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l'opportunité d'exposer mon travail

s'il existait vraiment. À force d'oublier, je m'invente parfois une mémoire.

Résumé : Cette thèse s'intéresse à la topologie des lissages des singularités non-isolées de sufaces complexes. La question est celle de la description de la topologie de la variété, appelée fibre de Milnor, qui survient lors de ce procédé de lissage. Devant la difficulté de décrire la totalité de cette topologie, beaucoup de recherches se sont concentrées sur le bord de la fibre de Milnor. Dans le cas des singularités isolées, il est connu depuis les travaux de [START_REF] Mumford | The Topology of Normal Singularities of an Algebraic Surface and a Criterion for Simplicity[END_REF], que ce bord est une variété graphée, isomorphe au bord de la singularité.

Différents résultats (Michel & Pichon 2003[START_REF] Steenbrink | Motivic Milnor Fibre for Nondegenerate Function Germs on Toric Singularities[END_REF], Némethi & Szilárd 2012) ont par la suite prouvé que dans le cas des singularités réduites non-isolées de surfaces, si l'espace total du lissage est lui-même lisse, le bord de la fibre de Milnor est encore une variété graphée. Fernández de Bobadilla & Menegon-Neto (2014) ont quant à eux élargi le contexte, considérant le cas d'une surface non réduite dans un espace total à singularité isolée. Dans ce travail, on poursuit l'extension de ce résultat à un plus large contexte, autorisant l'espace total du lissage à présenter des singularités non-isolées, tout en imposant à la surface d'être réduite. Notre preuve s'inspire de celle de Némethi et Szilard, permettant comme chez eux de produire une méthode pour le calcul du bord de la fibre de Milnor. Ceci rend praticable le calcul effectif d'une grande quantité d'exemples, représentant un progrès dans la quête de la compréhension des variétés pouvant apparaître comme bords de fibres de Milnor. Nous appliquons en particulier la méthode aux singularités Newton-non-dégénérées définies sur des germes toriques tridimensionnels quelconques. Nous généralisons de cette manière un théorème de [START_REF] Oka | On the Resolution of the Hypersurface Singularities[END_REF], en exprimant le bord de la fibre de Milnor en termes du polyèdre de Newton de la singularité.

Abstract: This thesis is dedicated to the study of the topology of smoothings of nonisolated singularities of complex surfaces. The question is to describe the topology of the manifold, called Milnor fiber, which appears during this process of smoothing. Considering the great difficulty of a description of the whole of this topology, many researches have focused on the study of the boundary of the Milnor fiber. In the case of isolated singularities, it is known since the work of [START_REF] Mumford | The Topology of Normal Singularities of an Algebraic Surface and a Criterion for Simplicity[END_REF] that this boundary is a graph manifold, isomorphic to the link of the singularity.

Different results (Michel & Pichon 2003[START_REF] Steenbrink | Motivic Milnor Fibre for Nondegenerate Function Germs on Toric Singularities[END_REF], Némethi & Szilárd 2012) have then proved that, in the case of reduced non-isolated singularities of surfaces, the boundary of the Milnor fiber is again a graph manifold, while restraining to the case of a smooth total space of smoothing. Fernández de Bobadilla & Menegon-Neto (2014) have widened the context, considering non-reduced surfaces, and allowing the total space to have an isolated singularity. In this work, we pursue the extension of this result to a larger context, allowing the total space to present non-isolated singularities, while restraining ourselves to the study of reduced surface singularities. Our proof is inspired by the one of Némethi and Szilard, and allows us furthermore to provide a method for the computation of the boundary of the Milnor fiber. This makes possible the actual computation of a large number of examples, representing a step forward in the quest for the comprehension of the manifolds that can actually appear as boundaries of Milnor fibers.

We apply in particular the method to Newton non-degenerate singularities defined on 3-dimensional toric germs. This is a generalization of a theorem of [START_REF] Oka | On the Resolution of the Hypersurface Singularities[END_REF], expressing the boundary of the Milnor fiber in terms of the Newton polyhedron of the singularity.

Chapter 1

Introduction

Version française

L'étude des fibres de Milnor des fonctions holomorphes, débutée dans la seconde moitié du 20ème siècle, a donné lieu a une riche interaction entre l'algèbre et la topologie. Esquissons-en ici les principaux aspects.

John Milnor a proposé dans [START_REF] Milnor | On Manifolds Homeomorphic to the 7-sphere[END_REF]1956] les premiers exemples de sphères exotiques, c'est-à-dire de variétés lisses homéomorphes mais non difféomorphes à la sphère de dimension n, dans le cas n = 7. De telles variétés présentaient un intérêt important pour les topologues. Milnor et Kervaire ont poursuivi leur étude dans [START_REF] Milnor | Sommes de Variétés Différentiables et Structures Différentiables des Sphères[END_REF]1959], [START_REF] Kervaire | Groups of Homotopy Spheres: I[END_REF]1963].

À la même époque, un premier lien entre topologie des variétés et lissité analytique complexe fut exposé par Mumford dans [START_REF] Mumford | The Topology of Normal Singularities of an Algebraic Surface and a Criterion for Simplicity[END_REF]1961], où il prouva qu'une surface complexe normale qui est une variété topologique est lisse. En explorant la possibilité d'une généralisation d'un tel résultat aux dimensions supérieures, Brieskorn, dans [START_REF] Brieskorn | Examples of Singular Normal Complex Spaces which are Topological Manifolds[END_REF]1963], montra que ce principe était alors mis en défaut, exhibant de nombreux exemples de singularités qui sont des variétés topologiques, explicitement, toutes les singularités de la forme

V = {z 2 1 + • • • + z 2 k -z 3 0 = 0} ⊂ C k+1 , k impair.
Le link V ∩ S ε de telles singularités est toujours une sphère nouée, et dans certains cas c'est une sphère exotique, comme il a été démontré par Hirzebruch dans le cas k = 5, voir [9, p 46-48] et [START_REF] Hirzebruch | Singularities and Exotic Spheres[END_REF]. Voir aussi [START_REF] Milnor | Singular Points of Complex Hypersurfaces[END_REF]Chapter 9], et [55, Section 1].

Cette fabrique de potentielles sphères exotiques fascina Milnor, et le poussa à étudier plus avant la topologie des singularités d'hypersurfaces, cette représentation via des équations constituant un moyen d'avoir prise sur des objets par ailleurs très abstraits. Cela l'a finalement mené à l'écriture de son célèbre livre [START_REF] Milnor | Singular Points of Complex Hypersurfaces[END_REF] de 1968, destiné à l'étude des singularités isolées d'hypersurfaces de C n , V (f ) = {f = 0}. Dans ce livre il présenta deux fibrations équivalentes, faisant intervenir respectivement les niveaux de f /|f | sur les sphères centrées aux points critiques de f et les niveaux de f dans C n . Dans le cas où la singularité est isolée, le bord de la fermeture de la fibre de chacune de ces fibrations est difféomorphe au link de la singularité. Son étude en est ainsi réduite à l'étude du bord de la fibre.

La première de ces deux fibrations est connue de nos jours sous le nom de fibration de Milnor, et la fermeture de sa fibre est appelée fibre de Milnor F de la fonction f . La seconde a été étendue à des contextes plus généraux par Lê, voir [START_REF] Lê | Some Remarks on Relative Monodromy[END_REF], et est connue sous le nom de fibration de Milnor-Lê. Cependant, elle peut faire apparaître des fibres génériques singulières, dues au lieu singulier de l'espace ambiant. Hamm, dans [START_REF] Hamm | Lokale Topologische Eigenschaften Komplexer Räume[END_REF]1971], a proposé un contexte dans lequel la fibration de Milnor-Lê est en fait un lissage de V (f ), c'est-à-dire un moyen de mettre V (f ) dans une famille plate de surfaces, telle que la surface générique est lisse. Explicitement, si (X, 0) est un germe d'espace analytique complexe équidimensionnel, et si f est une fonction holomorphe quelconque sur (X, 0) telle que V (f ) ⊃ Sing(X), alors la fonction f est un lissage de la singularité (V (f ), 0).

Cette vision de la fibration a ouvert de nouveaux territoires pour l'exploration de la relation entre l'algèbre et la topologie, puisqu'elle permet de définir une fibration dans différents espaces ambiants, gardant à l'esprit qu'il est très intéressant de réaliser une variété par des équations, ou même simplement de savoir qu'une variété donnée peut être réalisée algébriquement. Pour plus de détails concernant les fibrations de Milnor, on est invité à consulter les survols [START_REF] Teissier | A bouquet of bouquets for a birthday[END_REF] de Teissier et [START_REF] Seade | On Milnor's fibration theorem and its offspring after 50 years[END_REF] de Seade. Cette thèse est dédiée à l'étude des lissages de surfaces complexes analytiques. On part d'un germe de surface complexe (V, p), et, quand un lissage f : (X, 0) → (C, 0) de cette singularité existe, on s'interroge sur la topologie de la fibre générique de ce lissage.

Une singularité de surface peut admettre différents lissages, ou n'en admettre aucun. Remarquons cependant qu'une singularité isolée n'admet au plus qu'un nombre fini de lissages différents. L'étude de la topologie des fibres des lissages d'une singularité de surface complexe donnée est très difficile, même dans le cas des singularités isolées, et il n'y a que quelques cas pour lesquels une description de la fibre dans son entier est connue. C'est le cas par exemple pour les singularités Kleinéennes A, D, E, où la fibre de Milnor est unique et difféomorphe à la résolution minimale de la singularité (voir Brieskorn [START_REF] Brieskorn | Über die Auflösung gewisser Singularitäten von holomorphen Abbildungen[END_REF]), ainsi que pour les singularités de surfaces toriques normales, avec une description par chirurgie (voir Lisca, [START_REF] Lisca | On symplectic fillings of lens spaces[END_REF], et Némethi & Popescu-Pampu [START_REF] Némethi | On the Milnor fibers of cyclic quotient singularities[END_REF]), ou encore pour les singularités sandwich (De Jong & Van Straten, [START_REF] Jong | Deformation theory of sandwiched singularities[END_REF]). S'agissant des singularités non-isolées, le seul cas connu à ce jour est celui des singularités d'hypersurfaces de la forme {f (x, y) + z • g(x, y) = 0}, voir Sigurðsson, [START_REF] Sigurðsson | The Milnor fiber of the singularity f (x, y) + zg(x, y) = 0[END_REF].

D'un autre côté, l'étude du bord de la fibre de Milnor est depuis quelques décennies l'objet de recherches très actives.

Comme on l'a dit, le bord de la fibre de Milnor d'un lissage de singularité isolée est unique, et difféomorphe au link de la singularité. Avec les mots d'aujourd'hui, Mumford a prouvé dans [START_REF] Mumford | The Topology of Normal Singularities of an Algebraic Surface and a Criterion for Simplicity[END_REF] que le link d'une singularité isolée de surface complexe est une variété graphée, c'est-à-dire une variété descriptible via un graphe dont les sommets représentent des fibrations en S 1 au-dessus de surfaces compactes. C'est Walhausen, dans [START_REF] Waldhausen | Eine Klasse von 3-dimensionalen Mannigfaltigkeiten[END_REF][START_REF] Waldhausen | Eine Klasse von 3-dimensionalen Mannigfaltigkeiten[END_REF]1967], qui a plus tard introduit ce vocabulaire et a commencé à étudier cette classe de variétés en elle-même. De plus, grâce au travail de Grauert ([21, 1962]), on sait précisément quelles variétés graphées apparaissent comme links de singularités isolées de surfaces complexes. Cependant, ce résultat est tempéré par le fait qu'on ne sait pas, par exemple, quelles variétés apparaissent comme links de singularités d'hypersurfaces de C 3 .

Tout de même, on rêverait d'aoir en main un résultat analogue pour les fibres de Milnor de singularités non-isolées de surfaces. Les premiers pas dans la compréhension de la topologie de ces variétés ont été accomplis par Randell dans [START_REF] Randell | On the Topology of Non-isolated Singularities[END_REF]1977], puis Siersma dans [START_REF] Siersma | Variation Mappings of Singularities with 1-dimensional Critical Locus[END_REF]1991], qui ont calculé l'homologie du bord ∂F de la fibre de Milnor dans certains cas, et on caractérisé les cas dans lesquels celui-ci est une sphère d'homologie rationelle.

S'agissant de la topologie totale de cette variété, une série de résultats ont visé à prouver que le bord des fibres de Milnor associées à des singularités non-isolées sont, encore, des variétés graphées. Une première preuve de ce résultat fut esquissée en 2003 par Michel et Pichon dans [START_REF] Michel | On the Boundary of the Milnor Fibre of Nonisolated Singularities[END_REF], puis corrigée plus tard dans [START_REF] Michel | Erratum: "On the Boundary of the Milnor Fibre of Nonisolated Singularities[END_REF] en 2004, pour le cas où l'espace total de lissage est lui-même lisse et où la fonction f est réduite. En 2016, elles publièrent les détails de leur preuve dans [START_REF] Michel | Carrousel in Family and Non-isolated Hypersurface Singularities in C 3[END_REF]. En collaboration avec Weber, elles proposèrent des graphes de plombage explicites pour plusieurs classes de singularités : les singularités de surfaces d'Hirzebruch en 2007 [START_REF] Michel | The Boundary of the Milnor Fiber of some Non-isolated Singularities[END_REF], et les suspensions (f = g(x, y) + z n ) en 2009 dans [START_REF] Michel | The Boundary of the Milnor Fiber of Hirzebruch Surface Singularities[END_REF]. Fernández de Bobadilla & Menegon-Neto ont de leur côté prouvé ce fait en 2014, dans [START_REF] Fernández De Bobadilla | The boundary of the Milnor fibre of Complex and Real Non-isolated Singularities[END_REF], dans le contexte d'un espace total de lissage admettant une singularité isolée, pour une fonction de la forme f • g, où f et g sont holomorphes. Mais aucune de ces approches n'était constructive. A contrario, Némethi et Szilárd ont donné une preuve constructive du fait que ∂F est une variété graphée pour le cas d'une fonction holomorphe réduite f : (C 3 , 0) → (C, 0) dans leur livre [START_REF] Némethi | Milnor Fiber Boundary of a Non-isolated Surface Singularity[END_REF] de 2012. Explicitement, ils proposèrent un algorithme de calcul du bord de la fibre de Milnor de la fonction f . Cependant, en général, l'espace total du lissage d'une singularité non-isolée de surface n'a aucune raison d'être lisse, ou même de n'avoir qu'une singularité isolée. Par exemple, dès que la singularité générique (V, q) de V le long d'une composante irréductible de son lieu singulier ne peut pas être plongée holomorphiquement dans C 3 , cela signifie que l'espace total d'un lissage sera nécessairement à singularité non-isolée. Il est donc essentiel de généraliser ce résultat concernant la topologie des bords de fibres de Milnor de singularités non-isolées à des espaces plus généraux.

Dans ce travail, nous étendons la stratégie proposée par Némethi & Szilárd et nous prouvons :

Théorème 1. Soit (X, 0) un germe d'espace analytique complexe de dimension 3, et f : (X, 0) → (C, 0) un germe de fonction holomorphe sur (X, 0), tel que V (f ) ⊃ Sing(X). Alors le bord de la fibre de Milnor de f est une variété orientée de dimension 3, représentable par un graphe de plombage orientable.

Nous démontrons ce théorème de manière constructive, en adaptant à notre contexte général la preuve de Némethi & Szilárd. Comme dans leur livre, notre preuve donne lieu à un algorithme pour le calcul de ∂F . Elle peut de ce fait représenter un pas en avant dans la quête de l'obtention d'une caractérisation des variétés graphées qui apparaissent comme bords de fibres de Milnor. La stratégie de la preuve et les principales différences sont détaillées au début du Chapitre 4. Insistons simplement ici sur le fait que le lieu singulier de (X, 0) implique une série de complications de la preuve, imposant en particulier de faire intervenir plus de données que dans [START_REF] Némethi | Milnor Fiber Boundary of a Non-isolated Surface Singularity[END_REF] pour mener à bien le calcul, ainsi que l'introduction de la notion de compagnon, qui est faite pour obtenir l'analogue de la notion d'ICIS pour des germes qui ne sont pas des intersections complètes. On a aussi abordé les questions d'orientation d'une manière plus globale, que nous espérons être plus naturelle. Un point commun important avec la situation de [START_REF] Némethi | Milnor Fiber Boundary of a Non-isolated Surface Singularity[END_REF] est l'utilisation d'un germe (S k , 0) de variété réelle analytique de dimension 4 à singularité non-isolée, ayant pour link la variété ∂F , réalisant de fait cette variété comme le link d'une singularité isolée. Le fait que cette variété soit analytique réelle, et non complexe, impose l'usage de décorations pour certaines arêtes du graphe, ce qui n'arrive jamais dans le cas des singularités isolées de sufaces complexes.

L'autre résultat de ce travail est l'extension de l'algorithme d'Oka (voir [START_REF] Oka | On the Resolution of the Hypersurface Singularities[END_REF]1986]), qui calcule le link d'une singularité isolée Newton-non dégénérée de surface complexe dans C 3 . En utilisant l'algorithme général et la théorie de la géométrie torique, on produit une méthode de calcul simple du bord de la fibre de Milnor d'une fonction Newton-non dégénérée définie sur un germe de variété torique normale de dimension 3. Ceci répond positivement à la question ouverte posée dans [46, 24.4.20], et ouvre la voie au calcul d'un grand nombre d'exxemples. En conséquence : Théorème 2. Soit (X, 0) le germe en son sommet de variété torique normale de dimension 3 définie par un cône de dimension 3 dans un réseau de poids. Soit f : (X, 0) → (C, 0) une fonction Newton-non-dégénérée dont le lieu des zéros contient Sing(X). Alors le bord de la fibre de Milnor de f est une variété graphée déterminée par le polyèdre de Newton local de f . De plus, ceci nous rapproche de l'extension de ce qui est fait dans [6,2007], où les auteurs font le chemin inverse, reconstituant un possible polyèdre de Newton de fonction f : C 3 → C ayant une variété graphée donnée comme bord de fibre de Milnor, sous l'hypothèse que celui-ci soit une sphère d'homologie rationelle.

Dans les Chapitres 2 et 3, on introduit les principaux outils et notations requis pour la preuve du Théorème 1 et l'énoncé de la méthode de calcul.

Le Chapitre 4 présente la preuve du Théorème 1. Le Chapitre 5 expose la manière dont l'algorithme principal peut être appliqué au calcul du bord de la fibre de Milnor d'une fonction Newton-non dégénérée définie sur un germe de variété torique normale de dimension 3, prouvant le Théorème 2.

English version

The study of Milnor fibers of complex-analytic functions, which began in the second half of the 20th century, gave rise to a rich interaction between algebra and topology. Let us describe briefly this interaction.

John Milnor provided in [START_REF] Milnor | On Manifolds Homeomorphic to the 7-sphere[END_REF]1956] the first examples of exotic spheres, that is, smooth manifolds homeomorphic but not diffeomorphic to the n-sphere, in the case n = 7. Such manifolds were of great interest for topologists. Milnor and Kervaire continued their study in [START_REF] Milnor | Sommes de Variétés Différentiables et Structures Différentiables des Sphères[END_REF]1959], [START_REF] Kervaire | Groups of Homotopy Spheres: I[END_REF]1963].

Meanwhile, a first relation between the topology of varieties and complex analytic regularity was discovered by Mumford, in [START_REF] Mumford | The Topology of Normal Singularities of an Algebraic Surface and a Criterion for Simplicity[END_REF]1961], where he established that a 2-dimensional normal complex surface which is a topological manifold is nonsingular. Exploring the possibility of extending such results to higher dimensions, Brieskorn, in [START_REF] Brieskorn | Examples of Singular Normal Complex Spaces which are Topological Manifolds[END_REF]1963], proved that it is no longer the case, producing many examples of singularities which are topological manifolds, namely all singularities of the form

V = {z 2 1 + • • • + z 2 k -z 3 0 = 0} ⊂ C k+1 , k odd.
The link V ∩ S ε of such singularities is always a knotted sphere, and in some cases it is an exotic sphere, as was shown by Hirzebruch in the case k = 5, see [9, p 46-48] and [START_REF] Hirzebruch | Singularities and Exotic Spheres[END_REF]. See also [START_REF] Milnor | Singular Points of Complex Hypersurfaces[END_REF]Chapter 9], and [55, Section 1].

This potential fabric of exotic spheres fascinated Milnor, and inspired him to study further the topology of hypersurface singularities, as this presentation by equations represents a possible way to have a grasp on otherwise very abstract objects. This eventually led him to write his famous 1968 book [START_REF] Milnor | Singular Points of Complex Hypersurfaces[END_REF], aimed at the study of isolated singularities of hypersurfaces of C n , V (f ) = {f = 0}. In this book he introduced two equivalent fibrations, using respectively the levels of f /|f | on spheres centered at the critical points of f and the levels of f in C n . The point is that, in the case where the singularity is isolated, the boundary of the closure of a fiber is diffeomorphic to the link ∂V (f ) of the singularity . Its study is therefore reduced to the study of the boundary of the closure of the fiber.

The first of the two fibrations introduced by Milnor is known nowadays as the Milnor fibration, and the closure of its fiber is called the Milnor fiber F of the function f .

The second one has been extended to more general contexts by Lê, see [START_REF] Lê | Some Remarks on Relative Monodromy[END_REF], and is known as the Milnor-Lê fibration. However, it may produce singular generic fibers, due to the singularities of the ambient space. Hamm, in [START_REF] Hamm | Lokale Topologische Eigenschaften Komplexer Räume[END_REF]1971], provided a setting in which the Milnor-Lê fibration is actually a smoothing of V (f ), that is, a way to put V (f ) in a flat family of surfaces, where the generic surface is smooth. Namely, if (X, 0) is a germ of equidimensional complex analytic space, and f is any holomorphic function on (X, 0) such that V (f ) ⊃ Sing(X), then the function f provides a smoothing of the singularity (V (f ), 0). This vision of the fibration opened new areas of exploration for the interplay between algebra and topology, as it allows the definition of a fibration in different ambient spaces, keeping in mind the idea that it is very interesting to realize a manifold via equations, or even to know that a given manifold is realizable algebraically. For more details about Milnor fibrations, one may consult the surveys [START_REF] Teissier | A bouquet of bouquets for a birthday[END_REF] of Teissier and [55] of Seade. In this work, by Milnor fibration we mean the Milnor-Lê fibration, and we also call its fiber the Milnor fiber. This thesis is dedicated to the study of smoothings of complex analytic surface singularities. We start with some germ of complex surface (V, p), and, when there exists a smoothing f : (X, 0) → (C, 0), wonder about the nature of the generic fiber of this smoothing.

A singularity of surface may admit different smoothings, or even none. Note however that an isolated singularity admits only a finite number of possible smoothings, if any. The study of the topology of the fibers of the smoothings of a given singularity of complex surface is very hard, even for isolated ones, and there is only a few types of singularities where a description of the full fiber is known. It is the case for the Kleinean sigularities A, D, E, where the Milnor fiber is unique and diffeomorphic to the minimal resolution (see Brieskorn,[START_REF] Brieskorn | Über die Auflösung gewisser Singularitäten von holomorphen Abbildungen[END_REF]), as well as for the singularities of normal toric surfaces, with a description by surgery (see Lisca, [START_REF] Lisca | On symplectic fillings of lens spaces[END_REF] and Némethi & Popescu-Pampu, [START_REF] Némethi | On the Milnor fibers of cyclic quotient singularities[END_REF]), and for sandwich singularities (De Jong & Van Straten, [START_REF] Jong | Deformation theory of sandwiched singularities[END_REF]). As for nonisolated singularities, the only known case is that of hypersurface singularities of the form {f (x, y) + z • g(x, y) = 0}, see Sigurðsson, [START_REF] Sigurðsson | The Milnor fiber of the singularity f (x, y) + zg(x, y) = 0[END_REF].

On the other hand, the study of the boundary of the Milnor fiber has been a very active area of resarch in the last decades.

As we already pointed out, the boundary of the fiber of a smoothing of an isolated singularity is unique, and equal to the link of the singularity. In today's words, Mumford, in [START_REF] Mumford | The Topology of Normal Singularities of an Algebraic Surface and a Criterion for Simplicity[END_REF], proved that the link of any isolated singularity of complex surface is a graph manifold, that is, a manifold describable using a decorated graph whose vertices represent fibrations in S 1 over compact surfaces. It is Waldhausen, in [START_REF] Waldhausen | Eine Klasse von 3-dimensionalen Mannigfaltigkeiten[END_REF][START_REF] Waldhausen | Eine Klasse von 3-dimensionalen Mannigfaltigkeiten[END_REF]1967], that later introduced this vocabulary and began studying this class of varieties in itself. Furthermore, since the work of Grauert ([21, 1962]), one knows exactly which graph manifolds appear as links of isolated singularities of complex surfaces. However, this strong point is tempered by the fact that one still does not know, for example, which of these manifolds appear as links of singularities of hypersurfaces of C 3 .

Still, one would dream of having an analogous result for boundaries of Milnor fibers associated to non isolated singularities. The first steps towards the comprehension of the topology of these manifolds were made by Randell [START_REF] Randell | On the Topology of Non-isolated Singularities[END_REF]1977], then Siersma in [START_REF] Siersma | Variation Mappings of Singularities with 1-dimensional Critical Locus[END_REF]1991], [START_REF] Siersma | The Vanishing Topology of Non Isolated Singularities[END_REF]2000], who computed the homology of the boundary ∂F of the Milnor fiber in certain cases, and characterized the cases in which ∂F is a rational homology sphere.

Concerning the general topology of this manifold, a series of results were aimed at proving that the boundary of the Milnor fibers associated to a non isolated singularity are, again, graph manifolds. A first proof of this result was sketched in 2003 by Michel and Pichon ([32]) and corrected later in [START_REF] Michel | Erratum: "On the Boundary of the Milnor Fibre of Nonisolated Singularities[END_REF], in 2004, for the case where the total space of the smoothing is smooth and the function f is reduced. In 2016, they published the details of their proof in [START_REF] Michel | Carrousel in Family and Non-isolated Hypersurface Singularities in C 3[END_REF]. In collaboration with Weber, they provided explicit plumbing graphs for several classes of singularities: Hirzebruch surface singularities in 2007 ( [START_REF] Michel | The Boundary of the Milnor Fiber of Hirzebruch Surface Singularities[END_REF]), and the so-called suspensions (f = g(x, y) + z n ) in 2009 ( [START_REF] Michel | The Boundary of the Milnor Fiber of some Non-isolated Singularities[END_REF]). Fernández de Bobadilla and Menegon Neto, in 2014 ( [START_REF] Fernández De Bobadilla | The boundary of the Milnor fibre of Complex and Real Non-isolated Singularities[END_REF]), proved it in the context of smoothings of non-isolated and not necessarily reduced singularities whose total space has an isolated singularity, for a function of the form f • g, with f and g holomorphic. But none of these approaches was constructive. By contrast, Némethi and Szilárd gave a constructive proof for the case of reduced holomorphic functions f : (C 3 , 0) → (C, 0) in their 2012 book [START_REF] Mumford | The Topology of Normal Singularities of an Algebraic Surface and a Criterion for Simplicity[END_REF]. Namely, they provided an algorithm to compute the boundary of the Milnor fiber of the function f . However, in general, the total space of a smoothing of a non-isolated singularity of surface has no reason to be smooth, or even with isolated singularity. For example, as soon as the generic singularity (V, q) along an irreducible component of the singular locus of V can not be holomorphically embedded in C 3 , this means that it can not be seen as a hypersurface of a variety with isolated singularity. It is therefore essential to generalize this result concerning the topology of the boundary of the Milnor fiber to more general spaces.

