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Résumé

L'hydrate de méthane est un cristal non-stoechiométrique dans lequel les molécules d'eau forment des cages liées par liaison hydrogène qui piégent des molécules de méthane. Des ressources abondantes en hydrate de méthane peuvent être trouvées sur Terre, en particulier dans les roches poreuses minérales (par exemple, l'argile, le permafrost, les fonds marins, etc.). Pour cette raison, la compréhension de la thermodynamique et de la cinétique de formation de l'hydrate de méthane confiné dans des milieux poreux suscite beaucoup d'attention. Dans cette thèse, nous combinons la modélisation moléculaire et des approches théoriques pour déterminer la thermodynamique et la cinétique de formation de l'hydrate de méthane confiné dans des milieux poreux. Tout d'abord, l'état de l'art en matière de thermodynamique et de cinétique de formation de l'hydrate de méthane est présenté.

Deuxièmement, différentes stratégies de simulation moléculaire, y compris des calculs d'énergie libre utilisant l'approche de la molécule d'Einstein, la méthode de coexistence directe et la technique hyperparallel tempering, sont utilisées pour évaluer la stabilité de l'hydrate de méthane à différentes températures et pressions. 
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1.1 (left) Gas hydrate with structure I (sI): the small spheres are water molecules forming hydrogen-bonded cavities and the large spheres are the gas molecules.

The gray polyhedrons represent the cavities generated by the water molecules.

(right) Typically, the types and numbers of water cavities correspond to one of the three following structures of gas hydrate: sI, sII, and sH. The circled numbers are the numbers of such water cavities which are used to form the corresponding hydrate structure. [Picture from Ref. [START_REF] Schulz | Marine Geochemistry[END_REF]] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Three criteria should be satisfied for methane hydrate with sI structure [START_REF] Bernal | A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions[END_REF]Chakraborty and Gelb, 2012a): (1) proton disorder; (2) ice rules; and (3) zero dipole moment. The red and green spheres are the oxygen and hydrogen atoms of water, respectively. . . . . . . . . . . . . 1.3 (color online) Averaged local bond order parameters, ⟨Q 4 ⟩-⟨Q 6 ⟩-plane, for liquid water (blue), hexagonal ice (red), and methane hydrate (black) at T = 200 K. [Picture from Ref. Reinhardt et al. (2012)] . . . . . . . . . 1.4 Free energy (solid line), ∆G, as a function of nucleus radius, r, in the the formation process of methane hydrate. Formation can be described as the interplay between the hydrate-liquid surface free energy (surface term corresponding to the dashed line), ∆G S , and the free energy difference between liquid water and methane hydrate (volume term corresponding to the dot dashed line), ∆G V . The critical radius, r c , and the corresponding free energy barrier, ∆G barr , are also shown in this figure . If the nucleus radius is larger than the critical radius, i.e., r > r c , the nucleus keeps growing to form methane hydrate ("growth"). For r < r c , the nucleus melts into liquid water ("shrink"). . . . . . . . . . . . . . . . . . . . . . 1.5 Pressure-temperature (P-T ) phase diagram for liquid (L), ice (I), vapor (V), and hydrate (H) phases. The phase boundary -dashed line -indicates the conditions for which ice coexists with liquid water, L-I. The phase boundary -solid line AQ -indicates the conditions for which methane hydrate coexists with ice and methane vapor, I-H-V. The phase boundarysolid line QB -indicates the conditions for which methane hydrate coexists with liquid water and methane vapor, L-H-V. Four regions involving the two phase coexistence are shown: (1) hydrate coexists with ice, H+I; (2) hydrate coexists with liquid water, H+L;

(3) methane vapor coexists with liquid water, V+L; and (4) methane vapor coexists with ice, V+I. Q is a four phase coexistence point, L-H-I-V. . . . . . . . . . . . . . . . . . . 20 1.6 Free energy, G, as a function of the normalized order parameter, OP, using biased molecular simulations. Liquid water (L) exhibits a small order parameter, while methane hydrate (H) exhibits a large order parameter. At the melting temperature, T = T m , methane hydrate coexists with liquid water (i.e., the free energies of liquid water and methane hydrate are equal).

At high temperature, T > T m , liquid water is stable (i.e., the free energy of liquid water is smaller than that of methane hydrate). At low temperature, T < T m , methane hydrate is stable (i.e., the free energy of methane hydrate is smaller than that of methane hydrate). The free energy barrier between liquid water and methane hydrate, ∆G barr , upon formation is also shown . . 24 1.7 (color online) Typical molecular configurations obtained in the direct coexistence method at T = 294 K and P = 600 bar (where methane hydrate is stable): (top) the coexisting phases, i.e., liquid water (L) + methane hydrate (H) + methane vapor (V), are the initial configuration; (center) the growth of methane hydrate; and (bottom) the perfect methane hydrate formed at the end of the molecular simulation. The red and white lines denote the water molecules while the blue spheres are the methane molecules.

[Picture from Ref. (Conde and Vega, 2010)] . . . . . . . . . . . . . . . . 26 1.8 Boltzmann factor, exp (-U/k B T ), in the phase space, Γ, as an example to illustrate the parallel tempering technique. The blue line is for the low temperature, while the red line is for the high temperature. The system in state A (blue circle) remains easily trapped into a metastable state, while the system in state B (red circle) escape more easily. Parallel tempering between A and B is used to make the escape easier. . . . . . . . . . . . . 27 3.1 (color online) Molecular configuration of methane hydrate with structure sI. The red and white spheres are the oxygen and hydrogen atoms of water, respectively. The gray spheres are the methane molecules which are trapped inside the hydrogen-bonded cages formed by water molecules (1 methane molecule for 8 water molecules). The dimensions of this molecular configuration, which corresponds to 2 × 2 × 2 unit cells, are: L x = L y = L z = 2.3754 nm. . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2 Stochastic algorithm to generate methane hydrate molecular configurations with sI structure [START_REF] Buch | Simulations of H 2 O solid, liquid, and clusters, with an emphasis on ferroelectric ordering transition in hexagonal ice[END_REF]: (1) set the oxygen positions according to the experimental X-ray crystallographic data [START_REF] Kirchner | Gas hydrate single-crystal structure analyses[END_REF]; (2) generate proton disorder by randomly assigning a hydrogen atom to one of the oxygen atoms in each O-O pair (step I);

(3) use a stochastic MC algorithm to verify the ice rules (step II); ( 4) repeat steps I and II 20000 times to generate as many configurations and select the configuration with minimum dipole moment (step III); and ( 5) insert the methane molecules into the cages of the methane hydrate (step IV). The red and white spheres are the oxygen and hydrogen atoms of water, respectively. The gray spheres are the methane molecules. The dimensions of the system shown here are L x = L y = L z = 2.3754 nm which correspond to 2 × 2 × 2 unit cells. 66 3.3 Thermodynamic path used in the Einstein molecule approach to calculate the free energy of the zero-occupancy methane hydrate, A C . Orange and green spheres are the oxygen and hydrogen atoms of water, respectively. The green box shows the periodic boundary conditions of the simulation cell. The superscript * indicates that the system has one of its water molecules at a fixed position shown by the big pink '+' sign (see text). A A is the free energy of the non-interacting Einstein molecule while A A* is the free energy of the same system with one of its water molecules at a fixed position. A B* is the free energy of the interacting Einstein molecule with one of its water molecules at a fixed position. A C* is the free energy of the zero-occupancy methane hydrate with one of its water molecules at a fixed position while A C is the free energy of the same system without fixing any water molecule positions. Constraining a water molecule position (3 degrees of freedom) increases the free energy by k B T ln V /Λ 3 . The change in free energy between the non-interacting and interacting Einstein molecule is ∆A 1 = A B* -A A* . The change in free energy between the constrained interacting Einstein molecule and the constrained methane hydrate is ∆A 2 = A C* -A B* (see text). . . . . . . . . . . . . . . . . . . . 74 3.4 Free energy changes ∆A 1 (a) and ∆A 2 (b) and free energy A H w (x m = 0) of the zero-occupancy methane hydrate (c) as a function of temperature T (all data reported here are for P = 100 atm). The empty and closed circles are for the TIP4P/Ice and TIP4P/2005 water models, respectively. Free energies are normalized to the total thermal energy Nk B T . ∆A 1 = A B* -A A* is the free energy difference between the non-interacting and interacting Einstein molecules (corresponding to the zero-occupancy methane hydrate).

∆A 2 = A C* -A B* is the free energy difference between the interacting Einstein molecule and the zero-occupancy methane hydrate. Except for the zero-occupancy methane hydrate in (c), all systems are constrained with one of their molecules having a fixed reference position. . . . . . . . 77 3.5 Chemical potential of methane, µ H m , versus number of methane molecules, N H m , in methane hydrate at T = 250 K and P = 10 atm. N H m is expressed as the number of methane molecules per methane hydrate unit cell. The empty and filled circles are for TIP4P/Ice anf TIP4P/2005 water models, respectively. The dotted lines correspond to cubic interpolation of the data.

The insert shows the chemical potential difference of water relative to the zero-occupancy methane hydrate, ∆µ H w = µ H wµ H w (x m = 0), as a function of the number of methane molecules, N H m (these data are obtained from N m (µ m ) using Eq. (3.9)). The dashed and solid lines are for the TIP4P/Ice and TIP4P/2005 water models. All chemical potentials are normalized to the thermal energy, k B T . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.6 (color online) Equilibrium number of methane, x m (µ V m = µ H m ) (empty circles) and x m (µ L w = µ H w ) (filled circles), as a function of temperature, T , at P = 1 (blue), 10 (red), 100 (black) atm. The corresponding interpolation cross point, x m (µ V m = µ H m ) = x m (µ L w = µ H w ) , indicating the liquid watermethane hydrate-methane vapor (L-H-V) equilibrium temperature and methane composition at the given pressure. The left and right panels are for TI4P/2005 and TIP4P/Ice water models, respectively. . . . . . . . . . 82 3.7 Pressure-Temperature phase diagram of methane hydrate as determined using free energy calculations (circles, this work), direct coexistence method (gray pentagon, this work), hyper parallel tempering method (black pentagon, this work). The empty and filled symbols are for TIP4P/Ice and TIP4P/2005 water models, respectively. The empty and filled squares are the results obtained for TIP4P/Ice and TIP4P/2005 by Conde et al. (Conde and Vega, 2010) using the direct coexistence method. The empty triangles are the free energy calculations for TIP4P/Ice by Jensen et al. [START_REF] Jensen | Calculation of liquid water-hydrate-methane vapor phase equilibria from molecular simulations[END_REF]. The solid line shows the experimental data by Sloan et al. [START_REF] Sloan | Fundamental principles and applications of natural gas hydrates[END_REF]. The insert shows a zoomed view of the region shown depicted as a dashed rectangle in the main figure . . . . . . . . . . . . . . . . . . . . . 84 List of Figures xix 3.8 (color online) Determination of the phase transition temperature between methane hydrate and liquid phases using the direct coexistence method.

(a) Starting from a methane hydrate coexisting with the liquid phase, several Monte Carlo simulations in the Grand Canonical ensemble (µV T ) at different temperatures and chemical potentials are performed (chemical potentials are chosen so that the pressure is P = 100 atm). The red and white spheres are the oxygen and hydrogen atoms of water while the grey spheres are the methane molecules. The dimensions of the simulation box are: L x = L y = L z = 2.3754 nm. Molecules with y < 0 (left region) and y > 0 (right region) belong to the methane hydrate and liquid phases, respectively. If the temperature is lower than the melting point T m , the liquid disappears as methane hydrate forms. In contrast, if the temperature is larger than T m , the methane hydrate melts and is replaced by the liquid.

(b) Methane (left) and water (right) mole fractions during the different GCMC simulation runs: T = 260 K (black), 270 K (purple), 280 K (blue), 290 K (red), and 300 K (orange). The x-axis, which indicates progress along the GCMC simulation, is expressed as a number of attempted MC moves where one move is a molecule translation, rotation, insertion or deletion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.9 (color online) Determination of the phase transition temperature between the methane hydrate and liquid phases using hyper parallel tempering Monte Carlo simulations. (a) Several replicas M = 16 of the system are considered in parallel. Each replica is at different temperatures and chemical potentials (the latter are chosen so that the pressure of the system is P = 100 atm). The temperature ranges from 283 K to 298 K with a temperature difference ∆T = 1 K. For each replica, a regular grand canonical Monte Carlo simulation consisting of molecule translation, rotation, insertion, and deletion moves are performed. In addition to these conventional moves, replicas at two different temperature/chemical potentials sets are swapped with a probability given from the ratio of the Boltzmann factors in the Grand Canonical ensemble (see text). The red and white spheres are the oxygen and hydrogen atoms of water while the grey spheres are the methane molecules. The dimensions of the simulation box are: L x = L y = L x = 2.754 nm. (b) Average methane (left) and water (right) mole fraction as a function of temperature as estimated from the different replicas considered in the hyper parallel tempering simulation. . . . . . . 90 4.1 (color online) Molecular configuration of the confined coexisting phases (i.e., methane hydrate + liquid water) considered in this work. The red and white spheres are the oxygen and hydrogen atoms of water, respectively. The gray spheres are the methane molecules which are inside the hydrogenbonded cages formed by water molecules. The yellow spheres are the solid atoms in the pore walls. The two component system is confined in a pore with a width D p made of layers of solid particles distributed according to a square structure. Each pore surface is made of 4 layers separated by a distance D l = 0.2159 nm so that the total pore wall thickness is 0.7558 nm. Inside the porosity, methane hydrate is located in the region y < 0 (left side) and liquid water in the region y > 0 (right side). In this specific configuration, the pore size is D p = 2.8554 nm which corresponds to 2 × 2 × 2 unit cells of bulk sI methane hydrate (the lattice parameter of methane hydrate is u = 1.1877 nm). Periodic boundary conditions are used along the x, y, and z directions. The dimensions of the simulation box (defined by the dashed lines) are L x = L y = 2.3754 nm and L z = 4.3670 nm. 97 4.2 (color online) Schematic illustration of the determination of the surface tension using the Kirkwood-Buff approach.

(1) The configuration of phases α (orange region) and β (gray region) is prepared. These two phases define two planar α-β -interfaces perpendicular to the z axis (left): the surface area in the x-y-plane is A and the length of the simulation box in the z-direction is L z . The normal and parallel pressure components are P T (z) = (P xx (z) + P yy (z)) /2 and P N (z) = P zz (z).

(2) A small change dA is considered in the surface area the in x-y-plane.

(3) The change is compensated by a small change dz to keep the volume V constant, i.e., L z dA = -(A + dA)dz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.3 (color online) Pore size, D p , effect on the melting temperature, T pore m , of confined methane hydrate/liquid water using the direct coexistence method: methane (x m , left), and water (x w , right) mole fractions for D p = 2.8554 nm during the different GCMC simulation runs at T = 230 K (black), 240 K (blue), 250 K (purple), 260 K (red), and 270 K (orange). The x-axis, which indicates progress along the GCMC simulation, is expressed as a number of attempted MC moves where one move is a molecule translation, rotation, insertion or deletion. . . . . . . . . . . . . . . . . . . . . . . . . 101 xxi 4.4 (color online) Melting temperature, T pore m , of confined methane hydrate/liquid water for different pore widths: D p = 1.6677 nm (left panels), 5.2308 nm (center panels), and 7.6062 nm (right panels) as obtained using the direct coexistence method. The methane (x m , top panels) and water (x w , bottom panels) mole fractions during the different GCMC simulation runs are shown: T for each pore size is indicated using different colors (see figure legend). The x-axis, which indicates progress along the GCMC simulation, is expressed as a number of attempted MC moves where one move is a molecule translation, rotation, insertion or deletion. T pore m of confined methane hydrate for different D p are summarized in Table 4.1. For bulk methane hydrate, we reported T bulk m = 285 ± 5 K at P = 100 atm using the direct coexistence method in Chapter 3. . . . . . . . . . . . . . . . . . . 4.5 (color online) Gibbs-Thomson equation for L-H-V equilibrium upon confinement: methane hydrate (H, red region) and liquid water (L, blue region) are confined in a slit pore of a width D p formed by two parallel substrates (S, the gray regions). Ω H and P H are the grand potential and pressure of methane hydrate while Ω L and P L are the grand potential and pressure of liquid water. γ LS is the surface tension of liquid watersubstrate (LS) interface while γ HS is the surface tension of methane hydratesubstrate (HS) interface. V = D p A is the pore volume where A is the surface area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 (color online) Molar volume v (a) and molar enthalpy h (b) of liquid water (solid circles), full-methane hydrate (empty squares), and empty-methane hydrate (empty triangles). Enthalpy of melting ∆h m (c) from full-methane hydrate (empty squares) to liquid water and from empty-methane hydrate (empty triangles) to liquid water using MD simulations. The dashed lines indicate that these parameters are along the L-H-V phase boundary for bulk phase: the red, blue, and green colors are for (T, P) = (233 K, 1 atm), (262 K, 10 atm), and (286 K, 100 atm), respectively. All the thermodynamic parameters are per mole of water. . . . . . . . . . . . . . 4.7 Normal (black line), P N = P zz , and parallel (gray line), P T = 1 2 (P xx + P yy ), pressure components of methane hydrate (left) and liquid water (right) in a slit pore D p = 9.9816 nm as a function of time, t, in canonical ensemble MD simulation at T = 290 K. The dimensions of the simulation box are: L x = L y = 2.3754 nm and L z = 41.4932 nm. . . . . . . . . . . . . . . . . 4.8 Shift in melting temperature of confined methane hydrate with respect to the bulk, ∆T pore m /T bulk m , at P = 100 atm as a function of the reciprocal of pore size, 1/D p . The solid circles are obtained using the direct coexistence method while the solid line is determined using the revisited version of the Gibbs-Thomson equation: ∆T pore m /T bulk m = 2(γ LS v Lγ HS v H )/∆h m D p . . . 4.9 (color online) Free energy, G, of methane hydrate and liquid water in bulk phase (left) and in confined phase for D p = 2.8554 nm (right) as a function of the local bond order parameter, Q 6 . G (Q 6 ) of bulk phase (left) is shown at T = 290 K (blue), 310 K (purple), 330 K (orange) and 350 K (red). G (Q 6 ) upon confinement (right) is shown at T = 290 K (blue), 300 K (green), and 310 K (purple). The free energy is normalized using the thermal energy, k B T . For the sake of clarity, a shift of +10, +20, and +30 in G/k B T is added for the bulk phase at T = 310 K, 330 K, and 350 K. A shift of +10 and +20 in G/k B T is added for the confined phase at T = 300 K and 310 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.10 (color online) Free energy difference, ∆G LH , between methane hydrate and liquid water as a function of temperature, T . The blue circles are for bulk methane hydrate and the red circles are for confined methane hydrate in a pore D p = 2.8554 nm. The blue dashed line is a linear fit for bulk methane hydrate while the red dashed line is a linear fit for confined methane. These fits lead to T bulk m = 302 K and T pore m = 257 K for D p = 2.8554 nm. The free energy is normalized using the thermal energy, k B T . . . . . . . . . . 114 4.11 (color online) Free energy barriers, ∆G barr /k B T , between methane hydrate and liquid water as a function of the shift with respect to the melting point, T -T m , for bulk phase (red) and for confined phase (blue): (1) free energy barriers from liquid water to methane hydrate, i.e., methane hydrate formation (left), ∆G L→H barr ; and (2) free energy barrier from methane hydrate to liquid water, i.e., methane hydrate dissociation (right), ∆G H→L barr . The red cross is for bulk methane hydrate while the blue cross is for confined methane hydrate using the extroplation described in the text. The free energy barriers are normalized using the thermal energy, k B T . . . . . . . . 116 List of Figures xxiii 5.1 (color online) Molecular configuration of confined methane hydrate (left) and liquid water (right). The red and white spheres are the oxygen and hydrogen atoms of water, respectively. The gray spheres are the methane molecules which are inside the hydrogen-bonded cages formed by water molecules. The yellow spheres are the solid atoms of the pore walls. Pore walls are set as described in Chapter 4 but with pistons at the top wall and bottom wall. In this specific configuration, the sI methane hydrate with dimensions of L x = L y = L z = 2.3754 nm is confined inside the porosity (left). The liquid water (right) is obtained by first removing methane molecules and then melting the hydrate phase in the canonical ensemble followed by simulations at constant pressure. The dimensions of the simulation box are L x = L y = 2.3754 nm and L z = 44.5734 nm (left) and 41.4932 nm (right). Periodic boundary conditions are used along the xand y-directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.2 Density profiles along the z-axis, ρ(z), of water in liquid phase (top), methane in hydrate phase (center), and water in hydrate phase (bottom) at T = 240 K and P = 100 atm. The red solid lines are for bulk phases while the green solid lines are for confined phases. The black dashed lines are the positions of the pore walls with the pore width D p . The blue dashed lines are the dimension in the z-direction for bulk methane hydrate with L z = 2 u. The red dashed lines are the density profiles for a duplicated bulk phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.3 Local bond order parameters along the z-axis, Q 6 (z), in liquid water (top) and methane hydrate (bottom) at T = 240 K and P = 100 atm. The red solid lines are for bulk phases while the green solid lines are for confined phases. The black dashed lines are the positions of the pore walls with the pore width D p . The blue dashed lines indicate the dimension in the z-direction for bulk methane hydrate with L z = 2 u. The red dashed lines are the local bond order parameters for a duplicated bulk phase. . . . . . . 127 5.4 (color online) Volume (V , left) and thermal expansion (α P , right) of bulk and confined liquid water as a function of temperature T at P = 100 atm. Two different ensembles were considered for bulk liquid water: NPT ensemble (blue circles) and NP z T ensemble (black circles). For confined liquid water, a minimum value D min p (orange circles) and a maximum value D max p (red circles) of the pore width were considered. A total of 368 water molecules were used to determine these data. The dashed lines are linear fits.130 5.5 (color online) Volume (V , left) and thermal expansion (α P , right) of bulk and confined methane hydrate as a function of temperature T at P = 100 atm. Two different ensembles were considered for bulk methane hydrate: NPT ensemble (blue circles) and NP z T ensemble (black circles). For confined methane hydrate, a minimum value D min p (orange circles) and a maximum value D max p (red circles) of the pore width were considered. The dashed lines (left) are linear fits. The solid black line are experimental data while the dashed black line (right) are simulation data for bulk methane hydrate [START_REF] Ning | Mechanical properties of clathrate hydrates: status and perspectives[END_REF](Ning et al., , 2015). . . . . . . . . . . . . . . . . . . . . . . 130 5.6 ). . . . . . . . . . . . . . . . . . . . . . . 130 5.6 (color online) Volume (V , left) and isothermal compressibility (κ T , right)

of bulk and confined liquid water as a function of pressure P at T = 240 K. Two different ensembles were considered for bulk liquid water: NPT ensemble (blue circles) and NP z T ensemble (black circles). For confined liquid water, a minimum value D min p (orange circles) and a maximum value D max p (red circles) of the pore width were considered. The dashed lines are linear fits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.7 (color online) Volume (V , left) and isothermal compressibility (κ T , right) of bulk and confined methane hydrate as a function of pressure P at T = 240 K. Two different ensembles were considered for bulk methane hydrate: NPT ensemble (blue circles) and NP z T ensemble (black circles).

For confined methane hydrate, a minimum value D min p (orange circles) and a maximum value D max p (red circles) of the pore width were considered. The dashed lines are linear fits. . . . . . . . . . . . . . . . . . . . . . . . 132 5.8 (color online) Autocorrelation function of the heat-flux vector, h(t), as a function of time, t, for bulk (left) and confined (right) methane hydrate.

For bulk methane hydrate, the black solid line is from this work while the black dashed line is from English et al. (English and Tse, 2009;English et al., 2009). For confined methane hydrate, the red solid line is the

tangential component h N = V /k B T ⟨J z (t)J z (0)⟩ while the green solid line is the normal component h T = V /2k B T J x (t)J x (0) + J y (t)J y (0) . . . . . . 133
5.9 (color online) Fourier transform F [υ] of the autocorrelation function of the heat-flux for bulk (h(t), left) and confined (h T (t), center; h N (t), right) methane hydrate. For bulk methane hydrate, the black solid line is from this work while the black dashed line is from English et al. (English and Tse, 2009;English et al., 2009). For confined methane hydrate, the red solid line is for h N = V /k B T ⟨J z (t)J z (0)⟩ while the green solid line is for h T = V /2k B T J x (t)J x (0) + J y (t)J y (0) . . . . . . . . . . . . . . . . . . . 135 5.10 Inverse Fourier transform of the power spectrum for bulk methane hydrate.

The acoustic mode (gray line) and optical mode (black line) are separated as described in the text. The maxima/peaks of the optical modes (black circles) and the smoothed points for the acoustic modes (gray circles) are considered to determine the relaxation time and amplitudes (see text). 

(x m = 0)/k B T = A w (x m = 0)/N w k B T + A disorder /N w k B T + PV /N w k B T where A w (x m = 0)/k B T
is the contribution from the Helmholtz free energy of zero-occupancy methane hydrate using Einstein molecule approach (green solid line), A disorder is the proton disorder correction (blue solid line), and PV /N w k B T term (red solid line). The data shown here are for the TIP4P/Ice water model (similar qualitative results were obtained for the TIP4P/2005 water model). Note the use of a broken axis along the y-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. 1. 161 B.5 Shift in the melting temperature of confined methane hydrate with respect to the bulk, ∆T pore m /T bulk m , as a function of the reciprocal of the pore width, 1/D p : the dashed line is for P = 10 atm while the solid line is for P = 100 atm. The black circles read from Figure B.4 (DCM simulations); while the dashed and solid lines are computed using k GB = (γ LS v Lγ HS v H )/∆h f us . 161 B.6 Same as Figure 4.3 but for the decreased LJ energy parameter (two left panels: one for methane, x m , and another one for water, x w ): ε ′ = 1/2ε (top panels), 1/3ε (center panels), and 1/4ε (bottom panels); and for the increased LJ energy parameters (two right panels: one for methane, x m , and another one for water, x w ): ε ′ = 2ε (top panels), 3ε (center panels), 4ε (bottom panels). ε ′ is for the pair of atoms between solid walls and hydrate/liquid phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 B.7 The normal (black), P N = P zz , and tangential (gray), P T = 1 2 (P xx + P yy ), pressure tensors for methane hydrate (left), and the surface tension (right), γ HS , as a function of the vacuum layer width D v at T = 290 K. D v ≥ 15 nm is required to determine γ HS . . . . . . . . . . . . . . . . . . . . . . . 163 List of Tables 
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Introduction

Methane hydrate is a non-stoichiometric crystalline structure made up of water molecules forming a network of hydrogen-bonded cages around methane molecules [START_REF] Davy | The bakerian lecture: On some of the combinations of oxymuriatic gas and oxygene, and on the chemical relations of these principles, to inflammable bodies[END_REF][START_REF] Sloan | Clathrate Hydrates of Natural Gases[END_REF]. Here "non-stoichiometric" means that the methane composition in the hydrate phase is changing with temperature, T , and pressure, P. Abundant methane hydrate resources on Earth, especially in deep seafloors and in the permafrost [START_REF] Kvenvolden | Methane hydrate -a major reservoir of carbon in the shallow geosphere?[END_REF][START_REF] Macdonald | The future of methane as an energy resource[END_REF][START_REF] Sloan | Clathrate Hydrates of Natural Gases[END_REF], are important both for energy and environmental applications [START_REF] Florusse | Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate[END_REF][START_REF] Lee | Tuning clathrate hydrates for hydrogen storage[END_REF][START_REF] Schüth | Technology: Hydrogen and hydrates[END_REF][START_REF] Strobel | Raman spectroscopic studies of hydrogen clathrate hydrates[END_REF][START_REF] Udachin | Structure, stoichiometry, and morphology of bromine hydrate[END_REF]. In particular, in the context of climate change and global warming, even a small temperature increase could induce the melting of methane hydrate and, therefore, the release of large amounts of methane into the atmosphere (methane leads to a far larger greenhouse gas effect than carbon dioxide) [START_REF] Henriet | Gas Hydrates: Relevance to World Margin Stability and Climatic Change[END_REF]Petuya et al., 2018a,b). Moreover, the formation of methane hydrate in oil and gas pipelines is known to be detrimental as it hinders flow. Finally, hydrates including methane hydrates are also thought to be a key ingredient in the geochemistry of planets, comets, etc. where the coexistence of water and gases leads to hydrate formation depending on temperature and pressure [START_REF] Dartois | Hydrogen sulfide clathrate hydrate ftir spectroscopy: a help gas for clathrate formation in the solar system?[END_REF][START_REF] Fray | Equilibrium data of methane, carbon dioxide, and xenon clathrate hydrates below the freezing point of water. applications to astrophysical environments[END_REF][START_REF] Hersant | Enrichment in volatiles in the giant planets of the solar system[END_REF] tallizing cages around an organic template, therefore sharing some important features with hydrates. In addition, owing to their nonstoichiometric nature, gas hydrates can be considered as prototypical examples of confined solids which also possess varying compositions with temperature and pressure (even though their bulk counterpart exhibits constant stoichiometry) [START_REF] Coasne | Freezing and melting of binary mixtures confined in a nanopore[END_REF][START_REF] Czwartos | Freezing and melting of azeotropic mixtures confined in nanopores: Experiment and molecular simulation[END_REF]. As a result, owing to its importance for both fundamental and practical sciences, methane hydrate is receiving increasing attention with significant effort devoted to better understanding their physical and physicochemical properties [START_REF] Babakhani | A review on hydrate composition and capability of thermodynamic modeling to predict hydrate pressure and composition[END_REF]Conde and Vega, 2010;[START_REF] Desmedt | Energy landscape of clathrate hydrates[END_REF][START_REF] Docherty | A potential model for methane in water describing correctly the solubility of the gas and the properties of the methane hydrate[END_REF][START_REF] English | Mechanisms for thermal conduction in hydrogen hydrate[END_REF]Jacobson et al., 2010a;[START_REF] Jensen | Calculation of liquid water-hydrate-methane vapor phase equilibria from molecular simulations[END_REF][START_REF] Knott | Homogeneous nucleation of methane hydrates: Unrealistic under realistic conditions[END_REF][START_REF] Nguyen | Identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in simulations: the CHILL+ algorithm[END_REF][START_REF] Patt | A grand canonical monte carlo study of the N 2 , CO, and mixed N 2 -CO clathrate hydrates[END_REF][START_REF] Pefoute | Quasi-elastic neutron scattering investigation of the guest molecule dynamics in the bromomethane clathrate hydrate[END_REF][START_REF] Said | A study on the influence of nanofluids on gas hydrate formation kinetics and their potential: application to the co 2 capture process[END_REF][START_REF] Sloan | Clathrate Hydrates of Natural Gases[END_REF][START_REF] Wierzchowski | Calculation of free energies and chemical potentials for gas hydrates using monte carlo simulations[END_REF].

Most methane hydrate on Earth is confined in voids formed in the various porous rocks and/or fractures, such as clay minerals, silica/sands, etc. For this reason, the motivation of this thesis is to study the thermodynamics and formation kinetics of methane hydrate confined at the nanoscale in a porous medium. More in details, this thesis focuses on:

(1) the phase stability of methane hydrate, i.e., Liquid-Hydrate-Vapor (L-H-V) phase equilibrium, both as bulk and confined phases using molecular simulation;

(2) the ability of macroscopic thermodynamic modeling using the Gibbs-Thomson equation to describe the confinement and surface effects on the phase stability of methane hydrate;

(3) the confinement effects on the formation/dissociation kinetics of methane hydrate using free energy techniques;

(4) the confinement effects on the structural and thermodynamic properties of confined methane hydrate.

The remainder of this thesis is organized as follows. In Chapter 1, a brief review is given on the state-of-the-art of methane hydrate: structure, formation/dissociation kinetics, phase stability, and confinement effect, etc. In Chapter 2, the general framework of sta-tistical mechanics and molecular simulation is given. Several ensembles, e.g., Canonical, Isobaric-isothermal, Grand Canonical, and Semi-Grand Canonical, are considered and molecular models and interaction potentials are also presented. Some additional technical details on these methods are also presented in the different chapters. In Chapter 3, a Monte Carlo (MC) algorithm is used to (re)construct physical configurations of methane hydrate, and different molecular simulation strategies are used to assess the phase stability of methane hydrate (i.e., liquid-hydrate-vapor phase equilibrium) under various temperature and pressure conditions. In Chapter 4, the direct coexistence method (DCM) is adopted to determine the shift of melting point of methane hydrate confined at the nanoscale. The classical thermodynamic modeling -the Gibbs-Thomson equation -is revisited to account for the shift in melting point upon confinement. In Chapter 5, several thermodynamic properties of nanoconfined methane hydrate, including density profiles, thermal conductivity, thermal expansion, and isothermal compressibility, are determined using molecular dynamics (MD). The main results together with several suggestions for future works are presented in the conclusion of this manuscript.

Some parts of this manuscript were taken from my paper published in Langmuir Ref.

[Jin, D. and Coasne, B. (2017) pering. Langmuir, 33:11217-11230.]. A detailed list of these parts can be found in the following table . Besides those parts, all written text in this manuscript is original (∼ 80%).

In addition, significant changes have been made to reorganize the chapters/discussion to better match PhD thesis requirements. 4) phase stability, and ( 5) confinement effects at the nanoscale.

Structure

Crystalline structure and molecular model

Methane hydrate is a non-stoichiometric crystalline structure (crystal) made up of the hydrogen-bonded water molecules forming the cavity around methane molecules (see Figure 1.1) [START_REF] Davy | The bakerian lecture: On some of the combinations of oxymuriatic gas and oxygene, and on the chemical relations of these principles, to inflammable bodies[END_REF][START_REF] Sloan | Clathrate Hydrates of Natural Gases[END_REF]. Here "non-stoichiometric" means that the methane composition, x m , in the hydrate phase varies with temperature, T , and pressure, P. Other small gas molecules, e.g., carbon dioxide (CO 2 ), hydrogen sulfur (H 2 S), and hydrocarbons (C 2 H 6 , C 3 H 8 , etc.), can also form gas hydrate in natural environments.

To date, three primary crystalline hydrate structures have been identified: structure I (sI) [START_REF] Mcmullan | Polyhedral clathrate hydrates. IX. structure of ethylene oxide hydrate[END_REF], structure II (sII), [START_REF] Mak | Polyhedral clathrate hydrates. X. structure of the double hydrate of tetrahydrofuran and hydrogen sulfide[END_REF] and structure H (sH) [START_REF] Ripmeester | A new clathrate hydrate structure[END_REF]. The first two structures, sI and sII, are cubic crystals, while the third one is a hexagonal crystal (analogous to the hexagonal ice, I hex ). As

shown in Figure 1.1, these three structures differ from each other in the types and numbers of water cavities (made up of four-, five-and six-member rings of water molecules). These water cavities can be classified according to their size: (1) one small size cavity, 5 12 , consists of twelve pentagons; (2) three large size cavities, including 5 12 6 2 , 5 12 6 4 , and htb (3) one medium size cavity, 4 3 5 12 6 3 , created by adding three squares and three hexagons into the cavity 5 12 . These structures of gas hydrate can be viewed as a packing of these polyhedral water cavities. The structure sI consists of two small size cavities 5 12 and six large size cavities 5 12 6 2 . The structure sII consists of sixteen small size cavities 5 12 and eight large size cavities 5 12 6 4 . The structure sH consists of three small size cavities 5 12 , two medium size cavities 4 3 5 12 6 3 , and one large size cavity 5 12 6 8 . Each cavity can encapsulate one or two gas molecules depending on the nature of the gas molecules (typically, the molecular size). Despite the differences in these structures, i.e., numbers and types of water cavities, the molar composition of gas molecule, x m , and water molecule, x w , are similar for these three structures of methane hydrate: x m ∼ 0.15 and x w ∼ 0.85.

