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Résumé étendu 

 

• Introduction : la Terre au Trias inférieur et la reconquête après l’extinction 

fini-Permienne 
Situé après la limite entre le Paléozoïque et le Mésozoïque, le Trias inférieur est un 

intervalle court (~4Ma seulement ; Ovtcharova et al., 2006 ; Galfetti et al., 2007a ; Baresel et 

al., 2017). Lors de la transition entre le Permien et le Trias (PTB), la configuration tectonique 

de la Terre était différente, et la plupart des masses continentales étaient rassemblées en un 

seul super continent, la Pangée, lui-même entouré par un unique océan global, la Panthalassa 

(e.g., Murphy & Nance, 2008 ; Murphy et al., 2009 ; Stampfli et al., 2013). 

Lors de cette transition et durant le Trias inférieur, un évènement volcanique majeur, la 

mise en place de la grande province ignée de Sibérie (e.g., Ivanov et al., 2009, 2013), a conduit 

à l’émission de grande quantité de gaz à effet de serre (e.g., Galfetti et al., 2007b ; Romano et 

al., 2013). Ceux-ci ont contribué à l’acidification de la colonne d’eau et à l’augmentation des 

températures consécutivement à l’injection de CO2 dans l’atmosphère (e.g., Galfetti et al., 

2007b ; Sun et al., 2012 ; Romano et al., 2013). 

Les perturbations environnementales qui en découlèrent ont eu des conséquences sur 

les milieux de dépôts associés à cette période, mais également sur les écosystèmes. Elles sont 

supposées avoir contribué à la mise en place de conditions délétères pour les organismes et 

avoir perduré durant tout le Trias inférieur, restreignant ainsi la rediversification biologique 

d’après-crise (e.g., Pruss & Bottjer, 2004 ; Fraiser & Bottjer, 2007 ; Bottjer et al., 2008 ; Algeo 

et al., 2011 ; Meyer et al., 2011 ; Bond & Wignall, 2014 ; Song et al., 2014). 

 

La limite PT fut le théâtre de la plus importante et la plus destructrice crise biologique 

du Phanérozoïque, et fut responsable de la disparition de plus de 90% des espèces marines 

(Raup, 1979), ou encore de la perte d’environ 50% des familles de tétrapodes continentaux 

(Benton & Newell, 2014), pour ne citer que ces deux exemples. De nombreux groupes ont été 

oblitérés durant cette extinction, comme par exemple les groupes caractéristiques du 

Paléozoïque tels que les coraux tabulés ou encore les trilobites (Sepkoski, 2002). Cependant, 

si la Vie a failli s’éteindre à l’aube du Mésozoïque, celle-ci a tout de même pu se reconstruire, 

au prix d’une rediversification communément admise comme lente et difficile dans des 

conditions environnementales délétères (e.g., Twitchett, 1999 ; Fraiser & Bottjer, 2007 ; 

Meyer et al., 2011 ; Chen & Benton, 2012). 
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De grands paradigmes sont couramment associés à la rediversification du Trias inférieur 

(illustrés dans la Figure R.1a) : 

➢ La présence de taxons « désastre », représentant des organismes opportunistes 

et généralistes qui auraient proliféré à la suite de la libération de niches 

écologiques laissées vacantes par les métazoaires disparus (e.g. ; Schubert & 

Bottjer, 1992, 1995 ; Rodland & Bottjer, 2001 ; He et al., 2007) ; 

➢ Des faciès dit « anachroniques », composés de récifs exclusivement microbiens 

tels ceux trouvés dans les dépôts Précambriens (e.g., Schubert & Bottjer, 1992 ; 

Woods et al., 1999 ; Pruss & Bottjer, 2005 ; Pruss et al., 2005 ; Woods, 2009) ; 

➢ Un effet « Lilliput », soit un nanisme généralisé des faunes présentes (e.g., 

Urbanek, 1993 ; Hautmann & Nützel, 2005 ; Payne, 2005 ; Twitchett, 2007 ; 

Fraiser et al., 2011 ; Metcalfe et al., 2011 ; Song et al., 2011) ; 

➢ Une anoxie/euxinie généralisée dans le domaine marin, y compris littoral (e.g., 

Isozaki, 1997 ; Meyer et al., 2011 ; Song et al., 2012 ; Grasby et al., 2013). 

 

 

Fig. R.1 : a) Représentation synthétique des principaux paradigmes communément acceptés pour la 

rediversification biologique au cours du Trias inférieur. b) Représentation synthétique de ces mêmes 

paradigmes, révisés selon les données récemment recueillies dans le bassin ouest-américain (d’après Brayard, 

2015). Inf. : inférieur ; m. : moyen ; s./sup. : supérieur. 

 

Cependant, de nombreuses études récentes viennent questionner ces paradigmes et 

montrent que non seulement les conditions paléoenvironnementales n’étaient pas si 

délétères qu’envisagé, mais qu’en plus, la rediversification fut explosive pour certains groupes 

nekto-pélagiques (e.g., Orchard, 2007 ; Brayard et al., 2009 ; Brühwiler et al., 2010 ; Brayard 

& Bucher, 2015). 

Ainsi la réévaluation de ces paradigmes (Fig. R.1b) permet d’entrevoir un Trias inférieur 

bien plus diversifié et dynamique que précédemment décrit, avec des écosystèmes complexes 
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présents très peu de temps après la crise PTB (~1,5 Ma après seulement, e.g., Brayard et al., 

2011, 2017). 

Tout particulièrement, les données en provenance du bassin ouest-américain viennent 

supporter ces nouveaux modèles d’une rediversification rapide au cours du Trias inférieur. 

Ceci est relativement paradoxal car c’est précisément sur la base de données issues de ce 

même bassin que certains des premiers paradigmes sur le Trias inférieur ont été initialement 

édictés (e.g., Schubert & Bottjer, 1992 ; Fraiser & Bottjer, 2004 ; Pruss & Bottjer, 2004 ; voir 

Brayard, 2015 pour une discussion). 

Cependant, le bassin ouest-américain reste encore aujourd’hui mal contraint d’un point 

de vue paléoenvironnemental, ainsi que du point de vue de son évolution spatio-temporelle, 

notamment géodynamique. Le besoin de caractériser cette évolution 4D apparaît donc 

clairement ainsi que de comprendre les mécanismes de contrôle sous-jacents afin de 

caractériser l’environnement régional dans lequel la rediversification a eu lieu, et ainsi 

déchiffrer les liens potentiels entre milieux de dépôt et communautés biologiques. 

Pour ce faire, une étude intégrée inédite est mise en œuvre. L’utilisation conjointe de 

méthodes sédimentologiques, paléontologiques, géochimiques, structurales et 

cartographiques, mais également la spatialisation des données à l’aide d’un logiciel SIG, 

permet d’étudier l’évolution 4D du bassin à différentes échelles (de l’affleurement au bassin), 

dans le but de déterminer les facteurs de contrôle de ce bassin, ainsi que leurs influences à 

différentes échelles sur les milieux de dépôts rencontrés dans le bassin. 

 

• Le bassin ouest-américain dans le temps et au Trias inférieur 
Le bassin étudié se situe à l’Ouest des Etats-Unis d’Amérique. La zone d’étude 

correspond environ à un rectangle large de 600 km et haut de 1000 km, recouvrant 

intégralement l’Utah, le sud-est de l’Idaho, l’ouest du Wyoming, l’est du Nevada, ainsi que les 

bordures frangeantes de l’Arizona au Sud et du Colorado à l’Est (Fig. R.2a). 

Ce bassin est le produit d’une très longue et complexe histoire tectono-sédimentaire, 

qui se reflète dans la variété des terrains rencontrés. Celle-ci a débuté il y a environ 2 milliards 

d’années lors de l’emplacement des terranes Mojave et Yavapai contre la terrane Wyoming 

(Whitmeyer & Karlstrom, 2007). Cet évènement structural majeur s’est déroulé au cours du 

Paléoprotérozoïque (Fig. R.2b) et a permis la formation du socle du bassin, mais également 

généré de nombreuses faiblesses lithosphériques qui ont eu des impacts ultérieurs lors de 

l’évolution de ce bassin (e.g., Peterson, 1977). 

Depuis la mise en place de son socle au Paléoprotérozoïque et jusqu’à nos jours, le 

bassin ouest-américain a connu une histoire structurale composée d’une succession de phases 

d’orogénèses et de quiescences tectoniques (Fig. R.2b ; e.g., Dickinson, 2004, 2006, 2013). Ces 

évènements structuraux ont été influencés par les terranes lithosphériques formant le socle 

de la région et ont contribué à la formation de bassins sédimentaires, notamment le bassin de 

foreland de Sonoma (Sonoma Foreland Basin, SFB) au cours du Trias inférieur, et qui est l’objet 

de ce travail. Ces différents évènements se succèdent comme suit (Fig. R.2b) :  
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➢ Mise en place des terranes lithosphériques et formation du socle durant le 

Paléoprotérozoïque (Whitmeyer & Karlstrom, 2007) ; 

➢ Fragmentation (par rifting) du supercontinent Rodinia et formation d’une marge 

passive à haut potentiel de sédimentation (anciennement connue sous le nom 

de « Cordilleran miogeocline », e.g., Clark, 1957) ; 

➢ Orogénèse Antler : mise en place de l’Allochtone Roberts Mountains dans 

l’actuel Nevada et création d’un bassin de foreland dans la zone d’étude (Utah 

et Idaho) au cours du Dévonien tardif et du Carbonifère basal (Burchfiel & Davies, 

1975 ; Speed & Sleep, 1982 ; Oldow et al., 1989 ; Smith et al., 1993 ; Dickinson, 

2004, 2006, 2013) ;  

➢ Orogénèse des Montagnes Rocheuses Ancestrales dans la région des Montagnes 

Rocheuses actuelles (Est et Sud-Est du bassin ouest-américain, ~Colorado) 

durant le Carbonifère tardif et jusqu’au Permien moyen (e.g., Ye et al., 1996 ; 

Dickerson, 2003). Cette phase orogénique est accompagnée d’une quiescence 

dans l’ancien bassin de foreland Antler (dans l’Utah) ; 

➢ Orogénèse Sonoma, à la transition Permien/Trias, qui voit la mise en place de 

l’Allochtone Golconda également dans l’actuel Nevada (de façon similaire à 

l’Allochtone Roberts Mountains), et qui provoque la formation du SFB étudié 

dans ce travail ; 

➢ Les orogénèses Sevier et Laramide, se déroulant durant le Crétacé et la première 

moitié du Paléogène. Elles sont le résultat de la migration vers l’Est du slab de la 

plaque Farallon, subductée « à plat » sous le craton Nord-Américain (Burchfiel & 

Davis, 1975 ; Dickinson, 2006, 2013). Ces orogénèses se manifestent de façon 

différente. L’évènement Sevier provoque la formation d’une chaîne de 

chevauchement de type « thin-skin », encore visible à l’heure actuelle (la chaîne 

Sevier, dans l’Est de l’Utah), de forme arquée du fait de taux de raccourcissement 

différentiels le long de son front (Dickinson, 2006, 2013 ; Yonkee & Weil, 2010 ; 

Yonkee et al., 2014). L’évènement Laramide a lui contribué à la formation des 

Montagnes Rocheuses actuelles, du fait de la propagation de contraintes 

compressives intracontinentales (Burchfiel & Davies, 1975 ; Oldow, 1984 ; Oldow 

et al., 1989 ; Speed & Silberling, 1989 ; Ye et al., 1996 ; Ingersoll, 2008 ; Dickinson, 

2013) ; 

➢ Enfin, l’extension de la province Basin & Range, dans l’actuel Nevada et l’Ouest 

de l’Utah, a débuté au cours du Néogène et se poursuit encore à l’heure actuelle. 

Cette extension résulte de la relaxation des contraintes transtensionnelles 

horizontales héritées de la subduction Farallon, et se caractérise par une 

extension tardi-orogénique due à un étalement gravitaire des reliefs formés 

précédemment (e.g., Malavieille, 1993 ; Parsons et al., 1994 ; Gans & Bohrson, 

1998 ; Dickinson, 2002, 2006). 
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Figure R.2 : a) Carte géographique de l’Ouest américain montrant la position et l’extension de la zone d’étude. 

b) Chronostratigraphie simplifiée des principaux évènements structuraux survenus dans le bassin ouest-

américain depuis sa formation au Paléoprotérozoïque (d’après Oldow et al., 1989 ; Whitmeyer & Karlstrom, 

2007 ; Dickinson, 2013). 

 

Le bassin ouest-américain au Trias inférieur, ou SFB, s’est donc formé à la suite 

d’évènements géodynamiques complexes. Cependant, ces derniers sont encore mal 

contraints, et des interrogations subsistent quant aux mécanismes exacts de sa formation, de 

son évolution, ainsi que de son impact sur les environnements de dépôts du bassin. Ceux-ci 

sont connus depuis de nombreuses années au travers de travaux sédimentologiques mais 

également paléontologiques (e.g., Kummel, 1954, 1957 ; Schubert & Bottjer, 1992 ; Paull & 

Paull, 1991, 1994 ; Fraiser & Bottjer, 2004 ; Pruss & Bottjer, 2004). 

En effet, le SFB présente un enregistrement fossile et sédimentaire exceptionnel du Trias 

inférieur, et constitue ainsi un bassin important dans l’étude de la rediversification biologique 

après la PTB. De plus, ce bassin a été la source des données ayant permis la proposition de 

nombreux paradigmes admis pour le Trias inférieur. 

Cet enregistrement, bien que de qualité, montre cependant une particularité 

importante et intéressante, bien que peu documentée. En effet, il existe une dichotomie entre 

les parties Nord et Sud du bassin. Celle-ci est visible aussi bien dans le registre fossile que dans 

le registre sédimentaire. 
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Dans le registre fossile, deux communautés distinctes bien documentées permettent 

notamment de la mettre en évidence : le groupe nekto-pélagique des ammonoïdes, et les 

communautés récifales microbiennes. En ce qui concerne les ammonoïdes, des études 

récentes et en cours (e.g., Jattiot et al., in prep.) montrent que certains genres d’ammonoïdes 

sont géographiquement ségrégués. C’est notamment le cas des genres Wyomingites, dont 

l’extension géographique est restreinte à la partie Nord du bassin (Fig. R.3), et Guodunites, qui 

au contraire est cantonné dans la partie Sud du SFB (Fig. R.3). En ce qui concerne les 

communautés microbiennes, leurs dépôts permettent également de faire une distinction N/S. 

Dans le sud du SFB, de puissantes séries de calcaires microbiens massifs (Fig. R.3), montrant 

une grande diversité de macro- et de mésostructures, peuvent être observées dans le registre 

sédimentaire (e.g., Brayard et al., 2013 ; Olivier et al., 2014, 2016, cf. appendice 1 ; Vennin et 

al., 2015). Au contraire, la partie Nord du bassin semble être dépourvue de tels dépôts (Fig. 

R.3). Enfin, la partie centrale du bassin montre quant à elle des dépôts de type MISS 

(microbially-induced sedimentary structures, ou structures sédimentaires induites par 

l’activité microbiennes), témoignant de la présence d’une activité microbienne différente de 

celle observée dans le Sud (Fig. R.3). 

 

 

Figure R.3 : Carte paléogéographique illustrant la répartition spatiale de certains genres d’ammonoïdes et des 

dépôts microbiens, montrant une ségrégation Nord/Sud marquée (d’après Brayard et al., 2013 ; Olivier et al., 

2014, 2016, cf. appendice 1 ; Vennin et al., 2015 ; Grosjean et al., in prep. ; Jattiot et al., in prep.). 
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Dans le registre sédimentaire, la distinction N/S est mise en évidence par une différence 

de lithologie, particulièrement visible jusqu’au Smithien moyen (Fig. R.4). Dans le Sud du SFB, 

la lithologie dominante est constituée de « red beds », dépôts terrigènes fin (siltites à grès 

fins) caractérisant un environnement de transition, continental à marin, et de dépôts 

microbiens (Fig. R.3). Ces faciès sont caractéristiques du Groupe Moenkopi (sensu Lucas et al., 

2007 ; Fig. R.4a). Sur le même intervalle, la partie Nord du bassin enregistre le dépôt de siltites 

fines, ressemblant aux « red beds » sans en avoir la coloration rougeâtre caractéristique. Ces 

dépôts présentent clairement une affinité marine de par leur contenu bioclastique tel des 

coquilles fragmentées de bivalves (e.g., Kummel, 1957 ; Caravaca et al., 2017, cf. section III.A). 

Ces dépôts sont caractéristiques des formations Dinwoody et Woodside (Fig. R.4). 

 

 

Figure R.4 : Cartes paléogéographique de la distribution spatiale des principales formations lithologiques au 

cours du Trias inférieur. a) Distribution spatiale des formations Woodside et Dinwoody, et du Groupe 

Moenkopi jusqu’au Smithien moyen-tardif. b) Distribution spatiale des restes du Groupe Moenkopi et du 

Groupe Thaynes à partir du Smithien tardif et durant le Spathien basal. 

 

Au cours du Smithien terminal, une transgression de troisième ordre reconnue 

régionalement (Embry, 1997 ; Vennin et al., 2015) est responsable de l’ennoiement de la 

quasi-totalité du SFB. Du fait de l’arrivée de conditions marines franches, le dépôt des 

carbonates bioclastiques ouverts du Groupe Thaynes (sensu Lucas et al., 2007 ; Fig. R.4b) est 

alors possible dans quasiment tout le bassin. 

Bien que de nombreuses études aient été menées sur le SFB, la plupart d’entre elles 

sont relativement anciennes, incomplètes, incorrectes, ou traitent de sujets variés ne 

permettant pas d’obtenir une image précise de l’évolution des milieux de dépôt à différentes 

échelles de temps et d’espace. De plus, il apparaît que les travaux précédents sur le SFB n’ont 
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jamais tenu compte de la paléogéographie exacte du bassin au Trias inférieur, car aucune 

reconstruction palinspastique n’a été proposée jusqu’à aujourd’hui. Ces problématiques sont 

donc adressées dans ce travail. 

 

• Enregistrement et évolution du signal géochimique dans le SFB 
Bien que l’enregistrement sédimentaire et paléontologique du SFB ait été très étudié, 

les études géochimiques restent quant à elles anecdotiques, malgré leur importance capitale 

dans l’interprétation des environnements de dépôts. Seuls Marenco et al. (2008, 2012) 

avaient proposé des études limitées spatialement et temporellement sur les enregistrements 

élémentaires du carbone organique et du soufre, ainsi que le signal isotopique δ34S. 

Récemment, Thomazo et al. (2016) ont proposé une étude à haute résolution de l’entièreté 

de la coupe de Minersville dans la partie Sud du SFB. 

Ainsi, ce travail propose de détailler le signal géochimique de trois coupes : Hot Springs 

(HS ; Caravaca et al., 2017, cf. section III.A), Lower Weber Canyon (LWC ; Grosjean et al., in 

prep.) et Minersville (MV, Thomazo et al., 2016), représentant les parties Nord, centrale et 

Sud du SFB, respectivement (Fig. R.5), ceci afin d’analyser le registre géochimique à l’échelle 

du bassin. Pour cela, les paires d’isotopes du carbone (carbonate et matière organique) sont 

mesurées sur toutes ces coupes ainsi que les éléments traces et majeurs (T&M). Les signaux 

géochimiques de HS et LWC représentent une étude et des données originales, tandis que le 

signal carbone de MV est repris de Thomazo et al. (2016). Cependant, les concentrations en 

élément T&M de MV sont originales à ce travail. 

La coupe de HS se situe dans l’extrême Sud-Est de l’Idaho, dans la partie Nord du SFB 

(Fig. R.5). Son épaisse succession sédimentaire (~900m) permet d’obtenir un enregistrement 

à haute-résolution temporelle de l’intervalle allant du Permien moyen (à supérieur ?) jusqu’au 

Spathien inférieur. 

Les milieux de dépôts observés à HS sont ceux d’une rampe interne peu profonde, 

montrant un approfondissement relatif mais progressif depuis la base du Trias. Cet 

approfondissement est caractérisé par des conglomérats cédant la place à de fins niveaux 

dolosilteux, puis à des niveaux plus énergétiques de shoals ooïdiques, jusqu’à un maximum 

d’ennoiement autour de la limite Smithian/Spathien (SSB). Cette dernière est ici marquée par 

la présence sous-jacente de nombreux spécimens d’ammonoïdes appartenant aux bancs à 

Meekoceras. Au-dessus, le milieu reste encore sous influences marines franches au court du 

Spathien inférieur. 

L’enregistrement géochimique de HS se révèle relativement bien préservé, avec des 

indices de remobilisation secondaire ponctuels, suggérant un enregistrement « primaire » 

dans cette partie du bassin (Fig. R.5). 
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Figure R.5 : Carte montrant la position des coupes de HS, LWC et MV, représentant les parties Nord, centrale et 

Sud du SFB, respectivement. Les signaux géochimiques montrent une préservation différentielle en fonction de 

leur position dans le bassin du fait de variations dans les processus secondaires en lien avec les 

environnements de dépôts locaux. 

 

Le signal des paires d’isotopes du carbone montre le couplet d’excursion négative et 

positive caractéristique à l’échelle mondiale du Smithien moyen et de la SSB (e.g., Galfetti et 

al., 2007b ; Romano et al., 2012 ; Grasby et al., 2013). La coévolution des signaux du carbonate 

et de la matière organique indique également une origine potentiellement exogénique de ces 

perturbations, et donc une influence du cycle global du carbone, sur cette enregistrement 

(Zeebe, 2012). Cependant, nos travaux sur la coupe de HS ont montré que dans le détail ce 

signal était également contrôlé par des facteurs locaux, comme la variation des apports en 

carbone d’origine terrigène. Ceci remet donc en question le caractère global de ce signal et 

l’établissement de corrélation à l’échelle planétaire sur sa base. 

L’analyse des éléments T&M de HS n’a pas permis de mettre en évidence la présence 

d’une anoxie marquée dans la colonne d’eau, contrairement à ce qui est décrit dans la 

littérature pour le Trias inférieur (e.g., Isozaki, 1997 ; Meyer et al., 2011 ; Sun et al., 2012). 

Seuls quelques rares épisodes de conditions suboxiques à l’interface eau/sédiment peuvent 

être identifiés par de faibles pics de la concentration en U (e.g., Sauvage et al., 2013). 
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La coupe de LWC se situe dans le Nord de l’Utah, dans la partie centrale du SFB (Fig. R.5). 

Moins épaisse que HS (~290 m d’épaisseur), elle enregistre des milieux de dépôts similaires 

de rampe interne. Cependant, les faciès rencontrés sont différents. La succession 

sédimentaire débute par un épais niveau de red beds terrigènes (>40 m), représentant un 

milieu transitionnel continental à marin, d’une unité peu profonde de dolosiltites, puis enfin 

d’une unité d’alternances marno-calcaires autour de la SSB, indiquant une ouverture vers des 

conditions plus marines accompagnant une tendance transgressive. Enfin, la dernière unité 

représentant le Spathien inférieur est composée de dépôts de milieux de rampe moyenne 

dominés par la boue, enregistrant localement des niveaux de tempestites (Grosjean et al., in 

prep.). 

L’enregistrement géochimique est à LWC moins complet qu’à HS. Seuls les paires 

d’isotopes du carbone ont été étudiés. Le signal du carbone ne montre pas de coévolution 

entre le carbonate et la matière organique. Si le couplet d’excursions négative et positive 

caractéristique du Smithien moyen et de la SSB est bien identifiable dans l’enregistrement 

organique, il est plus difficile à observer dans l’enregistrement du carbonate. En effet, 

plusieurs outliers négatifs viennent perturber le signal autour de la SSB. 

Des processus secondaires semblent altérer fortement le signal géochimique de la 

coupe de LWC (Fig. R.5). Cette hypothèse est supportée par une covariation des signaux 

δ13Ccarb et δ18Ocarb au sein d’une des unités lithologiques. Si l’interprétation de LWC en tant 

que signal global du cycle du carbone est de fait impossible, ces résultats suggèrent une forte 

influence des processus locaux (y compris secondaires) sur l’enregistrement et la préservation 

des signaux géochimiques. 

 

La coupe de MV se situe dans le Sud-Ouest de l’Utah, dans la partie Sud du SFB (Fig. R.5). 

Les 160 m de cette coupe enregistrent des dépôts dont la base est constituée de red beds 

transitionnels correspondant au Dienerien supérieur (?) et au Smithian inférieur. Viennent 

ensuite des dépôts de carbonates microbiens de milieu intertidal à supratidal, puis des 

mudstones laminés déposés dans un contexte de rampe moyenne à externe, et un intervalle 

SSB caractérisé par des marnes de rampe externe (offshore inférieur). Enfin, le Spathien 

inférieur est représenté par un dépôt de mudstones de rampe externe, avec localement des 

passées tempestitiques. 

Comme à LWC, l’enregistrement des paires d’isotopes du carbone ne montre pas de 

coévolution entre le carbonate et la matière organique, à ceci près que c’est l’enregistrement 

du carbonate qui montre le couplet habituel représentant le Smithien moyen et la SSB, alors 

que le signal organique ne montre aucune variation. Le signal apparaît donc altéré par des 

processus secondaires, ce qui est confirmé par plusieurs corrélations entre les signaux δ13Ccarb 

et δ18Ocarb et le rapport élémentaire Mn/Sr notamment (Thomazo et al., 2016). 

Par ailleurs, les éléments T&M mettent en évidence la présence de plusieurs épisodes 

suboxiques le long de la coupe de MV par l’intermédiaire du signal élémentaire de l’U. Les 

résultats présentés par Thomazo et al., (2016) montrent que ces épisodes suboxiques seraient 
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associés au métabolisme de bactéries sulfato-réductrices dans la partie supérieure des 

sédiments lors de la diagénèse précoce. 

Ces différents résultats montrent que le signal géochimique des paires d’isotopes du 

carbone dans le SFB semble plus répondre à des forçages locaux liés aux conditions du milieu 

de dépôt, qu’à un forçage global lié au cycle exogénique du carbone. Cependant, une influence 

de ce dernier ne peut être formellement écartée. 

Le signal géochimique n’est pas altéré de la même façon dans tout le SFB : un 

« gradient » d’altération peut être supposé, depuis un signal « primaire » au Nord, vers un 

signal de plus en plus altéré vers le Sud (Fig. R.5). Il apparaît donc qu’une distinction 

géochimique existe entre les parties Nord et Sud du bassin (Fig. R.5). Cette différenciation 

peut avoir été générée par des disparités dans la connexion des réservoirs du SFB : si le Nord 

du SFB est de tous temps connecté à la Panthalassa par un « passage Nord-Ouest » (Fig. R.5 ; 

Colpron & Nelson, 2009), ce n’est pas le cas du Sud du SFB avant le Smithien tardif, quand la 

connexion se fait consécutivement à la transgression régionale de troisième ordre (e.g., 

Vennin et al., 2015). Une composante endoréique est ainsi peut-être à considérer dans cette 

partie Sud plus restreinte du SFB (Fig. R.5) 

 

• Contrôle géodynamique du bassin 
Les différents enregistrements sédimentaires, paléontologiques mais également 

géochimiques montrent tous l’existence d’une distinction entre les parties Nord et Sud du 

bassin. Cependant, les connaissances actuelles du SFB, de son évolution géodynamique et de 

ses paramètres de contrôle au premier ordre ne permettent pas d’expliquer l’origine de cette 

différence. 

Une étude intégrée, utilisant des approches sédimentologiques, paléontologiques, 

géophysiques, géodynamiques, cartographiques et structurales, a été menée sur l’ensemble 

du bassin afin de tenter de déterminer quels étaient les facteurs de contrôles sur l’évolution 

contrastée des parties Nord et Sud du SFB. Une modélisation numérique a également été 

menée pour caractériser les facteurs de contrôle incriminés. Pour cela, une base de données 

de 43 coupes réparties dans l’entièreté du SFB a été établie (Fig. R.6). Ces coupes ont été 

biostratigraphiquement corrélées à l’aide de zones d’ammonoïdes (Brayard et al., 2013). 

L’intervalle ainsi considéré correspond au Trias inférieur depuis sa base représentée à l’échelle 

régionale par la discontinuité Permien/Trias (PTU ; Brayard et al., 2013), et jusqu’à la fin du 

Smithien (intervalle PTU-Smithien). Lorsque cela était possible, cet intervalle inclut la base du 

Spathien jusqu’à la zone à Columbites (Brayard et al., 2013 ; Jenks et al., 2013). 

Afin d’obtenir une image non biaisée de la paléogéographie du SFB durant le Trias 

inférieur, une reconstitution palinspastique du bassin a été réalisée en se basant sur des 

données issues de la littérature (e.g., DeCelles & Coogan, 2006 ; Schelling et al., 2007 ; Yonkee 

& Weil, 2010 ; Yonkee et al., 2014), mais également en réalisant des « coupes équilibrées », 

permettant d’horizontaliser les terrains déformés (dans notre cas résultant de la mise en place 

de la chaîne de chevauchement Sevier durant le Mésozoïque) et ainsi de connaître la valeur 

estimée du transport tectonique subit par les terrains incriminés. Cette carte (Fig. R.6) permet 
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donc de replacer les affleurements étudiés dans leur position d’origine, ce qui représente une 

première pour cet intervalle de temps et ce bassin. 

 

 

Figure R.6 : Carte paléogéographique isopaque de la distribution spatiale de l’épaisseur sédimentaire pour 

l’intervalle PTU-Smithien, montrant des différences marquées d’épaisseur entre le Nord et le Sud du SFB 

(d’après Caravaca et al., in press, cf ; section IV). Cette différence est également mise en exergue par une forte 

variation du taux de subsidence tectonique. Le front de l’Allochtone Golconda montre la présence dans sa 

partie centrale d’une rampe latérale vraisemblablement héritée des discontinuités du socle lithosphérique. 

Celui-ci est d’ailleurs composé par 5 terranes d’âges (et donc de comportement rhéologique) différents : GCB : 

Grouse Creek Block ; FT : Farmington Terrane ; WT : Wyoming Terrane ; MT : Mojave Terrane ; YT : Yavapai 

Terrane.  

 

Cette nouvelle paléogéographie nous a permis de réaliser une carte de la répartition 

spatiale de l’épaisseur sédimentaire pour l’intervalle PTU-Smithien (Fig. R.6). Sur cette carte 

isopaque, il est possible de remarquer une fois encore la distinction entre le Sud et le Nord du 

bassin. Le Sud du bassin est caractérisé par une tendance d’approfondissement progressif vers 

le Nord-Ouest, depuis des épaisseurs sédimentaires de quelques dizaine au plus de mètres sur 

les bordures sud et est du bassin, jusqu’à une profondeur maximum d’environ 250 m (Fig. R.6). 

Au contraire, le Nord du SFB est caractérisé par un approfondissement plus brutal vers l’Ouest, 

et dont les valeurs sont comprises entre 300 et ~600 m (Fig. R.6). 
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Une analyse de backstripping sur 4 coupes représentatives du bassin a également 

permis de calculer les taux de subsidence dans le SFB. Ainsi, les valeurs obtenues pour la 

subsidence tectonique, qui est la composante principale de la subsidence totale dans ce bassin 

au cours du Trias inférieur, varient depuis ~100 m/Ma dans la partie Sud du bassin et jusqu’à 

~500 m/Ma dans la partie Nord (Fig. R.6). L’analyse de backstripping a également pu mettre 

en évidence et donc confirmer la nature foreland du bassin de Sonoma, ce qui restait encore 

très débattu (e.g., Ingersoll, 2008). Néanmoins, si la nature foreland du bassin permet 

d’expliquer la subsidence tectonique comme étant d’origine flexurale à la suite de la mise en 

place d’une charge topographique représentée par l’Allochtone Golconda (Fig. R.6), cela 

n’explique en rien la différenciation N/S observée. 

Pour tenter de trouver une explication, nous nous sommes intéressés au socle du bassin. 

En effet, celui-ci est formé par 5 terranes lithosphériques d’âges différents (Fig. R.6) : les 

terranes Archéennes Wyoming (WT) et Grouse Creek Block (GCB), les terranes 

Paléoprotérozoique Mojave (MT) et Yavapai (YT), et enfin la zone mobile Mésoprotérozoïque 

Farmington (FT). Du fait de leur âge différent, il est attendu un comportement rhéologique 

différent de leur part, lié à leur épaisseur (épaisseur élastique Te) et ainsi à leur rigidité (e.g., 

Artemieva & Mooney, 2002). De fait, les terranes anciennes (Archéennes et 

Paléoprotérozoïques) sont froides, épaisses et très résistantes à la déformation et à la 

flexuration, tandis que les terranes « juvéniles » (depuis le Mésoprotérozoïque) sont moins 

épaisses, plus chaudes et donc moins résistantes à la déformation et à la flexuration. Il 

apparaît ainsi que cette différence rhéologique peut se révéler capitale dans le contrôle de la 

flexuration, et par conséquent de la subsidence tectonique durant le développement du SFB 

au Trias inférieur. 

Comme ces différences rhéologiques remontent au Mésoprotérozoïque, il est fort 

probable qu’elles aient impacté le bassin également bien avant la mise en place du SFB au 

cours du Trias inférieur. Paulsen & Marshak (1999) ont aussi montré l’existence d’une rampe 

latérale dans le front de la chaîne Sevier au niveau des Monts Wasatch (au Nord-Est de Salt 

Lake City), résultant d’une variation de distribution spatiale de l’épaisseur sédimentaire. En 

effet, il existe un lien entre la longueur d’onde de propagation d’une contrainte compressive 

et l’épaisseur du socle sous-jacent au niveau du front de décollement : plus l’épaisseur sera 

élevée, plus la propagation de la contrainte sera grande, et plus le transport tectonique sera 

important. Or, la présence d’un haut topographique dans la zone centrale du bassin a été mise 

en évidence durant le Paléozoïque (Peterson, 1977), et un différentiel d’épaisseur 

sédimentaire est bien identifié. Ainsi, en la présence d’une épaisseur sédimentaire plus élevée 

au Nord du bassin, le transport tectonique est plus important dans cette même partie Nord 

du bassin pour la Sevier. Suivant ce raisonnement et les données de distribution spatiale de 

l’épaisseur sédimentaire pour le Paléozoïque, nous proposons la présence d’une rampe 

latérale dans le front de chevauchement de l’Allochtone Golconda au niveau de la partie 

centrale du SFB (Fig. R.6). Une hétérogénéité spatiale était donc vraisemblablement présente 

dans l’allochtone, provoquant de fait une variation spatiale de la charge sédimentaire qui a pu 

être répercutée dans la réponse flexurale de la lithosphère du SFB. 
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Pour vérifier ces hypothèses, une modélisation numérique du comportement 

rhéologique du bassin flexural en réponse à la mise en place d’un allochtone est réalisée. Ainsi, 

plusieurs hypothèses ont été testées : 

➢ Socle du bassin hétérogène et allochtone homogène ; 

➢ Socle du bassin homogène et allochtone hétérogène ; 

➢ Socle du bassin et allochtone hétérogènes tous les deux. 

La modélisation numérique a montré que le modèle dont les résultats se rapprochaient 

le plus des observations de terrain de l’épaisseur sédimentaire étaient ceux produits par le 

modèle impliquant une hétérogénéité à la fois dans le socle du bassin (et donc des terranes 

ayant un comportement rhéologique différent) et dans la distribution spatiale de l’allochtone 

(avec donc une charge topographique variant dans l’espace). Dans le même temps, la 

surcharge sédimentaire provoquée par le dépôt de séries sédimentaires durant le 

fonctionnement et le remplissage du bassin a été écartée car étant insuffisante à provoquer 

un tel différentiel de subsidence entre le Nord et le Sud. 

Ainsi, cette étude intégrée a pu montrer le rôle précédemment insoupçonné de 

l’héritage sur la mise en place et le développement du SFB, résultant des variations de 

rhéologie des terranes composant le socle. C’est ainsi que le contrôle prépondérant au 

premier ordre de la subsidence différentielle dans le SFB apparaît comme étant de nature 

lithosphérique, et permet la distinction de deux dynamiques différentes et propres pour 

chacune des parties Nord et Sud du bassin. 

 

• 2 sous-bassins 
L’étude comparée et intégrée des enregistrements sédimentaires, des registres fossiles, 

des signaux géochimiques et des paramètres géodynamiques et structuraux indique qu’il 

n’existe pas un seul SFB, mais deux sous-bassins reliés durant le Trias inférieur. 

En effet, de telles différences dans les communautés (e.g., ammonoïdes et microbes ; 

Fig. R.3), dans les lithologies observées (e.g., formations marines Dinwoody/Woodside vs 

formation terrigène Moenkopi ; Fig. R.4) ou dans la préservation du signal géochimique (forte 

altération vs bonne préservation ; Fig. R.5), ne peut s’expliquer en la présence d’un seul et 

unique système sédimentaire. Il apparaît donc nécessaire de distinguer deux sous-bassins : le 

Nord-SFB et le Sud-SFB (Fig. R.7). 

Ces deux sous-bassins, partagent des caractères communs (e.g., réservoir géochimique 

élémentaire, milieux de dépôts peu profond), mais demeurent distincts dans leur évolution 

géodynamique au cours du Trias inférieur.  
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Figure R.7 : Nouvelle paléogéographie révisée du SFB, montrant la distinction entre le Nord-SFB et le Sud-SFB, 

délimitée par une zone centrale « transitionnelle » (et potentiellement un haut topographique) 

 

Une partie centrale « transitionnelle » du SFB reste pour l’heure actuelle toujours mal 

contrainte à bien des égards. Par exemple, d’un point de vue sédimentaire, l’absence 

d’affleurements qualitatifs dans cette région ne permet pas de caractériser les 

paléoenvironnements et/ou le signal géochimique de cette zone de façon exhaustive. La 

présence supposée d’un haut topographique dans ce secteur (Fig. R.7) implique donc de 

concentrer une partie des futurs efforts de recherche sur cette région pour parfaire la 

compréhension de l’évolution 4D du SFB. 

La connaissance de cette dernière est indispensable pour fournir un cadre 

paléoenvironnemental précis dans lequel analyser la rediversification biologique post-crise 

PTB, à une échelle régionale. Il sera alors intéressant de déchiffrer et de caractériser de façon 

plus précise les potentielles interactions et rétroactions entre les communautés biologiques 

et leur environnement de dépôt. 

 

Mots-clés : Sonoma Foreland Basin, Ouest USA, Trias inférieur, étude intégrée, 

sédimentologie, géochimie, paléontologie, géologie structurale, modélisation numérique, SIG, 

cartographie géologique, reconstitutions paléoenvironnementales 
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Abstract 

 

 
In the wake of the Mesozoic, the Early Triassic (~251.95 Ma) corresponds to the 

aftermath of the most severe mass extinction of the Phanerozoic: the end-Permian crisis, 

when life was nearly obliterated (e.g., 90% of marine species disappeared). Consequences of 

this mass extinction are thought to have prevailed for several millions of years, implying a 

delayed recovery lasting the whole Early Triassic, if not more. 

Several paradigms have been established and associated to a delayed biotic recovery 

scenario expected to have resulted from harsh and deleterious paleoenvironments. These 

paradigms include a global anoxia in the marine realm, a “Lilliput” effect, and the presence of 

“disaster” taxa and “anachronistic” facies. However, recent works have shown a more 

complex global scheme for the Early Triassic recovery, and that a reevaluation of these 

paradigms was needed. Especially, new data from the western USA basin were critical in re-

addressing these paradigms. 

 

The western USA basin is the result of a long tectono-sedimentary history that started 2 

Gyr ago by the amalgamation of different lithospheric terranes forming its basement. A 

succession of orogenies and quiescence phases led to the formation of several successive 

basins in the studied area, and traces of this important geodynamical activity are still present 

today. The Sonoma orogeny occurred about 252 Ma in response to the eastward migration of 

drifting arcs toward the Laurentian craton. As a result, compressive constrains lead to the 

obduction of the Golconda Allochthon above the west-Pangea margin in present-day Nevada. 

Emplacement of this topographic load provoked the lithosphere flexuration beneath present-

day Utah and Idaho to form the Sonoma Foreland Basin (SFB) studied in this work. 

The SFB recorded an excellent fossil and sedimentary record of the Early Triassic. A 

relatively high and complex biotic diversity has been observed there leading to describe a 

rapid and explosive recovery for some groups (e.g., ammonoids) in this basin after the end-

Permian crisis. The sedimentary record is also well developed and has been studied 

extensively for a long time. Overall, these studies notably documented a marked difference 

between the northern and southern sedimentary succession within the basin, whose origin 

was poorly understood. 

This work therefore aims to characterize the various depositional settings in the Early 

Triassic SFB, as well as their paleogeographical distribution. Their controlling factors are also 

studied based on an original integrated method using sedimentological, paleontological, 

geochemical, geodynamical, structural and cartographic analyses. 
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Aside the fossil and sedimentary discrepancy between the northern and the southern 

parts of the SFB, geochemical analyses provide new insights supporting this N/S dichotomy. 

This study also questions the validity of the geochemical signal as a tool for global correlation, 

as it appears to mainly reflect local forcing parameters. 

The geodynamical framework of the SFB was also investigated along with a numerical 

modelling of the rheological behavior of the basin. This work distinguishes the northern and 

southern parts of the basin based on markedly distinct tectonic subsidence rates during the 

Early Triassic: ~500 m/Myr in the northern part vs ~100m/Myr in the southern part. Origin of 

this remarkable difference is found in inherited properties of the basin basement itself. 

Indeed, different ages and therefore, rheological behaviors (i.e., rigidity to deformation and 

flexuration) of the basement lithospheric terranes act as a major controlling factor over the 

spatial distribution of the subsidence, and therefore of the sedimentary deposition. The 

lithosphere heritage is thus of paramount importance in the formation, development and 

spatio-temporal evolution of the SFB. 

This work leads to a new paleogeographical representation of the Sonoma Foreland 

Basin and its multi-parameter controlling factors. We highlight the importance of the local 

parameters in influencing the development and 4D evolution of the depositional settings. In 

turn, this evolution is likely of prime importance in understanding the rhythms and modalities 

of the biotic recovery observed in the SFB. Finally, we now distinguish two distinct sub-basins 

in this area: the North-SFB and the South-SFB with contrasted Early Triassic geobiological 

evolution. 
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A. The Early Triassic Earth: from one world to another 

 

• Early Triassic 101: when? 
At the boundary between the two longest eras of the Phanerozoic (the Paleozoic and 

Mesozoic, respectively), the Early Triassic is a key period in the installation of modern 

ecosystems. However, this interval remains enigmatic on many points. The Early Triassic 

immediately follows the most catastrophic known biotic crisis of the living history on Earth at 

the Permian/Triassic boundary (PTB) some ~251.95 Myr ago (Baresel et al., 2017) that 

provoked annihilation of ~90% of marine species (to be further discussed in section I.B; e.g., 

Raup, 1979). 

Even if of paramount importance, this period is one of the shortest epoch subdivisions, 

spanning only ~5 million years (Ovtcharova et al., 2006, Galfetti et al., 2007a, Baresel et al., 

2017; Fig. I.A.1). The Early Triassic is subdivided into two stages, the Induan and Olenekian, 

that are themselves split into two substages each: the Griesbachian and Dienerian, and the 

Smithian and Spathian, respectively. It is worth noting that the Spathian accounts for more 

than half of the entire Early Triassic (Fig. I.A.1). The four substages subdivision is the most 

widely used timeframe because its boundaries are well defined in terms of successive abiotic 

and biotic events. The Smithian/Spathian boundary event is a good example as it records a 

faunal turnover coeval with climatic and environmental changes recorded by various isotopic 

markers (e.g., Brayard et al., 2006; Romano et al., 2013). 

 

Fig. I.A.1: Simplified chronostratigraphic chart of the Early Triassic. Skulls: major biotic crises. Radiometric ages 

after Ovtcharova et al. (2006), Galfetti et al. (2007b) and Baresel et al. (2017). 
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• Global paleogeographic reconstructions of the Early Triassic Earth 
During the Early Triassic, the face of our planet was very different from today. Starting 

in the Permian, convergence and amalgamation of most continental landmasses, along with 

the closures of the Rheic and Iapetus oceans, lead to the formation of one supercontinent 

named Pangea (e.g., Murphy & Nance, 2008; Murphy et al., 2009; Stampfli et al., 2013). This 

supercontinent was roughly oriented along a North/South trending axis between both poles 

of the planet (Fig. I.A.2). It was surrounded by a large ocean called Panthalassa and included 

an interior Tethyan sea formed during the Permian over the remnants of the lost Rheic ocean 

on the eastern margin of the Pangea (Fig. I.A.2; Metcalfe, 1994). Some continental arc terranes 

that were not amalgamated drifted along inaccurate positions in the Panthalassa, as a 

consequence of the complex interplay of exterior oceanic subductions, such as the Stikinia 

and Quesnellia terranes off the western margin of Pangea (Fig. I.A.2; Johnston & Borel, 2007; 

Cocks & Torsvik, 2011; Stampfli et al., 2013). 

 

 

Fig. I.A.2: Paleogeographic reconstruction of the Earth during the Early Triassic (after Blakey, 2013). 

 

This configuration of continental masses had several consequences such as drastic 

modifications of the oceanic and atmospheric circulations, leading to marked variations in 

climate during the late Permian-Early Triassic interval (Parrish, 1993; Veevers, 1994; Tabor & 

Montañez, 2002). These climatic fluctuations were also responsible for important changes in 

depositional environments both onshore (e.g., Permian equatorial monsoonal activity 

changes; Tabor & Montañez, 2002) and offshore (e.g., anoxia of the deep ocean and shallow 

platforms at the PTB and during the Early Triassic; Isozaki, 1997). Moreover, they likely had a 

strong influence on ecosystems before, during and after the mass extinction event. Large-

scale injections of greenhouse gas released from the Siberian traps volcanism at the PTB are 

a major additional climate forcing at that time leading to increase in pCO2, acidification of the 
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water column or increase in atmospheric and sea surface temperatures for example (e.g., 

Galfetti et al., 2007b; Sun et al., 2012; Romano et al., 2013). 

 

• Geochemical record at the PTB and during its aftermath: a succession of 

isotopic excursions 
Payne et al. (2004) were among the first to document the variations of the carbon 

isotopic record throughout the Early Triassic, and many other studies have followed since then 

(e.g., Galfetti et al., 2007b; Hermann et al., 2011; Sun et al., 2012; Grasby et al., 2013; Romano 

et al., 2013; Thomazo et al., 2016). They all show some of the largest Phanerozoic carbon 

isotopic excursions both in the δ13Ccarb and δ13Corg signals (Fig. I.A.3.). They were interpreted 

as variations within the relative size of the inorganic versus organic carbon reservoirs and thus, 

in the carbon cycle evidencing complex environmental perturbations during the post-crisis 

interval. 

Among these excursions, two events marked by shifts in both the carbonate and organic 

δ13C records are noticeable: a potential Dienerian/Smithian boundary (DSB) episode, and a 

conspicuous Smithian/Spathian boundary (SSB) excursion (Fig. I.A.3). 

 

 

Fig. I.A.3: Worldwide Early Triassic variations of the δ13C signal on both the organic matter and carbonates. Red 

boxes highlight the Dienerian/Smithian boundary (DSB) and Smithian/Spathian boundary (SSB) isotopic events. 

Data after Galfetti et al. (2007b), Hermann et al. (2011), Sun et al. (2012), Grasby et al. (2013) and Thomazo et 

al. (2013). l.: lower; mi.: middle; u.: upper. 
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Around the DSB, a relatively small positive excursion (~2 to 4‰) was identified within 

some sections such as in Arctic Canada, in Pakistan and in South China (Fig. I.A.3; Payne et al., 

2004; Galfetti et al., 2007b; Hermann et al., 2011; Grasby et al., 2013). This excursion is visible 

on both carbonate and organic matter signals but apparently does not occur in all sections. 

This questions its global nature vs. local controlled forcing parameters (e.g., Klaebe et al., 

2017; Thomazo et al., 2016; Caravaca et al., 2017, section III.A). The relative concomitance of 

this isotopic shift with changes in ammonoid faunas (Brühwiler et al., 2010) suggests a 

potential important environmental perturbation at that time. 

The second and most important Early Triassic geochemical event is an isotopic couplet 

of a negative and a positive shifts during the middle Smithian to early Spathian interval. First, 

a strong negative shift is recorded in the middle Smithian (up to ~-8‰ in the δ13Corg signal of 

distal shelf deposits from Arctic Canada; Fig. I.A.3). Then, a positive excursion is recorded at 

the SSB (up to ~6‰ in organic reservoir from Arctic Canada, but also in δ13Ccarb signal from 

outer ramp deposits from western USA Basin; Fig. I.A.3). These isotopic swings are recorded 

globally in various settings, in both Panthalassic and Tethyan outcrops and at various latitudes 

(e.g., Payne et al., 2004; Galfetti et al., 2007b; Hermann et al., 2011; Sun et al., 2012; Grasby 

et al., 2013; Romano et al., 2013; Thomazo et al., 2016). The absolute magnitude of these 

excursions varies however form sections to sections and often between the carbonate and 

organic matter reservoirs of the same section (Fig. I.A.3). 

Concomitant biotic changes are observed to these isotopic excursions, such as a marked 

extinction of ammonoids and conodonts during the late Smithian suggesting severe causal 

environmental perturbations (e.g., Orchard, 2007; Goudemand et al., 2008; Brayard, 2015). 

This highlights a strong link between environmental conditions and the tempo and modalities 

of the post-crisis biotic recovery. 

Nevertheless, the timing of these variations in the carbon cycle is yet to be accurately 

determined, along with the precise nature of the forcing parameters behind these isotopic 

excursions (e.g., Thomazo et al., 2016). Indeed, origin of these variations has often been linked 

to the late eruptions of the Siberian traps throughout the Early Triassic (e.g., Galfetti et al., 

2007b; Sun et al., 2012; Romano et al., 2013). However, the differences observed between 

organic and carbonate δ13C signals both at the local and global scales question the importance 

of local controlling factors on these signals, as recently evidenced by Klaebe et al. (2017) or 

more specifically for the western USA basin by Thomazo et al. (2016). The recognition and 

detailed characterization of such controlling factors acting at various spatio-temporal scales is 

therefore critical to understand the environmental frame of this period. 

 

• Climate and temperature variations 
Early Triassic temperature variations have been recently determined by a few authors 

(Sun et al., 2012; Romano et al., 2013) using the δ18O signal on conodont phosphate from the 

Tethys realm (Fig. I.A.4). 

These works show important and recurrent variations of the relative temperatures 

during the Early Triassic, with a global cooling during the Dienerian, and an important warming 

followed by a cooling during the middle Smithian and at the SSB, respectively (Fig. I.A.4). These 
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changes in temperatures are thought to be a direct consequence of variations in pCO2 in 

relation to the abovementioned Siberian large igneous province (LIP) degassing (e.g., Romano 

et al., 2013). It is worth noting that these abrupt changes in temperatures appear 

contemporaneous to known isotopic events and biotic changes. However, these temperature 

fluctuations are presently documented only from the Tethyan realm and need to be confirmed 

at a more global scale. 

 

 

Fig. I.A.4: Simplified relative temperature trend during the Early Triassic obtained using the δ18Ocp signal 

(obtained from conodont pectiniform elements, after Romano et al., 2013). Several episodes of climatic 

changes are obvious, notably a cooling phase in the Dienerian and an important warming during the middle 

Smithian followed by a cooling at the SSB. 

 

These large-scale fluctuations of the global carbon cycle and of temperatures, associated 

with other events such as marked changes in sedimentary deposits, lead numerous authors 

to describe the Early Triassic interval as a period of “deleterious” environmental conditions 

(e.g., Pruss & Bottjer, 2004; Fraiser & Bottjer, 2007; Bottjer et al., 2008; Algeo et al., 2011; 

Meyer et al., 2011; Bond & Wignall, 2014; Song et al., 2014). Thus, they usually conclude to a 

strong impact of these harsh conditions over ecosystems during the entire Early Triassic, and 

especially consider a “delayed biotic recovery” scenario in the aftermath of the end-Permian 

mass extinction. 
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B. Focus on the “post-apocalyptic” Early Triassic world 

 

• The Permian/Triassic boundary crisis 
At the transition between Paleozoic and Mesozoic eras occurred the most important 

and severe known mass extinction that impact almost every living groups on both marine and 

terrestrial realms. For instance, this event resulted in the disappearance of more than 90% of 

the marine species (Raup, 1979), and the loss of ~50% of continental tetrapod families (Benton 

& Newell, 2014) and ~30% of insect orders (Labandeira & Sepkoski, 1993). 

This mass extinction is also marked by the obliteration of typical Paleozoic organisms 

such as trilobites, tabulate corals or fusulinid foraminifers (Fig. I.B.1; Sepkoski, 2002). This 

event was also a trigger for major ecological replacements known as the “Mesozoic Marine 

Revolution” (Vermeij, 1977). Changes occurring in continental ecosystems lead for example to 

the replacement of pelycosaurs by therapsids, which will later give birth to modern mammals 

(Fig. I.B.1; Benton et al., 2004; Cowen, 2013). 

 

 

Fig. I.B.1: Humoristic sketch of the end-Permian mass extinction. Characteristic Paleozoic organisms such as 

trilobites and tabulate corals disappeared at that time. 
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While this biological crisis was exceptional given its consequences on ecosystems, its 

causes are still hardly debated (see e.g. recent reviews by Benton & Twitchett, 2003; Erwin, 

2006; Payne & Clapham, 2012). Various and non-exclusive potential causes have been 

proposed: 

➢ Intermittent or prolonged (up to a few million years long) marine anoxia 

developing up on the Panthalassa and on Tethyan carbonated platforms (e.g., 

Isozaki, 1997; Kato et al., 2002; Grasby et al., 2013; Sun et al., 2015); 

➢ Shallow marine euxinia developing up to the photic zone (e.g., Grice et al., 2005; 

Hays et al., 2007); 

➢ Acidification of the water column (e.g., Payne et al., 2010; Clarkson et al., 2015); 

➢ Hypercapnia (Knoll et al., 2007); 

➢ Reduced atmospheric O2 (e.g., Weidlich et al., 2003; Kaiho & Koga, 2013); 

➢ Methane release (e.g., Krull & Retallack, 2000; Krull et al., 2000; Majorowicz et 

al., 2014); 

➢ Ozone depletion (Beerling et al., 2007; Lamarque et al., 2007); 

➢ Global warming (e.g., Sun et al., 2012; Romano et al., 2013, Benton & Newell, 

2014); 

➢ Microbial methanogenic bursts (Rohtman et al., 2014); 

➢ Poisoning blooms (Wu et al., 2014); 

➢ Sudden massive terrestrial influxes (e.g., Algeo & Twitchett, 2010; Algeo et al., 

2011); 

➢ Seismites & tsunamites (Brookfield et al, 2013; Krystyn et al., 2014); 

➢ Bolide impact (e.g., Kaiho et al., 2001; Becker et al., 2004; Tohver et al., 2012, 

2013). 

 

The massive volcanic eruptions linked to the Siberian LIP appear as a robust triggering 

mechanism behind the various environmental perturbations at that time. These result from 

the huge volume of greenhouse gas and halocarbons directly released into the atmosphere. 

This influx to the atmosphere has been proposed to reflect both the Earth mantle reservoir, 

but also the alteration of evaporites and organic-rich sediment during magma ascend through 

older sedimentary deposits (e.g., Ivanov et al., 2009, 2013; Wignall, 2007; Svensen et al., 2009; 

Korte et al., 2010; Iacono-Marziano et al., 2012; Ogden & Sleep, 2012; Konstantinov et al., 

2014). Moreover, many of the mechanisms mentioned above can be a (direct) consequence 

of the Siberian LIP emplacement. These numerous feedbacks have been synthetized by 

Wignall (2001), Algeo et al. (2011) and more recently by Bond & Wignall (2014), and are 

illustrated in the Figure I.B.2. 
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Fig. I.B.2: Synthetic flow chart summarizing some of the proposed cause-and-effect relationships during the 

end-Permian mass extinction and the Early Triassic “delayed” recovery. This chart highlights a major role of the 

Siberian LIP episode over environmental perturbations (after Bond & Wignall, 2014). 

 

The Siberian LIP episode was not strictly restricted to the PTB (sensu stricto) and given 

the kinetics of the referred mechanisms, the entire Early Triassic is probably influenced by this 

episode as well (e.g., Payne et al., 2004; Payne & Kump, 2007; Romano et al., 2013; Bond & 

Wignall, 2014). 

 

• Common paradigms associated to the “delayed recovery” 
The Early Triassic is usually portrayed as a “post-apocalyptic” world from both an 

environmental and biotic points of view. That is, “deleterious” conditions are thought to 

prevail until at least the Middle Triassic, meanwhile the recovery of ecosystems after this crisis 

is usually assumed to span at least the entire Early Triassic if not more (e.g., Twitchett, 1999; 

Fraiser & Bottjer, 2007; Meyer et al., 2011; Chen & Benton, 2012). 

Associated to this ecocide scenario, other paradigms have been commonly assumed 

based on the fossil record and unusual sedimentary deposits found in Early Triassic exposures 

worldwide: presence of “disaster taxa” and “anachronistic facies”, “Lilliput effect”, “chert 

gap”, “coal gap” and finally “anoxia/euxinia” and “superanoxic ocean” (Fig. I.B.3). Early Triassic 

communities are generally described as poorly diversified, with abundant opportunistic and 

generalist organisms. Noteworthy, some of the Early Triassic paradigms have been first 

proposed on the basis of data from the western USA Basin, and then extrapolated to a global 
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scale (e.g., Schubert & Bottjer, 1992; Fraiser & Bottjer, 2004; Pruss & Bottjer, 2004). Divergent 

observations from these paradigms such as highly diversified faunas in the Griesbachian are 

often assumed to be local exceptions representing refugia in a globally unhospitable marine 

realm (e.g., Beatty et al., 2008; Zonneveld et al., 2010). 

 

 

Fig. I.B.3: a) Synthetic representation of the main paradigms usually accepted concerning the Early Triassic 

recovery. b) Synthetic representation of these paradigms revised with recent data from the western USA basin 

(after Brayard, 2015). 

 

Main Early Triassic paradigms represented in Figure I.B.3 are: 

➢ “Disaster taxa”: Early Triassic ecosystems are often described to be mainly 

composed of opportunistic and generalist organisms, such as Claraia for bivalves 

or Lingula for brachiopods, and by microbial communities in the marine realm. 

