
HAL Id: tel-02183170
https://theses.hal.science/tel-02183170

Submitted on 15 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the design of event- and self-triggered controllers for
certain classes of dynamical systems

Fairouz Zobiri

To cite this version:
Fairouz Zobiri. On the design of event- and self-triggered controllers for certain classes of dynam-
ical systems. Numerical Analysis [math.NA]. Université Grenoble Alpes, 2019. English. �NNT :
2019GREAM009�. �tel-02183170�

https://theses.hal.science/tel-02183170
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA
COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES
Spécialité : Mathématiques Appliquées
Arrêté ministériel : 25 mai 2016

Présentée par

Fairouz ZOBIRI

Thèse dirigée par Brigitte BIDEGARAY-FESQUET , CR, CNRS
et codirigée par Nacim MESLEM

préparée au sein du Laboratoire Laboratoire Jean Kuntzmann
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Conception de contrôleurs événementiels
pour certaines classes de systèmes
dynamiques

On the design of event- and self-triggered
controllers for certain classes of dynamical
systems

Thèse soutenue publiquement le 15 février 2019,
devant le jury composé de :

Madame BRIGITTE BIDEGARAY-FESQUET
CHARGE DE RECHERCHE, CNRS DELEGATION ALPES, Directeur de
thèse
Monsieur NACIM MESLEM
MAITRE DE CONFERENCES, GRENOBLE INP, Examinateur
Monsieur MOHAMED DJEMAI
PROFESSEUR, UNIVERSITE DE VALENCIENNES - UVHC,
Examinateur
Monsieur NICOLAS MARCHAND
DIRECTEUR DE RECHERCHE, CNRS DELEGATION ALPES, Président
Monsieur CHRISTOPHE PRIEUR
DIRECTEUR DE RECHERCHE, CNRS DELEGATION ALPES,
Examinateur
Monsieur LIONEL ROSIER
PROFESSEUR, MINES PARISTECH, Rapporteur
Monsieur ALEXANDRE SEURET
DIRECTEUR DE RECHERCHE, CNRS DELEGATION OCCITANIE
OUEST, Rapporteur
Madame FATIHA ALABAU
PROFESSEUR, UNIVERSITE DE LORRAINE, Examinateur

Acknowledgment

Because no thesis is an individual effort, and because what remains at the
end of every journey is the memory of the people who cross one’s path, I
would like to thank all those who contributed to this achievement.

I would like to thank my supervisors, Brigitte Bidégaray-Fesquet and
Nacim Meslem, first for entrusting me with this research topic, and for their
help and support throughout the time we have spent together. Thank you
for believing in me even when I doubted myself.

I would also like to thank Alexandre Seuret and Lionel Rosier for agree-
ing to review my work, and all the members of the jury, for their insightful
remarks, challenging questions and precious advice.

Even if I can never thank them enough, I would like to thank my parents,
my brother and all the other members of my family, including those who have
left us, for their unconditional love. For there is no joy they cannot magnify,
no pain they cannot quell and and no situation they cannot draw laughter
from.

I would also like to thank all the personnel of the Laboratoire Jean Kuntz-
mann and Gipsa-lab for their assistance, the administrative staff, the IT
teams, the PhD students, the teachers. Thank you for making life easier for
me on a daily basis.

Finally, thank you to my wonderful friends, those I left, those I found and
those who found me, and to my amazing office mates for offering me help
and support before I even asked. Life would be tasteless without all of you.

Contents

Abstract 9

Résumé 10

Introduction 12

Introduction (français) 21

1 Event-Triggered Stabilizing Controller for Linear Systems 27
1.1 Introduction . 28
1.2 Problem Definition . 29

1.2.1 System Description . 29
1.2.2 Event-Triggered Control Law 29
1.2.3 Lyapunov Stability . 31
1.2.4 Event-Triggering Conditions 31

1.3 Event-Triggering Conditions 33
1.3.1 Triggering Conditions in the Transient Region 34
1.3.2 Steady-State Triggering Conditions 37
1.3.3 Defining Tlim . 38
1.3.4 Minimum Inter-sample Time 38

1.4 Simulation Results . 42
1.4.1 SISO System . 42
1.4.2 MIMO Systems . 47
1.4.3 Comments on Using Dual Conditions 50

1.5 Comparison with Other Methods 52
1.5.1 The ISS Method . 53
1.5.2 The CLF method . 54
1.5.3 The Reachability Method 55

1.6 Conclusion . 56

3

CONTENTS

2 Event-Triggered Stabilizing Controllers of Switched Linear
Systems 57
2.1 Introduction . 57
2.2 Overview of Switched Linear Systems 59
2.3 Stability of Switched Linear Systems 60
2.4 Problem Definition . 61
2.5 Event-triggered Control Algorithm 62

2.5.1 Algorithm Description 62
2.5.2 Stability Results . 64
2.5.3 Minimum Inter-Event Time 65

2.6 Numerical Example . 71
2.6.1 Time-Dependent Switching 71
2.6.2 Event-Based Switching 73
2.6.3 State-Dependent Switching 74

2.7 Conclusion . 77

3 Event-Triggered Reference Tracking for Linear Systems 79
3.1 Introduction . 79
3.2 Problem Statement . 81

3.2.1 System Description . 81
3.2.2 Reference System . 82

3.3 Event-Triggering Conditions 83
3.3.1 Defining the Event-Triggering Conditions 83
3.3.2 Practical Stability Results 85
3.3.3 Minimum Inter-Event Time 86

3.4 Simulation Results . 88
3.4.1 Yaw damper example 88

3.5 Effects of the Parameter ε . 92
3.5.1 Discrete-Time Implementation 93
3.5.2 Solutions in Discrete Time 96

3.6 Conclusion . 99

4 Event-Triggered Nonlinear Controller 100
4.1 Introduction . 100
4.2 Overview of Contraction Analysis 101

4.2.1 Basic Principles . 101
4.2.2 Coordinate Transformation and Control 103

4.3 Event-triggered Algorithm . 106
4.3.1 Algorithm Description 106
4.3.2 Stability Results . 107

4.4 Numerical Simulation . 107

4

CONTENTS

4.5 Existence of Θ . 109
4.6 Conclusion . 111

5 Self-Triggered Stabilizing Controller for Linear Systems 113
5.1 Introduction . 113
5.2 Event-Triggered Algorithm . 115
5.3 Self-Triggered Algorithm . 116

5.3.1 Minimization Stage . 119
5.3.2 Root-Finding Stage . 123
5.3.3 Summary of the Self-Triggered Algorithm 127

5.4 Numerical Simulation . 128
5.4.1 A First Example . 128
5.4.2 Example of the Case ρk > tk+1 130
5.4.3 One-Dimensional Case 132

5.5 Conclusion . 133

General Conclusion 135

Bibliography 140

5

List of Figures

1 Block diagram of the event-triggered control process. 17

1.1 Behavior of the pseudo-Lyapunov function. 32
1.2 Behavior of the Lyapunov-like function in transient and steady

state regions. 33
1.3 Derivative of the PLF in the interval [tk, tk+1). 41
1.4 Time evolution of the states of the event-based system. 43
1.5 The piecewise constant event-based control law. 44
1.6 Time evolution of the Lyapunov-like function along with the

exponentially decaying upper threshold function. 45
1.7 Time distribution of the events in transient and steady-state

regions. 45
1.8 The variation of the number of events with respect to the

settling time. 47
1.9 Time evolution of the response, the yaw rate y1 and the bank

angle y2. 49
1.10 The two control inputs, rudder (u1) and aileron (u2) deflections. 49
1.11 Time evolution of the pseudo-Lyapunov function and the ex-

ponential threshold. 50
1.12 Distribution of the events in transient and steady-state regions. 50
1.13 Comparing the condition Ctt with Css for the SISO and MIMO

systems. 51
1.14 Comparing the response of the SISO system using our method

and the ISS method . 54
1.15 Time evolution of the states with the CLF method. 55
1.16 Time evolution of the states with the reachability method. . . 56

2.1 The Lyapunov-like function V (x(t)) in blue and the upper
threshold in red. 63

2.2 The two positions of the PLF during a jump due to switching. 68
2.3 Illustration of the existence of an inter-event time when V (x(tk)) <

W (T)/2. 69

6

FIGURES

2.4 The switching sequence. 72
2.5 The time evolution of the states of the switched system. . . . 72
2.6 The event-based control signal. 73
2.7 The Lyapunov function (in blue) and the exponential thresh-

old (in red). 73
2.8 The events due to intersections (in blue) and to jumps (in red). 73
2.9 Simulation results for state-dependent switching. 75
2.10 State-dependent and hysteresis switching. 76
2.11 Simulation results for state-dependent switching. 77

3.1 Schematic of the proposed event-based tracking controller. . . 83
3.2 Evolution of the Lyapunov function with constant threshold. . 85
3.3 Time evolution of the two output signals with their respective

reference signals. 89
3.4 Outputs of the reference system 90
3.5 The event-based control signals. 90
3.6 Time evolution of the pseudo-Lyapunov function. 91
3.7 Zoom on the PLF at t = 15 s. 92
3.8 The response of the event-based system for ε = 0.5. 93
3.9 The response of the event-based system for ε = 0.05. 93
3.10 The PLF of the SISO system. 94
3.11 Lifting the threshold at t = 0.0718 s. 96
3.12 Behavior of the SISO system when modifying xr. 98

4.1 Simulation results for nonlinear stabilization. 110

5.1 Shape of the PLF for different choices of α. 117
5.2 Z(t), the difference between W (t) and V (x(t)) in two sampling

intervals where ρk ≤ tk+1. 118
5.3 Backtracking Line search [61] 123
5.4 Locating the root inside an interval. 126
5.5 Simulation results of self-triggered control. 130
5.6 Simulation of the SISO system where t1 < ρ0. 131
5.7 Simulation of the SISO system where ρ0 < t1. 132
5.8 The PLF and threshold with the predicted values of ρ0 and ρ1. 133

7

List of Tables

3.1 Number of updates of the control signal for different values of
ε and δ . 93

5.1 The first 6 events . 131

8

Abstract

Event-triggered control offers a promising alternative to the classical,
resource-consuming, periodic control. It suggests to replace the periodic,
high frequency sampling used in the continuous-to-discrete transformations
of control signals with aperiodic sampling. A new value of the event-triggered
control law is computed only when the system’s response is unsatisfactory.
The control value is kept constant otherwise. In this thesis, we explore
ways to induce fewer updates, and to have longer intervals between two
samples. We also seek to make the algorithms that we design more detailed,
by describing how to choose or compute the optimal parameters.

In the linear case, we present a stabilizing algorithm in which we re-
lax the stability conditions on the system’s Lyapunov function to produce
fewer, sparser updates of the control law. Stability is ensured by maintaining
the Lyapunov function below a certain decreasing threshold. The optimal
threshold function is derived by solving a maximum generalized eigenvalue
problem. This approach is then extended to switched linear systems. We
also present a self-triggered version of this algorithm using Newton methods
for optimization and root-finding. The reference tracking problem is treated
in the event-triggered control framework as well. Finally, in the nonlinear
case, due to the difficulty of finding a Lyapunov function, we explore the
use of contraction analysis. This approach allows us to describe the nonlin-
ear event-triggered control algorithm more thoroughly than if we had used
Lyapunov techniques.

Résumé

La commande événementielle est une nouvelle alternative à la commande
périodique classique jugée peu économe en ressources. Dans la commande
événementielle, l’échantillonnage périodique à haute fréquence effectué lors
du passage d’un temps continu à un temps discret, est remplacé par un
échantillonnage apériodique. Dans cette approche, une nouvelle valeur de la
loi de commande n’est calculée que lorsque la réponse du système enfreint
des mesures de performances prédéfinies. Dans le cas contraire, la loi de
commande est maintenue constante. Dans cette thèse, nous explorons des
méthodes qui permettent de générer moins de mises à jour de la commande,
et d’obtenir des intervalles plus longs entre deux échantillons. Nous nous ef-
forçons aussi de concevoir des algorithmes plus détaillés, avec des procédures
précises pour le calcul et le choix des paramètres.

Dans le cas des systèmes linéaires, nous présentons un algorithme de
commande événementielle dans lequel nous relaxons les conditions de sta-
bilité qui gouvernent la fonction de Lyapunov d’un système, afin de mettre à
jour la commande moins souvent. La stabilité est garantie en maintenant la
fonction de Lyapunov en dessous d’une borne supérieure décroissante. Nous
définissons la borne supérieure optimale par la solution d’un problème de
valeur propre maximale généralisée. Cette méthode est ensuite étendue aux
systèmes linéaires à commutation. Nous présentons également une version
self-triggered, ou auto-déclenchée, de cette méthode, dans laquelle le temps
de mise à jour est prédit à l’avance à travers une combinaison d’algorithmes
d’optimisation et de recherche de zéros. Nous traitons également le problème
de suivi de trajectoire par commande événementielle.

Dans le cas des systèmes non-linéaires, en raison de la difficulté de trouver
une fonction de Lyapunov, nous utilisons une autre définition de la stabilité,
l’analyse de contraction. Cette approche nous permet de décrire un algo-
rithme de commande événementielle avec plus de détails que si nous avions
utilisé la méthode de Lyapunov.

List of Symbols and
Abbreviations

N set of positive integers
R set of real numbers
R∗ set of non-zero real numbers
R+ set of positive real numbers
R− set of negative real numbers
Rn n-dimensional vector space over the field of real numbers
Rn×m set of n×m real matrices
0n zero vector in Rn

0n×n zero matrix in Rn×n

MT transpose of matrix M
M−1 inverse of matrix M
| . | the absolute value of a real scalar
‖ . ‖ both the Euclidean vector norm and the equivalent ma-

trix norm
λmin(N) minimum eigenvalue of the positive definite matrix N
λmax(N) maximum eigenvalue of the positive definite matrix N
λmax(M,N)maximum generalized eigenvalue of the pair (M,N)

where N is a positive definite matrix
Lk kth generalized Lie derivative
∇tf gradient of function f with respect to variable t
∇2

tf Hessian of function f with respect to t
PLF Pseudo-Lyapunov Function
LTI Linear Time-Invariant
LMI Linear Matrix Inequality
SISO Single Input Single Output
MIMO Multiple Input Multiple Output
ISS Input-to-State Stable
CLF Control Lyapunov Function
CQLF Common Quadratic Lyapunov Function
LQR Linear Quadratic Regulator

Introduction

Optimizing the performance of control systems has been the topic of several
research efforts throughout the history of the discipline. Researchers have
always sought ways to improve the control task to take into account several
aspects of the engineering design. Therefore, control tasks have been op-
timized to reduce energy consumption or financial costs, to meet actuator
constraints, to speed up the convergence to a desired behavior or to follow
an optimal trajectory.

However, one aspect of the control design that remained unchanged for
quite some time is the way a control law is transformed from a continuous-
time signal to discrete form in order to be eventually implemented on a
digital platform. This transformation is often necessary, as one of the most
widespread methods of control design is emulation. In emulation, the control
law is first designed in continuous-time to meet a set of stability requirements
and performance criteria. Then, the continuous-time control is transformed
into a digital signal by first going through the process of sampling. The
continuous-time signal is discretized at a fixed, and generally high, frequency.
The final result is a discrete-time signal with a large number of samples evenly
distributed in time.

Sampling at a high frequency is necessary to ensure a faithful represen-
tation that captures all the important features of the original continuous-
time signal. Additionally, the selected sampling frequency has to satisfy the
Shannon-Nyquist theorem, which states that the sampling frequency of a
given signal has to be higher than twice the largest frequency present in the
signal. If not, we run the risk of creating an aliasing problem. Aliasing occurs
when a series of samples can represent more than one signal. These signals
are called aliases of the original signal. To meet these requirements, we need
to sample at high frequency even at times when a signal is not undergoing
much change.

12

INTRODUCTION

So the question that arises naturally is whether the sampling rate is a
parameter that can be optimized as well. An optimal sampling would take
into account the control needs of the system, and induce fast sampling in
times of high demand, and slower sampling when the system does not need
much attention. Inspired from Lebesgue sampling, asynchronous sampling
appeared in signal processing as an amplitude-based sampling instead of a
time-based sampling. In its control theory counterpart, event-triggered con-
trol, the control law is only updated when the system infringes predefined
requirements imposed on it. Otherwise, the control is kept constant.

If we no longer need to recompute the control law so frequently, we can
manage to reduce our energy consumption by being less solicitous of the CPU
and the actuators. The CPU could also make use of the free time to turn
its attention to the other tasks in the network. Additionally, if the system
does not need a new control value to be sent with every ticking of the clock,
then less data will have to travel through the network, avoiding the conges-
tion of the communication channels and eliminating the risk of fatal packet
losses. In some forms of event-triggered control, it is the sensors that are
less solicited, thus decreasing the risk of wearing out these expensive pieces
of equipment.

In fact, it is even possible to go one step further and design self-triggered
control methods. In self-triggered control, the event-triggering conditions do
not need to be monitored continuously. Instead, we use the system model to
predict the time at which its response will breach the performance measures.
The time of the next event is then determined in advance and no computa-
tions are required in between two updates of the control law. The sampling
instants can be determined either offline where the entire sampling pattern
is predicted over some time horizon. Or online, and in this case, at each
update of the control, only the next update instant is computed.

Self-triggered control has been introduced to solve some of the issues en-
countered in event-triggered control. Having to check the event-triggering
conditions at all instants can be computationally demanding, depending on
the complexity of the conditions. It can also be demanding in terms of
hardware, as extra equipment is sometimes necessary to monitor the event-
triggering conditions. Consequently, self-triggered control can alleviate the
demand on the software and the hardware. It can also further reduce the
communications, as the output does not have to be measured all the time to
evaluate the performance.

13

INTRODUCTION

The benefits reaped from a reduction of the sampling rate cover a large
array of applications. The most obvious example is the case of networked con-
trol systems where the different components of a control system (controller,
plant, sensors, ...) exchange data through communication channels, that are
also often wireless and shared among several other activities. A reduction of
the sampling rate relieves the load on the communication channels, and frees
them for the more urgent tasks. We can also mention the case of embedded
systems, where resources are quite limited, and where every saved memory
byte counts and every unit of energy matters. There is also the example of
systems with actuators with a strong inertia where a frequent change in the
control value can be energy consuming and damaging to the actuators.

In this thesis, we focus on the problem of reducing the communications
between the controller and the plant. Such a reduction is achieved either
by increasing the time span between two updates of the control law, or by
reducing the number of updates, or both. To reach this goal, we build the
event-triggering conditions around Lyapunov functions, and we relax the sta-
bility requirements that the system has to respect. We use this approach both
for stabilizing and for reference tracking of linear time-invariant systems. In
the case of nonlinear systems, since finding a Lyapunov function can be chal-
lenging, we build the event-triggering conditions using a different concept of
stability called contraction analysis. With these approaches, we show that we
can obtain fewer updates of the control law during a system’s operation time.

But first, in this chapter, we introduce the terminology related to event-
triggered control, we give some of the alternate terms found in the literature
and establish the ones that will recur throughout this manuscript. We also
present a brief history and non exhaustive literature review of the topic. Fi-
nally, we describe the layout of the rest of the manuscript.

Terminology

We call event-triggered control the strategy of organizing the control task
where the value of the control is recomputed only when a set of predefined
stability or performance criteria is violated. Otherwise, when the system’s
behavior is satisfactory, a zero-order hold (ZOH) maintains the value of the
control law constant. This type of control has appeared in the literature un-
der the designations of aperiodic, asynchronous, event-based or event-driven
control. Lately, however, the control community seems to have a preference

14

INTRODUCTION

for the term event-triggered control, and to largely settle for it. In this work,
we also prefer this designation, even though event-based control can appear
in some rare instances.

Conversely, classical control, or occasionally periodic control, is the name
we give to the type of control where the control law is discretized at a fixed
rate. The sampling frequency should satisfy the Shannon-Nyquist theorem.
Moreover, it is common practice in control to demand even faster sampling,
where the sampling frequency of a linear control law is chosen in a range
going from six to twenty-five times the highest frequency. In the case of
nonlinear control, however, no general condition on the sampling frequency
exists, making it difficult to choose one. This type of control has been privi-
leged for a long time because a strong and complete theory exists to support
it, and because it can easily be transferred to the frequency domain via the z-
transform. But as explained earlier, this method is very wasteful of resources.

Self-triggered control is sometimes viewed as a sub-category of event-
triggered control, when considered by opposition to time-triggered control.
However, self-triggered control refers to the type of control where the time at
which an event will occur is determined in advance. In self-triggered control,
we still determine a set of performance requirements, but we do not check if
they are violated all the time, but instead predict these violations using the
system’s model and available measurements.

The stability and performance criteria mentioned before are referred to as
the event-triggering conditions. These conditions are related to the behavior
of the system. They can be built around the state, the output of the system
or the control law itself. They can encompass stability criteria, errors with
respect to set-points, or other design specifications. The events can be tied to
other criteria as well, not directly related to the behavior of the system, such
as a maximum time elapsed since the previous event, or a user-programmed
event such as the mode changes of a switched system.

We also want to emphasize the separation between an event and the time
at which an event occurs. An event is defined as the act of violating the
stability or performance criteria, and the event-triggering conditions becom-
ing true. The time at which an event is detected is referred to, most of
the time, as the update instant, as it is the time instant at which the value
of the control law is recomputed and updated. It can also be referred to
as the sampling instant, because if we look at it from an emulation point
of view, the control law is first designed in continuous-time and in closed

15

INTRODUCTION

form (e.g. u(t) = −Kx(t)), then we choose to evaluate it, or sample it, only
when an event occurs. The sampling instants are denoted by tk, where k ∈ N.

The inter-event time is the time lapse between two consecutive events.
The validity of any event-triggered control strategy depends on the existence
of a minimum inter-event time. If no such time interval can be proven to
exist, we run the risk of creating Zeno behavior. The Zeno phenomenon oc-
curs when an infinite number of events takes place in a finite interval of time.
Most applications nowadays run on digital platforms with internal clocks,
thus, consecutive updates of the control law are separated by one period of
the clock signal, at least. Therefore, there is no real danger of creating Zeno
behavior. However, with an event-triggered control strategy we are inter-
ested in longer inter-event times than the machine sampling time, and we
still need to establish the existence of a minimum inter-event time.

Finally, the event generator designates the block, hardware or software,
responsible for monitoring the event-triggering conditions and issuing the or-
der to update the control when necessary. Even if we make few mentions of
the event generator, it should be implicitly understood that event-triggering
control requires this extra block. We also suppose that whether it is the
state or the output, the quantity used in the event-triggering conditions is
always available, either measured or observed, and sent to the event gen-
erator. Therefore, since we want to reduce the load on the communication
channels, the event generator should be implemented in direct contact with
the sensors or observers.

Figure 1 shows the different blocks of an event-triggered control mecha-
nism. The diagram illustrates how the response is first read by the sensors,
which communicate directly with an event generator. The response can des-
ignate the state or output, or any other value that quantifies the behavior
of the system. At every time instant (or in practice according to a clock
signal), the event generator uses the value of the response to evaluate the
event-triggering conditions. If the event-triggering conditions turn true, the
event generator gives an order to send the current value of the response, and
any other necessary variable, to the controller that computes a new control
value. If there is a set-point to track, it is sent to the controller too. In
Figure 1, the full lines represent signals read and transmitted continuously,
while the dashed lines represent signals transmitted only when an event oc-
curs. The new value of the control is then sent to the plant. The new control
is also stored (the new control becomes the current control in the diagram)
and will be held constant as long as the event generator does not issue the

16

INTRODUCTION

set-point

mux

response
response plant

sensor

event generator

current control

new control

Figure 1: Block diagram of the event-triggered control process.

order to update it.

Brief History and Literature Review

Even though the realization that periodic sampling might not be the most
efficient form of sampling came upon the signal processing community in the
60’s and 70’s, the control community stood by the classical digital control
longer. Apart from brief mentions, as in [1] and [2] in 1959 and 1960, re-
spectively, the name aperiodic control remained discreet. For a long time,
this type of control was restrained to inherently aperiodic controllers, such
as ON-OFF controllers [3].

More recently, the year 1999 saw the publication of three pioneering works
in event-triggered control. First, inspired by Lebesgue integrals, the au-
thors of [3] compare the conventional Riemann sampling with the event-based
Lebesgue sampling, and conclude on the worthiness of event-based sampling
for control purposes. In [4], the presence of low resolution encoders while
experimenting with motor synchronization, forces the authors to successfully
consider asynchronous control. Almost concurrently, the author of [5] devel-
oped and tested an event-based PID controller, managing to achieve large
reductions of CPU utilization.

In addition to [5], the years 2000 saw the emergence of a large event-
triggered control community, and a myriad of works that span a wide range

17

INTRODUCTION

of control applications. In [6], event-triggered control is applied to systems
in their state-space representation, and the event-triggered control problem
is formulated as an input-to-state stability problem. The presence of distur-
bances is dealt with in [7] where the control is updated when the disturbance
damages the response beyond a certain level. Since in practice, the event-
triggering conditions are only checked periodically according to a clock signal,
the authors of [8] integrate this periodic nature into the event-triggering con-
ditions.

Event-triggered control then stretched to reach several other disciplines
of control theory. For example, event-triggered methods for H∞ control have
appeared in [9] and [10]. Also, event-triggered model predictive control can
be found in [11], for instance. Event-triggered control found adepts within
the infinite-dimensional control community as well, among which we can
cite [12] and [13]. With time, event-triggered control has also evolved to be-
come a control design method on its own with the development of co-design
methods. In this form of control, the control law and the event-triggering
conditions are designed simultaneously, generally by solving a system of lin-
ear matrix inequalities. Among the works that describe these methods, we
can mention [14], [15], and [16].

As to self-triggered control, the difficulty to predict the behavior of a
dynamic system resulted in the lack of a complete theory. In most cases,
the next execution times can only be stated implicitly. Besides, this task is
made even more difficult in the presence of unknown disturbances. For these
reasons, in most works, the next sampling instant is found by approximation
or through optimization. Among the works on self-triggered control, we can
cite [17] and [18].

For the event-triggered techniques designed for linear systems, we get
the inspiration from [19]. In [19], the event-triggering conditions consist
in comparing the system’s behavior to the behavior of auxiliary systems,
by comparing the evolution of their respective Lyapunov functions. In this
thesis, in the case of linear systems, the auxiliary systems are replaced by
an exponentially decreasing scalar threshold function. A similar idea can be
found in [20], but the difference is that we introduce a way to determine
the optimal parameters of threshold function. We also give a self-triggered
version of this method and an extension to switched systems.

18

INTRODUCTION

Objectives

The main objective of this work is to develop new event-triggered control
methods for large classes (linear, nonlinear, switched) of systems that aim
at reducing the number of communications between the CPU and the plant.
To reach this objective, we have to develop event-triggering conditions that
relax some of constraints on system performance. Such flexibility decreases
the number of updates of the control law, and creates large inter-event inter-
vals.

The second objective is to describe the algorithms with as many details
as possible. We want to give algorithms that are easy to use, with procedures
to find optimal decay rates for the exponential threshold that we use, Lya-
punov matrices for the Lyapunov-like functions, common Lyapunov functions
for switched systems, procedures to identify contraction regions for nonlinear
systems and detailed optimization algorithms for self-triggered control.

Organization of the Manuscript

This manuscript is divided into five chapters. The first four chapters deal
with event-triggered control for stabilization and reference tracking of linear
systems, and stabilization of switched and nonlinear systems. The fifth and
last chapter introduces a self-triggered stabilizing control algorithm for linear
systems. A brief description of the chapters is given below.

• Chapter 1 : In this chapter, we present an event-triggered stabi-
lizing control algorithm. The system performance is quantified by a
Lyapunov-like function. At every time instant, the event-generator
checks the evolution of this function. The event generator sends the
order to update the control law if it reaches an exponentially decreasing
threshold function. We formulate the problem of finding the Lyapunov-
like function and the optimal parameters for the threshold function as
a single optimization problem. The chapter ends with a comparison
between this method and other event-triggered control methods found
in the literature.

• Chapter 2 : The event-triggered control algorithm introduced in the
first chapter is extended to the stabilization of switched linear systems.
A switched system is composed of several subsystems, each subsystem
gets activated according to a switching rule. The switching can be

19

INTRODUCTION

time-based or state-based or both. The problem of finding a Lyapunov
function common to all the subsystems and the optimal threshold func-
tion parameters is again formulated as a unique optimization problem.

• Chapter 3 : In control, we also need to be able to drive the output
of a system to track a reference trajectory. We transform the tracking
problem into a stabilization problem in the event-triggered control al-
gorithm. We first select a reference system that produces the reference
trajectory. Then, the difference between the trajectory of the event-
triggered system and the reference trajectory is forced to tend to zero.
This formulation is equivalent to expressing a stability problem on the
error between the two trajectories. The pseudo-Lyapunov function as-
sociated with this error is compared, at all instants, to a constant upper
threshold. An event is generated when the function exceeds this upper
limit.