In this work, we extend the strategy developed in [START_REF] Némethi | Milnor Fiber Boundary of a Non-isolated Surface Singularity[END_REF] by Némethi and Szilárd and we prove the following: Theorem 1. Let (X, 0) be a germ of 3-dimensional complex analytic variety, and f : (X, 0) → (C, 0) a germ of holomorphic function on (X, 0), such that V (f ) ⊃ Sing(X). Then the boundary of the Milnor fiber of f is an oriented 3-manifold, which can be represented by an orientable plumbing graph.

We prove this theorem in a constructive way, by adapting to our more general context the method of Némethi and Szilárd. As was the case in their book, our proof gives rise to an algorithm for the computation of ∂F . It may therefore represent a step in the obtention of a characterization of the graph manifolds which appear as boundaries of Milnor fibers. The strategy of proof and the main differences are detailed at the beginning of Chapter 4. Let us simply insist here on the fact that the singular locus of the ambient germ of variety (X, 0) induces a series of complications in the proof, implying in particular the need for more data than in [START_REF] Némethi | Milnor Fiber Boundary of a Non-isolated Surface Singularity[END_REF] in order to perform the computations, as well as the introduction of the notion of companion, which is made to obtain the analogue of ICIS on germs which may not be complete intersections. We also treated the questions of the orientations in a more global way, which we hope to be more natural. An important common point with the situation of [START_REF] Némethi | Milnor Fiber Boundary of a Non-isolated Surface Singularity[END_REF], and the main idea of their proof, is the introduction of a real-analytic germ (S k , 0) of dimension 4 with isolated singularity having the same boundary as the Milnor fiber, therefore actually realizing this manifold as the link of a singularity. The fact that this variety is real-analytic, and not complex-analytic, imposes the use of decorations for some edges of the graph, which never happens in the case of isolated complex surface singularities.

The other result of this work is the extension of Oka's algorithm (see [START_REF] Oka | On the Resolution of the Hypersurface Singularities[END_REF]1986]), which computes the link of a non-degenerate isolated singularity of hypersurface of C 3 . Using the general algorithm and the theory of toric geometry, we provide a simple method for the computation of the Milnor fiber of a Newton-nondegenerate function defined on a normal 3-dimensional toric variety. This answers the open question asked in [46, 24.4.20], and opens the way for the computation of a great number of examples. As a consequence: Theorem 2. Let (X, 0) be the germ at its vertex of a 3-dimensional toric variety defined by a 3-dimensional cone in a weight lattice. Let f : (X, 0) → (C, 0) be a Newton-nondegenerate function whose zero locus contains Sing(X). Then the boundary of its Milnor fiber is a graph manifold determined by the local Newton polyhedron of f . Furthermore, this gets us closer to the extension of what is done in [6,2007], where the authors do the opposite work, retrieving a possible Newton polyhedron of a function f : C 3 → C having a given graph manifold as boundary of Milnor fiber, under the hypothesis that this manifold is a rational homology sphere.

In Chapters 2 and 3, we introduce the main tools and notations needed for the proof of theorem 1 and the statement of the method of computation.

Chapter 4 presents the proof of Theorem 1. Chapter 5 exposes how the main algorithm can be adapted to the computation of the boundary of the Milnor fiber of a non degenerate function defined on a 3-dimensional toric variety, proving Theorem 2.

Chapter 2

Basic tools

In all this work, the spaces considered are real or complex analytic. In the sequel, K denotes R or C.

Smooth and singular points

For details about the notions presented in this Section, one can consult [56, Volume I, Chapter II].

Let us start by defining the central notion of singular point of a variety, through the use of the maximal ideal at this point. Definition 2.1.1. The maximal ideal at a point x in a K-analytic space X is the ideal of the local ring O X,x consisting of the germs of analytic functions at x, cancelling at x. It is denoted by m x . The quotient m x (m x ) 2 is called the Zariski cotangent space of X at x. Definition 2.1.2. An analytic space X is said to be reduced at x if the local ring O X,x has no nilpotent element. An analytic space is called reduced if it is reduced at any of its points. Definition 2.1.3. If X is an analytic space, its dimension is defined as

dim(X) = min x∈X dim O X,x
where dim O X,x denotes the Krull dimension of O X,x , i.e. the maximal length of chains of K-prime ideals in it. If all the local rings of X have the same Krull dimension, then X is called equidimensional. Definition 2.1.4. A reduced equidimensional space is called a variety.

In the sequel, we will simply say "variety", instead of "analytic variety", unless we need to specify the field. Definition 2.1.5. If X is a variety, let us denote by Sm(X) := {x ∈ X, dim m x (m x ) 2 = dim X} the smooth locus of X. Its complement, denoted by Sing(X), is called the singular locus of X. A variety is called smooth if it coincides with its smooth locus. Proposition 2.1.6. If X is a K-analytic variety, its singular set is a nowhere dense closed K-analytic subspace.

Remark 2.1.7. The singular set of X is not necessarily equidimensional. Indeed, X may for example have at the same time isolated and non-isolated singular points.

Proposition 2.1.8. For any variety X, the number n = min

x∈X dim m x (m x ) 2 is equal to dim X.
The smooth set Sm(X) of a variety X is exactly the set of points x ∈ X where O X,x is isomorphic to K{z 1 , . . . , z n }.

Modifications and resolutions of singularities

Definition 2.2.1. Let X be an irreducible variety. A divisor D on X is a collection of pairwise different irreducible closed codimension 1 subvarieties D 1 , • • • , D n with assigned multiplicities k 1 , • • • , k n ∈ Z. We write D = k 1 D 1 + • • • + k n D n .
If all k i are nonnegative, the divisor D is called effective. The union of the D i 's such that k i = 0 is called the support Supp(D) of D. The divisor D is called reduced if all the multiplicities k i are equal to 1.

Definition 2.2.2.

A divisor E in a smooth complex variety X is said to be a normal crossings divisor (NCD) iff for all x ∈ X, there exists a local analytic coordinate system (z 1 , . . . , z n ) of X based at x such that around this point E admits a local equation of the form

z a 1 1 • • • z an n = 0, with (a 1 , . . . , a n ) ∈ Z n Definition 2.2.3.
A divisor in a smooth variety is said to be a simple normal crossings divisor (SNCD) iff it is a NCD and all its irreducible components are smooth.

Let us introduce a weaker ad hoc notion, which is the one we will actually need in this work. Definition 2.2.4. A reduced divisor D in a variety X is said to be a SNCD at C ⊂ X if:

• Every point p ∈ C is a smooth point of X, and • For every p ∈ C , there exists a local analytic coordinate system (z 1 , . . . , z n ) of X based at p such that around p, D admits an equation of the form z 1 1 . . . z n n = 0, with ( 1 , . . . , n ) ∈ {0, 1} n . Definition 2.2.5. A modification of a variety X is a variety X, along with a proper morphism r : X → X which is bimeromorphic: there exists a dense open subset U of X such that r : r -1 (U ) → U is an analytic isomorphism, and r -1 (U ) is dense in X.

Remark 2.2.6. In particular, by properness, every modification is surjective. Definition 2.2.7. A modification r : X → X of a variety X is called a resolution of X, or resolution of the singularities of X, if X is smooth. Definition 2.2.8. Let r : X → X be a modification of a variety. The critical locus of r is the subset of X formed by the points y ∈ X such that r is not a local isomorphism at y. We will also call this set the exceptional locus of the modification. The critical image or discriminant locus ∆(r) of r is the subset of X which is the image of the critical locus.

Both sets are closed nowhere dense analytic subsets of their ambient varieties. Definition 2.2.9. If r : X → X is a modification of X, and S is a closed analytic subset of X which is not contained in the critical image ∆(r) of r, the strict transform of S by r is the set S := r -1 (S \ ∆(r)) ⊂ X.

We call total transform of S the set r -1 (S ), and exceptional part of r -1 (S ) the set r -1 (S ∩ ∆(r)).

Under these conditions, r S := r | S : S → S is also a modification, this time of S .

Definition 2.2.10. A divisorial modification is a modification of a space whose critical locus is of pure codimension 1. A divisorial resolution is a resolution which is a divisorial modification.

For fluidity purposes, let us state here a definition that involves the definition of a normal variety, introduced in section 2.5. Definition 2.2.11. Let X, X be normal 3-dimensional varieties, and r : X → X a divisorial modification of X. Let h be a holomorphic function on X, and r * h its pullback by r. Then the irreducible components of the support of div(r * h) can be separated in two types:

1. Components whose images by r are points.

2. The rest of the components, with multiplicities, constitute the mixed transform of div(h). These components are, again, of two types:

(a) Those which get contracted by r on curves ;

(b) Those whose images by r are surfaces. The subdivisor of div(r * h) supported by their union is called the strict transform of div(h).

Definition 2.2.12. Let H n-1 be a hypersurface in a smooth variety X of dimension n.

A good embedded resolution of the singularities of H is a divisorial modification Π : Y → X such that :

• Y is smooth ;

• the strict transform H of H is smooth ;

• the total transform of H is a SNCD.

Theorem 2.2.13. Every hypersurface of an algebraic or analytic variety over a field of characteristic zero admits a good embedded resolution.

For this theorem, one can consult the recent book [1] of Aroca, Hironaka and Vicente, in the complex analytic case. See also the article [START_REF] Bierstone | Resolution of Singularities, Several complex variables[END_REF] of Bierstone and Milman as well as the books [START_REF] Cutkosky | Resolution of singularities[END_REF] of Cutkosky and [28] of Kollár for the case of algebraic varieties of characteristic zero.

About deformations and smoothings

In this section, following Fischer ([17]), we present the definitions and some properties of the notions of deformation and smoothing of a germ of analytic variety. Those definitions are built in order to properly define the legal way to "bend" a space, obtaining another space that will be close enough to the initial one. Our main theorem can be formulated in this framework. First, we need to summon the algebraic notion of flatness. Let us join Fischer when he cites Mumford ([41]): "The concept of flatness is a riddle that comes out of algebra, which technically is the answer to many prayers." Definition 2.3.1. Let R be a ring, and M an R-module. The module M is said to be R-flat, or a flat R-module, if it satisfies one of the three following equivalent conditions:

1. For every exact sequence of R-modules

• • • → N i-1 → N i → N i+1 → . . . the induced sequence • • • → N i-1 ⊗ R M → N i ⊗ R M → N i+1 ⊗ R M → . . . is again exact.
2. For every short exact sequence of R-modules

0 → N → N → N → 0 the induced sequence 0 → N ⊗ R M → N ⊗ R M → N ⊗ R M → 0 is again exact. 3. For every injective morphism of R-modules N → N the induced morphism N ⊗ R M → N ⊗ R M is again injective.
This allows us to define the notion of flatness for a morphism:

Definition 2.3.2. An holomorphic map f : X → Y between complex analytic varieties is said to be flat at x ∈ X if O X,x is a flat O Y,f (x) -module.
The following proposition, which is a particular case of the more general corollary of the section 3.16 of [START_REF] Fischer | Complex Analytic Geometry[END_REF], will play a key role in this work: Proposition 2.3.3. Let (X, x) be a germ of complex analytic variety. Then any f ∈ m x such that f does not divide zero, seen as a germ of morphism (X, x) → (C, 0), is a flat morphism.

Definition 2.3.4. A deformation of a germ of complex analytic variety (S, s) is a germ of flat morphism f : (X, x) → (Y, y), where (X, x) and (Y, y) are germs of complex analytic spaces, together with an isomorphism between (S, s) and the special fiber (f -1 (y), x). Definition 2.3.5. Morphisms as in proposition 2.3.3 are called 1-parameter deformations of (S, s). Definition 2.3.6. A 1-parameter deformation is called a smoothing whenever its generic fiber f -1 (t), t = 0 is smooth. A singularity is callled smoothable if it admits a smoothing.

A smoothing does not always exist, even for isolated singularities of surfaces. This results for instance from a theorem of Steenbrink ([60]) about the Milnor numbers of smoothings of Gorenstein normal surface singularities (see [START_REF] Popescu-Pampu | Complex Singularities and Contact topology[END_REF], Theorem 4.18). However, in the case of isolated complete intersection singularities, it does. In this work the hypersurfaces considered will be smoothable, due to the way they are defined.

Normal rings

Definition 2.4.1. Let (X, p) be a germ of K-analytic variety. We will call unit at p any analytic function f ∈ O X,p on this germ which is not zero at p. This denomination is due to the fact that such functions are units of the local function ring at that point. Definition 2.4.2. Let R be a commutative ring. Let S be the multiplicative system constituted of elements of R that do not divide 0. The total quotient ring of R is defined as

S -1 R, denoted Q R . If R is an integral domain, Q R = (R \ {0}) -1 R is called the field of fractions of R.
The integral closure of a ring R is the ring of all elements of Q R that are integral over R.

Definition 2.4.3. A commutative ring R is called normal if it is integrally closed in its total quotient ring Q R , i.e. if any element of Q R that is integral over R is in fact an element of R. Remark 2.4.4. 1. If R K[X 1 , • • • , X n ] or K{X 1 , • • • , X n }, then R is normal. 2. If R K[X 1 , • • • , X n ]
/I is an integral domain, the integral closure A of R is a finitely generated K-algebra and is normal.

3. If R is not an integral domain, then R is not normal.

Normalization of varieties

In the sequel, K denotes R or C.

Definition 2.5.1. A K-analytic variety X is called normal if, for all x ∈ X, the local ring O X,x is normal.

Definition 2.5.2. The normal locus of a variety X is the set of its points x such that O X,x is normal. Its complement is called the non-normal locus of X.

In most contexts, one can associate canonically a normal variety to a given variety, through a process called normalization.

Normalization of an affine algebraic variety

Let us start with a definition of normalization that allows us to deal with R-algebraic varieties.

Definition 2.5.3. (See [4, p.75]). Let V = Specm(R) be an irreducible K-algebraic variety, where

R = K[X 1 , • • • , X n ]/I. Denote A the integral closure of R. Then A is isomorphic to some K[X 1 , • • • , X p ]
/I , and the surjective morphism

N : X N := Specm(A) → V induced by the inclusion R → A is called the normalization of X.
Remark 2.5.4. The normalization of an irreducible algebraic variety is unique up to isomorphism of algebraic varieties.

Definition 2.5.5. If V is an equidimensional K-algebraic variety, denote V 1 , • • • , V k the irreducible components of V . Then define the normalization V N of V as V N := V N 1 • • • V N k .
Lemma 2.5.6. The normalization V N of an algebraic variety V is normal, and the morphism N : V N → V is finite and is an isomorphism above the normal locus of V .

Definition 2.5.7. Let V = Specm(A) ⊂ R n and W = Specm(B) ⊂ R p be two affine K-algebraic varieties, where

A = K[X 1 , • • • , X n ]/I, B = K[Y 1 , • • • , Y p ]/J. A map ϕ : V W (x 1 , • • • , x n ) → (ϕ 1 (x 1 , • • • , x n ), • • • , ϕ p (x 1 , • • • , x n ))
where each ϕ i is a rational function in the x j 's, is called a rational map from V to W .

The dashed arrow stands for the fact that such a map may have a locus of indeterminacy. Definition 2.5.8. Let V = Specm(A) ⊂ R n and W = Specm(B) ⊂ R p be two affine equidimensional K-algebraic varieties, where

A = K[X 1 , • • • , X n ]/I, B = K[Y 1 , • • • , Y p ]/J.
A rational map ϕ : V is called birational if there exists a rational map ψ : W V and dense open subsets

U 1 ⊂ V and U 2 ⊂ W such that ψ • ϕ |U 1 = Id and ϕ • ψ |U 2 = Id.
In these conditons, we call ψ an inverse of φ.

The following is a direct consequence of the definition. Lemma 2.5.9. The map ϕ * : Q B → Q A induced by a birational map ϕ : Specm(A) Specm(B) is an isomorphism of field extensions of K.

Finally, we have Proposition 2.5.10. Let V = Specm(A) and W = Specm(B) be two affine equidimensional K-algebraic varieties, and ϕ : V W be a birational map. Then there is a unique birational map ϕ N : V N W N such that the following diagram commutes:

V N W N V W N V N W ϕ N ϕ Furthermore, let ψ be an inverse of ϕ. If X 1 , • • • , X n and Y 1 , • • • , Y p
are respectively generators of A and B such that for any i, ϕ * (Y i ) is integral over A and for any j, ψ * (X j ) is integral over B, then ϕ N is an isomorphism of algebraic varieties.

Normalization of complex varieties

Much more can be said about the normalization if we restrict ourselves to complex varieties. For fluidity purposes, we will define the notion of normalization in the language of germs of analytic spaces, as well as in the one of global analytic spaces. The definitions provided in the two different frameworks are of course compatible. One can find more details in Fischer ( [START_REF] Fischer | Complex Analytic Geometry[END_REF]), chapter 2, or in de Jong & Pfister ( [START_REF] Jong | Local Analytic Geometry[END_REF]) for the case of germs. Lemma 2.5.11. A complex analytic variety X is normal at any of its smooth points. The non-normal locus N N (X) of a variety X is a closed nowhere dense analytic subset. In particular, the set of normal points of a variety X is a dense open subset of X. Lemma 2.5.12. If X is a normal complex analytic variety, its singular set Sing(X) is of codimension at least 2. Definition 2.5.13. Let X be a reduced complex-analytic variety, and denote by A(X) its non-normal locus. We call a normalization of X any finite, surjective analytic map

N : X N → X such that • X N is a normal analytic variety. • N -1 (X \ A(X)) is dense in X N . • The restriction N : N -1 (X \ A(X)) → X \ A(X) is an analytic isomorphism.
This definition of normalization is of course compatible with the one given in the algebraic setting.

Proposition 2.5.14. The normalization of an analytic variety is unique up to unique isomorphism: given two normalizations N 1 : X N 1 → X and N 2 : X N 2 → X of a variety, there exists a unique analytic isomorphism ϕ : X N 1 ∼ -→ X N 2 such that the following diagram commutes.

X N 1 -→ X N 2 ∼ ϕ X N 1 N 2
Hence, one speaks about the normalization of a variety.

The next result makes explicit one of the main characteristics of the normalization morphism, which is, at a point of X, to "separate" the local analytic irreducible components.

Lemma 2.5.15. The cardinal of the fiber of the normalization morphism above a point p ∈ X is equal to the number of local irreducible components of X at p. Lemma 2.5.16. Let X be a reduced analytic variety, K a closed subset of X, and N : X → X the normalization of X. Then the restriction

N K : N -1 (X \ K) → X \ K is the normalization of X \ K.
Normalization of a germ of analytic variety Definition 2.5.17. A germ of analytic variety (X, x) is said to be normal if the local ring O X,x is normal.

Definition 2.5.18. A multi-germ of analytic spaces (X, x) is a finite disjoint union

(X, x) = (X 1 , x 1 ) • • • (X k , x k ) of germs of analytic spaces. By definition the ring O X,x is equal to O X 1 ,x 1 ⊕ • • • ⊕ O X k ,x k .
We call k the number of components of the multi-germ. Once again, a multi-germ (X, x) is called normal if and only if each O X i ,x i is normal.

Definition 2.5.19. Let (X, x) be a reduced analytic germ of variety, and denote by (A(X), x) (maybe empty) the germ of its non-normal locus. The normalization of (X, x) is a normal multigerm (X, x), together with a finite, surjective analytic map N : (X, x) → (X, x) such that N is an analytic isomorphism outside of (A(X), x).

Remark 2.5.20. As in remark 2.5.14, any two such multi-germs are uniquely isomorphic above (X, x), hence we will call any of them the normalization of the germ (X, x).

Proposition 2.5.21. Let (X, x) be a germ of analytic variety. Its normalization (X, x) N -→ (X, x) verifies the following universal property of minimality : Let (Y, D) ϕ -→ (X, x) be a normal modification of the germ X. Then there is a unique analytic morphism ϕ :

(Y, D) → (X, x) such that N • ϕ = ϕ. (Y, D) (X, x) (X, x) ∃! ϕ ϕ N Remark 2.5.22.
1. This universal property is in fact a characterization of the normalization.

2. Note that ϕ is a modification of (X, x)

As a consequence of lemma 2.5.15, we get:

Lemma 2.5.23. The number of components of the normalization of a germ is equal to the number of irreducible components of this germ. In fact, if (X 1 , x), • • • , (X k , x) are the irreducible components of (X, x), then the normalization of (X, x) is the disjoint union of the normalizations of the (X i , x)'s.

About graph manifolds and plumbing graphs

The map p is asked to satisfy the following constraint: there exists a collection {(U α , φ α )} α∈A , called a trivialization cover, where the collection {(U α )} α∈A is an open cover of B, and for each α ∈ A, a diffeomorphism

φ α : p -1 (U α ) → U α × F
such that the following diagram is commutative:

p -1 (U α ) U α × F U α φ α p 1 p ∀ (x, f ) ∈ U α × F, p • φ -1 α (x, f ) = x.
In the diagram, p 1 denotes the projection on the first factor. Remark 2.6.2. One may want to insist on the diffeomorphism type of the fiber, in which case a fiber bundle of fiber F is called an F -bundle. Definition 2.6.3. A fiber bundle is said to be orientable if there exists a continuous choice of orientations of the fibers. Remark 2.6.4. This does not mean that the global space is orientable. For example, any space of the form B × F , where B is not orientable, and F is orientable, is a trivial orientable F -bundle over B, even if the space B × F is not orientable. The condition of orientability simply means that one can pick orientations of the fibers, and that these orientations will not be subject to any monodromy phenomenon.

In all this work, by fiber bundle we mean smooth fiber bundle, i.e. so that the total space is smooth. Let M p -→ B be an orientable S 1 -bundle with oriented total space M over an orientable closed smooth surface B. Set an orientation of the base and one of the fibers so that, taken together, they give the orientation of M . Let C be a simple closed curve in B, splitting B in two closed surfaces B 1 and B 2 with C as their common boundary. Denote

M 1 := p -1 (B 1 ), M 2 := p -1 (B 2 ), and T := M 1 ∩ M 2
The torus T is the common boundary of M 1 and M 2 . It can be oriented either as the boundary of M 1 or as the one of M 2 . The two choices determine opposite orientations of T . Now, we have the following:

Lemma 2.6.5. Every orientable S 1 -bundle over a connected compact surface with non-empty boundary is trivial.

Using lemma 2.6.5, each M i can be written as a trivial fibration. In particular they admit global sections. Let Σ i be such a section in each M i . Each Σ i inherits the orientation of B, and this orients also their boundaries in T . Definition 2.6.6. In the setting of the previous paragraph, the Euler number of the fibration 2. The convention chosen is not arbitrary: if the S 1 -fibration over an orientable smooth closed surface considered is made of the unit circles in the tangent fibered space, one will find the Euler-Poincaré characteristic of the base, which gives its name to the Euler number.

M p - → B is the intersection number ∂Σ 1 • ∂Σ 2 in H 1 (T, Z),
3. The Euler number is in fact the obstruction to the existence of a global section of the fibration. Such a section exists if and only if this number is zero. [START_REF] Bochnak | Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF]. In particular, one can see that reversing the orientation of M changes the sign of the Euler number, but, if one keeps the orientation of M , changing that of the fibers or of the base will not change the Euler number.

There is a fundamental correspondence between Euler numbers and self-intersection numbers, explicited in the following: Proposition 2.6.8. If B is a smooth oriented closed surface embedded in a smooth oriented 4-manifold M , the Euler number of the normal S 1 -bundle to B, whose total space is oriented as boundary of a tubular neighbourhood of B, is equal to the self-intersection of B inside M .

Example 2.6.9. Consider the Hopf fibration on S 3 , built in the following way: see S 3 as the unit sphere around the origin in C 2 . Every complex line through the origin will intersect S 3 along a circle. Those circles are disjoint. Furthermore, the set of all those lines, being CP 1 , can be identified with S 2 . This provides S 3 as an S 1 -fibration over S 2 . The Euler number of this fibration is -1. Now, one can consider the blowing-up (X, E)

π -→ (C 2 , 0) of the origin in C 2 . The exceptional divisor E is a CP 1 . What we just saw implies that the normal S 1 -bundle over E in X is exactly the Hopf fibration, of Euler number -1. On the other hand, -1 is also the self-intersection of E in X.
This correspondence plays a key role in the computation of boundaries of isolated singularities of complex surfaces, or even, in our case, of isolated singularities of real-analytic 4-dimensional varieties, using a more general statement that allows one to compute the boundary of a neighbourhood of a configuration of surfaces in a 4-manifold (see theorem 2.7.9).

We can now state the following fundamental proposition about classification of S 1 -bundles over surfaces: Proposition 2.6.10. Given a smooth closed orientable surface B of genus g and e ∈ Z, there exists, up to orientation-preserving isomorphism of fiber bundles, a unique oriented S 1 -bundle M over B with e as its Euler number.

Graphs, decorations and coverings

In this subsection, we recall mostly the material exposed in the first section of [START_REF] Némethi | Resolution Graphs of some Surface Singularities, I (cyclic coverings)[END_REF], also recalled in [START_REF] Némethi | Milnor Fiber Boundary of a Non-isolated Surface Singularity[END_REF]Chapter 5].

Definition 2.6.11. A graph Γ is the data of two finite sets V (Γ), and E (Γ), together with a map end : E (Γ) → {subsets of V (Γ) with at most two elements}.

The set V (Γ) is called the set of vertices of Γ, E (Γ) is called the set of edges of Γ, and if e ∈ E (Γ) and end(e) = {v 1 , v 2 }, v 1 and v 2 are called the end-vertices of e.

Remark 2.6.12. Note that we do not talk about first or second end-point, in order to work in the setting of undirected graphs. Definition 2.6.13. An edge e such that end(e) has only one element v is called a loop based at v. Definition 2.6.14. A topological realization of a graph Γ is a 1-dimensional CW-complex |Γ| whose 0-cells and 1-cells correspond respectively to the vertices and edges of Γ, with the appropriate combinatorics.

If |Γ| is a topological realization of Γ, denote c Γ the rank of

H 1 (|Γ|, Z), following [44, 1.2].
Remark 2.6.15. Every graph admits a topological realization, which is unique up to homeomorphism. Therefore its first Betti number c Γ is well-defined. Definition 2.6.16. A connected graph Γ such that c Γ = 0 is called a tree. Definition 2.6.17. A covering tree for a connected graph Γ is a subgraph Γ of Γ which is a tree and such that V (Γ ) = V (Γ).

Remark 2.6.18. A covering tree always exists and is not unique as soon as Γ is not a tree. Definition 2.6.19. A morphism of graphs p : Γ 1 → Γ 2 consists of two maps

p V : V (Γ 1 ) → V (Γ 2 )
and

p E : E (Γ 1 ) → E (Γ 2 ) such that, if v 1 , v 2 are the end-vertices of e ∈ E (Γ 1 ), then p V (v 1 ) and p V (v 2 ) are the end-vertices of p E (e).
Such a map is called an isomorphism of graphs if both p V and p E are bijective.

Definition 2.6.20. A decorated graph is a graph Γ with additional data, both on V (Γ) and on E (Γ). In this work the decorations will be of different natures.

Let Γ be a graph, and Γ be a decoration of Γ. We say that Γ is the graph associated to Γ.

