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Abstract

Julius HUIJTS

Broadband coherent X-ray diffractive imaging and
developments towards a high repetition rate mid-IR driven keV
high harmonic source

Soft X-ray sources based on high harmonic generation are up to now unique tools to
probe dynamics in matter on femto- to attosecond timescales. High harmonic generation
is a process in which an intense femtosecond laser pulse is frequency upconverted to the
UV and soft X-ray region through a highly nonlinear interaction in a gas. Thanks to their
excellent spatial coherence, they can be used for lensless imaging, which has already
led to impressive results. To use these sources to the fullest of their potential, a num-
ber of challenges needs to be met: their brightness and maximum photon energy need
to be increased and the lensless imaging techniques need to be modified to cope with
the large bandwidth of these sources. For the latter, a novel approach is presented, in
which broadband diffraction patterns are rendered monochromatic through a numerical
treatment based solely on the spectrum and the assumption of a spatially non-dispersive
sample. This approach is validated through a broadband lensless imaging experiment on
a supercontinuum source in the visible, in which a binary sample was properly recon-
structed through phase retrieval for a source bandwidth of 11 %. Through simulations,
the numerical monochromatization method is shown to work for hard X-rays as well, with
a simplified semiconductor lithography mask as sample. A potential application of lithog-
raphy mask inspection on an inverse Compton scattering source is proposed, although the
conclusion of the analysis is that the current source lacks brightness for the proposal to
be realistic. Simulations with sufficient brightness show that the sample is well recon-
structed up to 10 % spectral bandwidth at 8 keV. In an extension of these simulations, an
extended lithography mask sample is reconstructed through ptychography, showing that
the monochromatization method can be applied in combination with different lensless
imaging techniques. Through two synchrotron experiments an experimental validation
with hard X-rays was attempted, of which the resulting diffraction patterns after numeri-
cal monochromatization look promising. The phase retrieval process and data treatment
however require additional efforts. An important part of the thesis is dedicated to the
extension of high harmonic sources to higher photon energies and increased brightness.
This exploratory work is performed towards the realization of a compact high harmonic
source on a high repetition rate mid-IR OPCPA laser system, which sustains higher av-
erage power and longer wavelengths compared to ubiquitous Ti:Sapphire laser systems.
High repetition rates are desirable for numerous applications involving the study of rare
events. The use of mid-IR wavelengths (3.1 µm in this work) promises extension of the
generated photon energies to the kilo-electronvolt level, allowing shorter pulses, cov-
ering more X-ray absorption edges and improving the attainable spatial resolution for
imaging. However, high repetition rates come with low pulse energies, which constrains
the generation process. The generation with longer wavelengths is challenging due to the
significantly lower dipole response of the gas. To cope with these challenges a number of
experimental configurations is explored theoretically and experimentally: free-focusing
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in a gas-jet; free-focusing in a gas cell; soliton compression and high harmonic generation
combined in a photonic crystal fiber; separated soliton compression in a photonic crys-
tal fiber and high harmonic generation in a gas cell. First results on soliton compression
down to 26 fs and lower harmonics up to the seventh order are presented. Together, these
results represent a step towards ultrafast lensless X-ray imaging on table-top sources and
towards an extension of the capabilities of these sources.
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Résumé

Julius HUIJTS

Imagerie par diffraction cohérente des rayons X en large bande
spectrale et développements vers une source harmonique au keV
pompée par laser moyen-infrarouge à haut taux de répétition

Des sources des rayons XUV et rayons X mous sont des outils extraordinaires pour sonder
la dynamique à l’échelle nanométrique avec une résolution femto- voire attoseconde. La
génération d’harmoniques d’ordre élevé (GH) est une des sources majeures dans ce do-
maine d’application. La GH est un processus dans lequel une impulsion laser infrarouge
femtoseconde est convertie, de manière cohérente, en fréquences élevées dans le do-
maine XUV par interaction hautement non-linéaire, typiquement dans un gaz. La GH
possède une excellente cohérence spatiale qui a permis de réaliser des démonstrations
impressionnantes en imagerie sans lentille. Pour accroître le potentiel de ces sources,
deux défis sont à relever : leur brillance et énergie de photon maximum doivent aug-
menter et les techniques d’imagerie sans lentille doivent être modifiées pour être com-
patibles avec l’importante largeur spectrale des impulsions attosecondes émises par ces
sources. Cette thèse présente une nouvelle approche dans laquelle des figures de diffrac-
tion large bande, i.e. potentiellement attosecondes, sont rendues monochromatiques
numériquement. Cette méthode est basée uniquement sur la mesure du spectre de la
source et la supposition d’un échantillon spatialement non-dispersif. Cette approche a
été validée tout d’abord dans le visible, à partir d’un supercontinuum. L’échantillon bi-
naire est reconstruit par recouvrement de phase pour une largeur spectrale de 11 %,
là où les algorithmes usuels divergent. Les simulations numériques montrent aussi que
la méthode de monochromatisation peut être appliquée au domaine des rayons X, avec
comme exemple un masque semi-conducteur utilisé en lithographie EUV. Bien que la bril-
lance cohérente de la source actuelle (qui progresse) reste insuffisante, une application
sur l’inspection de masques sur source Compton est proposée. Dans une extension de
ces simulations un masque de lithographie étendu est reconstruit par ptychographie, dé-
montrant la versatilité à d’autres techniques d’imagerie sans lentille. Nous avons égale-
ment entamé une série d’expériences dans le domaine des X-durs sur source synchrotron.
Les figures de diffraction après monochromatisation numérique semblent prometteuses
mais l’analyse des données demandent des efforts supplémentaires. Une partie impor-
tante de cette thèse est dédiée à l’extension des sources harmoniques à des brillances et
énergies de photon plus élevées. Ce travail exploratoire permettrait la réalisation d’une
source harmonique compacte pompée par un laser OPCPA dans le moyen infrarouge à très
fort taux de répétition. Les longueurs d’onde moyen infrarouge (3.1 µm dans ce travail
de thèse) sont favorables à l’extension des énergies des photons au keV et aux impul-
sions attosecondes. Le but est de pouvoir couvrir les seuils d’absorption X et d’améliorer
la résolution spatio-temporelle. Cependant, deux facteurs rendent cette démonstration
difficile: le nombre de photons par impulsion de la source OPCPA est très limité et la
réponse du dipôle harmonique à grande longueur est extrêmement faible. Pour relever
ces défis plusieurs configurations expérimentales sont explorées : génération dans un
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jet de gaz ; génération dans une cellule de gaz ; compression solitonique et la généra-
tion d’harmoniques combinées dans une fibre à cristal photonique ; compression soli-
tonique dans une fibre à cristal photonique et génération d’harmoniques dans une cellule
de gaz. Les premiers résultats expérimentaux sur la compression solitonique jusqu’à 26
femtosecondes et des harmoniques basses jusqu’à l’ordre sept sont présentés. En résumé,
ces résultats représentent une avancée vers l’imagerie nanométrique attoseconde sur des
nouvelles sources ‘table-top’ et vers une extension des capacités de ces sources.
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Chapter 1

Introduction

1.1 Nature’s time and length scales

The time and length scales we are used to in our daily lives are determined by how
we perceive the world around us: through our own eyes. We generally have a hard time
imagining objects that are smaller than what our eyes can see, say, smaller than the width
of a human hair. Anything that is faster than ‘the blink of an eye’ is beyond timescales we
are naturally familiar with.

Our eyes offer us only a minute window into the realm of time and length scales
that nature has to offer. (Figure 1.1 shows a few examples of processes at short time
scales, and objects at small length scales.) For centuries mankind has fought to extend
this window by building devices that push the limits of what we can see, in time and
space.

1.2 Imaging fast processes

A famous example of an early attempt to image a process too fast for our eyes, is that
of Eadward Muybridge in 1878 [5]. The question was whether a galloping horse is ever
completely aloft (i.e. none of his feet touching the ground). He set up an ingenious array
of cameras, each with its own shutter that was triggered electrically as the horse passed.
The shutters were engineered by Muybridge himself and were open for only about a
microsecond. The resulting first high-speed video ever made clearly showed the horse
with all four feet off the ground (figure 1.2).

Shutter times on sub-microsecond time scales have proven difficult to realize mechan-
ically. To image faster processes, the stroboscopic approach was developed, pioneered by
Fox Talbot in 1851 and further developed mainly by Harold Edgerton. The principle be-
hind stroboscopic imaging is that the object is only illuminated during a very brief period
of time, by a short light flash. It is thus the length of the light pulse that determines the
temporal resolution, not the shutter time. The famous image of a bullet piercing an apple
(figure 1.1) was obtained by Edgerton through this technique using a microsecond flash
in 1964. Continually improving his technique, he would later use it to make pictures of
nuclear explosions with flashes as short as 10 picoseconds.

A limit of the stroboscopic technique is that it cannot be used in a camera array to
make a high-speed movie like Muybridge. To make a movie using the stroboscopic tech-
nique one has to resort to a pump-probe experiment.

1.2.1 Stroboscopic movies: Pump-probe experiments

In a pump-probe experiment two light pulses are used: one to initiate the dynamics, and
one to take a snapshot of it. By repeating the experiment for different delays between
pump and probe, the frames of the movie of the dynamics are acquired. George Porter
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FIGURE 1.1: Examples of Nature’s time scales, from right to left: A heart
beating on a second time scale; An airbag deploying in milliseconds; A
bullet imaged with a microsecond stroboscopic flash [1]; A field-effect
transistor switching on a nano- to picosecond time scale; Chemical reac-
tions taking place on a pico- to femtosecond timescale; Charge migration

taking place on an attosecond time scale [2].
Examples of Nature’s length scales, from right to left: Usain Bolt, fastest
man on earth, 1.95 m tall; Sand grains are about a millimeter in size; Soft
X-ray microscopy image of parasites in a human cell [3], a few µm large; A
membrane protein complex resolved through X-ray crystallography, tens
of nanometers in size; ‘Molecular man’ consisting of 28 CO molecules, 4
nanometer tall, built and imaged through scanning tunneling microscopy
[4]; A helium atom has a theoretical diameter of 62 picometer. On the
bottom of the figure, the regions of the electromagnetic spectrum corre-

sponding to wavelengths at the depicted length scale.

FIGURE 1.2: In 1878 Eadward Muybridge made the first high-speed video
using an array of triggered cameras. Several frames show the horse with

all four feet off the ground, confirming Muybridge’s hypothesis.



1.3. Imaging with X-rays 3

can be seen as the founding father of pump-probe experiments: he studied the formation
of radicals by an intense flash of light through spectroscopy with a second flash of light
[6], later rewarded with the Nobel Prize in Chemistry in 1967 [7]. The advent of the
laser [8] and specifically of the femtosecond laser [9] allowed pump-probe experiments
on chemical reactions, giving birth to the field of femtochemistry, pioneered by Ahmed
Zewail [10] and awarded the Nobel Prize in Chemistry in 1999 [11].

As each frame of the movie in a pump-probe experiment comes from a different in-
stantiation of the dynamics under study, the technique is reserved to repeatable processes.
Some schemes are however proposed to record unique events [12, 13].

1.3 Imaging with X-rays

In space, the smallest feature that can be distinguished is determined by the wavelength of
the light with which the object is illuminated [14]. Thus to see smaller objects, a shorter
wavelength should be used. As can be seen from figure 1.1, X-rays have wavelengths on
the order of a nanometer and below, and can be used to image objects down to nanometer
resolution. Another benefit of X-rays is their penetrating power: because of their low
interaction with matter they can be used to look ‘inside’ objects, as was already realized
by the discoverer of X-rays, Wilhelm Röntgen (Nobel Prize Physics 1901 [15]). X-ray
technology has known a tremendous development and is now indispensable to modern
science, which has a variety of sources available.

1.3.1 X-ray sources: large scale versus table-top

The most ubiquitous X-ray source (present in any hospital) is an X-ray tube: a relatively
small and inexpensive device in which electrons from a cathode impinge on an anode,
emitting X-rays in the form of bremsstrahlung. For many scientific applications, a brighter
source is needed: these have been developed mainly in the form of synchrotrons and,
more recently, free electron lasers. These are large scale facilities with multiple beamlines,
serving scientific users that need to apply for beamtime in order to do their experiment.
More recently, so-called ‘table-top’ sources have emerged. These are sources that are
based on an intense femtosecond laser system, where the X-rays are generated through
different physical phenomena. One of these phenomena is High Harmonic Generation
(HHG). These HHG sources can produce extremely short pulses of soft X-rays, down to
tens of attoseconds, to follow matter on the timescales of electronic motion. This has led
to impressive recent developments, such as following the charge migration in a biological
molecule on an attosecond timescale (figure 1.1 and [2]). To use these sources efficiently
for imaging a number of hurdles need to be taken.

1.3.2 Attosecond lensless X-ray imaging

X-ray lenses are difficult to make. Techniques have been developed to perform imaging
without the use of lenses, so-called lensless imaging. Lensless imaging on HHG sources
thus in principle represents a way to image objects on attosecond timescales with nano-
metric resolution. Exciting applications are for example in two revolutions: all-optical
magnetic switching and petahertz electronics. All-optical magnetic switching entails the
switching of magnetic nanoscale domains by ultrafast laser pulses which could increase
speed and energy efficiency of data storage by orders of magnitude [16, 17]. Research
on petahertz electronics aims at increasing the switching speed of transistors by orders of
magnitude. Today’s transistors switch on a nano- to picosecond timescale (figure 1.1), but
significant research efforts are currently being made to explore devices that might deliver
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switching times on the order of a femtosecond [18, 19]. These dynamics have recently
been measured on an attosecond timescale [20–22], but without spatial information. For
both research fields, the combination of sub-femtosecond temporal resolution and nano-
metric spatial resolution provides crucial insight into the electron dynamics, thus favoring
the next revolutions in data storage, electronics and computation.

At the moment this is impossible due to a limited source brightness, photon energy
and the broadband nature of the sources being incompatible with the methods used for
lensless imaging. This thesis work presents a number of small steps in solving these
challenges.

1.4 Thesis Outline

This manuscripts consists of two parts. The first part is on broadband coherent diffractive
imaging. In Chapter 2 the reader is introduced to CDI and the state of the art of its
extension to broadband sources. Then the developed method of broadband CDI through
numerical monochromatization is presented. The method is validated on a broadband
source in the visible, as shown in Chapter 3. A validation using X-rays is explored through
simulations in Chapter 4 and through experiments on synchrotron sources in Chapter 5.

The second part of the manuscript deals with extending the photon energy and in-
creasing the repetition rate of high harmonic sources. The background and state of the
art is presented in Chapter 6, together with calculations for an experimental realization
on a cutting-edge laser source. Chapter 7 contains the results of several experimental
attempts, together with details on the employed setups.

