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RÉSUMÉ

Dans cette thèse, nous développons un modèle du second ordre pour la représentation
des formes (courbes et surfaces) grâce à la théorie des cycles normaux. Le cycle normal
d’une forme est le courant associé à son fibré normal. En introduisant des métriques à
noyaux sur les cycles normaux, nous obtenons une mesure de dissimilarité entre formes qui
prend en compte leurs courbures. Cette mesure est ensuite utilisée comme terme d’attache
aux données dans une optique d’appariement et d’analyse de formes par les déformations.

Le chapitre 1 est une revue du domaine de l’analyse de formes par les déformations.
Nous insistons plus particulièrement sur la mise en place théorique et numérique du modèle
de Large Deformation Diffeomorphic Metric Mapping (LDDMM).

Le chapitre 2 se concentre sur la représentation des formes par les cycles normaux
dans un cadre unifié qui englobe à la fois les formes continues et discrètes. Nous précisons
dans quelle mesure cette représentation contient des informations de courbure. Enfin nous
montrons le lien entre le cycle normal d’une forme et son varifold.

Dans le chapitre 3, nous introduisons les métriques à noyaux. Ainsi, nous pouvons
considérer les cycles normaux dans un espace de Hilbert avec un produit scalaire explicite.
Nous détaillons ce produit scalaire dans le cas des courbes et surfaces discrètes avec certains
noyaux, ainsi que le gradient associé. Nous montrons enfin que malgré le choix de noyaux
simples, nous ne perdons pas toutes les informations de courbures.

Le chapitre 4 utilise cette nouvelle métrique comme terme d’attache aux données dans

le cadre LDDMM. Nous présentons de nombreux appariements et estimations de formes

moyennes avec des courbes ou des surfaces. L’objectif de ce chapitre est d’illustrer les

différentes propriétés des cycles normaux pour l’analyse des déformations sur des exemples

synthétiques et réels.

ABSTRACT

In this thesis, we develop a second order model for the representation of shapes (curves
or surfaces) using the theory of normal cycles. The normal cycle of a shape is the current
associated with its normal bundle. Introducing kernel metrics on normal cycles, we obtain
a dissimilarity measure between shapes which takes into account curvature. This measure
is used as a data attachment term for a purpose of registration and shape analysis by
deformations.

Chapter 1 is a review of the field of shape analysis. We focus on the setting of the
theoretical and numerical model of the Large Deformation Diffeomorphic Metric Map-
ping (LDDMM).

Chapter 2 focuses on the representation of shapes with normal cycles in a unified
framework that encompasses both the continuous and the discrete shapes. We specify to
what extend this representation encodes curvature information. Finally, we show the link
between the normal cycle of a shape and its varifold.

In Chapter 3, we introduce the kernel metrics, so that we can consider normal cycles in
a Hilbert space with an explicit scalar product. We detail this scalar product for discrete
curves and surfaces with some kernels, as well as the associated gradient. We show that
even with simple kernels, we do not get rid of all the curvature informations.

The Chapter 4 introduce this new metric as a data attachment term in the framework

of LDDMM. We present numerous registrations and mean shape estimation for curves and

surfaces. The aim of this chapter is to illustrate the different properties of normal cycles

for the deformations analysis on synthetic and real examples.
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Notations

• E∗ is the algebraic dual of the vector space E, i.e. the vector space of all the
linear forms on E. If E is endowed with a topology, E ′ is the topological dual
of E, i.e. the vector space of all the continuous linear forms on E.

• 〈., .〉 is the canonical scalar product on a Euclidean space E. |.| is the associated
norm.

• 〈|〉 : E ′ × E → R is the duality product. If (ϕ, x) ∈ E ′ × E, 〈ϕ|x〉 := ϕ(x).

• Sd−1 =
{
x ∈ Rd

∣∣ |x| = 1
}

, the unit sphere of Rd.

• 〈., .〉V , ‖.‖V : Given a Hilbert space V , 〈., .〉V is its scalar product and ‖.‖V its
norm.

• KV : V ′ → V is the canonical isometry between V ′ and V . If (ϕ, v) ∈ V ′ × V ,
〈ϕ|v〉 = 〈KV ϕ, v〉V .

• E →֒ F . If E and F are two normed vector space, E →֒ F means that E is
continuously embedded in F , i.e. that there exists a continuous injection from
E to F .

• L2
V =

{
(vt)0≤t≤1 ∈ V [0,1]

∣∣ ∫ 1

0
‖vt‖2V dt < +∞

}
.

• Hs(Sd−1) is the s-Sobolev space of Sd−1.

• Yl,m is the spherical harmonic of order (l,m) (see Appendix B).

• ‖‖∞ is the infinity norm. If f ∈ L∞(Rd), ‖f‖∞ = supx∈Rd |f(x)|.

• Λm(R
d) is the space of m-covectors or m-forms of Rd, Λm(Rd) = Λm(R

d)∗ is
the space of m-vectors of Rd (see section 2.1).

• L(Rd) is the space of linear applications of Rd.

• H m
S is the m-dimensional Hausdorff measure of the space S (in this

manuscript, S will be Rd or Rd × Sd−1 and we will denote H m instead of
H m

S since there will be no ambiguity.)

• Ωm(Rd) = C ∞(Rd,Λm(Rd)
)

is the space of smooth, m-differential forms of Rd.

13



Notations

• Ωm
k,0(R

d) = C k
0

(
Rd,Λm(Rd)

)
is the space of C k m-differential forms of Rd,

vanishing at infinity, as well as the derivative up to order k.

• Ωm
0 (R

d×Sd−1) = C k
0

(
Rd×Sd−1,Λm(Rd×Rd)

)
is the space of C k m-differential

forms of Rd × Sd−1, vanishing at infinity, as well as the derivative up to order
k.

• Xε. Given a set X in Rd, Xε =
{
x ∈ Rd|d(x,X) ≤ ε

}
.

• ∂X is the boundary of X. With these notations, ∂Xε =
{
x ∈ Rd|d(x,X) = ε

}
.

• PX is the projection on X (when it is well defined).

• TxX is the tangent cone of X at point x ∈ X. See definition 2.33.

• Nor(X, x) is the normal cone of X at point x. See definition 2.33

• Noru(x,X) is the unitary normal cone, i.e. Noru(x,X) = Nor(X, x) ∩ Sd−1.
See definition 2.33.

• NX is the unit normal bundle of X. Given a set X with positive reach,
NX :=

{
(x, n) | x ∈ X,n ∈ Noru(X, x)

}
. This is a subset of Rd × Sd−1.

N pln
X ,N cyl

X ,N sph
X are respectively the planar, the cylindrical and the spherical

part of the unit normal bundle.

• τX(x). If X is an oriented m-rectifiable set of Rd, and (e1(x), . . . , em(x)) a
positively oriented orthonormal basis of TxX, then τX(x) = e1(x)∧· · ·∧em(x)
is the m-vector associated with the orthonormal basis.

• τNX
(x, n) is the (d− 1)-vector associated with a positively oriented, orthonor-

mal basis of T(x,n))NX .

• ki(x, n), for 1 ≤ i ≤ d is the i-th generalized curvature at x and in the direction
n of a set X with positive reach. See subsection 2.4.2

• [X] is the current associated with a rectifiable set X.

• µX is the varifold associated with a rectifiable set X.

• N(X) = [NX ] is the normal cycle associated with a set X with positive reach.
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Introduction

This thesis takes place in the context of computational anatomy, an active research
field which models and studies the biological variability of the human anatomy.
Computational anatomy draws its inspiration from the pioneer work of the biologist
D’Arcy Thompson [Thompson, 1917]. At that time, Darwin’s theory of evolution
was widely accepted in the scientific community. For D’Arcy Thompson, the biolo-
gists of the twentieth century were focused on genetic evolution and underestimated
the role of physical constraints in the morphogenesis (the process by which patterns
are formed). According to him, the observed variability in the inter-species anatomy
is not only the result of a purely random process but also accounts for mechanical
constraints. Those can be modelled as geometrical transformations that explain the
variability across the species (see figure 1). The term “computational anatomy” was
first introduced by Grenander and Miller [Grenander and Miller, 1998] and aims at
providing a mathematical framework to study the variability of anatomical struc-
tures among a population of subjects.

There has been a growing interest in computational anatomy in the past decades:
the recent development of acquisition techniques (among which Magnetic Resonance
Imaging, coherence tomography, Diffusion-Tensor Imaging, Functional MRI) enables
the imaging of new anatomical structures. Also, the ever-increasing accessibility
of these devices leads to a growing number of individuals for each structure and
allows for a mapping of the shapes’ variability that is almost representative of the
population. From there, it may be possible to indicate anatomical abnormalities
and this opens the way to an early diagnosis of diseases that cause or are caused
by unexpected deformations. A qualitative approach is not anymore sufficient and
one necessitates an automatized procedure for an analysis that fully exploits the
size of the database. This automation implies a quantitative approach, and thus a
mathematical modelling of shape variability and how to measure it.

This problematic is at the heart of computational anatomy. Formally, one esti-
mates from a “healthy” dataset a statistical model of the shapes’ variability. From
there, it is possible to provide statistical tests to discriminate between a pathological
and a normal shape variation. Of course, this is a very large and complex problem.
From a mathematical point of view, the measure of shapes variability necessitates
a framework that provides theoretical and numerical guarantees. From a medical
point of view, the relevance and the interpretation of such applications need to be
evaluated depending on the anatomical structure at stake. Yet, numerous studies
has shown promising results. Let us quote for example works on Alzeihmer’s dis-

15



Introduction

Figure 1: From D’Arcy Thompson’s work. The variability of a fishes population is ex-
plained through geometrical transformations of the ambient space. The transformation is
represented via the deformed grid.
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ease [Qiu et al., 2008, Wang et al., 2007, Tang et al., 2014, Csernansky et al., 2004,
Csernansky et al., 2005], on DTI images [Durrleman et al., 2011a, Pennec, 2006,
Helm et al., 2006], heart malformations [Mansi et al., 2011], Down syndrom
[Durrleman et al., 2014, Durrleman et al., 2013] and retina layer for glaucoma di-
agnosis [Charlier et al., 2015a, Lee et al., 2017a, Lee et al., 2017b].

Shape Analysis through Large deformations

In its original formulation, computational anatomy is “a generative model
of shape and form from exemplars acted upon via transformations”
[Grenander and Miller, 1998]. In other words, we model a generative shape
that contains all the shared features of the dataset. This shape is often called
the template or the mean shape of the dataset. The observed variability is then
explained as the result of “random” deformations of the template. The statistical
analysis of a database is performed through the estimation of the mean shape,
jointly with the deformations that generate the database from the template.

The transition from this rather abstract idea to a mathematical formulation re-
lies on the construction of geometrical transformations that account for the shapes
variability. In this manuscript, we use more specifically the previous works of
Large Deformations Diffeomorphic Metric Mapping that we will write LDDMM
([Trouvé, 1995, Christensen et al., 1996, Dupuis et al., 1998, Trouvé, 1998] for the
seminal articles, [Younès, 2010] for a summary of the concepts). In this framework,
the deformations are generated through the integration of time-varying vector fields
of Rd, (vt)0≤1≤t. This concept is close to fluid mechanics where we follow the path
of a given particle, initially at position x ∈ Rd and evolving through a velocity field
(vt)0≤t≤1. The position at time t of the particle is denoted ϕvt (x), and the path is
given by the following equation:

∀x ∈ Rd, ∀t ∈ [0, 1],
∂ϕvt (x)

∂t
= vt ◦ ϕvt (x) (1)

with ϕv0 = IdRd . The final deformation, ϕv1 is obtained with the integration at time
t = 1 of the previous differential equation. To ensure the regularity of the final
deformation, we need to assume some spatial regularity on the vector fields vt. In
fact, we will chose the vector fields as elements of a Hilbert space V such that we have
the admissibility property: V →֒ C 1

0 (R
d,Rd). This embedding property guarantees

that the final deformation is a diffeomorphism ([Trouvé, 1995, Dupuis et al., 1998]),
and that the Hilbert space V is in fact a Reproducing Kernel Hilbert Space of
vector fields ([Glaunès, 2005]). The theory of RKHS is recalled in the beginning
of Chapter 3. The appearance of a RKHS is good news, since it will simplify the
numerical implementations through the associated kernel KV . V is endowed with
a norm ‖.‖V that represents the infinitesimal cost of displacement, and we consider
deformation with finite energy, i.e. with velocity field in L2:

∫ 1

0
‖vt‖2V dt < +∞.

The space of time-varying vector fields in V with finite energy is denoted L2
V . This

means that the set of deformations that we consider is exactly GV :=
{
ϕv1
∣∣ v ∈
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L2
V

}
where ϕv1 is obtained through integration of (1). It can be shown that this

is a (sub-)Riemannian manifold with geodesic distance between the identity and a
deformation ϕ ∈ GV :

dGV
(Id, ϕ)2 := inf

v∈L2
V

ϕv
1
=ϕ

∫ 1

0

‖vt‖2V dt.

that we extend to a right-invariant metric on all GV :

dGV
(ϕ1, ϕ2)

2 := d(Id, ϕ2 ◦ ϕ−1
1 )2 = inf

v∈L2
V

ϕv
1
◦ϕ1=ϕ2

∫ 1

0

‖vt‖2V dt.

(see [Arguillère et al., 2015] for more details). The Riemannian framework is
especially well adapted for a statistical analysis ([Pennec, 2006]).

An elementary block for shape analysis is the problem of shapes registration:
given two shapes C and S, find a physically relevant optimal deformation ϕ that
matches the two shapes. This problem is also interesting for itself since many ap-
plications in medical image analysis require a coherent alignment of images as a
pre-processing step, using efficient rigid or non-rigid registration algorithms. If we
fit this problem in the previous Riemannian framework, this writes:

arg min
ϕ∈GV

ϕ(C)=S

d(Id, ϕ)2 = arg min
v∈L2

V

ϕv
1
(C)=S

∫ 1

0

‖vt‖2V dt

where ϕv1 is obtained through equation (1).
For applicative purpose, one does not want to perform an exact matching between

shapes as this imposes too many constraints on the deformations and would make
the procedure too sensitive to noise or artefacts. To relax this hypothesis, one needs
a data-attachment term that measures the residual distance between the deformed
shape and the target. In the following, we denote A this data attachment term.
Non-rigid registration is then classically tackled down by minimizing a functional
composed of two terms, one enforcing the regularity of the mapping (in our setting,
the energy of the deformation

∫ 1

0
‖vt‖2V dt), and the data-attachment term which

evaluates dissimilarity between shapes A(ϕ(C), S).
The inexact registration problem between two shapes C and S then writes as

the minimization of

arg min
v∈L2

V

∫ 1

0

‖vt‖2V dt+ A
(
ϕ(C), S

)
. (2)

that also writes:
arg min

v∈L2
V

dGV
(Id, ϕv1)

2 + A
(
ϕ(C), S

)
.

Defining good data-attachment terms is important, as it may improve the mini-
mization process, and focus the registration on the important features of the shapes
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to be matched. In the case of n landmarks (labelled points) in Rd (i.e. C and S are
two sets of n points), a simple data attachment term is the Euclidean norm on (Rd)n:
A
(
(x1, . . . , xn), (y1, . . . , yn)

)
=
∑n

i=1 ‖xi − yi‖
2
Rd . In the case of images, the L2 norm

is the first idea: A(I1, I2) =
∫
Ω

∣∣∣I1(x)−I2(x)
∣∣∣
2

dx. At the beginning of computational

anatomy, these were the main data-attachment terms (e.g. [Beg et al., 2005] for im-
ages, [Joshi and Miller, 2000] for landmarks). However, it restricts considerably the
domain of applications since for landmarks it assumes points correspondence. This
was a motivation for other data-attachment terms that we will see in the next sec-
tion.

The design of an interesting dissimilarity measure between shapes is closely linked
to the question of shapes representation. This is of importance since it is the starting
point to the embedding of shapes in a space endowed with a metric. Let us illustrate
the problematic of shapes representation with a toy example: given a surface S, one
can consider it as an unstructured set of points, or as a submanifold with a tangent
space at each point. These two representations do not contain the same information
about S: the former encodes only an “order 0” information, whereas the latter
encodes a first-order information, i.e. a tangential information.

Geometric measure theory in computational

anatomy

In the past decades, computational anatomy has greatly benefited from the use of
geometric measure theory, where shapes representation (surfaces, curves, etc.) is
central. The main motivation in this field is to provide a mathematical framework
to consider variational problem involving surfaces. Let just mention for example
the Plateau’s problem: given a prescribed (m − 1)-dimensional border Γ, does a
minimizing area surface with border Γ exist? To answer (positively) to this prob-
lem, new theoretical tools were developed in order to consider surfaces as elements
of a normed vector space, with nice properties such as compactness. Integral cur-
rents ([Federer and Fleming, 1960]) and varifolds ([Allard, 1972]) were introduced
for this purpose. The space of m-dimensional currents is the topological dual of some
space of m-differential forms, and an oriented submanifold S can be considered as
a current, denoted [S], through integration of differential forms over S:

[S](ω) :=

∫

S

〈ω(x)|τS(x)〉 dH m(x).

We recall that since S is an oriented submanifold, there exists a coherent orientation
of orthonormal basis of the tangent space at each point x ∈ S. If e1(x), . . . , em(x) is
such a basis, then τS(x) = e1(x)∧ · · · ∧ em(x) is the m-vector canonically associated
with this basis. It can be shown that this expression is independent of the choice of
the positively oriented orthonormal basis.

We will consider in this manuscript the space of m-differential forms of Rd that
vanish at infinity, and denote it Ωm

0 (R
d). For the sake of simplicity, we will define
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the space of m-currents in Rd as the topological dual of Ωm
0 (R

d) endowed with the
infinity norm. It is more restrictive than Federer’s classical definition of currents,
but it will be sufficient for our applications.

With this construction, m-submanifolds are embedded in a topological dual
(which is a vector space) and it remains to define an interesting norm on this space.
This has been extensively studied in [Federer and Fleming, 1960, Federer, 1969].

In [Vaillant and Glaunès, 2005, Glaunès, 2005] a new framework for dissimilar-
ity measures between sub-manifolds was proposed using kernel metrics defined on
spaces of currents. In this framework, shapes are elements of a dual Hilbert space
W ′, with an explicit scalar product thanks to a scalar kernel kp. If C and S are two
m-dimensional, oriented shapes:

〈[C], [S]〉W ′ =

∫

C

∫

S

kp(x, y) 〈τC(x), τS(y)〉 dH m(x)dH m(y). (3)

and the dissimilarity measure d between two shapes is:

d(C, S)2 := ‖[C]− [S]‖2W ′ .

This setting is now commonly used in computational anatomy; its advantages
lie in its simple implementation, its parametrization-free representation and the
fact that it provides a common framework for continuous and discrete shapes (see
[Durrleman, 2010] for a computational analysis of currents and their numerical im-
plementation). However, currents are oriented objects and thus a consistent orienta-
tion of shapes is needed for a coherent matching. Moreover, due to this orientation
property, artificial cancellation can occur with shapes with high local variations.

This can even be quantified, as illustrated in [Charon, 2013] and reproduced in
figure 2: consider a closed, oriented rectangle, with length 1 and width ε. If we
denote Rε this rectangle, and ‖[Rε]‖W ′ the norm of the associated current, we have:

‖[Rε]‖2W ′ =

∫

Rε

kp(x, y) 〈τRε
(x), τRε

(y)〉 dH 1(x)dH 1(y).

The scalar product between the tangent vectors of the vertical and horizontal part
vanishes. Moreover, if we suppose that the kernel kp is translation-invariant, this
gives:

‖[Rε]‖2W ′ = 2
(
‖[CV1 ]‖2W ′ − 2 〈[CV1 ], [CV2 ]〉W ′

)
+ 2
(
‖[CH1

]‖2W ′ − 2 〈[CH1
], [CH2

]〉W ′

)

where CV1 and CV2 are the two vertical segments and CH1
, CH2

the two horizon-
tal ones. When ε → 0, we have ‖[CH1

]‖ → 0 and 〈[CH1
], [CH2

]〉W ′ → 0 and
2 〈[CV1 ], [CV2 ]〉W ′ → ‖[CV1 ]‖1W ′ which proves that

‖[Rε]‖W ′ −→
ε→0

0.

Thus the norm of the rectangle for the kernel metric vanishes whereas the associated
shape is non negligible.
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Figure 2: A closed oriented rectangle with length 1 and width ε. Due to the orientation,
when ε → 0, the norm for the kernel metric of the associated current goes to 0 whereas
the limit geometrical object is a segment.

This cancellation effect due to orientation may induce poor behaviour for a reg-
istration purpose. If one uses the kernel metric on currents as a data attachment
term, the registration may suffers from the cancellation effect, and we give two il-
lustrations of problems that arise. In figure 3, we perform a registration between a
blue circle and an orange circle with a spike (the target). We do not enter yet into
the details of such procedure, but we provide the result of such registration, with
the kernel metric on currents as data-attachment term. One can observe that the
spike is not matched. This is due to the cancellation effect: the spatial frequency
of the spike is high compared to the other part of the curve, and because of the
orientation, this feature vanishes in the space of currents. Another phenomenon
that may occur for the same reason is the “pinching” effect. In figure 4, we show
this time a matching of a circle with a spike to a circle. The obtained registration is
not satisfactory: with the metric on currents, it costs less to pinch the spike (so that
it vanishes in the space of currents) rather than to stretch out the spike in order to
match it well on the circle.

To deal with this problem, a more advanced model based on varifolds has been in-
troduced recently [Charon, 2013]. Varifolds are measures over fields of non-oriented
linear subspaces and will be reminded in Chapter 2. In this thesis, we propose to
use a second-order model called normal cycle for defining shape dissimilarities.
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(a) Initial configuration
(b) Result of the registration with the defor-
mation grid.

Figure 3: Registration of a blue circle to an orange circle with a spike with a kernel metric
on current as dissimilarity measure. The spike is not matched since in the space of currents,
this feature is negligible for the kernel metric.

(a) Initial configuration
(b) Result of the registration with the defor-
mation grid

Figure 4: Registration of a blue circle with a spike to an orange circle with a kernel metric
on current as dissimilarity measure. The spike is not pinched during the matching since in
the space of currents, it is negligible for the kernel metric.
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Curvature measures and normal cycles

Normal cycles find their roots in the seminal work of Federer [Federer, 1959], where
he provided a unified framework for curvature measures. Before 1959, curvature was
studied through two similar yet theoreticaly different formulas. The first one was
for convex bodies, where the Steiner formula expresses the volume of the ε-offset
of a convex set as a polynomial in ε ([Steiner, 1840]). Steiner defined generalized
curvature measures for convex sets as the coefficients of this polynomial. The same
formula was proved by Weyl for compact C 2 submanifolds using Riemannian cur-
vature tensor ([Weyl, 1939]). If the result is analogous the theory behind is very
different and each case does not contain the other one. It was an important step
forward when Federer introduced curvature measures for a generalized type of sets
which encompasses both the convex and the C 2-submanifold cases: sets with pos-
itive reach, that will be introduced in definition 2.31. The reach of a set X is the
smaller ε for which if a point x is such that d(x,X) ≤ ε, then x has a unique
projection on X.

In [Federer, 1959], Federer expresses the d-dimensional volume of the ε-offset for
a set X with positive reach R. If we denote Xε = {x ∈ Rd|d(x,X) ≤ ε} for ε ≤ R,
and PX the projection on X and if we consider Q a Borel set of Rd, then

Vol(Xr ∩ P−1
X (Q)) =

d∑

i=0

α(d− i)Ci(X;Q)rd−i, (4)

where α(i) is the i-volume of the i-dimensional unit ball. The Ck(X; .) can be
interpreted as generalized curvature measures on the set X. It can be striking at first
that the only hypothesis of positive reach for a set allows to consider its curvature,
although it is a second-order information. However, the existence of a positive reach
implies much more regularity than it may seem as we will see in proposition 2.37.
A fundamental example of such regularity is that for a set with positive reach,
one can define a generalization of normal vectors at point x, denoted Nor(x,X),
and thereafter of unit normal bundle, denoted NX : NX :=

{
(x, n)|x ∈ X,n ∈

Figure 5: In blue the ε-offset (or parallel body) of dark curve.
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Nor(x,X)∩Sd−1
}
. NX is an (d− 1)-dimensional set of Rd×Sd−1, independently of

the dimensionality of X. One should notice that this definition coincides with the
classical definition of unit normal bundle for a C 2 submanifold of Rd.

In [Zähle, 1986], Zähle showed that Federer’s curvature measures can be retrieved
by integrating adequate differential forms over the unit normal bundleNX associated
with X: this is exactly the normal cycle of X, that we will denote N(X). With the
vocabulary of geometric measure theory, a normal cycle of a set with positive reach
is rigorously the current associated with its unit normal bundle, N(X) = [NX ]. A
normal cycle is thus an element of Ωd−1

0 (Rd × Sd−1)′. If ω ∈ Ωd−1
0 (Rd × Sd−1), then

N(X)(ω) := [NX ](ω) =
∫

NX

〈ω(x, n)|τNX
(x, n)〉 dH d−1(x, n)

where τNX
(x, n) is the (d−1)-vector associated with a positively oriented, orthonor-

mal basis of T(x,n)NX , the tangent space of NX at (x, n). Zähle showed that there
exists explicit, universal differential forms (ωk)1≤k≤d−1 such that

Ck(X;B) = N(X)(ωkx1B×Sd−1).

These differential forms are called Lipschitz-Killing differential forms.

Representation of shapes with normal cycles

In this manuscript, we develop the representation of shapes with normal cycles
in the framework of computational anatomy, inspired by the previous work on
dissimilarity measure [Vaillant and Glaunès, 2005, Glaunès, 2005, Charon, 2013]
that we have recalled above. To a shape X, we associate its normal cycle N(X).
As previously said, the main advantage of the concepts of currents or varifolds is
that they encompass in the same framework both the continuous and discrete cases.
This is a nice feature since it provides an immediate and simple computational
setting to work with discrete curves or triangulated surfaces, coupled with strong
theoretical guarantees (e.g. convergence results of the discrete approximations
of a continuous shape). At first, the theory of normal cycles was only valid for
sets with positive reach. This is a limiting assumption since a shape as simple
as a unions of two segments has not positive reach. This prevents us for a
direct application of normal cycles in the case of discrete shapes. Hopefully, in
[Zähle, 1987, Rataj and Zähle, 2001], the authors extended the notion of normal
cycles for sets that are union of sets with positive reach, using an additive property
of normal cycles.

With all these shape representations used in computational anatomy, it is natural
to study the relations between them. An important step forward is made in this
manuscript, where we draw a precise link between the varifold µX and the normal
cycle N(X) associated with a submanifold X. We show that in some sense, µX
is a projection of N(X) that looses all the curvature informations. The projection
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operator is made explicit and this paves the way to a unification of the different
representations, as well as the associated metrics.

As we have seen above, normal cycles encode all the curvatures information
of a set with positive reach. This remains true for the generalization with dis-
crete shapes. In fact, normal cycles have already been applied to computa-
tional analysis of discrete surfaces to estimate curvature of surfaces approximations
[Cohen-Steiner and Morvan, 2003, Chazal et al., 2008, Morvan, 2008].

Kernel metrics on normal cycles

Once the representation of shapes with normal cycles is set for the continuous
and the discrete case, we focus on the metric that we can put on normal cycles.
For this, we follow the construction of kernel metrics on currents that was in-
troduced in [Vaillant and Glaunès, 2005, Glaunès, 2005]. A normal cycle being a
current (associated with a normal bundle), the construction is for the theoretical
part very similar: we define a Reproducing Kernel Hilbert Space W of differen-
tial forms, W →֒ Ωd−1

0 (Rd × Sd−1). Considering the dual applications, we have
Ωd−1

0 (Rd × Sd−1)′ ⊂ W ′, so that the space of currents Ωd−1
0 (Rd × Sd−1)′ (containing

the normal cycles) can be seen as a subset of a Hilbert space with an explicit scalar
product thanks to the kernel. For current, the kernel is classically a scalar kernel
kp : R

d ×Rd → R so that we retrieve the announced scalar product of equation (3):

〈[C], [S]〉W ′ =

∫

C

∫

S

kp(x, y) 〈τC(x), τS(y)〉 dH m(x)sH m(y).

With the same construction for normal cycles, this leads to a scalar kernel k :
(Rd × Sd−1)2 → R, generating a RKHS of differential forms W →֒ Ωd−1

0 (Rd × Sd−1)
such that

〈N(C), N(S)〉W ′ =

∫

NC

∫

NS

k
(
(x, u), (y, v)

)
〈τNC

(x, u), τNS
(y, v)〉 dH d−1(x, u)dH d−1(y, v).

The kernel k involves spatial points, x and y and normal points u and v. The “spatial
space” Rd and the “normal space” Sd−1 have different significations and should be
considered independently. That is why we choose k as a product of two kernels: a
spatial kernel kp : Rd × Rd → R and a normal kernel kn : Sd−1 × Sd−1 → R such
that k

(
(x, u), (y, v)

)
= kp(x, y)kn(u, v) and the scalar product between two normal

cycles writes:

〈N(C), N(S)〉W ′ =

∫

NC

∫

NS

kp(x, y)kn(u, v) 〈τNC
(x, u), τNS

(y, v)〉 dH d−1(x, u)dH d−1(y, v).

(5)
The spatial kernel kp has a similar role as in the scalar product for currents (see
equation (3)), and will mostly be a Gaussian kernel with width σW : kp(x, y) =
exp

(
− ‖x− y‖2 /σ2

W

)
. The choice of the normal kernel kn is driven by two con-

straints. The first one is that the kernel should provide a theoretical and inter-
pretable formulae, as it is for the Gaussian kernel on the spatial space. For example,
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given a specific kernel kn, will the associated metric on normal cycles be able to
retrieve curvatures information? This is not immediate, as we may choose coarse
kernels for efficiency reasons, such as the constant kernel kn(u, v) = 1. The second
constraint, probably the most important, is that the obtained metric should be cal-
culable and not too complex for discrete shapes (discrete curves and triangulation
meshes). Indeed, normal cycles are a more complex shape representation that im-
plies an increasing complexity of the metric. This was expected, as we encode more
information on the shapes. However, this should lead to a reasonable increase of the
calculation time of the distance. These two constraints are not necessarily jointly
achievable. A kernel as simple as a constant or linear kernel will give a metric that
is easier to compute, but will provide less theoretical guarantees. On the contrary,
a good candidate for scalar kernel on Sd−1 is a Sobolev kernel, associated with a
Sobolev space on the sphere Hs(Sd−1). This kernel provides a metric with strong
theoretical properties but we are not able to compute yet the scalar product for
triangulation meshes.

In this thesis, we develop kernel metrics on normal cycles with the use of three
normal kernel kn: Sobolev, constant and linear for curves. For surfaces, we study
mainly the constant and linear normal kernels.

As previously said, the Sobolev kernel is the one with the strongest theoretical
guarantees, as for example the universality of the associated RKHS of differential
forms W (see section 3.4). This property ensures that the norm on W ′ is a proper
metric on normal cycles. This is not obvious at first since the framework of RKHS
provides an embedding W →֒ Ωd−1

0 (Rd× Sd−1), but the dual application Ωd−1
0 (Rd×

Sd−1)′ → W ′ needs not be injective, resulting in a pseudo-metric only.

For the computational aspect, using an expansion in spherical harmonics, we
are able to provide an explicit metric on discrete curves with this kernel, but not
for triangulation meshes. That is why we introduced simpler kernels such as the
constant kernel (kn(u, v) = 1) or the linear kernel (kn(u, v) = 〈u, v〉). They have the
advantage to be easier to compute in the discrete case, although the computation are
still involved for the linear kernel on triangulated meshes. At first, those two kernels
may seem too simple to have interesting properties. However, we are able to show
exactly to what extend second order information are encoded by the corresponding
metric. For example, in the case of surfaces, the metric on normal cycle with constant
normal kernel contains information associated with the mean curvature, whereas the
metric with linear normal kernel contains information associated with the Gaussian
curvature of the surfaces. An interesting and interpretable metric is then a metric
associated with the sum of the constant and linear kernel: kn(u, v) = 1 + 〈u, v〉.
It is noteworthy that up to a multiplicative constant, the sum of the constant and
linear normal kernels can be interpreted as a truncation at order 1 of the spherical
harmonics expansion of the Sobolev normal kernel.

Metrics with constant or linear kernels or the sum of the two kernels will be the
main studied metric in the applications.
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Computing the metric with discrete shapes

At this point, we have designed a dissimilarity measure between shapes that con-
tains specific curvatures information and which are valid for continuous and discrete
shapes. To apply this distance as a data-attachment term in the setting of compu-
tational anatomy, the next step is to explicit and implement the distance on discrete
shapes as unions of segments and triangulated meshes (as well as the gradient of the
distance for a minimization purpose). We provide in this manuscript the computa-
tion of the distance for discrete curves with the constant, the linear and the Sobolev
normal kernel, and for discrete surfaces with constant kernel, and a truncation with
the linear normal kernel. The scalar product between normal cycles involves inte-
grations over sets associated with the triangles, the edges and the vertices of the
discrete surfaces. To improve the calculation times, we compute an approximation
of the integration over the sets associated with the edges and the triangles. This
approximation is similar to the one of currents on discrete curves or surfaces. For
the sets associated with vertices however, we cannot approximate the integration.
Indeed, for triangulation meshes, this quantity is closely related to the angle of the
triangles and for now we have not interesting approximation with convergence result
when the size of the meshes goes to 0. This is the main reason why we compute
explicitly this part of the scalar product, and this is the limiting aspect to explicit
the metric on triangulated meshes.

In each case, the gradient is also computed, and we compare the complexity of
the obtained distance with the metrics on currents or varifolds. We observe that
the higher order representation with normal cycles leads to more intricate formulas.
However, the complexity remains similar to currents or varifolds (i.e. basically a
double loop on the faces of the discrete shapes), even though each step of the loop
involves two or three times more computations. The main difference with currents
and varifolds is that for the latter, each step of the double loop necessitates a single
evaluation of the kernels at the barycenters of the triangles, whereas for the metric
on normal cycles, it involves also the edges and the vertices of the triangles.

Registration and Atlas estimation with normal cycles

In concrete applications, this inexact registration problem will be discretized: the
shapes C and S will be unions of segments or triangulated meshes, which means that
they are encoded by a set of vertices and a connectivity matrix that specifies the
link between the vertices. Using approximation on normal cycles for the dissimilarity
part, we are able to express the data-attachment term

∥∥N
(
ϕv1(C)

)
−N(S)

∥∥2
W ′ as a

function of the vertices only. Also, to simplify the computation, we suppose that the
deformations act on the vertices only, leaving a rigid meshes for the discrete shapes.
With the Riemannian framework of GV , and the previous approximation, one can
show that the optimal deformation of (2) is generated by a time-varying vector field
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vt that takes explicit expression with the kernel KV : Rd × Rd → R:

vt(x) =
n∑

i=1

KV (x, xi,t)pi,t

where the (xi,t)1≤i≤n ∈ (Rd)n are the positions at time t of the discretization points,
and the (pi,t)1≤i≤n ∈ (Rd)n are auxiliary variables, called momenta. Moreover, as it
may be expected in a Riemannian setting, the energy of the optimal path (vt)0≤t≤1

is constant: ∀t ∈ [0, 1], ‖vt‖2V = ‖v0‖2V =
∑n

i,j=1 p
T
j,0KV (xi,0, xj,0)pi,0 and finally, the

optimal deformation ϕv1 depends only on the initial positions of the discretization
points (xi)1≤i≤n that are fixed, and on the initial momenta (pi)1≤i≤n. Starting from
this initialization (xi, pi)1≤i≤n, one can retrieve all the trajectory of the path through
coupled differential equations that are called geodesic equations:





∂xi,t
∂t

=
n∑

j=1

KV (xi,t, xj,t)pj,t

∂pi,t
∂t

= −
n∑

j=1

∇1

(
pTi,tKV (xi,t, xj,t)pj,t

)

Eventually, the inexact registration problem for discrete shapes can be written as a
function of the initial momenta only, and if we denote ϕp1 the obtained deformation
at time 1, starting with the initial momenta p = (pi)1≤i≤n, we obtain the next
registration problem:

arg min
(pi)1≤i≤N∈(Rd)N

N∑

i,j=1

piKV (x, x)p
T
j + g

(
ϕp1((xk)1≤k≤N)

)
. (6)

It can be solved with a geodesic shooting (to evaluate the functional, as well as its
gradient, see [Arguillère et al., 2015] and section 1.4), and coupled with adequate
minimization procedure. In this thesis we present examples of registrations for
surfaces with a large number of points (around 10 000) in reasonable time (from 1
to 3 hours).

In this manuscript, a full chapter (Chapter 4) focuses on experimental results
of registrations with normal cycles; and comparison with currents and varifolds
are made. The chosen examples show different properties of the metric on normal
cycles for an applicative purpose that may be an indication for future use. For
example, on the contrary to currents or varifolds, normal cycles are sensitive to
the boundaries of the shapes or to branching points. For a registration purpose,
the obtained matching takes into account the boundaries in a much more natural
way than varifolds or currents, and leads to a smoother deformation. One of the
consequences of this sensitivity is that normal cycles see topology changes. This can
be an advantage or a drawback depending on the certainty we have on the data.
Another property that was expected is that the metric on normal cycles is sensitive
to high curvature points, with as a result, more precise registrations, but also poor
behaviour when it comes to noisy data.
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The last part of Chapter 4 is a preliminary work on atlas estimation with normal
cycles. The aim of atlas estimation is, given a dataset of shapes, to provide a “mean
shape”, as well as deformations from the mean shape to the target shapes of the
dataset. This is the heart of the applicative side of computational anatomy, since
it allows to perform statistical analysis of a dataset of shapes, and a lot of works
have been done on different datasets of shapes or functional shapes (see for example
[Durrleman et al., 2013, Charon, 2013, Charlier et al., 2015b, Lee et al., 2017b]). In
this manuscript however, we focus only on the atlas estimation, the statistical anal-
ysis on a relevant dataset is postponed for future work. The first results provided
in this thesis are promising and indicate benefits of the use of normal cycles.

Organization of the manuscript and contributions of

this work

The work presented in this thesis has led to several publications: one in
a journal (published, [Roussillon and Glaunès, 2016]) and two proceeding pa-
pers (one published [Roussillon and Glaunès, 2015], one accepted for publication
[Roussillon and Glaunès, 2017] ). The materiel of these works are included in Chap-
ters 2 to 4. This manuscript is composed of four chapters.

Chapter 1

This chapter is a review on shape analysis as introduced by d’Arcy Thompson
[Thompson, 1917], and formalized by Greenander [Grenander and Miller, 1998]. We
recall the main considerations for the mathematical setting of shape analysis, and in-
sist on the field of Large Deformations Diffeomorphic Metric Mapping in section 1.2.
The construction of the group of deformations is recalled, as well as the geodesic
equation governing optimal path. The inexact registration framework is tackled in
section 1.3 in the general case, as well as the computational aspects in section 1.4.
The reader familiar with LDDMM and shape analysis can go straight to Chapter 2.

Chapter 2

Chapter 2 is where the shape representation with normal cycles is introduced. After
a brief recall of the necessary notions of differential forms and rectifiable sets in
section 2.1 and section 2.2, we review the currents and varifolds representation of
shapes, as well as their properties and discrete implementations in section 2.3. The
theory of normal cycles is fully detailed in section 2.4, starting with the description
of the unit normal bundle of a set with positive reach, and its associated normal
cycles and extending the definition to union of sets with positive reach which en-
compasses the case of discrete shapes. The normal cycles of union of segments and
triangulation meshes are detailed, as well as some approximations that will prove
useful for numerical implementations. In section 2.5, we study precisely to what
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extend normal cycles encode curvatures information of the shapes, as it was made
explicit by Zähle in [Zähle, 1986]. Introducing specific spaces of differential forms
in Rd × Sd−1, we are able to interpret unsigned curvature informations as infinity
norms on these spaces. Finally, section 2.6 draws a precise link between the shape
representation with varifolds and with normal cycles. We prove that the varifold
of a smooth submanifold is, in a specified sense, the projection of the normal cycle
associated with this submanifold. This projection operator loses all the curvature
informations contained in the normal cycle.

Chapter 3

In Chapter 3, we introduce kernel metrics on normal cycles. Section 3.1 is a re-
minder of the theory of vector-valued reproducing Hilbert spaces, as well as possible
ways to define interesting kernels that generate Reproducing Kernel Hilbert Space.
Section 3.2 and section 3.3 are based on this reminder. Section 3.2 reviews the con-
struction of kernel metrics on the spaces of currents and varifolds, and their discrete
expression. In section 3.3, we define a kernel metric on normal cycles, using a scalar
kernel k that is a product of two kernels: a spatial kernel kp and a normal kn. The
properties of the metrics, depending on the choice of the kernel is studied in sec-
tions 3.4 and 3.5, notably the kind of curvature that is encoded with the constant
and linear normal kernels. After proving a convergence result for discrete approxi-
mations of a continuous shape in section 3.6, the scalar product for discrete shapes
is expressed in section 3.7. One can find the details of the calculus in Appendices A
to C.

Chapter 4

This chapter presents experimental results of curves and surfaces registrations, as
well as first results of atlas estimations for curves and surfaces. In section 4.1, we
recall the theoretical and computational framework for shape registration. We prove
the existence of a minimizer for the inexact matching problem with normal cycles
and detail the numerical implementation for our applications. Subsection 4.1.4 and
subsection 4.1.5 provide several examples of shape registrations with normal cycles.
We show the different specificities of the matching with normal cycles, such as the
consideration of the extremities or branching points, and the registration of regions
with high curvature. We compare the results with other dissimilarity metrics, and
we study the computational time. In section 4.2, we fit our data-attachment term
in the framework of atlas estimation, i.e. a mean shape given a dataset of shapes,
as well as the associated set of optimal deformations. We prove the existence of an
atlas for the forward scheme with hypertemplate as used in [Charlier et al., 2015b]
and provide examples with sets of curves or surfaces.
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Chapter 1. Computational Anatomy

In the past decades, computational anatomy has gained a growing interest: the
development of new acquisition technologies induces an ongoing increase in the num-
ber of biological structures that can be imaged, as well as in the number of subjects
for each structure. The size of the database prevents from a manual analysis and
requires an automatized method. These new technologies facilitate the setting of
databases of a given anatomical structure that are almost representative of the
population variability. A statistical analysis would make possible the detection of
anatomical abnormalities and would pave the way to an early diagnosis for diseases
that cause or are caused by anatomical degradation. If the problematic is clear, it
raises nonetheless a lot of difficulties. First of all the data range at stake is very large
and can be as different as images (MRI, X-rays, . . . ), 3D meshes (triangulations,
volumetric meshes, . . . ), tensors (Diffusion Tensor Imaging), fiber sets, geometrico-
functional structures (functional MRI for example) and so on. This variety has to
be kept in mind for modelling issues. Another difficulty concerns the problematic
itself and can be summed up in the following question: how to provide a math-
ematical framework that allows for relevant statistical analysis of shapes dataset?
In computational anatomy, the analysis of shapes variability is not based on the
shapes themselves but made through the deformations that map one shape to an-
other. Hence, the major modelling effort is transferred to the construction of a set
of deformations that will play the role of the “measure” of variability. Precisely, the
group of deformations is endowed with a (sub-)Riemannian structure that induces a
metric on shapes. A shape is then considered as an element of a (possibly infinite di-
mensional) manifold with a Riemannian structure. The Riemannian framework fits
well with the problematic of shapes analysis: geodesic between shapes illustrates the
deformation from one shape to another and the tangential setting provides efficient
statistical tools for the dataset analysis.

In section 1.1, we briefly overview the different approach for shape analy-
sis, and the mathematical embedding that allows to represent shapes in a struc-
tured set. An important part of this section focuses on Grenander’s approach
[Grenander and Miller, 1998] which is the analysis of shapes through deformations.
Section 1.2 focuses on the specific field of Large Deformation Diffeomorphic Metric
Mapping [Beg et al., 2005], [Miller et al., 2006]: the group of deformations is con-
structed from the integration of time-varying vector fields living in a Hilbert space.
It provides a Riemannian framework for deformations and the metric depends on
the Hilbertian norm.

For applications, the exact registration between two shapes is not appropriate: it
would implies too many constraints on the deformations and would make the match-
ing sensitive to noise. To overcome this and perform inexact registrations, one needs
a residual distance between a deformed shape and its target. This problematic is
briefly overviewed in section 1.3. It raises the problem of shape representation: we
need to embed the shapes in a space with an explicit distance. This space should
compensate for all the variability that is not taken into account with the model of
deformations. The use of currents and varifolds have been introduced in computa-
tional anatomy for this purpose. This will be studied more specifically in Chapter 2
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1.1. Shape Analysis

Figure 1.1: From D’Arcy Thompson’s work. The variability of a fishes population is
explained through geometrical transformations of the ambient space. The transformation
is represented via the deformed grid.

and Chapter 3, where we introduce also a new dissimilarity measures using kernel
metrics on normal cycles. Section 1.4 focuses on the computational framework: what
are the available algorithms to perform inexact registration between two discretized
shapes in concrete applications ?

1.1 Shape Analysis

The notion of shape may reference a set of labelled or unlabelled points, a curve, a
surface, an image, a volumetric mesh, among other possible. In fact, the definition
of shape varies with the applications in mind and we are not interested in the
shape itself, but rather in its variability across the dataset. A first idea for shape
analysis could be to extract relevant numerical indicators from each shape of the
dataset (for example the volume, the diameter, the length of specific parts, etc)
and apply a post process on these figures. However, it is obvious that using the
whole geometrical information of shapes would improve the analysis. This remark
leaves the mathematician with the hard task of designing a framework to consider
shapes with all the interesting geometrical features and that allows for a statistical
analysis...
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1.1.1 A foundational example: Kendall’s triangles

Probably the first step forward in the mathematical analysis of shapes is the pioneer
work of Kendall. In [Kendall, 1984], the author focuses on the configurations of
labelled k-points in Rm, namely (Rm)k. His definition of shapes is the following:

“We here define ‘shape’ informally to be ‘what is left when the differences which
can be attributed to translations, rotations and dilatations have been quotiented
out.’”

This means that Kendall is interested in the global shape of the configuration or
in other words in the configuration of k points up to isometries of Rm. Since we are
looking only at the relative position of the k-points, one can suppose that they are
centered in their centroid. This reduces the degree of freedom and we can work on
Rm(k−1). The space of interest, that we will call “shape space” is then the quotient
space

Σk
m =

(
Rm(k−1) \ {0}

)
�Sim(Rm).

where Sim(Rm) is the set of all the rotations and dilatations. The quotient topology
is a natural topology on Σk

m. In order to describe this quotient topology, it is easier to
normalize the data first: if z = (z1, . . . zk−1) ∈ Rm(k−1), we consider z

‖z‖ ∈ Sm(k−1)−1

where ‖.‖ is the Euclidean norm. For convenience, we will represent an element
z/ ‖z‖ ∈ Sm(k−1)−1 as a matrix W ∈ Mm,k−1(R), each column being a point of the
configuration in Rm. The fact that z/ ‖z‖ ∈ Sm(k−1)−1 implies that tr(WW T ) = 1.

Normalizing the data is equivalent to quotienting Rm(k−1) by the dilatations, and
the quotient topology on Sm(k−1)−1 is the classical topology on the sphere, given by
the metric d(W1,W2) = arccos

(
tr(W1W2)

)
(this is the Riemannian metric on the

sphere). We are then left to quotient this sphere by the rotations of Rm, SO(m).
We denote p the projection from Sm(k−1)−1 to Sm(k−1)−1�SO(m) = Σk

m. This is an
easy verification that the metric d is invariant by left composition with a rotation
of Rm, namely if R ∈ SO(m),

d(RW1, RW2) = d(W1,W2).

This invariance implies that

ρ(pW1, pW2) := inf
R∈SO(m)

d(RW1,W2) (1.1)

is a metric on Σk
m that defines the same topology as the quotient topology.

Let sum up the process. We started with a metric set (X, d) (here Sm(k−1)−1)
and a group G that acts on X (here SO(m)) and such that the metric is left or
right invariant. Then under some conditions on the topology of the orbit, we can
“descend” the metric d on a metric ρ on X�G: ρ([x1], [x2]) = infg∈G d(gx1, x2). This
is a classical construction to get rid of all the transformations that we do not want
to be taken into account.
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1.1. Shape Analysis

Figure 1.2: Kendall’s representation of triangles: the class of triangles up to translations,
rotations and dilatations is isometric to the sphere S2(1/2). The geodesics on the sphere
give geodesics on Σ3

2 and one can follow the deformation between to triangles along the
geodesic.

In the case m = 2, Kendall notices that Σk
2 is a Riemannian manifold and the

metric ρ is explicit (see section 3 of [Kendall, 1984]). All this becomes even simpler
in the specific case of triangles in R2, namely Σ3

2: Kendall showed that Σ3
2 is isometric

to the 2-dimensional sphere of radius 1/2. This framework provides a representation
of triangles (up to translations, rotations and dilatations) in a space as simple as a
sphere endowed with its classical Riemannian metric. To each class of a triangles
corresponds a point on the sphere S2(1/2) (see figure 1.2).

This framework, besides its simplicity, suffers from several drawbacks. First of
all, the shapes we are working with are labelled points. In concrete applications,
this means that we have performed a pre-process to label the points, which is often
a manual procedure prone to errors or imprecisions. Moreover, the Riemannian
metric on Σk

2 comes from a Euclidean metric. Hence, even though one shape is
obtained through a small non linear deformation of another shape, the metric will
not account for this proximity. These limitations are a motivation to go deeper in
the construction of shape spaces with interesting features for shape analysis.

1.1.2 Shape spaces and group of deformations

The previous example of Kendall’s shape spaces is an intrinsic way of defining
a shape space, with a Riemannian metric that we can call an inner metric: the
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Chapter 1. Computational Anatomy

shapes variability is measured directly on the shape manifold. This term is not a
standardized mathematical notion but is to distinguish with the outer metric that
we will see right now.

With so called outer metric, the difference between two shapes is “measured”
through deformations of the ambient space: how complex is a deformation to
match one shape to another. Thus, the quantification of the variability is made
on a group of transformations acting on shapes rather than on shapes themselves.
This concept is close to D’Arcy Thompson’s one and it was fully formalized by
Grenander [Grenander and Miller, 1998]. The following briefly summarizes the
setting.

In this approach, we consider a set M , called “the shape space” constituted of
“shapes” living in Rd and on which a group G of transformations of Rd acts on the
left. This is a generic situation that encompasses various examples as points, images,
curves, surfaces, etc. Besides, we suppose that M is a homogeneous space under the
action of G, or in other words that the action is transitive:

∀m0,m1 ∈M, ∃g ∈ G | g.m0 = m1

In a modelling point of view, this means that the complexity of the deformations of
G is enough to explain all the shape variability in M . This may seem as a strong
assumption. However, the motivation behind is rather the following: the variation
observed across a set of shapes is the result of multitude of deformations of an “ideal
shape” m0. m0 contains all the typical features of the set of shapes, and the shape
space M is the orbit of m0 under the action of G, which means that G.m0 = M .
m0 is often called the template.

Let us now give example of classical shape spaces, as well as the description of
the action of G.

Example 1.1 (Landmarks). We define Ln(Rd) :=
{
(x1, . . . , xn) ∈ (Rd)n | ∀i 6=

j, xi 6= xj
}
. This is the set of n-labelled points in Rd. The group of diffeomorphisms

G = Diff(Rd) acts on the left on Ln(Rd): for every m = (x1, . . . xn) ∈ Ln(Rd),
ϕ ∈ G,

ϕ.m := (ϕ(x1), . . . , ϕ(xn)).

For d ≥ 2, the action is transitive and Ln(Rd) is a shape space as previously
defined.

