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Together with my grandparents, who could not continue their studies as they would have liked, my parents were a great model for me. Although younger than me, my brother was also a model that helped in showing me the value of dedication and study. Maybe thirty years ago nobody would have imagined it, but now we are going to have the rst Doctor of Philosophy in our family. All this is thanks to you, that since I was a child you have been a model for me and you have always supported me in all my studies: from the school, to the Conservatory, up to the University. I know that in these years far from our island you missed me, but I thank you for understanding how this experience was important for me. sistemi musicali post-tonali, a dierenza di quelli tonali, ci si allontana dall'idea di organizzare le note secondo una gerarchia. Cambiarono, quindi, le regole musicali della composizione. Sorse un problema: la teoria musicale tradizionale non era in grado di fornire gli strumenti appropriati per descrivere e analizzare i nuovi sistemi posttonali. Per denire ed esprimere le relazioni tra le nuove e più complesse strutture della musica post-tonale i teorici della musica utilizzarono la teoria degli insiemi. Questa idea nacque negli Stati Uniti dopo la seconda guerra mondiale, dando origine alla teoria musicale degli insiemi. Le prinicpali nozioni furono introdotte dal compositore e teorico musicale Hanson per la musica tonale, e dal musicologo e teorico della musica Forte 56 per le musiche post-tonali. Alla base dell'applicazione della teoria degli insiemi in musica vi è una sostituzione della notazione tradizionale delle note con una rappresentazione numerica. Consideriamo, infatti, due relazioni di equivalenza nell'insieme di tutte le altezze del temperamento equabile.

Equivalenza enarmonica : due note che hanno la stessa altezza ma diverso nome sono enarmonicamente equivalenti (esempio: Do ∼ Re ).

Equivalenza di ottava : due note x, y ∈ R + a distanza di ottava sono equivalenti.

Con tali relazioni di equivalenza otteniamo 12 classi di equivalenza note come classi di altezze. Stabilendo una mappa biunivoca tra le 12 classi di altezze e Z 12 è possibile rappresentare tali classi come numeri da 0 a 11. Per convenzione si parte da C = 0. Tale corrispondenza può essere facilmente visualizzata disponendo le 12 classi di altezze e gli elementi di Z 12 in circolo, formando il cosiddetto orologio musicale.

Gli accordi possono essere deniti come insiemi di classi di altezze (eseguite contemporaneamente), e si possono denire formalmente utilizzando l'usuale notazione della teoria degli insiemi per rappresentare gli insiemi, quindi elencare tutte le classi di altezze e racchiuderle fra parentesi grae. In questo lavoro utilizzeremo anche un'altra notazione: con [x 1 , x 2 , . . . , x n ] indichiamo l'accordo costituito dalle classi di altezze x 1 , . . . , x n ∈ Z 12 , dove la classe di altezza sottolineata è la fondamentale dell'accordo. Tale notazione è ciclica, quindi [x 1 , x 2 , . . . , x n ] = [x 2 , . . . , x n , x 1 ] = • • • = [x n , x 1 , . . . , x n-1 ]. Dato un accordo [x 1 , x 2 , . . . , x n ], si denisce struttura intervallare il vettore (x 2 -x 1 , x 3 -x 2 , . . . , x n -x n-1 ) i cui elementi rappresentano l'intervallo tra due classi di altezze consecutive dell'accordo. Gli accordi principalmente utilizzati sono le triadi maggiori e minore, tricordi che si ottengono sovrapponendo una terza maggiore e una minore. Le strutture intervallari sono le seguenti: [START_REF] Amiot | Music Through Fourier Space[END_REF][START_REF] Amiot | The Torii of phases[END_REF][START_REF]Special issue: Computational Music Analysis[END_REF], [START_REF] Amiot | The Torii of phases[END_REF][START_REF] Amiot | Music Through Fourier Space[END_REF][START_REF]Special issue: Computational Music Analysis[END_REF]. Altri accordi molto comuni sono le settime, accordi di 4 note che si ottengono sovrapponendo 3 intervalli di terza.

A partire dagli anni `80 l'attenzione si è spostata dallo studio degli oggetti musicali alle relazioni tra essi, dando origine alla tranformational theory. Due delle trasformazioni più utilizzate sono le trasposizioni e le inversioni. La trasposizione T n muove le classi di altezze di n semitoni. L'inversione I = I 0 trasforma ogni classe di altezze nella sua inversa, mentre l'inversione I n = T n • I. Tali trasformazioni sono utilizzate in tanti procedimenti compositivi, ma sono interessanti anche da un punto di vista algebrico. Si può infatti dimostrare che trasposizioni e inversioni agiscono sull'insieme delle 24 triadi maggiori e minori generando un gruppo isomorfo al gruppo diedrale D 12 di ordine 24.

Con la riscoperta delle trasformazioni P (parallel), L (leading-tone) e R (relative), introdotte dal musicologo Hugo Riemann nel tardo `800, Lewin avviò lo sviluppo di una branca della transformational theory nota come teoria neo-Riemanniana. Seguendo l'impostazione e la terminologia di Hook 7 , con il termine trasformazione indichiamo un'applicazione da un insieme di triadi in sé, con operazione indichiamo una trasformazione bigettiva.

Tutte le operazioni su triadi, insieme con l'operazione di composizione, formano un gruppo G di ordine 24.

Tra tutte le operazioni quelle musicalmente interessanti sono le trasformazioni triadiche uniformi (UTTs) che, intuitivamente, trasformano ogni triade nella stessa maniera. Formalmente possono essere univocamente 5 A. Forte, A Theory of Set-Complexes for Music, Journal of Music Theory, 8 [START_REF] Albini | Hamiltonian Graphs as Harmonic Tools[END_REF], 1964, pp. 136-183. 6 A. Forte, The Structure of Atonal Music, Yale University Press, 1973. 7 J. Hook, Uniform Triadic Transformations, Journal of Music Theory, 46(1-2), 2002, pp. 57-126. determinate da una terna σ, m, n , dove σ = ±, in particolare se σ =la trasformazione modica il tipo di triade, se σ = + il tipo di triade si conserva, m rappresenta l'intervallo di trasposizione della fondamentale delle triadi maggiori, n quello delle triadi minori. L'insieme di tutte le UTTs forma un gruppo, sottogruppo del gruppo G di tutte le operazioni. Nel caso particolare in cui m + n = 0, la UTT è detta riemanniana. Tra le UTTs riemanniane ci sono anche le famose 3 operazioni neo-Riemanniane P , L e R.

P : mappa ogni triade nella sua parallela. Se la triade è maggiore P muove la terza un semitono sotto, se la triade è minore muove la terza un semitono sopra.

L : mappa ogni triade maggiore in una minore trasposta una terza maggiore sopra, e ogni triade minore in una maggiore trasposta una terza maggiore sotto.

R : mappa ogni triade nella sua relativa. Se la triade è maggiore R muove la quinta un tono sopra, se è minore muove la fondamentale un tono sotto.

Osserviamo che tali operazioni scambiano triadi maggiori e minori, lasciano sse due note e muovono una sola nota di tono o semitono. Grazie a queste proprietà, tali operazioni sono molto interessanti da un punto di vista musicale, in quanto sono uno strumento aggiuntivo utile per descrivere la proprietà di movimento graduale della parsimonious voice leading. La voice leading si dice parsimoniosa quando le note rimangono sse o si muovono per grado congiunto. Dal punto di vista matematico si ha il seguente interessante risultato.

Teorema 1. Il gruppo P LR, generato dalle trasformazioni neo-Riemanniane P , L e R, che agisce sull'insieme delle 24 triadi maggiori e minori, è isomorfo al gruppo diedrale D 12 di ordine 24.

Le tre operazioni neo-Riemanniane possono essere rappresentate geometricamente utilizzando gra e complessi simpliciali. La rappresentazione più famosa è quella del Tonnetz, un complesso simpliciale bidimensionale che tassella il piano con 2-simplessi, dove gli 0-simplessi rappresentano le classi di altezze, mentre i 2-simplessi identicano triadi maggiori e minori. Dato un 2-simplesso, ciascuna delle riessioni rispetto ad un dei tre 1simplessi descrive una delle tre operazioni neo-Riemanniane. Considerando lo scheletro, il Tonnetz può essere denito come un grafo basato su note, cioè un grafo in cui ogni vertice è etichettato con una nota. Il suo duale risulta essere un grafo basato su accordi, chiamato Chicken-wire Torus da Douthett e Steinbach 8 . I vertici di tale grafo rappresentano triadi maggiori e minori, gli archi le operazioni P , L e R. È interessante osservare che i cammini di tale grafo corrispondono a sequenze di triadi maggiori e minori utilizzando le operazioni P , L e R. Partendo da tale osservazione, Albini e Antonini hanno enumerato, classicato e studiato tutti i cicli Hamiltoniani di tale grafo 9 . Alcuni cicli, o parti di essi, sono stati trovati in diversi brani musicali, ad esempio nel secondo movimento della nona Sinfonia di Beethoven. Allo stesso tempo questi cicli possono essere utilizzati anche come strumenti compositivi, infatti alcuni compositori contemporanei li hanno utilizzati nelle loro composizioni. Più in generale, Douthett and Steinbach introdussero una costruzione generale di gra parsimoniosi (basati su accordi), basati sulla P m,n relazione. Due accordi si dicono in relazione P m,n se si possono ottenere l'uno dall'altro muovendo m note di semitono e n note di tono.

Storia del Tonnetz

Storicamente si dice che il Tonnetz fu introdotto da Eulero nel suo Tentamen novae theoriae musicae, scritto nel 1731 e pubblicato nel 1739 10 . Abbiamo osservato che un grafo simile appare nel capitolo IX De genere 8 J. Douthett genere. Lo schema rappresenta delle triadi maggiori, ciascuna delle quali racchiusa tra parentesi grae. Abbiamo osservato che Eulero non utilizzò il termine grafo per introdurlo, ma il termine gura. Ciò non è sorprendente, poiché la teoria dei gra stava nascendo in quegli anni proprio con Eulero e, come spesso accade nella storia della matematica, quando una teoria è ancora agli albori molti nuovi concetti non hanno ancora un nome. Infatti il termine grafo fu introdotto da Sylvester nel 1878 11 . Inoltre ricordiamo che il testo comunemente riconosciuto come primo nella storia della teoria dei gra è quello sui sette ponti di Königsberg, pubblicato nel 1741 ma presentato da Eulero nel 1735, mentre il Tentamen è stato scritto nel 1731. Un altro aspetto interessante che abbiamo osservato è che Eulero non utilizzò il termine Tonnetz per il suo grafo. Secondo Gollin 12 , il termine Tonnetz fu introdotto da Imig nel 1970. Un altro grafo simile al Tonnetz apparve in un altro testo matematico-musicale di Eulero, il De harmoniae veris principiis per speculum musicum repraesentatis 13 , pubblicato nel 1774. Sebbene anche questo sia utilizzato per schematizzare il genere diatonico-cromatico e si consideri la scala naturale, l'organizzazione di tale grafo è dierente. Si tratta di uno schema rettangolare, dove le note negli assi orizzontali sono organizzate per quinte giuste, quelle negli assi verticali per terze maggiori.

Stavolta, però, Eulero diede un nome a tale rappresentazione: Speculum Musicum.

Una rappresentazione molto simile compare anche in Naumann e Oettingen nel XIX secolo. Nel 1858 Naumann pubblicò la dissertazione Über die verschiedenen Bestimmungen der Tonverhältnisse und die Bedeutung des Pythagorischen oder reine Quinten-Systems für unsere heutige Musik. In essa compare una tabella con la stessa organizzazione del Speculum Musicum : in ogni cella vi è una nota della scala naturale, e lungo l'asse orizzontale le note sono organizzate per quinte giuste, lungo quello verticale per terze maggiori. Sebbene la struttura sia la stessa, non abbiamo però trovato nessun riferimento allo Speculum Musicum di Eulero o al grafo che appare nel Tentamen. Sappiamo però che Naumann conosceva il Tentamen, in quanto citato nella sua dissertazione in una nota a piè di pagina. Una tabella analoga appare anche nel trattato Harmoniesystem in dualer Entwickelung, pubblicato nel 1866 da Oettingen. Anche in questo caso non c'è alcun riferimento ad Eulero e ai suoi gra, il matematico di Basilea viene solamente citato.

Abbiamo trovato simili organizzazioni delle note anche in diversi lavori di Hugo Riemann, che lui stesso chiamò Tonverwandtschaftstabelle. Indichiamo con P LRQ il gruppo generato dalle 17 trasformazioni trovate. Per lo studio di P LRQ abbiamo osservato che ogni trasformazione scambia una settima di i-esima specie con una di j-esima specie, quindi può essere identicata con una permutazione del gruppo simmetrico S 5 . Ci sono, però, più trasformazioni che scambiano le stesse specie di settime. Per rendere l'identicazione univoca abbiamo aggiunto anche un vettore v ∈ Z 5 12 , dove ogni i-esima componente rappresenta il numero di semitoni di cui la fondamentale di un accordo di tipo i deve essere mossa per diventare la fondamentale di un accordo di tipo j. In questo modo ogni trasformazione può essere rappresentata come un elemento di S 5 × V , dove V = {v ∈ Z 5 12 | 5 i=1 v i = 0}. La mappa così denita diventa un omomorsmo di gruppi se deniamo la seguente operazione di composizione:

(σ k , v k ) • • • • • (σ 1 , v 1 ) = = σ k • • • σ 1 , v 1 + σ -1 1 (v 2 ) + (σ 2 σ 1 ) -1 (v 3 ) + • • • + (σ k-1 • • • σ 1 ) -1 (v k ) = (1) = σ k • • • σ 1 , v 1 + σ -1 1 (v 2 ) + σ -1 1 σ -1 2 (v 3 ) + • • • + σ -1 1 • • • σ -1 k-1 (v k ) .
Inne, abbiamo dimostrato il seguente 

[B ∆ Q43 --→ B ∅ L13 --→ G 7 R12 --→ E m ] R42 --→ (2) R42 --→[G ∆ Q43 --→ A ∅ L13 --→ E 7 R12 --→ C m ] - → R42 --→[E ∆ Q43 --→ F ∅ L13 --→ C 7 R12 --→ A m ] R42 --→ R42 --→(C ∆ Q43 --→ D ∅ P35 --→ D o L15 --→ B 7 R12 --→ G m ) - → R42 --→[D ∆ Q43 --→ E ∅ L13 --→ C 7 R12 --→ A m ] R42 --→ (3) R42 --→[C ∆ Q43 --→ C ∅ L13 --→ A 7 R12 --→ F m ] - → R42 --→[A ∆ Q43 --→ B ∅ L13 --→ F 7 R12 --→ D m ] R42 --→ R42 --→(F ∆ Q43 --→ G ∅ P35 --→ C o L15 --→ D 7 R12 --→ C m ) - → R42 --→[G ∆ Q43 --→ A ∅ L13 --→ F 7 R12 --→ D m ] R42 --→ (4) R42 --→[F ∆ Q43 --→ F ∅ L13 --→ D 7 R12 --→ B m ] - → R42 --→[D ∆ Q43 --→ D ∅ L13 --→ B 7 R12 --→ G m ] R42 --→ R42 --→(B ∆ Q43 --→ C ∅ P35 --→ C o L15 --→ A 7 R12 --→ F m )
Tale cammino presenta una sequenza in cui il motivo principale viene ripetuto due volte 5 semitoni sopra. Inoltre ognuno dei 3 motivi contiene la stessa sequenza di operazioni ripetuta 4 volte, con un'eccezione la quarta volta a causa dell'introduzione della settima diminuita.

Quella di considerare le 5 specie classiche di settima è stata una scelta, ma è possibile scegliere altri insiemi di settime. Per ragioni combinatoriali, abbiamo scelto di considerare anche l'insieme di tutte le settime con struttura intervallare (c 1 , c Gli accordi di settima sono spesso utilizzate nel Jazz. Un esempio in cui abbiamo trovato sequenze delle nostre operazioni parsimoniose è in Heaven, di Ellington.

Operazioni parsimoniose e gra per triadi Ci sono molti studi su modelli geometrici e algebrici riguardanti triadi maggiori e minori. Sebbene si tratti degli accordi più utilizzati in musica, non sono gli unici tipi di triadi: ci sono anche le triadi diminuite (la cui struttura intervallare è [START_REF] Amiot | The Torii of phases[END_REF][START_REF] Amiot | The Torii of phases[END_REF][START_REF] Andreatta | Towards Pedagogability of Mathematical Music Theory: Algebraic Models and Tiling Problems in computer-aided composition[END_REF])) e quelle aumentate (la cui struttura intervallare è [START_REF] Amiot | Music Through Fourier Space[END_REF][START_REF] Amiot | Music Through Fourier Space[END_REF][START_REF] Amiot | Music Through Fourier Space[END_REF]). Abbiamo esteso gli studi sulle triadi maggiori e minori includendo anche le diminuite e le aumentate. Le trasformazioni più parsimoniose su tali triadi sono 13, di cui 9 agiscono su maggiori, minori e aumentate, 7 agiscono su maggiori minori e diminuite. Solo 3 operazioni agiscono su triadi maggiori e minori, e sono le note P , L e R. Abbiamo costruito il corrispondente grafo su accordi relativo alle 9 trasformazioni che agiscono sulle triadi maggiori, minori e aumentate. Tale grafo contiene il famoso Cube Dance, introdotto da Douthett e Steinbach. Quest'ultimo è il grafo corrispondente alle relazioni P 1,0 su triadi maggiori, minori e aumentate. Il nostro studio include anche le relazioni P 0,1 , è in questo caso l'unica operazione di questo tipo è la relativa R. 

Operazioni tra settime e triadi

Fino ad ora abbiamo studiato operazioni parsimoniose che agiscono su diversi insiemi di triadi o settime, quindi insiemi con accordi della stessa cardinalità. Ma, nella letteratura musicale, le sequenze più comuni di accordi includono sia triadi che settime. Specialmente durante il XVII, XVIII e XIX secolo i compositori hanno scarsamente utilizzato molti accordi di settima di seguito, in quanto si tratta di accordi dissonanti, utilizzati per creare momenti di tensione che poi risolvevano su un accordo consonante come una triade maggiore o minore.

Quindi era abbastanza comune utilizzare sequenze di triadi e settime. Abbiamo perciò studiato anche il caso di operazioni parsimoniose tra accordi di settima e triadi. Più precisamente abbiamo cercato di introdurre un'impostazione generale che consenta di denire operazioni parsimoniose tra accordi di settima e triadi, ma anche le già note operazioni fra triadi e quelle fra settime.

Si possono denire diverse operazioni parsimoniose fra accordi di settima e triadi. Per il momento abbiamo analizzato quelle più parsimoniose, cioè quelle in cui è possibile aggiungere o togliere una nota, quindi quelle in cui le triadi sono immerse negli accordi di settima. Abbiamo, ad esempio, considerato l'insieme delle triadi maggiori e minori e le 5 specie classiche di settime. Su questo insieme agiscono 6 operazioni parsimoniose. Se, invece, consideriamo l'insieme di tutte e 4 le triadi e le 5 specie classiche di settima le operazioni parsimoniose che agiscono su di esso sono 12. Possiamo rappresentare ogni trasformazione come (θ, (v, w)), dove θ è una permutazione che indica quali accordi vengono scambiati, v ∈ Z 5 12 rappresenta il movimento delle fondamentali delle settime, w ∈ Z 4 12 rappresenta il movimento delle fondamentali delle triadi. Date due operazioni U 1 = (θ 1 , (v 1 , w 1 )), U 2 = (θ 2 , (v 2 , w 2 )) fra settime, fra triadi, o fra settime e triadi, l'operazione di composizione è così denita: 

(θ 2 , (v 2 , w 2 )) • (θ 1 , (v 1 , w 1 )) = (θ 2 • θ 1 , (v 1 , w 1 ) + θ -1 1 (v 2 , w 2 ))
D A E B B F C G D D A E B B F C G D P R L
(σ k , v k ) • • • • • (σ 1 , v 1 ) = = σ k • • • σ 1 , v 1 + σ -1 1 (v 2 ) + (σ 2 σ 1 ) -1 (v 3 ) + • • • + (σ k-1 • • • σ 1 ) -1 (v k ) = (6) = σ k • • • σ 1 , v 1 + σ -1 1 (v 2 ) + σ -1 1 σ -1 2 (v 3 ) + • • • + σ -1 1 • • • σ -1 k-1 (v k ) .
Enn, nous avons démontré le théorème suivant. qui suit:

[B ∆ Q43 --→ B ∅ L13 --→ G 7 R12 --→ E m ] R42 --→ (7) R42 --→[G ∆ Q43 --→ A ∅ L13 --→ E 7 R12 --→ C m ] - → R42 --→[E ∆ Q43 --→ F ∅ L13 --→ C 7 R12 --→ A m ] R42 --→ R42 --→(C ∆ Q43 --→ D ∅ P35 --→ D o L15 --→ B 7 R12 --→ G m ) - → R42 --→[D ∆ Q43 --→ E ∅ L13 --→ C 7 R12 --→ A m ] R42 --→ (8) R42 --→[C ∆ Q43 --→ C ∅ L13 --→ A 7 R12 --→ F m ] - → R42 --→[A ∆ Q43 --→ B ∅ L13 --→ F 7 R12 --→ D m ] R42 --→ R42 --→(F ∆ Q43 --→ G ∅ P35 --→ C o L15 --→ D 7 R12 --→ C m ) - → R42 --→[G ∆ Q43 --→ A ∅ L13 --→ F 7 R12 --→ D m ] R42 --→ (9) R42 --→[F ∆ Q43 --→ F ∅ L13 --→ D 7 R12 --→ B m ] - → R42 --→[D ∆ Q43 --→ D ∅ L13 --→ B 7 R12 --→ G m ] R42 --→ R42 --→(B ∆ Q43 --→ C ∅ P35 --→ C o L15 --→ A 7 R12 --→ F m )
Ce chemin présente une séquence dans laquelle le motif principal est répété deux fois 5 demi-tons dessus. De plus, chacun des 3 motifs contient une même séquence d'opérations répétée 4 fois, avec une exception dans la quatrième en raison de l'introduction de la septième diminuée.

Considérer les 5 espèces classiques de la septième a été un choix, mais il est possible de considérer d'autres ensembles de septièmes. Pour des raisons combinatoires, nous avons choisi de considérer aussi l'ensemble de toutes les septième avec la structure des intervalles (c 1 , c 2 , c 3 , c 4 ), où c i ∈ {1, 2, 3, 4}, et tel que 4 i=1 c i = 12. Les 5 espèces de septièmes déjà mentionnées satisfont cette condition, à celles-ci on y ajoute: la septième mineure majeur (sixième espèce, avec la structure des intervalles [START_REF] Amiot | The Torii of phases[END_REF][START_REF] Amiot | Music Through Fourier Space[END_REF][START_REF] Amiot | Music Through Fourier Space[END_REF][START_REF] Albini | Hamiltonian Cycles in the Topological Dual of the Tonnetz[END_REF]), majeure augmenté (septième espèce, avec la structure des intervalles (4, 4, 3, 1)), l'augmentée ( huitième espèce, avec une structure des intervalles (4, 4, 2, 2) et la septième de dominante bémol (neuvième espèce, avec la structure des intervalles (4, 2, 4, 2)). Nous avons classé toutes les transformations les plus parcimonieuses entre elles. En plus des 17 transformations déjà déterminées, 20 autres ont été ajoutées, pour arriver à un total de 37 transformations. De même que dans le cas précédent, nous avons représenté les opérations comme éléments (σ, v) ∈ S 9 × V , où S 9 est le groupe symétrique de 9 

éléments, et V = {v ∈ Z 9 12 | 9 i=1 v i = 0}.
= (θ 1 , (v 1 , w 1 )), U 2 = (θ 2 , (v 2 , w 2 
)) entre les septièmes, entre les triades ou entre septièmes et triades, l'opération de composition est ainsi dénie: 

(θ 2 , (v 2 , w 2 )) • (θ 1 , (v 1 , w 1 )) = (θ 2 • θ 1 , (v 1 , w 1 ) + θ -1 1 (v 2 , w 2 ))

3.4

The Clover graph: a generalized Chicken-wire Torus for sevenths . . . . . . . . . . . . . . . . . . Theory is very recent. From a supercial perspective, mathematics is considered the world of rules and rationality, while music is the world of creativity and freedom. Is it really the case? A look at the history of both disciplines clearly shows that mathematics and music are deeply related and that the relationships between these two disciplines goes back to ancient times. One way to approach the problem of possible connections between mathematics and music is to look at the physical and acoustical aspects of musical structures, such as the Pythagorean scale. Although Pythagoras' school role in the development of this scale is debatable, the relations between the length of a string and the pitch of the note that is perceived when the string is played and the subsequent link between rational numbers and consonant music intervals were certainly discovered already in classical antiquity.

Although the use of mathematics to describe music from an acoustical point of view is simple and intuitive to understand, this is not the only way to look for possible connections between these two elds. By leaving the acoustical domain and taking into account a more conceptual level, which is the level of the compositional act, it appears that music is rich of rules and structures, which are well represented and formalized via mathematical concepts. This is the aim of music theory, whose theoretical constructions are very much like the grammatical rules that govern written language. The Mathematical Music Theory oers to the contemporary music theorist and musicologist the way to properly dene and describe the dierent musical objects as well as the transformations between them in a way that can be useful for musical analysis and composition.

More specically, the problems studied in this thesis are part of transformational theory, an area of Mathematical Music Theory born in the 1980s with the pioneering works by David Lewin [START_REF] Lewin | Transformational techniques in atonal and other music theories[END_REF] [53] and Guerino Mazzola [56] [57]. It is based on the use of mathematical group structure to dene musical transformations.

The use of algebra in music started with several music theorists because it provides a deeper insight into the concept of musical structures and processes.

In Chapter 1 we will give an introduction to Mathematical Music Theory, in particular to transformational theory. We will focus on one of the most important transformation groups, known as the neo-Riemannian P LR-group. This group is generated by the three musical operations P , L and R, which exchange major and minor triads moving a note by a semitone or a whole tone. These operations are interesting from a musical point of view, because they are an additional tool useful to describe the property of stepwise motion in a single voice known as parsimonious voice leading. Voice leading is the interplay of two or more musical lines that realize chord progressions, according to the principles of the common-practice and counterpoint. It is organized according to musical rules, and one of the most important in the common-practice period being to connect one chord to another by parsimonious movements.

The P LR-group is also interesting from a mathematical point of view: it acts on the set of 24 major and minor triads generating a group isomorphic to the dihedral group of order 24. Moreover, the three neo-Riemannian operations have graphic representations in terms of graphs and simplicial complexes, the most important of which is the Tonnetz : a 2-dimensional simplicial complex which tiles the Euclidean plane with triangles, where 0-simplices represent pitch-classes, and 2-simplices identify major and minor triads. Given a triangle, each `'edge-ip describes one the three neo-Riemannian operations. Considered as a graph, it is a note based-graph, and its dual is a chord-based graph known as Chicken-wire Torus, whose vertices represent major and minor triads, while edges correspond to the P , L and R operations. Since paths represent sequences through major and minor triads using P , L and R operations, the problem of nding all possible Hamiltonian cycles in the Chicken-wire Torus naturally arise. These cycles have been studied and classied by Giovanni

Albini and Samuele Antonini, who provided the rst list of these remarkable structures up to isomorphism [START_REF] Albini | Hamiltonian Cycles in the Topological Dual of the Tonnetz[END_REF].

At the same time, these classes of cycles are a useful compositional device, providing new interesting musical material for contemporary composition in art as well as popular music. Therefore, while algebra is useful to describe musical structures, geometric models have a double utility: they not only allow an easier visualization of musical structures which are useful in musical analysis, but they can also provide music-analytical tools for compositional applications.

In Chapter 2 we will present our historical investigation on the Tonnetz [19]. It is commonly said that the Tonnetz was introduced by Leonhard Euler in his 1739 Tentamen novae theoriae musicae [29] [20]. Indeed, a graph similar to the Tonnetz appeared in a the chapter with the aim to represent some intervals of the just intonation in a scheme. We observe that Euler did not dene it as a graph, but instead used the term gure, nor did he call it Tonnetz. Another graph similar to the Tonnetz, called Speculum musicum, appeared in Euler's De harmoniae veris principiis per speculum musicum repraesentatis [30] [20]. After some observations on these two graphs, we will present some diagrams and tables similar to the Speculum musicum found in some works by music theorists of the XIX th century, such as Carl Ernst Naumann, Arthur von Oettingen and Hugo

Riemann. We will continue the investigations until the 1980s and 1990s, when the Tonnetz was considered in the twelve-tone equal temperament and extended as an innity graph. Moreover, following and integrating Dmitri Tymoczko's ideas [START_REF] Tymoczko | The Generalized Tonnetz[END_REF], we will present some dierent generalized Tonnetz introduced in the last decades.

There are several studies on algebraic formalizations and geometric visualizations of transformations on major and minor triads. But, in addition to triads, seventh chords are often used in the music. In Chapter 3 we will present a generalization of the P LR-group for seventh chords. We have considered two dierent sets of sevenths of the twelve-tone equal temperament. The rst set H includes the classical types of sevenths: dominant, minor, half-diminished, major and diminished. The second set H * includes the sevenths with intervallic structure [c 1 , c 2 , c 3 , c 4 ] where c i ∈ {1, 2, 3, 4} and such that 4 i=1 c i = 12, hence: dominant, minor, half-diminished, major, diminished, minor major, augmented major, augmented, dominant seventh at ve. In both cases, we will classify all the most parsimonious operations exchanging two types of sevenths, moving a single note by a semitone or a whole tone and xing the other three notes. The most parsimonious operations acting on H are 17, those acting on H * are 37. Finally, we will study the algebraic group generated by all these operations: it turns out to be isomorphic to S 5 Z 4 12 in the rst case [17], to S 9 Z 8 12 in the second case.

