarin (19) to give the copolymer PEG45-

coumarin-b-PTMC81 (20) in 57% yield. To that end, the PTMC81 azide chain end group was 

reacted with the coumarin alkyne in presence of a copper catalyst (Scheme 13).  

 

Scheme 13: General scheme for PTMC81-N3 grafting on PEG43-coumarin via a copper-
catalysed CuAAC /“click” reaction. 

This copper-catalysed CuAAC reaction is commonly called a “click reaction”. The copper was 

then easily removed by several days of dialysis in water. 1H NMR in CDCl3 in Figure 19 proved 

that the click reaction had occurred. Resonances associated with PTMC81 protons (4.24 and 

2.05 ppm) and PEG45 (3.64 ppm) appeared, the triazole proton signal was clearly visible at 7.75 

ppm and the alkyne triplet from PEG45-coumarin observed at 2.63 ppm in CDCl3 disappeared. 

The integrals of signals associated with PTMC and PEG protons were slightly higher than 

expected, which was probably due to a small fraction of unreacted PTMC81-N3 and PEG45. 

 

 

Figure 19: 1H NMR in CDCl3 of the light sensitive copolymer PEG45-coumarin-b-PTMC81. 

O ON
O

O

O
H
N
n

+

CuSO4
Ascorbic acid
DMSO

30°C Overnight
57%

H
N

O ON
O

O
NN

N

O n

OO

O

n
O

H

19

20N3OO

O

n
O

H

13

1 eq

1 eq



 

 71 

In order to verify the progress of the reaction, the resulting copolymer was then analyzed by 

SEC in THF. The copolymer molar mass matched the sum of PEG45-coumarin and PTMC81-

N3 molar mass, as shown in Figure 20 A. Also PTMC81-N3 alone does not absorb in the UV 

spectral region contrary to the resulting polymer. The absorption spectrum of the copolymer 

corresponded with that of the coumarin group, as shown in Figure 20 B. These results clearly 

confirmed that the light-sensitive PEG45-coumarin-b-PTMC81was successfully obtained with a 

dispersity of 1.05. 

 

A 

 

B 

 

Figure 20: SEC in THF traces of the PEG45-OH, PTMC81-N3 and resulting PEG45-coumarin-
b-PTMC81 B) PEG45-coumarin-b-PTMC81 absorption in THF obtained from SEC analysis 
(Diode-array UV detector). 

2.5. Self-assembly characterization 

2.5.1. Study on PEG-b-PTMC Copolymer 

2.5.1.1. Synthesis  

Due to the complexity of the light-sensitive copolymer synthesis, PEG-b-PTMC without the 

coumarin molecule inserted between the blocks was first used to study its self-assembly 

properties. Several copolymer block lengths have been easily synthesized (Table 4 and Scheme 

14). One key parameter to obtain polymersomes is the proportion of the hydrophilic and 

hydrophilic block [4]. To this end, the hydrophilic ratio was defined by the molar mass of the 

hydrophilic block over the molar mass of the hydrophobic block (Table 4). 
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Scheme 14: General scheme for the trimethylene carbonate (TMC) ring opening polymerization 
with PEG45-OH as the initiator to form the block copolymer PEG45-b-PTMCx. 

 

Samples 
Hydrophilic ratio 

(%) 

Molar mass 

(g/mol) 

Mn PEG 

(g/mol) 

Mn PTMC 

(g/mol) 
Đ 

PEG45-b-PTMC272 7 29700 2000 27700 1.17 

PEG45-b- PTMC81 19 10200 2000 8200 1.05 

PEG45-b- PTMC33 37 5300 2000 3300 1.05 

Table 4: Several PEG45-b-PTMCx synthesized with different PTMC lengths and different 
hydrophilic ratios. 

The aim of this study was to find the precise hydrophilic ratio that allows self-assembly into 

polymersomes. Methoxy-PEG45-OH was used as an initiator and TMC was polymerized with 

DBU as catalyst in the same manner as described previously. In a first step, different methods 

to form reproducible and well-defined self-assembled structures were tested using these 

copolymers. 

2.5.1.2. Nanoprecipitation 

The nanoprecipitation (or solvent displacement) method was first used to self-assemble our 

block copolymers. This method consists in dissolving the copolymer in an organic solvent that 

dissolved the two blocks well. This organic solvent also has to be soluble in water. Water is 

then added to the copolymer solution. The hydrophobic block becomes progressively insoluble 

in the water/organic solvent mixture and stacks in order to minimize the unfavorable 

interactions with water. When the water ratio is high enough, the copolymer self-assembles into 

ordered structures such as micelles, worm-like micelles or polymersomes (Figure 21).  
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Figure 21: Schematic representation of the nanoprecipitation method. 

Polymeric vesicles, also known as polymersomes, are small artificial bilayer vesicles enclosing 

an aqueous solution, resulting from the self-assembly of amphiphilic block copolymers. The 

aim of this study is to determine the appropriate hydrophilic fraction for PEG-b-PTMC 

copolymers that allows the formation of vesicles. 

 

THF and DMSO have been tested as the organic solvent in the nanoprecipitation process. 

Several tests showed that DMSO was more efficient than THF to self-assemble the copolymers. 

The efficient initial copolymer concentration in the organic solution was 10 mg/mL and 90% 

in volume of water was rapidly (≈ 1 second) added into the organic polymer solution while 

stirring at 500 rpm with a magnetic stirring bar. In order to remove the organic solvent, the 

resulting particle solution was dialyzed against water using a 3.5 kDa dialysis bag. The dialysis 

bags were immersed in 5 L of water for 3 h, then the water was changed. This operation was 

repeated 3 times. Dynamic light scattering (DLS) at 90° (Malvern) was used to measure particle 

size and the polydispersity index (PDI) of the particle solution. Measurements by DLS at 90° 

were performed 3 times and the resulting average is presented. 
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2.5.1.3. Syringe pump to control particle sizes 

 Water was added manually in the previously reported nanoprecipitation tests, making this 

method largely irreproducible. In order to have more repeatable batches, a syringe pump was 

used to add water at a constant rate. The particle size could also be tuned depending on the 

speed of water injections while maintaining a low PDI (Table 5). Water injection by a syringe 

pump allows then to obtain sizes between 120 and 380 nm for PEG45-b-PTMC81. An almost 

linear increase of the size as function of the injection time could be observed (Figure 15). 

 
Injection Time (Min) Diameters (nm) PDI 

0 121 0.12 

1 225 0.09 

2 276 0.10 

5 384 0.17 

Table 5: Particle diameters and PDI depending on the injection speed of water for PEG45-b-
PTMC81. 

 

 

Figure 22: Particle diameters depending on the injection speed of water for PEG45-b-PTMC81. 

2.5.1.4. Determination of the appropriate hydrophilic ratio to obtain 
polymersomes  

The self-assembly properties of the 3 synthesized copolymers were first studied with a fast 

water addition (≈ 1 second), dialyzed then analyzed by DLS at 90°. Several copolymers showed 

a narrow distribution and low PDI by DLS such as PEG45-b-PTMC272 and PEG45-b-PTMC81 

(Table 6), with respectively, hydrophilic ratios of 7 and 19%. These copolymers self-assemble 
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into particles with monomodal distribution, polydispersity around 0.1 and sizes around 150 nm 

contrary to PEG45-b-PTMC33 as shown in Figure 23. PEG45-b-PTMC81 with a hydrophilic ratio 

of 19% was chosen to go further in the investigation because the particles formed have a lower 

PDI. 

Samples Diameter (nm) PDI 

PEG45-b-PTMC272 182 0.149 

PEG45-b-PTMC81 127 0.118 

PEG45-b-PTMC33 38 0.370 

Table 6: Particle diameters and PDI for different PTMC lengths of PEG45-b-PTMC. 

 

  

 

Figure 23: Intensity-averaged hydrodynamic diameter distributions, recorded by DLS at 90° 
(Malvern) in water of different PEG45-b-PTMC. 
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2.5.1.5. TEM 

In order to identify the structures formed by nanoprecipitation, TEM was first used to observe 

the particle solution. PEG45-b-PTMC81 copolymers have a weak contrast in electron 

microscopy, consequently, this copolymer was hardly detectable by TEM. In order to render 

the copolymer more visible, samples were stained with Uranyless (from Delta Microscopies). 

TEM grids (Formvar / carbon film on 200 mesh copper grid: S162) were prepared by deposition 

of a drop of solution of particles (0.1 mg/mL) onto the grids for 1 min. The grids were stained 

with one Uranyless drop during 1 min, the drop was removed with an absorbent tissue, then the 

grids were dried for at least one hour at room temperature. The resulting image of PEG45-b- 

PTMC81 particles solution is shown in Figure 24. 

 

 

Figure 24: TEM images of PEG45-b-PTMC81 stained with Uranyless.  

Due to preparation conditions, and especially the drying process, particles were probably 

destroyed. However, the hallmark of lamellar structures could be observed, indicating that 

copolymer may form bilayers that could result from vesicular structures in solution. This 

analysis is of course not sufficient to conclude about the copolymer structure in solution. 

2.5.1.6. Cryo-TEM 

Cryo-TEM was then used to observe the copolymer particle solution (Figure 25). One 

advantage of Cryo-TEM compared to TEM is that samples are not dried before observation. 

Since they are frozen, the structures observed are considered the same as the structures in the 
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solution. Samples from PEG45-b-PTMC81 were sent to Aalto University, applied physics 

nanomicroscopy center in Finland, in the framework of a collaboration with the LCPO.  

 

A 

 

B 

 

C 

 

  

D 

 

E 

 

    

Figure 25: Cryo-TEM images of PEG45-b-PTMC81 self-assembled in water. 

The obtained Cryo-TEM images showed closed membranes, clearly indicating that PEG45-b-

PTMC81 can self-assemble into vesicular structures (Figure 25 A, B, and C). A few micelles 

(Figure 25 E) and worms (Figure 25 D) were also observed. Vesicle membranes had an 

homogeneous thickness of around 12 nm which was consistent with a polymersome bilayer 

membrane [4]. Observed polymersome size was around 50-100 nm, which was smaller than 

the size observed by DLS (≈ 120 nm). The observed particle size distribution was relatively 

polydisperse with several morphologies and several sizes, which was not consistent with DLS 

at 90°. Indeed, one can expect that the sample could be destabilized during transportation, which 

could explain the difference between the observation by DLS and the Cryo-TEM. However, we 

can definitely conclude that the hydrophilic ratio for PEG45-b-PTMC81 was appropriate with 

self-assembly into polymersomes. Therefore the hydrophilic ratio chosen for the light-sensitive 

copolymer synthesis was 19% with PTMC block of 8200 g/mol and PEG block of 2000 g/mol. 
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2.5.2. Self-assembly characterization of light-sensitive PEG45-
coumarin-b-PTMC81 

In the previous section PEG45-coumarin-b-PTMC81 was synthesized. The previous study on 

non-light sensitive PEG45-b-PTMC (part 2.5.1) showed that a copolymer with a hydrophilic 

ratio of 19% (2000 g/mol for PEG and 8200 g/mol for the PTMC) self-assembled into 

polymersomes. Therefore the PEG and the PTMC used for the synthesis of the light-sensitive 

copolymer PEG-coumarin-b-PTMC (part 2.4) had the same lengths to give PEG45-coumarin-

b-PTMC81. This copolymer was expected to self-assemble into polymersomes as well. This 

copolymer was self-assembled by nanoprecipitation. The initial copolymer concentration of the 

organic solution was 10 mg/mL and 90% in volume of water was added into the organic 

polymer solution while stirring at 500 rpm with a magnetic stirring bar. In order to remove the 

organic solvent, the resulting particle solution was dialyzed against water using a 3.5 kDa 

dialysis bag. The dialysis bags were immersed in 5 L of water for 3 h then the water was 

changed. This operation was repeated 3 times.  

2.5.2.1. Dynamic light scattering at 90° 

Depending on the quantity needed, 900 µL of water was injected into 100 µL of copolymer 

solution or 2.7 mL of water was injected into 0.3 mL of copolymer solution. Injection was 

performed in 5 mL brown glassware to protect against ambient light. The resulting particles 

showed a narrow PDI (0.12), monomodal distribution and sizes (120 nm) that can correspond 

to vesicles as shown in Figure 26.  

 

 

Figure 26: Intensity-averaged hydrodynamic diameter distributions, recorded by DLS at 90° 
(Malvern) in water of PEG45-coumarin-b-PTMC81. 
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2.5.2.2. Multi-angle light scattering (static and dynamic) 

Multi-angle light scattering (static and dynamic) was additionally performed in order to 

calculate the radius of gyration (Rg) and the hydrodynamic radius (Rh). The radius of gyration 

is the root mean square distance of the object's parts from its center of mass. This radius is 

related to where the mass is distributed in the particles. Rh is the radius of the object size 

corresponding to their Brownian motion, which is independent of mass distribution of the 

particles. Depending on the particle morphology the ratio of Rg/Rh is different as schematically 

shown in Figure 27. Theoretically Rg/Rh≈0.7 for micellar structures and Rg/Rh≈1 for vesicular 

structures [37]. Indeed, considering that the radius of vesicle is significantly larger that the 

membrane thickness, the two radii (Rg and Rh) would be similar. 

 

 

Figure 27: Schematic representation of the position of Rg and Rh for micellar and vesicular 
structures. 

From these measurements, we obtained a Rg around 65 nm and a Rh around 71 nm. The average 

ratio Rg/Rh obtained was 0.93. This analysis seemed to indicate that particles had a vesicular 

structure, but does not allow us to fully conclude about the copolymer structure in solution. 

 
 Rg (nm) Rh (nm) Rg/Rh 

Batch 1 63 63 1 

Batch 2 67 79 0.85 

Average 65 71 0.93 

Table 7: Rg and Rh measured by multi-angle light scattering of two PEG45-coumarin-b-
PTMC81 particle batches in water. 
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2.5.2.3. TEM 

TEM analysis was then used to identify particle structures following the sample preparation 

protocol described in part 2.5.1.5. Round shape and essentially monodispersed structures were 

observed. Particle sizes were around 150 nm, which is consistent with DLS at 90° 

measurements. However, these TEM images were insufficient to conclude that self-assembled 

PEG45-coumarin-b-PTMC81 particles were polymersomes, as the formation of hollow 

structures could not be determined. 

 

A 

 

B 

 

Figure 28: TEM images of self-assembled PEG45-coumarin-b-PTMC81. 

2.5.2.4. Cryo-TEM  

Figure 29 shows Cryo-TEM images of freshly prepared samples recorded at the Institut de 

minéralogie, de physique des matériaux et de cosmochimie (IMPMC, Sorbonne université J-

M. Guigner). The images showed closed membranes, clearly indicating that PEG45-coumarin-

b-PTMC81 self-assemble into polymersomes. Vesicle membranes had a homogeneous thickness 

of 12 nm which was consistent with a polymersome bilayer membrane [4]. The observed 

polymersome size was around 100 nm, which was the same order of magnitude as the size 

observed by DLS (≈ 120 nm). The observed polymersome distribution was relatively narrow 

which was also consistent with DLS at 90° and multi-angle light scattering. A few 

polymersomes contained in their lumen polymersomes or micelles (Figure 29 B) also called 

nested vesicles [38]. These nested vesicles resulted from invagination, probably induced by an 

osmotic pressure difference between the inner and the outer medium. The structures obtained 

were more homogeneous compared to the non-light sensitive PEG45-b-PTMC81 in part 2.5.1.6, 

without the presence of worm-like micelles. 
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Figure 29: Cryo-TEM images of self-assembled PEG45-coumarin-b-PTMC81 in water showing 
the presence of well-defined polymersomes. 

These images allow to definitely conclude on the PEG45-coumarin-b-PTMC81 polymersome 

structure. Samples showed a narrow distribution and size of around 100 nm that was consistent 

with previous measurements (DLS). 

2.6. Irradiation effects 

2.6.1. Introduction 

Particle morphology was studied in the previous part and PEG45-coumarin-b-PTMC81 self-

assembly into well-defined polymersomes was confirmed. In order to confer light-sensitivity 

to the copolymer, a photosensitive coumarin was inserted between the two blocks. This part 

consists in studying the photosensitivity of the copolymer at the molecular and macromolecular 

level, together with the resulting effect on self-assembled particles and their release properties. 

Irradiation experiments were carried out with a 200 W Mercury-Xenon lamp. A filter was used 

centering the light emission at 365 nm (output emission spectrum is shown in the experimental 

part). Samples were placed at 1 cm from the light guide output and irradiated for a defined time 

(Figure 30).  
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Figure 30: UV (365 nm) sample irradiation. 

Irradiation was carried out on the self-assembled particles in water. The coumarin undergoes 

heterolytic cleavage between the carbon and the oxygen to form a carbocation and an alkoxide 

(Scheme 15). Then the two ions react with water to form two alcohols and avoid recombination.  

 

Scheme 15: General scheme for the molecular mechanism of PEG45-coumarin-b-PTMC81 
photocleavage under UV irradiation. 

2.6.2. Irradiation effect at the molecular level 

Quantum yields were measured on the self-assembled particles at 365 nm and 405 nm, 

wavelengths relevant for experiments in spectrometer and confocal microscope, respectively. 

Samples were irradiated using a monochromator to obtain precise wavelengths. The UV lamp 

output was calibrated using potassium ferrioxalate-phenanthroline as a chemical actinometer. 

The absorption spectra were measured for every 10 min irradiation (Figure 31).  
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Figure 31: Electronic absorption spectra of PEG45-coumarin-b-PTMC81 polymersomes upon 
irradiation at 365 nm at different times. 

Because particles themselves absorb light, the baseline was not at 0. However, coumarin 

absorption was clearly visible. The irradiation induced a decrease in the coumarin absorption 

that traduced a photoreaction of the coumarin. This absorption decrease allowed calculation of 

the quantum yield (quantum yield calculation in the experimental part). The quantum yield for 

cleavage of the copolymer was 0.0034 upon 365 nm irradiation and 0.0012 at 405 nm. This 

value is conform with the values found in the literature [7].  

2.6.3. Effect of irradiation at the macromolecular level 

Polymersomes made from PEG45-coumarin-b-PTMC81 copolymer were irradiated in aqueous 

solvent. In order to understand the photochemical mechanism at the macromolecular level, 

samples were irradiated for 1, 2 and 3 min. The water was then evaporated and samples were 

analyzed by SEC. The SEC traces are shown in Figure 32.  

 

Figure 32: SEC analysis in THF of the irradiated PEG45-coumarin-b-PTMC81 polymersomes. 
The water was removed and the resulting copolymer was analyzed after redispersion in THF.  
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The traces clearly showed dimer formation (19.5 min). In previous studies coumarin 

dimerization (Scheme 16 A) has been elucidated [39]. From SEC analysis the copolymer 

dimerization mechanism can be deduced as shown in Scheme 16 B.  

A 

  
  

B 

  

Scheme 16: A) Coumarins can dimerize under UV irradiation in two different ways: head to 
head and head to tail. B) Diblock formation of the copolymer due to coumarin dimerization. 

Coumarin dimerized and forms copolymer diblocks that are no longer photosensitive. Small 

copolymer fractions were also cleaved (main peak molar mass decreased). However, the 

cleavage mechanism was expected to be more efficient, faster and dimerization negligible. SEC 

analysis showed, surprisingly, that dimerization was favored upon cleavage. Self-assembly 

induced a well-ordered copolymer at the interface due to bilayer formation. As a consequence, 

the local coumarin concentration is much higher than the average solution concentration. In 

order to test the hypothesis that self-assembly promotes dimerization, the block copolymers 

were dissolved in chloroform, a common solvent for the two blocks, resulting in a complete 

dissolution of copolymer chains with coumarin segments that were not locally concentrated. 

The copolymer solution was irradiated for 5 min and the resulting irradiated copolymer was 

analyzed by SEC (Figure 33).  
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Figure 33: SEC in THF traces of PTMC81-N3 and PEG45-coumarin-b-PTMC81 copolymer 
before and after irradiation in chloroform. 

The results showed that after irradiation copolymer SEC trace (green) overlap PTMC81-N3 SEC 

trace (red), indicating that the irradiated copolymer molar mass was reduced to PTMC81 molar 

mass. As a conclusion, this clearly indicated that the PEG45-coumarin-b-PTMC81 copolymers 

can be efficiently cleaved if dissolved. Conversely, when self-assembled into vesicles, the 

dimerization process was favored, confirming our hypothesis. 

Nevertheless, cleavage was still induced by longer irradiation periods. The copolymer was self-

assembled and irradiated in water during one hour. After water evaporation, SEC analysis 

clearly showed that copolymer SEC trace (green) overlapped with the PTMC81-N3 SEC trace 

(red). After irradiation the copolymer molar mass was reduced to PTMC81 and PEG45-coumarin 

molar mass (Figure 34). Dimer formation was also observed. Thus irradiation simultaneously 

induced cleavage and dimerization. 

 

 

Figure 34: SEC in THF traces of PEG45-coumarin-b-PTMC81 copolymer irradiated 1 hour in 
water. The irradiated copolymer trace overlap with PTMC81-N3 trace and PEG45-OH trace. 



 

 86 

Another signal also appeared at 22.5 min in Figure 34. This signal has twice the molar mass of 

the PEG45-coumarin. After PEG45-coumarin cleavage and release, the coumarin is still 

photoactive and can still be photodimerized. Released PEG45-coumarin dimerized resulting in 

PEG45-coumarin diblocks (Figure 35). 

 

Figure 35: Photocleaved diblock and subsequent PEG45-coumarin dimerization. 

To summarize, there are two mechanisms occurring during irradiation: cleavage and 

dimerization as shown in Figure 36. These two mechanisms have opposite consequences on the 

self-assembled structures: dimerization induces stabilization, while cleavage induces 

destabilization.  

 

Figure 36: Two mechanisms induced by irradiation: cleavage and dimerization. 

2.6.4. Effect of the irradiation on the particles morphology  

2.6.4.1. Multi-angle light scattering 

Multi-angle light scattering (static and dynamic) analysis before and after irradiation was used 

in order to assess the influence of irradiation on particle morphology. Rg and Rh were measured 

on the same batch of particles before and after 2.5 hours irradiation in phosphate buffer 50 mM 

pH 7.4. The results are presented in Table 8. 
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 Rg Rh Rg/Rh 

Before 

irradiation 

67 79 0.85 

2.5 hours 

irradiation  
67 79 0.85 

Table 8: Rg and Rh measured by multi-angle light scattering of PEG45-coumarin-b-PTMC81 
particle before and after irradiation. 

A solution of PEG45-coumarin-b-PTMC81 particles was irradiated for 1 hour and then analyzed 

by Cryo-TEM. Freshly prepared samples were studied at the IMPMC. Images are presented in 

Figure 37. Particles were more difficult to observe due to a smaller particle number that could 

be observed in the sample. This was probably partly due to particle destabilization during 

irradiation. Some of the observed particles showed closed membranes, clearly indicating a 

vesicular structure (Figure 37 A and B) while morphology was difficult to identify on other 

particles (Figure 37 A, B, C). The remaining observed particles had the same size as before 

irradiation (≈ 100 nm). Drawing conclusions about the dispersity was more difficult due to the 

low number of particles observed, however rather similar sizes were observed. Additionally, 

some changes were detected on the particle membrane. Polymersomes had a thicker membrane 

(20 nm) and no membrane or a thinner membrane on undefined particles was noted. To 

summarize, the observed particle size dispersity was not modified (consistent with multi-angle 

light scattering measurements), however a modification of the particle membrane was observed. 
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Figure 37: Cryo-TEM images of particles after irradiation (A, B, C). 

2.6.4.2. Dynamic light scattering analysis at 90° 

In order to measure irradiation effects on polymersome stability on the whole sample, contrary 

to cryo-TEM, the average intensity of light scattered by particles was measured by DLS at 90° 

(Malvern) at different irradiation times. Scattered light intensity is directly related to the 

concentration of particles in the medium and their molar mass. If the irradiation destabilized 

particles the signal should decrease. The scattered light was measured by DLS at 90° after 30 

min, 1.5 hours and 2.5 hours of irradiation. The results are shown in Figure 38.  
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Figure 38: Relative sizes and scattered light intensity measured by DLS at 90° with light 
sensitive and non-light sensitive PEG45-b-PTMC81 depending on the irradiation time. 

The results were compared with non-light sensitive polymersomes from PEG45-b-PTMC81 with 

the same molar mass. Particles were irradiated in phosphate buffer (50 mM, pH 7.4). 

Measurements were repeated 3 times with several particle batches. The result shows that the 

irradiation decreased the particle size by 5%. The intensity of light scattered by the 

nanoparticles decreases by 30% after 2.5 hours. The control shows that the scattered light 

intensity of non-photosensitive particles decreased by 16% after 2.5 hours irradiation. These 

results indicated that particles either were destabilized or lost their mass after irradiation. 

However, a significant proportion (70%) of the scattered light intensity and thus particles still 

remained, probably due to dimerization. These results showed that the light sensitive 

polymersomes were not fully destabilized by UV irradiation. Dimerization observed by SEC 

analysis (part 2.6.3) was suspected to improve particle stability. Indeed, dimerization prevents 

PEG release and thus improves particle stability. 

2.7. Conclusion 
Light-sensitive copolymer PEG45-coumarin-b-PTMC81 was synthesized. To this end, the 

coumarin light-sensitive linker was first synthesized with two grafting groups (carboxylic acid 

and alkyne group), in order to be able to graft one hydrophilic and one hydrophobic polymer. 

The PEG45 chain-end was modified into an amine in order to be grafted on the carboxylic acid 

of the coumarin. TMC was polymerized to form PTMC with an azide chain-end. The key 

parameter to obtain a low dispersity (1.05) was the initiator purification. Several PEG45-b-

PTMC with different PTMC length were synthesized in order to find the appropriate 

hydrophilic ratio to form polymersomes. PEG45-b-PTMC81, with a hydrophilic ratio of 19%, 



 

 90 

self-assembled into well-defined polymersomes. PEG45-NH2 and PTMC81-N3 were 

successively grafted onto the coumarin linker to give the light sensitive amphiphilic block 

copolymer PEG45-coumarin-b-PTMC81. The copolymer had a narrow dispersity of 1.05. This 

copolymer self-assembled into well-defined polymersomes with a hydrodynamic diameter of 

120 nm and a narrow dispersity (PDI ≈ 0.1). UV irradiation of polymersomes induced no 

change in the morphology or the particle sizes. DLS at 90° showed particles were either partly 

destabilized or lost partly their mass after irradiation (30% signal loss after 2.5 hours 

irradiation). However, most nanoparticles (70%) were not destabilized by irradiation. The 

stability of the polymersomes could be explained by coumarin dimerization, favoured by self-

assembly, that prevents PEG release. In order to improve the destabilization efficiency a new 

copolymer design was synthesized and analyzed in the next part. 

2.8. 2nd generation design of the light sensitive copolymer 

2.8.1. New copolymer Strategy 

Most of 1st generation particles were stable under irradiation. This part aimed to improve the 

efficiency of particle destabilization under irradiation. In the previous part, dimerization was 

suspected to improve particle stability. Indeed, dimerization prevents PEG release and thus 

improves particle stability. Coumarin dimerization would be difficult to prevent due to 

coumarin confinement as shown part (2.6.3). However, we hypothesized that increasing PEG 

release from particles could improve particle destabilization. To this end, two means were 

explored to increase PEG release from particles. Firstly, a better cleavage efficiency in order to 

release PEG before it could dimerize. Secondly, coumarin cleavage position: releasing only 

PEG instead of PEG-coumarin could favoured PEG release as explained in more detail in the 

following paragraphs.  

Firstly cleavage efficiency was improved and a new coumarin linker was designed as shown in 

Scheme 17.  
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Scheme 17: Photoinduced degradation of carbamate linkage liberating carbon dioxide and and 
amine. 

The coumarin was changed in order to generate a better leaving group after irradiation. To that 

end, a carbamate linkage replaced the ether linkage. Thus irradiation induces the release of a 

carbamate anion that is more stable than an alkoxide, so it is a better leaving group. 

Furthermore, carbamate anions undergo spontaneous decarboxylation inducing irreversible 

cleavage contrary to the previous design. This new coumarin was chosen to link PTMC and 

PEG to form a more efficient light-sensitive copolymer.  

The second feature changed was the polymer position on the linker. The first design induced 

PEG45-coumarin release after irradiation. Two problems arose from this design. Coumarin is a 

hydrophobic molecule of 260 g/mol and PEG is a hydrophilic polymer of 2000 g/mol. The 

hydrophobic ratio of the releasing PEG45-coumarin is 12%, which means that an amphiphilic 

molecule is released. PEG45-coumarin release from PTMC81 is not favored due to hydrophobic 

interactions and particles are less likely to be destabilized. The second problem is that the 

released PEG45-Coumarin is still photoactive. The coumarin can still dimerize as shown in 

Scheme 18 and in part 2.6.3.  
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Scheme 18: Proposed phodimerization of PEG45-coumarin with the intact triad which would 
lead to particle stabilization. 

This hydrophilic block can be grafted onto the copolymer and stabilize the nanoparticles and 

therefore not induce particle destabilization. In order to solve this issue, the PEG and PTMC 

positions were exchanged. Finally, the new design chosen for the photocleavable triad is shown 

in Scheme 19. The purple hexamethylene dicarbamate was introduced for synthesis reasons 

that are explained later part 2.8.2.2.  

 

Scheme 19: 2nd generation design of photosensitive PEG-coumarin-b-PTMC81 on modular 
rearrangement. 
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2.8.2. Synthesis 

2.8.2.1. Light-sensitive linker 

Synthesis of the new light sensitive copolymer was inspired from [40]. The synthesis started 

with the commercially-available 7-amino-4-methylcoumarin (21) that was reacted with tosyl 

chloride to yield 7-p-toluenesulfonamide-4-methylcoumarin (22) in 78% yield. The tosyl was 

used as a protecting group. This protection permitted monoalkylation of the amine later on in 

the synthesis. 22 was then alkylated with bromoethane under basic conditions. First this reaction 

was performed with only K2CO3 and the reaction rate was too slow. In order to increase the 

reaction rate, tetra-n-butylammonium bromide (TBAB) was used as a phase transfer catalyst. 

23 was obtained in 67% yield. In order to be able to form the carbamate linkage the methyl was 

reacted to obtain an alcohol in two steps. The methyl of 23 was oxidized into an aldehyde with 

selenium dioxide to obtain 24. The corresponding aldehyde 24 was then directly reduced into 

an alcohol with sodium borohydride to give tosylated 4-hydroxy-methylcoumarin (25) in 66% 

yield. 25 was then deprotected under acidic conditions. The corresponding coumarin with a 

secondary amine (26) was obtained in 17% yield. The yield could be improved by tuning the 

reaction time and temperature. The amine was then alkylated with the same conditions as 

described previously to obtain 23. This alkylation allows introduction of an alkyne group in 

order to graft the PTMC81-N3 via a click reaction. The final linker 27 was obtained in 35% yield. 

This linker 27 has an alcohol group in order to graft the PEG43 and the alkyne to graft the 

PTMC81-N3. 
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Scheme 20: Synthetic route for a second generation light sensitive PEG43-coumarin-b-PTMC81. 

2.8.2.2. PEG43 end chain modifications 

The first strategy used to graft PEG43 on the coumarin group with a carbamate link was to react 

an isocyanate with an alcohol in the presence of a tin catalyst. The alcohol was added on the 

coumarin linker, thus the isocyanate group had to be added on the PEG43-OH. In a previous 

study [41], an alcohol was converted into an isocyanate on several molecules. The same method 

was used to modify the hydroxyl chain end of the PEG43 (Scheme 21).  
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Scheme 21: General scheme for PEG43-OH end chain modification from an alcohol to an 
isocyanate.  

However, purification was complicated because isocyanates are sensitive to water and alcohol. 

Several purification methods were tested. Precipitation in dry diethyl ether did not purify the 

PEG43 isocyanate, nor did dialysis in dry THF for several days allow separation of the PEG43 

isocyanate from the impurity. Usually the best eluent to purify PEG with a silica column is 

methanol:DCM, however the methanol would react with the isocyanate. The purification was 

not possible so another method was used [42]. PEG43-OH (1900 g/mol) was thus reacted with 

a diisocyanate. One isocyanate was reacted with PEG43-OH to give a carbamate link. The other 

isocyanate was available for further reaction (Scheme 22). 

 

 

Scheme 22: General scheme for PEG43-OH end chain modification with HMDI to obtain an 
isocyanate as the end chain group. 