Example 1.2 (Images). Another classical example of shape space is the set of con-
tinuous images of Rd. Consider Ω a domain of Rd and the space L2(Ω,R). The
group G = Diff(Ω) acts on the left on L2(Ω,R) as follow:

∀I ∈ L2(Ω,R), ϕ ∈ G, ϕ.I := I ◦ ϕ−1.

Note that the set I(Ω) remains unchanged under this action. This obviously prevents
the action from being transitive. However, the set M = G.I0 is a shape space as
previously defined.
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This formal approach becomes fruitful when one sets a structure on the group G.
Suppose that G is endowed with a right invariant metric dG and consider a shape
spaceM that is the orbit of a templatem0, i.e. M = G.m0. We denote StabG(m0) :={
g ∈ G|g.m0 = m0

}
the stabilizer (or isotropy group) of m0. To construct a distance

on M from the distance on G, we start with the classical identification between the
homogeneous space M to G/StabG(m0): an element [g] ∈ G/StabG(m0) is uniquely
associated with g.m0 ∈M . On G/StabG(m0), we define

dG/StabG(m0)([g1], [g2]) := inf
g∈[g1]
g′∈[g2]

dG(g, g
′).

Now if m1,m2 ∈ M and g1, g2 ∈ G such that g1.m0 = m1, g2.m0 = m2, then we
define on M

dM(m1,m0) := dG/StabG(m0)([g1], [g2]) = inf
g.m0=m1

g′.m0=m2

dG(g, g
′).

Using the right invariance of the metric on G, we get:

dM(m1,m0) = inf
g∈G

g.m1=m2

dG(Id, g).

dM is thus a natural candidate to provide a metric on M . Moreover, it has a simple
interpretation: given two shapes m1 and m2, we consider the “optimal” deformation
g, that is the one closest to the identity of G. The next theorem justifies the above
construction of dM .

Theorem 1.3 ([Younès, 2010], chapter 12). Suppose that dG is a right-invariant
metric on G, i.e.

∀g, g0, g1 ∈ G, dG(g0.g, g1.g) = dG(g0, g1),

and M is a homogeneous space under the action of G. Then dM defines a pseudo-
distance on M . Besides, if StabG(m0) is closed for the topology induced by dG, then
dM is a proper distance.

Hence, the metric on G “descends” to a metric on M and allows for shapes
comparison. This is the starting point for computational anatomy. The next step is
thus to construct the group of deformationG and this will be seen in the next section.

Let us just remark that not all shape spaces in the active research field are
based on the action of a group of geometrical transformations. For example in an
overview of shape spaces, [Bauer et al., 2013], the authors study the shape spaces of
geometrical closed curves in R2. They start considering Imm([0, 2π],R2), the space
of parametrized closed curves c : [0, 2π] → R2 with ∀t ∈ [0, 2π], |c′(t)| 6= 0. One
can show that TcImm([0, 2π],R2) = C ∞([0, 2π],R2). A classical (weak-)Riemannian
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metric on this space is the L2 metric: at point c ∈ Imm([0, 2π],R2), the local metric
Gc is defined as:

Gc(h, k) =

∫ 2π

0

〈h(θ), k(θ)〉 |c′(θ)|dθ, ∀h, k ∈ TcImm([0, 2π],R2).

Of course the assumption of parametrized curves is not suited for shape analysis.
To get a parametrization-free framework, they quotiented out this space by the
group of re-parametrizations, namely Diff([0, 2π]), the space of diffeomorphisms of
[0, 2π]. The L2 metric is right invariant under the action of Diff([0, 2π]) and descends
to a metric on Bi([0, 2π],R

2) := Imm([0, 2π],R2)/Diff([0, 2π]). This metric suffers
from a major drawback: the geodesic distance between two curves vanishes. This
means that one can link two elements of Bi([0, 2π],R

2) with a path of arbitrary
small length. To overcome this issue, stronger metrics can be endowed in the initial
space Imm([0, 2π],R2) as Sobolev metrics and are studied in sections 5 and 6 of
[Bauer et al., 2013], see also [Trouvé and Younes, 2011], 30.3.4.

1.2 Large Deformations

The previous section focused on the formalism of shape analysis through defor-
mations. In this section we tackle the construction of the group of deformations.
This is an active research field with different approaches. Let us first consider the
simpler case where the deformations are obtained through displacement fields.

A major contribution in the domain of shapes comparison was addressed by
Bookstein, [Bookstein, 1989]. In this paper, the author focuses on the interpolation
between landmark displacements: given two sets of labelled points (x1, . . . , xn) ∈
(R2)n, (y1, . . . , yn) ∈ (R2)n, the aim is to find a vector field of displacement v such
that

xi + v(xi) = yi, for every 1 ≤ i ≤ n. (1.2)

Of course, with no more assumption the problem is ill-posed. A classical way to
solve this is to constrain the problem by introducing an energy associated with
vector fields. The chosen vector field will be the one that fulfils (1.2) and that
minimizes the energy. In this spirit, Bookstein introduced a bending energy of a
vector field v, which corresponds to the energy needed to bend a thin plate by
a displacement v. This framework is in fact inspired by the Thin Plate Spline
(TPS) theory developed by Duchon and Meinguet ([Duchon, 1976, Duchon, 1977,
Meinguet, 1979, Meinguet, 1984]). The optimal vector field v0 has a closed form
thanks to the radial kernel k(r) = r2 log r2 (k is the green function of the biharmonic
equation ∆2u = 0, i.e. ∆2k = δ(0,0)). The total deformation of the ambient space is
then ϕ = Id + v0.

The pros of this construction is that the cost of an affine transformation is
zero, thus the TPS perform a “free” rigid registration. Moreover, it gives an
explicit pseudo-metric on the space of landmarks that allows for a statistical
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analysis. It has been successfully applied in medical imaging [Sprengel et al., 1996]
or for fingerprints comparison [Bazen and Gerez, 2003]. However, some drawbacks
prevent this method for an extensive application in computational anatomy. First
of all, this framework is valid only when shapes are landmarks, which means
labelled points. Most of the time, this labelling is made manually and is subject
to errors. Moreover, the total deformation ϕ needs not be diffeomorphic: foldings
may appear, which is a concern for applications.

The fact that the global deformation is not diffeomorphic is not specific to the
TPS model. In the case of image registration, Thirion [Thirion, 1998] developed
an algorithm inspired by a diffusion process. The registration is obtained with a
displacement field as for TPS and it is diffeomorphic only for small deformations. In
[Vercauteren et al., 2009], the authors introduced a diffeomorphic variation of this
algorithm.

The advantage of diffeomorphisms is that the transformation is one-to-one, and
preserve the structure of the shapes: the image of a surface is still a surface and more
generally the differential structures of the shapes are maintained. In the following,
we will overview the construction of a set G of deformations that is a subgroup of
the group of diffeomorphisms. This framework in the one of Large Deformations
Diffeomorphic Metric Mapping (LDDMM). Starting with a Hilbert space of vector
fields V , we consider all the diffeomorphisms flows of time varying vector fields.
The generated diffeomorphisms form a group G, with a right-invariant Riemannian
metric given by the Hilbertian norm of V . V can be seen as the tangent space of
G at the identity and its norm represent the cost of infinitesimal displacements.
This setting is drawn from mathematical mechanics where the flow of the time
varying vector fields represents the evolution of particles along a force field (see for
example [Arnold, 1989]). It was introduced in computational anatomy in the nineties
([Trouvé, 1995, Christensen et al., 1996, Dupuis et al., 1998, Trouvé, 1998]).

One should notice that other construction of groups of transforma-
tions could have been chosen, as for example conformal transformations,
[Sharon and Mumford, 2006]. However, in this manuscript we will restrict ourselves
to the framework of LDDMM.

1.2.1 Group of diffeomorphisms as flows of time varying vec-

tor fields

The original idea of LDDMM is inspired by fluid mechanics: if we consider the
evolution of particles along a time varying velocity field, the resulting deformation
at time one of the system will be obtained by integrating this vector field. And we
can defined an energy of this deformation: the integration of the infinitesimal cost
of displacement.

It is possible to write it in a more formal way: let V be a continuous embedding
onto C 1

0 (R
d,Rd) (we write it V →֒ C 1

0 (R
d,Rd)) and suppose that V is a Hilbert space

of vector fields (e.g. a Sobolev space), whose norm ‖.‖V represents the infinitesimal
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cost of displacement. We define L2
V =

{
(vt)0≤t≤1 ∈ V [0,1]|

∫ 1

0
‖vt‖2V dt < +∞

}
, the

set of all time-varying vector fields with finite energy (with respect to the norm on
V ). We define GV := {ϕv1, v ∈ L2

V } with




∂ϕvt
∂t

= vt ◦ ϕvt
ϕ0 = Id

(1.3)

which means that we consider deformations at time one, with finite energy.
All this construction has been widely detailed for example in [Beg et al., 2005],
[Younès, 2010], Chap. 8. and following. The spatial regularity of the elements
of V implies nice structure for the set GV :

Theorem 1.4 ([Dupuis et al., 1998, Trouvé, 1995]). GV is a group of diffeomor-
phisms.

By diffeomorphism we mean an application ϕ : Rd → Rd with a given regularity
(C 1 or C ∞ for example) such that ϕ is invertible and ϕ−1 has the same regularity
as ϕ.

The question is now how to endow a metric on GV from the norm on V ? Let us
first remark that we are interested in the relative configuration of the shapes only,
which means that we consider right-invariant metrics on GV . If d is such a metric,
and g, g′ ∈ GV , we have:

d(g, g′) = d(gg−1, g′g−1) = d(Id, g′g−1)

and we are left to design the distance from the identity only. As said previously,
the norm on V can be seen as the cost of an infinitesimal displacement. Thus it is
natural to consider that the energy of v ∈ L2

V , namely
∫ 1

0
‖vt‖2V dt is the cost of the

global deformation ϕv1. We define

dGV
(Id, ϕ) := inf

v∈L2
V

{(∫ 1

0

‖vt‖2V dt
)1/2 ∣∣∣ ϕv1 := ϕ

}
(1.4)

where ϕv1 is obtained through integration of (1.3). We extend dGV
to a right invariant

distance on whole GV via:

dGV
(ϕ, ϕ′) := dGV

(Id, ϕ′ ◦ ϕ−1) = inf
v∈L2

V

{(∫ 1

0

‖vt‖2V dt
)1/2 ∣∣∣ ϕ′ = ϕv1 ◦ ϕ

}

Theorem 1.5 ([Trouvé, 1995]). dGV
is a metric on GV . (GV , dGV

) is complete.

One can show that the distance between two diffeomorphisms of GV is attained
for a v ∈ L2

V ([Younès, 2010], chapter 8). For such an optimal v, the norm ‖vt‖V is
constant along the path t 7→ ‖vt‖V : ∀t ∈ [0, 1], ‖vt‖V = ‖v0‖V . dGV

can be inter-
preted as a geodesic distance: given two diffeomorphisms ϕ, ϕ′ of GV , the distance
dG(ϕ, ϕ

′) is associated with an optimal path (ϕvt )0≤t≤1 that minimizes the energy∫ 1

0
‖vt‖2V dt.
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Remark 1.6. The structure on GV is close to a Lie group structure, with V =
TIdGV that would be a Lie algebra. However, the infinite dimensional framework
is intricate. In [Bauer et al., 2013], section 7, the authors show that Diff∞

c (Rd) :=(
Id +C ∞

c (Rd)
)
∩Diff∞(Rd), modelled on the Fréchet space C ∞

c (Rd) is a Lie group,

but this is not the case for GV . In fact, the composition and the inverse operations
need not to be smooth on GV .

In [Bruveris and Vialard, 2014], the authors study the properties of the group of
diffeomophisms DiffHs(Rd) =

{
ϕ ∈ Id + Hs(Rd), ϕ ∈ DiffC 1

}
where Hs(Rd) is the

Sobolev space of degree s, for s > d/2 + 1. Among others, they show that GHs(Rd) =
DiffHs(Rd), which means that with the construction of the group of diffeomorphisms
through integration of a time varying vector field living in Hs(Rd), we retrieve all
the Sobolev-diffeomorphisms.

Now, we set this framework in the one of shape analysis: consider a shape
m0 living in Rd, and GV acting on m0, generating an orbit M = GV .m0. With
theorem 1.3, the distance on GV induces a distance on M :

dM(m,m′) = inf
v∈L2

V

{∫ 1

0

‖vt‖2V dt
∣∣∣ ϕv1.m = m′

}
.

For a computational anatomy purpose, it is necessary to find the optimal deforma-
tion ϕv1 (which exists) that matches the two shapes m and m′. Or put another way,
to find the geodesic path between m and m′. This problem can be seen as an optimal
control problem: 




min
v∈L2([0,1],V )

J(v) :=

∫ 1

0

‖vt‖2V dt

∂(ϕvt .m)

∂t
= (vt ◦ ϕvt ).m

ϕv1.m = m′, ϕv0 = Id

(1.5)

This equation corresponds to a geodesic path projected on the shape space.

1.2.2 Geodesic equations

The problem (1.5) is to find the geodesic path between two shapes m and m′. In
this section we express the geodesic equations that govern the optimal path. To
simplify the presentation, we will only consider the case of landmarks, i.e. M =
(Rd)n. This case is not so restrictive. Indeed, every numerical implementation deals
with discretized shapes, represented as a finite number of points (and possibly a
connectivity matrix for meshes) and the optimal trajectories of these points will
follow geodesic equations for landmarks.

Suppose that we want to express the geodesic equations between m =
(x0, . . . , xn) and m′ = (y0, . . . , yn). Problem (1.5) reformulates:
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min
v∈L2([0,1],V )

J(v) :=

∫ 1

0

‖vt‖2V dt

ẋi,t = vt(xi,t), 1 ≤ i ≤ n,

xi,1 = yi, 1 ≤ i ≤ n

(1.6)

It is a priori an infinite dimensional optimization problem. However, it simplifies
greatly when considering the properties of the Hilbert space V of vector fields. We
recall that V is an admissible Hilbert space of vector fields, which means that we
have a continuous embedding V →֒ C 1

0 (R
d,Rd). If so, one can show that V is a

Reproducing Kernel Hilbert Space (RKHS) (see [Micheli and Glaunès, 2014]). We
will study with more details this notion in Chapter 3. Let us summarize the main
properties of the RKHS here. There exists a kernel KV : Rd × Rd → L(Rd) where
L(Rd) is the space of linear applications of Rd, and such that

– ∀x, α ∈ Rd, y 7→ KV (y, x)α ∈ V,
– ∀x, y ∈ Rd, KV (x, y) = KV (y, x),

– ∀x1, . . . , xn ∈ Rd, α1, . . . αn ∈ Rd,

n∑

i=1

αTj KV (xj, xi)αi,≥ 0,

– ∀x, y, α, β ∈ Rd, 〈KV (., x)α,KV (., y)β〉V = βTKV (y, x)α,

– V = Span

{
KV (., x)α, x, α ∈ Rd

}
for the norm ‖.‖V .

The emergence of this RKHS simplifies the computations of the geodesic equa-
tions. In fact, one can show ([Glaunès, 2005]) that in the case of landmarks, an
optimal vector field takes the form:

vt =
n∑

j=1

KV (., xj,t)pj,t (1.7)

where xj,t are the current positions at time t of the landmarks, and the pj,t are aux-
iliary variables and are called momenta. Both xi,t and pi,t follow explicit equations
that are the geodesic equations [Miller et al., 2006]:

{
ẋi,t = vt(xi,t)

ṗi,t = −
(
dvt(xi,t)

)T
pi,t.

(1.8)

with vt as in (1.7). In term of kernel, the previous expression writes:





ẋi,t =
n∑

j=1

KV (xi,t, xj,t)pj,t

ṗi,t = −
( n∑

j=1

d1(KV (xi,t, xj,t)pj,t)

)T
pi,t.

(1.9)
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with d1(KV (x, xj,t)pj,t) the differential at x of the application y 7→ KV (y, xj,t)pj,t.
We see here that the geodesic equations are explicit through the kernel KV and its
derivative.

The previous equations are obtained through the Euler-Lagrange equation that
characterize the extremal paths of (1.5) (see [Arnold, 1989] for the study of the
Euler-Lagrange equation in the framework of classical mechanics). A Hamiltonian
formalism is possible, that focuses on the conserved quantities of the system. In our
situation one can introduce the reduced Hamiltonian:

Hr(q, p) =
n∑

i,j=1

pTi KV (xi, xj)pj.

where q = (x1, . . . , xn) and p = (p1, . . . , pn). On geodesic path, Hr is constant, and
equals the energy of the initial velocity field v0. In this formalism, the geodesic
equations writes 




q̇(t) =
∂Hr

∂p
(q(t), p(t))

ṗ(t) = −∂Hr

∂q
(q(t), p(t)).

This is an ordinary differential equation and as one could expect, the geodesic
equations are parametrized by few parameters that are the initial positions of the
particles q(0) = (x1, . . . , xn) ∈ (Rd)n and their initial momenta p(0) = (p1, . . . , pn) ∈
(Rd)n.

In figure 1.3, one can observe the integration of the geodesic equations in the
case of 3 landmarks in R2, i.e. q(0), p(0) ∈ (R2)3. The kernel KV of deformation is
chosen Gaussian, with width σV = 0.5. The optimal vector field at time t is expressed
through the current positions of the landmarks: vt(x) =

∑3
i=1KV (x, xi,t)pi,t where

xi and pi follow the geodesic equations (1.9). The integration at time 1 of the vector
field vt provides a deformation of the ambient space ϕv1 that we represent with a
grid.

To summarize this section, we have seen that the optimal trajectories (i.e. trajec-
tories with least energy) in the shape space of landmarks follow geodesic equations
that are explicit with the kernel KV of the RKHS V . The Hamiltonian formalism
allows for a compact expression of these equations. They are parametrized by initial
positions and momenta. If the geodesic equations are explicit, we have not tackled
yet the expression of optimal path in concrete applications (exact or inexact regis-
tration). In section 1.4, we discuss the different algorithm to retrieve the optimal
deformation. But first, we briefly introduce the inexact registration problem.
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Figure 1.3: Shooting of 3 landmarks (represented with a dark square) with a Gaussian
kernel of size σV = 0.5. The initial momenta p(0) ∈ (R2)3 are represented with the three
arrows attached to the initial points. The trajectories of the landmarks are represented
with the dark curve. The integration of the geodesic equations provides a deformation of
the ambient space that is visualized through the grid.

1.3 Inexact Registration

The LDDMM framework is convenient since we focus our modelling effort on the
group GV , and not on the shapes themselves. Thus, it can be applied to a wide
range of matching problems (images, landmarks, curves, surfaces, etc.). For now,
we have supposed that the shape space was homogeneous under the action of a group
of transformations. But of course, the assumption of exact registration between any
two shapes of a dataset is not realistic because it enforces too many constraints on
the deformations. Moreover, in case of artefacts or noisy data, the exact matching is
not interesting. That is why it seems necessary to relax this hypothesis and to allow
for inexact matching. This is classically done by introducing a data attachment term
A that will be a residual distance between the deformed shape ϕ.m and the target
shape m′. In the general case, the new functional to minimize is the following:





min
v∈L2([0,1],V )

J(v) :=

∫ 1

0

‖vt‖2V dt+ A(ϕv1.m,m
′)

∂ϕvt
∂t

= vt ◦ ϕvt , ϕv0 = Id.

(1.10)

This is a compromise between the closeness of the final registration (quantified by
A(ϕv1.m,m

′)) and the cost of the deformation (quantified by
∫ 1

0
‖vt‖2V dt). One can

easily see that a minimizer of (1.10) still generates a geodesic path (ϕt)0≤t≤1 on GV .
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The next theorem tackles the existence of a solution for (1.10):

Theorem 1.7 ([Glaunès, 2005]). If, for every C, S, v 7→ A (ϕv1.C, S) is weakly con-
tinuous from L2

V to R then (1.10) has a solution.

Of course, the optimal deformation will critically depend on the choice of A.
In the case of landmarks registration (Example 1.1), A can be the classical l2

norms: A
(
(x1, . . . , xn), (y1, . . . , yn)

)
=
∑n

i=1 ‖xi − yi‖
2. In the case of images (Ex-

ample 1.2), the L2 norm may be a first choice: A(I1, I2) =
∫
Ω
‖I1(x)− I2(x)‖2 dx.

In the case of curves or surfaces, several dissimilarity measures have been developed
using kernel metrics on currents ([Glaunès, 2005, Durrleman, 2010]) or on varifolds
([Charon, 2013]). This will be recalled in Chapter 2 and Chapter 3. The aim of
this thesis is to design a new data attachment term A that takes into account the
curvature information of the shapes (curves or surfaces), using kernel metric on nor-
mal cycles. The advantage of such dissimilarity measure is that it will drive the
matching considering the curvature features of the shapes.

1.4 Computational Framework

In this section, we focus on the existing algorithms to obtain the optimal transfor-
mation between two configurations in the inexact matching problem (1.10). Let us
first notice that in applications, the data are always discrete (e.g. pixels images,
discrete curves, triangulated meshes, etc.) and for numerical implementation, the
data attachment term A is in fact a dissimilarity measure between discrete struc-
tures. Thus, the inexact registration problem always depends on a finite number of
points, namely the discretization points. Moreover, since the target shape is fixed,
A depends only on the shape that is being deformed.

1.4.1 Discretization of the inexact matching problem

For the sake of simplicity, and since it will be our study subjects, we focus on the case
where shapes are curves or surfaces. Two discrete shapes C and S are represented by
a finite number of points, x1, . . . , xN for C and y1, . . . , yM for S (notice that there
is no given correspondence between the points xi and yj, and even not the same
number of points in C and S). The structure of C and S is given by a connectivity
matrix that links the vertices xi or yj. For a shape C, the connectivity matrix M is
a n× 2 (or 3) matrix, where n is the number of faces in C and such that xMl,2

and
xMl,1

(and xMl,3
in the case of discrete surface) represents the vertices of the face

number l.
To reduce the complexity of the matching problem, we suppose that a diffeo-

morphism ϕ transforms a discrete shape C by moving each vertex xi to ϕ(xi) but
leaving the rigid structure of the triangulation unchanged. This means that ϕ(C)
is approximated by the triangulated mesh with vertices (ϕ(xi))1≤i≤N and the same
connectivity matrix. The registration problem depends thus only on a finite number
of points: the current points (ϕ(xi))1≤i≤N , and it writes
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arg min
v∈L2

V

∫ 1

0

‖vt‖2V dt+ A
(
(ϕv1(xi))1≤i≤N

)
. (1.11)

where ϕv1 is obtained through the flow of the vector field vt:




∂ϕvt
∂t

= vt ◦ ϕvt
ϕv0 = Id.

1.4.2 Optimization on the initial momenta and geodesic

shooting algorithm

Different strategies have been developed throughout the years to optimize (1.11).
In [Beg et al., 2005], the authors derive the Euler-Lagrange equation of the reg-
istration problem in the case of images. The gradient of E(v) =

∫ 1

0
‖vt‖2V dt +

‖I0 ◦ (ϕv1)−1 − I1‖2L2 is given, and the optimization procedure is made directly on
v ∈ L2

V . The main limitation of this approach is that at each step of the minimiza-
tion, one needs to store the current trajectory t 7→ vt on a grid associated with the
image. Moreover, the trajectory t 7→ ϕvt has no reason to be a geodesic path before
convergence.

In [Glaunès, 2005], the author takes advantage of equation (1.7): the optimal
vector field has an explicit expression thanks to the kernel KV and the current
positions of the points xi,t:

vt =
n∑

i=1

KV (., xi,t)pi,t

where we recall that the pi are called the momenta. This reduces the dimensionality
of the problem, and the optimization can be made on the momenta t 7→ pi,t rather
than on the vector field vt. However, there is still no guarantee that the path is
a geodesic before convergence. The computational cost of such procedures was a
motivation to develop greedy version of the LDDMM. In [Arsigny et al., 2006a],
the authors focus on a one parameter subgroup of the group GV . This is equivalent
to considering the generated group of diffeomorphisms by integrating stationary
vector field u ∈ V . From there, algorithms are proposed to compute the (approxi-
mated) exponential map (i.e. computing the flow of the constant vector field) and
the logarithm map around the identity. This framework is valid only for small
deformation, but it allows statistical analysis through the log-Euclidean metric: the
statistic is done on the constant vector fields u, and the metric on diffeomorphisms
is the Euclidean metric on the logarithms of the diffeomorphisms. This framework
was first developed for diffusion tensor images, [Arsigny et al., 2006b].

A major step forward was made in [Miller et al., 2006]: they found out that in the
LDDMM framework, the Lagrangian momentum is conserved. This conserved quan-
tity gives an equation followed by the pi,t, which allows for explicit geodesic equations
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that we have already seen in (1.9). The geodesic path depends on few parameters:
q(0) and p(0). This paves the way for new optimization strategy that relies on the
geodesic shooting ([Miller et al., 2006, Miller et al., 2006], [Arguillère et al., 2015],
[Arguillère, 2014] chapter 7) and that we explain in the following.

We can rewrite the inexact registration problem (1.11) as depending only on the
initial momenta p0 = (p1,0, . . . , pn,0):

arg min
p0∈(Rd)n

J(p0) := pT0KV (q0, q0)p0 + g(q(1)) (1.12)

where g(q(1)) = A(ϕ1
v(q(0)), S), q0 being fixed, and the geodesic path

(p(t), q(t))0≤t≤1 being obtained through the geodesic equations

q̇ = ∂pHr(q, p), ṗ = −∂qHr(q, p). (1.13)

This new formulation has several advantages. First, the minimization can be
done on the initial momenta only, which reduces the problem to a finite dimen-
sional problem. Moreover, at each step of the minimization, the trajectories are
geodesics, obtained through the integration of (1.13). Finally, the representation of
deformations with initial momenta is of great interest for statistical analysis. The
deformations are indeed parametrized by vectors in (Rd)n, where all the classical
statistical tools are available (e.g. [Durrleman et al., 2014]).

This new formulation requires to compute at each step the gradient of J with re-
spect to p0. It is immediate for the first term pT0KV (q0, q0)p0, but it is more involved
for g(q(1)). Indeed, g(q(1)) depends on p0 through the integration of geodesic equa-
tions. The quantity that is immediately accessible is ∇q(1)g(q(1)). Starting from
∇q(1)g(q(1)), we can obtain ∇p0g(q(1)) with backward integration of the linearized
adjoint Hamiltonian system:





˙(z
α

)
=

(
∂p(∂qHr)

∗z − ∂q(∂qHr)
∗α

∂p(∂pHr)
∗z − ∂q(∂pHr)

∗α

)
,

z(1) = −∇q(1)g(q(1)),

α(1) = 0

(1.14)

and one can show (see for example [Arguillère et al., 2015]) that α(0) =
−∇p0g(q(1)). This allows to derive an explicit algorithm to solve the variational
problem of inexact registration. This algorithm is often called geodesic shooting.

We describe the geodesic shooting in the case of a fixed step gradient descent but
it can be set in any minimization procedure. We will go back to this consideration
in Chapter 4.

47



Chapter 1. Computational Anatomy

Algorithm 1 Geodesic shooting with fixed-step gradient descent.

Input: q0 (initial shape), δ (step size)
Output: argminp0∈(Rd)n J(p0)
initialization: p0 = 0
repeat

Compute (q(1), p(1)) through forward integration of (1.13)
Compute ∇q(1)g(q(1))
Compute ∇p0g(q(1)) through backward integration of (1.14)
Compute ∇p0J(p0) = Kv(q0, q0)p0 +∇p0g(q(1))
p0 ← p0 − δ∇p0J(p0).

until Convergence

1.5 Conclusion

In this chapter, we detailed the modelling aspect of computational anatomy and
focused on the construction of the group of diffeomorphisms GV as well as the
geodesic equations that describe optimal paths in GV when projected on the Land-
marks shape space. Geodesic shooting allows to minimize the variational problem
of inexact registration in a computational framework. However, the crucial point of
the data attachment term has not been tackled yet in this manuscript. The next
two chapters address the question of geometrical shapes representation. This repre-
sentation is the first step to embed shapes in a space with an explicit metric that
will play the role of the data attachment term A. As explained previously, this data
attachment term is of importance since it drives the registration procedure (as it
can be seen for example in the geodesic shooting algorithm with the appearance of
∇p0g(q(1))). The properties of A will have a major impact on the quality of the
matching. The contributions of the next two chapters is the design of a new data
attachment term A, using kernel metrics on normal cycles, that takes into account
the curvature information of the geometrical shapes (curves, surfaces).
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Chapter 2. Theoretical Ground of the Shapes Representation with Normal Cycles

In this chapter, we focus on three different shapes representations: currents,
varifolds and normal cycles. These notions are borrowed from the field of geometric
measure theory whose reference book is from Federer [Federer, 1969]. This field was
motivated in the second half of the 20th century by the calculus of variation, and
more specifically by the Plateau’s problem of finding a minimal area surface with
constrained boundary: given a closed (m − 1)-dimensional surface Γ ⊂ Rd, find an
m-dimensional surface S of least area such that ∂S = Γ. Solving this problem was
a conceptual breakthrough. Indeed if the formulation is a classical minimization
problem with constraint, the main difficulty was to provide a theoretical setting to
embed surfaces in a topological space with nice properties. The specifications of this
framework are the following: define a space where the surfaces can be represented,
with a topology that allows some compactness properties for a minimizing sequence
of the Plateau’s Problem.

It is in this very spirit that Federer and Fleming developed the notion of integral
currents as a generalization of oriented surfaces [Federer and Fleming, 1960] and
positively answered the Plateau’s problem. However, the orientation of currents is
not always well suited to model surfaces. This is the case when considering soap
bubbles that merge together. The frontier between two bubbles cannot be oriented
in a way that is physically relevant. To overcome this limitation, one needs a general-
ization to non-oriented surfaces. This work was done by Almgren in [Almgren, 1966]
where he introduced varifolds, later developed by Allard [Allard, 1972]. The varifold
representation of surfaces allows to model film soap, and for example to prove that
given n volumes in Rd, there exists an area-minimizing cluster for those volumes.
As convenient as these two settings may be, in this chapter we investigate the finer
shape representations of normal cycles. The theory of normal cycles originated from
Federer’s work on curvature measures [Federer, 1959] and was pushed forward by
Zähle [Zähle, 1986] who gave integral representation of these measures: this is the
normal cycle. It provides another theoretical tool to represent surfaces and more
generally shapes, encoding higher order informations as curvature.

Currents and varifolds have been successfully used in the field of computational
anatomy to construct dissimilarity measures between shapes (see [Glaunès, 2005,
Durrleman, 2010] for currents and [Charon, 2013] for varifolds). In these articles,
an explicit metric is endowed in the space of currents or varifolds that gives a measure
of the shapes dissimilarity. This aspect will be studied in Chapter 3. The present
chapter focuses on the geometrical models.

Section 2.1 is a reminder of the vocabulary of differential forms. Section 2.2
recalls the concept of rectifiability as developed by Federer in [Federer, 1969]. Rec-
tifiable sets are generalizations of submanifolds in the measure theory point of view.
This is the appropriate notion of regularity, which we introduce for considering cur-
rents and varifolds in section 2.3. In section 2.4 we define the normal cycle of a set
with positive reach. In subsection 2.4.3, we extend the notion of normal cycles for
sets that are unions of sets with positive reach. This extension gives a setting that
allows to represent discrete shapes (union of segments or triangulation meshes) as
normal cycles. Section 2.5 focuses on the way the normal cycle encodes the curvature
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2.1. Differential Forms

on the shape. In section 2.6, we investigate the link between a shape represented
as a varifold and a shape represented as a normal cycle. We will see that in some
sense, the varifold representation is a projection of the normal cycle representation.
This work paves the way for a unified framework for these representations as well
as the endowed metrics.

2.1 Differential Forms

2.1.1 Exterior algebra and m-vectors

This section is a brief reminder for differential forms, as it underpins the theory of
currents. Let us start with the tensor algebra. In the following, we denote T k(Rd)
the vector space of k-linear forms of Rd.

Definition 2.1 (Tensor product). The tensor product ⊗ : T k(Rd) × T l(Rd) →
T k+l(Rd) is a bilinear application defined as:

f ⊗ g(x1, . . . xk, y1, . . . , yl) = f(x1, . . . , xk)g(y1, . . . , yl).

If (e1, . . . , ed) is a basis of Rd and (dx∗1, . . . dx
∗
d) its dual basis, then (dx∗i1 ⊗ · · · ⊗

dx∗ik)1≤i1,...,ik≤d is a basis of T k(Rd). Moreover, if we denote T (Rd) :=
⊕+∞

k=0 T
k(Rd),

then
(
T (Rd),+,⊗

)
is an algebra called the tensor algebra.

Definition 2.2 (The exterior algebra and exterior product). The exterior algebra,
Λ(Rd) is the quotient of the tensor algebra T (Rd) by the two sided ideal I, generated
by elements of the form f ⊗ f . We endow this space with the operation called the
exterior product, ∧. The exterior product fulfils the following algebraic properties:

1. ∧ is bilinear

2. ∧ is skew-symmetric: if x, y ∈ Λ(Rd), x ∧ y = −y ∧ x.

The quotient of T (Rd) by I can be decomposed as follows:

Λ(Rd) = T (Rd)/I =

(
+∞⊕

i=0

T k(Rd)

)
/I =

+∞⊕

i=0

(
T k(Rd)/I

)

and we define the space of m-forms (or m-covectors) Λm(R
d) := T k(Rd)/I. The

exterior product provides a bilinear application ∧ : Λk(R
d) × Λl(R

d) → Λk+l(R
d).

Starting from this, one can define in another way the spaces Λm(R
d):

Λ1(R
d) = (Rd)∗, Λm(R

d) = Span
{
u1 ∧ · · · ∧ um | ui ∈ (Rd)∗

}

and one can see that a basis of Λm(Rd) is given by (dx∗i1 ∧ · · · ∧ dx∗im)1≤i1<···<im<d.
It is possible to construct in an exact similar way the space of m-vectors :

Λm(Rd) = Span{x1 ∧ · · · ∧ xm | xi ∈ Rd}.
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Chapter 2. Theoretical Ground of the Shapes Representation with Normal Cycles

An element τ ∈ Λm(Rd) is called a simple m-vector if it can be written τ = x1 ∧
· · · ∧ xm. If ω = u1 ∧ · · · ∧ um ∈ Λm(R

d) and τ = x1 ∧ · · · ∧ xm ∈ Λm(Rd) are simple
m-vector and simple m-forms, we have the dual pairing

〈ω|τ〉 = det
(
ui(xj)1≤i,j≤m

)
.

Remark 2.3. We sum up here some consequences of the definition of Λm(R
d):

• u1 ∧ · · · ∧ um = 0 as soon as ui = uj for some i, j. More generally, for any
permutation σ of {1, . . . ,m},

uσ(1) ∧ · · · ∧ uσ(m) = ε(σ)u1 ∧ · · · ∧ um.

• dim(Λm(R
d)) =

(
d

m

)
. In particular, dim(Λd(R

d)) = 1 and is generated by the

d-alternate form det.

• One can identify Λm(Rd) and Λd−m(Rd). To τ = x1 ∧ · · · ∧ xm 6= 0, we asso-
ciate τ ′ the unique (d −m)-simple vector such that τ ′ = x′1 ∧ · · · ∧ x′d−m with
(x1, . . . , xm, x

′
1, . . . , x

′
d−m) a positively oriented basis of Rd and |τ | = |τ ′|.

one gets that Λm(R
d)∗ is isomorph to Λm(Rd).

Λm(Rd) is an euclidean space (and so is Λm(R
d)), with the canonical scalar

product on m-simple vectors (denoted 〈., .〉Λm(Rd) or simply 〈., .〉 when there is no
ambiguity)

〈u1 ∧ · · · ∧ um, v1 ∧ · · · ∧ vm〉 = det ((ui · vj)1≤i,j≤m)
where x · y is the canonical scalar product on Rd. The norm associated with this
scalar product in Λm(Rd) is denoted |.|Λm(Rd) or |.|. Via the Riesz representation
theorem, we can associate to w ∈ Λm(R

d) a unique m-vector w such that ∀u ∈
Λm(Rd), 〈w|u〉 = 〈w, u〉. A m-simple vector x1∧· · ·∧xm encodes all the information
of the oriented m-parallelotope generated by the vectors x1, . . . , xm. |x1 ∧ · · · ∧ xm|
is the half of the m-volume of this parallelotope. In particular, if e1, . . . , em is an
orthonormal frame, e1 ∧ · · · ∧ em is of unit norm and contains all the information of
the oriented vector space span{e1, . . . , em}.
Remark 2.4. The reader should pay attention: the notation Λm(R

d) and Λm(Rd)
may be inverted depending on the references. With the Riesz representation the-
orem, we have an isomorphism between Λm(R

d) and Λm(Rd). It is usually not
recommended to assimilate the two. However for our application, this identification
is not problematic.

The dual norm of ω ∈ Λm(R
d) coincides with the Euclidian norm on Λm(R

d)

|ω| = sup
τ∈Λm(Rd)

|τ |≤1

〈ω|τ〉 .

In a geometric point of view, it may be interesting to consider the supremum over
m-simple vectors rather than over Λm(Rd), as an m-simple vector encodes a clear
geometrical information. This is the point of the mass of a m-form:

M(ω) = sup
τ∈Λm(Rd)

{
〈ω|τ〉

∣∣ |τ | ≤ 1 and τ simple
}
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2.1. Differential Forms

2.1.2 Differential forms

Now that we have an object that represents the oriented tangent space, we can
define differential forms:

Definition 2.5 (smooth m-differential forms). The space of C ∞ m-differential
forms of Rd is Dm(Rd) := C ∞(Rd, (ΛmRd)∗

)
.

For our purpose, we will consider a simpler space of differential forms:

Definition 2.6 (m-differential forms). The space of continuous differential forms
of degree m (or m-differential forms) vanishing at infinity is Ωm

0 (R
d) :=

C 0
0 (R

d, (ΛmRd)∗). This is a Banach space with the supremum norm ‖ω‖∞ =
supx∈Rd |ω(x)| for ω ∈ Ωm

0 (R
d). We also define Ωm

k,0(R
d) := C k

0 (R
d, (ΛmRd)∗) the

space of m-differential forms of class C k, with partial derivatives up to order k
vanishing at infinity.

If e1, . . . , ed is an orthonormal basis of Rd, and ω ∈ Ωm
0 (R

d), then we can express
ω in coordinates:

ω(x) =
∑

i1<···<im
αi1,...,im(x)dx

∗
i1
∧ · · · ∧ dx∗im ,

where αi1,...,im ∈ C0(R
d,R).

Definition 2.7 (Pull-back of a differential form). Let ω ∈ Ωm
0 (R

d), x ∈ Rd and
τ1 ∧ · · · ∧ τm ∈ Λm(Rd), ϕ a diffeomorphism of Rd. The pull-back action of ϕ on ω,
ϕ♯ω is: 〈

ϕ♯ω(x)
∣∣τ1 ∧ · · · ∧ τm

〉
= 〈ω(ϕ(x))|dϕx.τ1 ∧ · · · ∧ dϕx.τm〉

Several operators on differential forms will be used in this manuscript We recall
them in the following. We define first the exterior derivative of a m-differential form:

Definition 2.8 (Exterior derivative). The exterior derivative is the unique operator
d : Dm(Rd)→ Dm+1(Rd) such that:

1. d coincides with the differentiation on C 1(Rd).

2. d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)degω1ω1 ∧ dω2.

3. d ◦ d = 0.

If ω ∈ Dm(Rd) and its expression in the coordinates is

ω(x) =
∑

i1<···<im
αi1,...,im(x)dx

∗
i1
∧ · · · ∧ dx∗im ,

then
dω(x) =

∑

i1<...im

dαi1,...,im(x) ∧ dx∗i1 ∧ · · · ∧ dx∗im .
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Chapter 2. Theoretical Ground of the Shapes Representation with Normal Cycles

Definition 2.9 (Interior product). Let ω ∈ Ωm
0 (R

d) and X ∈ C 0(Rd,Rd), the
interior product of ω by X is the (m− 1)-differential form ιX defined as

ιXω(x)(u1 ∧ · · · ∧ um−1) = ω(x)(X(x) ∧ u1 ∧ · · · ∧ um)

Definition 2.10 (Lie derivative). Let ω ∈ Ωm
1,0(R

d) and X ∈ C 0(Rd,Rd). X gener-
ates a one parameter subgroup of diffeomorphisms ϕt. The Lie derivative LXω of ω
along X is

LXω =
d

dt

∣∣∣
t=0

(
ϕ♯tω

)
.

2.2 Rectifiable Sets

In all this manuscript, m is a non-negative integer. We recall briefly the notion of
m-dimensional Hausdorff measure H m. Let S be a set of Rd. First, we define:

H
m
δ (S) = inf

{ ∞∑

i=1

α(m)

(
diam Ai

2

)s∣∣∣∣S ⊂
+∞⋃

i=1

Ai, and diam Ai ≤ δ

}

where α(m) is a normalization constant. Note that H m
δ (S) is non negative but can

be infinite. The Hausdorff measure is

H
m(S) := sup

δ>0
H

m
δ (S) = lim

δ→0
H

m
δ (S).

This is a Borelian measure in Rd and the d-dimensional Hausdorff measure coincides
with the classical Lebesgue measure: H = λd.

The Hausdorff measure is of importance since it allows to consider sub-
dimensional volume in Rd. For example, the Lebesgue measure of a curve in R3

is null but with the one dimensional Hausdorff measure, we retrieve the length of
the curve. Moreover, with the properties of the Hausdorff measure we can define
the Hausdorff dimension, dimH of a set X in Rd:

dimH (X) = inf{s ≥ 0 |H s(X) = 0} = sup{t ≥ 0 |H t(X) =∞}.

For X a m-dimensional submanifold, H m coincides on X with the volume form of
X. For more details on the Haussdorff measure, one can see [Federer, 1969], 2.10.

We define now m-rectifiable sets, which are basically submanifolds defined via
Lipschitzian maps ([Federer, 1969], 3.2.14)

Definition 2.11 (m-rectifiable sets). A set X of Rd is said m-rectifiable if there
exists (Ui)i∈N a sequence of bounded sets of Rm and (fi)i∈N a sequence of Lipschitz
functions fi : Ui → Rd such that H

m (X \ ∪i∈Nf(Ui)) = 0

Remark 2.12. In the references, this definition corresponds to the notion of count-
ably rectifiable set, but authors usually mean countably rectifiable when they write
rectifiable.
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2.2. Rectifiable Sets

Remark 2.13. There is an equivalent definition due to Federer ([Federer, 1969],
3.2.29): a set X is m-rectifiable if and only if H m-almost all of X is contained in
a countable union of m-dimensional, C 1-submanifolds.

If X is a compact, m-rectifiable set, we can consider for H m-almost every x ∈
X the tangent space of X at x, TxX ([Federer, 1969], 3.2.16 and 3.2.19), and an
orientation of X will be simply an orientation ox ∈ {−1, 1} of every tangent space
TxX such that the application x 7→ (TxX, ox) is H m measurable on X. ox = 1 if,
and only if the orientation is the one induced by the canonical orientation of Rd.
Note that the orientation in the sense of a rectifiable set is far less restrictive than the
classical orientation for a C 1 submanifold and that some unorientable submanifolds
can still be given an orientation in the sense of rectifiable sets.

The existence of a tangent space almost everywhere for a rectifiable set is closely
linked to the existence of derivative for Lipschitzian maps:

Theorem 2.14 (Rademacher). Let f : A→ Rd where f is a Lipschitz function and
A an open subset of Rm. Then f is differentiable almost everywhere.

If fi : Ui → X is a local Lipschitz map of the rectifiable set X, then for almost
all x ∈ f(Ui), TxX = Im

(
dfi
(
f−1
i (x)

))
. The regularity of Lipschitz functions gives

a generalization of the change of variables formula. For this, we need first to define
the Jacobian of a Lipschitz function:

Definition 2.15 (m-Jacobian of a Lipschitz function). The m-dimensional Jacobian
Jmf(x) of a Lipschitz function f : Rm → Rd at point x is defined almost everywhere
as:

Jmf(x) :=
∣∣df(x)(e1) ∧ · · · ∧ df(x)(em)

∣∣

where e1, . . . , em is a positively oriented, orthonormal basis of Rm.

Theorem 2.16 (Area formula, [Federer, 1969], 3.2.3 ). Suppose that d ≥ m and let
A be a H m-measurable set . Let u : A ⊂ Rm → R be an integrable function, and
f : Rm → Rd Lipschitz. Then

∫

A

u(x)Jmf(x)dH
m(x) =

∫

Rd

∑

x∈f−1(y)

u(x)dH m(y).

Remark 2.17. For u ≡ 1, the area formula generalizes the area for a Lipschitz
image of a H m mesurable set f(A):

Area
(
f(A)

)
:=

∫

A

Jmf =

∫

Rd

Card
(
x ∈ f−1(y)

)
dH m(y)

The Co-Area formula handles the case where m > d and will prove very useful
since it allows slicing integrals.
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Chapter 2. Theoretical Ground of the Shapes Representation with Normal Cycles

Theorem 2.18 (Co-Area formula, [Federer, 1969], 3.2.12). Suppose that m > d. Let
f : Rm → Rd be a Lipschitz map, g : Rm → R an integrable function and A ⊂ Rm a
H m-measurable set. Then

∫

A

g(x)Jmf(x)dH
m(x) =

∫

z∈Rd

(∫

f−1(z)

g(x)dH m−d(x)

)
dH d(z).

Note that this theorem can be extended to the case where f is a Lipschitz
function between two rectifiable sets X and W ([Federer, 1969], 3.2.22). We will
make use of the Co-Area formula later in this manuscript.

The framework of rectifiable sets is very convenient to work with since it en-
compasses both the smooth case (smooth submanifold of Rd) and the polyhedral
case (e.g. triangulation meshes). Rectifiability is the right regularity for shapes to
consider currents or varifolds that we introduce in the next section.

2.3 Various Shapes Representation: Currents and

Varifolds

2.3.1 Currents

The concept of currents was first developed as a generalization of distribu-
tions. Similarly to Schwartz’ theory of distribution, Federer and Fleming
[Federer and Fleming, 1960] defined the space of m-dimensional currents, denoted
Dm as the topological dual of the space of smooth, m-differential forms with com-
pact support in Rd, denoted Dm, endowed with the topology of C ∞-convergence
on compact subsets. A compact, oriented, m-rectifiable set X defines a current [X]
through the integration of differential forms on X ([Federer, 1969], Chap. 4):

[X](ω) :=

∫

X

〈ω(x)|τX(x)〉 dH m(x) (2.1)

where τX(x) = τ1(x)∧ · · ·∧ τm(x), with (τi(x))1≤i≤m a positively oriented, orthonor-
mal basis of TxX. Suppose that f : U ⊂ Rm → X is a Lipschitz global parametriza-
tion of X, then

[X](ω) =

∫

U

〈
ω
(
f(u)

)∣∣∣∣
∂f

∂u1
(u) ∧ · · · ∧ ∂f

∂um
(u)

〉
du1 . . . dum.

If X̃ denotes the same rectifiable set X with opposite orientation, we have
[X̃] = −[X]. A current T associated with the integration of differential forms over
a rectifiable set X (i.e. T = [X]) is called a rectifiable current. We define also the
boundary of a current: if ω ∈ Dm−1, ∂T (ω) := T (dω). Since d2 = 0, ∂T has no
boundary. If T is rectifiable and ∂T is rectifiable as well, T is said to be an integral
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2.3. Various Shapes Representation: Currents and Varifolds

current.

The space of currents is inherently endowed with the weak topology as the dual
of Dm. However this topology is not interesting for the Plateau’s problem since a
limit of rectifiable currents needs not to be rectifiable. It is possible to define other
topologies on this space. For example the mass of a current:

M(T ) = sup
{
T (ω)|ω ∈ D

m,M(ω) ≤ 1
}

where M(ω) = supx∈Rd M(ω(x)). If T = [X] is rectifiable, then M(T ) = H m(X).
At first, one could think of the mass to define a distance between shapes. However,
if S and C are two m-rectifiable sets, with empty intersection, then M([S]− [C]) =
H m(S) + H m(C). This shows that M is not relevant for dissimilarity measure.
Also, the topology defined by M is too strong to have interesting properties such as
compactness. To overcome this, one defines the flat norm:

F (T ) = sup
{
T (ω)|ω ∈ D

m,M(ω) ≤ 1, M(dω) ≤ 1
}
.

The weak topology is weaker than the flat topology which is weaker than the
mass topology. The next theorem justifies the introduction of the flat norm.

Theorem 2.19 (Compactness theorem. [Federer, 1969] 4.2.17). If K is a compact
set in Rd, c > 0, the set of integral currents with support in K such that M(T ) +
M(∂T ) ≤ c is compact for the flat topology.

This compactness theorem is the heart of the existence of a solution for the
Plateau’s problem. However, for the purpose of computational anatomy, the flat
semi-norm is not convenient since it has no closed form. Moreover the sophistication
of the C ∞-topology is not necessary. That is why we will simplify the definition of
currents for our use.

Remark 2.20. There is another approach to define currents: the one of flat chains
over a normed abelian group G, developed by Fleming in [Fleming, 1966]. Starting
from formal finite sum of compact convex oriented polyhedra with coefficients in
G, it allows to define currents with multiplicity in G rather than in Z as for the
currents defined previously. If G = Z, then this construction gives the same notion
of currents. We will not investigate this point of view.

The following definition of currents is the one that will be used in this manuscript.

Definition 2.21 (Currents). The space of m-currents in Rd is defined as the topolog-
ical dual of Ωm

0 (R
d) := C 0

0

(
Rd, (Λm(Rd))∗

)
, i.e. we consider Ωm

0 (R
d)′. T ∈ Ωm

0 (R
d)′

maps every differential form ω to T (ω) ∈ R and

T (ω) ≤ CT ‖ω‖∞ .
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Now if X is a m-rectifiable set, let check that [X] is a current in the sense of
definition 2.21:

|[X](ω)| =
∣∣∣∣
∫

X

〈ω(x)|τX(x)〉 dH m(x)

∣∣∣∣

≤
∫

X

|〈ω(x)|τX(x)〉| dH m(x)

≤ ‖ω‖∞ H
m(X).

Thus, [X] ∈ Ωm
0 (R

d)′.

Remark 2.22. The space of currents contains rectifiable sets, but also much more
irregular objects. For example, the so-called “punk” current (figure 2.1) is not rec-
tifiable. In fact this remark prevents from the use of currents as it is for shape
analysis. For example, given two rectifiable sets C and S one could think first of the
straight line joining [C] and [S] in the space of currents as the interpolation between
the shapes C and S. However, this straight line goes through irregular objects that
have no geometrical meaning and thus have no interesting interpretation for shape
analysis.

Figure 2.1: The “punk” current, P : the support of the current is the blue oriented curve C,
but the tangential information in red does not correspond to the tangent space of the blue
curve. Indeed, if ω ∈ Ω1

0(R), P (ω) =
∫
C 〈ω(x)|n(x)〉 dH 1(x) where n(x) is the normal

vector of C at x. The punk current is not associated with the integration over the blue
rectifiable curve and thus is not a rectifiable current.

Approximation of the currents in a discrete setting

Definition 2.23 (Dirac current). Let x ∈ Rd, α ∈ Λm(Rd). For ω ∈ Ωm
0 (R

d), we
define δαx as follow:

δαx (ω) := 〈ω(x)|α〉 .

A dirac current δαx contains a spatial information with x and a tangential infor-
mation through α. The dirac current is usefull to approximate discrete shapes. Let
illustrate this with a segment C = [a, b] in Rd, oriented from a to b. For such C, we
have ∀x ∈ C, τC(x) = b−a

|b−a| . If ω is a 1-differential form, we recall that the current
associated with C, [C] corresponds to the integration over C.