A large part of the necessary theoretical background for this thesis is explained in
appendices at the end of the manuscript, with references to relevant textbooks.
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Chapter 2

Broadband coherent diffractive
imaging

2.1 Introduction

An accurate description of electromagnetic radiation requires information in both ampli-
tude and phase. The Fourier transform (see Appendix A) is an extremely powerful tool
in describing the propagation of electromagnetic radiation, giving rise to the vast field of
Fourier optics [1–3]. The concept of lensless imaging relies heavily on Fourier optics. In
lensless imaging the goal is to create an image of an object, not by employing lenses (as
is the case for a micro- or telescope) but by detecting diffracted radiation in the far field
and employing Fourier transform techniques to reconstruct the object. This is especially
useful in applications where lenses are difficult to fabricate (as is the case for XUV and X-
ray radiation). The experimental geometry of a general lensless imaging setup is simple:
an electromagnetic wave interacts with an object, propagates, and is typically recorded
in the far-field. Theoretically, an inverse Fourier transform would suffice to reconstruct
the object from the recorded far field radiation. The central problem to lensless imaging
is that typical detectors (photographic film, a CCD camera, our eyes) detect photons, not
waves. We therefore have access only to the amplitude (squared) of the far field, not the
phase, and do not have sufficient information to perform the inverse Fourier transform.
To deal with this missing phase information, three main techniques of lensless imaging
can be distinguished: holography, ptychography and phase retrieval.

Holography
In holography1 the wave leaving the object is made to interfere with a known ref-
erence wave [4]. This reference wave can either be the source wave itself (in-line
holography) or a wave emanating from a second (point-) source (off-axis hologra-
phy). The phase information of the object wave is now imprinted in the far field
diffraction pattern (called a hologram) and can be retrieved by using the same ref-
erence wave (either experimentally or numerically). Since its invention in 1948
the technique has been awarded the Nobel Prize in Physics in 1971 and has found
widespread applications in optics [5], data storage and art. The main limitation of
the technique is the required high quality of the reference beam, the main advan-
tage is the deterministic retrieval of the phase.

1The word holography comes from the Greek words ὅλος (holos; “whole") and γραφή (graphē; “writing"
or “drawing"). The technique was originally invented by Dennis Gabor in 1948 to improve the resolution of
electron microscopes, which were limited by lens aberrations.
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Ptychography
In ptychography2 the incident beam (usually focused or apertured) is scanned
over an extended sample, while the diffraction pattern at each probe position is
recorded. The probe positions are made to overlap, such that there is a high degree
of redundancy in the data allowing iterative algorithms to retrieve the phase (and
more recently even the probe). Originally developed by the electron microscopy
community half a decade ago [6, 7], the advent of third generation synchrotron
sources has seen a plethora of impressive applications of X-ray ptychography in e.g.
life and materials science (see [8] for a recent review). The main advantages of
ptychography are its robustness (thanks to the redundancy in the data) and the
ability to image extended samples. The main disadvantage is the fact that no (fast)
dynamics can be imaged as the technique requires many exposures while scanning
the probe position on the sample.

Phase retrieval
Finally, it is also possible to numerically retrieve the phase of a recorded diffrac-
tion pattern directly, without the need of a reference wave or scanning of the probe
beam. An algorithm iterates between real and Fourier space, updating its guess
of the phase. A constraint on the object (typically the fact that it is isolated in
space) forces the algorithm to converge to the solution. This principle was devel-
oped by Gerchberg and Saxton in 1972 [9] and further optimized by Fienup [10]
and Marchesini [11]. The experimental work was pushed mainly by David Sayre
in the 80’s and 90’s [12–14] on synchrotron sources, with the first experimentally
reconstructed object published in 1999 with his colleagues Jianwei Miao and Henry
Chapman [15]. Since then, the field of CDI on synchrotron sources has grown into
a mature field of its own, with unique applications such as Bragg CDI (phase re-
trieval of the patterns surrounding Bragg peaks of a crystal lattice sample, allowing
to image imperfections and strain in the lattice). The advent of the Free Electron
Laser (FEL) holds the promise of what is arguably the most exciting application of
phase retrieval; single particle imaging, allowing structure determination of pro-
teins that are impossible to grow into crystals (e.g. membrane proteins), even in
a time-resolved manner. Compared to the other two techniques, the advantage of
using phase retrieval is that in principle it can be used in single shot, so ultrafast
dynamics can be recorded, while no reference beam is needed. The disadvantage
is the constraint it places on the sample (such as it being isolated in space).

As all three techniques are lensless, the attainable resolution is not limited by optical
aberrations but ideally only by the wavelength of the used radiation (Abbe limit3). In
practice however, the diffracted signal drops drastically for large scattering angles, so
the experimentally accessible numerical aperture is limited by noise, thus limiting the
attainable resolution. Although technically all above techniques fall under the principle
of coherent diffractive imaging (CDI), in practice the term CDI is used to indicate the
latter (phase retrieval). Of these three techniques this thesis focuses on CDI through
phase retrieval. However, the main principles are similar and the method of broadband
imaging proposed in the remainder of this thesis could also be applied to holography and
ptychography, thanks to its generality.

2
πτυχο means “to fold”, to indicate that the illuminating function and sample function “fold into each

other” as they propagate and interfere. In fact, the seminal paper on ptychography [6] was written in
German, where the term “folding” is used interchangeably with convolution.

3The Abbe limit on the minimum resolvable distance d using light with a wavelength λ and a numerical
aperture NA is given by d = λ

2NA =
λ

2n sinθ
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The main development of CDI has been performed by the (coherent) X-ray imaging
community, which has traditionally used synchrotron and more recently FEL radiation
for their experiments. In addition, in the past decade CDI has also found its way to high-
harmonic sources [16–18], which are highly suitable to CDI thanks to their excellent spa-
tial coherence. As mentioned in the Introduction of this thesis, HHG sources are unique in
the sense that they can provide light pulses with durations on the attosecond time scale.
Making use of these sources to track attosecond dynamics using CDI is however currently
impossible. A pulse that is so short in the time domain, at photon energies currently
attainable by HHG, inevitably has a large spectrum, where CDI (as well as holography
and ptychography) assumes a monochromatic illumination. This chapter first describes
the state of the art of monochromatic CDI, then explains the challenge and state of the
art of broadband CDI. Next, the method for broadband CDI as proposed in this thesis
(method of numerical monochromatization) is explained, thus setting the stage for the
next chapters. For more information on Fourier transforms and (Fraunhofer) diffraction,
see Appendices A and B.

2.2 Narrowband Coherent Diffractive Imaging

2.2.1 Principle and state of the art

Figure 2.1 shows the main principle of CDI through phase retrieval. A sample (typically
isolated in space) is illuminated by a monochromatic, plane wave. The exiting wave-field
is left to propagate to the far-field where the resulting diffraction pattern is recorded.
As explained in Appendix B, the recorded far-field diffraction pattern is the amplitude
squared of the Fourier transform of the wave-field as it exits the sample. To reconstruct
the sample, the phase information needs to be retrieved. This phase is guessed by an
iterative algorithm, which under suitable constraints converges to the correct phase, thus
reconstructing an amplitude and phase representation of the sample (the next paragraph
elaborates on phase retrieval algorithms). As explained in the previous section, the tech-
nique was developed on synchrotron sources, then adopted for applications on Free Elec-
tron Lasers. The famous first result of CDI on an FEL was obtained in 2006 by Chapman
et. al. [19], in which an aperture in a membrane was imaged on the soft X-ray laser
FLASH. Since then the field has developed enormously [20–24] with as recent examples
the imaging of the Giant Mimivirus [25] or live cyanobacteria [26]. Although these results
are still far from the promise of atomic structure determination, the transition from mem-
brane test samples to actual biological samples is an impressive feat. On HHG sources
the photon flux is many orders of magnitude lower, hence the typical membrane samples
of Chapman’s initial demonstration are still in use. An example of a recent result of a
high-flux HHG source is of Tadesse et. al. [27], where a record high 13.6 nm resolution
at 18 nm wavelength was reported. When acquiring for only 3 seconds (at a repetition
rate of 30 kHz) 20 nm resolution was obtained. Although this is rather quick compared
to other HHG sources, it is far from single shot, as opposed to e.g. [17].

2.2.2 Phase Retrieval Algorithms

The foundation for the most successful and widely applied phase retrieval algorithms was
laid by Gerchberg and Saxton in 1972 [9]. Their principle was to start with a random
guess for the phase, then iteratively transform between real and Fourier space applying
constraints in each of the spaces. The typical constraints in use nowadays come from
Fienup’s adaptation [10]: the sample should be contained within a support (isolated) in
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FIGURE 2.1: The principle of Coherent Diffractive Imaging (CDI) through
phase retrieval. The sample is illuminated by a plane wave. The diffrac-
tion pattern is recorded in the far-field. An iterative algorithm repeat-
edly transforms between real and Fourier space, updating its guess of the
phase. In real space, a typical constraint is that the sample is isolated
(zero outside a support). In Fourier space, the constraint is the measured
diffraction pattern. By retrieving the phase the sample is reconstructed.

real space and the pattern in Fourier space should correspond to the measured intensi-
ties of the diffraction pattern. At each iteration the guess of the phase is updated, and if
the data is of sufficient quality the algorithm converges to the correct phase, thus recon-
structing a complex image representation of sample4. The original algorithm, technically
a steepest-descent gradient search method, monotonously decreased the error in every
step and was thus dubbed the error-reduction algorithm (ER). Denoting Ps as the projec-
tion onto the support (application of real-space constraint) and Pm as the projection onto
the measured modulus in Fourier space, one iteration of ER can be written as:

ρ(n+1) = PsPmρ
(n) (2.1)

where ρ(n+1) is the updated estimate of the reconstructed sample. It is however prone
to getting trapped in local minima5. As an alternative Fienup proposed the hybrid input-
output algorithm (HIO)[10], which minimizes the error inside the support while simul-
taneously maximizing the error in the space perpendicular to the support. Although con-
vergence is not guaranteed, the algorithm is robust against local minima. Finally Elser in
2003 proposed the more general difference map algorithm (DM) [28], of which HIO is
a special case. A comparison of the different phase retrieval algorithms is given in [29].
Another important improvement is the concept of a dynamic support, which becomes
tighter as the algorithm converges. This so-called “shrink-wrap” algorithm [11] speeds
up convergence and helps to avoid the problem of twin-image formation [30]. In the
work of this thesis, a difference map algorithm is used unless stated otherwise. Using the

4Technically the wave as it exits the sample is reconstructed. In the projection approximation this is
equivalent to the sample density, see Appendix D.

5Although the real space constraint is a convex set, the Fourier space constraint is not, so local minima
exist.



2.2. Narrowband Coherent Diffractive Imaging 11

same operator notation, phase retrieval algorithm used in our group can be described as:

ρ(n+1) = [I− Ps − Pm + 2PmPs]ρ
(n), (2.2)

corresponding to DM with (γs,γm,β) = (−1, 1,−1) in the expressions given in [28, 29].

2.2.3 Resolution and sampling requirements

An important factor for any imaging technique is the resolution. High spatial frequencies
in the sample correspond to diffraction at large scattering angles, low spatial frequencies
in the sample correspond to small scattering angles. More formally, if we denote q as the
resolution in half-cycles per meter6, for a scattering angle θ at wavelength λ it is given
by:

q = 2
sinθ
λ

. (2.3)

The pixel size of the reconstructed sample is determined by the largest angle θmax , cor-
responding to the most outward pixel on the diffraction pattern, as the inverse of q:

∆s =
1

qmax
=

λ

2 sinθmax
. (2.4)

For example, if a diffraction pattern is 2 cm wide, and it is obtained at 1m distance
from the sample, sinθmax ≈ 10−2 and ∆s ≈ 50λ. Note that the reconstructed pixel
size ∆s is not equal to the resolution, but it represents the minimum feature that can
theoretically be resolved. If the signal on the diffraction pattern at θmax is zero, or covered
by noise, the information at spatial frequency qmax is lost and will not be present in the
reconstructed sample. In practice, the resolution will also depend on how reliably the
phase retrieval algorithm has retrieved the phase. Therefore the Phase Retrieval Transfer
Function (PRTF) is often reported as a measure for the resolution, although technically
it is a measure for the reliability of the phase retrieval process. It is given by [20]:

PRTF=
|F{ρ̄}|
p

M
, (2.5)

being the ratio between the modulus of the retrieved diffraction pattern, averaged over
many independent reconstructions, and the modulus of the measured diffraction pattern
M . It should be close to 1 for low spatial frequencies and drop for higher q. A more
empirical way of determining the resolution is through performing a line-out on a sharp
edge of the sample.

6So the inverse resolution is equal to the Abbe criterion.
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FIGURE 2.2: In broadband coherent diffractive imaging the broadband
diffraction pattern is an incoherent sum of all patterns corresponding to
the wavelengths of the source spectrum. The interference fringes appear
“smeared out” and standard phase retrieval algorithms do not work. By
adding a numerical step (depending only on the spectrum of the diffracted
radiation) the broadband pattern is monochromatized and using a stan-

dard phase retrieval algorithm the sample is reconstructed.

Finally a remark on the sampling of the diffraction pattern: after the inverse Fourier
transform, the number of pixels in sample space will be the same as the number of pixels
in Fourier space. The sample pixel size is set by equation 2.4. For each sample pixel
two values need to be reconstructed: the amplitude and phase of the wave leaving the
sample. So, to reconstruct a sample in a support of size a, at least 2a/∆s measurement
points per dimension are needed in the diffraction pattern (this is a manifestation of
the Nyquist-Shannon sampling theorem). Then, because of the presence of noise in any
realistic measurement, it is better to oversample the diffraction pattern. For 2a/∆s points
the oversampling ratio is 1, typically a ratio of 2-3 (per dimension) is recommended.
These considerations determine the geometry of an experiment. The wavelength and
desired resolution determine the NA of the setup as described above, the sample size,
oversampling ratio Ro and detector pixel size∆d determine the sample-detector distance
z:

z =
a∆d

∆sNA
Ro. (2.6)

2.3 Broadband Coherent Diffractive Imaging

2.3.1 Coherent Diffractive Imaging with attosecond resolution

As mentioned in the Introduction, attosecond sources are being developed to follow mat-
ter on the shortest timescales. The most successful examples at the moment are based
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on absorption spectroscopy (e.g. [31, 32]) or ionization dynamics (e.g. [33]). It is cur-
rently impossible to do CDI with attosecond resolution on table-top sources. The two
main challenges are:

Low photon flux
Compared to synchrotron and FEL sources, HHG sources suffer from low photon
flux. A setup optimized for single shot imaging ([17]) managed to produce up to
10µJ per shot. These were however no isolated attosecond pulses, but pulse trains
on a femtosecond timescale. Setups that generate isolated attosecond pulses can be
on the order of 10 nJ per shot [34] , corresponding to about 109 photons per shot
in the XUV. In Chapman’s original FEL experiment ([19]) they had 1012 photons
per shot, which allowed single shot CDI. This suggests HHG sources need to gain 3
orders of magnitude in pulse energy in order to allow attosecond CDI. In the soft
X-ray regime the HHG flux drops even further. Although it is not entirely fair to
compare the 25 fs pulse of FLASH with an HHG pulse that is two orders of magni-
tude shorter at a similar photon energy, it does illustrate that for attosecond CDI the
pulse energy, needs to be improved by orders of magnitude. One extremely high
flux isolated attosecond pulse has been reported in [35] of 1µJ per shot, showing
that although it is very challenging, it is possible to attain the necessary number of
photons in a single attosecond pulse.

