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GENERAL INTRODUCTION 

 

Evolution of brain imaging in neurodegenerative diseases 

Brain imaging was regarded as an elective examination in patients with cognitive decline 25 

years ago [1].  

The practice parameters for diagnosis and evaluation of dementia defined by the American 

Academy of Neurology considered magnetic resonance (MR) as an ‘optional’ assessment [2,3]. 

Over time, imaging in dementia has moved from a negative, exclusionary role, to one able to 

add positive diagnostic and prognostic information. 

In the late 1990s, the traditional exclusionary approach was abandoned in favour of an inclusive 

one [4,5]. Rapid advances in neuroimaging technologies such as PET, single photon emission 

CT, MR spectroscopy, diffusion tensor imaging (DTI), and functional MRI have offered new 

vision into the pathophysiology of brain diseases and, in particular, of the Alzheimer’s disease 

(AD) [6]. Consequently, new powerful data-analysis methods have been developed [7]. 

Since the beginning of the 21st century, the development of innovative techniques for cortical 

thickness measurement, region-of-interest (ROI) based volumetry, automated voxel-based 

morphometry, and multivariate statistics have emerged [7–9]. 

With the development of novel image processing techniques, the complexity of neuroimaging 

analysis has started to increase significantly: images with higher spatial resolution and acquired 

with longer time scans yielded to a greater amount of voxels to be processed.  

At the same time, the more computationally intensive algorithms needed required more 

computational resources.  

Due to their high costs of purchase and maintenance, several research and medical imaging 

facilities have not yet been able to afford the necessary equipment and tools to satisfy the 

computational demand of the most advanced neuroimaging analysis.  

Under these circumstances, during the last decade the neuroimaging community has started to 

develop distributed e-infrastructures, which combine high-performance computing and 

innovative customizable algorithms together with large databases and image datasets, collected 

worldwide on a day-to-day basis [10–13] (Figure 1). 
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Figure 1 - Evolutionary steps of neuroimaging analysis tools from early 1990s to the actual exploitation of e-

infrastructures. AD: Alzheimer’s disease; CT-MR: Computed tomography-magnetic resonance; SW: Software.  

 

 

Neuroimaging in the era of big-data 

The maturation of in vivo neuroimaging has led to a deluge of digital information about the 

human brain [14]. Brain imaging research studies are performed to explore the brain in action 

or at rest, to study how it is built and wired, as well as what happens when things degenerate. 

As MRI technology have improved, extended, and become faster, so too have the amount of 

brain data generated. Once proven robust, researchers have started to adopt these enhanced 

methodologies – doubling or tripling the volume of data per subject. Today, neuroscientists 

routinely collect a larger amount of study data in a single day than was put together in over a 

year just a decade ago.  

To get the glimpse of this trend, confirming an evidence already published by John Darrell Van 
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Horn et al. in 2014, a simple examination of fMRI articles from the NeuroImage journal 

indicates that since 1995 the amount of data collected has doubled roughly every 30 months 

(Figure 2).  

 

 
 

Figure 2 - The amount of acquired MRI data reported from published articles in the NeuroImage journal has 

doubled every 30 months showing an exponential trend in the upcoming years. 

 

At this rate, by 2018 the amount of acquired neuroimaging data alone, discounting header 

information and before the additional files generated during data processing and statistical 

analysis, may exceed an average of 30 GB per published research study. This is an under-

estimation for raw dataset sizes since, as noted above, advances in MRI physics are accelerating 

the pace at which brain data can be acquired per unit time. Therefore, it is safe to say that 

human neuroimaging is now officially a “big data” science.  
 

 

The neuroimaging e-infrastructures and services 

A deep change in the research paradigm has started to be experienced (Figure 3).  
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Figure 3 - Paradigm shift from “ex-vivo” to “in-vivo” and “in-silico”. 

 

Individual desktop computers are now no longer suitable to analyze terabyte and potentially 

petabytes worth of brain. The growth, availability and accessibility of imaging has therefore 

led to the development of computational e-infrastructures, which offer neuroscientists access 

to large and well-curated image databases, services such as sophisticated image analysis 

algorithm pipelines and powerful computational resources, as well as three-dimensional 

visualization and statistical tools. At present, only a few imaging laboratories have the technical 

expertise and computational resources required to merge multiple large data sets and explore 

scientific questions relating to larger populations. 

In Europe and North America, e-infrastructures are being developed to fill the gap between 

data acquisition and information extraction. The initiatives described in the following bullet-

points and summarized in Table 1 share the common vision of offering a full range of imaging 

services to neuroscientists. Access to such novel platforms can be provided through web 

browsers, science gateway portals, or via Linux command line interfaces. The range of 

databases and algorithms is markedly variable, and computational resources are based on either 

a central server or cluster or a distributed grid infrastructure. 

Presently, we are in the very early days of public services for computational neuroscience, and 

the current infrastructures might undergo substantial reshaping in the near future. However, it 

is relevant to note what is available today, as these infrastructures can be to neuroscientists 

Pathology Tera datasets Algorithms Markers

NOW AND IN THE FUTUREOLD	TIMES

DISEASE	MARKERS	YESTERDAY	AND	TODAY:	
From	ex	vivo	to	in	vivo	pathology
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what the Large Hadron Collider is to physicists – the framework where the most ‘muscular’ 

experiments can be run and audacious hypotheses can be tested. 

 

Table 1 – Largest e-infrastructures developed worldwide.  

HW: hardware; SW: software; PB: petabyte; TB: terabyte; HPC: high performance computing; CPU: central 

processing unit; QC: Quality Control; AD: Alzheimer’s disease; WMD: white matter disease; PD: Parkinson’s 

disease; FTD: frontotemporal dementia: LBD: Lewy body dementia; PSY: psychiatric disease; T13D: volumetric 

sequence weighted in T1; PET: positron emission tomography; R-fMRI: resting functional MRI; DTI: diffusion 

tensor imaging; ASL: arterial spin labeling.  

ADNI: the Alzheimer’s Disease Neuroimaging Initiative comprises different phases: ADNI1, ADNIGO, ADNI2, 

and ADNI3; AIBL: The Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing; NACC: National 

Alzheimer’s Coordinating Centre; ARWIBO: Alzheimer’s Disease Repository Without Borders; HELIAD: 

Hellenic Longitudinal Investigation on Aging and Diet; DART: Dementia and Aging Research of Taiwan; 
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CAMD-CODR: Coalition Against Major Diseases; E-ADNI: European ADNI (it is also known as PharmaCOG); 

CLSA: Canadian Longitudinal Study on Aging; DIAN: Dementia Inherited Alzheimer Network; WLS: Wisconsin 

Longitudinal Study; WRAP: Wisconsin Registry for Alzheimer’s Prevention; HRS: Health and Retirement Study; 

FNAD: French National Alzheimer Database; I-ADNI: Italian ADNI; NIAGDS: NIA Genetics of Alzheimer’s 

Disease Data Storage Site; Brain Health Registry; ACE: Foundacio’ ACE; BIOCARD: Predictors of Cognitive 

Decline Among Normal Individuals; LMRR: Laboratory of Magnetic Resonance Research; DESCRIPA: 

Development of screening guidelines and criteria for predementia Alzheimer’s disease; FHS: Framingham Heart 

Study; LAADC: Layton Aging & Alzheimer’s Disease Center; INDD: Integrated Neurodegenerative Disease 

Database. PPMI: Parkinson’s Progression Markers Initiative; DOD: Department of Defense, a study of brain 

raging in Vietnam war veterans; MIRIAD: Minimal Interval Resonance Imaging in Alzheimer's Disease; H2H 

comparison study: Head to head comparison study between Civet and Freesufer; ADHD-200: Attention Deficit 

Hyperactivity Disorder; MAGNIMS: Magnetic Resonance Imaging in MS; ABIDE: Autism Brain Imaging Data 

Exchange; PAD/CRYO: Public Anonymized Dataset/Cryosection; OASIS: Open Access Series of Imaging 

Studies; 1000-FCP: 1000 functional connectomes project; INDI: International Neuroimaging Data Sharing 

Initiative project; EDSD: European diffusion tensor imaging study in dementia; FBIRN: The Functional 

Bioinformatics Research Network, it is composed by many phases (phase-I and II have been archived in 

neuGRID); NUSDAST: Northwestern University Schizophrenia Data and Software Tool; COBRE: dataset of the 

Center for Biomedical Research Excellence.  

Open-Access: means downloading and analyzing data free and without restrictions or formalities; Facilitated-

Access: the analysis is possible only after obtaining an account from data-owners and permission for the intended 

use. The Support Centre of the platform (i.e.: GAAIN and neuGRID) facilitates data exploitation by connecting 

the neuroscientist requesting data access with the PI of the research dataset; Restricted-Access: access is restricted 

exclusively to co-workers or collaborators of the initiative. Authorization from other external users to access these 

data must be obtained from the owner by submitting an application and generally signing an ad hoc scientific 

agreement. 

 

§ VIP (Virtual Imaging Platform):  

VIP is a web-portal for medical simulation and image data analysis. VIP can be used 

by neuroscientists worldwide without specific knowledge of programming or other IT 

skills beyond the use of a web browser. VIP relies on European Grid Infrastructure’s 

(EGI) High-Throughput Compute and Online Storage resources made available 

through the Biomed Virtual Organization. As of January 2017, VIP has 990 registered 

users, with 115 users active during the last quarter of 2016. On average, researchers 

using VIP for their work consume about 30 years of CPU time per month [16]. 

 

§ CATI (Centre pour l’Acquisition et le Traitement de l’Image):  

CATI is a service platform to provide assistance for acquiring, analyzing, organizing, 

and sharing neuroimaging data among scientific and medical communities, supporting 
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numerous studies in the fields of neurodegenerative diseases, psychiatry, and 

therapeutic trials (about 40 different studies are supported). CATI includes more than 

10’000 subjects often acquired longitudinally with MRI and PET. The CATI initiative 

offers a complete portfolio of image processing tools, including international standards 

like voxel-based and tract-based morphometry, as well as distributed database services. 

Via these services, the CATI initiative mutualizes the resources and offer valid support 

through experts at the scale of big data. The tools and services of CATI have been 

developed in line with the ADNI standards [17]. 

 

§ EMIF-AD (European Medical Information Framework for Alzheimer’s Disease): 

EMIF is an initiative that aims to re-use existing electronic health records (EHR). The 

EMIF platform allows researchers to browse and process harmonized patients-level 

data to support research. A data repository known as TranSMART provides a common 

data schema for a variety of data type (e.g., clinical, socio-demographical, 

neuropsychological, biological, imaging) coming from different European datasets, 

such as: Antwerp, E-ADNI, Lausanne, EDAR-VUMC, DESCRIPA, CITA, IDIBAPS, 

Leuven, Gothenburg. This is called 1000-AD-Cohort study and it is composed by 195 

AD, 515 MCI, 383 healthy elderly control. Volumetric T13D scans can be processed 

to determine which imaging biomarker (or which combination) offers the best 

diagnostic or prognostic outcomes [18]. 

 

§ GAAIN (Global Alzheimer’s Association Interactive Network): 

At the base of the GAAIN initiative is the idea that research efforts could be vastly 

expanded in scope and capabilities if data were linked to a global infrastructure that 

would enable scientists to access and use interlinked repositories of data on thousands 

of participants at risk of Alzheimer’s disease. GAAIN created and maintains a network 

of interested parties worldwide (the GAAIN’s Data Partners) to develop, launch, and 

sustain a distributed database infrastructure. GAAIN platform federates 452’000 

subjects (mainly AD, MCI, CTR). GAAIN comprises a GAAIN central server, located 

at the University of South California (USC), and a Data Partner Client (DPC) that runs 

at each Data Partner’s location. The GAAIN central server manages communication 

between the DPCs and the central server, requesting data from DPC’s as needed to 

fulfill queries launched from the GAAIN server’s GUI interface (the so called 
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“Interrogator”). The DPC contains a light-weight web server, a database, and a 

“transformer” that automatically maps the Partner’s data into the GAAIN common data 

model schema. The DPC controls communication between the Partner site and the 

GAAIN server. In this way, the Interrogator of the GAAIN platform provides a highly 

visible and interactive platform for investigating data aggregated from Partner’s that 

meet the users search criteria on the biggest AD ever [19-21]. 

 

§ HBP - MIP (Human Brain Project – Medical Informatics Platform): 

The HBP IT architecture is unique, utilizing cloud-based collaboration and 

development platforms with databases, workflow systems, petabyte storage, and super- 

computers (i.e.: Barcelona Supercomputing Centre - BSC -, the Consorzio 

Interuniversitario per le Applicazioni di Supercalcolo per Universita` e Ricerca - 

CINECA -, the Centro Svizzero di Calcolo Scientifico - CSCS -, and the Julich 

Supercomputing Centre - JSC -). Specifically, the Medical Informatics Platform (MIP) 

of the HBP includes federation nodes in different European hospitals for in situ 

querying of anonymized clinical data and data integration. Indeed, hospitals and other 

medical databases contain vast amounts of data about health and disease patients that 

represent an enormous asset to researchers. MIP supports neuroscientists to generate 

new knowledge by providing a way of organizing and using big data without the need 

to physically transfer data. The MIP integrates heterogeneous data and federates them 

into harmonized databases with ad hoc interfaces for navigation, data mining, and 

machine learning (ML) investigations. The MIP final goal is to develop effective 

pipelines for extracting biological signatures of diseases from multi-level data [22]. 

 

§ CBRAIN (Canadian Brain Imaging Research Platform): 

CBRAIN is a network of Canada’s nine leading brain imaging research centers linked 

within a platform for distributed processing and data sharing. The CBRAIN platform 

addresses issues of advanced networking, transparent access to remote computer 

resources, integration of heterogeneous environments, tool usability, and web-based 

three-dimensional visualization, by providing users with a comprehensive collaborative 

web portal enabling them to manage, transfer, share, analyze and visualize their 

imaging data. Because of its distributed nature and ease of use, the CBRAIN platform 

connects Canadian brain imaging research centers not only to two High Performance 
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Computing (HPC) centers (i.e., Judge/Jurope in Germany; KISTI in Korea) but also to 

multiple collaborating sites around the world. Researchers can launch their jobs through 

an easy-to-use web interface, and allow the platform to handle data transfers, job 

scheduling on Grid or HPC, and results. CBRAIN is based on a set of leased high-speed 

wide area network links, i.e.: CAnet [23]. 

 

§ LONI (Laboratory of Neuro Imaging): 

LONI focuses on the development of image analysis methods and their application in 

health as well as in neurological and psychiatric disorders. LONI hosts, among others,  

the ADNI-1 dataset, which comprises clinical and genetic information as well as scans 

from 872 older people with mild cognitive impairment (MCI), 342 people with AD, 

and 417 healthy elders (CTR). All of them have been followed with high-resolution 

structural MRI. In addition, in the context of the ADNI-GO and ADNI-2 initiatives, 

where 850 new subjects (150 CTR, 500 MCI, 200 AD) were recruited, fMRI, DTI, and 

ASL data were acquired, as well as biannual 18F-fluorodeoxyglucose PET (FDG-PET) 

and amyloid PET. Within the forthcoming ADNI-3 initiative, patients will also be 

studied with 18F-AV-1451 to understand the mechanism of Tau protein deposition for 

a time frame of 5 years. Algorithms for data analysis are accessible both independently 

and through the graphical LONI Pipeline, a user-friendly workflow management 

system. The LONI Pipeline enables automated measurement of functional and 

morphometric analyses, dynamic assessment of volume, shape (e.g., curvature) and 

form (e.g., thickness) features, as well as the extraction and association between 

cognitive, genetic, clinical, and behavioral biomarkers. For external investigators, 

LONI provides access to a large HPC infrastructure, physically located at USC, for 

computationally intensive image analyses [24]. 

 

§ NeuGRID (Grid-based e-infrastructure for data archiving/communication and 

computationally intensive applications in the medical sciences): 

The neuGRID platform makes use of grid and computing services across four main 

nodes, i.e., GNUBILA (Argonay, France), NeuroSpin (Paris, France), HUG (Geneva, 

Switzerland) and IRCCS Fatebenefratelli (Brescia, Italy). NeuGRID has been 

developed with the final aim of overcoming the hurdles that the average scientist meets 

when trying to set up advanced experiments in computational neuroimaging, thereby 
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empowering a larger base of neuroscientists. The final production version was 

completed in March 2015. Although originally built for neuroscientists working in the 

field of AD, the infrastructure has been expanded to other medical fields, such as white 

matter diseases and psychiatric disorders. NeuGRID currently hosts 17 datasets 

comprising 1’122 AD, 1’779 MCI, 2’896 CTR, 158 Multiple Sclerosis patients, and 

2’478 psychiatric disorders (e.g., autism, schizophrenia, ADHD) overall. NeuGRID is 

compliant with international standards for data collection, data management, and grid 

abstraction [25]. As of April 2017, neuGRID has 275 registered users, of which 31 

active during the first quarter of 2017. 

 

Research on imaging biomarkers: the case of cortical thickness 

Thanks to its safety and accessibility, magnetic resonance imaging (MRI) is extensively used 

in research field, largely contributing to our understanding of the pathophysiology of 

neurodegenerative disorders of the brain. 

Early diagnosis and development of effective disease-modifying drugs in AD would be 

facilitated by the availability of an accurate (sensitive and specific cross-sectionally and 

prospectively) disease marker. 

Brain atrophy and cortical thinning represent the most obvious disease marker for AD. Atrophy 

is the most evident change, detectable in the brain either at autopsy or with brain imaging 

techniques.  
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Figure 4 - Brain atrophy is a disease marker of Alzheimer’s disease and is well suited to be used to assess the 

efficacy of drugs aimed at slowing or halting neurodegeneration  

 

Figure 4 shows the preparations of a normal brain and a pathological brain with Alzheimer’s, 

where the latter shows gross shrinkage of the superficial layer of the brain consisting of grey 

matter. 

MRI has the sufficient spatial accuracy and resolution to detect the subtle atrophic changes that 

take place in the early Alzheimer’s brain. However, the digital images resulting from 

acquisition must be processed with sophisticated algorithms that treat the intensity of the 

biological signal in each voxel (the basic constituting image unit, a virtual cube of less than 1 

mm3) taking into account the intensity of surrounding voxels with high demanding and 

computationally intensive iterative algorithms.  

In the last twenty years, many pipelines have started to appear to assess the cortical thickness 

in a repeatable and quantifiable manner. So far there is not a clear picture of which performs 

the best. Therefore, although this would be an ideal disease marker for early diagnosis and drug 

development in AD, cortical thickness needs much larger validation that it presently has [26]. 

Last but not least, it needs to be stressed that the available algorithms can take as long as 35 

hours per brain to run on a state-of-the-art workstation. In this scenario, the exploitation of e-

infrastructures is very much appropriate. 

 

The neuroscientists are hard to please  

Despite the consideration on the numbers of e-infrastructures and services listed above, an 

educated eye can realize a point of possible further development, that is, an automated quality 

control (QC) specifically drawn for high-throughput image analysis.  

The QC procedure aims to check that the image-processing algorithm produced the expected 

result. Should something go wrong, the algorithm needs to be re-run on those specific images 

after having optimized certain parameters. 

Unfortunately, no tool able judge the goodness of terabyte of imaging output results is yet 

available on the market, ready to be incorporated in these e-infrastructures. Today, an experts 

need to visually inspect the generated outputs, carrying out the QC on an individual basis. 

Some instances of QC procedures for high throughput image analyses are presently starting to 

appear in the biomedical analysis community, but these are still at a very early stage of 

development and, most importantly, still require a direct control of experts. 

Among other delivered products, this thesis represents a leap forward in the QC of big-data 
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image analysis by providing an automated, customizable, and scalable environment (Table 2).  

 

Automatic Extraction and comparison of learned patterns and features 

allowing intelligent decision-making through a supervised 

learning approach 

Pipeline specific Suitable for the most used cortical thickness algorithms 

Disease invariant Flexible and robust to accommodate different stages of 

disease (e.g.: AD, MCI, CTR) during the evaluation process 

Customizable Set QCE out according to different cortical thickness 

algorithm requirements (file formats, conventions, etc.)  

Scalable Capable to handle growing amounts of outputs 

 
Table 2 – Neuroscientists wishful features for an innovative QC environment. 
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AIMS AND OUTLINE 

 

This thesis is focused on the current and future potentialities of the brain e-infrastructures, on 

the new challenges related to the availability and accessibility of big-data, the variability of 

imaging biomarkers estimated by similar pipelines, the need for a fully automated quality 

control environment (QCE), and the effort to design an innovative machine learning tool 

helping neuroscientists in their daily and data-intensive research activity. 

 

The research described in the following chapters is based on specific research questions: 

 

• Which kind of analyses can be triggered in the big brain science era? 

Aim of Chapter 2 was to investigate the multimodal and multiscale pattern of the data 

archived in the e-infrastructures and outline their usage for advanced brain 

(hyper)models development. We provided an overview of the available e-

infrastructures and considered how computational neuroscience in neurodegenerative 

disease might evolve further on. Such experimental environments will be instrumental 

to the success of ambitious scientific initiatives with high societal impact, such as the 

prevention of Alzheimer disease. 

 

• What is a real life use-case today in such e-infrastructures? 

Chapter 3 focuses on the head-to-head comparison of two popular pipelines (Civet and 

Freesurfer) for the estimation of the cortical thickness in CTR, sMCI, pMCI and AD 

subjects. Cortical thinning is a recognized marker of neurodegeneration, a putative 

marker of disease progression, and a reasonable surrogate outcome in clinical trials. 

That represents a typical scenario of interest for a neuroscientist willing to assess and 

investigate the sensitivity associated to structural changes of the cortical mantle of the 

two well-known algorithms and to investigate the amount of variance between them. 

• When and how a neuroscientist will significantly benefit of an automated Quality 

Control Environment? 

Indeed, the works presented in Chapter 2 and 3 led to a bottleneck: the unresolved issue 

of manual quality control of pipelines’ outputs. Aim of Chapter 4 was to design an 

automated and effective QCE tailored to the needs of neuroscientists. A supervised 

Machine Learning (ML) was implemented to discriminate “good” versus “bad” 3D 
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cortical meshes of both Civet and Freesurfer pipelines. Furthermore, a multilabel 

classification approach was developed to help neuroscientists locate the cortical 

segmentation artefacts.  
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ABSTRACT 

The brain of a patient with Alzheimer's disease (AD) undergoes changes starting many 

years before the development of the first clinical symptoms. The recent availability of 

large prospective datasets makes it possible to create sophisticated brain models of 

healthy subjects and patients with AD, showing pathophysiological changes occurring 

over time. However, these models are still inadequate; representations are mainly 

single-scale and they do not account for the complexity and interdependence of brain 

changes. Brain changes in Alzheimer’s patients occur at different levels and for 

different reasons: at the molecular level, changes are due to amyloid deposition; at 

cellular level, to loss of neuron synapses, and at tissue level, to connectivity disruption. 

All cause extensive atrophy of the whole brain organ. Initiatives aiming to model the 

whole human brain have been launched in Europe and the US with the goal of reducing 

the burden of brain diseases. In this work, we describe a new approach to earlier 

diagnosis based on a multimodal and multiscale brain concept, built upon existing and 

well-characterized single modalities. 
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INTRODUCTION  

The diagnosis of neurodegenerative diseases such as Alzheimer's disease (AD) is 

changing dramatically. For the first time in 27 years, experts have proposed a major 

change in the criteria, making it possible to diagnose and treat AD earlier. The new 

guidelines [49] state that new instrumental technologies can be used to detect the 

disease even before evident memory problems or other symptoms arise.  

For the first time, diagnosis aims at identifying the disease as it is developing, using 

results from multiple biomarker tests, such as fluorodeoxyglucose (FDG) brain scans, 

magnetic resonance imaging (MRI) scans and spinal taps, able to reveal indicative signs 

of brain degeneration. These biomarkers have been developed and tested only recently 

[66, 38, 54], which explains why none had been previously approved for AD diagnosis. 

One of the newest, the positron emission tomography (PET) scan, shows the brain 

plaques peculiar to the pathology of AD [30] . Others, such as cerebrospinal fluid (CSF) 

or MRI analyses [7, 36], provide strong indications of AD even when patients do not 

show any sign of dementia or memory loss.  

The dynamic changes in AD biomarkers are known to occur non-linearly. Dynamic 

models of various neuroimaging biomarkers over time (as the disease progresses) have 

recently been well characterized [19], whereas genetics in combination with imaging 

biomarkers will soon provide even more diagnostic and prognostic information [58].  

Nevertheless, there is still no multimodal and multiscale approach integrating all the 

information captured by each single methodology. 