[C](ω) =

∫

C

〈ω(x)|τC(x)〉 dH 1(x)
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We define an approximation of this integral, with an approximated current denoted
[C]approx:

[C]approx =

∫

C

〈
ω

(
a+ b

2

)∣∣∣∣
b− a
|b− a|

〉
dH 1(x)

=

〈
ω

(
a+ b

2

)∣∣∣∣b− a
〉

= δb−a(a+b)/2(ω).

Remark 2.24. Of course, the notion of approximation depends on the metric we are
considering. For now, we can suppose that δb−a(a+b)/2 approximate [C] in the sense of

the infinity norm on Ωm
0 (R

d). Other metrics on the space of currents will be detailed
in the next chapter.

Now, if C is a union of segments C = ∪ni=1Ci, Ci = [ai, bi] with centre ci = ai+bi
2

,
and fi = bi − ai, then we immediately get the approximation of [C] that we will use
in the numerical implementation:

[C]approx =
n∑

i=1

δfici . (2.2)

The same work can be done for triangulated meshes, and with the canonical identifi-
cation between Λ2(R3) and Λ1(R3) = R3, we obtain for T = ∪ni=1Ti with barycentre
ci and orienting normal vector ni:

[T ]approx =
n∑

i=1

Area(Ti)δ
ni
ci
. (2.3)

Push-forward of a current

For a matching purpose, we will consider diffeomorphisms transforming our shapes.
In order to have a shape representation with currents that is compatible with a
registration problem, it is necessary to describe how a diffeomorphism acts on the
current associated with a shape. For this, we define two actions: the pull-back
action of diffeomorphisms on differential forms, and the dual push-forward action
on currents.

Definition 2.25. Let ω ∈ Ωm
0 (R

d), x ∈ Rd and τ1 ∧ · · · ∧ τm ∈ Λm(Rd), ϕ a
diffeomorphism of Rd.

• The pull-back action of ϕ on ω, ϕ♯ω is:
〈
ϕ♯ω(x)

∣∣τ1 ∧ · · · ∧ τm
〉
= 〈ω(ϕ(x))|dϕ(x)(τ1) ∧ · · · ∧ dϕ(x)(τm)〉

• The push-forward action of ϕ on T ∈ Ωm
0 (R

d)′, ϕ♯T is:

ϕ♯T (ω) := T (ϕ♯ω)

The push-forward action on currents is geometric in the sense that if X is a
m-rectifiable set of Rd, then ϕ♯[X] = [ϕ(X)].
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Chapter 2. Theoretical Ground of the Shapes Representation with Normal Cycles

Cartan’s formula and variation of the metric for currents

An important point to tackle is the variation of the current [X] with respect to an
infinitesimal displacement of the shape X. For this, we consider the continuous case
and a smooth vector field v : Rd → Rd. φt is the resulting flow of the vector field
v. Let X be a m-dimensional smooth oriented compact submanifold of Rd. We are
interested here in the quantity:

d

dt

∣∣∣
t=0

〈
φ♯t[X]

∣∣∣ω
〉
,

with ω ∈ Ωm
1,0(R

d). This expression can be computed using the expression of the Lie
derivative for differential form, namely :

Lvω :=
d

dt

∣∣∣
t=0
φ♯tω.

Theorem 2.26 (Cartan’s Formula).

Lvω = ιv(dω) + d(ιvω).

Using Cartan’s formula and Stokes’ theorem, we get

d

dt

∣∣∣
t=0

〈
φ♯t[X]

∣∣∣ω
〉
=

∫

X

ιv(dω) +

∫

∂X

ιvω. (2.4)

Now, in order to interpret this formula, let us anticipate the next chapter. We
consider that the space of currents is embedded in a Hilbert space W ′ with a scalar
product 〈., .〉W ′ , providing a metric on currents, and specifically on shapes repre-
sented as currents. Using the Riesz representation theorem, the current of a shape
[Y ] is canonically associated with a differential form ωY and we have

d

dt

∣∣∣
t=0

〈
φ♯t[X], [Y ]

〉
W ′

=
d

dt

∣∣∣
t=0

〈
φ♯t[X]

∣∣∣ωY
〉
.

A few comments can be made : first of all, the submanifold X needs to be oriented
since we consider its current, and we used the Stokes formula. The second term
expresses a specific behaviour on the border of X. Moreover, one can easily see
that only the normal component of v is taken into account in (2.4): indeed, if v is
tangent at X on every point, then the integrand vanishes. This remark shows that
the gradient of the metric is orthogonal to the shape X.

2.3.2 Varifolds

As mentioned and studied in [Charon and Trouvé, 2013], the orientation, inherent
in the concept of currents is a challenging issue in computational anatomy. Hence,
any matching problem between two shapes requires first of all a coherent orientation
for both shapes. Assigning coherent orientations between corresponding shapes can
be difficult or even arbitrary in some practical applications. More importantly,
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when using kernel metrics on the space of currents, this orientation issue can lead
to artificial cancellation in the space of currents. A high spatial variation of the
shape (compared to the typical size of the kernel used for the kernel metric) will not
be seen by the metric, due to the orientation. To overcome this problem, Nicolas
Charon proposed a model based on varifolds [Charon and Trouvé, 2013]. A varifold
can be heuristically seen as an unoriented distribution of measures with support in
the set of all unoriented tangent spaces of the shape.

To formalize this, consider the Grassmann manifold G(d,m): it is the set of all
unoriented m-dimensional subspaces in Rd. It can be easily equipped with a metric
d. Indeed, for a subspace S ∈ G(d,m), we associate the orthogonal projection
on S, denoted PS. This is a linear application of Rd. The distance d between
S, T ∈ G(d,m) is then the Frobenius norm of the associate orthogonal projections
PS and PT :

d(S, T ) :=

√∑

i,j

|(PS)i,j − (PT )i,j|2.

where we assimilate PS and its matrix in the canonical basis of Rd.
We can now define varifolds, following [Allard, 1972].

Definition 2.27 (Varifolds). A m-dimensional varifold is a Borel finite measure on
the product space Rd ×G(m, d). This is an element of C0(R

d ×G(d,m))′.

A m-rectifiable set X of Rd is canonically associated with a varifold denoted µX .
For all Borel subsets of Rd ×G(d,m):

µX(A) := H
m
(
{x|(x, TxX) ∈ A}

)
. (2.5)

With the Riesz representation theorem, µX can be associated with a unique linear
form on C0(R

d ×G(d,m)), still denoted µX :

µX(u) =

∫

X

u(x, TxX)dH m(x), ∀u ∈ C0(R
d ×G(d,m)). (2.6)

A varifold that is associated with a m-rectifiable set is called a m-rectifiable varifold.
With a varifold V , we define a Radon measure on Rd, ‖V ‖, called the mass of V .
For all Borel subset B of Rd

‖V ‖ (B) := V (π−1(B)).

where π : Rd × G(d,m) → Rd, (x, T ) 7→ x is the projection on Rd. In other words,
‖V ‖ is the push-forward of V by π: ‖V ‖ = π♯V .

Approximation of the varifolds in the discrete setting

Definition 2.28 (Dirac varifold). If (x, P ) ∈ Rd × G(d,m), we define δ(x,P ) the
varifold such that:

∀u ∈ C
0(Rd ×G(d,m)), δ(x,P )(u) = u(x, P ).
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Chapter 2. Theoretical Ground of the Shapes Representation with Normal Cycles

As for currents, varifolds provide a representation of shapes that encompasses
both the continuous and the discrete cases. We use a similar approximation as in
(2.2), (2.3) for currents. If C = ∪ni=1Ci is a union of segments, with center ci, we
approximate µC by µC,approx:

µC,approx =
n∑

i=1

Length(Ci)δ(ci,<Ci>) (2.7)

with < Ci > the one dimensional space generated by Ci.
If T = ∪ni=1Ti is a triangulation mesh, with barycentre ci for each Ti, then

µT ,approx =
n∑

i=1

Area(Ti)δ(ci,<Ti>). (2.8)

One should notice that all these approximations are explicit given the polygonal
mesh, and that they do not depend on the orientation given to each mesh.

Push-forward of a varifold

As for currents, the framework of varifolds allows to represent shapes in a dual vector
space. Moreover, it is possible to define the push-forward action of diffeomorphisms
on varifolds in a way that is compatible with the transport of shapes. If ϕ is a
diffeomorphism of Rd and µ a varifold:

∀u ∈ C0(R
d ×G(d,m)), ϕ♯µ(u) := µ(ϕ♯u)

where ϕ♯u(x, T ) = |Jmϕ(x)|u
(
ϕ(x), dϕ(x)(T )

)
. If µ is a rectifiable varifold, i.e.

µ = µX where X is a m-rectifiable set, we have

ϕ♯µX = µϕ(X).

First variation of a varifold

Varifolds are naturally endowed with a notion of convergence, coming from the weak
topology on C0(R

d×G(d,m))′. This topology provides compactness properties that
can be usefull for a calculus of variation point of view. However the limit varifold
obtained after extraction needs not to be associated with a rectifiable set as explained
in [Buet, 2014], 1.2.2. In order to guarantee such regularity for the limit object, we
have to assume more regularity on varifolds. For this purpose, Allard introduced the
first variation of varifolds ([Allard, 1972]). The link between the first variation of
a varifold and a generalization of the mean curvature will be briefly tackled below.
The interested reader can find more details in [Allard, 1972] and [Buet, 2014]. The
study of the kind of curvature that is contained in the first variation of a varifold is
interesting as this work will be done for normal cycles in section 2.5.
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2.3. Various Shapes Representation: Currents and Varifolds

If v ∈ C 1(Rd,Rd) is a vector field, consider ϕt the local 1-parameter group of
diffeomorphisms generated by v. The infinitesimal action of v on the mass of varifold
µ is

d

dt

∣∣∣∣
t=0

‖ϕt♯µ‖ .

For B a Borel set of Rd, one can see that the derivative at t = 0 of ‖ϕt♯µ‖ depends
linearly on v and one can show that

d

dt

∣∣∣∣
t=0

‖ϕt♯µ‖ (B) =

∫

B×G(d,m)

divP v(x)dµ(x, P )

where divP v(x) =
∑m

i=1 〈dv(x)(ei), ei〉 with (e1, . . . , em) an orthonormal basis of P .

Definition 2.29 (First variation of a varifold). Let µ be a m-varifold. The first
variation of µ is the linear form δµ : C 1

c (R
d,Rd)→ R

δµ(v) =

∫

Rd×G(d,m)

divP (v)(x)dµ(x, P ). (2.9)

The divergence of v on µ, and thereafter the first variation of a varifold is closely
linked to the mean curvature. Indeed, if M is a smooth m-dimensional submanifold
of Rd, one defines the vector of mean curvature H as:

H(x) = −
d−m∑

j=1

(
divTxM νj(x)

)
νj(x).

where (νj(x))1≤j≤d−m is an orthonormal frame of NxM = (TxM)⊥ in Rd. Now if v
is a normal vector field, i.e. v is a section of the normal bundle, then:

divM v = −〈v,H〉 .

A varifold µ is said to have bounded first variation if δµ extend to a continuous
linear functional on Cc(R

d,Rd). If so, we can associate with δµ a vectorial Radon
measure still denoted δµ. With the Radon-Nikodym theorem, we know that δµ can
be decomposed as a sum of an absolutely continuous measure with respect to ‖µ‖
and a singular measure:

δµ = −H ‖µ‖+ δµsing.

As explained in [Allard, 1972], H is a generalization of the mean curvature vector
and δµsing is associated with the boundary of µ.

First variation of a curve. Let us now illustrate this fact in the case of a smooth
curve in R2, parametrized with γ : [0, L] → R2, with |γ′(t)| = 1, ∀t ∈ [0, L]. Then

63



Chapter 2. Theoretical Ground of the Shapes Representation with Normal Cycles

if µγ is the varifold associated with γ∗ = γ([0, L]) and v ∈ C 1
c (R

2,R2), v = v⊥ + v⊤

with v⊤ the tangential part of v with respect to γ and v⊥ the normal part of v.

δµγ(v) =

∫

γ

divγ v =

∫

γ

divγ

(
v⊤ + v⊥

)

=

∫

γ

divγ v
⊥ +

∫

γ

divγ

(
ṽ⊤τ

)
where v⊤ = ṽ⊤τ

= −
∫

γ

〈
v⊥, H

〉
+

∫

γ

dṽ⊤(x)(τ(x))dH 1(x) +

∫

γ

ṽ⊤ divγ τ︸ ︷︷ ︸
=0

= −
∫

γ

〈
v⊥, H

〉
+ [γ∗](dṽ⊤) = −

∫

γ

〈
v⊥, H

〉
+ ∂[γ∗](ṽ⊤)

= −
∫

γ

〈v,H〉+ ṽ⊤(γ(L))− ṽ⊤(γ(0)).

We have proven here that δµγ = −H ‖µγ‖+ δγ(L)γ
′(L)− δγ(0)γ′(0).

Remark 2.30. Besides giving generalization of the mean curvature, the notion of
first variation of a varifold provides a nice framework for compactness. Indeed,
if µj is a bounded sequence of m-rectifiable varifolds, with bounded first variation,
then one can extract a weak convergent subsequence from the µj such that the limit
varifold µ is m-rectifiable. There is a guarantee that the limit object is associated
with a m-rectfiable set. One can find more details in [Allard, 1972] and [Buet, 2014],
theorem 1.13.

We have seen in this section that shapes can be represented as Radon measures
through the notion of varifolds. This representation does not require any orientation
of the shapes contrary to the notion of currents. Moreover, we have seen that the first
variation of a varifold encodes curvature information on the shape (scalar curvature
for a curve, mean curvature for a surface). However, the varifold associated with
a shape does not encode all the curvature information of the shape, even through
the first variation. For example, the Gaussian curvature does not appear in the first
variation.

The next section focuses on another shape representation: the normal cycle, also
borrowed from geometric measure theory. We will see that the normal cycle of a
shape encodes all the curvature information of the shape. Moreover, a theoretical
link between varifolds and normal cycles will be drawn in section 2.6.

2.4 Normal Cycles

Normal cycles were introduced by the pioneer articles of [Wintgen, 1982] and
[Zähle, 1986], inspired by Federer’s work on curvature measure for a general type
of sets (set with positive reach)[Federer, 1959]. The normal cycle of a shape is
rigourosly the current associated with its normal bundle. The normal cycle encodes
curvature information of X; more precisely one can compute integrals of curvatures
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by evaluating the normal cycle over simple differential forms. This is explained by
Zähle in [Zähle, 1986] :“Although curvature measures describe second order proper-
ties of the sets, the first order theory suffices for deriving integral geometric relations.
The key is to consider the unit normal bundle of the sets as a locally (d−1)-rectifiable
subset of R2d and to observe that the first order infinitesimal behaviour of the unit
normal bundle determines the curvature measures.”. Moreover, it has a canonical
orientation which is independent of the orientation of X (in fact X does not need
to be oriented).

The aim of this section is to introduce properly the framework to define the
normal cycle of a set with positive reach (subsection 2.4.1). Once this theoretical
background is set, we will see in subsection 2.4.2 how normal cycles can be use as
a shape representation. We describe the normal cycles of elementary shapes as a
segment and a triangle. The setting of sets with positive reach is too restrictive to
consider the normal cycles of polyhedral shapes. Hopefully, following the work of
Zähle, [Zähle, 1987], it is possible to generalize normal cycles for unions of sets with
positive reach that encompass the case of polyhedral shapes (subsection 2.4.3). In
2.4.4 we fit this framework in the field of computational anatomy i.e. we describe
the action of diffeomorphisms on normal cycles. The precise link between normal
cycles and curvature is postponed to the next section, 2.6.

2.4.1 Sets with Positive Reach and Unit Normal Bundle

The first step is to define a proper framework to consider shapes. For currents and
varifolds for example, this framework is the one of m-rectifiable sets. Here, as we
want to define a normal bundle associated with the shape, we will need a slightly
different framework, which is sets with positive reach. The reach of a set X ⊂ Rd is
closely linked to the uniqueness of projection on this set for sufficiently close points.

Definition 2.31 (Reach). For ε > 0, we define Xε = {x ∈ Rd|d(x,X) ≤ ε} and
∂Xε = {x ∈ Rd|d(x,X) = ε}. The reach of X, denoted reach(X), is the supremum
of real numbers ε > 0 such that there exists a unique projection of any x ∈ Xε onto
X. X is said to be a positive reach set if reach(X) > 0. If 0 < ε < reach(X), we
denote PX : Xε → X the projection application.

PR is the class of sets with positive reach.

Remark 2.32. If X is convex, Reach(X) = +∞. If X is a compact C 2-
submanifold, X has a positive reach.

On a set with positive reach R, we can roll a ball of radius less than R. Thus,
a set with positive reach can be seen heuristically as a set with bounded below
curvature.

Definition 2.33 (Tangent Bundle and Unit Normal bundle). Let X be a set with
positive reach.
1. The tangent cone of X at point x is

TxX :=
{
v ∈ Rd, ∀ε > 0, ∃y ∈ X, ∃c > 0, |x− y| < ε and |c(y − x)− v

∣∣ < ε
}
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Chapter 2. Theoretical Ground of the Shapes Representation with Normal Cycles

It is a closed cone ([Federer, 1959]).
2. TX := {(x, v) : x ∈ X, v ∈ TxX} is the tangent bundle of X.
3. The normal cone of X at point x is defined as the polar cone of TxX:

Nor(X, x) :=
{
u ∈ Rd, ∀v ∈ TxX, 〈u, v〉 ≤ 0

}

Nor(X, x) is a closed convex cone.
4. The set of unit normal vectors is defined as Noru(X, x) := Nor(X, x) ∩ Sd−1.
5. NX = {(x, n) ∈ Rd × Sd−1, x ∈ X,n ∈ Noru(X, x)} is the unit normal bundle of
X.

Remark 2.34. For a C 2-submanifold, the unit normal bundle defined here coincides
with the classical one, which is a (d − 1)-submanifold in the (2d − 1) dimensional
space Rd × Sd−1.

Remark 2.35. If x ∈ X̊, the interior of X, then TxX = Rd and consequently
Noru(X, x) = ∅.

Example 2.36 (Unit normal bundle of a curve in Rd). We give here the description
of the normal bundle associated with a regular curve in Rd. Let γ : [0, L] → Rd be
the parametrization of a C 2 regular non-intersecting and non-closed curve C in Rd.
On a regular point along the curve (i.e. γ(t), 0 < t < L), one has Noru(C, γ(t)) =
γ′(t)⊥ ∩ Sd−1. For the singular part (i.e. the two endpoints), we denote S+

v :=
{u ∈ Sd−1 | 〈u, v〉 ≥ 0}. One can easily show that Noru(C, γ(0)) = S+

−γ′(0) and

Noru(C, γ(1)) = S+
γ′(1). These are two half spheres with a coherent orientation with

respect to the normal bundle (independent of the parametrization). See figure 2.2
for an illustration.

Figure 2.2: Illustration of the unit normal bundle for a regular non closed curve in the plane.
The curve is in blue, the unit normal vectors associated with four points are represented as
red arrows, and the resulting unit normal bundle is represented in red, with its canonical
orientation. Note that this representation is only illustrative, as the true normal bundle
belongs to the space R2 × S1 in this case

The generalized normal bundle NX is a subset of Rd×Sd−1 ⊂ Rd×Rd, and since
X is a set with positive reach, we can visualize NX in Rd: choose 0 < ε < Reach(X)
and consider the application
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(x, n) ∈ NX 7→ x+ εn ∈ Rd (2.10)

Thus, the normal bundle can be depicted in Rd, using (2.10) by considering the
ε-tube around the set X. This is the representation seen in figure 2.2.

Even if the definition of positive reach relies on few hypotheses, a set with positive
reach has remarkable regularity properties:

Proposition 2.37. Let X be a set with positive reach R > 0, and 0 < ε < R. ∂Xε is
a C 1-hypersurface (a (d−1)-dimensional, C 1-submanifold in Rd), with Lipschitzian
normal vector field.

Proof. We summarize here the main results of [Federer, 1959], 4.8. On Xε, the
projection PX is well defined. Moreover, if we denote δ(x) = d(x,X) for every x ∈
Xε, we can rewrite: ∂Xε = {x ∈ Rd|δ(x) = ε}. 4.8. (5) of [Federer, 1959] guarantees
that δ is continuously differentiable on the interior of Xε \X, with ∇δ(x) = x−PX(x)

δ(x)
.

Thus, ∂Xε is defined as an implicit C 1 real valued function, with non zero differential,
and therefore is an hypersurface.

Moreover, one can show that the outward unit normal vector of ∂Xε at point x
is given by n(x) = x−PX(x)

δ(x)
= ∇δ(x). And 4.8 (9) of [Federer, 1959] states that ∇δ

is Lipschitzian on ∂Xε. Thus, ∂Xε has Lipschitzian normal vector field.

The next proposition draws a more precise link between ∂Xε and the normal
bundle NX .

Proposition 2.38. Let X be a set with positive reach, 0 < ε < Reach(X) and PX
be the projection on X, which is well defined on Xε. Then

ϕε : ∂Xε → NX : y 7→
(
PX(y),

y − PX(y)
ε

)

is bijective and bi-Lipschitz, with inverse mapping

gε : NX → ∂Xε : (x, n) 7→ x+ εn.

This proposition is the key argument to obtain the next theorem, which is fun-
damental to define normal cycles.

Theorem 2.39. If X is a set with positive reach, NX is a (d− 1)-rectifiable set in
Rd × Rd.

Proof. This is just an application of proposition 2.38 with proposition 2.37, and by
using the definition of rectifiability seen above: NX is the image of the Lipschitzian
map gε of the C 1 submanifold ∂Xε.

Thus, to a set with positive reach, one can associate the current of its (d − 1)-
rectifiable unit normal bundle. To have an explicit expression of this current, we
need first to describe the tangent space.
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Orthonormal basis of T(x,n)NX
In order to consider the current associated with NX , it is interesting to describe the
tangent space T(x,n)NX of the normal bundle at point (x, n). Let us start by con-
sidering ∂Xε. It is a smooth hypersurface without border and thus it is canonically
oriented. For (x, n) ∈ NX , x+ εn ∈ ∂Xε and we denote

(
bεi (x, n)

)
1≤i≤d−1

the direc-

tions of principal curvatures of ∂Xε associated with the curvatures (kεi (x, n))1≤i≤d−1.
As explained in [Zähle, 1986], bεi (x, n) is independant of ε and we write it bi(x, n).
Moreover, we define ki(x, n) := limε→0 k

ε
i (x, n). ki(x, n) expresses the curvature of

X at point x, seen with n as the reference direction. For example, if X is a closed
smooth surface of R3, oriented with a normal vector field x 7→ n(x), then we have
ki(x, n(x)) = κi(x) where κi(x) is the i-th principal curvature (signed). And one
can show that

ki(x,−n(x)) = −ki(x, n(x)) = −κi(x).
This means that the curvature considered with −n(x) as reference direction is op-
posite of the one considered with n(x) as reference direction.

[Zähle, 1986] showed that an orthonormal basis of T(x,n)NX is then

ai(x, n) :=

(
bi(x, n)√
1 + k2i (x, n)

,
ki(x, n)bi(x, n)√

1 + k2i (x, n)

)
, for i = 1, . . . , d− 1. (2.11)

In case ki(x, n) =∞, we use the convention 1√
1+∞2

= 0 and ∞√
1+∞2

= 1.

Remark 2.40. A few comments can be made on this orthonormal basis. This
expression formalizes the fact that the first order information of the normal bundle
gives curvature information of the initial shape X through the ki(x, n). We separate
two cases.

Let start with the degenerate case ki(x, n) = ∞. It occurs if, and only
if kεi (x, n) = 1

ε
. This corresponds to direction bεi (x, n) such that ∂Xε ∩

(
x +

span
{
bεi (x, n), n

})
is a circle with center x and radius ε. For example suppose that

C is a curve in R3, (x, n) ∈ NC and τ(x) is a unit tangent vector of C at x. Then
bε2(x, n) = τ(x) × n is a direction of principal curvature for ∂Cε and kε2(x, n) =

1
ε
.

Heuristically, ki(x, n) = ∞ implies that the considered set with positive reach X is
of dimension less than d − 1 and the direction bi(x, n) is orthogonal to the tangent
space of X at x.

The case ki(x, n) 6= ∞ corresponds to bi(x, n) in the tangent space of X at x.
We see in the expression of the orthonormal basis of NX that the curvature of the
set X mixes spatial and spherical components. If ki(x, n) = 0, i.e. if the direction
bi(x, n) corresponds to a flat direction on X, then the spherical component of the
vector ai(x, n) vanishes.

We see with this remark that the information on the curvatures of the set X can
be read on the expression of the orthonormal basis of T(x,n)NX .
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Orientation of NX
A last aspect to precise is the orientation. We recall that a current is an oriented
object, hence to define the current associated with the normal bundle, the normal
bundle needs to be oriented. Again, a nice property of a set with positive reach is
that its normal bundle has a canonical orientation which does not require the set
itself to be oriented. From now on, we denote by π0 the projection on the spatial
space, and π1 the projection on the normal space: π0 : (x, n) ∈ Rd × Sd−1 7→ x,
π1 : (x, n) ∈ Rd × Sd−1 7→ n. The unit normal bundle has a canonical orientation
arising from the orientation of ∂Xε as follows: let (e1, . . . , ed) be the standard basis
of Rd, and (a1(x, n), . . . , ad−1(x, n)) an orthonormal basis of T(x,n)NX (which is well
defined H d−1-almost everywhere on NX). We say that (a1(x, n), . . . , ad−1(x, n)) is
positively oriented if

〈((π0 + επ1)(a1(x, n)) ∧ · · · ∧ (π0 + επ1)(ad−1(x, n)) ∧ n, e1 ∧ · · · ∧ ed〉 > 0. (2.12)

This quantity is independent of 0 < ε < ReachX [Zähle, 1986]. Then a(x, n) =
a1(x, n)∧· · ·∧ad−1(x, n) fulfilling (2.12) (independent of the choice of the orthonor-
mal basis verifying the last hypothesis) may be considered as a (d − 1)-vectorfield
orienting NX .

2.4.2 Normal Cycle of a Set with Positive Reach

Before defining normal cycles, let us define decompositions of the spaces Λ1(R2×R2)
and Λ2(R3×R3) and then of the spaces Ω1

0(R
2×S1) and Ω2

0(R
3×S2) into orthogonal

sums. These decompositions will prove useful to formalize the curvature information
contained in the normal cycles.

Proposition 2.41.

1. Λ1(R2 × R2) = F 1
1 ⊕ F 1

0 where

F 1
1 = Span

{(
α
0

) ∣∣∣α ∈ R2

}
, F 1

0 = Span

{(
0
α

) ∣∣∣α ∈ R2

}
.

F 1
1 is called the planar space and F 1

0 is called the spherical space.

2. Λ2(R3 × R3) = F 2
2 ⊕ F 2

1 ⊕ F 2
0 where

F 2
2 = Span

{(
α
0

)
∧
(
β
0

) ∣∣∣α, β ∈ R3

}
, F 2

1 = Span

{(
α
0

)
∧
(
0
β

) ∣∣∣α, β ∈ R3

}
,

F 2
0 = Span

{(
0
α

)
∧
(
0
β

) ∣∣∣α, β ∈ R3

}
.

F 2
2 is the planar space, F 2

1 the cylindrical space and F 2
0 the spherical space.

These sums are orthogonal with respect to the canonical scalar product (see sec-
tion 2.1).
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Definition 2.42.

1. Ω1
0(R

2 × S1) = W 1
1 ⊕W 1

0 with

W 1
i = Span

{
ω ∈ Ω1

0(R
2 × S1)

∣∣ ∀(x, n) ∈ R2 × S1, ω(x, n) ∈ (F 1
i )

∗} .

W 1
1 is still called the planar space of Ω1

0(R
2 × S1) and W 1

0 the spherical space.

2. Ω2
0(R

3 × S2) = W 2
2 ⊕W 2

1 ⊕W 2
0 with

W 2
i = Span

{
ω ∈ Ω2

0(R
3 × S2)

∣∣ ∀(x, n) ∈ R2 × S1, ω(x, n) ∈ (F 2
i )

∗} .

W 2
2 is the planar space, W 2

1 the cylindrical space and W 2
0 the spherical space.

Remark 2.43. It is possible to generalize this construction for Ωd−1
0 (Rd × Sd−1):

Ωd−1
0 (Rd × Sd−1) = W d−1

d−1 ⊕ · · · ⊕W d−1
0 .

W d−1
d−1 is called the planar space of Ωd−1

0 (Rd × Sd−1) and W d−1
0 the spherical space.

We will see in section 2.5 that each space (planar, cylindrical and spherical) will
allow to retrieve a specific kind of curvature when applied on a normal cycle.

Since NX is an orientable rectifiable set of Rd × Rd (independently of any
orientation of X), we can consider its current, an element of Ωd−1

0 (Rd × Rd)′,
which is called the normal cycle. For later considerations, we introduce also the
space Ωd−1

0 (Rd × Sd−1) = C 0
0 (R

d × Sd−1,Λd−1(Rd × Rd)∗) and its topological dual
Ωd−1

0 (Rd × Sd−1)′. Since integration of a differential form ω over NX only depends
on the values of ω in Rd × Sd−1, it is equivalent to consider the normal cycle as an
element of Ωd−1

0 (Rd × Rd)′ or Ωd−1
0 (Rd × Sd−1)′.

Definition 2.44 (Normal cycle). The normal cycle of a set X with positive reach is
the (d−1)-current associated with NX . If ω ∈ Ωd−1

0 (Rd×Sd−1) is a (d−1)-differential
form on Rd × Sd−1, one has

N(X)(ω) := [NX ](ω) =
∫

NX

〈ω(x, n)|τNX
(x, n)〉 dH d−1(x, n) (2.13)

where τNX
(x, n) is the (d − 1)-vector associated with an orthonormal positively

oriented basis of T(x,n)NX . For any Borel subset B ⊂ Rd × Sd−1, we also define the
restricted current N(X)x1B :

N(X)x1B(ω) := N(X)(ω1B) (2.14)

Remark 2.45. In the previous definition of the restriction of N(X), ω1B is not nec-
essarily continuous, which might seem as a problem given the definition of a normal
cycle. However, as explained in [Federer, 1969], 4.1.7, since N(X) is representable
by integration (here it is canonically associated with the rectifiable set NX), it is
sufficient for the differential form to be integrable over NX .

70



2.4. Normal Cycles

Thus, with normal cycles we have a tool to canonically represent sets with pos-
itive reach. One should notice that the unit normal bundle of a shape is a d − 1
dimensional object of Rd×Sd−1 and every single part of the initial shape has a com-
ponent in the normal bundle that is not H d−1 negligible. This is a major difference
compared to the currents or varifolds approach. Indeed, let consider any shape X
that is m-rectifiable, with border ∂X that is m− 1-rectifiable. Since the current or
the varifold of X is a m-dimensional object, it will not take into account the border
of X that is strictly less dimensional. This is not the case with the normal cycle
since the unit normal bundle above the border is also d− 1 dimensional.

This property makes the transition from the representation of a single convex
cell (segment, triangle) to a polyhedral mesh not straightforward. Considering a
polyhedral mesh, the intersection of two cells is strictly less dimensional than the
initial cell. Thus, for a currents or varifolds representation, the intersection of two
cells is not taken into account. This makes the additive property immediate: the
current or the varifold of a polyhedral mesh is the sum of the current or varifold
of the cells. However, for the normal cycles representation, intersection also has a
component in the normal bundle and has to be considered. We need an additive
property (see subsection 2.4.3). Another way of seeing this is that an object as
simple as a union of two segments may not have positive reach. More generally, a
polygonal mesh has not necessary a positive reach, and we will need a generalization
of the definition of normal cycles to consider its normal cycle.

But first let us give the description of a normal cycle for elementary convex cells:
a segment and a triangle. This description is of importance since it is the basic for
the construction of normal cycles of discrete shapes (i.e. polyhedral approximations
of curves or surfaces).

Normal cycle of a segment

Let a, b ∈ Rd and C = [a, b] be the segment with extremities a and b. We denote
C̃ = C \ {a, b}. Following the reasoning in Example 2.36 one can make explicit the
normal bundle of C. The notations are the same as in definition 2.33: for x ∈ C̃,
Nor(C, x) is a (d − 2)-sphere, orthogonal to C: Nor(C, x) = (b − a)⊥ ∩ Sd−2. For
x = a or b, Nor(C, x) is a half (d − 1)-sphere, oriented in the outward direction
to the segment: Nor(C, a) = S+

a−b and Nor(C, b) = S+
b−a, where we recall that

S+
u = {v ∈ Sd−1|u.v ≥ 0}.

Thus, the unit normal bundle is composed of two parts, a cylindrical part and a
spherical part. By cylindrical part, we mean a subset of the normal bundle whose
tangent spaces have one dimension in the spatial space and all the other dimensions
in the normal space. By a spherical part, we mean a subset for which the tangent
spaces all belong to the normal space. More precisely, NC = N cyl

C ∪ N sph
C with

N cyl
C := C̃ × ((b − a)⊥ ∩ Sd−1) (represented in red in figure 2.3 and figure 2.4)

and N sph
C := ({a} × S+

a−b) ∪ ({b} × S+
b−a) (represented in green in figure 2.3 and

figure 2.4). These two parts are disjoint and the normal cycle N(C) satisfies N(C) =
N(C)cyl +N(C)sph with N(C)cyl := [N cyl

C ] and N(C)sph := [N sph
C ].
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Chapter 2. Theoretical Ground of the Shapes Representation with Normal Cycles

Moreover, we have N(C)cyl ∈
(
W d−1

1

)′ ⊂ Ωd−1
0 (Rd × Sd−1)′ and N(C)sph ∈(

W d−1
0

)′ ⊂ Ωd−1
0 (Rd × Sd−1)′ (with the notations of definition 2.42)

Figure 2.3: Illustration of the decomposition of the normal bundle of a segment in R2 with
a cylindrical part (in red) and a spherical part (in green). Note that the actual normal
bundle lives in R2 × S1

Figure 2.4: Illustration of the decomposition of the normal bundle of a segment in R3 with
a cylindrical part (in red) and a spherical part (in green). Note that the actual normal
bundle lives in R3 × S2

Normal Cycle of a Triangle

Let T be a triangle of R3 with vertices x1, x2, x3 and edges : f1 = x2−x1, f2 = x3−x2,
f3 = x1 − x3. The normal vectors of the face are : nT = f1×f2

|f1×f2| and −nT .
Note that the description of the normal cycle of a 2-dimensional polyhedral has

been studied in [Cohen-Steiner and Morvan, 2003]. The description of the normal
bundle of a triangle is quite straightforward. As illustrated in figure 2.5, it can be
decomposed into a planar part, composed of two triangles (in cyan), a cylindrical
part, composed of three “half” cylinders located at the edges (in red), and a spherical
part, composed of three portions of sphere located at the vertices (in green).

N pln
T := ∪x∈T\∂TNoru(T, x) = T × {−nT , nT},
N cyl
T := ∪3i=1[xi, xi+1]× S⊥+

fi,fi×nT
,

N sph
T := ∪3i=1{xi} × S+

fi−1,−fi+1
,
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2.4. Normal Cycles

(a) Representation of the normal bundle in
R3.

(b) Separation of the normal bundle for better
visualisation.

Figure 2.5: Illustration of the decomposition of the normal bundle of a dark blue triangle
into a planar (in cyan), a cylindrical (in red) and a spherical (in green) parts. Note that
the actual normal bundle lives in R3 × S2.

where for any non zero vectors α, β ∈ R3, we denote the semicircle S⊥+
α,β =

(
S2∩α⊥)∩

{u| 〈u, β〉 ≥ 0}, and the portion of sphere S+
α,β := {u ∈ S2, 〈u, α〉 ≥ 0, 〈u, β〉 ≥ 0}.

Note that fi and nT are oriented but this is not the case for fi × nT that represent
a vector located in an edge and oriented outward from the triangle (independently
of any orientation of the triangle). The sets N pln

T , N cyl
T and N sph

T have empty
intersection and we define the associate currents:

N(T )pln = [N pln
T ] ∈

(
W 2

2

)′

N(T )cyl = [N cyl
T ] ∈

(
W 2

1

)′

N(T )sph = [N sph
T ] ∈

(
W 2

0

)′
.

We have straightforwardly N(T ) = N(T )pln +N(T )cyl +N(T )sph.
We have seen the description of the normal bundle for segment and triangle.

Notice that as previously said, every part of the segment or the triangle appears
in the unit normal bundle: for a segment, the extremities are associated with half
spheres, and for a triangle the edges are associated with half cylinders, and the
vertices with portions of spheres. Starting from this description, we will see how to
consider the normal cycle of a polyhedral mesh.

2.4.3 Unions of Sets with Positive Reach and Normal Cycles

of Discrete Shapes

The theory of normal cycles can be extended to a class of sets containing unions
of sets with positive reach, as developed in [Zähle, 1987, Rataj and Zähle, 2001,
Thäle, 2008]. We briefly introduce this extension here, referring to these works for
all details. The UPR class is defined as the class of sets X which can be written as a
locally finite union of sets Xi, i ∈ N, such that for any finite subset of indices I ⊂ N,
∩i∈IXi is of positive reach. In particular sets of positive reach belong of course to

73



Chapter 2. Theoretical Ground of the Shapes Representation with Normal Cycles

this class, and it contains also all finite unions of non-empty closed convex sets. The
normal cycle N(X) associated with a set X ∈ UPR can be defined in a recursive way
so that the following fundamental additive property is satisfied:

Definition 2.46 (Additive property). Assume that sets X, Y , X ∩ Y are with
positive reach. Then we define

N(X ∪ Y ) := N(X) +N(Y )−N(X ∩ Y ) (2.15)

In the case where X ∪ Y is with positive reach, this definition is coherent : the
left hand side and the right hand side in the definition are equal. In the case of
a finite union of sets with positive reach: X = ∪ni=1Xi, belonging to UPR, it is
easy to see that any combination of unions and intersections of the Xi also belongs
to UPR. Hence the additive formula allows to write a recursive expression for the
normal cycle of X, which can serve as a definition for normal cycle in this case: for
1 ≤ k ≤ n, one has

N(X1 ∪ · · · ∪Xk) = N(X1 ∪ · · · ∪Xk−1) +N(Xk)−N((X1 ∪ · · · ∪Xk−1) ∩Xk)

It is possible to define normal cycles in a more intrinsic way (see
[Rataj and Zähle, 2001]), using the index function: for a closed subset X ⊂ Rd,
x ∈ Rd and n ∈ Sd−1, we define:

iX(x, n) = 1X(x)
(
1− lim

ε→0
lim
δ→0

χ
(
X ∩ B(x+ (ε+ δ)n, ε)

))

where χ is the Euler-Poincaré characteristic. One can find an illustration of the
index function in [Thäle, 2008], Section 3.3.

The normal bundle of X ∈ UPR is then

NX =
{
(x, n) ∈ Rd × Sd−1 : iX(x, n) 6= 0

}
. (2.16)

It can be shown ([Rataj and Zähle, 2001]) that NX is a (d−1)-rectifiable set and
the index function can be seen as a multiplicity function for the tangent space of the
normal bundle at point x, with direction n. For X ∈ UPR, ιX is locally integrable on
NX (proposition 4.3.1 [Zähle, 1987]). We define the normal cycle for a set X ∈ UPR
as

N(X)(ω) :=

∫

NX

〈iX(x, n)ω(x, n)|τNX
(x, n)〉 dH d−1(x, n) =

(
[NX ]xιX

)
(ω) (2.17)

where we recall that when f is an integrable function,
(
[NX ]xf

)
(ω) := [NX ](fω).

Notice that when X is compact, [NX ]xf is a current as well (an element of Ωd−1
0 (Rd×

Sd−1)′).
iX(x, n) can be seen as the multiplicity of the tangent space of the normal bundle

at point (x, n), and is so that this definition of normal cycle is coherent with the
additive property (2.15).
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Decomposition of the Normal Cycle for Unions of Segments

The intersection of two non parallel segments is either empty or a single point. This
means that we can always consider the normal cycle associated with an intersection
of two segments. Thus, the formula (2.15) makes always sense when dealing with a
union of segments. However, this formula is not ready to use. In order to overcome
this difficulty, we introduce here a new decomposition of the normal bundle of a union
of segments. As we will see, this decomposition will make the additive property
straightforward and the normal cycle of each part of this cutting will be explicit.

In order to get a nice decomposition in the case of unions of segments, it is
convenient to define the normal cycle associated with the “open” segment C̃ as:
N(C̃) := N(C) − N({a}) − N({b}). Since the normal bundles of {a} and {b} are
entire spheres, we see that N(C̃) expresses also as a sum of a cylindrical part and a
spherical part: N(C̃) = N(C)cyl+N(C̃)sph with N(C̃)sph := −[{a}×S+

b−a]− [{b}×
S+
a−b]. The sign − indicates that the spheres have an orientation that is opposite to

the canonical orientation of the sphere with outward normal vectors.
Now let C1∪· · ·∪Cn be a union of n segments in Rd. We can consider without loss

of generality that the intersection of two segments Ci∩Cj is either empty or composed
of a single point. Using the additive property (2.15) and the previous definition of
the normal cycles of an “open” segment, it can be easily seen that the normal cycle of
a union of segments can be obtained by summing the normal cycles associated with
open segments and vertices. More precisely, if we denote {v1, . . . , vN} the vertices
of ∪ni=1Ci, our decomposition of the normal bundle satisfies:

N(C1 ∪ · · · ∪ Cn) =
n∑

i=1

N(C̃i) +
N∑

j=1

N({vi}) (2.18)

Even though the additive property is now straightforward, we will go a bit further
in this decomposition, as it will prove to be more efficient with the kernel metric.
We can decompose (2.18) into cylindrical and spherical parts as follows:

N(C1 ∪ · · · ∪ Cn) =
(

n∑

i=1

N(Ci)
cyl

)
+

(
n∑

i=1

N(C̃i)
sph +

N∑

j=1

N({vi})
)

(2.19)

This decomposition is sketched in figure 2.6.

Decomposition of the normal cycle for triangulation meshes

A slightly more complex decomposition is necessary for a union of triangles in R3.
We apply the same process as for the union of segments. Let T be a triangle of R3

with vertices x1, x2, x3 and edges : f1 = x2 − x1, f2 = x3 − x2, f3 = x1 − x3. We
denote by ei the geometrical edges (i.e. unoriented) of the triangle. The normal
vectors of the face are : nT = f1×f2

|f1×f2| and −nT . First, we define the normal cycle of

an “open” triangle T̃ :
N(T̃ ) := N(T )−N(∂T ).
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Chapter 2. Theoretical Ground of the Shapes Representation with Normal Cycles

Figure 2.6: Decomposition of the normal bundle of a union of segments. In green, the
spherical part (of a single point and of an extremity) and in red the cylindrical part. Note
that this representation is only illustrative, as the true normal bundle belongs to the space
R2 × S1 in this case.

∂T is a union of the edges (ei)1≤i≤3, and the description of its normal bundle has
been done right above: N(∂T ) =

∑3
i=1N(ẽi) +

∑3
i=1N({xi}).

N(T̃ ) = N(T )−
3∑

i=1

N(ẽi)−
3∑

i=1

N({xi})

Since we know an explicit description of N(T ), N(ẽi) and N({xi}), we can express
N(T̃ ) as a sum of a spherical part, cylindrical part and planar part:

N(T̃ ) = N(T̃ )pln +N(T̃ )cyl +N(T̃ )sph,

with
N pln

T̃
:= N pln

T = T × {±nT},
N cyl

T̃
:= ∪3

i=1ei × S⊥+
fi,−fi×nT

,

N sph

T̃
:= ∪3i=1{xi} × S−

fi−1,−fi+1
,

where S−
α,β = {u ∈ S2 | 〈u, α〉 ≤ 0 , 〈u, β〉 ≤ 0}, and

N(T̃ )pln := [N pl

T̃
] =

[
T × {±nT}

]
,

N(T̃ )cyl := −
3∑

i=1

[
ei × S⊥+

fi,−fi×nT

]
,

N(T̃ )sph := −
3∑

i=1

[
{xi} × S−

−fi+1,fi

]
+

3∑

i=1

N(ẽi)
sph,
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Figure 2.7: “Normal bundle” of an open triangle T̃ in blue. The normal bundle above the
interior of the triangle, N pln

T̃
, are two triangles in cyan. The normal bundle above the

edges, N cyl

T̃
are three half cylinder, in red. The normal bundle over the vertices, N sph

T̃
are

portions of sphere, in green.

In figure 2.7 one can find an illustration of the normal bundle of an open triangle.
After the introduction of N(T̃ ) we can proceed as for a union of segments. Sup-

pose that T = ∪nT

i=1Ti is a triangulation where we require that the intersection of two
triangles is either empty, or a single edge or a single vertex. We denote (ej)1≤j≤ne

the edges and (vk)1≤k≤nv
the vertices of the triangulation. Then one has:

N(T ) =
nT∑

i=1

N(T̃i) +
ne∑

j=1

N(ẽj) +
nv∑

k=1

N({vk})

With this decomposition, the additive property is straightforward.

Approximation of normal cycles in the discrete setting

In order to get a simple formula for the kernel metric for polygonal meshes, we
now approximate the planar and the cylindrical part of the normal cycle using
Dirac evaluation functionals in the space of currents. For this, let us define such
approximations:

Definition 2.47. For any x, α ∈ Rd, α 6= 0 and P ∈ G(d,m), we define δx,P⊥ the
current such that for any (d− 1)-form ω in Rd × Sd−1,

δx,P⊥(ω) =

∫

S⊥
P

〈ω(x, n)|(v1, 0) ∧ · · · ∧ (vm, 0) ∧ ν(n)〉 dHd−1−m(n),

and

δx,P⊥,α(ω) =

∫

S⊥+

P,α

〈ω(x, n)|(v1, 0) ∧ · · · ∧ (vm, 0) ∧ ν(n)〉 dHd−1−m(n),

with S⊥
P := Sd−1 ∩ P⊥, S⊥+

P,α := S⊥
P ∩ {u| 〈u, α〉 ≥ 0} and (v1, . . . vm) an orthonor-

mal basis of P , ν(n) = (0, um+1) ∧ . . . ∧ (0, ud−1−m) such that (v1, . . . vm, um+1, . . . ,
ud−1−m, n) is a positively oriented orthonormal basis of Rd.
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Chapter 2. Theoretical Ground of the Shapes Representation with Normal Cycles

Figure 2.8: Decomposition of the normal bundle for two triangles with a common edge. In
this figure, the two normal bundle of the open triangles appear. Then, we add (only once)
the normal bundle of the open edge (the red cylinder and the two green half spheres).
Then we add ( only once) the normal bundle of the vertices of the edge (the two green
spheres). Note that if the triangulation is reduced to this two triangles, we should add the
normal bundle of the other edges of the triangles.

Now if we consider a union of segments C, we denote x1, . . . , xNC
the vertices of

C and fi = xf2i − xf1i , 1 ≤ i ≤ nC the edges of C (resp. S). For an edge fi, xf1i and
xf2i are its two vertices. Moreover, we define ci = 1

2
(xf1i +xf2i ) the center of the edge

fi.
We will now define the following approximation of the normal cycles N(C):

N(C)approx := N(C)sph +N(C)cylapprox, (2.20)

with

N(C)cylapprox :=

nC∑

i=1

Length(Ci)δci,<fi>⊥ .

For a triangulation T , T = ∪Ni=1Ti, we denote (ej)1≤j≤ne
the set of edges of T

and (xk)1≤k≤nv
the set of vertices . Given a triangle Ti, we consider its three edges

f 1
i , f

2
i and f 3

i . The barycentre of each triangle Ti is denoted bi.
The normal cycles of T is approximated as follow:

N(T ) = N(T )sph +N(T )cylapprox +N(T )plnapprox (2.21)

with

N(T )plnapprox =
N∑

i=1

Area(Ti)δbi,<Ti> =
N∑

i=1

δ

(

f1

i

0

)

∧
(

f2

i

0

)

(bi,nTi
) + δ

−
(

f1

i

0

)

∧
(

f2

i

0

)

(bi,−nTi
)

with nTi = f 1
i ∧ f 2

i and the notations of definition 2.23 and

N(T )cylapprox =
ne∑

j=1

Length(ej)δcj ,<ej>⊥ +
N∑

i=1

3∑

l=1

−Length(f li )δci,<f li>⊥,−f li×nTi
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This is an approximation for both the full cylinders (above the edges of the trian-
gulation) and the half cylinders (above the edges seen as border of the triangles).

In short, this means we approximate integration of the differential form in the
spatial domain by a single evaluation, and keep integration in the normal domain.
This choice can be intuitively justified by the following reasoning: when considering
a sequence of polygonal approximations of possibly non regular curves, the length
of segments will always tend towards zero but some angles between segments will
remain large. All this construction will simplify a lot the computation when we
derive a kernel metric on the normal cycles (Chapter 3).

2.4.4 Transport of Normal Cycles with Diffeomorphisms

We focus on the action of diffeomorphism on normal cycles. We have seen in the
section dedicated to currents the push-forward action of diffeomorphisms on cur-
rents. Since a normal cycle is a current whose support lives in Rd × Sd−1, we will
use straightforwardly this action.

The question is: given a diffeomorphism ϕ and a shape X in Rd, what is the
action of ϕ on the normal bundle? Notice first that ϕ : Rd → Rd induces a diffeo-
morphism ψ : Rd × Sd−1 → Rd × Sd−1: for (x, n) ∈ Rd × Sd−1,

ψ(x, n) =

(
ϕ(x),

dϕ−T
x n

‖dϕ−T
x n‖

)
.

where dϕ−T
x = (dϕ−1

x )
T .

In the following, we consider C 2-diffeomorphisms.

Transport of the normal cycles associated with a set with positive reach

We suppose first that X is a set with positive reach. Since ϕ is a C 2-diffeomorphism,
ϕ(X) is also a set with positive reach. Let x ∈ X. One can show that if n ∈
Nor(X, x), then dϕ−T

x n

‖dϕ−T
x n‖ ∈ Nor(ϕ(X), ϕ(x)) so that we have ψ : NX → Nϕ(X).

ψ is defined such that the action of a diffeomorphism ϕ on normal cycles satisfies:

ϕ.N(X) := ψ♯N(X) = ψ♯[NX ] = [ψ(NX)] = [Nϕ(X)] = N(ϕ(X))

which is a geometric action as well.
It is possible to explicit this action: one needs to compute dψ(x,n). As we will

see, the second differential of ϕ is involved, which again is not surprising in view
of the link between normal cycles and curvatures. We will compute the differential
with respect to x: dxψ(x,n) and the differential with respect to n: dnψ(x,n). For this,
recall that

d

(
u 7→ u

‖u‖

)

u

h =
1

‖u‖

(
h−

〈
h,

u

‖u‖

〉
u

‖u‖

)

Then, using the chain rule for differentials, and denoting n′ = dϕ−T
x n

‖dϕ−T
x n‖ we get:
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dnψ(x,n) =

(
0,

1

‖dϕ−T
x n‖

(
dϕ−T

x −
〈
n′, dϕ−T

x

〉
n′)
)

and
dxψ(x,n) =

(
dϕx, −dϕ−T

x d2ϕx(., .)
Tn′ +

〈
n′, dϕ−T

x d2ϕx(., .)
Tn′〉n′)

where d2ϕx is the second differential of ϕ. If we let p(n′)⊥ be the orthogonal projection
on (n′)⊥, we can write these differentials:

dxψ(x,n) =
(
dϕx, −p(n′)⊥dϕ

−T
x d2ϕx(., .)

Tn′)

dnψ(x,n) =

(
0, p(n′)⊥

dϕ−T
x

‖dϕ−T
x n‖

)
(2.22)

To clarify the notation, let (x, n) ∈ Rd × Sd−1 and (τ, ν) ∈ Rd × Rd . We have

dψ(x,n).