Example 2.6.21. A very classical decoration, that will be at least implicitly present in every graph of this work, makes a distinction between two types of vertices. Write the set of vertices of Γ as a disjoint union

V (Γ) = N (Γ) A (Γ).
The set N (Γ) is called the set of nodes of Γ, while vertices of A (Γ) are called arrowheads. Nodes will be represented by dots while arrowheads are represented by arrowheads .

In this work, every vertex is a node, unless stated otherwise. Definition 2.6.22. Let Γ 1 , Γ 2 be two decorated graphs, with associated graphs Γ 1 and Γ 2 .

The decorated graphs Γ 1 and Γ 2 are said to be isomorphic if there is an isomorphism between Γ 1 and Γ 2 that preserves the decorations. Definition 2.6.23. (See [44, 1.3].) We say that Z acts on a graph Γ if there are group actions a

V : Z × V (Γ) → V (Γ)
and

a E : Z × E (Γ) → E (Γ) such that if v 1 and v 2 are the end-vertices of e ∈ E (Γ), then a V (1, v 1 ) and a V (1, v 2 ) are the end-vertices of a E (1, e).
If Γ 1 and Γ 2 are both endowed with Z-actions, a morphism p : Γ 1 → Γ 2 is called equivariant if the maps p V and p E are both equivariant with respect to the actions of Z, i.e. if they commute with the action of Z. If, in addition, p is an isomorphism, such a morphism is called an equivariant isomorphism of graphs. Definition 2.6.24. Let F be a finite set. A cyclic order on F is an automorphism of F that generates a transitive group of automorphisms. That is, as a permutation it is a cycle.

Example 2.6.25. A Z-action on a graph Γ induces a cyclic order on each orbit, made either of edges or vertices, under this action. Reciprocally, the data of cyclic orders on sets partitioning V (Γ) and E (Γ), with the appropriate compatibility axioms, gives rise to a Z-action on Γ. Definition 2.6.26. Let Γ be a graph, endowed with the trivial action of Z. A Z-covering, or cyclic covering, of Γ, is a graph G such that Z acts on G, together with an equivariant map p : G → Γ, such that the restriction of the action of Z to any set of the type p -1 (v) or p -1 (e) is transitive.

Notation 2.6.27. In this setting, if v ∈ V (Γ) and e ∈ E (Γ), then the elements of p -1 (v) are called the vertices associated to v, while the elements of p -1 (e) are called the edges associated to e.

Remark 2.6.28. Let G be a cyclic covering of a graph Γ.

For any v ∈ V (Γ) or e ∈ E (Γ), denote n v , respectively n e , the cardinal of p -1 (v), respectively p -1 (e). Then if v 1 , v 2 ∈ V (Γ) are the end-vertices of e ∈ E (Γ), there is d e ∈ N * such that n e = d e • lcm(n v 1 , n v 2 ).
Definition 2.6.29. A covering data for a graph Γ is a system of positive integers

(n v , n e ) = {n v } v∈V (Γ) , {n e } e∈E (Γ) such that for all e ∈ E (Γ) with end-vertices v 1 , v 2 , the number n e is a multiple of lcm(n v 1 , n v 2 ). Definition 2.6.30. Two cyclic coverings G 1 , G 2 of a graph Γ, with maps p i : G i → Γ, are called equivalent if there is an equivariant isomorphism q : G 1 → G 2 such that p 1 = p 2 • q.
The set of equivalence classes of cyclic coverings of Γ with covering data

(n v , n e ) is denoted G (Γ, (n v , n e )).
Theorem 2.6.31. [START_REF] Némethi | Resolution Graphs of some Surface Singularities, I (cyclic coverings)[END_REF] The set G (Γ, (n v , n e )) has an abelian group structure, and it is independent of the numbers n e such that (n v , n e ) is a covering data for Γ.

See [44, 1.11] for a description of the identity element of this group. The following results expose cases where the covering data is enough to determine the isomorphism type of the graph G covering Γ.

Theorem 2.6.32. [44, Theorem 1.19] If Γ is a tree, then for any covering data (n v , n e ), G (Γ, (n v , n e )) = {0}.
Theorem 2.6.33. [START_REF] Némethi | Resolution Graphs of some Surface Singularities, I (cyclic coverings)[END_REF]Theorem 1.20] Let Γ be a graph, and denote Γ =1 the subgraph of Γ obtained from Γ by deleting every v ∈ V (Γ) such that n v = 1, and every edge having one of those vertices as an endpoint. If Γ =1 is a disjoint union of trees, then for any covering data

(n v , n e ), G (Γ, (n v , n e )) = {0}.
The next result exposes a case where the covering data may not be enough for the determination of the isomorphism type of the covering graph, but where the missing data is simple to describe. This may be useful in special cases of the method of computation presented in Chapter 4, although there are no known examples yet.

Definition 2.6.34. A graph is cyclic if V (Γ) = {v 1 , • • • , v k } and E (Γ) = {e 1 , • • • , e k },
such that the end points of e i are v i , v i+1 , where v k+1 denotes v 1 . In other words, a graph is cyclic if its topological realization is homeomorphic to a circle.

It may be shown that any graph Γ with c Γ = 1 has a unique cyclic subgraph.

Proposition 2.6.35. [44, Corollary 1.22] Let Γ be a graph such that c Γ = 1, and let Γ be the unique cyclic subgraph of Γ. Let (n v , n e ) be a covering data for Γ, and denote

d := gcd{n v , v ∈ V (Γ )}. Then G (Γ, (n v , n e )) = Z d .
In particular, if d = 1, the covering data determines the covering graph uniquely.

Graph manifolds

Let us explain here how, in this work, a decorated graph encodes an oriented 3-manifold. See [START_REF] Neumann | A Calculus for Plumbing applied to the Topology of Complex Surface Singularities and Degenerating Complex Curves[END_REF] for more details. The manifolds described here are also called plumbed manifolds, explored for the first time in themselves as a special class of 3-manifolds by Waldhausen in [START_REF] Waldhausen | Eine Klasse von 3-dimensionalen Mannigfaltigkeiten[END_REF], after having been introduced implicitly in the work [START_REF] Mumford | The Topology of Normal Singularities of an Algebraic Surface and a Criterion for Simplicity[END_REF] of Mumford.

Definition 2.6.36. Let Γ be a graph with decorations of the following type:

• Each edge is decorated by a ⊕ or symbol. We may omit the ⊕ decoration when representing such graphs.

• Each vertex v is decorated by a self-intersection e v ∈ Z and a genus [g v ], g v ∈ N. We may omit the genus decoration if it is 0.

Such a graph is called an orientable plumbing graph.

Define the oriented manifold M Γ associated to Γ in the following way: for each vertex v of Γ decorated by ([g v ], e v ), let M v be an oriented 3-manifold which is a fibration in S 1 of Euler number e v over a closed smooth surface B v of genus g v . Pick an orientation of the base and the fibers so that, taken together, they give the orientation of M v . Now, let λ v be the number of times the vertex v appears as endpoint of an edge. Remove from

B v disjoint open disks (D i ) 1 i λv , consequently removing as many open solid tori from M v . Each ∂D i is oriented as boundary component of B v \ D i . Denote by M b v the resulting circle bundle with boundary. Denote ∂M b v = T i a disjoint union of tori.
For every edge between the vertices v and v , glue the manifolds M b v and M b v in the following way: pick boundary components

T = ∂D × S 1 in M b v , T = ∂D × S 1 in M b v
, and glue T and T according to the matrix 0 1 1 0 , being the sign on the edge.

Finally, if the graph has several connected components, the resulting manifold is the connected sum of the manifolds corresponding to the different connected components.

The initial graph Γ is what we call a plumbing graph representing the final manifold M Γ obtained by this construction, and the oriented manifold M Γ is called the manifold plumbed according to the graph Γ, or the graph manifold associated to Γ.

Remark 2.6.37. Let us insist on the fact that a loop based at v in the graph Γ imposes one to remove two disjoint open disks form the base B v .

Note that, in the litterature, one may accept negative genera, corresponding to nonorientable surfaces. For the denomination "orientable plumbing graphs", we follow [47, 3.2(i)].

The plumbing calculus

In this section we introduce a version of Neumann's plumbing calculus. We follow entirely the notations of [46, Section 4.2], consistently with [START_REF] Neumann | A Calculus for Plumbing applied to the Topology of Complex Surface Singularities and Degenerating Complex Curves[END_REF]. Note that we do not allow moves [R2], [R4] of [START_REF] Neumann | A Calculus for Plumbing applied to the Topology of Complex Surface Singularities and Degenerating Complex Curves[END_REF], as they produce pieces whose bases are non-orientable surfaces.

Proposition 2.6.38. Two manifolds M Γ 1 and M Γ 2 associated to the plumbing graphs Γ 1 and Γ 2 are orientation-preserving diffeomorphic if and only if one may obtain one graph from the other by applying the following operations or their inverses.

[R0](a) Reverse the signs on all edges other than loops adjacent to any fixed vertex.

[R1] (blowing down) Here, = ±1, and 0 , 1 , 2 verify 0 = -1 2 .

. . .

[g] e ǫ . . .

[g]

eǫ a)

. . .

[g 1 ] e 1 ǫ . . . [g 1 ] e 1 -ǫ . . . [g 2 ] e 2 ǫ 1 ǫ 2 e 2 -ǫ [g 2 ] ǫ 0 . . . b) . . . [g] e ǫ . . . [g] e -2ǫ ǫ 1 ǫ 2 ǫ 0 c)
[R3] (0-chain absorption) Here, i = i if the edge in question is a loop, and i =i otherwise.

. . .

[g 1 ] e 1 0 . . . [g 1 + g 2 ] e 1 + e 2 . . . [g 2 ] e 2 ǫ ǫ ǫ 1 ǫ s . . . ǫ 0 1 ǫ 0 s [R5] (oriented handle absorption)
. . .

[g] e 0 . . .

[g + 1]

e ⊖ ⊕ [R6] (Splitting) Here, each Γ j is a connected graph, and is connected to the vertex e by k j edges.

Γ 1 Γ s . . . . . . e [g] 0 . . . Γ 1 Γ s F F
: : :

F 0 0 0 : : : f 2g + P (k j -1)

copies

[R7] (Seifert graph exchange) According to the original graph, one of the six following modifications:

⊕ ⊕ ⊕ -1 0 1 -3 -2 -1 -6 -4 -4 -1 -2 -3 -3 -3 -1 ⊖ -1 -2 -2 -2 -2 -2 -2 -2 ⊖ 0 -2 -2 -2 -2 -2 -2 -2 -2 40 ⊖ 1 -2 -2 -2 -2 -2 -2 -2 -2 -2
Remark 2.6.39. In [START_REF] Némethi | Milnor Fiber Boundary of a Non-isolated Surface Singularity[END_REF], the authors exclude moves [R6],[R7], as operating these moves changes some invariants they are studying, related to monodromy phenomena. See Paragraph 4.2.3 in [START_REF] Némethi | Milnor Fiber Boundary of a Non-isolated Surface Singularity[END_REF]. Remark 2.6.40. Observe that the inverse of move [R6] does not preserve the planarity of graphs. Indeed the three graphs of figure 2.1 are all equivalent, but the first one is not planar, as it contains the complete graph K 5 with five vertices. The two others are planar, one is connected, the other is not. However, note that all moves of the plumbing calculus, in the direction in which they are presented, preserve planarity. Furthermore, the method presented in [START_REF] Neumann | A Calculus for Plumbing applied to the Topology of Complex Surface Singularities and Degenerating Complex Curves[END_REF] for the computation of the normal form of a graph preserves planarity. Finally, an example of a non-planar graph in normal form is given by the graph K 5 with any decoration. The fact that the operations leading to the normal form of a graph preserve planarity implies that this graph is not equivalent to a planar graph.

Boundary of a tubular neighbourhood

The goal of this section is to provide a proper definition of a tubular neigbourhood of a simple configuration of compact real-analytic surfaces in a 4-dimensional realanalytic manifold, and to express the correspondence between the curve configuration and the topology of the boundary of its tubular neighbourhood.

Plumbing graph associated to a simple configuration of surfaces

Let us start with a general definition that will simply be a matter of vocabulary, valid in a very general setting:

Definition 2.7.1. (Dual graph of a collection.) Let E = f inite
E i be a finite covering of a set E by sets (E i ) i∈I , satisfying the following two conditions:

1. For any i = j, E i ∩ E j is finite.

For any

i = j = k = i, E i ∩ E j ∩ E k = ∅.
The dual graph Γ(E) of the covering is constructed in the following way: • It has (v E i ) i∈I as set of vertices.

[g 4 ] [g 3 ] [g 2 ] 0 0 0 • • • f 2g 1 + 3 copies
• The edges having v E i and v E j as end-points correspond bijectively to the intersection points of E i and E j .

Definition 2.7.2. (Simple configuration of surfaces, and its plumbing dual graphs.) Let S be a 4-dimensional oriented real-analytic manifold. A simple configuration of compact real-analytic surfaces in S is a subset E ⊂ S such that:

1. E = f inite E i , such that each E i is an oriented closed smooth real-analytic surface. 2. For all i = j = k = i, the intersection E i ∩ E j ∩ E k is empty.
3. For all i = j, the intersection E i ∩ E j is either empty or transverse. In particular, it is a finite union of points.

In this setting, one defines a plumbing dual graph Γ S (E) of E in S by decorating its dual graph in the following way:

1. Decorate each vertex v E i by the self-intersection e i of E i in S and by the genus [g i ] of the surface E i .

2. Decorate each edge of Γ(E) corresponding to the intersection point p of E i ∩ E j , by ⊕ if the orientation of E i followed by the orientation of E j is equal to the orientation of S at p, and by otherwise.

Remark 2.7.3. For details about the history of the notion of dual graph, one may consult the article [START_REF] Popescu-Pampu | From singularities to graphs[END_REF].

Computation of self-intersections

In our context, one will compute the desired self-intersections by using the multiplicities of some special function:

Definition 2.7.4. Let E = f inite
E i be a simple configuration of compact oriented realanalytic surfaces in a 4-dimensional real-analytic manifold S . A real-analytic function g :

S → C is called adapted to E if 1. E tot := g -1 (0) is a simple configuration of oriented, not necessarily compact, real- analytic surfaces, such that E tot ⊃ E.

(a) For any component

E i of E tot , ∀ p ∈ E i \ j =i
E j , there is a neighbourhood U p of p in S and complex coordinates (x p , y p ) on U p such that

U p ∩ E i = {x p = 0} and n i ∈ N * such that g = x n i p • ϕ where ϕ : U p → C is a unit at p. (b) For any components E i of E, E j of E tot , ∀ P ∈ E i ∩ E j , there is a neighbourhood U p of p in S and complex coordinates (x p , y p ) on U p such that U p ∩E i = {x p = 0}, U p ∩ E k = {y p = 0}, and n i , n k ∈ N * such that g = x n i p y n j p • ϕ where ϕ : U p → C is a unit at p.
Definition 2.7.5. In this setting, the integer n i of point 2a of Definition 2.7.4, independent of the point p

∈ E i \ j =i E j , is called the multiplicity of g on E i , denoted m E i (g).
Remark 2.7.6. In general, there is no reason to believe that an adapted function will exist. However, in our setting, we will have access to such a function. See Sections 4.11, 4.12.

Lemma 2.7.7. (Computing self-intersections.) Let S , E, g, E tot be as in Definition 2.7.4. Let E (1) be an irreducible component of E. Then the self-intersection e (1) of the surface E (1) in S verifies the following condition: let p 1 , • • • , p n be the intersection points of E (1) with other components of E tot , p j ∈ E j ∩ E (1) , where the same component may appear several times. Then n (1) • e (1) = n i=1 i • n i where i ∈ {-1, +1} refers to the sign associated to the intersection p i in the following sense: if p ∈ E i ∩ E j , associate +1 to p if and only if the combination of the orientations of E i and E j at p provides the ambient orientation of S .

Proof. The proof follows the standard argument in the holomorphic category. The difference of the two members of the equation is the intersection number of E (1) with the cycle defined by g = 0. This cycle is homologous with that defined by a nearby level of g, which does not meet E (1) any more. The intersection number being invariant by homology, one gets the desired result.

In order to make this argument rigorous, one has to work in convenient tubular neighborhoods of E and to look at the cycles defined by the levels of g in the homology of the tube relative to the boundary.

Correspondence between neighbourhoods and graphs

Definition 2.7.8. (See [START_REF] Durfee | Neighborhoods of Algebraic Sets[END_REF].) Let E be a simple configuration of compact orientable realanalytic surfaces in an oriented 4-dimensional real-analytic manifold S . In this context, we call rug function any real-analytic proper function ρ : S → R + such that ρ -1 (0) = E. Theorem 2.7.9. Let E be a simple configuration of compact orientable real-analytic surfaces in an oriented 4-dimensional real analytic manifold S , that admits a rug function ρ as in Definition 2.7.8. Then, for ε > 0 small enough, the boundary of the oriented 4-manifold {ρ ε} is orientation-preserving homeomorphic to the graph manifold associated to the graph Γ S (E). Definition 2.7.10. In this setting, the manifold {ρ ε} is called a tubular neighbourhood of E.

About the proof of Theorem 2.7.9. This theorem can be seen as an extension of what is done in [START_REF] Mumford | The Topology of Normal Singularities of an Algebraic Surface and a Criterion for Simplicity[END_REF], in the case of a configuration of complex analytic curves in a smooth complex surface.

In our case, observe first that we can extend the definition of rug functions to semianalytic functions ρ, and still have a unique homeomorphism type for the boundary of the neighbourhood {ρ ε} of E for ε > 0 small enough, following the proof of [START_REF] Durfee | Neighborhoods of Algebraic Sets[END_REF]Proposition 3.5]. Now, one can build by hand a semi-analytic neighbourhood whose boundary is homeomorphic to the manifold Γ S (E). This is done by building a rug function for each irreducible component E i of E, providing a tubular neighbourhood T i of each E i whose boundary is an S 1 -bundle of Euler class e i over E i . One then plumbs those bundles using appropriate normalizations of the rug functions, building a semi-analytic neighbourhood of E which is homeomorphic to the desired graph manifold.

Remark 2.7.11. Note that the decorations on the edges of the graph Γ S (E) depend on the orientations of the surfaces E i . However, if the surfaces E i are only orientable, the different possible plumbing dual graphs still encode the same graph manifold, see move [R0] of the plumbing calculus.

In the sequel, all the cones will be rational, convex and polyhedral, so we will omit these terms. Definition 3.1.4. A d-dimensional cone σ will be called simplicial if it can be generated by d vectors. Furthermore, in this case there is a unique set of d primitive vectors v 1 , . . . , v d ∈ N , called its primitive generators, such that σ = v 1 , . . . , v d R + .

With these notations, the simplicial cone σ is said to be regular if the family (v 1 , . . . , v d ) generates the semigroup (σ ∩ N, +). All other cones are called singular.

Definition 3.1.5. For v 1 , . . . , v d ∈ N , let us define det(v 1 , . . . , v d ) := l(v 1 ∧ • • • ∧ v d ) ∈ N, in the lattice d N . If N is identified to Z n , then det(v 1 , . . . , v d ) is equal to the gcd of the d × d minors of the matrix (v 1 , . . . , v d ).
Lemma 3.1.6. Criterion for regularity.

Let σ be a simplicial cone, and (v 1 , . . . , v d ) its set of primitive generators. Then

σ is regular if and only if det(v 1 , . . . , v d ) = 1.
In other words, σ ⊂ N R is regular if and only if it is generated by a sub family of a basis of the Z-module N .

Definition 3.1.7. We will usually denote by M := N = Hom(N, Z) Z n the dual lattice of N .

For σ a convex cone of dimension d in N R of dimension n, let us define its dual cone

σ := {m ∈ M R , ∀ n ∈ σ, m, n 0} ⊂ M R
and its orthogonal

σ ⊥ := {m ∈ M R , ∀ n ∈ σ, m, n = 0} ⊂ σ .
Remark 3.1.8. The cone σ is also a rational convex polyhedral cone, while σ ⊥ is a vector subspace of N R of dimension n -d. It is the maximal linear subspace of the cone σ .

Let us now present some properties of the duality for cones: Lemma 3.1.9. Let σ, τ be cones in a lattice.

1. (σ ) = σ. 2. τ ⊂ σ ⇐⇒ σ ⊂ τ . 3. σ is simplicial iff σ is simplicial. 4. Furthermore, if σ is of maximal dimension, σ is regular iff σ is regular.
5. σ is of maximal dimension iff σ is strongly convex. More generally, the codimension of σ is equal to the dimension of the biggest vector space contained in σ . This vector space is σ ⊥ .

Definition 3.1.10. Let σ be a cone. A face of σ is any cone of the form

σ ∩ m ⊥ = {n ∈ σ, m, n = 0}, for some m ∈ σ .
The fact that τ is a face of σ will be denoted τ σ. Any face of σ different from σ is called a proper face, denoted τ ≺ σ.

Define the relative interior of a cone σ to be

• σ := σ \ τ ≺σ τ .
Remark 3.1.11. Any face of a strongly convex cone is strongly convex.

Remark 3.1.12. There is a 1 -1 correspondence between faces of σ and faces of σ of complementary dimension, that reverses inclusion, given by: τ σ ↔ τ ⊥ ∩ σ σ . Note also that if τ = σ ∩ m ⊥ , then m ∈ τ ⊥ . Lemma 3.1.13. Let σ be a strongly convex cone of dimension d n in N , and τ 1 , . . . , τ k its faces of codimension 1. Then σ can be written as:

σ = σ ⊥ ⊕ v 1 , . . . , v k R + where v i ∈ (τ ⊥ i \ σ ⊥ ) ∩ σ .
In other words, the v i 's are elements of σ such that

τ i = v ⊥ i ∩ σ.
Proof. It is clear that σ can be written as σ = σ ⊥ ⊕ µ, where µ is a strongly convex cone of dimension d. Let us write µ = w 1 , . . . , w l R + , and recall that dim(σ ⊥ ) = n -d. Now, any face of dimension n -d + 1 of σ is of the form σ ⊥ ⊕ w i R + , and corresponds (by remark 3.1.12) to a face of dimension d -1 of σ. This shows that k = l.

Using the explicit correspondence gives us that (up to renumbering),

τ ⊥ i ∩ σ = σ ⊥ ⊕ w i R + , which shows that w i ∈ (τ ⊥ i \ σ ⊥ ) ∩ σ . Remark 3.1.14. Furthermore, if M is a d-dimensional sublattice of M such that M = M ⊕ σ ⊥ ∩ M ,
then all the v i 's can be chosen in M . This means that given a complementary sublattice M of σ ⊥ ∩ M in M , one gets a decomposition

σ ∩ M = σ ⊥ ∩ M ⊕ σ ∩ M .
This decomposition can in fact be seen more intrinsically. 

σ ∩ M , + σ Mσ ∩ M σ , + .
We get as a direct consequence the isomorphism of semigroups

σ ∩ M, + σ ⊥ ⊕ σ Mσ ∩ M σ , + .

The affine toric variety defined by a cone

Prologue 3.2.1. In the sequel we will consider affine varieties obtained as spectra of subrings of

A M := C[M ].
As a vector space, A M has a basis formed by elements of the form χ m , m ∈ M , with the multiplication determined by the addition in M :

χ m • χ m = χ m+m .
Let us introduce now the torus associated to the lattice N , denoted T N . It is the maximal ideal spectrum of A M . It can be seen more concretely as the set of morphisms of groups from (M, +) to (C * , •). It is non canonically isomorphic as a group to ((C * ) n , •), which is an algebraic torus. This denomination comes from the fact that (C * ) n retracts by deformation to the n-dimensional torus S 1 n . The torus acts on itself by multiplication. If φ, ψ ∈ T N , then the action is defined by:

∀ m ∈ M, (φ • ψ)(m) = φ(m) • ψ(m). Definition 3.2.2. Let σ ⊂ N R be a cone. Denote by (S σ , +) := (σ ∩ M, +)
the semigroup associated to this cone, and by

A σ := C[S σ ]
the algebra generated by this semigroup.

The affine toric variety associated to σ is

X σ := Spec(C[σ ∩ M ]) = Spec(A σ ).
Remark 3.2.3. We see that dim(X σ ) = dim(σ ), hence, as soon as σ is strongly convex, by lemma 3.1.9, dim(X σ ) = dim(M ) = n. In the sequel, on the N side, the only cones we will consider will be strongly convex.

Remark 3.2.4. A family m 1 , • • • , m k ∈ M generating the semigroup σ ∩ M provides an embedding X σ → Spec (C[χ m 1 , • • • , χ m k ]) = C k x 1 ,••• ,x k . Definition 3.2.5. Given a d-dimensional strongly convex cone σ in N R , define the intrinsic d-dimensional variety X σ (N σ ) := Spec(C[σ Mσ ∩ M σ ]).
Using proposition 3.1.16, we get:

Proposition 3.2.6.
There is a non-canonical isomorphism of affine analytic varieties

X σ (C * ) n-d × X σ (N σ ).
Proposition 3.2.7. Closed points of X σ (maximal ideals of A σ ), which form a dense subset of X σ , correspond to semigroup morphisms (S σ , +) → (C, •). This set contains the torus T N defined in 3.2.1, corresponding to the semigroup morphisms

(S σ , +) → (C * , •). Furthermore, the torus T N is dense in X σ .
Proof. By strong convexity of σ, σ is n-dimensional, hence contains a basis of M . So a semigroup morphism σ ∩ M → C * is determined by its values on the elements of this basis. In this way we can identify these points with (C * ) n . Now any semigroup morphism S σ ∩ M → C can be written as a limit of morphisms S σ ∩ M → C * , hence the density.

Proposition 3.2.8. The action of the group T N on itself extends to a continuous action on the whole variety X σ , making T N the unique n-dimensional orbit.

On closed points, the action is defined as on T N , by multiplication: if φ ∈ X σ and

ψ ∈ T N , then φ • ψ ∈ X σ is defined by ∀ m ∈ M, (φ • ψ)(m) = φ(m) • ψ(m).
Proposition 3.2.9. If τ ⊂ σ, then the inclusion A σ ⊂ A τ gives rise to a canonical birational morphism of algebraic varieties X τ → X σ . This morphism is an injection if and only if τ is a face of σ.

More precisely:

Proposition 3.2.10. Let τ be a proper face of σ, and u ∈ σ ∩ M , u primitive, such that τ = u ⊥ ∩ σ. Then:

1. S τ = S σ + u • Z 0 . 2. X τ embeds in X σ as a principal open subset.
Proof.

The inclusion

S τ ⊃ S σ + u • Z 0 is immediate, because σ ⊃ τ , and u ∈ τ ⊥ .
Now, let w ∈ τ ∩ M . We want to prove the following:

∃ p ∈ N, ∀ m ∈ σ, w + p • u, m 0.
Let us write σ = m 1 , . . . , m k R + . For p ∈ N, and

σ m = k i=1 a i m i , a i ∈ R + , w + p • u, m = k i=1 a i ( w, m i + p • u, m i ).
Now, ∀ i, u, m i 0 because u ∈ σ , and as soon as

m i / ∈ τ, u, m i > 0. If m i ∈ τ , then w, m i
0 so we have nothing to do. Hence we just have to choose

p max m i / ∈τ - w, m i u, m i 2.
It follows from the first assertion that A τ = (A σ ) χ u , i.e.

X τ ∼ = D(χ u ) := {q ∈ Specm(A σ ), (χ u ) q}.

The toric variety defined by a fan

Definition 3.3.1. A fan F in N R is a finite set of strongly convex cones such that:

1. If σ ∈ F , any face of σ is in F .
2. The intersection of two cones of F is a face of each.

The support |F | of the fan F is the union σ∈F σ of the cones composing it.

