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Pre-text

There is really nothing more to say-except why. But since why is difficult to
handle, one must take refuge in how.

The bluest eye. Toni Morrison.

The road of science is paved by two kind of tiles. Tiles from the first category are deter-
mined by the traditional scientific method once the question (problem) is formulated.
Tiles from the second category have, somehow, a rather random origin (the whisper

of Serendipity). This metaphor tells that no straight line defines the way A⇒ B, since
the road itself is not built in a straight fashion. Our travel therefore may imply that we
cross C destinations and that during the route, we might be tempted or even determined in
avoiding the original idea of arriving to B and rather modify the compass course towards a
new destination D. This nature of science is fascinating.

What is this story about? It is the story of a travel. In the (early) path of this travel,
my boat has navigated different seas (domains) and crossed different lands. I have en-
countered passionate scientists who have made my life of researcher a great adventure.
The helm of my boat is called mathematical modelling. I am a mathematical modeller
of biological systems with a background in chemical engineering and automatic control.
My research motivation is to enhance the understanding of biological processes using
modelling to combine and structure information across disciplines. My modelling work
has covered all the domains of the Tree of Life, namely Bacteria, Archaea and Eukarya. In
particular, I have been interested in modelling microbes in monoculture and in ecosystems.
These microbial ecosystems are either natural (animal guts) or designed by humans (en-
gineering bioreactors). Regardless of their specificities, microbial ecosystems are driven
by common factors including external forces (e.g., environment), reaction pathways (fer-
mentations), interactions between microbial individuals (e.g., competition and symbiosis).
These features make the study of microbial systems a research field in which knowledge
from different scientific disciplines is pivotal.
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In the infinity sea of knowledge, I am a non-expert. I have been driven by the curiosity of
learning from different fields including the fascinating worlds of microbiology and mathe-
matics, but I cannot pretend to be an expert in neither maths nor biology. This situation
was source of internal conflicts at the very beginning of my journey. In particular when
looking for permanent job opportunities; scarce and targeted to established disciplines.
Along my job applications, my profile was categorized as too much applied, to much
theoretical. I shared openly my concern by commenting on the point of view of Shapiro
(2014) who underscored that most of the tools used to evaluate scientific excellence are
biased in favour of established disciplines and against interdisciplinary research. It is in
this context that I decided to embrace interdisciplinary science and, with this decision, the
fact of not being an expert in any established discipline. I found mathematical modelling
as the boat that fits with my curiosity. As it will be almost impossible for a single mind to
address the complexity of biological systems, I have undertaken a research work that does
not rely exclusively on my own knowledge. I have been consolidating a solid network of
collaborations with scientists from different disciplines including microbiology, chemistry,
thermodynamics, animal nutrition, process engineering, control and system theory, and
computational biology. The curiosity modelling boat has provided me with the background
for connecting different disciplines and being the fulcrum in interdisciplinary projects. My
research results from these fruitful collaborations. It is why along the manuscript the I
must often interpreted as WE.
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1. Parcours & Curriculum Vitæ

Que sais-je ?

What do I know?

Essais. Montaigne.

1.1 Bio

I am a mathematical modeller of biological systems with a background in chemical en-
gineering and automatic control. I am from Colombia. I did my undergraduate and MSc
studies at Universidad Nacional de Colombia. I have a PhD degree in applied mathe-
matics from Université Paris-Sud (France). I have consolidated my scientific career in
Europe participating in research projects in two top institutions in the domain of agriculture
and life sciences: Inra (France) and Wageningen University (The Netherlands), and
in the leading institution of computer science Inria (France). My research motivation
is to develop a quantitative understanding of biological processes using modelling to
combine and structure information across disciplines. I have significant experience in
being the fulcrum in interdisciplinary projects within a collaboration network of more than
60 international scientists of different domains. In 2014, I was appointed as junior scientist
at the MoSAR (systemic modelling applied to ruminants) team (Inra, AgroParisTech,
Université Paris-Saclay). My current research project aims to enhance understanding
of the dynamic interplay between the diet, the rumen microbiota and the ruminant animal
via an interdisciplinary approach covering microbiology, chemistry, thermodynamics,
animal nutrition and mathematical modelling.

1.2 Education

2010 Doctor in Science (applied mathematics)
Université Paris-Sud, Supélec, INRA, France

https://www.manizales.unal.edu.co/
http://www.u-psud.fr/en/index.html
http://www.inra.fr/en/Scientists-Students
https://www.wur.nl/en/wageningen-university.htm
https://www.inria.fr/en/
https://www6.jouy.inra.fr/mosar_eng/
http://www.inra.fr/en/Scientists-Students
http://www2.agroparistech.fr/Presentation-of-AgroParisTech.html
https://www.universite-paris-saclay.fr/en
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Micalis (Microbiologie de l’Alimentation au service de la Santé), Inra, Jouy-en-Josas
MaIAGe (Mathématiques et Informatique Appliquées du Génome à l’Environnement),
Inra
L2S (Laboratoire des signaux et systèmes), Supélec, CNRS, Université Paris-Sud
Thesis: Mathematical modelling of carbohydrate degradation in the human colon
PhD director: Eric Walter. Supervisors: Marion Leclerc, Béatrice Laroche

2006 Master in Automatic Control
Universidad Nacional de Colombia (Manizales)
Dissertation: Automatic control of an anaerobic reactor for leachate treatment
Supervisor: Fabiola Angulo

2004 Chemical Engineer
Universidad Nacional de Colombia (Manizales)

1.3 Research experience

Researcher 2014 - now
Modélisation Systémique Appliquée aux Ruminants (MoSAR), Inra, Paris, France
SUBJECT: Mathematical modelling of the rumen ecosystem

Post-doctoral researcher 2013 - 2014
Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés (LISBP, Inra), Toulouse,
France
SUBJECT: Modelling and control of biofuel production by oleaginous yeast

Post-doctoral researcher 2011 - 2013
Biocore, Institut national de recherche en Informatique et en automatique (Inria), Sophia-
Antipolis, France
SUBJECT: Modelling and optimization of microalgae growth

Post-doctoral researcher 2010 - 2011
Laboratory of food chemistry, Wageningen University, Wageningen, The Netherlands
SUBJECT: Modelling milk proteins degradation by Lactococcus lactis

PhD fellow 2006 - 2010
Université Paris-Sud, Supélec, Inra, Jouy-en Josas, France
THESIS: Mathematical modelling of carbohydrate degradation in the human colon

1.4 Teaching experience

2017-2018 Lecturer
Course: Parameter Identification of Ordinary Differential Equation models
Project OBIO (Optimization of Bioprocesses). PREFALC Masters in Latin-America
Pontificia Universidad Católica del Perú (Lima, Perú), Centro Universitario de la Ciénaga
de la Universidad de Guadalajara, Universidad Autónoma de Guadalajara (México), Uni-
versidad Nacional de Colombia (Manizales and Medellin Colombia)
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2004-2005 Lecturer
Courses: Automatic control, Heat transfer
Universidad Nacional de Colombia (Manizales), Chemical Engineering Department
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1.5 Supervision

Master students

Emile Dumont (2018). Internship M1 3 months. Reconstruction of the metabolic network
of cellulolytic rumen bacteria: exploration of the degradation pathways of cellulose and
hemicellulose. Supervisors: Anne Siegel (CNRS), Méziane Aite (Inria), Evelyne Forano
(Inra), Rafael Muñoz-Tamayo

Elizabeth Machado Maturana (2005). Universidad de Caldas. Colombia. Food Engi-
neering undergraduate project. Modelling of a plate heat exchanger for milk processing.
Supervisor: Rafael Muñoz-Tamayo

PhD fellows

Laura Lema Pérez (2018-2019). PhD Thesis Universidad Nacional (UN) de Colom-
bia Sede Medellin, Colombia. Parameters interpretability in phenomenological based
semi-physical models: a human glucose homeostasis model. Thesis directors: Hernan
Dario Alvarez Zapata (UN), Jose Fernando Garcia Tirado (Center for Diabetes Technology,
University of Virginia, USA). Co-supervisors: Carlos Builes-Montaño (Hospital Pablo
Tobón Uribe, Colombia), Rafael Muñoz Tamayo

John Fredy Ramírez Agudelo (2017-2018). PhD Thesis Universidad de Antioquia (UdeA),
Colombia. Monitoring and simulation of enteric methane emissions in dairy cows. Thesis
director: Ricardo Rosero Noguera (UdeA). Co-supervisors: Sandra Lucía Posada Ochoa
(UdeA), Rafael Muñoz Tamayo

Caroline Baroukh (2011 – 2014). PhD Thesis Inra-Inria, France. Metabolic modelling
under non-balanced growth. Application to microalgae for biofuels production. Thesis
directors: Olivier Bernard (Inria), Jean-Philippe Steyer (Inra). Co-supervisor: Rafael
Muñoz Tamayo.

Postdoc fellows

Manuel Revilla (2017-2019). Integrative biology analysis and modelling of the influ-
ence of host and gut microbiota factors on the piglet sensitivity at weaning. Supervisors:
Jordi Estellé (Inra), Nicolas Friggens (Inra), Rafael Muñoz-Tamayo

1.6 Responsibilities for the collectivity

2018- Referee of research proposals of the Research Foundation - Flanders (Fonds Weten-
schappelijk Onderzoek - Vlaanderen, FWO), Belgium

2018- Member of the working group Big Data and systemic modelling, Inra-WUR

2017- Member of the working group Holobionte : systèmes microbiens et interactions
avec l’hôte. Prospective Scientifique Interdisciplinaire de l’Inra Approches prédictives
pour la biologie et l’écologie. France
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2017- Reference scientist of MoSAR that ensures an updated bibliography of the team in
the open access repositories (HAL, ProdInra).

2017- Scientific coordinator (Animateur) of the projet phare modélisation, prédiction
des phénotypes et des réponses adaptatives. Sciences Animales Paris-Saclay (SAPS).
France

2017- Scientific coordinator (Animateur) of the group MoMos (Modellers of MoSAR).
France

2017 Member of the IFAC’s Technical Committee on Bioprocesses and Biosystems
https://tc.ifac-control.org/8/4

2017 Member of Jury for PhD thesis. Clothilde Villot. Recherche d’indicateurs pé-
riphériques de l’acidose ruminale chez la vache laitière. Inra, Clermont-Ferrand, France
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Fibrobacter succinogenes: towards a novel paradigm for modelling the rumen microbiome
(2017)1. Call: Crédit Incitatif PHASE. Role: coordinator

1Pojects in which I have participated in the proposal construction
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Deciphering the Rumen Ecosystem with Advanced Modelling (2018-2019)1. Call: Metapro-
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France

microFicient: Relationship between digestive microbiota and feed efficiency in cattle.
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2. Introduction and mathematical tools

Algo me han dicho
la tarde y la montaña.

Ya lo he perdido.

The afternoon. The mountain.
What they told me.
Already it’s gone.

Diecisiete Haiku. Jorge Luis Borges.

Biology provides countless examples of extremely complex nonlinear dynamic sys-
tems. The complexity of biological systems is determined by a large numbers of
elements with diverse functionalities that interact nonlinearly to produce coherent

behaviors (Kitano, 2002) in an admirable regularity and orderliness (Schrödinger, E, 1944).
Mathematical modelling has come to play a central role in biology (May, 2004) by its
capability of providing rational and formal representations tools for enhancing the under-
standing of biological systems (Legay, 1997; Bailey, 1998; Stelling, 2004). My research
work has been mainly devoted to the construction of knowledge-based models of biolog-
ical systems. To get onto our subject, I first define some key concepts of the modelling
endavour. The concepts here discussed will be ubiquitous along these pages and in the
collection of articles that structure the manuscript. These concepts are extracted mainly
from a review article that resulted from a discussion that I led within the group MoMos
(Modellers of MoSAR) about parameter identifiability (Muñoz-Tamayo et al., 2018b).
In Sections 2.1-2.3, I briefly describe the mathematical tools that I have exploited in my
modelling developments.
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Definition 2.0.1 — System. A system is a conceptual abstraction and simplification of
the object under study (reality). A system consists of a set of inter-related components
that interact and react as a whole to external or internal stimuli (Spedding, 1988). The
system is delimited by spatial and temporal boundaries. The definition of a system sets
the basis for model construction. It is of common usage to refer to the object under
study as a system. Hence, we talk about system dynamics, system behaviour, etc.

Definition 2.0.2 — Model. Set of mathematical equations derived from an abstraction
and simplification of the real world (Spedding, 1988). A model is therefore a subjective
formalization of knowledge on the system under study.

Definition 2.0.3 — Model structure. The model structure refers to the set of mathematical
functions that specify the coupling between the state variables, the inputs and model
outputs (observables) (Bellman and Astrom, 1970). A structural property is derived
from the model equations and is (almost) independent of the values of the parameters
(Walter and Pronzato, 1997).

2.1 The construction of mathematical models M (·)
The construction of a model responds to a specific goal. Overall, model construction
results from two main motivations: (i) understanding the functions of the system under
study (curiosity driven approach) and (ii) predicting the response of a set of variables for
a given set of inputs (solution oriented approach). When the modelling target is that of
understanding system functioning, model construction intends to describe at least partly
the mechanisms that underlie the behaviour of the system under study by describing some
individual elements of the system and their mutual inter-relation. In this case, the resulting
model is referred to as a mechanistic (white box) or phenomenological-based model. On
the other hand, empirical (black box) models are derived to quantify relationships between
variables of interest. The mathematical formulation of black models do not integrate
knowledge of the phenomena taking place in the system. A model with mechanistic and
empirical components is termed a grey box model. I have developed both white and grey
box models. This latter appears useful for providing simplified model structures and for
handling lack of knowledge on the representation of the system’s phenomena. In the
following, I will denote M (·) as the mathematical model structure.

My research work has been focused on the development of dynamic models described
by ordinary differential equations (ODE). This dynamic component implies that when
studying a biological variable x, I attempt to describing how x changes in time, that is to
formulate the function that represents its time derivative dx

dt . Dynamic models are often
derived from fundamentals laws (e.g., the law of conservation of mass) that govern the
system behaviour. The construction of these models results from a stepwise process that
include the formulation of verbal hypotheses on the system under study, the definition
of the level of detail of the model structure (Schaber and Klipp, 2011; Lema Perez et al.,
2019), the identification of the numerical values of the parameters and the model selection
(Walter and Pronzato, 1997; Juillet et al., 2006). Whilst the law of conservation of mass is
universal, its mathematical representation can lead to multiple M (·) candidates. When
multiple model candidates are available, we might be interested in selecting the M (·) that
balances predictive capability and model complexity (Akaike, 1974). The latter property is
associated to the principle of parsimony. In microbial ecosystems, where the progress on
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the -omics characterisation of microbes results in a large body of heterogeneous data, the
parsimony principle should be taken into consideration in microbial ecosystem modelling
research (Wade et al., 2016) to avoid over-parameterization (Baranyi et al., 1996).

The models that I have developed follow

dx
dt

= ẋ = f(x,u,p), x(0) = x0(p) (2.1)

where x is the vector of state variables (x ∈ Rnx), u is the input vector (u :∈ Rnu), p is the
parameter vector (p ∈ Rnp), and f is a function vector (f ∈ Rnx). In biological systems,
physical and bio-chemical process occur. Equation 2.1 can thus be detailed as

dx
dt

= Sν (x,u,p)+ γ (x,u,p) (2.2)

where x refers to the vector of concentration of metabolites, S is the stoichiometry matrix
that links metabolites and biochemical reactions, p is the parameter vector, ν(·) is the
vector of reaction rates, u is the input vector, and γ(·) is the vector of transport functions
(e.g., liquid-gas transfer rate). The level of detail of a biological system model is mainly
determined by the dimensions of the reaction rate vector ν(·) which can comprise thousands
of intracellular and extracellular reactions (Reed and Palsson, 2003) or a limited number
of macroscopic reactions (Bernard et al., 2006; Mairet et al., 2012; Baroukh et al., 2014).
This level of detail is determined by the purpose the model is intended to answer, e.g,
data representation, hypothesis testing, control. The model developments presented here
respond to such different applications as it will be discussed later.

2.2 Parameter identification and optimal experiment design

One of the main applications of the model construction process is to describe the dynamics
of a system measured by time series experimental data. The link between the reality
(the data) and the virtual world M (·) is made possible by the parameter identification
(or estimation); a mathematical and numerical routine consisting in finding the value of
unknown parameters of a model that best fit an experimental data set (Fig. 2.1). The inverse
problem of finding the model parameters is formulated as the minimization of an adequate
measure of the distance between the model observables and the experimental data.

A widely used approach to to tackle the parameter identification problem is the Maximum
Likelihood (ML) approach. Let us denote y(ti) the vector of data collected at time ti and
assume that it can be modelled as the sum of two components: a deterministic and a
stochastic one

y(ti) = ym(ti,p
∗)+ εεε i, i = 1, ...,nt, (2.3)

where ym(ti,p∗) is the predicted output of a deterministic model M (·) with p∗ the true
value of the parameter vector, and εεε i the vector that represents the measurement errors
with nt the number of observation times. We will assumed that the erros are independent,
homoscedastic, zero mean and Gaussian (εεε i ∼ N(000,ΣΣΣ)), where ΣΣΣ is the covariance matrix
of the errors. The ML estimator maximizes the probability density πy(y|p) of the observed
data y under the assumption that they are generated by Eq. (2.3) for p = p∗. The cost
function to be optimized depends on the hypothesis made on the covariance matrix ΣΣΣ
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Figure 2.1: Parameter identification process. A model structure has been defined to represent
the dynamics of a system under study. Dashed lines represent the system (real world) and solid
lines represent the virtual mathematical/numerical world. By an experimental protocol, dynamic
measurements of some quantities characterizing the system behaviour have been collected. The
model parameters are identified by an optimization algorithm that minimizes the distance between
the measured quantities and the model observables (outputs).

(Walter and Pronzato, 1997). For instance, If ΣΣΣ is known, the ML estimator corresponds to
the Gauss-Markov estimator, which minimizes the cost function

J1(p) =
nt

∑
i=1

[y(ti)−ym(ti,p)]
T
ΣΣΣ
−1[y(ti)−ym(ti,p)]. (2.4)

The minimization Eq. (2.4) is performed by using an optimization algorithm that can
be either local (e.g. the Quasi-Newton method) (Walter and Pronzato, 1997) or global
(e.g. scatter search population-based methods) (Egea et al., 2006). There are a wealth of
software packages for tackling the parameter identification problem (Maiwald and Timmer,
2008; Muñoz-Tamayo et al., 2009; Balsa-Canto and Banga, 2011).

Before attempting a numerical estimation of the model parameters, we might be interested
in determining if the parameter identification problem is well-posed, that is to assess if
there is any chance of success in estimating a unique best value of the model parameters
from available measurements. This question of uniqueness is referred to as structural
identifiability and it is independent of the real experimental data.

Let M (p) represent the relationship between the inputs and outputs of the model. Let
us denote by M (p) = M (p∗) the equality of the input–output behaviour of the model
structure obtained for the two vectors of parameters p,p∗. The structural identifiability
analysis consists in determining whether this identical input-output behavior implies that
the parameter vector p is equal to the parameter vector p∗. We will then state that the
parameter pi is structurally identifiable if

M (p) = M (p∗)⇒ pi = pi. (2.5)

The structural identifiability analysis resolves the equality M (p) = M (p∗)), expressed
into a set of equations in p. Methods for structural indentifiability testing include the
Laplace transform, Taylor series, generating series, similarity transformation and differen-
tial algebra (Walter and Pronzato, 1997; Chis et al., 2011b; Raue et al., 2014). Structural



2.3 System optimization 39

identifiability analysis can turn out to be a technical difficult task. This technical hurdle
has been overcome by the development of dedicated software tools (Bellu et al., 2007;
Chis et al., 2011a; Karlsson et al., 2012).