Under typical environmental conditions where methane hydrate is encountered on Earth, methane hydrate is formed as structure sI [START_REF] Michalis | Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology[END_REF][START_REF] Sloan | Clathrate Hydrates of Natural Gases[END_REF]. In this crystalline structure, 46 water molecules form two small pentagonal do-decahedral cages (i.e., small size water cavity 5 12 ) and six tetracaidecahedral cages (i.e., large size water cavity 5 12 6 2 ) so that a maximum of 8 methane molecules can be encapsulated [START_REF] Michalis | Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology[END_REF]. In addition, the structure sI of methane hydrate also obeys the following rules:

(1) proton disordered structure: the crystal lattice of methane hydrate is formed by water molecules with oxygen atoms located at regular crystalline positions. In contrast, the positions of the hydrogen atoms are disordered;

(2) ice rules (also known as Bernal-Fowler rules [START_REF] Bernal | A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions[END_REF]): each oxygen atom in the methane hydrate is covalently bonded to two hydrogen atoms, and is involved in four hydrogen bonds pointing toward the neighbor oxygen atoms.

Two of these hydrogen bonds are outgoing (i and ii in Figure 1.2) while the two others are incoming (iii and iv in Figure 1.2);

(3) zero dipole moment: methane hydrate has a zero dipole moment.
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(i) (ii) (iii) (iv) A B C D E (1) proton disorder (2) ice rules (3) zero dipole moment  OH  OH  w 2e - e + e + A B Figure 1.
2 Three criteria should be satisfied for methane hydrate with sI structure [START_REF] Bernal | A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions[END_REF]Chakraborty and Gelb, 2012a): (1) proton disorder; (2) ice rules; and

(3) zero dipole moment. The red and green spheres are the oxygen and hydrogen atoms of water, respectively.

To study the thermodynamics and dynamics of methane hydrate, many molecular models for water and methane can be, in principle, used in molecular simulation. However, in practice, all water models do not reproduce accurately all available experimental data for methane hydrate. Thus, the choice of the molecular models for water and methane is very important for the description of methane hydrate. In the literature, methane molecules are usually described using a simplified model known as the unit-atom model [START_REF] Damm | OPLS all-atom force field for carbohydrates[END_REF]. The water molecules can be described using different molecular models, e.g., TIP4P/2005 (Abascal et al., 2005), TIP4P/ICE (Abascal and Vega, 2005), and SPC/E [START_REF] Docherty | A potential model for methane in water describing correctly the solubility of the gas and the properties of the methane hydrate[END_REF][START_REF] Kaminski | Free energies of hydration and pure liquid properties of hydrocarbons from the OPLS all-atom model[END_REF][START_REF] Krouskop | Solubility of simple, nonpolar compounds in TIP4P-Ew[END_REF][START_REF] Paschek | Temperature dependence of the hydrophobic hydration and interaction of simple solutes: An examination of five popular water models[END_REF].

Among these water molecular models, only a few of them reproduce the experimental data, especially phase stability, for methane hydrate. Thanks to a reparameterization, the TIP4P/family (e.g., TIP4P/2005 and TIP4P/ICE) water molecular models show improved performance in the determination of the solid-liquid phase diagram of water, as compared with other water molecular models (e.g., SPC/E) (Abascal et al., 2005;Abascal and Vega, 2005). In combination with the united-atom (UA) model for methane molecule, these two water molecular models can reproduce the phase diagram of methane hydrate (Conde and Vega, 2010;[START_REF] Vega | Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins[END_REF]. Molinero et al. used the coarse-grain model for water, mW, and the Stillinger-Weber (SW) potential to speed up the molecular simulation by about a factor of 100 [START_REF] Jacobson | Thermodynamic stability and growth of guest-free clathrate hydrates: A low-density crystal phase of water[END_REF](Jacobson et al., , 2010a,b;,b;Jacobson and Molinero, 2010;[START_REF] Molinero | Water modeled as an intermediate element between carbon and silicon[END_REF]. The drawback of this water model is that it does not provide results as accurate as those with the TIP4P/family model.

In this work, a stochastic Monte Carlo algorithm, inspired by Ref. [START_REF] Buch | Simulations of H 2 O solid, liquid, and clusters, with an emphasis on ferroelectric ordering transition in hexagonal ice[END_REF], has been developed to generate the crystalline structure of methane hydrate that follows the three criteria given above. This part of the work will be discussed in Chapter 3. The TIP4P/ICE and TIP4P/2005 water molecule models, in combination with the OPLS-UA methane molecular models were used.

Order parameter

To identify the structure of methane hydrate, one or more order parameters were developed in recent years. In practice, these order parameters usually describe the packing of the oxygen atoms of water molecules in various phases, because it is easier to identify the regular oxygen atom network than the disordered network of hydrogen atoms. Considering typical environment conditions for methane hydrate, most studies deal with identifying the following phases: liquid water, hexagonal ice, and methane hydrate. Many order parameters allow one to distinguish liquid water from its crystalline structures, including hexagonal ice and methane hydrate, due to the striking difference between disordered and ordered oxygen atoms in liquid and crystal phases. Such order parameters include the radial distribution function, g(r), the number of hydrogen bonds, N HB , and the tetrahedral order parameter, ξ . In contrast, distinguishing methane hydrate and hexagonal ice is more difficult due to the fact that most oxygen atoms in these two structures are tetrahedrally connected.

The radial distribution function, g αβ (r), is related to the structure factor, S(q), through the inverse Fourier transform [START_REF] Gasser | Real-space imaging of nucleation and growth in colloidal crystallization[END_REF]. g αβ (r) describes the number density distributions of the species β (e.g., oxygen atom, hydrogen atom, or methane molecule) surrounding a given species α:

g αβ (r) = ρ αβ (r) / ρ β where ρ αβ (r) = 1/4πr 2 ∆r(∑ N α 1 ∆N αβ (r))/N α
is the number density of the pairs α-β separated by a distance between r and r + ∆r (the corresponding number of such pairs for each atom α is ∆N αβ ). Summation runs over all the number of atoms in species α, N α . ρ β is the density of species β and ⟨• • • ⟩ means an ensemble average. In other words, g αβ (r) is the probability of finding an atom β at a distance r from an atom α. Among all g(r) functions, g O-H (r) allows identifying the hydrogen bonds formed between the water molecules for different liquid and crystal structures. A pair of water molecules, w A -w B , is assumed to be hydrogen-bonded if it satisfies the following criteria: (1) the distance d O A H B ≤ 0.235 nm and (2) the angle [START_REF] Alabarse | Freezing of water confined at the nanoscale[END_REF]. The number of hydrogen bonds, ⟨N HB ⟩, in liquid water is 3.54-3.65 per water molecule [START_REF] Alabarse | Freezing of water confined at the nanoscale[END_REF][START_REF] Errington | Relationship between structural order and the anomalies of liquid water[END_REF], while N HB = 3.98 for hexagonal ice and methane hydrate at T = 290 K and P = 100 atm.

⟨H A O A H B ⟩ ≤ 30 • (
The tetrahedral order parameter, ξ (i), describes the extent to which the four nearestneighbour oxygen atoms are tetrahedrally coordinated with respect to a given oxygen atom [START_REF] Errington | Relationship between structural order and the anomalies of liquid water[END_REF][START_REF] Radhakrishnan | A new approach for studying nucleation phenomena using molecular simulations: Application to CO 2 hydrate clathrates[END_REF]. This definition ensures that ξ (i) = 0 for a completely disordered structure while ξ (i) = 1 for a completely ordered tetrahedral structure. An intermediate value is obtained for a partially disordered structure (e.g., liquid water, ⟨ξ ⟩ = 0.63-0.68 [START_REF] Errington | Relationship between structural order and the anomalies of liquid water[END_REF][START_REF] Radhakrishnan | A new approach for studying nucleation phenomena using molecular simulations: Application to CO 2 hydrate clathrates[END_REF]). The above order parameter shows that both hexagonal ice and methane hydrate are perfect tetrahedral crystals. Therefore, identification of liquid water is rather easy but the distinguishing between hexagonal ice and methane hydrate requires to develop a more complex order parameter.

O i , ξ (i) = 1 -3/8 ∑ 3 j=1 ∑ 4 k= j+1 cos O j O i O k + 1/
The local bond order parameters, Q l (l is an integer) [START_REF] Steinhardt | Bond-orientational order in liquids and glasses[END_REF], are widely used to identify crystals [START_REF] Lechner | Accurate determination of crystal structures based on averaged local bond order parameters[END_REF][START_REF] Ogata | Monte carlo simulation study of crystallization in rapidly supercooled one-component plasmas[END_REF]Radhakrishnan andTrout, 2002, 2003a,b;[START_REF] Steinhardt | Bond-orientational order in liquids and glasses[END_REF]. Q l provides a clear indication for disordered and ordered structures, especially for crystals with different symmetries. For a given oxygen atom O i , Q l (i) is computed using the complex vectors that link O i to its N b (i) nearest-neighbour oxygen atoms O j . The complex vector Q lm (i) is first computed,

Q lm (i) = 1 N b (i) N b (i) ∑ j=1 Y lm (r i j ) with m ∈ [-l, l] (1.1)
where Y lm (r i j ) are the spherical harmonics which depend on the position vectors r i j . Q l (i) are then obtained using these complex vectors,

Q l (i) = 4π 2l + 1 l ∑ m=-l | Q lm (i) | 2 1/2 (1.2)
where the summation over m runs [-l, +l]. In practice, one can also use improved spatial resolution by averaging these local bond order parameters, ⟨Q l (i)⟩,

⟨Q l (i)⟩ = 4π 2l + 1 l ∑ m=-l | ⟨Q lm (i)⟩ | 2 1/2 (1.3)
where ⟨Q lm (i)⟩ is given by,

⟨Q lm (i)⟩ = 1 N b (i) N b (i) ∑ k=0 Q lm (k) (1.4)
The summation in Eq. Usually, l = 4 and 6 are used since they allow the identification of the different crystal phases of water, e.g., cubic and hexagonal ices [START_REF] Chau | A new order parameter for tetrahedral configurations[END_REF][START_REF] Chialvo | Molecular dynamics study of the structure and thermophysical properties of model sI clathrate hydrates[END_REF][START_REF] Errington | Relationship between structural order and the anomalies of liquid water[END_REF][START_REF] Ferdows | Molecular simulation study for CO 2 clathrate hydrate[END_REF][START_REF] Jorgensen | Comparison of simple potential functions for simulating liquid water[END_REF][START_REF] Lechner | Accurate determination of crystal structures based on averaged local bond order parameters[END_REF][START_REF] Narten | Liquid water: Molecular correlation functions from x-ray diffraction[END_REF][START_REF] Ogata | Monte carlo simulation study of crystallization in rapidly supercooled one-component plasmas[END_REF][START_REF] Radhakrishnan | A new approach for studying nucleation phenomena using molecular simulations: Application to CO 2 hydrate clathrates[END_REF][START_REF] Reinhardt | Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water[END_REF][START_REF] Soper | Quantum differences between heavy and light water[END_REF][START_REF] Steinhardt | Bond-orientational order in liquids and glasses[END_REF].

Figure 1.3 shows the scatter plot of liquid water, cubic and hexagonal ice under T = 200 K in the ⟨Q 4 ⟩-⟨Q 6 ⟩-plane. As expected, these data suggest that liquid water exhibits a more disordered structure (much broader distribution) as compared with crystalline structures. Despite some overlap, this pair order parameter is suitable to identify liquid 1.2 Thermodynamic properties water, cubic and hexagonal ice. Recent works have shown that Q l plays an important role in the determination of the formation/crystallization of methane hydrate, especially to identify the phase transition from liquid water to methane hydrate [START_REF] Nguyen | Identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in simulations: the CHILL+ algorithm[END_REF]Radhakrishnan and Trout, 2003b;[START_REF] Tanaka | Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization[END_REF]. Another possible order parameter is the distribution of cyclic pentamers. [START_REF] Báez | Computer simulation of the crystal growth and dissolution of natural gas hydratesa[END_REF][START_REF] Fábián | Ammonia clathrate hydrate as seen from grand canonical monte carlo simulations[END_REF] In summary, complete phase identification between liquid water, hexagonal ice, and methane hydrate can be achieved using local bond order parameters. These orders parameters are efficient and simple order parameters for the identification of methane hydrate in the course of formation/crystallization. In this work, Q 6 has been used to determine the free energy barrier between liquid water and methane hydrate. The free energy calculations with the umbrella sampling will be discussed in Chapter 4.

Thermodynamic properties

Thermodynamic properties -which include physical and physicochemical properties -are essential for practical applications involving methane hydrate [START_REF] Jendi | Ab initio modelling of methane hydrate thermophysical properties[END_REF][START_REF] Ning | Mechanical properties of clathrate hydrates: status and perspectives[END_REF][START_REF] Ning | Compressibility, thermal expansion coefficient and heat capacity of CH 4 and CO 2 hydrate mixtures using molecular dynamics simulations[END_REF]. For instance, the thermal expansion coefficient,

α P = 1/v (∂ v/∂ T ) P ,
is an important parameter for assessing the mechanical stability of methane hydrate and geological media filled with methane hydrate [START_REF] Jendi | Ab initio modelling of methane hydrate thermophysical properties[END_REF]. The exploration of methane hydrate and the storage of carbon dioxide by substitution of carbon dioxide with methane in methane hydrate can lead to mechanical instabilities. Moreover, the isothermal compressibility, κ T = -1/v (∂ v/∂ P) T , plays an important role in the detection of methane hydrate when using seismic waves. As a result, understanding the thermodynamic properties of methane hydrate has raised significant interest in the last decade [START_REF] Bai | Origin of self-preservation effect for hydrate decomposition: Coupling of mass and heat transfer resistances[END_REF][START_REF] Burnham | Communication: Librational dynamics in water, sI and sII clathrate hydrates, and ice ih: Molecular-dynamics insights[END_REF][START_REF] Demurov | Computations of diffusivities in ice and CO 2 clathrate hydrates via molecular dynamics and monte carlo simulations[END_REF]Michalis et al., 2016a;Yang et al., 2016b;[START_REF] Zhu | Encapsulation kinetics and dynamics of carbon monoxide in clathrate hydrate[END_REF].

Many experiments focus on the following thermodynamic properties: second-order elastic constant [START_REF] Shimizu | Elasticity of single-crystal methane hydrate at high pressure[END_REF], isothermal compressibility [START_REF] Sloan | Clathrate Hydrates of Natural Gases[END_REF], thermal expansion [START_REF] Takeya | Lattice expansion of clathrate hydrates of methane mixtures and natural gas[END_REF], heat capacity [START_REF] Waite | Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate[END_REF], and thermal conductivity [START_REF] English | Mechanisms for thermal conduction in hydrogen hydrate[END_REF][START_REF] English | Molecular-dynamics simulations of methane hydrate dissociation[END_REF]. These results provide valuable information for the geophysical applications of methane hydrate. Understanding these properties at the atomic-scale level is also important. For instance, ab initio and classical calculations can provide accurate values for α P and κ T .

Using molecular dynamics, one can determine the contributions from each component (methane and water for methane hydrate) to the thermal conductivity, which is very useful in the description of heat-transfer upon methane hydrate formation/dissociation. The heat-flux vector, J, reads,

J = 1 V N ∑ i (e i + u i ) v i + N ∑ i N ∑ j>i f i j • v j r i j (1.5)
where V is the volume of the simulation box, N is the total number of molecules, e i = 1/2m i v 2 i is the kinetic energy of molecule i, u i is the potential energy of molecule i which interacts with the other molecules, v i is the velocity vector of molecule i, f i j is the force between molecule i and molecule j, and r i j is the position vector between molecule i and molecule j.

The thermal conductivity, k, can be estimated using the Green-Kubo formalism,

k = V 3k B T 2 +∞ 0 ⟨J(t) • J(0)⟩ dt (1.6)
where ⟨• • • ⟩ denotes an ensemble average. This method provides a thermal conductivity k that includes all contributions to the heat flux [START_REF] Jendi | Ab initio modelling of methane hydrate thermophysical properties[END_REF][START_REF] Ning | Mechanical properties of clathrate hydrates: status and perspectives[END_REF][START_REF] Ning | Compressibility, thermal expansion coefficient and heat capacity of CH 4 and CO 2 hydrate mixtures using molecular dynamics simulations[END_REF].

The thermal conductivity not only can explain unusual thermal-transport phenomena but also helps to provide deep understanding of thermoelectric materials which possess similar structures as methane hydrate (e.g., semiconductor silicon clathrates).

Another important thermodynamic property is the gas mobility/diffusion of methane molecules in hydrate and liquid phases. Such dynamics plays an important role in the process of formation, dissociation, and displacement of carbon dioxide with methane (De-murov et al., 2002;[START_REF] Hjertenaes | Chemically accurate energy barriers of small gas molecules moving through hexagonal water rings[END_REF][START_REF] Liang | Molecular insights into the homogeneous melting of methane hydrates[END_REF]Michalis et al., 2016a;[START_REF] Ohgaki | Hydrogen transfer from guest molecule to radical in adjacent hydrate-cages[END_REF][START_REF] Pefoute | Quasi-elastic neutron scattering investigation of the guest molecule dynamics in the bromomethane clathrate hydrate[END_REF][START_REF] Román-Pérez | Stability, adsorption, and diffusion of CH 4 , CO 2 , and h 2 in clathrate hydrates[END_REF][START_REF] Trinh | Low barriers for hydrogen diffusion in sII clathrate[END_REF][START_REF] Vidal-Vidal | Direct transition mechanism for molecular diffusion in gas hydrates[END_REF]. For instance, in the process of formation of methane hydrate, the extremely low solubility of methane in liquid water does not allow transport of methane molecules to maintain the growth rate of methane hydrate; methane molecules are required to diffuse across liquid water towards the hydrate-liquid interface. Thus, the diffusion rate of methane in liquid water is one of the key steps in the formation of methane hydrate.

Moreover, methane molecules in hydrate phase affect the mechanical stability of methane hydrate in seaflooor, permafrost, marine sediments, etc. Due to slow methane diffusion, hydrate phase can form with incompletely filled water cavities. On the one hand, fewer methane molecules decrease the water-methane interactions which contribute to the structure stability of methane hydrate. On the other hand, the empty water cavities can easily "open" and trigger methane hydrate dissociation [START_REF] Liang | Molecular insights into the homogeneous melting of methane hydrates[END_REF].

1.3 Formation/dissociation and phase stability

Crystallization

According to the classical nucleation theory (CNT), the formation of methane hydrate includes two steps:

(1) Below the crystalization point, T < T m , several water molecules in liquid phase get together to form a crystal-like nucleus with a cluster radius, r;

(2) If the radius is larger than the critical radius (i.e., r > r c ) the above crystal-like nucleus keeps growing and eventually form the crystalline structure of methane hydrate. In contrast, if r < r c , the nucleus dissociates and eventually disappears.

The above two steps can be described in Figure 1. 4. Figure 1.4 shows the free energy, ∆G, for methane hydrate formation as a function of the radius of the nucleus, r. 4 Free energy (solid line), ∆G, as a function of nucleus radius, r, in the the formation process of methane hydrate. Formation can be described as the interplay between the hydrate-liquid surface free energy (surface term corresponding to the dashed line), ∆G S , and the free energy difference between liquid water and methane hydrate (volume term corresponding to the dot dashed line), ∆G V . The critical radius, r c , and the corresponding free energy barrier, ∆G barr , are also shown in this figure . If the nucleus radius is larger than the critical radius, i.e., r > r c , the nucleus keeps growing to form methane hydrate ("growth"). For r < r c , the nucleus melts into liquid water ("shrink").

described as a combination of the hydrate-liquid surface free energy (surface contribution, see Figure 1.4), ∆G S , and the free energy difference between liquid water and methane hydrate (volume contribution, see Figure 1

.4), ∆G V , ∆G = ∆G S + ∆G V = 4πr 2 γ HL - 4 3 πr 3 ρ H ∆µ HL (1.7)
where γ HL is the surface tension of hydrate-liquid interface, ∆µ HL is the difference of the chemical potential between liquid water and methane hydrate, and ρ H is the number density of water molecules in methane hydrate. In the above equation, the surface contribution, ∆G S = 4πr 2 γ HL , corresponds to the free energy cost of creating the liquid-hydrate interface.

The volume contribution, ∆G V = -4/3πr 3 ρ H ∆µ HL , describes the fact that the structure of methane hydrate is more stable than that of liquid water below the crystalization point (i.e., free energy difference between methane hydrate and liquid water). The maximum of the total free energy (as described by Eq. (1.7)) corresponds to the free energy barrier of the formation of methane hydrate, ∆G barr ,

∆G barr = 16π 3 γ 3 HL ρ 2 H ∆µ 2 HL (1.8)
The corresponding critical radius, r c , of the crystal-like nucleus reads,

r c = 2γ HL ρ H ∆µ HL (1.9)
Figure 1.4 also shows the two possible scenarios as described by the classical nucleation theory: (1) "growth" for r > r crit , the nucleus keep growing to form methane hydrate and

(2) "shrink" for r < r c , the nucleus melts. For bulk methane hydrate, the melting point, T m (r), of a nucleus with a radius, r, is linearly proportional to the reciprocal of its critical radius, r c , as described by the Gibbs-Thomson equation [START_REF] Jacobson | Can amorphous nuclei grow crystalline clathrates? the size and crystallinity of critical clathrate nuclei[END_REF],

T m (r) -T bulk m T bulk m = - 2γ HL ρ H ∆h m r (1.10)
where T bulk m is the melting point of an infinite bulk methane hydrate and ∆h m is the molar enthalpy of melting from methane hydrate to liquid water.

The formation kinetics of methane hydrate as described by the nucleation rate, J f , reads,

J f = J f ,0 A exp -β T ∆G f barr (1.11)
where J f ,0 is the frequency with which methane and water molecules reach the surface area around the nucleus (i.e., nucleation sites), A = 4πr 2 is the surface area of the nucleus, In practice, such slow formation/dissociation kinetics for methane hydrate is important in natural environments. For instance, the liquid-hydrate (or ice-hydrate at low temperature)

and β T = 1/k B T
interface prevents the melting of methane hydrate when the temperature increases so that the slow dissociation kinetics of methane hydrate in seafloor and permafrost decreases the release rate of methane (Angioletti-Uberti et al., 2010;[START_REF] Bi | Heterogeneous ice nucleation controlled by the coupling of surface crystallinity and surface hydrophilicity[END_REF][START_REF] Bi | Probing methane hydrate nucleation through the forward flux sampling method[END_REF][START_REF] Lehmkühler | The carbon dioxide-water interface at conditions of gas hydrate formation[END_REF][START_REF] Mel'nikov | Self-preservation of methane hydrates produced in "dry water[END_REF][START_REF] Pirzadeh | Molecular insights into clathrate hydrate nucleation at an ice-solution interface[END_REF][START_REF] Saykally | Air/water interface: Two sides of the acid-base story[END_REF][START_REF] Ueno | Crystal growth of clathrate hydrates formed with methane + carbon dioxide mixed gas at the gas/liquid interface and in liquid water[END_REF][START_REF] Zhang | Microcanonical molecular simulations of methane hydrate nucleation and growth: evidence that direct nucleation to sI hydrate is among the multiple nucleation pathways[END_REF].

Many strategies are being developed to control the nucleation rate of methane hydrate.

By virtue of the two factors above, one can attempt to alter the number density of nucleation sites and/or the free energy barrier. For instance, methane vapor can be injected into liquid water to increase the probability of formation of the nucleus. Various surfactants can also be used as promoters to decrease the free energy barrier for methane hydrate formation, etc.

On the other hand, hydrate inhibitors (e. g., alcohol-based, glycol-based, polymer-based, ionic liquids, amino acides, etc.) can be injected into transport pipelines to avoid the formation of methane hydrate [START_REF] Arora | Biosurfactant as a promoter of methane hydrate formation: Thermodynamic and kinetic studies[END_REF][START_REF] Dureckova | Molecular simulations and density functional theory calculations of bromine in clathrate hydrate phases[END_REF][START_REF] Kato | Energy-dissipation of OH-stretching in tetrahydrofuran clathrate hydrate by raman spectroscopy and DFT calculation[END_REF][START_REF] Kumar | Role of surfactants in promoting gas hydrate formation[END_REF][START_REF] Lee | Tuning clathrate hydrates for hydrogen storage[END_REF][START_REF] Mclaurin | Antifreezes act as catalysts for methane hydrate formation from ice[END_REF][START_REF] Sa | Gas hydrate inhibition by perturbation of liquid water structure[END_REF][START_REF] Sa | Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation[END_REF][START_REF] Wu | Molecular dynamics study on the equilibrium and kinetic properties of tetrahydrofuran clathrate hydrates[END_REF][START_REF] Xu | Molecular dynamics simulation of methane hydrate growth in the presence of the natural product pectin[END_REF][START_REF] Yagasaki | Effects of thermodynamic inhibitors on the dissociation of methane hydrate: a molecular dynamics study[END_REF].

Melting/Dissociation

Understanding the dissociation of methane hydrate is important in the field of environmental science. The melting of methane hydrate in nature can release massive amounts of this greenhouse gas. Like with methane hydrate formation, many experiments but also thermodynamic models and molecular simulations have been reported on the dissociation mechanism and kinetics [START_REF] Alavi | Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates[END_REF][START_REF] Bagherzadeh | Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth[END_REF]Chakraborty and Gelb, 2012a;[START_REF] Liang | Molecular insights into the homogeneous melting of methane hydrates[END_REF][START_REF] Luis | A theoretical study of the dissociation of the sI methane hydrate induced by an external electric field[END_REF][START_REF] Misyura | The influence of porosity and structural parameters on different kinds of gas hydrate dissociation[END_REF][START_REF] Myshakin | Molecular dynamics simulations of methane hydrate decomposition[END_REF][START_REF] Smirnov | Melting and superheating of sI methane hydrate: Molecular dynamics study[END_REF][START_REF] Vidal-Vidal | Direct transition mechanism for molecular diffusion in gas hydrates[END_REF][START_REF] Zhou | In situ raman analysis on the dissociation behavior of mixed CH 4 -CO 2 hydrates[END_REF]. The kinetics rate for the dissociation of methane hydrate writes,

J d = J d,0 exp -β T ∆G d barr (1.12)
where ∆G d barr is the activation energy for methane hydrate dissociation and J d,0 is an exponential factor that accounts for the attempt rate for dissociation. In addition to the kinetic rate of methane hydrate dissociation, the heat transfer is another important point for the melting of methane hydrate.

Phase diagram

Phase stability is shown in the phase diagram provided in Figure 1. 5. This phase diagram provides phase boundaries which delimitates the conditions under which methane hydrate coexists with liquid water (or ice at low temperature) and methane vapor. In other words, phase transitions occur along these equilibrium lines (phase boundaries). More in details, Generally, the phase coexistence requires that the chemical potentials of each component are equal in all phases. In this work, methane hydrate can be viewed as a binary mixture of methane, m, and water, w; for such a system, L-H-V phase equilibrium requires that the chemical potentials of water in all phases (Φ = H, L, and V) are equal, .13) but also for methane,

µ H w (x m , T, P) = µ L w (x m , T, P) = µ V w (x m , T, P) (1 
µ H m (x m , T, P) = µ L m (x m , T, P) = µ V m (x m , T, P) (1.14)
where µ is the chemical potential as a function of the composition of methane, x m (one could use the composition of water, x w = 1x m .), the temperature, T, and the pressure,

P.
In principle, one can determine L-H-V phase equilibrium by solving the two equations above: one is for water and one for methane. Many theoretical methods use such thermodynamic modeling, e.g., van der Waals-Platteeuw method [START_REF] Conde | Revisiting the thermodynamic modelling of type I gas-hydroquinone clathrates[END_REF][START_REF] De Azevedo Medeiros | Alternative eos-based model for predicting water content, metastable phases and hydrate formation in natural gas systems[END_REF][START_REF] Duan | The influence of temperature, pressure, salinity and capillary force on the formation of methane hydrate[END_REF][START_REF] Hakim | Phase behavior of different forms of ice filled with hydrogen molecules[END_REF][START_REF] Katsumasa | On the thermodynamic stability of hydrogen clathrate hydrates[END_REF][START_REF] Lasich | Phase equilibria of methane clathrate hydrates from grand canonical monte carlo simulations[END_REF][START_REF] Lee | Thermodynamic stability, spectroscopic identification, and gas storage capacity of CO 2 -CH 4 -n 2 mixture gas hydrates: Implications for landfill gas hydrates[END_REF][START_REF] Yoon | Generalized model for predicting phase behavior of clathrate hydrate[END_REF], first-principles thermodynamics [START_REF] Cao | Phase diagrams for clathrate hydrates of methane, ethane, and propane from first-principles thermodynamics[END_REF][START_REF] Trinh | Low barriers for hydrogen diffusion in sII clathrate[END_REF], etc. In addition to the above techniques, there are other robust techniques to determine L-H-V phase equilibrium. These techniques allow probing the formation/nucleation of methane hydrate such as the direct coexistence method and the parallel tempering technique, etc.

Free energy calculations. Free energy calculations allow one to determine L-H-V phase equilibrium. Such computations are often used to determine the solid-liquid phase equilibrium for various crystalline materials [START_REF] Barroso | Solid-fluid coexistence of the lennard-jones system from absolute free energy calculations[END_REF][START_REF] Dornan | Free energies of carbon dioxide sequestration and methane recovery in clathrate hydrates[END_REF][START_REF] Frenkel | New monte carlo method to compute the free energy of arbitrary solids. application to the fcc and hcp phases of hard spheres[END_REF][START_REF] Habershon | Free energy calculations for a flexible water model[END_REF][START_REF] Jhung | Monte carlo calculations of free energy in the solid phase[END_REF][START_REF] Lyubartsev | Solvation free energies of methane and alkali halide ion pairs: An expanded ensemble molecular dynamics simulation study[END_REF][START_REF] Nagle | Lattice statistics of hydrogen bonded crystals. i. the residual entropy of ice[END_REF][START_REF] Noya | Computing the free energy of molecular solids by the Einstein molecule approach: Ices XIII and XIV, hard-dumbbells and a patchy model of proteins[END_REF][START_REF] Okano | Free-energy calculation of structure-h hydrates[END_REF][START_REF] Polson | Finite-size corrections to the free energies of crystalline solids[END_REF]Radhakrishnan and Trout, 2003a;[START_REF] Shen | Solid-fluid equilibrium in a nonlinear hard sphere triatomic model of propane[END_REF][START_REF] Shetty | On the application of virtual gibbs ensembles to the direct simulation of fluid-fluid and solid-fluid phase coexistence[END_REF][START_REF] Susilo | Molecular dynamics study of structure h clathrate hydrates of methane and large guest molecules[END_REF][START_REF] Vega | Solid-fluid equilibrium for a molecular model with short ranged directional forces[END_REF][START_REF] Vega | Revisiting the frenkel-ladd method to compute the free energy of solids: The einstein molecule approach[END_REF][START_REF] Vega | Solid-fluid equilibria for hard dumbbells via monte carlo simulation[END_REF][START_REF] Vega | Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins[END_REF]. The main goal with this technique is to compute the chemical potentials of methane and water in different phases at different T and P. Then thermodynamic equations, corresponding to Eqs. (1.13) and (1.14), are solved using these chemical potentials. To determine the L-H-V phase equilibrium, one usually chooses the following two equations: (1) L-H phase equilibrium, µ H w (x m , T, P) = µ L w (x m , T, P) [START_REF] Jensen | Calculation of liquid water-hydrate-methane vapor phase equilibria from molecular simulations[END_REF][START_REF] Waage | Phase diagram of methane and carbon dioxide hydrates computed by monte carlo simulations[END_REF]Wierzchowski andMonson, 2006, 2007;[START_REF] Yezdimer | Determination of the gibbs free energy of gas replacement in SI clathrate hydrates by mol[END_REF].

and (2) H-V phase equilibrium, µ H m (x m , T, P) = µ V m (x m , T, P).
The umbrella sampling is a molecular simulation technique which provides a way to determine L-H-V phase equilibrium by using free energy calculations. With this technique, one prepares a single phase (e.g., methane hydrate) and forces it to transform into another one (e.g., liquid water) by adding a biasing potential energy contribution. Such biasing potential contribution is used to cancel out the free energy barrier between the two phases. In other words, the phase transition is driven by the biasing potential. In practice, to determine L-H-V phase equilibrium, one starts from methane hydrate which is then transformed into liquid water by adding a harmonic potential in the framework of the umbrella sampling technique. Usually, an order parameter (e.g., Q 6 ) is used in the biasing harmonic potential (e.g., w(Q

6 ) = 1/2k us Q 6,i -Q 6,0
where k us is the force constant which represent the transform rate and Q 6,i /Q 6,0 are the order parameters of current/reference system. By determining the probability distribution, the free energy

contribution, V B (Q 6 ) = -k B T ln (w(Q 6 )
), of the biasing potential at a given order parameter can be obtained. The unbiased free energy profile, G(Q 6 ), on the order parameter can be estimated by subtracting V B (Q 6 ) from the biased free energy profile, G B (Q 6 ):

G(Q 6 ) = G B (Q 6 ) -V B (Q 6 ).
In so doing, the free energy, ∆G, as a function of the order parameter, OP, is determined [START_REF] Frenkel | Understanding Molecular Simulation: From Algorithms to Applications[END_REF]. Figure 1.6 shows a typical free energy profile ∆G(OP) at three different T and P. At T > T m , liquid water is more stable than methane hydrate. That is, the free energy of liquid water is lower than that of methane hydrate at T > T m : ∆G L < ∆G H . While at T < T m , methane hydrate is more stable than liquid water, ∆G L > ∆G H . The melting/crystallization temperature at equilibrium, T m , is obtained when the free energy difference between liquid water and methane hydrate is zero, i.e., ∆G HL = 0. In addition, it should be noted that such free energy calculations give access to the free energy barrier between methane hydrate and liquid water. This value provides information about the formation/dissociation kinetics of methane hydrate (as mentioned in Section 1.3).

The free energy landscape such as illustrated in Figure 1.6 shows not only phase stability but also formation/dissociation kinetics of methane hydrate. In this work, two free energy techniques, involving the Einstein molecule approach and the parallel tempering technique, were used within the grand canonical ensemble to determine L-H-V phase equilibrium (Chapters 3 and 4) as well as the free energy barrier for methane hydrate formation/dissociation (Chapter 4).