The new proposed criteria for AD have already started advocating the multimodal use 

of brain imaging techniques to examine the inner structure and function of the brain 

using one biological [e.g., beta-amyloid (Aβ42) or tau protein in CSF] and three 

imaging markers (e.g., PET amyloid imaging, 18FDG PET and MRI). A number of 

validation studies have already been conducted, showing that these new criteria have 

excellent sensitivity, specificity and accuracy [33]. Although the AD scientific 

community welcomed the new criteria, they have still not been fully adopted in daily 

practice [21].  

In this article, we discuss the strengths and weaknesses of the single-model approach 

so far used to diagnose (and prognosticate) AD, and we try to define the key issues 

involved in designing a brain hypermodel, leveraging on the information available at 

atomic, molecular, cellular and tissue level, with the aim of launching a new multimodal 
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approach to the study of the brain. 

This article begins by focusing on the biological marker measurements used to monitor 

the evolution of AD, before going on to define the problems and limitations of a single-

scale, single-modality approach, and finally leading the reader towards a more detailed 

definition of an initial brain hypermodel based on Bayesian inference and the e-

infrastructures needed to implement it. 
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BIOLOGICAL MARKERS FOR BRAIN INVESTIGATION, DIAGNOSIS, AND 

MONITORING  
Although it is now clear that AD involves gradual neuron failure, why this happens is 

still not clear. Experts believe that AD, like other chronic conditions, is the intricate 

result of multiple factors, rather than of a dominant cause [4]. Both age and genetics 

have been identified as the most common risk factors [39]. Evidence from cases where 

the disease runs in families with an autosomal dominant (FAD) mode of transmission 

indicates that the affected genes – mainly presenilin-1 (PS1), presenilin-2 (PS2), and 

amyloid precursor protein (APP) – are involved in the metabolism of beta-amyloid (Aβ) 

[60], a small protein of 40 to 42 amino acids (Fig. 1). 

 
 
Figure 1 – The amyloid cascade. Evidence indicates that the amyloid precursor protein (APP) is involved 

in the metabolism of beta-amyloid (Aβ). The proteolytic processing of APP unfolds through two 

alternative pathways. In the non-amyloidogenic pathway, APP is processed by an α-secretase. In the 

amyloidogenic pathway, APP is first cleaved at a β-secretase site and subsequently cleaved by a γ-

secretase complex to release the Aβ peptide, which can aggregate into fibrils and cause long-term 
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neuronal injury. The amyloid cascade has led to the identification of potential therapeutic paths: Aβ 

might be removed by immune-mediated mechanisms induced by vaccination; alternatively the synthesis 

of Aβ might be blocked by the inhibition of both enzymes involved in the cleavage of Aβ from APP (β-

secretase and presenilin-dependent γ-secretase). Finally, the degradation of Aβ might be accelerated by 

enhancing the activity of Aβ-degrading enzymes. Although the mechanism is still not completely 

understood, Aβ promotes the deposition of hyperphosphorylated tau, the second pathological marker of 

the disease. 

 

It is currently believed that Aβ-driven neurotoxicity triggers neurodegeneration, 

leading to synaptic and neuronal loss. This is indexed by intraneuronal accumulation of 

abnormally phosphorylated tau, a structural protein constituting microtubules [27].   

Beta-amyloid and tau proteins are the main constituents of senile plaques and 

neurofibrillary tangles, originally described by Alois Alzheimer in the brains, examined 

under the microscope, of patients with progressive dementia [1]. Pathology studies then 

showed that, even though AD symptoms generally develop later in life, Aβ and tau 

accumulate in the brain decades before the clinical onset of the disease [64]. Pre-

existing neural reserve and plastic resources of the brain are thought to compensate, for 

a long time, for the progressive damage caused by Aβ and tau, until a threshold is 

overcome and symptoms develop (Fig. 2a).  

 

 
 
Figure 2A – The natural history of clinical and neurobiological changes. Recent studies have greatly 

advanced our knowledge of the pathophysiology of Alzheimer’s disease (AD), as well as the progression 

of the neurobiological changes over time. The abnormal accumulation of Aβ and tau in the brain leads 

to neuronal injury, starting years before the first clinical symptoms appear and proceeding with a 
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stereotypical pattern of early medial temporal lobe (entorhinal cortex and hippocampus) involvement, 

followed by progressive neo-cortical damage. The delay in the development of cognitive symptoms 

suggests that the toxic effects of tau and/or Aβ progressively erode the ‘brain reserve’ until a clinical 

threshold is crossed and amnestic symptoms appear. Amnestic mild cognitive impairment (MCI) is the 

prodromal phase of AD and is characterized by non-disabling memory symptoms. MCI is followed by 

more widespread cognitive deficits in multiple domains and disability (i.e. lack of self-sufficiency in one 

or more activities of daily living), when the traditional diagnostic criteria for AD are fulfilled. The case 

of a person whose brain starts accumulating tau and Aβ around age 40, experiences MCI at age 74, and 

is diagnosed with AD at age 78 is depicted. The clinical course of the disease lasts only four years, but 

the neurobiological course lasts almost 40 years. 

 

These acquisitions have allowed the development of new drugs that interfere with Aβ 

and tau metabolism and accumulation and might halt, or even reverse, the brain damage 

(Fig. 2b).  

 

 
 
Figure 2B – Tomorrow’s therapeutic strategy. The natural history of the neurobiological changes in AD 

suggests that drugs that might potentially delay the progression of cognitive deterioration should be 

administered as soon as possible in the course of the disease. The earliest time when it is now possible 

to recognize the disease is at the stage of MCI. An effective disease-modifying drug administered at this 

stage might keep the patient in the MCI stage, which is associated with a reasonably good quality of life. 

 

A number of molecules, used in cholinergic, serotonergic, histaminergic, anti-amyloid 

and tau-related therapies, are currently in phase II and III clinical trials (efficacy studies 

in patients), and many more are at the preclinical development phase [47, 68, 56]. 



Chapter 2 

	 27 

The development and potential availability of drugs is generating great hopes and 

expectations, but at least two major hurdles need to be overcome. First, to be maximally 

effective anti-amyloid and anti-tau drugs need to be prescribed early in the course of 

the disease. Indeed, the failure of many anti-amyloid drugs, such as: tramiprosate, 

tarenflurbil, AN1792, and many others, has been attributed, among other things, to the 

fact that patients were treated in the overt stages of the disease. Second, researchers 

working on AD will need to find the right set of meaningful surrogate outcomes, or 

biological biomarkers, sensitive to disease progression which can be effectively 

deployed to test drug efficacy in a clinical trial setting. These markers can greatly 

enhance power, allowing up to 10-fold decreases in sample sizes, and thereby making 

it possible to test a much larger number of drugs and increasing the chances of finding 

one that is really effective. This approach has already been proven successful in the 

case of antiretroviral drugs for acquired immunodeficiency syndrome (AIDS), 

antihypertensive drugs for stroke, and statins for atherosclerosis, whose success was 

largely due to the availability of relevant biomarkers (blood CD4+ white cell count, 

blood pressure values, and serum cholesterol levels respectively). 

With the advent of the “omics” technologies (i.e., genomics, transcriptomics, 

proteomics, metabolomics, and connectomics) we entered a new era of biomedical 

sciences and biomarker discovery. Two-thirds of the approximately 30,000 genes in the 

human genome are related to brain function, and up to half of the variance in age-related 

changes in cognition, brain volume and neuronal function appears to be genetically 

determined. The Ensembl project (the EBI EMBL genome browser sequencing project 

– http://www.ensembl.org; [17] ) has produced a genome database for human and other 

eukaryotic species, freely available online. In addition, our knowledge of and ability to 

analyze the transcriptome, proteome and metabolome are now advancing at the same 

rapid pace that characterized the genomic phase. Besides the specific and complex 

challenge of identifying and characterizing proteins relevant to pathological AD brains, 

we need to consider that the overall human proteome is currently estimated to be made 

up of over 1 million proteins, a staggering amount resulting from: i) single-nucleotide 

polymorphisms, which cause two-thirds of all the human genes to generate alternative 

isoforms [50]; and ii) alternative splicing mechanisms of a single gene, which can lead 

to the codification of different proteins. Since the discovery of these mechanisms, there 

have been many attempts to catalog the whole human proteome, and in this context, a 
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special mention must be made of HUPO – Human Proteome Organisation – an 

international institution fostering proteomic initiatives geared at furthering 

understanding of human disease (http://www.hupo.org). To date, only few studies have 

correlated human neuroimaging findings with genomic, transcriptomic, proteomic or 

metabolomic findings, but such correlations are expected soon.  

Proton magnetic resonance spectroscopy (MRS) represents the link with metabolomics, 

including lipid disorders influencing AD [3].  In patients at risk of AD, MRS can 

provide a window onto the biochemical changes associated with the loss of neuronal 

integrity before cognitive impairment arises [28]. 

 “Imaging genetics” is a relatively new branch of neuroimaging which is gaining pace 

at an unprecedented rate [55]. This methodology exploits an endophenotypes approach 

in order to identify genes responsible for different cognitive phenotypes. For example, 

thousands microarrays containing the genetic markers of people with and without good 

memory, previously assessed through MRI technology, can be compared 

simultaneously to identify which genes differ and are linked to poor memory 

performance. Sequencing an entire genome is currently very expensive, but the 

National Institutes of Health (NIH) hopes that the total cost can be reduced to $1,000 

per genome over the next five years.  

Other neuroimaging techniques, including PET, MRI, MRS, and functional MRI 

(fMRI), allow us to investigate the biological macro effects of genetic alterations.  

Substantial advances in molecular imaging led to the recent development of PET 

ligands to track various receptors, neurotransmitters, and proteins, such as Aβ 

(Pittsburgh compound B, florbetapir, flutemetamol, florbetaben), tau, and acetylcholine 

[5, 42, 41, 62, 10]. Given that cholinergic deficits as well as amyloid and tau deposition 

are characteristic of AD, these new ligands should refine our understanding of normal 

and pathological aging. 

A final remark should be made about the administration of neuropsychological tests, 

the most traditional and pervasive approach to describing and characterizing the stages 

of AD disease. These tests are a useful means of summarizing, in a single final 

measurement, all the complex interactive processes described above. 

As we have seen, neuroscientists can now leverage on different instrumental techniques 

to draw up an overall picture of the disease and we believe that all these instruments 

must now be played together like the strings of a single guitar. Such a multimodal 



Chapter 2 

	 29 

approach will be instrumental to the success of ambitious scientific initiatives with high 

societal impact, such as PAD 2020, the Campaign to Prevent Alzheimer’s Disease by 

2020 (PAD 2020, http://pad2020.org/).   
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MODELING DYNAMIC CHANGES OF MULTIPLE BIOMARKERS OVER 

TIME  
Over the past two decades, the pathological modification pathway of biological markers 

over the whole course of AD has been defined. Cross-sectional studies [29, 37, 25] have 

demonstrated that by the time a patient shows memory deterioration, markers of Aβ 

and tau deposition in the brain have changed, as have imaging markers of amyloid 

deposition detectable through [F]AV45 or [C]PIB PET, metabolic markers on glucose 
18FDG PET, atrophic markers of neurodegeneration on MRI, markers of axonal and 

myelin integrity on diffusion tensor imaging (DTI), and markers of neuronal and 

synaptic function on fMRI (Fig. 3).  

 

 
 
Figure 3 – Markers of Alzheimer’s disease. Cross-sectional studies have shown that the pattern of marker 

abnormality in NC, MCI and AD (see below) is one where controls and AD patients are at the opposite 

ends (low or high), and MCI patients lie somewhere in the middle. However, the difference between the 

biomarker level of a patient group and a group of cognitively healthy persons cannot be taken as a point 

of reference to identify the earliest time of change, since genetic and environmental confounders affect 

the trajectory of biomarkers. Alzheimer’s pathological modifications occur gradually and the dynamics 

of biomarker changes over time is complex and often non-linear. Acronyms: PIB=Pittsburgh compound 

B (11C); PET=positron emission tomography; FDG=fluorodeoxyglucose (18F); Hippo=hippocampal 

volume; Aβ42=beta-amyloid protein ending at amino acid 42; CN=Controls, MCI=mild cognitive 
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impairment, MCI-C=subjects that convert from MCI state to probable AD stage; MCI-NC=subjects that 

do not convert from MCI state to probable AD stage; AD=Alzheimer’s disease; SUVR=Standardized 

uptake value ratio; W score=this is the value from a standard normal distribution corresponding to the 

observed percentile. 

 

All these biomarkers detect unimodal and single-scale changes, and have poor temporal 

consistency. Moreover, the percentage difference versus a group of matched 

cognitively healthy persons could not be taken as a reliable indicator of the earliest 

phase of change over time due to the different metrics and precision of measurements 

[53].   

A great incremental advance in the conceptualization of AD has come from serial 

studies, initially carried out in Europe on mutation carriers coming from families with 

AD [18] and more recently from large serial studies, in particular the Alzheimer’s 

Disease Neuroimaging Initiative (i.e.: ADNI-1, -GO and -2) and a related initiative in 

Australia (Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing – 

AIBL or “Australian ADNI”). These studies have collected biomarkers serially 

(generally every 6 to 12 months) in persons with variable degrees of cognitive 

deterioration, ranging from none, to mild cognitive impairment, through to dementia, 

allowing neuroscientists to outline the dynamics of the change in biomarkers over time. 

As an illustrative instance, figure 4 shows that carriers of fully penetrant mutations (i.e., 

PSEN1, PSEN2 and APP), who will inexorably develop AD, exhibit a deviation from 

the normal trajectory of hippocampal shrinkage as early as 5.5 years before the 

diagnosis of dementia (the hippocampus is the brain structure where memories are 

consolidated and where, in AD, tau pathology and neurodegeneration are particularly 

severe), while a global indicator of whole-brain shrinkage can be detected no earlier 

than one year before diagnosis. Moreover, when hippocampal shrinkage emerges, 

atrophy accelerates at a rate of about 0.3% per year [59], showing that the evolution of 

this biomarker is not linear.  

Studies with a similar design, investigating the changes in Aβ42 and tau in CSF, [11C]-

PiB amyloid tracer uptake, and [18F]-glucose uptake, have outlined a theoretical 

scenario wherein some markers change earlier and reach a plateau ahead of others, 

which instead change later and reach a delayed plateau. In both cases, it is clear that 

biomarkers follow a non-linear, sigmoid curve [34 - 35].   
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Figure 4 – Dynamics of the change in AD biomarkers over time. Panel A: Ridha et al. (2006) [59] report that persons carrying mutations for FAD provide evidence of 

acceleration of brain atrophy with disproportionate hippocampal involvement preceding clinical diagnosis. As patients moved from the pre-symptomatic to MCI and AD stages, 

the mean of total hippocampal and whole-brain volumes decreased. The estimated difference of hippocampal atrophy between autosomal mutation carriers and control groups 

becomes significant 5.5 years before clinical diagnosis of AD, while the difference in whole-brain atrophy only around 1 year before diagnosis (Panel B). Moreover, once 

hippocampal and whole-brain shrinkage has appeared, atrophy rates accelerate, showing a non-linear change over time. Panel C: The Dominantly Inherited Alzheimer's Network 

(DIAN) and studies of Colombian kindred carriers of a PSEN1 mutation support the idea of a protracted preclinical period (10 years or more) during which biomarkers become 

abnormal sequentially while people remain clinically asymptomatic. Additionally, the DIAN results suggest that CSF Aβ42 might become abnormal before amyloid PET, with 

CSF Aβ42 initially starting at abnormally high concentrations followed by a progressive decline. DIAN results also suggest that tau becomes abnormal before FDG PET and 

that FDG PET and MRI become abnormal very close in time. Standardized difference in Panel C is derived from the mutation carrier group and the non-carrier group showing 

the non-linear changes over time. Abbreviations: Yrs=years; FAD=Familial Alzheimer’s disease; CTR=Controls; CSF=cerebrospinal fluid; Aβ42=beta-amyloid protein ending 

at amino acid 42; CDR-SOB=Clinical Dementia Rating Scale Sum of Boxes.
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Depending on the degree of abnormality and the slope of change, different biomarkers at 

different times can be used for diagnosis or monitoring progression over the disease course. 

The recently conceptualized scenario suggests that the first pathological event consists of the 

brain changes taking place at the molecular level (toxic amyloid deposition), which lead to the 

destruction of synaptic functions and axonal integrity; these are followed by neuronal loss, gray 

and white matter atrophy and, finally, clinical cognitive decline [67].   

Modeling the changes in biomarkers over time is useful for many reasons. It allows us to predict 

which biomarker or combinations of biomarkers are more sensitive to the disease state, with 

practical implications for the diagnosis, and which to the disease progression, with the 

possibility of better understanding the efficacy of disease-modifying drugs. Figure 4 shows that 

hippocampal atrophy might be of poor diagnostic value at the earliest stages of the disease, but 

might be an accurate and valuable marker of progression later on in its course. On the contrary, 

amyloid burden might be a good diagnostic marker in the earliest stages of the disease, but 

might be poorly useful as a marker of disease progression. When modeled biomarkers are used 

as the basis of a prediction, they allow the formulation of a robust pathogenic hypothesis. For 

example, according to the modeled rates of atrophy, the medial temporal cortex changes 

substantially in the early stages of the disease, while rates of atrophy in the frontal cortex are 

either flat or occur at a later stage. What this shows is that neurodegeneration starts earlier in 

the medial temporal cortex and only later spreads to the frontal cortex. 

In the next section, we will conceptualize what we have called the hypermodel of AD 

pathology. The main point on which the following dissertation hinges is the capability of the 

brain simulator to estimate the multimodal and multiscale pathological changes over time with 

the highest possible consistency [63]. The hypermodel will transform the diagnosis and 

treatment of brain diseases, providing insights into the organizational complexity of this 

convoluted organ.  
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THE BRAIN HYPERMODEL: A MULTISCALE AND MULTIMODAL DYNAMIC 

SIMULATOR 
 

Definition of the brain hypermodel  
Modern neuroscience has afforded deep insights into every level of brain organization – from 

genes to cognition. Neuroscience today is faced with the compelling need to fit the different 

levels together, exploiting advanced theoretical models, such as the hypermodel of the brain, 

in order to capture, through solid mathematical rules, all the deep mechanics of the brain. Thus, 

our knowledge of AD can be improved [15]. This multiscale challenge is made even more 

complicated by the temporal and spatial scales at play, which range over nine-ten orders of 

magnitude (Table 1).  

 
Table 1 – The brain hypermodel relies on multiple biomarkers describing the dynamics of the brain in the different 

stages of the disease. Abbreviations: AD=Alzheimer’s disease; CTR=healthy elderly control; MCI=mild 

cognitive impairment; CSF=cerebrospinal fluid; mRNA=messenger ribonucleic acid; SNP= single nucleotide 

polymorphism; ACE=gene encoding for angiotensin-converting enzyme; APOE=gene encoding for 

apolipoprotein E; APP=gene encoding for amyloid precursor protein; BACE1=gene encoding for beta-secretase1; 

	



Chapter 2 

	 35 

BCHE=gene involved in butyrylcholinesterase synthesis; BDNF=gene encoding for brain-derived neurotrophic 

factor; CADPS2= gene encoding for calcium-binding protein involved in exocytosis of vesicles filled with 

neurotransmitters and neuropeptides; COMT=gene encoding for catechol-O-methyl transferase; DAPK1=gene 

encoding for death-associated protein kinase 1; DISC1=gene implicated in thought and working memory; 

GRM3=gene encoding for metabotropic glutamate receptor; IGF=gene encoding for insulin growth factor; 

KIBRA=gene involved in hippocampal activation; MTHFR=gene encoding for methyl-tetrahydrofolate reductase; 

NOS=gene encoding for nitric oxide synthase; PLXNB3=this gene is a member of the plexin family playing a role 

in axon guidance; PSEN1-2= genes encoding for presenilin1 and 2; SOD1=gene encoding for superoxide 

dismutase 1; T-TAU=total tau; P-TAU: phosphorylated tau; AB42=Abeta 1-42 protein in CSF. é=increased 

ì=slightly increased ê=decreased î=slightly decreased è=stable. MRS=magnetic resonance spectroscopy. 

Cho=choline; Cr=creatine; mi=myo-inositol; NAA=N-acetyl aspartate; FDG-PET= 18F-fluorodeoxyglucose 

positron emission tomography. MRI=magnetic resonance imaging; rsfMRI=resting state functional MRI; 

DTI=diffusion tensor imaging; CDR=Clinical Dementia Rating scale; MMSE: Mini Mental State Examination. 

 

The hyper brain is a mathematical model, based on the Bayesian inference, useful to describe 

brain activity ranging from the low-level mechanisms up to the large-scale biological processes 

[23 - 24]. To understand the Bayesian brain it is necessary to understand the structure and 

connectivity hierarchically linking the variables considered in the analysis. The general 

assumption is that genes influence cognition and behavior. Therefore, the first step involves 

regulation and transcription of genes in many proteins. These proteins eventually influence cell 

processes and functions through enzymatic reactions. Neurons, forming neural networks, work 

together in a complex pattern of stimulation and inhibition, along with other interactions, to 

produce a given cognitive behavior. Taking this into consideration, neuroimaging techniques, 

including PET, MRI, MRS, and fMRI, allow us to examine the biological effects of genetic 

alterations. Both at genetic and neuroimaging level, hierarchical Bayesian mixture models have 

started to be proposed [70, 51]. The structure and function of the human brain in these models 

can be studied at multiple temporal and spatial scales.  

BOX 1 should help to familiarize the reader with the basic Bayesian components adopted by 

the brain hypermodel.  

 

BOX 1 | The brain hypermodel: basic concepts 

Hierarchical model: The model is described by several parameters that vary at more than one 

level. The hierarchical model is suitable in cases of nested data (e.g., omics, imaging, clinical, 

patient’s neuropsychological data, etc.). In this hierarchical analysis, the estimated elements 

come from subjects randomly selected from a larger population. 
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Bayesian model: A typical Bayesian model concerns the probabilistic relationships between 

diseases and symptoms. Given a set of symptoms, a Bayesian network can be used to compute 

the probabilities of the presence of a certain disease. Brain hypermodels typically rely on a 

Bayesian network, a probabilistic model expressed via a graph (Fig. 5): here, every node of the 

graph represents random variables (e.g., observable quantities, unknown parameters or 

hypotheses), edges represent dependencies and those nodes which are not connected represent 

independent variables. Each node is associated with a probability function that takes a 

particular set of values from the node's parent as input and gives the probability of the variable 

represented by the node as output. The Bayesian model relies on additional concepts; i.e.: (A) 

Prior probability: this is the probability distribution that confers the uncertainty on an uncertain 

quantity defined as “p” (e.g.: suppose “p” is the number of voxels that will be activated for a 

specific task in an fMRI experiment) before the data are taken into account (in this case, the 

results of the experiment obtained via independent component analysis); (B) Likelihood: this 

is synonymous of probability, albeit with some differences. Probability is used when describing 

a function of the outcome given a fixed parameter value, and it can be described as follows: “if 

a transcript of a messenger ribonucleic acid (mRNA) is expressed 100 times and this mRNA 

is not affected by errors from the RNA polymerase, what is its probability of expressing a fully 

functional protein?”. The term likelihood, instead, is used when describing a function of a 

parameter given an outcome. For example: “if an mRNA is translated 100 times and it encoded 

for an active protein 100 times, what is the likelihood of the mRNA being unaffected by 

errors?”; (C) Posterior probability: this measures the likelihood that an event will occur given 

that a related event has already occurred. An example can be given by calculating the 

probability of case of MCI converting to AD, given that the level of Aβ42 in the CSF has 

decreased. Let A be the event that MCI converts to AD, and the probability that MCI will 

convert is 75% (P(A) = 0.75). Let B be the event that the level of Aβ42 decreases, with a 

probability of 80% (P(B) = 0.80). Finally, let the likelihood that Aβ42 will decrease, given that 

MCI converts to AD, be 99% (P(B|A) = 0.99). The probability that MCI will convert to AD 

given that Aβ42 decreases can be determined by plugging these values into the Bayes’ 

Theorem, giving P(A|B) = 0.99*0.75⁄ 0.80 = 0.92. This means that in this hypothetical situation if the 

CSF Aβ42 level is decreasing, MCI has a 92% chance of converting. 

Multivariate analysis (MVA): This statistical technique is based on observation and analysis 

of more than one outcome variable at a time. The technique is used to perform studies across 
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multiple dimensions while taking into account the effects of all variables on the responses of 

interest.  