The mathematical framework of parameter identification is of great usefulness for the
design of highly informative experiments devoted to enhance understanding of system
response. The information content of an experiment can be formalised mathematically
by the capability of providing data allowing an accurate parameter identification. This
aspect is addressed by practical identifiability which takes into consideration the available
measurements quality. Maximizing the informative content of an experiment is the realm
of optimal experiment design (OED) for parameter identification (Walter and Pronzato,
1997; Balsa-Canto et al., 2008). Classical OED approaches are based on the optimization
of a scalar function of the Fisher information matrix (FIM), since this matrix is the core
for the calculation of the confidence intervals of the parameter estimates. Using a local
design approach applied for the nominal vector p̂, The FIM is computed as

F(p̂) =
1

σ2

∫ tf

0

[
∂ym

∂p

]T

(ti,p̂)

[
∂ym

∂p

]
(ti,p̂)

dt. (2.6)

Once the FIM is calculated, the covariance matrix P of the estimator can be approximated
to

P̂ = F−1(p̂). (2.7)

The square root η j of the jth diagonal element of P̂ is an estimate of the standard deviation
of the paramater p̂ j.

The OED problem can be then formulated as an optimization problem where an opti-
mal configuration of the experimental protocol must be found. Such an experimental
configuration is defined by the decision vector φφφ d that contains, for instance, the sampling
times, the initial conditions, temperature and pH conditions, etc. The ODE problem is then
defined as

max
φφφ d

j(F(p̂))

s.t.
φφφ d,min ≤ φφφ d ≤ φφφ d,max

M (p̂).

(2.8)

where j(F) is the cost function to be maximized. Typical cost functions are the determinant
of the FIM (D-optimality criterion) and the smallest eigenvalue of the FIM (E-optimality
criterion). A D-optimal design minimizes the volume of the confidence ellipsoids for the
parameters, while an E-optimal design minimizes the maximum diameter of the confidence
ellipsoids for the parameters (Walter and Pronzato, 1997). T

2.3 System optimization

Mathematical models are instrumental for devising control strategies to drive the systems
towards optimal operation. Such an optimal operation is formulated by an optimal control
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problem that consists in finding the time evolution of the manipulated variables (e.g.,
feeding rate) maximizing a given criterion (e.g.,biomass productivity) on a finite time
horizon t f . Let ψ denote the criterion (performance index) to be optimized and u the
control (manipulated) variables. The optimal control problem of a system represented by
M (·) can be formulated as follows

max
u

∫ t f

t0
ψ(t,u) dt.

s.t.
umin ≤ u≤ umax

M (·).

(2.9)

This problem can be solved by indirect methods such as the Pontryagin’s maximum
principle (Pontryagin et al., 1962) that establishes the set of necessary conditions to be
satisfied by the optimal control. This theoretical development turns out to be rather difficult
for applications with complex models. Often, the only possibility is then to use methods
based on numerical optimization by discretization of the control variables. These methods
are the control vector parameterization (CVP) and the total discretization approach. For
the CVP approach, the control variables are approximated by a set of basis functions that
depend on a finite number of real parameters. In the total discretization approach, all state
and control variables are discretized w.r.t. time (Chachuat et al., 2006, 2009). Sotware tools
are availabe for both the CVP (Hirmajer et al., 2009) and the total discretization
approach (Bonnans et al., 2017).

2.4 Outline

I was strongly inspired by the HDR of Madalena Chaves (2013) to structure this manuscript.
The following chapters briefly summarize my research contribution by referring to a col-
lection of selected articles. To get a whole picture of my research, the interested reader
can access to the papers by the links provided in the electronic version of this report or by
writing me an e-mail to rafael.munoz-tamayo@inra.fr. My modelling odyssey in the tree
of life covers research on bacteria, microalgae, yeast and animals.

In Chapter 3, I investigate the dynamics of fermentation by human colonic microbiota.

Chapter 4 studies the hydrolysis of milk protein by a Lactococcus lactis bacterium.

Chapter 5 analyzes microalgae processes.

Chapter 6 studies a process of lipid yeast production.

In Chapter 7, I address the fermentation and methanogenesis by rumen microbiota and
analyze the link between animal feeding behaviour and methane production.

In Chapter 10, I establish my prospective research roadmap.

In Chapter 11, I present a brief essay about the need of a slow science.

Chapter 12 closes the manuscript with concluding remarks.

http://nautilus.iim.csic.es/~dotcvpsb/
http://bocop.org
http://bocop.org
mailto:rafael.munoz-tamayo@inra.fr


3. Anaerobic digestion by the human gut microbiota

- Mais c’est pour approcher du ciel, que votre frère reste là-haut?
- Mio fratello sostiene, risposi, che chi vuole guardare bene la terra deve

tenersi alla distanza necessaria.

- But is it to be nearer the sky that your brother stays up there?.
- My brother considers that anyone who wants to see the earth properly must

keep himself at a necessary distance from it.

Il Barone rampante. Italo Calvino.

R This chapter synthesises the research work of my PhD thesis (Inra, Jouy-en-Josas, France).

I started the research path during my Master studies on the topic of anaerobic digestion
(AD) for wastewater treatment (Muñoz-Tamayo et al., 2005; Muñoz-Tamayo and An-
gulo, 2006; Muñoz-Tamayo and Toro García, 2006; Angulo et al., 2007). This first step

was fundamental for my career, since I became passionate about AD and more importantly
to interdisciplinary approaches that integrate biochemistry, mathematical modelling and
automatic control. My Master project drove me to another fascination anaerobic system:
the human gut.

The human colon houses a complex and subject-specific community of microorganisms
that forms the human colonic microbiota. Because of the large repertoire of metabolic
functions performed by this microbial consortium, it has been proposed to consider the
human colonic ecosystem as an organ. The human colonic microbiota has been recognized
as an important player in gastrointestinal tract homeostasis, because of its involvement in
the development of immune function. Furthermore, this microbial community has been
shown to be related to pathologies such as inflammatory bowel disease and obesity. Gut
microbes are responsible of the breakdown of polysaccharides that are not digested in
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the upper intestine, mediating many of the effects of diet upon gut health (Flint et al.,
2007). Fermentation produces essential vitamins, co-factors, and metabolites with health-
promoting effects such as short chain fatty acids (SCFA), mainly acetate, propionate and
butyrate. Acetate is utilized by the brain, the heart and in peripheral tissues. Propionate is
taken by the liver. It is a precursor of glucogenesis and protein synthesis. Butyrate is the
preferred energy source for colonic epithelial cells (Zoetendal et al., 2008).

For obvious ethical reasons and technical limitations, the human colon is almost in-
accessible for experimentation. This, in conjunction with the complexity of the system,
makes the large intestine an ecosystem largely unexplored. Hence, the understanding of
the mechanisms underlying the interplay between diet, microbiota and human health is far
to be complete. The purpose of the thesis project was to develop a mathematical model of
carbohydrate degradation by the human colonic microbiota. We aimed at providing an in
silico approach to contribute to a better understanding of the fermentation pattern in the
human colon.

The model building process was typical of a situation where the experimental data are
very limited and where various and heterogeneous sources of information must be used in
combination to get a usable model. I compiled and analysed a large body of information
about the human colon from literature review (Macfarlane and Cummings, 1991) and
discussion with microbiologists. This enabled me to establish the knowledge basis of the
model. The above information included physiology of the intestine, metabolic reactions
catalysed by the human colonic microbiota and transport phenomena in the system. We
looked at the human colon as a bioreactor and defined the conceptual framework of the
model structure which includes three main features, namely (i) hydraulic behaviour, (ii)
transport phenomena and (iii) reaction pathway (Muñoz-Tamayo et al., 2007). I took ad-
vantage of the extensive research on anaerobic digestion modelling to construct the model
of the human colonic fermentation. The anaerobic digestion model ADM1 (Batstone et al.,
2002) represents the state of the art in the modelling of anaerobic digestion processes. I
made use of ADM1 as basis and modified it to account for the specific characteristics of
the human colon. The metabolic conversions were represented in an aggregated pathway.
Because of the high number of bacterial species (≈1000), the explicit incorporation of
individual species into the model would have led to a high dimension structure both in
state and parameter vectors. Instead, I represented the microbiota in functional groups
according to their role on the metabolic pathway. This assumption is in line with the
observation that, despite subject- specificity in the colonic microbiota, humans share a
common core of microbial functions as identified in our work (Tap et al., 2009). To
make the model development possible, knowledge-based simplification, control theoretic
tools, identifiability testing and multivariable identification were satisfactorily applied for
dealing with the simplification of the model and assignment of the numerical values of
its parameters. The model did not take into account some aspects that are important on
the human colon dynamics. To enhance the mechanistic of the model, further extensions
should include (i) the effect of fibre on the retention time, (ii) the discrimination of the diet
into its components: xylan, starch, inulin, etc, (iv) the incorporation of microbial genomic
information, and (v) consideration of fluid mechanics. This latter aspect has been recently
tackled by my colleagues (Labarthe et al., 2018).

Since dynamic data on fermentation in the human colon were not available, we decided to
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exploit information from in vitro bacterial experiments for providing prior estimates for the
whole fermentation model. To perform the parameter estimation of submodels associated
to the in vitro experiments, we developed the Matlab R© toolbox IDEAS (IDEntification and
Analysis of Sensitivity), described in the article 3.1 (Muñoz-Tamayo et al., 2009). Our
interest in developing this toolbox was to provide an easy-to-use tool with open source code.
IDEAS carries out the parameter estimation of ODE models via the maximum likelihood
approach. The optimization step is carried out via the optimization algorithms included in
Matlab R©, such as the Quasi-Newton method. The main originality of the IDEAS resides on
the symbolic computation of the sensitivity functions, which are further utilized to calculate
the Fisher Information Matrix (FIM) and the confidence intervals of the parameter estimates.
IDEAS is freely available at http://genome.jouy.inra.fr/logiciels/IDEAS.

We analyzed in vitro experiments covering two mechanisms of the full fermentation
pathway, namely homoacetogenesis and butyrate production by lactate utilizing bacteria.
The article 3.2 (Muñoz-Tamayo et al., 2008) tackled the modelling of the homoacetogene-
sis pathway by Blautia hydrogenotrophica, where hydrogen reacts with carbon dioxide
to produce acetate.This mechanism is very important in the removal of the hydrogen pro-
duced by the oxidation of organic matter contained in food. This work includes a structural
identifiability analysis using the approach developed by Denis-vidal and Joly-blanchard
(2004). The parameter estimation was performed using experimental data from Bernalier
et al. (1996). The article 3.3 (Muñoz-Tamayo et al., 2011b) tackled the modelling of
lactate utilisation pathway using experimental data from Duncan et al. (2004) with two
clostridial members: Eubacterium hallii L2-7 and Anaerostipes coli SS2/1. The biological
relevance of this pathway relates to the role of butyrate as the preferred energy source for
colonocytes. In contrast, accumulation of high concentrations of lactate is detrimental to
gut health.

Finally, the article 3.4 (Muñoz-Tamayo et al., 2010) presents the whole model of colonic
fermentation. The schematics of our model is displayed in Figure 3.1 taking together the
hydraulic representation of the system and a macroscopic description of the fermentation
pathway. Our model provides a dynamic and spatial picture of the fermentation pattern
along the colon. The model was formulated by an ODE model derived from mass balances
and implemented in Simulink/Matlab R©. The code is available for academic purposes.
Model simulations provided an adequate qualitative representation of the human colon.
The spatial concentration of short chain fatty acids, total microbial concentration, gas
production and excretion frequency as predicted by the model were found to be in agree-
ment with information reported in literature. Furthermore, the model was used to address
questions that are difficult to elucidate by means of experimentation. In particular, we
used the model to determine the role of the mucus on the physiology of the human colon.
The mucus provides conditions for microbial aggregation. It is also an additional carbon
source for the microbiota and finally, the microorganisms in the mucus can enrich the
luminal microbial community. From the simulations, it was suggested that the microbial
aggregation mechanism is the most relevant factor by which the mucus contributes to the
maintaining of physiological conditions.

Our model is the first knowledge-based model describing carbohydrate degradation in
the human colon. This work has set an important basis for further developments on gut
modelling (Widder et al., 2016) and has inspired different works (Moorthy and Eberl,

http://genome.jouy.inra.fr/logiciels/IDEAS
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Figure 3.1: Schematics of our human colon model.

2014; Moorthy et al., 2015; Labarthe et al., 2018), including my own developments on
rumen fermentation modelling (Muñoz-Tamayo et al., 2016a) that will be discussed in
Chapter 7.

3.1 IDEAS: a parameter identification toolbox with symbolic analysis of un-
certainty and its application to biological modelling. Muñoz-Tamayo, R.,
Laroche, B., Leclerc, M., and Walter, E. (2009) In: Proc. 15th IFAC Sympo-
sium on System Identification, Saint-Malo, France. 1271-1276.

3.2 Modelling and identification of in vitro homoacetogenesis by human-colon
bacteria. Muñoz-Tamayo, R., Laroche, B., Leclerc, M., and Walter, E. (2008).
In: Proc. 16th IEEE Mediterranean Conference on Control and Automation,
Ajaccio, France. 1717–1722.

3.3 Kinetic modelling of lactate utilization and butyrate production by key hu-
man colonic bacterial species. Muñoz-Tamayo, R., Laroche, B., Walter, E.,
Dore, J., Duncan, S.H., Flint, H.J., and Leclerc, M. (2011). FEMS Microbiology
Ecology 76, 615-624.

3.4 Mathematical modelling of carbohydrate degradation by human colonic
microbiota. Muñoz-Tamayo, R., Laroche, B., Walter, E., Dore, J., and Leclerc,
M. (2010). Journal of Theoretical Biology. 266, 189-201.
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4. Detailing β-casein degradation by lactic acid bacteria

If you surrendered to the air, you could ride it.

Song of Solomon. Toni Morrison.

R This chapter synthesises the research work of my first postdoc (Wageningen University,
Wageningen, The Netherlands).

Lactic acid bacteria (LAB) are widely used as starter cultures in dairy fermentation
processes, most notably cheeses. Thanks to their proteolytic machinery, LAB are able
to use milk proteins (mainly caseins) as nitrogen sources. Casein hydrolysis is the

first step in the proteolysis. The hydrolysis of caseins is mediated by cell-envelope located
proteases such as PrtPI. The degradation of β -casein by PrtPI can lead to the formation
of more than 100 peptides with a wide range of lengths. These peptides contribute to
the sensory and functional characteristics of the dairy products, i.e., flavour, texture and
nutritional supply. In this project, we aimed at providing a mathematical description of
the dynamics of peptides formation and hydrolysis of β -casein by the enzyme PrtPI of
LAB. Experiments were carried out with Lactococcus lactis IM17, a strain that is deficient
for autolysin and for the oligopeptide transport system. The plasmid pLP712, encoding
PrtPI was incorporated into L. lactis IM17. Experiments were performed to characterize
the hydrolysis of β -casein. I built a kinetic model for describing the hydrolysis of intact
β -casein. The resulting model was effective in describing the hydrolysis in a broad range
of initial protein conditions. These results are detailed in the article 4.1 (Muñoz-Tamayo
et al., 2011a).
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Figure 4.1: The top plot is the graphical representation of our VIP model to describe the dynamics
of LMW and HMW peptides during β -casein hydrolysis. The boxes represent a set of either LMW
or HMW peptides in a specific region of the β -casein sequence. The bottom box shows the location
of nine quantified LMW peptides in the β -casein molecule and their clustering with respect to
their dynamics. Only the fragment 161–209 of the primary sequence of β -casein is shown. Three
dynamic pools were identified. Dotted arrows: peptides released directly from the breakdown
of intact β -casein. The other peptides require one intermediate step to be described. Dashed
arrows: peptides released from the breakdown of the VIP 1, solid arrows: peptides released from
the breakdown of the VIP 2.

In a second study, I developed a model describing the dynamics of low molecular
weight (LMW) and high molecular weight (HMW) peptides. To render our approach
useful for practical applications, I strove in the construction of a simple model that could
also provide in some extent a mechanistic understanding of process dynamics. Differently
to the strategy applied for constructing our human colon model (Muñoz-Tamayo et al.,
2010), here I performed an input-output behaviour analysis of the dynamic data of peptides
and β -casein to define the model structure. By using the Laplace transform, I determined
the structure (number of poles) of the transfer functions for each peptide using the System
Identification Toolbox of Matlab R© (Ljung, 2007). I integrated further this information
into a mass-balance model. I called this hybrid approach as the VIP (virtual intermediate
peptides) model. This study is described in the article 4.2 (Muñoz-Tamayo et al., 2012).
Our modelling approach enabled us to describe the dynamics of some peptides and quantify
the dependency of the hydrolysis rate of intact β -casein on the initial protein concentration.
We suggested that this effect is due to the formation of aggregates (micelles) and the
competition between released peptides and intact protein for the active site of the enzyme.
In addition, the model was used to cluster the peptides with respect to their dynamic
characteristics. This clustering enabled us to hypothesize on the mechanism of action of
the enzyme PrtPI. Figure 4.1 displays the representation of the VIP model to describe
the formation of LMW and HMW peptides. The Figure also shows the clustering of the
peptides with respect to their dynamics.
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4.1 Hydrolysis of beta-casein by the cell-envelope-located P-I-type protease
of Lactococcus lactis: A modelling approach. Muñoz-Tamayo, R., de
Groot, J., Bakx, E., Wierenga, P.A., Gruppen, H., Zwietering, M.H., and Si-
jtsma, L. (2011). International Dairy Journal 21, 755-762.

4.2 Modeling peptide formation during the hydrolysis of beta-casein by Lac-
tococcus lactis. Muñoz-Tamayo, R., de Groot, J., Wierenga, P.A., Gruppen,
H., Zwietering, M.H., and Sijtsma, L. (2012). Process Biochemistry 47, 83-93.
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5. Modelling microalgae metabolism

Los Cronopios vinieron furtivamente, esos objetos verdes y húmedos.
Rodearon al fama y lo compadecían diciéndole así:

- Cronopio cronopio cronopio.
Y el Fama comprendía, y su soledad era menos amarga.

The Cronopios, those wet green objects, came forward furtively and
commiserated with him, speaking like this:

- Cronopio, cronopio, cronopio.
And the Fama understood, and his solitude was less embittered.

Historias de cronopios y de famas. Julio Cortazar.

R This chapter synthesises the research work of my second postdoc (Inria, Sophia-Antipolis,
France). During the postodoc, I participate in the supervision of the PhD thesis of Caroline
Baroukh.

Microalgae have been raised as promising feedstock for the production of high
value compounds. The commercial use of microalgae includes applications in
food industry and cosmetics. Moreover, some microalgal species have been iden-

tified as a potential renewable source for biodiesel production. Microalgae production
in large scale takes place in raceway systems (outdoor ponds). Despite the favourable
characteristics mentioned above, microalgae production in a sustained and large scale
basis is probably carried out far from an optimal working mode. This difficulty results
from the nature of a process that is periodically forced by environmental factors such as
sunlight and temperature. In this respect, mathematical models offer a powerful tool to be
exploited. In this project, we developed mathematical models that account for the main
factors affecting microalgae growth in raceway systems. On a model basis, we designed
optimal control strategies that render microalgae-based process economically sustainable.
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Different mathematical models (Bernard, 2011; Mairet et al., 2011) were integrated to
represent the dynamics of microalgae growth and lipid production in raceway systems.
Our in silico case study was based on the experimental configuration of a pilot-scale open
raceway (Algotron) located at Inra (Narbonne, France). The resulting model was used to
design strategies for optimal operation in continuous mode. Two strategies were developed.
The first one resides in solving numerically an optimal control problem in which the input
flow rate of the raceway is calculated such that the productivity in microalgae biomass
is maximized on a finite time horizon. This strategy is in open-loop mode, that its the
optimal flow rate is calculated without any feedback from the real state of the system. The
open-loop controller contrasts with the closed-loop controller in which the manipulated
variable is calculated to drive the controllled variable towards a specific target (set point).
In the second strategy, we aimed at translating the optimization problem into a regulation
problem i.e., by designing a closed-loop controller that regulates a given variable. In this
case, the optimal set point can be determined from the solution of the optimization prob-
lem (Tebbani et al., 2014). This strategy follows the approach of self-optimizing control
(Skogestad, 2000). Since light absorption governs the performance of the system, we
proposed to regulate the efficiency of light absorption. The two strategies were compared
by means of numerical simulations. Our closed-loop controller performs almost as well as
the optimal open loop control and has the advantage of being more robust to perturbations.
We further developed an adaptive closed-loop controller to regulate the light attenuation
factor for optimizing biomass productivity under realistic day–night cycles (Mairet et al.,
2015). Our modelling work has inspired numerical studies on optimal control of raceways
(Hurst and Rehbock, 2018). More importantly, our theoretical optimal operational criterion
(efficiency of light absorption) has been successfully applied experimentally by other
colleagues (Combe et al., 2015). The article 5.1 (Muñoz-Tamayo et al., 2013) details
the modelling developments and optimization strategies for optimal operation using our
attenuation factor as operational criterion.