They are thought to have proliferated because of the potential absence of 

competition in their respective ecological niches, but also given to their abilities 

to adapt to various extreme environemental conditions (e.g.; Schubert & Bottjer, 

1992, 1995; Rodland & Bottjer, 2001; He et al., 2007); 

➢ “Anachronistic facies” and “reef gap”: reef-building metazoan associations are 

thought to have been replaced by microbial deposits. These microbial-

dominated facies and bioconstructions are called “anachronistic facies” due to 

their resemblance with e.g. some Precambrian facies composed exclusively by 

microorganisms (e.g., Schubert & Bottjer, 1992; Woods et al., 1999; Pruss & 

Bottjer, 2005; Pruss et al., 2005; Woods, 2009). The absence of metazoan reefs 

(made by corals or sponges for example) is often cited as an evidence for the 

delayed recovery scenario, their reappearance during the Middle Triassic serving 

as a marker for the end of the “protracted” recovery (e.g., Flügel, 2002; Payne et 

al., 2006); 

➢ “Lilliput effect”: many of the surviving organisms found in Early Triassic series are 

often considered to have undergone a drastic body-size reduction, and notably 

the benthic organisms (e.g., Urbanek, 1993; Hautmann & Nützel, 2005; Payne, 
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2005; Twitchett, 2007; Fraiser et al., 2011; Metcalfe et al., 2011; Song et al., 

2011); 

➢ “Chert gap”: by comparison with the Permian, Early Triassic sediments show rare 

siliceous deposits (e.g., Beauchamp & Baud, 2002; Sperling & Ingle, 2006).  

➢ “Coal gap”; no coal or peat-forming plant deposits have been reported so far 

from the Early Triassic (Veevers et al., 1994, Retallack et al., 1996); 

➢ “Anoxia/euxinia” and “Superanoxic ocean”: several authors interpreted the Early 

Triassic to be marked by continuous or recurrent anoxic/euxinic events at a 

global scale (e.g., Isozaki, 1997; Meyer et al., 2011; Song et al., 2012; Grasby et 

al., 2013). The absence of trace fossil, or their low diversity when present within 

this interval, is usually interpreted as a consequence of low O2 concentrations in 

the bottom waters. (e.g., Twitchett & Wignall, 1996). 

 

Many studies challenged the “delayed recovery” scenario and associated paradigms in 

the last years. Recent advances on this issue were notably made within the western USA Basin. 

 

• Evidence for an alternative scenario 
Contrary to the “delayed recovery” scenario, several studies have shown an “explosive” 

rediversification during the Early Triassic for nekto-pelagic groups such as conodonts (Orchard, 

2007) or ammonoids (e.g., Brayard et al., 2009). The latter are a striking example for a rapid 

recovery: they almost disappeared during the PTB crisis, but reached a high richness level 

during the Smithian, less than ~1.5 Myr after the PTB (e.g., Brayard et al., 2009; Brühwiler et 

al., 2010; Brayard & Bucher, 2015; Brayard, 2015). Recovery of some benthic communities 

seems also to have been rapid e.g. for foraminifers (Payne et al., 2011; Song et al., 2011), 

bivalves and gastropods (Kaim et al., 2010; Hautmann et al., 2011; Hofmann et al., 2014) or 

trace fossil makers (e.g., Hofmann et al., 2011). However, trends observed on benthic faunas 

are still hardly debated and remain relatively fuzzy. 

 

“Anachronistic facies” were interpreted to result from the harsh environmental 

conditions prevailing during the Early Triassic (e.g., Schubert & Bottjer, 1992; Woods et al., 

1999; Pruss & Bottjer, 2005; Pruss et al., 2005; Mary & Woods, 2008; Woods, 2009). However, 

recent studies in the western USA basin documented a laterally heterogeneous and 

diachroneous depositional pattern for these microbial deposits (Figs. I.B.4a and I.B.4b; e.g.; 

Olivier et al., 2014, 2016, see appendix 1; Vennin et al., 2015). This therefore challenges 

common interpretations of these microbial deposits as corresponding to peculiar deleterious 

environmental conditions. 
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Fig. I.B.4: a) Example of a depositional setting in the Torrey area (western USA basin, after Olivier et al., 2016, 

see appendix 1) showing laterally heterogenous and diachroneous presence of microbial communities during 

the middle Smithian (facies F2 and F3). The model highlights the contemporaneity of the microbial deposits 

with diverse benthic metazoan organisms b) Schematic evolution of the main microbial limestones facies in the 

same locality (western USA basin, after Olivier et al., 2016, see appendix 1) showing associations of microbial 

deposits with metazoan faunas, as well as the various types of microbial communities. See Olivier et al. (2016, 

see appendix 1) for details. c) Illustration of Smithian sponge-dominated metazoan associations as reef-builders 

in southwestern Utah (after Brayard et al., 2011) 
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Moreover, diversified microbial deposits were found in association with diversified 

metazoan faunas (Figure I.B.4; Olivier et al., 2014, 2016, see appendix 1; Vennin et al., 2015) 

in the western USA basin, questioning the pertinence of the notion of “anachronistic facies” 

as such deposits are supposed to lack of metazoan inhabitants. The western USA basin notably 

revealed that in situ metazoan reef-building communities also existed. Various inhabitants 

such as sponges (Fig. I.B.4c), serpulids, bivalves, gastropods, cephalopods, echinoderms, 

ostracods, conodonts or foraminifers testimony for complex and diversified ecosystems (e.g., 

Brayard et al., 2011; Olivier et al., 2014, 2016, see appendix 1; Brayard, 2015; Vennin et al., 

2015). Earliest metazoan reefs are reported from the early Smithian and persisted through the 

Spathian (e.g., Brayard, 2015), shortening the “exclusively microbial” interval (e.g., Flügel, 

2002) and restricting it only to the earliest Triassic (Kershaw et al., 2007, 2009). 

 

 

Fig. I.B.5: a) Photograph of the modern reef-building microbialites in the Great Salk Lake (Utah, USA; courtesy 

of Dr. Anthony Bouton). b) Relative abundance of microbial carbonates in reefs during the Phanerozoic 

compared to the marine metazoan generic diversity (after Riding, 2006). This chart shows that microbial 

carbonates may be present in the aftermath of some mass extinctions (e.g., Late Ordovician or end-Permian), 

but not all, and when present, they do not always show an increase in proportion. 
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In addition, modern examples of well-developed microbial-dominated deposits 

associated with metazoan organisms can be currently found in various environments including 

but not restricted to lagoons in Polynesia (Sprachta et al., 2001), the warm water of the 

Bahamas (e.g., Dupraz et al., 2004; Myshrall et al., 2010), the hypersaline lakes of the Great 

Salt Lake (USA, Fig. I.B.5a; e.g., Bouton et al., 2016), or the alkaline Satonda Crater Lake in 

Indonesia (Arp et al., 2003). The environmental significance of the Early Triassic microbial 

deposits and the controlling factors behind their presence thus remains an open question 

(e.g., Vennin et al., 2015 and Olivier et al., 2016, see appendix 1, for the western USA basin). 

However, deciphering interactions between microbial deposits and their environments is 

therefore crucial to understand the Early Triassic recovery dynamics. 

Finally, microbial deposits are not always characteristic of deleterious and/or post-crisis 

environments as commonly previously thought (e.g., Flügel, 2002; Riding, 2006). Reef-building 

microbial systems have been present throughout most of the Phanerozoic, either associated 

or not with metazoan organisms (e.g., Riding., 2006). Figure I.B.5b shows their development 

may follow mass extinction events (e.g., Late Ordovician or end-Permian), but this is not 

always true. 

 

The absence or rarity of trace fossils has been used to argue for anoxic/euxinic 

conditions in the marine realm (e.g., Twitchett & Wignall, 1996). However, recent findings 

have demonstrated the increasing presence of trace fossils and deep burrows within Early 

Triassic series (e.g., Beatty et al., 2008; Chen et al., 2012; Olivier et al., 2014). Some authors 

nevertheless consider these unusual trace concentrations as corresponding to refugia zones 

(e.g., Beatty et al., 2008; Zonneveld et al., 2010). Recent studies in the western USA basin 

show the presence of important networks of centimetric-diameter burrows within Smithian 

series (Fig. I.B.6a; Olivier et al. 2014, 2016, see appendix 1). These observations hint toward a 

sustained infaunal activity. They are also associated with diversified bioclastic levels in 

adjacent beds, questioning the deleterious environmental conditions attributed to the water 

column. 
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Finally, another commonly accepted paradigm, the “Lilliput effect”, that has been also 

suggested for some other post-crisis intervals (e.g., Late Ordovician crisis; Huang et al., 2010), 

was recently questioned owing to fossils from the western USA basin. Brayard et al. (2010, 

2015) showed that gastropod assemblages were not “unusually small” (Fraiser & Bottjer, 

2004) when compared to Permian, later Mesozoic or modern gastropod assemblages. 

Additionally, the presence of numerous pluri-centimetric large gastropod specimens named 

“Gulliver” (Fig. I.B.5c) does not support a “Lilliput effect” for this clade, which probably results 

from a marked bias in sampling intensity (Brayard et al., 2015). 

A highly diversified marine ecosystem was also recently found in early Spathian strata 

of the western USA basin (Brayard et al., 2017). Abundant remains of various and sometimes 

unexpected groups have been unearthed in southern Idaho. Benthic organisms exhibiting an 

exceptional preservation, such as crustaceans or echinoderms (crinoids, ophiuroids), were 

sampled (Fig. I.B.6c). Nekto-pelagic organisms were also present and diversified: for instance, 

sharks, bony fishes and ammonoids. Ichthyosaur remains were also reported from coeval 

neighboring localities (e.g., Massare & Callaway, 1994; Romano et al., 2012; Brayard et al., 

2017). These findings point toward a rapid recovery and rediversification for these groups 

after the PTB, at least in this basin, and show that complex ecosystems – from primary 

producers to predators – were already developed at that time (e.g., Brayard et al., 2017).  

 

All these evidence from the western USA basin do not support commonly accepted Early 

Triassic paradigms, as well as several other data from various locations worldwide (e.g., 

Wheeley & Twitchett, 2005; Beatty et al, 2008; Hautmann et al., 2011, Hofmann et al., 2011). 

It therefore clearly appears these paradigms needed to be reevaluated and revised as to 

propose a new and more accurate interpretation of the Early Triassic “fast and diverse” biotic 

recovery, as illustrated in Figure I.B.3b. 
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Fig. I.B.6: Various (ichno-)fossils recently found in the western USA basin highlighting the diversity of Early 

Triassic ecosystems of this area. a) Large burrows (centimetric-diameter) in carbonated beds of the Timpoweap 

Canyon (southwestern Utah, USA; after Olivier et al., 2014). b) Some large-sized specimens (pluri-centimetric) 

of Smithian gastropods from southwestern Utah (after Brayard et al., 2010). Scale bars are 10 mm. c) 

Illustration of various and well-preserved specimens from the “Paris biota” (southeastern Idaho, after Brayard 

et al., 2017), which shows a highly diversified early Spathian ecosystem. Scale bars are 10mm. 
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C. Methodology of the integrated approach 

 
 

 

 

 

The originality of this work is based on an integrative and multi-scale study of the 

western USA basin, using regional, local, macro- and microscopical data (Fig. I.C.1) analyzed 

through a large panel of methods and techniques. The aim of this integrated study is to 

understand the dynamics of the basin as a whole. 

 

 

Figure I.C.1: Illustration of the multi-scale character of the study, from basin-scale to microfacies analysis 

(location map after Caravaca et al., in press, see section IV; geological map after Oriel & Platt, 1980). 

 

To achieve this goal, new original data have been collected throughout the basin by our 

research team (Fig. I.C.2), and were investigated using a wide-range of disciplinary fields 

including sedimentology, paleontology, geochemistry, tectonics and structural geology. The 

consequent spatialization of the geological information provides answers to questions raised 

by empiric observations of the Early Triassic record within the western USA basin (see section 

II.B). 
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Figure I.C.2: Map of the study area showing location of sampled sections used in this work. 

 

The Table I.C.1 lists the various approaches used in this work and their 

purpose/application in the reconstruction of the basin and its paleoenvironments. Detailed 

and complete descriptions of techniques as well as their aim and limitations are embedded in 

the corpus of the enclosed published articles (see Caravaca et al., 2017, in press, section III.A 

and IV). 
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basin-scale study of the SFB. 

Table I.C.1: Synthetic list of the various disciplinary fields, techniques and methods used in this integrated 

 

 

Disciplinary field Techniques/methods Use/aim Scale 

Sedimentology Fieldwork Sample collecting/logging Outcrop to locality  
Geological mapping of 
formations and groups 

Paleogeographic 
reconstructions 

Locality to basin 

 
Macro-/Microfacies analysis Depositional setting 

reconstructions 
Outcrop to basin 

  
Lithostratigraphic 
correlations 

Locality to basin 

 
Backstripping Determination of 

sedimentation rates 
Outcrop to basin 

    

Geochemistry Paired carbon isotopes Chemostratigraphic 
correlations 

Locality to global 

  
Determination of variations 
in carbon reservoir 

Outcrop to basin 

 
Trace & Major element 
concentrations 

Determination of redox state 
of the water-column 

Outcrop to basin 

  
Determination of 
paleoproductivity in the 
water-column 

Outcrop to basin 

  
Estimation of the terrigenous 
influx 

Outcrop to basin 

 
Carbonate content (wt. %) Estimation of the carbonate 

factory 
Outcrop to basin 

    

Paleontology Fossil sampling/identification Biostratigraphy (dating and 
correlations) 

Locality to global 

  
Paleoenvironment 
reconstructions 

Outcrop to basin 

 
Ichnofossil identification Paleoenvironment 

reconstructions 
Outcrop to basin 

    

Structural 
Geology/Tectonics 

Geophysical data 
interpretations (airmag/gravity 
anomaly maps) 

Lithospheric mapping Basin 

  
Determination of lithospheric 
composition and weaknesses 

Basin 

 
Geological mapping and 
regional cross-sections 

Palinspastic reconstructions 
(paleogeography) 

Locality to basin 

 
Flexural modeling Determination of rheological 

behavior of the lithosphere 
Basin 

    

Data integration and 
spatialization 

Geographic Information System 
(Global Mapper software) 

Paleogeographic mapping Locality to basin 

  
Palinspastic reconstructions Locality to basin   
Database Outcrop to basin 
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Recent evidence therefore gives a picture of Early Triassic organisms more diversified 

and resilient than previously thought, at least in the western USA basin. The various and often 

diversified ecosystems (e.g., Brayard et al., 2017), microbial communities (Vennin et al., 2015), 

and laterally evolving depositional settings (e.g., Kummel, 1954, 1957; Goodspeed & Lucas, 

2007; Olivier et al., 2014, 2016, see appendix 1) found in this basin make it a key area to 

decipher regional patterns and processes underlying the biotic recovery. 

 

Our research team has documented an excellent fossil and sedimentary record in the 

western USA Basin during the past years. However, these gathered data also exhibit 

conspicuous differences within the basin, especially between its southern and northern parts. 

For instance, differences in fossil assemblages and in nature and characteristics of the 

sedimentary formations have been pointed out (e.g., Brayard et al., 2013; Jattiot et al., in 

press). This possible segregation of the western USA basin into two sub-basins was rarely 

documented nor discussed before. Additionally, it raises the question of a potential effect of 

the local/regional environmental conditions on the observed recovery tempo and on the 

emergence of unexpected complex ecosystems in this basin. 

 

In order to answer these new issues and seek out the controlling mechanisms at the basin 

scale underlying the formation and evolution of environments, an integrated study is needed 

including e.g. paleontology, sedimentology and geochemistry. To achieve this goal, several 

fields were investigated starting with the structural and tectono-sedimentary history of the 

region and the characterization of its heritage. Then, a comprehensive synthesis of the regional 

sedimentary record was made to describe and decipher the spatio-temporal variations of the 

depositional settings. Additionally, the geochemical record of the basin was surveyed to 

identify potential parameters of the water column and the sediment/bottom waters interface. 

Finally, the first order mechanisms controlling the spatio-temporal development and evolution 

of the entire western USA Basin were investigated. 
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Based on the different available works on the western USA Basin, and recent 

publications from our research team, the western USA appear as an appropriate place to study 

the Early Triassic biotic recovery and to decipher the potential underlying mechanisms (e.g., 

Brayard et al., 2013, 2017; Olivier et al., 2014, 2016, see appendix 1; Vennin et al., 2015; 

Thomazo et al., 2016; see section I.B). Nevertheless, a detailed environmental and 

paleogeographic framework for this basin during the Early Triassic interval is still missing. 

A brief review of previous works on the tectonic structuring of this basin is therefore 

necessary to determine the different lacks in our understanding of the regional 

paleoenvironment distribution at that time. 

 

A. A brief overview of a 2Ga-long history: a geodynamically active 

region 

 

• Location and extent of the western USA basin 
The western USA Basin (as understood in this work) corresponds to the eastern part of 

the Great Basin, a depressed, mostly desertic and endorheic area ranging from the Colorado 

Plateau and Wasatch (Rocky) Mountains in eastern Utah, to the Sierra Nevada mountains in 

western California. Its northern part is bounded by the Columbia volcanic Plateaus in Oregon 

and Snake River Plain in Idaho. Most part of the Great Basin lies today as an extensional 

domain most commonly known as the Basin & Range Province (Fig. II.A.1; e.g., Dickinson 2004, 

2006, 2013). 
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Figure II.A.1: Simplified tectonic map of the western USA showing the present-day configuration of the 

lithospheric basement and the main geodynamical structures (modified after Jones, 2013). The red box 

highlights the location of the studied area in this work. 

 

The studied area, referred to as the western USA Basin, roughly corresponds to a 1000 

x 600 km vertical rectangle encompassing Utah, southeastern Idaho, and parts of eastern 

Nevada and western Wyoming (Fig. II.A.2). This basin displays a ~2 Gyr-long and complex 

geodynamic history since the Proterozoic, which is still active today. This evolution is notably 

marked by a succession of various orogenies, basin formations, volcanic events, or accretion 

of lithospheric terranes (Fig. II.A.3; e.g.; Blakey, 2008; Ingersoll, 2008; Dickinson, 2013). 

 

 

Figure II.A.2: Topographic map of the studied area (base map World Street Map ©ESRI). 

 

These different tectono-sedimentary episodes contributed to the formation of a 

“mosaic” of terrains in this region (Fig. II.A.1), highlighting the various origin and nature of the 

basement in the western USA Basin and its surroundings. If an important Phanerozoic 

sedimentary cover is present within the entire basin (e.g., Dickinson, 2006, 2013), the 
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accretion of exotic terranes and the successive orogenies were the source of important 

compressional as well as extensional deformations that markedly modified this cover (e.g., 

displacement, erosion, deformation). Consequently, paleogeographic reconstructions of this 

area can be somewhat “blurred” and difficult to define. 

Additionally, inherited structures due to this active geodynamic frame had a direct 

impact on sedimentary patterns encountered in this region (e.g., Peterson, 1977 for the 

Paleozoic) and/or on the controlling factors behind them, therefore highlighting the need to 

decipher the successive events that occurred within this area. 
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Figure II.A.3: Simplified chronostratigraphy of the successive structuring events in the western USA Basin since 

the Paleoproterozoic (after Oldow et al., 1989; Whitmeyer & Karlstrom, 2007; Dickinson, 2013). 

• History of the western USA Basin since the Proterozoic 
The successive geodynamic events underwent by the western USA Basin mainly result 

from the formation and interplay of the different lithospheric terranes constituting its 

basement (e.g., Whitmeyer & Karlstrom, 2007; Lund et al., 2015), indicating a major role of 

the heritage in the structural processes that shaped the basin through time. This section lists 

the main structural events in this region since the Proterozoic, with a focus on those that 

occurred before the Early Triassic and may have had a strong influence on the development 

and evolution of the basin during this interval. Contrary to some of previous references (e.g., 

Dickinson, 2013), simplified tectonic maps illustrated in Figures II.A.4 to II.A.13 do not present 

palinspastically restored state borders to facilitate the intuitive understanding of the position 

of the different structural features relative to the modern geography. 

 

- Paleoproterozoic formation of the basement 
The first structuring of the western USA Basin dates back to Paleoproterozoic times and 

took place ~2 Ga for the oldest. Supposedly during the Neoarchean to Paleoproterozoic 

interval, the Grouse Creek Block was indirectly emplaced against the Wyoming craton 

(Whitmeyer & Karlstrom, 2007; Fig. II.A.4). Lying between these two blocks is the Farmington 

terrane, a mobile belt made of reworked Archean crust (Fig. II.A.4; Yonkee & Weil, 2015; Lund 

et al., 2015). Its formation most probably results from the emplacement of the two Archean 

blocks. 
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Figure II.A.4: Map of lithospheric terranes of the western USA during emplacement of the Paleoproterozoic 

Mojave and Yavapai terranes against the Archean Grouse Creek Block and Wyoming Terrane (after Whitmeyer 

& Karlstrom, 2007). 

Then, Paleoproterozoic Mojave and associated Yavapai terranes were formed and 

emplaced against the Archean Wyoming craton and Grouse Creek Block terranes (Figs. II.A.3 

and II.A.4; Whitmeyer & Karlstrom, 2007; Lund et al., 2015). This event generated multiple 

lithospheric fault zones along which later reactivations were possible during deformational 

episodes (Oldow et al., 1989; Dickerson, 2003). 

Additionally, during following Mesoproterozoic times, at least one intense episode of 

metamorphism took place in the Farmington terrane, as shown by metamorphism ages of 

about ~1.64 Ma (Mueller et al., 2011). 

All these old structuring events are of paramount importance in the geodynamical 

history of the basin. Indeed, tectonic constraints and/or metamorphism underwent by the 

basement left a lasting heritage in the form of lithospheric faults or weaknesses (e.g., Chardon 

et al., 2009; Cagnard et al., 2011), which were reactivated during following tectonic events 

(such as orogenies). This heritage is assumed to have played a role in the development and 

evolution of the western USA sedimentary basins (e.g., Paulsen & Marshak, 1999). 

 

- Rodinia fragmentation and formation of a passive margin 
The tectono-sedimentary history during the subsequent Proterozoic times remains 

poorly known due to the lack of sedimentary remnants of these periods. However, it is 

assumed that at least two rifting events took place in the North American/Laurentian craton 

during this period: a first one during the Mesoproterozoic and the second during the 

Neoproterozoic (~770 Ma; Fig. II.A.3). These events are most probably linked to the 

fragmentation of the supercontinent Rodinia (Burchfiel & Davis, 1975; Oldow et al., 1989; 

Dickinson, 2006; Yonkee & Weil, 2010). 

A passive margin thus formed on the edge of the Laurentian continental plate along the 

Wasatch hinge line (Fig. II.A.5; Burchfiel & Davies, 1975, Dickinson, 2006). At that time, open-

marine conditions and a sedimentation showing a deepening trend toward the West 

developed upon this westward thinning crust, thanks to the post-rift thermal subsidence and 

then, sedimentary loading. 

The long period of tectonic quiescence following the formation of this passive margin 

lasted until the Late Devonian (~380 Ma; Fig. II.A.2) and corresponds to the deposition of a 

thick sedimentary prism on the West, formerly known as the “Cordilleran Miogeocline” and 

upon which younger series lies unconformably (Fig. II.A.5b; Clark, 1957; Paull & Paull, 1991; 

Dickinson, 2006, 2013). 
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- The Antler orogeny 
Starting in the Late Devonian and until the late early Carboniferous, the Antler orogeny 

marks the beginning of a period of nearly continuous structural events that are still acting 

today (Fig. II.A.3). 

The Antler orogeny was caused by the convergence and accretion of exotic island-arcs 

against the western margin of the Laurentian craton (Figs. II.A.6a and II.A.6b) during the late 

Devonian and continued during the Mississippian with the onset of subduction and obduction 

processes until the early Pennsylvanian (Burchfiel & Davies, 1975; Speed & Sleep, 1982; Oldow 

et al., 1989; Smith et al., 1993; Dickinson, 2004, 2006, 2013). The Antler orogeny mainly took 

place in Central Nevada, but also influenced a region extending from Idaho to California and 

to Utah eastward (Fig. II.A.6). 

 

 

Figure II.A.5: a) Paleogeographic reconstruction of the western USA during the Cambrian (Blakey, 2013). b) 

Simplified Cambrian map of the western USA, highlighting the presence of the “Miogeocline” passive margin 

formed during the fragmentation of the supercontinent Rodinia (after Blakey, 2013; Dickinson, 2013). c) W-E 

lithospheric cross-section, showing the characteristic geometry of the “Miogeocline” passive margin (after 

Ingersoll, 2008). 

 

Two hypotheses were proposed regarding parameters controlling the subduction 

occurring mainly in central Nevada during the Antler orogeny. The main issue being to 
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determine whether the downgoing slab was plunging eastward (e.g., Burchfiel & Davies, 1975) 

or westward (e.g., Speed & Sleep, 1982; Trexler & Nitchman, 1990; Ingersoll, 2008). The most 

commonly accepted hypothesis is the second one, involving a subducted continental plate 

driven westward under a migratory exotic arc (Fig. II.A.6c; Trexler & Nitchman, 1990; 

Dickinson, 2004, 2006; Ingersoll, 2008). A back-arc extensional domain between the Antler 

assemblage and the Sierran/Klamath volcanic arcs, the Havallah Basin, also started to develop 

at that time as part of the newly-formed Slide Mountain Ocean (Fig. II.A.6d; Burchfield & 

Royden, 1991; Ingersoll, 2008, Colpron et al., 2007). 

The Antler orogeny is characterized by the emplacement of a large obducted 

accretionary prism presently located in Central Nevada (i.e., Roberts Mountains Thrust, Fig. 

II.A.1; Burchfiel & Davis, 1975; Speed & Sleep, 1982; Speed & Silberling, 1989; Burchfiel & 

Royden, 1991). The Roberts Mountains Allochthon led to the formation of the N/S-trending 

westward-dipping Antler Foreland Basin over the Laurentian continent (Fig. II.A.6; Speed & 

Sleep, 1982; Trexler & Nitchman, 1990; Burchfiel & Royden, 1991; Smith et al., 1993; 

Dickinson, 2004, 2006, 2013; Blakey, 2008; Ingersoll, 2008). This basin witnessed the 

deposition of progressively shallowing-up open-marine sedimentary series (e.g., Trexler & 

Nitchman, 1990; Snyder et al., 2003) 

 

- Havallah basin and development of the Slide Mountain Ocean 
Immediately following the Antler orogeny during the Carboniferous, the Havallah Basin 

system continued to develop west of the Roberts Mountain Allochthon (Fig. II.A.7). This basin 

corresponds to the southernmost part of an opening oceanic system spreading during that 

period: the Slide Mountain Ocean (Colpron et al., 2007). 

This micro-oceanic plate spread between the Laurentian craton to the East and the 

(Paleo-) Panthalassa to the West. Its western border was notably composed by exotic volcanic 

arcs like the Sierran and Klamath arcs of the Sonomia micro-plate (Speed, 1979; Colpron et al., 

2007), while its eastern border was the relics of the Robert Mountains Allochthon, the latter 

having stopped uplift since the inversion of the main horizontal constraints and undergoing 

erosion with time (Fig. II.A.7, e.g., Blakey, 2013). 

The Havallah Basin served as a depocenter for marine sediments that were later scraped 

off during formation of the accretionary prism later thrusted into the Golconda Allochthon 

during the next Sonoma orogeny during the Permian-Triassic transition. 
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Figure II.A.6: a) Paleogeographic reconstruction of the western USA during the Late Devonian (Blakey, 2013). b) 

Simplified Late Devonian map of the western USA, showing the location of the Roberts Mountain Allochthon 

and the resulting Antler Foreland Basin. Presence of volcanic arcs is also reported in the oceanic domain (e.g., 

Sierran/Klamath), as well as an opening ocean (Slide Mountain Ocean) in a back-arc configuration relative to 

the Antler orogen (after Burchfield & Royden, 1991; Colpron & Nelson, 2009; Blakey, 2013; Dickinson, 2013). c) 

W-E lithospheric cross-section of the area, showing the Roberts Mountain Allochthon obducted onto the 

Laurentia craton and the opening Slide Mountain Ocean in a back-arc configuration (Havallah Basin; after 

Ingersoll, 2008). d) Paleogeographic map of the western margin of the Laurentian continent with a focus on the 

study area. This map shows first steps of the opening of the Slide Mountain Ocean, with dotted line 

representing locus of back-arc rift (Colpron et al., 2007). 
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Figure II.A.7: a) Paleogeographic reconstruction of the western USA during the late Carboniferous 

(Pennsylvanian; Blakey, 2013). b) Simplified map of the western USA during the late Carboniferous 

(Pennsylvanian) showing the location of the Slide Mountain Ocean and bordering volcanic arcs of the Sonomia 

micro-plate to the West (Klamath arc). Primordial Ancestral Rocky Mountains (ARM) uplifts are located in the 

southeastern part of the study area (after Colpron et al., 2007; Blakey, 2013; Dickinson, 2013). c) W-E 

lithospheric cross-section of the area (after Ingersoll, 2008). d) Paleogeographic map of the western margin of 

the Laurentian continent with focus on the study area (Colpron et al., 2007). 
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- The Ancestral Rocky Mountains orogeny 
The Ancestral Rocky Mountains (ARM) orogeny occurred in the eastern part of the 

studied region (Fig. II.A.8) and ranged from the early Carboniferous up to the early to mid-

Permian (~350 to 270 Ma; Fig. II.A.3). This mountain-building event resulted from a succession 

of crustal uplifts across the Laurentian continent, between the southeastern border of the 

Antler Foreland Basin in present-day Utah, to the Ouachita-Marathon orogenic belt in present-

day Texas (Fig. II.B.8d). This orogen is linked to important long-range intra-cratonic 

deformations. Indeed, transtensional and transpressional constrains along with lithospheric 

buckling resulted from the Laurentia-Gondwana continental collision (Kluth & Coney, 1981; 

Ye et al., 1996; Geslin et al., 1998; Dickerson, 2003; Blakey, 2008; Dickinson, 2006, 2013). 

However, the detailed chain of events and strength components responsible for the orogeny 

are still debated today (e.g., Foley et al., 2016). 

The resulting chain probably showed a marked topographic relief, some of which could 

have persisted until the Early Triassic (Kluth & Coney, 1981; Blakey, 2008). Most of these 

crustal uplifts were emplaced according to lithospheric weaknesses inherited from the 

Proterozoic structural heritage (Kluth & Coney, 1981; Dickerson, 2003). In the study area, most 

remarkable uplifts related to the ARM are the Kaibab/Defiance and Uncompahgre uplifts (in 

its southern and eastern parts, respectively; Figs. II.B.8a and II.B.8b). These reliefs were 

important enough to last until the Early Triassic and likely had a major role in terrigenous 

inputs into the Permian to Triassic basins of the region (Dickinson, 2013; 2014 pers. com.). 

Many sedimentary basins formed during the Carboniferous-Permian interval (Dickerson, 

2003). For instance, the Permian Oquirrh Basin (Fig. II.A.8) probably resulted from the complex 

interplay between intracratonic deformations to the East and the reactivation of Antler faults 

to the West (Geslin et al., 1998: fig. 12; Trexler & Nitchman, 1990; Dickerson, 2003; Blakey, 

2008). This highly subsiding basin recorded up to 6 km of marine strata (Walker, 1985; Yonkee 

& Weil, 2015). Additionally, by the Middle Permian, reversion of the subduction polarity under 

the volcanic arcs (formerly eastward dipping see Fig. II.A.7d and now westward dipping in a 

similar fashion to the subduction during Antler orogeny) lead to the rapid closure of the Slide 

Mountain Ocean. Exotic volcanic arcs of the Sonomia micro-plate consequently converged 

toward the Laurentian craton (Fig. II.A.8c; Colpron et al., 2007) 
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Figure II.A.8: a) Paleogeographic reconstruction of the western USA during the Early Permian (Blakey, 2013). b) 

Simplified map of the western USA during the Early Permian showing the location of northwesternmost ARM 

uplifts and the presence of the marine Oquirrh Basin. The Slide Mountain Ocean is closing, with the Klamath 

volcanic arc of the Sonomia micro-plate migrating toward the Laurentian margin (after Ye et al., 1996; 

Dickerson, 2003; Ingersoll, 2008; Colpron et al., 2007; Blakey, 2013; Dickinson, 2013). c) W-E lithospheric cross-

section of the area showing basement uplifts of the ARM, the position of the Oquirrh Basin and the closure of 

the Slide Mountain Ocean through a westward-dipping subduction under the Klamath volcanic arc of the 

Sonomia micro-plate (after Ingersoll, 2008). d) Paleogeographic map of the ARM uplifts between the studied 

area and the Ouachita-Marathon orogenic belt in southeastern Laurentia (Dickerson, 2003). 
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- The Sonoma orogeny and the formation of the Early Triassic Sonoma 

Foreland Basin 
This orogeny is still hardly known and debated (e.g., Ingersoll, 2008). Indeed, only a very 

few remnants are visible today. The Sonoma orogeny occurred ~100 Ma after the Antler 

orogeny, around the PTB (Fig. II.A.3). Similarly to the Antler orogeny, the Sonoma orogeny 

results from the eastward migration and accretion of exotic island-arc systems, here belonging 

to the Sonomia microplate (Klamath volcanic arc) onto the Laurentian craton (Fig. II.A.9; 

Burchfiel & Davis, 1975; Speed & Silberling, 1989; Blakey, 2008; Ingersoll, 2008; Dickinson, 

2006, 2013). 

The Sonoma orogeny is characterized by thrusting of an accretionary prism obducted 

above the continental crust and known as the Golconda Allochthon (GA, Fig. II.A.9; e.g., Speed 

& Silberling, 1989; Dickinson, 2013). It is worth noting that this allochthon is emplaced in the 

same area than the older Roberts Mountains Allochthon (Figs. II.A.7 to II.A.9). The GA 

accretionary prism likely resulted from scraping of the marine sediments deposited in the Slide 

Mountain Ocean during the episodic westward-dipping subduction that lead to the closure of 

this micro-ocean (Gabrielse et al., 1983; Oldow et al., 1989; Speed & Silberling, 1989; 

Dickinson, 2004, 2006, 2013; Ingersoll, 2008; Colpron et al., 2007). 

GA is thought to have initiated the formation of a foreland basin: the Sonoma Foreland 

Basin (Dickinson, 2006, 2013; Blakey, 2008; Ingersoll, 2008), which recorded sediments 

deposited during the Early Triassic. However, the location and extent of the GA is determined 

on the field by only a few remnants (e.g. the Koipato volcanic formation, see below), which 

are presently located in Central Nevada (Fig. II.A.10a; Snyder & Brueckner, 1983; Walker, 

1985; Schweickert & Lahren, 1987; Oldow et al., 1989; Dickinson, 2006, 2013; Blakey, 2008; 

Ingersoll, 2008). Remnants of the GA, if any, are yet to be found in the northern part of the 

basin, especially in Idaho (Schweickert & Lahren, 1987; Oldow et al., 1989). 

Precise mechanisms behind the formation and evolution of the Sonoma Foreland Basin 

remain to be precisely characterized (see section IV). 
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Figure II.A.9: a) Paleogeographic reconstruction of the western USA during the Early Triassic (Blakey, 2013). b) 

Simplified Early Triassic map of the western USA showing the location of the Golconda Allochthon and the 

resulting Sonoma Foreland Basin (SFB). The Sonomia micro-plate had been amalgamated to the Laurentian 

craton, leading to the formation of the Golconda Allochthon. Relics of ARM uplifts are still present in the 

southeastern end of the SFB (after Ingersoll, 2008; Colpron et al., 2007; Blakey, 2013; Dickinson, 2013). c) W-E 

lithospheric cross-section of the area showing the GA obducted onto the Laurentia craton while the Sonoma 

micro-plate is amalgamated to the craton. The Slide Mountain Ocean is assumed to be present as a lithospheric 

wedge between the Laurentian and Sonoman plates (after Ingersoll, 2008). d) Paleogeographic map of the 

western margin of the Laurentian continent with a focus on the study area. This map shows the closure of the 

Slide Mountain Ocean and the amalgamation of volcanic arcs (Sierra and Klamath; Colpron et al., 2007). 
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- The Koipato volcanic Formation 
The main controversy regarding the existence and extent the Sonoma Foreland Basin as 

a true foreland basin is related to the poor field evidence indicating a relief sufficient enough 

to provoke a lithospheric flexuration (e.g., Oldow et al., 1989; Speed & Silberling, 1989; Wyld, 

1991). Among the rare field evidence is the presence of the Koipato volcanic Formation in 

present-day central Nevada, being one of the GA remnants (Fig. II.A.10a; Vetz, 2011). At this 

place, remnants of the allochthon are sealed by an unconformably lying rhyolitic formation, 

presumably emplaced by the end of the Sonoma orogeny (Vetz, 2011). A minimum age of 

Anisian (~248 Ma, Middle Triassic) is given to this volcanic formation using U-Pb zircon 

geochronology (Vetz, 2011) and confirmed by the occurrence of Anisian ammonoids in the 

overlying sedimentary series (Nichols & Silberling, 1977; Bucher, 1988; Vetz, 2011). 

Nevertheless, the potential presence of older ammonoid faunas is not to be discarded. 

The presence of such volcanism is of major importance regarding the late orogenic 

history of the allochthon and its demise. Vetz (2011) described this formation as a volcanic 

(locally intrusive) felsic to rhyolitic unit, bearing a high 87Sr/86Sr ratio (0.7089 – 0.7126) and 

fairly negative εNd values (-9.73 – -12.89). This peculiar type of magmatism and volcanism 

points toward a late orogenic context (Malavieille et al., 1990; Malavieille, 1993; Innocent et 

al., 1994; Yang et al., 2008; Valenzuela et al., 2011). Based on this volcanic-type occurrence, a 

new and original model explaining the late-orogenic evolution of the GA and the presence of 

the associated Koipato volcanism can be proposed here based on similar examples in the 

literature (e.g., Thorpe et al., 1989; Malavieille, 1993; Innocent et al., 1994; Riley et al., 2001; 

Valenzuela et al., 2011; Figs. II.A.10b and II.A.10c). 

During the Sonoma orogeny, horizontal tectonic forces (Ft) are important and lead to 

the formation of a relief, in this case by thrusting of GA above the North American continental 

margin (Fig. II.A.10b). These forces are higher than the vertical load exerted by the mass of 

the relief (gravitational forces, Fg). Consequently, the lithospheric crust is thickened. By the 

end of the orogeny, vertical Fg become preponderant compared to horizontal Ft in the 

allochthon. Therefore, gravity collapse of the relief occurs, leading to a late-orogenic 

extension and thinning of the crustal lithosphere (thinning being emphasized by relief erosion; 

Fig. II.A.10c). These movements are characterized by normal-faulting (syn-volcanism normal 

faulting was documented in the Koipato Fm. by Vetz, 2011), as well as by a return to isostatic 

equilibrium with a shallowing of the asthenosphere (Fig. II.A.10c; e.g., Malavieille et al., 1990; 

Malavieille, 1993, Innocent et al., 1994). This asthenospheric shallowing is then responsible 

for an enhanced thermicity leading to the partial melting of the basal continental crust, most 

probably at the origin of the rhyolitic volcanism reported for the Koipato formation. 

This model is in agreement with the proposition of a marked relief for the Golconda 

Allochthon. It has therefore to not be neglected in the context of the formation of a flexural 

foreland basin in the studied area during the Early Triassic. Moreover, this relief may have also 

contributed to the terrigenous inputs within the SFB, similarly to the ARM relic uplifts on the 

opposite side of the basin. 
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Figure II.A.10: a) Simplified Early Triassic paleogeographic map of the SFB, with locations of the reconstructed 

GA and Koipato volcanic Formation (after Caravaca et al., in press a, see section IV). b) and c) Proposed model 

for syn- and late-orogenic evolution of the GA thrust belt. b) During syn-orogenic interval, horizontal tectonic 

forces (Ft) generated a relief by emplacement of the GA, leading to the formation of the SFB and allowing 

thickening of the underlying crust. c) During the late-orogenic interval, horizontal tectonic forces are not 

sufficient enough to compensate and overthrow the vertical gravitational forces (Fg) exerted by the mass of the 

obducted material, leading to a thinning of the crust (e.g., Malavieille et al., 1990; Malavieille, 1993). This 

thinning caused an isostatic rebound with a partial melting of the crust, responsible for the onset of rhyolitic 

volcanism in the area (Koipato Fm.; Vetz, 2011). 

 

- The Sevier orogeny: a thin-skin thrust-and-fold belt 
The Sevier orogeny is Early Cretaceous to Eocene in age (~140 to ~50 Ma; Fig. II.A.3). 

East-West compressive constraints formed a large thrust-and-fold belt, which is still present 

today and constitutes the eastern border of the Great Basin (Figs. II.A.1 and II.A.11; Dickinson, 

2006, 2013; Yonkee & Weil, 2010; Yonkee et al., 2014). The Sevier orogeny originated from 

the ongoing eastward subduction of the Farallon oceanic plate under the North American 

continental plate, with a slab drag causing superficial compressional deformations and 

shortenings (Fig. II.A.11c; Burchfiel & Davis, 1975; Dickinson, 2006, 2013). The Sevier belt was 

important enough to trigger the formation of an important and famous foreland basin known 

as the Western Interior Seaway (e.g., Blakey, 2008; Ingersoll, 2008; Miall, 2010; Dickinson, 

2013). Although this basin originated in the same area than the predecessor Antler and 

Sonoma foreland basins (Miall, 2010), it mainly differs by its much larger extension and the 

eastern position of its main depocenter. 

This orogen was responsible for displacement of many older terrains (such as the Triassic 

sedimentary series), which resulted in the loss of the original paleogeographic signal 

corresponding to these intervals (e.g., Dickinson, 2006, 2013). Palinspastic reconstructions of 
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the area for these intervals are thus mandatory. This thrust-and-fold belt is not homogeneous 

along its N/S trending front, with varying estimated tectonic shortenings and eastward 

displacement of terrains reaching up to 140 km (DeCelles & Coogan, 2006; Schelling et al., 

2007; Dickinson, 2006, 2013; Yonkee & Weil, 2010, 2015; Yonkee et al., 2014). Northern and 

southern parts of the Sevier belt are separated by a conspicuous recess formed by a lateral 

ramp and located west of the Uinta Mountains (“Uinta Recess”, Fig. II.A.11b). Its formation 

results from inherited features of the basement (e.g., Mukul & Mitra, 1988; Lawton et al., 

1994; Paulsen & Marshak, 1999; Wilkerson et al., 2002). 

 

 

Figure II.A.11: a) Paleogeographic reconstruction of the western USA during the Cretaceous (Blakey, 2013). b) 

Simplified Cretaceous map of the western USA highlighting the presence of the Sevier thrust-and-fold belt (TFB) 

and the ensuing Sevier foreland Basin (i.e., the “Western Interior Seaway”; after Blakey, 2008, 2013; Ingersoll, 

2008; Miall, 2010; Dickinson, 2013). c) W-E lithospheric cross-section of the area showing the Sevier thrust-and-

fold belt emplaced onto the North American craton and the eastward-dipping subduction of the Farallon plate 

(after Ingersoll, 2008). 
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- The Laramide orogeny and the formation of the present-day Rockies: 
During the same Early Cretaceous to Eocene interval (Fig. II.A.3), the Laramide orogeny 

occurred East and Southeast of the study area, and reactivated most basal crustal uplifts set 

during the ARM orogeny. This structural event led to the formation of the modern Rocky 

Mountains overlapping older structures, especially in the Colorado Plateau (Fig. II.A.12; Oldow 

et al., 1989; Ye et al., 1996; Dickinson, pers. com. 2015). 

This orogen resulted from continuous compressional constraints due to the “flat” 

subduction of the Farallon plate after the main Sevier events, because the intraplate 

compressional deformation had to be accommodated. This was possible notably through the 

thrusting and reactivation of earlier ARM crustal uplifts (Burchfiel & Davies, 1975; Oldow, 

1984; Oldow et al., 1989; Speed & Silberling, 1989, Ye et al., 1996; Dickinson, 2004;), as well 

as the reactivation of Proterozoic inherited structures (e.g., uplift of the Uinta Mountains 

along Proterozoic fault-lines; Paulsen & Marshak, 1999). The “flat” Farallon slab also played a 

role in contributing to the regional uplift, especially to the Colorado Plateau uplift (Fig. II.A.12c; 

e.g., Ye et al., 1996; Ingersoll, 2008; Dickinson, 2013). 

 

 

Figure II.A.12: a) Paleogeographic reconstruction of the western USA during the Eocene (Blakey, 2013). b) 

Simplified Eocene map of the western USA highlighting the presence of the Sevier thrust-and-fold belt, Rocky 

Mountains and Colorado Plateau uplifts (e.g., Oldow, 1984; Ye et al., 1996; Paulsen & Marshak, 1999; Ingersoll, 

2008; Blakey, 2013; Dickinson, 2013). c) W-E lithospheric cross-section highlighting the “flat” slab subduction of 

the Farallon plate (after Ingersoll, 2008). 
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- Basin and Range extensional Province 
Finally, extensional constrains in the Basin and Range Province started by the Neogene 

(~20 Ma; Fig. II.A.2) and are still active today (Oldow et al., 1989; DeCelles & Coogan, 2006; 

Dickinson, 2002, 2006, 2013). This province is characterized by normal-faulting, half-graben 

formation (e.g., Bear Lake, southeastern Idaho) terrain movements and seismic activity (e.g., 

Evans et al., 2003). This extension is mainly set in a large area covering Nevada and Utah and 

comprised between the Sevier belt and Colorado Plateau to the East, and the Sierra Mountains 

to the West (Figs. II.A.1 and II.A.13). 

This extension is the result of internal forces (Kreemer & Hammond, 2007) that 

generated transtensional stresses and pure shear after the relaxation of compressive stresses 

due to the subduction of the Farallon plate (Parsons et al., 1994; Gans & Bohrson, 1998; 

Dickinson, 2002, 2006). However, the precise origins of these extensional constrains are still 

discussed and several possible mechanisms were proposed including: (1) a mantellic wide 

“rift-like” process with ascent and underplating of mantellic material leading to thermal 

lamination of the lithosphere (Lachenbruch & Morgan, 1990; Parsons et al., 1994, Gans & 

Bohrson, 1998); (2) a mechanical origin with the extension occurring in a late orogenic context 

due to the instability and gravity collapse of the thickened lithospheric crust in Nevada and 

westernmost Utah (Fletcher& Hallet, 1983; Malavieille, 1993; Zandt et al., 1995). A 

combination of these two potential mechanisms cannot be discarded. Nevertheless, the 

easternmost borders of the basin (e.g., Colorado Plateau or Sevier belt to the East) are not 

affected by these displacements (Fig. II.A.13; Dickinson, 2006, 2013). 

It is also worth noting that this extension reactivated in inversion some of the thrust 

faults created during the Sevier orogeny (Coney, 1987; Dickinson, 2006, 2013). 
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Figure II.A.13: a) Paleogeographic reconstruction of the western USA during the Oligocene (Blakey, 2013). b) 

Simplified map of the western USA during the Oligocene to present-day, showing the extensional Basin and 

Range province (Blakey, 2013; Dickinson, 2013). c) W-E lithospheric cross-section showing the impacts of the 

extensional Basin and Range province and the formation of many half-graben basins (after Ingersoll, 2008). 
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B. The Early Triassic SFB: State of the art 

 

• Location and extent of the SFB 
The SFB was located in the northern intertropical zone on the western Pangea margin 

during the Early Triassic (Fig. II.B.1a). It results from the emplacement of GA during the 

Sonoma orogeny around the PTB (see section above). The SFB shows an excellent fossil and 

sedimentary records from the PTB until the Spathian (fourth substage of the Early Triassic), 

with mainly transitional continental/marine to shallow marine depositional settings (e.g., 

Kummel, 1954, 1957, Paull & Paull, 1993; Lucas et al., 2007; Brayard et al., 2013; Olivier et al., 

2016, see appendix 1). 

During the maximum inundation of the end-Smithian (e.g., Embry, 1997; Brayard et al., 

2013; Vennin et al., 2015), the SFB stretched from the GA reliefs on the West, to the ARM 

remnants on the Southeast (e.g., the Uncompahgre uplift, Fig. II.B.1b). Northeastern and 

eastern borders are not (yet) precisely constrained due to the lack of studies and the 

continental nature of easternmost deposits blurring the paleogeographic signal (e.g., Kummel, 

1954, 1957; Heckert et al., 2015). The Southern border is also a transitional continental to 

marine zone with possibly some of the northwesternmost ARM remnants making a 

(undocumented) relief barrier in present-day southern Utah (e.g., Blakey, 2008; Dickinson, 

2013). The northern part of the SFB is commonly thought to have been the unique connection 

with the open Panthalassa Ocean through a “northwestern passage” made by the last relics 

of the Slide Mountain Ocean (Colpron & Nelson, 2009), granting open-marine conditions to 

spread into the basin from the North (e.g., Kummel, 1957; Paull & Paull, 1994, Goodspeed & 

Lucas, 2007). The southwesternmost end of the basin still remains to be documented. 

Additionally, the SFB is wider in its southern part (~600 km-wide) than its in northern part 

(~400 km-wide; Fig. II.B.1b). 

Despite numerous studies, the detailed paleogeography of the SFB is still poorly 

constrained and needs careful re-investigations, as the spatio-temporal distribution of 

sedimentary deposits have been previously established almost only for the northern part of 

the basin (e.g., Kummel, 1957; Paull & Paull, 1994). 

 

• Spatial heterogeneities in SFB studies  
Despite its importance for its fossil record on the Early Triassic biotic recovery, the 

knowledge acquired on the SFB is somewhat scattered and restricted. The SFB was the topic 

of numerous but spatially-uneven paleontological and sedimentary works during the past 

decades (Fig. II.B.2). 

Paleontological works mainly focus on the Early Triassic biotic recovery. In that, many 

recent studies have been published giving a renewed portray of the basin (e.g., Brayard et al., 

2006, 2009, 2010, 2013 or 2017, but also Goodspeed & Lucas, 2007, McGowan et al., 2009; 

Hofmann et al., 2014 or Jattiot et al., 2016, in prep.). Nevertheless, these publications do not 

concern the basin at a whole. Only a few exceptions such as Brayard et al. (2013) dealing with 
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biostratigraphical timeframe and correlation for of the southern part of the SFB results from 

rather large analyses, but not a the basin-scale so far. 

 

 

Figure II.B.1: a) Early Triassic location of the SFB (after Brayard et al., 2013). b) Simplified paleogeographic map 

of the SFB with position of the reconstructed GA and relic ARM uplifts (after Caravaca et al., in press a, see 

section IV). The “northwestern passage” (after Colpron & Nelson, 2009) is expected to be the only connection 

between the SFB and the open Panthalassa Ocean during this interval. 

 

Sedimentological studies are also less abundant and often older: most sedimentary 

studies done on the SFB date back from before 2005 (Fig. II.B.2), with important syntheses 

such as Kummel’s work published in the fifties (Kummel 1954, 1957). If some of these studies 

were done with a regional overlook (e.g., Kummel, 1954, 1957; Paull & Paull, 1991, 1994), the 

vast majority of sedimentological works were based on a specific topic such as the SFB 

petroliferous potential (Blakey, 1977), formational lithology (Blakey, 1974; Paull & Paull, 1993) 

or on specific restricted areas (Davidson, 1967; Goodspeed & Lucas, 2007), even for the most 

recent works (e.g., Olivier et al., 2014, 2016, see appendix 1; Heckert et al., 2015). A true 

modern basin-scale reappraisal of the sedimentary record is therefore lacking. 

Additionally, geochemical studies on basin Early Triassic exposures are nearly inexistent 

(Fig. II.B.2) with exception of e.g. Thomazo et al. (2016). This is all the more surprising given 

the fact that some of the commonly accepted paradigms for the Early Triassic recovery were 

seminally based on the SFB record (e.g., Schubert & Bottjer, 1992; Fraiser & Bottjer, 2004; 

Pruss & Bottjer, 2004). 
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Finally, the intense tectonics recorded during the Mesozoic and Cenozoic (notably 

during the Sevier orogeny), but also the volcanic episodes (emplacement of the Snake River 

Plain in southern Idaho) may have led to a potential loss in the Triassic record. However, some 

areas in the basin still remain under-explored or under-sampled, such as the northwestern 

Utah (Fig. II.B.2) and deserve a better look. 

 

 

Figure II.B.2: Illustration (non-exhaustive) of various published works on the western USA Basin showing 

location of some studied outcrops. The map also highlights some areas devoid of Early Triassic outcrops. 

 

• A marked dichotomy in the SFB sedimentary record 
The sedimentary record of the SFB is considered as almost continuous throughout the 

basin, with only local erosion surfaces being under the temporal resolution of ammonoid 

biozones for the Early Triassic (e.g., Kummel, 1957; Paull & Paull, 1993; Lucas et al., 2007; 

Brayard et al., 2013; Olivier et al., 2014, 2016, see appendix 1; Vennin et al., 2015, Davydov et 

al., 2016). The very base of this record is formed by the regional Permian/Triassic 

unconformity (PTU, Brayard et al., 2013), which is diachroneous within the basin, locally 

showing important hiatus in the basal Early Triassic at some places, especially in the southern 

part of the basin (e.g., the Torrey area in southeastern Utah; Olivier et al., 2016, see appendix 

1). Nonetheless, some recent data suggest that a few exposures may have preserved a 

continuous record from the Late Permian to the Early Triassic, notably in Idaho (Davydov et 

al., 2016) or in western Utah (e.g., Minersville area; Vennin et al., 2015; ongoing work), 
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allowing to track the crucial changes in depositional settings during the PTB mass extinction 

event and its aftermath. 

Despite the somewhat outdated sedimentary studies of the basin (Fig. II.B.2; e.g., Newel 

& Kummel, 1942; Kummel, 1954, 1957, Blakey, 1974), authors behind these works had done 

a thorough and precise description of the different lithofacies encountered in the SFB. Using 

this database, some marked discrepancies can be observed in term of dominant lithologies 

and thickness of the Early Triassic sedimentary record, evidencing a conspicuous dichotomy 

between the northern and southern parts of the SFB (Fig. II.B.3). Surprisingly, this observation 

at the scale of the basin was only elusively addressed until recently. 

In its southern part (Figs. II.B.3 and II.B.4), the basin is mainly filled with few tenths of 

meters of transitional continental to marine coarse sandstones to conglomerates known as 

“red beds” of the Moenkopi Group (Figs. II.B.4a-c and II.B.4e; sensu Lucas et al., 2007; Brayard 

et al., 2013, Olivier et al., 2016, see appendix 1). At the top of the Moenkopi Group, metric-

scale beds of intertidal microbial limestones can be observed (Figs. II.B.3 and II.B.4e; Brayard 

et al., 2013; Vennin et al., 2015; Olivier et al., 2016, see appendix 1). The upper part of this 

sedimentary pile is characterized by also few tenths of meters of open-marine bioclastic 

limestones (locally shales) of the Thaynes Group (Figs. II.B.3, II.B.4d and II.B.4f; sensu Lucas et 

al., 2007), marking the maximum flooding of the Smithian third-order transgression and the 

maximum reach of marine facies in the southern part of the SFB (Embry, 1997; Vennin et al., 

2015). This late Smithian flooding event is characterized by the presence of the ammonoid 

genus Anasibirites throughout the basin (Fig. II.B.3a; Lucas et al., 2007; Brayard et al., 2013; 

Jattiot et al., 2015, in press). 

In the northern part of the basin (Figs. II.B.3 and II.B.4), the sedimentary record mainly 

differs at its base by the presence of the Dinwoody and Woodside Formations in place of the 

Moenkopi Group, which are characterized by several tenths to hundreds of meters of fine 

marine siltstones (Figs. II.B.3, and II.B.4g; Kummel, 1954, 1957; Sadler, 1981; Paull & Paull, 

1991; Caravaca et al., 2017, see section III.A). Above these formations, the sedimentary record 

resembles the one observed in the southern part and corresponds to the open-marine 

bioclastic limestones and shales of the Thaynes Group (Figs. II.B.3, II.B.4d and II.B.4h) reaching 

up to several tenths to hundreds of meters-thick. 
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Noteworthy, no microbial activity has been found so far in the northern part of the basin, 

with exception of the Lower Weber Canyon outcrop displaying microbially induced 

sedimentary structures (MISS) but no microbial limestones as described in southern part of 

the basin (LWC in Figs. II.B.3 and II.B.4; Grosjean et al., in prep.). Interestingly, this outcrop 

displays shared characteristics with the southern type of sedimentary record (such as 

presence of terrigenous “red beds” deposits), and might be representative of a “transition 

zone” between the two parts of the SFB. 

The distinction and characterization of the depositional settings for these two different 

North and South areas, as well as their evolution and their potentially local controlling 

parameters are therefore worth of attention to decipher mechanisms forming such 

discrepancy. 

 

• The N/S dichotomy is also visible in the fossil record 
As evoked above in section I.B., the Early Triassic SFB fossil record is relatively abundant 

throughout the entire basin (Fig. I.B.9). Nevertheless, distribution and abundance of some 

documented taxa apparently follow the N/S dichotomy observed in the sedimentary record. 

Noteworthy, the presence of mineralizing microbial communities is well established in 

the southern part of the basin, with various outcrops of different ages displaying m-thick beds 

of microbial limestones (Fig. II.B.5, e.g.; Pruss & Payne, 2009; Marenco et al., 2012; Brayard et 

al., 2013; Woods, 2013; Olivier et al., 2014, 2016, cf. appendix 1; Vennin et al., 2015). In turn, 

outcrops in the northern SFB seem devoid of any similar microbial limestone deposition (e.g., 

Kummel, 1957; Paull & Paull, 1991; Jenks et al., 2013; Caravaca et al., 2017, see section III.A). 
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Figure II.B.3: a) Simplified litho- and chronostratigraphic subdivisions in the Early Triassic SFB. Main ammonoid 

markers (late Smithian Anasibirites and early Spathian Columbites) are used for biostratigraphical correlation 

(timeframe from Brayard et al., 2013). Radiometric ages: (1) from Baresel et al., 2017; (2) and (3) from Galfetti 

et al., 2007a. b) Lithostratigraphic columns for eight selected sections in the SFB, with biostratigraphic 

correlation (after Caravaca et al., in press, see section IV). These columns illustrate the discrepancies in 

dominant lithologies and in thickness of the sedimentary record between the northern and southern parts of 

the SFB. Basal and biostratigraphic correlation using timeframe after Brayard et al. (2013). RC: Rock Canyon, 

CR: Confusion Range, PR: Pahvant Range, M: Minersville, T: Torrey, LWC: Lower Weber Canyon, HS: Hot 

Springs, SC: Sheep Creek. 