(
τ
ν

)
=




dϕx.τ

−p(n′)⊥dϕ
−T
x d2ϕ(τ, .)T .n′ + p(n′)⊥

dϕ−T
x .ν

‖dϕ−T
x n‖




Transport of the normal cycles associated with a set UPR
It is possible to generalize the transport of normal cycles for sets that are unions
of sets with positive reach (subsection 2.4.3). Notice first that UPR is stable under
the transformation by diffeomorphisms: if ϕ is a C 2-diffeomorphism of Rd and
X ∈ UPR, then ϕ(X) ∈ UPR (since the positive reach property is preserved by
diffeomorphisms).

To extend the transport of normal cycles to sets in UPR, we will consider the
definition of normal cycles seen in equation (2.23), using the index function. We
recall that for a closed subset X ⊂ Rd, x ∈ Rd and n ∈ Sd−1:

iX(x, n) = 1X(x)
(
1− lim

ε→0
lim
δ→0

χ
(
X ∩ B(x+ (ε+ δ)n, ε)

))

where χ is the Euler-Poincaré characteristic and the normal bundle of X ∈ UPR is
then

NX =
{
(x, n) ∈ Rd × Sd−1 : iX(x, n) 6= 0

}
. (2.23)

and is a (d − 1)-rectifiable set. We recall also that the associated normal cycle
N(X) is defined as:

N(X)(ω) :=

∫

NX

〈iX(x, n)ω(x, n)|τNX
(x, n)〉 dH d−1(x, n), (2.24)

which means that N(X) =
(
[NX ]xιX

)
.

From there, we can define the action of diffeomorphism using the pull-back on
differential forms: given a diffeomorphism of Rd ϕ and a set X ∈ UPR, we define the
action of ϕ on N(X):
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∀ω ∈ Ωd−1
0 (Rd × Sd−1), ϕ.N(X)(ω) = ψ#N(X)(ω) = N(X)(ψ#ω)

=

∫

NX

〈
ιX(x, n)ω(ψ(x, n))

∣∣dψ(x,n)τNX
(x, n)

〉
dH d−1(x, n)

where ψ(x, n) =
(
ϕ(x), dϕ−T

x n

‖dϕ−T
x n‖

)
has been defined in the previous paragraph.

Notice that since the Euler-Poincaré characteristic is a topological invariant and
ψ is a diffeomorphism, we can deduce that

ιX(x, n) = ιϕ(X)(ψ(x, n)),

so that we have:

N(X)(ψ#ω) =

∫

NX

〈
ιX(x, n)ω(ψ(x, n))

∣∣dψ(x,n)τNX
(x, n)

〉
dH d−1(x, n)

=

∫

NX

〈
ιϕ(X)(ψ(x, n))ω(ψ(x, n))

∣∣dψ(x,n)τNX
(x, n)

〉
dH d−1(x, n)

=

∫

ψ(NX)

〈
ιϕ(X)(x

′, n′)ω(x′, n′)
∣∣τNϕ(X)(x

′, n′)
〉
dH d−1(x′, n′)

= N(ϕ(X)).

The action is thus geometric and we have:

ϕ.N(X) := ψ#N(X) = N(ϕ(X)).

This means that we can straightforwardly extend the action of diffeomorphisms of
Rd on normal cycles to UPR by taking into account the index function ιX .

Variation of the metric for normal cycles

We are interested here in the infinitesimal variation of the normal cycle under the
action of a vector field v. v generates a one parameter subgroup of diffeomorphisms,
(φt)0≤t≤ε. As explained for the variation of the metric for currents, the quantity of
interest is

d

dt

∣∣∣∣
t=0

〈φt.N(X), N(S)〉W ′

where we anticipate again and suppose that our normal cycles are embedded in
a dual Hilbert space W ′. With the canonical isometry KW : W ′ → W we can
write 〈φt.N(X), N(S)〉W ′ = 〈φt.N(X)|KWN(S)〉. Thus it is sufficient to express the
quantity

d

dt

∣∣∣∣
t=0

〈φt.N(X)|ω〉
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for ω ∈ Ωm
0 (R

d × Sd−1).
Since in our framework shapes are represented as current over the normal bundle,

we can use equation (2.4) to compute the variation of the metric. Given a vector
field v of displacement of X, we only have to express the resulting displacement ṽ
of the unit normal bundle NX .

We will show that

ṽ(x, n) =

(
v(x)

−pn⊥ ◦ dvTx (n)

)
(2.25)

which means that a point x of the spatial space is transported with v, and a corre-
sponding unit normal vector is transported with the transpose of the differential of
v at point x and projected on the orthogonal space of n.

To prove this, we start with the flow of diffeomorphisms φt generated by v. It
induces a diffeomorphism ψt on the normal bundle:

ψt(x, n) =

(
φt(x),

d(φt)
−T
x n

‖d(φt)−Tx n‖

)

If we derive with respect to the time at t = 0 this expression, we get the vector field
displacement ṽ of the normal bundle:

ṽ(x, n) =
d

dt

∣∣∣
t=0
ψt(x, n) =

(
v(x),

d

dt

∣∣∣
t=0

d(φt)
−T
x n

‖d(φt)−Tx n‖

)

Using the same chain rule as for the derivative of ψ with respect to x, and the fact
that d

dt

∣∣∣
t=0
d(φt)x = dvx, we obtain the result.

Thus, with (2.4) we get immediately :

d

dt

∣∣∣∣
t=0

〈φt.N(X)|ω〉 =
∫

NX

ιṽ(dω) +

∫

∂NX

ιṽ(ω)

Since ∂NX = ∅, we get

Theorem 2.48 (variation of the metric for normal cycles). Let X be a m-
dimensional compact submanifold of Rd. v a smooth vector field of Rd and φt its
associated flow. Then

d

dt

∣∣∣∣
t=0

〈φt.N(X)|ω〉 =
∫

NX

ιṽ(dω) (2.26)

where ω ∈ Ωm
1,0(R

d × Sd−1)

Now, if we explicit the last expression :

d

dt

∣∣∣∣
t=0

〈φt.N(X)|ω〉 =
∫

NX

ιṽ(dω)

=

∫

NX

〈dω(x, n)|ṽ(x, n) ∧ a1(x, n) ∧ · · · ∧ ad−1(x, n)〉 dH d−1(x, n)
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where (a1(x, n), . . . , ad−1(x, n)) is an orthonormal frame of T(x,n)NX . If v is a tan-
gential vector field, one can show that d

dt

∣∣
t=0
〈φt.N(X)|ω〉 = 0.

To conclude this section, we have seen that the theory of normal cycles allows to
represent shapes as currents with support in Rd×Sd−1. The additive property allows
in particular to include polygonal meshes in the setting, and thus to consider both
continuous shapes and their discrete representations in the same framework. This
representation is independent of the initial orientation of the shapes, and encodes
curvature information. Moreover, it can fit well in a matching problem with an
explicit action of diffeomorphisms on normal cycles.

2.5 Curvatures and Normal Cycle

2.5.1 Lipschitz-Killing curvature

Here we formalize more specifically the link between the normal cycle of a set X
with positive reach, and its curvatures. For this purpose, we define some invariant,
universal differential forms on Rd × Sd−1, the Lipschitz-Killing forms.

Let (x, n) ∈ Rd × Sd−1. We set e1(x, n), . . . , ed−1(x, n) ∈ Rd such that (e1(x, n),
. . . , ed−1(x, n), n) is an orthonormal basis of Rd, and we denote

ε1 =

(
e1
0

)
, . . . , εd =

(
n
0

)

ε̃1 =

(
0
e1

)
, . . . , ε̃d−1 =

(
0

ed−1

) (2.27)

where we omit the dependency on (x, n). This enables us to define a polynomial in
the real variable t:

ν(t) = (ε1 + tε̃1) ∧ · · · ∧ (εd−1 + tε̃d−1)

which is a (d − 1)-vector field in Rd × Sd−1. Even though the (ei)1≤i≤d−1 are not
uniquely defined (an orthonormal change of basis is still a valid candidate), the
expression of ν is independent of the choice of this orthonormal basis, and thus is
well defined.

For 0 ≤ k ≤ d− 1, we denote νk the coefficient of the monomial td−k−1 of ν, and
define the (d− 1)-form ωk which is canonically identified to the (d− 1)-vector field

ωk :=
νk

(d− k)αd−k
where αk is the volume of the k-dimensional unit ball.

Definition 2.49 (Lipschitz-Killing forms). ωk, 0 ≤ k ≤ d − 1 is called the kth

Lipschitz-Killing form. The Lipschitz-Killing forms are euclidean motion invariants
(see [Morvan, 2008], Chap. 19).
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Remark 2.50. Notice that with this decomposition, and notations of definition 2.42,
we have

1. for d = 2, ω0 has values in F 1
0 and ω1 has values in F 1

1 .

2. for d = 3, ω0 has values in F 2
0 , ω1 in F 2

1 and ω2 in F 2
2 .

We can sum up the results of Federer and Zähle on these curvature measures in
a theorem (see [Federer, 1959, Zähle, 1986, Zähle, 1987])

Theorem 2.51. If X is a set with positive reach R > 0 and ε < R, B a Borel set
of Rd, we have

Vol ((X ∩ B)ε) =
d∑

k=0

αkCd−k(X;B)εk (2.28)

where Ck(X;B) = N(X)x1B×Sd−1 (ωk), for 0 ≤ k ≤ d−1 and Cd(X;B) := H d(X ∩
B).

It can be shown, as detailed in [Bernig, 2003], that these Ck(X; .) coincide with
the classical definition of curvatures for C 2 hypersurfaces. In the case of an oriented
m-dimensional submanifold X of Rd without boundary, one has (see [Morvan, 2008],
chap. 21)

Ci(X; ·) = 0, m < i ≤ d

which means that the first coefficients of the polynomial (2.28) vanish. Moreover,
Cm(X;B) = H m (X ∩ B) and Cm−2(X;B) =

∫
X∩B s(x)dH

m(x) up to a constant,
where s(x) is the scalar curvature of X at x. The next proposition justifies the
designation of curvature measures.

Proposition 2.52. The Ck(X; .) are euclidean motion invariant, signed Radon mea-
sures. Moreover, they are additive: if X, Y , X ∪ Y and X ∩ Y have positive reach,
then

Ck(X ∪ Y ; ·) = Ck(X; ·) + Ck(Y ; ·)− Ck(X ∩ Y ; ·)

To compute the evaluation of the normal cycle on the Lipschitz-Killing differen-
tial forms in the general case (C is a smooth m-dimensional submanifold of Rd), we
are interested in the quantity

N(C)(ω) =

∫

NC

〈ω(x, n)|τNC
(x, n)〉 dH d−1(x, n),

for ω a Lipschitz-Killing curvature. We use the Co-Area formula to slice the previous
integral, integrating first on C, and then on the unit normal cone at point x ∈ C. We
still denote π0 : NC → C, (x, n) 7→ x. Moreover, for x ∈ C, π−1

0 (x) = Noru(x, C).
An application of the Co-Area formula, theorem 2.18 gives:
∫

NC

Jmπ0(x, n) 〈ω(x, n)|τNC
(x, n)〉dH d−1(x, n) =

∫

C

[∫

Noru(x,C)

〈ω(x, n)|τNC
(x, n)〉 dH d−1−m(n)

]
dH m(x)
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We need to compute Jmπ0(x, n):

Jmπ0(x, n) = sup
i1,...,im

(∣∣dπ0(x, n)(ai1) ∧ · · · ∧ dπ0(x, n)(aim)
∣∣
)

with (a1, . . . , ad−1) an orthonormal basis of T(x,n)NC . We can choose the expression
(2.11) for the ai. One should notice that if X is m-dimensional, there are exactly m
ki(x, n) that are not infinite, for almost every x ∈ X, and since dπ0(x, n) = π0, we
have:

Jmπ0(x, n) =
d−1∏

i=1|ki(x,n) 6=∞

1√
1 + k2i (x, n)

.

Note that if x ∈ ∂C, the m-dimensional Jacobian vanishes. Finally, we get

∫

C

[∫

Noru(x,C)

d−1∏

i=1
ki 6=∞

√
1 + k2i (x, n) 〈ω(x, n)|τNC

(x, n)〉 dH d−1−m(n)

]
dH m(x)

=

∫

NC∩π−1

0
(C\∂C)

〈ω(x, n)|τNC
(x, n)〉 dH d−1(x, n)

(2.29)

2.5.2 Examples of curvature measures for smooth curves and

surface

To make the connection with the usual notion of curvature in differential geometry,
we will derive the expression of the normal cycle in the simple cases of a smooth curve
in R2 and a smooth surface in R3. Using two different methods, we will detail the
evaluation of the Lipschitz-Killing differential forms on the normal cycle. First, we
follow a “geometric measure point of view”, with the Co-Area formula (theorem 2.18)
and more specifically, Eq. (2.29). We cannot expect the Lipschitz Killing differential
forms to retrieve information about signed curvature since these differential forms
and the normal cycle do not depend of the orientation of the object. Hence, we will
neither be able to have the oriented curvature of the curve, nor the mean curvature
of the surface. However the length of the curve, the area of the surface and the
Gaussian curvature of the surface, are unoriented quantities that will be retrieved.

The second method uses a parametrization of the normal bundle. This explicit
parametrization gives more insight on how the normal cycle encodes the curvature
information of the shape. We will see that choosing more specific differential forms
than the Lipschitz-Killing’s, we are able to have all the curvature information on
the shape.
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Smooth curve in R2

We now specify theorem 2.51 in the case of a regular curve C in R2. The Lipschitz-
Killing 1-differential forms on R2 are

ω0 =
ε̃1
2
, ω1 =

ε1
2
,

where we keep the same notations as in definition 2.49.
Let γ : [0, L]→ R2 be an arc-length parametrization of C, with L its length. We

denote τ(s) = γ′(s) the unit tangent vector and n(s) = τ(s)⊥ the unit normal vector
such that (τ(s), n(s)) is positively oriented. The scalar curvature κ(s) is defined via
the formula n′(s) = κ(s)τ(s). At each point x = γ(s) of the curve, there are two
unitary normal vectors n(s) and −n(s). Note that as explained when describing the
generalized curvature ki(x, n), in the case of the curve in R2, k1(γ(s), n(s)) = κ(s)
and k1(γ(s),−n(s)) = −κ(s). With a slight abuse of notation, we still write κ(x)
for x ∈ C instead of κ(s), with x = γ(s). We do the same identification for n and
τ . With (2.29), and since Noru(x, C) = {n(x),−n(x)}, we obtain for the evaluation
of N(C):

∫

NC

〈ω(x, n)|τNC
(x, n)〉 dH 1(x, n) =

∫

C

√
1 + κ2(x) 〈ω(x, n(x))|τNC

(x, n(x))〉 dH 1(x)

+

∫

C

√
1 + κ2(x) 〈ω(x,−n(x))|τNC

(x,−n(x))〉 dH 1(x)

+

∫

S+
a

〈ω(a, n)|τNC
(a, n)〉 dH 1(n)

+

∫

S+

b

〈ω(b, n)|τNC
(b, n)〉 dH 1(n)

(2.30)

where for x ∈ C \ ∂C,

τNC
(x, n(x)) =

1√
1 + k21(x, n(x))

(
τ(x)

k1(x, n(x))τ(x)

)
=

1√
1 + κ2(x)

(
τ(x)

κ(x)τ(x)

)

and

τNC
(x,−n(x)) = 1√

1 + k21(x,−n(x))

(
−τ(x)

−k1(x,−n(x))τ(x)

)
=

1√
1 + κ2(x)

(
−τ(x)
κ(x)τ(x)

)

and for x = a,

τNC
(a, n) =

(
0

n(x)⊥

)

Finally, we have

N(C)(ω) =

∫

C

〈
ω(x, n(x))

∣∣∣∣
(

τ(x)
κ(x)τ(x)

)〉
dH 1(x) +

∫

C

〈
ω(x,−n(x))

∣∣∣∣
(
−τ(x)
κ(x)τ(x)

)〉
dH 1(x)

+

∫

S+
a

〈
ω(a, n)

∣∣∣∣
(

0
n(x)⊥

)〉
dH 1(n) +

∫

S+

b

〈
ω(b, n)

∣∣∣∣
(

0
(−n(x))⊥

)〉
dH 1(n).
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Now, all we have to do is to evaluate this expression on the Lipschitz-Killing dif-
ferential forms. For ω1(x, n) = ε1(x, n)/2, we get N(C)(ω1) = Length(C) and for
ω0 = ε̃1, we get N(C)(ω0) = 0. It was expected since the scalar curvature κ is
an oriented curvature. Note that it is possible to localize these expression. If B
is a Borel set of R2, C1(C;B) = N(C)x1B×S1(ω1) = Length(γ([0, L]) ∩ B) and
C0(C;B) = N(C)x1B×S1(ω0) = 0.

In fact the sign of the scalar curvature depends on the choice of orientation of
the curve, whereas the normal cycle does not encode orientation. Thus it is normal
that one cannot hope to retrieve the integral of the signed curvature from the full
expression of the normal cycle. The non trivial application of theorem 2.51 in this
case appears when considering the normal cycle of the compact domain V ⊂ R2

such that ∂V = C (which exists via Jordan’s theorem). It can be easily seen that
NV has two connected component and if N(C)1 is the current associated with the
first connected component of NV , we have N(V ) = N(C)1, so that the curvature
measure C1(V, ·) corresponds to the integral of κ:

C0(V ;B) =

∫

γ−1(C∩B)

κ(s)ds.

In general however, when considering non closed curves in R2 or curves in R3, C
does not correspond to the boundary of any domain, and there is no way to get rid
of the cancelling effect. In fact, it can be shown that Cm−i vanishes for i odd, in the
case of a m submanifold of Rd. But one should not misinterpret this point: it only
means that the Lipschitz-Killing forms and the curvature measures are not the right
tool in this context; the normal cycle itself still encodes all curvature information.

If we focus now on a parametrization of the normal bundle, we will see how
to retrieve some (absolute) scalar curvature information on the curve. At each
point x = γ(s) of the curve, there are two unitary normal vectors n(s) and −n(s),
so that the unit normal bundle NC is composed of two disconnected curves with
parametrizations Γ1(s) = (γ(s), n(s)) and Γ2(s) = (γ(L − s),−n(L − s)) (taking
into account the canonical orientation of NC). The expression of the normal cycle
over a 1-form ω thus writes

N(C)(ω) = N(C)1(ω) +N(C)2(ω)

with

N(C)1(ω) :=

∫ L

0

〈ω(Γ1(s))|Γ′
1(s)〉 ds, N(C)2(ω) :=

∫ L

0

〈ω(Γ2(s))|Γ′
2(s)〉 ds.

The 1-form ω can be identified to a vector-field ω̄ on T (R2×S1) written in the form

ω̄(x, n) = (ω̄p(x, n), ω̄n(x, n)e1),

where ω̄p(x, n) ∈ R2, ω̄n(x, n) ∈ R and, as defined previously, e1 the unitary vector
such that (e1, n) is a positively oriented basis of R2. With these notations one gets
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after computations

N(C)1(ω) =

∫ L

0

〈ω̄p(γ(s), n(s)), τ(s)〉 ds+
∫ L

0

ω̄n(γ(s), n(s))κ(s)ds,

and

N(C)2(ω) = −
∫ L

0

〈ω̄p(γ(s),−n(s)), τ(s)〉 ds−
∫ L

0

ω̄n(γ(s),−n(s))κ(s)ds.

This shows clearly the link between the normal cycle and curvature in this case. For
example it is clear from these expressions that one has

sup
{
N(C)(ω), ω ∈ Ω1

0(R
2 × S1), ‖ω‖∞ ≤ 1

}
= 2L+ 2

∫ L

0

|κ(s)|ds,

and further one gets the length and the integral of the absolute value of the curvature
as

L =
1

2
sup

{
N(C)(ω), ω ∈ W 1

1 , ‖ω‖∞ ≤ 1
}
= N(C)(ω1),

∫ L

0

|κ(s)|ds = 1

2
sup

{
N(C)(ω), ω ∈ Ω1

0(R
2 × S1), ‖ω‖∞ ≤ 1, ω̄p = 0

}
.

And using the notations of definition 2.42,

L =
1

2
sup

{
N(C)(ω), ω ∈ W 1

1 , ‖ω‖∞ ≤ 1
}
= N(C)(ω1) = ‖N(C)‖∞,W 1

1

,

∫ L

0

|κ(s)|ds = 1

2
sup

{
N(C)(ω), ω ∈ W 1

0 , ‖ω‖∞ ≤ 1
}
=: ‖N(C)‖∞,W 1

0

.

which can be also localized: for any Borel subset B ∈ R2,

H1(C ∩ B) = N(C)x1B×Sd−1 (ω1)∫

γ−1(C∩B)

|κ(s)|ds =
1

2
sup

{
N(C)(ω), ω ∈ W 1

0 ,

‖ω‖∞ ≤ 1, supp ω ⊂ B × S1
}
.

This clearly shows that curvature is encoded in the normal cycle representation
of the curve. However, applying N(C) to the Lipschitz-Killing form ω0 gives the
following (since ω0 = ε̃1 = (0, e1)):

N(C)1(ω0) =

∫ L

0

κ(s)ds, N(C)2(ω0) = −
∫ L

0

κ(s)ds,

so that N(C)(ω0) = 0.

88



2.5. Curvatures and Normal Cycle

Surface in R3

We now specify theorem 2.51 in the case of a regular surface in R3. The Lipschitz-
Killing 2-differential forms on R3 are

ω0 =
ε̃1 ∧ ε̃2
4π

, ω1 =
ε̃1 ∧ ε2 + ε1 ∧ ε̃2

4π
, ω2 =

ε1 ∧ ε2
2

where we keep the same notations as in definition 2.49.
For the sake of simplicity, we will consider a closed smooth surface S in R3,

oriented with a normal vector field x 7→ n(x). With the same calculations as the
one to obtain (2.30), we get:

N(S)(ω) =

∫

S

〈
ω(x, n(x))

∣∣∣∣
(

e1(x)
κ1(x)e1(x)

)
∧
(

e2(x)
κ2(x)e2(x)

)〉
dH 2(x)

+

∫

S

〈
ω(x,−n(x))

∣∣∣∣−
(

e1(x)
−κ1(x)e1(x)

)
∧
(

e2(x)
−κ2(x)e2(x)

)〉
dH 2(x)

(2.31)

With this expression, we see that





N(S)(ω2) = Area(S),

N(S)(ω1) = 0,

N(S)(ω0) =
1

2π

∫

S

κ1(x)κ2(x)dH
2(x).

Once again, we see that with the Lipschitz-Killing differential forms, we are
not able to retrieve the mean curvature of the surface S since it depends on the
orientation of S. However, we retrieve the area and the Gaussian curvature of the
surface. These expression can also be localized: for any Borel set B ⊂ R3,





N(S)x1B×S2(ω2) = Area(S ∩ B),

N(S)x1B×S2(ω1) = 0,

N(S)x1B×S2(ω0) =
1

2π

∫

S∩B
κ1(x)κ2(x)dH

2(x).

Consider now a global parametrization of the surface S, with

γ : U ⊂ R2 → S, (u, v) 7→ γ(u, v).

S is oriented with a normal vector field defined as

n(u, v) =
∂uγ(u, v) ∧ ∂vγ(u, v)
‖∂uγ(u, v) ∧ ∂vγ(u, v)‖

,
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where ∂uγ(u, v) =
∂γ
∂u
(u, v). The normal bundle of S has two connected component,

N 1
S and N 2

S with parametrization

Γ(u, v) =

(
γ(u, v)
n(u, v)

)
for N 1

S ,

Γ̃(u, v) =

(
γ(u, v)
−n(u, v)

)
for N 2

S .

Using these parametrizations, we compute N(S)(ω)

N(S)(ω) =

∫

U

〈
ω
(
γ(u, v), n(u, v)

)∣∣∂uΓ(u, v) ∧ ∂vΓ(u, v)
〉
dudv

+

∫

U

〈
ω
(
γ(u, v),−n(u, v)

)∣∣∣∂uΓ̃(u, v) ∧ ∂vΓ̃(u, v)
〉
dudv

(2.32)

We can suppose that γ is a parametrization such that (∂uγ, ∂vγ) is an orthogonal
frame of the tangent space, and such that ∂uγ is the direction of first principal
curvature κ1, and ∂vγ is the direction of second principal curvature κ2, so that:

∂uΓ ∧ ∂vΓ =

(
∂uγ
κ1∂uγ

)
∧
(
∂vγ
κ2∂vγ

)

= det
(
∂uγ, ∂vγ

)[(b1
0

)
+

(
0

κ1b1

)]
∧
[(

b2
0

)
+

(
0

κ2b2

)]

with (b1 =
∂uγ

‖∂uγ‖ , b2 =
∂vγ

‖∂vγ‖) an orthonormal frame of principal directions. With the
previous expression, we see that:

∂uΓ ∧ ∂vΓ = det
(
∂uγ, ∂vγ

)(
ε1 ∧ ε2 + κ1ε̃1 ∧ ε2 + κ2ε1 ∧ ε̃2 + κ1κ2ε̃1 ∧ ε̃2

)

where the εi and ε̃j are defined via (2.27). This last expression is interesting because
it specifies how the tangent space of the normal bundle (represented via ∂uΓ ∧ ∂vΓ
and ∂uΓ̃ ∧ ∂vΓ̃) contains the different curvature information. With this expression
and with (2.32), one can show that

Area(S) =
1

2
sup

{
N(S)(ω) | ω ∈ W 2

2 , ‖ω‖∞ ≤ 1
}
=:

1

2
‖N(S)‖∞,W 2

2

,
∫

U

|κ1|+ |κ2|
2

=
1

2
sup

{
N(S)(ω) | ω ∈ W 2

1 , ‖ω‖∞ ≤ 1
}
=:

1

2
‖N(S)‖∞,W 2

1

,
∫

U

|κ1κ2| =
1

2
sup

{
N(S)(ω) | ω ∈ W 2

0 , ‖ω‖∞ ≤ 1
}
=:

1

2
‖N(S)‖∞,W 2

0

.
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And once again, it is possible to localize these measures. For any Borel set B ⊂ R3,

Area(S ∩ B) =
1

2
sup

{
N(S)(ω) | ω ∈ W 2

2 , ‖ω‖∞ ≤ 1, supp ω ⊂ B × S2
}
,

∫

U∩γ−1(B)

|κ1|+ |κ2|
2

=
1

2
sup

{
N(S)(ω) | ω ∈ W 2

1 , ‖ω‖∞ ≤ 1, supp ω ⊂ B × S2
}
,

∫

U∩γ−1(B)

|κ1κ2| =
1

2
sup

{
N(S)(ω) | ω ∈ W 2

0 , ‖ω‖∞ ≤ 1, supp ω ⊂ B × S2
}
.

(2.33)

This makes clear that even though the Liscphitz-Killing forms are not sufficient to
retrieve the mean curvature of a surface, the normal cycle contains all the (unsigned)
curvature information. These curvatures can be obtained with via a supremum
rather than a direct formula.

2.5.3 Discrete curvatures and normal cycles

Curvature measures, and more specifically Lipschitz-Killing forms applied on nor-
mal cycles are a way to generalize the notion of curvature for sets with positive
reach. Moreover, we have seen in subsection 2.4.3 how to define normal cycles for
a broader range of sets, namely union of sets with positive reach. This extension
of the definition allows to consider normal cycles for polygonal meshes as union of
segments or triangulated meshes. It is of interest to apply what we have done right
above in the case of polyhedral shapes. We will see that we are able to retrieve
classical definition of discrete curvatures.

As we are working with curvature measure, we can localize the configuration.
This implies that the study that has been done previously for a smooth curve or a
smooth surface is still valid in the neighbourhood of a regular point in the discrete
case. The only point to tackle here is in the neighbourhood of an extremity for
segments and in the neighbourhood of an edge or a vertex for triangulation.

Consider first a union of two segments C1 = [x1, x2] and C2 = [x2, x3] with a
common vertex x2 in R3. With the same notations as previously, we get:

N(C1 ∪ C2)(ω1) = 2πLength(C1 ∪ C2),

N(C1 ∪ C2)(ω0) = 4π2.

Once again, this is not surprising that we do net retrieve the signed curvature infor-
mation. However, if we consider the supremum norm, we obtained finer information:

Consider again a borel set B of R3, containing x2 but not the extremities x1 and
x3, then one get:





sup
ω∈W 1

2
∩Ωd−1

0

N(C1 ∪ C2)x1B(ω) = 0,

sup
ω∈W 1

1
∩Ωd−1

0

N(C1 ∪ C2)(ω)x1B = 2πLength
(
(C1 ∪ C2) ∩ B

)
,

sup
ω∈W 1

0
∩Ωd−1

0

N(C1 ∪ C2)(ω)x1B = 2π(π − θ)
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where θ is the unoriented angle between C1 and C2 (i.e. θ =

arccos(
〈
x2−x1
|x2−x1| ,

x3−x2
|x3−x2|

〉
) and we retrieve a classical definition of curvature for union

of segments that is the angle deflection at a vertex.
For a triangulation T in R3, we use also a decomposition of the normal bundle

into planar, cylindrical and spherical part. If B is any borel set of R3, we have:

N(T )x1B(ω2) = ‖N(T )x1B‖∞,W 2
2
∩Ωd−1

0

= 2Area
(
T ∩ B

)

Let B be a Borel set of R3 intersecting only one edge e of T . We have:

N(T )x1B(ω1) = 0

due to the orientation. Considering the supremum, we get:

‖N(T )x1B‖∞,W 2
1
∩Ωd−1

0

= 2Length(e ∩ B)(π − θ)

where θ is the angle between the two triangles adjacent to the considered edge. This
is again a classical definition for the (unsigned) mean curvature of a triangulation.

The case in the neighbourhood of a vertex is more intricate, but one can show
that if B is a Borel set of R3 containing only one vertex, one get:

N(T )x1B(ω0) = ‖N(T )x1B‖∞,W 2
0

= 2π −
m∑

i=1

θi

where θi is the angle at the vertex x of the triangle i that has x as in vertex. This
is again the classical definition of the Gaussian curvature for triangulation.

This consideration is closed to the curvature estimation: is it possible to retrieve
curvature information of a smooth surface given a polyhedral approximation of it ? A
classical approach is to fit a quadratic surface on the triangulated mesh and estimate
the curvature of this smooth surface. Numerous methods have been developed and
one can find a survey of some of them in [Petitjean, 2002]. In [Meyer et al., 2003],
authors introduced discrete operators as the discrete Laplace-Beltrami operator, or
the Gaussian curvature operators to estimate curvature of triangulated surfaces.

The framework provided by the geometric measure theory has several advantages.
First of all, the setting of normal cycles (or varifolds) encompasses in a common space
the continuous and the discrete cases. This means that smooth shapes and their
polyhedral approximations live in a common normed vector space. Thus, one can
obtain convergence results of the curvature estimation in a very natural way. For
example, in [Buet et al., 2015], the authors use the first variation of a varifold to
define generalized mean curvature of a shape. This generalized curvature is valid
for continuous shapes as well as their polyhedral approximations and a convergence
results of the curvature of the discrete approximation toward the curvature of the
continuous shape is provided under some conditions on the mesh.

Normal cycles have also been applied to curvature estimation from triangula-
tions: in [Cohen-Steiner and Morvan, 2003], the authors use the Lipschitz-Killing
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forms to generalized the mean and Gaussian curvatures that encompasses the
polyhedral case. They also use vector valued differential forms to extend the notion
of second fundamental form operator and get finer results: the principal curvatures
as well as the principal directions may be estimated from this. Moreover, an
upper bound of the error of the estimated curvature from a triangulated approx-
imation of a smooth shape is proven. The estimation of the second fundamental
form is refined in [Cohen-Steiner and Morvan, 2006] in a Riemannian framework.
[Chazal et al., 2009] extend the stability result of [Cohen-Steiner and Morvan, 2003]
that was valid only for approximation of smooth hypersurfaces. Introducing the
µ-reach of a set, that is a weaker regularity hypothesis than positive reach, they
provide curvature stability with respect to the Hausdorff distance of compact subset
that has positive µ-reach, still using the theory of normal cycles. For example
a finite set of points in R3 has a positive µ-reach and the authors derived an
algorithm to explicit the curvature measure in this case from a description of its
normal bundle. Some of the previous curvature estimation with normal cycles are
sum up in [Morvan, 2008].

In this section, we have formalized the link between the normal cycle of a shape
and its curvature. The Lipschitz-Killing differential forms introduced by Zähle are
independent of the shape and gives all the Federer’s curvature measures. However
they do not capture the oriented curvatures. This fact was expected since the normal
cycle is independent of any orientation of the initial shape. Nonetheless, we have
seen that all the unsigned curvature information is contained in the normal cycle
through a supremum norm on the dual of some restricted space of differential forms
(W 1

0 ,W
2
0 ,W

2
1 , . . . ).

2.6 Link Between the Varifold and the Normal Cy-

cle Associated with a Shape

This section focuses on the link between varifolds and normal cycles. As it will be
seen in the next chapters, when a kernel metric is given on the spaces of varifolds
and normal cycles, the expression of the metric for triangulated meshes on varifolds
is a projection of the metric on normal cycles. Our aim here is to formalize this
projection in the continuous case. For this, let consider a smooth m dimensional
submanifold X in Rd. N(X) is its associated normal cycle and µX its associated
varifold.

We recall that varifolds are elements of C0(R
d × G(d,m))′ and normal cycles

elements of Ωd−1
0 (Rd × Sd−1)′. In this section, we construct a projection p that,

given a normal cycle N(X), provides the varifold µX : p(N(X)) = µX , and an
injection i that given a varifold µX provides an element i(µX) ∈ Ωd−1

0 (Rd × Sd−1)′,
and such that p ◦ i = Id. Of course, we cannot have i(µX) = N(X) since a normal
cycle contains more information about the shape X than a varifold. In fact we will
see that i(µX) is a “coarse” version of the normal cycle N(X), with no curvature
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information.
To construct i and p, we decompose the space Ωd−1

0 (Rd×Sd−1) as in remark 2.43:

Ωd−1
0 (Rd × Sd−1) =

(
Wd−1 ⊕ · · · ⊕Wm ⊕ · · · ⊕W0

)

The space that we will be interested in is Wm. Indeed it corresponds to differential
forms with values in

Fm = Span

{(
α1

0

)
∧ · · · ∧

(
αm
0

)
∧
(
0
n1

)
∧ · · · ∧

(
0

nd−1−m

) ∣∣∣αi, ni ∈ Rd

}
.

Our interest in Wm comes from remark 2.40 where we have seen that the curvature
information contained in the orthonormal basis of T(x,n)NX mixes the spatial and
the spherical component. Moreover, we have seen that the spatial component of
ai(x, n) is vanishes if, and only if the associated direction bi(x, n) is orthogonal to
the tangent space of X. Since varifolds do not contain curvature information, and
are m-dimensional objects, the only way to link varifolds and normal cycles is to
project in some sense the information on the orthonormal basis onto Fm. Doing so,
we lose the curvature information, since there is no mixing between the spatial and
the spherical part, and we keep the m-dimensional tangential information of X since
there are m non zero vectors on the spatial component.

For this, let first define the projection and the injection on the spaces C 0(Rd ×
G(d,m)) and Ωd−1

0 (Rd × Sd−1). If ω ∈ Ωd−1
0 (Rd × Sd−1), the idea is to construct an

element of C 0(Rd × G(d,m)) using projection of ω on some well chosen subspaces
of Wm. For this, we define for P ∈ G(d,m) and n ∈ Sd−1

F (P, n) = Span

{(
α1

0

)
∧ · · · ∧

(
αm
0

)
∧
(
0
n1

)
∧ · · · ∧

(
0

nd−1−m

) ∣∣∣αi ∈ P, ni ∈ P⊥ ∩ n⊥
}
.

One can check that dimFm(P, n) = 1, and we consider the basis

fP,n =

(
e1
0

)
∧ · · · ∧

(
em
0

)
∧
(
0
n1

)
∧ · · · ∧

(
0

nd−1−m

)

with (e1, . . . , em) an orthonormal basis of P and (e1, . . . , em, n1, . . . , nd−1−m, n) a
positively oriented orthonormal basis of Rd. F (P, n) represents the information of
the plane P on the spatial component and of the orthogonal of n∪P on the spherical
component. We denote also f ∗

P,n(τ) the coordinate of τ ∈ Λd−1(Rd×Rd) on the one
dimensional subspace F (P, n) with basis fP,n. Now, given ω ∈ Ωd−1

0 (Rd × Sd−1), we
construct π(ω) ∈ C0(R

d ×G(d,m)) as follow:

π(ω)(x, P ) =
1

Vol
(
Sd−1−m

)
∫

Sd−1∩P⊥

f ∗
P,n

(
ω(x, n)

)
dH d−1−m(n)

The idea is given a direction n, to get the coordinate of the differential form at (x, n)
on the space F (P, n) and integrate this scalar over all the n ∈ Sd−1 ∩ P⊥. π is a
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continuous application from Ωd−1
0 (Rd × Sd−1) to C0(R

d ×G(d,m)) and can be seen
as a projection.

Now, given an element u ∈ C0(R
d ×G(d,m)), we want to construct an element

ι(u) ∈ Ωd−1
0 (Rd × Sd−1). We define:

ι(u)(x, n)(τ) =

∫

G(d,m)∩n⊥

u(x, P ) 〈fP,n|τ〉 dP

We have constructed two operators:

π : Ωd−1
0 (Rd × Sd−1)→ C0(R

d ×G(d,m))

ι : C0(R
d ×G(d,m))→ Ωd−1

0 (Rd × Sd−1).

Moreover if u ∈ C0(R
d ×G(d,m)), we have

π ◦ ι(u)(x, T ) = π

(
(y, n) 7→

∫

G(d,m)∩n⊥

u(y, P ) 〈fP,n|.〉 dP
)
(x, T )

=
1

Vol
(
Sd−1−m

)
∫

Sd−1∩T⊥

f ∗
T,n

(∫

G(d,m)∩n⊥

u(x, P ) 〈fP,n|.〉 dP
)
dH d−1−m(n)

=
1

Vol
(
Sd−1−m

)u(x, T )
∫

Sd−1∩T⊥

dH d−1−m(n)

= u(x, T )

Thus π ◦ ι = Id. Now we can define our operator of interest, which are the dual
operators of ι and π:

ι∗ : Ωd−1
0 (Rd × Sd−1)′ → C0(R

d ×G(d,m))′

π∗ : C0(R
d ×G(d,m))′ → Ωd−1

0 (Rd × Sd−1)′.

We will see that ι∗ =: p is the projection of the normal cycles on the space of varifolds
and π∗ =: i is an injection from the space of varifolds to the space of normal cycles.
For this, consider a m-dimensional smooth submanifold of Rd, N(X) its normal
cycle and µX its varifold.

p(N(X))(u) = N(X)(ι(u)) =

∫

NX

〈ι(u)|τNX
(x, n)〉 dH d−1(x, n)

=

∫

NX

∫

G(d,m)∩n⊥

u(x, P ) 〈fP,n|τNX
(x, n)〉 dPdH d−1(x, n)

Noticing that 〈fP,n|τNX
(x, n)〉 = 0 if P 6= TxX, we get:

p(N(X))(u) =

∫

NX

u(x, TxX) 〈fTxX,n|τNX
(x, n)〉 dH d−1(x, n)
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We recall that τNX
(x, n) = a1(x, n) ∧ · · · ∧ ad−1(x, n) where the ai are defined in

(2.11) and one can show that

〈fTxX,n|τNX
(x, n)〉 =

d−1∏

i=1|ki(x,n) 6=∞

1√
1 + k2i (x, n)

= Jmπ0(x, n),

where we recall that π0 is the projection from NX onto X. Using a Co-Area formula,
we obtain:

p(N(X))(u) =

∫

NX

u(x, TxX)Jmπ0(x, n)dH
d−1(x, n)

=

∫

X

u(x, TxX)

(∫

Noru(x,X)

dH d−1−m(n)

)
dH m(x) = Vol

(
Sd−1−m)µX(u).

We have proven here that p(N(X)) = Vol
(
Sd−1−m)µX .

Now, we compute

i(µX)(ω) = µX(π(ω)) =

∫

X

π(ω)(x, TxX)dH m(x)

=

∫

X

1

Vol
(
Sd−1−m

)
)

∫

Sd−1∩TxX⊥

f ∗
TxX,n

(
ω(x, n)

)
dH d−1−m(n)dH m(x)

=
1

Vol
(
Sd−1−m

)
∫

X

∫

Noru(x,X)

〈ω(x, n)|fTxX,n〉H d−1−m(n)dH m(x)

and using again a Co-Area formula, we obtain:

i(µX)(ω) =
1

Vol
(
Sd−1−m

)
∫

NX

〈
ω(x, n)

∣∣PFm

(
τNX

(x, n)
)〉

H
d−1(x, n)

=
1

Vol
(
Sd−1−m

)
∫

NX

〈
PFm

(
ω(x, n)

)∣∣τNX
(x, n)

〉
H

d−1(x, n)

=
1

Vol
(
Sd−1−m

)
∫

NX

〈
PWm

(
ω
)
(x, n)

∣∣τNX
(x, n)

〉
H

d−1(x, n)

Here, we have proven that i(µX) = P ∗
Wm

(N(X)). We sum up the main results in
the next theorem:

Theorem 2.53. If X is a m-dimensional submanifold of Rd, we have:

1. p(N(X)) = Vol
(
Sd−1−m)µX .

2. i(µX) =
1

Vol
(
Sd−1−m

)P ∗
Wm

(N(X)).

3. p ◦ i(µX) = µX .
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2.7. Discussion

Let’s make some remarks here: first of all, given a normal cycle associated with
a submanifold X, we are able to retrieve the varifold µX associated with X. On
the contrary, given µX , we cannot retrieve N(X), but only a “rough” version of it.
Indeed, the object P ∗

Wm
N(X) is a projection of N(X) on a subspace where there

is no curvature information. Heuristically the current P ∗
Wm

N(X) is associated with
the “locally flattened” submanifold X. To make it more precise, consider a Dirac
δτ(x,n). Suppose that τ ∈ Λd−1(Rd × Rd) writes

τ =

(
m∧

i=1

(
ei
kiei

))
∧
(

d−1∧

i=m+1

(
0
ei

))

with (e1, . . . , ed−1, n) a positively oriented orthonormal basis. As explained previ-
ously, all the curvature information is contained in the ki. Now one can show that
i ◦ p(δτ(x,n)) = δ

PFmτ

(x,n) with

PFm
τ =

(
m∧

i=1

(
ei
0

))
∧
(

d−1∧

i=m+1

(
0
ei

))
.

Thus, projecting the Dirac on the space of varifolds, and injecting it back on the
normal cycles, we have lost all the curvature information.

Secondly, one should notice that the expression of the projection and injection
are much simpler in the case of a (d− 1)-submanifold in Rd, as we have a canonical
identification between a normal vector and the hyperplane defined as the orthogonal
of this normal vector. Moreover, the integrals over G(d, d− 1) ∩ n⊥ and Sd−1 ∩ P⊥

reduces to a sum of two elements.

2.7 Discussion

Using the theory of currents, and following the pioneer works of Federer and Zähle,
we have presented in this chapter the representation of shapes with normal cycles.
The normal cycle of a set is the current associated with its normal bundle. This
model has a higher complexity than classical currents or varifolds. Indeed, the nor-
mal cycles of a shape encodes precise curvature information that have been detailed
in section 2.5. In this section, following Zähle, we used the Lipschitz-Killing differen-
tial forms to retrieve different kind of curvature with normal cycles. We introduced
spaces of differential forms (planar, cylindrical, spherical) that are closely linked to
these curvatures (area form, mean curvature and Gaussian curvature).

For a computational purpose, we have described the normal bundle of a segment
and a triangle. The additive property (2.15) allows to consider the normal cycles for
a union of convex cells but the transition from the normal cycle of a convex cell to the
normal cycles of a union of convex cells is complex. That is why we introduced a new
decomposition of the normal bundle of discrete shapes, into spherical, cylindrical
and planar part that allow for an immediate additive property. Moreover, as we
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have seen in subsection 2.5.3, each component of this normal bundle has a specific
interpretation in term of curvature information. It is interesting to see that with
this decomposition, along with the spaces of differential forms (planar, cylindrical,
spherical), we are able to retrieve in the discrete setting all the classical discrete
curvatures. Normal cycles have already been applied to estimate the curvature of
discrete surfaces approximating a continuous one, as it has been recalled in 2.5.3.
With this work, we have provided a ready-to-use computational framework, with
an explicit and easily implementable representation of discrete shapes with normal
cycles.

Section 2.6 draws a precise link between the normal cycle and the varifold asso-
ciated with a shape. We have seen that in some sense, the varifold of a shape can
be seen as a projection of its normal cycle. Moreover, the injection of a varifold to
the space of normal cycles provides a representation with no curvature information,
as if the shape was “locally flattened”. This section paves the way to a unification
of the different representations of shapes (currents, varifolds, normal cycles), as well
as the precise kind of information encoded in each representation.

98



Chapter 3

Reproducing Kernel Hilbert Spaces

on Normal Cycles

Sommaire

3.1 Vector-Valued Reproducing Kernel Hilbert Spaces . . . 101

3.1.1 General setting . . . . . . . . . . . . . . . . . . . . . . . . 101

3.1.2 Construction of vectorial kernels . . . . . . . . . . . . . . 105

3.1.3 Reproducing Kernel of Sobolev Spaces . . . . . . . . . . . 107

3.2 Kernel Metrics on Currents and Varifolds . . . . . . . . . 109

3.3 Kernel Metrics on Normal Cycles . . . . . . . . . . . . . . 113

3.3.1 Spatial kernel, normal kernel . . . . . . . . . . . . . . . . 113

3.3.2 Choice of the normal kernel . . . . . . . . . . . . . . . . . 113

3.3.3 Orthogonality in the RKHS . . . . . . . . . . . . . . . . . 115

3.3.4 Scalar product on normal cycles . . . . . . . . . . . . . . . 116

3.4 Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.5 Insight of the Properties of the Metric with Constant

or Linear Normal Kernels . . . . . . . . . . . . . . . . . . 118

3.5.1 Constant Kernel . . . . . . . . . . . . . . . . . . . . . . . 118

3.5.2 Linear Kernel . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.6 Convergence Towards the Continuous Shape . . . . . . . 122

3.7 Expression of the Kernel Metric for Discrete Shapes . . 125

3.7.1 General considerations . . . . . . . . . . . . . . . . . . . . 125

3.7.2 Discrete scalar product with constant normal kernel . . . 127

3.7.3 Discrete scalar product with linear normal kernel . . . . . 129

3.7.4 Discrete scalar product with Sobolev normal kernel . . . . 131

3.8 Discussion and perspectives . . . . . . . . . . . . . . . . . 132

99



Chapter 3. Reproducing Kernel Hilbert Spaces on Normal Cycles

The idea of normal cycles (resp. currents) is convenient because it embeds
shapes in a vectorial space: the space of (d − 1)-currents in Rd × Sd−1 (resp.
the space of m-current in Rd). These spaces, defined as dual to spaces of dif-
ferential forms, come with a dual norm: if T ∈ Ωm

0 (R
d)′, we define M(T ) :=

sup
{
T (ω), ω ∈ Ωm

0 (R
d), ‖ω‖∞ ≤ 1

}
, called the mass norm in geometric measure the-

ory. It would be tempting to use this norm as a distance between shapes. However
this norm is not interesting for a matching purpose. Indeed, if C and S are two m-
rectifiable sets, non intersecting, then one can show that M([S]− [C]) = H m(C) +
H m(S), and this independently of any closeness between the two sets. This happens
because the set of test functions ω is too large, and thus discriminates completely
the two shapes. Another norm which turns out to be useful in geometric measure
theory is the flat norm: F (T ) := sup

{
T (ω), ω ∈ Ωm

1,0(R
d) ‖ω‖∞ ≤ 1, ‖dω‖∞ ≤ 1

}

where dω is the exterior derivative of ω. Though, this distance has several draw-
backs, the main one being its non closed form. For our numerical purpose, we need a
computable expression for the dissimilarity between shapes. In the very same spirit
of [Glaunès, 2005], we will use the theory of reproducing kernels to provide kernel
metrics on normal cycles as dissimilarity measures.

The theory of reproducing kernels arose first with Mercer in the study of in-
tegral operators ([Mercer, 1909]), but the seminal work is mostly due to Aronzajn
[Aronszajn, 1950], in 1950. It has now a wide range of applications: complex analy-
sis, harmonic analysis, machine learning, among others. In machine learning theory,
reproducing kernels are a way to represent any kind of data as functions in a func-
tional Hilbert space, with an explicit scalar product. Thus, it is possible to use the
classical statistical machinery in this Hilbert space to analyse the data.

This theory is widely used in computational anatomy either to have a space of
deformations whose equations are easy to implement numerically (see section 1.4) or
to have an explicit distance between shapes (see [Glaunès, 2005, Durrleman, 2010,
Charon, 2013]). Suppose that we have two curves C and S in R2. Representing these
two curves as currents [C] and [S] (figure 3.1), a kernel metric allows to consider a
scalar product between those curves that takes explicit expression as integral over
the curves:

〈[C], [S]〉W ′ =

∫

C

∫

S

k(x, y) 〈τx, τy〉 dH 1(x)dH 1(y).

x

τx

C

y

τy
S

Figure 3.1: Representation of the curves C and S with currents

Now, if we represent the two curves as normal cycles (figure 3.2), the kernel
metric will consider integrals over the normal bundle rather than integrals over the

100



3.1. Vector-Valued Reproducing Kernel Hilbert Spaces

curves themselves. Precisely, we will construct two scalar kernels kp and kn where
kp takes into account the relative spatial position of the curves and kn the relative
position of the normal vectors u and v at point x ∈ C and y ∈ S.

〈N(C), N(S)〉W ′ =

∫

NC

∫

NS

kp(x, y)kn(u, v)
〈
τ(x,u), τ(y,v)

〉
dH 1(x, u)dH 1(y, v).

x u

τ(x,u)

N 
 C

y v

τ(y,v)

N
 S

Figure 3.2: Representation of the curves C and S with normal cycle

In section 3.1 we recall the basics of Reproducing Kernel theory in the vecto-
rial case and the construction of positive definite kernels. For a complete study
of Reproducing Kernel Hilbert Spaces in the vectorial case, one can refer to
[Micheli and Glaunès, 2014]. In section 3.2, we derive kernel metrics on the space of
currents and varifolds, following the previous works of [Glaunès, 2005] for currents
and [Charon and Trouvé, 2013] for varifolds. Sections 3.3, 3.5 and section 3.7 are the
heart of this chapter. We construct kernel metrics on the space of normal cycles us-
ing a product of two kernels: a spatial kernel kp and a normal kernel kn. We explicit
different kernels that we can use as well as embedding properties of the generated
RKHS (3.3). Section 3.5 focuses on two simple kernels for kn: the constant kernel
kn = 1 and the linear kernel kn(u, v) = 〈u, v〉. We detail the kind of curvatures that
each kernel captures. These simple kernels will ease the complexity of the calculus
when dealing with numerical implementation as we will see in section 3.7.

3.1 Vector-Valued Reproducing Kernel Hilbert

Spaces

3.1.1 General setting

Let H be a Hilbert space of functions from Rd to a euclidean space E : H ⊂
F (Rd, E) . We denote 〈., .〉H the scalar product on H and 〈., .〉E the one on E.

Definition 3.1 (Reproducing Kernel Hilbert Space). H is a Reproducing Kernel
Hilbert Space if there exists K : Rd × Rd → L(E) such that

• for all x ∈ Rd, α ∈ E, y 7→ K(x, y)α ∈ H
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Chapter 3. Reproducing Kernel Hilbert Spaces on Normal Cycles

• For every x ∈ Rd, f ∈ H,α ∈ E:

〈K(., x)α, f〉H = 〈f(x), α〉E

A kernel fulfilling these properties is a reproducing kernel. H is then a Reproducing
Kernel Hilbert Space (RKHS) with kernel K.