• Chapter 4 : In this chapter, we describe an event-triggered control
algorithm for the stabilization of nonlinear systems. We rely on a differ-
ent approach to stability known as contraction analysis. In this form of
stability, all the trajectories of a system are made to converge towards
a reference trajectory, by making the virtual displacement between any
given trajectory and the reference trajectory tend to zero. The region
of the state-space where this is realized is called a contraction region.
Thus, the event generator issues the order to update the control when
the system’s trajectory leaves the contraction region.

• Chapter 5 : In this chapter, a self-triggered version of the event-
triggered control algorithm of the first chapter is developed. This means
that we try to predict the times at which the Lyapunov-like function
meets the threshold function. We notice that the pseudo-Lyapunov
function goes through a local minimum in every sampling interval, be-
fore reaching the threshold, and therefore, we can use an optimization
algorithm to identify the time at which this minimum is attained. As
this time is closer to the next execution time, it is used as a starting
value in a root-finding algorithm to predict the time at which the next
control update should be carried out.

20

Introduction (français)

L’optimisation des performances des systèmes de contrôle-commande a ou-
vert la voie à plusieurs disciplines sous-jacentes qui visent à améliorer les per-
formances de la commande classique. La recherche dans ces domaines vise
à améliorer les lois de commande pour inclure bien des aspects de la mise
en œuvre finale par l’ingénieur. Pour cette raison, les méthodes de contrôle-
commande actuelles prennent en compte la consommation d’énergie, le coût
de l’implémentation, les limites des actionneurs, la rapidité de la convergence
et le suivi d’une trajectoire optimale.

Cependant, l’un des aspects qui est resté longtemps sans se développer,
est la conversion de loi de commande depuis un signal continu dans le temps,
en un signal discret, afin de transférer la commande vers des plateformes
numériques. Cette conversion est souvent primordiale, les contrôleurs étant
dans la majorité des cas des supports numériques, et l’émulation étant la
méthode de synthèse de lois de commande la plus répandue. L’émulation
consiste à d’abord concevoir la commande en temps continu de sorte à satis-
faire les critères de stabilité et de performance désirés. Ensuite le signal
continu est transformé en signal discret par un procédé d’échantillonnage.
L’échantillonnage se fait à une fréquence constante et généralement élevée.
Le résultat de ce procédé est un signal discret possédant un grand nombre
d’échantillons, uniformément distribués dans le temps.

L’échantillonnage à haute fréquence est nécessaire pour obtenir une repré-
sentation fidèle à l’original, et qui capture toutes les propriétés importantes
du signal en temps continu. De plus, la fréquence d’échantillonnage choisie
doit satisfaire le théorème de Shannon-Nyquist qui stipule que la fréquence
d’échantillonnage d’un signal doit être au moins deux fois plus élevée que
la plus haute fréquence présente dans ce signal. En automatique, cette con-
dition est encore plus contraignante car on requiert d’échantillonner à des
fréquences égales à 6 à 25 fois la plus haute fréquence. Si cette condition n’est
pas satisfaite, un repliement du spectre se produit. Lors d’un repliement du

21

INTRODUCTION (français)

spectre, le signal discret produit peut représenter plusieurs signaux conti-
nus différents et pas uniquement le signal d’origine. De ce fait, nous devons
échantillonner à haute fréquence même lorsque le signal est de nature spo-
radique.

La question qui se pose naturellement dans ce cas est de savoir si la
fréquence d’échantillonnage est un paramètre qui peut être optimisé aussi.
Un échantillonnage optimal prendrait en compte les besoins en contrôle du
système en donnant lieu à un échantillonnage rapide dans les zones de fonc-
tionnement où la demande en contrôle est élevée, mais à un échantillonnage
à basse fréquence quand le système ne requiert pas beaucoup d’attention.
Inspiré de l’échantillonnage de Lebesgue, l’échantillonnage asynchrone est
apparu en traitement du signal comme une forme d’échantillonnage basée
sur l’amplitude et non sur le temps. En contrôle-commande, cette nouvelle
approche a donné naissance à la commande événementielle dans laquelle la
loi de commande n’est recalculée que si le système enfreint des mesures de
performance prédéfinis, et sinon la loi de commande est maintenue constante.

Le fait de ne plus avoir besoin de recalculer la loi de commande aussi
fréquemment nous permet de réduire la consommation d’énergie du système,
en sollicitant de moins en moins le CPU et les actionneurs. Le CPU pour-
rait alors utiliser ce gain de temps libre pour se tourner vers d’autres tâches
du réseau, qui pourraient en avoir plus besoin. De plus, si le système n’a
plus besoin qu’on lui envoie une nouvelle valeur de la loi de commande à
chaque cycle d’horloge, alors moins de données devront être transmises dans
le réseau, évitant ainsi la congestion des canaux de communication, et les
pertes de paquets. Dans d’autres variantes de la commande événementielle,
ce sont les capteurs qui sont moins sollicités, ce qui permet d’éviter d’user
ces composants coûteux.

Récemment, la commande événementielle a connu une nouvelle muta-
tion sous la forme de la commande self-triggered ou auto-déclenchée. Dans
la commande self-triggered, les critères de performance – ou conditions de
garde – du système n’ont plus besoin d’être surveillés constamment, mais le
modèle du système est utilisé pour prédire le temps auquel la réponse du
système va enfreindre ces critères de performance. L’instant de la prochaine
mise à jour est déterminé à l’avance et donc aucun calcul n’est effectué entre
deux temps de mise à jour. Ces instants sont déterminés soit hors ligne, et
alors la séquence de commande est prédite en totalité pour un horizon de
temps défini, soit en ligne, et l’instant suivant est calculé à chaque instant
de mise à jour.

22

INTRODUCTION (français)

La commande self-triggered a été introduite pour résoudre certains prob-
lèmes rencontrés par la commande événementielle. Surveiller les conditions
de garde à tout instant peut être coûteux suivant la complexité des calculs
à effectuer. Il sera nécessaire de recourir à des installations supplémentaires
pour surveiller les conditions de garde. Par conséquent, la commande self-
triggered peut alléger les demandes en calcul et en équipement. Ce type de
commande permet également de réduire les communications entre le contrôleur
et le système, mais aussi entre le système et les capteurs, car si nous n’avons
pas besoin de surveiller la réponse du système, nous n’avons pas besoin de la
mesurer.

Les avantages de la commande événementielle peuvent bénéficier à un
large spectre d’applications. L’exemple le plus évident est le cas des systèmes
déployés en réseau et où les différentes composantes (contrôleur, système,
capteurs, ...) échangent des informations à travers des canaux de communi-
cation à bandes passantes limitées, souvent sans fil et partagés entre plusieurs
activités. Nous pouvons aussi mentionner les systèmes embarqués où les
ressources sont limitées, et où toutes les économies d’énergie ou d’espace de
stockage sont les bienvenues. Il y a aussi les systèmes où les actionneurs
ont une grande inertie. Dans ces systèmes, le changement trop fréquent
de la valeur de la loi de commande entrâıne une importante consommation
d’énergie et comporte le risque d’endommager les équipements.

Dans cette thèse, nous nous concentrons sur la question de comment
réduire les communications entre le contrôleur et le système. Cela passe par la
réduction du nombre de mises à jour de la loi de commande et l’augmentation
du temps écoulé entre deux mises à jour consécutives de la commande. Pour
atteindre ces objectifs, nous construisons les conditions de garde autour des
fonctions de Lyapunov du système, et nous relaxons les critères de stabilité
que ces dernières doivent respecter. Nous utilisons cette approche pour la
stabilisation et le suivi de trajectoire pour les systèmes linéaires à temps
invariant. Dans le cas des systèmes non-linéaires, trouver des fonctions
de Lyapunov peut s’avérer difficile pour certains systèmes, pour cela nous
définissons les conditions de garde en utilisant une forme différente de sta-
bilité, l’analyse de contraction. Avec ces méthodes, nous démontrons que
nous pouvons induire moins de mises à jour de la loi de commande et de plus
grands intervalles de temps entre les événements.

Dans ce qui suit, nous définissons clairement les objectifs de ce travail et
décrivons l’organisation de ce manuscrit.

23

INTRODUCTION (français)

Objectifs

L’objectif de ce travail est de développer de nouvelles stratégies de commande
événementielle qui ont pour but de réduire le nombre de communications en-
tre le CPU et le système. Pour atteindre cet objectif, nous devons formuler
des conditions de mise à jour qui relaxent certains critères de performance
qui peuvent être contraignants, mais qui sont partie intégrante du contrôle-
commande classique. Cette flexibilité de la commande événementielle permet
de moins solliciter le contrôleur.

Le deuxième objectif est de décrire les algorithmes que nous introduisons
avec le plus de détail possible. Nous voulons fournir des algorithmes faciles
à utiliser et qui intègrent de manière fluide comment calculer ou choisir les
paramètres auxquels ils font appel. Nous montrerons comment calculer la
constante de décroissance optimale pour les fonctions seuils que nous util-
isons, les matrices de Lyapunov qui définissent les pseudo-fonctions de Lya-
punov, les fonctions de Lyapunov communes pour les systèmes à commu-
tation. Nous donnons également des procédures pour définir les régions de
contraction d’un système non-linéaire. Nous détaillons également les algo-
rithmes d’optimisation pour la commande self-triggered.

Organisation du manuscrit

Le manuscrit est divisé en cinq chapitres. Les quatre premiers chapitres
traitent de la commande événementielle pour la stabilisation et le suivi de
trajectoire des systèmes linéaires à temps invariant (LTI), et la stabilisation
des systèmes à commutation et des systèmes non-linéaires. Le cinquième et
dernier chapitre introduit un algorithme de commande self-triggered pour
systèmes linéaires. Une brève description des chapitres est donnée dans ce
qui suit.

• Chapitre 1: nous présentons une méthode de commande événementielle
pour stabiliser un système LTI. Les performances du systèmes sont
quantifiées par une pseudo-fonction de Lyapunov. A chaque instant, un
générateur d’événements surveille l’évolution de cette fonction. Lorsque
cette dernière atteint une borne supérieure donnée par une fonction ex-
ponentiellement décroissante, le générateur d’événements donne l’ordre

24

INTRODUCTION (français)

de mettre à jour la loi de commande. Nous formulons les problèmes de
trouver une pseudo-fonction de Lyapunov et de calculer les paramètres
de la borne supérieure en un seul problème d’optimisation. Nous ter-
minons le chapitre par une comparaison avec d’autres méthodes de
commande événementielle.

• Chapitre 2: la stratégie de commande événementielle présentée au
premier chapitre est étendue aux systèmes à commutation. Un système
à commutation est composé de plusieurs sous-systèmes, chaque sous-
système devient actif ou inactif suivant une loi de commutation. Le
problème de trouver une fonction de Lyapunov commune à tous les
sous-systèmes et les paramètres de la fonction seuil est ici aussi présenté
comme un seul problème d’optimisation.

• Chapitre 3: dans cette partie, c’est le problème de suivi de trajectoire
qui est traité. Nous transformons le problème de suivi de trajectoire
en un problème de stabilité. Nous définissons d’abord un système de
référence qui produit la trajectoire souhaitée. Ensuite la différence
entre la trajectoire du système à commande événementielle et celle du
système de référence est contrôlée pour tendre vers zéro. La pseudo-
fonction de Lyapunov associée à l’erreur entre les deux trajectoires est
comparée à tout instant à une borne supérieure constante. La loi de
commande est mise à jour lorsque cette borne est atteinte.

• Chapitre 4: nous présentons un algorithme de contrôle événementiel
des systèmes non-linéaires. Pour cela, nous nous appuyons sur une
approche différente de la stabilité, l’analyse de contraction. Dans cette
forme de stabilité, toutes les trajectoires d’un système ont besoin de
converger vers une même trajectoire nominale, en faisant en sorte que
le déplacement virtuel entre deux trajectoires adjacentes tende vers
zéro. Une région de l’espace d’états dans laquelle cette condition est
satisfaite est nommée région de contraction. Dans notre stratégie de
commande événementielle, le générateur d’événement donne l’ordre de
mettre à jour la commande lorsque la trajectoire du système quitte la
région de contraction.

• Chapitre 5: ici une version self-triggered de l’algorithme de com-
mande événementielle du Chapitre 1 est développée. Ceci veut dire,
que nous souhaitons prédire les instants auxquels la pseudo-fonction
de Lyapunov atteint la borne supérieure. Nous remarquons que, en-
tre deux événements, la pseudo-fonction de Lyapunov passe par un
minimum local avant d’atteindre la borne supérieure. Par conséquent,

25

INTRODUCTION (français)

nous pouvons utiliser un algorithme de minimisation pour identifier le
temps auquel ce minimum est atteint. Nous utilisons ensuite ce temps
pour initialiser un algorithme de localisation de zéro qui va identifier
le temps auquel la fonction de Lyapunov croise la borne supérieure et
donc le temps de la prochaine mise à jour de la commande.

26

Chapter 1

Event-Triggered Stabilizing
Controller for Linear Systems

Contents
1.1 Introduction . 28

1.2 Problem Definition 29

1.2.1 System Description 29

1.2.2 Event-Triggered Control Law 29

1.2.3 Lyapunov Stability 31

1.2.4 Event-Triggering Conditions 31

1.3 Event-Triggering Conditions 33

1.3.1 Triggering Conditions in the Transient Region . . 34

1.3.2 Steady-State Triggering Conditions 37

1.3.3 Defining Tlim . 38

1.3.4 Minimum Inter-sample Time 38

1.4 Simulation Results 42

1.4.1 SISO System . 42

1.4.2 MIMO Systems . 47

1.4.3 Comments on Using Dual Conditions 50

1.5 Comparison with Other Methods 52

1.5.1 The ISS Method 53

1.5.2 The CLF method 54

1.5.3 The Reachability Method 55

27

1.1. INTRODUCTION CHAPTER 1

1.6 Conclusion . 56

1.1 Introduction

In this chapter we introduce a stabilizing event-triggered control strategy
for Linear Time-Invariant systems. This strategy aims at simplifying and
improving the method developed in [19]. In this method the authors pro-
pose to bound the system’s Lyapunov function-like between the Lyapunov
functions of a slower and a faster system. This creates the need to define
auxiliary systems and thus expands the complexity of the problem. In our
method though, we replace the bounding Lyapunov functions by a simple
scalar function. The method is applied over two stages by splitting the op-
eration time of the system to be controlled into two parts. The first part
is referred to as the transient region and the second part is the steady-state
region.

In the transient region the event-triggered strategy relies on monitoring
a pseudo-Lyapunov function associated to the system to be stabilized. The
pseudo-Lyapunov function, also referred to as a Lyapunov-like function, is
defined in the same way as a classical Lyapunov function, the only difference
is that the pseudo-Lyapunov function does not have to be strictly decreasing
in time along the trajectories of the system. It is allowed to increase locally,
provided that it remains bounded from above and that it ultimately con-
verges to zero. The control law is updated to prevent the pseudo-Lyapunov
function from taking values above a certain decreasing upper bound.

In the steady-state region we no longer allow the pseudo-Lyapunov func-
tion to increase locally. Instead, the control law is updated as soon as the
pseudo-Lyapunov function stops decreasing, that is when its first time deriva-
tive along the trajectories of the system vanishes.

In what follows we give proper definitions of the quantities described
above. We provide the system model, the form of the pseudo-Lyapunov
function and how to schedule the control law. The problem of finding both
a suitable pseudo-Lyapunov function and the optimal upper bound is formu-
lated as a unique optimization problem. We also explain why and how we
delimit the operation time into transient and steady-state regions. Subse-
quently, we test the developed control strategy on two numerical examples,
first on a single-input single-output (SISO) system, then on a multiple-input

28

1.2. PROBLEM DEFINITION CHAPTER 1

multiple-output (MIMO) system. Finally, we compare the results obtained
through this method to other methods from the literature. We carry out the
comparisons using the SISO system.

1.2 Problem Definition

1.2.1 System Description

We consider the following Linear-Time Invariant (LTI) system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

x(t0) = x0,

(1.1)

where

• x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input, and
y(t) ∈ Rp is the output,

• A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×q are constant matrices,

• t0 is the initial time and x0 is the initial state.

We suppose that the pair (A,B) is controllable and we want to stabilize
the system, i.e. to drive the state x(t) to the equilibrium point. We consider,
without loss of generality the equilibrium point to be located at the origin.
For this, we design a stabilizing state-feedback control law of the form

u(t) = −Kx(t). (1.2)

The feedback gain K renders the matrix (A− BK) Hurwitz, by placing
its eigenvalues in the open left half of the complex plane. The resulting
closed-loop system,

ẋ(t) = (A−BK)x(t),

is globally asymptotically stable.

1.2.2 Event-Triggered Control Law

In event-triggered control, the control law is a piecewise-constant signal. The
value of the control is kept constant when the system provides a satisfactory

29

1.2. PROBLEM DEFINITION CHAPTER 1

performance. If, on the contrary, the behavior of the system is deemed un-
acceptable, the control law is updated to a new value.

The performance of the system is expressed as a condition on the state or
output. This condition is called an event-triggering condition. The violation
of the event-triggering condition is called an event. The event-triggering
conditions are monitored by an event generator that issues orders to the
controller to produce a new control value or to remain idle. Let tk, k ∈ N,
be the times at which an event occurs in the system. The control law is then
scheduled as follows

• at time tk when an event occurs

u(tk) = −Kx(tk), (1.3)

• for all t ∈ (tk, tk+1)
u(t) = u(tk). (1.4)

For each case, the corresponding system model is

• at time tk when an event occurs

ẋ(t) = (A−BK)x(t), (1.5)

• for all t ∈ (tk, tk+1)

ẋ(t) = (A−BK)x(t)−BK∆kx(t), (1.6)

where ∆kx(t) = x(tk)− x(t).

Then in the interval [tk, tk+1), for all k, System (1.1) has a unique solution

x(t) = e(A−BK)(t−tk)x(tk)−
∫ t

tk

e(A−BK)(t−s)BK∆kx(s)ds. (1.7)

An important property of this solution is its Lipschitz continuity, with con-
stant Lx, namely

‖∆kx(t)‖ ≤ Lx(t− tk), ∀k. (1.8)

30

1.2. PROBLEM DEFINITION CHAPTER 1

1.2.3 Lyapunov Stability

Since the system in its closed-loop form is asymptotically stable, there exists
a quadratic positive definite function V : Rn → R+,

V (x(t)) = x(t)TPx(t), (1.9)

(where P ∈ Rn×n is a symmetric positive-definite matrix) that decreases
along the trajectories of the system with rate

dV (x(t))

dt
= −x(t)TQx(t), (1.10)

where Q ∈ Rn×n is a positive-definite matrix that satisfies the Lyapunov
equation

(A−BK)TP + P (A−BK) = −Q. (1.11)

In event-triggered control V (x(t)) is referred to as a pseudo-Lyapunov
function or PLF, as it keeps its form (1.9), but its derivative along the tra-
jectories of the system is no longer described by Equation (1.10). The PLF
is described in more details in Section 1.2.4.

1.2.4 Event-Triggering Conditions

To determine the event-triggering conditions, we assume that the state vec-
tor can be fully measured or reconstructed, so as to evaluate a Lyapunov
function for the system. The function serves to gauge the performance of the
system, as it is an indicator of the stability of the system.

In classical control, the Lyapunov function decreases along the trajecto-
ries of the system at all times. In contrast, in our event-based control method,
we define a pseudo-Lyapunov function (PLF) that is allowed to increase lo-
cally, as long as it remains bounded from above and that it ultimately tends
toward zero. The control law is updated when the PLF reaches a predefined
upper bound or threshold. Figure 1.1 illustrates the evolution of the pseudo-
Lyapunov function.

When the control law is updated, the time derivative of the PLF along
the trajectories of the system is given by

dV (x(t))

dt
|t=t+k = −x(tk)

TQx(tk). (1.12)

31

1.2. PROBLEM DEFINITION CHAPTER 1

which is the same as the derivative of a classical Lyapunov function given
by Equation (1.10). However, between two events, the derivative of the PLF
differs from its classical counterpart and is given by

dV (x(t))

dt
= −x(t)TQx(t)− 2∆kx(t)TKTBTPx(t), t ∈ (tk, tk+1). (1.13)

In Figure 1.1, we have represented the threshold as a positive, strictly
decreasing function of time, that bounds the PLF from above. We later
show that an exponentially decreasing threshold is a natural choice that en-
sures that the updates of the control law are sparse in time, while the PLF
converges to zero as time tends to infinity. Even though such a threshold
has been used in previous works such as [20], in the present work we give
an explicit method to simultaneously find the PLF and the optimal upper
threshold.

time

threshold

V (x(t))

t1 t2

Figure 1.1: Behavior of the pseudo-Lyapunov function.

The approach described above is the one we use in transient time. When
the state of the system enters in a neighborhood of the equilibrium point, we
want it to converge as fast as possible to equilibrium and to remain there.
However, increases in the PLF leave the state free to wander off the equi-
librium point. Because of this, at this point, we force the PLF to decrease,
by forcing its time derivative to remain negative. The control law is then
updated when the time derivative of the PLF becomes zero. Switching to
this mode of operation has the advantage of speeding up the convergence to
the equilibrium point. Figure 1.2 illustrates the transient and steady-state
operation.

32

1.3. EVENT-TRIGGERING CONDITIONS CHAPTER 1

We cannot predict whether this change in event-triggering conditions will
increase or decrease the number of updates of the control law. In theory, ask-
ing for the time derivative of the PLF to be negative all the time demands
more control effort than keeping the PLF below a certain threshold. How-
ever, we will show in Section 1.4, when we test this approach on a SISO and
a MIMO system, that switching to this condition can increase or decrease
the number of updates depending on the application.

threshold

V (x(t))

t1 t2 Tlim

transient steady-state

δ

Figure 1.2: Behavior of the Lyapunov-like function in transient and steady
state regions.

We later show that it is preferable to define the limits of the transient
and steady-state regions in terms of the threshold function that we introduce
below. For now, we denote by Tlim the time instant separating the transient
and steady-state regions. Thus we define the transient region as all time
instants t such that t < Tlim (Tlim > 0). The steady state consists thus of all
time instants t, such that t ≥ Tlim.

1.3 Event-Triggering Conditions

In this section, we define the event-triggering conditions according to which
the control law is updated. At first, for the transient time, we establish the
properties of the upper threshold. We then demonstrate how to obtain the
threshold function that satisfies these properties. An optimization problem
is then derived and solved for both the PLF and the optimal threshold. We
also explain why such threshold is optimal.
In the second part, the steady-state event-triggering conditions are given in
terms of the time derivative of the PLF.
In both parts, we prove the stability of the system under the event-triggered

33

1.3. EVENT-TRIGGERING CONDITIONS CHAPTER 1

control law. We also give proof of the existence of a minimum inter-event
time.

1.3.1 Triggering Conditions in the Transient Region

1.3.1.1 Decreasing Threshold Function

We look for a scalar function W : R+ → R+, such that for all t

dW (t)

dt
< 0, (1.14)

and
V (x(t)) ≤ W (t). (1.15)

To find a function corresponding to the above criteria, we first look for a
scalar λ < 0 such that the following constraint is satisfied

dV (x)

dt
|t=t+k ≤ λV (x(tk)), ∀k. (1.16)

This is equivalent to

−x(tk)
TQx(tk) ≤ λx(tk)

TPx(tk). (1.17)

We are interested in ensuring the fastest possible convergence, by making |λ|
as large as possible. Equation (1.17) tells us that λ can be chosen as the max-
imum generalized eigenvalue of the pair (−Q,P), denoted by λmax(−Q,P)
and defined as (see [21])

λmax(−Q,P) ≡ inf{λ ∈ R−|λP +Q > 0}, λmax(−Q,P) < 0. (1.18)

From now on, we drop the argument (−Q,P) and refer to the maximum
generalized eigenvalue simply as λmax.

Extrapolating equation (1.16) for all t and for λ = λmax, we obtain the
first order linear differential inequality,

dV (x(t))

dt
≤ λmaxV (x(t)), (1.19)

which admits a solution

dV (x(t))

dt
≤ V (x0)eλmax(t−t0). (1.20)

34

1.3. EVENT-TRIGGERING CONDITIONS CHAPTER 1

Thus, we define the threshold function as

W (t) = W0e
−α(t−t0), (1.21)

where W0 ≥ V (x0) guarantees that at t = t0, V (x(t)) is below W (t). The
coefficient α is selected such that 0 < α < |λmax| in order to enforce the
condition given by equation (1.15).

1.3.1.2 Stability in the Transient Region

We can now describe the event-triggered strategy, and prove its stability.

Definition 1. Let V (x) be the function given by equation (1.9), and W (t)
be the exponential function given by equation (1.21). The time instant tk+1

(k ∈ N) at which the control u(t) is updated is defined as

tk+1 = inf{t > tk, V (x(t)) = W (t)}.

Additionally, the first update time is t0.

Theorem 1. The control law defined by equations (1.3) and (1.4) and sched-
uled by the event-triggering condition given by definition 1 renders system
(1.1) asymptotically stable.

Proof. Since W (t) is exponentially decreasing toward zero, to prove that the
equilibrium point is stable, it is sufficient to show that V (x(t)) is always
lower than W (t).
We already know that at t0, V (x0) < W0, by definition, and we need to show
that for all t > t0, whenever V (x(t)) = W (t), V (x(t)) is pushed back below
W (t), i.e. that dV (x(t))/dt < dW (t)/dt, at t = t+k .

At t = tk and from equation (1.16)

−x(tk)Qx(tk) ≤ λmax V (x(tk)). (1.22)

But, since at instant t = tk, V (x(tk)) = W (tk), we can re-write the last
equation as

−x(tk)Qx(tk) ≤ λmax W (tk)

< −αW (tk).

In other words, at t = t+k

dV (x(t))

dt
|t=t+k <

dW (t)

dt
|t=t+k ,

35

1.3. EVENT-TRIGGERING CONDITIONS CHAPTER 1

Then, for all tk < t < tk+1,

V (x(t)) < W (t),

thus completing the proof.

1.3.1.3 Computing the Decay Rate α

We say of a threshold W (t) that it is optimal if it decreases to zero as fast
as possible, while ensuring the best trade-off between the number of updates
and the smoothness of the system’s response. We have already established
that the maximum possible value for α is the maximum generalized eigen-
value of the pair (−Q,P). The problem of finding the maximum generalized
eigenvalue is discussed in this section.

Equation (1.16) can be re-written as

x(tk)
T ((A−BK)TP + P (A−BK))x(tk) ≤ λmax x(tk)

TPx(tk). (1.23)

λmax is the solution of the following optimization problem

minimize λ

subject to

(A−BK)TP + P (A−BK) ≤ λP

P > 0

(1.24)

This problem is quasiconvex [21] because the function λmax(−Q,P) is
defined on R− which is convex and it satisfies Jensen’s inequality for quasi-
convex functions, i.e. for any symmetric matrices P1 > 0, P2 > 0, −Q1, −Q2

and real 0 ≤ θ ≤ 1

λmax(θ(−Q1) + (1− θ)(−Q2), θP1 + (1− θ)P2)

≤ max{λmax(−Q1, P1), λmax(−Q2, P2)}.

There exist many works devoted to the solution of the problem (1.24) in the
literature, among which we can cite [21] and [22], as well as several ready-
for-use software solutions, such as the ’gevp’ command of MATLAB, and the
YALMIP toolbox.

Once we have λmax, we select α such that

0 < α < |λmax|. (1.25)

36

1.3. EVENT-TRIGGERING CONDITIONS CHAPTER 1

We have stated before that the larger α, the better, but α can be chosen
anywhere inside the interval (0, λmax). So, what happens as α takes on dif-
ferent values?

Choosing α closer to λmax means a larger value of α and a threshold that
decreases faster to zero. Such a choice of α leads to a faster response and a
quicker convergence to steady-state. It also induces less events as the systems
reaches equilibrium more quickly.

On the other hand, choosing α far from |λmax| has the advantage of in-
creasing the inter-event time. Indeed, the average time between successive
events is higher when α is far from |λmax| as the threshold does not de-
crease as steeply as in the previous case. This leads to larger increases of
the pseudo-Lyapunov function, and therefore, more time elapses between
events. However, this choice of α leads to a slower convergence and a higher
number of events. In addition, allowing the pseudo-Lyapunov function to
increase further has a negative effect on the quality of the response. The
increases of the Lyapunov function induce oscillations in the response, and
larger increases lead to more pronounced oscillations.

1.3.2 Steady-State Triggering Conditions

We demand a stronger control effort in the neighborhood of steady-state. In
this case, we require the time derivative of V (x(t)) to remain negative. This
will drive the state to the equilibrium position, from which it is harder to
deviate, thus spreading the controls further in time.