CDI with broad spectra
The 109 photons per shot on a HHG source mentioned above are spread over a
wide spectrum, from 30 to 100 eV, whereas the 1012 photons per shot of FLASH
are quasi-monochromatic (0.2 nm at 32 nm). Cutting a similarly narrow band
out of the HHG spectrum would reduce the number of photons by two orders of
magnitude, even three or more taking the typical reflectivity of a multi-layer optic
into account (e.g. [36]). So to preserve the photon flux, it is important to make
use of the entire spectral bandwidth of the pulse. Secondly, cutting the spectrum
means losing the attosecond nature of the pulses. It is thus important to develop a
way to perform CDI using a broad spectrum.

If these two issues are solved, it will be possible to see ultrafast structural changes in
materials, with nanometer-scale spatial resolution and sub-femtosecond temporal reso-
lution, on a table-top setup. Examples of interesting samples are ultrafast switching of
magnetic materials [37, 38] or phase transitions in nanoparticles [39, 40]. See Chapter
9 for more details. Attosecond CDI will probably remain a dream for years to come, be-
cause of above-mentioned challenges. The argument of using broadband CDI to preserve
photon flux is however of immediate importance. Static imaging applications (such as
verification of lithography steps in the semiconductor industry) on table-top sources can
benefit immediately from a broadband CDI technique that can make use of the complete
spectrum of these sources. Besides HHG sources, inverse-Compton Scattering sources
(ICS) are another example of laser-based, table-top sources that can be used for CDI, typ-
ically at higher energies than HHG sources, and that also feature large spectra [41–43],
as explored in Chapter 4.

2.3.2 Role of the coherence length

An important fundamental limit for broadband CDI is imposed by the temporal coherence
of the source (see Appendix C). The temporal coherence of a realistic source is limited
by random phase variations and by, more relevant to this thesis, the bandwidth of the
radiation. The coherence length is derived from the coherence time, which is the maxi-
mum time delay at which a wave can interfere with itself. As shown in figure 2.3, even
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Δl
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θ

FIGURE 2.3: Interference from two points in a sample a distance is limited
to a path length difference smaller than the coherence length. The finite
coherence length of a broadband source thus poses a fundamental limit

on the attainable resolution for a give sample size.

if a source is perfectly spatially coherent, two points in a sample cannot interfere if the
difference in path length is larger than the coherence length lc . If these two points are
a distance a apart, the maximum diffraction angle is limited as sinθmax = lc/a, thus
limiting the resolution to:

qmax ,lc = 2
lc
λa

. (2.7)

For continuous broadband radiation, the coherence length can be estimated by (see Ap-
pendix C for a more rigorous treatment of the coherence length):

lc =
λ2

∆λ
. (2.8)

For pulsed radiation, the coherence length roughly equals the Fourier limited pulse length.
This places a more stringent limit on the coherence length (see appendix C). For a 1 fs,
Fourier limited, Gaussian pulse this means a coherence length of 0.25µm. Imaging a
sample down to a 5λ resolution means that the sample can be no larger than 10lc or
2.5µm.

2.3.3 State of the art

Previous work on broadband CDI has mainly been performed by the (former) group at
the Centre for Coherent X-ray Science of the University of Melbourne. The main princi-
ple of their work is an extension of Gerchberg-Saxton algorithm with a constraint on the
spectrum to perform the spectral deconvolution in parallel to the phase retrieval [44–48].
Their test experiments on synchrotron sources show convergence up to 3% bandwidth.
The work in this thesis performs the monochromatization as an independent step, be-
fore starting the phase retrieval process. Other work in the area of broadband lensless
imaging has been performed for different experimental setups, including ptychography
with an overlapped red, green and blue laser [49], ptychography with 1.5 % bandwidth
at 17 keV [50], two-pulse imaging with three harmonics from 47 to 62 nm [51], and
two-pulse HERALDO [52] with 8 harmonics spanning 12 to 33 eV [53]. Another inter-
esting example is [54], in which single helium nanodroplets were “imaged” by fitting Mie
scattering parameters to polychromatic diffraction data, obtained using 4 harmonics of a
HHG source.
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2.4 Numerical Monochromatization

Under certain conditions the broadband diffraction pattern is simply an incoherent sum of
monochromatic patterns which are identical up to a scaling. This is represented schemat-
ically in figure 2.2. The method presented here numerically inverts this scaling operation,
to extract the monochromatic pattern out of the broadband pattern, making use only of
the spectrum of the diffracted radiation. This monochromatized pattern is then used as
input for a regular phase retrieval process.

2.4.1 Broadband Fraunhofer diffraction

Consider a sample at z = 0, irradiated by a monochromatic plane wave with angular
frequency ω. In the paraxial approximation, the far-field diffraction pattern at z = ∆ is
given by the Fraunhofer diffraction formula (see Appendix B and [2] for a derivation):

ψω(x , y, z =∆) = −
ikeik∆

∆
ei k

2∆ (x
2+y2)ψ̃ω

�

kx =
kx
∆

, ky =
k y
∆

, z = 0
�

(2.9)

with the tilde indicating a 2-dimensional (spatial) Fourier transform. To describe the
diffraction of a sample by a broadband source, we write the broadband diffracted field Φ
as:

Φ(ω) = s(ω)ψω(x , y, z =∆), (2.10)

with s(ω) being the square root of the power spectral density of the diffracted radiation.
The spatial coordinates (x , y, z = ∆) will be omitted for sake of brevity. To obtain the
broadband diffraction pattern as seen by the detector it is convenient to pass to the time
domain through an inverse Fourier transform:

Φ(t) =
1
p

2π

∞
∫

−∞

Φ(ω)eiωtdω. (2.11)

The detector will integrate over time to produce the broadband pattern B(x , y, z =∆):

B =

∫

|Φ(t)|2 dt (2.12)

=
1

2π

∫

|Φ(ω)|2 dω (2.13)

=
1

2π∆2

∫

s(ω)2 |ψω|
2 dω (2.14)

where in the second step use is made of Parseval’s theorem (Appendix A).
Writing the central angular frequency of the spectrum asωc , we will now assume that

Assumption 1 We assume that ψω(x , y, z = 0)≈ C(ω)ψωc
(x , y, z = 0), C(ω) ∈ C

meaning that the sample is spatially non-dispersive over the source bandwidth (C does
not depend on x , y). Introducing the scaling factor α≡ λ

λc
= ωc

ω , then

B(x , y) =
�

kc

∆

�2∫ �

s(α)
α

�2 �
�

�

�

ψ̃ωc

�

kx =
kc x
α∆

, ky =
kc y
α∆

, z = 0
�

�

�

�

�

2

dω, (2.15)
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where C(ω) has been absorbed into s(α). Hence the broadband diffraction pattern is now
just a spectrally weighted sum of homothetically scaled copies of the monochromatic
pattern |ψωc

(x , y, z = ∆)|2. By measuring the broadband diffraction pattern and the
spectrum of the diffracted radiation, the monochromatic pattern can be retrieved using
linear algebra, as explained in the next section.

2.4.2 Monochromatization through regularized matrix inversion

First we will rewrite equation 2.15 in a linear algebra formulation. The measured inten-
sity of the broadband diffraction pattern B(x , y) is given by the sum of scaled copies of
the monochromatic diffraction pattern Mλc

(x , y), weighted by the normalized spectral
density S(α):

B(x , y) =

∫

Mλc

� x
α

,
y
α

� S(α)
α2

dα (2.16)

S(α) is normalized such that
∫

S(α)/α2dα= 1.
The scaling and weighting of copies of the monochromatic pattern is perfectly suited

for a matrix-vector product. Writing the monochromatic pattern as vector m, the broad-
band pattern as vector b and the scaling matrix as C, the broadband diffraction can be
written simply as:

b= Cm. (2.17)

Matrix C can be regarded as containing the radially dependent point-spread function
(PSF) of the convolution in Eq. 2.16. It maps a point in m to the shape of the spectrum in
b. For a 2-dimensional diffraction pattern C becomes a 4-dimensional tensor, although in
the numerical implementation the diffraction patterns are rearranged in a 1-dimensional
vector, so C is kept 2-dimensional. Matrix C is fully determined by the spectrum and the
size of the diffraction pattern. In one dimension C is formed as follows:

Cn j =
∑

L

[min{ j , αl n} −max{ j − 1 , αl(n− 1)}]
︸ ︷︷ ︸

part of scaled pixel n falling onto pixel j

Sl

αl
(2.18)

where

N =
§

n :
j − 1
αmax

< n<
j

αmin + 1

ª

,

L =
§

l :
j − 1

n
< αl <

j
n− 1

ª

.

Here l, n, j are the indices that run over α,m,b respectively. This expression can be un-
derstood as: “The contribution of pixel n of m to pixel j of b is given by the part of pixel n
that falls onto pixel j for the scaled pattern l times the spectral weight, summed over all
L. ” This principle is illustrated in figure 2.4. The flow of the numerical implementation
of the method is depicted in Fig. 2.5. In the experiment the broadband pattern and the
spectrum are measured (this is either a corrected source spectrum or the spectrum of the
diffracted radiation, and both should be corrected for the response of the camera). The
measured pattern is centered and binned to obtain pattern b. The spectrum is normal-
ized to obtain S(α) which, combined with the size of b, is all the information needed to
compute matrix C. The monochromatization of a broadband diffraction pattern is now
reduced to the inversion of matrix C. For a diffraction pattern b of 480×480 pixels, C has
2404 values (the scaling is the same for each quadrant). However, C is a sparse matrix:
depending on the spectrum only a few percent of the values is non-zero. C is now built
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FIGURE 2.4: Schematic illustration of the way matrix C is built up, for a
spectrum consisting of three wavelengths (l = 1, 2,3 or red, green, blue)
with spectral weights Sl = 0.3, 0.5,0.2. The contribution of pixel n of m
to pixel j of b is given by the part of pixel n that falls onto pixel j for the

scaled pattern l times the spectral weight Sl , summed over all L.

FIGURE 2.5: The information flow of the numerical monochromatization.
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Illustration of semi-convergence in solving

𝐦𝐂 = 𝐛

𝐦k

𝐦exact

𝐦kopt
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𝐂−𝟏𝐛

FIGURE 2.6: In ill-conditioned problems, such as the numerical
monochromatization problem considered here, direct inversion C−1b will
be dominated by inverted noise, and thus far from the exact solution
mexact . Regularization methods allow to perform the inversion gradually,

ideally by inverting the signal first, thus getting close to mexact .

by evaluating Eq. 2.18 in a set of parallel for-loops running only over the non-zero part
of C. Note that C only has to be built once per spectrum (and size of b). As C is highly ill-
conditioned (meaning its inverse exists, but the inversion is extremely sensitive to noise),
inversion of the problem is performed using a regularization method called Conjugate
Gradient Least Squares (CGLS, see e.g. [55]). It consists of minimizing the least squares
problem

min
x
‖C x − b‖2 subject to x ∈Kk (2.19)

where K denotes the so-called Krylov subspace:

Kk ≡ span{C T b, C T CC T b, . . . , (C T C)k−1C T b}. (2.20)

The power of this method is its behavior of semi-convergence: for increasing k, first the
signal is inverted so x comes close to the exact solution, then the noise starts being in-
verted as well and x diverges. This is illustrated in figure 2.6: the direct inverse C−1b
is dominated by inverted noise, but by regularizing the inversion (in our case by build-
ing up the Krylov subspace) one can come close to the exact solution mexact . Typically
the inverted patterns mk are computed up to kmax = 40. The optimum value for k is
then chosen either manually by visual inspection of mk (choose kopt just before inverted
noise starts to dominate), or automatically by maximizing the variance in the autocorre-
lation (a measure for sharp edges in real space) (typically kopt ≈ 25). The monochroma-
tized pattern mkopt

now serves as input for a conventional phase retrieval algorithm. The
numerical implementation is based on a Matlab function [55] which was translated to
Python with the addition of two constraints: positivity of xk (photon counts should not
be negative) and a support constraint on the Fourier transform of xk. The latter is justi-
fied as we are dealing with isolated samples, so the sample’s autocorrelation is isolated
as well. These constraints help to further improve the regularizing power of the method.
The developed Python code is available on github.com/jhuijts under the BSD license.
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2.4.3 An example

Figure 2.7 shows a 1-dimensional example to illustrate the workings of the method. A
spectrum with a bandwidth of 5 % (∆λ/λ) is sampled at 100 points. Matrix C is calcu-
lated using this spectrum for a diffraction pattern of 256 pixels. A cosine is taken as an
example of a monochromatic pattern m. The broadband pattern b is also plotted. The
pixel number on the x-axis can be seen as the radial axis for a 2-D pattern: the further
away from the center, the stronger the blurring due to the spectral bandwidth. A naive,
direct inversion of b = Cm leads to the pattern plotted in blue in the top panel of figure
2.8 (note the logarithmic y-scale). The reason for this behavior is the so-called condition
number of C. Although the determinant of C is non-zero (so its inverse exists), it has
a condition number on the order of 107. The condition number of a matrix is the ratio
between the largest and the smallest singular value, and it estimates the (worst case)
loss of precision in solving a linear system with that matrix. If it is infinite, the matrix is
singular and the determinant is zero (no inverse). In our example, the expected precision
loss through inversion is 7 orders of magnitude. Using the regularization method, the
inversion can be performed in a controlled way. The bottom panel of figure 2.8 shows the
monochromatized pattern for k = 0 (so using just the first basis vector of the Krylov sub-
space) and for k = 14 (using the first 14 basis vectors). For k→∞ the monochromatized
pattern will tend to the direct inversion, corresponding the behavior of semiconvergence
as indicated in figure 2.6. To show this, the monochromatized pattern for k = 700 is also
plotted in the top panel of figure 2.8. Figure 2.9 quantifies the introduced monochroma-
tization error, as

ε= |m̂−m|. (2.21)

The top panel of the figure plots ε for k = 14 and shows how the error increases towards
the edge of the diffraction pattern. The bottom panel shows the semi-convergence behav-
ior: the error is minimal for k = 14, after which the inversion diverges. For this example,
building matrix C took 290 ms on an average PC, calculating m̂ up to k = 700 took about
1 second.