Remark 3.3.2. A cone σ, together with the collection of all its faces, defines a fan. For short, in the sequel, we will simply call it the fan σ.

Definition 3.3.3. A fan F in N R defines a toric variety X F in the following way: take the disjoint union of the X σ 's, for all σ in F , and, if σ and σ are cones of F , glue X σ and X σ along X σ∩σ .

X F := σ∈F X σ X σ ∼ X σ∩σ X σ Proposition 3.3.4.
The actions of the torus T N on each X σ glue together, in agreement with the gluing of the X σ 's, giving rise to a global action of the torus on X F , under which the torus T N is the unique n-dimensional orbit. Furthermore T N is open and dense in X F .

This is why we call it a toric variety. More generally:

Definition 3.3.5. A toric variety is an algebraic variety X containing a torus T (i.e. a group isomorphic to ((C * ) n , .), for some n) as a Zariski dense open subset, for which the action of T on itself by multiplication extends to the whole variety X.

Proposition 3.3.6. A toric variety is normal if and only if it can be defined by a fan.

One of the main advantages of such a description of a variety is that much topological information about the variety is encoded combinatorially: ∈ σ ⊥ ∩M . Furthermore, the variety O σ can be seen as

O σ = Spec(C[σ ⊥ ∩ M ])
providing, non-canonically, the isomorphism

O σ (C * ) n-d . Remark 3.3.8. In particular, O {0} = T N . Furthermore, if F = σ, then O σ is the unique minimal-dimensional orbit in X σ . If dim(σ) = n, it
is called the origin of X σ , and denoted 0 Xσ . With this notation, if σ is of maximal dimension, we get the germ of toric variety (X σ , 0 Xσ ), or (X σ , 0), whose local ring of germs of holomorphic functions is

O Xσ,0 = C{σ ∩ M }.
Proof of proposition 3.3.7. An element of X σ \ X τ i is a semigroup morphism φ : S σ → C that is not a semigroup morphism (S τ i , +) → (C, •), for any i. Let us give a characterization of such morphisms. We know that σ ⊥ ∩ M ⊂ S σ , and is a group, hence the morphism φ must be everywhere different from 0 here.

On the other hand, if v i ∈ S σ such that τ i = v ⊥ i ∩ σ, we know by proposition 3.2.10 that

S τ i = S σ + v i • Z 0 , hence if φ(v i ) = 0,
φ can be extended to S τ i . This means that we must have φ(v i ) = 0 for all such v i , for all i.

This discussion, combined with the decomposition σ = σ ⊥ ⊕ v 1 , . . . , v k R + provided by lemma 3.1.13, leads to the following characterization:

A point in

X σ \ X τ i is a semigroup morphism φ : (σ ∩ M, +) → (C, •) such that: ∀ m ∈ σ ∩ M, φ(m) = 0 iff m ∈ σ ⊥ .
This presents the set of points of X σ \ X τ i as an orbit under the action of the torus.

Considering this for any cone of F will give us a decomposition of X F into orbits under the action of the torus, a cone of F corresponding to an orbit:

X F = σ∈F O σ .
Proposition 3.3.9. (Closure of an orbit.)

The closure in X F of an orbit corresponding to a cone τ ∈ F is made of the union of the orbits corresponding to cones of F having τ as a face:

O τ = τ σ O σ .
Remark 3.3.10. In particular, the unique closed orbits are the minimal-dimensional ones, and we also get again the fact that T N is dense in X F , the cone {0} being a face of every cone.

Proof of proposition 3.3.9. If τ σ, then S σ ⊂ S τ , and

σ ⊥ ⊂ τ ⊥ . An element of O τ is a morphism (S σ , +) → (C, •) that is zero exactly outside of τ ⊥ ∩ M , in particular it is zero outside of σ ⊥ ∩ M .
Hence any morphism that is zero outside of σ ⊥ ∩ M can be seen as limit of elements of O τ . Hence

τ σ ⇒ O σ ⊂ O τ .
To conclude the equality, observe that every X σ is an open subset of X F , and that if τ ⊀ σ, then O τ ∩ X σ = ∅. Remark 3.3.11. Note that this implies that 0 Xσ(Nσ) is in the closure of every orbit of X σ (N σ ), every cone of the fan associated to σ being a face of σ.

, This leads to the following: Remark 3.3.12. The geometry of X σ (N σ ) is reflected in the germ (X σ (N σ ), 0 Xσ(Nσ) ). 

(X F , p) (X σ (N σ ), 0 Xσ(Nσ) ) × C n-d .
Proof. This equality comes from Proposition 3.3.9, implying that the only orbits whose closure contain p are those corresponding to faces of τ . Hence we can identify X F at p with the variety X τ at any point of its minimal-dimensional orbit O τ (C * ) n-d .

The previous results imply in particular the following: Proof. We already know that any point in O τ is a morphism (S σ , +) → (C, •) that is zero outside of τ ⊥ , for some σ such that τ σ. It is entirely determined by its restriction to M (τ ) := τ ⊥ ∩ M . Hence one can see it as a morphism τ ⊥ ∩ σ → C. Now note that N τ is canonically dual to M τ , and that σ ∩ τ ⊥ = σ.

Let us study compactness properties in toric varieties: 

|F | = |F | and ∀ σ ∈ F , ∃ σ ∈ F such that σ ⊂ σ.
A refinement of a cone is a refinement of the fan formed by its faces. Definition 3.4.2. Let F be a fan in N , and F a refinement of F .

The toric morphism Π F ,F : X F → X F associated to this refinement is obtained by gluing the morphisms given by the inclusions of cones of F in the cones of F , defined in Proposition 3.2.9.

Recall Definition 2.2.5 of a modification. 

F containing σ . Then Π F ,F (O σ ) ⊂ O σ . The critical locus E F ,F of Π F ,F is exactly the union τ ∈F ,τ / ∈F O τ ∈ X F
of orbits of X F corresponding to new cones, and the discriminant locus

∆(Π F ,F ) is τ ∈F ,τ / ∈F O τ ∈ X F ,
the union of orbits of X F corresponding to cones that have been subdivided.

3.5 Modification associated to a germ of function

Local Newton polyhedron and the associated modification

Let N be an n-dimensional lattice, σ ⊂ N R be a strongly convex cone, and (X σ , 0) the germ of affine normal variety associated to it. Let f ∈ C{σ ∩ M }. We want to study the germ of hypersurface (V (f ), 0) ⊂ (X σ , 0), where V (f ) is the zero locus of f on X σ .

In order to do this, let us introduce the Local Newton Polyhedron of a germ of function on a germ of normal toric variety. To define this we will refer to the following Definition 3.5.1. Let A, B be two subsets of an abelian semigroup (S, +). Their Minkowski sum A + B ⊂ S is defined by

A + B := {a + b, a ∈ A, b ∈ B}. Definition 3.5.2. • Let f = m i ∈σ ∩M a i χ m i ∈ C{σ ∩ M }.
The support of f is:

Supp(f ) := a i =0 {m i } ⊂ σ ∩ M
• The Local Newton polyhedron of f at the origin of X σ is defined as

LNP(f ) := Conv Supp(f ) + σ
where "+ denotes the Minkowski sum in σ .

This definition of Newton polyhedron for general germs may be found in [61, Definition 5], or [START_REF] Popescu-Pampu | Local Tropicalization[END_REF]Definition 8.7].

Lemma 3.5.3. The ideal I(τ ) ⊂ C{σ ∩ M } of functions cancelling on the orbit O τ of X σ is made of the functions f ∈ C{σ ∩ M } such that Supp(f ) ∩ τ ⊥ = ∅. Definition 3.5.4. A function f ∈ C{σ ∩ M } is called suitable if V (f )
does not contain any (n -1)-dimensional orbit of X σ , or equivalently, if Supp(f ) has points in each (n -1)dimensional face of σ .

In the sequel, every function considered will be suitable. 

, z) = x a -θ • y b z c defined on (C 3 , 0) = Spec C{N 3 r,s,t } , for θ ∈ C * .
Here, to each point corresponding to an element of Supp(f ), we added the positive octant, corresponding to (C 3 , 0). We used lighter colors for the faces situated in the planes of coordinates.

The equations of the faces of codimension 1 will turn out to be important when we will use this object to define a modification of the ambient germ. 

∆ v := {m ∈ LN P (f ), m, v = h v (f )}
for some v ∈ σ.

Remark 3.5.8. Note that ∆ 0 = LNP(f ).

Definition 3.5.9. Let σ be a cone in N , and f ∈ C{σ ∩ M }. Let ∆ be a face of LNP(f ) of dimension d. Then the set ). This figure shows the fan "seen from the origin", i.e. this drawing is meant to be understood as the cone over what is drawn, with vertex the origin. This is the way we will represent 3-dimensional fans in the following drawings.

τ ∆ := {v ∈ σ, ∆ v = ∆} = {v ∈ σ/∀ m ∈ ∆, m, v = h v (f )} is a cone of codimension d contained in σ. The set F f := {τ ∆ , ∆ ⊂ LNP(f )} is the fan associated to f . The morphism Π F f : X F f → X σ coming from the refinement of σ is called the modifi- cation of X σ associated to f .
Remark 3.5.11. It is important to notice that, on any cone belonging to the fan F f , the height h v (f ) is linear in the argument v.

This cutting of σ in domains of linearity of the height function is in fact an alternative definition of the fan associated to the function f . Remark 3.5.12. The definition of τ ∆ implies that the face ∆ is "parallel" to τ ⊥ , in the sense that there is a non-unique element v ∆ ∈ M such that {v ∆ } + τ ⊥ is the affine subspace of M R spanned by ∆.

Furthermore

∆ 1 ⊂ ∆ 2 ⇔ τ ∆ 2 τ ∆ 1 .
Hence, again, there is a correspondence between the faces of LNP(f ) and the orbits of X F f . This correspondence will not hold anymore as

0 @ 0 0 1 1 A 0 @ 1 0 0 1 A 0 @ 0 1 0 1 A 0 @ b a 0 1 A 1 (a;b) •

N

Elements of N that attain their minimum on A: Elements of N that attain their minimum on ∆ 2 : Elements of N that attain their minimum on [AB]:

τ 2 = τ 1 = i h h Figure 3.3: The fan associated to x a -θ • y b z c ∈ C[x, y, z].
soon as we will refine F f , but is still pertinent. For ∆ a face of LNP(f ), we will sometimes denote

O ∆ := O τ ∆ ∈ X F f .
It is also clear that

O ∆ = ∆ ⊂∆ O ∆ .
Now, the modification of X σ associated to f is adapted to the function f in the following sense:

Behaviour of the strict tranform, Newton-nondegeneracy

Let F be a refinement of F f , and τ ⊂ σ a cone of F . Denote

Π F : (X F , E F ) → (X σ , 0)
the modification associated to F , and

f = f • Π F the pullback of f by this modification. Let ∆ τ := {m ∈ LNP(f ), ∀ v ∈ τ, m, v = h v (f )} .
Note that we may have τ = τ and still ∆ τ = ∆ τ . However, the assumption that F is a refinement of F f ensures that this definition makes sense. In fact, if γ is the minimal cone of F f containing τ , then ∆ τ = ∆ γ .

Note also that dim(∆ τ ) codim(τ ), and that τ σ ⇒ ∆ σ ⊂ ∆ τ .

Let us study the intersection of the strict transform of V (f ) with the orbit

O τ ∈ X F . Pick a basis v 1 , • • • , v n of the Z-module N , such that ∀ i ∈ {1, . . . , d}, v i ∈ τ and ∀ i ∈ {d + 1, . . . , n}, v i ∈ σ \ τ. Denote m 1 , • • • , m n its dual basis in M , that is, ∀ i, j, m i , v j = δ i,j
. This implies in particular that the family (m i ) d+1 i n is a basis of the Z-module τ ⊥ .

Denote M the sub Z-module of M generated by the family v 1 , • • • , v d . We have

M = M ∩ τ ⊥ ⊕ M . Now, if m ∈ σ , then m = m, v i v i , and ∀ i, m, v i 0, because every v i is in σ. Furthermore, m ∈ ∆ τ ⇔ ∀ 1 i d, m, v i = h v i (f ).
Remark 3.5.13. Note that O τ is compact if and only if ∆ τ is compact. This comes from the fact that the only faces that are "surrounded" by other faces are the compact ones. 

f ∆ := m i ∈∆ a i χ m i .
Denoting h i := h v i (f ), this definition, combined with the preceding considerations, provides the factorization

f = χ h 1 m 1 +•••+h d m d fτ + g where fτ := f ∆τ χ h 1 m 1 +•••+h d m d ∈ C[τ ⊥ ∩ M ],
and every monomial of g is divisible by χ m i , for some 1 i d.

Proposition 3.5.22. Let f ∈ C{σ ∩ M } be a NND germ of analytic function on (X σ , 0), and F a refinement of F f , such that X F is smooth along O τ and ∆ τ is compact. Then the intersection V (f ) ∩ O τ is smooth, and at any point p of this intersection, V (f ), p is a germ of smooth hypersurface of X F intersecting O τ transversally.

Denote E := V (f ) ∩ E F . Lemma 3.5.14 implies that

E = ∆τ compact O τ ∩ V (f ). Then π := Π F | V (f ) : ( V (f ), E) → (V (f ), 0)
is a modification of the germ (V (f ), 0), and the previous proposition implies Corollary 3.5.23. Let f be a germ of NND function on (X σ , 0) and F a refinement of F f such that any cone τ ∈ F such that ∆ τ is compact and dim(∆ τ ) 1 is regular. Then the modification π : (

V (f ), E) → (V (f ), 0) is a resolution of the germ (V (f ), 0).
Furthermore, lemma 3.5.16 implies the following, that will be heavily used in Chapter 5:

Proposition 3.5.24. Let f be a Newton-nondegenerate function on X σ , and F be a refinement of F f . Let τ be a cone of F , such that ∆ τ is compact. Then,

• If codim(τ ) = 1, denote l(∆ τ ) the integral length of this face in M . Then Card V (f ) ∩ O τ = l(∆ τ ).
• If codim(τ ) = 2, denote i(∆ τ ) the number of points of M in the interior of ∆ τ . Then

C(τ ) := V (f ) ∩ O τ is a smooth curve. Furthermore, if dim(∆ τ ) = 2, this curve is irreducible and g(C(τ )) = i(∆ τ ). If dim(∆ τ ) = 1, C(τ ) is a disjoint union of l(∆ τ ) smooth curves of genus 0. Remark 3.5.25. Let us remind that, in both cases, if dim(∆ τ ) = 0, then V (f ) ∩ O τ = ∅.
Let us conclude this section with a lemma giving a precise meaning to the genericity of Newton-nondegenerate functions. Lemma 3.5.26. Let f be a holomorphic function on X σ . Then in the space of coefficients of all those functions h such that LNP(h) = LNP(f ), those which are non-degenerate are Zariski-dense.

:

: 

: u 1 u l 1 (a;c) • 0 B B B @ c 0 a 1 C C C A 0 B B B @ b a 0 1 C C C A 1 (a;b) • 0 B B B @ 1 0 0 1 C C C A 0 B B B @ 0 0 1 1 C C C A 0 B B B @ 0 1 0 1 C C C A u 0 := u l+1 := γ 0 γ 1 γ l u 2
Now we can use this refinement of γ to build a new fan F , refining F h , such that X F h will be regular along the orbits intersected by the strict tranform V (h) of V (h) by

Π F h • Π F ,F h = Π F . Note that V (h) is also the strict transform of V (h) by Π F ,F h .
Figure 3.5 shows a possible fan F . The only orbits that are intersected correspond to colored cones, the γ i 's or u j 's. Proposition 3.5.24 implies that, among them, each orbit of dimension 2 is intersected by a disjoint union of d = (a, b, c) rational curves, and each orbit of dimension 1 is intersected in d points. Along each one of these orbits, the variety X F is smooth. Hence the strict transform V (h) of V (h) by Π F ,F h is also smooth. Denote

π := Π F ,F h | V (h) : V (h) → V (h), and 
Π := Π F | V (h) .
The situation is summarized in the diagram of Figure 3.6.

V (h)

V (h) V (h) π norm Π Figure 3.6:
The successive toric modifications.

The morphism π is a resolution of V (h), while Π is a resolution of V (h). Their common exceptional divisor is a disjoint union of (a, b, c) identical chains of smooth rational curves intersecting transversally. Furthermore, by compatibility of the complex orientations, we get: Lemma 3.5.33. At any intersection point of two such curves, the combination of the complex orientation of each of them gives the ambient complex orientation of V (h). The self-intersection of each compact curve in V (h) is given by the number -k i . In order to see this, let us compute the multiplicities of some regular function g on V (h) such that g vanishes on each of those curves. Such a function is adapted to the exceptional divisor of the resolution in the sense of Definition 2.7.4, allowing the computation of the self-intersections of its irreducible components by the use of Lemma 2.7.7.

O hu i i O hu 0 i O hu 4 i O γ 0 O γ 1 O γ 2 O γ 3 (norm • π) * (fx = y = 0g) (norm • π) * (fx = z = 0g)
Let n 1 , n 2 , n 3 ∈ N, and g(x, y, z) := x n 1 y n 2 z n 3 . Then the multiplicities of the pullback of g by Π on each curve of one of these chains are indicated on figure 3.8. Each vertex corresponds to one of the curves, with an arrow for the non-compact ones. The multiplicities µ i = h u i (g) are written in parenthesis, and they verify

∀ 1 i l, µ i+1 = µ i-1 -k i • µ i (3.6)
because the height function for the monomial g is linear, and because of the relation (3.3) of lemma 3.5.30. In particular, the linearity of the multiplicity provides the value

µ 1 = αµ 0 + µ l+1 δ . (3.7) 
In conclusion, starting from the values a, b, c, Equations (3.4), (3.5) provide δ and α, hence the integers k i via Equation (3.2). If δ = 1, the collection of k i 's is empty. Finally, Equation (3.7) provides the value of µ 1 , while (3.6) provides the other multiplicities.

: : : For a generic choice of coefficients for each f i , with fixed Newton polytopes,

-k 1 -k 2 -k 3 -k l c•n 1 +a•n 3 (a;c) b•n 1 +a•n 2 (a;b) (µ 1 ) (µ l ) (µ 2 ) (µ 3 ) (µ 0 ) = (µ l+1 ) = g C 0 g C l+1 g C 1 g C 2 g C 3 f C l : : :
Card V (f 1 ) ∩ • • • ∩ V (f n ) = V (P 1 , • • • , P n )
and this intersection is entirely realized in the n-dimensional orbit O 0 of X F P .

Furthermore the union

V (f 1 ) ∪ • • • ∪ V (f n ) is a simple normal crossings divisor at V (f 1 ) ∩ • • • ∩ V (f n ), in the sense of Definition 2.2.4.
In this theorem, the genericity of the choice of the coefficients means that each function should be Newton-nondegenerate, and that the surfaces V (f i ) should be in relative generic positions.

Remark 3.5.40. In the continuity of Remark 3.5.37, note that

F f 1 •••fn = F P 1 +•••+Pn , and is the minimal refinement of the cone M R which is a refinement of each F f i .
For us, Theorem 3.5.39 will be used through the following corollary: Corollary 3.5.41. Let M be a 2-dimensional lattice, and let f ∈ C[M ] be a Newtonnondegenerate function. Denote P 1 := P (f ). Then for any P 2 ∈ P(M ), a generic choice of coefficients for the elements of P 2 ∩ M will provide a function g such that P (g) = P 2 and, denoting P = P 1 + P 2 , the compactifications V (f ) and V (g) of V (f ) and V (g) in X F P intersect transversally only on O 0 , in V (P 1 , P 2 ) points.

Remark 3.5.42. To compute 2-dimensional mixed volumes, one can use the identity

V (P 1 , P 2 ) = V ol(P 1 + P 2 ) -V ol(P 1 ) -V ol(P 2 ) 2!
which has an analogue in dimension n.

Chapter 4

The general result and the main algorithm

Introduction and strategy

Let (X, 0) be a germ of complex analytic variety of dimension 3, and let f : (X, 0) → (C, 0) be a germ of holomorphic function on (X, 0). The function f defines a germ (V (f ), 0) of hypersurface on (X, 0), where V (f ) := {x ∈ X, f (x) = 0}. Denote by Sing(V (f )) the singular locus of V (f ), and by Sing(X) the one of X. We are about to introduce the well-known Milnor fibration associated to f , after a few preliminary definitions. In the sequel, if (X, 0) is a germ, X will denote a representative of this germ.

Definition 4.1.1. We say that a real-analytic function ρ : X → R + defines 0 in X if 0 is isolated in ρ -1 (0), i.e. if there is another representative X ⊂ X of (X, 0) such that ρ -1 |X (0) = {0}. Given a real-analytic function ρ defining 0 in X, and ε > 0, denote X ε := X ∩ ρ -1 ([0, ε)), and S ε := X ∩ {ρ = ε}. Let f : (X, 0) → (C, 0) be a germ of holomorphic function, such that X \ V (f ) is smooth. Then there exists ε 0 > 0, such that ∀ 0 < ε ε 0 , ∃ δ ε > 0 such that ∀ 0 < δ δ ε , the following two maps are diffeomorphic smooth fibrations: Using transversality arguments, one may show that the diffeomorphism type of the Milnor fiber does not depend on the chosen representative, so we speak about the Milnor fiber of the germ of function f ∈ O X,0

• f |f | : S ε \ V (f ) → S 1 • f : ∂ ({|f | = δ} ∩ X ε ) → ∂ (D δ ),
The goal of the present chapter is to generalize: Theorem 4.1.5. (Michel-Pichon, [START_REF] Michel | On the Boundary of the Milnor Fibre of Nonisolated Singularities[END_REF], [START_REF] Michel | Erratum: "On the Boundary of the Milnor Fibre of Nonisolated Singularities[END_REF], [START_REF] Michel | Carrousel in Family and Non-isolated Hypersurface Singularities in C 3[END_REF], Némethi-Szilard, [46, 10.2.10])

If (X, 0) = (C 3 , 0), then the boundary of the Milnor fiber of the reduced function f is an oriented 3-manifold, which can be represented by an orientable plumbing graph.

The main theorem of this thesis is the following generalization of Theorem 4.1.5: Theorem 4.1.6. Let (X, 0) be a germ of 3-dimensional complex analytic variety, and f : (X, 0) → (C, 0) a germ of holomorphic function on (X, 0), such that V (f ) ⊃ Sing(X). Then the boundary of the Milnor fiber of f is an oriented 3-manifold, which can be represented by an orientable plumbing graph.

When (X, 0) has isolated singularity, an extension of this theorem to functions of the type f g was already proved by Fernández de Bobadilla and Menegon Neto in [START_REF] Fernández De Bobadilla | The boundary of the Milnor fibre of Complex and Real Non-isolated Singularities[END_REF]. Our theorem extends this result to any ambient germ, with possibly non-isolated singularity. The study of a class of examples of this type is carried out explicitly in Chapter 5, in the case of toric ambient germs.

4.1.7. The strategy. Our strategy of proof generalizes that developed by Némethi and Szilárd in [START_REF] Némethi | Milnor Fiber Boundary of a Non-isolated Surface Singularity[END_REF], with some complications, due to the singular locus of X, along which the transversal type of X may be arbitrarily complicated. As in [START_REF] Némethi | Milnor Fiber Boundary of a Non-isolated Surface Singularity[END_REF], our proof provides a method for the computation of the boundary of the Milnor fiber, but the singular locus of X imposes the need for additional considerations.

• As a prelude, in section 4.3, we show that the ambient germ X can be assumed to be normal.

• Then, in section 4.4, with the help of a second function g in general position relatively to f , we will build a new germ of variety (S k , 0), which will have the same boundary as the Milnor fiber. This variety will have an isolated singularity at the origin, but will be real-analytic, instead of complex-analytic.

• The rest of the proof, from Sections 4.5 to 4.11, essentially consists in building an adapted resolution of S k , i.e. a proper map from a 4-dimensional manifold to S k , which will be an analytic isomorphism outside the preimage of the origin. The preimage E of 0 by this resolution will be a simple configuration of smooth surfaces. We obtain a function g which is adapted to E in the sense of Definition 2.7.4, and therefore allows the computation of the self-intersections of the irreducible components of E, using Lemma 2.7.7. Finally, we also obtain a rug function ρ for E, in the sense of Definition 2.7.8, which defines a tubular neighbourhood of E whose boundary is therefore, by Theorem 2.7.9, a graph manifold described by E. Finally, in Section 4.12, using the fact that the resolution is an orientation-preserving analytic isomorphism outside the origin, one concludes the proof that the link of S k is the same graph manifold as the boundary of the tubular neighbourhood of E. This part is introduced in section 4.5. The resolution is constructed step by step as a composition of several real-analytic modifications, defined and studied from section 4.6 to section 4.11.

• Along the process, one keeps track of the structure of the preimage of the origin by the previous modifications, therefore computing a plumbing graph for the boundary of S k , hence also for the boundary of the Milnor fiber. This structure will be encoded in a graph that we will modify at each step of the process, according to the data in it. This process will be called the main algorithm, because of the possibility in some cases, as for example the case (X, 0) = (C 3 , 0), for one to blindly apply calculation rules to an initial decorated graph in order to obtain a plumbing graph for the boundary of the Milnor fiber of f . The explicit construction of the initial decorated graph is the object of section 4.9.

Main contibutions

As mentioned earlier, this work is an extension of the proof carried out by Némethi and Szilárd in [START_REF] Némethi | Milnor Fiber Boundary of a Non-isolated Surface Singularity[END_REF] for the case where X is smooth. Before proceeding to our proof, let us stress out the main differences that had to be introduced to carry out the proof in the general case:

• The Definition 4.4.2 of a companion is a new ad hoc definition introduced in order to keep the main properties of an Isolated Complete Intersection Singularity (ICIS), which is the notion used in [START_REF] Némethi | Milnor Fiber Boundary of a Non-isolated Surface Singularity[END_REF]. As mentioned in Lemma 4.4.4, if the ambient germ X is a complete intersection, our definition is a restriction of the one of ICIS. The proof of the fact that a companion always exists required the use of more results of the literature, as explained in proof of Lemma 4.4.8.

• Instead of using an embedded resolution as in 6.1.2 of [START_REF] Némethi | Milnor Fiber Boundary of a Non-isolated Surface Singularity[END_REF], we introduce the notion of adapted modification, see Definition 4.6.1. This different definition is less restrictive but still good enough to carry out the computation, and allows simpler computations in the toric case studied in Chapter 5.

• In the general case, the computation of the Milnor fiber requires the use of data that do not appear in the decorated graph Γ (C ) which is the starting point of the algorithm presented in the Chapter 10 of [START_REF] Némethi | Milnor Fiber Boundary of a Non-isolated Surface Singularity[END_REF]. Those data, related to the singular locus of X, are of two kinds.

-The first is the collection of switches associated to a non-rational curve of C , introduced in Subsection 4.10.2.

-The second is a datum concerning the global arrangement of irreducible components of the variety S k when one follows a cycle in the graph Γ (C ). This second problem is explained in Subsection 4.10.4.

Both these data are unnecessary in the case where X is smooth, as shown by Némethi and Szilárd. In Chapter 5, we prove that even in the more general case where (X, 0) is a germ of normal toric variety and the function f is Newton-nondegenerate, one does not need these data.