Definition 2. Let V (x) be the function given by equation (1.9). The time
instant tk+1 (k ∈ N) at which the control u(t) is updated is defined as (see
[23])

tk+1 = inf

{
t > tk,

dV (x(t))

dt
≥ 0

}
.

Theorem 2. The control law defined by equations (1.3) and (1.4) and sched-
uled by the event-triggering condition given by definition 2, renders system
(1.1) globally asymptotically stable.

Since the time derivative of the Lyapunov function remains negative for
all t, the system is globally asymptotically stable.

37

1.3. EVENT-TRIGGERING CONDITIONS CHAPTER 1

1.3.3 Defining Tlim

We define Tlim as the time when W (t) reaches a predefined distance (a small
enough distance δ > 0) from the equilibrium point. Tlim is then defined as

Tlim = min{t | W (t) ≤ δ}, (1.26)

Since, W (t) is a known function, we can give an exact value for Tlim as

Tlim = min {t |W (t) = δ} =
1

α
ln(

W0

δ
). (1.27)

1.3.4 Minimum Inter-sample Time

To validate an event-triggered control algorithm, it is not enough to prove
the stability of the system to be controlled. It is also necessary to prove that
any two consecutive events are separated by a minimum interval of time. We
denote by τmin > 0, the minimum inter event time.

The accumulation of events is undesirable as it creates a situation where
an infinite number of updates in a finite interval of time. In the framework
of hybrid systems, this situation is known as the Zeno behavior and is even
considered as a form of instability [24].

However, for our event-triggered control algorithm, we can prove the ex-
istence of such τmin, and state the following theorem.

Theorem 3. There exists a minimum time delay τmin > 0 independent of k,
such that for all k ∈ N, tk+1 − tk > τmin.

Proof. We give the proofs for the existence of τmin in the transient time and
in stead-state separately.

1. Transient Region:

To prove the existence of a minimum time delay between any two consec-
utive events, we need to show that V (x(t)) decreases faster than W (t) for
some time after an update of the control law, so that no other intersec-
tion is possible in that amount of time. For this, we first find lower and
upper bounds on ‖x(tk)‖. Afterward, we use these bounds to show that
dV (x(t))/dt < dW/dt, in some interval [tk, tk + τ).

• Lower and upper bounds on ‖x(tk)‖:
At t = tk, V (x(tk)) admits the following lower and upper bounds

λmin(P)‖x(tk)‖2 ≤ V (x(tk)) ≤ λmax(P)‖x(tk)‖2. (1.28)

38

1.3. EVENT-TRIGGERING CONDITIONS CHAPTER 1

Since V (x(tk)) = W (tk), and W (t) is an exponentially decreasing func-
tion, such that, in transient time, δ < W (tk) < W0, we can write√

δ

λmax(P)
≤ ‖x(tk)‖ ≤

√
W0

λmin(P)
. (1.29)

We denote M =
√
W0/λmin(P).

• Proving that dV/dt < dW/dt for t ∈ [tk, tk + τ):
When t ∈ (tk, tk+1), the time derivative of V (x(t)) is given by Equa-
tion (1.13), which can be re-written in terms of x(tk) and ∆kx(t) as

dV (x(t))

dt
=− x(tk)

TQx(tk) + x(tk)
TQ∆kx(t)

+ ∆kx(t)T (Q− 2KTBTP)x(tk)

+ ∆kx(t)T (2KTBTP −Q)∆kx(t).

We replace V (x(tk)) by W (tk) in Equation (1.22), and we use Equa-
tion (1.29), along with the Lipschitz continuity of x(t) with the Lip-
schitz constant given by Equation (1.8), to find an upper bound on
dV (x(t))/dt,

dV (x(t))

dt
≤ λmaxW0e

−α(tk−t0) +Mλmax(Q)Lx(t− tk)

+ LxM‖Q− 2KTBTP‖(t− tk)
+ ‖2KTBTP −Q‖L2

x(t− tk)2.

(1.30)

Equation (1.30) is of the form

dV (x(t))

dt
≤ λmaxW0e

−α(tk−t0) + C1(t− tk) + C2(t− tk)2.

Re-writing the derivative of W (t) as

dW (t)

dt
= −αW0e

−α(tk−t0)e−α(t−tk),

it is sufficient to show that for t ∈ (tk, tk + τ),

λmaxW0e
−α(tk−t0) + C1(t−tk) + C2(t− tk)2

< −αW0e
−α(tk−t0)e−α(t−tk). (1.31)

39

1.3. EVENT-TRIGGERING CONDITIONS CHAPTER 1

Dividing both sides of Equation (1.31) by the quantity −αW0e
−α(tk−t0)

yields

|λmax|
α

>
C1(t− tk)

αW0e−α(tk−t0)
+

C2(t− tk)2

αW0e−α(tk−t0)
+ e−α(t−tk) =: fk(t).

This equation is satisfied at t = tk, as fk(tk) = 1 and |λmax|/α > 1, and
the function fk(t) is Lipschitz continuous uniformly in k. Therefore, in
a sufficiently small interval [tk, tk+τ), and since in the transient region,
tk ≤ Tlim, for all k, we can guarantee that

|λmax|
α

> fk(t),

with τ as a uniform lower bound on τmin for all k.

2. Steady-State Region:
In practice, an event-triggered algorithm is implemented on a digital plat-
form, where the event-triggering conditions are evaluated periodically
according to a clock signal. A digital implementation imposes the pe-
riod of the clock signal as a lower bound for the inter-event time, and
the Zeno phenomenon can never occur in a physical system. However,
in continuous-time, using the event-triggering condition given in Defini-
tion 2 can lead to Zeno behavior. This is clear when x(t) = 0, the event-
triggering condition is activated. However, an update of the control law
leads to dV

dt
|t+k = 0, which reactivates the event-triggering condition at t+k .

As x(t) approaches zero, it becomes hard to give an estimate of τ . We
first consider ‖x(t)‖ 6= 0, and re-write dV/dt as

dV (x(t))

dt
= −x(t)T (2KTBTP −Q)x(t)− 2x(tk)

TKTBTPx(t).

At t = tk, dV/dt = 0, but as ‖x(t)‖ 6= 0, we can set

dV (x(t))

dt
= −x(t+k)TQx(t+k) =: −β,

where β > 0. Let us suppose that dV (x(t))/dt does not decrease further
and −β is the minimum value it reaches on the interval (tk, tk+1), as shown
on Figure 1.3. If we consider that dV/dt increases linearly with the largest
possible rate, we can estimate the time it takes to reach zero again. The
rate of change of dV/dt is

d2V (x(t))

dt2
= x(t)TΩ1x(t) + x(tk)

TΩ2x(t) + x(tk)Ω3x(tk).

40

1.3. EVENT-TRIGGERING CONDITIONS CHAPTER 1

where Ω1 = AT (2KTBTP−Q)+(2KTBTP−Q)A, Ω2 = −2KTBT (2KTBTP−
Q− PA), Ω3 = 2KTBTPBK.

−β

tk tk + τ

t

dV
dt

Figure 1.3: Derivative of the PLF in the interval [tk, tk+1).

Since in the steady-state region, V (x(t)) can no longer increase, we have

V (x(t)) < W (Tlim) < δ.

Therefore,

‖x(t)‖ ≤

√
δ

λmin(P)
=: η. (1.32)

Likewise ‖x(tk)‖ ≤ η. The largest possible rate of growth of dV/dt is∣∣∣∣d2V (x(t))

dt2

∣∣∣∣ ≤ (‖Ω1‖+ ‖Ω2‖+ ‖Ω3‖)η2 =: ψ.

Therefore, a lower bound on the time it takes for dV/dt to reach zero from
−β is given by

τ ≥ β

ψ
.

However, as ‖x(t)‖ tends to zero, this lower bound becomes undefined.
As explained earlier, this is not a problem in reality, as the clock period
is always a minimum inter-event time. Moreover, the ultimate objective
x(t) = 0 is never reached, prevented by measurement noise, small pertur-
bations and round-off errors.

41

1.4. SIMULATION RESULTS CHAPTER 1

1.4 Simulation Results

In this section we test the validity of the approach on numerical examples.
The first example is a SISO system whereas the second example is a MIMO
system.

Remark 1. In continuous time, an event is detected when V (x(t)) = W (t).
However, as the simulation is run in discrete time, this equality is impossible
to detect. Instead we detect the instants at which V (x(t)) ≥ W (t).
In that case, there is no guarantee that an update of u(t) will send V (x(t))
below W (t). As a solution to this problem, we propose the following update
at t = tk

W (tk) = V (x(tk)).

Therefore, for t ∈ [t0, t1), W (t) = W0e
−α(t−t0); whereas for k ≥ 1 and t ≥ tk,

W (t) = V (x(tk))e
−α(t−tk). It is possible to do so, as W (t) is a fictitious

function and does not correspond to any actual data. Additionally, this update
corresponds to continuous-time behavior.
This way, we also render the system robust to impulsive disturbances.

Remark 2. At t = 0, we choose to set W0 > V (x0), as a safety measure.
This is not really necessary as we have proved that the case when W0 = V (x0)
is well handled by the algorithm.

1.4.1 SISO System

1.4.1.1 Example Description

We consider the following second order LTI system, with one input

ẋ(t) =

[
0 1
−2 3

]
x(t) +

[
0
1

]
u(t), (1.33)

where x(t) =
[
x1(t) x2(t)

]T
.

The initial state x0 is given as

x0 =
[

1 −1
]
.

The linear feedback control law is chosen (for a convergence time of 3 seconds)
as

u(t) =
[
−1.7329 −5.6667

]
x(t).

42

1.4. SIMULATION RESULTS CHAPTER 1

We associate to the system a quadratic Lyapunov-like function, as described
by (1.9).

To find the matrices P and Q, and the decay rate α, we solve the max-
imum generalized eigenvalue problem (1.24) using the ’gevp’ command of
Matlab, which is based on the algorithms in [22]. This command relies on
the formulation of problem (1.24) as linear matrix inequalities (LMI) using
the LMI declaration tools of the Robust Control Toolbox.
We obtain as a result

P =

[
12.1917 4.3548
4.3548 3.2660

]
, Q =

[
32.5123 11.6128
11.6128 8.7089

]
.

The solver gives a value of λmax = −2.66, so we pick α = 2.3 s−1. We also
set δ = 0.01 close enough to the equilibrium point, and W (0) = 9.72 so that
W (0) > V (x0).

1.4.1.2 Results

We have simulated the behavior of the system for 8 seconds (both transient
and steady-state included), and we have chosen a sampling period of 10−4 s,
resulting in 8 × 104 sampling times. The choice to sample at such high fre-
quency is motivated by the fact that detecting the exact moment at which
V (x(t)) intersects with W (t) is impossible in a discrete-time simulation, and
thus we try to emulate continuous-time behavior as closely as possible.

0 1 2 3 4 5 6 7 8

Time

-2

-1.5

-1

-0.5

0

0.5

1

S
ta

te
s

x1

x2

Figure 1.4: Time evolution of the states of the event-based system.

Figure 1.4 represents the time evolution of the states, x1(t) and x2(t).
It shows that even though the response is not quite smooth in transient

43

1.4. SIMULATION RESULTS CHAPTER 1

time, the oscillations are not exaggerated and die out quickly. We define the
convergence time tc as the time at which the norm ‖x(t)‖ settles below a
certain value, i.e.

‖x(t)‖ ≤ εc, ∀t ≥ tc.

If we take εc = 0.02, then the convergence time is tc = 3.29 s.

Figure 1.5 represents the event-based control law. The control signal is
updated only 17 times for 80, 000 sampling instants, i.e, we have reduced the
number of samples by a factor of 1/5000 compared to a periodic implemen-
tation. This result is illustrated better in Figure 1.6, where the intersections
between the pseudo-Lyapunov function and the threshold function W (t) rep-
resent the events.

In Figure 1.5, we notice that even if the updates of the control are distant
in time, they occur, on average, at a regular pace. One possible reason for
this could be the linearity and time-invariance of the system, which make for
a predictable behavior.

0 1 2 3 4 5 6 7 8

Time

-4

-2

0

2

4

6

8

control signal

Figure 1.5: The piecewise constant event-based control law.

In control engineering, to convert a continuous control law to a digi-
tal signal, the recommended sampling frequency is contained in the range
[6ωb, 25ωb], where ωb is the system’s bandwidth. The bandwidth of Sys-
tem (1.33) being ωb = 1.98 rad/s, the recommended sampling period would
be between 0.13 s and 0.53 s. The average sampling time obtained through
the event-triggered control algorithm is 3.36 s, reducing the sampling fre-
quency by nearly 6 to 25 times.

Figure 1.6 depicts the Lyapunov-like function and the decreasing thresh-
old. As proven earlier, the PLF remains below the threshold. Every time

44

1.4. SIMULATION RESULTS CHAPTER 1

0 1 2 3 4 5 6 7 8

Time

0

1

2

3

4

5

6

7

8

9

10

V(x)

W(t)

Figure 1.6: Time evolution of the Lyapunov-like function along with the
exponentially decaying upper threshold function.

the two functions intersect, the PLF is pushed back below the threshold by
a control update.

As the norm of the state vector drops to a very small value after 3.29 s,
it would be nearly impossible to see the events on the curve of the derivative
of the Lyapunov function. For this reason we propose a graph of the distri-
bution of the events for the entire simulation interval, as given by Figure 1.7.
It shows that in the steady state region, we do in fact obtain less updates
than if we had kept the same triggering conditions for the entire simulation.

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8

Time

events

Tlim

Figure 1.7: Time distribution of the events in transient and steady-state
regions.

45

1.4. SIMULATION RESULTS CHAPTER 1

1.4.1.3 Varying the Settling Time

Since V (x(t)) and W (t) are determined by solving an optimization problem,
the only degree of freedom that we are left with is the choice of where to
place the poles of the closed-loop system.

We usually place the eigenvalues in order to satisfy a set of closed-loop
performance criteria, such as the speed and shape of the response [25]. The
location of the poles particularly affects the speed with which the system
reaches a steady-state, as poles closer to the imaginary axis yield a slow re-
sponse, while poles further in the left half plane induce a faster response. The
approximate time it takes to reach a steady-state is known as the settling
time, and is defined as the time it takes for the system’s step response to
reach 2% (or sometimes 5%) of its final value.

The example that we have given above is a second order system for which
the location of the poles can be easily determined by the settling time and
the percent overshoot. The percent overshoot is defined as the percentage by
which the peak value of the step response differs from its final value. Since
we are not interested in this parameter, we keep it constant at 5%, and we
vary the settling time. We should also mention that the system’s control is
event-triggered, and for this, the response may not exhibit the percent over-
shoot and settling time chosen for it. However, we use these quantities as
a systematic way of changing the location of the poles. The value of λmax

changes for every location of the poles, and we take α = ρr|λmax|, where
0 < ρr < 1.

We start by increasing the simulation window to 20 s. Then, we vary the
settling time Tset between Tset = 2 s and Tset = 9.5 s. We stop when Tlim

exceeds 20 s. We plot the variations of the number of updates of the control
law versus the settling time, shown in the graph of Figure 1.8.

46

1.4. SIMULATION RESULTS CHAPTER 1

2 3 4 5 6 7 8 9 10

Settling Time

20

30

40

50

60

70

80

Nb. of updates

Figure 1.8: The variation of the number of events with respect to the settling
time.

We can see that if we desire a small settling time, the number of events
is going to be very high, 78 events for Tset = 2 s. As we increase Tset, the
number of events drops rapidly to 29 at Tset = 3.5 s. At this stage, we notice
that the number of updates oscillates around this value (between a minimum
of 27 and 29). After Tset = 4 s, the number of events increases again, but
at a slower rate this time. For example, it does not exceed 34 events at
Tset = 9.5 s. This phenomenon is then nonlinear and deserves further inves-
tigation.

1.4.2 MIMO Systems

1.4.2.1 Example Description

An example of a MIMO system is the 4 × 4 linearized model of an aircraft
under cruise control flight [26]. The system has two inputs and two outputs.
The inputs consist in the rudder deflection and the aileron deflection. The
outputs are the bank angle measured in radians and the yaw rate, which is
an angular velocity measured in radians per second. Here are matrices A, B,
and C which describe the system

47

1.4. SIMULATION RESULTS CHAPTER 1

A =


−0.0558 −0.9968 0.0802 0.0415
0.5980 −1150 −0.0318 0
−3.0500 0.3880 −0.4650 0

0 0.0805 1.0000 0

 ,

B =


0.0729 0.0000
−4.7500 0.00775
0.15300 0.1430

0 0

 , C =

[
0 1 0 0
0 0 0 1

]
,

(1.34)

with
x0 =

[
−1 0.2 1 0.4

]T
.

We place the closed-loop eigenvalues at −0.2896+0.6447i, −0.2896−0.6447i,
−0.3292, and −0.9814 by selecting the following state feedback gain

K =

[
−0.0859 −0.1088 0.0258 −0.0466
−20.7490 −0.3931 5.1933 2.7084

]
.

Solving the generalized eigenvalue problem problem yields λmax = −0.5783
and

P =


0.4202 −0.3735 0.4389 0.1686
−0.3735 1.0195 −0.5305 −0.2327
0.4389 −0.5305 1.6434 0.7611
0.1686 −0.2327 0.7611 0.6197

 .
Matrix P has a minimum and a maximum eigenvalue λmin(P) = 0.1752

and λmax(P) = 2.4724, respectively.
We set α = 0.3783 s−1, W (0) = 1.9208 and we simulate the behavior of
the system for 30 seconds with a sampling period of ts = 10−4 s. We select
δ = 0.002, which yields Tlim = 18.1515 s.

1.4.2.2 Simulation Results

Figure 1.9 shows the outputs of the system, the yaw rate designated by y1,
and the bank angle y2. The quality of the response is good for this example.
This can be explained by the fact that more events have been generated as
we see from Figure 1.10, which shows the two control inputs of the system.
We can see that the control law has been updated more frequently compared
to the previous example, as it required 49 updates for the entire simulation
window. The quality of the response can also be explained by the fact that
the open-loop system is marginally stable and not completely unstable as the

48

1.4. SIMULATION RESULTS CHAPTER 1

0 5 10 15 20 25 30

Time

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y
1

y
2

Figure 1.9: Time evolution of the response, the yaw rate y1 and the bank
angle y2.

0 5 10 15 20 25 30

-30

-20

-10

0

10

u
1

0 5 10 15 20 25 30

Time

-0.08

-0.06

-0.04

-0.02

0

u
2

Figure 1.10: The two control inputs, rudder (u1) and aileron (u2) deflections.

SISO system treated before.

Figure 1.11 depicts the evolution of the pseudo-Lyapunov function. For
this system, we notice that the events occur in clusters, as there are intervals
where the updates are frequent separated by long time intervals where no
update is carried out. This phenomenon is seen more clearly in the distri-
bution of events in Figure 1.12. This can also be explained by the marginal
stability of the system, as it can operate autonomously for longer periods of

49

1.4. SIMULATION RESULTS CHAPTER 1

time. Then, frequent updates are taken to steer the system back to the right
trajectory.

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Time

V

W

Figure 1.11: Time evolution of the pseudo-Lyapunov function and the expo-
nential threshold.

0

0.5

1

1.5

0 5 10 15 20 25 30

Time

events

Tlim

Figure 1.12: Distribution of the events in transient and steady-state regions.

From the distribution of the events in Figure 1.12, we notice that the
events are sparser in transient-time and denser in steady-state. Conversely,
in the case of the SISO system, the events are sparser in steady-state. This
may be due to the fact that for the MIMO system, more control effort is
required to maintain the system at the equilibrium point.

1.4.3 Comments on Using Dual Conditions

We explain our choice to use dual event-triggering conditions by the fact
that it yields a faster convergence in steady-state. In this section, we want to

50

1.4. SIMULATION RESULTS CHAPTER 1

examine the behavior of SISO System (1.33) and MIMO System (1.34) when
we use only one condition, either Ctt or Css, for the entire operation time.
For simplicity, we denote Ctt the transient-time condition of Definition 1, and
Css the steady-state condition of Definition 2.

We first simulate the SISO system with a control law updated using con-
dition Ctt alone, then condition Ctt alone. We repeat this procedure for the
MIMO system. Then, we compare the consequences of using Ctt or Css in
terms the convergence time and the number of updates for each system.

0 1 2 3 4 5 6 7 8

Time

-2

-1.5

-1

-0.5

0

0.5

1

x
1

x
2

(a) SISO states using Ctt

0 1 2 3 4 5 6 7 8

Time

-1.5

-1

-0.5

0

0.5

1

x
1

x
2

(b) SISO states using Css

0 5 10 15 20 25 30

Time

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

y
1

y
2

(c) MIMO states using Ctt

0 5 10 15 20 25 30

Time

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

y
1

y
2

(d) MIMO states using Css

Figure 1.13: Comparing the condition Ctt with Css for the SISO and MIMO
systems.

Figure 1.13a shows the time evolution of the states of SISO System (1.33)
with event-triggering condition Ctt only. It takes the SISO system 4.03 s to
converge with this condition. We recall that using the dual approach leads
to a convergence time of 3.29 s. Figure 1.13b shows the states of the SISO
system under condition Css, the convergence time is 2.23 s. The shape of
the response is not much improved, even though the oscillations are less pro-
nounced than when using Ctt alone. The number of updates drops to 14 with
Css and rises to 23 with Ctt.

51

1.5. COMPARISON WITH OTHER METHODS CHAPTER 1

Figure 1.13c shows the response of MIMO System (1.34) under condition
Ctt alone. The convergence time is 22.77 s which is slightly worse than what
the dual condition yielded, namely 20.98 s. Figure 1.13d shows the response
of condition Css alone which yields a convergence time of 15.54 s. However,
the benefit of the dual condition is apparent when comparing the number of
updates of the control law. The Ctt condition alone yields 32 updates, and
the Css condition alone yields 80 updates, whereas the dual condition leads
to 49 updates.

In both cases, the results of this experiment comfort the idea that using
the dual condition speeds up the convergence. It also confirms that a decrease
in the number of updates is not guaranteed by the dual condition. When
treating each system individually, it is clear that condition Css alone works
better for the SISO system in terms of number of updates and convergence
time. The response of the MIMO system, on the other hand, is always
deteriorated in some aspect when either condition is used alone. In this
case, the dual condition offers a good trade-off, a faster convergence and less
updates.

1.5 Comparison with Other Methods

In this section we compare the performances of our method with other event-
based control methods. We choose three methods from the literature and we
compare them in terms of the number of updates of the control law and in
terms of the quality of the performance. We test all three methods on the
SISO system (1.33).

The first method that we explore was developed by Tabuada in [6]. Since
this method has been primarily developed for nonlinear systems and is based
on the existence of an Input-to-State Stable (ISS) Lyapunov function, we
refer to it as the ISS method.

The second method introduced by Marchand, Durand and Guerrero Castel-
lanos [27] relies on an extension of Sontag’s stabilization formula for nonlinear
systems and requires the existence of a Control Lyapunov Function (CLF).
For this reason, we refer to it as the CLF method.

Finally, the method introduced by Meslem and Prieur [19] is based on
reachability analysis and therefore is referred to as the rechability method.

52

1.5. COMPARISON WITH OTHER METHODS CHAPTER 1

Whenever necessary, we introduce new notations that are specific to each
method, but otherwise keep the notations used until now (P , K, Q, etc).

1.5.1 The ISS Method

The ISS method relies on the existence of an ISS Lyapunov function. How-
ever, for linear systems, this property can be satisfied as long as the plant is
controllable.

For the linear case, the event-triggered control algorithm updates the
control law when

‖x(t)− x(tk)‖ ≤ σ‖x(t)‖, ∀t ∈ [tk, tk+1), (1.35)

where 0 < σ < 1. If this condition is satisfied for all t, dV (x(t))/dt < 0, thus
guaranteeing stability. The control is updated when ‖x(t)−x(tk)‖ = σ‖x(t)‖.

In order to perform the comparison, we have reproduced the simulation
conditions of section 1.4.1.

The parameter σ is chosen such that

λmin(Q) > σ‖KTBTP + PBK‖. (1.36)

Condition (1.36) yields σ = 0.05.

Figure 1.14b represents the evolution of the states of system (1.33). We
can notice that the response is of good quality and does not exhibit any os-
cillations, unlike the response produced by our method. However, such good
quality comes at a price, as this implementation requires 357 updates of the
control law for 80, 000 sampling instants. This is a relatively high number
compared to our 17 updates for the same simulation duration.

If we use the control law developed by the author of this method in [6]

u(t) =
[
−1 4

]
x(t),

the number of updates is reduced to 177, but is still very large compared to
our results.

53

1.5. COMPARISON WITH OTHER METHODS CHAPTER 1

0 1 2 3 4 5 6 7 8

Time

-2

-1.5

-1

-0.5

0

0.5

1

x
1

x
2

(a) SISO states using our method

0 1 2 3 4 5 6 7 8

Time

-1.5

-1

-0.5

0

0.5

1

x1

x2

(b) Evolution of the states with the
ISS method.

Figure 1.14: Comparing the response of the SISO system using our method
and the ISS method

1.5.2 The CLF method

The CLF method proves that it is possible to extend Sontag’s stabilizing
formula to event-based systems provided that a CLF exists. Again the exis-
tence of a CLF is guaranteed in the linear case by the controllability of the
plant. The event-based algorithm detects the time instants when the Lya-
punov function is not decreasing enough. Some smoothness considerations
are also added to the triggering conditions.

In the linear case, this method translates into an optimal control problem,
for which we need to introduce the following weighting matrices on the state
and the control respectively

Q =

[
2 0
0 2

]
, R =

1

12
.

To find P , a Riccati equation of the form PA + ATP − R−1PBBTP = −Q
is solved. We obtain

P =

[
3.2743 0.2743
0.2743 0.7743

]
.

Figure 1.15 represents the evolution of the states of plant (1.33). It shows
that the quality of the response is relatively good. For a simulation interval
of 8 seconds, it requires 23 updates of the control law.

Even though our approach has required less samples, for a simulation
of 8 seconds, the difference is not significant. The advantage of our method

54

1.5. COMPARISON WITH OTHER METHODS CHAPTER 1

0 1 2 3 4 5 6 7 8

Time

-2

-1.5

-1

-0.5

0

0.5

1

x1

x2

Figure 1.15: Time evolution of the states with the CLF method.

appears in the long run. As we run the simulation for 30 seconds, our method
requires 46 samples, while the CLF method needs about the double (86
samples).

1.5.3 The Reachability Method

In the reachability method, a Lyapunov-like function, similar to the one we
describe, is associated to the plant. This function is then forced to remain
framed between the decaying Lyapunov functions of two auxiliary systems,
a slow and a fast system. An event is generated when the pseudo-Lyapunov
function intersects with either the upper or lower threshold.

Since the faster system does not play a part in the stability of the event-
based implementation, we have decided to omit it from our analysis. The
slow system is given by

ẋs(t) = βs(A−BK)xs(t), ∀t

where xs(t) ∈ Rn is the state of the slow system, and 0 < βs < 1.
By sweeping the interval of definition of βs, we notice that the method yields
better results as βs gets closer to 1. For this reason, we select βs = 0.95.

The response is shown in Fig. 1.16. As expected, the quality of the
response is similar to ours, as the two methods work on the same principle.
The reachability method needed 23 samples for an 8 second simulation.
The reachability method also requires the definition of extra systems, thus
increasing the complexity of the implementation as the order of the plant
increases. In contrast, our method requires the introduction of a simpler
scalar function, regardless of the order of the system.

55

1.6. CONCLUSION CHAPTER 1

0 1 2 3 4 5 6 7 8

Time

-1.5

-1

-0.5

0

0.5

1

x1

x2

Figure 1.16: Time evolution of the states with the reachability method.

1.6 Conclusion

We have presented a two-part event-triggered control strategy for Linear
Time-Invariant systems.

In the first part, when the system is in a transient region, the event gen-
erator monitors a pseudo-Lyapunov function associated to the system. The
event generators sends orders to update the control law when the pseudo-
Lyapunov function hits an upper threshold. We have shown that by solving
a maximum generalized eigenvalue problem, we can obtain the PLF and the
threshold at the same time. Such threshold is optimal, as it allows a fast
convergence of the system to equilibrium while maintaining an acceptable
quality for the shape of the response and requiring very few updates of the
control law.

In the steady-state region, the time derivative of the Lyapunov function
takes over. At this stage, an event is generated when the Lyapunov function
no longer decreases in time, or equivalently when its time derivative along
the trajectories of the system vanishes.

We have shown the advantages and shortcomings of the method, and we
have offered a discussion of the choice of parameters for a faster and smoother
response with fewer updates. We have also provided numerical implementa-
tions and comparisons with other methods.