Moreover, we will present a generalized Chicken-wire Torus for sevenths [18]. It is a chord-based graph associated to the parsimonious operations on the set of the 5 classical types of sevenths.

Although major and minor triads have a special place in music, they are not the only possible types of triads.

Two more types, the diminished and the augmented triads, are also commonly used in music composition. In Chapter 4 we will extend the P LR-group for all these types of triads. Similarly to what done in the case of sevenths chords, we will classify the most parsimonious operations acting on the set of the four types of triads and we will prove that the group generated by them is S 4 Z 3

12 . We will also construct the graphs associated to the parsimonious operations on major, minor and augmented triads, and to those on major, minor and diminished triads.

Finally, in the last chapter, we have studied operations among sevenths and triads, in which it is possible to add a note (from a triad to a seventh) or to delete a note (from a seventh to a triad). We will introduce a general framework in which to include the already known parsimonious operations among triads, the parsimonious operations among sevenths, and also parsimonious operations among seventh and triads. As a special case, we will consider the set of the 5 classical types of sevenths and the 4 types of triads. We prove that the ST -group, generated by the 17 most parsimonious operations among sevenths, the 13 most operations among triads and the new 12 operations among sevenths and triads, is isomorphic to S 9 Z 8 12 .

Chapter 1

Introduction to Mathematical Music Theory 1.1 Musical set theory

One of the most important aspects that makes a musical piece interesting is the ability of the composer to control the interaction among the dierent melodic lines creating the harmony, which is traditionally known as voice leading. It is in fact the interplay of two or more musical lines that realizes chord progressions, according to the principles of common-practice and counterpoint. This corresponds to the two main possible ways of analyzing a musical score, respectively horizontally (or melodically) and vertically (or harmonically).

We recall that the largest part of the Western music from the XVII th to the XIX th century is based on Voice leading is organized according to musical rules, and music theory also deals with the study of these compositional strategies. We might say that music theory is fundamental for composers as grammar is for poets.

The Western music of this era also known as common practice period was tonal. Music written within the tonal system is generally analyzed by dening a certain note as the primary or tonic. The other notes are subservient to the tonic and in a strict hierarchy: the dominant (or fth degree), the sub-dominant (or fourth degree) and so on.

In the late XIX th century composers began to investigate new musical possibilities abandoning tonal music that had characterized the XVII th , XVIII th and XIX th century music. Unlike the tonal system, in post-tonal music, composers moved away from a hierarchy among tones. This is impersonated by several composers such as Richard Wagner (18131883), especially in his Tristan und Isolde, composed between 1857 and 1859. Another important and famous example is La Fille aux cheveux de lin (19091910) by Claude Debussy (18621918).

The ways out were many. Some composers, such as Mussorgsky, Bartok, Debussy and Stravinsky, moved away from the tonal system inspired by the music of their countries of origin. On the contrary, other composers such as Schönberg, Webern and Berg, came to a complete break with the past and embraced complete atonality. In atonal compositions, the hierarchy among tones focusing on a central tone is not used. All the notes of the chromatic scale are used with functions that are independent from each other.

In tonal music, the properties of musical elements such as chords are fully described by the traditional music theory. But the latter was not able to provide appropriate tools to analyze and describe new post-tonal musical system. The role and the structural meaning of certain chords and chord sequences are dierent; the harmonic vocabulary of post-tonal music is much more varied and complex than that of tonal music. To dene the rules and the signicant relationships between the complex and heterogeneous musical structures of post-tonal music, music theorists used set theory, developed by Georg Cantor and others between 1874 and 1897, to extend traditional music theory. This idea emerged in the United States, after World War II, allowing the birth of musical set theory. This combination between the demands of compositional experimentation and the necessity of analytic interpretation has decisively inuenced both the birth and the developments of this type of music theory.

The main concepts and notions of musical set theory were rstly introduced around 1960 by the composer, director and music theorist Howard Hanson (18961981) for tonal music and by the musicologist and music theorist Allen Forte (19262014) in his articles A Theory of Set-Complexes for Music [32] and successively systematized in the book The Structure of Atonal Music [33] for atonal music. The concepts developed in musical set theory are very general and are applied to tonal and atonal music in any equal temperament [4][46].

Pitch-class and pitch-class set

The application of set theory in music presupposes a substitution of the traditional music notation with a numerical representation. The starting point is to consider two equivalence relations on the set of all possible pitches.

Enharmonic equivalence : two tones are enharmonic equivalent if they have the same pitch, but named dierently. Example: C ∼ D .

Octave equivalence : two pitches x, y ∈ R + are equivalent if their interval distance is an octave. We remind the reader that if the frequency of a tone is f , the frequency of the tone one octave higher is 2f , while the frequency of the tone one octave lower is 1 2 f . Therefore octave equivalence is mathematically described as follows:

x ∼ y ⇔ y = 2 n x n ∈ Z Since we want to dene a numerical representation for the twelve-tone equal temperament, from these equivalence relations we obtain twelve equivalence classes called pitch-classes, one for each note of the chromatic scale.

Denition 1.1 (Pitch-class). A pitch-class is a maximal collection of pitches related by both the enharmonic and the octave equivalence.

We usually map the twelve pitch-classes of the twelve-tone equal temperament to Z 12 , starting by mapping the pitch-class C to number 0. The tone-clock, also known as musical clock or pitch-class space, is a circular disposition of the twelve pitch-classes and the elements of Z 12 representing them bijectively. The pitch-classes are organized along the circle at a distance of semitone, each pitch-class is labeled with a number from 0 (in the position of the 12 in the clock) to 11, starting from C = 0 (see Fig. More generally, for any musical scale of an equal temperament constituted by n notes we can dene similar equivalence relations, obtaining n pitch-classes and a bijection with Z n . The traditional diatonic theory has been generalized by Franck Jedrzejewski in this framework [START_REF] Jedrzejewski | Generalized diatonic scales[END_REF].

On the musical clock, we order the pitch-classes adopting the clockwise direction. We dene the distance between two pitch-classes s, t as the minimum number d(s, t) of steps required to reach one pitch-class from the other in clockwise or anticlockwise direction.

Like in traditional music theory where the distance between two notes is known as an interval, in musical set theory the distance between two pitch-classes is known as a pitch-class interval or an interval class. Two dierent types of interval classes are distinguished: ordered and unordered. Given two pitch-classes x, y ∈ Z n , their ordered interval class is i x, y = y -x (mod n). Their unordered interval class i(x, y) is dened as the smallest between i x, y and i y, x .

Example 1.2. The ordered interval class between 6 and 2 in Z 12 is i 6, 2 = 2 -6 = -4 ≡ 8 (mod 12). If we interchange the order of the pitch-classes their ordered interval class becomes i 2, 6 = 4 (mod 12).

The unordered interval class between 6 and 2 is i(6, 2) = min{i 6, 2 , i 2, 6 } = min{8, 4} = 4.

The main elements of voice leading are the chords. A chord is a set of two or more pitches played simultaneously. In musical set theory, a chord can be represented as a pitch-class set. Denition 1.3 (Pitch-class set). A pitch-class set is an unordered collection of pitch-classes without replication.

Following the usual convention, we will list the elements of pitch-class sets within curly brackets. Some theorists use angle brackets to denote ordered pitch-class sets.

Example 1.4.

C M = {0, 4, 7} = 0, 4, 7 A m = {9, 0, 4} = 9, 0, 4
In this work, we will use the following notation dened in [17]. Denition 1.5. A cyclicly marked chord [x 1 , x 2 , . . . , x n ] is a chord constituted by the n pitch-classes x 1 , x 2 , . . . , x n ∈ Z 12 in the chosen order, where the underlined pitch-class corresponds to the root of the chord; we consider equivalent the cyclicly marked chords

[x 1 , x 2 , . . . , x n ], [x 2 , . . . , x n , x 1 ], . . . , [x n , x 1 , . . . , x 2 ]. 1 Example 1.6. C M = [0, 4, 7] = [7, 0, 4] = [4, 7, 0] A m = [9, 0, 4] = [4, 9, 0] = [0, 4, 9]
The structure of a set of pitch classes can be summarized using an interval vector. Denition 1.7 (Interval vector). Given a pitch-class set A ⊂ Z n , its interval vector iv(A) = x 1 x 2 . . . x k is an array of natural numbers where each digit x i = #{{s, t} ⊂ A|d(s, t) = i, s = t} represents the number of occurrences of each interval class that appears in the set.

In the twelve-tone equal temperament, an interval vector has six digits, because the possible intervals are six: minor seconds/major sevenths, major seconds/minor sevenths, minor thirds/major sixths, major thirds/minor sixths, perfect fourths/perfect fths, tritones.

Example 1.8. The interval vector of C M = [0, 4, 7] is 0 0 1 1 1 0 .

There is another vector useful to represent a chord considering its intervals. Denition 1.9 (Intervallic structure). Given a cyclicly marked chord [x 1 , x 2 , . . . , x n ], x i ∈ Z 12 for each i ∈ {1, . . . , n}, its intervallic structure (x 2 -x 1 , x 3 -x 2 , . . . , x 1 -x n ) is a vector where each element represents the interval class between two successive pitch-classes of the chord.

Triads and sevenths

The most used chords, at least from the perspective of Western musical tradition, are triads (major and minor) and some seventh chords. A triad is a chord of three tones (3-chord) where the intervals between adjacent 1 The root is the element of the chord associated to his name. For example the root of the C major chord is the pitch-class

C = 0.
tones comprise a minor third interval (formed by three semitones) or a major third (formed by four semitones).

A major triad is obtained from the superposition between a major third (bottom) and a minor third (top).

Conversely, a minor triad has a minor third followed by a major third. Considering a triad as a superposition of thirds, their members are: the root (the lowest tone), the third (the middle tone, forming a third with the root), and the fth (the higher tone, forming a fth with the root). Using Denition 1.5, we can mathematically dene them respectively as follows: Other chords often used are the sevenths. A seventh is a chord of four tones (4-chord) obtained by overlapping three intervals of third. When stacked in thirds, the members of a seventh from the lowest to the highest tone are: the root, the third, the fth and the seventh. In our work, we will consider the following types (see Chapter 3): (dominant seventh at ve) For example, by taking the note C = 0 as the root x of the chord, we have the following chords expressed with the usual music notation: int(x, y)

[x, x + 4, x + 7, x + 10] (mod 12), x ∈ Z 12 , intervallic structure: (4, 3, 3, 2) (dominant seventh) [x, x + 3, x + 7, x + 10] (mod 12), x ∈ Z 12 , intervallic structure: (3, 4, 3, 2) (minor seventh) [x, x + 3, x + 6, x + 10] (mod 12), x ∈ Z 12 , intervallic structure: (3, 3, 4, 2) (half-diminished seventh) [x, x + 4, x + 7, x + 11] (mod 12), x ∈ Z 12 , intervallic structure: (4, 3, 4, 1) (major seventh) [x, x + 3, x + 6, x + 9] (mod 12), x ∈ Z 12 , intervallic structure: (3, 3, 3, 3) (diminished seventh) [x, x + 3, x + 7, x + 11] (mod 12), x ∈ Z 12 ,
C 7 = [0, 4, 7, 10] (C dominant seventh) C m = [0, 3, 7, 10] (C minor seventh) C ø = [0, 3, 6, 10] (C half-diminished seventh) C ∆ = [0, 4, 7, 11] (C major seventh) C o = [0, 3, 6, 9] (C diminished seventh) C ∆ m = [0, 3,
+ int(y, z) = (y -x) + (z -y) = z -x = int(x, z),
hence 1.1 is satised. Moreover given a pitch-class s ∈ Z 12 and given an interval i ∈ Z 12 there exists a unique pitch-class t ∈ Z 12 such that int(s, t) = i. In fact if there exists u ∈ S such that int(s, u) = i we would have int(s, t) = int(s, u), then t -s = u -s ⇒ t = u. 

Transpositions and inversions

Many musical operations can be modeled as algebraic transformations. One of the most used musical operations is transposition. Denition 1.13 (Transposition). A transposition T n moves a set o pitch-classes in pitch by a constant interval n:

T n : Z k 12 → Z k 12 (1.3) [x 1 , . . . , x k ] → [x 1 + n, . . . , x k + n]
For musicians, being able to perform transpositions is a useful skill: if they are accompanying a singer and the musical piece is too high or low for the singer's voice, it is better to transpose it down or up in another key. Composers use transpositions very often in their works, especially in canons, fugues and for modulations in popular music.

Transpositions correspond to translations in the mathematical formula 1.3 and in the score: the given melody is shifted up or down maintaining the same tone structure (see Fig. 1.6). In the musical clock, transpositions correspond to rotations along the circle.

Example 1.14. Given the C major triad [0, 4, 7], we apply T 3 :

T 3 ([0, 4, 7]) = [0 + 3, 4 + 3, 7 + 3] = [3, 7, 10]
that is E major triad. Let T = {T 0 , T 1 , . . . , T 11 } be the set of all transpositions. The set T with the function composition ∀T

T n • T m = T n+m m, n ∈ Z 12
n , T m ∈ T T n • T m = T n+m ∈ T (closure) ∀T n , T m , T l ∈ T T l • (T n • T m ) = (T l • T n ) • T m (associativity) ∀T n ∈ T ∃T 0 ∈ T s.t. T n • T 0 = T 0 • T n = T n (identity element) ∀T n ∈ T ∃T -n ∈ T s.t. T n • T -n = T -n • T n = T 0 (inverse element).
More precisely T is an abelian cyclic group. Its generators are the elements T n s.t. n and 12 are relatively prime, thus: T 1 , T 5 , T 7 and T 11 .

Another operation often used in composition is inversion. Intuitively, an inversion of a melody is the melody in contrary motion.

Denition 1.15 (Inversion I). An inversion of a set of pitch-classes is the set of their inverses:

I : Z k 12 → Z k 12 (1.4) [x 1 , . . . , x k ] → [-x 1 , . . . , -x k ].
In the musical clock, the inversion I corresponds to a reection through the diameter passing through 0 T n • I: 1. By applying a transposition to a chord, we obtain a chord with the same intervallic structure. On the contrary, if we apply an inversion in general we obtain a chord whose intervallic structure is equal to the retrogradation (up to cyclic permutation) of the intervallic structure of the initial chord.

I n : Z k 12 → Z k 12 (1.5) [x 1 , . . . , x k ] → [-x 1 + n, . . . , -x k + n].
2. The set T of transpositions is a group. Conversely inversions do not form a group because the composition of two inversions is not an inversion.

3. Each inversion is an involution. Among transpositions, only T 0 and T 6 are involutions.

Transpositions and inversions satisfy the following properties:

T m • I n = I m+n (mod 12) I m • T n = I m-n (mod 12) I m • I n = T m-n (mod 12) .
Theorem 1.19. Inversions and transpositions act on the set S of all 24 major and minor triads generating the group T /I 2 that is isomorphic to the dihedral group D 12 of order 24.

Proof. We remind the reader that the dihedral group D n of order 2n is the group of isometries of a regular n-gon in the plane, including rotations and reections. Its representation is s, t|s n = t 2 = Id, tst = s -1 . 2 The notation does not represent the set-theoretical dierence between T and I.

We observe that T 1 corresponds to a rotation of the musical clock by 1 12 of a turn, while I 0 corresponds to a reection of the musical clock through the axis passing through 0 and 6. Therefore T 12 1 = T 0 = Id and I 2 0 = Id. Moreover, for each x ∈ S,

(I 0 T 1 I 0 )(x) = (I 0 I 1 )(x) = I 0 (-x + 1) = x -1 = T -1 (x) = T -1 1 (x).
Therefore the presentation of the group T /I is

T 1 , I 0 |T 12 1 = I 2 0 = Id, I 0 T 1 I 0 = T -1 1 , hence T /I D 12 .
Crans, Fiore and Satyendra proved that the action of the T /I-group is simply transitive [START_REF] Crans | Musical Actions of Dihedral Groups[END_REF]. Let x ∈ S be a major triad. For each n ∈ {0, 1, . . . , 11}, T n (x) is a major triad, and I n (x) is a minor triad. In particular, we can obtain all the other major and minor triads applying T n and I n to x. Similarly, given a minor triad y ∈ S, computing all T n (y), we obtain all minor triads and computing I n (y), all major triads. More generally, given three triads x, y, z ∈ S, there exist g 1 , g 2 ∈ T /I such that g 1 x = y and g 2 x = z. Then g 1 g -1 2 z = y. It is possible to show that g = g 1 g -1 2 is unique using the stabilizer theorem. Theorem 1.20 (Stabilizer theorem). Let G be a group that acts on a nite set S, let G x be the stabilizer group of x ∈ S and let O(x) be the orbit of x.

Then |G| |G x | = |O(x)|.
In our case S is the set of consonant triads, and G = T /I. 

S = {[x 1 , x 2 , x 3 ]|x 1 , x 2 , x 3 ∈ Z 12 , x 2 = x 1 + 3 or x 2 = x 1 + 4, x 3 = x 1 + 7}
P (C M ) = P ([0, 4, 7]) = [0, 3, 7] = C m P (C m ) = P ([0, 3, 7]) = [0, 4, 7] = C M R(C M ) = R([0, 4, 7]) = [0, 3, 9] = A m R(A m ) = R([9, 0, 3]) = [7, 0, 4] = C M L(C M ) = L([0, 4, 7]) = [11, 4, 7] = E m L(E m ) = R([4, 7, 11]) = [4, 7, 0] = C M .
Remark 1.25. Each neo-Riemannian operation exchanges major and minor triads;

xes two notes; moves a single note by a semitone or a whole-tone.

There exist other ways to dene algebraically such transformations. Crans, Fiore and Satyendra [START_REF] Crans | Musical Actions of Dihedral Groups[END_REF] dene them using the inversion operation. Let x 1 , x 2 , x 3 be a triad (minor or major) represented as in Table 1.1.

Then:

P ( x 1 , x 2 , x 3 ) = I x1+x3 ( x 1 , x 2 , x 3 ) (1.9) R( x 1 , x 2 , x 3 ) = I x1+x2 ( x 1 , x 2 , x 3 ) (1.10) L( x 1 , x 2 , x 3 ) = I x2+x3 ( x 1 , x 2 , x 3 ).
(1.11)

The denition in terms of inversions is very interesting, because it emphasizes the relations between major and minor triads. Since inversions are involutions, it is immediate to observe that also P , L and R are involutions.

But, as we observe in the table 1.1, using this denition, we represent major and minor triads as ordered pitchclass sets, with a dierent order: major chords are written from left to right, minor chords from right to left.

Example 1.26. 

L : M ↔ m + 4 L : [x, x + 4, x + 7] ↔ [x -1, x + 4, x + 7] (mod 12) (1.14)
where M represents a major triad and m a minor one. From this denition, we have observed that R and L can be dened as the composition of P and a transposition.

Proposition 1.27. For any triad [x 1 , x 2 , x 3 ] we have

R = P • T -3 = T -3 • P if the triad is major P • T 3 = T 3 • P if the triad is minor L = P • T 4 = T 4 • P if the triad is major P • T -4 = T -4 • P if the triad is minor.
Proof. From the commutative property of the abelian group (Z 12 , +) and the denition of transposition, it is easy to see that each transposition T i commutes with the neo-Riemannian operations.

Let X = [x, x + 4, x + 7] ∈ S be a major triad. Then 

(T -3 • P )(X) = T -3 ([x, x + 3, x + 7]) = [x + 9, x, x + 4] = R(X) (T 4 • P )(X) = T 4 ([x, x + 3, x + 7]) = [x + 4, x + 7, x + 11] = L(X).

P LR-group

The neo-Riemannian operations generate a group known as P LR-group or neo-Riemannian group.

Lemma 1.28. The neo-Riemannian operations L and R act on the set S of all 24 major and minor triads generating a group.

Proof. First of all we observe that P = RLRLRLR. In fact, given a major triad [x, x + 4, x + 7] ∈ S we have

RLRLRLR([x, x + 4, x + 7]) = RLRLRL([x, x + 4, x + 9]) = = RLRLR([x, x + 5, x + 9]) = = RLRL([x + 2, x + 5, x + 9]) = = RLR([x + 2, x + 5, x + 10]) = = RL([x + 2, x + 7, x + 10]) = = R([x + 3, x + 7, x + 10]) = = ([x + 3, x + 7, x]) = = P ([x, x + 4, x + 7]).
We get a similar result applying RLRLRLR to a minor triad. Now we prove that L and R act on S generating a group. First of all, L, R : S → S and every operations obtained as compositions of them is well dened on S. The composition of functions is always associative.

We remind the reader that for every triad X ∈ S the neo-Riemannian operations are involutions, therefore

we have an identity function Id.

Finally, since L and R are involutions, each transformation can be decomposed by alternating the generating function L and R. To construct the inverse of each transformation dened as alternation of L and R, it is sucient to invert the order of composition.

Theorem 1.29. The P LR-group is isomorphic to the dihedral group D 12 of order 24.

Proof. We observe that the elements of the P LR-group are described as R(LR) n or (LR) n , 0 ≤ n ≤ 11. In fact, from Lemma 1.28 we know that each transformation of the P LR-group is constructed by alternating the generating function L and R. Moreover the transformations described as (LR) k L are equivalent to R(LR) 11-k .

Furthermore we observe that (LR) 12 = Id, then we consider the transformations obtained by alternating L and R whose length is lower than 24. Therefore we have twelve elements of type R(LR) n and other twelve of type (LR) n , hence the P LR-group has 24 elements. Finally we observe that we can describe the group with the following presentation (LR), L|(LR) 12 = L 2 = Id, L(RL)L = RL hence P LR D 12 .

Corollary 1.30. The P LR-group acts simply transitively on the set S of 24 major and minor triads.

Proof. From the Theorem 1.29, given any chord X ∈ S its orbit has 24 elements. Since the P LR-group also has 24 elements, simple transitivity follows from the orbit-stabilizer theorem.

Musical examples of neo-Riemannian operations

Although First of all we observe an the alternation of major and minor triads. Moreover the root of the rst four pairs of triads is the same. Finally, between the second and the third, the fourth and the fth, and sixth and seventh pairs of triads the root is moved down a major third. We can easily summarize these observations through the P and L operations: the sequence of chords in Fig. 1.10 can be described as an application of P, L, P, L, P, L, P .

Because of this property, such operations are also known as parsimonious. 

A graph G = (V, E, L) is a note-based graph if each vertex v ∈ V is labeled with a note l ∈ L. Denition 1.32 (Chord-based graph). A graph G = (V, E, L) is a chord-based graph if each vertex v ∈ V
is labeled with a chord l ∈ L.

We will use the term parsimonious graph, introduced by Douthett and Steinbach in [START_REF] Douthett | Parsimonious Graphs: A Study in Parsimony, Contextual Transformation, and Modes of Limited Transposition[END_REF], to indicate the graph associated with parsimonious operations, thus displaying parsimonious voice leading.

Tonnetz

In music, the most famous example of a note-based graph is probably the Tonnetz (see Fig. 1.11), rst introduced by Euler in his 1739 Tentamen novae theoriae musicae [START_REF] Euler | Tentamen novae theoriae musicae ex certissimis harmoniae principiis dilucide expositae[END_REF] and replicated by several musicologists of the XIX th century, such as Hugo Riemann. It is a note-based graph in which pitch classes of the twelve-tone equal temperament are organized along intervals of fth in the horizontal axis, major and minor thirds in the diagonal axis. In this construction each triplet of distinct vertices, which are adjacent pairwise, is a triangle representing a major or a minor triad. We observe that, given a triangle, each reection preserving one of its edges is another triangle sharing two pitch-classes with the given one. From a musical point of view, this means that, given a triangle representing a triad, from each of its edge-ips we obtain another triad sharing two pitch-classes with the given triad. These three edge-ips represent the three neo-Riemannan operations P , R

and L, commonly used in parsimonious voice leading. Visualizing the edge-ips in the Tonnetz, we are considering not only the edges of the triangles, but the entire polygon. Therefore, in this case it is better to dene it as an innite 2-dimensional simplicial complex which tiles the Euclidean plane with triangles, where 0-simplices represent pitch-classes, and 2-simplices identify major and minor triads.

D A E B B F C G D D A E B B F C G D P R L
Cohn noted that the neo-Riemannian Tonnetz is toroidal [START_REF] Cohn | Neo-Riemannian Operations, Parsimonious Trichords, and their Tonnetz Representation[END_REF], an observation 3 which was also made by Guerino Mazzola in his book Geometrie der Töne [START_REF] Mazzola | Geometrie der Töne[END_REF]. In fact, because of the cyclical nature of the pitch classes in the equal temperament, the two axes have cyclic periodicities. Therefore in the innite Tonnetz there is a pattern repeated innitely often. In this pattern the vertices of the top and bottom sides represent the same pitch classes, therefore we can identify the two sides. The same feature is also present between the left and the right hand sides, so we can also identify these two sides. Thus the Tonnetz is mathematically isomorphic to a torus. 3 The Tonnetz is called Terztorus in [START_REF] Mazzola | Geometrie der Töne[END_REF] since it is generated by major and minor thirds. G, its dual G * is a graph in which each vertex corresponds to a face of G, and each face corresponds to a vertex in G. Two vertices in G * are connected by an edge if the corresponding faces in G have a boundary edge in common. The edges in the Chicken-wire torus represent the P , L and R operations, therefore paths along the edges correspond to sequences of major and minor triads. Moreover, as for the Tonnetz as the name suggests, also the Chicken-wire torus can be embedded in a torus.

Other parsimonious graphs

Douthett and Steinbach also gave a graph-theoretical approach to construct parsimonious graphs whose vertices represent triads or seventh chords. This construction is based on the relation denition, according to which a transformation between two chords is parsimonious if the common tones remain xed, and the other tones are moved by a semitone or a whole tone. Denition 1.33 (Relation denition). Let X and Y be two pitch-class sets. We say that X and Y are P m,nrelated (written XP m,n Y ) if there exists a set {x k |k = 0, 1, . . . , m + n -1} and a bijection τ : X → Y such that

X \ Y = {x k |k = 0, 1, . . . , m + n -1}, τ (x) = x if x ∈ X ∩ Y , and τ (x k ) = x k ± 1 (mod 12) if 0 ≤ k ≤ m -1 x k ± 2 (mod 12) if m ≤ k ≤ m + n -1.
We note that since τ is bijective, the cardinality of the two P m,n -related chords has to be the same. This denition is similar to the P n -relation given by Childs [START_REF] Childs | Moving Beyond Neo-Riemannian Triads: Exploring a Transformational Model for Seventh Chords[END_REF], according to which two chords are P n -related if they dier by a half-step in n voices, while the others remain xed.

Remark 1.34. Let X = [x 1 , x 2 , x 3 ], Y = [y 1 , y 2 , y 3 ] be two triads.

If P (X) = Y , then X and Y are P 1,0 -related. In fact m + n -1 = 0, therefore there exists a unique If R(X) = Y , then X and Y are P 0,1 -related. In fact m + n -1 = 0, therefore there exists a unique If L(X) = Y , then X and Y are P 1,0 -related. This case is analogous to that of the parallel P .

x k ∈ X \ Y s.t. τ (x k ) = x k ± 1,
x k ∈ X \ Y s.t. τ (x k ) = x k ± 2,
We can observe that dierent transformations may be described by the same P m,n relation. For instance, the graph of the set S of all 24 major and minor triads induced by P 1,0 and P 0,1 is the Chicken-wire torus.

Another famous example given by Douthett and Steinbach was the Cube Dance. We consider the set 

A = {[x 1 , x 2 , x 3 ]|x 1 , x 2 , x 3 ∈ Z 12 , x 2 = x 1 + 4, x 3 = x 1 + 8} of
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Hamiltonian cycles of musical graphs in music analysis and composition

Hamiltonian cycle in the Chicken-wire Torus

Since paths in the Chicken-wire torus represent sequences through major and minor triads using P, L and R operations, it is interesting to study particular cycles and paths. For example Albini and Antonini enumerated, classied and studied all its Hamiltonian cycles [START_REF] Albini | Hamiltonian Cycles in the Topological Dual of the Tonnetz[END_REF] (see Table 1.2).

Denition 1.36 (Hamiltonian cycle)

. Given a graph G = (V, E), a Hamiltonian cycle of G is a closed path that visits each vertex exactly once.

The Hamiltonian cycles in the Chicken-wire Torus are 124, which are reduced to 62 if we do not distinguish the direction of the cycle. This number can be reduced considering the actions of the group of automorphisms of the Chicken-wire Torus. 
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Classication of all Hamiltonian cycles in the Chicken-wire Torus.

Theorem 1.37. The automorphism group of the Chicken-wire Torus is isomorphic to the dihedral group D 12 of order 24.

Proof. First of all, we recall that for Theorem 1.19 the T /I-group acts on the 24 major and minor triads and T /I D 12 . We will prove that the automorphism group of the Chicken-wire Torus is isomorphic to the T /Igroup. We will denote by CW T = (V, E) the Chicken-wire Torus. Since the labelling are 24, the automorphisms of CW T are at least 24. Moreover, since given any two vertices v 1 , v 2 ∈ V (CW T ) there exists an automorphism f such that f (v 1 ) = v 2 , the automorphism group is vertex transitive. To prove the theorem it is sucient to

show that it has no more than 24 elements. Let v ∈ V (CW T ) be a vertex and let f be an automorphism such that f (v) = v. We take g ∈ T /I such that (g H8 the remaining 24 cycles. They are characterized by the model LRLP LRLP RLRLP LRP LP RP LRP R.