• Our approach of the problems of orientations is quite different from the one developed in [START_REF] Némethi | Milnor Fiber Boundary of a Non-isolated Surface Singularity[END_REF], because we carefully keep track from the beginning of an orientation for every object appearing in the process of computation. The questions of orientations represent one of the main differences with the case of links of isolated singularities of complex surfaces, and this is a rather delicate point to carry out.

Deformation theoretical reformulation of our main theorem

The main Theorem 4.1.6 may be reformulated in the language of 1-parameter deformations. We recall here this language.

Definition 4.2.1. A 1-parameter deformation of a reduced germ of complex surface (S, s) is a holomorphic morphism f : (X, x) → (C, 0), where (X, x) is an equidimensional germ of complex 3-dimensional analytic space, together with an isomorphism between (S, s) and the special fiber (f -1 (0), x).

Definition 4.2.2. A 1-parameter deformation is called a smoothing whenever its generic fibers are smooth in a neighborhood of x in X.

Now, the hypothesis for f : (X, x) → (C, 0) to be a smoothing of (S, s) implies that one has the hypotheses of Theorem 4.1.2, and can then talk about the Milnor fiber of f , in the sense, again, of the Milnor-Lê fibration. In this context it is also referred to as the Milnor fiber of the smoothing.

Hence, the main theorem can be reformulated as:

Theorem 4.2.3. The boundary of the Milnor fiber of a smoothing of a reduced singularity of complex surface is a graph manifold which can be represented by an orientable plumbing graph.

The ambient germ can be assumed normal

First, let us show that we can suppose the ambient germ of variety (X, 0) to be normal: Lemma 4.3.1. Let (X, 0) be a germ of complex variety of dimension 3, and let N : (X, x) → (X, 0) be its normalization. Let f be a germ of analytic function on (X, 0). Then N provides an orientation-preserving isomorphism of complex-analytic manifolds from the Milnor fiber of f : = f • N defined on the normal germ (X, x) to the one of f .

Proof. Let (X, x) = (X 1 , x 1 ) • • • (X k , x k ) N
-→ (X, 0) be the normalization of (X, 0). Then f and r induce analytic functions f i = f • N, r i = r • N on each X i , and r i defines x i in X i . Now, let ε > 0, δ ε > 0 be adapted (in the sense of Theorem 4.1.2) to every triple (f i , r i , X i ), and to (f, r, X). In this situation, we now have a disjoint union of Milnor fibers

F 1 • • • F k in X 1 • • • X k , each associated with the analytic function f i , F i = f -1 i (δ) ∩ X iε ,
and N provides a diffeomorphism between F , the Milnor fiber of f , and

F 1 • • • F k , because F = f -1 (δ) ∩ X ε ⊂ Sm(X),
and Sm(X) is itself contained in the set of normal points of X.

The real-analytic variety S k

From now on, unless stated otherwise, the ambient variety X will be assumed normal.

The goal of this section is to introduce a 4-dimensional real analytic variety with isolated singularity (S k , 0), which is built in such a way as to have a link diffeomorphic to the boundary of the Milnor fiber of f .

Let us introduce a second function g, that will be used as a computational tool.

Definition 4.4.1. Let g : (X, 0) → (C, 0) be a reduced holomorphic function. Together, f and g define a germ of morphism Φ := (f, g) : (X, 0) → (C 2 , 0). The critical locus of Φ, denoted C Φ , is the closure of the set of smooth points of X where Φ is not a local submersion.

The discriminant locus of Φ, denoted by ∆ Φ , is the image of C Φ by Φ.

For our purposes, the function g must be in a generic position relatively to f , more precisely we will ask g to be a companion of f in the following sense: Definition 4.4.2. We say that the holomorphic function g : (X, 0) → (C, 0) is a companion of f if it satisfies the following conditions:

1. The surface V (g) is smooth outside the origin.

2. V (g) ∩ Sing(V (f )) = {0}.
3. The surfaces V (g) and V (f ) intersect transversally outside the origin, along a smooth punctured curve.

4. The discriminant locus ∆ Φ is an analytic curve.

Remark 4.4.3. This definition is analogue to that of "Isolated Complete Intersection Singularity" (ICIS) described in the work [START_REF] Némethi | Milnor Fiber Boundary of a Non-isolated Surface Singularity[END_REF] of Némethi and Szilárd, in section 3.1, or in the book [START_REF] Looijenga | Isolated Singular Points on Complete Intersections[END_REF] of Looijenga. The denomination "companion" is introduced for the first time in this work. It is a little different from the one of ICIS, mainly to adapt it to any ambient normal germ (X, 0) while keeping the fundamental properties of Definition 4.4.2 that are also verified by ICIS.

Theorem 2.8, point (vi) of [START_REF] Looijenga | Isolated Singular Points on Complete Intersections[END_REF] implies the following:

Lemma 4.4.4. Let (X, 0) be a complete intersection singularity

(X, 0) = (V (f 1 , • • • , f N -3 ), 0) ⊂ (C N , 0)
and g a companion of f . Denote F and G holomorphic functions extending respectively f and g to C N . Then the morphism

Φ := (f 1 , • • • , f N -3 , F, G) is an Isolated Complete Intersection Singularity.
Definition 4.4.5. (See [31, 2.8]) The diffeomorphism type of Φ -1 (x, y), (x, y) / ∈ ∆ Φ is called the Milnor fiber of Φ. In the same way, the diffeomorphism type of Φ -1 (x), x / ∈ ∆ Φ is called the Milnor fiber of Φ.

Note that if (x, y) /

∈ ∆ Φ , then (0, • • • , 0, x, y) / ∈ ∆ Φ . Therefore, we have the following: Lemma 4.4.6. If (X, 0) is a complete intersection germ and g is a companion of f , the Milnor fiber of the morphism Φ is the same as the one of a 1-dimensional ICIS.

Finally, we arrive to the following: Proposition 4.4.7. [31, (5.8)] If (X, 0) is a complete intersection singularity, the Milnor fiber of Φ is connected.

Lemma 4.4.8. Given a holomorphic function f : (X, 0) → (C, 0) such that Sing(V (f )) ⊃ Sing(X), there exists a function g : (X, 0) → (C, 0) that is a companion of f . Furthermore, given an embedding (X, 0) ⊂ (C N , 0) and a function f on X, there is a Zariski open dense set Ω in the space of affine hyperplanes of C N at 0 such that if g = 0 belongs to Ω, the restriction to X of g : (C N , 0) → (C, 0) will be a companion of f . Proof. To verify Conditions 1, 2 and 3, it is enough to take a hyperplane which contains neither the tangent cone to V (f ) nor that to Sing(X) (which is contained in the first one). These finite conditions are therefore realized by a dense subset of hyperplanes through 0. Now, the fact that a generic linear form satisfies Condition 4 follows from the corollary 1 of section 5 of [START_REF] Hironaka | Stratifications and Flatness[END_REF] and theorem 2.1 of [START_REF] Lê | Some Remarks on Relative Monodromy[END_REF].

Remark 4.4.9. Note that Condition 2 implies in particular that V (g) ∩ Sing(X) = {0}. Notation 4.4.10. In the sequel, g will denote a companion of f , and Φ denotes the morphism (f, g) : (X, 0) → (C 2

x,y , 0). Definition 4.4.11. For any k ∈ 2N * , we define the real analytic smooth variety

Z k := {(x, y) ∈ C 2 , x = |y| k } ⊂ C 2 .
This variety is a real surface which we orient by taking the pullback of the complex orientation of the y-axis by the projection on the second coordinate :

Z k → {x = 0} (|y| k , y) → y
Remark 4.4.12. Note that if the integer k is odd, the variety Z k is not analytic.

Lemma 4.4.13. For k ∈ 2N * large enough, there is a neighbourhood U k of the origin in C 2 on which:

U k ∩ ∆ Φ \ V (x) ⊂ U k ∩ {|x| > |y| k }.
The content of this lemma is represented schematically in figure 4.4.

V (y) Condition 1. on ε 0 . We want ε 0 > 0 to be such that X ε 0 is small enough for k 0 . Given any k ∈ 2N * greater than k 0 , and 0 < ε < ε 0 , the neighbourhood Φ(X ε ) of 0 C 2 will then also be small enough for k.

V (x) U k Z k ∆ Φ
More conditions will be imposed on ε 0 later. 

(S k , 0) := Φ -1 (Z k ), 0 = {f = |g| k }, 0 ⊂ (X, 0).
Lemma 4.4.20. The germ (S k , 0) is an isolated singularity of real-analytic 4-variety. Furthermore there exists a representative S k of it such that S k \ {0} is orientable.

Proof. Thanks to Lemma 4.4.13, the variety

S k \ (V (f ) ∩ V (g)) ∩ X ε 0 is a smooth locally trivial fibration over Z k \ {0} ∩ Φ(X ε 0 ), with fiber a smooth complex curve of the form f -1 (x 0 ) ∩ g -1 (y 0 ) ∩ X ε 0 . The smoothness of S k ∩ X ε at V (f ) ∩ V (g) \ {0}
comes from the fact that on V (f ) ∩ V (g) \ {0}, because of the conditions of Definition 4.4.2, V (f ) and V (g) are smooth surfaces intersecting transversally. Hence if p ∈ V (f ) ∩ V (g) \ {0}, there are local coordinates (u, v, w)

at p such that V (f ) = {u = 0} and V (g) = {v = 0}. Locally, f = I f (u, v, w) • u g = I g (u, v, w) • v
where I f , I g are units at p. Hence,

at p, S k = {I(u, v, w)u = |v| k }
where I is a unit at p. This shows that S k is smooth along V (f ) ∩ V (g) \ {0}. Now, an orientation of S k \ (V (f ) ∩ V (g)) is built by orienting the fibers using the complex structure, and then taking the product of the orientations of the base and fibers. This provides an orientation of S k .

In the sequel, k k 0 is fixed and S k is considered as an oriented variety, with the orientation described in the previous proof. Now we are going to build cautiously actual representatives of S k and of the Milnor fiber of f , that will allow us to compare their boundaries.

Recall that for ε > 0, we denote

S ε := ρ -1 (ε) ⊂ X.
Condition 2. on ε 0 . From now on, in addition to the Condition 1, we ask ε 0 > 0 to be such that ∀ 0 < ε < ε 0 , S k intersects transversally S ε .

Definition 4.4.21. Set 0 < ε < ε 0 , and take k 0 k ∈ 2N * . Then we define the real-analytic 4-dimensional oriented variety First, observe that there is an isotopy from F to the manifold with corners

S k := Φ -1 (Z k ) ∩ X ε = {f = |g| k } ∩ X ε ⊂ X F Sing(V (f )) ⊃ Sing(X) 1 V (g) V (f )
F := {f = δ} ∩ {|g| δ 1/k } ∩ X ε (4.1)
This isotopy follows from integrating the vector field provided by the gradient of the function |g| :

F ∩ {|g| δ 1/k } → R +
To see that this vector field is everywhere non zero on the compact set F ∩ {|g| δ 1/k }, observe that the hypothesis k ≥ k 0 ensures that F ∩ {|g| δ 1/k } ∩ C Φ = ∅, which means that the levels of f and g intersect transversally everywhere on F ∩ {|g| δ 1/k }, guaranteeing that the same is true for f and |g|.

In the same spirit, there is an isotopy from S k to the manifold with corners

S k := S k ∩ {|g| δ 1/k } ∩ X ε (4.2)
This one is obtained, again, by integrating the gradient of the function

|g| : S k ∩ {|g| δ 1/k } → R +
which is an everywhere non-zero vector field on the compact S k ∩ {|g| δ 1/k }. Now, observe that we have the following two decompositions for the boundaries :

∂F = {f = δ} ∩ {|g| = δ 1/k } ∩ X ε {f =δ}∩{|g|=δ 1/k }∩Sε {f = δ} ∩ {|g| δ 1/k } ∩ S ε ∂S k = {f = δ} ∩ {|g| = δ 1/k } ∩ X ε {f =δ}∩{|g|=δ 1/k }∩Sε {f = |g| k } ∩ {|g| δ 1/k } ∩ S ε
We now build an isotopy on S ε taking the second part of the decomposition of ∂F to the one of ∂S k , and preserving {f = δ} ∩ {|g| = δ 1/k } ∩ S ε . It will, again, be obtained by integrating an everywhere non-zero vector field. This one is built in the following way:

At p ∈ {Im(f ) = 0} ∩ {|g| k Re(f ) δ} ∩ S ε , the vector is given by the gradient of the function Re(f

) : {g = g(p)} ∩ S ε → R
The fact that this vector field is nowhere zero on the compact {Im(f ) = 0} ∩ {|g| k Re(f ) δ} ∩ S ε comes from the condition asked on δ. Indeed δ is chosen so that Φ induces a smooth locally trivial fibration over D δ × D δ 1/k , ensuring that at a point of this compact, the levels of f and g intersect transversally, guaranteeing the same for the levels of Re(f ) and g.

The combination of these three isotopies provides an isotopy between ∂S k and ∂F , hence an orientation-preserving homeomorphism. To conclude this proof, it is enough to invoke the fact that two 3-manifolds that are orientation-preserving homeomorphic are also orientation-preserving diffeomorphic. See e.g. Munkres [START_REF] Munkres | Obstructions to the Smoothing of Piecewise-differentiable Homeomorphisms[END_REF].

Let us note however that if one wants to build a diffeomorphism, it can be obtained using the three isotopies that we composed in this proof, and smoothing the corners at every step. For more details on this idea of smoothing corners, see [14].

The tower of morphisms

In the next sections 4.6 to 4.11, we build step by step a proper morphism

Π : ( S , E) → (S k , 0)
where E is a simple configuration of compact smooth real-analytic oriented surfaces as in Definition 2.7.2 in a oriented real-analytic manifold S of dimension 4.

This morphism will be an analytic isomorphism outside E, and will therefore allow us to identify the boundary ∂S k with its preimage by Π. We then prove that this preimage can be seen as the boundary of a tubular neighbourhood of E in S , which is a graph manifold determined by the configuration E, as explained in Theorem 2.7.9.

At every step, the preimage of the origin will be a configuration of real-analytic oriented surfaces, that we will represent by its dual graph, with some decorations. Note that until the penultimate step, some of these surfaces may be singular. However at every step it will be possible to associate a dual graph to the preimage of the origin.

The first level of this morphism will come from a modification r X of X, respecting certain conditions relatively to f and g. We will consider the strict transform S k of S k by r X . Denote the restriction of r X to S k by

r S : S k , C → (S k , 0) . The second step is the normalization of S k N S : S k N , N * S (C ) → S k , C .
Then, using local equations for S k , we build local morphisms κ p from complex surfaces to a finite number of open sets covering ( S k , C ), and use their liftings to the normalizations of the source and the target to build a global morphism

K : S , (N S • K) * (C ) → S k N , N * S (C )
from a 4-dimensional variety S to S k N , that will be a diffeomorphism outside N * S (C ). The variety S will have controlled isolated singularities, namely of Hirzebruch-Jung type. A standard resolution of such singularities is explained in Subsection 3.5.3, and requires only few data to be computed, leading to the morphism of the final step

π : S , E → S , (N S • K) * (C ) .
The construction of the composed morphism Π is summarized in the following diagram

(Z k , 0) (S k , 0) S k , C S k N , N * S (C ) S , (N S • K) * (C ) S , E ⊂ ⊂ ⊂ (X, 0) ( X, D 0 ) (C 2 , 0) (R + , 0) π K N S r S Φ r X Φ ρ Π

Algorithmic aspect

We will decorate the different dual graphs, obtained as in Definition 2.7.1,

Γ(C ), Γ((N S • K) * (C )), Γ(E)
obtaining the decorated graphs

Γ (C ) , Γ ((N S • K) * (C )) , Γ (E) .
The decorations of these graphs will be of different natures.

They are built and decorated in order to get the plumbing graph

Γ (E) = Γ S (E)
for the boundary of a tubular neighbourhood of E in S , which is the aim of this study.

It is very important to notice that, at every step, some of the information needed to compute a decorated graph is encoded in the previous one. Namely:

• Γ (E) is entirely determined by Γ ((N S • K) * (C tot )). • Γ ((N S • K) * (C tot )
) is entirely determined by Γ (C tot ) and some information relative to the singularities of X, namely the collection of switches introduced in Subsection 4.10.2, and the additional covering data mentioned in Subsection 4.10.4. In general, accessing that information may represent a difficult task, for which one should have, among other things, a good understanding of the structure of the initial modification r X . However this does not stop us from carrying on the proof of the general result.

In some cases, that additional information is unnecessary, as for example in the case where X is smooth (see [START_REF] Némethi | Milnor Fiber Boundary of a Non-isolated Surface Singularity[END_REF]), or in the toric case studied in Chapter 5.

In conclusion, this relation between the graphs, which in some cases allows to deduce one graph from the previous one, permits us to build a method for the computation of ∂F , whose starting point will be the decorated graph Γ (C tot ) together with the required additional information relative to the singularities of X. The construction and definition of Γ (C tot ) and S k is the object of the next section.

The variety S k

Now let us introduce a complex analytic modification (in the sense of Definition 2.2.5) r X : X → X of X, that will verify some conditions relative to f and g: Definition 4.6.1. (Modification adapted to Φ.) A modification r X : ( X, D 0 ) → (X, 0) is said to be adapted to the morphism Φ = (f, g), where g is a companion of f , if the two following conditions are simultaneously satisfied:

1. The modification r X is an isomorphism outside of (V (f ) \ V (g)) ∪ {0}. Or equivalently, r X may not be an isomorphism only at V (f ) \ V (g) or {0}.

Denote D

f := r -1 X (V (f ) \ 0), D g := r -1 X (V (g) \ 0), as well as C := D f ∩ D 0 and C tot := C ∪ (D f ∩ D g ).
In order to emphasize that the global configuration of the irreducible components of the curves C and C tot is essential for us, we will say that the two curves are curve configurations.

With these notations, the second condition imposed on r X is that the total transform Remark 4.6.4. Both C and C tot can be seen as complex curve configurations in X or as real surfaces configurations in S k . Note that the configuration C is compact.

D := r -1 X (V f •g ) of V f •g shall be a simple normal crossings divisor at C tot . Example 4.6.2.
These configurations will play a key role in the sequel. They are in general complicated to compute, but in the toric case, exposed in Chapter 5, we can express them with only combinatorial considerations. Definition 4.6.5. Orient the irreducible components of C and C tot by their complex structures in X.

Condition 1 of Definition 4.6.1 implies that we do not want to build an embeddded resolution of the surface V f •g . Indeed we do not want to modify it along V (f ) ∩ V (g) \ {0}, where it is singular, but with simple singularities, i.e. it looks locally like a transverse intersection of smooth surfaces.

The existence of a modification of X adapted to Φ is guaranteed by the following Lemma 4.6.6. (Resolution Lemma), [63, p.633] Let X be an irreducible variety over an algebraically closed field of characteristic 0, V a pure codimension one reduced subvariety of X, and U an open subset of the smooth locus of X such that U ∩ V has smooth components crossing normally. Then there is a projective morphism r X : X → X which satisfies the following conditions:

1. r X is a composition of blowing ups of smooth subvarieties.

r X induces an isomorphism over

U . 3. X is smooth. 4. r -1 X (V ∪ (X \ U )
) is a divisor. Moreover, it has smooth components crossing normally.

In our context, one can for example take the open subset U to be X \ Sing(V (f )).

Remark 4.6.7.

1. Because of the properties of the modification r X , D g is exactly the strict transform of V (g) by r X . However, D f is the mixed transform, in the sense of Definition 2.2.11, of V (f ) by r X . Indeed it will also contain some components of the exceptional divisor, the surfaces that get contracted by r X on curves in (V (f ) \ V (g)) ∪ {0}, in particular the preimage of the singular locus of V (f ).

2. Point 1 of Definition 4.6.1 implies that D f ∩ D g is exactly the intersection of the strict transforms of V (f ) and V (g) by r X .

3. The Resolution Lemma 4.6.6 implies that in general one can always build a modification r X such that D is globally a SNCD, which will imply Condition 2 on r X . However, what we really need in order to proceed is this weaker condition.

4. In the same spirit, unlike what is required in [46, 6.1.2], we allow the morphism r X to modify some curves in (V (f ) \ V (g)) ∪ {0} along which V (f ) may be smooth. This point and the previous one will be important for our analysis of Newton nondegenerate surface singularities in Chapter 5.

5. We get a partition of the set of irreducible components of the total transform D in three parts: the set of irreducible components of D f , D g or D 0 . By abuse of notation, we will sometimes refer to an irreducible component of D as "in" (∈) one of these three surfaces, instead of "subset of " (⊂).

Notation 4.6.8. Denote

f X := f • r X , g X := g • r X : X → C
the pullbacks of f and g to X. In the sequel, if D i is an irreducible component of D, we will denote

m i := mult D i (f X ), n i := mult D i (g X )
the respective multiplicities of f X , g X along this component. Note that if D 1 ∈ D g , then necessarily m 1 = 0 and n 1 = 1.

The firt step of the construction of the desired morphism Π is the modification of S k obtained by restricting r X to the strict transform

( S k , C ) := r -1 X (S k \ {0}), C ⊂ ( X, 0).
of S k by r X . It will have non-isolated singularities, being from this point of view more complicated than (S k , 0). However we can domesticate these singularities. This is the point of the next section.

4.7

Local equations of S k along C tot , and complex models

Denote r S := r X | S k : S k → S k . Proposition 4.7.1. Let k ∈ 2N be such that for every component D 1 ∈ D 0 , kn 1 > m 1 .
Then:

1. The preimage in S k of the origin in S k is

r -1 S (0) = C = D f ∩ D 0 . (4.3) 
2. The support of the total transform of V (g) ∩ S k by r S is equal to

C tot = (D f ∩ D g ) ∪ (D f ∩ D 0 ).
In other words, denoting

g S k := g • r S : S k → C
the pullback of g to S k , we have

g S k -1 (0) = C tot . (4.4) 
The statement of Proposition 4.7.1 implies that we need new conditions on k in order to proceed to the computation of the boundary of S k . In the sequel, more will appear. Let us make those conditions explicit.

Condition 1. on k. The integer k must be even and large enough in the sense of Lemma 4.4.13.

Condition 2. on k. The integer k must be such that, for every component

D 1 ∈ D 0 , kn 1 > m 1 . Notation 4.7.2. Let H ⊂ C 3 u,v,w
. Denote H str the strict part of H defined as the closure From now on, if x ∈ R + , n ∈ N * , x 1/n will denote the unique n-th root of x in R + . 

H str := H \ {uvw = 0}.

Generic points of C tot

f X = I f (u , v , w )u m 1 v m 2 g X = I g (u , v , w )u n 1
where I f , I g are units at p, as in Definition 2.4.1. Now, choose φ, ψ units at p such that φ n 1 = I g and ψ m 2 = I f • φ -m 1 , and build new local coordinates (u, v, w) around p defined by

   u = φ • u v = ψ • v w = w
on a neighbourhood U p ⊂ U p where φ and ψ are non-zero.

On U p , S k is then defined by {f X = |g X | k } \ V (u), that is, S k ∩ U p = {u m 1 v m 2 = |u| kn 1 } str ∩ U p . (4.5) 
Note that Condition 2 on k ensures that p is in S k . Now, we can provide a birational morphism:

κ p : {(x, y, z) ∈ C 3 , x m 1 = y m 2 } → {(u, v, w) ∈ C 3 , u m 1 v m 2 = |u| kn 1 } str given by    u = x v = y -1 |x| kn 1 /m 2 = y -1 |y| kn 1 /m 1 w = z    x = u y = v -1 |u| kn 1 /m 2 z = w (4.6) 
If kn 1 /m 2 ∈ 2N * , the map κ p is birational. We then require Condition 3. on k.

For every κ p to be birational, the integer k must be such that,

∀ D 1 ∈ D 0 that intersects a component D 2 ∈ D f , kn 1 m 2 ∈ 2N.
In addition to the birationality of κ p , the identity

y m 2 = u m 1
shows that the coordinates x, y, z, x, y and z of the source are integral on the ring of regular functions of S k ∩ U p . Reciprocally, the identity

v m 1 = y -m 1 |y| kn 1
shows that, thanks to Condition 2 on k, the coordinates of the target are integral on the ring of functions of the source. Note that these two identities taken together, with the Condition 2 on k, ensure that κ p is a homeomorphism.

Setting U C p := κ -1 p (U p ) a neighbourhood of the origin in C 3 and using Proposition 2.5.10, we get: Lemma 4.7.4. The homeomorphism κ p induces an isomorphism of real analytic varieties In section 4.4, we provided a description of the orientation of S k . This orientation is pulled-back by r S to provide an orientation of S k , making r S orientation-preserving.

κ p : {(x, y, z) ∈ C 3 , x m 1 = y m 2 } ∩ U C p norm ∼ -→ S k ∩ U p
Another way to retrieve this orientation on an open U p as in subsection 4.7.1 is to observe that it is the one that makes ∂ S k := r -1 S (∂S k ) ∂S k orientation-preserving diffeomorphic to ∂F , where the last equivalence symbol denotes an orientation-preserving diffeomorphism.

The modification r X induces a biholomorphic morphism over F , and is hence an orientation-preserving diffeomorphism from F := r -1 X (F ) to F , both being oriented by their complex structures. F is a complex manifold, and

F ∩ U p = {I(u, v, w)u m 1 v m 2 = δ}
for some holomorphic unit I at p. The complex orientation of F ∩ U p is given by du ∧ du ∧ dw ∧ dw (or, equivalently, dv ∧ dv ∧ dw ∧ dw, but for our purposes the first expression is more natural). Now, the orientation of S k on U p is the one that is compatible with this orientation of F , that is, the one that is given on the smooth part of S k ∩ U p by du ∧ du ∧ dw ∧ dw.

One can see now that the morphism κ p is orientation-preserving, if the source is taken with its complex orientation dx ∧ dx ∧ dz ∧ dz.

Furthermore, the normalizations of the source and target of κ p are now canonically oriented by the pullbacks of these orientations, making, again, κ p orientation-preserving as soon as the source is oriented by its complex structure.

Finally, remind that in Definition 4.6.5, we oriented C ∩ U p = {u = v = 0} ∩ U p via its complex structure, i.e. by dw ∧ dw. Pulling back this orientation to its preimage by κ p gives, again, the complex orientation of the axis {x = y = 0} ⊂ U C p . Therefore, the pullback of the orientation of C tot ∩ U p by N S • κ p orients its preimage (N S • κ p ) -1 (C tot ∩ U p ) by its complex structure.

Double points of

C tot Let p ∈ D 1 ∩ D 2 ∩ D 3 , where D 1 ∈ D 0 , D 2 ∈ D f , D 3 ∈ D, with the notations of Definition 4.6.1. Set local holomorphic coordinates (u , v , w ) on a neighbourhood U p of p in X such that D 1 = {u = 0}, D 2 = {v = 0}, D 3 = {w = 0}.
Then we can write locally:

f X = I f (u , v , w )u m 1 v m 2 w m 3 g X = I g (u , v , w )u n 1 w n 3
where I f , I g are units at p. In the same way as in 4.7.1, we obtain local coordinates (u, v, w) on a neighbourhood U p ⊂ U p such that

S k ∩ U p = {u m 1 v m 2 w m 3 = |u| kn 1 |w| kn 3 } str ∩ U p . (4.7) 
and S k contains p because, again, of Condition 2 on k for D 1 .

We will provide, again, a local algebraic model for S k around p, that will depend on the nature of the double point p. Remark 4.7.8. We separate the two types of points using signs, anticipating the fact that they will give different signs of edges in the final plumbing graph for ∂F . Némethi and Szilárd use respectively 1 and 2, instead of ⊕ and , to designate the two types of double points. Points of type ⊕.