Direct coexistence method. The direct coexistence method (DCM) is a robust technique to determine phase boundary in a phase diagram [START_REF] Alavi | Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition[END_REF][START_REF] Anderson | Enthalpy of dissociation and hydration number of methane hydrate from the clapeyron equation[END_REF][START_REF] Aragones | The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase[END_REF][START_REF] Barmavath | Prediction of phase stability conditions of gas hydrates of methane and carbon dioxide in porous media[END_REF][START_REF] Cabriolu | Ice nucleation on carbon surface supports the classical theory for heterogeneous nucleation[END_REF];
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Free energy, G, as a function of the normalized order parameter, OP, using biased molecular simulations. Liquid water (L) exhibits a small order parameter, while methane hydrate (H) exhibits a large order parameter. At the melting temperature, T = T m , methane hydrate coexists with liquid water (i.e., the free energies of liquid water and methane hydrate are equal). At high temperature, T > T m , liquid water is stable (i.e., the free energy of liquid water is smaller than that of methane hydrate). At low temperature, T < T m , methane hydrate is stable (i.e., the free energy of methane hydrate is smaller than that of methane hydrate). The free energy barrier between liquid water and methane hydrate, ∆G barr , upon formation is also shown. [START_REF] Cao | Phase diagrams for clathrate hydrates of methane, ethane, and propane from first-principles thermodynamics[END_REF][START_REF] Conde | Determining the phase diagram of water from direct coexistence simulations: The phase diagram of the TIP4P/2005 model revisited[END_REF][START_REF] Conde | Revisiting the thermodynamic modelling of type I gas-hydroquinone clathrates[END_REF]Conde and Vega, 2010;Conde et al., 2010;[START_REF] De Azevedo Medeiros | Alternative eos-based model for predicting water content, metastable phases and hydrate formation in natural gas systems[END_REF][START_REF] Duan | The influence of temperature, pressure, salinity and capillary force on the formation of methane hydrate[END_REF][START_REF] El-Sheikh | Phase transitions of methane using molecular dynamics simulations[END_REF][START_REF] Fortes | No evidence for large-scale proton ordering in antarctic ice from powder neutron diffraction[END_REF][START_REF] Gai | Examination of the phase transition behavior of nano-confined fluids by statistical temperature molecular dynamics[END_REF][START_REF] Hakim | Phase behavior of different forms of ice filled with hydrogen molecules[END_REF]Huang et al., 2016a,b;[START_REF] Ilani-Kashkouli | Gas hydrate phase equilibrium in porous media: An assessment test for experimental data[END_REF][START_REF] Kang | Nondestructive natural gas hydrate recovery driven by air and carbon dioxide[END_REF][START_REF] Katsumasa | On the thermodynamic stability of hydrogen clathrate hydrates[END_REF][START_REF] Lasich | Phase equilibria of methane clathrate hydrates from grand canonical monte carlo simulations[END_REF][START_REF] Lee | Thermodynamic stability, spectroscopic identification, and gas storage capacity of CO 2 -CH 4 -n 2 mixture gas hydrates: Implications for landfill gas hydrates[END_REF][START_REF] Lee | Experimental measurement and thermodynamic modeling of the mixed CH 4 + C 3 H 8 clathrate hydrate equilibria in silica gel pores: Effects of pore size and salinity[END_REF][START_REF] Małolepsza | Entropic description of gas hydrate ice-liquid equilibrium via enhanced sampling of coexisting phases[END_REF][START_REF] Míguez | Molecular dynamics simulation of CO 2 hydrates: Prediction of three phase coexistence line[END_REF][START_REF] Patchkovskii | Thermodynamic stability of hydrogen clathrates[END_REF][START_REF] Rodrigues | Phase diagrams of alkali halides using two interaction models: A molecular dynamics and free energy study[END_REF][START_REF] Seo | Phase equilibria and thermodynamic modeling of ethane and propane hydrates in porous silica gels[END_REF][START_REF] Tsimpanogiannis | Gas saturation resulting from methane hydrate dissociation in a porous medium: Comparison between analytical and porenetwork results[END_REF][START_REF] Wu | Molecular dynamics study on the equilibrium and kinetic properties of tetrahydrofuran clathrate hydrates[END_REF]. In this technique, one prepares an initial simulation box with two or three coexisting phases. As shown in Figure 1.7 (top), the three coexisting phases, i.e., liquid water + methane hydrate + methane vapor phases, are placed in a cubic simulation box to determine L-H-V phase equilibrium. Then, one performs molecular simulations at different T and P to determine the stability domain for each phase. For a given P, the low symmetry phase (methane hydrate) will be stable below the melting temperature T m while the high symmetry phase (liquid water coexisting with methane vapor) will be stable above T m . In other words, liquid water and methane vapor form as methane hydrate for T < T m , as shown in Figure 1.7 (center) and (bottom). On the other hand, methane hydrate melts as liquid water and methane vapor for T > T m . Usually, one performs molecular dynamics to determine T m at a given P [START_REF] English | Molecular-dynamics simulations of methane hydrate dissociation[END_REF][START_REF] Fernández | The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface[END_REF][START_REF] Knott | Homogeneous nucleation of methane hydrates: Unrealistic under realistic conditions[END_REF][START_REF] Naeiji | Thermodynamic and structural properties of methane/water systems at the threshold of hydrate formation predicted by molecular dynamic simulations[END_REF][START_REF] Sarupria | Homogeneous nucleation of methane hydrate in microsecond molecular dynamics simulations[END_REF][START_REF] Tung | The growth of structure i methane hydrate from molecular dynamics simulations[END_REF][START_REF] Yagasaki | Effects of thermodynamic inhibitors on the dissociation of methane hydrate: a molecular dynamics study[END_REF]. For instance, by using different molecular models, some researchers have simulated the phase diagram of methane hydrate (Conde and Vega, 2010;[START_REF] Michalis | Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology[END_REF]Michalis et al., , 2016b;;[START_REF] Míguez | Molecular dynamics simulation of CO 2 hydrates: Prediction of three phase coexistence line[END_REF]. Unlike the thermodynamic models and free energy calculations, the DCM technique does not require to compute the chemical potential of each component in each phase. In addition, the DCM allows one to observe the formation process directly at the molecular scale. As shown in Figure 1.7, the growth of methane hydrate from liquid water and methane vapor can be seen using the direct coexistence method.

As another example, one can prepare coexisting phases consisting of methane hydrate within a sphere (radius r), liquid water, and methane vapor. Using the DCM, one can determine the melting temperature, T m (r), at a given P (Jacobson et al., 2010a). The critical radius of the nucleus (i.e., the minimum radius to keep the nucleus growing) at T m (r) for a given P can be also described by the Gibbs-Thomson equation.

As mentioned previously, the large free energy barrier between methane hydrate and liquid water leads to very slow kinetic rates for the formation/nucleation of methane hydrate. Furthermore, the DCM technique usually requires very long molecular dynamics or Monte Carlo simulations. Typically, several hundred of nanoseconds are used when using molecular dynamics. For the sake of computational efficiency, this work extended the DCM technique within the grand canonical ensemble, as presented in Chapter 4. This ensemble allows one to: (1) use two coexisting phases instead of three in the simulation box to determine L-H-V phase equilibrium and (2) use a smaller molecular system to mimic an infinite molecular system. For instance, one can prepare a system with L-H coexistence in the simulation box that is in equilibrium with an infinite reservoir. The reservoir imposes chemical potentials µ m and µ w as well as temperature T . This ensemble allows one to determine L-H-V phase equilibrium because the L-H phase also coexists implicitly with methane vapor though the fictive reservoir.

Parallel tempering. In addition to the above techniques, parallel tempering provides another way to improve computational efficiency. Figure 1.8 shows a schematic view of the Boltzmann factor in the phase space at low and high temperatures. As compared with low temperature, the system at high temperature escapes more easily from the metastable state.

The Boltzmann factor at high temperature spans a border distributions, and the free energy barrier for phase transition at high temperature is much lower than at low Temperature.

The parallel tempering technique helps the system to escape from the metastable states, therefore improving computational efficiency. In practice, within the parallel tempering technique, one prepares N simulation boxes (replicas) where each replica consists of either the solid phase (methane hydrate) or the liquid phase (liquid water). These N molecular replicas are equilibrated under different temperatures independently, and exchange between two configurations is used to avoid configurations to remain trapped into local metastable states. The parallel tempering technique is often used to determine two phase equilibrium, e.g., solid-liquid or liquid-vapor phases transition [START_REF] Brumby | Cage occupancy of methane hydrates from gibbs ensemble monte carlo simulations[END_REF]. For instance,

Malolepsza et al. used the replica exchange technique to determine L-H phase equilibrium

within the framework of isobaric molecular dynamics [START_REF] Małolepsza | Entropic description of gas hydrate ice-liquid equilibrium via enhanced sampling of coexisting phases[END_REF]. Due to the constant number of molecules in this ensemble, the phase transition between liquid water and empty hydrate (β -ice) is obtained while the L-H-V phase equilibrium is impossible to reach within this ensemble. In this work, the parallel tempering technique was used in the grand canonical ensemble (i.e., hyperparallel tempering Monte Carlo simulation) to determine L-H-V phase equilibrium.

-
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), in the phase space, Γ, as an example to illustrate the parallel tempering technique. The blue line is for the low temperature, while the red line is for the high temperature. The system in state A (blue circle) remains easily trapped into a metastable state, while the system in state B (red circle) escape more easily. Parallel tempering between A and B is used to make the escape easier.

Many different molecular simulation strategies can be used to determine L-H-V phase equilibrium. In this work, four different molecular simulation strategies were used to determine L-H-V phase equilibrium. First, free energy calculations with the Einstein molecule approach was used to predict L-H-V phase equilibrium. This method exactly follows the thermodynamic definition of phase equilibrium. Second, the direct coexistence method was used to determine the phase transition between liquid water and methane hydrate. This strategy is difficult to determine three phase coexistence (unless one runs the molecular simulation at the exact melting point T and P), but this method is valid to assess the phase boundary using the Einstein molecule approach. Then, the hyperparallel tempering technique was used to accelerate the observation of phase transition due to the slow kinetics rates for the formation/dissociation of methane hydrate. Here "hyperparallel tempering" is referred rather than parallel tempering because we treated the system in the Grand Canonical ensemble. The results for the phase stability of methane hydrate will be presented in Chapter 3. Finally, free energy calculations with the umbrella sampling was used to probe not only the L-H-V phase equilibrium but also the formation/dissociation kinetics of methane hydrate (presented in Chapter 4). All these molecular simulation strategies, involving the direct coexistence method, the parallel tempering technique, and the umbrella sampling technique, were extended in the grand canonical ensemble Monte Carlo simulations.

Confinement effects at the nanoscale

In nature, most methane hydrate is confined in the voids formed in various porous rocks and/or fractures. This confined methane hydrate interacts with the surface atoms (within a specific distance, typically one or two nanometers for van der Waals interactions and several nanometers for electrostatic interactions) [START_REF] Casco | Influence of the oxygen-containing surface functional groups in the methane hydrate nucleation and growth in nanoporous carbon[END_REF][START_REF] Casco | Methane hydrate formation in confined nanospace can surpass nature[END_REF][START_REF] English | Theoretical studies of the kinetics of methane hydrate crystallization in external electromagnetic fields[END_REF][START_REF] Smirnov | A modeling study of the methane hydrate decomposition in contact with the external surface of zeolite[END_REF][START_REF] Smirnov | Formation and decomposition of methane hydrate in coal[END_REF]. This fluid-pore interaction leads to an additional contribution to the free energy of methane hydrate. Due to such fluid-pore interactions, confinement effects also lead to non isotropic pressure tensors: the pressure parallel to the interface is P T while the pressure normal to the interface is P N . From a physical viewpoint, such non isotropic pressure tensors generate an external surface free energy of the confined fluid which corresponds to the surface tension [START_REF] Aman | Interfacial phenomena in gas hydrate systems[END_REF][START_REF] Arnaudov | Measuring the three-phase contact angle of nanoparticles at fluid interfaces[END_REF]. This surface tension has drastic effects on the structure, dynamics and thermodynamics of confined methane hydrate. Therefore, understanding the role of the confinement effects on methane hydrate is an important research field [START_REF] Bai | Microsecond molecular dynamics simulations of the kinetic pathways of gas hydrate formation from solid surfaces[END_REF][START_REF] Bai | Nucleation of the CO 2 hydrate from three-phase contact lines[END_REF][START_REF] Barmavath | Prediction of phase stability conditions of gas hydrates of methane and carbon dioxide in porous media[END_REF][START_REF] Borchardt | Illuminating solid gas storage in confined spaces-methane hydrate formation in porous model carbons[END_REF][START_REF] Brovchenko | Water in nanopores. i. coexistence curves from gibbs ensemble monte carlo simulations[END_REF][START_REF] Casco | Methane hydrate formation in confined nanospace can surpass nature[END_REF][START_REF] Cole | Water structuring and collagen adsorption at hydrophilic and hydrophobic silicon surfaces[END_REF][START_REF] Di Crescenzo | Optimizing the interactions of surfactants with graphitic surfaces and clathrate hydrates[END_REF][START_REF] English | Molecular-dynamics simulations of methane hydrate dissociation[END_REF][START_REF] Ghaedi | The effects of salt, particle and pore size on the process of carbon dioxide hydrate formation: A critical review[END_REF][START_REF] Hachikubo | Preservation phenomena of methane hydrate in pore spaces[END_REF][START_REF] Ilani-Kashkouli | Gas hydrate phase equilibrium in porous media: An assessment test for experimental data[END_REF][START_REF] Kang | Kinetic behaviors of CO 2 hydrates in porous media and effect of kinetic promoter on the formation kinetics[END_REF][START_REF] Kang | Phase behavior of methane and carbon dioxide hydrates in meso-and macro-sized porous media[END_REF]Kang et al., , 2009a,b;,b;[START_REF] Kyung | CO 2 hydrate nucleation kinetics enhanced by an organo-mineral complex formed at the montmorillonite-water interface[END_REF][START_REF] Luis | A theoretical study of the dissociation of the sI methane hydrate induced by an external electric field[END_REF][START_REF] Misyura | The influence of porosity and structural parameters on different kinds of gas hydrate dissociation[END_REF][START_REF] Moore | Freezing, melting and structure of ice in a hydrophilic nanopore[END_REF][START_REF] Seo | Enhancing CO 2 separation for pre-combustion capture with hydrate formation in silica gel pore structure[END_REF][START_REF] Seo | Phase equilibria and thermodynamic modeling of ethane and propane hydrates in porous silica gels[END_REF][START_REF] Smirnov | A modeling study of the methane hydrate decomposition in contact with the external surface of zeolite[END_REF][START_REF] Smirnov | Formation and decomposition of methane hydrate in coal[END_REF][START_REF] Sun | Molecular dynamics study of montmorillonite crystalline swelling: Roles of interlayer cation species and water content[END_REF][START_REF] Tsiberkin | Evolution of a spherical hydrate-free inclusion in a porous matrix filled with methane hydrate[END_REF][START_REF] Tsimpanogiannis | Gas saturation resulting from methane hydrate dissociation in a porous medium: Comparison between analytical and porenetwork results[END_REF][START_REF] Wang | Methane hydrate formation with surfactants fixed on the surface of polystyrene nanospheres[END_REF]Yang et al., 2016a;[START_REF] Zhang | Heat transfer during the dissociation of hydrate in porous media[END_REF][START_REF] Zhao | CO separation from h2 via hydrate formation in single-walled carbon nanotubes[END_REF][START_REF] Zhao | Spontaneous formation of one-dimensional hydrogen gas hydrate in carbon nanotubes[END_REF]. A recent review on confinement effects can be found in Ref. [START_REF] Borchardt | Methane hydrate in confined spaces: an alternative storage system[END_REF]. This reference mainly focuses on the confinement effects on the crystallization/formation, dissociation/melting and phase stability of methane hydrate.

Confinement effects depend on many factors, e.g., surface chemistry, pore width, pore topology and morphology, etc. Thus, various porous materials will lead to different confinement effects. Many porous materials in nature (e.g., porous silica, clay minerals, etc.) and in man-made materials (e.g., polymers, zeolites, metal organic frameworks, etc.)

can be used to study confinement effects on the phase stability of methane hydrate [START_REF] Aladko | Dissociation conditions of methane hydrate in mesoporous silica gels in wide ranges of pressure and water content[END_REF][START_REF] Anderson | Experimental measurement of methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica[END_REF][START_REF] Cuadrado-Collados | Methane hydrate formation in the confined nanospace of activated carbons in seawater environment[END_REF][START_REF] Kang | Phase behavior of methane and carbon dioxide hydrates in meso-and macro-sized porous media[END_REF][START_REF] Seo | Methane and carbon dioxide hydrate phase behavior in small porous silica gels: Three-phase equilibrium determination and thermodynamic modeling[END_REF][START_REF] Seo | Phase equilibria and thermodynamic modeling of ethane and propane hydrates in porous silica gels[END_REF][START_REF] Uchida | Dissociation conditions measurements of methane hydrate in confined small pores of porous glass[END_REF][START_REF] Uchida | Effects of pore sizes on dissociation temperatures and pressures of methane, carbon dioxide, and propane hydrate in porous media[END_REF]. Many observations suggest that confinement in micro-and meso-pores leads to a reduced phase stability (i.e., the L-H-V phase boundary is shifted towards a higher pressure and/or lower temperature) [START_REF] Aladko | Dissociation conditions of methane hydrate in mesoporous silica gels in wide ranges of pressure and water content[END_REF][START_REF] Birkedal | Numerical predictions of experimentally observed methane hydrate dissociation and reformation in sandstone[END_REF][START_REF] Handa | Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-.ang.-radius silica gel pores[END_REF][START_REF] Madden | Experimental formation of massive hydrate deposits from accumulation of ch4 gas bubbles within synthetic and natural sediments[END_REF][START_REF] Prasad | Effect of silica particles on the stability of methane hydrates[END_REF]. However, confinement in fine glass beads shows a positive effect on phase stability [START_REF] Anderson | Experimental measurement of methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica[END_REF][START_REF] Hachikubo | Preservation phenomena of methane hydrate in pore spaces[END_REF][START_REF] Kang | Phase behavior of methane and carbon dioxide hydrates in meso-and macro-sized porous media[END_REF]Kang et al., , 2009a)). At a given pressure, let us consider the shift in the melting point, ∆T m , of confined methane hydrate with respect to bulk methane hydrate:

∆T m = T pore m -T bulk m
where T pore m is the melting point of confined methane hydrate in the porous material and T bulk m is the melting point of bulk methane hydrate. This shift in phase stability is often described using the Gibbs-Thomson equation for a slit pore (Chakraborty and Gelb, 2012a;[START_REF] Seo | Methane and carbon dioxide hydrate phase behavior in small porous silica gels: Three-phase equilibrium determination and thermodynamic modeling[END_REF][START_REF] Uchida | Dissociation conditions measurements of methane hydrate in confined small pores of porous glass[END_REF],

∆T m T bulk m = 2vγ LH cos θ ∆h m 1 D p (1.15)
where γ LH is the surface tension between liquid water and methane hydrate, θ is the angle between the surface of the substrate and the surface formed by methane hydrate and liquid water (i.e., contact angle), v is the molar volume (i.e., the reciprocal of the number density: v = 1/ρ) of the hydrate/liquid phase, ∆h m is the molar enthalpy of melting from methane hydrate to liquid water, and D p is the pore width.

The Gibbs-Thomson equation suggests that the shift in the melting point of confined methane hydrate at constant pressure linearly depends on the reciprocal of the pore width: the phase diagram of methane hydrate in pores [START_REF] Seo | Methane and carbon dioxide hydrate phase behavior in small porous silica gels: Three-phase equilibrium determination and thermodynamic modeling[END_REF][START_REF] Seo | Phase equilibria and thermodynamic modeling of ethane and propane hydrates in porous silica gels[END_REF]. However, the validation of the Gibbs-Thomson equation for very small pores remains to be established.

∆T m ∼ 1/D p . Several
First, the determination of the true melting point at equilibrium is difficult in practice.

Most experiments and theoretical simulations determine the dissociation point of methane hydrate (here, dissociation means the point where methane hydrate transforms to liquid water) instead of the true melting point [START_REF] Aladko | Dissociation conditions of methane hydrate in mesoporous silica gels in wide ranges of pressure and water content[END_REF]Chakraborty and Gelb, 2012a;[START_REF] Seo | Methane and carbon dioxide hydrate phase behavior in small porous silica gels: Three-phase equilibrium determination and thermodynamic modeling[END_REF][START_REF] Uchida | Dissociation conditions measurements of methane hydrate in confined small pores of porous glass[END_REF]. However, the dissociation point can be far from the equilibrium transition point due to the large free energy barrier between methane hydrate and liquid water.

It should also be noted that the Gibbs-Thomson equation given above relies on the following approximation: the number density of molecules in the hydrate phase, ρ H , and in the liquid phase, ρ L , are assumed to be equal, i.e., ρ H ∼ ρ L . In contrast, a large difference in the number density of ∼ 20% is found in realistic conditions between liquid water and methane hydrate. Finally, Young's equation, γ LH cos θ = γ LSγ HS , and the contact angle θ = 0 are usually imposed in the Gibbs-Thomson equation. The availability of Young's equation is unknown for small pores and the value of θ is also difficult to determine. In this work, the Gibbs-Thomson equation will be revisited by considering the different densities (ρ H ̸ = ρ L ) and the different surface tensions γ LS and γ HS which will be determined using molecular simulation. Then, the true melting point of bulk and confined methane hydrate will be determined to check the validity of the Gibbs-Thomson equation.

Confinement in porous materials seems to lead to faster formation kinetics of methane hydrate [START_REF] Borchardt | Methane hydrate in confined spaces: an alternative storage system[END_REF][START_REF] Casco | Methane hydrate formation in confined nanospace can surpass nature[END_REF][START_REF] Cha | A third-surface effect on hydrate formation[END_REF][START_REF] Ganji | Effect of different surfactants on methane hydrate formation rate, stability and storage capacity[END_REF][START_REF] Govindaraj | Kinetics of methane hydrate formation in the presence of activated carbon and nano-silica suspensions in pure water[END_REF][START_REF] Li | Formation and dissociation of hfc134a gas hydrate in nano-copper suspension[END_REF][START_REF] Linga | Enhanced rate of gas hydrate formation in a fixed bed column filled with sand compared to a stirred vessel[END_REF][START_REF] Phan | Aqueous methane in slit-shaped silica nanopores: high solubility and traces of hydrates[END_REF][START_REF] Seo | Enhancing CO 2 separation for pre-combustion capture with hydrate formation in silica gel pore structure[END_REF][START_REF] Smelik | Crystal-growth studies of natural gas clathrate hydrates using a pressurized optical cell[END_REF][START_REF] Yan | Experimental and modeling study on hydrate formation in wet activated carbon[END_REF]. For instance, experimental data suggest a shorter formation time of methane hydrate in bentonite (clay) [START_REF] Cha | A third-surface effect on hydrate formation[END_REF] as compared with bulk methane hydrate. Silica/sand exhibits an improved conversion up to ∼ 94% (vs. ∼ 74% for bulk methane hydrate) and a shorter formation time of 34 h (vs. 60 h for bulk methane hydrate) [START_REF] Linga | Enhanced rate of gas hydrate formation in a fixed bed column filled with sand compared to a stirred vessel[END_REF]. These confinement effects, which arise mainly from surface chemistry and fluid-pore interactions, decrease the free energy barrier between methane hydrate and liquid water. However, the physical reasons for such faster formation kinetics remain unclear.

In addition to its effects on phase stability and formation kinetics, confinement also affects the structure of methane hydrate [START_REF] Babu | Morphology of methane hydrate formation in porous media[END_REF][START_REF] Borchardt | Illuminating solid gas storage in confined spaces-methane hydrate formation in porous model carbons[END_REF][START_REF] Casco | Methane hydrate formation in confined nanospace can surpass nature[END_REF][START_REF] Cha | A third-surface effect on hydrate formation[END_REF][START_REF] Miyawaki | Macroscopic evidence of enhanced formation of methane nanohydrates in hydrophobic nanospaces[END_REF][START_REF] Siangsai | Investigation on the roles of activated carbon particle sizes on methane hydrate formation and dissociation[END_REF]. For instance, the hydrate phase formed in porous carbons can consist of a monolayer of methane molecules adsorbed at the pore walls and a hydrogen-bonded zigzag chain in the pore center [START_REF] Borchardt | Methane hydrate in confined spaces: an alternative storage system[END_REF][START_REF] Miyawaki | Macroscopic evidence of enhanced formation of methane nanohydrates in hydrophobic nanospaces[END_REF]. Such hydrate structure is not formed as a perfect sI structure, and the stable methane composition for such hydrate phase, x m , is ∼0.333 (where x m = n m /(n m + n w ) with the number of methane, n m , and water, n w , molecules in one unit cell). In contrast, we recall that for the sI structure x m = 0.147 (i.e., n w : n m = 5.78). Recently, a hydrate phase was found in carbon nanotubes [START_REF] Agrawal | Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes[END_REF][START_REF] Zhao | CO separation from h2 via hydrate formation in single-walled carbon nanotubes[END_REF]. Another goal of the present work will be to assess such confinement effects on the structure and physical and physicochemical properties of confined methane hydrate.

Summary

In this chapter, the crystalline structure, thermodynamic properties, crystallization theory, formation/dissociation kinetics, and phase stability of methane hydrate were reviewed.

Such review aims at giving some physical insights into the dynamics and thermodynamics of methane hydrate as well as the corresponding formation/dissociation kinetics. We also introduced the role of confinement effects at the nanoscale. Several key points can be summarized as follows:

Methane hydrate in typical environmental and experimental conditions forms as structure I (sI). In this structure, 46 water molecules form two small pentagonal dodecahedral cages (5 12 ) and six tetracaidecahedral cages (5 12 6 2 ) so that a maximum of 8 methane molecules can be encapsulated. In addition to the above packing of water molecules, methane hydrate should obey three criteria: (1) proton disorder, (2) ice rules, and (3) zero dipole moment. On the one hand, the local bond order parameters, Q l , provide a tool to identify the structure of liquid water, hexagonal ice, and methane hydrate. On the other hand, free energy calculations can be used to assess the formation kinetics and phase stability of methane hydrate.

The classical nucleation theory suggests that the crystallization of methane hydrate is a two-step mechanism: the formation and growth of a crystal-like nucleus in liquid water.

Such mechanism suggests that the formation kinetics of methane hydrate is controlled by two factors: the number density of nucleation sites and the free energy barrier between methane hydrate and liquid water. By using additives (thermodynamic promoter/inhibitor) to alter these two factors, one can increase/decrease the nucleation rate, e.g., using the 1.5 Summary thermodynamic inhibitor to prevent the formation of methane hydrate that could block pipelines.

Phase stability is one of the most important characteristics of methane hydrate 

Statistical mechanics

Classical statistical mechanics

Statistical mechanics establishes the link between the macroscopic properties of a system and the motions of its microscopic elements (atoms, molecules, etc.). Statistical mechanics provides a way to determine the thermodynamic and dynamic behaviors of a molecular system at equilibrium. This chapter mainly discusses the thermodynamics and dynamics of systems for which the motion of atoms and molecules can be described using classical statistical mechanics. Taking a system having a volume V and a number of particles N, we consider the set of coordinates r N = (r 1 , r 2 , . . . , r N ) and the set of momenta p N = (p 1 , p 2 , . . . , p N ) for each of the N particles. The total kinetic energy, E k , of the system is given by the following summation over these N particles,

E k (p N ) = N ∑ i E k,i = N ∑ i p 2 i /(2m i ) (2.1)
where E k,i and m i is the kinetic energy and mass of the i-th particle, respectively. The total potential energy, U, is a function of all particles' coordinates (and orientations if the particles are molecules),

U(r N ) = U(r 1 , r 2 , . . . , r N ) (2.
2)

The classical Hamiltonian, H (r N , p N ), is the sum of the kinetic and potential energy,

H (r N , p N ) = E k (p N ) +U(r N ) = N ∑ i p 2 i /(2m i ) +U(r N ) (2.
3)

The partition function, Q, is defined as the following integral over all particles' coordinates and momenta:

Q = 1 h 3N N! dr N dp N exp -β T N ∑ i p 2 i /(2m i ) +U(r N ) (2.4)
where

dr N dp N = • • • dr 1 • • • dr N dp 1 • • • dp N .
The factor 1/N! accounts for the fact that these N identical particles are indistinguishable. β T = 1/k B T is the reciprocal of the thermal energy with k B the Boltzmann constant. h in the above equation is Planck's constant. The partition function and its derivatives with respect to the temperature T , pressure P, and volume V , describe the thermodynamics of the system. For instance, the internal energy can be expressed as ⟨E⟩ = -∂ ln Q/∂ β T while the entropy can be expressed

as S = ∂ (k B T ln Q) /∂ T .
From a statistical physics point of view, the probability, P(s), to find a system in a given microstate, s = (r N , p N ), reads,

P(s) = 1 Q exp -β T N ∑ i p 2 i /(2m i ) +U(r N ) (2.5) 
The above equation shows that the partition function Q is a normalization constant (the normalization is to ensure that the integral of the probability over all possible microstates is equal to one),

dsP(s) = 1 Q dr N dp N exp -β T N ∑ i p 2 i /(2m i ) +U(r N ) = 1 (2.6)
Any thermodynamic property of interest, X, can be determined using its average, ⟨X⟩, over all possible microstates (i.e., ensemble average),

⟨X⟩ = 1 Q dr N dp N exp -β T N ∑ i p 2 i /(2m i ) +U(r N ) X r N , p N (2.7)
where X r N , p N is the value taken by X when the system is in the microstate s = (r N , p N ).

The above equation is the starting point in molecular simulation which is used to determine the thermodynamic and dynamic behaviors of a many-body system.

Ensembles

As previously discussed, a thermodynamic property of interest, ⟨X⟩, can be obtained using an ensemble average. The statistical ensemble, which is defined from the thermodynamic parameters that are constant, leads to a specific partition function. Here, I discuss the three statistical mechanics ensembles that will be used in this work.

(1) Canonical ensemble, NV T . The canonical ensemble is relevant to a system consisting of N particles in a volume V that is in equilibrium with a thermostat at a temperature T . Such a system exchanges energy, E, with the thermostat which imposes the temperature T . The canonical ensemble contains all the possible microstates that are consistent with N, V , and T as constraints. The partition function, Q NV T , corresponding to this ensemble reads,

Q NV T = 1 h 3N N! dr N dp N exp -β T N ∑ i p 2 i /(2m i ) +U(r N ) = 1 Λ 3N N! dr N exp -β T U(r N ) = V N Λ 3N N! ds N exp -β T U(s N ) (2.8)
where Λ = h/ √ 2πmk B T is the thermal de Broglie wavelength with m the mass of the particle, k B the Boltzmann constant, and h the Planck constant. In the above equation, Λ 3N is the integral of the kinetic energy over all the N particles (the term 1/h 3N is included in this contribution). For the sake of convenience, the above equation can be simplified using a reduced coordinate set,

s N = (s 1 , s 2 , • • • , s N ) = (r 1 /L, r 2 /L, • • • , r N /L)
, where these N particles are assumed to be located in a cubic box of a dimension L.

(2) Isobaric-isothermal ensemble, NPT . The isobaric-isothermal ensemble is relevant to a system of N particles in equilibrium with a thermostat imposing its temperature T and a barostat imposing its pressure P. The system exchanges thermal energy with the thermostat and mechanical energy/volume with the barostat. The NPT ensemble contains all the possible microstates that are consistent with N, P, and T as constraints. The NPT ensemble is often used to mimic experiments due to the fact that many real conditions are performed by controlling T and P. The partition function, Q NPT , corresponding to this ensemble can be written as the weighted integral of Q NV T ,

Q NPT = dV exp (-β T PV ) (β T P) Q NV T (2.9)
(3) Grand canonical ensemble, µV T . The grand canonical ensemble is relevant to a system which has a constant volume V but with a fluctuating number N of particles.

This system is in equilibrium with a reservoir which imposes its temperature T and its chemical potential µ. The system exchanges energy E and particles with the reservoir. The µV T ensemble contains all the possible microstates that are consistent with µ, V , and T as constraints. The partition function, Q µV T , corresponding to this ensemble can be written as the weighted summation (N is discrete) of Q NV T ,

Q µV T ≡ +∞ ∑ N=0 exp (β T µN) Q NV T (2.10)
There are other statistical ensembles such as the isoenthalpic-isobaric ensemble NHP.

For a binary mixture (e.g., methane hydrate in this work), combined ensembles can also be used such as the semi-grand ensemble, µ 1 N 2 PT . In this thesis, the latter ensemble was used for bulk methane hydrate. Such semi-grand ensemble requires that the system has a constant number of molecules for the second species, N 2 . In contrast, the first species is at constant chemical potential µ 1 so that N 1 fluctuates. The whole system is in equilibrium with the thermostat and barostat which impose the pressure P and temperature T . The partition function, Q µ 1 N 2 PT , corresponding to this ensemble reads,

Q µ 1 N 2 PT = +∞ ∑ N 1 =0 exp (N 1 µ 1 ) dV exp (-β T PV ) (β T p)Q NV T (2.11) 2.2 Monte Carlo simulation 2.2.

Detailed balance and Metropolis scheme

Monte Carlo (MC) sampling methods are widely applied to determine the thermodynamic behavior of a system in classical molecular simulation. The sampling in a Monte Carlo (MC) simulation can be done by generating microstates randomly. However, complete random sampling is generally not possible as one cannot sample efficiently the whole phase space. Also, evaluation of an integral such as ds N exp -β T U(s N ) is often impossible in practice. The Metropolis scheme provides an efficient sampling algorithm in which sampling is performed according to the Boltzmann factor. A system at equilibrium obeys the principle of micro-reversibility (also known as "detailed balance" in statistical mechanics), which states that the total probability of transitions from every initial microstate, o i , to all other microstates, n j , is equal to the total probability of transitions from these microstates

n j to the microstate o i , ∑ j ρ(o i )Π(o i → n j ) = ∑ j ρ(n j )Π(n j → o i ) ∀i = 1, 2, • • • (2.12)
where ρ(o i ) is the probability of a microstate o i while ρ(n j ) is the probability of a microstate n j . Π(o i → n j ) is the probability of transition from microstate o i to n j while Π(n j → o i ) is the probability of transition from microstate n j to o i . Summation over j indicates the total probability of transition. The above detailed balance condition is valid and can be used for any strategy in MC simulation. In practice, a much stronger detailed balance condition is imposed as follows: the transition probability from microstate o i to microstate n j is taken equal to by the transition probability from microstate n j to microstate

o i , ρ(o i )Π(o i → n j ) = ρ(n j )Π(n j → o i ) ∀ i = 1, 2, • • • (2.13)
Such a stronger detailed balance condition obviously satisfies the requirement of Eq. ( 2.12). In practice, only one MC move is attempted at every MC step: for a current microstate o, one MC trial move o → n must therefore verifies:

ρ(o)Π(o → n) = ρ(n)Π(n → o) (2.14)
where

Π(o → n) = α(o → n)P acc (o → n) and Π(n → o) = α(n → o)P acc (n → o) so that, ρ(o)α(o → n)P acc (o → n) = ρ(n)α(n → o)P acc (n → o) (2.15)
where ρ(o) and ρ(n) are the probabilities to find the system in the microstate o and n (the probability can be obtained from the partition function Q which depends on the ensemble). 

→ n) = α(n → o), thus, P acc (o → n) P acc (n → o) = ρ(n) ρ(o) (2.16)
Many statistical distributions can verify this stronger detailed balance condition. Here, we choose the Metropolis scheme that generates Markov chains and accepts trial moves as follows:

(1) for ρ(n)/ρ(o) < 1, we have

P acc (o → n) = ρ(n)/ρ(o) and P acc (n → o) = 1 (2) for ρ(n)/ρ(o) > 1, we have P acc (o → n) = 1 and P acc (n → o) = ρ(n)/ρ(o)
(2.17)

or using a simplified formulation,

P acc (o → n) = min {1, ρ(n)/ρ(o)} P acc (n → o) = min {1, ρ(o)/ρ(n)} (2.18)
Instead of complete random sampling, the Metropolis algorithm generates sampling using a relative probability to avoid sampling very low probability states. Such sampling significantly improves the efficiency of MC simulation. In the next section, the typical trial moves and the corresponding acceptance probabilities used in Monte Carlo simulation within various ensembles are discussed.

Trial moves and acceptance probabilities

Most real experiments can be mimicked by choosing different ensembles. Within various statistic ensembles, the different trial moves that can be used, and the corresponding acceptance probabilities vary. However, they must respect the constant thermodynamic parameters for a specific ensemble. Here, we list the typical trial moves and acceptance probabilities for various ensembles relevant to this work. By recalling the partition function for various ensembles (see Section 2.1.2), the probability to find the system in a microstate

o within different ensembles, ρ ••• (o), reads: ρ NV T (o) = 1 Q NV T V N Λ 3N N! exp -β T U(s N (o)) ρ NPT (o) = 1 Q NPT 1 Λ 3N N! exp -β T PV - (N + 1) lnV β T +U(s N (o) ρ µV T (o) = 1 Q µV T V N Λ 3N N! exp β T (µN -U(s N (o)) ρ µ 1 N 2 PT (o) = 1 Q µ 1 N 2 PT 1 Λ 3N N! exp -β T PV - (N + 1) lnV β T -µ 1 N 1 +U(s N (o) (2.