56

Chapter 2

Event-Triggered Stabilizing
Controllers of Switched Linear
Systems

Contents
2.1 Introduction . 57

2.2 Overview of Switched Linear Systems 59

2.3 Stability of Switched Linear Systems 60

2.4 Problem Definition 61

2.5 Event-triggered Control Algorithm 62

2.5.1 Algorithm Description 62

2.5.2 Stability Results 64

2.5.3 Minimum Inter-Event Time 65

2.6 Numerical Example 71

2.6.1 Time-Dependent Switching 71

2.6.2 Event-Based Switching 73

2.6.3 State-Dependent Switching 74

2.7 Conclusion . 77

2.1 Introduction

A switched system is a dynamical system composed of a finite set of subsys-
tems with continuous dynamics, and a switching rule that determines which

57

2.1. INTRODUCTION CHAPTER 2

subsystem is active at a given time. The coexistence of continuous and
discrete-time dynamics makes switched systems a subclass of hybrid sys-
tems. The difference between hybrid and switched systems though, is that
the analysis of switched systems focuses on the continuous-time behavior,
with discrete transitions between subsystems treated as isolated events [28].

Many physical systems can be modeled as switched systems. A non-
exhaustive list of switched systems includes electronic circuits containing a
switching device [29], [30], systems driven by several controllers, or systems
with dynamics changing due to a damaged component [31].

Despite the modeling advantages that they offer, the stability analysis of
switched systems is a challenging task. The reason is that the stability of
each individual subsystem does not imply the stability of the entire system,
under arbitrary switching. It has been proved in [32] and [33] that the exis-
tence of a quadratic Lyapunov function common to all subsystems (CQLF)
guarantees the asymptotic stability of the switched linear system under an
arbitrary switching rule. Even if this property is conservative, for a switched
system can be stable when no common Lyapunov function exists, the exis-
tence of a CQLF can be directly verified by solving a set of Linear Matrix
Inequalities (LMI) [34].

In this part, we adapt to switched systems the event-triggered stabilizing
control algorithm introduced in Chapter 1. The application of event-based
control to the case of switched systems knows a growing interest among the
control community. In [35], the authors synthesize an event-triggered dy-
namic controller for switched systems with time delays, based on the periodic
event-triggered approach described in [8] and the dynamic event-triggering
mechanism of [36]. In [37], the event-triggered control algorithm presented
in [6] is applied to switched linear systems with model uncertainties, and
multiple Lyapunov functions are used to prove stability. In [38], the au-
thors propose an output-based event-triggered approach to the control of
continuous-time switched systems. The event-triggering conditions rely on
the squared error between the current and the most-recently sampled state.

In order to extend the method of Chapter 1 to switched systems, we
choose the CQLF to be the pseudo-Lyapunov function (PLF). Since the
CQLF is common to all the subsystems, we can re-write the generalized
eigenvalue problem of Chapter 1 as a unified optimization problem, that we
solve for the CQLF and the optimal upper threshold. However, in this part,
we no longer split the system’s operation time into transient and steady-state

58

2.2. OVERVIEW OF SWITCHED LINEAR SYSTEMS CHAPTER 2

regimes, and keep instead the same set of event-triggering conditions for the
entire operation. Therefore, the control is updated when the PLF reaches
the upper threshold, or when a switch in the active subsystem occurs.

This chapter is organized as follows. In Section 2.2, we provide a brief re-
minder on switched linear systems, and discuss their stability in Section 2.3.
Then, we formally define the problem that we solve in Section 2.4. In Sec-
tion 2.5, we give a detailed description of the event-triggered control algo-
rithm, along with a proof that it asymptotically stabilizes a switched system
under an arbitrary switching sequence. The second part of Section 2.5 is
dedicated to proving that a minimum time separates any two events. The
final section provides a numerical example to show the performance of the
algorithm, how it stabilizes a test system through a small number of control
updates and with no Zeno behavior. We give an example with time switching
and another with a state-dependent switching rule.

2.2 Overview of Switched Linear Systems

Consider the switched linear system modeled as

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), (2.1)

where x ∈ Rn is the state vector, and u ∈ Rm is the control signal. System
(2.1) is also defined by the mapping σ : [t0,∞)→ I, that we call the switch-
ing rule. The set I = {1, 2, ..., I} is a finite set, called the index set, such
that every subsystem of the form

ẋ(t) = Aix(t) +Biu(t) ∀i ∈ I, (2.2)

is a realization of the switched system (2.1). The matrices Ai ∈ Rn×n and
Bi ∈ Rn×m are constant. Let x0 be the initial state x(t0).

In what follows, we consider the switching rule to be arbitrary and either
time-dependent or state-dependent, or both. Therefore, the notation σ(t)
does not imply that σ is only time dependent but refers to the realization of
the rule σ at time t. The switching rule σ is a piecewise continuous signal,
with discontinuities that signal a change in the active subsystem. We refer
to these discontinuities as jumps of the switching rule.

We also suppose that the jumps of the switching rule are separated by a
minimum time τd > 0. The time duration τd is called a minimum dwell time,

59

2.3. STABILITY OF SWITCHED LINEAR SYSTEMS CHAPTER 2

and its existence means that each subsystem remains active for at least a
period of time τd. The dwell time is essential in order to avoid Zeno behavior.

In the case of state-dependent switching, imposing a dwell time can be
hard, as the switching generally occurs when the state crosses a set of sur-
faces. Instead of crossing, the state may slide along the surface, creating
instantaneous switches. Fortunately, there exist several solutions to this
problem. For example, in [39], a minimum dwell time is imposed by cou-
pling state-switching and time-switching. Also, in Chapters 1 and 6 of [28],
a dwell time is obtained through hysteresis switching, in which switching
occurs when the state crosses a strip instead of a surface.

The pairs (Ai, Bi) are taken to be controllable for all i ∈ I. Thus, there
exist feedback gains Ki ∈ Rm×n, such that each individual matrix Ai−BiKi,
for all i ∈ I can be rendered Hurwitz, and each individual subsystem is sta-
ble. However, the stability of each individual subsystem does not guarantee
the stability of the switched system, under an arbitrary switching rule. The
stability of switched linear systems is discussed in more details in Section 2.3.

2.3 Stability of Switched Linear Systems

A sufficient condition for the stability of a switched linear system under
arbitrary switching is the existence of a CQLF. The function V : Rn → R+

of the form
V (x(t)) = x(t)TPx(t), (2.3)

is a CQLF for the system (2.1) if and only if there exists a single positive-
definite matrix P such that

(Ai −BiKi)
TP + P (Ai −BiKi) = −Qi, ∀i ∈ I, (2.4)

where Qi are symmetric positive definite matrices.

Even when each individual matrix Ai − BiKi is Hurwitz for all i ∈ I, a
CQLF is not guaranteed to exist. In the literature, conditions for the exis-
tence of a CQLF were established for some particular classes of systems, such
as the case when Ai − BiKi are triangular matrices or when they commute.
However, if the subsystems have a general structure, there is no algebraic
condition on Ai−BiKi to establish beforehand whether a CQLF exists [34].

60

2.4. PROBLEM DEFINITION CHAPTER 2

There also exist techniques to determine the location of the closed-loop
poles, if any, for which a CQLF exists. In [40], the authors propose to solve
a set of linear matrix inequalities to simultaneously design a stabilizing state
feedback control law and deduce a CQLF. In its simplest form, this approach
states that if we can find a positive definite matrix M ∈ Rn×n and matrices
Zi ∈ Rm×n such that for all i ∈ I

AiM +MATi +BiZi + ZT
i B

T
i < 0, (2.5)

then the feedback control laws with Ki = ZiM
−1 render the switched system

stable, and additionally ensure the existence of a CQLF with P = M−1. The
existence of such methods shows that requiring a CQLF is not too restrictive.

2.4 Problem Definition

Our objective is to stabilize the switched system (2.1) via an event-triggered
control law. In the case of switched systems, there are two types of events
at which the control law is updated

• the state of the system no longer satisfies some predefined performance
criteria,

• there is a jump in the switching rule, and a new subsystem becomes
active.

We denote by tk, k ∈ N, the time instants at which the events occur. The
control law u(t) is a state-feedback control and is scheduled as follows

u(t) = −Kix(tk), t ∈ [tk, tk+1), (2.6)

where the ith subsystem (i ∈ I) is active at time tk. Then in the interval
[tk, tk+1) and for all k, System (2.1) admits the solution

x(t) = e(Ai−BiKi)(t−tk)x(tk)−
∫ t

tk

e(Ai−BiKi)(t−s)BiKi∆kx(s)ds. (2.7)

where ∆kx(t) = x(tk) − x(t). In the framework of switched systems with a
finite number of subsystems, despite the jumps that the system undergoes,
x(t) is still Lipschitz continuous, with Lipschitz constant Lx.

Problem statement. Consider the switched linear system (2.1), composed
of I subsystems that switch according to an arbitrary switching rule σ. Each

61

2.5. EVENT-TRIGGERED CONTROL ALGORITHM CHAPTER 2

subsystem is stabilizable through a state-feedback control law. The control
law is updated when an event is triggered, and otherwise kept constant.
Therefore, we want to design an event-triggering condition, or a set of event
triggering conditions that

• detects the system’s failure to satisfy the performance criterion that we
introduce in Section 2.5,

• detects a change in the active subsystem, so that the right feedback Ki

is applied when subsystem i = σ(t) is active, maintaining the Hurwitz
property of Ai −BiKi.

Under an arbitrary switching rule, the control law is updated such that

• the switched linear system (2.1) is asymptotically stable,

• for any two consecutive events at tk and tk+1, there exists a minimum
duration τ > 0, such that tk − tk+1 ≥ τ , for all k ∈ N.

In the next section, we show how we develop the event-triggering condi-
tions around the CQLF and the switching rule.

2.5 Event-triggered Control Algorithm

2.5.1 Algorithm Description

As explained in the previous chapter, we assess the performance of the system
through the behavior of its pseudo-Lyapunov function. The case of switched
linear systems does not differ considerably, as the CQLF is taken as PLF.
The difference lies in the necessity to also monitor jumps in the switching
rule in the case of switched linear systems. Moreover, for switched systems,
we do not split the operation into steady-state and transient time. Instead,
for the entire operation time, the event-generator monitors intersections be-
tween the PLF and the threshold, as well as the jumps in the switching rule.

The behavior of the PLF can thus be described as follows. The PLF
V (x) decreases for some time after the update of the control law. Then, if
no jump occurs and when the control ceases to be effective, V (x) increases
until it reaches an upper threshold. At that moment the control law is up-
dated, and the V (x) decreases again. If, on the other hand, a new subsystem
becomes active, the control has to be updated, and whether V (x) is in a
decreasing or in an increasing phase prior to the update, it decreases again

62

2.5. EVENT-TRIGGERED CONTROL ALGORITHM CHAPTER 2

threshold

V (x(t))

tk tk+1 tk+2

Figure 2.1: The Lyapunov-like function V (x(t)) in blue and the upper thresh-
old in red.

following the update.

Fig. 2.1 illustrates the behavior of the PLF. It shows that at times tk and
tk+2 an event is generated as the PLF hits the upper bound, and is pushed
back below by control update, whereas the event at t = tk+1 corresponds to
a jump in the switching rule.

In Chapter 1, we have shown that in the case of linear time-invariant
systems, if we take a positive, exponentially decreasing function as the upper
threshold for the PLF, we can guarantee that the PLF decreases globally,
despite being locally increasing. In the case of switched systems, if a CQLF
exists, then a similar exponentially decreasing threshold can be found. In a
similar way, we look for a scalar λ < 0 such that the following constraint is
satisfied

dV (x(t))

dt
|t=t+k ≤ λV (x(tk)), ∀k. (2.8)

Yet, at t = t+k , after control update,

dV (x(t))

dt
|t+k = −xT (tk)Qix(tk), (2.9)

therefore, from equations (2.8) and (2.9), we want

−xT (tk)Qix(tk) ≤ λxT (tk)Px(tk) ∀k, i = σ(tk). (2.10)

To ensure the fastest possible decay rate in the case of switched systems,
λ has to be the maximum generalized eigenvalue of all the pairs (−Qi, P),

63

2.5. EVENT-TRIGGERED CONTROL ALGORITHM CHAPTER 2

which is defined as [21]

λmax ≡ inf{λ ∈ R | −Qi < λP,∀i = 1, ..., I}. (2.11)

This value can therefore be found by solving the following optimization prob-
lem

minimize λ

subject to the LMI constraints

(Ai −BiKi)
TP + P (Ai −BiKi) ≤ λP, ∀i ∈ I

P > 0, λ < 0.

(2.12)

We solve the above optimization problem for the maximum generalized
eigenvalue λmax. Then, we can define the upper threshold function W (t),

W (t) = W0e
−α(t−t0), (2.13)

where W0 ≥ V (x0) and 0 < α ≤ |λmax|.

We can then define the execution times of the control law.

Definition 3. We define the time instants tk, k ∈ N, at which the control
signal u(t) is updated, as

tk = inf{t > tk−1 | V (x(t)) ≥ W (t) or σ(t) 6= σ(tk−1)}, (2.14)

where V (x(t)) and W (t) are given by Equations (2.3) and (2.13), respectively.

2.5.2 Stability Results

In this section, we discuss the stability of a switched linear system under the
event-triggered control strategy described above.

Theorem 4. The control law, defined by Equation (2.6) and scheduled by
the event-triggering condition given by Definition 3, renders System (2.1)
asymptotically stable under arbitrary switching.

Proof. We show that the evolution of the PLF resulting from the control
algorithm described above remains upper bounded by W (t), for all t. And
since W (t) tends to zero as time tends toward infinity, so does V (x(t)), which
in turn means that x(t) converges to the zero equilibrium.

For t = t0, V (x0) ≤ W (t0), by definition. Then, when t > t0, we identify
three cases:

64

2.5. EVENT-TRIGGERED CONTROL ALGORITHM CHAPTER 2

1. Case σ(t−k) = σ(t+k) (no jump) and V (x(tk)) = W (tk)
When tk−1 < t < tk, V (x(t)) < W (t), by Definition 3.
When t = tk, V (x(tk)) = W (tk), and after updating the control,

dV (x)

dt
|t=t+k = −xT (tk)Qix(tk) ≤ λmaxV (x(tk)). (2.15)

Since we select α < |λmax|, then at time tk, λmaxV (x(tk)) < −αW (tk),
and equation (2.15) becomes

dV (x)

dt
|t=t+k ≤ −αW (x(tk)) =

dW (t)

dt
|t=tk < 0. (2.16)

This proves that at t = t+k , V (x(t)) decreases faster than W (t), and
therefore remains below W (t) for a certain time.

2. Case σ(t−k) 6= σ(t+k) (jump) and V (x(tk)) < W (tk)
Since V (x) is a continuous function, an update of the control law at
t = tk does not change the fact that V (x(t)) < W (t).

3. Case σ(t−k) 6= σ(t+k) and V (x(tk)) = W (tk)
Since V (x) is a common Lyapunov function for all the subsystems, this
case is not different from Case 1 when V (x(tk)) = W (tk) with no jump
of the switching rule.

Therefore, in all three cases, we guarantee that V (x(t)) ≤ W (t), for all t.

2.5.3 Minimum Inter-Event Time

The event-triggered control algorithm also needs to guarantee a minimum
time lapse between any two successive events. If no such time exists, we
could end up with an infinite number of updates in a finite interval of time,
a situation known as the Zeno phenomenon.

Theorem 5. Let T > t0 arbitrarily large, tk and tk+1 two consecutive time
instants in [t0, T] given by Definition 3. Then there exists a minimum time
τ > 0 such that tk+1 − tk ≥ τ , on the finite interval [t0, T].

Remark 3. The parameter T , that can be chosen arbitrarily large, allows us
to prove the existence of an inter-event time as it offers many advantages,
which are used in the following proof

65

2.5. EVENT-TRIGGERED CONTROL ALGORITHM CHAPTER 2

• We avoid the risk of obtaining events due to the switching rule that
are arbitrarily close to the events due to the PLF for large times. As
a result, there always exists a minimum time τ , either between two
intersections or between a jump and an intersection.

• It allows us to determine a lower bound on the exponential threshold,
that we can use in the proof.

Proof. The proof of Theorem 5 depends on the nature of each event in every
pair of consecutive events. We identify the following cases

• tk and tk+1 are due to an intersection between the PLF and the thresh-
old: this possibility is covered in Case 1, below.

• tk is due to a jump in the switching rule, while tk+1 is due to an inter-
section: this is covered in Case 2.

• tk and tk+1 are both due to a jump: in this case the minimum inter-
event time is τd, the dwell time.

• tk is the result of an intersection and tk+1 is due to a jump: since there
is a finite number of jumps, this can occur only a finite number of
times. Therefore, the minimum of these finite delays is nonzero, and
there exists a minimum inter-event time. However, we cannot give an
estimation of this inter-event time, unlike in the three other cases.

1. Case V (x(tk)) = W (tk)
To prove the existence of τ , we need to show that V (x(t)) decreases
faster than W (t) for some time after an update of the control law, such
that no other intersection is possible. For this, we follow the same
procedure as in Chapter 1. When t ∈ [tk, tk+1),

dV (x(t))

dt
= −x(t)TQix(t)− 2∆kx(t)TKT

i B
T
i Px(t). (2.17)

We can re-write dV (x(t))/dt in terms of x(tk) and ∆kx(t) as

dV (x(t))

dt
=− x(tk)

TQix(tk) + x(tk)
TQi∆kx(t)

+ ∆kx(t)T (Qi − 2KT
i B

T
i P)x(tk)

+ ∆kx(t)T (2KT
i B

T
i P −Qi)∆kx(t).

We recall that at t = tk
‖x(tk)‖ ≤M,

66

2.5. EVENT-TRIGGERED CONTROL ALGORITHM CHAPTER 2

where M =
√
W0/λmin(P).

We use this upper bound on ‖x(tk)‖, Equations (2.15), and the Lip-
schitz continuity of x(t), to find an upper bound on dV (x(t))/dt

dV (x(t))

dt
≤ λmaxW0e

−α(tk−t0) +Mλmax(Qi)Lx(t− tk)

+ LxM‖Qi − 2KT
i B

T
i P‖(t− tk)

+ ‖2KT
i B

T
i P −Qi‖L2

x(t− tk)2.

(2.18)

Equation (2.18) is of the form

dV (x(t))

dt
≤ λmaxW0e

−α(tk−t0) + C1(t− tk) + C2(t− tk)2,

Similarly to the proof in Chapter 1, we arrive at the inequality

|λmax|
α

>
C1(t− tk)

αW0e−α(tk−t0)
+

C2(t− tk)2

αW0e−α(tk−t0)
+ e−α(t−tk) =: fk(t),

This inequality is satisfied at t = tk, as fk(tk) = 1 and the quantity
|λmax|/α > 1. From the expression of fk(tk), this function is uniformly
Lipschitz continuous, and there exists a constant Lf > 0, independent
of k such that

|fk(t)− fk(tk)| ≤ Lf |t− tk|. (2.19)

This implies that in a sufficiently small interval [tk, tk + τ), we can
guarantee that

|λmax|
α

> fk(t).

Therefore, τ is a uniform lower bound on the minimum inter-event time
for all k.

2. Case σ(t−k) 6= σ(tk) and V (x(tk)) < W (tk)
For this type of events, there is nothing we can say about the rate of
decay of V (x(t)) with respect to the decay rate of W (t). However,
depending on how far V (x(tk)) is from W (tk), we can show that some
time has to pass before their next intersection. We can analyze this
time lapse based on the difference between V (x(tk)) and the quantity
W (T)/2, which falls into two categories. The PLF V (x(tk)) is either
above or below W (T)/2, as shown on Figure 2.2.

67

2.5. EVENT-TRIGGERED CONTROL ALGORITHM CHAPTER 2

W (T)

W (T)
2

W (t)

timetk tk+1

Figure 2.2: The two positions of the PLF during a jump due to switching.

• Case V (x(tk)) ≥ W (T)/2.
Since V (x(tk)) < W (tk), we show that the V (x(t)) changes slowly
enough, so that no intersection between the PLF and the threshold
is possible until some time passes. For this we show that the deriva-
tive of V (x(t)) remains bounded from above for some amount of time.

In the case when V (x(tk)) ≥ W (T)/2, we have

W (T)

2
≤ V (x(tk)) ≤ λmax(P)‖x(tk)‖2,

which yields

‖x(tk)‖ ≥

√
W (T)

2λmax(P)
.

We denote µ =
√
W (T)/2λmax(P).

When tk < t < tk+1, x(t) is given by the integral equation (2.7). Also,
in the interval [t0, T] and due to the Hurwitz property of Ai−BiKi,
there exist two positive constants γ and Γ, such that

γ‖x(tk)‖ ≤ ‖e(Ai−BiKi)(t−tk)x(tk)‖ ≤ Γ‖x(tk)‖.

Besides, since x(t) is Lipschitz continuous, we can deduce the follow-
ing lower bound on ‖x(t)‖,

‖x(t)‖ ≥ γ µ− Γ‖BiKi‖
Lx
2

(t− tk)2.

So, if we select a sufficiently small τ1, when t ∈ [tk, tk + τ1), there
exists ε > 0, such that

‖x(t)‖ ≥ ε.

68

2.5. EVENT-TRIGGERED CONTROL ALGORITHM CHAPTER 2

W (T)

W (T)
2

W (t)

V (x)

timetk τ3

Figure 2.3: Illustration of the existence of an inter-event time when
V (x(tk)) < W (T)/2.

Using this lower bound yields an upper bound on the first term of
Equation (2.17)

−x(t)TQix(t) ≤ λmin(Qi)ε
2 =: −2β.

The second term admits an upper bound

‖ − 2∆kx(t)TKiBiPx(t)‖ ≤ 2Lx(t− tk)‖KiBiP‖M,

which can be rendered smaller than β by choosing t from an interval
[tk, tk + τ2) with τ2 ≤ τ1 and τ2 small enough. Therefore, for t ∈
[tk, tk + τ2), dV (x(t))/dt ≤ −β, and V (x(t)) is strictly decreasing
during this interval.

• Case V (x(tk)) < W (T)/2.
In this case, we cannot find a lower bound on ‖x(t)‖, and thus we
cannot estimate the time during which dV (x(t))/dt decreases. How-
ever, we know that

V (x(tk)) < W (T)/2 < W (T) < W (tk).

Due to the large gap between V (x(tk)) and W (tk), and to the Lip-
schitz continuity of V (x(t)), an intersection between V (x(t)) and
W (t) is not possible until some time τ has elapsed, as shown on
Figure 2.3.

Additionally, before an intersection with W (t) is possible, V (x(t))
has to go first through the value W (T)/2 and then W (T) (see Fig-
ure 2.3). If we assume that V (x(t)) increases linearly with the max-
imum possible rate, we can estimate the time it takes for V (x(t)) to

69

2.5. EVENT-TRIGGERED CONTROL ALGORITHM CHAPTER 2

go from W (T)/2 to W (T), as a lower bound on τ . Let τ3 be this
lower bound.

To determine the maximum possible rate, we need to find an upper
bound on |dV (x(t))/dt|. We first re-write Equation (2.17) in the
following form

dV (x(t))

dt
= x(t)T (2KT

i B
T
i P −Qi)x(t)− 2x(tk)

TKT
i B

T
i Px(t).

When W (T)/2 ≤ V (x(t)) ≤ W (T)

‖x(t)‖ ≤

√
W (T)

λmin(P)
=: η.

Then, we recall that as V (x(tk)) < W (T)/2

‖x(tk)‖ <

√
W (T)

2λmin(P)
=

√
2

2
η.

The maximum possible rate is then∣∣∣∣dV (x(t))

dt

∣∣∣∣ ≤ (‖2KT
i B

T
i P−Qi‖+

√
2‖KT

i B
T
i P‖)

W (T)

λmin(P)
=: ψW (T).

Therefore, the time it takes V (x(t)) to reach W (T) from W (T)/2 is
given by the equation

W (T)ψ τ3 ≈
W (T)

2
.

A lower bound on τ is then

τ ≥ 1

2ψ
,

where

ψ =
‖2KT

i B
T
i P −Qi‖+

√
2‖KT

i B
T
i P‖

λmin(P)
,

is a constant and is independent of t, tk and T .

70

2.6. NUMERICAL EXAMPLE CHAPTER 2

2.6 Numerical Example

2.6.1 Time-Dependent Switching

Consider the following second order switched system with three subsys-
tems [41]

A1 =

[
0.13 −0.25
0.39 −1.17

]
, B1 =

[
1
−1

]
,

A2 =

[
0.35 −0.42
−0.43 0.01

]
, B2 =

[
−3.925
−2.11

]
,

A3 =

[
−1.58 0.01
−0.91 0.71

]
, B3 =

[
0.02
−0.08

]
,

with x0 = [1 − 0.2]T . By using the following feedback gains

K1 =
[

0.499 −0.0074
]
,

K2 =
[
−1.0146 1.0493

]
,

K3 =
[

1.7845 −16.1789
]
,

we can make the three subsystems individually stable. They also allow us to
find a CQLF with

P =

[
3.7698 −3.7031
−3.7031 4.4162

]
,

and decay rate λmax = −0.5701. We have obtained P and λmax using the
’gevp’ function of MATLAB. We choose α = 0.52 s−1 and W (t0) = 5.928.
We have simulated the system for 30 seconds with a sampling time of 0.001 s.
We have chosen a small sampling time to mimic the continuous-time behav-
ior of the system. In addition, the active subsystem is chosen at random
every Tσ = 1.5 s. The switching sequence is shown in Figure 2.4.

Figure 2.5 shows the time evolution of the two states x1(t) and x2(t). The
two states converge to equilibrium around t = 10 s.

Figure 2.6 shows the event-triggered control law u(t). The control has
been updated 27 times, 14 times due to an intersection between V (x(t)) and
W (t), and 13 times due to a jump in the switching rule. Considering that
the total number of simulation steps is 30, 000, we have decreased the com-
munications between the controller and the plant by a factor of 1/1000.

71

2.6. NUMERICAL EXAMPLE CHAPTER 2

0 5 10 15 20 25 30

Time

0

0.5

1

1.5

2

2.5

3

3.5

sw
itc

hi
ng

 ru
le

Figure 2.4: The switching sequence.

Figure 2.7 represents the PLF V (x(t)) and the upper threshold W (t).
We display the first 11 seconds only, for beyond that time, W (t) and V (x(t))
approach zero, and it becomes harder to spot the events. We can notice
the increases and decreases of the PLF, and the global convergence to zero.
We can see the updates due to a jump in the switching rule, for example at
t = 1.5 s. Examples of updates due to an intersection between the PLF and
the threshold occur at t = 2.83 s and t = 3.64 s.

0 5 10 15 20 25 30

Time

-1.5

-1

-0.5

0

0.5

1

st
at

es

x1

x2

Figure 2.5: The time evolution of the states of the switched system.

To see the events for the entire simulation window, we display the dis-
tribution of events in Figure 2.8. It shows events that are unevenly dis-
tributed in time. Successive events are generally far apart, but can also be
clustered together. This distribution further emphasizes the philosophy of
event-triggered control to give attention to a system when most needed.

72

2.6. NUMERICAL EXAMPLE CHAPTER 2

0 5 10 15 20 25 30

Time

-8

-6

-4

-2

0

2

4

6

8

co
nt

ro
l

u

Figure 2.6: The event-based control signal.

0 2 4 6 8 10

Time

0

1

2

3

4

5

6

Ly
ap

un
ov

V

W

Figure 2.7: The Lyapunov function (in blue) and the exponential threshold
(in red).

0

0.5

1

1.5

ev
en

ts

0 5 10 15 20 25 30

Time

V(x) = W(t)

jump

Figure 2.8: The events due to intersections (in blue) and to jumps (in red).

2.6.2 Event-Based Switching

We consider the previous second-order system with three subsystems. We
keep the same experimental parameters as in the previous example and we

73

2.6. NUMERICAL EXAMPLE CHAPTER 2

change the rate of decay to α = 0.47 s−1. This time, we consider a switching
rule tied to the intersections between the PLF and the threshold. In this
switching rule, the active subsystem changes when an intersection between
the PLF and the threshold occurs. The switching sequence follows an ordered
pattern of 1, 2, 3, 1, and so on. We chose this pattern because it represents
one of the worst case scenarios, as there is a jump in the switching rule at
every period Tσ. The switching signal is shown on Figure 2.9b.

Figure 2.9a shows the time evolution of the states. We can see that the
states exhibit more oscillations and take a longer time to converge (more
than 20 s compared to less than 10 s for the previous example). The number
of updates of the control law remains comparable, with 31 updates.

Figure 2.9c and Figure 2.9d show that the largest inter-event times are
obtained when subsystem 1 is active. This is due to the fact that susbsystem
1 has the least unstable mode in open-loop of all the subsystems. It has an
unstable open-loop eigenvalue at 0.05, whereas subsystem 2 has an unstable
eigenvalue at 0.64 and subsystem 3 possesses an open-loop eigenvalue at 0.71.

We have also experimented with various values of the rate of decay α,
as increasing this value should speed up the convergence of the states to
equilibrium. A maximum value of α = 0.569 decreases the convergence time
to within 17 s, which still represents a large value compared to the previous
example.