Besides the previous study, we designed an optimal experiment protocol to allow an
accurate estimation of the parameters reflecting the influence of light and temperature
on microalgae growth. We tackled the problem of optimal experiment design (OED)
for parameter estimation under the configuration of a real experimental system. The
experimental apparatus, named the TIP is located at Ifremer (Nantes, France). It consists
of 18 batch photo-bioreactors with independent regulation of temperature, pH and light
intensity (Marchetti et al., 2011). On the basis of a mathematical model of the experimental
system, the OED problem was formulated and solved with both static (constant light
and temperature) and dynamic (time varying light and temperature) approaches under
the D-optimality criterion (maximization of the determinant of of the Fisher information
matrix -FIM.). Simulation results indicated that our resulting OED strategy allows for a
better accuracy of the parameter estimation than that provided by the existing experimental
protocol (Marchetti et al., 2011). Moreover, our study identified that factorial design
can lead to practical identifiability problems under inadequate choice of the levels of the
factors. Practical identifiability problems might translate into ill-condition (singular) Fisher
information matrix, and thus into low reliability on the parameter estimate values. The
OED study is presented in the article 5.2 (Muñoz-Tamayo et al., 2014b). Our results
provided guidelines for improving the experiment design of the real system.

During my postdoc project, I had the opportunity of participating in the PhD thesis of Caro-
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Figure 5.1: Top plot: the DRUM approach. The complete network (step i) is decomposed into
sub-networks (SNs) assumed at quasi-steady state (step ii). These SNs are reduced to a set of
macroscopic reactions (step iii), whose kinetic rates are defined in step iv. The metabolites that
interconnect the SNs (red circles) can accumulate or be further utilized (red circles). In step iv,
an ODE model is obtained. Bottom plot. Schematics of our microalgae metabolic model using
DRUM. The carbon metabolic network is decomposed into six subnetworks.

line Baroukh (Inra-Inria). This work dealt with the mathematical modelling of microalgae
carbon metabolism. The directors of the PhD of Caroline were Olivier Bernard (Inria) and
Jean-Philippe Steyer (Inra). I had a role of co-supervisor which can be detailed as follows:
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(i) Development of theory [20%], (ii) Definition of model structure on biological basis
[30%], (iii) Verification of model implementation [60%], and (iv) Writing of articles and
thesis manuscript [40%]

With the support of dedicated literature reviews (Baroukh et al., 2015b,a), we devel-
oped a novel mathematical framework that integrates both intracellular and macroscopic
scales of microalgae metabolism for better describing how external forces shape microbial
dynamics. The methodology is based on the splitting of the full metabolic network into
subnetworks that are assumed to follow the balanced growth condition. The model derives
from an elementary mode (EFM) analysis (Schuster and Hilgetag, 1994; Provost et al.,
2006) applied to metabolic subnetworks that are assumed to follow the balanced growth
condition. The resulting framework was named as DRUM (Dynamic Reduction of Unbal-
anced Metabolism). Our model was applied successfully to describe expxerimental data of
the dynamics of microalgae growth and storage of lipids and carbohydrates of Tisochrysis
lutea in a diurnal cycle (Lacour et al., 2012). The DRUM framework is detailed in the
article 5.3 (Baroukh et al., 2014). Figure 5.1 shows the steps of the DRUM approach
and the representation of microalgae metabolism that we used for our model construction.
Caroline was recruited at Inra as Junior Scientist (CR) in 2016.

All together, these works contributed in providing model-based tools to predict, opti-
mize and control microalgae growth. These tools can be further deployed to exploit the
broad speçtrum of microalage biotechnological applications.

5.1 Optimizing microalgal production in raceway systems. Muñoz-Tamayo, R.,
Mairet, F., and Bernard, O. (2013). Optimizing microalgal production in
raceway systems. Biotechnology Progress 29, 543-552.

5.2 Getting the most out of it: Optimal experiments for parameter estimation
of microalgae growth models. Muñoz-Tamayo, R., Martinon, P., Bougaran,
G., Mairet, F., and Bernard, O. (2014). Journal of Process Control 24(6), 991-
1001.

5.3 DRUM: a new framework for metabolic modeling under non-balanced growth.
Application to the carbon Metabolism of unicellular microalgae. Baroukh,
C., Muñoz-Tamayo, R., Steyer, J.P., and Bernard, O. (2014). PLoS One 9(8),
e104499.
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6. Optimization of biofuel production by oleaginous yeast

One good thing about music, when it hits you, you feel no pain.

Trenchtown Rock. Bob Marley.

R This chapter synthesises the research work of my third postdoc (Inra, Toulouse, France).
During the postodoc, I contributed to the PhD thesis of Carlos Eduardo Robles-Rodríguez.

Oleaginous yeasts are microbial factories capable of converting carbohydrates and
fat substrates into neutral lipids (triacylglycerols - TAGs). In this project, we
developed mathematical models to represent the dynamics of growth and lipid

accumulation by the yeast Yarrowia lipolytica, considered as promising microbe for lipid
production under nitrogen depletion conditions and excess of the carbon source (Beopoulos
et al., 2009). However, under these conditions, Y. lipolytica also produces citric acid as
result of overflow metabolism (Amribt et al., 2013) decreasing lipid productivity.

We followed a model-based optimization approach to provide guidelines towards op-
timal lipid productivity. Figure 6.1 displays the macroscopic representation of yeast
metabolism used in our model developments. Firstly, we performed a simulation study
to investigate optimal lipid productivities at continuous operation mode with two input
flow rates for carbon and nitrogen supply. We used the mathematical model developed
by Economou et al. (2011) to describe oil production. We determined that driving the
inflow carbon/nitrogen (C:N) ratio along the process adequately, allows the system to attain
optimal productivity. The C:N modulation was obtained by a simple parametrization of
the two input flow rates with piecewise linear functions (Muñoz-Tamayo et al., 2014a).
This result was applied in a further modelling study to describe the dynamic metabolism
of Y. lipolytica from three experimental studies. The results are presented in the article 6.1
(Robles-Rodríguez et al., 2018). We developed two macroscopic models namely an un-
structured model based on Monod and inhibition kinetics, and a quota model based on the
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model developed by Droop (1968), where biomass production depends on the fraction of
internal nutrient per unit of biomass. This fraction is termed as quota.

Figure 6.1: Macroscopic representation of yeast metabolism. The distribution of carbon into
functional biomass (x f ), neutral lipids (xL), and citric acid (Cit) is mediated by the nitrogen (N) and
carbon (C) uptake fluxes. Nitrogen limitation favours lipid accumulation. Under carbon excess,
citric acid is produced and excreted as the result of overflow metabolism

We followed the Droop-based approach developed by Mairet et al. (2011) to model mi-
croalgae metabolism. The Droop-based model incorporates the intracellular C:N ratio.
It was selected as the best candidate due to its performance to represent experimental
data. On the basis of the Droop model, we developed a model-based optimization of lipid
accumulation allowing the regulation of the flow rates of glucose and nitrogen and thus
the C:N ratio in the reactor. The optimization was performed using the Pattern Search
algorithm implemented in the global optimization toolbox of Matlab R© (Mathworks, 2018).
Optimal feeding strategies were assessed by numerical simulations. Numerical results
indicated that it would be possible to attain lipid productivities with higher values than
those reported in literature. For example, literature values of lipid content fraction are
reported about 0.17 g/g. Our simulations resulted in a lipid content fraction of 0.22 g/g.
Further experimental work is needed to validate the simulation results of the presented
control optimal strategy.

6.1 Modeling and optimization of lipid accumulation by Yarrowia lipolytica
from glucose under nitrogen depletion conditions. Robles-Rodríguez, C. E.,
Muñoz-Tamayo, R., Bideaux, C., Gorret, N., Guillouet, S. E., Molina-Jouve,
C., Roux, G. and Aceves-Lara, C. A. (2018). Biotechnology and Bioengi-
neering 115, 1137-1151.
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7. Insights on rumen fermentation dynamics

São eras sobre eras, e tempos atrás de tempos, e não há mais que andar na
circunferência de um círculo que tem a verdade no ponto que está no centro.

They are eras over eras, and times after times, and you just have to walk on the
circumference of a circle that houses the truth at the point that is in the center.

A hora do diabo. Fernando Pessoa.

R This chapter synthesises my current research work at the MoSAR team (Inra, Jouy-en-Josas,
France) on rumen modelling. It includes my involvement in the supervision of the PhD thesis
of John Fredy Ramírez Agudelo.

The ultimate goal of my current research is to achieve a system-level understanding
of the dynamic interplay between the diet, the animal and the rumen microbiota via
mathematical modelling. To achieve my long-term goal, I have adopted a Cartesian

approach by focusing firstly on enhancing the mathematical representation of the rumen
fermentation in vitro by analyzing culture systems with mono-cultures and full consortia. I
have also started to link animal feeding behaviour with methane production.

Enhancing the mathematical representation of rumen microbial metabolism

The design of optimal nutritional strategies for ruminants with the target of maximizing
animal performance and efficiency while reducing enteric methane emissions necessitates
a thorough understanding of rumen fermentation. Existing rumen models are mainly based
on four model structures (Molly, Karoline, Cornell and Dijkstra models) that have been
incrementally improved over the years to determine the nutritional and emission responses
for a given diet (Mills et al., 2014; Huhtanen et al., 2015; Van Amburgh et al., 2015;
Gregorini et al., 2015). These models have proven to be useful to better understand and
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Figure 7.1: Our enhanced model representation of the digestion of feedstuffs by the rumen micro-
biota (Muñoz-Tamayo et al., 2016a).

represent rumen fermentation. However, they do not provide a detailed description of the
rumen microbiota. Expanding the mechanistic description of the rumen microbiota has
been identified as a central aspect towards an enhanced understanding of rumen function
and development of mathematical models with enhanced prediction capabilities (Ellis et al.,
2008; Janssen, 2010). In this context, from a constructive challenger perspective, in the
sense defined by Baldwin (2000), we developed an alternative model structure of rumen
fermentation under in vitro conditions, which is detailed in the article 7.1 (Muñoz-Tamayo
et al., 2016a). Compared to existing rumen fermentation models, our model enlarges the
description of the microbiota by including three theoretical microbial functional groups
namely sugars utilizers, amino acids utilizers and hydrogen utilizers (methanogens). Fig-
ure 7.1 illustrates our model representation of the fermentation performed by the rumen
microbiota. To our knowledge, our model is the first one that accounts for the dynamics of
methanogens as a key functional group of the fermentation. While previous rumen models
describe the pH empirically, our model provides a mechanistic description. The model was
calibrated with in vitro experimental data (Serment et al., 2016) using the IDEAS toolbox
(Muñoz-Tamayo et al., 2009). The model allowed a satisfactory prediction of key variables
such as methane production, volatile fatty acids, ammonia and environmental factors such
as the pH. Furthermore, the model was instrumental for identifying the factors that explain
differences in the fermentation pattern between rumen environments adapted to two types
of diets differing in their level of fiber and concentrate. The model was implemented
in Matlab R©. The code is available for academic purposes. A implementation in the R
software was further performed by some of my international collaborators (Kettle et al.,
2018). In addition to its scientific contribution, this work represents a cornerstone for my
career since it is my first article in the domain of animal science.

With the interest of addressing the interplay between the rumen microbiota and the host,
we extended our model of in vitro fermentation into a simplified model representing in vivo
rumen function. Model extensions included transit times, absorption of SCFA and saliva
secretion. Our main motivation was to perform a numerical simulation study to analyze
why animals subjected to the same diet can exhibit different pH responses (Muñoz-Tamayo
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et al., 2016b). Our model was efficiently used to represent the variability of ruminal pH
responses extracted from a meta-analysis study (Dragomir et al., 2008). Furthermore, the
model was instrumental to identify that saliva secretion along with dry matter intake were
the most influential host-related factors of rumen fermentation and pH. This work will
be used as scaffold for further construction of a mathematical model representing rumen
digestion in vivo.

We focused further on the metabolism of methanogens. Methanogenic archaea occupy
a unique and functionally important niche in the microbial ecosystem that inhabits the
gut of mammals. To enhance understanding of methanogens, we performed a study with
the goal of quantitatively characterize the dynamics of methanogenesis by integrating
thermodynamics, microbiology and mathematical modelling. For that, in vitro growth
experiments were performed with key methanogens from the human and ruminant’s gut.
To facilitate the model calibration step, sampling times were determined by applying an
optimal experiment design strategy (framework described in Section 2.2). Additional
thermodynamic experiments to quantify the methanogenesis heat flux were performed
in an isothermal microcalorimeter. On the basis of our rumen model (Muñoz-Tamayo
et al., 2016a), we developed a dynamic model of hydrogenotrhophic methanogenesis. Our
model uses an energetic-based kinetic function proposed by Desmond-Le Quemener and
Bouchez (2014). The developed model captured efficiently the dynamics of H2, CO2
and CH4. Together, data and model enabled us to quantify species-specific metabolism
kinetics and energetic patterns within the group of cytochrome-lacking archaea. Using a
theoretical exercise, we showed that kinetic information only cannot explain ecological
aspects such as microbial coexistence occurring in gut ecosystems. Our results provide
new information on the thermodynamics and kinetics of methanogens. This enhanced
understanding of methanogens could be useful to (i) construct novel gut models with
enhanced prediction capabilities and (ii) devise new feed strategies for promoting health in
humans and mitigating methane from ruminants. The article 7.2 (Muñoz-Tamayo et al.,
2018a) details this study.

Linking feeding behaviour and methane production from cattle

The following work is related to a collaboration project that was set up in the context of the
PhD thesis of John Fredy Ramírez Agudelo. Fredy started his PhD thesis, entitled Monitor-
ing and simulation of enteric methane emissions in dairy cows, in 2014 at Universidad de
Antioquia (UdeA), Colombia. A presentation of the PhD thesis of Fredy is available in the
following link: https://www.youtube.com/watch?v=JxvEPisv6rI. The director of
the PhD project was Ricardo Rosero Noguera, and the supervisor was Sandra Lucía Posada
Ochoa (UdeA). My role in the supervision of Fredy’s thesis started in January 2017 by
electronic exchange and skype meetings (≈ twice per month). In November 2017, Fredy
came to MoSAR as a visitor PhD student to work jointly for a period of three months. The
thesis project integrates experimental approaches, development of sensors and predictive
models of enteric methane emission. The modelling part is 30% of the whole thesis. My
supervision covers 90% of the aspects related to model development. During his visit at
MoSAR, I trained Fredy in dynamic modelling, parameter estimation and programming
in the software Scilab. When Fredy came to MoSAR, I have initiated a collaboration
with Helen Kettle (Biomathematics and Statistics Scotland - BioSS, Edinburgh, UK)
and Richard Dewhurst (Future Farming Systems, SRUC, Edinburgh, UK) on modelling

https://www.youtube.com/watch?v=JxvEPisv6rI
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Figure 7.2: Results of our modelling developments for predicting methane production from cattle
using feeding behaviour information. Experimental (*) versus predicted methane emissions using
DMI (red solid line) and IT (dashed black line) as predictors for control and oil treatments. Top
plots are the experiments where model fits were the best. Bottom plots are the experiments where
model fits were the poorest. IT is as good predictor as DMI.

methane production in cattle. I invited Fredy to joint the collaboration project, which is
briefly detailed below. Fredy will defend his thesis early 2019. He is currently setting up a
specialisation training program on precision agriculture at Institución Universitaria
Digital de Antioquia (Colombia), of which I might also participate as lecturer.

Given the primary role of feeding behaviour on methane emissions in cattle (Giger-reverdin
et al., 2003; Crompton et al., 2011; Charmley et al., 2016), we investigated the capability
of predicting the dynamics of methane production from cattle using only time-series data
of feeding behaviour, measured either as Dry Matter Intake (DMI) or Intake Time (IT) as
predictors. The objective of this construction was to develop a suitable tool for estimating
methane that could be applied at large scale. We developed a dynamic parsimonious grey-
box model with the support of experimental data of methane emissions from respiration
chambers. The data set comes from a study with finishing beef steers (cross-bred Charolais
and purebred Luing finishing) (Troy et al., 2015). Animals received two contrasting basal
diets consisting (g/kg DM) of 500:500 and 80:920 forage to concentrate ratios. Within each
basal diet, there were two treatments: a control treatment with rapeseed meal as protein
source, and an oil treatment with rapeseed cake as protein source to increase dietary oil
from 27 (control) to 53 g/kg DM. Figure 7.2 displays the individual dynamic pattern of
methane production against model predictions for the best and worst fitting cases. Plots
are given for the model using either DMI or IT as predictors applied to both control and
oil treatments. As observed, our model provides satisfactory results for predicting the
dynamics of methane production with similar levels of performance between DMI and IT
as predictors. Since IT measurements are easier to obtain than DMI measurements, our
study suggest that a software sensor that integrates our in silico model with a real-time
sensor providing accurate IT measurements is a viable solution for predicting methane
output in a large scale context. Our results are presented in the article 7.3 (Muñoz-Tamayo

https://www.iudigital.edu.co/
https://www.iudigital.edu.co/
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et al., 2019). Fredy intends to apply this model approach to data obtained from steers and
dairy cows in the experimental farm of UdeA.

Altogether, our modeling research consolidates a solid basis for enhancing rumen function
understanding.
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8. Quantifying animal robustness

Once upon a time, I dreamt I was a butterfly, fluttering hither and thither,
to all intents and purposes a butterfly.

Now I do not know whether I was then a man dreaming I was a butterfly, or
whether I am now a butterfly, dreaming I am a man.

Chuang Tzu.

R This chapter synthesises my participation in the Pigletbiota ANR project within the super-
vision of the postdoc project of Manuel Revilla at the MoSAR team (Inra, Jouy-en-Josas,
France).

The quantitative characterization of animal robustness at weaning is a key step for
management strategies to improve health and welfare. This characterization is also
instrumental for the further design of selection strategies for productivity and robust-

ness. Within the ANR Pigletbiota project- lead by Jordi Estellé (GABI, Inra), we have
undertaken an integrative biology approach to elucidate the influence of the host and gut
microbiota factors on the piglet sensitivity at weaning. In this context, since 2017, Manuel
Revilla conducts his postdoc between MoSAR and GABI on integrating statistical genetics
and mathematical tools to help identify drivers for increasing resistance at weaning for
piglets fed without antibiotics. The postdoc project is supervised by Jordi Estellé, Nicolas
Friggens (MoSAR) and I. My role of supervision covers scientific support in dynamic
modelling and parameter estimation (80%) and daily supervision (50%).

The phenotype of robustness is a complex trait composed of multiple components (Friggens
et al., 2017) which hampers its quantitative characterisation. We aimed at making a step
forward in the quantitative characterization of robustness at weaning. For that, we de-
veloped a mathematical modelling approach to describe the body weight of piglets from
weaning with the rationale that weight trajectories provide central information to quantify
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Figure 8.1: The piglet weaning response is partitioned in two time windows defined by the switching
time ts. The dynamics of live weight is represented by a generic perturbed model Mp that accounts
for the detrimental effect of the perturbation. This effect is cancelled when the animal is not longer
perturbed. Hence, live weight dynamics follows an unperturbed model Mu.

the capability of the animal to cope with the weaning disturbance (weaning robustness).
Our model was based on the Gompertz-Makeham equation (Golubev, 2009) following the
rationale that the animal response can be partitioned in two time windows (a perturbation
and a recovery window) to represent the moment at which the animal is perturbed and the
moment at which it recovers from the perturbation. Figure 8.1 illustrates the modelling
concept we applied.

The model reads as follows

dW
dt

= (−C+µ) ·W, W (0) =W0,

dµ

dt
=−D ·µ, µ(0) = µ0,

C > 0 if t ≤ ts,
C = 0 if t > ts. (8.1)

Where W (kg) is the live weight and µ (d−1) is the specific growth rate. The constant D
(d−1) is a growth rate coefficient that controls the slope of the growth rate curve, and C
(d−1) is a perturbation parameter representing the effect of the environment on the weight
change. The transition between the perturbation and recovery phases is determined by the
switching time of recovery ts (d). Together with the initial condition µ0, the model has four
biological meaningful parameters, which are structurally identifiable.