19)

Molecule translation and rotation. These two trial moves only change the potential energy contribution in Eq. (2.19). As a result, the acceptance probability can be computed using the potential energy term only. One molecule in the old configuration o is randomly chosen (e.g., the i-th molecule), and the translation trial move consists of displacing it by a small random value to generate a new configuration n,

x i (n) = x i (o) + ∆ max (ranf() -0.5) y i (n) = y i (o) + ∆ max (ranf() -0.5) z i (n) = z i (o) + ∆ max (ranf() -0.5) (2.20)
where ∆ max is the maximum displacement and ranf() is a random number uniformly distributed between 0 and 1. Rotation trial moves change the orientation of a randomly chosen molecule by a small random Euler's rotation matrix ℜ 33 to generate a new configuration n,

      x i (n) y i (n) z i (n)       = ℜ 33       x i (o) y i (o) z i (o)       =       R 11 R 12 R 13 R 21 R 22 R 23 R 31 R 32 R 33             x i (o) y i (o) z i (o)       (2.21)
The probability to find the system in a microstate n, ρ(n), can be determined by Eq. (2.19).

For these two trial moves, the probability to attempt a trial move from o to n is equal to the probability to attempt a trial move from n to o, i.e., α(o

→ n) = α(n → o) = 1/(2N).
Thus, according to Eq. ( 2.18), the acceptance probability P acc (o → n) for such trial moves can be expressed as,

P acc (o → n) = min 1, ρ(n) ρ(o) = min 1, exp -β T ∆U(s N ) (2.22) where ∆U(s N ) = U(s N (n)) -U(s N (o))
is the potential energy difference before and after the trial move. The acceptance probability given above can be used for these two trial moves in all statistical ensembles.

Molecule insertion and removal. These two trial moves are only used for systems in which the number of particles N is not constant, e.g., µV T and µ 1 N 2 PT ensembles. The insertion trial move generates a new configuration n by randomly inserting a molecule at an arbitrary position into the old configuration o. Inversely, the removal trial move attempts to remove a randomly selected molecule from configuration n (note that N + 1 molecules in the configuration n). Therefore,

α(o → n) = 1 2 dr V α(n → o) = 1 2 1 N + 1 (2.23)
The probability to find the system in a microstate n with (N + 1) molecules is given by,

ρ µV T (n) = 1 Q µV T V (N+1) Λ 3(N+1) (N + 1)! exp β T (µ(N + 1) -U(s (N+1) (n)) (2.24)
According to Eq. ( 2.18), the acceptance probability for such insertion moves can be expressed as,

P acc (o → n) = min 1, ρ(n)α(n → o) ρ(o)α(o → n) = min 1, V Λ 3 (N + 1) exp β T µ -(U(s (N+1) (n)) -U(s N (o)) (2.25) 
The removal trial move can be viewed as the reversible process of insertion, where the molecular number changes from N to N -1, not from N + 1 to N so that,

α(o → n) = 1 2 1 N α(n → o) = 1 2 dr V (2.26)
According to Eq. ( 2.18), the acceptance probability for such removal trial moves can be expressed as,

P acc (n → o) = min 1, ρ(o)α(o → n) ρ(n)α(n → o) = min 1, Λ 3 N V exp -β T µ + U(s (N-1) (n)) -U(s N (o)) (2.27) Volume change.
Volume change is necessary to treat systems in the isobaric ensemble, such as NPT and µ 1 N 2 PT . Here, we take the NPT ensemble as an example to establish the acceptance probability for this trial move. Volume trial moves generate a new volume, V (n), based on the old volume, V (o), for the molecular system using a small random change in volume,

V (n) = λV (o) = (1 + ∆V max (rand() -0.5))V (o) (2.28)
where ∆V max is the maximum volume change allowed at each Monte Carlo step. λ =

V (n)/V (o)
is the rescaling factor for the coordinates of system molecules. The new coordinates of each molecule (r i (n)) are obtained by rescaling their old coordinates (r i (o)),

r i (n) = λ 1/3 r i (o).
The probability to find the system in a microstate n is given by,

ρ NPT (n) = 1 Q NPT 1 Λ 3N N! exp -β T PV (n) - (N + 1) lnV (n) β T +U(s N (n) (2.29)
The probability to attempt such trial moves is,

α(o → n) = 1 2 dv V α(n → o) = 1 2 dv V (2.30)
According to Eq. ( 2.18), the acceptance probability for such volume trial moves can be expressed as,

P acc (o → n) = min 1, ρ(n)α(n → o) ρ(o)α(o → n) = min 1, V (n) V (o) (N+1) exp -β T (P (V (n) -V (0)) -U(s (N) (n)) -U(s N (o)) (2.31)

Details of Monte Carlo simulation

Monte Carlo simulation in the canonical ensemble (CMC) were used in our free energy calculations to determine (1) the free energy change between the non-interacting and the interacting Einstein molecules ∆A 1 and ( 2) the free energy change from the Einstein molecule to the methane hydrate ∆A 2 (again, details of the free energy calculations will be given later). In these canonical simulations (constant number of particles N, temperature T , and volume V ), MC moves include rotations for the water molecules and translations for the water and methane molecules. In the framework of the Metropolis algorithm, each move from an old (o) to a new (n) microscopic states was accepted or rejected according to the acceptance probability P acc = min{1, p n NV T /p o NV T } where p NV T for a given configuration corresponds to the density of states in the canonical ensemble:

p NV T (s N ) ∝ V N N! exp -U(s n ) k B T (2.32)
where s N is the set of coordinates of the N molecules in a given microscopic configuration and U(s N ) is the corresponding intermolecular potential energy.

Semi-Grand Monte Carlo (SGMC) simulations were performed to determine the number of methane molecules N H m inside the methane hydrate as a function of their chemical potential µ H m at given T and P (here, the subscript m refers to methane while the superscript H refers to the hydrate phase). In this hybrid ensemble, methane is treated at constant chemical potential µ H m and temperature T while water is treated at constant number of molecules N H w and temperature T . On the other hand, the volume V is allowed to fluctuate since the system is at constant pressure P. For each T and P, we start from an equilibrium configuration obtained using isobaric-isothermal MD simulations. MC moves in SGMC simulations include rotations and translations for water and translations, insertions, and deletions for methane. Moreover, volume changes are also attempted. In the framework of the Metropolis algorithm, moves from an old (o) to a new (n) microscopic states are accepted or rejected according to the acceptance probability PT } where p µ m N w PT for a given configuration corresponds to the density of states in the semi-grand canonical ensemble:

P acc = min{1, p n µ m N w PT /p o µ m N w
p µ m N w PT (s N ) ∝ V N N! exp -PV k B T exp N m µ m k B T exp -U(s n ) k B T (2.33)
As in the case of canonical Monte Carlo simulations, s N is the set of coordinates for the N molecules in the microscopic configuration while U(s N ) is the corresponding intermolecular potential energy. V and N m are the volume and number of methane molecules in the configuration.

Grand Canonical Monte Carlo simulations (GCMC) were used in the direct coexistence method and the hyper parallel tempering technique. In the grand canonical ensemble, the system has a constant volume and methane and water are at constant chemical potentials µ m , µ w and temperature T . Monte Carlo moves in the grand canonical ensemble include rotations, translations, insertions, and deletions for both water and methane. In this ensemble, moves from an old (o) to a new (n) microscopic states are accepted or rejected using a Metropolis scheme with an acceptance probability P acc = min{1, p n µ m µ w V T /p o µ m µ w V T } where p µ m µ w V T for a given configuration corresponds to the density of states in the grand canonical ensemble:

p µ m µ w V T (s N ) ∝ V N N! exp N m µ m + N w µ w k B T exp -U(s n ) k B T (2.34)
s N is the set of coordinates of the N molecules in the microscopic configuration while

U(s N
) is the corresponding intermolecular potential energy. N w and N m are the numbers of water and methane molecules in the configuration.

Molecular Dynamics

Ergodicity

The ergodic hypothesis, which is often invoked in statistical physics, states that an ensemble average, ⟨X⟩, is equal to an average over time, ⟨X⟩ τ ,

⟨X⟩ = ⟨X⟩ τ = lim τ→∞ 1 τ τ 0 X(τ)dτ (2.35)
The above equation indicates that the thermodynamic behavior can be determined from the trajectories generated over a long period τ obtained using molecular dynamics. Using the ergodic hypothesis, molecular dynamics is performed as follows: starting from an initial configuration, after a time corresponding to equilibrium, the system evolves over a long time within a specific ensemble to generate a very long trajectory. This trajectory is used to determine the thermodynamic behavior of the system.

Newton's equation

Let us consider a molecular system of N particles. These N particles have a set of mass

(m 1 , m 2 , • • • , m N ), a set of positions (r 1 (t = 0), r 2 (t = 0), • • • , r N (t = 0)), and a set of velocities (v 1 (t = 0), v 2 (t = 0), • • • , v N (t = 0)) at the time t = 0.
The sampling used to determine a time average derive from the trajectories of these N particles. In classical mechanics, these N particles obey the Newton's equation: .36) where F i (t) is the force acting on the particle i at time t. The force F i (t) derives from the potential energy U(r i j ) arising from the interactions with all the other particles at time t, .37) where r i j (t) = |r i (t) -r j (t)| is the distance between particles i and j. Summation over j indicates that all the other particles interacts with particle i.

m i ri (t) = F i (t), i = 1, 2, • • • , N (2 
F i (t) = - N ∑ j=1 ∇ i U(r i j (t)), i = 1, 2, • • • , N (2 

Integration scheme

In general, Newton's equation of motion does not have an analytical solution (or have a complicated solution). Thus, several integration algorithms have been developed to integrate the equation of motion numerically. The usual integration algorithms include: (1) verlet algorithm; (2) leap-frog algorithm; and (3) velocity-verlet algorithm.

(1) Verlet algorithm. This algorithm updates the new position r(t + δt) at time t + δt using the position r(t) and force F(t) at time t and the position r(tδt) at time

t -δt, r(t + δt) ≈ 2r(t) -r(t -δt) + F(t) m δt 2 v(t) ≈ r(t + δt) -r(t -δt) 2δt (2.38)
The verlet algorithm is straightforward, and requires modest memory storage capacities. However, the algorithm is of moderate precision.

(2) Leap-frog algorithm. In the leap-frog algorithm, the velocity v(t + 0.5δt) at time t + 0.5δt is first computed using the velocity v(t -0.5δt) at time t -0.5δt and the force F(t) at time t. Then, the position r(t + δt) at t + δt is updated using the position r(t) at time t and velocity v(t + 0.5δt) at time t + 0.5δt,

v(t + δt) ≈ v(t -0.5δt) + F(t) m δt r(t + δt) ≈ r(t) + v(t + 0.5δt)δt (2.39)
The velocity v(t) at time t is updated using the average of velocity v(t + 0.5δt) at time t + 0.5δt and velocity v(t -0.5δt) at time t -0.5δt,

v(t) ≈ 1 2 [v(t + 0.5δt) + v(t -0.5δt)] (2.40) 
(3) Velocity-verlet algorithm. The velocity-verlet algorithm updates the position and velocity at the same time. The position r(t + δt) and velocity v(t + δ ) at time t + δt are computed using the position r(t), velocity v(t), and force F(t) at time t but also the force F(t + δt) at time t + δt,

r(t + δt) ≈ r(t) + v(t)δt + 1 2 F(t) m δt 2 v(t + δt) ≈ v(t) + 1 2 
F(t) m + F(t + δt) m δt (2.41)
In the present work, the velocity-verlet algorithm is adopted in all the molecular dynamics simulations.

Thermostat and barostat

In molecular dynamics, the temperature for a molecular system is determined using the ensemble average of the kinetic energy,

3 2 Nk B T = 1 2 N ∑ i m i v 2 i (2.42)
while the pressure is determined from the virial theorem, .43) where ρ = N/V is the number density of particles. The factor of 3 for T and 1/3 for P are for a 3-D system.

P = ρk B T + 1 3V N ∑ i=1 N ∑ j>i F i j • r i j ( 2 
Most experiments are at constant T and/or P. As a result, MD simulations are usually performed in the NPT or NV T ensemble rather than the NV E ensemble. To do so, a thermostat and barostat are used to control T and P in MD simulation. Four primary strategies can be employed,

(1) Stochastic approach. The controlling variable (e.g., velocity for T ) is reassigned to the preset distribution function at each MD step. For example, the Andersen thermostat assigns the velocity of one particle (randomly chosen) to a new velocity from the Maxwellian velocity distribution.

(2) Strong-coupling approach. The controlling variable is rescaled to an exact preset value at each MD step. For example, the isokinetic/Gaussian thermostat rescales the velocity of each particle using the current velocity (i.e., velocity in Newton's equation) multiplied by a rescaling factor, λ = T desired /T current .

(3) Weak-coupling approach. The controlling variable is rescaled towards the desired value. For example, the Berendsen thermostat introduces a coupling parameter, τ, to the external bath using a rescaling factor λ = 1 + δt/τ(T desired /T current -1) to control T .

(4) Extended system dynamics. This approach requires to introduce an additional external degree of freedom that allows controlling T and P. For example, the Nosé-Hoover thermostat corrects the equation of motion using an additional degree of freedom, s. This additional degree of freedom s induces a friction with a "heat bath mass, Q m " and has the potential energy of (N + 1)k B T desired ln(s). The parameter Q m determines the coupling strength and energy flow between the thermostat and the molecular system. Large Q m leads to weak coupling and it is recommended to

use Q m ∼ 6Nk B T .
The different constant temperature algorithms above are given as example to illustrate the strategies when performing MD simulation in a constant temperature ensemble such as the canonical ensemble. The constant pressure algorithm is analogous; the volume V is the controlling variable and the positions of all particles are rescaled as, .44) where λ = 1kδt/3τ(P desired -P current ) is the rescaling factor, τ is a coupling parameter, and k = β T V 2 -⟨V ⟩ 2 / ⟨V ⟩ is the isothermal compressibility that determines the volume fluctuations in MD simulation. In this work, T and P were maintained constant using the Nose-Hoover algorithm.

r i (t + δt) = √ λ r i (t), i = 1, 2, • • • .N (2

Details of molecular dynamics

In the context of the free energy calculations carried out in Chapter 3, Molecular Dynamics (MD) in the isobaric-isothermal ensemble (constant number of molecule N, temperature T , and pressure P) was used to determine (1) the density of methane vapor and ( 2) the volume of zero-occupancy methane hydrate at different temperatures T and pressures P (details of the free energy calculations will be discussed later in this manuscript).

To determine the thermodynamic parameters that are inputs for the Gibbs-Thomson equation in Chapter 4, molecular dynamics in the isobaric-isothermal ensemble (constant number of molecule N, temperature T , and pressure P) was also used to determine the molar volume v and enthalpy of liquid water, h L , and methane hydrate, h H , at bulk phase coexistence conditions: T = T m (P). Molecular dynamics in the canonical ensemble (constant number of molecule N, volume V , and temperature T ) was used to determine the solid-hydrate γ HS and solid-liquid γ LS surface tensions at bulk phase coexistence conditions (details of the surface tension will also be discussed later).

Calculations of the physical and physicochemical properties in Chapter 5 were assessed using molecular dynamics.

(1) For bulk methane hydrate and liquid water, the thermal expansion α P and isothermal compressibility κ T were determined using molecular dynamics in the isobaric-isothermal ensemble (constant number of molecule N, temperature T , and pressure P). ( 2) Molecular dynamics at constant number of molecule N, temperature T and pressure component P zz was used to determine the thermal expansion α P zz and isothermal compressibility κ T (P zz ) for bulk methane hydrate and liquid water (z is the direction normal to the pore surface).

(3) Molecular dynamics in the microcanonical ensemble (constant number of molecule N, volume V , and energy E) was used to determine the thermal conductivity λ of bulk methane hydrate. ( 4) For the confined methane hydrate and liquid water, molecular dynamics were performed in the microcanonical ensemble for porous solid atoms while the canonical ensemble for methane hydrate/liquid water.

All molecular dynamics simulations were performed using LAMMPS [START_REF] Plimpton | Fast parallel algorithms for short-range molecular dynamics[END_REF].

The Velocity-Verlet algorithm [START_REF] Verlet | Computer experiments on classical fluids: I. thermodynamical properties of lennard-jones molecules[END_REF] was used to integrate the equation of motion with a total time of at least 2 ns and a timestep of 1 fs. For the ensembles with constant temperature and/or constant pressure, T , P, and P zz were controlled using Nose-Hoover thermostat/barostat with a typical relaxation time of 2 ps [START_REF] Hoover | Canonical dynamics: Equilibrium phase-space distributions[END_REF][START_REF] Nosé | A unified formulation of the constant temperature molecular dynamics methods[END_REF].

Interaction potentials

The interaction potential, U, determines not only the force in molecular dynamics but also the acceptance probability in Monte Carlo simulations. Generally, U in molecular simulation includes intramolecular (i.e., bonded) interactions, U intra , and intermolecular (i.e., non-bonded) interactions, U inter ,

U total = U intra +U inter (2.45)

Intramolecular potential

The intramolecular potential maintains all atoms together within a molecule so that it describes chemical bonding. Such a strong interaction potential accounts for bond stretching, U bond , bond angle bending, U angle , and torsional rotation, U dihedral ,

U intra = U bond +U angle +U dihedral = 1 2 k l (l -l c ) 2 + 1 2 k θ (θ -θ c ) 2 + k φ [1 + cos(nφ -δ )]
( 2.46) where the first term is for bond stretching with the alteration of the optimized bond length, l c , to a less favorable bond length, l; the second term is for angle bending with the alteration of the optimized bond angle, θ c , to a less favorable bond angle, θ ; and the third term corresponds to the torsional rotation and describes the interaction potential when the number of atoms in the molecule is 4 or more (in this term, n is the periodicity as rotation repeats around 2π, φ is the dihedral angle, and δ is the offset of the function). k l , k θ , and k φ are the force constants. For each potential contribution, any change of the bond length/angle will increase the interaction potential. In this thesis, the contribution from the intramolecular interactions is always zero, U intra = 0, since only rigid water models and a united-atom model for methane are considered.

Intermolecular potential

The intermolecular potential describes non-bonded interactions, i.e., the attractive/repulsive energies among molecules or atomic groups. It usually includes the three following contributions: (1) repulsive interaction originating from the Pauli exclusion principle that prevents the overlap of atoms; (2) electrostatic interactions (attractive or repulsive) between point charges, dipoles, quadrupoles, and multipoles; and (3) attractive/dispersion interactions between atoms due to instantaneous multipoles. In practice, the above three contributions are often represented using the Lennard-Jones (LJ) potential and the Coulombic potential,

U inter = U LJ +U C (2.

47)

Lennard-Jones potential. The Lennard-Jones (LJ) potential between two atoms i and j includes a short-range repulsive contribution (the first term in Eq. ( 2.48)) and an attractive dispersion contribution (the second term in Eq. ( 2.48)): .48) where r i j is the distance between atoms i and j while ε i j and σ i j are the corresponding LJ parameters, i.e., the characteristic energy and distance. The total LJ interaction potentials for the whole system, U LJ , are truncated within a cutoff distance due to the short-range nature of these interactions,

u LJ (r i j ) = 4ε i j σ i j r i j 12 - σ i j r i j 6 ( 2 
U LJ = N ∑ i=1 N ∑ j>i 4ε i j σ i j r i j 12 - σ i j r i j 6 (r ≤ r c ) (2.49)
where N is the number of atoms. The like-atom LJ parameters are presented in Table 2.1 of Section 2. 5. The LJ parameters between unlike atoms are determined using the Lorentz-Berthelot mixing rules, i.e., ε i j = (ε ii ε j j ) 1/2 , σ i j = (σ ii + σ j j )/2.

Coulombic potential and ewald summation. In addition to the above repulsion/dispersion interactions, the intermolecular potential includes the electrostatic interaction between two atoms i and j separated by a distance r i j as described via the coulombic potential, u C (r i j ) = 1 4πε o q i q j r i j (2.50) where q i and q j are the atomic charges on atoms i and j, respectively; ε 0 = 8.8541878176×

10 -12 Fm -1 is the vacuum permittivity. The coulombic potential is a long-range contribution but the usual simulation boxes typically have lengths of the order of nanometers.

This implies that one has to consider several periodic images to estimate accurately the coulombic contribution,

U C = 1 2 N ∑ i=1 q i 1 4πε 0 ∑ n N ∑ j=1 q j |r i j + nL| = 1 2 N ∑ i=1 q i φ (r i ) (2.51)
for a system consisting of N atoms in a cubic box with dimensions

L x = L y = L z = L. n
is a vector of three integer numbers, e.g., n = [0, 0, 1]. φ (r i ) = ∑ j̸ =i (r i ) is the electrical field generated at the position r i of atom i by all the other atoms in the cubic box and their periodic images. Note that the term with i = j for n = [0, 0, 0] should be excluded as it corresponds to self-interaction. In practice, the above equation cannot be considered in real molecular simulations as it would require huge computational cost. The ewald summation technique provides a way to correct for the small size of the simulation box:

(1) the atom i has the atomic charge q i δ (r -r i ) where δ (r -r i ) is the Dirac delta function;

(2) a Gaussian charge distribution (with a width 2/α), ρ G (r) = -q i (α/π) 3/2 exp(-αr 2 ), is added for each charge i to make the electrostatic interaction short-ranged. Such distribution has an integrated charge of the same magnitude but with an opposite sign, -q i ;

(3) a compensating charge distribution is used to cancel out the Gaussian charge introduced in (2).

Locally, the effective charge for the atom i at the position r in the ewald summation reads, 2.52) where ρ i (r) is the total charge distribution at the position vector r. The electrical field, φ i (r), created by this effective charge ρ i (r) at a position r is expressed as, 

ρ i (r) = [q i δ (r -r i ) + ρ G (r)] S -[ρ G (r)] L ( 
φ i (r) = φ S i (r) + φ L i (r) = q i 4πε o r erfc r √ α S + q i 4πε o r erf(r √ α) L ( 2 
U C = 1 2 N ∑ i=1 q i φ S i (r i ) + 1 2 N ∑ i=1 q i φ L i,n̸ =0 (r i ) = 1 2 N ∑ i=1 q i φ S i (r i ) + 1 2 N ∑ i=1 q i φ L i,n (r i ) - 1 2 N ∑ i=1 q i φ L i,n=0 (r i ) = 1 4πε 0 N ∑ i=1 N ∑ j>i q i q j r i j erfc( √ αr i j ) (r i j < r c ) + 1 2L 3 ε 0 ∑ 0<k<k c N ∑ i=1 N ∑ j=1 q i q j k 2 exp ik • (r i -r j ) exp - k 2 4α - α 4π 3/2 ε 0 N ∑ i=1 q 2 i (2.54)
where k is the reciprocal vector chosen so that exp(-ik

• nL) = 1.
The computational accuracy of the ewald summation depends on r c , n c , and α. The ewald summation introduces cutoff errors because of (1) the cutoff r c in the real-space, δU R , and (2) the cutoff k c in the reciprocal-space, δU F ,

δU R ∼ N ∑ i=1 q 2 i r c 2L 3 exp[-(αr c ) 2 ] (αr c ) 2 δU F ∼ N ∑ i=1 q 2 i √ n c αL 2 exp[-(πn c /αL) 2 ] (πn c /αL) 2
(2.55)

Owing to the form exp(-x 2 )/x 2 , these two error contributions have the same accuracy ε (ε = 1.0 × 10 -5 is used in this thesis), i.e., ε = exp(-s 2 )/s 2 . Therefore, α = s/r c and n c = sLα/π (2.56)

Molecular models

Methane was modeled as a single Lennard-Jones (LJ) sphere with the parameters taken from the OPLS-UA forcefield (UA stands for united-atom) [START_REF] Jorgensen | Optimized intermolecular potential functions for liquid hydrocarbons[END_REF][START_REF] Jorgensen | Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids[END_REF].

Water was modeled using the TIP4P model which consists of a rigid model containing K) and in pressure (100 MPa) [START_REF] Aragones | The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase[END_REF][START_REF] Vega | Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/Ice[END_REF]. In contrast, the TIP4P/Ice model accurately reproduces the liquid/solid phase diagram for water but with some deviations in the coexistence lines for some dense ice forms (like Ice VII and Ice VIII) [START_REF] Vega | Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/Ice[END_REF].

Table 2.1 Interaction potential parameters corresponding to the OPLS-UA model for methane, the TIP4P/2005 and TIP4P/Ice models for water, and the atomic model used to describe the porous solid (solid atom). For the two water models, we also indicate the melting temperature T m as predicted using molecular modeling. [START_REF] Noya | Computing the free energy of molecular solids by the Einstein molecule approach: Ices XIII and XIV, hard-dumbbells and a patchy model of proteins[END_REF][START_REF] Vega | Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins[END_REF] are used to determine the pressure-temperature phase diagram of methane hydrate (in all simulations, methane is treated using a coarse-grained model known as the united-atom model). More precisely, the stability conditions for three pressures are determined: P = 1, 10 and 100 atm. For each pressure, in addition to determining the temperature range where methane hydrate is stable, the methane occupancy of the hydrate is also estimated and the non negligible effect of the approximation used to treat methane vapor (exact equation of state as probed using molecular simulation versus thermodynamic integration from an ideal gas) is discussed. While free energy calculations obviously constitute the most rigorous scheme to determine the phase diagram of such complex phases, less demanding strategies is also considered in a second step. First, we consider the direct coexistence method in which one generates an initial configuration where both liquid water and methane hydrate coexist to determine using molecular simulation the final, stable phase for many temperature and pressure conditions. While the direct coexistence method has already been used to investigate the thermodynamic stability of methane hydrate (Conde and Vega, 2010;[START_REF] Michalis | Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology[END_REF], here a novel version is proposed; both water and methane are treated in the Grand Canonical ensemble using Monte Carlo simulations to account for large variations in the number of molecules upon melting and formation of the hydrate. Second, we also consider hyper parallel tempering molecular simulations in which several replicas of the system, taken at different temperatures and chemical potentials, are considered in parallel (following the work by De Pablo and coworkers, these simulations are referred to hyper parallel tempering rather than parallel tempering as the system is treated in the Grand Canonical ensemble) (de Pablo et [START_REF] Ogata | Monte carlo simulation study of crystallization in rapidly supercooled one-component plasmas[END_REF]Yan andde Pablo, 1999, 2000). While

Model ε/k B (K) σ (Å) q H (e) q O (e) d OM (Å) T m (K) TIP4P/
this method has been already used for simulating solid-liquid phase diagrams of confined mixtures [START_REF] Coasne | Freezing of mixtures confined in a slit nanopore[END_REF][START_REF] Coasne | Freezing and melting of binary mixtures confined in a nanopore[END_REF], it is the first time that such a hyper parallel tempering strategy is considered for methane hydrate.

The remainder of this chapter is organized as follows. In Section 3.1, the Monte Carlo algorithm to generate methane hydrate with structure sI is presented. In Section 3.2, general considerations regarding the liquid-hydrate-vapor phase equilibrium is presented.

In Section 3.3, free energy calculations of methane hydrate are first presented to determine the phase diagram of methane hydrate for the two water models selected in this work. In this part, we also determine the chemical potential for each species as well as methane occupancy for the different pressure/temperature coexistence conditions. In Section 3.2, we also present the stability conditions obtained using the direct coexistence method and the hyper parallel tempering method. The results obtained using the different methods above are compared with experimental data as well as data obtained in previous theoretical works. In Section 3.4, some concluding remarks are presented. In contrast, the move is rejected if ∆(∆N c ) > 0. Such moves are attempted until each oxygen atom is linked to two hydrogen atoms (in practice, 20000 moves are performed as it is found sufficient to reach physical configurations for the system size considered in this work).

Molecular structure of methane hydrate

The strategy above, which is illustrated in Figure 3.2, is repeated 20000 times to obtain 20000 possible configurations for methane hydrate. For each configuration, we compute the total dipole moment, p = ∑ N i=1 q i r i , where q i and r i are the charge and position of the ith atom (N is the total number of atoms in the system). Among these 20000 configurations, we eventually select the configuration with the smallest dipole moment (typically, p < 10 -9 D). Finally, the methane molecules (64 methane molecules for the 2 × 2 × 2 primitive cell) are inserted into the hydrate cages. The addition of methane molecules does not change the dipole moment of the methane hydrate structure owing to its non polar nature. 3.2 Liquid-Hydrate-Vapor equilibrium

Phase coexistence conditions

Methane hydrate (H) is a binary mixture of water (w) and methane (m) that coexists with liquid water (L) (or ice at sufficient low T ) and methane vapor (V) in specific temperature

T and pressure P ranges (i.e., for a given P, there exists a T at which the three phases L-H-V coexist -the hydrate phase being stable at low T /high P). At P and T where the three phases coexist, the chemical potentials µ Φ i for each species (i = w, m) in all phases (Φ = L, H, V) are equal. µ Φ i at given T and P varies with the methane and water mole fractions (x m and x w , respectively) so that L-H-V equilibrium depends also on x m and

x w [START_REF] Huo | Methane hydrate nonstoichiometry and phase diagram[END_REF][START_REF] Sloan | Fundamental principles and applications of natural gas hydrates[END_REF]. Since x w = 1x m for a binary system, the L-H-V equilibrium condition can be expressed using x m only:

µ L w (x m , T, P) = µ H w (x m , T, P) = µ V w (x m , T, P) µ L m (x m , T, P) = µ H m (x m , T, P) = µ V m (x m , T, P) (3.1)
Step I -proton disorder: randomly assign a hydrogen to oxygen atoms

Step II -ice rules: Stochastic MC Algorithm

Step IV: insert methane molecules into the cages

Step III -zero dipole moment: repeat steps I and II 20000 times to generate as many configurations and select the configuration with minimum dipole moment Such L-H-V equilibrium can be recast as 2 two-phase coexistence conditions: (1) liquid water-methane hydrate (L-H) and ( 2) methane hydrate-methane vapor (H-V):

µ L w (x m , T, P) = µ H w (x m , T, P) µ H m (x m , T, P) = µ V m (x m , T, P) (3.2) 
As indicated by the experimental Henry constant (x m ∼0.003-0.001 for methane in liquid water at 100 bar for T ranging between 275 and 310 K) [START_REF] Harvey | Semiempirical correlation for henry's constants over large temperature ranges[END_REF][START_REF] Harvey | Correlation of aqueous henry's constants from 0 • C to the critical point[END_REF], the solubility of methane in liquid water is very low so that the effect of methane on the chemical potential of water in the liquid phase can be neglected, i.e.

µ L w (x m ∼ 0, T, P) ∼ µ L w (x m = 0, T, P) [START_REF] Docherty | A potential model for methane in water describing correctly the solubility of the gas and the properties of the methane hydrate[END_REF][START_REF] Jensen | Calculation of liquid water-hydrate-methane vapor phase equilibria from molecular simulations[END_REF]. Similarly, the chemical potential of methane in the vapor can be approximated by that of pure methane vapor, i.e. µ V m (x m ∼ 1, T, P) ∼ µ V m (x m = 1, T, P). With these approximations, the L-H-V coexistence conditions defined in Eqs. (3.2) become

µ L w (x m = 0, T, P) = µ H w (x m , T, P) µ H m (x m , T, P) = µ V m (x m = 1, T, P) (3.3)
The description above shows that determining phase coexistence requires to estimate the four following chemical potentials: µ H m (x m , T, P), µ H w (x m , T, P), µ L w (x m = 0, T, P), and

µ V m (x m = 1, T, P).

Estimation of the different chemical potentials

In the previous section, it was shown that the following chemical potentials are required to estimate rigorously L-H-V phase coexistence: µ H m (x m , T, P), µ H w (x m , T, P), µ L w (x m = 0, T, P), and µ V m (x m = 1, T, P). The next paragraph shows that the two chemical potentials for pure phases, µ L w (x m = 0, T, P) and µ V m (x m = 1, T, P), can be estimated in a straightforward way. In contrast, µ H m (x m , T, P) and µ H w (x m , T, P) will be estimated in a second step using free energy calculations.

µ V m (x m = 1, T, P) and µ L w (x m = 0, T, P). The chemical potential of methane in the vapor phase µ V m (T, P) was computed using its equation of state determined as follows. At a given T , isobaric-isothermal MD simulations are performed to determine the density of methane as a function of pressure, i.e., ρ m (T, P). In parallel, GCMC simulations are performed to determine the relation between the chemical potential and density of methane vapor, i.e., ρ m (µ V m , T ). By inverting these two relationships, one obtains µ V m (T, P) as a function of T and P. Table 3.1 displays µ V m (T, P) for the various T and P considered in this work.

The chemical potential of pure liquid water, µ L w (x m = 0, T, P), at given T and P can be estimated using the Gibbs-Duhem equation:

N L w dµ L w = -S L w dT +V L w dP (3.4)
Table 3.1 Chemical potential, µ V m (x m = 1, T, P), and fugacity, f , of methane vapor for the OPLS-UA methane model. All chemical potentials are normalized to the thermal energy, k B T . Absolute uncertainties for the chemical potentials are smaller than 3 × 10 -4 . p = 1 atm p = 10 atm p = 100 atm T /K f (bar)

µ V m k B T f (bar) µ V m k B T f (bar) µ V m k B T
where S L w , N L w , and V L w are the entropy, number of water molecules, and volume of the liquid phase. If one assumes that the density ρ L w = N L w /V L w of liquid water is constant (incompressible liquid), integration of the Gibbs-Duhem equation at constant temperature T = T 0 leads to:

µ L w (x m = 0, T 0 , P) = µ L w (x m = 0, T 0 , P 0 ) + P -P 0 ρ w (T 0 , P 0 ) (3.5)
It is convenient to take the L-V phase coexistence of water (T 0 , P 0 ) as a reference state since it is well-known for the different water models considered in this work [START_REF] Vega | Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/Ice[END_REF]. In particular, for the temperature and pressure ranges considered here, water vapor along the L-V coexistence line can be treated as an ideal gas so that the chemical potential at coexistence is readily obtained from the bulk saturating vapor pressure µ V w (T 0 , P 0 ) =

µ L w (T 0 , P 0 ) = k B T 0 ln P 0 Λ 3 /k B T 0 (Λ = h/ √ 2πmk B T

is the thermal wavelength with h

Planck constant and m the molecular mass of water). Table 3.2 shows the chemical potential of water as a function of T and P (both the data for TIP4P/2005 and TIP4P/Ice are shown). µ H m (x m , T, P) and µ H w (x m , T, P). While the chemical potentials for pure phases (L and V) are rather easy to assess, µ H m (x m , T, P) and µ H w (x m , T, P) must be computed using a more complex formalism which requires to combine SGMC simulations and free energy calculations. Let us consider a methane hydrate made up of N m methane molecules and N w water molecules at given T and P. For this system, an infinitely small change in the internal energy dU writes:

µ L m k B T f (Pa) µ L m k B T f (Pa) µ L m k B T TIP4P 
dU = T dS -PdV + µ H m dN m + µ H w dN w (3.6)
where V and S are the volume and entropy of the methane hydrate, respectively. Legendre transformation of U with respect to S, V , N w and N m leads to:

U = T S -PV + µ H m N m + µ H w N w (3.7)
By comparing Eq. (3.6) with the derivative of Eq. (3.7), one obtains:

N w dµ H w = -SdT +V dP -N m dµ H m (3.8)
which is the Gibbs-Duhem equation for a binary mixture. Considering that N w is constant in methane hydrate (owing to its crystalline structure), one can integrate Eq. (3.8) at constant T and P to obtain the change ∆µ H w in the chemical potential for water between the zero-occupancy and occupied methane hydrate (i.e., as the methane mole fraction increases from 0 to x m ):

∆µ H w = µ H w (x m ) -µ H w (x m = 0) = - 1 N w µ H m (x m ) µ H m (x m =0)
N m dµ m (3.9)

While N m can be determined as a function of µ H m using SGMC simulations as described in Section 2. 2.3, the later equation shows that determining the chemical potential of water µ H w in the hydrate phase requires to estimate the same chemical potential in the zero-occupancy hydrate phase µ H w (x m = 0). The determination of µ H w (x m = 0) is not straightforward and requires free energy calculations that are reported in the next section.

Phase diagram of methane hydrate

Free energy approach

Einstein molecule method. In Section 3.2, it was shown that determining the condition for L-H-V phase coexistence requires to estimate the chemical potentials for water in the liquid and hydrate phases and for methane in the vapor and hydrate phases: µ L w (x m = 0, T, P), µ H w (x m , T, P), µ V m (x m = 1, T, P) and µ H m (x m , T, P). While the estimation of the chemical potentials for the pure phases µ L w (x m = 0, T, P) and µ V m (x m = 1, T, P) and for methane in the hydrate phase µ H m (x m , T, P) does not raise important technical issues, the estimation of the the chemical potential for water in the hydrate phase µ H w (x m , T, P) is not straightforward. However, as shown at the end of Section 3.2.2, µ H w (x m , T, P) can be estimated from its value in the zero-occupancy hydrate µ H w (x m = 0, T, P) (See Eq. (3.9)).

