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Résumé: Le muscle squelettique adulte est un tissu avec une grande plasticité étant donné qu’il 

adapte sa taille suite à la surcharge fonctionnelle et il régénère suite à une lésion. La base de cette 

plasticité est la myofibre et les cellules souches associées, les cellules satellites (CS). Suite aux 

stimuli, les CS sortent de la quiescence, elles s’activent, proliférent, s’engagent dans la voie 

myogénique et fusionnent entre elles ou bien avec la fibre pre-éxistante. Une partie des CS retourne à 

la quiescence afin de maintenir le « pool » de progéniteurs. Ce projet a pour objectif de mieux 

caractériser des voies de signalisation responsables des adaptations des CS au cours de la 

régénération et le l’hypertrophie compensatoire.  

Srf est un facteur de transcription, particulièrement exprimé dans les muscles. Les gènes cibles de Srf 

sont des gènes qui participent à la régulation de la prolifération cellulaire et des gènes codant des 

protéines sarcomériques du muscle ou bien des gènes ayant un rôle dans l’adhésion cellulaire, la 

migration et l’organisation du cytosquelette. Il a été montré que la perte de fonction de Srf dans la 

lignée de cellules musculaire C2C12 inhibe leur prolifération et leur différenciation et que Srf contrôle 

l’expression de MyoD qui est un gène de détermination myogénique. Aucune donnée n’est disponible 

à ce jour concernant la fonction de Srf dans les CS in vivo. Nous avons généré des souris dépourvues 

de Srf spécifiquement dans les CS adultes. Les CS ont été recruitées par l’hypertrophie et la 

régénération musculaire. En parallèle des études ex vivo ont été menées afin de préciser si les 

phénotypes observés sont cellule-autonomes et afin de disséquer les mécanismes sous-jacents.  

Nous montrons que la perte de Srf dans les CS affecte fortement les processus de régénération et 

d’hypertrophie suggérant un rôle de Srf dans le contrôle du destin cellulaire de CS. Nos études 

montrent que la perte le Srf dans les SC n’affecte pas leur prolifération et leur engagement dans la 

différenciation myogénique. Par contre, leur motilité et leur capacité de fusion sont fortement réduites. 

Afin d’identifier les effecteurs de Srf impliqués dans la motilité et le défaut de fusion des CS mutantes, 

nous avons réalisé des études transcriptomiques et identifié le set de gènes dont l’expression est 

altérée par la perte de Srf dans des conditions de prolifération et de différenciation. L’analyse des 

fonctions altérées nous a indiqué que la voie de signalisation du cytosquelette d’actine était perturbée. 

En effet les CS dépourvues de Srf expriment moins d’actine et présentent une organisation du 

cytosquelette d’actine perturbée. Des expériences de sauvetage utilisant un modèle de souris 

permettant la surexpression inductible d’actine alpha dans les CS dépourvues de Srf ont montré que 

la surexpression d’actine chez les mutants Srf était suffisante pour rétablir partiellement l’organisation 

du cytosquelette et améliorer les capacités de fusion des CS. De manière intéressante, seule la fusion 

hétérotypique (entre une cellule contrôle et une cellule mutante), et pas la fusion homotypique (entre 

deux cellules mutantes), est rétablie par l’expression de l’actine. In vivo, le rétablissement de la fusion 

hétérotypique restaure la croissance hypertrophique des muscles alors que l’altération de la 

régénération chez les mutants Srf n’est que faiblement améliorée par la surexpression de l’actine. 

Cette étude nous a permis d’avoir une vision d’ensemble et mécanistique de la contribution du facteur 

de transcription Srf dans la biologie des CS et de mettre en évidence l’importance structurale du 

maintien du cytosquelette d’actine pour la fusion des cellules musculaires. 

Mots clés : cellules souches musculaires, serum response factor, hypertrophie musculaire, 

régénération musculaire 
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Title: Role of the Serum Response Factor (SRF) transcription factor in adult muscle stem cells 

 

Abstract: The adult skeletal muscle is a high plastic tissue as it adapts its size upon overload and it is 

capable of regeneration upon muscle lesion. The skeletal muscle is composed of a specialized 

syncytium, the myofiber, which is the functional unit of the muscle and a small population of myogenic 

progenitors, residing adjacent to the myofibers, termed as satellite cells (SCs). SCs are the muscle-

specific stem cells which endow the skeletal muscle with its remarkable capacity to repair and to 

maintain homeostasis during muscle turnover. In resting adult muscles, SCs are quiescent but they 

activate upon exposure to stimuli. The activated SCs (myoblasts) proliferate extensively and 

subsequently differentiate and fuse between them or pre-existing myofibers, a series of cellular events 

called myogenesis. In parallel to the myogenesis, a reserve population of SCs escapes the myogenic 

program and self-renews to replenish the SC pool. The current project aims to further characterize the 

signalling pathways involved in SC functions during muscle regeneration and compensatory 

hypertrophy (CH). 

Srf is a muscle-enriched transcription factor with Srf-target genes implicated in cell proliferation, 

differentiation (sarcomeric proteins), adhesion, migration and cellular cytoskeleton. Studies in C2C12 

mouse myogenic cell line showed that Srf loss prevent the myoblast proliferation and differentiation by 

down-regulating the expression of the myogenic determinant MyoD gene.  

We used a genetic murine model for adult SC-specific Srf-loss in order to conduct in vivo and ex vivo 

studies for the Srf role in SCs. Compensatory hypertrophy and regeneration are the two means by 

which SCs were recruited. We show that loss of Srf in SCs affects the regeneration process and the 

CH suggesting the Srf role in the SC fate. Srf-depleted SCs display probably no defect in their 

proliferation and differentiation but reduced capacity in motility and fusion. Transcriptomic analysis 

revealed altered actin cytoskeleton and signalling. Srf-depleted SCs show reduced actin expression 

and altered actin cytoskeleton. Rescue of actin expression in Srf-depleted SCs partially restored the 

cytoskeleton organization and the fusion process. Interestingly by actin overexpression only the 

heterotypic/asymmetric fusion was established but not the homotypic/symmetric fusion. Therefore 

actin overexpression restored the hypertrophic growth in the CH (in vivo model of heterotypic fusion) 

but failed to do so in the regeneration (in vivo model of homotypic fusion). 

This study contributed to the in vivo investigation of the Srf mechanistic role in adult SCs and 

underlined the importance of actin cytoskeleton maintenance in the fusion of myogenic cells. 

 
 
Keywords: muscle satellite cells, serum response factor, skeletal muscle hypertrophy, skeletal 

muscle regeneration, actin cytoskeleton 
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L’enfer, c’est les autres…. 

Jean-Paul Sartre   
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La ville 

Tu t'es dit "J'irai ailleurs, un autre pays,  

un nouveau rivage doivent exister, une ville autre.  

Tous mes efforts ici sont condamnés;  

et mon cœur n'est que mort, enterré.  

Jusqu'à quand ce marasme? Où que je tourne mes yeux,  

où mon regard se pose, je ne vois que ruines  

celles de ma vie gâchée, depuis toutes ces années  

ici, où je ne suis que l'épave de moi-même.  

 

Il n'y aura pas d'autres pays,  

tu chercheras en vain d'autres rivages,  

la ville te poursuivra. Dans ces mêmes  

rues tu iras roder. Et tu vieilliras  

dans ces mêmes quartiers; tes cheveux  

blanchiront dans ces mêmes maisons.  

Toutes les routes te ramèneront ici,  

dans cette même ville.  

Pour ce qui est d'ailleurs - n'espère pas -  

pour toi point de navire, point de chemin.  

De la façon dont ici,  

dans ce petit coin tu as raté ta vie,  

tu l'as ruinée partout, sur toute la terre. 

 

Cavafis 

 

traduit par François Sommaripas  
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Introduction 

1. Skeletal Muscle: an organ for locomotion and 

energy metabolism 

Movement is a defining feature of all animals and the evolutionary advantages of 

efficient locomotion led to several solutions for the construction of the motile organs (the 

muscles) in all animal phyla. Skeletal muscle, which constitutes about 40% of the mass of 

the human body, is the organ with the specificity to transform the chemical energy to 

mechanical energy (potential and kinetic energy) as well as heat energy. Its metabolism 

affects the metabolic balance of the entire organism and is the major body protein reservoir. 

Skeletal muscle is the most flexible structure in vertebrate organisms as it exerts diverse 

functions, enabling both crushing with great force and movement with exquisite precision 

(Braun and Gautel, 2011). The main muscle activity is the contraction of muscle cells, which 

is under the voluntary control and it is initiated by the nerves impulses. 

The functional cellular units responsible for skeletal muscle contraction are cylindrical, 

multinucleated muscle fibers (myofibers). The skeletal myofiber is a specialized syncytium1, 

which contains thousands of myonuclei within a common, undivided cytoplasm, forming an 

elongated cell under the plasma membrane called sarcolemma. 

The myofiber nuclei are postmitotic and under normal conditions cannot re-enter a 

proliferative state to contribute to additional nuclei. They lose this ability of mitosis once the 

myogenic progenitors’ nuclei have been incorporated into myotubes during the embryonic 

and postnatal development. In adult life, somatic stem cell populations participate in the 

homeostasis of their host tissues. During postnatal life, myofiber growth and repair of skeletal 

muscle depend on muscle stem cells, otherwise named satellite cells (Mauro, 1961; Moss 

and Leblond, 1971). 

  

 

                                                 
1
 from Anc Greek: σύν (syn) = "together" + κύτος (kytos) = "box, i.e. cell" 

https://en.wikipedia.org/wiki/Greek_language
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Part 1: Origins of Skeletal Muscle and Satellite cells 

The three germ layers (endoderm, mesoderm, and ectoderm) are formed during 

gastrulation. The mesoderm is at the origin of muscles, gonads, secretory organs, and 

connective tissue. Mesoderm is anatomically separated into paraxial, intermediate, and 

lateral mesoderm, with respect to position from the midline (Bentzinger et al., 2012). Skeletal 

muscle cells of higher vertebrates arise during midgestation (in mice between embryonic day 

9 (E9) and E12) from three different locations within the middle layer of cells in the primitive 

embryo: the segmented somitic paraxial mesoderm, the unsegmented cranial paraxial 

mesoderm and the prechordal mesoderm; these represent different parts of the mesoderm 

along the rostrocaudal axis (Braun and Gautel, 2011). 

 In mouse, skeletal muscle development occurs in several phases (Figure 1). First, in 

the E8.5 of gestation, primary myofibers develop displaying the earliest expression of 

myogenin and muscle-specific genes (desmin, titin and a-actin genes). Around E13 of 

gestation, secondary myofibers form in trunk and limbs, and they develop parallel to the 

primary myofibers, that serves as a scaffold for the orientation of differentiating myocytes of a 

second wave of myoblasts (Buckingham and Mayeuf, 2012).  

Satellite cells (SCs), the stem cells of adult skeletal muscle, arise around E17 of 

development as a unique myogenic cell lineage. They constitute the principal proliferative 

cell population of developing skeletal muscle. Late in fetal development at around E16.5-

18.5, these cells occupy a satellite cell position adjacent to the myofibers, a characteristic 

of progenitor cells in postnatal muscle (Kassar-Duchossoy et al., 2005; Relaix et al., 2005).  

Further skeletal muscle maturation occurs during the postnatal period for about 2-3 

weeks with the SC nuclear accretion to contribute to multinucleated myofibers (Tajbakhsh, 

2009). The adult number of myonuclei and satellite cells is established by 3 weeks of 

postnatal development. Subsequently, the muscle mass undergo extensive hypertrophic 

growth with increased cellular protein content to dominate in order to achieve growth of the 

musculature to adult size (White et al., 2010). 
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Figure 1 : Waves of skeletal muscle formation. There is a first wave of skeletal muscle 
formation, termed embryonic or primary myogenesis. This is followed by a second wave of 
fetal or secondary myogenesis. The timing of this transition depends on the onset of 
innervation which varies at different sites in the embryo. E: Embryonic day of mouse 
development. From (Buckingham and Mayeuf, 2012) 

 

Chapter 1: Trunk and Limb Myogenesis  

Skeletal muscle in the trunk and limbs derives from somites that progressively form 

by segmentation of paraxial mesoderm on either side of the neural tube and notochord, 

following an anterior-posterior developmental gradient. Somites are the first metameric 

structures and a characteristic paradigm of segmentation in mammalian embryos 

(Bentzinger et al., 2012). Segmentation starts from embryonic day 8 (E8.0). The somite is 

initially an epithelial ball of cells that subsequently distribute into a ventral mesenchymal 

sclerotome, giving rise to the bones of the vertebral column and ribs and an adjacent 

(dorsal-most part) syndetome, a source of muscle tendons in the trunk. The dorsal part of 

the somite, the dermomyotome, retains an epithelial structure for longer and gives rise to 

dorsal dermis and all the skeletal muscles of the trunk and limbs, as well as endothelial and 

smooth muscle cells of blood vessels, and brown fat (Buckingham and Rigby, 2014). 

Myotome 

The first muscle mass to form, under the dermomyotome, is the myotome, which 

has an epaxial and a hypaxial component (Figure 2). Dorsal muscles are formed from the 

epaxial part of the dermomyotome and myotome, whereas lateral trunk and limb muscles are 
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derived from the hypaxial domains (Buckingham et al., 2003). Myogenic precursor cells 

delaminate from the edges of the dermomyotome and they differentiate into myocytes to 

form the underlying differentiated muscle of the myotome. Subsequently, these myocytes 

undergo cell fusion to form multinucleated muscle fibers followed by cleavage and 

reorganization of the growing and splitting trunk muscle mass. At the level of the fore- and 

hindlimbs, cells delaminate from the hypaxial dermomyotome and migrate into the early limb 

bud where they subsequently differentiate into skeletal muscle (Buckingham and Mayeuf, 

2012).  

 

Figure 2 : Trunk and limb skeletal muscles in amniotes originate from the somites. The 
dermomyotome contains multipotent progenitor cells of different cell types, including the 
skeletal muscle progenitors. Even if Pax3 does not directly control early epaxial myogenesis 
(i.e. formation of the early myotome), all muscle cells derived from the somite have 
expressed Pax3 in their history. The early myotome and embryonic myofibres originate from 
cells that have expressed only Pax3 (indicated in red). In the central portion of the 
dermomyotome (darker green region) and in muscle progenitors once they have migrated to 
the limb, Pax7 expression is initiated in Pax3 positive cells. Pax3 expression, contrary to 
Pax7, is downregulated in cells that will contribute to fetal myogenesis (indicated in blue). 
From (Buckingham and Vincent, 2009) 

 

Both delamination and migration depend on the presence of c-met, a tyrosine 

kinase receptor, which interacts with its ligand hepatocyte growth factor HGF, produced by 
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non-somitic mesodermal cells that thus delineate the migratory route. In mutant mouse 

embryos, which lack functional c-met or HGF, skeletal muscle is absent from the limbs. 

Transcription of the c-met gene depends on Pax3 transcription factor (Epstein et al., 1996).  

Cranial Myogenesis 

Craniofacial muscles are associated with head (including extra-ocular muscles, jaw 

muscles and facial muscles) and neck structures. The formation of head muscles differs 

significantly (evolutionarily, morphologically, molecularly) from the formation of their 

counterparts in the trunk and limbs. In the embryo, these structures derive from distinct 

mesoderm populations. The head musculature originates from the unsegmented cranial 

paraxial mesoderm, which is positioned along both sides of the neural tube and notochord, 

and it is located anterior to the somites (Sambasivan et al., 2011a). 

Chapter 2: Upstream Regulators of Myogenesis  

2.1. Paired-Homeobox Transcription Factors 

Pax genes encode evolutionarily conserved (paired box: a DNA-binding sequence) 

transcription factors that play critical roles in organ development and tissue specification. 

Pax genes are divided into four subfamilies based on sequence similarities depending on the 

presence of an additional DNA-binding homeodomain and/or an octapeptide region, which 

serves as a binding motif for protein co-factors (Blake and Ziman, 2014).  

Pax3 and Pax7 constitute one of the four Pax subfamilies. Pax7 is unique in the 

family for the presence of a C-terminal 14 amino acids sequence, the OAR 

(Otp/aristaless/Rax) (Mayran et al., 2015). Similarities in their protein sequence and 

expression pattern reflect a common origin, as they arose by duplication from a unique 

ancestral Pax3/7 gene at the onset of vertebrate evolution (Paixão-Côrtes et al., 2015). Pax3 

and Pax7 function upstream of the myogenic regulatory factors (see the corresponding 

paragraph) in the trunk and limbs and thus control the entry of cells into the myogenic 

program (Relaix et al., 2005). Unlike the myogenic regulatory factors, Pax3 and Pax7 are 

not tissue specific, being also expressed in neuroectoderm, in subdomains of the brain, in 

the dorsal neural tube, and in neural crest (Buckingham and Rigby, 2014).  

Pax3 

In the mouse, Pax3 is expressed in presomitic mesoderm and then throughout the 

somite, before becoming restricted to the dermomyotome as somites mature (Buckingham 
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and Rigby, 2014). The mutation of Pax3 in Splotch mice leads to defects in neural tube 

closure (spina bifida and exencephaly), in the migration of the neural crest cells and in limb 

muscle formation. Pax3-mutant embryos show somite defects and abnormalities in 

segmentation. In consequence, the myotome fails to form correctly leading to trunk muscle 

defects and perinatal death (Tremblay et al., 1998). 

Cells in the central dermomyotome are marked by the expression of both Pax3 and 

Pax7 proteins however, only Pax3 is expressed in long-range migrating cells (see Figure 2). 

Pax3-mutant mice have no limb muscles that depend on the delamination and migration of 

muscle progenitor cells from the hypaxial dermomyotome (Tremblay et al., 1998). Despite 

Pax3 and Pax7 have partially overlapping functions during muscle development; Pax7 can 

substitute for Pax3 function in somite and trunk muscle development, but only partially in the 

formation of limb muscles involving long-range migration of muscle progenitor cells (Relaix et 

al., 2004).  

Pax3 Expression in Postnatal Muscles 

Analysis of adult mice in which the Pax3 gene is targeted with nLacZ reporters 

revealed the presence of β-galactosidase–positive satellite cells in adult skeletal muscle. The 

number of such cells varies between muscles. They are particularly abundant in the 

diaphragm but are much less frequent in hindlimb muscles, with the exception of the gracilis 

muscle. In contrast, 50% of forelimb muscles express Pax3. As in the embryo, expression of 

Pax3 is not detectable in head muscles. Most ventral trunk muscles are positive, with a 

striking juxtaposition in the rib area, where intercostal muscles are mainly negative, whereas 

body wall muscles such as the serratus caudalis dorsalis are positive (Relaix et al., 2006). 

Pax7 

Although the Pax3 function is revealed by the Splotch mutation, no spontaneous 

mutant is available which indicates the role of Pax7. Pax7 has been originally described as a 

member of the paired-homeobox gene family that is specifically expressed during 

somitogenesis and neurogenesis in the embryo. Pax7 transcripts are present in the 

myotome of the somites and persist during differentiation into skeletal muscles of the trunk 

and limbs (Jostes et al., 1990). Its expression pattern both in ectoderm- and mesoderm-

derived tissues, suggests a function in central nervous system development and skeletal 

muscle.  

In parallel to myofiber formation, a subpopulation of myogenic precursor cells that do 

not express the myogenic regulatory factors and maintain Pax3/Pax7 expression is observed 

in the myotome at E10.5 (see Figure 2). In the absence of both Pax3 and Pax7, further 
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muscle development is arrested and only the early embryonic muscle of the myotome forms. 

Cells not expressing Pax3 or Pax7 die or assume a non-myogenic fate (Kassar-Duchossoy 

et al., 2005; Relaix et al., 2005).  

Pax7 Germline Mutant  Phenotype 

Pax7 germline mutants are born but they have increased lethality (die within 2–3 

weeks) and growth retardation with reduced body weight although the muscle formation is 

not affected. The cause of death is probably because of dysgenesis of neural crest 

derivatives (Mansouri et al., 1996).  

The markedly decreased muscle mass, the reduced fiber caliber and the reduced 

number of myonuclei of Pax7 mutant muscle suggested that the postnatal growth phase of 

skeletal muscle, normally mediated by satellite cells, was deficient in the absence of Pax7 

and is attributable to an absence of functional satellite cells (Kuang, 2006). Deletion of Pax7 

in mice leads to normal numbers of stem cells at birth followed by excessive wasting of stem 

cells during the first weeks of postnatal development (Oustanina et al., 2004; Relaix et al., 

2006). 

Satellite cells (SCs), the skeletal muscle stem cells, also express the paired box 

transcription factor Pax7 (Seale et al., 2000). Pax7 is an essential transcriptional factor (TF) 

for the survival (Relaix et al., 2006), proliferation (Oustanina et al., 2004) and self renewal 

(Olguin and Olwin, 2004) of SCs and for an efficient regeneration mediated by Pax7-

expressing cells (Günther et al., 2013; Lepper et al., 2011; Sambasivan et al., 2011b). 

2.2. Sine Oculis–Related Homeobox Transcription Factors 

In addition to Pax3 and Pax7, the homeodomain proteins Six1 and Six4 are important 

upstream regulators of myogenesis that directs dermomyotomal multipotent progenitors 

toward the myogenic lineage (Figure 3). Unlike Pax3 and Pax7, these factors are also 

present in differentiated skeletal muscle (Buckingham and Rigby, 2014). Six family proteins 

are transcription factors characterized by the presence of two conserved domains, a Six-type 

homeodomain that binds to DNA and an amino-terminal Six domain that interacts with 

coactivators or corepressors of transcription (Bentzinger et al., 2012). Six proteins bind to 

and translocate the eyes-absent homologs Eya1 and Eya2 to the nucleus, where they act as 

cofactors to activate Six target genes, such as Pax3, MyoD, MRF4 and myogenin (Grifone, 

2005).  

Six4 germline mutant mice do not present major developmental defects (Ozaki et al., 

2001), while Six1 null mice do not survive and have defects in many organs, including rib, 

craniofacial and muscle deficiencies (Laclef et al., 2003). Six1 and Six4 double germline 
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mutant mice develop a more severe phenotype than in the single Six1 mutant with loss of all 

muscles derived from the hypaxial dermomyotome (limb and many trunk muscles). At the 

limb bud level, Six1 and Six4 homeogenes control early steps of myogenic cell delamination 

and migration from the somite through the control of Pax3 gene expression (Grifone, 2005). 

Myf5 expression within the epaxial dermomyotome, which is independent of Pax3, is 

unaffected in Six1 and Six4 double mutants, and dorsal muscles arising from this structure 

are the only remaining axial muscles in these mice (Giordani et al., 2007). Six orchestration 

together with Pax, at the onset of myogenesis is illustrated by regulation of the Myf5 and 

MyoD gene (Relaix et al., 2013). 

 In adult muscle Six1 acts as a main determinant of fast-fiber type acquisition and 

maintenance (Sakakibara et al., 2014, 2016) and as a critical regulator of SC self-renewal to 

ensure a proper muscle regeneration (Le Grand et al., 2012). 

Chapter 3: Myogenic Regulatory Factors  

The process of skeletal myogenesis during embryonic development is regulated by a 

family of muscle-specific transcription factors that are expressed in a spatially and 

temporally ordered manner (Figure 3). The family of basic helix-loop-helix (bHLH) 

transcription factors consisted of Myf5, MyoD, Myogenin (MyoG), and MRF4, form the 

myogenic regulatory factors (MRFs). The ancestral MRF gene is assumed to have given rise 

to the four family members in vertebrates, shown by evolutionary analyses of amino acid 

sequences of this family members (Atchley et al., 1994).  

The MRFs cooperatively activate transcription and myogenesis through protein-

protein interactions with members of the myocyte enhancer factor 2 (MEF2) family of MADS 

domain transcription factors (Molkentin et al., 1995) and the ubiquitously-expressed E 

proteins (Londhe and Davie, 2011). They have potential target genes with E boxes (cis-

acting DNA control elements which are present in the promoters and enhancers of muscle-

specific genes) (Arnold and Braun, 1996).  

The MRFs have differential patterns of expression in the developing somites and are 

exclusively expressed in skeletal muscle2. In the mouse embryo, Myf5 is the earliest MRF to 

be expressed in the dorsomedial lip of dermomyotome at E8.0. Myogenin is expressed after 

Myf5 at E8.5 and MRF4 at E9.0. MyoD is the last to be expressed in the somite at E10.5. 

Cells migrating toward the limb do not express MRFs until they have reached the limb bud 

(Francetic and Li, 2011). The MRFs null mutations analyses also suggest overlapping 

functions between them. 

                                                 
2
 Myf5 expression is also found in non-muscle tissues, such as preadipocytes and neurons 
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The existence of dominant-acting regulators in muscle cell differentiation has been 

predicted from early cell fusion experiments which demonstrated that muscle-specific genes 

can be transactivated in non-muscle nuclei of heterocaryons (the parental nuclei remain 

intact) between differentiated skeletal muscle cells and various non-muscle cell types (Blau 

et al., 1983). When they are overexpressed in nonmuscle cells, they will activate the 

myogenic program, with suppression of other cell fates and formation of differentiated muscle 

(Weintraub et al., 1991). Since then the possibility of converting one cell type to another by 

transdifferentiation has become a major issue in the stem cell field. 

 

 

Figure 3 : Hierarchy of transcription factors regulating progression through the myogenic 
lineage. Muscle progenitors that are involved in embryonic muscle differentiation skip the 
quiescent satellite cell stage and directly become myoblasts. Some progenitors remain as 
satellite cells in postnatal muscle and form a heterogeneous population of stem and 
committed cells. Activated committed satellite cells (myoblasts) can eventually return to the 
quiescent state. Six1/43 and Pax3/7 are master regulators of early lineage specification, 
whereas Myf5 and MyoD commit cells to the myogenic program. Expression of the terminal 
differentiation genes, required for the fusion of myocytes and the formation of myotubes, are 

                                                 
3
 They are also expressed in adult mature myofibers 
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performed by both myogenin (MyoG) and MRF44. From (Bentzinger et al., 2012). This figure 
refers the requirement of each TF on myogenic cellular level and not in developmental time. 

 

MyoD  

Lineage-specific markers are expressed in proliferating myoblasts prior to terminal 

differentiation and the myoblast determination gene number 1 or MyoD is one of them. MyoD 

was isolated as the cDNA clone hybridized to a myoblast/myotube cDNA library, as the key 

regulator that can change the cell fate in transfected fibroblast-like 10T1/2 cells by inducing 

the myogenic phenotype (Davis et al., 1987). The phenomenon of myogenic conversion 

remains remarkable in that a single transcription factor can exert this overriding effect and 

this set of experiments establish the conceptual framework for the discovery of induced 

pluripotent stem cells from somatic cells (Hochedlinger, 2010). 

MyoD transcripts are detectable at E10.5 in the somites and myotomal muscles that 

had already expressed MyoG two days earlier. MyoD expression pattern in somites, after the 

MyoG expression, suggest that early myogenesis in the myotome is not dependent on this 

TF (Sassoon et al., 1989). MyoD is the last of the four myogenic HLH transcription factors to 

be activated in development and thus, may be essential for the SC function in postnatal 

growth and/or regeneration of skeletal muscle rather than in the regulation of de novo 

differentiation of skeletal myocytes (Megeney et al., 1996).  

Mice carrying a null MyoD mutation are viable and fertile, and they do not exhibit any 

morphological or physiological abnormalities in skeletal muscle (Rudnicki et al., 1992). 

Mutant animals reveal an abundant expression of Myf5 in their muscle indicating that 

functional redundancy is a feature of the MRF regulatory network and that Myf5 may partially 

substitute for the function of MyoD in the control of the skeletal myogenic developmental 

program.  

MyoD is dispensable for the development of skeletal muscle however, in its absence 

the postnatal growth is attenuated and muscle regeneration is less efficient confirming its 

important role in SC function. MyoD-mutant animals show increased number of MyoD-

deficient satellite cells but they exhibit decreased rates of proliferation (Megeney et al., 

1996). Thus, the lack of MyoD promotes the satellite cell self-renewal rather than progression 

through the developmental program as the MyoD mutant myoblasts are differentiation 

defective (Cornelison et al., 2000; Sabourin et al., 1999). In this case, MyoD plays a cell 

autonomous and non-redundant role in regulating the dynamic balance between proliferation, 

differentiation and renewal that normally establishes an appropriate satellite cell pool size.  

                                                 
4
  Mrf4 also directs embryonic but not foetal muscle progenitor cell commitment 
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In addition to its importance in the myogenic determination and differentiation, MyoD 

has a role in the proliferation and growth of myoblasts as it was shown by the ex vivo culture 

of MyoD-null myoblasts and their sequential passages. Primary cultures of MyoD –/– mice 

were poorly growing and displayed signs of senescence a phenotype more accentuated over 

the four subsequential passages accompanied with the progressive loss of Myf5 expression 

(Montarras et al., 2000). Further study confirmed the MyoD capacity to interact with and to 

affect components of the cell cycle machinery by initiating the expression of Cdc6 gene after 

myoblasts transition out of quiescence in order to progress through the cell cycle (Zhang et 

al., 2010). This could justify the early requirement for MyoD expression within hours after the 

SC activation and before SC duplication (Jones et al., 2005).  

In the adult, MyoD is not expressed by quiescent satellite cells but in activated, 

proliferating myoblasts (Yablonka-Reuveni and Rivera, 1994). Nevertheless, adult satellite 

cells have passed through a developmental stage where the MyoD locus was active 

(Kanisicak et al., 2009). 

Myf5  

Among the four MRFs, Myf5 is the earliest to be expressed at E8 in the somites, in 

the epaxial domain, adjacent to the neural tube, subsequently is activated in the opposing 

hypaxial domain and is markedly reduced after E14 (Francetic and Li, 2011). Newborn Myf5-

deficient animals were viable and fertile (Kaul et al., 2000). In addition, Myf5 mutants lack 

epaxial (dorsal) muscles (Kassar-Duchossoy et al., 2004). 

Myf5-mutant mice show a delay in the myotome development although they 

expressed the normal set of MRFs (Braun et al., 1992). Similarly, inactivation of the Myf5 

gene also allows apparently normal muscle development in the newborn mice, supporting 

the notion of an extraordinary plasticity in the formation of the myogenic lineage, with the 

myogenic factors Mrf4 and MyoD expressed in the somites at later developmental stages 

substituting for the absence of Myf5 (Kassar-Duchossoy et al., 2004).  

Skeletal muscles of adult Myf5 null mice exhibit a subtle progressive myopathy. 

Adult Myf5 null mice exhibit perturbed muscle regeneration with a significant increase in 

muscle fiber hypertrophy, delayed differentiation, adipocyte accumulation, and fibrosis after 

freeze-injury. Satellite cell numbers are not significantly altered in Myf5 null animals and they 

show a modest impaired proliferation under some conditions in vitro (Gayraud-Morel et al., 

2007). 

Myf5 and MyoD germline mutant phenotype 
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Mice deficient for both MyoD and Myf5 were immobile and died soon after birth. 

Newborn mice are totally devoid of skeletal muscle fibers and myoblasts (Kassar-Duchossoy 

et al., 2004; Rudnicki et al., 1993). Fetal myogenesis was severely compromised whereas 

Mrf4 partially rescues embryonic myogenesis in Myf5/MyoD double-knockout mice (Kassar-

Duchossoy et al., 2004). Mice triple mutant for Myf5, Myod and Mrf4 totally lack skeletal 

muscle and myoblasts (Kassar-Duchossoy et al., 2004). These experiments suggest that 

formation of skeletal muscle depends on determination factors Myf5, MyoD and Mrf4 which 

direct multipotent progenitors into the myogenic lineage (Sambasivan and Tajbakhsh, 2007). 

MyoG 

Myogenin (MyoG) is another member of the MRF which was isolated for inducing the 

myogenic fate of non myogenic cell line and it shares a very high homology with MyoD in its 

amino-terminal region (Wright et al., 1989). MyoG binds to the regulatory regions of muscle-

specific genes and activates their regulation. Thus, whereas MyoD and Myf5 are active in the 

lineage specification of muscle cells, myogenin appears to mediate muscle cell 

differentiation. During the embryonic myogenesis, the MyoG is expressed earlier that the 

MyoD in the myotomal cells of the first somites whereas they are expressed synchronously in 

the limb buds (Sassoon et al., 1989).   

Mice lacking myogenin are born immobile and die at birth because of a virtual 

absence of myofibers. MyoG is indispensable for the skeletal muscle formation during 

embryogenesis contrary to the MyoD and Myf5-mutants. MyoG-mutant mice show severe 

reduction of skeletal muscle mass, drastically reduced fiber density with mononucleated cells 

replacing most of the mature muscle cells (Hasty et al., 1993; Nabeshima et al., 1993).  

The initial phase of myotomal differentiation occurred normally in the myogenin-

mutant embryos. Primary myogenesis was delayed whereas secondary myogenesis was 

dramatically affected indicating that myogenin is not required for the initial aspects of 

myogenesis, including myotome formation and the appearance of MyoD-expressing 

myoblasts (Venuti et al., 1995). Myogenin is not essential for commitment of cells to the 

myogenic lineage, but is important for terminal differentiation. Lack of myosin heavy chain 

and actin (markers for differentiated muscle cells) expression was diminished in MyoG-

mutant mice demonstrating its importance for biochemical and morphological differentiation 

of skeletal muscle cells (Venuti et al., 1995).  