 

 

 
 
Figure 5 – Definition of the brain hypermodel. This is represented as a set of mathematical relations expressed in 

terms of random variables and associated probability distributions with the aim of describing the observations of 

brain atrophy merging with different levels of information. These levels are dynamically linked through a directed 

acyclic graph (DAG). The set of equations describes the longitudinal mutual biomarker variations as well as their 

temporal and spatial interactions from the lowest to the highest scale. 

 

To develop the brain hypermodel of AD based on genetic, clinical, imaging and behavioral 

data, a large number of postprocessing tools are required (Fig. 6) in order to generate inputs 

that feed the Bayesian network. BOX 2 will help the reader to understand the programs and 

ITC tools used by the brain hypermodel. 

 

BOX 2 / ITC tools needed for the brain hypermodel 

“OMICS” tools: Being concerned with strands of nucleotides [i.e., deoxyribonucleic acid 

(DNA) or ribonucleic acid (RNA)] and chains of amino acids (i.e., oligomers or proteins), the 

hypermodel should handle inputs coming from sequence analysis tools (e.g.: Genscan, 

ExPASY, ORF-finder), sequence alignment programs (e.g., BLAST, PipeAlign, 
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PROMALS3d), and monitoring protein expression algorithms (e.g.,  CountCodon, Molecular 

Toolkit, Promoser).  

Imaging tools: The model needs specific algorithms to properly register different brain image 

modalities of different subjects at different time points into the same space. Modeling the 

course of brain changes in neurodegenerative disorders requires spatial consistency at multiple 

spatial scales. The Boundary Shift Integral (BSI) is one of the tools available to segment and 

register brain scans at multiple time points [44]. Other single image analysis tools for AD are: 

the Multi-Atlas Propagation Segmentation (MAPS) for the hippocampus, which combines 

atlas-based segmentation and multi-feature pattern recognition [43]; the PIB model uptake 

[61];  the multi-atlas based anatomical segmentation tool [71, 46]; DEMONS, a deformation-

based patient normalization and follow-up method [69]; and the 4D longitudinal brain atrophy 

simulation tools to predict brain atrophy. New insights into microstructural changes of the 

white matter should be assessed through deformation-based morphometry (DBM) [73]. All 

these algorithms can play an important role in the definition of the hypermodel. However, the 

aforementioned tools are needed to pre-process multimodal data that must then be analyzed 

through advanced imaging libraries and tools to assess the final biomarkers. Therefore, 

additional algorithms to be adapted and plugged in the model are: FSL [72], FreeSurfer [16, 

6], Civet [40], BrainCSI for MRS, Voxel/Bayesian based morphometry [31] and BrainVISA 

[9]. 

Neuropsychological tools: the integration of the neuropsychological data can be done by 

interfacing computerized assessment tools such as CANTAB [14].  

 

The level of complexity implicit in connecting and integrating all these single-modality tools 

into a consistent multimodal framework (the hypermodel) is such as to drive the evolution of 

the research framework from the traditional models, such as a generalized linear model (GLM), 

to hierarchical (mixed effects) models.  
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Figure 6 – Tools and data exploited by the brain hypermodel. The scheme represents algorithms and datasets 

structured by different levels of depth and scale. The acronym and URL for each component are explained below. 

Genscan = program to identify the gene structure from the DNA strand 

(http://genes.mit.edu/GENSCANinfo.html); ExPASy = Web-portal to obtain user access to proteomics, genomics, 

phylogeny, systems biology, population genetics and transcriptomics (http://www.expasy.org/); ORF-Finder =  

Open Reading Frame finder in RNA coding strand (http://www.ncbi.nlm.nih.gov/projects/gorf/); BLAST = 

algorithm able to find regions of similarity between biological sequences (http://blast.ncbi.nlm.nih.gov/); 

PipeAlign = toolkit for protein family analysis (http://bips.u-strasbg.fr/PipeAlign/); PROMALS3d = multiple 

protein sequence and structure alignment tool (http://prodata.swmed.edu/promals3d/promals3d.php); Promoser = 

tool for transcription regulation analysis (http://cagt.bu.edu/page/Promoser_about); Molecular Toolkit = tool for 

manipulation of nucleic acids and protein (http://www.vivo.colostate.edu/molkit/); CountCodon = on-line tool to 

count codons in mRNA (http://www.kazusa.or.jp/codon/countcodon.html); FSL = complete library for the 

analysis of fMRI, MRI, DTI data (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/); FS = FreeSurfer, a set of automated tools 

for reconstruction of the brain's cortical surface from structural MRI data (https://surfer.nmr.mgh.harvard.edu/); 

CIVET = tool for the segmentation of the cerebral cortex (http://cbrain.mcgill.ca/); BSI = Boundary Shift Integral 

(http://idealab.ucdavis.edu/software/bbsi.php); MAPS = multiple-atlas propagation and segmentation tool; 

DEMONS = diffeomorphic registration algorithm (http://www.insight-journal.org/browse/publication/154); 

DBM – (TBM) = deformation based morphometry; BrainVISA = complete set of tools and libraries to process 

brain image data (http://brainvisa.info/); VBM = voxel-based morphometry (http://www.fil.ion.ucl.ac.uk/spm/); 

CANTAB = Cambridge Neuropsychological Test Automated Battery; ENSEMBL = genome browser sequencing 

project (www.ensembl.org); EBI EMBL  = The European Bioinformatics Institute (http://www.ebi.ac.uk); UCSC 
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= University of California Santa Cruz genome and transcriptome browser (http://genome.ucsc.edu/); HPRD = 

Human Protein Reference Database (http://www.hprd.org/); HMDB = Human metabolome database 

(http://www.hmdb.ca/); IBNA = Italian Brain Normative Archive; ADNI (1-GO-2) = Alzheimer’s Disease 

Neuroimaging Initiative (http://adni.loni.ucla.edu/); AIBL = Australian ADNI (http://www.aibl.csiro.au/); 

PHARMACOG = European ADNI dataset (http://www.imi.europa.eu/content/pharma-cog). OMICS = of or 

pertaining to related measurements or data from fields such as genomics, proteomics, transcriptomics, 

metabolomics; CSF = cerebrospinal fluid; NEUROPSYCH. TESTS = Neuropsychological tests. 

 

Brain hypermodel axioms 

The brain hypermodel needs to be based on specific fundamental principles: 

• Current observation depends on past observation. 

• The distribution (i.e.: prior, likelihood and posterior) of every biomarker has to be 

derived according to Jack (2013) [34]. 

• Multi-level descriptions of the brain space, ranging from genes to proteins, from 

microcircuits to voxels, from small tissues to global regions of interest, must come from 

large serial datasets, such as: ENSEMBL – (www.ensembl.org); UCSC – University of 

California Santa Cruz genome and transcriptome browser (http://genome.ucsc.edu/); 

HPRD – Human Protein Reference Database (http://www.hprd.org/); HMDB – Human 

metaboloma database (http://www.hmdb.ca/); and ADNI – Alzheimer’s Disease 

Neuroimaging Initiative (which comprises huge number of image modalities e.g.: 

[11C]PIB PET, [18F]- AV45-PET, [18F]FDG PET, resting fMRI, DTI and structural 

MRI) (http://adni.loni.ucla.edu/). Additional datasets might need to be added for further 

refinement of the brain hypermodel. 

 

Brain hypermodel statistical pillars 
The most obvious approach to the modeling of dynamic, multimodal and longitudinal 

measurements is through hierarchical (or random effect) models, as used in many recent 

publications [59]. A hierarchical model offers the advantage of modeling the spatial 

dependence of variables at neighboring locations using multilevel descriptions of the space at 

scales ranging from local (nucleotide) to global (voxel regions of interest or even lobes). 

The use of hierarchical models, with empirical Bayes estimation, in the field of neuroimaging 

was initially proposed by Friston et al. in the context of fMRI data analysis, as a way of 

overcoming some constraints and limitations of the classical statistical parametric mapping 

approach. In the analysis conducted by Friston et al., this technique made it possible, in contrast 
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with the classical statistic approach, to move from a local (e.g. at voxel level) to a global (at 

whole-brain level) estimation, with the tangible benefit of increasing the power in the detection 

of statistically significant results.  

At all spatial scales, however, a statistical issue may arise that needs to be taken into account, 

namely, the false positive detection rate due to multiple comparisons. However, techniques for 

a posteriori correction of results are available, based on both parametric (i.e., Bonferroni, false 

discovery rate, family-wise error) [32, 22, 26]  and non-parametric assumptions (i.e., bootstrap, 

permutation tests) [52].  

The hierarchical formulation might benefit from the so-called multivariate exchangeability 

assumption. This approach allows missing data to be substituted in order to promptly estimate 

the subject's parameters. What this means is that, if necessary, the individual estimated subject 

parameter can gain in consistency thanks to an increased weight, assumed from the estimation 

gathered from the entire population, and thus move from a poor subject estimate to a wider and 

well-defined population perspective. This is one of the key advantages offered by hierarchical 

Bayesian modeling as opposed to the classical regression approach.  

 

Flexibility and added value of the brain hypermodel 
The hypermodel might be considered a high-order marker of disease progression that could be 

highly representative of all the data. While many parameters will provide direct information 

about the progression of the disease, others might give “clues” as to the right direction to 

explore, and provide new insights for a better explanation of data. A statistical analysis of the 

hypermodel, considering the correlation and redundancy between the variables, could identify 

significant spatial patterns and time trends. 

Unfortunately, the brain hypermodel can still be hampered by a very large number of variables. 

In the practical clinical setting (e.g. in clinical trials and for early/differential diagnosis), a 

reduced or simplified model might be used for a more predictive and individualized healthcare. 

Examples of this model have been proposed showing incredibly high diagnostic and prognostic 

power [65]. Predict-AD (http://www.predictad.eu/), a recently EU-funded research project, has 

developed and adopted objective and efficient methods to enable earlier diagnosis of AD 

through a holistic view of patients which combines information from several sources, such as 

blood samples, imaging and clinical tests [2]. 

Additionally, the hypermodel could estimate the deviation from the “experienced curve” of 

neurodegeneration during a clinical trial with a disease-modifying agent, a deviation 
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translatable into a measure of treatment efficacy. Modeling the adverse effects of a treatment 

will allow researchers to assess the safety of new drugs, which is a critical step on their route 

to market and an aspect that in the past has proved to be a common cause of expensive failures 

[45, 57]. There is evidence that side effects of new AD drugs might include micro-bleeds and 

inflammation [11]. Even if subjective assessment of radiological images can be used to detect 

these kinds of side effects, these measures are relatively crude and lack quantification. In this 

regard, the hypermodel might make a significant contribution to imaging safety in the context 

of biomarker quantifications. 

Finally, the brain hypermodel might help to overcome current limitations in early detection and 

clinical management of dementia due to lack of sensitive and specific biomarkers for 

classification and prediction. Specifically, the hypermodel could locate a given patient, studied 

at one point in time, on the appropriate trajectory (e.g. healthy or AD), and from there predict 

past and future points (e.g. five years before symptoms, one year after symptoms, etc.) 

according to the specific pattern of his/her disease marker evolutions.  
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THE COMPUTATIONAL ENGINE 

To overcome the high computational needs required by a multimodal and multiscale brain 

model, we describe here the most well-equipped e-infrastructures available worldwide that can 

host the Bayesian model and its processing tools, to perform ad hoc brain hyper simulations on 

real data. First, what is an e-infrastructure? An e-infrastructure offers neuroscientists advanced 

image analysis algorithms, powerful resources, 3D visualization tools, quality control services 

as well as statistical tools, a fertile ground for brain hypermodels. An e-infrastructure allows 

neuroimaging experiments to be conducted using dedicated computational resources such as: 

grids, high-performance computing (HPC) systems, and clouds. The remarkable growth, 

accessibility and availability of imaging and non-imaging data from people affected by 

neurodegenerative conditions have recently fostered the development of many of these 

computational e-infrastructures [20].  

 

 
 
Figure 7 - The N4U infrastructure. The infrastructure is composed of different layers. At the top, there is the 

Specific Support Centre (SSC) and the Virtual Laboratory, accessible via browser. The goal of the SSC is to 

support users, providing training and assistance such as: designing a scientific experiment, building the brain 

hypermodel, uploading data, customizing algorithm pipelines, running different kinds of analyses, visualizing 
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outputs, checking results, and carrying out statistics. The Virtual Laboratory provides the environment for users 

to conduct their own analyses on specific sets of data. The neuGRID platform is composed of: 

(I) An on line web-portal (https://neugrid4you.eu) to provide facilities for users to interact with the 

neuGRID services. Users can leverage on the Online Help Desk, a one-stop assistance facility with which 

every neuroscientist can interact in order to learn about neuGRID and how to use it.  

(II) A set of data resources. Data can be integrated in N4U upon users’ request. In neuGRID, all data are 

indexed and registered creating a user-friendly atlas. All data, pipelines and experimental results can be 

browsed and queried.  

(III) An analysis work area. Here neuroscientists can define new pipelines or configure existing algorithms to 

be run against selected datasets. At the end, results can be visualized. 

(IV) Access to the quality control and statistical tool environment providing neuroscientists with informative 

reports on the execution of their pipelines.  

The neuGRID virtual laboratory sits on top of a 3-tier distributed computing infrastructure: 

(a) Tier 1: this is the real core of the infrastructure. It is composed of a number of sites providing computing 

resources and integrated services. The sites are located in Italy, France, Sweden, Switzerland and The 

Netherlands. 

(b) Tier 2: this attaches additional public facilities augmenting N4U's capacity (e.g. LONI, CBRAIN, 

ESFRI). 

(c) Tier 3: this adds private cloud computing resources from external providers. 

The three different tiers are coordinated by the Grid Coordination Center (GCC) and the Data Coordination Center 

(DCC). The DCC coordinates the neuGRID data, quality control and analysis procedures. The GCC is in charge 

of hosting, maintaining and running the grid computing system services. These services are the cornerstones of 

the platform providing the inner mechanics of the neuGRID grid/cloud job parallelization. 

 

Amongst these, neuGRID (www.neugrid4you.eu) is the leading European e-infrastructure, 

developed with the aim of overcoming those hurdles that each neuroscientist has to face daily 

when trying to set up an advanced experiment on computational neuroimaging. Here 

neuroscientists can find core resources for their analyses. The neuGRID platform offers access 

to 500 processing cores, 25 terabytes of effective storage and it has established a connection 

with external computing resources to double its capacity on demand. From a bandwidth point 

of view, neuGRID leverages on the pan-European research and education network GEANT 

(www.geant.net). Although originally designed for neuroscientists working on AD, neuGRID 

has, in a second phase, been expanded to deal with a wider range of brain diseases, such as to 

the white matter disease and psychiatric diseases. NeuGRID also includes tools useful for 

clinical use, sensitive to the departure of single cases from a normative reference image 

database (Fig. 7).  
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LONI (Laboratory Of Neuro Imaging – http://www.loni.ucla.edu/) focuses on the development 

of image analysis methods and their application to health issues. The LONI e-infrastructure is 

the longest-established platform among those available in the field of neuroimaging [13]. It 

responds to the needs of a wide range of users, offering specific services (data and algorithms) 

to both neuroscientists and neurobiologists. LONI hosts the ADNI databases, which comprise 

clinical data and 

 
Table 2 - Main features of the three e-infrastructures in terms of (I) Image data sets available; (II) Image-

processing algorithms, suites and tools available; (III) resources and connectivity. Abbreviations: TB = terabytes; 

PB = petabytes; EGEE = Enabling Grids for E-Science in Europe. This is a public resource expanding the 

computational power of the neuGRID platform; LONI = Laboratory of Neuro Imaging; UCLA = University of 

California, Los Angeles; CPU = central processing unit; GB/s = gigabytes per second; AD = Alzheimer’s disease; 

WMD = white matter disease; PSY = psychiatric disease; T13D = Volumetric sequence weighted in T1; T2 = 

MRI sequence weighted in T2; PD = proton density-weighted image; PET = positron emission tomography; 

rsfMRI = resting-state functional MRI; DTI = diffusion tensor imaging; GWAS = genome wide association study; 

BLAST = basic local alignment search tool; ADNI = Alzheimer’s Disease Neuroimaging Initiative; AIBL = The 

Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing; ABIDE = Autism Brain Imaging Data 
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Exchange; BRIN = Brain Info; PAD/CRYO = Public Anonymized Dataset/Cryosection; ADDNEUROMED = 

the AddNeuroMed study; NIHPD = National Institutes of Health Pediatric Database; OASIS = Open Access 

Series of Imaging Studies; 1000 Functional Connectomes – INDI = 1000 functional connectomes International 

Neuroimaging Data Sharing Initiative project; LADIS = Leukoaraiosis And DISability; EDSD = European 

diffusion tensor imaging study in dementia; FBIRN = The Functional Bioinformatics Research Network; ELUDE 

= Efficient Longitudinal Upload of Depression in the Elderly. 
 

information from genetic scans from older people with AD (400 mild AD), people with mild 

cognitive impairment (350 early MCI, 400 MCI and 150 late MCI), and healthy elders (350 

CTR). The LONI imaging portfolio comprises high-resolution structural MRI (T13D 

MPRAGE, T2, PD), 18F-FDG PET, amyloid PET (AV45-PET), fMRI and DTI. Algorithms for 

data analysis are available via the LONI Pipeline graphical interface, a user-friendly workflow 

management system that makes it possible to automatize the measurement of functional, 

tractographic and morphometric analyses, to dynamically assess volume and shape features, 

and to extract and associated cognitive, genetic, clinical, behavioral and imaging biomarkers. 

LONI provides access to a large, centralized HPC infrastructure – located at the University of 

California, Los Angeles (UCLA) – for computationally intensive analyses. External 

researchers are granted access to the LONI HPC resources on the basis of ad hoc scientific 

agreements.  

CBRAIN (http://cbrain.mcgill.ca/) is a network of five Canadian brain imaging research 

centers, connected to HPC centers in Canada and Europe. The CBRAIN e-infrastructure offers 

advanced networking, transparent access to computing resources, a wide range of tools as well 

as web-based results visualization, all thanks to a comprehensive and well organized web 

portal. CBRAIN is a distributed environment connected through a high-speed wide area 

network bandwidth.  

Table 2 summarizes core features, datasets and tools of the three leading e-infrastructures 

available in the field of neuroimaging. 

NeuGRID is expanding its platform internationally, bridging with the other e-infrastructures, 

with the ultimate aim of delivering an authentic Virtual Laboratory, integrating the widest 

range of available analysis services with a specific support center for end users. This will create 

a virtual space accessible by the user via web no matter where he/she is physically located. 

The above facts and figures support the notion that e-infrastructures are today the most 

advanced and the best equipped platforms to support the deployment and distribution of the 

hypermodel of the brain. In this way, a neuroscientist would be just a click of his/her fingertips 
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away from all he/she needs to start a simulation. Along the same lines, the recent EU FET 

Flagship initiative called The Human Brain Project (HBP: http://www.humanbrainproject.eu/) 

as well as the American Brain Activity Map project (BAM: http://www.nih.gov/science/brain/) 

will widely exploit the larger scale of data and the huge power of the resources available 

through NeuGRID, LONI and CBRAIN to characterize, build and test the respective in silico 

brain models.  

 
  



Brain investigation and brain conceptualization 

	 48 

CONCLUDING REMARKS  

According to the latest EU estimates, the global prevalence of AD is predicted to quadruple to 

reach 105 million by 2050. To tackle this social emergency and improve AD diagnosis over 

the next 15 years, clinical practice will need to rely more and more on multimodal 

methodologies, using an integrated approach based on genetic, biological, imaging methods, 

as well as neuropsychological and cognitive tests. Indeed, modern neurobiology and 

neuroscience have gained deep insights into every level of brain organization, and this will 

help us to move closer to the real cause of the disease rather than just looking at its symptoms: 

however, to date, there is no clear consensus on how to fit the different levels together. In this 

review, we have described a possible method, based on a theoretical approach in which use is 

made of virtual laboratories concretely capable of implementing these notions: it is our belief 

that this approach could succeed in making sense of the deep mechanics that govern the 

underlying processes of the brain, thus helping neuroscientists in their daily work. 

With such a complete model of the human brain, four main objectives could be addressed: i) 

earlier and more accurate detection of AD; ii) new surrogate outcomes for clinical trials; iii) 

faster development of drugs aimed at delaying or halting the neurodegeneration; iv) the 

development of a reference model that could be used also in other multimodal 

neurodegenerative brain diseases and research communities. 

Finally, the idea of defining a multiscale and multimodal approach to further understanding of 

the complex pathophysiology of AD has recently been turned into major projects. In Europe, a 

billion-euro initiative, the Human Brain Project (HBP), is currently under way [12, 48, 8], 

wherein all existing knowledge about the human brain is to be pulled together in order to build 

up a model of the brain, piece by piece, with advanced ITC simulations. This idea has also 

prompted a similar initiative called the Brain Activity Map project (BAM), this time in the US. 

The ultimate aim of this project is to map the activity of every single neuron in the human 

brain. This historical moment will certainly be destined to leave a large footprint in our 

community and in the way we conduct (neuro)science. As Henry Makram, HBP principal 

investigator, has claimed: "It is not impossible to build a human brain and we can do it in 10 

years” reconstructing deeply the brain's every circuit and process. Therefore, there is nothing 

left to do but work! 
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ABSTRACT 

Background and purpose 

The measurement of cortical shrinkage is a candidate marker of disease progression in 

Alzheimer’s. This study evaluated the performance of two pipelines: Civet-CLASP (v1.1.9) 

and Freesurfer (v5.3.0).  

Methods 

Images from 185 ADNI1 cases (69 elderly controls (CTR), 37 stable MCI (sMCI), 27 

progressive MCI (pMCI), and 52 Alzheimer (AD) patients) scanned at baseline, month 12, and 

month 24 were processed using the two pipelines and two interconnected e-infrastructures: 

neuGRID (https://neugrid4you.eu) and VIP (http://vip.creatis.insa-lyon.fr). The vertex-by-

vertex cross-algorithm comparison was made possible applying the 3D gradient vector flow 

(GVF) and closest point search (CPS) techniques.  

Results 

The cortical thickness measured with Freesurfer was systematically lower by one third if 

compared to Civet’s. Cross-sectionally, Freesurfer’s effect size was significantly different in 

the posterior division of the temporal fusiform cortex. Both pipelines were weakly or mildly 

correlated with the Mini Mental State Examination score (MMSE) and the hippocampal 

volumetry. Civet differed significantly from Freesurfer in large frontal, parietal, temporal and 

occipital regions (p<0.05). In a discriminant analysis with cortical ROIs having effect size 

larger than 0.8, both pipelines gave no significant differences in area under the curve (AUC). 

Longitudinally, effect sizes were not significantly different in any of the 28 ROIs tested. Both 

pipelines weakly correlated with MMSE decay, showing no significant differences. Freesurfer 

mildly correlated with hippocampal thinning rate and differed in the supramarginal gyrus, 

temporal gyrus, and in the lateral occipital cortex compared to Civet (p<0.05). In a discriminant 

analysis with ROIs having effect size larger than 0.6, both pipelines yielded no significant 

differences in the AUC.  

Conclusions 

Civet appears slightly more sensitive to the typical AD atrophic pattern at the MCI stage, but 

both pipelines can accurately characterize the topography of cortical thinning at the dementia 

stage. 

  



Head-to-head comparison of two popular cortical thickness extraction algorithms: a cross-sectional and longitudinal study 

	

	 56 

INTRODUCTION 

Structural imaging has had a long role as biomarker of progression among entry criteria for 

AD trials [1]. The advent of disease-modifying therapies has led to interest in the use of 

magnetic resonance imaging (MRI) as a possible “surrogate” measure of outcome. The two 

most established markers of progression on MRI are the hippocampal and the whole brain 

atrophy rates [2]. However, the first study assessing the effects of β-amyloid immunotherapy 

reported surprising findings, i.e. greater hippocampal and whole-brain atrophy rates in patients 

treated with AN1792 vaccination [3]. On the contrary, cortical thickness might be a promising 

“global” measure of disease progression, as it could represent a marker more specifically 

related to the evolution of AD evolution [4,5] and might be useful to evaluate the efficacy of 

new disease-modifying therapies [6].  