By noting that the chemical potential is defined as the Gibbs free energy per water molecule µ H w (x m = 0, T, P) = G H w (x m = 0)/N w , the chemical potential of water in the zero-occupancy methane hydrate can be estimated from the Helmholtz free energy A H w (x m = 0):

µ H w (x m = 0) = G H w (x m = 0) N w = A H w (x m = 0) + PV N w (3.10)
where the contribution PV is determined using molecular dynamics in the isobaricisothermal ensemble (NPT ).

In this section, we estimate A H w (x m = 0) using free energy calculations based on the Einstein molecule approach developed by Vega and coworkers [START_REF] Conde | Revisiting the thermodynamic modelling of type I gas-hydroquinone clathrates[END_REF][START_REF] Vega | Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins[END_REF]. This technique, which derives from the Einstein crystal approach, consists 

∆A C*→C = A C -A C* = -k B T ln V /Λ 3 .
The thermodynamic path above allows writing the free energy of the zero-occupancy methane hydrate as

A C = A A + (A A* -A A ) + (A B* -A A* ) + (A C* -A B* ) + (A C -A C* ) = A A + k B T ln V Λ 3 + ∆A 1 + ∆A 2 -k B T ln V Λ 3 = A A + ∆A 1 + ∆A 2 (3.11)
where it used that constraining (step 1) and unconstraining (step 4) the position of one reference water molecule in the thermodynamic path cancel out. While these free energy calculations should not depend on a specific choice for the Einstein molecule (provided a reasonable configuration is used), we followed here the annealing approach suggested by Noya and coworkers [START_REF] Noya | Computing the free energy of molecular solids by the Einstein molecule approach: Ices XIII and XIV, hard-dumbbells and a patchy model of proteins[END_REF]. First, the Einstein molecule is selected with a volume identical to that of real methane hydrate as obtained using isobaric-isothermal MD simulations at P = 1, 10, and 100 atm. Then, a simulated annealing strategy (canonical ensemble) is used to determine the final configuration; the temperature is decreased from T = 180 K to 1 K with temperature steps of 10 K. Eq. (3.11) shows that only the three following contributions must be calculated to determine the free energy of the zerooccupancy methane hydrate: A A , ∆A 1 and ∆A 2 . In the rest of this subsection, we determine these three contributions before gathering all the data to estimate the free energy of the zero-occupancy methane hydrate A C = A H w (x m = 0) and the chemical potentials µ H w and µ H m in the real (i.e., methane occupied) methane hydrate.

+ k B T ln(V / Λ 3 ) + Δ A 1 -k B T ln(V /Λ 3 ) + Δ A 2  A A A A A B A C A C   Figure 3.
3 Thermodynamic path used in the Einstein molecule approach to calculate the free energy of the zero-occupancy methane hydrate, A C . Orange and green spheres are the oxygen and hydrogen atoms of water, respectively. The green box shows the periodic boundary conditions of the simulation cell. The superscript * indicates that the system has one of its water molecules at a fixed position shown by the big pink '+' sign (see text). A A is the free energy of the non-interacting Einstein molecule while A A* is the free energy of the same system with one of its water molecules at a fixed position. A B* is the free energy of the interacting Einstein molecule with one of its water molecules at a fixed position. A C* is the free energy of the zero-occupancy methane hydrate with one of its water molecules at a fixed position while A C is the free energy of the same system without fixing any water molecule positions. Free Energy A A of the non-interacting Einstein molecule. Water molecules in the non-interacting Einstein molecule (A) are attached to their reference lattice position and orientation through harmonic potentials so that its potential energy writes:

U A (R i , φ a,i , φ b,i ) = λ T N ∑ i=1 (R i -R (0) i ) 2 + λ R N ∑ i=1 [(sin 2 φ a,i + ( φ b,i π 2 )] (3.12)
where the sum runs over each molecule i of the N molecules in the system. The first term in Eq. (3.12) corresponds to harmonic potentials acting on each molecule position R i with an equilibrium position defined as the reference position R i ). Following previous works [START_REF] Jensen | Calculation of liquid water-hydrate-methane vapor phase equilibria from molecular simulations[END_REF][START_REF] Vega | Revisiting the frenkel-ladd method to compute the free energy of solids: The einstein molecule approach[END_REF][START_REF] Vega | Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins[END_REF][START_REF] Wierzchowski | Calculation of free energies and chemical potentials for gas hydrates using monte carlo simulations[END_REF], the spring constants in U A (R i , φ a,i , φ b,i ) were selected as λ R /k B T Å 2 = λ T /k B T = 25000 (note that when reasonable choices are made for these parameters, A A is independent of these values as harmonic oscillators only depend on temperature).

The Helmholtz free energy A A of the non-interacting Einstein molecule, which can be computed from its canonical partition function Q A , subdivides into a translation A A,T and a rotation A A,R contributions:

A A Nk B T = - ln Q A N = A A,T Nk B T + A A,R Nk B T (3.13)
where all free energy contributions are normalized to the total thermal energy Nk B T . As shown in Section A.2 of the Appendix A, these two contributions can be expressed as:

A A,T Nk B T = 1 N ln NΛ 3 V + 3 2 1 - 1 N ln Λ 2 λ T k B T π ∼ N→∞ 3 2 ln Λ 2 λ T k B T π (3.14) A A,R Nk B T = -ln 1 0 exp - λ R k B T (1 -x 2 ) dx 1 0 exp - λ R k B T y 2 dy (3.15)
Calculations based on these expressions, including numerical integration of Eq. (3.15), can be found in Section A.2 of the Appendix A and lead to A A,T /(Nk B T ) = 29.43, A E,R /(Nk B T ) = 16.01. These values are fully consistent with those reported by Vega and coworkers for hexagonal ice [START_REF] Vega | Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins[END_REF]. 

∆A 1 Nk B T = - 1 N ln exp - U k B T NV T (3.16)
In fact, U is not small since the intermolecular potential energy in the reference lattice U (0) is not negligible. To overcome this technical problem, one can estimate ∆A 1 through a perturbation approach in which one considers U -U (0) . With this approach, Eq. (3.16) becomes:

∆A 1 Nk B T = U (0) Nk B T - 1 N ln exp - U -U (0) k B T NV T (3.17)
In practice, Monte Carlo simulations in the canonical ensemble (CMC) are used to estimate the canonical average defined in Eq. (3.17). As expected, ∆A 1 (T, P) is negative since the intermolecular potential in the interacting Einstein molecule (which stabilizes the structure) decreases its energy and therefore its free energy. Moreover, upon increasing the temperature, ∆A 1 (T, P) is less significant as the thermal energy and entropy contribution become more important.

Free energy difference ∆A where λ is a coupling parameter. The second equality in the equation above is obtained by noting that U B* = U A* +U and U C* = U. Thermodynamic integration is performed by varying infinitesimally λ from 0 to 1 (so that the hybrid system considered in Eq. (3.18) varies slowly from B* to C*). Within this framework, ∆A 2 can be obtained from the following integration:

∆A 2 = A C * -A B * = -[A(λ = 0) -A(λ = 1)] = - 1 0 dλ ∂U(λ ) ∂ λ NV T λ = - 1 0 dλ ⟨U A* ⟩ NV T λ (3.19)
where ⟨• • • ⟩ NV T λ denotes canonical averages over a system with a hybrid potential energy U(λ ) sampled using Monte Carlo simulations. In practice, integration in the equation above is performed for several λ in the range of [0,1] (the 31-point Gauss-Legendre integration method was adopted). 100 atm (similar data were obtained for other T and P). These results, which are consistent with those reported by [START_REF] Wierzchowski | Calculation of free energies and chemical potentials for gas hydrates using monte carlo simulations[END_REF],

shows that the methane occupancy increases rapidly with µ m and then plateaus as the methane occupancy reaches its maximum. Fifty different chemical potentials µ m were considered in the SGMC simulations to determine the methane occupancy N m as a function of chemical potential µ m (See Figures A.4 and A.5 of the Appendix A). To determine the correction ∆µ H w (x m , T, P) to the water chemical potential due to methane occupancy, the data N m (µ m ) were interpolated using a cubic interpolation procedure to obtain 2.5 × 10 5 points.

Thanks to such finely desecrated data, we could estimate very accurately the contribution to the water chemical potential due to methane occupancy using the simple trapezoidal rule. Such a numerical integration leads to error bars that are at most ±2 × 10 -3 for the correction term. While the calculations above can be considered very accurate, possible size effects due to the finite size of the methane hydrate considered. However, considering that the system size in this work (2 × 2 × 2 methane hydrate unit cell) allowed one to use a large interaction cutoff, finite size effects are believed to be negligible. Table 3.3 Free energy contributions of zero-occupancy methane hydrate, µ H w (x m = 0, T, P). a Absolute error bar is less than 0.008; b The error bar is negligible as it smaller than the last digit shown (high accuracy of the Gauss-Legendre formula); c proton disorder correction is already included here.
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µ V m = µ H m and
(2) µ L w = µ H w . These two equations lead to two solutions for x m in methane hydrate at given T and P; the first solution x m (1) is obtained from the coexistence of pure liquid water (L) with methane hydrate (H) while the second solution x m (2) is obtained from the coexistence of methane hydrate (H) and pure methane vapor (V). For a given P, the temperature corresponding to L-H-V equilibrium is given by x m (1) = x m (2). In contrast, if x m (1) ̸ = x m (2), the set P and T does not correspond to L-H-V equilibrium. In order to determine L-H-V phase coexistence, we plot x m (1) and x m (2) as a function of T in Figure 3.6. we show the data corresponding to P = 1, 10, and 100 atm for the two water models considered in this work. These data show that the L-H-V coexistence condition is determined unambiguously using this strategy. x m ∼ 0.10, 0.13, and 0.14 (these values correspond to N H m ∼ 5.19, 6.63, and 7.56). As

shown in Figure 3.7, in agreement with previous data by Conde et al. (Conde and Vega, 2010), the TIP4P/2005 water model underestimates the melting temperature of methane hydrate by ∼ 20 K (such a shift is consistent with the fact that this model underestimates the crystallization temperature of different ice forms) (Abascal et al., 2005;Abascal and Vega, 2005). In contrast, the TIP4P/Ice water model accurately captures the experimental pressure-temperature phase diagram of methane hydrate [START_REF] Sloan | Fundamental principles and applications of natural gas hydrates[END_REF]. Interestingly, the data for TIP4P/Ice lead to data which are in better agreement with the experimental data than those by Jensen et al. [START_REF] Jensen | Calculation of liquid water-hydrate-methane vapor phase equilibria from molecular simulations[END_REF] although these authors consider the same model and strategy. Such a discrepancy is due to the approximation made by these authors to describe methane vapor; While we consider the exact equation of state for methane as probed by a combination of isobaric-isothermal and Grand Canonical molecular simulations, Jensen et al. determined the chemical potential of methane vapor using thermodynamic integration starting from an ideal gas approximation. The differences between the two sets of results, which were are consistent with differences observed by Conde et al. (Conde and Vega, 2010), necessarily arise from the chemical potential of methane in the vapor phase as all other results are in very good agreement (free energy of the zero-occupancy methane hydrate and water chemical potential in the liquid phase).

Moreover, one could trust that the data obtained using the free calculations in this work are robust because the phase diagram obtained with TIP4P/2005 is consistent with the results by Conde et al. (Conde and Vega, 2010). Moreover, the dissociation temperature obtained using our free energy calculations is also consistent with those obtained using the direct coexistence method and the hyper parallel tempering technique (these data will be discussed later). The important shift between the data obtained in the present work and those obtained by Jensen et al. shows that all approximations made in the free energy calculations are important. The data reported in the present work were also found to be in very good agreement with the recent results obtained by Waage et al. [START_REF] Waage | Phase diagram of methane and carbon dioxide hydrates computed by monte carlo simulations[END_REF].

Direct Coexistence Method in the Grand Canonical Ensemble

Two other strategies, including the direct coexistence method and hyper parallel tempering method, were also adopted to assess phase boundary between methane hydrate and liquid water. For these two strategies, we only use the TIP4P/Ice water model (as this model (Conde and Vega, 2010) using the direct coexistence method. The empty triangles are the free energy calculations for TIP4P/Ice by Jensen et al. [START_REF] Jensen | Calculation of liquid water-hydrate-methane vapor phase equilibria from molecular simulations[END_REF]. The solid line shows the experimental data by [START_REF] Sloan | Fundamental principles and applications of natural gas hydrates[END_REF]. The insert shows a zoomed view of the region shown depicted as a dashed rectangle in the main figure .   was found to better capture the experimental phase diagram). Moreover, to keep the discussion as simple as possible, we only consider the pressure P = 100 atm. With the direct coexistence method, one prepares an initial simulation box in which the two phases coexist (here, the methane hydrate and the liquid phase). Then, several simulations are performed at different T and P to determine the stability domain for each phase; for a given P, the high symmetry phase (hydrate) will be stable below the melting temperature T m while the low symmetry phase (liquid) will be stable above T m . In other words, the region occupied by the liquid transforms into methane hydrate for T < T m while the region occupied by the methane hydrate transforms into liquid for T > T m . In general, such direct coexistence simulations are conducted in the isobaric-isothermal ensemble (NPT ) because phase transitions occurs at constant T and P. As a result, all direct coexistence method strategies applied to methane hydrate have been carried out so far in this ensemble (Conde and Vega, 2010;[START_REF] Michalis | Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology[END_REF][START_REF] Tung | The growth of structure i methane hydrate from molecular dynamics simulations[END_REF]. However, for binary compounds such as methane hydrate, such coexistence simulations can be performed in the Grand Canonical ensemble where the system volume V , temperature T , and chemical potentials for water µ w and methane µ m are constant. We adopted this strategy which has not been considered previously to the best of our knowledge. Considering such an open ensemble in which the numbers of water and methane molecules fluctuate present several advantages over constant number of molecules ensemble (such as NVT or NPT simulations). First, this allows considering small system sizes since the number of methane molecules will adjust upon methane hydrate formation even though the initial number of methane molecules is small. In contrast, with constant N simulations, one has to simulate a large domain of methane molecules that acts as a methane source to fill the water cages upon methane hydrate formation. Moreover, by considering an ensemble where density will change through molecule numbers fluctuations, one avoids difficulties due to inefficient/limited sampling in volume changes. Finally, in GCMC simulations, molecule insertion/deletions are attempted randomly, homogeneously throughout the simulation box so that difficulties inherent to slow diffusion between the methane hydrate and liquid/fluid phases are overcome.

For such complex systems, DCM should be used with caution because of the initial coexisting system can be chosen in different ways. According to Gibbs' phase rule, in the temperature/pressure range where methane hydrate is stable, it coexists with the liquid (water-rich) and vapor (methane-rich) phases. As a result, initial phase coexistence in DCM can be chosen as a system made of two of these three phases or three phases.

In the present work, we chose to consider phase coexistence between the liquid phase and methane hydrate; while this corresponds to an approximation, the use of the Grand Canonical ensemble ensures that three-phase coexistence is simulated in fact; because the system is in equilibrium with an infinite reservoir of bulk molecules at chemical potentials corresponding to those of the water-rich liquid and methane-rich vapor, DCM simulations in this specific ensemble are equivalent to simulating a system with three-phase coexistence.

In order to prepare the initial system (i.e., methane hydrate coexisting with liquid water), several strategies are possible. we started from a methane hydrate phase having the following dimensions: L x = L y = L z = 2.3754 nm. Periodic boundary conditions were applied in each direction to avoid finite size effects. we started from a hydrate phase equilibrated at low T (it should be noted that the pressure was set to 100 atm). Then, molecules located in the region z < 0 were frozen while the rest of the simulation box was equilibrated at high temperature T to melt the hydrate located in the region z > 0. In so doing, one obtains a coexisting system made of methane hydrate in equilibrium with the liquid phase (Figure 3.8(a)). Obviously, this system is maintained at coexistence condition in an unphysical fashion and, depending on the temperature used in subsequent GCMC simulations, the system will melt or form hydrate (unless in the very unlikely event that the chosen temperature and chemical potentials exactly correspond to phase coexistence).

From a practical point of view, for P = 100 atm, we performed M = 18 simulations with temperatures in the range T = 180-350 K (the temperature interval is 10 K). The DCM simulations in the Grand Canonical ensemble at a given pressure and temperature require to specify chemical potentials for water and methane. In the present work, as described in Section 3. 2.2, the chemical potential for water in the liquid phase was chosen equal to that of pure liquid water while that the chemical potential for methane in the vapor phase was chosen equal to that or pure methane vapor. for different temperatures are shown: T = 260, 270, 280, 290, and 300 K. On the one hand, at high temperature, T ≥ 290 K, the system melts as evidenced by the decrease in the methane mole fraction x m . As expected, x m ∼ 0 (x w ∼ 1) in the liquid phase, which further justifies our choice in the L-H-V equilibrium condition to assume that µ L w (x m , T, P) ∼ µ L w (x m = 0, T, P). On the other hand, at low temperature, T ≤ 280 K, the methane mole fraction increases (while x w decreases) upon methane hydrate formation.

While melting does not suffer from ambiguity since all methane hydrate is transformed into liquid, it should be emphasized that hydrate formation was found to be inefficient; due to the low probability to nucleate hydrate cages (inherent to their very small entropy), it was observed that formation of the hydrate is incomplete. As a result, despite the coexistence with an already formed hydrate, many long GCMC runs (about 7-8 ×10 8 MC moves for a system size of the order of ∼ 10 2 -10 3 molecules) were not sufficient to lead to perfect methane hydrates. Despite this drawback of the direct coexistence method, the results above show that the equilibrium temperature for hydrate/liquid coexistence is comprised between 280 K and 290 K. As can be seen in Figure 3.7, this coexistence temperature is in very good agreement with the results from the free energy calculations T m = 287 K. This value is also consistent with the experimental data as well as with other theoretical results obtained for the same water/methane molecular models. 

Hyper Parallel Tempering

In the hyper parallel tempering method [START_REF] Coasne | Freezing of mixtures confined in a slit nanopore[END_REF][START_REF] Coasne | Freezing and melting of binary mixtures confined in a nanopore[END_REF][START_REF] Czwartos | Freezing and melting of azeotropic mixtures confined in nanopores: Experiment and molecular simulation[END_REF]Yan andde Pablo, 1999, 2000), which is an extended version of the parallel tempering method [START_REF] Frenkel | Understanding Molecular Simulation: From Algorithms to Applications[END_REF], several replicas of the same system are considered in parallel in to circumvent the difficulty to form/dissociate methane hydrate (large free energy barrier between the liquid and solid states 

P acc (α 1 , β 2 → α 2 , β 1 ) = min    1, T 2 T 1 3(N β m +N β w -N α m -N α m )/2 exp 1 k B T 2 - 1 k B T 1 U β -U α ∏ i=m,w exp µ 1 i k B T 1 - µ 2 i k B T 2 N β i -N α i (3.21)
In this work, the different replicas were considered at temperatures and chemical potentials corresponding to a pressure P = 100 atm. The temperature of the different replicas ranges from 283 to 298 K with a temperature difference between two successive replicas of ∆T = 1 K. In theory, hyper parallel tempering should provide a rigorous description of methane hydrate formation/dissociation as a function of temperature provided that both configurations corresponding to the liquid phase and the methane hydrate phase are considered in the initial replicas; for long enough simulations, swapping between the liquid and solid phases at different temperatures should lead to an accurate estimate of the phase transition temperature T m with liquid configurations for T > T m and methane hydrate configurations for T < T m . However, in practice, very low swapping probabilities were observed between liquid and methane hydrate configurations due to the large differences in water and methane molecule numbers in these two states (as can be seen in the acceptance probability in the equation above, the difference in the number of molecules is an important parameter). In this work, we found that this issue can be overcome by considering in the initial replicas composite configurations corresponding to mixtures of the liquid and hydrate phases (in the spirit of the mixture considered as the initial configuration for the direct coexistence method). As shown in Figure 3.9(a), in addition to pure liquid and hydrate configurations, several configurations corresponding to methane hydrate regions coexisting with the liquid phase were considered (these mixtures correspond to different hydrate volume fractions ranging from 0.25 to 0.75). The total number of methane and water molecules in each replica is of the order of ∼ 10 2 -10 3 . Equilibration was reached after 9 × 10 8 Monte Carlo steps and water and methane mole fractions were averaged over another 1 × 10 8 Monte Carlo steps. temperature for P = 100 atm is consistent with the values obtained using free energy calculations and the direct coexistence method. These results show that such a hyper parallel tempering technique improves the sampling of phase space and allows determining accurately the melting temperature of complex, non stoichiometric systems such as methane hydrates (by preventing the system from being 'trapped' in local metastable states).

Conclusion

Using different molecular simulation strategies, the pressure-temperature phase diagram for bulk methane hydrate is determined. For two different water models, in this chapter, While free energy techniques are obviously robust strategies to estimate the phase diagram of such complex, non stoichiometric compounds, we also considered two direct molecular simulations approaches. First, we extended the direct coexistence method to treat both methane and water in the Grand Canonical ensemble; this is an important aspect as it allows taking into account large fluctuations in the number of methane and water molecules upon hydrate dissociation/formation. This allows considering calculations with the direct coexistence method using system sizes that remains small (otherwise, large methane regions in the system have to be considered to act as methane molecules source/sink upon melting/crystallization of the hydrate). In addition to the direct coexistence method extended to the grand canonical ensemble, we also considered hyper parallel tempering which consists of considering several replicas of the system at different temperatures and chemical potentials -the system being therefore treated in the grand canonical ensemble to allow for large changes in its composition upon hydrate formation/dissociation.

Despite the reduced accuracy/robustness compared to more rigorous approaches based on free energy techniques, both the direct coexistence method and hyper parallel tempering technique were found to lead to reasonable predictions for phase coexistence. However, while the results reported in this work shows that these two direct techniques can be used to estimate stability conditions for methane hydrate, we emphasizes that several refinements and "tricks" were needed to lead to sufficient sampling of the phase space and accurate phase coexistence predictions. First, as mentioned above, both the direct coexistence and hyper parallel techniques were used with water and methane treated in the Grand Canonical ensemble; we found that this was needed to efficiently sample large molecule number fluctuations upon hydrate formation/dissociation. Moreover, in the case of hyper parallel tempering, we also found that the initial replicas (i.e. at different temperatures and chemical potentials) must include composite systems where both the hydrate and liquid phases coexist. Such coexisting states allow sufficient swapping along the hyper parallel tempering simulation between the low and high temperature replicas.

Otherwise, considering the Metropolis acceptance probability in this hyper grand canonical ensemble given in Eq. (3.21), the large difference in the numbers of water and methane molecules between the liquid and hydrate phases lead to very low swapping probabilities (too low to allow efficient sampling). As a result, while our data show that accurate hydrate stability conditions can be estimated in principle using hyper parallel tempering, the latter drawback constitutes an important limitation to this technique. Finally, in addition to being more robust than the direct coexistence and hyper parallel tempering methods, free energy calculations provide accurate estimates for the chemical potentials for water and methane in the hydrate phase, including their values at phase coexistence (in contrast, with the two direct techniques, one has to estimate in an approximate fashion the chemical potentials that lead to phase equilibrium). This is a key asset of the free energy technique over direct methods since such chemical potentials at phase coexistence will be used in subsequent work on the stability of methane hydrate confined in porous media (which are in equilibrium with an external methane and water mixture or hydrate imposing its chemical potentials at constant temperature).

Formation and Dissociation of Confined Methane Hydrate

This chapter aims at exploring the phase stability and formation/dissociation kinetics of methane hydrate confined at the nanoscale. First, the direct coexistence method (DCM) within the framework of Grand Canonical Monte Carlo (GCMC) simulations is used to assess liquid-hydrate-vapor (L-H-V) phase equilibrium of sI methane hydrate confined in a porous solid with different pore widths. Then, the Gibbs-Thomson equation is derived to describe the shift in the phase stability of the confined methane hydrate. In this work, an extended formula of the Gibbs-Thomson equation which relaxes the two following important hypotheses, is redrived: (1) the molar volumes of methane hydrate (v H ) and liquid water (v L ) are equal, i.e., v L = v H (v = 1/ρ where ρ is number density) and ( 2)

Young's equation is used to estimate the surface tension between methane hydrate and liquid water (γ LH ), γ LSγ HS = γ LH cos θ where γ HS is the surface tension between methane hydrate and the substrate surface and γ LS is the surface tension between liquid water and the substrate surface. Moreover, a contact angle θ ∼ 180 • is used in the Gibbs-Thomson equation. These hypotheses are crude assumptions to assess the validity of the Gibbs-Thomson equation. First, the difference between the molar volumes of methane hydrate and liquid water is not small. Second, the validity of Young's equation is unclear for a small pore. Our work does not rely on these hypotheses. To assess the validity of the Gibbs-Thomson equation, we compute the hydrate-solid γ HS and liquid-solid γ LS surface tensions (here, "solid" refers to the pore walls), the molar volume of bulk (i.e., non-confined) methane hydrate and liquid water, and the molar enthaply of melting ∆h m from methane hydrate to liquid water using molecular dynamics (MD). Our findings

show that confinement at the nanoscale level has a negative effect on the L-H-V phase equilibrium (i.e., phase equilibrium is shifted towards lower temperature). The shift in the phase coexistence temperature relative to the bulk, ∆T m /T m , is found to linearly depend on the reciprocal pore size 1/D p . Our molecular simulations results from the DCM technique are found to be in quantitative agreement with the derived Gibbs-Thomson equation. In addition, the effects of the surface wettablity on the L-H-V phase equilibrium is studied by modifying the LJ parameters (i.e., tuning the wetting properties of the porous medium).

Finally, free energy calculations using the umbrella sampling technique is used to show that confinement decreases the free energy barrier, ∆G HL , between methane hydrate and liquid water.

The remainder of this chapter is organized as follows. In Section 4.1, we present the computational details: molecular model of porous solid, determination of the solidliquid and solid-hydrate surface tensions, and free energy calculations using the umbrella sampling technique. In Section 4.2, the phase stability of confined methane hydrate at a given pressure (P = 100 atm) is first presented using the direct coexistence method (DCM) (see Section 4.2.1). Then, we derive the Gibbs-Thomson equation to describe L-H-V phase equilibrium in confinement (see Section 4.2.2). In this part, we also present the effects of surface wettability on the phase stability of confined methane hydrate. In addition, free energy calculations using the umbrella sampling technique are performed to determine the formation/dissociation kinetics of bulk and confined methane hydrate (see Section 4.2.3). All results are compared with previous experimental data as well as data obtained in previous theoretical works. Section 4.3 presents some concluding remarks.

Computational details

Molecular models

Porous solid. To study confinement effects, we consider phase coexistence between methane hydrate and liquid water located between two parallel solid walls as shown in Figure 4.1. We use here a hypothetical model for porous solids. The dimensions of the system in the xand y-directions are L x = L y = 2.3754 nm (corresponding to 2 × 2 unit cells of methane hydrate with the size of each unit cell being u = 1.1877 nm). This

x-y-plane (i.e., L x = L y = 2.3754 nm) is partitioned into 11 × 11 small squares, and solid atoms are located at the vertex and center of these small squares so that a total number of 242 solid atoms are present in one solid layer. The distance separating solid atom pairs is 0.1527 nm which is close to the typical chemical C-C bond length, ∼0.142 nm, in most porous carbonaceous materials. We use two solid walls: one at the top and one at the bottom to form a slit pore. Each pore wall consists of four layers defined above with an interlayer distance D l = 0.216 nm. In this work, we consider pores with the following widths D p = 1.6677 nm, 2.8554 nm, 5.2308 nm, and 7.6062 nm. The direct coexistence method is used to determine the melting temperature as a function of D p at a given pressure. For the determination of the surface tensions between methane hydrate and the solid wall, γ HS , and between liquid water and the solid wall, γ LS , the pore with D p = 9.9816 nm is used. The final dimensions are L x = L y = 2.3754 nm, and L z = 3.1793 nm, 4.3670 nm, 6.7424 nm, 9.1178 nm, and 11.4936 nm (corresponding to D p = 1.6677 nm, 2.8554 nm, 5.2308 nm, 7.6062 nm, and 9.9816 nm, respectively). These exact values were used because they correspond to the multiple integer of the unit cell (u = 1.1877 nm) of bulk methane hydrate. All the solid atoms are maintained frozen and all the interactions between solid atom pairs are excluded in all our molecular simulations.

Surface tensions

The surface tension between a phase α (e.g., methane hydrate or liquid water in this work) and a phase β (e.g., porous solid in this work), γ αβ , can be determined using the Kirkwood and Buff approach [START_REF] Kirkwood | The statistical mechanical theory of surface tension[END_REF]. Figure 4.2 shows the scheme used in this approach to determine γ αβ . For a molecular system with a planar interface (perpendicular to the z axis) between phases α and β , a small increase dA in the surface area A in the x-y-plane leads to a small decrease dz in the size L z if we maintain the volume L z A constant, i.e., L z dA = -(A + dA)dz. The surface tension γ αβ is defined as,

γ αβ = 1 2 L z 0 (P N (z) -P * T (z)) dz = L z 2 (⟨P N ⟩ -⟨P * T ⟩) (4.1)
where the factor 1/2 is due to the fact that there are two interfaces between phase α and phase β . P N (z) = P zz (z) and P T (z) = 1 2 (P xx (z) + P yy (z)) are the pressure components normal and parallel to the interface. The meaning of the asterisk will be discussed below. The red and white spheres are the oxygen and hydrogen atoms of water, respectively. The gray spheres are the methane molecules which are inside the hydrogen-bonded cages formed by water molecules. The yellow spheres are the solid atoms in the pore walls. The two component system is confined in a pore with a width D p made of layers of solid particles distributed according to a square structure. Each pore surface is made of 4 layers separated by a distance D l = 0.2159 nm so that the total pore wall thickness is 0.7558 nm. Inside the porosity, methane hydrate is located in the region y < 0 (left side) and liquid water in the region y > 0 (right side). In this specific configuration, the pore size is D p = 2.8554 nm which corresponds to 2 × 2 × 2 unit cells of bulk sI methane hydrate (the lattice parameter of methane hydrate is u = 1.1877 nm). Periodic boundary conditions are used along the x, y, and z directions. The dimensions of the simulation box (defined by the dashed lines) are L x = L y = 2.3754 nm and L z = 4.3670 nm.

P dd (z) with d = x, y or z are the diagonal elements of the pressure tensor at a position z.

⟨P N ⟩ and ⟨P T ⟩ in the above equation are macroscopic components of the pressure tensor defined in terms of a volume average. According to the work by Nijmeijer et al. [START_REF] Nijmeijer | Wetting and drying of an inert wall by a fluid in a molecular-dynamics simulation[END_REF], for an interface involving a frozen solid phase, we include interactions with the frozen solid atoms when computing ⟨P N ⟩ = ⟨P zz ⟩ but we do not include such interactions in the calculation of ⟨P * T ⟩ = ⟨P xx ⟩ + P yy /2. The asterisk in ⟨P * T ⟩ indicates that such interactions are omitted. In case of fluid-fluid interfaces, such interactions must be included. 

Umbrella sampling

In order to obtain the free energy barrier between methane hydrate and liquid water, ∆G barr , we used the umbrella sampling technique to determine the free energy G as a function of the local bond order parameter Q 6 . Both bulk and confined systems were considered (D p = 2.8554 nm was considered for the latter). The umbrella sampling technique is a robust method in molecular simulation to study the thermodynamics of rare events. As mentioned in Chapter 1, the local bond order parameter Q 6 , which is found to be a suitable order parameter to identify liquid water and methane hydrate [START_REF] Nguyen | Identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in simulations: the CHILL+ algorithm[END_REF][START_REF] Radhakrishnan | A new approach for studying nucleation phenomena using molecular simulations: Application to CO 2 hydrate clathrates[END_REF][START_REF] Steinhardt | Bond-orientational order in liquids and glasses[END_REF], is defined for a given oxygen atom O i as follows:

Q 6 (i) = 4π 13 6 ∑ m=-6 | Q 6m (i) | 2 1/2 (4.2)
where m ∈ [-6, 6] and Q 6m (i) is a set of complex vectors:

Q 6m (i) = 1 N b (i) N b (i) ∑ j=1 Y 6m (r i j ) (4.
3)

The summation from j = 1 to N b (i) in Eq. ( 4.3) runs over all the nearest neighbor oxygen atoms N b (i) for O i . Y lm (r i j ) are the spherical harmonics which depend on the position vector r i j .

In the umbrella sampling technique, considering methane hydrate as the initial configuration, we force it to transform into liquid water by using a biasing potential, w(Q 6 ), that depends on Q 6 . By determining the probability distribution, P B (Q 6 ), of Q 6 in such biased simulations, the unbiased free energy profile, G(Q 6 ), can be obtained by subtracting the biasing potential contribution, w(Q 6 ), from the biased free energy profile,

G B (Q 6 ) = -k B T ln P B (Q 6 ) , G(Q 6 )/k B T = -ln P B (Q 6 ) -w(Q 6 )/k B T (4.4) 
where k B T is the thermal energy. To sample the entire domain of Q 6 (0.300-0.6), we run N windows = 61 windows with a spacing of 0.05 (i.e., N windows GCMC simulations with different references

Q (0)
6,i ). In practice, this means that for the i-th window, we use the following biasing harmonic potential w i (Q 6 ),

w i (Q 6 ) = 1 2 K Q 6 -Q (0) 6,i 2 (4.5) 
where K = 5 × 10 7 K is the force constant and

Q (0)
6,i is the center of the biasing harmonic potential for the i-th window. We use the weighted average of the unbiased probabilities of each window P U i to determine the full unbiased probability distribution P U ,

P U (Q) = N windows ∑ i N i P U i (Q 6 ) exp [-(w i (Q 6 ) -G i ) /k B T ] (4.6) 
where P U i is the unbiased probability, N i is the number of samples, and G i is the unbiased free energy,

exp (-G i /k B T ) = dQ 6 P U (Q 6 ) exp (-w i (Q 6 )/k B T ) (4.7) 
By starting from Eq. ( 4.6) with G i = 0, we iterate between Eqs. (4.7) and ( 4.6) until a convergence tolerance of 10 -3 is reached in a self-consistent manner for G i /k B T . In this work, the probability distributions were analyzed using the weighted histogram analysis method (WHAM) to solve Eqs. (4.7) and ( 4.6) in a self-consistent manner. Using the direct coexistence method (DCM), we reproduced the phase diagram of bulk methane hydrate as discussed in Chapter 3. In the present chapter, we apply the DCM technique in the framework of GCMC simulations to study the effect of confinement on L-H-V phase equilibrium at a given pressure. As described previously, the initial configuration in DCM is chosen as a coexisting phase consisting of liquid water and methane hydrate confined between two parallel solid walls. The use of the Grand Canonical ensemble ensures that three-phase (L-H-V) coexistence in the porous solid is simulated in fact; because the system is in equilibrium with an infinite reservoir of bulk molecules at chemical potentials corresponding to those of the water-rich liquid and methane-rich vapor, DCM simulations in this specific ensemble are equivalent to simulating a system with threephase coexistence. The melting temperature, T pore m , of confined methane hydrate in four different pore widths are determined: D p = 1.6677 nm, 2.8554 nm, 5.2308 nm, and 7.6062 nm. The preparation of these initial configurations are described in the previous section. In all these simulations, periodic boundary conditions were applied in each direction to avoid finite size effects. Figure 4.3 (color online) Pore size, D p , effect on the melting temperature, T pore m , of confined methane hydrate/liquid water using the direct coexistence method: methane (x m , left), and water (x w , right) mole fractions for D p = 2.8554 nm during the different GCMC simulation runs at T = 230 K (black), 240 K (blue), 250 K (purple), 260 K (red), and 270 K (orange). The x-axis, which indicates progress along the GCMC simulation, is expressed as a number of attempted MC moves where one move is a molecule translation, rotation, insertion or deletion.