2.6.3 State-Dependent Switching

In this example, we examine the event-triggered control strategy when the
switching rule is state-dependent. For this, we consider the following second
order switched linear system, with two subsystems [42],

A1 =

[
−0.5 0
0.1 0.4

]
, B1 =

[
1
2

]
,

A2 =

[
0.2 1
0 0.3

]
, B2 =

[
0.2
1

]
,

with x0 = [0.15 − 0.25]T .
For the feedback gains

K1 =
[

0.0737 −0.6632
]
,

K2 =
[

1.7797 1.5441
]
,

74

2.6. NUMERICAL EXAMPLE CHAPTER 2

0 5 10 15 20 25 30

Time

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

s
ta

te
s

x1

x2

(a) States

0 5 10 15 20 25 30

Time

0

0.5

1

1.5

2

2.5

3

3.5

sw
itc

hi
ng

 r
ul

e

(b) Switwhing rule

0 5 10 15 20 25 30

Time

-2

0

2

4

6

8

10

12

14

16

18

c
o
n
tr

o
l

u

(c) Control

0 2 4 6 8 10

Time

0

1

2

3

4

5

6

Ly
ap

un
ov

V

W

(d) Zoom on the PLF

Figure 2.9: Simulation results for state-dependent switching.

there exists a CQLF with

P =

[
0.6659 0.1481
0.1481 0.4937

]
, λmax = −0.514.

Hence, we select α = 0.513 s−1 and W (0) = 1.1V (x0) = 0.0382. We also use
the same simulation time and sampling period as the previous example.

To construct a state-dependent switching rule, we divide the state space
into two regions, Σ1 and Σ2, separated by the surface S, as shown in Fig-
ure 2.10a. Thus, when the state is in region Σ1, subsystem 1 is active, whereas
in region Σ2, subsystem 2 is active.

When the surface S is a sliding surface, the state slides along S towards
the origin. However, in a discrete-time simulation, the state keeps crossing to
one side of S or the other during the sliding mode, creating switches at every
instant. Such a situation contradicts our assumption that each subsystem
must remain active for at least some duration τd. To solve this problem, we
use the strategy in [28] called hysteresis switching.

75

2.6. NUMERICAL EXAMPLE CHAPTER 2

In hysteresis switching, the surface S is off-set to the right and to the left,
to define two new surfaces S1 and S2, respectively. This results in a strip
(see Figure 2.10b) between the two new surfaces, intersecting both regions
Σ1 and Σ2. This way, no switching occurs when either surface is crossed until
the state leaves the common region Σ1 ∩ Σ2.

S

Σ1

Σ2

(a) Regions of the state-space

S

Σ1

Σ2

S2

S1

Σ1 ∩ Σ2

(b) Off-setting the switching surface

Figure 2.10: State-dependent and hysteresis switching.

In our example, we choose

(S) : x2 = −1.2825x1,

(S1) : x2 = −1.2825x1 − 0.02,

(S2) : x2 = −1.2825x1 + 0.02.

Figure 2.11a shows the evolution of the states of the system with time.
We see that the states eventually tend to equilibrium, proving the effective-
ness of our approach. However, the states undergo an oscillation phase in
transient-time. This is due to the fact that in the transient regime, the system
experiences many switches as shown in the phase portrait of Figure 2.11b.
From Figure 2.11b, we also verify the effects of hysteresis switching as the
state bounces between S1 and S2, thus allowing for a dwell time. When the
state reaches a vicinity of the equilibrium, it remains inside a ball centered
at the origin and switching stops.

Figure 2.11c shows the event-triggered control law, which has been up-
dated 34 times, 20 times due to an intersection between the PLF and thresh-
old and 14 times due to a jump in the switching rule. Figure 2.11d shows
the PLF between t = 6 s and t = 15 s. Figure 2.11d reflects what is seen on
the phase portrait of Figure 2.11b, as the events in transient-time are mostly

76

2.7. CONCLUSION CHAPTER 2

0 5 10 15 20 25 30

Time

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

s
ta

te
s

x1

x2

(a) States

-0.15 -0.1 -0.05 0 0.05 0.1

x
1

-0.1

-0.05

0

0.05

0.1

0.15

x
2

x
1

 vs. x
2

S
1

S
2

S

(b) Phase Portrait

0 5 10 15 20 25 30

Time

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

c
o

n
tr

o
l

u

(c) Control

6 7 8 9 10 11 12 13 14 15

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ly
ap

un
ov

10 -3

V

W

(d) Zoom on the PLF

Figure 2.11: Simulation results for state-dependent switching.

due to a jump in the switching rule, whereas events in stead-state are due to
an intersection between the PLF and the threshold.

2.7 Conclusion

We have extended the event-triggered stabilizing control algorithm of Chap-
ter 1 to switched systems. We have also shown how to extend the generalized
eigenvalue problem to find a common quadratic Lyapunov function for all the
subsystems of the switched system. The solution of this problem, as in the
case of a single system, also allows us to find the maximum possible decay
rate for the exponential threshold.

This approach allows us to decrease the number of updates of the control
law. However, we have decreased the number of samples at the expense of the
quality of the response, as the state undergoes sharp oscillations. This makes
our method more suitable for applications where the shape of the response is
not detrimental to the control objective. Additionally, in applications where

77

2.7. CONCLUSION CHAPTER 2

the users have control over the switching rule, they can smooth out the re-
sponse by decreasing the dwell time of the switching rule.

78

Chapter 3

Event-Triggered Reference
Tracking for Linear Systems

Contents
3.1 Introduction . 79

3.2 Problem Statement 81

3.2.1 System Description 81

3.2.2 Reference System 82

3.3 Event-Triggering Conditions 83

3.3.1 Defining the Event-Triggering Conditions 83

3.3.2 Practical Stability Results 85

3.3.3 Minimum Inter-Event Time 86

3.4 Simulation Results 88

3.4.1 Yaw damper example 88

3.5 Effects of the Parameter ε 92

3.5.1 Discrete-Time Implementation 93

3.5.2 Solutions in Discrete Time 96

3.6 Conclusion . 99

3.1 Introduction

So far we have only treated the problem of stability and stabilization of linear
systems. In this chapter, we tackle the issue of reference tracking for linear

79

3.1. INTRODUCTION CHAPTER 3

systems. Given the output of a system that consists in the entire state vector
or part of it, we want to drive the output to follow a given reference trajectory.

A few works on event-triggered control for reference tracking exist through-
out the literature. For instance, in [43] an event-based LQR controller is im-
plemented, while the reference tracking is achieved through integral action.
In [44], [45], [46], an additional fictitious system that generates the desired
trajectory is defined. The event-triggering conditions are then established
according to the error between the state of the reference system and that of
the actual system.

In the approaches where a reference system is used, this system is chosen
to be an appropriate external system. However, in our work, we propose
to select the reference system as the continuously-controlled version of the
event-triggered system being considered. It is indeed reasonable to assume
that the behavior of the continuously-controlled system should serve as a
model for the performance of the event-triggered algorithm. As the two sys-
tems share similar dynamics, the error between the two would be the result
of the event-triggered implementation only, and not of the difference in be-
havior, reducing thus the number of events.

Our contribution also consists in how we maintain the error between the
event-triggered state and the reference state below a certain threshold. In the
case of linear systems, the error signal is treated as the state of a new virtual
system. If the virtual system is stable, the error signal ultimately decays to
zero, thus converting the tracking problem to a stability problem, that we
know how to solve in the framework of event-triggered control. The stabil-
ity requirement is again achieved by associating a pseudo-Lyapunov function
function to the error system. However, in this chapter, we require only prac-
tical stability and not asymptotic stability. For this reason, we change the
exponentially decreasing threshold to a constant one.

This chapter is organized as follows: in the next section we expose the
mathematical framework of the problem at hand by explaining the event-
based scheme. In Section 3.3, we define the event-triggering conditions that
ensure the boundedness of the error. Some simulation results are then pre-
sented in Section 3.4.

80

3.2. PROBLEM STATEMENT CHAPTER 3

3.2 Problem Statement

3.2.1 System Description

Let us re-consider the previous LTI system, with the output y(t)

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

x(t0) = x0.

(3.1)

The output y(t) ∈ Rp can be the entire state vector or a linear combination
of the state variables. Since most of the time, only a portion of the state
vector is accessible for measurement, the output vector is generally a linear
combination of the state vector. However, we consider in this work that the
entire state vector is available, either through measurement or observation.
For this reason, in addition to the controllability of the pair (A,B), we re-
quire the pair (A,C) to be observable.

We wish to drive the output of system (3.1) to follow a trajectory deter-
mined by an exogenous signal r(t), called the reference input. For this, we
design an event-triggered control law of the form

u(t) = −Kx(tk) +Gr(tk), ∀t ∈ [tk, tk+1), (3.2)

where K ∈ Rm×n is the feedback gain and G ∈ Rm×p is the calibration
G = (−C(A−BK)−1B)−1.

As a result, we obtain the following closed-loop system

ẋ(t) = (A−BK)x(t)−BK∆kx(t) +BGr(tk),

y(t) = Cx(t).
(3.3)

This control law has to satisfy the following requirements

1. (A−BK) is Hurwitz with desired eigenvalues,

2. limt→∞‖y(t)− r(t)‖ ≤ ε,

where ε > 0 is a user-defined parameter.

81

3.2. PROBLEM STATEMENT CHAPTER 3

3.2.2 Reference System

Previously, we have demonstrated how to stabilize an LTI system by keeping
its Lyapunov-like function under a certain threshold. In this case though, the
presence of the reference signal r(t) adds an extra difficulty, as the pseudo-
Lyapunov function does not give much information on the tracking process.
To solve this problem, we define a reference system, as a continuously con-
trolled version of System (3.1), with state xr(t), and driven by the control
law ur(t) = −Kxr(t) + Gr(t), for all t. The closed-loop reference system is
given by

ẋr(t) = (A−BK)xr(t) +BGr(t),

yr(t) = Cxr(t),

xr(t0) = x0.

(3.4)

The output signal satisfies

lim
t→∞
‖yr(t)− r(t)‖ = 0. (3.5)

The control law ur(t) is applied continuously to the reference system. From
classical control theory, we know that achieving the objective of equation (3.5)
is always possible when the pair (A,B) is controllable.

At each time instant, the behavior of the event-based system will be
compared to that of the reference system. From this comparison, we will
determine whether the behavior of System (3.1) is acceptable or whether the
control should be updated.

Remark 4. The principle of a reference system in the event-based scheme
has also been used in references [44], [45], [46]. Our approach differs in the
fact that the reference system is provided within the method, whereas in [44]
and [45] the choice of the reference system is left for the user to make. The
work presented in [46] deals with a stability problem since the states are driven
to zero.

Since the reference system achieves limt→∞‖yr(t) − r(t)‖ = 0, it is suffi-
cient to guarantee that limt→∞‖y(t)− yr(t)‖ = 0, to ensure that the output
y(t) of the event-triggered system follows the trajectory of r(t).

In this work, however, we consider the substitute problem of driving the
state error ‖x(t) − xr(t)‖ to zero as time t tends to infinity. This principle

82

3.3. EVENT-TRIGGERING CONDITIONS CHAPTER 3

is depicted in Figure 3.1. From the relationship between x(t) and y(t), we
deduce that limt→∞‖x(t)− xr(t)‖ = 0 implies limt→∞‖y(t)− yr(t)‖ = 0.

r(t)

Mux

ẋr = (A−BK)xr +BGr

yr = Cxr

u̇(t) = 0

u(tk) = −Kx+Gr

ẋ = Ax+Bu

y = Cx

y

xr
Event

Generator
V (e(t)) = δ

x

x(t)

Figure 3.1: Schematic of the proposed event-based tracking controller.

For the plants where the states are not available for measurement, tech-
niques for obtaining an estimation of these states (such as observers) can be
used alongside our approach with only a small modification.

3.3 Event-Triggering Conditions

3.3.1 Defining the Event-Triggering Conditions

In this section, we define a new system based on the reference and the event-
based systems. The state of this new system, the error between the real state
x(t) and the reference state xr(t),

e(t) = x(t)− xr(t), (3.6)

serves as a basis for updating the control u(t). The dynamics of the error
can be described as follows

1. when t ∈ (tk, tk+1)

ė(t) = (A−BK)e(t)−BK∆kx(t) +BG∆kr(t), (3.7a)

where ∆kr(t) = r(tk)− r(t), and ∆kx(t) = x(tk)− x(t);

83

3.3. EVENT-TRIGGERING CONDITIONS CHAPTER 3

2. when t = tk, k = 0, 1, 2, . . .

ė(t) = (A−BK)e(t). (3.7b)

In order to satisfy the condition limt→∞‖x(t)− xr(t)‖ = 0, we need to make
limt→∞‖e(t)‖ = 0. From the point of view of the tracking error, this is a
stabilization problem, that we can solve by associating a PLF to the virtual
error system.

Since we defined the tracking problem as keeping the output y(t) within
a value ε of r(t), we do not try to drive the tracking error to zero. Instead,
we relax this condition and only require the error norm to remain within a
ball of radius ε.

Remark 5. We allow the exogenous signal r(t) to be only piecewise Lip-
schitz, and we authorize it to contain jumps, provided that there exists a
minimum interval of time between two successive jumps where r(t) is contin-
uous. Moreover, we require r(t) to be uniformly bounded, i.e. ‖r(t)‖ ≤ Br,
Br > 0.

Remark 6. Note also that despite the jumps in r(t), the states xr(t), x(t)
and e(t) remain Lipschitz. However, their first derivatives do exhibit jumps.
Indeed, jumps in ẋ(t) occur when an event happens and jumps in ẋr(t) are
due to jumps in r(t). Therefore ė(t) exhibits jumps both when either ẋ(t) or
ẋr(t) exhibit discontinuities.

Based on equation (3.7b), we can associate to the system (3.7) a Lyapunov-
like function of the following form

V (e(t)) = e(t)TPe(t). (3.8)

Since our objective is not to drive either the error e(t) or the PLF to
zero, and we are only interested in a practical form of stability, we can use a
constant threshold, as shown on Figure 3.2. For this reason, P is chosen such
that it satisfies the Lyapunov equation, with Q as a user-defined parameter,
and does not have to be a solution of an optimization problem.

In what follows, we show how to choose the constant threshold in order
to fulfill the requirement ‖e(t)‖ ≤ ε.

Let δ > 0 be the upper limit that we impose on V (e),

0 ≤ V (e) ≤ δ. (3.9)

84

3.3. EVENT-TRIGGERING CONDITIONS CHAPTER 3

The PLF is naturally bounded as follows

λmin(P) ‖e(t)‖2 ≤ V (e) ≤ λmax(P) ‖e(t)‖2. (3.10)

Therefore, if we keep V (e(t)) confined to the region delimited by the constant
threshold δ, we can guarantee the following upper bound on e(t),

‖e(t)‖ ≤

√
δ

λmin(P)
=: ε. (3.11)

Therefore,
δ = λmin(P)ε2. (3.12)

Consequently we can define our triggering conditions based on this premise.

time

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

V(e)

Upper Limit

Figure 3.2: Evolution of the Lyapunov function with constant threshold.

Definition 4. We define the time-instant tk+1 (k ∈ N) at which the control-
law u(t) is updated as the minimum time instant t > tk for which V (e(t)) = δ:

tk+1 = inf{t > tk, V (e(t)) = δ}. (3.13)

3.3.2 Practical Stability Results

Theorem 6. The event-triggered control law defined by Equation (3.2), sched-
uled by the event-triggering condition given by Definition 4, and driving Sys-
tem (3.1) with e(t0) = 0, keeps the tracking error e(t) confined in the ball of
radius ε, denoted B(ε), i.e.

‖e(t)‖ ≤ ε, (3.14)

where ε is defined in Equation (3.11).

85

3.3. EVENT-TRIGGERING CONDITIONS CHAPTER 3

Proof. At t = t0, ‖e(t0)‖ = 0 < ε, by construction.
Then, at time t = tk, when V (e(t)) = δ

dV (e(t))

dt
|t=t+k = −e(tk)TQe(tk) < 0.

So, V (e(t)) decreases at time t = t+k and is pushed back to the region com-
prised between the lines V (e) = 0 and V (e) = δ. We have already shown
that in this region, ‖e(t)‖ ≤ ε.
Since Q is a positive-definite matrix, its largest and smallest eigenvalues,
λmax(Q) and λmin(Q), respectively, are real and positive. Then, we can set
an upper and lower limit on the descent of V (e(t)),

−λmax(Q)‖e(tk)‖2 ≤ dV (e(t))

dt
|t=t+k ≤ −λmin(Q)‖e(tk)‖2. (3.15)

3.3.3 Minimum Inter-Event Time

Theorem 7. If r(t) is a Lipschitz continuous signal, there exists a minimum
time τ > 0, independent of k, such that

∀k ∈ N, tk+1 − tk > τ.

Remark 7. Assuming that r(t) is Lipschitz is not a very strong assumption,
since in practice, a low-pass filter is used on the reference input to handle the
abrupt changes that it may contain and avoid actuator saturation, eventually
rendering it Lipschitz.

Proof. We show that V (e(t)) decreases for some time τ1, after an update of
the control law.

When tk ≤ t ≤ tk+1,

dV (e(t))

dt
= −e(t)TQe(t)− 2∆kx(t)TKTBTPe(t) + 2∆kr(t)

TGTBTPe(t)

≡ −e(t)TQe(t) +Rk(t). (3.16)

We first show that ‖e(t)‖ remains large enough for some time after an
update of the control law. We then use this fact to show that dV/dt remains
strictly negative for a duration τ1 after an event.

86

3.3. EVENT-TRIGGERING CONDITIONS CHAPTER 3

In the interval [tk, tk+1), ė(t) is given by Equation (3.7a), where we denote

Fk(t) = BK∆kx(t)−BG∆kr(t).

The solution of Equation (3.7a) is

e(t) = e(tk)e
(A−BK)(t−tk) −

∫ t

tk

e(A−BK)(t−s)Fk(s)ds.

As established in the previous chapters, x(t) is Lipschitz continuous with
constant Lx, and Theorem 7 requires the signal r(t) to be Lipschitz, with
Lipschitz constant Lr. The term ‖Fk(t)‖ can then be bounded as follows

‖Fk(t)‖ ≤ ‖BK‖Lx(t− tk) + ‖BG‖Lr(t− tk) ≤ c1(t− tk).

For t sufficiently close to tk, there exist two positive constants γ and Γ such
that

γ‖e(tk)‖ ≤ ‖e(tk)e(A−BK)(t−tk)‖ ≤ Γ‖e(tk)‖.
Therefore,

‖e(t)‖ ≥ γ‖e(tk)‖ −
1

2
Γc1τ

2
1 .

From (3.10), we have ‖e(tk)‖ ≥
√
δ/λmax(P). Therefore, for a sufficiently

small τ1 independent of k, we can ensure that

‖e(t)‖ ≥ γ

2

√
δ

λmax(P)
.

This yields an upper bound on the first term of Equation (3.16)

−e(t)Qe(t) < −β,

where β = λmin(Q)γ2δ/2λmax(P).

The second term of Equation (3.16) can be bounded from above as follows

|Rk(t)| ≤ 2‖PBK‖‖e(t)‖‖∆kx(t)‖+ 2‖PBG‖‖e(t)‖‖∆kr(t)‖.

We recall that

‖e(t)‖ ≤

√
δ

λmin(P)
.

Then, in an interval [tk, tk + τ2),

|Rk(t)| ≤

√
δ

λmin(P)
(2‖PBK‖Lx + 2‖PBG‖Lr)τ2.

87

3.4. SIMULATION RESULTS CHAPTER 3

By choosing τ2 < τ1 small enough, we can make |Rk(t)| ≤ −β/2, which in
turns yields

dV (e(t))

dt
≤ −β

2
.

Therefore, there exists a minimum time interval during which the derivative
of V (e(t)) is strictly negative and V (e(t)) is decreasing. The time duration
for which V (e(t)) is a lower bound on the minimum inter-event time

τ ≥ τ2.

Remark 8. If r(t) experiences jumps as is the case in the numerical examples
below, it is no longer possible to give a lower bound of the delay between
two samples. Indeed, although when r(t) is bounded, the term Rk(t) can be
bounded by a constant on the time interval [tk, tk + τ2), we do not know the
times at which jumps in r(t) take place. In practice, r(t) has a finite number
of jumps, and so there exists a minimum inter-event time between updates,
but it cannot be estimated in terms of the parameters of the system.

3.4 Simulation Results

3.4.1 Yaw damper example

Let us reconsider the yaw damper example from Chapter 1 with

K =

(
0.3235 −0.6325 0.1891 0.2561
−12.5446 −0.7213 25.9652 27.2314

)
and

G =

(
−11.7069 0.7115
−202.0659 35.3351

)
.

We choose the positive-definite matrix P as

P =


4.6408 −0.8446 −0.1942 −0.1980
−0.8446 0.9479 0.2071 0.3299
−0.1942 0.2071 0.6457 0.5917
−0.1980 0.3299 0.5917 4.6188

 .

For a maximum tolerance on the error of ε = 0.2, we find δ = 0.02. We set
the sampling time to ts = 10−4.

88

3.4. SIMULATION RESULTS CHAPTER 3

We want the outputs to track a reference signal that consists in a combi-
nation of step signals. Let h(t) be the unit-step function, then

r1(t) = 0.2h(t) + 0.2h(t− 15),

r2(t) = 4h(t)− 2h(t− 15).

0 5 10 15 20 25 30
-2

0

2

4

y
1

r
1

0 5 10 15 20 25 30

time

0

2

4 y
2

r
2

Figure 3.3: Time evolution of the two output signals with their respective
reference signals.

89

3.4. SIMULATION RESULTS CHAPTER 3

0 5 10 15 20 25 30
-2

0

2

4

y
r1

r
1

0 5 10 15 20 25 30

time

0

1

2

3

4

y
r2

r
2

Figure 3.4: Outputs of the reference system

0 5 10 15 20 25 30

-4

-3

-2

-1

0

1

u
1

0 5 10 15 20 25 30

time

-200

-100

0

100 u
2

Figure 3.5: The event-based control signals.

Figure 3.3 shows the evolution of the two outputs with respect to time,
with each output represented with the reference signal it is supposed to track.
We can see that for a relatively large value of ε, the system is able to track

90

3.4. SIMULATION RESULTS CHAPTER 3

the reference. The system outputs are similar to the reference outputs shown
on Figure 3.4, even though the first output y1 exhibits some ripples. This is
due to the large value of δ which results in updates of the control law that
are further spaced in time as shown in Figure 3.5.

From Figure 3.5 we can see that the control updates are unevenly spaced
in time. Indeed, during the transient period or when there is an abrupt
change in the reference input, the control is updated more often, whereas
when the reference settles to a constant value, the updates become less fre-
quent and rather regularly spaced.

0 5 10 15 20 25 30

time

0

0.005

0.01

0.015

0.02

0.025

V(e)

Figure 3.6: Time evolution of the pseudo-Lyapunov function.

Figure 3.6 shows the evolution of the PLF V (e(t)) with respect to time.
We can notice that it remains enclosed within the region bounded from above
by δ.

Around t = 0 and t = 15 s on Figure 3.6, when r(t) changes values
instantaneously, the events are also separated by a minimum time span, as
seen on the zoom around t = 15 s on Figure 3.7. We notice that V (e(t)) goes
above δ in some instants. This is due to the fact that computer simulations
run in discrete-time rather than in continuous-time, and therefore, detecting
the time at which V (e(t)) reaches precisely the value δ is not possible. This
phenomenon is analyzed in more details when we discuss the discrete-time
implementation in Section 3.5.1.

91

3.5. EFFECTS OF THE PARAMETER ε CHAPTER 3

15 15.1 15.2 15.3 15.4 15.5 15.6

time

0.0188

0.019

0.0192

0.0194

0.0196

0.0198

0.02

V(e)

Figure 3.7: Zoom on the PLF at t = 15 s.

3.5 Effects of the Parameter ε

We have seen in the previous section that a large tolerance on the variations
of the tracking error produces a response that oscillates around the desired
trajectory, while requiring fewer updates of the control law.

We can further illustrate this property by increasing the value of the tol-
erance ε to ε = 0.5. We then observe the shape of the response and record
the number of updates. Figure 3.8 shows the response of the system for
this value of ε, with δ = 0.1233. As expected, the quality of the response
deteriorates, especially for the yaw rate, and exhibits oscillations of larger
amplitudes around the desired trajectory. As to the number of updates of
the control law, it drops to 70, for 300, 000 simulation instants, a factor of
1/4, 200.

Inversely, if we decrease the tolerance to ε = 0.05, we obtain a much
smoother response as shown on Figure 3.9. The system requires 336 updates
of the control law to achieve an output signal of such high quality. The
further we decrease the tolerance, the closer the response is to the reference
output shown on Figure 3.4.

92

3.5. EFFECTS OF THE PARAMETER ε CHAPTER 3

0 5 10 15 20 25 30
-2

0

2

4

y
1

r
1

0 5 10 15 20 25 30

time

0

2

4 y
2

r
2

Figure 3.8: The response of the
event-based system for ε = 0.5.

0 5 10 15 20 25 30
-2

0

2

4

y
1

r
1

0 5 10 15 20 25 30

time

0

2

4 y
2

r
2

Figure 3.9: The response of the
event-based system for ε = 0.05.

Table 3.1 lists the number of updates for several values of ε and δ.

ε δ Number of Updates
0.8 0.316 66
0.5 0.1233 71
0.05 0.0012 334
0.001 4.93× 10−7 10088

Table 3.1: Number of updates of the control signal for different values of ε
and δ

3.5.1 Discrete-Time Implementation

The implementation of the event-based algorithm, whether in simulation or
on a physical system, always contains a discrete-time part. In computer
simulation, a simulation period has to be selected as computers are digital
platforms. Physical systems are no different, because the computation of
the control law and the monitoring of the event-triggering condition are car-
ried out on digital processors. In either case, the event-triggering condition is
checked periodically, at multiples of the simulation period or the clock signal.

93

3.5. EFFECTS OF THE PARAMETER ε CHAPTER 3

In the event-triggered control algorithm that we propose, we assume that
the event-triggering condition is checked continuously. However, since it is in
reality discrete, it is impossible for us to detect the precise moment at which
the equality V (x(t)) = δ is verified. Instead, we can only detect the instant
tk at multiples of the sampling time, when V (e(t)) ≥ δ.

Figure 3.7 zooms in on the region around δ and shows that the Lyapunov-
like function goes above what should be the upper limit δ, as the event
V (e(t)) = δ always occurs in between two sampling instants of the digital
simulation.

For this example, this phenomenon is not very inconvenient, as V (e(t))
decreases below δ within one sampling instant. But, this is not always the
case. Let us reconsider the SISO system from Chapter 1 with

K =
[

3.0 7.5
]
, G = 5.

The Lyapunov-like function V (e(t)) has specifications

P =

[
1.1167 0.1000
0.1000 0.1333

]
, Q =

[
1 0
0 1

]
,

where λmin(P) = 0.1233 and λmax(P) = 1.1267.

0 5 10 15

Time

0

1

2

3

4

5

6
10

-3

V

(a) The PLF of the SISO system and
the threshold δ.

0.0717 0.0718 0.0719 0.072 0.0721 0.0722 0.0723 0.0724 0.0725

Time

4.9

4.91

4.92

4.93

4.94

4.95

4.96

4.97

4.98
10

-3

V

(b) Zoom on the region around t =
0.0718 s.

Figure 3.10: The PLF of the SISO system.

We choose ts = 10−4s, ε = 0.2, leading to δ = 0.0049. Figure 3.10a shows
the time evolution of V (e(t)) and the threshold δ. Figure 3.10b, which is a

94

3.5. EFFECTS OF THE PARAMETER ε CHAPTER 3

zoom on the event at t = 0.0718 s, shows that the Lyapunov-like function
does not fall below δ within one sampling instant as before, but takes 6 sam-
pling instants to do so. The event is detected at t = 0.0718 s and we have
to wait until t = 0.0724 s to recover V (e(t)) < δ. This means that if we
simulate the system for 15 s, out of the 104 events recorded for this case, a
large portion is due not to the system’s needs in control effort, but to the
discrete-time implementation.

Even though this behavior is undesirable, and we suggest a few modi-
fications to the algorithm in the next section to fix it, it is different from
the continuous-time Zeno phenomenon. If the Zeno phenomenon induces an
infinite number of updates in a finite interval of time, the discrete-time im-
plementation guarantees that the updates are separated by a minimum time
τmin = ts, in the worst case.

In addition, we can find an upper bound for this transgression. For the
sake of simplicity let us assume that we use a simple explicit Euler scheme.
Let tn, n ∈ N be the uniform discrete times. Then e(tn) is approximated by
en and

en+1 − en

ts
= (A−BK)en −BK∆kx

n +BG∆kr(t
n), tn ∈ (tk, tk+1).