63 

 

 

Figure II.B.4: Photographs of different outcrops in the SFB showing variations in dominant lithologies and 

sedimentary thicknesses (after Caravaca et al., in press, see section IV). a) Panorama of Rock Canyon (RC) 

outcrop, showing plurimetric beds of conglomerates from the basal Moenkopi Group. b) Detail photograph of 

the conglomerate from RC. c) Photograph of the terrigenous red beds of the Moenkopi Group at Lower Weber 

Canyon (LWC). d) Panorama of the limestones beds of the Thaynes Group limestones at LWC. e) Panorama of 

the Moenkopi Group at Minersville (M), showing succession of terrigenous red beds and microbial limestones. 

f) Panorama of the transition between Moenkopi and Thaynes Groups showing succession of microbial and 

bioclastic limestones at M. g) Photograph of the marine siltstones of the Dinwoody and Woodside Formations 

at Hot Springs (HS). h) Panorama of the HS section, showing succession of limestone levels of the Thaynes 

Group bioclastic limestones. Position of the illustrated sections is indicated on the map in Fig. II.B.3b. 
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Ongoing works (Jattiot et al., in prep.) on the spatio-temporal distribution and 

abundance of ammonoids within the basin also strongly support this dichotomy hypothesis, 

showing a clear segregation between some ammonoid genera: for instance, Wyomingites is 

restricted to the northern part of the SFB while Guodunites is exclusively present in the 

southern part (Fig. II.B.5, Jattiot et al., in prep.). In terms of abundance, ammonoids also 

exhibit strong gradients between the northern and the southern parts of the SFB. 

This subdivision overlaps with the sedimentary record thus highlighting the tight links 

between depositional settings and their faunal content. The impact of the local environmental 

conditions on fossil assemblages is therefore an important factor to be considered. 

 

 

Figure II.B.5: Map illustrating the spatial distribution of some organisms (ammonoids and microbial limestones) 

found in the SFB and displaying a segregation between the northern and southern parts of the basin (after 

Brayard et al., 2013; Olivier et al., 2014, 2016, see appendix 1; Vennin et al., 2015; Jattiot et al., in prep.). 
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•  Misinterpretations and gap in the geological history of the SFB 
Based on the available literature, the SFB remains poorly constrained. Works on the SFB 

are lacunar and some are outdated and need revisions and reevaluation using modern 

methods and new field data. 

Particularly, the geodynamic evolution of the region related to the foreland basin system 

during the Sonoma orogeny has not yet been carefully studied notwithstanding its 

fundamental implications on local paleoenvironmental conditions and their impact on the 

regional Early Triassic biotic recovery (see e.g. Vennin et al., 2015, for local implication on the 

development of microbial mats, or Brayard et al., 2017, for locally highly diversified fauna). 

Moreover, inheritance and role of the basement were not enough taken into account as a 

major parameter controlling the evolution of the basin and potentially northern and southern 

sub-basins. 

Additionally, regional studies display a strong paleogeographic bias. Indeed, some 

studies on the northern part of the SFB (e.g. Kummel 1954, 1957; Fig. II.B.6a), or about 

transgressive episodes in the SFB (Paull & Paull 1993, 1994; Fig. II.B.6b), have been done based 

on modern positions of exposures and without taking into account the Early Triassic 

paleogeography of the basin. Outcrops are thus considered at their present-day position and 

maps are then drawn based on those positions (e.g., Paull & Paull, 1993). As many SFB 

outcrops are situated in highly tectonized areas and have underwent compressional stresses 

and transport during the Mesozoic and Cenozoic eras, palinspastic reconstructions are 

therefore needed to use the actual paleogeography of the SFB at the time of deposition. 

Imprecisions concerning the regional facies and evolution of the depositional settings 

also arose from this lack of a basin-scale integrated work (Figs. II.B.6c and II.B.6d). Reality of 

the paleoenvironments, their position within the basin, and the potential local controlling 

factor(s) have to be studied and detailed using a wide range of data (e.g., paleontological, 

sedimentological or geochemical). 
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Figure II.B.6: Examples of “erroneous” non-palinspastically reconstructed, and therefore, non-paleogeographic 

interpretations of the SFB. a) Isopach map of the Dinwoody Fm. (Kummel, 1957). b) Spatial extent of the end-

Smithian transgression (Paull & Paull, 1993). c, d) Spatial distribution of oversimplified facies belts of the 

Thaynes Group during the Smithian (Goodspeed & Lucas, 2007; Brayard et al., 2013). 
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The western USA Basin exists since the Paleoproterozoic and had a long and complex 

tectono-sedimentary history that is still active today. Consequently, a strong heritage is 

present in this region and has played a considerable role throughout the long history of this 

basin. If many structural events have been tracked down since the first emplacement of the 

basin basement, some episodes nevertheless remain poorly constrained such as the Sonoma 

orogeny that occurred at the Permian/Triassic transition. 

 

The Sonoma Foreland Basin (SFB) exhibits an excellent fossil and sedimentary record, 

being of first importance in the current debate on the Early Triassic biotic recovery. However, 

previous lacunar studies on this basin left numerous questions on its paleoenvironments and 

their evolution unanswered. This is especially obvious when documenting the discrepancy in 

sedimentary record and fossil assemblages existing between the northern and southern parts 

of the SFB. 

 

Using an original and integrated approach, this work aims to provide a new accurate 

paleogeographic view of the SFB and its depositional settings, as well as their spatio-temporal 

evolution. Additionally, this works will focus on the heritage of the region to evaluate (i) if this 

one possibly exerted a control over the observed North-South discrepancies, and (ii) if yes, what 

could have been its precise role because it was likely a major control over the geodynamical 

history of the region up to today. 
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III. GEOCHEMICAL 

PARAMETERS OF THE SFB 

WATER COLUMN 
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Very few geochemical studies have been conducted within the SFB in the past years 

despite (i) the growing interest for this area, (ii) the importance of chemostratigraphy for 

worldwide correlations, and (iii) the significance of geochemistry in addressing the evolution 

of the paleoenvironment during the Early Triassic. Marenco et al. (2008, 2012) provided a few 

interpretations on the geochemical record of the SFB, but they were spatially and temporally 

very restricted, as well as focusing on C and S elementary concentrations. Basin-scale analyses 

covering large intervals within the Early Triassic and using a multi-proxy approach are yet to 

be conducted in the basin. Only Thomazo et al. (2016) proposed such a study of the Minersville 

section in the southern part of the SFB. 

In this chapter, samples from three distant sections covering the Smithian-Spathian 

transition are analyzed for their geochemical record: Hot Springs (southeastern Idaho), which 

represents the northern part of the SFB; Lower Weber Canyon (northern Utah) representing 

a central “transitional (?)” part of the SFB; and Minersville (southwestern Utah) as 

representative of the southern part of the SFB. These three sections allow to get a larger sight 

of the SFB record from a geochemical point of view. 

Both the paired carbon isotopes record and the concentrations of trace and major 

(T&M) elements are studied and compared to obtain information on the detailed local 

evolution of the carbon cycle, detrital fluxes, paleoproductivity and paleoredox conditions in 

the water column at basin scale. 

 

A. Northern SFB signal: Hot Springs 

 
The northern part of the SFB is represented by the Hot Springs (HS) section located in 

southeasternmost Idaho. This site was first studied for its sedimentary record by Kummel 

(1957), where a thick succession is documented for the Early Triassic. Recently, a few 

paleontological studies (e.g., Romano et al., 2012; Hofmann et al., 2014) were carried out on 

this section, but its geochemical record remained unstudied until this work. 

High-resolution sedimentary and geochemical analyses were performed on a ~900 m-

thick section from the Permian up to the lower Spathian, using both paired carbon isotopes 

and T&M elements. Results and interpretations are presented in Caravaca et al., 2017: 
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A B S T R A C T

In the aftermath of the catastrophic end-Permian mass extinction, the Early Triassic records recurrent
perturbations in the carbon isotope signal, most notably during the Smithian and through the Smithian/
Spathian Boundary (SSB; ~1.5 myr after the Permian/Triassic boundary), which show some of the largest
excursions of the Phanerozoic. The late Smithian also corresponds to major biotic turnovers and environmental
changes, such as temperature fluctuations, that deeply impacted the recovery after the end-Permian mass
extinction. Here we document the paired carbon isotope signal along with an analysis of the trace and major
elements at the long-known Hot Springs section (southeastern Idaho, USA). This section records Early Triassic
sediments from the Griesbachian-Dienerian up to the lower Spathian. We show that the organic and carbonate
δ13C variations mirror the signals identified at a global scale. Particularly, the middle Smithian-SSB event
represented by a negative-positive isotopic couplet is well identified and is not of diagenetic origin. We also
document a positive excursion potentially corresponding to the Dienerian/Smithian Boundary. Observed
Smithian-Spathian excursions are recorded similarly in both the organic and carbonate reservoirs, but the
organic matter signal systematically shows unexpectedly dampened variations compared to its carbonate
counterpart. Additionally, we show that variations in the net isotopic effect (i.e., Δ13C) probably resulted from a
complex set of forcing parameters including either a mixing between terrestrial and marine organic matter
depending on the evolution of the depositional setting, or variations in the biological fractionation. We establish
that the Δ13C signal cannot be directly related to CO2-driven temperature variations at Hot Springs. Even though
the carbon isotope signal mirrors the Early Triassic variations known at the global scale, the Hot Springs signal
probably also reflects local influences on the carbon isotopes that are neither diagenetic nor representative of the
global exogenic carbon cycle.

1. Introduction

The Early Triassic (~252 to ~247 Ma; Galfetti et al., 2007a; Baresel
et al., 2017) is generally portrayed as a time interval of high ecological
stress in the aftermath of the end-Permian mass extinction. This interval
is also characterized by large-scale fluctuations of the carbon cycle and
harsh marine conditions, including a combination of ocean acidifica-
tion, euxinia, extreme seawater temperature and fluctuating productiv-
ity (e.g., Payne and Clapham, 2012; Song et al., 2012; Sun et al., 2012;

Romano et al., 2013; Pietsch and Bottjer, 2014). Various geochemical
analyses indicate that fluctuations in sea surface temperatures (SST)
continued throughout the Early Triassic, sometimes being associated
with large and rapid δ13C shifts (Payne et al., 2004; Galfetti et al.,
2007a; Grasby et al., 2013; Sun et al., 2012; Romano et al., 2013) and
marked extinction events (e.g., Orchard, 2007; Brayard et al., 2009;
Hochuli et al., 2016). Several works have documented a marked δ13C
negative excursion during the middle Smithian, immediately followed
by a positive excursion across the Smithian/Spathian Boundary (SSB) in
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different paleoenvironments within the Tethys and northern Pantha-
lassa (Payne et al., 2004; Galfetti et al., 2007a, 2007b; Horacek et al.,
2007a, 2007b, 2009; Hermann et al., 2011; see also Fig. 1 in Thomazo
et al., 2016). This global signal is measured either on carbonate or
organic matter (e.g., Grasby et al., 2013). However, it is rarely
documented in both reservoirs simultaneously (see discussion in
Thomazo et al., 2016). The observed signal is thus commonly inter-
preted to result from variations in the δ13C of the seawater dissolved
inorganic carbon (DIC) reservoir (e.g., Zeebe, 2012). Proposed trigger-
ing mechanisms for the middle Smithian negative excursion involve (i)
a massive release of 12C-enriched CO2 from volcanogenic (Sobolev
et al., 2011) or thermogenic (Payne and Kump, 2007) sources, or (ii) a
decrease in the organic carbon flux buried in the sedimentary record
(Payne et al., 2004; Meyer et al., 2011). Concomitant periods of
sustained authigenic carbonate production, decoupled from the sea-
water DIC reservoir, have also been documented based on carbon and
sulfur isotope signals (Thomazo et al., 2016). Globally, the carbon
isotope signal around the Dienerian/Smithian Boundary is less known
than for the middle Smithian and the SSB due to worldwide uncertain-
ties of biostratigraphy, synchronicity and magnitude of observed δ13C
excursions (e.g., Horacek et al., 2007b).

Greenhouse climate conditions prevailed during the middle-upper

Smithian, in combination with anoxia on some shelf environments and
potential acidification of surface waters due to elevated pCO2 attributed
to large-scale greenhouse gas injections from the Siberian traps (Galfetti
et al., 2007a; Romano et al., 2013). These harsh conditions may have
turned lethal for marine faunas (Song et al., 2009; Sun et al., 2012;
Pietsch and Bottjer, 2014; Pietsch et al., 2016). Relative cooling events
are observed during the lower Smithian and lower Spathian. They are
interpreted to result from the drawdown of CO2 by an enhanced
biological pump (Payne and Kump, 2007). The global scenario arising
from these studies is therefore a direct link between potential tempera-
ture variations and fluctuations in the exogenic carbon cycle: the “cool”
lower Smithian and lower Spathian could be associated with a sustained
biological pump and high δ13C records, disrupted by a warming event
during the middle-upper Smithian triggered by 12C-enriched CO2

atmospheric releases due to intense volcanism. These fluctuations
may have generated a biotic crisis during the upper Smithian.

Direct access to the geological record of CO2 concentrations is a
challenging question (e.g., Retallack, 2001). However, coupled carbon
isotope data from organic matter and carbonate measured in pristine
rocks (i.e., not affected by diagenetic remobilization) can provide
insights about changing concentrations of dissolved CO2 in the ocean
([CO2]aq) (Hayes et al., 1999; Sansjofre et al., 2011). Indeed, the carbon
isotope difference measured between carbonates and organic matter,
Δ13Ccarb–org, strongly depends on the [CO2]aq (Hayes et al., 1999). Only
a few studies reported paired carbon measurements performed on the
same samples through the critical Smithian-Spathian transition
(Brühwiler et al., 2009; Hermann et al., 2011; Meyer et al., 2013;
Sun et al., 2015; Thomazo et al., 2016). Additionally, available
Δ13Ccarb–org datasets from these studies cannot be used to reconstruct
[CO2]aq on the Smithian-Spathian interval because the resolution of the
sampling is not sufficient (Brühwiler et al., 2009; Hermann et al., 2011;
Meyer et al., 2013; Sun et al., 2015) or because of the secondary (e.g.,
diagenetic) modification of the isotopic record (Thomazo et al., 2016).
Here we perform high-resolution measurements of the paired carbon
isotope signal together with elementary (trace and major elements)
compositions of 177 pristine samples encompassing the middle to upper
(?) Permian to lower Spathian interval at the Hot Springs section
(southeastern Idaho, USA). We show that the carbon isotope signals of
both carbonate and organic matter are primary and are coupled
through multiple δ13C excursions. Our results reveal that the magni-
tudes of the isotopic shifts are dampened in the organic matter reservoir
compared to its inorganic carbonate counterpart. The resulting varia-
tions in the Δ13Ccarb–org signal are discussed in terms of mixing with the
detrital flux of organic matter and changes in biological fractionation.

2. Geological settings

Sampling has been carried out on the Permian to lower Spathian
sedimentary succession of the Hot Springs (HS) section (GPS coordi-
nates: N42.114299°, W-111.249599°; ~24 km south of Montpelier,
Idaho, Fig. 1a). These sediments reflect deposition within the highly-
subsiding northern part of the shallow Sonoma Foreland Basin (SFB)
(Kummel, 1954, 1957; Caravaca et al., in press). This basin was located
on the western Pangea margin at a near-equatorial position during the
Early Triassic (Fig. 1b). The base of the section encompasses middle to
upper(?) Permian sediments characterized by phosphatic spiculites of
the Phosphoria Fm. (Wardlaw and Collison, 1986; Carrol et al., 1998),
and the major regional Permian-Triassic unconformity (PTU; Brayard
et al., 2013). Recent findings by Davydov et al. (2016) suggested the
potential existence of a continuous Permian-Triassic (PT) record in
neighboring localities of southernmost Idaho. However, at HS, only
evidence for a discontinuity has been observed between Permian and
Triassic sediments. For instance, conglomerates reworking phosphatic
clasts from the underlying Phosphoria Fm. occur at the base of the
Triassic part of the section (see below and Paull and Paull, 1986;
Wignall and Hallam, 1992). No accurate age is known for deposits
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Fig. 1. (a) Map of the studied area and location of the Hot Springs section. (b) Early
Triassic location of the Sonoma Foreland Basin.
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Fig. 2. Synthetic log of the Hot Springs section showing the stratigraphic position of ammonoid beds and geochemical samples. The sequential framework, facies and depositional
settings, as well as carbonate contents (% CaCO3) are indicated (see Table 1 and Supplementary Table S1 for details). Formations after Kummel (1954) and Wardlaw and Collison (1986).
Synthetic ammonoid biozonation after Guex et al. (2010), Brayard et al. (2013), and Jenks et al. (2013); Meek.:Meekoceras beds; “Baj.”: “Bajarunia” beds; “Tirolites”: “Tirolites” beds; Col.:
Columbites beds. Mid. Sm.: middle Smithian; Up. Sm.: upper Smithian. MFS: Maximum Flooding Surface. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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immediately below the PTU, but following Davydov et al. (2016), part
of them might be Upper Permian in age. Permian part of the hiatus
included within the PTU is therefore hard to precisely constrain, but
might be of long duration regarding the Late Permian.

The siltstones and carbonates of the Early Triassic Dinwoody,
Woodside and Thaynes formations at the HS section were deposited
in proximal marine environments (Kummel, 1954) and illustrate the
global rise in sea level recorded for the Early Triassic (Haq et al., 1987;
Embry, 1997). No marked unconformity can be observed between each
successive formation along the section and at the scale of southeastern
Idaho (e.g., Kummel, 1957; Paull and Paull, 1993) and no major erosion
nor reworked material can be observed within these levels. The upper
part of the HS section is biostratigraphically well calibrated using the
regional synthetic frame including the successive middle Smithian to
lower Spathian ammonoid Meekoceras, “Bajarunia”, “Tirolites” and
Columbites beds, which are commonly found in the SFB (Kummel,
1954, 1957; Guex et al., 2010; Brayard et al., 2013; Jenks et al., 2013;
Jattiot et al. in press; Fig. 2). Lower strata of the Dinwoody Fm. are
Griesbachian to Dienerian based on the occurrence of Claraia and
lingulid beds (e.g., Kummel, 1954, 1957). This is supported by the
presence of conodonts Hindeodus typicalis and Isarcella isarca in the
basal beds indicating a mid-Griesbachian age (Paull et al., 1985).
Usually, the lower boundary of the Thaynes Fm. is regionally identified
at the base of the Smithian ledge-forming Meekoceras beds for con-
venience. However, these limestone deposits are included within a
high-order sequence in continuity with underlying rocks (e.g., Embry,
1997) and only represent part of the early-middle Smithian (Jattiot
et al. in press). It thus implies that the Dienerian/Smithian boundary
(DSB) as well as the lower to middle Smithian transition at HS are
mainly recognized using regional lithostratigraphy (after e.g. Kummel,
1954, 1957) and also by chemostratigraphy using comparisons with
known global carbon isotopic signals (e.g., Payne et al., 2004; Galfetti
et al., 2007a; Richoz et al., 2007; Horacek et al., 2009; Hermann et al.,
2011; Grasby et al., 2013). Comparisons with other known carbon
isotopic signals worldwide indicate that the Dienerian to middle
Smithian transition is probably an expanded succession at HS. This is
in agreement with the high sedimentation rates reported for this place
and time interval (~650 m/Myr, Caravaca et al., in press). As the DSB
is not yet formally defined based on biostratigraphical markers (see
proposals of Tong et al., 2004; Krystyn et al., 2007 and Richoz et al.,
2007), we determined its approximate position by using a positive δ13C
excursion, as observed at some other localities (e.g., Horacek et al.,
2007a, 2007b, 2007c; Hermann et al., 2011; Clarkson et al., 2013;
Metcalfe et al., 2013). Overall, the HS section shows an almost
continuous Early Triassic succession up to the middle Spathian,
although minor hiatuses under the temporal resolution of this work
might exist without significant consequence on our interpretations of
the geochemical trends.

3. Sedimentary features and depositional environment

The Early Triassic part of the HS section consists of a succession of
fine marine siltstones (Griesbachian to early Smithian; historically
assigned to the Dinwoody and Woodside Fms. of Kummel, 1954,
1957) and bioclastic carbonates (Smithian-Spathian Thaynes Fm.), with
an increasing amount of carbonate components toward the top of the
section (Fig. 2). The depositional environments reflect a large and
shallow inner ramp evolving from an embayment system to an open
tidal flat. Seven facies (FI to FVII, Table 1) help to discriminate three
main environmental domains: (1) transitional continental to marine,
(2) tidal flat and (3) open marine.

3.1. Transitional continental to marine environment

At the very base of the section, channelized dm-thick conglomerates
(FI; Fig. 2, Table 1) are composed of pluri-centimetric clasts. Channels

(FIa) are embedded in siltstones (FIb) and barren of faunas. Clasts
observed in conglomerate facies FIa are derived from the underlying
Permian Phosphoria Fm. and indicate a local reworking of this material.
The low biotic content (rare bivalves), the channelized conglomerates
and the silt-dominated facies argue for a transitional continental to
marine domain in a flood plain embayment.

3.2. Tidal flat

The tidal flat environment is characterized by five facies consisting
of mixed siliciclastic and carbonate components that together indicate a
transition from inner to outer tidal flat settings. The vertical and lateral
successions of facies suggest a “facies mosaic” pattern (as illustrated in
Wright and Burgess, 2005; Vennin et al., 2015; Olivier et al., 2016). The
(dolo)siltstones (FII; Fig. 2, Table 1) show rare organisms, mud-draping,
rare dm- to pluri-metric megaripples and locally-abundant bioturba-
tions and indicate the most proximal, low to moderate energy and tide-
dominated conditions. Its terrigenous content (up to> 30%, Fig. 2)
mainly consists of sub-rounded (locally sub-angular) quartz grains, with
a mean size around 70 μm. Mica and glauconite grains can also be
found locally. The bivalve and gastropod-rich facies (FIII; Fig. 2,
Table 1) is associated with dm- to m-thick beds of dolosiltstones (facies
FII, Fig. 2). It shows dm- to pluri-metric megaripples. The presence of
mud-drapes, mudclasts and bidirectional laminations argues for a tide-
dominated environment (Johnson and Baldwin, 1996). These facies
correspond to inner to mid tidal flat settings. They vertically change
into cortoidic and ooidic packstones to grainstones (FIV; Fig. 2, Table 1)
deposited in subtidal high-energy shoals, as indicated by the presence
of type 1 ooids (Strasser, 1986). The serpulid-dominated packstones to
floatstones (FV; Fig. 2, Table 1) display the highest carbonate content of
the whole section (up to ~99%), and are associated with the presence
of hummocky cross-stratifications and bioclast-dominated tempestitic
beds. The echinoderm-dominated packstones (FVI; Fig. 2, Table 1) are
marked by a recrudescence of terrigenous inputs during the lower
Spathian (compared to the middle-upper Smithian). Both serpulid- and
echinoderm-dominated facies display dm- to m-megaripples and repre-
sent outer tidal flat settings.

3.3. Open marine environment

The more open marine conditions recorded in the section corre-
spond to the middle Smithian ammonoid floatstones (FVII; Fig. 2,
Table 1). These beds show accumulations of ammonoid shells, as well as
intense bioturbation. They correspond to the maximum flooding surface
recorded at HS (Fig. 2). This agrees with the regional 3rd order cyclicity
observed elsewhere in the basin (e.g., Mineral Mountains area, Vennin
et al., 2015) or at a larger scale (Embry, 1997). This facies represents
distal tidal flat settings.

4. Analytical methods

A total of 177 bulk rock samples were collected. Bulk rock samples
were sorted to eliminate recrystallizations and calcified veins, and then
powdered to< 60 μm using a ring and puck mill at the Biogéosciences
Laboratory of the Université de Bourgogne Franche-Comté, Dijon,
France. Organic carbon isotope compositions (δ13Corg) and Total
Organic Carbon (TOC) contents were measured on carbonate-free
residues. Sample powders reacted with HCl (6 N) at room temperature
for 24 h followed by 4 h at 80 °C to remove carbonate phases (Thomazo
et al., 2009). Residues were rinsed with deionized distilled water until
neutral, centrifuged (3500 rpm for 5 min), and dried at 50 °C overnight.
Aliquots of dried decarbonated samples (~3–60 mg) were then
weighed in tin capsules. TOC content and δ13Corg measurements were
performed at the Biogéosciences Laboratory of the Université de
Bourgogne Franche-Comté, Dijon, France, on a Vario MICRO cube
elemental analyzer (Elementar, Hanau, Germany) coupled in contin-
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uous flow mode to an IsoPrime stable isotope ratio mass spectrometer
(Isoprime, Manchester, UK). USGS40 certified reference material
(C = 40.8 wt%; δ13CVPDB = −26.2‰) was used for calibration. The
carbon isotopic composition is expressed in delta notation and reported
in permil (‰) relative to the Vienna Pee Dee Belemnite (VPDB)
standard; external reproducibility based on duplicate analyses of
samples is better than± 0.2‰ (1σ). Results are reported in Supple-
mentary Table S1.

Carbonate carbon and oxygen isotope analyses (δ13Ccarb and
δ18Ocarb) were carried out on powdered bulk-rock samples at the
Biogéosciences Laboratory of the Université de Bourgogne Franche-
Comté, Dijon, France. The samples (300 to 6000 μg) were loaded into
septum screwed glass tubes for isotopic analyses. The tubes were
flushed via the autosampler with He and evacuated to remove atmo-
spheric gases. Each sample was reacted with 500 μl of 100% phosphoric

acid at 90 °C for 17 min using an online carbonate preparation line
coupled to an Isoprime Elementar mass spectrometer (Isoprime,
Manchester, UK). Inorganic carbonate content (% CaCO3) was quanti-
fied manometrically from the CO2 yield; all isotopic values are reported
in the standard δ-notation in permil (‰) relative to VPDB by assigning
a δ13C value of +1.95‰ and a δ18O value of −2.20‰ to the NBS19
international standard. The long-term reproducibility of the NBS19
replicate analyses (three months) is better than± 0.1‰ (1σ) and±
0.12‰ (1σ) for carbon and oxygen isotopes, respectively. Results are
reported in Supplementary Table S1.

Major and trace element analyses were performed on 108 selected
samples using an ICP-MS at the Activation Laboratory (Actlabs) in
Ancaster, Canada. The method used is Lithium Metaborate/Tetraborate
Fusion ICP and ICP-MS. Reproducibility was checked by seven dupli-
cate and replicate analyses of laboratory standards, and is better than

Table 1
Description and characterization of the 7 facies identified in the Hot Springs section and their corresponding depositional settings.

Facies Biotic
components

Non–biotic
elements

Matrix Preservation Structures Energy Depositional
setting

Main
environmental
domains

FI: (a)
Conglomerates
and (b)
siltstones

Rare bivalves,
vertebrate
fragments

(a) Sub–rounded
to sub–angular
clasts,
phosphatic
grains, ooids,
peloids; (b)
quartz grains

(a) and (b)
Peloids and silts

(a) Broken shells (a) Erosion base,
matrix supported,
m–to dam
channels; (b) silty
facies 

High (a) to
low (b)

Flood plain
embayment;

Transitional
continental to
marine
environment

FII: (a) (Dolo–)
siltstones and
(b) Ostracod–
rich laminated
mudstones

Bivalves, and
(b) ostracods

(a) Sub–rounded
silty terrigenous
elements
(mainly quartz,
micas), rare
peloids and
glauconite
grains; (b) Dolo–
mudstones

Micrite and
microsparite,
dolomite

Locally fragmented
shells, bioturbation

(a) Mud drapes,
planar to oblique
laminations,
loading structures,
ripples and dm–to
m–megaripples;
(b) laminated
dolomudstones
with fenestral
porosity (possible
microbial
structures?)

Low to
medium

Inner tidal
flat

Tidal flat

FIII: Bivalve and
gastropod–
dominated
packstones to
floatstones

Bivalves,
gastropods,
rare
echinoderms
and very rare
serpulids

Terrigenous silty
grains (quartz,
mica),
mudclasts,
phosphatic
grains

Microdolomite Bioturbation (high
intensity), locally
oriented and
disarticulated bivalves,
fragmented and
complete gastropods,
"umbrella" structures
under valves

Dm–to m (locally
pluri–m)
megaripples, mud
drapes

Medium to
high

Mid tidal flat

FIV: 
Cortoidic/ooidic
packstonesto
grainstones

Bivalves,
gastropods,
echinoderms,
rare vertebrate
fragments

Cortoids, ooids
(type 1, Strasser,
1986), peloids,
phosphatic and
quartz grains

Peloids or
micrite,
microsparite

Fragmented and
disarticulated shells

Ripples, climbing
ripples, m–to
pluri–m
megaripples

High to
very high

Shoal

FV: Serpulid–
dominated
packstones to
floatstones

Serpulids,
echinoderms,
bivalves,
gastropods,
rare
foraminifera

Rare terrigenous
silty grains

Micrite,
microdolomicrite

Fragmented
echinoderms, coalescent
reworked serpulids,
bioturbation

Bioclast–
dominated
tempestites
(showing grading),
HCS (dm–high)

Medium to
high

Outer tidal
flat

FVI:
Echinoderm–
dominated
packstones

Echinoderms,
bivalves,
gastropods and
rare
brachiopods(?)

Quartz grains Micrite and
microdolomite

Bioturbation (local high
intensity), 

Ripples and dm–to
m–megaripples

High

FVII: Ammonoid
floatstones

Ammonoids,
serpulids,
echinoderms,
bivalves and
gastropods

Rare peloids Micrite complete and oriented
ammonoids

Bioaccumulations Medium Distal tidal
flat

Open marine
environment
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2% (1σ) for major and trace elements. Results are reported in
Supplementary Table S2.

5. Results

5.1. Carbonate concentration and isotope signal

Overall, carbonate concentration shows an important variability
with a mean value of 66.4 (± 29.4 wt%, 1σ, Fig. 2, Supplementary
Table S1). Highest concentrations are reached in serpulid- and ammo-
noid-dominated facies (FV and FVII, Fig. 2) near and within the
Meekoceras beds (middle Smithian), with lasting high carbonate con-
centrations up to 99.0 wt%. The δ13Ccarb values vary from −8.0 to
+7.2‰, with a mean value of 1.0 (± 3.1‰, 1σ, Fig. 3, Supplementary
Table S1). The δ13Ccarb signal records three significant variations along
the section: a 13C-enrichment across the potential Dienerian/Smithian
Boundary (DSB); a negative isotopic excursion during the middle
Smithian, followed by a positive peak across the SSB; and a decreasing
trend (12C-enrichment) toward the top of the section. The δ18Ocarb

signal ranges from −14.9 to −0.6‰, with a mean value of −8.5‰
(± 1.9‰, 1σ, Fig. 3 & Supplementary Table S1). No significant trend is
observed throughout the Triassic part of the section, but strong
covariation of the δ13Ccarb and of the δ18Ocarb signals is evidenced
during the Permian interval (Fig. 3). The positive trend in δ13Ccarb

observed here through the DSB is in agreement with several signals
reported worldwide (e.g., Horacek et al., 2007a, 2007b, 2007c; Richoz
et al., 2007; Hermann et al., 2011; Clarkson et al., 2013; Metcalfe et al.,

2013). The identified DSB shift is of smaller magnitude than that of the
SSB (Fig. 3).

5.2. Organic matter concentration and isotope signals

Overall, the TOC concentration ranges from 1.0 to 75.6 ppm, with a
mean value of 9.2 ppm (± 15.0 ppm, 1 σ, Fig. 3, Supplementary Table
S1). The TOC concentration shows low values and almost no variation
along the section, except for an important peak in the upper Smithian
(32.0 ppm), and small-scale variations during the Permian (from ~30
to 60 ppm). Throughout the section, the δ13Corg ranges from −30.1 to
−22.4‰, with a mean value of −27.0 (± 1.3‰, 1 σ, Fig. 3,
Supplementary Table S1). The δ13Corg signal records similar variations
to that of the δ13Ccarb signal except for the DSB where no variation is
observed. A negative isotopic excursion during the middle Smithian,
followed by a positive peak across the SSB is observed, as well as a
decreasing trend (12C-enrichment) toward the top of the section.

5.3. Paired carbon isotopes signal

The Δ13Ccarb-org signal shows a strong variability between 18.95 and
34.6‰, with a mean value of 27.8 (± 2.7‰, 1σ, Fig. 3, Supplementary
Table S1). Its evolution follows that of the above-mentioned δ13Ccarb

and δ13Corg signals, with three significant excursions along the section.
First, a large increase in Δ13Ccarb-org values is observed across the DSB.
Second, a coeval and equally important decrease is demonstrated
during the middle Smithian, immediately followed by a positive peak

Fig. 3. δ13Corg, δ13Ccarb and net isotopic effect Δ13Ccarb-org (=εTOC) with Total Organic Carbon (TOC) contents and δ18Ocarb signal in the Hot Springs section. 2 outliers have been removed
for clarity (see Supplementary Table S1). δ18Ocp (obtained from conodont pectiniform elements) and paleotemperature trends for the Early Triassic are added and modified after Romano
et al. (2013). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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across the SSB; and a decreasing trend can be seen toward the top of the
section.

5.4. Concentrations in major and trace elements

5.4.1. Detrital proxies
While Al concentrations are given in wt%, other major and trace

element proportions are expressed as Al-normalized ratios to avoid a
potential dilution effect (Tribovillard et al., 2006). Correlations be-
tween major and trace elements and Al concentrations are given in the
form of the Spearman correlation coefficient (r) and their associated p-
value (p).

Al concentrations range from 0.1 to 3.7%, with a mean value of 0.7
(± 0.7%, 1σ, Fig. 4, Supplementary Table S2) and show no significant
variation along the section with the exception of a peak within the
upper Smithian. Because Al is typically of detrital origin and usually
immobile during diagenesis (Böning et al., 2004), a cross-plot of a given
element versus Al concentrations indicates whether the element con-
centration is dominantly controlled by the detrital flux or not. Here, Fe/
Al, V/Al, Th/Al and Zr/Al ratios show a strong correlation with Al
concentrations (r = 0.80*** for Fe/Al, r = 0.81*** for V/Al,
r = 0.91*** for Th/Al and r = 0.86*** for Zr/Al). This suggests that
these elements are associated with the Al flux, and have thus mainly a
detrital origin. The Fe/Al ratio ranges from 0.1 to 21.4, with a mean

value of 1.0 (± 2.1, 1σ, Fig. 4, Supplementary Table S2). The V/Al
ratio ranges from 1.33 × 10−3 to 18.07 × 10−3, with a mean value of
3.67 × 10−3 (± 2.86 × 10−3, 1σ, Fig. 4, Supplementary Table S2).
The Th/Al ratio ranges from 0.18 × 10−3 to 1.33 × 10−3, with a
mean value of 0.44 × 10−3 (± 0.22 × 10−3, 1σ, Fig. 4, Supplemen-
tary Table S2). The Zr/Al ratio ranges from 3.71 × 10−3 to
61.59 × 10−3, with a mean value of 15.94 × 10−3

(± 10.91 × 10−3, 1σ, Fig. 4, Supplementary Table S2). These signals
show no significant variation along the section, except for the V/Al
ratio that displays a weak peak in the Meekoceras beds (middle
Smithian).

5.4.2. Authigenic enrichments
The Mn/Al, P/Al, Sr/Al, Cr/Al, Ni/Al and U/Al ratios (Fig. 4,

Supplementary Table S2) are not significantly correlated to Al concen-
trations (r= −0.03, p= 0.77 for Mn/Al, r= 0.51*** for P/Al,
r = −0.44*** for Sr/Al, r = 0.55*** for Cr/Al, r = 0.50*** for Ni/
Al, r= 0.57*** for U/Al). This indicates authigenic enrichments
related to variations in the paleoenvironmental conditions. The Mn/
Al ratio ranges from 0 (HSP 4) to 4.0 (HSP 80), with a mean value of 0.6
(± 0.8, 1σ, Fig. 4, Supplementary Table S2). This signal barely varies
along the section, except in the Meekoceras beds (middle Smithian)
where small-scale variations are recorded. The P/Al ratio ranges from
0.01 to 13.47, with a mean value of 0.34 (± 1.38, 1σ, Fig. 4,

Fig. 4. Fluctuations in trace and major elements in the Hot Springs section, listed after their detrital and authigenic origin. The carbonate carbon isotope signal is also given as a
chemostratigraphic reference. Uncertainties are smaller than the symbol size. 5 outliers have been removed for clarity (see Supplementary Table S2). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Supplementary Table S23). P/Al ratio shows a significant decrease
within the upper Smithian interval. Another increase of the P/Al ratio is
documented within the “Bajarunia” beds (lower Spathian). The Sr/Al
ratio ranges from 3.78 × 10−3 to 771.42 × 10−3, with a mean value
of 133.61 × 10−3 (± 188.60 × 10−3, 1σ, Fig. 4, Supplementary
Table S2), with no important variation along the section. The Cr/Al
ratio ranges from 2.18 × 10−3 to 665.42 × 10−3, with a mean value
of 41.66 × 10−3 (± 93.54 × 10−3, 1σ, Fig. 4, Supplementary Table
S2). This signal shows no significant variation until the upper Smithian
where a marked decrease is observed. The latter is immediately
followed by an increase across the SSB. Ni/Al ratio ranges from
2.45 × 10−3 to 2492.77 × 10−3, with a mean value of
155.49 × 10−3 (± 360.46 × 10−3, 1 σ, Fig. 4, Supplementary Table
S2), showing a similar evolution to the Cr/Al ratio signal with no
significant variation until the upper Smithian, where a marked decrease
is observed. Ni/Al ratio values increase again across the SSB. The U/Al
ratio ranges from 0.06 × 10−3 to 9.15 × 10−3, with a mean value of
0.58 × 10−3 (± 1.39 × 10−3, 1σ, Fig. 4, Supplementary Table S2).
U/Al ratio values do not show any noticeable variation except across
the middle-upper Smithian transition where a significant peak is
observed.

6. Interpretations

6.1. Evolution of the depositional environment

The HS depositional environment corresponds to a shallow inner
ramp evolving from an embayment system to an open tidal flat during
the Early Triassic. The observed mosaic facies pattern exhibits impor-
tant vertical and lateral changes reflecting fluctuations in bathymetry
and hydrodynamism. The HS section also exhibits mixed terrigenous
and carbonate contents composed of (dolo-)siltstones and mud to
bioclastic limestone layers. The fine grained terrigenous components
may have originated from eastern and/or southern sources such as the
Uncompahgre high of remnant Ancestral Rocky Mountains (Kluth and
Coney, 1981; Blakey, 2008). The presence of sedimentary structures
such as ripples or megaripples highlights episodes of important hydro-
dynamism. Bioturbation occurs throughout the entire section with
varying intensity, even within bioclastic free layers (Fig. 2), suggesting
oxygenated bottom-waters during deposition.

The Griesbachian-Dienerian to lower Smithian interval corresponds
to a transgressive trend demonstrated by depositional conditions deeper
than the ones observed at the very base of the section near the PTU
(Fig. 2). The tidal flat records stronger hydrodynamic conditions as
shown by the presence of ooid-rich shoals in the lowest Smithian (FIV in
Table 1 and Fig. 2). The middle Smithian is characterized by the
maximum carbonate content within the serpulid-rich and ammonoid-
rich beds (FV and FVII in Table 1 and Fig.2). While included in the
transgressive trend, Facies FV (Table 1) marks the outermost tidal flat
settings, whereas a maximum of accommodation occurs at the level of
the Meekoceras beds immediately before the upper Smithian. The upper
Smithian corresponds to the maximum extent of the inundated area
within the basin and it is characterized by an important flooding of the
ramp and of the continental borders (e.g., Blakey, 2008; Brayard et al.,
2013; Olivier et al., 2014, 2016; Vennin et al., 2015). Consequently,
reworking of continental soils in the most proximal zones of the whole
basin may have occurred in the upper Smithian, as argued by evidence
of influx of terrestrial organic remains found in the northern part of the
basin at some restricted places (personal observations). The lower
Spathian marks a return to outer tidal flat conditions characterized by
echinoderm-dominated carbonated beds (FVI) associated with and
evolving toward an increase in fine terrigenous siliciclastic material
(FII; Table 1, Fig. 2). This indicates the onset of a regressive trend after
the maximum flooding that occurred during the upper Smithian
(Fig. 2).

6.2. Major and trace elements

6.2.1. Detrital influx
Th and Zr are thought to have a siliciclastic origin and are thus

interpreted to be linked to potential terrigenous inputs when they are
correlated to Al concentrations (Rachold and Brumsack, 2001; Sauvage
et al., 2013). In the HS section, these elements show a strong correlation
to Al (see Section 5.4.1.). They can therefore be considered as good
proxies for detrital influxes. Additionally, the V/Al ratio is strongly
correlated to Al (see Section 5.4.1.), likely indicating a terrigenous
origin of V, even if this trace element is usually used as a paleoredox
marker (e.g., Tribovillard et al., 2006, 2008). The Zr/Al, Th/Al and V/
Al ratios show restricted ranges of variation throughout the entire
section (Fig. 4). This is in agreement with the observed continuous and
homogenous clastic inputs (quartz- and mica-rich) and granulometry
(FII; Table 1, Fig. 2). A relative stability in source and/or grain size of
the clastic inputs can be inferred (Calvert et al., 1996), suggesting
continuous continental weathering conditions.

6.2.2. Paleoproductivity
P/Al and Ni/Al ratios are used as proxies for variations in primary

productivity if they are not correlated to Al concentration (i.e.,
representing an authigenic accumulation; Tribovillard et al., 2006).
Phosphorous is a micronutrient, which is mainly incorporated by the
phytoplankton. Enrichments of P within sediments are therefore usually
interpreted as evidence of a high organic matter (OM) supply, in a
productive environment such as present-day coastal upwelling zones
(Calvert and Pedersen, 1993; Algeo and Maynard, 2004; Tribovillard
et al., 2006; Sauvage et al., 2013). Withdrawal of Ni from the water
column and scavenging within the OM is responsible for the sedimen-
tary accumulation of Ni (Nameroff et al., 2004; Naimo et al., 2005;
Tribovillard et al., 2006; Sauvage et al., 2013). Variations of these
elements can therefore be used to infer variations in OM supply and
burial, and thus may be interpreted in terms of primary productivity
pulses.

At HS, both P/Al and Ni/Al ratios show weak variations, except in
the upper Smithian-lower Spathian interval, where a noticeable de-
crease in P/Al and Ni/Al ratios is observed across the middle/upper
Smithian transition. These variations cannot result from lithological
differences as facies observed in this part of the section are similar,
being mainly represented by serpulid- and ammonoid-dominated
packstones to floatstones (FV and FVII, Fig. 2). Thus, these P/Al and
Ni/Al fluctuations can be linked to a change in productivity.

However, these variations may also result from early diagenesis and
remineralization of the OM under reducing conditions, especially if
they are concomitant with a change in anoxic condition markers (e.g.,
U; Sauvage et al., 2013). The presence of a concomitant peak in the U/
Al signal (Fig. 4) may argue in favor of the remobilization of the P
rather than for a primary signal. Ni can be incorporated into sulfides
under locally euxinic conditions within the sediment (Tribovillard
et al., 2006). P is known to be easily released under anoxic conditions,
remobilized and then enriched within the pore-water in the absence of
high primary productivity (Benitez-Nelson, 2000; Tribovillard et al.,
2006). The reliability of P as a proxy for paleoproductivity is therefore
questionable here. The absence of coeval increase between the TOC
content and Ni/Al and P/Al ratios better argues for remineralization
processes rather than variation in paleoproductivity (Sauvage et al.,
2013).

6.2.3. Paleoredox conditions
Sedimentary analyses support well-oxygenated conditions for the

water column and the bottom waters throughout the entire section. The
analyses of Redox Sensitive Trace Elements (RSTE) such as Mn, U, V
and Mo can help to document short-lived episodes of reducing
conditions at the bottom-water/sediment interface and in the upper
early diagenetic sediment (Algeo and Maynard, 2004; Algeo and Lyons,
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2006; Tribovillard et al., 2006; Riquier et al., 2006; Sauvage et al.,
2013). Here, Mo was under the detection limit and the V/Al ratio is
used as a detritism proxy due to its high correlation to Al. Conversely,
Mn/Al and U/Al ratios are barely correlated to Al (see Section 5.4.2).

Both the Mn/Al and U/Al ratios show narrow ranges of variations,
except for the serpulid-rich and ammonoid-rich beds (including the
middle Smithian Meekoceras beds, Figs. 2, 4). There, the U/Al ratio
shows a pronounced peak, concomitant with the short-lived peak in P/
Al ratio. This U enrichment can reflect dysoxic/anoxic conditions
(Calvert and Pedersen, 1993; Algeo and Maynard, 2004; Tribovillard
et al., 2006; Sauvage et al., 2013). The unique significant enrichment in
the V/Al ratio is documented from the same interval, probably resulting
from the V sensitivity to authigenic concentration in reducing environ-
ments. A slight concomitant enrichment in the Mn/Al ratio also occurs
within the Meekoceras beds. During episodes of dysoxic/anoxic condi-
tions, depletion in Mn concentration (associated with enrichment in U)
is however expected (Mangini et al., 2001; Kuhn et al., 2005;
Westermann et al., 2010; Sauvage et al., 2013). Here, a strong
correlation (r = 0.91***) between the Mn concentration and the CaCO3

content is observed, suggesting that the Mn concentration reflects
lithological variation rather than paleoredox conditions (Pratt et al.,
1991). Finally, paleoredox markers indicate that some transient and
slightly dysoxic/anoxic condition could have developed within the
sediment or at the bottom-water/sediment interface within the interval
including the Meekoceras beds.

6.2.4. The peculiar case of chromium
Cr fluctuations are difficult to interpret in terms of paleoenviron-

ments as they can reflect both detritism and paleoredox conditions
(Tribovillard et al., 2006, 2008). At HS, the Cr is only correlated to Al
concentration and Th/Al ratio (r = 0.55*** and r = 0.53***, respec-
tively). Moreover, Cr variations do not mirror those for detrital markers
such as Zr/Al or Th/Al ratios. Thus, Cr accumulation may at least
partially correspond to an authigenic enrichment. Additionally, Cr is
strongly correlated to Ni (Fig. 4, r= 0.93***). In the presence of
certain dissolved metals (Ni, Pb, Cu), Cr can form MeCrO4 complexes
(Tribovillard et al., 2008). Formation of such complexes is mediated by
the presence of H2S as a by-product of bacterial sulfate-reduction (BSR),
or resulting from the mixing and reworking of the stocked sedimentary
H2S (Tribovillard et al., 2008). We hypothesize that the formation of
MeCrO4 complexes, and more particularly complexes involving Ni,
were potentially triggered by pulses of reducing H2S-rich conditions
within the sediment.

6.3. Carbon isotope records

6.3.1. Preservation of isotope signals
6.3.1.1. Carbonate. The carbonate isotope signal is sensitive to
diagenesis and prone to change due to circulation of diagenetic fluids
and/or processes of dissolution/recrystallization forming secondary
carbonates (Sansjofre et al., 2011 and references therein). Most of the
time, carbon content in fluids and fluid/rock ratios are low compared to
the high carbon content of carbonate rocks and cannot modify
significantly their carbon isotope composition. However, when
diagenetic fluids are enriched in DIC of organic origin (i.e. with low
δ13C), both δ13Ccarb and δ18Ocarb are likely to be overprinted and it is
usually admitted that a positive correlation between δ13Ccarb and
δ18Ocarb or a positive trend between δ13Ccarb and carbonate content
indicate a diagenetic overprint (Sansjofre et al., 2011). Figure 5a and b
show no correlation between δ13Ccarb versus%CaCO3 and δ13Ccarb versus
δ18Ocarb, respectively, during the Triassic interval, suggesting a δ13Ccarb

signal inherited from the water column and immune from late
remobilization processes. However, the Permian record displays a
positive correlation (r = 0.75**) between δ13Ccarb and δ18Ocarb,
interpreted as a secondary process overprint of the signal (Fig. 5b).
Due to the presence of diagenetic artifacts in the Permian signal, we

therefore cannot use these data to reconstruct the evolution of HS
paleoenvironments for this time interval.

The diagenetic overprint of δ13Ccarb can also be tested using the Mn/
Sr ratio. During alteration by meteoric water, Sr is expelled from
carbonate while Mn is incorporated, thus increasing the Mn/Sr ratio
(Banner and Hanson, 1990). The observed Mn/Sr ratio is extremely low
(Mn/Sr < <2). Moreover, no correlation between the Mn/Sr ratio
and δ13Ccarb or δ18Ocarb is observed (Fig. 5c and d), with the exception
of a positive correlation (r = 0.78*) between the Mn/Sr ratio and
δ18Ocarb for Permian samples, highlighting secondary processes for this
time interval only (Fig. 5d). However, given the small amount of
available points for this interval, this result should be taken with
caution. Variations of the δ13Ccarb signal are also independent of facies
or lithological changes (Figs. 2, 3). Thus, no local or facies-dependent
effects (e.g., preferential fluid circulation due to porosity) significantly
imprint the δ13Ccarb signal. Moreover, the evolution of the δ13C signal at
HS is comparable to signals identified in other basins worldwide, with a
marked negative excursion during the middle Smithian, followed by a
positive excursion through the SSB (Fig. 6). Finally, no diagenetic
overprint on the Early Triassic δ13Ccarb is demonstrated at HS, and its
similar evolution with δ13Ccarb records from other sections worldwide is
interpreted as indicating a primary δ13Ccarb signal.

6.3.1.2. Organic matter. The reliability of δ13Corg to reflect the carbon
isotope composition of photosynthetic primary productivity depends on
the magnitude of the isotope offsets associated with depositional and
post-depositional processes: (i) OM bacterial degradation and
secondary OM inputs by heterotrophic and chemoautotrophic
organisms during the early diagenesis s.l., (ii) thermal maturation of
the OM during burial diagenesis and/or metamorphism, (iii) syn- or
post-depositional oxidative alteration, and (iv) emplacement of
hydrocarbon from another source rock.

Overall, Early Triassic samples from the western USA SFB show low
OM concentrations (Supplementary Table S1; Thomazo et al., 2016).
Their δ13Corg signal has therefore often been overlooked, their low TOC
content casting doubt on the primary significance of the δ13Corg.
Nevertheless, recent studies have shown that δ13Corg signals can have
a primary significance even at low TOC contents (Eigenbrode et al.,
2008; Oehlert and Swart, 2014; Sansjofre et al., 2011; Johnston et al.,
2012; Thomazo et al., 2009, 2016). At HS, the absence of correlation
between the δ13Corg and the TOC content argues against a substantial
alteration of the δ13Corg signal (Fig. 7). Similar to the δ13Ccarb signal, no
significant variation due to changes in lithology and/or in facies is
observed and the negative-positive couplet of carbon isotopes excur-
sions during the middle Smithian and the SSB is recognized in the OM
reservoir (Fig. 6). These are evidence for a pristine record of the δ13Corg

signal.

6.3.2. Interpretation of the paired carbon isotope signal
A parallel evolution of the δ13Ccarb and δ13Corg signals is expected

when perturbations of the biogeochemical carbon cycle are linked to
the exogenic carbon cycle (Meyer et al., 2013). Paired organic and
carbonate carbon isotopes recorded from the same sample are therefore
crucial to distinguish the secular evolution of the carbon cycle (Payne
et al., 2004; Payne and Kump, 2007; Meyer et al., 2011; Sobolev et al.,
2011) from potential early or burial diagenetic processes (Hayes and
Waldbauer, 2006; Derry, 2010; Schrag et al., 2013; Thomazo et al.,
2016). Identified δ13Ccarb anomalies show a tight coupling with the
δ13Corg signal at the middle Smithian-SSB, but not at the DSB. Isotopic
covariance in both carbonate and OM reservoirs is particularly well
documented at a fine stratigraphic scale, such as the swings in δ13C in
the middle Smithian-lower Spathian transition (Figs. 3, 6), suggesting a
relatively well-mixed marine DIC reservoir during this interval.

The observed co-variation of carbon isotope signals for the
Smithian-Spathian interval contrasts with models requiring a large
dissolved organic carbon (DOC) pool (Rothman et al., 2003). Indeed,
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the oxidation of such a large reservoir would generate a negative
δ13Ccarb excursion without changing the δ13Corg (McFadden et al., 2008;
Swanson-Hysell et al., 2008). Moreover, the DOC hypothesis implies
pronounced changes in the redox balance of the whole basin. Theore-
tical kinetic considerations are also at odds with the DOC hypothesis as
a trigger for the Early Triassic carbon isotope swings (Thomazo et al.,
2016). Interestingly, while δ13Ccarb - δ13Corg covariation is well
characterized at HS, dissimilar net isotopic offsets (Δ13Ccarb-org) are

associated with the DSB, the middle Smithian and the SSB. The δ13Corg

signal is dampened compared to the δ13Ccarb (Figs. 3, 6). Variations in
the net isotopic effect (εTOC = Δ13Ccarb-org) can reflect: (i) a diagenetic
smoothing of the δ13Corg signal, (ii) variations in the kinetic fractiona-
tion associated with carbon fixation (i.e. photosynthesis), or (iii)
contamination with a secondary source of organic carbon. The absence
of correlation between the δ13Corg and the TOC content (Fig. 7)
supports a pristine record of the δ13Corg and indicates that no diagenetic

Fig. 5. Cross-plots for isotopic and elementary geochemical parameters. Black dots represent Triassic samples while open circles represent Permian samples. (a) δ13Ccarb vs CaCO3

content; (b) δ13Ccarb vs δ18Ocarb; (c) δ13Ccarb vs Mn/Sr; (d) δ18Ocarb vs Mn/Sr. Theoretical diagenetic trend on (c) and (d) after Sansjofre et al. (2011). δ13Ccarb or δ18Ocarb do not follow any
diagenetic trend; no correlation is observed for Triassic samples; Permian samples show a correlation between δ13Ccarb and δ18Ocarb signals, and between δ18Ocarb and Mn/Sr signals.

Fig. 6. Worldwide Early Triassic variations of the δ13C signal for both carbonates and organic matter. Figure modified after Thomazo et al. (2016). Radiochronologic ages after
Ovtcharova et al. (2006), Galfetti et al. (2007a) and Baresel et al. (2017). L.: lower; mi.: middle; u.: upper. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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alteration has modified the OM isotopic signal at HS.
The photosynthetic fractionation of carbon can vary over time

according to the concentration of dissolved CO2 in the ocean [CO2]aq
and associated controlling mechanisms, including: the temperature, the
growth rates of microorganisms (noted as μm) and changes in cell
geometries (Hayes et al., 1999). Popp et al. (1998) showed that the
photosynthetic fractionation and μm/[CO2]aq are negatively correlated
and that species-specific cell geometry determines the slope of the
regression line. Based on this relationship, the lowering of surface water
[CO2]aq is expected to generate a decrease in εTOC at constant growth
rate. Additionally, the δ13Corg signal should record a larger shift than
carbonates. Conversely, an increase in cellular growth rates tends to
significantly reduce εTOC at moderate atmospheric CO2 level
(< 1500 ppmv).

The observed Δ13Ccarb-org variations may reflect Early Triassic
changes in sea surface temperatures as documented by Sun et al.
(2012) and Romano et al. (2013) (Fig. 3). The middle Smithian negative
δ13C excursion is interpreted to reflect a temperature increase due to
CO2 injections from the Siberian traps (Sun et al., 2012; Romano et al.,
2013). Ensuing extreme greenhouse climate conditions are suggested to
have triggered lethal conditions for marine faunas such as anoxia on
shelf environments and acidification of surface waters (biocalcification
crisis) due to elevated CO2 (hypercapnia) (e.g. Sun et al., 2012; Pietsch
and Bottjer, 2014). At HS, decreases in εTOC are associated with warm
temperatures and εTOC increases are concomitant with cooler episodes
(Fig. 3). The Δ13Ccarb-org changes are thus difficult to explain in the light
of temperature variations only. Extensive volcanogenic 12C-enriched
CO2 degassing is consistent with δ13Ccarb and δ13Corg Smithian negative
signals. However, this should promote in turn a εTOC increase due to
increasing surface water [CO2]aq.

The SSB δ13C positive excursion is usually said to reflect an increase
in primary productivity (Payne and Kump, 2007). Our results agree
with this interpretation as increasing TOC contents are associated with
δ13Ccarb and δ13Corg positive excursions (Fig. 3). An enhanced biological
pump is therefore most likely associated with, and contributes to a
drawdown of global CO2 and cooling. The surface water [CO2]aq must
have therefore decreased and consequently, the εTOC as well. This
expected evolution is in contradiction with our observed trend in εTOC
(Fig. 3). Assuming an upper Smithian stratified ocean returning to a
more oxidizing state (i.e. ventilation) as suggested by Tian et al. (2014)
and Sun et al. (2015), an increase of nutrient inputs into shallow
environments is expected to be associated with an increase in μm
(Joachimski et al., 2002). Therefore, lowered εTOC values should be
observed, independently of any change in global CO2. Since an increase
in εTOC is observed at HS, neither changes in [CO2]aq nor nutrient
availability is suggested by paired carbon isotope variations at the DSB,
middle Smithian and SSB transitions.

A lowered net isotopic effect is recorded during warm periods
(Figs. 3, 6). This can be partly explained by a significant increase in the
contribution of the cyanobacterial biomass to the TOC. Indeed, the
maximum fractionation factor for cyanobacteria is smaller than for

eukaryotic algae (Joachimski et al., 2002). Since photosynthetic
fractionation of some modern cyanobacteria is independent of the
dissolved [CO2]aq, a bloom of cyanobacteria among the primary
producers during harsh (high temperature and low pH) and meso-
trophic conditions may explain our results, especially the εTOC signal
that does not reflect a CO2-dependant increase in temperature. The HS
section does not show sedimentological evidence of cyanobacterial
blooms through the middle-upper Smithian interval. However, several
microbial deposits were described throughout the SFB for this same
interval (e.g., Brayard et al., 2013; Olivier et al., 2014, 2016; Vennin
et al., 2015).