In practice, for each pore size, we performed M = 18 simulations at P = 100 atm with temperatures in the range T = 180-350 K (the temperature interval is 10 K). Our DCM simulations in the Grand Canonical ensemble at given pressure and temperature require to specify chemical potentials for water µ w and methane µ m . µ w and µ m obtained in Chapter 3 were used for this purpose. Figure 4.3 shows the methane x m and water x w mole fractions of the coexisting system confined in the nanoporous solid with D p = 2.8554 nm in the course of GCMC simulations (i.e., the number of MC moves performed with one MC move corresponding to a molecule translation, rotation, insertion or creation). Results for different temperatures are shown: T = 230 K, 240 K, 250 K, 260 K, and 270 K. On the one hand, at high temperature, T ≥ 260 K, the system melts as evidenced by the decrease in the methane mole fraction x m . As expected, x m ∼ 0 (x w ∼ 1) in the liquid phase. On the other hand, at low temperature, T ≤ 250 K, the methane mole fraction increases (while x w decreases) upon methane hydrate formation. While melting does not suffer from ambiguity since all methane hydrate is transformed into liquid water, hydrate formation was found to be inefficient; due to the low probability to nucleate hydrate cages (inherent to their very small entropy), it was observed that formation of the hydrate is incomplete. Such slow transformation kinetics will be illustrated in a following section Using free energy calculations with the umbrella sampling technique. As a result, despite the coexistence with an already formed hydrate, many GCMC runs (about the order of ∼ 10 5 -10 6 MC moves per molecule) were not sufficient to lead to perfect methane hydrates. Despite this drawback, the DCM technique above shows that the L-H-V equilibrium temperature for hydrate/liquid coexistence is T pore m = 255 ± 5 K for D p = 2.8554 nm. In constrast, Table 4.1 Determination of melting temperature T m of bulk and confined methane hydrate at pressure P using the direct coexistence method. L x and L y are the dimensions of the molecular system in the xand y-directions, respectively. D p is the pore size. * is for the melting temperature of bulk methane hydrate, T bulk m , as reported in Chapter 3. Finite size effects from (1) the vacuum layer and (2) the molecular system size were also considered in the present work. A vacuum layer (with a size of D v ) is usually used on each side of the porous solid to remove the interactions with the periodic images in the z-direction. In this work, two different sizes D v = 0.0000 nm and 2.0000 nm were Figure 4.4 (color online) Melting temperature, T pore m , of confined methane hydrate/liquid water for different pore widths: D p = 1.6677 nm (left panels), 5.2308 nm (center panels), and 7.6062 nm (right panels) as obtained using the direct coexistence method. The methane (x m , top panels) and water (x w , bottom panels) mole fractions during the different GCMC simulation runs are shown: T for each pore size is indicated using different colors (see figure legend). The x-axis, which indicates progress along the GCMC simulation, is expressed as a number of attempted MC moves where one move is a molecule translation, rotation, insertion or deletion. T pore m of confined methane hydrate for different D p are summarized in Table 4.1. For bulk methane hydrate, we reported T bulk m = 285 ± 5 K at P = 100 atm using the direct coexistence method in Chapter 3. comparing with the melting temperature obtained using the small systems (see Figures 4.3 and 4.4), the finite size effect on melting temperature is 10 K for each pore size. However, with respect to bulk methane hydrate, the shifts in the melting temperature of confined system were found to be consistent between the big and small systems (as shown in 
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Gibbs-Thomson equation

To describe the confinement effect on the melting point T pore m , we revisited the Gibbs-Thomson equation. To relax the two following hypotheses: (1) the molar volumes in methane hydrate and liquid water are equal v L = v H and (2) Young's equation is used to compute the surface tension difference γ LSγ HS = γ LH cos θ where γ LS , γ HS , and γ LH are the surface tensions of the liquid water-substrate interface, the methane hydrate-substrate interface, and liquid water-methane hydrate interface. In this work, we did not rely on these hypotheses.

Ω H = P H V + γ HS A γ HS A D p Ω H = P H V + γ LS A γ LS Figure 4
.5 (color online) Gibbs-Thomson equation for L-H-V equilibrium upon confinement: methane hydrate (H, red region) and liquid water (L, blue region) are confined in a slit pore of a width D p formed by two parallel substrates (S, the gray regions). Ω H and P H are the grand potential and pressure of methane hydrate while Ω L and P L are the grand potential and pressure of liquid water. γ LS is the surface tension of liquid water-substrate (LS) interface while γ HS is the surface tension of methane hydrate-substrate (HS) interface. V = D p A is the pore volume where A is the surface area.

As shown in for confined methane hydrate Ω H and confined liquid water Ω L are defined as,

Ω H = -P H V + γ HS A Ω L = -P L V + γ LS A (4.8) 
where P H is the pressure of methane hydrate while P L is the pressure of liquid water. γ LS is the surface tension of liquid water-substrate (LS) interface while γ HS is the surface tension of methane hydrate-substrate (HS) interface. V = D p A is the pore volume where A is the surface area. At L-H-V equilibrium,1 we have,

Ω L = Ω H (4.9)
In details,

-P H V + 2γ HS A = -P L V + 2γ LS A (4.10) 
Using V = D p A, we obtain the Laplace equation:

P L -P H = 2 (γ LS -γ HS ) 1 D p (4.11) 
We assume that: (a) the confined liquid water at a pressure P L has the same properties as the bulk liquid water; and (b) the confined methane hydrate at a pressure P H has the same properties as the bulk methane hydrate. To determine the pressures P H and P L at (µ w , µ m , T ), we use a first-order Taylor expansion of the pressure P around a reference point (µ w,0 , µ m,0 , T 0 ): .12) where P = P(µ w , µ m , T ) and P 0 = P(µ w,0 , µ m,0 , T 0 ) is the pressure at the reference point (µ w,0 , µ m,0 , T 0 ). s 0 /v 0 = (∂ P/∂ T ) µ w,0 ,µ m,0 ,T 0 is the molar entropy s 0 (note that s is the total entropy which includes both methane and water contributions) devided by the molar volume v 0 at (µ w,0 , µ m,0 , T 0 ). n i,0 /v 0 = (∂ P/∂ µ i ) T 0 is the number n i,0 of molecules of type i (i = m, w) devided by the molar volume v 0 at (µ w,0 , µ m,0 , T 0 ). Using Eq. ( 4.12), we have for P H and P L :

P ∼ P 0 + (T -T 0 ) ∂ P ∂ T µ w,0 ,µ m,0 + ∑ i=m,w (µ i -µ i,0 ) ∂ P ∂ µ i T ∼ P 0 + (T -T 0 ) s 0 v 0 + ∑ i=m,w (µ i -µ i,0 ) n i,0 v 0 ( 4 
P H = P H 0 + (T -T 0 ) s H 0 v H 0 + ∑ i=m,w µ H i -µ H i,0 n H i,0 v H 0 P L = P L 0 + (T -T 0 ) s L 0 v L 0 + ∑ i=m,w µ L i -µ L i,0 n L i,0 v L 0 (4.13)
We select the melting point (T bulk m , P 0 ) of bulk methane hydrate as the reference point:

(µ H m,0 = µ L m,0 = µ m,0 , µ H w,0 = µ L w,0 = µ w,0 , T 0 = T bulk m , P H 0 = P L 0 = P 0 ) where µ Φ i,0
is the chemical potential of species i in phases Φ (Φ = H for hydrate and L for liquid) at (T bulk m , P 0 ). Using Eq. ( 4.13), we determine the pressures P H and P L at T pore m : 

P H = P 0 + 1 v H 0 ∆T pore m s H 0 + ∑ i=m,w ∆µ H i n H i,0 P L = P 0 + 1 v L 0 ∆T pore m s L 0 + ∑ i=m,w ∆µ L i n L i,0 (4.14 
Φ i = µ Φ i -µ Φ i,0
is the difference of chemical potential of species i at T pore m and T bulk m for phases Φ. We can replace ∆µ Φ i by ∆µ i because that

µ H i = µ L i = µ i at T pore m and µ H i,0 = µ L i,0 = µ i,0 at T bulk m .
Using Eqs. (4.14), we estimate the pressure difference: 4.15) where ∆s m,0 = s L m,0s H m,0 and ∆h m,0 = ∆s m,0 /T bulk m are the molar entropy and enthalpy of melting from methane hydrate to liquid water (plus methane vapor) at T bulk m . Using

v H 0 P H -P 0 -v L 0 P L -P 0 = -∆T pore m ∆s m,0 + ∑ i=m,w ∆µ i n H i,0 -n L i,0 = - ∆T pore m T pore m ∆h m,0 + ∑ i=m,w ∆µ i n H i,0 -n L i,0 ( 
Eq. ( 4.15), the shift of melting point reads:

∆T pore m T bulk m = - v H 0 ∆h m,0 P H -P L + 1 - v L 0 v H 0 P L -P 0 + 1 v H 0 ∑ i=m,w ∆µ i n L i,0 -n H i,0 (4.16) 
Using the Laplace equation in Eq. ( 4.11), Eq. ( 4.16) is rewritten as, 4.17) leads to the classical formulation of the Gibbs-Thomson equation:

∆T pore m T bulk m = v H 0 ∆h m,0 2 (γ LS -γ HS ) 1 D p + v L 0 v H 0 -1 P L -P 0 - 1 v H 0 ∑ i=m,w ∆µ i n L i,0 -n H i,0 (4.17 
∆T pore m T bulk m = - 2γ LH v H 0 ∆h m,0 1 D p (4.18)
In what precedes, we rederived the Gibbs-Thomson equation under the formula given in Eq. ( 4.17 γ HS )v H /∆h m , describes the proportionality coefficient. In the next paragraph, we will determine the following parameters using molecular simulation to check the validity of Eq. ( 4.17): γ HS , γ LS , v H , v L , ∆h m at (T bulk m , P). Molar volume of methane hydrate, v H , molar volume of liquid water, v L , and molar enthalpy of melting from methane hydrate to liquid water (+ methane vapor), ∆h m . ∆h m is defined by subtracting the enthalpy of liquid water and the enthalpy of methane vapor from the enthalpy of methane hydrate using the appropriate stoichiometry:

∆h m = h L w + h V m -h H m,w .
In practice, the contribution of methane vapor is ignored, is comparable to that reported by [START_REF] Jacobson | Can amorphous nuclei grow crystalline clathrates? the size and crystallinity of critical clathrate nuclei[END_REF]. For the sake of clarity, these values are summarized in Table 4.2. These thermodynamic parameters for an empty hydrate (i.e., the framework of sI methane hydrate obtained after removing methane molecules) were also computed for comparison (see Figure 4.6).

∆h m = h L w -h H m,
Surface tensions between the solid wall and methane hydrate, γ HS , or liquid water, γ LS . The Gibbs-Thomson equation as defined in Eq. ( 4.17) requires to determine the two following surface tensions: γ HS and γ LS . Here, we use the Kirkwood-Buff approach to determine γ HS and γ LS as described in Section 4. 1.2. With this approach, one must determine the normal, P N , and tangential, P T , pressure components in the canonical ensemble (i.e., at constant number of molecules N, volume V , and temperature T ). For γ HS , the 2 × 2 × 8 unit cells of methane hydrate is confined in a slit pore with D p = 9.9816 nm. For γ LS , liquid water is first adsorbed in the porous solid using GCMC simulations at T = 290 K. In so doing, each molecular system includes two interfaces (top and bottom walls) and we perform canonical ensemble MD simulations to determine the ensemble averages ⟨P N ⟩ = ⟨P zz ⟩ and ⟨P T ⟩ = ⟨P xx ⟩ + P yy /2. 4. 2.

Validity of the Gibbs-Thomson equation. In the previous section, the following thermodynamic proprieties, v H , v L , ∆h m , γ HS and γ LS were computed using MD and GCMC simulations. The resulting values are summarized in Table 4. As a result, a more negative Gibbs-Thomson coefficient k GT is expected at P = 10 atm (as compared with P = 100 atm). we recall that γ HS is determined using the canonical ensemble in this work. We obtained γ LS = -48 mJ•m 2 at P = 10 atm. v L , v H , and ∆h m at T = 262 K and P = 10 atm can be found in Figure 4.6. These calculations lead to k ′ GT = -0.38 according to Eq. ( 4.17 Decreasing the pressure leads therefore to a larger shift in the phase stability of confined methane hydrate.

Surface wettability effects. The effect of surface wettability was assessed by changing the LJ energy parameter, ε ′ , of the pair interactions between methane hydrate and the porous solid, U HS . ε ′ = 1/2, 1/3, 1/4, 2, 3, and 4 ε (where ε is the original LJ energy parameters used in the previous sections) were adopted to mimic stronger or weaker solidfluid interactions. By using the DCM technique, the melting temperature using different ε ′ at P = 100 atm were determined as shown in Figure B.6 of the Appendix B. We found that the melting temperature remains constant. This result can be explained using the Gibbs-Thomson equation; k GT depends on γ HS and γ LS (the values v H , v L , and ∆h m are those for bulk methane hydrate and/or liquid water). At constant T and P, a first-order Taylor expansion for γ leads to:

γ(ε ′ ) ∼ γ(ε) + ∂ γ ∂ ε ε (ε ′ -ε) (4.19)
Since U HS /U ≤ 5% (where U is the total potential energy and U HS is the potential energy contribution arising from solid-fluid interactions), the contribution from U HS in γ can be ignored:

(∂ γ/∂ ε) ε ∼ 0. As a result, γ HS (ε ′ ) ∼ γ HS (ε ′ ) and γ LS (ε ′ ) ∼ γ LS (ε), so that k GT (ε ′ ) ∼ k GT (ε)
considering the range of ε ′ used here.

Free energy calculations and kinetics

To estimate the free energy barriers for methane hydrate formation/dissociation, we combined grand canonical ensemble Monte Carlo (GCMC) simulations with the umbrella sampling technique to explore the free energy landscape for this complex system. The details of these umbrella sampling calculations were discussed in Section 4. Q 6 , at different temperatures. For bulk methane hydrate/liquid water (see Figure 4.9 (left)), methane hydrate is favorable at low temperature T < T m ; for instance, the free energy difference between methane hydrate and liquid water shows a positive value,

∆G LH /k B T = G L -G H /k B T = 8.1 > 0 at T = 290 K. While at high temperature T > T m ,
liquid water is favorable; for instance, the free energy difference shows a negative value

∆G LH /k B T = -3.1 < 0 at T = 310 K.
For the confined phase (see Figure 4.9 (right)), all the free energy calculations were performed above the expected melting temperature of confined methane hydrate as the results at lower temperatures were found to be too noisy to be used to analysis. As expected, liquid water is the favorable phase at these temperatures; indeed, free energy profiles at these three temperature give a negative free energy difference between methane hydrate and liquid water. To estimate the melting temperature of bulk and confined methane hydrate, the free energy difference, ∆G LH , as a function of temperature, T , is shown in Figure 4.10. We found that the free energy difference depends linearly on temperature. Therefore, we used a linear fit for both bulk and confined phases to extrapolate ∆G LH at T pore m . In so doing, this fit leads to T bulk m = 302 K and T pore m = 257 K for D p = 2.8554 nm which are in fair agreement with the results obtained using the direct coexistence method.

Each free energy profile, G (Q 6 ), in Figure 4.9 shows two free energy barriers, ∆G barr :

one is for the phase transition from liquid water to methane hydrate (i.e., formation),

∆G L→H barr while the other one is for the phase transition from methane hydrate to liquid water (i.e., dissociation), ∆G H→L barr . As said previously, the slow formation/dissociation kinetics makes it difficult to determine the free energy profiles of confined methane hydrate close to its melting temperature even when the umbrella sampling technique is used. In order to overcome this problem, we compare the free energy barriers as a function of the temperature difference with respect to the melting point for the bulk and confined systems. This makes it possible to compare the formation/dissociation ) upon confinement (right) is shown at T = 290 K (blue), 300 K (green), and 310 K (purple). The free energy is normalized using the thermal energy, k B T . For the sake of clarity, a shift of +10, +20, and +30 in G/k B T is added for the bulk phase at T = 310 K, 330 K, and 350 K. A shift of +10 and +20 in G/k B T is added for the confined phase at T = 300 K and 310 K. kinetics between bulk and confined phases at the same "distance" to the melting point.

In particular, for confined methane hydrate, we can extrapolate and estimate ∆G barr at T pore m . These data are shown in Figure 4.11. On the one hand, as described in the classical nucleation theory (see Section 1.3), the formation/dissociation rate, J, is defined as J = J 0 exp (-∆G barr /k B T ). Using the extrapolation, we obtain ∆G barr /k B T = 50.7 for bulk methane hydrate while ∆G barr /k B T = 33.8 for confined methane hydrate. A larger free energy barrier ∆G barr /k B T = 300 for bulk methane hydrate is found at T = 273 K and P = 900 atm by [START_REF] Knott | Homogeneous nucleation of methane hydrates: Unrealistic under realistic conditions[END_REF] This result suggests that the phase transition between methane hydrate and liquid water is much easier (i.e., faster kinetics) when confined in a porous solid.

Conclusion

Using molecular simulation, the confinement effects on the phase stability and formation/dissociation kinetics of methane hydrate were determined. For different pore widths, we first determined the melting temperature, T pore m , of confined methane hydrate at a given pressure using the direct coexistence method. Our results show a reduced phase stability with a shift in the melting temperature, ∆T 2) free energy barrier from methane hydrate to liquid water, i.e., methane hydrate dissociation (right), ∆G H→L barr . The red cross is for bulk methane hydrate while the blue cross is for confined methane hydrate using the extroplation described in the text. The free energy barriers are normalized using the thermal energy, k B T . chemical potential of methane and water upon phase equilibrium is necessary to correct the Gibbs-Thomson equation. Then, we determined the surface tensions between the porous solid and methane hydrate γ HS or liquid water γ LS . The Gibbs-Thomson coefficient obtained using these data, which is agreement with that inferred using the direct coexistence method, shows that the shift in melting temperature of confined methane hydrate as a function of pore width can be well-described using the Gibbs-Thomson equation.

Slow formation kinetics was observed in the direct coexistence method. This was further validated using free energy calculations. More in details, using the umbrella sampling technique, we determined the free energy profiles of bulk and confined methane hydrate at different temperatures. Our finding suggests that confinement leads to faster formation/dissociation kinetics (i.e., decreases the free energy barriers between methane In this chapter, we focus on the physical and physicochemical properties of methane hydrate confined at the nanoscale. These physical and physicochemical properties include (1) density distribution, (2) order parameter, (3) thermal expansion, (4) isothermal compressibility, and (5) thermal conductivity. Both bulk and confined methane hydrates are considered as they play an important role in practical applications [START_REF] Bai | Origin of self-preservation effect for hydrate decomposition: Coupling of mass and heat transfer resistances[END_REF][START_REF] Burnham | Communication: Librational dynamics in water, sI and sII clathrate hydrates, and ice ih: Molecular-dynamics insights[END_REF][START_REF] Demurov | Computations of diffusivities in ice and CO 2 clathrate hydrates via molecular dynamics and monte carlo simulations[END_REF][START_REF] Jendi | Ab initio modelling of methane hydrate thermophysical properties[END_REF]Michalis et al., 2016a;Yang et al., 2016b;[START_REF] Zhu | Encapsulation kinetics and dynamics of carbon monoxide in clathrate hydrate[END_REF]. The remainder of this chapter is organized as follows. In Section 5.1, we present the computational details: molecular configurations of confined methane hydrate and liquid water, molecular dynamics in the isobaric-isothermal ensemble, molecular dynamics in the canonical ensemble, piston method to apply a given pressure, the Green-Kubo formalism to determine the thermal conductivity. In Section 5.2, the density profiles of bulk and confined methane hydrates as well as liquid water are presented. In this part, we also show local bond order parameters. In Section 5.3, the thermal expansion and isothermal compressibility are presented. In Section 5.4, we use the Green-Kubo formalism to compute the thermal conductivity of bulk and confined methane hydrate. Section 5.5 presents some concluding remarks.

Computational details

Molecular models

Figure 5.1 shows the molecular configurations of confined methane hydrate (left) and liquid water (right) considered in this work. We first duplicate the unit cell of bulk methane hydrate along the z-axis to build a larger configuration. Then, we remove all the molecules (water and methane) |z| > z c where z c = 1.3809 nm. In so doing, a total number of 392 water molecules and 76 methane molecules are included in the configuration of confined methane hydrate. A similar method was proposed by Chakraborty et al. (Chakraborty and Gelb, 2012b). The pore walls are the same as those used in Chapter 4; the pore width, D p , is defined as the distance between the center of the innermost layer solid atoms of the two pore walls. The configuration of confined liquid water is generated by melting the empty hydrate structure in the canonical ensemble followed by simulation at constant pressure. To determine density profiles, order parameters, thermal expansion, and isothermal compressibility, the following box dimensions L x = L y = L z = 2.3754 nm are used for bulk methane hydrate/liquid water while L x = L y = 2.3754 nm and L z = 44.5734 nm are used for confined methane hydrate/liquid water. To determine the thermal conductivity, L x = L y = L z = 3.5631 nm (corresponding to 3 × 3 × 3 unit cells) are used for bulk methane hydrate following the work by English et al. (English and Tse, 2009;English et al., 2009). The following simulation box dimensions L x = L y = 3.5631 nm and L z = 49.4754 nm (corresponding to 3 × 3 × 6 unit cells) are used to determine the thermal conductivity of confined methane hydrate. Periodic boundary conditions are used in the xand y-directions while the system is non-periodic in the z-direction.

Molecular dynamics details

Molecular dynamics (MD) in the isobaric-isothermal (NPT ) ensemble are used to relax the configuration (energy, density, etc.) and to determine the density profiles of water ρ w (z) and methane ρ m (z), order parameter profiles Q 6 (z), thermal expansion α P , isothermal compressibility κ T of bulk methane hydrate and liquid water. To relax such confined molecular systems, a pressure component along the z-axis, P zz , was applied using two pistons (one is the top wall and the other one is the bottom wall). Each piston applies an external force, f wh zz,ex where wh = bot is for the bottom wall and wh = top is for the top wall, to each piston atom (each piston is made of N wh s atoms). These forces are where L x and L y are the dimensions of the simulation box in the xand y-directions. In addition to f zz,ex , there is another force, f wh zz,in , for each solid atom. Such force arises from the LJ interactions with the methane hydrate atoms (or liquid water atoms). To determine f wh zz,in , the total force from LJ pair interactions on the pore wall is first calculated, F wh zz,in . Then, this force is averaged and reassigned to every atom: f wh zz,in = F wh zz,in /N wh s . Therefore, the force on each solid atom is f wh zz = f wh zz,ex + f wh zz,in at each timestep of the molecular dynamics simulation. 

Thermal conductivity

For bulk methane hydrate, molecular dynamics in the isobaric-isothermal (NPT ) ensemble is first used to relax its density and energy. While for confined methane hydrate, methane hydrate is treated in a similar way but with pistons used to apply a pressure P zz . Once equilibrium is reached, molecular dynamics simulations in the microcanonical (NV E)

ensemble are used to determine the heat-flux vector as a function of time, J(t), of bulk and confined methane hydrate. The heat-flux vector, J(t), at time, t, can be computed using the

1 2 m i v 2 i (t) v i (t) + 1 2 ∑ i ∑ i< j u i j (t) v i (t) + v j (t) + 1 2 ∑ i ∑ i< j f i j (t)• v i (t) + v j (t) r i j (t) (5.1)
where V is the volume, 1 2 m i v 2 i is the kinetic energy of molecule i with the molecular mass m i , u i j is the interaction energy between molecules i and j, v i (v j ) are the velocity of the molecule i (molecule j), f i j is the force on molecule i exerted by molecule j, and r i j is the position vector separating molecules i and j. k B is Boltzmann's constant. The first, second, and third terms in Eq. ( 5.1) correspond to the kinetic energy, potential energy, and stress.

In Eq. ( 5.1), J(t) is a vector which has three components -[J x (t), J y (t), J z (t)].

The Green-Kubo formalism relates the ensemble average of the time autocorrelation of the heat flux to the thermal conductivity, λ :

λ = V 3k B T 2 ∞ 0 ⟨J(0)•J(t)⟩ dt (5.2)
where h(t) = V /3k B T ⟨J(0) • J(t)⟩ is the normalized autocorrelation function of the heatflux. For bulk methane hydrate, J(t) is symmetrical in x-, y-, and z-directions and the heat-flux vector components are equal in each direction: J x (t) = J y (t) = J z (t). In contrast, for confined methane hydrate: J x (t) = J y (t) ̸ = J z (t). We computed the thermal conductivity using the two following components:

λ T = V 2k B T 2 ∞ 0 J x (0)J x (t) + J y (0J y (t)) dt λ N = V k B T 2 ∞ 0 ⟨J z (0)J z (t))⟩ dt (5.3)
where λ T and λ N are the tangential and normal components of the thermal conductivity.

h T (t) = V /2k B T J x (0)J x (t) + J y (0)J y (t) and h N (t) = V /k B T ⟨J z (0)J z (t)⟩ are the corresponding autocorrelation functions.

The autocorrelation function h(t) in Eq. ( 5.2) and h N (t) and h T (t) in Eqs. (5.3) can be extracted using the energy transfer between neighboring atoms. Such energy transfer is the sum of exponentially decaying functions that correspond to acoustic and optical components together with a cosine-modulated term for the optical component, 5.4) In this equation, the first term corresponds to two or three (i.e., n ac = 2 or 3) acoustic modes (namely, short range, sh, long range, lg, and, possibly, medium range, me). The second term corresponds to one or two (n op = 1 or 2) optical modes. The third term corresponds to the residual oscillations beyond the acoustic and optical modes. The relaxation times for the acoustic modes are τ sh , τ me , and τ lg while those for the optical modes are τ jk . A i , B jk , and C j are the amplitudes of the acoustic, optical, and residual terms, respectively.

h(t) = n ac ∑ i=1 A i exp (-t/τ i ) + n op ∑ j=1 n op, j ∑ k=1 B i j exp -t/τ jk cos ω j t + n op ∑ j=1 C j cos ω j t ( 
ω j are the oscillation frequencies which correspond to peaks in the optical region of the power spectrum, F (v). F (v) is obtained in this work using the Fourier transform of h(t).

It should be noted that the residual terms are omitted in the Fourier transform as it only leads to a delta function in the Fourier space.

Structure

Density profiles. The density profiles, ρ Φ s (z), of a species s in the phase Φ along the z-axis are computed as follows: 5.5) where ⟨∆N(z, z + ∆z)⟩ is the ensemble average of the number of species s located in the region between z and z + ∆z, M s is the molar mass of molecule s, and N A is Avogadro's constant. s = m is for methane molecules while s = w is for water molecules. Φ = L is for liquid water while Φ = H is for methane hydrate. The following density profiles were determined at T = 240 K and P = 100 atm (or P zz = 100 atm for confined systems): water in liquid phase, ρ L w (z), and methane, ρ H m (z), and water, ρ H w (z), in hydrate phase. These data are shown in Figure 5.2. Multi-layer distributions are observed for confined liquid water (see Figure 5.2 (top)). In these layers, liquid water exhibits a high density close to the pore wall. By comparing water molecules in the bulk and confined methane hydrate (Figure 5.2 (center)), the density profiles do not show significant differences. Moreover, comparison between the density of methane molecules in bulk methane hydrate and that for confined methane hydrate (see Figure 5.2 (bottom)), the later exhibits a higher density only close to the pore walls.

ρ Φ s (z) = ⟨∆N s (z, z + ∆z)⟩ M s N A L x L y ∆z ( 
Order parameter. The order parameter profiles of water along the z-axis, Q 6 (z), are computed as follows: .6) where ⟨• • • ⟩ denotes an ensemble average. ∆N w (z, z + ∆z) is the number of water molecules located in the region between z and z + ∆z. The index i runs over all these water molecules.

Q 6 (z) = ∑ ∆N w (z,z+∆z) i Q 6,i ∆N w (z, z + ∆z) ( 5 
The i-th water molecule exhibits a local bond order parameter Q 6,i (as defined in Chapter 4).

Figure 5.3 shows the order parameter Q 6 of liquid water and methane hydrate along the z-axis. First, liquid water exhibits a much more ordered structure at such low temperature T = 240 K (as compared with the data at temperatures above the melting point of ice).

For instance, Q 6 ∼ 0.39 for liquid water at T = 290 K is obtained using the free energy calculations in Figure 4.9 of Chapter 4. In contrast, Q 6 ∼ 0.48 is obtained at T = 240 K as shown in Figure 5.3. The latter value is closer to the value of crystalline structures of water such as Q 6 ∼ 0.55 for methane hydrate and hexagonal ice at T = 250 K and P = 10 atm.

Q 6 for hexagonal ice and methane hydrate were determined using molecular dynamics in the NPT ensemble. Second, by comparing Q 6 for bulk and confined liquid water (see 

Thermodynamic coefficients

Thermal expansion, α P . The thermal expansion, α Φ P , describes the ability of methane hydrate (Φ = H) or liquid water (Φ = L) to change its volume V in response to a change in temperature, T , at constant pressure, P,

α Φ P = 1 V ∂V ∂ T P (5.7)
According to the above definition, the estimation of α P requires to determine the volume, V (T ), as a function of temperature T at a given pressure P. For bulk liquid water/methane hydrate, V (T ) is determined using molecular dynamics in the NPT ensemble. Due to the fact that there is no unique definition of the volume V for a confined phase, we consider here two volumes, V dmin pore and V dmax pore (definitions will be given later), to compute the thermal expansion. According to Eq. ( 5.7), this leads to two thermal expansions, α Φ,dmin P zz ,pore and α Φ,dmax P zz ,pore , α Φ,dmin (5.8) where V dmax pore = L x L y D p and V dmin pore = L x L y (D pσ OS ) are the maximum and minimum volumes that can be considered. We recall that D p is defined as the distance between the centers of solid atoms of the innermost layer of pore walls. σ OS is the LJ parameter for unlike atomic pairs of oxygen-solid atoms. P zz is the pressure applied to the pistons (the details of such piston calculations can be found in Section 5.1). As a comparison with confined systems, the thermal expansion using the molecular dynamics in the NP zz T ensemble, α Φ p zz , reads: 5.9) where V z = L x L y L z is the volume of bulk phase in the NP zz T ensemble. In this work, different temperatures were considered: T = 160 K, 180 K, 200 K, 220 K, and 240 K at P = 100 atm (or P zz = 100 atm). For the calculations of α Φ,dmax P zz ,pore , α Φ,dmin P zz ,pore and α Φ P zz , L x = L y = 2.3754 nm is kept constant. V (T ) ∼ V z (T ) and (∂V /∂ T ) P ∼ (∂V z /∂ T ) P zz , so that as expected the thermal expansion of bulk liquid water determined using the NPT ensemble is the same as that determined using the NP zz T ensemble, α L P = α L P zz . Finally, comparing α L P and α L,dmax P zz ,pore (or α L,dmin P zz ,pore ) suggests that the thermal expansion of confined water is small or equal to that of bulk liquid water. , and α L,dmin P zz ,pore > α H,dmin P zz ,pore .

P zz ,pore = 1 V dmin pore ∂V dmin pore ∂ T P zz α Φ,dmax P zz ,pore = 1 V dmax pore ∂V dmax pore ∂ T P zz
α Φ P zz = 1 V z ∂V z ∂ T P zz ( 
Isothermal compressibility, κ T . The isothermal compressibility describes the ability of methane hydrate or liquid water to change its volume in response to a change in pressure at constant temperature. As with the thermal expansion, the three following isothermal compressibilities at T = 240 K and P = 100 atm, 300 atm, 500 atm, 700 atm, and 900 atm are considered in this work: [START_REF] Ning | Mechanical properties of clathrate hydrates: status and perspectives[END_REF][START_REF] Ning | Compressibility, thermal expansion coefficient and heat capacity of CH 4 and CO 2 hydrate mixtures using molecular dynamics simulations[END_REF].

(1) the isothermal compressibility, κ Φ T , for bulk phase is determined using molecular dynamics in the NPT ensemble, .10) (2) the isothermal compressibility, κ Φ,dmax T,pore and κ Φ,dmin T,pore , for the confined phases is determined using the piston method, .11) (3) the isothermal compressibility, κ Φ T,P zz , for the bulk phase is determined using molecular dynamics in the NP zz T ensemble,

κ Φ T = - 1 V ∂V ∂ P T ( 5 
κ Φ,dmin T,pore = - 1 V dmin pore ∂V dmin pore ∂ P zz T κ Φ,dmax T,pore = - 1 V dmax pore ∂V dmax pore ∂ P zz T ( 5 
κ Φ T,Pzz = 1 V z ∂V z ∂ P zz T (5.
12)

The volume and the isothermal compressibility as a function of pressure P (or pressure component P zz ) for liquid water and methane hydrate are shown in Figures 5.6 and 5.7. For both liquid water and methane hydrate, the volumes obtained using different simulations (V L , V L z , V L,dmin pore , and V L,dmax pore for liquid water and V H , V H z , V H,dmin pore , and V H,dmax pore for methane hydrate) decrease as the pressure increases. As a result, positive values of the isothermal compressibility are always observed for both methane hydrate and liquid water.

For both bulk and confined liquid water (see Figure 5.6), the isothermal compressibility (κ L T , κ L,dmin T,pore , and κ L,dmax T,pore ) increases with pressure. Confinement decreases the isothermal compressibility of liquid water: κ L T > κ L,dmin T,pore > κ L,dmax T,pore . The isothermal compressibility of bulk methane hydrate (κ H T ) increases with pressure while the isothermal compressibility (κ H,dmin T,pore and κ H,dmax T,pore ) of confined methane hydrate decreases with increasing pressure.

Compared with bulk methane hydrate, confinement increases the isothermal compressibility at low pressure P < 500 atm (κ H T < κ H,dmax T,pore < κ H,dmin T,pore ) while it decreases the isothermal compressibility at high pressure P > 500 atm (κ H T > κ H,dmin T,pore > κ H,dmax T,pore ). 

Thermal conductivity

In this work, the thermal conductivity of bulk (λ ) and confined (λ N and λ T are tangential and normal components) methane hydrate are determined using molecular dynamics simulation. The details of these molecular dynamics simulations can be found in Section 5.1.3. To determine λ , λ N and λ T , the heat-flux vectors are first determined using Eq. ( 5.1). Then, the (normalized) autocorrelation functions of these heat-flux vectors for bulk methane hydrate, h(t), and for confined methane hydrate, h T (t) and h N (t), are estimated using Eqs. ( 5.2) and ( 5.3). Figure 5.8 shows these autocorrelation functions at T = 250 Kh(t) (left), h T (t) and h N (t) (right) -as obtained from our simulations. we also show the autocorrelation function h(t) obtained by English et al. for bulk methane hydrate. We obtained data for bulk methane hydrate that are consistent with those reported by English et al. (English and Tse, 2009;English et al., 2009) (English and Tse, 2009;English et al., 2009). For confined methane hydrate, the red solid line is the tangential component h N = V /k B T ⟨J z (t)J z (0)⟩ while the green solid line is the normal component h T = V /2k B T J x (t)J x (0) + J y (t)J y (0) . As described in Section 5.1.3, we can use Eq. (5.4) to fit these autocorrelation functions.

These fits require us to separate the acoustic and optical modes. We take the Fourier transform of Eq. (5.4): .13) We recall that the residual terms corresponding to ∑ n op j C j cos ω j are omitted in this equation as it leads to a Dirac peak when calculating the Fourier transform (see Section 5.1.3). In the Fourier space, the acoustic modes (including short, medium, and long range) are centered around zero frequency while the optical modes are centered around a localized vibration frequency, i.e., w j . The power spectra obtained using Fourier transform are shown in rad/ps are found. To obtain the acoustic contributions, a low-pass filter approach is adopted as first described by English et al. (English and Tse, 2009;English et al., 2009). The optical modes are first removed from the Fourier transform of the autocorrelation of the heat-flux (i.e., set zero for υ > 350 cm -1 ). Then, we calculate the inverse Fourier transform to obtain the acoustic modes. In so doing, the acoustic and optical modes are separated using inverse Fourier transforms of the power spectrum F (υ). Figure 5.10 shows the separated acoustic and optical modes for bulk methane hydrate. We use these two plots to determine the relaxation times, τ i and τ jk , and amplitudes, A i , B jk , and C j , for each component of the acoustic and optical modes in Eq. (5.4). On the one hand, all the maximum/peak points of the autocorrelation functions (h(t), h T (t) and h N (t)) are taken to fit the optical modes.