 In order to avoid the addition of two PEGs on the same diisocyanate, an excess of diisocyanate 

was used, and PEG43-OH was added over a two hour period. PEG43-OH was reacted with 

hexamethylene diisocyanate (HMDI: 29) to give PEG43-HMDI (30) in 93% yield 
1H NMR showed that 96% of the PEG43-OH was converted into PEG43-HMDI. Infrared 

spectroscopy clearly showed new signals compared to the initial PEG43-OH that correspond to 

isocyanate (2271 cm-1) and carbamate groups (1718cm-1) in Figure 39. 
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Figure 39: Comparison of infrared spectroscopy signals of PEG43-OH and PEG43-HMDI. 
Signals corresponding to carbamate (2271 cm-1) and isocyanate (1718 cm-1) groups appeared. 

SEC analysis was performed in THF (Figure 40). The PEG43-HMDI SEC trace showed a slight 

difference in retention time (23.60 min) compared to the PEG43-OH (23.86 min) due to the 

higher PEG43-HMDI molar mass. As expected, a small fraction of PEG43 dimer was observed. 

The dimer was formed by two PEG43-OH that reacted on the same HMDI (PEG43-HMDI-

PEG43). It was removed further on in the synthesis by column chromatography on a silica 

stationary phase. 

 

Figure 40: SEC in THF traces mPEG43-HMDI and PEG43-OH.  
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2.8.2.3. PEG grafting on coumarin via amide bond formation 

2.8.2.3.1. Test Reaction 

A test reaction was performed to assess the grafting reaction catalyzed by dibutyltin dilaurate 

(DBTL). Benzyl alcohol (BA) was used as a surrogate for the coumarin to be grafted on PEG43-

HMDI (Scheme 23).  

 

 

Scheme 23: General scheme for the grafting reaction of benzyl alcohol on PEG43-HMDI.  

Precipitation in diethyl ether was used to remove excess benzyl alcohol. 1H NMR showed that 

PEG43-HMDI-BA (31) was obtained in 92% yield. Also infrared spectroscopy of PEG43-

HMDI-BA compared to that of PEG43-HMDI clearly showed disappearance of the isocyanate 

signal (2271 cm-1) and increase of carbamate group signals (1718 cm-1) (Figure 41). 

 

 

Figure 41: Comparison of infrared spectroscopy signals of PEG43-HMDI-BA and PEG43-
HMDI. Isocyanate (2271 cm-1) signal disappearance and carbamate (1718 cm-1) signals 
increase.   
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2.8.2.3.2. PEG43-HMDI grafting reaction on Coumarin 

Thus PEG43-HMDI was reacted with a coumarin linker to form a carbamate bond thanks to a 

DBTL catalyst to give PEG43-HMDI-Coumarin (32) in 41% yield.  

Scheme 24: General scheme for PEG43-HMDI grafting on coumarin with carbamate link. 

The resulting copolymer was analyzed by SEC and the comparison between the UV signal and 

the RI signal (Figure 42) shows that only the monoblock absorbs in the UV.  

 

Figure 42: SEC in THF traces in RI and UV of PEG43-HMDI-coumarin. 

The dimer did not have an isocyanate group, thus coumarin was not grafted on it and the dimer 

did not absorb. Also the absorption band attributed to the monoblock was centered at 360 nm 

(Diode-array UV detector of the SEC) that was typical of coumarin. These results show that 

coumarin was linked to the monoblock PEG43-HMDI. 

SEC analysis revealed an impurity (retention time 27 min) even after several precipitation steps 

in diethyl ether (Figure 43 A). The absorption spectrum of this impurity showed the typical 

coumarin signal as shown in Figure 43 B. This impurity was unreacted coumarin.  
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Figure 43: A) SEC in THF trace of PEG43-HMDI-coumarin. B) Absorption spectra of the 
impurity detected in SEC THF (Diode-array UV detector) with a retention time of 27 min.  

The free coumarin could react with PTMC81-N3 in the last step of the copolymer formation, and 

PTMC81-coumarin could be difficult to remove. In order to remove the free coumarin several 

methods have been tested and the resulting SEC traces are shown in Figure 44.  

 

 

Figure 44: SEC in THF traces of PEG43-HMDI-coumarin after different purification method 
(precipitation, dialysis, and silica column purification). 

Coumarin was rather soluble in THF, the PEG43-HMDI-coumarin was first dialyzed in THF 

with a 1 kDa dialysis bag for several days. Some free coumarin was removed as the SEC trace 

showed. However, some remained. Moreover a large proportion of material was lost during the 

dialysis and a new impurity appeared at 29 min (butylated hydroxytoluene, a THF stabilizer). 

The second purification process tested was silica column with methanol:DCM as the eluent. 

This method removed the free coumarin, the butylated hydroxytoluene and surprisingly even 
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the PEG43-HMDI-PEG43 diblock. 1H NMR showed that 56% of the PEG43-HMDI was 

functionalized with coumarin. The 56% functionalization can partly be explained by the PEG43-

HMDI excess added to promote complete reaction of the coumarin molecule. 

2.8.2.4. Copper-catalyzed Huisgen ("click") 1,3-cycloaddition 

The last reaction step is the PTMC81-N3 grafting on the coumarin alkyne. The conditions are 

the same as those described previously (2.4.2).  

 

 

Scheme 25: PTMC81-N3 grafting on the PEG43-HMDI-coumarin via a “click” reaction. 

An excess of PTMC81-N3 was used in order to consume all the PEG43-HMDI-coumarin. Copper 

was removed by dialysis. After dialysis, SEC traces (Figure 45 A) showed that the polymer was 

not pure due to PTMC81-N3 and PEG43 excess. The difference of SEC traces in RI and UV 

revealed that some PEG43-HMDI-coumarin (23 min) and PTMC81-N3 (21.5 min) were mixed 

with the copolymer. PTMC81-N3 does not absorb in UV and caused the shoulder in the RI signal. 

Silica column chromatography allowed purification of the copolymer. The SEC trace showed 

that the RI signal and the UV signal overlay perfectly, meaning that all the PTMC81-N3 was 

removed (Figure 45 B). 
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Figure 45: A) SEC traces in UV and RI of PEG43-coumarin-b-PTMC81 in THF after dialysis. 
B) SEC traces in UV and of PEG43-coumarin-b-PTMC81 in THF after silica column 
purification. 

 A large majority of the PEG43-HMDI-coumarin was removed because no more signal was 

detected in RI. The resulting copolymer had a mass that corresponds to the mass of the PTMC81-

N3 and PEG43-HMDI-coumarin, also the absorption signal at 20.5 min is typical of the coumarin 

(same absorption bands as Figure 43 B). 1H NMR showed the appearance the triazole proton 

resonance at 8.0 ppm. All these analyses proved that the PEG43-coumarin-b-PTMC81 copolymer 

was successfully synthesized. The dispersity of the final copolymer was satisfactorily very low 

(1.04). 

2.8.3. Self-assembly  

PTMC and PEG lengths were chosen in order to have the right hydrophilic ratio to obtain a 

vesicular structure. These lengths were studied in part 2.5.1. The meth-PEG43-OH molar mass 

was 1900 g/mol. Considering the coumarin and HMDI as hydrophobic molecules of 

respectively 257 g/mol and 168 g/mol, the hydrophilic ratio of the newly synthesized copolymer 

PEG43-coumarin-b-PTMC81 was 18%. This hydrophilic ratio is close to the one studied 

previously with PEG45-b-PTMC81. Thus, this new light-sensitive copolymer was expected to 

self-assemble into polymersomes. The method used to self-assemble this new copolymer was 

nanoprecipitation with the injection speed being controlled by a syringe pump as explained in 

part 2.5.1.3. 

Nanoprecipitation was performed with a syringe pump in order to be able to have a precise 

control on the particle size. 2.7 mL of water was added during 15 s in 300 µL of DMSO 

containing the copolymer at 10 mg/mL. During the water addition the mixture was stirred at 
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500 tr/min in a 5 mL brown glass vial. To remove DMSO the particle suspension was dialyzed 

3 times again 5 L of deionized water with a 3.5 kDa membrane during 3 hours. The resulting 

nanoparticle suspension had a concentration of 1mg/mL. 3 samples were prepared in order to 

study the nanoprecipitation repeatability. Particles sizes, PDI and count rate were measured by 

DLS at 90° after dialysis. Results are presented in Table 9 and Figure 46. Sizes, signal intensity 

and PDI were close as the low value of coefficient of variation indicated. These 3 samples 

showed that the method used was repeatable. This technique allows us to have monomodal 

particles with a low PDI around 0.1 and sizes around 300 nm.  

 
Samples Count rate (kcps)  Sizes (nm)  PDI 

N°1 5424 324 0.113 

N°2 5400 326 0.128 

N°3 5766 317 0.148 

Average 5530 322 0.130 

Standard deviation 204 4.7 0.018 

Coefficient of variation 3.7% 1.5% 13.5% 

Table 9: Parameters measured by DLS at 90° (Malvern) of PEG43-coumarin-b-PTMC81 

nanoparticle batches prepared under the same conditions. 

 

 

Figure 46: Intensity-averaged hydrodynamic diameter distributions of 3 batches of PEG43-
coumarin-b-PTMC81 nanoparticles in water, recorded by DLS at 90°. 

In order to have a stable medium during irradiation, and the right conditions for enzyme use, 

nanoparticles have to be dispersed in a buffered medium. To that end, the nanoparticle medium 

was changed from pure water to phosphate buffer (PB: 50mM, pH 7.4). The medium was 
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changed after nanoparticle formation and dialysis. However, the change in osmotic pressure or 

the presence of additional ions could destabilize particles. Thus the particle stability after buffer 

addition was verified. To do so, 900 µL of phosphate buffer at 56 mM pH 7.4 was added in 100 

µL of particle solution. The solution obtained was stable particles with similar sizes and similar 

PDI in 50 mM phosphate buffer, as shown in Figure 47 and Table 10. Particles were very stable, 

no modifications of the sizes, PDI or scattered light intensity were observed over at least one 

week.  

 

Sample 
Count rate 

(kcps) 

Sizes 

(nm) 
PDI 

In water n°1 5549 271 0.097 

After Buffer 

addition n°1 
1123 266 0.068 

In water n°2 4493 349 0.113 

After buffer 

addition n°2 
1210 326 0.157 

Table 10: Comparison of diffused intensity, sizes and PDI of PEG43-coumarin-b-PTMC81 

particles before and after phosphate buffer addition.  

 

Figure 47: Intensity-average hydrodynamic diameter distributions of PEG43-coumarin-b-
PTMC81 nanoparticles in water and PB, recorded by DLS at 90°.  
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2.8.4. Self-assembly characterization 

2.8.4.1. Visual 

Under UV lamp irradiation (l=365 nm), nanoparticle solution showed homogeneous coumarin 

fluorescence (Figure 48). 

 

 

Figure 48: Nanoparticles of PEG43-coumarin-b-PTMC81 under UV light (365 nm) 

2.8.4.2. Multi-angle light scattering 

Multi-angle light scattering (static and dynamic) was used to measure the Rg and Rh of the 

obtained particles. These particles were in a phosphate buffer (50 mM, pH 7.4). Two separate 

batches of nanoparticles were prepared. The low values of coefficient of variation showed that 

the two sets of nanoparticles had reproducible parameters (Table 11). Rg/Rh was close to 1, 

which is typical of vesicular structure. 

 

 Rg (nm) Rh (nm) Rg/Rh 

Batch 1 141.9 145.0 0.98 

Batch 2 135 142 0.95 

Average 138 144 0.97 

Standard 

deviation 
4.8 2.1 0.021 

Coefficient 

of variation 

3.5% 1.5% 2.2% 

Table 11: Multi-angle light scattering measurements of Rg and Rh for two nanoparticle 
batches.   
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2.8.4.3. Cryo-TEM  

Cryo-TEM required a concentration high enough in order to be able to observe enough 

nanoparticles. To that end, nanoparticle solutions were ultrafiltrated to increase the 

concentration from 1 mg/mL to 5 mg/mL. Freshly prepared samples were then sent to Institut 

de minéralogie, de physique des matériaux et de cosmochimie for Cryo TEM analysis. Images 

are presented in Figure 49. 

 

A 

 

B 

 
    

Figure 49: Cryo-TEM images of self-assembled particles of PEG43-coumarin-b-PTMC81 in 
water.  

Cryo-TEM images showed aggregates of particle (Figure 49 A). Individual aggregates clearly 

have a vesicle shape. Membrane had an homogeneous size of 12 nm which was consistent with 

polymersome membrane [4] and previous observations. Vesicle size observed was around 300 

nm that was the same order of magnitude than that observed by DLS (≈ 300 nm). We suggest 

that ultrafiltration destabilized the vesicles and made them aggregate. Figure 49 B showed 

vesicular structures stacked to form particle aggregates, which could suggest polymersome 

aggregation. In order to know if these structures are due to ultrafiltration, additional cryo-TEM 

analyses prepared from more dilute system are necessary.  
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2.8.5.  Irradiation effects 

PEG43-coumarin-b-PTMC81 particle morphologies were studied in the previous part. In order 

to confer light-sensitivity to the copolymer, a photosensitive coumarin was inserted between 

the two blocks. This part consists in studying the photosensitivity of the copolymer at the 

molecular level, macromolecular level, the effects on self-assembled particles and the release 

properties. Irradiation experiments were carried out with a 200 W Mercury-Xenon lamp. A 

filter was used, centering the light emission at 365 nm (emission spectra can be found in the 

experimental part). Samples were placed at 1 cm from the light guide output end and irradiated 

for a defined time. Irradiation was carried out on self-assembled particles in phosphate buffer 

(50 mM, pH 7.4). 

2.8.5.1. Irradiation effect at the molecular level 

The quantum yield of the self-assembled particles was measured in phosphate buffer (50 mM, 

pH 7.4) at 365 nm and 405 nm. Samples were irradiated across a monochromator to obtain 

precise wavelengths. The UV lamp was calibrated using potassium ferrioxalate-phenanthroline 

as a chemical actinometer. The absorption spectra were measured after every 1 min of 

irradiation (Figure 50).  

 

Figure 50: Absorption of the polymersomes of PEG43-coumarin-b-PTMC81 in water at different 
irradiation times. The absorption decrease allowed measurement of the quantum yield. 

The particles scattered the light therefore the baseline was not at 0. However coumarin 

absorption was still clearly visible. The irradiation induced a decrease in the coumarin 

absorption, which means a photoreaction of the coumarin. This absorption decrease allows 
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calculation of the quantum yield. Copolymer cleavage quantum yield was found to be 0.012 

upon irradiation at both 365 nm and 405 nm. These quantum yield values showed that the 

cleavage is much more efficient that the 1st generation copolymer. 

2.8.5.2. Effect of Irradiation at the macromolecular level  

The self-assembled copolymer was irradiated for 150 min in phosphate buffer solution. Water 

was removed from the resulting solution and the irradiated copolymer was analyzed by SEC in 

THF (Figure 51).  

 

 

Figure 51: SEC in THF traces of PTMC81-N3 and the self-assembled PEG43-coumarin-b-
PTMC81 before and after irradiation. 

The trace clearly showed dimer formation (19.7 min) and that the irradiated PEG43-coumarin-

b-PTMC81 SEC trace (green) overlapped the PTMC81-N3 SEC trace (red). After irradiation, the 

initially observed PEG43-coumarin-b-PTMC81 molar mass was reduced to that of PTMC81. 

Thus irradiation induced both cleavage and dimerization. Surprisingly, the 2nd generation 

design thus did not prevent dimer formation as expected. One can argue that dimer formation 

was favoured by copolymer self-assembly and local confinement of the coumarin derivatives 

(as shown in part 2.6.3).   
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2.8.6. Irradiation Effect on the particle stability 

2.8.6.1. Light scattering analysis 

2.8.6.1.1. Comparison between 1st and 2nd generation of copolymer. 

Object stability was measured by DLS at 90°(Malvern). In order to measure irradiation effects 

on polymersomes, light intensity scattered by particles was measured by DLS at 90° depending 

on irradiation time. Scattered light intensity is directly related to particle number and molar 

mass. The scattered light intensity was measured by DLS at 90° after 30 min, 1.5 hours and 2.5 

hours irradiation. The results are shown in Figure 52. The results are compared to the 1st 

copolymer generation and non-light sensitive polymersomes from PEG43-b-PTMC81 with the 

same molar mass. All particles were irradiated in phosphate buffer (50 mM, pH 7.4) and with 

the UV lamp centered at 365 nm. Measurements were repeated 3 times with 3 particle batches. 

The light intensity scattered by the nanoparticles decreases by 66% after 2.5 hours and 44% the 

first half hour. The 1st generation particles scattered light intensity decreased by 30% and the 

scattered light intensity of non-photosensitive particles decreased only by 16% after 2.5 hours 

of irradiation. These results suggested that 2nd generation particles decreased their mass or were 

destabilized by irradiation. Loss of mass could be caused by PEG43 release that could lead to 

particle destabilization. 2nd generation particles were more affected by irradiation than the 1st 

generation or non-photosensitive nanoparticles. Also an increase of 20% of the particle size 

was observed (Figure 52 B) suggesting particle aggregation. In order to know if the particles 

decreased in mass or were destabilized, cryo-TEM measurements were performed and results 

are shown in part 2.8.6.3. 
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Figure 52: DLS at 90° (Malvern) measurements of A) relative scattered light intensity and B) 
sizes of the 1st and the 2nd generation of PEG43-coumarin-b-PTMC81 and PEG43-b-PTMC81 
polymersomes in PB buffer depending on the irradiation time. 

2.8.6.1.2. Buffer effect 

A previous study showed that ion pair stabilization after the coumarin heterolytic cleavage plays 

a key role to avoid recombination. Thus stabilizing the newly formed ions greatly improves the 

cleavage efficiency [43]. We hypothesized that buffered medium could help screen ion pairing 

(Scheme 26) and thus improve the cleavage efficiency and the particle destabilization.  

 

Scheme 26: After irradiation, carbocation and carbamate anions could be stabilized by buffer 
thereby avoiding recombination. 

In order to test this hypothesis, particles were irradiated without buffer and with two different 

phosphate buffers. The scattered light intensity was measured depending on irradiation time 

and the results are presented in Figure 53.  
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Figure 53: DLS at 90° (Malvern) measurements of relative scattered light intensity of the 2nd 
generation of PEG43-coumarin-b-PTMC81 polymersomes in different medium depending on the 
irradiation time. 

Without buffer, irradiation did not destabilize particles efficiently: 70% of the initial signal 

remains after 150 min irradiation. However, nanoparticle irradiation in phosphate buffer (50 

mM) was much more efficient: only 35% of the scattered light intensity remains after the same 

irradiation time. Phosphate buffer strength was increased to 100 mM and particles were 

irradiated, the scattered light intensity decreased even more: 29%. These results suggested that 

buffer increased particle destabilization. We tentatively suggest that the carbocation and 

carbamate anion generated after irradiation (Scheme 26) are stabilized by the buffer and limits 

unwanted recombination.  

2.8.6.2. Multi-angle light scattering (static and dynamic) 

To understand irradiation effect on the particle morphology, multi-angle light scattering (static 

and dynamic) was used to measure Rg and Rh before and after irradiation. To that end, the same 

particle batch was used before and after irradiation. The results ( 

Table 12) clearly showed that Rg and Rh were modified as well as their ratio after irradiation. 

The Rg/Rh before irradiation was typical of vesicles (0.98) then this ratio after irradiation was 

typical of dense particles (0.64). This suggested densification of the particles core and change 

in the morphology. 
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 Before irradiation  
After irradiation 

(2h30) 

Rg (nm) 141.9 225.6 

Rh (nm) 145 350 

Rg/Rh 0.98 0.64 

 
Table 12: Multi-angle light scattering measurements of Rg and Rh of PEG43-coumarin-b-
PTMC81 particles in phosphate buffer before and after irradiation.  

2.8.6.3. Cryo-TEM 

Freshly prepared samples were sent to Institut de minéralogie, de physique des matériaux et de 

cosmochimie for Cryo TEM analysis. Images are presented in Figure 54. The same sample was 

observed after 150 min irradiation.  

A 

 

B 

 
C 

 

D 

 

 
Figure 54: Cryo-TEM images of PEG43-coumarin-b-PTMC81 nanoparticles in water after UV 
irradiation (2h30) showing a large diversity of particles and aggregates.  
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Undefined aggregates (Figure 54 A), filaments (Figure 54 B, C) and well-defined round 

particles (Figure 54 C, D) were observed. The undefined aggregates observed showed that 

irradiation induced destabilization. The round particles suggest that the irradiated PEG43-

coumarin-b-PTMC81 decreased water interactions by reducing the particle surface area to its 

minimum because of the increased hydrophobicity of the surface. The increase of the 

hydrophobic surface could be caused by PEG43-HMDI release. The round particles seemed to 

contain aggregated particles in its core (Figure 54 C, D). These observations confirmed the DLS 

at 90° measurements: decrease of the scattered light intensity due to particle destabilization and 

that the remaining particle size increased by 20% due to the round particles. Multi-angle light 

scattering measurements were also performed: the densification of the remaining particles 

observed by the decrease of the ratio Rg/Rh could be due to the round shape particle aggregates 

observed in the cryo-TEM images. These results proved that particles aggregated and were 

destabilized after irradiation.  

2.9. Conclusion 
A 2nd design of a light sensitive copolymer based on a photocleavable coumarin linker was 

implemented. The first generation of light sensitive particles was not fully destabilized and 

dimerization was suspected to improve particle stability. Indeed, dimerization prevents PEG 

release and thus improves particle stability. In order to improve PEG release from particles and 

thus favour particle destabilization, copolymer design was modified in two different ways. The 

cleavage efficiency was improved by changing the leaving group. The quantum yield obtained 

by irradiation at 365 nm (0.012) was greater than the one of the 1st generation (0.0034). The 

PEG could be more efficiently cleaved before it could dimerize. The second modification was 

the polymer position on the coumarin. Therefore only PEG was released instead of PEG-

coumarin that induces a more efficient escape of the PEG.  

In order to synthesize the 2nd generation of PEG43-coumarin-b-PTMC81, the coumarin light 

sensitive linker was first synthesized with two grafting groups (hydroxyl and alkyne group), in 

order to be able to graft the hydrophilic and the hydrophobic polymer. PEG43 chain-end was 

modified into isocyanate in order to be grafted on the hydroxyl group of the coumarin. PEG43-

NCO and PTMC81-N3 were successively grafted on the coumarin linker to give the 2nd 

generation light sensitive amphiphilic block copolymer PEG43-coumarin-b-PTMC81. The 

copolymer obtained had a narrow dispersity of 1.04. Light scattering measurements showed 

that the copolymer could self-assemble into well-defined particles with a hydrodynamic radius 
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of 150 nm and a narrow dispersity (PDI ≈ 0.1). Cryo-TEM showed polymersomes and 

polymersome aggregates. 

Polymersome irradiation induced change in the polymersome morphology. After irradiation the 

remaining particles had a ratio Rg/Rh that decreased suggesting particle densification. The 

polymersome solution was irradiated for 150 min and the scattered light intensity decreased up 

to 71%, suggesting particle destabilization and aggregation. The light scattering measurements 

were confirmed by cryo-TEM. The images obtained showed undefined aggregates and round 

particle aggregates. 

These results showed that a light-sensitive copolymer was successfully synthesized that could 

self-assemble into polymersomes, which were destabilized upon UV irradiation.  
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3. GUV rupture through light-driven osmotic 
pressure increase  
3.1. Introduction 

In order to study some basic cellular functions such as enzymatic reactions, complex structures 

have been developed over the past decades to be able to host these reactions. Liposomes and 

polymersomes have been widely used as synthetic envelopes for microreactors to perform 

enzymatic reactions inside their lumens [1]. However, initiation of most microreactor reactions 

occurs by the passive diffusion of species through the membrane. Thus there is a lack of spatial 

and temporal control of the initiation of the reaction inside microreactor. To this end, release of 

species in a controlled manner using an exogenous stimulus is of particular interest. In the 

previous chapter, light-sensitive nanopolymersomes were studied to control the release by 

cleavage of the block copolymer. In this chapter, another way to destabilize polymersomes is 

investigated: induced intra-polymersome osmotic pressure change. In nature, cells undergo 

osmotic pressure stresses. Consequently, they developed mechanisms to control and balance 

osmotic pressure in order to avoid hypotonic or hypertonic shock that could result in their 

destabilization. It was shown that liposomes can resist osmotic pressure shock to a certain extent 

[2]. When an osmotic pressure gradient appears between the inner core and the outer medium, 

osmotic pressure forces water to flow in or out of the liposomes depending on the gradient 

direction. Due to high membrane water permeability the osmotic pressure is compensated 

quickly and liposomes do not burst, rather they swell. Polymersomes are stable when osmotic 

pressure is the same in the inner and outer medium (Figure 1 A1) however polymersomes 

generally have a lower water permeability [3]. When osmotic pressure increases in the inner 

medium, water flow is slower to balance the osmotic pressure difference (Figure 1 B1). We 

hypothesized that a fast osmotic pressure increase of the internal medium could not be 

compensated fast enough by water flow, resulting in polymersome rupture and internalized 

species release (Figure 1 C1). Osmotic pressure is directly linked to solute concentration. 

Control of the solute concentration leads to control of the osmotic pressure (Figure 1 A1, A2). 

Increase of the solute concentration in the GUV (Figure 1 B2) leads to osmotic pressure increase 

and polymersome rupture (Figure 1 C2).   
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Light was used as the versatile exogenous stimulus to induce release [4]. Our strategy was to 

quickly increase the solute concentration via light excitation, thus photocleavable molecules 

were used. Two molecules with two different cleavage mechanisms have been studied: 

coumarin cleavage and photoinduced electron transfer using a picolinum derivatrive.

 

Figure 55: Strategy used to induce polymersome bursting. GUVs are stable while osmotic 
pressure is the same in the inner and outer medium (A1). Osmotic pressure increase (B1) was 
used to induce polymersome rupture (C1). Control of the molecular concentration leads to 
control of the osmotic pressure. Increase of the molecular concentration in the GUV (A1 to B2) 
leads to osmotic pressure increase and polymersome rupture (C2). 

3.2. Coumarin cleavable molecule 

3.2.1. Synthesis 

The first molecule chosen in order to increase the osmotic pressure inside the polymersome 

inner medium was coumarin. Coumarin absorbs light at 405 nm, which is required to irradiate 

it under confocal microscopy. It has a large absorption coefficient and fast release rate [5]. 

However coumarin is a hydrophobic molecule, thus two carboxylic acid groups were added in 

order to render the molecule water soluble. The carbamate moiety was chosen as the leaving 

group due to the stable carbamate ion release after irradiation [6]. Recombination is less favored 

resulting in a more efficient cleavage and faster osmotic pressure increase. The carbamate ion 

also undergoes decarboxylation resulting in release of an amine and carbon dioxide. 

Photoirradiation results in formation of three molecules for each molecule cleaved and a faster 

of osmotic pressure increase. The final design chosen is presented Scheme 27 (molecule 38). 
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Scheme 27: Synthetic route of the photocleavable coumarin. 

The synthetic protocol was adapted from a structurally related molecule [7]. The synthesis 

started with the commercially available 3-aminophenol (1) that was reacted with 1-

ethoxybutane-1,3-dione. Acidic conditions were not used to form the coumarin molecule, 

contrary to part 2.1. A new method was tested using yttrium catalyst [8] in order to compare 

the two reactions. 7-Amino-4-methylcoumarin (21) was obtained in 50 % yield. The obtained 

yield was lower than the acid catalyzed coumarin formation (70 %). 21 was reacted with tert-

butyl 2-bromoacetate to alkylate the amine twice and obtain a tertiary amine. The modified 

coumarin (34) was obtained in 25 % yield. This reaction yield was not high because the 

monoalkylated amine was also obtained in significant quantity even after three days reaction. 

The purification was also difficult because the monoalkylated and dialkylated species had a 

similar retention factor. The methyl of 34 was then oxidized into an aldehyde with selenium 

dioxide without intermediate purification to obtain 35 in 94 % yield. The corresponding 

aldehyde 35 was reduced into an alcohol with sodium borohydride to obtain 36 in 40 % yield. 

The alcohol of 36 was then reacted with an acyl chloride in order to form a carbamate link and 
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obtained 37 in 40 % yield. The last step consists in deprotection of the two tert-butyl esters in 

order to obtain the corresponding carboxylic acid. To that end 37 was reacted with potassium 

hydroxide to deprotect the carboxylic acid under basic conditions. The final water soluble 

molecule 38 was obtained in 40 % yield.  

Due to the two carboxylic acids, the modified coumarin 38 was highly water soluble (at least 

10 mM at pH 7). 

3.2.2. Irradiation study 

Irradiation experiments were carried out with a 200 W Mercury-Xenon lamp (except for 

quantum yield measurements). A filter was used to center light emission at 365 nm (emission 

spectra in the experimental section). Samples were placed at 1 cm from the light guide output 

end and irradiated for a defined time. 

3.2.2.1. Cleavage Mechanisms 

Under photoirradiation the coumarin undergoes heterolytic cleavage [9]. UV light irradiation 

induces carbocation and carbamate anion formation. The carbamate anion is a good leaving 

group due to its stability. Consequently it decreases the recombination rate and improves 

cleavage efficiency. The last step consists in spontaneous decarboxylation of the carbamate 

inducing carbon dioxide and diethyl amine formation. Therefore recombination is no longer 

possible and the cleavage is irreversible [10]. The decarboxylation step is the rate limiting step 

and it can be catalyzed by acidic or basic conditions. The initial state before irradiation involved 

one molecule. After irradiation the final sate involved three molecules inducing osmotic 

pressure increase. Coumarin cleavage is fast with release rate constant reaching k=2 × 1010 s−1 

(for phosphate ester [5]) inducing fast osmotic pression increase. Consequently this cleavage 

mechanism is well suited to burst polymersomes.  

Moreover, the released diethyl amine is a base with a pKa of 10.98 [11]. In addition to 

controlling the osmotic pressure, we expected to be able to control the solution pH using 38.  
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Scheme 28: Cleavage mechanism of coumarin under irradiation. The carbamate link forms a 
stable intermediate molecule and the final decarboxylation make the cleavage irreversible.  

3.2.2.2. Absorption and Fluorescence 

The absorption spectrum of 38 in water (Figure 56) showed that the coumarin derivatives can 

absorb visible light up to 450 nm, a requirement to be able to irradiate 38 in a confocal 

microscope. There are two band maximum absorptions, lmax at 247 and 378 nm. The molar 

extinction coefficient was measured at 13 000 L⋅mol-1⋅cm-1 considering the lowest energy 

absorption band.  

 

 

Figure 56 Electronic absorption spectrum of coumarin derivative 38 in water 
Coumarin derivative 38 was irradiated at 365 nm in water. The electronic absorption spectra 
were recorded after several different irradiation times. 
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Figure 57 A). A modification of the absorption spectrum was observed after irradiation. The 

maximum absorption decreased from 0.27 at 0 min irradiation to 0.20 after 2 hours irradiation. 

The maximum absorption wavelength (lmax) also decreased from 378 nm to 369 nm after 2 

hours irradiation. These results could indicate molecular modification after irradiation and the 

coumarin cleavage. 

Fluorescence emission spectra were also recorded before and after 30 min of 365 nm 
irradiation (lex=365 nm). 

Figure 57 B). The emission spectra modification was observed after irradiation. The maximum 

emission wavelengths increased and were blue shifted (from 492 to 482 nm) which could 

indicate that the coumarin substitutions were modified in accordance with coumarin cleavage.  

 
A 

 

B 

 

 
Figure 57: A) Electronic absorption spectra of the coumarin derivative at different irradiation 
times. The absorption spectra change as a function of irradiation time. B) Fluorescence 
emission spectra before and after 30 min irradiation. Excitation wavelength used was 365 nm. 
The maximum emission wavelengths increased and were blue shifted. 

3.2.2.3. Monitoring cleavage via NMR  

In order to study the effect of irradiation at the molecular scale, 38 was dissolved in D2O and 

the 1H NMR spectra were recorded before and after 1 hour of irradiation. The resulting spectra 

are shown in Figure 58. Diethyl amine signals of 38 (a and b) shifted from 3.45 and 1.15 ppm 

to 3.1 and 1.3 ppm. These new signals correspond to free diethyl amine in water. This result 

clearly indicates coumarin cleavage. Some residual signals of diethyl amine linked to coumarin 
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were spotted after irradiation showing that a small fraction was not cleaved. Peak integration 

showed that 13% of diethyl amine was not cleaved and 87% was cleaved.  

 

Figure 58: 1H NMR spectra of 38 in D2O before and after 1 hour irradiation (365 nm 200 W 
Mercury-Xenon lamp). These results indicate coumarin cleavage and release of diethyl amine. 
Peak integration indicates 87 % of 38 was cleaved. 

3.2.2.4. Quantum yield  

The photocleavage efficiency (quantum yield) of 38 was measured under 365 nm and 405 nm 

irradiation. Samples were irradiated across a monochromator to obtain precise wavelengths. 