2.4.4 Limits

Assumption 1 in practice means that the refractive indices of the materials in the sample
do not change significantly over the source spectrum, or that these changes are spatially
homogeneous at the reconstructed length scales. This means that masks and apertures
are perfect samples, but for more complex samples, constituted of different materials
with different refractive indices, the monochromatization step introduces errors as the
assumption is no longer valid. The magnitude of this error will depend not only on
the difference in refractive index and the spectral bandwidth, but also on the spatial
frequencies in the object and the sampling of the experimental diffraction pattern.

Matrix C is invertible as the determinant is non-zero. This is however only the case
for a spectrum that does not contain any zeros. For a discrete spectrum (as is the case for
many XUV HHG spectra), the determinant is zero and the algorithm will fail (the inverted
pattern will tend to infinity). Hence, the method is also limited to continuous spectra.

As a final remark, the spectrum should be finely sampled to avoid that the pattern ex-
pected by the algorithm contain discontinuities. These discontinuities first appear at large
diffraction angles, or high spatial frequencies. The wavelengths λl and λl+1, diffracted
onto the outer edge of the captured diffraction pattern will be separated by a fraction
of a pixel ε. The spectrum should thus be sampled finely enough7 that ε � 1. For a

7Theoretically, for a detector with infinitely small pixels, the limit would be determined by the integration
time of the detector, i.e. ∆ω< 1/Tint
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FIGURE 2.7: One-dimensional example to illustrate the workings of the
monochromatization method.
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diffraction pattern of N × N pixels

ε=
N(λl+1 −λl)

2λ
� 1 (2.22)

and thus
∆λ

λ
�

2
N

. (2.23)

2.5 Conclusions

CDI through phase retrieval is an important imaging technique that is gaining momentum
on several sources (synchrotron, FEL, HHG) thanks to its ease of implementation (no
lenses or reference wave needed). Traditional CDI however assumes a perfectly coherent,
monochromatic wave. In order to make full use of the developed attosecond sources, and
other sources that feature a broad spectrum, it is necessary to extend CDI methods to cope
with broadband diffraction patterns. Some work has been performed in this direction,
particularly by extending the iterative phase retrieval algorithm. In this thesis work, a
method has been developed to perform a numerical monochromatization, directly on the
broadband diffraction pattern, using only the spectrum of the diffracted radiation. It
makes use of a regularized matrix inversion. An important limiting assumption is that
the sample be non-dispersive over the source bandwidth. In the coming chapters, the
method will be applied to experimental and simulated cases, to explore its applicability
and limitations.
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Chapter 3

Experimental validation of the
broadband CDI method on a
supercontinuum source in the
visible

3.1 Introduction

To validate the concepts put forward in the previous chapter (numerical monochrom-
atization, behavior of semi-convergence), an experiment was performed in the visible.
For this validation a source was needed with excellent spatial coherence and a tunable,
broad bandwidth. This was found at the Laboratoire Charles Fabry (Institut d’Optique,
Palaiseau, France) in the form of a supercontinuum generated in a photonic crystal fiber,
as explained in the next section. This chapter describes the experimental setup and
presents the obtained results, which will confirm the expectations raised in the previ-
ous chapter and illustrate the principle and power of the numerical monochromatization
method.

3.2 Experimental Setup

To create spatially coherent light with a broad spectrum, pulses from an Yb:KGW oscillator
(1030 nm, 240 fs, 1W average power - Mikan Amplitude Systèmes) were focused into a
photonic crystal fiber (PCF). This PCF (T2270, Laboratoire PhLAM - Université Lille) was
developed to generate a soliton at 1550 nm and a dispersive wave at 625 nm. Two
short-pass filters (Thorlabs FES0850) were used to at the output of the PCF to block the
soliton and the residual 1030 nm light, as illustrated in the schematic of the experimental
setup, figure 3.1. Using these filters resulted in the broadband spectrum shown in Figure
3.2. For the narrowband case, a 10 nm bandpass filter at 800 nm (Thorlabs FB800-
10) was inserted. The spectra were recorded using an Ocean Optics USB4000 VIS-NIR
spectrometer. An off-axis parabola with an effective focal length of 75 mm was used
to focus the beam onto the sample, which was mounted on a translation stage. A CCD
(Illunis RMV 4022) was used to acquire the diffraction pattern, at distance sample-CCD
of 16 mm. This corresponds to a numerical aperture of 0.39 for the diffraction patterns
in Figure 3.4.

3.2.1 Sample

As test sample a micrometric, pure amplitude aperture was used, similar to the one in the
original experiment at FLASH by Chapman [1]. It has been etched out of a gold-covered
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FIGURE 3.1: Setup used to verify the monochromatization method in the
visible.
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FIGURE 3.2: The broadband spectrum (orange) from a super-continuum
generated in a PCF, with a bandwidth of ∆λ/λ = 11% and the narrow-
band spectrum (blue) with a bandwidth of ∆λ/λ = 1.2%. The green
dot at 710 nm represents λc , which is taken at the center of mass of the

spectrum.
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FIGURE 3.3: Sample as used in the experiment. It is an aperture etched
out of a gold-covered silicon nitride membrane using a focused ion beam

(FIB). The scalebar corresponds to 10 micron.

silicon nitride membrane using a Focused Ion Beam (FIB) at the Centre de Sciences Nu-
cléaires et de Sciences de la Matière (CSNSM, Orsay). These test samples are ubiquitous
in the field of diffractive imaging on HHG sources as they present a known, binary and
two-dimensional object. An scanning electron microscopy (SEM) image of the sample
used in this experiment is shown in figure 3.3.

3.3 Numerical processing

The first part of the data processing of the experiment follows the scheme shown in figure
2.5.

Spectrum
The spectrometer measures the spectrum at a sampling of ∆λ≈ 0.2 nm. Equation
2.22 then evaluates to ε ≈ 0.07 for the broadband diffraction patterns (N = 480
pixels), which was considered sufficiently small, so no interpolation was used. The
spectrum is normalized to yield S.

High dynamic range acquisition
The diffraction patterns were obtained by using high-dynamic range (HDR) acqui-
sitions, such that the effective bit-depth of the acquired diffraction patterns up to
24, when the bit-depth of the CCD is 14 bits. In HDR, acquisitions of different ex-
posure times are combined to increase the effective bit-depth. The long-exposure
acquisitions are saturated in the center of the diffraction pattern, but capture the
low-signal wings of the pattern which contain the information about the high spa-
tial frequencies in the sample. The values of the saturated pixels are taken from the
short-exposure acquisition (with a multiplicative factor). This procedure is similar
to that of [2, 3].

Center, crop, binning
The patterns are then cropped to 1440 x 1440 pixels, such that the direct beam is in
the center of the diffraction pattern. Next, the patterns are binned 3 x 3 (software
binning) to reduce computation time for the phase retrieval algorithm.
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Numerical monochromatization The broadband patterns are monochromatized follow-
ing the procedure explained in the previous chapter. Matrix C is built and the reg-
ularized inversion is computed up to kmax = 40. Phase retrieval was launched for
different values of k, and an optimum value for k was determined.

Phase retrieval An erosion step was applied to the diffraction patterns to suppress noise
in the low signal areas of the pattern, similar to [2–4]. The sample was then recon-
structed using the difference map algorithm as described in the previous chapter,
with a shrink-wrap-like support, within a maximum of 1000 iterations. To compute
the PRTF 1024 independent reconstructions were launched with random starting
points. The successful reconstructions were then hand-selected to be registered
(using an adaptation from [5]) and averaged to enhance the signal on the final
result.

A number of these procedures already existed in the group and were transposed from
MATLAB to Python.

3.4 Results

This section subsequently shows the obtained diffraction patterns, the monochromatiza-
tion process, the reconstructions of the sample and an assessment of the quality of these
reconstructions.

3.4.1 Diffraction patterns

First a word on how the diffraction patterns are displayed in this thesis. Because of the
large difference in signal level between the center and the outer regions of diffraction
patterns, they are displayed using a logarithmic color scale. On the x-axis the spatial
frequency in the sample plane is given in inverse micrometers (or sometimes simply the
pixel number). The y-axis is always identical to the x-axis (all diffraction patterns in this
thesis are square), so the label for the y-axis is omitted to allow more space on the page to
the pattern itself. The narrowband diffraction patterns are shown in figure 3.4, for three
different signal levels. It clearly shows the contribution of the circle and the different
straight lines of the sample, with the strongest diffraction in the vertical direction from
the three horizontal lines in the sample. The broadband diffraction patterns in the same
figure were obtained to have similar signal levels (thus shorter acquisition times by about
a factor of 10). Although they have the same shape as the narrowband patterns, the radial
blurring due to the large bandwidth is clearly visible. The sharp fringes that are clear in
the monochromatic case are “smeared out”.
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FIGURE 3.4: Narrowband diffraction patterns (upper panels) acquired us-
ing the narrow spectral cut (1.2%) of the supercontinuum source, for
three different signal levels. Broadband diffraction patterns (lower pan-
els) acquired using the full (11%) spectral bandwidth of the supercon-
tinuum source, for three different signal levels similar to the narrowband

case.
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3.4.2 Monochromatization

As explained in the previous chapter, the monochromatization step is done in a gradual
way, with the “degree of monochromatization” being controlled by the parameter k, the
number of basis-vectors in the Krylov subspace. To demonstrate this gradual monochrom-
atization and the behavior of semi-convergence, figure 3.5 shows the diffraction patterns
at three stages of the monochromatization process. Comparing the patterns at k = 3
to the broadband patterns of figure 3.4 the onset of the monochromatization is clear,
but the radial blurring due to the large bandwidth is still strongly present. At k = kopt
the inverted patterns are as close as possible to the narrowband patterns, although they
are not identical (semi-convergence). Also, the lower the signal level in the broadband
pattern, the earlier the inverted noise starts to dominate, i.e. the lower the value for
kopt . Further increasing the value for k, the inverted noise dominates and the result of
the matrix inversion moves away from the exact solution (which is again the behavior of
semi-convergence). Interesting to note is the evolution of the band of stray light in the
top right of the high signal level broadband pattern (indicated by a red arrow). This stray
light is not part of the physical diffraction pattern and thus does not follow the spectral
convolution expected by the inversion method. In the monochromatized patterns the in-
version of this stray light causes unphysical oscillations. Another unphysical feature is
the square structure that appears near the edges of the monochromatized patterns, es-
pecially in the low signal case. These regions are dominated by noise (outside the red
square indicated in the figure), which does not follow the expected spectral convolution
either. These are examples of sources of artifacts, the inversion of which would render
the diffraction pattern unusable for phase retrieval if they were not controlled by the
regularization method (CGLS).

Broadband diffraction patterns were obtained for 9 different signal levels. The value
of kopt as a function of signal level is shown in figure 3.6. The tendency is clear: higher
signal levels allow a higher degree of monochromatization of the diffraction pattern.
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FIGURE 3.5: The regularized monochromatization process. For a too low
value of k, strong blurring is still visible. As k increases, the diffraction
pattern is monochromatized, but artefacts are also introduced, as indi-
cated by red arrows. The higher the signal, the further the pattern can
be monochromatized until the inverted noise starts to dominate. Here
the optimal value of k, kopt was chosen manually and verified through

successful phase retrieval.
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FIGURE 3.6: The optimal degree of monochromatization for different sig-
nal levels. The higher the signal, the further a diffraction pattern can be

monochromatized before inverted noise starts to dominate.

3.4.3 Reconstructions

As a benchmark for the reconstructions, consider the reconstructed sample of the high-
signal narrowband pattern, shown in the top panels of figure 3.7. The sample aperture is
perfectly reconstructed, even showing the cracks in the membrane in the top left and top
right of the image (compare with the SEM image, figure 3.3). The phase is flat where the
sample transmission is non-zero, as expected for a plane wave incident on the sample.
Now feeding the exact same phase retrieval algorithm with the monochromatized pattern
of figure 3.5 (6 × 1011 photons, k = kopt), results in the reconstruction shown in the
center panels. Again, even the small cracks in the membrane are reconstructed, and the
phase is flat across the transmissive region of the sample. Only the lower right corner of
the figure is not reconstructed as well as in the narrowband case. As a cross-check the
broadband pattern was also directly fed into the phase retrieval algorithm (so without any
monochromatization) and across 100 independent launches no convergence was reached.
The lower panels show such a failed reconstruction. Although some features of the sample
are vaguely recognizable, it is by no means a satisfying reconstruction of the sample.

At lower signal levels, the monochromatization is stopped earlier to prevent inverted
noise from dominating the signal. To see the effect of this lower degree of monochroma-
tization on the sample reconstruction, consider figures 3.8 and 3.9, which are the broad-
band and narrowband reconstructions of the medium and low signal level cases (3×108

and 6 × 105 for the narrowband case, 2 × 108 and 5 × 105 photons for the broadband
case).

The medium signal level reconstructions are practically identical to the high signal
level reconstructions, but the low signal level reconstructions are significantly worse. The
narrowband reconstruction has downright failed. The reconstruction of the broadband
case is still successful, albeit with a clear loss in resolution. This is remarkable, considering
that the raw broadband diffraction pattern contains about the same number of photons
as the narrowband pattern. The monochromatization process introduces some artefacts,
but apparently its noise-suppressing behavior more than compensates for these artefacts,
producing a pattern that is of sufficient quality for its phase to be retrieved.
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FIGURE 3.7: In the narrowband case (upper panels) the sample is readily
reconstructed. The phase (right panel) is flat across the transmissive area
of the sample. As the center panels show, feeding the monochromatized
pattern (highest signal level) into the phase retrieval algorithm properly
reconstructs the sample, with even the membrane cracks being visible
(red arrows). On the bottom right of the circle a loss of signal is visible.
The phase is again correct. As is clear from the lower panels, trying to
reconstruct the sample directly from the highest signal broadband diffrac-
tion pattern fails. Although some features from the sample are vaguely
recognizable, the blurring in the diffraction pattern is too strong for the

phase retrieval algorithm to converge.
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FIGURE 3.8: Reconstructions of the signal at medium signal levels. The
reconstructions are practically identical to the high signal level case.
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FIGURE 3.9: Reconstruction of the sample at low signal levels. For the
narrowband case, no successful reconstruction could be obtained. The
reconstruction of the broadband case is still successful, albeit with a clear

loss in resolution.
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3.4.4 Quality of the reconstructions - Resolution considerations

As explained in the previous chapter, to assess the quality of the reconstruction after phase
retrieval it is useful to look at the phase retrieval transfer function (PRTF). It is computed
by launching many independent reconstructions and then taking the ratio between the
mean retrieved amplitude of the far-field and the amplitude of the measured diffraction
pattern. This procedure was followed for all six cases (narrowband and broadband, 3 sig-
nal levels), launching the phase retrieval from 1024 independent, random starting points.
The results are shown in figure 3.10. Although in practice the PRTF is used to determine
the resolution of a reconstruction, it technically is a measure of the reliability of the phase
retrieval process. The PRTF is close to one in the center of the diffraction patterns, and
drops in the radial direction. Hence the low spatial frequencies are reconstructed more
reliably than the higher frequencies, as one would expect. What is clear from this figure
is that the narrowband cases reconstruct more reliably than the broadband cases, indi-
cating that the artifacts introduced by the monochromatization procedure are a source of
uncertainty in the retrieval of the phase. Also, for the lowest signal level, the PRTF of the
narrowband and broadband cases look similar. However, the narrowband case failed to
reconstruct the sample, whereas the broadband case succeeded. For this failed, narrow-
band case the PRTF was calculated by taking into account all 1024 reconstructions, not
just the successful ones (as there were none).