Several tools for the automatic extraction of cortical thickness have been developed, each based 

on different levels of complexity, robustness, and automation. Among others, the Civet-

CLASP pipeline [7] and Freesurfer [8] are the two most exploited algorithms within the 

neuroscientific community. Obtaining an accurate thickness measurement requires the explicit 

reconstruction of the outer boundary on the base of the inner boundary [9], which can be done 

along two different approaches: (I) a skeleton method or (II) a model-based deformation of the 

inner surface. CIVET makes use of the skeleton mesh-based approach called constrained 

Laplacian anatomic segmentation using proximity. The pial surface is expanded from the white 

surface up to the boundary between gray matter and CSF, along a Laplacian map [10]. Terms 

for stretch and self-proximity are included to regularize the deforming mesh and avoid mesh 

self-intersection inside sulci. Differently, Freesurfer makes use of iterative and adaptive 

deformation and segmentation methods, deforming the mesh to reconstruct the inner and the 

pial surfaces. Freesurfer uses a routine function to find and correct the topological defects in 

the initial inner surface. The deformable model is constrained by a second-order smoothing 

term [11] and by a mesh self-intersection prevention routine [8], which both help to correctly 

establish the boundaries between adjacent banks in tight sulci. Unfortunately, some relevant 

problems hamper the use of these techniques. Both tools measure the cortical thickness from 

two 3D cortical sheets, each of which is composed by thousands of vertices and faces, making 

the reconstruction of the cortical mantle a complex and time consuming procedure [12]. 

Although several methods have been proposed in the past decades, little work has been done 

to compare their performances on real clinical datasets [13]. The aim of this study was to 

perform a head-to-head comparison between Civet-CLASP and Freesurfer. This can be 
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considered a mandatory step toward the standardization of cortical thickness biomarkers, which 

in turn will pave the way to effectively translate a three-dimensional cortical marker to 

innovative disease modifying trials. 
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MATERIALS AND METHODS 

Subjects 
The sample group we selected consisted of 185 subjects (69 normal elderly controls (CTR), 37 

stable MCI (sMCI), 27 progressive MCI (pMCI), and 52 Alzheimer (AD) patients), belonging 

to the Alzheimer's Disease Neuroimaging Initiative (ADNI1). Demographics and clinical data 

are summarized in Table 1.  

 

 
 
Table1 - Demographic and clinical characteristics. Data are expressed as mean value ± standard deviation (σ). 

BSL: Baseline; Δ: Difference between month 24 and baseline; MMSE: Mini Mental State Examination scores; 

CDR: Clinical Dementia Ratings score; CTR: Controls; sMCI: stable MCI; pMCI: progressive MCI; AD: 

Alzheimer’s Disease; P: significance on Fisher’s exact test or ANOVA; N.S.: not significant. 

 

MMSE and CDR scores differed significantly among the four groups (P<0.001), while age and 

educational levels were not significantly different. There was a significant difference in sex (P 

< 0.002) with a higher prevalence of male. Data used in preparation of this article were obtained 

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. As such, the 

investigators within the ADNI contributed to the design and implementation of ADNI and/or 

provided data but did not participate in analysis or writing of this report. ADNI1 study is 

conducted in accordance with the Good Clinical Practice guidelines, the Declaration of 

Helsinki, and U.S. 21 CFR Part 50 (Protection of Human Subjects), and Part 56 (Institutional 

Review Boards). ADNI1 study was approved by the Institutional Review Boards (IRB) of all 
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of the participating institutions. Specifically, they are: Albany Medical College, Banner 

Alzheimer’s Institute, Baylor College of Medicine, Boston University, Brigham and Women’s 

Hospital, Butler Hospital Memory & Aging Program, Case Western Reserve University, 

Cleveland Clinic, Columbia University, Darthmouth – Hitchcock Medical Center, Dent 

Neurologic Institute, Duke University Medical Center, Emory University, Georgetown 

University, Howard University, Indiana University, Jefferson Hospital for Neuroscience, Johns 

Hopkins University, Mayo Clinic, Jacksonville, Mayo Clinic, Rochester, McGill 

University/Jewish General Hospital Memory Clinic, Medical University of South Carolina, 

Mount Sinai School of Medicine, Neurological Care of Central New York, New York 

University Medical Center, Northwestern University, Ohio State University, Olin 

Neuropsychiatry Research Center, Oregon Health and Science University, Parkwood Hospital, 

Premiere Research Institute, Rhode Island Hospital, Rush University Medical Center, Saint 

Joseph’s Health Center, Stanford University, Banner Sun Health Research Institute, 

Sunnybrook Health Sciences, University of Alabama, Birmingham, University of British 

Columbia, University of California, Davis, University of California, Irvine, University of 

California, Irvine-BIC, University of California - Los Angeles, University of California - San 

Diego, University of California - San Francisco, University of Kansas, University of Kentucky, 

University of Michigan, Ann Arbor, University of Nevada School of Medicine, Las Vegas, 

University of Pennsylvania, University of Pittsburgh, University of Rochester, University of 

Southern California, University of Texas Southwestern Medical Center, University of 

Wisconsin, Wake Forest University, Washington University St. Louis, Wein Center for 

Clinical Research and Yale University School of Medicine. Informed written consent was 

obtained from all participants at each site. A detailed description of the study procedures, IRB 

approval and informed written consents is available at http://www.adni-

info.org/pdfs/adni_protocol_9_19_08.pdf (section D.5). Data used in this analysis were 

downloaded from the ADNI database (http://adni.loni.usc.edu/). List of subjects’ RIDs can be 

found in supplementary S1 Table.  

 

Research infrastructures and pipelines  

The evaluation of the cortical thickness is a computationally demanding task. We used two 

online e-infrastructures, namely neuGRID (https://neugrid4you.eu) [14] and VIP 

(http://vip.creatis.insa-lyon.fr) [15] to massively distribute job analyses, thus reducing the 

overall processing. Civet’s and Freesurfer’s main features are summarized as follow:  
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Table 2 – Comparative table. Comparative table where the main characteristics of the pipelines involved in this 

head-to-head comparison are summarized. MINC: Medical Imaging Network Common Data Form; DICOM: 

Digital Imaging and Communications in Medicine; NIFTI: Neuroimaging Informatics Technology Initiative; 

MNI OBJ: geometry file format developed by the Montreal Neurological Institute; PIAL: geometry file format 

developed by Martinos Center for Biomedical Imaging. 
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• Civet-CLASP uses an iterative morphing method and intensity non-uniformity 

correction; spatial normalization to stereotaxic space; tissue classification; cortical 

surface extraction; cortical thickness measurement. The correspondence among 

subjects is granted by the nonlinear registration of the sulcal geodesic depth map with 

an average sulcal depth sphere surface [10].  

• Freesurfer uses iterative adaptative morphing/segmentation methods and relies on 

similar preprocessing steps, although differently arranged. The white matter derives 

from the segmentation and topology correction. Gray matter is derived along T1 

intensity gradient. Correspondence among subjects is obtained through surface 

registration to the Freesurfer reference atlas. In this study, we used the longitudinal 

processing stream, where the variability is reduced using repeated measures from the 

same subject (i.e.: baseline, month 12 (data not shown), and month 24 cross-sectional 

analyses) as common information to initialize the process [16].  

Table 2 reports the main features of the two pipelines. 

 

Study design 

The workflow of the study is reported as supplementary figure (see S1 Figure). 

 

MRI acquisition 

The Alzheimer's Disease Neuroimaging Initiative (ADNI) has a specific protocol for the 

acquisition and harmonization of MR images. The ADNI 3D T1-weighted structural images 

are acquired using selected systems from GE Healthcare, Philips Medical Systems and Siemens 

Medical Solutions, with an eye toward minimizing cross-platform differences. The 

Magnetization Prepared RApid Gradient Echo (MPRAGE) acquisition sequence has nominal 

T1 = 1000 ms, TR = 2400 ms and TE = 5 ms. The B2B acquisition set in ADNI1 is composed 

of a MPRAGE scan and a MPRAGE-repeat scan.  

 

Visual quality control  

All the post-processed scans output by neuGRID and VIP were quality controlled by an expert 

evaluator, who visually inspected them using the Matlab Imaging toolbox for 3D surfaces, 

which enables the user to rotate, zoom in and out the cortical surface along all the possible 

orientations. A reconstructed mesh was judged accurate when all the following 23 Sulci were 

visible and correctly reconstructed: (I) Sylvian Fissure, (II) Central Sulcus, (III) Postcentral 
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Sulcus, (IV) Precentral Sulcus, (V) Superior Temporal Sulcus, (VII) Intraparietal Sulcus, (VIII) 

Primary Intermediate Sulcus, (IX) Secondary Intermediate Sulcus, (X) Transverse Occipital 

Sulcus, (XI) Inferior Temporal Sulcus, (XII) Inferior Frontal Sulcus, (XII) Middle Frontal 

Sulcus, (XIV) Olfactory Sulcus, (XV) Occipital-Temporal Sulcus, (XVI) Collateral Sulcus, 

(XVII) Olfactory Control Line, (XVIII) Olfactory-Middle Frontal Control Line, (XIX) Middle 

Frontal-Precentral Control Line, (XX) Precentral-Central Control Line, (XXI) Central-

Postcentral Control Line, (XXII) Postcentral-Transverse Occipital Control Line and (XXIII) 

Occipital Control Line. As a result of this visual QC, only one of the two B2B cortical surfaces 

was chosen for analyses. 

 

Hybrid Template Generation enabling head-to-head (H2H) comparison 

Cortex surfaces as extracted by Civet and Freesurfer are morphologically and topographically 

different. For an accurate comparison to be possible, it was necessary to deform the surface 

morphology of at least one algorithm. To map each point of one surface onto the other, we 

adopted an elastic non-rigid registration to get the right displacement vector. To our 

knowledge, Gradient Vector Flow (GVF) has not been used before to control 3D free form 

deformation. The vector field computed via GVF provided the directions along which each 

vertex of our source surface could evolve to match a corresponding point on the target surface. 

Once registered, space coordinates of each face vertices are coincident and vertices are spatially 

aligned. Subsequently, in order to compare the correct cortical index value at each vertex, we 

adopted the Closest Point Search (CPS) technique, essential to establish the correct 

topographical match of the same morphological points obtained with 3D GVF. For each point, 

CPS returned the mutual match between Civet's and Freesurfer’s cortical thickness array. The 

entire process enabling the head-to-head comparison is illustrated in Figure 1. The procedure 

was implemented using Matlab (v2009b). The data generated in this study are made publicly 

available to promote the evaluation of cortical thickness tool (https://neugrid4you.eu/datasets).  

 

Atlases and ROIs Definition 

The head-to-head comparison and the ROI analyses between pipelines were done using the 

Harvard-Oxford cortical structural atlas. We chose 28 out of the 48 cortical areas provided 

[17], consistently with those used by other reference work groups [18-21]. For a complete list 

of the selected ROIs, see Table 3.  
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Figure 1 - Registration of templates and surface points correspondence. Source template is Civet’s surface while 

target template is the Freesurfer’ surface template. Starting from two averaged surfaces (previously created from 

the same set of 10 CTR, 10 sMCI, and 10 AD brains) the hybrid template (characterized by 81924 vertices and 

163840 faces) is derived after 15 GFV iterations. In GVF, deformations are achieved by tuning an underlying set 

of control points (187×187×187) in the source surface. Control point displacements are then interpolated to obtain 

a continuous transformation through basis spline functions. To keep the contour smooth, a membrane and 

percentage thin plate energy was used as regularization. The parameters defining the attraction to edges and energy 

surfaces were empirically determined. Finally, the CPS step defined the mutual correspondence of Civet and 

Freesurfer thickness values for each vertex. CV: Civet; FS: Freesurfer; X-Y-Z: value of the vertex space 

coordinates; T: value of the cortical thickness for each vertex; n: number of vertices (min=0; max=81924); 3D 

GVF: 3D gradient vector flow; CPS: Closest point search. 

 

 

Statistical analysis to compare Cortical Thinning patterns 

Cortical thinning within the same diagnostic groups was assessed using paired samples t-tests. 

P-maps were corrected for multiple comparisons using the False Discovery Rate (FDR; 

α=0.01) method [22]. Tukey-Kramer post-hoc testing of ANOVA (α = 0.05 in cross sectional 

comparison and α = 0.01 in longitudinal analysis) was used to test thinning differences among 
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the diagnostic groups and the different ROIs analyzed. Effect sizes were computed as Hedge's 

g and Z-tests were performed to assess significant discrepancies between the performances of 

each pipeline. Correlations of cortical thickness to MMSE scores and hippocampal volumes 

were investigated, Steiger's Z was used to assess significant differences between Pearson's r 

values. Logistic regressions were applied on pre-selected thickness ROIs, and Receiver 

Operating Characteristic (ROC) curves were used to assess discriminative accuracy of the two 

pipelines. AUCs were statistically compared using the method adopted by Hanley and McNeil 

[23], setting the threshold for significance at a p value of 0.05. Kendall's tau coefficients were 

calculated and the derived z-test converted into the Pearson’s correlation coefficient. Statistical 

analysis was performed with Matlab (v2009b). 

 

Cortical Metrics 

Both pipelines define thickness as the Euclidean distance and both can produce maps not 

restricted to the original MRI voxel resolution: thus, they can detect sub-millimeter differences 

between and within groups [8,24]. For the sake of this article, we defined the concept of 

“disease effect” as the relative predominance of one pipeline over the other to detect atrophy 

when comparing two groups (G) or two time-points (T): 

 

!"#$%#$	$''$()	 ∆+	|	∆) = 	 ∆'#	)./012344 −	∆(6	)./012344 	  (1) 
 

The values of the disease effect are mapped vertex by vertex on the hybrid template previously 

created (see Figure 2 and 3 panel b). 
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RESULTS 

Comparison of cortical metrics 
The reconstruction of cortical thickness from B2B scans provided identical outcomes within 

the same pipeline (see supplementary S2 Figure). 

Compared to Civet, Freesurfer provided absolute values systematically lower by about 30% 

(see supplementary S3 Figure). The difference between Civet and Freesurfer with respect to 

between-subjects variability (CoV) [25] ranges between 17-26% in the different diagnostic 

groups. The whole cortical thickness value at baseline and at month 24 is reported as 

supplementary S2 Table; both Civet and Freesurfer showed increasing values of thinning rates 

with the progression of the pathology. The relative percentage of thinning in paired diagnostic 

groups at baseline is reported as supplementary S3 Table; no statistical differences among the 

groups were detected in neither pipelines. The percentage of longitudinal thinning rate across 

the four different diagnostic groups is reported as S4 Table; both pipelines detected differences 

between AD versus CTR, and between AD versus sMCI; moreover, Civet was able to detect a 

significant longitudinal thinning difference between pMCI versus CTR. 

 

Cross-sectional and longitudinal thinning differences between Civet and Freesurfer 
Figure 2 compares CTR with sMCI, pMCI, and AD at baseline, and shows the details of the 

differences between Civet and Freesurfer at the individual vertex level. Figure 3 compares, for 

each diagnostic group, the longitudinal (2 years) cortical thinning rate at the individual vertex 

level as computed by Civet and Freesurfer.  

 
ROI Analysis 

Table 3 represents the comparison of the cross-sectional thickness differences at baseline, 

while Table 4 represents the longitudinal thinning rates with respect to the 28 selected ROIs. 

Cross-sectionally, the multiple comparison procedure highlighted small differences. Civet 

indicated as significant the temporal planum ROI, while Freesurfer identified as significant the 

superior parietal lobe. Longitudinally, Civet appeared to be much more sensitive in detecting 

significant thinning rate differences between CTR and AD in all the 28 ROIs considered, as 

opposed to only 22 ROIs as detected by Freesurfer (check symbol ¥). Comparing sMCI to AD, 

Civet was able to detect significant longitudinal thinning rate changes in all the 28 ROIs, 

). Again, Civet was able to detect significant longitudinal thinning rate changes between CTR 

and pMCI in 18 ROIs, as opposed to only 10 ROIs in Freesurfer (check symbol ¢). Lastly,  
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Figure 2 - Cross-sectional comparison. 
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Figure 3 - Longitudinal comparison. 
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Figure 2 - Cross-sectional comparison: A) Absolute difference maps (mm) in Freesurfer and Civet. The degree 

of atrophy ranges between 0.1 and 0.7 mm in the different areas of the cortical mantle. B) Disease effect maps. 

There is a consistent delta (±0.3 mm) among the compared groups. Negative value means higher disease effect 

for Freesurfer (i.e.: parietal-temporal and precuneus areas); positive value means higher disease effect for Civet 

(i.e.: association areas and limbic parts of the cortex). C) Statistical difference maps (p<0.01 FDR-corrected). No 

significant voxels were found comparing CTR to sMCI. Atrophic areas were found contrasting pMCI with CTR 

(i.e.: the posterior cingulate, temporal lobe and frontal gyrus) with both tools. Comparing CTR versus AD the 

statistical significance extended (i.e.: medial temporal, retrosplenial, and lateral temporal regions). D) 

Overlapping and not-overlapping atrophic regions are shown. Significant voxels detected by both pipelines are in 

yellow; voxels detected only by Civet are in blue; voxels detected only by Freesurfer are in red. CV: Civet; FS: 

Freesurfer; L: Left hemisphere; R: Right hemisphere; CTR: Normal elderly controls; sMCI: stable MCI; pMCI: 

progressive MCI; AD: Alzheimer’s Disease. 

 

Figure 3 - Longitudinal comparison: A) Absolute difference maps (mm) in each group. In CTR and sMCI, both 

pipelines report a very mild and widespread cortical thinning rate in the motor, somatosensory, verbal and visual 

association cortex. In pMCI, the atrophy peaks at rates around 0.3 mm in the medial temporal cortex, temporal-

parietal-frontal neocortices, with sparing of the sensorimotor strip and of the visual cortex. In AD, the atrophy in 

the same areas accelerates beyond 0.4 mm. B) Disease effect maps. The mean estimate of the longitudinal disease 

effect in CTR and sMCI as computed by Freesurfer is greater, although Civet shows higher results in few scattered 

areas. Furthermore, in the entire disease spectrum, Freesurfer exhibited higher disease effect in the motor cortex. 

In pMCI, Civet exhibits a greater disease effect except for the cingulate gyrus, while in the AD group the exception 

is represented by the precuneus. C) Statistical difference maps (p<0.01 FDR-corrected). In CTR, Civet detects an 

atrophic cluster in the angular gyrus; while Freesurfer in the precuneus and in the temporo-occipital lobe. The 

pattern in sMCI was more reduced than in CTR. In pMCI Freesurfer was not able to find many regions detected 

by Civet with the same significance and extension (i.e.: orbital, triangulal, and opercular portion of the inferior 

frontal gyrus, transverse-temporal and mesial part of the superior frontal cortex, inferior parietal cortex, the 

superior temporal gyrus). Freesurfer was more sensitive in few scattered expected and unexpected regions. For 

both pipelines, the longitudinal AD shrinkage showed significant areas throughout the temporal, frontal and 

parietal lobes, consistently with the progression of the disease. Some shrivelling differences were detected in the 

anterior division of the cingulate, in the limbic lobe and in the cuneus. D) Overlapping and not-overlapping 

atrophic regions are shown. Significant voxels detected by both pipelines are in yellow; voxels detected only by 

Civet are in blue; voxels detected only by Freesurfer are in red. CV: Civet; FS: Freesurfer; L: Left hemisphere; 

R: Right hemisphere; CTR: Normal elderly controls; sMCI: stable MCI; pMCI: progressive MCI; AD: 

Alzheimer’s Disease. 
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3 Superior Frontal Gyrus -0.10 0.36 -0.18 0.38 -0.17 0.34 N.S. -0.09 0.32 -0.21 0.35 -0.19 0.33 N.S.
4 Middle Frontal Gyrus -0.12 0.27 -0.18 0.29 -0.20 0.24 N.S. -0.08 0.65 -0.20 0.68 -0.19 0.57 N.S.

5 Inferior Frontal Gyrus, pars triangularis -0.10 0.41 -0.13 0.35 -0.13 0.34 N.S. -0.06 0.36 -0.13 0.37 -0.13 0.37 N.S.

6 Inferior Frontal Gyrus, pars opercularis -0.08 0.32 -0.12 0.26 -0.14 0.28 N.S. -0.05 0.22 -0.15 0.23 -0.16 0.23 N.S.
33 Frontal Orbital Cortex -0.10 0.41 -0.13 0.39 -0.22 0.37 N.S. -0.08 0.38 -0.13 0.35 -0.15 0.38 N.S.
18 Superior Parietal Lobule -0.09 0.47 -0.16 0.48 -0.14 0.45 N.S. -0.06 0.23 -0.21 Π 0.20 -0.17 Ω 0.22 0.050

19 Supramarginal Gyrus, anterior division -0.07 0.30 -0.14 0.29 -0.19 0.28 N.S. -0.05 0.32 -0.18 0.31 -0.16 0.30 N.S.
20 Supramarginal Gyrus, posterior division -0.10 0.27 -0.17 0.26 -0.23 0.27 N.S. -0.08 0.33 -0.22 0.29 -0.21 0.33 N.S.
31 Precuneus Cortex -0.08 0.43 -0.18 0.37 -0.18 0.38 N.S. -0.10 0.41 -0.25 0.40 -0.20 0.37 N.S.

22 Lateral Occipital Cortex, superior division -0.09 0.36 -0.18 0.35 -0.18 0.41 N.S. -0.06 0.35 -0.23 0.34 -0.21 0.40 N.S.

23 Lateral Occipital Cortex, inferior division -0.07 0.29 -0.15 0.32 -0.19 0.25 N.S. -0.05 0.30 -0.17 0.30 -0.20 0.27 N.S.
29 Cingulate Gyrus, anterior division -0.05 0.47 -0.11 0.44 -0.11 0.45 N.S. -0.06 0.48 -0.08 0.50 -0.08 0.53 N.S.
30 Cingulate Gyrus, posterior division -0.08 0.54 -0.21 0.55 -0.22 0.51 N.S. -0.10 0.65 -0.23 0.66 -0.21 0.62 N.S.
8 Temporal Pole -0.17 0.55 -0.18 0.55 -0.38 0.67 N.S. -0.14 0.73 -0.24 0.69 -0.33 0.71 N.S.

9 Superior Temporal Gyrus, anterior division -0.10 0.50 -0.10 0.51 -0.23 0.59 N.S. -0.07 0.99 -0.15 0.83 -0.20 0.90 N.S.

10 Superior Temporal Gyrus, posterior division -0.14 0.45 -0.15 0.38 -0.24 0.44 N.S. -0.12 0.62 -0.19 0.63 -0.23 0.61 N.S.

11 Middle Temporal Gyrus, anterior division -0.13 0.51 -0.16 0.51 -0.31 0.48 N.S. -0.12 0.74 -0.16 0.70 -0.25 0.70 N.S.

12 Middle Temporal Gyrus, posterior division -0.13 0.29 -0.18 0.23 -0.33 0.25 N.S. -0.11 0.61 -0.20 0.49 -0.28 0.58 N.S.

13 Middle Temporal Gyrus, temporo occipital part -0.11 0.32 -0.20 0.35 -0.27 0.33 N.S. -0.08 0.54 -0.23 0.54 -0.26 0.48 N.S.

14 Inferior Temporal Gyrus, anterior division -0.11 0.59 -0.14 0.62 -0.30 0.56 N.S. -0.11 0.81 -0.17 0.87 -0.25 0.74 N.S.

15 Inferior Temporal Gyrus, posterior division -0.09 0.57 -0.15 0.59 -0.29 0.66 N.S. -0.11 0.41 -0.21 0.41 -0.29 0.39 N.S.

16 Inferior Temporal Gyrus, temporo occipital part -0.08 0.64 -0.13 0.57 -0.21 0.58 N.S. -0.09 0.62 -0.18 0.63 -0.24 0.63 N.S.

34 Parahippocampal Gyrus, anterior division -0.19 0.67 -0.28 0.67 -0.55 0.63 N.S. -0.21 1.21 -0.33 1.22 -0.59 1.16 N.S.
35 Parahippocampal Gyrus, posterior division -0.11 0.57 -0.15 0.59 -0.32 0.56 N.S. -0.10 1.25 -0.15 1.22 -0.25 1.23 N.S.
37 Temporal Fusiform Cortex, anterior division -0.14 0.57 -0.17 0.59 -0.35 0.52 N.S. -0.15 0.80 -0.24 0.77 -0.41 0.73 N.S.
38 Temporal Fusiform Cortex, posterior division -0.11 0.37 -0.11 0.38 -0.30 0.35 N.S. -0.13 0.46 -0.21 0.44 -0.34 0.44 N.S.
45 Heschl's Gyrus (includes H1 and H2) -0.09 0.18 -0.12 0.18 -0.22 0.18 N.S. -0.11 0.24 -0.15 0.26 -0.17 0.25 N.S.