Postnatal deletion of MyoG leads to 50% lethality before P10. The survived mice 

were observably smaller in size, not accompanied however with reduced myofiber caliber or 

compensatory upregulation of any of the myogenic bHLH TF expression. The absence of 

MyoG did not alter postnatal skeletal muscle growth or function and reveal “an unsuspected 



 Papaefthymiou Aikaterini – PhD thesis - 2016 

24 

non-cell autonomous role for myogenin in the regulation of tissue growth” (Knapp, 2006). 

Deletion of MyoG in adult mice renders the skeletal muscle resistant to neurogenic atrophy 

by diminishing the expression of MuRF1 and Atrogin1 (E3 ubiquitin ligases) and thus 

preventing the proteasome-mediated protein degradation. Denervation-induced upregulation 

of MyoG triggers MyoG-dependent transcriptional cascade, involving MuRF1 and Atrogin1, 

leading to muscle atrophy (Moresi et al., 2010).  

Mrf4 

Mrf4 or Myf6 represents the fourth member of MRFs that is capable of converting 

fibroblasts to stable determined myogenic cells at a very high frequency (Rhodes and 

Konieczny, 1989). Mrf4 is expressed transiently in the myotome at the same time as Myf5 at 

the onset of myogenesis and then becomes up-regulated during late fetal development to 

eventually become the predominant myogenic bHLH factor expressed in adult skeletal 

muscle (Hinterberger et al., 1991). Based on its expression pattern, it has been proposed 

that Mrf4 regulate skeletal muscle maturation and aspects of adult myogenesis (Le Grand 

and Rudnicki, 2007).  

A recent study confirmed the function of Mrf4 in adult muscle fibers as Mrf4 

knockdown in adult skeletal muscle induces hypertrophy and prevents denervation-induced 

atrophy. This effect is dependent on an increase in Mef25  transcriptional activity and the 

consequent upregulation of Mef2 target genes, suggesting that these two TFs act together to 

regulate growth in adult muscle. Mrf4 is a negative regulator of muscle growth by 

repressing Mef2 activity (Moretti et al., 2016). 

Three Mrf4 knock-out mice have a range of phenotype from viable with no muscle 

defects, to lethal phenotype with some muscle defects. Since Myf5 and Mrf4 are genetically 

linked on the same chromosome, knock-out in one gene results in a cis effect by which the 

expression of the other is also decreased or lost (Olson et al., 1996). In the viable knock-out, 

Mrf4-mutant mice showed only a slight reduction in expression of a subset of muscle-specific 

genes but showed a dramatic increase in expression of myogenin, suggesting that it may 

compensate for the absence of Mrf4 and demonstrating that Mrf4 is required for the down-

regulation of myogenin expression that normally occurs in postnatal skeletal muscle (Zhang 

et al., 1995).  

In the Mrf4 and MyoD double mutant the myogenin null phenotype is phenocopied 

suggesting therefore that Mrf4 or MyoD is necessary to activate the myogenin gene (Kassar-

Duchossoy et al., 2004) 

                                                 
5
 Mef2 transcription factors are co-regulators with MRFs to activate myogenesis 
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Part 2: Description of Myofibers  

Myofibers are composed of myosin II motor proteins and actin filaments that 

generate force and movement. In the striated muscles that are used for locomotion, 

actomyosin contraction is amplified in serial and parallel arrangements of numerous 

contractile units, called sarcomeres, which is the basic functional unit of skeletal muscle 

(Figure 4). These are made up of actin and myosin filaments arranged in highly ordered, 

almost crystalline arrangements, as well as hundreds of regulatory proteins such as the 

troponin–tropomyosin complex, scaffolding and cytoskeletal crosslinking proteins such as 

αactinin, myomesin and the kinase titin (Braun and Gautel, 2011).  

This group of proteins, which is essential for the ordered assembly of actin and 

myosin filaments into sarcomeres, combines architectural, mechanical and signaling 

functions in muscle and summarized as the sarcomeric cytoskeleton (Gautel and Djinović-

Carugo, 2016). Such signaling functions that are interpreted in gene expression, protein 

synthesis and protein degradation are the translation of mechanical stimuli to biochemical 

signals (muscle mechanotransduction).  

Responding to the signals from motor neurons, myofibers depolarize and release 

calcium from the sarcoplasmic reticulum. This drives the movement of actin and myosin 

filaments relative to one another and leads to sarcomere shortening and muscle contraction 

(Yin et al., 2013a).  

Each myofiber is anchored at its extremities to tendons at the myotendinous 

junctions. Myotendinous junctions are anatomical regions which connects the skeletal 

muscle to the bone for transmitting the contractile force between the two tissues. 
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Figure 4 : Striated muscle structure. The contractile machinery of skeletal muscle syncytial 
myotubes (left) and single cardiomyocytes (right) is formed from long arrays of sarcomere 
units, which are joined into myofibrils. The sarcomere (bottom) is constructed from 
interdigitating, antiparallel filaments of actin and myosin, the elastic titin filaments and the 
crosslinker proteins for actin — α-actinin, myosin and myomesin. Sarcomeres contain many 
other accessory components, including proteins involved in transcriptional regulation and 
turnover control. Adapted from (Braun and Gautel, 2011) 

 

Skeletal muscle comprises different fiber types based on their physiological 

properties. Skeletal muscle fibers can be grouped into a slow-contracting/fatigue-resistant 

type and a fast-contracting/fatigue-susceptible type. Slow and fast muscles differ in the 

metabolism type (oxidative or glycolytic). Myofibers also vary in terms of their myosin 

heavy chain (MyHC) isoforms (I, IIA, IIB, IIX). The fiber type profile can change, in  

response to hormonal, neural influences and mechanical load, rendering the muscle a 

plastic tissue (Schiaffino and Reggiani, 2011). 
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Part 3: Extracellular Matrix  

Skeletal muscles are composed primarily of contractile material. However, muscle is 

a composite tissue of connective tissue, blood vessels and nerves, these “minor” tissues (in 

terms of relative mass) may strongly influence muscle function. Normal muscle function is 

also influenced by the skeletal muscle extracellular matrix (ECM) or basement membrane 

that coats the skeletal myofibers. The primary function of extracellular matrix is to endow 

tissues with their specific mechanical and biochemical properties. ECM bears the majority 

of muscle passive load as shown by biomechanical studies and alterations in ECM properties 

are associated to muscle pathology with ECM fibrosis (Gillies and Lieber, 2011). Also, 

acellular basement membrane provide a scaffold to orient and constrain cells during 

regeneration (Vracko and Benditt, 1972).  

Each myofiber is surrounded by the endomysium (also called the basement 

membrane or basal lamina). Bundles of myofibers are surrounded by the perimysium, while 

the entire muscle is contained within the epimysium (Figure 2). The epimysium layer is 

continuous with the tendons that attach the muscles to the bones (Lund and Cornelison, 

2013). Additionally, ECM in skeletal muscle is critical for both longitudinal and lateral force 

transmission from muscle fibers to tendons (Purslow, 2010). 

The basal lamina of skeletal muscle is composed of type IV collagen, 

proteoglycans, glycoproteins and matrix remodeling enzymes. These ECM molecules are 

mainly synthesized and excreted by interstitial muscular fibroblasts but can also be 

produced and remodeled by myoblasts during muscle development and regeneration 

(Chapman et al., 2016). 
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Figure 5 : Skeletal muscle extracellular matrix structure. Skeletal muscles are composite and 
hierarchical tissues with three layers of ECM, the epi-, peri- and endomysium. Skeletal 
muscle fibroblasts reside in the extracellular space between muscle fibers and fascicles, 
where they secrete ECM proteins to be incorporated into skeletal muscle ECM. From 
(Chapman et al., 2016) 
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Part 4: Satellite Cells  

Satellite cells are skeletal muscle-specific adult stem cells and their presence seems 

to be a common feature of all adult skeletal muscles. They account for 2-7% of the nuclei 

associated with a particular myofiber and the proportion varies with age and muscle group 

(Gibson and Schultz, 1983). Satellite cells contribute to increase the diameter and length of 

the existing fibers, as they are the main source of myogenic cells after birth and during 

regeneration. The satellite cells were initially described in the course of an electron 

microscopic study in the peripheral region of the skeletal muscle fiber of the frog and were 

named based on their anatomic location on the surface of muscle fibers, between the 

myofiber plasmalemma and the basal lamina (Mauro, 1961). 

In resting muscle, satellite cells remain in a non-proliferative, quiescent state. Upon 

injury or growth stimulus, satellite cell become activated, enter the cell-cycle and turn into 

proliferating myoblasts, which differentiate and eventually fuse (Figure 6) to pre-existing 

myotubes or to each other to form new myotubes (Le Grand and Rudnicki, 2007). Terminal 

differentiation leads to the activation of many muscle-specific genes, including those 

encoding the sarcomeric proteins (such as myosin light and heavy chains, a-actin, troponin I, 

and troponin T) muscle enzymes, structural proteins of the contractile apparatus and 

specialized membrane receptors. 

 

Figure 6 : Schematic representation of adult myogenesis. Quiescent skeletal muscle satellite 
cell can become activated following stimuli originating from their associated fiber or from the 
micro-environment. Their proliferating progeny, the skeletal myoblasts, express the paired-
box transcriptions factors Pax7 and Pax3, as well as the myogenic regulatory factors Myf5 
and MyoD. Once committed to differentiation, myoblasts stop cycling and loose expression of 
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Pax7, Pax3 and Myf5. Differentiating myogenin+ve myocytes will then align and fuse to form 
multinucleated myofibers. MRF4 is further required for hypertrophy of the new fibers. From 
(Le Grand and Rudnicki, 2007) 

 

The descendents of activated satellite cells called myoblasts or myogenic 

precursor cells: they are the transient amplifying population, undergoing multiple rounds of 

division and express MyoD. Satellite cells appear to form a population of stem cells that are 

distinct from their daughter myoblasts as defined by biological and biochemical criteria 

(Yablonka-Reuveni et al., 2008). A reserve population escapes from the differentiation fate 

and return back to quiescence that assures the replenishment of satellite cell population. 

The replenishment of the satellite cell population is a critical aspect of muscle tissue 

regeneration. Repeated injury experiments have shown that satellite cell numbers remain 

constant even after multiple traumas. The satellite cell pool is constantly replenished during 

lifetime, although there is a decline in satellite cell numbers and a reduced proliferative 

capacity in aged individuals (Dumont et al., 2015a). Thus, satellite cells display two hallmarks 

of stem cells: lineage-specific differentiation and self-renewal (Buckingham and 

Montarras, 2008). 

Chapter 1: Transcriptional Control of Adult Myogenesis 

Adult myogenesis takes place during muscle regeneration and SCs undergoing 

myogenesis to form de novo muscle fibers. During adult adaptation of muscle, aspects of 

early developmental programs can be reactivated and can cooperate with specific factors to 

determine fibertype characteristics. This process, in many but not all respects, 

recapitulates embryonic myogenesis (Yin et al., 2013a). The myogenic potential of satellite 

cells is under the molecular control of specific Paired-box and bHLH transcription factors 

which tightly orchestrate the balance of myogenic progression during muscle regeneration 

(Le Grand and Rudnicki, 2007). 

SCs are identified by the expression of Pax7 and Pax7-expressing SCs are required 

for muscle regeneration as it has been shown by genetic ablation of such cells (Lepper et al., 

2011; Sambasivan et al., 2011b). Pax7 is able to drive transcription in quiescent satellite 

cells, activated and proliferating satellite cells. Expression is then downregulated in cells that 

initiate terminal differentiation, but is maintained (and transcriptionally active) in those that 

withdraw from immediate differentiation (Zammit, 2006). 

Satellite cells and primary myoblasts lacking Pax7 undergo cell cycle arrest and 

precocious differentiation. Ex vivo Pax7 deletion in wild type myoblasts resulted in a 

striking reduction in the levels of Myf5 mRNA, a reduction in MyoD expression and an 
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increase in the numbers of satellite cells expressing myogenin, suggesting cell cycle arrest 

and precocious differentiation (von Maltzahn et al., 2013). In contrast, overexpression of 

Pax7 caused an increase in the number of EdU-incorporating Pax7-positive SCs and a 

reduction of nonproliferating cells, as well as an impairment of SC differentiation (Günther et 

al., 2013). Conditional inactivation of the Pax7 expression in adult satellite cells leads to 

progressive loss of SCs and to differential changes of the SC signature. SCs after loss of 

Pax7 expression maintain some SC features for several weeks, but not indefinitely. 

Inactivation of Pax7 gives rise to rare atypical SCs with reduced heterochromatin 

condensation. Pax7-deficient, hypoproliferative SCs are mainly removed by differentiation 

into myocytes (Günther et al., 2013). Pax7 induces chromatin modifications that stimulate 

transcriptional activation of target genes to regulate entry into the myogenic developmental 

program (McKinnell et al., 2008). 

The myogenic identity is established by the presence and function of specific 

transcription factors, the MRFs. The Myf5 locus is active in 90% of quiescent satellite cells, 

which suggests most satellite cells are committed to the myogenic lineage (Kuang et al., 

2007). MyoD and Myf5 are crucial to drive the gene expression program of activated SCs. 

MyoD and Myf5 are induced in satellite cells in vivo within 3 hours of cardiotoxin-mediated 

muscle injury, implicating them in the early stages of satellite cell activation (Cooper et al., 

1999). The differentiation factors myogenin and Mrf4 are involved in later phases of 

myogenesis. Induction of myogenin is necessary and sufficient for the formation of myofibers 

(Le Grand and Rudnicki, 2007). However the specific role of MyoG in adult myogenesis has 

not been described since the MyoG inactivation in adult satellite cells has not been yet 

studied. Mrf4 is further required to prevent hypertrophy of the myofibers (Moretti et al., 2016). 

MyoD expression is restricted to cells exhibiting myogenic capacity and is a marker of 

myogenic commitment that directs the upregulation of differentiation-linked genes (Tapscott, 

2005). Myogenin acts downstream of MyoD and Myf5 since most myoblasts in culture 

express MyoD or Myf5, but turn on myogenin only when induced to differentiate. During 

muscle regeneration myogenin mRNA sequences in mononuclear cells were detected as 

early as 6 h after injury, peaked between 24 and 48 h, and thereafter declined to pre-injury 

levels at about 8 days. The presence of myogenin mRNA at 6 to 48 h indicates that 

transcription of this gene is occurring at the same time as replication of muscle precursor 

cells in vivo (Grounds et al., 1992). 

Translational control of MRF expression also accounts for the transition through the 

sequential myogenic stages. In quiescent SCs the expression of the Myf5 protein is avoided 

by sequestration of the Myf5 mRNA in messenger ribonucleoprotein granules and by the 

action of the microRNA-31, which blocks Myf5 translation (Crist et al., 2012). MyoD protein 
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expression is also prevented in quiescent SCs by the action of tristetraprolin, a protein that 

promotes the decay of MyoD mRNA (Hausburg et al., 2015). Moreover, a general repression 

of translation, mediated by the phosphorylation of the eukaryotic initiation factor eIF2α, 

preserves the quiescent state of satellite cells, as cells unable to phosphorylate eIF2α exit 

quiescence and activate the myogenic program (Zismanov et al., 2016).  

Myogenic differentiation is blocked by the inhibitor of differentiation (Id), a bHLH 

protein that lacks the basic DNA-binding domain and interacts with either MyoD or E 

proteins. When myoblasts exit the cell cycle Id expression is downregulated, allowing 

functional heterodimers to be formed and promoting muscle differentiation-specific gene 

expression (Puri and Sartorelli, 2000). 

Chapter 2: Quiescence 

The stable quiescence of adult stem cells in their niche is best demonstrated by 

measuring the frequency at which they undergo DNA synthesis (Fuchs et al., 2004). In 

resting adult muscles, satellite cells exist in a non-cycling, quiescent state. In 2014, it was 

shown that the quiescence is not really a dormant state but is composed of two distinct 

functional phases, G0 and an 'alert' phase termed G(Alert). Stem cells actively and 

reversibly shift between these phases in response to injury-induced systemic signals 

(Rodgers et al., 2014). Thereby, the quiescent state is distinct from the cell cycle exit 

observed prior to differentiation, the most notable difference being its reversibility, which 

allows cells to return to a proliferative state in response to injury (Dumont et al., 2015a). The 

rapid cell cycle re-entry of satellite cells after injury suggests that the quiescent state is highly 

regulated and represents a “ready” state that is primed for activation.  

Microarray analyses revealed that quiescent SCs (QSCs) possess a unique 

transcriptional profile that distinguishes them from their more activated progeny. QSCs 

express approximately 500 uniquely enriched genes (Fukada et al., 2007; Liu et al., 2013; 

Pallafacchina et al., 2010). Although the functional importance of many of these genes is yet 

to be understood, it seems likely that this transcriptional program inhibits QSC proliferation, 

anchors satellite cells in their anatomical niche and provides mechanisms for the efficient 

transport and processing of lipids that are required for metabolic reactions characteristic of 

quiescent cells (Almada and Wagers, 2016).  

QSCs have a different epigenetic signature that has to be preserved through self 

renewing divisions to assure the original transcriptional state (epigenetic memory). The 

histone code has been shown to act as a source of inheritable epigenetic information as it 

can be transmitted from one cell generation to the next. The chromatin of QSCs is 

maintained at a permissive state in which few genes are epigenetically repressed 



 Papaefthymiou Aikaterini – PhD thesis - 2016 

33 

(H3K27me3). SC activation is accompanied by the acquisition of H3K27me3 inactive histone 

mark. By accumulating H3K27me3 upon SC activation, the chromatin is converted to a more 

repressed state to restrict thus alternative cell fates (Liu et al., 2013). Histone modifications 

enzymes (ex. EZH2-PRC2, Suv4-20h1) are required to promote the facultative 

heterochromatin which is under dynamic transitions between constitutive heterochromatin 

and euchromatin. The Suv4-20h1 is a paradigm of such enzyme  which is required  to restrict 

MyoD gene expression in QSCs (Boonsanay et al., 2016). 

The ability of  satellite  cells  to  maintain  quiescence  in  the  resting  state  is 

essential for the long-term conservation of the satellite cell pool. The Notch signaling is very 

critical for the maintenance of quiescence of SCs (Bjornson et al., 2012; Mourikis et al., 

2012). Notch signaling activity is higher in quiescent satellite cells than in activated myogenic 

cells (Mourikis et al., 2012). Sex hormones induce Mind bomb1 expression in myofibres at 

puberty, which activates Notch signalling in cycling juvenile SCs and causes them to be 

converted into adult quiescent SCs (Kim et al., 2016). Quiescent satellite cells have a low 

metabolic rate, but their activation and entry into the cell cycle are characterized by major 

metabolic changes. Isolated satellite cells cultured in vitro experience a switch from oxidative 

to glycolytic metabolism (Ryall et al., 2015). In vitro cultures could however dictate the 

metabolic status of the cells and thus futher full in vivo studies need to address this issue 

(L’honoré et al., 2014).  

Chapter 3: Activation  

Upon exposure to signals from a damaged environment, satellite cells exit their 

quiescent state and start to proliferate (satellite cell activation). Adult satellite cells are primed 

to respond rapidly to activation signals (Rodgers et al., 2014), but are held back by 

expression of inhibitors such as the insulin binding protein, Igfbp6, or by Dach1 that can act 

as a corepressors of Six transcription factors (Pallafacchina et al., 2010). The niche 

insulates the SC from a majority of extracellular stimuli, allowing them to become activated 

only in specific conditions associated with damage or disease (Bischoff, 1990). Upon muscle 

damage, quiescent SCs are exposed to extrinsic, pro-myogenic stimuli, including fibroblast 

growth factor (FGF), hepatocyte growth factor (HGF), insulin-like growth factor 1 (IGF-1) and 

tumor necrosis factor-α (TNF-α), which activate intrinsic pathways that stimulate proliferation 

(Almada and Wagers, 2016; Yin et al., 2013a). Once SC activation, down-regulation of 

genes encoding adhesion molecules and changes in transcripts for extracellular matrix 

components will affect the response to growth factors (Montarras et al., 2013; Pallafacchina 

et al., 2010). 
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Proper satellite cell activation is crucial to ensuring an adequate regenerative 

response after muscle injury. It has been reported that the first cell division is the rate-

limiting step in the conversion of satellite cells to a highly proliferative state (Rodgers et al., 

2014), which probably explains why the peak of satellite cell expansion occurs approximately 

3–4 days after muscle injury in vivo (Hardy et al., 2016). The long delay in initiation of 

satellite cell division may hint at the possibility that QSCs transit through one or more 

intermediate cell states on the path to full activation (Almada and Wagers, 2016). 

Cell response to external stimuli requires signal transduction mechanisms and the 

mitogen-activated protein kinases (MAPKs) seem to participate in most signal transduction 

pathways. Different stimuli can activate p38 MAPK in SCs (Segalés et al., 2016). p38α/β 

MAPK is crucial for awakening QSCs into the proliferative state (Figure 7). Asymmetric 

localization of the Par complex activates p38α/β MAPK in only one daughter cell, in which 

MyoD is induced by inhibiting the RNA-destabilizing protein tristetraprolin, allowing cell cycle 

entry and generating a proliferating myoblast. In contrast, MyoD induction is prevented in the 

other daughter cell by the absence of p38α/β MAPK signaling, renewing the quiescent 

satellite cell pool (Troy et al., 2012). 
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Figure 7 : Roles of p38 MAPKs in satellite cell-driven myogenesis. (Top) Satellite cells in 
adult muscles are in a quiescent state. Upon injury, satellite cells are activated, undergo 
asymmetric division and generate a self-renewing daughter cell and a committed progenitor 
or myoblast which enters the cell cycle. Myoblasts proliferate, differentiate and fuse to form 
myotubes and new myofibers during adult muscle regeneration. Canonical markers for each 
stage are indicated-(Bottom) Known substrates and regulated processes by p38α/β and p38γ 
MAPKs during the different stages of myogenesis. Direct substrates are indicated in red. 
Linked processes are boxed in gray or black. From (Segalés et al., 2016) 

 

Once MyoD is expressed, it has the potential to broadly alter the epigenome in 

myoblasts and myotubes, in addition to regulating the expression of skeletal muscle genes 

(Cao et al., 2010). MyoD promotes the myogenic satellite cells to enter the first cell cycle S 

phase after transitioning out of quiescence by regulating the gene Cdc6 that is vital to 

endowing chromatin with the capability of replicating DNA (Zhang et al., 2010). 
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Chapter 4: Self-Renewal 

A hallmark of stem cells is the ability to self-renew (a process of duplication without 

losing developmental potential). For effective restoration of structure and function in the face 

of repeated injury, the pool of quiescent satellite cells must be replenished. Evidence for self-

renewal has come from studies of myoblast and single fiber transplantation assays into adult 

muscle, where the satellite cells gave rise to both differentiated myonuclei and functional 

satellite cells (Collins et al., 2005; Montarras et al., 2005).  

Stem cells can divide and self-renew in two fashions: asymmetric cell division and 

symmetric cell division (Figure 8). The asymmetric architecture of the stem cell niche dictates 

that stem cells normally divide asymmetrically (apico-basal division) into a new stem cell 

(self-renewal) and a committed progenitor (differentiation). In asymmetric cell division, one 

parental stem cell gives rise to two functionally different daughter cells: one daughter stem 

cell and another daughter cell destined for differentiation (Wang et al., 2013). In symmetric 

cell division (planar division), one parental stem cell divides into two daughter stem cells of 

equal stemness. In either fashion, the number of stem cells is maintained at a constant level. 

 

Figure 8 : Modes of Satellite Stem Cell Division. Satellite stem cells can self-renew via 
symmetric or asymmetric cell divisions. A symmetric cell division along the planar axis (with 
respect to the myofiber) generates two stem cell daughters. Asymmetric cell divisions along 
the apicobasal axis give rise to a stem cell and a committed myogenic progenitor cell. 
Alternatively, satellite stem cells can directly express myogenic commitment factors (such as 
MYF5) to commit to the myogenic lineage and expand the progenitor population that will 
participate in muscle repair. From (Chang et al., 2016). 

 

The choice of asymmetric versus symmetric division is largely correlated to the 

mitotic spindle orientation relative to the longitude axis of the myofiber  (Yin et al., 2013a). 

Polar segregation of cellular components (cell polarity) intrinsically determines asymmetric 

cell division and subsequent divergent cell fates. One well-characterized paradigm of 
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asymmetric spatial organization of cellular components also described in Drosophila 

neuroblast divisions (Chang et al., 2016), is the asymmetric segregation of the Par-complex 

and Notch-inhibitor Numb to opposite poles (Shinin et al., 2006). A recent study showed also 

that the dystrophin has an essential role in the regulation of satellite cell polarity. 

Consequently, dystrophin-deficient satellite cells have a reduced number of asymmetric 

divisions, while also abnormal division patterns, impaired mitotic spindle orientation and 

prolonged cell divisions (Dumont et al., 2015b), exacerbating thus the exhaustion of SCs 

observed in Duschenne muscular dystrophy. Intriguingly a recent study, using intravital 

imaging in live mice, described that muscle progenitors undergo predominantly planar 

divisions along the regenerating myofiber and in constant contact with the basal lamina 

(Webster et al., 2016).  

The symmetric versus asymmetric outcome of satellite stem cell division is regulated 

by cumulative signals from a variety of cell types in the local milieu. For example, enhanced 

Wnt7a signaling, upregulated by new-formed myofibers, during regeneration promotes 

symmetric expansion of satellite stem cells by stimulating the Frizzled-7 planar-cell-polarity 

pathway (Le Grand et al., 2009). 

The aforementioned heterogeneity in the stemness of SCs showed that only the 

Pax7+Myf5- population, which represents the 10% of sublaminar Pax7+ cells, undergoes 

asymmetric division whereby the Pax+Myf5+ give rise to committed  myogenic progenitors 

(Kuang et al., 2007). Other modes of asymmetric divisions distinct from asymmetric satellite 

stem cell divisions (Wang et al., 2013), have been observed in  myoblasts, which give rise to 

either MyoD- reserve cells or Pax7-MyoG+ differentiating myocytes (Zammit et al., 2004).  

Self-renewing cells are slow-dividing cells as it has been shown by pulse-chase 

experiments using thymidine analogs or histone fluorescent marks (H2B-GFP) (Chakkalakal 

et al., 2014; Fuchs, 2009; Rocheteau et al., 2012; Schultz, 1996). After a chase period, 

rapidly dividing cells dilute out the label and terminally differentiating cells are lost in the 

homeostatic flux of tissue turnover (Fuchs et al., 2004). Thus, label-retaining cells (LRCs) 

can be visualized in stem cell niches (Shinin et al., 2006). 

Furthermore, oxygen availability affects the self-renewal of SCs so that it is 

enhanced in hypoxic conditions (Liu et al., 2012). 

Chapter 5: Fusion 

Adult skeletal muscle fiber is “a symplast6, multinuclear structure” (Shenkman et al., 

2010) developed in ontogenesis by the fusion of the myoblasts (muscle progenitor cells). The 

                                                 
6
 from Anc Greek: συν (syn) = together + πλάσμα (plasma) = something formed or molded 
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nuclei of a muscle fiber (myonuclei) are those located at the periphery of fiber in the space 

between myofibrils and sarcolemma. A descriptive study in the myotome of Xenopus laevis 

based on electron microscope observations claimed that endoreplication and amitotic 

divisions form syncytium during early myotome development (stage 45) in Xenopus laevis 

(Boudjelida and Muntz, 1987). In Drosophila embryos a well-characterized system for 

myoblast fusion, mononuclear myocytes fuse with each other, giving rise to the syncytium. 

Although these embryonic mononucleated myoblasts are committed to a muscle-specific 

program of differentiation, often undergo only a single cell division subsequent to fusion 

(Abmayr and Pavlath, 2012). Studies in vertebrate models confirmed the classical view of 

inability of true muscle nuclei to divide while SCs nuclei are capable of undergoing mitosis in 

growing animals and such mitoses are followed by the fusion of one or both daughter SC 

nuclei into the associate fiber to become true muscle nuclei (Moss and Leblond, 1970, 1971).  

The inability of muscle nuclei to reenter the cell cycle is associated with the existence 

of mechanisms of inbition and suppression of cell cycle event. Such components of the 

mammalian cell cycle machinery are the tumor suppressors, Rb and Arf (Ink4a), as it was 

demonstrated that inactivation of both Rb and Arf in primary myotubes leads to cell cycle 

reentry accompanied with dedifferentiation of postmitotic myotubes (Pajcini et al., 2010).  

Myoblast fusion is important not only for skeletal muscle formation during 

development, but also for postnatal muscle growth and regeneration of skeletal muscle. After 

muscle injury SCs first become activated, divide and differentiate, and only later fuse to the 

existing myofiber (Yin et al., 2013a). Other data show that satellite cells fuse with the 

myofiber concomitantly to cell division, and only when the nuclei of the daughter cells are 

inside the myofiber, do they complete the process of differentiation (Marti et al., 2013).   

At the cellular level, the fusion process is characterized by the alignment of myoblast 

and myotube membranes and rearrangements of actin cytoskeleton at contact sites 

followed by membrane fusion, which occurs in two stages. Initially, myoblast-myoblast fusion 

(which is referred to as “primary fusion”) results in the formation of nascent myotubes. In 

the second phase, myoblasts fuse with nascent myotubes (“secondary fusion”), which 

results in nuclear accretion and growth of the myotubes (Abmayr and Pavlath, 2012; Rochlin 

et al., 2010).  

Myoblast fusion follows an ordered set of cellular events, including elongation, cell 

migration, recognition/adhesion and membrane fusion (Pavlath, 2010a). Cell migration 

process is required for an attractive interaction between myoblasts. During secondary fusion 

attractive guidance cues emanating from the myotubes, orient myoblast migration towards to 

the myotubes (Schejter, 2016). Myogenic cells destined to fuse must first recognize and 

adhere to each other. Cell adhesion proteins are critical mediators of this process, 



 Papaefthymiou Aikaterini – PhD thesis - 2016 

39 

including cell surface proteins (integrins, M- and N-cadherin, ADAM12), transmembrane 

lipids (cholesterol and phosphatidylserine), intracellular domain-associated signaling or 

adaptor proteins (actin, beta-catenin, kindlin-2, myoferlin, creatine kinase B, diacylglycerol 

kinase, Rac1, focal adhesion kinase, syntrophin) that accumulate at cell-cell contact sites 

either in a symmetrical or an asymmetrical manner. Following adhesion, downstream 

signaling pathways are activated, leading to localized actin changes at cell-cell contact sites 

(Hindi et al., 2013).  

An array of cell signaling pathways plays critical roles in myoblast fusion (Figure 9). 

Some of these pathways are activated as a result of the recruitment of specific cell-surface 

proteins between fusion partners, whereas others are activated as part of the myogenic 

differentiation program, but they contribute to the fusion process. 

 

Figure 9 : The roles of different signaling molecules in primary and secondary myoblast 
fusion during myogenesis. Muscle progenitor cells first undergo myogenic commitment and 
differentiation to become fusion-competent myoblasts. The initial commitment to 
differentiation requires the activity of the RhoA GTPase. Active RhoA interferes with 
myoblast fusion, and so it is deactivated before fusion occurs. A number of signaling 
molecules and pathways are activated in fusion-competent myoblasts that regulate primary 
myoblast fusion, which results in nascent myotubes. Additional signaling molecules are then 
recruited, which lead to fusion of additional mononucleated myoblasts with nascent 
myotubes. Secondary fusion also plays a critical role in the regeneration of injured myofibers. 
Major signaling molecules involved in primary and secondary myoblast fusion based on 
experimental evidence are depicted along the top. Specific myogenic markers expressed at 
different stages in cells of myogenic lineage during myogenesis are noted along the bottom. 
From (Hindi et al., 2013) 

 

In yeast and Drosophila systems, actin fusion focus, a specialized actin structure, is 

assembled to promote plasma membrane emerging. The primary proposed function of the 
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actin focus is to provide physical force to bring the partner plasma membranes in close 

juxtaposition and help overcome the energy barrier to membrane fusion (Martin, 2016). In 

Drosophila embryo, myotubes are generated through an asymmetric fusion process 

between two distinct cell types: a fusion-competent myoblast (FCM) and a founder cell (FC) 

(Chen et al., 2007). These two cell types express distinct surface adhesion molecules, the 

protein Dumb-founded (Duf) in the FCM while the protein Sticks and Stones (Sns) in the FC. 

The actin focus proper is only present in the FCM, at the center of an invasive membrane 

protrusion, a podosome-like structure that invades into the FC/myotubes (Kim et al., 2007). 

Recently, a study with live observations in Drosophila myoblast fusion identified a dense 

array of actin-based filopodia that emanate from the entire surface of myotubes and come 

in contact with the approaching myoblasts. They proposed that the filopodia are necessary to 

prime the heterotypic adhesion process between the two cell types, possibly by Sns-Duf 

adhesive interactions (Segal et al., 2016). 

In mammalian myoblast, examination of the actin cytoskeleton in cell culture has 

shown F-actin (polymerized actin) structures decorating the interface of juxtaposed 

myoblasts sites of fusion. Myoblast fusion in mice similarly requires actin-binding proteins 

(ABPs)-dependent actin assembly suggesting a possible similar organization of the actin 

cytoskeleton. However, there is currently no evidence for actin foci during muscle biogenesis 

in vertebrates in vivo (Martin, 2016). Knockout mouse studies focusing on myoblast fusion 

include demonstrations of the essential involvement of actin regulators such as DOCK1 and 

N-WASp, homologs of which are well-established contributors to myoblast fusion in the 

Drosophila system (Schejter, 2016). 