If p is of type ⊕, things go more or less the same way as in the case of generic points. Namely, there is a birational map

κ ⊕ p : {(x, y, z) ∈ C 3 , y m 2 = x m 1 z m 3 } → {u m 1 v m 2 w m 3 = |u| kn 1 |w| kn 3 } str given by    u = x v = y -1 |x| kn 1 /m 2 |z| kn 3 /m 2 w = z    x = u y = v -1 |u| kn 1 /m 2 |w| kn 3 /m 2 z = w (4.8) 
Condition 3 on k shows that this map is birational. Furthermore it is a homeomorphism. Moreover, as in 4.7.1, using y m 2 = u m 1 w m 3 and reciprocally, v m 2 = |x| kn 1 x -m 1 |z| kn 3 z -m 3 , still with kn i > m i , and denoting U C p := κ ⊕ p -1 (U p ) a neighbourhood of the origin in C 3 , we have:

Lemma 4.7.9. The morphism κ ⊕ p is a homeomorphism, and it induces an isomorphism of real analytic varieties

κ ⊕ p : {(x, y, z) ∈ C 3 , y m 2 = x m 1 z m 3 } ∩ U C p norm ∼ -→ S k ∩ U p norm
at the level of normalizations.

Lemma 4.7.12. Setting U C p := κ p -1 (U p ), the restriction of κ p induces an isomorphism of analytic varieties

κ p * : {(x, y, z) ∈ C 3 , x m 1 = y m 2 z m 3 } ∩ U C p \ {0} norm → S k ∩ U p \ {0}
norm at the level of "punctured" normalizations.

Proof.

Cover S k ∩ U p \ {0} norm = N -1 S S k ∩ U p \ {0} with two sets: S k ∩ U p \ {0} norm = N -1 S S k ∩ U p \ V (v) N -1 S S k ∩Up\V (v•w) N -1 S S k ∩ U p \ V (w)
We are going to prove that, in restriction to each of these two sets, κ p * induces a diffeomorphism.

In order to do this, consider the birational map

α p,v : {(x , y , z ) ∈ C 3 , x m 1 = y m 2 z m 3 } \ V (y ) → {u m 1 v m 2 w m 3 = |u| kn 1 } str \ V (v)
given by

   u = x v = y -1 w = z -1 |x | kn 1 /m 3    x = u y = v -1 z = w -1 |u| kn 1 /m 3
Thanks to Condition 3 on k, this map is birational. Furthermore, with Condition 2 on k for D 1 , the identities

z m 3 = u m 1 v m 2 and w m 3 = y m 2 |x | kn 1 x -m 1
show that, setting U v := α -1 p,v (U p ), it induces an isomorphism of real analytic varieties

α p,v : {(x , y , z ) ∈ C 3 , x m 1 = y m 2 z m 3 } ∩ U v \ V (y ) norm ∼ -→ N -1 S S k ∩ U p \ V (v)
We can use this isomorphism to understand the restriction κ p,v of κ p to

{(x, y, z) ∈ C 3 , x m 1 = y m 2 z m 3 } ∩ U C p \ V (y) norm .
We use the composition with α -1 p,v to obtain a morphism:

α -1 p,v • κ p,v : {(x, y, z) ∈ C 3 , x m 1 = y m 2 z m 3 } ∩ U C p \ V (y) → {(x , y , z ) ∈ C 3 , x m 1 = y m 2 z m 3 } ∩ U v \ V (y )
given by

     x = x y = y|y| -kn 1 /m 1 z = z • |z| -kn 1 /m 1 |x| kn 1 /m 3 = z|y| kn 1 m 2 m 1 m 3 .
The morphism α -1 p,v • κ p,v is not, in general, birational, but it induces an isomorphism of real-analytic varieties at the level of normalizations. Indeed, consider the morphism

N 1 : {(x 1 , y 1 , z 1 ) ∈ C 3 , y m 2 1 z d 3 1 = 1} → {(x, y, z) ∈ C 3 , x m 1 = y m 2 z m 3 } \ V (y)
given by

     x = x m 3 /d 3 1 z a 1 1 y = y 1 z = x m 1 /d 3 1 z c 1 1
where

d 3 = gcd(m 1 , m 3 ), and a 1 , c 1 ∈ N are such that c 1 m 3 -a 1 m 1 = d 3 . The morphism N 1 is a normalization of {(x, y, z) ∈ C 3 , x m 1 = y m 2 z m 3 } \ V (y).
In the same way, build the normalization

N 1 : {(x 1 , y 1 , z 1 ) ∈ C 3 , y m 2 1 z d 3 1 = 1} → {(x , y , z ) ∈ C 3 , x m 1 = y m 2 z m 3 } \ V (y ). Set U 1 := N -1 1 (U C p ), U 1 := N -1 1 (U v ).
The morphism α -1 p,v • κ p,v then lifts to the normalizations in the following way:

α -1 p,v • κ p,1 : {(x 1 , y 1 , z 1 ) ∈ C 3 , y m 2 1 z d 3 1 = 1} ∩ U 1 → {(x 1 , y 1 , z 1 ) ∈ C 3 , y m 2 1 z d 3 1 = 1} ∩ U 1        x 1 = x 1 |y 1 | -a 1 kn 1 m 2 m 1 m 3 y 1 = y 1 |y 1 | - kn 1 m 1 z 1 = z 1 |y 1 | kn 1 m 2 m 1 d 3        x 1 = x 1 |y 1 | a 1 kn 1 m 2 m 3 (n 1 -km 1 ) y 1 = y 1 |y 1 | kn 1 (m 1 -kn 1 ) z 1 = z 1 |y 1 | - kn 1 m 2 d 3 (m 1 -kn 1 )
which is, as claimed, an isomorphism of real-analytic varieties, both functions |y 1 | and |y 1 | being everywhere different from 0. Now α -1 p,v • κ p,v and α -1 p,v are diffeomorphisms, whence κ p,v also. The same strategy will prove that the restriction κ p,w of κ p to

{(x, y, z) ∈ C 3 , x m 1 = y m 2 z m 3 } ∩ U C p \ V (z)
norm is also an isomorphism of real-analytic varieties. In this chart the required explicit normalization is provided by the morphism

N 2 : {(x 2 , y 2 , z 2 ) ∈ C 3 , y d 2 2 z m 3 2 = 1} → {(x, y, z) ∈ C 3 , x m 1 = y m 2 z m 3 } \ V (z)
given by

       x = x m 2 d 2 2 y a 2 2 y = x m 1 d 2 2 y b 2 2 z = z 2 with d 2 = gcd(m 1 , m 2 ), and a 2 , b 2 ∈ N such that b 2 m 2 -a 2 m 1 = d 2 ,
and

α p,w : {(x , y , z ) ∈ C 3 , x m 1 = y m 2 z m 3 } \ V (z ) → {u m 1 v m 2 w m 3 = |u| kn 1 } str \ V (w)
is given by

     u = x v = y -1 |x | kn 1 m 2 w = z -1      x = u y = v -1 |u| kn 1 m 2 z = w -1
In conclusion, the images by

κ p * of N -1 S S k ∩ U p ∩ V (v) and of N -1 S S k ∩ U p ∩ V (w)
being disjoint, κ p * is an isomorphism of real-analytic varieties.

Discussion 4.7.13. Orientation of S k and its model near a point .

Here again, the orientation of S k is given by du ∧ du ∧ dw ∧ dw. But in order for κ p to be orientation-preserving, we need to orient its source with the opposite of the orientation given by its complex structure, -dx ∧ dx ∧ dy ∧ dy.

Furthermore, the two irreducible components of C tot that are visible here, given by {u = v = 0} and {u = w = 0}, are oriented respectively as complex curves by dw ∧ dw and dv ∧ dv. The morphism κ p then orients their preimages, respectively {x = y = 0} and {x = z = 0}, by the opposite of their complex orientations, -dz ∧ dz and -dy ∧ dy.

So, here, the pullback of the orientation of C tot ∩ U p by N S • κ orients its preimage (N S • κ ) -1 (C tot ∩ U p ) by the opposite of its complex structure.

A variety S

In the previous section is implicitly provided a description of an analytic variety S , as well as of a morphism K : (S ,

(N S • K) * (C )) → ( S k N , N * S (C )).
In this section we make it more explicit. In particular we explain the orientation of (S , (N S • K) * (C )) and of the surfaces of (N S • K) * (C ).

Orientation of S

Although S is only real-analytic, it admits local complex equations, and an orientation of S can be defined relatively to the local complex orientations, using Discussions 4.7.5, 4.7.10 and 4.7.13:

• On an open U p coming from a generic point of C , S is oriented by its local complex structure, and the preimage of C also.

• On an open U p coming from a double point ⊕ of C tot , S is oriented by its local complex structure, and the components of the preimage of C tot also.

• On an open U p coming from a double point of C tot , S is oriented by the opposite of its local complex structure, and the preimage of C tot is also oriented by the opposite of its complex structure.

These choices of orientation are compatible, because by construction they ensure that every morphism κ p -1 •κ q of Definition 4.8.1 is orientation-preserving. Again, by construction, the choices of orientation for the preimages of the irreducible components of C tot by N S • K are compatible (see Discussions 4.7.5, 4.7.10 and 4.7.13). Furthermore, as can be checked using those same discussions, Note that Proposition 4.6.3 implies:

Cyclic orders on components

In this subsection, we show how one can endow coherently the set of local irreducible components of S k at a generic point of an irreducible component C of C with a cyclic order. Then we show that the same is true for double points on C, and that the cyclic orders defined are compatible.

Lemma 4.10.1. (Cyclic order at generic points.)

If p is a generic point of the irreducible component C of D 1 ∩ D 2 , (N S • K) * (C) ∩ U p is a disjoint union of d complex curves.
Furthermore there is a cyclic order (in the sense of Definition 2.6.24) on them. This order is compatible with the gluings of charts U q coming from generic points q ∈ C tot .

Namely, if }. Each C (j) is a smooth complex curve. The cyclic order on the connected components of (N S • K) * (C) is then given by the rule: C (j+1) follows C (j) , where the addition is to be understood in Z/dZ. or equivalently

S ∩ U p = x m 1 p = y m 2 p ∩ U C
x m 1 /d p = e 2i(j+1)π d y m 2 /d p ∩ U C p follows x m 1 /d p = e 2ijπ d y m 2 /d p ∩ U C p Proof.
We want to prove that, given two open subsets U p and U q , coming from generic points p, q ∈ C, such that U q ∩ U p = ∅, the orderings on the components of (N S • K) * (C) on U p ∩ U q are the same. The point is that this ordering on curves is the same as an ordering on irreducible components.

First, note that we can relate the coordinates (x p , y p , z p ) and (x q , y q , z q ) by descending to S k : take coordinates (u p , v p , w p ) on S k ∩ U p and (u q , v q , w q ) on S k ∩ U q , as in section 4.7.1. Then there are functions λ, µ, ν, nowhere zero on U p ∩ U q such that, on

U p ∩ U q ,    u q = u p • λ(u p , v p , w p ) v q = v p • µ(u p , v p , w p ) w q = ν(u p , v p , w p )
which leads, using equations (4.6) of subsection 4.7.1, to the following identities on

U C p ∩ U C q :    x q = x p • λ y q = y p • µ -1 |λ| kn 1 /m 2 z q = ν
where λ denotes λ(x p , y -1 p |x p | kn 1 /m 2 , z p ), and similarily for µ, ν. The functions λ, µ -1 |λ kn 1 /m 2 |, ν are nowhere zero on U C p ∩ U C q . Whence the identification

x m 1 /d q = e 2ijπ d y m 2 /d q ∩U C p ∩U C q = x m 1 /d p λ m 1 /d = e 2ijπ/d y m 2 /d p µ -m 2 /d |λ| kn 1 /d ∩U C p ∩U C q .
This implies that there exists 0 l j -1 such that

e 2ijπ/d µ -m 2 /d |λ| kn 1 /d λ -m 1 /d = e 2ilπ/d .
This allows one to identify the j-th irreducible component, as seen in U C q , with the l-th component, in U C p . And replacing j by j + 1 in the previous computation leads now to the component l + 1 in U C q . In other words, we gave a meaning to the expression "the following irreducible component" at a point of {x m 1 p = y m 2 p } ∩ U C p , and hence to the expression "the following curve" in S ∩ U p . Discussion 4.10.2. (Cyclic order at double points.) Recall the notations introduced at he beginnning of Section 4.10. Let p i be a double point of C tot in C, p i ∈ D i . Then

(N S • K) -1 (p i ) is made of d i := gcd(m 1 , m 2 , m i ) points p 1 i , • • • , p d i i
, each one of them corresponding to an irreducible component of κ -1 p i ( S k ∩ U p i ). Furthermore, one can define a cyclic order on these irreducible components, in the following way:

If p i is of type ⊕, then κ -1 p i ( S k ∩ U p i ) = d i -1 j=0 y m 2 /d i i = e 2ijπ/d i x m 1 /d i i z m 3 /d i i ∩ U C p i (4.10)
where the coordinates (x i , y i , z i ) are defined from local coordinates (u i , v i , w i ) at p i via Equation 4.8 applied at p i . This union is the decomposition of κ -1 p i ( S k ∩ U p i ) in irreducible components.

We define a cyclic order on the set of irreducible components by the following rule:

y m 2 /d i i = e 2ijπ/d i x m 1 /d i i z m 3 /d i i
is followed by

y m 2 /d i i = e 2i(j-1)π/d i x m 1 /d i i z m 3 /d i i
.

If p i is of type , then κ -1 p i ( S k ∩ U p i ) = d i -1 j=0 x m 1 /d i i = e 2ijπ/d i y m 2 /d i i z m 3 /d i i ∩ U C p i (4.11)
where the coordinates (x i , y i , z i ) are defined from local coordinates (u i , v i , w i ) at p i via Equation 4.9 applied at p i . Then, again, define a cyclic order by the rule: the component

x m 1 /d i i = e 2ijπ/d i y m 2 /d i i z m 3 /d i i
is followed by the component

x m 1 /d i i = e 2i(j+1)π/d i y m 2 /d i i z m 3 /d i i
.

The normalization of complex-analytic varieties having the topological effect of separating local irreducible components (see Lemma 2.5.15), this means that S ∩ U p i is made of a disjoint union of d i normal varieties, with a cyclic order induced by the one on the irreducible components of κ -1 p i ( S k ∩ U p i ). Incidentally, this provides also a cyclic order on the set

p 1 i , • • • , p d i i of preimages of p i by (N S • K).
Moreover, the intersection of (N S • K) * (C) with each of these connected components is an irreducible curve, namely the pullback of {x i = y i = 0} by the normalization of the irreducible component, with the notations of Equations (4.10) or (4.11). See Subsection 3.5.3 for more details. Recall again the setting of the beginning of Section 4.10. Then: 

( S k ∩ U ) is contained in an irreducible component of κ -1 p i ( S k ∩ U p i ), then the following component of κ -1 p ( S k ∩ U ) is contained in the following irreducible component of κ -1 p i ( S k ∩ U p i ).
In particular, two curves in (N S • K) * (C)∩U are in the same branch of (N S • K) * (C)∩ U p i if and only if their positions in the cyclic order differ by a multiple of d i .

Proof of Lemma 4.10.3. Denote (u, v, w) and (u i , v i , w i ) coordinates on U p and U p i giving respectively equations of the form (4.5) and (4.7) for S k , as in section 4.7.

Then

S ∩ U p = {x m 1 = y m 2 } ∩ U C p norm = d-1 j=0 x m 1 /d = e 2ijπ/d y m 2 /d ∩ U C p norm where    x = u y = v -1 |u| kn 1 /m 2 z = w
Then there exist functions λ, µ, ν, nowhere zero on U p ∩ U p i , such that, on

U p ∩ U p i ,    u = u i .λ(u i , v i , w i ) v = v i .µ(u i , v i , w i ) w = ν(u i , v i , w i )
We face two different situations, according to the type of the double point p i . Denote

δ i := d d i . Case ⊕: If p i is of type ⊕, then S ∩ U p i = {y m 2 i = x m 1 i z m 3 i } ∩ U C p i norm = d i -1 j=0 y m 2 /d i i = e 2ijπ/d i x m 1 /d i i z m 3 /d i i ∩ U C p i norm (4.12) where    u i = x i v i = y -1 i |x i | kn 1 /m 2 |z i | kn 3 /m 2 w i = z i which gives, on U C p i ∩ U C p ,    x = x i λ y = y i |z i | -kn 3 /m 2 µ -1 |λ| kn1/m 2 z = ν
where λ (or µ, ν) denotes λ(x i , y -1

i |x i | kn 1 /m 2 |z i | kn 3 /m 2 , z i ). Hence x m 1 /d = e 2ijπ/d y m 2 /d ∩ U C p ∩ U C p i = x m 1 /d i = y m 2 /d i λ -m 1 /d |λ| kn 1 /d |z i | -kn 3 /d µ -m 2 /d e 2ijπ/d ∩ U C p ∩ U C p i . Elevating to the power δ i shows that x m 1 /d = e 2ijπ/d y m 2 /d ∩ U C p ∩ U C p i ⊂ y m 2 /d i i = x m 1 /d i i λ m 1 /d i |λ| -kn 1 /d i |z i | kn 3 /d i µ m 2 /d i e -2ijπ/d i ∩ U C p ∩ U C p i . Now there exists 0 l d i -1 such that on U C p i ∩ U C p , λ m 1 /d i |λ| -kn 1 /d i |z i | kn 3 /d i µ m 2 /d i e -2ijπ/d i = e 2ilπ/d i z m 3 /d i i
.

The previous inclusion can then be written as

x m 1 /d = e 2ijπ/d y m 2 /d ∩ U C p ∩ U C p i ⊂ y m 2 /d i i = e 2ilπ/d i x m 1 /d i i z m 3 /d i i ∩ U C p ∩ U C p i .
Taking the successor of this component, we get indeed

x m 1 /d = e 2i(j+1)π/d y m 2 /d ∩ U C p ∩ U C p i ⊂ y m 2 /d i i = e 2i(l-1)π/d i x m 1 /d i i z m 3 /d i i ∩ U C p ∩ U C p i . Case : If p i is of type , then S ∩ U p i = {x m 1 i = y m 2 i z m 3 i } ∩ U C p i norm = d i -1 j=0 x m 1 /d i i = e 2ijπ/d i y m 2 /d i i z m 3 /d i i ∩ U C p i norm (4.13) where    u i = x i v i = y -1 i |y i | kn 1 /m 1 w i = z -1 i |z i | kn 1 /m 1 which gives, on U C p i ∩ U C p ,    x = x i λ y = y i |y i | -kn 1 /m 1 |x i | kn1/m 2 µ -1 |λ| kn 1 /m 2 z = ν where λ (or µ, ν) denotes λ(x i , y -1 i |y i | kn 1 /m 1 , z -1 i |z i | kn 1 /m 1 ). Hence x m 1 /d = e 2ijπ/d y m 2 /d ∩ U C p ∩ U C p i = x m 1 /d i = y m 2 /d i |y i | -kn 1 m 2 /dm 1 |x i | kn 1 /d λ -m 1 /d |λ| kn 1 /d |z i | -kn 3 /d µ -m 2 /d e 2ijπ/d ∩ U C p ∩ U C p i .
Elevating to the power δ i shows that

x m 1 /d = e 2ijπ/d y m 2 /d ∩ U C p ∩ U C p i ⊂ x m 1 /d i i = y m 2 /d i i |y i | -kn 1 m 2 /d i m 1 |x i | kn 1 /d i λ -m 1 /d i |λ| kn 1 /d i |z i | -kn 3 /d i µ -m 2 /d i e 2ijπ/d i ∩U C p ∩U C p i . Now there exists 0 l d i -1 such that on U C p i ∩ U C p , |y i | -kn 1 m 2 /d i m 1 |x i | kn 1 /d i λ -m 1 /d i |λ| kn 1 /d i |z i | -kn 3 /d i µ -m 2 /d i e 2ijπ/d i = e 2ilπ/d i z m 3 /d i i
.

The previous inclusion can then be written as

x m 1 /d = e 2ijπ/d y m 2 /d ∩ U C p ∩ U C p i ⊂ x m 1 /d i i = e 2ilπ/d i y m 2 /d i i z m 3 /d i i ∩ U C p ∩ U C p i .
Taking the successor of this component, we get indeed

x m 1 /d = e 2i(j+1)π/d y m 2 /d ∩ U C p ∩ U C p i ⊂ x m 1 /d i i = e 2i(l+1)π/d i y m 2 /d i i z m 3 /d i i ∩ U C p ∩ U C p i .
Remark 4.10.4. In other words, taking into account a double point p i of C shows that some of the a priori different components of (N S • K) * (C) are in the same branch, and that this identification is made uniformly with respect to the cyclic order.

However, other identifications may occur, due to the fundamental group of C. We make this aspect more precise in Subsection 4.10.2.

The following lemma describes a favorable situation in which the data contained in Γ (C tot ) is sufficient to determine the structure of (N S • K) * (C). To state it we need the following:

Definition 4.10.5. Let (L, 0) be a branch of Sing(V (f )). The transversal type of (X, V (f )) along L is the equisingularity type of a transverse section of the couple (X, V (f )) along L, where two curves in surfaces (V 1 , C 1 ) and (V 2 , C 2 ) are called equisingular if they admit homeomorphic good embedded resolutions.

Remark 4.10.6. This definition makes sense because there exists a representative X of (X, 0) such that for any branch L of Sing(V (f )), all transverse sections along L are equisingular. 

g C = x n 1 z n 3 .
Under the morphism π, the preimage of The pullbacks of the orientations of the curves C ∩ U , C ∩ U by the biholomorphism π are again the orientations given by their local complex structure.

(N S • K) * (C tot ) ∩ U = norm * ({xz = y = 0}) ∩ U is a chain of complex curves, namely Str m 2 d ; m 1 d , m 3 
Each new curve C i is taken oriented by its complex structure.

The pullback of the orientation of S ∩ U by the bimeromorphism π : U → U is, again, the orientation given by the complex structure. Now, Lemma 3.5.33 implies that at each intersection point C i ∩ C i+1 , the combination of the orientations of the two curves gives the ambient orientation of U . Remark 4.11.2. It is useful in practice to notice that, if m 2 = 1, the point p is already a smooth point of S . The morphism π described in Subsection 3.5.3 is in this case an isomorphism.

In the end, the preimage of ((N S • K) * (C tot ), p) by π is a chain of complex curves, whose dual decorated graph is the bamboo of figure 4.5, where the ⊕ signs refer to the orientation compatibilities. The integers µ i represent the multiplicities of g on each curve. For the definition of the multiplicity of g on the real surfaces C and C , we refer to Definition 2.7.5.

: : : 

m 2 •n 3 (m 3 ;m 2 ) m 2 •n 1 (m 1 ;m 2 ) (µ 1 ) (µ l ) (µ 2 ) (µ 3 ) (µ 0 ) = (µ l+1 ) = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ v e C v f C 0

Point of type

If p is of type , then the edge associated to p in Γ ((

N S • K) * (C tot )) is of the form (m 2 ; m 1 , n 1 ) (m 3 ; m 1 , n 1 ) [χ] [χ ] v C v C
and, on U , the equation of S is of the form 

S ∩ U = x m 1 /d = e 2ijπ/d y m 2 /d z m 3 /d ∩ U C
g C = x n 1 .
Under the morphism π p , the preimage of The pullbacks of the orientations of the curves C ∩ U , C ∩ U by the biholomorphism π p are again the opposites of the orientations given by their local complex structure.

(N S • K) * (C tot ) ∩ U = norm * ({yz = x = 0}) ∩ U is a chain of complex curves, namely Str m 1 d ; m 2 d , m 3 
Each new curve C i is taken oriented by the opposite of its complex structure.

The pullback of the orientation of S ∩ U by the bimeromorphism π p : U → U is, again, the opposite of the orientation given by the complex structure. Now, Lemma 3.5.33 implies that at each intersection point C i ∩ C i+1 , the combination of the orientations of the two curves gives the opposite of the ambient orientation of U .

: : : In the end, the preimage of ((N S • K) * (C tot ), p) by π p is a chain of complex curves, whose dual decorated graph is the bamboo of figure 4.6, where the signs refer to the orientation compatibilities. The integers µ i represent the multiplicities of g on each curve. Again, for the definition of the multiplicity of g on the real surfaces C and C , see Definition 2.7.5.

m 2 •n 3 (m 3 ;m 2 ) m 2 •n 1 (m 1 ;m 2 ) (µ 1 ) (µ l ) (µ 2 ) (µ 3 ) (µ 0 ) = (µ l+1 ) = v e C v f C 0 ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

The decorated graph Γ µ (E tot )

The nature of the resolution process described in Subsection 3.5.3, affecting each coordinate axis in only one point, whose preimage is a point, implies: 

Boundary of the Milnor fiber

Now, one has all the information required to compute the boundary of the Milnor fiber of f . Recall that this one is identified via Proposition 4.4.24 to ∂S k = ρ -1 |S k (ε), for any ε > 0 as in Definition 4.4.23.

Denote ρ := ρ•Π. The fact that Π is an orientation-preserving real-analytic isomorphism outside 0 allows us to say that ∂S k is orientation-preserving homeomorphic to its preimage by Π, which is the boundary ∂T of the tubular neighbourhood T := { ρ ε} of the preimage E of the origin by Π. Now, g and ρ are respectively an adapted and a rug function for the configuration E in S . Theorem 2.7.9 implies that ∂T M Γ S (E) ,

where the equivalence symbol denotes an orientation-preserving homeomorphism.

In conclusion, the orientation-preserving diffeomorphism between ∂S k and ∂T implies

∂S k M Γ S (E) ,
where the equivalence symbol denotes an orientation-preserving diffeomorphism.

Definition 4.12.1. Denote Γ (E) the graph obtained from Γ µ (E tot ) by keeping the genera decorations and replacing the multiplicity decorations of nodal vertices by the self-intersection decorations, using Lemma 2.7.7, then removing the arrowhead vertices.

The construction of the decorations of Γ (E) is made in order to have the equality

Γ (E) = Γ S (E).
Finally we get the following generalization of [46, Theorem 10.2.10]:

Theorem 4.12.2. The boundary of F is a graph manifold, and a possible plumbing graph for ∂F is the decorated graph Γ (E), which has only nonnegative genera decorations.

This implies in particular Theorem 1 of the Introduction, Chapter 1.

A companion for everyone ?

Although there is no chance to describe a function g that will be a companion (in the sense of Definition 4.4.2) of each Newton-nondegenerate function f on X, there is indeed some object that will work for every f . 

P (G) := Conv   1 i k m i + σ   .
In the sequel, we fix such a family G. By Remark 3.2.4, the sequence G leads to an embedding (X, 0)

→ C k x 1 ,••• ,x k .
From this viewpoint, P (G) is in fact the local Newton polyhedron of the restriction to X of a generic linear form of C k x 1 ,••• ,x k . Now, Lemmas 4.4.8 and 3.5.26 imply: Lemma 5.1.2. For any germ of function f on (X, 0), there is a function g that is a companion of f and such that LN P (g) = P (G).

Remark 5.1.3. One can note that the Newton-nondegeneracy of f is not required for this lemma. However, for what follows, the hypothesis of Newton-nondegeneracy is central.

Computing C tot

In this section, we explain how to get access to the decorated graph Γ (C tot ). We construct a fan F refining σ and such that the associated modification r := Π F : X F → X verifies the conditions of Definition 4.6.1.