The UV lamp was calibrated using potassium ferrioxalate-phenanthroline [12] as a chemical 

actinometer (experimental section). The values found are summarized in Table 13. These values 

were conform with the values found in literature [5]. Cleavage efficiency in methanol was 10 

times lower than cleavage efficiency in water in accordance with the cleavage mechanism 

presented in 3.2.2.1. Water is necessary to stabilize the resulting ions after cleavage. The 

quantum yield at 405 nm and 365 nm are on the same order of magnitude. The quantum yield 

at 405 nm was significant enough to be able to irradiate and cleave the coumarin derivative 

under confocal microscopy.  
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Irradiation 365 nm  
 F PH F METHANOL 

N°1 0.0017 X 

N°2 0.0015 0.0002 

AVERAGE  0.0016 0.0002 

 

Irradiation 405 nm  
 F PH 7 F METHANOL 

N°1 0.0035 X 

N°2 0.0023 0.0002 

AVERAGE  0.0029 0.0002 

Table 13: Cleavage quantum yield of the coumarin derivative 38 on irradiating at 365 nm and 
405 nm.  

3.2.2.5. pH control 

Irradiation of coumarin derivative 38 released basic diethyl amine. The pKa of diethyl amine is 

10.98. Theoretically the pH should increase due to base release. 38 was dissolved in water at a 

concentration of 270 µM. The initial pH was low (4.5) due to the two carboxylic acid groups 

that acidified the medium. The medium was not buffered in order to maximize the base release 

effect. The resulting solution was irradiated as explained in the introduction. The pH was 

measured after irradiation until a stable value was obtained. The results are shown in Figure 59. 

A fast increase of pH was measured. The pH started from 4.6 and after only 4 min irradiation 

pH was raised to 6.2. These results clearly indicate diethyl amine release.  

 

Figure 59: pH depending on irradiation time of a solution of molecule 38 at 270 µM. The 
results clearly showed that irradiation increased pH due to diethyl amine release.  
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3.3. N-alkyl-4-picolinium 

3.3.1. Introduction 

In this section another cleavable molecule that invokes photoinduced electron transfer was 

studied. The high cleavage efficiency of this mechanism (quantum yield up to 0.72 [13]) 

attracted our interest. This mechanism could in principle induce fast cleavage and fast osmotic 

pressure increase suitable to burst polymersomes. Most cleavable molecules combine light 

absorption and a cleavable moiety, thus improving both absorption and cleavage efficiency is 

beneficial. Photoinduced electron transfer in a modular molecular design strategy allows 

separation of electron source, light absorption and photochemical reaction [14] (Figure 60). 

Due to the modular nature, light absorption, electron donor properties and cleavage efficiency 

can be improved separately. Light absorption wavelength can be tuned without impacting 

cleavage efficiency. To this end mediated electron transfer mechanism involved an electron 

donor, a photosensitizer (mediator) and a cleavable group. The mediator absorbs light and it is 

promoted to its excited state. This state has enough energy to be reduced by the electron donor. 

Finally an electron is transferred from the mediator to the cleavable group. The cleavable group 

is reduced which induces cleavage and release of the leaving group X. 

 

 

Figure 60: Photorelease via mediated transfer. X is the leaving group. * represented the excited 
state of the mediator after irradiation.  
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3.3.2. Synthesis 

3.3.2.1. Design 

Many of electron donors have been studied, such as ascorbic acid, N,N-diethyl aniline or 

dithiothreitol [15]. Triethanol amine was used due to its water solubility and its low oxidation 

potential (0.57 V vs SCE [15]). The cleavable group use was N-alkyl-4-picolinium (NAP) 

group (Scheme 29 A). NAP has low reduction potential (-1.1 V vs SCE [14]) and can be easily 

reduced. Reduced NAP undergoes spontaneous cleavage. A range of photosensitizers have been 

used for mediated electron transfer such as xanthone, benzophenone, 9,10-diphenylanthracene 

[13], Ru(bpy)3Cl2 [16]. In this study thioxanthone, which has a large molar absorptivity (4000 

M−1cm−1 [17]) was used as the photosensitizer. The molecule design is presented in Scheme 29 

B. 

 

A 

 

B 

 

Scheme 29: A) N-alkyl-4-picolinium. X is the leaving group B) Design of the light cleavable 
molecule base on mediated electron transfer. 

3.3.2.2. 1st generation  

The target molecule was easily obtained in a two-step synthesis (Scheme 30). The commercially 

available 9-oxothioxanthene-2-carboxylic acid (39) was reacted with 4-pyridinemethanol. The 

hydroxyl group of the pyridine methanol reacted with the carboxylic acid group of 39 to form 

an ester linkage. To this end, coupling agent EDC along with DMAP were used to give 40 in 

56 % yield. EDCI was used to activate the carboxylic acid. 40 was then reacted with 

iodomethane to convert the pyridine into the N-alkyl-4-picolinium group to obtain the final 

molecule 41 in 78 % yield [13]. The counter anion of the positively charged picolinium is the 

iodide. Water solubility of 41 was then tested.  
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Scheme 30: Synthetic route to obtain photocleavable NAP-thioxanthone. 

3.3.2.3. Solubility properties  

In order to have a high induced osmolarity increase, concentration of the light-sensitive 

molecule has to be maximized. To this end several concentrations were tested to find the 41 

saturation concentration. Saturation concentration found was 1 mM. This concentration is not 

as high as expected, probably due to the high proportion of hydrophobic groups in the molecule. 

In order to improve the water solubility, the iodide counter ion was changed to perchlorate ion 

in a one-step reaction [11]. 41 was reacted with copper (II) perchlorate [18]. The perchlorate 

salt (42) was obtained in 82 % yield. The solubility of the new compound was not improved.  

 

 

Scheme 31: General scheme for the counter ion modification from iodide to perchlorate ion. 

Another strategy was developed to improve the water solubility, consisting in adding a different 

solubilizing group in a one-step reaction. The methyl of the pyridine moiety was thus replaced 

by a sulfonate group. To this end 40 was reacted with 1,3-propanesultone. The propanesultone 

ring opened leading to the sulfonate group formation [19]. This new zwitterionic molecule was 

expected to be more hydrophilic.   
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Scheme 32: General scheme for the sulfonate grafting on the pyridine moiety. 

Several tests have been performed in order to solubilize 41. Several concentrations of 41 in 

water have been tested, however the molecule became totally insoluble. Surprisingly the 

sulfonate group did not improve the solubility properties. In order to maximize the 

solubilization of the molecule, it was sonicated and then stirred overnight. However, 43 was 

not solubilized. The molecule was also first dissolved in DMSO and then water was added. 

However a turbid mixture was obtained that destabilized under sonication. We hypothesized 

that the new molecule formed act as a surfactant as shown in Figure 61 and could not be totally 

solubilized or tight ion pairing would limit solubility. Finally, 41 was used for the polymersome 

bursting experiments.  

 

 

Figure 61: Sulfonate group was added with the aim to improve the solubility of 41. 

3.3.3. Irradiation study  

3.3.3.1. Mechanisms 

The first step starts with thioxanthone irradiation. Irradiation excites thioxanthone to its excited 

state, rendering electron transfer from the electron donor (0.57 Vs SCE [15]) to thioxanthone 

energetically favourable. The resulting reduced thioxanthone has a lower reduction potential (-

1.7 V vs SCE ) than NAP (-1.1 V vs SCE). Consequently thioxanthone transfers an electron to 

NAP. The reduced NAP undergoes a spontaneous heterolytic cleavage.  
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Scheme 33: Photocleavable mechanism of mediated electron transfer of triethanol amine, 
thioxanthone and NAP. 

3.3.3.2. Quantum yield 

In order to assess the efficacy of the mediated electron transfer mechanism, the cleavage 

quantum yield was measured. Samples were irradiated across a monochromator centered at 365 

nm. The UV lamp was calibrated using potassium ferrioxalate-phenanthroline [12] as a 

chemical actinometer (experimental section). The quantum yield was measured in water with 

and without the sacrificial reductant in order to assess the electron donor role. 0.0032 was found 

without triethanol amine and 0.16 was found with triethanol amine. Without triethanol amine 

the cleavage was not efficient. With the triethanol amine the quantum yield was 50 times higher. 

These results were in accordance with the cleavage mechanism. With triethanol amine, the 

cleavage quantum yield was high, showing that the cleavage is very efficient.  

hv

S

O

O

N

O

S

O

O NO
Hydrogen Donor

S

OH

O NO
I

e- Donor [e- Donor]

S

O

O

N

O

I

*S

O

O

N

O

I

S

O

O

N

O

I

I

41

+



 

 134 

3.4. Encapsulation in polymersome 
In order to assess the effect of the irradiation on osmotic pressure and the bursting 

consequences, the two molecules were encapsulated in giant unilamellar vesicles (GUV) thanks 

to the emulsion centrifugation technique [20] (Figure 62). This method consists in stabilizing 

water emulsion droplets in an organic solvent (in this case toluene) using an amphiphilic block 

copolymer (Figure 62 A). In this study the copolymer used was poly(ethylene glycol)-b-

polybutadiene (PEO1.3-b-PBut2.5). Sucrose is dissolved in the water droplet in order to increase 

the density of the emulsions. A second vial is prepared consisting of a toluene phase on top of 

a water glucose phase (Figure 62 B). The interface of the two phases is separated by a leaflet 

of PEO1.3-b-PBut2.5. The glucose solution allows an osmotic pressure equilibrium to be reached 

between the inner and outer phase of the giant polymersome. The sucrose emulsion droplets 

were added on top of a toluene/ water interface (Figure 62 C) and then centrifuged. Due to the 

higher density of sucrose emulsion, the droplets crossed the interface of the water / toluene 

phase, and the copolymer leaflet (Figure 62 D). While the emulsion droplets cross the interface 

from the organic phase to the water phase, a second leaflet of copolymer is added around the 

droplets, thus forming polymersomes. Polymersomes with a precise control of the 

concentration and species encapsulated can be obtained via this technique.  

 

 

Figure 62: Schematic representation of the emulsion centrifugation technique.   
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3.4.1. Thioxanthone encapsulation method 

30 µL of glucose 380 mM was added at the bottom of a 2 mL plastic eppendorf. 30 µL of a 

PBut2.5-b-PEO1.3 (3 mg/mL) toluene solution was added gently on the glucose phase. The two 

phases solution was allowed to stabilize 30 min in order to form a stable copolymer leaflet at 

the interface. In a 380 mM sucrose solution, the light sensitive thioxanthone derivative 41 (1 

mM) and an excess of triethanolamine (10 mM) was dissolved. 5 µL of the sucrose solution 

was poured in 500 µL of PEO1.3-b-PBut2.5 (3 mg/mL) toluene solution. The solution was 

vigorously hand shaken for 25 seconds in order to form the sucrose emulsion in toluene that 

was stabilized by the copolymer. 75 µL of the emulsion was poured quickly and gently in the 

toluene phase of the first vial containing the glucose phase. Quickly the resulting emulsion in 

toluene was centrifuged (3 min, 500 g, room temperature) on top of the glucose solution. The 

toluene of the centrifuge solution was partly removed, 80 µL of glucose (380 mM) solution was 

gently added. The solution was again centrifuged (3 min at 500 g room temperature). All the 

toluene was removed. On the bottom of the vial, a pellet of polymersomes is visible. After 

toluene removal, the solution was left to rest for few hours until all the polymersomes were 

dispersed and the aggregates at the bottom disappeared.  

The resulting solution was observed under confocal microscopy. Polymersomes were obtained 

containing the sucrose (380 mM) thioxanthone (1 mM) and triethanol amine solution (10 mM).  

Irradiation (405 nm; 50 mW, 50%) induced polymersomes bursting as shown in Figure 63. The 

observed coiling phenomenon has been previously observed and described by Li et al. [21]. As 

a control, thioxanthone free (sucrose-loaded) polymersomes were irradiated at 405 mW, 50%, 

and no rupture was observed, confirming that the explosion results from thioxanthone selective 

irradiation.  
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Figure 63: Confocal observation of a 1 mM Thioxanthone derivative loaded GUV. The vesicle 
undergoes rupture upon irradiation at 405 nm 50 mW, 50% (transmission 633 nm 10 mW 10 
%). 

3.4.2. Coumarin encapsulation method 

The technique used to form giant polymersomes loaded with coumarin derivatives 38 was the 

same as the one described in 3.4.1. However, a solution of sucrose 380 mM and coumarin 

derivatives 38 at 10 mM was used for the polymersomes inner phase. Polymersomes were 

obtained in high yield. Due to coumarin fluorescence, loading efficiency and leakage in the 

glucose phase were easily detectable. The wavelength used to observe coumarin fluorescence 

and to cleave the molecule is the same, but the power used to observe the fluorescence of loaded 

polymersomes was very low (3 %). The coumarin derivative was first dissolved in the sucrose 

solution without adjusting the pH. The few vesicles obtained did not explode under UV 

irradiation, (405 nm; 50 mW, 100%). We supposed that the coumarin derivatives were not fully 

dissolved limiting the fast osmotic increase. Coumarin was then dissolved in the sucrose 

solution at pH 7. Figure 64 clearly showed the coumarin derivatives loading success (excitation: 

405 nm, 50 mW, 3%). 
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Figure 64: Confocal observation of a 10 mM coumarin-loaded GUV. Green channel, emission 
range of coumarin: 485 nm; excitation: 405 nm (50 mW, 3%); transmission: 633 nm (10 mW 
10 %).  

The resulting loaded GUVs were then irradiated with a higher power (405 nm, 50 mW, 25%). 

Polymersomes bursting was very fast, typically less than one second (Figure 65). As a control, 

coumarin free (sucrose-loaded) polymersomes were irradiated in the same conditions and no 

rupture could be observed, confirming that the explosion results from coumarin selective 

irradiation.  

 

 

Figure 65: Confocal observation of a 10 mM coumarin-loaded GUV. Green channel, emission 
range of coumarin: 485 nm; excitation: 405 nm (50 mW, 25%); transmission: 633 nm (10 mW 
10 %). The vesicles undergo fast (less than one second) rupture upon irradiation at 405 nm (50 
mW, 25%). 
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3.5. Conclusion 
 

Mimicking basic cell functions could help understanding complex cell molecular mechanism. 

One major chemical messenger in cells and living organism have drawn interest the past 

decades: Nitric oxide (NO) [22]. Several studies suggested that NO could play a key role in the 

apparition and the expansion of a broad range of disease [23] [24]. NO synthase mechanisms 

are not yet clearly understood and the design of a microreactor that could encapsulate the 

enzyme and provide a confined and controlled environment mimicking the cell may be used to 

better understand such a complex enzyme. Controlling species release and concentration inside 

the microreactor and measuring the enzyme response could help to disentangle the complex 

reaction pathway of the enzyme and develop kinetics models. 

With such an ultimate goal in mind, an osmotic pressure shock was used to destabilize 

polymersomes and to release species. The fast osmotic pressure increase in the internal medium 

of polymersomes could not be compensated fast enough by water flow, resulting in 

polymersome rupture and species release. Osmotic pressure increase was controlled via a light 

sensitive cleavable molecule. Two molecules with two different cleavage mechanisms were 

studied: coumarin heterolytic cleavage and N-alkyl-4-picolinium-thioxanthone (NAP-th) based 

on mediated electron transfer. 

NAP-th was easily synthesized in 2 steps, its water solubility was the limiting parameter and 

the maximal solubility concentration found was 1 mM. Several methods were tested to increase 

its water solubility, such as changing the counter ion or adding a hydrophilic group, without 

imcreasing the water solubility. The quantum yield measured in the presence of the mediator 

triethanol amine was 0.16. This value showed that the cleavage was very efficient. Modified 

coumarin was also successfully synthesized in 6 steps, two hydrophilic groups were added to 

increase the solubility of the molecule and 10 mM of the molecule was easily solubilized in 

water. The quantum yield measured was 0.016 for 365 nm and 0.029 for 405 nm. The cleavage 

was less efficient than NAP-th however its solubility was better. One hour of irradiation (365 

nm 200 W Mercury-Xenon lamp) induced 87 % cleavage of the molecule. This cleavage 

released diethyl amine that can be used to increase the solution pH. Indeed, after only 10 min 

irradiation the pH increased from 4.5 to 6.5.  

The second step consisted in encapsulating both molecules inside the polymersome made of 

PEO1.3-b-PBut2.5 via an emulsion-centrifugation technique. Modified coumarin was 

encapsulated inside polymersome with a concentration of 10 mM and NAP-th of 1 mM. 
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Irradiation at 405 nm induced fast polymersomes bursting for both molecules. These systems 

inducing fast and efficient release could be used to initiate reaction of microreactors and thus 

to have a precise control in space and time for the design of artificial cellular systems.  
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4. Nitric Oxide detection 
4.1. Introduction 

Nitric oxide (NO) is a major chemical messenger in living organisms [1]. NO is involved in a 

wide range of immune defense and signaling mechanisms such as neural communication, 

antitumor activity, blood pressure regulation and non-specific immune defense [2]. Moreover 

several studies suggested that NO could play a key role in the apparition and the spread of a 

broad range of diseases such as neurodegenerative diseases, cardiovascular disease, diabetes 

and cancer [3] [4]. Therefore understanding the mechanism involved in NO production has 

been crucial to find new drugs and treat the previously cited diseases. NO is produced by NO 

synthase which has different and even opposite biological functions [5] [6] [7]. Its mechanism 

is not yet clearly understood in spite of numerous studies on NO synthase. Microreactors could 

encapsulate the enzyme in order to have a confined and a controlled environment. Controlling 

species release and concentration inside the microreactor and measuring the enzyme response 

could help to disentangle the complex reaction pathway of the enzyme. Monitoring NO gas 

production from the enzyme and detecting it under confocal microscopy can be performed with 

fluorescence techniques. NO production and detection are challenging due to NO reactivity 

towards biological species and oxygen. In order to develop tools for a NO synthase 

microreactor, firstly different methods are presented to obtain a reliable NO source, then 

fluorescent NO probes were studied to measure the enzyme activity and finally a molecular tool 

is presented in order to control the NO production directly inside the microreactor.  

4.2. NO production 
Nitric oxide is a colorless and odorless gas. NO is a free radical and thus has a high reactivity 

towards a wide range of components. This gas can react with itself to form the toxic and orange 

gas NO2 and thus has to be used with cautious. Due to its high reactivity with oxygen, handling 

and storing NO gas is challenging. NO can be dissolved in deoxygenated water however if not 

frozen and kept under NO atmosphere the gas concentration in the solution will gradually 

decrease. However having a reliable source of NO and measuring exactly its concentration is a 

prerequisite to measure precisely fluorescent probe performance. To this end, a hemoglobin 

method to assess NO concentration in a solution is presented as well as three different ways to 

obtain standard NO solutions.  
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4.2.1. NO quantification based on hemoglobin absorption 

4.2.1.1. Principle of hemoglobin quantification 

Hemoglobin (Hb) is the iron-containing oxygen-transporting metalloprotein in red blood cells. 

This protein increases the maximum oxygen concentration in the blood and thus delivers 

oxygen efficiently to organs [8]. The oxygenated, ferrous (iron (II)) form of hemoglobin or 

oxyhemoglobin (HbO2) reacts with nitric oxide to yield to the ferric form (iron (III)) called 

methemoglobin (MetHb) [9]. Hemoglobin absorbs in the UV visible spectral region and the 

two forms of hemoglobin, MetHb and HbO2 have different absorption spectra (Figure 66).  

 

Figure 66: Electronic spectra of MetHb and HbO2 in phosphate buffer (50 mM pH 7.4).  

The difference between the two spectra can be used to measure the NO solution concentration 

[10]. The subtraction of the absorbances at 577 and 590 nm or 421 and 401 nm have molar 

attenuation coefficient of respectively 10 3000 and 77 200 M-1.cm-1 [10]. Therefore small 

aliquots of NO solution with an unknown concentration was added to an oxyhemoglobin 

solution and HbO2 was gradually converted into MetHb. The absorption spectra were recorded 

for each NO solution addition and the NO concentration was deduced from the obtained spectra. 

4.2.1.2. Hemoglobin preparation 

A prerequisite to obtain a precise measurement of the NO concentration is to convert all the 

hemoglobin into HbO2. Beforehand, the hemoglobin was fully oxygenated to get rid of the 

MetHb. To this end, 25 mg of Hb (Sigma-Aldrich, H25000) were dissolved in 1 mL of 
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phosphate buffer (50 mM pH 7.4). The mixture was gently mixed in order to avoid formation 

of bubbles that could damage Hb. An excess of sodium dithionite was then added in Hb solution 

to reduce the Hb into HbO2. A slight color change was observed after reduction: from dark red 

to blood red. The sodium dithionite salt excess was removed by using sephadex column (G-25 

in PD-10 Desalting Columns GE healthcare (n°17085101). The samples were collected (2 drops 

per vial) and frozen if not use the same day. 

4.2.1.3. Quantification method 

The NO solution of unknown concentration (stock solution) was defrosted, kept on ice and used 

the same day. O2 was removed from a 2 mL vial with septa caps and the stock NO solution was 

diluted 20 fold with degassed phosphate buffer (PB) (50 mM, pH 7.4) inside the vial. In order 

to avoid contamination of the NO stock solution with oxygen, a gas tight syringe previously 

rinsed 3 times with degassed PB was used. The diluted NO solution was kept on ice during all 

the measurement processes. In order to avoid O2 contamination during sample collection, an 

inflated N2 balloon connected with a needle to the NO diluted solution was used. The HbO2 

solution previously prepared was defrosted and diluted in PB. The final HbO2 solution should 

have an absorption between 0.8 and 1 at 415 nm (optical path 10mm) and has a final volume of 

3 mL. A gastight syringe (rinsed 3 times with degassed PB) was used to add 20 µL of diluted 

NO solution in the HbO2 solution. The resulting solution was gently homogenized and left to 

rest 2 min before measuring the absorption. The absorption spectrum was recorded between 

600 and 350 nm. The previous step was repeated until 200 µL were added. The gastight syringe 

needle was kept inside the septa cap of the diluted NO solution between measurements in order 

to avoid O2 contamination. The gastight syringe was also rinsed with NO diluted solution before 

collecting 20 µL.  

An example of the absorption data collected during the concentration measurement of an NO 

solution is presented in Figure 67.  
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Figure 67: Electronic absorption spectra of successive additions of NO solutions in an HbO2 
solution. 

NO addition gradually induced a shift of the absorption band maximum due to the conversion 

of HbO2 into MetHb. The absorption at 421 and 401 nm were collected from the absorption 

spectra. From the subtraction of the two absorbances the concentrations of the MethHb 

(C(MetHb) produced were calculated via the molar attenuation coefficient of 77 200 M-1cm-1. 

Knowing that one NO reacts with one HbO2 to give one MetHb; the quantity of NO added after 

each NO solution addition was deduced and the quantity of NO in the solution depending on 

the volume of NO diluted solution added was plotted (Figure 68). 

 

Figure 68: Quantity of methemoglobin produced versus NO diluted solution volume added. 
From this plot NO stock solution concentration can be deduced.  

From the slope and taking into account the dilutions, the concentration found of this stock NO 

solution was 937µM. For all the solution the concentration never exceeded 1 mM. In order to 
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have the most accurate concentration during fluorescent probe calibration, the NO 

concentration measurement and the use the NO solution were performed the same day. Indeed 

the NO solution concentration decreased over time when defrosted. 

4.2.2. S-Nitrosoglutathione 

The first NO source tested was S-nitrosoglutathione (GSNO). This tripeptide can stabilize, 

stock and transport NO in mammals [11]. This molecule is based on glutathione, an antioxidant 

protein, on which NO form a stable bond with the sulfur of the cysteine. GSNO is a simple way 

to stock, produce, and is water soluble. The absorption band of the S-NO bond, allows efficient 

quantification of GSNO. 

4.2.2.1. Synthesis of GSNO 

S-nitrosoglutathione (GSNO) (45) was synthesized from commercially-available glutathione 

(44). To this end, glutathione was reacted with NaNO2 in acidic conditions. The S-

nitrosoglutathione can be destabilized and can release NO due to metal, oxygen traces or strong 

stirring. Thus in order to have a stable S-nitrosoglutathione, metal traces were removed from 

the glassware, ultrapure deoxygenated water was used, the reaction was performed at 0°C and 

the mixture was gently stirred. The mixture was precipitated in acetone and dried. The resulting 

pink powder of S-nitrosoglutathione was obtained in 92 % yield.  

 

 

Scheme 34: General scheme of S-nitrosoglutathione synthesis from glutathione. 

4.2.2.2. Quantification of GSNO produced 

The reaction previously described does not lead to full conversion of GSH into GSNO. In order 

to calibrate precisely the fluorescence probe, the NO concentration has to be precisely known. 

To this end, the GSNO concentration was measured. GSNO absorbs in the UV spectral region, 
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contrary to GSH, thus GSNO concentration could be easily determined with a 

spectrophotometer. The bond between S and NO has an absorption band maximum at 334 nm 

with molar attenuation coefficient of 922 M-1.cm-1. GSNO was dissolved in phosphate buffer 

(50 mM, pH 7.4) with a known concentration. The resulting solution absorption was measured 

and should be <1 at 334 nm (Figure 69). The results showed that 98 % of the glutathione was 

converted into GSNO. 

 

Figure 69: Electronic absorption spectrum of GSNO. The bond between S and NO absorbs at 
334 nm. 

4.2.2.3. NO Release from GSNO 

Several methods have been studied in order to break the S-NO bond of GSNO and release nitric 

oxide [12]. CuSO4 or ascorbic acid both induces NO release from GSNO. However while 

CuSO4 was dissolved in phosphate buffer a blue precipitate appeared probably due to copper 

precipitation. Thus ascorbic acid was used inducing NO release. 1 mM of ascorbic acid was 

added to a solution of 1 mM of GSNO in phosphate buffer (50 mM, pH 7.4). The NO release 

was followed by spectrophotometry via the decrease of the S-NO bond absorption as shown in 

Figure 70. A spectrum was recorded every 5 min. 
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Figure 70: Electronic absorption spectra of GSNO (1 mM) in phosphate buffer (50 mM, pH 
7.4) recorded every 5 min after acid ascorbic addition (1 mM).  

The absorption decrease at 334 nm is correlated to the release of NO. After 1 hour, only 25 % 

of GSNO was converted into GSH. During the probe calibration, the probe concentration was 

50 µM. In the presence of 1 mM of ascorbic acid 10 min were necessary to release 50 µM of 

NO and saturate the probe. In order to increase the NO release speed, several ascorbic acid 

concentrations were tested: 1 mM, 20 mM and 40 mM. The GSNO concentration was plotted 

for several ascorbic acid concentrations depending on the reaction time (Figure 71).  

 

Figure 71: Concentration of GSNO depending on the reaction time measured by 
spectrophotometry, with 1 mM, 20 mM and 40 mM of ascorbic acid. GSNO concentration was 
initially 1 mM in phosphate buffer (50mM, pH 7.4). 

The GSNO concentration decreased and NO release was faster for higher ascorbic acid 

concentration. In less than 2 minutes, 50 µM of NO was released with 20 mM ascorbic acid. 

GSNO allows to have a fast release of NO in the presence of higher ascorbic acid concentration. 
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4.2.3. NO production from NaNO2 and sulfuric acid 

The second method used to obtain NO solution was to generate NO from sodium nitrite in 

acidic condition [13] (equation 1).  

  

2NaNO2+ H2SO4àH2O+NO+NO2+Na2SO4 (1) 

  

Before reaction, all apparatus and the solution were degassed with N2 during 30 min due to NO 

sensitivity to oxygen. Then 2 M H2SO4 solution was slowly added drop by drop to a saturated 

NaNO2 solution. Addition of H2SO4 in the NaNO2 solution generated an orange gas. NO is a 

colorless gas, the orange color was due to the presence of undesired NO2. In order to remove 

NO2 the resulting gas was bubbled twice in a 30 % NaOH solution. NO2 was converted into 

NO gas as follows (equation 2):  

  

3NO2+H2Oà 2HNO3+NO  (2) 

  

After bubbling in basic solution the gas was transparent showing the full conversion of NO2 

into NO. The resulting gas was finally bubbled into phosphate buffer (50 mM pH 7.4) in order 

to solubilize NO. The obtained solution was divided in small vials and frozen for later use. The 

final solution concentration was measured with the hemoglobin method described earlier (part 

4.2.1). The concentration obtained was surprisingly low (≈190 µM). We hypothesized that the 

concentration obtained was due to NO solution stored under N2 atmosphere. Due to the low 

concentration obtained, these NO solutions were not used for probe calibration. Effectively, the 

addition of NO solution would dilute the probe solution too much.  

4.2.4. Nitric oxide from gas bottle 

The last method used was the use of NO gas bottle. This method consists in bubbling gas from 

a bottle into a KOH solution (to remove nitrite) then in water solution for 5 to 30 min. With this 

method the NO concentration was higher than the previous method, up to 937 µM (30 min 

bubbling. However NO gas bottles are very expensive and we had only restricted access.  
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4.3. Nitric oxide fluorescent probes 

4.3.1. Introduction on nitric oxide fluorescent probes 

A major project goal was to study NO synthase. Monitoring the enzyme activity in situ, required 

to detect NO production. To this end, NO fluorescent probes were synthesized and studied. A 

wide range of NO probes have already been developed. The main family of NO probe used is 

based on o-phenylenediamine such as 4,5-diaminofluorescein [14] or 2,3-diamino-naphthalene 

[15]. The diamine group on the molecule quenches the probe fluorescent due to photoinduced 

electron transfer from the amines to the fluorophore. Nitric oxide reacts with the diamine to 

give the corresponding triazole which prevents the photoinduced electron transfer and restores 

the fluorescence [16]. However, these molecules have drawbacks such as high sensitivity to 

oxidation, H2O2, NO2• NO3- [17] and to ascorbic acid [18]. A new mechanism for NO detection, 

was developed by Yang et al [19]. This mechanism was based on azo bond formation that 

creates a fluorescent molecule, as shown Scheme 35.  

 

 

Scheme 35: Mechanism of azo-bond formation following NO capture.  

The amine captures NO and forms a nitrosamine that then reacts with the aromatic ring. The 

azo bond is formed after water release. The newly formed azo bond increases the molecule 

conjugation length, which imparts fluorophore properties to the molecule. This new probe is 

not sensitive to pH, not toxic for the cell (under 100 µM). In addition, it reacts fast (80% of the 

signals complete in 20 s), and the molecule is chemically stable. However it suffers from one 
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drawback: this molecule is not soluble in water, all the measurements were performed in 

water:DMSO 80:20 (v/v). 

In order to be able to detect NO in the inner medium of the microreactor and in its membrane, 

the molecule presented in the study described above was synthesized, modified to be water 

soluble, and their properties were studied.  

4.3.2. Synthesis of the hydrophilic and hydrophobic nitric oxide 
fluorescent probes 

4.3.2.1. Hydrophobic probe synthesis 

4.3.2.1.1. Naphthalene building block synthesis 

The synthesis was performed in two steps. A naphthalene building block was designed in order 

to be used as building block for several molecules synthesized in this chapter. The synthesis 

protocol was adapted from a literature procedure [19] (Scheme 36). 

The commercially available 1-cyanonaphthalene (46) was reacted with nitric acid and sulfuric 

acid to give the 5-nitro-1-naphthalenecarbonitrile (47) in 17 % yield. The yield was low because 

naphthalenes nitrated 2 or 3 times were also obtained. The nitro group was then reduced into a 

primary amine with dihydrogen, catalyzed by palladium on carbon. The reaction was almost 

quantitative and gave the corresponding amine, 5-amino-1-naphthonitrile (48) in 92 % yield. 

48 was then reacted N-bromosuccinimide in order to brominate the naphthalene on position 6. 

5-Amino-6-bromo-1-naphthalenecarbonitrile (49) was obtained in 88 % yield. 49 was then 

reacted with bis(pinacolato diboron) in order to be able to couple with other building blocks via 

a Suzuki-Miyaura reaction. The reaction mixture was degassed and then the coupling was 

catalyzed by palladium. The final product 50 was obtained in 80 % yield. 
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Scheme 36: Synthetic route of naphthalene building block. 

4.3.2.1.2. Hydrophobic probe synthesis 

The first building block 50 obtained was used for the synthesis of the next molecule. The 

hydrophobic molecule described in a previous study [19] was obtained in one step via a Suzuki-

Miyaura reaction (Scheme 37). 

 

 

Scheme 37: Synthesis of the hydrophobic NO probe. 