Hence, using the Hurwitz property of A−BK, and the fact that in the worst
case ‖en‖ =

√
δ/λmax(P),

‖en+1‖ ≤ (Γts + 1)
√
δ/λmax(P) + ts‖BK‖Lx(tn − tk) + ts‖BG‖Br,

where r(t) ≤ Br, for all t.
This yields an upper bound on the worst value of V (en+1) ≤ λmax(P)‖en+1‖2,
which can be bigger than δ. We cannot avoid such overflows with explicit
numerical schemes. When this happens, tn+1 is chosen as tk+1. Then

V (en+2) = V (en+1)− tsen+1TQen+1 + t2sV ((A−BK)en+1),

and
‖V (en+2)‖ ≤ (λmax(P) + tsλmax(Q) + t2sλmax(P)Γ2)‖en+1‖2.

which can still be above δ. A few iterations can be necessary to recover
V (en) < δ.

95

3.5. EFFECTS OF THE PARAMETER ε CHAPTER 3

3.5.2 Solutions in Discrete Time

3.5.2.1 Adaptive Threshold

One way to avoid the successive updates of the control to recover V (e) < δ in
discrete time is to move the threshold temporarily to the value V (e(t)) > δ.
Then, when V (e(t)) passes below δ, the threshold is moved back to its orig-
inal position at δ.

Figure 3.11 shows the same zoom around t = 0.0718 s as on Figure 3.10b,
but this time we move the threshold to the value of V (e(t)) at that instant.
We notice that it still takes six sampling instants for V (e(t)) to descend
below δ. However, this time the event generator does not detect events at
these instants and the control law is not updated anymore during this time
interval. This time, for a 15 s simulation interval, we recorded 59 updates
only, against 104 without the correction.

0.0716 0.0718 0.072 0.0722 0.0724 0.0726 0.0728

Time

4.9

4.91

4.92

4.93

4.94

4.95

4.96

4.97

4.98
10

-3

V

Figure 3.11: Lifting the threshold at t = 0.0718 s.

There is, however, a danger of destabilizing the system by using this
method. If we imagine that during the time interval when the threshold is
increased, instead of falling below the original δ, the PLF stops decreasing
and increases again. As we are in discrete-time, it will go above the new
threshold, and the threshold will be moved upwards once more. If this be-
havior repeats infinitely, the value of the threshold would grow to infinity,
destabilizing the system. We can set an upper limit at which the threshold
cannot increase anymore. This upper limit is determined by the maximum
error that can be tolerated.

96

3.5. EFFECTS OF THE PARAMETER ε CHAPTER 3

3.5.2.2 Updating the Reference State

The only virtual variable in our algorithm is the state of the reference sys-
tem, which we introduce and which has no counterpart in the physical world.
Therefore, it is the only variable that we can modify to correct the value of
V (e(t)) at t = t+k . However, finding the modification to introduce on xr(t

+
k)

is not a trivial task, because we want to make V (e(t+k)) = δ, V (e(t)) being a
pondered norm of x(t) − xr(t). The norm of a vector does not tell us much
about its individual components, and there is an infinite number of ways to
move the coordinates of a vector so that it has a particular norm.

One idea is to solve an optimization problem with an equality constraint.
We look for a vector x̃r, such that the L1 distance between x̃r and xr is
minimal and

(x− x̃r)TP (x− x̃r) = δ.

This optimization problem can be written as

minimize
n∑
i=1

|xri − x̃ri|

s.t. (x− x̃r)TP (x− x̃r) = δ.

(3.17)

Once we find this vector we can carry out the update

xr(t
+
k) = x̃r.

Figure 3.12a illustrates the result of applying this method on the SISO
system. We use MATLAB’s fmincon function to solve Problem (3.17). The
zoom on the graph V (e(t)) at t = 0.0718 s shows that updating xr with this
method corrects the value of the PLF at t = 0.0718 s to V (e(0.0718)) = δ,
leaving the PLF below δ at the following instant. The response of the event-
based system, where y = x1, and the reference signal are shown on Fig-
ure 3.12b. This implementation led to 60 updates of the control law, a
number also consistent with the previous correction method. The slight dif-
ference is due to the way we interfere with the reference trajectory in this
method.

This approach appears to be too costly in time and too complex to carry
out online. However, modern processors can solve much more difficult prob-
lems in a very short time, much shorter than the simulation time that we
are using. As to the complexity of the problem and the computation effort
that must be allocated to it, we recall that in this event-triggered control

97

3.5. EFFECTS OF THE PARAMETER ε CHAPTER 3

0.0715 0.072 0.0725

Time

4.89

4.9

4.91

4.92

4.93

4.94

4.95
10

-3

V

(a) The PLF after correcting xr(tk)

0 5 10 15

Time

0

0.5

1

1.5

2

2.5

3

3.5

y

r

(b) SISO response with xr(tk) update

0 5 10 15 20 25 30 35 40

Time

0

0.5

1

1.5

2

2.5

3

y

r

(c) SISO response for weaker control

Figure 3.12: Behavior of the SISO system when modifying xr.

method, the number of updates is reduced considerably compared to the op-
eration time of the system, and few optimization problems need to be solved.
For example for the SISO system above, for ε = 0.2, and the operation time
divided into 104 simulation instants, the system has required only 72 updates.

On the other hand, changing repeatedly the state of the reference system
is equivalent to introducing impulsive disturbances every t = tk. Therefore,
in order not to derail the trajectory of the reference system, the sensitivity
to state disturbances has to be low. For example, if we change the location
of the poles of the SISO system by moving them closer to the imaginary
axis, thus increasing the system’s sensitivity to disturbances, we obtain the
response shown on Figure 3.12c, which shows the trajectory of the reference
system. We can see that there is a large tracking error, as the reference sys-
tem fails to recover from the disturbances that we introduce every t = tk.

98

3.6. CONCLUSION CHAPTER 3

3.6 Conclusion

In this chapter, we have introduced an event-triggered algorithm to solve an
output tracking problem. By taking the error between the state of the sys-
tem and the state of a reference system, and comparing the pseudo-Lyapunov
function of this error signal to a constant threshold, we manage to drive the
system to track a given reference signal, while ensuring a minimum inter-
sample time.

This approach also offers a tremendous reduction in the communications
between the controller and the plant as well as in the frequency at which we
request the use of the CPU. This is true even if the reference signal is not
Lipschitz continuous and experiences jumps, as has been demonstrated in the
numerical example. The number of updates depends also on the tolerance
imposed on the tracking error, the larger the tolerance, the less updates we
need.

The use of a constant instead of an exponentially decreasing threshold
gives rise to new challenges in the discrete-time framework. We have pro-
posed two solutions to remedy these issues, by exposing the advantages and
the drawbacks of each. The first method is simpler to implement but can
cause instabilities if the tolerance on the tracking error is very low. The
second method is harder to implement, as it requires to solve a constrained
optimization problem, and to have a low sensitivity to disturbances, but
offers good results.

99

Chapter 4

Event-Triggered Nonlinear
Controller

Contents
4.1 Introduction . 100

4.2 Overview of Contraction Analysis 101

4.2.1 Basic Principles . 101

4.2.2 Coordinate Transformation and Control 103

4.3 Event-triggered Algorithm 106

4.3.1 Algorithm Description 106

4.3.2 Stability Results 107

4.4 Numerical Simulation 107

4.5 Existence of Θ . 109

4.6 Conclusion . 111

4.1 Introduction

The event-triggered control algorithms introduced so far rely heavily on
Lyapunov-like functions. When dealing with linear systems, if the system
is stable in closed-loop, it is always possible to find a quadratic Lyapunov
function. However, when the system is nonlinear, finding a Lyapunov func-
tion can be a long and arduous task. Additionally, in the linear case, we
gave a detailed description of the event-triggered control algorithm, with a
method for finding optimal parameters. Since no standard form for the Lya-
punov function exists in the nonlinear case, we cannot give a similar level of

100

4.2. OVERVIEW OF CONTRACTION ANALYSIS CHAPTER 4

details if we want to introduce an event-triggered control technique.

For this reason, instead of using Lyapunov’s theory, we experiment the
use of an alternative approach to nonlinear analysis, known as contraction
analysis [47]. Unlike Lyapunov theory, contraction analysis does not consider
stability with respect to an equilibrium point. Instead, it defines stability as
the ability of a system to dissipate initial conditions. If it is the case, all the
neighboring trajectories converge to one another and to a nominal trajectory.
To see whether a given trajectory converges to the nominal trajectory, we
examine the virtual displacement between the two. If the virtual displace-
ment decays to zero, then the system trajectory converges to the nominal
trajectory and the system is stable.

The idea of a reference trajectory is similar to the reference system that
we use in the event-triggered control algorithm of Chapter 3. Therefore, in
the event-triggered algorithm that we propose, we take the nominal trajec-
tory to be the reference trajectory, and the virtual displacement as the error
between the event-triggered and the reference state. We use this approach for
both stability and tracking problems. The stability condition on the virtual
displacement is written as a generalization of the linear Lyapunov equation.
This condition is used to construct the event-triggering condition for updat-
ing the control law.

This chapter is divided as follows. Section 4.2 gives an overview of con-
traction analysis, describes all the quantities involved and introduces the
stability criteria. Section 4.3 describes the event-triggered control algorithm.
Section 4.4 provides a numerical example to show the performance the ap-
proach. Finally, Section 4.5 offers comments on the limitations of this ap-
proach.

4.2 Overview of Contraction Analysis

4.2.1 Basic Principles

Let System (4.1) be a closed-loop nonlinear system

ẋ(t) = f(x), (4.1)

where f is an n× 1 smooth, locally Lipschitz and continuously differentiable
function. Let δx be the virtual displacement (infinitesimal displacement at

101

4.2. OVERVIEW OF CONTRACTION ANALYSIS CHAPTER 4

fixed time) between two neighboring trajectories, described as

δẋ(t) ≈ ∂f(x)

∂x
δx.

In [47], a contraction region is defined as a region of the state space where
the symmetric form of the Jacobian ∂f

∂x
is negative definite, i.e.

1

2

(
∂f(x)

∂x

T

+
∂f(x)

∂x

)
< −βI, ∀x, (4.2)

where β > 0. A Jacobian matrix with this property is referred to as uni-
formly negative definite.

Any trajectory which starts within a contraction region, remains in this
region and converges to a nominal trajectory. The system is then exponen-
tially stable, and globally exponentially stable if the entire state space is a
contraction region.

However, even if we can design a stabilizing control law such that the
closed-loop form (4.1) is stable, we cannot guarantee that its Jacobian is
uniformly negative definite for all x. The authors of [47] suggest then a
coordinate change that transforms the virtual displacement which becomes

δz = Θ(x) δx,

where Θ(x) is a full rank non-zero matrix. In the new coordinate system,
the time derivative of δz is

d

dt
δz = Fδz,

with the generalized Jacobian F =
(

Θ̇ + Θ ∂f
∂x

)
Θ−1.

Consider then the time derivative of squared length

d

dt
(δzT δz) = δzT (F T + F) δz. (4.3)

The counterpart of Equation (4.2) in the new coordinate system is Equa-
tion (4.3). Equivalently, if the symmetric form of F is negative definite in
some region, the virtual displacement δz tends to zero. As Θ(x) is a full rank
non-zero matrix, then if δz tends to zero, then so does δx, meaning that the
neighboring trajectories that start in this region converge to one another.
Moreover, the region in question is a contraction region, and any trajectory

102

4.2. OVERVIEW OF CONTRACTION ANALYSIS CHAPTER 4

that starts in this region remains inside this region.

The idea is then to select F as a constant negative definite matrix, and
look for a coordinate transformation Θ that transforms δx to δz. Stability is
then studied in this new coordinate system where F +F T is negative definite
for all x (because constant), and where the entire state space is a contraction
region. We later deal with the subject of how to find Θ(x) to ensure these
properties.

In the old coordinate system, the squared length δzT δz is

δzT δz = δxTM(x)δx =: Φ(δx),

where M(x) = Θ(x)TΘ(x) is a positive definite, initially bounded, and con-
tinuously differentiable metric. The time derivative of Φ(δx) is given by

d

dt
Φ(δx) = δxT

(
∂f(x)

∂x

T

M(x) +M(x)
∂f(x)

∂x
+
d

dt
M(x)

)
δx.

Therefore, the regions F + F T is negative definite correspond to

∂f(x)

∂x

T

M(x) +M(x)
∂f(x)

∂x
+
d

dt
M(x) ≤ −βmM(x), βm > 0. (4.4)

and a regions of the state space where Equation (4.4) correspond to con-
traction regions. Thus trajectories of the system converge exponentially to
a nominal trajectory.

In this general framework, Theorem 2 in [47] states the following:

Theorem 8. Give the system (4.1), any trajectory, which starts in a ball of
constant radius with respect to the metric M(x), centered at a given trajec-
tory and contained at all times in a contraction region with respect to M(x),
remains in that ball and converges exponentially to this trajectory. Further-
more, global exponential convergence to the given trajectory is guaranteed if
the whole state space is a contraction region with respect to the metric M(x).

4.2.2 Coordinate Transformation and Control

To find Θ we use a slightly modified version of the procedure described in [48].
We consider the following nonlinear system affine in the control input u,

ẋ = f(x) + g(x)u,

x(t0) = x0.
(4.5)

103

4.2. OVERVIEW OF CONTRACTION ANALYSIS CHAPTER 4

The method we present here is valid for more general nonlinear systems of
the form ẋ = f(x, u). But, in order to introduce the method in simpler
terms, we choose to do so with the class of nonlinear systems affine in the
control.

We assume that System (4.5) possesses a single equilibrium point. Let
x(t) be the trajectory of this system starting at x0, and xr(t) be the nominal
trajectory starting at xr0. The dynamics of the virtual displacement between
the two trajectories is given by

δẋ ≈ ∂f

∂x
δx+ g(x)δu.

Let ∂f
∂x

= J(x) and g(x) = H(x), and the differential control δu = −K(x)δx.
The matrix F is given by

F =
(

Θ̇ + Θ (J −HK)
)

Θ−1. (4.6)

In [48] the authors propose to set F to a constant Hurwitz matrix in con-
trollable canonical form, so that the rows of Θ can be computed recursively
from Equation (4.6). The first n − 1 equations of the system of equations
resulting from (4.6) are rendered independent of K, by constraining the gen-
eralized Lie derivatives as follows

θ1H = θ1L
0H = 0,

θ2H = θ1L
1H = (

d

dt
θ1 + θ1J)H − d

dt
(θ1H) = 0,

...

θn−1H = θ1L
n−2 = (

d

dt
θ1 + θ1J)Ln−3H − d

dt
(θ1L

n−3H) = 0,

where θ1, ..., θn are the row vectors composing the matrix Θ. Then, the only
link between Equation (4.6) and K is ensured by the following equation

θnH = θ1L
n−1H = 1.

This system of n equations allows us to compute the entries of the row θ1.
In [48], the rest of the row vectors are computed recursively by using θ1 and
the sparse structure offered by the controllable canonical form of F .

However, it is easy to verify that setting F to a Hurwitz matrix is not
enough to ensure that its symmetric part 1

2
(F T +F) is negative definite, nor

104

4.2. OVERVIEW OF CONTRACTION ANALYSIS CHAPTER 4

that Equation (4.4) is verified. So, in our approach we construct F such that
it is negative definite and yet sparse enough to allow for a similar recursive
computation. Therefore, we maintain the constraints on the generalized Lie
derivatives above, and we set

F =



−a1 1 0 0 . . . 0
1 −a2 1 0 . . . 0
0 1 −a3 1 . . . 0

...
0 0 . . . 1 −an−1 1
0 0 . . . 0 1 −an


.

such that ai > 1 for all i = 1, . . . , n. As before, θ1 is computed from the
constraints on the Lie derivatives. The remaining rows are then computed
as follows

θ2 = θ̇1 + θ1J + a1θ1,

θ3 = θ̇2 + θ2J + a2θ1 − θ1,

...

θn = θ̇n−1 + θn−1J + an−1θn−1 − θn−2.

Then, the feedback gain K is

K = θ̇n + θnJ + anθn − θn−1.

The control input u(t) can be taken as

u = −
∫ x

xr

K(χ)dχ, (4.7)

where χ ∈ Rn is an integration variable.

The above integral is a path integral computed along the forward image
of the initial line segment connecting x0 and xr0. However, if x0 and xr0 are
close enough, we can approximate this path by the line segment connecting
x(t) and xr(t) at every time instant.

We note also that the method for finding Θ is not the only one. We have
chosen this one because it is the most straightforward, and the one that we
can detail the most.

Remark 9. We have written the feedback K as a function of x only, but in
the more general case, K can be a function of u, u̇, ..., u(2n−2). If it is the
case, u can only be computed numerically. Notice however that K does not
depend on δu [49], which implies that u can be computed explicitly.

105

4.3. EVENT-TRIGGERED ALGORITHM CHAPTER 4

4.3 Event-triggered Algorithm

4.3.1 Algorithm Description

Consider the nonlinear system (4.5). We want to control this system through
an event-triggered control law of the form

u(x) = ν(x(tk)), ∀t ∈ [tk, tk+1). (4.8)

where ν is a nonlinear function of the state.

We define the following system

ẋr = f(xr) + g(xr)ur, xr(t0) = xr0, (4.9)

as the reference system that produces the trajectory that the event-triggered
system has to follow. This reference system can be used to solve either a
regulation or a tracking problem. Note that the control ur exists only to
generate the reference trajectory.

Let the virtual displacement between the two trajectories be

δx = x− xr. (4.10)

When the two trajectories are close enough, the dynamics of δx can be ap-
proximated using the calculus of variations as

δẋ ≈ J(x)δx+H(x)δu, (4.11)

where δu = −K(x)δx. The system trajectory tends to the reference trajec-
tory if δx tends to zero. The global exponential stability of the error system
is analyzed by shifting to a new coordinate system through the transforma-
tion Θ. We use the procedure described in Section 4.2.2 to find K(x), the
control u and the transformation Θ.

Since Equation (4.4) sets the condition for the exponential stability of the
system, we want to make sure that it is verified for all t. However, since M(x)
varies in time, it would be very hard to find a parameter βm that satisfies
condition (4.4) for all t. For this reason, we want to relax the condition
of uniform negative definiteness on the left hand term of Inequality (4.4) by
requiring this term to be only strictly negative definite. As a consequence, we
lose the exponential stability property, but can still ensure global asymptotic
stability. Then, we can define our event-triggering conditions as follows

106

4.4. NUMERICAL SIMULATION CHAPTER 4

Definition 5. We define the time instant tk at which the control law u(t) is
updated as

tk+1 = inf{t > tk |
d

dt
Φ(δx) ≥ 0}. (4.12)

To give an idea of how Φ(δx) behaves when the control is not updated,
we present here its rate of change when t ∈ [tk, tk+1),

d

dt
Φ(δx) = δxT (JTM +MJ +

d

dt
M)δx− 2δxTk K

THTM δx,

where δxk = δx|tk . However, when the control law is updated, the rate of
change of Φ(δx) becomes

d

dt
Φ(δx)|t+k = δxT ((J −HK)TM +M(J −HK) +

d

dt
M)δx.

4.3.2 Stability Results

Theorem 9. The event-triggered control law given by Equation (4.8) and
scheduled by the event-triggering condition described in Definition 5 renders
the system (4.5) exponentially stable. Moreover, if the entire state space is a
contraction region, the system is globally exponentially stable.

The proof of this theorem follows automatically from the fact that the
relationship (4.4) is maintained for all t. Then, from Theorem 2 in [47], all
the trajectories that start within a ball of constant radius with respect to the
metric M and centered around a nominal trajectory, remain in this ball, and
converge to the nominal trajectory. Since the theorem states that condition
(4.4) is a necessary and sufficient conditions, we can conclude that when it
is satisfied, the system trajectory converges to the desired trajectory.

4.4 Numerical Simulation

We consider the following two-state, control affine nonlinear system, with
one input and one output [50]

ẋ1 = x2 + sinx1,

ẋ2 = x2
1 + u,

y = x1,

x0 =
[

1.2 1
]T
.

(4.13)

107

4.4. NUMERICAL SIMULATION CHAPTER 4

We consider the problem of stabilizing the system (4.13). We select the
following stabilizing control law to produce the desired trajectory

ur(t) = −x2
1 − (x2 + sinx1) cosx1 − k1x1 − k2(x2 + sinx1),

where k1 = 6, k2 = 5 and xr0 = [1.25 1.05]T . The control ur(t) renders the
closed-loop reference system asymptotically stable.

The matrices J andH describing the dynamics of the virtual displacement
are

J =

[
cosx1 1
2x1 0

]
, H =

[
0
1

]
.

We look for a feedback gain K(x) and a coordinate transformation Θ such
that

Θ̇ + Θ(J −HK) = FΘ,

where

F =

[
−2 1
1 −3

]
, Θ =

[
θ1

θ2

]
.

The constraints on the Lie derivatives introduced in Section 4.2.2 are written
as

θ1H = 0,

θ1JH = 1.
(4.14)

Solving System (4.14) of equations for θ1, we get

θ1 =
[

1 0
]
.

We can then deduce θ2 from the equation

θ̇1 + θ1J = −2θ1 + θ2,

so that we obtain

Θ =

[
1 0

cosx1 + 2 1

]
, M =

[
(cosx1 + 2)2 + 1 cos x1 + 2

cosx1 + 2 1

]
.

The metric M is positive definite for all x as it is required to be.
The feedback gain of the virtual system K(x) is

K = −
[
−2x1 + x2 sinx1 − 2 cos2 x1 − 3 cosx1, −3− cosx1

]
.

108

4.5. EXISTENCE OF Θ CHAPTER 4

The stabilizing event-triggered control law u is

u =− x2
1 − (x2 + sinx1) cosx1 − x1 − 3 sinx1 − (3− cosx1)x2

+ x2
r1

+ (xr2 + sinxr1) cosxr1 + xr1 + 3 sinxr1 + (3− cosxr1)xr2 .

To verify that condition (4.4) is verified for all x, we compute

(J−HK)TM +M(J−HK)+Ṁ =

[
−2(cosx1 + 1)2 − 2 −2 cosx1 − 2
−2 cosx1 − 2 −2

]
.

The determinant of this matrix is 4 and the entry −2(cosx1 + 1)2 − 2 is
negative for all x, meaning that the matrix (J−HK)TM+M(J−HK)+Ṁ
is negative definite for all x and that Condition (4.4) is always satisfied.

The virtual displacement is defined as

δx = x(t)− xr(t).

The reference trajectory can be simulated either online or offline. Then, the
control law u is updated when the condition

δxT (J(x)TM(x) +M(x)J(x) +
d

dt
M)δx− 2δxTk K(x)THTM(x) δx = 0

becomes true.

We have simulated the system for 20 s, with a sampling period of 10−3 s.
Figure 4.1a shows the time evolution of the states of the system. We see
that the system which is originally unstable is stabilized by the control law
u, and the states converge to the equilibrium point. The response exhibits
a few sharp edges but is overall smooth. Figure 4.1b shows that the virtual
displacement ultimately tends toward zero, which means that the system
trajectory and the reference trajectory converge toward each other.

Figure 4.1d depicts the time evolution of dΦ/dt. We notice that this
function remains always negative. We can clearly see the updates of the
control law when dΦ/dt reaches zero, and the function becoming negative
again. The control law is depicted in Figure 4.1c. The control law has been
updated 53 times in 20, 000 simulation instants.

4.5 Existence of Θ

When introducing System (4.5), we have specified the condition that it should
possess a single equilibrium point. The reason for this, as mentioned in [49],

109

4.5. EXISTENCE OF Θ CHAPTER 4

0 1 2 3 4 5 6

Time

-4

-3

-2

-1

0

1

2

3

x
1

x
2

(a) States of the system

0 1 2 3 4 5 6

Time

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

 x
1

 x
2

(b) Virtual displacement

0 1 2 3 4 5 6

Time

-10

-8

-6

-4

-2

0

2

4

(c) Control signal

0 1 2 3 4 5 6

Time

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

(d) The function dΦ/dt

Figure 4.1: Simulation results for nonlinear stabilization.

is that when a system possesses more than one equilibrium point, the coordi-
nate transformation Θ will have singularities. These singularities divide the
state-space into separate regions. Such singularities might not be problem-
atic when using this method to prove the stability of a system, but in our
event-triggered control algorithm we need explicit values of Θ and its inverse
in order to evaluate the event-triggering conditions. This is impossible when
Θ has singularities.

To illustrate this fact consider the following system [50]

ẋ1 = x1x2,

ẋ2 = x1 + u.
(4.15)

The system has an infinite number of equilibria, consisting of the straight
line x1 = 0. The procedure described above gives a matrix Θ

Θ =

[1
x1

0
2
x1

1

]
,

110

4.6. CONCLUSION CHAPTER 4

for the same generalized Jacobian F as the one used in the numerical example.

The transformation Θ has a singularity at x1 = 0, which shows how the
equilibrium points on the line x1 = 0 divide the state-space into two parti-
tions. Therefore, when the system trajectory approaches this line, it becomes
impossible to evaluate the event-triggering conditions.

Moreover, the virtual system (4.11) becomes uncontrollable at x1 = 0
through linear feedback, as shown by the controllability matrix

C =

[
0 x1

1 0

]
.

When x1 = 0, the rank of C drops to 1 and the virtual system becomes un-
controllable and no feedback gain K(x) can be found.

However, consider the following nonlinear system with multiple equilibria [50]

ẋ1 = x2 + x1 sinx1,

ẋ2 = x1x2 + u.
(4.16)

System (4.16) possesses equilibrium points of with coordinates of the form
(jπ, 0), j ∈ Z. The equilibrium points are scattered and do not divide the
state-space into separate regions.

For the same F , we find

Θ =

[
1 0

sinx1 + x1 cosx1 + 2 1

]
.

We notice that in this case despite the existence of several equilibria, Θ has
no singularities. This could be due to the fact that the equilibrium points
are isolated.

4.6 Conclusion

In this chapter we propose an event-triggered control algorithm for nonlinear
systems using contraction analysis. This approach takes the virtual displace-
ment between the system trajectory and the desired trajectory. To ensure
the decay of the virtual displacement to zero, we move to a new coordinate
system where the generalized Jacobian of the system is uniformly negative
definite. A generalized version of the linear Lyapunov equation is obtained.

111

4.6. CONCLUSION CHAPTER 4

Based on this equation, we construct event-triggering conditions that detects
the instants at which the system trajectory exits the contraction region.

A lot of improvements can still be made to this approach. First, this
approach has been described from the perspective of stabilization, but it can
be generalized to reference tracking as well. Then, there is the problem of
the existence of the transformation Θ. We know that when the system has
a single equilibrium, Θ exists and does not have singularities. The author
of [49] states that Θ has singularities when the system has multiple equi-
librium points. We have seen that this was the case when the equilibrium
points divide the state-space into separate regions. However, we have pro-
duced an example of a system with isolated equilibrium points and for which
a transformation Θ with no singularities can be found.

Another point which we have not risen throughout this chapter is the
existence of a minimum inter-event time. The event-triggering conditions
that we use look similar to the ones used in Chapter 1 over the steady-state
regime. Hence, we believe that a proof for the existence of a minimum inter-
sample time should be similar to the one presented therein.

Finally, we want to be able to use any control law that we want to stabi-
lize a system. For this, we need to break free from the procedure described
in [48] to find Θ. This could be done by solving the equation Θ̇ + ΘJ = FΘ
or equivalently ∂Θ

∂x
f(x) + ΘJ = FΘ, numerically along system trajectories.

Currently, we cannot carry out such computations because we lack knowledge
about initial and boundary conditions. The only piece of information that
we have is that the eigenvalues of the generalized Jacobian are coordinate
invariant around the equilibrium point. Nonetheless, this information can
only be used if we know the system trajectory in advance, which is not the
case in event-triggered control.

112

Chapter 5

Self-Triggered Stabilizing
Controller for Linear Systems

Contents
5.1 Introduction . 113

5.2 Event-Triggered Algorithm 115

5.3 Self-Triggered Algorithm 116

5.3.1 Minimization Stage 119

5.3.2 Root-Finding Stage 123

5.3.3 Summary of the Self-Triggered Algorithm 127

5.4 Numerical Simulation 128

5.4.1 A First Example 128

5.4.2 Example of the Case ρk > tk+1 130

5.4.3 One-Dimensional Case 132

5.5 Conclusion . 133

5.1 Introduction

The main advantage of the event-triggered control methods that we have
introduced so far is to reduce the communications between the CPU and the
controlled system, thus freeing the communications channels for the more
urgent tasks. The drawback of this type of control is the necessity to moni-
tor the event-triggering conditions constantly. This operation, depending on
each individual method, could involve heavy computations, or require extra

113

5.1. INTRODUCTION CHAPTER 5

circuitry. Such additions are not always possible, and in some cases, the
location, age or design of the plant make them impossible to implement.