First refinement of σ

Denote F := F f •g the fan associated to the germ f • g. Remark 3.5.37 implies that this fan is the minimal refinement of both F f and F g . Denote X = X F and

r := Π F f •g : X → X
the modification associated to this refinement. Note that we have the following commutative diagram:

• The red marks correspond to the 2-dimensional compact orbits of X F f •g that are intersected by V (f ).

• The violet marks correspond to the non compact 2-dimensional orbits whose closures are irreducible components of D f . They are contained in fact in the exceptional part

D f \ V (f ) of this mixed transform. Indeed, if γ is a 2-dimensional face of σ, V (f ) ⊃ O γ if and only if F f contains a 1-dimensional cone τ in the interior of γ. In these conditions, O τ is an irreducible component of D f \ V (f ).
Remark 5.2.1. Note that our construction of g ensures that F g has no 1-dimensional cone contained in the interior of a 2-dimensional face of σ.

Second refinement

Now, refine F in such a way as to subdivide regularly every 2-dimensional cone corresponding to an orbit intersected by V (f ), as in Lemma 3.5.30. Denote F the fan obtained at this step, X := X F , and V (f ), V (g), D f respectively the strict transforms of f, g and the mixed transform of V (f ) by r := Π F : X → X, the associated modification of X. The following figure 5.2 shows such a possible refinement. The violet 2-dimensional cones correspond to 1-dimensional orbits whose closures are curves of D f ∩ D 0 . The discontinuous ones represent such orbits that are not intersected by V (f ).

Last refinement

At this point, the last problems stand at the 0-dimensional orbits contained in the closures of orbits corresponding to violet 2-dimensional cones. In X F , such points are the orbits 0 γ i , where γ i varies among the 3-dimensional cones of the fan F that have a face of dimension 1 which is contained in a 2-dimensional face of σ but in no 1-dimensional face. Hence the purpose of the last refinement is to subdivide regularly those cones γ i . However, there is no canonical way to refine regularly a cone of dimension 3 or more. For a way to compute such a refinement, see [START_REF] Oka | On the Resolution of the Hypersurface Singularities[END_REF], paragraph 3. A refinement of those cones will always start with the canonical refinements of their 2-dimensional faces. Denote F this last fan, and V (f ), V (g), D f the strict and mixed tranforms. Denote The point is that, up to choosing generic coefficients for g, the modification r is adapted to the couple (f, g), in the sense of Definition 4.6.1. Denote D f,ex the union of irreducible components of D f that are not in V (f ). This way, we get a decomposition

r := Π F : X F → X and D 0 := r -1 (0).
D f = V (f ) ∪ D f,ex
of the set of irreducible components of D f . Figure 5.3 shows a possible fan F . The set D f,ex is the union of the closures of the 2-dimensional orbits of X F corresponding to 1-dimensional cones of F whose minimal containing cone of σ is of dimension 2. Those orbits are again represented by violet marks.

Reading C

Definition 5.2.2. For τ ∈ F , denote repectively ∆ τ (f ) and ∆ τ (g) the corresponding faces of LN P (f ) and LN P (g).

To make short, if the dimension of those faces is 1 or less, denote l τ (f ) := l(∆ τ (f )) and l τ (g) := l(∆ τ (g))

with the convention that the length of a 0-dimensional face is 0.

σ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊖ ⊖ ⊖ ⊖ D f;ex D f;ex D f;ex D f;ex Figure 5.3: A possible F , refinement of F .
If dim(∆ τ (f )) 2, denote i τ the number of interior points of ∆ τ (f ), with the convention that the number of interior points of a face of dimension 0 or 1 is 0.

Finally, call τ pertinent if and only if dim(∆ τ (f )) 1 and τ is not contained in a strict face of σ.

Remark 5.2.3. Remark 3.5.18 implies that the intersection V (f ) ∩ O τ is non-empty if and only if τ is pertinent. In figure 5.3, pertinent 1-dimensional cones are represented by red marks, while pertinent 2-dimensional cones are represented by either blue or continuous violet segments.

One can read the configuration C on the fan F , together with LN P (f ) and LN P (g). First, note that the curves of C = D f ∩ D 0 are of two types, according to the decomposition Two such curves intersect if and only if the corresponding cones are faces of a same 3-dimensional cone of F . Our construction ensures that X is smooth along the union of those curves, and that they intersect transversally in exactly one point. Furthermore, the nature of their intersection point can be read on the fan: it is ⊕ if and only if they are in the same component of D f,ex .

D f = V (f ) ∪ D f,ex .
2. The second type is made of curves of V (f ) ∩ D 0 , that is, intersection of V (f ) with closures of orbits corresponding to 1-dimensional cones in the interior of σ. Let τ be such a 1-dimensional cone of F . Recall that O τ is intersected by V (f ) if and only if dim(∆ τ (f )) 1.

Furthermore, we know the nature of this intersection: by Proposition 3.5.24, given a pertinent cone τ of dimension 1, the intersection

O τ ∩ V (f ) is • an irreducible curve C τ if dim(∆ τ (f )) = 2. • a disjoint union C τ = C τ 1 • • • C τ lτ (f ) of l τ (f ) irreducible rational curves if dim(∆ τ (f )) = 1.
By construction of F and the non-degeneracy of f , these curves are smooth, X is smooth along each of them, and they intersect transversally. Furthermore, let τ 1 , τ 2 be two 1-dimensional pertinent cones. The possibly disconnected curves C τ 1 and C τ 2 intersect if and only if τ 1 and τ 2 are faces of the same 2-dimensional pertinent cone γ. In these conditions,

Card(C τ 1 ∩ C τ 2 ) = l γ (f )
and these intersection points are all of type ⊕, because these curves are in the same component of D f , that is, V (f ).

Note that, in this situation, if dim(τ 1 ) = 1, then l τ 1 (f ) = l γ (f ), and each connected component of C τ 1 intersects C τ 2 in exactly one point. Lemma 5.2.5. (Intersection of curves of the first and of the second type.)

Let C 1 = O γ be a curve of the first type, and C 2 = C τ be of the second type, for some 2-dimensional cones τ, γ. Then

C 1 ∩ C 2 = ∅ ⇔ τ ≺ γ and γ is pertinent. In these conditions, Card(C 1 ∩ C 2 ) = l γ (f )
and each intersection point is of type .

Discussion 5.2.6. The last data required for the description of the configuration C is the decorations of the curves:

1. If C = O γ is a curve of type 1, denoting τ 1 the 1-dimensional face of γ that is not in the boundary of σ and τ 2 the one in the interior, the decoration of C is the triple

(h τ 1 (f ); h τ 2 (f ), h τ 2 (g))
with genus 0.

2. If C ⊂ C τ is of the second type, then the decoration of C is the triple

(1; h τ (f ), h τ (g))
with genus g(C) = i τ , see Proposition 3.5.24.

Non-compact curves

Pick generic coefficients of g so that for any 2-dimensional orbit O τ of X intersected by V (f ), the truncations f ∆τ (f ) and g ∆τ (g) verify the hypothesis of Corollary 3.5.41.

Definition 5.2.7. Denote V (τ ) the mixed 2-dimensional volume of ∆ τ (f ) and ∆ τ (g).

With this choice of g, we can access the rest of the configuration C tot . Indeed, Each of these points is of type ⊕, and, in Γ (C tot ), the new curves are represented by arrowheads decorated with (1; 0, 1). Remark 5.2.9. If dim(∆ τ (g)) = 0, then V (τ ) = 0.

If ∆ τ (f ) and ∆ τ (g) are parallel segments, again, V (τ ) = 0 If ∆ τ (f ) and ∆ τ (g) are non parallel segments, V (τ ) = l τ (f ) • l τ (g). , where the decorations ⊕ and the triples of multiplicities are omitted. Violet marks represent curves of type 1. We respected to a large extent the form of the fan F , and the reader can follow the construction of this graph from the fan, with the appropriate values for the lengths and mixed volumes. Every curve without genus decoration is rational, and the indicated genera g i 's may be zero, according to the number of integral points of the 2-dimensional compact faces of LN P (f ). 

Sufficiency of Γ (C tot )

Let us conclude this chapter by two observations that show that the data of the decorated graph Γ (C tot ) computed in the previous sections is sufficient to apply the main algorithm presented in Chapter 4.

Switches

Observe that, if the genus of a compact irreducible component of C tot is not 0, then the triple of multiplicities of this curve is of the form (1; m, n). Combining this with Theorem 4.10.11, we see that there is only one component in its preimage by the normalization morphism. This makes the data of the switches of Definition 4.10.10 unnecessary.

In the same spirit, observe that, by our construction, the graph obtained from Γ (C ) by removing all vertices corresponding to curves of type 2 is a disjoint union of trees. Again, each of those curves of type 2 being decorated by a triple of the form (1; m, n), this prevents by Theorem 2.6.33 any ambiguity in the definition of the covering graph corresponding to the process of normalization and complexification of S k , see Section 4.10.

Hence, one can proceed to the main algorithm with the sole data of Γ (C tot ), obtained from LN P (f ) and σ. Furthermore, we can observe the following, which comes from our construction and Remark 2.6.40: Proposition 5.3.1. In the toric case, the graph produced by our algorithm is planar. The normal form of this graph in the sense of [START_REF] Neumann | A Calculus for Plumbing applied to the Topology of Complex Surface Singularities and Degenerating Complex Curves[END_REF] is also planar.

Two examples of computation

In this section we give two examples of computation of plumbing graphs of the boundaries of Milnor fibers of Newton non-degenerate functions on three-dimensional toric germs, performed using the algorithm described before. In the first example the toric germ is smooth, therefore we are in the setting of Némethi and Szilárd's book [START_REF] Némethi | Milnor Fiber Boundary of a Non-isolated Surface Singularity[END_REF]. Nevertheless, let us recall that the family of Newton non-degenerate functions was not treated in that book. In the second example the toric germ is singular, with 1-dimensional singular locus. Therefore the fact that the boundary of the associated Milnor fiber is a graph manifold is not a consequence of any previous work.

An example in C 3

Consider the function f : (C 3 , 0) → (C, 0) given by f (x, y, z) = x 5 + y 2 + xyz. that, in this example, no compact face has interior points, which explains the nullity of all genera, and the fact that there is no multiple edge.

By equation (4.14), each surface of Γ ((N S • K) * (C tot )) has Euler characteristic 2, which will eventually lead to genus 0, so we omit these decorations. The next step is the computation of the strings inserted in place of the edges. We explain the computation on the edge Its normal form in the sense of [START_REF] Neumann | A Calculus for Plumbing applied to the Topology of Complex Surface Singularities and Degenerating Complex Curves[END_REF] is

-2 -4 -2
Note that, in [46, p. 210], the authors propose the form 2 5

These two graphs encode the same graph manifold, and are related by a succession of blowing-downs and blowing-ups. Let X := X σ be the 3-dimensional toric variety corresponding to σ. The cone σ is not simplicial, hence X is singular at the origin. Furthermore, the face τ 1,2 := u 1 , u 2 R + of σ is singular, hence X is singular along 0 τ 1,2 .

The cone σ is generated by the vectors

U =   1 0 1   , V =   0 1 1   , W =   1 0 0   , X =   0 2 -1   .
The face of σ corresponding to the face τ 1,2 of σ is the ray generated by W . The final refinement of F f g is represented in Figure 5.14, with the codes of colours introduced in the description of the general case, see Subsection 5.2.1. Next to each vector corresponding to a 2-dimensional orbit of X F f g , we indicate the couple of multiplicities of the pullbacks of the functions f, g on the orbit in question. Again, the missing multiplicities are computed using the linearity of each multiplicity function on the cones of F f g . For example,   The face ∆ u (f ) is a segment of length 2, and the mixed volume V u of ∆ u (f ) and ∆ u (g) is equal to 2.

We show an example of computation of the mixed volume by hand in the case of v: The mixed volume is read on Figure 5.16, reminding that an elementary triangle has volume 1, and that V (P, Q) = (V ol(P + Q) -V ol(P ) -V ol(Q)) /2. We get V v = 4.

∆ v (f )
Finally, V w = 0 because ∆ w (g) is a point. Keeping in mind that face ∆ v (f ) has one interior point, we get finally the graph of configuration of Figure 5.17.

This leads to the multiplicity graph Γ µ (E tot ) represented in Figure 5.18. For the computation of the genera, notice that, by formula 4.14, the genus of a curve where the multiplicities of f are coprime remains unchanged. 

Figure 2 . 1 :

 21 Figure 2.1: Three equivalent plumbing graphs.

Definition 3 . 1 . 15 .

 3115 Denote N σ the sublattice of N generated by the elements of σ∩N , and M σ := N σ . Then seeing σ as a cone in N σ , we define its dual σ Mσ in M σ . Proposition 3.1.16. Given any complementary sublattice M of σ ⊥ ∩M in M , there is an isomorphism of semigroups

Proposition 3 .

 3 3.7. (Decomposition into orbits.) Let σ be a strongly convex polyhedral cone of dimension d belonging to a fan F in N R , where N is n-dimensional. Let τ 1 , . . . , τ k be the faces of σ of codimension 1. Then O σ := X σ \ X τ i is an orbit of X F under the action of T N . It is made of all morphisms (σ ∩ M, +) → (C, +) that are different from zero exactly on σ ⊥ ∩ M . In other words, a point of O σ is a maximal ideal of C[σ ∩ M ] containing the monomial χ m ∈ C[σ ∩ M ] if and only if m /

Proposition 3 . 3 . 15 .

 3315 Let F be a fan in N R , and σ ∈ F . Then X F is smooth along O σ , i.e. at every point of O σ , if and only if σ is regular. Proposition 3.3.16. Let τ ∈ F . Then the closure O τ of the orbit associated to τ in X F is a toric variety, associated to the fan F = {σ, τ σ} in N (τ ), where N (τ ) = N N τ , and σ is the image of σ in N (τ ) R .

Definition 3 . 3 . 17 .

 3317 A cone σ in a fan F is said to be an external cone if σ ⊂ ∂|F |, where ∂|F | denotes the topological boundary of the subset |F | in N R . Any other cone of F is called internal.Example 3.3.18. Heuristically, a cone is internal if it is of maximal dimension or "surrounded" by cones of F . In the variety corresponding to the fan represented in figure3.1, the only internal cones are τ 2 , σ 1 and σ 2 .

Figure 3 . 1 :

 31 Figure 3.1: A fan in a 2-dimensional lattice.

Proposition 3 . 4 . 3 .

 343 The morphism Π F ,F is a modification of X F . It has the following combinatorial property: if σ ∈ F , let σ be the minimal cone of

∆ 1 :Figure 3 . 2 :Example 3 . 5 . 5 .

 132355 Figure 3.2: The local Newton polyhedron of x a -θ • y b z c ∈ C[x, y, z] in M = Z 3 r,s,t .

Definition 3 . 5 . 6 .

 356 Let v ∈ σ, and f ∈ C{σ ∩ M }. Define the height of LNP(f ) in the direction v to be h v (f ) := min m∈LNP(f ) m, v ∈ R + . Definition 3.5.7. A face of LNP(f ) is any subset of the form

  The fan F f is a refinement of the cone σ, in the sense of Definition 3.4.1.Example 3.5.10. Figure 3.3 shows the fan in N associated to the function x a -θy b z c ∈ C{x, y, z}. The notation (a, b) stands short for gcd(a, b

Furthermore, Proposition 3 . 4 . 3 implies

 343 Lemma 3.5.14. The preimage E F of the origin of X σ by the modification Π F is equal toτ :∆τ compact O τ .Definition 3.5.15. For a face ∆ of LNP(f ), of any dimension, we define f ∆ , f truncated relatively to the face ∆, as the function obtained by keeping only the terms of f corresponding to points of this face:

Figure 3 . 5 :

 35 Figure 3.5: A possible F .

Figure 3 . 7 :

 37 Figure 3.7: The configuration of curves.

Figure 3 .

 3 Figure 3.7 shows a visualization of this configuration in the case l = 3, d = 3. The arrows represent the non-compact curves of intersection of V (h) with the non-compact orbits corresponding to u 0 and u l+1 .The self-intersection of each compact curve in V (h) is given by the number -k i . In order to see this, let us compute the multiplicities of some regular function g on V (h) such that g vanishes on each of those curves. Such a function is adapted to the exceptional divisor of the resolution in the sense of Definition 2.7.4, allowing the computation of the self-intersections of its irreducible components by the use of Lemma 2.7.7.Let n 1 , n 2 , n 3 ∈ N, and g(x, y, z) := x n 1 y n 2 z n 3 . Then the multiplicities of the pullback of g by Π on each curve of one of these chains are indicated on figure 3.8. Each vertex corresponds to one of the curves, with an arrow for the non-compact ones. The multiplicities µ i = h u i (g) are written in parenthesis, and they verify

Figure 3 . 8 :

 38 Figure 3.8: The string Str(a; b, c|n 1 ; n 2 , n 3 ).
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 412 (H. Hamm, [22, Satz 1.6], Lê [29, Theorem 1.1])

Definition 4 . 1 . 3 .Remark 4 . 1 . 4 .

 413414 where D δ denotes the closed disc of radius δ around 0 in C. The first of the two fibrations above is referred to as the Milnor fibration of f , and the second one is called the Milnor-Lê fibration (see[START_REF] Lê | Some Remarks on Relative Monodromy[END_REF] Theorem 1.1]). The closure of the fiber of the Milnor-Lê fibration is called the Milnor fiber of the germ of function f . The Milnor-Lê fibration is also sometimes referred to as the Milnor fibration.

Figure 4 . 1 :

 41 Figure 4.1: Position of Z k relatively to ∆ Φ .
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 4419 Set k k 0 . Then we define the germ

Figure 4 . 2 :

 42 Figure 4.2: The isotopy of boundaries.

Figure 4 .

 4 3 shows an example of divisor D. The components of D f are represented in blue, those of D g in green, and those of D 0 in red. Full lines represent irreducible components of C tot , and the arrow represents a non-compact component of D f ∩ D g . The points of intersection of two irreducible components of C tot are decorated using signs, anticipating the convention introduced in Definition 4.7.6.

Figure 4 . 3 :

 43 Figure 4.3: The divisor D, and the curve configurations C , C tot .

Discussion 4 . 7 . 3 .

 473 In the sequel, we show among other things that there is a finite open covering of ( S k , C tot ) such that, on each one of these open sets, S k can be presented as an affine real-algebraic variety. This allows us, using Subsection 2.5.1, to speak about the normalization S k N of S k , which is a real-analytic variety. Denote by N S : S k N → S k the normalization morphism of S k .

Take a point p ∈ D 1 ∩

 1 D 2 , where D 1 ∈ D 0 or D g , D 2 ∈ D f , with the notations of Definition 4.6.1, and p is on no other component of D. Then, as D is a simple normal crossings divisor at p, we can set local holomorphic coordinates (u , v , w ) on a neighbourhood U p of p in X such that D 1 = {u = 0}, D 2 = {v = 0}. Then locally:

  norm at the level of normalizations. Discussion 4.7.5. Orientation of S k and the model near a generic point.

Definition 4 . 7 . 6 .Example 4 . 7 . 7 .

 476477 (See [46, section 6.2]) The double point p is said to be of type ⊕ if D 3 ∈ D g or D 0 , and of type if D 3 ∈ D f . That is, p is of type ⊕ if and only if n 3 = 0. For the sake of clarity, we repeat here in Figure 4.4 an example of divisor D. As in Figure 4.3, the components of D f are represented in blue, those of D g in green, and those of D 0 in red. Full lines represent irreducible components of C tot , and the arrow represents a non-compact component of D f ∩ D g .

Figure 4 . 4 :

 44 Figure 4.4: The divisor D, and the curve configurations C , C tot .

Lemma 4 . 8 . 4 .

 484 The morphism K is orientation-preserving.

4. 9

 9 The decorated graph Γ (C tot ) of configuration of curvesIn order to make the description of N * S (C tot ) ⊂ S easier, and in the perspective of the main algorithm, let us introduce the decorated graph Γ (C tot ). Definition 4.9.1. Denote Γ(C tot ) the dual graph of the configuration of complex curves C tot , as defined in 2.7.1. The decorated graph Γ (C tot ) is obtained from Γ(C tot ) in the following way:• If C is an irreducible component of D 1 ∩ D 2 , where D 1 ∈ D f and D 2 ∈ D 0 ∪ D g , decorate v C ,the vertex corresponding to C, with the triple (m 1 ; m 2 , n 2 ) (with the Notation 4.6.8), and with its genus [g], in square brackets. If D 2 ∈ D g , then the vertex associated to the non-compact curve C is an arrowhead. • Decorate each edge e p of Γ(C tot ) corresponding to a double point p of C tot with a ⊕ or a sign, according to the type of the point p, introduced in Definition 4.7.6.

, 1 j=0C 1

 11 where d denotes gcd(m 1 , m 2 ), provides S ∩ U p as a disjoint unionS ∩ U p = • K) * (C) ∩ U p = d-(j) ∩ U pwhere C (j) is the preimage of the curve {x p = y p = 0} by the normalization of {x m

Lemma 4 .

 4 10.3. (Compatibility of orders.) Let p i ∈ C ∩ D i be one of the double points of C tot on C. Let p be a generic point of C such that U := U p ∩ U p i = ∅. Consider the cyclic orders defined above. If an irreducible component of κ -1 p

Lemma 4 . 10 . 7 .

 4107 Let C be an ireducible curve of C , and denote D the component of D f containing C. If D is not contained in the strict transform V (f ) of V (f ), denote by L the curve r X (D). If the transversal type of (X, V (f )) along L has a resolution whose exceptional divisor is a union of rational curves, then the curve C is rational.Let p ∈ C ∩ C , where C, C are irreducible real surfaces of (N S • K) * (C tot ), be a potentially singular point of S . We face two different situations, according to the type of the pointp := (N S • K)(p) ∈ D 1 ∩ D 2 ∩ D 3 ,whereD 1 ∈ D 0 ∪ D g , D 2 ∈ D f and D 3 ∈ D. Denote C := (N S • K) C , C := (N S • K) C .Denote also U the connected component of U p containing p, and d := (m 1 , m 2 , m 3 ).

4. 11 . 2

 112 Point of type ⊕If p is of type ⊕, then the edge associated to p in Γ ((N S • K) * (C tot )) is of the form (m 2 ; m 1 , n 1 ) (m 2 ; m 3 , n 3 ) [χ] [χ ] v C v C ⊕and, on U , the equation of S is of the formS ∩ U = y m 2 /d = e 2ijπ/d x m 1 /d z m 3 /d ∩ U Cp norm . (see equation (4.12) in the proof of Lemma 4.10.3.) Denote π p : U → S ∩ U the resolution of the surface x m 1 /d = e 2ijπ/d y m 2 /d z m 3 /d norm ∩U described in Subsection 3.5.3, up to exchanging the roles of the coordinates x and y. In the sequel we refer to this Subsection for the notations. Note that C ∩ U = (norm * ({y = x = 0})) ∩ U and C ∩ U = (norm * ({y = z = 0})) ∩ U . Denote C, C the strict transforms of C, C by the morphism π. Denote g C := g • r S • N S • κ p the pullback of the function g to {y m 2 = x m 1 z m 3 } ∩ U C p . Up to a unit,

d |0; n 1 , n 3 where

 3 the notation Str has been introduced in 3.5.3. The multiplicities on the curves of the string are those of the function g := g • Π which is the pullback of the function g to S ∩ π -1 (U ), and where C 0 = C , and C l+1 = C. Denote U := π -1 U . Note that the morphism π : U → U is an isomorphism outside of p. Discussion 4.11.1. Orientation compatibilities, point ⊕. Let us remind here the choices of orientation made in subsection 4.8.2.

Figure 4 . 5 :

 45 Figure 4.5: The string Str ⊕ m 2 d ; m 1 d , m 3 d |0; n 1 , n 3 .

.

  See equation (4.13) in the proof of Lemma 4.10.3. Denote π p : U → S ∩ U p the resolution of the surface x m 1 /d = e 2ijπ/d y m 2 /d z m 3 /d norm ∩ U described in Subsection 3.5.3. Again, in the sequel we refer to this section for the notations. Note that C ∩ U = (norm * ({x = z = 0})) ∩ U and C ∩ U = (norm * ({x = y = 0})) ∩ U . Denote C, C the strict transforms of C, C by the morphism π. Denote g C := g • r S • N S • κ p the pullback of the function g to {x m 1 = y m 2 z m 3 } ∩ U C p . Up to a unit,

d |n 1

 1 ; 0, 0 where the notation Str has been introduced in 3.5.3. The multiplicities on the curves of the string are those of the function g := g • Π the pullback of the function g to S ∩ π -1 (U ), and where C 0 = C , and C l+1 = C. Note that the morphism π p : U → U is an isomorphism outside of p. Discussion 4.11.3. Orientation compatibilities, point . Let us remind here the choices of orientation made in subsection 4.8.2.

Figure 4 . 6 :

 46 Figure 4.6: The string Str m 1 d ; m 2 d , m 3 d |n 1 ; 0, 0 .

Lemma 4 .

 4 11.4. If C is an irreducible surface of (N S • K) * (C tot ), and C is the strict transform of C by π, then χ( C) = χ(C).

(4. 15 )

 15 Furthermore, the surfaces added in the resolution process are all of genus 0. Definition 4.11.5. Denote Γ µ (E tot ) the graph obtained from Γ ((N S • K) * (C tot )) by introducing the strings described in Subsections 4.11.2 and 4.11.3, where • Vertices coming from arrowheads are still represented as arrowheads, and every vertex is decorated with the corresponding multiplicity of g. • The vertex v C corresponding to the strict transform of the curve C by π has genus decoration g C = [1and the new vertices introduced in the strings have genus decoration 0. The genus decorations of Equation (4.16) are motivated by the Euler characteristic identities of Equation (4.15). For the computation of χ C , see Equation (4.14) of Theorem 4.10.11.
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 511 For any sequence G = (m 1 , • • • , m k ) generating the semigroup σ ∩ M , denote

15 Figure 5 . 2 :

 1552 Figure 5.2: A possible F , refinement of F .

Discussion 5 . 1 .

 51 2.4. (Two types of compact curves.) The first type is made of curves in D f,ex ∩ D 0 . Such curves are of the form O γ , where γ is a 2-dimensional cone with one 1-dimensional face in the interior of σ, and the other in the interior of a 2-dimensional face of σ. Such cones are represented by violet lines, continuous or not, in figure 5.3.

Lemma 5 . 2 . 8 .

 528 (Adding non-compact curves) Let C τ be a curve of C of the second type, possibly a disconnected union of curves. ThenCard C τ ∩ V (g) = V (τ ),each of these intersection points being an intersection point of C τ with a curve inV (f )∩ V (g). Furthermore, if dim(∆ τ (f )) = 1, ∃ k ∈ N s.t. V (τ ) = k • l τ (f ), and each connected component of C τ is intersected in k points.

Figure 5 .

 5 Figure 5.4 shows a possible form of the graph Γ(C tot ), where the decorations ⊕ and the triples of multiplicities are omitted. Violet marks represent curves of type 1. We respected to a large extent the form of the fan F , and the reader can follow the construction of this graph from the fan, with the appropriate values for the lengths and mixed volumes. Every curve without genus decoration is rational, and the indicated genera g i 's may be zero, according to the number of integral points of the 2-dimensional compact faces of LN P (f ).

Figure 5 . 4 :

 54 Figure 5.4: A possible graph Γ(C tot ).

Figure 5 .