The next proposition is a more concise, yet more abstract, characterization of
RKHS:

Proposition 3.2. A Hilbert space H of F (Rd, E) is a RKHS if, and only if for
every x ∈ Rd, α ∈ E, the applications

δαx : h ∈ H 7→ 〈h(x), α〉E ∈ R.

are continuous, i.e. in the topological dual of H, denoted H ′.

Proof. First, if H is a RKHS with reproducing kernel K, let α ∈ E and x ∈ Rd. For
every f ∈ H we have

|δαx (f)| = | 〈f(x), α〉E |
= | 〈K(., x)α, f〉H |
≤ ‖K(., x)α‖H ‖f‖H (Cauchy-Schwarz)

≤ 〈K(x, x)α, α〉E ‖f‖H
and thus δαx is continuous.

Conversely, we suppose that all the δαx are in H ′. Thanks to the Riesz repre-
sentation theorem, a canonical isometry exists between H ′ and H : KH : H ′ → H.
We note also 〈.|.〉 the duality product between an element of H ′ and one of H. The
application (α, β) ∈ E2 7→

〈
KHδαx ,KHδβy

〉
H

is obviously bilinear. This bilinearity
enables us to define a kernel KH :

〈β,KH(δαx )(y)〉E =
〈
δβy
∣∣KHδαx

〉

=
〈
KHδαx ,KHδβy

〉
H

=
〈
δαx , δ

β
y

〉
H′

=: 〈KH(x, y)α, β〉E
where the last row can be taken as a definition of the application KH(x, y). From
the properties of bilinearity and positivity of the scalar products, one can deduce
(see [Micheli and Glaunès, 2014]) :

1. KH(x, .)α = KHδαx ∈ H.

2. 〈KH(x, .)α, f〉H = 〈f(x), α〉E.

And these are the properties of a reproducing kernel. Thus, H is a RKHS with
reproducing kernel KH .
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Moreover, one can deduce the following properties for KH :

1. ∀x, y ∈ Rd, KH(x, y) is a linear application on E

2. KH(x, y)
∗ = KH(y, x) (symmetry)

3. ∀N ∈ N, ∀(xi)1≤i≤N , (αi)1≤i≤N :
∑

i,jKH(xi, xj)(αi, αj) ≥ 0.

A kernel fulfilling these three completely algebraic properties is called a positive
definite kernel. We see here that a reproducing kernel is a positive definite kernel.
The next theorem draws a link between both kernels :

Theorem 3.3 ([Aronszajn, 1950], [Micheli and Glaunès, 2014]).

1. For every RKHS H, one can associate a unique positive definite kernel K which
is the reproducing kernel of H.

2. Conversely, if K is a positive definite kernel, there exists a unique RKHS H
whose reproducing kernel is K.

For our need, we will rather consider the second aspect: the space H is con-
structed with starting with a kernel K. The kernel K generates a pre-Hilbert space:
H0 = Vect

{
K(x, .)α|x ∈ Rd, α ∈ E

}
⊂ F (Rd, E), with scalar product:

〈
n∑

i=1

K(xi, .)αi,
m∑

j=1

K(yj, .)βj

〉
:=

n∑

i=1

m∑

j=1

〈αi, K(xi, yj)βj〉E

so that the scalar product, and the norm is explicit. The space H is obtained by
completion of H0 with respect to the scalar product (see [Micheli and Glaunès, 2014]
for technical details).

Regularity of the RKHS

Given a RKHS H constructed via a positive definite kernel KH , it is of interest
to know which regularity have the functions f ∈ H. And even more, do we have
embedding results of H onto some regular spaces?

Since the functions of the form
∑n

i=1KH(xi, .)αi are in H, it seems obvious that
the regularity of the generated RKHS H is linked to the regularity of the kernel KH .
More precisely, we have

Theorem 3.4 ([Micheli and Glaunès, 2014], thm. 2.11). Let H be a RKHS of kernel
KH : Rd × Rd → E, s ≥ 0 an integer. The following two statements are equivalent:

1. H →֒ C s(Rd, E) where C s(Rd, E) is endowed with the topology of uniform
convergence for the derivatives up to order s on every compact set.

2. For every multi index p, 0 ≤ |p| ≤ s, ∂p1∂
p
2KH exists, is continuous in each of

the two variables and is locally bounded.

Moreover, if K(x, .)α ∈ C s
0 (R

d, E) for all x ∈ Rd, α ∈ E, then H →֒ C s
0 (R

d, E).
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Vector field interpolation

Let us illustrate how convenient the setting of a RKHS can be with the following
example. Suppose that we have n corresponding points (xi, yi) ∈ (Rd)2 and we want
to find a vector field v0 ∈ C 0

0 (R
d,Rd) such that v0(xi) = yi. This problem with no

more constraint is ill-posed: there is no uniqueness for a solution.
If we suppose now that we have a RKHS H →֒ C 0(Rd,Rd), with kernel KH .

Then we can consider the regularized problem:
{

argmin
v∈H
‖v‖2H

v(xi) = yi, ∀i ∈ {1, . . . , n}.
(3.1)

This problem is apparently infinite dimensional. However, it simplifies a lot with
the Representer theorem:

Theorem 3.5 (Representer theorem). Let H be a RKHS of F (Rd, E), with kernel
KH and xi ∈ Rd,ψ : En ×R an increasing function with respect to the last variable.
Then any solution of the problem

min
f∈H

ψ
(
f(x1), . . . , f(xn), ‖f‖2H

)

admits a representation of the form

∀x ∈ Rd, f(x) =
n∑

i=1

KH(xi, x)αi

The Representer Theorem guarantees that a solution v0 of (3.1) writes

v0(y) =
n∑

i=1

KH(xi, y)αi

where the αi are in Rd and satisfy linear equations:

∀j ∈ {1, . . . , n},
n∑

i=1

KH(xi, xj)αi = yj.

If we denote KH(x, x) =
(
KH(xi, xj)

)
1≤i,j≤n, and α = (αi)1≤i≤n, y = (yi)1≤i≤n, the

previous equation writes:
KH(x, x)α = y.

Thus, the infinite dimensional problem of minimizing a norm of vector field under
the constraint v(xi) = yi reduces to solve a finite dimensional linear problem, namely
solving a linear system with matrix KH(x, x). Moreover, the norm of the optimal
vector field has simple expression in term of the kernel:

‖v0‖2H =

〈
n∑

i=1

KH(xi, .)αi,
n∑

j=1

KH(xj, .)αj

〉

H

=
n∑

i,j=1

αTj KH(xi, xj)αi.
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3.1. Vector-Valued Reproducing Kernel Hilbert Spaces

So, once we have defined a positive definite kernel, the framework of RKHS is
very convenient to work with, with explicit formulation for optimal solutions.

3.1.2 Construction of vectorial kernels

We are left now to design the kernel KH . The set of positive definite kernels has nice
algebraic properties ([Aronszajn, 1950], [Micheli and Glaunès, 2014] for the vectorial
case): the sum of two positive definite kernels, the multiplication by a positive
constant, the tensor product of two positive definite kernels are still positive definite
kernels. This properties are useful to construct kernels starting from elementary
ones as we will see below. We need also some specifications on the kernel: KH has
to be regular enough to have embedding properties. Moreover, for the purpose of
providing a shape dissimilarity, we are interested in RKHS whose kernel induces
an inner product that is invariant under isometries. Doing so, we ensure that the
distance between shapes does not change if we apply the same translation or rotation
to both shapes. If KH is invariant under isometries, one can show that KH writes:

KH(x, y) = K(‖x− y‖),

where K : R → L(E). Of course, not all such kernels fulfill the condition of
positivity. For a characterization of translation-rotation invariant kernels that are
definite positive, one can see [Micheli and Glaunès, 2014], section 3.

With scalar kernels

The simplest kernel K that one can think of is the scalar kernel, namely K(r) =
k(r)Id where k : R→ R is a positive definite kernel on R. Several scalar kernels are
used on a regular basis. The two kernels that we will use in the following are:

• The Gaussian kernel with width σ: k(x, y) = exp(−‖x− y‖2 /σ2).

• The Cauchy kernel with width σ : k(x, y) = 1

1+
‖x−y‖2

σ2

. The Cauchy kernel is a

good alternative to the Gaussian kernel.

One can check that these two kernels are positive definite. The parameter σ is a
scale parameter and will depend on the data.

Friedrichs Extension and Reproducing Kernel

Once a positive definite kernel KH is set, it defines a RKHS H and a continuous
operator KH : H ′ → H. We will see here another way to construct explicit scalar
reproducing kernel starting with the continuous operator, rather than the positive
definite kernel. We recall here some points of [Glaunès, 2005], chapter 3. For our
future purpose, we will consider vector fields on a compact submanifold of Rd, M ,
with volume form m. We denote C ∞(M) the set of all C ∞ functions on M , with
its canonical topology, which is the topology of uniform convergence of f and all
its derivatives. We have C ∞(M) →֒ L2(M) and C ∞(M) is dense in L2(M) for the
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L2 norm. Let LV : C ∞(M) → L2(M) be a continuous, symmetric and strongly
monotone operator, i.e. :

∀u, v ∈ C
∞(M), 〈LV u, v〉L2 = 〈u, LV v〉L2 ,

LV : C
∞(M)→ (L2(M), ‖.‖2) is continuous,

and there exists C > 0 such that

∀u ∈ C
∞(M), 〈LV u, u〉L2 ≥ C ‖u‖L2

Then, 〈u, v〉V := 〈LV u, v〉L2 defines scalar product on C ∞(M). (C ∞(M), ‖.‖V ) is
a normed vector space, but not complete. We complete it for the norm ‖.‖V , and
denote V the Hilbert obtained. We cannot hope for an extension of LV on all V .
However, for every u, v ∈ C ∞(M), 〈u, v〉V = 〈LV u, v〉L2 . Thus we can extend LV
(using the scalar product in V ) by considering all the u ∈ V such that there exists
a h ∈ L2(M) with the following property:

∀v ∈ V : 〈u, v〉V = 〈h, v〉L2

If such a h exists, it is unique, and we denote it LV u := h. Let D(LV ) be the set of
all u ∈ V such that LV u exists. Obviously, C ∞(M) ⊂ D(LV ), and D(LV ) is dense
in L2(M) for the L2-norm. This is the Friedriechs extension of LV , which extends
LV on a dense subspace of L2 and the following theorem justifies the necessity of
such a construction:

Theorem 3.6. LV : D(LV ) → L2(M) is bijective, and L−1
V : L2(M) → L2(M)

is a continuous, symmetric definite positive operator. Moreover, if V →֒ L2(M) is
compact, then L−1

V is compact.

Since under the right assumptions L−1
V is compact autoadjoint, we can diagonalise

it on an Hilbert basis of L2(M), (wi)i∈N, with eigenvalues (µi)i∈N, with µi > 0 and
µi →i→∞ 0 (see [Brézis, 2011]). We have then LV (wi) =

1
µi
wi. We denote λi = 1

µi
.

With this construction, we can redefine the sets L2(M), D(LV ), V :

Proposition 3.7.

L2(M) =

{
∑

i∈N
αiwi |

∑

i

α2
i < +∞

}
,

V =

{
∑

i

αiwi |
∑

i

λiα
2
i < +∞

}
,

D(LV ) =

{
∑

i

αiwi |
∑

i

λ2iα
2
i

}
.

and if we define w̃i =
wi√
λi

, then (w̃i)i∈N is a Hilbert frame of V . The scalar product

on V is explicit : if u =
∑

i αiwi and v =
∑

i βiwi, then

〈u, v〉V =
∑

i

λiαiβi
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It is possible to make a link between LV and a reproducing kernel KV if we
suppose that V is continuously embedded in C (M), with the uniform norm. Let
x ∈M . Then, with the previous notations, we have for every f ∈ V

|δx(f)| = |f(x)|
≤ ‖f‖∞
≤ c ‖f‖V

which means that the evaluation applications are in V ′. Thus (proposition 3.2), V
is a RKHS with reproducing kernel KV , and KV has an explicit expression with
the proposition 3.7: let x ∈ M . KV (x, .) ∈ V and therefore can be written in the
Hilbert frame (wi)i∈N:

KV (x, .) =
∑

i∈N
αi(x)wi

and if we take the scalar product with wj, we get

〈KV (x, .), wj〉V = λjαj(x)

= wj(x)

And so
KV (x, y) =

∑

i∈N

1

λi
wi(x)wi(y).

Then, in order to have an explicit expression of a reproducing kernel using an oper-
ator L, it is sufficient to diagonalise L−1 with explicit eigenvalues. Given an Hilbert
frame (wi)i∈N of L2(M), and (λi)i∈N ∈ RN

+, with λi →i→∞ +∞, we can also de-
fine a set V and D(LV ) as in proposition 3.7, and the operator LV defined on the
Hilbert frame: LV (wi) = λiwi. It can be shown that given this LV , L−1

V is compact,
symmetric definite positive operator, and V →֒ L2(M) is compact.

This construction allows us, given an operator LV and a Hilbert frame (wi)i, to
define LsV with s ∈ R+ as the following expression :

LsV (wi) = λsiwi.

3.1.3 Reproducing Kernel of Sobolev Spaces

We illustrate here the previous construction to define RKHS on S2, with a power of
an operator L = (Id−∆) on the sphere. It will be useful to have explicit, rotational
invariant kernel on the normal space of the normal bundle. Let us consider the
reproducing kernel kn associated with Sobolev spaces Hs(S2). Let us first consider
the space

H1(S2) =
{
u ∈ L2(S2) | the weak derivative ∇u exists and is in L2(S2)

}
.

This space is naturally endowed with a scalar product:

〈u, v〉H1(S2) :=

∫

S2

uv +

∫

S2

〈∇u,∇v〉 ,
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and it is a classical result that
(
H1(S2), ‖.‖H1(S2)

)
is a Hilbert space with compact

injection in L2(S2) ([Brézis, 2011], Sobolev injections). Using integration by parts,
we have:

〈u, v〉H1(S2) =

∫

S2

uv +

∫

S2

〈∇u,∇v〉

=

∫

S2

uv −
∫

S2

(∆u)v =

∫

S2

v
(
Id−∆

)
(u)

=
〈(
Id−∆

)
u, v
〉
L2(S2)

.

(Id−∆)−1 : C ∞(S2)→ L2(S2) is a continuous, symmetric, strongly monotonous
operator. Moreover, since H1(S2) →֒ L2(S2) is compact, with theorem 3.6, (Id −
∆)−1 is compact and one can show that the Friedrichs extension D

(
Id−∆

)
coincides

with H1(S2). We will use expansion on spherical harmonics (see Appendix B) to
define H1(S2). We recall that the spherical harmonics (Yl,m), for l ∈ N,−l ≤ m ≤ l
form an Hilbert frame of L2(S2) and are the eigenvectors of −∆:

(
Id−∆

)
Yl,m =

(
1 + l(l + 1)

)
Yl,m.

We can now define the operator
(
Id−∆

)s
, s ∈ R+

(
Id−∆

)s
Yl,m =

(
1 + l(l + 1)

)s
Yl,m.

For s > 2, we define Hs(S2) := D
(
(Id − ∆)−s

)
. Hs(S2) coincides with the usual

defintion of the s-Sobolev space on the sphere and we have we have Hs(S2) →֒
C 1(S2) (Sobolev injections, see [Brézis, 2011], Chap. IX. The results can be applied
straightforwardly to the case of compact submanifolds without boundaries using
partition of unity on a finite atlas of the manifold). Thus, if s > 2, Hs(S2) is a
RKHS with reproducing kernel kn. The operator associated with kn is L = (Id−∆)s.
And we have by definition of kn: Lkn(x, .) = δx. Using an expansion on spherical
harmonics of kn(x, .) for x ∈ S2, we get kn(x, .) =

∑
l∈N
∑l

m=−l αl,m(x)Ylm. By the
definition of kn, we have

〈kn(x, .), Yl′,m′〉Hs(S2) = Yl′m′(x)

And also, by definition of the scalar product and the operator L:

〈kn(x, .), Yl′,m′〉Hs(S2) = 〈kn(x, .), LYl′m′〉L2(S2)

=

〈
∑

l∈N

l∑

m=−l
αl,m(x)Ylm, (1 + l(l + 1))sYl′m′

〉

L2(S2)

= αl′m′(x)(1 + l(l + 1))s = Yl′m′(x)

which gives:

kn(x, y) =
∑

l∈N

l∑

m=−l

1

(1 + l(l + 1))s
Ylm(x)Ylm(y) (3.2)

The Sobolev kernel will be one of the used kernels to provide a metric on normal
cycles.

108



3.2. Kernel Metrics on Currents and Varifolds

Remark 3.8. Conversely, we could have fixed the eigenvalues λl at first instead of
1 + l(l + 1), and defined the kernel kn as in (3.2). All rotation invariant repro-
ducing kernels on the sphere can be obtained with this procedure. Although we only
consider kernels associated with Sobolev spaces in this work, one may definitely con-
sider general metrics here by specifying appropriate assumptions on the sequence of
eigenvalues.

3.2 Kernel Metrics on Currents and Varifolds

The theory of reproducing kernel provides a powerful tool to construct a Hilbert
space with explicit scalar product. We will see how to use it in the context of cur-
rents. All this has been developed in [Glaunès, 2005], [Vaillant and Glaunès, 2005].

Kernel metrics on currents

In [Glaunès, 2005], the author defines a RKHS W in the space of m-differential
forms Ωm

0 (R
d) ⊂ F

(
Rd,Λm(Rd)∗

)
using a positive definite kernel KW . With the

previous notation, E = Λm(Rd)∗ = Λm(R
d) that we identify with Λm(Rd) with the

Riesz representation theorem. We suppose that W →֒ Ωm
0 (R

d), i.e. for every ω ∈ W ,
‖ω‖∞ ≤ c ‖ω‖W . Then if S is a compact, m-rectifiable set of Rd, we have

|S(ω)| ≤
∫

S

|ω| ≤H
m(S)c ‖ω‖W , (3.3)

so that the restriction of [S] to W belongs to W ′. Hence a m-rectifiable set can be
considered as an element of the HilbertW ′, whose norm is explicit by the reproducing
kernel. This raises the question of choosing a positive definite kernel on the space of
differential forms. Here we will use scalar kernels: we define for every α, β ∈ Λm(Rd),
for every x, y ∈ Rd

〈KW (x, y)α, β〉Λm(Rd) = kW (x, y) 〈α, β〉Λm(Rd)

where kW is a scalar kernel, for example kW (x, y) = exp
(

−|x−y|2
σ2
W

)
, with σW a pa-

rameter. This is a positive definite kernel and defines a RKHS W of m-differential
forms. We have to be sure that this kernel defines a RKHS W embedded in the
space Ωm

0 (R
d):

Proposition 3.9 ([Glaunès, 2005], chapter 2, theorem 9). Let p ∈ N, and a positive
definite kernel K : Rd × Rd → L(E), with derivatives at order ≤ 2p which are
continuous and bounded. Suppose that for every x ∈ Rd, K(x, .) vanishes at infinity,
and so do its derivatives at order ≤ p. Then the RKHS W associated with K is
embedded into C

p
0 (R

d, E).

All the kernels in this paper will fulfill the previous proposition. For example a
scalar Gaussian kernel guarantees that its RKHS is embedded in a space as regular
as we want (∀p ∈ N,W →֒ C

p
0 (R

d, E)).
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Now let S be a m-rectifiable set in Rd, α ∈ Λm(Rd), and x ∈ Rd. From the
reproducing property, we have

〈α,KW [S](x)〉Λm(Rd) = 〈δαx |KW [S]〉
= 〈[S]|KW (x, .)(α, .)〉

=

∫

S

kW (x, y) 〈α, τS(y)〉 dH m(y).

Thus the scalar product between two m-rectifiable orientable sets S and C can be
expressed as

〈[S], [C]〉W ′ =

∫

S

∫

C

kW (x, y) 〈τS(x), τS(y)〉Λm(Rd) dH
m(x)dH m(y) (3.4)

where τS(x) is the m-vector associated with a positively oriented orthonormal basis
of TxS.

The distance between two shapes S and C is then

d(C, S)2 = ‖[S]− [C]‖2W ′ = 〈[S], [S]〉W ′ − 2 〈[S], [C]〉W ′ + 〈[C], [C]〉W ′ .

In the discrete setting, the expression of the scalar product is simple using dirac
approximations in the space of currents (2.2) and (2.3) seen in Chapter 2. For two
discrete curves C = ∪Ni=1Ci and S = ∪Mi=1Sj,

〈[C], [S]〉W ′ =
N∑

i=1

M∑

j=1

kp(ci, sj) 〈fi, gj〉 . (3.5)

where ci (resp. sj) is the middle of the segment Ci (resp. Sj) and fi is the oriented
edge (a vector) associated with Ci (resp. gj with Sj).

For two triangulation meshes T =
∑N

i=1 Ti and T ′ =
∑M

j=1 T
′
j , with nTi the

oriented normal vector of the triangle Ti, we have:

〈[T ], [T ′]〉W ′ =
N∑

i=1

M∑

j=1

A(Ti)A(T ′
j)kp(bi, b

′
j)
〈
nTi , nT ′

j

〉
, (3.6)

where bi is the barycentre of the triangle Ti.

Kernel metrics on varifolds

The same work can be done to provide a metric on the space of varifolds, C0(R
d ×

G(d,m))′. For this, we construct first a RKHS W →֒ C0(R
d×G(d,m)) (i.e. ‖u‖∞ ≤

C ‖u‖W ). Once the Hilbert space is set, we have for X a m-rectifiable set,

|µX(u)| =
∣∣∣
∫

X

u(x, TxX)dH m(x)
∣∣∣ ≤

∫

X

|u(x, TxX)|dH m(x)

≤ CH
m(X) ‖u‖W ,
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which means that µX ∈ W ′. The varifold representations of m-rectifiable sets are
in W ′ and the dual scalar product on W ′ provides scalar product on shapes. We
are left to design a scalar positive definite kernel KW on the space Rd × G(d,m)
that will generate a Hilbert space W →֒ C0(R

d × G(d,m)). This has been done in
[Charon and Trouvé, 2013, Charon, 2013] and we sum up briefly the construction of
the kernel, referring to these works for more details.

The kernel KW : (Rd × G(d,m))2 → R involves two independent aspects: the
spatial information contained in Rd and the tangential information contained in
G(d,m). For this, we build the kernel as a product of two kernels: a spatial kernel
kp : (Rd)2 → R and a tangential kernel kt : G(d,m)2 → R. kp is often a Gaussian
or Cauchy kernel, as for currents. The tangential kernel is more involved since it
necessitates to define a coherent kernel on G(d,m). The simplest way to do so is
probably to identify a m dimensional subspace Q ∈ G(d,m) with the orthogonal
projection on Q, denoted PQ. By doing so, we can consider G(d,m) as a subspace of
L(Rd). This space is a vector space of dimension d2 and is endowed with a canonical
scalar product, associated with the Frobenius norm:

〈A,B〉L(Rd) = tr(ATB).

Once this observation is done, we have access to classical kernels as:

• The linear kernel kt(V,W ) = 〈PV , PW 〉,
• More generally, the polynomial kernel, kt(V,W ) = 〈PV , PW 〉k , k ∈ N∗.

• The Gaussian kernel : kt(V,W ) = exp
(
− |PV −PW |2

σ2

)
.

One should notice that all these kernels have a simple expression through the prin-
cipal angles ([Charon, 2013], chapter 3), that becomes explicit when dealing with
polygonal meshes as triangulation or union of segments.

Remark 3.10. We could also have used the identification between G(d,m) and the
projective space of Λm(Rd), denoted P (Λm(Rd)). To a m dimensional vector space
V of Rd, we associate the one dimensional subspace generated by Λmi=1ei where the
frame (e1, . . . , em) spans V , see again [Charon, 2013], chapter 3.

Now that we have the two kernels kp and kt, we define KW as

KW

(
(x, V ), (y,W )

)
= kp(x, y)kt(V,W ).

It defines a positive definite kernel on C0(R
d×G(d,m)). The scalar product between

“dirac” varifolds defined in definition 2.28 is explicit:
〈
δ(x,P ), δ(y,Q)

〉
W ′ = kp(x, y)kt(P,Q),

and the scalar product between two varifolds associated with m-rectifiable sets S
and C is:

〈µS, µC〉W ′ =

∫

S

∫

C

kp(x, y)kt(TxS, TyC)dH
m(x)dH m(y). (3.7)
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Note that for two polygonal mesh P = ∪Ni=1Pi with bi the barycentre of each
convex cell Pi (resp. P ′ = ∪Mi=1P

′
i , with barycentre b′i), we get using approximations

as in (2.7) and (2.8)

〈µP , µ
′
P〉W ′ =

N∑

i=1

M∑

j=1

|Pi||P ′
j |kp(bi, b′j)kt

(
< Pi >,< P ′

j >
)
. (3.8)

where |Pi| is the area of the cell Pi and < Pi > is the vector space spans by Pi.
With the same notation as for (3.5), the previous equation writes in the case of

discrete curves with linear kernel for kt

〈µT , µT ′〉W ′ =
N∑

i=1

M∑

j=1

kp(ci, sj)|Ci||Sj| 〈fi/|fi|, gj/|gj|〉2 . (3.9)

Notice that we retrieve here the fact that varifolds are non oriented objects: the
scalar product does not depend on the choice of the orientation for each edge ±fi.
One can check that in the case of two triangulations in R3, with the linear kernel
for kt, we get:

〈µT , µT ′〉W ′ =
N∑

i=1

M∑

j=1

kp(ti, t
′
j)|Ti||T ′

j |
〈
nTi , nT ′

j

〉2
(3.10)

where nTi is one of the two normal vectors of Ti. Once again the scalar product does
not depend on the choice of the normal vector ±nT .

Remark 3.11. An important question to tackle is the question of universality.
With the kernels that we choose, we have an embedding j : W →֒ C0(R

d×G(d,m)),
i.e. a continuous injection. The dual application is j∗ : C0(R

d × G(d,m))′ → W ′.
However, j∗ needs not be injective. This means that two distinct varifolds µ and µ′

may have the same image by j∗. And so, the distance between µ and µ′ in W ′ is
null: the metric on W ′ is only a pseudo distance on C0(R

d×G(d,m))′. The property
of universality for a kernel, introduced in [Carmeli et al., 2008], is equivalent to the
fact that j∗ is an embedding.

This question has been answered in the case of varifolds in [Charon, 2013]. For
example, in the case of Gaussian kernels for kp and kt, the kernel KW fulfils the
condition of universality and the distance on W ′ is a real distance on the space of
varifolds. We refer to [Charon, 2013], 3.3.2 for more details. This question will be
tackled more specifically in the case of kernel metrics on normal cycles in section 3.4.

A weaker result can be shown: even in the case of the linear kernel for kt, the
norm on W ′ defines a distance on the varifolds associated with submanifolds. See
[Charon, 2013], chapter 3 for more details.
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3.3 Kernel Metrics on Normal Cycles

3.3.1 Spatial kernel, normal kernel

Normal cycles are (d−1)-currents on the space Rd×Sd−1, i.e. elements of Ωd−1
0 (Rd×

Sd−1)′. Thus, the previous construction on currents can be used to define a distance
between shapes as the norm of the difference of their normal cycles for a given kernel
metric. This requires only to choose a scalar positive definite kernel k on Rd×Sd−1.
We define k as a product of two positive definite kernel, a point kernel kp and a
normal kernel kn:

k((x, u), (y, v)) = kp(x, y)kn(u, v).

which is a positive definite kernel ([Aronszajn, 1950]). Defining k as a product of two
kernels is justified by the fact that the point-space Rd and the normal-space Sd−1

have different geometric meanings and therefore should be considered separately.
The choice of the spatial kernel is classical in computational anatomy, and kp is often

a Gaussian kernel kp(x, y) = exp
(

−|x−y|2
σ2
W

)
or a Cauchy kernel kp(x, y) = 1

1+
|x−y|2

σ2
W

.

3.3.2 Choice of the normal kernel

We focus now on the choice of kn. The features that we want for this kernel are
the following: it has to fulfil the hypothesis of proposition 3.16, namely kn(u, .)
has to be C 1. Moreover we would like to have an explicit expression of kn, which
fits well in a computational framework. For this we will intensively use expan-
sions in spherical harmonics. For a complete summary on spherical harmonics, see
[Atkinson and Han, 2012].

Following [Atkinson and Han, 2012], Sect. 3.9, we will consider kernels of the
form

kn(u, v) =
∑

l≥0

l∑

m=−l
αl,mYl,m(u)Yl,m(v) (3.11)

that is kernels with an explicit expansion in spherical harmonics. We will see that
this expression encompasses some well known kernels as for example the linear kernel
restricted to the sphere or some reproducing kernels of Sobolev spaces. Moreover,
it is possible to link the regularity of the kernel kn and the coefficients αl,m. Finally,
we have a control of the approximation by truncation of (3.11).

First of all, for both numerical purposes and applications, the kernel kn should
be rotational invariant, i.e.

kn(Ru,Rv) = kn(u, v), ∀R ∈ Od(R
d)

this is the case if, and only if in the expression (3.11), αl,m does not depend on m
(Th. 3.25 of [Atkinson and Han, 2012]). Thus we are looking now at kernels with
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expression

kn(u, v) =
∑

l≥0

al

l∑

m=−l
Yl,m(u)Yl,m(v).

Using real valued spherical harmonics (see Appendix B), we get

kn(u, v) =
∑

l≥0

al

{
Yl0(u)Yl0(v) +

l∑

m=1

(Y c
l,m(u)Y

c
l,m(v) + Y s

l,m(u)Y
s
l,m(v))

}
. (3.12)

Theorem 3.12. If
∑

l≥0 |al|(2l+ 1) < +∞, the kernel defined in (3.12) is continu-
ous.

Proof. Using the Addition Theorem (Th. 2.9 of [Atkinson and Han, 2012], recall in
Appendix B), we have

kn(u, v) =
∑

l≥0

al
(2l + 1)

4π
Pl(〈u, v〉).

where Pl are the Legendre polynomials. We can show that ∀x ∈ [−1, 1], |Pl(x)| ≤ 1.
Thus, if

∑
l≥0 |al|(2l + 1) < +∞, the sum in (3.12) uniformly converges, and thus

the kernel is continuous.

The Sobolev kernel seen in subsection 3.1.3 has nice embedding property:

Proposition 3.13. If kp is a scalar kernel, kp(x, .) ∈ C 1
0 (R

d,R), kn is the repro-
ducing kernel of Hs(Sd−1), s > d+1

2
, then W →֒ Ωd−1

1,0 (Rd × Sd−1).

Proof. If we choose s > d+1
2

for the Sobolev kernel kn, then we have Sobolev injec-
tions (see [Brézis, 2011], Chap. IX. The results can be applied straightforwardly to
the case of compact submanifolds without boundaries using partition of unity on
a finite atlas of the manifold): Hs(Sd−1) →֒ C j(Sd−1), ∀0 ≤ j < s − d−1

2
. Thus

if s > d+1
2

, Hs(Sd−1) →֒ C 1(Sd−1). KW , which is a tensor product of kp and
kn is such that ∂1∂2K (with the same notations as [Micheli and Glaunès, 2014])
exists, and is continuous, and locally bounded. Moreover, KW (., (x, u))τ ∈
C 1
0

(
Rd × Sd−1,Λd−1

(
Rd × Rd

))
because kp(x, .) ∈ C 1

0 (R
d,R). By Theorem 2.11

of [Micheli and Glaunès, 2014], we conclude that W →֒ Ωd−1
1,0 (Rd × Sd−1).

In one hand, the Sobolev kernel has nice regularity properties that provides a
sound mathematical framework (see section 3.4). But on the other hand its com-
plexity is prohibitive for now in the case of surfaces. This is why we will use simpler
kernels: the constant kernel kn(u, v) = 1 and the linear kernel kn(u, v) = 〈u, v〉.
Notice that the constant kernel is only a semi-definite kernel. However it will prove
useful to simplify the computation of the discrete scalar product. The Sobolev kernel
will be implemented for discrete curves only.
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3.3.3 Orthogonality in the RKHS

Now the reproducing kernel for normal cycles will be
〈KW ((x, u), (y, v))η, ν〉Λd−1(Rd×Rd) = kp(x, y)kn(u, v) 〈η, ν〉Λd−1(Rd×Rd) with
x, y ∈ Rd, u, v ∈ S, η, ν ∈ Λd−1(Rd × Rd).

Remark 3.14. Instead of the canonical scalar product on Rd×Rd, we can choose a
weighted scalar product, as for example: 〈(τ1, ν1), (τ2, ν2)〉λ := τ1 · τ2+λν1 · ν2, where
τi, νi ∈ Rd and λ > 0. The scalar product on Λd−1(Rd × Rd) is then:

〈u1 ∧ · · · ∧ ud−1, v1 ∧ · · · ∧ vd−1〉λ := det (〈ui, vi〉λ)

where ui, vi ∈ Rd × Rd. This introduces a new weight parameter in the model, but
is justified again by the fact that the two Rd spaces in the cartesian product have
different geometric meanings. Also, as we will see in Chapter 4, when analyzing
homogeneity properties of the functional with respect to scaling, it seems clear that
λ should depend on the scale σW of the space kernel kp.

We recall that we can decompose the space Ωd−1
0 (Rd × Sd−1) as a direct sum of

W d−1
i defined in definition 2.42 and following remark:

Ωd−1
0 (Rd × Sd−1) =

d−1⊕

i=0

W d−1
i,0 .

where W d−1
i,0 = W d−1

i ∩Ωd−1
0 (Rd×Sd−1) With the choice of scalar kernels, we have an

interesting feature for the scalar product on normal cycles associated wit the kernel
metrics: the planar, cylindrical and spherical part are orthogonal with each other.
This is sum u in the next proposition.

Proposition 3.15. Suppose that kp and kn are scalar kernels. Then the sum⊕d−1
i=0 W

d−1
i is orthogonal for the kernel metric:

W d−1
j,0 ∩W ⊥W W d−1

i,0 ∩W for i 6= j

Proof. Since the scalar product on W comes from a scalar kernel:

KW

(
(x, u), (y, v)

)
= kp(x, y)kn(u, v)IdΛd−1(Rd×Rd).

Thus, we see that the spaces W d−1
i are orthogonal because the spaces F d−1

i are
orthogonal for the canonical scalar product on Λd−1(Rd × Rd). Let us prove this
property for the cylindrical and spherical part (i.e. in our case F d−1

0 and F d−1
1 .

The proof of the other orthogonal properties are similar. The respective typical
d − 1-vector associated are of the form τ = (τ1, 0) ∧ (0, τ2) ∧ . . . ∧ (0, τd−1) and
ν = (0, ν1) ∧ . . . ∧ (0, νd−1), and the scalar product between those two vectors is:
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〈τ, ν〉 =

∣∣∣∣∣∣∣∣∣

(τ1, 0).(0, ν1) (τ1, 0).(0, ν2) · · · (τ1, 0).(0, νd−1)
(0, τ2).(0, ν1) (0, τ2).(0, ν2) · · · (0, τ2).(0, νd−1)

...
...

...
(0, τd−1).(0, ν1) (0, τd−1).(0, ν2) · · · (0, τd−1).(0, νd−1)

∣∣∣∣∣∣∣∣∣
= 0

since all coefficients in the first line of the above matrix equal to zero. Thus the scalar
product of a cylindrical part and a spherical part of normal cycles vanishes.

This means that the spaces (W d−1
i,0 ∩W )′ are orthogonal for the scalar product

on W ′. Considering Ω2
0(R

3 × S2), i.e. curves or surfaces in R3, the planar part,
cylindrical part and spherical part of the normal bundle are orthogonal for the
kernel metric. This will simplify a lot the calculus of the scalar product between
discrete shapes. And it inspires the decomposition of the normal cycle that has been
done in subsection 2.4.3.

3.3.4 Scalar product on normal cycles

Proposition 3.16. If kp is a scalar kernel, kp(x, .) ∈ C 1
0 (R

d,R), kn is the normal
kernel, kn(u, .) ∈ C 1(Sd−1), then W →֒ Ωd−1

1,0 (Rd × Sd−1).

Proof. This is simply an application of proposition 3.9.

And for the same reason as for classical currents (see (3.3)), for every S set
with positive reach, N(S) ∈ W ′. Thus the Hilbert norm on W ′ is a dissimilarity
measure for normal cycles. The fact that this norm is a proper metric on the space
Ωd−1

0 (Rd × Sd−1)′ is not obvious and will be seen in section 3.4.
The scalar product between two shapes S and C (which are both sets with

positive reach) is

〈N(C), N(S)〉W ′ =

∫

NC

∫

NS

kp(x, y)kn(u, v) 〈τNS
(x, u), τNC

(y, v)〉Λd−1(Rd×Rd)

dH d−1(x, u)dH d−1(y, v) (3.13)

The kernel in this formula takes into account both the spatial localization and
the normal position through the kernel and the tangent plane of the normal bundle
(〈τNS

(x, u), τNC
(y, v)〉). The square of the distance between shapes is then:

d(S,C)2 = ‖N(S)−N(C)‖2W ′ = 〈N(S), N(S)〉W ′

+ 〈N(C), N(C)〉W ′ − 2 〈N(S), N(C)〉W ′ (3.14)

This equation remains valid for sets that are unions of sets with positive reach.
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3.4 Universality

As explained previously, the kernel setting provides a dissimilarity measure between
shapes through the expression (3.14). In this subsection we tackle briefly whether
or not this dissimilarity measure is a real distance.

With proposition 3.13 we have a continuous injection j : W →֒ Ωd−1
0 (Rd×Sd−1).

However the dual metric that we use on normal cycles comes from the continuous
dual application :

j∗ : Ωd−1
0 (Rd × Sd−1)′ → W ′

which may not be injective. This results in a pseudo distance only : it may be
possible to have N,M ∈ Ωd−1

0 (Rd × Sd−1)′, N 6= M with ‖j∗(N)− j∗(M)‖W ′ = 0.
Thus, we have no guarantee that the distance (3.14) is a proper distance. We will
prove here that with some specific kernels kp and kn, this does not happen, and thus
the dissimilarity measure is a proper distance.

Using a corollary of the Hahn-Banach theorem ([Brézis, 2011], Corollary 1.8),
it can be shown that j∗ is injective if, and only if W is dense in Ωd−1

0 (Rd × Sd−1).
This density property of a RKHS in a space of continuous functions is called the
C 0-universality of the kernel. It has first interest in machine learning with kernels
as it guarantees that any continuous target function can be approximated using the
kernel. It has been studied for scalar kernels in [Micchelli et al., 2006], and in the
case of vector valued kernels in [Carmeli et al., 2008]. Note that the universality is
also useful for optimal interpolation in Hilbert subspaces [Werther, 2003], chapter 4.
As far as we know, this point of universality has been first addressed in the setting of
dissimilarity measure for shapes in [Charon and Trouvé, 2013], with kernel metrics
on varifolds.

Theorem 3.17. d defined in (3.14) with kernels of proposition 3.13 is a distance
on Ωd−1

0 (Rd × Sd−1)′.

Proof. In our framework, we have a RKHS W , with kernel KW : (Rd × Sd−1)2 →
L
(
Λd−1(Rd × Rd)

)
, with KW ((x, u), (y, v)) = kp(x, y)kn(u, v)IdΛd−1(Rd×Rd). Using

Example 14 in [Carmeli et al., 2008], KW is a universal kernel if, and only if kp⊗ kn
is a universal scalar kernel. Moreover, using Example 15 of the same reference, for
kp ⊗ kn to be universal, it is sufficient that kp and kn are universal. We are left to
show that both kp and kn are universal. In our applications, kp will be a Gaussian
kernel, which is universal (see [Carmeli et al., 2008] or [Micchelli et al., 2006]). For
the normal kernel kn, we will make use of the expansion in spherical harmonics
: indeed, we recall that we choose kn(x, y) =

∑
l∈N
∑l

m=−l
1

(1+l(l+1))s
Ylm(x)Ylm(y).

Using theorem 7 of [Micchelli et al., 2006], and the fact that the spherical harmonics
are dense in C (S2) for the norm of uniform convergence ([Gallier, 2013], Prop. 1.6),
we get that kn is a universal kernel as well. Thus the reproducing kernel KW is a
C 0-universal kernel and the dual application j∗ is one-to-one, which proves that d
defined in (3.14) is a proper distance on normal cycles.

117



Chapter 3. Reproducing Kernel Hilbert Spaces on Normal Cycles

3.5 Insight of the Properties of the Metric with

Constant or Linear Normal Kernels

In this section, we study two specific normal kernels kn: the constant kernel and the
linear kernel. Both kernels give simple expression for the metric on normal cycles.
In this setting, we are able to provide information in term of the curvature that is
encoded for the associated metric.

3.5.1 Constant Kernel

Let us start with the constant kernel kn(u, v) = 1, for all u, v ∈ Sd−1. The kernel
KW on Ωd−1

0 (Rd × Sd−1) is then:

KW

(
(x, u), (y, v)

)
= kp(x, y)IdΛd−1(Rd×Rd).

and the expression of scalar product between two normal cycles N(C) and N(S),
associated with shapes S and C is

〈N(C), N(S)〉W ′ =

∫

NC

∫

NS

kp(x, y) 〈τNC
(x, u), τNS

(y, v)〉 dHd−1(x, u)dHd−1(y, v),

(3.15)
Even though we use a constant kernel for the normal kernel kn, this does not

mean that we get rid of any information on the normal part. Indeed, as we can
see in (3.15), the normal part is involved through the scalar product of the tangent
vectors of the normal bundle.

Sensitivity of the kernel metric to the curvature of the shape

Let us now investigate which kind of curvature we can hope to retrieve with this
coarse kernel. For this purpose, we consider C a smooth closed surface in R3.
We recall that with the construction of the RKHS W , we have N(C) ∈ Ω2

0(R
3 ×

S2)′ ⊂ W ′. Now we want to specify which kind of curvature about C the metric
on W ′ is sensitive to. For this, we focus on the representation of N(C) on W , i.e.
KWN(C) ∈ W →֒ Ω2

0(R
2 × S2). Once this representation is clear, we can draw a

link between the differential form KWN(C) and the work that we have presented
on curvature, section 2.5. Using the same notation as definition 2.42, we want to
express KWN(C) in the spaces resp. W 2

0 , W 2
1 and W 2

2 as these spaces are closely
linked to the curvature (respectively Gaussian, mean and area form).

For this, consider (y, v) ∈ R3×S2, τ ∈ Λ2(R3×S2) and ω ∈ W , ω = kp(y, .) 〈τ, .〉.

N(C)(ω) =
〈
N(C),K−1

W ω
〉
W ′ = 〈KWN(C), ω〉W = K−1

W ω
(
KWN(C)

)

=

∫

NC

kp(x, y) 〈τNC
(x, u), τ〉 dH 2(x, u).
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With the same notation as in section 2.5 and with the Co-Area formula, we get:

〈
N(C),K−1

W ω
〉
W ′ =

∫

C

kp(x, y)

〈∫

Noru(x,C)

2∏

i=1

√
1 + k2i (x, n)τNC

(x, u)dH 0(u), τ

〉
dH 2(x).

(we recall that ki(x, n) are generalized curvature introduced in Chapter 2, (2.11)).
Let x ∈ C 7→ n(x) ∈ S2 be a normal vector field orienting the surface C. Then
we recall that at each point x ∈ C, C has two directions of principal curvatures
b1(x), b2(x) associated with curvatures κ1(x) and κ2(x) and that

τNC
(x, n) =

1√
1 + k21(x, n)

1√
1 + k22(x, n)

(
b1(x, n)

k1(x, n)b1(x, n)

)
∧
(

b2(x, n)
k2(x, n)b2(x, n)

)

and we have
(

b1(x, n(x))
k1(x, n(x))b1(x, n(x))

)
∧
(

b2(x, n(x))
k2(x, n(x))b2(x, n(x))

)
=

(
b1(x)

κ1(x)b1(x)

)
∧
(

b2(x)
κ2(x)b2(x)

)

and
(

b1(x,−n(x))
k1(x,−n(x))b1(x,−n(x))

)
∧
(

b2(x,−n(x))
k2(x,−n(x))b2(x,−n(x))

)
= −

(
b1(x)

−κ1(x)b1(x)

)
∧
(

b2(x)
−κ2(x)b2(x)

)

Thus, one gets immediately

∫

Noru(x,C)

2∏

i=1

√
1 + k2i (x, n)τNC

(x, u)dH 0(u) = 2

[(
b1
0

)
∧
(

0
κ2b2

)
+

(
0

κ1b1

)
∧
(
b2
0

)]
(x)

Re-injecting this expression in
〈
N(C),K−1

W ω
〉
W ′ , we obtain:

〈
N(C),K−1

W ω
〉
W ′ = 2

∫

C

kp(x, y)

〈[(
b1
0

)
∧
(

0
κ2b2

)
+

(
0

κ1b1

)
∧
(
b2
0

)]
(x), τ

〉
dH 2(x).

and finally,

KWN(C) = 2

∫

C

kp(x, .)

〈[(
b1
0

)
∧
(

0
κ2b2

)
+

(
0

κ1b1

)
∧
(
b2
0

)]
(x), .

〉
dH 2(x)

(3.16)
We have proven that KWN(C) ∈ W 2

1 . As a reminder, it was shown in section 2.5,
(2.33) that the space of differential forms W 2

0 is linked to the Gaussian curvature,
W 2

1 to the mean curvature and W 2
2 to the area of the surface. The expression

of KWN(C) implies that the constant kernel is neither sensitive to the Gaussian
curvature nor to the area form of C. On the contrary, it is sensitive to the mean
curvature of C. As said previously, it shows that we do not get rid of all the curvature
information of the shape, even though the normal kernel is “rough”. We will come
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Chapter 3. Reproducing Kernel Hilbert Spaces on Normal Cycles

across this property of the constant kernel when dealing with triangulated meshes:
the kernel metric associated with triangluation will be sensitive to the mean discrete
curvature, represented by the edges of the triangles and not to the area (represented
by the triangles themselves) or the Gaussian discrete curvature (represented by the
vertices).

Remark 3.18. The same work can be done for discrete curves in R2: doing so, one
can show that

KWN(C) = 2

∫

C

kp(x, .)

〈(
0

κ1b1

)
(x), .

〉
dH 1(x) (3.17)

The metric with constant kernel is sensitive to the curvature in R2. The calculations
are more intricate for curves in R3, but one gets:

KWN(C) = π

∫

C

kp(x, .)

〈(
0

κ1b1

)
(x) ∧

(
0

n0(x)

)
, d

〉
H

1(x)

where n0(x) is the direction of curvature for the curve C (i.e. n0 points toward the
center of the osculating circle of C at point x).

3.5.2 Linear Kernel

The second simplest example of a kernel that we can chose on S2 is the linear kernel
restricted to the sphere:

kn(u, v) = 〈u, v〉
which generates the space of linear forms on R3 restricted to S2. There is another
way of seeing this kernel. We recall that the geodesic distance on the sphere, dS is
as follow:

dS(u, v) = arccos
(
〈u, v〉

)
, ∀u, v ∈ S2

Then, kn(u, v) = 〈u, v〉 = cos
(
dS(u, v)

)
. This defines a positive definite kernel

associated with the distance on the sphere. If we choose a Gaussian kernel for kp,
the vectorial kernel of the generated RKHS, KW is then:

kW
(
(x, u), (y, v)

)
= exp(−‖x− y‖2 /σ2) cos

(
dS(u, v)

)
IdΛ2(R3×S2).

It is thus obvious that we have the embedding of the associated RKHS on C 1(S2).
However the generated RKHS is not dense in C 0(S2) which implies that the univer-
sality property is not fulfilled (section 3.4).

Using spherical coordinates, one can easily express kn using spherical harmonics
:

kn(u, v) =
8π

3

(
Y10(u)Y10(v) + Y c

1,1(u)Y
c
1,1(v) + Y s

1,1(u)Y
s
1,1(v)

)
.

The expression of scalar product between two normal cycles N(C) and N(S),
associated with shapes S and C is then :
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〈N(C), N(S)〉W ′ =

∫

NC

∫

NS

kp(x, y) 〈u, v〉 〈τNC
(x, u), τNS

(y, v)〉 dHd−1(x, u)dHd−1(y, v).

(3.18)

Sensitivity of the kernel metric to the curvature of the shape

We detail here the same work as the one done for the constant kernel: the aim is
to express the normal cycle N(C) of a shape C in the space W , namely KWN(C).
Hence we can express KWN(C) in the spaces W 2

0 ,W
2
1 ,W

2
2 and formalize the kind

of curvature that is encoded by the kernel metric KW .
Let (y, v) ∈ R3× S2, τ ∈ Λ2(R3× S2) and ω ∈ W , ω(x, n) = kp(y, x) 〈v, n〉 〈τ, .〉.

Consider a closed smooth surface C. The calculations are similar to the one of
constant kernel and we have:

〈
N(C),K−1

W ω
〉
W ′ =

∫

C

kp(x, y)

〈∫

Noru(x,C)

〈u, v〉
2∏

i=1

√
1 + k2i (x, n)τNC

(x, u)dH 0(u), τ

〉
dH 2(x).

We suppose that the surface C is oriented by a normal vector field x 7→ n(x).
We need to compute:

∫

Noru(x,C)

〈u, v〉
2∏

i=1

√
1 + k2i (x, n)τNC

(x, u)dH 0(u)

=
∑

ε=±1

〈εn(x), v〉 ε
(

b1(x, n(x))
εκ1(x)b1(x, n(x))

)
∧
(

b2(x, n(x))
εκ2(x)b2(x, n(x))

)

= 2 〈n(x), v〉
[(

0
κ1b1

)
∧
(

0
κ2b2

)
+

(
b1
0

)
∧
(
b2
0

)]
(x)

And thus,

〈
N(C),K−1

W ω
〉
W ′ = 2

∫

C

kp(x, y)

〈
〈n(x), v〉

[(
0

κ1b1

)
∧
(

0
κ2b2

)
+

(
b1
0

)
∧
(
b2
0

)]
(x), τ

〉
dH 2(x).

(3.19)

This means that KWN(C) has a component on the space W 2
0 and a component on

the space W 2
2 : the metric on normal cycles with linear normal kernel is sensitive to

the Gaussian curvature and to the area form of the surface C. However, it is not
sensitive to the mean curvature. We will come across this property with triangulation
meshes, since the metric with linear normal kernel will have a term associated with
the triangles (discrete volume form), the vertices (Gaussian discrete curvature) but
not the edges (mean curvature).
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Remark 3.19. The same work can be done for discrete curves in R2: doing so, one
can show that

KWN(C) = 2

∫

C

kp(x, .)

〈(
b1
0

)
(x), .

〉
dH 1(x)

The metric with linear kernel is sensitive to the volume form on the curve but not
sensitive to the curvature in R2. The result is still true for curves in R3 but the
calculations are more intricate.

Remark 3.20. In fact, the same calculations can be done for normal kernels that
write kn(u, v) = 〈u, v〉k, k positive integer. The kind of curvature that is retrieved
with the metric on normal cycles depends on the parity of k: if k is even, only the
mean curvature will be encoded, and if k is odd, the area form and the Gaussian
curvature is encoded.

A good choice of kernel would be a kernel that captures all the curvatures mea-
sures. For example this is the case for the normal kernel which is the sum of the
constant kernel and the linear kernel:

kn(u, v) = 1 + 〈u, v〉 .

3.6 Convergence Towards the Continuous Shape

In the former sections we have seen the reproducing kernel theory, applied to obtain
an explicit metric on the space of (d−1)-currents on Rd×Sd−1 (and in particular on
the normal cycles associated with union of sets with positive reach). Now in com-
putational anatomy, a continuous shape is approximated with a polyhedral shape.
In order to have a consistent framework, we would like that the normal cycle of the
approximation we are dealing with is not too far from the theoretical one. Or at
least having a convergence result for the kernel metric when the diameter of meshes
is close to 0. The theorem we will use here is from J. Fu [Fu, 1991]. In order to
have a convergence result for normal cycle, we have to keep in mind some patholog-
ical examples as the Schwarz polyhedron (see the discussion in [Rado, 1943]): it is
possible to have a polyhedral approximation of a cylinder, with diameter of meshes
going to zero, and yet the area of the approximations blowing up. This is to link
with of theorem 2.51 and discussion below, where we have seen that the convergence
of normal cycles implies the convergence of areas. This is why it seems necessary
to have a control of the way diameters tend towards 0. More precisely for the next
result, we will need the notion of fatness of a triangulation.