• f )(v) = v.
Only the identity automorphisms map these cycles into themselves.

Musical applications

From a musical point of view, each Hamiltonian cycle of the Chicken-wire Torus is a chord progression which modulates to all 24 major and minor triads using the three neo-Riemannian operations P , L and R. Therefore, it is not surprising to nd Hamiltonian cycles, or part of them, in some musical pieces. A famous example is in the second movement of Beethoven's Ninth Symphony, between measures 143 and 176. The German composer covered 19 triads of the Hamiltonian cycle #41. Therefore, he did not make use of the entire cycle, but it is interesting to observe that such type of cycle can be found in musical, independently from the knowledge on graph theory by the composer. We observe that Beethoven lived between 1770 and 1827, graph theory was just beginning and even if he had known Euler's Tonnetz he would not have thought of Hamiltonian cycles on its dual and their use for composition.

At the same time, these classes of cycles are a useful compositional device for contemporary music [START_REF] Albini | Hamiltonian Graphs as Harmonic Tools[END_REF], so

shown by the composer Giovanni Albini. 4 Moreno Andreatta used dierent Hamiltonian cycles in a popular music context [14]. 5 In the song La sera non è più la tua canzone, with lyrics by Mario Luzi, starting from A M he applied LRLP LP four times realizing the cycle #62. In the song Aprile, with lyrics by the Italian decadent poet Gabriele D'Annunzio, he used the cycles: #1, #60 and #53 starting from B M . We observe that these 3 cycles cannot be decomposed into sub-patterns, and the composer chose them for their nonredundancy characteristic. Gilles Baroin realized pedagogical collection of videos using his Spinnen-Tonnetz model [START_REF] Baroin | The Spinnen-Tonnetz: New Musical Dimensions in the 2D Network for Tonal Music Analysis[END_REF], including the geometric visualizations of harmonic movement along the edges of the graph of the two aforementioned Hamiltonian songs. 

Uniform Triadic Transformations

Starting from the main works on neo-Riemannian theories introduced by David Lewin [START_REF] Lewin | Transformational techniques in atonal and other music theories[END_REF][START_REF] Lewin | Generalized Musical Intervals and Transformations[END_REF], Richard Cohn [START_REF] Cohn | Maximally Smooth Cycles, Hexatonic Systems, and the Analysis of Late-Romantic Triadic Progressions[END_REF][START_REF] Cohn | Neo-Riemannian Operations, Parsimonious Trichords, and their Tonnetz Representation[END_REF][START_REF] Cohn | Introduction to Neo-Riemannian Theory: A Survey and a Historical Perspective[END_REF], Brian Hyer [START_REF] Hyer | Tonal Intuitions in Tristan und Isolde[END_REF][START_REF] Hyer | Reimag(in)ing Riemann[END_REF] and Edward Gollin [35], in 2002 Hook proposed an algebraic framework in order to have a standardized system for labeling triadic transformations and to give a precise denition of neo-Riemannian operations [START_REF] Hook | Uniform Triadic Transformations[END_REF].

In this approach a triad is an ordered pair ∆ = (r, σ), where r is the root of the triad expressed, as usual, as an element of Z 12 , and σ = ± is a sign representing its mode: + for major andfor minor triads.

Example 1.38. C M = (0, +), A m = (9, -).

The set Γ = {(r, σ)|r ∈ Z 12 , σ = ±} represents the collection of all 24 major and minor triads. Given two triads ∆ 1 = (r 1 , σ 1 ) and ∆ 2 = (r 2 , σ 2 ) Hook dened the Γ-interval between them as int Γ = (t, σ), where t = r 2 -r 1 is the transposition level and σ = σ 1 σ 2 is the sign factor.

Example 1.39. Consider the two triads ∆ 1 = (0, +) and ∆ 2 = (9, -). Their interval is (9, -).

As we observe, the Γ-interval is an element of Γ, but it does not mean that it is a triad. The following theorem makes this double nature of Γ more explicit. 

)) = (t 1 , σ 1 )(t 2 + t 3 , σ 2 σ 3 ) = =(t 1 + t 2 + t 3 , σ 1 σ 2 σ 3 ) = (t 1 + t 2 , σ 1 σ 2 )(t 3 , σ 3 ) = = ((t 1 , σ 1 )(t 2 , σ 2 )) (t 3 , σ 3 ).
For every (t, σ) the identity element is (0, +) and the inverse is (-t, σ). In fact we have (0, +)(t, σ) = (t, σ) and (t, σ)(-t, σ) = (0, +). Thus Γ is an abelian group. Finally, t ∈ Z 12 and the set {+, -} form a group isomorphic to Z 2 , hence Γ Z 12 × Z 2 .

Hook observed that Γ as a set of triads with Γ as a group of intervals and the function int Γ form a GIS.

Hook's denitions of triadic transformation and operations are the same introduced by Lewin in [START_REF] Lewin | Generalized Musical Intervals and Transformations[END_REF].

Denition 1.41 (Triadic transformation). A triadic transformation is a map Γ → Γ.

Denition 1.42 (Operation

). An operation is a bijective transformation Γ → Γ.

There are some important musical transformations that are not operations. For instance the transformation mapping triads to its functional dominant: both major and minor triads with the same root are mapped to the same triad.

The operations, together with the composition of maps form a group G of order 24!. Since the action of a transformation on a given triad is not related to its action on any other triad, most of these operations are not interesting from a musical point of view. Consequently, Hook focused on operations with a certain kind of musical coherence, intuitively he studied those that transform each triad in the same way.

Denition 1.43 (Uniform triadic transformation (UTT)). A uniform triadic transformation (UTT) U

is an operation satisfying the following uniformity condition: for every triad and every transposition level t, if U transforms the triad (r, σ) into (r , σ ), then U transforms (r + t, σ) into (r + t, σ ).

The behavior of a UTT is completely determined by three parameters: its sign σ = ±, the transposition levels m = t + (for major triads) and n = t -(for minor triads). Therefore a UTT can be represented as an ordered triple σ, m, n . If σ = + the UTT is called mode-preserving, otherwise it is called mode-reserving.

Many famous musical operations are UTTs.

Example 1.44.

T n = +, n, n P = -, 0, 0 L = -, 4, -4 R = -, -3, 3 .
Including neo-Riemannian operations and many other operations, UTTs are very useful in the modelling sequences of triads. Nevertheless, there are noteworthy operations that are not UTTs.

Remark 1.45. Inversions I n are not UTTs.

Now we describe the actions of UTTs on triads. Let U = σ U , t + , t -be a UTT and let ∆ = (r, σ ∆ ) a triad. U acts on ∆ transposing its root by t + if σ ∆ = + or by t -if σ ∆ = -. Moreover, depending on the sign of σ U , U can leave or change the type of the chord. More precisely: Let U be the set of all UTTs. Since each UTT can be represented as σ, m, n ∈ Z 2 × Z 12 × Z 12 , the order of U is 2 × 12 × 12 = 288. This group is a subgroup of the group of all operations G, since U is the centralizer of T 1 ∈ G.

U (∆) = (r + t + , σ U ) if σ ∆ = + (r + t -, -σ U ) if σ ∆ = - ⇒ U (∆) = (r + t σ∆ , σ ∆ σ U ).
Proposition 1.46. An operation U is a UTT if and only if it commutes with the transposition T 1 .

Proof. Let U = σ U , t + , t -be a UTT and let ∆ = (r, σ ∆ ) a triad. Then

(T 1 U )(∆) = T 1 (U (∆)) = T 1 (r + t σ∆ , σ ∆ σ U ) = = (r + t σ∆ + 1, σ ∆ σ U ) = = (r + 1 + t σ∆ , σ ∆ σ U ) = = U (r + 1, σ ∆ ) = = U (T 1 (∆)) = (U T 1 )(∆).
Now we show that if U commutes with T 1 then U is a UTT. We have to prove that the uniformity condition is satised. To prove this, we observe that U commutes with every transposition T n . In fact by induction we

suppose U T n-1 = T n-1 U , then U T n = U T n-1 T 1 = T n-1 U T 1 = T n-1 T 1 U = T n U. Now we assume that U (∆) = U (r, σ ∆ ) = (r , σ ∆ ) = ∆ . Then U (r + t, σ) = U (T t (∆)) = (U T t )(∆) = (T t U )(∆) = T t (U (∆)) = T t (∆ ) = (r + t, σ ∆ ).
We denote by Q the operation S 1 = +, 1, -1 . We observe that S n = Q n and W n = P Q n . It suces to prove that P and Q may be expressed as products of L and R. In Lemma 1.28 we have already proved that P = RLRLRLR. Since LR = -, 4, 8 • -, 9, 3 = +, 5, 7 = Q 5 and since Q 12 = T 0 , we have

(LR) 5 = (Q 5 ) 5 = Q 25 = (Q 12 ) 2 Q = Q
Corollary 1.52. The Riemann group is isomorphic to the dihedral group of order 24.

Computational approaches

In the last decades, Computational Music Analysis has become increasingly widespread, due in part to the use of dierent mathematical areas 7 . The rst academic computational projects started in the 1960s, providing clarication of musical concepts, testing evolutionary hypotheses, contributing to music technology, creating educational music tools [START_REF] Volk | Mathematical and computational approaches to music: challenges in an interdisciplinary enterprise[END_REF]. These projects have contributed to many dierent areas of music: historical musicology [START_REF] Wiering | Digital critical editions of music: A multidimensional model[END_REF], ethnomusicology [START_REF] Juhász | A systematic comparison of dierent European folk music traditions using self-organizing maps[END_REF], research in musical performance [34], cognitive musicology [START_REF] Volk | Unfolding the potential of computational musicology[END_REF], music theory, and music analysis [START_REF]Special issue: Computational Music Analysis[END_REF].

It is evident that music contains many interesting structures, and music analysis is able to understand and to study them. Traditional music analysis is usually applied directly to the score using Western musical notation.

But, historically, the musical language used in a score was developed according to the needs of the performer.

For the music theorist Tymoczko the use of geometric models can be a good tool to solve this problem. In fact, it is a simple and immediate language to perform music, but it is less useful to study music from a theoretical point of view:

Geometry can help to sensitize us to relationships that might not be immediately apparent in the musical score. Ultimately, this is because conventional musical notation evolved to satisfy the needs of the performer rather than the musical thinker: it is designed to facilitate the translation of musical symbols into physical action, rather than to foment conceptual clarity.
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New technologies based on geometric models of musical objects provide further help.

HexaChord

There are several pieces of software in which musical graphs and other geometric models used in music are integrated. One of them is HexaChord, a computer-aided music analysis environment based on spatial representation of musical objects, developed by Louis Bigo [12] [13]. The geometric models integrated in it are: the musical clock, the circle of fths, the voice-leading space, the Tonnetz and other simplicial complexes isomorphic to it.

Since the Tonnetz represents major and minor triads and their intervallic structure is [START_REF] Amiot | The Torii of phases[END_REF][START_REF] Amiot | Music Through Fourier Space[END_REF][START_REF]Special issue: Computational Music Analysis[END_REF], Bigo denoted it by K [START_REF] Amiot | The Torii of phases[END_REF][START_REF] Amiot | Music Through Fourier Space[END_REF][START_REF]Special issue: Computational Music Analysis[END_REF]. The mathematical idea is to represent each chord as a simplex where each 0-simplex is labeled by one note of the chord. Since card(σ) = dim(σ) + 1, a chord of n notes is represented by an (n -1)-simplex.

Therefore a 0-simplex represents a single note, a 1-simplex a 2-chord, a 2-simplex a 3-chord, a 3-simplex a 7 See [START_REF] Meredith | Computational Music Analysis[END_REF] for a comprehensive perspective on Computational Music Analysis. 8 See [START_REF] Tymoczko | A Geometry of Music[END_REF], page 79.

4-chord, and so on. More generally, the building of a simplicial complex K[a 1 , . . . , a i ] associated to chords whose intervallic structure is [a 1 , . . . , a i ] is described by Bigo as follows. We choose a chord with n notes with intervallic structure [a 1 , . . . , a n ], and we consider the associated (n -1)-simplex. As in the Tonnetz, the 1-simplices determine axes representing particular intervals, therefore simplices are replicated along these axes.

We note that 2-simplicial complexes associated with chords of the same size are isomorphic. Therefore, from a geometrical point of view, all simplicial complexes representing trichords are isomorphic to the dierent Tonnetz : a 3-chord is a chord of 3 notes, then the associated simplex is a 2-simplex and the nal simplicial complex is a tiling of the 2-dimensional Euclidean space with 2-simplices. The only dierences among them are the labels. All simplicial complexes corresponding to the Tonnetz are integrated on HexaChord:

K[1, 1, 10], K[1, 2, 9], K[1, 3, 8], K[1, 4, 7], K[1, 5, 6], K[2, 2, 8], K[2, 3, 7], K[2, 4, 6], K[2, 5, 5], K[3, 3, 6], K[4, 4, 4], K[1, 1, 5], K[1, 2, 4], K[1, 3, 3], K[2, 2, 3]
. These simplicial complexes are not all isomorphic, as it has been pointed out in a recent study [START_REF] Lascabettes | Homologie Persistante Appliqué à la Reconnaissance des Genres Musicaux[END_REF] Functionalities of HexaChord Musical pieces are imported as MIDI les. A MIDI (Musical Instrument Digital Interface) le is a musical le with a specic protocol called MIDI, representing only player information. This is a protocol designed for recording and playing back music on digital synthesizers that is supported by many makes of personal computer sound cards.

Given a MIDI le as an input, HexaChord is able to: visualize chords and chord sequences.

Compute the compactness of the trajectory of the musical piece in each simplicial complex representing a given Tonnetz.

Modify the musical piece through a geometric transformation.

During the execution of the MIDI le, it is possible to visualize in real time each chord in three dierent geometric models: the generalized Tonnetz, the musical clock and the circle of fths. With the option intervallic structure we can choose another simplicial complex, in which we can view the chords and the trace of the musical piece.

In these simplicial complexes it is also possible to visualize the trace in real time clicking on trace on. More precisely, a temporal sequence of chords is represented by a static object, mathematically described as labeled subgraph or sub-complex. Let S = [(S 0 , d 0 ), (S 1 , d 1 ), . . . , (S n , d n )] be a chord sequence. It is represented by a sequence of sub-complexes, called trajectory by Bigo and dened as follows

T K = [(K 0 , d 0 ), (K 1 , d 1 ), . . . , (K n , d n )]
where each sub-complex K i , i ∈ {1, . . . , n}, represents the chord S i and it is labeled with the corresponding

duration d i in S. The simplicial complex T = (Ki,di)∈T K K i
is the subcomplex of K representing the chords in the musical sequence S, and it is called trace.

Depending on the simplicial complex used, the trace of the musical piece is displayed dierently. Clicking on compute compactness the compactness of these traces is calculated, and the results are represented in a histogram. The compactness of each trace gives us information on how much the geometric space used is suitable to represent the chosen musical piece. High compactness of the trajectory in a particular complex might be seen as a stylistic signature of the piece. Therefore, the computation of the compactness might be very helpful in music analysis for music classication.

The other great functionality of HexaChord is to modify a musical sequence through geometric transformations. Given two simplicial complexes K 1 and K 2 , a trajectory T K1 is embedded in K 2 becoming T K2 . From a musical point of view it means that T K2 is associated to a new musical sequence. Therefore, if we start from K[3, 4, 5], choosing a dierent simplicial complex as a destination complex and clicking on compute transformation, HexaChord modies the original musical sequence in a way which is compatible with the topological structure of the underlying simplicial complexes.

Other geometric transformations developed in HexaChord are translations (that correspond to a musical transpositions) and rotations. As in the previous transformation, also in these cases the musical sequence is modied. Moreover with HexaChord it is also possible to connect a piano keyboard and play/record a musical piece.

All functionalities are available also for the performance.

Chapter 2

History of the Tonnetz 1

Euler's Tonnetz

It is commonly said that the Tonnetz was originally introduced by Euler in 1739 in his Tentamen novae theoriae musicae (Tentamen ) [29] [20]. Indeed, a graph similar to the Tonnetz appeared in chapter IX, De genere diatonico-chromatico (the diatonic-chromatic genus), to represent the scheme of a musical tuning. In (2.1)

The biggest is obviously 675: since we want 12 tones in the same octave, we nd the biggest number 2 x such that 2 x < 675, that is 2 9 = 512, and multiply each divisor of 675 by a power of 2 until we nd an octave-equivalent tone in the octave range 512 --1024. In this way we obtain the following tones of the diatonic-chromatic genus:

512, 540, 576, 600, 640, 657, 720, 768, 800, 864, 900, 960, 1024.

(2.2)

One would be tempted to say that this construction looks like an algorithm to build articial musical scales that do not correspond to the real ones. On the contrary, the distances between the numbers in (2.2) correspond, with a good approximation, to the well-known intervallic ratios of the just intonation. A similar method was known in Greek antiquity. In particular, it is explained in Plato's Timaeus, who learned it from the Pythagoreans [START_REF] Kayas | L'âme de l'univers et la musique dans le Timée de Platon (34 b et ss)[END_REF].

After the theoretical construction of the diatonic-chromatic genus, Euler explained how to tune the instruments with it:

1. x the tone F , and from it get all the other F ; 2. from F get C and A by forming a (perfect) fth and a major third respectively; 1 To appear in [19]. 

Naumann and Oettingen's tables

Euler's writings were well known to the German physicist and physician Hermann von Helmholtz (18211894), as well as to the German mathematician and philosopher Moritz Wilhem Drobisch (18021896). The latter wrote some monographs on tuning and temperament. In 1858, his student Carl Ernst Naumann (18321910) wrote the dissertation Über die verschiedenen Bestimmungen der Tonverhältnisse und die Bedeutung des Pythagorischen oder reine Quinten-Systems für unsere heutige Musik (About the dierent determinations of the tone relations and the meaning of the Pythagorean or perfect fths system for our music today ), in which appeared a diagram representing a tone system dened by perfect fth and major third relations 7 (see Fig. 2.

3).

The organization of this table reminds us of Euler's Speculum Musicum : the tones are organized along the intervals of fth in the horizontal axis and along intervals of thirds in the vertical axis. But there is no mention to Euler's musical diagrams, there is just a citation of the Tentamen in a footnote on page 21.

Arthur von Oettingen (18361920) too knew Euler's musical works: in the 1866 treatise Harmoniesystem in dualer Entwickelung (Harmony system in dual development ) [START_REF] Oettingen | Harmoniesystem in dualer Entwickelung[END_REF] the Swiss mathematician is cited in the introduction, at page 19, and the Tentamen is mentioned in a footnote at page 45.

On page 15 a table of tones appears (see Fig. 6 See [START_REF] Gollin | The Oxford Handbook of Neo-Riemannian Music Theories[END_REF], p. 289. 7 See [START_REF] Naumann | Über die verschiedenen Bestimmungen der Tonverhältnisse und die Bedeutung des pythagoräischen oder reinen Quinten-Systems für unsere heutige Musik[END_REF], p. 19. Riemann's study Die Natur der Harmonik [START_REF] Riemann | Die Natur der Harmonik[END_REF] suggests a shift from the initial acoustic vision. Steege's chapter The nature of harmony: a translation and commentary (again in [START_REF] Gollin | The Oxford Handbook of Neo-Riemannian Music Theories[END_REF]) has provided an introduction and translation of this treatise. Steege pointed out Riemann's theoretical evolution, written in this text at a time when a budding psychological perspective was beginning to supersede Riemann's earlier acoustical and physiological perspective. Riemann approached music theory from three reasons: a physical (in particular acoustical), physiological, and psychological perspective. There is a path from the physical area of sounding bodies (tönende Körper ) to the psychological one of tone sensations (Tonempndungen ) to the physiological one of mental representation, or imagination, of tones, represented by the Tonvorstellungen (tone representation).

Steege compared the dierences in Helmholtz and Riemann's ideas of representation (Vorstellung ) in music:

Helmholtz identies it as the moment in which one is not hearing clearly, whereas Riemann considers it as an act before the mind's eye which corresponds to taking possession of musical objects. For Gollin, another important passage from the physical to the psychological musical meaning in Riemann occurred between the fourth (1894) and the fth edition (1900) of Musik Lexikon [START_REF] Riemann | Musik-Lexikon[END_REF]. In the fourth edition, the German music theorist wrote: D[robisch], earlier an advocate of the twelve-tone [pitch] system, in his last writing, adopted in principle the viewpoint of Helmholtz. 9 But in the fth edition Riemann modied the sentence in the following way: D[robisch], earlier an advocate -based on Herbartian philosophy -of the twelve-tone [pitch] system, recognized in his last writing the importance, in principle, of [the system of ] just intonation.

Johann Friedrich Herbart (17761841) was a philosopher who proposed a theory of the mind in which physical events in the brain are secondary to logical activities. For Gollin the elimination of Helmholtz in favor of Herbart in Riemann's sentence has underlined the change in musical meaning: from physical to psychological.

The denitive move from the physical to the psychological musical meaning arrived few years later, in 1914, in Riemann's 1914 Ideen zu einer `Lehre von den Tonvorstellungen' (Ideas for a `teaching of Tonvorstellungen' ) [START_REF] Riemann | Ideen zu einer 'Lehre von den Tonvorstellungen[END_REF]. In this work a new Verwandtschaftstabelle appeared (see Fig. 2.6). Similarly to the precursory models, the horizontal axes are organized along intervals of fths and the vertical ones along intervals of thirds. Each parallelogram can be divided into two triangles: one above and the other one below. The triangles above represent major triads and the triangle below minor triads, exactly like in the Tonnetz. Gollin observed that in the Ideen deviations in intonation had little or no bearing on a listener's understanding on the logic and function of tones. Riemann located the functional interpretation of musical tones in the path derivation of those tones 9 See [START_REF] Gollin | The Oxford Handbook of Neo-Riemannian Music Theories[END_REF], p. 285. The original one is at the pages 242-243 in [START_REF] Riemann | Musik-Lexikon[END_REF]. 10 See [START_REF] Gollin | The Oxford Handbook of Neo-Riemannian Music Theories[END_REF], p. 286. The original one is at page 272 in [START_REF] Riemann | Musik-Lexikon[END_REF] (fth edition). on the musical table. Therefore, the Verwandtschaftstabelle of the Ideen is a map not of acoustically determined tones, but of logically conceivable tonal relations reckoned as pathways therein.

Gollin underlined that despite the fact that this model is close to the modern Tonnetz, it has some important dierences. The most important is that in the Tonnetz, like in all modern geometric spaces, the vertices are considered as pitch classes in the twelve-tone equal temperament.

Gollin also studied the relationships between Euler's Speculum Musicum and the version of the Tonnetz that appeared in the XIX th century, in particular Riemann's Tonverwandtschaftstabelle [36]. Gollin observed that the similarity in their geometric structures was rst noted by Vogel in 1960 [START_REF] Vogel | Die Musikschriften Leonhard Eulers[END_REF]; for this reason the latter considered the Speculum Musicum as a precursor of the nineteenth-century diagrams. On the contrary, Gollin suggested that this conclusion is not supported by enough evidence in the works of Riemann, Oettingen, Naumann or Helmholtz. Indeed, as we have noted previously, Euler is mentioned in some works, but only briey and there is no reference to his geometric-musical models. Moreover Euler's Speculum Musicum is limited, while nineteenth-century diagrams are potentially innite.

The Tonnetz in Mathematical Music Theory

As mentioned in the previous chapter, in Mathematical Music Theory the Tonnetz is the most famous geometric model; it is also frequently used in Computational Music Analysis, and its properties oer theoretical, analytical ad well as compositional tools. It is also known as neo-Riemannian Tonnetz, because it was rediscovered in the neo-Riemannian theories developed from the 1980s.

A natural question arises: in what way did we arrive from nineteenth-century music theorists' tables to the neo-Riemannian Tonnetz ? One of the most important pioneers of neo-Riemannian theories was the music theorist David Lewin (1933Lewin ( 2003)). In the article Transformational techniques in atonal and other music theories [START_REF] Lewin | Transformational techniques in atonal and other music theories[END_REF], Lewin proposed some musical transformations, formalized them from a mathematical point of view, but there are no references to the Tonnetz or to any other geometric space. Successively, in his Generalized Musical Intervals and Transformations The originality of this model is that it was not introduced for acoustic reasons or to describe the function of sounds in some musical context, but to measure the interval distances. For example, in going from C 0 to F 1 we move two steps right and one step up. Another originality of this model is that, despite of the fact that it is considered in just intonation, Lewin observed that it might be conceived as living in an equal temperament with an underlying equivalence between the pitches sharing the same letter name. He himself observed that in this case the geometric space is equivalent to one with identied sides: Then C -1 , C 0 , C 1 , C 2 , . . . , C n , . . . would all mean the same thing; so would E -1 , E 0 , E 1 , E 2 , . . . , E n . In this case, moving one square north on the [geometric space] would be functionally equivalent to moving four squares east.

13

If he had considered equivalent all pitches with the same letter name, he might have interpreted his geometric 11 Chapter 2, example 2.1.6, p. 21 in [START_REF] Lewin | Generalized Musical Intervals and Transformations[END_REF]. 12 Footnote on page 22 in [START_REF] Lewin | Generalized Musical Intervals and Transformations[END_REF]. 13 See [START_REF] Lewin | Generalized Musical Intervals and Transformations[END_REF], p. 22.

space as a torus.

In his Introduction to Neo-Riemannian Theory: A Survey and a Historical Perspective [START_REF] Cohn | Introduction to Neo-Riemannian Theory: A Survey and a Historical Perspective[END_REF] Richard Cohn sketched the origins and the developments of neo-Riemannian theory. Starting from Lewin's works, he underlined the importance of Hyer's studies [41] [42]. In his 1989 dissertation, he extracted four Lewin triadic transformations: P , L, R and D. The last one is dened as transposition by ve semitones (T 5 ). Hyer had the idea to recuperate the geometric models used by nineteenth-century music theorists in order to represent them. More precisely, Hyer used the geometric dual of the Tonnetz. Hyer's geometric model is conceived as equally tempered, and such a conception has enriched his exploration on the algebraic group structure of the transformations.

Generalized Tonnetze

Since the 1990s several music theorists developed generalized versions of the traditional Tonnetz. These models were introduced for dierent studies, and for this reason they are apparently not related.

What does it mean to generalize the Tonnetz ? As the music theorist Tymoczko observed [START_REF] Tymoczko | The Generalized Tonnetz[END_REF], the Tonnetz can be studied from three points of view: acoustical, the main point of view of the XIX th century music theorists; common-tone relationships;

to describe parsimonious voice-leading.

The last two points of view could appear to coincide, but they do not, because in general retaining common tones does not produce the most parsimonious voice-leading between chords.

The three points of view of the Tonnetz are generalized in dierent ways.

Generalized acoustic Tonnetz

A rst natural way to generalize the acoustic Tonnetz is to introduce an additional axis for each additional interval. In 1998 Gollin introduced a three-dimensional expansion of the Tonnetz in which horizontal planes contain copies of the traditional Tonnetz, while segments in a xed direction outside the plane represent intervals of minor seventh (see Fig. 2.8).

Figure 2.8: Gollin's three-dimensional Tonnetze (from [35] While the Tonnetz tiles the plane with triangles, this three-dimensional expansion tiles the three-dimensional Euclidean space with tetrahedra, representing dominant and half-diminished seventh chords, and triangular prisms. Since tetrahedra sharing a common edge represent sevenths with two notes in common, this model is also used to study common-tone relationships and parsimonious voice-leading between dominant and halfdiminished seventh chords.

Generalized Tonnetz for common-tone relationships

A generalization of the Tonnetz as a structure of common-tone relationships was constructed by Cohn in 1997 [START_REF] Cohn | Neo-Riemannian Operations, Parsimonious Trichords, and their Tonnetz Representation[END_REF] (see Fig. 2.9). The geometric structure coincides with the traditional Tonnetz, but the horizontal and vertical axes represent general intervals of x and y semitones, not necessarily fths and major thirds. Then each triangle represents a trichord, not only major and minor triads. and their geometric spaces. His idea was to consider each cyclic group as a direct product of cyclic subgroups.

For example, since C 12 C 4 × C 3 , we can represents the 12 tones of the twelve-tone equal temperament along intervals of 4 semitones (major thirds) in the horizontal axis, and intervals of 3 semitones (minor thirds) in the vertical one. Consequently, the diagonal axis represents intervals of 7 semitones (perfect fths) and each triangle identies a major or a minor triad. This space coincides with the traditional Tonnetz rotated by 90°.

Balzano applied the same idea to the cyclic groups C 20 , C 30 and C 42 , obtaining geometric spaces analogous to the traditional Tonnetz, but with a dierent number of steps in the axis. It is interesting to observe that, in this paper, Balzano did not mention previous works with the same geometric structure: he did not use the term Tonnetz, nor did he cite Euler or Hugo Riemann.

Other equal temperaments are also considered by Catanzaro in his article entitled Generalized Tonnetze [START_REF] Catanzaro | Generalized Tonnetze[END_REF],

where he studied the generalized Tonnetz considering a generic N -tone equal temperaments Z N and arbitrary trichords. He focused on the study of the geometric spaces from a mathematical point of view. In particular he gave a classication of all geometric space C(n 1 , n 2 , n 3 ),

n 1 + n 2 + n 3 = N and 1 ≤ n 1 ≤ n 2 ≤ n 3 ≤ N ,
where (n 1 , n 2 , n 3 ) is the intervallic structure of the trichords considered. The classication is summarized in the following theorem:

Theorem 2.2. The connected components of the generalized Tonnetz C(n 1 , n 2 , n 3 ) are isomorphic and are 2-simplices, tetrahedra boundaries, tori, cylinders, Möbius bands, or circles of tetrahedra boundaries.