By azimuthally integrating the PRTF one obtains an average trace that quantifies how
reliably different spatial frequencies are reconstructed. The spatial frequency for which
this trace drops below e−1 is typically quoted as the obtained resolution [6]. Figure 3.11
shows these traces for our 6 cases, with the e−1-value indicated by a dot. It is interest-
ing to see the dependence of this PRTF-based resolution criterium as a function of signal
level, to compare the results of the monochromatization process to the narrowband case.
Consider figure 3.12, which plots this value for 9 different signal levels, for the broad-
band and narrowband case. For high signal levels, the monochromatized case performs
similar to the narrowband case (but for an acquisition time shorter by about a factor of
10). For low signal levels, the broadband case even outperforms the narrowband case,
thanks to the noise-suppressing behavior introduced by the monochromatization step.
The cross indicates the failed reconstruction of the lowest-signal narrowband case. The
dotted lines at the bottom of the figure indicate the theoretical limit on the resolution.
For the narrowband case, this limit is given by the Abbe limit for this numerical aperture,
corresponding to a limit of 1.3 micron. For the broadband case the theoretical limit is
imposed by the limited coherence length, as described by equation 2.7, corresponding
to a limit of 3.3 micron. Instead of the PRTF, one can also look at the mean residual er-
ror after reconstruction (MRE), which takes the average distance between the retrieved
and measured farfield amplitude, a slightly different way of quantifying the quality of
the phase retrieval process. Here, the narrowband case clearly performs better for high
signal levels, meaning that the monochromatization artifacts refrain the phase retrieval
from reaching the same level of convergence as the narrowband case. Again for the low
signal levels the noise-suppressing effect of the monochromatization comes into play and
the broadband case outperforms the narrowband case for an equal signal level. Finally,
as a more empirical and direct way of determining the resolution of the reconstructed
sample, one can look at the size of the cracks in the membrane. They are visible in all
high-signal reconstructions and disappear only below a signal level of 107 photons. Fig-
ure 3.14 shows the FWHM size of the reconstructed cracks in the sample membrane as
a function of signal level. The behavior is similar to that of the other indicators, and be-
cause the reconstructed pixel size is about one micron, the error bars are large. Within
error bars, the broadband and narrowband case yield similar results for the reconstructed
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FIGURE 3.10: The phase retrieval transfer function (PRTF), calculated
from 1024 independent reconstructions, for all six cases. Note that for
the lowest signal level the narrowband and broadband PRTF look similar,
but the broadband case could be reconstructed successfully, whereas the

narrowband case could not.
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integration. The dots mark the point where the PRTF drops below e−1.
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FIGURE 3.12: Comparison between the obtained “resolution” of the broad-
band and narrowband cases, determined as the value of q−1 for which
the PRTF drops below e−1. Thanks to the noise-suppressing properties
of the monochromatization procedure, the broadband case even outper-
forms the narrowband case for low signal levels. The cross indicates that
no successful reconstruction could be obtained. The dotted lines indicate
the theoretical limits on the resolution, posed by the limited coherence
length for the broadband case and by the Abbe limit for this NA for the

narrowband case.
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FIGURE 3.13: The mean residual error after phase retrieval, compari-
son between broadband and narrowband cases for different signal levels.
Again, the broadband case outperforms the narrowband case for low sig-
nal levels. The cross indicates that no successful reconstruction could be

obtained.
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FIGURE 3.14: As a more empirical way of determining the resolution,
the size of the reconstructed crack in the sample has been measured. As
the reconstructed crack size is only 2-3 pixels, the measurement error is
large. Within errorbars, the broadband and narrowband case yield similar

results.

crack size.

3.5 Discussion

The binary sample and the relatively simple setup allow the monochromatization method
itself to be investigated. The monochromatization procedure works as it is supposed to,
but also has its limitations. It does indeed monochromatize the broadband pattern to an
extent at which the phase retrieval algorithm readily reaches convergence and properly
reconstructs the sample. It has a noise-suppressing effect that is beneficial at low signal
levels. It does however also introduce artifacts in the monochromatized pattern, which
reduce the reliability of the phase retrieval process. The behavior of semi-convergence is
clear and easily controlled by the parameter k. The resolution limit posed by the limited
coherence length of 3.3 micron has unfortunately not been reached (at least based on
the PRTF-criterium), but neither did the reconstruction of the narrowband case. Other
factors such as noise detection limit the resolution of these reconstructions to about 5
micron (PRTF-based).

3.6 Conclusions

In this experiment where the sample was binary and thus within the limits posed by the
fundamental assumption of the monochromatization method, the method performed ac-
cording to expectation. For similar signal levels the result of the broadband case were
similar to that of the narrowband case, thus effectively allowing for a reduction in mea-
surement time of an order of magnitude. It must be noted that the sample has a rather
simple geometry, and thus a limited number of spatial frequencies need to be recon-
structed. The promising result of this chapter encourages a validation of the method
using X-ray radiation, on a more challenging sample geometry, as will first be explored
through simulations in the next chapter.
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Chapter 4

X-ray simulations on broadband CDI
and ptychography - applied to
lithography mask inspection

4.1 Introduction

After the successful validation of the numerical monochromatization method in the vis-
ible we will apply the method using X-rays. As explained in Appendix D, X-rays have a
number of peculiar properties that make them interesting for e.g. scientific imaging, no-
tably their penetration power owing to a weak interaction with matter. In the hard x-ray
regime, away from any absorption edges, the refractive index is close to constant and it is
thus easier to find a realistic application that corresponds to the limit of a non-dispersive
sample (Assumption 1). This chapter deals with simulated cases of broadband CDI and
ptychography, the next chapter with an experimental validation.

4.2 Sample: EUV lithography mask

As explained in chapter 2 the monochromatization method works best with mask-like
samples, as they are non-trivial but not constituted of different materials, which would in-
troduce errors in the monochromatization process. An important example of the imaging
of masks is in the semiconductor industry, where lithography masks are used to imprint
patterns on an integrated circuit. Inspection of these masks is of utmost importance, as
any appreciable error in a mask translates into a defect on the chip each time the mask
is used. In the race of keeping up with Moore’s law [1] (describing how miniaturization
of integrated circuits doubles every two years) the lithography industry has been moving
to sources of smaller wavelength, leading to machines currently being developed at a
source wavelength of 13.5 nm, so-called EUV lithography. One of the major hurdles for
the adoption of EUV lithography by the semiconductor industry is the inspection of the
lithography masks [2, 3]. These masks work in reflection off a multilayer mirror, and the
EUV is sensitive to defects not only on the surface, but also within the multilayer. One of
the options is to use hard X-rays, as explored in this chapter. EUV lithography masks con-
sist of a patterned absorber (typically TaBN) deposited on a multilayer mirror on a quartz
substrate, as schematically depicted in figure 4.1. Provided the substrate is sufficiently
thin and homogeneous, the absorber pattern can be imaged in transmission geometry
through coherent diffractive imaging using hard X-rays, greatly simplifying the experi-
mental setup. It can in principle offer single nanometer resolution and even be sensitive
to defects in the multilayer mirror. Note that there is a magnification factor of 4 between
the mask and the wafer, which is advantageous for inspection. For this simulation the
sample was assumed to have a perfectly flat substrate and multi-layer mirror, such that
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FIGURE 4.1: Schematic representation of Ta-based EUV photomasks.
Adapted from [4].

only the absorber needs to be taken into account. The reason for this simplification is
that the simulation procedure assumes a weakly interacting sample (see below), which
is no longer the case for a significant substrate.

4.3 Inverse Compton Scattering sources

Synchrotron sources (see also next chapter) are the work-horses of science when it comes
to X-rays. However as they are large-scale facilities their access is limited. As an in-house
alternative to synchrotron sources one could use the emerging Inverse Compton Scatter-
ing (ICS) sources [5–7]. These compact, ‘table-top’ sources offer high flux (1010-1014

photons/s) X-ray radiation from a compact setup, but with a large bandwidth (typically
3-10%). The physical mechanism behind the X-ray generation is the inverse Compton
scattering of laser photons off a relativistic electron bunch. The scattered photons gain
energy from the electrons and are emitted in the X-ray regime, with a maximum energy
of

Emax = 2γ2EL(1+ cosθc), (4.1)

where θc is the collision angle between the electrons and the laser (typically close to π, so
head-on), EL is the laser photon energy and γ is the Lorentz factor for the relativistic elec-
trons (γ = (1− v2/c2)−1/2). This maximum energy is emitted on axis; it corresponds to
perfectly back-scattered photons. Off-axis the emitted energy slowly drops off, following

EX =
Emax

1+ γ2θ2
X

, (4.2)

where θX is the angle between the emitted X-rays and the electron beam axis (see e.g.
[8]). Two schemes exist, as depicted in figure 4.2a. In the linac scheme (bottom) the
inverse Compton scattering takes place directly after the linear accelerator; the electron
bunches are used only once for X-ray generation. In the storage ring scheme (top) an
electron bunch is recycled many times before it is dumped. A storage ring can therefore
operate at high repetition rates (MHz-scale) without the need for superconducting ac-
celerating structures, but the quality of the electron bunch (the emittance) degrades as
the bunch circulates in the storage ring. Several initiatives to build ICS sources exist all
over the world: one is ThomX at the Laboratoire de l’accélérateur linéaire (LAL) in Orsay,
France. Figure 4.2b shows a drawing of the machine. The electron bunches are created at
50 Hz by an RF photogun (1), accelerated to 50 MeV in the linac (3), to then circulate at
17.84 MHz in the storage ring. Each 20 ms, the bunch is dumped (11) and a new bunch
enters the ring. This storage ring has a circumference of 16.8 m (compact compared to
the 345 m of synchrotron Soleil mentioned in the next chapter). On the left of the setup
an Ytterbium-doped fiber laser system with an output of 50-100 W is coupled to a Fabry-
Perot cavity. Inside the cavity the 5 ps pulses resonate and the power increases until the
losses equal the input power. Thanks to the very high quality of the cavity the power
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(A) Two main schemes exist for ICS sources.
In the linac scheme (bottom) the electron
bunches are used only once for X-ray gen-
eration, in the storage ring scheme (top) an
electron bunch is reused many times before

it is dumped. Taken from [9].

(B) The setup of ThomX, the inverse Compton scattering
source being built at LAL, Orsay, implementing the storage
ring scheme. Explanation in the main text. Taken from [5]

FIGURE 4.2: Inverse Compton scattering source layout.

inside the cavity is on the order of 100 kW. At the interaction point (14) the electron
beam collides with the laser beam, generating hard X-rays at 17.84 MHz repetition rate.
Following equations 4.1 and 4.2 the emitted X-ray pulse inherits the spectral bandwidth
of the laser pulse. A Fourier limited ps-scale pulse at 1 micron wavelength has a band-
width of less than a percent. However, the electron bunch has an energy spread itself,
and both the electron bunch and the laser pulse have a finite divergence, contributing to
the X-ray bandwidth on the percent, ten percent and percent level respectively (see [8]).
To make this more concrete, consider the result of the Monte Carlo simulation performed
by Dr. C. Bruni et. al. using the parameters for ThomX, displayed in figure 4.3a. The
figure shows a 2D histogram of the spectral intensity (emitted X-ray photons per second
per steradian per eV bandwidth), in X-ray energy bins of 33.8 eV and emission angle θX
bins of 0.2 mrad. The marginal plots show the spectrum obtained after integration over
all emission angles (photons per second per eV bandwidth, left), and the radiant intensity
(spectral intensity integrated over all energies), as a function of emission angle (photons
per second per steradian in a 0.2 mrad bin, bottom). The data shown is an average over
the 20 ms that an electron bunch spends in the storage ring (and thus an average over the
expected emittance degradation during that storage time). The figure shows how the X-
ray energy and intensity is highest on-axis (corresponding to a head-on collision and thus
the highest energy transfer from the electron to the photon) and decreases for increasing
angle θX , as described by equations 4.1 and 4.2. It also shows the finite bandwidth of the
source, mainly as a result of a finite energy spread and divergence of the electron bunch
[8]. Figure 4.3b shows the spectral intensity on axis, which features a ∆E/E bandwidth
of 5 % (FWHM). Judging from the results of the previous chapter, this is exactly the kind
of bandwidth where the numerical monochromatization method can be applied.

4.3.1 Spatial coherence of ICS sources

The ICS process is treated incoherently: photons scatter off electrons, in the physical
picture no wave information is used. It has not yet been studied whether the emitted X-
rays inherit some coherence from the laser pulse, so for the moment the source should be
regarded as a spatially incoherent source as described in Appendix C. This is detrimental
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FIGURE 4.3: ThomX spectrum obtained from Monte Carlo simulations us-
ing CAIN [10]. Data courtesy of Dr. C. Bruni, Laboratoire de l’accélérateur

linéaire, Orsay.

to the usable flux for coherent imaging applications. With a source size on the order of
tens of microns, and an X-ray energy on the order of tens of keV, the spatial coherence is
on the order of a micron at 1 m distance from the source (Appendix C). Hence in order to
produce coherent diffraction patterns, the angle subtended by the sample from the source
should be on a microradian-scale. Of course, this comes at a cost of flux: integrating the
curve of figure 4.3b gives about 5 × 1017 ph/(s·sr), meaning about 5 × 105 ph/s in a
µrad2 solid angle. At the moment this source is not sufficiently bright for a realistic CDI
experiment. The emittance of the electron beam would have to be reduced. As the flux is
roughly proportional to the density of photons and electrons in the interaction region [8],
the flux could be kept constant for a smaller source, thus increasing the coherent part of
the flux. An ICS source with a source size on the order of 2 microns is under development
at MIT [11], and a source using microbunching is proposed [12], increasing its coherence.
It could also be beneficial to lower the X-ray energy to have a stronger interaction at the
sample.