Definition 3.21. Let T be a k-simplex, with vertices v0, . . . , vk. The size of T is

η(T ) := max |vi − vj|

The fatness of T is
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Θ(T ) := min

{Hj(µ)

η(T )j
, µ is a j dimensional face of T, j = 0, . . . , k

}

Let ∆ be a triangulation. The fatness of ∆ is

Θ(∆) := min {Θ(T ), T is a k-simplex of ∆}
This definition of fatness is less restrictive than the usual definition because

it takes into account all the j-dimensional faces. Bounding below the fatness of
a triangulation guarantees that the angles of the triangles are not too close to 0.
Hence we avoid pathological cases as the Schwarz polyhedron.

Now let X be a smooth submanifold in Rd. To have a convergence result for the
approximations, we will demand that the approximations are closely inscribed in X:

Definition 3.22. A triangulation ∆ is inscribed in X if:

1. All vertices of ∆ lie in X

2. All vertices of ∂∆ lie in ∂X.

∆ is closely inscribed in X if, additionally:

1. ∆ ⊂ Xr and the projection on X restricted to ∆ is one-to-one.

2. ∂∆ ⊂ (∂X)r and the projection on ∂X restricted to ∂∆ is one-to-one.

We can now state J. Fu’s theorem:

Theorem 3.23. Let (P n)n∈N be a sequence of triangulations of a smooth submanifold
X in Rd, closely inscribed in X. Suppose that P n → X and ∂P n → ∂X in the
Hausdorff metric on subsets of Rd, and that for every n ∈ N, Θ(P n) ≥ c, for some
constant c > 0. Then N(P n) −−−→

n→∞
N(X) for the flat metric.

The proof of this theorem is far beyond the scope of this manuscript, thus we
will only make a few remarks on it. The proof relies on the theory of compact-
ness for integral currents (see [Federer, 1969], 4.2) coupled with a uniqueness re-
sult for normal cycles ([Fu, 1994], 3.). A direct corollary is the convergence of
the curvatures of the approximations, in the sense of weak convergence for mea-
sures. It can be obtained using the Lipschitz-Killing differential forms (defini-
tion 2.49, [Zähle, 1987], [Morvan, 2008] chap. 21). Since this theorem uses com-
pactness, it prevents us from a quantification of the rate of convergence. Note that
in [Cohen-Steiner and Morvan, 2003], [Morvan, 2008], the authors use a different
argument in order to have a bound for the convergence of curvature measures and
tensors, using normal cycles.

This theorem guarantees that under some conditions on the triangulations, we
have convergence of the normal cycles of the approximations towards the normal
cycle of the smooth manifold, for the flat norm. Then it is sufficient that W is
continuously embedded in Ωd−1

1,0 (Rd×Sd−1) equipped with the flat norm to have the
same result with the kernel metric. The next proposition shows that it depends only
on the regularity of the kernel.
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Proposition 3.24. Let k be a positive kernel on the product space Rd × Sd−1, such
that k is twice continuously differentiable, with bounded first derivatives. Suppose
in addition that for any (x, u) ∈ Rd × Sd−1, k((x, u), .) and its first order derivative
vanish at infinity. Then, the RKHS associated with k is continuously embedded in
Ωd−1

1,0 (Rd × Sd−1) with the flat norm on differential forms.

Proof. Following the proof of [Glaunès, 2005], theorem 9, chapter 2, we can show
that for any ω ∈ W ,

‖ω‖1,∞ ≤
√
‖k‖2,∞ ‖ω‖W .

Here ‖ω‖1,∞ = ‖ω‖∞ + ‖Dω‖∞, where Dω refers to the differential of ω, i.e. ω is
seen as an application from Rd × Sd−1 to the vector space Λd−1(Rd × Rd)∗. This is
not exactly the flat norm, which is ‖ω‖F := ‖ω‖∞+‖dω‖∞, where dω designates the
exterior derivative of ω. However ‖ω‖F ≤ cste ‖ω‖1,∞. dω(x, u) is indeed obtained
by making Dω(x, u) into an alternating map in all of its d arguments (and not only
in the last d− 1 ones):

dω(x, u)(v1 ∧ · · · ∧ vd) =
d∑

i=1

(−1)iDω(x, u)(vi)(v1 ∧ · · · ∧ vi−1 ∧ vi+1 ∧ · · · ∧ vd)

where vi ∈ Rd. Thus a control of the uniform norm of Dω ensures a control on the
uniform norm of dω. So, there exists C > 0 such that for every ω ∈ Ωd−1

0 (Rd×Sd−1)

‖ω‖F ≤ C
√
‖k‖2,∞ ‖ω‖W

which proves the embedding.

Thereby, the dual application j∗ : Ωd−1
1,0 (Rd × Sd−1)′ →֒ W ′ is continuous and

injective with theorem 3.17, and provides a distance on Ωd−1
1,0 (Rd×Sd−1)′, resulting for

the Hilbert structure of the RKHS W . This, combined with theorem 3.23 guarantees
the convergence of the approximations for the kernel metric on normal cycles, under
the same conditions.

Theorem 3.25. Let (P n)n∈N be a sequence of triangulations of a smooth submanifold
X in Rd, closely inscribed in X. Suppose that P n → X and ∂P n → ∂X in the
Hausdorff metric on subsets of Rd, and that for every n ∈ N , Θ(P n) ≥ c, for some
constant c > 0. Then N(P n) −−→

n∞
N(X) for the kernel metric.

Remark 3.26. The assumption of closely inscribed triangulations is quite restrictive
compared to some assumptions that one can find in the Γ-convergence for functional
shapes with varifold norm ([Charlier et al., 2015b]), or in curvature approximation
of smooth surfaces ([Cohen-Steiner and Morvan, 2003], [Buet et al., 2015]). We did
not investigate much yet to relax it, however it does not seem immediate since we
use theorem 3.23, whose proof relies on this hypothesis.
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3.7 Expression of the Kernel Metric for Discrete

Shapes

In this section, we derive the expression of the kernel metric for discrete shapes
(curves in R3 and surfaces in R3) for various normal kernel kn: constant, linear and
Sobolev.

3.7.1 General considerations

Let us first introduce the notations that we will use in the following.

Notations for discrete curves

C = C1 ∪ · · · ∪ CnC
, S = S1 ∪ · · · ∪ SnS

will be two unions of segments in Rd.
We denote x1, . . . , xNC

(resp. y1, . . . , yNS
) the vertices of C (resp. of S) and

fi = xf2i − xf1i , 1 ≤ i ≤ nC (resp. gj = yg2j − yg1j , 1 ≤ j ≤ nS) the edges of C
(resp. S). For an edge fi, xf1i and xf2i are its two vertices. Moreover, we define
ci = 1

2
(xf1i + xf2i ), dj = 1

2
(yg1j + yg2j ) the middles of the edges fi and gj, and,

θij = arccos
(〈

fi
|fi| ,

gj
|gj |

〉)
the unoriented angle between fi and gj (θij ∈ [0, π]).

Notations for triangulated surfaces

Let T = ∪Ni=1Ti and T ′ = ∪Mi=1T
′
i be two triangulated meshes. We denote x1, . . . , xnv

(resp. y1, . . . , ymv
) the vertices of T (resp. of T ′). Given a triangle Ti (resp. T ′

j),
v1i , v

2
i , v

3
i are its three vertices and bi its barycentre: bi = 1

3
(v1i + v2i + v3i ) (resp.

b′j). (fl)1≤l≤ne
(resp (gl)1≤l≤me

) are the edges of T (resp. T ′). ±nTi are the normal
vectors of the triangle Ti. Moreover:

• xf1i and xf2i are the two vertices of fi: fi = xf2i − xf1i .
• ci (resp. dj) is the middle of the edge fi (resp. gj).

• nT,fi is the normal vector of the triangle T such that nT,fi×fi is oriented inward
for the triangle T .

We recall that with the kernel metric, the planar, cylindrical and spherical parts
are orthogonal one with another. The calculation of the expression of 3.13 in this
case is simplified:

Proposition 3.27. For any two unions of segments C and S, the cylindrical part
N(C)cyl and the approximated cylindrical part N(C)cylapprox are orthogonal to the
spherical part N(S)sph with respect to the kernel metric presented in section 3.3:

〈
N(C)cyl, N(S)sph

〉
W ′ =

〈
N(C)cylapprox, N(S)sph

〉
W ′ = 0.
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For any two triangulated surfaces T and T ′, the planar part (exact and approx-
imated), the cylindrical part (exact and approximated), and the spherical part are
orthogonal one with another with respect to the kernel metric presented in section 3.3:
〈
N(T )pln, N(T ′)cyl

〉
W ′ =

〈
N(T )cyl, N(T ′)sph

〉
W ′ =

〈
N(T )sph, N(T ′)pln

〉
W ′ = 0

Proof. This is an immediate application of proposition 3.15 using the fact that the
planar part (resp. cylindrical part, spherical part) are elements of (W 2

2 )
′ (resp.

(W 2
1 )

′, (W 2
0 )

′)

Remark 3.28. If we consider the weighted scalar product on Rd × Rd (see re-
mark 3.14), then it can be easily shown that we have:

〈N(C), N(S)〉W ′
λ
=
〈
N(C)pln, N(S)pln

〉
W ′+λ

〈
N(C)cyl, N(S)cyl

〉
W ′+λ

2
〈
N(C)sph, N(S)sph

〉
W ′

where 〈·, ·〉W ′
λ

denotes the Hilbert metric induced by the weighted metric on Rd×Rd.

We see here how convenient the decomposition introduced in subsection 2.4.3
is: we only need to compute scalar products between spherical parts, and scalar
products between cylindrical parts. That is what we will do right below.

Error of the approximation

We focus here on the error of approximation between N(C)approx previously defined,
and N(C), where C is a discretized curve or surface in Rd. More precisely, if we
consider a segment C with extremities a and b, and ω ∈ Ωd−1(Rd × Sd−1), we have
for the cylindrical part of the original normal cycle:

N(C)cyl(ω) =

∫

(b−a)×S⊥
b−a

〈ω(x, n)|(τ, 0) ∧ ν(n)〉 dHd−1(x, n)

where τ = b−a
‖b−a‖ , and ν(n) is defined as in definition 2.47 (for v = b− a).

Proposition 3.29. Assume that W is continuously embedded in Ωd−1
1,0 (Rd × Sd−1).

Then if C is a discretized curve, we have

‖N(C)−N(C)approx‖W ′ ≤ Kl(C)δ(C)

where l(C) = H1(C) is the length of C, and δ(C) is the maximal length of the
segments of C. K is a constant.

Moreover is T is a triangulation mesh, we have:

‖N(T )−N(T )approx‖W ′ ≤ KArea(T )δ(T )

with δ(T ) is the maximal area of the triangles of T
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Proof. We prove the result for union of segments. The reasoning is similar for tri-
angulated meshes. We recall that we do not use any approximation on the spherical
part and that the cylindrical part and the spherical part are orthogonal with re-
spect to the kernel metric. Thus, to estimate the error, it is sufficient to look at the
cylindrical part of the normal cycles involved.

Let ω ∈ Ωd−1
1,0 (Rd × Sd−1) and S = [a, b] be a single segment. We have:

∣∣(N(S)cyl −N(S)cylapprox
)
(ω)
∣∣ =

∣∣∣∣∣

∫

(b−a)×S⊥
b−a

〈ω(x, n)|(τ, 0) ∧ ν(n)〉 dHd−1(x, n)

−
∫

S⊥
b−a

〈ω(c, n)|(b− a, 0) ∧ ν(n)〉 dHd−2(n)

∣∣∣∣∣

=

∫

(b−a)×S⊥
b−a

|〈ω(x, n)− ω(c, n)|(τ, 0) ∧ ν(n)〉| dHd−1(x, n) (3.20)

Since W is assumed to be continuously embedded in the space of C1 differential
forms, then we have |ω(x, n)− ω(c, n)| ≤ ‖ω‖1,∞ |x− c| ≤ K ‖ω‖W |c− x|.

Thus ∣∣(N(S)cyl −N(S)cylapprox
)
(ω)
∣∣ ≤ K ′ ‖ω‖W |b− a|2

where K ′ is a constant taking into account K and the Hausdorff measure of S⊥
b−a.For

the total discretized curve C, we get:

∣∣(N(C)cyl −N(C)cylapprox
)
(ω)
∣∣ ≤ C ‖ω‖W l(C)δ(C)

which proves the result.

3.7.2 Discrete scalar product with constant normal kernel

In this subsection, we express the discrete version of the scalar product (3.13) for
union of segments and surfaces, with the constant normal kernel, kn(u, v) = 1.

Scalar product of discrete curves

Proposition 3.30. Let C and S be two unions of segments. The scalar prod-
uct between the associated normal cycles with spatial kernel kp and normal kernel
kn(u, v) = 1 is

〈N(C), N(S)〉W ′ =
π2

4

N∑

i=1

M∑

j=1

kp(xi, yj) 〈Ai, Bj〉 (3.21)

where Ai =
∑

k f
i
k/|f ik| is the sum of the normalized edges with xi as vertex, and

oriented outward from xi.

Proof. See Appendix A.1.1
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It encompasses the case of branching points with three or more edges with the
same vertex xi. Let us make a few remarks on this expression. Interestingly, this
scalar product can be obtained with a metric on current. Indeed, if we denote
Wcurr →֒ Ω1

0(R
3) the RKHS of differential forms generated with the scalar kernel kp,

then we have

〈N(C), N(S)〉W ′ =
π2

4

〈
N∑

i=1

δAi
xi
,

M∑

j=1

δBj
yj

〉

W ′
curr

With this metric, a union of segment is seen as a sum of dirac currents, localized
at the vertices of the curve, and oriented by the vector Ai. We retrieve the fact
that this metric is sensitive to curvature since

∥∥δAi
xi

∥∥
W ′

curr
grows when the discrete

curvature at point xi grows.
The computational complexity is not high compared to current or varifolds. The

scalar product is basically a double loop on the vertices. However, we must pre-
compute the edges that are linked to each vertex.

We refer to Appendix A.1.1 for the procedure to compute the gradient of this
scalar product with respect to the vertices.

Scalar product of triangulation meshes

Proposition 3.31. Suppose that T and T ′ are two triangulated meshes. The ap-
proximated scalar product between the associated normal cycles with spatial kernel
kp and constant normal kernel kn(u, v) = 1 is

〈N(T )approx, N(T ′)approx〉W ′ =
π2

4

ne∑

i=1

me∑

j=1

kp(ci, dj) 〈fi, gj〉
〈

∑

{T |fi edge of T}
nT,fi ,

∑

{T ′|gj edge of T ′}
nT ′,gj

〉

+
π2

4

∑

xi vertex
of ∂T

∑

yj vertex

of ∂T ′

kp(xi, yj) 〈Ai, Bj〉

(3.22)

where Ai =
∑

k f
i
k/|f ik| is the sum of the normalized edges of the border, with

xi as vertex, and oriented outward from xi, and nTi,fi is the normal vector of the
triangle Ti such that nTi,fi × fi is oriented inward for the triangle T .

Proof. See Appendix A.1.2

This can be re-written:

〈N(T )approx, N(T ′)approx〉W ′ =
π2

4

ne∑

i=1

me∑

j=1

kp(ci, dj) 〈fi, gj〉
〈

∑

{T |fi edge of T}
nT,fi ,

∑

{T ′|gj edge of T ′}
nT ′,gj

〉

+ 〈N(∂T ), N(∂T ′)〉W ′

(3.23)
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The expression 〈N(∂T ), N(∂T ′)〉W ′ is exactly the scalar product of the curves
∂T and ∂T ′ that has been computed right above. Notice that the planar part and
the spherical part are not involved in this scalar product (except for the spherical
part of the border).

Some remarks: first, we recall that the previous expression does not necessitate
a coherent orientation for the mesh. Secondly, even with a constant kernel kn for
the normal part, the metric is sensitive to curvature. Indeed, for an edge f , the
cylindrical part of the scalar product involves scalar products between normal vectors
of the adjacent triangles which are required quantities to compute the discrete mean
curvature. Another interesting feature to notice is that the scalar product involves
a specific term for the boundary which will enforce the matching of the boundaries
of the shapes. The fact that the boundary has a special behaviour for the normal
cycle metric is not surprising. Indeed a normal cycle encodes generalized curvature
information of the shape. Hence, the boundary corresponds to a singularity of the
curvature and has a specific behaviour in the kernel metric. We will see in Chapter 4
that this feature is of interest for a matching purpose.

In term of computational complexity, we see in (3.22) that the model of normal
cycles on surfaces is more sophisticated, even with a constant normal kernel. The
scalar product involves a double loop on the edges of the triangulations, as well as for
each edge, the computation of the sum of the normal vector of the adjacent triangles.
However, it is the same order of complexity as varifolds for the computation of
the scalar product, i.e. O(n2

e) where ne is the number of edges which is often
the same order as the number of triangles. For the computation of the gradient
(see Appendix A), the complexity remains O(n2

e) but the number of operations for
each iteration increases, much more than for varifolds. Thus the evaluation of the
gradient is the time-consuming part of the implementation. We refer to Chapter 4
for a further discussion of the time per iteration in the registration framework.

3.7.3 Discrete scalar product with linear normal kernel

Now, we focus on the linear normal kernel, kn(u, v) = 〈u, v〉.

Scalar product for discrete curves

Proposition 3.32. Let C and S be two unions of segments. The approximated
scalar product between the associated normal cycles with spatial kernel kp and linear
normal kernel kn(u, v) = 〈u, v〉 is

〈N(C)approx, N(S)approx〉W ′ =
π2

2

ne∑

i=1

me∑

j=1

kp(ci, sj)|fi||gj| cos2 ϕij

+
16π2

3

N∑

k=1

M∑

l=1

kp(xk, yl)

(
1− nxk

2

)(
1− myl

2

)

where nxk (resp. myl) is the number of segments with xk as vertex (resp. yl) and
cosϕij = 〈fi/|fi|, gj/|gj|〉.
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Proof. See Appendix A.2.1.

We obtain a metric that is the sum of two terms. The first term, associated with
the cylindrical part is exactly a varifold term with the linear kernel on G(d,m) (3.8).
The second term, associated with the spherical part vanishes, except for branching
points or extremities.

For a regular closed discrete curve, this metric is thus exactly the one of varifolds
with the linear kernel on the Grassmanian. We retrieve the fact that with the linear
normal kernel we do not get curvature information for curves. The spherical term
can be seen as a measure term. In fact, if we consider the RKHS of scalar functions
generated by the scalar kernel kp, and we denote it Wmeas, and if we denote Wvar

the RKHS of C 0(R3 × G(3, 1)) generated by the scalar kernel kp ⊗ kt with kt the
linear kernel on the Grassmanian, then:

〈N(C)approx, N(S)approx〉W ′ =
π2

2
〈µC , µS〉W ′

var
+

16π2

3

〈
N∑

k=1

(
1− nxk

2

)
δxk ,

M∑

l=1

(
1− myl

2

)
δyl

〉

W ′
meas

.

The complexity is the same as for varifolds, since for most curves, the number
of extremities or branching points is very low.

Scalar product for triangulation meshes

For the linear kernel, the scalar product between spherical part is complex and thus
we provide for now only a truncated version of the exact scalar product. This trunca-
tion is an important limitation: the approximated scalar product has no theoretical
guarantee. However, it is still interesting to discuss it.

Proposition 3.33. Suppose that T and T ′ are two triangulated meshes. The trun-
cated scalar product between the associated normal cycles with spatial kernel kp and
linear normal kernel kn(u, v) = 〈u, v〉 is

〈N(T )approx, N(T ′)approx〉W ′,trunc = 4
N∑

i=1

M∑

j=1

kp(bi, b
′
j)|Ti||T ′

j |
〈
nTi , nT ′

j

〉2

+
1

3

Nv∑

k=1

Mv∑

l=1

kp(xk, yl)
[
π(4− 2nxk + 2Nxk)− 2

Nxk∑

i=1

ϕi,xk

][
π(4− 2myl + 2Nyl)− 2

Myk∑

j=1

ϕj,yl

]

where Nxk is the number of triangles with vertex xk and mxk is the number of edges
with vertex xk, and ϕi,xk is the angle at vertex xk of the triangle Ti.

Proof. See Appendix A.2.2

The scalar product of the planar part is the same as for varifolds. The cylindrical
part vanishes, as it was expected with the previous work on the curvature: with the
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linear kernel, the metric is not sensitive to mean curvature, that is contained in the
cylindrical part.

We investigate now the link with Gaussian curvature. Suppose for sake of sim-
plicity that the two triangulated meshes have no border and no branching edge or
vertex. Then, it is easy to see that for every vertex x of the triangulations Nx = mx

and the truncated scalar product simplifies greatly:

〈N(T )approx, N(T ′)approx〉W ′ = 4
N∑

i=1

M∑

j=1

kp(bi, b
′
j)|Ti||T ′

j |
〈
nTi , nT ′

j

〉2

+
1

3

Nv∑

k=1

Mv∑

l=1

kp(xk, yl)GT (xk)GT ′(yl)

where GT (x) is the discrete Gaussian curvature of the triangulation T at vertex x.
With the previous notations, this re-writes:

〈N(T )approx, N(T ′)approx〉W ′,trunc = 4 〈µT , µT ′〉W ′
var

+
1

3

〈
Nv∑

k=1

GT (xk)δxk ,
Mv∑

l=1

GT ′(yl)δyl

〉

W ′
meas

.

This is a classical varifold scalar product, with an additional measure term, located
at the vertices, and with intensity equal to the discrete Gaussian curvature.

In term of complexity, we add to the complexity of the varifold metric (that is a
double loop on the triangles O(N2)) a double loop on the vertices where we need to
compute for each vertex the Gaussian discrete curvature, i.e. the sum of the angles
of the triangles at this vertex. This complexity is basically a O(N2

v ). Very often
Nv, the number of vertices and N , the number of triangles have the same order, but
more operations are needed to compute the Gaussian curvature.

3.7.4 Discrete scalar product with Sobolev normal kernel

We choose the kernel metric on normal cycles to be as in (3.13), with the Sobolev
normal kernel kn as in subsection 3.1.3. Suppose that C and S are two unions of seg-
ments. The computation of the scalar product between N(C)approx and N(S)approx
for the kernel metric uses expansions in spherical harmonics for the normal part.
This leads to :

Proposition 3.34. Suppose that C and S are two unions of segments. One has

〈N(C)approx, N(S)approx〉W ′ =
〈
N(C)cylapprox, N(S)cylapprox

〉
W ′ +

〈
N(C)sph, N(S)sph

〉
W ′

with

〈
N(C)cylapprox, N(S)cylapprox

〉
W ′ =

nC∑

i=1

nS∑

j=1

kp(ci, dj) 〈fi, gj〉
∑

m≥0

am cos(mθij) (3.24)
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and

〈
N(C)sph, N(S)sph

〉
W ′ =

NC∑

k=1

NS∑

l=1

kp(xk, yl)

(
1− nxk + nyl

2

)
β

+

nC∑

i=1

nS∑

j=1

2∑

a,b=1

(
b0 + (−1)a+b

∑

m≥0

bm cos(mθij)

)
kp(xfai , ygbj )

(3.25)

where nxk (resp. nyl) is the number of edges adjacent to the vertex xk (resp. yl).

Proof. The first equality comes directly from the orthogonality condition of 3.27.
The two formulas are derived in Appendix C.2 and Appendix C.3.

The constant β and the am and bm coefficients have explicit expansions in spher-
ical harmonics, and are pre-computable. See Appendix C.2 and Appendix C.3, for
their expressions. Here, we just precise that the (am)m≥0 and (bm)m≥0 vanish for m
even. This is compatible with the fact that normal cycles are unoriented objects:
by inverting the orientation of the edges (i.e. if we invert xf1i and xf2i ), the scalar
product remains unchanged. With these two scalar products, we have all we need to
implement an algorithm which computes dissimilarity between two discrete curves.
This is the first step to have a matching algorithm.

The computational complexity of the normal cycle metric, assuming we truncate
the spherical harmonics expansions at a fixed order, is of order O(n2

C + N2
C), with

nC the number of edges and NC the number of vertices. In fact usually nC and NC

are nearly equal, thus the complexity is in O(n2
C), as in the case of the currents and

varifolds metrics. However, as can be seen from the formulas, more operations are
needed in the case of normal cycles; in our experiments the cost of computation of
the normal cycle metric and its gradient was approximately six times higher than
in the case of currents.

3.8 Discussion and perspectives

In this chapter, we have endowed normal cycles with kernel metrics, that provide
a scalar product between shapes as integrals over the associated normal bundles.
With our construction, the metric is explicit through two scalar kernels: a spatial
kernel kp that considers the spatial configuration of the shapes, and a normal kernel
kn that takes into account the relative position of the generalized normal vectors of
the shapes. In this framework, we have provided a convergence result that draws
the link between the continuous and the discrete cases. We precise also an explicit
quantification of the error made for computational purpose. Interestingly, the cur-
vature properties of normal cycles are transferred to the metric, depending on the
choice of the normal kernel kn. We have seen that even with coarse normal kernels,
we are able to retrieve specific curvature information of the shapes. For surfaces, we

132



3.8. Discussion and perspectives

retrieve mean curvature information for the constant normal kernel and Gaussian
curvature information for the linear normal kernel. For curves, only the constant
kernel allows to get curvature information, and the linear kernel provides a metric
that is similar to varifolds. In any case, we see that the metric on normal cycles is
sensitive to the border of the shapes, as well as branching points. This is a major
difference with usual metrics on varifolds or currents and this makes the framework
sensitive to topological change. We will see in the next chapter that this feature en-
forces the matching of the borders. Apart from computational anatomy, this setting
could fit in the one of discrete differential geometry. Normal cycles have already
been successfully applied for the estimation of discrete curvatures, as it was recalled
in subsection 2.5.3, but the addition of explicit kernel metrics enables both explicit
and interpretable considerations. For example, it would be interesting to focus on
the gradient flow of shapes with the different metrics that have been introduced in
3.7.

Let come back to the work that have been presented in section 2.6, where we
have drawn a precise link between the normal cycle and the varifold associated with
a shape. This link remains in the expressions of the discrete scalar products in
section 3.7. For example in the case of surfaces, the orthogonal projection on the
planar part for the linear normal kernel gives exactly the metric on varifolds for
the linear kernel on Grassmannian. It is a future work to fully integrate the link
between varifolds and normal cycles in the framework of RKHS, and for example to
explicit how the metric on normal cycles is projected on the metric on varifolds.
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Chapter 4. Registration and Atlas Estimation with Normal Cycles

Chapter 2 and Chapter 3 provide a theoretical framework as well as a numerical
implementation to compute distance between shapes with kernel metrics on normal
cycles. In this chapter, we use this distance on normal cycles as a residual distance
between a deformed shape and a target shape, in the framework of shape analysis
summed up in Chapter 1.

Section 4.1 is a study as precise as possible of the inexact matching problem
(4.1). After stating an existence result for this problem, we detail in subsection 4.1.3
a practical algorithm to minimize (4.1) with discrete shapes. Several examples of
registration with normal cycles are proposed on synthetic and real data. For curve
registration (subsection 4.1.4), three types of normal kernels are studied for the
metric on normal cycles: constant, linear and Sobolev. For surface registration
( subsection 4.1.5), only the constant and linear normal kernel are studied, due
to the complexity of the metric in the case of surfaces. For each type of data,
the different synthetic examples aim to illustrate the curvatures properties seen
in section 3.5 and comparison with varifolds and currents are shown when it is
relevant. The examples on real data are a first step to show the advantage of this
new dissimilarity metric for applicative purpose. Finally, in 4.2, we focus on the
atlas estimation for a dataset of shapes (curves or surfaces). For this, we follow the
theoretical framework introduced in [Ma et al., 2008, Ma et al., 2010] and already
used in [Charlier et al., 2015a]. The mean shape is obtain through the hypertemplate
algorithm that relies on the formulation of the inexact matching problem. This is
recalled in subsection 4.2.1 and subsection 4.2.2. Some examples on synthetic and
real data are provided in subsection 4.2.3 and subsection 4.2.4.

4.1 Large Deformation Registration with Normal

Cycles

As explained in Chapter 1, in the LDDMM framework, the study of shape variability
is carried by the study of geometrical transformations from one shape to another.
The group of deformations at stake, GV , is generated through integration of time-
varying vector fields living in a a Hilbert space V , with V →֒ C 1

0 (R
d). With this

hypothesis, V is a Reproducing Kernel Hilbert Space with kernel KV and GV is
endowed with a nice Riemannian structure. For example, the Riemannian distance
between the identity and a deformation ϕ ∈ GV writes:





dGV
(Id, ϕ)2 = E(ϕ) := inf

{∫ 1

0

‖vt‖2V dt
∣∣∣∣(vt)0≤t≤1 ∈ L2([0, 1], V )

}

∂ϕt
∂t

= vt ◦ ϕt and ϕ1 = ϕ.

This distance between can be interpreted as the energy of the deformation ϕ. Thus,
the optimal deformation between two shapes C and S will be the deformation ϕ with
least energy and such that ϕ(C) = S. For practical purpose, we can not assume
that any two shapes can be registered with a deformation ϕ ∈ GV . That is why we
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relax this hypothesis, and say that the optimal deformation is the one that minimize
the sum of the energy and a discrepancy measure between the deformed shape and
the target, A(ϕ(C), S). This new registration problem, called inexact matching
problem, is a trade-off between the regularity of the deformation, quantified by the
energy E(ϕ) and the closeness of the registration, quantified by a term A(ϕ(C), S).
The aim of this chapter is to use kernel metrics on normal cycles for the dissimilarity
measure A. Given two shapes C and S

A(C, S) := ‖N(C)−N(S)‖2W ′ .

where W is a RKHS such that W →֒ Ωd−1
0 (Rd × Sd−1). The minimization problem

with dual Hilbert norm on normal cycles as data attachment term is then:

min
v∈L2

V

γ

∫ 1

0

‖vt‖2V dt+ ‖ϕv.N(C)−N(S)‖2W ′ (4.1)

where γ is a trade-off parameter.
One should notice that we have defined the action ϕ.N(C) of diffeomorphism on

normal cycles for sets C ∈ UPR in subsection 2.4.4. This includes smooth submani-
folds of Rd, but also polyhedral meshes. This general framework will be the one we
work with in the following.

4.1.1 Existence of a minimizer

We remind that the notation ϕ.N(C) corresponds to the transport of the normal
cycle by the diffeomorphism ϕ: if X is a set in UPR, ϕ : X → ϕ(X) induces a
diffeomorphism ψ : NX → Nϕ(X):

ψ(x, n) =

(
ϕ(x),

dϕ−T
x n

‖dϕ−T
x n‖

)

where dϕ−T
x = (dϕ−1

x )
T . This diffeomorphism ψ is defined such that the action of a

diffeomorphism ϕ on normal cycles satisfies:

ϕ.N(X) := ψ♯N(X) = N(ϕ(X)).

and the expression of the derivative dψ is:

dψ(x,n).

(
τ
ν

)
=




dϕx.τ

−p(n′)⊥dϕ
−T
x d2ϕ(τ, .)T .n′ + p(n′)⊥

dϕ−T
x .ν

‖dϕ−T
x n‖




Remark 4.1. Notice that even though for X ∈ UPR, we have N(X) = [NX ]xιX
which may be different from [NX ], the action ϕ♯N(X) remains valid (see subsec-
tion 2.4.3 and subsection 2.4.4).

We now state the theorem of existence of a minimizer for (4.1) that encompasses
both the case of smooth shapes and the one of polyhedral shapes:
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Theorem 4.2 (Existence of a minimizer for (4.1)). Suppose that C, S are two com-
pact sets in UPR and assume that one has the embeddings V →֒ C30(Rd,Rd), and
W →֒ Ωd−1

1,0 (Rd × Sd−1). Then there exists a minimizer for the problem (4.1).

We will prove theorem 4.2 using theorem 1.7. For this, we denote vn ⇀ v
for the weak convergence of (vn)n∈N ∈ (L2

V )
N to v ∈ L2

V . We have to show that
v 7→ A(ϕv.C, S) = ‖ϕv.N(C)−N(S)‖2W ′ is weakly continuous. The first step is to
verify that if vn ⇀ v, then ψv

n → ψv and dψv
n → dψv, uniformly on every compact.

We will need the theorem:

Theorem 4.3 ([Glaunès, 2005]). Suppose that V →֒ Cp0(Rd,Rd) (for the topology
of uniform convergence for a function and its derivatives). If vn weakly converges
towards v in L2

V , then dkϕv
n

converges uniformly on every compact set towards dkϕv,
∀0 ≤ k ≤ p− 1.

From this, we can state the next proposition:

Proposition 4.4. Suppose that V →֒ C30(Rd,Rd). If vm ⇀ v in L2
V , then on every

compact set of Rd × Sd−1, ψv
m → ψv, dψv

m → dψv

Proof. If we suppose that vm ⇀ v in L2
V , then on every compact set of Rd, we have:

ϕv
m → ϕv, dϕv

m → dϕv and d2ϕv
m → d2ϕv uniformly, with theorem 4.3. Now, let

K be a compact set of Rd. On K, ϕv
n

converges uniformly toward ϕv, which proves
the uniform convergence for the first component of ψ. For the second component,
we consider the application θ:

θ : (A, n) ∈ GLd(R)× Sd−1 7→ A−Tn

‖A−Tn‖ ∈ S
d−1

where the notation A−T stands for (A−1)T , the transpose of the inverse. θ is con-
tinuous and then is uniformly continuous on every compact sets of GLd(R)× Sd−1.
Moreover,

ψ(x, n) =
(
ϕ(x), θ(dϕx, n)

)

Denoting dϕ(K) = {dϕx|x ∈ K}, dϕ(K) is a compact of GLd(R) (the image of a
compact by a continuous application is compact) θ is then uniformly continuous on
dϕ(K)× Sd−1. Since the uniform convergence is preserved by the composition with
a uniformly continuous function, and since dϕv

m

uniformly converges toward dϕv,
it proves that the second component of ψv

m

converges uniformly on every compact
set of Rd × Sd−1. This proves that ψv

m

converges uniformly towards ψv on every
compact set.

The proof of the uniform convergence of dψv
m

is similar, using the uniform
convergence of d2ϕv

m

.

We recall here a proposition from [Glaunès, 2005], proposition 34.

Proposition 4.5. Let W be a RKHS of m-differential forms continuously embedded
in Ωm

1,0(R
d). Let S be a m-current. If φn and dφn converge uniformly towards φ and

dφ on the support of S, then φn♯ S converges towards φ♯S in W ′.
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We can now prove theorem 4.2:

Proof. Suppose that vn ⇀ v in L2
V . By proposition 4.4, ψv

n → ψv and
dψv

n → dψv. Then, with proposition 4.5, and the fact that W is embedded in
C10
(
Rd × Sd−1,Λd−1(Rd × Rd)

)
we have ψv

n

♯ N(C) → ψv♯N(C) in W ′, which implies

that
∥∥ψvn♯ N(C)−N(S)

∥∥2
W ′ →

∥∥ψv♯N(C)−N(S)
∥∥2
W ′ and this is exactly the weak

continuity of our data attachment term. We conclude using theorem 1.7.

In the following, KV will be, depending on the application, a Cauchy ker-
nel with width σV : KV (x, y) = 1

1+
|x−y|2

σ2
V

, a Gaussian kernel with width σW :

KV (x, y) = exp(−‖x− y‖2 /σ2
V ), or a sum of Gaussian kernel with decreasing

width. W is as in proposition 3.13. So that we have existence of a minimizer for (4.1).

4.1.2 Discrete framework

Knowing that a minimizer exists is a first step, and we will focus now on the problem
of finding such a minimizer.

In the following, we focus on the discrete problem: we consider discrete shapes
Cd and Sd. The geodesic equation followed by ϕvt are simpler and we will explicit
the approximations made for the data attachment term in order to have a tractable
algorithm for the minimization procedure.

A discrete shape Cd is defined by a set of N points (xi)1≤i≤N in Rd (the vertices),
with a connectivity matrix describing the connexion between the vertices. This
applies for curves in R3 but also for any polyhedral shape in Rd. However, we will
restrain our problem to curves and surfaces in Rd, and we will use the approximation
of normal cycles for segments seen in definition 2.47. The functional to minimize is
then:

J1(v) =

∫ 1

0

‖vt‖2V dt+ ‖ϕv1.N(Cd)approx −N(Sd)approx‖2W ′ (4.2)

However, ϕv1.N(Cd)approx = ψv1♯N(Cd)approx is too complex to be implemented numer-
ically. To overcome this difficulty, we approximate the action of ϕv on Cd. For this
purpose, we define Cd,ϕv as the discrete curve or surface with vertices (ϕv1(xi))1≤i≤N
with the same connectivity matrix as Cd. This means that we consider that ϕv in-
duces a displacement of the vertices only, and the displaced vertices are linked with
straight lines. From this, we introduce the approximate matching problem, with the
functional J̃ :

J̃(v) =

∫ 1

0

‖vt‖2V dt+ ‖N(Cd,ϕv)approx −N(Sd)‖2W ′ (4.3)

As shown in [Glaunès, 2005], and recalled in section 1.4, if we denote by qi(t) =
ϕvt (xi) the points trajectories, the energy term in (4.3) enforces the optimal vector
field to be a geodesic path and to write
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vt =
N∑

i=1

KV (·, qi(t))pi(t) (4.4)

where the pi(t) ∈ Rd are auxiliary variables and are called momentum vectors.
Further, it was shown in [Miller et al., 2006] (and detailed in an optimal control point
of view in [Arguillère et al., 2015]) that the problem can be written in Hamiltonian
form: if we denote Hr the reduced Hamiltonian:

Hr(p(t), q(t)) =
1

2

N∑

i=1

N∑

j=1

pj(t)
TKV (qi(t), qj(t))pi(t) =

1

2
‖vt‖2V ,

qi and pi must satisfy coupled geodesic equations which write





q̇i,t =
∂Hr

∂pi
=

n∑

j=1

KV (qi,t, qj,t)pj,t

ṗi,t = −
∂Hr

∂qi
= −

( n∑

j=1

d1(KV (qi,t, qj,t)pj,t)

)T
pi,t.

(4.5)

This Hamiltonian is constant along geodesic path and thus is a function of the
initial momenta p0 and the initial positions q0. As could be expected, this implies
that the optimal velocity vector field vt in (4.4) is of constant norm: ‖vt‖2V =
cste = Hr(q0, p0). Initial positions being fixed, we can consider Hr and further ϕv

as function of the p0 only, and denote it ϕp0 . The Hamiltonian formalism reduces
the initial problem of minimization on an infinite dimensional Hilbert space V (4.3)
to a minimization on (Rd)N :

min
p0∈(Rd)N

2Hr(p0, q0) + ‖N(Cd,ϕp0 )approx −N(Sd)‖2W ′ (4.6)

and where q and p follow the coupled geodesic (4.5). The second term depends only
on the position of the final vertices: (qi(1))1≤i≤N = (ϕp01 (qi(0)))1≤i≤N that we will
denote q(1). The data attachment term is then a function of q(1): g(q(1)).

min
p0∈(Rd)N

J(p0) := 2γHr(p0, q0) + g(q(1)) (4.7)

with q and p following (4.5). As said before, g is a measure of the residual dissimi-
larity between the deformed shape at time 1 with vertices q(1) and the target shape
Sd.

4.1.3 Registration Algorithm

This functional is explicit using the expressions for the scalar products of normal
cycles appearing in g(q(1)) and that have been computed in Chapter 3 with respect
to the kernel. We minimize it depending on the initial momenta with a geodesic
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4.1. Large Deformation Registration with Normal Cycles

Algorithm 2 Geodesic shooting with fixed-step gradient descent.

Input: q0 (initial source shape), δ (step size)
Output: argminp0∈(Rd)n J(p0)
initialization: p0 = 0
while Convergence do

Compute (q(1), p(1)) through forward integration of (1.13)
Compute ∇q(1)g(q(1))
Compute ∇p0g(q(1)) through backward integration of (1.14)
Compute ∇p0J(p0) = KV (q0, q0)p0 +∇p0g(q(1))
p0 ← p0 − δ∇p0J(p0).

end while

shooting algorithm [Miller et al., 2006, Arguillère et al., 2015] that has been recalled
in section 1.4, and that we set here again.

A numerical implementation of the minimization requires the computation of
∇g((xk)1≤k≤N)), which takes an explicit form. See Appendix C.4.

In our numerical implementation, we use the shooting algorithm and optimize
the functional with respect to p0. To accelerate the convergence, we use a quasi New-
ton Broyden Fletcher Goldfarb Shanno algorithm with limited memory (L-BFGS)
[Liu and Nocedal, 1989] rather than the gradient-descent with fixed step presented
in Algorithm 2. The BFGS algorithm relies on the Newton’s method to find the
zero of the gradient of the functional to minimize. With no simplification, this
would require the computation of the Hessian of the functional at each iteration. In
the BFGS agorithm, we compute an approximation of the Hessian, that is updated
and improved at each step. With the limited memory implementation, there is no
storage of a N × N (where N is the number of variables) matrix and the memory
storage is linear with respect to N . See [Liu and Nocedal, 1989] for more details.
This method provides a direction of descent and the step in this direction is fixed
by a Wolfe line search. For the numerical integrations, a Runge-Kutta (4,5) scheme
is used (function ode45 in Matlab).

4.1.4 Curve Registration

We present here the experimentations of curve registration with kernel metric on
normal cycles as data attachment term. Most of the time, we set KV to be a scalar
Cauchy kernel KV (x, y) = 1/(1 + |x− y|2/σ2

V )Id, with σV a scale parameter.
For the normal cycles, the point kernel kp is a Gaussian kernel, with width σW ,

and the normal kernel kn will be either a constant kernel, or a linear kernel, or a
Sobolev kernel (associated with the operator L = (I −∆)3). All these kernels have
been introduced in Chapter 3. The examples aim to show the properties of the
different kernels. The constant and linear kernels are simple, and encode precise
curvature information, as it has been seen in section 3.5. For the Sobolev kernel,
we used a spherical harmonics expansion of this kernel truncated at order 10 for the
numerical purpose.
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We chose to use a weighted scalar product for normal cycles (see remark 3.14 and
remark 3.28) with weight λ of the form λ = ασ2

W , where α > 0 is a fixed parameter.
Setting λ to be proportional to σ2

W comes from a simple homogeneity analysis of the
functional (4.7): when scaling the data coordinates by a factor η, scaling accordingly
the width parameters σV and σW by the same factor, and evaluating at p′0 = ηp0,
the energy term Hr and the cylindrical parts of the scalar products in the normal
cycles term are multiplied by η2, while the spherical part is kept unchanged. Hence
multiplying the spherical part by a factor proportional to σ2

W ensures homogeneity
of the functional with respect to scaling. In all our experiments, we set α = 10.

In this section, we show some of our results on synthetic data and compare them
with the varifolds method and currents method. The point kernel chosen for the
varifolds is a Gaussian kernel, with the same width σW as for normal cycles. The
kernel associated with the Grassmannian is chosen linear (see [Charon, 2013]), so
that no parameter is involved as for the normal kernel with normal cycles. Lastly,
a Gaussian kernel is used as well for currents, again with width σW . The trade-off
parameter γ is set to γ = 0.1 in all experiments. All the numerical computations
have been done on a laptop using Matlab (this will not be the case for surfaces since
the model is then more complex and will require a parallelization of the calculus on
GPU).

The examples are classified depending on the properties that we want to spotlight
(curvature properties, consideration of the branching points and the extremities,
examples on real data, . . . ).

Remark 4.6. In the experiments, the color code will be the following: the target
will be in orange, and the source in blue. The trajectories of the vertices during the
deformation will be in blue as well.

Synthetic data: illustration of the curvature properties

As announced and studied in section 2.5 and section 3.5, the normal cycles encode
curvature information of the shapes and this is expected that a registration with
kernel metric on normal cycles will show this property. The next two examples are
registration between shapes with high curvature spot.

Registration of fishes contours (figure 4.1, figure 4.3):
Here a registration between two fishes contours is performed (see
[US Dept of the Interior Fish and Wildlife Service, 1953] for the original data).
Even if they are 2D objects, we consider them as 3D objects with no z variation. In
this example, fishes have around 100 vertices. A first optimization of the momenta
was performed with parameters σW = 0.75 and σV = 0.2. This can be seen as
an initialization step to avoid local minima. Then minimization was done with
σW = 0.2 and σV = 0.2. The computation time as well as the number of iterations
is specified for each registration in the figures. The main difficulty of the matching
is the trade off to find between the matching of the long tail of the stingray (in
orange) and the high local curvature in the upper part of the fish in blue. To ease
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4.1. Large Deformation Registration with Normal Cycles

the reader’s comprehension, we show in figure 4.2 the evolution of the deformation
with Sobolev normal kernel. The results are presented in figure 4.3 and show that a
perfect matching with normal cycles and a constant normal kernel can be achieved,
even with σW = 0.2 which is quite large compared to the local feature in the upper
part of the fish. Notice that with the constant kernel, that encodes the curvature
information of the curves, the registration takes into account the region of high
curvature. With varifolds (that is in the case of closed curves exactly similar to
the metric on normal cycles with linear normal kernel), one can see that this local
feature still remains in the blue matched curve. To avoid this behaviour, one can
decrease the size of σW , but it would lead to a bad matching of the tail. One should
also notice that the behaviour of the constant + linear normal kernel and the
Sobolev normal kernel are quite similar, which could indicate that the information
encoded in the constant and linear kernel are enough for the matching of curves.

Figure 4.1: Source fish (blue) and target fish (orange)
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Figure 4.2: Registration of the blue fish to the orange fish with normal cycles and Sobolev
normal kernel with parameters σV = 0.2 and σW = 0.75 and then 0.2. This figure aims
at visualizing the evolution of the deformation at time t = 0, t = 1/2 and t = 1 through
the grid of deformations. In figure 4.3 the reader can find a precise comparison of the
registrations with different metrics.
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4.1. Large Deformation Registration with Normal Cycles

(a) Normal cycles constant, 1015 it-
erations (633 for run 1, 382 for run
2), in 173 seconds (0.17 s/it)

(b) Normal cycles linear (= vari-
folds), 914 iterations (533 for run 1,
381 for run 2) in 143 seconds (0.15
s/it)

(c) Normal cycles constant + linear,
1400 iterations (644 for run 1, 756
for run 2) in 250 seconds (0.18s/it)

(d) Normal cycles sobolev, 1329 it-
erations (696 for run 1, 633 for run
2) in 244 seconds (0.18s/it)

Figure 4.3: Registration of a blue fish to an orange fish. In light blue, the trajectories of
the vertices along the deformation. We used normal cycles and varifolds with the same
parameters σV = 0.2 and σW = 0.75 and then 0.2. Each shape has around 100 points.
The registration with currents is worse than with varifolds.
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Registration of a three feet object (figure 4.4, figure 4.5 and figure 4.6):
The registration presented here is harder. These are two contours of amoeba, pre-
senting three protrusions and that are kindly available on Jean Feydy’s website:
http://www.math.ens.fr/˜feydy/research.html. Looking at figure 4.4, the nat-
ural matching between these two shapes seems rather obvious. However, this is a
hard problem for the LDDMM registration since the data attachment term tends to
match points that are close. The minimization for the results presented in figure 4.6
is done with one run until convergence, with σV = 0.1 and σW = 0.1. Each shape
has around 200 points. Since the deformation may be hard to understand at first,
we show in figure 4.5 the evolution of two optimal deformations: one obtained with
Sobolev normal kernel and one obtained with varifolds. However, once the deforma-
tion is understood, figure 4.6 shows more details of the matching. As we can see,
the registration with normal cycles are very similar for constant, linear + constant
and Sobolev, and the matching takes into account the corresponding “feet”. For the
varifold data attachment term however, we see that one of the foot is crushed to the
target, and another foot is created, which does not correspond to the matching in
mind. We believe that this is due to a nice property of the normal cycles, that tend
to make a correspondence between points of high curvatures.
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Figure 4.4: Source amoeba (blue) and target amoeba (orange)
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t = 0

t = 0.5

t = 1

Figure 4.5: Registration of the blue amoeba to the orange amoeba, with σV = 0.1, σW =
0.1. Each column represents the evolution of the deformation, at time t = 0, t = 0.5 and
t = 1. The first column is the registration obtained with the metric on normal cycles and
the Sobolev normal kernel. he second column is the registration obtained with the metric
on varifolds. We add also the grid of deformation to a better visualization. We refer also
to figure 4.6 for another presentation of the registrations.
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4.1. Large Deformation Registration with Normal Cycles

(a) Normal cycles constant, 1034 itera-
tions in 711 sec (0.68 s/it)

(b) Normal cycles linear (similar to vari-
folds), 1363 in 962 sec (0.7 s/it, 0.66s/it
for varifolds)

(c) Normal cycles constant + linear, 814
in 582 sec (0.71 s/it)

(d) Normal cycles sobolev, 673 in 545 sec
(0.81 s/it)

Figure 4.6: Registration of a blue amoeba to an orange amoeba, with σV = 0.1, σW = 0.1.
Each shape has around 200 points. In blue light, the trajectories of the blue amoeba’s
vertices along the deformation. The matching with constant, constant + linear and Sobolev
normal kernel makes a correspondence between the feet on the contrary to the linear normal
kernel (that generates a metric similar to the one of varifolds for closed curves).
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Synthetic data: illustration of the extremities properties

Another specificity of the metric on normal cycles is that every part of the shape
is taken into account and in particular, the extremities have a specific behaviour
that is explicit on discrete shapes (see the scalar product between discrete shapes
in section 3.7. This property will be retrieved during the registration with a good
matching of corresponding extremities. This is also the case for branching points,
where the metric on normal cycles creates a “connection cost”. Indeed the norm of
the normal cycle of two segments at distance ε with ε → 0 is different from the
norm of the normal cycle of the joint segments, and the difference is exactly the
norm of a sphere. This observation is clear when looking at the decomposition of
the normal bundle used (Subsection 2.4.3). This cost of connection does not appear
for currents or varifolds. More generally, currents and varifolds are m-dimensional
measures associated with a m-dimensional objects, and thus are insensitive to the
boundaries (which is m − 1 dimensional). Notice that in the case of curves with
extremities, the metric given by the linear normal kernel on normal cycles has an
additional term on the extremities in comparison to varifolds. That is why we will
precise registrations for both varifolds and linear normal kernel in the following.

Registrations of open circle (figure 4.7, figure 4.8, figure 4.9): We start
here with a rather striking toy example to illustrate the specific behaviour of the
extremities for the metric on normal cycles. We want to perform a matching between
a source blue circle and a target orange circle. Each circle has a a small opening.
At angle θ = 0 for the blue circle and θ ≃ π − π/10 for the orange circle. The
opening is small compared to the size of the circle. The first registration presented
in figure 4.8 is with σW = 5 for the spatial kernel kp on normal cycles and varifolds,
and σV = 5. Notice that the size of the spatial kernel is big compared to the size
of the opening. This implies that the metric on varifolds does not see this opening
and it is impossible to achieve the matching. We observe a similar behaviour for
the metric on normal cycles with constant normal kernel. However, with the linear
kernel (or constant + linear or Sobolev), even though the spatial kernel does not
see the opening, the normal kernel is sensitive to the extremities and this implies a
good matching of the disconnections.