In some cases, Δ13Ccarb-org variations can reflect a contamination by
a secondary source of organic carbon, from the erosion of organic-rich
sediments or the migration of hydrocarbons within the basin (Johnston
et al., 2012). Thus, mixing of the water column DIC reservoir with
exogenous sources of carbon can buffer the δ13Corg signal, especially
when TOC values are low. Overall, Early Triassic primary carbon
isotope signals of terrestrial and marine OM have been reported to
vary around −22‰ and around −32‰, respectively (Hermann et al.,
2011). We observed a δ13Corg positive excursion that is dampened
compared to the δ13Ccarb at the DSB (Figs. 3, 6). Such a variation in
paired carbon isotopes, decoupled in magnitude, may correspond to a
greater contribution of marine OM compared to terrestrial OM at this
time. A decrease of the terrestrial OM contribution to the sedimentary
TOC at the DSB is also in accordance with facies and paleoenviron-
mental changes that evolve toward more open marine conditions, as
indicated by a change from bioclast-dominated to ooid-dominated
facies (Fig. 2, Table 1). The globally recognized negative δ13C excursion
during the middle Smithian is recorded in both carbon reservoirs at HS.
However, the amplitude of the 12C–enrichment is lower in the OM. This
result is difficult to explain if we hypothesize variations in the relative
OM contributors (marine versus terrestrial). According to other known
carbon isotope signals of terrestrial and marine OM at that time
(Hermann et al., 2011), an increasing contribution of terrestrial OM
would be expected to account for a lowered εTOC signal. The middle-
upper Smithian transition at HS corresponds to the maximum trans-
gressive event (Fig. 2). In such a transgressive trend, an increase in
terrestrial OM contribution to the sedimentary record is not expected.
However, evidence for influx of terrestrial organic remains associated
with potential reworking of continental soils is observed in the northern
part of the SFB at some restricted places in the uppermost Smithian
(personal observations). The subsequent positive δ13C shift through the
SSB is recorded in both carbon reservoirs, with differing amplitudes of
variation between carbonate and OM reservoirs and showing a more
pronounced excursion in the δ13Ccarb signal. The lower Spathian
exhibits an increase in terrigenous material compared to the middle-
upper Smithian around the Meekoceras zone (Fig. 2), but again
hypothesis of the mixing of terrestrial and marine OM cannot explain
the observed Δ13Ccarb-org signal. Both positive excursions associated
with the increase in TOC is however consistent with previous inter-
pretations that suggested a drawdown of CO2 by an enhanced biological
pump (Payne and Kump, 2007).

Recently, some authors (e.g., Klaebe et al., 2017) have demon-
strated that local parameters exert an important influence on the carbon
isotope record, sometimes enough to overprint any global control. Here,
while positive and negative excursions might be rooted to global
changes, their expression may vary from one reservoir to another (i.e.
carbonate and OM) due to locally-controlled parameters such as
ecological structure (primary producers) and sedimentary processes.
Thus, the use of the Δ13Ccarb-org signal as a direct tracer of the Early
Triassic global [CO2]aq and sea surface temperature should be taken
with great caution.

7. Conclusions

Early Triassic sediments of the Hot Springs section were deposited

Fig. 7. δ13Corg vs TOC content cross-plot. No correlation can be observed.
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on a large and shallow inner ramp, evolving from a transitional
continental to marine embayment to a more open tidal flat. The
maximum of the transgressive trend was reached during the middle-
upper Smithian transition.

The paired carbon isotope record and trace and major elements
highlight the following features for the sedimentary succession at HS:

• No water column anoxia/euxinia is observed, in agreement with
sedimentary structures and biotic associations attesting to vigorous
hydrodynamic conditions. Transient and weak dysoxic/anoxic con-
ditions may have developed within the sediment or at the bottom-
water/sediment interface during the middle-upper Smithian inter-
val.

• Known worldwide carbon isotope fluctuations for the Smithian and
Spathian are recognized in both OM and carbonate δ13C reservoirs.

• Additionally, a positive excursion near the Dienerian/Smithian
Boundary is documented on the carbonate δ13C signal.

• The δ13C signal at HS is not of secondary process/diagenetic origin,
but rather primary and representative of a pristine record in both
reservoirs.

• An increase in primary productivity may be responsible for the
positive δ13C excursion observed in the upper Smithian and through
the SSB, as a concomitant increase in TOC content is observed.

• At HS, variations in the net isotopic effect cannot be directly related
to CO2 driven temperature variations, but they better reflect
changes in OM sources: marine vs. terrestrial sources and/or the
primary producers (e.g. cyanobacteria) origin.

• Finally, local influences on the carbon isotope signals, which are
neither diagenetic nor representative of the global exogenic cycle,
have probably largely contributed to the HS geochemical signatures.
These signals could thus primarily reflect fluctuating local para-
meters.
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To sum up, the HS section shows a carbon isotope record mirroring the globally 

recognized couplet of a negative and a positive excursion before and across the SSB in both 

carbonate and organic matter (OM) reservoirs. However, the OM signal shows systematically 

dampened values compared to the carbonate signal. Variations in Δ13Ccarb-org probably resulted 

from a complex set of forcing parameters depending on the evolution of the locally-controlled 

depositional system rather than on the global exogenic carbon cycle. 

No water-column anoxia has been evidenced in HS, but transient and episodic suboxic 

conditions may have developed at the bottom-water/sediment interface, as evidence by the 

T&M elements concentrations (e.g., U/Al ratio). 

These results highlight the primary role of local forcing parameter upon the geochemical 

signal of the HS section, especially on variations of the paired carbon signal, which appears as 

not fully representative of the global exogenic cycle nor of diagenetic origin. 

 

B. Central SFB signal: Lower Weber Canyon 

 

• Introductory remarks and geological setting 
The central part of the SFB is worth of interest as potentially corresponding to a 

“transitional” area given its rather intermediate position within the basin. Its record is 

represented by data from the Lower Weber Canyon (LWC) section located in northern Utah 

(Fig. III.B.1a). The sedimentary succession and the paired carbon isotopic record presented in 

this chapter are preliminary results to be more detailed and interpreted in Grosjean et al. (in 

prep.). LWC T&M elements will not be described as they were exclusively measured on the 

carbonate fraction of the samples and not on bulk rock samples like in HS and MV, preventing 

any direct comparison. 

The LWC section is composed by sediments characteristic of both the Early Triassic 

Moenkopi (basal “red beds”; Fig. III.B.1b) and Thaynes Groups (sensu Lucas et al., 2007; 

Grosjean et al., in prep.; Thomazo et al., in prep.). The section represents the Smithian-

Spathian interval (Fig. III.B.1b). 

Out of the ~290 m-thick LWC section (Fig. III.B.1b), this work focuses on a ~19 m-thick 

succession from the middle Smithian to the early Spathian centered onto the SSB (Fig. III.B.1c). 

This succession comprises three main lithostratigraphic units. Unit A is composed by 

dolosiltstones, interbedded with microbially induced sedimentary structures (MISS). Several 

storm-induced events are visible, as evidenced by bioclastic accumulations, and are 

interpreted as marine incursion into the peritidal domain characterized by deposits of Unit A. 

SSB unit shows carbonate-marls alternations corresponding to the late Smithian, as confirmed 

by the presence of Anasibirites ammonoids (“Ana.” In Fig. III.B.1b; Brayard et al., 2013). These 

levels represent an opening towards more marine conditions in a tide-influenced bioclastic 

mid-ramp. Finally, Unit B is dominated by fine calcarenite layers interbedded in marl-rich 

sediments. This units represents deeper mud-dominated mid-ramp settings, and also record 

storm-induced deposits (Grosjean et al., in prep.).  
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Thirty-nine carbonate fraction samples were collected and powdered for geochemical 

analyses (carbon isotope signal, oxygen isotope signal and carbonate content) using the same 

protocol as described in Caravaca et al. (2017, see section III.A). 

 

 

Figure III.B.1: a) Map of the studied area and location of the Lower Weber Canyon section. b) Synthetic log of 

the complete Lower Weber Canyon section (after Grosjean et al., in prep.). Synthetic ammonoid biozonation 

after Brayard et al. (2013); Meekoceras: Meekoceras beds; Ana.: Anasibirites kingianus beds. c) Detail log and 

position of geochemical samples for the SSB transition of the Lower Weber Canyon section. Up. Sm.: upper 

Smithian; SSB: Smithian/Spathian Boundary. 
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• Paired carbon isotopic signal 
The δ13Corg values vary from -32.2 to -28.3‰, with a mean value of -30.2 (± 0.8‰, 1σ, 

Fig. III.B.2, Table III.B.1). The OM record shows only slight variations along the succession. A 

decrease can be observed during the interval up to the base of the upper Smithian, followed 

by an increase through the upper Smithian and across the SSB. The rest of the Spathian unit 

does not show any marked variation. This signal corresponds to the known carbon isotopic 

couplet of negative and positive shifts across the SSB but remains rather small in absolute 

magnitude (e.g.; Galfetti et al., 2007b; Grasby et al., 2013; see Fig. 6 in Caravaca et al., 2017, 

see section III.A). 

The δ13Ccarb values vary from -5.9 to -0.3‰, with a mean value of -2.4 (± 1.4‰, 1σ, Fig. 

III.B.2, Table III.B.1). The δ13Ccarb signal shows no marked variations during the middle Smithian 

(with values around -3.0‰), and during the Spathian (with values around -1.0‰; Fig. III.B.2). 

However, four important negative outliers are observed at the top of the SSB Unit (down to -

5.9‰, Fig. III.B.2), embedded within a noticeable increase in δ13Ccarb values. This trend in the 

δ13Ccarb signal looks similar to the well-established global signal for carbon isotopic signal 

during the Smithian-Spathian transition evidencing a positive isotopic excursion across the SSB 

(e.g.; Galfetti et al., 2007b; Grasby et al., 2013; see Fig. 6 in Caravaca et al., 2017, see section 

III.A). However, variations remain small compared to other sections in the SFB and worldwide, 

and dampened down isotope signal may be the result of high sedimentation rates or a 

secondary alteration of the signal. 

The Δ13Ccarb-org values vary from 24.9 to 31.0 ‰, with a mean value of 28.1 (± 1.4‰, 1σ, 

Fig. III.B.2, Table III.B.1). The difference shows a relative stability, and no significant trend can 

be observed along the LWC section. However, a group of negative values is present at the top 

of the upper Smithian interval but it is mirroring that of the δ13Ccarb signal (SSB Unit, Fig. III.B.2). 

Its primary origin is thus to be demonstrated. 

The δ18Ocarb values vary from -12.3 to -7.8 ‰, with a mean value of -9.9 (± 1.2‰, 1σ, Fig. 

III.B.2, Table III.B.1). This signal shows a parallel evolution to the δ13Ccarb with a decreasing 

trend during the Smithian, followed by an increase at the SSB. However, a closely correlated 

evolution is not observed. 

The carbonate concentration shows an important variability (from 6.0 to 93.0%), with a 

mean value of 41.6 (± 27.0%, 1σ, Fig. III.B.2, Table III.B.1). Highest proportion of carbonate is 

reached in SSB Unit within the late Smithian interval reflecting variations in the dominant 

lithologies (Fig. III.B.2). 

The δ13Ccarb and the δ13Corg signals do not follow a straight parallel evolution and do not 

show any covariation (Fig. III.B.3a). As a covariation is expected between carbonate and OM 

isotopic signals (e.g., Zeebe, 2012), the LWC isotopic signal may not record the exogenic 

carbon cycle, but in turn may correspond to local conditions and/or secondary processes 

overprint. 

Because only the δ13Corg signal seems to follow the recognized couplet of negative and 

isotopic shifts characteristic of the middle Smithian–SSB interval, this questions the 
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preservation of the δ13Ccarb record and its accuracy, particularly given the small magnitude 

isotopic shift observed at the top of the LWC late Smithian interval (Fig. III.C.2). 

 

 

Figure III.B.2: Carbon and oxygen isotopes record, carbonate and total organic contents chemostratigraphy in 

the Lower Weber Canyon section. Open symbols in SSB units bear uncertainties due to potential secondary 

alteration. 
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 Sample  δ13Corg δ13Ccarb Δ13Ccarb-org δ18Ocarb CaCO3 

  ‰ vs VPDB ‰ vs VPDB ‰ vs VPDB ‰ vs VPDB % 

  ± 0,80 ± 1,40 ± 1,44 ± 1,19 ± 26,95 

U
n

it
 B

 

LWC70 -29,92 -1,10 28,82 -7,80 12,00 

LWC69 -30,64 -1,20 29,44 -7,90 12,00 

LWC68 -28,34 -1,80 26,54 -10,40 34,00 

LWC67 -29,33 -1,50 27,83 -8,70 8,00 

LWC66 -29,46 -1,40 28,06 -8,20 6,00 

LWC64 -28,80 -2,00 26,80 -10,00 47,00 

LWC63 -30,06 -1,30 28,76 -7,80 13,00 

LWC62 -29,37 -1,70 27,67 -9,70 33,00 

LWC61 -30,56 -1,40 29,16 -8,60 12,00 

LWC60 -29,15 -0,70 28,45 -9,10 35,00 

LWC59 -29,26 -1,20 28,06 -9,90 48,00 

LWC58 -29,93 -1,10 28,83 -9,30 22,00 

LWC57 -29,88 -1,20 28,68 -9,10 48,00 

SS
B

 

LWC55 -30,48 -0,90 29,58 -8,40 15,00 

LWC54 -29,69 -0,30 29,39 -9,00 16,00 

LWC53 -30,35 N/A 30,35 N/A 23,00 

LWC52 -30,10 -4,80 25,30 -9,50 78,00 

LWC51 -29,90 -0,80 29,10 -9,90 29,00 

LWC50 -30,29 -3,40 26,89 -9,70 83,00 

LWC49b -30,43 N/A 30,43 N/A 29,00 

LWC49 -30,61 -2,00 28,61 -10,20 88,00 

LWC48 -30,82 -1,80 29,02 -10,90 80,00 

LWC47 -30,76 -5,80 24,96 -10,10 87,00 

LWC46 -30,78 -5,90 24,88 -10,60 79,00 

LWC45 -31,31 -2,60 28,71 -11,00 93,00 

LWC44 -32,21 -3,40 28,81 -10,30 89,00 

U
n

it
 A

 

LWC42 -30,98 N/A 30,98 N/A 48,00 

LWC41 -31,34 -3,00 28,34 -10,60 31,00 

LWC40 -30,97 -3,10 27,87 -10,00 53,00 

LWC39 -31,33 -3,00 28,33 -10,50 42,00 

LWC38 -30,31 -3,40 26,91 -11,20 37,00 

LWC37 -30,34 -3,20 27,14 -11,70 43,00 

LWC36 -29,22 -3,40 25,82 -12,30 44,00 

LWC35 -30,46 -2,80 27,66 -10,50 20,00 

LWC34 -29,59 -0,30 29,29 -9,10 16,00 

LWC33 -30,05 -3,50 26,55 -12,20 27,00 

LWC32 -31,45 -3,20 28,25 -11,60 84,00 

LWC30 -30,91 -3,00 27,91 -10,10 17,00 

LWC31 -29,83 -3,40 26,43 -11,20 40,00 
 

Table III.B.1. Geochemical data with δ13Corg, δ13Ccarb, Δ13Ccarb-org, δ18Ocarb and carbonate (CaCO3) contents (after 

Grosjean et al., in prep.). 
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• Preservation of the isotopic signal 
The figure III.B.3b does not show marked correlation between the δ13Ccarb signal and the 

carbonate content (% CaCO3). The figure III.B.3c however shows a positive correlation 

between the δ13Ccarb signal and the δ18Ocarb signal within Unit A. This therefore indicates an 

absence of sensible diagenetic overprint within SSB Unit and Unit B (Sansjofre et al., 2011), 

while Unit A might have suffered substantial remobilization. 

Additionally, the presence of several successive outliers in the δ13Ccarb signal argues for 

underlying secondary processes that may have blurred at least part of the isotopic signal at 

LWC. Further tests (e.g., Mn/Sr ratio vs δ13Ccarb and δ18Ocarb) will be performed throughout the 

succession. 

 

 

Figure III.B.3: Isotopic and elementary geochemical parameters of the Lower Weber Canyon section. a) δ13Ccarb 

vs δ13Corg.b) δ13Ccarb vs CaCO3 content. c) δ13Ccarb vs δ18Ocarb. A positive correlation is observed between δ13Ccarb 

vs δ18Ocarb within Unit A. 
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C. Southern SFB signal: Minersville 

• Introductory remarks and geological setting 
The southern SFB geochemical record is represented by data from the Minersville (MV) 

section, located in southwestern Utah (Fig. III.C.1a). This section was thoroughly studied by 

Thomazo et al. (2016). Main results and interpretations of their work regarding the carbon 

isotopic signal and its preservation are summed up in the following lines. However, 

descriptions of the T&M elements were absent from the initial publication of Thomazo et al. 

(2016) and provided here. 

The MV section reflects deposition of the Early Triassic Thaynes Group (sensu Lucas et 

al., 2007) within shallow marine environments of the SFB (Vennin et al., 2015; Thomazo et al., 

2016). The sedimentary succession of the MV section has been described by Vennin et al. 

(2015) and it mainly represents the Smithian and part of the Spathian (Fig. III.B.1b; Brayard et 

al., 2011, 2013; Vennin et al., 2015; Thomazo et al., 2016). 

This ~160 m-thick section is divided into 5 main parts: basal red beds, Units A, B and C, 

and SSB (Smithian/Spathian boundary; Fig. III.C.1b). Red beds consist in Late Dienerian (?) to 

Smithian inner ramp transitional continental to shallow marine (deltaic?) fine terrigenous 

(dolo-)siltstones. Unit A is dominated by microbial limestones deposited under intertidal to 

supratidal inner ramp settings, evolving into tide-dominated bioclastic shoreface levels. Unit 

B is composed of mudstones, finely laminated and represents homogeneous outer to mid-

ramp upper offshore settings. Some storm-induced beds are locally present. The SSB interval 

is made of marls deposited under outer ramp lower offshore environments, below the storm 

wave base and corresponds to the maximum inundation described in this part of the SFB so 

far (e.g., Brayard et al., 2013; Vennin et al., 2015). Finally, Unit C ranges from outer ramp 

mudstones with local storm-induced levels (resembling those of Unit B) to subtidal microbial 

carbonates of outer to mid-ramp environments (Vennin et al., 2015; Thomazo et al., 2016). A 

third order sequential trend is visible along the MV section, with the regional maximum 

flooding surface (MFS; e.g., Embry, 1997) occurring in the SSB interval. 
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Figure III.C.1: a) Map of the studied area and location of the Minersville section. b) Synthetic log of the 

Minersville section showing the sequential framework, facies, lithologies and depositional settings (after 

Vennin et al., 2015). Synthetic ammonoid biozonation after Brayard et al. (2013); V.u.: Vercherites undulatus 

beds; I.b.: Inyoites beaverensis beds; O.: Owenites beds; A.k.: Anasibirites kingianus beds; Xe: Xenoceltitidae 

“gen. indet.” A beds. SSB: Smithian/Spathian Boundary. 

 

Eighty-four bulk rock samples were collected and powdered for geochemical analyses 

(carbon isotope signal, oxygen isotope signal, total organic carbon and carbonate contents 

and seventy were selected for T&M elements analyses) using the same protocol as described 

in Caravaca et al. (2017, see section III.A). 
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• Paired carbon isotopic signal 
The δ13Corg values vary from -30.5 to -27.7‰, with a mean value of -29.1 (± 0.7‰, 1σ, 

Fig. III.C.2, Table III.C.1). This organic matter (OM) signal show little variation contrary to the 

δ13Ccarb signal, and does not seem to parallel it either. 

The δ13Ccarb values vary from -4.5 to 1.8‰, with a mean value of -1.1 (± 1.8‰, 1σ, Fig. 

III.C.2, Table III.C.1). The δ13Ccarb signal shows a decreasing trend during the Smithian interval, 

followed by an increase through the SSB (Fig. III.C.2). This pattern follows the well-known 

global signal for the carbon isotopic signal during the Smithian-Spathian interval, which usually 

evidences a couplet of negative and positive isotopic excursions before and across the SSB, 

respectively (e.g.; Galfetti et al., 2007b; Grasby et al., 2013; see Fig. 6 in Caravaca et al., in 

press b, see section III.A). 

The Δ13Ccarb-org values vary from 25.2 to 31.0 ‰, with a mean value of 27.7 (± 1.6‰, 1σ, 

Fig. III.C.2, Table III.C.1). The ratio follows rather closely the δ13Ccarb signal, due to the relative 

“flatness” of the OM isotope signal. It shows a general decreasing trend during the Smithian 

interval, and a marked increased from the SSB upwards (Fig. III.C.2). The signal remains stable 

during the subsequent Spathian interval. 

The total organic carbon (TOC) content varies between 0.02 and 0.4 wt.% with a mean 

value of 0.1 (± 0.1 wt.%, 1σ, Fig. III.C.2, Table III.C.1). The TOC content shows two peaks at the 

top of unit A in the bioclastic limestones, and at the very top of the unit B, just before the SSB 

interval, concomitantly of the reversal of the isotopic trend (negative to positive shift) in the 

δ13Ccarb signal (Fig. III.C.2). 

The δ18Ocarb values vary from -13.8 to -8.6‰, with a mean value of -11.1 (± 1.3‰, 1σ, 

Fig. III.C.2, Table III.C.1). This signal shows an evolution parallel to that of the δ13Ccarb with a 

decreasing trend during the Smithian, followed by an increased at the SSB. However, a closely 

correlated evolution is not observed. 

The carbonate concentration shows an important variability along the section (from 

44.7 to 98.7%), with a mean value of 78.3 (± 15.3%, 1σ, Fig. III.C.2, Table III.C.1). The highest 

proportion of carbonate is reached within Units A and C and within the SSB interval (Fig. 

III.C.2). 

Figure III.C.3a shows a cross plot of the δ13Ccarb and δ13Corg values. It highlights that both 

OM and carbonate carbon isotopic signals are correlated in Unit A (r = 0.87***) and display 

similar evolution. This is expected when recording variations of the dissolved inorganic carbon 

(DIC) reservoir, thus representing variations of the global exogenic carbon cycle (e.g., Zeebe, 

2012). The isotopic signal of this Unit A shows a decreasing trend as commonly observed for 

the Smithian (e.g., Galfetti et al., 2007b, Grasby et al., 2013), and usually interpreted to be 

related to thermogenic/volcanogenic release of 12C-enriched carbon in relation to the Siberian 

traps volcanism (e.g., Sobolev et al., 2011). However, the lack of correlation between δ13Ccarb 

and δ13Corg values in the rest of the MV section (Fig. III.C.3a) raises the question of the 

preservation of the isotopic signal. 
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• Preservation of the isotopic signal 
Mn content and Mn/Sr ratio were investigated (Figs. III.C.3b and III.C.3c). High Mn 

content and a strong negative correlation between Mn content and the δ13Ccarb in Unit B (r = 

-0.91***; Fig. III.C.3b) may be indicative of an enhanced Mn flux to the system. Additionally, 

high Mn/Sr ratios (from 3.4 to 13.1, higher than 2; Fig. III.C.3c) and their correlation with 

δ18Ocarb (r = 0.90***; Fig. III.C.3c) may record the influence of reducing fluids during burial 

diagenesis (e.g., Kaufman & Knoll, 1995). 

 

Figure III.C.2: Carbon and oxygen isotopes record, carbonate and total organic contents chemostratigraphy in 

the Minersville section (after Thomazo et al., 2016) 
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 Sample  δ13Corg δ13Ccarb Δ13Ccarb-org TOC δ18Ocarb CaCO3 

  ‰ vs VPDB ‰ vs VPDB ‰ vs VPDB wt.% ‰ vs VPDB % 

  ± 0,67 ± 1,85 ± 1,61 ± 0,09 ± 1,28 ± 15,32 

U
n

it
 A

 

MI40 N/A N/A N/A N/A N/A N/A 

MI237 -27,72 N/A 27,72 0,02 N/A 95,70 

MI45 -28,38 0,09 28,47 0,03 -10,93 96,00 

MI245a -28,21 0,37 28,58 0,03 -9,92 87,50 

MI245b N/A 0,62 N/A N/A -10,59 94,59 

MI51 -28,32 0,27 28,59 0,03 -10,75 93,44 

MI54a N/A 0,22 N/A N/A -11,07 72,25 

MI54b N/A 0,27 N/A N/A -10,69 88,11 

MI248 -28,79  28,79 0,05 N/A 94,80 

MI57 N/A 0,19 N/A N/A -10,30 93,00 

MI59 -28,60 0,16 28,76 0,07 -10,02 86,61 

MIA1-4 -28,53 0,23 28,76 0,02 -11,14 96,50 

MIA1 N/A -0,14 N/A N/A -11,11 84,53 

MI62 -27,67 -0,25 27,42 N/A -10,35 81,86 

MI66 N/A 0,11 N/A N/A -10,12 88,50 

MI72a -29,55 -1,76 27,79 0,12 -11,89 89,10 

MI74 -29,94 -1,78 28,16 0,37 -12,66 87,10 

MI77 -29,69 -1,83 27,86 0,35 -12,71 83,80 

MI75 -30,06 -1,99 28,07 0,21 -12,68 86,70 

MI76 -30,22 -2,04 28,18 0,19 -12,37 86,80 

MI79 -29,87 -1,26 28,61 0,20 -10,30 44,67 

MI80 -30,46 -2,17 28,29 0,21 -12,38 84,00 

MI81 -30,12 -1,81 28,31 0,21 -12,26 80,00 

MI82 -29,54 -1,71 27,83 0,12 -10,96 75,08 

MI83 -29,80 -1,66 28,14 0,18 -11,28 80,84 

MI84 N/A -2,69 N/A N/A -13,50 81,95 

U
n

it
 B

 

MI85 -28,82 -1,89 26,93 0,10 -10,95 61,44 

MI87 -29,54 -2,33 27,21 0,03 -12,91 85,63 

MI88 -28,90 -2,10 26,80 0,04 -12,05 76,63 

MI89 -28,83 -2,32 26,51 0,06 -12,93 50,12 

MI92 -28,60 -2,22 26,38 0,08 -12,50 46,52 

MI93 -28,31 -2,29 26,02 0,06 -13,42 51,06 

MI95 -28,85 -2,23 26,62 0,08 -12,87 49,04 

MI96 -28,10 -2,49 25,61 0,05 -13,83 59,33 

MI97 -28,72 -2,21 26,51 0,07 -12,05 51,34 

MI98 -28,37 -2,47 25,90 N/A -12,68 47,15 

MI100 -29,91 -2,52 27,39 0,07 -11,76 54,67 

MI101 -28,75 -2,80 25,95 0,06 -12,64 64,83 

MI102 -29,08 -2,61 26,47 0,06 -12,80 50,27 

MI103 -28,58 -2,81 25,77 0,04 -11,63 65,47 

MI105 -29,14 -3,03 26,11 0,07 -12,26 70,97 

MI106 -28,95 -2,99 25,96 0,07 -11,55 54,47 
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MI107 -29,52 -3,18 26,34 0,06 -11,64 57,54 

MI108 -28,43 -3,13 25,30 N/A -11,62 65,30 

MI109 -30,17 -4,50 25,67 0,06 -13,75 59,59 

MI111 -29,68 -3,59 26,09 0,06 -11,93 71,87 

MI113 -29,59 -3,48 26,11 0,09 -11,57 75,82 

MI112 -29,63 -3,38 26,25 0,10 -11,54 73,67 

MI114 -29,27 -3,37 25,90 0,15 -11,54 59,36 

MI115 -30,39 -3,31 27,08 0,07 -11,46 58,97 

MI117 N/A -3,41 N/A N/A -12,13 77,63 

MI118 -29,13 -3,47 25,66 0,28 -10,60 67,66 

MI119 N/A -3,86 N/A N/A -10,95 80,56 

MI120 -29,41 -4,19 25,22 0,15 -10,74 70,57 

MI122 -29,03 -3,41 25,62 0,41 -10,92 76,24 

MI123 -29,40 -3,51 25,89 0,08 -10,96 78,59 

SS
B

 

MI124 -29,35 -3,00 26,35 0,07 -11,14 78,09 

MI126 -29,35 -2,46 26,89 0,05 -11,43 89,72 

MI127 -29,35 -1,76 27,59 0,07 -10,21 85,55 

MI150 N/A 0,01 N/A N/A -12,35 93,52 

MI129 -30,22 -1,04 29,18 0,06 -9,55 92,01 

MI130 -29,67 0,21 29,88 0,08 -8,57 89,97 

MI151 -29,76 -0,49 29,27 0,06 -8,78 80,59 

U
n

it
 C

 

MI153 -29,16 0,48 29,64 0,06 -9,60 76,51 

MI154 N/A 1,36 N/A N/A -10,07 94,57 

MI155 -29,09 1,49 30,58 0,07 -9,65 87,74 

MI156 -29,01 1,65 30,66 0,09 -9,86 87,88 

MI157b N/A 1,56 N/A N/A -10,19 83,45 

MI158 -28,56 1,81 30,37 0,02 -8,63 96,95 

MI159 -28,68 0,91 29,59 0,02 -8,76 95,11 

MI160 -28,24 0,57 28,81 0,06 -9,66 74,20 

MI180 N/A 0,57 N/A N/A -9,34 95,20 

MI161 -28,55 0,56 29,11 0,11 -10,02 54,85 

MI162 -29,25 0,70 29,95 0,30 -9,80 70,18 

MI163 -27,96 0,98 28,94 0,05 -9,93 66,24 

MI164 -28,66 1,16 29,82 0,03 -10,60 95,80 

MI179 N/A 1,42 N/A N/A -9,80 98,00 

MI166 -28,71 1,43 30,14 0,07 -9,49 84,63 

MI165 N/A 1,30 N/A N/A -10,28 95,61 

MI167 N/A 1,52 N/A N/A -9,84 98,74 

MI194 N/A 1,49 N/A N/A -9,15 95,20 

MI168 N/A 1,47 N/A N/A -9,71 97,60 

MI170 -29,77 1,26 31,03 0,05 -9,71 91,69 

MI171 -28,95 1,69 30,64 0,07 -9,93 85,45 

MI173 -28,49 1,30 29,79 0,04 -11,04 93,70 
 

Table III.C.1. Geochemical data with δ13Corg, δ13Ccarb, Δ13Ccarb-org, Total Organic Carbon (TOC) content, δ18Ocarb and 

carbonate (CaCO3) contents (after Thomazo et al., 2016). 
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The overall low TOC content and the absence of correlation with the δ13Corg signal (Fig. 

III.C.3d) suggest that an input of OM or an increasing contribution of a dissolved organic 

carbon (DOC) pool are underlying processes that cannot explain the decoupling and variations 

of the carbon isotope signal in the MV section. 

The observed precipitation of Mn-bearing carbonate and the development of a redox-

gradient in surface sediments (Thomazo et al., 2016) indicate the potential presence of 

suboxic conditions at the bottom water/sediment interface (Tribovillard et al., 2006), 

particularly throughout Unit B. Associated large pyrite framboids within Unit B (>20µm; 

Thomazo et al., 2016: fig. 5) are also common diagenetic features formed under oxygen-

depleted conditions at the redox boundary (Wilkin & Barnes, 1997). However, a detailed 

analysis on evolution of framboid size distribution is needed to firmly confirm this hypothesis. 

Nevertheless, these results hint toward a remobilization within the first few cm of 

sediment during the early diagenesis in suboxic conditions, supposedly under the control of 

bacterially-induced sulfato-reduction (BSR) processes (Thomazo et al., 2016). 

 

 

Figure III.C.3: Isotopic and elementary geochemical parameters of the Minersville section (after Thomazo et al., 

2016). a) δ13Corg vs δ13Ccarb. b) Mn content vs δ13Ccarb. c) Mn/Sr ratio vs δ18Ocarb. d) δ13Corg vs Total Organic 

Carbon (TOC) content. Uncertainties are smaller than the symbol size. 
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• Trace and major elements 
T&M elements are commonly used to track down variations in terrigenous inputs, redox 

conditions and/or paleoproductivity (e.g., Tribovillard et al., 2006, 2008; Sauvage et al., 2013). 

Because Al is usually of detrital origin and most of the time immobile during diagenetic 

processes, its concentration (wt.%) is used to decipher the terrigenous input (Böning et al., 

2004). A cross-plot of a given element versus Al concentration therefore indicates whether 

the concentration of this element is controlled by detrital flux when associated with Al, or 

conversely is due to an authigenic enrichment (e.g., Sauvage et al., 2013; Caravaca et al., in 

press b, see section III.A). Additionally, proportions of T&M elements are given under the form 

of an Al-normalized ratio to avoid any dilution effect (Tribovillard et al., 2006). Correlations 

between T&M elements and Al are expressed using the Spearman correlation coefficient (r) 

and its associated probability. 

- Detrital proxies and influx 
Al concentrations range from 0.1 to 2.4 wt.%, with a mean value of 0.7 (± 0.5 wt.%, 1σ, 

Fig. III.C.4, Table III.C.2), and show no significant variation along the MV section. An increase 

in Al concentration with more scattered values is nonetheless visible in Spathian samples, with 

no incidence on the general trend of the detrital proxies. 

Fe/Al, Zr/Al, Th/Al, Ti/Al and V/Al ratios show a strong correlation to Al concentration (r 

= 0.71*** for Fe/Al, r = 0.77*** for Zr/Al, 0.88*** for Th/Al, r = 0.96*** for Ti/Al, r = 0.87*** 

for V/Al, r = 0.77*** for Zr/Al, 0.88*** for Th/Al). Zr, Th and Ti are usually interpreted as 

terrigenous proxies for the detrital fraction when correlated to Al due to their siliciclastic origin 

(Rachold & Brumsack, 2001; Sauvage et al., 2013). However, V is rather representative of the 

redox conditions of the water column (e.g., Tribovillard et al., 2006, 2008; Sauvage et al., 

2013). The Fe/Al ratio values ranges from 0.2 to 2.8, with a mean value of 0.6 (± 0.4, 1σ, Fig. 

III.C.4, Table III.C.2). The Zr/Al ratio ranges from 3.1 x10-3 to 1.4 x10-1, with a mean value of 

1.2 x10-2 (± 1.8 x10-2, 1σ, Fig. III.C.4, Table III.C.2). The Th/Al ratio ranges from 1.9 x10-4 to 

9.5 x10-4, with a mean value of 3.4 x10-4 (± 1.5 x10-4, 1σ, Fig. III.C.4, Table III.C.2). The Ti/Al 

ratio ranges from 0.1 to 0.3, with a mean value of 0.1 (± 0.04, 1σ, Fig. III.C.4, Table III.C.2). 

Finally, the V/Al ratio ranges from 1.4 x10-3 to 8.1 x10-3, with a mean value of 3.4 x10-3 (± 1.5 

x10-3, 1σ, Fig. III.C.4; Table III.C.2). 

As observed in the HS section (Caravaca et al., 2017, see section III.A), the correlation of 

V with Al makes this element a marker of the terrigenous fluxes. Ti/Al, Zr/Al, Th/Al and V/Al 

show no marked variation throughout the entire MV section, except for a slight positive peak 

in Ti/Al, Zr/Al and Th/Al ratios at the very base of the Unit B. This slight increase, followed a 

rapid decrease and return to mean values for these different ratios, may be linked to the 

change in lithology occurring at the transition between Units A and B and renewed terrigenous 

inputs at that time. Otherwise, rest of the section shows a relative stability in terrigenous 

inputs, as evidenced by the absence of variation in the Al concentration. This suggests 

continuous continental weathering conditions during the recorded interval (Calvert et al., 

1996). 
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Figure III.C.4: Chemostratigraphy of selected trace and major elements in the Minersville section, listed after 

their detrital and authigenic origin.  
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 Sample  Al Fe/Al Zr/Al Th/Al Ti/Al V/Al Sr/Al Cu/Al Ni/Al P/Al Mn/Al U/Al 

  (Wt. %)            

  ± 0,52 ± 0,43 ± 1,83E-02 ± 1,47E-04 ± 4,00E-02 ± 1,50E-03 ± 2,70E-01 ± 3,34E-03 ± 4,06E-02 ± 9,68E-02 ± 0,24 ± 1,64E-04 

U
n

it
 A

 

MI5 0,273 2,80 1,42E-01 9,54E-04 2,95E-01 7,34E-03 2,75E-02 4,40E-03 2,91E-01 5,60E-01 0,14 9,54E-04 

MI7 1,426 0,51 2,81E-02 5,47E-04 2,29E-01 2,59E-03 6,31E-03 1,26E-03 2,31E-02 4,44E-02 0,02 2,03E-04 

MI15 0,320 2,32 5,00E-02 7,18E-04 2,02E-01 6,25E-03 3,87E-02 1,87E-03 1,98E-01 2,86E-01 0,12 6,25E-04 

MI19 1,053 0,46 2,48E-02 5,98E-04 2,34E-01 3,04E-03 7,88E-03 8,55E-04 2,50E-02 1,04E-01 0,04 2,56E-04 

MI24 0,913 0,54 1,42E-02 4,05E-04 1,68E-01 2,74E-03 1,11E-02 1,53E-03 2,15E-02 7,89E-02 0,03 2,41E-04 

MI25 1,082 0,54 4,62E-03 2,96E-04 1,25E-01 2,40E-03 7,30E-03 6,47E-04 1,85E-02 6,85E-02 0,04 1,29E-04 

MI22 0,595 0,72 4,37E-03 2,69E-04 1,03E-01 3,36E-03 1,90E-02 1,85E-03 1,02E-02 2,20E-02 0,11 2,69E-04 

MI35 1,135 0,60 3,79E-03 2,64E-04 1,03E-01 2,82E-03 1,03E-02 3,52E-04 5,11E-03 1,73E-02 0,04 9,69E-05 

MI38 2,405 0,35 1,07E-02 3,99E-04 1,73E-01 2,41E-03 2,83E-03 4,99E-04 1,04E-02 2,45E-02 0,01 1,21E-04 

MI40 0,453 0,92 8,62E-03 3,54E-04 1,35E-01 7,07E-03 2,61E-02 4,20E-03 5,28E-02 4,82E-02 0,14 2,65E-04 

MI237 0,262 0,76 5,34E-03 3,44E-04 1,12E-01 5,34E-03 8,51E-02 1,98E-02 1,15E-02 3,33E-02 0,12 7,63E-04 

MI45 0,275 0,56 6,54E-03 2,91E-04 1,09E-01 4,36E-03 7,34E-02 1,09E-03 9,81E-03 3,17E-02 0,10 2,54E-04 

MI245a 0,511 0,42 4,70E-03 2,74E-04 1,06E-01 3,13E-03 5,36E-02 7,83E-04 8,62E-03 2,14E-02 0,03 1,17E-04 

MI245b 0,365 0,50 3,83E-03 2,74E-04 9,35E-02 3,83E-03 1,78E-01 8,22E-04 1,29E-02 2,39E-02 0,03 5,20E-04 

MI51 0,402 0,37 5,72E-03 2,98E-04 1,10E-01 3,73E-03 7,31E-02 7,96E-03 1,91E-02 2,17E-02 0,06 2,73E-04 

MI54a 0,304 0,59 3,61E-02 3,29E-04 8,86E-02 2,63E-03 1,85E-01 6,57E-04 1,97E-02 1,43E-03 0,04 2,30E-04 

MI54b 0,619 0,93 4,36E-03 2,91E-04 1,11E-01 2,91E-03 5,94E-02 4,84E-04 1,13E-02 2,47E-02 0,02 2,10E-04 

MI248 0,365 0,43 3,29E-03 2,46E-04 7,71E-02 3,83E-03 1,17E-01 3,29E-03 5,20E-03 2,99E-02 0,03 1,92E-04 

MI57 0,442 0,54 6,79E-03 3,17E-04 1,14E-01 3,39E-03 5,30E-02 7,92E-03 1,99E-02 2,47E-02 0,05 1,13E-04 

MI59 0,376 0,63 5,06E-03 2,93E-04 1,04E-01 3,19E-03 7,08E-02 1,06E-03 9,58E-03 2,32E-02 0,05 1,33E-04 

MIA1 0,542 0,46 3,32E-03 2,40E-04 8,29E-02 3,13E-03 8,41E-02 5,90E-03 7,19E-03 2,01E-02 0,06 1,29E-04 

MI62 0,728 0,49 4,12E-03 2,61E-04 1,02E-01 2,61E-03 2,89E-02 2,06E-03 6,87E-03 1,80E-02 0,02 1,24E-04 

U
n

it
 B

 

MI87 1,106 0,46 1,59E-02 4,34E-04 1,25E-01 2,35E-03 1,40E-02 7,32E-03 3,43E-02 9,27E-02 0,05 2,17E-04 

MI88 0,767 0,66 2,83E-02 7,17E-04 1,56E-01 3,13E-03 1,88E-02 5,99E-03 6,31E-02 2,02E-01 0,07 4,30E-04 

MI89 0,852 0,41 3,80E-02 7,75E-04 1,96E-01 3,40E-03 1,77E-02 3,17E-03 4,74E-02 2,00E-01 0,07 4,46E-04 

MI92 1,455 0,45 1,58E-02 4,26E-04 1,40E-01 2,40E-03 9,76E-03 3,71E-03 2,39E-02 7,35E-02 0,05 2,27E-04 

MI95 1,482 0,39 1,38E-02 3,91E-04 1,35E-01 2,23E-03 1,12E-02 1,01E-03 3,33E-02 7,51E-02 0,06 2,56E-04 

MI96 1,037 0,29 1,85E-02 5,11E-04 1,39E-01 2,02E-03 1,74E-02 5,78E-04 4,51E-02 1,01E-01 0,07 5,01E-04 

MI98 1,196 0,34 1,82E-02 4,10E-04 1,35E-01 2,26E-03 1,32E-02 1,17E-03 2,41E-02 9,67E-02 0,05 2,34E-04 

MI102 1,434 0,43 1,74E-02 4,60E-04 1,48E-01 2,30E-03 1,23E-02 1,53E-03 2,19E-02 8,22E-02 0,06 2,51E-04 

MI103 0,857 0,44 2,64E-02 4,55E-04 1,41E-01 2,33E-03 2,19E-02 0,00E+00 4,44E-02 1,27E-01 0,13 2,45E-04 

MI108 0,905 0,40 1,48E-02 4,64E-04 1,40E-01 1,99E-03 2,59E-02 0,00E+00 2,88E-02 9,16E-02 0,19 2,54E-04 

MI113 0,963 0,57 3,95E-03 2,49E-04 7,65E-02 2,28E-03 2,27E-02 1,97E-03 6,96E-03 6,57E-02 0,25 2,39E-04 

MI112 0,675 0,62 6,82E-03 3,41E-04 9,24E-02 2,82E-03 4,25E-02 2,96E-03 9,63E-03 3,56E-01 0,32 3,70E-04 

MI114 0,971 0,51 1,22E-02 5,05E-04 1,15E-01 2,37E-03 2,56E-02 2,99E-03 2,09E-02 1,44E-01 0,23 3,50E-04 

MI115 1,305 0,46 9,12E-03 3,53E-04 1,10E-01 2,53E-03 1,89E-02 7,67E-04 1,92E-02 9,37E-02 0,11 2,22E-04 

MI118 0,929 0,95 8,61E-03 3,66E-04 1,06E-01 2,26E-03 2,85E-02 3,34E-03 1,83E-02 7,99E-02 0,27 1,72E-04 

MI120 1,188 0,59 5,81E-03 3,03E-04 9,58E-02 2,36E-03 2,26E-02 1,01E-03 1,01E-02 9,18E-02 0,30 1,43E-04 

MI122 0,738 0,66 8,26E-03 3,66E-04 1,09E-01 2,57E-03 4,23E-02 3,52E-03 1,29E-02 2,69E-01 0,50 2,84E-04 
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MI123 0,733 0,73 6,82E-03 3,27E-04 9,73E-02 2,73E-03 4,46E-02 3,96E-03 1,21E-02 3,51E-01 0,55 2,18E-04 

SS
B

 

MI127 0,418 0,66 3,35E-03 1,91E-04 6,16E-02 2,87E-03 9,97E-02 9,81E-03 2,37E-02 2,09E-02 1,16 1,91E-04 

MI150 0,365 0,35 4,66E-03 2,74E-04 1,03E-01 4,38E-03 1,45E-01 1,15E-02 1,01E-02 2,39E-02 0,05 4,66E-04 

MI130 0,336 0,49 3,87E-03 2,68E-04 8,92E-02 4,17E-03 8,28E-01 5,95E-03 1,34E-02 1,95E-02 0,78 1,49E-04 

MI151 0,611 0,42 4,09E-03 2,45E-04 9,22E-02 2,45E-03 3,31E-01 1,31E-03 1,29E-02 1,78E-02 0,49 1,15E-04 

U
n

it
 C

 

MI153 0,918 0,56 3,48E-03 2,40E-04 9,01E-02 2,83E-03 2,71E-01 2,61E-03 1,68E-02 1,43E-02 0,13 9,80E-05 

MI154 0,249 0,55 3,62E-03 2,41E-04 8,43E-02 4,42E-03 1,18E+00 1,21E-03 1,57E-02 1,75E-02 0,31 1,61E-04 

MI157b 0,603 0,49 3,31E-03 2,49E-04 9,24E-02 2,82E-03 2,60E-01 1,33E-03 6,63E-03 1,81E-02 0,20 1,16E-04 

MI160 1,376 0,49 3,78E-03 2,47E-04 1,00E-01 2,69E-03 7,99E-02 4,36E-04 3,27E-03 1,27E-02 0,08 7,27E-05 

MI180 0,159 1,52 6,30E-03 4,41E-04 1,13E-01 7,56E-03 4,86E-01 2,52E-03 1,13E-02 4,12E-02 0,74 1,89E-04 

MI164 0,275 1,72 5,81E-03 2,54E-04 9,36E-02 3,63E-03 9,69E-01 3,27E-03 1,82E-02 1,59E-02 0,28 1,45E-04 

MI166 0,627 0,52 3,83E-03 2,39E-04 9,37E-02 2,87E-03 1,75E-01 1,12E-03 1,15E-02 1,39E-02 0,12 1,12E-04 

MI194 0,159 0,64 5,04E-03 1,89E-04 6,79E-02 4,41E-03 6,95E-01 1,89E-03 1,95E-02 2,75E-02 0,57 1,26E-04 

MI168 0,156 1,39 7,05E-03 1,92E-04 9,98E-02 5,12E-03 9,01E-01 6,40E-03 1,54E-02 2,80E-02 0,43 1,28E-04 

MI170 0,257 0,57 5,06E-03 1,95E-04 9,34E-02 3,90E-03 3,85E-01 1,56E-03 1,13E-02 1,70E-02 0,37 1,56E-04 

MI225 0,574 0,53 3,13E-03 2,61E-04 8,66E-02 2,61E-03 1,38E-01 5,22E-04 3,48E-03 1,14E-03 0,14 1,22E-04 

MI169 0,193 0,63 7,25E-03 2,07E-04 1,05E-01 4,66E-03 8,33E-01 1,55E-03 1,50E-02 2,26E-02 0,26 1,55E-04 

MI197 0,143 1,22 5,60E-03 3,50E-04 8,81E-02 7,70E-03 6,45E-01 3,50E-03 2,73E-02 3,05E-02 0,69 3,50E-04 

MI200 0,490 0,66 3,88E-03 2,25E-04 8,69E-02 3,27E-03 1,36E-01 2,45E-03 3,76E-02 1,34E-02 0,41 1,02E-04 

MI206 2,263 0,44 4,64E-03 2,12E-04 1,05E-01 1,94E-03 1,14E-02 4,86E-04 2,00E-02 1,25E-02 0,03 5,30E-05 

MI202 0,275 0,74 9,81E-03 3,27E-04 9,15E-02 4,36E-03 2,97E-01 2,91E-03 2,65E-02 2,38E-02 0,50 3,27E-04 

MI203 0,148 1,11 8,10E-03 5,40E-04 1,17E-01 8,10E-03 7,36E-01 2,02E-03 1,69E-02 4,42E-02 0,80 4,72E-04 

MI205 0,950 0,31 4,95E-03 2,00E-04 8,14E-02 2,21E-03 4,07E-02 6,32E-04 2,40E-02 1,84E-02 0,12 7,37E-05 

MI181 1,609 0,34 9,45E-03 2,86E-04 1,34E-01 2,11E-03 2,31E-02 4,35E-04 1,02E-02 1,63E-02 0,08 9,32E-05 

MI209 0,230 0,79 1,22E-02 3,04E-04 1,02E-01 4,34E-03 2,11E-01 1,22E-02 5,95E-02 3,79E-02 0,68 1,30E-04 

MI211 0,799 0,39 1,30E-02 3,13E-04 1,24E-01 2,63E-03 6,56E-02 2,38E-03 2,83E-02 2,73E-02 0,16 1,38E-04 

MI187 0,386 0,77 5,18E-03 2,33E-04 9,46E-02 3,62E-03 2,61E-01 1,55E-03 9,58E-03 1,69E-02 0,25 1,04E-04 

MI214 0,969 0,34 1,45E-02 3,41E-04 1,21E-01 2,37E-03 2,50E-02 5,27E-03 1,74E-02 2,48E-02 0,16 1,24E-04 

MI 215 2,056 0,37 5,06E-03 1,90E-04 9,36E-02 1,75E-03 5,74E-03 6,81E-04 2,67E-02 1,06E-02 0,03 5,35E-05 

MI220 1,474 0,23 1,85E-02 2,92E-04 1,34E-01 1,36E-03 1,10E-02 2,37E-03 5,10E-02 2,07E-02 0,07 8,82E-05 

MI218 1,635 0,26 8,13E-03 2,08E-04 9,53E-02 1,47E-03 7,89E-03 1,10E-03 2,99E-02 1,47E-02 0,06 6,11E-05 

 

Table III.C.2: Geochemical data with trace and major elements results. 
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- Authigenic enrichment: markers of paleoproductivity and redox conditions  
The Sr/Al, Cu/Al, Ni/Al P/Al, Mn/Al, and U/Al ratios are not significantly correlated with 

Al concentration (r = -0.47*** for Sr/Al, 0.26*** for Cu/Al, 0.52*** for Ni/Al, r = 0.45*** for 

P/Al, r = 0.27, P = 0.02 for Mn/Al, 0.59*** for U/Al). This indicates an authigenic origin for 

enrichment in these elements, in relation to variations in paleoenvironemental conditions 

(e.g., Sauvage et al., 2013; Caravaca et al., in press b, see section III.A). Cu/Al, Ni/Al and P/Al 

are usually interpreted as markers of the paleoproductivity, while Mn/Al, V/Al and U/Al are 

Redox Sensitive Trace Elements (RSTE), used to track down variations of the redox conditions 

at the bottom-water/sediment interface and in upper diagenetic sediments (e.g., Algeo & 

Meynard, 2004; Algeo & Lyons, 2006; Tribovillard et al., 2006; Sauvage et al., 2013; Caravaca 

et al., in press b, see section III.A). However, due to its high correlation with Al, V/Al cannot be 

used as a redox marker and was therefore interpreted as a detrital flux marker (see above). 

The Sr/Al ratio ranges from 2.83 x10-3 to 1.18, with a mean value of 1.70 x10-1 (± 2.70 

x10-1, 1σ, Fig. III.C.4, Table III.C.2). The Cu/Al ratio ranges from 0.0 to 2.0 x10-2, with a mean 

value of 2.9 x10-3 (±3.3 x10-3, 1σ, Fig. III.C.4, Table III.C.2). The Ni/Al ratio ranges from 3.3 

x10-3 to 2.9 x10-1, with a mean value of 2.7 x10-2 (±4.1 x10-2, 1σ, Fig. III.C.4, Table III.BC.2). 

The P/AL ratio ranges from 1.1 x10-3 to 5.6 x10-1, with a mean value of 6.8 x10-2 (± 9.7 x10-

2, 1σ, Fig. III.C.4, Table III.C.2). The Mn/Al ratio ranges from 0.0 to 1.2, with a mean value of 

0.2 (± 0.2, 1σ, Fig. III.C.4, Table III.C.2). Finally, the U/Al ratio ranges from 5.3 x10-5 to 9.5 x10-

4, with a mean value of 2.3 x10-4 (± 1.6, 1σ, Fig. III.C.4, Table III.C.2). 

It can be noticed that the Ni/Al and Cu/Al ratios show no significant variation, except for 

the SSB interval where the Cu/Al ratio seems to show a slight increase that may correspond 

to a short-lived enrichment in OM. The P/Al ratio evolves quite differently, with no marked 

variations within the Units A and C and SSB interval, but with two marked peaks within and at 

the top of the Unit B, just before the SSB transition. The concomitance of these two peaks 

with two shifts in the Mn/Al ratio (Fig. III.C.4) suggests a potential diagenetic origin for these 

variations through P remobilization. The most important peak (up to 0.6) at the top of the Unit 

B is also concomitant to a peak in TOC content (Figs. III.C.2 and III.C.4), pointing toward a 

primary origin for this shift. This is therefore interpreted as a pulse of paleoproductivity during 

this short-lived interval (Thomazo et al., 2016). The paleoproductivity record for the Unit B 

remains nonetheless complex partly owe to secondary remobilization. 

At MV, only Mn and U are available as RSTE. The Mn/Al ratio shows no marked variation 

through Unit A and first half of Unit B. Then, second part of Unit B is marked by two peaks, 

concomitant with those observed for the P/Al ratio. Mn/Al ratio is also somewhat scattered 

within the SSB interval and Unit C. Because of the poor correlation between Mn content and 

CaCO3 content (r = -0.18***), most part of the Mn reservoir is thought to be of secondary 

origin (Thomazo et al., 2016). Moreover, Mn-bearing carbonates also suggest a secondary 

origin for the Mn reservoir (see above; Thomazo et al., 2016). This behavior also indirectly 

indicates that short-lived periodical suboxic conditions may have prevailed repeatedly during 

deposition of the MV section. The Mn/Al ratio thus cannot be retained as a reliable proxy, the 

U/Al ratio therefore remains as the sole marker for redox conditions. The U/Al ratio shows 

several (4) peaks within the Unit B (Fig. III.C.4). The rest of the section shows no marked 

variations. These peaks have been interpreted to reflect several episodes of suboxic to anoxic 
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conditions at the bottom-water/sediment interface, which is in agreement with preservation 

issues discussed above (Thomazo et al., 2016). 

 

• Interpretation of the MV geochemical signal: only local? 
While the δ13Ccarb seems to mirror the global carbon isotopic record known for the 

Smithian-Spathian interval, the δ13Corg does not follow a parallel evolution. This decoupling 

between carbonate and OM reservoirs therefore highlights a relative absence of external 

forcing (i.e. exogenic carbon cycle) on the recorded local δ13C signal (Thomazo et al., 2016). 

Trace and major elements show that no terrigenous influence is important enough to 

alter the δ13C signal throughout this section. Additionally, despite the short-lived 

paleoproductivity pulses and short-lived suboxic to anoxic conditions at the bottom-

water/sediment interface recorded within Unit B (middle to upper Smithian), these 

parameters apparently did not influence the carbon isotopic record, highlighting the role of 

secondary processes in this signal (Thomazo et al., 2016). 

An important remobilization is recorded in Unit B, taking place during episodic suboxic 

conditions. Thomazo et al. (2016) showed that bacterially-induced early diagenesis might had 

a crucial role in controlling this remobilization, and can be responsible for the observed shifts 

in the isotopic record. This highlights a strong role of the local conditions in controlling the 

overall pattern of the isotopic record in MV, rather than global forcing parameters even if their 

influence cannot be ruled out. 

To sum up: local controls exerted by the depositional systems are here of prime 

importance on the observed geochemical signal, and therefore questions the global 

interpretation of the Smithian-Spathian carbon isotope record. 

 

D. Characterization of the basin-scale geochemical signal 
In order to highlight the similitudes and differences observed within the SFB, the three 

studied sections (MV, HS, LWC; Fig. III.D.1) were correlated using ammonoid biostratigraphy, 

the Anasibirites beds being the main temporal time line (Fig. III.D.1; see explanations in e.g., 

Brayard et al., 2013; Jattiot et al., 2016, in press). 

These sections show differential subsidence between South and North of the SFB 

(Caravaca et al., in press a, see section IV) that does not seem to affect the geochemical record, 

and also a varying sedimentological record with differences in lithologies between MV, LWC 

and HS. Terrigenous and microbial deposits are present in MV while marine fine siltstones are 

present only in HS. LWC however displays terrigenous deposits similar to that of MV, MISS 

that are unique to this section, and marine bioclastic limestones close to that of HS, making 

LWC a “transitional” section in between northern and southern SFB. These sections also 

exhibit variable geochemical record and their carbon isotope signal and T&M elements 

concentrations are compared and discussed below. 
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Figure III.D.1: Simplified lithological columns and biostratigraphic correlation based on Anasibirites beds for the 

Minersville, Lower Weber Canyon and Hot Springs sections, representing southern, central and northern parts 

of the SFB, respectively. The base of the sections corresponds to the regionally recognized Permian/Triassic 

unconformity (Brayard et al., 2013). 

 

• Carbon isotopic record 

- Differential paired carbon isotopic signal 
When correlated and put side to side, the different studied sections in the SFB (HS, LWC 

and MV) show conspicuous differences in their paired carbon isotopic record for both 

carbonate and OM (Fig. III.D.2). 

First, the overall shape of the globally recognized couplet of a negative/positive shift 

across the SSB (e.g., Payne et al., 2004; Galfetti et al., 2007b; Grasby et al., 2013) is observed 

within the SFB. However, each section does not evidence this couplet in the same way, and 

differences in observed patterns arise from section to section (Fig. III.D.2). 
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More specifically, OM record in MV section shows no excursion within the SSB interval, 

contrary to the carbonate record that shows the expected signal (Fig. III.D.2). Conversely, in 

LWC section, it is the carbonate record that shows a dampened down and only positive 

excursion across the SSB, while the OM record displays the expected isotope couplet (Fig. 

III.D.2). Nevertheless, the latter is also dampened down compared to that of HS and MV for 

instance. Only the HS the carbon isotope record seems to follow the usually described pattern 

for both OM and carbonate signals across the SSB. 

At a low temporal resolution, this negative/positive couplet is easily identifiable in all 

sections, arguing for a global paleoenvironmental forcing to imprint such a trend. 

Nevertheless, at a higher temporal resolution, each section shows a unique evolutionary 

pattern of the carbon isotope signal. Figure III.D.2 shows that amplitudes of the observed 

shifts greatly vary in OM signal from ~3 ‰ in LWC signal, up to ~7 ‰ in HS; but amplitudes 

also strongly varies in the carbonate signal, from ~4 ‰ in LWC up to ~12 ‰ in HS. This 

discrepancy is even more obvious when amplitudes in OM signals are compared to the 

carbonate signal (Fig. III.D.2). 