46 Temporal Planum -0.11 0.16 -0.13 0.14 -0.21 Ω 0.14 0.041 -0.11 0.37 -0.17 0.38 -0.20 0.37 N.S.

BASELINE

ROI
CIVET FREESURFER

CTR vs sMCI CTR vs pMCI CTR vs AD ANOVA 
P-value

CTR vs sMCI CTR vs pMCI CTR vs AD ANOVA 
P-valueΔ MEAN (mm) ± σ Δ MEAN (mm) ± σ
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Table 3 - Cross sectional ROI-based analysis. Cross-sectional average cortical thinning differences (mm), standard deviation (σ), and Tukey-Kramer multiple comparison post-

hoc analysis in ANOVA (P). The data refer to three groups: (a) CTR versus sMCI, (b) CTR versus pMCI and (c) CTR versus AD; α=0.05 level. Ω: Significant difference 

between “CTR versus sMCI” and “CTR versus AD”; Π: Significant difference between “CTR versus sMCI” and “CTR versus pMCI”. N.S.: Not significant; CTR: Normal 

elderly controls; sMCI: stable MCI; pMCI: progressive MCI; AD: Alzheimer’s disease.  
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3 Superior Frontal Gyrus 0.00 0.08 -0.04 0.12 -0.10 0.12 -0.13 ¥ ¤ 0.12 <0.0001 -0.04 0.10 -0.06 0.13 -0.12 0.14 -0.13 ¥ 0.12 0.0002

4 Middle Frontal Gyrus -0.03 0.06 -0.05 0.10 -0.11 ¢ 0.12 -0.13 ¥ ¤ 0.12 <0.0001 -0.04 0.08 -0.06 0.13 -0.09 0.12 -0.11 ¥ 0.13 0.0031

5 Inferior Frontal Gyrus, pars triangularis -0.03 0.08 -0.03 0.11 -0.12 ¢ Ξ 0.11 -0.15 ¥ ¤ 0.13 <0.0001 -0.04 0.08 -0.05 0.15 -0.07 0.10 -0.09 0.11 N.S.

6 Inferior Frontal Gyrus, pars opercularis -0.02 0.07 -0.04 0.10 -0.11 ¢ 0.10 -0.14 ¥ ¤ 0.12 <0.0001 -0.05 0.11 -0.05 0.15 -0.07 0.12 -0.11 0.11 N.S.

# Frontal Orbital Cortex -0.12 0.10 -0.03 0.15 -0.11 ¢ 0.14 -0.15 ¥ ¤ 0.16 <0.0001 -0.04 0.07 -0.05 0.11 -0.08 0.11 -0.10 ¥ 0.09 0.0011

# Superior Parietal Lobule -0.03 0.09 -0.02 0.10 -0.06 0.11 -0.09 ¥ ¤ 0.10 0.0006 -0.05 0.10 -0.05 0.14 -0.06 0.11 -0.08 0.10 N.S.

# Supramarginal Gyrus, anterior division -0.03 0.65 -0.04 0.09 -0.10 ¢ 0.10 -0.12 ¥ ¤ 0.11 <0.0001 -0.05 0.11 -0.04 0.10 -0.09 0.13 -0.12 ¥ 0.12 0.0022

# Supramarginal Gyrus, posterior division -0.04 0.07 -0.05 0.10 -0.12 ¢ 0.10 -0.14 ¥ ¤ 0.11 <0.0001 -0.05 0.09 -0.05 0.12 -0.09 0.12 -0.12 ¥ ¤ 0.11 0.0010

# Precuneus Cortex -0.01 0.07 -0.02 0.07 -0.07 0.11 -0.11 ¥ ¤ 0.11 <0.0001 -0.05 0.08 -0.03 0.07 -0.09 0.10 -0.11 ¥ ¤ 0.10 <0.0001

# Lateral Occipital Cortex, superior division -0.03 0.07 -0.02 0.09 -0.09 Ξ 0.09 -0.11 ¥ ¤ 0.11 <0.0001 -0.04 0.10 -0.06 0.13 -0.12 0.14 -0.13 ¥ 0.12 0.0002

# Lateral Occipital Cortex, inferior division -0.03 0.09 -0.03 0.11 -0.12 ¢ 0.11 -0.15 ¥ ¤ 0.15 <0.0001 -0.06 0.07 -0.05 0.10 -0.10 0.10 -0.07 0.09 N.S.

# Cingulate Gyrus, anterior division 0.00 0.08 0.01 0.13 -0.04 0.12 -0.11 ¥ ¤ 0.14 <0.0001 -0.02 0.07 -0.04 0.11 -0.07 0.08 -0.08 ¥ 0.09 0.0024

# Cingulate Gyrus, posterior division -0.01 0.10 -0.02 0.07 -0.07 0.16 -0.12 ¥ ¤ 0.12 <0.0001 -0.04 0.06 -0.04 0.07 -0.10 ¢ 0.11 -0.11 ¥ ¤ 0.09 <0.0001

8 Temporal Pole -0.04 0.11 -0.05 0.19 -0.20 ¢ 0.17 -0.27 ¥ ¤ 0.29 <0.0001 -0.06 0.07 -0.09 0.11 -0.13 0.15 -0.18 ¥ 0.14 <0.0001

9 Superior Temporal Gyrus, anterior division -0.03 0.07 -0.04 0.11 -0.16 ¢ Ξ 0.10 -0.16 ¥ ¤ 0.11 <0.0001 -0.04 0.08 -0.06 0.10 -0.09 0.11 -0.12 ¥ 0.10 0.0002

# Superior Temporal Gyrus, posterior division -0.04 0.08 -0.05 0.11 -0.16 ¢ Ξ 0.11 -0.16 ¥ ¤ 0.11 <0.0001 -0.04 0.08 -0.06 0.14 -0.08 0.10 -0.10 0.11 N.S.

# Middle Temporal Gyrus, anterior division -0.03 0.08 -0.06 0.13 -0.18 ¢ Ξ 0.13 -0.21 ¥ ¤ 0.15 <0.0001 -0.04 0.07 -0.07 0.14 -0.12 ¢ 0.12 -0.10 ¥ 0.10 <0.0001

# Middle Temporal Gyrus, posterior division -0.04 0.08 -0.06 0.12 -0.19 ¢ Ξ 0.15 -0.20 ¥ ¤ 0.12 <0.0001 -0.04 0.07 -0.06 0.12 -0.13 ¢ 0.12 -0.14 ¥ ¤ 0.11 <0.0001

# Middle Temporal Gyrus, temporo occipital part -0.04 0.06 -0.04 0.10 -0.16 ¢ Ξ 0.12 -0.16 ¥ ¤ 0.11 <0.0001 -0.05 0.07 -0.06 0.12 -0.12 0.13 -0.11 ¥ 0.10 0.0015

# Inferior Temporal Gyrus, anterior division -0.02 0.08 -0.07 0.13 -0.18 ¢ 0.13 -0.21 ¥ ¤ 0.20 <0.0001 -0.04 0.06 -0.08 0.12 -0.13 ¢ 0.12 -0.14 ¥ 0.11 <0.0001

# Inferior Temporal Gyrus, posterior division -0.03 0.09 -0.07 0.13 -0.18 ¢ Ξ 0.15 -0.19 ¥ ¤ 0.18 <0.0001 -0.05 0.07 -0.08 0.10 -0.12 ¢ 0.12 -0.14 ¥ ¤ 0.11 <0.0001

# Inferior Temporal Gyrus, temporo occipital part -0.02 0.09 -0.03 0.10 -0.15 ¢ Ξ 0.14 -0.16 ¥ ¤ 0.15 <0.0001 -0.05 0.08 -0.06 0.09 -0.11 0.12 -0.12 ¥ 0.09 <0.0001

# Parahippocampal Gyrus, anterior division -0.05 0.13 -0.12 0.15 -0.18 0.16 -0.27 ¥ ¤ 0.27 <0.0001 -0.04 0.06 -0.08 0.08 -0.11 ¢ 0.10 -0.14 ¥ ¤ 0.10 <0.0001

# Parahippocampal Gyrus, posterior division -0.03 0.16 -0.07 0.09 -0.11 0.14 -0.17 ¥ ¤ 0.21 0.0002 -0.02 0.05 -0.04 0.07 -0.08 ¢ 0.08 -0.07 ¥ 0.08 0.0001

# Temporal Fusiform Cortex, anterior division -0.02 0.15 -0.06 0.15 -0.15 0.12 -0.24 ¥ ¤ 0.30 <0.0001 -0.04 0.08 -0.07 0.09 -0.14 ¢ 0.09 -0.17 ¥ ¤ 0.13 <0.0001

# Temporal Fusiform Cortex, posterior division -0.01 0.17 -0.03 0.11 -0.14 0.12 -0.20 ¥ ¤ 0.26 <0.0001 -0.05 0.08 -0.07 0.12 -0.15 ¢ 0.11 -0.17 ¥ 0.12 <0.0001

# Heschl's Gyrus (includes H1 and H2) -0.05 0.07 -0.06 0.11 -0.13 ¢ 0.10 -0.15 ¥ ¤ 0.12 <0.0001 -0.05 0.11 -0.06 0.16 -0.09 0.11 -0.08 0.12 N.S.

# Temporal Planum -0.05 0.08 -0.05 0.11 -0.14 ¢ Ξ 0.10 -0.15 ¥ ¤ 0.12 <0.0001 -0.05 0.09 -0.04 0.12 -0.08 ¢ 0.10 -0.08 ¥ 0.11 N.S.
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BASELINE VS MONTH24 
CIVET FREESURFER

CTR sMCI pMCI AD ANOVA 
P-value

CTR sMCI pMCI AD ANOV
A P-
valueΔ MEAN (mm) ± σ Δ MEAN  (mm)  ± σ

 
Table 4 - Longitudinal ROI-based analysis. Longitudinal average cortical thinning differences (mm), standard deviation (σ), and Tukey-Kramer multiple comparison post-hoc 

analysis in ANOVA (P). The data refer to: (d) CTR, (e) sMCI, (f) pMCI and (g) AD; α=0.01 level. ¢: Significant difference between CTR and pMCI; ¥: Significant difference 

between CTR and AD. Ξ: Significant difference between sMCI and pMCI; ¤: Significant difference between sMCI and AD. N.S.: Not significant; CTR: Normal elderly 

controls; sMCI: stable MCI; pMCI: progressive MCI; AD: Alzheimer’s disease.
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Civet detected significant longitudinal thinning rate changes also between sMCI and pMCI in 

10 ROIs (check symbol Ξ) while Freesurfer could not find any variations. P values for multiple 

comparisons were always more significant in Civet (P < 0.0001). 

 

Effect sizes 

The effect sizes were derived as the Hedge's g (Figure 4). In the cross-sectional analysis, we 

decided to represent only CTR versus pMCI and versus AD, being these the combinations of 

highest interest when defining populations for disease-modifying and clinical trials. The effect 

size was always above 0.8 in those cortical regions expected to be heavily affected by the 

disease neuropathology. In CTR versus pMCI, Freesurfer’s effect size was always higher. Only 

the posterior division of the temporal fusiform cortex was found to be statistically different 

(p<0.05) between the two pipelines. In CTR versus AD, the Hedge’s g values followed the 

same trend for both algorithms without any statistical difference.  

Longitudinally, Hedge’s g trends were pretty similar for the two algorithms and increasing with 

the disease progression. No statistical differences were found in any ROIs or groups.  

 

Cortical thickness versus cognitive impairment and hippocampal volumetry 

Pearson's r correlation coefficients of regional cortical thickness with MMSE scores and 

quantitative hippocampal volume measurements (NeuroQuant ‒ [26]) were investigated in 

each ROI (see Figure 5 panels A and B) within the CTR and pMCI patients, which represent 

the most appropriate population for innovative clinical trial designs.  

In the CTR group, the relationship between pipelines’ cortical thickness and cognitive function 

or hippocampal atrophy was generally weak (-0.2 < r < 0.2), cross-sectionally and 

longitudinally. This was expected due to the absence of the disease in these completely 

asymptomatic subjects. However, significant differences between Civet and Freesurfer were 

found in few areas (i.e.: frontal, parietal, occipital, and temporal).  

In pMCI, the product momentums grew up to a medium and high levels (-0.27 < r < 0.64) 

especially for some expected ROIs, such as: precuneus cortex, cingulate and parahippocampal 

gyri. Significant differences between Civet and Freesurfer were found in a number of ROIs 

(i.e.: frontal, parietal, occipital, limbic, and temporal). Both Civet and Freesurfer cortical 

thickness measurements correlate better with hippocampal atrophy measurements than with 

neuropsychological tests. 
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Figure 4 - Hedges’ g effect size graphs in the different ROI areas: The first two panels represent the cross-

sectional effect sizes comparing the overall trend of CTR versus pMCI, and of CTR versus AD. The remaining 

three panels represent the longitudinal effect sizes between the baseline and month 24 in CTR, pMCI, and AD 

groups. The * symbol stands for p<0.05. 
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Figure 5 - Pearson's r coefficient of cortical thickness versus MMSE scores (panel A): In the CTR group, no 

significant differences between ROIs were detected in the two pipelines at BSL. At M24, significant differences 
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between the two pipelines were found in the: middle frontal gyrus; inferior frontal gyrus - pars triangularis; 

superior parietal lobule; anterior division of the supramarginal gyrus; anterior and posterior division of the 

superior temporal gyrus. Longitudinally, no significant differences between ROIs were detected in the two 

pipelines. In the pMCI group, significant difference between the two pipelines was found at BSL in the: anterior 

division of the superior temporal gyrus. At M24, significant difference between the two pipelines was found in 

the: superior division of the lateral occipital cortex. Longitudinally, no significant differences between ROIs were 

detected in the two pipelines.  

Pearson's r coefficient of cortical thickness versus NeuroQuant® hippocampal volume (panel B): In the CTR 

group, significant difference between the two pipelines at BSL was found in the: anterior division of the 

parahippocampal gyrus. At M24, significant differences between the two pipelines were found in the: inferior 

frontal gyrus - pars opercularis; anterior and posterior division of the parahippocampal gyrus; anterior division of 

the temporal fusiform cortex. Longitudinally, significant differences between the two pipelines were found in the: 

Heschl’s gyrus and temporal planum. In the pMCI group, significant difference between the two pipelines was 

found at BSL in the: precuneus cortex. Longitudinally, significant differences between the two pipelines were 

found in the: anterior division of the supramarginal gyrus, superior division of the lateral occipital cortex, posterior 

division of the superior temporal gyrus, posterior division of the inferior temporal gyrus, temporo-occipital part 

of the inferior temporal gyrus. In panels A and B, * symbol stands for p<0.05 (Steiger's z-test). Red coloured lines 

represent the trends in Freesurfer, blue lines in Civet. CTR.: CTR: Normal elderly controls; sMCI: stable MCI; 

pMCI: progressive MCI; AD: Alzheimer’s disease; BSL: baseline; M24: month 24; FRT: Frontal; PRT: Parietal; 

OCT: Occipital; LIMB: Limbic; TMP: Temporal. 

 

ROC Analysis 

Figure 6 shows the Receiver Operating Characteristic (ROC) curves used to discriminate pMCI 

and AD patients from the CTR group at baseline, together with the longitudinal cortical pattern 

used to discriminate pMCI. Identifying the most informative ROI was mandatory to reduce the 

dimensionality problem. In order to maximize the discriminatory power, we adopted a 

sequential forward search strategy (i.e., adding successive ROIs to the target set) as feature 

selection criterion. The goal was to find the best combination of ROIs for both tools with the 

highest discriminatory power. The best ROIs used to generate the final ROCs were different in 

each curve and for each algorithm. We started selecting those ROI with the highest effect size; 

at each further step, we assessed other ROIs with a medium-large effect size (d > 0.8 in cross 

sectional analysis; d > 0.6 in longitudinal analysis). This process reduced the inherent noise of 

high-resolution data, as well as the risk of over-fitting. Logistic regressions on regional cortical 

thickness in the selected combinations of ROIs were performed to build ROC curves, AUCs 

and the relative Intervals of Confidence (CI). No statistical difference (p>0.05) was found 

between the AUCs derived with Civet and those derived with Freesurfer. At baseline, CTR 

versus pMCI yielded 0.8953 and 0.9313 (z=-0.46, r=0.31), while CTR versus AD yielded  
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Figure 6 - Receiving Operator Characteristic (ROC) curves showing the performances of Civet and Freesurfer in classifying: A) CTR versus pMCI at baseline; 

B) CTR versus AD at baseline; and C) pMCI at baseline from month 24. AUC with 95% CIs are reported for both Freesurfer in red and Civet in blue. CTR: 

Normal elderly controls; sMCI: stable MCI; pMCI: progressive MCI; AD: Alzheimer’s Disease; BSL: baseline; M24: month 24; AUC: Area Under the Curve; 

C.I: Confidence Interval; ROI 8: temporal pole; ROI 11: anterior division of the middle temporal gyrus; ROI 12: posterior division of the middle temporal 

gyrus; ROI 13: temporo-occipital part of middle temporal gyrus; ROI 15: posterior division of inferior temporal gyrus; ROI 16: temporo-occipital part of inferior 

temporal gyrus; ROI 30: posterior division of the cingulate gyrus; ROI 31: Precuneus Cortex; ROI 34: anterior division of the parahippocampal gyrus; ROI 35: 

posterior division of the parahippocampal gyrus; ROI 37: anterior division of the temporal fusiform cortex; ROI 38: posterior division of the temporal fusiform 

cortex. 
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0.9568 and 0.9677 respectively (z=-0.38, r=0.46). In the longitudinal framework, pMCI 

yielded 0.7503 and 0.7874 (z=-0.34, r=0.21). Freesurfer performed slightly better in terms of 

classification accuracy, both on cross sectional and longitudinal analyses. 
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DISCUSSION 

This study could be considered as a first attempt to verify the mutual strengths and weaknesses 

of Civet and Freesurfer in a real head-to-head challenge, at the precision level of the single 

voxel. In the literature, only phantom-based validation methods have been used [27,28] but this 

kind of approach does not take into consideration every aspects of real data. We investigated 

and compared the performances of Civet and Freesurfer when applied to the same ADNI1 

groups which included subjects on the entire disease spectrum, as monitored in a 2-year time 

frame. The analyses showed commonalities and differences.  

Civet and Freesurfer are characterized by specific and distinctive procedures, making it 

difficult to compare their outputs. This problem was solved adopting a combined approach, 

applying both the GVF and CPS to ensure a robust comparison of meshes characterized by 

different morphometry and topography completely different. Thanks to the direct vertex-by-

vertex cross-algorithm comparison, the differences between the two algorithms, with regard 

both to cross-sectional and longitudinal analysis, were analytically mapped.  

Differences between thickness evaluation of the first test (MPRAGE) and that of the retest 

(MPRAGE-Repeat) did not appear, suggesting high repeatability. Both Civet’s and 

Freesurfer’s performances changed according to the disease stage, pointing out that neither 

algorithm can be considered better than the other, or the best acting. Freesurfer systematically 

underestimated the absolute thickness by about 1 mm if compared to Civet’s performance. 

Explanations for this evidence are not trivial. However, the restriction of Freesurfer to 1.0 mm 

as resolution for the volumes to be processed could be one possible reason. Civet, relying on 

the volumetric Laplacian approach, can use higher resolutions (e.g.: 0.8 or 0.9 mm) often 

adopted in ADNI1. An important role might be also played by the different mathematical 

procedures used by the two tools when reconstructing the gray matter sheet. Moreover, the 

skeleton reconstruction method adopted by Civet to build the GM sheet tends to overestimate 

the cortical thickness in case of blurred regions (i.e.: regions affected by noise where CSF 

volume is small); on the other hand, Freesurfer relies on the inner white deformation surface 

approach, which can be strongly influenced by the anatomical accuracy of the surface 

reconstruction at both inner and outer boundaries, thus giving a partially unfair anatomical 

accuracy of the surface reconstruction and assessment of the cortical thickness. 

Cross-sectionally, both algorithms were sensitive to cortical thinning in those cortical regions 

heavily affected by the neuropathology. Comparing CTR to pMCI, the regions of significance 

found by both tool were overlapping with the those found comparing CTR and AD, albeit 
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smaller, indicating that the differences in cortical thinning are progressive and well detectable 

even before a formal diagnosis of AD. This means that both tools can detect the characteristic 

signature of AD. Both Civet and Freesurfer were able to efficiently differentiate CTR from the 

AD and pMCI. All the ROIs granting such a good discrimination rate belonged to the temporal 

lobe. An interesting consideration for future works is the possibility to use Civet and Freesurfer 

to differentiate AD in particular subclasses, namely familial AD, early onset AD, and late onset 

AD [29,30].  

Longitudinally, both pipelines showed more statistically atrophic clusters in CTR than in sMCI, 

but this should be considered as a confounding phenotypic effect due to demographic, 

numerosity, clinical and other genetic characteristics. Further analyses with a larger sample 

will be conducted to clarify this particular behaviour. In pMCI, Civet was able to highlight a 

characteristic atrophic pattern involving expected temporal areas, such as the inferior margin 

of central gyrus and extended lateral frontal-parietal areas, as expected. The Civet’s higher 

effect size and its more representative cortical signature suggest that this tool can detect the 

typical atrophic patterns in subject that will convert to AD within 2 years more efficiently. In 

the discriminant analysis, Civet produced an AUC slightly lower than that produced by 

Freesurfer; but this was probably due to random noises that confuses classifiers, producing 

changes hard to predict and control. Additional explanation can be related to the fact that 

longitudinally, on a vertex-by-vertex basis, Civet showed a more extensive effect than 

Freesurfer, while on a ROI basis the differences between the pipelines were not significant. In 

the AD cohort both Freesurfer and Civet were analogously sensitive to the thinning patterns. 

As far as the correlation between the cortical thinning and hippocampal atrophic rate is 

concerned, Freesurfer showed a better trend, probably due to the exploitation of the 

longitudinal stream.  

Given its progressive alteration along the MCI-to-AD course, cortical thickness seems to be a 

promising neuroimaging candidate marker. With few exceptions, the two algorithms showed 

robust multi-ROI correlation patterns fairly consistent with the usual clinical and regional 

neuroimaging biomarkers, thus producing new, 3D, global profiles of the disease progression. 

Ultimately, having reliable 3D diagnostic markers would enable clinicians to identify and treat 

MCI patients who will evolve into AD patients in a timely manner, as disease-modifying 

treatments will become available. 
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Future studies, including the MR 3.0 Tesla field strength, additional time points, extended age 

range of subject, larger and additional groups, might be helpful to further address the spatial 

and temporal atrophic pattern of the Alzheimer’s changes. 

Freesurfer and Civet have been validated against either histological analysis or manual 

measurements [31-34], but none of them has been contrasted against different stages of the 

Alzheimer’s pathology. Future works should focus on further validating both pipelines against 

a database of cortical thickness derived from a population of normal and abnormal cadaveric 

brains, such as those recently defined in the BigBrain initiative (https://bigbrain.loris.ca/).  

Some limitations should be considered in the interpretation of the present results. First, the 

tools here described need to be further compared with other recent available techniques, such 

as: Toads-Cruise [35], ARCTIC [36], MILXCTE [37], DiReCT [38], or CLADA [39].  Second, 

as expert manual rater in neuroimaging represents the gold standard, independent evaluators 

should compare the performance and accuracy of each automatic pipeline. Third, each tool 

should be validated against harmonized MR datasets, such as: standardized ADNI analysis 

dataset [40] WW-ADNI [41], AddNeuroMed [42] and OASIS [43]. Fourth, computational time 

is worth consideration: the extensive use of Civet or Freesurfer to analyse large volumes of 

data mandatorily requires HPC, Grid or Cloud resources, due to the protracted processing time 

needed. Additional developing and programming can make these algorithms more reliable, 

faster and slighter.  
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CONCLUSION 

Both Civet and Freesurfer demonstrated high sensitivity to cortical gray matter changes cross-

sectionally and longitudinally. Additional efforts are needed to clarify the ability of these tools 

to address particular clinical and research questions concerning the future use of cortical 

thickness as a biomarker, and in particular their ability to: (I) predict cortical decline along 

different time points, (II) reduce the number of patients needed for future clinical trials, (III) 

help monitoring the efficacy of disease modifying drugs. 
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SUPPLEMENTAL DATA 

 

S1 Figure. Flowchart of the study methodology. 
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S2 Figure. Civet and Freesurfer B2B repeatability. 
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S3 Figure. Freesurfer and Civet absolute cortical thickness maps for every diagnostic class. 
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S1 Table. Link to the list of subjects’ RIDs: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364123/bin/pone.0117692.s004.xlsx  
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S2 Table. Whole brain absolute mean cortical thickness (mm) ± standard deviation (σ) for each 

diagnostic group at baseline and month 24. 