4.4 Simulation tool: Condor

For this validation broadband diffraction patterns are generated. The quickest way to do
so would be starting from a monochromatic pattern and multiplying it by the matrix C
introduced in the previous chapters. The goal of this simulation is however to validate
the method, so it is best to make use of an external, already validated code to generate
the diffraction patterns. For this purpose use was made of Condor [13, 14], a simulation
tool used by the VUV and XFEL community for (flash) X-ray imaging. This code makes
use of the first Born approximation (weak interaction with the sample, see Appendix D)
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Variable Value Unit
X-ray central energy 8 keV
total number of photons 1014 photons
sample dx 10 nm
mask thickness 60 nm
distance sample-detector 2 (2.25) m
detector size 512× 512 pixels
detector pixel size 30 µm
reconstructed pixel size 20.2 (22.7) nm

TABLE 4.1: Values used for the broadband X-ray CDI simulations.

to calculate the farfield diffraction pattern from a 3-dimensional sample, for a certain
X-ray energy, photon number and as a function of detector specifications. The sample is
uploaded as a 3-dimensional array of refractive index values, from which the monochro-
matic diffraction pattern is computed. To obtain the broadband pattern, this function
was called in a loop while scanning the X-ray energy. The monochromatic patterns were
then summed incoherently to obtain the broadband pattern. These calculations were
performed on the Davinci computer cluster of the Laboratory of Molecular Biophysics
(Collaboration with F. Maia, Uppsala University, Sweden).

4.5 Results in CDI

The “experimental” conditions used in these simulations are indicated in table 4.1. The
sample mask used for the simulation is shown in figure 4.4a. In the simulation the mask
was made of TaBN, at a thickness of 60 nm. The voxels of the sample array are 10 nm
in each dimension. Figure 4.4b shows the monochromatic diffraction pattern of a single
energy slice, at the central energy of 8 keV. In the simulation a monochromatic pattern
was calculated for each of the energy points in the spectrum. The three gaussian spectra
used for the CDI simulation, with bandwidths of 5, 10 and 15 % are plotted in figure
4.5, with a dot for each energy slice. The total number of photons was kept constant
during the simulations, i.e. the total scan always consisted of 1014 photons at the source,
spread out over different bandwidths. The simulation also returns the phase for one of
the monochromatic patterns. Through the inverse Fourier transform of this pattern we
have the ideal reconstruction, with which the results obtained after monochromatization
and phase retrieval can be compared and an error can be estimated.

The broadband pattern at 5 % bandwidth is shown in the left panel of figure 4.6a.
This pattern is the sum of 101 monochromatic patterns, and the radial blurring is obvious.
The monochromatized pattern (same figure, right panel) regains the sharp features of the
monochromatic pattern. Its reconstruction through CDI shows all features of the mask
(left panel of figure 4.6b). The reconstruction is however not perfect, as shown in the
panel on the right. This panel shows the difference between the obtained reconstruction
and the ideal reconstruction as explained above. To quantify this error, the reconstruc-
tions are normalized to a scale from 0 to 1 and the standard deviation of the error image
is computed, 0.12 for the case of 5 % bandwidth. The same procedure was applied to the
case with 10 % bandwidth, the results of which are shown in figure 4.7a and 4.7b. The
quality of the reconstruction is similar to that of the 5 % bandwidth case, judging from the
error and the reconstruction itself. Finally, at 15 % bandwidth the method starts to break
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FIGURE 4.4: Sample and its monochromatic diffraction pattern, calculated
using Condor.
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(A) The broadband pattern (left) is the sum of 101 monochromatic patters at 5 % bandwidth at 8 keV. The
monochromatized pattern (right) shows some artifacts.
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(B) Amplitude of the reconstructed sample at 5 % bandwidth (left). Its error is calculated through comparison
with the inverse Fourier transform of the simulated pattern.

FIGURE 4.6: Simulation results at 5 % bandwidth
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(A) The broadband pattern (left) is the sum of 151 monochromatic patters at 10 % bandwidth at 8 keV and
shows strong radial blurring. The monochromatized pattern (right) shows some artifacts.
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(B) Amplitude of the reconstructed sample at 10 % bandwidth (left). Its error (right) is calculated through
comparison with the inverse Fourier transform of the simulated pattern.

FIGURE 4.7: Simulation results at 10 % bandwidth
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down. Initially no successful reconstruction was obtained, despite launching 10 indepen-
dent phase retrievals for all monochromatized patterns ranging from k = 10 − 35. Ap-
parently the errors in the monochromatized patterns grew too large and inhibited proper
phase retrieval. By increasing the sample-detector distance from 2 m to 2.25 m (in paren-
theses in table 4.1), keeping all other variables constant, thus effectively improving the
sampling of the broadband pattern by sacrificing the maximally obtainable resolution,
these errors could be reduced and a reasonable reconstruction was achieved, as shown
in figure 4.8b, with an increased error of 0.19.

4.6 Results in ptychography

Real lithography masks are a lot larger that the sample shown in the previous section.
It could therefore be desirable to extend the monochromatization method to ptychog-
raphy (lensless imaging technique where a probe is scanned over an extended sample,
see Chapter 2). Using the same parameters as in the previous section (table 4.1), but
with a sample that is 4 times as large in each direction, a ptychography experiment was
simulated for three cases: monochromatic, 5% bandwidth, and 10 % bandwidth. A su-
pergaussian probe beam with a diameter of 2.4 micron (1/e2) scanned the sample at
32 × 32 positions. At each position the monochromatic patterns were accumulated at
different energies to obtain a broadband pattern. These broadband patterns were then
monochromatized and the set of monochromatized patterns and probe locations were
used as input for a ptychographic reconstruction, in collaboration with Dr. S. Fernandez
(CEA, former Paul Scherrer Institute, Switzerland) [3, 15]. Figure 4.9 shows the result
of the monochromatic case at 8 keV, obtained after 130 iterations, showing all sample
details. The reconstruction at 5 % bandwidth as shown in figure 4.10 is of similar qual-
ity as the monochromatic case, maybe even slightly better (which could indicate that the
monochromatic reconstruction was stopped preliminarily). This result was obtained after
300 iterations of the ptychography algorithm. The error image is calculated with respect
to the monochromatic reconstruction, in the same way as for the CDI case described in
the previous section. At 10 % bandwidth the reconstruction has clearly lost in resolution.
It was also more difficult to reach convergence, as the reconstruction needed 1000 itera-
tions, and multiple modes were used for the probe (meaning that for the reconstruction
not just a single coherent probe was assumed but a sum of mutually incoherent probes)
[16]. This indicates that the errors introduced by the monochromatization process have
become more significant, introducing non-physical features that change from one pattern
to the next. The constraint of a single probe thus prevents convergence, while having a
multi-mode probe allows for some extra degrees of freedom to cope with these errors,
leading to convergence at the expense of a higher computation time.

4.7 Conclusions

This chapter shows that according to simulations the numerical monochromatization
method can be applied to X-ray imaging of samples which comply with Assumption 1 of a
spatially non-dispersive sample, with bandwidths up to 15 %. A case of societal relevance
was presented, namely that of lithography mask inspection with inverse Compton scat-
tering sources. Although the coherent fraction of the flux of these sources is insufficient
at the moment for a practical realization, simulations show that the monochromatization
method can cope very well with the large spectral bandwidth of these sources. Success-
ful combination of the method with an external ptychography code shows the versatility
of the method. Ptychography allows imaging extended samples, and is more robust to
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(A) The broadband pattern (left) is the sum of 225 monochromatic patters at 15 % bandwidth at 8 keV and
shows strong radial blurring. The artifacts in the monochromatized pattern (right) have become stronger.
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(B) Amplitude of the reconstructed sample at 15 % bandwidth (left), which is getting significantly worse. Its
error (right) is calculated through comparison with the inverse Fourier transform of the simulated pattern.

FIGURE 4.8: Simulation results at 15 % bandwidth
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FIGURE 4.9: Ptychographic reconstruction of the extended mask sample,
monochromatic case at 8 keV. This reconstruction acts as a reference for

the broadband reconstructions.
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FIGURE 4.10: Ptychographic reconstruction of the extended mask sample
at 5 % bandwidth. The quality of the reconstruction is similar to the
monochromatic reconstruction. The error is computed with respect to

the monochromatic reconstruction.
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FIGURE 4.11: Ptychographic reconstruction of the extended mask sample
at 10 % bandwidth. The quality of the reconstruction is getting worse, as

indicated by the increased error.

noise thanks to the redundancy of the method. There is also room for improvement, as
the resolution of the presented results is not yet at the scale needed for the semiconductor
industry (a few nm), but the principle of the application of the numerical monochroma-
tization method using hard X-rays on broadband sources is shown to be viable.
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Chapter 5

Hard X-ray broadband CDI
experiments using synchrotron
radiation

5.1 Introduction

The simulations of the previous chapter validate the step towards the experimental demon-
stration. To test the method for broadband CDI with hard X-rays, campaigns at different
synchrotrons were performed. Ideally one would use a broadband (white) spectrum,
out of which to cut spectra with different bandwidths by using a combination of filters
and mirrors at grazing incidence. This was however not accessible. An alternative is to
perform the experiment using an approach similar to the simulation detailed in previous
chapter: taking monochromatic diffraction patterns at finely spaced discrete energy lev-
els, a quasi-continuous dataset is obtained from which broadband patterns can be made
with the desired spectral bandwidth. The first experiment was performed at B16, a bend-
ing magnet beamline at the Diamond Light Source at Didcot, UK. The 48-hour time-slot
we were given was not sufficient to align, characterize and solve a number of issues with
the setup. It was however a good exercise for the second synchrotron beamtime, at the
Nanoscopium beamline at Soleil, Saint-Aubin, France, the results of which are the main
body of this chapter.

5.2 Synchrotron sources

A charge moving along a curved trajectory emits radiation. Synchrotrons are large scale
installations that use this effect to produce X-rays, by accelerating electrons to relativistic
velocities and sending them through magnetic fields thus bending their trajectory and
emitting radiation in a forward-pointing cone of half-angle [1, 2].

θ ≈
1
γ

(5.1)

where γ= 1/
p

1− (v/c)2 is the relativistic Lorentz factor. The emitted radiation is char-
acterized by a critical wavelength1

λ=
4πR

3
1
γ3

(5.2)

with R the radius of curvature of the electrons trajectory. In a synchrotron, electron
bunches circle in a large storage ring (typical diameter several hundreds of m), where

1Half of the power is emitted at wavelengths below the critical wavelength.
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(A) A bending magnet (B) An insertion device (wiggler or undulator)

FIGURE 5.1: Schematic representations of the two radiation sources in a
synchrotron. Images taken from [1].

their path is deflected inward each time they pass a so-called bending magnet. At each
bending magnet radiation is emitted as depicted in figure 5.1a. This radiation has a broad
spectrum and is only spatially coherent through propagation (as with the ICS source in the
previous chapter). In addition to these bending magnets, modern synchrotrons (so-called
‘third generation’) use ‘insertion devices’ to generate X-rays with a higher brightness.
This device is schematically depicted in figure 5.1b. It is like having a sequence of small
bending magnets with opposite magnetic fields, and at each curve a burst of radiation is
emitted. This is called a ‘wiggler’. The magnet period can be made so short that on-axis
emission combines coherently - in that case one speaks of an undulator. The spatially
coherent fraction of undulator radiation is given by [2]

ηsc =
λ2

(4π)2εxεy
(5.3)

where ε = σσ′ is the electron beam emittance (product of source size and divergence).
The spectrum of an undulator consists of harmonic peaks at those wavelengths for which
the emitted X-rays interfere constructively. Its coherence length is given by [2]

lc = qNλ (5.4)

where N is the number of magnet periods and q is the harmonic order.

5.3 Sample preparation

At photon energies ranging from 7 to 8 keV available at these synchrotron beamlines, the
sample used for the experimental verification in the visible (Chapter 3) becomes almost
transparent: the attenuation length of gold at these energies is around 2µm [3]. Thus
thicker membranes were designed (from Silson Ltd, Southam, UK) with a gold layer of
3µm and 6µm thickness. This thickness renders the sample preparation more challeng-
ing: for a given sample size the aspect ratio of the holes to be etched with the focused
ion beam has increased by over a tenfold. To cope with this high aspect ratio a test was
performed with a He-FIB at ICFO (Institut de Ciències Fotòniques, Castelldefels, Spain).
Where a normal FIB uses gallium ions, this FIB uses helium ions and is optimized to etch
samples with an extremely high aspect ratio, as the lateral scatter of He-ions is consid-
erably lower. It is however also considerably slower, and was found to be incompatible
with our thick sample membranes. Hence the samples that were used in these synchrotron
experiments were made using the Ga-FIB at CSNSM, Orsay, France (like the sample in
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Chapter 3), with necessary precautions concerning the sample thickness. Where for the
thin membranes on the order of a few hundred nanometers it is for example possible
to just etch out the edges of an aperture, for these thicknesses the amount of material
re-deposited during etching is so significant that the edge cannot be made to traverse the
membrane. One thus needs to fully edge out the surface of the aperture (which dramat-
ically increases the etching time).

5.4 Beamtime at Diamond synchrotron

5.4.1 Setup at B16

B16 [4] is a bending magnet beamline at the Diamond synchrotron, designed to be a
flexible, versatile setup to test X-ray optics and experimental imaging techniques. The
bending magnet radiation is monochromatized in a double-crystal monochromator be-
fore arriving to the experimental hutch. There a CRL (Compound Refractive Lens) was
used to focus the X-rays onto the sample, to increase intensity on the sample and thus
the signal on the detector. This lens is chromatic, meaning that the sample needed to
be moved downstream when increasing the X-ray energy. Unfortunately the beamtime
was not long enough to properly perform the necessary alignment and calibration pro-
cedure. Additionally the obtained diffraction patterns did not correspond to what was
expected from the simulations, and no successful reconstruction was achieved (see next
paragraph).

5.4.2 Results from beamtime at B16

Figure 5.2a shows the sample used in the experiment. Based on this SEM image, the
expected diffraction pattern can be calculated, as shown in figure 5.2b. This pattern
contains 5×107 photons, to obtain a signal level similar to the experimental pattern shown
next to it. The experimental pattern is rather different from the simulated pattern, and
no successful reconstruction was obtained. This is attributed to a low spatial coherence
of the bending magnet beam. A trial to further close the pair of slits upstream to improve
the spatial coherence did not succeed. Hence no successful results were obtained from
this (short) beamtime, but it helped in preparing the next.