Additionally, the local pattern of these couplets is different showing small-scale 

variations restricted to the SSB interval for both LWC and HS, while at MV the decrease in 

δ13Ccarb signal started below this interval (Fig. III.D.2). However, the precise timeline for these 

isotopic evolutions cannot be precisely constrained. Although showing discrepancies, a 

similarity between LWC and HS signals can be suggested given the similar evolutionary pattern 

and temporal extent observed for both these two signals. This is also supported by the similar 

sedimentary records of these two sections. 

While these differences in shifts and amplitudes are mainly interpreted here to reflect 

secondary processes (see discussions about diagenetic overprint in sections above), it 

prevents the use of this geochemical record as main tool for detailed long-range 

chemostratigraphic correlations. 

Additionally, the apparent lack of a parallel evolution between carbonate and OM 

isotopic record, except for HS section, also prevents the use of the paired carbon isotopic 

record for direct reconstruction of the past exogenic carbon cycle (e.g., Zeebe, 2012; Thomazo 

et al., 2016). It therefore raises the question of the validity of the carbon isotopic record when 

addressing climatic changes in the Early Triassic. 

 



105 

 

 

Figure III.D.2: Early Triassic variations of the δ13C signal for both carbonates and organic matter in the SFB 

based on the HS, LWC and MV studied sections. Open symbols in LWC record units bear uncertainties due to 

potential secondary alteration. Radiochronologic ages after Ovtcharova et al. (2006), Galfetti et al. (2007a) and 

Baresel et al. (2017). L.: lower; mi. middle; u. upper; SSB: Smithian/Spathian boundary. 
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Finally, the Δ13Ccarb-org (Fig. III.D.3) also supports the proposed distinctions within the SFB 

geochemical record. At LWC, the SSB signal is invariable and therefore cannot be interpreted 

nor compared to MV and HS. These latter however show marked variations, first in amplitudes 

being ~6 ‰ for MV vs ~12 ‰ for HS, in the same order than absolute amplitudes of the δ13Ccarb 

signals previously mentioned for MV and HS sections, suggesting a strong control of the 

δ13Ccarb signal variability over the Δ13Ccarb-org for these sections. Observed Δ13Ccarb-org patterns 

are also different indicating that their origin depends on various local processes. On the one 

hand, Δ13Ccarb-org from MV shows a general decreasing trend during the Smithian interval, 

followed by a steep increase across the SSB. However, as OM record shows no significant 

variation in MV, the Δ13Ccarb-org mainly mirrors the δ13Ccarb evolution, therefore restraining 

further interpretation about the significance of the Δ13Ccarb-org signal. On the other hand, HS 

Δ13Ccarb-org forms a marked couplet with a decrease followed by an increase centered across 

the SSB. There, Δ13Ccarb-org results from the difference of two varying carbonate and OM δ13C 

signals, and it is therefore more likely to reflect the influence of the exogenic carbon cycle on 

both the OM and carbonate reservoirs. 

These differences argue for a strong distinction between the southern and northern 

parts of the SFB regarding the geochemical parameters of the water-column, and emphasizes 

the local character of these controls. 

 

 

Figure III.D.3: Early Triassic variations of the Δ13C signal in the SFB based on the HS, LWC and MV studied 

sections. Open symbols in LWC record units bear uncertainties due to potential secondary alteration. 

Radiochronologic ages after Ovtcharova et al. (2006), Galfetti et al. (2007a) and Baresel et al. (2017). L.: lower; 

mi. middle; u. upper; SSB: Smithian/Spathian boundary. 
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- Impact of diagenesis and secondary processes on the geochemical record 
The imprint of secondary processes on the isotopic record may lead to the obliteration 

of the primary signal, preventing any paleoenvironmental reconstruction and correlation. 

These secondary processes can also be triggered by local conditions (such as local 

suboxic/anoxic bottom-water/sediment interface), modifying the signal from section to 

section within the same sedimentary basin. 

While the general shape of the isotopic record of the studied sections may have been 

influenced by the global exogenic carbon cycle (explaining the overall regional pattern of the 

isotopic record), local controlling factors also likely influenced the observed isotopic signals. 

Thus, the impact(s) of the secondary processes is even more important to constrain as to 

determine the message of the geochemical record, but also because secondary overprint 

might also give crucial information regarding early diagenesis and associated depositional 

settings. 

In this way, the HS section apparently does not have undergone any major secondary 

overprint within its Triassic part. Its paired carbon isotopic record can therefore be considered 

to be pristine and reflecting the conditions during the time of deposition. However, in MV, 

diagnostic proxies (such as correlation of δ13Ccarb with δ18Ocarb, or Mn-bearing authigenic 

carbonates precipitation) show a marked secondary overprint, notably due to recurrent 

suboxic conditions and the presence of bacterially-induced sulfato-reduction (BSR, Thomazo 

et al., 2016). At LWC, no detailed study of the diagnostic proxies for secondary overprint are 

available by the time these lines are written (to be discussed in Grosjean et al., in prep.). 

Nevertheless, the presence of several negative outliers within the δ13Ccarb signal around the 

SSB and the pattern of this signal argues for another strong influence of secondary probably 

early diagenetic processes. 

 

It therefore appears that varying local conditions and early diagenetic processes acted 

within the SFB during the Early Triassic, with a southern part more prone to undergo e.g. 

remobilization, while the northern part was less influenced and better reflects the primary 

signal. More work is needed on the LWC section to confirm such a scenario. A distinction 

between the northern and southern parts of the SFB is nonetheless evidenced through the 

paired carbon isotopic record. 

 

• Trace and major elements occurrences and concentrations 
The same detrital and authigenic fractions are observed between MV and HS in spite of 

their distant position in the SFB (Fig. III.D.1a). Al, Fe, Zr and Th are strongly correlated to Al in 

both sections (see sections above; Fig. III.D.4). Ti is also well present in the detrital fraction of 

MV. Additionally, V is regarded as a detrital proxy and not as an authigenic enrichment in both 

sections. This particularity points toward a shared reservoir and/or similar terrigenous inputs 

within the entire SFB. 
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Figure III.D.4: Chemostratigraphy of the detrital trace and major elements in the HS and MV sections. 

 

Consequently, the authigenic fraction remains unchanged between MV and HS with Sr, 

Ni, P, Mn and U present in both sections. Ni and P are interpreted as paleoproductivity proxies 

and Mn and U as paleoredox proxies (Fig. III.D.5). Cr also forms part of the authigenic fraction 

in HS with a similar behavior to that of Ni, which may have formed MeCrO4 complexes during 

suboxic early diagenesis (Tribovillard et al., 2008; see Caravaca et al., 2017, see section III.A). 

However, in MV, Cu has been measured and is associated to the paleoproductivity evolution. 

The partitioning similarity of T&M elements between detrital and authigenic fractions is 

remarkable and argues for a stability in the elementary input and water geochemistry in the 
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SFB. It is also worth noting that the amplitudes of variation within these elementary records 

are of same order between the sections. In more details, evolution of these markers shows 

small-scale variations specific to each section and therefore reflect locally controlled 

influences upon these parameters. 

Figure III.D.4 shows that no specific trend can be documented within the detrital fluxes 

in both MV and HS sections. Several small-scale variations can be observed, but they are rather 

due to local variations in lithology and/or mirroring local fluctuations of the depositional 

settings. 

Figure III.D.5 shows a slightly different scheme for authigenic enrichments with 

conspicuous variations visible around the SSB in both sections. Regarding the 

paleoproductivity record, a peak in P/Al occurs at the top of the upper Smithian for both MV 

and HS sections (Fig. III.D.5.). This suggests a common perturbation in the form of an 

increasing primary productivity at the scale of the basin. However, the presence of a positive 

peak in the Ni/Al ratio at HS and its absence at MV indicate locally different processes (see 

discussion in Caravaca et al., 2017, see section III.A) and potential remobilization. Therefore, 

a basin-scale coeval paleoproductivity fluctuation at that time cannot be retained based solely 

on data from these two sections. 

Within paleoredox markers, more differences can be documented between the two 

sections. If a peak in U/Al is present in HS and MV at the top of the upper Smithian (Fig. III.D.5), 

indicating potential suboxic to anoxic conditions, these perturbations are more recurrent in 

MV with at least four peaks observed in the U/Al ratio while the HS signal does not fluctuate 

as much. This highlights local differences within the water column (or upper sediments) 

chemistry (e.g., redox conditions) between both localities. Based on these elements, 

occurrence of a basin-scale event at the end of the Smithian that affected the entire SFB 

reservoir is not to be discarded so far. 

Regarding Mn, both Mn/Al ratios in HS and MV exhibit a concomitant peak with U/Al at 

the top of the upper Smithian (Fig. III.D.5), and no other significant variations along the rest of 

the section. However, if the general behavior of the Mn seems similar, correlation of Mn with 

CaCO3 content completely differs between HS and MV. A strong positive correlation between 

Mn and CaCO3 is observed at HS (r = 0.91***) while no correlation is observed at MV (r = -

0.18, p = 0.13).  

Thomazo et al. (2016) showed that the Mn enrichment in MV is linked to suboxic 

diagenetic processes and has a mainly authigenic origin. Again, MV seems to have recorded 

more reducing conditions (bottom-water column or upper sediments) than HS leading to a 

strong secondary overprint reflecting early diagenetic processes. On the contrary, Mn at HS 

seems to be embedded into the carbonate deposits. This observation indicate that local 

conditions have a strong influence on the T&M elementary record from section to section in 

the SFB. 
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Figure III.D.5 Chemostratigraphy of the authigenic trace and major elements in the HS and MV sections. SSB: 

Smithian/Spathian boundary. 
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• Geochemical discrimination between a southern and a northern sub-basin 

in the SFB 
Paired carbon isotopic record and T&M elements concentrations show both similarities 

and differences between the three studied sections in the SFB. The similarity of the various 

trends (e.g., overall temporal pattern of the paired carbon isotopes signal at the basin scale, 

differentiation between detrital and authigenic fractions) is obvious. Observed differences are 

likely the result of local forcing parameters varying from one part of the basin to another, or 

even the result of very local conditions. 

The paired carbon isotopic record is similar to the globally-recognized trend for the Early 

Triassic, especially for the SSB interval (e.g., Galfetti et al., 2007a; Hermann et al., 2011; Sun 

et al., 2012; Grasby et al., 2013; see Fig. I.A.3). However, based on our SFB data, this evolution 

appears to be strongly influenced by local variations in the carbon reservoir and does not only 

fully reflect exogenic forcing. Local controls are therefore of prime importance in driving the 

carbon isotopic signal. They additionally well emphasize the differences between the northern 

and southern parts of the SFB: the southern signal is probably more diagenesis-driven 

(associated with episodic suboxic conditions), whereas the northern signal is probably more 

paleoenvironmentally-driven at a global scale. 

A same North/South distinction can be documented based on T&M elements. 

Paleoredox proxies indicate that recurrent suboxic to anoxic conditions at the bottom-

water/sediment interface took place in the southern part of the SFB while the northern part 

conditions remain oxic most of the time. These variations are likely to be linked to different 

local conditions, such as the presence or absence of BSR metabolisms (Thomazo et al., 2016). 

Paleoproductivity markers indicate coeval events within the SFB reservoir, notably across the 

SSB with concomitant shifts in P/Al HS and MV. Finally, detrital proxies also show a similar 

nature of the terrigenous influxes at the basin scale, characterized by inputs in V whose 

enrichment is usually controlled by paleoredox conditions. Nevertheless, a detailed study of 

the provenance of the terrigenous fractions is necessary to determine their origin among the 

various potential sources around the SFB, using QFL diagrams (e.g., Dickinson et al., 1983; 

Dickinson & Gehrels, 2010) or U-Pb ages of detrital zircons (e.g., Dickinson & Gehrels, 2008, 

2010; Thomas, 2011). 

No major variation in depositional environments is observed within the SFB, with 

dominantly shallow and inner to outer ramp conditions prevailing. Still, differences in terms 

of diagenetic processes, alkalinity, redox conditions, lithology and biotic communities (e.g., 

Blakey, 1977; Olivier et al., 2014, 2016, see appendix 1; Vennin et al., 2015; for southern SFB; 

Kummel, 1957; Paull & Paull, 1993; Caravaca et al., 2017, see section III.A; Grosjean et al., in 

prep.; for northern SFB) likely characterize and differentiate the northern and southern parts 

of the basin. This distinction is notably visible from a sedimentary point of view (e.g., 

presence/absence of red beds deposits and/or presence/absence of microbial carbonates), 

but also from a geochemical perspective (e.g., more or less pronounced impact of secondary 

processes). 

These results strongly argue for a N/S partitioning of the SFB, and for the existence of 

two distinct sub-basins from at least a geochemical point of view. 
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• SFB versus global Early Triassic geochemical record 
HS, LWC and MV sections show that the SFB paired carbon isotope records apparently 

mirrors the globally recognized ET trend characterized by the couplet of a positive and 

negative excursion before and across the SSB (e.g., Galfetti et al., 2007b; Grasby et al., 2013). 

The positive excursion potentially corresponding to the Dienerian/Smithian boundary (DSB) is 

also documented (in HS only). However, if an influence of the global exogenic carbon cycle on 

the SFB record cannot be completely discarded, documented signals among the studied 

sections were primarily influenced by locally controlled parameters. 

Additionally, the commonly accepted transient ET marine anoxia (e.g., Grice et al., 2005; 

Algeo et al., 2011; Meyer et al., 2011; Song et al., 2012, 2014; Metcalfe et al., 2013) has not 

been directly documented in the studied sections. The SFB geochemical record is therefore in 

opposition with the paradigm of a globally anoxic marine realm throughout the ET (e.g., 

Isozaki, 1997; Fraiser & Bottjer, 2007). 

Episodic suboxic to slightly anoxic conditions (resulting from local forcing parameters) 

may have prevailed in the studied sections, as in MV and in a lesser extent in HS, but not in 

the same order of magnitude as observed in some other basins such as South China (Sun et 

al., 2012) or Arctic Canada (Grasby et al., 2013). 

Some rare “black shales” and OM-rich deposits have been observed within the SFB 

sedimentary record (ongoing team work, unpublished data from a few other places). 

However, if these levels potentially result from suboxic conditions during deposition, they 

appear diachroneous within the basin, ranging e.g. from upper Smithian to lower Spathian in 

in Idaho. Consequently, they may not necessarily result from global deleterious conditions. 
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While studying the geochemical record within the SFB, both paired carbon isotopes and 

T&M elements show that local parameters of the depositional settings appear to locally 

overprint the SFB signature and the overall exogenic carbon cycle. Based on δ13C and T&M 

records, similarities and differences are evidenced between records of distant sections, and 

allow to establish a North/South distinction within the basin, in agreement with the differences 

observed among the sedimentary records. 

 

Globally recognized couplet of negative and positive isotopic excursions across the SSB is 

not equally recorded throughout the basin, being influenced by local depositional settings (e.g., 

in the northern part) and/or secondary alteration (in the southern part). Paleoredox markers 

suggest recurrent suboxic to anoxic conditions in the southern part of the basin while the 

northern part does not show any major perturbation in the oxygen concentration of the 

(bottom-)water column. A marked transient anoxia therefore cannot be firmly documented for 

this interval within the SFB. 

 

Nevertheless, elementary records from distant sections in the basin show common 

characteristics too, such as the presence of V in the detrital fraction in both HS and MV. Also, 

concomitant peaks in P in both sections argues for a paleoproductivity event occurring 

throughout the basin. Common perturbations within several elementary reservoirs indicate 

that northern and southern parts of the basin share a common water column. Still, this 

geochemical signal is locally controlled and display small-scale variations specific to each 

section. 
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The paleontological, sedimentary and geochemical record investigated in the SFB tends 

to demonstrate an obvious distinction between its southern and northern parts. However, 

current knowledge of the geodynamical framework and history of the basin does not allow to 

determine the origin of this N/S dichotomy that is particularly characterized by a marked 

discrepancy in spatial repartition of the sedimentary thickness within the PTB-Smithian 

interval. 

An integrated study, using sedimentological paleontological, geodynamical, structural, 

cartographic and geophysical approaches, has been conducted, associated with numerical 

modeling of the rheological behavior of the lithospheric basement. This work aimed to 

decipher the processes involved in the formation and development of the SFB, and to seek 

out the controlling factors behind the differentiation of two distinct parts within the foreland 

basin. 
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Abstract – Sediments deposited from the Permian–Triassic boundary (∼252 Ma) until the end-
Smithian (Early Triassic; c. 250.7 Ma) in the Sonoma Foreland Basin show marked thickness vari-
ations between its southern (up to c. 250 m thick) and northern (up to c. 550 m thick) parts. This basin
formed as a flexural response to the emplacement of the Golconda Allochthon during the Sonoma
orogeny. Using a high-resolution backstripping approach, a numerical model and sediment thickness
to obtain a quantitative subsidence analysis, we discuss the controlling factor(s) responsible for spatial
variations in thickness. We show that sedimentary overload is not sufficient to explain the significant
discrepancy observed in the sedimentary record of the basin. We argue that the inherited rheological
properties of the basement terranes and spatial heterogeneity of the allochthon are of paramount im-
portance in controlling the subsidence and thickness spatial distribution across the Sonoma Foreland
Basin.

Keywords: Early Triassic, Sonoma orogeny, foreland basins, lithospheric strength, subsidence.

1. Introduction

The Sonoma Foreland Basin (SFB, western USA;
Fig. 1a) provides an excellent Early Triassic fossil and
sedimentary record (Hofmann et al. 2014; Brayard
et al. 2015; Thomazo et al. 2016). This N–S-trending
foreland system (sensu DeCelles & Giles, 1996) was
located on the western Pangea margin and results
from the emplacement of the Golconda Allochthon
(GA) during the Sonoma orogeny around the Permian–
Triassic boundary (Fig. 1; Burchfiel & Davis, 1975;
Speed & Silberling, 1989; Ingersoll, 2008; Dickin-
son, 2013). Nevertheless, despite numerous studies,
the geometry and the palaeogeography of this basin re-
main poorly constrained. The SFB covered a large area
including present-day eastern Nevada, Utah, Idaho and
parts of Wyoming (Marzolf, 1993; Dickinson, 2006,
2013; Ingersoll, 2008).

Foreland sedimentary basins are generally con-
sidered as passive systems resulting from the flex-
ural subsidence of the elastic lithosphere in re-
sponse to crustal thickening and sediment loading (e.g.

†Author for correspondence: gwenael.caravaca@u-bourgogne.fr

DeCelles & Giles, 1996; Allen & Allen, 2005). If the
flexural isostatic model is a reasonable first-order ex-
planation for the overall shape of foreland basins, sed-
iment thickness variations and peculiar stratigraphic
successions involve a differential local subsidence. In
order to decipher such potential mechanisms at the
origin of the SFB structuring and sedimentary re-
cord variations, we use a multidisciplinary approach.
We perform a subsidence analysis of the basin within
a high-resolution biostratigraphically controlled time-
frame from the Permian–Triassic unconformity (PTU)
up until late Smithian time (a c. 1.3 Ma long interval;
the Smithian is the third substage of the Early Tri-
assic). This allows us to characterize the basin infill
in relation to the emplacement of the Golconda Al-
lochthon during the Sonoma orogeny. We also provide
new evidence indicating that the studied area is a fore-
land basin. Using a complementary backstripping ap-
proach and numerical models we discuss the main
factors controlling the subsidence variations observed
in the SFB, including the impact of lithospheric and
rheological features, on basement partitioning and
sedimentation.
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Figure 1. (Colour online) (a) Early Triassic location of the Sonoma Foreland Basin (SFB; after Brayard et al. 2013). (b) Simplified
chronostratigraphy of the succession of structuring events in the studied area since Palaeoproterozoic time (after Oldow et al. 1989;
Whitmeyer & Karlstrom, 2007; Dickinson, 2013). (c) Simplified map of the study area with location of the main structural elements
discussed and mentioned in this work (after Bond et al. 1985; Walker, 1985; Dickinson, 2004, 2006, 2013; Vetz, 2011; Yonkee & Weil,
2015).

2. Geological setting

2.a. Brief geological history of the study area

The Sonoma Foreland Basin lies within a region of
the North American continent showing a very long
and complex tectonosedimentary history starting dur-

ing Proterozoic time and still active today (e.g. Dickin-
son, 2013). The first documented structuring of the re-
gion dates back to the Palaeoproterozoic period when
Mojave and Yavapai terranes were emplaced against
the Archean Wyoming craton (Fig. 1b; Whitmeyer
& Karlstrom, 2007; Lund et al. 2015). This event
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Control of subsidence in the Sonoma Foreland Basin 3

generated multiple crustal fault zones along which
later reactivations were possible with deformational
episodes (Oldow et al. 1989; Dickerson, 2003). At
least two rifting events took place in this region dur-
ing subsequent Proterozoic times (Burchfiel & Davis,
1975; Oldow et al. 1989), the most recent being dur-
ing Neoproterozoic time (c. 770 Ma) and linked to the
fragmentation of the supercontinent Rodinia (Fig. 1b;
Dickinson, 2006). The long period of tectonic qui-
escence following the formation of this passive mar-
gin lasted until Late Devonian time (c. 380 Ma) and
corresponds to the deposition of a thick sedimentary
prism formerly known as the ‘Cordilleran Miogeo-
cline’ (Clark, 1957; Paull & Paull, 1991; Dickinson,
2006, 2013).

Starting during Late Devonian time and lasting until
late Early Carboniferous time, the Antler orogeny
marks the beginning of a period of nearly continuous
structural events that are still active today (Fig. 1b).
The Antler orogeny was caused by the convergence
and accretion of exotic island-arcs against the western
margin of the North American Plate. This orogeny is
characterized by the emplacement of a large obducted
accretionary prism located in Central Nevada today
(i.e. Roberts Mountains Thrust, Fig. 1c; Burchfiel &
Davis, 1975; Speed & Sleep, 1982; Speed & Silber-
ling, 1989; Burchfiel & Royden, 1991). The Roberts
Mountains Allochthon led to the formation of the N–
S-trending westwards-dipping Antler Foreland Basin
(Speed & Sleep, 1982; Burchfiel & Royden, 1991;
Blakey, 2008; Ingersoll, 2008; Dickinson, 2004, 2006,
2013).

Soon after the Antler orogeny the Ancestral Rocky
Mountains (ARM) orogeny occurred on the eastern
part of the region (Fig. 1c), ranging over Early Carbon-
iferous to early–middle Permian time (c. 350–270 Ma;
Fig. 1b). This mountain-building event resulted from
a succession of crustal uplifts because of important
long-range intracratonic deformations. There, tran-
stensional and transpressional constraints occurred
along with lithospheric buckling as a response to the
Laurentia–Gondwana continental collision (Kluth &
Coney, 1981; Ye et al. 1996; Geslin, 1998; Dickerson,
2003; Dickinson, 2006, 2013; Blakey, 2008). The
resulting chain probably showed a marked topographic
relief, some of which could have persisted until Early
Triassic time (Kluth & Coney, 1981; Blakey, 2008).
Most of these crustal uplifts were emplaced accord-
ing to lithospheric weaknesses inherited from the
Proterozoic structural events (Kluth & Coney, 1981;
Dickerson, 2003).

Many sedimentary basins formed during the
Carboniferous–Permian interval (Dickerson, 2003).
For instance, the Permian Oquirrh Basin (Fig. 1c)
probably resulted from the complex interplay between
intracratonic deformations to the east and the reactiva-
tion of Antler faults to the west (Geslin 1998: fig. 12;
Trexler & Nitchman, 1990; Dickerson, 2003; Blakey,
2008). This highly subsiding basin recorded up to 6 km
of marine strata (Walker, 1985; Yonkee & Weil, 2015).

Similarly to the Antler orogeny, the Sonoma orogeny
is the result of the eastwards migration and accretion
of exotic island-arc systems belonging to the Sonomia
microplate onto the North American Plate around the
Permian–Triassic boundary (Burchfiel & Davis, 1975;
Speed & Silberling, 1989; Dickinson, 2006, 2013;
Blakey, 2008; Ingersoll, 2008). The Sonoma orogeny
is characterized by the thrusting of an accretionary
prism above continental crust, known as the Golconda
Allochthon, and emplaced in the same area as the
older Roberts Mountains Allochthon (Fig. 1c). The
Golconda Allochthon is thought to have initiated the
formation of a foreland basin – the Sonoma Fore-
land Basin (Dickinson, 2006, 2013; Blakey, 2008;
Ingersoll, 2008) – which recorded sediments depos-
ited during Early Triassic time. However, field evid-
ence pointing towards the location and extension of the
Golconda Allochthon is restricted to only a few rem-
nants (e.g. ‘Koipato volcanics’) near the southern part
of the basin, which are presently located in Central
Nevada (Fig. 1c; Snyder & Brueckner, 1983; Walker,
1985; Schweickert & Lahren, 1987; Oldow et al. 1989;
Dickinson, 2006, 2013; Blakey, 2008; Ingersoll, 2008).
Remnants of the Golconda Allochthon, if any, are yet
to be found in the northern part of the basin, espe-
cially in Idaho (Schweickert & Lahren, 1987; Oldow
et al. 1989). This allochthon is sealed in present-day
Nevada by the rhyolitic Koipato Formation volcanism,
presumably emplaced by the end of the Sonoma oro-
geny (Vetz, 2011). A minimum age of Anisian (Middle
Triassic) can be given to this volcanic formation using
geochronology (Vetz, 2011) and due to the occurrence
of Anisian ammonites in the unconformably overly-
ing sedimentary series (Nichols & Silberling, 1977;
Bucher, 1988; Vetz, 2011). The potential presence of
older ammonoid faunas is not to be discarded.

The following Sevier orogeny is of Early Cretaceous
– Eocene age (c. 140–50 Ma; Fig. 1b) and it origin-
ated from the subduction of the Farallon Plate un-
der the North American continental plate (Burchfiel
& Davis, 1975; Dickinson, 2006, 2013). E–W-directed
compressive constraints resulted in the formation of a
large Sevier thrust-and-fold belt which is still present
today and constitutes the eastern border of the Great
Basin (Fig. 1c; Dickinson, 2006, 2013; Yonkee & Weil,
2010; Yonkee et al. 2014). This thrust-and-fold belt
is however not homogeneous along its N–S-trending
front, and displays two convex-to-the-foreland ‘sali-
ents’ (Fig. 2) with varying estimated tectonic shorten-
ing and eastwards displacement of terrains reaching
up to 140 km (DeCelles & Coogan, 2006; Schelling
et al. 2007; Dickinson, 2006, 2013; Yonkee & Weil,
2010, 2015; Yonkee et al. 2014). These Wyoming and
Central Utah salients are separated by a conspicuous
recess formed by a lateral ramp and located west of
the Uinta Mountains (Figs 1c, 2). Its formation results
from inherited features of the basement (see Section
4.c; e.g. Lawton, Boyer & Schmitt, 1994; Mukul &
Mitra, 1998; Paulsen & Marshak, 1999; Wilkerson,
Apotria & Farid, 2002).
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4 G . C A R AVAC A A N D OT H E R S

Figure 2. (Colour online) Topographic map of the central part of current-day Sevier thrust-and-fold belt with accentuation of the
Wyoming and Central Utah salients thrusts. A lateral ramp is present between the two salients (after Paulsen & Marshak, 1999).

Also during Early Cretaceous – Eocene time, the
eastern Laramide orogeny reactivated basal crustal up-
lifts set during the Ancestral Rocky Mountains oro-
geny. This led to the formation of the modern-day
Rocky Mountains which overlapped older structures in
the Colorado Plateau (Fig. 1b, c; Oldow et al. 1989; Ye
et al. 1996; Dickinson, pers. comm. 2015).

Finally, the Basin and Range extension of the entire
region started during Neogene time (c. 20 Ma; Fig. 1b)
and is still active today (Oldow et al. 1989; DeCelles
& Coogan, 2006; Dickinson, 2002, 2006, 2013). This
extension is the result of internal forces (Kreemer
& Hammond, 2007) that generated transtensional
stresses and pure shear (Parsons, Thompson & Sleep,
1994; Gans & Bohrson, 1998; Dickinson, 2002, 2006).
However, the origin of these extensional constraints
is still being discussed. Several possible mechanisms
have been proposed, including: (1) a mantellic ‘wide
rift-like’ process with ascent and underplating of
mantellic material leading to thermal lamination of the
lithosphere (Lachenbruch & Morgan, 1990; Parsons,
Thompson & Sleep, 1994, Gans & Bohrson, 1998); or
(2) a mechanical origin with the extension occurring
in a late orogenic context, due to the instability and
gravity collapse of the thickened lithospheric crust
present in Nevada and westernmost Utah (Fletcher
& Hallet 1983; Malavieille, 1993; Zandt, Myers &
Wallace, 1995). Nevertheless, the easternmost borders
of the basin (e.g. Colorado Plateau or Uinta Moun-
tains) are not affected by these displacements (Fig. 1c;
Dickinson, 2006, 2013). It is also worth noting that this
extension reactivates in inversion some of the thrust
faults created during the Sevier orogeny (Coney, 1987;
Dickinson, 2006, 2013).

2.b. Sedimentary record of the Sonoma Foreland Basin

Here we focus on the Early Triassic sedimentary
record of the Sonoma Foreland Basin (Figs 3a, 4).
The stratigraphic succession displays marked spatial
differences in thickness and in dominant lithologies
(Fig. 4). The sedimentary record is considered as
almost continuous throughout the basin, with local
erosion surfaces being under the temporal resolution
of ammonoid biozones for this Early Triassic interval
(e.g. Olivier et al. 2014, 2016; Vennin et al. 2015). In
its southern part (Figs 3a, 4), the basin is mainly filled
with transitional continental to marine coarse sand-
stones to conglomerates known as ‘red beds’ of the
Moenkopi Group (Fig. 5a–c, e; sensu Lucas, Krainer
& Milner, 2007; Brayard et al. 2013). At the top of
the Moenkopi Group, metric-scale beds of intertidal
microbial limestones can be observed (Figs 3a, 4,
5e; Brayard et al. 2013; Vennin et al. 2015; Olivier
et al. 2016). The upper part of the sedimentary pile
is characterized by open-marine bioclastic limestones
(locally shales) of the Thaynes Group (Figs 3a, 4, 5d,
f; sensu Lucas, Krainer & Milner, 2007), marking
the maximum flooding of the Smithian third-order
transgression (Embry, 1997; Vennin et al. 2015). This
flooding event is characterized by the presence of
the ammonoid genus Anasibirites (Figs 3a, 4; Lucas,
Krainer & Milner, 2007; Brayard et al. 2013; Jattiot
et al. 2015, in press). In the northern part of the
basin (Figs 3a, 4) the sedimentary record differs at its
base by the presence of the Dinwoody and Woodside
formations, characterized by fine marine siltstones
(Figs 3a, 4, 5g; Kummel, 1954, 1957; Sadler, 1981;
Paull & Paull, 1991). Above these formations, the

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0016756817000164
Downloaded from https:/www.cambridge.org/core. Queen Mary, University of London, on 19 Apr 2017 at 15:36:03, subject to the Cambridge Core terms of use, available at



Control of subsidence in the Sonoma Foreland Basin 5

Figure 3. (Colour online) (a) Simplified litho- and chronostrati-
graphic subdivisions of the Early Triassic Sonoma Foreland
Basin (SFB). This study encompasses the PTU-Smithian in-
terval, with Spathian complement for the subsidence analysis.
Main ammonoid markers used in this study are the Anasibirites
beds and the Columbites beds. Radiometric ages: (1) from Bur-
gess, Bowring & Shen (2014); (2) and (3) from Galfetti et al.
(2007). (b) State map of the study area showing current loca-
tion of the 43 studied sections, from both literature data (open
circles) and field data (grey circles). Complete GPS coordin-
ates and references are given in online Supplementary Table
S2. Red outlines highlight the sections used for the subsidence
analysis, and selected for their completeness, temporal resolu-
tion and spatial distribution. Sections detailed in Figure 4: SC:
Sheep Creek; HS: Hot Springs; LWC: Lower Weber Canyon;
CR: Confusion Range; T: Torrey area; PR: Pahvant Range; M:
Minersville; RC: Rock Canyon.

sedimentary record resembles that observed in the
southern part and corresponds to the open-marine
bioclastic limestones and shales of the Thaynes Group
(Figs 3a, 4, 5d, h). A basin-scale synthetic facies
analysis with associated depositional environments
and estimations of the palaeobathymetries can be
found in online Supplementary Table S1 (available at
http://journals.cambridge.org/geo).

3. Dataset and methods

3.a. Dataset

We compiled a comprehensive sedimentary and
biostratigraphic dataset for the Early Triassic out-
crops in the Sonoma Foreland Basin, including pre-
viously published works (e.g. Kummel, 1954, 1957;
Paull & Paull, 1991; Goodspeed & Lucas, 2007; Heck-
ert et al. 2015) together with new field data (Fig. 3b).
We selected 43 biostratigraphically correlated sections
documenting different parts of the basin in order to
estimate the thickness (at the metre scale) of the sed-
imentary deposits (GPS coordinates and main char-
acteristics of each section are provided in online
Supplementary Table S2). The 43 studied sections cor-
respond to the Early Triassic interval. The base of
this interval is defined by a major regional PTU (Bra-
yard et al. 2013). Its upper end is determined by the
Anasibirites beds or the uppermost part of the Owen-
ites beds as a surrogate, which are the main biostrati-
graphic markers of the end-Smithian (Figs 3a, 4; Bra-
yard et al. 2013; Jattiot et al. 2015). Eleven sections
were delimited using a high-resolution ammonoid zon-
ation (e.g. sections in Fig. 4; Brayard et al. 2013). We
conservatively used only minimum thickness values
for the 32 sections taken from the literature because
they are not always based on homogeneous sediment-
ary and biostratigraphical data (online Supplementary
Table S2). For completeness of the subsidence ana-
lysis, we included when possible thickness data avail-
able for the lower part of the Spathian (fourth substage
of the Early Triassic), the Columbites beds marking in
this case the end of the studied interval (Fig. 3a).

3.b. Methods

3.b.1. Palinspastic reconstructions using retrodeformations

Post-Triassic times in the Sonoma Foreland Basin
are characterized by important tectonic compress-
ive and later extensive deformations. These success-
ive deformations are mostly represented in the basin
by the complex and heterogeneous Sevier thrust-and-
fold belt. The palaeogeographic configuration of the
Sonoma Foreland Basin was therefore different com-
pared to the modern configuration. In order to resolve
this issue, we performed a palinspastic reconstruction
to estimate the Early Triassic palaeogeography of this
basin.

Retrodeformations of observed structural features
affecting the Triassic series were applied to sev-
eral regional cross-sections using literature data (e.g.
DeCelles & Coogan, 2006; Yonkee & Weil, 2010;
Fig. 6). This method consists of the horizontaliza-
tion of a selected layer (here the Triassic series)
by virtually inverting all the structural features ob-
served in the section between a fixed reference point
named the ‘pin line’ and a mobile reference point
named the ‘loose line’ (Fig. 6; see Groshong, 2006 for
details). In the two regional cross-sections of the Sevier
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6 G . C A R AVAC A A N D OT H E R S

Figure 4. Biostratigraphic correlation based on the Anasibirites and Columbites beds observed in 8 of the 43 studied sections, illustrat-
ing the discrepancy in sedimentary thickness between the southern and northern parts of the Sonoma Foreland Basin (with simplified
lithology). Base of the sections corresponds to the regionally recognized Permian–Triassic unconformity (Brayard et al. 2013).

thrust-and-fold belt illustrated in Figure 6, most struc-
tural features are thrust complexes; horizontalization
therefore mainly consists of retrodeformation of the
displacements along thrust planes. Finally, balanced
cross-sections represent a good approximation of the
geomorphological setting by the time of deposition.
Based on this method, the direction and value of the
estimated tectonic transport (ETT) underwent by the
terrains can also be calculated (e.g. c. 140 km and
c. 60 km for the cross-sections a and b in Fig. 6,
respectively).

Due to the complex nature of the Sevier thrust-
and-fold belt resulting from the inherited structure
and thickness pattern of the pre-deformation basins

(Paulsen & Marshak, 1999), and also the westwards
focalization of the subsequent Basin and Range ex-
tension, ETT was spatially heterogeneous between
Wyoming and Central Utah salients (Mukul & Mitra,
1998; DeCelles & Coogan, 2006; Schelling et al.
2007; Yonkee & Weil, 2010; Yonkee et al. 2014).
We therefore defined seven sectors within our study
area (sectors 1–7 in Fig. 7). These sectors were
delimited based on similar ETT values (Table 1;
Fig. 7). These values were determined from data
available in the literature (references in Table 1) and
checked with the retrodeformation of regional cross-
sections taken from geological maps (cross-sections
in Fig. 6).
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Control of subsidence in the Sonoma Foreland Basin 7

Figure 5. (Colour online) Photographs of different outcrops in the SFB, showing variations in dominant lithologies and sedimentary
thicknesses encountered throughout the basin. (a) Panorama of Rock Canyon (RC) outcrop, showing the plurimetric beds of con-
glomerates from the basal Moenkopi Group. (b) Detail photograph of the conglomerate from Rock Canyon. (c) Photograph of the
terrigenous red beds of the Moenkopi Group at Lower Weber Canyon (LWC). (d) Panorama of the limestones beds of the Thaynes
Group limestones at Lower Weber Canyon. (e) Panorama of the Moenkopi Group at Minersville (M), showing succession of terrigen-
ous red beds and microbial limestones. (f) Panorama of the transition between Moenkopi and Thaynes Group showing succession of
microbial limestones and bioclastic limestones at Minersville. (g) Photograph of the marine siltstones of the Dinwoody and Woodside
Formation at Hot Springs (HS). (h) Panorama of the Hot Springs section, showing succession of limestone levels of the Thaynes Group
bioclastic limestones.
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8 G . C A R AVAC A A N D OT H E R S

Table 1. Estimated tectonic transport values used for palinspastic reconstructions of each sectors defined within the SFB, and associated
references.

Sector
Estimated tectonic
transport (km) References

1 Sevier foreland 0 DeCelles & Coogan, 2006; Schelling et al. 2007; Yonkee &
Weil, 2010; Yonkee et al. 2014

2 Wyoming salient, north part c. 100 Paull & Paull, 1991; Yonkee & Weil, 2010
3 Wyoming salient, central part 140 Yonkee & Weil, 2010
4 Wyoming salient, south part 95 Yonkee & Weil, 2010
5 Central Utah salient, north part 100 Schelling et al. 2007
6 Central Utah salient, south sector c. 75 DeCelles & Coogan, 2006; Schelling et al. 2007
7 Sevier hinterland, Basin & Range province c. 80 Yonkee et al. 2014

Figure 6. (Colour online) Present-day and retrodeformed (for the PTU-Smithian interval) configurations for two regional cross-
sections in the (a) northern and (b) southern parts of the Sonoma Foreland Basin, illustrating the method used for palinspastic re-
construction (after Groshong, 2006). Balanced cross-sections adapted from (a) Yonkee & Weil (2010) and (b) DeCelles & Coogan
(2006) illustrate the retrodeformation process used to estimate the value of the tectonic transport, and therefore the approximate
original location of the sections during the studied interval. Triassic series (highlighted layers) are used as the basis for the retrode-
formation process and are horizontalized between the designated Pin and Loose lines (see text for details). The two cross-sections are
located in Figure 7.

3.b.2. Subsidence analysis and backstripping

Subsidence analysis quantifies the vertical movements
underwent by a given sedimentary depositional sur-
face through a graphic representation, by tracking
the subsidence and uplift history of said surface (Van
Hinte, 1978). This history is reconstructed based on
sedimentary thickness, lithology, palaeo-sea level,
palaeobathymetry and age data. This analysis also
accounts for the mechanical compaction underwent by

the sediments. The resulting curve provides a view of
the total subsidence history for a given stratigraphic
column (Van Hinte, 1978; Allen & Allen, 2005).
Steckler & Watts (1978) showed that the local iso-
static effect exerted by the sedimentary load can be
removed. This ‘backstripping’ method can therefore
help to characterize the tectonic subsidence only, as if
the basin has been filled by air only and not by water
and/or sediment during its history (Steckler & Watts,
1978; Xie & Heller, 2009). Backstripping is also
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Control of subsidence in the Sonoma Foreland Basin 9

Figure 7. (Colour online) Map representing the present-day location of the studied sections (dots) and their reconstructed position
(open circles) obtained after retrodeformation. Positions of balanced cross-sections (a) and (b) illustrated in Figure 6 are also indicated.
The present-day Sevier Thrust-and-Fold Belt (TFB; after Yonkee et al. 2014) is the main structural element responsible for tectonic
transport during post-Triassic times. Black arrows represent the retrodeformation values applied from the present-day location of the
studied sections. Seven sectors of similar estimated tectonic transport are delimited by dashed lines (see Table 1). Sector 1: Sevier
foreland; Sector 2: Wyoming salient, northern part; Sector 3: Wyoming salient, central part; Sector 4: Wyoming salient, southern part;
Sector 5: Central Utah salient, northern part; Sector 6: Central Utah salient, southern part; Sector 7: Sevier hinterland.

used to restore the initial thickness of a sedimentary
column (Angevine, Heller & Paola, 1990; Allen &
Allen, 2005). Lithological compositions and palaeo-
bathymetries have been checked using facies analysis
(online Supplementary Table S1) or literature data (see
analysed sections in Fig. 3b and online Supplementary
Table S2). Porosity was quantified by comparison with
experimental data (e.g. Van Hinte, 1978; Sclater &
Christie, 1980) and represents an important proxy for
compaction analysis. Additionally, Chevalier et al.
(2003) and Lachkar et al. (2009) showed that a highly
resolved biostratigraphic control is useful to define
and quantify variations in subsidence at a fine spatio-
temporal scale as it yields accurate subsidence rates.
For the Early Triassic Sonoma Foreland Basin, the
high-resolution ammonoid zonation by Brayard et al.
(2013) serves as the main timeframe. Complementary
absolute time lines were obtained from radiometric
ages published from coeval beds in South China
(Galfetti et al. 2007; Burgess, Bowring & Shen, 2014),
whereas the duration of the studied intervals was

interpolated from ammonoid biozone duration (after
Brühwiler et al. 2010 and Ware et al. 2015). Palaeo-
sea level curve is based on data from Haq, Hardenbol
& Vail (1988), providing a quantitative representation
of the reconstructed Early Triassic sea level.

We chose to not use the flexural backstripping
method (Allen & Allen, 2005) due to the lack of ap-
propriate data needed for such model (e.g. flexural ri-
gidity data, regional distribution of the sedimentary
load). Instead, we calculated the total and tectonic sub-
sidence curves using the one-dimensional (1D) local
isostatic approach of Steckler & Watts (1978). In ad-
dition, this method emphasizes the tectonic subsidence
as ‘a way of normalizing subsidence in different basins
that have undergone very different sedimentation his-
tories’ (Xie & Heller, 2009). Our results for the tec-
tonic subsidence history in the SFB can therefore be
compared to the compilation of Xie & Heller (2009).
Subsidence analyses were performed on four sections
(Fig. 3b) using the OSXBackstrip software perform-
ing 1D Airy backstripping (after Watts, 2001; Allen
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& Allen, 2005; available at: http://www.ux.uis.no/∼
nestor/work/programs.html). These sections were se-
lected for their completeness (a complete and continu-
ous sedimentary succession is reported from the PTU
to at least lower Spathian stratigraphy), for the pres-
ence of biostratigraphic markers (ammonoid beds) and
for their repartition within the SFB (representative of
both the northern and southern areas). A complete set
of initial parameters and detailed results of the subsid-
ence analysis for each of the four sections are reported
in online Supplementary Material S1.

This analysis bears limitations as some errors may
arise from uncertainties around the data used for the
subsidence analysis (Chevalier et al. 2003; Xie &
Heller, 2009): (1) accuracy of the measurement and
report of the sedimentary thickness; (2) backstripping
calculation; (3) palaeo-bathymetry estimations; and (4)
age control. Regarding the accuracy of the sediment
thickness, all selected sections have been measured at
a centimetric scale. Errors on measurements are there-
fore rather low, i.e. ±2 % of the total thickness. In the
backstripping analysis, variables used for the calcula-
tion of the burial compaction are: thickness; the initial
porosity of the sediment; and the lithological constant
of corresponding lithologies. The latter two parameters
are determined by comparison with experimental data
(e.g. Van Hinte, 1978; Sclater & Christie, 1980). Er-
ror on sediment decompaction is therefore estimated
to be low (c. ±5 %). Palaeobathymetry is hard to de-
termine because of the paucity of discriminating indic-
ators. We hypothesize that errors on depth estimations
are about ±10 %. For age control, we used a compil-
ation of biostratigraphic and radiochronological data,
leading to a detailed timeframe with a maximum error
of around 60 ka (Brühwiler et al. 2010).

3.b.3. Spatial distribution of sedimentary thickness

PTU-Smithian sedimentary thicknesses and their
respective location within the SFB were integ-
rated in Global Mapper v.16.2.3 GIS software
(available at http://www.bluemarblegeo.com/products/
global-mapper.php) to generate an isopach map by cre-
ating a 3D triangulated grid projection of thicknesses
(online Supplementary Figure S1).

3.b.4. Lithospheric heterogeneity of the basement

To explore the nature of the SFB basement, a ter-
rane map was constructed using previous published
maps by Yonkee et al. (2014), Yonkee & Weil (2015)
and Lund et al. (2015). In addition, we analysed sev-
eral types of geophysical data: a raw regional Bouguer
gravity anomaly map (Kucks, 1999); an aeromagnetic
anomaly map from Bankey et al. (2002); and literat-
ure data (e.g. Gilbert, Velasco & Zandt, 2007). We
also used published U/Pb radiochronological data to
assess an age for each basement terrane defined in the
basin (Foster et al. 2006; Fan et al. 2011; Mueller et al.
2011; Nelson, Hart & Frost, 2011; Strickland, Miller

& Wooden, 2011). It is worth noting that Precam-
brian crystalline basements, lying under detachments
and décollements responsible for nucleation of thrust-
ing, are not affected by these ‘thin-skin’ thrust-induced
displacements (DeCelles & Coogan, 2006; Schelling
et al. 2007; Yonkee & Weil, 2010).

3.b.5. Numerical model

The flexural response of the SFB basement has been
simulated using a 2D plane stress flexural model
solved with a finite element method code written in
Matlab®. This approach has been successfully used
to model lithospheric deformation due to topographic
and mantle loads (Le Pourhiet & Saleeby, 2013) and
ice loads (Moreau et al. 2015). First, a model of the
basin is made using field-based and literature data to
characterize and quantify the flexural response of the
modelled SFB basement. Three additional models are
then proposed to test different scenarios regarding pos-
sible mechanisms controlling the flexure of the SFB
basement.

4. Results

We first reconstructed the SFB palaeogeography and
used lithological and stratigraphical analyses to con-
strain the spatial distribution of the sedimentary record
across the basin. This approach provides estimations
of subsidence rates in the SFB. Secondly, we identified
and characterized the terranes that compose the SFB
basement using geophysical and cartographic data, as
well as previously published ages. We then reconstruc-
ted the morphology of the Golconda Allochthon in re-
lation to the heritage of the basin. Finally, a 2D model
is proposed to quantify the flexural behaviour of the
basin.

4.a. Lithological and stratigraphical analyses

Previous palaeogeographic reconstructions of the SFB
did not take tectonic events and the ensuing displace-
ments into account (e.g. Paull & Paull, 1993). The pal-
inspastic map of the basin with the initial locations of
the studied sections is shown on Figure 7. For the first
time post-Triassic displacements were accounted for,
including: (1) the Sevier orogeny (Cretaceous–Eocene)
and the associated regional shortening due to the set-
ting of a thrust-and-fold belt (e.g. Yonkee & Weil,
2010); and (2) the later Neogene – present-day exten-
sion linked to the Basin and Range province (e.g. Yon-
kee et al. 2014).

Based on the palinspastic map, we constructed a
palaeogeographic isopach map of the SFB (Fig. 8).
The isopach map shows that the distribution of the
sedimentary thickness for the PTU-Smithian interval
is heterogeneous within the basin, showing a thicker
succession in the northern than in the southern part.
In the southern part, the thickness gradually varies
along a roughly NW–SE-aligned transect, showing low
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Figure 8. (Colour online) Isopach map of the sedimentary
thicknesses recorded for the PTU-Smithian interval, showing
marked differences in sedimentary thicknesses between north-
ern and southern Sonoma Foreland Basin. The studied sections
are shown at their palaeolocation (Fig. 7). The reconstructed
Golconda Allochthon Thrust Front during the PTU-Smithian
studied interval is also indicated (modified from Dickinson,
2013; see also Fig. 12). The position of the wedge-top is based
on variations in the sedimentary thicknesses and on geophysical
data (Fig. 10).

thicknesses over a large surface (c. 500 km from east
to west). The thickness ranges from a few tenths of
metres in south and SE Utah, up to 250 m around
Salt Lake City. The westernmost area (NE Nevada) is
also characterized by low thicknesses (˂100 m thick).
Conversely, the northern part of the basin exhibits a
marked transition with thickness values broadly in-
creasing from east to west. The easternmost area of
the northern part (west Wyoming) shows sedimentary
thicknesses similar to that of the southern part (˂300 m
thick; Fig. 8). The west-central area records the thick-
est succession of the SFB (up to c. 550 m thick), and is
centred on present-day south-central Idaho. The west-
ernmost area (west-central Idaho) shows similar thick-
nesses (up to c. 300 m thick; Fig. 8).

The subsidence analysis (Fig. 9) also shows a clear
distinction between the northern and southern parts of
the basin. Confusion Range (CR, Fig. 9a) and Pahvant
Range (PR, Fig. 9b) sections exhibit relatively low
subsidence curves during the studied interval, whereas
Sheep Creek (SC, Fig. 9c) and Hot Springs (HS,
Fig. 9d) sections show a high subsidence profile. The
total and tectonic subsidence curves are similar and the
tectonic subsidence is here a major component of the
total subsidence, accounting for at least two-thirds of
the total subsidence, if not more (e.g. in CR, Fig. 9a).

When looking at the dominant lithologies (Fig. 9e),
the sections from the southern part of the basin display
a sedimentary succession dominated by coarse con-
glomerates and sandstones and microbial limestones of
the Moenkopi Group and the limestones/shales of the
Thaynes Group (Figs 3, 4, 9e), while the total subsid-
ence is low. By contrast, the sections from the north-
ern part of the SFB are dominated by fine siltstones
(Figs 3, 4, 9e) with an important subsidence.

Finally, the tectonic subsidence appears as a critical
diagnostic feature for the basin (Fig. 9f). A marked dif-
ference exists between mean tectonic subsidence rates
in the southern and northern parts of the basin (c.
100 m Ma–1 v. c. 500 m Ma–1, respectively). The south-
ern sections show a low-rate tectonic subsidence (50–
200 m Ma–1; Fig. 9e). Nevertheless, a marked increase
in subsidence rate is recorded during early Spathian
time for these sections (150–600 m Ma–1; Fig. 9e).
Conversely, the northern sections show a higher rate
of tectonic subsidence during the PTU-Smithian inter-
val (450–650 m Ma–1; Fig. 9e), whereas early Spathian
time is characterized by a decrease in subsidence rate
(100–250 m Ma–1; Fig. 9e).

4.b. Basement characterization

On the gravimetric anomaly map shown on Figure 10a,
black lines outline the geophysical features that may
represent traces of crustal/lithospheric faults or hetero-
geneities in the basement (Lowrie, 2007). The lowest
Bouguer anomaly values (<150 mGal, Fig. 10a) sug-
gest the presence of a thick crust, whereas moderate
negative anomalies (between –65 and –135 mGal;
white outlines) point towards a thinner crust and/or
the presence of lower-crustal high-density bodies (e.g.
Gilbert, Velasco & Zandt, 2007; Lowrie, 2007). The
Snake River Plain (SRP in Fig. 10a) is a Yellowstone
hotspot track-related basaltic province. This young
(of Neogene age) structure influences neither the geo-
metry nor the properties of the basement (Dickinson,
2013). The Farmington Anomaly (FA on Fig. 10a),
located in the centre of the study area, may result
from the presence of lower-crustal high-density mafic
and/or ultramafic material emplaced during a thermal
event dated at c. 1.64 Ga (Mueller et al. 2011). Al-
ternatively, it can have originated from a more recent
thermal event and/or the presence of a thin lithospheric
crust (e.g. Gilbert, Velasco & Zandt, 2007; Lowrie,
2007). Remnants of an important thermal metamorph-
ism including partial melting (c. 1.67 Ga) can also be
observed in this area (red dots in Fig. 10c; Mueller
et al. 2011). The Southern Anomaly (SA on Fig. 10a)
is poorly documented and may result from variations
in the crustal thickness of the terrane (e.g. Gilbert,
Velasco & Zandt, 2007; Lowrie, 2007), possibly linked
to the Ancestral Rocky Mountains orogeny or to the
more recent Laramide orogeny and the building of the
Rocky Mountains (Ye et al. 1996; Dickerson, 2003).

The aeromagnetic anomaly map presented
in Figure 10b discriminates areas of contrasted
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12 G . C A R AVAC A A N D OT H E R S

Figure 9. (Colour online) Subsidence analysis results obtained for the PTU-Smithian interval and early Spathian time using 1D
backstripping (Steckler & Watts, 1978; Van Hinte, 1978; Allen & Allen, 2005). Locations of sections are given in Figure 3b. Ages for
the bottom and top boundaries of the Smithian are interpolated from ammonoid biozone durations (after Brühwiler et al. 2010). Sea-
level curve after Haq, Hardenbol & Vail (1988). Ana.: Anasibirites beds; Col.: Columbites beds. Radiometric ages from (1) Burgess,
Bowring & Shen (2014); (2) and (3) Galfetti et al. (2007). Subsidence analysis for: (a) Confusion Range (CR) section; (b) Pahvant
Range (PR) section; (c) Sheep Creek (SC) section; (d) Hot Springs (HS) section. (e) Total subsidence curves for all the CR, PR, SC and
HS sections and associated dominant lithologies are indicated for each subinterval. (f) Tectonic subsidence curves for the CR, PR, SC
and HS sections and associated mean tectonic subsidence rates. (e) and (f) allow two distinct subsidence dynamics to be discriminated
between the southern and northern parts of the SFB.
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Control of subsidence in the Sonoma Foreland Basin 13

Figure 10. (Colour online) (a) Bouguer gravity anomaly map of the Sonoma Foreland Basin and its surroundings (in mGal; after
Kucks, 1999). Notable moderate gravity anomalies are highlighted by a white contour. SRP: Snake River Plain; FA: Farmington
Anomaly; SA: Southern Anomaly. Black lines represent the interpreted remnants of the main geophysical accidents, and limits between
crustal features. (b) Aeromagnetic anomaly map of the Sonoma Foreland Basin and its surroundings (in nT; after Bankey et al.
2002). Black lines highlight areas of contrasted magnetic signatures: SRP: Snake River Plain; SZ: Southern magnetic Zone; CZ:
Central magnetic Zone; NEZ: North-Eastern magnetic Zone; NZ: Northern magnetic Zone. (c) Map of the spatial location of the
radiochronological ages (U/Pb ages) after: (1) Foster et al. 2006; (2) Fan et al. 2011; (3) Mueller et al. 2011; (4) Nelson, Hart
& Frost, 2011; (5) Strickland, Miller & Wooden, 2011). Superimposed red dots indicate Mesoproterozoic metamorphism episodes
(Mueller et al. 2011). (d) Map of basement terranes of the SFB according to their age and nature, with Archean terranes (pale blue),
Palaeoproterozoic terranes (pale green) and Mesoproterozoic mobile belt (pale red). FT: Farmington Terrane; GCB: Grouse Creek
Block; MT: Mojave Terrane; WT: Wyoming Terrane; YT: Yavapai Terrane.
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14 G . C A R AVAC A A N D OT H E R S

magnetic signatures (separated by black lines on
Fig. 10b). These disturbances in magnetic field are
attributed to differences in the nature of the rocks com-
posing the basement (Turner, Rasson & Reeves, 2007).
We do not attempt to identify the exact nature of these
rocks here; rather, we use these contrasted anomalies
to characterize differences of rock types that compose
the basement (Purucker & Whaler, 2007; Lund et al.
2015). As on the Bouguer gravity anomaly map,
the presence of the Snake River Plane hotspot-track
(SRP in Fig. 10a, b) is obvious on the aeromagnetic
anomaly map. It features a strong positive magnetic
anomaly signal (>150 nT, Fig. 10b). The Southern
magnetic Zone (SZ on Fig. 10b) can be distinguished
on the southern part of the studied area by contrasted
anomalies with a wide range of variations (from c.
–200 nT up to c. 400 nT). The Central magnetic Zone
(CZ on Fig. 10b) occupies the central third of the map.
It is characterized by generally neutral to (strongly)
positive anomalies (from c. –10 nT to c. 60 nT, loc-
ally up to >150 nT). In the northeastern quarter of
the studied area, the North-Eastern magnetic Zone
(NEZ on Fig. 10b) is characterized by generally neg-
ative anomalies (between c. –80 nT and c. –10 nT).
Some areas with strong positive anomalies (>150 nT)
are also observed, whose shape and extension are
very similar in the Bouguer gravity anomaly map
(Fig. 10a). Finally, a small Northern magnetic Zone
(NZ on Fig. 10b) is visible north to the SRP and west
to the NZ. It shows contrasting anomalies, but with a
less important range of variation than the SRP and less
strongly positive values (from c. –60 nT to c. 150 nT
only).

Figure 10c synthesizes the location and the different
U/Pb radiochronological ages for the basement (Foster
et al. 2006; Fan et al. 2011; Mueller et al. 2011; Nel-
son, Hart & Frost, 2011; Strickland, Miller & Wooden,
2011). Basement rocks of Archean, Palaeoproterozoic
and Mesoproterozoic ages can be found throughout
the entire studied area (Fig. 10c). Archean ages are
found in Wyoming, southwestern Montana and north-
eastern Nevada (Fig. 10c; Fan et al. 2011; Mueller
et al. 2011; Nelson, Hart & Frost, 2011; Strickland,
Miller & Wooden, 2011). Palaeoproterozoic ages are
found in Utah and eastern Nevada (Fig. 10c; Mueller
et al. 2011; Nelson, Hart & Frost, 2011). Finally,
Mesoproterozoic ages associated with metamorphism
are found in northwestern Utah and northern Idaho
(Fig. 10c; Foster et al. 2006; Mueller et al. 2011; Nel-
son, Hart & Frost, 2011).