The model was evaluated with data of an experimental study with 325 Large White
pigs weaned at 28 days of age and further housed and fed conventionally during the post-
weaning period without antibiotic administration. Body weight and diarrhoea scores were
recorded before and after weaning, and blood was sampled at weaning and one week later
for collecting haematological data. The model captured the weight dynamics of animals
at different degrees of perturbation. The utility of the model is that it provides biological
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parameters that inform on the amplitude and length of perturbation, and the rate of animal
recovery. This study is described in the article 8.1 (Revilla et al., 2019).

We are currently investigating the construction of a robustness index by integrating our
model developments with metaomic data of the gut microbiome. The functional interplay
between the gut microbiota and pig physiology has been widely recognised. During wean-
ing transition, gut microbiota disruption is one of the key factors leading to postweaning
diarrhea (Gresse et al., 2017). Our challenge is to integrate both statistics and dynamic
modelling to analyse data of body weight, pig host genomics and gut microbiome to
develop indicators of weaning sensitivity. Host and microbiome omics analysis are being
carried out by our Inra collaborators of GABI who participated in the sequencing projects
of the pig genome (Groenen et al., 2012) and the pig gut microbiome (Xiao et al., 2016).
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8.1 Towards the quantitative characterization of piglets robustness to weaning:
A modelling approach. (2019). Revilla, M.,Friggens, N. C., Broudiscou, L. P.,
Lemonnier, G., Blanc, F., Ravon, L., Mercat, M. J., Billon, Y., Rogel-Gaillard,
C., Le Floch, N., Estellé, J., Muñoz-Tamayo, R. Animal.
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9. Tools for modelling construction

People never seemed to notice that, by saving time, they were losing
something else.

Michel Ende. Momo.

R This chapter synthesises my current research work at the MoSAR team (Inra, Jouy-en-Josas,
France). It includes my involvement in the supervision of the PhD thesis of Laura Lema
Perez.

Modelling construction is a stepwise process that requires dedicated tools. My
research belongs to the domain of applied mathematics. I have been focused
on the translation of biological knowledge into usable models. When analysing

system dynamics and problems associated to model building and parameter identifiability,
I have followed a practitioner approach capitalizing on the use of dedicated software
tools. For instance, I have exploited the functionality of Matlab R© for developing the
IDEAS parameter identification toolbox (220 lines of code), which is detailed in article 3.1
(Muñoz-Tamayo et al., 2009). After its development, IDEAS has been of great usefulness
in all my modelling projects. I have used IDEAS as a teaching tool used my lectures on
parameter identification. IDEAS has been downloaded more than 100 times and has been
used as parameter identification toolbox in at least five publications (without considering
my own papers).

In 2014, I embraced the domain of animal science modelling at MoSAR. I realized
that problems associated to the structural identifiability of parameters in ODE models
were not addressed in the domain. Accordingly, I initiated a discussion about parameter
identifiability with the MoSAR colleagues involved in model constructions: Laurence Puil-
let, Masoomeh Taghipoor, Pierre Blavy, Nicolas Friggens, Daniel Sauvant, Jean-Baptiste
Daniel and Olivier Martin. We named this discussion group as the MoMos (MoSAR
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Modellers). Since then, the MoMos group has consolidated a rich space of discussion
and sharing. The collective MoMos is led by Olivier Martin and I. Coming back to the
identifiablity story, we decided to provide a comprehensive explanation of the structural
identifiability notion for the community of animal science modelling and introduce existing
tools to perform the identifiability analysis without being an expert on the mathematical
technicalities associated to this subject (Section 2.2). Our aim was to motivate the commu-
nity to use identifiability analysis in the modelling practice by illustrating examples where
such an analysis is instrumental for model construction and experiment design. The result
of this work is presented in the article 9.1 (Muñoz-Tamayo et al., 2018b).

Further, within the PhD project of Laura Lema-Perez, we analysed methodological aspects
for building phenomenological-based semiphysical models (PBSM). The PhD thesis of
Laura is entitled Parameters interpretability in phenomenological based semi-physical
models: a human glucose homeostasis model. Laura started her PhD at Universidad
Nacional (UN) de Colombia Sede Medellin in 2015. The thesis directors are Hernan Dario
Alvarez Zapata (UN) and Jose Fernando Garcia Tirado (Center for Diabetes Technology,
University of Virginia, USA). The co-supervisor is Carlos Builes-Montaño (Hospital
Pablo Tobón Uribe, Colombia). In February 2018, Laura came to MoSAR as a visitor
PhD student to work jointly during six months. One of the objective of Laura’s thesis
is to build a methodology for constructing PBSMs that integrates the physical meaning
level of the model parameters. We will denote a parameter with physical meaning to
be interpretable. The development of such a methodology encounters a first hurdle in
the lack of formalism about interpretability as a property of the parameters in a model,
there is no consensus about quantifying or measuring such a property. To the best of
our knowledge, the concept of interpretability in PBSM has not been deeply discussed,
perhaps due to the implicit assumption that interpretability is inherent to the PBSM since
they are derived from a phenomenological representation of the system under study. In
this work, we propose a conceptual framework that can facilitate the incorporation of
interpretability for model construction. My role in the supervision of Laura’s thesis has
been centred in the integration of structural identifiability property into the modelling
building methodology to enhance its level of formalism. My rate of supervision was of
30% during 2018. During her visit at MoSAR, I trained Laura on parameter identifiability
concepts, and on the use of software tools dedicated to structural identifiability analysis.
We have proposed a conceptual framework to facilitate the incorporation of interpretability
for model construction. For that, we used my simple model of β − casein hydrolysis by
L. lactis IM17 (Muñoz-Tamayo et al., 2011a) (article 4.1) as an example to elaborate our
developments. Figure 9.1 presents a graphical representation of the conceptual framework
applied to the model case study.
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Figure 9.1: Representation of the conceptual framework for parameter interpretability applied in
mathematical model of β -casein hydrolysis by a Lactococcus lactis bacterium.
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9.1 To be or not to be an identifiable model. Is this a relevant question in
animal science modelling? Muñoz-Tamayo, R., Puillet, L., Daniel, J. B.,
Sauvant, D., Martin, O., Taghipoor, M., Blavy, P. (2018). Animal 12, 701-712.

9.2 On parameter interpretability of phenomenological-based semiphysical
models in biology. Lema-Perez, L., Muñoz-Tamayo, R., Garcia-Tirado, J.,
Alvarez, H. (2019). Informatics in Medicine Unlocked 15, 100158.
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10. A modelling DRE@M

Yo quiero una princesa convertida en un dragón,
yo quiero el hacha de un brujo para echarla en mi zurrón,

yo quiero un vellocino de oro para un reino,
yo quiero que Virgilio me lleve al infierno,

yo quiero ir hasta el cielo en un fríjol sembrado
y ya.

I want a princess turned into a dragon,
I want a witch’s ax to throw it in my shepherd bag,

I want a golden fleece for a kingdom,
I want Virgilio to take me to hell,

I want to go to the sky in a bean sown
and that’s it.

La primera mentira. Silvio Rodríguez.

I have defined my prospective research roadmap within a flagship named DRE@M:
Deciphering the Rumen Ecosystem with Advanced Modelling. Rumen microbes are
essential for the animal by catalysing the degradation of plant polysaccharides, which

allows ruminants to harvest nutrients that are otherwise inaccessible. Furthermore, the
rumen microbiota harbours a full range of functionalities that represent a tremendous
potential for health management. On the other hand, rumen microbes participate in the
environmental impact of agriculture by catalysing reactions that govern methane (a potent
greenhouse gas) and nitrogen emissions from cattle. To address the trade-offs between
the multiple rumen microbial impacts, a thorough understanding of the rumen microbiota
is needed to drive rumen metabolism towards optimal ruminant health, productivity and
environmental footprint. In this line, I aim at developing research that will contribute
to sustainable ruminant production. Considering the ruminant to be a holobiont - entity
comprised of the host and its symbiotic microbes (Theis et al., 2016) - I follow the rationale
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that the animal phenotype can be partly modulated by its rumen microbiota. By advancing
rumen microbiota system-level understanding, my ultimate goal is to use this knowledge to
design microbial manipulation strategies for improving ruminant function and promoting a
healthy microbial ecosystem for sustainable livestock farming.

Whilst significant technological progress has enhanced our knowledge of the rumen micro-
biota (Mcsweeney and Mackie, 2012; Pope et al., 2012; Morgavi et al., 2013; McAllister
et al., 2015; Li et al., 2018), a deep understanding of the rumen ecosystem function is still
limited and consequently, microbial manipulation strategies have been of limited success
(Abecia et al., 2013; Yañez-Ruiz et al., 2015; Debruyne et al., 2018).

Microbial ecology, thermodynamics and dynamic systems principles have been proposed to
facilitate successful microbial manipulations (Ungerfeld, 2015; Weimer, 2015). However,
a holistic approach integrating such principles has not been implemented yet. In addition
to identifying the action mechanism of potential drivers of the rumen microbiota, it is
important to elucidate the ecosystem dynamics, since central features such as resilience,
robustness and microbial adaptation are the resultant of dynamic interactions that shape
rumen function and its response to perturbations. Computational omics analyses have
allowed to link microbial data to animal phenotypes such as methane production (Kittel-
mann et al., 2014; Shabat et al., 2016). However, most of these findings are restricted
to correlation based approaches. To get the most out of the large body of omics data,
mathematical modelling is needed, as it provides a powerful approach for data integration
and interpretation towards a system-level understating of the rumen ecosystem that can
inform on how to drive microbial metabolism. Mathematical models of rumen function are
basically built by representing the action of two central players, namely the animal host
and the rumen microbiota. The modelling progresses to be made imply the improvement
of the representation of both animal host and microbial elements in the model structure
(Offner and Sauvant, 2004; Ellis et al., 2008; Janssen, 2010; Gregorini et al., 2013).

My research roadmap is delineated to developing mathematical models with expanded
capabilities of prediction and mechanistic insight of rumen function. I aim at enhancing
the understanding of the dynamic interplay between the diet, the animal host and the rumen

Figure 10.1: Cartoon of my research object (system) representing the interaction of fluxes between
the animal host and its rumen ecosystem.
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Figure 10.2: Steps to achieve my DRE@M via an interdisciplinary approach covering experimental
and modelling developments. Experimental in vitro batch experiments will be performed at different
levels of microbial complexity namely mono-culture (i), co-culture (ii), and mini-consortia (iii).
Further, chemostat experiments will be carried out with mini-consortia (iv) and the whole rumen
microbial consortium (v). Mathematical modelling will be pursued in parallel to elaborate a
genomic-scale metabolic model of the rumen microbiota. This model will be integrated into a
model representing in vivo conditions. The resulting model will allow to describe the dynamic
interplay between the diet, the host and the rumen microbiota (vi).

microbiota. My research object (system) is illustrated in Figure 10.1. To date, I have been
mainly focused in the rumen blue box. My strategy consists in constructing firstly a model
of rumen microbial metabolism, for a further integration into a whole model of rumen
function under in vivo conditions. This whole model will incorporate physiological aspects
such as transit time, SCFA absorption and saliva secretion.

To pursue my DRE@M, I have been consolidating a strong interdisciplinary collabora-
tion network at the national and international level. My national network comprises (i)
rumen microbiologists from the Inra teams MEDIS (Microbiology, Theix), UMRH (Hervi-
bores, Theix), and industrial partners such as Lallemand SAS (Animal Nutrition Division,
Blagnac), (ii) animal scientists and geneticists from GABI (Animal genetics and integrative
biology, Jouy-en-Josas) and MoSAR, (iii) process engineers from LBE (Laboratory of Envi-
ronmental Biotechnology, Narbonne), and (iv) computational biologists from Genotoul
(Toulouse) and Dyliss (DYnamics, Logics and Inference for biological Systems and Se-
quences, CNRS/Inria, Rennes). I also collaborate with members of the Rumen Microbial
Genomics network within the RumenPredict and H2020 MASTER projects.

Figure 10.2 displays the successive steps of my DRE@M research roadmap. I will
follow a Cartesian approach: en commençant par les objets les plus simples et les plus
aisés à connaître, pour monter peu à peu comme par degrés jusques à la connaissance
des plus composés1 (Descartes, 1637). My roadmap combines both experimental and
modelling developments. The first echelon consists in the study of microbial metabolism
of in vitro mono-culture experiments under batch conditions. We will follow the study

1Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences. René Descartes.

https://www6.clermont.inra.fr/microbiologie/Presentation-de-l-unite
http://umrh-bioinfo.clermont.inra.fr/Intranet/web/UMRH/en
http://www.lallemand.com/research/rd-structure/
https://www6.jouy.inra.fr/gabi_eng/
http://www6.jouy.inra.fr/mosar_eng/
https://www6.montpellier.inra.fr/narbonne_eng/
https://www.genotoul.fr/en/
http://www.irisa.fr/dyliss/
http://www.rmgnetwork.org/
http://www.rmgnetwork.org/
http://www.eragas.eu/index.php/research-projects/rumenpredict
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of co-culture experiments at different levels of complexity towards reconstituted minimal
microbial consortia with sequenced rumen microbes. We will further use chemostats to
study the dynamics of mini-consortia under conditions closer to real rumen conditions (con-
tinuous inflow and outflow), to proceed finally with the whole rumen microbial consortium.

Experimental studies will be followed by modelling developments at all stages to con-
struct in a stepwise fashion a genome-scale metabolic model of the rumen microbiome.
Genome-scale modelling wil be pursued with my collaborator Anne Siegel (Dyliss). In
vitro experiments will be carried out via collaboration projects with my colleagues Evelyne
Forano (MEDIS), Milka Popova and Diego Morgavi (UMRH), and Elie Le Quéméner, Kim
Milferstedt , Éric Trably, Jérôme Hamelin, Jean-Philippe Steyer (LBE). We will characterise
quantitatively rumen microbial metabolism using state-of-the-art omics and metaomics
technologies. Omics data will be analysed with the support of my collaborators Christophe
Klopp (Genotoul) and Jordi Estellé (GABI).

10.1 Improving understanding of rumen microbial dynamics

As we have recently discussed (Huws et al., 2018), existing rumen models do not incor-
porate genomic microbial knowledge and are thus limited for microbial manipulation
applications. The gap between the rumen microbiota available omics data and the existing
rumen models needs to be bridged to enhance rumen understanding (Bannink et al., 2016).
To improve understanding of rumen ecosystem dynamics, in the coming years, I will lead
interdisciplinary projects covering microbiology, thermodynamics, computational biol-
ogy and mathematical modelling. My hypothesis is that effective strategies of microbial
manipulation can be devised using a model-based approach that integrates quantitative
knowledge on microbial interactions and ecosystem dynamics.

Basically, two modelling approaches are used to represent microbial metabolism, namely
macroscopic and intracellular modelling. While both approaches are mechanistic, they
differ in the level of detail used to describe microbial metabolism. Existing models of
rumen fermentation fall in the category of macroscopic models. In this approach, mi-
crobial metabolism is represented in aggregated form by considering a limited number
of major fermentation reactions and by representing the action of the microbiota by few
functional groups. The intracellular approach looks for a detailed representation of mi-
crobial metabolism at the genome scale. Macroscopic models are essentially dynamic
while intracellular models are generally based on a steady state assumption (although
extensions are possible to render them dynamic (Mahadevan et al., 2002)). In our projects,
we will used both the macroscopic and genome-scale approaches. We will investigate how
these two modelling frameworks can be integrated to get the most out of the modelling
endeavour. In the following, I briefly describe the directions that I will undertake for
enhancing the mathematical representation of rumen function.

10.1.1 Expanding the rumen microbiota representation in macroscopic models
The core of a rumen microbial model is how the microbiota and its metabolism are rep-
resented. The level of detail by which the microbiota is represented in a model results
from a bet between two motivations namely how simple we want our model, and how
close we want the model to mirror the biological complexity. As discussed in Chap-
ter 7, we developed a model struture where the rumen microbiota is represented by three

http://www.irisa.fr/dyliss/
https://www6.clermont.inra.fr/microbiologie/Presentation-de-l-unite
http://umrh-bioinfo.clermont.inra.fr/Intranet/web/UMRH/en
https://www6.montpellier.inra.fr/narbonne_eng/
https://www.genotoul.fr/en/
https://www6.jouy.inra.fr/gabi_eng/
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functional groups, namely sugars utilizers, amino acids utilizers and hydrogen utilizers
(Muñoz-Tamayo et al., 2016a). The results of the model structure were satisfactory for the
objectives traced in the research article. However, model extensions can be pursued to en-
rich the model capabilities. A potential extension is to incorporate protoza and fungi groups
into the model to account for the role of eukaryote members on rumen metabolism. As
reviewed in our recent work (Huws et al., 2018), anaerobic fungi are potent fiber-degrading
organisms that provide beneficial conditions to other rumen microbes. Fungi penetrate
plant structural barriers leading to an increase of plant cell surface area available for micro-
bial colonization. Rumen fungi have been shown to improve feed intake, feed digestibility,
feed efficiency, daily weight gain and milk production. With regard to protozoa, their
contribution to rumen fermentation dynamics is determined by its metabolic fermenter
activity, the endosymbiosis with other microbes (methanogens) and by its engulfment
bacteria capacity (Janssen and Kirs, 2008). Different studies have demonstrated the role
of protozoa on rumen fermentation and methanogenesis (Ranilla et al., 2007; Mosoni
et al., 2011; Belanche et al., 2015; Guyader et al., 2014). The incorporation of eukaryote
members into our models developments can use as basis the rumen model developed by
Dijkstra (1994) that includes one protozoa group.

It is well recognised the role of lactate accumulation on ruminal of acidosis (Owens
et al., 1998; Plaizier et al., 2018). Accordingly, it will be useful to to incorporate lactate
utilizers and lactate metabolism into the model to allow the study of scenarios where
acidosis takes place. A model extension incorporating homoacetogens will also be useful
to better describing hydrogen metabolism and methane production (Joblin, 1999; Klieve,
1999; Ellis et al., 2008; Morgavi et al., 2010). Including homoacetogens into our model
developments will be instrumental since this hydrogenotrophic population may be of
importance when looking at strategies for methane mitigation. Finally, another challenge
to be addressed towards a comprehensive understanding of the rumen microbiome as a
whole is the incorporation of bacteriophages. Advances on the function of eukaryote
members and rumen viruses might enable to integrate the representation of these groups
into a whole rumen microbiota model. The challenges here identified will be tackled on the
basis of the modelling frameworks that I have developed which will be used as scaffolds
for model extensions. In complement to my own developments, I will enrich my research
by using other modelling frameworks and tools such as those developed by my colleague
Helen Kettle (Kettle et al., 2015, 2018) that provide a solid basis to undertake a modelling
approach with tradeoffs between the biological reality (microbial phylogeny) and model
complexity.

Another aspect that opens a key direction of model extensions is the representation of lipid
metabolism, which is recognised to impact rumen fermentation, milk and meat quality.
In the rumen, lipids undergo hydrolysis, producing unsaturated long-chain fatty acids
which can be further biohydrogenated. Lipid metabolism and biohydrogenation reduce the
amount of hydrogen available for the methanogenesis (Doreau et al., 2012; Mcsweeney
and Mackie, 2012). Despite the importance of lipid metabolism in the rumen, this aspect
has been overlooked in existing rumen models (Jenkins et al., 2008; Ellis et al., 2008) and
few works have attempted to describe mathematically this process. Moate et al. (2008)
developed a kinetic model that represents both in vitro lipolysis and biohydrogenation
as multistep processes. This model is, to my view, a solid scaffold for my further model
developments of rumen lipid metabolism. This model followed a parsimonious and bi-
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ological sound approach and, moreover, it has structural identifiability properties (as I
demonstrated in Muñoz-Tamayo et al. (2018b)). Experimental data from in vitro and in
vivo studies on lipid metabolism, as described by Fievez et al. (2007), will be central for
our model developments.