F [υ] = n ac ∑ i=1 A i τ -1 i υ 2 + τ -2 i + n op ∑ j=1   n op, j ∑ k=1 B jk τ -1 jk υ -ω j 2 + τ -2 jk   ( 5 
On the other hand, a smoothed form for the acoustic modes is constructed by taking the function values of the inverse Fourier transform at half-way in time between two peaks of the optical modes. This treatment aims at eliminating the artificial periodicity introduced by the square cut-off when we perform the low-pass filter. These maxima and smoothed points are also shown in Figure 5.11 using a logarithm scale. For bulk methane hydrate, the black solid line is from this work while the black dashed line is from English et al. (English and Tse, 2009;English et al., 2009). For confined methane hydrate, the red solid line is for h N = V /k B T ⟨J z (t)J z (0)⟩ while the green solid line is for h T = V /2k B T J x (t)J x (0) + J y (t)J y (0) . Until now, we obtained all the points needed to fit the acoustic modes (smoothed points) and the optical modes (maxima/peaks). Piecewise linear fits are then applied to the acoustic and optical modes as shown in Figure 5.11. On the one hand, three linear fits are performed to determine the signal corresponding to the acoustic modes: A sh and τ sh for the 5.2). Piecewise linear fits for acoustic modes are shown for short-range (red hashed lines), medium-range (blue dashed lines), and long-range (green dashed lines) terms. The black solid lines are for overall optical fits while the gray solid lines are for overall acoustic fits.

All the data related to the fits are summarized in Tables 5.1 and 5.2. These calculations lead to λ = 0.616 W/mK, λ T = 1.857 (using trapezoidal integration) -20.743 W/mK (using energy transfer fits), and λ N = 0.729 W/mK. The value obtained in this work for bulk methane hydrate is close to the simulation data (λ = 0.64 W/mK) reported by English et al. (English and Tse, 2009;English et al., 2009) and experimental data (0.68 [START_REF] Rosenbaum | Thermal conductivity of methane hydrate from experiment and molecular simulation[END_REF] and 0.62 [START_REF] Waite | Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate[END_REF]). Confinement increases the thermal conductivity of confined methane hydrate, especially for the tangential component: λ < λ N < λ T . 

Conclusion

In this chapter, we use molecular dynamics simulation to determine the confinement effects on the physical and physicochemcial properties of methane hydrate such as structure, thermal coefficients, and thermal conductivity. For bulk system, these thermodynamics are determined using molecular dynamics in the isobaric-isothermal ensemble. For confined system, the piston method are applied to determine these thermodynamics at desired temperature and pressure. First, structural profiles, including density and local bond order parameters are determined. Confinement increases the ordered structure of liquid water but slightly affects the structure of methane hydrate. Then, the thermal expansion and isothermal compressibility of bulk and confined methane hydrate/liquid water are also determined. For both methane hydrate and liquid water, their thermal expansions determined using the NP zz T ensemble are close to the results obtained using the NPT ensemble, as well for isothermal compressibility. On the one hand, at the temperature considered in this work, confinement decreases the thermal expansion of liquid water and methane hydrate. On the other hand, at the pressure considered in this work, confinement also decreases the isothermal compressibility of liquid water but increases or decreases that of methane hydrate relates to the pressure. Finally, the thermal conductivity of bulk and confined methane hydrate are also addressed using the Green-Kubo formalism. We reproduced the thermal conductivity of bulk methane hydrate. As compared with bulk methane hydrate, confined methane hydrate exhibits different autocorrelation function of the heat-flux: the tangential component shows a lower oscillation frequency for the optical mode while the normal component exhibits two optical modes and one oscillated acoustic mode. Our data suggest that confinement increases the thermal conductivity for both the tangential and normal components.

Conclusions and Perspectives

Methane hydrate, which is a crystalline structure made of water molecules forming a network of hydrogen-bonded cages around methane molecules, is important for many applications in the field of environment and energy science. In nature, methane hydrate is often confined at the surface or inside porous rocks and media where it interacts with mineral surfaces. Understanding the role of these confinement and surface effects on the thermodynamics and dynamics of methane hydrate is an important concern. In this thesis, different molecular simulation strategies were used to assess the structure, phase stability, formation kinetics, and physical properties of methane hydrate confined at the nanoscale. First, different molecular simulation strategies, including free energy calculations using the Einstein molecule approach, the hyperparallel tempering technique, and the direct coexistence method, are used to determine the phase stability of bulk methane hydrate. Then, the direct coexistence method is chosen to determine the phase stability of confined methane hydrate. To describe the shift in melting temperature, we also revisit the Gibbs-Thomson equation. We also use molecular dynamics to determine the thermodynamic parameters in the Gibbs-Thomson equation ans address its validity.

Finally, free energy calculations using the umbrella sampling technique are performed to determine the formation/dissociation kinetics of bulk and confined methane hydrate.

In addition, confinement effects on several physical and physicochemical properties of methane hydrate are also determined. Our findings are as follows:

(1) Using different molecular simulation strategies, the pressure-temperature phase diagram for bulk methane hydrate is determined. In this part, we found that the (3) The Gibbs-Thomson equation is revisited, and several thermodynamic parameters needed in this equation are determined using molecular dynamics. Compared with the liquid-substrate surface tension, a larger hydrate-substrate surface tension is observed, γ LSγ HS < 0. The data obtained using the direct coexistence method are found to be consistent with the Gibbs-Thomson equation determined using molecular dynamics. The shift in the melting point is found to be quantitatively described using the Gibbs-Thomson equation, which predicts that the shift in melting point linearly depends on the reciprocal of the pore width.

(4) Using the umbrella sampling technique, the free energy barriers between methane hydrate and liquid water are determined. We found that confinement decreases these free energy barriers and leads to faster formation/dissociation kinetics of methane hydrate.

(5) Confinement decreases the thermal expansion and isothermal compressibility of methane hydrate.

Despite the suitability of molecular simulation to determine confinement effects on the physics of methane hydrate, many challenges are still to be faced:

(1) Understanding formation/dissociation mechanisms. Faster formation/dissociation kinetics (corresponding to a decreased free energy barrier) was observed in this PhD work. However, understanding the growth mechanism of methane hydrate in porous materials remains to be achieved as it is important for practical applications.

(2) Understanding surface chemistry effects and salt effects on the thermodynamics and dynamics of methane hydrate. Natural porous materials exhibit various surface chemistries (chemical composition, hydrophilicity/hydrophobicity, heterogeneity/homogeneity, etc.). These differences should be considered to mimic real environmental conditions. For methane hydrate trapped in marine sediments, salt in seawater could also have drastic effects on phase stability of methane hydrate.

(3) Knowledge transfer to other gas hydrates. Understanding the role of confinement on methane hydrate should allow one to explore other gas hydrates (e.g., carbon dioxide, nitrogen, hydrogen, other hydrocarbons, etc.) and other clathrate structures (e.g., zeolites, Metal Organic Frameworks, etc.).

(4) Decreasing computational costs. A large free energy barrier between methane hydrate and liquid water leads to slow formation kinetics. Such a low nucleation rate requires to perform large-scale molecular dynamics or Monte Carlo simulations combined with free energy calculations. In this PhD work, we used the grand canonical ensemble as it simplifies the calculations to determine the L-H-V phase equilibrium. Despite the success of these calculations, they still require extensive computational resources. (1) En utilisant différentes stratégies de simulation moléculaire, le diagramme de phase pression-température pour l'hydrate de méthane non confiné est déterminé. Dans cette partie, nous avons constaté que le choix des modèles de méthane TIP4P /
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Ice Water et OPLS-UA est important pour reproduire le diagramme de phase de l'hydrate de méthane. Les données présentées dans ce travail sont en bon accord avec des travaux antérieurs de simulation moléculaire mais aussi le diagramme de phase expérimental de l'hydrate de méthane.

(2) En utilisant la méthode de la coexistence directe, des températures de fusion diminuées sont observées pour l'hydrate de méthane confiné par rapport à l'hydrate de méthane non confiné. En d'autres termes, le décalage de la température de fusion de l'hydrate de méthane confiné est négatif. ∆T m = T pore m -T bulk m < 0.

(3) L'équation de Gibbs-Thomson est revue et plusieurs paramètres thermodynamiques nécessaires dans cette équation sont déterminés en utilisant la dynamique moléculaire. En comparaison avec la tension de surface entre le liquide et le substrat, on observe une tension superficielle hydrate-substrat plus importante, γ LSγ HS < 0.

Les données obtenues à l'aide de la méthode de coexistence directe sont cohérentes avec l'équation de Gibbs-Thomson. Le déplacement du point de fusion est décrit de manière quantitative en utilisant l'équation de Gibbs-Thomson, qui prédit que le décalage du point de fusion dépend linéairement de l'inverse de la taille des pores. (5) Le confinement diminue la dilatation thermique et la compressibilité isotherme de l'hydrate de méthane.

A.2 Free energy of non-interacting Einstein molecule A A

From the canonical partition function, Q A , we obtain the Helmholtz free energy of the non-interacting Einstein molecule, A A ,

A A Nk B T = - 1 N ln (Q A ) (A.1)
For N water molecules distributed in a periodic box of volume V , Q A reads: .2) where q t = V Λ -3 is the individual translational partition function while q r , q v , q e are the individual rotational, vibrational, and electronic partition functions, respectively. q r , q v , q e are dimensionless and are identical in the two coexisting phases, so that we assign them an arbitrary value of one. The harmonic potential energy U A includes the translation U A,T and rotation U A,R contributions: .3) where U A,T only depends on the positions r i of the N molecules while U A,R depends on their two vector angles, φ i = φ a,i , φ b,i . Q A can be recast as: .4) where κ(U A,T ) is the integral for (N -1) 3D oscillators, Using the last equation, we obtain: 3 but for the decreased LJ energy parameter (two left panels: one for methane, x m , and another one for water, x w ): ε ′ = 1/2ε (top panels), 1/3ε (center panels), and 1/4ε (bottom panels); and for the increased LJ energy parameters (two right panels: one for methane, x m , and another one for water, x w ): ε ′ = 2ε (top panels), 3ε (center panels), 4ε (bottom panels). ε ′ is for the pair of atoms between solid walls and hydrate/liquid phase. 
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B.5 Surface tension γ HS
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  Troisièmement, parmi ces stratégies, la méthode de coexistence directe est choisie pour déterminer le déplacement du point de fusion lors du confinement dans des pores, ∆T m = T pore m de fusion d'hydrate de méthane non confiné et confiné. Nous avons constaté que le confinement diminue la température de fusion, T pore m < T bulk m . Le changement de température de fusion en utilisant la méthode de la coexistence directe est cohérent avec l'équation de Gibbs-Thomson qui prédit que le décalage de la température de fusion dépend linéairement de l'inverse de la taille des pores, ∆T m /T bulk m ∼ k GT /D p . La validité quantitative de cette équation thermodynamique classique pour décrire de tels effets x de confinement et de surface est également abordée. Les tensions de surface des interfaces hydrate-substrat et eau-substrat sont déterminées à l'aide de la dynamique moléculaire pour valider quantitativement l'équation de Gibbs-Thomson. Des simulations de dynamique moléculaire sont également effectuées pour déterminer les propriétés thermodynamiques importantes de l'hydrate de méthane non confiné et confiné: (a) conductivité thermique λ en utilisant le formalisme de Green-Kubo et la fonction d'autocorrélation du flux thermique; (b) expansion thermique α P et compressibilité isotherme κ T . Enfin, des conclusions et perspectives pour des travaux futurs sont présentées. Introduction 1 State-of-the-art: Methane Hydrate 1.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Crystalline structure and molecular model . . . . . . . . . . . . . 1.1.2 Order parameter . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Thermodynamic properties . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Formation/dissociation and phase stability . . . . . . . . . . . . . . Statistical Mechanics and Computational Methods 2.1 Statistical mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 A.1 Definition of the normalized vectors a and b in the 4-site rigid water molecule (TIP4P/2005 and TIP4P/Ice). These two vectors are formed by the subtraction a = (l 1 -l 2 )/|l 1 -l 2 | and summation b = (l 1 + l 2 )/|l 1 + l 2 | of the two bond vectors, l 1 and l 2 . The red and white spheres are the oxygen and hydrogen atoms, respectively. The green sphere is the electronic site M of the oxygen atom. . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 A.2 Intermolecular potential energy U of the zero-occupancy methane hydrate along the canonical ensemble MC simulation at T = 250 K and P = 100 atm (black line) (only the harmonic potential U A * is considered in the acceptance probability): (a) TIP4P/2005 water model; (b) TIP4P/Ice water model. Note that the figure shows exp -(U -U (0) )/k B T where U (0) is the potential energy of the reference lattice system . The gray horizontal line is the canonical ensemble averaged value, exp -(U -U (0) )/k B T NV T . All energies are normalized to the thermal energy k B T . . . . . . . . . . . 154 A.3 Canonical ensemble average of the harmonic potential energy U A * as a function of the coupling parameter λ at T = 250 K and P = 100 atm: (a) TIP4P/2005 water model (filled circles) and (b) TIP4P/ICE water model (empty circles). These values are obtained from several canonical ensemble MC simulations for the hybrid potential energy, U(λ ) = (1λ )U C * + λU B * . The first molecule in the corresponding molecular system have a fixed position in all these MC simulations. All energies are normalized to the thermal energy k B T . The absolute error bar for each average energy is smaller than 0.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Determination of the chemical potential of methane and water in methane hydrate using TIP4P/2005 water in combination with OPLS-UA methane model: (1) methane occupancy N H m (the number of molecules per unit cell) versus fugacity f (left panel), (2) chemical potential of methane µ H m /k B T = ln f Λ 3 k B T (center panel) and water µ H w /k B T = µ (0) w /k B T -1 N w k B T µ m -∞ N m dµ m (right panel) versus N H m .In the left panel, the temperature increases from 180 to 350 K (∆T = 10 K) (from left to right); In the center and right panels, temperature increases from 180 to 350 K (∆T = 10 K) (from top to bottom). The pressures are P = 1 atm (top), 10 atm (middle), and 100 atm (bottom). All chemical potentials are normalized to the thermal energy, k B T .155 A.5 Same as Figure A.4 but for the TIP4P/Ice water model. . . . . . . . . . . 156 A.6 Contributions to the chemical potential of water in methane hydrate µ H w (x m )/k B T at T = 250 K and P = 100 atm. µ H w (x m )/k B T = µ H w (x m = 0)/k B T + ∆µ H w (x m )/k B T where µ H w (x m = 0)/k B T (black solid line) is the chemical potential of water in zero-occupancy methane hydrate and ∆µ H w (x m )/k B T (black dashed line) is the contribution due to the methane occupancy. µ H w

  157 B.1 (color online) Methane (x m , left) and water (x w , right) mole fractions during the different GCMC simulation runs: T = 230 K (black), 240 K (blue), 250 K (purple), 260 K (red), and 270 K (orange). The x-axis, which indicates progress along the GCMC simulation, is expressed as a number of attempted MC moves where one move is a molecule translation, rotation, insertion or deletion. The dimensions of the simulation box are: L x = L y = 2.3754 nm and L z = 8.3674 nm (corresponding to D p = 2.8554 nm with a vacuum layer D v = 2.0000 nm in each side). . . . . . . . . . . 159 B.2 (color online) Methane (x m , left panels) and water (x w , right panels), mole fractions during the different GCMC simulation runs: T = 230 K (black), 240 K (blue), 250 K (purple), 260 K (red), and 270 K (orange) for D p = 2.8554 nm (top panels); and T = 260 K (blue), 270 K (purple), 280 K (red), and 290 K (orange) for D p = 5.2308 nm (bottom panels). The x-axis, which indicates progress along the GCMC simulation, is expressed as a number of attempted MC moves where one move is a molecule translation, rotation, insertion or deletion. The dimensions of the simulation box are: L x = 2.3754 nm, L y = 4.7508 nm, and L z = 4.3670 nm for D p = 2.8554 nm (top panels) while L z = 6.7424 nm for D p = 5.2308 nm (bottom panels).160 B.3 Shift in the melting temperature of confined methane hydrate with respect to the bulk, ∆T pore m /T bulk m , as a function of the reciprocal of the pore width, 1/D p : the dashed line is for the larger molecular system (i.e., L y = 4.3670 nm); while the solid line is for the smaller one (i.e., L y = 2.3754 nm). Note that T pore m for larger system reads from Figure B.2, while T bulk m and k GB are estimated using these data. . . . . . . . . . . . . . . . . . . . . . . . 160 B.4 (color online) Methane (x m , left panels) and water (x w , right panels) mole fractions during the different GCMC simulation runs: T = 250 K (black), 260 K (blue), 270 K (purple), 280 K (red), and 290 K (orange) for bulk phase (top panels); while T = 210 K (black), 220 K (blue), 230 K (purple), 240 K (red), and 250 K (orange) for confined system with D p = 2.8554 nm (bottom panels). The x-axis, which indicates progress along the GCMC simulation, is expressed as a number of attempted MC moves where one move is a molecule translation, rotation, insertion or deletion. The dimensions of the simulation box in x-and y-directions are L x = L y = 2.3754 nm, and in z-direction are L z = 2.3754 nm for bulk system while L z = 4.3670 nm for confined system. T bulk m = 265 ± 5 K and T pore m = 225 ± 5 K at P = 10 atm for methane hydrate are summarized in Table

Figure 1

 1 Figure 1.1 (left) Gas hydrate with structure I (sI): the small spheres are water molecules forming hydrogen-bonded cavities and the large spheres are the gas molecules. The gray polyhedrons represent the cavities generated by the water molecules. (right) Typically, the types and numbers of water cavities correspond to one of the three following structures of gas hydrate: sI, sII, and sH. The circled numbers are the numbers of such water cavities which are used to form the corresponding hydrate structure. [Picture from Ref.[START_REF] Schulz | Marine Geochemistry[END_REF] 

  (1.4) from k = 0 to N b (i) runs over all the nearest neighbouring oxygen atoms O k and includes itself (i.e., k = 0). Q lm (i) contains the structural information on the first shell surrounding O i . In contrast, ⟨Q lm (i)⟩ contains the structural information on the first and second shells.

Figure 1

 1 Figure 1.3 (color online) Averaged local bond order parameters, ⟨Q 4 ⟩-⟨Q 6 ⟩-plane, for liquid water (blue), hexagonal ice (red), and methane hydrate (black) at T = 200 K. [Picture from Ref. Reinhardt et al. (2012)]

  Figure1.4 Free energy (solid line), ∆G, as a function of nucleus radius, r, in the the formation process of methane hydrate. Formation can be described as the interplay between the hydrate-liquid surface free energy (surface term corresponding to the dashed line), ∆G S , and the free energy difference between liquid water and methane hydrate (volume term corresponding to the dot dashed line), ∆G V . The critical radius, r c , and the corresponding free energy barrier, ∆G barr , are also shown in this figure.If the nucleus radius is larger than the critical radius, i.e., r > r c , the nucleus keeps growing to form methane hydrate ("growth"). For r < r c , the nucleus melts into liquid water ("shrink").
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 1515 Figure 1.5 shows the pressure-temperature (P-T ) phase diagram of methane hydrate which involves liquid water (L), ice (I), methane hydrate (H), and methane vapor (V). The melting line of ice -melting temperature T I m at a given P -indicates that ice is located in the region T < T I m while liquid water is located in the region T > T I m . Similarly, the melting line of methane hydrate -melting temperature T H m at a given P -indicates that methane hydrate is located in the region T < T H m while liquid water and methane vapor

  From a physical point of view, the chemical potential can be obtained from the corresponding free energy. Many theoretical approaches were developed to determine chemical potentials: (1) the equation of state (EoS) provides an easy way to determine the chemical potential of vapor phase, µ V m ; (2) the Gibbs-Duhem equation provides a way to determine the chemical potential of liquid phase especially for uncompressible liquid water, µ L w ; (3) the grand canonical ensemble Monte Carlo simulation provides a way to determine the chemical potential as a function of x m by imposing a given µ H m ; (4) the Einstein molecule approach determines the chemical potential of water in the hydrate phase, µ H w , etc. The latter techniquethe Einstein molecule approach -can be used to determine the chemical potential of any arbitrary solid phases but the determination of the chemical potential of water in methane hydrate is not straightforward in practice. According to the definition of chemical potential, one could determine the chemical potential of a solid phase using the free energy relationship, µ = (A + PV )/N where A is the Helmholtz free energy, PV is the mechanical contribution, and N is the number of molecules. The Einstein molecule approach provides a way to determine the free energy of methane hydrate. Within the framework of the Einstein molecule approach, one constructs a link from the ideal Einstein molecule to methane hydrate. As the reference, the Einstein molecule has an analytic free energy, A E . Thermodynamic integration provides a way to compute the free energy difference between the Einstein molecule and methane hydrate, ∆A. The free energy of methane hydrate is readily obtained as A H = A E + ∆A. By using this technique, researchers have determined the phase diagram of methane hydrate

Figure 1

 1 Figure 1.7 (color online) Typical molecular configurations obtained in the direct coexistence method at T = 294 K and P = 600 bar (where methane hydrate is stable): (top) the coexisting phases, i.e., liquid water (L) + methane hydrate (H) + methane vapor (V), are the initial configuration; (center) the growth of methane hydrate; and (bottom) the perfect methane hydrate formed at the end of the molecular simulation. The red and white lines denote the water molecules while the blue spheres are the methane molecules. [Picture from Ref. (Conde and Vega, 2010)]

  researchers focused on the application of the Gibbs-Thomson equation to methane hydrate. For instance, Chakraborty et al. used this equation to determine the surface tension (Chakraborty and Gelb, 2012a) of methane hydrate-liquid water. Seo et al. used the Gibbs-Thomson equation for their thermodynamic modeling to predict

  α(o → n) and α(n → o) are the probabilities to attempt a trial move from o to n and from n to o. P acc (o → n) and P acc (n → o) are the probabilities to accept the corresponding trial moves. For most MC moves, α is chosen as a symmetric matrix, α(o

  .53) where r = |r|, erf(x) = 2/ √ π x 0 dt exp(-t 2 ) is the error function, and erfc(x) = 1erf(x) is the complementary error function. φ S i (r) is the electric field created by the charge [• • • ] S in Eq. (2.52) while φ L i (r) is the electric field created by the charge [• • • ] L in Eq. (2.52). Due to the fast decay of erfc(x), i.e., lim x→∞ erf(x) = 1, the term [• • • ] S in Eq. (2.53) is a very short-range term whose sum quickly converges in the real space (the cutoff distance is set to r c ). The term [• • • ] L in Eq. (2.53) represents a long-range contribution whose sum can be estimated in the reciprocal space (the cutoff wave vector is set to k c = 2π Ln c where n c is a positive integer). The electrostatic potential field, U C , can be rewritten as,
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  sites: an LJ site located on the oxygen atom, two sites corresponding to the hydrogen atoms, and a fourth site M corresponding to the negative charge of the oxygen atom located at a distance d OM from the oxygen atom toward the hydrogen atoms along the H-O-H angle bisector. Two versions of the TIP4P water model[START_REF] Vega | Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/Ice[END_REF], namely TIP4P/2005(Abascal et al., 2005) and TIP4P/Ice(Abascal and Vega, 2005) models, were used to describe the water molecules in methane hydrate. In both water models, the water molecule has an O-H bond length of 0.9572 Å and an H-O-H angle of 104.52 • . The LJ potential parameters for methane and water as well as the atomic charges and distance d OM for the two water models are given in Table 2.1. The TIP4P/2005 model reproduces qualitatively the liquid/solid coexistence for water but with a shift in temperature (20-30
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 322 Figure3.1 shows a molecular configuration of methane hydrate corresponding to 2 × 2 × 2 unit cells of the sI structure (the unit cell has a length of 1.1877 nm). This section describes the strategy used to generate such a molecular configuration of methane hydrate from the experimental crystallographic data. For methane hydrate, three criteria should be verified (more details can be found in Section 1.1.1): (1) proton disorder, (2) ice rules also known as Bernal-Fowler rules, and (3) zero dipole moment. To build a molecular structure obeying these criteria, we followed the stochastic strategy proposed by[START_REF] Buch | Simulations of H 2 O solid, liquid, and clusters, with an emphasis on ferroelectric ordering transition in hexagonal ice[END_REF].

2 .

 2 In order to comply with the ice rule, each pair of nearest neighbor oxygens must share a hydrogen atom which belongs either to the first or second oxygen atom.In what follows, the two oxygen atoms in each O-O pair are labelled O 1 and O 2 .Initially, a hydrogen atom is randomly assigned either to O 1 or O 2 for each O-O pair.The distance from the selected oxygen atom to this hydrogen atom is set according to the chemical O-H bond length of the TIP4P water model, d OH = 0.09578 nm.Due to the random assignment of the hydrogen atoms, the initial structure obtained according to this strategy is unrealistic; oxygen atoms are coordinated to N c = 0, 1, 2, 3 or 4 hydrogen atoms (obviously, coordination numbers N c ̸ = 2 are not physical). 3. The following stochastic/Monte Carlo approach is then performed to relax these non-physical coordination numbers and reach realistic configurations where N c = 2 for all oxygen atoms. An O-O pair is randomly chosen. If the hydrogen atom is bonded to O 1 (O 2 ), attempt is made to transfer the hydrogen atom to O 2 (O 1 ). This move is accepted or rejected based on the change in the absolute difference in coordination numbers ∆N c = |N O 1 c -N O 2 c |. More precisely, the move is accepted if the change in the absolute difference in coordination numbers ∆(∆N c ) < 0 (because this leads overall to configurations with oxygen atoms having the same coordination numbers i.e. N c = 2). The move is accepted with a probability 0.5 if ∆(∆N c ) = 0.

Figure 3

 3 Figure 3.1 (color online) Molecular configuration of methane hydrate with structure sI. The red and white spheres are the oxygen and hydrogen atoms of water, respectively. The gray spheres are the methane molecules which are trapped inside the hydrogen-bonded cages formed by water molecules (1 methane molecule for 8 water molecules). The dimensions of this molecular configuration, which corresponds to 2 × 2 × 2 unit cells, are: L x = L y = L z = 2.3754 nm.
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 32 Figure 3.2 Stochastic algorithm to generate methane hydrate molecular configurations with sI structure[START_REF] Buch | Simulations of H 2 O solid, liquid, and clusters, with an emphasis on ferroelectric ordering transition in hexagonal ice[END_REF]:(1) set the oxygen positions according to the experimental X-ray crystallographic data[START_REF] Kirchner | Gas hydrate single-crystal structure analyses[END_REF]; (2) generate proton disorder by randomly assigning a hydrogen atom to one of the oxygen atoms in each O-O pair (step I); (3) use a stochastic MC algorithm to verify the ice rules (step II); (4) repeat steps I and II 20000 times to generate as many configurations and select the configuration with minimum dipole moment (step III); and (5) insert the methane molecules into the cages of the methane hydrate (step IV). The red and white spheres are the oxygen and hydrogen atoms of water, respectively. The gray spheres are the methane molecules. The dimensions of the system shown here are L x = L y = L z = 2.3754 nm which correspond to 2 × 2 × 2 unit cells.

  of estimating A H w (x m = 0) along a reversible thermodynamic path linking the real solid to an Einstein molecule; the Einstein molecule is an ideal crystalline structure without any intermolecular interactions in which each molecule is attached to its reference lattice position and orientation by a harmonic potential. The canonical partition function and free energy of this reference state are known analytically. For technical reasons, it is convenient to compute the partition function of the Einstein molecule with one of its molecules at a fixed reference position (it should be noted that the position of this reference molecule is constant but molecular rotation is allowed).

Figure 3 .

 3 Figure3.3 shows the thermodynamic path used in the Einstein molecule approach to determine the free energy of the zero-occupancy methane hydrate. Throughout the manuscript, the superscript * indicates that the system has one of its water molecules at a fixed position (this molecule is shown by the big pink '+' sign in Figure3.3). The reversible integration path considered in the Einstein molecule approach consists of four steps which transform the ideal Einstein molecule into the zero-occupancy methane hydrate:

  Figure3.3 Thermodynamic path used in the Einstein molecule approach to calculate the free energy of the zero-occupancy methane hydrate, A C . Orange and green spheres are the oxygen and hydrogen atoms of water, respectively. The green box shows the periodic boundary conditions of the simulation cell. The superscript * indicates that the system has one of its water molecules at a fixed position shown by the big pink '+' sign (see text). A A is the free energy of the non-interacting Einstein molecule while A A* is the free energy of the same system with one of its water molecules at a fixed position. A B* is the free energy of the interacting Einstein molecule with one of its water molecules at a fixed position. A C* is the free energy of the zero-occupancy methane hydrate with one of its water molecules at a fixed position while A C is the free energy of the same system without fixing any water molecule positions. Constraining a water molecule position (3 degrees of freedom) increases the free energy by k B T ln V /Λ 3 . The change in free energy between the non-interacting and interacting Einstein molecule is ∆A 1 = A B* -A A* . The change in free energy between the constrained interacting Einstein molecule and the constrained methane hydrate is ∆A 2 = A C* -A B* (see text).

  corresponds to harmonic potentials acting on each molecule orientation defined by two vectors a and b with equilibrium vectors a the reference molecule orientation. As shown in Figure A.1 of the Appendix A, the two orientation vectors can be chosen as a = (l 1 -l 2 )/|l 1 -l 2 | and b = (l 1 + l 2 )/|l 1 + l 2 | where l 1 and l 2 are the vectors along the O-H bonds in the water molecule. For each water molecule i, φ a,i = cos(a i •a (0) i ) and φ b,i = cos(b i •b (0)

Free energy difference ∆A 1 .

 1 The free energy change ∆A 1 = A B* -A A* between the non-interacting and interacting Einstein molecules is estimated through a perturbation approach. One can write that the potential energy in the interacting Einstein molecule U B * is the sum of the non-interacting Einstein molecule U A * and the intermolecular potential energy U, i.e., U B * = U A * +U. For large λ R and λ T , U << U B * ∼ U A * and a perturbation treatment allows determining ∆A 1 from an average over a canonical distribution ⟨...⟩ NV T :

  Figure 3.4(a) shows ∆A 1 (T, P) as a function of temperature T for a pressure P = 100 atm (data for other pressures are not shown for the sake of clarity). Both the results for TIP4P/2005 and TIP4P/Ice are reported.
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 234 Figure 3.4 Free energy changes ∆A 1 (a) and ∆A 2 (b) and free energy A Hw (x m = 0) of the zero-occupancy methane hydrate (c) as a function of temperature T (all data reported here are for P = 100 atm). The empty and closed circles are for the TIP4P/Ice and TIP4P/2005 water models, respectively. Free energies are normalized to the total thermal energy Nk B T . ∆A 1 = A B* -A A* is the free energy difference between the non-interacting and interacting Einstein molecules (corresponding to the zero-occupancy methane hydrate). ∆A 2 = A C* -A B* is the free energy difference between the interacting Einstein molecule and the zero-occupancy methane hydrate. Except for the zero-occupancy methane hydrate in (c), all systems are constrained with one of their molecules having a fixed reference position.

Figure 3 . 4

 34 Figure3.4(b) shows ∆A 2 (T, P) as a function of temperature T for a pressure P = 100 atm (again, data for other pressures are not shown for the sake of clarity). Like for ∆A 1 (T, P), both the results for TIP4P/2005 and TIP4P/Ice are reported. ∆A 2 (T, P) is negative since removing the harmonic potential contributions (necessarily positive) when switching from B* to C* leads to lower energies and hence free energies. Finally, as the temperature increases, ∆A 2 (T, P) becomes less pronounced as the entropy contribution becomes more important.

  Figure 3.5 also shows the correction term ∆µ H w = µ H w (x m )µ H w (x m = 0) =m =0,T,P) N m dµ m as a function of methane occupancy N m . As expected, ∆µ H w is small as the chemical potential of water is not very sensitive to the methane occupancy (due to the fact that water density in hydrate does not change significantly with the methane occupancy and that water weakly interacts with methane). For the different T and P considered in this work, the chemical potential of water in methane hydrate is obtained by adding the correction term due to methane occupancy to the chemical potential for the zero-occupancy hydrate. The chemical potentials of water in the methane-occupied hydrate, µ H w , in the temperature range T = 180-350K and for P = 1, 10, 100 atm are shown in Figures A.4 and A.5 of the Appendix A (which correspond to the data for TIP4P/2005 and TIP4P/Ice, respectively).

  Figure A.6 of the Appendix A also shows the different contributions to the water chemical potential: free energy of the zero occupancy hydrate, pressure-volume term, proton disorder correction and correction due to methane occupancy.

Figure 3 . 5

 35 Figure 3.5 Chemical potential of methane, µ H m , versus number of methane molecules, N H m , in methane hydrate at T = 250 K and P = 10 atm. N H m is expressed as the number of methane molecules per methane hydrate unit cell. The empty and filled circles are for TIP4P/Ice anf TIP4P/2005 water models, respectively. The dotted lines correspond to cubic interpolation of the data. The insert shows the chemical potential difference of water relative to the zero-occupancy methane hydrate, ∆µ H w = µ H wµ H w (x m = 0), as a function of the number of methane molecules, N H m (these data are obtained from N m (µ m ) using Eq. (3.9)). The dashed and solid lines are for the TIP4P/Ice and TIP4P/2005 water models. All chemical potentials are normalized to the thermal energy, k B T .

Figure 3

 3 Figure 3.6 (color online) Equilibrium number of methane, x m (µ V m = µ H m ) (empty circles) and x m (µ L w = µ H w ) (filled circles), as a function of temperature, T , at P = 1 (blue), 10 (red), 100 (black) atm. The corresponding interpolation cross point, x m (µ V m = µ H m ) = x m (µ L w = µ H w ) , indicating the liquid water-methane hydrate-methane vapor (L-H-V) equilibrium temperature and methane composition at the given pressure. The left and right panels are for TI4P/2005 and TIP4P/Ice water models, respectively.

Figure 3

 3 Figure3.7 Pressure-Temperature phase diagram of methane hydrate as determined using free energy calculations (circles, this work), direct coexistence method (gray pentagon, this work), hyper parallel tempering method (black pentagon, this work). The empty and filled symbols are for TIP4P/Ice and TIP4P/2005 water models, respectively. The empty and filled squares are the results obtained for TIP4P/Ice and TIP4P/2005 by Conde et al.(Conde and Vega, 2010) using the direct coexistence method. The empty triangles are the free energy calculations for TIP4P/Ice by Jensen et al.[START_REF] Jensen | Calculation of liquid water-hydrate-methane vapor phase equilibria from molecular simulations[END_REF]. The solid line shows the experimental data by[START_REF] Sloan | Fundamental principles and applications of natural gas hydrates[END_REF]. The insert shows a zoomed view of the region shown depicted as a dashed rectangle in the main figure.

Figure 3

 3 Figure3.8(b) shows the methane x m and water x w mole fractions in the system in the course of the GCMC simulation (i.e., the number of MC moves performed with one MC move corresponding to a molecule translation, rotation, insertion or creation). Results

Figure 3

 3 Figure 3.8 (color online) Determination of the phase transition temperature between methane hydrate and liquid phases using the direct coexistence method. (a) Starting from a methane hydrate coexisting with the liquid phase, several Monte Carlo simulations in the Grand Canonical ensemble (µV T ) at different temperatures and chemical potentials are performed (chemical potentials are chosen so that the pressure is P = 100 atm). The red and white spheres are the oxygen and hydrogen atoms of water while the grey spheres are the methane molecules. The dimensions of the simulation box are: L x = L y = L z = 2.3754 nm. Molecules with y < 0 (left region) and y > 0 (right region) belong to the methane hydrate and liquid phases, respectively. If the temperature is lower than the melting point T m , the liquid disappears as methane hydrate forms. In contrast, if the temperature is larger than T m , the methane hydrate melts and is replaced by the liquid. (b) Methane (left) and water (right) mole fractions during the different GCMC simulation runs: T = 260 K (black), 270 K (purple), 280 K (blue), 290 K (red), and 300 K (orange). The x-axis, which indicates progress along the GCMC simulation, is expressed as a number of attempted MC moves where one move is a molecule translation, rotation, insertion or deletion.