To counter these issues, we want to suppress the need for monitoring the
event-triggering conditions at every instant. So we turn to methods that
involve predicting the next execution time, and that are called self-triggered
control methods. In self-triggered control, the system model is used to de-
termine the time of the next event in advance. Thus, at each execution time,
we update the control law, and we compute the next execution instant. This
way, for the rest of the sampling interval, the CPU is free to run other tasks,
and no additional wiring is needed to supervise the system.

Even in the case of linear systems, it is difficult to predict the time in-
stants at which an event occurs in the plant, due to the complexity of the
equations involved. For this reason, most of the works up to now have dealt
with the issue in the framework of discrete-time systems. This is the case
for [51], [52], [53]. In [18], the event-triggering conditions are developed in
continuous-time, whereas the next execution time is found by setting a time
horizon that is divided in sub-intervals. An event is then determined by
checking the event-triggering conditions in each sub-interval.

Continuous-time systems have been studied in [54], where the problem
is treated as an optimal control problem, with the next sampling instant as
an unknown. The result is a non-convex quadratic programming problem
which is then approximated by a convex problem. In [55] and [56] the au-
thors suggest a self-triggered control method that preserves the L2 stability
of the system in the presence of disturbances. In [55] the disturbance is
bounded by a linear function of the norm of the state, while this condition is
relaxed in [56]. Furthermore, self-triggered control schemes have often been
coupled with model predictive control, as both use the model to project the
behavior of the system up to some future time. Among these works we can
mention [57] and [58].

In this chapter, we propose a self-triggered version of the event-triggered
control algorithm introduced in Chapter 1. We have shown that this method
relaxes the decay requirement on the Lyapunov function, by only requir-
ing a Lyapunov-like function to remain under a decreasing threshold. This
way, the events can be spread further apart in time. Using the properties
of the functions involved, we formulate the self-triggered control problem as
a combination of an optimization problem and a root-finding problem, in a
continuous-time framework.

114

5.2. EVENT-TRIGGERED ALGORITHM CHAPTER 5

This chapter is divided as follows. Section 5.2 sets the notations used
throughout the chapter. Section 5.3 is divided into two parts; the first part
introduces the minimization algorithm, while the second part describes the
root-finding algorithm. Finally, Section 5.4 offers numerical examples that
validate our approach and that cover all the cases that we mention.

5.2 Event-Triggered Algorithm

In this section, we give a brief recap of the event-triggered control algorithm
introduced in Chapter 1 and introduce some new notations. The event-
triggering conditions consist in comparing the PLF to an upper threshold
function. This condition is the only one that we use in this chapter, unlike
in Chapter 1, where we used this condition for the transient regime only, and
used another event-triggering conditions for the steady-state regime.
We reconsider the LTI system

ẋ(t) = Ax(t) +Bu(t),

x(t0) = x0.
(5.1)

The control signal u(t) is an event-triggered linear state-feedback control law
which takes the following values

u(t) =

{
−Kx(tk), t = tk
u(tk), t ∈ [tk, tk+1).

(5.2)

We can then re-write System (5.1) as

ẋ(t) = (A−BK)x(t) +BKek(t), (5.3)

where ek(t) = x(t) − x(tk), and define the augmented system with state
ξk(t) = [x(t), ek(t)]

T ∈ R2n in [tk, tk+1), and dynamics (these notations are
borrowed from [18])

ξ̇k(t) =

[
A−BK BK
A−BK BK

]
ξk(t) = Ψ ξk(t),

ξk(t0) =
[
x0 0Tn

]T
=: ξ0,

(5.4)

where 0n is the vector of zeros in Rn. The system of equations (5.4) admits
a unique solution

ξk(t) = eΨ(t−tk)ξk(tk), (5.5)

115

5.3. SELF-TRIGGERED ALGORITHM CHAPTER 5

where ξk(tk) =
[
x(tk) 0Tn

]T
.

Then, for all t, the state of the augmented system is given by

ξ(t) =
∑
k

ξk(t) Ik(t), (5.6)

where Ik(t) is the indicator function that takes values

Ik(t) =

{
1, t ∈ [tk, tk+1),
0, otherwise.

(5.7)

In what follows, we designate ξk(t) as ξ(t) when the two can be distinguished
from the context.

Remark 10. Instead of defining the augmented system (5.4), we could have
worked with the simpler system (5.3). However, re-writing Equation (5.3) as
ẋ(t) = Ax(t) − BKx(tk) yields a solution x(t) = (eA(t−tk) − A−1(eA(t−tk) −
I)BK)x(tk), which requires A to be non-singular. This requirement would
force us to exclude a certain class of systems, unlike the System (5.4), which
admits a solution for all A.

We associate to System (5.4) the pseudo-Lyapunov function

V (ξ(t)) = ξ(t)T
[

P 0n×n
0n×n 0n×n

]
ξ(t) ≡ ξ(t)T P ξ(t), (5.8)

where P is defined in Chapter 1 and 0n×n is the n× n matrix of zeros.
The time instants tk, k ∈ N are defined as

tk = {t > tk−1 | V (ξ(t)) ≥ W (t)}, (5.9)

where W (t) is a decreasing threshold function expressed as

W (t) =

{
W0e

−α(t−t0), t ∈ [t0, t1)
Wke

−α(t−tk), t ∈ [tk, tk+1), ∀k > 0,
(5.10)

with W0 ≥ V (ξ0), Wk = V (xk(t)), and 0 < α < |λmax|, where λmax is the
solution of the maximum generalized eigenvalue defined in Chapter 1.

5.3 Self-Triggered Algorithm

The goal of a self-triggered algorithm is to predict the time tk+1, knowing the
time tk, the state vector x(tk), and the system model. Let Z(t) = W (t) −
V (ξ(t)). The time tk+1 is the time at which the following equation is verified

Z(t) = 0. (5.11)

116

5.3. SELF-TRIGGERED ALGORITHM CHAPTER 5

Equation (5.11) depends on the time and implicitly on the state ξ(t) which
depends on the time through a transition matrix as seen from Equation (5.5).
This configuration renders Equation (5.11) extremely difficult, if not impossi-
ble, to solve analytically. For this reason, we propose a numerical solution to
Equation (5.11), where the instant tk+1 is computed through a root-finding
algorithm.

A numerical scheme needs an initial value, and our first guess would be
to initialize the root-finding algorithm at instant tk in order to predict the
instant tk+1. However, the instants tk and tk+1 can be relatively far apart,
and as a result, the algorithm may fail to converge. Then, we have to initial-
ize our algorithm at a later time instant. Let ρk denote the first time instant
at which the PLF reaches a local minimum after the time tk. The instant ρk
is a good candidate for an initial value, and in what follows, we evaluate its
use in the root-finding algorithm.

Depending on the dynamics of the system and the choice of the decay rate
α, the evolution of the PLF after an update of the control can be classified
into two categories. Either the PLF reaches its minimum value within the
interval [tk, tk+1), or the PLF intersects the threshold before it has time to
reach a minimum value. The two cases can be further described as follows:

W (t)
V (x)

ρ0 t1 t2t0

(a) Case ρk ≤ tk+1.

W (t)

V (x)

(b) Case ρk > tk+1.

Figure 5.1: Shape of the PLF for different choices of α.

1. Case ρk ≤ tk+1:
From experimental observations, this case is the most frequent of the
two. It occurs when α is far enough from |λmax|, and the threshold

117

5.3. SELF-TRIGGERED ALGORITHM CHAPTER 5

ttk tk+1

max(Z)

ρk
ρk+1 tk+2

Figure 5.2: Z(t), the difference between W (t) and V (x(t)) in two sampling
intervals where ρk ≤ tk+1.

decreases slowly compared to the PLF. After an update of the control,
the latter has enough time to decrease, reach a minimum value at time
ρk, and increase again before intersecting with the threshold at time
tk+1. This case is depicted in Figure 5.1a.

At time ρk, we know that tk+1 > ρk if Z(ρk) > 0, indicating that the
threshold is still above the PLF at ρk. In this scenario, ρk is an ideal
choice for initializing the root-finding algorithm. First, because ρk is
closer to tk+1 than tk. Secondly, if we examine the difference W (t) −
V (ξ(t)) shown on Figure 5.2 for two successive intervals [tk, tk+1) and
[tk+1, tk+2), we see that in each of these two intervals, the difference goes
through a stationary point. If we initialize the root-finding algorithm
with tk, the presence of the stationary point could throw the algorithm
off track. However, ρk is always located after the stationary point, as
seen on Figure 5.2, and as confirmed by the following proof. At the
stationary point, dZ(t)/dt = 0, i.e.

dV (ξ(t))

dt
= −αWke

−α(t−tk),

showing that the derivative of the PLF is negative at the stationary
point, meaning that the PLF is still in the decreasing stage. Thus the
instant ρk, at which the derivative of the PLF vanishes, must occur
after this stationary point.

2. Case ρk > tk+1:
This case is depicted in Figure 5.1b, and is the rarest of the two cases,
according to experimental observations. It generally results from a bad

118

5.3. SELF-TRIGGERED ALGORITHM CHAPTER 5

choice of closed-loop eigenvalues and the decay rate α. If α is chosen
close enough to |λmax|, and if, after an update of the control law, the
PLF and the threshold decrease with approximately similar speeds,
the two functions might intersect before the PLF reaches its minimum
value. Then the time instant tk+1 precedes the instant ρk. Similarly
to the previous case, we know that we are in this case if at time ρk,
Z(tk) < 0.

Even though this case is possible, it can be avoided by choosing α
further from λmax, by placing the poles far enough from the imaginary
axis, and making sure that their damping ratio is acceptable. If this
case happens, we still can use ρk as an upper bound for tk+1, and locate
the root in the interval [tk, ρk].

The time ρk is not known in advance and needs to be computed. For one-
dimensional systems, where vector x, and matrices A and B are scalars, the
instants ρk can be computed analytically. For higher-dimensional systems,
ρk can only be determined numerically. The numerical solution is found by
a minimization algorithm which searches for the local minimum of V (ξ(t))
that occurs immediately after tk.

5.3.1 Minimization Stage

5.3.1.1 One-Dimensional Systems

This case is simpler and helps us illustrate our approach. So, we consider the
first order LTI system described as

ẋ(t) = ax(t) + bu(t),

y(t) = cx(t),
(5.12)

where x(t), u(t) ∈ R, and a, b, c ∈ R∗, ∀t > 0.

Let xk denote x(tk). The event-triggered control law is given by u(t) =
−Kxk and System (5.12) in its closed-loop form is given by

ẋ(t) = ax(t)− bKxk, ∀t ∈ [tk, tk+1), (5.13)

Since we assumed that a 6= 0, the augmented system described by Equa-
tion (5.4) is not needed for the scalar case. The differential equation (5.13)
admits a unique solution for t > tk, given by

x(t) =

(
bK

a
+ (1− bK

a
)ea(t−tk)

)
xk. (5.14)

119

5.3. SELF-TRIGGERED ALGORITHM CHAPTER 5

To System (5.12), we associate a Lyapunov-like function of the form

V (x(t)) = px(t)2, (5.15)

where p > 0 is a solution to the Lyapunov inequality

2p(a− bK) ≤ −q, (5.16)

where q > 0 is a user-defined design parameter.

The minimum of V (x(t)) corresponds to

0 =
dV (x(t))

dt
= 2p(ax(t)− bKxk)x(t). (5.17)

Equation (5.17) admits two solutions, x(t) = 0, and x(t) = bKxk/a.
However, the solution x(t) = bKxk/a is impossible as it is equivalent to(

bK

a
+ (1− bK

a
)ea(t−tk)

)
xk =

bKxk
a

,

ea(t−tk)

(
1− bK

a

)
= 0.

We know that ea(t−tk) 6= 0 and we cannot choose K such that bK/a = 1 or else
we would destabilize the system. Therefore, in the scalar case, dV/dt = 0, if
and only if x(t) = 0.

Consequently, the local minima of V (x(t)) occur only when x(t) = 0 and
ρk can be directly computed from Equation (5.14)(

(1− bK

a
)ea(ρk−tk) +

bK

a

)
xk = 0.

We know that xk 6= 0, because at t = tk, V (xk) = px2
k = W (tk) 6= 0, hence

xk 6= 0. Therefore, the times ρk are given by the expression

ρk =
1

a
log

(
bK

bK − a

)
+ tk. (5.18)

We can always take the logarithm of bK/(bK − a) because this is always a
positive quantity, as can be seen from the following proof.

• Case a > 0 :
The feedback gain is chosen such that a− bK < 0. Then, bK − a > 0,
and bK > a > 0. Since the numerator and denominator are both
positive, then bK/(bK − a) > 0. Moreover, bK/(bK − a) > 1, proving
that the ρk computed by Equation (5.18) occurs indeed after tk.

120

5.3. SELF-TRIGGERED ALGORITHM CHAPTER 5

• Case a < 0 :
If the open-loop system is already stable, the objective of the control is
certainly to place the pole further to the left. Then, the feedback gain
is chosen such that a− bK < a < 0. Then, we must have bK > 0 and
bK − a > 0. Consequently, as in the previous case, bK/(bK − a) > 0.
Even if in this case bK/(bK − a) < 1, the ρk given by Equation (5.18)
still occurs after tk.

Equation (5.18) is independent of xk, indicating that the interval [tk, ρk] has
the same length for all k.

5.3.1.2 Higher-Dimensional Case

As no analytical solution is available, we introduce a minimization algorithm
for determining the first instant ρk that minimizes V (ξ(t)) for t > tk. The
minimization algorithm is a modified Newton algorithm. In this algorithm,
a Newton step is first computed in the direction of descent of V , then scaled
through a line search to ensure that V (ξ(t)) decreases enough at each itera-
tion.

To compute the Newton step, we need to calculate the first and second
time derivatives of V (ξ(t)). For simplicity, in what follows, we refer to the
first and second derivatives as ∇tV and ∇2

tV .

∇tV = ξ(t)T
[
M L
LT 0n×n

]
ξ(t), (5.19)

where M = (A−BK)TP + P (A−BK) and L = PBK, and

∇2
tV = ξ(t)T

[
Λ Γ
ΓT γ

]
ξ(t), (5.20)

where

Λ = (A−BK)TM +M(A−BK) + (A−BK)TLT + L(A−BK),

Γ = (A−BK)TL+MBK + LBK,

γ = LTBK +KTBTL.

The minimization algorithm is detailed in Algorithm 1. The algorithm
starts by an initial guess ρ(0) = tk. We then set the maximum number of
iterations MaxIter to a randomly large number. Its only purpose is to avoid
an infinite loop in case the algorithm does not converge. The variable iter

121

5.3. SELF-TRIGGERED ALGORITHM CHAPTER 5

monitors the number of iterations, and is incremented at each iteration until
MaxIter is reached or a solution is found.

The core of the algorithm works as follows. A Newton step is computed by
first computing ξ(ρ), ∇tV and ∇2

tV , using Equations (5.5), (5.19) and (5.20),
respectively. If ∇2

tV is too small, below a tolerance tol1, we set ∇2
tV = tol1

with lines 5 and 6, as suggested in [59], to avoid dividing by a small value. The
Newton step is computed as −∇tV /|∇2

tV |. The absolute value of the second
derivative is a modification of the original Newton algorithm and is added to
ensure that the Newton direction is a descent direction of the function to be
minimized, in this case V . The original Newton search direction −∇tV /∇2

tV
is a direction of descent of V if (see [60])

−∇tV
∇tV

∇2
tV

< 0.

Clearly, if ∇2
tV < 0, the search direction is not a direction of descent of V ,

and we need to search in the opposite direction. Luckily, since our prob-
lem is one-dimensional (V (ξ(t)) is a scalar function of t), it suffices to reverse
the sign of the second derivative when it is negative, or simply to take |∇2

tV |.

The Newton step is then scaled through a backtracking line search (lines
9 through 10) [61] to ensure that V (ξ(t)) decreases enough after each iter-
ation. The scaling parameter s is first taken as 1. We require a decrease
of the function by a percentage κ1, usually taken between 0.01 and 0.3 (1
and 30%). As long as V (ξ(t)) has not decreased enough, s is decreased by a
factor β. The parameter β is usually taken between 0.1 for a crude search,
and 0.8 for a more accurate search. Figure 5.3 illustrates this procedure. It
shows that as long as V (ξ(ρ+ s∆ρ)) is above the line V (ξ(ρ)) +κ1 ∇tV s∆ρ,
the parameter s is decreased. The lower blue dashed line represents the case
where κ1 = 1, and the upper red dashed line shows a smaller decrease κ1 < 1.

Once a suitable step has been found, a new iterate of ρ is computed. The
algorithm terminates when the change in the value of ρ from an iteration to
another becomes too insignificant, or below a value tol2.

Using Algorithm 1, we can obtain a fast convergence. First, because
many time consuming computations can be carried out offline. This is the
case for matrices M , L, Γ, Λ and γ. Even the introduction of a backtracking
line search, which is generally time consuming, does not slow the algorithm
considerably. From our experimental trials, we observed that the line search

122

5.3. SELF-TRIGGERED ALGORITHM CHAPTER 5

s

V (ξ(ρ+ s∆ρ))

V (ξ(ρ)) + s∆ρ∇tV

V (ξ(ρ)) + sκ1∆ρ∇tV

Figure 5.3: Backtracking Line search [61]

is needed at most once in every interval, and becomes unnecessary as we ap-
proach the minimizer. Therefore, we noticed through our experiments that
the algorithm’s execution time is negligible compared to the length of the
interval tk+1 − tk.

Finally, since the success of a minimization algorithm depends on the
convexity of the function to be minimized, we should say a few words about
the convexity of the function V (ξ(t)). Using the second derivative, we should
be able to determine the convexity of V (ξ(t)). However, due to the presence
of terms such as L(A−BK) and MBK, no conclusion can be made as to the
sign of the second derivative. From our observations, it can take positive or
negative values on the interval [tk, tk+1). What we do know is that V (ξ(t))
goes necessarily through a local minimum before increasing again, and near
the minimum ∇2

tV is positive. Problems of convexity arise around tk, when
we are relatively far from ρk, and where ∇2

tV < 0. As explained earlier, the
search direction is a direction of ascent in this case. However, this is not a
problem, as we introduced the modification |∇2

tV | [59].

5.3.2 Root-Finding Stage

The root-finding algorithm that we use is a hybrid between Newton’s method
and the bisection method. Newton’s method has a quadratic convergence rate
near the root and would speed up the algorithm. However, we do not know
the behavior of the difference Z(t), so to prevent failures, we safeguard the
algorithm with bisection, which is a globally convergent method.

123

5.3. SELF-TRIGGERED ALGORITHM CHAPTER 5

Algorithm 1 Minimization Algorithm

1: procedure Minimization
2: ρ ← tk
3: while iter ≤ MaxIter do
4: compute ξ(ρ), ∇tV (ξ(ρ)), ∇2

tV (ξ(ρ))
5: if ∇2

tV < tol1 then
6: ∇2

tV ← tol1

7: ∆ρ ← −∇tV /|∇2
tV |

8: s ← 1
9: while V (ξ(ρ+ s∆ρ)) ≥ V (ξ(ρ)) + κ1 ∇tV s ∆ρ do

10: s← βs, β ∈ (0, 1), κ1 ∈ (0, 0.5)

11: tmp← ρ
12: ρ ← ρ+ s∆ρ
13: if |tmp− ρ| < tol2 then
14: return ρ

15: iter + +

The algorithm works as follows. A pre-processing stage identifies the in-
terval, denoted by [tmin, tmax], in which the root is located. Then, starting
from the middle of this interval, a new iterate is computed with Newton’s
method. If the new iterate is located within the previously identified inter-
val, it is accepted. Otherwise, the Newton iterate is rejected and instead a
bisection iterate is computed. The bisection iterate is the mid-point of the
search interval.

To apply Newton’s algorithm for finding the roots of function Z, we need
both the function Z(t) and its first derivative. The expression of Z(t) is

Z(t) = Wke
−α(t−tk) − ξ(t)T P ξ(t), (5.21)

where ξ(t) is given by equation (5.5).
The first derivative with respect to time, along the trajectories of ξ(t) is

dZ(t)

dt
= −Wkαe

−α(t−tk) −∇tV. (5.22)

Algorithm 2 describes the procedure to delimit the interval [tmin, tmax] in
which the root tk+1 is located. We first define two time instants t1 and
t2 to recursively estimate the search interval. As explained earlier, we are
faced with two situations; Z(ρk) < 0, in which we know that tk+1 < ρk, or
Z(ρk) > 0 and in that case tk+1 ≥ ρk.

124

5.3. SELF-TRIGGERED ALGORITHM CHAPTER 5

Algorithm 2 Interval Finding

1: procedure Pre-processing
2: t1 ← ρk
3: if Z(t1) < 0 then
4: θ ← −κ2(ρk − tk), 0 < κ2 ≤ 0.5
5: else
6: θ ← κ2(ρk − tk)
7: t2 ← ρk + θ
8: while Z(t1)Z(t2) ≥ 0 do
9: t2 ← t2 + θ

10: if t2 ≤ tk then
11: t2 ← t2 − θ, θ ← θ/2
12: t2 ← t2 + θ

13: tmax ← max(t1, t2)
14: tmin ← tmax − |θ|

In both cases, we initialize t1 with the value ρk. The procedure starts by
picking a parameter θ, that we scale on the time lapse ρk − tk. The scaling
factor κ2 is chosen between 0 and 0.5, depending on how crude we want the
search to be. The sign of θ depends on the sign of Z(ρk). If Z(ρk) < 0, θ < 0,
as in line 4 of Algorithm 2. Otherwise, θ > 0, as in line 6.

Afterward, starting from t2 = t1 + θ, t2 is either increased or decreased
until Z(t1) and Z(t2) have different signs, indicating that the root has been
crossed. Lines 10 and 11 of Algorithm 2 affect only the case where tk+1 < ρk
and where decreasing t2 can lead to t2 ≤ tk, if the search is too crude. If
this happens, we just restore t2 to its previous value, before it crossed tk, we
decrease θ, and we resume the search.

When the search is over, we set tmax = max(t1, t2), and tmin is simply
tmax − |θ|. These operations are performed in lines 13 and beyond.

This process is illustrated in Figure 5.4. Figure 5.4a represents the case
ρk < tk+1, and illustrates how θ is added to ρk until we find tmax. Figure 5.4b
represents the case ρk > tk+1. It shows how θ is subtracted from ρk to locate
tmax. If by adding θ we get a value less than tk, we add θ/2 instead, and so
on.

Once we locate the root inside an interval, we can start the root-finding
process. Algorithm 3 describes the root-finding procedure. It is a slightly

125

5.3. SELF-TRIGGERED ALGORITHM CHAPTER 5

tk+1 > ρk

tk ρk

θ > 0

(a) Case ρk < tk+1

tk+1 < ρk

tk ρk

θ < 0θ
2

(b) Case ρk > tk+1

Figure 5.4: Locating the root inside an interval.

modified version of the hybrid Newton-bisection algorithm found in [62]. To
make the notations shorter, from now on we refer to dZ(t)/dt as ∇tZ(t).

Algorithm 3 Root-Finding Algorithm

1: procedure Newton-Bisection
2: if Z(tmin) == 0 then
3: return tmin

4: if Z(tmax) == 0 then
5: return tmax

6: t← (tmin + tmax)/2
7: ∆t← tmax − tmin, ∆told ← ∆t
8: compute Z(t), ∇tZ(t)

9: step← Z(t)
∇tZ(t)

10: while iter ≤ MaxIter do
11: if tmin ≥ t− step or tmax ≤ t− step or |∆told|

2
< |step| then

12: ∆told ← ∆t
13: ∆t← (tmax − tmin)/2
14: t← tmin + ∆t
15: else
16: ∆told ← ∆t
17: ∆t← step
18: t← t−∆t

19: if |∆t| < tol3 then return t

20: if Z(t) > 0 then tmin ← t
21: else tmax ← t

The algorithm starts by making sure that neither tmin nor tmax are the
root, the procedure is exited if it is the case. Checking whether tmin is a
root or not should be performed before the pre-processing, but for the sake
of separation, we include it in the root-finding algorithm at this stage. A

126

5.3. SELF-TRIGGERED ALGORITHM CHAPTER 5

maximum number of iterations is the same MaxIter as for the minimization
procedure. The current iterate t is initialized as the midpoint of the interval
[tmin, tmax].

The variables ∆t and ∆told store the current and the former step lengths,
respectively. We compute Z(t) and ∇tZ(t) in order to compute the Newton
step. The condition on line 10 of Algorithm 3 decides whether a Newton step
is taken or rejected. If by taking the Newton step we exceed tmax or regress
below tmin or if Newton’s algorithm is too slow, the Newton step is rejected,
and a bisection step is taken instead. Lines 11 to 13 represent a bisection
step, whereas lines 15 to 17 represent the case where the Newton step is taken.

After the new iterate is computed, we evaluate Z(t) at that point. If Z(t)
is positive, the new iterate is located before the root, and it becomes tmin.
Otherwise, the current iterate become tmax. The algorithm terminates when
the change in t between two consecutive iterates is too small, i.e. when the
step length becomes smaller than a tolerance tol3.

5.3.3 Summary of the Self-Triggered Algorithm

The three steps of the self-triggered algorithm, described separately so far,
are grouped in the order in which they are called, in Algorithm 4.

Algorithm 4 Self-Triggered Algorithm

1: procedure Self-triggered
2: MINIMIZATION(tk)
3: return ρk
4: if Z(ρk) == 0 then
5: return ρk

6: PRE-PROCESSING(ρk)
7: return tmin, tmax

8: NEWTON-BISECTION(tmin,tmax)
9: return tk+1

127

5.4. NUMERICAL SIMULATION CHAPTER 5

5.4 Numerical Simulation

5.4.1 A First Example

Consider the following third order LTI system [25],

ẋ(t) =

 1 1 0
−2 0 4
5 4 −7

x(t) +

 −1
0
1

u(t),

with initial state x0 = [−2 3 5]T .
The system is unstable with poles at −8.58, 0.58, 2.00. We stabilize the
system with a state-feedback control law with feedback gain

K =
[

8.38 26.36 10.38
]
,

that places the poles at −1.14± 1.35i, −5.71. Solving the generalized eigen-
value problem gives λmax = 2.28 and

P =

 275.7 1025.5 577.9
1025.5 3840.1 2173.5
577.9 2173.5 1234.1

 . (5.23)

We select α = 2.18 s−1 and W0 = 1.3V (x0). We simulate the system’s oper-
ation for 7 s, with a sampling period Ts = 10−3.

For the minimization and root-finding algorithms, we select the maxi-
mum number of iterations MaxIter = 50. We initialize the minimization
algorithm at tk + δ with δ = Ts = 10−3. The second derivative ∇2

tV has
to be above the tolerance tol1 = 10−20. Algorithm 1 terminates when the
change in ρ does not exceed tol2 = 10−5. For the line search, we require a
function decrease of 1% at each iteration, or κ1 = 0.01. To achieve this de-
crease, we choose β = 0.35. For the pre-processing stage, we select κ2 = 0.25.

The tolerance tol3, at which the root-finding algorithm terminates, is
set dynamically. Such a choice is motivated by the exponential decrease of
W (t), which tends to zero as time tends to infinity. If tol3 is constant, at
some point, W (t) can decrease below this tolerance, and so does V (ξ(t)),
leading to a small Z(t) that could be mistaken for the root, when there is
actually no intersection. Therefore, we index tol3 on Wk. As long as Wk > 1,
tol3 = 10−5. When Wk < 1, it can be written in the form Wk = ω.10−φ,
where 0 < ω < 10 and φ ∈ N, and tol3 is modified to tol3 = 10−5.10−φ.

128

5.4. NUMERICAL SIMULATION CHAPTER 5

At t = 0, we apply the control law u(t0) = −Kx0 and we compute the
instant t1 using the self-triggered algorithm. The system is then at rest, only
maintaining a control value of u(t0), until the clock signal displays the time
t1. At this point, the operation is repeated.

Figure 5.5a shows the time evolution of the functions V (ξ(t)) andW (t). It
shows that V (ξ(t)) decreases at every intersection with W (t), which proves
that the algorithm manages to identify correctly the times at which these
events occur, inducing an update of the control law. Even when the two
functions approach zero, the intersections are still detected as shown on Fig-
ure 5.5b, which singles out an event at t = 6.476 s and W (t) = 0.0948.

The zoom on the event at t = 6.476 s shows that the update of the control
law is carried out one time step before the intersection occurs. This is due to
the fact that the control can only be updated at multiples of the simulation
sampling period Ts. For this reason, when an intersection is predicted some-
where between sampling instants t = 6.476 s and t = 6.477 s, we update the
control law at the earlier instant, t = 6.476 s, to prevent the PLF from cross-
ing the threshold. In the event-triggered version, events were detected after
they occurred, that is why at time tk, we used to have V (x(tk)) ≥ W (tk).
The self-triggered implementation can then prevent these digressions.