In addition to functional-based representation of the microbiota, microorganisms can
also be distinguished with respect to the size of particle of which they are attached (Bald-
win et al., 1987; Lescoat and Sauvant, 1995). The distinction of habitats (small particles,
large particles, biofilm, liquid phase) is of biological relevance. For example, the surface
area and the microbial competition for adherence sites may be limiting factors of fiber
degradation, even more important than the enzymatic activity per se (Firkins and Yu,
2015; Huws et al., 2018). With regard to methanogens, these microbes has been found in
different niches (epithelium, biofilm, solid and liquid phases) (Pei et al., 2010), indicating
the interest in including niche differentiation into mathematical models of the rumen
ecosystem. Including niche differentiation will imply to replicate the model structure of
metabolism for each microbial habitat as I did in our model of human colonic fermentation
(Muñoz-Tamayo et al., 2010).

10.1.2 Incorporating thermodynamics into rumen modelling
Thermodynamics of microbial reactions is one of the hallmarks of my research roadmap.
Biochemical reactions are governed by thermodynamics. In the rumen, thermodynamic
feasibility of reactions is determined by microbial syntrophism (e.g., hydrogen interspecies
transfer) and metabolite absorption (Short Chain Fatty Acids - SCFA -clearance). This
latter is, from an engineering point of view, an advanced mechanism that favour the trans-
formation of sugars and amino acids into SCFA, given that SCFA accumulation will tip the
position of the thermodynamic equilibrium to the side of the reactants and hence inhibiting
sugar and amino acid fermentation. With respect to microbial syntrophism, hydrogen
produced by certain microbial species is further utilized by methanogenic archaea and
homoacetogens. Lowering the concentration of hydrogen favours the thermodynamic
feasibility of fermentation reactions and enhances the overall utilization of substrates
(Kohn and Boston, 2000; Janssen, 2010). Another important thermodynamic driver is
the pH which exhibits a cause-and-effect role on the fermentation. While the pH impacts
the fermentation dynamics, it is also affected by the fermentation pattern. The pH is an
important driver of the fermentation, determining the pattern of products (Argyle and
Baldwin, 1988; Bannink et al., 2008) and thus the nutrients available for the host (Dijkstra
et al., 2012). Very importantly, the animal host exerts a thermodynamic control on rumen
fermentation via salivary secretion, which acts as a buffer influencing ruminal pH. An
imbalance of the actions of the previous drivers can lead to the disruption of homeostasis
and the animal can be subject of metabolic disorders (Russell and Rychlik, 2001).

Thermodynamic-based theoretical studies have been carried out to describe the impact of
hydrogen concentration on the Gibbs free energy changes of the main reactions of ruminal
fermentation and the associated shifts in the fermentation pattern (Janssen, 2010), and
also to investigate the impact of alternative hydrogen sinks such as reductive acetogenesis
on the SCFA fermentation profile (Ungerfeld, 2013). Some attempts have been done
to model ruminal fermentation by using thermodynamic concepts (Offner and Sauvant,
2006; Ghimire et al., 2014; Van Lingen et al., 2016). These works have a great concep-
tual value. However, further developments are needed for attaining a thermodynamic
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and dynamic model with satisfactory prediction capabilities. Theoretical frameworks
have been developed to allow stoichiometric and energetic balances of microbial growth
from the specification of the anabolic and catabolic reactions of microbial metabolism
(Heijnen and Dijken, 1992; Kleerebezem and Van Loosdrecht, 2010), and advances have
been done to link thermodynamics to kinetics (Hoh and Cord-Ruwisch, 1996; Rodríguez
et al., 2008; Gonzalez-Cabaleiro et al., 2013; Desmond-Le Quemener and Bouchez, 2014;
Großkopf and Soyer, 2016). I will exploit these theoretical frameworks for tackling the
thermodynamic modelling of rumen microbial metabolism.

10.1.3 A genomic-scale level representation of the rumen microbiota
In my coming projects, we will undertake the development of genome-scale metabolic
models (GEMs) of key rumen microbial species and combine them into an interacting
community GEM representing the rumen microbiome. This approach will fill the gap
that there is no quantitative link between current rumen in silico models and microbial
metaomics data such as microbial genetic potential (genomics), gene expression profiles
(transcriptomics) and metabolism (metabolomics). I expect that this approach will signifi-
cantly enhance rumen microbial knowledge.

The core of a GEM is the construction of the stoichiometry matrix that links the metabolites
to the reactions (Palsson, 2006). The stoichiometry matrix is built on the basis of genome-
scale network reconstructions (GENRE). Briefly, for a genome sequenced microorganism,
the GENRE is obtained by a protocol that includes functional genome annotation, curation
of a draft reconstruction of metabolic reactions and finally translation of the reconstructed
network into a computational model (Feist et al., 2009; Oberhardt et al., 2009). Recon-
struction of a metabolic network of single organism is a difficult task that can take up to
six months. Software tools are currently available to automate some of the steps of the
reconstruction (Henry et al., 2010; Prigent et al., 2017; Aite et al., 2018).

A GEM is derived from the application of the steady-state assumption on microbial
metabolism that translates in the following equation

Sν = 0 (10.1)

with S the stoichiometry matrix and ν the vector of reaction rates. Since the number
of reactions is typically higher than the number of metabolites, Eq. (10.1) is often un-
derdetermined. All admissible solutions of Eq. (10.1) constitute the solution space, that
mathematically corresponds to the null space (kernel) of the stoichiometric matrix S.

Given that the capabilities of the microbes are bounded by constraints such as (i) mass
and charge conservation, (ii) substrate and enzyme availability, and (iii) thermodynamics,
the collection of modelling frameworks that are built on the structure of the stoichiometry
matrix S is known as constraint-based modeling approaches (COBRA). The flux balance
analysis (FBA) (Varma and Palsson, 1993; Orth et al., 2010), and elementary flux mode
analysis (EFM) (Schuster and Hilgetag, 1994) are the primary frameworks of COBRA
approaches. FBA and EFM are the scaffolds of a plethora of approaches that counts with
more than 100 methods (Price et al., 2004; Lewis et al., 2012). All together, COBRA
methods allow the prediction of the potential phenotypes of a organism on the basis of its
genome.
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Figure 10.3: Two approaches for modelling microbial communities. The example addresses
the modelling of a microbial community composed of two microbes depicted by a rounded blue
rectangle and an orange ellipse. In the compartmental approach (A), the microbial species are treated
as separate compartments. The two microbes are connected by metabolite cross-feeding. In the
supra-organism approach (B), the microbial community is represented by a single microorganism
embedded with the metabolic capabilities of the two microbes

GEMs have been extensively applied to single cells, in particular to the well character-
ized model bacterium Escherichia coli, which has been targeted for the development of
constrained-based models since 1990 (Reed and Palsson, 2003). However, construction of
microbial communities GEMs is still at an early stage. Within the framework of systems
biology, the current status of knowledge on the function of microbial communities has
been compared to the knowledge of the systems biology of single species ten years ago
(Zengler and Palsson, 2012).

The main challenge of building a community model relates to the question of how the
species, their metabolic networks, and interspecies interactions should be represented.
Tackling this challenge becomes critical when analysing highly diverse ecosystems such
as the rumen. Two frameworks, namely the compartmental (Stolyar et al., 2007) and the
supra-organism approaches (Rodríguez et al., 2006; Klitgord and Segre, 2011; Boren-
stein, 2012) have been developed to address the representation of microbial species into a
mathematical metabolic model. The two approaches are depicted in Figure 10.3. In the
compartmental approach, the metabolic network of each microbial species is treated as a
separate compartment, whereas the supra-organism approach assumes that the microbial
community behaves as a single microorganism provided with all the metabolic capabilities
of the individual species of the consortia. The main weakness of the supra-organism
approach is that due to its level of aggregation, it lacks a description of the connectiv-
ity principle among species which is a determining factor of the function of the whole
community (Walker et al., 2014; Biggs et al., 2015). For highly diverse ecosystems, the
compartmental approach in sensu stricto results in a model that is difficultly tractable.
To reduce model complexity, an alternative is to represent the microbial community in
functional groups rather than in phylogenetic groups. These functional groups can be
interpreted as metagenomic species. We will investigate whether the rumen microbiota
can be modelled as a mini-consortium of microbial guilds covering a functional core.
We will further apply COBRA approaches (FBA, EFM) on the resulting GEMs to link
microbial genotype to phenotypes. We will dedicate particular attention in incorporating
thermodynamic principles to produce accurate models that integrate primary features such
as reaction directionality and feasibility, and allow to predict metabolic shifts driven by
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thermodynamic factors. We have already started the GEM construction of the keystone
cellulolytic bacterium Fibrobacter succinogenes, and to model the metabolism of rumen
methanogenic archaea using thermodynamic principles. As mentioned above, model con-
structions will be supported by the experimental data described in my DRE@M strategy
(Figure 10.2).

The resulting research will produce novel modelling frameworks with enhanced pre-
dictive capabilities for tackling challenges that cannot be addressed by existing rumen
models which do not integrate microbial genomic information and, thus, are not adapted to
guide the design of microbial manipulation strategies.

It should be noted that the strategy here described not only applies to the rumen but
also to all microbial ecosystems where metabolic reactions take place, including anaerobic
reactors for wastewater treatment, and the human gut. It should be said that Hungate (1975)
discussed earlier the analogy of the rumen ecosystem with a chemostat. Developments on
gut modelling by using the theory of biochemical reactors have been elaborated by Jumars
(2000) among others. With this in mind, I expect a mutual benefit of modelling efforts be-
tween different domains. While knowledge gained from modelling of engineering reactors
can be transferred for modelling digestive ecosystems (Bucci and Xavier, 2014), knowl-
edge on digestive systems could in turn inspire highly efficient bio-processes (Weimer
et al., 2009; Godon et al., 2013; Batstone et al., 2015). In fact, enhancing the understanding
of microbial systems requires an interdisciplinary approach. I could not find better words
than those of Backhed et al. (2005) : ...as microbiotas have coevolved with their animal
hosts, this field must coevolve with its academic hosts and their ability to devise innovative
ways of assembling interactive interdisciplinary research groups necessary to advance
our understanding. I expect to continue in contributing to the establishment of bridges
between multiple disciplines.

10.2 Integrating the rumen microbiota and the animal host

As mentioned before, I have mainly based my research on the rumen microbial component.
In the coming years, I will address the animal component. In this direction, to facilitate
and support the construction of a mathematical model of rumen function under in vivo
conditions, I have led, since my arrival at MoSAR, a discussion group for designing and
implementing an experimental facility that could provide a dynamic quantitative charac-
terisation of the key phenotypes that influence methane production in ruminants. The
discussion group involves technical (Ophélie Dhumez, Alexandra Eymard, Joseph Tessier)
and scientific staff (Sylvie Giger-Reverdin, Christine Duvaux-Ponter), and myself. Our
experimental device, that we named as the phenobox, allows synchronous measurements
of feeding behaviour, water intake and methane production in goats. The phenobox is a
battery of four individual boxes whose design is based on the respiration chamber designs
of Hart et al. (2014) and Pinares-Patiño et al. (2014). We are currently performing calibra-
tion tests. We expect our first experiment to take place in the Fall of 2019. Figure 10.4
displays the prototype of the phenobox device. The animal is located in a transparent
box. Inside the box, the ingestion kinetics is recorded using feed bins. Water intake is
recorded by a pulse sensor. The air of the box is extracted by the action of two turbines.
The air residence time can be set to 6 or 15 min. The humidity of the sampled air is
removed by a condensation system to be finally characterised in a MGA3500 gas analyzer
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Figure 10.4: Phenobox prototype to measure ingestion kinetics and methane production. This
device was designed and implemented by a MoSAR discussion group.

that determines the concentration of methane and carbon dioxide in the box and in the
environment background.

Experimental data from the phenobox device and from my national and international
projects will be integrated into my model developments. In the long term, I expect to
address a genomic-based approach to account for the ruminant holobiont as a whole. The
resultant modelling framework will be instrumental for guiding the design of nutritional
and microbial manipulation strategies for improving ruminant function within a context of
sustainable livestock farming. The design of these optimal nutritional strategies will result
from solving a multi-objective mixed-integer dynamic optimization problem addressing
central aspects such as feed efficiency, animal health, economic viability and methane
emissions. I am already well down this road through the construction of four individual
research grants proposals: 1 local (appel Emergences de la ville de Paris), 2 national (ANR)
and 1 European (ERC Starting Grant). None of my individual grants got funded but they
evolved through European collaborative projects where I lead modelling work packages.
While I write this manuscript, I keep fingers crossed for a collaborative research ANR
project that I lead as scientific coordinator. Our proposal, that I named as the Syntrophy
project has the goal of consolidating the primary pillars of my DRE@M. The Syntrophy
project is built upon a collaboration involving 1 industrial partner, 1 CNRS/Inria research
team, and 6 Inra research teams from 5 of the 13 scientific Inra divisions.
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11. A brief tribute to slowness in Science

Je me souviens des papiers peints où d’énormes formes géométriques
oranges et jaunes s’épanouissaient sur fond noir ou marron

Je me souviens «d’un petit pas pour l’homme, mais un grand pas pour
l’Humanité »

Je me souviens de la télé en noir et blanc
Je ne me souviens pas du moment de ma naissance

Je me souviens du plumier et des bouteilles d’encre sur la table d’école
Je me souviens des soirées au coin du feu en famille, à raconter nos envies, nos

craintes, nos peurs, nos joies, nos colères, nos désaccords, nos émotions,
jusqu’à plus de bois.

I remember wallpapers where huge orange and yellow geometric shapes
bloomed on a black or brown background.

I remember «a small step for the man, but a big step for Humanity »
I remember black and white TV

I do not remember the moment of my birth
I remember the pencil case and bottles of ink on the school table

I remember the evenings with the family at the corner of the fire, telling our
envies, our fears, our joys, our angers, our disagreements, our emotions, until

no more wood.

Je me souviens. Georges Pérec.

R This text is an updated translated version of the essay: Breve elogio a la lentitud en ciencia.
(2016). In: Ciencia y Humanismo 50 años Revista Aleph (1996-2016), pp. 473-478, C.E.
Ruiz (Ed.) Ed. Universidad de Caldas, Colombia (Muñoz-Tamayo, 2016). The current
manuscript is available at https://osf.io/preprints/socarxiv/n9wpg/

Publish or perish: is it the right motto? The answer to this question should be a

https://osf.io/preprints/socarxiv/n9wpg/
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strong NO. But we already know that this is not the case. I look at the different
research calls in which I have participated to get funding. In the CV section, I

find the following phrase: I have a solid track record with W publications, of which X%
are published in Q1 journals. I have Y citations and my h-index is Z. Is this the right
information that defines my path? Are these the correct measurements of my research? I
hope not. Even so, I am the one who has written these phrases and nobody has forced me
to write them like that. The why goes with the following essay.

Let’s imagine for a moment the following cliché of the scientist: a man with dishev-
elled hair, wide trousers, the collar of the shirt badly put, the glasses are somewhat fogged.
The lenses reflect a lost look towards an apple tree. Time passes slowly. Ideas are carefully
woven in a galaxy of neurons. The sun has hidden and our scientist takes the bicycle to go
home. The next morning, when passing close to the river, the song of a bird makes him
think in certain harmonics.

Well, this image encloses the implicit sense of a spiritual work, guided by the essence of
asking, perhaps, by the utopian idea of finding a treasure that might change humankind. For
some scientists, the utopia will come true. For others, the utopia will remain as a driving
force. However, the reality faced by the scientist, in particular the young (early-career)
scientist, is another one.

Metrics and misadventures

As it has occurred in the evaluation process of various public sector institutions (Ogien,
2013), the number has gained an overwhelming importance in the evaluation of research.
In principle, the concept of measuring the research work responds to the natural need to
have evaluation standards, which is absolutely valid and pertinent. The great difficulty in
this procedure is that the measure implies science to be defined as a product and, in this
transformation of sense, the legitimacy of science (and of the scientist who performs it) is
hereof validated by the measure, in a process that is unscientific, subjective, and secretive
(PLoSMedicine-Editors, 2006). But science is not a product.

Currently, the performance of a scientist is mainly measured by their publications: the
number of articles published, the number of times their articles are cited by peers, and
the prestige of the journals where the articles have been published. The prestige of a
journal is often assessed by an indicator known as the impact factor (IF) that measures
the average number of citations for each article published in the journal. In addition
to the IF, the scientist performance is measured by the H index that attempts to mea-
sure the impact of the work published in the scientific community. A H index of value n
implies that the scientist has at least n published articles that have been cited at least n times.

The IF, the H index, the number of articles and citations are currently the main criteria for
promotion and evaluation both in competitions to obtain research positions and in the calls
for research projects and scholarships at national and international level. Although these
indicators might correlate with the quality of scientific work, several authors have identified
the limitations and dangers of these indicators to assess the value of published research
work (Seglen, 1997; PLoSMedicine-Editors, 2006; Lawrence, 2007; Brembs et al., 2013;
Paulus et al., 2018). From these criticisms, it is worth to mention the San Francisco

https://sfdora.org/read/
https://sfdora.org/read/
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Declaration on Research Assessment (DORA) (Cagan, 2013) initiative to discour-
age and combat the misuse of IF to evaluate the work of individual scientists.

Evaluation is necessary to guarantee the quality of science, and publishing is undoubtedly
a central aspect of the scientific work, which also implies a source of satisfaction and
recognition. However, publication is not the raison d’être of science. The disproportionate
importance of publications in the scientific career is a dangerous threat that promotes a
science where the discovery of truth is diminished by the desire of publishing (Lawrence,
2007; Park et al., 2014). This phenomenon is recognized in the scientific community under
the broadly spread materialistic motto publish or perish, and is accompanied by the IF
obsession (impactitis) (Casadevall and Fang, 2015). And in this race towards publication,
the integrity of science has been jeopardized by ethical misconduct from the scientific
community (including Nobel prizes) (Martinson et al., 2005). In fact, a significant number
of cases of falsification (Nosek et al., 2012) and data fabrication have been reported in
various scientific domains such as the Schön case (2002) in physics, the Stapel case (2011)
in psychology and the Voinnet case (2015) in biology (communication by Patricia Volland-
Nail http://fr.slideshare.net/pvolland). A gray cloud covers a profession that
should enlighten our knowledge of the world.

The pressure exerted by the eagerness to publish affects the entire scientific community, but
it shows a marked importance for the young researcher, who must face a hypercompetition
to be consolidated as a scientist through funding grants and job competitions in a selection
system strongly based on article publication indicators (Schäfer et al., 2011; Farlin and Ma-
jewsky, 2013; Schekman, 2013). This system tends to favour short-term applied research
projects over long-term basic research projects (Haroche, 2012). The pressure to publish
at any price is undoubtedly detrimental to the quality of science and the development of
the profile of the researcher, who from the early stage of their career sees how the first
utopia becomes overshadowed by mercantile factors. In the silence, the imposter syndrome
(Woolston, 2016) comes to disturb our thoughts. In this context, it is very valuable, as
statement of principle, the decisions of the ASM journals and eLife of removing the
information of the IF on their websites as a declaration of the IF inappropriate use and of
the need of alternative research metrics (Schekman and Patterson, 2013; Casadevall et al.,
2016). It must be kept in mind, however, that any kind of journal-based assessment will
remain flawed in some way and not exempted of the impact factor fallacies discussed by
Paulus et al. (2018).

A look at the slowness

The responsibility of changing the engine that drives the scientific activity is not only the
resultant of the bureaucratic and political strategies of research centres, and the funding and
evaluation agencies of research institutions in each country. The responsibility is also ours
who have allowed the implantation of the tremendous reliance on journal citation metrics
as indicators of the importance of our research (Casadevall and Fang, 2015). Although
this essay illustrates a tendency that is detrimental to the integrity of science, it would be
irresponsible to affirm that all scientists follow the doctrine of publishing or perishing and
that the conquest of knowledge, as the first motivation, occupies a marginal place. Many
researchers continue defending the integrity of science, and resist to the view of science as
a mercantile product.

https://sfdora.org/read/
https://sfdora.org/read/
http://fr.slideshare.net/pvolland
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Science will continue its primary role of advancing knowledge and serve society. Modern
times call for engaged scientists that, as proposed by the French collective Sciences
en Marche, defend the scientific method against preconceived opinions and ideologies,
and strengthen the dialogue between science and society. Within this context, a switch
of direction is needed for promoting beauty and integrity in science. In addition to the
necessary actions to undertake in the hiring, promotion and funding decisions adopted in
scientific institutions, a change of attitude on the part of the scientific community is needed.
We must return to the essential scientific values over the accumulation of publications, and
thus be able to eradicate the impactitis medical condition (Casadevall and Fang, 2014). We
must defend the principles of scientific integrity (Letellier, 2016) and engage in conducting
a responsible, reliable and traceable research. And for that, we must beat the rush, not to
fall into lethargy, but to strengthen our thinking. Science and scientists need time. Time
even to misunderstand each other (http://slow-science.org/). Time to read, not only
the work of our scientific peers, but also to read and re-read Aristotle, Khant, Khun, Popper,
Russell and modern philosophers. Time to read Mafalda, Calvin and Hobbes.