While actin effectors are not muscle-specific, a variety of transmembrane proteins, 

involved in the cell fusion process and machinery components important for resealing a 

disrupted sarcolemma, have also been described in mice (Demonbreun et al., 2015). Among 

them are the ferlin family of proteins (including dysferlin and myoferlin) (Posey et al., 2011), 

EHD-containing family of proteins (Doherty et al., 2008), the sarcolemmal membrane 

repair machinery  component, the MG53 protein (Cai et al., 2009). The recently discovered 

protein which drew attention is the Transmembrane protein 8c (Tmem8c) otherwise named 

Myomaker (Millay et al., 2013).  

Myomaker is a muscle-specific membrane protein which is expressed in myotome, 

in limb buds and axial skeletal muscles during mouse embryogenesis thereafrer declined 

postnatally and re-expressed during muscle regeneration. Mouse myomaker knock-out die 

perinatally because of an absence of multinucleated myofibers (Millay et al., 2013). Ex vivo 

investigation of the myomaker functions in primary cell cultures revealed a block of myoblast 

fusion in its absence whereas its overexpression strikingly increases the fusion and 
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myomaker is ultimately associated with the actin cytoskeleton to exert its fusogenic function 

(Millay et al., 2013). In consequence with its fusogen role, loss of myomaker in adult SC 

resulted in a complete block of regeneration with the myoblasts unable to fuse. The presence 

of E-boxes in the promoter region of myomaker and functional analysis confirmed the binding 

of MyoD and myogenin and indicated myomaker as a novel important effector of mammalian 

myoblast fusion (Millay et al., 2014). Interestingly myomaker promotes the heterologous 

fusion between fibroblasts and myoblasts forming chimeric myotubes and this activity is 

conserved in vertebrate species whereas other related family members (TMEM8a and 

TMEM8b) lack fusogenic activity (Millay et al., 2016). Upstream regulators of myomaker, 

described in cardiac tissue, is the protein inhibitor of activated STAT-1 (Pias1) as it was 

found that Pias1 expression in embryonic, cardiac myoblasts enhances the induction of 

cardiac muscle genes MyoD, Myogenin and Myomaker (Constanzo et al., 2016).  

Chapter 6: Heterogeneity in Satellite Cell Population 

Different muscles exhibit distinct characteristics, including anatomical structure, 

contractile and metabolic properties, fiber composition, blood supply, pattern of innervation 

and embryonic origin. Moreover, they have different regenerative capacities and are 

differentially affected in genetic disorders. Numerous studies have begun to clarify the 

developmental, cellular and molecular bases of this diversification (Biressi and Rando, 2010).  

Satellite cells are defined by their anatomical location between the basal lamina 

and the fiber sarcolemma which justify their name. Increasing evidence suggests that 

satellite cells represent a heterogeneous population of cells which differ in their embryonic 

origins, in their gene expression signatures, myogenic differentiation tendency, stemness 

and lineage potential to assume non myogenic fates (Yin et al., 2013). 

Adult SCs in resting conditions in contrast to perturbed ones, have a different 

molecular signature as defined by the expression of Myf5, CD34, Mcadh and criteria of cell 

size and granulosity (Beauchamp et al., 2000; Montarras et al., 2013). Moreover, adult SCs 

have a different molecular signature in different muscle groups as for example regarding the 

expression of either Pax3 or Pax7. Pax 3-expressing SCs are abundant in the diaphragm 

and in most trunk muscles and less frequent in hind limb muscles (Relaix et al., 2006).  

Heterogeneity in myogenic destiny exists with some differentiating rapidly, whereas 

others are responsible for maintaining the pool (Rantanen et al., 1995). BrdU administration 

in growing rats confirmed the presence of two populations of satellite cells with differing rates 

of division and proliferative capacities (Schultz, 1996) The slow-cycling and fast-cycling 

cells described in Schultz’s study may correspond to Myf5-not expressing and Myf5-

expressing SCs which respectively contribute or not to the pool of quiescent SCs (Kuang et 
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al., 2007). The same study demonstrated that only Myf5-not expressing SCs could undergo 

asymmetric cell divisions, giving rise to a Myf5-not expressing satellite stem cell and a Myf5-

expressing committed progenitor cell (Kuang et al., 2007) confirming further heterogeneity in 

the stemness of SCs. In 2014, Chakkalakal et al. using a mouse strain to report the 

proliferative history, showed that the fast dividing cells are committed to differentiation which 

is in agreement with the notion that cell cycle kinetics defines the stemness (Chakkalakal et 

al., 2014). 

The predominant fate of satellite cells in vivo is the myogenesis in young, healthy 

muscle. Although SCs are unipotential, a fraction of SCs possess a transdifferentiation 

potential, thus linking intrinsic SC heterogeneity to multipotentiality. The capacity of SCs to 

differentiate into alternative lineages, such as fibrogenic, adipogenic and osteogenic 

lineages, has been suggested by in vitro analyses of cells associated with muscle fibers 

(Asakura et al., 2001). More recently it has been shown in vivo by lineage tracing the 

potential of SCs to give rise to brown adipocytes. The microRNA, the miR-133, is expressed 

in SCs and is upregulated through the myogenic progression to repress the Prdm16 gene 

expression restricting thus the adipogenic fate. The switch towards the adipogenic lineage is 

achieved by inhibiting the miR-133 during muscle regeneration or by cold exposure leading 

in the de novo generation of satellite cell-derived brown adipocytes (Yin et al., 2013b). 

Further heterogeneity in the stem cell population is reflected in recent studies that 

show a non-random DNA segregation during asymmetric cell division. Non- random DNA 

segregation was shown to be a property of a subset of SCs and is associated with divergent 

fates of descendant SCs (Rocheteau et al., 2012). Rocheteau et al. showed that template 

DNA strand segregation is executed by satellite cells with high levels of Pax7, showing 

thereby that two subpopulations of SCs exist concerning the Pax7 level expression (High and 

Low). In the great majority of the cases, the daughter cell inheriting the older templates 

retained the more immature phenotype, whereas the daughter inheriting the newer templates 

exhibited signs of differentiation. This aligns with the immortal DNA strand hypothesis, a 

proposed mechanism by which adult stem cells minimize genomic mutation (Charville and 

Rando, 2013; Rando, 2007). The fundamental idea behind this hypothesis is that, by 

retaining the immortal strands within the stem cell progeny, errors in DNA duplication would 

be passed on to non-stem, more differentiated, and shorter-lived daughter cells. An 

alternative explanation is that asymmetric cell divisions and cell fate are codirected by 

epigenetic differences between sister chromatids (Lansdorp, 2007). A recent study using a 

novel methodology that utilizes cancer sequencing data to estimate the rate of accumulation 

of mutations in healthy stem cells of the colon, blood, head and neck tissues, showed that in 

some tissues, mutations in stem cells accumulate at rates strikingly similar to those expected 
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without the protection from the immortal strand mechanism (Tomasetti and Bozic, 2015). The 

non-random segregation of DNA during stem cell replication might be a mechanism 

operating for a small, rarely-dividing pool of stem cells at expense of the mutation-directed 

beneficial evolution. 

Chapter 6: Satellite Cell Fate in Ageing 

Aging of the satellite cell is characterized by a decline in stem cell numbers and 

functionality and the main consequence of satellite cell aging is the progressive reduction of 

SC regenerative function (Sousa-Victor and Muñoz-Cánoves, 2016). The process of stem 

cell aging is a consequence of the combined effects of age-dependent alterations in the 

environment and age-associated intrinsic dysregulations of the stem cell itself (Dumont et al., 

2015a).  

Aged satellite cells, in comparison with adult satellite cells, spend less time in a 

quiescent state and they have increased cycling activity in resting conditions. The disruption 

of quiescence affects the self-renewal but does not impede the myogenic commitment 

(Chakkalakal et al., 2012). In vitro studies showed that myogenic cells from aged muscles 

have a delayed response to activation cues (Barani et al., 2003). Furthermore, impaired 

differentiation ability in vitro has been reported for aged SCs (Biressi and Rando, 2010). 

Aged SCs have an increased tendency to enter alternative differentiation programs by 

adopting an adipogenic and fibroblastic fate leading thus to the replacement of aged muscle  

by fibrotic connective and adipose tissue (Biressi and Rando, 2010). The aged systemic 

environment promotes a myogenic to fibrogenic conversion and this is associated with 

increased components of aged serum containing Frizzled receptors resulting in enhanced 

Wnt signaling in myogenic cells during aging (Brack et al., 2007).  

When old murine muscle stem cells are exposed to a young environment or to growth 

factors, their capacities to proliferate and differentiate are partly restored (Conboy et al., 

2005), suggesting that functional deregulations with age may be reversible. However, recent 

studies suggest that in geriatric ages, when the sarcopenic phenotype is exacerbated, there 

are intrinsic alterations in the satellite cell, which irreversibly compromise its function, and 

cannot be reversed by exposure to youthful cues (Sousa-Victor and Muñoz-Cánoves, 2016).  

A proportion of satellite cells displays a loss of reversible quiescence by switching to 

an irreversible pre-senescence state, caused by derepression of p16(INK4a) (Sousa-Victor 

et al., 2014a). Upon regenerative or proliferative pressure, satellite cells from geriatric 

muscles thus fail to activate and proliferate and instead undergo full senescence and 

irreversibly withdraw from the cell cycle (geroconversion) and they do so even in a youthful 
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environment (Sousa-Victor et al., 2014b). However recent studies also showed that muscle 

precursor cells from adult and aging humans do not undergo senescence (Bigot et al., 2015).  

The quiescent stem cells display continuous basal autophagy, but as this activity 

declines with age, resultes in toxic cellular waste accumulation and entry into senescence 

(García-Prat et al., 2016; Wen and Klionsky, 2016). Autophagy seems to be a decisive 

factor to prevent senescence, since overexpression of Atg7, a crucial autophagy-related 

protein needed for autophagosome formation and pharmacological treatment in old mice with 

rapamycin, a well-known autophagy-inducing regime, prevented senescence and restored 

regeneration in aged muscles (García-Prat et al., 2016). 

The epigenetic profile of QSCs changes, as they age. Age-associated DNA 

methylation that it acts through suppression of genes controlling cell quiescence has been 

recently shown in humans for SPRY1 gene, which is an inhibitor of fibroblast growth factor 

(FGF) signalling (Bigot et al., 2015). Aged muscle secretes higher levels of Fgf2 into the 

satellite cell niche, leading to repression of the quiescence in elderly stem cells. Inhibition of 

FGF receptor-1 (FGFR1) or overexpression of (Sprouty1) Spry1 can rescue age-related 

defects (Chakkalakal et al., 2012). However aged SCs possess a cell-autonomous intrinsic 

defect in self-renewal arises from an impaired response to FGF ligands and elevated p38αβ 

MAPK activity that cannot be rescued by exposure to a young environment (Bernet et al., 

2014). 
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Part 5: Skeletal Muscle Mass – Hypertrophy and Atrophy 

Postnatal growth of skeletal muscle in mammals occurs rapidly and continues until 

adulthood. Postnatal muscle growth is achieved by an increase in number (hyperplasia) and 

size (hypertrophy) of myofibres in rat, but mainly by hypertrophy of myofibres in mouse 

(White et al., 2010). In developing muscle, satellite cells undergo extensive proliferation and 

most of them fuse with myofibers, thus contributing to the increase in myonuclei during early 

postnatal stages (Pallafacchina et al., 2013). In adult life, the regulation of muscle mass and 

fiber size essentially reflects protein turnover named as the balance between protein 

synthesis and degradation within the muscle fibers. However, skeletal muscle fibers are 

multinucleated structures, thus protein turnover may also be affected by cell or nuclear 

turnover, i.e. addition of new myonuclei, due to fusion of satellite cells, or loss of myonuclei, 

due to nuclear apoptosis (Schiaffino et al., 2013).  

The muscle cell is multinuclear and each nucleus controls transcriptional activity in 

the surrounding territory of cytoplasm called myonuclear domain7 (MND) (Pavlath et al., 

1989). MND size varies with the fiber type and is inversely proportional to the muscle fiber 

oxidative capacity.  Accordingly to the constant myonuclear domain model (Van der Meer et 

al., 2011) is that the number of myonuclei should change in proportion to size during atrophy 

and hypertrophy (Figure 10). During muscle fiber hypertrophy, change in MND size 

precedes change in myonuclei count, suggesting that the myonuclei have the ability to 

enhance their synthetic capacity according to cell size, functional and metabolic needs. MND 

size has a "ceiling" limit during hypertrophic process beyond which extra myonuclei are 

donated by satellite cell to support further muscle growth (Qaisar and Larsson, 2014; Van der 

Meer et al., 2011). The higher number of nuclei should contribute to the increase in protein 

synthesis because total protein synthesis is the product of synthesis per nucleus and the 

number of nuclei (Gundersen, 2016). The incorporation of SCs into the growing myofiber was 

confirmed by nuclei labeling (3H-thymidine) study after compensatory hypertrophy induction 

(Schiaffino et al., 1972, 1976). 

                                                 
7
 defined as the cytoplasmic volume per myonucleus 
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Figure 10 : Possible scenarios of changes in myonuclear domain size with different types of 
muscular adaptation. From (Van der Meer et al., 2011). 

 

However, recent studies showed that the satellite cell fusion precedes the growth 

phase. In vivo imaging to study live myonuclei belonging to distinct muscle fibers observed 

that new myonuclei are added before any major increase in size during overload exercise 

(Bruusgaard et al., 2010). Thus, the myonuclear domain is temporarily decreased during the 

growth phase. Respectively, in several different atrophy models, using in vivo time-lapse 

imaging, it has been observed that the number of myonuclei remained constant with no signs 

of apoptosis (Bruusgaard and Gundersen, 2008). Alike, the myonuclear domain is 

temporarily decreased during the atrophic phase. Such a study concludes that disuse 

atrophy is not a degenerative process, but is rather a change in the balance between protein 

synthesis and proteolysis in a permanent cell syncytium.  

Recent studies showed that during muscle unloading and reloading, an increase in 

cross sectional area of 59% is not accompanied with an increase in the number of myonuclei 

(Bruusgaard et al., 2012; Jackson et al., 2012). The concept that under atrophic conditions, 

no apoptosis have been observed in the myonuclei, this allows the hypertrophic growth to 

happen without the recruitment of myonuclei during re-training, not because more nuclei are 

not needed in large fibers, but because the nuclei are already there (Gundersen, 2016). 
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A new cellular model for hypertrophy and atrophy is the muscle memory describing 

a cellular memory in skeletal muscle in which hypertrophy is ‘remembered’ and ‘stored’ in the 

myonuclei (Gundersen, 2016). According to this model, “previously untrained fibers recruit 

myonuclei from activated satellite cells before hypertrophic growth. Even if subsequently 

subjected to acute atrophy, the higher number of myonuclei is retained, and the myonuclei 

seem to be protected against the elevated apoptotic activity observed in atrophying muscle 

tissue. Fibers that have acquired higher number of myonuclei grow faster than naive fibers 

when subjected to overload exercise, thus the myonuclei represent a functionally important 

“memory” of previous strength” (Gundersen, 2016) (Figure 11).  

 

Figure 11 : A new model for the cell biology of hypertrophy and atrophy. For naive fibers and 
preceding hypertrophic growth, myonuclei are recruited from satellite cells, temporarily 
reducing the myonuclear domain volume, leading to a large fiber with many myonuclei. Upon 
subsequent atrophy the myonuclei are maintained, leading to a small fiber with a high 
myonuclear density and small myonuclear domains. Such fibers can hypertrophy without 
recruiting new nuclei, and this re-training route seems to be faster than the first training route. 
The permanently higher number of myonuclei represents the muscle memory. From 
(Gundersen, 2016). 

 

Chapter 1: Hypertrophy 

The plasticity of skeletal muscle extends also in the means of adapting its structure 

and function following to mechanical environment. The nature of the stimulus ultimately 

dictates the adaptation in skeletal muscle in response to exercise. For instance, resistance 

exercise training is generally characterized by increases in muscle mass and muscle fiber 

cross sectional area planned to resist the stress of lifting heavy loads. In contrast, 

endurance exercise training is generally characterized by metabolic adaptations planned 

to enhance energy selection and resist fatigue (Snijders et al., 2015). Resistance training is 
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the only bona fide intervention to increase muscle mass that can be performed on a 

population-wide basis. Mechanical loading also results in strong adaptive responses in a host 

of other tissues including bone, tendon and the extracellular matrix in muscle, protecting 

these tissues against future injury (Marcotte et al., 2015). It has been reported that muscles 

can remain hypertrophic after several months of detraining (Harris et al., 2007) 

Skeletal muscle mass is primarily dictated by the regulation of muscle protein 

synthesis. Increased structural protein synthesis serves to add new contractile filaments to 

preexisting sarcomere units. The increase in muscle proteins during muscle hypertrophy can 

be achieved either by increasing RNA and protein synthesis from the existing nuclei or 

maintaining the same level of RNA and protein synthesis from each nucleus and adding new 

nuclei to the fibers. Since the adult muscle fiber nuclei (myonuclei) are unable to divide, the 

new nuclei, which are incorporated by the fiber, originate from outside the fiber. Satellite cells 

are the major donors of new nuclei, being myogenic precursor cells, important for muscle 

development, for muscle regeneration and possibly also for muscle hypertrophy in response 

to exercise, training and hormonal stimulation (Blaauw and Reggiani, 2014). 

The necessity of SCs for hypertrophic muscle growth and maintenance is not widely 

agreed as a study in satellite cell-depleted muscle did not show attenuated hypertrophy 

following overload (Fry et al., 2014; McCarthy et al., 2011). These studies indicate that 

satellite  cells  are  not  required  to  maintain  a  significantly increased muscle mass for an 

extended period of time. However the growth plateau, in the absence of satellite cells, is 

associated with excessive ECM accumulation suggesting that SCs are required for healthy 

remodeling of the ECM during muscle adaptation through regulation of fibroblast activity (Fry 

et al., 2014). A very recent study, where the aforementioned experiments were repeated, 

failed to support the previous conclusions and showed that the hypertrophy was prevented in 

plantaris muscle lacking SCs concluding that the hypertrophic response to mechanical 

overload is dependent on satellite cells (Egner et al., 2016). It is not demonstrated if other 

stem cells in skeletal muscle contribute to muscle hypertrophy (Blaauw and Reggiani, 2014). 

Chapter 2: Signalling 

Multiple signal transduction networks guide and coordinate the muscle protein 

balance (Figure 12) to maintain protein homeostasis (proteostasis). Genetics, hormones, and 

environmental stimuli each influences proteostasis control, altering capacity and/or efficiency 

of muscle growth. Molecular mechanisms that regulate load-induced skeletal muscle 

hypertrophy and that might be exploited for developing new interventions designed to 

increase muscle mass. 
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Figure 12 : Signaling pathways coordinate muscle protein balance. Anabolic and catabolic 
stimuli are integrated through the PKB/Akt-mTORC1 signaling to regulate mechanisms that 
control muscle protein synthesis and breakdown. FOXO, Forkhead box class O; mTORC1, 
mechanistic target of rapamycin complex 1; eIF4, eukaryotic initiation factor 4. From 
(Anthony, 2016) 

 

Hormones 

The first molecular regulators of skeletal muscle mass and strength identified were 

hormones, such as testosterone, IGF-1 and growth hormone, and it is sex-associated (Smith 

and Mittendorfer, 2016). Even though hormones set our baseline muscle size and strength, 

they play little role in the adaptive response to resistance training (Marcotte et al., 2015). 

Hypertrophic growth induced by humoral/hormonal stimuli, such as IGF-1 and androgens, 

also induces satellite cell activation. 

Insulin-like growth factor-1 

 Insulin-like growth factor-1 (IGF-1), also known as mechano-growth factor, is a 

circulating growth factor that is produced and released systemically by the liver and locally by 

the muscle (Philippou and Barton, 2014). IGF-1 has long been recognized as one of the 

critical factors for coordinating muscle growth, enhancing muscle repair, and increasing 

muscle mass and strength. The major muscle phenotype induced by IGF-1 overexpression 

is hypertrophy characterized by an increase in the cross-sectional area of the myofibers and 

a shift toward a more oxidative fiber type (Musarò et al., 2001). This overexpression has 

been shown to modulate the proliferative capacity of the satellite cells (Chakravarthy et al., 

2000) and to increase SC fusion (Jacquemin et al., 2004). Mice overexpressing IGF-1 exhibit 

a proportional gain in muscle force and size demonstrating thus that the addition of extra 
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myonuclei is a prerequisite for maintenance of specific force during muscle hypertrophy 

(Qaisar et al., 2012).  

Interleukin 6 

Traditionally, Interleukin (IL-6) was considered to be an inflammatory cytokine. IL-6 is 

also referred to as a “myokine” as it is also produced by skeletal muscle in response to 

exercise. An exercise induced increase in circulating levels of IL-6 has been observed to 

enhance fat-oxidation, improve insulin-stimulated glucose uptake (Snijders et al., 2015). In 

addition, muscle hypertrophy is blunted in mice lacking IL-6, and this reduced growth was 

linked to a compromised activation and fusion of satellite cells (Serrano et al., 2008). Chronic 

exposure to IL-6 in disease states or age-related increases in serum IL-6 appears to be 

detrimental, impairing muscle protein synthesis, and contributing to the loss of skeletal 

muscle mass (Snijders et al., 2015).  

Interleukin 4 

The cytokine IL-4 was identified as a molecular signal that controls myoblast fusion 

with myotubes and it is regulated by NFATc2 transcription factor which controls myoblast 

fusion at a specific stage of myogenesis after the initial formation of a myotube and is 

necessary for further cell growth. Myofibers lacking IL-4 or the IL-4 alpha receptor subunit 

form normally but are reduced in size and myonuclear number. IL-4 is expressed by a 

subset of muscle cells in fusing muscle cultures and requires the IL-4 alpha receptor subunit 

on myoblasts to promote fusion and growth (Horsley et al., 2003). In postnatal muscle, IL-4 

is a downstream target of Srf transcription factor as it is downregulated upon Srf-loss 

(Charvet et al., 2006) and the IL-4 overexpression in Srf-deleted muscles restores SC 

recruitment and muscle growth (Guerci et al., 2012a).  

mTOR Signaling 

Mechanical stimuli can regulate the rate of protein synthesis through changes in 

translational efficiency and/or translational capacity. Translational efficiency has three 

potential stages for regulation (initiation, elongation and termination), and mechanical stimuli 

appear to primarily affect the stage of initiation (Hornberger, 2011). mTOR (mammalian 

target of rapamycin) is an evolutionarily conserved protein kinase that is important in relaying 

information from nutrients, growth factors and mechanical loading to drive protein synthesis 

and cell growth. mTOR exists in two distinct multi-protein complexes: the mTORC1 and the 

mTORC2 complexes. mTORC1 directly regulates protein synthesis and is sensitive to 

rapamycin. Inhibiting mTORC1 with rapamycin has been shown to block acute amino acid-  
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and resistance exercise-induced increases in muscle protein synthesis (Marcotte et al., 

2015). Mechanical stimulation is sufficient for the activation of mTORC1 signaling and 

subsequently for the mechanically-induced changes in protein synthesis and compensatory 

growth.  

The effect of mTORC1 on the translation machinery and protein synthesis is 

mediated through inhibition of 4E-binding protein 1 and activation of the ribosomal protein S6 

kinase. Deletion of S6 kinase reduces myoblast size to the same extent as that observed 

with mTOR inhibition by rapamycin without affecting the myonuclei number (Ohanna et al., 

2005). mTORC1 induces protein synthesis by phosphorylating and inhibiting 4E-BP1 and 

thereby relieving the repression of eukaryotic translation initiation factor 4E and cap-

dependent translation. It also regulates the ribosome biogenesis by the phosphorylation of 

the ribosomal protein S6 that stimulates mRNA translation and by the modulation of 

ribosomal RNA synthesis (Ma and Blenis, 2009). Ribosome biogenesis is a central 

mechanism used by skeletal muscle to regulate protein synthesis and control skeletal muscle 

mass in response to anabolic and catabolic stimuli (Chaillou et al., 2014).  

The IGF-1-Akt pathway increases muscle protein synthesis via inhibiting glycogen 

synthase kinase 3b (an inhibitor of eIF2 ternary complex formation) and activating 

mechanistic target of mTORC1 signalling (Schiaffino and Mammucari, 2011). 

Myostatin Signaling  

Myostatin (Mstn), a member of the transforming growth factor-β superfamily, is a 

highly conserved, muscle-specific, secreted protein that controls organ size. It is a negative 

regulator of skeletal muscle growth as inhibition of myostatin gene early in development 

results in both hyperplasia and hypertrophy (McPherron et al., 1997). Postnatal Mstn-

inactivation can induce skeletal muscle hypertrophy (Whittemore et al., 2003), while its 

overexpression or systemic administration causes muscle atrophy (Rodriguez et al., 2014). 

Resistance exercise leads to myostatin downregulation potentially playing a role in the 

growth of muscle fibers after exercise (MacKenzie et al., 2013). 

Myostatin functions at the crossroad between the protein synthesis and degradation 

signaling pathways in muscle. The cross-talk between myostatin and the intracellular 

AKT/mTOR signaling pathway controls protein synthesis and muscle hypertrophy in adults 

(Rodriguez et al., 2014). Expression of constitutively active AKT (also known as protein 

kinase B) in skeletal muscle rapidly leads to muscle hypertrophy (Blaauw et al., 2009), thus 

myostatin negatively regulates the activity of the Akt pathway. 

Myostatin binds and activates a heterodimeric receptor complex comprising activin 

type II Ser/Thr kinase receptors (ActRIIB and ActRIIA) and type I receptor, activin receptor-



 Papaefthymiou Aikaterini – PhD thesis - 2016 

52 

like kinase 4 and 5 (ALK4 and ALK5) (Rebbapragada et al., 2003) which in turn leads to the 

phosphorylation and activation of Smad2 or Smad3 and formation of heterodimers with 

Smad4. Smad TFs translocate into the nucleus and activate the transcription of the target 

genes involved in muscle growth (Marshall et al., 2008) and wasting. Inhibition of Smad2/3 or 

TGF-β signalling promotes muscle hypertrophy independent from satellite cell activation but 

partially dependent of the mTOR signaling (Sartori et al., 2009).  

The role of myostatin in the activation of SCs is conflicting since there are studies 

showing activation and others not. Post-developmental inactivation of myostatin leads to 

hypertrophy with little or no myonuclear accretion (Amthor et al., 2009). Some data have 

suggested that satellite cells might also contribute to muscle hypertrophy following myostatin 

loss. BrdU labeling in vivo showed activated and increased Mstn-null SCs than SCs from 

wild-type mice (McCroskery et al., 2003). Mstn-overexpression promotes the terminal 

differentiation program and causes a decrease in the number of embryonic muscle 

progenitors. In the long term, this leads to a decrease in the number of myofibers within 

muscle masses (muscle hypotrophy) (Manceau et al., 2008). 

Myostatin inhibition may induce myofiber hypertrophy by increasing the 

cytoplasm/myonuclear ratio (MND domain) before activating satellite cells. The large MNDs 

found in fast muscles of Mstn-null mice were correlated with the decrement in specific force 

and myosin content in Mstn-null muscles. Thus, myostatin inhibition not being able to 

maintain the appropriate MND for optimal function leading to a pathological hypertrophy 

suggesting that there is a critical volume of individual myonuclei that could support efficiently 

the hypertrophic growth (Qaisar et al., 2012).  

BMP Signaling  

The bone morphogenetic protein (BMP) subfamily, the parallel signaling axis of the 

TGF-β superfamily is the dominant pathway controlling muscle mass, even more so than 

myostatin (Sartori and Sandri, 2015). BMP cytokines preferentially binds to a combination of 

type II receptors that includes BMP type II receptor (BMPRII), ActRIIA, and ActRIIB, before 

promoting recruitment of type I receptors (ALK3, ALK6 and ALK2). Similar to Smad2 and 

Smad3, BMP-dependent Smad proteins (Smad1/5/8) also form a transcriptional complex 

with Smad4 to effect transcriptional regulation of ID gene family that controls cell growth 

and differentiation (Sartori et al., 2014).  

Enhanced BMP signalling (constitutively active ALK3 expression) trigger muscle 

hypertrophy and prevent denervation-induced muscle atrophy by inducing hypertrophy of 

denervated myofibers (Sartori et al., 2013; Winbanks et al., 2013). Inbition of BMP signalling, 

by Noggin (BMP antagonist) overexpression or knockdown of Smad 1/5, induces muscle 
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atrophy via the HDAC4-myogenin-E3 ligases (Sartori et al., 2013; Winbanks et al., 2013). 

Moreover inhibition of BMP signaling reverted the hypertrophic phenotype of myostatin-

knockout mice (Sartori et al., 2013). Enhancing BMP–Smad1/5 signaling is protective in 

models of neurogenic atrophy, by suppressing the activity of the atrophy-inducing 

HDAC4–myogenin–E3 ubiquitin ligase axis. The BMP signaling axis is a bona fide 

regulator of skeletal muscle growth by stimulating mTOR-dependent anabolic mechanisms 

(Winbanks et al., 2013).  

 The ability of myostatin or BMP signalling to regulate muscle growth is dependent on 

competition for Smad4 binding (Figure 13). When BMP signaling is high, Smad4 shifts 

binding toward Smad1/5/8 and this either results in the targeting of a different set of genes or 

reverses the expression effects of myostatin (Marcotte et al., 2015). In addition to Smad4, 

ligands from both subgroups also compete for access to some type II receptors. Competition 

between ligands either in binding type II receptors or in the recruitment of type I receptors 

has been proposed as one of the mechanisms that regulate the signaling of the two 

branches of TGFb superfamily (Sartori et al., 2014). 

 

Figure 13 : Interplay between myostatin and bone morphogenetic protein (BMP) signaling 
pathways. Smad4 is shared between the Smad2/3 and Smad1/5/8 transcription factors and 
is required for their actions. Therefore, it is feasible that a decrease of activated Smad2/3 
would inevitably release Smad4, which would be recruited toward the BMP signaling 
pathway to promote hypertrophy and counteract atrophy. Vice versa, when the BMP pathway 
is blocked or myostatin expression is increased, more Smad4 would be available for 
Smad2/3, which would then transactivate an atrophy response. This model would also 
explain why these two branches share common targets (e.g. the Akt–mTOR axis) but with 
opposite regulation. Therefore, in normal circumstances, a balance between these 
competing pathways is required for maintenance of muscle mass. The broken lines indicate 
mechanisms that are as yet unknown. From (Sartori et al., 2014) 
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Part 6: Skeletal Muscle Regeneration 

Adult skeletal muscle is a high plastic tissue with a remarkable capacity to regenerate 

following a variety of injuries, ranging from acute traumatic injuries, such as the strain injuries 

common in sport medicine, to chronic degenerative diseases, such as the muscular 

dystrophies, characterized by repeated cycles of segmental necrosis and regeneration. 

Muscle regeneration and repair occur in four interrelated and time–dependent phases: 

degeneration, inflammation, regeneration and remodeling-repair (Figure 14). Injury of 

myofibers results in the rapid necrosis, due to an influx of extracellular calcium, which 

induces calcium–dependent proteolysis of the myofibers that drives the tissue degeneration. 

The presence of necrotic fibers activates a defined inflammatory response that is 

characterized by the sequential invasion of muscle by inflammatory cell populations. The 

inflammatory response is followed by regenerative phase, characterized by satellite cell 

activation and by presence of regenerating fibers. The final phase is a period during which 

the maturation of the regenerated myofibers, the contraction and reorganization of the scar 

tissue and the recovery of the functional performance of injured muscle occur (Yin et al., 

2013a).  

 

Figure 14 : Muscle histology in acute muscle regeneration. Tibialis anterior muscles of mice 
were injected with cardiotoxin and samples were taken at different stages of the regeneration 
process. A representative sample showing the inflammatory phase, characterized by a 
transient increase in collagen deposition, and subsequently the resolving phase of healing, 
with progressive recovery of the normal tissue morphology (hematoxylin and eosin). Adapted 
from (Mann et al., 2011)  

 

Satellite cells are the primary stem cells responsible for muscle regeneration however 

other stem cells able to regenerate muscle (e.g. bone marrow stem cells, muscle side 
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populations, PW1 + /Pax7 – interstitial cells, muscle-derived stem cells, mesoangioblasts and 

pericytes) have been explored (Yin et al., 2013a). 

Chapter 1: Inflammation Responses  

Inflammatory and immune cells have crucial role in the regeneration process. Acute 

muscle injury causes an immediate transient wave of neutrophils followed by a more 

persistent infiltration of M1 (pro-inflammatory) and M2 (anti-inflammatory/pro-regenerative) 

macrophages. Macrophages infiltrating injured skeletal muscle are not only involved in the 

phagocytosis of necrotic fibers, but may also release factors that promote muscle 

regeneration. M1 macrophages appear soon after injury and rapidly decline, have a pro-

inflammatory role and stimulate satellite cell proliferation, while M2 macrophages have 

an anti-inflammatory role and promote myoblast fusion and myotubes hypertrophy 

(Chazaud, 2014). 