  



Head-to-head comparison of two popular cortical thickness extraction algorithms: a cross-sectional and longitudinal study 

	

	 86 

 

S3 Table. Cross-sectional thinning percentages (%) ± standard deviation (σ) in paired diagnostic 

groups at baseline. 
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S4 Table. Longitudinal thinning percentage (%) ± standard deviation (σ) in each diagnostic group 

in a time span of two years. 
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DATA AVAILABILITY 

The data generated in this study are made publicly available to promote the evaluation of cortical 

thickness tool. Data may be accessed as “H2H Comparison Study” at 

https://neugrid4you.eu/datasets. 
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ABSTRACT 

Human neuroimaging has entered the big-data era. Neuroscientists can process their data more 

and more efficiently but one major barrier remains: the manual validation of automatic 

processing results.  

To address this issue, an automatic Quality Control Environment (QCE) was designed. It is a 

machine learning (ML) multi-label classifier for predicting 3D cortical mesh artefacts of two 

widely used pipelines: Freesurfer (FS) and Civet-CLASP (CV). 

QCE was validated against the gold-standard visual assessment of experts. Cortical meshes 

(FS=1’582; CV=1’692) from five datasets (ADNI, ARWIBO, EDSD, OASIS, PharmaCOG) 

were considered. QCE is a multi-level classifier. In Level-1, a Random Forest (RF) estimator 

allows binary classification of “good” versus “bad” cortical meshes. In Level-2, a soft 

ensemble classifier composed of a Support Vector Machine (SVM), plus a RF allows the multi-

label tagging of eight artefacts (widespread, temporal, insula, parietal, frontal, meninges, 

occipital, other problems) on “bad” meshes. 

In Level-1, QCE appeared to be slightly more accurate, sensitive and with lower type II errors 

in FS than CV. On the contrary, QCE was more specific and had lower type I errors in CV than 

FS. The QCE area under the curve (AUC) yielded good results (AUCFS
Left= 0.96; 

AUCFS
Right=0.94; AUCCV

Left=0.96; AUCCV
Right=0.91) although significant differences were 

measured in left versus right hemispheres (p<0.05) in both pipelines. 

In Level-2, the Hamming-Loss (HL) of the QCE was systematically lower in FS (HLFS
Left= 

0.19; HLFS
Right= 0.21; HLCV

Left= 0.22; HLCV
Right= 0.23). The Label Ranking Average Precision 

(LRAP) score was always lower in CV (LRAPFS
Left= 0.62; LRAPFS

Right= 0.59; LRAPCV
Left= 0.51; 

LRAPCV
Right= 0.51). HL and LRAP metrics suggested QCE can well-perform to detect multiple 

artefacts in both pipelines.   

QCE appears to be a robust, reliable and fully automatic system capable of generalizing from 

training examples and correctly classifying any new 3D cortical mesh. QCE offers the 

neuroscientists an opportunity to quality control data more systematically, spending their time 

and resources entirely on data analysis. 
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INTRODUCTION 
 
Quality control (QC) of 3D cortical meshes from current analysis pipelines is a difficult task 

due to the possibility of numerous types of errors. No algorithm or pipeline yet available today 

in neuroimaging can generate outputs which are 100% correct. QC and output validation 

procedures can only be carried out by expert scientists as a visual inspection [17, 9].  

For most exploited algorithms in cortex delineations, such as Freesurfer [10] and Civet-CLASP 

[15], some semi-automatic QC procedures to detect outliers and collect detailed snapshots of 

various brain cortical regions started to appear over the last few years.  

These are namely: 

 (i) QA-TOOL1: its aim is to highlight subjects with potential 3D mesh problems. It is not 

considered to be a substitute for manual inspection of each subject slice, but it does allow for 

a quick scan of the processed output to discover any obvious failures. This tool has been 

developed specifically for the Freesurfer pipeline.  

(ii) CBRAIN-QC2: this generates a summary report containing group statistics and is linked to 

individual screenshots. A table reporting various metrics and colour codes per mesh indicate 

any possible delineation warnings or errors. It was developed specifically for the Civet 

pipeline.  

(iii) ENIGMA [28]: this identifies subjects with cortical values (i.e., thickness, surface or 

volume) that deviate from the specific population being studied. It creates cortical surface 

snapshots from internal brain slices, as well as external 3D views from different angles. It is 

available for both the Freesurfer and Civet pipelines. However, all these tools still need direct 

control by an expert. 

The main problems affecting 3D cortical mesh can be categorized into eight categories, which 

are illustrated in Figure 1. There may be several errors within a cortical mesh and normally 

these are very difficult to detect, requiring subtle attention. 

As in many other research fields, neuro-imaging is also experiencing an introduction of big-

data. This means particularly, an exponential growth of open-access brain imaging data as well 

as fast surrogate imaging biomarkers availability through more and more common grid/cloud 

e-infrastructures [12, 23, 26, 3]. Therefore, the traditional means to visually inspect results is 

no longer sustainable if we consider that thousands of brain images can be quickly processed 

in a high through-put way.  

																																																								
1	https://surfer.nmr.mgh.harvard.edu/fswiki/QATools		
2	http://www.bic.mni.mcgill.ca/ServicesSoftware/QualityControl		
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To face this change of paradigm in neuro-imaging, crowdsourcing for error detection and large 

scale data annotation has recently been proposed [14]. This approach is based on outsourcing 

laborious QC tasks to anonymous workers from an online community. Although this is 

feasible, additional effort is needed to increase the sensitivity and accuracy of non-experts, as 

well as to define standardized methods for QC.  

To fill the gap, an automated, scalable and objective QC environment (QCE) must be conceived 

for the benefit of the neuro-imaging community. To the best of our knowledge, no supervised 

Machine Leaning (ML) approach to classifying 3D cortical meshes of neuroimaging pipelines 

has yet been developed. The aim of this paper is to deploy a novel computational method that 

can predict “good” and “bad” 3D cortical meshes of the Freesurfer and Civet pipelines (Level-

1), as well as to suggest where problem may occur (Level-2), in order to spare neuroscientists’ 

valuable time.  

  



Chapter 4 

	 97 

 

 
 
Figure 1 - Snapshots of 3D brain meshes belonging to different QC categories. Green and magenta lines represent white matter surface delineation. Red and yellow lines 

represent pial surface delineation. The artefacts are surrounded by cyan bounding boxes. In order to not mask problems, the cortical thickness textures are not overimposed on 

the 3D cortical meshes. FS: Freesurfer; CV: Civet; WID: Widespread problems; TMP: Temporal problems; INS: Insula problems; PAR: Parietal problems; FRT: Frontal 

problems; MEN: Meninges problem; OCC: Occipital problems; OTH: Other problems.
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MATERIALS AND METHODS 

 
 
Data description 

The data used in the preparation of this article are heterogeneous and come from various 

initiatives, including: ADNI [30], ARWIBO [11], EDSD [27], OASIS [19], and PharmaCOG 

[13]. High resolution 3D T1-weighted MPRAGE or IRSPGR scans at various magnetic 

strengths (1.5T or 3.0T) and from different scanner manufacturers (GE, Siemens, Philips), were 

processed with Freesurfer (v5.3.0) and Civet (v1.1.9) through the neuGRID platform [22, 24]. 

Overall, 1’582 Freesurfer and 1’692 Civet meshes were used in this study. Figure 2 (Panel A) 

shows the number of “good” (without artefacts) versus “bad” (with artefacts) meshes for each 

dataset.  

 
 
Labelling phase 

In order to develop the QCE, a large number of Freesurfer and Civet output was assigned with 

labels through visual and manual evaluation. Usually, even human raters can have difficulties 

agreeing on how to label pipeline output. Therefore, in this study, the labels were defined 

through an evidence-based Delphi panel among three experts that converged on the definition 

of a “consensus” based on personal experience, the evaluation of 100 common meshes per 

pipeline, and recursive re-evaluation of choices expressed by other panellists and their 

justifications thereof. The raters were neuroscientists with more than five years of experience 

in the neuro-imaging field.  

We computed the interrater reliability agreement (IRA) with the Fleiss’ kappa coefficient. The 

IRA values before the Delphi panel for Freesurfer and Civet among the three raters were 0.458 

and 0.442, indicating moderate agreement. On the other hand, the IRA values after the Delphi 

panel for Freesurfer and Civet were 0.87 and 0.93 respectively, indicating almost perfect 

agreement. Subsequently, all Freesurfer and Civet meshes used were labelled by a single rater. 

The time needed to accurately label a 3D mesh was, at the least, five minutes per single mesh. 

Figure 2 reports the benchmark dataset counting meshes with artefacts, labelled as “bad”, and 

allocated in the following eight main categories: (i) widespread problems, (ii) temporal, (iii) 

insula, (iv) parietal, (v) frontal, (vi) meninges, (vii) occipital and (viii) other problems. The 

“bad” meshes were coupled with one or more labels (Panel B). The repartition of all the “bad” 

labels (i.e., 1’834 for Freesurfer; 1’869 for Civet) in the various categories can be found in  
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Figure 2 - A) Mesh benchmark dataset composition for Freesurfer and Civet pipelines. The table shows the data source and number of “good” versus “bad” meshes in each 

hemisphere for each pipeline. B) QC of 3D cortical mesh is a typical multi-label problem where one “bad” 3D mesh can be labelled with more than one artefact/label. C) Labels 

breakdown per each category in each hemisphere and pipeline. FS: Freesurfer; CV: Civet; WID: Widespread problems; TMP: Temporal problems; INS: Insula problems; PAR: 

Parietal problems; FRT: Frontal problems; MEN: Meninges problem; OCC: Occipital problems; OTH: Other problems.
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Panel C. The benchmark dataset of the 3D meshes generated here, including manual labels, is 

publicly available (https://neugrid4you.eu/datasets). 

 
 
Mesh processing and feature extraction  

In order to make the manual quality assessment of the rater as well as the automatic features 

computation easier and effective, we decided to register each mesh in the Talairach reference 

space. Indeed, 3D meshes of the brain generated by Freesurfer and Civet were in different 

reference spaces. Affine registration of the Freesurfer meshes was needed, while the Civet 

meshes were already related to the reference space and no registrations were applied.  

Several features based on the derived 3D biomarker descriptors, 2D geometric properties (i.e., 

image based approach), or 3D distortion measures (i.e., model based approach) [16] were 

computed (Table 1). A detailed description of the features considered here and their parameter 

settings will be explained in detail elsewhere. 

 

Main 
Feature 
category 

Description Total 
number 
of 
Features 
extracted  

Average 
Features 
selected in 
Level-1 
 
 

Average  
Features 
selected in 
Level-2 

Library  
/ Tool  
used 

FS CV FS CV 
Mesh  
Volume 

Computes the volume of 
white matter mesh, pial mesh, 
and white/pial mesh ratio.  

3 2 2 1 0 Mris_volume 

Cortical 
Thickness 
Log-
Likelihood 
Ratio Test 

Computes  the best 
distribution (from the 79 
available in Statsmodels) that 
fit the cortical thickness, 
returning the best log-
likelihood ratio score. 

2 2 1 0 0 Stats models 

IRIP-STD 
in 48 ROIs 

Computes the uncertainty of 
reproducibility error (IRIP) 
of thickness plus standard 
deviation (STD) in 48 
Harvard Oxford atlas ROIs. 

98 49 55 10 10 Numpy/Scipy 

Sulcal 
Shape 
Descriptors 

Computes length, max depth, 
mean depth, opening, grey 
matter thickness, average 
surface of 62 sulci of 3D 
mesh. 

372 207 
  

110 19 11 Aims/Brain 
Visa (v4.5.0) 

3D-Surf-
Mask 

Computes three overlap 
measures (i.e., Volume 
difference, Dice index, 
Jaccard index) between 3D 
white matter mesh and 2D 
WM tissue mask as well as 

6 4 2 2 1 FSL/AFNI 
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3D pial mesh and 2D GM 
tissue mask.   

Mesh 
Structural 
Distortion 
Measure 

Computes surface to surface 
distance between two 3D 
triangle meshes. The 
measures computed include: 
(i) 3D Dice coefficient and 
(ii) 3D intersection/union 
between white, pial, inflated 
meshes and ad-hoc templates 
generated from the meshes 
without artefacts (i.e., “good” 
meshes).  

6 2 1 0 1 3DMetricTool 

Zernike 
Moment 

Computes the Zernike 
moments of 3D mesh surface. 

25 12 6 4 4 Mindboggle 

Laplace-
Beltrami 
Spectrum 

Computes the Laplace-
Beltrami spectrum that 
provides insights into the 
structure and morphology of 
shapes. 

5 1 2 1 0 Mindboggle 

2D Region 
Property 

Computes image properties 
(area, convex area, 
eccentricity, Euler number, 
equivalent diameter, extent, 
major and minor axis length, 
orientation, perimeter, 
solidity, centroid, inertia 
tensor eigenvalues) of 2D 
snapshots of the 3D brain 
meshes on 8 different views 
(caudal, dorsal, frontal, 
lateral medial, parietal, 
rostral, ventral). 

184 56 34 8 5 OpenCV-Py 
/SKimage 

3D Unrol 
Least 
Square 
Conformal 
Map 

Computes the 3D mesh 
parameterization lowering 
the angle distortion. Once the 
3D mesh is unrolled, 2D 
Region Properties are 
computed.  

23 8 3 3 2 CGAL 

3D Mesh 
Graph 
Shortest 
Path 

Computes distances between 
the centroids of the 48 
Harvard Oxford atlas ROIs 
along the 3D mesh 

1127 263 304 39 29 AFNI 

2D Graph 
Property 

Computes a simplified 2D 
graph of flattened mesh and 
calculates graph properties 
(density, transitivity, radius, 
diameter, centrality, 
closeness, betweenness, 
estrada, clustering, shortest-
paths) of the entire graph as 
well as of 5 ROIs (frontal, 
middle temporal, entorhinal, 
precentral, precuneus areas). 

102 7 6 8 6 Networkx 

Hash and 
Hamming 
Distance 

Computes the average 
Hamming distance of hash 
values derived from 2D 
snapshots (caudal, dorsal, 
frontal, lateral medial, 

8 7 5 1 1 Image 
Hash/photo 
Hash  
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parietal, rostral, ventral) of 
brain meshes and grayscale 
cortical thickness versus all 
“good” meshes. 

CFD 
 

Computes the Navier-Stokes 
equation, which defines fluid 
flows (using a steady-state 
solver for incompressible, 
turbulent flow) on the 3D 
brain meshes. These 
properties include: drag 
force, lift force, lift to drag 
ratio, pitching moment and 
vorticity. 

5 4 1 1 0 OpenFOAM 

Total  1’966 624 532 97 70  
 
Table 1 summarizes the main categorical features of 3D meshes computed to train and test the QCE. The average 

number of features for Freesurfer and Civet are reported in the two different Levels. FS: Freesurfer; CV: Civet; 

WM: White Matter; GM: grey matter; ROI: region of interest.  

 

Once all the features were computed, the data were centred to null mean and standardized to 

unit variance in order to prevent the domination of one feature against all others and make the 

classifier capable of correctly learning from all features as expected. Altogether, we collected 

1’966 features per mesh. 

 
 
Feature selection 

To prevent overfitting of the QCE, considering the size of our dataset, we performed feature 

relevance evaluation and dimensionality reduction. The feature selection was performed within 

a 10-fold cross-validation method to prevent bias [2]. Inside each one of the cross-validation 

fold, the feature selection was performed on the training set.  

In order to select optimal feature subsets for classification, we used a tree-based feature 

selection. We considered the mean decrease in Gini index to measure the relevance of each 

feature [7]. This parameter measures the loss in Gini index on the out-of-bag samples when the 

feature is removed. The larger the decrease is, the more relevant the feature is. In Level-1, we 

used 500 tree estimators, while in Level-2 we used 5’000 tree estimators. Features whose 

importance was greater than the mean Gini loss were kept, the others were discarded. On 

average, across folds, in Level-1 we selected 624 features for Freesurfer and 532 for Civet, 

while in Level-2, in average, we considered 97 features for Freesurfer and 70 for Civet. The 

average numbers of features selected for all folds are reported in Table 1. 
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QCE structure 

The proposed QCE is a two-level classification algorithm (Figure 3). Level-1 plays a central 

role in the binary classification of “good” and “bad” 3D meshes, while the Level-2 is 

responsible for constructing the multi-label prediction of bad meshes. We will now introduce 

the two levels in detail. 

Level-1  

In Level-1, we used a Random Forest (RF) binary classifier. RF consists of constructing 

decision trees using randomly selected training samples and features. For classifier modelling, 

the parameters to be set were: (i) the number of features in the random subset at each tree node, 

(ii) the number of trees in the forest, (iii) the function used to measure the quality of a split, 

(iv) the re-weighting strategy to deal with classes imbalance. The first parameter was set to the 

square root of the total number of features [4]. The other parameters were arranged according 

to a performance assessment using a nested 10-fold cross-validation grid search strategy. A 

nested cross-validation consisted in taking one-tenth of the dataset as a validation set, while 

the rest were used to train and test the classifier in the inner loop with the optimal hyper-

parameters. Nested cross-validation was adopted to avoid optimistically biased estimates of 

performance that result from using the same cross-validation to set the hyper-parameters of the 

model [5]. The prediction results were kept and the process was repeated for all folds. Our grid 

search consisted in number of trees equal to {50, 100, 500, 1000, 1’250, 1’500, 1’750, 2’000}; 

split-function equal to {“Entropy”, “Gini”}; re-weighting strategy equal to {“None”, 

“Balanced”, “Balanced subsample”}. For both Freesurfer and Civet, a balanced class weight 

method was chosen. The best final configuration adopted is reported in Table 2. 

Level-2 

In Level-2 we used a one-vs-the-rest multi-label strategy. Multi-label classification assigns 

each mesh a set of target labels. This can be thought of as predicting properties of a mesh that 

are not mutually exclusive. The Level-2 classifier is used to predict multiple labels by fitting a 

2D matrix in which cell [i,j] is 1, if mesh i has label j, and 0 otherwise. The classification is 

performed by an ad hoc step of dimensionality reduction, projecting only the first two principal 

components found by canonical correlation analysis (CCA). The rationale for using CCA is 

that different artefact typologies of a 3D mesh are often highly correlated to each other (e.g.: 

“occipital” with “meninges”; “meninges” with “parietal”; “parietal” with “temporal”; etc.). 

CCA was used to model the association between artefact locations and the 3D mesh properties.   
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Figure 3 - Simplified overview of the QCE structure. QCE tags the Freesurfer and Civet outputs as “good” or “bad” (Level-1) thanks to a RF estimator. Moreover, QCE detects 

automatically which portions of the 3D brain meshes are affected by artefacts. It is done exploiting a one-versus-rest approach relying on a soft ensemble multi-label classifier 

(Level-2). QCE core is designed in Python and scikit-learn [21] as well as on independent external libraries (see Table 1). QCE: Quality Control Environment; SVM: Support 

Vector Machine; RF: Random Forest. WID: Widespread problems; TMP: Temporal problems; INS: Insula problems; PAR: Parietal problems; FRT: Frontal problems; MEN: 

Meninges problem; OCC: Occipital problems; OTH: Other problems.
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We kept only canonical correlation pairs that were significant. The significance of the first and 

second canonical correlation pairs of variates were assessed using Wilks’ lambda test 

(pFS
Left<0.001; pFS

Right<0.001; pCV
Left<0.05; pCV

Right<0.001). Then, an ensemble voting classifier 

was trained to learn discriminative models for each class. The goal was to combine the 

prediction of two base estimators in order to improve generalizability and robustness over a 

single classifier. In this study, a soft-voting combination of Support Vector Machine (SVM) 

and RF was chosen.  

On the one hand, the parameters to be set in the SVM were: (i) the kernel type, (ii) the C value, 

representing the number of elements accepted in the margin, and (iii) the weights associated 

with different class labels. On the other hand, the parameters to be set in RF included: (iv) the 

number of features in the random subset at each tree node, (v) the number of trees in the forest, 

(vi) the function used to measure the quality of a split; (vii) the weights associated with class 

labels. As already described in Level-1, the forth parameter was set to the square root of the 

total number of features. As far as all the other parameters were concerned, these were selected 

using a nested 10-fold cross-validation grid search strategy. In SVM they were arranged to 

kernel equal to {“linear”, “rbf”}; C equal to {0.01, 0.1, 1, 10, 100}; and re-weighting strategy 

equal to {“None”, “Balanced”}. In RF they were arranged to number of trees equal to {50, 100, 

500, 1’000, 1’250, 1’500, 1’750, 2’000}; split-function equal to {“Entropy”, “Gini”}; re-

weighting strategy equal to {“None”, “Balanced”, “Balanced subsample”}. Finally, for the 

soft-voting ensemble, a brute force approach, useful to find the optimal combination of 

weights, was carried out for both Freesurfer and Civet. The best final configuration adopted is 

reported in Table 2.  

 
 FS CV 

LH RH LH RH 
Level-1 Max 

features 
Sqrt(n_features) Sqrt(n_features) Sqrt(n_features) Sqrt(n_features) 

N° 
estimator 

1’000 1’000 1’750 1’750 

Split 
criterion 

Entropy Entropy Entropy Entropy 

Class 
weight 

Balanced 
subsample 

Balanced 
subsample 

Balanced Balanced 

Level-2 Kernel  
of SVM 

RBF RBF RBF RBF 

C  
of SVM 

100 10 100 10 

Class 
Weight  
of SVM 

None None None None 



QCE (Quality Control Environment): A machine learning tool for automatic classification of cortical meshes 

	 106 

Max 
features  
of RF 

Sqrt(n_features) Sqrt(n_features) Sqrt(n_features) Sqrt(n_features) 

N° 
estimator 
of RF 

750 250 750 100 

Split 
criterion 
of RF 

Gini Entropy Gini Gini 

Class 
weight 
of RF 

Balanced Balanced 
subsample 

Balanced 
subsample 

Balanced 

Soft 
Weight 
[SVM,RF] 

[10,8] [3,2] [2,5] [1,17] 

 
Table 2 shows the optimal Level-1 and Level-2 configurations following a nested 10-fold cross validation grid-

search strategy. In split criterion, “Gini” and “Entropy” functions seemed to have little effect on the performance 

of the classifier and were generally consistent respect to each other. In class weight, the “balanced” mode used 

for Civet adjusted weights inversely proportional to the label frequencies. The “balanced sub-sample” mode used 

in Freesurfer was similar to the “balanced” method except that weights were computed based on the bootstrap 

sample for each tree grown. FS: Freesurfer, CV: Civet; LH: left hemisphere; RH: Right hemisphere; Sqrt: square-

root; RBF: Radial Basis Function; SVM: Support Vector Machine; RF: Random Forest. 

  

Metrics definition 

To evaluate the quality of predictions of our model, we used different metrics detailed in the 

sections below: 

Level-1 

 

(1) Accuracy =1 " [(%&' + 	%*')	/	(%&' + 	-&' + 	-*' + 	%*')]
/
'01  

  

(2) Specificity = 1 " [%*'	/	(%*' + 	-&')]
/
'01   

 

(3) Sensitivity = 1 " [%&'	/	(%&' 	+ 	-*')]
/
'01   

 

(4) Precision = 1 " [	%&'/	(%&' + -&')]
/
'01   

 

(5) Type I error = 1 " [-&'	/	(-&' + %*')]	
/
'01   

 

(6) Type II error = 1 " 	/
'01 [-*'	/	(%&' + -*')]  



Chapter 4 

	 107 

 

 

Where k is the number of the cross-validation folds, TP is the number of true positive, TN is 

the number of true negative, FP is the number of false positive, FN is the number of false 

negative. 

Level-2  

 
(1) Hamming-Loss( y,  ŷ ) = 1

2345637
	1(ŷ	: ≠ 	<:)

2345637=1
:0>   

  
(2) LRAP(y, f ^ ) = 1

274?@367

1

|BC|

274?@367=1

'0>

|DCE|

FG2/CE
':BCE01  

 
with  

Lij = ": <'/ = 1, f	^	'/ ≥ f	^	':  ;  
 

rankij= | ":	 f	^	'/ ≥ f	^	': | ;   
 
| * | is the ℓ0-Norm or the cardinality of the set;	

 
 
Where nlabels and nsamples are the number of labels and samples respectively, yj is the ground truth, 

ŷ j is the QCE prediction for the j-th label of a given sample, f ^  is the score associated with 

each label of a sample. The Hamming-Loss is the fraction of labels that are incorrectly 

predicted [18]. The score obtained is always lower than 1 and the best value is 0. 