Five different lithospheric terranes composing the
SFB basement can therefore be identified: the Wyom-
ing Terrane (WT); the Grouse Creek Block (GCB); the
Mojave Terrane (MT); the Yavapai Terrane (YT); and
the Farmington Terrane (FT; Fig. 10d). The GCB and
WT are Archean terranes with ages of c. 2.5 Ga (Nel-
son, Hart & Frost, 2011; Strickland, Miller & Wooden,
2011) and 2.4–3.3 Ga (Fan et al. 2011; Mueller et al.
2011), respectively. The MT is a Palaeoproterozoic ter-
rane of age 2.04–2.34 Ga, whereas the YT is a younger

Figure 11. (Colour online) Map of the SFB basement (cf.
Fig. 10d) after their heritage and therefore their rheological be-
haviour. Archean Grouse Creek Block and Wyoming Terrane,
Palaeoproterozoic Mojave Terrane and Yavapai Terrane are con-
sidered ‘strong’ lithospheres with an important rigidity (pale
blue), while the Mesoproterozoic mobile belt Farmington Ter-
rane is considered a ‘thermally attenuated weak’ lithosphere due
to its lesser rigidity (pale red).

Palaeoproterozoic terrane of age 1.720–1.744 Ga (Nel-
son, Hart & Frost, 2011). The FT is a Mesoprotero-
zoic intracratonic mobile belt (Lund et al. 2015) com-
posed of reworked Archean crust (Whitmeyer & Karl-
strom, 2007), with metamorphism ages between 1.63
and 1.71 Ga (Foster et al. 2006; Mueller et al. 2011;
Nelson, Hart & Frost, 2011).

4.c. Impact of the heritage on the SFB development

The fact that the basement of the SFB is composed of
five Archean–Mesoproterozoic terranes questions the
potentially crucial role of inherited lithospheric fea-
tures on the formation and spatio-temporal evolution
of the SFB.

Lithospheric strength (i.e. rigidity) of the terranes
varies depending on their age and heritage (Poud-
jom Djomani et al. 2001; Artemieva & Mooney,
2002), with important changes in rheological be-
haviour and segregation between oldest (>1.7 Ga)
and juvenile crusts (<1.7 Ga; Artemieva & Mooney,
2002). Since older lithospheres are more rigid than
younger, Archean and Palaeoproterozoic basements
such as the Wyoming Terrane, Grouse Creek Block,
Mojave Terrane and Yavapai Terrane are defined
here as ‘strong’ lithospheres (e.g. Cardozo & Jordan,
2001; Leever et al. 2006; Fig. 11). Conversely, the
more recent Mesoproterozoic lithospheres such as the
Farmington Terrane (Fig. 11) are characterized by a
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Control of subsidence in the Sonoma Foreland Basin 15

lower rigidity (e.g. Cardozo & Jordan, 2001; Leever
et al. 2006; Fosdick, Graham & Hilley, 2014). Addi-
tionally, some lithospheres can be weaker than coeval
ones due to their structural heritage and thermal his-
tory, and are assumed to be ‘attenuated’ (sensu Fos-
dick, Graham & Hilley, 2014). The Farmington Ter-
rane was formed as a mobile belt between Archean
GCB and WT and underwent at least one event of in-
tense thermal metamorphism during Mesoproterozoic
time (Mueller et al. 2011; Lund et al. 2015) Younger
occurrences of similar events until Early Triassic time
cannot be ruled out, especially given the Bouguer grav-
ity anomaly hints of underplating dense material (see
Section 4.b). The Farmington Terrane is therefore con-
sidered here as a ‘thermally attenuated weak’ litho-
sphere (Fig. 11).

Due to the lithospheric heterogeneity of the
basement, the role of the boundary lithospheric
faults can be considered as essential. Neoarchean–
Palaeoproterozoic terranes are limited by mega-shear
zones along with deep (nearly) vertical crustal and/or
lithospheric faults (Figs 10d, 11). Terranes in the SFB
display some characteristics (e.g. dimension, geo-
metry) that are similar to the terranes associated
with the Neoarchean–Palaeoproterozoic accretionary
orogens (e.g. Chardon, Gapais & Cagnard, 2009;
Cagnard, Barbey & Gapais, 2011). These lithospheric
and crustal accidents have therefore been reactivated
since their Precambrian onset (e.g. Bryant & Nichols,
1988; Paulsen & Marshak, 1999). Additionally, sev-
eral authors (e.g. Eardley, 1939; Peterson, 1977) iden-
tified the presence of a topographic basement highland
(pale blue area in Fig. 12a, in colour online) near the
junction between the MT and the GCB/FT/WT dur-
ing Palaeozoic time, separating the northern and south-
ern areas of marked sedimentary accumulation. Eard-
ley (1939) first introduced this feature as the ‘North-
ern Utah Highland’. Peterson (1977) highlighted its
presence on his palinspastic maps for the Palaeozoic
stratigraphic record. Finally, this sedimentary and to-
pographic pattern seems to have been the same in
this basin since Proterozoic time (Paulsen & Marshak,
1999; Fig. 12a).

By the time of the initiation of the Sonoma orogeny,
this difference in sedimentary accumulation was well
marked in Palaeozoic series (Peterson, 1977). For in-
stance, about 6 km of marine sediments accumulated
in the Permian Oquirrh Basin in the northern part of
the SFB (Fig. 12a; Yonkee & Weil, 2015), whereas the
southern part of the SFB saw the deposition of only
several hundred metres of marine and terrigenous sed-
iments (e.g. c. 640 m in southwestern Utah; Rowley
et al. 2005) during the same interval. The thick Pa-
laeozoic sedimentary series in northern and southern
parts of the foreland (Peterson, 1977) would have al-
lowed the thrust belt to propagate, while the presence
of the topographic basement highland characterized by
a reduced sedimentary cover should have triggered the
formation of a lateral ramp and a recess in the central
part of the front (Fig. 12a). The presence of the topo-

Figure 12. (Colour online) (a) Simplified map showing the po-
sition of the Uinta recess (lateral ramp) and Wyoming and
Central Utah salients (frontal ramps) of the present-day Sevier
TFB (after Paulsen & Marshak, 1999; Yonkee & Weil, 2010)
and reconstructed Golconda Allochthon front and associated
recess (lateral ramp). Sedimentary pattern since Proterozoic
time shows two high accommodation zones separated by a
topographic high close to the terrane boundaries (Peterson,
1977, Bryant & Nichols, 1988; Paulsen & Marshak, 1999). Pa-
laeolocation of Permian Oquirrh Basin (e.g. Yonkee & Weil,
2015) and documented PTU-Smithian conglomerates in the
western SFB (e.g. Gabrielse, Snyder & Stewart, 1983; Lucas
& Orchard, 2007) are also included on the map. Red lines indic-
ate limits of the basement terranes (cf. Fig 9d). (b) Photograph
(courtesy of Hugo Bucher, Zürich) of the conglomerates found
in the area delimited in (a), presumably a product of western
relief dismantlement.

graphic high is attested by the occurrence of shallow
conglomerates in the western part of the SFB within
the PTU-Smithian interval (Fig. 12a, b; e.g. Gabrielse,
Snyder & Stewart, 1983; Lucas & Orchard, 2007; Jat-
tiot et al., in press). Previous reconstruction of the GA
thrust front also accounted for the presence of a recess
in the central part of the thrust front (e.g. Dickinson,
2006, 2013). Moreover, this mechanism underlying the
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Table 2. Summary of model parameters for the SFB and tested scenarii.

Parameter
SFB model
(Fig. 13)

Heterogeneous
basement scenario
(Fig. 14a)

Heterogeneous
allochthon scenario
(Fig. 14b)

Combined
heterogeneities
(basement &
allochthon; Fig. 14c)

Young’s modulus E (GPa) 80 80 80 80
Poisson’s ratio, ν 0.25 0.25 0.25 0.25
Elastic thickness of ‘strong’ lithosphere, Te1 (km) 90 90 90 90
Elastic thickness of ‘weak’ lithosphere, Te2 (km) 30 30 n/a 30

Loading parameters
Allochthon thickening, h (m) 1500 1500 1500 1500
Density of topographic load, ρ t (kg m–3) 2700 2700 2700 2700
Density of the mantle, ρm (kg m–3) 3300 3300 3300 3300
Density of the sedimentary infill, ρ i (kg m–3) 1600 1600 1600 1600
Gravitational acceleration, g (m s–²) 9.81 9.81 9.81 9.81

observed differential propagation has been proposed
by Paulsen & Marshak (1999) for the Sevier thrust-
and-fold belt which shows the presence of a lateral
ramp in its central part (Fig. 2). This was explained
by the pre-deformational sedimentary thicknesses pat-
tern showing thrusts propagating further when em-
placed upon a thicker sedimentary cover (Figs 2, 12a;
Paulsen & Marshak, 1999). It is worth noting that
both the lateral ramps of the Sevier and Golconda
thrust-and-fold belt are located close to and along the
lithospheric boundary between the MT and FT/WT
(Figs 2, 12a).

The GA heterogeneity may therefore have played
a role, complementary to the basement heritage, over
the flexural response of the SFB. However, due to the
scarcity of allochthon remnants, a numerical model is
required to decipher its potential role.

4.d. Simulating the flexural response of the basin

All the data discussed above have been integrated in a
2D numerical flexural model. This approach allows us
to quantify in a predictive way the flexural behaviour
of the basin in relation to its basement heritage.

4.d.1. Numerical approach and setup

The 2D plane stress flexural models have been solved
with a finite element method code written in Matlab®

(Le Pourhiet & Saleeby, 2013; Moreau et al. 2015). It
solves

∇2
(
D∇2ω

) = g (ρm − ρi ) + q (1)

for flexural deflection ω of a thick elastic plate
(Reissner–Mindlin approximation) using bilinear iso-
parametric elements with under integration technique
for the shear terms (Zienkiewicz & Taylor, 2005). In
Equation (1) the rigidity of the plate D, defined

D = ETe
3

12 (1 − ν2)
,

depends solely on the effective elastic thickness Te as
the plate Young’s modulus E and Poisson’s ratio ν are
fixed at 80 GPa and 0.25, respectively (Burov & Dia-

ment, 1995). The topographic loads q = ρ t g h account
for the thickening h resulting from the orogeny and
are computed using a density ρ t = 2700 kg m–3. The
mantle restoring forces are computed assuming a dens-
ity ρm = 3300 kg m–3, while the infill is considered to
be sediments of density ρ i =1600 kg m–3. We arbit-
rarily attributed a constant height h = 1500 m to the
topographic load as we concentrate on the effect of
heterogeneities of the allochthon morphology and rhe-
ology of the basement only. These initial parameters
are summarized in Table 2.

The models are 907 km wide in the x direction,
chosen to be normal to the trend of the orogenic belt,
and 1166 km in the y direction. We assume that iso-
static compensation is achieved underneath the oro-
gen and, accordingly, we set the curvature normal to
the right side to zero, ∂ω/∂x = 0. As the orogen is
very long compared to the region where flexural sub-
sidence is analysed, we enforce cylindrical boundary
conditions on the side of normal y (∂ω/∂y = 0). On the
right boundary, that is, far from the orogeny, the effect
of topographic loading can be considered null, corres-
ponding to ω = 0.

In this model, we used Te1 = 90 km for the ‘strong’
GCB, WT, MT and YT lithospheres (Table 2), which
is a good approximation for cratonic Te (Watts, 1992).
The ‘weak-attenuated’ FT is expected to show a con-
trasted lower Te value due to its assumed rheolo-
gical weaknesses. This value was set at Te2 = 30 km
(Table 2; e.g. Leever et al. 2006).

4.d.2. Model results

Figure 13 shows that the southern part of the front
is reconstructed as less propagated into the foreland
than the northern part (Fig. 12a; see Dickinson, 2006,
2013). In this model, the lateral ramp is spatially re-
stricted along the limit between the FT/WT and MT
(Fig. 13a). The northern part, emplaced mainly above
the ‘weak’ FT and in front of the largest part of the
GA, presents a narrower foredeep with λ ≈ 250 km
(Fig. 13a, b). The steep foredeep is bordered by a well-
expressed forebulge emplaced close to the FT/WT
boundary (Fig. 13a; XX’ in Fig. 13b). The southern
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Figure 13. (Colour online) Numerical model of the SFB after the reconstructed palaeogeography and terranes map (cf. Figs 11, 12)
with an heterogeneous basement (‘strong’ v. ‘thermally attenuated weak’ lithospheres) and an heterogeneous allochthon (recessed area
in central part of the front). (a) Simulated map of the SFB. Thin black lines indicate the position of the 2D profiles; red lines indicate
limits of the basement terranes (cf. Fig 10d). (b) 2D W–E profile of the northern part of the SFB model. The narrow foredeep is
emplaced upon the ‘thermally attenuated weak’ FT and is bordered by a well expressed forebulge. (c) 2D W–E profile of the southern
part of the SFB model. The wider foredeep is emplaced upon the ‘strong’ MT, and is bordered by a barely expressed forebulge. (d)
2D S–N profile of the SFB model. The two northern and southern parts of the basin are individualized with a limit near the MT/FT
boundary.

part of the foreland is set upon ‘strong’ lithospheres
(MT and YT) in front of the smallest and recessed parts
of the GA (Fig. 13a, c). The foredeep in this part of the
model is larger, with λ ≈ 320 km, and its profile (YY’
in Fig. 13c) also exhibits a weaker topography than in
the northern part. We also notice the presence of a
barely expressed forebulge in this area (Fig. 13a, c).

The dichotomy between the northern and southern
parts is especially obvious on a S–N transect (ZZ’ in
Fig. 13d). A shallow southern sub-basin with a gentle
northwards dip (< c. 250 m deep) is identified, as
well as a northern deeper basin with steep borders
(c. 600 m deep). The limit between the northern and
southern parts appears relatively close to the MT/FT
boundary (Fig. 13d), suggesting a significant role for
lithospheric boundaries in the differential flexuration
of the SFB. This N–S differentiation is found not
only in the foreland, but also within the allochthon it-
self as its simulated elevation is not continuous along
its front (Fig. 13a). Two areas of important elevations
(>1200 m) can be observed on both the northern and
southern sides of the GA recess. This positive relief

could have contributed as a significant source of terri-
genous material, then being deposited in the proximal
foreland.

5. Discussion

Our results highlight the spatial differences in subsid-
ence within the SFB, especially between its northern
and southern parts (Figs 8, 9). This differential subsid-
ence is underlined by variations in the sedimentary re-
cord (Figs 4, 5). In addition, a highland was probably
present in the central SFB and could physically have
partly separated these two parts of the basin.

5.a. Evidence for a foreland basin

The convex ‘lozenge shape’ (sensu Miall, 2010) of
the isopach map (Fig. 8) and the westwards-thickening
pattern of the sedimentary record are in agreement
with the common asymmetric geometry of foreland
basins (Fig. 8; DeCelles & Giles, 1996; Miall, 2010).
Additionally, the observed high-rate subsidence values
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(c. 100–500 m Ma–1) agree with foreland basin dy-
namics, even if these values are greater in magnitude
than values generally given in the literature for sim-
ilar contexts (e.g. Xie & Heller, 2009). This differ-
ence in magnitude is interpreted by considering that
estimations from backstripping analyses are generally
proposed for continuous sedimentary series spanning
several millions years, if not several tenth of millions
years (e.g. Xie & Heller, 2009). Over such long time
intervals, the subsidence rate values are less accur-
ate. The high resolution of the timeframe used for
the SFB mirrors short-acting structural events in the
basin. Similar ‘higher than average’ values for sub-
sidence rates have been calculated by Chevalier et al.
(2003) and Lachkar et al. (2009) using high-resolution
biostratigraphic time-calibrations, and also by Roddaz
et al. (2010) with similar magnitude for the Miocene
Amazonian Foreland Basin (c. 200–700 m Ma–1; Rod-
daz et al. 2010). Moreover, values observed in the SFB
(0.05–0.65 mm a–1) are consistent with yearly depos-
ition rates indicated by Allen & Allen (2005) for fore-
land basins (0.2–0.5 mm a–1). Finally, the convex-up
shape of the tectonic subsidence curves (Fig. 9f) is dia-
gnostic of foreland basins and corresponds to the pro-
gressive flexural response of the lithosphere to the to-
pographic load and/or sedimentary infill of the basin
overtime (Angevine, Heller & Paola, 1990; Allen &
Allen, 2005; Xie & Heller, 2009).

In the SFB, the topographic load is exerted by the
GA. This allochthon has been emplaced on the North
American continental margin, as evidenced by the geo-
chemical signature of the Koipato Formation volcanics
(Early Triassic) originating from the partial melting of
a Palaeoproterozoic continental crust (likely the Mo-
jave Terrane; Vetz, 2011).

The observed spatial heterogeneity of the sediment-
ary thickness in the SFB (Figs 4, 8) and the much
higher tectonic subsidence rate detected in the north-
ern part of the basin (c. 500 m Ma–1 v. c. 100 m Ma–1

in the southern part; Fig. 9f) are striking and raise the
question of the controlling factor(s) responsible for
this phenomenon, especially for such a short interval
(c. 1.3 Ma).

5.b. Potential underlying mechanisms for observed
variations in flexural subsidence

Spatial variations in subsidence within the SFB may
result from different mechanisms that are inherent to
the flexural nature of the foreland basin: (1) the sed-
imentary overload provoked by the continuous filling
of the basin over time; (2) the spatial heterogeneity of
the GA (topography and shape of the load); and/or (3)
the differential flexural response of the lithosphere to
this topographic load and linked to the rheology of the
basement.

Considering point (1) above, in some cases the dis-
tributed vertical load exerted by the sedimentary filling
of the basin might affect and amplify the flexuration
in foreland basins over time (Shanmugam & Walker,

1980; Beaumont, 1981; Cardozo & Jordan, 2001; Al-
len & Allen, 2005). As this load depends mainly on the
sedimentary fluxes and density of the filling, a denser
deposited material leads to a more important flexur-
ation of the lithosphere, as modelled by Angevine,
Heller & Paola (1990) and Fosdick, Graham & Hilley
(2014). The southern part of the SFB, characterized by
low subsidence rates, exhibits coarse clastic sediment-
ation in the Moenkopi Group with the presence of con-
glomerates and sandstones (Figs 3a, 4, 5b, c, e, 12; e.g.
Gabrielse, Snyder & Stewart, 1983; Olivier et al. 2016)
of density 2.5–2.8 kg cm−3 (Manger, 1963; McCulloh,
1967; Sclater & Christie, 1980; Tenzer et al. 2011).
The top of the Moenkopi Group consists of thick mi-
crobial limestone beds (Figs 3a, 4, 5e; e.g. Olivier et al.
2014, 2016; Vennin et al. 2015). These limestones bear
a density of c. 2.6–2.8 kg cm−3 (Manger, 1963; Mc-
Culloh, 1967; Sclater & Christie, 1980; Tenzer et al.
2011). In contrast, the northern part which is charac-
terized by high subsidence rates, is dominated by mar-
ine siltstones of the Dinwoody and Woodside Form-
ation (Figs 3a, 4, 5g; e.g. Kummel, 1954, 1957). The
density of this type of sediment is of 2.3–2.7 kg cm−3

(Manger, 1963; Sclater & Christie, 1980; Tenzer et al.
2011). Based on these data, the sedimentary filling
should have had a higher impact on the flexuration
in the southern part of the basin. However, we show
that the most important subsidence during the PTU-
Smithian interval took place in the northern part of the
SFB (Figs 8, 9). Moreover, the difference between tec-
tonic and total subsidence mainly consist of the local
isostasy and compaction of the sediments (Allen & Al-
len, 2005). With the tectonic subsidence being the most
important component of the total subsidence in the
SFB (Fig. 9a), this argues for a weak potential role of
the sedimentary load. The sedimentary overload there-
fore cannot be a major controlling factor explaining the
differential flexuration observed within the basin.

Regarding points (2) and (3) above, while it is pos-
sible to discuss the role of the sedimentary overload
using only field-based data, interpretations of the al-
lochthon heterogeneity and the basement rheological
behaviour require an additional model approach. We
combine these in the following discussion. To that pur-
pose, we used three different scenarios (Fig. 14) with
the same initial setup (Section 4.d; Table 2) except for
the x and y dimensions of the model that are set to
2000 km in the x direction and 1000 km in the y dir-
ection to avoid border effects.

The first scenario tests the impact of a rheologic-
ally heterogeneous basement loaded by a homogen-
eous allochthon (Fig. 14a). The rigidity of the terrane
controls its capacity to flexure. The shape of ensuing
flexural foreland basins and the distribution of their
sedimentary records are therefore a direct consequence
of the rheological behaviour of the basement (Angev-
ine, Heller & Paola, 1990; Watts, 1992; Cardozo &
Jordan, 2001; Allen & Allen, 2005; Leever et al. 2006;
Fosdick, Graham & Hilley, 2014). Upon the high-
rigidity part of the basement (Te1), a wide foreland
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Figure 14. (Colour online) Numerical models showing the effects of the heterogeneities of the basement and of the topographic
load over the formation of a foreland basin. Dashed lines represent an area analogue to the SFB configuration. (a) Scenario using a
heterogeneous basement with contrasted elastic thicknesses (Te1 = 3×Te2) and a homogeneous allochthon. A large convex foreland
is formed upon the most rigid lithosphere. (b) Scenario using a heterogenous allochthon with a c. 100 km wide recess (lateral ramp)
and a homogeneous fixed Te lithosphere. A slightly wider concave foreland is formed within the recessed area and a cornering relief
appears on both sides of the recessed area in the allochthon. (c) Scenario showing the combined effect of a heterogeneous basement
with contrasted elastic thicknesses (Te1 = 3×Te2) and a heterogeneous allochthon with a c. 100 km wide recess (lateral ramp). A much
wider convex foreland is formed within the recessed area upon the rigid lithosphere, and a cornering relief on both sides of the recess
in the allochthon is also visible.

(λ2 ≈ 250 km) develops with a well-expressed convex
shape in map view and a barely expressed forebulge.
Upon the low-rigidity parts of the basement (Te2), a
narrower foreland (λ1 ≈ 100 km) is structured with
a more pronounced forebulge. This is in agreement
with the SFB observations. However, a N–S transect
(aa’, Fig. 14a) shows that the wider area of the fore-
land basin is deeper than observed in the field and that
only one high-relief area is individualized within the
central part of the allochthon. Even if the rigidity does

play a role in the development of the flexural foreland
basin, as commonly assumed in the literature (Angev-
ine, Heller & Paola, 1990; DeCelles & Giles, 1996;
Cardozo & Jordan, 2001; Allen & Allen, 2005; Leever
et al. 2006; Miall, 2010; Fosdick, Graham & Hilley,
2014), our results indicate that a rheological difference
is not enough to control the variations in SFB.

The second scenario uses a heterogeneous topo-
graphic load exerted by the allochthon upon a homo-
geneous ‘strong’ lithosphere (Te = 90 km; Fig. 14b).
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Figure 15. (Colour online) Cross-sections of the Sonoma Foreland Basin (SFB) illustrating variations in the subsidence and sedi-
mentary accumulation pattern during the PTU-Smithian interval. The Golconda Allochthon (GA) is the main topographic load on the
lithosphere (Dickinson, 2006, 2013; Marzolf, 1993); the postulated wedge-top is also represented. (AA’) W–E cross-section in the
northern part of the basin exhibiting a narrow foreland with a high-rate tectonic subsidence with a developed silty and limestone sed-
imentation over the Mesoproterozoic ‘thermally attenuated weak’ Farmington Terrane (FT). (BB’) W–E cross-section in the southern
part of the Sonoma Foreland Basin showing a wide foreland with a low-rate tectonic subsidence, forming a reduced deposition of
mainly terrigenous clastic series upon the Palaeoproterozoic ‘strong’ Mojave Terrane (MT). A barely expressed forebulge borders this
part of the SFB. (CC’). S–N cross-section of the basin, highlighting the differences between southern and northern parts of the SFB in
terms of subsidence, sedimentation and geometry of the basin. The transition between these two parts is situated close to the terranes
boundary between MT and FT. This area is postulated to be a basement topographic highland, as supported by the transition between
southern terrigenous clastic series and northern silty sedimentation.

The heterogeneity in the allochthon is introduced in
the form of a c. 100 km wide recess (i.e. a lateral ramp)
along its front. The foreland basin shows a larger area
(λ2 ≈ 180 km) in front of the lateral ramp compared
to the northern and southern parts (λ1 ≈ 110 km).
Moreover, a N–S transect (bb’ in Fig. 14b) shows that
the narrow northern part of the basin is deeper than in
front of the recess. An important relief is also formed
in the corners of the allochthon on both lateral borders
of the recess. This is in agreement with SFB observa-

tions. However, the overall shape of the foreland basin
is rather concave and penetrates significantly into the
recessed area. Even if the morphology of the alloch-
thon plays a role in the development of the foreland
basin, this numerical scenario shows marked differ-
ences with the SFB.

The third scenario combines both previously tested
heterogeneities (Fig. 14c). The graphic output exhib-
its a wider foreland (λ2 ≈ 350 km) emplaced above
the ‘strong’ lithosphere in front of the recess, and a

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0016756817000164
Downloaded from https:/www.cambridge.org/core. Queen Mary, University of London, on 19 Apr 2017 at 15:36:03, subject to the Cambridge Core terms of use, available at



Control of subsidence in the Sonoma Foreland Basin 21

narrow foreland (λ1 ≈ 100 km) above ‘weak’ litho-
spheres. This model reproduces well the convex shape
of the foreland basin with a marked forebulge devel-
opment upon ‘weak’ lithospheres, whereas it is less
pronounced upon the strong lithosphere. Moreover, a
N–S transect (cc’ in Fig. 14c) highlights a deeper area
upon the ‘weak’ lithosphere. Finally, a prominent relief
of the allochthon is observed on both corners border-
ing the recess.

To summarize, from the three possible mechanisms
proposed to explain the origin of the differential flex-
ural subsidence in the SFB, only the combined effect
of the heterogeneous rheology of the basement and the
spatial heterogeneity of the GA can be considered as
the major controlling factors.

5.c. Combined outcomes of heterogeneities over differential
subsidence

Our field data highlight the contrasted subsidence
between the northern and southern parts of the SFB.
The numerical model provides a complement to dis-
cuss the potential combined outcomes of rheology
and allochthon heterogeneities. Congruent features
between the numerical model of the SFB (Fig. 13), the
tested scenarios (Fig. 14) and field data (Fig. 15) in-
deed argue for a major controlling role of the alloch-
thon spatial heterogeneities and of the basement rhe-
ological behaviour on the formation and development
of the SFB during Early Triassic time. As these two
parameters are directly linked to the age, nature and
pattern of the basement terranes, the lithosphere her-
itage likely controls the flexuration and therefore the
subsidence variations documented for the Early Trias-
sic SFB.

Combining all field data and numerical simulations,
a model of the SFB is proposed in Figure 15. The
northern part of the basin (section AA’) is charac-
terized by a narrow foredeep (λ ≈ 250 km) with a
high-rate tectonic subsidence (c. 500 m Ma–1) and
high sedimentary thickness (up to c. 550 m of mostly
fine siltstones deposits), which is located upon the
‘weak/attenuated’ Farmington Terrane and in front of
the largest reconstructed part of the GA. The pos-
tulated wedge-top and forebulge are located above
the ‘strong’ Archean lithospheres, that is, the GCB
and WT, respectively. The southern part of the SFB
exhibits a large foredeep (λ ≈ 500 km, section
BB’) with a relatively low-rate tectonic subsidence
(c. 100 m Ma–1) and a reduced sedimentary thickness
(up to c. 250 m of mixed limestones and coarse clastic
deposits). This part of the SFB is emplaced upon the
‘strong’ lithospheres of the Palaeoproterozoic MT and
YT, in front of the thinnest reconstructed part of the
GA. The southern SFB also shows a reduced postu-
lated wedge-top to the west and a barely expressed
forebulge to the east. These spatial variations in flex-
ural subsidence and their good agreement with limits
of the terranes composing the SFB basement are also
evident along a S–N transect (section CC’). The spa-

tial separation between the shallow and gently dipping
southern part of the SFB and the deep and steep north-
ern part is obvious. This separation is located close to
the boundary between MT and FT.

6. Conclusion

In this study, we used an integrated approach to de-
cipher the major role of the lithospheric heritage
over the differential sedimentary deposition in the
Sonoma Foreland Basin during Early Triassic time.
Our approach used both field-based sedimentary data,
calibrated within a highly resolved biostratigraphic
framework, and numerical model to test the influence
of several potential controlling factors. Palinspastic re-
constructions were also performed to obtain an accur-
ate palaeogeographic context.

Using high-resolution temporal data, the subsidence
analyses help to identify the main controlling factors at
the origin of the spatial variations of the Early Triassic
sedimentary record in the SFB. The sedimentary over-
load cannot satisfactorily explain the observed vari-
ations in thickness of the sedimentary record through-
out the basin. The combined effects of the contrasted
lithospheric strength of the terranes (‘weak’ v. ‘strong’
lithospheres) composing the basement of the basin,
and the spatial heterogeneity of the Golconda Alloch-
thon (with the presence of a lateral ramp within the
belt), best explain a differential flexural response of
the SFB basement to the emplacement of the alloch-
thon. Such a differential flexural response ultimately
controls the overall geometry of the basin through
spatially heterogeneous tectonic subsidence rates:
c. 100 m Ma–1 in a wide southern part upon a ‘strong’
lithosphere loaded by a recessed and thin (in map-
view) front belt, v. c. 500 m Ma–1 in a narrower north-
ern part upon a ‘weak/attenuated’ lithosphere loaded
by a larger front belt. Although field data highlight the
potential role of the rheological behaviour of the base-
ment based on observed differential subsidence rates,
the numerical model approach suggests a combined ef-
fect of the latter and of the spatial heterogeneity of the
allochthon.

As heterogeneities of the basement and in the mor-
phology of the allochthon result from the nature and
history of the different lithospheric terranes that com-
pose the basement, the lithosphere heritage likely
played a prime role in controlling the development
of the Sonoma Foreland Basin during Early Triassic
time, and consequently generated the observed vari-
ations of the sedimentary record through differential
subsidence.
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The integrated study of the SFB allowed to confirm the previously discussed foreland 

nature of this basin and its formation as a flexural response to the emplacement of the 

Golconda Allochthon during the Sonoma orogeny. However, this process could not account 

for the observed discrepancy between northern and southern parts of the basin. We notably 

show that the sedimentary overload is not responsible for the observed variation in 

subsidence within the basin, but that inherited rheological properties of the basement are the 

main controlling factors involved there. Indeed, the differential resistance of the terranes that 

compose the basement of the SFB is responsible for a differential resistance to the flexuration 

provoked by the allochthon, and therefore influences the tectonic subsidence rates. 

Moreover, inherited basement pattern is also responsible for spatial heterogeneity of the 

allochthon, leading to a differential topographic load exerted onto the flexure basement of 

the basin, also accounting for the differential subsidence observe in the SFB. 

We therefore highlight a major role of the heritage over the subsidence and spatial 

distribution of the sedimentary thickness across the SFB. 
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V. SYNTHESIS/CONCLUSIONS 

SFB OR SFBs? 
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The Early Triassic Sonoma Foreland Basin is a key area showing an excellent record of 

the biotic recovery after the Permian-Triassic mass extinction (e.g., Kummel, 1954, 1957; 

Blakey, 1974; Schubert & Bottjer, 1995; Paull & Paull, 1997; Pruss & Bottjer, 2004, 2005; Mata 

& Bottjer, 2011). Several recent works (e.g., Brayard et al., 2017, Jattiot et al., in prep.) 

especially well highlighted the exceptional diversity documented in the SFB compared to some 

other basins and its importance in reinterpreting the paradigms commonly assumed until now 

on the ET recovery (e.g., “disaster taxa”, Schubert & Bottjer, 1992, 1995; He et al., 2007; 

“anachronistic facies”, Woods et al., 1999; Pruss et al., 2005; Woods, 2009; “Lilliput effect”, 

Urbanek, 1993; Payne, 2005, Twitchett, 2007; Fraiser et al;, 2011; “global anoxia/euxinia”, 

Isozaki, 1997; Meyer et al., 2011; Grasby et al., 2013; see section I.B.1). 

However, the detailed paleoenvironmental and geodynamical framework and the 4D 

evolution of the SFB was poorly constrained up to now. This original integrated work brings 

new insights on the controlling physical and chemical mechanisms over the spatio-temporal 

variations of the geological record observed within the SFB. 

 

A. Evidence for two sub-basins 

 

• Paleontological record 
The paleontological record within the SFB is heterogeneous in terms of diversity and 

preservation and show marked variations according to the studied interval (e.g., Lucas et al., 

2007; Romano et al., 2012; Hofmann et al., 2013; Jenks et al., 2013; Zatoń, et al., 2013). 

However, some highly diversified and complex assemblages (e.g., Brayard et al., 2011), as well 

as the occurrence of unexpected organisms and ecosystems for the ET (e.g., Brayard et al., 

2010, 2015, 2017; Villier et al., in press), represent convincing examples of advanced recovery 

steps rapidly after the PTB crisis. The SFB may therefore appear as an exception to the 

“delayed recovery” scenario commonly assumed (e.g., Fraiser & Bottjer, 2007; Meyer et al., 

2011; Song et al., 2012; Pietsch et al., 2014) although many ET paradigms were paradoxically 

seminally proposed from earlier observations in the SFB (e.g., Schubert & Bottjer, 1992; Fraiser 

& Bottjer, 2004; Pruss & Bottjer, 2004). Overall, several biological communities show the co-

occurrence of abundant benthic (e.g., bivalves, gastropods, echinoderms, sponges; e.g., 

Brayard et al., 2010, 2017; Hofmann et al., 2013) and nekto-pelagic organisms (e.g., fishes, 

ammonoids; e.g., Romano et al., 2012; Brayard et al., 2013; Jattiot et al., in press, in prep.). 

Numerous abundant and large-sized trace fossils at different places in the SFB also indicate 

important infaunal assemblages (e.g., Vennin et al., 2015; Caravaca et al., 2017, see section 

III.A). Different microbial communities were also present in the SFB, and are documented by 

massive microbial carbonate levels with different morphologies (Pruss & Bottjer, 2004; 

Marenco et al., 2012; Woods, 2013; Vennin et al., 2015; Olivier et al., 2016, see appendix 1), 

and by microbially-induced sedimentary structures (MISS) at some places (Grosjean et al., in 

prep.). 
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Nevertheless, these assemblages are not spatio-temporally homogeneous within the 

basin. If some organisms indeed show a wide distribution at the basin-scale (e.g., presence of 

siliceous sponges in both the southern and northern parts of the SFB, Brayard et al., 2011, 

2017), some others exhibit distribution patterns restricted to the northern or to the southern 

part of the SSB. 

This is the case for massive microbial deposits that are observed in the southern part of 

the SFB (e.g., MV, see section III.C, and Torrey area, see appendix 1; Fig. V.A.1), but lack from 

the central Utah and northern part of the SFB. In the latter area, deposition of MISS and the 

absence of carbonated beds are observed at some places (see section III.B; Fig. V.A.1). A 

North/South opposition can also be observed for metazoan organisms. This is the case for 

ammonoids, which show spatially-restricted distribution of some genera into a specific part of 

the SFB (Fig. V.A.1; Jattiot et al., in prep. and ongoing work). 

 

Figure V.A.1: Paleogeographic map illustrating the spatial distribution of some ammonoids genera and 

microbial deposits and displaying a segregation between the northern and southern parts of the basin (after 

Brayard et al., 2013; Olivier et al., 2014, 2016; Vennin et al., 2015; Grosjean et al., in prep.; Jattiot et al., in 

prep.). 

 

This distinction based on biotic data between different parts of the basin is striking and 

may be linked to local environmental conditions (e.g., depositional settings, nutrient and 

clastic influxes, etc.) allowing for instance the onset and proliferation of microbial 

communities and their preservation, or the flourishing of nekto-pelagic organisms. 
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Thus, a N/S SFB partitioning is visible in the paleontological record. 

 

• Sedimentary record 
In the SFB, the ET sedimentary record is represented by 3 main interfingering entities 

represented by the following simplified scheme: 

➢ The Moenkopi Group (sensu Lucas et al., 2007), characterized by transitional 

continental to marine (dolo-)siltstones and sandstones (locally conglomerates) 

that compose “red beds” (e.g., Blakey, 1974, Lucas et al., 2007; Vennin et al., 

2015; Olivier et al., 2016, see appendix 1). On top of these terrigenous sediments 

lies meter-thick beds of peritidal to intertidal microbial limestones with various 

internal structures according to the depositional setting (e.g., thrombolitic, 

stromatolitic; e.g., Vennin et al., 2015). 

➢ The Griesbachian to early/middle Smithian Dinwoody and Woodside formations, 

characterized by marine fine (dolo-)siltstones series of tidal flat settings, and 

locally carbonated shoal deposits (e.g., Kummel, 1954, 1957, Paull & Paull, 1983, 

1993, 1994). The Dinwoody and Woodside formations are very close in lithology 

and often hard to distinguish. They are also described (particularly the 

Woodside) as being similar to the Moenkopi red beds without the typical red 

coloration (e.g., Kummel, 1957, Paull & Paull, 1993). However, these two 

formations bear an obvious marine affinity (e.g., Paull & Paull, 1994) rather than 

a transitional character like the Moenkopi’s red beds. 

➢ The Thaynes Group (sensu Lucas et al., 2007), formed by metric to plurimetric 

beds of bioclastic limestones deposited under shoreface to upper offshore 

conditions. Locally, storm-induced and shoal deposits are recorded. 

Until the middle-late Smithian, the SFB sedimentary record can be well divided between 

its southern and northern part: the Moenkopi Group red beds are characteristic of the 

southern transitional deposits, while the northern part of the basin is filled with Dinwoody 

and Woodside marine sediments (Fig. V.A.2a). From the middle-late Smithian, the Thaynes 

Group is emplaced in both the northern and southern parts of the basin, and represents the 

dominant sedimentary record of the entire SFB (Fig. V.A.2b). The Moenkopi Group is found in 

the most proximal localities (Fig. V.A.2b). The Thaynes marine bioclastic sedimentation is 

thought to be emplaced in relation to a regional third order transgression whose maximum 

flooding is reached just before the SSB (e.g., Embry, 1997; Brayard et al., 2013; Vennin et al., 

2015; Olivier et al., 2016, see appendix 1). A subsequent spatially-varying regression occurs 

between the northern and southern parts of the basin. In the south, rapidly retreating marine 

conditions allow deposition of a renewed unit of red beds during the early Spathian (e.g., 

Blakey, 1974; Lucas et al., 2007; Olivier et al., 2014), whereas marine conditions last longer in 

the northern part of the SFB (e.g., Kummel, 1957; Caravaca et al., 2017, see section III.A). 
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Figure V.A.2: Paleogeographic maps of the spatial distribution of the Early Triassic dominant lithological 

formations in the SFB. a) Spatial distribution of the Dinwoody and Woodside formations and of the Moenkopi 

Group until the middle-late Smithian. b) Spatial distribution of the remaining Moenkopi Group and of the 

Thaynes Group during late Smithian and early Spathian. 

 

Sedimentary deposition in the SFB is therefore diachroneous, and argues for the 

importance of local controls on the depositional setting. The SFB was a very flat large 

wavelength basin, where small variation in accommodation have great and rapid 

consequences upon migration of facies belts, resulting in a patchy sedimentary record (e.g., 

the Torrey area evidencing a mosaic facies pattern; Olivier et al., 2016, see appendix 1). 

The sedimentary record, therefore, highlights a North/South dichotomy in terms of 

sedimentary deposition within the SFB (Fig. V.A.2). 

 

• Geochemical record 
Geochemical analyses at the basin-scale were lacking up to now, and only few studies 

were available (e.g., Marenco et al., 2008, 2012; Thomazo et al., 2016). 

The study of the geochemical record of three distant sections, and more particularly of 

the T&M elements indicates that the entire SFB has comparable water column chemistry and 

inputs as suggested by detrital elementary ratios. T&M elements also show that while dysoxic 

conditions may have been present episodically, no marked anoxia can be observed in the 

shallow deposits of the SFB. Anoxia may therefore not drive the sedimentary record of the ET 

in the SFB basin which contrast from the common interpretation found in the literature based 

on other basins localities (e.g., South China, Sun et al., 2012; Arctic Canada; Grasby et al., 

2013). 
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The carbon isotope record exhibits marked differences among sections. While a global, 

first order, influence of the exogenic carbon cycle is observed (couplet of negative and positive 

shifts before and across the SSB), it appears that the main controlling factors behind these 

variations within the basin are of local origin and linked to the depositional setting. 

The southern and northern geochemical records could therefore be differentiated based 

on C isotope data (Fig. V.A.3). In the southern part, the MV section shows a marked influence 

of secondary diagenetic processes altering the original carbon isotope signal. Several and 

recurrent suboxic to anoxic conditions at the bottom-water/sediment interface are suggested 

by T&M elements concentrations. In the northern part of the basin, the record of the HS 

section appears more pristine. Only a few episodes of potential suboxic conditions at the 

bottom-water/sediment interface are documented. The LWC section has not yet been tested 

for alteration of the signal using T&M elements. However, based on the observed carbon 

isotope signal, secondary processes have most probably, at least partly, altered the original 

signal. 

 

 

Figure V.A.3: Map of the studied area with location of the HS, LWC and MV section, representing northern, 

central “transitional” and southern parts of the SFB, respectively. SFB geochemical signals record differential 

preservation of the primary depositional signatures and imprint by local secondary processes. 

 

To sum up, we suggest that two sub-basins can be identified within the SFB based on 

the geochemical record. Local controls are responsible for observed differences. However, 
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mechanisms underlying this differentiation remain to investigate in further details: 

provenance analyses can help sorting out the precise nature and origin of the fluxes entering 

the SFB reservoirs. The northern part of the basin is thought to have been connected to the 

open Panthalassa Ocean via a northwestern passage (Fig. V.A.3, Colpron & Nelson, 2009). This 

communication with the open sea and its continuous marine influences upon the sedimentary 

deposition may have been a key factor explaining the presence of a more pristine signal in the 

northern sub-basin and providing a well-preserved paired carbon isotopic record. The 

southern sub-basin, as exemplified by the MV record, shows important alterations of the 

geochemical signal owe to remobilization and fluid circulation (e.g., generating Mn-bearing 

carbonates; Thomazo et al., 2016). As this part of the SFB is more distant and disconnected 

from the open sea until the late Smithian maximum of transgression, endorheic conditions 

may have prevailed, leading to more accentuated diagenetic alterations and/or fluctuations 

of water column hydrochemistry such as the alkalinity, thus leading to local modifications of 

the water column geochemistry (e.g., El Tabakh & Schreiber, 1998). The “transitional” central 

part of the basin remains to be further study and could represent a “mixing” zone. 

 

• Geodynamical framework of the SFB 
The spatial distribution of the sedimentary thickness record was analyzed at the basin 

scale and showed marked differences between the southern and the northern parts. The 

southern part, mainly covering southern and central Utah, displays sedimentary deposits with 

a thickness from a few meters up to no more than 250 m in central Utah, with an average 

around a few to several tenths of meters (Fig. V.A.4). On the contrary, the northern part, 

centered in northern Utah and southern Idaho, shows sedimentary successions no less than 

300 m-thick and up to ~600 m (Fig. V.A.4). 
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Figure V.A.4: Isopach map of the sedimentary thicknesses recorded for the PTU-Smithian interval, showing 

marked differences in sedimentary thicknesses between northern and southern parts of the SFB (after 

Caravaca et al., in press, see section IV). Red lines indicate the limits of lithospheric terranes; GCB: Grouse 

Creek Block; FT: Farmington Terrane; WT: Wyoming Terrane; MT: Mojave Terrane; YT: Yavapai Terrane.  

 

As these series were deposited under shallow shoreface to upper offshore environments 

in both parts of the SFB, it raises the question of the subsidence rates providing such different 

records of thickness. Sedimentary successions in both parts of the basin were backstripped 

and subsidence rates of ~100 m/Myr in the southern part, and ~500 m/Myr in the northern 

part, with a preponderant tectonic subsidence driver were deduced (Caravaca et al., in press, 

see section IV). Such important rates and the typical convex-up shape of the backstripping 

curves (see Caravaca et al., in press, see section IV) strongly suggest that this basin was a 

foreland basin. 

The basement of the SFB is composed of 5 different lithospheric terranes of various ages: 

the Archean Wyoming Terrane and Grouse Creek Block, the Paleoproterozoic Mojave and 

Yavapai Terranes, and the Mesoproterozoic Farmington Terrane (Fig; V.A.4). Age differences 

among these terranes are responsible for differences in their rheological behavior. The 

Archean and Paleoproterozoic Terranes are old and thick lithospheric terranes with a limited 

elasticity and enhanced rigidity: those are identified as “strong” terranes. On the contrary, the 

Farmington Terrane is a “juvenile”, thin, mobile belt, and underwent high tectonic constrains 

and an intense thermal metamorphism: it is considered as a “weak” lithosphere. 
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The discrepancies between “strong” and “weak” lithospheres appeared to be a major 

controlling factor over the spatio-temporal evolution of the SFB for two main reasons: 

➢ First, the Farmington “weak” lithosphere, given its reduced rigidity, likely 

accommodated more flexural deformation provoked by the westward 

emplacement of the Golconda Allochthon. It therefore allowed a mere five times 

more important tectonic subsidence than in the southern part of the basin, 

emplaced above “strong” lithospheres with higher rigidity. 

➢ Second, as this lithospheric differentiation dates back to the Proterozoic, 

inherited features have played a preponderant role in the history of the basin 

before the onset of the Sonoma Orogeny and emplacement of the Golconda 

Allochthon. The E/W limit between the southern Mojave Terrane and the 

northern Grouse Creek Block, Farmington and Wyoming Terranes was in place 

for ~2Gyr and formed a topographic high, which was at the origin of the 

formation of a lateral ramp along the front of the Golconda Allochthon (Fig. 

V.A.4). This resulted in a spatial heterogeneity of the allochthon, and 

consequently, on spatial variations of the topographic load exerted by the 

Golconda Allochthon, contributing to the differential subsidence observed in the 

SFB (Caravaca et al., in press, see section IV). 

Inherited properties of the lithospheric basement therefore appear as a first order 

driver over the subsidence and spatial pattern of the sedimentary deposition across the SFB. 

 

• Perspectives on basin paleogeography 
The Sonoma Foreland Basin appears to be more complex than commonly assumed (e.g., 

Paull & Paull, 1993; Dickinson, 2006, 2013; Goodspeed & Lucas, 2007; Blakey, 2008; Ingersoll, 

2008; Brayard et al., 2013), with an internal differential evolution through space and time. 

Heritage and lithospheric parameters are a first order controlling factor underlying the 

North/South subsidence differences within the basin. This differentiation is also visible in the 

sedimentary, geochemical and paleontological records. Therefore, two distinct parts can be 

defined: the North-SFB and South-SFB sub-basins (Fig. V.A.5). 
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Figure V.A.5: Revised paleogeography for the SFB, showing a distinction between the North-SFB and South-SFB, 

delimited by a central “transitional” part (potentially a topographic high). 

 

Nevertheless, the detailed paleogeography of the SFB remains not completely resolved. 

Indeed, several areas lack data to understand their evolution during the Early Triassic although 

they may be important to the understanding of the basin’s dynamic. One of this key area is 

the central “transitional” domain that is located in North-central Utah (Fig. V.A.5). Being a 

potential topographic high delimiting the North-SFB from the South-SFB, this area has to be 

thoroughly investigated, but exposures and good outcrops are very rare. A drilling campaign 

to access preserved Early Triassic record could thus be considered. The Eastern and southern 

bordering areas of the SFB (Fig. V.A.5) are also not well constrained, mostly because of their 

continental settings. However, a better knowledge of these areas would help to delimit the 

maximum extension of the marine influence into the basin, and especially to resolve the 

question of the provenance of the terrigenous inputs into the SFB. For instance, Banham & 

Mountney (2013) described the presence of ET salt-walled mini-basins in southeasternmost 

Utah controlling the local fluvial network that directly contributed into the SFB. Finally, the 

area situated at the triple-junction of Nevada, Idaho and Utah is also lacking new field data 

while being modeled as the most accommodating and potentially deepest part of the basin 

(Fig. V.A.5; Caravaca et al., in press, see section IV). 
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B. Ongoing work: expected impact on the 4D evolution of 

depositional settings in the North- and South-SFB 

 
The existence of two distinct sub-basins within the SFB (North-SFB and South-SFB) is 

visible through variation in geodynamical, geochemical and paleontological records. This 

distinction is also remarkable in the sedimentary record of the basin, and therefore has major 

consequences on the depositional settings and their evolution during the entire Early Triassic. 

It is therefore of paramount interest to observe, describe and understand these local 

variations and the local evolution of the depositional setting for precise paleoenvironmental 

reconstruction. 

This ongoing project relies on this work and on the many sections of the SFB to be 

interpreted. However, results gathered until now already gave an idea of the general evolution 

of the paleoenvironmental conditions in several distinct parts of the basin (e.g., Brayard et al., 

2013, 2017; Olivier et al., 2014, 2016, see appendix 1; Vennin et al., 2015; Grosjean et al., in 

prep.; Jattiot et al., in prep.). 

A preliminary synthesis of the evolution of depositional setting and migration of the 

facies belts during the middle to late Smithian allows to recognize seven main facies 

association (FA1 to FA7, Fig. V.B.1, Table V.B.1), characterizing seven successive depositional 

settings throughout the whole SFB evolving from the proximal transitional environments to 

outer platform conditions (Fig. V.B.1; Table V.B.1). 

 

 

Figure V.B.1: Simplified synthetic depositional model for the main facies associations FA1 to FA7 (Table 7.B.1) 

described for the middle-late Smithian interval in the SFB. FWWB: Fair weather wave base; SWB: Storm wave 

base. 
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We suggest to define seven main facies associations at the SFB scale as following: Facies 

FA1 is characteristic of the Moenkopi Group “red beds”, and consists in siltstones and 

sandstones, locally conglomerates, representing shallow transitional continental to marine 

conditions (Fig. V.B.1; Table V.B.1). Facies FA2 consists in fine (dolo-)siltstones and calcarenites 

deposited on a peritidal flat of inner ramp (Fig. V.B.1; Table V.B.1). This association is of marine 

affinity with a sustained bioclastic content (Table V.B.1), and is restricted to the North-SFB 

(Figs. V.B.2 and V.B.3) where it represents the main facies associated with the Dinwoody and 

Woodside formations. Facies FA3 is characterized by massive intertidal to subtidal microbial 

limestones beds of an inner ramp (Fig. V.B.1; Table V.B.1). This association is restricted to the 

South-SFB (Figs. V.B.2 and V.B.3). Facies FA4 represents high energy ooidic shoals of inner 

platform (Fig. V.B.1; Table V.B.1). Facies FA5 is a continuity of the latter, and represent deeper 

wave-dominated mid-platform conditions (Fig. V.B.1; Table V.B.1). Finally, FA6 and FA7 

represent mud-dominated deposition of upper to lower and deep offshore conditions, 

respectively (Fig. V.B.1; Table V.B.1). Both these associations represent lower energy 

deposition, with locally episodic storm-induced bioaccumulations (Fig. V.B.1; Table V.B.1). 

These depositional settings are common to both the two sub-basins, and for the two 

time-intervals considered here (Owenites and Anasibirites beds). This highlights a continuity 

in the lateral and vertical evolution of the depositional settings, following a transgressive 

pattern, compatible with the third-order transgressive sequence known for the Smithian, with 

a maximum flooding attained around the Anasibirites beds (e.g., Embry, 1997; Brayard et al., 

2013; Vennin et al., 2015; Olivier et al., 2016, see appendix 1). 

Figures V.B.2 and V.B.3 show the spatial repartition of the identified main depositional 

settings observed throughout the SFB for the interval corresponding to the Owenites beds 

(~middle Smithian; Fig. V.B.2) and the Anasibirites beds (~late Smithian; Fig. V.B.3), 

respectively. 

Figure V.B.2 illustrates the globally shallow and tide-dominated deposition of the SFB 

during the Owenites beds (middle Smithian) time-interval. A westward and northward 

deepening trend is observed, as expected due to the foreland nature of the basin and the 

northwestern open marine influence. In South-SFB, depositional settings evolve along a 

SE/NW transect from the transitional red beds, restricted to the southern and eastern borders 

of the sub-basin, to upper offshore mud-dominated outer platforms in northwestern part of 

the South-SFB. In the North-SFB, the depositional settings evolve from terrigenous transitional 

deposits in its southeastern part, but reach deeper offshore conditions in the westernmost 

part. 
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Main facies association Biotic 
components 

Non-biotic 
elements 

Structures Energy Main 
depositional 
setting 

Refs. 

FA1 "Red beds" 
siltstones/sandstones 
(locally 
conglomerates) to 
dolosiltstone 

Rare 
fragmented 
bivalves 

Subrounded 
to subangular 
quartz grains 
and micas 
(locally 
conglomerates 
with 
moderately to 
well-sorted 
pebbles to 
granules), 
peloids 

Erosive 
sandstones with 
basal lags, plane-
parallel stratified 
conglomerates, 
trough crossed 
bedded sands to 
silts, ripple-
laminated sands 
with silt and clay 
alternations, 
mud-cracks and 
rootlets 

Low to 
moderate 
energy 
(locally 
high) 

Transitional 
continental 
to marine 
tidal flat 

Blakey, 1974; 
Lucas et al., 
2007; Olivier 
et al., 2014, 
2016 (cf. 
appendix 1); 
Vennin et al., 
2015 

FA2 (Dolo-)siltstones to 
calcarenites 

Bivalves, 
gastropods, 
echinoderms 

Subrounded 
silty quartz 
grains 

Asymmetric 
ripples and 
megaripples, flat 
pebbles, mud 
flakes, 
intraformationnal 
breccias, planar 
to trough cross-
beddings; rare to 
common 
bioturbation 

Low to 
moderate 
energy, 
locally high 
(and 
storm-
influenced) 

Peritidal flat, 
inner ramp 

Kummel, 
1957; Olivier 
et al., 2016 
(cf. appendix 
1); Vennin et 
al., 2015; 
Grosjean et 
al., in prep. 

FA3 Microbial limestones Associations 
of siliceous 
sponges, 
gastropods, 
bivalves, 
echinoderms 
and ostracods 

Peloids, 
oncoids, mud-
clasts 

Macrostructure: 
pluri-dm to m 
coalescent 
domes; planar to 
wavy undulated 
laminations. 
Mesostructure: 
stromatolitic 
and/or 
thrombolitic, 
presence of 
numerous 
fenestrae 

Low to 
moderate 
energy 
(tide-
dominated) 

Intertidal to 
subtidal 
inner ramp 

Brayard et al., 
2013; Olivier 
et al., 2014, 
2016 (cf. 
appendix 1); 
Vennin et al., 
2015 

FA4 Ooidic/cortoidic 
and/or bioclastic-rich 
packstones to 
grainstones 

Bivalves, 
gastropods, 
echinoderms, 
vertebrate 
fragments 

Ooids (usually 
type 1, 
Strasser, 
1986), 
cortoids, 
peloids, locally 
phosphatic 
grains, clastic 
grains 

Asymmetric and 
climbing ripples, 
through cross-
bedding, planar 
to oblique 
lamination, 
metric to pluri-
metric 
megaripples, 
bioturbation 

High 
energy 
(wave-
dominated) 

Subtidal 
shoal, inner 
platform 

Olivier et al., 
2014; 2016 
(cf. appendix 
1); Vennin et 
al., 2015; 
Grosjean et 
al., in prep.; 
Jattiot et al., 
in prep. 
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Main facies association Biotic 
components 

Non-biotic 
elements 

Structures Energy Main 
depositional 
setting 

Refs. 

        

FA5 Bioclastic 
wackestones to 
floatstones 

Thick-shelled 
bivalves, 
gastropods, 
echinoderms, 
ammonoids 

Rare peloids M-thick 
megaripples, 
bioturbation 
(locally intense), 
local storm-
induced 
bioaccumulations 
(with erosional 
base) 

Moderate 
to high 
energy 
(wave-
dominated) 
with storm-
induced 
episodes 

Deep shoal, 
upper 
offshore, 
mid-platform 

Olivier et al., 
2014; 2016 
(cf. appendix 
1); Vennin et 
al., 2015; 
Grosjean et 
al., in prep.; 
Jattiot et al., 
in prep. 

FA6 Ammonoid 
floatstones in 
wackestone matrix 

Ammonoids, 
thin-shelled 
bivalves, 
gastropods, 
echinoderms 

Rare fine silty 
grains 

Storm-induced 
bioaccumulations, 
bioturbation 

Low 
energy, 
with storm-
induced 
deposits 

Upper to 
lower 
offshore, 
mud-
dominated 
outer 
platform 
with 
amalgamated 
storm-
induced 
deposits 

Olivier et al., 
2014; 2016 
(cf. appendix 
1); Vennin et 
al., 2015; 
Grosjean et 
al., in prep.; 
Jattiot et al., 
in prep. 

FA7 Ammonoid 
floatstones in 
mudstone matrix 

Ammonoids, 
thin-shelled 
bivalves, 
gastropods 

Micrite Rare storm-
induced 
bioaccumulations, 
bioturbation 

Low energy Deep 
offshore, 
mud-
dominated 
outer 
platform 

Olivier et al., 
2014; 2016 
(cf. appendix 
1); Vennin et 
al., 2015; 
Grosjean et 
al., in prep.; 
Jattiot et al., 
in prep. 

 

Table V.B.1: Main facies associations and depositional settings observed in the SFB during the middle-late 

Smithian interval (references are given within the table). 
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Figure V.B.2: Preliminary representation of the spatial distribution of the main depositional settings in the SFB 

during the Owenites beds (middle Smithian, after Brayard et al., 2013). A North/South distinction is evidenced 

by this map, with restriction of the FA3 microbial association to the South-SFB, while the North-SFB exclusively 

displays the FA2 peritidal association and FA7 deep offshore conditions. 

 

Figure V.B.3 illustrates the SFB during the late Smithian associated with Anasibirites 

beds, during the maximum flooding of the basin. Paleoenvironments in South-SFB range from 

transitional continental (red beds) to marine outer platforms series (mud-dominated), while 

the North-SFB displays mainly outer platform mud-dominated sedimentation. A general 

transgressive trend is evidenced throughout the whole SFB with southwards and 

southeastwards migration of the facies belts. More open marine conditions prevailed during 

this interval, as evidenced by prominence of offshore facies FA6 and FA7 in both North-SFB 

and South-SFB. 
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Figure V.B.3: Preliminary representation of the spatial distribution of the main depositional settings in the SFB 

during the Anasibirites beds (late Smithian, after Brayard et al., 2013). Southeastward migration of the FA5 is 

clearly evidenced by this map and marks lateral evolution and migration of specific depositional conditions with 

time. 