The commercially available 3-bromo-N,N-dimethylaniline was reacted with the previously 

synthesized naphthalene building block 50. The final hydrophobic NO probe 52 was obtained 

in 37% yield.  
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4.3.2.2. Hydrophilic probe synthesis 

4.3.2.2.1. Carboxylic acid protecting group 

The design of the hydrophilic molecule was inspired from the hydrophobic NO probe described 

earlier. Two carboxylic acid containing solubilizing groups were added on the molecule, 

replacing the two methyls of the dimethyl aniline to confer water solubility. To that end, the 

commercially-available 3-bromoaniline (53) was reacted with ethyl bromoacetate in order to 

alkylate the amine group. The correspond tertiary amine (54) was obtained in 85 % yield. The 

modified bromoaniline 54 was then reacted with the naphthalene building block 50 via a 

Suzuki-Miyaura coupling to give the protected hydrophilic NO probe 55 in 7 % yield. This 

reaction had a particularly low yield and a significant amount of side product rendered the 

purification difficult. The quantity of 55 obtained was too low to perform the last step reaction. 

The cause of the low yield was thus investigated. 

 

Scheme 38: Synthetic route for precursor 55 of a hydrophilic NO probe. 

We hypothesized that the protecting groups of the carboxylic acid were degraded during the 

Suzuki-Miyaura coupling. Indeed the base CsCO3 was added and the mixture was heated. These 

conditions were favorable for ester hydrolysis leading to a plethora of side products. The 

protecting group was thus changed to tert-butyl that is known to be less sensitive to hydrolysis 

[20]. To that end, 3-bromoaniline (53) was reacted with tert-butyl bromoacetate to give the 

desired tert-butyl protected carboxylic acid (56) in 35 % yield. 56 was then coupled with the 

modified naphthalene 50 to give protected hydrophilic NO probe 57. The yield obtained with 

the new tert-butyl protecting group, was 8 times higher at 56 % yield. The side product quantity 

generated during the reaction decreased and thus purification was simpler.  

CN

NH2
B O

O

Br

N

O O

O

O

Br

NH2

CN

NH2

N

O O

O

OMeCN
K2CO3

Ethyl bromoacetate
reflux 5 days 85%

CsCO3
PdCl2 (dppf)
PPh3

DMF/water 5/2
microwave 100°C
30min 7%

+

53 5554 50



 

 157 

 

Scheme 39: Synthesis route of the tert-butyl protected hydrophilic NO probe. 

4.3.2.2.2. Carboxylic acid deprotection 

Protecting group cleavage had to be optimized due to the high sensitivity of the product to 

degradation. Deprotection of 57 was first performed with a mixture 50/50, TFA/DCM (v/v). 

However, after 2 hours reaction the product was degraded. During the cleavage a tertbutyl 

carbocation was formed that could cause side reactions and product degradation. Thus TES was 

used as carbocation scavenger [21] and 1H NMR showed product formation and no degradation. 

After a rapid screening, the experimental conditions of choice were: TFA/DCM (50:50 v/v) 

solution with 4 equivalents of TES at 0°C under argon atmosphere with a reaction time of 5 

hours.  

 

 

Scheme 40: Tert-butyl deprotection of the hydrophilic NO probe.  

The final product 58 was also sensitive to the work-up conditions. 58 degraded rapidly in 

presence of concentrated acid. Therefore while evaporating DCM/TFA mixture, a large excess 

of DCM was added to co-evaporate and remove completely TFA. The final solid was then 

washed with diethyl ether three times to remove acid traces. The final hydrophilic NO probe 

(58) was obtained in 64 % yield.  
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4.3.3. Fluorescence properties of the nitric oxide probes 

4.3.3.1. NO probe solution preparation method 

The hydrophilic NO probe (58) was dissolved in phosphate buffer (50 mM, pH 7.4) at 500 µM 

and this solution was used as a stock solution. In order to dissolve completely the probe, the 

mixture was sonicated during 15 min. The solid probe was fully soluble in water, showing that 

the two added solubilizing groups were effective. The stock solution was kept at -20°C. In order 

to use the probe, the stock solution was defrosted and sonicated for 15 min in case of solid 

precipitation during the solution freezing. The stock solution was diluted to obtain a hydrophilic 

probe solution of 50µM in PB. The same conditions were used to dissolve the hydrophobic 

probe solution 52 however instead of using PB as the solvent, a mixture of PB (50 mM and pH 

7.4) 80 % and DMSO 20 % was used.  

4.3.3.2. Calibration of the NO probe with GSNO as a NO source 

In order to calibrate the fluorescence of the probe, GSNO 47 was first used as NO source. This 

tripeptide was easy to store and to use. To this end, three solutions were prepared separately in 

PB (50 mM, pH 7.4): a hydrophilic probe solution, an ascorbic acid solution and a GSNO 

solution (O2 free and kept under an inert atmosphere). 50 equivalents of GSNO and 1000 

equivalents of acid ascorbic were added to the probe solution. The final concentrations were 50 

µM for the probe, 1 mM for GSNO and 20 mM for the ascorbic acid. A large excess of GSNO 

was added in order to quickly saturate the probe and quickly obtain a fluorescence signal. 20 

equivalents of ascorbic acid compared to GSNO were added in order to have fast NO release 

(in less than 2 min as shown part 4.2.2.3). The fluorescence was then monitored by 

spectrofluorimetry. After one hour measurement, no fluorescent appeared. We hypothesized 

that ascorbic acid or GNSO prevented the formation of the fluorescent form of the probe. Indeed 

a study showed that ascorbic acid prevents the formation of nitrosamine [1] a reaction 

intermediate of the fluorescent form of the probe (Scheme 35). GSNO could not therefore be 

used as a reliable source of NO in our case. 
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4.3.3.3. Calibration of the NO probe with NO from gas bottle as the NO 
source 

NO solution from a NO gas bottle was finally used. After defrosting, the NO solution was kept 

on ice and used the same day. The NO solution was connected to an inflated N2 balloon in order 

to avoid O2 contamination. NO solution was collected with an anaerobic syringe and rinsed 

with deoxygenated PB before use. The anaerobic syringe needle was kept inside the vial during 

measurement to avoid O2 contamination.   

The NO concentration of the NO solution from the gas bottle was measured the same day. 0.1 

equivalent of NO was added in 450 µL of the probe solution (50µM). The solution was 

homogenized and left to react for 3 min in order to obtain almost complete reaction of NO with 

the probe. The excitation spectra and the emission spectra were then recorded. The emission 

wavelengths used for the excitation spectra was 530 nm for the hydrophilic probe and 550 nm 

for the hydrophobic probe. The excitation wavelengths used for the emission spectra were 416 

nm for the hydrophilic probe and 440 nm for the hydrophobic probe. The parameters used for 

spectrophotometer are described in the experimental part. The process was repeated for 0.2 to 

1 equivalent. The obtained emission and excitation spectra are shown in Figure 72.  

 

A 

 

B 

 

Figure 72: Excitation (purple) and emission (red) spectra of the (A) hydrophilic and (B) 
hydrophobic probe after addition of NO solution. Hydrophilic probe was solubilized in PB 
(50mM, pH 7.4) and the hydrophobic probe was solubilized in 80% PB (50mM, pH 7.4) and 
20 % DMSO. The emission wavelengths used for the excitation spectra were 530 nm for the 
hydrophilic probe and 550 nm for the hydrophobic probe. The excitation wavelength used for 
the emission spectra were 416 nm for the hydrophilic probe and 440 nm for the hydrophobic 
probe. 
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Before NO addition the two probes showed minimal fluorescence. NO addition in the probe 

solution induced a fast increase of the emission band intensity centered at 530 nm for the 

hydrophilic probe and 550 nm for the hydrophobic probe. The excitation band intensity also 

increased fast with NO addition with a band centered at 416 nm for the hydrophilic probe and 

440 nm for the hydrophobic probe. The fluorescence was induced by a higher conjugation of 

the molecule resulting from the azo bond formation and the planar form. The maximum 

emission wavelengths intensities, lem= 530 nm, lex=416 nm and lem= 550 nm, lex=440 nm, for 

respectively the hydrophilic and hydrophobic dyes, were plotted depending on the 

concentration of NO added. The resulting graph is presented in Figure 73. 

 

A 

 

B 

 

Figure 73: Maximum emission wavelengths intensity depending on the concentration of NO 
added of the (A) hydrophilic (lem= 530 nm, lex=416 nm) and (B) hydrophobic probe (lem= 550 
nm, lex=440 nm). Hydrophilic probe was solubilized in PB (50mM, pH 7.4) and the 
hydrophobic probe was solubilized in 80% PB (50mM, pH 7.4) and 20 % DMSO. The emission 
wavelengths used for the hydrophilic probe were 530 and 550 nm for the hydrophobic probe. 

The plots showed an excellent linear correlation with R2 of 0.99 for the two probes that allow 

a quantitative measurement of NO concentration. 

4.3.4. Conclusion  

Understanding the mechanism of NO synthase and NO production has been crucial to find new 

drug and treat a broad range of disease such as neurodegenerative disease, cardiovascular 

disease, diabetes, cancer. To this end, monitoring NO gas production from the enzyme and 

detecting it under confocal microscopy could help to disentangle the complex reaction pathway 

of the enzyme. Two NO probes based on formation of an azo bond that induce fluorescence 
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have been studied. These probes have stable signal and high selectivity against other nitro 

compounds. The two probes were designed to have different solubility properties in order to 

detect NO in the membrane and in the inner medium of the microreactor. One probe with 

hydrophobic properties and another with hydrophilic properties. The probes were synthesized 

in 5 and 6 steps for respectively the hydrophobic and hydrophilic probes. Critical steps were 

encountered for the protection and deprotection of the carboxylic acid of the hydrophilic probe. 

Tert-butyl showed enough resistance for the synthesis conditions used contrary to ethyl group. 

TES was used as carbocation scavenger avoiding product degradation during the deprotection 

step for the hydrophilic molecule. In order to test the probes properties, several sources of NO 

were tested such as GSNO, NO from NaNO2 or NO gas from bottle and the resulting NO 

concentration were measured via hemoglobin absorption. NO release from GSNO was 

triggered by ascorbic acid and the release kinetic was studied. However ascorbic acid prevented 

the formation of the fluorescent molecule and GSNO could not be used. NO from NaNO2 gave 

low concentration solution therefore, NO solution from gas bottle was finally used. The NO 

detection of the probes was tested. Probes showed an increase of the fluorescent intensity (lem 

Max= 530 nm, lex Max=440 nm for the hydrophilic probe, lem Max= 530 nm, lex Max=440 nm for 

the hydrophilic probe) after addition of NO. The fluorescence intensity increase had an 

excellent linear correlation (R2 = 0.99) depending on the NO quantity added allowing a 

quantitative measurement of NO in situ. 

4.4. Control of the NO production in situ via a molecular 
tool 

4.4.1. Feedback strategy presentation 

NO is produced by NO synthase which has different and even opposite biological functions [1]. 

Its mechanism is not yet clearly understood in spite of numerous studies. Microreactors could 

encapsulate the enzyme in order to have a confined and controlled environment. Introducing 

reactants in a controlled manner directly in the microreactor while enzyme activity is monitored 

could help disentangle the complex reaction pathways. The goal aimed in this part was to be 

able to have fine control of the rate of NO production. One possibility explored to control the 

enzyme in situ was to use a feedback process. The strategy adopted to control enzyme activity 

was to use NO production to induce the release of a species that activates new enzymes leading 

to a higher NO production rate. Calcium can trigger the enzyme production of NO and calcium 
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trap have been widely studied thus the combination of calcium trap with NO probe could induce 

an efficient feedback process as shown in Figure 74.  

 

 

Figure 74: Schematic strategy of the feedback process to control NO production from NO 
synthase with Ca2+. 

NO production from NO synthase activates the calcium trap which release calcium inducing 

activation of other enzymes. BAPTA (1,2-Bis(2-Aminophenoxy)ethane-N,N,N′,N′-tetraacetic 

acid) is an efficient calcium trap with a high selectivity against magnesium [22] (Scheme 41).  

 

 

Scheme 41: BAPTA molecule which is an efficient calcium trap with a high selectivity against 
magnesium.  

The affinity of BAPTA towards Ca2+ can be increased or decreased via electron withdrawing 

or releasing groups on the aromatic groups [22]. NO probe presented part 4.3.2 could provide 

a switchable electron-withdrawing group on the BAPTA as shown Scheme 42. 
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Scheme 42: Combination of BAPTA and NO probe to give a molecular tool to control NO 
production (BAPTA-NOp).  

The combination of BAPTA and NO probe leading to BAPTA-NOp (67) could induce an 

autoactivation of the enzyme and allow to control the nitric oxide production. NO is produced 

by the enzyme (Figure 75 A) and react with 67 (Figure 75 B). Reaction between 67 and NO 

form an azo bond to give BAPTA-AZO (70) resulting in a higher conjugation than BAPTA-

NOp. Due to the higher conjugation the cyano electron withdrawing group attract electron of 

the tertiary amine of the BAPTA resulting in a weaker complexation of calcium and its release 

(Figure 75 C). The released calcium activates other enzymes and produces even more nitric 

oxide (Figure 75 D). 

 

N
O O

NO

OH

OHO O OH

O

HO

CNH2N

N
O O

NO

OK

OKO O OK

O

KO

N

CNH2N

67



 

 164 

 

Figure 75: Expected feedback mechanism of BAPTA-NOp to control the NO production. 

This enzyme autoactivation strategy was explored and in order to control the releasing effect of 

calcium due to azo-bond formation after reaction with NO, the complexation constant of 

BAPTA-NOp and BAPTA-AZO were measured.  

4.4.2. BAPTA-NOp and BAPTA-AZO synthesis 

The synthesis is described in Scheme 43. The commercially available 2-nitrophenol (59) was 

reacted with 1,2 dibromoethane (60) to form 1-(2-bromoethoxy)-2-nitrobenzene (61) in 11% 

yield. An excess of 60 was added in order to have only one addition of 59 per dibromoethane 

chain. 61 was then reacted with 4-bromo-2-nitrophenol to give 4-bromo-1-nitro-2-(2-(2-

nitrophenoxy)ethoxy)-benzene (62) in 87 % yield. This reaction allowed introduction of a 

bromo substituent on the aromatic ring in order to have a non-symmetric molecule. The two 

nitro groups were then reduced into amine groups to give 4-bromo-1-amino-2-(2-(2-

nitrophenoxy)ethoxy)-benzene (63) in 78 % yield. The two amine groups were then alkylated 

twice in order to graft the two protected carboxylic acids. To this end, 63 was reacted with ethyl 
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bromoacetate to give the corresponding alkylated amine (64) in 7 % yield. The low yield was 

probably due to the protecting group ethyl which was hydrolyzed during the reaction as shown 

previously (part 4.3.2.2.1). 64 was then coupled with the previously synthesized modified 

naphthalene 50 (part 4.3.2.1) via Suzuki-Miyaura reaction to give 65 in 28 % yield. The low 

yield was also probably due to the deprotection of the carboxylic acid. Azo bond form and the 

amine form, were synthesized in order to compare the two different calcium dissociation 

constants. To this end, 65 was nitrogenated to form the azo bond by reacting with NaNO2 in 

acidic condition to give 68 in almost quantitative yield (99 %). During the reaction, yellow 65 

turned red due to the higher conjugation of the molecule. The azo form molecule was obtained 

by deprotection of the carboxylic acid under basic condition to give the corresponding 

potassium salt 69 in almost quantitative yield (99 %). The corresponding protonated carboxylic 

acid was precipitated by adding hydrochloric acid to a water solution of the potassium salt 69 

to give BAPTA-AZO 70 in almost quantitative yield (99 %). The amine form was obtained in 

the same manner by deprotection of the 4 carboxylic acids under basic condition to obtain the 

amine potassium salt form 66 in almost quantitative yield (99 %). And the corresponding 

protonated carboxylic acid was obtained by precipitation with acid to obtain the final amine 

form BAPTA-NOp 67 in almost quantitative yield (99 %). 
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Scheme 43: General scheme of the synthesis route of BAPTA-NOp and BAPTA-AZO. 
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4.4.3. Calcium constant Measurement of BAPTA-NOp and 
BAPTA-AZO 

The effective dissociation constants (Kd) of the calcium complexes of 67 and 70 were 

determined in an aqueous buffer under pseudo-intracellular conditions (30 mM MOPS (3-[N-

morpholino]propanesulfonic acid), 100 mM KCl at pH 7.2) by electronic absorption 

spectroscopy. The procedure for the Kd measurement is detailed in the experimental part. 

Briefly, BAPTA-NOp and BAPTA-AZO were dissolved in the pseudo intracellular buffer with 

a concentration between 1 and 10 µM. Several free Ca2+ concentrations were used with 

BAPTA-NO and BAPTA-AZO. The resulting absorption spectra were measured and the Kd 

could be deduced. In order to neutralize all the calcium impurities from the glassware and the 

water, EGTA was used to bind all the free Ca2+. The free Ca2+ concentration in the calcium 

complex 67 and 70 solution was adjusted by mixing a solution of 10 mM of EGTA (without 

free Ca2+) and of 10 mM CaEGTA (with a free Ca2+ concentration of 39µM). The addition of 

these two solutions allowed to obtain concentrations between 0 and 39 µM as described by 

Tsien [22] and the resulting absorption spectra are shown Figure 76. 

    
A 

 

B 

 

Figure 76: Electronic absorption spectra of A) BAPTA-NOp 67 and B) BAPTA-AZO 70 upon 
Ca2+-addition in pseudo intracellular buffer. 

The spectra of 67 and 70 showed differences in their absorption bands. The main absorption 

bands for both molecules were in the UV spectral region (263 nm for 67 and 268 nm for 70) 

due to naphthalene and alkoxyanilino group. New absorption bands in UV-vis spectral region 

(288, 315 and 425 nm) appeared for 70 due to the azo bond and the higher conjugation of the 

molecule. The absorption spectra showed small decreases in the visible spectral region upon 
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Ca2+ addition. However, in the UV spectral region, the absorption spectra showed higher 

changes due to the alkoxyanilino groups which were directly involved in the complexation of 

calcium and absorb in the UV spectral region. The maximal changes for 67 were at 263 nm, 

and 268 nm for 70. The spectral variation of these bands were used to measure the ground state 

dissociation constant Kd of both molecules with a Hill plot. To this end, the logarithm of the 

absorption changes (log[(A-Amin)/(Amax-A)] was plotted over the logarithm of the free Ca2+ 

concentration and the fitting of the obtained graph showed linear correlation with R2 = 0.99 for 

both molecule indicating a mono-binding (Figure 77). The linear fit slope gave the Hill 

coefficient describing cooperativity of Ca2+ on the BAPTA and the intercept give the logarithm 

of the dissociation constant Kd. 

    

A 

 

B 

 

Figure 77: Hill plot for the spectral change of A) BAPTA-NOp 67 and B) BAPTA-AZO 70 in 
absorption at, respectively, 263 nm and 425 nm. 

A Hill coefficient higher than unity indicates positively cooperative binding, a Hill coefficient 

lower than one indicates a negatively cooperative binding. For both molecules the slope is close 

to the unity indicating a non-cooperative binding. The dissociation constant Kd found for 67 

was 0.42 µM and 0.52 µM for 70. The Kd were in agreement with BAPTA family Kd (BAPTA 

Kd= 0.59 µM [23]). The Kd of 67 and 70 are relatively close. Azo bond formation does not 

induce a strong increase of the Kd which means that the BAPTA-AZO does not release calcium. 

Cyano group did not withdraw sufficiently enough the electrons of the alkoxyaniline to decrease 

the affinity of 70 with calcium. The cyano group might be too far or its withdrawing effect too 

weak to release calcium. The molecule cannot therefore be used for feedback process.  
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4.4.4. Fluorescent properties 

The fluorescent properties of BAPTA-AZO were studied (Figure 78). BAPTA-NOp as 

excepted did not have fluorescent properties. However, BAPTA-AZO showed fluorescent with 

a maximum emission band at 520 nm. Additionally, the maximum band shifted to 540 nm when 

Ca2+ was chelated to BAPTA. These properties could allow to measure simultaneously NO and 

Ca2+ concentration with the radiometric method [24].  

 

Figure 78: Fluorescent spectra of BAPTA-NOp, BAPTA-AZO with or without calcium in water 
at a cncetration of 15 mM (lex=400 nm).  

4.4.5. Conclusion  

The aim of this part was to autoactivate the NO synthase via a feedback process. We 

hypothesized that the combination of BAPTA and NO probe (BAPTA-NOp) could induce an 

autoactivation of the enzyme and could control the nitric oxide production. NO would be 

produced by the enzyme and react with BAPTA-NOp to give BAPTA-AZO. Due to the higher 

conjugation, the cyano electron withdrawing group would attract electron of the tertiary amine 

of the BAPTA resulting in a weaker complexation of calcium and its release. To test this 

hypothesis BAPTA-NOp and BAPTA-AZO have been synthesized in 10 steps and their 

dissociation constant Kd were measured. Kd found for BAPTA-NOp and BAPTA-AZO were 

respectively 0.42 µM and 0.52µM. Their Kd were in agreement with BAPTA family Kd. 

However, the Kd of BAPTA-NOp and BAPTA-AZO are relatively close and BAPTA-AZO 

have a relatively low Kd which mean the AZO form does not release calcium and that the 

molecule cannot be used for feedback process. 
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4.5. Conclusion 
Nitric oxide (NO) is a major chemical messenger in living organism. Several studies suggested 

that NO could play a key role in the apparition and the spread of a broad range of diseases. 

Understanding the mechanism involved in NO production by NO synthase has been crucial. 

NO synthase mechanism is not yet clearly understood and microreactor could encapsulate the 

enzyme in order to have a confined and controlled environment. Controlling species release 

and concentration inside the microreactor and measuring the enzyme response could help to 

disentangle the complex reaction pathway of the enzyme. In order to monitor NO gas 

production directly inside the microreactor, two NO probes have been studied. These probes 

are based on formation of an azo bond that induces fluorescence, resulting in stable signal and 

high selectivity against other nitro compounds. The two probes were designed to have different 

solubility properties (one hydrophobic another hydrophilic) in order to detect NO in the 

membrane and in the inner aqueous medium of the microreactor. The probes were synthesized 

in 5 and 6 steps. Critical steps were encountered for the protection and deprotection of the 

carboxylic acid of the hydrophilic probe. Tert-butyl proved to be an efficient protecting group 

with the conditions used and TES was used during the deprotection step avoiding hydrophilic 

probe degradation. In order to test the probes properties, several NO sources were tested such 

as GSNO, NO from NaNO2 or NO as gas from a bottle and the resulting NO concentration were 

measured via hemoglobin absorption. NO release from GSNO was triggered by ascorbic acid 

and the release kinetics were studied. However, ascorbic acid prevents the formation of the 

fluorescent molecule and GSNO could not be used. NO from NaNO2 gave low concentration 

solutions therefore NO solution from a gas bottle was finally used. The NO detection of the 

probes were tested. Probes showed an increase of the fluorescent intensity (lem max= 530 nm, 

lex max=440 nm for the hydrophilic probe, lem max= 530 nm, lex max=440 nm for the hydrophilic 

probe) after addition of NO. The fluorescence intensity was fitted and had an excellent linear 

correlation (R2 = 0.99) depending on the NO quantity added allowing a quantitative 

measurement of NO. The probes are currently tested in vitro at the laboratory CITHEFOR ( 

Lorraine University EA 3452). 

In a second part, another molecular tool was synthesized in order to study NO synthase. 

Introducing reactants in a controlled manner directly in the microreactor could help monitor 

enzyme activity and information about enzyme mechanisms may be obtained. To this end, a 

molecular tool was designed to have fine control of the rate of NO production by a feedback 

process. We hypothesized that the combination of BAPTA and NO probe (BAPTA-NOp) could 
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induce an autoactivation of the enzyme and could control the nitric oxide production. NO would 

be produced by the enzyme and react with BAPTA-NOp to give BAPTA-AZO. Due to the 

higher conjugation, the cyano electron withdrawing group would attract electron of the tertiary 

amine of the BAPTA resulting in a weaker complexation of calcium and its release. To test this 

hypothesis BAPTA-NOp and BAPTA-AZO have been synthesized in 10 steps and their 

dissociation constant Kd were measured. Kd found for BAPTA-NOp and BAPTA-AZO were, 

respectively, 0.42 µM and 0.52 µM. Their Kd values were in agreement with the BAPTA family 

Kd values. Unfortunately, the Kd of BAPTA-NOp and BAPTA-AZO are relatively close and 

BAPTA-AZO have a relatively low Kd which mean the AZO form does not release calcium 

and that the molecule cannot be used for the feedback process. 
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5. Investigation of species release in 
microreactors 
5.1. Introduction 

Cells are extraordinary bio-machines [1] that can process complex synthesis with a high level 

of control. As an example, synthesis of complex molecules, intricate processes or cascade 

biochemical reactions can be performed in cells. In addition, toxic species can be synthesized 

without damaging cells and incompatible species can coexist in the same medium due to 

compartmentalization [2]. Biochemical reactions can be performed with a high level of control 

in space and time. Mimicking some cellular functions would afford access to these complex 

processes. To achieve this goal, scientists have been interested in designing microreactors in 

order to mimic the simplest cellular functions such as enzyme synthesis of molecules in a 

confined space [3]. However to the best of our knowledge most microreactor reaction initiation 

steps are limited to species diffusion through the microreactor membrane [4][5][6][7]. In order 

to have a control on the initiation step and to start an enzymatic reaction at a specific location 

and time, the controlled reactant release in the microreactor was explored. This work aims to 

lay the foundation for temporal and spatial control of enzyme function by controlling substrate 

release. The previous chapter discussed the development of the requisite tools and strategies to 

develop a synthetic cell microreactor. In particular, methods were proposed to destabilize 

nanopolymersomes and release species via light excitation. In this chapter, on-going work into 

implementing this release method to start enzymatic reactions in a microreactor is presented.  

5.2. Controlled species release in space and time inside a 
microreactor  

5.2.1. Controlled destabilization of nanopolymersomes inside a 
microreactor 

5.2.1.1. Photosensitive polymersome encapsulation in a microreactor 

Nanopolymersomes were formed by nanoprecipitation, using the PEG43-coumarin-b-PTMC81 

block copolymer described in part 2.5. The obtained nanopolymersomes had a diameter of 320 

nm and a monomodal distribution with a PDI of 0.11. To prepare giant vesicles using an 

emulsion-centrifugation method, PEO1.3-b-PBut2.5 was dissolved in toluene at a concentration 
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of 3 mg/mL. 4 µL of the nanopolymesomes solution were added to 400 µL of toluene solution. 

The solution was vigorously hand shaken for 25 seconds in order to form the emulsion in 

toluene that was stabilized by the copolymer: the obtained mixture comprised 

nanopolymersomes encapsulated in a PEO1.3-b-PBut2.5 emulsion. The resulting emulsion was 

observed by confocal microscopy as shown Figure 79. 

 

 

Figure 79: Confocal observation of a water emulsion stabilized by PEO1.3-b-PBut2.5 containing 
light-sensitive PEG43-coumarin-b-PTMC81 nanopolymersomes (green channel, lex = 405 nm, 
50 mW, 3% emission range of coumarin, 485 nm). 

The emulsion droplets were around 20 µm in size. The nanopolymersomes were readily visible 

due to fluorescent coumarin moiety covalently inserted between PEG and PTMC. The 

nanopolymersomes were freely moving inside the emulsion droplet due to Brownian motion 

showing the successful encapsulation of the nanopolymersomes inside the emulsion droplet 

microreactor without any aggregation. In addition, one can clearly see that all the microreactors 

contained homogeneous distribution of nanopolymersomes.  

5.2.1.2. Temporal control of nanopolymeromes destabilization in a 
microreactor.  

The previously formed microreactors were irradiated at 405 nm 80% 50 mW for 2 min under 

confocal microscopy and the number of nanopolymersomes was monitored. The resulting 

irradiated microreactors are shown Figure 80. 
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Before irradiation  After irradiation 

  
A 

 

B 

 

Figure 80: A) Confocal observation of water emulsion stabilized by PEO1.3-b-PBut2.5 
containing light-sensitive PEG43-coumarin-b-PTMC81 nanopolymersomes irradiated 2 min at 
405 nm 80% 50 mW (green channel, lex = 405 nm, 50 mW, 3% emission range of coumarin, 
485 nm).B) Quantitative measure of the irradiation effect, the nanopolymersomes were counted 
on the transmission image for each emulsion droplet before and after irradiation. 

After 2 min irradiation, the coumarin fluorescence was bleached and the number of particles 

decreased in each microreactor. In order to have a quantitative measure of the irradiation effect, 

the nanopolymersomes were counted on the transmission image for each emulsion droplet 

(Figure 80 B). On average the number of particles decreased by 83% with a standard deviation 

of 4.5% The average was calculated from 10 emulsion droplets.. The quantitative measure 

showed that 405 nm irradiation had a significant and homogenous destabilization effect on the 

nanopolymersomes. Confocal fluorescence microscopy observation confirmed the scattered 

light intensity decrease measured by DLS (part 2.7.6). These results revealed that 

destabilization of nanopolymersomes can be induced directly inside the microreactor with 

temporal control.   
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5.2.1.3. Spatial control of nanopolymerome destabilization in a 
microreactor.  

In order to assess the spatial control of nanopolymersome destabilization, a proportion of the 

microreactors were irradiated and the resulting images obtained by confocal microscopy are 

shown in Figure 81. In the region below the red dashed line the microreactors were irradiated 

during 2 min at 405 nm (50 mW, 80%), while in the region above the red dashed line the 

emulsion droplets were not irradiated.  

 

 

Figure 81: Confocal observation of water emulsion stabilized by PEO1.3-b-PBut2.5 containing 
light-sensitive PEG43-coumarin-b-PTMC81 nanopolymersomes (green channel, lex = 405 nm, 
50 mW, 3% emission range of coumarin, 485 nm). Under the red dashed line emulsion droplet 
were irradiated 2 min at 405 nm (80% 50 mW). Above the red dashed line emulsion droplets 
were not irradiated.  

The images clearly showed that the microreactors located in the irradiated zone had a lower 

number of nanopolymersomes. Above the dashed line, the microreactors contained on average 

11.2 nanopolymersomes and under the dashed line the microreactors contained on average 1.4 

nanopolymersomes. This difference corresponded to a decrease of 87% that is consistent with 

the results presented in part 5.2.1.2. These results showed that destabilization of 

nanopolymersomes can be induced at a specific location.  
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5.2.2. Species release inside the microreactor 

5.2.2.1. Strategy 

In order to measure the release properties of the PEG43-coumarin-b-PTMC81 

nanopolymersomes in a microreactor, fluorescein was used as the encapsulated species due to 

its hydrophilicity and its self-quenching properties at high concentration (Figure 83). The 

strategy was to encapsulate fluorescein at a quenched concentration inside the 

nanopolymersomes (F-Nano). Considering that the F-Nano were not fluorescent due the 

quenched dye, it was anticipated that fluorescein release would dilute the dye and thus induce 

a fluorescence increase of the microreactor inner medium, as schematically depicted on Figure 

82. A similar strategy was previously reported in our group to measure the release efficiency 

of nano-objects [8] [9].  

 

 

Figure 82: Schematic representation of the strategy used to study the nanoparticle release.  

Fluorescein fluorescence was measured at different concentrations in order to estimate a 

suitable concentration to have maximum light absorption and high fluorescence quenching 

(Figure 83). While right angle fluorescence detection of the homogenous solution is not 

perfectly representative of that of microdomains in polymersome solutions, concentrations 

around 0.1M show minimal fluorescence, and in principle a maximal enhancement upon 

polymersome bursting. Therefore the fluorescein concentration chosen inside the F-Nano was 

80 mM to minimize initial emission. 
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Figure 83: Fluorescein fluorescence in water at different concentrations. The black arrow 
indicated the chosen quenched concentration.  

5.2.2.2. Fluorescein encapsulation method 

Nanopolymersomes containing fluorescein (F-Nano) were formed by nanoprecipitation with 

PEG43-coumarin-b-PTMC81 block copolymer. Nanoprecipitation was performed with a syringe 

pump. 2.7 mL of 80 mM fluorescein solution was added during 15 s into 300 µL of DMSO 

containing the copolymer at 10 mg/mL. During the water addition the mixture was stirred at 

500 tr/min in a 5 mL brown glass vial. To remove DMSO the particle suspension was dialyzed 

3 times again 5 L of deionized water with a 3.5 kDa membrane during 2 hours. In order to 

remove the fluorescein in the outer medium, F-Nano were purified by size exclusion 

chromatography with sephadex G-100 gel column (15 cm). The obtained particles had 

monomodal distribution with a PDI of 0.13 and diameter of 312 nm.  

5.2.2.3. Measurement of the amount of loaded fluorescein 

In order to measure the quantity of loaded fluorescein in the F-Nano, the destabilization of 

PEG43-coumarin-b-PTMC81 nanoparticles was studied via DMSO addition. The fully 

destabilized nanoparticles would release all their fluorescein content and the final fluorescein 

concentration could be measured. The stability of nanoparticles upon addition of DMSO was 

monitored by DLS at 90° via the decrease of the scattered light intensity, and the results are 

presented in Figure 84. The nanopolymersomes were also diluted with water to be able to 

compare the scattered light intensity change between stable and destabilized particles.  
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Figure 84: Relative count rate of PEG43-coumarin-b-PTMC81 nanopolymersomes depending 
on the volume of water or DMSO percentage added in the solution. 