Label ranking average precision (LRAP) gives the mean fraction of correct positive labels 

among all positive labels with lower scores for each label [29]. This metric is linked to the 

average precision function, but is based on the notion of label ranking rather than precision and 

recall. In the label ranking framework, the objective is to assign a complete preference order 

of labels for each brain mesh. The obtained score is always strictly greater than 0 and the best 

value is 1.  
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RESULTS 
 
QCE evaluation on the whole dataset  

Table 3 shows informative metrics to evaluate QCE performances in both pipelines. On the 

one hand, QCE seemed to be slightly more accurate in discriminating “good” versus “bad” for 

Freesurfer, although it showed more specificity in Civet. On the other hand, QCE had a better 

type II error for Freesurfer as well as a better type I error for Civet. 

 

 
 
Table 3 - Performance assessment for Level-1. Note that for ACCURACY, SPECIFICITY, PRECISION and 

SENSITIVITY indices the bigger is the measure-value, the better is the performance. For Type I and Type II 

errors the smaller is the measure-value, the better is the performance. FS: Freesurfer; CV: Civet; RH: Right 

hemisphere; LH: Left hemisphere. 

 
 
Figure 4 shows the Receiver Operating Characteristic (ROC) curves used to discriminate 

“good” and “bad” meshes. The corresponding areas under the curves (AUC) were computed 

and statistically compared setting the threshold for significance at a p value of 0.05. In both 

pipelines, QCE showed statistical difference (p<0.05) between the AUCs derived with meshes 

of the left and those derived with the right hemisphere. In Freesurfer, the discriminative 

analysis yielded 0.96 in the left and 0.94 in the right hemisphere (z = +2.09); while in Civet it 

yielded 0.96 and 0.91 respectively (z = +4.17).  QCE performed better in terms of classification 

accuracy on left meshes although it is characterised by high AUCs in both Freesurfer’s and 

Civet’s right meshes. QCE looked similarly robust for both pipelines in Level-1. 

 
In machine learning (ML), performance evaluation of multi-label classification differs from 

that of classical binary classification as each sample may have more labels simultaneously [25].  
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Figure 4 - Receiving Operator Characteristic (ROC) curves showing the performances of the QCE in classifying “good” versus “bad” 3D meshes of Freesurfer (left) and Civet 

(right). FS: Freesurfer; CV: Civet; RH: Right hemisphere; LH: Left hemisphere; AUC: Area Under the Curve; C.I.: 95% Confidence Interval.

CVFS

LH 10 fold mean ROC (AUC=0.96, C.I. 0.95 – 0.98)

RH 10 fold mean ROC (AUC=0.94, C.I. 0.93 – 0.95)

LH 10 fold mean ROC (AUC=0.96, C.I. 0.95 – 0.98)

RH 10 fold mean ROC (AUC=0.91, C.I. 0.89 – 0.94)
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Table 4 shows two common measures used to evaluate the QCE performance in Level-2. QCE 

shows a good Hamming-Loss (HL) in labelling both left and right 3D bad mesh subtypes in 

Freesurfer as well as in Civet. 

As far as the LRAP index is concerned, this is a strict metric not characterized by over 

prediction or under prediction. It is therefore difficult to obtain very high overall LRAP 

considering eight multiple labels. QCE showed a slightly higher LRAP index in Freesurfer than 

Civet in both the left and right hemispheres.  

 

 
 
Table 4 - Performance assessment for Level-2. FS: Freesurfer; CV: Civet; RH: Right hemisphere; LH: Left 

hemisphere; HL: Hamming-Loss; LRAP: Label ranking average precision. 

 

For the benefit of the reader, Figure 5 graphically shows the QCE in classifying 3D meshes as 

multiple combinations of atomic labels: (a) widespread problems, (b) temporal, (c) insula, (d) 

parietal, (e) frontal, (f) meninges, (g) occipital and (h) other problems. 

 

 

QCE evaluation on independent datasets  

To evaluate the prediction performance of our classifier further, we applied a leave one-group-

out strategy. Essentially, we were interested to know whether the QCE trained on a particular 

set of data-groups, generalizes well to the unseen group. To measure this, one dataset at a time 

was held out as the testing dataset. The remaining datasets were used to train our QCE each 

time from scratch. Following this procedure, we then tested the prediction performance on the 

testing dataset. In each independent dataset, the performance details obtained by QCE can be 

found in Table 5 and Table 6.  

As far as the Level-1 is concerned, the QCE had generally lower sensitivity than that reached 

for the whole dataset. In particular, the loss was more pronounced in Freesurfer than Civet 

especially in the ADNI and OASIS datasets. The type II errors doubled in EDSD and  Pharma-
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Figure 5 represents one k-fold of the QCE 10-fold cross-validation of the Level-2 for both Civet and Freesurfer. The 3D meshes that are affected by multiple artefacts are 

plotted surrounded by concentric colored circles. The predicted labels are quite consistent with the real labels tagged by expert. The QCE incorrect labels are shown in the last 

two columns. CCA is used to perform a supervised dimensionality reduction. A complete overview of the 10-fold cross validation test-sets is provided in supplementary material 

(Figure S1). FS: Freesurfer; CV: Civet; RH: Right hemisphere; LH: Left hemisphere. CCA: Canonical Correlation Analysis. FN: False negative Labels (labels not found, that 

are correct). FP: False Positive labels (labels found, that are incorrect). PB: problems. 

FS	LH

FS	RH

CV	LH

CV	RH

CCA	(training	set) CCA	(testing	set) Predicted	 labels FN FP
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CCA1 CCA1 CCA1 CCA1 CCA1 CCA1
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FS	LH

FS	RH

CV	LH

CV	RH

I II IV VI VII IXIII V VIII X

Figure S1 represents each test-set of the QCE assessed in the 10-fold cross-validation for Freesurfer and Civet pipelines. Real (i.e.: ground truth), predicted, false negative, and false positive labels
are shown. FS: Freesurfer; CV: Civet; RH: Right hemisphere; LH: Left hemisphere.

FS	LH

FS	RH

CV	LH

CV	RH

I II IV VI VII IXIII V VIII X

CCA1

CC
A2
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COG and tripled in ADNI and OASIS for Freesurfer, while they doubled in EDSD and OASIS 

for Civet. The accuracy of the QCE on both hemispheres was overall comparable to the relative 

performance of the QCE assessed for the whole dataset.  The AUC of the QCE in both pipeline, 

as well as in each hemisphere, was always greater than 0.86, reaching values of 0.99 in some 

independent dataset. This indicates QCE in Level-1 was not over-estimated. 

As far as the Level-2 was concerned, the overall performance in terms of HL and LRAP on 

each independent dataset were strictly in line with the scores reached by the QCE in the whole 

cross-validated dataset. This indicated that QCE in Level-2 is well-balanced and not over-

fitted. 
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Table 5- Performance of the QCE for Level-1 on independent datasets. Each training set is constituted by all the samples except the ones related to the independent group (i.e.: 

dataset test). FS: Freesurfer; CV: Civet; RH: Right hemisphere; LH: Left hemisphere; AUC: Area Under the Curve. 
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Table 6 - Performance of the QCE for Level-2 on independent datasets. Each training set is constituted by all the samples except the ones related to the independent group (i.e.: 

dataset test). FS: Freesurfer; CV: Civet; RH: Right hemisphere; LH: Left hemisphere; HL: Hamming-Loss; LRAP: Label ranking average precision. 
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DISCUSSION 
 
The aim of this paper was to assess whether an automatic ML tool could perform QC of MR-

based cortical surface derived by two well-known pipelines, i.e., Freesurfer and Civet. More 

specifically, our purpose was to investigate whether error detection and its related localization 

can be reliably handled by a supervised classifier. This is not an easy task because it requires: 

(i) high sensitivity and (ii) sufficiently low type II error.  

According to our experiments, in Level-1 the QCE produced excellent results with high 

precision and acceptable sensitivity in line with those achieved by trained experts for both 

pipelines.  

The current version of the QCE relies on various 3D mesh features, mainly based on texture, 

statistics and geometric context information. The best results for Level-1 binary classification 

were primarily obtained with IRIP-STD, HamHash, Sulci descriptors and the 3D shortest paths 

in terms of relevance and number of features selected.  

In Level-2, Zernike momentum and Beltrami spectrum features were the most important. On 

the contrary, we should note that LogLH features have never been selected by either the 

Freesurfer or Civet pipelines, indicating that these properties were of no relevance in the multi-

label tagging task.  

The present work is characterized by large and variegated multi-diagnosis, multi-cohort and 

multi-site datasets. This is the best situation to test QCE performance even on output derived 

from poor quality input images, from different manufacturer’s scanners and from different field 

strengths. As such, AUCs between 0.91 and 0.96 in Level-1 were especially good. However, 

QCE produced AUCs statistically lower in the discriminant analysis of the right hemispheric 

meshes versus the left ones. This was in line with the IRA of the panellists (IRAFS
Right= +0.824; 

IRAFS
Left= +0.912; IRACV

Right= +0.916; IRACV
Left= +0.940). A probable explanation could be the 

different and suboptimal framework of artefacts visualisation adopted (i.e.: different colours 

for display gray/white matters of the left/right 3D meshes) that could simplify or get more 

difficult the artefacts detection at naked eye. This might influence the final label-set as well. 

Thus, in future study, this aspect should be further investigated. 

In Level-2, the QCE performed sufficiently well during the multi-label validation phase, 

although it did have some missing or incorrect labels. For Freesurfer, QCE tended to miss 

occipital and frontal problems, as well as to misclassify temporal and parietal artefacts. In 

Civet, the situation was similar but insular labels were also often incorrectly identified. This 

was probably due to fuzzy clusters obtained after the supervised CCA dimensionality 
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reduction. In future studies, we aim to improve the QCE type I and type II errors exploring new 

ML algorithms, feature dimensionality reduction techniques as well as adding new informative 

3D mesh spatial information for both Level-1 and Level-2. 

Interestingly, in Level-1, the QCE configuration and its hyper-parameters were much more 

homogeneous between the left and right hemispheric meshes than in Level-2. This occurred 

for both pipelines. On the other hand, in the training set of Level-2, the clouds of different mesh 

problems were not clearly distinguishable and well-segregated, showing different 

conformations for the two hemispheres. For these reasons, the Level-2 hyper-parameters 

configuration diverged considerably from one hemisphere to the other. However, this is in line 

with the expected capabilities of the system to fit, as much as possible, the clouds of each 

composite label. Hence, QCE is good at adjusting to different situations providing overall 

comparable and robust results for both Freesurfer and Civet. Furthermore, the differences 

between the two pipelines in the HL and LRAP metrics can be partially explained in term of: 

(i) different representativeness of the bad artefacts, more uniformly distributed in Civet than in 

Freesurfer; (ii) different numbers of artefacts per mesh, scarcer multiple labels in Civet than in 

Freesurfer.  

Notably, QCE still performed robustly on the five independent datasets assessed and more 

importantly, it was not over-fitted. In Level-1, the standard deviations of QCE accuracies were 

small: 0.03 and 0.06 in the left and right hemisphere respectively for Freesurfer; 0.06 and 0.10 

in the left and right hemisphere respectively for Civet. In Level-2, from the five independent 

datasets, the standard deviation of HL and LRAP never exceeded 0.06 for Freesurfer and 0.04 

for Civet.  

QCE is an ideal solution in terms of scalability. It can classify thousands of 3D cortical meshes 

quicker and with higher efficiency than an expert, that is unavoidably prone to subjective errors 

during the visual inspection, can do. 
In this first study, we used annotations based on a consensus of just three experts as a reference 

to measure QCE performance. Although it is a common approach for validation in the medical 

image processing community, future work should include reference data from many more 

observers. Proceeding along these lines, the definition of an international harmonized protocol 

for 3D cortical mesh problems detection, as well as publicly well-annotated database, could 

serve as a reference standard for the advancement of future automated QCE systems.   

Certain restrictions should be considered in the interpretation of these results. First, the QCE 

needs to be further tested with other recent cortical delineation techniques, such as: DiReCT 
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[8], CLADA [20], and MILXCTE [1] to see if comparable results can be obtained with meshes 

produced by different algorithms. Second, although in a multi-label dataset, the frequency of 

labels is often not even, we could deal with the multi-label imbalance with some very recent 

approaches such as: LP-RUS or LP-ROS [6]. Third, even if the main features of the QCE can 

be parallelized in order to reduce the time needed to collect numerical features from the cortical 

mesh, some (e.g., 3D-surf-mask, Zernike momentum, Laplace-Beltrami spectrum, 2D graph 

properties, and Computational Fluid Dynamics) are very demanding and need few hours to 

complete. Thus, to overcome this limitation, grid/cloud e-infrastructures are mandatory to 

make the 3D mesh processing, features extraction and QCE execution slighter and faster. In 

order to maximize software distribution, a more streamlined QCE version could be compiled 

with less dependences to compute just the most informative features, as well as enabling 

neuroscientists to run QCE locally on their own resources. 
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CONCLUSION 
 
The detection of 3D cortical mesh errors in an objective and automatic manner is now possible. 

Thanks to the combination of innovative ML approaches, we have developed and endorsed a 

system capable of predicting whether a 3D cortical mesh is correct or affected by artefacts and 

in the latter case, to suggest where problems may be.  

In this article, a new benchmark QC dataset has been constructed that contains 3D cortical 

meshes from Freesurfer and Civet with both single and multiple labels. 

Future work will focus on increasing the performance of our method in artefact detection, so 

that QC tasks can be handled entirely and exclusively using an automated approach.  

Given its scalability and efficacy, QCE represents an opportunity to process data more easily 

and quickly, allowing neuroscientists to spend their valuable time completely on data analysis 

instead of spending resources in tedious QC tasks.  
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GENERAL DISCUSSION 

 

Neuroimaging research, by its very nature, is data intensive [1]. In this thesis, we proved that 

neuroimaging is an example of discovery-oriented science, wherein it is possible to 

systematically extract and study patterns of brain structure across thousands of subjects and 

dozens of studies, resulting in new knowledge.  

The computational environments to support this advanced form of brain research are still 

maturing. Despite their common vision, e-infrastructures today available have been designed 

and developed at different time points and in different scientific contexts, to address specific 

contingent needs. As a consequence, while sharing many commonalities, they also present 

significant differences. Some of them are more close-fitted to a data-federation approach (such 

as GAAIN and HBP-MIP) adopting the slogan “it is easier to move algorithms than data across 

centres” [2]; others (such as CATI, CBRAIN, LONI, and neuGRID) are testimonials of a data-

sharing schema through a more centralised approach.  

All these e-infrastructures offer computing power and storage capacity that benefit from the 

combination of different resources, such as grids, regular HPCs, and public/private clouds, to 

increase their overall performance. 

The general setting is optimal to start thinking about new multimodal and, possibly, multiscale 

brain models such as those developed in the context of the “Human Brain Project” or the “Brain 

Activity Map” initiatives in Europe and USA, respectively (Chapter 2). 

 

Waiting for this to happen, it is nonetheless possible to exploit the large amount of data already 

stored in e-infrastructures to test new hypotheses and better characterize the AD pathology. 

One of the study we were interested in was the relative efficacy of the algorithms used to 

quantify the brain’s cortical thickness. In this sense, we performed a head-to-head comparison 

of Freesurfer and Civet (two very popular pipelines) to validate one of the most promising AD 

biomarker (Chapter 3).  

Our purpose was to understand which of the two tools was the most accurate for tracking 

disease evolution. Despite being a computationally expensive task, we succeeded in obtaining 

results in less than 10 weeks running the jobs on the neuGRID and VIP resources (to be 

compared with the 5-year timeframe we would have needed on a single mono-core computer). 

In particular, this study represents a first attempt to verify the mutual strengths and weaknesses 

of Civet and Freesurfer at a precision level of the single voxel. This  was possible thanks to an 
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innovative hybrid template or, more specifically, to the exploitation of a 3D Gradient Vector 

Flow (GVF) and Closest Point Search (CPS) techniques between the two standard pipelines’ 

templates, which allowed for the definition of a mutual vertex by vertex correspondence 

between Freesurfer’s and Civet’s meshes. 

Cross-sectionally, both Civet’s and Freesurfer’s performances changed according to the 

disease stage. Both tools detected the characteristic signature of AD (i.e.: the posterior 

cingulate, temporal lobe and frontal gyrus, medial temporal, retrosplenial, and lateral temporal 

regions). 

Longitudinally, the main results of the study were: (i) in pMCI Civet was able to highlight a 

characteristic atrophic pattern involving expected temporal areas, such as the inferior margin 

of central gyrus and extended lateral frontal-parietal areas, as expected; (ii) in pMCI Freesurfer 

was not able to find as many regions as those detected by Civet with the same significance and 

extension (i.e.: orbital, triangular, and opercular portion of the inferior frontal gyrus, 

transverse-temporal and mesial part of the superior frontal cortex, inferior parietal cortex, the 

superior temporal gyrus); (iii) the Civet’s more representative cortical signature suggests that 

this tool can detect the typical atrophic patterns in subject that will convert to AD within 2 

years more efficiently than Freesurfer. 

 

Additionally, such systematic and analytical research-study, was propaedeutic for the 

implementation of an automatic QCE (Chapter 4). In other words, the study set the bases to 

develop a ML tools capable to automatically classify 3D cortical meshes in different categories 

using specific cortical properties. 

For both pipelines, our QCE showed brilliant results with high precision and acceptable 

sensitivity in classifying 3D meshes as “good” or “bad”, in line with the performance of trained 

experts. The AUCs for the binary classification yielded the following results: AUCFS
Left= 0.96; 

AUCFS
Right=0.94; AUCCV

Left=0.96; AUCCV
Right=0.91. If a 3D mesh is classified as “bad”, the 

QCE suggests where artefacts are located according to the following classification schema: (i) 

widespread problems, (ii) temporal, (iii) insula, (iv) parietal, (v) frontal, (vi) meninges, (vii) 

occipital, and (viii) other problems. This is a typical multi-label classification problem 

addressed with a combination of machine learning tools, i.e.: soft-ensemble classifier based on 

Support Vector Machine (SVM) and Random Forest (RF). Our QCE relies on different mesh 

features based on texture, thickness statistics, and geometric context information. 
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QCE represents a milestone for every neuroscientist in the field of neuroimaging. For the first 

time, a fully automated and objective method for the quality assurance is available to be 

plugged at the end of any MRI cortical thickness analysis.  

The most immediate and tangible results are: (a) the considerable saving of time; (b) the 

reduction of subjective errors; (c) the higher efficiency and scalability in term of QC 

assessments and sanity check per unit-time (e.g., hour, day, week, month, year), this latter being 

absolutely mandatory in the current big-data era.  QCE represents the final product of this 

thesis.  

 

So, the “red thread” for neuroscientists (i.e., e-infrastructure, cortical mesh segmentation, 

quality control environment) has been finally tracked. 

 

Methodological considerations 

Strengths 

One of the main strengths of our study was the use of neuGRID, a dedicated e-infrastructure. 

This was possible thanks to a grant won in the context of the European call DG-CONNECT 

(agreement no. 283562 FP7/2007-2013).  

In addition to high computational resources, we used a large dataset to compare and assess the 

cortical thickness algorithms. We included participants across the whole cognitive spectrum in 

both cross-sectional and longitudinal series. 

Further, a multi-cohort dataset was assembled for the development of the QCE on huge and 

heterogeneous amount of T13D MRI scans coming from different countries in America and 

Europe which increased the generalizability of our results.   

Limitations  

Our studies presents nonetheless several limitations. The thought that, from now on, data will 

simply be processed “in the cloud” is somewhat naïve. The grid/cloud e-infrastructures 

physically exist, somewhere, and system failures can always happen. Moreover, physical 

resources are not infinite, by definition, and are costly, too.  
As far as the “3D GVF – CPS” methodology is concerned, further tests on the newly released 

version of Freesurfer (v6.0) and Civet (v2.1), as well as of other less popular but fresher 

pipelines (e.g.: Toads-Cruise, ARCTIC, MILXCTE, DiReCT, CLADA) are needed. 
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This applies for our QCE as well which, in addition, should be tested on datasets hosted in 

other e-infrastructures. Last but not least, due to the relative small number of some bad labels 

used in Level-2 (i.e., insula, frontal, occipital, other problems) our QCE might have been 

affected by unbalance issues, reducing the final performances assessed with the HL and LRAP 

multi-label metrics.  

 

Future Directions  

At the time of writing, multiple efforts are ongoing to capitalize on the significant overlaps and 

redundancies among different e-infrastructures, as well as to develop seamless and user-

transparent interoperability. This is a long-term multinational project, which will eventually 

lead to the development of a global virtual imaging laboratory. The grand vision is to provide 

computational neuroscientists with a virtual space, accessible through an ordinary browser, 

where image data sets and clinical variables, as well as algorithms, pipelines, computational 

resources, statistical tools, quality-control environments will be transparently accessible 

irrespective of physical location. A single sign-on system should be used to guarantee user-

friendly but still privileged access to non-public resources. 

The most mature e-infrastructures could seek convergence towards a worldwide infrastructure 

that would constitute a global virtual imaging laboratory. This framework is instrumental to 

the success of ambitious scientific initiatives with high societal impact such as, for example, 

the prevention of AD before 2020 (PAD 2020 - http://www.pad2020.org). 

E-infrastructures will progressively augment their data as well as algorithm portfolios, offering 

neuroscientists unprecedented power at their fingertips. In this scenario, each new algorithm 

developed to estimate the cortical thickness (besides those discussed in Chapter 3) should be 

automatically contrasted vertex-by-vertex via GVF and CPS methodology against the best 

available tool on the market before being integrated in the e-infrastructures. This would 

facilitate the job of algorithm developers when deploying and fine-tuning new algorithms, 

thereby reducing considerably the time needed to be certified as medical devices by recognised 

boards such as EMA (European Medicines Agency) or FDA (Food and Drug Administration). 

On the other hand, neuroscientists would be able to use tools to monitor drug efficacy in AD 

trials which would be more sensitive. 

In Chapter 4 we presented the work done to model the QCE using a supervised learning 

approach. An alternative strategy could have entailed the use of an unsupervised classifier 

making dimensionality reduction, based for instance on tSNE (t-distributed Stochastic  
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Figure 1 – QCE preliminary results of the tSNE unsupervised dimensionality reduction strategy into a visually plausible 2D space. The tSNE algorithm comprises two main 

stages. First, tSNE constructs a probability distribution over pairs of high-dimensional objects so that similar objects have a high probability of being picked together, compared 

with the extremely small probability of dissimilar points. Second, t-SNE defines a similar probability distribution over the points, and it minimizes the Kullback–Leibler 

divergence between the probabilities of the low-dimensional embedding and the high-dimensional data [5]. Panel A shows 3 main evident clusters after tSNE. Panel B shows 

the overlay of GOOD and BAD real labels. The global silhouette score (SS) associated with these clusters is +0.72. SS ranges from +1 (best) and -1 (worst). Values near 0 

indicate overlapping clusters. Panel C shows 4 main clusters after tSNE. Panel D shows the overlay of the eight bad labels. Although this is a multi-label classification task, we 

computed the Calinski-Harabasz (CHS) scores just for the eight main atomic labels reported hereinafter to give a glimpse on the quality of cluster segregations: Widespread 

problems (CHS = 398.87); Temporal (CHS = 7.01); Insula (CHS = 54.20); Parietal (CHS = 29.40); Frontal (CHS = 11.51); Meninges (CHS = 15.93); Occipital (CHS = 0.22); 

Other problems (CHS = 0.42). A larger CHS value denotes higher compactness. 
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Figure 2 represents a CNN prototype of our QCE. We performed some preliminary tests using both sequential and graph implementations. Our CNN must classify 

2D screenshots of a 3D mesh in different (multilabel) categories (i.e., “good”, “wide problem”, “temporal problem”, “insula problem”, “parietal problem”, “frontal 

problem”, “meninges problem”, “occipital problem”, “other problem”). As depicted in figure 2, for a mesh provided as input, the CNN correctly assigned the 

highest probability for the GOOD category among the 9 possible labels. There are four operations in a CNN (i.e., Convolution, Non linearity – RELU, Pooling,  
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Classification). The primary purpose of Convolution is to extract features from the input image. The features are 

derived applying different filters. So, a number of feature maps (i.e., sharpened, blurred, etc..) are produced for the 

same input. In practice, a CNN learns the values of these filters during the training process. The higher number of 

filters we have, the more image features get extracted, and the better our CNN becomes at recognizing patterns in 

unseen images. An operation called RELU is used after each Convolution operation. RELU replaces all negative pixel 

values in the feature map by zero. The purpose of RELU is to introduce non-linearity in our CCN, since most of the 

real-world pattern we would want our CCN to learn are non-linear. This is also the case for cortical mesh screenshots. 