 

On these maps, a strict differentiation is observed between North-SFB and South-SFB in 

terms of repartition of the paleoenvironments. Nevertheless, the precise paleogeography 

remains to be further investigate (Figs. V.B.2 and V.B.3). This N/S difference in spatial 

repartition of the depositional settings follows the N/S distinction observed for the different 

proxies studied within this work. Noteworthy, some facies associations are restricted to either 

the North-SFB or the South-SFB. They thus may reflect specific conditions that are locally 
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controlled. Microbial limestones of the FA3 association are only found in South-SFB (Figs. V.B.2 

and V.B.3). We can hypothesize that the shallow conditions, such as the geochemistry of the 

water column and the low-rate subsidence, may have been among important factors in the 

installation and proliferation of these microbially driven deposits. Another example is given 

by the FA2, which is found only in North-SFB and in the transitional zone (Figs. V.B.2 and V.B.3). 

While the depositional settings of this association are similar to that of the red beds of FA1, a 

strong marine affinity is observed for this facies characterized by its bioclastic content 

(bivalves, gastropods, echinoderms; Table V.B.1). FA1 association is thus probably strongly 

influenced by terrigenous fluxes. The spatial repartition of these two facies associations 

consequently appears to be controlled by local parameters such as terrigenous input and 

connection to the open marine realm. It is therefore not surprising that FA2 is only found in 

the northern part of the SFB that seems to be connected to the Panthalassa during the whole 

ET, whereas FA1 is most prominently found in the southern part of the SFB and on its borders. 

Finally, deepest depositional conditions are found (association FA7) in the North-SFB 

throughout the middle-late Smithian interval (Figs. V.B.2. and V.B.3). This must probably owe 

to the continuous marine influences in this area, associated with the most important 

subsidence rate in the entire basin, allowing such sustained deep and quiet deposition. Local 

controls that are spatially differentiated between different parts of the SFB therefore have a 

major influence on the spatial pattern of the depositional setting and subsequent geological 

record. 

The spatio-temporal evolution and the migration of the facies belt in the SFB is 

particularly well established for the Smithian and well exemplified by facies belts representing 

specific depositional conditions. The FA5 association, representing deep shoal conditions 

(Table V.B.1; Figs. V.B.1 to V.B.3) illustrates this migrating trend. This association represents 

specific bathymetric and hydrodynamic conditions that were subject to very quick changes 

when accommodation fluctuated. From the middle (Fig. V.B.2) to the late Smithian (Fig. V.B.3), 

the facies belt migrates southeastward in both North-SFB and South-SFB. As a consequence, 

this migration physically marks the lateral evolution of the paleoenvironmental conditions 

consecutive to changes in bathymetry and energy of the water column. The same evolution 

can be observed using the FA3 microbial association as a reference, given the specific 

conditions required for deposition of these limestones. Migration of this facies belt thus 

represents the lateral migration of specific conditions. This phenomenon also highlights the 

evolution of the local controlling factors. Indeed, it materializes the setting, development and 

cessation of a particular set of local influences. 

The Early Triassic 4D evolution of the paleoenvironments in the SFB appears to strongly 

influence the pattern observed for the biotic recovery (presence/absence of fauna, 

preservation, etc.). Indeed, feedbacks between local conditions and biotic communities might 

be one of the keys to explain the explosive recovery observed for many organisms at a regional 

scale, and more largely, might shed new light on the importance of the local 

paleoenvironmental conditions during the Early Triassic. 

The two preliminary maps of the spatial repartition of the Smithian depositional settings 

(Figs. V.B.2 and V.B.3) are only a small part of the larger work remaining to understand the 

evolution of paleoenvironments in the SFB during the entire Early Triassic. Additionally, 
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extensive prospective work has to be done in the still under sampled areas of the SFB to 

further complete our database. Correlation of the existing data must also be done to analyze 

and decipher the sequential framework at different scales. Aside these studies, provenance 

analyses (using the QFL method of Dickinson et al., 1983) must be shortly performed to 

discriminate potentially different sources for the terrigenous material and associated 

watersheds. 

Finally, impact of other locally evolving parameters could be evidenced. As an example, 

the differential subsidence observed between North-SFB and South-SFB could explain the 

presence or absence of microbial carbonates. Indeed, the low subsidence and accommodation 

in the South-SFB is probably a helping factor allowing installation and growth of microbial 

communities. On the contrary, the rapidly subsiding environment and continued terrigenous 

inputs in the North-SFB could prevent installation of precipitating communities. Another 

hypothesis to be explored concerning these particular deposits, is the potential influence of 

the alkalinity of the water column, and variation of this parameter between North-SFB and 

South-SFB should be investigated. 

 

C. Larger implications for the Early Triassic time interval 

 
Ongoing works of the research team on the SFB are showing that most models and 

paradigms commonly accepted for the Early Triassic remain hypothetical, have likely to be 

reinterpreted or are simply incorrect. In a more problematic fashion, it appears that most of 

these models were established on the basis of local data that were then extrapolated at a 

global scale. In this context, several questions arose concerning the accuracy of these models, 

their regional or global significance, or the impact of potential biases (e.g., sub-sampling, 

rough time frame). 

In order to decipher the complex history of the Early Triassic biotic recovery, from both 

the biological and paleoenvironemental points of view, a large set of parameters has to be 

integrated (e.g., sedimentary, geochemical, geodynamical) because of the obvious and 

complex interplay between each of these parameters, and their influences on the observed 

diversity. 

Our multidisciplinary approach well highlights the necessity to take into account the 

different potential data from studied sections, and to propose a detailed reconstruction of 

these sites. Also, the use of different methods allows to reduce potential biases (e.g., sub-

sampling, preservation bias), as well as making analyses at various scales. Moreover, potential 

unexpected feedbacks between discrete parameters (e.g., influence of bacterial sulfato-

reduction metabolisms on the preservation of the geochemical record during early diagenesis) 

can therefore be deciphered. 

This work therefore demonstrates the need for complete reinvestigation using similar 

integrated study of other Early Triassic basins worldwide to discriminate the local, regional 

and expected global influences on paleoenvironments, and their impacts on the biotic 

recovery. 
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By this way, a global and accurate scenario, minimizing potential biases or 

misinterpretations due to local specific conditions, can be obtain to bring further insights on 

the biotic recovery after the Permian/Triassic mass extinction event. 

 

D. Other general and conceptual perspectives 

 
Aside its potential (yet requested) use for a broader understanding of the Early Triassic 

interval, the integrated method developed during the work in studying sedimentary basins 

may find other applications to answer diverse scientific questions. 

Due to this approach involving different parameters as several scales, which is the main 

interest of the method, it might be used to help discriminate the influence of each distinct 

controlling parameter. 

A similar work can be achieved for other critical time periods, such as the aftermath of 

the late-Devonian mass extinction (due to the important reefal microbial carbonates found in 

these deposits, Riding, 2006). Additionally, the microbial communities are not an exclusive 

tool, and influences of other organisms can be determined, such as during the aftermath of 

the end-Cretaceous mass extinction, where microbial deposits are not reported (Riding, 2006). 

Moreover, integrated study of the Sonoma Foreland Basin allows to understand the 

conditions behind the development and spatio-temporal extension of several specific 

ecosystems (e.g., the microbial communities). These data (e.g., sedimentary conditions, water 

column geochemistry) could be therefore used and transferred to other basins to predict the 

presence of similar deposits/communities (e.g., microbialites distribution in the Great Salt 

Lake, Bouton et al., 2016). Numerical modelling and study of analog basins (such as the 

Miocene Amazon Foreland Basin, being a large shallow foreland basin sit on a lithospherically-

heterogeneous basement, and is influenced by the heterogeneous Andean Cordillera, Roddaz 

et al., 2010) could therefore be used to decipher the timely-controlled evolution of forcing 

parameters in these basins. This approach can be useful in oil and gas exploration as basin-

scale analyses of reservoir sedimentary basins prevent a thoroughly detailed field study.  

Finally, this integrated approach was rather successful in deciphering the long-lost 

Sonoma Foreland Basin, whose remnants are very scattered and limited. Using a complete set 

of data through varied methods (sedimentological, paleontological, geochemical, 

cartographic, structural, etc.), we were able to reconstruct its history and constrain its 

evolution at a high resolution. We hope that this work will open the way to new possibilities 

for studies of very ancient and/or nearly obliterated basins with few available remnants to 

understand their past history (e.g., Paleozoic Williston Basin or Devonian Amazon Basin; e.g., 

Ahern & Mrkvicka, 1984; Isaacson & Sablock, 1990). Growing use of remote sensing data and 

their present-day resolution also allow to apply this approach to merely accessible basins 

where access to field data can be compromised, such as basins situated in remote areas, or 

even to the field of planetary geology to reconstruct the past histories of extra-terrestrial 

sedimentary basins, such as the deltaic basin of Gale Crater on Mars. 
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Appendix 1: Characterization of the sedimentary record and 

depositional environments of the Torrey area (south-central Utah) 

 
This work focuses on the Smithian-Spathian sedimentary succession outcropping in the 

Torrey area (south-central Utah). Detailed study of three outcrops (French Fork, Beas Lewis 

Flats and Pleasant Creek) allowed to characterize the main depositional settings of this area. 

They evolve into a sedimentary system ranging from tidal flats of interior platform to a 

bioclastic mid-shelf. 

 

This study notably demonstrated that microbial deposits were contemporaneous and 

co-occurring with a well-diversified marine fauna. Therefore, the presence and distribution of 

the microbial deposits does not follow/is not restricted to the expected deleterious 

paleoenvironemental conditions during this time interval (e.g., Pruss & Bottjer, 2004; Mata & 

Bottjer, 2011). On the contrary, local depositional conditions drove their distribution. 

Additionally, we identified several multi-scale sequences, whose large- and medium scales are 

consistent with known eustatic changes (e.g., Embry, 1997; Vennin et al., 2015), while small-

scale and elementary sequences relied on local autocyclic processes highlighting the 

important role of local conditions. 
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This work focuses on well-exposed Lower Triassic sedimentary rocks in the area of Torrey (south-central Utah, USA). The studied Smithian
deposits record a large-scale third-order sea-level cycle, which permits a detailed reconstruction of the evolution of depositional settings. Dur-
ing the middle Smithian, peritidal microbial limestones associated with a rather low-diversity benthic fauna were deposited seaward of the
tidal flat siliciclastic red beds. Associated with siliceous sponges, microbial limestones formed small m-scale patch reefs. During the late mid-
dle to late Smithian interval, the sedimentary system is characterized by tidal flat dolostones of an interior platform, ooid-bioclastic deposits of
a tide-dominated shoal complex, and mid-shelf bioclastic limestones. Microbial deposits, corresponding to sparse stromatolites formed in the
interior platform, are contemporaneous with a well-diversified marine fauna living in a seaward shoal complex and mid-shelf area. The nature
and distribution of these Smithian microbial deposits are not related to any particular deleterious environmental condition, highlighting that
observed patterns of biotic recovery after the end-Permian mass extinction were directly influenced by depositional settings. Facies evolution
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autocyclic processes. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Deleterious oceanic conditions are generally associated with
the aftermath of the Permian–Triassic mass extinction, the
most devastating biotic crisis in the Phanerozoic (Raup,
1979; Erwin, 2006). Indeed, large environmental perturba-
tions, combining ocean acidification, anoxia, euxinia, and
fluctuating productivity (Payne et al., 2004; Galfetti et al.,
2007; Grasby et al., 2013), likely constrained the biotic
recovery during the Early Triassic. Until recently, post-crisis
environments appeared to be particularly suitable for
widespread development of abiotic and microbial deposits

(Schubert and Bottjer, 1992; Baud et al., 1997, 2007; Mata
and Bottjer, 2012; Woods, 2013), whereas the metazoan
recovery was assumed to be delayed. However, for some ma-
rine groups such as ammonoids (Brayard et al., 2009a) and
conodonts (Orchard, 2007), or where permitted by
favourable environmental conditions (Krystyn et al., 2003;
Twitchett et al., 2004; Chen et al., 2007; Beatty et al.,
2008; Zonneveld et al., 2010; Brayard et al., 2011;
Hautmann et al., 2011, 2013; Kaim et al., 2010; Hofmann
et al., 2011, 2013 a, b), life seems to have recovered rapidly
in the Early Triassic. The timing and modalities of the biotic
recovery are therefore still debated, highlighting the impor-
tance of its spatio-temporal variations, especially from the
point of view of the underlying depositional settings (Pruss
et al., 2006; Beatty et al., 2008; Galfetti et al., 2008;
Brühwiler et al., 2009; Mata and Bottjer, 2011, 2012;
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Kershaw et al., 2012; Sano et al., 2012; Komatsu et al., 2014;
Olivier et al., 2014; Pietsch and Bottjer, 2014). Therefore,
detailed sedimentological studies and palaeoenvironmental
reconstructions are of primary importance for improving
our knowledge of the Early Triassic biotic recovery.
In the Torrey area (south central Utah, USA), excellent,

widespread exposures of Lower Triassic deposits occur
within and near Capitol Reef National Park (Fig. 1). In this
area, the lithological succession includes Permian lime-
stones, red beds of the Black Dragon Formation, microbial
and bioclastic limestones of the Smithian Sinbad Formation,
and sediments up to and including the red beds of the
Spathian Torrey Formation (Stewart et al., 1972; Blakey,
1974, 1977; Dean, 1981). The variety of deposits and number
of potential sections represent a good opportunity for detailed
three-dimensional analysis of rapid lateral and vertical facies
changes (Dean, 1981). However, the only previous attempt at
section correlation in the Torrey area was largely based on a

lithostratigraphic approach (Dean, 1981). This work presents
a detailed bed-by-bed sedimentological analysis of three
sections in the area southeast of Torrey (Fig. 1a). Its main ob-
jectives include: (i) analyse the nature and diversity of facies
in order to obtain robust depositional environmental recon-
structions; (ii) achieve sequential analysis of these sections
in order to obtain highly-resolved correlation and discuss
the effect of relative sea-level fluctuations on sedimentation
with regard to autocyclic and allocyclic processes; and (iii)
discuss the evolution of local depositional settings and its
potential influence on biotic recovery at the regional level.

2. GEOLOGICAL SETTING

The three studied outcrops are located near the town of
Torrey (Wayne County, southern Utah, USA; Fig. 1a) as
follows: (i) French Fork section (38°15′32.11″N, 111°24′

Figure 1. (a) Geographic location of the French Fork, Beas Lewis Flats and Pleasant Creek sections in the Torrey area (southern Utah). (b) Synthetic litholog-
ical succession of the Torrey area and its depositional sequence interpretation.
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36.31″W), situated 4 km south of Torrey; (ii) Beas Lewis
Flats section (38°17′0.98″N, 111°18′49.07″W), located
about 6 km west of the small town of Fruita; and (iii)
Pleasant Creek section (38°10′21.58″N, 111°11′54.89″W),
situated within Capitol Reef National Park, 13 km south of
Fruita.

In the Torrey area, the Lower Triassic sedimentary
succession is represented by interfingered siliciclastic and
carbonate deposits (Blakey, 1974; Dean, 1981; Goodspeed
and Lucas, 2007). These sediments belong to the Moenkopi
and Thaynes groups (sensu Lucas et al., 2007), which
unconformably overly the Permian carbonate Kaibab
Formation (Blakey, 1974; Dean, 1981). Directly above the
Permian rocks, the Black Dragon Formation corresponds to
the first occurrence of red beds (Fig. 1b). These siliciclastic
deposits correspond to reddish to brownish siltstones,
sandstones and even conglomerates (Blakey, 1974; Dean,
1981). The transition to the carbonate deposits of the
Smithian Sinbad Formation can be gradual. Although Dean
(1981) placed the boundary between the Black Dragon and
the Sinbad formations below the first carbonate bed, other
workers considered transitional carbonate beds observed
within the red beds as part of the Black Dragon Formation
(Blakey, 1974; Goodspeed and Lucas, 2007). This work
follows the lithostratigraphical definition of Dean (1981).
The Sinbad Formation can be readily subdivided into two
main units (Fig. 1b): a massive microbial limestone unit
(lower Sinbad Formation) and a bioclastic limestone unit
(upper Sinbad Formation). Contact with the overlying
deposits of the Spathian Torrey Formation is classically
described as a conformable surface between the bioclastic
limestones of the Sinbad Formation and a second occurrence
of red beds (Blakey, 1974; Dean, 1981).

During the Early Triassic, the western USA basin was
located at a near-equatorial position on the western margin
of the Pangea. A large epicontinental sea about 500 to
600 km-wide and extending from southern Utah to British
Columbia, exhibited a deepening trend from the south-east
to the north-west (Blakey, 1974; Paull and Paull, 1993;
Goodspeed and Lucas, 2007). Thus, most of the terrigenous
sediments belonging to the Moenkopi Group can be found
in southern and southeastern Utah and they represent
the most proximal settings and palaeoshoreline positions
(Olivier et al., 2014). Carbonate deposits of the Thaynes
Group represent more open-marine conditions and can be
found mainly in central and northwestern Utah, southeastern
Idaho and northeastern Nevada (Kummel, 1954; Blakey,
1974; Collinson and Hasenmueller, 1978; Dean, 1981;
Goodspeed and Lucas, 2007; Guex et al., 2010; Brayard
et al., 2011, 2013).

Preliminary information regarding regional ammonoid
and conodont biostratigraphy, from previous studies indicate
that the Sinbad Formation in the Torrey area is late Smithian

(sensu Brühwiler et al., 2010) in age due to the occurrence
of the Anasibirites kingianus Zone (Stewart et al., 1972;
Blakey, 1974; Dean, 1981; Goodspeed and Lucas, 2007;
Lucas et al., 2007). Several new ammonoid specimens,
collected bed-by-bed from the Torrey area, have been inte-
grated with the new regional biostratigraphic framework
proposed by Brayard et al. (2013). Juvenites aff. spathi,
Parussuria compressa, Meekoceras gracilitatis and
Lanceolites compactus occur in the uppermost part of the
lower Sinbad Formation (interval A1; Fig. 1b), suggesting
a likely middle Smithian age (basal Owenites beds by com-
parison with neighbouring localities; see Brayard et al.,
2013). Interval A2, situated in the middle of the upper Sin-
bad Formation, yields ammonoids identified as Lanceolites
compactus, Hedenstroemia kossmati, Churkites noblei,
Guodunites hooveri and Dieneroceras dieneri. Such an
assemblage is diagnostic of the Owenites beds, which are
typically middle Smithian in age (Brayard et al., 2009b,
2013). Interval A3 includes Wasatchites perrini and
Anasibirites kingianus, indicating a late Smithian age
(Brayard et al., 2013). Rare conodonts occurring near the
base of the upper Sinbad Formation are represented by
Furnishius triserratus, Parachirognathus ethingtoni and some
ellisonids, also indicating a Smithian age (N. Goudemand,
personal communication 2012).

3. SECTIONS AND FACIES DESCRIPTION

3.1. French Fork section

The Permian Kaibab limestones are not exposed at the base
of the French Fork section (Fig. 2a). The entire section can
be subdivided into three main lithological units (Figs. 3
and 4). The first unit includes the uppermost 12m of red
beds of the Black Dragon Formation (Fig. 1b). Facies (F1)
consists of mm- to cm-thick red, dolosiltstone beds with
small asymmetrical ripples (Table 1). Some muddy sheets
display mud cracks locally. Other observed sedimentary
structures include megaripples and climbing ripples. Quartz
grains are abundant and subangular to subrounded. Also
present are few cm- to dm-thick beds particularly rich in
secondary gypsum.
The second unit occupying the interval between 12 and

23m consists of two main limestone facies, which constitute
the lower Sinbad Formation. Facies F2, which occurs only
as a thin cm-thick interval at the base of this second litholog-
ical unit, corresponds to an intraclastic floatstone, with fre-
quent basal erosive surfaces. Flat pebbles made of peloidal
wackestone (locally mudstone or packstone) and exhibiting
desiccation cracks are also present. Smaller intraclasts are
poorly sorted and subangular to subrounded. A few domal
stromatolites are visible locally.
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Figure 2. Field views of the three studied sections and their main lithological units. (a) Lower part of the French Fork section. Note the patchy morphology
visible locally in the microbial unit. (b) Beas Lewis Flats section. Note the truncation surface at the top of the microbial limestone unit (white arrows: stratal
terminations). (c) Pleasant Creek section. The microbial limestone unit documented both at French Fork and Beas Lewis Flats is absent here. This figure is

available in colour online at wileyonlinelibrary.com/journal/gj
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Facies F3 corresponds to a massive peritidal limestone
interval (Fig. 2a). Several undulating surfaces can be
followed laterally along the cliff, permitting the identifica-
tion of 6m-scale subunits (Fig. 4). These subunits consist
of cm- to dm-thick beds that show important lateral varia-
tions in thickness. These variations tend to form local
metre-scale patches (Figs. 2a and 5a and b). In greater detail,
two main subfacies can be identified at French Fork (Fig. 5c
and d). The first fenestral limestone subfacies (F3b) is made
of fenestrae, oncoids, peloids, aggregate grains, and some
ooids and cortoids. Locally, some undulating laminated
crusts binding the different grains are present (Fig. 5e and
f). The sizes of the fenestrae are classically mm-scale, but
some can be coalescent and form dm-scale aligned structures
(Fig. 6a and d). Within these large fenestrae, microbialitic
crusts are observed on the walls and roofs of the cavities
with upward and downward growth direction (Fig. 6b and
c, e). The relatively poor fauna is composed only of gastro-
pods, bivalves, ostracods and siliceous sponges (Fig. 6f).
Some fenestrae exhibit vadose silts (Fig. 7c). The second
subfacies (F3c) consists of laminated micrites with domal
and horizontal sheet cracks, and tepee structures (Figs. 5g
and h and 7d). Some stromatolites are also observed locally.
The biota is sparse, consisting mainly of ostracods, gastro-
pods, and siliceous sponges (Fig. 6g). Subfacies F3b and
F3c can either be observed juxtaposed or superimposed
(Fig. 7).

The third lithological unit, observed from 23 to 45m,
represents the upper Sinbad Formation. At French Fork,
seven facies are identified in this uppermost lithological unit
(Facies F5 and F8–F13; Fig. 4; Table 1). Facies F5
corresponds to dm- to m-thick intervals of dolostones with
common cm-thick intercalations of siltstones and rare sand-
stones. Peloids and common-to-abundant subrounded quartz
grains mainly represent non-biotic grains. This facies gener-
ally appears barren of organisms, but some ostracods and

bivalve moldic voids can be observed. Evidence of infaunal
activity is uncommon; only rare and localized trace fossils
can be observed. Sedimentary structures are common and
correspond to low-angle cross-laminations. Facies F8 con-
sists of ooid-bioclastic grainstone, which is only observed
in a thin interval between 27 and 27.5m. Facies F9 corre-
sponds to peloid-bioclastic grainstone, which is also only
observed within a thin interval at the top of the section (close
to 45m). Facies F10 is more frequent within the section,
consisting of a grainstone (locally packstone) made of abun-
dant gastropods and bivalves. Dense, deep bioturbation can
also be present, and trough cross-stratifications are common.
Facies F11 consists of grainstone to packstone with bivalves,
serpulids, rare echinoderm plates and peloids. This facies is
only observed in the interval between 25 and 27m in the
section. Facies F12 is composed of a peloid-bioclastic
packstone with abundant bivalves, gastropods, and echino-
derm plates associated with some ammonoids and serpulids.
This facies is observed at two intervals within the section
(~35m and 43.5m). Facies F13 consists of a peloid-
bioclastic wackestone to packstone. This intensely and
deeply bioturbated facies is observed in two thin intervals
within the section (~32m and 37.5m). Ammonoids are ob-
served in three intervals within the third lithological unit
(Fig. 4). Meekoceras is documented between 34.5 and
35m in facies F12. The second main occurrence consists
of Guodunites and Churkites, observed in facies F10 and
F13, between 36.5 and 37.5m. The uppermost occurrence
of common Anasibirites and Wasatchites is observed in fa-
cies F10 between 41 and 42m.

3.2. Beas Lewis Flats section

This section can be subdivided into four lithological units
(Figs. 2b and 8). The first unit, which is beyond the scope

Figure 3. Legends for French Fork, Beas Lewis Flats and Pleasant Creek log sections.
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Figure 4. Log of the French Fork section including lithology, texture and relative abundance of quartz grains. Facies distribution and depositional sequence
interpretation is also indicated. See Table 1 for facies descriptions and Figure 3 for legend.
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Figure 5. (a) and (b) Field views of the bedding stacking pattern of the microbial limestone unit in the French Fork section. In (a) the black window represents
photograph in (c) hammer scale is 32 cm. Some beds show important lateral thickness variations (dashed lines in b) generating dm-patch reef morphologies. (c)
and (d) Field view and sketch of a bed that displays a lateral thickness variation in the microbial limestone unit at French Fork. Note that this bed can be
subdivided into two subunits: a lower part made of a fenestral limestone subfacies (F3b) and an upper part made of a laminated mudstone subfacies (F3c).
(e) Oncoid–ooid–peloidal–intraclast grainstone with fenestrae (F3b). Note the laterally discontinuous stromatolitic crusts that coated some grains (white ar-
rows). (f) Microbial laminae or crusts (F3b; white arrow). (g) Large domal spar-filled sheet cracks (F3c). (h) Mudstone with sparse and laterally discontinuous

horizontal cracks, small gastropods and ostracods (F3c). This figure is available in colour online at wileyonlinelibrary.com/journal/gj

N. OLIVIER ET AL.608

Copyright © 2015 John Wiley & Sons, Ltd. Geol. J. 51: 600–626 (2016)
DOI: 10.1002/gj



Figure 6. (a) Field view of a fenestral-rich bed in microbial limestone unit at French Fork. (b) and (c) Thin section and sketch of microbial crusts (both planar
and columnar) in a large fenestrae illustrated in (a) (white window). Note that planar stromatolites bind an oolitic grainstone or an oncolitic floatstone and are
overlain by columnar stromatolites, which exhibit an upward growth direction inside the fenestrae. (d) Field view of large fenestrae (black arrow) in a bed of the
microbial limestone unit at French Fork. (e) Thin section of large fenestrae with downward and upward microbial growth (white arrows). (f) and (g) Siliceous
sponges in the microbial limestone unit at French Fork section. (f) Sponge in the fenestral limestone subfacies (F3b). The sponge is partially dissolved and re-
placed by a cavity infilled by microbes and cements. (g) Sponge in the laminated mudstone subfacies (F3c). This figure is available in colour online at

wileyonlinelibrary.com/journal/gj
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of this work, corresponds to the Permian bioclastic and bio-
turbated limestones of the Kaibab Formation. The base of
the section displays a 20m-thick interval composed mainly
of dolomitized and silicified limestones. Only the uppermost
7m of this lithological unit are illustrated in Figure 8. An in-
tense bioturbation emphasized by silicification is recorded in
these Permian limestones. Two bioclastic-rich intervals with
cross bedding are observed at about 15m above the base of
the section. These Permian limestones are also locally af-
fected by intense karstification (Fig. 8).

The second lithological unit is 34m thick and corresponds
to the red beds of the Black Dragon Formation. These red
beds (Facies F1) are similar to those observed at the base
of the French Fork section. The Beas Lewis Flats section ex-
hibits a progressive transition between the second and the
third lithological units.

The ~6m-thick third lithological unit corresponds to the
massive peritidal limestones (F2 and F3) of the lower Sinbad
Formation. This unit is only half as thick as corresponding
beds in the French Fork section; it does not exhibit conspic-
uous m-scale patchy microbial structures. It can be
subdivided into three subunits (Fig. 8). The basal subunit
(between 53.5m and 56m) includes the first limestone beds
that interfinger with the dolosiltstones (F1) of the red bed
unit. These uppermost red bed intercalations are notably
richer in micritic intraclasts. This first subunit is comprised
of floatstone with some localized small cm- to dm-large
domal stromatolites (F2; Figs. 9a and 10). Rare gastropods
and siliceous sponges also occur. Additionally, even though
burrows could not be clearly identified, the distribution of

sedimentary grains tends to record an apparent infaunal
activity. The second subunit (between 56m and 58.5m) cor-
responds to relatively well-bedded limestone (F3), including
three main subfacies (F3a–c; Fig. 10). Each bed exhibits a
basal part with abundant gastropods (F3a; Figs. 9b and
11). This subfacies can also be rich in intraclasts and it also
includes some rare siliceous sponges (Fig. 10k–m). The
middle part of these beds corresponds to fenestral limestone
subfacies (F3b; Figs. 10h–j and 12), and the upper part
displays laminated mudstones with sheet cracks (F3c; Figs.
10e–g and 11). The third subunit (between 58.5m and
60m) consists of oncoid-fenestral limestones (F3e) with
abundant peloids and some ooids, aggregate grains, gastro-
pods, serpulids and ostracods (Fig. 10b–d). This subfacies
is characterized by large fenestrae that display internal
stromatolites with upward and downward growth.
The fourth lithological unit of the Beas Lewis Flats sec-

tion is characterized by a succession of dolostone intervals
(F5) with various bioclastic, oolitic or peloidal limestones
(F6–F10, F12 and F13). This bioclastic limestone unit com-
prises the upper 30m of the section. From 61.5 to 65m, two
m-thick beds correspond to a peloid-intraclastic grainstone
(F6). From 65 to 69.5m, ooid-bioclastic grainstone (F8)
and peloid-bioclastic grainstone (F9) are particularly well
represented, interfingering with thin intervals of dolostones
(F5). At about 70m, a thin dm-thick interval of intraclastic
grainstone (F7) is observed, in which subangular to angular
limestone intraclasts are associated with well-rounded
lithoclasts. The first occurrence of peloidal and bioclastic
wackestone (F13) is documented above this intraclastic

Figure 7. (a) and (b) Lateral facies variations observed in a bed of the microbial limestone unit at French Fork. (c) Fenestral limestone subfacies (F3b). Note the
internal vadose silts preserved in some fenestrae (white arrow). (d) Laminated facies (F3c) with local small fenestrae and tepee structures (white arrow). This

figure is available in colour online at wileyonlinelibrary.com/journal/gj
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Figure 8. Log of the Beas Lewis Flats section including lithology, texture and relative abundance of quartz grains. Facies distribution and depositional se-
quence interpretation is also indicated along the section. See Table 1 for facies descriptions and Figure 3 for legends.
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interval. From 74m, dolostone intervals interfinger with
bioclastic limestone beds of facies F10, F12 and F13. At
about 78m, specimens of the ammonoid Anasibirites
kingianus are observed in a thin dm-thick interval within
facies F13.

3.3. Pleasant Creek section

The Pleasant Creek section is subdivided into three litholog-
ical units (Fig. 12). Permian limestones of the Kaibab For-
mation are visible within a 15m interval at the base of the

Figure 9. Field views of (a) a cm-scale domal stromatolite (55.6 m, F2, subunit 1) and (b) subfacies F3a with dense accumulation of gastropods (56.1 m). Beas
Lewis Flats section. This figure is available in colour online at wileyonlinelibrary.com/journal/gj

Figure 10. Schematic evolution of the main facies types in the microbial limestone unit at Beas Lewis Flats. (a) Synthetic log of the microbial limestone
unit (F3) subdivided into three subunits. Each bed of the second subunit (see Figures 8, 11) includes a succession of the three subfacies (F3a–c). (b–d)
Subfacies F3e, subunit 3. (b) Peloidal, oncoidal, fenestral fabric. (c) Stromatolitic crust showing the alternation of thin dark microbial lamina with
ooid–peloidal grainstone. (d) Downward growth of stromatolitic columns with horizontal cracked lamina at the roof of large fenestrae. (e–g) Subfacies
F3c, subunit 2. (e) Small columnar to domal stromatolite. (f) Domal muddy sheet cracks. (g) Micrite with gastropods and ostracods. (h–j) Subfacies
F3b, subunit 2. (h) Peloid–oncoid–ooid–fenestral grainstone intervals coated with thin microbial lamina. (i) Irregular fenestrae with downward and lateral
microbial growth. (j) Subfacies F3c with micrite, ostracods and siliceous sponge (lower-half thin section) and subfacies F3b with peloidal–fenestral fabric
(upper-half thin section). (k–m) Subfacies F3a, subunit 2. (k) Siliceous sponge (white arrow) overlains by gastropod-rich subfacies F3a. (l) Gastropod-rich
subfacies F3a directly overlays by planar stromatolites. (m) Intraclastic deposits in subfacies F3a. All thin section illustrations have similar scale bar to (b).

This figure is available in colour online at wileyonlinelibrary.com/journal/gj
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section (Fig. 2c). These limestones are strongly dolomitized
and no fossil grains could be identified. Nonetheless, some
sedimentary structures are still recognizable, such as abun-
dant planar laminations, small asymmetrical ripples, and
some trough cross-bedding.
Above a stratigraphic gap of 5m, a 15m-thick red bed

unit of the Black Dragon Formation is documented. The up-
permost part of this unit corresponds to F1 that displays fre-
quent conglomeratic intervals. Some tepee structures and
desiccation cracks are also observed.
The third lithological unit corresponds to the bioclastic

limestone unit of the upper Sinbad Formation. The thick mi-
crobial limestone unit of the lower Sinbad Formation ob-
served at French Fork and Beas Lewis Flats is therefore
not recorded at Pleasant Creek. In the basal 5m, several in-
tervals of intraclastic limestone (F2) are interfingered with
dolostones (F5). At 38.5m, a dm-thick bed exhibits domal
stromatolites (F4; Fig. 13a). Microscopically, these stromat-
olites consist of dense micritic laminae, which sometimes re-
veal desiccation cracks, alternating with fenestral laminae

(Fig. 13b). From 40 to 45m, dolostones (F5) are
interfingered with dm- to m-thick peloidal-intraclastic lime-
stones (F6). These beds display internal cross bedding, fre-
quent mudclasts, and important changes in lateral
thickness. A second occurrence of intraclastic limestones
(F2) and stromatolites (F4) is recorded between 45m and
46m. In this case, the stromatolitic interval can be
subdivided into a lower bed characterized by dm-scale
wavelength domal stromatolites and an upper stratiform
bed displaying a wavy laminated structure (Fig. 13c). Micro-
scopically, these wavy microbial carbonates are comprised
of an alternation of dense micritic laminae with clotted lam-
inae (Fig. 13d).

The rest of the section is characterized by a succession of
dolostones (F5) with various bioclastic, ooidal, and peloidal
limestones. From 46m to 48m, a thick ooid-peloidal
grainstone (Facies F8) displays herringbone cross-
stratification in its uppermost part (Fig. 13e). It is character-
ized by well-sorted ooids associated with some gastropods
(Fig. 13f). From 49.5m to 52.5m, the section displays an

Figure 11. Bed stacking pattern of the microbial limestone unit (subunit 2) at Beas Lewis Flats. (a) Field view of several dm-thick beds displaying similar
internal organization. (b) and (c) Field view and schematic sketch of a bed-scale depositional sequence. a.: gastropod-rich basal interval (F3a); b.: fenestral-
rich intermediate interval (F3b); c.: Mud sheet crack or stromatolite upper interval (F3c). This figure is available in colour online at wileyonlinelibrary.com/

journal/gj
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Figure 12. Log of the Pleasant Creek section including lithology, texture and relative abundance of quartz grains. Facies distribution and depositional sequence
interpretation is also indicated along the section. See Table 1 for facies descriptions and Figure 3 for legends.
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Figure 13. Field views and thin section illustrations of microbialites observed in the upper Sinbad Formation at Pleasant Creek. (a) Dm-scale domal stromat-
olites (F4 at around 38.5 m in Figure 12). (b) Laminated microfabric of stromatolites illustrated in (a). (c) Laminated wavy structures in a dm-thick microbialitic
bed (F4 at 45m in Fig. 14). (d) Laminated microfabric of stromatolites illustrated in (c). (e) Field view of bidirectional cross bedding in oolitic grainstone (F9) in
the upper Sinbad Formation. (f) Thin section of oolitic grainstone (F9) with gastropods. (g) Field view and (h) thin section of a peloidal and bioclastic packstone
(F13) with bivalves that display umbrella structures with underlying siliceous sponges. Pleasant Creek section. This figure is available in colour online at

wileyonlinelibrary.com/journal/gj

EVOLUTION OF DEPOSITIONAL SETTINGS DURING THE SMITHIAN 615

Copyright © 2015 John Wiley & Sons, Ltd. Geol. J. 51: 600–626 (2016)
DOI: 10.1002/gj



interval characterized by an alternation of dolostones (F5)
with bioclastic facies (F10, F12, and F13). This interval is
notably characterized by its intense bioturbation and the
presence of echinoderm fragments (Fig. 12; Table 1). At
about 55m, an oolite-rich bed (F8) contains abundant
Anasibirites kingianus. In the uppermost part of the section
(at 57m), some cm-scale beds with basal erosive parts are par-
ticularly rich in bivalves (F11 and F12; Fig. 13g) that exhibit
siliceous sponges under their disarticulated valves (Fig. 13h).

4. FACIES MODELS AND DEPOSITIONAL
ENVIRONMENTS

For the studied stratigraphic interval, the 13 identified facies
can be placed into two facies models (Fig. 14; Table 1). The

first model is characterized by the red beds (F1) of the Black
Dragon Formation and the microbial limestones (F2 and F3)
of the lower Sinbad Formation (Fig. 14a). Progressive grada-
tion between the red bed deposits and the microbial lime-
stones observed in the Beas Lewis Flats section supports a
common facies model for these deposits. Previous workers
mentioned the vertical interfingering between the Black
Dragon red beds and the Sinbad carbonates (Blakey, 1974,
1977; Dean, 1981; Goodspeed and Lucas, 2007). Red beds
may have originated in various depositional environments
such as marginal marine, deltaic, and coastal plain settings
(Voigt et al., 2013; Thomson and Lovelace, 2014). In this
first depositional model, the red beds display both cm-scale
planar- or ripple-bedding structures and climbing ripples that
are consistent with a tide-dominated setting. Rippled silt-
stones and fine sandstones are interpreted as deposits of

Figure 14. Depositional models (a) for the red beds of the Black Dragon Formation and microbial limestone unit of lower Sinbad Formation (middle Smithian)
and (b) for the bioclastic limestone unit of the upper Sinbad Formation (late middle to late Smithian). See Table 1 for facies description and Figure 3 for legends.

This figure is available in colour online at wileyonlinelibrary.com/journal/gj
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the lower intertidal (low tidal flats) to shallow subtidal zone,
where bedload transport occurs during moderate tidal activ-
ity (Alam, 1995). The paucity of tidal channels in the red
beds can be considered as an evidence of a low palaeotidal
range (Walker and Harms, 1975). It may also indicate a gen-
tle palaeoslope, such as a low gradient inner shelf or embay-
ment, in which the tidal currents were not strong enough to
develop tidal channels (Alam, 1995). Limestones (F2 and
F3) of the lower Sinbad Formation represent a facies associ-
ation interpreted as peritidal, which formed in environments
around the tidal zone (Wright, 1984; Flügel, 2004). The rar-
ity of siliciclastic grains suggests a position still under terrig-
enous influence, but sufficiently removed from the
terrigenous sources. In situ and reworked desiccation cracks
observed in F2 provide evidence of at least temporarily
emerged small islands. Small cm-scale stromatolitic domes
observed locally in this facies highlight some zones of
higher accommodation, also allowing for an infaunal activ-
ity. The peritidal limestones (F3) are subdivided into five
subfacies (F3a–e; Table 1). These subfacies vary both later-
ally and vertically in the same bed, suggesting a patchy fa-
cies distribution (facies mosaic; Wright and Burgess, 2005;
Strasser and Védrine, 2009). Gastropod-rich packstone
(F3a), which show important lateral thickness changes,
may represent winnowed subtidal skeletal deposits in zones
of gently sloping gully surfaces (Fig. 14a). These gastropods
can also be found in the margin of small ponds that merged
with surrounding intertidal flats (Shinn, 1969). The fenestral
limestones (F3b) are the most common deposits of the
peritidal facies association and represent supratidal or inter-
tidal sediments (Shinn, 1968). With biofilms that coated nu-
merous fenestrae and diverse grains, this subfacies
commonly developed a small synoptic relief above the sea
floor. Vadose silts observed in some fenestrae are consistent
with areas intermittently exposed at the time of deposition.
Mudstone deposits (F3c) with sheet-cracks, a restricted
fauna (ostracods and gastropods), and some stromatolites re-
flect supratidal to intertidal low-energy settings. Ooid–
oncoid–peloidal grainstone (F3d) was deposited in subtidal
high-energy gullies. The latter may have enhanced the
patchy geometry of these peritidal deposits. Large sheet-like
fenestrae limestones with oncoids and sparse ooids (F3e) are
interpreted to reflect more distal shallow subtidal settings.
The presence of siliceous sponges and gastropods in these
peritidal limestones (F3) is also indicative of marine condi-
tions and thus, of a seaward position of the lower Sinbad
limestones as compared to the red beds of the Black Dragon
Formation.
The second facies model is characterized by deposits of

the bioclastic limestone unit (i.e. the upper Sinbad Forma-
tion; Fig. 14b). The 11 facies included in this model can
be grouped into three facies associations typical of the fol-
lowing three different depositional settings: (i) tide-

dominated interior platform; (ii) tide-dominated shoal com-
plex; and (iii) open wave-dominated marine platform.
Dolostones (F5) represent internal muddy and low-energy
depositional settings, recording variable amount of terrige-
nous inputs. It differs from the red beds (F1) by recording
obvious marine influences shown by the presence of bi-
valves, gastropods and echinoderm plates. These dolostones
are consistent with deposition on a vast interior platform or a
large embayment system. Stromatolites made of small
domes and wavy laminated structures (F4) may have formed
in upper intertidal and supratidal zones within this interior
platform. Ooid-bioclastic grainstone with some bivalves
(F8) is probably indicative of stronger tidal currents, and
possibly wave action that impacted the shoal complex area.
As observed on both the ocean-ward and platform-ward
sides of the oolitic shoal, the peloid-bioclastic grainstone
with bivalves and sparse ooids (F9) logically points to less
vigorous tidal currents. Well-marked herringbone cross-
stratifications observed in these shoal deposits (F8 and F9)
indicate a tide-dominated process. Intraclastic rudstone
(F7) and peloid-intraclastic limestones (F6) were deposited
in channels that cut across the shoal. Seaward of the tidal-
dominated shoal complex, sediments may have evolved
from peloidal and ooidal sands into a mixture of skeletal
(gastropods, bivalves, serpulids and echinoderms) and
peloidal sands (Halley et al., 1983, p. 472). More abundant
bioclasts recorded in grain-supported sediments (F10 and
F11) may have been deposited on the seaward side of the
tide-dominated shoal complex. An inner- to mid-shelf tran-
sition zone is marked by the deposition of bioclastic
packstone (F12). Mud-supported texture and intense bio-
turbation that characterize peloidal-bivalve wackestone
(F13) indicate deposition below the fair-weather wave base
in an offshore position. The record of vertically oriented bi-
valves in F12 and F13 suggests local turbulent and rotary
flows during storms (Pérez-López and Pérez-Valera,
2011). The frequent record of ammonoids in these facies
also confirms an open-ocean influence. Thus, in a large em-
bayment system, the shoal complex can be considered as
tide dominated, even if its seaward margin was impacted
by open-sea waves.

5. SECTION CORRELATION AND DEPOSITIONAL
SEQUENCES

The only previous attempt to correlate sections in the Torrey
area was largely based on a lithostratigraphic approach
(Dean, 1981). For the herein studied sections, age assign-
ments are nevertheless possible owing to conodont and am-
monoid occurrences. Conodonts from the base of the upper
Sinbad Limestone at French Fork yield a Smithian age.
However, no definite conodont zonation and correlation
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are possible between the French Fork, Beas Lewis Flats and
Pleasant Creek sections. Therefore, the record of the
Anasibirites fauna within dm-scale levels in the upper part
of these three sections is the only correlation timeline avail-
able within the Torrey area (Fig. 15). Based on these
Anasibirites beds, it is possible to recognize distinct hierar-
chical stacking patterns and facies evolution in the sedimen-
tary succession, thus allowing for the identification of large-,
medium-, and small-scale depositional sequences. At each
hierarchical level, the facies evolution of depositional se-
quences generally indicates deepening and shallowing
trends defined by transgressive surfaces (Strasser et al.,
1999).

The Black Dragon and Sinbad formations reflect a large-
scale depositional sequence, which is similar to the facies
evolution previously described in the San Rafael Swell area

(Goodspeed and Lucas, 2007). The Black Dragon red
beds, which represent clastic tidal-flat deposition (Blakey,
1974), mark the beginning of the transgressive trend.
Maximum accommodation corresponds to the Anasibirites
beds observed in the uppermost Sinbad Formation. The
sequence boundary may either be at the top of the Sinbad
Formation or in the lower part of the Spathian Torrey
Formation, in agreement with the interpretation of
Goodspeed and Lucas (2007).
Five medium-scale sequences are identified (S.I–V; Fig.

15). The first sequence is initiated at the top of the Permian
limestones, but no clear facies evolution can be observed
in the dolosiltstones of the red beds. The second medium-
scale depositional sequence is well visible at French Fork
and Beas Lewis Flats. Intraclastic limestones (F2) observed
at the base of the microbial unit of the lower Sinbad

Figure 15. Correlation of the French Fork, Beas Lewis Flats and Pleasant Creek sections illustrating the general facies architecture of the Torrey area during the
Smithian. S.I to S.V: medium-scale depositional sequences. This figure is available in colour online at wileyonlinelibrary.com/journal/gj
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Formation mark the transgressive interval of this second
medium-scale depositional sequence. The sparse ammonoid
record at French Fork and the presence of large fenestrae and
oncoids (F3e) in the uppermost part of the microbial lime-
stone unit at Beas Lewis Flats underline the maximum
flooding interval (Figs. 4 and 8). This second depositional
sequence is more difficult to observe at Pleasant Creek,
where the microbial limestone unit is absent (Fig. 15). The
progressive decrease in thickness of the microbial limestone
unit between French Fork and Beas Lewis Flats and its ab-
sence in Pleasant Creek is consistent with a general
retrogradational pattern of this facies towards the southeast
(Dean, 1981). The erosional surface at the top of the micro-
bial limestone unit at Beas Lewis Flats marks the sequence
boundary of this second medium-scale sequence. The re-
maining three medium-scale depositional sequences are
characterized by a facies evolution with deepening-
shallowing trends marked by a complex interplay between
lower shoreface, shoal, and tidal flat deposits. Thus, the third
medium-scale sequence displays a basal transgressive inter-
val, well recorded at Pleasant Creek with stromatolitic (F4)
and intraclastic (F2) deposits. The progressive incursion of
seaward bioclastic shoal deposits at French Fork and of
shoal complexes at Beas Lewis flats is consistent with a
deepening trend. The maximum flooding interval is marked
by the presence of subtidal bars made of bivalve-rich lime-
stones (F11) at French Fork, allowing the accumulation of
thick ooidic shoal deposits at Beas Lewis Flats. A thick in-
terval of interior platform dolostones (F5) underlines the
progradational trend at the end of this third medium-scale se-
quence. During the initiation of the deepening trend of the
fourth medium-scale depositional sequence, lower shoreface
deposits with ammonoids are recorded at French Fork,
whereas at Beas Lewis Flats, only a thin oolitic interval is
observed. In a more proximal setting, stromatolitic (F4)
and intraclastic (F2) deposits mark this transgressive interval
at Pleasant Creek. The record of the Anasibirites ammonoid
fauna in the three sections indicates the maximum flooding
interval. The shallowing trend is characterized by the pres-
ence of ooidic shoal deposits in Pleasant Creek and then
dolostones (F5), which are relatively thick at Beas Lewis
Flats. The fifth medium-scale depositional sequence is well
visible only at Beas Lewis Flats. Seaward bioclastic shoal
deposits (F9–F12) mark the deepening trend. Offshore de-
posits (F13) underline the maximum flooding interval. The
shallowing trend is evidenced by deposition of a thick inter-
val of dolostones (F5), and the sequence boundary corre-
sponds to the limit between the deposits of the Sinbad and
Torrey formations.
Within such large- and medium-scale hierarchical stack-

ing patterns, more than fifteen small-scale depositional
sequences can be identified. In the middle Smithian micro-
bial limestones of the French Fork section, five small-scale

sequences can be recognized. Dm-thick intervals of thin
laminated beds (F3c) or erosive surfaces delimit these se-
quences in which m-scale patch reefs developed (Fig. 2a).
Such a stacking pattern is not observed at Beas Lewis Flats,
where facies evolution reflects a medium-scale increase in
accommodation (Figs. 8 and 10). With the change of depo-
sitional settings during the late middle to late Smithian
(Fig. 14), small-scale sequences are marked by rapid facies
shifts between offshore, shoal and interior platform deposits.
In some intervals, correlation between these small-scale se-
quences is apparently possible, but for other intervals, their
numbers and thicknesses differ greatly between the three
studied sections, making their correlation difficult (Fig. 15).

Depositional sequences characterized by a facies evolu-
tion corresponding to the shortest recognizable cycle of en-
vironmental change are called elementary sequences
(Strasser et al., 1999). These elementary sequences, which
generally correspond to one bed, are observed within 13 suc-
cessive beds of the microbial limestone unit at Beas Lewis
Flats (Fig. 11). Facies evolution of these elementary se-
quences involves a succession of gastropod-rich accumula-
tions (F3a), fenestral limestones (F3b), and laminated
mudstones (F3c; Fig. 11).

6. ORIGINS OF DEPOSITIONAL SEQUENCES

Global sea-level curves indicate a general rise during the
Permian–Triassic transition (Haq and Al-Qahtani, 2005;
Haq and Shutter, 2008). During this global trend, several
world-wide localities record third-order sea-level cycles in
Lower Triassic rocks (Embry, 1997; Vigran et al., 1998;
Lehrmann et al., 2001, 2007a, 2007b). In the western USA
basin, the Lower Triassic sedimentary succession records
three third-order transgressive–regressive sequences, namely
in the Griesbachian, Smithian and earliest-middle Spathian
(Paull and Paull, 1993, 1997). In southern Utah, the Early
Triassic transgression began in the early middle Smithian
(Goodspeed and Lucas, 2007; Brayard et al., 2013). The
large-scale depositional sequence recognized in the Torrey
area is consistent with this Smithian third-order sea-level
cycle.

The medium-scale sequences can be correlated across the
three studied sections. Indeed, they display relatively close
bed-stacking patterns and facies evolution (e.g. the progres-
sive retrogradation of offshore deposits in the bioclastic
limestone unit; Fig. 15) that are congruent with a sea-level
control. Based on published U/Pb ages and the comparison
of average Smithian ammonoid zone durations inclusive of
separation intervals (see Brühwiler et al., 2010 for details),
the Sinbad Formation likely represents a duration less than
490 kyr in the Torrey area. Thus, observed medium-scale
depositional sequences may reflect the orbital cycle of
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eccentricity. The lack of a regressive trend in the second
medium-scale depositional sequence coupled with the pres-
ence of a truncated surface at the top of the microbial lime-
stone unit of the lower Sinbad Formation is consistent with
a sudden drop in sea level, which may have a tectonic origin.
A regional tectonic uplift probably related to the Sonoma
Orogeny (Collinson et al., 1976) has also been identified at
the top of fenestral–microbial limestones of the Sinbad For-
mation in southwest Utah (Olivier et al., 2014). Addition-
ally, a local inherited topography at the top of the
microbial limestone unit may also explain the formation of
a thick ooidic shoal system in the Beas Lewis Flats area.

The origin of small-scale sequences is often more difficult
to assess because autocyclic processes inherent in the depo-
sitional system also played a role in their formation (Strasser
et al., 2012). These autocyclic processes, including
progradation or lateral migration of sedimentary bodies
(tidal flats, shoals or delta lobes), can lead to the formation
of shallowing-up depositional sequences (Ginsburg, 1971;
Pratt and James, 1986; Drummond and Wilkinson, 1993;
Satterley, 1996; Burgess, 2006). At Beas Lewis Flats, the
upper Sinbad Formation consists of tide-dominated ooidic
shoal deposits that actually reflect important lateral facies
migration. Along the three studied sections, small-scale se-
quences show a disordered pattern and a limited lateral con-
sistency. All these observations argue for a preponderant
role by autocyclic processes rather than putative orbitally-
forced sea-level changes in the formation of small-scale de-
positional sequences.

Observed elementary sequences reflect a facies evolution
corresponding to the succession of gastropod-rich accumula-
tions (F3a), fenestral limestones (F3b), and laminated
mudstones (F3c; Fig. 11). This shortest recognizable cycle of
environmental change is relatively similar to the Alpine Late
Triassic Lofer (Dachstein) cycles originally described in the
Austrian northern calcareous Alps (Fischer, 1964). Interpreta-
tion of these peritidal cyclic carbonate sequences is controver-
sial. They can be interpreted as reflecting a deepening-upward
cycle (Fischer, 1964 – Symposium on Cyclic Sedimentation),
a shallowing-upward cycle (Goldhammer et al., 1990;
Satterley, 1996; Cozzi et al., 2005), or as a structure formed
in tune with autocyclic processes (Enos and Samankassou,
1998). Even though such sequences are now largely docu-
mented in Middle and Late Triassic deposits, they are gener-
ally considered as unknown in Lower Triassic sedimentary
successions (Weidlich and Bernecker, 2007). However, one
site in the Smithian–Spathian strata of the Great Bank of Gui-
zhou (South China) records thrombolitic reef mounds within
peritidal cyclic limestones (Lehrmann et al., 1998, 2001).
These deposits display a typical thrombolite-bearing
parasequence – i.e. another term illustrating the fundamental
building block of sequences (Mitchum and Van Wagoner,
1991) – that consists in the upward succession of a basal

oolitic grainstone overlain by skeletal packstone, thrombolite
reef mounds, and capped by flaser-bedded limestones. Such
a parasequence (0.2 to 7.4m-thick) has been interpreted as
reflecting low-amplitude, high frequency (fifth order, 0.01–
0.1 my) sea-level fluctuations resulting from greenhouse con-
ditions (Lehrmann et al., 2001). At Beas Lewis Flats, gastro-
pod accumulations are laterally discontinuous, suggesting a
concentration in subtidal local topographic low points. It
may also represent lag deposits during phases of lateral migra-
tion of gullies (Fig. 14a). Subfacies F3b, with abundant fenes-
trae, some microbial deposits and sparser gastropods,
represents intertidal deposits that progressively filled available
space in local ponds or abandoned gullies. Subfacies F3c, with
abundant sheet cracks, some stromatolites and a restricted
fauna (some ostracods and gastropods), reflects an intertidal
to supratidal area prone to record intermittent exposure and
desiccation. At French Fork, fenestral (F3b) and muddy lami-
nated (F3c) subfacies are laterally observed in the same bed
(Fig. 7). Such an observation, coupled with the limited lateral
consistency of these subfacies between French Fork and Beas
Lewis Flats, supports an autocyclic origin of the observed ele-
mentary sequences.

7. SIGNIFICANCE OF MICROBIAL DEPOSITS: ARE
THEY LINKED TO DELETERIOUS ENVIRONMENTS?

It is classically assumed that a return to pre-extinction levels
in taxonomic and functional diversity after the end-Permian
mass extinction did not occur until the end of the Early Tri-
assic (Schubert and Bottjer, 1995; Lehrmann et al., 2006;
Chen and Benton, 2012; Pietsch and Bottjer, 2014). Lower
Triassic rocks are thus often considered to record low-
diversity benthic faunas (Lehrmann et al., 2001; Fraiser
and Bottjer, 2004; Pruss et al., 2006). In this context,
microbialites are thought to have flourished as a conse-
quence of continuous or recurrent environmental stresses
such as anoxia or high water temperature (Pietsch et al.,
2014; Song et al., 2014) and in the absence of developed
benthic faunas (Schubert and Bottjer, 1992, 1995). Indeed,
several microbialite pulses have been identified in Lower
Triassic rocks (Baud et al., 2007; Algeo et al., 2011; Mata
and Bottjer, 2012). It has therefore been suggested that these
microbialite episodes may reflect the unusual chemistry of
Lower Triassic oceans (Pruss and Bottjer, 2004; Woods,
2014). However, recent studies have demonstrated that the
rediversification of some nekto-pelagic organisms such as
ammonoids (Brayard et al., 2009a) and conodonts (Orchard,
2007) was explosive after the mass extinction. The con-
sensual view of widespread depauperate benthic faunas
throughout the entire Early Triassic is now obsolete, as
shown by the diversified assemblages recently described
from various time intervals and latitudes (Twitchett
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et al., 2004; Beatty et al., 2008; Kaim et al., 2010;
Hautmann et al., 2011, 2013; Hofmann et al., 2011,
2013a, b, 2014).
In the Torrey area, the observed lithological succession is

consistent with two depositional models (middle and late
middle to late Smithian, respectively; Fig. 14). The first
model implies an extension of peritidal microbial limestones
(F3) over tens of kilometres (see also Dean, 1981), which
laterally pass to more internal tidal-flat red beds (F1; Fig.
14a). Within these microbial limestones, the associated
fauna, although common, is of relatively low diversity and
is mainly represented by ostracods, gastropods, some bi-
valves and rare foraminifers. Such a biotic assemblage could
be interpreted as representing an impoverished and low-
complexity marine ecosystem, typified by primary producers
and opportunistic consumers (Lehrmann et al., 2001; Chen
and Benton, 2012; Crasquin and Forel, 2014). In this con-
text, microbialites are expected to be widespread and capa-
ble of forming patch reefs (Schubert and Bottjer, 1992,
1995; Lehrmann, 1999; Pruss and Bottjer, 2004). Never-
theless, at French Fork, the occurrence of frequent sili-
ceous sponges in the reef framework confirms the
existence of an advanced ecological step above microbe-
only constructions early in the Early Triassic (Pruss
et al., 2007; Brayard et al., 2011; Marenco et al., 2012;
Pandolfi and Kiessling, 2014; Vennin et al., in press).
Similar sponge-microbe reefs have already been reported
from the early Smithian of central Utah (Brayard et al.,
2011), thus demonstrating that the Smithian occurrence is
not anecdotal in the western USA basin. Their
diachronous formation during the Smithian transgression
also suggests that they are probably linked to water
depth/energy/nutrient conditions.
The record of the Early Triassic biotic recovery appears to

be strongly dependent on the type of depositional setting
(Pruss et al., 2006; Beatty et al., 2008; Mata and Bottjer,
2011; Olivier et al., 2014). In the Torrey area, previous stud-
ies interpreted the sediments of the Black Dragon and Sin-
bad formations as part of the same depositional model
(Blakey, 1974; Dean, 1981). However, high-resolution cor-
relation between the three studied sections does not support
such a lateral facies distribution between microbial lime-
stones (F3) of the lower Sinbad Formation and the more di-
versified bioclastic limestones (F10–F13) of the upper
Sinbad Formation (Fig. 14a and b). Such a lateral facies var-
iation was nevertheless assumed in southwestern Utah in
time-equivalent Sinbad limestones (Olivier et al., 2014).
The lack of a fauna in the Black Dragon Formation red beds
(F1) must be considered from the perspective that these de-
posits formed in a tidal-system reflecting important terrige-
nous inputs (Fig. 14a). In such depositional settings,
significant sediment mobility (caused by tidal currents) and
abundant suspended sediment particles (that prevent the

colonization by filter-feeding organisms) may cause inter-
tidal settings to be prohibitive environments for common
benthic organisms (Davis and Fitzgerald, 2004). Indeed,
the western USA basin corresponds to a narrow epicontinen-
tal shallow sea that progressively transgressed southward
during the Smithian (Paull and Paull, 1993; Goodspeed
and Lucas, 2007; Brayard et al., 2013). Abundant lower–
middle Smithian terrigenous red-bed deposits in central
and southern Utah indicate the existence of complex topo-
graphic highs as well as significant continental erosion along
the margins of an epicontinental sea tongue or embayment
system (Blakey, 1974; Dean, 1981; Nielson, 1991; Olivier
et al., 2014). Thus, the intense microbial development in
the lower Sinbad Formation coupled with the lack of a fauna
in the contemporaneous red beds of the Black Dragon For-
mation may be explained by specific local environmental
conditions. Microbialites are not consistent with high rates
of sedimentation (Kershaw et al., 1999), and therefore mi-
crobial limestones (F3) could not have formed very close
to the terrigenous sources where the red beds were depos-
ited. On the other hand, associated with the terrigenous flux
in marine systems, nutrient-rich conditions may have ap-
peared, thus favouring the formation of microbial deposits
(Dupraz and Strasser, 2002; Olivier et al., 2004). Red beds
were favoured by an intense weathering of silicate rocks,
which could have increased the amount of carbonate min-
erals delivered to the oceans (Ferris et al., 1994; Locklair
and Lerman, 2005). Carbonate precipitation depends on car-
bonate alkalinity and the availability of free calcium (Dupraz
and Visscher, 2005; Aloisi, 2008). The intense erosion of
calcareous Permian deposits of the Kaibab Formation also
supports the existence of seawaters enriched in Ca2+ (Arp
et al., 2003). Coupled with the rare skeletal carbonate sinks
during the middle Smithian, a shift in the carbonate satura-
tion of seawater can help to explain the intense development
of microbialites (Pruss et al., 2005; Payne et al., 2007).
Thus, the formation of middle Smithian microbial deposits
in the lower Sinbad Formation may have occurred in a spe-
cific depositional window corresponding to a peritidal set-
ting sufficiently distant from terrigenous sources but still
under the influence of alkaline and/or nutrient-rich waters.