 5 Figure 5.5 shows the local Newton polyhedron of f , while Figure 5.6 shows the local Newton polyhedron of a generic linear form g(x, y, z) = α • x + β • y + γ • z.Figure 5.7 shows the fan F f •g , with the conventions introduced in Subsection 5.2.1.In this example, every blue cone of dimension 2 is already regular. The cone generated

Figure 5 .

 5 Figure 5.5 shows the local Newton polyhedron of f , while Figure 5.6 shows the local Newton polyhedron of a generic linear form g(x, y, z) = α • x + β • y + γ • z.Figure 5.7 shows the fan F f •g , with the conventions introduced in Subsection 5.2.1.In this example, every blue cone of dimension 2 is already regular. The cone generated

Figure 5 .MFigure 5 . 5 : 4 .Figure 5 . 6 :

 555456 Figure 5.8 shows the refinement F of F f •g respecting the conditions asked in Subsection 5.2.3.

1 )This gives us k 1 = 2 and k 2 = 3 , 4 , µ 3 = 3 . 2 • k 2 = µ 1 + µ 3 . We get µ 2 = 2 .Figure 5 . 7 :

 112343322132257 Figure 5.7: The fan F f •g .

  the graph Γ µ (E tot ) is the one represented in Figure5.10, with the decorations ⊕ omitted. Finally, the plumbing graph Γ S (E) obtained as a result of the main algorithm is the one represented in Figure5.11.

Figure 5 . 8 :

 58 Figure 5.8: The fan F .

5. 4 . 2

 42 An example with X singularDenote M := Z 3 , and let in R 3 , and σ = u 1 , u 2 , u 3 , u 4 R + .

1 Figure 5 . 11 :

 1511 Figure 5.11: The graph Γ S (E).

Figure 5 . 12 : 1 

 5121 Figure 5.12: LN P (g).

Figure 5 . 13 :

 513 Figure 5.13: LN P (f ).

FinallyFigure 5 .Figure 5 . 15 :

 5515 Figure 5.14: Refinement of F f g .

∆Figure 5 . 16 :

 516 Figure 5.16: The Minkowski sum ∆ v (f ) + ∆ v (g).

Figure 5 . 17 :

 517 Figure 5.17: The configuration C tot .

Figure 5 . 18 :

 518 Figure 5.18: The graph Γ µ (E tot ).

Figure 5 . 19 :

 519 Figure 5.19: The graph Γ S (E).
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Figure 5 . 20 :

 520 Figure 5.20: The equivalent normal graph.
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  The fan associated to the funciton f , page 59
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  Fan associated to the compact polyhedron P , page 69

  where T is oriented as the boundary of M 1 . The definition of the Euler number is the same if one reverses the roles of M 1 and M 2 , i.e. if one computes ∂Σ 2 • ∂Σ 1 in H 1 (T, Z), orienting here T as the boundary of M 2 .

	Remark 2.6.7.
	1.

  Proposition 3.3.13. The intrinsic variety X σ (N σ ) is smooth if and only if σ is regular. Proof. Indeed, X σ (N σ ) is regular if and only if σ Mσ ∩ M σ N d , if and only if σ Mσ is regular, if and only if σ is regular. Proposition 3.3.14. Let σ ∈ F be a d-dimensional cone in an n-dimensional lattice N , and p ∈ O σ ∈ X F . Then there is an isomorphism of analytic germs

  Decorations of edges associated to intersection points of two surfaces in a configuration of surfaces, page 43 v 1 , . . . , v k R + The cone generated by v 1 , . . . , v k , page 47

	map, 27	of a map, 76
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The purpose of this section is to make clear the notion of graph manifolds, and the correspondence between them and plumbing graphs. Note that, in the literature, there are different definitions for the following objects, depending on the level of generality the author wants to attain, and what they use these objects for. Our choices are aimed to the description of the boundaries of Milnor fibers of smoothings of non-isolated complex surface singularities.

f X , g X Pullbacks of f and g to X, page 87 g A companion of f , page 75 [g i ] Genus decoration of a surface in the dual graph, page 43 g Pullback of the function g to S ∩ π -1 (U ), page 111 G (Γ, (n v , n e )) Set of equivalence classes of cyclic coverings of Γ with data (n v , n e ), page 37 Γ Topological realization of the graph Γ, page 35 Γ(E) Dual graph of the collection E, page 41 Γ (C tot ) Decorated dual graph of C tot , page 99 Γ S (E) Plumbing dual graph of a simple configuration of surfaces, page 42 Γ ((N S • K) * (C tot )) The decorated graph associated to the configuration (N S • K) * (C tot ), page 108 Γ µ (E tot ) Dual graph of E tot decorated with the multiplicities of g, page 113

Remerciements

Chapter 3

Elements of toric geometry

What follows is mainly based on the book [START_REF] Fulton | Introduction to Toric Varieties[END_REF] of Fulton. To go further, one can consult the books [START_REF] Oda | Convex Bodies and Algebraic Geometry: An Introduction to Toric Varieties[END_REF] of Oda, [START_REF] Cox | Toric Varieties[END_REF] of Cox, Little, Schenk, the introductory article [START_REF] Danilov | The Geometry of Toric Varieties[END_REF] of Danilov, as well as the introductory courses [START_REF] Brasselet | Introduction to Toric Varieties[END_REF] of Brasselet and [43] of Musţată.

Lattices and cones

Definition 3.1.1. A n-dimensional lattice N is a free group of rank n, that is, a group isomorphic to (Z n , +). Define the integral length of an element u ∈ N as

Denote by N R := N ⊗ Z R the R-vector space associated to N .

Remark 3.1.2. Note that l(0) = 0.

Once N is identified with Z n , a vector u ∈ N is primitive iff its coordinates are coprime as a whole. Definition 3.1.3. For (S, •) sub-semigroup of (R, •), and v 1 , . . . , v k ∈ N , denote

A rational convex polyhedral cone σ in N R is a set of the form v 1 , . . . , v k R + , for some v 1 , . . . , v k ∈ N , said to be generating σ. Let us define the dimension of the cone σ as the dimension of v 1 , . . . , v k R , the subvector space of N R generated by (v 1 , . . . , v k ). We will also refer to the codimension of σ, defined as the codimension of that same space in N R .

Such a cone will be called strongly convex if it does not contain any vector subspace of N R .

In addition, the orbit O τ is characterized by:

This leads us to: Lemma 3.5. [START_REF] Fernández De Bobadilla | The boundary of the Milnor fibre of Complex and Real Non-isolated Singularities[END_REF]. The intersection of the strict transform V (f ) of V (f ) with the orbit O τ = Spec (C[χ ±m d+1 , • • • , χ ±mn ]) of X F associated to the cone τ ∈ F is given by

Furthermore, we can deduce from the previous paragraph: Lemma 3.5.17. If τ = v R + for some primitive vector v in N , then f := f • Π F vanishes along O τ , and the multiplicity of f along this hypersurface is

The polynomial fτ depends on the initial choice of the basis (v i ) 1 i n , but it is always, up to a monomial of C[M ∩ σ ], equal to f ∆τ . Remark 3.5.18. A direct consequence is that if F is a refinement of F f , and τ ∈ F , then

The following elementary lemma establishes then the final link between the regularity of V (f ) ∩ O τ and the initial function f . Lemma 3.5.19. Let n k, and

defines a smooth hypersurface of (C * ) k if and only if X m • f defines a smooth hypersurface of (C * ) n . This motivates the following definition, see also [START_REF] Steenbrink | Motivic Milnor Fibre for Nondegenerate Function Germs on Toric Singularities[END_REF]Definition 5]: Definition 3.5.20.

• A germ of suitable function f ∈ C{σ ∩ M } is said to be nondegenerate relatively to a compact face ∆ ⊂ LNP(f ) if and only if V (f ∆ ) is smooth in (C * ) n .

• A germ of function is said to be Newton-nondegenerate, or NND if it is nondegenerate relatively to every compact face of its local Newton polyhedron.

Example 3.5.21. Any suitable binomial is Newton-nondegenerate.

The previous paragraph implies:

Application to some Hirzebruch-Jung singularities

Let us treat as an example the particular case of Hirzebruch-Jung singularities. Such singularities appear in the proof of the main result (see Subsections 4.11.2 and 4.11.3).

Definition 3.5.27. A Hirzebruch-Jung singularity is any multigerm of the form

Usually one considers only irreducible Hirzebruch-Jung singularities (i.e when gcd(a, b, c) = 1). Therefore the previous definition is a slight extension of the usual notion.

The tools developed earlier can be applied to compute a description and a resolution of such singularities.

Denote h(x, y, z) := x a -θy b z c , and, as usual, V (h) := {h = 0} ⊂ C 3 . Denote by V (h) the strict tranform of V (h) by the modification Π F h of C 3 associated to h. This modification is given by the fan described in figure 3.3. Denote by

Lemma 3.5.28. (See [START_REF] González Pérez | Embedded Resolutions of Non Necessarily Normal Affine Toric Varieties[END_REF]). The morphism norm is a normalization of V (h).

Example 3.5.29. Figure 3.5.3 shows in blue and orange the preimages by the normalization of the axes of coordinates contained in V (h). These non-compact curves are represented as arrows. Proposition 3.5.24 implies that V (h

The morphism of multigerms

is a first step towards a resolution of (V (h), 0). We know that the only singularities of V (h) are located at its intersections with orbits along which X F h is singular. The only possible such orbit is O γ . The variety X F h is singular along it iff the cone γ is singular.

There is a canonical way to subdivide a singular 2-dimensional cone in regular cones. See [START_REF] Oka | Non Degenerate Complete Intersection Singularity[END_REF]Section 2.2]. 

be the negative continued fraction expansion of

Then ∀ 0 i l, the cone

Proposition 3.5.31. The collection of 2-dimensional cones obtained by the above process is the minimal regular subdivision of γ in the sense of refinements. It is called the canonical regular subdivision of γ. One says that we subdivided γ regularly.

Counting points of intersection

In this section, we present the theorem of Bernstein-Koushnirenko-Khovanskii (see [START_REF] Bernstein | The Number of Roots of a System of Equations[END_REF][START_REF] Oka | Non Degenerate Complete Intersection Singularity[END_REF][START_REF] Cox | Using Algebraic Geometry[END_REF][START_REF] Sturmfels | Polynomial Equations and Convex Polytopes[END_REF]), which will be useful for the toric version of the main algorithm.

In the sequel, M is an n-dimensional lattice, and we denote N := M . 1. dim(P ) n -1 ⇒ V ol(P ) = 0.

2. V ol is invariant by translation.

Definition 3.5.36. If P ∈ P(M ) and λ ∈ Z, denote

Relatively to this multiplication and the Minkowski sum, there exists a unique n-linear form V on P(M ) such that V (P, • • • , P ) = V ol(P ).

The mixed volume is a non-negative integer. See [START_REF] Fulton | Introduction to Toric Varieties[END_REF]Section 5.4], and [11, Theorem 7.4.12] for more properties of the mixed volume.

Let P ∈ P(M ). Adapting the construction of a fan from a local Newton polyhedron executed in subsection 3.5.1, we will talk about the inner normal fan F P associated to the polytope P .

In this context, the fan F P will always be complete, in the sense that its support |F P | is always equal to M R . The birational map

Remark 3.5.37. Note that F P i is the minimal fan that is a refinement of each F P i .

the Newton polytope of f . Definition 4.4.14. In this setting, the neighbourhood U k of 0 C 2 is called small enough for the pair (∆ Φ , k), or, if there is no ambiguity, for k.

Note that a neighbourhood that is small enough for k is also small enough for any even k k. Before beginning the proof of Lemma 4.4.13, let us note: Remark 4.4.15. Since V (f ) has non-isolated singularities, and because of the properties of transversality asked to f and g, the x-axis is contained in ∆ Φ .

Proof of Lemma 4.4.13. The discriminant locus ∆ Φ has a finite number of branches

For a branch D = D 1 , let the Puiseux expansion of D be given by y = j j 0 a j • x j/n , a j 0 = 0

Then for any k ∈ N,

which is strictly negative on a neighbourhood of the origin. Now it suffices to choose an integer k that is big enough for every branch of ∆ Φ . Let us conclude this proof by noting that the exponent n/j 0 is the slope of one of the compact faces of the Newton polygon of the analytic function giving ∆ Φ . Remark 4.4.16. One sees from the proof that a suitable value for k is easily derived from ∆ Φ , once one knows the Newton polygon of the corresponding function. Indeed, thanks to the observation made at the end of the previous proof, it is enough for k to be greater than the greatest slope of the compact faces of this Newton polygon. Definition 4.4.17. An even integer k is said to be large enough for Φ = (f, g) if it is large enough in the sense of Lemma 4.4.13. Note that if k is large enough for Φ, then any even integer k k is also large enough for Φ. Denote by k 0 the smallest even number that is large enough for Φ = (f, g).

In the sequel, we are going to build an explicit representative of the Milnor fiber of f , in order to compute its boundary. To do this, we have to build an appropriate representative of the germ (X, 0), and to take an appropriate value for the level of f . Definition 4.4.18. If k ∈ 2N is large enough for Φ, a representative X ε of (X, 0) is said to be small enough for k if Φ(X ε ) is small enough for k. Definition 4.4.22. In these conditions, the oriented manifold

Before we can state the final result of this section, allowing us to study the link of S k instead of the boundary of F , let us impose a final condition on the neighbourhoods of the origins of X and C 2 that we want to consider. Condition 3. on ε 0 . We ask in the sequel the number ε 0 > 0 to be as in the fibration Theorem 4.1.2, and to be such that the intersection

First, let us sum up here the conditions asked to the representative X ε 0 of the germ (X, 0). Definition 4.4.23. In our context, the representative X ε 0 will be called a good representative of the germ (X, 0) if ε 0 > 0 verifies Conditions 1,2 and 3 on ε 0 defined above.

From now on, fix a good representative X ε 0 of (X, 0) and 0 < ε < ε 0 . This is enough to build a convenient variety S k .

Let us now build an appropriate representative of the Milnor fiber of f . Condition 3 on

Set δ > 0 to be as in Theorem 4.1.2 relatively to ε, and such that δ δ 1 and δ 1/k δ 2 . The representative of the Milnor fiber that we choose will be

We can now state and prove the following:

Proposition 4.4.24. In the setting described in this section, the oriented manifolds ∂S k and ∂F are orientation-preserving diffeomorphic.

Proof. We are going to build an isotopy from ∂F to ∂S k in the smooth locus Sm(X ε ) of X ε , using vector fields. This isotopy will be built in three steps, represented schematically in figure 4.2.

In the sequel, we will use the notion of gradient for some functions defined on parts of Sm(X ε ). Take an embedding X ε ⊂ C N . Then this gradient will be defined with respect to the restriction of the usual hermitian form of T p C N on T p Sm(X ε ), for any p ∈ Sm(X ε ).

Proof of Proposition 4.7.1. Let p be a generic point of a component D 1 ∈ D 0 . Then one can take local holomorphic coordinates (u, v, w) on a neigbourhood U p of p in X such that

where I f , I g are units at p, as in Definition 2.4.1.

Then

The same considerations at generic points of D f or D g will show, even without conditions on k, that S k does not contain them neither.

Consider a point p ∈ D 1 ∩ D 2 , where D 1 ∈ D 0 , D 2 ∈ D g , and p is on no other component of D. Then, as D is a simple normal crossings divisor at p, we can set local holomorphic coordinates (u, v, w) on a neighbourhood U p of p in X such that

where I f , I g are units at p.

Then the condition kn 1 > m 1 shows that S k does not contain p.

The rest of this proposition, stating that S k contains C tot , is proved in the following Subsections 4.7.1 and 4.7.2, where we provide local equations of S k along C tot .

The reason why we want to keep track of the total transform of V (g) ∩ S k in S k , is because the pullback of g by Π will be the adapted function that we use to compute the self-intersections of the irreducible components of E in S , as explained in Lemma 2.7.7.

We will now determine local equations of S k around a point of C tot , in order to define and study the morphisms N S and K mentioned in section 4.5.

Let p ∈ C tot . Because D is a normal crossings divisor at C tot , p will be on no more than three irreducible components of D at the same time. We face two different situations. In each of them we first build local coordinates giving S k a simple equation, and use it to provide a "local algebraic model" of this surface. We then study the lifting of this model to the normalizations of the source and the target. This lifting, globally, provides the morphism K.

Discussion 4.7.10. Orientation of S k and its model near a point ⊕.

An argument analogous to the one developped in discussion 4.7.5, with, this time,

provides again an orientation of S k given by du ∧ du ∧ dw ∧ dw, and κ ⊕ p is then orientationpreserving as soon as its source is oriented by its complex structure.

Furthermore, the two irreducible components of C tot that are visible here, given by {u = v = 0} and {w = v = 0}, are oriented as complex curves, respectively by dw ∧ dw and du ∧ du. The morphism κ ⊕ p then orients their preimages, respectively {x = y = 0} and {z = y = 0}, by their complex orientations dz ∧ dz and dx ∧ dx. Hence, again, the pullback of the orientation of

by its complex structure.

Points of type .

Now if p is a double point of type , one can say less, but still provide a local algebraic model for S k . Let us introduce the following morphism:

Condition 2 on k implies that κ p is regular. Furthermore it is a homeomorphism. Indeed, identifying the arguments and moduli, one can get

Remark 4.7.11. However, this morphism is not birational as soon as kn 1 kn 1 -m 1 is not an even integer.

For example if kn 1 > 2m 1 , kn 1 kn 1 -m1 = 1 + m 1 kn 1 -m 1 is not an integer. The morphism κ p , sending no irreducible component of the source to the non-normal locus of the target (see Proposition 2.5.10), lifts to a morphism

at the level of normalizations. Although κ p is not an isomorphism, we have the following: 

In other cases, the definition of U p is the same, with the appropriate equation for the right-hand term, according to the type of p.

Then we define a real-analytic variety S , called local complexification of S k N , by

gluing together the open sets U p p in the following way: if U p ∩ U q = ∅, glue U p and U q along

which is an isomorphism of real-analytic varieties in restriction to U p ∩ U q .

The latter is indeed an isomorphism: if p is a point of C , and q = p a double point of C tot , we may have p ∈ U q , but never q ∈ U p , because of the equations of S k on these open sets, see section 4.7. The isomorphism follows then from Lemmas 4.7.4, 4.7.9 and 4.7.12.

Remark 4.8.2. Note that the open sets U p are not, in general, connected. See Section 4.10 for more details. Now, the real-analytic morphism

is defined using the local morphisms κ p , on the covering of S by the U p 's. Lemmas 4.7.4, 4.7.9 and 4.7.12 imply:

Lemma 4.8.3. The real-analytic morphism K is an isomorphism of real-analytic varieties outside N * S (C ).

Lemma 4.9.2. If the germ (X, 0) is a complete intersection singularity, the graphs Γ(C tot ) and Γ(C ) are connected.

Remark 4.9.3. 1. If p, q ∈ C 1 ∩ C 2 , then p and q are of the same type. Hence the different edges between two vertices are all of the same type. 

where the decoration µ i means that the edge is repeated µ i times.

Description of Γ ((N

On a local chart of S of the form U p (see Definition 4.8.1), we know how to recognize the configuration (N S • K) * (C ). However, we also need to know it as a global object. Namely, two questions remain:

Let us look here more precisely at the configuration The proof of this lemma follows the one of [START_REF] Némethi | Milnor Fiber Boundary of a Non-isolated Surface Singularity[END_REF]Proposition 7.4.8,a)]. In the case studied by Némethi and Szilárd, it has the following consequence: Corollary 4.10.8. Let (X, 0) = (C 3 , 0), and C ∈ C be decorated by a triple of multiplicities (m 1 ; m 2 , n 2 ). Then if m 1 2, then the curve C is rational. Indeed, in this case all transversal types of the surface V (f ) are germs of plane curves, whose resolutions use only rational curves.

Non-rational curves

However, in general, the curve C will not be rational, whence the need of a little additional information, namely about the identifications of local irreducible components of S k along loops in C. The goal of this subsection is to make this precise.

Let C be an irreducible curve of C . Again, let p 3 , . . . , p l be the double points of C on C. Let p ∈ C \ {p 3 , . . . , p l }. Then π 1 (C \ {p 3 , . . . , p l }, p) acts on the set of local irreducible components of S k at p in the following way: let [γ] ∈ π 1 (C \ {p 3 , . . . , p l }, p). Consider a tubular neighbourhood U = j i=0 U i of γ in X such that, on each U i , we can have local coordinates in X in such a way as to get local equations as in 4.7.1 for S k . Then one can follow an irreducible component at p along γ. By consistency of the cyclic order, this action is completely defined by the data of the number δ such that a component is sent on the one which is δ further in the cyclic order. Furthermore, Lemma 4.10.9. For [γ] in π 1 (C \ {p 3 , . . . , p l }), the number δ is independent of the choice of the base point p or the representative γ. Definition 4.10.10. The number δ defined above is called the switch associated to γ. Now, π 1 (C \{p 3 , . . . , p l }, p) can be generated by α 1 , . . . , α 2g , γ 1 , . . . , γ l , where α 1 , . . . , α 2g generate π 1 (C, p), and γ i is a "simple loop" around p i , i.e. γ i = 1 in π 1 (C \ {p 1 , . . . , p l }, p) but γ i = 1 in π 1 (C \ {p 1 , . . . , p i-1 , p i+1 , . . . , p l }, p) Lemmas 4.10.1 and 4.10.3, together with the previous considerations, imply the following:

Let C be a curve of C of genus g, and let its star be

Let δ i be the switch associated to α i , where α 1 , . . . , α 2g generate π 1 (C). Then (N S • K) * (C) is the union of n C := gcd(m 1 , . . . , m s+t , δ 1 , . . . , δ 2g ) disjoint connected irreducible oriented surfaces. The set of connected components of (N S • K) * (C) is endowed with a cyclic order induced by the one on the local irreducible components of κ -1 p ( S k ∩ U p ) at generic points p of C. Denote C 1 , • • • , C n C those surfaces, where the numbering respects the cyclic order.

Furthermore, the common Euler characteristic χ C of each of these surfaces verifies

Proof of the last identity. This identity comes by recognising gcd(m 1 , m 2 ) as the cardinal of the preimage of a generic point, and gcd(m 1 , m 2 , m i ) as the cardinal of the preimage of a double point, and applying the Riemann-Hurwitz formula for the map N S • K restricted to the irreducible curve C.

Remark 4.10.12. The collection of switches associated to the α i 's is of course not unique, but the number n C is. 

Preimage of an intersection point

The graph Γ ((N

In this subsection, we sum up what has been developped throughout the previous ones to describe the decorated graph Γ ((

Recall the notations of Section 4.9. Theorem 4.10.11 and Lemma 4.10.13 imply:

Lemma 4.10.14. The graph Γ((

However, in general, this data does not determine Γ((N S • K) * (C tot )) uniquely. See Theorems 2.6.32, 2.6.33 and Proposition 2.6.35 for cases where this data is enough. In particular, if (X, 0) = (C 3 , 0), G ({n C } C∈Ctot , {d p } p double point ) = 0, hence the covering data is enough, see [START_REF] Némethi | Milnor Fiber Boundary of a Non-isolated Surface Singularity[END_REF]Theorem 7.4.16]. To help overcome the ambiguity, note that the structure of cyclic covering implies that if one knows the end-vertices of one of the edges e i for each e ∈ E (Γ(C tot )), then one knows Γ((N S • K) * (C tot )), up to isomorphism of cyclic coverings. It is therefore enough, for every double point p ∈ C ∩ C of C tot , to figure out two components C i and C l intersecting at one of the p j 's. 

4.11

The resolution step and a variety ( S , E t )

A variety ( S , E t )

The final step of the construction of the morphism Π announced in section 4.5 is the resolution π of the remaining isolated singular points of S . For each singular point p of S , we are going to decribe a resolution π p of the singularity (S , p), in the following subsections 4.11.2 and 4.11.3.

Once this process is complete, denote ( S , E t ) the variety obtained from (S , (N S • K) * (C tot )) by resolving its singular points, and

the global resolution of (S , (N S • K) * (C tot )) obtained by gluing the π p 's.

Finally, denote

the composed morphism, which is a resolution of the 4-dimensional real analytic singularity (S k , 0). Note that the construction of Π ensures that it is an isomorphism of real-analytic varieties outside the origin.

Chapter 5

A toric version of the main algorithm

In this chapter, we describe how the main algorithm can be run in the case of a Newtonnondegenerate germ of function on a 3-dimensional germ of toric variety. The algorithm exposed here is a generalization of the algorithm proposed by Oka in [START_REF] Oka | On the Resolution of the Hypersurface Singularities[END_REF] to compute the boundary of a nondegenerate isolated singularity of surface in C 3 , and answers the following open question: "Determine ∂F for weighted homogeneous or Newton non-nondegenerate singularities in terms of their Newton diagram.", asked by Némethi and Szilárd in [46, 24.4.20].

Let N be a 3-dimensional lattice, σ ⊂ N R be a strongly convex rational cone, and X := X σ be the 3-dimensional toric variety associated to σ. Denote M := N the dual lattice of N , and denote 0 the origin of X, its only 0-dimensional orbit. More generally, recall the notations introduced in Chapter 3.

Let f : (X σ , 0) → (C, 0) be a suitable germ of Newton-non-degenerate function, such that V (f ) ⊃ Sing(X σ ). By Lemma 3.5.3, this last requirement is equivalent to the fact that, if τ ≺ σ is a singular cone, Supp(f ) has no point in the face τ ⊥ ∩ σ of σ .

Furthermore, Lemma 3.5.3 implies:

Remark 5.0.1. Let τ be a regular 2-dimensional face of σ. Then the hypersurface V (f ) is singular along O τ if and only if every element m of Supp(f ) can be written as

We propose in this chapter a way to obtain the decorated graph Γ (C tot ) that is the starting point of the general algorithm described in Chapter 4 from the Newton polyhedron LN P (f ) of f . Furthermore, we show that, in this case, the data of this decorated graph is sufficient to run the algorithm of computation of the boundary of the Milnor fiber of f . This provides an algorithm taking as an input the cone σ and the Newton polyhedron of f , and computing the boundary of the Milnor fiber of f .

A direct consequence of this construction is the planarity of the plumbing graph, explicited in Proposition 5.3.1.

the mixed transform of V (f ) by r, which is the analogue at this step of the divisor D f of Definition 4.6.1.

The fact that the fan F f •g is the minimal refinement of both F f and F g implies that it can be computed by "superposing" the two fans F f and F g , as in figure 5.1. • In orange are drawn the 2-dimensional cones that are in both F f and F g .

• The fan F g is drawn in green and orange.

• The fan F f is drawn in blue and orange.

⊖ ⊖ ⊖ ⊖ ⊖

(1; 0; 1) (1; 0; 1) (1; 10; 2) (1; 4; 1)

(1; 5; 1) (2; 4; 1) (2; 5; 1) (3; 5; 1) (4; 5; 1) (5; 5; 1) (2; 2; 1) 

(1)

(1)

(1) The relations between these vectors provide the description

Figure 5.12 shows the local Newton polyhedron of the restriction g to X of a generic linear form in C 5 U,V,W,X,Y . Full black lines represent the cone σ, while dashed lines represent the axes of coordinates, left for clarity.

Consider the function

Note that V (f ) ⊃ Sing(X), since f admits no multiple of W in its support. Figure 5.13 shows the local Newton polyhedron of f , where we kept again the coordinate axes and the cone σ . Blue marks represent the elements of Supp(f ), while black marks represent the other points of M in the compact faces of LN P (f ). 

Index