The three state variables, shown on Figure 5.5c, tend to equilibrium and
the system stabilizes around ±5% of its equilibrium value within 6.94 s. The
stabilizing control law is shown on Figure 5.5d. This figure shows the uneven
distribution of updates in time. Figure 5.5d also includes a zoom on the
control in the time interval [4 s, 7 s], which emphasizes the asynchronous and
scattered nature of the updates, and which is not visible on the larger figure.
In 7 s of simulation time, stabilizing the system required 23 updates of the
control law.

Table 5.1 lists the first six event times with the corresponding inter-event
times (tk − tk+1) and running times of the self-triggered control algorithm.
We notice that for our experimental conditions, the algorithm’s running time
is much smaller than the corresponding inter-event time, allowing the online
use of the algorithm. Moreover, the running time decreases as we go further
in time, the highest running time being the first call of the algorithm, but
this call can be made offline. Eventually, the running time settles around
0.002 s. Additionally, matrices M , L, Λ, Γ and γ are computed offline, and
thus do not affect running time.

129

5.4. NUMERICAL SIMULATION CHAPTER 5

0 1 2 3 4 5 6 7

0

5

10

15
10

4 Time

V

W

(a) PLF and threshold

6.4759 6.47595 6.476 6.47605 6.4761 6.47615

0.0942

0.09425

0.0943

0.09435

0.0944

0.09445

0.0945

0.09455

0.0946

0.09465

0.0947
Time

V

W

(b) Zoom on event at t = 6.476 s

0 1 2 3 4 5 6 7

Time

-40

-30

-20

-10

0

10

20

30

40

50

60

s
ta

te
s

x
1

x
2

x
3

(c) States

0 1 2 3 4 5 6 7

Time

-150

-100

-50

0

50

100

150

c
o
n
tr

o
l

4 5 6 7

(d) Self-triggered control

Figure 5.5: Simulation results of self-triggered control.

From here, we can see the advantages of the self-triggered algorithm,
as the algorithm requires only 2 ms, and for the rest of the time until the
next update instant, the CPU is either at rest, or free to run other tasks.
Conversely, the event-triggered control algorithm has to check the event-
triggering conditions at all instants, never really freeing the CPU.

5.4.2 Example of the Case ρk > tk+1

The case where an intersection between V (ξ(t)) and W (t) occurs before the
PLF reaches its minimum at time ρk is rare. From our experiments, we no-
ticed that this case happens when the poles are too close to the imaginary
axis, or when their damping is insufficient. It also happens when α is too
close to |λmax|. We managed to catch an instance of this case when simulat-
ing the SISO system in Chapter 1 with α = 2.566 s−1.

130

5.4. NUMERICAL SIMULATION CHAPTER 5

Table 5.1: The first 6 events

Update time Inter-event time Running time
0.453 0.453 0.0481
0.691 0.238 0.0081
1.228 0.537 0.0043
1.403 0.175 0.0029
1.641 0.238 0.0089
2.328 0.687 0.0030

Apart from the value of α, the rest of the experimental conditions men-
tioned in Chapter 1 are kept the same. The resulting graphs of the PLF and
the threshold function are represented in Figure 5.6a. The first event occurs
at t1 = 0.298 s, whereas the minimum of V (ξ(t)) on the interval [t0, t1) oc-
curs at ρ0 = 0.3 s. We can see that the algorithm manages to find the right
update time in this case as well. The state variables are shown on Figure 5.6b.

Even though we are dealing with the first update instant, which can
be usually computed offline, it is still interesting to compare the algorithm’s
execution time to the length of the interval [t0, t1), especially since in this case,
the inter-event time is shorter. The entire self-triggered control algorithm
(minimization stage and root-finding stage) converges to the right answer in
0.048 s, which is much less than the length of the interval t1 − t0 = 0.298 s.

0 1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Time

V

W

(a) PLF and threshold

0 1 2 3 4 5 6

Time

-1.5

-1

-0.5

0

0.5

1

s
ta

te
s

x
1

x
2

(b) States

Figure 5.6: Simulation of the SISO system where t1 < ρ0.

As stated earlier, the case ρk > tk+1 can be avoided by taking a smaller
α, or by moving the eigenvalues further to the left. Figure 5.7a represents

131

5.4. NUMERICAL SIMULATION CHAPTER 5

the PLF and the threshold for a smaller α, α = 1.866 s−1. Figure 5.7b repre-
sents the PLF and the threshold when moving the closed-loop poles further
to the left to −2 and −3, when they used to be at −1.33±1.4i, while keeping
α = 2.566 s−1. We can see that in both cases ρ0 < t1.

0 1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Time

V

W

(a) PLF and threshold for a smaller
value of α

0 1 2 3 4 5 6

0

500

1000

1500

2000

2500

3000

3500

4000

4500
Time

V

W

(b) PLF and threshold for different
closed-loop poles

Figure 5.7: Simulation of the SISO system where ρ0 < t1.

5.4.3 One-Dimensional Case

We consider the following scalar system

ẋ(t) = 0.2x(t) + u(t), (5.24)

with initial state x0 = 1.

We pick the stabilizing feedback gain K = 1.5. We find a Lyapunov-like
function with p = 1.5, and a threshold with α = 2.6 s−1, and W0 = 2.5.

Figure 5.8 shows the time evolution of the PLF and the threshold func-
tions, where the updates were carried out using the self-triggered algorithm.
The points marked by stars represent the local minima of the PLF predicted
by Equation (5.18),

ρ0 = 0.625 s,

ρ1 = 1.479 s,

ρ2 = 2.310 s.

132

5.5. CONCLUSION CHAPTER 5

0 0.5 1 1.5 2 2.5 3

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

V

0

1

2

H

2 2.5 3

0

0.02

0.04

Figure 5.8: The PLF and threshold with the predicted values of ρ0 and ρ1.

The predicted values correspond to the registered minima of the PLF.
Besides, the plot also confirms the fact that the minima always correspond
to V (x(t)) = 0 and thus x(t) = 0. This also tells us that in the scalar
case, we can use the analytical expressions and the minimization algorithm
interchangeably, as they both lead to the same results. We have tested both
approaches on this system, and both gave the exact same results.

5.5 Conclusion

In this chapter, we have introduced a self-triggered control algorithm that
computes the sampling instants of the control law via numerical methods.
In the control algorithm, the events correspond to the intersections between
the pseudo-Lyapunov function of the system and an upper threshold func-
tion. We have shown that an exact solution was very hard, if not impossible,
to find, but a numerical solution can be computed through a root-finding
algorithm. Root-finding algorithms are divided into global methods and lo-
cal methods. Global methods require to locate the next execution instant
within an interval, which can be an arduous task in our case, as we only
know the previous sampling instant. Local methods relax this requirement,
but involve the risk of divergence or convergence to the wrong solution, as
two consecutive events can be relatively far apart in time.

To counter these problems, we precede the root-finding algorithm by a
minimization algorithm that locates the local minimizer of the PLF. This
minimizer then serves as a starting point for the root-finding algorithm. The
root-finding algorithm is a hybrid between a local and a global algorithm,
the global algorithm ensures convergence to the right solution, whereas the

133

5.5. CONCLUSION CHAPTER 5

local algorithm ensures speed.

We have tested the self-triggered control algorithm on multiple numerical
examples and proved its efficiency. We observed that the algorithm converges
to the right solution even if the next sampling takes place before the min-
imum is reached. However, we maintain that this case is undesirable and
should be avoided by a more careful pole placement and choice of rate of
decay. The algorithm’s running time is very small compared to a single sam-
pling interval, and becomes negligible as we approach the equilibrium point.
We have also derived the exact formulas to compute the minimizer in the
case of first order systems, where the state is a scalar.

We have also noticed during the experimentation of the algorithm that
both the minimizing and root-finding algorithms are very sensitive to the
chosen tolerances. We have shown how to set some these tolerances using the
properties of the system. The others depend on the LTI system under study,
and more importantly on the overall simulation time. As the simulation time
gets longer, the PLF and the threshold reach smaller values, and therefore,
smaller tolerances are needed.

134

General Conclusion

In this thesis, we developed event-triggered control techniques for several
classes of systems. These classes involve LTI systems, switched linear sys-
tems and nonlinear systems. We also introduced methods that successfully
address both the problems of stabilizing an unstable system and driving a sys-
tem to track a reference trajectory. We evaluated each of the event-triggered
control methods based on their ability to achieve either stability, reference
tracking, or both, as well as their ability to guarantee a minimum inter-event
time and to reduce the number of updates of the control law. The latest
of these methods, the event-triggered control method for nonlinear systems,
has not yet been proven to satisfy the latter requirement, and the proof is
left for a future work.

All the event-triggered control methods developed for linear time invari-
ant systems, whether they are destined for the stabilization of an unstable
system or for the tracking of a reference trajectory, involve a comparison
between a Lyapunov-like function and a threshold. The threshold can be
decreasing in time or constant. This approach is particularly suited for this
class of systems, as a stabilized linear system readily admits a quadratic
Lyapunov function. The suitable threshold function for the PLF can then be
easily found. In the case of an exponentially decreasing threshold, the two
functions are designed simultaneously by solving a maximum generalized
eigenvalue problem. In the case of a constant threshold, we have established
the relationship between the maximum desired tracking error and the upper
bound on the PLF. The threshold can be computed via this relationship.

Even though the exponentially decreasing threshold was used for stabi-
lization and the constant threshold for tracking, the decreasing threshold can
also be used to solve a tracking problem. However, the constant threshold is
more suited for tracking problems. This is due, at first, to the fact that the
constant threshold ensures only a practical stability, while a stabilization con-
trol is most often designed to achieve a stronger form of stability. Secondly,

135

GENERAL CONCLUSION

because the event-triggered control algorithm with a constant threshold δ
requires a starting value V (x0) inside the region enclosed between V = 0
and V = δ. While this requirement can be met in the tracking algorithm by
setting the initial state of the reference system such that V (x0−xr0) < δ, x0

being the initial state of the controlled system, we generally have no control
on the initial state of a system to be stabilized.

The methods that we present have the advantage of being easy to use and
involving very few parameters unlike most available event-triggered control
methods. The latter methods often require the selection and fine-tuning of
several parameters, and this operation is vital to the successful application of
these methods. By contrast, the methods that we propose contain very few
parameters most of which are found through an optimization procedure. The
only parameters that the user has to select are the closed-loop eigenvalues of
the system, and the maximum allowable tracking error for tracking problems.

Because of this, one might argue that the absence of tuning parameters
leaves the user with very few degrees of freedom. After all, even the choice of
the closed-loop eigenvalues can be constrained by actuator saturation. How-
ever, the software solutions for solving the maximum generalized eigenvalue
problem offer some tuning parameters. For example, using MATLAB’s ’gevp’
function, the user can control the feasibility radius, which is a bound on the
magnitude of the solution. Furthermore, we developed these algorithms to
increase the inter-event times, but if the user wants shorter intervals, a max-
imum inter-event time can be imposed. As a result, some of the intervals
that are deemed too long are shortened, producing a smoother response.

In the linear case, we gave rigorous proofs of the existence of a minimum
inter-event time. We also provided a rough lower bound on the time lapse
between two events. This estimation represents a worst case scenario, while
we have observed that in reality, much larger intervals separate the events. In
most cases, we observed scattered, unevenly separated events. But, we also
observed some phenomena that we could not entirely explain. For example,
while simulating the SISO system in Chapter 1, we noticed that for this sys-
tem, the events were almost equidistant. Possible explanations include the
linearity of the system which makes for a predictable behavior. Or, it could
be that the state aligns itself on one of the eigenvalues, producing a repeated
behavior. For the MIMO system, we observed that events occur in clusters,
separated by long periods of time, a phenomenon that we could not explain
either.

136

GENERAL CONCLUSION

The discrete-time implementation of the event-triggered control algo-
rithms added an extra challenge. While developing these methods, we as-
sumed that the event-triggering conditions were monitored continuously,
while in reality they are monitored periodically. For this reason, the in-
tersection between the PLF and threshold cannot be caught by the event
generator, which only detects the event after it happened. To best imitate
the workings of the continuous-time algorithm, an update of the threshold
function was necessary. In the case of a decaying threshold, the value of
the threshold was updated to the value of the PLF at the instant at which
the event is detected. Since we ensured a fast time decay of the threshold,
this operation does not destabilize the system. In the case of a constant
threshold, the threshold is updated at the event instant, and then decreased
again once the PLF falls back below the original value of the threshold. In
this case, the system can be destabilized if other events happen before the
threshold resumes its original value. While solving a tracking problem, we
suggested a way to update the reference state instead, but this was a costly
operation and its use should be weighed against the cost of having no update
at all. Updating neither the threshold nor the reference state results in a few
additional updates of the control law.

In the discrete-time implementation of the self-triggered control algo-
rithm we have the advantage of knowing the event instant before it happens.
Therefore, we have the choice of carrying out the update one sampling in-
stant ahead of the event or one instant after. Even though we chose to update
the control law one instant before the event, an update of the threshold was
necessary in order to keep the algorithms consistent with the actual imple-
mentation and not run the risk of divergence.

For nonlinear systems, we developed an event-triggered control strategy
through contraction analysis. This approach has the advantage of allowing us
to provide a detailed procedure for building the event-triggering conditions
for a large class of nonlinear systems, but is especially easy to use for nonlin-
ear systems affine in the control. Conversely, most of the methods found in
the literature rely on a generic Lyapunov function that the user has to search
for. When using this method on an example, we noticed a considerable re-
duction of the number of updates, compared to a periodic implementation,
while managing to stabilize the originally unstable system.

However, the development of the event-triggered control method using
contraction analysis is still at an early stage and we still need to clarify some
of its aspects. For instance, the conditions for the existence of the trans-

137

GENERAL CONCLUSION

formation matrix Θ(x) have not yet been well established. In addition, the
method that we use to find Θ(x) obliges us to use a specific form of the
control law, whereas if we could find another way to determine Θ indepen-
dently of the control, we could design more general, and better suited control
laws. Furthermore, we still need to prove the existence of an inter-event time.

In short, we can conclude that the event-triggered control strategies in-
troduced in this work manage to achieve the goals demanded from a con-
trol algorithm, stability and reference tracking, with minimum control effort.
These strategies manage to reduce the communications between the CPU
and the plant considerably, leading to a more reasonable use of the commu-
nication resources. On the other hand, these methods can deteriorate the
quality of the response. For this reason, we need to tune the parameters so
as to find the right balance between quality of the response and number of
updates. We also need to identify the right applications that readily allow
for these types of methods, the ones that are not too sensitive to a decrease
in the quality of the response.

Future Work

In addition to points that still need clarification and that we mentioned in
the conclusion, this work paves the way for several future research options.
We list some of these perspectives below:

• Disturbance rejection
In the systems that we have dealt with so far, no disturbance was acting
on any part of the plant. However, in reality, control designers are often
confronted to systems with external disturbances, measurement noise
or model uncertainty. Therefore, we want to find out how the event-
triggered control algorithm would perform under the influence of some
form of disturbance, and what would be the modifications to bring to
the algorithm to ensure disturbance rejection. One possibility could be
to add an observer that would measure the effect of the disturbance
and integrate this measure into the event-triggered control algorithm.
This approach is especially suited for the reference tracking algorithm,
as the measure of the disturbance could easily be included into the
model of reference system.

• Improvements on the nonlinear control method
The event-triggered nonlinear control algorithm that we introduced of-
fers promising results, both in terms of the reduction of the number of

138

GENERAL CONCLUSION

updates and the ease with which it can be used. However, we still need
to write a rigorous proof of the existence of a minimum inter-event time.
This task is rendered difficult by the lack of well established results in
contraction analysis and by the points that still need clarification. We
mentioned earlier the problem of determining the existence of a trans-
formation matrix Θ for each system. The second point involves the
possibility of using the control law that we want. In the procedure that
we currently use, Θ and a control law have to be computed simulta-
neously, imposing on us a certain form of the control law. However,
we notice that Θ is the solution of the following partial differential
equation in space

∂Θ(x)

∂x
f(x) + Θ(x)

∂f(x)

∂x
= FΘ(x),

where ẋ = f(x) is the closed-loop system dynamics, and F is a user-
defined negative definite matrix. This partial differential equation can-
not be currently solved as we ignore its boundary conditions. But if
we can determine these conditions, we will be able to design our own
stabilizing control law, then use this equation to compute Θ(x) numer-
ically.

• Robust and nonlinear self-triggered control algorithm
The self-triggered control algorithm relies entirely on the system model,
and therefore, can be sensitive to model uncertainties and disturbances.
Thus, one other perspective of research is to make this algorithm robust
to uncertainties. Additionally, the self-triggered control algorithm can
be extended to nonlinear systems, either by using Lyapunov methods
as in the linear case, or by using contraction analysis.

139

Bibliography

[1] P. Ellis, “Extention of phase plane analysis to quantized systems,” IRE
Transactions on Automatic Control, vol. 4, pp. 43 – 59, 1959.

[2] C. Draper, W. Wrigley, and J. Hovorka, Inertial Guidance. Pergamon
Press, Oxford, 1960.

[3] K. J. Åström and B. Bernhardsson, “Comparison of periodic and event
based sampling for first-order stochastic systems,” in 14th Triennial
IFAC World Congress, Beijing, China, 1999.

[4] W. Heemels, R. Gorter, A. van Zijl, P. van den Bosch, S. Weiland,
W. Hendrix, and M. Vonder, “Asynchronous measurement and control:
a case study on motor synchronization,” Control Engineering Practice,
vol. 7, no. 12, pp. 1467 – 1482, 1999.

[5] K.-E. Årzén, “A simple event-based PID controller,” in 14th Triennial
IFAC World Congress, Beijing, China, 1999.

[6] P. Tabuada, “Event-triggered real-time scheduling of stabilizing con-
trol tasks,” IEEE Transactions on Automatic Control, vol. 52, no. 9,
pp. 1680–1685, 2007.

[7] D. Lehmann and J. Lunze, “Event-based control: A state-feedback ap-
proach,” in 2009 European Control Conference, pp. 1716–1721, IEEE,
2009.

[8] W. M. Heemels, M. T. Donkers, and A. R. Teel, “Periodic event-
triggered control for linear systems,” IEEE Transactions on Automatic
Control, vol. 58, no. 4, pp. 847–861, 2013.

[9] X.-M. Zhang and Q.-L. Han, “Event-triggered H∞ control for a class of
nonlinear networked control systems using novel integral inequalities,”
International Journal of Robust and Nonlinear Control, vol. 27, no. 4,
pp. 679 – 700, 2016.

140

BIBLIOGRAPHY

[10] C. Peng and T. C. Yang, “Event-triggered communication and H∞ con-
trol co-design for networked control systems,” Automatica, vol. 49, no. 5,
pp. 1326 – 1332, 2013.

[11] A. Ferrara, A. N. Oleari, S. Sacone, and S. Siri, “An event-triggered
Model Predictive Control scheme for freeway systems,” 51st IEEE Con-
ference on Decision and Control. Maui, Hawaii, USA, 2012.

[12] A. Selivanov and E. Fridman, “Distributed event-triggered control of
diffusion semilinear PDEs,” Automatica, vol. 68, pp. 344 – 351, 2016.

[13] N. Espitia, A. Girard, N. Marchand, and C. Prieur, “Event-based control
of linear hyperbolic systems of conservation laws,” Automatica, vol. 70,
pp. 275 – 287, 2016.

[14] S. Li and B. Xu, “Co-design of event generator and controller for event-
triggered control system,” in 30th Chinese Control Conference, 2011.

[15] M. Abdelrahim, R. Postoyan, J. Daafouz, and D. Nesić, “Co-design
of output feedback laws and event-triggering conditions for lienar sys-
tems,” in 53rd IEEE Conference on Decision and Control, Los Angeles,
California, USA, 2014.

[16] S. Tabouriech, A. Seuret, J. M. G. da Silva, and D. Sbarbaro, “Observer-
based event-triggered control co-design for linear systems,” IET Control
Theory and Applications, vol. 10, no. 18, pp. 2466 – 2473, 2016.

[17] A. Anta and P. Tabuada, “To sample or not to sample: Self-triggered
control for nonlinear systems,” vol. 55, pp. 2030–2042, Sept. 2010.

[18] M. Mazo, A. Anta, and P. Tabuada, “On self-triggered control for linear
systems: Guarantees and complexity,” in Proceedings of the European
Control Conference, (Budapest, Hungary), August 2009.

[19] N. Meslem and C. Prieur, “Event-based controller synthesis by bounding
methods,” European Journal of Control, vol. 26, pp. 12–21, 2015.

[20] X. Wang and M. Lemmon, “On event design in event-triggered feedback
systems,” Automatica, vol. 47, pp. 2319–2322, 2011.

[21] S. Boyd and L. E. Ghaoui, “Method of centers for minimizing generalized
eigenvalues,” Linear Algebra and its Applications, vol. 188 - 189, pp. 63
– 111, 1993.

141

BIBLIOGRAPHY

[22] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms
in convex programming. SIAM, 1994.

[23] A. Seuret, C. Prieur, and N. Marchand, “Stability of nonlinear sys-
tems by means of event-triggered sampling algorithms,” IMA Journal
of Mathematical Control and Information, vol. 31, no. 3, pp. 415–433,
2014.

[24] M. Heymann, F. Lin, G. Meyer, and S. Resmerita, “Analysis of zeno
behaviors in hybrid systems.,” in 41st IEEE Conference on Decision
and Control, Las Vegas, Nevada USA, 2002.

[25] R. C. Dorf and R. Bishop, Modern control systems. Pearson Education,
Inc., 2014.

[26] MathWorks, “Yaw damper design for a 747 R© jet aircraft.”
http://fr.mathworks.com/help/control/examples/yaw-damper-design-
for-a-747-jet-aircraft.html.

[27] N. Marchand, S. Durand, and J. F. G. Castellanos, “A general formula
for event-based stabilization of nonlinear systems,” IEEE Transactions
on Automatic Control, vol. 58, no. 5, pp. 1332–1337, 2013.

[28] D. Liberzon, Switching in systems and control. Birkhäuser, 2003.

[29] R. C. Wong, H. A. Owen, and T. G. Wilson, “A fast algorithm for
the time-domain simulation of switched-mode piecewise-linear systems,”
in IEEE Power Electronics Specialists Conference, Gaithersburg, MD,
USA, 1984.

[30] C. M. Wolf and M. W. Degner, “Computationally efficient event-based
simulation of switched power systems and AC machinery,” in IEEE Con-
ference on Energy Conversion Congress and Exposition (ECCE), 2016.

[31] Z. Sun and S. S. Ge, Switched linear systems control and design.
Springer, 2005.

[32] D. Liberzon and A. S. Morse, “Basic problems in stability and design
of switched systems,” IEEE Control Systems, vol. 19, no. 5, pp. 59–70,
1999.

[33] W. P. Dayawansa and C. F. Martin, “A converse Lyapunov theorem for
a class of dynamical systems which undergo switching,” IEEE Transac-
tions on Automatic Control, vol. 44, no. 4, pp. 751–760, 1999.

142

BIBLIOGRAPHY

[34] H. Lin and P. J. Antsaklis, “Stability and stabilizability of switched
linear systems: a survey of recent results,” IEEE Transactions on Au-
tomatic Control, vol. 54, no. 2, pp. 308 – 322, 2009.

[35] P. Li, Y. Kang, Y.-B. Zhao, and J. Zhou, “Dynamic event-triggered
control for networked switched linear systems,” in 36th Chinese Control
Conference, Dalian, China, 2017.

[36] A. Girard, “Dynamic triggering mechanisms for event-triggered con-
trol,” IEEE Transactions on Automatic Control, vol. 60, no. 7, pp. 1992–
1997, 2015.

[37] Y. Qi, P. Zeng, and W. Bao, “Event-triggered and self-triggered H∞
control of uncertain switched linear systems,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems., vol. To appear, 2018.

[38] T.-F. Li and J. Fu, “Observer-based dynamic output event-triggered
control of switched systems,” in 36th Chinese Control Conference,
Dalian, China, 2017.

[39] L. I. Allerhand and U. Shaked, “Robust state-dependent switching of
linear systems with dwell time,” IEEE Transactions on Automatic Con-
trol, vol. 58, no. 4, pp. 994–1001, 2013.

[40] V. Montagner, V. Leite, R. Oliveira, and P. Peres, “State feedback con-
trol of switched linear systems: an LMI approach,” Journal of Compu-
tational and Applied Mathematics, vol. 194, pp. 192–206, 2006.

[41] N. Otsuka and S. Sekiguchi, “Quadratic stabilization and transit prob-
lems for switched linear systems via state feedback,” in Third Interna-
tional Conference on Mathematics and Computers in Sciences and in
Industry, Chania, Greece, August 2016.

[42] G. Wang, Q. Zhang, C. Yang, and C. Sue, “Stabilization of continuous-
time randomly switched systems via the LMI approach,” Applied Math-
ematics and Computation, vol. 266, pp. 527 – 538, 2015.

[43] S. Durand, B. Boisseau, J.-J. Martinez-Molina, N. Marchand, and
T. Raharijaona, “Event-based LQR with integral action,” in 2014 IEEE
Emerging Technology and Factory Automation (ETFA), (Barcelona,
Spain), pp. 1–7, IEEE, Sept. 2014.

[44] P. Tallapragada and N. Chopra, “On event triggered trajectory track-
ing for control affine nonlinear systems,” in 50th IEEE Conference on

143

BIBLIOGRAPHY

Decision and Control and European Control Conference (CDC-ECC),
(Orlando, Florida, USA), pp. 5377–5382, IEEE, Dec. 2011.

[45] P. Tallapragada and N. Chopra, “On event triggered tracking for non-
linear systems,” IEEE Transactions on Automatic Control, vol. 58,
pp. 2343–2348, Sept. 2013.

[46] M. Shao, F. Hao, and X. Chen, “Event-triggered and self-triggered
asymptotically tracking control of linear systems,” in 32nd Chinese Con-
trol Conference (CCC), (Xi’an, China), pp. 6650–6655, IEEE, July 2013.

[47] W. Lohmiller and J.-J. E. Slotine, “On contraction analysis for nonlinear
systems,” Automatica, vol. 34, issue 6, pp. 683 – 696, June 1998.

[48] W. Lohmiller and J.-J. E. Slotine, “Contraction analysis: A practical ap-
proach to nonlinear control applications,” Proceeding of the 1998 IEEE
international conference on control applications, Trieste, Italy, 1998.

[49] W. Lohmiller, Contraction analysis of nonlinear systems. PhD thesis,
Massachusetts Institute of Technology, 1999.

[50] H. K. Khalil, Nonlinear Systems. Prentice Hall, 3rd ed., 2000.

[51] S. Durand, J. F. Guerrero-Castellanos, and R. Lozano-Leal, “Self-
triggered control for the stabilization of linear systems,” in 9th Inter-
national Conference on Electrical Engineering, Computing Science and
Automatic Control (CCE), 2012.

[52] M. Velasco, P. Mart́ı, and E. Bini, “Optimal-sampling-inspired self-
triggered control,” in International Conference on Event-based Control,
Communication, and Signal Processing (EBCCSP), 2015.

[53] M. Kishida, “Event-triggered control with self-triggered sampling for
discrete-time uncertain systems,” IEEE Transactions on Automatic
Control, 2018.

[54] K. Kobayashi and K. Hiraishi, “Self-triggered optimal control of linear
systems using convex quadratic programming,” in AMC2014-Yokohama,
(Yokohama, Japan), March 14 - 16 2014.

[55] X. Wang and M. D. Lemmon, “Self-triggered feedback control systems
with finite-gain L2 stability,” IEEE Transactions on Automatic Control,
vol. 54, no. 3, pp. 452–467, 2009.

144

BIBLIOGRAPHY

[56] X. Wang and M. D. Lemmon, “Self-triggered feedback systems with
state-independent disturbances,” in 2009 American Control Conference,
(St. Louis, MO, USA), June 2009.

[57] K. Kobayashi and K. Hiraishi, “Self-triggered model predictive control
with delay compensation for networked control systems,” in 38th Annual
Conference on IEEE Industrial Electronics Society, 2012.

[58] E. Henriksson, D. E. Quevedo, E. G. W. Peters, H. Sandberg, and
K. H. Johansson, “Multiple-loop self-triggered model predictive con-
trol for network scheduling and control,” IEEE Transactions on Control
Systems Technology, vol. 23, no. 6, pp. 2167–2181, 2015.

[59] W. Murray, “Newton-type methods,” Wiley Encyclopedia of Operations
Research and Management Science, 2010.

[60] P. E. Gill, W. Murray, and M. H. Wright, Practical optimization. Else-
vier Academic Press, 1986.

[61] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge uni-
versity press, New York, 2014.

[62] W. H. Press, S. Teukolsky, B. P. Flannery, and W. T. Vetterling, Nu-
merical recipes : the art of scientific computing. Cambridge University
Press, third edition ed., 2007.

145