Regulatory T cells  

T cells were also identified in dystrophic and injured skeletal muscle, however recent 

studies revealed a specific population of regulatory T cells (Treg cells), the “muscle Tregs”. 

The crucial observation supporting the role of Treg cells in the context of muscle injury is that 

muscle regeneration is compromised by conditional depletion of Tregs in a mouse line 

expressing a human diphtheria toxin receptor under control of Foxp3 (a lineage-specific 

transcription factor). Tregs not only promote the M1-to-M2 switch in macrophages but also 

directly act on muscle satellite cells. Indeed, SC proliferation is stimulated in vitro by co-

cultured activated Treg cell. The cytokine, IL-33, has been involved in the control of Treg 

cells in different tissues. IL-33 increases shortly after injury in skeletal muscle and acts on 

cells containing the ST2 (suppression of tumorigenicity 2) receptor. ST2 is one of the more 

strongly upregulated receptors in Tregs isolated from injured muscle compared to Tregs 

present in lymphoid tissue. Treg cells devoid of ST2 show impaired accumulation in injured 

muscle, less effective clearing of the muscle infiltrate and delayed muscle regeneration 

(Schiaffino et al., 2016). 

Chapter 2: ECM, Fibroblast and SC Cross-talk  

Muscle regeneration requires the coordinated interaction of multiple cell types. 

Satellite cells are regulated by their surrounding niche, which includes multiple cell types. In 

addition to inflammatory and satellite cells, efficient muscle repair also requires the migration 

and proliferation of fibroblasts, in order to produce new temporary ECM components 
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(Mann et al., 2011) to assure the normal tissue architecture. Skeletal muscle fibers make up 

about 95% of a muscle's cross-sectional area and the ECM, only about 1–9%. Fibroblasts, a 

cell population in abundance in regenerating muscle, produce a large array of ECM proteins, 

such as collagen, fibronectin, matrix metalloproteinases and proteoglycans (Chapman et al., 

2016) in order to reconstitute the ECM. These elements serve to stabilize the tissue, and to 

ensure the myofiber maintains a similar position as they act as a scaffold to guide the 

regenerative new fibers (Vracko and Benditt, 1972). Moreover, the satellite cells also utilize 

the basement membranes of pre-existing necrotic fibers (ghost fibers) to orient their 

migration and division (Mourikis and Relaix, 2016; Webster et al., 2016). Basement 

membranes and temporary ECM components are also crucial for guiding the formation of 

neuromuscular junctions (Mann et al., 2011). Finally, in addition to ECM remodeling, 

angiogenesis facilitates the development of a new vascular network at the site of injury, 

while newly formed muscle fibers undergo growth and maturation (Mann et al., 2011). 

In 2011, Murphy et al. identified for the first time that muscle connective tissue 

fibroblasts are a major cellular component of regenerating muscle. In this study, mouse lines 

were developed in which they were able to inducibly ablate satellite cells by targeting Pax7+ 

cells or all connective tissue fibroblasts by inducibly ablating Tcf4+ cells. When satellite cells 

were ablated, skeletal muscle regeneration was inhibited. However, when connective tissue 

fibroblasts were ablated, satellite cell dynamics were also altered, resulting in premature 

differentiation of satellite cells and poorly regenerated muscle fibers with decreased 

diameters. Therefore, reciprocal interactions between fibroblasts and satellite cells prevent 

premature differentiation of satellite cells allowing satellite cell expansion and thus proper 

muscle regeneration (Murphy et al., 2011). 

ECM signaling is very critical for SC in regulating cellular determination, 

differentiation, proliferation, survival, polarity and migration (Figure 15). Numerous studies 

have identified roles for the ECM proteoglycans in modulating the bioavailability and 

signaling potential of key growth factors including FGF-2, HGF and TGF-β. The activity of 

the matrix metalloproteases is crucial in releasing these growth factors from their associate 

proteoglycans allowing for their interaction in cell signaling and mechanotransduction (Lund 

and Cornelison, 2013). The SC-ECM interactions are reciprocal, as it has been shown in a 

recent study that SCs are able to autoregulate their niche by secreting collagen VI. 

Collagen VI, a muscle ECM component, contributes to establish a three-dimensional support 

with specific mechanical properties important for satellite cell self-renewal (Urciuolo et al., 

2013). Also fibronectin (ECM glycoprotein) bound to Syndecan-4 and Frizzled-7, a co-

receptor complex in satellite cells, stimulates the ability of Wnt7a to induce the symmetric 

expansion of SCs through the planar-cell-polarity pathway (Bentzinger et al., 2013).  
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Figure 15 : Schematic representation of the local matrix interactions during multiple phases 
of satellite cell activity in vivo. Adapted from (Lund and Cornelison, 2013) 

 

Chapter 3: SC Migration 

The migration of SCs from nearby viable muscle towards the injured site is an 

important aspect of the regeneration response as it provides an important means of 

augmenting the population of myogenic cells and permits the myogenic population to 

contribute en masse to the centripetal wave of regeneration from the time it is initiated at the 

muscle periphery. A variety of muscle trauma conditions stimulate migration including 

ischemia (Phillips et al., 1987; Schultz et al., 1988), thermal injury (Morgan et al., 1987; 

Phillips et al., 1990), crushing (Schultz et al., 1985; Watt et al., 1994) and snake venom toxin 

(Klein-Ogus and Harris, 1983; Maltin et al., 1983). 

Focal crush injury at one end of a muscle results in the activation and movement of 

satellite cells beneath the basal lamina from distant uninjured tissue toward the crush site 

(Schultz et al., 1985). If the injury stimulus is perpendicular to the direction of the myofibers, 

some cells are able to cross the basal lamina of uninjured myofibers and migrate 

transversely through the muscle toward the injury (Klein-Ogus and Harris, 1983; Maltin et al., 

1983; Phillips et al., 1990). However a study using intravital imaging showed that stem cells 

do not migrate from uninjured muscle fibers to regenerate injured tissue and the muscle 

progenitors migrate bi-directionally in ghost fibers along the long axis (Webster et al., 2016). 

Thus, the new fibers would be forced to form in the alignment with the axis of damaged fiber. 

The chemotaxis of SCs is driven by the chemical signals from the damaged fiber, the 

ECM and the inflammatory cells recruited in the local area of injury. The extracellular matrix 
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forms the substratum for migration. The primary in vivo substrate for SC migration is the 

exterior lamina of the host myofiber, engaged by the a7b1 laminin receptor on SCs. SCs 

express multiple guidance ligand and receptors to drive their migration. In activated SCs 

members of all four major classes of guidance receptors (including semaphorins and plexins, 

Ephs and ephrins, netrins and Dcc/Unc5 family members, Robos and Slits) were detected 

(Siegel et al., 2009). In this study with 3D timelapse analysis of SC motility, they proposed a 

model in which soluble motogens such as HGF, released by damaged areas of the 

myofiber, promote SC motility, while repulsive interactions with comparatively intact areas 

of the myofiber maintain cell motility in the absence of injury (Siegel et al., 2009). Activation 

of Wnt7a/Fzd7 signaling markedly stimulates the motility of SCs and myogenic progenitors 

by inducing polarization and enhancing directionality of migration (Bentzinger et al., 2014). 

2. Serum Response Factor 

The 67-kD serum response factor (Srf) is an ubiquitous transcription factor (TF), 

widely expressed from flies to humans (Posern and Treisman, 2006). The serum response 

factor was first identified as the nuclear protein binding to a short DNA sequence element, 

the serum response element (SRE), mediating the transient transcriptional activation of c-

fos and cytoskeletal actin genes after serum induction (Treisman, 1987). Srf belongs to the 

MADS (MCM1-Agamous-Deficiens-SRF) box transcriptional factors family. The MADS-box 

transcription factors constitute a family of proteins that includes the metazoan transcription 

factors SRF and MEF28, the yeast transcription factors MCM1 and ARG80, and a large 

number of plant homeotic gene products (Shore and Sharrocks, 1995). The MADS-box motif 

(Figure 16) has been highly conserved through evolution and comprises the DNA-binding 

domain and a part of the dimerization domain in Srf-like transcription factors. The N-terminal 

half of the MADS box determines DNA specificity among the different family members. The 

carboxy-terminal half of the MADS box forms part of the dimerization surface, however 

efficient dimerization requires an additional 30 residues C-terminal MADS box, which is also 

necessary for recruitment of accessory proteins (Treisman, 1995). 

                                                 
8
 four members of the MEF2 family : MEF2A, MEFB,  MEFC,  and MEFD 
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Figure 16 : Simplified schematic representation of SRF and MCM1 DNA-binding domains. 
The DNA-binding domain is shown as a box, with the MADS-box in purple. Regions of the 
domain shown biochemically to determine DNA-binding specificity, to mediate dimerization 
and accessory factor interactions are indicated. Adapted from (Treisman, 1995) 

 

Human SRF is a 508 amino-acid (aa)-long protein (Norman et al., 1988) and murine 

Srf contains 504 aa (Belaguli et al., 1997). Srf consists of an N-terminal regulatory domain 

(aa 1-142), the MADS box (aa 142-171), and a carboxyl-terminal transactivation domain (aa 

266-508). The N-terminal regulatory domain is phosphorylated by casein kinase II and 

ribosomal S6 kinase (Johansen and Prywes, 1995) and contains the nuclear localization 

signal (NLS) (Rech et al., 1994). 

The Srf gene is localized in the chromosome 17 in mouse and in 6 in human. Srf 

mRNA transcript has 7 exons. Murine Srf mRNA levels were the highest in adult skeletal and 

cardiac muscle, but barely detected in liver, lung, and spleen tissues (Belaguli et al., 1997). 

SRF target genes 

In vivo and in silico experiments suggest the presence of over 200 Srf-regulated 

target genes. Known Srf target genes are characterized by the presence of single or multiple 

copies of the Srf binding consensus element CC(A/T)6CG, the CArG box, in their promoter 

elements (Sun et al., 2006).  

Srf controls transcription of many cellular CArG-dependent “immediate-early” genes 

(IEGs) (Posern and Treisman, 2006), whose mRNA may appear in cells within minutes after 

stimulation, without the need for de novo protein synthesis (Bahrami and Drabløs, 2016). The 

CArG box has been identified in a number of post-replicative muscle-specific genes (Table 

1), including cardiac and skeletal muscle actins (Minty and Kedes, 1986), dystrophin (Klamut 

et al., 1990), and myosin light chain 1/3 (Ernst et al., 1991). Srf activity can be differentially 

controlled by signal-regulated or tissue-specific regulatory cofactors (Posern and 

Treisman, 2006). 

Table 1 : Cytoskeleton-contractile SRF target genes. From (Miano et al., 2007) 
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Part 1: Srf Cofactors-Signalling 

Like many transcription factors, Srf exhibits combinatorial interactions with other TFs. 

There are at least two pathways (Figure 17), involving different cofactors, for serum induction 

that converge on the SRE. In the fibroblast model system, Srf target genes can be 

distinguished on the basis of their relative sensitivity to MEK-ERK and RhoA-actin signaling 

pathways (Gineitis, 2001).  

MAPK Signalling/Ternary Complex Factors 

Srf forms a ternary complex at the c-fos SRE with members of a family of Ets domain 

accessory proteins, the ternary complex factors (TCFs), which bind to a conserved Ets motif 

adjoining the SRF-binding site (Treisman, 1994). These proteins, which include SAP-1, Elk-I 

and ERP-1/NET/SAP-2., contain two conserved N-terminal regions required for DNA binding 

and ternary complex formation with Srf and a conserved C-terminal activation domain 

containing potential MAP kinase consensus sites (Price et al., 1995). For full SRE function, 

the ternary complex is essential (Shaw et al., 1989). Genomic footprinting studies show that 

the ternary complex is present at the SRE even in unstimulated cells, suggesting that SRE 

activation involves regulation of transcriptional activation rather than DNA binding (Herrera et 

al., 1989). Functional studies demonstrated that recruitment of Srf cofactors is gene-specific 

(Esnault et al., 2014). 

At least one route by which signals arrive at the SRE is via the MAP kinase pathway 

and is dependent on the Srf/TCF ternary complex (Figure 17). Activation of the MAP kinase 

pathway, through Ras, Raf, MEK and ERK, phosphorylates TCFs (Posern and Treisman, 

2006), which bind to their own Ets motif site and Srf in a ‘grappling hook’ model (Treisman et 

al., 1992). 

RhoA-Actin Signalling 

Srf activity is also regulated by the Rho family of small GTPases (Hill et al., 1995) 

through the recruitment of myocardin related transcription factors (Mrtfs) at Srf target genes 

(Olson and Nordheim, 2010). Rho GTPases regulate the Srf and its cofactors Mrtfs via their 

ability to induce actin polymerization (filamentous actin). Alterations in actin dynamics (G-

actin/F-actin) are required for RhoA-mediated Srf activation, which is inhibited upon 

treatment of cells with the G-actin binding drugs demonstrating that G-actin level controls Srf 

activity (Sotiropoulos et al., 1999). The cytoplasmic concentration of Gactin is reflected by 
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the concentration of Mrtf retained in the cytoplasm. Thus, Mrtfs act as “actin sensors” in the 

cytoplasm, through their ability to bind actin via their RPEL domains (Guettler et al., 2008; 

Miralles et al., 2003; Vartiainen et al., 2007). Following serum stimulation, the release and 

nuclear translocation of cytoplasmic Mrtfs induce Srfdirected target gene activation (Figure 

17).  

The RhoA-actin pathway controls a subset of Srf target genes, including the 

immediate-early genes, such as β-actin, vinculin, and srf, and the cardiac and smooth 

muscle α-actin genes (Posern and Treisman, 2006). Mrtf targets (>2600 MRTF-binding sites) 

encode regulators of the cytoskeleton, transcription, and cell growth (Esnault et al., 2014). 

Constitutively active forms of both RhoA and other Rho family GTPases such as Cdc42 and 

Rac1 can activate Srf in the absence of extracellular signals (Hill et al., 1995). 

 

Figure 17 : Model of two principal pathways regulating SRF activity in non-muscle cells. 
Stimulation activates both Rho-dependent (left) and Ras-dependent (right) signalling. 
Activation of the MAP kinase pathway through Ras, Raf, MEK and ERK phosphorylates 
TCFs, which bind to their own Ets DNA recognition site and SRF in the ‘grappling hook’ 
model. Signalling through Rho family GTPases (squares, with small black squares indicating 
GTP) and the actin treadmilling cycle (left) results in the dissociation of MAL from actin, 
which then binds and activates SRF. From (Posern and Treisman, 2006) 
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micro RNA Regulation 

Several studies show a major role of Srf in regulating and being regulated by various 

miRNAs. SRF regulates certain microRNAs that play a role in cardiac and skeletal muscle 

development. Cardiac-specific overexpression of Srf (Srf-Tg) led to altered expression of a 

number of microRNAs. Interestingly, downregulation of miR-1, miR-133a and upregulation of 

miR-21 occurred by 7 days of age in these mice, long before the onset of cardiac 

hypertrophy, suggesting that SRF overexpression impacted the expression of microRNAs 

which contribute to cardiac hypertrophy (Zhang et al., 2011). A high level overexpression of 

Srf leads to the drastic development of fibrosis associated with an increased expression 

especially of connective tissue growth factor (CTGF) and a strong downregulation of miR-

133a, revealing a key role of the SRF/CTGF/miR-133a axis in the regulation of cardiac 

fibrosis (Angelini et al., 2015). 
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Part 2: Actin: a Known Srf-Target Gene 

Actins form a major component of the cytoskeleton of eukaryotic cells. In vertebrates 

the two major cytoskeletal actins, β and γ, are encoded by a pair of evolutionarily related 

genes which are expressed in all cell types (Rubenstein, 1990). Mammalian cytoskeletal 

actin genes are members of a set of genes whose transcription is rapidly and transiently 

activated following stimulation of susceptible cells with growth factors and mitogens (Elder et 

al., 1984). The promoters of these genes contain a region of striking homology to the human 

c-fos SRE (Mohun et al., 1987).  β and γ cytoplasmic actin genes (ACTB and ACTG1) 

expression are Srf-dependent (Miano et al., 2007). 

Actin is also a component of muscle sarcomere. A pair of actin genes is expressed in 

the striated muscles (skeletal muscle and heart) of vertebrates. One of these genes (a-

skeletal) encodes the major actin species in adult skeletal muscle actin and the other gene 

(a-cardiac) encodes the major actin species in the adult heart (Gunning et al., 1983a). The 

cardiac actin gene has also been shown to be expressed at high levels in embryonic and 

fetal skeletal muscle. In adult skeletal muscle, however, there is only a low level of cardiac 

actin mRNA, showing that the cardiac actin gene is subject to developmental regulation 

(Paterson and Eldridge, 1984). The different actin genes are unlinked in mammalian 

genomes (Gunning et al., 1984) and are also unlinked to other contractile protein genes 

(Czosnek et al., 1982). The presence of the CArG-box in the upstream regions of a-actins 

(Minty and Kedes, 1986) suggests a Srf-binding site and Srf-dependent regulation (Miano et 

al., 2007). 

G-actin/F-actin 

Actin is an ATPase that cycle between monomeric (G-actin) and polymerized (F-

actin) states. The four subdomains of actin form two lobes, separated by a deep cleft that 

binds nucleotide and a bivalent cation, and the molecule adopts differing conformations 

according to whether ATP or ADP is bound. Nucleotide binding is not required for 

polymerization by itself but stabilizes the molecule (Kabsch et al., 1990). F-actin is a polar 

structure with pointed (-) and barbed (+) ends. In actin treadmilling cycle, ATP-loaded G-

actin monomers are assembled at the barbed end of the F-actin microfilaments, 

disassembled as ADP-monomers at the pointed end, and subsequently recycled (Posern 

and Treisman, 2006). Polymerization of monomeric globular actin (Gactin) into a filamentous 

actin (F-actin) is influenced by local intracellular concentrations of ATPbound Gactin and by 
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the activity of many actinbinding proteins (ABPs). Gactin forms complexes with different 

ABPs, including the nucleating factors profilin, formins and the actinrelated protein 2/3 

(ARP2/3) complex (Olson and Nordheim, 2010).  

Nuclear Actin 

Actin has been known as a major component of the cytoskeleton and as a key player 

in many cellular processes including cell migration, division and shaping. Actin is also 

present in the cell nucleus (Figure 18), where it has been linked to many processes that 

control gene expression. Nuclear actin and numerous actin-binding proteins have been 

identified as an important component of transcriptional machineries and chromatin 

remodeling complexes (Treisman, 2013). The activity of the Mrtf transcriptional 

coactivators is controlled via their dynamic interaction with the cytoplasmic and nuclear 

monomeric G-actin pools. Actin is actively shuttled between cytoplasm and nucleus. Nuclear 

actin levels are maintained by active nuclear import and export of actin. Cytoplasmic actin is 

imported to nuclei by Importin 9, while nuclear actin is exported to the cytoplasm by Exportin 

6 (Miyamoto and Gurdon, 2013). This controls the nuclear exit of other GABPs, such as 

MRTFs, which are exported bound to Gactin.  

In addition, recent studies indicate that nuclear actin and actin-binding proteins play 

vital roles in transcriptional activation during cell differentiation and reprogramming 

(Miyamoto and Gurdon, 2013). 

 

Figure 18 : Cytoplasmic and nuclear actin dynamics. Potential relationships between the 
cytoplasmic and nuclear actin pools, actin regulatory factors, and the functions of nuclear 
actin are shown. The cytoplasmic and nuclear actin pools (indicated by green ovals) are in 
dynamic communication. Those functions of nuclear actin that rely on transient interactions 
with target proteins are expected to be influenced by short-term alterations in actin dynamics, 
whereas those functions in which actin functions as part of stable complexes with nuclear 
proteins are refractory to them. Whether signals can be transmitted directly to the nuclear 
actin regulatory machinery, or if they are transmitted to cytoplasmic machinery which then 
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translocates to the nucleus, remains to be determined. Abbreviations: CYT, cytoplasm; F, 
polymerized F-actin; G, monomeric G-actin; MRTF, myocardin-related transcription factor; 
NUC, nucleus. From (Treisman, 2013) 

 

Chapter 1: Linking Actin Dynamics and Srf Transcriptional Activity 

Changes in actin dynamics mediate signal-induced Srf transcriptional activity. 

Stabilization of F-actin by the actin-binding drug jasplakinolide is sufficient to activate Srf in 

the absence of extracellular stimuli, whereas overexpression of actin inhibits Srf 

(Sotiropoulos et al., 1999). Actins that cannot polymerize with the use of actin-binding drugs 

that do not promote F-actin formation, are effective inhibitors of signaling to Srf (Olson and 

Nordheim, 2010; Posern et al., 2002; Sotiropoulos et al., 1999). Actin mutants that enhance 

F-actin formation can activate Srf-dependent transcription when overexpressed (Posern et 

al., 2002). These results present direct evidence for participation of monomeric actin in the 

signaling pathway to Srf. Moreover, Srf can be activated by overexpression of the actin-

binding protein profilin (an actin-binding protein involved in the polymerization process), and 

this is blocked by profilin mutations that prevent actin binding (Geneste et al., 2002; 

Sotiropoulos et al., 1999). Constitutively active forms of regulators of actin polymerization, 

such as LIMK, mDia, the Wiskott Aldrich Syndrome protein (WASP) family, and vasodilator-

stimulated phosphoprotein (VASP), can potentiate Srf activity in the absence of extracellular 

(Sotiropoulos et al., 1999; Tominaga et al., 2000). Depletion of G-actin is both necessary and 

sufficient for activation both of Srf reporters and a subset of Srf target genes. The link 

between the actin cytoarchitecture and gene activity assures many dynamic cell functions 

such as cell migration, guided movement, engulfment, adhesion and contraction (Olson and 

Nordheim, 2010). 

Signal Regulation of Actin Dynamics  

The Rho family of Ras-related GTPases, RhoA, controls diverse cellular processes 

concerned with the cytoskeleton, actin polymerization, myosin-based contractility, focal 

adhesion formation, transformation and cytokinesis (Olson and Nordheim, 2010). RhoA 

controls the formation of actin assembly by interacting with a set of effector proteins that 

includes the Rho kinases (Geneste et al., 2002). Activation of Rho GTPases promotes actin 

polymerization by two downstream signalling modules, one involving the Rhoassociated 

kinase (ROCK)–LIM kinase–cofilin pathway (cofilin is an ABP that can stimulate actin 

depolymerization and thereby enhance actin polymerization elsewhere), and the other 

mediated by the Diaphanous group of formin proteins (mDia proteins). RhoA controls the 
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assembly of the actin cytoskeleton in response to extracellular signals (Figure 19). 

Activation of Rho leads to the accumulation of filamentous actin (F-actin) through both 

filament stabilization and de novo polymerization with concomitant depletion of cellular levels 

of monomeric actin (G-actin) (Olson and Nordheim, 2010). 

 

Figure 19 : Receptors affecting actin dynamics and MRTF-mediated regulation of SRF target 
genes. a | Cytoskeletal actin microfilament dynamics are affected by the activation of six 
classes of plasma membrane receptor. b | Activation of SRF class II target genes. Nuclear 
MRTF can be complexed by nuclear G-actin, which inhibits MRTF-mediated stimulation of 
SRF-dependent transcription and facilitates MRTF nuclear export. SRF class II target genes 
that are transcribed as a result of MRTF–SRF activation include actin itself and many genes 
that modulate actin dynamics. These newly made proteins, with increasing time and 
concentration, might stimulate cytoplasmic actin polymerization, complex cytoplasmic MRTF 
or elevate levels of nuclear G-actin to downregulate MRTF-mediated transcription and 
stimulate nuclear export of MRTF. From (Olson and Nordheim, 2010) 

 

Chapter 2: MRTFs 

The link between Rho-actin signalling and Srf transcriptional activity is the MRTFS. 

The activity of the MRTF transcriptional coactivators is controlled via their dynamic 

association with the cytoplasmic and nuclear monomeric G-actin pools (Treisman, 2013), 
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which are redistributed from the cytoplasm to the nucleus in response to Rho-induced actin 

polymerization. 

Members of the MRTF family (Myocardin, Mrtf-A, Mrtf-B, and MASTR) play important 

roles in differentiation and remodeling of cardiac, smooth, and skeletal muscle cells. 

Myocardin (a heart-specific Srf coactivator), the founding member of the Mrtf family (Wang 

et al., 2001, 2003), is expressed specifically in the cardiovascular system, whereas other 

Mrtf family members (Figure 20) display more widespread expression patterns (Olson and 

Nordheim, 2010). Myocardin shares homology with MrtfA (also known as MAL, MKL1 and 

BSAC) and MrtfB (also known as MKL2 and MAL16) in a series of conserved domains 

(Pipes et al., 2006). MASTR, a SAP domain TF is a muscle-enriched MEF2 coactivator 

(Creemers et al., 2006).  

Myocardin-dependent cardiac and smooth gene expression is regulated by GATA 

transcription factors (Oh et al., 2004), BMP and TGF-β/Smad signalling (Callis et al., 2005), 

the Rho/Mrtf/Srf axis, JAK-STAT3 signalling (Liao et al., 2015) and Calcineurin/transient 

receptor potential channel (TRP)/nuclear factor of activated T-Cell (NFAT) signaling (Li et al., 

2016; Lighthouse and Small, 2016).  

 

Figure 20 : Structure of myocardin family members. Functional domains of homology among 
the myocardin family proteins are shown and the numbers of amino acids are indicated. 
Myocardin-related transcription factors (MRTFs) are potent transcriptional coactivators that 
associate with serum response factor (SRF) through a basic region (++) and an adjacent 
Glu-rich domain (Q). Between these domains is a short α-helical region with similar 
secondary structure to a domain in the ternary complex factor protein ELK1, known as a B 
box, which mediates their interaction with SRF. Myocardin family proteins contain Arg-Pro-X-
X-X-Glu-Leu (RPEL) motifs, which mediate their interaction with globular actin (G-actin). A 
dimerization motif resembling a Leu zipper mediates homo- and hetero- dimerization of 
myocardin and MRTFs. Alternative usage of 5′ exons in the myocardin gene gives rise to 
proteins with different amino termini. A cardiac-specific splice variant of myocardin contains a 
unique amino-terminal sequence that confers the ability to interact with the myocyte-specific 
enhancer factor 2 (MEF2) transcription factor, a MADS-box transcription factor related to 
SRF. This MEF2-interaction domain is also contained in a divergent member of the 
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myocardin family called MEF2-activating SAP transcriptional regulator (MASTR). MASTR 
lacks the SRF-interaction domain. Adapted from (Olson and Nordheim, 2010) 

 

Actin-Mediated Regulation of MRTF Nuclear Shuttling 

At low actin polymerization states, Mrtfs are held in an inactive state in the cytoplasm 

by reversible complex formation with Gactin (Posern et al., 2004). Thus, Mrtfs are bona fide 

G-ABPs. Stimulation of Rho GTPases feeds Gactin into the Factin filament, thereby 

liberating Mrtfs from Gactin and allowing the nuclear import of Mrtf and subsequent 

activation of Srfdependent transcription. Nuclear Gactin also modulates Mrtf functions in 

multiple ways. First, nuclear export of Mrtfs is facilitated by nuclear Gactin-binding is 

inhibited upon signal-induced depletion of the G-actin pool. Second, nuclear Gactin prevents 

nuclear Mrtf from activating Srf target genes, so that liberation of the nuclear actin–Mrtf 

complex is required to stimulate Srf. Thus, cellular Gactin regulates Mrtfs at three levels: 

nuclear import, nuclear export and nuclear activation or inactivation of Mrtf–

Srfdependent transcription (Vartiainen et al., 2007). Thereby, the actin–Mrtf–Srf circuit 

allows for the precise modulation of gene expression in concert with cytoskeletal assembly 

and disassembly (Olson and Nordheim, 2010).  

A recently described pathway that regulate nuclear actin show that MICAL-2, an 

atypical actin-regulatory nuclear protein which promotes the depolymerization of nuclear 

actin upon redox stimuli, also facilitates the depletion of nuclear G-actin, which enables Mrtf 

to accumulate in the nucleus and to stimulate Mrtf–Srf-dependent gene expression 

(Lundquist et al., 2014). 
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Part 3: Srf Activity in Muscle Tissue  

The Muscle CArG-box 

The SRE found in the promoter region of the human c-fos gene, shares sequence 

similarity with the CArG box, a ten nucleotide motif (CC[A/T]6GG) which is conserved 

amongst vertebrate striated muscle actin genes (Minty and Kedes, 1986) and they are 

functionally interchangeable (Taylor et al., 1989) showing that a common mechanism is 

utilized in both muscle-specific gene expression and serum-responsive gene transcription 

probably by binding the same TF. The CArG box binding factor is the Srf that binds to the 

cardiac and skeletal a-actin promoters (Boxer et al., 1989).  

Several different promoter elements have been identified as important for muscle-

specific gene transcription. Some bind complexes containing muscle-specific transcription 

factors: for example, the E-box (CANNTG) binds members of the myogenic family of bHLH 

proteins (Arnold and Braun, 1996). In contrast, other sequences in muscle-specific promoters 

bind ubiquitous factors whose activity can at least in some cases be modified according to 

the promoter context.  An example is the CArG box, which binds the ubiquitous transcription 

factor Srf. In muscle-specific promoters, the CArG box acts  as a strong constitutive 

promoter element (Sartorelli et al., 1990; Wei et al., 1998). In contrast, in immediate-early 

gene promoters, such as that of c-fos, the CArG box functions as a growth factor-inducible 

promoter element and has only low basal activity (Taylor et al., 1989; Treisman, 1990). Thus, 

the involvement of a transcription factor in muscle-specific transcription need not imply that 

the factor is expressed exclusively in muscle cells. It is however possible that the Srf 

interacts with the MRFs for muscle-specfic gene expression (Sartorelli et al., 1990), as it was 

shown by physical interaction between Srf and the MRFs MyoD and MyoG-E12 

heterodimers (Groisman et al., 1996). 

Chapter 1: Srf-Expression Pattern in Mouse Development 

Staining of sectioned embryos with Srf-specific antiserum revealed expression at 

E6.5 in ectoderm as well as endoderm. At E7.5, Srf protein could be seen in all three germ 

layers of wild type embryos. Interestingly, at E8.5, this ubiquitous distribution became a 

regionally localized one and Srf protein expression was found to be high in the developing 

heart (especially in the myocardium), but barely detectable in other tissues. At E10.5, distinct 

Srf protein expression was detected in the developing myotome (Arsenian et al., 1998). In 
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situ hybridization analysis revealed enrichment of Srf transcripts in the smooth muscle of 

vessels in mouse embryos (Belaguli et al., 1997). These Srf expression patterns in mouse 

embryos are congruent with those found in chicken embryos (Croissant et al., 1996). 

Srf germline-mutants mice have an embryonic lethality at E12.5 because of severe 

gastrulation defect with scarcity of mesoderm formation. The availability of the Cre/loxP 

technology allowed the generation of  “floxed  Srf” mice  to investigate the inactivation of the 

Srf gene in an organ and time specific manner (Wiebel et al., 2002). 

Chapter 2: Srf-loss in Cardiac Muscle 

A conditional mutant of Srf by using a β-MHC-Cre transgenic mouse line was used to 

study the role of Srf in embryonic and postnatal cardiac functions.  Heart-specific deletion of 

Srf in the embryo results in lethal cardiac defects between E10.5 and E13.5, as evidenced by 

abnormally thin myocardium, dilated cardiac chambers, poor trabeculation and a 

disorganized interventricular septum. At E9.5, a marked reduction in the expression of 

essential regulators of heart development, including Nkx2.5, GATA4, myocardin, and the Srf 

target gene c-fos was found prior to overt maldevelopment. Thus, Srf is crucial for cardiac 

differentiation and maturation, acting as a global regulator of multiple developmental 

genes (Parlakian et al., 2004).   

In human heart samples, expression of four different isoforms of SRF was found, 

with 67-kDa full-length SRF being the predominant isoform. Interestingly, in failing hearts, it 

was found robust expression of a low-molecular-mass (~52 kDa) SRF isoform, which is 

encoded by an alternatively spliced form of SRF lacking exons 4 and 5. Overexpression of 

this isoform into cells inhibits SRF-dependent activation of cardiac muscle genes (Davis et 

al., 2002).  

Mice model of tamoxifen inducible cardiac specific Srf knockout led to heart failure 

with dilated cardiomyopathy, characterized by a reduced contractility, a left ventricular 

dilation accompanied by a downregulation of energetic proteins and changes in 

cytoarchitecture (Parlakian et al., 2005). This work provided therefore a mouse model of 

morphological and clinical features of acquired dilated cardiomyopathy in humans.  

Chapter 3: Srf-loss in Smooth Muscle 

Inactivation of Srf in smooth muscle cells (SMCs) through SM22 α-actin-Cre mediated 

excision during embryonic development, leads to a decrease in the number of peri-vascular 

progenitor cells as well as SMC lacking organizing actin/intermediate filament bundles at 

E10.5, suggesting a crucial role for Srf in vascular SMC differentiation (Miano et al., 2004). 
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In 2008, Franco et al. found that Srf expression is also restricted to vascular 

endothelial cells (ECs) of small vessels such as capillaries in the mouse embryo. EC-

specific Srf deletion led to aneurysms, hemorrhages and reduced capillary density from 

E11.5 and lethality at E14.5 (Franco et al., 2008). This work revealed a crucial role of Srf 

downstream of vascular endothelial growth factor (VEGF) and FGF signalling during 

sprouting angiogenesis, regulating EC migration, actin polymerization, tip cell morphology, 

EC junction assembly and vascular integrity (Franco and Li, 2009).  