This classication has been recently rened by Lascabettes from a simplicial perspectives including homology èersistency as applied to automatic stylistic analysis [START_REF] Lascabettes | Homologie Persistante Appliqué à la Reconnaissance des Genres Musicaux[END_REF].

Generalized Tonnetz to describe the parsimonious voice leading

The generalized Tonnetz as a graph representing parsimonious voice-leading was studied by Tymoczko: he suggested a mathematical strategy to create generalized Tonnetze based on the property of duality in graph theory [START_REF] Tymoczko | The Generalized Tonnetz[END_REF]. Although this presents some problems due to the non-equivalence between musical and geometric distance, it is an interesting strategy and it includes some dierent models that are well known.

We recall that music theorists usually use two kinds of graphs to represent voice-leading: note-based and chord-based graphs, and in the latter parsimonious voice leading corresponds to short-distance motion along edges. We already considered the Tonnetz (note-based) and the Chicken-wire torus (chord-based).

In his treatise A Geometry of Music Tymoczko [START_REF] Tymoczko | A Geometry of Music[END_REF] determined a general construction for chord-based graphs: these are typically arrangements of n-dimensional cubes linked by shared faces or shared vertices. Since the Tonnetz is a note-based graph, his idea was to generalize note-based graphs as duals of chord-based graphs.

More precisely, the duality is to be considered among their components: the note-based graph is obtained from a chord-based graph considering the dual of each n-dimensional cube.

First of all he considered chord-based graphs in the orbifold chord-space T n /S n built as follows. Let R n be the set of n-tuples (x 1 , x 2 , . . . , x n ) such that x i , i = 1, . . . , n, represents the notes of the i-th musical part. On this space the following two equivalence relations are considered (to be applied to each component of a point in

R n ):
1. two tones that form one or more intervals of octave are equivalent

x i ∼ x j ⇔ x i ≡ x j (mod 12)
2. chords formed by the same notes are equivalent

x ∼ y ⇔ ∃σ ∈ S n s.t. σ(x) = y.

Tymoczko characterized two families of chord-based graphs. In the rst one, the size of the chord evenly divides the size of the scale, and geometrically we have a circle of n-dimensional cubes linked by shared vertices. In the second one, the size of the chord is relatively prime to the size of the scale, and from a geometric point of view we have a circle of cubes linked by shared facets. 14 . The most interesting dierence between the two families is the dimension of the cubes of the graph: in the rst one it is determined by the size of the chords, in the second one by the number of dierent types of chords.

We consider the three-dimensional case of the rst family. Since the dimension of the cubes corresponds to the size of the chords, geometrically we have 3-dimensional cubes in which each vertex represents a chord of 3 notes. Being in the rst family, we have a circle of cubes linked by shared vertices. The well-known Cube Dance, introduced by Douthett and Steinbach in 1998 [START_REF] Douthett | Parsimonious Graphs: A Study in Parsimony, Contextual Transformation, and Modes of Limited Transposition[END_REF] and already mentioned in the previous chapter, realizes this construction (see Fig. 2.10). To explain the musical meaning, we consider a single 3-dimensional cube in a coordinate system such that the center coincides with the origin of the system, the edges are parallel to the axes and the coordinate vertices are (±1, ±1, . . . , ±1) (see Fig. 2.11). The general idea is that each vertex represents a chord, and in the passage from a vertex to another one the movements of notes of the two chords is related to the movement of the corresponding coordinates. For example, if the vertex (1, 1, 1) represents the chord (C, E, A ), the vertex (1, 1, -1) corresponds to (C, E, G): the rst two notes remain xed because 14 In a polytope a facet of dimension n is a face that has dimension n -1. triangles represent triads, but in the latter there are also augmented triads, therefore the corresponding dual does not have the same geometric structure than the traditional Tonnetz. Now we consider chord-based graphs of the second family. We recall that the dimension of this kind of graph does not depend on the number of notes, but on the number of types of chords we want to represent.
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Therefore, if we consider chords of the same type, the graph is unidimensional, independently of the dimension of the chord. In this case the chord-based graph is a generalized circle of fths. To construct the corresponding note-based graph we need to replace each vertex of the chord-based graph by an n -1-simplex, where n -1 is the number of notes of the chord, thus the number of vertices of the simplex. The result is a circle of simplices linked by shared facets. The unidimensional chord-based graph whose vertices represent triads in the diatonic scale 15 is a circle of vertices (see Fig. 2.17). The corresponding dual is the diatonic Möbius strip discovered by Mazzola in 1980 [START_REF] Mazzola | Gruppen und Kategorien in der Musik: Entwurf einer mathematischen Musiktheorie, Heldermannr[END_REF] and successively explored by Brower in 2008 [16]: a circle of triangles, each of which identies a triad, linked by shared edges. More precisely the two edges B-G are linked by forming a Möbius strip.

We can construct a similar graph by considering collections of 4 notes chords in the diatonic scale. We consider a unidimensional chord-based graph in which each vertex is a seventh chord. Similarly to the previous construction, to each vertex corresponds a simplex with 4 notes in the dual, thus a tetrahedron. Furthemore, the corresponding note-based graph is a circle of tetrahedra, each of which represents a seventh chord (see Fig.

2.18)

. 15 The size of the chord is 3, which is relatively prime to the size 7 of the diatonic scale. Thus the graph is in the second family. Moreover we have only triads that are one type of trichord, the dimension of the chord-based graph is 1. Tymoczko observed that in the border of this circle of tetrahedra there is a circle of thirds that is reminiscent of Elaine Chew's Spiral Array [START_REF] Chew | Towards a Mathematical Model of Tonality[END_REF]. From a geometric point of view this is a helical realization of the Tonnetz.

Actually, unlike the other geometric models, the Spiral Array involves concentric helices representing pitches, intervals, chords and keys in the same spatial framework. The outer helix represents pitch classes, organized along intervals of fths in the helix such that vertically the interval distance is a major third (see Fig. 

Parsimonious operations and graphs for seventh chords

As we have seen, there are many algebraic formalizations and geometric visualizations of transformations on major and minor triads. But in addition to triads, seventh chords are often used in the music literature. A natural question arises: can we dene a group similar to the neo-Riemannian group P LR acting on the set of seventh chords (of the twelve-tone equal temperament)? More precisely: can we dene a group of operations between sevenths to describe parsimonious voice leading, so that the generators x three notes and move a single note by a semitone or a whole tone? And can we construct a generalized Tonnetz for sevenths? Problems on relationships between seventh chords were studied by Childs [START_REF] Childs | Moving Beyond Neo-Riemannian Triads: Exploring a Transformational Model for Seventh Chords[END_REF], by Douthett and Steinbach [START_REF] Douthett | Parsimonious Graphs: A Study in Parsimony, Contextual Transformation, and Modes of Limited Transposition[END_REF], by Gollin [35], by Fiore and Satyendra [31], by Arnett and Barth [START_REF] Arnett | Generalizations of the Tonnetz: Tonality Revisited[END_REF] and by Kerkez [50] for some of the types of seventh chords. In this chapter, we will extend the previous studies by considering dierent sets of sevenths.

Previous works on transformations on seventh chords

Childs investigated transformational parsimonious voice leading between dominant and half-diminished sevenths [START_REF] Childs | Moving Beyond Neo-Riemannian Triads: Exploring a Transformational Model for Seventh Chords[END_REF]. In particular he studied their P 2 -relations 1 , i.e. the transformations that x two notes and move the other two notes by a semitone or a whole tone. 1 For more details on Pn-relation see Section 1.4.

Gollin also studied the relationships between the same types of sevenths chords [35] in his three-dimensional expansion of the Tonnetz, already mentioned in Section 2.5. We recall that each tetrahedron represents a dominant or a half-diminished seventh. There are six transformations between tetrahedra sharing a common edge: they are spatially represented as a ip of the two tetrahedra around their common edge, and musically they exchange the type of sevenths. Each edge-ip maintains at least the two notes represented by the two vertices of the shared edge, and in one case the two tetrahedra share three notes (see Fig. Arnett and Barth [START_REF] Arnett | Generalizations of the Tonnetz: Tonality Revisited[END_REF] started from the three-dimensional expansion of the Tonnetz introduced by Gollin and observed that Gollin's study did not include the minor seventh chords, very common in the music literature.

Therefore they proposed to consider a set of 36 chords consisting of all dominant, half-diminished and minor seventh chords and to nd the transformations between them that maintain three common notes. They dened the following ve operations:

P 1 : [x, x + 4, x + 7, x + 10] → → [x, x + 3, x + 7, x + 10] P 2 : [x, x + 3, x + 7, x + 10] → → [x, x + 3, x + 6, x + 10] R1 : [x, x + 4, x + 7, x + 10] → → [x, x + 4, x + 7, x + 9] R2 : [x, x + 3, x + 7, x + 10] → → [x, x + 3, x + 7, x + 9] L : [x, x + 4, x + 7, x + 10] → → [x + 2, x + 4, x + 7, x + 10].
The rst four transformations move a single note by a semitone, whereas L shifts a note by a whole tone.

Moreover, L is the algebraic formalization of the edge-ip between tetrahedra representing seventh chords with three common notes described in Gollin's three-dimensional Tonnetz.

Although this study includes more types of seventh chords than Childs' and Gollin's ones, other important types of seventh chords are not considered and the algebraic structure of these transformations is not studied.

Kerkez had the idea to extend the P LR-group to major and minor sevenths [START_REF] Kerkez | Extension of Neo-Riemannian PLR-group to Seventh Chords[END_REF].

Denition 3.3 (Seventh chord transformation). A seventh chord transformation is a map Σ → Σ.

Denition 3.4 (Seventh chord operation). A seventh chord operation is a bijective transformation Σ → Σ.

As for the triads, there are some musical transformations that are not operations. For instance there are some dierent chords with the same secondary dominant, therefore the transformation mapping each chord into its secondary dominant is not an operation.

For our study we do not want to consider all types of sevenths in Σ. For the moment we consider the following types of seventh chords: dominant (D), minor (m), half-diminished (hd), major (M) and diminished (d), and let H ⊂ Σ be the set of all cyclicly marked seventh chords of these 5 types:

H ={[x 1 , x 2 , x 3 , x 4 ] | x 1 , x 2 , x 3 , x 4 ∈ Z 12 , x 2 = x 1 + 4, x 3 = x 1 + 7, x 4 = x 1 + 10}∪ {[x 1 , x 2 , x 3 , x 4 ] | x 1 , x 2 , x 3 , x 4 ∈ Z 12 , x 2 = x 1 + 3, x 3 = x 1 + 7, x 4 = x 1 + 10}∪ {[x 1 , x 2 , x 3 , x 4 ] | x 1 , x 2 , x 3 , x 4 ∈ Z 12 , x 2 = x 1 + 3, x 3 = x 1 + 6, x 4 = x 1 + 10}∪ {[x 1 , x 2 , x 3 , x 4 ] | x 1 , x 2 , x 3 , x 4 ∈ Z 12 , x 2 = x 1 + 4, x 3 = x 1 + 7, x 4 = x 1 + 11}∪ {[x 1 , x 2 , x 3 , x 4 ] | x 1 , x 2 , x 3 , x 4 ∈ Z 12 , x 2 = x 1 + 3, x 3 = x 1 + 6, x 4 = x 1 + 9}
As in Lewin and Hook's terminology, we dene a transformation among seventh as a map H → H, and an operation as a bijective transformation H → H.

We rst analyze all P 1,0 relations, that is the transformations moving just one note by one semitone: let us call Q i+ the map that sends each type of seventh chord to another type moving the i-th member up a semitone, where i = R, T, F, S depending on whether the member is considered to be the root (R), the third (T), fth (F) or seventh (S), respectively. Analogously, let Q i-be the map that moves the i-th member down a semitone.

By overstriking the maps that do not produce any of the classical types of seventh chord, we have:

Q R+ (D) = d Q R+ (m) = D Q R+ (hd) = m Q R+ (M ) = hd Q R+ (d) = hd Q R-(D) Q R-(m) Q R-(hd) = M Q R-(M ) Q R-(d) = D Q T + (D) Q T + (m) = D Q T + (hd) Q T + (M ) Q T + (d) = hd Q T -(D) = m Q T -(m) Q T -(hd) Q T -(M ) Q T -(d) = D Q F + (D) Q F + (m) Q F + (hd) = m Q F + (M ) Q F + (d) = hd Q F -(D) Q F -(m) = hd Q F -(hd) Q F -(M ) Q F -(d) = D Q S+ (D) = M Q S+ (m) Q S+ (hd) Q S+ (M ) Q S+ (d) = hd Q S-(D) = m Q S-(m) = hd Q S-(hd) = d Q S-(M ) = D Q S-(d) = D.
We observe that some transformations are inverse to each other:

Q R+ (M ) = hd Q R-(hd) = M Q R+ (m) = D Q S-(D) = m Q R+ (hd) = m Q S-(m) = hd Q S+ (D) = M Q S-(M ) = D Q T + (m) = D Q T -(D) = m Q F + (hd) = m Q F -(m) = hd.
It remains to consider the following operations:

Q R+ (D) = d Q R-(d) = D Q T -(d) = D Q F -(d) = D Q S-(d) = D Q S-(hd) = d Q S+ (d) = hd Q R+ (d) = hd Q T + (d) = hd Q F + (d) = sd. Q R+ is the inverse of Q R-, Q T -, Q F -and Q S-
. This is due to the particular symmetry of the intervallic structure [START_REF] Amiot | The Torii of phases[END_REF][START_REF] Amiot | The Torii of phases[END_REF][START_REF] Amiot | The Torii of phases[END_REF][START_REF] Amiot | The Torii of phases[END_REF] of diminished sevenths, in which the members of the chord play an identical role. From an acoustical point of view we have only 3 diminished sevenths: [START_REF]Special issue: Computational Music Analysis[END_REF][START_REF] Arnett | Generalizations of the Tonnetz: Tonality Revisited[END_REF][START_REF] Biggs | Graph Theory[END_REF]. Unlike the other four types, the diminished sevenths would be only three (and not twelve), e.g. C, C , D, because the other nine chords are three by three enharmonic to them. This explains why we have four transformations that have the same inverse. Since we are considering cyclicly marked chords, the diminished sevenths count as 12 distinct chords, which means that our set of transformations is well-dened. Hence we have 4 transformations between diminished and half-diminished seventh chords and 4 transformations between diminished and dominant seventh chords

C o = E o = G o = A o = [0, 3, 6, 9], C o = E o = G o = B o = [1, 4, 7, 10], D o = F o = A o = B o = [2,
Q S-(hd) = d Q R-(d) = hd Q S-(hd) = d Q T -(d) = hd Q S-(hd) = d Q F -(d) = hd Q S-(hd) = d Q S-(d) = hd Q R+ (D) = d Q R-(d) = D Q R+ (D) = d Q T -(d) = D Q R+ (D) = d Q F -(d) = D Q R+ (D) = d Q S-(d) = D.
Now we consider the P 0,1 relations, i.e. the transformations that move a single note by a whole tone. Analogously to what was done above, let us call Q i++ the map which sends each type of seventh chord in another type moving the i-th member up a whole tone, and Q i--the map which moves the i-th member down a whole tone. We obtain another classical type of seventh chords only moving the root up a whole tone or the seventh down a whole tone:

Q R++ (D) = hd Q R++ (m) = M Q R++ (hd) Q R++ (M ) = m Q R++ (d) Q S--(D) Q S--(m) = M Q S--(hd) = D Q S--(M ) = m Q S--(d).
Again, we nd some transformations that are the inverse of each other:

Q R++ (D) = hd Q S--(hd) = D Q R++ (m) = M Q S--(M ) = m Q R++ (M ) = m Q S--(m) = M.
Overall we have 17 transformations corresponding to a parsimonious voice leading among our 5 types of seventh chords.

We want to dene these transformations similarly to the neo-Riemannian operations. Let K be a set of chords of dierent types and of the same cardinality (in our case K = H). We start by dening a generalized parallel operation P . Denition 3.5. Let P ij : K → K be the maps which send an i-th type of chord to a j-th type of chord with the same root, i = j, and vice versa, and which are identity the other types.

In H the types of the seventh chords are 5, and we will denote them with the numbers from 1 to 5: 

R = P • T -3 = T -3 • P , if it is minor R = P • T 3 = T 3 • P .
Denition 3.7. Let R ij : K → K be the maps which send an i-th type of chord to a j-th type chord whose root is transposed 3 semitones down, a j-th type of chord to an i-th type of chord transposed 3 semitones up, and which x the other types:

R ij = T ±3 • P ij = P ij • T ±3 . (3.1) 
More precisely, we are using the usual symbol T n , but it is not the usual transposition, because it is to be considered applied only to the i-th and j-th types of sevenths. We will continue to use this notation also in the other denitions and in the following chapters. Now, 5 of the 17 transformations are generalized relative operations:

Q R , Q S R 12 : [x, x + 4, x + 7, x + 10] → → [x, x + 4, x + 7, x + 9] Q R , Q S R 23 : [x, x + 3, x + 7, x + 10] → → [x, x + 3, x + 7, x + 9] Q R , Q S R 42 : [x, x + 4, x + 7, x + 11] → → [x, x + 4, x + 7, x + 9] Q R , Q S R 35 : [x, x + 3, x + 6, x + 10] → → [x, x + 3, x + 6, x + 9] Q F , Q S R 53 : [x, x + 3, x + 6, x + 9] → → [x, x + 3, x + 7, x + 9].
Remark 3.8. R 12 and R 23 coincide with R1 and R2 dened by Arnett and Barth. Moreover, R 42 coincide with the map P dened by Kerkez.

For the operation L we recall that, from Proposition 1.27, if the triad is major

L = P • T 4 = T 4 • P , if it is minor L = P • T -4 = T -4 • P .
Denition 3.9. Let L ij : H → H be the maps which send an i-th type of chord to a j-th type of chord whose root is transposed 4 semitones up, a j-th type of chord to an i-th type of chord transposed 4 semitones down, and which x the other types: L 42 coincides with S dened by Kerkez.

L ij = T ±4 • P ij = P ij • T ±4 (3.2)
We have identied 12 of the 17 transformations between seventh chords as operations similar to P, L and R. We now see that the other operations can be dened as the composition of a parallel transformation and a transposition (with a number of semitones dierent from 3 and 4). Denition 3.11. Let Q ij be the maps which send an i-th type of chord to a j-th type of chord transposed 1 semitone up, a j-th type of chord to an i-th type of chord transposed 1 semitone down, and x the other types:

Q ij = T ±1 • P ij = P ij • T ±1 .
(3.3) Denition 3.12. Let RR ij be the maps which send an i-th type of chord to a j-th type of chord transposed 6 semitones, and which x the other types:

RR ij = T ±6 • P ij = P ij • T ±6 .
(3.4) Denition 3.13. Let QQ ij be the maps which send an i-th type of chord to a j-th type of chord transposed 2 semitones up, a j-th type of chord to an i-th type of chord transposed 2 semitones down, and x the other types:

QQ ij = T ±2 • P ij = P ij • T ±2 .
(3.5) Denition 3.14. Let N ij be the maps which send an i-th type of chord to a j-th type of chord transposed 5 semitones up, a j-th type of chord to an i-th type of chord transposed 5 semitones down, and x the other types:

N ij = T ±5 • P ij = P ij • T ±5 . (3.6)
With these transformations we can dene the missing operations in the following way:

Q R , Q S Q 43 : [x, x + 4, x + 7, x + 11] → → [x + 1, x + 4, x + 7, x + 11] Q R Q 15 : [x, x + 4, x + 7, x + 10] → → [x + 1, x + 4, x + 7, x + 10] Q T , Q S RR 35 : [x, x + 3, x + 6, x + 10] → → [x, x + 3, x + 6, x + 9] Q R , Q T QQ 51 : [x, x + 3, x + 6, x + 9] → → [x, x + 2, x + 6, x + 9] Q R , Q F N 51 : [x, x + 3, x + 6, x + 9] → → [x, x + 3, x + 5, x + 9].
Remark 3.15. Our 17 operations and the neo-Riemannian P , L and R operations have some features in common.

Each operation exchanges two types of chord, thus it is mode-reversing.

Each operation is an involution.

Each operation move only one note by a semitone or by a whole tone.

Like the neo-Riemannian operations act on the set S of all 24 the major and minor triads, our 17 operations act on the set H of all 60 sevenths considered.

The 17 operations we found satisfy the uniformity condition introduced by Hook for triads in Denition 1.43.

Remark 3.16. Crans, Fiore and Satyendra dene P, L and R as inversions I n ; since inversions are isometries, they leave unchanged lengths and angles, and minor and major triads geometrically are represented by triangles which the edge lengths correspond to 3, 4 and 5 semitones. This idea could in principle also be used to dene transformations between seventh chords, but it cannot be applied to all types since the lengths of the edges and the angles of the quadrilaterals that compose them are not equal. We have only 2 quadrilaterals that are isometric:

the one representing the dominant sevenths and the one representing half-diminished sevenths. There exists a unique transformation between these types of seventh chords, L 13 .

We summarize the 17 transformations: 

P 12 : [x, x + 4, x + 7, x + 10] → → [x, x + 3, x + 7, x + 10] P 14 : [x, x + 4, x + 7, x + 10] → → [x, x + 4, x + 7, x + 11] P 23 : [x, x + 3, x + 7, x + 10] → → [x, x + 3, x + 6, x + 10] P 35 : [x, x + 3, x + 6, x + 10] → → [x, x + 3, x + 6, x + 9] R 12 : [x, x + 4, x + 7, x + 10] → → [x, x + 4, x + 7, x + 9] R 23 : [x, x + 3, x + 7, x + 10] → → [x, x + 3, x + 7, x + 9] R 42 : [x, x + 4, x + 7, x + 11] → → [x, x + 4, x + 7, x + 9] R 35 : [x, x + 3, x + 6, x + 10] → → [x, x + 3, x + 6, x + 9] R 53 : [x, x + 3, x + 6, x + 9] → → [x,
: [x, x + 4, x + 7, x + 11] → → [x + 1, x + 4, x + 7, x + 11] Q 15 : [x, x + 4, x + 7, x + 10] → → [x + 1, x + 4, x + 7, x + 10] RR 35 : [x, x + 3, x + 6, x + 10] → → [x, x + 3, x + 6, x + 9] QQ 51 : [x, x + 3, x + 6, x + 9] → → [x, x + 2, x + 6, x + 9] N 51 : [x, x + 3, x + 6, x + 9] → → [x, x + 3, x + 5, x + 9].
To visualize these 17 transformations we can construct a graph whose vertices represent the types of seventh chord, and the edges represent the transformations between them. The graph has 5 vertices and 17 edges. Sequences of sevenths chords are often used in jazz music. An example in which we can nd some of our operations is in Ellington's Heaven. Between measures 11-14 there is the following passage: 

hd D M m d L 13 R 42 L 42 Q 43 P1 4 P 2 3 R 2 3 R R 3 5 R 5 3 R 3 5 P 3 5 P 1 2 R 1 2 N 5 1 Q Q 5 1 Q 1 5 L 1 5
E ∆ Q43 --→ E R35 --→ C o L15 --→ A 7 .

The P LRQ group

We want to determine the group generated by our 17 operations. Let P LRQ be the group generated by them.

Each transformation t ∈ P LRQ exchanges two types of sevenths and xes the others, thus we can associate to it a permutation of S 5 (more precisely, a transposition). This information is not sucient to identify the transformation, because, in general, there exist more transformations that exchange the same types of seventh (for instance P 12 and R 12 ). Therefore, to identify it we add a vector v ∈ Z 5 12 , in which the i-th component, i ∈ {1, . . . , 5}, is the number of semitones of which the root of the chord of type i has to be shifted to become the root of the chord of type j. It is easy to see that in this way no ambiguity is possible.

Example 3.17. We consider R 12 . It is identied by (σ, v) R12 = ((12), (-3, 3, 0, 0, 0)).

In fact, since it exchanges dominant and minor sevenths, the associated transposition of S 5 is σ = (12). To determine the associated vector we decompose the denition of R 12 for each type of seventh:

R 12 : [x, x + 4, x + 7, x + 10] → [x, x + 4, x + 7, x + 9] R 12 : [x, x + 3, x + 7, x + 10] → [x + 1, x + 3, x + 7, x + 10] R 12 : [x, x + 3, x + 6, x + 10] → [x, x + 3, x + 6, x + 10] R 12 : [x, x + 4, x + 7, x + 11] → [x, x + 4, x + 7, x + 11] R 12 : [x, x + 3, x + 6, x + 9] → [x, x + 3, x + 6, x + 9].
If the seventh is dominant the root is moved 3 semitones down. Conversely, if the seventh is minor the root is moved 3 semitones up. In the other cases the operations is the identity, thus the root remains xed.

We write the 17 transformations between seventh chords as pairs of elements (σ, v) ∈ S 5 × Z 5 12 explicitly: 12), (0, 0, 0, 0, 0)) 14), (0, 0, 0, 0, 0)) 23), (0, 0, 0, 0, 0)) 35), (0, 0, 0, 0, 0)) 12), (-3, 3, 0, 0, 0)) 23), (0, -3, 3, 0, 0)) 42), (0, 3, 0, -3, 0)) 43), (0, 0, -1, 1, 0)) 15), (1, 0, 0, 0, -1)) 35), (0, 0, -6, 0, 6)) 51), (-2, 0, 0, 0, 2)) 51), (-5, 0, 0, 0, 5)).

P 12 : [x, x + 4, x + 7, x + 10] → → [x, x + 3, x + 7, x + 10] (σ, v) = ((
P 14 : [x, x + 4, x + 7, x + 10] → → [x, x + 4, x + 7, x + 11] (σ, v) = ((
P 23 : [x, x + 3, x + 7, x + 10] → → [x, x + 3, x + 6, x + 10] (σ, v) = ((
P 35 : [x, x + 3, x + 6, x + 10] → → [x, x + 3, x + 6, x + 9] (σ, v) = ((
R 12 : [x, x + 4, x + 7, x + 10] → → [x, x + 4, x + 7, x + 9] (σ, v) = ((
R 23 : [x, x + 3, x + 7, x + 10] → → [x, x + 3, x + 7, x + 9] (σ, v) = ((
R 42 : [x, x + 4, x + 7, x + 11] → → [x, x + 4, x + 7, x + 9] (σ, v) = ((
R 35 : [x, x + 3, x + 6, x + 10] → → [x, x + 3, x + 6, x + 9] (σ, v) = ( (35) 
Q 43 : [x, x + 4, x + 7, x + 11] → → [x + 1, x + 4, x + 7, x + 11] (σ, v) = ((
Q 15 : [x, x + 4, x + 7, x + 10] → → [x + 1, x + 4, x + 7, x + 10] (σ, v) = ( ( 
RR 35 : [x, x + 3, x + 6, x + 10] → → [x, x + 3, x + 6, x + 9] (σ, v) = ( ( 
QQ 51 : [x, x + 3, x + 6, x + 9] → → [x, x + 2, x + 6, x + 9] (σ, v) = ((
N 51 : [x, x + 3, x + 6, x + 9] → → [x, x + 3, x + 5, x + 9] (σ, v) = ((
More precisely, we can represent each transformation t ∈ P LRQ as an element of

S 5 × V where V = {v ∈ Z 5 12 | 5 i=1 v i = 0},
since this is clearly true for all the 17 generators. Extending the Hook's denition of Riemannian UTT to sevenths chords, we can observe this means that our operations are Riemannian.

The mapping thus dened becomes a group homomorphism if we dene on this set the following operation:

(σ k , v k ) • • • • • (σ 1 , v 1 ) = = σ k • • • σ 1 , v 1 + σ -1 1 (v 2 ) + (σ 2 σ 1 ) -1 (v 3 ) + • • • + (σ k-1 • • • σ 1 ) -1 (v k ) = (3.7) = σ k • • • σ 1 , v 1 + σ -1 1 (v 2 ) + σ -1 1 σ -1 2 (v 3 ) + • • • + σ -1 1 • • • σ -1 k-1 (v k ) . P 12 L 13 P 12 R 23 = (σ , v ) σ =σ 4 σ 3 σ 2 σ 1 = (12)(13)(12)(23) = Id v =v 1 + σ -1 1 (v 2 ) + σ -1 1 σ -1 2 (v 3 ) + σ -1 1 σ -1 2 σ -1
3 (v 4 ) = =(0, -3, 3, 0, 0) + (0, 0, 0, 0, 0) + (0, -4, 4, 0, 0) + (0, 0, 0, 0, 0) = =(0, 7, -7, 0, 0).

With the following elements just computed R 42 L 42 = (Id, (0, -7, 0, 7, 0)) (3.8) P 14 L 42 P 14 R 12 = (Id, (7, -7, 0, 0, 0))

P 12 L 13 P 12 R 23 = (Id, (0, 7, -7, 0, 0)) we can generate each element (Id, (v 1 , v 2 , v 3 , v 4 , 0)), with (v 1 , v 2 , v 3 , v 4 , 0) ∈ Z 5
12 such that 4 1 v i = 0. To see this, taken a, b, c ∈ Z, we have to solve a(0, -7, 0, 7, 0) + b(7, -7, 0, 0, 0) + c(0, 7, -7, 0, 0)

≡ (v 1 , v 2 , v 3 , v 4 , 0) (mod 12) (-7b, -7a + 7b -7c, 7c, 7a) ≡ (v 1 , v 2 , v 3 , v 4 , 0) (mod 12)            -7b ≡ v 1 -7a + 7b -7c ≡ v 2 7c ≡ v 3 7a ≡ v 4 ⇒            -7b ≡ v 1 7b -7c ≡ v 2 + 7a 7c ≡ -v 3 7a ≡ v 4 ⇒            7b ≡ -v 1 -v 1 -v 3 ≡ v 2 + v 4 7c ≡ -v 3 7a ≡ v 4
which is solvable because 7 is coprime with 12.