More striking is the second registration (figure 4.9), this time with σW = 1000.
With such size, the spatial kernel is insensitive to any spatial localization. Thus,
nothing happens for the registration with the constant normal kernel on normal
cycles or with varifolds. However, with the metric on normal cycles with the linear
(or constant + linear or Sobolev) normal kernel, it remains some information on the
extremities that will drive the matching, as one can observe in figure 4.9. Of course
the matching is far from being perfect, but it is interesting to see that the corre-
sponding extremities are well registered. The question whether this is an advantage
or a drawback depends critically on the data at stake. If there is uncertainty on the
topology of the data, resulting from a bad segmentation for example, this behaviour
prevents from a correct matching. Indeed, the registration will try to make a corre-
spondence between extremities that are artefacts. However, for specific cases where
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Figure 4.7: Source circle (blue) and target circle (orange)

the extremities play an important role, the metric on normal cycles (with linear or
Sobolev normal kernel) can be used with benefits.
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(a) Registration obtained with normal
cycles with the constant normal kernel.
The metric on normal cycles is not sen-
sitive to extremities with this choice of
kernel.

(b) Registration obtained with normal
cycles and Sobolev normal kernel. The
results are similar with the linear and the
constant + linear normal kernel.

(c) Registration obtained with varifolds. The associated metric is not sensitive to extrem-
ities.

Figure 4.8: Registration of the blue circle to the orange one with σV = 5, σW = 5. One
can observe the grid of deformation in grey. The metrics on normal cycles are sensitive
to the deconnection of the circles and match the extremities (appart for the constant
normal kernel). Since varifolds are not sensitive to this topological feature, the resulting
registration is simply the identity.
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(a) Normal cycles linear, constant + linear, Sobolev

Figure 4.9: Registration of the blue circle obtained with σV = 5, σW = 1000. One can
observe the grid of deformation in grey. In blue light, the trajectories of the blue vertices
along the deformation. The extremities of the circles are well matched, even though the
size of the spatial kernel makes the metric almost insensitive to any spatial localization.
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Registrations of branching curves (figure 4.10, figure 4.11, figure 4.12):
We show here registration of two 3D curves with branching. These curves were
chosen because the distance between them is large compared to their typical sizes,
the curves have some high local curvature and the size of the corresponding branches
implies high local deformations. Besides, we would like to see the behaviour of
normal cycles with respect to connecting points.

The two curves are enclosed in a cubic box of size one. Both curves have 150
vertices. In figure 4.11, figure 4.12, we show two views of a matching using normal
cycles (constant, linear, constant + linear and sobolev normal kernel) and varifolds.
The kernel KV associated with the deformation space is chosen to be a Cauchy
kernel, with width σV = 0.2.

One can see that the branching point, as well as the extremities are well matched
for the registration with normal cycles, compared to the one with varifolds. This cor-
respondence made on the extremities enforces a much more convincing registration,
notably in the neighborhood of the branching point.

Remark 4.7. As we can notice the computation time per iteration is not increas-
ing much when using normal cycles instead of currents or varifolds. This comes
from the fact that the largest part of the computation is spent in solving the ODE
equations of the LDDMM shooting procedure. The cost of the data attachment evalu-
ations (functional and gradient) themselves for this experiment reflect the increasing
complexity of the methods, as expected: 0.017, 0.036 and 0.10 seconds per iteration
for currents, varifolds and normal cycles respectively, but this has relatively small
influence on the total time per iteration. In the end, the large total time differences
in this experiment come from the number of iterations of the minimization process
needed to reach the stopping criterion, which seem to increase with the complexity
of the method.

Synthetic data: fibres bundle

We present now some first result on fibres bundles. These are synthetic data, gen-
erated thanks to the fshape-toolkit that is kindly provided on line by Benjamin
Charlier (http://www.math.univ-montp2.fr/~charlier/). The registration of fibres
bundle is in practice pretty hard to achieve since the matching of the extremities is
often difficult and not enforced by the RKHS metrics on currents or varifolds. How-
ever, we have seen that with normal cycles, the extremities have a specific behaviour
that should improve the registration. The source and target are two fibres bundles
with 3 branches each, each branch containing around 20 fibres, with 10 vertices
each. In figure 4.13, one can see the initial configuration: we want to register the
blue fibers bundle to the orange one.

This matching is hard to achieve since we have no correspondence between the
set of fibers, and not necessarily the same number of fibers in each bundle. We
present in figure 4.14 registrations obtained with the different metrics: on normal
cycles, with the constant, linear and Sobolev normal kernel, and with varifolds, with
the linear kernel on the Grassmanian. For both metric, we chose a Gaussian spatial
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(a) View 1

(b) View 2

Figure 4.10: Two curves with one branching points and four extremities. The source is in
blue and the target in orange.
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(a) Normal cycles constant, view 1, 2120 it-
erations in 1011 seconds (0.48 s/it) (b) Normal cycles constant, view 2

(c) Normal cycles linear, view 1, 870 itera-
tions in 387 seconds (0.44 s/it) (d) Normal cycles linear, view 2

Figure 4.11: Two views of the registration of two 3D curves with different data attachment
terms. Initial curve is in blue, target curve in orange, and deformed curve in light blue.
Trajectories of vertices along the flow are displayed in blue. Parameters are σV = 0.2 and
σW = 0.3. Each curve has around 150 points.
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(a) Normal cycles constant linear, view 1,
1370 iterations in 869 seconds (0.63 s/it)

(b) Normal cycles constant linear, view 2

(c) Normal cycles sobolev, view 1, 1557 iter-
ations in 920 seconds (0.6 s/it)

(d) Normal cycles sobolev, view 2

(e) Varifolds, view 1, 1058 iterations in 520
seconds (0.5s/it)

(f) Varifolds, view 2

Figure 4.12: Two views of the registration of two 3D curves with different data attachment
terms. Initial curve is in blue, target curve in orange, and deformed curve in light blue.
Trajectories of vertices along the flow are displayed in blue. Parameters are σV = 0.2 and
σW = 0.3. Each curve has around 150 points.
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Figure 4.13: The registration problem between the blue fibers bundle and the orange one
(the target)

kernel. The registration is done with one run with σW = 0.5. We also whose a
Cauchy kernel for the deformations, of size σV = 0.8. The typical time for normal
cycles is two and a half hour for 1000 iterations (where we stopped the algorithm).
For varifolds it is 2 hours.

In this experience, the improvement provided by normal cycles is not obvious.
The fact that the extremities are taken into account does not seem to improve the
registration. This may be because the problem is hard. If the metric tends to match
extremities, it becomes difficult when there is not the same number of extremities
in the source and in the target.
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(a) constant normal kernel (b) linear normal kernel (c) constant + linear nor-
mal kernel

(d) Sobolev normal kernel (e) kernel metric on vari-
folds

Figure 4.14: Registration of two set of fibers with different data attachment terms. For the
deformation : Cauchy kernel, σV = 0.6, for the data attachment term, Gaussian spatial
kernel with σW = 0.6 and 0.3.
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Real data: brain sulci

Registration of brain sulci (Figures 4.15, 4.16 and 4.18) We show here an
example on real data. The data consist of brain sulcal curves that were automati-
cally segmented and labelled from anatomical Magnetic Resonance Imaging (MRI)
brain images, following the method described in [Auzias et al., 2011]. We chose two
individuals and six labelled corresponding sulcal curves for each individual. See
figure 4.15.

The matching is performed with a single deformation, but 6 data attachment
terms with normal cycles or varifolds: one for each pair of corresponding sulci. Two
runs are performed, with decreasing size of the spatial kernel. The first run can be
considered as an initialization step at coarse scale. The parameters are the following:
for the deformations, we chose a Cauchy kernel of width σV = 20. For the metric
on normal cycles, we took a Cauchy spatial kernel with width σW = 20 for the fisrt
run and σW = 5 for the second run. The normal kernel is a Sobolev kernel of order
3. For varifolds, we consider the same Cauchy spatial kernel, and a linear kernel for
the tangential part. Processing times were 1 hour using normal cycles and Sobolev
normal kernel (2000 iterations, 2 s/iter) and 45 min with varifolds (2000 iterations,
1.5 s/iter). The matching is complex since the number of branching points is not
necessarily the same for corresponding curves, and two curves to match can be really
twisted from one to another. Moreover, the fact that a single deformation is required
for the whole brain implies high local variations. In figures 4.16 and 4.17, we present
the registration with normal cycles and Sobolev normal kernel. The visualization of
this three dimensional configuration is not easy, but the end points and correspond-
ing branching points are well matched when possible (we recall that there is not
always corresponding branching points). Moreover, the registration driven by nor-
mal cycles allows complex local deformation (even though it is expensive) to reduce
the data attachment term.

In figure 4.18 we present a zoom on two sulci to showcase the properties of
a registration with normal cycles compared to a registration with varifolds. This
specific example show all the benefit that one can expect from the metric on normal
cycles. The natural consideration of the extremities and the corresponding points
provide a much more convincing registration, even though this implies a deformation
with high local variation. This is even more striking in the left sulci where the
registration with varifold twists the main curve to match to a branch. On the
contrary, with normal cycles the deformation is a good compromise, even though
there is not the same number of branching points in the source and in the target.
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(a) view 1 (b) view 2

(c) view 1, target (d) view 2, target

Figure 4.15: Two view of the brain sulci of two distinct subjects to be matched. Each
individual has 6 sulci that are labelled. The target is in orange and the source in blue.
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(a) view 1, t = 0 (b) view 1, t = 1/3

(c) view 1, t = 2/3 (d) view 1, t = 1

Figure 4.16: Registration of blue to orange brain sulci, view 1. The deformation kernel
is a Cauchy kernel of width σV = 20. The data attachment term is normal cycles with
Sobolev normal kernel of order 3 and Gaussian spatial kernel kp with width σW = 20 for
the first run and σW = 5 for the second run.
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(a) view 2, t = 0 (b) view 2, t = 1/3

(c) view 2, t = 2/3 (d) view 2, t = 1

Figure 4.17: Registration of blue to orange brain sulci, view 2. The deformation kernel
is a Cauchy kernel of width σV = 20. The data attachment term is normal cycles with
Sobolev normal kernel of order 3 and Gaussian spatial kernel kp with width σW = 20 for
the first run and σW = 5 for the second run.
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(a) Normal cycles, t = 0 (b) Varifolds, t = 0

(c) Normal cycles, t = 1/3 (d) Varifolds, t = 1/3

(e) Normal cycles, t = 2/3 (f) Varifolds, t = 2/3

(g) Normal cycles, t = 1 (h) Varifolds, t = 1

Figure 4.18: Zoom of the registration on two sulci. Each column show the evolution of
the deformation with time. In the left column, the registration with normal cycles and
Sobolev normal kernel. In the right column, the registration with varifolds. One can
observe that since normal cycles take into account the extremities, the matching is much
more convincing. On the contrary, the metric on varifolds tends perform a matching
between points that are close, even though this implies a poor registration for branches.
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4.1. Large Deformation Registration with Normal Cycles

In conclusion we have seen that despite an increase of the calculation time,
normal cycles improve the matching, especially for branching curves, or curves with
end points. We must point out however that these conclusions hold for the particular
examples of kernels we chose for the three methods : currents, varifolds and normal
cycles. It will be interesting in future experiments to make comparisons with the
use of other kernels, for example a gaussian kernel instead of a linear kernel for
the varifold metric, as in [Charlier et al., 2015a], or other types of kernels for the
spherical part in the normal cycle metric. Besides taking into account the curvature
of the curves, we believe that another advantage of using normal cycles for the
matching of such structures is the “connection cost”. Since normal cycles consider
currents associated with the normal bundle, the boundaries are also taken into
account during the registration, and are enforced to match as well.
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4.1.5 Surfaces Registration with Normal Cycles

Let us now move to the surface matching using LDDMM and kernel metrics on
normal cycles. The aim of this section is to illustrate the properties of a matching
with normal cycles, as well as some limitations. Using parallel computations, we are
able to provide examples on real data (retina, hippocampi) with a large number of
points (around 6000 for each shape).

The surface matching is made through the minimization procedure sub-
section 4.1.3. We used a geodesic shooting coupled with a quasi Newton
Broyden Fletcher Goldfarb Shanno algorithm with limited memory (L-BFGS)
[Liu and Nocedal, 1989]. The step in the descent direction is fixed by a Wolfe line
search. For the numerical integrations, a Runge-Kutta (4,5) scheme is used (func-
tion ode45 in Matlab). The evaluations of the functional and its gradient, as well as
the numerical integrations are the limiting part of the computational cost. In order
to improve the computational cost, the convolution operations arising are done with
parallel computing on a graphic card. The CUDA mex files using GPU are included
in the MATLAB body program. The algorithm is run until convergence with a
stopping criterion on the norm of the successive iterations, with a tolerance of 10−6.
This procedure allows us to perform matching of surfaces with up to 10 000 points
in a reasonable time, which will be specified for each experimentation.

Notice that due to the increasing complexity of the model of normal cycles for
surfaces, we are able to provide registration with the constant normal kernel only.
For all the following matching, the geometric kernel kp is a Gaussian kernel of width
σW , kn is a constant kernel as in section 3.5. The kernel KV is a sum of 4 Gaussian
kernels of decreasing sizes, in order to capture different features of the deformation.
The trade-off parameter γ is fixed at 0.1 for all the experiments.

Synthetic data: illustration of the curvature properties

Registration of an ellipsoid to a duck. Let us start with the simple, yet
interesting example of figure 4.19. We want to perform a matching between blue
ellipsoid (the source) and the orange duck (the target). The orange duck contains
2000 points and the blue ellipsoid 10 000.

The registration is performed with normal cycles and varifolds. We chose a
Gaussian kernel for the spatial kernel and a sum of 4 Gaussian kernels of decreasing
size (σV = 0.15, 0.075, 0.0375, 0.0185) for the deformation kernel kV . We recall that
for normal cycles, we chose a constant normal kernel and for varifolds, a linear kernel
on the Grassmanian. Two runs are performed, one at size σW = 0.15 and one at
size σW = 0.075 for spatial kernel. The first run can be seen as an initialization
step. For normal cycles, the run ended respectively at 23 and 33 iterations, for a
total time of 4000 seconds (71s/it). For varifolds, the run ended respectively at
79 and 2 iterations, for a total time of 9330 seconds (114s/it, this experiment was
made without any parallelization for varifolds). The registrations can be found in
figures 4.20 and 4.21. As expected, the matching with normal cycles is more accurate
that the one with varifolds. This appears clearly in the neighbourhood of regions
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4.1. Large Deformation Registration with Normal Cycles

Figure 4.19: Two views of the matching problem of a blue ellipsoid to an orange duck.

with high curvature as the beak or the eyes. It is interesting to notice that even the
coarse mesh of the duck appears in the deformed ellipsoid for normal cycles.

Registration of hippocampi. The second example is a matching of two hip-
pocampus, of typical size 10 × 20 × 40. Each shape is around 7000 points. Three
runs at different geometric kernel sizes are performed (see Fig. 4.22). We can see
the the final deformation matches well the two hippocampus, even the high curved
regions of the shape.
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Figure 4.20: View 1. Registration of a blue ellipsoid to an orange duck. The left column
represents the matching with normal cycles and the right column the one with varifolds.
The registration with normal cycles is more accurate as it can be seen with the beak or
the eyes. One can even notice that the coarse mesh of the duck appears in the deformed
ellispoid.
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Figure 4.21: View 2. Registration of a blue ellipsoid to an orange duck. The left column
represents the matching with normal cycles and the right column the one with varifolds.
The registration with normal cycles is more accurate as it can be seen with the beak or
the neck.
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(a) profile, t = 0 (b) profile, t = 1

(c) face, t = 0 (d) face, t = 1

Figure 4.22: Two views (profile and face) at times t = 0 and t = 1 of the matching
of two hippocampus with normal cycles. The target shape is in orange and the source
in blue. Each shape has 6600 points. Three runs at different geometric kernel sizes are
performed (σW = 25, 10, 5) and the kernel of deformation is a sum of Gaussian kernels
with σV = 10, 5, 2.5, 1.25. Each run ended respectively at 62, 66 and 48 iterations for a
total time of 4076 seconds (23 seconds per iteration).

170



4.1. Large Deformation Registration with Normal Cycles

Real data: retinas

The third data set was provided by B. Charlier, N. Charon and M.F. Beg is a set of
retina layers from different subjects. Originally, each surface comes with a signal that
represents the thickness of the retina layers at each vertex. In [Lee et al., 2017a],
a statistical analysis of these functional shapes is made using atlas estimation in
the framework of LDDMM and with a varifolds kernel metric. We refer to this
article for the procedure of generation of this data set. In the following, we only use
the geometrical information of the shapes to illustrate the properties of a matching
with normal cycles. The difficulty of this example is to perform a matching that
is convincing for the interior of the retina, as well as for the border. One should
notice that the border has no real physical meaning but is the result of the data
acquisition. The hole in the center of each retina corresponds to optical nerve. Even
though these borders are not the interesting part for a medical application, they
make the registration harder. We will see that the matching with normal cycles
will incorporate the borders during the registration, resulting to a much smoother
deformation.

The retina are surfaces of typical size 8 × 8mm. Each retina is sampled with
approximately 5000 points. As for hippocampus, three runs are performed, with
σW = 0.8, 0.4, 0.2 and the deformation kernel KV is a sum of 4 Gaussian kernels,
σV = 2.4, 1.2, 0.6, 0.3. All the details of the matching are in Fig. 4.23. The retinas
have a border which will be seen as region with singularities for the kernel metric
on normal cycles. This is not the case for the varifolds metric which makes the
matching of the corresponding corners harder. The matching of the borders is
better with normal cycles, and provides a much more regular deformation (see Fig.
4.23).

In the last example (Fig. 4.24), the two retinas are the result of an unsatisfactory
segmentation . This leads to artifacts in each retina : two triangles for the source
retina (in blue, Fig. 4.24) and only one for the target, in orange. We would like that
during the matching, these artificial features are not taken into account. However,
These are regions of high curvature and as we could expect, the kernel metric on
normal cycles will make a correspondence between those points. As we can see in
the second row of Fig. 4.24, the two triangles are crushed together, into one triangle,
even though the cost of the resulting deformation is high. This example shows how
sensitive to noise or artifacts normal cycles are. The data must be smooth and well
segmented so that the matching works well.
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(a) normal cycles, t = 0 (b) varifolds, t = 0

(c) normal cycles, t = 0.5 (d) varifolds, t = 0.5

(e) normal cycles, t = 1 (f) varifolds, t = 1

Figure 4.23: Each column represents the matching of two retina with kernel metric on
normal cycles (left) and varifolds (right). The target shape is in orange and the source
shape is in blue. Each shape has 5000 points. For the varifolds metric, the geometric
kernel is Gaussian. The kernel on the Grassmanian is chosen linear so that no additional
parameter is involved. The same parameters are used for each data attachment term.
Three runs at different geometric kernel sizes are performed (σW = 0.8, 0.4, 0.2). KV is
a sum of Gaussian kernels with σV = 2.4, 1.2, 0.6, 0.3. For normal cycles, each run ended
respectively at 88, 297 and 5 iterations for a total time of 5487 seconds (14 seconds per
iteration).
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(a) t = 0 (b) t = 0.5 (c) t = 1

Figure 4.24: Matching of two retina with normal cycles : the target (in orange) and the
source (in blue). Three runs at different geometric kernel sizes are performed (σW =
0.8, 0.4, 0.2). KV is a sum of Gaussian kernels with σV = 2.4, 1.2, 0.6, 0.3. The first row
shows the initial configuration. The second row shows the matching in the specific zone
delimited by the red rectangle. The metric on normal cycles enforce the matching of
corresponding high curvature points, which leads to the alignment of the two triangles into
the single one of the target. Each run ended respectively at 211, 90 and 202 iterations for
a total time of 8114 seconds (16 seconds per iteration).

4.2 Atlas Estimation with Normal Cycles

One of the goal of computational anatomy is the statistical analysis of the vari-
ability in a dataset of shapes. This is classically tackled with the estimation of a
mean shape as well as the deformations that match the mean shape to each shape
of the dataset. This estimation of both the mean shape and the deformations from
the mean shape to the targets is called an atlas. The mean shape contains all
the anatomical invariants across the dataset. The statistical analysis is then trans-
ferred to the study of the deformations, that can be reduced with the framework
of LDDMM to the study of the initial momenta. Reducing the study to initial
momenta has the major advantage to set the framework in the Euclidean space
(Rd)n where all the classical statistical tools are available. From there, an adequate
analysis could quantify abnormalities across a dataset of shapes, but also describe
the anatomical differences behind these quantified abnormalities. These tools aim
to help the researchers and the doctors to find early biomarkers of a disease that
would allow for a precocious diagnosis. Of course, for now this is a research field
that necessitates a wide range of validations, but some works are noteworthy to
mention. In [Durrleman et al., 2014], the authors propose a generic method to the
statistical analysis of a collection of anatomical shape complexes. This method re-
lies on the LDDMM framework with control points to encode the deformation (see
[Durrleman et al., 2013, Durrleman et al., 2011b]) and they provide a classification
between down syndrom subjects and control subjects, with potential anatomical
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features that could have a discriminative power. In [Lee et al., 2017a] (see also
[Charon and Trouvé, 2013], chapter 4 and [Charlier et al., 2015a]), the authors ap-
ply the framework of functional shapes with LDDMM to perform a statistical anal-
ysis of retinal optical coherence tomography images. A classification using a linear
discriminant analysis on initial momenta to automatically classified glaucoma, sus-
pects and healthy subjects across the dataset. Note that this work has been pushed
forward in [Lee et al., 2017b].

In this section, we present some first results of atlas estimations with kernel met-
rics on normal cycles as data attachment term. Examples are shown on synthetic and
real data, using the algorithm of hypertemplate that is recalled in subsection 4.2.1
and subsection 4.2.2. The estimated atlas on retina datasets shows an improvement
on the quality of the obtained deformations and some hints on the consideration
of curvatures with normal cycles are shown (subsection 4.2.4). For now, we have
not performed a statistical analysis of the initial momenta and this is postponed to
future work with relevant data.

4.2.1 Theoretical Framework

In the following, we will consider a set of N shapes (curves or surfaces) X1, . . . Xn.
We recall that we are set in the LDDMM framework, where a group of transfor-
mations GV is generated with integration of time-varying vector fields living in a
RKHS V . Let us start with the simple case where all the shapes live in the same
orbit under the action of GV : Xi ∈ GV .X1 := X for i = 1, . . . , N . The Riemannian
metric on GV provides a metric on X and the Fréchet mean is the natural extension
of the well known Euclidean mean. The Fréchet mean X is the critical point of the
square distances to each Xi, namely:

X = arg min
X∈X

N∑

i=1

dX (Xi, X)2,

where dX (Xi, X) = infϕ∈GV
dGV

(
ϕ.X,Xi

)
. This means X comes with N deforma-

tions (ϕi)1≤i≤N such that ϕi(X) = Xi. In this setting, it is a well known result
of Riemannian geometry that the Fréchet mean exists. Even though it is a good
candidate for the mean shape, the assumption that the shapes live in the same orbit
under the action of GV is not relevant nor desirable. To relax this hypothesis, we
allow for some residual:

Xi = ϕi(X) + εi.

The quantification of the residual εi is of crucial importance for the atlas estimation
and depends on the data attachment term that we choose. In common applications,
this quantification is made using kernel metrics on shapes representations that we
have seen in Chapter 2 and Chapter 3. The relaxed problem of estimating a mean
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shape writes:

min
X

ϕ1,...,ϕN∈GV

γ
N∑

i=1

dX (X,ϕ
i(X))2 +

N∑

i=1

g
(
ϕi(X), Xi

)
. (4.8)

Remark 4.8. All the classical result on Fréchet mean are usually in finite dimen-
sion. However, once discretized, the problem of atlas estimation leads back to this
usual case.

In our application, g will be a kernel metric on normal cycles: g
(
ϕi(X), Xi

)
=

‖N(ϕi(X))−N(Xi)‖2W ′ .

Remark 4.9. The formulation (4.8) can be formally derived from a Maximum
A Posteriory (MAP) as it has been detailed in [Durrleman, 2010], chapter 5. In
this statistical setting, we introduce two priors: the first on the deformations, en-
coded with the optimal vector field v0 ∈ L2

V with Gaussian density pdefo(v0) =
exp(−‖v0‖2V /2σ2

V ) and the other prior on the noise model on shape residuals:
pr(εi) = exp(−‖εi‖2W ′ /2σ2

W ). Supposing that the residuals are i.i.d., we are look-
ing for the template X that maximizes the probability of observing the shapes
(Xi)1≤i≤N knowing the template X :

∏N
i=1 p

(
Xi

∣∣X
)
. With appropriate approxi-

mation, the minimization of the associated log-likelihood takes the form (4.8). See
[Durrleman, 2010], chapter 5, [Charon and Trouvé, 2013], chapter 4 for more de-
tails.

Of course, this equation has to be considered cautiously since there is no precision
on the space on which X lives. A nice approach to provide a sound mathematical
framework is to consider that the possible templates live in a restricted yet large
space, generated by a hypertemplate. This idea was introduced in [Ma et al., 2008,
Ma et al., 2010]. Considering a shape X0, called the hypertemplate, we restrict the
problem as follow:

min
X∈GV0

.X0

ϕ1,...,ϕN∈GV

γ

N∑

i=1

dX (X,ϕ
i(X))2 +

N∑

i=1

g
(
ϕi(X), Xi

)
. (4.9)

Notice that the group of deformations GV0 needs not be the same as GV . In
order to have a mathematical well-posed setting as well as a closed form for the
computations, we consider an additional cost in the functional: the hypertemplate
not only generates the space X0 = GV0 .X0 but it is also the starting point for
optimization:

min
X∈X0

ϕ1,...,ϕN∈GV

γ0dX0
(X0, X)2 + γ

N∑

i=1

dX (X,ϕ
i(X))2 +

N∑

i=1

g
(
ϕi(X), Xi

)
. (4.10)

With the LDDMM framework, the previous minimization over GV0 and GV can
be transferred to a minimization on the Hilbert spaces L2

V0
and L2

V :
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min
v0∈L2

V0

v1,...,vN∈L2
V

Jatlas(v
0, v1, . . . , vN) := γ0

∥∥v00
∥∥2
V0
+γ

N∑

i=1

∥∥vi0
∥∥2
V
+

N∑

i=1

g
(
ϕv

i

1 ◦ϕv
0

1 (X), Xi

)
.

(4.11)
where we recall that optimal trajectories in GV have constant velocities: ‖vt‖2V =

‖v0‖2V and where ∂ϕvi

t

∂t
= vit ◦ ϕv

i

t , ϕv
i

0 = Id. One should notice that the minimiza-
tion of (4.11) provides both the template X (X = ϕv

0

1 (X0)) and the deformations(
ϕv

i

1

)
1≤i≤N

from the template to the shapes (Xi)1≤i≤N of the datasets.

Theorem 4.10. Suppose that X1, . . . , XN are N compact sets in UPR and assume
that one has the embeddings V, V0 →֒ C30(Rd,Rd), and W →֒ Ωd−1

0,1 (Rd× Sd−1). Then
there exists a minimizer (v0∗, v

1
∗, . . . , v

N
∗ ) ∈ L2

V0
× (L2

V )
N for the problem (4.11) of

atlas estimation in the hypertemplate setting, with kernel metrics on normal cycles
as data attachment term.

Proof. The proof follows the one of theorem 4.2. From a minimizing sequence

(v0n, v
1
n, . . . , v

N
n )n∈N ∈

(
L2
V0
× (L2

V )
N
)N

, we extract a subsequence that weakly con-

verges to (v0∗, v
1
∗, . . . , v

N
∗ ). This is possible since the energy terms γ0 ‖v00‖

2
V0

+

γ
∑N

i=1 ‖vi0‖
2
V guarantee that the sequence is bounded. Now we recall that v 7→

‖ϕv1.N(C)−N(S)‖2W ′ is continuous for the weak convergence on L2
V and lower semi-

continuous. This property implies that (v0∗, v
1
∗, . . . , v

N
∗ ) is indeed a minimizer of

(4.11).

Once again, this theorem encompasses both the case of smooth submanifolds
and the one of polyhedral shapes.

4.2.2 Atlas Estimation Algorithms for Discrete Shapes

As for registration problems, we approximate this continuous atlas estimation in the
case of discrete shapes. The action of diffeomorphisms is restricted to the vertices
of the shapes only, leaving the meshes structure unchanged, and we use the classical
approximations on the metric on normal cycles that have been presented in (2.20),
(2.21) and section 4.1. In this discrete setting, the geodesic equations on GV reduced
to the case of landmarks and the optimal paths are parametrized by initial momenta
localized on the vertices of the source shape. For a set of shapes X1, . . . XN with
an initial hypertemplate X0, we denote xi the vertices of Xi for i ∈ {0, . . . , N}.
Denoting KV (x, x)p =

(∑n
l=1Kv(xk, xl)pl

)
1≤k≤n where n is the number of vertices

of x and KV the kernel of deformation, then we can write the approximated problem
of atlas estimation in the discrete setting with kernel metrics on normal cycles:
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min
p0,...pN∈(Rd)n

J(p0, . . . , pN) = γ0p
T
0KV0(x

0, x0)p0+γ
N∑

i=1

pTi KV (x
i, xi)pi+

N∑

i=1

g
(
ϕp

i

(x), xi
)
,

(4.12)
where: {

x = ϕp0(x0)

gi(ϕ
pi(x), xi) =

∥∥N(Xϕpi )approx −N(X i)approx
∥∥2
W ′

and where we recall that N(Xϕpi )approx corresponds to the approximated normal
cycle of the mesh with vertices ϕpi(x) and with the same mesh structure as X. Now
that we have the discrete formulation, we detail the algorithm of atlas estimation. In
the following, we denote (x(1), p(1)) the forward integration of the geodesic equation
for landmarks:

ẋ(t) = KV (x(t), x(t))p(t)

ṗ(t) = −∇1 〈p(t), KV (x(t), x(t))p(t)〉
(x(0), p(0)) = (x, p).

Algorithm 3 Hypertemplate algorithm

Input: X0 (hypertemplate initialization) with vertices x0, X1, . . . , XN shapes of
the dataset with respective vertices x1, . . . xN .
Output:

arg min
p0,p1,...,pN

J(p0, p1, . . . , pN) := γ0p
T
0KV0(x

0, x0)p0+γ
N∑

i=1

pTi KV (x
i, xi)pi+

N∑

i=1

g
(
ϕp

i

(x), xi
)
.

initialization: p0 = 0, p1 = 0, . . . , pN = 0
while Convergence do

Compute (x0(1) = x, p0(1)), (x(1), pi(1))1≤i≤N through forward integration of
(1.13) (with kernel KV0 for X0 and KV for (Xi)1≤i≤N .
Compute ∇x(1)g(x(1), xi) for i = 1 . . . N .
Compute∇pi(0)g(x(1), xi) for i = 1 . . . N through backward integration of (1.14).

Compute ∇p0(0)J
g := backward integration of (1.14) with kernel KV0 starting

with ∇1J :=
∑N

i=1∇pi(0)g(x(1), xi).
Compute ∇p0J(p0, p1, . . . , pN) = γ0Kv(x0, x0)p0 +∇p0J

g.
Compute ∇piJ(p0, p1, . . . , pN) = γKv(xi, xi)pi+∇pig(x(1), xi) for i = 1, . . . , N .

p0 ← p0 − δ0∇p0J(p0)
pi ← pi − δ∇piJ(p0, p1, . . . , pN) for i = 1, . . . , N .

end while

As for registration, we use a quasi Newton Broyden Fletcher Goldfarb Shanno al-
gorithm with limited memory (L-BFGS) [Liu and Nocedal, 1989] to minimize (4.12).
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The step in the descent direction is fixed by a Wolfe line search. For the numerical
integrations, a Runge-Kutta (4,5) scheme is used (function ode45 in Matlab). The
convolution operations arising are done with parallel computing on a graphic card.
The CUDA mex files using GPU are included in the MATLAB body program. The
algorithm is run until convergence with a stopping criterion on the norm of the
successive iterations, with a tolerance of 10−6.

Remark 4.11. Other template estimations are possible. For example, we could have
minimized on the vertices of the template directly, i.e. we minimize the functional:

min
x,p1,...,pN

J(x, p1, . . . , pN) := γ

N∑

i=1

pTi KV (x
i, xi)pi +

N∑

i=1

g
(
ϕp

i

(x), xi
)
.

The gradient with respect to the vertices ∇xJ is computed through backward inte-

grations of (1.14) starting with
(
∇x(1)g

(
x(1), xi

)
, 0
)
1≤i≤N

. This procedure is also

used in the community of LDDMM. If this estimation procedure seems more di-
rect and less “initialization-dependant” than the hypertemplate setting, it still suffers
from several drawbacks. First of all, we are not able yet to prove the existence of
a minimizer in this framework. Moreover, the gradient ∇xJ is a L2-gradient and
it is possible that the evolution of the template during the minimization procedure
suffers from singularities (as folding for example). Thus, we need to regularize the
gradient (e.g. with a Gaussian kernel). All this have been studied with more details
in [Charon and Trouvé, 2013], chapter 4 and [Charlier et al., 2015a]. We have not
investigated yet this template estimation in this manuscript, but it could definitely
be a future work.

4.2.3 Curve Atlas Estimation

Atlas estimation of brain sulci: we find again the brain sulci studied in subsec-
tion 4.1.4. The database is composed of 6 brain sulci from 6 individuals (figure 4.25).
One can see in figure 4.15 that the brain sulci fit in a bow of size 120mm × 120 mm
× 80 mm. The atlas estimation is made with the hypertemplate algorithm, exposed
in subsection 4.2.2. The hypertemplate is composed of 6 sulci from another subject
that is not in the database. Note that this is not an optimal initialization since
it introduces bias of the chose subject in the template estimation. We will evoke
later other possibilities to chose the hypertemplate. We present in the following the
results for atlas estimation with normal cycles and varifolds

The hypertemplate algorithm is run with the already seen L-BFGS procedure
for the minimization, and with a geodesic shooting as explained in Algorithm 3. For
the deformation kernel, we chose a Cauchy kernel of width σV = 20 both for the
hypertemplate deformations (KV0) and for the template deformations (KV ). The
spatial kernel kp for normal cycles and varifolds is a Gaussian kernel with width
σW . The normal kernel for normal cycles is a Sobolev kernel of order 3. For the
varifolds, the kernel on the Grassmanian is chosen linear. Two runs are performed
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Figure 4.25: The database of 6 brain sulci for 6 individuals.
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for the minimization, one at coarse scale with σW = 25 and one at finer scale with
width σW = 5. Each run are ended at 1000 iterations.

The total number of points for on subject is in average 300. For normal cycles,
the total time for the atlas estimation was 20000 seconds (around 5 hours and 30
minutes, 10s/it). Note that this time can be reduced with parallel computing that
we have not implemented yet for curves. For varifolds, it was 15000 seconds (4 hours
and 10 minutes, 8.7s/it). The obtained template for normal cycles and varifolds are
shown in figure 4.26.

(a) Hypertemplate (initial-
ization of the template)

(b) Template obtained
with normal cycles

(c) Template obtained with
varifolds

Figure 4.26: Template estimation from the dataset of figure 4.25 with normal cycles and
varifolds as a data attachment term, starting with the hypertemplate on the left.The
hypertemplate corresponds to a subject that is not in the database.

In figures 4.27 and 4.28, we show the registration from the estimated template
(with normal cycles and with varifolds) to two chosen subjects, in order to illus-
trate the difference between the estimated atlas. The main difference lies in the
consideration of the branching points with normal cycles. This implies that with
normal cycles, the registration tries when possible to make a correspondence be-
tween the branches. For the metric on varifolds on the contrary, it is similar to
make a correspondence between the branches or to twist one branch to match in
the neighbourhood of a branching point. As one can observe in the middle sulci in
figures 4.27 and 4.28, even though the cost of deformation is higher, the metric on
normal cycles will enforce the registration of branching points, leading to a much
more convincing matching. Note that this atlas estimation is hard since there is not
the same number of branches in the template and in the subjects.

The template estimation could be improved by choosing an hypertemplate that
is not a real individual subject. One could imaging a synthetic hypertemplate com-
posed of segments with branching. Then we can take a close look at the deforma-
tion from the hypertemplate to the template: if one branch of the hypertemplate is
crushed during the deformation, we can remove this branch from the hypertemplate
and perform again the template estimation until a satisfactory template is found.
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4.2. Atlas Estimation with Normal Cycles

(a) Template estimated
with normal cycles

(b) Shooting to the subject
1 with normal cycles

(c) Subject 1

(d) Template estimated
with varifolds

(e) Shooting to subject 1
with varifolds

(f) Subject 1

Figure 4.27: Shooting from the template to subject 1 with normal cycles (top row) and
varifolds (bottom row). The main difference is observable is the middle sulci. The metric on
normal cycles enforce the matching of branching points and extremities and the registration
takes into account those features. On the contrary, with the metric on varifolds there is
not such enforcing and it is similar to twist the sulci instead of making a correspondence
between branches.
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(a) Estimated template
with normal cycles

(b) Shooting to subject 5
with normal cycles

(c) Subject 5

(d) Estimated template
with varifolds

(e) Shooting to subject 5
with varifolds

(f) Subject 5

Figure 4.28: Shooting from the template to subject 5 with normal cycles (top row) and
varifolds (bottom row). The main difference is observable is the middle sulci. The metric on
normal cycles enforce the matching of branching points and extremities and the registration
takes into account those features. On the contrary, with the metric on varifolds there is
not such enforcing and it is similar to twist the sulci instead of making a correspondence
between branches.
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4.2. Atlas Estimation with Normal Cycles

4.2.4 Surface Atlas Estimation

We present now some first results of atlas estimation with surfaces dataset and kernel
metric on normal cycles, with constant normal kernel.

Atlas estimation of “Venus” dataset: The first dataset, provided by Nicolas
Charon and Benjamin Charlier are 6 human-looking shapes, each shape containing
around 2500 vertices fitting in a box of size 2× 2× 3. The atlas estimation is made
with Algorithm 3 and the metric on normal cycles with constant normal kernel.
In figure 4.29, we have disposed the different subjects in orange and the initial
hypertemplate in the center, in blue. Note that this disposition is only to ease the
viewing, but the all the venus are in fact centered. In figure 4.30, we isolated the
initial hypertemplate as well as an axis grid to visualize the scale of the features.

The minimization procedure is made with a deformation kernel KV that is a sum
of 4 Gaussian kernels of decreasing size (0.8, 0.4, 0.2, 0.1). The deformation kernel of
the hypertemplate is the same as KV . The spatial kernel for the metric on normal
cycles is a Gaussian kernel of width σW . Three runs are performed, with a decreasing
size of σW : σW = 1.5, 0.8, 0.4. The two first runs can be seen as an improvement
of the initialization and it captures different scales of the shapes during the atlas
estimation. This atlas estimation has already been made with kernel metrics on
varifolds in [Charon and Trouvé, 2013], chapter 4.

Each run is stopped at 100 iterations at most. The runs ended respectively
at 100, 67 and 100 iterations, for a total time of 10812 seconds, i.e 3 hours (40.5
s/it). The results are shown in figure 4.31, figure 4.32 and figure 4.33. Figure 4.31
presents the shooting from the initial hypertemplate to the estimated template. The
result is convincing, notably the rising of left arm that is an invariant of the dataset.
figure 4.32 and figure 4.33 present two examples of registration from the template
to one subject of the dataset. One can see that the matchings are very good.
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(a) t = 0

Figure 4.29: Dataset of 6 Venus and the blue hypertemplate (the initialization of the
algorithm). Each venus contains 2500 points.

Figure 4.30: A closer look at the hypertemplate. It contains 3000 points.
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4.2. Atlas Estimation with Normal Cycles

(a) Hypertemplate (t = 0) (b) t = 0.5 (c) Template (t = 1)

Figure 4.31: Evolution of the hypertemplate’s shooting with normal cycles and constant
normal kernel as data attachment term. At time t = 1, we obtain the estimated template.

(a) t = 0 (b) t = 0.5 (c) t = 1

Figure 4.32: Shooting from the template to one subject.

(a) t = 0 (b) t = 0.5 (c) t = 1

Figure 4.33: Shooting from the template to one subject.
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Chapter 4. Registration and Atlas Estimation with Normal Cycles

Atlas estimation of a retina dataset: This second dataset is the same as sub-
section 4.1.5, provided by B. Charlier, N. Charon, and M.F. Beg. It provides more
hint on the behaviour of the metric with normal cycles. In this dataset, we recall
that the surfaces are retina layers, and that the borders (exterior or the hole in the
center) distort considerably the registration with classical metrics on shapes (cur-
rents, varifolds). We have seen with the registration problem of subsection 4.1.5
that the metric on normal cycles improves greatly the registration, resulting in a
much smoother deformation with a good matching of the borders. This observation
will be similar for atlas estimation. In this experiment, we compare the result with
the one obtained with the RKHS metric on varifolds.

We start with 6 retinas presented in figure 4.34. The hypertemplate is in blue
in the center. We have chosen another retina of the dataset that is not one of the 6
in order to reduce the bias from this choice. Again, the disposition of figure 4.34 is
only for a visualization purpose, and the data are in fact hole-centered. Moreover,
for a better viewing in this manuscript, we multiply the x-scale of the representation
by 2 (but not on the data!), which gives this more curved aspect.

(a) t = 0

Figure 4.34: Dataset of 6 retinas and a blue hypertemplate. Each shape contains 5000
points.

The minimization procedure is made with a deformation kernel KV that is a
sum of 4 Gaussian kernels of decreasing size (0.8, 0.4, 0.2, 0.1). The deformation
kernel of the hypertemplate is the same as KV . For varifolds and normal cycles, the
spatial kernel is a Gaussian kernel of width σW . Three runs are performed, with a
decreasing size of σW : σW = 1.5, 0.8, 0.4.
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4.2. Atlas Estimation with Normal Cycles

Figure 4.35: A closer look at the hypertemplate. It contains 5000 points

Each run is stopped at 100 iterations at most. For normal cycles, only the first
run was effective and ended at 100 iterations (the second and third runs only had 2
iterations before converging) for a total time of 10656 seconds, i.e 3 hours (102 s/it).
For the varifolds, only the first run was effective as well, and ended at 47 iterations,
for a total time of 14766 seconds (300 s/it, notice that this comes from the fact that
we did not parallelized the computations of the varifold metric, but theoretically the
varifold metric is less complex that the normal cycles’).

Figure 4.36 presents the shooting from the initial hypertemplate to the estimated
template for normal cycles. Notice that the borders are smoothly deformed. This
result is to compare with figure 4.37 where the border is strongly deformed, even
though it does not correspond to any invariant feature of the dataset. It does not
happen with normal cycles since the metric is sensitive to the borders. figure 4.38
and figure 4.39 present the registration from the template to one subject of the
dataset respectively with normal cycles and varifolds. The nice estimation of the
template provided by normal cycles allows for a much more convincing and regular
registration than for varifolds.

Remark 4.12. To overcome the difficulty of the border that arises with the varifold
metrics, it has been proposed to enforce the matching by adding a current or varifold
term associated with the curve ∂S of the shape S (i.e. a supplementary data at-
tachment term) (see [Lee et al., 2017a], [Charon and Trouvé, 2013], chapter 4 and
[Charlier et al., 2015a] for all the numerical considerations of the retinas atlas esti-
mation with varifolds.). It is important to notice that for normal cycles, we have not
made any supplementary assumptions, nor any numerical regularization or scaling
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of the gradient to obtain the template.

(a) Hypertemplate (t = 0) (b) t = 0.5 (c) template (t = 1)

Figure 4.36: Shooting from the hypertemplate to the estimated template with normal
cycles

(a) Hypertemplate (t = 0) (b) t = 0.5 (c) Template (t = 1)

Figure 4.37: Shooting of the estimated template with varifold

(a) t = 0 (b) t = 0.5 (c) t = 1

Figure 4.38: Shooting from the template to subject 6 (normal cycles)

Now, let consider the same dataset, but this time we add another retina that was
the result of a bad segmentation (figure 4.40). One can observe that the new retina
presents two triangles that are artefacts. We will see the influence of this subject in
the template estimation.

The same parameters were chosen for the minimization procedure for normal
cycles with constant normal kernel and for varifolds. The two first runs were stopped
at 100 iterations, and the last run had only one iteration before convergence for
a total of 201 iterations in 22188.9 sec, i.e. almost 6 hours (110 s/it). For the
varifolds, only the first run was effective, with 69 iterations (i.e. the algorithm
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(a) t = 0 (b) t = 0.5 (c) t = 1

Figure 4.39: Shooting from the template to subject 6 (varifolds)

(a) t = 0

Figure 4.40: Dataset of 7 subjects and the blue hypertemplate.
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stopped because it has converged), for a total time of 23000 seconds (334 s/it, again
the time per iteration is high compared to the complexity of the varifolds due to the
non-parallelization).

Figure 4.41 presents the shooting from the initial hypertemplate to the estimated
template for normal cycles. Again, the borders are smoothly deformed. Moreover,
one can notice the appearance of two little bumps located at the same position as
the artefacts of the new retina. Even though these artefacts are small compared to
the size of the spatial kernel, the metric on normal cycles sees them as region of
high curvature and takes it into account during the atlas estimation. This result is
to compare with the estimated template obtained with varifolds,figure 4.37, where
we observe the same behaviour as for the previous atlas estimation (figure 4.37). In
figure 4.43 we present the registration between the estimated template with normal
cycles and the new retina with artefacts. Notice how the two little bumps of the
template are matched to the two triangles. Onecan find the same registration with
varifolds in figure 4.44. As expected, the metric on varifolds is insensitive to this
artefacts and the matching does not take them into account. This shows how sensi-
tive to noise or artefacts normal cycles are. Once again, it can be an advantage or a
drawback depending on the kind of data we are working with. Any uncertainty on
the data acquisition can have a major impact on the estimation.

(a) Hypertemplate, t = 0 (b) t = 0.5 (c) Template (t = 1)

Figure 4.41: Evolution of the hypertemplate’s shooting with normal cycles constant

(a) Hypertemplate (t = 0) (b) t = 0.5 (c) Template (t = 1)

Figure 4.42: Evolution of the hypertemplate’s shooting with varifolds
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(a) t = 0 (b) t = 0.5 (c) t = 1

Figure 4.43: Shooting from the template to the subject 7 with normal cycles constant

(a) t = 0 (b) t = 0.5 (c) t = 1

Figure 4.44: Shooting from the template to the subject 7 with varifolds

4.3 Conclusion

In this chapter, we have presented several examples of registrations and atlas estima-
tions for curves and surfaces with different metrics on normal cycles and compared
these results with the one obtained with varifolds. All these experiments draw a
clear link between normal cycles and the curvature that is encoded depending on
the metric. We have seen that the registration takes into account region of high cur-
vatures as well as extremities, and that depending on the data, it allows for much
smoother deformations. This is notably the case for retinas registrations and atlas
estimation where the results are very convincing, including the borders. This is not
the case with varifolds where an important amount of energy is spent on the corners
for a result that is not physically relevant. However, this nice feature must be quali-
fied: as we have seen again on the retina dataset, normal cycles are very sensitive to
artefacts, and the slightest uncertainty on the data can have an important influence
on the registration. This was an expected limitation since we cannot hope for a
metric that is both sensitive to curvatures and extremities and insensitive to noise
and artefacts.

An important future work that we have not made yet is a statistical analysis
with the atlas estimation. In this chapter, we have provided atlas estimation for
different dataset for a showcase purpose. However, it is of interest to provide a
statistical analysis coupled with the atlas estimation for real dataset of shapes, and
to compare this analysis to the one obtained with varifolds or currents. Doing so,
we would see if the complexity of the normal cycles’ model implies an improvement
of the variability that is captured by the statistical analysis, and this would validate
the introduction of this new model. Of course, this implies to find dataset for which
the properties of registration seen in this chapter is interesting.
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We present here an overview of the main contributions of the manuscript, as well as
perspectives which would be interesting to investigate as a future work.

In this thesis, we focused on the design of a new dissimilarity metric between
shapes, using kernel metrics on normal cycles. The aim was to provide a fully coher-
ent framework that is also practicable in computational anatomy. The specifications
for such a setting are multiple: a representation of shapes which encompasses
both the continuous and the discrete case, with if possible a quantification of the
information contained in the representation; the construction of a metric that is
computable for discrete shapes and interpretable in a theoretical point of view.

Chapter 2 can be summed up with the following question: what are the properties
of the representation of shapes with normal cycles? The contributions of this chapter
are twofold. First of all, in section 2.4, we endeavour to show how to fit in a common
framework normal cycles for smooth and discrete shapes. This is not immediate
since normal cycles are defined at first for sets with positive reach. The additive
property (2.15) allows to extend the definition to sets that are unions of sets with
positive reach and an adapted decomposition of the normal bundle for meshes give an
immediate description of the normal cycle for discrete shapes. Another contribution
of this chapter is a precise overview of the curvature informations contained in a
normal cycle in section 2.5. This part relies mostly on previous works [Federer, 1959,
Zähle, 1987, Thäle, 2008], but we pushed further in this direction by introducing
subspaces of differential forms, on which the infinity norm of a normal cycle is
associated with unsigned curvatures.

To relate this work with previous ones, we can highlight section 2.6. We prove
here that the varifold µX associated with a submanifold X can be interpreted as a
projection of the normal cycle N(X). If N(X) encodes curvatures, we show that
the projection loses all these informations and that a varifold is (in a sense that is
specified in section 2.6) a “locally flattened” normal cycle. This is a first step to a
unification of the different shapes representations (currents, varifolds and normal
cycles) and it would be interesting as a future work to further investigate this link.
We will come back to this consideration in the next paragraph.

The main contribution of Chapter 3 is the introduction of kernel metrics on
normal cycles in section 3.3. These metrics allow for a dissimilarity measure between
shapes that is both mathematically sound and numerically computable. The kernel
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is chosen scalar and is a product of a spatial kernel kp and a normal kernel kn.
If the choice of the spatial kernel is similar to what have been done for currents
and varifolds, we had to choose the normal kernel. The main limitation for this
choice was the requirement of an explicit discrete metric. Since the kernel metric
involves integral over normal bundles, the computation may be intricate. For a
simple constant kernel (kn(u, v) = 1), we are able to provide explicit metric for
discrete curves and surfaces, as well as their gradient. For the Sobolev kernel on
the sphere or the linear kernel (kn(u, v) = 〈u, v〉), which are more complex, we only
have explicit metrics for discrete curves (section 3.7). Interestingly, even though
the constant and the linear kernels may seem too simple at first, the associated
metric on normal cycles still retrieve curvatures of the shapes. As it is shown in
section 3.5, in the case of surfaces, the constant kernel encodes information linked
with the mean curvature, and the linear kernel contains information linked to the
Gaussian curvature. Thus, we do not get rid of all the curvatures with such kernels,
and the complexification of the normal cycles model remains justified.

A promising avenue of research would be to link the metric on normal cycles and
the projection of normal cycles on varifolds. To what extend do we retrieve usual
metric on varifolds when projecting the metric on normal cycles? We can already
observe that for the discrete part, the planar component of the scalar product on
normal cycles can be interpreted as a varifold scalar product. It would be interesting
to pursue this observation in the continuous case and maybe to explicit the obtained
metric on varifold from the metric on normal cycles.

An application of this study could be close to the question of universality
of the kernels that have been briefly tackled in section 3.4. We know that this
property is not fulfilled with the constant or the linear normal kernel, resulting
in a pseudo-distance on Ωd−1

0 (Rd × Sd−1)′ only. However, we do not want at any
cost a real metric on Ωd−1

0 (Rd × Sd−1)′, but only that the distance on the normal
cycles associated with shapes is a real distance, i.e. if C 6= S are two shapes of
Rd, we want that ‖N(C)−N(S)‖W ′ 6= 0. This is a weaker result and we believe
that it is true for constant and linear normal kernels. A way to prove this may
be to make the most of the link between varifolds and normal cycles. Indeed it
has been shown in [Charon and Trouvé, 2013], chapter 3, that kernel metrics on
varifolds may provide metric on shapes, even when the property of universality is
not fulfilled. It may be interesting to start with the metric on normal cycles with
constant or linear normal kernel and study the projection of this metric to see if we
retrieve a well known situation with varifolds.