Gastrointestinal Tract 

Tamoxifen inducible Sm22-Cre mice lead to down-regulation of many smooth muscle-

specific genes in urinary bladder and gastrointestinal tract (GI) (Coletti et al., 2016). In the GI 

tract, Srf is the central regulator of genes involved in apoptosis, dedifferentiation, 

proliferation, and migration of cells. Abnormal expression of Srf is common in several GI 

diseases. Normal expression of the protein is essential for GI SMC differentiation. Loss or 

reduction of Srf may trigger myopathy, hypertrophy of SMCs or GI cancers, while 

overexpression of the protein may be linked to ulcers (Ro, 2016a). 

Chapter 3: Srf-loss in Skeletal Muscle 

In vitro studies attempting to explore the impact of Srf-loss in myogenic cell lines 

showed that: 1) Srf is involved in the process of skeletal muscle differentiation as inhibition 

of Srf through microinjection of purified Srf antibodies, prevents the expression of two 

myogenic differentiation markers, myogenin and troponin T (Soulez et al., 1996a; 

Vandromme et al., 1992). 2) Srf activity is required for the expression of the muscle-

determining factor MyoD in proliferating and cultured under differentiating conditions 

myoblast (Gauthier-Rouviere et al., 1996; Soulez et al., 1996b).  

Subsequent in vivo studies using two Cre transgenes, with different temporal patterns 

of expression in the muscle developmental pathway, were conducted to delete Srf in 

myogenic cells. Early MyoG-Cre is activated by E9.5 before the first round of myoblast 

fusion, whereas the late muscle creatine kinase-Cre is activated later during muscle fiber 

differentiation. These mice formed muscle fibers but they showed a compromised 

hypertrophic growth necessary for the formation of fully functional skelet1al muscle and led 

to early postnatal lethality probably due to respiratory failure. The finding that two skeletal 

muscle Cre transgenes activated at different times in development lead to similar 

phenotypes, albeit with differing severity, suggests that the Srf mutant phenotype reflects a 

late function of Srf in hypertrophic growth, for example, in myoblast fusion, rather than an 

early developmental role (Li et al., 2005). Nevertheless to exclude a role of Srf in early 
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myogenesis, an approach of the Cre transgene under the Myf5 promoter needs to be 

conducted in order to delete Srf in early myogenic development. MyoD appears at E10.5 

(see in the previous description about MyoD) when the first myogenesis had occurred which 

means that myoblast formation and fusion was completed (Sassoon et al., 1989), thus it 

seems evident that in the Li’s study from Olson’s lab, there is no mention for MyoD 

expression. However the observed phenotype of hypotrophy in Srf-depleted skeletal 

muscle shows similarity in the MyoD-null phenotype which results in hypotrophy of skeletal 

muscle (postnatal growth is attenuated) (Megeney et al., 1996). But given that they did not 

report for MyoD expression we cannot have a response concerning the inhibition of MyoD by 

the Srf in vivo as reported in the in vitro studies.  

It has been shown that the distal regulatory region (DRR) of the mouse and human 

MyoD gene contains a conserved Srf binding CArG-like element and Srf binding to the CArG 

element is involved in the transcriptional activation of MyoD in skeletal myoblasts and during 

muscle regeneration (L’honore et al., 2003). MyoD DRR represents a new hybrid element 

composed of binding sites for both Srf and MEF2 factors enables a molecular relay from Srf-

driven to MEF2-driven activation of MyoD transcription when progressing from myoblast 

proliferation to differentiation into myotubes (L’honore et al., 2007). 

In Postnatal Muscle 

A murine model with a postmitotic myofiber-targeted Srf disruption (Human Skeletal 

Actin-Cre) display severe skeletal muscle mass reductions due to a postnatal muscle growth 

defect resulting in highly hypotrophic adult myofibers. Srf-depleted myofibers also failed to 

regenerate following injury (Charvet et al., 2006). Tamoxifen-inducible deletion of Srf from 

myofibers blunts overload-induced hypertrophy, and impairs satellite cell proliferation and 

recruitment to pre-existing fibers (Guerci et al., 2012a). They showed that Srf-depleted 

myofibers impaired production of secreted factors Il-6, Il-4, and Cox2 which drive overload-

induced muscle growth through a paracrine control (Figure 21) of satellite cell functions 

(affecting both satellite cell proliferation and fusion) (Guerci et al., 2012a).  
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Figure 21 : Schematic model, in response to increased workload, Srf within myofibers 
modulates IL6 and Cox2/IL4 expression and, therefore, exerts a paracrine control of satellite 
cell proliferation and fusion, respectively, which in turn support skeletal muscle hypertrophy. 
From (Guerci et al., 2012b) 

 

A recent study from our lab showed that Srf is a key mediator of 

mechanotransduction in skeletal muscle atrophy through the actin-Mrtf-Srf axis. Inhibition 

of the actin-Mrtf-Srf axis exacerbates the decreased Mrtf-Srf-dependent transcription activity 

observed in disuse atrophy (Collard et al., 2014). 

Srf in Ageing Skeletal Muscle 

Contrary to the cardiac muscle, there is an age associated decrease in Srf 

expression in mice and human muscles. Srf is downregulated in skeletal muscle suggesting 

that this naturally occurring decrease could contribute to the muscle phenotype observed 

during the ageing process and in sarcopenia (Coletti et al., 2016). Srf loss in adult 

myofibers display premature ageing accompanied with a wide spectrum of alterations 

including atrophy, fibrosis, lipid accumulation and a perturbed regeneration (Lahoute et al., 

2008). All these features are characteristic of aged skeletal muscle, suggesting  that Srf is 

required for the maintenance of an adequate “niche” for the efficient recruitment of muscle 

satellite cells during overload-induced hypertrophy (Guerci et al., 2012a) and injury-induced 

regeneration (Lahoute et al., 2008). 
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Objectif of the Study 

The adult skeletal muscle is highly plastic tissue which means that it can adapt its 

metabolism and size/muscle mass in response to physiological demands such as resistance 

or endurance exercise, mechanical overload and caloric restriction or disuse. It has also a 

remarkable capacity to regenerate upon muscle damage leading to an ad integrum 

reconstution of muscle structure and function. The functional unit of muscle activity is the 

muscle fiber (myofiber) a multinucleated, postmitotic, high-performance structure. The adult 

skeletal tissue also contains muscle-specific stem cells, named as satellite cells (SCs), with 

an important and indispensable role in the muscle homeostasis and adaptation to internal 

and external stimuli in adult life. 

The aim of this study is to better urderstand the plasticity of muscle tissue 

based on SCs and how the SC fate is controlled by the serum response factor.  

The serum response factor (Srf) is a widely expressed transcription factor, member of 

the MADS box transcription factor family, which binds the core sequence of SRE/CArG 

boxes [CC(A/T)6GG]. Results obtained with specific Srf knock-out models, using the Cre-

LoxP system, emphasize a crucial role for Srf in postnatal cardiac, skeletal and smooth 

muscle homeostasis (Coletti et al., 2016). Specifically in the adult skeletal muscle, our lab 

showed premature aging in skeletal muscles lacking Srf in the myofibers (Lahoute et al., 

2008), Srf-dependent control of muscle mass upon disuse atrophy via the actin–Mrtf–Srf 

pathway (Collard et al., 2014), and Srf-requirement within myofibers for satellite cell-

mediated hypertrophic muscle growth via a gene network in which Srf modulates interleukin-

6 and cyclooxygenase-2/interleukin-4 signalling (Guerci et al., 2012a). However an in vivo 

study of the Srf role in adult muscle-specific stem cells has not been conducted up to now. 

Why does Srf need to be studied in the satellite cells? Because Srf was initially 

identified to mediate the signal-induced transcriptional activation of immediate-early genes 

and Srf-binding sites, the CArG box, was found in muscle-specific promoters and in genes 

implicated in cell adhesion and migration.  

Previous in vitro studies in C2C12 and C2 myogenic cell lines pointed out a Srf-

function in the proliferation and differentiation of myoblasts (Gauthier-Rouviere et al., 1996; 

Soulez et al., 1996a; Vandromme et al., 1992). Moreover a CArG-like element is containd in 

the distal regulatory region of the MyoD gene, a master regulator of myogenic determination 

(L’honore et al., 2003).  
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In the present study the SCs were challenged by two means: 1) an injury-induced TA 

muscle regeneration and 2) overload-induced compensatory hypertrophy in plantaris muscle. 

The two models differ in the destruction or not of the myofiber niche.  

With the present study, we hope to further address the question of the Srf-role in the 

SC functions contributing to adult skeletal muscle plasticity. 
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Results 

Part 1: Srf controls satellite cell fusion during skeletal muscle 

hypertrophy through the maintenance of actin architecture 

A part of this study, on which the present PhD work was conducted, is presented in the 

following article currently prepared for soon submission. 

  



 Papaefthymiou Aikaterini – PhD thesis - 2016 

78 

 

Srf controls satellite cell fusion during skeletal muscle hypertrophy through the 

maintenance of actin architecture 

 

Aikaterini Papaefthymiou1,2,3, Voahangy Randrianarison-Huetz1,2,3, Gaëlle Herledan1,2,3, 

Ulduz Faradova1,2,3, Laura Collard1,2,3, Chiara Noviello1,2,3, Alessandra Pincini1,2,3, Emilie 

Schol1,2,3, Jean François Decaux1,2,3, Pascal Maire1,2,3, Athanassia Sotiropoulos1,2,3* 

 

 

1. Inserm U1016, Institut Cochin, F-75014 Paris, France 

2. CNRS UMR8104, F-75014 Paris, France 

3. Université Paris Descartes, F-75006 Paris, France 

 

 

 

 

 

 

 

 

 

 

 

 

* Corresponding author: 

Athanassia Sotiropoulos 

24 rue du Faubourg Saint-Jacques, F-75014 Paris, France 

Telephone number +33 1 44 41 24 32 

Fax number +33 1 44 41 24 21 

Email address athanassia.sotiropoulos@inserm.fr 

 

 

mailto:athanassia.sotiropoulos@inserm.fr


 Papaefthymiou Aikaterini – PhD thesis - 2016 

79 

Abstract 

 

Satellite cells (SCs) are muscle adult stem cells which are mobilized when muscle 

homeostasis is perturbed such as hypertrophy and muscle rergeneration. We investigated 

the role played by the transcription factor Srf in the control of SCs behaviours in vivo using a 

mouse model of conditional deletion of Srf in SCs. Deletion of Srf in SCs compromized 

hypertrophy in plantaris myofibers. Unexpectedly the loss of Srf in SCs is neither 

accompanied with altered MyoD expression, nor altered proliferation or differentiation but 

with a fusion defect. We show that SC-specific Srf deletion leads to downregulation of alpha-

skeletal actin target gene and an impairment of actin cytoskeleton. By restoring the network 

of polymerized actin with the overexpression of an alpha-actin isoform in the SCs, fusion 

event is rescued showing thus the importance of the actin cytoskeleton maintenance in 

heterotypic myogenic fusion in vivo between a control myotube and a mutant myoblast. 

However the homotypic fusion between mutant myoblasts was not affected by actin 

architecture restoration suggesting the implication of additional Srf targets. We provide new 

genetic evidence that SC fusion to growing myofiber is required for an efficient hypertrophic 

myofiber growth and that myoblast fusion is the limiting step for the hypertrophic growth. 
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Introduction 
 

Skeletal muscle is the most abundant tissue and the most flexible structure in the 

vertebrate body. Mature adult myofibers can adapt their size/muscle mass to physiological 

demands such as exercise or working overload (Blaauw and Reggiani, 2014). Skeletal 

muscle is composed of the postmitotic myofibers and the resident muscle stem cells termed 

as satellite cells (SCs) situated adjacent to the myofiber and they are responsible for 

postnatal myofiber growth and repair following injury. During neonatal and juvenile 

development, satellite cell fusion to growing myofiber results in the increase of myofiber size 

as their number remains constant. In adult skeletal muscle, under normal conditions, satellite 

cells are quiescent and satellite cells fusion occurs sporadically to compensate for the 

muscle turnover caused by daily wear and tear. However, upon injury or mechanical load 

stimuli satellite cells undergo adult myogenesis (Yin et al., 2013a).  

In response to activation cues, SCs exit the quiescent state. Afterwards they 

proliferate and subsequently they differentiate and fuse either between them to form 

multinucleated myofibers or to preexisting myofibers. The myogenic potential of satellite cells 

is tightly regulated by specific Paired-box and bHLH transcription factors (Dumont et al., 

2015a). Quiescent satellite cells are identified by the expression of Pax7 (Seale et al., 2000), 

a paired-homeobox transcription factor (TF). Once activated, they upregulate MyoD and 

Myf5 determination bHLH TFs and their engagement into the myogenic differentiation is 

marked by the expression of myogenin (MyoG) differentiation factor while their maturation 

and growth is regulated by the MRF4 TF expression (Moretti et al., 2016). In parallel with the 

myogenic progression a reserve population of Pax7-expressing satellite cells down-regulates 

MyoD and undergoes self-renewal division in order to replenish the satellite cell pool 

(Almada and Wagers, 2016). Although it was clearly demonstrated the requirement of 

satellite cells in muscle regeneration (Lepper et al., 2011; Sambasivan et al., 2011b), the role 

of SCs in the hypertrophic growth is still a matter of dabate (Egner et al., 2016; McCarthy et 

al., 2011). Even if many intrinsic and extrinsic factors governing satellite cell functions have 

been discovered, SC adaptations during regeneration and overload-induced hypertrophy are 

also coordinated by additional players and pathways not yet well explored. 

The serum response factor (Srf) is a member of the MADS box family of transcription 

factors, binds the core sequence of CArG boxes in the promoter regions of its target genes 

(Posern and Treisman, 2006) and it is a crucial factor for muscle-specific gene expression 

such as a-actin and myosin sarcomeric proteins (Esnault et al., 2014; Miano et al., 2007). 

The Srf binding sites, the CArG box, were found in many muscle specific target genes such 

as MyoD (L’honore et al., 2007) and sarcomeric proteins and in genes implicated in cell 

migration and adhesion (Esnault et al., 2014). Srf is expressed in adult skeletal myofibers 
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and regulates the muscle mass adaptations to atrophic and hypertrophic conditions (Collard 

et al., 2014; Guerci et al., 2012a). However, Srf was identified as the TF which mediates the 

transcriptional activity in response to serum and mitogenic factors (Treisman, 1987). 

Previous in vitro studies in C2C12 muscle cell line have shown that Srf activity is required for 

myoblast proliferation and differentiation as in the absence of Srf, the fusion is blocked and 

subsequently the transition of myoblasts to myotubes is prevented (Soulez et al., 1996b; 

Vandromme et al., 1992). Moreover Srf knockdown and dominant negative constructs 

prevent the expression of the muscle-determining factor MyoD (Gauthier-Rouviere et al., 

1996), however in vivo data are lacking in the description of Srf role in muscle stem cells.  

The Srf activity is regulated by the ternary complex factor (TCF) family of Ets domain 

proteins activated by mitogen activated protein (MAP) kinase phosphorylation and a family of 

signal-regulated SRF cofactors, the myocardin-related transcription factors (MRTFs) 

controlled by Rho-family GTPases and monomeric actin signalling pathway (Olson and 

Nordheim, 2010). Actin is also a component of muscle sarcomere and a known Srf target 

gene (Charvet et al., 2006; Parlakian et al., 2005). A pair of actin genes is expressed in the 

striated muscles (skeletal muscle and heart) of vertebrates and shares high homology in the 

amino-acid sequence. One of these genes (a-skeletal) encodes the major actin species in 

adult skeletal muscle actin, and the other gene (a-cardiac) encodes the major actin species 

in the adult heart (Gunning et al., 1983a). The cardiac actin gene has also been shown to be 

expressed at high levels in embryonic and fetal skeletal muscle. In adult skeletal muscle, 

however, there is only a low level of cardiac actin mRNA, showing that the cardiac actin gene 

is subject to developmental regulation (Paterson and Eldridge, 1984). Actin is implicated in 

many cell functions such as migration and fusion.  

The fusion process is characterized by the alignment of myoblast and myotube 

membranes and rearrangements of actin cytoskeleton at contact sites followed by membrane 

fusion, which occurs in two stages. Initially, primary fusion between myoblast-myoblast 

results in the formation of nascent myotubes. In the secondary fusion, myoblasts fuse with 

nascent myotubes, which results in nuclear accretion and myotubes growth. In drosophila 

organisms, actin fusion focus (Martin, 2016) and actin-based filopodia (Segal et al., 2016) 

are the molecular structures mediating the myoblast fusion. In mammalian myoblasts Cdc42 

and Rac1 are major activators of vinculin, F-actin, Vasp, and the Arp2/3 complex for the 

cytoskeletal remodeling that occurs before myoblast fusion (Vasyutina et al., 2009).  

In the present study we were interested in addressing the role of Srf in adult muscle 

stem cells (satellite cells) in the course of compensatory hypertrophy (CH) in plantaris 

muscle. We used a mouse model of conditional and inducible deletion of Srf in the satellite 

cells leaving the myofiber intact. We show here that plantaris myofibers harboring Srf-
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depleted SCs do not display an optimal hypertrophic response when subjected to an 

experimental overload. SCs lacking Srf are able to proliferate and differentiate however they 

are not able to fuse with the preexisting myofiber indicating the requirement of satellite cell-

mediated fusion to an efficient muscle hypertrophic growth. Transcriptomic analysis revealed 

the actin cytoskeleton and signalling implication in the Srf-control in myoblast fusion. 

Overexpression of an isoform of alpha-skeletal actin in Srf-mutant SCs rescue the actin pool 

of polymerized F-actin and partially restores the fusion event with the nascent myofibers 

showing thus the importance of the actin cytoskeleton maintenance in myogenic cell 

functions as myoblast fusion in vivo. 
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Materials and Methods 

 

Mouse protocols 

Mice homozygous for Srf floxed alleles (Parlakian et al., 2004) (abbreviated to Srfflox/flox), 

Pax7CreERT2/+ mice (Lepper et al., 2009) and Pax7-nGFP transgenic mice (Sambasivan et al., 

2009) have been described elsewhere.  

To investigate the effect of satellite cell-specific Srf-deletion in adult muscle, the mouse strain 

following mice were generated: Pax7CreERT2/+:Srfflox/flox:Pax7-nGFP. In all experiments, 2-

month-old Pax7CreERT2/+:Srfflox/flox:Pax7-nGFP mice were given five intraperitoneal (IP) 

tamoxifen (TMX, 1 mg/day; MP Biomedicals) injections to induce Srf deletion and were 

referred as mutant mice (Mut). Both Pax7+/+:Srfflox/flox:Pax7-nGFP mice injected with 

tamoxifen and non-injected Pax7CreERT2/+:Srfflox/flox:Pax7-nGFP mice were initially used as 

control mice. However as all muscle phenotypes investigated were identical between these 

two controls, un-injected Pax7CreERT2/+:Srfflox/flox:Pax7-nGFP mice were used as control mice 

(Ctl) in the presented experiments 

To assay if the overexpression of alpha-actin could rescue some of the outcomes of the Srf-

loss, we used a transgenic mouse model (CMV-flx-CAT-flx-Actc1) allowing the inducible and 

conditional overexpression of exogenous rat alpha-cardiac actin (Actc1) when breeded with a 

Cre driver mouse line. The transgenic construction is composed of β-actin promoter and 

cytomegalovirus (CMV) enhancer ensuring the transgene expression. The cDNA of the rat 

alpha-cardiac actin (Acta1) is downstream the chloramphenicol acetyl transferase (CAT) 

gene flanked by loxP sites. Poly-adenylation sites present downstream of the CAT gene 

preclude the expression of alpha-cardiac actin. CMV-flx-CAT-flx-Actc1 mice were breeded 

with the Pax7CreERT2/+:Srfflox/flox:Pax7-nGFP mice in order to obtain Pax7CreERT2/+:Srfflox/flox:Pax7-

nGFP:CMV-flx-CAT-flx-Actc1 mice in which TMX injections permits both Srf-loss, the 

deletion of the CAT cassette and the concomitant over-expression of Actc1 in satellite cells. 

TMX-injected Pax7CreERT2/+:Srfflox/flox:Pax7-nGFP:CMV-flx-CAT-flx-Actc1 were referred as 

double mutant mice (Mut/Act+). 

Mice were genotyped by PCR using the following primers: GFP-F: 5’-

CGACGTAAACGGCCACAAGTTC-3’; GFP-R: 5’-GACGTTGTGGCTGTTGTAGTTG-3’; 

CRE-F: 5’-CCTGGAAAATGCTTCTGTCCG-3’; CRE-R: 5’-CAGGGTGTTATAAGCAATCCC-

3’; ACTtg-F: 5’-CGAGGGACCTAATAACTTCG-3’; ACTtg-R: 5’-

GCCGGATAAAACTTGTGCTT-3’; SRFlox-F: 5’-TTCGGAACTGCCGGGCACTAAA-3’; 

SRFlox-R: 5’-CTGTAAGGGATGGAAGCAGA-3’. 

Compensatory hypertrophy (CH) of plantaris muscles of control, mutant and double mutant 

mice was induced in control, Srf mutant through the incapacitation of soleus and 



 Papaefthymiou Aikaterini – PhD thesis - 2016 

84 

gastrocnemius muscles by sectioning their tendon. This procedure was achieved in both 

legs. During the process of CH, mice were injected with TMX at day 2 and 4 post CH. At the 

indicated time (1, 3 and 5 weeks post CH), plantaris muscles were dissected and 

subsequently processed for histological analyses.  

Muscle tissue injury in control, mutant and double mutant mice was produced by a single 

intramuscular injection of 30 μl of Cardiotoxin (CTX) solution (6 μl; Latoxan) into tibialis 

anterior muscle. During the process of regeneration, mice were injected with TMX at day 2 

and 4 post CTX. Mice were allowed to recover for 30 days and tibialis anterior muscles were 

harvested. 

All animal experiments were conducted in accordance with the European guidelines for the 

care and use of laboratory animals and were approved by the institutional ethic committee 

(number 00315.1). 

Single-fiber culture 

Individual fibers were isolated from EDL muscles of 2-month old control mice as described 

(Le Grand et al., 2012). Myofibers and associated satellite cells were either fixed in 4% 

paraformaldehyde immediately after their isolation (quiescent satellite cells) or kept in culture 

for 24h in DMEM, 20% Fetal Calf Serum, 10% Horse Serum, 1% chicken embryo extract 

(activated satellite cells) before fixation in 4% PFA. 

Primary muscle cell culture and infections 

Primary cultures were derived from hindlimb muscles of control (Ctl), mutant (Mut) and 

double mutant (Mut/Act+) mice all harboring Pax7-nGFP transgene that allowed the 

prospective selection by flow cytometry (Fluorescence Activated Cell Sorting or FACS) of 

satellite cells.  

Methods for muscle dissection, digestion and SC extraction were previously described 

(Montarras et al., 2005). Mononucleated muscle-derived cells were isolated from hind limb 

muscle of 6–8-wk-old mice. Muscles were mulched into a smooth pulp and digested in 

DMEM containing Collagenase D and Trypsine. Pax7/GFP positive satellite cells were 

isolated with BD FACSAria III cell sorter. 

In standard conditions, myoblasts were grown in growth medium (DMEM/F12, 2% Ultroser G 

(PALL Life Sciences), 20% Fetal Calf Serum) on plastic dishes coated with 0,02% Gelatin. 

For differentiation, myoblasts were seeded in Matrigel-coated dishes and cultured in 

differentiation medium (DMEM/F12, 2% Horse Serum). 

To induce in culture the excision of the floxed Srf allele, Srflx/lx myoblasts were transduced 

twice with Ad-GFP or Ad-CreGFP (100 MOI). Two days after the first transduction, GFP-

positive myoblasts were selected and collected by cell sorting with BD FACSAria III. 
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Proliferation assays 

To detect S-phase entry, control and mutant satellite cells were plated immediately after 

sorting, cultured for 5 days in growth medium and pulsed with EdU (10 μM, Life Technology) 

for 2 h prior to fixation by 4% PFA and the subsequent EdU detection was performed using 

Click-iT® EdU Alexa Fluor® 647 kit, according to the manufacture’s instructions (Life 

Technologies). 

For cell cycle analysis, control and mutant myoblasts were collected, fixed in 70% cold 

ethanol, washed by PBS, and then resuspended in the staining buffer containing 50 μg/ml 

propodium iodide (PI) and 100 μg/ml RNase (Invitrogen). The cell cycle profiles were 

acquired using BD AccuriTM C6 cytometer (BD Biosciences) and processed with 

NovoExpress software (ACEA). 

Cell migration assay 

Migration of primary mouse muscle cells was quantified using time-lapse microscopy. 

Myoblasts were seeded in gelatin-coated in 8-wells Ibidi plates and maintained in rich 

medium. The next day, cells were filmed using a Zeiss inverted Axio Observer Z1 

microscope with a LCI PlnN 10×/0.8 W DICII objective and an incubation chamber at 37 °C, 

5% CO2, 3% O2. Live cells were monitored every 6 min for 6h with Bright field and 

Metamorph 7.7.5 software. Cell velocities were calculated in micrometers per minute using 

ImageJ (NIH) software by tracking the paths of cells. At least 100 cells were tracked for each 

sample. 

Cell mixing fusion assays 

To analyze heterotypic fusion between myoblasts (MB), control (Ctl) or mutant (Mut) MB 

were loaded with 6 μM Green Cell Tracker (Molecular probes) for 30 min and were co-

cultured with control (Ctl), mutant (Mut) or double mutant (Mut/Act+) MB loaded with 6 μM 

Orange Cell Tracker (Molecular probes) for 30 min in differentiation medium. For heterotypic 

fusion between control myotubes (MT Ctl) and myoblasts, control myotubes at day 2 of 

differentiation were loaded with Green Cell Tracker and then were co-cultured with control 

(Ctl), mutant (Mut) or double mutant (Mut/Act+) MB loaded with Orange Cell Tracker. Two 

days after cell mixing, fusion events were scored by counting the dual-labeled cells. The 

number of fusion events was normalized by the total number of nuclei for MB-MB fusion and 

the total number of cells for MT-MB fusion. 

Microarray 

Microarray analysis was performed on three independent Ad-GFP and Ad-CreGFP 

transductions. Total RNAs were obtained at the myoblast stage (D0), at the onset of 
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differentiation (D1) and three days after the switching to differentiation medium (D3) using 

RNeasy Mini Kit (Qiagen) and treated by DNAse (Qiagen). RNA integrities were certified on 

bioanalyzer (Agilent). Hybridation to Mouse Gene 2_0-ST arrays (Affimetrix) and scans 

(GCS3000 7G expression Console software) were performed on the Genomi’c plateform 

(Institut Cochin, Paris). Probe data normalization and gene expression levels were 

processed using the Robust Multi-array Average (RMA) algorithm in expression Console 

software (Affimetrix). Gene ontology analysis was performed using Ingenuity (IPA) software. 

RNA extraction and qRT-PCR 

RNA extraction and quantitative real-time (qRT)-PCR analysis were performed as described 

previously (Guerci et al., 2012). Values were normalized using Hydroxymethylbilane 

synthetase (Hbms). The following primers were used : Acta1-F: 5’-

CTGAGCGCAAGTACTCAGTGTGGA-3’; Acta1-R: 5’-TTCCAAAAACAGGCGCCGGCTGCA-

3’; Srf-F: 5’-CACCTACCAGGTGTCGGAAT-3’; Srf-R: 5’-GCTGTGTGGATTGTGGAGGT-3’; 

MyoD-F: 5’-GCAGATGCACCACCAGAGTC-3’; MyoD-R: 5’- TTCCTGGGTCCAGCCTCAAC-

3’ ; Myogenin-F: 5’-GCAATGCACTGGAGTTCG-3’; Myogenin-R: 5’-

ACGATGGACGTAAGGGAGTG-3’;  Hmbs-F: 5’-TGCACGATCCTGAAACTCTG-3’; Hmbs-R: 

5’-TGCATGCTATCTGAGCCATC-3’. 

Western blotting analysis 

Western blotting was performed as described previously (Lahoute et al., 2008). Immunoblots 

were hybridized with antibodies against Srf (Santa Cruz) and Tubulin (Millipore). 

Quantification of F/G-actin ratio 

The ratio of filament tous (F-) to globular (G-) actin was determined using the G-actin/F-actin 

In Vivo Assay Kit (Cytoskeleton). Briefly, myoblasts were harvested and lysates were cleared 

by centrifugation at 500g for 5 min. Subsequently, supernatants were centifugated at 

100,000 g for 1h at 37°C, which resulted in F-actin in the pellet and G-actin in the 

supernatant. The F-actin containing pellet was resuspended and solubilized in F-actin 

depolymerization buffer at a volume equal to the G-actin-containing supernatant volume. 

Equivalent volumes of supernatant and pellet were resolved by SDS-PAGE and subjected to 

immunoblot analysis using an anti-pan-actin antibody (Cytoskeleton). The F/G-actin ratio was 

quantified by using FusionCapt Advance software (Vilber Lourmat). 

Immunostaining 

Plantaris and tibialis anterior muscles were collected and snap-frozen in liquid nitrogen-

cooled isopentane. Eight μm-thick Muscle sections of were fixed in 4% paraformaldehyde for 

8 min and immunostainings were performed as described (Collard et al., 2014). The primary 

antibodies used were against mouse monoclonal dystrophin (Novocastra/clone NCL/Dys) 
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dilution 1/50, mouse monoclonal Pax7 (Santa Cruz/sc-81648) dilution 1/50, rabbit polyclonal 

Myogenin (Santa Cruz/clone F5D/sc-576) dilution 1/100. Nuclei staining were performed 

using DAPI.  

Muscle cells cultured in dishes were fixed for 8 min in 4% paraformaldehyde and then 

permeabilized and blocked in PBS with 0,1% Triton X-100, 5% Horse Serum for 1h at TA. 

Cells were the incubated overnight at 4°C with the following primary antibodies against MyoD 

(Santa Cruz) dilution 1/100, Myogenin (Santa Cruz) dilution 1/100, MHC embryonic (MF20, 

Alexis biochemicals) 1/50 diluted in the same buffer. After incubation 1h at RT with 

fluorescent secondary antibody (Invitrogen), with DAPI to stain nuclei and/or with Phalloïdin 

Alexa 488 (Thermofisher) to stain F-actin, cells were mounted in Fluorescent Mounting 

Medium (Dako).  

Image acquisition 

Digital images were acquired using a Zeiss Axiovert 200M microscope with 10x, 20x or 40x 

magnification, cooled CCD CoolSNAP-HQ2 camera (Photometrics) and Metamorph 7.7.5 

(Molecular Devices). Images were composed and edited in ImageJ. Background was 

reduced using brightness and contrast adjustments applied to the whole image.  

Morphometric analysis and Phallodin quantification 

Myofiber CSA was analyzed by using immunostaining of dystrophin, marking myofiber 

sarcolemma, and then using Metamorph 7.7.5. Between 600 and 800 myofibers were 

analyzed. 

Phallodin signal intensity per cell was quantified using ImageJ. At least 150 cells were 

analyzed. 

Statistical analysis 

The significance of differences between means was assessed with a Student’s t-test. P 

values of < 0.05 were considered statistically significant. 
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Results 

 

Srf in SCs is required for overload-induced hypertrophy  

We first examined Srf expression in quiescent and activated adult muscle stem cells, 

the satellite cells (SCs). Single-fibers and their associated SCs were isolated from EDL 

muscles at the steady state and were fixed immediately to evaluate the expression of Srf in 

quiescent SCs expressing Pax7, a reliable biomarker for SCs. Srf was barely expressed in 

quiescent SCs (Figure 1A and 1B). In contrast, when single-fibers were maintained 24 hours 

in culture to allow the activation of the associated SCs, Srf expression was detected in all 

activated SCs (Figure 1B). 

To investigate the role played by Srf in satellite cells, compensatory hypertrophy (CH) 

of the plantaris muscle was performed in Pax7CreERT2/+:Srfflox/flox:Pax7-nGFP mutant mice 

previously injected with tamoxifen to induce SC-specific Srf loss (Figure 1C). Non injected 

Pax7CreERT2/+:Srfflox/flox:Pax7-nGFP mice were used as controls. Compensatory hypertrophy 

presents the advantage to mobilize SCs without any destruction of the myofibers, allowing 

the study of mutant SC behaviors in a wild-type environment. Following tamoxifen treatment, 

efficient loss of Srf was achieved at the transcript and at protein levels in FACS-sorted SCs 

from control and mutant muscles (Figure S1). At the steady state, no differences in muscle 

weight and in myofiber cross-section area (CSA) were observed between control and mutant 

plantaris muscles (Figure 1D, 1E, F). Following hypertrophy, a significant increase in 

plantaris muscle mass and in CSA 3 and 5 weeks post overload were scored in control 

overloaded muscles as compared to unloaded muscles (C) (Figure 1D, 1E, 1F). However in 

muscles lacking Srf in their SCs, the extend of this hypertrophic growth was strongly 

reduced, displaying only a 12% increase in mass/CSA versus 30% in control 3 weeks post 

CH (Figure 1E, 1F). These changes were not accompanied with modifications of the 

myofiber number (Figure 1G), indicating that the increase in muscle mass in this muscle 

growth model was mainly due to myofiber hypertrophy or due to increased myonuclei.  