To obtain all elements (Id, (v

1 , v 2 , v 3 , v 4 , v 5 )), with (v 1 , v 2 , v 3 , v 4 , v 5 ) ∈ Z 5
12 such that 5 1 v i = 0, it is sucient to add to the 3 generators listed in 3.8 the generator P 12 P 35 R 23 P 12 L 15 L 13 = (Id, (7, 0, 0, 0, -7)).

From this, it is evident that V Z 4 12 , hence P LRQ S 5 Z 4 12 . For algebraic reasons we have considered 60 sevenths, 12 for each type, but we recall that some diminished sevenths are enharmonic equivalent. Similarly, some of the 17 transformations are dierent from a theoretical and mathematical point of view, but enharmonic equivalent from an acoustical point of view: The Power Towers graph (see Fig. 2.15) realized by Douthett and Stainbach [START_REF] Douthett | Parsimonious Graphs: A Study in Parsimony, Contextual Transformation, and Modes of Limited Transposition[END_REF], that we mentioned in Section 2.5, is a subgraph of our graph. The Power Towers is a chord-based graph representing dominant, minor, major and diminished sevenths. These vertices and their edges are also in our graph. Our Clover graph diers from the rst one for twelve vertices representing major sevenths and the related edges.

The

P 35 ∼ R 35 ∼ R 53 ∼ RR
If we observe the drawing of our graph, it is evident that a rotation of the plane by 2π 3 induces automor- 

C ∆ L42 --→ F m R42 --→ G ∆ Q43 --→ A ∅ R23 --→ C m P23 --→ C ∅ Q43 --→ B ∆ P14 --→ B 7 L13 --→ D ∅ P23 --→ D m R42 --→ F ∆ - → P14 --→ F 7 L13 --→ B ∅ R23 --→ C m P23 --→ C ∅ Q43 --→ C ∆ P14 --→ C 7 L13 --→ E ∅ Q43 --→ D ∆ P14 --→ D 7 L15 --→ C o - → P35 --→ G ∅ P23 --→ G m R12 --→ B 7 P12 --→ A m R12 --→ C 7 L13 --→ F ∅ P35 --→ D o L15 --→ G 7 R12 --→ E m R42 --→ G ∆ - → Q43 --→ A ∅ L13 --→ E 7 P14 --→ E ∆ L42 --→ G m P12 --→ A 7 L15 --→ C o L15 --→ F 7 P14 --→ F ∆ L42 --→ A m P12 --→ A 7 - → P14 --→ A ∆ R42 --→ F m P23 --→ F ∅ L13 --→ D 7 P14 --→ D ∆ R42 --→ B m P23 --→ B ∅ Q43 --→ B ∆ L42 --→ D m P23 --→ D ∅ Q43 --→ C ∆
There are probably too many Hamiltonian cycles to list them all as Albini did for the traditional Chicken-wire Torus. But with such a symmetrical structure in the graph we expect to nd sequences 2 of sevenths or other musical structures with some regularity. It is the case of the following interesting Hamiltonian path:

[B ∆ Q43 --→ B ∅ L13 --→ G 7 R12 --→ E m ] R42 --→ (3.9) R42 --→[G ∆ Q43 --→ A ∅ L13 --→ E 7 R12 --→ C m ] - → R42 --→[E ∆ Q43 --→ F ∅ L13 --→ C 7 R12 --→ A m ] R42 --→ R42 --→(C ∆ Q43 --→ D ∅ P35 --→ D o L15 --→ B 7 R12 --→ G m ) - → R42 --→[D ∆ Q43 --→ E ∅ L13 --→ C 7 R12 --→ A m ] R42 --→ (3.10) R42 --→[C ∆ Q43 --→ C ∅ L13 --→ A 7 R12 --→ F m ] - → R42 --→[A ∆ Q43 --→ B ∅ L13 --→ F 7 R12 --→ D m ] R42 --→ R42 --→(F ∆ Q43 --→ G ∅ P35 --→ C o L15 --→ D 7 R12 --→ C m ) - → R42 --→[G ∆ Q43 --→ A ∅ L13 --→ F 7 R12 --→ D m ] R42 --→ (3.11) R42 --→[F ∆ Q43 --→ F ∅ L13 --→ D 7 R12 --→ B m ] - → R42 --→[D ∆ Q43 --→ D ∅ L13 --→ B 7 R12 --→ G m ] R42 --→ R42 --→(B ∆ Q43 --→ C ∅ P35 --→ C o L15 --→ A 7 R12 --→ F m )
The structure of this Hamiltonian path presents a sequence where the main motif 3.9 (from B ∆ to G m ) is repeated twice 5 semitones up: the rst repetition is from D ∆ to C m , the second one from G ∆ to F m . This Hamiltonian path is interesting not only because it corresponds to this sequence of sevenths, but also because within each of the three motifs we nd another sequence. In fact, we consider the rst of the three motifs: the 2 In music theory a sequence is the repetition of a motif or melodic element at a higher or lower pitch. musical phrase from B ∆ to E m is repeated three times 3 semitones down. And in the third repetition the repetition is modied: instead of connecting a half-diminished seventh with a dominant seventh through L 13 , a diminished seventh is inserted and the connection L 13 is substituted by L 15 • P 35 . This new phrase is indicated in parentheses. Musically it sounds like a passage that allows the composer to get to the next sequence creating a sense of variety. We used OpenMusic, a visual programming language that has some tools dedicated to this, to write a piece of music using this sequence (see Fig. This was anyway only one of the possible choices, and we may consider also other sets of sevenths. We recall that the sevenths are 4-chords obtained by overlapping 3 thirds. By limiting ourselves to major and minor thirds, the types analyzed up to now do not exhaust all the combinatorial possibilities. In fact we also have We will continue the numbering of the species following the order of the list above. We summarize all the 9 species in the table 3 Half-diminished (hd) 3

(3, 3, 4, 2) [x, x + 3, x + 6, x + 10] C = [0, 3 , 6, 10] Major (M) 4 (4, 3, 4, 1) 
[x, x + 4, x + 7, x + 11] C ∆ = [0, 4 , 7, 11] Diminished (d) 5 (3, 3, 3, 3) 
[x, x + 3, x + 6, x + 9] C o = [0, 3 , 6, 9] 
Minor major (mM) 6

[x, x + 3, x + 7, x + 11] C ∆ m = [0, 3 (3, 4, 4, 1) 
Augmented major (AM) 7 In order to determine all P 1,0 and P 0,1 relations on the set H * , the rst step is the exhaustive search of any seventh obtained by moving all members of each type of seventh by a semitone or a whole tone. We denote again with Q i+ and Q i++ the maps that transforms each seventh moving the i-th member up a semitone and a whole tone, where i = R, T, F, S, and with Q i-and Q i--the maps that move the i-th member down a semitone and a whole tone respectively.

H * ={[x 1 , x 2 , x 3 , x 4 ] | x 1 , x 2 , x 3 , x 4 ∈ Z 12 , x 2 = x 1 + 4, x 3 = x 1 + 7, x 4 = x 1 + 10}∪ {[x 1 , x 2 , x 3 , x 4 ] | x 1 , x 2 , x 3 , x 4 ∈ Z 12 , x 2 = x 1 + 3, x 3 = x 1 + 7, x 4 = x 1 + 10}∪ {[x 1 , x 2 , x 3 , x 4 ] | x 1 , x 2 , x 3 , x 4 ∈ Z 12 , x 2 = x 1 + 3, x 3 = x 1 + 6, x 4 = x 1 + 10}∪ {[x 1 , x 2 , x 3 , x 4 ] | x 1 , x 2 , x 3 , x 4 ∈ Z 12 , x 2 = x 1 + 4, x 3 = x 1 + 7, x 4 = x 1 + 11}∪ {[x 1 , x 2 , x 3 , x 4 ] | x 1 , x 2 , x 3 , x 4 ∈ Z 12 , x 2 = x 1 + 3, x 3 = x 1 + 6, x 4 = x 1 + 9}∪ {[x 1 , x 2 , x 3 , x 4 ] | x 1 , x 2 , x 3 , x 4 ∈ Z 12 , x 2 = x 1 + 3, x 3 = x 1 + 7, x 4 = x 1 + 11}∪ {[x 1 , x 2 , x 3 , x 4 ] | x 1 , x 2 , x 3 
3

Q R+ (D) = d Q R+ (m) = D Q R+ (hd) = m Q R+ (M ) = hd Q R+ (d) = hd Q R+ (mM ) = A Q R+ (AM ) = m Q R+ (A) = hd Q R+ (Df ) = D Q R-(D) Q R-(m) = AM Q R-(d) = M Q R-(M ) Q R-(d) = D Q R-(mM ) Q R-(AM ) Q R-(A) Q R-(Df ) Q T + (D) Q T + (m) = D Q T + (hd) = Df Q T + (M ) Q T + (d) = hd Q T + (mM ) = M Q T + (AM ) Q T + (A) Q T + (Df ) Q T -(D) = m Q T -(m) Q T -(hd) = A Q T -(M ) = mM Q T -(d) = D Q T -(mM ) Q T -(AM ) Q T -(A) Q T -(Df ) = hd Q F + (D) = A Q F + (m) Q F + (hd) = m Q F + (M ) = AM Q F + (d) = hd Q F + (mM ) Q F + (AM ) Q F + (A) Q F + (Df ) = D Q F -(D) = Df Q F -(m) = hd Q F -(hd) Q F -(M ) Q F -(d) = D Q F -(mM ) Q F -(AM ) = M Q F -(A) = D Q F -(Df ) Q S+ (D) = M Q S+ (m) = mM Q S+ (hd) Q S+ (M ) Q S+ (d) = hd Q S+ (mM ) Q S+ (AM ) Q S+ (A) = AM Q S+ (Df ) Q S-(D) = m Q S-(m) = hd Q S-(hd) = d Q S-(M ) = D Q S-(d) = D Q S-(mM ) = m Q S-(AM ) = A Q S-(A) = mM Q S-(Df ) = hd Q R++ (D) = hd Q R++ (m) = M Q R++ (hd) = mM Q R++ (M ) = m Q R++ (d) Q R++ (mM ) = AM Q R++ (AM ) = D Q R++ (A) = Df Q R++ (Df ) = A Q R--(D) Q R--(m) Q R--(hd) Q R--(M ) Q R--(d) Q R--(mM ) = AM ( ( ( ( ( ( Q R--(AM ) Q R--(A) Q R--(Df ) Q T ++ (D) Q T ++ (m) Q T ++ (hd) Q T ++ (M ) Q T ++ (d)
( ( ( ( ( ( Q T ++ (mM ) ( ( ( ( ( (

Q T ++ (AM ) Q T ++ (A) Q T ++ (Df ) Q T --(D) Q T --(m) Q T --(hd) Q T --(M ) Q T -- (d) 
( ( ( ( ( (

Q T --(mM ) ( ( ( ( ( ( Q T --(AM ) Q T --(A) Q T --(Df ) = A Q F ++ (D) Q F ++ (m) Q F ++ (hd) Q F ++ (M ) Q F ++ (d)
( ( ( ( ( ( Q F ++ (mM ) ( ( ( ( ( ( The second step is to associate each pair of inverses and to classify the parsimonious operations. Now we 3 The additions and changes to the previous calculations are highlighted in red. 12), (0, 0, 0, 0, 0, 0, 0, 0, 0)) P 14 : [x, x + 4, x + 7, x + 10] → → [x, x + 4, x + 7, x + 11] (σ, v) = (( 14), (0, 0, 0, 0, 0, 0, 0, 0, 0)) P 18 : [x, x + 4, x + 7, x + 10] → → [x, x + 4, x + 8, x + 10] (σ, v) = (( 18), (0, 0, 0, 0, 0, 0, 0, 0, 0)) 19), (-6, 0, 0, 0, 0, 0, 0, 0, 6))

Q F ++ (AM ) Q F ++ (A) Q F ++ (Df ) = A Q F --(D) Q F --(m) Q F --(hd) Q F --(M ) Q F --(d) ( ( ( ( ( ( Q F --(mM ) ( ( ( ( ( ( Q F --(AM ) Q F --(A) = Df Q F --(Df ) Q S++ (D) Q S++ (m) Q S++ (hd) Q S++ (M ) Q S++ (d)
P
RR 35 : [x, x + 3, x + 6, x + 10] → → [x, x + 3, x + 6, x + 9] (σ, v) = ((35), (0, 0, 6, 0, -6, 0, 0, 0, 0)) RR 39 : [x, x + 3, x + 6, x + 10] → → [x, x + 4, x + 6, x + 10] (σ, v) = ((87), (0, 0, 6, 0, 0, 0, 0, 0, -6))

RR 98 : [x, x + 4, x + 6, x + 10] → → [x + 2, x + 4, x + 6, x + 10] (σ, v) = ((98), (0, 0, 0, 0, 0, 0, 0, -6, 6))

QQ 38 : [x, x + 3, x + 6, x + 10] → → [x, x + 2, x + 6, x + 10] (σ, v) = ((38), (0, 0, 2, 0, 0, 0, 0, -2, 0)) QQ 51 : [x, x + 3, x + 6, x + 9] → → [x, x + 2, x + 6, x + 9] (σ, v) = ((51), (-2, 0, 0, 0, 2, 0, 0, 0, 0)) QQ 98 : [x, x + 4, x + 6, x + 10] → → [x, x + 2, x + 6, x + 10] (σ, v) = ((98), (0, 0, 0, 0, 0, 0, 0, -2, 2))

N 51 : [x, x + 3, x + 6, x + 9] → → [x, x + 3, x + 5, x + 9] (σ, v) = ((51), (-5, 0, 0, 0, 5, 0, 0, 0, 0)).

Chapter 4

Parsimonious operations and graphs for triads

As we have already observed, there are many algebraic and geometric studies on major and minor triads.

Although they are the chords which are the most used in music, they are not the only types of triads: there are also the diminished and the augmented triads. The diminished triads are formed by two minor thirds.

Conversely the augmented triads are obtained by two major thirds, therefore:

[x, x + 3, x + 6] (mod 12), x ∈ Z 12 , intervallic structure: [START_REF] Amiot | The Torii of phases[END_REF][START_REF] Amiot | The Torii of phases[END_REF][START_REF] Andreatta | Towards Pedagogability of Mathematical Music Theory: Algebraic Models and Tiling Problems in computer-aided composition[END_REF] (diminished triad) We want to extend the studies on triadic operations including also diminished and augmented triads. We Le S * = {[x 1 , x 2 , x 3 ]|x 1 , x 2 , x 3 ∈ Z 12 , x 2 = x 1 + 3 or x 2 = x 1 + 4, x 3 = x 2 + 3 or x 3 = x 2 + 4} be the set of cyclicly marked major, minor, diminished and augmented triads. Because of the intervallic structure of augmented triads, as in the case of diminished sevenths, some of the maps Q i± above have the same inverse, thus some operations are enharmonic equivalent from a musical point of view:

Q Am ∼ N Am ∼ R Am L AM ∼ L M A ∼ P AM .
Remark 4.12. Three operations of the list coincide with the three neo-Riemannian operations: L M m = L, P M m = P and R M m = R. Moreover, they are the only most parsimonious operations between major and minor triads.

We summarize the operations with the following graph. 

Generalized Cube Dance and Chicken-wire Torus

We focus on the particular case of major, minor and augmented triads. We recall that S = {[x 1 , x 2 , x 3 ]|x 1 , x 2 , x 3 ∈ Z 12 , x 2 = x 1 + 3 or x 2 = x 1 + 4, x 3 = x 1 + 7} is the set of 24 cyclicly marked major and minor triads. Let S 1 = S ∪ {[x 1 , x 2 , x 3 ]|x 1 , x 2 , x 3 ∈ Z 12 , x 2 = x 1 + 4, x 3 = x 1 + 8} be the set of major, minor and augmented triads. The most parsimonious operations acting on S 1 are: Q Am , L M m = L, L AM , N Am , P M m = P , L M A , R Am , P AM , and R M m = R. Our aim is to construct the associated parsimonious graph.

As already done in the generalized Chicken-wire Torus for seventh chords, we identify edges and vertices that are enharmonic equivalent. Therefore we have 12 vertices representing major triads, other 12 vertices for minor triads, and only 4 vertices representing augmented triads. The associated graph is represented in Fig. 4.3. We can observe that the Cube Dance is a subgraph of it. This is because the Cube Dance is the parsimonious graph representing all P 1,0 relations among major, minor and augmented triads. In our graph there are all of them and, in addition, the relative R M m = R that is the unique P 0,1 -relation. Therefore we can consider this graph as a generalized Cube Dance. Since it represents all neo-Riemannian P , L and R operations, the Chicken-wire Torus is another subgraph of it. 

C M C m E m E M A m A M F m F M D M D m A M A m B M B m D m D M F m F M G m G M E M E m B M B m

Operations among sevenths and triads

In the previous chapters we have determined parsimonious operations acting on dierent sets of triads or sevenths. But in music literature the most common sequences of chords include both triads and sevenths.

With respect to common practice period in particular, there are not so many long sequences of seventh chords, because they are dissonant in nature. But it is usual to nd sequences of chords in which there are both sevenths and triads. Therefore, we want to dene new musical operations among sevenths and triads. Our aim is to nd a general framework in which to include the already known parsimonious operations among triads, the parsimonious operations among sevenths, and also parsimonious operations among seventh and triads.

Parsimonious operations among sevenths and triads

There are several possibilities to dene parsimonious operations among triads and sevenths. For the moment, we will focus on very simple operations, that is those in which a single note is added or deleted, which is possible since some triads are embedded in some sevenths.

Similarly to what we have done in previous chapters, we will dene some new parsimonious operations capable of classifying our new operations among sevenths and triads. Let K be a set of sevenths and triads. Denition 5.1. Let P ij : K → K be the map which sends an i-th type of seventh to a j-th type of triad with the same root, and which xes the other types. Denition 5.2. Let R ij : K → K be the map which sends an i-th type of seventh to a j-th type of triad whose root is transposed 3 semitones up, a j-th type of triad to an i-th type of seventh whose root is transposed 3 semitones down, and which xes the other types:

R ij = T ±3 • P ij = P ij • T ±3 .
Denition 5.3. Let L ij : K → K be the map which sends an i-th type of seventh to a j-th type of triad whose root is transposed 4 semitones up, a j-th type of triad to an i-th type of seventh whose root is transposed 4 semitones down, and which xes the other types:

L ij = T ±4 • P ij = P ij • T ±4 .
We will use the notation used in the previous chapters to represent the set of chords. For instance, we consider K 1 = H ∪ S be the set containing the 5 classical types of sevenths (dominant, minor, half-diminished, major and diminished) and major and minor triads. The parsimonious operations among these sevenths and that we can easily represent as U 1|H = (θ 1 , v 1 ) and U 2|H = (θ 2 , v 2 ). Applying the Formula 5.1 we obtain U 2 • U 1 = (θ 2 , (v 2 , (0, 0, 0, 0, 0))) • (θ 1 , (v 1 , (0, 0, 0, 0, 0))) = = (θ 2 θ 1 , (v 1 + θ -1 1 (v 2 ), (0, 0, 0, 0)))

that we can easily represent as U 2|H U 1|H = (θ 2 θ 1 , v 1 + θ -1 1 (v 2 )). But this is exactly the same result that we obtain applying the Formula 3.7. For triads the argument is analogous. Now we show an example of applications if one operation exchanges only triads and the other one only sevenths.

Example 5.9. We consider the operations L 13 : [x, x + 4, x + 7, x + 10] → → [x + 2, x + 4, x + 7, x + 10] (θ, (v, w)) = (Id, (13), Id, ((4, 0, -4, 0, 0), (0, 0, 0, 0))) R M m : [x, x + 4, x + 7] → → [x, x + 4, x + 9] (θ, σ, τ, (v, w)) = (( 12), ((0, 0, 0, 0, 0), (-3, 3, 0, 0)))

exchanging, respectively, dominant and half-diminished sevenths and major and minor triads. Applying the formula 5.1, we obtain:

R M m • L 13 = ((M m), ((0, 0, 0, 0, 0), (-3, 3, 0, 0))) • (( 13), ((4, 0, -4, 0, 0), (0, 0, 0, 0))) = = ((M m)( 13), ((4, 0, -4, 0, 0), (0, 0, 0, 0) + ((0, 0, 0, 0, 0), (-3, 3, 0, 0))) = = ((M m)( 13), ((4, 0, -4, 0, 0), (-3, 3, 0, 0))).

Finally, we show some example of application with two operations exchanging sevenths and triads.

Example 5.10. We consider the operations L 4m : [x, x + 4, x + 7, x + 11] → → [x + 4, x + 7, x + 11] (θ, v, w) = ((4m), ((0, 0, 0, 4, 0), (0, -4, 0, 0))) R 3m : [x, x + 3, x + 6, x + 10] → → [x + 3, x + 6, x + 10] (θ, v, w) = ((3m), ((0, 0, 3, 0, 0), (0, -3, 0, 0)))

exchanging, respectively, minor sevenths and minor triads, and half-diminished sevenths and minor triads. We apply the formula 5.1:

L 4m • R 3m = ((4m), ((0, 0, 0, 4, 0), (0, -4, 0, 0))) • ((3m), ((0, 0, 3, 0, 0), (0, -3, 0, 0))) = = ((4m)(3m), ((0, 0, 3, 0, 0), (0, -3, 0, 0)) + (3m)((0, 0, 0, 4, 0), (0, -4, 0, 0))) = = ((34m), ((0, 0, 3, 0, 0), (0, -3, 0, 0)) + ((0, 0, -4, 4, 0), (0, 0, 0, 0))) = = ((34m), ((0, 0, -1, 4, 0), (0, -3, 0, 0)))

Now we list the parsimonious operations generating the ST -group as elements (θ, (v, w)): P 12 : [x, x + 4, x + 7, x + 10] → → [x, x + 3, x + 7, x + 10] (θ, (v, w)) = ((12), ((0, 0, 0, 0, 0), (0, 0, 0, 0))) P 14 : [x, x + 4, x + 7, x + 10] → → [x, x + 4, x + 7, x + 11] (θ, (v, w)) = (( 14), ((0, 0, 0, 0, 0), (0, 0, 0, 0))) P 23 : [x, x + 3, x + 7, x + 10] → → [x, x + 3, x + 6, x + 10] (θ, (v, w)) = ((23), ((0, 0, 0, 0, 0), (0, 0, 0, 0)))

P 35 : [x, x + 3, x + 6, x + 10] → → [x, x + 3, x + 6, x + 9] (θ, (v, w)) = ((35), ((0, 0, 0, 0, 0), (0, 0, 0, 0))) R 12 : [x, x + 4, x + 7, x + 10] → → [x, x + 4, x + 7, x + 9] (θ, (v, w)) = (( 12), ((-3, 3, 0, 0, 0), (0, 0, 0, 0))) R 23 : [x, x + 3, x + 7, x + 10] → → [x, x + 3, x + 7, x + 9] (θ, (v, w)) = (( 23), ((0, -3, 3, 0, 0), (0, 0, 0, 0)))

aside the musical application of all theoretical constructions we presented. We are aware there is still much work to be done to show that the formal and theoretical aspects that have been discussed are not only interesting from a mathematical point of view, but also as a way to suggest new original applications in music analysis and composition.
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 12 Figure 1: Il Tonnetz neo-Riemanniano e le operazioni P , L e R

Figure 3 :

 3 Figure 3: Il Chicken-wire torus generalizzato per accordi di settima. I vertici blu-pentagonali rappresentano le settime di dominante, quelli rossi-romboidali le settime minori, quelli verdi-circolari le semidiminuite, quelli gialli-esagonali quelle maggiori e quelli arancioni-quadrangolari le settime diminuite.

4 i=1

 4 Abbiamo costruito anche il grafo basato su accordi corrispondente alle 7 operazioni su triadi maggiori, minori e diminuite. Il Chicken-wire torus è un sottografo di tale grafo. Analogamente a quanto fatto per le settime, possiamo rappresentare ogni trasformazione come una coppia (σ, v) ∈ S 4 × W , dove S 4 è il gruppo simmetrico su 4 elementi e W = {w ∈ Z 4 12 | w i = 0}. Inne abbiamo studiato il gruppo P LR * generato da tutte le 13 operazioni che agiscono sulle 4 specie di triadi, ottenendo il seguente risultato. Teorema 4. Il gruppo P LR * è isomorfo a S 4 Z 3 12 .
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 45 Figure 4: Le Tonnetz et le opérations néoriemanniennes P , L et R

Figure 6 :

 6 Figure 6: Chicken-wire torus généralisé pour accords de septième. Les sommets pentagonaux en bleu représentent les septièmes dominantes, les rhomboïdes en rouge les septièmes mineures, les circonférentielles en vert les semi-diminuées, les hexagonales en jaune les majeures et les quadrangulaires en orange les septièmes diminuées.

Théorème 4 .

 4 Le groupe P LR * est isomorphe à S 4 Z 3 12 . Opérations entre septièmes et triades Jusqu'à présent, nous avons étudié des opérations parcimonieuses qui agissent sur diérents ensembles de triades ou de septièmes, donc des ensembles avec des accords de même cardinalité. Mais, dans la littérature musicale, les séquences d'accords les plus courantes comprennent les triades et les septièmes. En particulier aux XVIIe, XVIIIe et XIXe siècles, les compositeurs ont rarement utilisé de longues séquences de septièmes, car ce sont des accords dissonants, utilisés pour créer des moments de tension, mais qui se résolvent ensuite en triade majeur ou mineu. Il était donc assez courant d'utiliser des séquences en triade et en septième. Nous avons donc également étudié le cas d'opérations parcimonieuses entre les accords de septième et de triade. Plus précisément, nous avons tenté d'introduire une approche générale permettant de dénir des opérations parcimonieuses entre les accords de septième et de triade, mais aussi les opérations déjà connues entre triades et celles entre septièmes. Plusieurs opérations parcimonieuses peuvent être dénies entre les accords de septième et de triade. Pour le moment, nous avons analysé les plus parcimonieux, c'est-à-dire ceux dans lesquels il est possible d'ajouter ou de supprimer une note, puis ceux dans lesquels les triades sont immergées dans les septièmes. Nous avons, par exemple, considéré l'ensemble des triades majeures et mineures et les 5 espèces classiques des septièmes. Sur cet ensemble agissent 6 opérations parcimonieuses. Si, cependant, nous considérons l'ensemble des 4 triades et des 5 espèces classiques des septièmes, les opérations parcimonieuses qui agissent sur elle sont de 12. On peut représenter chaque transformation comme (θ, (v, w)), où θ est une permutation représentant l'éventuel échange de type entre les septièmes mineures et majeures, v ∈ Z 5 12 r représente le mouvement des fondamentaux des septièmes, w ∈ Z 4 12 représente le mouvement des fondamentaux des triades. Soit deux opérations U 1
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  four-part harmony, which means that every chord in the progression contain four tones. Therefore there are four melodic lines, conventionally known with the names of the four voices of the chant: soprano, alto, tenor, bass (see Fig 1.1).

Figure 1 . 1 :

 11 Figure 1.1: An example of voice leading. At the top a piece for piano. Below the decomposition of the same piece into its 4 melodic lines accompanied by the chords notation.

Figure 1 . 2 :

 12 Figure 1.2: The musical clock

Figure 1 . 3 :

 13 Figure 1.3: On the left C major triad, on the right C minor triad.

Figure 1 . 4 :

 14 Figure 1.4: From top-left to bottom-right: dominant, minor, half-diminished, major, diminished, minor major, augmented major, augmented and dominant seventh at ve.

Figure 1 . 5 :

 15 Figure 1.5: A minor third transposition of the C major triad in the musical clock.

Figure 1 . 6 :

 16 Figure 1.6: An example of transposition: a canonic passage in Beethoven's Symphony IV, rst movement

and 6 ,

 6 therefore the pitch-classes 0 and 6 remain xed. But this is not the only inversion used in music: in many compositions, inversions are applied without xed pitch-classes or with dierent xed pitch-classes. From a mathematical point of view, they correspond to reections through dierent diameters of the musical clock, identied combining I and a transposition T n . Denition 1.16 (Inversion I n ). An inversion I n moves a set of pitch classes in contrary motion applying

in n 2 . 17 .Remark 1 . 18 .

 217118 Since the transpositions T n ∈ T are 12, we have 12 dierent inversions I n corresponding to 12 dierent reections in the musical clock. We observe that I 0 = T 0 I = I, something that we already know. The other inversions can be divided into two types. If n is even, I n corresponds to a reection through the diameter passing If n is odd, I n corresponds to a reection through the diameter passing in the middle between Given the C major triad [0, 4, 7], we apply I 3 :I 3 ([0, 4, 7]) = T 3 I([0, 4, 7]) = [0 + 3, -4 + 3, -7 + 3] =[START_REF] Amiot | The Torii of phases[END_REF][START_REF] Biggs | Graph Theory[END_REF][START_REF] Arnett | Generalizations of the Tonnetz: Tonality Revisited[END_REF] =[START_REF] Arnett | Generalizations of the Tonnetz: Tonality Revisited[END_REF][START_REF] Biggs | Graph Theory[END_REF][START_REF] Amiot | The Torii of phases[END_REF],that is, the G minor triad. Some remarks on transpositions and inversions.