We need to beat the rush, to position utopia as the first place. Promote ethical behaviour
through training and discussion spaces for consolidating, at the early stage of the scientist
career, an awareness of what the essential scientific values are. An awareness that translates
into action of resistance to defend the humanistic role of science.

Beat the rush, to look at science as well as art (Barnes, 1995). Beat the rush, to make the
irrational emerge, to give way to creative thinking and give rise to serendipity: that of
Alexander Flemming and Isaac Newton, and be able to shout Eureka all over the world.

Beat the rush, to strengthen the genius and keep alive the spirit of a child who asks
questions over and over1. Beat the rush, to experience the joy of understanding: what is
gone, what is on the way.2.

1As the child of the song Escaramujo by Silvio Rodríguez.
2From the poem Five Lines by Nazim Hikmet.

 http://sciencesenmarche.org/fr/blog/2017/03/30/marche-pour-les-sciences/
 http://sciencesenmarche.org/fr/blog/2017/03/30/marche-pour-les-sciences/
http://slow-science.org/
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Unus pro omnibus, omnes pro uno.

One for all, all for one.

Motto of the Three Musketeers. Alexandre Dumas père.

This manuscript has traced the path of my travel in the sea of Science. The travel
has been a modelling odyssey in the tree of life, in which I have studied different
biological systems including bacteria, microalgae, yeast and animals. The collection

of articles here discussed demonstrate the power of mathematical modelling to improve
understanding of biological systems. These works illustrate that models are not only useful
for predicting or describing, but also as powerful tools to formalise knowledge, generate
and test hypothesis that are difficult to evaluate experimentally, and to design optimal
control strategies to maximize system performance. I want to stress that mathematical
modelling do not diminish the importance of experimental work. Models and experiments
exhibit a symbiotic relationship for knowledge improvement. Whlist experiments provide
the relevant information to model construction, models can be used to substantially enrich
the level of information to be extracted from experimentation. Through optimal experi-
mental design, experimental conditions can be identified to provide high quality data to
facilitating the quantitative description of system dynamics.

The modelling building process requires a collection of mathematical and informatics tools
to provide usable and robust models. Beyond these technicalities, one of the pillars of
model construction is the process of knowledge verbalisation and the translation of such
a knowledge into a mathematical entity. This process appears often imperceptible in the
scientific literature but is the core of the modelling endeavour (a form of art), in particular
when dealing with biological systems.

The complexity underlying biology makes it impossible for a single mind to undertake a
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research approach covering the multiple components that impact the dynamic behaviour
of biological systems. It is here where the interdisciplinary science concept needs to
metamorphose from words into actions. I could not be more privileged of having travelled
with passionate colleagues from different disciplines that have been keen and willing to
share their knowledge, to be patient for taking the time to explain, to listen and constructing
a common language. I am deeply indebted to them.

All together, these works converge in setting a solid bedrock for my future research
on decrypting the dynamics of the rumen microbiota with the prospect of using such knowl-
edge for the design of microbial manipulation strategies for improving rumen funtion
towards sustainable productivity. Incorporating the whole ruminant holobiont entity into
mathematical models is my great challenge in the coming years.

Finally, since the questions I address are not exclusive of the rumen and also applies
to other microbial ecosystems, I expect my research can also contribute to enhance under-
standing of artificial engineering reactors and other digestive systems such as the human
gut.

I close these pages by saying that a beautiful science needs time to let the orchids bloom.



VI

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliography





Bibliography

Abecia, L., Martn-Garcia, A. I., Martinez, G., Newbold, C. J., Yañez-Ruiz, D. R., 2013.
Nutritional intervention in early life to manipulate rumen microbial colonization and
methane output by kid goats postweaning1. Journal of Animal Science 91, 4832–4840.

Aite, M., Chevallier, M., Frioux, C., Trottier, C., Got, J., Cortés, M. P., Mendoza, S.,
Carrier, G., Dameron, O., Guillaudeux, N., Latorre, M., Loira, N., Markov, G. V., Maass,
A., Siegel, A., 2018. Traceability, reproducibility and wiki-exploration for a-la-carte
reconstructions reconstructions of genome-scale metabolic models. Plos Comput Biol.
14, e1006146.

Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on
Automatic Control 19 (6), 716–723.

Amribt, Z., Niu, H., Bogaerts, P., 2013. Macroscopic modelling of overflow metabolism and
model based optimization of hybridoma cell fed-batch cultures. Biochemical Engineering
Journal 70, 196–209.

Angulo, F., Munoz, R., Olivar, G., 2007. Control of a bioreactor using feedback lineariza-
tion. In: Mediterranean Conference on Control & Automation. IEEE, pp. 1–6.

Argyle, J. L., Baldwin, R. L., 1988. Modeling of Rumen Water Kinetics and Effects of
Rumen Ph Changes. Journal of Dairy Science 71, 1178–1188.

Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., Gordon, J. I., 2005. Host-
bacterial mutualism in the human intestine. Science 307 (5717), 1915–1920.

Bailey, J. E., 1998. Mathematical modeling and analysis in biochemical engineering: past
accomplishments and future opportunities. Biotechnology progress 14, 8–20.

Baldwin, R. L., 2000. Introduction: history and future of modelling nutrient utilization in
farm animals. In: McNamara France, J., Beever, D.E., J. P. (Ed.), Modelling nutrient
utilization in farm animals. CAB International, Wallingford, UK, pp. 1–9.



94 BIBLIOGRAPHY

Baldwin, R. L., Thornley, J. H., Beever, D. E., 1987. Metabolism of the lactating cow. II.
Digestive elements of a mechanistic model. J. Dairy Res. 54, 107–131.

Balsa-Canto, E., Alonso, A. A., Banga, J. R., 2008. Computational procedures for optimal
experimental design in biological systems. IET Syst Biol 2, 163–172.

Balsa-Canto, E., Banga, J. R., 2011. AMIGO, a toolbox for advanced model identification
in systems biology using global optimization. Bioinformatics 27, 2311–2313.

Bannink, A., France, J., Lopez, S., Gerrits, W. J. J., Kebreab, E., Tamminga, S., Dijkstra,
J., 2008. Modelling the implications of feeding strategy on rumen fermentation and
functioning of the rumen wall. Animal Feed Science and Technology 143, 3–26.

Bannink, A., van Lingen, H. J., Ellis, J. L., France, J., Dijkstra, J., 2016. The Contribution
of Mathematical Modeling to Understanding Dynamic Aspects of Rumen Metabolism.
Frontiers in Microbiology 7, 1820.

Baranyi, J., Ross, T., McMeekin, T. A., Roberts, T. A., 1996. Effects of parameteriza-
tion on the performance of empirical models used in ’predictive microbiology’. Food
Microbiology 13, 83–91.

Barnes, C. J., 1995. The Art of Catchment Modeling - What Is a Good Model. Environment
International 21, 747–751.

Baroukh, C., Muñoz-Tamayo, R., Bernard, O., Steyer, J. P., 2015a. Mathematical modeling
of unicellular microalgae and cyanobacteria metabolism for biofuel production. Current
Opinion in Biotechnology 33, 198–205.

Baroukh, C., Muñoz-Tamayo, R., Steyer, J. P., Bernard, O., 2014. DRUM: A New Frame-
work for Metabolic Modeling under Non-Balanced Growth. Application to the Carbon
Metabolism of Unicellular Microalgae. PLoS One 9 (8).

Baroukh, C., Muñoz-Tamayo, R., Steyer, J.-P., Bernard, O., 2015b. A state of the art of
metabolic networks of unicellular microalgae and cyanobacteria for biofuel production.
Metabolic Engineering 30, 49–60.

Batstone, D., Puyol, D., Flores-Alsina, X., Rodríguez, J., 2015. Mathematical modelling of
anaerobic digestion processes: applications and future needs. Rev Environ Sci Biotech-
nol, 1–19.

Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi,
A., Sanders, W. T., Siegrist, H., Vavilin, V. A., 2002. Anaerobic Digestion Model No.1
(ADM1). IWA Publishing, London.

Belanche, A., de la Fuente, G., Newbold, C. J., 2015. Effect of progressive inoculation
of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation,
microbial diversity and methane emissions. FEMS Microbiology Ecology 91 (3).

Bellman, R., Astrom, K. J., 1970. On structural identifiability. Math. Biosci. 7, 329–339.

Bellu, G., Saccomani, M. P., Audoly, S., D’Angio, L., 2007. DAISY: A new software tool
to test global identifiability of biological and physiological systems. Computer Methods
and Programs in Biomedicine 88, 52–61.



BIBLIOGRAPHY 95

Beopoulos, A., Cescut, J., Haddouche, R., Uribelarrea, J.-L., Molina-Jouve, C., Nicaud,
J.-M., 2009. Yarrowia lipolytica as a model for bio-oil production. Progress in Lipid
Research 48, 375 – 387.

Bernalier, A., Willems, A., Leclerc, M., Rochet, V., Collins, M. D., 1996. Ruminococcus
hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated
from human feces. Arch Microbiol 166 (3), 176–183.

Bernard, O., 2011. Hurdles and challenges for modelling and control of microalgae for
CO2 mitigation and biofuel production. Journal of Process Control 21, 1378–1389.

Bernard, O., Chachuat, B., Hélias, a., Rodriguez, J., feb 2006. Can we assess the model
complexity for a bioprocess: theory and example of the anaerobic digestion process.
Water Science & Technology 53, 85–92.

Biggs, M. B., Medlock, G. L., Kolling, G. L., Papin, J. A., 2015. Metabolic network
modeling of microbial communities. Wiley Interdisciplinary Reviews-Systems Biology
and Medicine 7 (5), 317–334.

Bonnans, Frederic, J., Giorgi, D., Grelard, V., Heymann, B., Maindrault, S., Martinon, P.,
Tissot, O., Liu, J., 2017. Bocop − a collection of examples. Tech. rep., INRIA.

Borenstein, E., 2012. Computational systems biology and in silico modeling of the human
microbiome. Briefings in Bioinformatics 13 (6), 769–780.

Brembs, B., Button, K., Munafò, M., 2013. Deep impact: unintended consequences of
journal rank. Frontiers in human Neuroscience 7, 291.

Bucci, V., Xavier, J. B., 2014. Towards predictive models of the human gut microbiome.
Journal of Molecular Biology 426, 3907–3916.

Cagan, R., 2013. The San Francisco declaration on research assessment. Disease models
& mechanisms 6, 869–870.

Casadevall, A., Bertuzzi, S., Buchmeier, M. J., Davis, R. J., Drake, H., Fang, F. C.,
Gilbert, J., Goldman, B. M., Imperiale, M. J., Matsumura, P., McAdam, A. J., Pasetti,
M. F., Sandri-Goldin, R. M., Silhavy, T., Rice, L., Young, J.-A. H., Shenk, T., 2016.
ASM journals eliminate impact factor information from journal websites. Applied and
Environmental Microbiology 82, 5479–5480.

Casadevall, A., Fang, F. C., 2014. Causes for the persistence of impact factor mania. mBio
5, e00064–e00014.

Casadevall, A., Fang, F. C., 2015. Impacted science: Impact is not importance. mBio 6.

Chachuat, B., Singer, A. B., Barton, P. I., dec 2006. Global Methods for Dynamic Opti-
mization and Mixed-Integer Dynamic Optimization. Industrial & Engineering Chemistry
Research 45, 8373–8392.

Chachuat, B., Srinivasan, B., Bonvin, D., oct 2009. Adaptation strategies for real-time
optimization. Computers & Chemical Engineering 33, 1557–1567.



96 BIBLIOGRAPHY

Charmley, E., Williams, S. R. O., Moate, P. J., Hegarty, R. S., Herd, R. M., Oddy, V. H.,
Reyenga, P., Staunton, K. M., Anderson, A., Hannah, M. C., 2016. A universal equation
to predict methane production of forage-fed cattle in Australia. Animal Production
Science 56 (2-3), 169–180.

Chaves, M., 2013. Predictive analysis of dynamical systems: combining discrete and
continuous formalisms. mémoire présenté pour obtenir le diplôme d’habilitation à
diriger des recherches. Tech. rep., Université de Nice Sophia Antipolis.

Chis, O., Banga, J. R., Balsa-Canto, E., 2011a. GenSSI: a software toolbox for structural
identifiability analysis of biological models. Bioinformatics 27, 2610–2611.

Chis, O. T., Banga, J. R., Balsa-Canto, E., 2011b. Structural Identifiability of Systems
Biology Models: A Critical Comparison of Methods. PLoS One 6, e27755.

Combe, C., Hartmann, P., Rabouille, S., Talec, A., Bernard, O., Sciandra, A., 2015. Long-
term adaptive response to high-frequency light signals in the unicellular photosynthetic
eukaryote Dunaliella salina. Biotechnology and Bioengineering 112 (6), 1111–1121.

Crompton, L. A., Mills, J. A. N., Reynolds, C. K., France, J., 2011. Fluctuations in
methane emission in response to feeding pattern in lactating dairy cows. Modelling
Nutrient Digestion and Utilisation in Farm Animals, 176–180.

Debruyne, S., Ruiz-González, A., Artiles-Ortega, E., Ampe, B., Van Den Broeck, W.,
De Keyser, E., Vandaele, L., Goossens, K., Fievez, V., 2018. Supplementing goat kids
with coconut medium chain fatty acids in early life influences growth and rumen papillae
development until 4 months after supplementation but effects on in vitro methane
emissions and the rumen microbiota are transient. Journal of Animal Science 96, 1978–
1995.

Denis-vidal, L., Joly-blanchard, G., 2004. Equivalence and identifiability analysis of
uncontrolled nonlinear dynamical systems. Automatica 40, 287 – 292.

Descartes, R., 1637. Discours de la méthode pour bien conduire sa raison, et chercher la
vérité dans les sciences.
URL ExtractedfromTheProjectGutenbergcollection(http://www.
gutenberg.org)

Desmond-Le Quemener, E., Bouchez, T., 2014. A thermodynamic theory of microbial
growth. Isme Journal 8 (8), 1747–1751.

Dijkstra, J., 1994. Simulation of the dynamics of protozoa in the rumen. Br J Nutr 72,
679–699.

Dijkstra, J., Ellis, J. L., Kebreab, E., Strathe, A. B., López, S., France, J., Bannink, A.,
2012. Ruminal pH regulation and nutritional consequences of low pH. Animal Feed
Science and Technology 172, 22–33.

Doreau, M., Fievez, V., Troegeler-Maynadier, A., Glasser, F., 2012. Ruminal metabolism
and digestion of long chain fatty acids in ruminants: recent advances in knowledge. Inra
Productions Animales 25 (4), 361–373.

Extracted from The Project Gutenberg collection (http://www.gutenberg.org)
Extracted from The Project Gutenberg collection (http://www.gutenberg.org)


BIBLIOGRAPHY 97

Dragomir, C., Sauvant, D., Peyraud, J. L., Giger-Reverdin, S., Michalet-Doreau, B., 2008.
Meta-analysis of 0 to 8 h post-prandial evolution of ruminal pH. Animal 2, 1437–1448.

Droop, M. R., 1968. Vitamin b12 and marine ecology .iv. the kinetics of uptake, growth
and inhibition in Monochrysis lutheri. J. Mar. Biol. Assoc. 48, 689–773.

Duncan, S. H., Louis, P., Flint, H. J., 2004. Lactate-utilizing bacteria , isolated from
human Feces, that Produce butyrate as a major fermentation product. Society 70 (10),
5810–5817.

Economou, C. N., Aggelis, G., Pavlou, S., Vayenas, D. V., may 2011. Modeling of
single-cell oil production under nitrogen-limited and substrate inhibition conditions.
Biotechnology and bioengineering 108, 1049–55.

Egea, J. a., Rodríguez-Fernández, M., Banga, J. R., Martí, R., 2006. Scatter search for
chemical and bio-process optimization. Journal of Global Optimization 37, 481–503.

Ellis, J. L., Dijkstra, J., Kebreab, E., Bannink, A., Odongo, N. E., McBride, B. W., France,
J., 2008. Aspects of rumen microbiology central to mechanistic modelling of methane
production in cattle. J. Agric. Sci. 146, 213–233.

Farlin, J., Majewsky, M., 2013. Performance indicators: The educational effect of publica-
tion pressure on young researchers in environmental sciences. Environmental Science &
Technology 47, 2437–2438, pMID: 23461664.

Feist, A. M., Herrgard, M. J., Thiele, I., Reed, J. L., Palsson, B. O., 2009. Reconstruction of
biochemical networks in microorganisms. Nature Reviews Microbiology 7 (2), 129–143.

Fievez, V., Vlaeminck, B., Jenkins, T., Enjalbert, F., Doreau, M., 2007. Assessing rumen
biohydrogenation and its manipulation in vivo, in vitro and in situ. European Journal of
Lipid Science and Technology 109, 740–756.

Firkins, J. L., Yu, Z., 2015. RUMINANT NUTRITION SYMPOSIUM: How to use data
on the rumen microbiome to improve our understanding of ruminant nutrition. Journal
of Animal Science 93, 1450–1470.

Flint, H. J., Duncan, S. H., Scott, K. P., 2007. Minireview Interactions and competition
within the microbial community of the human colon : links between diet and health.
Environmental Microbiology.

Friggens, N. C., Blanc, F., Berry, D. P., Puillet, L., 2017. Review: Deciphering animal
robustness. A synthesis to facilitate its use in livestock breeding and management.
Animal 11, 2237–2251.

Ghimire, S., Gregorini, P., Hanigan, M., 2014. Evaluation of predictions of volatile fatty
acid production rates by the Molly cow model. Journal of Dairy Science 97 (1), 354–362.

Giger-reverdin, S., Morand-Fehr, P., Tran, G., 2003. Literature survey of the influence of
dietary fat composition on methane production in dairy cattle. Livestock Production
Science 82, 73–79.

Godon, J. J., Arcemisbehere, L., Escudie, R., Harmand, J., Miambi, E., Steyer, J. P.,
2013. Overview of the Oldest Existing Set of Substrate-optimized Anaerobic Processes:
Digestive Tracts. Bioenergy Research 6 (3), 1063–1081.



98 BIBLIOGRAPHY

Golubev, A., 2009. How could the Gompertz-Makeham law evolve. Journal of Theoretical
Biology 258 (1), 1–17.

Gonzalez-Cabaleiro, R., Lema, J. M., Rodriguez, J., Kleerebezem, R., 2013. Linking
thermodynamics and kinetics to assess pathway reversibility in anaerobic bioprocesses.
Energy & Environmental Science 6, 3780–3789.

Gregorini, P., Beukes, P., Waghorn, G., Pacheco, D., Hanigan, M., 2015. Development
of an improved representation of rumen digesta outflow in a mechanistic and dynamic
model of a dairy cow, Molly. Ecological Modelling 313, 293–306.

Gregorini, P., Beukes, P. C., Hanigan, M. D., Waghorn, G., Muetzel, S., McNamara, J. R.,
2013. Comparison of updates to the Molly cow model to predict methane production
from dairy cows fed pasture. Journal of Dairy Science 96 (8), 5046–5052.

Gresse, R., Chaucheyras-Durand, F., Fleury, M. A., Van de Wiele, T., Forano, E., Blanquet-
Diot, S., 2017. Gut microbiota dysbiosis in postweaning piglets: understanding the keys
to health. Trends Microbiol 25, 851–873.