These data show that even though some limited growth can occur in mutant muscles, 

Srf in SCs is necessary for optimal overload-induced myofiber hypertrophy to take place. 

 

Srf inactivation in SCs does not affect their expansion  

 Srf has been shown to control the proliferation of several cell types including C2C12 

muscle cell line (Soulez et al., 1996b). To investigate whether SCs functions were altered by 

Srf loss upon CH, the number of SCs expressing Pax7 was first quantified. Before overload, 

no difference in SC number was observed between control and mutant plantaris muscles 
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(Figure 2B) precluding a role for Srf in the maintenance of the quiescent SC pool, which is 

consistent with the poor expression of Srf in quiescent SCs (Figure 1B). A significant 2.5 fold 

increase in the number of Pax7+ cells was observed 1 week post CH in both control and 

mutant plantaris muscles that returned to its original level 5 weeks post CH (Figure 2A, AB). 

Importantly, following overload induced hypertrophy, there was no difference in SC number 

between control and mutant muscles suggesting that Srf loss did not hamper the growth 

response of SCs to mechanical cues. 

 The proliferation potential of Srf-deleted SCs was further assessed in vitro by 

determining the EdU incorporation rate (which specifically marks the S-phase of cycling cells) 

of control and mutant FACS-sorted primary myoblasts. In agreement with our observations in 

vivo, the proliferation rates of control and of mutant myoblasts were similar (Figure 2C). We 

further showed that the distributions of control and Srf-deleted myoblasts in the different cell 

cycle phases analyzed by FACS-quantification of DNA content did not differ (Figure 2D). 

Additional experiments were conducted in which Srf loss was achieved in vitro by 

transducing primary Srfflox/flox myoblasts with adenovirus expressing Cre recombinase (Ad-

Cre) or GFP (Ad-GFP) (Figure S2A). Again no difference in the proliferation capacities of Ad-

GFP and Ad-Cre transduced myoblasts was observed in BrdU incorporation experiments 

(Figure S2B). Altogether these data show that Srf in myogenic precursor cells is dispensable 

for their proliferation in a cell autonomous manner.  

 

Srf controls SC motility but it does not influence their myogenic differentiation 

potential 

 We then hypothesized that other SC functions (such as motility, differentiation, fusion) 

could be modified by Srf loss and could account for the impaired hypertrophic growth of 

mutant muscle. After activation signals, SCs become extremely motile and move from 

beneath the lamina to the surface of the myofiber as it was monitored by intravital imaging in 

the muscle regeneration model (Webster et al., 2016). Nevertheless such a study has not 

been performed in the hypertrophy model. Since Srf is a central regulator of genes involved 

in cell migration (Pipes et al., 2006), the motile functions of Srf-deleted SCs were monitored 

in vitro using time-lapse video-microscopy. The motility of mutant myoblasts was strongly 

decreased as compared to control (Figure 2E). Accordingly Ad-Cre tranduced Srflx/lx 

myoblasts displayed also a diminished motility by more than 2 fold (Figure S2C). These 

results demonstrate that Srf is needed for satellite cell motility. 

 We next investigated whether Srf deletion in SCs could affect their myogenic 

differentiation potential. Indeed, previous in vitro studies in C2C12 muscle cell line indicated 

that Srf activity was required for the expression of MyoD, a MRF required for myogenic cell 
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determination, and of Myogenin (Gauthier-Rouviere et al., 1996; Vandromme et al., 1992). 

We first assessed the number of Myogenin-expressing cells in vivo during overload-induced 

hypertrophy procedure. After one week of CH, the number of Myogenin-positive cells was 

increased in a similar way in both control and mutant plantaris muscles (Figure 3A). These 

data do not support a role for Srf in SCs differentiation engagement. We then thought to 

determine in primary cultured muscle cells (cell sorted from control or mutant muscles) 

whether Srf deletion could affect MyoD and Myogenin expressions. In contrast to what was 

shown in C2C12, the expression of MyoD and of Myogenin at the protein and transcript 

levels did not differ between control and mutant primary myoblasts under proliferation 

conditions or after induction of differentiation (Figure 3B, 3C, S3A, S3B). We even observed 

an increased proportion of nuclei expressing Myogenin in mutant cells 3 days after the 

induction of differentiation (Figure 3C). Similar MyoD and Myogenin expressions were also 

observed when Srf loss was achieved in vitro by Ad-Cre transduction of Srfflox/flox myoblasts 

(Figure S3C, S3D). The expression of a later differentiation marker (the sarcomeric myosin 

heavy chain, MyHC) was monitored in control and mutant cells upon differentiation using 

MF20 antibody (Figure 3D). Three days post differentiation the proportion of nuclei in MyHC+ 

cells was identical between control and mutant cells (Figure 3E). Taken together, these data 

show that the loss of Srf in the SCs does not impair their engagement in the myogenic 

differentiation. 

 

Srf is needed for SC fusion capacities 

 To determine whether the lack of Srf in SCs might impact cell fusion, myonuclei 

numbers inside the sarcolemma were counted in control and mutant plantaris muscles at 

various time post CH by performing Dystrophin/Dapi staining (Figure 1D). Significant 

increases in myonuclei numbers were observed in control muscles at 1, 3 and 5 weeks post-

CH. Whereas the myonuclei numbers was similar before overload between control and 

mutant, following overload, the myonuclei number did not vary in mutant muscles and was 

significantly decreased as compared to control (Figure 4A). The blunted fusion capacity of 

SCs lacking Srf show that Srf within SCs is needed for their efficient recruitment to the 

growing myofiber. 

 Fusion is unrolled in two and overlapped phases: the primary fusion that occurs 

between myoblasts resulting in the formation of nascent myotubes and the secondary fusion 

between a myoblast and a nascent myotube. To discern whether these fusions are defected 

by Srf loss, we set up various in vitro assays to specifically assess fusion between myoblasts 

and fusion between myoblasts and myotubes. This later setting models what occurs in vivo 

during overload-induced hypertrophy. Fusion was first monitored during the course of 
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differentiation. Mutant cells presented an altered capacity to form multinucleated myotubes 3 

days after differentiation induction (Figure 4B). Their fusion index, which represents the 

proportion of the total cell population that has fused, was strongly decreased as compared to 

control cells, showing a reduced efficiency of the first fusion phase (Figure 4C). Accordingly, 

the mean number of nuclei in differentiated MyHC+ cells was strongly reduced in mutant 

cells (Figure 4D). We then evaluated whether heterotypic myoblast fusion, between control 

and mutant myoblasts, was also affected by performing mixing experiments of cells labeled 

with different dyes. We could confirm that mutant myoblasts were unable to fuse in a 

homotypic manner as we observed a 60% decrease in fusion events (dual labeling) between 

mutant myoblasts as compared to control myoblasts (Figure 4E). Furthermore mutant 

myoblasts exhibited an altered heterotypic fusion with control cells (Figure 4E) indicating that 

efficient fusion occurs only when Srf is expressed in both fusing myoblasts. 

 The secondary and asymmetric fusion was specifically studied by mixing differently 

labeled control or mutant myoblasts with control myotubes. The lack of Srf in myoblasts was 

accompanied with a sharp decrease in the proportion of dual labeled cells (Figure 4F) 

showing that Srf within myoblasts is required for their fusion to control myotubes, a process 

that leads to nuclei accretion of new nuclei into myofibers upon overload-induced 

hypertrophy.  

 Altogether these results show that Srf within myoblasts is needed for both primary 

and secondary fusion phases. In addition our results suggest that the decreased ability of 

SCs lacking Srf to fuse with the growing fibers could account for the defective hypertrophic 

growth of mutant muscles. 

 

The impaired actin cytoskeleton organization in Srf-deleted myoblasts is partially 

rescued by the compensatory expression of an alpha actin isoform  

 To identify Srf target genes and Srf-dependent pathways/biological functions that 

could control SC motility and fusion, we performed a microarray analysis of gene expression 

using proliferating myoblasts (D0) and differentiating cells (early phase D1 and later phase 

D3) expressing (Ad-GFP) or not Srf (Ad-Cre). We identified the set of 145 genes whose 

expression was altered by Srf loss in both myoblasts and in differentiating cells (Figure 5A, 

Table S1). Analysis of the potential biological roles of such genes by an ontology program 

(Ingenuity) pointed out an over-representation of genes involved in the regulation of actin 

cytoskeleton rearrangements (Figure 5B) pointing out a putative implication of actin 

cytoskeleton integrity in the perturbed functions of SCs lacking Srf. In agreement with our in 

silico analysis, several genes encoding sarcomeric proteins (α-actins, myosin light chain) and 

genes involved in actin cytoskeleton treadmilling have been identified among Srf targets 
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genes (Esnault et al., 2014). Moreover, analysis of Srf knock-out models in skeletal and 

cardiac muscles have highlighted actin genes as major hits of Srf (Charvet et al., 2006; 

Parlakian et al., 2005). In the present transcriptomic study, we observed that the expression 

of several actin genes in proliferating and differentiating cells was altered by Srf deletion. In 

particular alpha skeletal-actin (Acta1) expression was strongly diminished in Srf-deleted 

muscle cells (Figure 5C). Cytoskeletal scaffold structures of actin microfilaments undergo 

dynamic changes in polymerization of monomeric globular actin (Gactin) into a filamentous 

actin (F-actin). Hence, we quantified the total amount of F-actin in control and in mutant 

myoblasts by a phalloidin staining (Figure 5D) and showed a significant decrease of total F-

actin in mutant cells (Figure 5E). Furthermore, we quantified soluble G-actin and insoluble F-

actin fractions in muscle cells. In agreement with phalloidin staining data, the F/G-actin ratio 

was decreased 2.5 fold in myoblasts lacking Srf (Figure 5F, 5G). Together these results 

show that Srf controls the maintenance of actin cytoskeleton in cultured muscle cells.  

 Alpha cardiac (Actc1) and alpha skeletal (Acta1) actins have redundant roles in 

cardiac and skeletal muscles. For instance Actc1 overexpression can functionally replace 

Acta1 in Acta1 knock out mice (Nowak et al, 2009) highlighting their similar role in 

maintenance of adequate muscle functions. Thus, we hypothesized that the perturbed 

organization of actin cytoskeleton in Srf-deleted muscle cells could be counteracted by alpha 

cardiac actin (Actc1) overexpression using sorted SCs from tamoxifen-treated 

Pax7CreERT2/+:Srfflox/flox:Pax7-nGFP:CMV-flx-CAT-flx-Actc1 mice (MutAct) (Figure S4A). We 

first validated, in FACS-sorted SCs isolated from double mutant mice injected with 

Tamoxifen, the efficient loss of endogenous Srf expression and the concomitant 

overexpression of exogenous Actc1 transcripts (Figure S4B). Strikingly, the overexpression 

of Actc1 in Srf-deleted myoblasts was sufficient to restore to control levels both the total 

amount of F-actin (Figure 5C, 5D) and F/G-actin ratio (Figure 5E, 5F) and therefore to 

preserve actin cytoskeleton organization in muscle cells lacking Srf. 

 

Alpha actin overexpression rescues the heterotypic fusion defect caused by the Srf-

loss in myoblasts 

 We next asked whether the reestablishment of actin cytoskeleton in Srf mutant SCs 

by alpha actin overexpression could rescue impaired SC’s functions such as motility and 

fusion. Cell tracking experiments showed a similar decrease of motility in double mutant and 

mutant myoblasts (Figure S4C) precluding the implication of alpha actin-mediated F-actin 

stabilization in the impaired motile functions of SCs lacking Srf.  

 We then assessed the fusion capacity of double mutant cells during the course of 

differentiation. As observed for Srf mutant cells, double mutant cells displayed an unaltered 
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engagement in differentiation evidenced by their MyoD, Myogenin and Myosin Heavy Chain 

expressions that were similar or even higher than control cells (Figure S4D, S4E, S4F, S4G). 

In addition, upon differentiation, the fusion index and the mean number of nuclei per myosin 

expressing cell were reduced to a similar extend in double mutant and in Srf mutant cells 

suggesting that actin overexpression did not alleviate the homotypic fusion defect of cells 

lacking Srf (Figure 6A, 6B, 6C). Most interestingly, the impaired heterotypic fusion between 

control and Srf mutant myoblasts was fully rescued by alpha-actin overexpression, as 

assessed by counting the fusion event in cell mixing experiments 3 days post differentiation 

(Figure 6D). Finally, actin overexpression was sufficient to restore the fusion defect of Srf 

mutant myoblasts with control myotubes (Figure 6E). Overall, these data suggest that the 

maintenance of F-actin network in Srf mutant myoblasts by alpha actin over-expression is 

sufficient to rescue their heterotypic fusion with control myoblasts/myotube while being 

insufficient to permit homotypic fusion. 

 

Alpha actin overexpression restores overload-induced muscle hypertrophic growth of 

Srf mutant muscles  

 To gain in vivo insights into the possible rescue of Srf-deleted myoblast fusion by 

alpha actin overexpression, overload-induced hypertrophy and muscle regeneration 

procedures, recapitulating heterotypic and homotypic fusion events respectively, were 

conducted on control, mutant and double mutant mice. In our genetic models, Srf deletion, 

and/or concomitant actin overexpression, occurs only in Pax7-expressing SCs of 

mutant/double mutant muscles but never in their myofibers. Hence, the nuclear accretion that 

occurs in vivo during overload-induced hypertrophy, a situation in which myofibers remain 

intact, corresponds to the heterotypic fusion between mutant/double or mutant myoblasts 

and control myotubes. On another hand the in vivo procedure that models homotypic fusion 

is the regeneration. Upon Cardiotoxin (CTX)-induced injury, SCs are activated, proliferate, 

differentiate and fuse between them to form new myofibers, though fusion occurs exclusively 

among cells harboring the same genotype (control, mutant or double mutant). 

 Control, mutant and double mutant tibialis anterior (TA) muscles were subjected to 

CTX-induced regeneration. Thirty days post-regeneration, Dystrophin/Dapi staining of 

regenerated muscle sections revealed that the overall structure of Srf mutant muscles was 

severely affected as compared to control muscles (Figure 7A). Indeed mutant muscles 

presented newly formed fibers that are 10 times smaller (Figure 7B) and 3 times more 

numerous than control muscles (Figure S5A). Moreover mutant regenerated muscles 

displayed a strong decrease of their myonuclei number (Figure 7C). Of note, the number of 

SCs was not affected by Srf loss 30 days post injury (Figure S5B) implying that Srf 
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expression does not have an impact on the number of SCs. Together these data suggest a 

strong deficiency of Srf-deleted SCs in their ability to fuse that could account for the small 

sized and the increased number of newly formed regenerated fibers present in mutant 

muscles. 

 We next assessed whether alpha actin overexpression could counteract the altered 

regeneration and defective homotypic fusion of regenerated Srf mutant muscles. Thirty days 

post injury, when double mutant, mutant and control muscles were compared, only a very 

modest improvement of fusion was scored in double mutant as compared to Srf mutant 

muscles that was not accompanied with a significant change in the mean CSA (Figure 7B, 

7C). These data are in agreement with the absence of amelioration of the homotypic fusion 

defect that was observed in vitro in double mutant myoblasts when compared to Srf mutant 

cells.  

 As heterotypic fusion between mutant/double mutant myoblasts and control myotubes 

models the nuclear accretion that occurs in vivo during overload-induced hypertrophy, we 

determined the impact of alpha actin overexpression on the defective hypertrophy of Srf 

mutant muscles. Three and 5 weeks post-CH, actin overexpression rescued to control levels 

the overall growth of Srf mutant muscles. Indeed, double mutant plantaris muscle mass and 

mean CSA were significantly higher than those of Srf mutant muscles and were comparable 

to those of control muscles (Figure 7D, 7E). Furthermore myonuclei number was significantly 

increased in double mutant as compared to Srf mutant and reached 60% of the control level 

5 weeks post CH (Figure 7F). 

 Taken together these data show that while maintenance of F-actin scaffold within SCs 

lacking Srf did not ameliorate homotypic fusion, it was sufficient to efficiently drive heterotypic 

fusion in vitro and in vivo and to restore the impaired hypertrophic growth of Srf mutant 

muscles.   
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Discussion 

Our study aims to understand the plasticity of skeletal muscle tissue in the 

hypertrophic context based on SCs and we focus on Srf transcription factor in the control of 

SC functions. We used the genetic mouse model Pax7CreERT2/+:Srfflox/flox permitting the 

analysis of the Srf role in SCs. We show that Srf is required for SC fusion to the growing 

myofibers under CH to achieve an efficient myofiber hypertrophic growth. Srf deletion in SCs 

abrogates the fusion capacity of mouse myoblasts. Moreover Srf-loss in SCs leads to 

downregulation of a-skeletal actin target gene and an impairment of actin cytoskeleton. 

Overexpression of an alpha-actin isoform in the SCs restores the network of polymerized 

actin and rescues the SC-mediated hypertrophic myofiber growth while it fail to do so under 

muscle regeneration showing that Srf regulates unknown target genes effectors of myoblast 

fusion that act in coordination with the actin cytoarchitecture maintenance. 

Srf is expressed in adult skeletal myofibers and its expression varies accordingly to 

mechanical stimuli, such as it is increased in the CH and decreases in the atrophy, rendering 

thus Srf a mechanical sensor (Collard et al., 2014; Gordon et al., 2001). Moreover Srf 

mediates the transcriptional activation of immediate early genes (IEGs) upon serum 

stimulation and muscle-specific genes during muscle differentiation (Posern and Treisman, 

2006) highlighting Srf as a good candidate for the transcriptional control of signal-induced SC 

recruitment.  

In several contexts, Srf affects cell proliferation either by enhancing it (Koegel et al., 

2009) or compromising it (Sun et al., 2009; Werth et al., 2010). The myocardin related 

transcription factors (Mrtfs) are Srf coactivators involved in cell proliferation and myogenesis 

of cardiac, smooth and skeletal muscle (Olson and Nordheim, 2010). Skeletal muscle-

specific deletion of Mrtf-A and Mrtf-B (dKO) during skeletal muscle development demonstrate 

a decrease in the proliferation of dKO embryonic myoblasts and an increase in apoptosis 

(Cenik et al., 2016). In contrast to these previous data, our results show that SCs lacking Srf 

respond to mechanical cues by expanding their number similarly to control SCs. Moreover 

Srf does prevent the myoblast proliferation contrary to previous observations in myogenic cell 

lines (Soulez et al., 1996a) where Srf is indispensable for myoblast proliferation.  

In contrast with the previous observations in C2C12 cell line where Srf knockdown 

and dominant negative lead to a shutdown of MyoD expression (Gauthier-Rouviere et al., 

1996), in our in vivo SC-specific genetic deletion of Srf (Srf KO) and in primary cell culture 

models, Srf is not indispensable for the MyoD expression. SC-specific deletion of both 

MASTR (a member of Mrtf family) and Mrtf-A lead to excessive proliferation of SCs due to 

down-regulation of MyoD expression (Mokalled et al., 2012). It has been proposed that a 

member of the MADS box family, the MEF2 muscle-enriched transcription factor and its 
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associated MASTR cofactor cooperate with Mrtf-A (Srf cofactor) to control the transcriptional 

regulation of MyoD expression (Creemers et al., 2006; Meadows et al., 2008; Mokalled et al., 

2012). Thus it is possible that in the absence of Srf in SCs, MyoD is controlled by the 

MASTR/MEF2 pathway. 

Since Srf-binding sites have identified in muscle-specific promoters and Srf is 

required for differentiation and growth of skeletal, cardiac and smooth muscles (Li et al., 

2005; Miano et al., 2004; Parlakian et al., 2004), therefore it is expecting a Srf-directed 

regulation in the myoblasts differentiation. Previous in vitro studies showed that Srf is 

required for the myoblast-myotube transition and that Srf loss prevented the expression of 

both myogenin and MyoD as also the expression of muscle-specific marker troponin T 

(Gauthier-Rouviere et al., 1996; Vandromme et al., 1992). In our system, cultured primary 

myoblasts under differentiation conditions do not demonstrate a downregulation neither in 

MyoD nor MyoG expression indicating that the engagement of myoblasts into the 

differentiation program is not affected by the Srf loss. In addition, MyHC is expressed in the 

absence of Srf likewise to controls. These results reveal that Srf does not abolish the 

differentiation myogenic program. However the fusion which is the end up step of terminal 

differentiation is highly compromised with only small myotubes containing limited nuclei are 

formed. Our results are in accordance with the Mrtf dKO in skeletal muscles, where fusion of 

myoblasts into myotubes was not completely prevented by the loss of Srf cofactors Mrtf-A 

and Mrtf-B (Cenik et al., 2016). In addition we did not observe any change in myomaker 

(TMEM8C) expression a known mammalian myoblast fusogen (Millay et al., 2013) as it was 

also the case of Mrtf-A and Mrtf-B double knockout (Cenik et al., 2016). 

Srf-mutant myoblasts present a major fusion defect. Primary homotypic fusion 

(between myoblasts) as well as secondary (between myoblasts and nascent myotubes) 

homotypic fusion is both affected in Srf-mutant myoblasts. In addition, heterotypic fusion is 

not improved as shown in heterotypic mixture of mutant and control myoblasts/myotubes 

demonstrating therefore that the symmetric expression of Srf is required in a pair of fusing 

cells.  

Actin is a structural sarcomeric protein and part of RhoA-actin-Mrtf-Srf signalling 

cascade (Nordheim, 2014). Actin exchanges between monomeric G-actin and polymerized 

F-actin in order to maintain the functional actin network, mediating thus cellular processes 

such as migration, adhesion and fusion (Martin, 2016; Segal et al., 2016). Srf-mutant 

myoblasts present an altered actin network with paucity of F-actin which contribute to 

decreased fusion (Nowak et al., 2009). 

Transcriptomic analyses revealed an over-representation of genes implicated in actin 

cytoskeleton rearrangement and signalling. Acta1 gene expression is highly decreased, 
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comparing to controls. From many aspects adult myogenesis recapitulates molecular 

pathways activated in embryonic myogenesis (Yin et al., 2013a). In vertebrate embryos, the 

alpha-cardiac actin gene encodes a major sarcomeric component in both skeletal and 

cardiac muscle (Latinkić et al., 2002; Paterson and Eldridge, 1984). Indeed the Actc gene is 

the predominant sarcomeric isoform in early fetal skeletal muscle development (Ilkovski et 

al., 2005) showing that the cardiac actin gene is subject to developmental regulation 

(Gunning et al., 1983b). Based on these assumptions, we used an available transgenic 

mouse model of Actc overexpression. Overexpression of alpha-cardiac (Actc) isoform in Srf-

depleted SCs, restores the F-actin pool and rescues the heterotypic fusion. The underlying 

possible mechanism for the rescue of heterotypic/asymmetric fusion could be the restoration 

of the mechanical invading force which helps to overcome energy barriers for membrane 

apposition and drives cell membrane fusion (Kim et al., 2015) or the appropriate cellular 

distribution of signalling molecules and/or contractile proteins molecules to mediate the 

fusion (Tran et al., 2012). Compensatory alpha-actin expression in Srf-depleted SCs is not 

however sufficient for the homotypic/symmetric fusion suggesting other alpha-actin-

independent mechanisms downstream Srf-targets. 

Nevertheless overexpression of the alpha-actin isoform does not rescue the motile 

functions of SCs suggesting thus a non alpha-actin dependent control of cell motility. The 

non-muscle isoforms of beta- and gamma-actin or myosin, all being Srf-target genes (Esnault 

et al., 2014; Miano et al., 2007) could be involved in the process of cell movement (Callan-

Jones and Voituriez, 2016). Pharmacological induction (jasplakinolide-treatment) of F-actin 

polymerization in an attempt to maintain the F-actin network in wild-type and Srf-mutant 

myoblasts could confirm/phenocopy the obsereved phenotype from the genetic model of 

Actc overexpression. 

The in vivo model of homotypic or symmetric fusion study is the muscle regeneration 

where activated SCs and their descendant myoblasts either fuse between them or to nascent 

myotubes/pre-existing myofibers to reconstitute the under lesion muscle. Clearly the 

regeneration process is impaired in TA muscles harboring Srf-mutant SCs as the fusion 

process did not take place. The double mutant SCs seem to slightly ameliorate the fusion 

capacity with no impact in the size of new-formed myofibers. However in the in vivo model of 

asymmetric fusion, CH, double mutant SCs being able to fuse to the growing myofiber results 

in the increase in the myofiber size as in controls. Our study shows that the actin network 

maintenance is important but not sufficient for the fusion process in mammalian myoblasts, 

and other Srf-target genes are implicated and needed for SC functions. Such targets could 

be involved in a number of cellular processes, including lipid metabolism such as caveolins 

and cavins, the structural proteins of caveolae, cause alterations in cell membrane 
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composition (lipodystrophy) and they are characterized by the presence of CArG boxes in 

their promoter (Swärd et al., 2016). Lipid modifications correlate with a reduction in plasma 

membrane rigidity resulting in fusion impairment (Blondelle et al., 2015). 

Satellite cells are the major donors of new nuclei, being myogenic precursor cells, 

important for muscle development, for muscle regeneration and possibly also for muscle 

hypertrophy in response to exercise, training and hormonal stimulation (Blaauw and 

Reggiani, 2014; Montarras et al., 2013). The role of satellite cells in muscle hypertrophy has 

long been a debated issue (Blaauw and Reggiani, 2014; Gundersen, 2016; Pallafacchina et 

al., 2013; Snijders et al., 2015). Studies with a transgenic Pax7-DTA mouse model, where 

the Pax7+ SC depletion is achieved with TMX treatment, showed that satellite cells are not 

required for muscle growth over a short period (McCarthy et al., 2011) but they are required 

to overcome/negatively regulate the excessive ECM accumulation over a prolonged period 

resulting in attenuated hypertrophy (Fry et al., 2014). Egner et al. repeated these 

experiments analyzing the muscles by immunohistochemistry and in vivo and ex vivo 

imaging and they found that overload hypertrophy was prevented in the satellite cell-deficient 

mice, in both the plantaris and the extensor digitorum longus muscles. In consequence they 

claim that there is currently no model in which functional, sustainable hypertrophy has been 

unequivocally demonstrated in the absence of satellite cells.  

We provide here new genetic evidence showing that when SCs are not able to fuse, 

hypertrophy is impaired. Srf-mutant mice show no signs of fusion and the moderated 

increased CSA could be attributed to an increase in the protein synthesis in Srf-expressing 

myofibers. In vivo overexpression of alpha-actin rescues the fusion in the CH model. We 

conclude that SC myonuclear accretion is required however for an optimal hypertrophic 

growth and it indicates the necessity of SC fusion to the growing myofiber.  

Taken together these data show that while maintenance of F-actin scaffold within SCs 

lacking Srf did not ameliorate the homotypic fusion, it was sufficient to efficiently drive 

heterotypic fusion in vitro and in vivo and to restore the impaired hypertrophic growth of Srf 

mutant muscles. More generally these data strongly support the need of SC-mediated fusion 

in the hypertrophy of myofiber. 
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Figures 

 

Figure 1: Srf loss in SCs results in compensatory hypertrophy deficiency in plantaris 

muscle 

(A) Immunostaining for Pax7 (green) and Srf (red) to illustrate Srf expressing satellite cells 

(Pax7+Srf+) on single fibers fixed immediately after isolation (0h – quiescent SCs) or 

maintained in culture for 24h (activated SCs).  

(B) Proportion of satellite cell displaying or not Srf expression (Pax7+/Srf+ and Pax7+/Srf- 

respectively).  
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(C) Srf mutant mice were injected with tamoxifen (TMX) one week before compensatory 

hypertrophy (CH) procedure and after CH. Plantaris muscles were isolated 1, 3 and 5 weeks 

post surgery.  

(D) Plantaris muscle sections immunostained for Dystrophin (green) and nuclear staining 

with DAPI for control (Ctl) and Srf mutant (Mut) mice before (c) and after 3 weeks of CH. 

(E) Ratio of plantaris mass to body weight before (c) and after 1, 3 and 5 weeks of CH in 

control and mutant mice (n=5 to 14).  

(F) Ratio of CSA to body weight before (c) and after 1, 3 and 5 weeks of CH in control and 

mutant mice (n=5 to 14). 

(G) Mean myofiber number before (c) and after 1, 3 and 5 weeks of CH in control and mutant 

mice (n=5 to 14). 

Data are mean ± s.d. *p< 0.05 versus c, **p< 0.01 versus c, §p< 0.05, §§p< 0.01. AU, arbitrary 

units. 
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Figure 2:  Srf loss within satellite cells does not impact their proliferation but impairs 

their motility  

(A) Plantaris muscle section immunostained for Pax7 (green) and laminin (magenta) and 

nuclear staining with DAPI (blue) from control and mutant mice one week post CH. 

(B) Number of Pax7+ cells per myofiber were quantified in control and mutant plantaris 

muscle sections before (c) and after 1, 3 and 5 weeks of CH (n=5 to 13). 

(C) Normalized percentage of EdU+ cells in control and mutant FACS cell-sorted satellite 

cells cultured in rich medium for 5 days (n=6). 

(D) Cell-cycle distribution of control (AdGFP) and mutant (AdCRE) myoblasts grown in rich 

medium, were analyzed by flow cytometry after propidium iodide staining. Percentages of 

cells in G1-phase, in S-phase, and in G2M-phase from one representative experiment are 

presented and have been processed with NovoExpress software (ACEA). 

(E) Mean velocity (μm/min) of control and mutant myoblasts determined by time-laps video-

microscopy (at least 100 cells analyzed per genotype). 

Data are means ± s.d. **p< 0.01 versus c or versus Ctl. 
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Figure 3: Srf loss does not affect myogenic differentiation of satellite cells 

(A) Number of Myogenin+ (MyoG+) cells per myofiber were quantified in control and mutant 

plantaris muscle sections before (c) and after 1 week of CH (n=4 to 5). 

(B) Percentage of MyoD+ cells in control and mutant FACS cell-sorted satellite cells cultured 

in rich medium (D0, myoblasts) or after one day (D1) following differentiation induction  (n=3). 

(C) Percentage of Myogenin+ cells (MyoG+) in control and mutant FACS cell-sorted satellite 

cells cultured in rich medium (D0, myoblasts) or after one (D1) and three (D3) days following 

differentiation induction  (n=3). 

(D) Immunostaining for Myosin Heavy Chain (MyHC) (red), nuclear staining with DAPI (blue) 

and F-actin staining with Phalloïdin (green) on control and mutant cells at day 3 post-

differentiation induction. 

(E) Percentage of nuclei in MyHC+ cells in control and mutant cells three days following 

differentiation induction  (n=3). 

Data are mean ± s.d. **p< 0.01 versus c or D0, §p< 0.05.  

 



 Papaefthymiou Aikaterini – PhD thesis - 2016 

108 

 

Figure 4: Srf controls satellite cell fusion 

(A) Number of DAPI-stained nuclei within the dystrophin-positive sarcolemma was counted 

before (c) and after 1, 3 and 5 weeks of CH in control and mutant plantaris muscles and are 

expressed per myofiber (n=5 to 9). Data are mean ± s.d. *p< 0.05 versus c, **p< 0.01 versus 

c  §§p< 0.01. 

(B) Phase contrast representative pictures of FACS cell-sorted control and mutant satellite 

cells cultured in rich medium (D0, myoblasts) or after one (D1) and three (D3) days following 

differentiation induction. 

(C) Control and Srf mutant myoblasts were induced to differentiate for 3 days. After staining 

of nuclei with DAPI, the proportion of nuclei within multinucleated cells (fusion index) was 

calculated (n=3). 

(D) The mean number of nuclei per MyHC+ cells was counted in control and mutant cells  

that were induced to differenciate for 3 days (n=3).  

(E) Control or mutant myoblasts (MB Ctl or MB Mut) were labeled in green (green cell 

tracker) and mixed to control or mutant myoblasts labeled in red (orange cell tracker). After 

48h of co-culture in differentiation media, myotubes were analyzed for dual labeling. The 

percentage of dual labeled cells per total number of nuclei (DAPI+) was scored (n=3).  
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(F) Control myotubes (MT Ctl) were labeled in green (green cell tracker) and mixed with 

control or mutant myoblasts (MB Ctl or MB Mut) labeled in red (orange cell traker). After 48h 

of co-culture, myotubes were analyzed for dual labeling. The percentage of dual labeled cells 

per total number of cells was scored. 

For C, D, E, F data are mean ± s.d. **p< 0.01 versus Ctl.  
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Figure 5: Alpha actin overexpression restores the impaired actin cytoskeleton 

organization of Srf-deleted myoblasts  

(A) Venn diagram showing the intersection between of genes differentially regulated by Srf (p 

value< 0,05) in myoblasts (D0), in myocytes et the onset of differentiation (D1) and in 

differentiated cells (D3) expressing or not Srf (Srflx/lx myoblasts transduced with AdGFP or 

AdCre). In red is indicated the number of genes (145) than are modulated by Srf 

independently of the differentiation state of muscle cells. 

(B) Top five canonical pathways identified by gene ontology analysis using Ingenuity of the 

145 common genes whose expressions are Srf-dependent.  

(C) Alpha skeletal actin mRNA (Acta1) expression was analysed by qRT-PCR in FACS cell-

sorted control and mutant satellite cells cultured in rich medium (D0, myoblasts) or after one 

(D1) and three (D3) days following differentiation induction. Data (mean ± s.d.) were 

normalized by Hmbs expression (n=3). 