P

  (C M ) = I 7 ( 0, 4, 7 ) = 7, 3, 0 = C m P (C m ) = I 7 ( 7, 3, 0 ) = 0, 4, 7 = C M R(C M ) = I 4 ( 0, 4, 7 ) = 4, 0, 9 = A m R(A m ) = I 4 ( 4, 0, 9 ) = 0, 4, 7 = C M L(C M ) = I 1 1( 0, 4, 7 ) = 11, 7, 4 = E m L(E m ) = I 1 1( 11, 7, 4 ) = 0, 4, 7 = C M . F m C M = D M = 1, 5, 8 1, 9, 6 = F m = G m D M = 2,6, 9 2, 10, 7 = G m D M = E M = 3, 7, 10 3, 11, 8 = G m = A m E M = 4, 8, 11 4, 0, 9 = A m F M = 5, 9, 0 5, 1, 10 = A m = B m F M = G M = 6, 10, 1 6, 2, 11 = B m G M = 7, 11, 2 7, 3, 0 = C m G M = A M = 8, 0, 3 8, 4, 1 = C m = D m A M = 9, 1, 4 9, 5, 2 = D m A M = B M = 10, 2, 5 10, 6, 3 = D m = E m B M = 11, 3, 6 11, 7, 4 = E m Table 1.1: The 24 major and minor triads represented by Crans, Fiore and Satyendra.

Figure 1 . 7 :

 17 Figure 1.7: P (C M ) = C m Figure 1.8: R(C M ) = A m Figure 1.9: L(C M ) = E m

  Let Y = [y, y + 3, y + 7] be a minor triad. Then (T 3 • P )(Y ) = T 3 ([y, y + 4, y + 7]) = [y + 3, y + 7, y + 10] = R(X) (T -4 • P )(Y ) = T -4 ([y, y + 4, y + 7]) = [y + 8, y, y + 3] = L(Y ).

  the neo-Riemannian operations highlight several interesting algebraic results, they were introduced for musical reasons, and they are useful for music analysis. Since each neo-Riemannian operation xes two notes and moves one note by a semitone or a whole-tone, they are very useful to describe the property of stepwise motion in a single voice known as parsimonious voice leading. For instance, we consider the measures 270-278 of the rst movement of Brahms' Concerto for violin and cello analyzed by Cohn in [24] (see Fig. 1.10).

Figure 1 . 10 :

 110 Figure 1.10: Cohn's reduction of Brahms' Concerto for violin and cello, mm. 270-278.

1. 4

 4 Tonnetz, Chicken-wire Torus and other parsimonious graphs One of the most peculiar musical rules is to organize voice leading making the least possible movement. Music theorists typically use graphs to describe parsimonious voice leading. Two dierent kinds of graphs are used: note-based and chord-based graphs. In the former each vertex represents a note, in the latter, by contrast, each vertex represents a chord, and parsimonious voice leading corresponds to short-distance motions along edges. Denition 1.31 (Note-based graph).

Figure 1 . 11 :

 111 Figure 1.11: The neo-Riemannian Tonnetz. The edge-ips represent the P , L and R operations.

Figure 1 .Figure 1 . 13 :

 1113 Figure 1.12: A toroidal representation of the Tonnetz (from [57]).

  and the other two tones remain xed. This corresponds to what we have applying the parallel P : two tones remain xed, the other tone is moved by a semitone.

  and the other two tones remain xed. This corresponds to what we have applying the relative R: two tones remain xed, the other tone is moved by a whole-tone.

Figure 1 . 14 :

 114 Figure 1.14: Example of graph induced by P 1,0 and P 2,0

  the augmented triads. The graph of S ∪ A (major, minor and augmented triads) induced by P 1,0 , known as Cube Dance, is a circle of 4 cubes connected by shared vertices. The shared vertices represent the 4 augmented triads, the other vertices of the cubes are major and minor triads (see Fig. 2.10).

Figure 1 . 15 :

 115 Figure 1.15: Douthett and Steinbach's Cube Dance. The subscripts M , m, and aug refer to major, minor, and augmented triads respectively.

Figure 1 . 16 :

 116 Figure 1.16: Aprile, Hamiltonian cycle #1 in the Tonnetz.

Figure 1 .

 1 Figure 1.17: Aprile, Hamiltonian cycle #60 in the Tonnetz.

Figure 1 .

 1 Figure 1.18: Aprile, Hamiltonian cycle #53 in the Tonnetz.

Figure 1 . 19 :

 119 Figure 1.19: Example of dual-circle conguration (from [43]).

(1. 16 )

 16 Hook introduced an interesting way to visualize the actions of UTTs geometrically. He considered a dual-circle conguration, which consists of a pair of concentric circles: the external one to represent the major triads, and the internal one for minor triads. In each of them the triads are ordered around their own circle, ascending by semitones in the clockwise direction. A UTT U = σ, m, n acts on a dual-circle conguration rotating counterclockwise the circle representing the major triad through m positions, and the circle representing the minor triad through n positions. Moreover if σ = -, major and minor triads are exchanged (see Fig. 1.19).

Figure 1 .

 1 Figure 1.20: HexaChord

  chapter VII, Euler wrote about musical tuning, in particular tuning systems, i.e. the theoretical study of various systems of pitches used to tune an instrument. Starting from acoustical observations, he dened a musical genus as a division of the octave, i.e. a collection of octave-equivalent tones, mathematically of the form 2 m a, where m ∈ Z, a ∈ N. Euler listed all genera up to the eighteenth, which is the one in use in his time: the diatonicchromatic genus, represented by 2 m • 3 3 • 5 2 . To determine the tones contained in this genus, he considered the divisors of 3 3 • 5 2 : 1, 3, 5, 3 2 = 9, 3 • 5 = 15, 5 2 = 25, 3 3 = 27, 3 2 • 5 = 45, 3 • 5 2 = 75, 3 3 • 5 = 135, 3 2 • 5 2 = 225, 3 3 • 5 2 = 675.

in the neo-Riemannian literature. 6 A

 6 dierent version of the graph introduced in the Tentamen appeared in another "mathmusical" work, published by Euler in 1774: De harmoniae veris principiis per speculum musicum repraesentatis[START_REF] Euler | De harmoniae veris principiis perspeculum musicum repraesentatis[END_REF] [START_REF] Caddeo | Leonhard Euler -Écrits sur la musique[END_REF]. It is a graph of 12 tones in just intonation in a 3 by 4 network, organized by major thirds vertically, and by perfect fths horizontally (see Fig.2.2). As the graph in the Tentamen, it is also used by Euler to represent the tones in the diatonic-chromatic genus but, this timer, Euler gave it a name, Speculum Musicum.
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 22 Figure 2.2: Euler's Speculum Musicum

Figure 2 . 3 :Figure 2 . 4 :

 2324 Figure 2.3: Naumann's table

Figure 2 . 6 :

 26 Figure 2.6: Riemann's Verwandtschaftstabelle in Ideen zu einer 'Lehre von den Tonvorstellungen'

[ 53 ] 12 Figure 2 . 7 :

 531227 Figure 2.7: Lewin's harmonic space

Figure 2 . 9 :

 29 Figure 2.9: Cohn's generalized Tonnetz

Figure 2 . 10 :

 210 Figure 2.10: Douthett and Steinbach's Cube Dance. The subscripts M , m, and aug refer to major, minor, and augmented triads respectively.

Figure 2 . 12 :Figure 2 . 11 :

 212211 Figure 2.12: The dual of a cube is a octahedron (from [69])

Figure 2 . 13 :

 213 Figure 2.13: Cube Dance (a) and its note-based dual (b). In the Cube Dance each vertex represents a triad:minor (light spheres), major (dark spheres) and augmented (dark cubes). In its dual each vertex represents a single note (from[START_REF] Tymoczko | The Generalized Tonnetz[END_REF]).

Figure 2 .Figure 2 . 15 :

 2215 Figure 2.14: Chord-based graph of the rst family, 4-dimensional case (from [69])

Figure 2 .

 2 Figure 2.16: Note-based graph, dual of the chord-based graph of the rst family, 4-dimensional case. The graph is a series of nested tetrahedra (from [69])

Figure 2 . 17 :

 217 Figure 2.17: At the top a unidimensional chord-based graph of the second family. Each vertex represents a triad. At the bottom the corresponding note-based graph formally equivalent to a Möbius strip[16] 

Figure 2 . 18 :

 218 Figure 2.18: At the top a unidimensional chord-based graph of the second family. Each vertex represents a seventh chord. At the bottom the corresponding note-based graph (from[START_REF] Tymoczko | The Generalized Tonnetz[END_REF] 

  2.19).

Figure 2 .

 2 Figure 2.19: Elaine Chew's Spiral Array

  He found 9 transformations, classied into two types. The transformation S m(n) moves two notes by semitones in similar motion. Conversely, the transformation C m(n) moves two notes by semitones in contrary motion. For both, m represents the interval class between the two notes that remain xed, n the interval class between the two notes that are moved. There are 6 transformations of type S and 3 of type C: S 2(3) , S 3(2) , S 3(4) , S 4(3) , S 5(6) , S 6(5) , C 3(2) , C 3(4) , C 6(5) (see Fig. 3.1).

Figure 3 . 1 :

 31 Figure 3.1: Child's parsimonious transformations between dominant and half-diminished sevenths (to be read vertically). The signs + andrefers to dominant and half-diminished quality.1 For more details on Pn-relation see Section 1.4.

  3.2). The 4 vertexips musically correspond to transformations between dominant and half-diminished sevenths sharing at least one note. Gollin explained that these 10 transformations generate a group isomorphic to the S/W -group, therefore a group with the same structure of the P LR-group.

Figure 3 . 2 :

 32 Figure 3.2: The six edge-ips between tetrahedra in the three-dimensional Tonnetz by Gollin. In the upper right the only ip in which the tetrahedra represent seventh chords sharing three common notes (from [35].

Figure 3 . 3 :

 33 Figure 3.3: The graph representing the 17 transformations between seventh chords.

Figure 3 . 4 :

 34 Figure 3.4: Ellington, Heaven, mm. 11-14.

  , (0, 0, -3, 0, 3))R 53 : [x, x + 3, x + 6, x + 9] → → [x, x + 3, x + 7, x + 9](σ, v) = ((53), (0, 0, 3, 0, -3)) L 13 : [x, x + 4, x + 7, x + 10] → → [x + 2, x + 4, x + 7, x + 10] (σ, v) = ((13), (4, 0, -4, 0, 0)) L 15 : [x, x + 4, x + 7, x + 10] → → [x + 1, x + 4, x + 7, x + 10] (σ, v) = ((15), (4, 0, 0, 0, -4)) L 42 : [x, x + 4, x + 7, x + 11] → → [x + 2, x + 4, x + 7, x + 11] (σ, v) = ((42), (0, -4, 0, 4, 0))

  Clover graph: a generalized Chicken-wire Torus for sevenths Starting from the algebraic denition of the parsimonious operations among sevenths as pairs of elements (σ, v) ∈ S 5 Z 5 12 , we can construct a generalized Chicken-wire torus for seventh chords. It is a chord-based graph in which each vertex represents a seventh chord and each edge identies a parsimonious musical operation (see Fig. 3.5).

  35 and L 15 ∼ Q 15 ∼ QQ 51 ∼ N 51 . Since our aim is to study paths in our graph and their musical interpretation less than enharmonic equivalences, we identify vertices and edges enharmonic equivalent. Therefore our graph has 12 • 4 + 3 = 51 vertices and 12 • 11 = 132 edges.

Figure 3 . 5 :

 35 Figure 3.5: The Clover graph for seventh chords.Blue-pentagonal, red-rhombic, green-circular, yellowhexagonal and orange-quadrangular vertices represent, respectively, dominant, minor, half-diminished, major and diminished sevenths.

Figure 3 . 6 :

 36 Figure 3.6: A Hamiltonian path in the Clover graph corresponding to a seventh chord progression.

  Fig. Fig. 3.8).

Figure 3 . 7 :

 37 Figure 3.7: A patch in OpenMusic showing the circular representation of the entire chord progression 3.9 of the previous list together with the circular representation of the rst two chords.

Figure 3 . 8 :

 38 Figure 3.8: The trace of the chord progression 3.9 represented in HexaChord together with two circular representations (chromatic and circle of fths) of two seventh chord of the same Hamiltonian path.

other 2 1 )

 21 types of sevenths with the following intervallic structure: Also these types of sevenths are well known in music literature.For combinatorial reasons, we are interested in studying the most parsimonious operations among all seventh chords with intervallic structure (c 1 , c 2 , c 3 , c 4 ), where c i ∈ {1, 2, 3, 4} and such that 4 i=1 c i = 12. The aformentioned sevenths satisfy this condition, together with the two following sevenths:

, x 4 ∈

 4 Z 12 , x 2 = x 1 + 4, x 3 = x 1 + 8, x 4 = x 1 + 11}∪ {[x 1 , x 2 , x 3 , x 4 ] | x 1 , x 2 , x 3 , x 4 ∈ Z 12 , x 2 = x 1 + 4, x 3 = x 1 + 8, x 4 = x 1 + 10}∪ {[x 1 , x 2 , x 3 , x 4 ] | x 1 , x 2 , x 3 , x 4 ∈ Z 12 , x 2 = x 1 + 4, x 3 = x 1 + 6, x 4 = x 1 + 10}.

  Q S++ (mM ) Q S++ (AM ) = mM Q S++ (A) Q S++ (Df ) Q S--(D) = AM Q S--(m) = M Q S--(hd) = D Q S--(M ) = m Q S--(d) Q S--(mM ) = hd Q S--(AM ) = mM ( ( ( ( ( ( Q S--(AM ) Q S--(Df ) = A.

P 12 :

 12 [x, x + 4, x + 7, x + 10] → → [x, x + 3, x + 7, x + 10] (σ, v) = ((

  19 : [x, x + 4, x + 7, x + 10] → → [x, x + 4, x + 6, x + 10](σ, v) = ((19), (0, 0, 0, 0, 0, 0, 0, 0, 0)) P 23 : [x, x + 3, x + 7, x + 10] → → [x, x + 3, x + 6, x + 10] (σ, v) = ((23), (0, 0, 0, 0, 0, 0, 0, 0, 0))P 26 : [x, x + 3, x + 7, x + 10] → → [x, x + 3, x + 7, x + 11] (σ, v) = ((26), (0, 0, 0, 0, 0, 0, 0, 0, 0))P 35 : [x, x + 3, x + 6, x + 10] → → [x, x + 3, x + 6, x + 9] (σ, v) = ((35), (0, 0, 0, 0, 0, 0, 0, 0, 0))P 39 : [x, x + 3, x + 6, x + 10] → → [x, x + 4, x + 6, x + 10] (σ, v) = ((39), (0, 0, 0, 0, 0, 0, 0, 0, 0))P 47 : [x, x + 4, x + 7, x + 11] → → [x, x + 4, x + 8, x + 11] (σ, v) = ((47), (0, 0, 0, 0, 0, 0, 0, 0, 0))P 64 : [x, x + 3, x + 7, x + 11] → → [x, x + 4, x + 7, x + 11] (σ, v) = ((64), (0, 0, 0, 0, 0, 0, 0, 0, 0))P 87 : [x, x + 4, x + 8, x + 10] → → [x, x + 4, x + 8, x + 11] (σ, v) = ((87), (0, 0, 0, 0, 0, 0, 0, 0, 0))P 98 : [x, x + 4, x + 6, x + 10] → → [x, x + 4, x + 8, x + 10] (σ, v) = ((98), (0, 0, 0, 0, 0, 0, 0, 0, 0))R 12 : [x, x + 4, x + 7, x + 10] → → [x, x + 4, x + 7, x + 9] (σ, v) = ((12), (-3, 3, 0, 0, 0, 0, 0, 0, 0))R 23 : [x, x + 3, x + 7, x + 10] → → [x, x + 3, x + 7, x + 9] (σ, v) = ((23), (0, -3, 3, 0, 0, 0, 0, 0, 0))R 42 : [x, x + 4, x + 7, x + 11] → → [x, x + 4, x + 7, x + 9] (σ, v) = ((42), (0, 3, 0, -3, 0, 0, 0, 0, 0))R 35 : [x, x + 3, x + 6, x + 10] → → [x, x + 3, x + 6, x + 9] (σ, v) = ((35), (0, 0, -3, 0, 3, 0, 0, 0, 0))R 53 : [x, x + 3, x + 6, x + 9] → → [x, x + 3, x + 7, x + 9] (σ, v) = ((53), (0, 0, 3, 0, -3, 0, 0, 0, 0))R 63 : [x, x + 3, x + 7, x + 11] → → [x, x + 3, x + 7, x + 9] (σ, v) = ((63), (0, 0, 3, 0, 0, -3, 0, 0, 0))R 76 : [x, x + 4, x + 8, x + 11] → → [x, x + 4, x + 8, x + 9] (σ, v) = ((76), (0, 0, 0, 0, 0, 3, -3, 0, 0))R 86 : [x, x + 4, x + 8, x + 10] → → [x, x + 4, x + 8, x + 9] (σ, v) = ((86), (0, 0, 0, 0, 0, 3, 0, -3, 0))L 13 : [x, x + 4, x + 7, x + 10] → → [x + 2, x + 4, x + 7, x + 10] (σ, v) = ((13), (4, 0, -4, 0, 0, 0, 0, 0, 0))L 15 : [x, x + 4, x + 7, x + 10] → → [x + 1, x + 4, x + 7, x + 10] (σ, v) = ((15), (4, 0, 0, 0, -4, 0, 0, 0, 0))L 42 : [x, x + 4, x + 7, x + 11] → → [x + 2, x + 4, x + 7, x + 11] (σ, v) = ((42), (0, -4, 0, 4, 0, 0, 0, 0, 0))L 71 : [x, x + 4, x + 8, x + 11] → → [x + 2, x + 4, x + 8, x + 11] (σ, v) = ((71), (-4, 0, 0, 0, 0, 0, 4, 0, 0))L 89 : [x, x + 4, x + 8, x + 10] → → [x + 2, x + 4, x + 8, x + 10] (σ, v) = ((89), (0, 0, 0, 0, 0, 0, 0, 4, -4))Q 43 : [x, x + 4, x + 7, x + 11] → → [x + 1, x + 4, x + 7, x + 11] (σ, v) = ((43), (0, 0, -1, 1, 0, 0, 0, 0, 0))Q 15 : [x, x + 4, x + 7, x + 10] → → [x + 1, x + 4, x + 7, x + 10] (σ, v) = ((15), (1, 0, 0, 0, -1, 0, 0, 0, 0))Q 62 : [x, x + 4, x + 8, x+ 11]→ → [x + 1, x + 4, x + 8, x + 11] (σ, v) = ((62), (0, -1, 0, 0, 0, 1, 0, 0, 0)) Q 76 : [x, x + 4, x + 8, x + 11] → → [x + 1, x + 4, x + 8, x] (σ, v) = ((76), (0, 0, 0, 0, 0, -1, 1, 0, 0)) RR 19 : [x, x + 4, x + 7, x + 10] → → [x, x + 4.x + 6, x + 10] (σ, v) = ((

[x, x + 4 ,Figure 4 . 1 :

 441 Figure 4.1: On the left C diminished triad, on the right C augmented triad.

Figure 4 . 2 :

 42 Figure 4.2: The graph representing the 13 parsimonious operations among triads.

Figure 4 . 3 :Figure 4 . 4 :

 4344 Figure 4.3: The generalized Cube Dance representing all the most parsimonious operations among major, minor and augmented triads. Green, blue and red edges represent, respectively, P , L and R.
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 4 The P LR * -groupChapter 5 

  

  

  e calcolare le frequenze relative delle note nella scala naturale. Successivamente, in scritti successivi, hanno assunto un signicato più psicologico: secondo Riemann si trattava di una rappresentazione mentale delle note. Il passaggio denitivo dal signicato sico a quello acustico avviene nel Ideen zu einer 'Lehre von den Tonvorstellungen del 1914. In tale lavoro appare una nuova tabella, innita, sempre con note della scala naturale, e che tassella il piano con parallelogrammi. Analogamente a quanto visto nelle tabelle precedenti, anche in questa si possono distinguere due assi, uno in cui le note sono organizzate per quinte giuste, l'altro in cui le note sono organizzate secondo terze maggiori. Riemann stesso spiega che ogni parallelogramma può essere diviso in due triangoli, uno rappresenta una triade maggiore, l'altro una triade minore. Successivamente, nel suo Generalized Musical Intervals and Transformations del 1987, Lewin introdusse uno spazio armonico bidimensionale, e lui stesso specicò che è analogo alle tabelle di Riemann. Dal 1989 Hyer ebbe l'idea di riprodurre i modelli geometrici utilizzati dai teorici della musica del XIX secolo utilizzando il temperamento equabile. Inne, dagli anni `90 Cohn ha contribuito agli sviluppi delle teoria neo-Riemanniane includendo anche la moderna versione del Tonnetz.

Gollin ha esaminato le diverse concezioni di Riemann su queste tabelle.

Inizialmente erano legate un signicato prettamente sico, in quanto furono considerate come matrici per rap-11 R. J. Howarth, Dictionary of Mathematical Geosciences: With Historical Notes, Springer, 2017. 12 E. Gollin, A. Rehding, The Oxford Handbook of Neo-Riemannian Music Theories, Oxford University Press, 2011.
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L. Euler, De harmoniae veris principiis perspeculum musicum repraesentatis, Opera Omnia, Series 3, Vol. 1, 1774. presentare Operazioni parsimoniose e gra per settime Esistono diverse formalizzazioni algebriche e rappresentazioni geometriche di trasformazioni che agiscono su triadi. Ma oltre alle triadi, anche gli accordi di settima sono spesso utilizzati nella letteratura musicale. Sorge spontanea una domanda: possiamo denire un gruppo che agisce su un insieme di accordi si settima, simile al gruppo P LR? Più precisamente: possiamo denire un gruppo di operazioni tra settime per descrivere la parsimonious voice leading, dove i generatori ssano tre note e muovono una sola nota di tono o semitono? E possiamo costruire un Tonnetz generalizzato per le settime? Alcuni problemi su trasformazioni parsimoniose fra particolari settime furono studiati da Childs 14 , Douthett e Steinbach 15 , Gollin 16 , Fiore e Satyendra 17 , Arnett e Barth 18 , e Kerkez 19 . Partendo dai loro studi, abbiamo considerato insiemi di diverse settime, confermando ed estendendo le loro ricerche. Per prima cosa abbiamo classicato tutte le operazioni P 1,0 e P 0,1 tra le 5 specie di settime classiche, le quali sono: dominante (prima specie, la cui struttura intervallare è (4, 3, 3, 2)), minore (seconda specie, la cui struttura intervallare è (3, 4, 3, 2)), semidiminuita (terza specie, la cui struttura intervallare è (3, 3, 4, 2)), maggiore (quarta specie, la cui struttura intervallare è (4, 3, 4, 1)) e diminuita (quinta specie, la cui struttura intervallare è (3, 3, 3, 3)). Partendo dalla generalizzazione dell'operazione parallela per settime P ij , abbiamo denito anche delle operazioni L ij e R ij , generalizzazione di L e R rispettivamente. Le sole P ij , L ij e R ij generalizzate non sono però sucienti per denire tutte le possibili trasformazioni P 1,0 e P 0,1 fra le 5 specie di settime, quindi abbiamo denito 4 nuove operazioni. Le operazioni parsimoniose trovate sono 17 in totale. Abbiamo osservato che alcune di esse coincidono con le trasformazioni già trovate da Arnett e Barth, Kerkez, e una trasformazione descrive una delle riessioni dei tetraedri del Tonnetz generalizzato tridimensionale di Gollin rispetto ad un loro spigolo.

  Teorema 2. Il gruppo P LRQ è isomorfo a S 5 Z 4 12 .Partendo dalle trasformazioni parsimoniose tra le 5 specie di settime, abbiamo costruito il corrispondente grafo basato su accordi, che possiamo denire Chicken-wire torus generalizzato per settime (vedi g. 3.5). Il

famoso Power Towers di Douthett e Steinbach è un sottografo di tale grafo.

Prendendo spunto dagli studi di Albini e Antonini sorge spontanea una domanda: tale grafo è hamiltoniano? La risposta è aermativa, abbiamo trovato migliaia di cicli hamiltoniani. Essendo però in numero così elevato non abbiamo ritenuto particolarmente interessante classicarli. Abbiamo quindi cercato alcuni cicli o cammini hamiltoniani che sottolineano la simmetria del grafo. Abbiamo trovato il seguente cammino:

  struttura intervallare[START_REF] Amiot | The Torii of phases[END_REF][START_REF] Amiot | Music Through Fourier Space[END_REF][START_REF] Amiot | Music Through Fourier Space[END_REF][START_REF] Albini | Hamiltonian Cycles in the Topological Dual of the Tonnetz[END_REF]), aumentata maggiore (settima specie, con struttura intervallare (4, 4, 3, 1)), aumentata (ottava specie, con struttura intervallare (4, 4, 2, 2) e la settima di dominante bemolle (nona specie, con struttura intervallare (4, 2, 4, 2)). Abbiamo classicato tutte le trasformazioni più parsimoniose tra esse.Oltre alle 17 trasformazioni già determinate, se ne aggiungono altre 20, per un totale di 37 trasformazioni. Analogamente a quanto fatto nel caso precedente, abbiamo rappresentato le operazioni come elementi (σ, v) ∈ S 9 × V , dove S 9 è il gruppo simmetrico su 9 elementi, e V = {v ∈ Z9 12 | 9 i=1 v i = 0}. Inne, abbiamo studiato il gruppo P LRQ * generato da tali 37 trasformazioni, dimostrando il seguente Teorema 3. Il gruppo P LRQ * è isomorfo a S 9 Z 8 12 .

  Résumé IntroductionNonobstant l'histoire de la relation entre les mathématiques et la musique plonge ses racines dans l'Antiquité, la recherche en théorie mathématique de la musique est très récente. Les mathématiques sont souvent considérées comme faisant partie du monde des règles et de la rationalité pure, tandis que la musique s'inscrit dans le monde les accords en essayant de faire le moins de mouvement possible mais laissant la possibilité d'un mouvement mélodique conjoint. À la n du XIXe siècle, plusieurs compositeurs tels que Wagner, Debussy et Bartok ont commencé à cherche de nouveaux horizons musicaux en abandonnant la musique tonale propre au XVIIe et XIXe siècle. Dans les systèmes de musique post-tonale, en contraposition aux systèmes tonals, on s'éloigne de l'idée d'organiser les notes selon une hiérarchie. Ils ont donc changé les règles musicales de la composition. Un problème est survenu: la théorie musicale traditionnelle était incapable de fournir les outils appropriés pour décrire et analyser les nouveaux systèmes post-tonals. Pour dénir et exprimer les relations entre les nouvelles structures plus complexes de la musique post tonale, les théoriciens de la musique ont utilisé la théorie des ensembles. Cette idée, née aux États-Unis après la deuxième guerre mondiale, a donné lieu à la théorie musicale des ensembles dont les notions principales ont été introduites par le compositeur et théoriciende la musique Hanson pour la musique tonale et par le musicologue et théoricien de la musique Forte 2425 pour la musique post-tonale. A la base de l'application de la théorie des ensembles en musique, il y a une substitution de la notation traditionnelle des notes par une représentation numérique. Nous considérons, en eet, deux relations d'équivalence dans l'ensemble de toutes les hauteurs de tempérament égal. , x 2 , . . . , x n ] nous indiquons la disposition des classes de hauteur x 1 , . . . , x n ∈ Z 12 , où la classe de hauteur soulignée est celle fondamentale de l'accord. Cette notation est cyclique, donc [x 1 , x 2 , . . . , x n ] = [x 2 , . . . , x n , x 1 ] = • • • = [x n , x 1 , . . . , x n-1 ]. Étant donné un accord [x 1 , x 2 , . . . , x n ], nous dénissons comme structure de l'intervalle le vecteur (x 2 -x 1 , x 3 -x 2 , . . . , x n -x n-1 ) , dove σ = ±, où σ = ±, en particulier si σ =la transformation modie le type de triade, si σ = + le type de triade est conservé, m représente l'intervalle de transposition de la fondamentale des triades majeures, n celle des triades mineures. L'ensemble de toutes les UTTs forme un groupe, un sous-ensemble du groupe G de toutes les opérations. Dans le cas particulier où m + n = 0, l'UTT s'appelle riemannienne. Parmi les UTTs riemanniens, il y a aussi les 3 opérations néo-riemanniennes P , L et R. P : associe chaque triade à son parallèle. Si le triade est majeur, P déplace le tierce un demi-ton en dessous, si le triade est mineur P déplace la tierce un demi-ton au-dessus. : associe chaque triade majeure avec une triade mineure et transpose une tierce majeure dessus tandis que chaque triade mineure en majeur transpose une tierce majeure en dessous. : associe chaque triade dans sa relative. Si la triade est en majeur, R déplace la cinquième un ton plus haut, si elle est est en mineur, R déplace la fondamentale un ton en dessous. Le groupe P LR, généré par les transformations néo-riemanniennes P , L et R, agissant sur l'ensemble des 24 triades majeures et mineures, est isomorphe au groupe diédral d'ordre 24.