During the late–middle to late Smithian, the depositional
environment changed drastically. Faunas, which are notably
more abundant and diversified, include bivalves, gastropods,
echinoderms, ammonoids and serpulids. An intense infaunal
activity is also recorded (Fig. 14b). This environmental
change may be explained by an acceleration of the transgres-
sion following a significant sea-level drop of probable tec-
tonic origin at the top of the microbial limestone unit. The
inherited topography probably allowed the formation of an
oolitic shoal complex in the Beas Lewis Flats area (Fig.
15). It also permitted recurrent incursions of seaward shoal
complex deposits characterized by a more diversified fauna.
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These ooid-bioclastic limestones comprise the upper Sinbad
Limestone Formation. This unit exhibits a relatively high
diversity and abundant fauna up to the Anasibirites
kingianus beds (Brayard et al., 2013; Hofmann et al.,
2014; Pietsch et al., 2014). These bioclastic limestones
(F10–13) interfinger with intertidal interior platform
dolostones (F5) that contain a sparse and poorly preserved
fauna. In the upper Sinbad facies model (Fig. 14b),
microbial deposits are still documented, but their nature
and depositional setting strongly differ from their lower
Sinbad counterparts. In the youngest case, dm-thick beds
of domal stromatolites or wavy carbonate structures (F4)
display a laminated micritic fabric. Such microbial
carbonates may have played a stabilizing role on the inter-
nal part of the shoal complex such as do modern seagrass
communities (Rankey, 2014). However, modern and
ancient microbialites observed near high-energy shoals
incorporate sand-size detrital particles (Riding et al.,
1991; Feldmann and McKenzie, 1998; Planavsky and
Ginsburg, 2009). Fine-grained microbial deposits closely
associated with high-energy shoals are known in the Mid-
dle Jurassic and they are interpreted as being deposited in
tune with sea-level fluctuations (Tomás et al., 2013). This
is not the case in the Torrey area where depositional se-
quences, including microbial, oolitic and dolostone de-
posits, are better explained by autocyclic processes. Early
Triassic wrinkle structures have also been described associ-
ated with cross-laminated siltstones interbedded with
shales on supratidal flat environments (Hips, 1998; Pruss
et al., 2004; Mata and Bottjer, 2012). Late middle to late
Smithian dolostones (F5) in the Torrey area reflect a
tide-dominated interior platform with minor terrigenous
influences. Thus, observed wavy microbial carbonates
can display structures similar to their wrinkle siliciclastic
analogues. However, since they formed in a mud-
dominated setting, they could not have integrated
siliciclastic grains (Luo et al., 2013). Observed wavy
microbial carbonates may therefore reflect local low-
energy topographic highs in the interior platform,
whereas dm-scale domal stromatolites probably formed
in an area characterized by a slightly higher accommoda-
tion (Fig. 14b). All of these microbial limestones (F4) are
clearly contemporaneous with the more distal and more
diversified bioclastic limestones (F10–13) of the upper
Sinbad Formation. They can be considered as reflecting
marine and oxic waters, as previously suggested for
younger Spathian microbialites in the Virgin Limestone
Formation in western USA (Schubert and Bottjer, 1992,
1995). Thus, both lower and upper Sinbad microbialites
(F3 and F4) observed in the Torrey area indicate that
Early Triassic microbialites were able to form in various
depositional settings that did not necessarily reflect
deleterious environments.

8. CONCLUSIONS

The lithological succession in the Torrey area represents a
general transgression after the Permian–Triassic mass ex-
tinction. This transgression corresponds to the middle
Smithian third-order sea-level cycle. The stacking pattern
of the studied stratigraphical interval allows the identifica-
tion of large, medium, small-scale and elementary deposi-
tional sequences. While one particular medium-scale
depositional sequence observed in the lower Sinbad Forma-
tion (middle Smithian) may reflect a regional tectonic uplift,
others possibly formed in tune with orbitally (eccentricity)
controlled sea-level fluctuations within the upper Sinbad
Limestone Formation (late middle to late Smithian).
Autocyclic processes better explain small-scale and elemen-
tary depositional sequences.
During the Smithian, the sedimentary systems docu-

mented in the Torrey area show depositional settings charac-
teristic of an embayment or a sea tongue. The sedimentation
reflects a tide-dominated regime that displays wave
influences only during major phases of transgression. The
first depositional model highlights the juxtaposition between
the Black Dragon (red beds) and Lower Sinbad formations,
corresponding to a siliciclastic tidal flat and peritidal
microbial limestones, respectively. Microbial limestones
developed m-scale patch reefs and display a rather low-
diversity benthic fauna with gastropods, ostracods, rare
foraminifers, and common siliceous sponges. The contribu-
tion of siliceous sponges to the reef framework indicates
an advanced ecological step above microbial-only reefs.
Similar sponge–microbe associations were also documented
from older beds of the early Smithian of central Utah,
indicating that these bioconstructions were probably
common within the western USA basin. The second upper
Sinbad depositional model is characterized by three main
facies associations: (i) tidal flat dolostones of the interior
platform; (ii) ooid-bioclastic deposits of a tide-dominated
shoal complex; and (iii) bioclastic limestones of open wave
dominated marine settings.
Microbialites occur in both lower and upper Sinbad depo-

sitional models. During deposition of the lower Sinbad, the
initiation of the transgression allowed the development of a
large microbial-dominated peritidal area seaward of a
siliciclastic tidal flat in which red beds devoid of any fauna
were being deposited. The formation of these microbialites
seems to have occurred in a specific depositional window
sufficiently far from terrigenous sources, but still under the
influence of alkaline and/or nutrient-rich waters. During
the upper Sinbad deposition, the sea-level rise permitted
the formation of a mixed wave-tide dominated sedimentary
system and the microbialitic growth was limited to a small
area in the dolostone interior platform. A rather low-
diversity fauna characterizes the lower Sinbad microbial
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deposits, whereas upper Sinbad stromatolites are contempo-
raneous with a much more diversified and abundant fauna.
The nature of microbialites and their formation apparently
depend strongly on the type of depositional setting. These
Smithian microbialites do not reflect the peculiar deleterious
environmental conditions that are classically assumed for the
Early Triassic time interval.
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Appendix 2: Supplementary material belonging to the article “Early 

Triassic fluctuations of the global carbon cycle: new evidence from 

paired carbon isotopes in the western USA basin” (see section III.A) 
 

This supplementary material provides additional data used to perform the integrated 

study presented in Caravaca et al., 2017 (see section III.A). It includes the complete 

geochemical data for the paired carbon isotopes, TOC and carbonate contents (Table ST1) and 

for the trace and major elements concentrations (Table ST2).  
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Supplementary Table S1. Geochemical data with carbonate, organic matter and net isotopic effect 

results, Total Organic Carbon (TOC) content, carbonate δ18O values and carbonate content. 

 Sample  δ13Ccarb δ13Corg Δ13Ccarb-org TOC δ18Ocarb CaCO3 

 
  

‰ vs 
VPDB ‰ vs VPDB ‰ vs VPDB ppm 

‰ vs 
VPDB % 

P
er

m
ia

n
 (

m
id

d
le

 t
o

 u
p

p
er

?)
 

HSP 1 -7.97 -27.57 19.60 4.78 -14.90 81.97 

HSP 2 -4.11 -27.49 23.38 N/A -10.28 32.61 

HSP 3 -5.39 -26.68 21.29 N/A -9.43 37.08 

HSP 4 -5.84 -27.21 21.37 N/A -10.18 40.39 

HSP 5 -5.43 -26.57 21.14 N/A -10.08 35.24 

HSP 6 -3.45 -25.60 22.15 N/A -9.36 20.04 

HSP 7 b -5.64 -27.46 21.82 N/A -9.68 14.46 

HSP 8 -5.36 -27.17 21.81 N/A -10.17 37.17 

HSP 10 -0.06 -27.02 26.96 N/A -2.34 89.94 

HSP 11 N/A -27.16 27.16 N/A N/A 11.30 

HSP 12 -5.89 -28.14 22.25 59.47 N/A 92.27 

HSP 14 1.83 -27.09 28.92 N/A N/A 13.16 

HSP 15 3.23 -27.71 30.94 N/A -0.61 7.06 

HSP 13 N/A -27.85 27.85 N/A N/A 27.53 

HSP 16 N/A -27.72 27.72 N/A N/A 8.75 

HSP 17 -1.56 -26.50 24.94 N/A -3.93 6.83 

HSP 18 N/A -28.31 28.31 N/A N/A 2.14 

HSP 19 N/A -26.80 26.80 N/A N/A 4.98 

HSP 20 N/A -27.58 27.58 N/A N/A 5.64 

HSP 21 N/A -28.84 28.84 N/A N/A 6.22 

HSP 22 N/A -28.15 28.15 18.35 N/A 8.24 

HSP 23 -0.56 -29.06 28.50 N/A -2.19 19.53 

G
ri

es
b

ac
h

ia
n

 -
 D

ie
n

er
ia

n
 

HSP 24 -1.44 -28.48 27.04 17.78 -3.12 11.09 

HSP 25 -1.38 -28.64 27.26 47.81 -3.69 13.85 

HSP 26 -6.84 -28.92 22.08 N/A -3.17 49.97 

HSP 186 N/A -28.94 28.94 N/A N/A 13.27 

HSP 187 -2.44 -29.60 27.16 N/A -9.63 39.62 

HSP 27 N/A -28.86 28.86 39.66 N/A 78.62 

HSP 28 N/A -29.21 29.21 44.35 N/A 78.31 

HSP 29 -1.00 -28.37 27.37 N/A -4.99 39.58 

HSP 30 -0.74 -28.74 28.00 N/A -3.31 39.59 

HSP 31 -0.91 -28.51 27.60 N/A -3.98 41.93 

HSP 32 -1.42 -25.16 23.74 N/A -9.89 81.52 

HSP 145 -0.95 -26.54 25.59 N/A -8.28 37.25 

HSP 146 -0.19 -27.13 26.94 N/A -8.44 85.33 

HSP 147 -0.92 -25.65 24.73 N/A -8.89 33.09 

HSP 33 -0.92 -26.51 25.59 N/A -8.03 39.25 

HSP 34 0.33 -26.22 26.55 N/A -8.26 79.43 

HSP 148 -0.58 -26.26 25.68 N/A -8.03 29.03 

HSP 149 -1.24 -26.12 24.88 N/A -8.48 31.41 
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HSP 35 -0.23 -27.21 26.98 N/A -8.28 60.65 

HSP 150 -0.30 -26.84 26.54 N/A -8.87 75.64 

HSP 151 -0.61 -26.82 26.21 N/A -8.23 31.19 

HSP 152 -0.13 -27.44 27.31 N/A -8.64 85.38 

HSP 153 -0.80 -26.28 25.48 N/A -8.34 32.53 

HSP 36 -2.30 -27.97 25.67 N/A -8.72 65.92 

HSP 37 -1.02 -27.23 26.21 3.76 -8.63 93.34 

HSP 39 -3.46 -27.93 24.47 N/A -8.17 91.79 

HSP 38 -0.67 -27.17 26.50 3.10 -8.59 97.10 

HSP 40 -2.04 -27.64 25.60 N/A -8.20 42.70 

HSP 41 -2.06 -21.01 * 18.95 N/A -8.16 43.11 

HSP 43 -1.76 -27.25 25.49 N/A -8.87 79.18 

HSP 42 -1.24 -26.88 25.64 N/A -7.94 90.88 

HSP 45 -2.23 -27.40 25.17 4.61 -8.67 75.06 

HSP 44 -2.87 -27.44 24.57 N/A -8.06 80.69 

HSP 154 -1.61 -27.61 26.00 N/A -8.43 63.86 

HSP 46 -3.01 -27.51 24.50 N/A -11.46 39.88 

HSP 155 -1.49 -26.78 25.29 N/A -7.13 32.01 

HSP 156 -1.80 -26.47 24.67 N/A -6.53 41.82 

HSP 47 -0.18 -26.92 26.74 1.56 -8.50 98.14 

HSP 157 0.99 -27.11 28.10 4.83 -9.31 97.57 

HSP 48 -1.83 -26.88 25.05 N/A -5.65 44.56 

HSP 158 -0.98 -27.10 26.12 N/A -5.82 35.91 

HSP 159 -0.60 -26.79 26.19 N/A -6.91 68.29 

HSP 160 0.10 -27.81 27.91 2.66 -7.10 95.49 

Lo
w

e
r 

Sm
it

h
ia

n
 

HSP 161 3.31 -26.47 29.78 1.99 -9.40 95.89 

HSP 162 2.35 -27.06 29.41 N/A -10.01 67.96 

HSP 163 0.93 -26.48 27.41 N/A -11.45 33.90 

HSP 164 1.87 -26.96 28.83 1.12 -8.84 97.89 

HSP 165 1.24 -27.61 28.85 N/A -9.92 32.05 

HSP 166 2.77 -26.69 29.46 N/A -9.70 82.83 

HSP 167 1.73 -25.93 27.66 N/A -8.88 33.54 

HSP 49 2.60 -26.05 28.65 N/A -9.77 99.04 

HSP 50 2.54 -25.78 28.32 2.81 -9.60 98.49 

HSP 168 2.58 -21.55 * 24.13 2.68 -9.98 93.05 

HSP 169 1.88 -25.73 27.61 N/A -9.03 61.62 

HSP 51 1.56 -27.09 28.65 N/A -9.10 69.73 

HSP 52 2.26 -25.20 27.46 3.38 -9.42 96.40 

HSP 170 1.16 -26.92 28.08 N/A -9.19 39.75 

HSP 53 1.34 -25.93 27.27 N/A -8.83 38.35 

HSP 54 1.85 -26.27 28.12 N/A -9.25 95.79 

HSP 55 1.43 -27.31 28.74 N/A -9.40 84.29 

HSP 56 -0.32 -26.62 26.30 N/A -11.78 97.90 

HSP 57 2.00 -24.28 26.28 N/A -9.72 97.91 

HSP 171 1.85 -26.23 28.08 0.96 -9.00 98.37 

HSP 58 1.25 -26.91 28.16 N/A -9.04 33.55 

HSP 59 1.14 -26.66 27.80 N/A -8.53 41.21 
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HSP 172 1.36 -27.53 28.89 N/A -9.31 44.79 

HSP 173 3.60 -26.63 30.23 N/A -6.48 87.49 

HSP 60 b 2.57 -27.20 29.77 N/A -8.46 80.78 

HSP 175 2.36 -26.44 28.80 N/A -9.24 95.73 

HSP 174 2.20 -25.84 28.04 N/A -9.40 63.32 

HSP 176 2.13 -26.85 28.98 2.99 -8.90 96.42 

HSP 61 2.05 -26.45 28.50 1.31 -8.69 97.66 

HSP 62 1.42 -26.46 27.88 N/A -9.05 77.61 

HSP 177 1.66 -26.16 27.82 N/A -9.01 77.01 

HSP 63 1.16 -26.40 27.56 N/A -7.30 43.32 

HSP 178 2.18 -26.27 28.45 N/A -8.37 53.34 

HSP 64 2.18 -27.65 29.83 N/A -13.44 48.56 

HSP 65 1.60 -26.64 28.24 N/A -13.31 90.51 

HSP 66 3.75 -26.63 30.38 1.33 -9.51 98.38 

HSP 179 2.47 -26.09 28.56 N/A -9.22 32.93 

HSP 69 0.91 -27.21 28.12 N/A -13.38 62.87 

M
id

d
le

 S
m
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HSP 70 3.27 -27.35 30.62 N/A -8.63 80.45 

HSP 180 2.03 -26.60 28.63 N/A -8.83 65.25 

HSP 181 1.31 -27.62 28.93 N/A -10.62 28.29 

HSP 71 3.01 -27.40 30.41 3.92 -8.58 75.49 

HSP 72 1.06 -26.71 27.77 N/A -10.52 83.76 

HSP 73 1.80 -27.07 28.87 N/A -9.50 37.57 

HSP 182 1.53 -26.56 28.09 N/A -9.41 49.45 

HSP 74 2.67 -27.13 29.80 2.67 -8.74 87.27 

HSP 75 0.83 -25.18 26.01 3.86 -8.96 91.32 

HSP 76 1.17 -26.75 27.92 N/A -9.00 95.51 

HSP 183 1.03 -26.18 27.21 N/A -8.58 31.83 

HSP 77 1.06 -27.24 28.30 N/A -9.98 47.04 

HSP 78 0.80 -27.73 28.53 2.67 -9.17 91.09 

HSP 79 1.19 -27.05 28.24 N/A -9.10 95.80 

HSP 184 1.65 -23.25 24.90 2.62 -9.33 97.08 

HSP 80 0.04 -26.70 26.74 N/A -7.93 99.15 

HSP 144 -0.33 -27.68 27.35 4.19 -8.47 86.02 

HSP 81 0.16 -28.32 28.48 3.20 -8.55 93.54 

HSP 82 -0.16 -27.05 26.89 N/A -8.21 98.49 

HSP 83 -0.15 -29.01 28.86 3.89 -8.61 98.32 

HSP 84 -0.63 -27.79 27.16 2.25 -8.58 98.21 

HSP 85 -2.90 -29.72 26.82 N/A -7.84 99.43 

HSP 86 -3.32 -28.19 24.87 N/A -8.06 94.71 

HSP 87 -3.67 -29.76 26.09 3.38 -7.74 96.43 

HSP 89 -3.57 -30.11 26.54 1.56 -6.93 98.59 

U
p

. S
m

. HSP 90 -3.40 -29.77 26.37 N/A -8.28 66.86 

HSP 142 -5.08 -29.62 24.54 23.23 -7.10 45.97 

HSP 143 -0.65 -28.60 27.95 32.00 -8.37 28.89 

HSP 140 5.50 -26.67 32.17 6.14 -7.66 88.74 

Lo
w

e
r 

Sp
at

h
i

an
 HSP 91 5.86 -26.01 31.87 3.82 -8.59 95.48 

HSP 92 5.89 -28.69 34.58 5.49 -9.16 95.60 
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HSP 93 5.91 -24.66 30.57 3.05 -10.27 98.33 

HSP 94 5.99 -23.88 29.87 1.26 -10.02 96.55 

HSP 96 5.91 -25.83 31.74 3.46 -8.35 80.20 

HSP 95 4.53 -26.77 31.30 N/A -11.21 80.28 

HSP 97 5.31 -26.15 31.46 N/A -8.30 69.65 

HSP 185 5.21 -25.73 30.94 N/A -9.50 91.66 

HSP 98 2.58 -25.55 28.13 N/A -8.23 33.25 

HSP 99 5.06 -25.58 30.64 N/A -7.58 60.70 

HSP 100 5.38 -26.43 31.81 4.40 -8.43 79.54 

HSP 101 5.38 -26.14 31.52 4.79 -8.64 88.86 

HSP 102 5.38 -25.21 30.59 N/A -10.12 94.23 

HSP 103 7.17 -23.81 30.98 1.36 -7.47 99.12 

HSP 104 7.17 -24.44 31.61 1.44 -8.72 98.97 

HSP 105 7.02 -23.88 30.90 3.70 -8.18 97.69 

HSP 106 5.85 -24.21 30.06 N/A -8.20 96.14 

HSP 107 5.32 -25.36 30.68 2.17 -9.78 96.83 

HSP 108 5.12 -26.23 31.35 3.75 -9.57 97.61 

HSP 109 5.30 -24.93 30.23 N/A -9.51 97.24 

HSP 110 4.85 -23.90 28.75 7.81 -7.86 86.76 

HSP 111 4.89 -28.48 33.37 7.54 -8.26 94.96 

HSP 112 5.14 -26.14 31.28 N/A -8.52 86.47 

HSP 113 5.20 -27.35 32.55 5.14 -8.22 94.94 

HSP 114 4.68 N/A N/A N/A -8.36 99.40 

HSP 115 4.54 -25.58 30.12 N/A -8.90 95.04 

HSP 116 3.73 -26.89 30.62 4.61 -8.97 85.12 

HSP 117 3.40 -27.06 30.46 2.14 -8.15 90.70 

HSP 118 3.75 -27.91 31.66 N/A -8.09 50.00 

HSP 119 3.95 -25.89 29.84 2.59 -9.75 90.76 

HSP 120 3.91 -27.08 30.99 N/A -8.76 89.03 

HSP 121 4.02 -27.29 31.31 N/A -7.46 89.14 

HSP 122 4.00 -27.23 31.23 9.76 -7.98 66.36 

HSP 123 2.46 -22.44 24.90 N/A -10.21 94.81 

HSP 124 3.31 -27.05 30.36 N/A -8.35 79.68 

HSP 125 3.07 -26.57 29.64 5.94 -9.02 92.44 

HSP 126 2.72 -27.72 30.44 5.16 -8.49 86.05 

HSP 127 -0.08 -29.57 29.49 12.88 -6.59 30.40 

HSP 128 -0.40 -29.37 28.97 5.80 -7.90 67.80 

HSP 130 1.22 -28.55 29.77 75.56 -8.32 31.31 

VPDB: Vienna Pee Dee Belemnite; *: outliers removed from graphical representation on Fig. 7; N/A: 

sample below the detection level.  
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Supplementary Table S2. Geochemical data with trace and major elements results. 

 Sample Al Fe/Al Zr/Al Th/Al V/Al Sr/Al Cr/Al Ni/Al P/Al Mn/Al U/Al 

   (Wt. %)           

P
er

m
ia

n
 (

m
id

d
le

 t
o

 u
p

p
er

?)
 

HSP 1 0.167 0.67 1.92E-02 3.60E-04 8.40E-03 3.12E-02 7.80E-02 2.94E-01 0.12 0.09 5.40E-04 

HSP 3 0.323 0.16 2.54E-02 3.72E-04 2.48E-03 7.43E-03 6.19E-02 2.85E-01 0.02 0.02 3.10E-04 

HSP 4 0.931 0.28 3.02E-02 2.90E-04 2.79E-03 4.19E-03 1.83E-02 7.51E-02 0.02 0.01 2.58E-04 

HSP 6 0.357 0.10 8.57E-02 * 3.36E-04 5.88E-03 8.40E-03 7.28E-02 3.44E-01 0.02 0.01 5.04E-04 

HSP 7 b 0.545 0.28 4.16E-02 2.57E-04 4.22E-03 6.24E-03 3.85E-02 1.58E-01 0.01 0.01 1.65E-04 

HSP 10 0.209 21.43 1.67E-02 3.83E-04 1.06 * 2.87E-02 4.78E-02 5.45E-01 0.22 0.11 2.58E-03 

HSP 11 0.122 3.85 1.48E-02 5.75E-04 1.81E-02 5.18E-02 6.65E-01 1.80E+00 4.52 0.08 6.90E-03 

HSP 14 0.135 2.10 1.26E-02 5.93E-04 1.11E-02 4.37E-02 3.41E-01 1.64E+00 2.22 0.05 5.41E-03 

HSP 15 0.855 0.51 5.26E-03 2.69E-04 7.49E-03 8.77E-03 2.81E-02 5.50E-02 0.08 0.05 4.56E-04 

HSP 17 0.352 1.35 7.67E-03 2.56E-04 6.25E-03 1.05E-02 1.73E-01 4.43E-01 0.12 0.04 4.26E-04 

HSP 18 0.177 2.80 9.02E-03 2.82E-04 5.64E-03 1.47E-02 2.14E-01 1.14E+00 0.14 0.05 1.02E-03 

HSP 19 0.167 2.81 6.60E-03 1.80E-04 5.40E-03 1.32E-02 4.08E-01 1.21E+00 0.12 0.08 8.40E-04 

HSP 20 0.151 1.90 7.96E-03 2.65E-04 4.64E-03 2.19E-02 4.57E-01 2.49E+00 0.22 0.08 9.94E-04 

HSP 22 0.408 1.09 1.47E-02 4.66E-04 7.12E-03 1.52E-02 1.60E-01 4.47E-01 0.52 0.05 9.57E-04 

G
ri

es
b

ac
h

ia
n

 -
 D

ie
n

er
ia

n
 

HSP 25 2.114 0.41 7.43E-03 2.84E-04 4.82E-03 3.78E-03 1.80E-02 1.75E-02 0.08 0.02 2.65E-04 

HSP 186 1.209 0.55 1.13E-02 3.39E-04 3.31E-03 8.19E-03 1.90E-02 5.04E-02 0.28 0.02 3.47E-04 

HSP 187 1.307 0.67 7.27E-03 6.35E-04 5.05E-03 2.44E-02 2.45E-02 5.35E-02 1.68 0.03 1.06E-03 

HSP 28 0.445 0.68 1.53E-02 9.00E-04 1.03E-02 1.18E-01 5.62E-02 4.27E-02 13.47 0.10 6.84E-03 

HSP 29 1.744 0.89 8.49E-03 3.04E-04 2.18E-03 7.11E-03 6.88E-03 2.52E-02 0.04 0.23 1.03E-04 

HSP 30 2.104 0.33 7.70E-03 2.90E-04 2.33E-03 5.37E-03 5.23E-03 1.66E-02 0.02 0.16 9.03E-05 

HSP 31 1.715 0.34 1.06E-02 3.50E-04 2.22E-03 6.36E-03 7.58E-03 2.86E-02 0.02 0.27 1.05E-04 

HSP 32 0.482 0.43 8.72E-03 2.70E-04 1.66E-03 9.86E-02 1.45E-02 6.02E-02 0.05 0.79 1.04E-04 

HSP 146 0.542 0.42 7.93E-03 2.21E-04 1.66E-03 5.99E-02 7.37E-03 3.13E-02 0.08 0.56 9.22E-05 

HSP 147 1.905 0.42 8.24E-03 2.57E-04 1.78E-03 7.45E-03 6.30E-03 2.89E-02 0.03 0.06 7.35E-05 

HSP 33 2.284 0.41 4.42E-03 1.88E-04 1.84E-03 6.26E-03 3.50E-03 1.36E-02 0.01 0.07 6.13E-05 

HSP 148 1.818 0.42 1.30E-02 3.19E-04 1.87E-03 7.04E-03 9.35E-03 4.84E-02 0.03 0.05 9.35E-05 

HSP 35 1.302 0.38 1.11E-02 2.84E-04 1.92E-03 1.84E-02 6.14E-03 2.61E-02 0.05 0.14 9.98E-05 

HSP 150 0.651 0.42 1.67E-02 4.61E-04 2.15E-03 7.93E-02 7.68E-03 3.07E-02 0.10 0.32 1.69E-04 

HSP 152 0.566 0.48 9.18E-03 3.36E-04 2.65E-03 6.16E-02 7.06E-03 2.83E-02 0.17 0.47 1.41E-04 

HSP 153 2.024 0.52 1.62E-02 3.41E-04 2.07E-03 5.98E-03 6.92E-03 3.16E-02 0.03 0.06 1.09E-04 

HSP 36 0.924 0.45 1.43E-02 3.25E-04 1.95E-03 4.09E-02 8.66E-03 3.46E-02 0.05 0.93 1.08E-04 

HSP 37 0.296 0.88 3.71E-03 2.02E-04 2.36E-03 1.50E-01 1.69E-02 6.41E-02 0.11 2.11 6.75E-05 

HSP 38 0.204 1.22 5.40E-03 3.44E-04 2.94E-03 4.18E-01 1.96E-02 7.85E-02 0.19 1.70 1.96E-04 

HSP 40 1.270 0.48 1.95E-02 4.80E-04 1.73E-03 1.39E-02 1.02E-02 4.17E-02 0.08 0.26 1.34E-04 

HSP 41 1.469 0.45 1.50E-02 3.74E-04 2.04E-03 1.26E-02 9.53E-03 4.22E-02 0.04 0.22 1.16E-04 

HSP 42 0.127 1.65 1.18E-02 9.45E-04 N/A 1.02 * 3.15E-02 1.10E-01 0.22 2.15 3.15E-04 

HSP 45 0.564 0.70 2.22E-02 7.81E-04 2.31E-03 6.62E-02 1.60E-02 6.92E-02 0.25 0.62 1.95E-04 

HSP 154 0.564 0.55 1.47E-02 5.32E-04 2.48E-03 8.91E-02 8.87E-03 3.73E-02 0.13 0.61 1.60E-04 

HSP 155 1.858 0.42 9.21E-03 3.12E-04 2.05E-03 5.49E-03 8.07E-03 3.88E-02 0.02 0.10 8.61E-05 

HSP 157 0.101 1.77 8.95E-03 8.95E-04 N/A 1.23 * 3.98E-02 1.79E-01 0.07 1.14 6.96E-04 

HSP 158 1.463 0.46 8.13E-03 3.49E-04 1.85E-03 4.92E-03 7.52E-03 3.35E-02 0.04 0.08 7.52E-05 

HSP 159 0.712 0.56 1.63E-02 4.92E-04 1.69E-03 9.55E-03 1.26E-02 5.48E-02 0.10 0.28 1.97E-04 

Lo w
e r Sm it
h

i
an

 

HSP 161 0.146 1.23 1.79E-02 8.93E-04 5.50E-03 1.90E-01 2.75E-02 9.62E-02 0.12 1.45 2.75E-04 
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HSP 164 0.143 1.08 1.33E-02 4.90E-04 4.20E-03 6.60E-01 2.10E-02 7.00E-02 0.17 1.12 2.80E-04 

HSP 166 0.421 0.56 3.40E-02 7.61E-04 2.85E-03 5.94E-02 1.19E-02 5.23E-02 0.12 0.53 2.14E-04 

HSP 167 1.350 0.38 5.66E-02 8.67E-04 2.37E-03 6.59E-03 8.15E-03 2.96E-02 0.07 0.07 2.52E-04 

HSP 49 0.082 1.41 1.71E-02 7.31E-04 7.31E-03 5.18E-01 4.88E-02 2.19E-01 0.11 2.20 8.53E-04 

HSP 168 0.214 0.83 3.27E-02 7.46E-04 3.73E-03 1.30E-01 1.87E-02 3.73E-02 0.12 1.31 2.80E-04 

HSP 169 0.693 0.48 6.16E-02 1.33E-03 2.74E-03 2.58E-02 1.15E-02 3.89E-02 0.22 0.48 4.18E-04 

HSP 170 1.180 0.34 3.22E-02 5.17E-04 1.53E-03 9.15E-03 1.36E-02 6.69E-02 0.08 0.19 1.61E-04 

HSP 54 0.119 1.70 2.18E-02 7.56E-04 5.88E-03 3.88E-01 5.04E-02 2.44E-01 0.29 2.31 3.36E-04 

HSP 171 0.111 1.38 1.35E-02 6.30E-04 6.30E-03 6.64E-01 3.60E-02 9.00E-02 0.18 1.64 2.70E-04 

HSP 59 1.426 0.48 3.85E-02 6.24E-04 2.24E-03 1.08E-02 1.12E-02 4.63E-02 0.07 0.11 1.96E-04 

HSP 172 0.953 0.39 5.11E-02 8.08E-04 1.68E-03 1.61E-02 1.78E-02 7.87E-02 0.14 0.20 2.62E-04 

HSP 60 b 0.201 1.03 1.39E-02 5.47E-04 4.48E-03 3.76E-01 1.99E-02 7.46E-02 0.11 0.85 1.99E-04 

HSP 175 0.180 0.95 1.72E-02 5.56E-04 3.33E-03 4.17E-01 2.22E-02 6.11E-02 0.11 0.90 2.22E-04 

HSP 176 0.148 1.16 2.02E-02 6.07E-04 N/A 4.89E-01 2.70E-02 7.42E-02 0.31 1.68 2.70E-04 

HSP 61 0.077 1.14 2.08E-02 5.21E-04 N/A 7.71E-01 6.52E-02 2.48E-01 0.23 2.44 2.61E-04 

HSP 177 0.550 0.32 2.71E-02 4.72E-04 1.64E-03 7.70E-02 1.27E-02 2.18E-02 0.11 0.37 1.64E-04 

HSP 178 1.117 0.30 3.51E-02 6.54E-04 1.97E-03 1.71E-02 9.85E-03 3.76E-02 0.05 0.19 2.15E-04 

HSP 64 1.217 0.29 4.68E-02 7.80E-04 2.22E-03 1.33E-02 1.31E-02 5.18E-02 0.12 0.06 3.53E-04 

HSP 66 0.090 1.67 2.00E-02 7.78E-04 8.89E-03 7.28E-01 4.45E-02 1.44E-01 0.70 1.14 6.67E-04 

HSP 179 1.879 0.35 6.81E-03 2.45E-04 1.86E-03 6.44E-03 3.73E-03 1.01E-02 0.02 0.03 6.92E-05 

HSP 69 0.802 0.32 1.11E-01 1.28E-03 2.74E-03 2.03E-02 1.62E-02 5.99E-02 0.12 0.12 5.99E-04 

M
id

d
le

 S
m

it
h

ia
n

 

HSP 70 0.741 0.60 1.32E-02 4.05E-04 2.43E-03 8.06E-02 8.10E-03 2.83E-02 0.11 0.15 1.35E-04 

HSP 181 1.913 0.33 1.47E-02 3.29E-04 1.93E-03 5.70E-03 8.36E-03 3.50E-02 0.04 0.03 1.05E-04 

HSP 71 0.749 0.44 1.30E-02 3.61E-04 1.74E-03 7.74E-02 9.35E-03 3.61E-02 0.09 0.15 1.34E-04 

HSP 72 0.376 0.47 2.26E-02 3.99E-04 1.33E-03 8.44E-02 1.60E-02 6.65E-02 0.13 0.39 1.60E-04 

HSP 182 1.522 0.39 1.45E-02 3.29E-04 2.17E-03 1.40E-02 6.57E-03 2.37E-02 0.04 0.07 1.05E-04 

HSP 74 0.471 0.59 1.40E-02 3.61E-04 2.34E-03 1.65E-01 1.27E-02 5.10E-02 0.08 0.30 1.27E-04 

HSP 75 0.254 0.98 2.52E-02 5.12E-04 1.97E-03 1.06E-01 1.97E-02 6.69E-02 0.62 0.79 2.36E-04 

HSP 183 1.432 0.31 1.58E-02 3.84E-04 1.54E-03 8.59E-03 1.40E-02 6.71E-02 0.07 0.08 1.12E-04 

HSP 78 0.315 0.84 2.41E-02 4.45E-04 2.86E-03 8.03E-02 1.59E-02 6.35E-02 0.29 0.65 1.91E-04 

HSP 184 0.151 1.11 7.96E-03 3.98E-04 3.31E-03 2.53E-01 1.99E-02 6.63E-02 0.26 1.21 1.99E-04 

HSP 80 0.053 1.78 1.13E-02 3.78E-04 N/A 4.31E-01 5.67E-02 1.51E-01 0.41 4.01 3.78E-04 

HSP 81 0.333 0.61 6.90E-03 2.70E-04 2.40E-03 6.99E-02 1.20E-02 3.00E-02 0.14 0.72 1.20E-04 

HSP 83 0.130 1.86 9.25E-03 9.25E-04 1.08E-02 1.66E-01 N/A 2.31E-02 1.48 1.24 1.00E-03 

HSP 85 0.050 0.77 9.94E-03 1.99E-04 1.39E-02 4.00E-01 3.98E-02 1.19E-01 0.26 1.85 9.15E-03 

HSP 86 0.209 1.04 1.91E-02 4.78E-04 5.26E-03 8.95E-02 2.39E-02 7.65E-02 0.21 0.65 3.30E-03 

HSP 89 0.093 0.79 8.64E-03 3.24E-04 8.64E-03 3.02E-01 N/A 4.32E-02 0.14 3.26 1.84E-03 

U
p

. S
m

. 

HSP 90 1.024 0.40 1.94E-02 4.39E-04 2.54E-03 3.33E-02 7.81E-03 2.64E-02 0.03 0.25 2.54E-04 

HSP 142 2.228 0.57 7.90E-03 3.05E-04 2.83E-03 6.91E-03 3.14E-03 6.73E-03 0.02 0.12 1.08E-04 

HSP 143 3.668 0.46 5.29E-03 2.59E-04 2.54E-03 3.98E-03 2.18E-03 2.45E-03 0.01 0.02 6.82E-05 

HSP 140 0.691 0.53 4.20E-03 2.90E-04 2.61E-03 2.13E-01 4.34E-03 8.69E-03 0.02 0.09 1.01E-04 

Lo
w

e
r 

Sp
at

h
ia

n
 HSP 91 0.257 0.83 1.17E-02 3.12E-04 2.73E-03 2.40E-01 1.56E-02 5.45E-02 0.04 1.08 1.17E-04 

HSP 96 0.521 0.36 2.55E-02 3.45E-04 1.92E-03 5.10E-02 1.34E-02 6.91E-02 0.06 0.52 1.53E-04 

HSP 97 0.834 0.29 2.65E-02 3.84E-04 1.80E-03 2.56E-02 1.32E-02 5.28E-02 0.07 0.39 1.44E-04 

HSP 185 0.246 0.64 2.03E-02 3.66E-04 N/A 8.33E-02 2.03E-02 6.91E-02 0.07 1.07 1.22E-04 
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HSP 98 1.567 0.25 1.86E-02 3.57E-04 1.40E-03 7.21E-03 1.15E-02 6.06E-02 0.04 0.10 1.09E-04 

HSP 100 0.638 0.51 9.41E-03 2.35E-04 1.72E-03 3.18E-02 1.10E-02 5.80E-02 0.04 0.37 7.84E-05 

HSP 102 0.183 1.09 1.86E-02 3.29E-04 3.83E-03 2.79E-01 2.19E-02 8.22E-02 0.17 0.85 1.64E-04 

HSP 103 0.053 1.39 1.51E-02 3.78E-04 N/A 1.57 * 5.67E-02 1.89E-01 0.58 2.18 N/A 

HSP 105 0.106 0.66 8.50E-03 2.83E-04 N/A 7.43E-01 3.78E-02 1.23E-01 0.21 1.02 1.89E-04 

HSP 106 0.135 1.27 1.33E-02 4.45E-04 3.70E-03 2.58E-01 2.96E-02 1.11E-01 0.15 1.31 2.96E-04 

HSP 108 0.108 1.32 7.37E-03 2.77E-04 N/A 6.54E-01 2.77E-02 7.37E-02 0.20 1.46 9.22E-05 

HSP 109 0.132 1.40 6.05E-03 3.02E-04 N/A 2.40E-01 2.27E-02 6.80E-02 0.10 1.76 1.51E-04 

HSP 111 0.267 1.11 6.73E-03 2.99E-04 2.62E-03 2.26E-01 1.12E-02 2.99E-02 0.07 0.81 1.50E-04 

HSP 113 0.185 1.25 1.19E-02 3.24E-04 3.24E-03 2.66E-01 2.16E-02 7.02E-02 0.08 1.01 1.62E-04 

HSP 115 0.148 1.53 9.45E-03 3.37E-04 N/A 2.54E-01 2.70E-02 1.15E-01 0.21 1.20 2.70E-04 

HSP 116 0.228 0.89 6.59E-03 2.64E-04 3.52E-03 1.87E-01 2.20E-02 8.79E-02 0.16 0.50 1.32E-04 

HSP 118 1.117 0.58 9.76E-03 3.13E-04 2.15E-03 3.32E-02 8.06E-03 2.96E-02 0.09 0.10 1.07E-04 

HSP 120 0.257 0.80 1.56E-02 3.51E-04 2.73E-03 2.10E-01 1.56E-02 6.62E-02 0.13 0.56 1.95E-04 

HSP 122 0.902 0.46 1.41E-02 3.77E-04 2.22E-03 3.04E-02 7.76E-03 2.99E-02 0.07 0.11 1.44E-04 

HSP 123 0.101 3.55 1.09E-02 2.98E-04 N/A 3.16E-01 3.98E-02 1.29E-01 0.09 1.00 1.99E-04 

HSP 124 0.707 0.58 5.24E-03 2.83E-04 2.26E-03 5.52E-02 7.08E-03 2.97E-02 0.05 0.10 8.49E-05 

HSP 126 0.574 0.55 1.08E-02 3.48E-04 2.61E-03 4.25E-02 6.97E-03 2.79E-02 0.13 0.16 1.57E-04 

HSP 127 1.789 0.41 7.83E-03 2.74E-04 2.46E-03 8.50E-03 1.06E-02 5.03E-02 0.07 0.03 1.12E-04 

HSP 130 2.059 0.44 9.91E-03 3.21E-04 2.09E-03 7.19E-03 5.83E-03 1.99E-02 0.02 0.02 1.12E-04 

 

*: outliers removed from graphical representation on Fig. 3; N/A: sample below the detection level. 
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Appendix 3: Supplementary material belonging to the article 

“Controlling factors for differential subsidence in the Sonoma 

Foreland Basin (Early Triassic, western USA)” (see section IV) 

 

 

This supplementary material provides additional data used to perform the integrated 

study presented in Caravaca et al., in press (see section IV). It includes a synthetic facies table 

of the main lithologies found in the SFB (Appendix 2.1), the exhaustive list of studied outcrops 

(Appendix 2.2), the complete and detailed set of initial parameters and results for the 

backstripping analyses performed on four selected sections of the SFB (Appendix 2.3), and the 

preliminary isopach map of the spatial distribution of the sedimentary thickness recorded 

during the Permian/Triassic unconformity-Smithian interval obtained using Global Mapper GIS 

software (Appendix 2.4). 
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Geological Magazine 
 

 

 

Controlling factors for differential subsidence in the Sonoma 

Foreland Basin (Early Triassic, western USA) 

 

 

Gwénaël Caravaca1, Arnaud Brayard1, Emmanuelle Vennin1, Michel Guiraud1, Laetitia Le 

Pourhiet2, Anne-Sabine Grosjean1, Christophe Thomazo1, Nicolas Olivier3, Emmanuel Fara1, 

Gilles Escarguel4, Kevin G. Bylund5, James F. Jenks6, Daniel A. Stephen7. 
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Supplementary material 

 
Appendix 1 

 

Synthetic facies table of the main lithologies present in Lower Triassic Sonoma Foreland 

Basin and associated depositional environment, and estimated Paleobathymetric ranges, as 

used in the backstripping analysis. References are given in the table accordingly. 
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Appendix 2 

 

List of studied sections, with GPS coordinates and references when data are taken from 

literature. An asterisk (*) indicates a minimum thickness value. Initials for sections illustrated 

in the manuscript are also indicated. 

 
Locality GPS 

coordinates 

(approximate 

for literature 

data) 

PTU-

Smithian 

interval 

thickness 

Notes References Retrodeformation 

sector (Table 1) 

Gros Ventre 

Canyon 

43.775185°  

-110.333094° 

241* Dinwoody and Woodside Fm. 

only, misses Smithian part of 

Thaynes Fm. 

Kummel, 1954, 1957 1 

Wind River 

Canyon 

42.767269°  

-109.217611° 

36* Dinwoody Fm. only, Woodside 

Fm. not measured (Red Peak 

Fm.) 

Newell & Kummel, 1942 1 

Brush Creek 40.598932°  

-109.463689° 

123  Field measurement 1 

Lake Fork 40.517877°  

-110.435441° 

207* Woodside Fm. only, misses 

Smithian part of the Thaynes Fm. 

Kummel, 1954, 1957 1 

White Rocks 40.574083°  

-109.820793° 

158* Woodside Fm. only, misses 

Smithian part of the Thaynes Fm. 

Kummel, 1954, 1957 1 

Duchesne 

River 

40.436090° 

-110.817317° 

242* Woodside Fm. only, misses 

Smithian part of the Thaynes Fm. 

Kummel, 1954, 1957 1 

Bourdette 

Draw 

40.373293° 

-109.209247° 

114*  Heckert et al., 2015 1 

San Rafael 

Swell 

 38.872793° 

 -110.558438° 

70 
 

Goodspeed & Lucas, 

2007 

1 

Torrey area (T; 

Beas Lewis 

Flats) 

 38.283606°  

-111.313631° 

57 
 

Field measurement 

(Olivier et al., 2015) 

1 

Circle Cliffs  37.992881°  

-111.128166° 

~15 
 

Field measurement 1 

Kannaraville  37.519590° 

 -113.181241° 

~80 
 

Field measurement 1 

Virgin Dam  37.196480°  

-113.234689° 

55 
 

Field measurement 

(Olivier et al., 2014) 

1 

Black Rock 

Canyon 

 37.099110°  

-113.294606° 

~35 
 

Field measurement 1 
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Rock Canyon 

(RC) 

 36.976783°  

-113.261400° 

23,5 
 

Field measurement 1 

Trapper Creek  45.683504°  

-112.762157° 

194* Dinwoody Fm. only Kummel, 1954, 1957 2 

Greenstone 

Gulch 

 45.374291° 

 -112.704205° 

214* Dinwoody Fm. only Kummel, 1954, 1957 2 

Dalys Spur  45.072219°  

-112.692223° 

288* Dinwoody Fm. only Kummel, 1954, 1957 2 

Hogback 

Mountain 

 44.865113°  

-112.130820° 

255* Dinwoody and Woodside Fm. 

only, misses Smithian part of 

Thaynes Fm. 

Kummel, 1954, 1957 2 

Fossil Creek  44.764825°  

-111.852615° 

192* Dinwoody and Woodside Fm. 

only, misses Smithian part of 

Thaynes Fm. 

Kummel, 1954, 1957 2 

Little Water 

Canyon 

 44.660495° 

 -112.747416° 

332 
 

Kummel, 1954, 1957 2 

Hawley Creek  44.625504° 

 -113.143714° 

300* Only Smithian part of the 

Thaynes Fm. 

Paull & Paull, '91 2 

Odell Creek  44.561568°  

-111.863906° 

310* Dinwoody and Woodside Fm. 

only, misses Smithian part of 

Thaynes Fm. 

Kummel, 1954, 1957 2 

Little Sheep 

Creek 

 44.523573° 

 -112.696346° 

296* Dinwoody and Woodside Fm. 

only, misses Smithian part of 

Thaynes Fm. 

Sadler, 1981 2 

Bear Gulch  43.312260°  

-110.730134° 

294* Dinwoody and Woodside Fm. 

only, misses Smithian part of 

Thaynes Fm. 

Kummel, 1954, 1957 2 

Grays Range   42.935617°  

-111.366417° 

450* 
 

Field measurement 3 

Sheep Creek 

(SC) 

 42.868187°  

-111.372443° 

~500 Dinwoody Fm. measure from 

geologic map, Smithian part of 

Thaynes Fm. from Kummel 

Kummel, 1954, 1957; 

Rioux et al., 1975 

3 

Fort Hall 

Reservation 

 42.841336° 

 -112.584126° 

360 
 

Kummel, 1954, 1957 3 

North Piney 

Creek 

 42.637904° 

 -110.325953° 

345* Dinwoody and Woodside Fm. 

only, misses Smithian part of 

Thaynes Fm. 

Kummel, 1954, 1957 3 

Montpellier 

Canyon 

 42.344409°  

-111.203904° 

337* Dinwoody and Woodside Fm. 

only, misses Smithian part of 

Thaynes Fm. 

Newell & Kummel, 

1942; Kummel, 1954, 

1957 

3 
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Paris Canyon  42.220270°  

-111.415473° 

~460 Smithian part from correlative 

Georgetown section 

Field measurement; 

Kummel, 1954, 1957 

3 

Hot Springs 

(HS) 

 42.112226° 

 -111.255145° 

540 
 

Field measurement 3 

Cokeville  42.074825° 

 -110.817294° 

345* Misses limestones part of 

Smithian Thaynes Fm. 

Kummel, 1954, 1957 3 

Rex Peak  41.654641° 

 -111.095798° 

374* Dinwoody and Woodside Fm. 

only, misses Smithian part of 

Thaynes Fm. 

Chamberlain et al., 1980 3 

Lower Weber 

Canyon (LWC) 

 41.063626°  

-111.570078° 

210* 
 

Field measurement 4 

Diamond Fork  40.030004° 

 -111.508545° 

130-235* Woodside Fm. only, misses 

Smithian part of the Thaynes Fm. 

Constenius et al., 2011 5 

Pahvant Range 

(PR; Dog 

Valley) 

 38.674360°  

-112.521926° 

185 
 

Field measurement 

(Brayard et al., 2013) 

6 

Star Range  38.357141° 

 -113.129252° 

110* Lower boundary not visible Field measurement 

(Brayard et al., 2013) 

6 

Minersville 

(M) 

 38.225545°  

-112.888220° 

105 
 

Field measurement 

(Vennin et al., 2015) 

6 

Crittenden 

Springs 

 41.546087° 

 -114.184977° 

300* 
 

Field measurement 7 

Terrace 

Mountain 

 41.454115°  

-113.487207° 

534 
 

Doelling, 1980 7 

Pequop 

Mountain 

 40.500000°  

-114.750000° 

~20 
 

Lucas & Orchard, 2007 7 

Palomino 

Ridge 

 40.240326°  

-114.858275° 

~70 
 

Field measurement 7 

Confusion 

Range (CR) 

 39.232513°  

-113.686809° 

120   Field measurement 

(Brayard et al., 2013) 

7 

Appendix 3 

 

Subsidence analysis data with complete set of initial parameters and results of the analysis. A. 

Data and results from the Confusion Range (CR) section. B. Data and results from the Pahvant 

Range (PR) section. C. Data and results from the Sheep Creek (SC) section. D. Data and results 

from the Hot Springs (HS) section. E. Synthesis of the tectonic subsidence results for each 

sections. For location of the analyzed sections, see Fig. 3b and Appendix 2. Radiometric ages 
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after Burgess et al. (2014) and Galfetti et al. (2007); age interpolation of ammonoid biozone 

durations after Brühwiler et al., (2010). Sea level curve after Haq et al. (1988). 

Subsidence analyses were performed using “OSXBackstrip” software and performing 1D Airy 

backstripping (after, Allen & Allen, 1990, and Watts, 2001; available at: 

http://www.ux.uis.no/~nestor/work/programs.html). 

 

Parameters: 

Base and top: depth (in km) of the limits of the considered members from top of the section. 

Age (base and top, in Ma): radiometric or estimated ages for the limits of considered 

members. Sea level (base and top, in km): estimated paleo-sea level compared to present day, 

as depths (negative values are above present-day sea-level). Water depth (base and top, in 

km): paleobathymetry estimated after facies and paleoenvironments characterization. Rho (in 

g.m-3): density of the dominant lithology. C (in .10-5 cm-1): coefficient of exponential relation 

between depth and porosity (Sclater & Christie, 1980). Phy0 (in %): estimated final porosity of 

the dominant lithology. Type: 0 for marine deposits, 1 for continental deposits. 

  

http://www.ux.uis.no/~nestor/work/programs.html
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A. Data and results from the Confusion Range section (CR in Figs. 3b, 9a, 9e and 9f). 

 

Name Base 

(km) 

Age base 

(Ma) 

Sea Level 

base (km) 

Water depth 

base (km) 

Top (km) Age top 

(Ma) 

Sea Level 

top (km) 

Water depth 

top (km) 

Rho 

(g.m^-3) 

C Phy 0 type 

             

Moenkopi red 

beds 

0,255 251,88 -0,05 0,0025 0,225 251,019 -0,01 0,001 2650 0,27 50% 0 

Thaynes shales 

(Smithian) 

0,225 251,019 -0,01 0,001 0,135 250,751 0,2 0,05 2750 0,51 60% 0 

Thaynes shales 

(Spathian) 

0,135 250,751 0,2 0,05 0 250,55 0 0,09 2750 0,51 60% 0 

 
0 250,55 0 0,09 

        

 
0 0 0 0 

        

             

             

Results 
 

Age (Ma) Compacted 

thickness 

(m) 

Total 

subsidence (m) 

Tectonic 

subsidence 

(m) 

       

  
251,9 0 0 0 

       

  
251 30 32 36 

       

  
250,8 120 130 108 

       

  
250,6 255 256 260 
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B. Data and results from the Pahvant Range section (PR in Figs. 3b, 9b, 9e and 9f). 

 

Name Base (km) Age base 

(Ma) 

Sea Level 

base (km) 

Water depth 

base (km) 

Top (km) Age top 

(Ma) 

Sea Level 

top (km) 

Water depth 

top (km) 

Rho 

(g.m^-3) 

C Phy 0 type  

             

Moenkopi red 

beds 

0,295 251,88 -0,05 0,0025 0,235 251,287 -0,01 0,0025 2650 0,27 50 0 

Thaynes 

carbonates 

0,235 251,287 -0,01 0,0025 0,11 250,751 0,02 0,05 2750 0,71 25 0 

Spathian red 

beds 

0,11 250,751 0,02 0,05 0 250,55 0 0,0025 2650 0,27 50 0 

             

             

Results 
 

Age (Ma) Compacted 

thickness 

(m) 

Total 

subsidence 

(m) 

Tectonic 

subsidenc

e (m) 

       

  
251,9 0 0 0 

       

  
251,3 60 64 58 

       

  
250,8 185 190 114 

       

  
250,6 295 296 161 
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C. Data and results from the Sheep Creek section (SC in Figs. 3, 89c, 9e and 9f). 

 

Name Base (km) Age base 

(Ma) 

Sea Level 

base (km) 

Water depth 

base (km) 

Top (km) Age top 

(Ma) 

Sea Level 

top (km) 

Water depth 

top (km) 

Rho 

(g.m^-3) 

C Phy 0 type 

             

Dinwoody + 

Woodside 

siltstones 

0,732 251,88 -0,5 0,005 0,182 250,751 0,02 0,005 2650 0,27 85% 0 

Thaynes 

carbonates 

0,182 250,751 0 0,005 0 250,55 0 0,025 2750 0,71 25% 0 

             

             

Results 
 

Age (Ma) Compacted 

thickness 

(m) 

Total 

subsidence 

(m) 

Tectonic 

subsidence 

(m) 

       

  
251,9 0 0 0 

       

  
250,8 550 627 505 

       

  
250,6 732 733 554 
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D. Data and results from the Hot Springs section (HS in Figs. 3b, 9d, 9e and 9f). 

 

Name Base 

(km) 

Age base 

(Ma) 

Sea Level 

base (km) 

Water depth 

base (km) 

Top (km) Age top 

(Ma) 

Sea Level 

top (km) 

Water depth 

top (km) 

Rho 

(g.m^-3) 

C Phy 0 type 

             

Dinwoody 

siltstones 

0,79 251,88 -0,05 0 0,435 251,22 -0,01 0,01 2650 0,27 85% 0 

Woodside (?) 

siltstones 

0,435 251,22 -0,01 0,01 0,23 250,751 0,02 0,03 2650 0,27 85% 0 

Thaynes 

carbonates 

0,23 250,751 0,02 0,03 0 250,55 0 0,025 2750 0,71 25% 0 

             

             

Results 
 

Age (Ma) Compacted 

thickness 

(m) 

Total 

subsidence 

(m) 

Tectonic 

subsidence 

(m) 

       

  
251,9 0 0 0 

       

  
251,2 355 488 441 

       

  
250,8 560 657 559 

       

  
250,6 790 792 578 
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E. Synthesis of the tectonic subsidence results for each section (as presented in Fig. 9e). 

 
 

Depth (m) (tectonic subsidence only) 
 

Sea level 

Age (Ma) Confusion 

Range 

Pahvant 

Range 

Sheep 

Creek 

Hot 

Springs 

 

251,88 0 0 0 0 50 

251,287 
 

58 
  

10 

251,22 
   

441 10 

251,019 36 
   

10 

250,751 108 114 505 559 -20 

250,55 260 161 554 578 0 
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Appendix 4 

 

Preliminary isopach map obtained by 3D interpolation and triangulation of georeferenced (and 

retrodeformed after palinspastic reconstruction) sedimentary thickness data for the PTU/Smithian 

interval, under the Global Mapper v.16.2.3 GIS software. 
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‘’Il n’y a pas que les aigles qui atteignent les sommets. Les escargots aussi. 

Mais ils en bavent… comme moi !’’ 