Water addition induced a linear decrease of the scattered light intensity, however DMSO 

addition induced a fast decrease of the scattered light intensity. 80% of DMSO addition 

decreased the signal intensity to almost zero indicating a total particle destabilization. This 

DMSO percentage was used to fully destabilize nanopolymersomes and to measure the total 

amount of encapsulated fluorescein. To this end the fluorescence intensity of fluorescein in 

DMSO:water 80:20 (v:v) was measured (Figure 85, fluorimeter parameters described in the 

experimental part). 

 

 

 

Figure 85: Calibration curve of fluorescein in a DMSO:water 80:20 (v:v) mixture (lex=460 nm 
lem=520 nm) 

A linear correlation was obtained for the fluorescence depending on the fluorescein 

concentration allowing a precise measurement of the fluorescein encapsulated in the 

nanopolymersomes. To this end the F-Nano were destabilized by adding 80% of DMSO by 

volume and the fluorescence of the resulting DMSO:water solution obtained was 1.03 µM. This 

concentration allowed to deduce the initial fluorescein concentration in the whole solution 
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volume taking into account the dilution (dilution by 5): 5.1 µM. This concentration is not the 

concentration inside nanopolymersomes but rather the theoretical maximum concentration that 

could be obtained if all the fluorescein was released from the nanopolymersomes, this 

concentration being large enough to be measured in confocal experiments.  

5.2.2.4. Release inside a pseudo-microreactor 

The F-Nano were thus encapsulated inside emulsion droplets stabilized by PEO1.3-b-PBut2.5 in 

the same way as described in part 5.2.1.1. The resulting microreactors were irradiated for 10 s 

at 405 nm (50 mW, 80%). The images obtained by confocal imaging are presented in Figure 

86 A. The fluorescence intensity in the inner medium was measured for 7 emulsion droplets 

microreactors (Figure 86 B). 

 
A Before irradiation After irradiation B  

 

 

 

 

Figure 86: A) Confocal observation of water emulsion stabilized by PEO1.3-b-PBut2.5 
containing PEG43-coumarin-b-PTMC81 polymersomes before and after 10 s irradiation at 405 
nm 80% 50 mW. Fluorescein was encapsulated in the polymersomes (scale bar 20 µm, green 
channel lex=488 nm, 40 mW, 10%, emission range of fluorescein, 520 nm). B) Fluorescence 
intensity (arbitrary unit) measured in the inner medium of 7 emulsion droplets before and after 
10 s irradiation at 405 nm 80% 50 mW. 

Before irradiation, fluorescence was observed at the interface between the toluene and water 

phase and the individual nanopolymersomes were fluorescent. These observations showed that 

certain amount of fluorescein leaked during nanopolymersomes and emulsion droplet 

formation. Several methods could be considered to avoid fluorescein leakage such as, decrease 

the dialysis time or equilibrate the osmotic pressure between the inner and the outer medium. 

Nevertheless, one can clearly see that after irradiating at 405 nm for 10 s the fluorescence 



 

 185 

diffused in the whole volume of the inner medium (Figure 86 A), showing that the fluorescein 

was released from the F-Nano. As a control, the emulsion was irradiated at 488 nm 40mW, 

100% and 633 nm 10 mW 100%. No fluorescence diffusion was observed, confirming that the 

observed release resulted from F-nano destabilization due to specific irradiation at the 

wavelength of coumarin.  

5.3. Enzyme activity inside a microreactor  

5.3.1. Study of the horseradish peroxidase enzymatic reaction.  

In order to study the control of the enzymatic reaction inducing by the release of reactants from 

the PEG43-coumarin-b-PTMC81 polymersomes inside a microreactor, several enzymes were 

tested. Horseradish peroxidase (HRP) is a commonly used enzyme for H2O2 detection [10]. 

This reaction is convenient for confocal microscopy due to the production of a fluorescent 

molecule (resorufin) from a non-fluorescent Amplex® red (AR) (Scheme 44). 

 

Scheme 44: HRP enzymatic conversion of the non-fluorescent Amplex® Red into the fluorescent 
resorufin.  

This enzymatic reaction is quantitative, one equivalent of H2O2 giving one equivalent of 

resorufin. This enzyme was studied and tested for encapsulation in polymersome microreactors 

made of PEO1.3-b-PBut2.5.  

5.3.1.1. Calibration of the fluorescence under confocal microscopy 

The first step was to assess the linear correlation between the H2O2 concentration and the 

fluorescence intensity under the confocal microscopy. The conditions used for HRP reaction 

were optimized and are described in the experimental part. Briefly, several solutions of HRP, 

AR and H2O2 in PBS (pH 7.4) were prepared. HRP and AR concentrations remained constant 

for all the solutions (respectively 0.4 U/mL and 50 µM) and H2O2 concentration varied between 

0 and 37 µM. AR is sensitive to light and can form resorufin without H2O2 [11] thus solutions 
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had to be freshly prepared and protected from light. The resulting solutions were observed under 

confocal microscopy and the fluorescence intensity was measured for each solution as shown 

in Figure 87. 

 

Figure 87: Fluorescence intensity (arbitrary unit) observed under confocal microscopy 
depending on the H2O2 concentration (AR, 20% 514nm 6% emission range 549-688 nm).  

The resorufin fluorescence measured under confocal microscopy has a linear correlation with 

H2O2 concentration. R2 found was 0.99 showing that the H2O2 concentration can be determined 

precisely for bulk solution under confocal microscopy and HRP enzymatic activity can 

theoretically be monitored in these conditions.  

5.3.1.2. Encapsulation with emulsion centrifugation technique  

A linear correlation was obtained for the resorufin in a bulk solution. The fluorescence intensity 

of resorufin inside polymersomes, was assessed. To this end HRP, AR and H2O2 in PBS 

solutions were prepared in the same way as described in part 5.3.1.1. The solutions were loaded 

with the emulsion centrifugation technique described in part 3.4. The resulting confocal 

microscopy images of PEO1.3-b-PBut2.5 polymersomes that were obtained are presented in 

Figure 88. 
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Figure 88: HRP, AR and H2O2 in PBS solution loaded in PEO1.3-b-PBut2.5 polymersomes.  

Surprisingly, the obtained vesicles were not fluorescent and even more surprisingly the 

fluorescence observed was in the outer medium (reverse encapsulation). The conditions used 

to encapsulate the HRP, AR and H2O2 fluorescent mixture were screened to find the cause of 

such reverse encapsulation, and it was found that PBS seemed to interfere with the 

encapsulation process. Indeed, Resorufin was encapsulated with and without PBS. In the first 

case the fluorescence was observed in the outer medium and not in the inner medium (Figure 

88). In the second case the fluorescence was observed in the inner medium and not in the outer 

medium (Figure 89).  

 

 

Figure 89: Resorufin without PBS encapsulated in PEO1.3-b-PBut2.5 polymersomes. 

PBS seemed to induce an increase of the permeation of the polymersomes. Due to a lack of 

time the reason of the reverse encapsulation was not investigated further. However, we can 

deduce that the emulsion centrifugation technique was not compatible with encapsulation of 
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the HRP enzymatic reaction. Indeed, stable pH and thus buffer is required to obtain precise and 

stable fluorescent intensity of resorufin [12]. We suggest that microfluidic techniques could be 

tested to encapsulate the HRP enzymatic reaction.  

5.4. Conclusion  
Multicompartmentalization is one of the key parameters that allow living cells to synthesize 

toxic species without damaging cells and incompatible species to coexist in the same medium 

[1] [2]. Biochemical reactions can be performed with a high level of control in space and time 

due to the cell compartments and the release of species in a control manner.  

Scientists have been interested in designing microreactors that could mimic the simplest cellular 

functions and control [3]. However, to the best of our knowledge most microreactor reaction 

initiation steps are limited to species diffusion through the microreactor membrane [4][5][6][7]. 

In order to have a control on the initiation step and to start an enzymatic reaction at a specific 

location and time, the controlled reactant release in the microreactor via light sensitive 

multicompartment was explored. The previous chapters discussed the development of the 

requisite tools and strategies to develop a synthetic cell microreactor. In particular, methods 

were proposed to destabilize nanopolymersomes and release species via light excitation. In this 

chapter, on-going work into implementing this release method to start enzymatic reactions in a 

microreactor is presented. 
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6. General conclusion 
Nitric oxide (NO) is a major chemical messenger in living organisms. NO is involved 

in a wide range of immune defense and signaling mechanisms such as neural communication, 

antitumor activity, blood pressure regulation and non-specific immune defense. Moreover, 

several studies suggested that NO could play a key role in the apparition and the spread of a 

broad range of diseases such as neurodegenerative diseases, cardiovascular diseases, diabetes 

and cancer. Therefore understanding the mechanism involved in NO production has been 

crucial to find new drugs and treat the previously cited diseases. NO is produced by NO 

synthase that has different and even opposite biological functions. Its mechanism is not yet 

clearly understood in spite of numerous studies on NO synthase. Microreactors could 

encapsulate the enzyme in order to provide a confined and a controlled environment that would 

mimic the natural cellular environment. However, in most of the microreactor systems that have 

been developed in the literature, the biochemical reactions occur when mixing the different 

components or depend on diffusion properties through different membranes. As such, the study 

of reaction kinetics is very challenging, if not impossible. 

To this end three major challenges were addressed in this thesis: controlling species 

release and concentration inside the microreactor, measuring the enzyme response by NO 

detection and controlling enzymatic reactions in space and time when confined inside a 

microreactor. Globally, we sought to develop a compartmentalized and light responsive 

microreactors to study the complex behavior of NOS (Figure 90). 

 

Figure 90: Schematic representation of the NO-synthetic cell, which is based on 
compartmentalized polymersome-in-polymersome self-assembly and designed for the study of 
enzymatic activities of NOS. Modulation of the enzyme substrates and co-factors (L-Arg, BH4) 
can be controlled by photo-activation. 



 

 194 

Controlling species release was performed via light sensitive nanopolymersomes. In a 

first step, several non-light sensitive PEG45-b-PTMC with different PTMC length were 

synthesized in order to find the appropriate hydrophilic ratio to form stable polymersomes. 

PEG45-b-PTMC81, with a hydrophilic ratio of 19%, self-assembled into well-defined 

polymersomes. Then, a 1st generation of light sensitive copolymer PEG43-coumarin-b-PTMC81 

based on a photocleavable coumarin linker was synthesized (Figure 9).  

 

Figure 91: Strategy used to control reactant release temporally and spatially via light-sensitive 
polymersomes (B), comprising photodegradable diblock copolymers (A). 

To this end, the coumarin light-sensitive linker was first synthesized with two grafting groups 

(carboxylic acid and alkyne group), in order to be able to graft one hydrophilic and one 

hydrophobic polymer. The PEG45 chain-end was modified into an amine in order to be grafted 

on the carboxylic acid of the coumarin. Trimethylene carbonate (TMC) was polymerized to 

form poly(trimethylene carbonate) PTMC with an azide chain-end. The key parameter to obtain 

a low dispersity (1.05) was the initiator 3-azido-1-propanol purification. PEG45-NH2 and 

PTMC81-N3 were successively grafted onto the coumarin linker to give the 1st generation of 

light sensitive amphiphilic block copolymer PEG45-coumarin-b-PTMC81. The copolymer had 

a narrow dispersity of 1.05.  

This copolymer self-assembled into well-defined polymersomes with a hydrodynamic diameter 

of 120 nm and a narrow dispersity (PDI ≈ 0.1). UV irradiation of polymersomes induced no 

change in the morphology or the particle sizes. DLS at 90° showed particles were either partly 

destabilized or lost partly their mass after irradiation (30% signal loss after 2.5 hours 

irradiation). However, most nanoparticles (70%) were not destabilized by irradiation. The 

stability of the polymersomes could be explained by coumarin dimerization, favoured by self-
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assembly, that prevents PEG release. In order to improve the destabilization efficiency, a new 

copolymer design was synthesized and analyzed. 

A 2nd design of a light sensitive copolymer based on a photocleavable coumarin linker was 

implemented. The first generation of light sensitive particles was not fully destabilized and 

dimerization was suspected to improve particle stability. Indeed, dimerization prevents PEG 

release and thus improves particle stability. In order to improve PEG release from particles and 

thus favour particle destabilization, copolymer design was modified in two different ways. The 

cleavage efficiency was improved by changing the leaving group. The quantum yield obtained 

by irradiation at 365 nm (0.012) was greater than the one of the 1st generation (0.0034). The 

PEG could be more efficiently cleaved before it could dimerize. The second modification was 

the polymer position on the coumarin. Therefore only PEG was released instead of PEG-

coumarin that induces a more efficient escape of the PEG.  

In order to synthesize the 2nd generation of PEG43-coumarin-b-PTMC81, a coumarin-based 

light-sensitive linker was first synthesized with two different functional groups (hydroxyl and 

alkyne group), in order to be able to selectively graft one hydrophilic and one hydrophobic 

polymer. The PEG43 chain-end was transformed into an isocyanate in order to be conjugated 

on the hydroxyl of the coumarin. PEG43-NCO and PTMC81-N3 were successively grafted on 

the coumarin linker to give the 2nd generation of light sensitive amphiphilic block copolymer 

PEG43-coumarin-b-PTMC81. The copolymer obtained had a narrow dispersity of 1.04.  

Light scattering measurements showed that the copolymer could self-assemble into well-

defined particles with a hydrodynamic radius of 150 nm and a narrow dispersity (PDI ≈ 0.1). 

Cryo-TEM showed polymersomes and polymersome aggregates. Polymersome irradiation 

induced change in the polymersome morphology. After irradiation the remaining particles had 

a ratio Rg/Rh that decreased suggesting particle densification. The polymersome solution was 

irradiated for 150 min and the scattered light intensity decreased up to 71%, suggesting particle 

destabilization and aggregation. The light scattering measurements were confirmed by cryo-

TEM. The images obtained showed undefined aggregates and round particle aggregates. These 

results showed that a light-sensitive copolymer was successfully synthesized that could self-

assemble into polymersomes, which were destabilized upon UV irradiation.   
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Controlling species release was also performed via another mechanism: destabilization 

of polymersomes induced by intra-polymersome osmotic pressure change. The fast osmotic 

pressure increase in the internal medium of polymersomes could not be compensated fast 

enough by water flow, resulting in polymersome rupture and species release. Osmotic pressure 

increase was controlled via a light sensitive cleavable molecule.  

 

Figure 92: Strategy used to induce polymersome bursting. GUVs are stable while osmotic 
pressure is the same in the inner and outer medium (A1). Osmotic pressure increase (B1) was 
used to induce polymersome rupture (C1). Control of the molecular concentration leads to 
control of the osmotic pressure. Increase of the molecular concentration in the GUV (A1 to B2) 
leads to osmotic pressure increase and polymersome rupture (C2). 

Two molecules with two different cleavage mechanisms were studied: coumarin heterolytic 

cleavage and N-alkyl-4-picolinium-thioxanthone  

(NAP-th) based on mediated electron transfer. NAP-th was easily synthesized in 2 steps, its 

water solubility was the limiting parameter and the maximal solubility concentration found was 

1 mM. Several methods were tested to increase its water solubility, such as changing the counter 

ion or adding a hydrophilic group, without increasing the water solubility. The quantum yield 

measured in the presence of the mediator triethanol amine was 0.16. This value showed that the 

cleavage was very efficient.  

Modified coumarin was also successfully synthesized in 6 steps, two hydrophilic groups were 

added to increase the solubility of the molecule and 10 mM of the molecule was readily 

solubilized in water. The measured photochemical quantum yield was 0.016 on irradiating at 

365 nm and 0.029 for 405 nm. The cleavage was less efficient than NAP-th, however its 

solubility was higher. One hour of irradiation at 365 nm induced 87 % cleavage of the molecule. 
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This cleavage released diethyl amine that can be used to increase the solution pH. Indeed, after 

only 10 min irradiation the pH increased from 4.5 to 6.5.  

The second step consisted in encapsulating both molecules inside the polymersome made of 

PEO1.3-b-PBut2.5 via an emulsion-centrifugation technique. Modified coumarin was 

encapsulated inside polymersome with a concentration of 10 mM and NAP-th of 1 mM. 

Irradiation at 405 nm induced fast polymersome bursting for both molecules. These systems 

inducing fast and efficient release could be used to initiate reaction of microreactors and thus 

to have a precise control in space and time for the design of artificial cellular systems.  

 

In order to monitor NO gas production directly inside the microreactor, two NO probes 

were studied. These probes are based on formation of an azo-bond that induces fluorescence, 

resulting in stable signal and high selectivity against other nitro compounds. The two probes 

were designed to have different solubility properties (one hydrophobic and the other 

hydrophilic) in order to detect NO in the membrane and in the inner aqueous medium of the 

microreactor. The probes were synthesized in 5 and 6 steps (Figure 80).  

 

Figure 93: A) NO hydrophobic fluorescent probe B) NO hydrophilic fluorescent probe C) 
BAPTA-NOp 

Critical steps were encountered for the protection and deprotection of the carboxylic acid of the 

hydrophilic probe. Tert-butyl proved to be an efficient protecting group with the conditions 

used and TES was used during the deprotection step avoiding hydrophilic probe degradation. 

In order to test the probes properties, several NO sources were tested such as GSNO, NO from 

NaNO2 or NO as gas from a bottle and the resulting NO concentration were measured via 

hemoglobin absorption. NO release from GSNO was triggered by ascorbic acid and the release 

kinetics was studied. However, ascorbic acid prevents the formation of the fluorescent molecule 

and GSNO could not be used. NO from NaNO2 gave low concentration solutions therefore NO 

solution from a gas bottle was finally used.  
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The NO detection of the probes was tested. Probes showed an increase of the fluorescent 

intensity (lem max= 530 nm, lex max=440 nm for the hydrophilic probe, lem max= 530 nm, lex 

max=440 nm for the hydrophilic probe) after addition of NO. The fluorescence intensity was 

fitted and had an excellent linear correlation (R2 = 0.99) depending on the NO quantity added 

allowing a quantitative measurement of NO. The probes are currently tested in vitro at the 

laboratory CITHEFOR (Lorraine University EA 3452).  

In a second part, another molecular tool was synthesized in order to study NO synthase. 

Introducing reactants in a controlled manner directly in the microreactor could help monitor 

enzyme activity and information about enzyme mechanisms may be obtained. To this end, a 

molecular tool was designed to have fine control of the rate of NO production by a feedback 

process. We hypothesized that the combination of BAPTA and NO probe (BAPTA-NOp) could 

induce an autoactivation of the enzyme and could control the nitric oxide production. NO would 

be produced by the enzyme and react with BAPTA-NOp to give BAPTA-AZO. Due to the 

higher conjugation, the cyano electron withdrawing group would attract electron of the tertiary 

amine of the BAPTA resulting in a weaker complexation of calcium and its release. To test this 

hypothesis BAPTA-NOp and BAPTA-AZO have been synthesized in 10 steps and their 

dissociation constant Kd were measured. Kd found for BAPTA-NOp and BAPTA-AZO were 

respectively 0.42 µM and 0.52 µM. Their Kd values were in agreement with the BAPTA family 

Kd values. Unfortunately, the Kd of BAPTA-NOp and BAPTA-AZO are relatively close and 

BAPTA-AZO have a relatively low Kd which mean the AZO form does not release calcium 

and that the molecule cannot be used for the feedback process. 

 

Finally, in order to ensure control on the initiation step and to start an enzymatic reaction 

at a specific location and time, the release of reactant in a controlled manner in the microreactor 

was explored. PEG43-coumarin-b-PTMC81 nanopolymersomes were successfully encapsulated 

inside emulsion droplet microreactors stabilized by PEO1.3-b-PBut2.5 copolymers and observed 

under confocal microscopy. The irradiation at 405 nm induced an efficient destabilization of 

the nanopolymersomes inside the microreactor. 2 min irradiation induced a decrease of 83% of 

the number of nanoparticles (Figure 80 ).  
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A 

 

B 

 

Figure 94: Confocal observation of water emulsion stabilized by PEO1.3-b-PBut2.5 containing 
light-sensitive PEG43-coumarin-b-PTMC81 nanopolymersomes irradiated 2 min at 405 nm 80% 
50 mW (green channel, lex = 405 nm, 50 mW, 3% emission range of coumarin, 485 nm).B) 
Confocal observation of water emulsion stabilized by PEO1.3-b-PBut2.5 containing PEG43-
coumarin-b-PTMC81 polymersomes before and after 10 s irradiation at 405 nm 80% 50 mW. 
Fluorescein was encapsulated in the polymersomes (scale bar 20 µm, green channel lex=488 
nm, 40 mW, 10% , emission range of fluorescein, 520 nm). 

In order to study the release from the PEG43-coumarin-b-PTMC81 nanopolymersomes, 

quenched fluorescein was encapsulated to obtain nanopolymersomes containing fluorescein (F-

Nano). In order to measure the fluorescein quantity encapsulated in the nanopolymersomes, 

80% by volume of DMSO was added to fully destabilize the particles and release the 

fluorescein. The theoretical maximum fluorescein concentration that the nanopolymersomes 

could release was 5.1 µM. The F-Nano polymersomes were then loaded in emulsion droplets 

microreactor stabilized by PEO1.3-b-PBut2.5. The resulting emulsion was irradiated for 10 s 

resulting in the diffusion of the fluorescence in the whole medium, showing that fluorescein 

was released from F-Nano inside the microreactor.  

 

Building a microreactor that could mimic some cellular basic function and develop an 

operational synthetic cell is a real challenge. There is still a long way to go to obtain a versatile 

artificial cell. However, we believe the tools developed during this PhD work will help getting 

closer to a rudimentary robust artificial cell. NO synthase is a complex enzyme that requires 

several substrates and particular conditions. In the first instance the tools developed here could 

be used to build a controllable microreactor by microfluidics containing well known enzyme 

such as HRP or GOX.  

The life fundamental building blocks are well known, however we are far from 

understanding how these building blocks interact, self-organize, exchange information and 

process. Pertinent information about how cells function is anticipated, from both successful and 

unsuccessful implementations of artificial cells.   
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7. Experimental Part 
Solvents and chemical products 
Commercially-available products were purchased from Sigma Aldrich, Acros Chemicals, 

Lancaster and Fluka and were used as received. The dried solvents were obtained as follows: 

toluene and diethyl ether was distilled over sodium; acetonitrile and dichloromethane were 

distilled over calcium hydride and dimethylformamide (DMF) was stored over molecular 

sieves. Deuterated solvents for NMR analysis were bought from Sigma-Aldrich and Euriso-

top. Deionized water was obtained by purification over an ion exchange column and a 

membrane filter of 0.45 µm (MSI, Micron separation, Inc.). Solvents for spectroscopy without 

the addition of stabilizing agents or other absorbing material were used as received. 

 

Thin layer chromatography and silica columns 
Thin layer chromatography was performed on silica gel 60 F254 sheets on aluminium produced 

by Merck. Spots on the TLC plate were observed under UV light (254 nm / 365 nm). When 

appropriate for non-chromophoric compounds an appropriate staining agent was employed.  

 

Nuclear magnetic resonance spectroscopy (NMR) 
1H and 13C NMR were performed on:  

AVANCE400: AVANCE III HD 400 spectrometer operating at 400.2 MHz and 100.7 MHz 

for 1H and 13C respectively.  

Temperature: 298K 

Probe: 5 mm Bruker multinuclear z-gradient direct probe. 

PRODIGY 400: AVANCE NEO 400 BRUKER spectrometer operating at 400.3 MHz and 

100.7 MHz for 1H and 13C respectively.  

Temperature: 298K 

Probe: 5 mm Bruker multinuclear z-gradient direct cryoprobe-head. 

Chemical shifts are reported in ppm (d) and are referenced to the NMR solvent (CDCl3, D2O, 

MeOD, CD3CN, DMSO) residual peak. Abbreviations used are s = singlet, d = doublet, t = 

triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, m = multiplet and br=broad. 

The coupling constants (J) are reported in Hertz (Hz).  



 

 204 

Size Exclusion Chromatography in THF 
 
Polymer molar masses were determined by Size Exclusion Chromatography (SEC) using 

tetrahydrofuran (THF) as the eluent. Measurements in THF were performed on an Ultimate 

3000 system from Thermoscientific equipped with diode array detector DAD. The system also 

includes a multi-angle light scattering detector MALS and differential refractive index detector 

dRI from Wyatt technology. Polymers were separated on three G2000, G3000 and G4000 

TOSOH HXL gel columns (300 x 7.8 mm) (exclusion limits from 1000 Da to 400 000 Da) at a 

flowrate of 1 mL/min. Column temperature was held at 40°C. An Easivial kit of Polystyrene 

from Agilent was used as the standard (Mn from 162 to 364 000Da). 

 

Mass spectrometry 
Mass spectra are measured by the “Centre d’Etude Structurale et d’Analyse des Molecules 

Organique” (CESAMO) at the university of Bordeaux. The measurements were carried out on 

a QStar Elite mass spectrometer (Applied Biosystems). The instrument is equipped with an 

electrospray ionisation (ESI) source and the spectra were recorded in either positive or negative 

ionisation mode. The electrospray needle was maintained at 5000 V and operated at room 

temperature. Samples were introduced by injection through a 20 µL sample lip into a 

4500 µL/min flow of methanol from the LC pump. Alternatively field desorption (FD) was 

used as ionization mode on a time of flight (TOF) mass spectrometer (Accu TOF GCv). The 

FD-emitter voltage was 10 kV and 1 – 2 µL of sample solution was deposited on a 13 µm 

emitter wire and inserted into the machine.  

 

Electronic absorption spectroscopy (UV-Vis)  
Electronic absorption spectra have been measured on a Varian UV-Vis-NIR spectrophotometer 

Cary 5000. The wavelengths observed ranged from 200 – 800 nm. Sample solutions were 

measured in matched quartz cells with a pathlength of 10 mm. Before each measurement a 

baseline of pure solvent was been taken and was subtracted from the measured spectra.  

 

Fluorescence spectroscopy 
Fluorescence measurements were performed on spectrofluorometer JASCO FP-8500 with a Xe 

arc lamp with shielded lamp housing (150 W). The photometric system was a radio-photometer 
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system using monochromatic light to monitor the intensity output of the Xe lamp. Measures 

were performed in quartz cells with a pathlength of 10 mm at 20°C.  

 

Parameters used for emission et excitation spectra measurements:  

 

Mode Emission 

Ex bandwidth 2.5 nm 

Em bandwidth 2.5 nm 

Response 1 sec 

Sensitivity High 

Measurement range 470 - 700 nm 

Data interval 0.5 nm 

Ex wavelength 416.0 nm 

Scan speed 200 nm/min 

No. of 

accumulations 3 

Auto gain Off 

Shutter control 

Open only for 

measurement 

Light source Xe lamp 

Filter 

Stop scan for 

exchanging filter 

Blank correction Off 

Temperature 20°C 
 

Mode Excitation 

Ex bandwidth 2.5 nm 

Em bandwidth 2.5 nm 

Response 1 sec 

Sensitivity High 

Measurement range 300 – 520 nm 

Data interval 0.5 nm 

Em wavelength 535.0 nm 

Scan speed 200 nm/min 

No. Of 

accumulations 3 

Auto gain Off 

Shutter control 

Open only for 

measurement 

Light source Xe lamp 

Filter 

Stop scan for 

exchanging filter 

Blank correction Off 

Temperature 20°C 

  

UV lamp 
Irradiation experiments were carried out with a Hamamatsu Lightningcure LC8 200 W 

Mercury-Xenon lamp. A filter (A9616-05) was used centering the light emission at 365 nm as 

shown Figure 95. Samples were placed at 1 cm from the light guide output and irradiated for a 

defined time. 
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Figure 95: Emission spectra of the UV lamp with and without the filter A9616-05. 

TEM and Cryo TEM 
TEM images were taken from a Hitachi H7650 at the Bordeaux Imaging Center. CRYO-TEM 

Images were taken by Jean Michel Guigner at Institut de minéralogie, de physique des 

matériaux et de cosmochimie UMR 7590 - Sorbonne Université/CNRS/MNHN/IRD. 

 

Photochemical quantum yield 
Montalti M., Credi A., Prodi L., Gandolfi M. T., Handbook of photochemistry, Taylor and Francis p601-604. (ɸFe2+ 

=1.21 at 365.6 nm) 

Photochemical quantum yields have been determined according to a standard procedure using 

a ferrioxalate actinometer. A solution of potassium ferrioxalate (0.012 M) in H2SO4 (0.05 M) 

and a solution of phenanthroline (0.1 %) in H2SO4 (0.5 M) buffered with sodium acetate 

trihydrate (225 g/L) has been prepared. Ferrioxalate can be used as an actinometer up to 

500 nm. The “micro-version” of the initial method by Hatchard and Parker and described by 

Fisher has been used. Under irradiation the ferrioxalate is decomposing according to the 

following equation. 

 

 
 

2[Fe(C2O4)3]3- hv 2Fe2+ 2CO2+ 2(C2O4)2-+

2[Fe(C2O4)3]3- 2Fe2+ 2CO2+ 2(C2O4)2-+
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After irradiating a solution of ferrioxalate (3 ml) for a certain time, a solution of phenanthroline 

(0.5 ml) is added, which forms a tris-phenanthroline complex only with the Fe2+ ions (ɛ = 11100 

cm-1M-1 at 510 nm) The absorption is compared to a non-irradiated reference solution which is 

kept in the dark and the difference between the two is noted and gives ΔA. The molar amount 

of Fe2+ is given the following equation. 

 

moles Fe2+ = !×#$
%×ɛ!"#

 

 

Where V is the total volume (3.5 ml) l is the optical path of cell and ɛ510 is the extinction 

coefficient of the Fe(phen)2+ complex. Thus, the photons absorbed by the solution per time unit 

(Nhν/t) is: 

 

Nhv/t = 𝑉×𝛥𝐴
𝑙×ɛ510

 

 

Where ɸλ is the quantum yield for the formation of Fe2+, t is the irradiation time F is the fraction 

of photons absorbed by the ferrioxalate solution (F = 1 – 10-A). If the irradiated solution is 

sufficiently concentrated the F factor can be omitted. Upon irradiation of the sample solution 

the it needs to be taken in account that the spectroscopical change should not surpass 10 % to 

obtain a reliable value for the photochemical quantum yield. The concentration of the light 

induced change Ci (isomerisation or photocleavage) can be calculated as follows: 

 

Ci = #$
ɛ+ɛ'()*+,-

 

 

ɛ is the extinction coefficient of the starting material and ɛproduct is the exctinction coefficient of 

the photoproduct. The photochemical quantum yield is then calculated as shown in the 

following equation. 

ɸλ = ,.×!/
(012- )×/

 

 

Here Vs is the irradiated volume of the sample and t stands for the irradiation time of the sample. 
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Calcium titration 
Two calcium calibration stock solutions have been prepared, one containing 10 mM EGTA 

(0 µM Ca2+-buffer) and another with 10 mM CaEGTA (39 µM Ca2+-buffer). In addition both 

buffers were charged with 100 mM KCl and 30 mM 3-(N-Morpholino)-propanesulfonic acid 

(MOPS) adjusted at pH 7.2. In both buffers an equivalent amount of Ca2+-binding probe was 

dissolved with a final concentration between 1-10 µM. In order to determine the Kd both 

fluorescence and electronic absorption spectra have been taken after having adjusted the free 

Ca2+ concentration to 0.017 µM, 0.038 µM, 0.065 µM, 0.100 µM, 0.150 µM, 0.225 µM, 0.35 

µM, 1.35 µM and 39 µM. Therefore 2 mL of the 0 µM Ca2+-sample was placed in a cuvette 

and the spectra were recorded. 200 µL of the sample was discarded and replaced with 200 µL 

of the 39 µM Ca2+-sample. In that fashion a concentration of 0.017 µM Ca2+ can be obtained 

without changing the concentration of the analyte. The aforementioned Ca2+ concentrations 

were then adjusted by discarding 250, 222, 250, 286, 333, 400, 500, 667 and 1000 µL and 

replacing the removed volume with an equivalent volume of the 39 µM Ca2+ sample. For the 

calculation of the free Ca2+-concentration a constant room temperature of 21 °C was assumed. 

The spectral change at a certain wavelength is then introduced into Hill plot which is the 

logarithm of (A-Amin)/(Amax-A) where A is the absorption at a certain wavelength plotted over 

the logarithm of the free Ca2+ concentration as obtained from the Ca2+-buffers. A schematic 

representation of the obtained graph is shown in figure 83. 