Groenen, M. A. M., Archibald, A. L., Uenishi, H., Tuggle, C. K., Takeuchi, Y., Rothschild,
M. F., Rogel-Gaillard, C., Park, C., Milan, D., Megens, H.-J., Li, S., Larkin, D. M.,
Kim, H., Frantz, L. A. F., Caccamo, M., Ahn, H., Aken, B. L., Anselmo, A., Anthon, C.,
Auvil, L., Badaoui, B., Beattie, C. W., Bendixen, C., Berman, D., Blecha, F., Blomberg,
J., Bolund, L., Bosse, M., Botti, S., Bujie, Z., Bystrom, M., Capitanu, B., Carvalho-Silva,
D., Chardon, P., Chen, C., Cheng, R., Choi, S.-H., Chow, W., Clark, R. C., Clee, C.,
Crooijmans, R. P. M. A., Dawson, H. D., Dehais, P., De Sapio, F., Dibbits, B., Drou,
N., Du, Z.-Q., Eversole, K., Fadista, J., Fairley, S., Faraut, T., Faulkner, G. J., Fowler,
K. E., Fredholm, M., Fritz, E., Gilbert, J. G. R., Giuffra, E., Gorodkin, J., Griffin, D. K.,
Harrow, J. L., Hayward, A., Howe, K., Hu, Z.-L., Humphray, S. J., Hunt, T., Hornshj,
H., Jeon, J.-T., Jern, P., Jones, M., Jurka, J., Kanamori, H., Kapetanovic, R., Kim, J.,
Kim, J.-H., Kim, K.-W., Kim, T.-H., Larson, G., Lee, K., Lee, K.-T., Leggett, R., Lewin,
H. A., Li, Y., Liu, W., Loveland, J. E., Lu, Y., Lunney, J. K., Ma, J., Madsen, O., Mann,
K., Matthews, L., McLaren, S., Morozumi, T., Murtaugh, M. P., Narayan, J., Nguyen,
D. T., Ni, P., Oh, S.-J., Onteru, S., Panitz, F., Park, E.-W., Park, H.-S., Pascal, G., Paudel,
Y., Perez-Enciso, M., Ramirez-Gonzalez, R., Reecy, J. M., Rodriguez-Zas, S., Rohrer,
G. A., Rund, L., Sang, Y., Schachtschneider, K., Schraiber, J. G., Schwartz, J., Scobie,
L., Scott, C., Searle, S., Servin, B., Southey, B. R., Sperber, G., Stadler, P., Sweedler,
J. V., Tafer, H., Thomsen, B., Wali, R., Wang, J., Wang, J., White, S., Xu, X., Yerle, M.,
Zhang, G., Zhang, J., Zhang, J., Zhao, S., Rogers, J., Churcher, C., Schook, L. B., 2012.
Analyses of pig genomes provide insight into porcine demography and evolution. Nature
491, 393–398.

Großkopf, T., Soyer, O. S., 2016. Microbial diversity arising from thermodynamic con-
straints. ISME Journal 10, 2725–2733.

Guyader, J., Eugene, M., Noziere, P., Morgavi, D. P., Doreau, M., Martin, C., 2014. Influ-
ence of rumen protozoa on methane emission in ruminants: a meta-analysis approach.
Animal 8 (11), 1816–1825.

Haroche, S., 2012. The secrets of my prizewinning research. Nature News 490, 311.



BIBLIOGRAPHY 99

Hart, K., Yañez-Ruiz, D., Martin-Garcia, A., Newbold, C., 2014. Technical Manual on
Respiration Chamber Designs. Wellington, New Zealand: Ministry of Agriculture and
Forestry, Ch. Chapter 5: Sheep Methane Chambers at Aberystwyth University (UK) and
CSIC (Spain), pp. 77–88.

Heijnen, J. J., Dijken, J. P., 1992. In search of a thermodynamic description of biomass
yields for the chemotrophic growth of microorgansims. Biotechnology and Bioengeneer-
ing 39, 833–852.

Henry, C. S., DeJongh, M., Best, A. a., Frybarger, P. M., Linsay, B., Stevens, R. L.,
2010. High-throughput generation, optimization and analysis of genome-scale metabolic
models. Nature biotechnology 28 (9), 977–82.

Hirmajer, T., Balsa-Canto, E., Banga, J. R., 2009. DOTcvpSB, a software toolbox for
dynamic optimization in systems biology. BMC Bioinformatics 10, 1–14.

Hoh, C. Y., Cord-Ruwisch, R., 1996. A practical kinetic model that considers endprod-
uct inhibition in anaerobic digestion processes by including the equilibrium constant.
Biotechnology and Bioengineering 51 (5), 597–604.

Huhtanen, P., Ramin, M., Uden, P., 2015. Nordic dairy cow model Karoline in predicting
methane emissions: 1. model description and sensitivity analysis. Livestock Science.

Hungate, R. E., 1975. The Rumen Microbial Ecosystem. Annual Review of Ecology and
Systematics 6, 39–66.

Hurst, T., Rehbock, V., 2018. Optimal control for micro-algae on a raceway model.
Biotechnology progress 34, 107–119.

Huws, S. A., Creevey, C. J., Oyama, L. B., Mizrahi, I., Denman, S. E., Popova, M.,
Muñoz-Tamayo, R., Forano, E., Waters, S. M., Hess, M., Tapio, I., Smidt, H., Krizsan,
S. J., Yañez-Ruiz, D. R., Belanche, A., Guan, L., Gruninger, R. J., McAllister, T. A.,
Newbold, C. J., Roehe, R., Dewhurst, R. J., Snelling, T. J., Watson, M., Suen, G., Hart,
E. H., Kingston-Smith, A. H., Scollan, N. D., do Prado, R. M., Pilau, E. J., Mantovani,
H. C., Attwood, G. T., Edwards, J. E., McEwan, N. R., Morrisson, S., Mayorga, O. L.,
Elliott, C., Morgavi, D. P., 2018. Addressing global ruminant agricultural challenges
through understanding the rumen microbiome: Past, present, and future. Frontiers in
Microbiology 9, 2161.

Janssen, P. H., 2010. Influence of hydrogen on rumen methane formation and fermentation
balances through microbial growth kinetics and fermentation thermodynamics. Anim.
Feed Sci. Technol. 160, 1–22.

Janssen, P. H., Kirs, M., 2008. Structure of the archaeal community of the rumen. Applied
and environmental microbiology 74, 3619–3625.

Jenkins, T. C., Wallace, R. J., Moate, P. J., Mosley, E. E., 2008. Board-invited review: Re-
cent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial
ecosystem1. Journal of Animal Science 86, 397–412.

Joblin, K. N., 1999. Ruminal acetogens and their potential to lower ruminant methane
emissions. Australian Journal of Agricultural Research 50, 1307–1313.



100 BIBLIOGRAPHY

Juillet, B., Saccomani, M. P., Bos, C., Gaudichon, C., Tome, D., Fouillet, H., 2006.
Conceptual, methodological and computational issues concerning the compartmental
modeling of a complex biological system: Postprandial inter-organ metabolism of dietary
nitrogen in humans. Mathematical Biosciences 204, 282–309.

Jumars, P. A., 2000. Animal guts as nonideal chemical reactors: Partial mixing and axial
variation in absorption kinetics. American Naturalist 155 (4), 544–555.

Karlsson, J., Anguelova, M., M, J., 2012. An Efficient Method for Structural Identifiability
Analysis of Large Dynamic Systems. pp. 941–946.

Kettle, H., Holtrop, G., Louis, P., Flint, H. J., 2018. microPop: Modelling microbial
populations and communities in R. Methods in Ecology and Evolution 9 (2), 399–409.

Kettle, H., Louis, P., Holtrop, G., Duncan, S. H., Flint, H. J., 2015. Modelling the emer-
gent dynamics and major metabolites of the human colonic microbiota. Environmental
Microbiology 17, 1615–1630.

Kitano, H., 2002. Systems biology: a brief overview. Science 295 (5560), 1662–1664.

Kittelmann, S., Pinares-Patino, C. S., Seedorf, H., Kirk, M. R., Ganesh, S., McEwan, J. C.,
Janssen, P. H., 2014. Two Different Bacterial Community Types Are Linked with the
Low-Methane Emission Trait in Sheep. PLoS One 9 (7).

Kleerebezem, R., Van Loosdrecht, M. C. M., 2010. A Generalized Method for Thermo-
dynamic State Analysis of Environmental Systems. Critical Reviews in Environmental
Science and Technology 40, 1–54.

Klieve, A. V., 1999. Opportunities for biological control of ruminal methanogenesis.
Australian Journal of Agricultural Research 50, 1315–1319.

Klitgord, N., Segre, D., 2011. Ecosystems biology of microbial metabolism. Current
Opinion in Biotechnology 22 (4), 541–546.

Kohn, R. a., Boston, R. C., 2000. The Role of Thermodynamics in Controlling Rumen
Metabolism. Modelling Nutrient Utilization in Farm Animals, 11–24.

Labarthe, S., Polizzi, B., Phan, T., Goudon, T., Ribot, M., B., L., 2018. A mathematical
model to investigate the key drivers of the biogeography of the colon microbiota. Pre-
print HAL.

Lacour, T., Sciandra, A., Talec, A., Mayzaud, P., Bernard, O., 2012. Diel variations of
carbohydrates and neutral lipids in nitrogen-sufficient and nitrogen-starved cyclostat
cultures of Isochrysis sp. Journal of Phycology 48, 966–975.

Lawrence, P. A., 2007. The mismeasurement of science. Current biology 17, R583–R585.

Legay, J. M., 1997. L’expérience et le modèle. Un discours sur la méthode. Collection
Sciences en questions. INRA editions.

Lema Perez, L., Muñoz-Tamayo, R., Garcia Tirado, J. F., Alvarez, H., 2019. On param-
eter interpretability of phenomenological-based semiphysical models. Informatics in
Medicine Unlocked 15, 100158.
URL https://www.biorxiv.org/content/early/2018/10/18/446583

https://www.biorxiv.org/content/early/2018/10/18/446583


BIBLIOGRAPHY 101

Lescoat, P., Sauvant, D., 1995. Development of a mechanistic model for rumen digestion
validated using the duodenal flux of amino acids. Reprod. Nutr. Dev. 35, 45–70.

Letellier, L., 2016. Integrity and responsibility in research practices. a guide. Tech. rep.,
CNRS Ethics Committee (COMETS).

Lewis, N. E., Nagarajan, H., Palsson, B. O., 2012. Constraining the metabolic genotype-
phenotype relationship using a phylogeny of in silico methods. Nature Reviews Microbi-
ology 10 (4), 291–305.

Li, J., Zhong, H., Ramayo-Caldas, Y., Terrapon, N., Lombard, V., Potocki-Veronese, G.,
Estelle-Fabrellas, J., Popova, M., Yang, Z., Zhang, H., Li, F., Tang, S., Chen, W., Chen,
B., Li, J., Guo, J., Martin, C., Maguin, E., Xu, X., Yang, H., Wang, J., Madsen, L.,
Kristiansen, K., Henrissat, B., Ehrlich, S. D., Morgavi, D. P., jan 2018. A catalog of
microbial genes from the bovine rumen reveals the determinants of herbivory. bioRxiv.
URL http://biorxiv.org/content/early/2018/02/27/272690.abstract

Ljung, L., 2007. System Identification Toolbox for use with Matlab. Version 7. The
Mathworks, Inc.

Macfarlane, G. T., Cummings, J. H., 1991. The Large Intestine: Physiology, Pathophysiol-
ogy and Disease. Raven Press Ltd, London, Ch. The colonic flora, fermentation, and
large bowel digestive function, pp. 51–92.

Mahadevan, R., Edwards, J. S., Doyle, F. J., 2002. Dynamic flux balance analysis of
diauxic growth in Escherichia coli. Biophysical Journal 83, 1331–1340.

Mairet, F., Bernard, O., Cameron, E., Ras, M., Lardon, L., Steyer, J. P., Chachuat, B., 2012.
Three-reaction model for the anaerobic digestion of microalgae. Biotechnol Bioeng 109,
415–425.

Mairet, F., Bernard, O., Masci, P., Lacour, T., Sciandra, A., 2011. Modelling neutral
lipid production by the microalga Isochrysis aff. galbana under nitrogen limitation.
Bioresource technology 102 (1), 142–149.

Mairet, F., Muñoz-Tamayo, R., Bernard, O., 2015. Adaptive control of light attenuation for
optimizing microalgae production. Journal of Process Control 30, 117–124.

Maiwald, T., Timmer, J., 2008. Dynamical modeling and multi-experiment fitting with
PottersWheel. Bioinformatics 24, 2037–2043.

Marchetti, J., Bougaran, G., Le Dean, L., Mégrier, C., Lukomska, E., Kaas, R., Olivo,
E., Baron, R., Robert, R., Cadoret, J., 2011. Optimizing conditions for the continuous
culture of Isochrysis affinis galbana relevant to commercial hatcheries. Aquaculture
326-329, 106–115.

Martinson, B. C., Anderson, M. S., de Vries, R., 2005. Scientists behaving badly. Nature
435, 737–738.

Mathworks, 2018. Global Optimization Toolbox. User’s Guide. The Mathworks, Inc.
Natick, MA, USA.

May, R. M., Feb 2004. Uses and abuses of mathematics in biology. Science 303 (5659),
790–793.

http://biorxiv.org/content/early/2018/02/27/272690.abstract


102 BIBLIOGRAPHY

McAllister, T. A., Meale, S. J., Valle, E., Guan, L. L., Zhou, M., Kelly, W. J., Henderson,
G., Attwood, G. T., Janssen, P. H., 2015. RUMINANT NUTRITION SYMPOSIUM: Use
of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis.
J. Anim. Sci. 93, 1431–1449.

Mcsweeney, C., Mackie, R., 2012. Micro-organisms and ruminant digestion: state of
knowledge, trends and future prospects. FAO.

Mills, J. A. N., Crompton, L. A., Ellis, J. L., Dijkstra, J., Bannink, A., Hook, S., Benchaar,
C., France, J., 2014. A dynamic mechanistic model of lactic acid metabolism in the
rumen. J. Dairy Sci. 97, 2398–2414.

Moate, P. J., Boston, R. C., Jenkins, T. C., Lean, I. J., 2008. Kinetics of ruminal lipolysis
of triacylglycerol and biohydrogenation of long-chain fatty acids: New insights from old
data. Journal of Dairy Science 91 (2), 731–742.

Moorthy, A. S., Brooks, S. P., Kalmokoff, M., Eberl, H. J., 2015. A Spatially Continuous
Model of Carbohydrate Digestion and Transport Processes in the Colon. PLoS One
10 (12), e0145309.

Moorthy, A. S., Eberl, H. J., 2014. Assessing the influence of reactor system design
criteria on the performance of model colon fermentation units. Journal of Bioscience
and Bioengineering 117 (4), 478–484.

Morgavi, D. P., Forano, E., Martin, C., Newbold, C. J., 2010. Microbial ecosystem and
methanogenesis in ruminants. Animal 4, 1024–1036.

Morgavi, D. P., Kelly, W. J., Janssen, P. H., Attwood, G. T., 2013. Rumen microbial
(meta)genomics and its application to ruminant production. Animal 7 Suppl 1, 184–201.

Mosoni, P., Martin, C., Forano, E., Morgavi, D. P., 2011. Long-term defaunation increases
the abundance of cellulolytic ruminococci and methanogens but does not affect the
bacterial and methanogen diversity in the rumen of sheep. Journal of Animal Science
89 (3), 783–791.

Muñoz-Tamayo, R., 2016. Breve elogio a la lentitud en ciencia (A brief tribute for slowness
in science). In: Ruiz, C. E. (Ed.), Ciencia y Humanismo 50 años Revista Aleph (1996-
2016). Editorial Universidad de Caldas, Manizales, Colombia, pp. 473–478.

Muñoz-Tamayo, R., Aceves-Lara, C. A., Bideaux, C., 2014a. Optimization of lipid pro-
duction by oleaginous yeast in continuous culture. IFAC Proceedings Volumes (IFAC-
PapersOnline) 47, 6210–6215.

Muñoz-Tamayo, R., Angulo, F., 2006. Aproximación de estimación de estados en un
reactor uasb. Revista Colombiana de Tecnologıas de Avanzada 1, 27–33.

Muñoz-Tamayo, R., Angulo, F., Marín, J. E., 2005. Una Perspectiva sobre el Modelado
e Identificación de Sistemas de Degradación Anaerobia para el Tratamiento de Aguas
Residuales. p. 10p.

Muñoz-Tamayo, R., de Groot, J., Bakx, E., Wierenga, P. A., Gruppen, H., Zwietering,
M. H., Sijtsma, L., 2011a. Hydrolysis of beta-casein by the cell-envelope-located p-i-
type protease of Lactococcus lactis: A modelling approach. International Dairy Journal
21 (10), 755–762.



BIBLIOGRAPHY 103

Muñoz-Tamayo, R., De Groot, J., Wierenga, P. A., Gruppen, H., Zwietering, M. H.,
Sijtsma, L., 2012. Modeling peptide formation during the hydrolysis of β -casein by
Lactococcus lactis. Process Biochemistry 47 (1), 83–93.

Muñoz-Tamayo, R., Giger-Reverdin, S., Sauvant, D., 2016a. Mechanistic modelling of in
vitro fermentation by rumen microbiota. Anim. Feed Sci. Technol. 220, 1–21.

Muñoz-Tamayo, R., Giger-Reverdin, S., Sauvant, D., 2016b. Predicting ruminal pH
dynamics by linking microbial metabolism and the host: a theoretical study. In: 10th
INRA-Rowett symposium. Gut Microbiology 20 years and counting. Clerment-Ferrand,
France, p. 105.

Muñoz-Tamayo, R., Laroche, B., Leclerc, M., Walter, E., 2008. Modelling and Identifi-
cation of in vitro Homoacetogenesis by Human-Colon Bacteria. In: Proc. 16th IEEE
Mediterranean Conference on Control and Automation, Ajaccio, France. pp. 1717–1722.

Muñoz-Tamayo, R., Laroche, B., Leclerc, M., Walter, E., 2009. IDEAS: A parameter
identification toolbox with symbolic analysis of uncertainty and its application to biolog-
ical modelling. In: Proceedings of the 15th IFAC Symposium on System Identification
Saint-Malo, France. Vol. 15. pp. 1271–1276.

Muñoz-Tamayo, R., Laroche, B., Walter, E., Doré, J., Duncan, S. H., Flint, H. J., Leclerc,
M., 2011b. Kinetic modelling of lactate utilization and butyrate production by key human
colonic bacterial species. FEMS microbiology ecology 76, 615–24.

Muñoz-Tamayo, R., Laroche, B., Walter, E., Doré, J., Leclerc, M., 2010. Mathemati-
cal modelling of carbohydrate degradation by human colonic microbiota. Journal of
theoretical biology 266, 189–201.

Muñoz-Tamayo, R., Mairet, F., Bernard, O., 2013. Optimizing microalgal production in
raceway systems. Biotechnology Progress 29 (2), 543–552.

Muñoz-Tamayo, R., Martinon, P., Bougaran, G., Mairet, F., Bernard, O., 2014b. Getting
the most out of it: Optimal experiments for parameter estimation of microalgae growth
models. Journal of Process Control 24, 991–1001.

Muñoz-Tamayo, R., Popova, M., Tillier, M., Morgavi, D. P., Morel, J.-P., Fonty, G.,
Morel-Desrosiers, N., 2018a. Hydrogenotrophic methanogens of the mammalian gut:
functionally similar, thermodynamically different. a modelling approach. bioRxiv.
URL https://www.biorxiv.org/content/early/2018/10/17/445171

Muñoz-Tamayo, R., Puillet, L., Daniel, J. B., Sauvant, D., Martin, O., Taghipoor, M.,
Blavy, P., 2018b. Review: To be or not to be an identifiable model. Is this a relevant
question in animal science modelling? Animal 12, 701–712.

Muñoz-Tamayo, R., Ramirez Agudelo, J. F., Dewhurst, R. J., Miller, G., Vernon, T., Kettle,
H., 2019. A parsimonious software sensor for estimating the individual dynamic pattern
of methane emissions from cattle. Animal 13, 1180–1187.

Muñoz-Tamayo, R., Steyer, J. P., Laroche, B., Leclerc, M., 2007. Human colon: a complex
bioreactor. Conceptual modelling for the anaerobic digestion of the functional trophic
chain. In: Proc. 11th World Congress Anaerobic Digestion Bio-energy for our Future,
Brisbane, Australia. 6 pages on CD-Rom proceedings.

https://www.biorxiv.org/content/early/2018/10/17/445171


104 BIBLIOGRAPHY

Muñoz-Tamayo, R., Toro García, N., 2006. Propuesta de controlador mpc para un reactor
uasb. Scientia Et Technica 12 (30), 99–104.