The Pooling step reduces the dimensionality of each feature map and retains the most important information. Spatial 

Pooling can be of different types: Max, Average, Sum, etc. In case of MaxPooling, we defined a spatial neighbourhood 

(for example, a 3×3 pixel window) and take the largest element from the “RELUed” feature map within that window. 

In figure 2, we have two sets of Convolution, RELU, and Pooling layers: the 2nd Convolution layer performs 

convolution on the output of the first Pooling Layer.	The output of the 2nd Pooling Layer acts as an input to the Fully 

Connected Layer. In Keras, we can prepare the input to be fed in the Fully Connected Layer via specific functions 

called Dense and Flattening. The Fully Connected layer is a traditional Multi Layer Perceptron. The term “Fully 

Connected” implies that every neuron in the previous layer is connected to every neuron on the next layer. The output 

from the Convolutional and Pooling layers represent high-level features of the input image. The purpose of the Fully 

Connected layer is to use these features to classify the input image according to different labels based on the training 

dataset. For example, the image classification task we set out to perform has 9 possible outputs. For clarity reasons, 

note that figure 2 does not show connections and weights between the nodes in the Fully Connected layer. The sum 

of output probabilities from the Fully Connected Layer is 1. Note that in figure 2, since the input image is a GOOD 

cortical mesh, the target probability obtained from CNN is 1 in the GOOD label and 0 in the other eight (BAD) labels. 

More concretely, in our example we are testing the CNN using a GOOD 3D mesh, therefore, our target-vector is 

[1,0,0,0,0,0,0,0,0].  

Before testing the CNN on our sample mesh, it is mandatory to train the CNN. To do so, we start by initializing all 

Weights of the network with random values. As step 2, the CNN takes the first training image as input, goes through 

the forward propagation step (i.e., Convolution, RELU and Pooling operations along with Forward-propagation in the 

Fully Connected layer) and outputs probabilities for each class. Let us say that the output probabilities for the first 

training image (that is GOOD, as the one we would use as testing), are: [0.2,0.4,0.1,0.3,0,0,0,0,0]. Since for the first 

training example weights are randomly assigned, output probabilities are also random. As step 3, we calculate the total 

error (Etotal) at the output layer (summation over all the 9 class-labels). As step 4, we use a Back-propagation to 

calculate the gradients of the error with respect to all weights in the network, and we use the gradient descent to update 

all the weights and parameters (in order to minimize the output error). When a similar image is again feed as input, 

output probabilities could now be [0.7,0.1,0.1,0.1,0,0,0,0,0], which is closer to the target vector [1,0,0,0,0,0,0,0,0]. 

This means that the network has learnt to classify this particular image correctly by adjusting its weights such that the 

output error is reduced. Parameters like number of CNN Filters, Filter kernel sizes, number of epochs, CNN 

Architecture, etc., have all been fixed before step 1 and do not change during the training process. Only the values of 
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the weights are updated. Finally, we repeat steps 2-4 with all the images in the training set. At the end, all the weights 

of the CNN are optimized to correctly classify images from the training set. 

When a new (unseen) image is fed to the CNN, the network would go through the forward propagation step and output 

a probability for each class (in this case, the output probabilities are calculated using the weights previously optimized 

to correctly classify all the training examples).  

If the training set is large enough, the CNN will (hopefully) generalize well to new images and classify them into 

correct categories. In our case, the GOOD input image reported in figure2 has been correctly classified as GOOD; 

however, the overall performance we registered of our prototype could be improved following the so called 

“aggressive data augmentation” and hyper-parameter optimizations. Below we report the overall performance using 

1’069 training images and 268 testing images in 100 epochs. Epoch #1 (starting point): TRAIN_ACCURACY = 0.52, 

TEST_ACCURACY = 0.51; Epoch #100 (ending point): TRAIN_ACCURACY=0.70, TEST_ACCURACY = 0.68.   

 

Neighbor Embedding) in association with a Nearest Neighbour classification algorithms (figure 

1), or a deep-learning approach (via Theano1 API & Keras2 libraries) and convolutional neural 

networks (CNN) [3] (figure 2). 

In the first case, the algorithm would discover and present the interesting structure in the data. This 

could be useful to model the underlying data structures and learn more about the intrinsic features 

of the data, a typical semi-supervised or unsupervised machine learning task. Indeed, the same 3D 

meshes’ descriptors used in the supervised learning approach could be employed here, perhaps 

adding new promising features. 

In the second case, we would need to input screenshots of 3D meshes to QCE, saving a lot of time 

in the calculation of numeric features. To reduce computational time, the CNN would benefit of 

Graphics Processing Unit (GPU) power as well. In the deep-learning stage, we should consider to 

heavily expand the datasets through the so-called “aggressive data augmentation” strategy in order 

to let the CNN generalize and learn sufficiently well how to judge mesh artefacts.  

In the next future we plan to extend our QCE to other imaging modalities (e.g., DTI, T2-FLAIR, 

R-fMRI) and pipelines, to perform automatic QC on biomarkers of interest for the neuroimaging 

field [6] (e.g., hippocampus, amygdala, basal ganglia, and other subcortical ROI segmentations, 

white matter lesion segmentations, white matter tract delineations). 

 

 

																																																								
1	http://deeplearning.net/software/theano/library/index.html	
2	https://keras.io/		
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RÉSUMÉ CONCLUSIF 
  
L’âge mur de l'imagerie cérébrale in vivo génère aujourd’hui un déluge d'informations 

numériques sur le cerveau humain. Des études de recherche en imagerie cérébrale sont 

effectuées pour surveiller le cerveau en action ou au repos, pour examiner comment il est 

construit, comment les connections se font en son sein, et ce qui se passe lorsque les choses 

tournent mal. La croissance fantastique, la disponibilité et l'accessibilité des données de 

l'imagerie par résonance magnétique (IRM) issues de personnes souffrant de troubles 

neurodégénératifs, par exemple la maladie d'Alzheimer (MA), ont stimulé le développement 

de nouveaux environnements informatiques tels que les infrastructures électroniques. Ces 

plates-formes, accessibles en ligne via les navigateurs Web communs, offrent aux scientifiques 

de grandes bases de données d'images, des pipelines sophistiqués pour l'analyse des images, 

des ressources informatiques puissantes, des algorithmes pour une visualisation 

tridimensionnelle et des outils statistiques. Toutes ces composantes contribuent au 

développement de l'ère actuelle des « Big Data ».   

 

Pour comprendre le changement récent du paradigme neuroscientifique de la recherche dans 

l'ère des « Big Data » et pour donner un aperçu des expériences sophistiquées qu'un 

neuroscientifique peut effectuer aujourd'hui, nous avons supposé dans le Chapitre 2 la 

construction d'un hypermodèle multi-échelle et multimodal basé sur l'inférence bayésienne et 

le modèle hiérarchique à effets mixtes.  

En effet, le cerveau d'un patient atteint de la maladie d'Alzheimer subit des changements qui 

débutent plusieurs années avant le développement des premiers symptômes cliniques. En outre, 

les changements cérébraux chez les patients atteints de la maladie d'Alzheimer se produisent à 

différents niveaux et pour différentes raisons : au niveau moléculaire, les changements sont dus 

au dépôt amyloïde ; au niveau cellulaire, à la perte de synapses neuronales, et au niveau 

tissulaire, à une perte de connectivité. Ils causent tous une atrophie étendue de l'ensemble de 

l'organe cérébral. 

Les neurosciences modernes ont permis d'approfondir tous les échelles de l'organisation du 

cerveau, des gènes à la cognition. Cependant, les neurosciences se heurtent à la nécessité 

impérieuse de mieux organiser les modèles et de les adapter aux différentes échelles, afin de 

capter, grâce à des règles mathématiques solides, la « mécanique profonde » du cerveau.  

Mon hypermodèle pourrait être considéré comme un  d'ordre supérieur de la progression de la 

maladie d'Alzheimer. Malheureusement, cet hypermodèle du cerveau est encore dépendant 
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d’un très grand nombre de variables. Jusqu'à présent, peu de neuroscientifiques ont pu 

concrètement réaliser un tel hypermodèle, principalement en raison du manque de données et 

d'un environnement ad hoc disposant d'une puissance suffisante. 

Les hypermodèles du cerveau doivent exploiter les infrastructures électroniques avancées en 

les utilisant comme moteur de calcul pour surmonter leurs besoins arithmétiques élevés. 

Heureusement, il a été entrepris d'organiser de manière remarquable l'accessibilité et la 

disponibilité des données d'imagerie et de non-imagerie des personnes touchées par la maladie 

d'Alzheimer dans de nombreuses infrastructures électroniques (à savoir : Centre pour 

l’Acquisition et le Traitement de l’Image – CATI ; Virtual Imaging Platform – VIP ; European 

Medical Information Framework – EMIF ; Global Alzheimer's Association Interactive 

Network – GAAIN ; Laboratory of Neuroimaging – LONI ; Canadian Brain Imaging Research 

Platform – CBRAIN ; neuGRID). Ces infrastructures électroniques permettent d'effectuer des 

expériences en imagerie médicale à l'aide de ressources informatiques dédiées telles que des 

grilles, des systèmes de calcul de haute performance (HPC) et des clouds publics ou privés. La 

quantité de ressources informatiques, de données et d'algorithmes à manipuler supporte l’idée 

que les infrastructures électroniques sont aujourd'hui les systèmes les mieux équipés pour 

soutenir la création de modèles cérébraux avancés. Ainsi, un neuroscientifique serait juste à un 

clic de tout ce dont il a besoin pour commencer ses simulations. 

Plus récemment ont été initiées en Europe et aux États-Unis des initiatives richissimes basées 

sur l'intégration des infrastructures électroniques existantes ou sur la création de nouvelles 

plates-formes électroniques, visant à modéliser l'ensemble du cerveau humain (à savoir : le 

Humain Brain Project [HBP] pour l'Europe et l'initiative Brain Activity Map [BAM] pour les 

États-Unis) dans le but de réduire dans les cinq prochaines années le fardeau des maladies du 

cerveau, grâce à des approches complètes axées sur les données. 

Ce moment historique sera certainement destiné à laisser une grande empreinte chez les 

neuroscientifiques et dans la manière dont nous menons les (neuro)sciences. 

 

Dans l'attente d'un hypermodèle multimodal et multi-échelle entièrement validé pour la 

maladie d'Alzheimer, dans le Chapitre 3, nous avons effectué une comparaison directe entre 

les deux méthodes les plus connues pour estimer l'épaisseur corticale, à savoir : Freesurfer (FS) 

and Civet-CLASP (CV).  
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L'amincissement cortical est considéré comme un marqueur en trois dimensions prometteur de 

la neurodégénérescence, un marqueur putatif de la progression de la maladie et un biomarqueur 

de substitution raisonnable dans les essais cliniques. 

Nous avons analysé les données ADNI provenant de 69 sujets âgés contrôles (CTR), 37 sujets 

atteints de déficiences cognitives légères stables (DCLs), 27 sujets atteints de déficiences 

cognitives légères progressives (DCLp) et 52 sujets scannées après le diagnostic de la maladie 

d'Alzheimer. Les images utilisées ont été acquises 12 mois et 24 mois après l’inclusion dans 

l’étude.  

L'expérience a été réalisée à l'aide de deux infrastructures électroniques décrites précédemment 

(à savoir : VIP et neuGRID). Cette étude a représenté des expériences très lourdes d'un point 

de vue informatique et de stockage. Au total, nous avons analysé 1110 scans volumétriques de 

grande dimension pour chaque pipeline, générant 0,55 To de données dérivées. Grâce à la 

parallélisation des travaux, nous avons réalisé cette tâche en 10 semaines plutôt qu'en 5 ans sur 

un ordinateur monoprocesseur.  

Notamment, cette étude a représenté la première tentative pour examiner les forces et les 

faiblesses mutuelles de Civet et de Freesurfer, dans un vrai défi en face à face, en considérant 

des sujets sur l'ensemble du spectre de la maladie et à l’échelle de précision du voxel. Dans la 

littérature, seules des méthodes de validation basées sur des fantômes ont été décrites, mais 

cette approche ne peut pas prendre en compte l'ensemble des aspects des données réelles. 

Civet et Freesurfer sont des pipelines très différents, caractérisés par des procédures 

algorithmiques et des conventions spécifiques. Cela rend la comparaison des résultats difficile. 

Ce problème a été résolu en développant une approche innovante. Plus précisément, les flux 

de vecteurs gradients 3D (GVF) et la recherche du point le plus proche (CPS) ont été appliqués 

pour assurer une comparaison fiable des différents sommets des maillages. En effet, les 

maillages d'origine de Freesurfer et de Civet étaient caractérisés par une morphométrie et une 

topographie complètement différentes. Cependant, grâce à la comparaison directe par 

algorithme croisé vertex par vertex, les différences entre les deux pipelines, à la fois pour 

l'analyse transversale et longitudinale, ont été quantifiées de manière analytique grâce à un 

modèle hybride dédié généré à partir des modèles respectifs de Freesurfer et de Civet.  

Les performances de Civet et de Freesurfer ont varié selon le stade de la maladie, soulignant 

qu'aucun des deux algorithmes ne pouvait être considéré systématiquement comme le meilleur.  

Dans le cadre d’une analyse transversale, Civet a différé de manière significative (p<0,05) de 

Freesurfer dans les grandes régions frontales, pariétales, temporales et occipitales. Dans une 
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analyse discriminante (CTR vs DCLp, CTR vs MA) avec des régions d'intérêt corticales ayant 

une taille d'effet supérieure à 0,8, les deux pipelines n'ont montré aucune différence 

significative dans une étude par courbe ROC.  

Longitudinalement, Freesurfer a différé de manière significative de Civet (p <0,05) dans le 

gyrus supramarginal, le gyrus temporal et dans le cortex occipital latéral. Dans une analyse 

discriminante (DCLp au départ VS DCLp à moins de 24 mois) avec des régions d'intérêt ayant 

une taille d'effet supérieure à 0,6, les deux pipelines n'ont montré aucune différence 

significative dans le cadre ROC (Receiver Operating Characteristic). 

Civet est apparu légèrement plus sensible au modèle atrophique typique de la maladie 

d'Alzheimer dans les DLCp, mais les deux pipelines caractérisent avec précision la topographie 

de l'amincissement cortical au stade de la démence. En définitive, avoir la possibilité de définir 

des pipelines fiables permettrait aux médecins d'identifier au moment opportun les patients 

destinés à connaitre une évolution rapide de leur MA, ce qui sera très bénéfique lorsque des 

traitements modifiant l’évolution de la maladie deviendront disponibles.  

 

Pour extraire des informations scientifiquement pertinentes, un neuroscientifique ne peut plus 

inspecter manuellement les milliers d'images cérébrales qui sont traitées de manière efficace 

par les infrastructures électroniques. Malheureusement, jusqu'à présent, les méthodes de 

contrôle qualité (CQ) et les procédures de validation des résultats n'ont été effectuées que par 

des scientifiques experts, et seule une inspection visuelle a été considérée. Ce contrôle qualité 

était impératif, car aucun algorithme ou pipeline disponible aujourd'hui dans le domaine de la 

neuroimagerie n’est capable de générer des résultats 100% corrects.  

Par conséquent, l'étape suivante de cette thèse était de développer une méthode capable de 

réduire le temps nécessaire pour effectuer un CQ précis sur l'énorme quantité de données 

générées par les infrastructures électroniques, grâce à des algorithmes avancés de segmentation 

de la surface corticale, telles que Freesurfer et Civet. Dans le Chapitre 4, nous avons conçu un 

environnement automatique pour le contrôle qualité automatique (ECQ) qui vise à créer une 

nouvelle base pour l'évaluation des résultats des pipelines.  

Nous avons traité et collecté 1582 résultats Freesurfer et 1692 résultats Civet, qui étaient issus 

de 5 ensembles de données liés à plusieurs cohortes et un grand nombre de scanners, à savoir : 

ADNI, ARWIBO, EDSD, OASIS, et PharmaCOG. L'ECQ a été validé par rapport à une 

évaluation visuelle, ce qui est la référence pour les experts. Dans cette étude, les labels pour 

identifier les artefacts des maillages ont été définis à travers un panel Delphi basé sur des 
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preuves, par trois experts qui ont établi un consensus basé sur leur expérience personnelle. Les 

évaluateurs étaient des neuroscientifiques ayant plus de 5 ans d'expérience dans le domaine de 

la neuroimagerie.  

Un nouvel ensemble de données de référence pour le CQ a été construit et rendu public dans 

l'infrastructure électronique neuGRID pour la communauté de la neuroimagerie. Il contient les 

maillages corticaux 3D de Freesurfer et de Civet, avec des labels individuels et multiples. 

L'ECQ a été conçue comme un classifieur multiniveau. Au niveau 1, une forêt d'arbres 

décisionnels (RF) permet une classification des « bons » et des « mauvais » maillages corticaux. 

Au niveau 2, un classifieur d'ensemble souple composé par un séparateur à vaste marge (SVM), 

avec une RF, permet un étiquetage multilabel de 8 artefacts (à savoir : « problèmes 

généralisés » ; « problèmes temporaux » ; « problèmes d'insula » ; « problèmes pariétaux » ; 

« problèmes frontaux » ; « problèmes de méninges » ; « problèmes occipitaux » ; « autres 

problèmes »)	sur les mauvais maillages. 

Pour notre approche par apprentissage automatique (AA) supervisé, nous avons extrait un 

vecteur de caractéristiques à partir des maillages 3D. Nous avons effectué une phase de 

prétraitement, principalement caractérisée par le recalage des maillages dans le référentiel de 

Talairach et des conversions de format de données. 

Plusieurs fonctions basées sur des descripteurs de biomarqueurs 3D dérivés (à savoir : test de 

rapport de vraisemblance de l'épaisseur corticale, descripteur de forme des sillons, etc.), des 

propriétés géométriques 2D (à savoir : approche fondée sur l'image 2D), ou les mesures de 

distorsion 3D (approche basée sur les modèles de maillage) ont été extraites des maillages de 

Freesurfer et Civet.  

Les résultats ont montré que l'ECQ se comportait de la même manière dans Freesurfer et Civet. 

Des courbes ROC ont été utilisées pour évaluer la puissance discriminative de la classification 

des « bons » et des « mauvais » dans les deux pipelines (AUCFS
Gauche=0,96 ; AUCFS

Droit =0,94 ; 

AUCCV
Gauche=0,96 ; AUCCV

Droit =0,91). L'ECQ a semblé aussi solide pour les deux pipelines au 

niveau 1. 	

Au niveau 2, la perte de Hamming (HL) de l'ECQ a été systématiquement meilleure dans 

Freesurfer, le score de la précision moyenne de la classification des labels (LRAP) était 

légèrement moins bon dans Civet.   

Notre objectif n'était pas une tâche facile car, pour remplacer le travail d'un expert, l'ECQ doit 

disposer : (i) d’une sensibilité élevée et (ii) d’une erreur de type II suffisamment faible. 
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Selon nos expériences, au niveau 1, l'ECQ a produit de brillants résultats, avec une précision 

élevée et une sensibilité acceptable, et correspondant à ceux obtenus par des experts 

normalement formés. Au niveau 2, l'ECQ a été suffisamment performante pendant la phase de 

validation multilabel, bien qu'elle pâtisse de labels manquants ou incorrects.  

Par rapport à l'évaluation visuelle, l’ECQ représente une solution idéale en termes d'évolutivité. 

Elle peut classer des milliers de maillages corticaux 3D plus efficacement qu'un expert. Cette 

étape manuelle est d’ailleurs inévitablement sujette à des erreurs subjectives lors de l'inspection 

visuelle.  

Il est maintenant possible de détecter des erreurs dans les maillages corticaux 3D d'une manière 

objective et automatique. L'ECQ représente une occasion unique de traiter plus rapidement les 

données, ce qui permet aux neuroscientifiques de passer leur temps précieux à effectuer des 

analyses de données plutôt que des contrôles qualité fastidieux. 

 

Dans l'ensemble, les études rapportées ont démontré plusieurs points forts en présentant des 

avantages directs sur : (i) l'utilisation d'une puissante infrastructure virtuelle efficacement 

interfacée avec d'autres, à savoir, neuGRID ; (ii) des ressources informatiques élevées, (iii) des 

ensembles de données larges et hétérogènes (qui ont permis une généralisation accrue de nos 

résultats), (iv) des algorithmes puissants pour l'analyse des images.  

Dans cette thèse, nous avons prouvé l'utilité et amélioré le service des infrastructures 

dématérialisées. Les produits et les outils qui ont été développés aideront à progresser et à 

développer davantage les services des infrastructures dématérialisées et la façon dont nous 

pourrons mener les futures études de neuroimagerie. 
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Titre : E-infrastructure, segmentation du cortex, environnement de contrôle qualité : un fil rouge pour 

les neuroscientifiques 
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Résumé : Les neurosciences sont entrées dans 

l'ère des « big data ». Les ordinateurs de bureau 

individuels ne sont plus adaptés à l'analyse des 

téraoctets et potentiellement des pétaoctets 

qu'impliquent les images cérébrales. Pour 

combler le gouffre qui existe entre la taille des 

données et les possibilités standard d'extraction 

des informations, on développe actuellement des 

infrastructures virtuelles en Amérique du Nord, 

au Canada et également en Europe. Ces 

infrastructures dématérialisées permettent 

d'effectuer des expériences en imagerie médicale 

à l'aide de ressources informatiques dédiées telles 

que des grilles, des systèmes de calcul haute 

performance (HPC) et des clouds publics ou 

privés. Les infrastructures virtuelles sont 

aujourd'hui les systèmes les plus avancés et les 

mieux équipés pour soutenir la création de 

modèles multimodaux et multi-échelles avancés 

du cerveau atteint par la maladie d'Alzheimer 

(Chapitre 2) ou pour valider des biomarqueurs 

d'imagerie prometteurs, tels que l'épaisseur 

corticale, grâce à des pipelines sophistiqués 

(Chapitre 3). En effet, les analyses d'imagerie, 

telles que celles  décrites  dans  les Chapitres 2 et 

3, multiplient de manière exponentielle la 

quantité de données post-traitées qui atteignent, 

à la fin, des téraoctets de résultats pour une 

seule étude. Afin de faire face à l'énorme 

quantité de données de post-traitement 

générées par les infrastructures électroniques, 

un environnement de contrôle qualité 

automatique (ECQ) des maillages de la surface 

corticale (Chapitre 4) a été proposé. L'ECQ est 

un classifieur par apprentissage automatique 

(AA) avec une approche par apprentissage 

supervisé basée sur les forêts d'arbres 

décisionnels (RF) et des estimations par 

séparateurs à vaste marge (SVM). Compte tenu 

de son évolutivité et de son efficacité, l'ECQ 

s'inscrit bien dans les infrastructures 

électroniques en cours de développement, où 

ce type de service de vérification élémentaire 

manque toujours. L'ECQ représente une 

occasion unique de traiter les données plus 

facilement et plus rapidement, ce qui permettra 

aux neuroscientifiques de passer leur temps 

précieux à effectuer des analyses de données 

au lieu de le dépenser dans des tâches 

manuelles et laborieuses de contrôle qualité. 
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Abstract : Neuroscience entered the “big data” 

era. Individual desktop computers are no longer 

suitable to analyse terabyte, and potentially 

petabytes, of brain images. To fill in the gap 

between data acquisition and information 

extraction, e-infrastructures are being 

developing in North America, Canada, and 

Europe. E-infrastructures allow neuroscientists 

to conduct neuroimaging experiments using 

dedicated computational resources such as 

grids, high-performance computing (HPC) 

systems, and public/private clouds. Today, e-

infrastructures are the most advanced and the 

best equipped systems to support the creation 

of advanced multimodal and multiscale models 

of the Alzheimer’s disease (AD) brain (Chapter 

2) or to validate promising imaging biomarkers 

with sophisticated pipelines, as for cortical 

thickness,    (Chapter 3).     Indeed,       imaging 

analyses such as those described in Chapter 2 

and 3 expand the amount of post-processed 

data per single study. In order to cope with the 

huge amount of post-processing data generated 

via e-infrastructures, an automatic quality 

control environment (QCE) of the cortical 

delineation algorithms is proposed (Chapter 4). 

QCE is a machine learning (ML) classifier with 

a supervised learning approach based on 

Random Forest (RF) and Support Vector 

Machine (SVM) estimators. Given its 

scalability and efficacy, QCE fits well in the e-

infrastructures under development, where this 

kind of sanity check service is still lacking. 

QCE represents a unique opportunity to process 

data more easily and quickly, allowing 

neuroscientists to spend their valuable time do 

data analysis instead of using their resources in 

manual quality control work.  
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