 

 

Figure 96: Schematic representation of the Hill plot obtained from a Ca2+ titration. 

The x-intercept in this graph gives the logarithm of the Kd as shown in figure 83.   
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Preparation of vesicles via emulsion centrifugation technique. 
30 µL of glucose 380 mM was added at the bottom of a 2 mL plastic eppendorf. 30 µL of a 

PBut2.5-b-PEO1.3 (3 mg/mL) toluene solution was added gently on the glucose phase. The two 

phases solution was allowed to stabilize 30 min in order to form a stable copolymer leaflet at 

the interface. A sucrose solution was prepared with a concentration that equilibrates the osmotic 

pressure with the glucose solution depending on the other components. 5 µL of a sucrose 

solution was poured in 500 µL of PEO1.3-b-PBut2.5 (3 mg/mL) toluene solution. The solution 

was vigorously hand shaken for 25 seconds in order to form the sucrose emulsion in toluene 

that was stabilized by the copolymer. 75 µL of the emulsion was poured quickly and gently in 

the toluene phase of the first vial containing the glucose phase. Quickly the resulting emulsion 

in toluene was centrifuged (3 min, 500 g, room temperature) on top of the glucose solution. The 

toluene of the centrifuge solution was partly removed, 80 µL of glucose (380 mM) solution was 

gently added. The solution was again centrifuged (3 min at 500 g room temperature). All the 

toluene was removed. On the bottom of the vial, a pellet of polymersomes is visible. After 

toluene removal, the solution was left to rest for few hours until all the polymersomes were 

dispersed and the aggregates at the bottom disappeared.  

 

Confocal microscopy  
Laser scanning confocal microscopy images were acquired on an inverted Leica TCS SP5 

microscope equipped with an HCX PL APO 63Å~, NA 1.4 oil immersion objective in 

fluorescence mode. Samples (≈20 μL) were injected in a homemade chamber that was sealed 

to prevent evaporation. The laser outputs were controlled via the Acousto-Optical Tunable filter 

(AOTF) and the two collection windows using the Acousto-Optical Beam Splitter (AOBS) and 

photomultipliers (PMT). 
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HRP Amplex Red H2O2 solution preparation  
Three solutions were prepared in PBS: Amplex Red 1 mM (with 10% DMSO for solubilization) 

HRP 4 U/mL and H2O2 100 µM. The solution were then prepared as follows:  

 

H2O2 (µM) 1 5 15 25 35 45 
HRP (U/ML) 0,4 0,4 0,4 0,4 0,4 0,4 
AR (µM) 50 50 50 50 50 50 
V H2O2 (µL) 1 5 15 25 35 45 
V HRP (µL) 10 10 10 10 10 10 
V AR (µL) 5 5 5 5 5 5 
V PBS (µL) 84 80 70 60 50 40 
V TOT 100 100 100 100 100 100 

 

Dynamic light scattering 
The measurements were performed on a Malvern ZetaSizer Nano ZS instrument with detection 

at 90°. Samples were analyzed at 25°C. Three measurements were performed for each sample. 

The particle size distribution was determined using a NNLS analysis fit with a quadratic 

weighting scheme. Z-average hydrodynamic diameters and polydispersity indexes (PDI) were 

derived through the cumulant method. 
 

Rg and Rh measurements 
Dynamic light scattering (DLS) experiments were performed using an ALV/CGS3 compact 

goniometer equipped with an ALV/LSE-5004 light scattering electronics and an ALV-7004 

multi tau digital correlator with pseudo-cross correlation detection. The light source was a 

22 mW He-Ne laser operating at l=632.8 nm. The measurements were carried out at 25°C. At 

least three measurements of 60 sec were performed. The distribution of relaxation times was 

obtained by applying the Contin method and the hydrodynamic radii derived through 

application of the Stokes Einstein equation. 
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Synthesis 

2 

 
3-Aminophenol (1) (15.3 g, 1eq) was dissolved in ethyl acetate (50 mL). The mixture was 

heated to reflux for 30 min. Ethyl chloroformate was added dropwise over a 1 hour period. The 

reaction mixture was allowed to cool to RT. A precipitate was formed, which was removed by 

filtration and washed with ethyl acetate (3 x 30 mL). The combined filtrate was evaporated 

under reduced pressure to obtain 12.4 g (98% yield) of the product (2) as a white powder.  
1H NMR (400 MHz, CDCl3) δ (ppm) 7.38 (br. s, 1H), 7.13 (t, J =8.1 Hz, 1H), 6.75 (br. s, 1H), 

6.63 (dd, J = 1.2 Hz, J =8.1 Hz, 1H), 6.58 (dd, J =8.1 Hz, J = 2.3 Hz, 1H), 4.23 (q, J = 7.1 Hz, 

2H), 1.31 (t, J = 7.1 Hz, 3H),  
13C NMR (400 MHz, CDCl3) δ (ppm) 157.1, 154.2, 138.9, 130.1, 110.85, 110.5, 106.1, 61.8, 

14.6. 

HRMS (ESI): Calculated m/z = 204.0631 for C9H11NO3Na ; found m/z = 204.0628 [M+Na]+ 

 

3 

 
A solution of ethyl (3-hydroxyphenyl)carbamate (2) (12.3 g, 1.0 eq) in EtOAc was suspended 

in 100 mL of 70% H2SO4. The resulting solution was stirred at RT for 3 hours. The mixture 

was poured on ice, giving a white precipitate that was recrystallized from EtOH. 9.5 g of 

coumarin derivative (3) was obtained (54% yield). 
1H NMR (400 MHz, CDCl3) δ (ppm) 7.52 (d, J = 8.6 Hz, 1H), 7.47 (d, J = 2.0 Hz, 1H), 7.41 

(d, J = 8.6 Hz, 1H), 7.08 (, 1H), 6.18 (d, J = 1.0 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 2.4 (d, J = 

1.0 Hz, 3H), 1.33 (t, J = 7.1 Hz, 3H),  
13C NMR (400 MHz, CDCl3) δ (ppm) 161.4, 154.6, 153.2, 152.5, 141.8, 125.5, 115.5, 114.5, 

113.2, 106.0, 61.9, 18.7, 14.6. 

HRMS (ESI): Calculated m/z =270.0737 for C13H13NO4Na ; found m/z =270.0724 [M+Na]+ 
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4 

 
9.5 g (1.0 eq) of 3 was dissolved in 250 mL of THF. 1.0 g of NaH (1.05 eq) was slowly added 

and the mixture was stirred for 30 min at RT. 6.0 g of MeI (1.1 eq) was then added and the 

reaction mixture was stirred for 24 hours. The solvent was evaporated, water was added and 

the white precipitate was filtered, dried and recrystallized in EtOH. 5.5 g of 4 was obtained 

(54% yield). 
1H NMR (400 MHz, CDCl3) δ (ppm) 7.54 (d, J = 8.6 Hz, 1H), 7.29 (dd, J = 8.6 Hz, J = 2.1 Hz, 

1H), 7.24 (d, J = 2.1 Hz, 1H), 6.24 (d, J = 1.1 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.36 (s, 3H), 

2.42 (d, J = 1.1 Hz, 3H), 1.28 (t, J = 7.1 Hz, 3H). 
13C NMR (400 MHz, CDCl3) δ (ppm) 160.9, 155.2, 153.9, 152.1, 146.6, 124.7, 121.0, 117.2, 

114.4, 112.9, 62.4, 37.2, 18.7, 14.6. 

HRMS (ESI): Calculated m/z =284.08933 for C14H15NO4Na; found m/z =284.0887 [M+Na]+ 

 

5 

 
5.0 g (1.0 eq) of 4 was suspended in a mixture of 14 mL of H2SO4/AcOH (1/1, v/v). The 

suspension was heated to 125°C for 2 hours. The mixture was left to cool to RT then the solution 

was poured on 100 mL of ice and pH was increased to 9 with 1N NaOH solution. The brown 

precipitate was filtered, dried and recrystallized from EtOH. 3.3 g of 5 was obtained (91% 

yield). 
1H NMR (400 MHz, CDCl3) δ (ppm) 7.35 (d, J = 8.6 Hz, 1H), 6.51 (dd, J = 8.6 Hz, J = 2.3 Hz, 

1H), 6.44 (d, J = 2.3 Hz, 1H), 5.97 (d, J = 1.0 Hz, 1H), 4.34 (s, 1H), 2.9 (s, 3H), 2.34 (d, J = 

1.0 Hz, 3H). 
13C NMR (400 MHz, CDCl3) δ (ppm) 162.1, 156.1, 153.1, 152.6, 125.6, 110.6, 110.2, 109.5, 

97.9, 30.4, 18.7 

HRMS (ESI): Calculated m/z =212.0681 for C11H11NO2Na ; found m/z = 212.0688 [M+Na]+ 
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6 

 
5 (3.2 g, 1.0 eq) was dissolved in DMF (30 mL). BrCH2CO2tBu (3.8 g, 1.1 eq) and K2CO3 (2.9 

g, 1.2 eq) were then added and the mixture was heated to 100°C for 12 hours. The solution was 

then concentrated and water was added, resulting in precipitation. The precipitate was filtered 

and the product was purified by silica column chromatography (Cyclohexane/ EtOAc ; 3/1 to 

1/1, v/v) to obtain 1.8 g of 6 (yield 34%). 
1H NMR (400 MHz, CDCl3) δ (ppm) 7.40 (d, J = 8.9 Hz, 1H), 6.58 (dd, J = 2.5 Hz, J = 8.9 Hz, 

1H), 6.5 (d, J = 2.6 Hz, 1H), 5.98 (d, J = 1.1 Hz, 1H), 4 (s, 2H), 3.11 (s, 3H), 2.34 (d, J = 1.1 

Hz, 3H), 1.43 (s, 9 H). 
13C NMR (400 MHz, CDCl3) δ (ppm):169.1, 162.1, 155.7, 152.9, 152.0, 125.6, 110.6, 110.0, 

108.9, 98.8, 82.4, 55.0, 39.9, 28.2, 18.6. 

HRMS (ESI): Calculated m/z = 304.1543 for C17H22NO4 ; found m/z = 304.1539 [M+H]+ 

 

7 

 
 6 (1.7 g, 1.0 eq) was suspended in p-xylene (80 mL) with Se2O3 (3.6 g, 3 eq). The mixture was 

refluxed under vigorous stirring under an argon atmosphere during 24 hours. The mixture was 

filtered and concentrated under reduced pressure. The dark brown oil (7) was used in the next 

reaction without further purification.  

 

8 

 
7 (1.8 g, 1.0 eq) was dissolved in MeOH (100 mL) and NaBH4 (0.43 g, 2.0 eq) was carefully 

added into the solution. The mixture was stirred 3 hours at RT. The solution was concentrated 

and carefully neutralized with 1M HCl solution, diluted with water and extracted with EtOAc. 

The organic phase was washed with water, dried with MgSO4 and the solvent was removed 
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under reduced pressure. The product was purified by silica column chromatography 

(Cyclohexane/ EtOAc ; 7/3 to 4/6, v/v) to obtain 0.94 g of 8 (yield 52%). 
1H NMR (400 MHz, CDCl3) δ (ppm) 7.32 (d, J =8.88 Hz, 1H), 6.56 (dd, J =8.90 Hz, J =2.58 

Hz, 1H), 6.51 (d, J =2.56 Hz, 1H), 6.31 (s, 1H), 4.81 (d, J =1.24 Hz, 2H), 4.0 (s, 2H), 3.12 (s, 

3H), 1.44 (s, 9H). 
13C NMR (400 MHz, CDCl3) δ (ppm) 169.2, 162.4, 155.8, 154.6, 152.0, 124.4, 109.1, 107.8, 

106.8, 99.0, 82.5, 61.0, 55.0, 39.9, 28.2  

HRMS (ESI): Calculated m/z = 320.1492 for C17H22NO5 ; found m/z = 320.1489 [M+H]+ 

 

9 

 
8 (0.67 g, 1eq) was dissolved in dry DMF under inert conditions, NaH (0.10 g, 2.0 eq) was 

added and the mixture was stirred for 30 min. Propargyl bromide (0.75 g, 3 eq) was added, the 

mixture was heated at 60 °C and was stirred for 24 hours. Water was then added and the mixture 

was extracted with EtOAc (4x15 mL), the organic phase was washed with brine, dried over 

MgSO4 and concentrated under reduced pressure. The crude product was purified by silica 

column chromatography (Cyclohexane/ EtOAc; 8/2 to 6/4, v/v) to obtain 233 mg of 9 (yield 

31%). 
1H NMR (400 MHz, DMSO) δ (ppm) 7.37 (d, J = 8.8 Hz, 1H), 6.36 (m, 3H), 5.25 (d, J = 1.4 

Hz, 2H), 4.94 (d, J = 2.4 Hz, 2H), 4.20 (s, 2H), 3.65 (t, J = 2.3 Hz, 1H), 3.04 (s, 9H). 

 

10 

  
9 (175 mg, 1.0 eq) was dissolved in of DCM (20 mL), TFA (20 mL) was then added and the 

reaction mixture was stirred for 2 hours at RT. The solvent was removed under reduced 

pressure, the solid was washed 3 times with diethyl ether and dried under reduced pressure. The 

solid was recrystallized in EtOH. 125 mg of 10 was obtained (82% yield) 

O ONO

O

O

O ON

O

HO

O



 

 215 

1H NMR (400 MHz, DMSO) δ (ppm) 7.36 (d, J = 8.8 Hz, 1H), 6.36 (m, 3H), 5.25 (d, J = 1.3 

Hz, 2H), 4.95 (d, J = 2.4 Hz, 2H), 4.22 (s, 2H), 3.64 (t, J = 2.3 Hz, 1H), 3.05 (s, 3H). 

HRMS (ESI): Calculated m/z = 300.0877 for C16H14NO5 ; found m/z = 300.0875 [M-H]- 

 

12 

 
Prior to the reaction 3-bromo-1-propanol was purified by silica column chromatography 

(Cyclohexane/ EtOAc; 4/1, v/v. TLC staining: phosphomolybdic acid). The purified 3-bromo-

1-propanol (1g, 1.0 eq) and sodium azide (795 mg,) were then dissolved in a mixture of acetone 

(120 mL) and water (20 mL) and the resulting solution was refluxed overnight. Acetone was 

then removed under reduced pressure, 10 mL of water were added and the mixture was 

extracted with diethyl ether (3 x 10 mL). The organic layers collected were dried over MgSO4 

and, after removal of the solvent under reduced pressure, 3-azido-1-propanol was isolated as a 

colourless oil 12. The oil was dried on CaH2 overnight and then cryo-distillated under reduced 

pressure. 
1H NMR (400 MHz, CDCl3) δ (ppm) 3.70 (t, J = 6.0 Hz, 2H), 3.41 (t, J = 6.6 Hz, 2H), 2.36 (br, 

1H), 1.80 (m, J = 6.3 Hz, 2H).  

D. Quémener, T.P. Davis, C. Barner-Kowollik, M.H. Stenzel, RAFT and click chemistry: A 

versatile approach to well-defined block copolymers, Chem. Commun. 0 (2006) 5051–5053. 

doi:10.1039/B611224B. 

 

13 

 
In a glovebox, dry 3-azido-1-propanol 12 (19.6 mg, 1.0 eq), dry DBU (29.6mg, 1.0 eq), dry N′-

[3,5-bis(trifluoromethyl)phenyl]-N-cyclohexylthiourea (93.4 mg, 1.3 eq) and dry TMC (2.0 g, 

101 eq) were dissolved in dry CH2Cl2 (2.5 mL) under inert atmosphere. After 3 hours, acetic 

acid (35 mg) was added to the mixture. The resulting copolymer was precipitated 3 times in 

diethyl ether at 0°C. 1.51g of N3-PTMC 13 was obtained (80% conversion). 
1H NMR (400 MHz, CDCl3) δ (ppm) 4.22 (t, J = 6.2 Hz, 322H), 3.72 (t, J = 6.0 Hz, 2H), 3.42 

(t, J = 6.6 Hz, 2H), 2.04 (m, J = 6.3 Hz, 161H). 
13C NMR (101 MHz, CDCl3) δ (ppm) 28.0, 64.3, 154.9. 

SEC (RI): Mw (Đ) 12600 g mol-1 (1.05). 

N3 OH

N3 O O

O n
O H



 

 216 

14 

 
In a glovebox, dry benzyl alcohol (21.0 mg, 1.0 eq), dry DBU (29.6mg, 1.0 eq), dry N′-[3,5-

bis(trifluoromethyl)phenyl]-N-cyclohexylthiourea (93.4 mg, 1.3 eq) and dry TMC ( 2.0 g, 101 

eq) were dissolved in dry CH2Cl2 (2.5 mL) under inert atmosphere. After 3 hours, acetic acid 

(35 mg) was added to the mixture. The resulting copolymer was precipitated 3 times in diethyl 

ether at 0°C. 1.54 g of benzyl-PTMC 14 was obtained (80% conversion). 
1H NMR (400 MHz, CDCl3) δ 7.25-7.39 (m, 5H), 5.16 (s, 2H), 4.24 (t, J = 6.3 Hz, 330H), 3.74 

(t, J = 6.0 Hz, 1H), 2.05 (t, J = 6.3 Hz, 165H). 

SEC (RI): Mw (Đ) 13000 g mol-1 (1.04). 

 

16 

 
Poly(ethylene glycol) methyl ether (2000 g/mol, 2.0 g, 1.0 eq), triethylamine (202 mg, 2.0 eq), 

trimethyl amine (5.9 mg, 0.1 eq) were dissolved in DCM (5 mL). p-toluenesulfonyl chloride 

was then added carefully (285 mg, 1.5 eq) in DCM. The final mixture was stirred overnight at 

RT. DCM was partially removed and the resulting polymer was precipitated 3 times in 15 mL 

of diethyl ether. 1.4 g of tosylated PEG45 16 was obtained (65% yield). 

 1H NMR (300 MHz, DMSO) δ (ppm) 7.78 (d, J = 8.3 Hz, 2H), 7.48 (d, J = 8.1 Hz, 2H), 4.11 

(t, J = 4.4, Hz, 2H), 3.50 (s, 183H), 3.24 (s, 3H), 2.42 (s, 3H). 
13C NMR (400 MHz, CDCl3) δ (ppm) 70.6. 

HRMS (ESI): Calculated m/z = 1882.0205 for C84H162NaO41S; found m/z = 1882.0269 

[M+Na]+ 

 

17 

 
16 (1.4 g) was dissolved in EtOH (20 mL) and sodium azide (91 mg, 2.0 eq) was added to the 

mixture. The reaction mixture was refluxed overnight, and then diluted with water (100 mL). 

Ethanol was removed from the mixture under reduced pressure. The aqueous layer was 

extracted with DCM (3x20 mL). The organic layer was dried over MgSO4 and concentrated 
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under reduced pressure. The resulting mixture was precipitated in diethyl ether 3 times. 1.26 g 

of PEG45-azide 17 was obtained (90% yield).  
1H NMR (400 MHz, DMSO) δ 3.51 (s, 178H), 3.24 (s, 3H). 

P.A. Ledin, N. Kolishetti, G.-J. Boons, Multifunctionalization of polymers by strain-promoted 

cycloadditions, Macromolecules. 46 (2013) 7759–7768. 

 
18 

 
To a solution methyl-PEG45-azide (17) (1.0 g, 1.0 eq) in 100 mL MeOH, PPh3 was added (0.39 

g, 3 eq). The reaction mixture was refluxed overnight under an argon atmosphere and then 

cooled down to RT The solvent was removed under reduced pressure. The resulting polymer 

was precipitated 3 times in diethyl ether (15 mL). PEG amine 18 (0.90 g) was obtained (58% 

yield). 
1H NMR (400 MHz, CDCl3) δ (ppm) 3.62 (s, 176H), 3.36 (s, 3H), 2.90 (t, J = 5.2 Hz, 2H). 
13C NMR (400 MHz, CDCl3) δ (ppm) 41.6, 59.0, 70.6  

HRMS (ESI): Calculated m/z = 1705.0456 for C77H158N ; found m/z = 1705.0434 [M+Na]+ 

 

19 

 
Under an inert atmosphere DMAP (68 mg, 3 eq), EDCI (88 mg, 3 eq) and coumarin derivative 

10 (85 mg, 1.5 eq) were dissolved in dry DCM (2 mL). The mixture was stirred for 15 min at 

RT. PEG-NH2 (376 mg, 1.0 eq) was then added to the mixture and the reaction was stirred at 

RT overnight. Water (5 mL) and DCM (5 mL) were then added and the reaction mixture was 

extracted with DCM (4x15 mL). The organic phase was washed with water then brine and dried 

over MgSO4 and concentrated. The resulting polymer was purified by silica column 

chromatography (DCM/ MeOH; 95/5, v/v). 120 mg of PEG-coumarin 19 was obtained (28% 

yield). 
1H NMR (400 MHz, CDCl3) δ 7.30 (d, J = 8.8 Hz, 1H), 6.94 (br, 1H), 6.36 (m, 3H), 5.23 (d, J = 

1.4 Hz, 2H), 4.78 (d, J = 2.3 Hz, 2H), 4.00 (s, 2H), 3.64 (s, 237H), 3.38 (s, 4H), 3.14 (s, 3H), 

2.63 (t, J = 2.3 Hz, 1H). 

SEC (RI): Mw (Đ) 30970 g mol-1 (1.03). 
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20 

 
PEG45-coumarin 19 (64 mg, 1.0 eq), PTMC-N3 13 (224 mg, 1.0 eq) and sodium ascorbate (8.7 

mg, 2.0 eq) were dissolved in dry DMSO (3 mL). Pentahydrate copper sulphate (28 mg, 4 eq) 

was then added and the reaction was left under stirring overnight at 30°C. Water (1 mL) was 

added to the reaction mixture and the solution was dialysed (3.5 kDa) against water EGTA 

mixture for the two first dialysis and against water for the next 3. The resulting copolymer was 

lyophilized and 165 mg of PEG45-coumarin-b-PTMC81 (57% yield). 
1H NMR (400 MHz, CDCl3) δ 7.75 (s, 1H), 7.27 (d, J = 8.8 Hz, 1H), 6.74 (s, 1H), 6.51 (d, J = 

2.0 Hz, 1H), 6.34 (dd, J = 8.8 Hz, J = 2.1 Hz, 1H), 6.28 (s, 1H), 5.30 (s, 2H), 5.16 (d, J = 1.4 

Hz, 2H), 4.24 (t, J = 6.3 Hz, 363H), 3.99 (s, 2H), 3.64 (s, 207H), 3.38 (s, 3H), 3.15 (s, 3H), 2.05 

(m, J = 6.3 Hz, 177H). 

SEC (RI): Mw (Đ) 15810 g mol-1 (1.05). 

 

21 

 
Ethyl acetoacetate (45.8 mmol, 1eq) was added to a mixture of 3-aminophenol (45.8 mmol, 

1eq) and Y(NO3)3.6H2O (4.58 mmol, 0.1 eq) in a 100 mL round bottom flask. The reaction 

mixture was stirred at 90°C for 2 hours. Then the solid product was suspended in water. The 

resulting crude product was filtered and recrystallized in EtOH to give a yellow/green 

crystalline powder (50% yield). 
1H NMR (DMSO, 300 MHz) δ (ppm): 7.41 (d, 1H), 6.57 (dd, 1H), 6.41 (d, 1H), 6.12 (s, 2H), 

5.91 (s, 1H), 3.35 (s, 1H), 2.31 (s, 3H). 

B. Karami, M. Kiani, Synthesis of the Coumarins via Pechmann Method in the Presence of 

Environmentally Friendly Y(NO3)3×6H2O, J. Chin. Chem. Soc. 61 (2014) 213–216. 

doi:10.1002/jccs.201200610. 
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22 

 
7-Amino-4-methylcoumarin (9.6 g, 1.0 eq) was dissolved in CH2Cl2 (10 mL). The reaction 

mixture was cooled down to 0°C. p-Toluenesulfonyl chloride (15.7 g, 1.5 eq) in pyridine (32 

mL) was slowly added to the solution. The reaction mixture was stirred overnight at RT. The 

pyridine was removed under reduced pressure and a thick oil was obtained. The oil was diluted 

in ethanol (10 mL) and then poured into deionized water. The obtained solid was filtered, rinsed 

several times with water and rinsed with a minimum volume of ethanol and dried under vacuum 

overnight to obtain 14.0 g of 22 (78% yield).  
1H NMR (300 MHz, DMSO) δ (ppm) 10.91 (s, 1H), 7.74 (d, J = 8.0 Hz, 2H), 7.63 (d, J = 8.6 

Hz, 1H), 7.37 (d, J = 7.9 Hz, 2H), 7.10 (, J = 8.6 Hz, 1H), 7.03 (s, 1H), 6.23 (s, 1H), 3.32 (s, 

1H), 2.33 (s, 6H). 
13C NMR (300 MHz, DMSO) δ (ppm) 159.7, 153.6, 153.0, 143.8, 141.4, 136.2, 130.0, 126.7, 

126.6, 115.2, 114.6, 112.5, 105.0, 21.1, 17.9 

HRMS (FD+): Calculated m/z =329.0722 for C17H15NO4S ; found m/z =329.0730 [M]+ 

 

23 

 
K2CO3 (8.8 g, 1.5 eq), NaI (0.64g, 0.1 eq), bromoethane (64 ml, 20 eq), 22 (14 g, 1.0 eq) and 

TBAB (1.38 g, 0.1 eq) were dissolved in 400 mL of acetonitrile. The reaction mixture was 

refluxed for 6 hours. After cooling down to RT, the solvent was removed under reduced 

pressure and a solid was obtained. The solid was dissolved in CH2Cl2 and the organic phase 

was washed 3 times with water. The organic phase was dried with MgSO4 and evaporated under 

reduced pressure. The solid was recrystallized in EtOH to obtain 10.2 g of 23 (67% yield).  
1H NMR (400 MHz, CDCl3) δ (ppm) 7.58 (d, J = 8.5 Hz, 1H), 7.47 (d, J = 8.3 Hz, 2H), 7.24 

(m, 3H), 6.87 (d, J = 2.1 Hz, 1H), 6.28 (d, J = 1.2 Hz, 1H), 3.62 (q, J = 7.1 Hz, 2H), 2.44 (m, 

6H), 1.09 (t, J = 7.1 Hz, 3H)  
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13C NMR (400 MHz, CDCl3) δ (ppm) 160.51, 153.7, 152.0, 144.1, 142.4, 134.9, 129.8, 127.6, 

125.6, 125.0, 119.3, 115.5, 115.3, 45.4, 18.8, 14.0 

HRMS (ESI): Calculated m/z =358.1113 for C19H20NO4S ; found m/z =358.1108 [M+H]+ 

 

24/25 

 
23 (5.1 g) was suspended in p-xylene (250 mL) with Se2O3 (3.2 g, 2.0 eq). The mixture was 

refluxed under vigorous stirring under argon atmosphere during 24 hours. The mixture was 

filtered and concentrated under reduced pressure. The dark brown oil 24 was used in the next 

reaction without further purification. 

24 (5.1 g, 1.0 eq) was dissolved in 125 mL MeOH and NaBH4 (1.04 g, 2.0 eq) was carefully 

added into the solution. The mixture was stirred 3 hours at RT. The solution was concentrated 

to remove methanol and carefully neutralized with 1M HCl solution, diluted with water and 

extracted with CH2Cl2. The organic phase was washed with water and brine, dried with MgSO4 

and the solvent was removed under reduced pressure. The product was purified by silica column 

chromatography (Cyclohexane/ EtOAc; 1/1, v/v) to obtain 3.4 g of 25 (yield 66%). 
1H NMR (300 MHz, DMSO) δ (ppm) 7.48 (m, 3H), 7.26 (d, J = 7.10 Hz, 2H), 7.18 (dd, J = 8.5 

Hz, J = 2.1 Hz, 1H), 6.92 (d, J = 2.1 Hz, 1H), 6.62 (t, J = 1.5 Hz, 1H), 4.89 (d, J = 1.6 Hz, 2H), 

3.62 (q, J = 7.1 Hz, 2H), 2.43 (, J = Hz, 3H), 1.09 (t, J = 7.1 Hz, 3H) 
13C NMR (300 MHz, DMSO) δ (ppm) 160.84, 153.8, 153.8, 144.2, 142.4, 134.8, 129.9, 127.6, 

125.6, 123.89, 116.7, 115.8, 112.3, 77.4, 60.7, 45.4, 21.7, 13.97 

HRMS (ESI): Calculated m/z =374.1062 for C19H20NO5S ; found m/z =305.1057 [M+H]+ 

 

26 

 
25 (3.4 g, 1.0 eq) was dissolved in concentrated sulfuric acid (25 mL). The mixture was stirred 

at 0°C for 1 hour. The solution was then poured carefully into water and neutralized with 

saturated sodium bicarbonate solution. The aqueous phase was washed 3 times with EtOAc. 
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The organic phase was dried with MgSO4 and the solvent was removed under reduced pressure. 

The product was purified by silica column chromatography (Cyclohexane/ EtOAc: 1/1, v/v) to 

obtain 340 mg of 26 (yield 17%). 
1H NMR (300 MHz, DMSO) δ (ppm) 7.36 (d, J = 8.8 Hz, 1H), 6.60 (d, J 5.1 = Hz, 1H), 6.56 

(dd, J = 8.8 Hz, J = 2.2 Hz, 1H), 6.39 (d, J = 2.2 Hz, 1H), 6.05 (s, 1H), 5.48 (t, J = 5.6 Hz, 1H), 

4.65 (dd, J = 5.5 Hz, J = 1.2 Hz, 2H), 3.11 (m, 2H), 1.17 (t, J = 7.2 Hz, 3H) 
13C NMR (300 MHz, DMSO) δ (ppm) 161.12, 157.05, 155.69, 152.24, 124.75, 110.15, 106.06, 

103.60, 96.18, 59.04, 36.97, 14.01 

HRMS (ESI): Calculated m/z =218.0823 for C12H12NO3 ; found m/z =218.0812 [M-H]- 

 

27 

 
K2CO3 (239 mg, 1.5 eq), NaI (17.5 mg, 0.1 eq), 1-bromo-2-butyne (4.22 ml, 20 eq), 26 (253 

mg, 1.0 eq) and TBAB (37.6 mg, 0.1 eq) were dissolved in acetone (15 mL). The reaction 

mixture was reflux for 6 hours. After cooling down to RT, the solvent was removed under 

reduced pressure and a solid was obtained. The solid was dissolved in CH2Cl2 and the organic 

phase was washed 3 times with water. The organic phase was dried with MgSO4 and evaporated 

under reduced pressure. The product was purified by silica column chromatography 

(Cyclohexane/ EtOAc; 1/1, v/v) to obtain 105 mg of 27 (35% yield).  
1H NMR (300 MHz, DMSO) δ 7.49 (d, J = 9.3 Hz, 1H), 6.78 (dd, J = 2.6, 9.0 Hz, 1H), 6.67 

(d, J = 2.5 Hz, 1H), 6.13 (t, J = 1.4 Hz, 1H), 5.53 (t, J = 5.4 Hz, 1H), 4.69 (d, J = 4.1 Hz, 1H), 

4.22 (d, J= 2.3 Hz, 1H), 3.52 (q, J = 7.0 Hz, 1H), 3.18 (t, J = 2.3 Hz, 1H), 1.15 (t, J = 7.0 Hz, 

1H). 
13C NMR (400 MHz, DMSO) δ 161.4, 157.3, 155.6, 150.5, 125.4, 110.1, 107.4, 105.4, 99.0, 

80.9, 74.9, 59.5, 45.7, 12.5  

HRMS (ESI): Calculated m/z = 256.09682 for C15H14NO3 ; found m/z =256.0977 [M-H]- 
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30 

 
HDMI (3.7 mL, 10.0 eq) and DBTL (210 µL, 0.1 eq) were dissolved in 5 mL of CH2Cl2 under 

inert conditions. Monomethyl poly(ethylene glycol)43 (4.0 g, 1.0 eq) was dissolved in 5 mL of 

CH2Cl2 under inert condition and the resulting solution was added dropwise in the HDMI 

solution during 2 hours. The solution was stirred for 3 hours at RT. The solvent was then 

removed and the resulting solid was precipitated 3 times in  dry diethyl ether to obtain 4.0 g of 

30 (93% yield). 
1H NMR (400 MHz, CDCl3) δ 4.87 (s, 1H), 4.18 (t, J = 4.4 Hz, 2H), 3.61 (s, 172H), 3.35 (s, 

3H), 3.28 (m, 2H), 3.13 (m, 2H), 1.63-1.27 (m, 8H). 
13C NMR (101 MHz, CDCl3) δ 70.5, 63.8, 59.0, 42.8, 31.1, 26.2, 26.1, 25.9. 

 Infrared: isocyanate (2271 cm-1) and carbamate groups (1718cm-1). 