In Chapter 4, we used this new dissimilarity measure for shapes registrations
and atlas estimations. For the theoretical part, we proved the existence of a min-
imizer for the inexact registration problem with kernel metrics on normal cycles
theorem 4.2 and theorem 4.10. For the applicative part, we implemented the eval-
uation of the kernel metric on normal cycles for curves and surfaces, as well as the
gradient evaluation, and integrated it in the LDDMM numerical framework to pro-
vide first examples of registrations and atlas estimation (subsections 4.1.4, 4.1.5,
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4.2.3 and 4.2.4). The complexity of the normal cycles model leads to an increasing
calculation time for the computation of the metric. However, one should notice that
the complexity remains within the same order, but more operations are needed at
each step. Most of the computation time still comes from the LDDMM part (forward
and backward integrations of the geodesic equations). To reduce the computation
time, we parallelized the code, using GPU and mex files integrated on the Matlab
body program. This allows for examples of registrations and atlas estimation with
surfaces with up to 10 000 points in a reasonable time (for now, 30 minutes for a
registration and 3 hours for a template estimation of 7 subjects).

We illustrated with numerous examples the properties of a registration with
normal cycles. The first property that one can observe is that normal cycles provide
more accurate matching, even when the size of the spatial kernel is large compared
to the features to be matched. Moreover, the registration will favour the matching
of corresponding high curvature regions. We can also highlight the fact that normal
cycles take naturally into account the boundary of the shapes. This implies a good
matching of the extremities or branching points for the curves, and a good matching
of the boundary for surfaces. This implies also that normal cycles are sensitive to
topological changes, as opposed to currents or varifolds. This may be a drawback
if we have uncertainty on the data (for example a poor segmentation that creates
artificial holes). However, we believe that this feature may be of interest on some
data, as we showed for the retina dataset.

In subsection 4.2.4, we show first examples of atlas estimation. With the retina
dataset figures 4.34 and 4.40, we see that normal cycles improve drastically the
regularity of the deformations, as well as the accuracy of the matchings. And even
though for an applicative purpose, the boundary of the retina are not relevant,
we observe that varifolds provide a less regular deformation because a significant
amount of energy is spent on the corners. We hope that this illustration may be a
good indication for a future use on real medical data.

Of course, these are preliminary results. The estimated atlas had
no other objective but to show the advantages and drawbacks of nor-
mal cycles. A first step after this thesis will be to perform a statistical
analysis on the estimated atlas in the spirit of what have been done in
[Charlier et al., 2015b, Lee et al., 2017a, Durrleman et al., 2014] among oth-
ers. The idea is to use the Riemmanian framework provided by LDDMM, and to
use statistical tools on the initial momenta of the deformations. These tools may be
as simple as a Principal Component Analysis, to isolate the principal modes of the
deformations, but they can be more complex (see again the previous references).

This manuscript paves the way for further applications of normal cycles. Among
the future avenues of research we would like to highlight a few. First of all, an
obvious future work is to develop the computation of the metric in the case of
discrete surfaces for non constant kn, at least for the linear normal kernel. This
is of interest since we have already seen that the kernel metric with linear kernel
encodes Gaussian curvature information of the surfaces. A normal kernel kn(u, v) =
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1+〈u, v〉 would thus contains all the curvatures informations. However, the calculus
remains intricate and this may lead to another approach: to find interesting compact
approximation of the spherical part of a normal cycle. The approximations in the
space of normal cycles are not as obvious as they are for currents or varifolds.
Indeed, one of the requirements of an approximation of discrete shapes would be
that it converges to a continuous version when the size of the mesh goes to zero.
This is not the case for the spherical part of the normal cycles. For example, one
could think of “spherical Dirac” to approximate the integration over the spherical
part of the normal bundle. However, the spherical part above a vertex may remain
unchanged when the size of the mesh goes to zero, preventing from any convergence
result.

The question of approximation for the metric on normal cycles can be linked to
the one of jet particles [Sommer et al., 2013, Jacobs and Sommer, 2014]. In these
articles the authors develop (in the framework of LDDMM) compact higher order
representations of the deformations. For example, they introduce first-order mo-
menta whose geodesic equations involve the kernel of the RKHS V and its deriva-
tive, but also higher derivative. The interest of such representation is that it can
encode locally affine transformation compared to zero-th order momenta that only
contains local translations.

Usually, we do not encounter higher order momenta in registration algorithm
because the approximation made on the data attachment term is at order 0: it
depends only on the point of discretization xk, and the action of diffeomorphisms
is restricted to the vertices only. The order of approximation is conserved during
the geodesic shooting, making the optimal momenta a linear combination of
order 0 momenta. However, it is possible to use higher order approximation
for the data attachment, involving ϕ(xk), but also dϕ(xk) and d2ϕ(xk). With
such approximations, we naturally end up with higher order momenta. As we
have seen in subsection 2.4.4, the action of a diffeomorphism ϕ on normal cycles
involves ϕ, dϕ and d2ϕ. Thus it seems natural to consider compact second order
approximations of the metric on normal cycles. Such approximations would provide
second order momentum distributions. The increasing complexity of this model
could be counterbalanced by its higher order accuracy. This consideration definitely
needs further investigation.

Another natural extension of the framework of normal cycles is the
consideration of functional shapes. Functional shapes are geometri-
cal data with a signal information as for example functional MRI. In
[Charon and Trouvé, 2013, Charlier et al., 2015a], the authors introduce a
framework for the shape representation of this new kind of data and apply it
in [Lee et al., 2017b, Lee et al., 2017a] with retina where the signal is the thickness
of the nerve fiber layer surface. The framework developed in these article relies
on the representation of shapes with currents or varifolds. Since the theoretical
ground is similar for normal cycles, one could almost straightforwardly transfer the
geometrico-functional setting to normal cycles.
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We have not tackled an interesting aspect of the metric on normal cycles: in-
dependently of the dimensionality of the considered shapes, the associated normal
cycles live in the same space Ωd−1

0 (Rd×Sd−1)′. This could be used in application for
the registration of mixed structures. One could think for example of surfaces with
thin corner that become one dimensional. With normal cycles, this specific case is
naturally taken into account.

It can also be applied for reconstruction of surfaces of curves from incomplete
data. This problematic close to the one of volume reconstruction from slice (see
for example [Bretin et al., 2017] where the authors set up a variational framework
with a minimization of an energy associated with the volume to reconstruct an
object from slices). In our case, one could imagine for example to start with points
cloud, and to reconstruct the associated surface by matching an initial surface
(a candidate guess) to the point clouds with the registration problem seen in
Chapter 4. Of course, this depends critically on the choice of the normal kernel,
and for now the constant normal kernel is not interesting on points cloud (in fact
the associated metric vanishes). But once more complex kernels are available, this
would be an interesting line of inquiry.

We believe also that kernel metrics on normal cycles can prove useful out-
side the LDDMM framework, in the spirit of [Cohen-Steiner and Morvan, 2003,
Cohen-Steiner and Morvan, 2006, Chazal et al., 2008, Chazal et al., 2009], where
the authors study the curvature information of a smooth surface that one could
retrieve from a surface approximation using normal cycles. The advantage of our
setting is that it provides a Hilbert space W ′ where all the representation of shapes
lives, and it might be possible to obtain convergence rate of the approximation on
W ′ and retrieve information on the curvatures convergence. Of course these are only
guess for now, and we need to work further on this direction.

Lastly, and still outside the deformation analysis it would be interesting to use
with benefit the cost of connection that appears with normal cycles. In fact, in
the Hilbert space W ′, the cost of connection is quantified. Indeed, in W ′ difference
between two segments unconnected but at distance 0 and the associated connected
segment has a norm that is exactly the norm of a point. This property can be used
as a detection of topology change and one could think of classification algorithms
from the evaluations of distance inside a dataset of curves. Again, this first rough
outline deserves a study on its own.
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Appendix A

Kernel metrics on normal cycles for

discrete shapes and different normal

kernels

We derive here all the calculus for the kernel metrics in the case of discrete shapes
(curves and surfaces in R3) with different normal kernel kn: constant, linear and a
scalar spatial kernel kp. In all this appendix, we use the notations introduced in
section 3.7.

A.1 Constant kernel

Let us start with the constant kernel, kn(u, v) = 1.

A.1.1 Discrete curves

For C and S two unions of curves, we want to compute 〈N(C), N(S)〉W ′ where W
is the RKHS generated with kn(u, v) = 1.

〈N(C), N(S)〉W ′ =
〈
N(C)cyl, N(S)cyl

〉
W ′ +

〈
N(C)sph, N(S)sph

〉
W ′

Using the expression of KWN(C) obtained in (3.17) for the constant normal kernel,
we immediately see that the scalar product between two discrete curves involves only
spherical terms (indeed, KWN(C) ∈ W 1

0 ). This means that given the decomposition
of the normal bundle for unions of segments (figure A.1), only the scalar spherical
scalar product between spheres and half-spheres remains.

〈N(C), N(S)〉W ′ =
〈
N(C)sph, N(S)sph

〉
W ′

=
N∑

i=1

M∑

j=1

〈
xi ×

(
sphere−

∑
half sphere

)
, yj ×

(
sphere−

∑
half sphere

)〉
W ′
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normal kernels

Figure A.1: Decomposition of the normal bundle of a union of segments. In green, the
spherical part. For a given vertex, there is one associated sphere, and as many half spheres
as the number of adjacent edges at this vertex.

(we recall that the half spheres are negatively oriented). The calculus with constant
normal kernel are easy since it allows to decorrelate the integration over the spheres:
if S1 and S2 are spheres or half spheres, with any spatial disposition, we have:

〈x× [S1], y × [S2]〉W ′ = kp(x, y)

∫

S1

∫

S2

kn(u, v) 〈τS1
(u), τS2

(v)〉 dH 2(u)dH 2(v)

= kp(x, y)

∫

S1

∫

S2

〈u, v〉 dH 2(u)dH 2(v)

= kp(x, y)

〈∫

S1

udH 2(u),

∫

S2

vdH 2(v)

〉

and one gets ∫

S2

udH 2(u) = 0,

∫

S+
α

udH 2(u) = πα

where we recall that S+
α =

{
u ∈ S2| 〈u, α〉 ≥ 0

}
and |α| = 1 is the half sphere

spatially oriented with the vector α. Now we get for the scalar product of union of
segments with constant normal kernel:

〈N(C), N(S)〉W ′ =
〈
N(C)sph, N(S)sph

〉
W ′ =

π2

4

N∑

i=1

M∑

j=1

kp(xi, yj) 〈Ai, Bj〉 (A.1)

where Ai =
∑

k f
i
k/|f ik| is the sum of the normalized edges with xi as vertex, and

oriented outward from xi. It encompasses the case of branching points with three
or more edges with the same vertex xi.

Gradient: The computation of the gradient with respect to a vertex xi0 involves
the gradient of the kernel∇1kp(xi0 , y) and the gradient of the scalar product 〈Ai, Bj〉:
∇xi0

〈Ai, Bj〉. For the latter, if we consider fik = xk−xi the edge linking the vertices
k and i, one can compute explicitly ∇xk 〈fik/|fik|, Bj〉:
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A.1. Constant kernel

∇xk 〈fik/|fik|, Bj〉 =
1

|xk − xi|
pf⊥

ik
(Bj)

where pf⊥
ik

is the orthogonal projection on fik, namely pf⊥
ik
(Bj) = Bj −

〈Bj, fik/|fik|〉 fik/|fik|. With these expressions, it is now possible to implement the
computation of the gradient with respect to the vertices: for each vertex xk, compute
∇1kp(xk, yl) and pf⊥

ik
(Bj) for every edge fik that links xk to another vertex.

A.1.2 Discrete surfaces

Figure A.2: Decomposition of the normal bundle for two triangles with a common edge.
In this figure, the two normal bundle of the open triangles appear. Then, we add (only
once) the normal bundle of the open edge (the red cylinder and the two green half spheres).
Then we add ( only once) the normal bundle of the vertices of the edge (the two green
spheres).

For discrete surfaces, using (3.16) we see that above a regular part of the trian-
gulation C, KWN(C) ∈ W 2

1 which means that N(C) has a component in (W 2
1 )

′ only
and thus that the planar part is not involved. The scalar product of normal cycles
above vertices (i.e. the spherical scalar product) involves terms as:

kp(x, y)

∫

S1

∫

S2

kn(u, v) 〈τNC
(x, u), τNC

(y, v)〉 dH 2(u)dH 2(v)

= kp(x, y)

〈∫

S1

τNC
(x, u)︸ ︷︷ ︸

=u for the spherical part

dH 2(u),

∫

S2

τNC
(y, v)dH 2(v)

〉

= kp(x, y)

〈∫

S1

udH 2(u),

∫

S2

vdH 2(v)

〉

For the spherical part, we have already computed the scalar product with spheres
and half spheres. If we focus on portion of sphere, one can show that if
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normal kernels

S1 =

{

sθucϕu
sθusϕu
cθu



∣∣∣∣θu ∈ [0, π], ϕu ∈ [0, ϕ0]

}

is a portion of sphere, then
∫
S1
udH 2(u) = π sin

(
ϕ0/2

)


cos(ϕ0/2)
sin(ϕ0/2)

0


. Now, taking

into account the orientation, we have to compute for the spherical part:

〈
x×

(
[s.]−

∑
[h.s] +

∑
[p.s]

)
, y ×

(
[s.]−

∑
[h.s] +

∑
[p.s]

)〉
W ′

where s stands for sphere, h.s for half sphere and p.s for portion of spheres. In fact,
one can show that for a given vertex, summing the contributions of the sphere, the
half spheres (associated with the edges), and the portion of spheres (associated with
the triangles), then the spherical part vanishes for a vertex that is not in the border.
Moreover, we have the following equality:

〈
N(C)sph, N(S)sph

〉
W ′ = 〈N(∂C), N(∂S)〉W ′

thus, the spherical part is exactly the scalar product of the curves associated with
the border, scalar product that have been computed right above.

Now let us focus on the cylindrical part. As it has been said for discrete curves,
the scalar product involving a cylinder is null, and thus, only the half cylinders
remains. Consider thus the scalar product between two half cylinders. If we denote
HCyl1 = [a, b]×S⊥

b−a, HCyl2 = [c, d]×S⊥
d−c two half cylinders (where S⊥+

b−a,α =
{
u ∈

S2| 〈u, b− a〉 = 0, 〈u, α〉 ≥ 0
}

is a half circle), we compute the scalar product in W ′

between these two half cylinders. With the approximations that we have made on
normal cycles, the integration over the spatial part is replaced by a single evaluation
of the spatial kernel kp at the middle of the segment, and the integration over the
spherical part is not approximated, this leads to:

〈HCyl1, HCyl2〉W ′ =

∫

[a,b]

∫

[c,d]

∫

S⊥,+
b−a,α

∫

S⊥
d−c,β

,+

kp(x, y) 〈τHCyl1(x, u), τHCyl2(y, v)〉 dH 2(x, u)sH 2(y, v

≃ kp

(a+ b

2
,
c+ d

2

)
〈b− a, d− c〉

×
∫

S⊥,+
b−a,α

∫

S⊥
d−c,β

,+

〈
b− a
|b− a| × u,

d− c
|d− c| × v

〉
dH 1(u)dH 1(v)

≃ kp

(a+ b

2
,
c+ d

2

)
〈b− a, d− c〉

×
〈
b− a
|b− a| ×

∫

S⊥,+
b−a,α

udH 1(u),
d− c
|d− c| ×

∫

S⊥
d−c,β

,+

vdH 1(v)

〉

≃ π2

4
kp

(a+ b

2
,
c+ d

2

)
〈b− a, d− c〉

〈
b− a
|b− a| × α,

d− c
|d− c| × β

〉
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A.2. Linear kernel

In a triangle T , [a, b] corresponds to an edge and α corresponds to a unitary
vector orthogonal to [a, b], in the plane defined by the triangle and oriented in the
interior of the triangle. Finally, if we consider two triangulations T and T ′, we have:

〈N(T ), N(T ′)〉W ′ =
〈
N(T )cyl, N(T ′)cyl

〉
W ′ + 〈N(∂T ), N(∂T ′)〉W ′

=
π2

4

ne∑

i=1

me∑

j=1

kp(ci, dj) 〈fi, gj〉
〈

∑

Ti triangles
with edge fi

nTi,fi ,
∑

T ′
j triangles

with edge gj

nT ′
j ,gj

〉

+ 〈N(∂T ), N(∂T ′)〉W ′

(A.2)

where nTi,fi is the normal vector of the triangle Ti such that nTi,fi × fi is oriented
inward for the triangle T .

Gradient: The spherical part of the gradient has already been tackled for discrete
curve. For the cylindrical part, we basically need to compute the gradient of terms
that takes the form kp(ci, dj) 〈fi, gj〉 〈nT , nT ′〉.

∇xk

(
kp(ci, dj) 〈fi, gj〉 〈nT , nT ′〉

)
= ∇xk

(
kp(ci, dj)

)
〈fi, gj〉 〈nT , nT ′〉

+ kp(ci, dj)∇xk

(
〈fi, gj〉

)
〈nT , nT ′〉

+ kp(ci, dj) 〈fi, gj〉∇xk

(
〈nT , nT ′〉

)

Each term being easily computed. The only difficult part is ∇xk

(
〈nT , nT ′〉

)
. For

this, suppose that nT = (x2−x1)×(x3−x2)
|(x2−x1)×(x3−x2)| and that we want to compute ∇1nT . Using

the fact that

d
(
u 7→ u

|u|
)
(h) =

1

|u|
(
h−

〈
h,

u

|u|

〉
u

|u|
)
=

1

|u|pu⊥(h)

where pu⊥ is the orthogonal projection on u⊥, then we have using chain rules for
derivative:

∇x1nT = − 1

|(x2 − x1)× (x3 − x2)|
pn⊥

T
(h× (x3 − x2)).

A.2 Linear kernel

In this section, we consider kn(u, v) = 〈u, v〉.

A.2.1 Discrete curves

〈N(C), N(S)〉W ′ =
〈
N(C)cyl, N(S)cyl

〉
W ′ +

〈
N(C)sph, N(S)sph

〉
W ′

Let start with the spherical part:
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normal kernels

〈x× [S1], y × [S2]〉W ′ = kp(x, y)

∫

S1

∫

S2

kn(u, v) 〈τS1
(u), τS2

(v)〉 dH 2(u)dH 2(v)

= kp(x, y)

∫

S1

∫

S2

〈u, v〉2 dH 2(u)dH 2(v)

Suppose that S1 and S2 are two half spheres. With the invariance to rotation, we
can suppose that

S1 =

{

sθucϕu
sθusϕu
cθu



∣∣∣∣θu ∈ [0, π], ϕu ∈ [0, π]

}
, S2 =

{

sθvcϕv
sθvsϕv
cθv



∣∣∣∣θv ∈ [0, π], ϕv ∈ [ϕ, π+ϕ]

}

The integration is thus explicit, and one can show that

∫

S1

∫

S2

〈u, v〉2 dH 2(u)dH 2(v) =

∫ π

0

∫ π

0

∫ π

0

∫ ϕ+π

ϕ

〈

sθucϕu
sθusϕu
cθu


 ,



sθvcϕv
sθvsϕv
cθv



〉2

× sin θu sin θvdϕudϕvdθudθv

=
4π2

3

which is independent of any relative disposition of the half spheres. The same
calculations leads to:
∫

sphere

∫

sphere

〈u, v〉2 dH 2(u)dH 2(v) =
16π2

3
,

∫

half-sphere

∫

sphere

〈u, v〉2 dH 2(u)dH 2(v) =
8π2

3

And thus we obtain for the spherical part, taking into account the positive orienta-
tion of the sphere and the negative orientation of the half spheres:

〈
N(C)sph, N(S)sph

〉
W ′ =

16π2

3

N∑

k=1

M∑

l=1

kp(xk, yl)

(
1− nxk

2

)(
1− myl

2

)

Now, consider the cylindrical part. With the now usual approximations, we have:

〈
N(C)cylapprox, N(C)cylapprox

〉
W ′ =

ne∑

i=1

me∑

j=1

kp(ci, dj) 〈fi, gj〉

×
∫

S⊥
fi

∫

S⊥
gj

〈u, v〉 〈u ∧ fi/|fi|, v ∧ gj/|gj|〉 dH 1(u)dH 1(v).

and again with rotational invariance, we can suppose that fi/|fi| = (0, 1, 0) and
gj/|gj| = (− sinϕij, cosϕij, 0) where ϕij is the angle between fi and gj. This means
that
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A.2. Linear kernel

Sfi =

{

sθucϕu
sθusϕu
cθu



∣∣∣∣θu ∈ [0, π], ϕu ∈ {0, π}

}
, Sgj =

{

sθvcϕv
sθvsϕv
cθv



∣∣∣∣θv ∈ [0, π], ϕv ∈ {ϕij, π+ϕij}

}

and thus we want to compute

∫

S⊥
fi

∫

S⊥
gj

〈u, v〉 〈u ∧ fi/|fi|, v ∧ gj/|gj|〉 dH 1(u)dH 1(v)

This last expression is explicit with the parametrization of S⊥
fi

and S⊥
gj

, and one can
show by developing

∫

S⊥
fi

∫

S⊥
gj

〈u, v〉 〈u ∧ fi/|fi|, v ∧ gj/|gj|〉 dH 1(u)dH 1(v) =
π2

2
cosϕij

and if we substitute this expression in the cylindrical scalar product, we get:

〈
N(C)cylapprox, N(C)cylapprox

〉
W ′ =

π2

2

ne∑

i=1

me∑

j=1

kp(ci, dj) 〈fi, gj〉 cosϕij

=
π2

2

ne∑

i=1

me∑

j=1

kp(ci, dj)|fi||gj| cosϕ2
ij

and for the total scalar product:

〈N(C), N(S)〉W ′ =
π2

2

ne∑

i=1

me∑

j=1

kp(ci, sj)|fi||gj| cos2 ϕij

+
16π2

3

N∑

k=1

M∑

l=1

kp(xk, yl)

(
1− nxk

2

)(
1− myl

2

)

where nxk (resp. myl) is the number of segments with xk as vertex (resp. yl).

Gradient: The gradient of the spherical part is immediate since it depends only on
kp(xk, yl). For the cylindrical part, the only non immediate part is the computation
of ∇xk cosϕij. For this, we recall that cosϕij = 〈fi/|fi|, gj/|gj|〉. If we suppose
that fi = x2 − x1 and compute ∇x1 cosϕij, one gets again with the chain rules for
derivative that has already been done in Appendix A.1.1:

∇x1 cosϕij = −
1

|x2 − x1|
pf⊥i (gj/|gj|).
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normal kernels

A.2.2 Discrete surfaces

With (3.19), only the spherical and planar part are involved. For the planar part,
an immediate computation shows that the planar scalar product is exactly the one
obtained with the varifold kernel metric with the linear kernel on Grassmanian,
[Charon and Trouvé, 2013]:

〈
N(τ)pln, N(τ ′)pln

〉
W ′ = 4

N∑

i=1

M∑

j=1

kp(bi, b
′
j)
∣∣ATi

∣∣∣∣AT ′
j

∣∣ 〈nTi , nTj
〉2
.

However, the computation of the spherical part is more involved. The one in-
volving spheres and half spheres have already been computed in Appendix A.2.1.
Consider in full generality the scalar product between two portion of spheres S1 and
S2, located at vertices x and y. Du to rotational invariance, we can suppose that

S1 =

{

sθucϕu
sθusϕu
cθu



∣∣∣∣θu ∈ [0, π], ϕu ∈ [ϕ0, ϕ1]

}

〈x× [S1], y × [S2]〉W ′ = kp(x, y)

∫

S1

∫

S2

〈u, v〉2 dH 2(u)dH 2(v)

= kp(x, y)

∫

S2

∫

S1

(
sθusθvc(ϕu − ϕv) + cθucθv

)2
sθusθvdθudθvdϕudϕv

= kp(x, y)

∫

S1

∫

S2

[
s3θus

3θvc(ϕu − ϕv)2

+ sθusθvc
2θuc

2θv + 2s2θus
2θvcθucθ

× c(ϕu − ϕv)
]
dθudθvdϕudϕv

Now we use the following equalities:
∫ π

0

sin3 θdθ = 4/3,

∫ π

0

sin2 θ cos θdθ = 0,

∫ π

0

sin θ cos2 θdθ = 2/3,

and integrate first with respect to θu:

〈x× [S1], y × [S2]〉W ′ = 4/3kp(x, y)

∫ ϕ1+ϕ0

ϕ0

∫

S2

s3θvc(ϕu − ϕv)2

+ 2/3kp(x, y)

∫ ϕ1+ϕ0

ϕ0

∫

S2

sθvc
2θvdθudθvdϕudϕv

then with respect to ϕu:

〈x× [S1], y × [S2]〉W ′ = 4/3kp(x, y)

∫

S2

s3θv1/4
[
sin(2(ϕ1 + ϕ0 − ϕv)− sin(2(ϕ0 − ϕv)) + ϕ1

]
dθvdϕv

+ 2/3kp(x, y)ϕ1

∫

S2

sθvc
2θvdθudθvdϕudϕv
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A.2. Linear kernel

Since sin(2(ϕ1 + ϕ0 − ϕv) − sin(2(ϕ0 − ϕv) = 2 sinϕ1 cos
(
2(ϕ0 − ϕv) + ϕ1

)
, we

finally obtain:

∫

S1

∫

S2

〈u, v〉2 dH 2(u)dH 2(v) = 4/3ϕ1ϕ2+4/3 sinϕ1

∫

S2

sin3(θu) cos
(
2(ϕv−ϕ0−ϕ1)

)
dθvdϕv.

One should notice that this situation encompasses the case of sphere and half
sphere that has already been tackled for discrete curves. In this case, sinϕ1 = 0 and
we retrieve the product of the area of the considered spheres. For the second term,
we cannot use any more assumptions on the position for S2. For now, we are not
able to compute this term, and we will consider a truncated version of this integral
by neglecting this last term. Considering now two triangulated meshes T and T ′,
we get:

〈N(T )approx, N(T ′)approx〉W ′,trunc = 4
N∑

i=1

M∑

j=1

kp(bi, b
′
j)|ATi ||AT ′

j
|
〈
nTi , nT ′

j

〉2
+

1

3

Nv∑

k=1

Mv∑

j=1

kp(xk, yl)

×
[
π(4− 2nxk + 2Nxk)− 2

Nxk∑

i=1

ϕi,xk

][
π(4− 2myl + 2Myl)− 2

Myl∑

j=1

ϕj,yl

]

where nxk is the number of edges with vertex xk and Nxk is the number of triangles
with vertex xk, and ϕi,xk is the angle at vertex xk of the triangle i.

Gradient: We want to compute ∇xk 〈N(T )approx, N(T ′)approx〉W ′,trunc. This gra-
dient involves quantities as ∇1kp(x, y) that are easy to compute and implement. In

the following we focus on the computation of ∇xk |ATi ||AT ′
j
|
〈
nTi , nT ′

j

〉2
and ∇xkϕi,xl .

We can suppose that T has x1, x2, x3 for vertices and that nT = (x2−x1)×(x3−x2)
|(x2−x1)×(x3−x2)| .

Noticing that |AT | 〈nT , nT ′〉2 =
〈

(x2−x1)×(x3−x2)√
|(x2−x1)×(x3−x2)|

, nT ′

〉2

, we have

∇x1

〈
(x2 − x1)× (x3 − x2)√
|(x2 − x1)× (x3 − x2)|

, nT ′

〉2

= 2

〈
(x2 − x1)× (x3 − x2)√
|(x2 − x1)× (x3 − x2)|

, nT ′

〉

×∇x1

(〈
(x2 − x1)× (x3 − x2)√
|(x2 − x1)× (x3 − x2)|

, nT ′

〉)

Since

d

(
u 7→ u√

|u|

)
(h) =

1√
|u|
(
h− 1

2

〈
u

|u| , h
〉

u

|u|
)
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then, using the chains rule for the derivative, we get:

∇x1

〈
(x2 − x1)× (x3 − x2)√
|(x2 − x1)× (x3 − x2)|

, nT ′

〉
= − 1√

|(x2 − x1)× (x3 − x2)|

×
(
nT ′ × (x3 − x2)−

1

2
〈nT ′ × (x3 − x2), nT 〉nT

)

For ∇x1ϕi,xl , we consider the triangle T with vertices x1, x2, x3 and e12 = x2−x1
|x2−x1| ,

e13 = x3−x1
|x3−x1| . We recall that ϕT,1 = arccos

(
〈e12, e13〉

)
. Using the chains rule for

derivative, we obtain:

∇x2ϕT,1 =
−1√

1− 〈e12, e13〉2
1

|x2 − x1|
pe⊥

12
(e13)

=
−1

| sinϕT,1|
sinϕT,1

e⊥12
|x2 − x1|

=
−e⊥12
|x2 − x1|

where e⊥12 is the normalized orthogonal vector of e12 in the plane of the triangle such
that

〈
e⊥12, e13

〉
≥ 0. With similar notations, we have

∇x3ϕT,1 =
−e⊥13
|x3 − x1|

and since ϕT,1 + ϕT,2 + ϕT,3 = π, ∇x1ϕT,1 = −∇x2ϕT,1 −∇x3ϕT,1.
This gives all the necessary quantities to implement the gradient

∇xk 〈N(T )approx, N(T ′)approx〉W ′,trunc.

A.3 Sobolev kernel

The computation of the metric on normal cycles for discrete curves and Sobolev
normal kernel is postponed to the next two appendices.
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Appendix B

Spherical Harmonics

The sphericals harmonics are eigenvectors of the spherical Laplacian. In the same
spirit as Fourier expansion, spherical harmonics are useful to expand a function
on the sphere since they form an orthonormal basis of the Hilbert space L2(S2).
This basis encodes spatial frequencies on the latitude and the longitude : the first
spherical harmonics describe low spatial variation on the sphere, and the more we
expand a function on this basis, the more details about the spatial frequencies of
this function we get.

Spherical harmonics will be useful in this paper to explicit the normal kernel
: since the RKHS we chose on the sphere is a Sobolev Hilbert space, it can be
expressed as the RKHS defined by an operator LV = (Id − ∆)s, and the normal
kernel will have an explicit expansion.

A scalar function on the unit sphere can be seen as a function of two vari-
ables θ, ϕ, where θ ∈ [0, π] is the polar angle and ϕ ∈ [0, 2π] the azimuthal angle
(see B.1)

There are 2l + 1 spherical harmonics of order l, denoted (Yl,m)−l≤m≤l and satis-
fying the equations

Figure B.1: Spherical coordinates, ϕ ∈ [0, 2π] and θ ∈ [0, π]
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−∆S2Yl,m(θ, ϕ) = l(l + 1)Yl,m(θ, ϕ)

−∂Yl,m
∂ϕ

= mYl,m(θ, ϕ)
(B.1)

The (Yl,m) l≥0
−l≤m≤l

form an orthonormal basis of L2(S2), endowed with its usual

scalar product. Thus, any f ∈ L2(S2) can be written

f =
∑

l≥0

l∑

m=−l
αl,mYl,m

where the limit is in L2. We have explicit expression of the spherical harmonics with
the Legendre polynomials . We will rather use the real spherical harmonics :





Yl0(θ, ϕ) =

√
2l + 1

4π
Pl(cos θ)

Y c
lm(θ, ϕ) =

√
2l + 1

2π

(l −m)!

(l +m)!
Pm
l (cos θ) cos(mϕ)

Y s
lm(θ, ϕ) =

√
2l + 1

2π

(l −m)!

(l +m)!
Pm
l (cos θ) sin(mϕ)

(B.2)

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l

=
∑

l
2
≤k≤l

(−1)l−k (2k − 1)!!

(l − k)!(2k − l)!2l−kx
2k−l

and

Pm
l (x) = (−1)m(1− x2)m/2 d

m

dxm
Pl(x)

= (−1)l+m(1− x2)m/2
∑

m+l
2

≤k≤l

(−1)k (2k − 1)!!

(l − k)!(2k − (m+ l))!2l−k
x2k−(m+l)

with (2n+ 1)!! = 1 ∗ 3 ∗ · · · ∗ (2n+ 1) et (2n)!! = 2 ∗ 4 ∗ · · · ∗ 2n.
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C.1 Some Notations

akl :=

∫ π

0

sink θ cosl θdθ =
l − 1

k + 1
ak+2,l−2

We get obviously with induction :

akl =





0 if l is odd

2(k − 1)!!(l − 1)!!(k + l − 1)!!

(k + l)!
if l is even and k odd

(l − 1)!!(k − 1)!!

(k + l − 1)!!

(k + l)!

(k + l)!!2
π if k, l are even

With these notations, we have :

Dl,0,i,j =

√
2l + 1

4π

∫ π

0

Pl(cos θ) sin
i θ cosj θdθ

=

√
2l + 1

4π

∑

l/2≤k≤l
(−1)l−k (2k − 1)!!

(l − k)!(2k − l)!2l−k ai,2k−l+j
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et

Dl,m,i,j =

√
2l + 1

2π

(l −m)!

(l +m)!

∫ π

0

Plm(cos θ) sin
i θ cosj θdθ

=

√
2l + 1

2π

(l −m)!

(l +m)!

×
∑

m+l
2

≤k≤l

(−1)k+l+m(2k − 1)!!

(l − k)!(2k − (m+ l))!2l−k

∫ π

0

sinm+i θ cos2k−m−l+j θdθ

=

√
2l + 1

2π

(l −m)!

(l +m)!

∑

m+l
2

≤k≤l

(−1)k+l+m(2k − 1)!!

(l − k)!(2k − (m+ l))!2l−k
am+i,2k−m−l+j

(C.1)

C.2 Computing the scalar product between cylin-

drical parts 3.24

We compute here the approximate scalar product between the cylindrical parts of
two segments, C1 and S1. C1 = [c0, c1] and S1 = [s0, s1]. We use the same notations
as in 2.4.3 If we denote α = c1−c0

‖c1−c0‖ and β = s1−s0
‖s1−s0‖ (notice that for every x ∈ C1,

y ∈ S1, τC1
(x) = α and τS1

(y) = β) we have :

〈
N(C1)

cyl
approx, N(S1)

cyl
approx

〉
W ′ =

〈
δ c0+c1

2
,α⊥ , δ s0+s1

2
,β⊥

〉
W ′

and we can sum up the scalar product :

〈
N(C1)

cyl
approx, N(S1)

cyl
approx

〉
=

{
kp

(
c0 + c1

2
,
s0 + s1

2

)
〈c1 − c0, s1 − s0〉

}

×
{∫

S⊥
α

∫

S⊥
β

kn(u, v)
〈
τS⊥

α
(u), τS⊥

β
(v)
〉
dH1(u)dH1(v)

}

(C.2)
The first factor necessitate only the evaluation of the point kernel at the middle of
the segments. The second factor is more involved : we will use the expansion on
spherical harmonics of the normal kernel developed in ??.

A first and very important remark is the future use of the invariance of the
normal kernel under a rotation. This means that, if u, v ∈ S2, kn(u, v) depends
only of the relative position of u and v. And by invariance of the kernel, we can
suppose that α = (1, 0, 0) and β = (cosϕ, sinϕ, 0) where ϕ ∈ [0, π] is the unoriented
angle between α and β (the notations were defined in B.1). We will now formulate
the integral with the parametrization of the sphere (ϕ, θ). One should be cautious
that the tangent vector τC(x) should have a coherent orientation with α and u, i.e.

τS⊥
α
(u) = −α∧u, with u =



sin θu cosϕu
sin θu sinϕu

cos θu


, et τS⊥

β
(v) = −β∧v, avec β =



cosϕv
sinϕv
0


.
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u should describe all S⊥
α , which means ϕu = ±π

2
, θu ∈ [0, π] and v should describe

all S⊥
β , which means ϕv = ±π

2
+ ϕ, θv ∈ [0, π]. Then, we get

〈
N(C1)

cyl
approx, N(S1)

cyl
approx

〉
W ′ = kp

(
c0 + c1

2
,
s0 + s1

2

)
〈c1 − c0, s1 − s0〉

∑

ϕu=±π
2

∑

ϕv

=ϕ±π
2

∫ π

0

∫ π

0

kn(u, v)(cosϕ cos θv cos θu + sin θu sinϕu sin θv sin(ϕv − ϕ))dθudθv

(C.3)
Developing kn in spherical harmonics and regrouping the terms gets :

〈
N(C1)

cyl
approx, N(S1)

cyl
approx

〉
W ′ = kp

(
c0 + c1

2
,
s0 + s1

2

)
〈c1 − c0, s1 − s0〉

∑

ϕu=±π
2

∑

ϕv

=ϕ±π
2

∑

l≥0

1

λl

{∫ π

0

Yl0(x) cos θudθu

∫ π

0

Yl0(y) cos θvdθv cosϕ

+

∫ π

0

Yl0(x) sin θudθu

∫ π

0

Yl0(y) sin θvdθv sinϕu sin(ϕv − ϕ)

+
l∑

m=1

∫ π

0

Y c
lm(x) cos θudθu

∫ π

0

Y c
lm(y) cos θvdθv cosϕ

+

∫ π

0

Y c
lm(x) sin θudθu

∫ π

0

Y c
lm(y) sin θvdθv sinϕu sin(ϕv − ϕ)

+
l∑

m=1

∫ π

0

Y s
lm(x) cos θudθu

∫ π

0

Y s
lm(y) cos θvdθv cosϕ

+

∫ π

0

Y s
lm(x) sin θudθu

∫ π

0

Y s
lm(y) sin θvdθv sinϕu sin(ϕv − ϕ)

}

Using the notations of C.1, we get :
〈
N(C1)

cyl
approx, N(S1)

cyl
approx

〉
W ′ = kp

(
c0 + c1

2
,
s0 + s1

2

)
〈c1 − c0, s1 − s0〉

∑

ϕu=±π
2

∑

ϕv

=ϕ±π
2

∑

l≥0

1

λl

{
D2
l,0,0,1 cosϕ+D2

l,0,1,0 sinϕu sin(ϕv − ϕ)

+
l∑

m=1

D2
l,m,0,1 cosϕ cos(m(ϕu − ϕv))

+
l∑

m=1

D2
l,m,1,0 cos(m(ϕu − ϕv)) sinϕu sin(ϕv − ϕ)

}

Since
∑

ϕu∈{±π
2
}

∑

ϕv∈{ϕ±π
2
}
cosϕ cos(m(ϕu − ϕv)) =

{
0 if m odd
4 cosϕ cos(mϕ) if m even
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and

∑

ϕu∈{±π
2
}

∑

ϕv∈{ϕ±π
2
}
sinϕu sin(ϕv − ϕ) cos(m(ϕu − ϕv)) =

{
0 if m even
4 cos(mϕ) if m odd

We gather the terms and get

〈
N(C1)

cyl
approx, N(S1)

cyl
approx

〉
W ′ = kp

(
c0 + c1

2
,
s0 + s1

2

)
〈c1 − c0, s1 − s0〉

×
∑

l≥0

1

λl
{(4D2

l,0,0,1 + 2D2
l,2,0,1 + 4D2

l,1,1,0) cosϕ

+
l∑

m=3
m odd

[
4D2

l,m,1,0 + 2D2
l,m−1,0,1 + 2D2

l,m+1,0,1

]
cos(mϕ)}

Interverting the summation symbols, we obtain

〈
N(C1)

cyl
approx, N(S1)

cyl
approx

〉
W ′ = kp

(
c0 + c1

2
,
s0 + s1

2

)

× 〈c1 − c0, s1 − s0〉
∑

m≥0

am cos(mϕ)
(C.4)

with 



a1 =
∑

l≥0

1

λl
(4D2

l,0,0,1 + 2D2
l,2,0,1 + 4D2

l,1,1,0)

a2m−1 =
∑

l≥2m−1

1

λl
(4D2

l,2m−1,1,0 + 2D2
l,2m−2,0,1 + 2D2

l,2m,0,1)

a2m = 0

C.3 Computing the scalar product between the

spherical parts

This computation is somehow similar to the previous one. However, one should be
cautious at the different terms involved in the computation. As seen in ??, there are
different objects in the spherical scalar product : the half sphere, associated with
the extremities of the segments, and the sphere, associated with the vertices. Thus
the scalar product involves cross term. We begin with the scalar product between
two spheres, i.e. the normal cycles associated with isolated vertices a and b. One
should be cautious when parametrizing the integral, as the volume element on the
sphere is non trivial.

〈N({a}), N({b})〉W ′ =kp(a, b)

∫ 2π

0

∫ π

0{∫ 2π

0

∫ π

0

kn(u, v)(sin θu sin θv cos(ϕu − ϕv) + cos θu cos θv) sin θvdϕvdθv

}
sin θudϕudθu
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With an expansion on spherical harmonics of kn :

〈N({a}), N({b})〉W ′ = kp(a, b)

∫ 2π

0

∫ π

0

{∫ 2π

0

∫ π

0

∑

l≥0

1

λl

(
Yl0(x)Yl0(y)

+
l∑

m=1

Y c
lm(x)Y

c
lm(y) + Y s

lm(x)Y
s
lm(y)

)

×
(
sin θu sin θv cos(ϕu − ϕv) + cos θu cos θv

)
sin θvdθvdϕv

}
sin θudθudϕu

= kp(a, b)
∑

l≥0

1

λl

(
4π2D2

l,0,1,1

+

∫ 2π

0

∫ π

0

Y c
l,1(x) sin

2 θudθu

∫ 2π

0

∫ π

0

Y c
l,1(y) sin

2 θv cos(ϕu − ϕv)dϕudθvdϕv

+

∫ 2π

0

∫ π

0

Y c
l,1(x) sin θu cos θudθu

∫ 2π

0

∫ π

0

Y c
l,1(y) sin θv cos θvdϕudθvdϕv

︸ ︷︷ ︸
=0

+

∫ 2π

0

∫ π

0

Y s
l,1(x) sin

2 θudθu

∫ 2π

0

∫ π

0

Y s
l,1(y) sin

2 θv cos(ϕu − ϕv)dϕudθvdϕv

+

∫ 2π

0

∫ π

0

Y s
l,1(x) sin θu cos θudθu

∫ 2π

0

∫ π

0

Y s
l,1(y) sin θv cos θvdϕudθvdϕv

︸ ︷︷ ︸
=0

)

The integral of the variables ϕu et ϕv cancels all the other terms:

∫ 2π

0

∫ 2π

0

cos(mϕu) cos(mϕv) cos(ϕu − ϕv)dϕudϕv = 0, ∀m ≥ 2

and for m = 1,

∫ 2π

0

∫ 2π

0

cos(ϕu) cos(ϕv) cos(ϕu − ϕv)dϕudϕv = π

∫ 2π

0

cos2 ϕvdϕv = π2

=

∫ 2π

0

∫ 2π

0

sin(ϕu) sin(ϕv) cos(ϕu − ϕv)dϕudϕv

With the same calculus as in C.2 we get :

〈N({a}), N({b})〉W ′ = kp(a, b)
∑

l≥0

1

λl

(
4π2D2

l,0,1,1 + 2π2D2
l,1,2,0

)
(C.5)

The scalar product between a half-sphere S+
α at point a, and a sphere follows the

exact same calculus and we get :

〈
[{a} × S+

α ], N({b})
〉
W ′ = kp(a, b)

∑

l≥0

π

λl

(
2πD2

l,0,1,1 + πD2
l,1,2,0

)
(C.6)
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For the scalar product between two half spheres, S+
α and S+

β at point a and b :
〈
[{a} × S+

α ], [{b} × S+
β ]
〉
W ′

= kp(a, b)I(α, β)

where

I(α, β) =

∫ π

0

∫ π
2

−π
2

{∫ π

0

∫ ϕ+π
2

ϕ−π
2

kn(u, v)(sin θu sin θv cos(ϕu − ϕv)

+ cos θu cos θv) sin θvdϕvdθv
}
sin θudϕudθu

Again, with an expansion on spherical harmonics :

I(α, β) =
∑

l≥0

1

λl

∫ π
2

−π
2

∫ π

0

∫ ϕ+π
2

ϕ−π
2

∫ π

0

(
Yl0(x)Yl0(y) +

l∑

m=1

Ylm(x)Ylm(y)
)

[sin θu sin θv cos(ϕu − ϕv) + cos θu cos θv] sin θv sin θudθvdϕvdθudϕu

Integration on θu and θv gets (with notations of C.1) :

I(α, β) =
∑

l≥0

1

λl

{
D2
l,0,2,0

∫ π
2

−π
2

∫ ϕ+π
2

ϕ−π
2

cos(ϕu − ϕv)dϕvdϕu
︸ ︷︷ ︸

=4 cosϕ

+π2D2
l,0,1,1

+
l∑

m=1

D2
l,m,1,1

∫ π
2

−π
2

∫ ϕ+π
2

ϕ−π
2

(
cos(mϕu) cos(mϕv) + sin(mϕu) sin(mϕv)

)
dϕvdϕu

+
l∑

m=1

D2
l,m,2,0

∫ π
2

−π
2

∫ ϕ+π
2

ϕ−π
2

(
cos(mϕu) cos(mϕv) + sin(mϕu) sin(mϕv)

)

cos(ϕu − ϕv)dϕvdϕu
}

I(α, β) =
∑

l≥0

1

λl




4D2

l,0,2,0 cosϕ+ π2D2
l,0,1,1 +

π2

2
D2
l,1,2,0 +

l∑

m=1
m odd

4D2
l,m,1,1

m2
cos(mϕ)

+
l∑

m=1
m even

D2
l,m,2,0

[
2

(m− 1)2
cos((m− 1)ϕ) +

2

(m+ 1)2
cos((m+ 1)ϕ)

]




We can write :

I(α, β) =
∑

l≥0

1

λl

l∑

m=0

al,m cos(mϕ)

=
∑

m≥0

(
∑

l≥m
al,m

)
cos(mϕ)
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Normal Cycles

So 〈
[{a} × S+

α ], [{b} × S+
β ]
〉
W ′

= kp(a, b)
∑

m≥0

bm cos(mϕ) (C.7)

where bm =
∑

l≥m al,m with





b0 =
∑

l≥0

π2D2
l,0,1,1

λl
+
∑

l≥1

π2

2λl
D2
l,1,2,0

b1 =
∑

l≥0

4D2
l+1,1,1,1

λl+1

+
4D2

l,0,2,0

λl
+

2D2
l+2,2,2,0

λl+2

bm =
1

m2

∑

l≥m

4D2
l,m,1,1

λl
+

2D2
l−1,m−1,2,0

λl−1

+
2D2

l+1,m+1,2,0

λl+1

if m odd ,m > 1

bm = 0 if m even ,m > 0

C.4 Computing the Gradient of the Norm Associ-

ated with a Kernel Metric on Normal Cycles

Here, we compute in the discrete case the gradient of the cylindrical part of the
kernel metric on normal cycles.

Acyl(C1, C2) :=
∥∥N(C1)

cyl −N(C2)
cyl
∥∥2

=
∥∥N(C1)

cyl
∥∥2 +

∥∥N(C2)
cyl
∥∥2 − 2

〈
N(C1)

cyl, N(C2)
cyl
〉

If we keep the same notations as in the previous appendixes, with

θij = arccos

(〈
fi
|fi|

,
fj
|fj|

〉)

, we have (by composing the differentiation) :

∂xkA
cyl =

n∑

i=1

∂piA
cyl ◦ ∂xkpi + ∂x

f1
i

Acyl ◦ ∂xkxf1i + ∂x
f2
i

Acyl ◦ ∂xkxf2i

with

∂piA
cyl =

n∑

j=1

(∂1kp(pi, pj) + ∂2kp(pj, pi)) 〈fi, fj〉
∑

m≥0

am cos(mθij)

− 2
m∑

j=1

∂1kp(pi, qj) 〈fi, gj〉
∑

m≥0

am cos(mϕij)
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∂f2i A
cyl = 2

(
n∑

j=1

kp(pi, pj)
∑

m≥0

am cos(mθij)fj −
m∑

j=1

kp(pi, qj)
∑

m≥0

am cos(mϕij)gj

)

+ 2

(
n∑

j=1

kp(pi, pj) 〈fi, fj〉
∑

m≥0

δi 6=j
m sin(mθij)

| sin(θij)|
1

|fj|

(
fj
|fi|
−
〈
fi
|fi|

,
fj
|fi|

〉
fi
|fi|

)

−
m∑

j=1

kp(pi, qj) 〈fi, gj〉
∑

m≥0

am
m sin(mϕij)

| sin(ϕij)|
1

|gj|

(
gj
|fi|
−
〈
fi
|fi|

,
gj
|fi|

〉
fi
|fi|

))

here, we use :

∂f2i cos(mϕij) =
m sin(mϕij)

| sin(ϕij)|
∇f2i

〈
fi
|fi|

,
gj
|gj|

〉

=
m sin(mϕij)

| sin(ϕij)|
1

|fi|

(
gj
|gj|
−
〈
fi
|fi|

,
gj
|gj|

〉
fi
|fi|

)

=
m sin(mϕij)

| sin(ϕij)|
1

|fi|
pf⊥i

gj
|gj|

with pf⊥i is the orthogonal projection on f⊥
i , and





∂xkpi =
1

2

(
δ{k=f1i } + δ{k=f2i }

)
Id

∂xkxf1i = δ{k=f1i }Id

Then, we get for the gradient of Acyl :

∇Acyl((xk)1≤k≤N) =
[

n∑

i=1

(
n∑

j=1

(∇1kp(pi, pj) +∇2kp(pj, pi)) 〈fi, fj〉
∑

m≥0

αm cos(mθij)

−2
m∑

j=1

∇1kp(pi, qj) 〈fi, gj〉
∑

m≥0

am cos(mϕij)

)
1

2
(δ{k=f1i } + δ{k=f2i })

+ 2
n∑

i=1

(
n∑

j=1

kp(pi, pj)
∑

m≥0

am cos(mθij)fj −
m∑

j=1

kp(pi, qj)
∑

m≥0

am cos(mϕij)gj

)

× (δ{k=f2i } − δ{k=f1i })

+ 2
n∑

i=1

(
n∑

j=1

kp(pi, pj) 〈fi, fj〉
∑

m≥0

δi 6=jam
m sin(mθij)

| sin(θij)|
1

|fi|
pf⊥i

fj
|fj|

−
m∑

j=1

kp(pi, qj) 〈fi, gj〉
∑

m≥0

am
m sin(mϕij)

| sin(ϕij)|
1

|fi|
pf⊥i

gj
|gj|

)

× (δ{k=f2i } − δ{k=f1i })
]

1≤k≤N

One can check that ∇Acyl((xk)1≤k≤N) ∈ (R3)N
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With the same type of calculus, that we do not detail here, we get also the
gradient for the spherical part :

∇Asph((xk)1≤k≤N) =
(

N∑

l=1

(∇1kp(xk, xl) +∇2kp(xl, xk))

[(
1− nxk + nxl

2

)
K

+
n∑

i=1

m∑

j=1

(δ{k=f1i } − δ{k=f2i })(δ{l=f1j } − δ{l=f2j })
∑

m≥0

bm cos(mθij)

]

− 2
M∑

l=1

∇1kp(xk, yl)

[(
1− nxk + nyl

2

)
K

+
n∑

i=1

m∑

j=1

(δ{k=f1i } − δ{k=f2i })(δ{l=g1j } − δ{l=g2j })
∑

m≥0

bm cos(mϕij)

]

+ 2
∑

s vertex
linked to k

N∑

l=1

kp(xs, xl)
n∑

i=1

m∑

j=1

(2δk=s − 1)(δ{l=f2j } − δ{l=f1j })(δ{s=f1i } + δ{s=f2i })

×
∑

m≥1

bm
m sin(mθij)

| sin(θij)|
1

|fi|
pf⊥i

gj
|gj|

− 2
∑

s vertex
linked to k

M∑

l=1

kp(xs, yl)
n∑

i=1

m∑

j=1
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