Nosek, B. A., Spies, J. R., Motyl, M., 2012. Scientific utopia: II. restructuring incentives
and practices to promote truth over publishability. Perspectives on Psychological Science
7, 615–631.

Oberhardt, M. A., Palsson, B., Papin, J. A., 2009. Applications of genome-scale metabolic
reconstructions. Molecular Systems Biology 5 (320), 1–15.

Offner, A., Sauvant, D., 2004. Comparative evaluation of the Molly, CNCPS, and LES
rumen models. Anim. Feed Sci. Technol. 112 (1), 107–130.

Offner, A., Sauvant, D., 2006. Thermodynamic modeling of ruminal fermentations. Animal
Research 55 (5), 343–365.

Ogien, A., 2013. Désacraliser le chiffre dans l’évaluation du service public. Sciences en
questions. Quae Editions.

Orth, J. D., Thiele, I., Palsson, B. O., 2010. What is flux balance analysis? Nature
Biotechnology 28 (3), 245–248.

Owens, F. N., Secrist, D. S., Hill, W. J., Gill, D. R., 1998. Acidosis in cattle: A review.
Journal of Animal Science 76 (1), 275–286.

Palsson, B. O., 2006. Systems Biology. Properties of Reconstructed Networks. Cambridge
University Press, New York, USA.

Park, I. U., Peacey, M. W., Munafo, M. R., 2014. Modelling the effects of subjective and
objective decision making in scientific peer review. Nature 506, 93–96.

Paulus, F. M., Cruz, N., Krach, S., 2018. The impact factor fallacy. Frontiers in psychology
9, 1487.

Pei, C. X., Mao, S. Y., Cheng, Y. F., Zhu, W. Y., 2010. Diversity, abundance and novel 16S
rRNA gene sequences of methanogens in rumen liquid, solid and epithelium fractions of
Jinnan cattle. Animal 4, 20–29.

Pinares-Patiño, C., Hunt, C., Martin, R., West, J., Lovejoy, P., Waghorn, G., 2014. Techni-
cal Manual on Respiration Chamber Designs. Wellington, New Zealand: Ministry of
Agriculture and Forestry, Ch. Chapter 1: New Zealand Ruminant Methane Measurement
Centre, AgResearch, Palmerston North, pp. 10–28.

Plaizier, J., Mesgaran, M. D., Derakhshani, H., Golder, H., Khafipour, E., Kleen, J., Lean,
I., Loor, J., Penner, G., Zebeli, Q., 2018. Enhancing gastrointestinal health in dairy cows.
animal, 1–20.

PLoSMedicine-Editors, Jun. 2006. The impact factor game. it is time to find a better way
to assess the scientific literature. PLoS medicine 3, e291.

Pontryagin, L., Boltyansky, V., Gamkrelidze, R., and, E. M., 1962. Mathematical Theory
of Optimal Processes. Wiley-Interscience, New York.



BIBLIOGRAPHY 105

Pope, P. B., Mackenzie, A. K., Gregor, I., Smith, W., Sundset, M. A., McHardy, A. C.,
Morrison, M., Eijsink, V. G. H., 2012. Metagenomics of the Svalbard Reindeer Ru-
men Microbiome Reveals Abundance of Polysaccharide Utilization Loci. PLoS One 7,
e104612.

Price, N. D., Reed, J. L., Palsson, B. O., 2004. Genome-scale models of microbial cells:
evaluating the consequences of constraints. Nat Rev Microbiol 2, 886–897.

Prigent, S., Frioux, C., Dittami, S. M., Thiele, S., Larhlimi, A., Collet, G., Gutknecht, F.,
Got, J., Eveillard, D., Bourdon, J., Plewniak, F., Tonon, T., Siegel, A., 2017. Meneco,
a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic
Networks. Plos Computational Biology 13, e1005276.

Provost, A., Bastin, G., Agathos, S. N., Schneider, Y. J., 2006. Metabolic design of
macroscopic bioreaction models: application to Chinese hamster ovary cells. Bioprocess
and Biosystems Engineering 29 (5-6), 349–366.

Ranilla, M. J., Jouany, J.-P., Morgavi, D. P., 2007. Methane production and substrate
degradation by rumen microbial communities containing single protozoal species in
vitro. Lett Appl Microbiol 45, 675–680.

Raue, A., Karlsson, J., Saccomani, M. P., Jirstrand, M., Timmer, J., 2014. Comparison of
approaches for parameter identifiability analysis of biological systems. Bioinformatics
30, 1440–1448.

Reed, J. L., Palsson, B. O., 2003. Thirteen years of building constraint-based in silico
models of Escherichia coli. Journal of Bacteriology 185 (9), 2692–2699.

Revilla, M., Friggens, N. C., Broudiscou, L. P., Lemonnier, G., Blanc, F., Ravon, L.,
Mercat, M.-J., Billon, Y., Rogel-Gaillard, C., Le Floch, N., Estellé, J., Muñoz-Tamayo,
R., 2019. Towards the quantitative characterization of piglets’ robustness to weaning: A
modelling approach. Animal.

Robles-Rodríguez, C., Muñoz-Tamayo, R., Bideaux, C., Gorret, N., Guillouet, S., Molina-
Jouve, C., Roux, G., Aceves-Lara, C., 2018. Modeling and optimization of lipid ac-
cumulation by Yarrowia lipolytica from glucose under nitrogen depletion conditions.
Biotechnology and Bioengineering 115, 1137–1151.

Rodríguez, J., Kleerebezem, R., Lema, J. M., van Loosdrecht, M. C. M., 2006. Modeling
product formation in anaerobic mixed culture fermentations. Biotechnol. Bioeng. 93 (3),
592–606.

Rodríguez, J., Lema, J. M., Kleerebezem, R., 2008. Energy-based models for environmental
biotechnology. Trends Biotechnol 26 (7), 366–374.

Russell, J. B., Rychlik, J. L., may 2001. Factors That Alter Rumen Microbial Ecology.
Science 292 (5519), 1119–1122.

Schaber, J., Klipp, E., 2011. Model-based inference of biochemical parameters and dy-
namic properties of microbial signal transduction networks. Current Opinion in Biotech-
nology 22 (1), 109–116.



106 BIBLIOGRAPHY

Schäfer, R. B., Cooke, S. J., Arlinghaus, R., Bonada, N., Brischoux, F., Casper, A. F.,
Catford, J. a., Rolland, V., nov 2011. Perspectives from early career researchers on
the publication process in ecology - a response to Statzner & Resh (2010). Freshwater
Biology 56, 2405–2412.

Schekman, R., 2013. How journals like Nature, Cell and Science are damaging science.
The Guardian.

Schekman, R., Patterson, M., 2013. Reforming research assessment. eLife 2, e00855,
original DateCompleted: 20130524, Original DateCompleted: 20140206.

Schrödinger, E, 1944. What is Life? The Physical Aspect of the Living Cell,. Cambridge
University Press,.

Schuster, S., Hilgetag, C., 1994. On elementary flux modes in biochemical reaction systems
at steady state. Journal of Biological Systems 2 (2), 165–182.

Seglen, P. O., 1997. Why the impact factor of journals should not be used for evaluating
research. BMJ 314, 498502.

Serment, A., Giger-Reverdin, S., Schmidely, P., Dhumez, O., Broudiscou, L. P., Sauvant,
D., 2016. In vitro fermentation of total mixed diets differing in concentrate proportion:
relative effects of inocula and substrates. Journal of the Science of Food and Agriculture
96, 160–168.

Shabat, S. K., Sasson, G., Doron-Faigenboim, A., Durman, T., Yaacoby, S., Berg Miller,
M. E., White, B. A., Shterzer, N., Mizrahi, I., 2016. Specific microbiome-dependent
mechanisms underlie the energy harvest efficiency of ruminants. Isme Journal 10, 2958–
2972.

Shapiro, E., 2014. Correcting the bias against interdisciplinary research. eLife 3, e02576,
original DateCompleted: 20140402.

Skogestad, S., 2000. Plantwide control: The search for the self-optimizing control structure.
Journal of process control 10 (5), 487–507.

Spedding, C. R. W., 1988. General aspects of modelling and its application in livestock
production. In: Korver, S., Van Arendonk, J. A. M. (Eds.), Modelling of livestock
production systems. Kluwer Academica Publishers, Dordrecht, The Netherlands, pp.
3–13.

Stelling, J., 2004. Mathematical models in microbial systems biology. Curr Opin Microbiol
7 (5), 513–518.

Stolyar, S., Van Dien, S., Hillesland, K. L., Pinel, N., Lie, T. J., Leigh, J. A., Stahl, D. A.,
2007. Metabolic modeling of a mutualistic microbial community. Molecular Systems
Biology 3, 92.

Tap, J., Mondot, S., Levenez, F., Pelletier, E., Caron, C., Furet, J. P., Ugarte, E., Muñoz-
Tamayo, R., Paslier, D. L., Nalin, R., Dore, J., Leclerc, M., 2009. Towards the human
intestinal microbiota phylogenetic core. Environ Microbiol 11 (10), 2574–2584.



BIBLIOGRAPHY 107

Tebbani, S., Lopes, F., Filali, R., Dumur, D., Pareau, D., 2014. Nonlinear predictive control
for maximization of co2 bio-fixation by microalgae in a photobioreactor. Bioprocess and
Biosystems Engineering 37, 83–97.

Theis, K. R., Dheilly, N. M., Klassen, J. L., Brucker, R. M., Baines, J. F., Bosch, T. C. G.,
Cryan, J. F., Gilbert, S. F., Goodnight, C. J., Lloyd, E. A., Sapp, J., Vandenkoornhuyse, P.,
Zilber-Rosenberg, I., Rosenberg, E., Bordenstein, S. R., 2016. Getting the Hologenome
Concept Right: an Eco-Evolutionary Framework for Hosts and Their Microbiomes.
mSystems 1, e00028–16.

Troy, S. M., Duthie, C. A., Hyslop, J. J., Roehe, R., Ross, D. W., Wallace, R. J., Waterhouse,
A., Rooke, J. A., 2015. Effectiveness of nitrate addition and increased oil content as
methane mitigation strategies for beef cattle fed two contrasting basal diets. Journal of
Animal Science 93, 1815–1823.

Ungerfeld, E. M., 2013. A theoretical comparison between two ruminal electron sinks.
Frontiers in Microbiology 4, 319.

Ungerfeld, E. M., 2015. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited
ruminal fermentation: A meta-analysis. Frontiers in Microbiology 6, 37.

Van Amburgh, M. E., Collao-Saenz, E. A., Higgs, R. J., Ross, D. A., Recktenwald, E. B.,
Raffrenato, E., Chase, L. E., Overton, T. R., Mills, J. K., Foskolos, A., 2015. The Cornell
Net Carbohydrate and Protein System: Updates to the model and evaluation of version
6.5. J Dairy Sci 98 (9), 6361–6380.

Van Lingen, H. J., Plugge, C. M., Fadel, J. G., Kebreab, E., Bannink, A., Dijkstra, J.,
2016. Thermodynamic driving force of hydrogen on rumen microbial metabolism: A
theoretical investigation. PLoS ONE 11 (10), 1–18.

Varma, A., Palsson, B. O., 1993. Metabolic capabilities of Escherichia-Coli .2. optimal-
growth patterns. Journal of Theoretical Biology 165, 503–522.

Wade, M. J., Harmand, J., Benyahia, B., Bouchez, T., Chaillou, S., Cloez, B., Godon, J. J.,
Boudjemaa, B. M., Rapaport, A., Sari, T., Arditi, R., Lobry, C., 2016. Perspectives in
mathematical modelling for microbial ecology. Ecological Modelling 321, 64–74.

Walker, A. W., Duncan, S. H., Louis, P., Flint, H. J., 2014. Phylogeny, culturing, and
metagenomics of the human gut microbiota. Trends Microbiol 22, 267–274.

Walter, E., Pronzato, L., 1997. Identification of Parametric Models from Experimental
Data. Springer, London.

Weimer, P. J., 2015. Redundancy, resilience, and host specificity of the ruminal microbiota:
implications for engineering improved ruminal fermentations. Frontiers in Microbiology
6.

Weimer, P. J., Russell, J. B., Muck, R. E., 2009. Lessons from the cow: What the ruminant
animal can teach us about consolidated bioprocessing of cellulosic biomass. Bioresource
technology 100 (21), 5323–5331.



108 BIBLIOGRAPHY

Widder, S., Allen, R. J., Pfeiffer, T., Curtis, T. P., Wiuf, C., Sloan, W. T., Cordero, O. X.,
Brown, S. P., Momeni, B., Shou, W., Kettle, H., Flint, H. J., Haas, A. F., Laroche, B.,
Kreft, J. U., Rainey, P. B., Freilich, S., Schuster, S., Milferstedt, K., Van Der Meer, J. R.,
Grobkopf, T., Huisman, J., Free, A., Picioreanu, C., Quince, C., Klapper, I., Labarthe, S.,
Smets, B. F., Wang, H., Soyer, O. S., 2016. Challenges in microbial ecology: Building
predictive understanding of community function and dynamics. ISME Journal 10 (11),
2557–2568.

Woolston, C., 2016. Psychology: Faking it. Nature 529, 555–557.

Xiao, L., Estellé, J., Kiilerich, P., Ramayo-Caldas, Y., Xia, Z., Feng, Q., Liang, S., Pedersen,
A. y., Kjeldsen, N. J., Liu, C., Maguin, E., Dor., Pons, N., Le Chatelier, E., Prifti, E., Li,
J., Jia, H., Liu, X., Xu, X., Ehrlich, S. D., Madsen, L., Kristiansen, K., Rogel-Gaillard,
C., Wang, J., 2016. A reference gene catalogue of the pig gut microbiome. Nature
microbiology 19, 16161.

Yañez-Ruiz, D. R., Abecia, L., Newbold, C. J., 2015. Manipulating rumen microbiome and
fermentation through interventions during early life: a review. Frontiers in Microbiology
6, 1133.

Zengler, K., Palsson, B. O., 2012. A road map for the development of community systems
(CoSy) biology. Nature Reviews Microbiology 10, 366–372.

Zoetendal, E. G., Rajilic-Stojanovic, M., de Vos, W. M., Nov. 2008. High-throughput
diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57,
1605–1615.


	Pre-text
	Acknowledgments
	Part I — Parcours
	1 Parcours & Curriculum Vitæ
	1.1 Bio
	1.2 Education
	1.3 Research experience
	1.4 Teaching experience
	1.5 Supervision
	1.6 Responsibilities for the collectivity
	1.7 Projects
	1.8 Publications


	Part II — The bedrock: introductory concepts and PhD thesis
	2 Introduction and mathematical tools
	2.1 The construction of mathematical models M()
	2.2 Parameter identification and optimal experiment design
	2.3 System optimization
	2.4 Outline

	3 Anaerobic digestion by the human gut microbiota
	3.1 IDEAS: a parameter identification toolbox with symbolic analysis of uncertainty and its application to biological modelling. Muñoz-Tamayo, R., Laroche, B., Leclerc, M., and Walter, E. (2009) In: Proc. 15th IFAC Symposium on System Identification, Saint-Malo, France. 1271-1276.
	3.2 Modelling and identification of in vitro homoacetogenesis by human-colon bacteria. Muñoz-Tamayo, R., Laroche, B., Leclerc, M., and Walter, E. (2008). In: Proc. 16th IEEE Mediterranean Conference on Control and Automation, Ajaccio, France. 1717–1722.
	3.3 Kinetic modelling of lactate utilization and butyrate production by key human colonic bacterial species. Muñoz-Tamayo, R., Laroche, B., Walter, E., Dore, J., Duncan, S.H., Flint, H.J., and Leclerc, M. (2011). FEMS Microbiology Ecology 76, 615-624.
	3.4 Mathematical modelling of carbohydrate degradation by human colonic microbiota. Muñoz-Tamayo, R., Laroche, B., Walter, E., Dore, J., and Leclerc, M. (2010). Journal of Theoretical Biology. 266, 189-201.


	Part III — Synthesis of research activities
	4 Detailing -casein degradation by lactic acid bacteria
	4.1 Hydrolysis of beta-casein by the cell-envelope-located P-I-type protease of Lactococcus lactis: A modelling approach. Muñoz-Tamayo, R., de Groot, J., Bakx, E., Wierenga, P.A., Gruppen, H., Zwietering, M.H., and Sijtsma, L. (2011). International Dairy Journal 21, 755-762.
	4.2 Modeling peptide formation during the hydrolysis of beta-casein by Lactococcus lactis. Muñoz-Tamayo, R., de Groot, J., Wierenga, P.A., Gruppen, H., Zwietering, M.H., and Sijtsma, L. (2012). Process Biochemistry 47, 83-93.

	5 Modelling microalgae metabolism
	5.1 Optimizing microalgal production in raceway systems. Muñoz-Tamayo, R., Mairet, F., and Bernard, O. (2013). Optimizing microalgal production in raceway systems. Biotechnology Progress 29, 543-552.
	5.2 Getting the most out of it: Optimal experiments for parameter estimation of microalgae growth models. Muñoz-Tamayo, R., Martinon, P., Bougaran, G., Mairet, F., and Bernard, O. (2014). Journal of Process Control 24(6), 991-1001.
	5.3 DRUM: a new framework for metabolic modeling under non-balanced growth. Application to the carbon Metabolism of unicellular microalgae. Baroukh, C., Muñoz-Tamayo, R., Steyer, J.P., and Bernard, O. (2014). PLoS One 9(8), e104499.

	6 Optimization of biofuel production by oleaginous yeast
	6.1 Modeling and optimization of lipid accumulation by Yarrowia lipolytica from glucose under nitrogen depletion conditions. Robles-Rodríguez, C. E., Muñoz-Tamayo, R., Bideaux, C., Gorret, N., Guillouet, S. E., Molina-Jouve, C., Roux, G. and Aceves-Lara, C. A. (2018). Biotechnology and Bioengineering 115, 1137-1151.


	Part IV — Current & future research 
	7 Insights on rumen fermentation dynamics
	7.1 Mechanistic modelling of in vitro fermentation by rumen microbiota. Muñoz-Tamayo, R., Giger-Reverdin, S., and Sauvant, D. (2016). Animal Feed Science and Technology 220, 1-21.
	7.2 Hydrogenotrophic methanogens of the mammalian gut: functionally similar, thermodynamically different. A modelling approach. Muñoz-Tamayo, R., Popova, M., Tillier, M., Morgavi, D. P., Graviou, D., Morel, J. P., Fonty, G., Morel-Desrosiers, N. (2018). BioRxiv.   
	7.3 A parsimonious software sensor for estimating the individual dynamic pattern of methane emissions from cattle. Muñoz-Tamayo, R., Ramírez Agudelo, J. F., Dewhurst, R.J., Miller, G., Vernon, T., and Kettle, H. (2019). Animal 13, 1180-1187.

	8 Quantifying animal robustness
	8.1 Towards the quantitative characterization of piglets robustness to weaning: A modelling approach. (2019). Revilla, M.,Friggens, N. C., Broudiscou, L. P., Lemonnier, G., Blanc, F., Ravon, L., Mercat, M. J., Billon, Y., Rogel-Gaillard, C., Le Floch, N., Estellé, J., Muñoz-Tamayo, R. Animal.

	9 Tools for modelling construction
	9.1 To be or not to be an identifiable model. Is this a relevant question in animal science modelling? Muñoz-Tamayo, R., Puillet, L., Daniel, J. B., Sauvant, D., Martin, O., Taghipoor, M., Blavy, P. (2018). Animal 12, 701-712. 
	9.2 On parameter interpretability of phenomenological-based semiphysical models in biology. Lema-Perez, L., Muñoz-Tamayo, R., Garcia-Tirado, J., Alvarez, H. (2019). Informatics in Medicine Unlocked 15, 100158.

	10 A modelling DRE@M
	10.1 Improving understanding of rumen microbial dynamics
	10.2 Integrating the rumen microbiota and the animal host


	Part V — A word about Science and conclusions
	11 A brief tribute to slowness in Science
	12 Concluding remarks

	Part VI — Bibliography
	Bibliography