(D) Staining for F-actin (Phalloidin, green) and for nuclei (DAPI, blue) on control (Ctl),  Srf-

deleted (Mut) myoblasts and Srf-deleted myoblasts overexpressing alpha actin (Mut/Act+).  
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(E) Quantification of F-actin by measuring the total phalloidin fluorescence intensity per cell 

(Image J) in control (Ctl), Srf-deleted (Mut) myoblasts and Srf-deleted myoblasts 

overexpressing alpha actin (Mut/Act+) (at least 150 cells analyzed per genotype). 

(F) Representative immunoblot showing actin in the insoluble (F) versus soluble (G) fractions 

in control (Ctl), Srf-deleted (Mut) myoblasts and Srf-deleted myoblasts overexpressing alpha 

actin (Mut/Act+).  

(G) Quantification of the F-/G-actin ratio from immunoblots (n=4).   

Data are mean ± s.d. *p< 0.05 versus Ctl or D0, **p< 0.01 versus Ctl or D0, §p< 0.05.  
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Figure 6: Alpha actin overexpression in myoblasts lacking Srf restores asymmetric 

fusion  

(A) Phase contrast representative pictures of FACS cell-sorted control (Ctl) and double 

mutant (Mut/Act+) satellite cells cultured in rich medium (D0, myoblasts) or after three (D3) 

days following differentiation induction. 

(B) Control, Srf mutant (Mut) and double mutant (Mut/Act+) myoblasts were induced to 

differentiate for 3 days. After staining of nuclei with DAPI, the proportion of nuclei within 

multinucleated cells (fusion index) was calculated (n=3). 

(C) The mean number of nuclei per MyHC+ cells was counted in control, Srf mutant (Mut) 

and double mutant (Mut/Act+) cells that were induced to differenciate for 3 days (n=3).  

(D) Control, mutant or double mutant myoblasts (MB Ctl, MB Mut or MB Mut/Act+) were 

labeled in green (green cell tracker) and mixed to control myoblasts labeled in red (orange 

cell tracker). After 48h of co-culture in differentiation media, myotubes were analyzed for dual 

labeling. The percentage of dual labeled cells per total number of nuclei was scored.  

(E) Control myotubes (MT Ctl) were labeled in green (green cell tracker) and mixed with 

control, mutant or double mutant myoblasts (MB Ctl, MB Mut or MB Mut/Act+) labeled in red 

(orange cell traker). After 48h of co-culture, myotubes were analyzed for dual labeling. The 

percentage of dual labeled cells per total number of cells was scored.  

Data are mean ± s.d. **p< 0.01 versus Ctl.   
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Figure 7: Alpha actin overexpression in Srf-deleted satellite cells rescues fusion and 

hypertrophic growth upon overload 

(A) Tibialis anterior muscle sections immunostained for Dystrophin (green) and nuclear 

staining with DAPI for control (Ctl), Srf mutant (Mut) and double mutant (Mut/Act+) mice 

untreated (No CTX) and 30 days following cardiotoxin-induced muscle injury (30D post-

CTX). 

(B) Ratio of CSA to body weight of regenerated tibialis anterior muscles 30 days post CTX-

induced injury in control (Ctl), Srf mutant (Mut) and double mutant (Mut/Act+) mice (n=4 to 7). 

(C) Number of DAPI-stained nuclei within the dystrophin-positive sarcolemma was counted in 

regenerated tibialis anterior muscles 30 days post CTX-induced injury of control (Ctl), Srf 

mutant (Mut) and double mutant (Mut/Act+) mice are expressed per myofiber (n=5 to 11). 

(D) Ratio of plantaris mass to body weight before (c) and after 3 and 5 weeks of CH in 

control (Ctl), Srf mutant (Mut) and double mutant (Mut/Act+) mice (n=5 to 12).  

(E) Ratio of CSA to body weight before (c) and after 3 and 5 weeks of CH in control (Ctl), Srf 

mutant (Mut) and double mutant (Mut/Act+) mice (n=5 to 12). 

(F) Number of DAPI-stained nuclei within the dystrophin-positive sarcolemma was counted 

before (c) and after 3 and 5 weeks of CH in in control (Ctl), Srf mutant 

 (Mut) and double mutant (Mut/Act+) mice plantaris muscles and are expressed per myofiber 

(n=5 to 9).  

Data are mean ± s.d., **p< 0.01 versus Ctl,  §p< 0.05,  §§p< 0.01. AU, arbitrary units. 
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Figure S1: Validation of Srf deletion in satellite cells 

(A) Schematic representation of the mouse model used. Pax7CreERT2/+:Srfflx/flx:Pax7-nGFP 

injected with tamoxifen (TMX) were refered as Mutants and mice untreated with TMX were 

used as Controls. 

(B) Srf mutant mice were injected with tamoxifen (TMX) one week before FACS cell sorting 

of nGFP expressing satellite cells. Sorted SCs when the maintained in culture in complete 

medium. 

(C) Srf mRNA expression was analysed by qRT-PCR in control and mutant cell-sorted 

satellite cells maintained in culture. Data (mean ± s.d.) were normalized by Hmbs 

expression. **p< 0.01 versus Ctl. 

(D) Srf protein was analyzed by western blotting in control and mutant cell sorted satellites 

cells maintained in culture. Tubulin was used as a loading control. 
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Figure S2: Ex vivo Srf loss does not impact myoblasts proliferation but impairs their 

motility  

(A) Srf mRNA expression was analysed by qRT-PCR in Srflx/lx myoblasts transduced with Ad-

GFP or Ad-Cre to induce Srf loss. Data (mean ± s.d.) were normalized by Hmbs expression.  

(B) Normalized percentage of BrdU+ cells in Srflx/lx myoblasts transduced with Ad-GFP or Ad-

Cre (n=3). 

(C) Mean velocity (μm/min) of Srflx/lx myoblasts transduced with Ad-GFP or Ad-Cre 

determined by time-laps video-microscopy (at least 100 cells analyzed per genotype). 

Data are mean ± s.d. **p< 0.01 versus AdGFP. 
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Figure S3: Srf loss does not impact MyoD and Myogenin expressions  

(A) MyoD mRNA expression was analysed by qRT-PCR in FACS cell-sorted control and 

mutant satellite cells cultured in rich medium (D0, myoblasts) or after one (D1) and three 

(D3) days following differentiation induction. Data (mean ± s.d.) were normalized by Hmbs 

expression (n=3).  

(B) Myogenin mRNA (MyoG) expression was analysed by qRT-PCR in FACS cell-sorted 

control and mutant satellite cells cultured in rich medium (D0, myoblasts) or after one (D1) 

and three (D3) days following differentiation induction. Data (mean ± s.d.) were normalized 

by Hmbs expression (n=3). 

(C) MyoD mRNA expression was analysed by qRT-PCR in Srflx/lx myoblasts transduced with 

Ad-GFP or Ad-Cre to induce Srf loss and cultured in rich medium (D0, myoblasts) or after 

one (D1) and three (D3) days following differentiation induction . Data (mean ± s.d.) were 

normalized by Hmbs expression (n=3).  

(D) Myogenin mRNA (MyoG) expression was analysed by qRT-PCR in Srflx/lx myoblasts 

transduced with Ad-GFP or Ad-Cre to induce Srf loss and cultured in rich medium (D0, 

myoblasts) or after one (D1) and three (D3) days following differentiation induction. Data 

(mean ± s.d.) were normalized by Hmbs expression (n=3). 

Data are mean ± s.d. *p< 0.05 versus D0.  
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Figure S4: Alpha actin over-expression does not restore the reduced motility of Srf 

mutant cell and does not affect myogenic differentiation  

(A) Schematic description of the genetic model allowing the concomitant invalidation of Srf 

and Acta1 overexpression in satellite cells upon tamoxifen injection 

(Pax7CreERT2/+:Srfflox/flox:Pax7-nGFP:CMV-flx-CAT-flx-Actc1 mice). 

(B) Srf mRNA and exogenous rat Actc1 expressions were analysed by qRT-PCR in control 

(Ctl), Srf mutant (Mut) and double mutant (Mut/Act+) cell-sorted satellite cells maintained in 

culture. Data (mean ± s.d.) were normalized by Hmbs expression.  

(C) Mean velocity (μm/min) of control, Srf mutant and double mutant myoblasts determined 

by time-laps video-microscopy (more that 100 cells analyzed per genotype). Data are means 

± s.d. **p< 0.01 versus c or versus Ctl. 

(D) MyoD mRNA expression was analysed by qRT-PCR in FACS cell-sorted control, mutant 

and double mutant satellite cells cultured in rich medium (D0, myoblasts) or after one (D1) 
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and three (D3) days following differentiation induction. Data (mean ± s.d.) were normalized 

by Hmbs expression (n=3).  

(E) Myogenin mRNA (MyoG) expression was analysed by qRT-PCR in FACS cell-sorted 

control, mutant and double mutant satellite cells cultured in rich medium (D0, myoblasts) or 

after one (D1) and three (D3) days following differentiation induction. Data (mean ± s.d.) 

were normalized by Hmbs expression (n=3). 

(F) Immunostaining for Myosin Heavy Chain (MyHC) (red), nuclear staining with DAPI (blue) 

and F-actin staining with Phalloïdin (green) on control, mutant and double mutant cells at day 

3 post-differentiation induction. 

(G) Percentage of nuclei in MyHC+ cells in control, mutant and double mutant cells three 

days following differentiation induction  (n=2). 
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Figure S5: Regeneration of control and Srf mutant muscle  

(A) Mean myofiber number of control (Ctl) and Srf mutant (Mut) tibialis anterior muscles 

before and 30 days post CTX-induced injury (n=5 to 6). 

(B) Number of Pax7+ cells per myofiber were quantified in control (Ctl) and Srf mutant (Mut) 

tibialis anterior muscles before and 30 days post CTX-induced injury (n=5 to 6). 
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Table S1: List of the genes whose expressions in muscle cells depend on Srf  

Transcriptomic analysis of genes regulated by Srf in myoblasts (Srflx/lx) transduced with 

AdGFP or AdCre adenoviruses (D0) and during the course of differentiation (D1 and D3). 
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This list represents the 145 genes that are regulated by Srf in myoblasts (D0) and in 

differentiating cells (D1 and D3) with a p value < 0.05 versus AdGFP.  
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Part 2: Srf role in Satellite Cells during Skeletal Muscle Regeneration 

Skeletal muscle has a remarkable ability to regenerate after injury. Responding to 

injury, skeletal muscle undergoes a highly orchestrated degeneration and regenerative 

process that takes place at the tissue, cellular and molecular levels (Yin et al., 2013a). 

Muscle regeneration depends on satellite cells (SCs), the resident muscle stem cells. Upon 

muscle trauma, SCs become activated, which promotes their subsequent proliferation, 

differentiation into fusion-competent myoblasts while a subset of activated SCs escape the 

myogenic destiny and self-renew to replenish the pool of muscle satellite cells thereby 

ensuring that the capacity to respond to future injuries is maintained in the muscle. Myogenic 

cells differentiate and fuse to pre-existing damaged fibers or fuse between them to form de 

novo myofibers. This process recapitulates many phases of embryonic myogenesis while the 

SC-mediated fusion during functional overload mimics the postnatal growth in muscles 

without (or limited) de novo formation of myofibers.  

As in the case of CH model we used the mouse strain of Pax7CreERT2/+:Srfflox/flox:Pax7-

nGFP conditional genotype to study the regenerative capacity of skeletal muscles harboring 

Srf-depleted SCs. After tamoxifen (TMX) administration the Cre-mediated excision of the Srf 

exon 2 is achieved and these are referred as the mutant (Mut) mice. We used as control 

either mice (Pax7CreERT2/+:Srfflox/flox:Pax7-nGFP) not injected with tamoxifen (Ctl) or 

Pax7+/+:Srfflox/flox mice TMX-injected. Both control mice give the same results (muscle mass, 

CSA, myofibers, Pax7+cells, MyoG+cells). The results of control mice were not pooled 

together and heterozygous controls’ results will be shown for clarity reasons. In the study of 

the regenerative capacity of mice’ skeletal muscles, myotoxins isolated from snake 

venoms (here cardiotoxin is used) are widely used. Cardiotoxin (CTX) is a small basic 

membrane-active polypeptide with endogenous phospholipase A2 activity and their myotoxic 

activity results from their ability to disrupt the integrity of skeletal muscle sarcolemma, 

thereby inducing a calcium influx that culminates in cell death. The basal lamina of the 

muscle fiber is not damaged, and the regeneration of the damaged muscle fiber takes place 

within the “old” basal lamina tube (Harris 2003). 

1. Conditional Inactivation of Srf in Satellite Cells Leads to Impaired Muscle 

Regeneration  

To assess the regenerative capacity of skeletal muscles harboring Srf-depleted SCs, 

we injected CTX into tibialis anterior (TA) muscles to chemically induce injury. Mice were 

sacrificed and TA muscles were harvested at 4, 8 and 30 days after CTX-injury (Figure 22A) 

for further histological analyses. Laminin (an ECM glycoprotein) staining contours the 
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unaffected myofibers and the regenerated centrally nucleated myofibers. At the steady 

uninjured state (-CTX) control and mutant TA muscles (transversal sections) look similar 

without any signs of wasting (Figure 22B i). One month after CTX-injury control muscle 

(Figure 22B Ctl-iv) show a complete recovery with the normal myofiber caliber. The presence 

of centrally-nucleated myofibers indicates the recent regenerative process that it took place. 

The deficiency in the regeneration response in the mutant mice is evident (Figure 22B Mut-

iv). Srf-mutant mice have an impaired regeneration, as we can observe it from the 8th day 

where the new formed myofibers have a diminished size (Figure 22B Mut-iii), a phenotype 

which is more obvious 30 days after the CTX-injury (Figure 22B Mut-iv). Interestingly, as 

depicted by the laminin staining mutant new-formed fibers present a completely different 

phenotype in their shape with “marguerite”-like appearance mainly at 8 days post CTX-injury. 

At the end of regeneration mutant mice seem to have numerous, atrophic new formed 

myofibers as concluded by the histological analyses.  

Inactivation of Srf in satellite cells did not affect the weight of uninjured TA muscle 

(Figure 22C right). However the TA muscle mass (counted as TA muscle mass per mouse 

body weight) growth phase normally occurred during the regeneration process, between 8 

and 30 days in our control, is affected in the mutant mice (Figure 22C). To further determine 

whether the decreased muscle mass in mutant mice resulted from the reduced myofiber size 

or number or both and quantify the observations of the histological readout, we enumerated 

the total number of regenerating myofibers and calculated the myofiber cross-sectional area 

(CSA).  The number and the size of myofibers were counted during the different time points 

of phenotypic examination of regeneration in TA muscle. Myofiber CSA increases from day 4 

to day 8, until the day 30 after CTX-injury in control mice. Mutant mice show ~8-fold smaller 

size of new-formed myofibers (CSA) compared to control at day 8 and this difference is more 

marked at day 30 (Figure 22D). Also mutant mice exhibit ~5-fold more myofiber number at 

day 30 (Figure 22E) while the number of myofibers in the control mice remains constant 

during the regeneration process, thereby implying a genetic control in the regulation of 

myofiber number. Decreased myofiber size and abnormal numerous myofiber numbers 

characterize the diminished growth phase through the regeneration in TA muscles-harboring 

Srf-depleted SCs. Therefore mutant muscles remain smaller compared to control and to their 

pre-injury state (Figure 22F). 

These results show a defective regeneration after CTX-injury on TA muscle-harboring 

Srf-depleted SCs. 
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Figure 22 : Impaired muscle regeneration. A) Tamoxifen (TMX)-regimen and experimental 
procedure illustrated in a timeline. B) Kinetics of cardiotoxin (CTX)-induced regeneration in 
tibialis anterior (TA) muscles of control and mutant mice, at steady state (-CTX), 4, 8 and 30 
days post CTX-injury. Laminin staining (depicted in red) on TA cryosections permits the 
visualization of the myofibers and the progress in the regeneration process. Hoechst staining 
(nuclei dying in bleu) permits the distinction of the regenerating myofibers as they are 
centrally-nucleated compared to undamaged myofibers with peripherally-located nuclei. C) 
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Ratio of TA muscle mass to mouse body weight during the regeneration process. D) 
Myofiber caliber as counted as cross-sectioned area (CSA) on TA cryosections by a laminin 
immunofluorescent staining and normalized to body weight. E) Myofiber number counted in 
the regenerating area (≥ 50% of total area) on TA sections. F) TA muscle size 30 days post 
CTX-injury. Numerical data are presented as mean ± s.d. (*) p < 0.05, (**) p < 0.01 indicated 
in the mutant series versus control at each time point. (S) p < 0.05, (SS) p < 0.01 indicated in 
the control series compared to control from chronically previous time point. (#) p < 0.05, (##) 
p < 0.01 indicated in the mutant series compared to mutant from chronically previous time 
point. Student’s t-test was used for statistical analyses. At least n = 3 mice per group. 

 

2. Srf-loss has an Impact in Satellite Cell Pool at Early Stages of Regeneration 

Trying to understand which function of SCs is affected upon Srf-loss, we enumerated 

the number of SCs, based on the Pax7 expression, on TA muscle sections. At the steady 

state (-CTX) both control and mutant TA muscles have the same number of Pax7+ cells, 

showing that Srf inactivation in SCs does not affect their number at the basal state. At all 

time points of regeneration we observe a severe diminution of Pax7+ cells in the mutants 

compared to control mice (Figure 2A), when they were normalized to regenerating myofiber 

numbers. M-cadherin was used as another SC marker for counting the SCs (Yin et al., 

2013a) and we confirmed the same diminution of M-cadherin+ cells at 8 days post CTX-

injury (Figure 23B).  

In our case the normalizing question arises because the mutant TA muscles remain 

smaller but also they possess much more myofibers compared to control. When we 

normalize per muscle entity we do not observe anymore the diminution of Pax7+ cells 

absolute numbers at 8 and 30 days post CTX-injury (Figure 23C left). M-cadherin+ cells 

absolute number, at 8 and 30 days post CTX-injury, confirms the same result (Figure 23D). 

Nevertheless at 4 days post CTX-injury, the number of Pax7+ cells, as they were counted in 

whole, under regeneration area of TA muscle section, is much lower compared to control. 

The percentage of lesion at least of 60% and the counted area, in the TA transversal section 

where the SCs were enumerated, were taken in considerations for counting and comparing 

the absolute number of Pax7+ cell population.  

Whatever the way of normalization, the reduced number of Pax7+ cells in the mutant 

mice at the early stage of 4 days of regeneration indicates a defect in their maintenance 

which is associated with early events in the SC functions. At this stage the effect of the Srf-

mutant new formed myofibers in the SCs could be neglected due to a non ad integrum 

reconstitution of the damaged muscle. 

FACS-purified SCs quantification analysis will shed light on the number of Pax7+ cells 

at earlier stages after CTX-injury in TA muscle, as the IF staining approach is not optimal due 

to increased auto-fluorescence/not specific signal observed in tissue lesions. TA-derived SCs 
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are purified by FACS based on the Pax7-GFP transgene expression and the obtained values 

could be compared to the IF counts (Pax7+ cells/muscle) as both techniques are based on 

the fluorescent signal (direct or indirect). 

Similarly to IF staining, FACS-purified SCs quantification analysis shows the same 

number of SCs between control and mutant mice at the steady state. Control SC numbers at 

day 2 after CTX-injury are almost as many as at the pre-injured state (-CTX) and they are 

highly increased at day 3 post CTX-injury, a time point where the mutant SCs hardly increase 

their number (Figure 23C right). Therefore, FACS analysis confirmed the observed 

phenotype in the mutant mice, at day 4 post CTX-injury from IF staining. 

Taken together, all these results show that the initial phases of SC recruitment during 

injury-induced regeneration are impaired by the Srf-loss as it was shown by the reduced 

numbers of mutant SCs despite the fact that progressively this phenotype is not further seen. 

Such initial events could be the activation and/or proliferation of SCs. 

 

Figure 23 : Satellite cells enumeration. A) Pax7+ cells normalized per regenerating myofiber 
on TA transversal sections at 4, 8 and 30 days post CTX-injury. B) M-cadherin+ cells 
normalized per regenerating myofiber at day 8 post CTX-injury. C) (right) FACS-purified SCs 
counts from uninjured TA muscles and at 2 and 3 days post CTX-injury. (left) Absolute 
number of Pax7+ cells per TA muscle entity. D) Absolute number of M-cadherin+ cells per 
TA muscle at day 8 post CTX-injury. Numerical data are presented as mean ± s.d. *P < 0.05, 
**P < 0.01 indicated in the mutant series versus control at each time point. (#) p < 0.05, (##) 
p < 0.01 indicated in the mutant series compared to mutant from chronically previous time 
point. Student’s t-test was used for statistical analyses. At least n = 3 mice per group. 
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3. Normal Proliferation of Srf-depleted Satellite Cells 

The reduced number of Srf-depleted SCs could be a consequence of altered 

proliferation or cell cycle progression. Ki67 nuclear antigen marks proliferating cells in all 

phases of the cell cycle, except in the G0 phase (Scholzen and Gerdes, 2000). By a double 

IF staining of Pax7 and ki67 on TA muscle sections, we checked for the proliferation potential 

of SCs in vivo under injury signal. Percentage (%) of Pax7+ ki67+ cells reveals no difference 

in the cycling SCs in both control and mutant mice at day 4 and 8 post CTX-injury (Figure 24 

A). Furthermore the S-phase entry was assessed by a double Pax7 and BrdU staining 4 

days post CTX-injury, a time point where extensive proliferation takes place. BrdU was 

administered IP twice, 24h and 6h before sacrifice at day 4 post CTX-injury. Likewise to ki67 

proliferation marker, mutants SCs incorporate BrdU (a thymidine analogue) at the same 

manner with the controls, meaning that they do not present any defect in the S-phase entry 

upon Srf-loss (Figure 24 B). Consistent to the in vivo results are the EdU-incorporation by 

proliferating myoblasts in vitro (5 day-culture post FACS-isolation) presented previously in 

CH model (see in the article Figure 2C). 

Therefore, these results confirm our results from CH model that Srf does not seem to 

affect the proliferation potential of SCs, with emphasis in the S-phase entry. 

 

Figure 24 : Normal proliferation of Srf-depleted SCs. A) Percentage (%) of Pax7+ki67+ 
cycling cells of the total Pax7+ population at 4 and 8 days post CTX-injury. B) BrdU pulse 
24h and 6h before sacrifice. Percentage (%) of Pax7+BrdU+ cells of the total Pax7+ 
population at 4 days post CTX-injury. 

 

4. Do Srf-depleted Satellite Cells Undergo Apoptosis? 

The reduced number of Pax7+ cells observed in the mutant mice at the early stages 

of regeneration could be attributed from an altered cell survival. To test this hypothesis we 

performed a TUNEL assay to detect the apoptosis based on labeling of DNA strand breaks, 
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in the regenerating muscle at day 4 post CTX-injury. Although we did not achieve a double 

staining with the Pax7 marker to estimate the apoptotic fraction in the Pax7+ population, the 

overall TUNEL staining in the regenerating area in TA muscles was not more positive in the 

mutant muscles (Figure 25A). Further apoptosis detection with Annexin V labeling on 

cultured SCs and flow cytometry did not showed more apoptotic cells in the mutant SCs 

compared to control (Figure 25B). 

 

Figure 25 : Apoptosis assessment. A) TUNEL+ nuclei per myofiber in the regenerated area 
on TA muscles at day 4 post CTX-injury. B) Annexin staining in control and mutant cultured 
myoblasts under proliferation conditions. Numerical data are presented as mean ± s.d. 
Student’s t-test was used for statistical analyses. At least n = 3 mice per group. 

 

Transcriptomic analysis was conducted in control versus mutant SCs isolated from 

the TA muscle which was CTX-injured 3 days before FACS-sorting. This transcriptomic 

analysis revealed many genes and pathways involved in cell death and apoptosis (data not 

shown). Further analysis needs to be done to clarify whether SCs lacking Srf undego 

apoptosis resulting in the decreased number of Pax7-expressing SCs at day 3 and 4 post 

CTX-injury. 

5. An Activation Delay in SCs lacking Srf? 

We next hypothesized that SCs lacking Srf are not able to efficiently respond to 

activation cues, as control SCs do upon injury for driving their expansion, leading thus to the 

reduced descendants cells. The activation of satellite cells from a state of quiescence and 

their subsequent progression along the myogenic lineage are controlled by various 

transcription factors MRFs, and the MyoD is one of them, which is highly upregulated in 

activated SCs. In the CH model, it has been shown that MyoD is not affected upon Srf 

inactivation. FACS-purified SCs from TA muscle, 2 days-damaged after CTX-injury were kept 
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in culture for 2 days before MyoD staining. We observed the same percentage of MyoD+ 

cells in both control and mutant mice (Figure 26A). These are preliminary data (N=2). 

Moreover, FACS-purified SCs from uninjured TA muscle were cultured for 2 and 5 

days. The percentage of satellite cell-derived MyoD+ myoblasts is lower in mutants than 

controls after 2 days in culture post FACS-isolation whereas the percentage of MyoD+ 

myoblasts is the same in both controls and mutants after 5 days in culture (Figure 26B). 

These data are preliminary and they needed to be confirmed in the appropriate ex vivo 

model of isolated myofibers for such kind of experiments.  

For the present time we can only suppose that there is not a major defect in the 

activation of Srf-depleted SCs but a delay which could eventually result in the diminished 

number of Pax7+ cells at early stages of their expansion. 

 

Figure 26 : Activation assessment. A) Activated SCs were isolated from injured TA muscles 
at 2 days post CTX-injury and cultured for subsequent 2 days before MyoD immunostaining. 
% MyoD+ cells normalized to total nuclei. Preliminary data with N=2 per group. B) Quiescent 
SCs were isolated from uninjured TA muscles and cultured for subsequent 2 and 5 days 
before MyoD immunostaining. % MyoD+ cells normalized to total nuclei. Preliminary data 
with N=2 per group at day 2. Numerical data are presented as mean ± s.d. 

 

6. Normal Early Differentiation of Srf-depleted Myoblasts but Immature and Fusion-

Deficient Srf-depleted Myoblasts 

We showed with the CH model that the Srf-loss in the SCs does not affect their 

engagement in the myogenic lineage regarding the expression of MyoG in vivo (1 week post 

CH) and in vitro. MyoG+ cells per myofiber are less in mutant at 4 and 8 days post CTX-

injury (Figure 5A) as they are the Pax+ cells. Similarly the absolute number of MyoG+ cells 

does not differ in control and mutant at day 8 of regeneration but it is reduced at day 4 of 

regeneration (Figure 5B). MyoG+ cells are the descendants of SC-derived Pax7+ cells and 

the reduced number of MyoG+ cells at day 4 is a consequence of the reduced Pax7+ cells at 

the same time point.  
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Checking for the expression of embryonic myosin heavy chain (MyHC) which is a 

marker of late differentiation, we observe that at 8 days we have more MyHC-emb+ 

myofibers in the mutant muscles in comparison to control (data not shown). Also MyHC-emb 

expression persists in the mutants at 30 days post CTX-injury, showing an immaturity of the 

new-formed myofibers. Moreover at day 30 of regeneration, sparse MyoG+ cells is found in 

control muscles whereas MyoG+ cells are still present (Figure 5D), indicating thus a retard in 

terminal differentiation. 

As previously described in the CH model and with the in vitro studies, the fusion 

capacity of Srf-depleted myoblasts is highly decreased in the mutant muscles at 4 and 8 

days post CTX-injury. It is noteworthy that many “empty” myofibers, with no nuclei inclusion, 

are observed on TA transversal sections. 

All these results show a defect in the terminal differentiation with the accumulation of 

immature myocytes not capable to fuse and to restitute the damaged muscle.  

 

Figure 27 : Aberrant terminal differentiation of Srf-depleted SCs. A) MyoG+ cells normalized 
per regenerating myofiber on TA transversal sections at 4 and 8 days post CTX-injury. B) 
Absolute number of MyoG+ cells per TA muscle entity at 4 and 8 days post CTX-injury. C) IF 
detection of embryonic myosin heavy chain (MyHC-emb) on TA muscle sections at day 30 
post CTX-injury. D) IF of myogenin expression on TA muscle sections at day 30 post CTX-
injury. E) Fusion index as counted by the ratio of number of myonuclei to number of 
regenerating myofiber at 8 and 30 days post CTX-injury. Numerical data are presented as 



 Papaefthymiou Aikaterini – PhD thesis - 2016 

132 

mean ± s.d. (*) p < 0.05, (**) p < 0.01 indicated in the mutant series versus control at each 
time point. Student’s t-test was used for statistical analyses. At least n = 3 mice per group. 

 

7. The Srf-loss in SCs Does Not Impair their Self-Renewal. Srf is Needed in SCs to 

Sustain the Muscle Homeostasis upon Consecutive Regeneration Demands 

Another aspect of SC pool maintenance is the self-renewal required in muscle 

homeostasis for ensuring future lesions. 30 days post CTX-injury control and mutant mice 

seem to have the same number of Pax7+ cells per muscle (see Figure 23C). However the 

Srf-depleted SCs display an increased cycling shown by the percentage of Pax7+ ki67+ cells 

at day 30 after CTX-injury (Figure 28A). At this time point we cannot neglect the niche-effect 

and as the myofiber-niche is also Srf mutant, this could have an impact in the self-renewal 

capacity of the Srf-depleted SCs further affecting their return to quiescence. 

The use of CH model helped us to distinguish between SC- or myofiber-dependent 

effect, in the elevated number of cycling Pax7+ cells at 30 days after CTX-injury, as the 

myofiber is preserved wild type. 5 weeks post CH-induction the percentage of EdU+ cells9 

seems to be similar in control and mutant Pax7+ cells (Figure 28B) implying thus a myofiber-

dependent effect in the proliferation of Srf-depleted myoblasts at late stages of regeneration.  

Further we wanted to test if the reduced number of Pax7+ SCs at early stages and 

the increased ratio of cycling cells at day 30 could lead to an exhaustion of SCs if they are 

subjected to intense proliferation under stress conditions like repeated cycles of 

regeneration. 2 times of repeated CTX-injury with one month interval leads to normal 

absolute number of Pax7+ cells in both control and mutant muscles 30 days after the last 

CTX-injury, therefore confirming that the self renewal took place from the first round of 

regeneration. At 3 times of repeated CTX-injury with one month interval between each CTX-

injury we see a significant decrease at absolute number of Pax7+ cells (Figure 28C). We 

need to repeat these experiments in order to assess the ki67 cycling although preliminary 

data with small number of animals show that the ki67 cycling does not seem to be altered 

(data not shown). 

Regarding the muscle growth in the terms of TA muscle mass is getting worse while 

the control mice show a distinct increase in TA muscle mass during the repeated cycles of 

regeneration (Figure 28D).  

To end up, our results show that SCs lacking Srf are able to expand their number and 

self-renew (maintain the SC pool) under chemically stress signals but not for a long time. Srf 

                                                 
9
 The elevated standard deviation is not due to small number of animals as at least N=4 per muscle 

group were analyzed at unloaded state and at least N=6 at 5 weeks post CH-induction. 
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is required to a completed terminal differentiation and maturation with the fusion defect to be 

the limiting stage. 

 

 

Figure 28: Srf is needed for SC maintenance. A) Percentage (%) of Pax7+ki67+ cycling cells 
at 30 days post CTX-injury.B) Percentage (%) of Pax7+EdU+ cells of the total Pax7+ 
population at 5 weeks post CH. C) Absolute number of Pax7+ cells per TA muscle entity after 
1x, 2x and 3x of repeated cycles of CTX-injury with one month interval between each CTX-
lesion. D) Ratio of TA muscle mass to mouse body weight during the repeated cycles of 
regeneration. Numerical data are presented as mean ± s.d. (*) p < 0.05, (**) p < 0.01 
indicated in the mutant series versus control at each time point. (S) p < 0.05, (SS) p < 0.01 
indicated in the control series compared to control from chronically previous time point. (#) p 
< 0.05, (##) p < 0.01 indicated in the mutant series compared to mutant from chronically 
previous time point. Student’s t-test was used for statistical analyses. At least n = 3 mice per 
group. 

 

General Conclusion 

SCs lacking Srf are able to undergo adult myogenesis and drive the regeneration in 

TA muscle as it was shown by the presence of new-formed, centrally-nucleated myofibers. 

However the regeneration mediated by Srf-depleted SCs is highly compromised. One month 

post CTX-injury mutant muscles remain smaller in size compared to control and to their pre-

injury state. Decreased myofiber size and abnormal numerous myofiber numbers 

characterize the regeneration in TA muscles-harboring Srf-depleted SCs. 30 days post CTX-

injury, an advanced stage of regeneration, the mutant muscles are composed of Srf-mutant 
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new-formed myofibers deriving from Srf-mutant SCs. Previous studies from our lab showed 

that myofiber lacking Srf (HSA-Cre:Srfflox/flox) failed to undergo normal regeneration and the 

poor regeneration in these mutant muscles was not linked to alterations in the satellite cell 

pool (Charvet et al., 2006). 
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Discussion and Perspectives 

The adult skeletal muscle is composed of postmitotic, multinucleated muscle fibers 

and a reserve of undifferentiated progenitor cells, the satellite cells. The adult skeletal muscle 

is a highly plastic tissue as it adapts in response to changes in physiological demands, by 

actively regulating its muscle mass and metabolism within the myofiber. The muscle plasticity 

relies also on their tissue-specific stem cells, termed as satellite cells (SCs). 