SEC (RI): Mw (Đ) 2961 g mol-1 (1.06). 

 

31 

 
PEG43-HDMI 30 (500 mg, 1.2 eq) benzyl alcohol (22µl, 1.0 eq) and DBTL (2.7 µL, 0.1 eq) 

were dissolved in 5 mL of CH2Cl2 under inert atmosphere. The solution was stirred for 5 hours 

at RT. The solvent was removed and the resulting solid was precipitated 3 times in diethyl ether 

to obtain 380 mg of 31 (93% yield). 
1H NMR (400 MHz, CDCl3) δ 7.34-7.26 (m, 5H), 5.07 (s, 2H), 4.86 (br, 2H), 4.18 (t, J = 4.4 

Hz, 2H), 3.62 (s, 175H), 3.36 (s, 3H), 3.19-3.14 (m, 4H), 1.47 (br, 5H), 1.31 (br, 5H). 
13C NMR (101 MHz, CDCl3) δ 128.5, 70.6, 59.0, 29.8, 26.2. 

Infrared: carbamate groups (1718cm-1) 

SEC (RI): Mw (Đ) 3080 g mol-1 (1.06). 
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32 

 
PEG43-HDMI 30 (308 mg, 1.2 eq), 27 (33 mg, 1.0 eq) and DBTL (1.5 µL, 0.1 eq) were 

dissolved in CH2Cl2 (2 mL) under an inert atmosphere. The solution was stirred for 5 hours at 

RT. The solvent was removed and the resulting solid was precipitated 3 times in diethyl ether. 

The product was then purified by silica column chromatography (DCM/ MeOH: 99/1 to 92/8, 

v/v) to obtain 165 mg of PEG43-Coumarin 32 (41% yield). 
1H NMR (400 MHz, DMSO) δ 7.51 (d, J = 8.9 Hz, 1H), 7.17 (t, J = 5.4 Hz, 1H), 7.06 (br, 1H), 

6.81 (dd, J = 2.3, 9.0 Hz, 1H), 6.69 (d, J = 2.4 Hz, 1H), 6.03 (s, 1H), 5.23 (s, 2H), 4.23 (d, J = 

1.8 Hz, 2H), 4.03 (t, J = 4.6 Hz, 4H), 3.51 (s, 364H), 3.24 (s, 6H), 3.18 (t, J = 2.2 Hz, 1H), 3.01 

(m, 2H), 2.94 (m, 6H), 1.39 (q, J = 6.7 Hz, 6H), 1.23 (br, 14H), 1.15 (t, J = 7.0 Hz, 3H). 
13C NMR (101 MHz, DMSO) δ 70.2. 

SEC (RI): Mw (Đ) 3097 g mol-1 (1.06). 

 

33 

 
PEG43-coumarin 32 (150 mg, 1.0 eq), PTMC-N3 13 (619 mg, 1.2 eq) and sodium ascorbate (20 

mg, 2.0 eq) were dissolved in dry DMSO (2 mL). Pentahydrate copper sulphate (64.4 mg, 4 eq) 

was then added and the reaction was left under stirring overnight at 30°C. The copolymer was 

purified by silica column chromatography (DCM/MeOH ; 96/4 to 94:6, v/v). 313 mg of PEG43-

coumarin-b-PTMC81 33 (47% yield) was obtained. 
1H NMR (400 MHz, DMSO) δ 8.03 (s, 1H), 6.81 (d, J = 9.1 Hz, 1H), 6.69 (d, J = 2.2 Hz, 1H), 

5.97 (s, 2H), 5.20 (s, 2H), 4.64 (s, 2H), 4.53 (t, J = 5.2 Hz, 1H), 4.39 (t, J = 7.1 Hz, 2H), 4.13 

(t, J = 6.3 Hz, 358H), 3.50 (s, 167H), 3.24 (s, 3H), 3.06-2.88 (m, 4H), 1.44-1.19 (m, 10H), 1.14 

(t, J = 7.0 Hz, 3H). 
13C NMR (101 MHz, DMSO) δ 154.8, 70.2, 64.7, 28.0. 

SEC (RI): Mw (Đ) 15170 g mol-1 (1.04). 

O
On N

H

H
N

O
O

O

O ON

O ON

O

NOO

O

n
HO

O
O

n
N
H

H
N

O

O

N N



 

 224 

34 

 
21 (22.8 mmol, 1eq) was dissolved in acetonitrile (120 mL) tert-butylbromoacetate (114 mmol, 

5 eq), NaI (45.4 mmol, 2eq) and DIPEA (91 mmol, 4eq) were then added to the solution. The 

resulting mixture was heated at reflux for 3 days. The solvent was then removed under reduced 

pressure and the residue was dissolved in EtOAc (100 mL). The solution was washed with 

water and brine and dried with MgSO4. The product was purified by silica column 

chromatography (Cyclohexane/ EtOAc; 5/1, v/v) to obtain 34 (25% yield). 
1H NMR (DMSO, 300 MHz) δ (ppm): 7.57 (d, 1H), 6.58 (dd, 1H), 6.43 (d, 1H), 6.05 (d, 1H), 

4.19 (s, 4H), 2.36 (d, 3H), 1.43 (s, 18H). 

W.A. Velema, J.P. van der Berg, W. Szymanski, A.J.M. Driessen, B.L. Feringa, Orthogonal 

Control of Antibacterial Activity with Light, ACS Chem. Biol. 9 (2014) 1969–1974. 

doi:10.1021/cb500313f. 

 

35 

 
 34 (5.45 mmol, 1eq) was suspended in p-xylene (50 mL) with Se2O3 (10.9 mmol, 3 eq). The 

mixture was refluxed under vigorous stirring under an argon atmosphere during 24 hours. The 

mixture was filtered and concentrated under reduced pressure. The dark brown oil 35 was used 

in the next reaction without further purification.  
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36 

 
34 (4.8 mmol, 1.0 eq) was dissolved in a mixture of MeOH (50 mL) and THF (50 mL). The 

mixture was cooled on ice and NaBH4 (7.2 mmol, 1.5 eq) was carefully added into the solution. 

The mixture was stirred 3 hours at RT. The solution was concentrated and carefully neutralized 

with 1M HCl solution, diluted with water and extracted with EtOAc. The organic phase was 

washed with water, brine, dried with MgSO4 and the solvent was removed under reduced 

pressure. The product was purified by silica column chromatography (Cyclohexane/ EtOAc; 

4/1, v/v) to obtain 36 (52% yield).  
1H NMR (DMSO, 300 MHz) δ (ppm): 7.50 (d, 1H), 6.55 (dd, 1H), 6.45 (d, 1H), 6.16 (s, 1H), 

5.56 (t, 1H), 4.70 (d, 2H), 4.19 (s, 4H), 1.43 (s, 18H). 

W.A. Velema, J.P. van der Berg, W. Szymanski, A.J.M. Driessen, B.L. Feringa, Orthogonal 

Control of Antibacterial Activity with Light, ACS Chem. Biol. 9 (2014) 1969–1974. 

doi:10.1021/cb500313f. 

 

37 

 
Diethylcarbamoyl chloride (0.5 mL, excess) was added to a solution of compound 34 (0.24 

mmol, 1.0 eq) in pyridine (3 mL) at RT. The mixture was heated to 90°C for 48 hours under a 

nitrogen atmosphere. The reaction mixture was then cooled down to RT, 5 mL of 1N HCl was 

added and the mixture was extracted with EtOAc. The combined organic layers were washed 

with saturated NaHCO3 solution and concentrated.  

The product was purified by silica column chromatography (Cyclohexane/ EtOAc; 5/1, v/v) to 

obtain 37 (40% yield).  
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1H NMR (CDCl3, 400 MHz) δ (ppm): 7.40 (d, 1H), 6.54 (m, 2H), 6.24 (s, 1H), 5.29 (d, 2H), 

4.09 (s, 4H), 3.38 (q, 4H), 1.52 (s, 18H), 1.2 (t, 6H). 
13C NMR (CDCl3, 400 MHz) δ (ppm): 167.9, 160.7, 154.6, 153.8, 150.2, 149.5, 123.5, 108.1, 

107.3, 106.8, 98.2, 81.5, 61.1, 53.3, 41.2, 40.4, 28.7, 27.1, 13.1, 13.4. 

HRMS (ESI): Calculated m/z = 541.2520 for C27H38N2O8Na; found m/z = 541.2504 [M+Na]+ 

 

38 

 
37 (0.058 mmol, 1eq) was dissolved in of THF (0.5 mL). 0.13 mL of a KOH solution in water 

(100 mg in 1mL; 4 eq) was added to the mixture. The resulting solution was stirred at RT 

overnight. The solvents were removed under reduced pressure and the residue was dissolved in 

a minimum volume of water. HCl solution was added until all the solid precipitated. Product 

37 was obtained in 40% yield.  
1H NMR (DMSO, 600 MHz, 60°C) δ (ppm): 7.53 (d, 1H), 6.64 (dd, 1H), 6.5 (d, 1H), 6.01 (s, 

1H), 5.28 (s, 2H), 4.22 (s, 4H), 3.31 (q, 4H), 1.12 (t, 6H). 
13C NMR (MeOD, 400 MHz) δ (ppm): 175.8, 162.3, 155.6, 155.2, 152.0, 150.7, 125.0, 109.0, 

107.7, 106.4, 98.0, 62.1, 56.3, 41.9, 41.3, 13.0, 12.2. 

HRMS (ESI): Calculated m/z = 405,39 for C19H21N2O8; found m/z = 405,13 [M-H]- 

 

40 

 
Under an inert atmosphere, DMAP (122 mg, 1.0 eq), EDCI.HCl (191 mg, 1.0 eq) and 2-carboxy 

thioxanthone 39 (256 mg, 1.0 eq) were dissolved in MeCN (10 mL). The mixture was stirred 

for 15 min at RT. 4-Pyridine methanol (164 mg, 1.5 eq) was then added to the mixture and the 

reaction was refluxed overnight. The solvent was removed under reduced pressure. The residue 

was purified by silica column chromatography (Cyclohexane/ EtOAc; 1/1, v/v). 196 mg of 40 

was obtained (56% yield). 
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1H NMR (300 MHz, CDCl3) δ 9.32 (d, J = 1.6 Hz, 1H), 8.64 (m, J = 3.0 Hz, 3H), 8.28 (dd, J = 

2.0, 8.5 Hz, 1H), 7.68 (m, J = 2.1 Hz, 2H), 7.57 (m, J = 3.2 Hz, 2H), 7.38 (d, J = 5.3 Hz, 2H), 

5.44 (s, 2H). 

41 

 
40 (103 mg, 1.0 eq) was dissolved in 3 mL of MeOH. MeI (0.2 mL, 10.0 eq) was added to the 

solution and the mixture was refluxed for 4 days. The mixture was cooled to RT, the precipitate 

was filtrated and washed with DCM (5x5mL). The solid was dried under reduced pressure to 

obtain 41 (32% yield). 
1H NMR (300 MHz, DMSO) δ 9.10 (d, J = 1.6 Hz, 1H), 9.00 (d, J = 6.6 Hz, 2H), 8.50 (dd, J = 

1.3, 8.4 Hz, 1H), 8.37 (dd, J = 2.0, 8.5 Hz, 1H), 8.23 (d, J = 6.7 Hz, 2H), 8.09 (d, J = 8.4 Hz, 

1H), 7.94 (d, J = 8.1 Hz, 2H), 7.86 (m, 1H), 7.67 (m, 1H), 5.76 (s, 2H), 4.36 (s, 3H). 

 

47 

 
1-Naphthalenecarbonitrile (10 g, 0.065 mol) was solubilized in acetic acid (80 mL). Sulfuric 

acid (30 mL) and nitric acid (4.74 mL, 0.069 mol) are slowly added. The reaction mixture 

heated to 60°C for 2h. The mixture was poured on ice then the reaction mixture was filtered 

and recrystallized in ethanol then filtered again. 3.33g (yield = 16.8%) was obtained. 
1H NMR (300 MHz, DMSO) δ (ppm): 8.63 (d, J = 8.8 Hz, 1H), 8.48 (d, J = 3.4 Hz, 1H), 8.45 

(d, J = 2.7 Hz, 1H), 8.37 (d, J = 7.2 Hz, 1H), 7.99-7.90 (m, 2H). 

 

48 

 
5-Nitronaphthalene-1-carbonitrile (3.33 g, 16.8 mmol) was dissolved in methanol (100 mL) 

and THF (50 mL). Pd/C (50 mg) was added, the flask placed under hydrogen atmosphere and 
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stirred overnight at RT. The reaction mixture was filtered over celite and solvent removal 

yielded 2.8 g (yield = 99%) of product.  
1H NMR (300 MHz, DMSO) δ (ppm): 8.45 (d, J = 8.6 Hz, 1H), 8.02 (d, J = 8.2 Hz, 1H), 7.50-

7.43 (m, 2H), 7.25 (d, J = 8.2 Hz, 1H), 6.81 (d, J = 8.6 Hz, 1H), 6.15 (s, 2H). 

 

49 

 
5-Aminonaphthalene-1-carbonitrile (2.80 g, 16.6 mmol) was dissolved in acetonitrile (200 mL) 

then NBS (2.96 g, 16.6 mmol) and silica (70 mg) were added. The reaction was stirred overnight 

at RT. The product was purified by chromatography (cyclohexane/ethyl acetate; 4:1, v/v) and 

1.77 g (yield = 43 %) of 49 was obtained. 
1H NMR (300 MHz, CDCl3) δ (ppm): 8.61 (d, J = 8.7 Hz, 1H), 8.11 (d, J = 7.2 Hz, 1H), 7.72 

(d, J = 8.8 Hz, 1H), 7.59 (t, J = 7.2 Hz, 1H), 7.24 (d, J = 8.8 Hz, 1H), 6.34 (s,2H). 
13C NMR (400 MHz, DMSO) δ (ppm): 142.7, 133.2, 133.08, 131.9, 128.5, 124.2, 122.3, 117.8, 

112.4, 108.8, 102.5. 

HRMS (EI): Calculated m/z = 245.98005 for C11H7N2Br ; m/z = 245.97926 [M]+ 

 

50 

 
5-Amino-6-bromonaphthalene-1-carbonitrile (1.77 g, 7.16 mmol) was dissolved in dioxane (30 

mL) with potassium acetate (2.14 g, 21.8 mmol), bis(pinacolato)diboron (3.64g, 14.3 mmol) 

and triphenylphosphine (0.188 g, 0.716 mmol). The reaction mixture was degassed under N2 

during 30 min and PdCl2(dppf) (0.315 g, 0.43 mmol) was added. The reaction was stirred 

overnight at reflux. The product was filtered on silica with ethyl acetate and purified by 

chromatography (cyclohexane/EtOAc; 4:1, v/v). 0.873 g (yield = 49%) was obtained. 
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1H NMR (300 MHz, CDCl3) δ (ppm): 8.06 (d, J = 8.56 Hz, 1H), 7.87-7.80 (m,2H), 7.49 (d, J = 

8.42 Hz, 1H), 7.41 (d, J = 7.20 Hz, 1H), 1.37 (s, 12H). 
13C NMR (300 MHz, CDCl3) δ (ppm): 151.5, 135.5, 135.4, 133.5, 126.6, 123.2, 122.4, 118. 2, 

113.3, 110.268, 83.9, 83.1, 26.9, 24.9, 24.5, 17.4. 

HRMS (ESI): Calculated m/z = 317.1417 for C17H19BrN2O2Na ; m/z = 317.1431 [M+Na]+ 

 

52 

 
Modified naphthalene 50 (96 mg, 1.3 eq), 3-bromo-N,N-dimethyl aniline 51 (50 mg, 1.0 eq), 

triphenyl phosphine (4.1 mg, 0.2 eq) and caesium carbonate (253 mg, 3.1 eq) were fully 

dissolved in a mixture of DMF and water (respectively 5 and 2 mL). The solution was degassed 

by bubbling N2 for 30 min. PdCl2 (dppf) (33 mg, 0.16 eq) was then added under an inert 

atmosphere. The solution was heated at 100°C for 30 min via microwave. Water (10 mL) was 

added to the mixture and the aqueous phase was washed with ethyl acetate (3x15 mL). The 

solvent was removed under reduced pressure. The crude product was purified by silica column 

chromatography (Cyclohexane/ EtOAc; 6:1 to 3:1, v/v) and recrystallized in EtOH to obtain 94 

mg of 52 (37% yield). 
1H NMR (400 MHz, CDCl3) δ 8.12 (d, J = 8.6 Hz, 1H), 7.73 (dd, J = 0.7, 8.5 Hz, 1H), 7.50 (m, 

2H), 7.38 (dd, J = 7.9, 8.0 Hz, 1H), 6.84 (s, 3H), 4.46 (s, 2H), 3.01 (s, 6H). 

Y. Yang, S.K. Seidlits, M.M. Adams, V.M. Lynch, C.E. Schmidt, E.V. Anslyn, J.B. Shear, A 

Highly Selective Low-Background Fluorescent Imaging Agent for Nitric Oxide, J. Am. Chem. 

Soc. 132 (2010) 13114–13116. doi:10.1021/ja1040013. 

 

56 

 
K2CO3 (1.88 g, 1.2 eq) was added to a solution of 3-bromoaniline 33 (1.27 mL 1.0 eq) in DMF 

(15 mL). Tert-butyl bromoacetate (4 mL, 2.4 eq) was then added to the mixture. The reaction 
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mixture was stirred for 2 days at 80°C. The solvent was removed under reduced pressure and 

the residue was diluted with EtOAc (40 mL), washed with saturated solution of NaHCO3 (20 

mL) and water (20 mL). The organic phase was collected, dried with MgSO4 and the solvent 

was evaporated under reduced pressure. The crude product was purified by silica column 

chromatography (Cyclohexane/ Toluene; 5:5 to 67:3, v/v then Cyclohexane/ EtOAc; 95:5 to 

90:10, v/v) to obtain 1.6 g of 56 (35% yield). 
1H NMR (400 MHz, CDCl3) δ 6.98 (t, J = 8.1 Hz, 1H), 6.80 (ddd, J = 0.7, 1.7, 7.9 Hz, 1H), 

6.65 (t, J = 2.2 Hz, 1H), 6.43 (ddd, J = 0.7, 2.7, 8.5 Hz, 1H), 3.91 (s, 4H), 1.40 (s, 18H). 
13C NMR (101 MHz, CDCl3) δ 169.7, 149.3, 130.4, 123.3, 120.7, 115.4, 111.0, 82.0, 54.5, 28.1. 

 

57 

 
Modified naphthalene 50 (147 mg, 1.0 eq), 56 (200 mg, 1.0 eq), triphenyl phosphine (26.2 mg, 

0.2 eq) and caesium carbonate (488 mg, 3 eq) were fully dissolved in a mixture of DMF and 

water (respectively 5 and 2ml). The solution was degassed by bubbling N2 for 30 min. PdCl2 

(dppf) (41 mg, 0.16 eq) was then added under inert atmosphere. The solution was heated at 

100°C for 30 min via microwave. Water (10 mL) was added to the mixture and the aqueous 

phase was washed with ethyl acetate (3x15 mL). The solvent was removed under reduced 

pressure. The crude product was purified by silica column chromatography (Cyclohexane/ 

EtOAc; 6:1 to 5:1, v/v) to obtain 135 mg of 57 (56% yield). 
1H NMR (400 MHz, CDCl3) δ 8.13 (d, J = 8.6 Hz, 1H), 7.89 (dd, J = 0.8, 7.1 Hz, 1H), 7.72 

(d, J = 8.6 Hz, 1H), 7.47-7.52 (m, 2H), 7.34 (t, J = 7.9 Hz, 1H), 6.88 (d, J = 7.6 Hz, 1H), 6.67 

(s, 1H), 6.63 (dd, J = 2.5, 8.1 Hz, 1H), 4.06 (s, 4H), 1.47 (s, 18H). 
13C NMR (101 MHz, CDCl3) δ 170.0, 148.6, 139.7, 132.7, 132.3, 131.3, 130.0, 126.7, 123.9, 

123.3, 118.8, 118.2, 115.3, 113.2, 111.6, 110.5, 81.9, 77.2, 60.4, 54.4, 28.1 

HRMS (ESI): Calculated m/z = 510.2363 for C29H33N3O4Na; found m/z =510.2381 [M+Na]+  
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58 

 
57 (30 mg, 1.0 eq) and triethylsilane (28.6 mg, 4 eq) were dissolved in DCM (1 mL) under an 

inert atmosphere. The reaction mixture was then cool down to 0°C and 1 mL of TFA was added 

to the reaction mixture. The solution was stirred during 4h30 min at 0°C. DCM (20 mL) was 

then added to the solution and the solvent was removed under reduced pressure without heating. 

The resulting solid was washed three times with diethyl ether to obtain 15 mg of 58 (65% yield). 
1H NMR (400 MHz, MeOD) δ 8.28 (d, J = 8.6 Hz, 1H), 7.84 (dd, J = 1.1, 7.2 Hz, 1H), 7.49 

(dd, J = 0.8, 8.5 Hz, 1H), 7.44 (dd, J = 7.2, 8.6 Hz, 1H), 7.37 (d, J = 8.5 Hz, 1H), 7.27 (d, J = 

15.8 Hz, 1H), 6.78 (d, J = 6.6 Hz, 1H), 6.59 (m, 2H), 4.16 (s, 4H). 
13C NMR (101 MHz, MeOD) δ 149.5, 141.5, 141.1, 134.0, 133.7, 132.5, 131.1, 129.0, 125.5, 

125.0, 124.8, 119.9, 119.1, 115.4, 114.0, 112.4, 110.9, 54.5, 28.3. 

HRMS (ESI): Calculated m/z = 374.1146 for C21H16N3O4 ; found m/z = 374.1141 [M-H]- 

 

61 

 
2-Nitrophenol (20 g, 143.8 mmol) was solubilized in hot MeOH (100 mL). A solution of KOH 

(8.0 g, 143.8 mmol) in MeOH was added and a precipitate was formed. The solvent was 

evaporated and the solid was dissolved in DMF (40 mL). 1,2-dibromoethane (48.8 g, 580 

mmol) was added and the reaction mixture and heated to 120 °C for 4 h. After cooling, the 

reaction mixture was filtered and the precipitate was washed with DCM and a small volume of 

water. The organic phase was washed three times with NaOHaq. (4 g/L) and three times with 

brine. The organic phase was dried over MgSO4, filtered and evaporated. The crude product 

was purified by column chromatography (Cyclohexane/ EtOAc; 10:1 to 4:1, v/v) to obtain 3.8 

g (11 % yield ) of the product. 
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1H NMR (300 MHz, CDCl3) δ (ppm): 7.85-7.06 (m, 4H), 4.42 (t, J = 6.4 Hz, 2H), 3.67 (t, J = 

6.5 Hz, 2H). 

HRMS (FI+): Calculated m/z = 244.9687 for C8H8BrNO3 ; m/z =244.969 [M]+ 

R.Y. Tsien, New calcium indicators and buffers with high selectivity against magnesium and 

protons: design, synthesis, and properties of prototype structures, Biochemistry. 19 (1980) 

2396–2404. doi:10.1021/bi00552a018. 
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61 (1.6 g, 7.2 mmol), 1-(2-bromoethoxy)-2-nitrobenzene (1.8 g, 7.2 mmol) and carbonate 

potassium (3.0 g, 21.9 mmol) were dissolved in DMF (16 mL). Then the reaction was stirred 

for 4h at 100°C. DMF was evaporated and the product was recrystallized in EtOH. 2.4 g (yield 

= 87%) was obtained. 
1H NMR (600 MHz, CDCl3) δ (ppm): 8.10 (d, J = 2.5 Hz, 1H), 7.86-7.81 (t, J = 7.8 Hz, 2H), 

7.65 (t, J = 7.5 Hz, 1H), 7.42 (m, 2H), 7.14 (t, J = 8.1 Hz, 1H), 4.53 (m, 4H). 
13C NMR (600 MHz, CDCl3) δ (ppm): 150.7, 150.1, 140.3, 139.7, 136.5, 134.2, 127.0, 124.8, 

120.9, 117.7, 115.5, 111.4, 68.3, 67.9. 

HRMS (ESI): Calculated m/z = 404.9701 for C14H11N2O6BrNa ; m/z = 404.9692 [M+Na]+ 

 

63 

 
62 (2.42 g, 6.31 mmol) was dissolved in a mixture of MeCN/H2O (30:3, v/v). NiCl2 (0.340 g, 

2.6 mmol) was added and the solution mixture was stirred 3 min. NaBH4 (1.92 g ; 50.8 mmol) 

was added and the solution mixture was stirred 15 min. Then water (50 mL) was added. The 

product was extracted with DCM, filtered on silica and evaporated. 1.62 g of 63 (yield = 79.4%) 

was obtained. 
1H NMR (600 MHz, CDCl3) δ (ppm): 6.86-6.68 (m, 7H), 4.34 (m, 4H), 3.79 (s, 4H). 
13C NMR (600 MHz, CDCl3) δ (ppm): 146.1, 145.2, 138.3, 136.7, 122.0, 120.5, 118.4, 117.6, 

115.4, 114.1, 113.7, 112.5, 67.7, 67.2. 

HRMS (ESI): Calculated = 345.0222 for C14H15N2O2BrNa ; m/z = 345.0209 [M+Na]+ 
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4-Bromo-1-amino-2-(2-(2-nitrophenoxy)ethoxy)-benzene (1.62g, 4.0 mmol ) was dissolved in 

dry acetonitrile (20 ml) under argon. NaI (0.242g ; 1.6 mmol), Na2HPO4.12H2O (7.2 g, 20.1 

mmol) and ethyl bromoacetate (3.36g, 20.1mmol) were added then the reaction mixture was 

stirred at reflux for 5 days. The product was extracted with ethyl acetate and water. The product 

was purified by chromatography (cyclohexane/ EtOAc ; 4:1 to 2:1, v/v) 0.218 g of product was 

obtained (yield = 6.5%). 
1H NMR (300 MHz, CDCl3) δ (ppm): 7.00 (dd, J = 2.30 Hz, J = 8.57 Hz, 1H), 6.9-6.8 (m, 5H), 

6.72 (d, J = 8.61 Hz, 1H), 4.2 (s, 4H), 4.1 (d, J = 6.53 Hz, 8H), 4.0 (q, J = 7.15 Hz, 8H), 1.2-1.1 

(m, 12H). 
13C NMR (300 MHz, CDCl3) δ (ppm): 171.5, 171.0, 150.1, 149.4, 140.7, 139.3, 124.4, 122.0, 

121.7, 121.5, 118.8, 114.2, 113.5, 113.0, 67.3, 66.8, 60.9, 60.7, 53.3, 53.3, 13.9, 13.9. 

HRMS (ESI): Calculated = 689.1656 for C28H39N2O10BrNa; m/z = 689.1680 [M+Na]+ 

 

65 

 
5-Amino-6-(4,4,5,5-tétramethyl-1,2,3-dioxaborolan-2-yl)-1-naphtalene-1-carbonitrile (155 

mg, 0.53 mmol), bromo-BAPTA (238 mg, 0.36 mmol) cesium carbonate (362 mg, 1.1 mmol) 

and triphenylphosphine (18.7 mg, 0.071 mmol) were dissolved in a mix DMF/water (7.5 mL/ 

3 mL) then degassed with N2. [1,1′-Bis(diphenylphosphino)ferrocene]dichloropalladium(II) 

(Pd(dppf)Cl2) (39.1 mg, 0.053 mmol) was added. The reaction mixture was heated 30 min at 

100°C in a microwave oven. The product was extracted with EtOAc and purified by 

chromatography (DCM/MeOH; 97:3 to 95:5, v/v). 75.5 mg of 65 were obtained (yield= 28%). 
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1H NMR (300 MHz, CDCl3) δ (ppm): 8.13 (d, J = 8.54 Hz, 1H), 7.90 (d, J = 8.40 Hz, 1H), 7.72 

(d, J = 8.58 Hz, 1H), 7.54-7.46 (m, 2H), 7.07-6.86 (m, 7H), 4.40-4.29 (m, 4H), 4.21-4.17 

(m,8H), 4.13-4.01 (m, 8H), 1.22-1.12 (m, 12H). 
13C NMR (300 MHz, CDCl3) δ (ppm): 171.5, 171.3, 150.2, 149.5, 139.6, 139.6, 139.4, 132.6, 

132.2, 131.0, 131.3, 126.6, 123.8, 123.3, 123.1, 122.8, 122.2, 121.5, 119.6, 119.0, 118.2, 115.0, 

113.5, 113.2, 110.4, 67.2, 67.0, 60.9, 53.5, 53.4, 14.0, 14.0. 

HRMS (ESI): Calculated = 777.097 for C41H46N4O10Na ; m/z = 777.3106 [M+Na]+ 

 

67 

 
5-Aminonaphthalene-1-carbonitrile-BAPTA-ester (20 mg ; 0.026 mmol) was dissolved in 

ethanol (1.5 mL), then 1mL of water containing KOH (100 mg ; 1.8 mmol) was added. The 

mixture was stirred at RT overnight. The solvent was partially evaporated under reduced 

pressure to remove ethanol and neutralized with diluted HCl (1M). A solid precipitated and the 

HCl was added until there was no more solid precipitation. The solid was filtered and dry over-

night. 14 mg of the final product was obtained (yield = 82%). 
1H NMR (300 MHz, D2O) δ (ppm): 8.2 (d, J = 8.62 Hz, 1H), 7.8 (d, J = 6.44 Hz, 1H), 7.5-7.4 

(m, 3H), 7.2 (d, J = 8.29 Hz, 1H), 7.1-7.0 (m, 1H), 7.0-6.8 (m, 5H), 4.38 (s, 4H), 3.8 (s, 4H), 

3.7 (s, 4H). 

 

68 

 
5-Amino-naphthalene-1-carbonitrile-ester-BAPTA (50 mg ; 0.066 mmol) was dissolved in 

THF (5 mL). Water (5 mL) then HCl (330 µL, 1M) was added to the solution. The reaction 

mixture was cool down to 0°C. NaNO2 (13.7 mg ; 0.20 mmol) was dissolved in water (1mL) 
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and the resulting mixture was slowly added to the solution. The reaction mixture was stirred 

overnight at RT. The product was purified by column (cyclohexane/ ethyl acetate, 1:1, v/v). 50 

mg of the product was obtained (98.8% yield). 
1H NMR (600 MHz, CDCl3) δ (ppm): 10.00 (d, J = 8.4 Hz, 1H), 8.47 ( d, J = 8.9 Hz, 1H), 8.42 

(d, J = 9.4 Hz, 1H), 8.12 (d, J = 7.3 Hz, 1H), 8.0 (s, 1H), 7.9 (dd, J = 8.2 Hz, J = 7.5 Hz, 1H), 

7.7 (s, 1H), 6.95-6.89 (m, 3H), 6.86 (dd, J = 7.6 Hz, J = 1.8 Hz, 1H), 4.6 (m, 2H), 4.44 (s, 4H), 

4.41 (m, 2H), 4.17(s, 4H), 4.12 (q, J = 7.1 Hz, 4H), 4.04 (q, J = 7.2 Hz, 4H), 1.20 (t, J = 7.1 Hz, 

6H), 1.11 (t, J = 7.1 Hz, 6H). 
13C NMR (600 MHz, CDCl3) δ (ppm):171.6, 170.8, 153.2, 150.3, 145.2, 145.1, 140.9 139.8, 

133.8, 132.2, 131.6, 129.6, 128.1, 127.7, 124.9, 122.4, 122.1, 121.9, 119.5, 119.4, 117.8, 117.7, 

113.7, 110.4, 110.0, 105.8, 68.1., 66.9, 61.6, 60.9, 54.3, 53.7 . 30.4, 29.8, 14.2, 14.2. 

 
70 

 
9-Ester-(BAPTA)-dibenzo[c,h]cinnoline-1-carbonitrile (30 mg ; 0.039 mmol) was dissolved in 

ethanol (1.5 mL), then water (1 mL) containing KOH (100 mg ; 1.8 mmol) was added. The 

mixture was stirred at RT overnight. The solvent was partially evaporated under reduced 

pressure to remove ethanol and neutralized with diluted HCl (1M). A solid precipitated and the 

HCl was added until there was no more solid precipitation. The solid was filtered and dried 

overnight. 25.1 mg of the final product was obtained (yield = 98.1%). 
1H NMR (600 MHz, DMSO) δ (ppm): 12.58 (br, 3H), 9.91 ( d, J = 8.3 Hz, 1H), 8.88 (d, J = 9.4 

Hz, 1H), 8.40-8.46 (m, 2H), 8.02-8.10 (m, 2H), 7.8 (s, 1H), 7.02 (dd, J = 4.7 Hz, 1H), 6.86 (t, 

J = 4.6 Hz, 2H), 6.73 (dd, J = 4.8 Hz, 1H), 4.59 (br, 2H), 4.44 (s, 4H), 4.38 (br, 2H), 4.05 (s, 

4H). 
13C NMR (300 MHz, MeOD) δ (ppm): 176.5, 173.78, 155.1, 151.6, 147.1 . 142.0, 140.1, 139.3 

. 135.2 . 131.8, 130.0, 129.4, 129.2, 128.3, 123.5, 122.3, 121.4, 120.0, 119.8, 119.1, 117.7, 

113.9, 110.8, 106.8, 104.8, 70.0 . 67.6, 58.8, 55.8, 55.5, 18.4. 