5.5 Beamtime at Soleil synchrotron

5.5.1 Setup at the Nanoscopium beamline

Nanoscopium is an undulator beamline which, with a distance of about 150 m between
the undulator and the experimental hutch, has been developed specifically for applica-
tions requiring excellent spatial coherence ([5]). Figure 5.3a shows a schematic of the
layout of the beamline. Also specific care has been taken for the stability of the beam, a
crucial parameter to the requirements of our experiment: In order to scan the energy over
a large ( 10 %) range, the undulator separation and monochromator position will need
to be varied. During these movements it is of paramount importance that the beam does
not move on our sample, otherwise the diffraction patterns at different energy will differ
by more than just a homothetic scaling which will introduce errors in the monochrom-
atization procedure. Prior to the experiment, beamline scientists Dr. Medjoubi and Dr.
Somogyi calibrated the undulator and monochromator over the 7-8 keV energy range to
ensure the stability of the beam. Figure 5.3b shows a simple schematic of the setup used
in the experiment. Monochromatic X-rays (starting at 7.1 keV) enter the experimental
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(A) SEM image of the sample,
etched out of a membrane with a
gold layer of 3 micron thickness.
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(B) Monochromatic diffraction pat-
tern as simulated based on the SEM
image, at 8 keV. The pattern con-
tains 107 photons, to obtain a sig-
nal level similar to the experimental

pattern.
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(C) Experimental monochromatic
diffraction pattern at 8 keV.

FIGURE 5.2: A comparison between the simulated and experimental
monochromatic patterns already shows that there is a problem in the

setup.

hutch of the Nanoscopium beamline and are apertured by a pair of slits set to 1×1 mm2.
After passing through a tungsten pinhole of 24µm diameter the X-rays hit the sample.
331 cm downstream the diffraction pattern is recorded using a scintillator and a CMOS
camera fitted with a microscope objective (of ×5 or ×10 magnification depending on
the experiment). The X-ray intensity is monitored using a 8µm thick Si diode, the X-ray
energy is measured through the X-ray fluorescence spectra acquired by a silicon drift de-
tector (SDD), see figure 5.3d. During the experiment, diffraction patterns were acquired
using High Dynamic Range (HDR): each pattern consisted of a long (10 s) and a short
(1 s) acquisition. The long acquisition contains information at high scattering angles,
the information at the saturated center is obtained from the short acquisition (with a
multiplicative factor of 10).

5.5.2 Results at the Nanoscopium beamline

After some accurate calibration and optimisation clear diffraction patterns were obtained
from the sample shown in figure 5.4. The slits of the second point source (SPS) were
open at 200µm× 200µm. A test at 100µm× 100µm did not show appreciably higher
fringe contrast, so the slits were left at 200x200 to preserve flux. A short and a long en-
ergy scan was launched. Figure 5.5a shows the patterns obtained for different energies.
The homothetic scaling is clearly visible. Unfortunately no successful reconstruction was
obtained from these monochromatic patterns. We tried using our own code based on a
Difference Map algorithm (DM) and one based on Hybrid-Input-Output (HIO) (see e.g.
[6, 7]), and a Shrinkwrap algorithm [8] for evolution of the support. As this did not give
a proper reconstruction, we also tried Hawk [9], but without success. Nevertheless, the
broadband pattern was computed as the incoherent sum of the acquired monochromatic
patterns, and subsequently monochromatized, as shown in figure 5.6. This monochrom-
atized pattern did not yield any successful reconstruction either (figure 5.7). It was upon
closer inspection of the a later scan that we noticed an instability in the beam, present in
practically all acquisitions. This instability caused a movement of speckles on the order



5.5. Beamtime at Soleil synchrotron 65

(A) Beamline layout. X-rays between 5 - 20 keV are generated in the undulator (U18) and apertured by pair
of slits (Front End, FE). The X-ray energy is selected by the double crystal monochromator (DCM). The beam
can be apertured further to create a secondary point source (SPS) and eventually arrives at the experimental
hutch EH1. The vertical red lines are X-ray beam position monitors (XBPM), the yellow lines beam imagers.

Image from [5]

(B) Schematic of the setup in the experimental hutch. The X-ray beam is apertured to 1×1 mm2. The flux is
measured through a silicon diode. A 24 µm pinhole defines the beam onto the sample. The diffracted beam
propagates through a 331 cm long flight tube filled with helium to reduce scattering. The diffraction pattern

is imaged using a scintillator, microscope objective and CMOS camera.

(C) Picture of the setup in the ex-
perimental hutch.

(D) Picture of the pinhole, sam-
ple stage and silicon drift detec-
tor (SDD), which measures X-
ray fluorescence from the sam-
ple allowing accurate measure-

ment of the X-ray energy.

(E) Picture of the scintillator, mi-
croscope objective and CMOS

detector.

FIGURE 5.3: The experiment setup at the Nanoscopium beamline.

of a pixel from one pattern to the next, but on longer timescales amounted to speck-
les moving more than their own size. Upon summing the monochromatic patterns, this
instability thus causes additional blurring, on top of the expected wavelength scaling.

The next sample was a Siemens star, see figure 5.8. This SEM image shows only the
central part (diameter 9.2 µm), the Siemens star itself extends to a 200 µm diameter.
This central part has details down to 50 nm, whereas our reconstructed pixel size is 560
nm. We thus do not expect to reconstruct the center of the sample. The diffraction
pattern is well defined, and in the post-experiment analysis a reasonable reconstruction
was achieved (figure 5.11). On this same sample an energy scan was launched (figure
5.9a). The broadband and monochromatized patterns show the expected behavior. The
reconstruction of the monochromatic case is reasonable considering that the central part
cannot be resolved. The broadband case after monochromatization is also reconstructed,
although the artifacts from the monochromatization seem to have a detrimental effect on
the quality of the reconstruction.
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5µm

(A) SEM image of the first sample, seen
from the SiN-side.

5µm

(B) Optical microscopy image of the same
sample, seen from the gold-covered side.

FIGURE 5.4: The newly prepared sample is larger and with a clearer aper-
ture, thus giving more diffraction signal.
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(A) Diffraction patterns of the energy scan, for three different X-ray energies. The full scan consists of 108
acquisitions from 7120 to 7972 eV.
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(B) Line-outs on the diagonal of the diffraction patters for three
different X-ray energies, showing the expected scaling.

FIGURE 5.5: Results of the first energy scan.
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FIGURE 5.6: (left) The spectrum of the energy scan, as the number of
photons in a 10 second acquisition at each X-ray energy. The blue line
(left y-axis) shows the spectrum as measured by the Si diode before the
pinhole, the orange line (right y-axis) the effective spectrum as seen by
the CMOS camera, obtained by counting the photons in each monochro-
matic pattern. (center) The broadband pattern obtained by summing the
108 acquired monochromatic diffraction patterns. The blurring effect of a
bandwidth of 11 % is clear. (right) The diffraction pattern obtained after
numerical monochromatization. It has regained most of the interference

fringes present in the monochromatic patterns.
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FIGURE 5.7: (left) An example of a failed reconstruction of the monochro-
matic pattern. (right) An example of a failed reconstruction of the

monochromatized pattern.
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3µm

FIGURE 5.8: SEM image of the Siemens star sample, consisting of a pat-
terned (through EBL) layer of Au of about 1 micron thick deposited on a
Si membrane. This image only shows the center of the sample (a diameter

of 9.2 µm), the sample extends to a 200 µm diameter.
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(A) Diffraction patterns of the energy scan, for three different X-ray energies. The full scan consists of 108
acquisitions from 7120 to 7972 eV.
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(B) Line-outs on the diagonal of the diffraction patters for three
different X-ray energies.

FIGURE 5.9: Results of the energy scan on the Siemens star sample.
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FIGURE 5.10: (left) The spectrum of the energy scan, as the number of
photons in a 10 second acquisition at each X-ray energy. The blue line
(left y-axis) shows the spectrum as measured by the Si diode before the
pinhole, the orange line (right y-axis) the effective spectrum as seen by
the CMOS camera, obtained by counting the photons in each monochro-
matic pattern. (center) The broadband pattern obtained by summing the
108 acquired monochromatic diffraction patterns. The blurring effect of
a bandwidth of 11 % is clear. (right) The diffraction pattern obtained
after numerical monochromatization. It has regained most of the inter-
ference fringes present in the monochromatic patterns. It also shows the

appearance of artifacts near the borders.
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FIGURE 5.11: Reconstructions of the first Siemens star sample. (left) A
reconstruction of the monochromatic pattern at 7120 eV of reasonable

quality. (right) A reconstruction of the monochromatized pattern.
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(A) Diffraction patterns of the energy scan, for three different X-ray energies. The full scan consists of 108
acquisitions from 7120 to 7972 eV.
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(B) Line-outs on the diagonal of the diffraction patters for three
different X-ray energies.

FIGURE 5.12: Results of the energy scan on the second Siemens star sam-
ple.

Next, the microscope objective was changed from a x10 to a x5, to increase the max-
imum scattering angle, and as such the reconstructed pixel size is reduced to 280 µm.
Tests were performed at different configurations of slit separation and hardware binning,
but we decided to stay at 200µm× 200µm for the SPS and at 2x2 hardware binning. A
new energy scan was launched on a slightly different Siemens star sample (on the same
sample membrane). The results are shown in figure 5.12a. Again, the patterns nicely
show the wavelength scaling and the monochromatized pattern looks reasonable (figure
5.13), but reconstruction with neither our codes nor with Hawk yielded acceptable re-
sults. The effective spectrum (as seen by the CMOS camera) shows a drop after about
7.6 keV. This scan was performed during the night, and the helium supply to the tube
between the sample and detector ran out, causing the effective flux to drop.

5.5.3 Correction of instabilities

An analysis of the experienced instabilities is ongoing. An idea is to track the movement of
a number of speckels and try to decouple the movement due to instabilities and that due
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FIGURE 5.13: (left) The spectrum of the energy scan, as the number of
photons in a 10 second acquisition at each X-ray energy. The blue line
(left y-axis) shows the spectrum as measured by the Si diode before the
pinhole, the orange line (right y-axis) the effective spectrum as seen by
the CMOS camera, obtained by counting the photons in each monochro-
matic pattern. (center) The broadband pattern obtained by summing the
108 acquired monochromatic diffraction patterns. The blurring effect of
a bandwidth of 11 % is clear. (right) The diffraction pattern obtained
after numerical monochromatization. It has regained most of the inter-
ference fringes present in the monochromatic patterns. It also shows the

appearance of artifacts near the borders.
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FIGURE 5.14: Reconstructions of Siemens star 2. (left) A reconstruction
of the monochromatic pattern at 7972 eV, only hinting at the star-shaped
structure of the sample. (right) A reconstruction of the monochromatized
pattern, similar to the monochromatic reconstruction though of slightly

lower quality.
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0 500 1000

0

200

400

600

800

1000

(B) Binary image of the speckles to be tracked.

FIGURE 5.15: The speckles of the monochromatic diffraction pattern are
identified using a high-pass filter on the logarithm of the diffraction pat-
tern, and thresholding the result. This is repeated for different patterns

in a scan.
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FIGURE 5.16: Radial and azimuthal speckle displacement in pixels, from
one diffraction pattern to the next, at the same energy.

to the expected wavelength scaling. An example is shown in figure 5.15. The speckles
of the diffraction pattern are identified through a high-pass filter on the logarithm of
the diffraction pattern (5.15a), and subsequent thresholding to yield the binary image
in 5.15b. This is repeated for all patterns in a scan, and as such the speckle movement
is identified. Figure 5.16 shows this speckle displacement decomposed in the radial and
azimuthal direction, in units of pixels, for two subsequently acquired diffraction patterns
at the same X-ray energy. The procedure needs to be made more robust and may then be
used to disentangle beam instability and the sought-after wavelength scaling.

5.5.4 Monochromatic ptychographic reconstruction

Ptychography is more robust to sources of noise (and thus to instabilities) thanks to the
redundancy in the procedure. During the beamtime, the beamline scientist Dr. Medjoubi
tested his ptychography routine on yet another Siemens star sample, to see to what extent
the instabilities would affect the ptychographic reconstruction. As shown in figure 5.17,
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10µm

(A) Monochromatic ptychographic recon-
struction.

5µm

(B) Zoom on the central part of the ptycho-
graphic reconstruction.

FIGURE 5.17: Monochromatic ptychographic reconstruction, by Dr. Med-
joubi, Nanoscopium. The red circle indicates the beam size (24 µm diam-

eter), equal to the size of the CDI reconstructions.

the sample was reconstructed correctly. Also here, the reconstructed pixel size (217 nm)
is not sufficient to resolve the features in the center. Due to limited time a broadband
ptychography scan was not attempted, but this could be the subject of a future beamtime
proposal.

5.6 Conclusions

Thanks to the outstanding spatial coherence of the Nanoscopium beamline well-defined
diffraction patterns were obtained. The homothetic scaling at different energies is clearly
shown. This chapter also shows how the reality of the experiment is always more chal-
lenging than the simulation. The technological feat of scanning an energy range of over
11 % while keeping the beam stable is a real challenge which was well met by the beam-
line scientists. Unfortunately, some unexpected instabilities were still present, to which
CDI, in general, is extremely sensitive. Of over twenty acquired datasets, one dataset
gave a reasonable reconstruction in both the monochromatic and the broadband case
(figure 5.11), especially considering the central features of the sample are smaller than
can be resolved for this experimental setup. So although the validation by a converging
phase retrieval of a broadband pattern is complicated by experimental difficulties, one
could conclude that the monochromatization method itself also works with hard X-rays.
An analysis to quantify the instabilities to correct for them is still ongoing and may allow
a significant improvement of the results shown in this chapter.
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Chapter 6

Towards a high repetition rate, keV
high harmonic source

6.1 Introduction

The advent of the laser [1], enabled the birth and quick development of the field of non-
linear optics, marked by the observation of second harmonic generation (SHG) in 1961
by P. A. Franken [2]. The laser is one of the favorite items in the physicist’s toolbox as it
is a coherent, intense and precise tool to explore Nature’s intricate machinery. It is also
the basis for a number of other compact and precise (but not always intense) sources of
radiation and particles (of which the previous chapter already gave an example). The
first two sentences of Franken’s paper read:

“The development of pulsed ruby optical masers has made possible the production of
monochromatic (6943 A) light beams which, when focussed, exhibit electric fields of the order
of 105 volts/cm. The possibility of exploiting this extraordinary intensity for the production
of optical harmonics from suitable nonlinear materials is most appealing.”

Almost 60 years have passed, but the principle of (high) harmonic generation stays
the same: focus laser light in a material (solid like Franken’s quartz, or a gas, sometimes
even a liquid), and make use of its excellent coherence and high intensity to generate
harmonic radiation through the materials non-linearity. As explained in this chapter,
generation of high harmonics starting at the end of the eighties has led to sources of
radiation with pulses of attosecond-scale duration. The past years these sources have
yielded impressive results, by tracing directly in the time domain with femto- to attosec-
ond resolution: time resolved Auger decay [3]; charge migration [4], ionization [5],
photodissociation[6] and electrocyclic ring-opening [7] in different molecules; the ‘birth
of a photoelectron’ through a Fano resonance [8]; condensed phase spin dynamics [9]
and phonon excitation [10], to name but a few.