Although many transcription factors and signalling pathways implicated in SC function 

have been identified and characterized, there are many other molecular mediators involved 

in SC function and they are needed to be explored in an attempt to understand the adult 

skeletal muscle biology. 

Serum Response Factor (Srf) is a widely expressed MADS box transcription factor 

(TF) that it has been characterized during myogenesis, postnatal growth, hypertrophy, 

regeneration and muscle wasting (Sakuma and Yamaguchi, 2013). Our study provides an in 

vivo and in vitro genetical model (Pax7CreERT2/+:Srfflox/flox:Pax7-nGFP) for the study of Srf role 

in adult skeletal muscle satellite cells. In this study the SCs were mobilized in vivo by two 

means that differ in the nature of the signal inducing SC mobilization and in SC niche: 1) 

overload-induced hypertrophy and 2) regeneration. 

The elucidation of the functions of SC lacking Srf, in the compensatory hypertrophy 

(CH) model, revealed mainly defects in motile functions and fusion. The fusion could be 

partially rescued by the compensatory expression of alpha cardiac actin, a known Srf-target 

gene which is downregulated upon Srf-loss implying the importance of the maintenance of 

actin cytoskeleton in cellular processes like the fusion.  

The injury-induced regeneration is the widely accepted model and mostly used to 

challenge the satellite cells (SCs). SCs are the primary means by which the muscle of adult 

muscle is formed during regeneration (Bischoff, 1975).  This process recapitulates many 

phases of embryonic myogenesis while the SC-mediated fusion during functional overload 

mimics the postnatal growth in muscles without (or limited) de novo formation of myofibers. 

Myotoxin (cardiotoxin)-induced injury leads to 5-fold overall increase in SC number at day 4 

post-injury compared to steady state (Hardy et al., 2016). Therefore with the regeneration 

model we could check for other aspects in the function of SC upon Srf-loss, such extensive 

proliferation under chemical (myotoxic)-signal, inflammation-associated injury, fusion and 

self-renewal in a Srf-mutant niche (myofibers) and to what extent the SC behavior in vivo is 

SC-autonomous or niche-dependent. Thereafter comparing the regeneration readouts with 
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the CH model and in vitro studies could help us to obtain a spherical interpretation of the role 

of Srf in the SC functions. 

The Srf role in SC functions 

1. Does Srf Play a Role in Satellite Cell Proliferation?  

The loss of Srf in SCs does not affect their number at the steady state (unloaded 

muscles and uninjured muscles) in both models which is consistent with the faint expression 

in quiescent SCs. Consequently Pl and TA mutant muscles have no signs of wasting at the 

steady state. Upon exposure to activation signals SCs expand their number through cell 

proliferation. In the CH model, Srf is dispensable for the proliferation of Pax7-expressing SCs 

as assessed in vivo and in vitro while in the regeneration context the Srf loss leads to 

decreased number of Pax7-expressing SCs at early stages (3 and 4 day post CTX-injury).  

There are the following major differences between the two models: 1. signal quality 

(mechanical or chemical) 2. degeneration/inflammation phase of regeneration 3. proliferation 

efficiency. Cardiotoxin-induced injury leads to 5-fold overall increase in SC number 

compared to steady state, at day 4 post-injury (Hardy et al., 2016) while in overload-induced 

hypertrophy leads to a 2.5 fold increase 1 week post CH-induction. Thus the SCs undergo 

extensive proliferation under the regeneration-stress comparing to mild cell proliferation 

under the mechanical-stress. Although under regeneration control and mutant SCs 

demonstrate the same percentage of ki67 cycling cells, Srf-depleted SCs are much lower at 

day 3 and 4.  

It is possible that the SCs lacking Srf are slow-dividing cells which could result in the 

diminished number of Pax7-expressing SCs. In order to test this hypothesis, pulse-chase 

experiments in vitro using thymidine analogs or histone fluorescent marks would allow 

detecting of slowly dividing cells and following the kinetics of cell cycle progression over the 

chase period. SCs which are thought to divide slowly, would retain the label longer 

(Rocheteau et al., 2012; Shinin et al., 2006).  

Srf coactivators, myocardin and Mrtfs have been implicated in anti-proliferative effects 

in a range of cell types. Double knockdown of Mrtf-A and Mrtf-B in NIH 3T3 fibroblasts under 

serum-starved conditions, an aberrant entry into the S and G2 phases was observed without 

subsequent cell division. Extended knockdown of Mrtfs leads to increased formation of 

micronuclei and enhanced aneuploidization (Shaposhnikov et al., 2013). Mrtf-A and -B 

depletion was also shown to induce oncogene-induced senescence with regression of 

hepatocellular carcinoma xenograft (Hampl et al., 2013). Mrtf-A and Mrtf-B dKO in 

developing (E17.5) skeletal muscle demonstrate a decrease in the proliferation in dKO 



 Papaefthymiou Aikaterini – PhD thesis - 2016 

137 

embryonic myoblasts as assessed by phospho-histone H3 (pH3) analysis which is a marker 

of mitosis (Cenik et al., 2016).  

However in other cell types (keratinocytes) Srf seems to lead to an increase of cell 

proliferation (Koegel et al., 2009). Previous in vitro studies in C2C12 cell lines showed an 

impact of Srf-loss in myoblast proliferation (Soulez et al., 1996a). We cannot exclude that it 

could be due to a technical artifact derived from the microinjection of either the SRE 

oligonucleotide or Srf antibodies (Gauthier-Rouviere et al., 1996; Vandromme et al., 1992) or 

from transfection with Srf antisense RNA expression vector (Soulez et al., 1996a). A 

thorough detailed study needed to be done further testing the cell cycle progression by the 

cyclin A (marks S and G2 phases) and phospho-histone H3 (marks G2 and M phases) 

antibodies (Ponnusamy et al., 2016) to mark the transition between cell cycle phases.  

Taken together all these previous bibliographic data show that Srf has a role in the 

regulation of cell cycle either by enhance/weaken it, or by inducing an eventual senescence. 

In the adult skeletal myogenic context Srf does not seem to have an impact on cell cycle 

(ki67, EdU, BrdU markers) as it is provided by our in vivo and in vitro data which is in 

contrast to the previous in vitro studies in C2C12 cell line (Gauthier-Rouviere et al., 1996; 

Soulez et al., 1996a).  

2. Does Srf Affect the MyoD expression? 

Previous in vitro studies in C2C12 cell line showed that Srf knock-down prevents the 

expression of MyoD in proliferating myoblasts but also in myoblasts cultured under 

differentiating conditions (Gauthier-Rouviere et al., 1996). Moreover, SC-specific deletion of 

MASTR and both MASTR and Mrtf-A (members of the MRTF family) showed to down-

regulate the MyoD expression leading to increased proliferation of SCs (Mokalled et al., 

2012). 

Despite to these previous results, with our study SC-specific deletion of Srf and the 

derived primary cell culture (ex vivo) we show that the Srf is not indispensable for the MyoD 

muscle-specific TF.  

3. Self-Renewal /Return to Quiescence 

30 days post CTX-injury, the myofiber-niche is also Srf mutant with a completely 

different composition of numerous, small-sized myofibers. Therefore, it could not be 

surprising to have an impact in the self-renewal cell cycle of the Srf-depleted SCs. The 

growth fraction (Pax7+ ki67+) of Pax7+ population is elevated in Srf-mutant myoblasts. Do 

the Srf-depleted SCs fail to return to quiescence? Does is it a SC-dependent or 

myofiber/niche-dependent defect?  
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Indeed the stem cell niche is essential for quiescence and maintenance of the stem 

cell pool. It has been shown that induction of aged niche-derived Fgf2 disrupts stem cell 

quiescence during homeostasis leading to increased ki67+ SCS (Chakkalakal et al., 2012). A 

previous study from our lab showed that adult myofibers lacking Srf develop a broad 

spectrum of alterations similar to those which have been described in age-advanced skeletal 

muscles (Lahoute et al., 2008). It is noteworthy that the regenerated myofibers undergo a 

stage of growth phase which is also an important phase for the myofiber functional recovery. 

Another study from our lab showed that the Srf loss in the myofiber, subjected to CH, leads 

to decreased rate of proliferation (% Pax7+ ki67+ cells) and that secretion of signals by the 

myofibers during CH, functions in order to stimulate the proliferation of SCs. In the absence 

of such signals the SC proliferation ceases (Guerci et al. 2012). In the present model, 30 

days post CTX-injury mutually SCs and myofibers are Srf-mutant and the rate of ki67 

proliferation is increased showing thus that the SCs lacking Srf may not return to quiescence. 

Altered signal emission from the Srf-mutant myofibers act via Srf-lack in SCs to increase the 

cycling score in mutant myoblasts. Such a signal could be the angiopoietin I which is 

downregulated upon Srf loss within the myofiber (unpublished data). Ang1/Tie-2 signaling 

regulates SC self-renewal by controlling the return to quiescence (Abou-Khalil et al., 2009). 

An adequate niche is critical for SC maintenance as disruption of quiescence leads to 

an exhaustion of SCs. By the repeated lesions we checked for this hypothesis and we found 

that after 3 times of CTX-injury (with one month interval between them) leads to decreased 

number of Pax7-expressing SCs. The CH model helped us to distinguish between SC- or 

myofiber-dependent effect, in the elevated number of cycling Pax7+ cells, as the myofiber is 

preserved wild type. 5 weeks post CH control and mutant SCs present the same EdU 

percentage.  

Taken together, these results show even if there is not a cell-autonomous defect in 

the cycling capacities of SCs lacking Srf, Srf is an important player in the cross-talk between 

the SCs and the myofiber-niche. 

4. Apoptosis or Activation Delay? 

Cell Viability 

Although Srf does not seem to affect the proliferation capacity of myoblasts, the 

number of SCs is highly reduced at the early stages of SC recruitment. The reduction in the 

SC number could be a consequence of increased apoptotic activity due to lack of Srf as it is 

the case in many other muscle tissues (Park et al., 2015; Parlakian et al., 2004; Ro, 2016b). 

The transcriptomic analysis on sorted cells from damaged muscles (CTX+3days) pointed out 

an apoptotic signature. TUNEL staining on muscle sections 4 days post CTX-injury did not 
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display a difference in the overall apoptotic cells between control and mutant muscles 

likewise with the Annexin V labeling in vitro. We did not achieve to elucidate whether Srf-

mutant SCs are more prone to undergo apoptosis. It is needed to test the apoptotic fraction 

in the Pax7+ population by a double staining of Pax7 and TUNEL or activated caspase-3 

apoptotic markers on muscle sections at day 4 post CTX-injury.  

In vitro cell growth curve analysis display also a diminution in the number of growing 

cells (data not shown) with any defect in the proliferation capacity (BrdU labeling). We did not 

detect detached, floating cells indicative of dying cells. Alternatively, there may be a cell 

cycle defect independent of apoptosis, such as a cell cycle arrest in G2 phase, resulting in a 

slower progression through the cell cycle. Or Srf-mutant SCs may need more time to attach 

to the culture dish and thus start to proliferate later. 

In order to further assess whether Srf-mutant SCs are more prone to undergo cell 

death we should treat myoblasts in culture with cytotoxic compounds (cell death-inducing 

drugs) and to evaluate the eventual “fragility” of SCs lacking Srf in their maintenance. Further 

apoptosis assessment could be conducted on freshly-sorted cells from muscles under 

regeneration at day 3 or 4 post injury by Annexin V labeling. 

Signal-induced Activation  

Srf is among the specific transcription factors which have binding sites within 

regulatory regions of immediate-early genes (IEGs) involved in immediate-early response 

processes (immune responses or cellular stress). Expression of IEGs is quick and mainly 

transient, and their expression in interphasic cells is initiated by an extracellular signal, such 

as growth factors, mitogens, immunological and neurological signals, developmental, and 

stress (e.g. UV, toxins). Many IEGs are proto-oncogenes and their sustained expression can 

have profound effects on the regulation of the cell cycle and on cellular growth (Bahrami and 

Drabløs, 2016).  

Upon exposure to signals from a damaged environment, satellite cells exit their 

quiescent state and start to proliferate (satellite cell activation). Adult satellite cells are primed 

to respond rapidly to activation signals (Rodgers et al., 2014), with the first cell division to be 

the time-limiting step in the conversion of satellite cells to a highly proliferative state (Rodgers 

et al., 2014). 

It is plausible to hypothesize that SCs lacking Srf do not rapidly respond to activation 

and growth signals secreted within the first hours of muscle lesion leading to the decreased 

number of Pax7-expressing SCs at the early stages of regeneration. FACS-purified SCs from 

uninjured TA muscle were kept in culture for 2 and 5 days trying to imitate the initial phases 

of injury-induced in vivo activation by cell-sorting ex vivo activation. The activation state of 
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SCs is characterized by MyoD expression (Zammit et al., 2004). Preliminary data showed 

that the percentage of satellite cell-derived MyoD+ myoblasts is lower in mutants than 

controls after 2 days in culture post FACS-isolation whereas the percentage of MyoD+ 

myoblasts is the same in both controls and mutants after 5 days in culture. These 

experiments need to be repeated and test for MyoD activation even at earlier time points 

(e.g. 1 day in culture). 

Single fiber isolation and culture will clarify whether the endogenous myofiber-

associated SCs present the same activation and cell cycle kinetics. However in the CH 

model, at all time points examined, the number of Pax7-expressing cells are not different 

between control and mutant Pl muscles. The signals triggering the SC activation upon injury 

or overload induction may are not mediated by the same stimulant factors (Mendez and 

Janmey, 2012; Tatsumi, 2010). Muscle degeneration begins with necrosis of damaged 

muscle fibers and precedes muscle regeneration. Myofiber necrosis is accompanied by 

increased calcium influx which in turn activates calcium-dependent proteolysis and drives 

tissue degeneration (Yin et al., 2013a). Myofiber necrosis also activates the complement 

cascade and induces inflammatory responses. Subsequent to inflammatory responses, 

chemotactic recruitment of circulating leukocytes occurs at local sites of damage (Tidball and 

Villalta, 2010). Thus the initial degeneration and inflammation phases of regeneration may 

result at differential impacts on SC-activation as render the local milieu more toxic/harmful for 

SCs lacking Srf. Indeed in different injury models lead to differential and considerable SC-

loss few hours after injury-induction and myotoxins provoke an overall destruction of the 

tissue (Hardy et al., 2016). 

In order to assimilate the in vivo conditions of SC-activation the model of co-culture of 

freshly-isolated SCs with M1 inflammatory macrophages could shed light in the cross talk 

between the two cell types and the possible activation defect of SCs lacking Srf. Pro-

inflammatory M1 macrophages stimulate myogenic cell proliferation through mechanisms 

mediated by TNF-alpha and IL-6 (Arnold et al., 2007). Alternatively we could attempt culture 

of freshly-isolated SCs with crushed muscle saline extracts present in the cell culture 

medium (conditional medium) a widely-used method (Bischoff, 1997; Chakkalakal et al., 

2012; Conboy et al., 2005; Guerci et al., 2012a). Crushing mimics muscle injury processes, 

and factors present in crushed muscle extracts are likely to be the factors released during 

normal tissue injury (Bischoff, 1986).  

For the present time we can only suppose that there is not a major defect in the 

activation of Srf-depleted SCs but a delay which could eventually result in the diminished 

number of Pax7+ cells at early stages of their expansion. This phenotype of Srf-depleted 

SCs is not “revealed” in the CH model where mild/gentle occurring conditions do not affect 
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the SC recruitment. Thus the SC mobilization depends on the kind of the signal (signal 

“quality”). 

5. Terminal Differentiation and Maturation 

In both in vivo models as also in vitro, the onset of myogenesis is not affected by the 

Srf-loss. In spite of previous in vitro studies in mouse C2 and rat C6 cell lines where Srf-

inhibition prevented the MyoG expression (Vandromme et al., 1992), Srf-specific loss has no 

impact on MyoG expression. 

Developing skeletal muscles express unique myosin isoforms, including embryonic 

and neonatal myosin heavy chains. These myosin isoforms are transiently expressed during 

embryonic and fetal development and disappear shortly after birth when adult fast and slow 

myosins become prevalent. However, these myosins are re-expressed during muscle 

regeneration and provide a specific marker of regenerating fibers in the pathologic skeletal 

muscle. Regenerating muscle fibers re-express developmental isoforms of myosin, troponin, 

and other muscle proteins confirming thus that the adult myogenesis recapitulates many 

aspects of embryonic myogenesis.  Embryonic and neonatal MyHCs are detected in newly 

formed regenerating myofibers at 2–3 days after injury and persist for 2–3 weeks (Schiaffino 

et al., 2015).  

30 days post CTX-injury, MyHC-emb+ newly formed myofibers abound in the mutant 

muscles as there are only rare in the controls. Also MyoG+ cells are found in the mutant 

muscles suggesting therefore that either there is a retard in the myogenic progression or Srf-

depleted SCs do not switch to adult MyHC which is an index of terminally well-advanced 

differentiated myocytes. It is worthwhile to check for an eventual retard in the myogenesis 

and maturation of myoblasts lacking Srf by checking the myosins isoforms beyond the day 

30 of regeneration. 

6. Fusion Defect or Myofiber Branching? 

The CH model revealed fusion-deficient SCs lacking Srf unable to fuse to growing 

myofiber. The fusion index, as measured as the ratio of myonuclei per myofiber, at 8 and 30 

days post CTX-injury was highly diminished in comparison to control. At cellular level, the 

fusion proceeds in two stages. Initially, myoblast-myoblast fusion (primary fusion) results in 

the formation of nascent myotubes. In the second phase, myoblasts fuse with nascent 

myotubes (secondary fusion), which results in nuclear accretion and growth of the myotube 

(Hindi et al., 2013). During regeneration primary and secondary fusion take place. 

Extrapolating the in vitro conducted fusion mixture experiments helps us to describe the 

regeneration phenotype.  
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Primary homotypic or symmetric fusion between mutant myoblasts, and heterotypic or 

asymmetric fusion between control and mutant myoblasts mixture were affected. In the same 

manner secondary asymmetric fusion between control myotubes and mutant myoblasts 

mixture was also decreased. These experiments imply that the Srf is needed to be mutually 

expressed in both myogenic “partners” subjected to fuse. The fusion deficiency of Srf-mutant 

SCs leads to highly increased number of new-formed “myofibers” at day 30 post CTX-injury. 

If they are really myofibers (containing more than 2 myonuclei within the dystrophin contour) 

or mononucleated myocytes, longitudinal TA sections at 8 and 30 days (data not shown) 

showed the presence of multinucleated myofibers as also as mononucleated myocytes. 

However multinucleated myofibers are not as much elongated as in the control. 

Interestingly, as depicted by the laminin and dystrophin staining, mutant new-formed 

fibers present a completely different phenotype in their shape with “marguerite”-like 

appearance mainly at 8 days post CTX-injury. Careful examination of transversal sections 

reveals at some foci, newly-formed myofibers appeared as “eccentric cycles” which means a 

forming myofiber within another myofiber with individual basal lamina (laminin staining).  It is 

noteworthy that the CSA in mutant muscle not only does not change between4 days and 8 

days post CTX-injury but declines significantly. Also mutant mice exhibit ~5-fold more 

myofiber number at day 30. In many neuromuscular diseases muscle regeneration is 

aberrant and various abnormalities, such as variation in myofiber size, decreased myofiber 

number, fibrosis and branched myofibers, are observed (Pichavant and Pavlath, 2014). 

Branched myofibers are malformed cells which, instead of having a normal cylindrical shape, 

contain one or more offshoots of small daughter myotubes contiguous with the parent 

myofiber. I cannot exclude that Srf-deficient myoblasts that are not able to fuse properly lead 

to sprouted myofibers or the new-formed mutant myofibers are more prone to splitting. It 

could be an explanation for the decrease in the myofiber CSA from the day 4 to 8. Moreover 

such a phenotype was described ex vivo in some MyoD-null fibers with forked or small 

“sprouts” (Cornelison et al., 2000). It was described that the aberrant cytoarchitecture of 

branched myofibers likely arises from incomplete or aberrant fusion of small myotubes during 

muscle regeneration (Pavlath, 2010b; Schmalbruch, 1976). It is plausible to hypothesize that 

the fusion defect and the altered actin cytoskeleton of F-actin could result in susceptibility of 

mutant myofibers to splitting. To test this hypothesis it is needed to observe the longitudinal 

sections at higher resolution and magnification and further isolate single TA regenerating 

myofibers for an ex vivo observation (Pichavant et al., 2016). 
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Underlying Mechanisms – Actin Player 

1. Do the SCs participate in the Hypertrophic Growth of Myofiber? 

Adult muscle fiber is a symplast, a multinuclear structure, developed in ontogenesis 

by the fusion of myoblasts (muscle progenitor cells). Myoblast fusion is important not only for 

skeletal muscle formation during development, but also for post-natal muscle growth and 

regeneration of skeletal muscle. Satellite cell-mediated hypertrophic growth in the myofiber 

under overload conditions mimics the post-natal growth with the SC nuclear accretion to lead 

to multinucleated myofibers and growth. 

The role of satellite cells in muscle hypertrophy has long been a debated issue and 

the subject of many reviews (Blaauw and Reggiani, 2014; Gundersen, 2016; Pallafacchina et 

al., 2013; Snijders et al., 2015). Studies with a transgenic Pax7-DTA mouse model, where 

the Pax7+ SC depletion is achieved with TMX treatment, showed that satellite cells are not 

required for muscle growth over a short period (McCarthy et al., 2011) but they are required 

to overcome/negatively regulate the excessive ECM accumulation over a prolonged period 

resulting in attenuated hypertrophy (Fry et al., 2014). Egner et al. repeated these 

experiments and they found that overload hypertrophy was prevented in the satellite cell-

deficient mice, in both the plantaris and the extensor digitorum longus muscles. In 

consequence they claim that there is currently no model in which functional, sustainable 

hypertrophy has been unequivocally demonstrated in the absence of satellite cells.  

We provide new genetic data showing that when SCs are not able to fuse, 

hypertrophy is impaired. Srf-mutant mice show no signs of fusion and the moderated 

increased CSA could be attributed to an increase in the protein synthesis in Srf-expressing 

myofibers. In vivo overexpression of alpha-actin rescues the fusion in the CH model. We 

conclude that SC myonuclear accretion is required however for an optimal hypertrophic 

growth comparing to controls, and it indicates the necessity of SC fusion to the growing 

myofiber. 

2. Actin-dependent rescue    

The actins are a highly conserved protein family that plays crucial roles in cell biology, 

in divisfion, motility, the cytoskeleton, and contraction. Higher eukaryotes have six different 

actins, each expressed from separate genes (Vandekerckhove and Weber, 1979). 

The activity of Srf is regulated by changes in actin dynamics. Analysis of Srf target 

gene set revealed hundreds of genes involved in actin filament dynamics, cell adhesion, 

extracellular matrix (ECM) synthesis and processing, cell motility, and other actin-linked 
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processes as well as a significant number of genes involved in microtubule-based 

cytoskeletal dynamics (Esnault et al., 2014). The alpha-skeletal actin (Acta1) is the prevalent 

isoactin in adult skeletal muscle. Alpha-cardiac actin (Actc1) is the major isoactin in adult 

heart and fetal skeletal muscle (Gunning et al., 1983a).  

In Srf-depleted myoblasts the Acta1 is highly decreased, in comparison to controls, 

leading to aberrant actin network with paucity of F-actin. Overexpression of alpha-cardiac 

(Actc1) isoform in Srf-depleted SCs, restores the F-actin pool and rescues the 

heterotypic/asymmetric fusion. Therefore proper actin cytoskeleton maintenance is of critical 

importance to mediate the heterotypic cell fusion. In fact there are many reports of actin-

mediating processes in myoblast fusion (Martin, 2016). In Drosophila model, cells utilize 

actin-propelled membrane protrusions to promote fusogenic protein engagement and fusion 

pore formation (Shilagardi et al., 2013) and actin-based filopodia emanating from the 

myotubes surface to  prime the heterotypic adhesion process between the two cell types 

(Segal et al., 2016). 

The underlying possible mechanism for the rescue of heterotypic/asymmetric fusion 

could be the restoration of the mechanical invading force which helps to overcome energy 

barriers for membrane apposition and drives cell membrane fusion (Kim et al., 2015) or the 

appropriate cellular distribution of signalling molecules and/or contractile proteins molecules 

to mediate the fusion (Tran et al., 2012). 

The fact that the homotypic/symmetric fusion is not rescued indicates that other Srf-

target genes (alpha-actin-independent) are required for a complete restoration of biological 

and mechanical properties in a pair of fusing cells (Figure 29).  

 

Figure 29 : Schematic model for the Srf and Actin-action in myoblast fusion. 

 

Cell-ECM Adherence properties  
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Serum response factor controls multiple genes governing adhesion. Srf-null 

embryonic stem cells (ES), demonstrate that Srf deficiency causes impairments in ES 

cell adhesion and correlates with defective formation of cytoskeletal structures, namely actin 

stress fibers and focal adhesion (FA) plaques (Schratt et al., 2002). Focal adhesions (FAs) 

are dynamic adhesion structures that anchor the cell to the extracellular matrix. Mrtfs, co-

regulators of the Srf, regulate expression of a set of genes encoding actin cytoskeletal/FA-

related proteins  and integrin-mediated regulation of FA components (Kishi et al., 2016). Srf-

null stem cells displayed impair expression of the integrin network and decreased adherence 

in vitro suggesting that Srf acts mainly through cell-matrix interactions and integrin signaling 

(Ragu et al., 2010). Srf knockout neutrophils fail to polymerize globular actin to filamentous 

actin, fail to migrate to sites of inflammation, show markedly reduced adhesion and although 

integrin expression levels are maintained with loss of Srf, integrin activation and trafficking 

are disrupted (Taylor et al., 2014).  

Preliminary experiments with the (Ethylene-Diamine-Tetraacetic Acid) EDTA 

compound showed that mutant myoblasts need more time to detach from the cell dish 

substratum and also to adhere. Therefore we can hypothesize that myoblasts lacking Srf 

change the adherence properties profile which could encounter for the reduced motile 

functions. In the future studies it is need to explore the integrin expression pattern and further 

testing their role played by overexpression and knockdown constructs in control and mutant 

myoblasts. 

3. Actin-independent  

Cell Migration 

Fusion generally occurs between muscle cells that were initially positioned at a 

distance from each other, and therefore requires mediation by a cell migration process, most 

commonly of myoblasts towards a myotube target (Schejter, 2016). The reduced motile 

capacity does not facilitate the “meeting” between the Srf-mutant myoblasts. In order to 

overcome this obstacle we plated mutant myoblasts and mutant myoblasts with the actin 

overexpression in confluent high concentrations. The fusion defect was not ameliorated in 

both cases meaning thus that cell migration defect might not account for the fusion 

incapacity. 

Cell motility is highly perturbed in myoblast lacking Srf. Overexpression of the alpha-

actin isoform does not rescue the motile functions of Srf-mutant myoblats suggesting thus a 

non alpha-actin dependent control of cell motility. The non-muscle isoforms of beta- and 

gamma-actin or myosin, all being Srf-target genes (Esnault et al., 2014; Miano et al., 2007) 

could be involved in the process of cell movement (Callan-Jones and Voituriez, 2016). A 
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future perspective could be an attempt to overexpress the beta and/or gamma-actin or 

myosin aiming to elucidate the role of actin/myosin flows in both migration and polarization 

mechanisms (Callan-Jones and Voituriez, 2016; Kim et al., 2015). 

Lipid Composition of Cell Membrane/Genes involved in Cell Metabolism  

Cell-contact sites are further characterized by changes in the cell membranes and 

composition. For example, phosphatidylserine is transiently exposed at these sites (van den 

Eijnde et al., 2001) and required for myotubes formation. Additionally, lipid rafts containing 

cholesterol transiently accumulate at cell contact sites and are required for the accumulation 

of adhesion molecules and to maintain the proper rigidity of the lipid bilayers necessary for 

adhesion between the two myogenic cells. These intracellular molecules probably activate 

signal transduction pathways that ultimately lead to membrane fusion (Abmayr and Pavlath, 

2012). Destabilization of the lipid bilayers, which makes them prone to fusion. Lipid 

modifications correlate with a reduction in plasma membrane rigidity resulting in fusion 

impairment (Blondelle et al., 2015). 

The Mrtf-Srf target genes includes numerous transcriptional regulatory factors and a 

significant number of genes involved in metabolism (Esnault et al., 2014). 

Perspectives 

We have already identified the set of genes (transcriptomic studies) whose 

expression is altered by Srf loss (cells transduced with Adeno-Cre vs Adeno-GFP) in 

proliferating and differentiating myoblasts (day 1 and day 3 post differentiation). Gene 

annotation using Ingenuity software pointed out an over-representation of genes involved in 

cytoskeletal rearrangements, cellular movement, adhesion and cell death and survival.  

We will focus our studies on the functional relevance of genes that can be related to 

the phenotypes of cells lacking Srf in vitro and in vivo and that are bona fide Srf targets (or 

have at least one Srf binding site in their promoter according to Genomatics sofware). 

We have already obtained preliminary data concerting the Hic-5 gene. Hic-5 is a 

member of the LIM-protein family with homology to paxillin. It has been shown to regulate a 

range of biological processes including: senescence, integrin signaling, differentiation, and 

apoptosis. Interference experiments with Hic-5 expression in C2C12 cells showed its 

potential role in cell death and myotubes formation (Gao et al., 2007). In primary cultures of 

myoblasts, we efficiently knocked-down Hic-5 expression by siRNA transfection and showed 

that the cell fusion was blunted. These results identify Hic-5 as an interesting candidate 

whose decreased expression could account for the impaired fusion of muscle cells lacking 

Srf.  
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A very interesting perspective for future studies is the investigation of “rheological 

behavior” of Srf-mutant myoblasts and Srf-mutant myoblast overexpressing the alpha actin 

(Mut/Act+) collaborating with the lab of Dr. Sylvie Henon. The rheology science is a branch of 

physics that studies the stress/strain relationship of materials. It describes properties such as 

elasticity, plasticity or brittleness. Rheological study is the study of the flow of matter, 

primarily in a liquid state, but also as 'soft solids' or solids under conditions in which they 

respond with plastic flow rather than deforming elastically in response to an applied force. 

We expect that this study will shed light in the description of physical properties (elasticity, 

plasticity, viscosity) of a myogenic cell containing altered actin network when a pair of fusing 

cells are under the tension to overcome the energy barrier and the driving mechanical force 

to proceed to membrane merging and cell fusion. Actin flows have emerged as a highly 

conserved propulsion force in migrating cells, and have also been identified as key physical 

regulators of cell polarity (Callan-Jones and Voituriez, 2016).   
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Title: Role of the Serum Response Factor (SRF) transcription factor in adult muscle stem cells 

 

Abstract: The adult skeletal muscle is a high plastic tissue as it adapts its size upon overload and it is 

capable of regeneration upon muscle lesion. The skeletal muscle is composed of a specialized 

syncytium, the myofiber, which is the functional unit of the muscle and a small population of myogenic 

progenitors, residing adjacent to the myofibers, termed as satellite cells (SCs). SCs are the muscle-

specific stem cells which endow the skeletal muscle with its remarkable capacity to repair and to 

maintain homeostasis during muscle turnover. In resting adult muscles, SCs are quiescent but they 

activate upon exposure to stimuli. The activated SCs (myoblasts) proliferate extensively and 

subsequently differentiate and fuse between them or pre-existing myofibers, a series of cellular events 

called myogenesis. In parallel to the myogenesis, a reserve population of SCs escapes the myogenic 

program and self-renews to replenish the SC pool. The current project aims to further characterize the 

signalling pathways involved in SC functions during muscle regeneration and compensatory 

hypertrophy (CH). 

Srf is a muscle-enriched transcription factor with Srf-target genes implicated in cell proliferation, 

differentiation (sarcomeric proteins), adhesion, migration and cellular cytoskeleton. Studies in C2C12 

mouse myogenic cell line showed that Srf loss prevent the myoblast proliferation and differentiation by 

down-regulating the expression of the myogenic determinant MyoD gene.  

We used a genetic murine model for adult SC-specific Srf-loss in order to conduct in vivo and ex vivo 

studies for the Srf role in SCs. Compensatory hypertrophy and regeneration are the two means by 

which SCs were recruited. We show that loss of Srf in SCs affects the regeneration process and the 

CH suggesting the Srf role in the SC fate. Srf-depleted SCs display probably no defect in their 

proliferation and differentiation but reduced capacity in motility and fusion. Transcriptomic analysis 

revealed altered actin cytoskeleton and signalling. Srf-depleted SCs show reduced actin expression 

and altered actin cytoskeleton. Rescue of actin expression in Srf-depleted SCs partially restored the 

cytoskeleton organization and the fusion process. Interestingly by actin overexpression only the 

heterotypic/asymmetric fusion was established but not the homotypic/symmetric fusion. Therefore 

actin overexpression restored the hypertrophic growth in the CH (in vivo model of heterotypic fusion) 

but failed to do so in the regeneration (in vivo model of homotypic fusion). 

This study contributed to the in vivo investigation of the Srf mechanistic role in adult SCs and 

underlined the importance of actin cytoskeleton maintenance in the fusion of myogenic cells. 
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