Figure 3

 3 Figure 3.9(b) shows the methane x m and water x w mole fractions as a function of temperature T once equilibrium has been reached. The sharp decrease (increase) at T m = 289.5 K in x m (x w ) indicates melting of the methane hydrate. Such a transition

Figure 3

 3 Figure3.9 (color online) Determination of the phase transition temperature between the methane hydrate and liquid phases using hyper parallel tempering Monte Carlo simulations. (a) Several replicas M = 16 of the system are considered in parallel. Each replica is at different temperatures and chemical potentials (the latter are chosen so that the pressure of the system is P = 100 atm). The temperature ranges from 283 K to 298 K with a temperature difference ∆T = 1 K. For each replica, a regular grand canonical Monte Carlo simulation consisting of molecule translation, rotation, insertion, and deletion moves are performed. In addition to these conventional moves, replicas at two different temperature/chemical potentials sets are swapped with a probability given from the ratio of the Boltzmann factors in the Grand Canonical ensemble (see text). The red and white spheres are the oxygen and hydrogen atoms of water while the grey spheres are the methane molecules. The dimensions of the simulation box are: L x = L y = L x = 2.754 nm. (b) Average methane (left) and water (right) mole fraction as a function of temperature as estimated from the different replicas considered in the hyper parallel tempering simulation.

Figure 4

 4 Figure 4.1 (color online) Molecular configuration of the confined coexisting phases (i.e., methane hydrate + liquid water) considered in this work.The red and white spheres are the oxygen and hydrogen atoms of water, respectively. The gray spheres are the methane molecules which are inside the hydrogen-bonded cages formed by water molecules. The yellow spheres are the solid atoms in the pore walls. The two component system is confined in a pore with a width D p made of layers of solid particles distributed according to a square structure. Each pore surface is made of 4 layers separated by a distance D l = 0.2159 nm so that the total pore wall thickness is 0.7558 nm. Inside the porosity, methane hydrate is located in the region y < 0 (left side) and liquid water in the region y > 0 (right side). In this specific configuration, the pore size is D p = 2.8554 nm which corresponds to 2 × 2 × 2 unit cells of bulk sI methane hydrate (the lattice parameter of methane hydrate is u = 1.1877 nm). Periodic boundary conditions are used along the x, y, and z directions. The dimensions of the simulation box (defined by the dashed lines) are L x = L y = 2.3754 nm and L z = 4.3670 nm.
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 42 Figure 4.2 (color online) Schematic illustration of the determination of the surface tension using the Kirkwood-Buff approach. (1) The configuration of phases α (orange region) and β (gray region) is prepared. These two phases define two planar α-β -interfaces perpendicular to the z axis (left): the surface area in the x-y-plane is A and the length of the simulation box in the z-direction is L z . The normal and parallel pressure components are P T (z) = (P xx (z) + P yy (z)) /2 and P N (z) = P zz (z). (2) A small change dA is considered in the surface area the in x-y-plane. (3) The change is compensated by a small change dz to keep the volume V constant, i.e., L z dA = -(A + dA)dz.

4. 2

 2 Formation and dissociation of confined methane hydrate 4.2.1 Phase stability of confined methane hydrate

=

  285 ± 5 K at the same pressure P = 100 atm (see Chapter 3). The shift in the coexistence temperature is therefore ∆T pore m K for D p = 2.8554 nm, indicating that confinement in such porous solids tends to lower the coexistence temperature. As will be further discussed in the next section, this is consistent with the Gibbs-Thomson equation with a lower hydrate-substrate surface tension than the liquidsubstrate surface tension. For the three other pore sizes D p = 1.6677 nm, 5.2308 nm, and 7.6062 nm, the methane x m and water x w mole fractions confined in the porous solids in the course of GCMC simulations are shown in Figure 4.4. These GCMC simulations lead to T pore m = 235 ± 5 K for D p = 1.6677 nm, T pore m = 265 ± 5 K for D p = 5.2308 nm, and T pore m = 275 ± 5 K for D p = 7.6062 nm. These data are summarized in Table 4.1.

  considered for D p = 2.8554 nm. At P = 100 atm, we obtained T pore m = 255 ± 5 K for both sizes (the data of D v = 0.0000 nm are shown in Figure 4.3 while the data for D v = 2.0000 nm are shown in Figure B.1 of the Appendix B). The fact that we obtain the same melting temperature indicates a negligible influence of the vacuum layer on T pore m . Molecular systems with a bigger dimension in the y-axis L y = 4.7508 nm (while keeping L x and L z identical) were considered for the pores D p = 2.8554 nm and 5.2308 nm. The calculations performed using the DCM technique lead to T pore m = 265 ± 5 K for D p = 2.8554 nm and T pore m = 285 ± 5 K for D p = 5.2308 nm as shown in Figure B.2 of the Appendix B. By

Figure B. 3

 3 Figure B.3 of the Appendix B).
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 45 methane hydrate (H, left) and liquid water with methane molecules solubilized (L, right) considered to derive the Gibbs-Thomson equation are confined in a slit pore of a width D p . These two confined systems within the volume V (V = D p A) are in equilibrium with the reservoir which imposes the chemical potential of water µ w , the chemical potential of methane µ m , and temperature T . The grand potentials

  of the melting point T pore m of confined methane hydrate with respect to the melting point T bulk m of bulk methane hydrate. ∆µ

)

  The above equation, which is a revisited version of the Gibbs-Thomson equation, shows that the shift in melting temperature of confined methane hydrate with respect to the bulk phase, ∆T pore m bulk m , linearly depends on the reciprocal pore width, 1/D p . However, we note that in this extended approach there is two additional terms that do not depend directly on pore width D p . If we assume as is usually done in the literature: (a)v H 0 = v L 0 ; (b) n H i,0 = n L i,0 (i = m,w); and (c) γ LSγ HS = γ LH cos θ with θ = π, Eq. (

  ). Such a Gibbs-Thomson equation indicates that the shift in melting temperature ∆T m /T bulk m linearly depends on the reciprocal pore width 1/D p with two additional terms for enthalpy and chemical potentials. The Gibbs-Thomson coefficient, k GB = 2(γ LS -

Figure 4 .

 4 Figure 4.6 (color online) Molar volume v (a) and molar enthalpy h (b) of liquid water(solid circles), full-methane hydrate (empty squares), and empty-methane hydrate (empty triangles). Enthalpy of melting ∆h m (c) from full-methane hydrate (empty squares) to liquid water and from empty-methane hydrate (empty triangles) to liquid water using MD simulations. The dashed lines indicate that these parameters are along the L-H-V phase boundary for bulk phase: the red, blue, and green colors are for (T, P) = (233 K, 1 atm), (262 K, 10 atm), and (286 K, 100 atm), respectively. All the thermodynamic parameters are per mole of water.

  w . The configurations of methane hydrate and liquid water are equilibrated using isobaric-isothermal molecular dynamics until the density and energy converge to an equilibrium value. v H , v L , h H , h L , and ∆h m at different bulk phase equilibrium conditions, (T, P) = (233 K, 1 atm), (262 K, 10 atm), and (286 K, 100 atm), are shown in Figure 4.6. From these calculations, we obtain ∆h m = 8.35 kJ•mol -1 , v L = 1.8475 × 10 -5 m 3 •mol -1 , and v H = 2.2813 × 10 -5 m 3 •mol -1 at T = 286 K and P = 100 atm. Such an enthalpy of melting, ∆h m , leads to an entropy of melting, ∆s m = ∆h m /T bulk m = 29.3 J•K -1 •mol -1 which

Figure 4 .

 4 7 shows ⟨P T ⟩ and ⟨P N ⟩ at T = 290 K during the MD simulation in the last 2.5 ns (a total of > 20 ns was used for each molecular dynamics). In practice, the finite size effects from the vacuum layer (added at each side of the simulation box along the z-axis), D v , is first considered. We determine γ HS at T = 290 K with D v = 0 -20 nm (as shown in Figure B.7 of Appendix B); it was found that the influence of D v can be ignored when D v ≥ 15 nm. In this work, D v = 15 nm was thus used to calculate γ HS and γ LS . These calculations lead to γ HS = 15 mJ•m 2 and γ LS = -56 mJ•m 2 at T = 290 K. These results are shown in Table

Figure 4 . 7

 47 Figure 4.7 Normal (black line), P N = P zz , and parallel (gray line), P T = 1 2 (P xx + P yy ), pressure components of methane hydrate (left) and liquid water (right) in a slit pore D p = 9.9816 nm as a function of time, t, in canonical ensemble MD simulation at T = 290 K. The dimensions of the simulation box are: L x = L y = 2.3754 nm and L z = 41.4932 nm.

Table 4 . 2

 42 Thermodynamic properties of liquid water and methane hydrate (both empty and full hydrates are considered) at T = 286 a K or T = 290 b K and P = 100 atm. a Normalized per mole of water. b Surface tensions determined for hydrate-substrate and liquid-substrate surfaces. c k DCM = -0.28 as obtained by fitting the results of the direct coexistence method. The values in parentheses are those reported by Molinero at al.[START_REF] Jacobson | Can amorphous nuclei grow crystalline clathrates? the size and crystallinity of critical clathrate nuclei[END_REF].
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 48 Figure 4.8 Shift in melting temperature of confined methane hydrate with respect to the bulk, ∆T pore m /T bulk m , at P = 100 atm as a function of the reciprocal of pore size, 1/D p . The solid circles are obtained using the direct coexistence method while the solid line is determined using the revisited version of the Gibbs-Thomson equation: ∆T pore m /T bulk m = 2(γ LS v Lγ HS v H )/∆h m D p .

  ) for P = 10 atm. These results are in agreement with the data obtained using the DCM technique as shown in Figure B.5 of the Appendix B.

=

  1.3. Due to the slow formation/dissociation kinetics, large computational resources are required from a technical point of view even if the umbrella sampling technique is used. In particular, low temperatures lead to very slow methane hydrate dissociation. Therefore, it is difficult to explore the free energy profile at low temperature (e.g., at melting temperature T m ∼ 255 K of confined methane hydrate for D p = 2.8554 nm). In this work, four temperatures (T = 290 K, 310 K, 330 K, and 350 K) around T bulk m = 285 K were considered for bulk methane hydrate/liquid water. As for confined methane hydrate/liquid water, three temperatures (T = 290 K, 300 K, and 310 K) above T pore m 255K were considered. Lower temperatures were also considered for confined methane hydrate/liquid water. However, even if ∼ 10 6 MC moves per molecule were used in the umbrella sampling technique, we did not obtain meaningful results for these low temperatures.

Figure 4 .

 4 Figure 4.9 shows the normalized free energy, G/k B T , of bulk and confined (D p = 2.8554 nm) methane hydrate/liquid water as a function of the local bond order parameter,

Figure 4 .

 4 Figure4.10 (color online) Free energy difference, ∆G LH , between methane hydrate and liquid water as a function of temperature, T . The blue circles are for bulk methane hydrate and the red circles are for confined methane hydrate in a pore D p = 2.8554 nm. The blue dashed line is a linear fit for bulk methane hydrate while the red dashed line is a linear fit for confined methane. These fits lead to T bulk m = 302 K and T pore m = 257 K for D p = 2.8554 nm. The free energy is normalized using the thermal energy, k B T .

  of the Gibbs-Thomson equation was also derived. For this revised Gibbs-Thomson equation, we first determined important thermodynamic parameters such as the molar volume and enthalpy for both methane hydrate and liquid water. And, the

Figure 4 .

 4 Figure4.11 (color online) Free energy barriers, ∆G barr /k B T , between methane hydrate and liquid water as a function of the shift with respect to the melting point, T -T m , for bulk phase (red) and for confined phase (blue): (1) free energy barriers from liquid water to methane hydrate, i.e., methane hydrate formation (left), ∆G L→H barr ; and (2) free energy barrier from methane hydrate to liquid water, i.e., methane hydrate dissociation (right), ∆G H→L barr . The red cross is for bulk methane hydrate while the blue cross is for confined methane hydrate using the extroplation described in the text. The free energy barriers are normalized using the thermal energy, k B T .
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Figure 5

 5 Figure 5.1 (color online) Molecular configuration of confined methane hydrate (left) and liquid water (right). The red and white spheres are the oxygen and hydrogen atoms of water, respectively. The gray spheres are the methane molecules which are inside the hydrogen-bonded cages formed by water molecules. The yellow spheres are the solid atoms of the pore walls. Pore walls are set as described in Chapter 4 but with pistons at the top wall and bottom wall. In this specific configuration, the sI methane hydrate with dimensions of L x = L y = L z = 2.3754 nm is confined inside the porosity (left). The liquid water (right) is obtained by first removing methane molecules and then melting the hydrate phase in the canonical ensemble followed by simulations at constant pressure. The dimensions of the simulation box are L x = L y = 2.3754 nm and L z = 44.5734 nm (left) and 41.4932 nm (right). Periodic boundary conditions are used along the xand y-directions.
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 52 Figure5.2 Density profiles along the z-axis, ρ(z), of water in liquid phase (top), methane in hydrate phase (center), and water in hydrate phase (bottom) at T = 240 K and P = 100 atm. The red solid lines are for bulk phases while the green solid lines are for confined phases. The black dashed lines are the positions of the pore walls with the pore width D p . The blue dashed lines are the dimension in the z-direction for bulk methane hydrate with L z = 2 u. The red dashed lines are the density profiles for a duplicated bulk phase.

Figure 5 .Figure 5 . 3

 553 Figure5.3 (top)), it is seen that confinement decreases Q 6 . This might be caused by the fact that the larger density leads to a larger number of neighbors for a water molecule in the layers while the lower density corresponds to fewer neighbors for a water molecule between two layers. Q 6 for confined liquid water around the pore center is close to the value for bulk liquid water. This is due to the fact that their densities are similar. Finally, Q 6 for bulk and confined methane hydrate are similar along the z-axis (see Figure5.3 (bottom)) except for slight differences close to the pore walls. These slight differences are due to the fact that the water molecules in this region possess fewer neighbors. The number of neighbors is N b = 4 for water molecules in bulk methane hydrate and confined methane hydrate in pore center while N b = 2 or 3 for water in the region close to the pore walls.

Figure 5 . 4

 54 Figure 5.4 shows the volume (left) and the corresponding thermal expansion (right) as a function of temperature for liquid water. First, the volume V increases with temperatureT at P = 100 atm for both bulk and confined liquid water. Second, calculations in the NPT and NP zz T ensembles leads to the same volume of bulk liquid water at each temperature, i.e.,

Figure 5 . 5

 55 Figure5.5 shows the volume (left) and the corresponding thermal expansion (right) as a function of temperature for methane hydrate. Similarly to liquid water, we found that: (1) V (T ), V z (T ), V dmax pore (T ), and V dmin pore (T ) increases with T ; (2) V (T ) ∼ V z (T ), (∂V /∂ T ) P ∼ (∂V z /∂ T ) P zz , so that α H P = α H P zz ; (3) α H P > α H,dmin P zz ,pore > α H,dmax P zz ,pore . Confinement decreases
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 54 Figure5.4 (color online) Volume (V , left) and thermal expansion (α P , right) of bulk and confined liquid water as a function of temperature T at P = 100 atm. Two different ensembles were considered for bulk liquid water: NPT ensemble (blue circles) and NP z T ensemble (black circles). For confined liquid water, a minimum value D min p (orange circles) and a maximum value D max p (red circles) of the pore width were considered. A total of 368 water molecules were used to determine these data. The dashed lines are linear fits.
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 55 Figure5.5 (color online) Volume (V , left) and thermal expansion (α P , right) of bulk and confined methane hydrate as a function of temperature T at P = 100 atm. Two different ensembles were considered for bulk methane hydrate: NPT ensemble (blue circles) and NP z T ensemble (black circles). For confined methane hydrate, a minimum value D min p (orange circles) and a maximum value D max p (red circles) of the pore width were considered. The dashed lines (left) are linear fits. The solid black line are experimental data while the dashed black line (right) are simulation data for bulk methane hydrate[START_REF] Ning | Mechanical properties of clathrate hydrates: status and perspectives[END_REF][START_REF] Ning | Compressibility, thermal expansion coefficient and heat capacity of CH 4 and CO 2 hydrate mixtures using molecular dynamics simulations[END_REF].

Figure 5

 5 Figure5.6 (color online) Volume (V , left) and isothermal compressibility (κ T , right) of bulk and confined liquid water as a function of pressure P at T = 240 K. Two different ensembles were considered for bulk liquid water: NPT ensemble (blue circles) and NP z T ensemble (black circles). For confined liquid water, a minimum value D min p (orange circles) and a maximum value D max p (red circles) of the pore width were considered. The dashed lines are linear fits.

Figure 5 .

 5 Figure 5.7 (color online) Volume (V , left) and isothermal compressibility (κ T , right) of bulk and confined methane hydrate as a function of pressure P at T = 240 K. Two different ensembles were considered for bulk methane hydrate: NPT ensemble (blue circles) and NP z T ensemble (black circles). For confined methane hydrate, a minimum value D min p (orange circles) and a maximum value D max p (red circles) of the pore width were considered. The dashed lines are linear fits.
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 59 Figure 5.9. For bulk methane hydrate, one optical mode with the oscillation frequency ω 1 = 148.3 rad/ps is found. For the tangential component of confined methane hydrate, only one optical mode with ω 1 = 115.5 rad/ps is also found. For the normal component of confined methane hydrate, two optical modes with ω 1 = 137.7 rad/ps and ω 2 = 186.7

Figure 5

 5 Figure5.9 (color online) Fourier transform F [υ] of the autocorrelation function of the heat-flux for bulk (h(t), left) and confined (h T (t), center; h N (t), right) methane hydrate. For bulk methane hydrate, the black solid line is from this work while the black dashed line is from English et al.(English and Tse, 2009; English et al., 2009). For confined methane hydrate, the red solid line is for h N = V /k B T ⟨J z (t)J z (0)⟩ while the green solid line is for h T = V /2k B T J x (t)J x (0) + J y (t)J y (0) .

Figure 5 .

 5 Figure5.10 Inverse Fourier transform of the power spectrum for bulk methane hydrate. The acoustic mode (gray line) and optical mode (black line) are separated as described in the text. The maxima/peaks of the optical modes (black circles) and the smoothed points for the acoustic modes (gray circles) are considered to determine the relaxation time and amplitudes (see text).
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 5 Figure5.11 (color online) Piecewise linear fits applied to the acoustic -smoothed points -(gray circles, right panels) and optical -maxima/peaks -(black circles, left panels) modes for bulk methane hydrate (top panels) and the tangential (center panels) and normal (bottom panels) components of confined methane hydrate. Piecewise linear fits for optical modes are shown for short-range (red solid lines), long-range (blue solid lines), and constant term (green solid lines) terms. for h N (t), two optical modes are included but only one optical mode (ω j = 186.7 rad/ps) is shown here (the fit results for the other one are shown in Table5.2). Piecewise linear fits for acoustic modes are shown for short-range (red hashed lines), medium-range (blue dashed lines), and long-range (green dashed lines) terms. The black solid lines are for overall optical fits while the gray solid lines are for overall acoustic fits.
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 2 choice of TIP4P/Ice water and OPLS-UA methane models allows one to reproduce the phase diagram of methane hydrate. The data presented in the present work are consistent with previous molecular simulation works and the experimental phase diagram of methane hydrate. Using the direct coexistence method, decreased melting temperatures are observed for confined methane hydrate with respect to bulk methane hydrate. In other words, the shift in melting temperature of confined methane hydrate is negative ∆T m =

L

  'hydrate de méthane, une structure cristalline constituée de molécules d'eau formant un réseau de cages liés par liaison hydrogène autour de molécules de méthane, est important pour de nombreuses applications dans le domaine de l'environnement et de l'énergie. Dans la nature, l'hydrate de méthane est souvent confiné à la surface ou à l'intérieur de roches poreuses où il interagit avec des surfaces minérales. Comprendre le rôle de ces effets de confinement et de surface sur la thermodynamique et la dynamique de l'hydrate de méthane est une préoccupation importante. Dans cette thèse, différentes stratégies de simulation moléculaire ont été utilisées pour évaluer la structure, la stabilité, la cinétique de formation et les propriétés physiques de l'hydrate de méthane confiné à l'échelle nanométrique.Premièrement, différentes stratégies de simulation moléculaire, y compris des calculs d'énergie libre utilisant l'approche de la molécule d'Einstein, la technique hyperparallel tempering et la méthode de la coexistence directe, sont utilisées pour déterminer la stabilité de la phase d'hydrate de méthane non confinée. Ensuite, la méthode de la coexistence directe est choisie pour déterminer la stabilité de l'hydrate de méthane nanoconfinée.Pour décrire le changement de température de fusion, nous redérivons l'équation de Gibbs-Thomson. Nous utilisons également la dynamique moléculaire pour déterminer les paramètres thermodynamiques de cette équation de Gibbs-Thomson et en évaluer sa validité. Enfin, des calculs d'énergie libre utilisant la technique umbrella sampling sont effectués pour déterminer la cinétique de formation/dissociation de l'hydrate de méthane non confiné et confiné. En outre, l'effet de confinement sur plusieurs propriétés physiques et physicochimiques de l'hydrate de méthane est également déterminé. Nos constatations sont les suivantes:

( 4 )

 4 En utilisant la technique umbrella sampling, les barrières d'énergie libre entre l'hydrate de méthane et l'eau liquide sont déterminées. Nous avons constaté que le confinement diminue ces barrières d'énergie libre et conduit à une cinétique de formation/dissociation plus rapide de l'hydrate de méthane.
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 9223 Figure A.2 Intermolecular potential energy U of the zero-occupancy methane hydrate along the canonical ensemble MC simulation at T = 250 K and P = 100 atm (black line) (only the harmonic potential U A * is considered in the acceptance probability): (a) TIP4P/2005 water model; (b) TIP4P/Ice water model. Note that the figure shows exp -(U -U (0) )/k B T where U (0) is the potential energy of the reference lattice system . The gray horizontal line is the canonical ensemble averaged value, exp -(U -U (0) )/k B T NV T. All energies are normalized to the thermal energy k B T .

A. 4 Figure A. 4 Figure A. 5

 445 Figure A.4 Determination of the chemical potential of methane and water in methane hydrate using TIP4P/2005 water in combination with OPLS-UA methane model: (1) methane occupancy N H m (the number of molecules per unit cell) versus fugacity f (left panel), (2) chemical potential of methane µ H m /k B T = ln f Λ 3 k B T (center panel) and water µ H w /k B T = µ (0) w /k B T -1 N w k B T

A. 5 Figure A. 6 Figure

 56 Figure A.6 Contributions to the chemical potential of water in methane hydrate µ H w (x m )/k B T at T = 250 K and P = 100 atm. µ H w (x m )/k B T = µ H w (x m = 0)/k B T + ∆µ H w (x m )/k B T where µ H w (x m = 0)/k B T (black solid line) is the chemical potential of water in zero-occupancy methane hydrate and ∆µ H w (x m )/k B T (black dashed line) is the contribution due to the methane occupancy. µ H w (x m = 0)/k B T = A w (x m = 0)/N w k B T + A disorder /N w k B T + PV /N w k B T where A w (x m = 0)/k B T is the contribution from the Helmholtz free energy of zero-occupancy methane hydrate using Einstein molecule approach (green solid line), A disorder is the proton disorder correction (blue solid line), and PV /N w k B T term (red solid line). The data shown here are for the TIP4P/Ice water model (similar qualitative results were obtained for the TIP4P/2005 water model). Note the use of a broken axis along the y-axis.

Figure B. 2 (

 2 Figure B.2 (color online) Methane (x m , left panels) and water (x w , right panels), mole fractions during the different GCMC simulation runs: T = 230 K (black), 240 K (blue), 250 K (purple), 260 K (red), and 270 K (orange) for D p = 2.8554 nm (top panels); and T = 260 K (blue), 270 K (purple), 280 K (red), and 290 K (orange) for D p = 5.2308 nm (bottom panels). The x-axis, which indicates progress along the GCMC simulation, is expressed as a number of attempted MC moves where one move is a molecule translation, rotation, insertion or deletion. The dimensions of the simulation box are: L x = 2.3754 nm, L y = 4.7508 nm, and L z = 4.3670 nm for D p = 2.8554 nm (top panels) while L z = 6.7424 nm for D p = 5.2308 nm (bottom panels).

Figure B. 3

 3 FigureB.3 Shift in the melting temperature of confined methane hydrate with respect to the bulk, ∆T pore m /T bulk m , as a function of the reciprocal of the pore width, 1/D p : the dashed line is for the larger molecular system (i.e., L y = 4.3670 nm); while the solid line is for the smaller one (i.e., L y = 2.3754 nm). Note that T pore m for larger system reads from Figure B.2, while T bulk m

B. 3 Figure B. 4 (

 34 FigureB.4 (color online) Methane (x m , left panels) and water (x w , right panels) mole fractions during the different GCMC simulation runs: T = 250 K (black), 260 K (blue), 270 K (purple), 280 K (red), and 290 K (orange) for bulk phase (top panels); while T = 210 K (black), 220 K (blue), 230 K (purple), 240 K (red), and 250 K (orange) for confined system with D p = 2.8554 nm (bottom panels). The x-axis, which indicates progress along the GCMC simulation, is expressed as a number of attempted MC moves where one move is a molecule translation, rotation, insertion or deletion. The dimensions of the simulation box in x-and y-directions are L x = L y = 2.3754 nm, and in z-direction are L z = 2.3754 nm for bulk system while L z = 4.3670 nm for confined system. T bulk m = 265 ± 5 K and T pore m

Figure B. 5

 5 Figure B.5 Shift in the melting temperature of confined methane hydrate with respect to the bulk, ∆T pore m /T bulk m , as a function of the reciprocal of the pore width, 1/D p : the dashed line is for P = 10 atm while the solid line is for P = 100 atm. The black circles read from Figure B.4 (DCM simulations); while the dashed and solid lines are computed using k GB = (γ LS v Lγ HS v H )/∆h f us .

Figure B. 7

 7 FigureB.7 The normal (black), P N = P zz , and tangential (gray), P T = 1 2 (P xx + P yy ), pressure tensors for methane hydrate (left), and the surface tension (right), γ HS , as a function of the vacuum layer width D v at T = 290 K. D v ≥ 15 nm is required to determine γ HS .

  

  . . 135 5.11 (color online) Piecewise linear fits applied to the acoustic -smoothed points -(gray circles, right panels) and optical -maxima/peaks -(black circles, left panels) modes for bulk methane hydrate (top panels) and the tangential (center panels) and normal (bottom panels) components of confined methane hydrate. Piecewise linear fits for optical modes are shown for short-range (red solid lines), long-range (blue solid lines), and constant term (green solid lines) terms. for h N (t), two optical modes are included but only one optical mode (ω

j = 186.7 rad/ps) is shown here (the fit results for the other one are shown in Table

5

.2). Piecewise linear fits for acoustic modes are shown for short-range (red hashed lines), mediumrange (blue dashed lines), and long-range (green dashed lines) terms. The black solid lines are for overall optical fits while the gray solid lines are for overall acoustic fits.
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2.1 Interaction potential parameters corresponding to the OPLS-UA model for methane, the TIP4P/2005 and TIP4P/Ice models for water, and the atomic model used to describe the porous solid (solid atom). For the two water models, we also indicate the melting temperature T m as predicted using molecular modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Chemical potential, µ V m (x m = 1, T, P), and fugacity, f , of methane vapor for the OPLS-UA methane model. All chemical potentials are normalized to the thermal energy, k B T . Absolute uncertainties for the chemical potentials are smaller than 3 × 10 -4

Table 1

 1 Declaration of my manuscript.As discussed in the introduction, fundamental understanding on methane hydrate has raised significant interest in the last decades. The dynamics and thermodynamics of this complex compound play an important role in many practical applications of methane hydrate. Most methane hydrate in nature is confined in the voids present in various porous medium and rocks. That is, methane hydrate inside this porosity interacts with the surface atoms of these host porous materials. Such pore-hydrate interactions have drastic effects on the dynamics and thermodynamics of methane hydrate. This chapter presents a brief
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Table 3 .

 3 2 Chemical potential of liquid water µ L w (T, P). All chemical potentials are normalized to the thermal energy, k B T . Absolute uncertainties for the chemical potentials are smaller than 3 × 10 -2 .

	water		P = 1 atm	P = 10 atm	p = 100 atm
	model T /K	P triple	f (Pa)	

  ). Each of the M = 16 replicas consists of a mixture of water and methane molecules at a given set of temperature/chemical potentials (T, µ w , µ m ). For each replica, conventional GCMC moves are performed: molecule transla-

tion, rotation, deletion and insertion. Moreover, trial swap moves between configuration α (energy U α , N α w water molecules and N α m methane molecules) in replica (1) and configuration β (energy U β , N β w water molecules and N β m methane molecules) in replica (2) are attempted. The swap move is accepted or rejected according to the following Metropolis probability:

  Figure 4.9 (color online) Free energy, G, of methane hydrate and liquid water in bulk phase (left) and in confined phase for D p = 2.8554 nm (right) as a function of the local bond order parameter, Q 6 . G (Q 6 ) of bulk phase (left) is shown at T = 290 K (blue), 310 K (purple), 330 K (orange) and 350 K (red). G (Q 6

		210				210		
	G/k B T	70 140	290 K 310 K 330 K 350 K		G/k B T	70 140	290 K 300 K 310 K	
		0				0		
		0.3	0.4	0.5	0.6	0.3	0.4	0.5	0.6
			Q 6				Q 6	

  . The large free energy barrier between liquid water and methane hydrate at the melting point (∆G L→H barr = ∆G H→L barr at this point) indicates that the phase transition between methane hydrate and liquid water (i.e., L → H and H → L) is extremely slow. On the other hand, as compared with bulk methane hydrate, confinement decreases the free energy barrier G barr /k B T (for both L → H and H → L).

  ) P zz , so that α H

	P = α H P zz ; (3) α H P > α H,dmin P zz ,pore > α H,dmax P zz ,pore . Confinement decreases
	the thermal expansion up to 44.3% for methane hydrate. In addition, by comparing the
	thermal expansion between methane hydrate and liquid water, methane hydrate shows a
	smaller thermal expansion than liquid water in the temperature range 160-240 K: α L P > α H P ,
	α L,dmax P zz ,pore > α H,dmax P zz

  . For confined methane hydrate, the tangential component h T (t) shows a similar trend as h(t) for bulk methane hydrate but with a slight different oscillation frequency. The normal component h N (t) exhibits two Figure5.8 (color online) Autocorrelation function of the heat-flux vector, h(t), as a function of time, t, for bulk (left) and confined (right) methane hydrate. For bulk methane hydrate, the black solid line is from this work while the black dashed line is from English et al.

	oscillation frequencies.				
		0.60				0.60		
	h (W/m⋅K⋅fs)	0.00 0.30			h (W/m⋅K⋅fs)	0.00 0.30		
		-0.30	0.03	0.18	0.33	-0.30 0.00	0.15	0.30	0.45
				t (ps)			t (ps)

Table 5 .

 5 1 Relaxation times, τ i (in ps), and amplitude, A i (in W/mKfs), from the overall fit of the acoustic modes. Contributions, λ i (in W/mK), of each component to the thermal conductivity, λ ac (in W/mK), of acoustic modes are also listed. * is for the oscillated acoustic mode with the frequencyω sh = 1.2612 rad/ps. (t) 0.0022 0.0453 0.100 0.0016 0.3027 0.497 0.00474.2780 20.146 20.743 h N (t) * 0.0261 29.0935 0.564

	obj.	A sh	τ sh	λ sh	A me	τ me	λ me	A lg	τ lg	λ lg	λ ac
	h(t)	0.0014 0.0455 0.063 0.0004 0.2001 0.073 0.0002 2.1069 0.369	0.504
	h T -	-	-	-	-	-	0.564

Table 5 .

 5 2 Relaxation times, τ jk (in ps), and amplitude, B jk (in W/mKfs), from the overall fit of the optical modes. The oscillation frequencies, ω j (in rad/ps) obtained from the power spectra are also listed. Contributions, λ j (in W/mK), of each component to the thermal conductivity, λ op (in W/mK), of optical modes are also listed. The final thermal conductivity is shown here.148.3 0.0534 0.1331 0.112 0.4567 0.0065 0.001 0.0027 0.113 0.616 h T (t) 115.1 0.0428 0.1120 0.190 0.1692 0.0449 0.020 0.0032 0.210 20.953 h N (t) 186.7 0.0462 0.1484 0.091 0.1882 0.1408 0.022 0.0030 0.112

	obj.	ω j	τ jk	B jk	λ jk	τ jk	B jk	λ jk	C j	λ op	λ
	h(t) 0.729
		137.7 0.1225 0.1228 0.053	-	-	-	0.0003 0.0527	

The derivation of the grand potential reads: dΩ = -SdT -PdV -Ndµ + γdA. At constant T , V , µ, and A, dΩ = 0.
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short-range contribution, A me and τ me for the medium-range contribution, and A lg and τ lg for the long-range contribution. On the other hand, another three (more if the system has more optical modes) linear fits are performed to determine the signal corresponding to the optical modes: B 11 and τ 11 for the short-range contribution, B 12 and τ 12 for the long-range contribution, and C 1 for the constant term. Using the fitting results (i.e., relaxation time τ and oscillation amplitudes A, B, C) given above as the initial parameters, two overall fits are then performed: one is for the acoustic and the other one is for the optical modes.

These fits results are also shown in Figure 5.11. The final fit results were used to determine the corresponding thermal conductivity in Eqs. (5.2) and ( 5.3),

(5.14)

In practice, the fit of the acoustic modes given above is accurate for bulk methane hydrate (see Figure 5.11 (right top)) while not for confined methane hydrate (see Figure 5.11 (right center) and (right bottom)). On the one hand, Figure 5.11 (right center) shows that the fit does not work well for the acoustic modes of the tangential component of confined methane hydrate. Therefore, the trapezoidal integration algorithm is also used to estimate the total (including acoustic and optical modes) tangential component of the thermal conductivity of confined methane hydrate. On the other hand, Figure 5.11(right bottom) indicates that the acoustic modes for the normal component exhibits a low-frequency oscillated decay. According to the Fourier transform, as shown in Figure 5.9, the oscillation frequency reads ω = 1.2612 rad/ps. Considering this observation, the fit equation for the acoustic modes of the normal component of the confined methane hydrate is rewritten as, 5.15) and the corresponding integration reads,

(5.16) The red and white spheres are the oxygen and hydrogen atoms, respectively. The green sphere is the electronic site M of the oxygen atom.

Q A can be viewed as the product of the translation contribution Q A,T (the term 1

) and the rotation contribution Q A,R . Therefore, A A consists of a translation A A,T and a rotation A A,R contributions, [START_REF] Noya | Computing the free energy of molecular solids by the Einstein molecule approach: Ices XIII and XIV, hard-dumbbells and a patchy model of proteins[END_REF]; Vega et al. ( 2008) .5) All free energies are normalized by the total thermal energy Nk B T .

Translation contribution to the free energy of the non-interacting Einstein molecule,

A A,T . A A,T ,which arises from U A,T = U A,T (r 1 , • • • , r N ), only depends on the relative positions of the water molecules: the set of positions of all water molecules (r

can be rewritten as a set of the relative positions with respect to the first water molecule

T can therefore be rewritten as: .6) From the integration corresponding to one permutation (between particles 1 and 2 for instance) κ(U A,T ), the above partition function is the product of κ(U A,T ) with the total number of all possible permutations (N -1)!: .7)