HRMS (FD+): Calculated = 654.1836 for C33H28N5O10 ; m/z = 654.185 [M+H]+ 
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Nitric oxide (NO) has been identified as an important chemical messenger in cells and living 
organisms. Understanding the mechanism involved in NO production by NO-synthase is of 
fundamental importance. Mimicking basic cell functions by encapsulating NO-synthase in a 
controlled and confined cell like environment, could help provide information about the 
enzyme. Polymersomes resulting from the self-assembly of amphiphilic block copolymers were 
used as the synthetic cell like microreactor. To this end, three major challenges were addressed 
in this thesis: (1) controlling species release and concentration inside the microreactor, (2) 
measuring the enzyme response by NO detection and (3) controlling enzymatic reactions in 
space and time inside a microreactor. Light was used as the exogenous stimulus to induce 
release; its application is instantaneous, non-invasive and easy to control spatially and 
temporally. Two different ways to release species via light excitation were explored. The first 
strategy involves destabilization of nanopolymersomes by block separation, induced by 
copolymer photocleavage. The second strategy was to induce fast osmotic pressure increase of 
the polymersomes internal medium, resulting in bursting and species release. In order to 
monitor NO production by NO-synthase in different parts of the microreactor, hydrophobic and 
hydrophilic fluorescent NO probes have been synthesized and studied showing excellent 
correlation with NO concentration. The release of species inside microreactor was finally 
achieved in order to control enzymatic reaction.  
 
Key words: Photosensitivity, polymersomes, protocell, enzyme, fluorescent probe 
 
Le monoxyde d’azote (NO), un neurotransmetteur important en biologie, a attiré l’attention ces 
dernières années pour son rôle majeur joué dans l’apparition d’une myriade de maladies telles 
que certains cancers, diabètes etc. Comprendre les mécanismes biologiques liés à la production 
du NO pourrait aboutir à la découverte de nouveaux moyens thérapeutiques. Cependant, le 
fonctionnement de l’enzyme qui produit le monoxyde d’azote, la NO-Synthase, n’est pas 
complétement élucidé. Dans ce but, des approches biomimétiques peuvent apporter une 
solution. Les microréacteurs ou proto-cellules, enveloppes imitant sommairement la 
compartimentation cellulaire sont un outil de choix, permettant de répliquer un environnement 
contrôlé où les concentrations et distances de réactions sont proches d’une cellule, permettant 
ainsi d’étudier le fonctionnement de la NO-Synthase. Cette thèse présente trois problématiques 
qui ont pour but de développer un tel microréacteur encapsulant la NO-Synthase : (1) la 
libération contrôlé d’espèces réactives déclenchée par un stimulus lumineux, (2) le suivi de 
l’activité de l’enzyme par des sondes fluorescentes et (3) le contrôle de la réaction enzymatique 
dans l’espace et dans le temps. Deux systèmes ont été étudiés pour libérer de manière contrôlée 
des espèces: la première consiste à déstabiliser des nano polymersomes par photo-clivage du 
copolymère qui le constitue. Le deuxième système est basé sur une rapide augmentation de la 
pression osmotique par irradiation à l’intérieur des polymersomes, induisant un éclatement de 
ceux-ci et la libération d’espèces encapsulées. La deuxième problématique abordée est le suivi 
de l’activité enzymatique au moyen de sondes hydrophobes et hydrophiles fluorescentes qui 
détectent le monoxyde d’azote à différent endroits du microréacteur. Le dernier point abordé 
est l’étude des microréacteur et la libération contrôlé en leur sein. 
 
Mots clefs : Photosensible, polymersomes, cellule artificielle, enzyme, sonde fluorescente 
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Résumé 
L'oxyde nitrique (NO) est un important messager chimique dans l'organisme vivant. Le NO 

est impliqué dans un large éventail de mécanismes de défense immunitaire et de signalisation 

biologiques telles que la communication neuronale, l’activité antitumorale, la régulation de la 

tension artérielle et la défense immunitaire non spécifique. De plus, plusieurs études 

suggèrent que le NO pourrait jouer un rôle clé dans l'apparition et la propagation d'un large 

éventail de maladies telles que les maladies neurodégénératives, les maladies 

cardiovasculaires, le diabète et le cancer. Il est donc crucial de mieux comprendre les 

mécanismes impliqués dans la production de NO, et ainsi développer des pistes pour 

l’élaboration de nouveaux médicaments et traiter les maladies précédemment citées. Le NO 

est produit par la NO synthase, une enzyme pouvant avoir des fonctions biologiques 

opposées. Son fonctionnement n'est pas encore bien compris malgré les nombreuses études 

sur la NO synthase. L’utilisation de microréacteurs pour encapsuler et étudier l'enzyme 

permettrait d’obtenir un environnement confiné et contrôlé mimant celui de la cellule. 

Cependant, dans la plupart des microréacteurs qui ont été développés dans la littérature, les 

réactions biochimiques sont induites simplement par le mélange des différents composants ou 

dépendent des propriétés de diffusion à travers les membranes des microréacteurs. L'étude de 

la cinétique de ces réactions complexes est donc très difficile, voire impossible. 

 

Dans ce contexte, trois enjeux majeurs ont été abordés dans cette thèse : le contrôle de 

la libération et de la concentration des espèces réactives à l'intérieur du microréacteur, la 

mesure de la réponse enzymatique par la détection du NO et la libération contrôlée dans 

l'espace et dans le temps d’espèces au sein des microréacteurs. 

Pour résumer, nous avons décidé de développer un microréacteur compartimenté et sensible à 

la lumière pour étudier le comportement complexe du NOS (Figure 1). 

 



 

 

Figure 1: Représentation schématique de la cellule synthétique pour étudier l’activité de la 
NO synthase, basée sur l'encapsulation de nanopolyme
des substrats enzymatiques et des cofacteurs (L
photoactivation. 

Le contrôle de la libération des espèces a été effectué par l'intermédiaire de 

nanopolymersomes photosensibles. Dans un 

différentes longueurs de poly(trimethylène carbonate) PTMC ont été synthétisés afin de 

trouver le rapport hydrophile/hydrophobe permettant de former des polymersomes stables. Le 

PEG45-b-PTMC81, avec un rapport 

polymersomes avec une polydispersité faible. Dans un second temps, une 1

copolymère photosensible a été synthétisé

photosensibilité est basé sur une m

Figure 2: Stratégie utilisée pour c
l'espace par l'intermédiaire de polymersomes photosensibles (B), à l’aide des copolymères 
photodégradables (A). 
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: Représentation schématique de la cellule synthétique pour étudier l’activité de la 
NO synthase, basée sur l'encapsulation de nanopolymersomes photosensibles. La modulation 
des substrats enzymatiques et des cofacteurs (L-Arg, BH4) peut être contrôlée par 

Le contrôle de la libération des espèces a été effectué par l'intermédiaire de 

nanopolymersomes photosensibles. Dans un premier temps, plusieurs PEG

différentes longueurs de poly(trimethylène carbonate) PTMC ont été synthétisés afin de 

trouver le rapport hydrophile/hydrophobe permettant de former des polymersomes stables. Le 

, avec un rapport hydrophile/hydrophobe de 19%, s’auto

polymersomes avec une polydispersité faible. Dans un second temps, une 1

copolymère photosensible a été synthétisé : le PEG43-coumarine-b-

photosensibilité est basé sur une molécule de liaison : la coumarine photoclivable  (

 

: Stratégie utilisée pour contrôler la libération des réactifs dans le temps et dans 
l'espace par l'intermédiaire de polymersomes photosensibles (B), à l’aide des copolymères 

: Représentation schématique de la cellule synthétique pour étudier l’activité de la 
rsomes photosensibles. La modulation 

Arg, BH4) peut être contrôlée par 

Le contrôle de la libération des espèces a été effectué par l'intermédiaire de 

premier temps, plusieurs PEG45-b-PTMC avec 

différentes longueurs de poly(trimethylène carbonate) PTMC ont été synthétisés afin de 

trouver le rapport hydrophile/hydrophobe permettant de former des polymersomes stables. Le 

hydrophile/hydrophobe de 19%, s’auto-assemble en 

polymersomes avec une polydispersité faible. Dans un second temps, une 1ère génération d’un 

-PTMC81 dont la 

: la coumarine photoclivable  (Figure 2).  

ontrôler la libération des réactifs dans le temps et dans 
l'espace par l'intermédiaire de polymersomes photosensibles (B), à l’aide des copolymères 



 

 5

La coumarine photosensible a d’abord été synthétisée avec un groupe acide carboxylique et 

un groupe alcyne aux deux extrémités, afin de pouvoir greffer un polymère hydrophile et un 

polymère hydrophobe. L'extrémité de la chaîne d’un PEG43 a été modifiée en une amine afin 

de pouvoir le lier à l’acide carboxylique de la coumarine. Le bloc hydrophobe a été par la 

suite synthétisé. Le trimethylène carbonate (TMC) a été polymérisé pour former du PTMC 

avec une extrémité de chaîne azotée. Le paramètre clé pour obtenir une faible dispersité (1,05) 

était une purification poussée de l'initiateur 3-azido-1-propanol. PEG43-NH2 et PTMC81-N3 

ont été greffés successivement sur la molécule de liaison coumarine pour donner le 

copolymère amphiphile photosensible de 1ère génération PEG45-coumarine-b-PTMC81. Le 

copolymère a été obtenu avec une dispersité faible de 1,05.  

Les mesures de diffusion de la lumière ont montré que le copolymère pouvait s'auto-

assembler en particules bien définies avec un rayon hydrodynamique de 150 nm et une 

polydispersité faible (PDI ≈ 0.1). La cryo TEM a montré que ces particules étaient des 

polymersomes. 

Les polymersomes ont ensuite étaient irradiés sous UV (365 nm) n’entrainant pas de 

modification de leur morphologie ou de leur taille. La mesure de la diffusion de la lumière a 

montré que les particules étaient partiellement déstabilisées ou perdaient partiellement leur 

masse après irradiation (30% de perte de signal après 2,5 heures d'irradiation).  

Cependant, la plupart des nanoparticules (70 %) n'ont pas été déstabilisées par l’irradiation. 

La stabilité des polymersomes pourrait s'expliquer par la dimérisation de la coumarine, elle-

même favorisée par l'auto-assemblage empêchant la libération du PEG. Afin d'améliorer 

l'efficacité de déstabilisation des nanoparticules, un nouveau copolymère a été synthétisée et 

analysée. 

La première génération de particules photosensibles n'était pas complètement déstabilisée et il 

a été supposé que la dimérisation, empêchant la libération du PEG, améliorait la stabilité des 

particules. Afin de favoriser la libération du PEG, la conception du copolymère a été modifiée 

de deux façons différentes. L'efficacité du clivage a été améliorée en changeant le groupe 

partant. Le rendement quantique obtenu par irradiation à 365 nm (0,012) était supérieur à 

celui de la 1ère génération (0,0034). Le PEG est libéré plus efficacement avant de dimériser. 

La deuxième modification était la position des polymères sur la coumarine. En effet,  avec le 

deuxième copolymère, seul le PEG est libéré au lieu du PEG-coumarine induisant une 

libération plus efficace du PEG. 

Afin de synthétiser la 2ème génération de PEG43-coumarine-b-PTMC81, la coumarine 

photosensible a été synthétisé avec un groupe hydroxyle et un groupe alcyne aux deux 
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extrémités, afin de pouvoir greffer un polymère hydrophile et un polymère hydrophobe. 

L'extrémité de la chaîne PEG43 a ensuite été modifiée en isocyanate afin de pouvoir le lier au 

groupe hydroxyle de la coumarine. PEG43-NCO et PTMC81-N3 ont été greffés successivement 

sur la molécule de liaison coumarine pour donner le copolymère amphiphile photosensible de 

2ème génération PEG43-coumarine-b-PTMC81 (Figure 3).  

 

 

Figure 3 : Structure chimique du copolymère  PEG43-coumarine-b-PTMC81 photosensible. 

Le copolymère a été obtenu avec une dispersité faible de 1,04. Les mesures de diffusion de la 

lumière ont montré que le copolymère pouvait s'auto-assembler en particules bien définies 

avec un rayon hydrodynamique de 150 nm et une polydispersité faible (PDI ≈ 0.1). Les 

observations par cryo-TEM ont montré des polymersomes et des agrégats de polymersomes. 

L'irradiation des polymersomes a induit un changement de leur morphologie. Après 

irradiation, le rapport Rg/Rh des particules restantes a diminué, ce qui suggère une 

densification des particules. La solution de polymersomes a été irradiée pendant 150 minutes 

et l'intensité de la lumière diffusée a diminué de 71%, suggérant une déstabilisation et une 

agrégation des particules. Les mesures de diffusion de la lumière ont été confirmées par cryo-

TEM. Les images obtenues ont montré une majorité d’agrégats indéfinis après irradiation des 

polymersomes. Cette partie a présenté la synthèse d’un copolymère photosensible, son auto-

assemblage en polymersomes, et la photosensiblité des particules formées par irradiation UV.  

 

 



 

 

A 

Figure 4 : Images cryo-TEM de polymersomes de  PEG
B) après irradiation 

Une deuxième voie a été explorée pour contrôler la libération d’espèces par irradiation 

: le changement de pression osmotique dans les polymersomes induisant leur déstabilisation. 

L'augmentation rapide de la pression osmot

pas pu être équilibré assez rapidement avec l'eau, ce qui a entraîné la rupture des 

polymersomes et la libération des espèces. L'augmentation de la pression osmotique a été 

contrôlée par des molécules clivabl

 

Figure 5: Stratégie utilisée pour induire l'éclatement des polymersomes. Les polymersomes 
sont stables lorsque la pression osmotique est la même dans le milieu interne et externe (A1). 
L'augmentation de pression osmotique (B1) a été utilisée pour induire la ruptur
(C1). Le contrôle de la concentration moléculaire permet de contrôler la pression osmotique. 
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B 

TEM de polymersomes de  PEG43-coumarine-b-PTMC

Une deuxième voie a été explorée pour contrôler la libération d’espèces par irradiation 

: le changement de pression osmotique dans les polymersomes induisant leur déstabilisation. 

L'augmentation rapide de la pression osmotique dans le milieu interne des polymersome n'a 

pas pu être équilibré assez rapidement avec l'eau, ce qui a entraîné la rupture des 

polymersomes et la libération des espèces. L'augmentation de la pression osmotique a été 

contrôlée par des molécules clivables sensibles à la lumière.  

: Stratégie utilisée pour induire l'éclatement des polymersomes. Les polymersomes 
sont stables lorsque la pression osmotique est la même dans le milieu interne et externe (A1). 
L'augmentation de pression osmotique (B1) a été utilisée pour induire la ruptur
(C1). Le contrôle de la concentration moléculaire permet de contrôler la pression osmotique. 

 

PTMC81  A) avant et 

Une deuxième voie a été explorée pour contrôler la libération d’espèces par irradiation 

: le changement de pression osmotique dans les polymersomes induisant leur déstabilisation. 

ique dans le milieu interne des polymersome n'a 

pas pu être équilibré assez rapidement avec l'eau, ce qui a entraîné la rupture des 

polymersomes et la libération des espèces. L'augmentation de la pression osmotique a été 

 

: Stratégie utilisée pour induire l'éclatement des polymersomes. Les polymersomes 
sont stables lorsque la pression osmotique est la même dans le milieu interne et externe (A1). 
L'augmentation de pression osmotique (B1) a été utilisée pour induire la rupture du polymère 
(C1). Le contrôle de la concentration moléculaire permet de contrôler la pression osmotique. 
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L'augmentation de la concentration des espèces présentes dans le polymersomes (A2, B2) 
entraîne une augmentation de la pression osmotique et une rupture des polymersomes (C2). 

Deux molécules ayant deux mécanismes de clivage différents ont été étudiées : le clivage 

hétérolylitique de la coumarine et le transfert d'électrons à médiation basée sur le N-alkyl-4-

picolinium-thioxanthone (NAP-th).  

Le NAP-th a été facilement synthétisé en 2 étapes, sa solubilité dans l'eau était le paramètre 

limitant et la concentration maximale de solubilité trouvée était de 1 mM. Plusieurs méthodes 

ont été testées pour augmenter sa solubilité dans l'eau, comme le changement du contre ion ou 

l'ajout d'un groupe hydrophile, mais sans permettre d’augmenter significativement la 

solubilité dans l'eau. Le rendement quantique mesuré en présence du médiateur 

triéthanolamine était de 0,16. Cette valeur a montré que le clivage était très efficace.  

La coumarine modifiée a également été synthétisée avec succès en 6 étapes, deux groupes 

hydrophiles ont été ajoutés pour augmenter la solubilité de la molécule qui a pu être 

facilement mise en solution dans l’eau à des concentrations de l’ordre de 10 mM. Le 

rendement quantique mesuré était de 0,016 pour une illumination à 365 nm et de 0,029 pour 

405 nm. Le clivage était moins efficace que le NAP-th, mais sa solubilité était meilleure. Une 

irradiation d'une heure à 365 nm a induit un clivage de la molécule de 87 %. Ce clivage a 

libéré une base : de la diéthylamine qui a pu être utilisé pour augmenter le pH de la solution. 

En effet, après seulement 10 minutes d'irradiation, le pH est passé de 4,5 à 6,5.  

La deuxième étape a consisté à encapsuler les deux molécules à l'intérieur du polymersomes 

de PEO1.3-b-PBut2.5 par la technique d’ émulsion-centrifugation. La coumarine modifiée a été 

encapsulée dans un polymersome avec une concentration de 10 mM et NAP-th a été 

encapsulé avec une concentration de 1 mM. L'irradiation à 405 nm sous microscope confocal 

a provoqué l'éclatement rapide des polymersomes contenant les deux molécules. Ces 

systèmes induisant une libération rapide et efficace pourraient être utilisés pour initier une 

réaction dans les microréacteurs et ainsi avoir un contrôle précis dans l'espace et le temps de 

systèmes cellulaires artificiels.  

 

Afin de suivre la production de NO directement à l'intérieur du microréacteur, deux 

sondes à NO ont été étudiées. Ces sondes sont basées sur la formation d'une liaison azoïque 

induisant une fluorescence de la molécule, résultant en un signal stable et une sélectivité 

élevée par rapport aux autres composés nitro. Les deux sondes ont été conçues pour avoir des 

propriétés de solubilité différentes (l'une hydrophobe, l'autre hydrophile) afin de détecter le 
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NO dans la membrane et dans le milieu aqueux interne du microréacteur. Les sondes ont été 

synthétisées en 5 et 6 étapes (Figure 6 A,B).  

 

 

Figure 6: A)  Sonde de NO fluorescente hydrophobe B) sonde fluorescente hydrophile de NO 
C) BAPTA-NOp 

 Des étapes critiques ont été rencontrées pour la protection et la déprotection de l'acide 

carboxylique de la sonde hydrophile. Le tert-butyle s'est avéré être un groupe protecteur 

efficace dans les conditions utilisées et le TES a permis d’éviter la dégradation de la sonde 

hydrophile pendant l'étape de déprotection. Afin de tester les propriétés des sondes, plusieurs 

sources de NO ont été testées comme le GSNO, le NO provenant NaNO2 ou le NO gazeux 

provenant d'une bouteille. La concentration de NO obtenue a été mesurée grâce à l’absorption 

de l’hémoglobine. La libération de NO par le GSNO grâce à l’acide ascorbique et sa cinétique 

de libération a été étudiée. Cependant, l'acide ascorbique empêche la formation de la molécule 

fluorescente et le GSNO n'a pu être utilisé. Le NO de NaNO2 a donné des solutions de faible 

concentration, c'est pourquoi a finalement été utilisée, la solution de NO provenant d'une 

bouteille de gaz. La détection du NO par les sondes a été testée. Les sondes ont montré une 

augmentation de l'intensité de fluorescence (em max= 530 nm, ex max= 440 nm pour la sonde 

hydrophile, (em max = 530 nm, ex max=440 nm pour la sonde hydrophile) après addition de 

NO. L'intensité de fluorescence obtenue a une excellente corrélation linéaire (R2 = 0,99) en 

fonction de la quantité de NO ajoutée permettant une mesure précise et quantitative de la 

concentration de NO  (Figure 7Erreur ! Source du renvoi introuvable.). Les sondes sont 

actuellement testées in vitro au laboratoire CITHEFOR (Université de Lorraine EA 3452).  

 



 

 

A 

Figure 7: Spectre d'excitation (violet) et d'émission (rouge) de la sonde (A) hydrophile et (B) 
hydrophobe après addition d’une solution de NO. La sonde hydrophile a été solubilisée dans 
du tampon phosphate (50mM, pH 7.4) et la sonde hydrophobe a été solubilisée dans 80% 
tampon phosphate (50mM, pH 7.4) et 20% de DMSO. Les longueurs d'onde d'émission 
utilisées pour les spectres d'excitation étaient de 530 nm pour la sonde hydrophile et de 550 
nm pour la sonde hydrophobe. La longueur d'onde d'excitation utilisée pour les spectres 
d'émission était de 416 nm pour la sonde hydrophile et de 440 nm pour la sonde hydrophobe.

Dans une deuxième partie, un autre outil moléculaire a été synthétisé afin d'étudier la NO 

synthase. L'introduction contrôlée de réactifs directement dans le microréacteur pourrait aider 

à suivre l'activité enzymatique et des informations sur le mécanisme 

obtenues. À cette fin, un outil moléculaire a été conçu pour contrôler avec précision le taux de 

production de NO par un processus de rétroaction. Nous avons émis l'hypothèse que la 

combinaison de la sonde BAPTA et de la sonde NO 

activation de l'enzyme et pourrait contrôler la production d'oxyde nitrique. NO serait produit 

par l'enzyme et réagirait avec BAPTA

conjugaison plus élevée, le groupe cyano at

l'amine tertiaire du BAPTA, ce qui entraînerait une complexation plus faible du calcium et sa 

libération. Pour vérifier cette hypothèse, BAPTA

10 étapes et leurs constantes de dissociation Kd ont été mesurée

de BAPTA-AZO étaient respectivement de 0,42 µM et 0,52 µM. Les valeurs  desKd étaient 

en accord avec les valeurs des Kd des BAPTA. Cependant, le Kd de BAPTA

BAPTA-AZO sont relativement

qui signifie que la forme AZO ne libère pas de calcium et que la molécule ne peut être utilisée 

pour le processus de rétroaction.
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B 

: Spectre d'excitation (violet) et d'émission (rouge) de la sonde (A) hydrophile et (B) 
addition d’une solution de NO. La sonde hydrophile a été solubilisée dans 

du tampon phosphate (50mM, pH 7.4) et la sonde hydrophobe a été solubilisée dans 80% 
tampon phosphate (50mM, pH 7.4) et 20% de DMSO. Les longueurs d'onde d'émission 

s spectres d'excitation étaient de 530 nm pour la sonde hydrophile et de 550 
nm pour la sonde hydrophobe. La longueur d'onde d'excitation utilisée pour les spectres 
d'émission était de 416 nm pour la sonde hydrophile et de 440 nm pour la sonde hydrophobe.

Dans une deuxième partie, un autre outil moléculaire a été synthétisé afin d'étudier la NO 

synthase. L'introduction contrôlée de réactifs directement dans le microréacteur pourrait aider 

à suivre l'activité enzymatique et des informations sur le mécanisme de l’enzyme pourrait être 

obtenues. À cette fin, un outil moléculaire a été conçu pour contrôler avec précision le taux de 

production de NO par un processus de rétroaction. Nous avons émis l'hypothèse que la 

combinaison de la sonde BAPTA et de la sonde NO (BAPTA-NOp) pourrait induire une auto

activation de l'enzyme et pourrait contrôler la production d'oxyde nitrique. NO serait produit 

par l'enzyme et réagirait avec BAPTA-NOp pour donner BAPTA-AZO. En raison de la 

conjugaison plus élevée, le groupe cyano attracteur d'électrons attirerait les électrons de 

l'amine tertiaire du BAPTA, ce qui entraînerait une complexation plus faible du calcium et sa 

libération. Pour vérifier cette hypothèse, BAPTA-NOp et BAPTA-AZO ont été synthétisés en 

antes de dissociation Kd ont été mesurées. Le Kd de BAPTA

AZO étaient respectivement de 0,42 µM et 0,52 µM. Les valeurs  desKd étaient 

en accord avec les valeurs des Kd des BAPTA. Cependant, le Kd de BAPTA

AZO sont relativement proches et le Kd de BAPTA-AZO est relativement faible, ce 

qui signifie que la forme AZO ne libère pas de calcium et que la molécule ne peut être utilisée 

pour le processus de rétroaction. 

: Spectre d'excitation (violet) et d'émission (rouge) de la sonde (A) hydrophile et (B) 
addition d’une solution de NO. La sonde hydrophile a été solubilisée dans 

du tampon phosphate (50mM, pH 7.4) et la sonde hydrophobe a été solubilisée dans 80% 
tampon phosphate (50mM, pH 7.4) et 20% de DMSO. Les longueurs d'onde d'émission 

s spectres d'excitation étaient de 530 nm pour la sonde hydrophile et de 550 
nm pour la sonde hydrophobe. La longueur d'onde d'excitation utilisée pour les spectres 
d'émission était de 416 nm pour la sonde hydrophile et de 440 nm pour la sonde hydrophobe. 

Dans une deuxième partie, un autre outil moléculaire a été synthétisé afin d'étudier la NO 

synthase. L'introduction contrôlée de réactifs directement dans le microréacteur pourrait aider 

de l’enzyme pourrait être 

obtenues. À cette fin, un outil moléculaire a été conçu pour contrôler avec précision le taux de 

production de NO par un processus de rétroaction. Nous avons émis l'hypothèse que la 

NOp) pourrait induire une auto-

activation de l'enzyme et pourrait contrôler la production d'oxyde nitrique. NO serait produit 

AZO. En raison de la 

tracteur d'électrons attirerait les électrons de 

l'amine tertiaire du BAPTA, ce qui entraînerait une complexation plus faible du calcium et sa 

AZO ont été synthétisés en 

. Le Kd de BAPTA-NOp et 

AZO étaient respectivement de 0,42 µM et 0,52 µM. Les valeurs  desKd étaient 

en accord avec les valeurs des Kd des BAPTA. Cependant, le Kd de BAPTA-NOp et 

AZO est relativement faible, ce 

qui signifie que la forme AZO ne libère pas de calcium et que la molécule ne peut être utilisée 
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Finalement, afin d'assurer le contrôle de l'étape d'initiation et de déclencher une réaction 

enzymatique à un endroit et à un moment précis, la libération contrôlée de réactifs dans des 

microréacteurs a été étudiée. Les nanopolymersomes PEG43-coumarine-b-PTMC81 ont été 

encapsulés avec succès dans des microréacteurs composé d’émulsion d’eau stabilisés par des 

copolymères PEO1.3-b-PBut2.5 et observés sous microscope confocal. L'irradiation à 405 nm a 

induit une déstabilisation efficace des nanopolymersomes à l'intérieur du microréacteur. Une 

irradiation de 2 min a induit une diminution de 83% du nombre de nanoparticules (Figure 

8Erreur ! Source du renvoi introuvable.).   



 

 

A 

  

B 

Figure 8: A) Observation en microscopie confocale d'une émulsion aqueuse stabilisée par 
PEO1.3-b-PBut2.5contenant des nanopolymersomes PEG

photosensibles irradiés 2 min à 405 nm (80%, 50 mW) (canal vert, 
observation dans la gamme d’émission de la coumarine, 485 nm). B) Observation confocale 
d'une émulsion aqueuse stabilisée par PEO
coumarin-b-PTMC81 avant et après une irradiation de 10 s à 405 nm (80%, 50 mW). La 

fluorescéine a été encapsulée dans les polymersomes (barre d'échelle 20 µm, canal vert 
=488 nm, 40 mW, 10%, observation dans la gamme d’émission de la fluorescéine, 520 nm).

Afin d'étudier la libération des nanopolymersomes PEG

fluorescéine a été encapsulé dans les nanopolymersomes (F

quantité de fluorescéine encapsulée dans les nanopolymersomes, 80% en volume de DMSO a 

été ajouté à une solution de particules pour déstabiliser complètement les nanopolymersomes 

et libérer la fluorescéine. La concentration maximale théorique de fluorescéine que les 

nanopolymersomes pouvaient libérer était de 5,1 µM. Les F

dans des gouttes d’émulsion stabilisé

microreacteur. Les microréacteurs obtenus ont été irradiés pendant 10 s, entraînant la 

libération de la fluorescéine des F
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Observation en microscopie confocale d'une émulsion aqueuse stabilisée par 
contenant des nanopolymersomes PEG43-coumarin

photosensibles irradiés 2 min à 405 nm (80%, 50 mW) (canal vert, ex = 405 nm, 50 mW, 3% 
amme d’émission de la coumarine, 485 nm). B) Observation confocale 

d'une émulsion aqueuse stabilisée par PEO1.3-b-PBut2.5contenant des polymersomes PEG
avant et après une irradiation de 10 s à 405 nm (80%, 50 mW). La 

encapsulée dans les polymersomes (barre d'échelle 20 µm, canal vert 
=488 nm, 40 mW, 10%, observation dans la gamme d’émission de la fluorescéine, 520 nm).

Afin d'étudier la libération des nanopolymersomes PEG43-coumarine

été encapsulé dans les nanopolymersomes (F-Nano). Afin de mesurer la 

quantité de fluorescéine encapsulée dans les nanopolymersomes, 80% en volume de DMSO a 

été ajouté à une solution de particules pour déstabiliser complètement les nanopolymersomes 

er la fluorescéine. La concentration maximale théorique de fluorescéine que les 

nanopolymersomes pouvaient libérer était de 5,1 µM. Les F-Nano ont ensuite été encapsulés 

dans des gouttes d’émulsion stabilisées par du PEO1.3-b-PBut2.5

microreacteur. Les microréacteurs obtenus ont été irradiés pendant 10 s, entraînant la 

libération de la fluorescéine des F-Nano dans le microréacteur.  

 

 

 

 

 

Observation en microscopie confocale d'une émulsion aqueuse stabilisée par 
coumarin-b-PTMC81 

= 405 nm, 50 mW, 3% 
amme d’émission de la coumarine, 485 nm). B) Observation confocale 

contenant des polymersomes PEG43-
avant et après une irradiation de 10 s à 405 nm (80%, 50 mW). La 

encapsulée dans les polymersomes (barre d'échelle 20 µm, canal vert ex 

=488 nm, 40 mW, 10%, observation dans la gamme d’émission de la fluorescéine, 520 nm). 

coumarine-b-PTMC81, de la 

Nano). Afin de mesurer la 

quantité de fluorescéine encapsulée dans les nanopolymersomes, 80% en volume de DMSO a 

été ajouté à une solution de particules pour déstabiliser complètement les nanopolymersomes 

er la fluorescéine. La concentration maximale théorique de fluorescéine que les 

Nano ont ensuite été encapsulés 

formant ainsi un 

microreacteur. Les microréacteurs obtenus ont été irradiés pendant 10 s, entraînant la 
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La construction de microréacteurs capables d'imiter certaines fonctions cellulaires de 

base et de développer une cellule synthétique opérationnelle représente l'un des projets les 

plus difficiles de ce siècle. Il reste encore un long chemin à parcourir pour obtenir une cellule 

artificielle polyvalente permettant de reproduire certaines fonctions biologiques ou d’étudier 

le fonctionnement d’enzymes complexes. Cependant, les outils développés dans le cadre de ce 

travail de thèse visaient à aider à se rapprocher un peu plus d’une cellule artificielle 

fonctionnelle. La NO synthase est une enzyme complexe qui nécessite plusieurs substrats et 

des conditions particulières. Dans un premier temps, les outils développés ici pourraient être 

utilisés pour construire des microréacteurs contrôlables contenant des enzymes bien connues 

telles que HRP ou GOX grâce à la microfluidique.  

Les éléments fondamentaux à la base de la vie sont bien connus, mais nous sommes loin de 

comprendre comment ces éléments interagissent, s'auto-organisent, et échangent des 

informations. Les questions fondamentales concernantl’apparition de la viepourront ainsi être 

posées par les échecs et les succès de la construction d'une cellule artificielle.  

 
 