	Avec la redécouverte des transformations P (parallel), L (leading-tone) et R (relative), introduites par
	le musicologue Hugo Riemann à la n du XIXe siècle, Lewin a commencé à développer une branche de la
	théorie transformationnelle plus connue sous le nom de théorie néo-Riemannienne. Suivant la conguration et
	la terminologie de Hook	26 , avec le terme transformation, nous indiquons une application à partir d'un ensemble
	de triades en soi et avec opération nous indiquons une transformation bijective. Toutes les opérations de triade,
	ainsi que l'opération de composition, forment un groupe G d'ordre 24. Parmi toutes les opérations, celles
	qui sont musicalement intéressantes sont les transformations triadiques uniformes (UTTs) qui transforment
	intuitivement chaque triade de la même manière. Formellement, elles peuvent être déterminés de manière
	unique par σ, m, n Nous observons que ces opérations changent des triades majeures et mineures tout en laissant deux notes xes et
	ne déplaçant qu'une seule note d'un ton ou d'un demi-ton. Grâce à ces propriétés, ces opérations s'avèrent très
		cercle, formant ainsi
	intéressantes d'un point de vue musical car elles constituent un outil supplémentaire pour décrire la propriété
	l'horloge dite musicale.	
	de mouvement progressif de la conduite des voix parcimonieuse. La conduite des voix est dite parcimonieuse
	Les accords peuvent être dénis comme un ensemble de classes de hauteur (exécutées simultanément) et
	lorsque les notes restent xes ou bougent par mouvement mélodique conjoint. Du point de vue mathématique,
	peuvent être dénis formellement en utilisant la notation habituelle de la théorie des ensembles pour représen-
	nous avons le remarquable résultat ci-dessous.
	ter des ensembles donc liste toutes les classes de hauteurs et de les enfermer entre des accolades. Dans ce
	Théorème 1. Les trois opérations néo-riemanniennes peuvent être représentées géométriquement à l'aide de graphes et travail, nous utiliserons également une autre notation: avec [x 1 dont les éléments représentent l'intervalle entre deux classes de hauteurs consécutives de l'accord. Les accords de complexes simpliciaux. La représentation plus célèbre est celle de Tonnetz : un complexe simplicial en deux
	principalement utilisés sont les triades majeures et mineures, accords de trois notes obtenus en superposant dimensions qu'il pave le plan avec 2-simplexes, où 0-simplexes représentent des classes de hauteurs, tandis que
	un tierce majeur et un tierce mineur. Les structures d'intervalle sont les suivantes: (4, 3, 5), (3, 4, 5). Parmi 2-simplexes identient les triades majeures et mineures. Étant donné un 2-simplexe, chacune des réexions
	les autres accords très courants, citons les accords de septième soit des accords de quatre notes obtenus en relatives à l'une des trois simplexes décrit l'une des trois opérations néo-riemanniennes. Compte tenu de la
	superposant des tierces. structure, le emphTonnetz peut être déni comme un graphe basé sur des notes, c'est-à-dire un graphe dans
	lequel chaque sommet est identié avec une note. Son double sera un graphe basé sur des accords plus connu sous
	Depuis les années 1980, l'étude des objets musicaux s'est déportée vers les relations existantes entre eux, le nom de Chicken-wire Torus de Douthett et Steinbach 27 . Les sommets de ce graphe représentent les triades
	donnant ainsi naissance à la théorie transformationnelle. Deux parmi les transformations les plus utilisées sont les majeures et mineures, tandis que les arcs représentent les opérations de P , L et R. Il est intéressant d'observer
	que les parcours de ce graphe correspondent aux séquences de triades majeures et mineures en utilisant les transpositions et les inversions. La transposition T n déplace les classes de hauteurs de n demi-tons. L'inversion opérations de P , L et R. À partir de cette observation, Albini et Antonini ont énuméré, classié et étudié tous I = I 0 transforme chaque classe de hauteur en son inverse, tandis qu'une inversion donne I n = T n • I. Ces transformations, utilisées dans nombreuses compositions, s'avèrent fort intéressantes du point de vue algébrique les cycles hamiltoniens de ce graphe 28 . Certains cycles, ou une partie d'entre eux, ont été trouvés dans plusieurs
	car, en eet, on peut démontrer que les transpositions et les inversions agissent sur l'ensemble des triades
	majeures et mineures en générant un groupe isomorphe au groupe diédral D 12 d'ordre 24.
	24 A. Forte, A Theory of Set-Complexes for Music, Journal of Music Theory, 8(2), 1964, pp. 136-183. 25 A. Forte, The Structure of Atonal Music, Yale University Press, 1973.

de la créativité et de la liberté. Cependant, une étude plus approfondie des deux disciplines montre clairement que les mathématiques et la musique sont étroitement liées. L'un des liens les plus intuitifs et connus, en particulier par les non-experts, concerne les aspects physiques et acoustiques des structures musicales. Un exemple célèbre est celui de la gamme pythagoricienne. Sur la base des liens entre la longueur d'une corde et la fréquence de la note émise lorsque la corde est en vibration, les pythagoriciens ont observé l'existence d'une relation entre les nombres rationnels et les intervalles musicaux. Bien qu'il soit simple et intuitif de comprendre l'utilisation des mathématiques pour décrire la musique d'un point de vue physique et acoustique, ce n'est pas le seul lien entre ces deux disciplines. Mise à part l'acoustique, en allant vers un niveau plus conceptuel, et plus spéciquement celui de la composition, nous observons que la musique est riche en structures et en règles, bien représentées et formalisées à travers des structures mathématiques. Le nouveau domaine de recherche, connu sous le nom de théorie mathématique de la musique, a été créé pour expliquer la théorie de la musique contemporaine, en essayant de décrire les diérents objets musicaux et aussi les transformations par le bais de formalisations utiles pour l'analyse musicale et la composition.

Ce travail de thèse fait partie de la théorie transformationnelle, une branche de la théorie mathématique de la musique subséquente aux travaux des pionniers David
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et Guerino Mazzola 2223 . L'idée principale est d'utiliser la structure mathématique de groupe pour dénir des transformations musicales. L'utilisation de l'algèbre en musique a commencé avec plusieurs théoriciens de la musique et est très utile pour décrire et expliquer les structures musicales. Introduction à la théorie mathématique de la musique Dans le premier chapitre, nous présentons les principales dénitions et résultats de la théorie mathématique de la musique, en particulier de la théorie transformationnelle, nécessaires à la compréhension du travail développé dans la thèse. L'un des aspects les plus importants de la composition réside dans la capacité à rendre intéressante l'interaction entre les diérentes lignes mélodiques qui créent l'harmonie, connue traditionnellement sous le nom de conduite des voix. C'est l'interaction de deux ou plusieurs lignes musicales, qui réalisent une progression d'accords selon les principes du contrepoint. La plupart des musiques occidentales du XVIIe au XIXe siècle sont basées sur une harmonie à quatre voix, organisée selon certaines règles musicales dont l'une des plus importantes consiste à re-20 D. Lewin, Transformational techniques in atonal and other music theories, Perspectives in New Music, n.21, 1982. 21 D. Lewin, Generalized Musical Intervals and Transformations, Yale University Press,1987. 22 G. Mazzola, Gruppen und Kategorien in der Musik: Entwurf einer mathematischen Musiktheorie, Heldermannr, Lemgo, 1985. 23 G. Mazzola, Geometrie der Tone, Birkhäuser, Basel, 1990. lier Équivalence Enharmonique : deux notes de même hauteur mais dissemblables sont en harmonie équivalente (exemple: Do ∼ Re ). Équivalence d'octave : deux notes x, y ∈ R + à une distance d'une octave sont équivalentes. Avec ces relations d'équivalence, nous obtenons 12 classes d'équivalence appelées classes de hauteurs. En établissant une carte biunivoque entre les 12 classes de hauteurs et Z 12 , il est possible de représenter ces classes sous forme de nombres de 0 à 11. Par convention, nous partons de C = 0. Cette correspondance peut être facilement visualisée en disposant les 12 classes de hauteurs et les éléments Z 12 dans le L R

mais plutôt le terme gure. Néanmoins, rien d'étonnant à cela, puisque la théorie des graphes était balbutiante à l'époque d'Euler et, comme cela arrive souvent dans l'histoire des mathématiques, quand une théorie est encore à ses débuts nombreux nouveaux concepts n'ont pas encore été dénis et nommés. En fait, le terme graphe a été introduit par Sylvester en

  oder reine Quinten-Systems Musik für unsere heutige. A l'intérieur est représentée une table avec la même organisation du Spéculum Musicum : dans chaque cellule il y a une note de la gamme naturelle, et le long de l'axe horizontal, les notes sont organisées pour les quintes alors que le long de l'axe vertical est consacré aux principaux tiers. Bien que la structure soit la même, nous n'avons trouvé aucune référence à Euler et son Speculum Musicum ou au graphe présent dans le Tentamen. Nous savons cependant que Naumann septième P ij , nous avons également déni des opérations L ij et R ij , généralisation de L et R respectivement. Les P ij , L ij et R ij généralisées ne susent pas à dénir toutes les transformations P 1,0 e P LRQ le groupe généré par les 17 transformations trouvées. Pour l'étude de la P LRQ, nous avons observé que chaque transformation échange un septième de la i-ème espèce avec une de la j-ième espèce.On peut donc l'identier avec une permutation du groupe symétrique S 5 . Cependant les transformations qui échangent les mêmes espèces de septièmes restent les plus nombreuses. Pour rendre l'identication unique, nous avons également ajouté un vecteur v ∈ Z5 12 , où chaque i-ème composant représente le nombre de demitons dont le fondamental d'un accord de type i doit être déplacé pour devenir le fondamental d'un accord de type j. De cette façon, chaque transformation peut être représentée comme un élément de S 5 × V , dove V = {v ∈ Z5 12 |

	siques qui sont: dominantes (première espèce dont la structure des intervalles est (4, 3, 3, 2)), mineure (seconde
	espèce dont la structure des intervalles est (3, 4, 3, 2)), semi-diminuée (troisième espèce dont la structure des
	intervalles est (3, 3, 4, 2)), majeure (quatrième espèce dont la structure des intervalles est (4, 3, 4, 1)) et diminuée
	(cinquième espèce, dont la structure des intervalles est (3, 3, 3, 3)). A partir de la généralisation de l'opération
	connaissait Tentamen, car il avait été mentionné dans sa thèse par une note de bas de page. Un tableau similaire apparaît également dans le traité Harmoniesystem in dualer Entwickelung, publié en 1866 par Oettingen. Dans parallèle pour la P 0,1 possibles parmi les 5 espèces des septièmes, nous avons donc déni 4 nouvelles opérations. Les opérations
	ce cas aussi, il n'y a aucune référence à Euler et à ses graphes, le mathématicien bâlois y est juste mentionné. parcimonieuses recherchées sont au total 17. Nous avons constaté que certaines d'entre elles coïncident avec
	les transformations déjà trouvées par Arnett, Barth et Kerkez, par ailleurs, une transformation décrit l'une des
	Nous avons aussi trouvé de telles organisations de notes dans plusieurs ÷uvres de Hugo Riemann, qu'il a réexions des tétraèdres du Tonnetz généralisé tri-dimensionnel de Gollin par rapport à une de leurs arêtes.
	lui-même appelé Tonverwandtschaftstabelle. Gollin a examiné les diérentes conceptions de Riemann sur ces
	tableaux. Initialement, une signication purement physique y était liée car elles étaient considérées comme des
	matrices pour représenter et calculer les fréquences relatives des notes à la gamme naturelle. Plus tard, dans
	des écrits ultérieurs, elles ont pris une signication plus psychologique, ainsi, selon Riemann, il s'agissait d'une
	représentation mentale des notes. Le passage dénitif du sens physique au champ acoustique a été concrétisé
	dans Ideen zu einer 'Lehre von den Tonvorstellungen en 1914. Dans ce travail est présente une nouvelle table,
	innie, toujours avec des notes de la gamme naturelle, et dont le plan est pavé avec des parallélogrammes.
	De même que dans les tableaux précédents, nous pouvons également distinguer deux axes, l'un dans lequel les
	notes sont organisées par quintes justes, l'autre dans laquelle les notes sont organisées selon le troisième majeur. 5 i=1 v i = 0}. La fonction ainsi dénie devient un homomorphisme de groupes si l'on dénit
	Riemann lui-même explique que chaque parallélogramme peut être divisé en deux triangles, l'un représentant l'opération de composition suivante:
	une triade majeure, l'autre une triade mineure.
	Histoire du Tonnetz Par la suite, dans son Intervalles et transformations musicales généralisées de 1987, Lewin introduit un
	espace harmonique à deux dimensions et il précise lui-même qu'il est analogue aux tableaux de Riemann. À
	Historiquement, on s'accorde à dire que le Tonnetz fût introduit par Euler dans son ouvrage Tentamen novae partir de 1989, Hyer eut l'idée de reproduire les modèles géométriques utilisés par les théoriciens de la musique
	theoriae Musicae écrit en 1731 et publié en 1739 29 . En tout cas, nous avons remarqué qu'un graphe semblable du XIXe siècle en utilisant le tempérament égal. Plus récemment, depuis les années 1990, Cohn a contribué au
	illustre le IXe chapitre De genere diatonico-chromatico. Le graphe est présenté pour schématiser la manière développement de la théorie néo-riemannienne en y incluant la version moderne du Tonnetz.
	de comment accorder un instrument en fonction du genre. Le schéma représente les principales triades, chacune
	d'entre elles étant entourée d'accolades. Nous avons observé qu'Euler n'utilisait pas le terme graphe pour Opérations parcimonieuses et graphes pour les septièmes Il existe plusieurs formalisations algébriques et des vues géométriques de transformations qui agissent sur les l'introduire, 1878 triades. Toutefois, hormis les triades, dans la littérature musicale, souvent les accords de septième sont aussi 30 . À noter également que le premier livre dans utilisés. Une interrogation surgit alors spontanément: peut-on dénir un groupe agissant sur un ensemble des
	l'histoire de la théorie des graphes unanimement reconnu est celui des sept ponts de Königsberg, publié en accords de septième, similaire au groupe P LR? Ou plus précisément: peut-on dénir un groupe d'opérations
	1741, mais présenté par Euler en 1735, alors que le Tentamen a été écrit en 1731. Autre aspect intéressant entre les septièmes pour décrire la conduite des voix parcimonieuse où les générateurs xent trois notes et ne
	que nous avons observé est qu'Euler n'a pas utilisé le terme Tonnetz pour son graphe. D'après Gollin, le terme déplacent qu'un seul ton ou demi-ton? Et pouvons-nous construire un Tonnetz généralisé pour les septièmes?
	Tonnetz a été introduit par Imig en 1970. Un autre graphe similaire à Tonnetz apparaît aussi dans un autre Quelques problèmes de transformations parcimonieuses entre septièmes particulières furent étudiés par Childs 31 ,
	texte mathématico-musical d'Euler, De veris harmoniae principiis spéculum repraesentatis Musicum, publié en Douthett et Steinbach 32 , Gollin 33 , Fiore et Satyendra 34 , Arnett et Barth 35 , Kerkez 36 . En se basant sur leurs
	1774. Bien que cela soit également utilisé pour schématiser le type diatonico-chromatique tout en considérant la études, nous avons considéré divers ensembles de septièmes diérents, conrmant et élargissant ainsi leurs
	gamme naturelle, l'organisation de ce graphe est diérente. Il s'agit d'un schéma rectangulaire, où les notes des recherches. Nous avons d'abord classé toutes les opérations P 1,0 et P 0,1 entre les 5 espèces de septièmes clas-
	axes horizontaux sont organisées pour quintes justes et celles des axes verticaux pour tierces majeures. Cette
	fois, cependant, Euler a donné un nom à cette représentation: Speculum Musicum.
	Une représentation très similaire apparaît également dans Naumann et Oettingen au XIXe siècle. En 1858,
	Naumann a publié sa thèse Über die verschiedenen Bestimmungen Tonverhältnisse der Bedeutung und die des
	29 L. Euler, Tentamen novae theoriae musicae ex certissimis harmoniae principiis dilucide expositae, Opera Omnia, Series 3, Vol. 1, 1739. 30 R. J. Howarth, Dictionary of Mathematical Geosciences: With Historical Notes, Springer, 2017.

Pythagorischen Soit

  Nous avons prolongé les études sur les triades majeures et mineures, y compris les triades diminuées et les triades augmentées. Les transformations plus parcimonieuses sur ces triades sont au nombre de 13, dont 9 agissent sur majeures, mineures et augmentées et les 7 restantes sur mineures majeur et diminuées. Seulement 3 opérations agissent sur les triades majeures et mineures et ce sont P , L et R. Nous avons réalisé le graphe correspondant sur les accords liés aux 9 transformations qui agissent sur les triades majeures, mineures et augmentées. Ce graphe contient le célèbre Cube Dance, introduit par Douthett et Steinbach. Ce dernier est le graphe correspondant aux relations P 1,0 sur les triades majeures, mineures et augmentées. Notre étude inclut également les relations P 0,1 . Dans ce cas, la seule opération de ce type est la relation R. Le Chicken-wire Torus est un sous-graphe de ce graphe. De manière similaire à ce que nous avons fait pour les septièmes, nous pouvons représenter chaque transformation comme une paire (σ, v) ∈ S 4 × W , où S 4 est le groupe symétrique des 4 éléments et W = {w ∈ En dernier, nous avons étudié le groupe P LR * généré par les 13 opérations qui aectent les 4 espèces des triades, obtenant le résultat suivant.

	Z 4 12 |	4 i=1 w i = 0}.

Pour nir, nous avons étudié le groupe P LRQ * généré par ces 37 transformations, démontrant le suivant Théorème 3. Le groupe P LRQ * est isomorphe à S 9 Z 8 12 .

Les accords de septième sont souvent utilisés dans le jazz. Un exemple dans lequel nous avons trouvé des séquences de nos opérations parcimonieuses est manifeste dans le morceau Heaven de Ellington.

Opérations parcimonieuses et graphes pour les triades

Il existe de nombreuses études sur les modèles géométriques et algébriques concernant les triades majeures et mineures. Bien qu'il s'agisse des accords les plus utilisés dans la musique, ils ne sont pas les seuls types de triades: il y a aussi des triades diminuées (dont la structure est l'intervalle

[START_REF] Amiot | The Torii of phases[END_REF][START_REF] Amiot | The Torii of phases[END_REF][START_REF] Andreatta | Towards Pedagogability of Mathematical Music Theory: Algebraic Models and Tiling Problems in computer-aided composition[END_REF]

) et augmentées (dont la structure est l'intervalle

[START_REF] Amiot | Music Through Fourier Space[END_REF][START_REF] Amiot | Music Through Fourier Space[END_REF][START_REF] Amiot | Music Through Fourier Space[END_REF]

).
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  From the last proposition it is clear that GIS's are simply transitive group actions.Example 1.12. (Z 12 , (Z 12 , +), int), where Z 12 is the set of 12 pitch-classes, (Z 12 , +) is the interval group, and

	7, 11] (C minor major seventh)
	C ∆ + = [0, 4, 8, 11] (C augmented major seventh)
	C 7 + = [0, 4, 8, 10] (C augmented seventh)
	C 7 5 = [0, 4, 6, 10] (C dominant seventh at ve)
	1.2 Transformational theory

Changing the focus from musical objects to the relations between them, transformational theory was developed since the 1980s. Its main idea is based on the use of group-theoretical concepts to dene musical objects and transformations. Historically, this approach was introduced by the music theorist David Lewin in the late 1980s and systematized in his book Generalized Musical Intervals and Transformations

[START_REF] Lewin | Generalized Musical Intervals and Transformations[END_REF]

.

The GIS structure One of the most important examples of transformational construction is the notion of GIS.

Denition 1.10 (Generalized Interval System (GIS)). A Generalized Interval System (GIS) is an ordered triplet (S, IV LS, int), where S is a set of musical elements, IV LS is a mathematical group called the interval group, and int is a function int : S × S → IV LS, such that:

int(r, s)int(s, t) = int(r, t) ∀r, s, t ∈ S (1.1) ∀s ∈ S, ∀i ∈ IV LS, ∃!t ∈ S s.t. int(s, t) = i.

(1.2)

Proposition 1.11. Let e ∈ IV LS be the neutral element. In any GIS, we have int(s, s) = e and int(t, s) = int(s, t) -1 for every s, t ∈ S.

Proof. From 1.1 we have int(s, s)int(s, s) = int(s, s), hence int(s, s) = e. Moreover int(t, s)int(s, t) = int(t, t) = e ⇒ int(t, s) = int(s, t) -1 .

int(s, t) := t -s, is a GIS. In fact, for every x, y, z ∈ Z 12 :

  be the set of all 24 major and minor triads. The transformations P , R, L : S → S are dened as follows.Denition 1.21 (Parallel). The operation P maps a triad to its parallel. If the triad is major, it moves the third a semitone down. If the triad is minor, it moves the third a semitone up. Relative). The operation R maps a triad to its relative. If the triad is major, it moves the fth a whole tone up. If the triad is minor, it moves the root a whole tone down. Denition 1.23 (Leading-tone). The operation L maps a major triad into a minor one which is a major third up and a minor triad into a major one which is a major third down. If the triad is major, L moves the root a semitone down, instead, if the triad is minor, L moves the fth a semitone up.

	(mod 12). Denition 1.22 ((mod 12) Example 1.24.	(1.6) (1.8)

P : [x, x + 4, x + 7] ↔ [x, x + 3, x + 7] R : [x, x + 4, x + 7] ↔ [x, x + 4, x + 9] (mod 12). (1.7) L : [x, x + 4, x + 7] ↔ [x -1, x + 4, x + 7]

  Because of the structure of CW T this composition can be only the identity, therefore f is the inverse of an element of T /I, thus it belongs to it itself.We observe that given a Hamiltonian cycle, if n automorphisms of CW T transform it to itself, then there are 24 n dierent Hamiltonian cycles sharing the model of transformation. In CW T we have 8 models. H1 cycle #41. It is characterized by the repetition of the model LR. All automorphisms map this cycle into itself.H2 cycles #32 and #45. They are characterized by the repetition of the model P RLR. 12 automorphisms map these cycles into themselves.

H3 cycles #4, #13 and #62. They are characterized by the repetition of the model LP LP LR. 8 automorphisms map these cycles into themselves. H4 cycles #33, #38, #40 and #44. They are characterized by the repetition of the model P RP RP RLR. 6 automorphisms map these cycles into themselves. H5 cycles #34, #39, #42 and #43. They are characterized by the repetition of the model P RP RLRLR. 6 automorphisms map these cycles into themselves. H6 cycles #6, #7, #8, #9, #10, #19, #21, #27, #30 and #31. They are characterized by the repetition of the model LP LP LR. 8 automorphisms map these cycles into themselves. H7 cycles #3, #12, #15, #17, #26, #28, #35, #46, #51, #51, #56 and #61. They are characterized by the repetition of the model P LRP LP RLP LRLP RLRP RLRP LRL. 2 automorphisms map these cycles into themselves.

  Proposition 1.40. Γ forms an abelian group isomorphic to Z 12 × Z 2 with multiplication dened by Proof. From the Formula 1.15, it is clear that the multiplication of each pair of elements in Z 12 ×Z 2 is an element in Z 12 × Z 2 . Since (Z 12 , +) is an abelian group and σ i σ j = σ j σ i , commutativity is also satised. Moreover associativity is satised, for every (t 1 , σ 1 ), (t 2 , σ 2 ), (t 3 , σ 3 ) (t 1 , σ 1 ) ((t 2 , σ 2 ), (t 3 , σ 3

(t 1 , σ 1 )(t 2 , σ 2 ) = (t 1 + t 2 , σ 1 σ 2 ) (1.15)

4 

See http://www.giovannialbini.it/opus/ 5 See http://repmus.ircam.fr/moreno/music/

  2.4). The same table appears again on page 169. This is the same table introduced by Naumann. It is in just intonation, that was essential to Oettingen's harmonic system

of tone relations. Although this table reminds us again of the structure of the Speculum Musicum, there is no mention of the latter or of Euler's idea to organize tones in diagrams. Moreover, we can observe that this table is innite.

  But unlike Oettingen, who used his table only to demonstrate the derivation of intervals and tones, Riemann used them also to describe and explain the behavior of tones and chords in a musical context. Gollin discussed some examples in which the Tonverwandtschaftstabelle is a metaphorical map to represent progressions of tones, chords or keys. The rst example is from the opening of the funeral march from Beethoven's Piano Sonata op.26, which was studied by Riemann in his 1880 Skizze einer neuen Methode der Harmonielehre (Sketch of a new method of harmony teaching ). In the opening section there is an enharmonic nonclosure that Riemann visualized on the Tonverwandtschaftstabelle. But the description of enharmonic passages assumes that the tonal elements of the table are equally tempered, an assumption at odds with the original acoustical function of these tables as a diagram whose elements are tones in just intonation. The analytical problem that the acoustical view of his tables posed was nevertheless big enough that Riemann in 1880 could not reconcile the harmonic logic of the passage with its spatial manifestation in his table.Gollin examined how Riemann later achieved this reconciliation: how the diagram as a literal matrix to represent and calculate relative frequencies of the tones in just intonation (as Oettingen) evolved into a traversable landscape of tones in his later writings. This new conception of musical diagrams is the main dierence with the acoustic models previously developed.

  Remark 3.6. P 12 and P 23 coincide with P 1 and P 2 dened by Arnett and Barth. Now we dene the generalized relative and leading-tone operations. We recall that, from Proposition 1.27, if the triad is major

		1 is
	for dominant sevenths, 2 for minor sevenths, 3 for half-diminished sevenths, 4 for major sevenths and 5
	for diminished sevenths.	
	4 of the 17 transformations are parallel operations:
	Q T	P 12 : [x, x + 4, x + 7, x + 10] → → [x, x + 3, x + 7, x + 10]
	Q S	P 14 : [x, x + 4, x + 7, x + 10] → → [x, x + 4, x + 7, x + 11]
	Q F	P 23 : [x, x + 3, x + 7, x + 10] → → [x, x + 3, x + 6, x + 10]
	Q S	P 35 : [x, x + 3, x + 6, x + 10] → → [x, x + 3, x + 6, x + 9].

  This time, 3 of the 17 transformations are L ij operation:Q R++ L 13 : [x, x + 4, x + 7, x + 10] → → [x + 2, x + 4, x + 7, x + 10] Q R L 15 : [x, x + 4, x + 7, x + 10] → → [x + 1, x + 4, x + 7, x + 10] Q R++ L 42 : [x, x + 4, x + 7, x + 11] → → [x + 2, x + 4, x + 7, x + 11].Remark 3.10. L 13 coincides with L dened by Arnett and Barth and the edge-ip described by Gollin in his three-dimensional Tonnetz.

  .1.

	Name	Type	Intervallic structure	Cyclic marked chord	Example
	Dominant (D)	1	(4, 3, 3, 2)	[x, x + 4, x + 7, x + 10]	C 7 = [0, 4, 7, 10]
	Minor (m)	2	(3, 4, 3, 2)	[x, x + 3, x + 7, x + 10] C m = [0, 3, 7, 10]

Table 3 . 1 :

 31 Summary of the 9 types of seventh chords.

Let H * be the set of all sevenths of the 9 types listed above:
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Theorem 1.47. U is a subgroup of G.

Proof. By Proposition 1.46 U = C G (T 1 ). Since the centralizer of an element of a group is its subgroup, U is a subgroup of G.

The product formula of two UTTs U = σ U , t + U , t - U , V = σ V , t + V , t - V ∈ U is dened as 6

(1.17)

Example 1.48. Let U = +, 4, 7 and V = -, 5, 10 be two UTTs. Their product U V is V U = -, 9, 5 • +, 4, 7 = -, 4 + 5, 7 + 10 = -, 9, 5 .

We consider the major triad C M = (0, +) and the minor triad C m = (0, -). We apply U V to them:

(V U )(0, +) = V (U (0, +)) = V (4, +) = (9, -) (V U )(0, -) = V (U (0, -)) = V (7, -) = (5, +).

We obtain the same result applying directly V U = -, 9, 5 .

We observe that the group U is not abelian. In fact if we consider U, V ∈ U as in previous example, we have U V = +, 4, 7 • -, 5, 10 = -, 5 + 7, 10 + 4 = -, 0, 2 = V U

Hook dened the Riemannian UTTs as UTTs in which the sum of the transposition levels is 0.

Denition 1.49 (Riemannian UTT). A UTT σ, m, n is Riemannian if m + n ≡ 0 (mod 12).

Example 1.50. Several UTTs are Riemannian. In addition to P = -, 0, 0 , L = -, 4, -4 and R = -, -3, 3 , T 0 = +, 0, 0 and T 6 = +, 6, 6 are among the operations satisfying the Riemannian condition.

The Riemannian UTTs are 24: 12 mode-preserving UTTs of the form S n = +, n, -n known as Schritte and 12 mode-reversing of the form W n = -, n, -n known as Wechsel. Therefore T 0 = S 0 , T 6 = S 6 , P = W 0 , L = W 4 and R = W 9 . The set of all 24 Riemannian UTTs is denoted by R and form a group known as the Riemann group. This group is also known as the S/W -group.As it turns out, the P LR-group is isomorphic to the Riemann group.

Theorem 1.51. The 24 Schritte S n and Wechsel W n form a group isomorphic to the P LR-group.

Proof. By using Formula 1.17, it is easy to see that S n and W n satisfy the following properties:

Moreover S 0 = T 0 is the identity and the associativity is inherited from the group U of all UTTs. 6 The product has to be read from right to left.

3. from C get G and E by forming a fth and a major third respectively, and E will also be the fth of A, moreover from A get C by forming a major third;

4. from G get D and H by forming a fth and a major third, and H is also the fth of E, moreover from E get G by forming a major third, it will also be the fth of C ; 5. from H get F and D by forming a fth and a major third, and D will also be the fth of G, moreover from E and D get B by forming a fth.

It is interesting to observe that Euler considered the intervals in just intonation, but then the fth of D should be A , not B (A and B coincide in the equal temperament, but not in the just intonation). To help the readers in this explanation, Euler summarized it with the diagram in Fig. 2.1. He introduced it just as a scheme of his explanation on tuning for diatonic-chromatic genus; he did not dene it as a graph, and did not give it a name. He used the term gure to introduce it: Totus autem hic temperationis processus ex adiecta hic gura distinctius percipietur.

We recall that Euler's study of the seven bridges of Königsberg, presented in 1735 and published in 1741, 3 is considered as the rst one in the history of graph theory, and for this reason Euler is known as the pioneer of this subject [START_REF] Biggs | Graph Theory[END_REF]. The fact that Euler did not use the term graph is not surprising: as is often the case in the history of mathematics, when a theory is at the beginning many objects have no name yet. According to Howarth [START_REF] Howarth | Dictionary of Mathematical Geosciences: With Historical Notes[END_REF],

the term graph was introduced by Sylvester in a paper published in 1878. 4 Furthemore it is interesting to observe that the Tentamen, although published in 1739, was written in 1731, and therefore the graph introduced for tuning of chromatic-diatonic genus is older than the famous graph solution of the Bridges of Königsberg.

5

Also the term Tonnetz came later, too. In the chapter From matrix to map: Tonbestimmung, the Tonnetz, and Riemann's combinatorial conception of interval, [START_REF] Hascher | Leonhard Euler: Mathématicien, physicien et théoricien de la musique[END_REF] Moreover see [START_REF] Andreatta | Calcul algébrique et calcul catégoriel en musique: aspects théoriques et informatiques, Le calcul de la musique[END_REF].

We can consider Oettingen's table as a multiplication matrix. It is interesting to observe that the external organization determines the internal spatial relations: each entry is obtained by the exponents m and n. In the initial exposition of the table, Oettingen studied some geometric properties related to intervals, for example he observed that the diagonal axes directed to the top left form minor thirds. This corresponds to the same geometric representation of the modern Tonnetz ; this is probably why it is considered to be the modern version of various diagrams, including that of Oettingen.

Riemann's tables and diagrams

Hugo Riemann (18491919) used dierent tables and diagrams to represent musical relations. For him, tone relations are fundamental for harmonic relations in music such as the constitution of triads and keys. The fundamental relations between tones are represented in the Tonverwandtschaftstabelle, also commonly considered as an ancient version of the neo-Riemannian Tonnetz.

In his chapter From matrix to map: Tonbestimmung, the Tonnetz, and Riemann's combinatorial conception of interval in [START_REF] Gollin | The Oxford Handbook of Neo-Riemannian Music Theories[END_REF], Gollin examined the use of musical tables in Riemann's writings, in particular he studied the changing meaning of the Tonnetz over the course of his life. We nd tables of tone relations in several writings Let H be the set of major and minor seventh chords, that is, where

if t is a major seventh.

P maps each major seventh to its relative minor seventh moving the seventh down a whole tone. Conversely, it maps each minor seventh to its relative major seventh moving the root up a whole tone.

S maps each major seventh to the minor seventh having root 4 semitones up, moving its root up a whole tone. On the contrary, it maps each minor seventh to the major seventh having root 4 semitones down, moving its seventh down a whole tone.

Example 3.1. We consider the major seventh chord C 7 = 0, 4, Theorem 3.2. The transformations P and S act on H generating a group again isomorphic to the dihedral group D 12 of order 24.

Proof. We note that P 2 = S 2 = 1, (P S) 12 = 1 and (P S)P (P S) = (P S)(P P )S = (P S)S = P (SS) = P = P -1 .

Therefore the group has the following presentation:

P, P S|P 2 = 1, (P S) 12 = 1, (P S)P (P S) = P -1 .

Parsimonious operations among seventh chords

Since seventh chords are often used in voice leading, our aim is to nd all the most parsimonious operations among seventh chords, similar to the P , L and R operations for triads. The most parsimonious operations x three notes and move only one note by a semitone or a whole tone. Equivalently: we want to determine all P 1,0 and P 0,1 relations among sevenths. We rene the denition of transformations and operations among sevenths, extending in a natural way Denitions 1.41 and 1.42 given by Hook for triads. We will denote the set of all possible seventh chords with Σ.

Example 3.18.

Q 43 L 13 R 12 = ((43), (0, 0, -1, 1, 0)) • (( 13), (4, 0, -4, 0, 0)) • (( 12), (-3, 3, 0, 0, 0)) = = ((1243), (-3, 3, 0, 0, 0) + σ -1 1 (4, 0, -4, 0, 0) + σ -1 1 σ -1 2 (0, 0, -1, 1, 0)) = = ((1243), (-3, 3, 0, 0, 0) + (0, 4, -4, 0, 0) + σ -1 1 (-1, 0, 0, 1, 0)) = = ((1243), (-3, 3, 0, 0, 0) + (0, 4, -4, 0, 0) + (0, -1, 0, 1, 0)) = = ((1243), (-3, 6, -4, 1, 0)).

We want to prove that P LRQ is isomorphic to S 5 V . We recall the denition of semidirect product of two subgroups.

Let G be a group. If G contains two subgroups H and K such that

G is the semidirect product of H and K. Conversely, given two groups H and K and a group homomorphism φ : H → Aut(K), we can construct a new group H K dening in the cartesian product H × K the following operation:

Theorem 3.19. The group P LRQ is isomorphic to S 5 Z 4 12 .

Proof. First of all we prove that P LRQ is isomorphic to S 5 V .

We observe that the subgroup formed by the elements (Id, v) is normal. In fact, for all (σ, v) ∈ S 5 × V, (Id, v ) ∈ {Id} × V , we have

On the other hand, since S 5 is generated by transpositions, it is easy to see that, calling O the origin in Z 5 12 , S 5 × {O} < P LRQ, since we already have in it P 12 , P 14 , P 23 , P 35 .

It is clear that the two subgroups have trivial intersection. Thus, P LRQ S 5 V . Now we compute the permutations and vectors associated to R 42 L 42 , P 14 L 42 P 14 R 12 , P 12 L 13 P 12 R 23 :

3 (v 4 ) = =(-3, 3, 0, 0, 0) + (0, 0, 0, 0, 0) + (-4, 4, 0, 0, 0) + (0, 0, 0, 0, 0) = =(7, -7, 0, 0, 0) list and classify all new parsimonious operations. We do it only for the new transformations highlighted in red.

We have obtained 20 new parsimonious operations. Therefore the most parsimonious operations on the 9 types of sevenths are 37 in total.

We note that the intervallic structure of the dominant seventh at ve chord is [START_REF] Amiot | Music Through Fourier Space[END_REF][START_REF] Albini | Hamiltonian Graphs as Harmonic Tools[END_REF][START_REF] Amiot | Music Through Fourier Space[END_REF][START_REF] Albini | Hamiltonian Graphs as Harmonic Tools[END_REF]. Therefore from an acoustical point of view we have only 6 chords of this type: C 7 5 = F We now represent the parsimonious operations as elements (σ, v) ∈ S 9 × V , where

In fact, similarly to what we have done for the rst 17 parsimonious operations on the 5 types of sevenths, considering 9 types each operation is completely identied as a transposition of S 9 and a vector σ ∈ Z 9 12 , where the generic i-th component, i ∈ {1, . . . , 9} represents the number of semitones of the movement of the root of the chord of type i to become the root of the chord of type j. Also in this case, our parsimonious operations are Riemannian. We summarize the 37 operations as elements of S 9 × V (in red the Now we determine the group generated by these 37 operations.

Theorem 3.20. The P RLQ * -group is isomorphic to S 9 Z 8 12 .

Proof. First of all we have to prove that the P LRQ * -group is isomorphic to S 9 V . By denition P LRQ * S 9 × V . Let {O} be the identity in V . The elements P 12 , P 23 , P 14 , P 35 , P 26 , P 47 , P 18 and P 19 generate S 9 × {O}, since the vectors of the parallel operations are identities and the transpositions [START_REF] Bigo | Computation and Visualization of Musical Structures in Chord-Based Simplicial Complexes[END_REF], ( 23), ( 14), ( 35), ( 26), ( 47), (18) and (19) generate S 9 . Thus S 9 × {O} is a subgroup of P LRQ * . Moreover the subgroup formed by the elements (Id, v) is normal. In fact, for all (σ, v)

12 . As a lengthy but straightforward calculation shows, the following elements generate all elements (Id, (v 1 , . . . , v 9 )):

R 42 L 42 = (Id, (0, -7, 0, 7, 0, 0, 0, 0, 0)) P 14 L 42 P 14 R 12 = (Id, (7, -7, 0, 0, 0, 0, 0, 0, 0)) P 12 L 13 P 12 R 23 = (Id, (0, 7, -7, 0, 0, 0, 0, 0, 0))

, 0, 0, 0, -7, 0, 0, 0)) P 64 P 14 P 18 P 19 P 14 P 64 R 86 QQ 98 = (Id, (0, 0, 0, 0, 0, 3, 0, -2, -1))

P 64 P 47 P 64 Q 76 = (Id, (0, 0, 0, 0, 0, -1, 1, 0, 0)) P 64 P 87 P 47 P 64 Q 76 P 87 = (Id, (0, 0, 0, 0, 0, -1, 0, 1, 0))

Finally, it is clear that the intersection (S 9 × {O}) ∩ ({Id} × V ) is trivial. Therefore, we can conclude that P RLQ * -group is isomorphic to S 9 Z 8 12 .

will start from Hook's work (see Section 1.6) extending the denition of UTTs. In particular, we will classify and analyze the parsimonious UTTs such that the triads of the four types are P 1,0 and P 0,1 -related, and we want to determine the algebraic group generated by these new operations and the corresponding parsimonious graphs.

Extension of the UTTs

Following Hook's approach, we can denote a triad as an ordered pair ∆ = (r, s), where r ∈ Z 12 is the root of the triad and s = s 1 , s 2 , s 3 , s 4 represents its type: s 1 for major, s 2 for minor, s 3 for diminished and s 4 for Remark 4.3. In the set S * there are the augmented triads, having intervallic content [START_REF] Amiot | Music Through Fourier Space[END_REF][START_REF] Amiot | Music Through Fourier Space[END_REF][START_REF] Amiot | Music Through Fourier Space[END_REF]. As for the diminished sevenths, in a chord progression it is not clear what is the root in augmented triads. Thus, from an acoustical point of view, we have not 12 dierent augmented triads but only 4: (0, s 4 ) = (4, s 4 ) = (8, s 4 ), (1, s 4 ) = (5, s 4 ) = (9, s 4 ), (2, s 4 ) = (6, s 4 ) = (10, s 4 ) and (3, s 4 ) = (7, s 4 ) = (11, s 4 ). But, for algebraic motivations, using the cyclicly marked chords we will consider them as 12 distinguished chords.

The extension of the denitions of triadic transformation and operation are natural. We are interested only in the uniform triadic transformations on S * , whose denition is an extension to that given by Hook.

Denition 4.6 (Uniform triadic transformation). A uniform triadic transformation U is an operation satisfying the following uniformity condition: for every triad (r, s) ∈ S * and every transposition t ∈ T , if U transforms the triad (r, s) in (r , s ), then U transforms (r + t, s) to (r + t, s ).

Similar to what Hook did, we can represent a UTT on S * as an ordered pair (σ, (v 1 , v 2 , v 3 , v 4 )), where:

s is a permutation of the symmetric group S 4 representing the change of the type of the triad if the UTT is mode-reversing. If the UTT is mode-preserving, σ = Id ∈ S 4 .

12 is a vector where each component represents the number of semitones by which the root of the corresponding triad is moved. More precisely the rst component v 1 represents the movement of the root of major triads, the second component v 2 is for minor triads, the third component v 3 is for augmented triads and v 4 is for diminished triads.

Example 4.7.

T n = (+, (n, n, n, n)) P = (( 12), (0, 0, 0, 0)) L = (( 12), (4, -4, 0, 0)) R = ((12), (-3, 3, 0, 0)).

We observe that we can extend the neo-Riemannian P , L and R operations to diminished and augmented triads dening it as the identity on these two types of triads. In fact, for example

if the triad is augmented.

Let U * be the set of all UTTs. Since each UTT can be represented as (σ, (v 1 , v 2 , v 3 , v 4 )) ∈ S 5 × Z 4 12 , the order of U * is 120 × 12 4 = 2488320. Now we describe the actions of UTTs on triads. Let U = (σ, (v 1 , v 2 , v 3 , v 4 )) be a UTT and let ∆ = (r, s) be a triad. U acts on ∆ transposing its root by v

Moreover, depending on the permutation σ ∈ S 4 , U can leave or change the type of the chord. More precisely: 

The product formula for the UTTs on S * is the same dened in 3.7: In fact, if we consider D M = (2, s 1 ), E m = (4, s 2 ), G d = (7, s 3 ) and B A = (11, s 4 ) and if we apply U , V and W

We obtain the same results applying directly W V U

Finally, we extend Hook's denition of Riemannian UTT.

Denition 4.10 (Riemannian UTT)

Example 4.11. The transposition T 0 = (Id, (0, 0, 0, 0)) and the neo-Riemannian operations P = (( 12), (0, 0, 0, 0)), L = (( 12), (4, -4, 0, 0)) and R = (( 12), (-3, 3, 0, 0)) are Riemannian also with this new denition.

Among all Riemannian UTTs on S * , we are interested on the most parsimonious ones.

Parsimonious operations among triads

First of all we consider all possible movements by semitones or whole tone of the three members of all types of triads. Similarly to what was done in the previous chapter, we denote by Q i+ and Q i++ , where i = R, T, F , the maps that transform each triad moving the i-th member a semitone and a whole tone up, and with Q i-and Q i--the maps that move the i-th member a semitone and a whole tone down respectively.

Secondly, we group each map with its inverse and we classify the parsimonious transformations using the denitions introduced in the previous chapter:

Therefore, the most parsimonious operations among triads are 13: 10 of them are P 1,0 relations, 3 are P 0,1 relations.

We want to determine the group generated by the 13 most parsimonious transformations acting on S * . We will use the same strategy introduced in the previous chapter for seventh chords.

We call P LR * the group generated by the 13 transformations among major, minor, augmented and diminished triads.

We have already seen that each UTT t ∈ P LR * can be expressed as an ordered pair (σ, (v 1 , v 2 , v 3 , v 4 )) ∈ S 4 × Z 4 12 . We list the 13 parsimonious operations as elements of S 4 × Z 4

12 : 13), (1, 0, 0, -1)) 12), (4, -4, 0, 0)) 41), (4, 0, -4, 0)) 42), (0, -5, 5, 0)) 12), (0, 0, 0, 0)) 14), (4, 0, -4, 0)) 32), (0, 0, 0, 0)) 42), (0, 3, -3, 0)) 41), (0, 0, 0, 0)) 13), (4, 0, 0, -4)) 12), (-3, 3, 0, 0)) 23), (0, 3, -3, 0)).

More precisely, we can represent each operation t ∈ P LR * as an element of S 4 × V where

We recall that the composition law is dened as follows:

Theorem 4.13. The P LR * -group is isomorphic to S 4 Z 3 12 .

Proof. First of all we prove that P LR * S 4 V .

Let {O} be the identity in V . Then S 4 × {O} is a subgroup of P LR * . In fact, the elements P M m , P dm and P AM generate S 4 × {O}. Moreover, the subgroup formed by the elements (Id, v) is normal, because for all

Furthermore, the two subgroups have trivial intersection. Hence P LR * S 4 V . Now we observe that the normal subgroup of elements (Id, v) is isomorphic to {Id} × Z 3 12 . In fact L M m R M m = (Id, (-7, 7, 0, 0))

Q AM P AM P M m P AM = (Id, (0, 1, -1, 0)).

generate all elements (Id, (v 1 , v 2 , v 3 , v 4 )), with (v 1 , . . . , v 4 ) ∈ Z 4

12 such that 4 i=1 v i = 0. In fact, given a, b, c ∈ Z we have a(-7, 7, 0, 0) + b(0, 1, 0, -1)

which has solution since 7 and 12 are coprime.

Hence P LR * S 4 Z 3 12 .

triads are the following:

We observe that considering this set of sevenths and triads we have not operations including diminished sevenths.

Since the intervallic structure of diminished sevenths is [START_REF] Amiot | The Torii of phases[END_REF][START_REF] Amiot | The Torii of phases[END_REF][START_REF] Amiot | The Torii of phases[END_REF][START_REF] Amiot | The Torii of phases[END_REF], the only possibility to have parsimonious operations transforming them into triads is to include diminished triads. In fact, if we consider the set K 2 = H ∪ S 1 of the classical 5 types of sevenths and major, minor and diminished triads, the parsimonious operations are the following:

1

To classify all parsimonious operations on K 2 , we have introduced two new operations.

Denition 5.4. Let RR ij : K → K be the map which sends an i-th type of seventh to a j-th type of triad transposed 6 semitones up, a j-th type of triad to an i-th type of seventh transposed 6 semitones down, and which xes the other types:

Denition 5.5. Let Z ij : K → K be the map which sends an i-th type of seventh to a j-th type of triad transposed 9 semitones up, a j-th type of triad to an i-th type of seventh transposed 9 semitones down, and which xes the other types:

Remark 5.6. Let K 3 = H ∪S * . The parsimonious operations exchanging sevenths and triads acting on K 2 and K 3 are the same. This is because none of the 5 classical types of sevenths has intervallic structure [c 1 , c 2 , c 3 , c 4 ]

1 In red the new operations with respect of those acting on K 1 .

where c i = c i+1 = 4 for any c i .

The ST -group

Let K = H ∪ S * be the set of all sevenths of the ve classical types (dominant, minor, half-diminished, major and diminished) and triads (major, minor, augmented and diminished). We want to introduce the following general notation able to represent operations on K among sevenths, among triads and also operations among sevenths and triads:

(θ, (v, w))

θ is a permutation representing the change of the type among the chords.

v ∈ Z 5 12 is a vector playing a role similar to those of chapters 3 and 4: each v i represents the movement of the (marked) root of the chords of type i (both if it is transformed into another seventh, or into a triad); w ∈ Z 4 12 , analogously, is a vector in which each w i represents the movement of the (marked) root of the chords of type i (both if it is transformed into another triad, or into a seventh).

Example 5.7. 12), ((0, 0, 0, 0, 0), (0, 0, 0, 0))) 42), ((0, 3, 0, -3, 0), (0, 0, 0, 0))) L = L M m = ((M m), ((0, 0, 0, 0, 0), (4, -4, 0, 0))) P 1M = ((1M ), ((0, 0, 0, 0, 0), (0, 0, 0, 0))) L 4m = ((4m), ((0, 0, 0, 4, 0), (0, -4, 0, 0))) Remark 5.8. Considering only transformations acting on sevenths (or triads), the vector v = (v 1 , v 2 , v 3 , v 4 , v 5 )

(respectively w = (w 1 , w 2 , w 3 , w 4 )) is such that 5 i=1 v i = 0 ( 4 i=1 w i = 0). As we see in the previous example, if we consider also transformations among sevenths and triads this property fails; anyway, it is easy to see that we always have that 5

Let ST be the group generated by the following parsimonious operations acting on K = H ∪ S * : the 17 parsimonious operations among the 5 types of sevenths; the 13 parsimonious operations among the 4 types of triads; the 12 parsimonious operations among the 5 types of sevenths and the 4 types of triads.

Given two musical operations

)) on K, the composition law is dened as follows:

It is evident that given two musical operations acting on the set H of the classical types of sevenths, the Formula 5.1 corresponds to the Formula 3.7. Similarly, if two musical operations act on the set S * of all triads, the Formula 5.1 corresponds to the Formula 4.2. In fact, let U 1 = (θ 1 , (v 1 , w 1 )) and U 2 = (θ 2 , (v 2 , w 2 )) be two musical operations exchanging two types of sevenths in K, then U 1 = (θ 1 , (v 1 , (0, 0, 0, 0)))

U 2 = (θ 2 , (v 2 , (0, 0, 0, 0))) 42), ((0, 3, 0, -3, 0), (0, 0, 0, 0))) 35), ((0, 0, -3, 0, 3), (0, 0, 0, 0))) 53), ((0, 0, 3, 0, -3), (0, 0, 0, 0))) 13), ((4, 0, -4, 0, 0), (0, 0, 0, 0))) 15), ((4, 0, 0, 0, -4), (0, 0, 0, 0))) 42), ((0, -4, 0, 4, 0), (0, 0, 0, 0))) 43), ((0, 0, -1, 1, 0), (0, 0, 0, 0))) 15), ((1, 0, 0, 0, -1), (0, 0, 0, 0))) 35), ((0, 0, -6, 0, 6), (0, 0, 0, 0))) 51), ((-2, 0, 0, 0, 2), (0, 0, 0, 0)) 51), ((-5, 0, 0, 0, 5), (0, 0, 0, 0)) 13), ((0, 0, 0, 0, 0), (1, 0, 0, -1))) 42), ((0, 0, 0, 0, 0), (0, -1, 1, 0))) 12), ((0, 0, 0, 0, 0), (4, -4, 0, 0))) 41), ((0, 0, 0, 0, 0), (4, 0, -4, 0))) 42), ((0, 0, 0, 0, 0), (0, -5, 5, 0))) 12), ((0, 0, 0, 0, 0), (0, 0, 0, 0))) 14), ((0, 0, 0, 0, 0), (4, 0, -4, 0))) 32), ((0, 0, 0, 0, 0), (0, 0, 0, 0))) 42), ((0, 0, 0, 0, 0), (0, 3, -3, 0))) 23), ((0, 0, 0, 0, 0), (0, 3, -3, 0)))

(θ, (v, w)) = ((1M ), ((0, 0, 0, 0, 0), (0, 0, 0, 0)))

→ → [x + 4, x + 7, x + 10] (θ, (v, w)) = ((1d), ((4, 0, 0, 0, 0), (0, 0, -4, 0)))

(θ, (v, w)) = ((2m), ((0, 0, 0, 0, 0), (0, 0, 0, 0)))

10] (θ, (v, w)) = ((2M ), ((0, 3, 0, 0, 0), (-3, 0, 0, 0)))

(θ, (v, w)) = ((3d), ((0, 0, 0, 0, 0), (0, 0, 0, 0))) R 3m : [x, x + 3, x + 6, x + 10] → → [x + 3, x + 6, x + 10] (θ, (v, w)) = ((3m), ((0, 0, 3, 0, 0), (0, -3, 0, 0)))

(θ, (v, w)) = ((4M ), ((0, 0, 0, 0, 0), (0, 0, 0, 0)))

(θ, (v, w)) = ((4m), ((0, 0, 0, 4, 0), (0, -4, 0, 0)))

(θ, (v, w)) = ((5d), ((0, 0, 0, 0, 0), (0, 0, 0, 0)))

(θ, (v, w)) = ((5d), ((0, 0, 0, 0, 3), (0, 0, -3, 0)))

(θ, (v, w)) = ((5d), ((0, 0, 0, 0, 6), (0, 0, -6, 0)))

(θ, (v, w)) = ((4m), ((0, 0, 0, 0, 9), (0, 0, -9, 0))).

Theorem 5.11. The ST -group is isomorphic to S 9 Z 8 12 .

Proof. First of all we prove that ST S 9 V , where V

j=1 w j = 0}. Let {O} = ((0, 0, 0, 0, 0), (0, 0, 0, 0)) be the identity in V . Then S 9 × {O} is a subgroup of ST . In fact, the elements P 12 , P 14 , P 23 , P 35 (generators of S 5 × {O} in the P LRQ-group), P M m , P dm and P AM (generator of S 4 × {O} in the P LR * -group) and, in addition, P 16 generate S 9 × {O}. Moreover, the subgroup formed by the elements (Id, v) is normal, because for all (θ, (v, w)) ∈ S 9 × V , and all (Id, (v , w

Furthermore, the two subgroups has trivial intersection. Hence ST S 9 V . Now we observe that the normal subgroup of elements (Id, (v, w)) is isomorphic to {Id} × Z 8 12 . In fact R 42 L 42 = (Id, ((0, -7, 0, 7, 0), (0, 0, 0, 0))) P 14 L 42 P 14 R 12 = (Id, ((7, -7, 0, 0, 0), (0, 0, 0, 0))) P 12 L 13 P 12 R 23 = (Id, ((0, 7, -7, 0, 0), (0, 0, 0, 0))) P 12 P 35 R 23 P 12 L 15 L 13 = (Id, ((7, 0, 0, 0, -7), (0, 0, 0, 0)))

L M m R M m = (Id, ((0, 0, 0, 0, 0), (-7, 7, 0, 0)))

0, 0, 0, 0, 0), (0, 1, 0, -1)))

Q AM P AM P M m P AM = (Id, ((0, 0, 0, 0, 0), (0, 1, 0, 1))) R 3m L 4m P 14 P 12 P 23 P 12 P 14 L 4m = (Id, ((0, 0, 1, 0, 0), (0, -1, 0, 0))) generate all elements (Id, ((v 1 , v 2 , v 3 , v 4 , v 5 ), (w 1 , w 2 , w 3 , w 4 ))), with ((v 1 , . . . , v 5 ), (w 1 , . . . , w 4 )) ∈ Z 9 12 such that 5 i=1 v i + 4 j=1 w j = 0. In fact, for any suc (v, w) we have to nd a, b, c, d, e, f, g, h ∈ Z such that a((0, -7, 0, 7, 0), (0, 0, 0, 0)) + b((7, -7, 0, 0, 0), (0, 0, 0, 0)) + c((0, 7, -7, 0, 0), (0, 0, 0, 0)) +d(7, 0, 0, 0, -7), (0, 0, 0, 0)) + e((0, 0, 0, 0, 0), (-7, 7, 0, 0)) + f ((0, 0, 0, 0, 0), (0, 1, 0, -1)) +g((0, 0, 0, 0, 0), (0, 1, -1, 0)) + h((0, 0, 1, 0, 0), (0, -1, 0, 0)) ≡ ((v 1 , v 2 , v 3 , v 4 , v 5 ), (w 1 , w 2 , w 3 , w 4 )) (mod 12) which amounts to solve the system

Calculations are simple and, as we show below, the system is solvable for all zero-sum vectors:

Hence ST S 9 Z 8 12 .

Conclusions and future perspectives

We have studied the historical development of the Tonnetz, including investigations on possible relations with other musical-geometric representations sharing the same properties, and discussing in which way we arrived at the traditional graph used in Mathematical Music Theory. It would be interesting to study in more detail Vogel and Imig's works, because it seems that they might have an important role on the developments of the Tonnetz and its name during the XX th century, at least according to Gollin's suggestions [36,[START_REF] Gollin | The Oxford Handbook of Neo-Riemannian Music Theories[END_REF]. It would be also interesting to better analyze Euler's mathemusical work, looking at the strategic place occupied by music in his theoretical writings. Furthermore, we have extended and generalized the studies on the neo-Riemannian operations P , L and R for major and minor triads to other sets of chords: two sets of sevenths and the set of all 4 traditional triads. We have classied the most parsimonious operations acting on these sets and studied the group generated by them.

Moreover, we have found the parsimonious graph associated to the parsimonious operations on the set of the 5 classical types of sevenths (which we have proposed to name the Clover graph) and on the set of major, minor and diminished triads (generalized Chicken-wire Torus ), and on the collection of major, minor and augmented triads (generalized Cube Dance ). It could be interesting to create the parsimonious graphs associated to the other sets analyzed from an algebraic point of view, and to study Hamiltonian paths and cycles on them (up to isomomorphisms).

We have introduced a new notation, enabling us to describe every transformation acting on dierent sets of chords, including sets of chords with dierent cardinalities. It would be interesting to study groups generated by other transformations on sets of chords of dierent cardinalities as well as the parsimonious graph associated to the operations on other sets of chords, in particular those including chords of dierent cardinalities.

It would also be interesting to extend these algebraic studies through the point of view of non-contextual transformations, introduced by Franck Jedrzejewski [START_REF] Jedrzejewski | Permutation Groups and Chord Tessellations[END_REF]: in fact, the P , L and R operations, once dened as inversions, are contextual transformations, since the corresponding inversions dened depend on the given chord. Jedrzejewski had the idea to re-dened them as products of permutations (more precisely transpositions), in order to dene non-contextual transformations. The new transformations he dened are dierent from the original neo-Riemannian operations, but despite the change of perspective the main properties are maintained.

Moreover, there are musical examples in which they are better adapted to describe isographies than contextual operations. The same perspective could be applied by considering seventh chords, including the comparison of advantages and disadvantages of the two approaches with relevant musical examples.

Moreover, it would be interesting to study the models presented in this thesis through the Discrete Fourier Transform (DFT), especially developed by Emmanuel Amiot, and summarized in his monograph Music Through Fourier Space [START_REF] Amiot | Music Through Fourier Space[END_REF]. The recent applications of the DFT in music theory take up the phases of Fourier coecients.

In particular, in [START_REF] Amiot | The Torii of phases[END_REF] Amiot introduced a bidimensional toroidal space, dened by pairs of Fourier coecients. This formalization is useful to represent simultaneously single notes, triads and any chord necessary for the analysis of a musical piece. In this space triads are disposed with the same topology as the traditional Tonnetz, which asks for a possible generalization of these constructions in the case of seventh chords. Finally, since this work is within a PhD in Mathematics, we focused more on the mathematical part, leaving