The major challenges in the field are to extend the energy of coherent radiation to-
wards keV X-rays, decrease the pulse duration, and to increase the repetition rate and
overall flux of these sources. An important part of this thesis work was performed to-
wards this goal, the experimental results of which are presented in the next chapter. This
chapter introduces the necessary concepts with a focus on HHG using high repetition rate,
mid-IR driver lasers and solitonic compression, and calculations performed in preparation
of the experiments. Some of the basics of non-linear optics are described in Appendix E,
for more details the reader is referred to the references therein.
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6.2 Theory of High Harmonic Generation

One important difference should be noted between perturbative harmonic generation
as described by Franken, and that of high harmonic generation: the generation of low
order harmonics can be described in a perturbative fashion (expanding the materials
non-linear susceptibility as in Appendix E), whereas HHG is a non-perturbative process.
In the eighties, as the maximally attainable electric field strength became comparable to
the electric field of a bound electron (around 1014 W/cm2), three important phenomena
were observed [11]:

Above-threshold ionization (ATI)
Electrons are ionized through instantaneous absorption of multiple photons (multi-
photon ionization), more than necessary to overcome the atoms binding potential.
Electrons were thus observed with an excess energy of multiples of the photon
energy [12].

High (order) harmonic generation (HHG)
Electrons are ionized through tunnel ionization, accelerated in the laser field and
then recombine with the parent ion upon emitting a photon with an energy that is
a multiple of the laser photon energy (three-step model, see below). It was first ob-
served by McPherson et al. in Chicago in 1987 [13] and practically simultaneously
by Ferray et al. in Saclay [14].

Non-sequential double ionization (NSDI)
Tunnel ionization, acceleration and recombination as in HHG, but where a second
electron is ejected from the core upon recollision of the first.

The harmonic emission observed by McPherson and Ferray did not exhibit the ex-
ponential decay with harmonic number as expected for a perturbative process. Rather
the spectrum featured a ‘plateau’-region extending several harmonic orders, and then a
sudden drop dubbed the ‘cut-off’. Figure 6.1a shows one of the original spectra reported
by Ferray et al., clearly showing this behavior. An intuitive explanation called the ‘Three-
step model’ was put forward in 1993 by Corkum [15] and Lewenstein [16], presented
in the next paragraph. In subsequent years the harmonic emission was found to inherit
the coherence of the laser, as the phase of the harmonic emission is locked to the laser
phase [17]. Moreover, the observed spectra support extremely short pulses, currently
down to tens of attoseconds, as measured through reconstruction of the relative phase of
the harmonics [18] and through streaking of photoelectrons produced by the attosecond
pulse [19]. Although the first results were on attosecond pulse trains (one pulse emitted
at each half-cycle of the laser, the interference of which give a harmonic spectrum in the
spectral domain), isolated attosecond pulses (corresponding to a broad, continuous spec-
trum) have also been produced, either through intensity gating [19], polarization gating
[20, 21], two-color gating [22–24] or ionization gating [25]. Many review articles on
high harmonic generation and attosecond science are available, e.g. [11, 26–30].

6.2.1 Three-step model and the cut-off energy

Many of the properties of HHG can be explained by a semi-classical model called the three-
step model, put forward by Corkum [15] and Lewenstein [16]. In this model, schemati-
cally depicted in figure 6.1b, the first step is tunnel ionization: the strong electric field of
the laser bends the effective atomic potential seen by the bound electron - there is now a
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(A) High harmonic spectrum in
the original experiment by Fer-
ray et al., showing the relative
intensity of the harmonics gen-
erated in Ar at a laser intensity of
approximately 3× 1013 W/cm2,
a laser wavelength of 1064 nm
and a pulse length of 30 ps. It
clearly shows the behavior of a
plateau and a cut-off at the 33st

harmonic. Taken from [14].

(B) Schematic of the three-step model: ionization, acceleration, recom-
bination. The yellow line indicates the electric field of the driver laser.
Near the peak of the field (a) the atomic potential is strongly deformed,
allowing the electron wavepacket to (partially) escape through tunnel ion-
ization. The electron wavepacket is driven away from the parent ion until
the laser field is reversed (b). The wave packet is now accelerated back
to the ionic remnant (c) where it may recombine (d). Image taken from

[31].

FIGURE 6.1: Original high harmonic spectrum from Ferray (1988) and the
three-step model by Corkum (1993).

reasonable probability that the electron tunnels out of the atomic potential.1 This proba-
bility is highest near the peak of the laser field. Next, the ionized fraction is driven away
in the continuum by the laser field. This can be described in a classical manner, as just
an electron accelerated by an electric field, although quantum-mechanically part of the
electron’s wave function stays bound to the atom. As the laser field reverses the electron
wave packet is accelerated back onto the ion. When it recollides there is a probability
that the electron recombines to the ground state, emitting the energy it has gained in the
laser field in the form of an XUV or soft X-ray burst of light (or, quantum-mechanically,
the returning wave packet interferes with the ionic remnant of the wave function).

The moment in the laser cycle at which the electron tunnels through the atomic po-
tential barrier determines its trajectory and the moment and energy of recollision, as
depicted in figure 6.2. The trajectory corresponding to maximum recollision energy is
plotted in black; for lower recollision energies two trajectories are possible, known as the
‘long’ and ‘short’ trajectories. The maximum collision energy corresponds to the cut-off
shown by the spectrum above, and it is given by:

Uco = 3.17UP + IP . (high harmonic cut-off energy) (6.1)

1To differentiate between MPI and tunneling, the keldysh or adiabaticity parameter γ =
r

Ip
2U p =

2τT
τL

should be evaluated. γ � 1 is the MPI regime, γ � 1 is the tunneling or quasi-static regime, where the
tunneling time τT is short compared to the laser period τL . See Appendix E.
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FIGURE 6.2: Electron trajectories and their recollision energies. The gray
dashed line indicates the laser field. Panel (a) shows the short and long
electron trajectories, the trajectory in black corresponding to the electron
with maximum energy on recollision. Panel (b) shows the recollision en-
ergies of the electrons as a function of the recollision time. Taken from

[11].

with

UP =
e2E2

4meω2
(ponderomotive potential) (6.2)

=

�

e2

8π2ε0mec3

�

Iλ2 (6.3)

and IP the ionization potential (see also Appendix E).
To obtain an attosecond pulse, or pulse train, typically only the short trajectories are

selected by placing the laser focus up to about one Rayleigh length before the gas jet (this
causes the short trajectories to be phase matched, see next paragraph). The harmonics
corresponding to a family of trajectories are phase locked [32, 33]. However, as can be
inferred from figure 6.2, harmonic emissions of different energies are emitted at different
times. This causes attosecond pulses to have an intrinsic chirp, the so-called attochirp, as
first measured by Mairesse et al. [34]. For the short trajectories, high energy harmonics
are emitted later, corresponding to a positive chirp. This makes attosecond pulses far
from fourier limited, although the chirp can be partially compensated in the XUV using
thin metallic filters (such as in [35] using an Al filter around 30 eV), or using chirped
multilayer mirrors [36, 37].

6.2.2 Phase Matching

The three-step model describes the generation of high harmonics from a single atom.
As with perturbative harmonic generation, in the macroscopic picture the radiation from
different emitters has to be in phase in order to get coherent build-up and an apprecia-
ble harmonic signal [38, 39]. Four main contributions to the phase mismatch can be
identified (e.g. [40, 41]):

∆k = kHH − qk L (6.4)

=∆kdip +∆kgeo +∆katom +∆kelec (6.5)

∆kdip
The dipole phase of the single-atom response depends on the intensity gradient
as ∆kdip = αq∂ I/∂ z, where I and z are the intensity and longitudinal coordinate
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respectively, and αq is a proportionality constant for harmonic number q [17]. α
is positive and small for short trajectories, large for long trajectories (which is why
short trajectories have a smaller chirp and are typically easier to phase-match, at
least on-axis). Because ∆kdip is determined by the intensity gradient, it varies in
both time and space.

∆kgeo
The geometry of the experiment contributes to the phase of the laser. If the HHG
takes place near the focus of a Gaussian beam this phase is the Gouy phase,

ΦGouy = − tan−1 z
zR

, (6.6)

with zR the Rayleigh range. The corresponding wave-vector is

kGouy =
dΦGouy

dz
(6.7)

= −
1

1−
�

z
zR

�2

1
zR

(6.8)

The low order harmonics can be assumed to have the same Rayleigh length, such
that

∆kGouy = kGouy(qωL)− qkGouy(ωL) =
1

1−
�

z
zR

�2

q− 1
zR

. (6.9)

The higher order harmonics are generated mainly on axis, so zR,q→∞ and

∆kGouy =
1

1−
�

z
zR

�2

q
zR

. (6.10)

Instead of the focus of a Gaussian beam, harmonics can also be generated in a

waveguide. The dispersion relation of a waveguide is given by kwg =
u2

ml c
2a2ω

, where
uml and a are the l th zero of the Bessel function Jm−1(uml) = 0 and the waveguide
radius respectively [42–45]. For the fundamental mode u11 = 2.405. Thus

∆kwg =
u2

mlqλL

4πa2
. (6.11)

∆katom
The dispersion by neutral atoms is simply the difference in refractive index n of the
generation medium at the driver wavelength λL and the generated harmonic λL/q.
It is given by

∆katom = −q
p
p0
(1−η)

2π
λL
(∆δ+ n2), (6.12)

where p, p0, η, ∆δ and n2 are the gas pressure, standard pressure, ionization
fraction, difference in refractive index and the nonlinear index of refraction (see
Appendix E), respectively.

∆kelec
The generation medium becomes ionized as it is traversed by the laser pulse (only
a tiny fraction of the ionized atoms actually generates harmonics, the vast majority
is just ionized and takes nanoseconds to recombine). These free electrons form a
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plasma with a resonance frequency

ωp =

√

√

√ e2ρn

ε0me
, (6.13)

with ρn the electron number density. ωp is the frequency below which the plasma
is completely opaque. The refractive index of the plasma is then given by

nplasma =

√

√

√

1−
�

ρn

ρn,cr

�

(6.14)

where ρn,cr is the critical electron number density, i.e. the density for which the
resonance frequency equals the frequency of the radiation. Typically, ρn � ρn,cr ,
so that

∆kelec =
ω2

p(q
2 − 1)

(2qcωL)
(6.15)

= ρnre
q2 − 1

q
λL (6.16)

=
p

kB T
ηre

q2 − 1
q

λL (6.17)

where re is the classical electron radius:

re =
1

4πε0

e2

mec2
(6.18)

We can now describe the total wave-vector mismatch for the case of free-focusing:

∆k = αq∂ I/∂ z +
1

1−
�

z
zR

�2

q
zR
− q

p
p0
(1−η)

2π
λL
(∆δ+ n2) +

p
kB T

ηre
q2 − 1

q
λL , (6.19)

and for the case of a waveguide:

∆k = αq∂ I/∂ z +
u2

mlqλL

4πa2
− q

p
p0
(1−η)

2π
λL
(∆δ+ n2) +

p
kB T

ηre
q2 − 1

q
λL . (6.20)

For the free-focusing geometry phase matching is obtained by adjusting the gas pressure
and gas jet position such that the negative dispersion of the atoms is balanced with the
positive dispersion of the geometry, the free electrons and the dipole. In the case of
a waveguide, the same terms need to be balanced just by adjusting the pressure (and
potentially the waveguide geometry).

For high laser intensities (for example in an attempt to extend the cut-off energy) the
ionization fraction becomes too large and the terms described above can no longer be
balanced. The critical ionization fraction is reached when the atom dispersion (the only
negative contribution to the phase mismatch) equals the free electron dispersion (e.g.
[43, 46–48]):

ηc =

�

p0λ
2
L re

kB T2π∆δ
+ 1

�−1

(6.21)
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FIGURE 6.3: Absorption length as a function of energy for a number of
noble gases.

A number of schemes has been put forward to circumvent this problem. The gener-
ation process can be periodically suppressed or enhanced, which is called Quasi-Phase
Matching (QPM). The wave-vector mismatch∆k defines a coherence length lcoh = π/∆k
over which the harmonics build up in a coherent way. By suppressing the generation pro-
cess every other lcoh by use of a counterpropagating beam [49–51], through modulation
of the inner wall of the waveguide [52, 53] or through the beating of waveguide modes
[54], coherent build-up can be extended beyond lcoh. Another option is to use very short,
intense pulses, such that generation can take place before the medium ionization has
surpassed the critical level. This is called non-adiabatic phase matching [55–58] and has
been shown to generate up to 3.5 keV (but at a flux of 102 photons/s at 2 keV, using a 12
fs 3 mJ pulse at 800 nm).

6.2.3 Reabsorption

Depending on the harmonic wavelength and the generation medium, the generated har-
monics are reabsorbed by the same medium. So even for perfectly phase-matched HHG,
in which case lcoh =∞, the effective generation will be limited to the last approximately
3labs of the medium [59], where labs is the absorption length. Figure 6.3 shows the ab-
sorption length for some noble gases, at atmospheric pressure p0.

6.2.4 Ponderomotive scaling of the cut-off

In order to push the high-harmonic cut-off to higher energies, so as to cover the water
window, relevant X-ray absorption edges, and/or to increase imaging resolution or even
to support zeptosecond pulses [60], the ponderomotive potential Up of the laser field
needs to be increased (see equation 6.2.1). As explained in Appendix E Up∝ Iλ2. As we
have seen in the previous paragraph, increasing the intensity causes an increase in the
ionization fraction, which at some point prevents phase matching. It is thus interesting
to consider increasing the wavelength. The well-spread work horse in ultrafast science is
the Ti:Sapph laser, which has a center wavelength around 800 nm, and features a typical
cut-off between 100-200 eV. By increasing the wavelength, the cut-off can be extended to
the keV-range, while maintaing a moderate intensity and thus a low ionization fraction.
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FIGURE 6.4: In the quest for a high cut-off energy, longer wavelength
driver lasers are used, lowering the critical ionization fraction as described
by equation 6.22 and necessitating higher gas pressures. As the pressure
and thus the atom density increases, and the wavepacket excursion in-
creases as well, at some point the electron wave packet will encounter
neighboring atoms, causing a loss of coherence. Figure taken from [67].

This wavelength scaling has been demonstrated experimentally [44, 47, 61]. An impor-
tant disadvantage to using longer driver wavelengths is the unfavourable scaling of the
recombination probability. Going back to the three-step model, during the excursion of
the electron in the laser field, the electron wave function expands. The longer the driver
wavelength, the longer the excursion time and larger the expansion of the electron wave
function. At the moment of recollision the overlap between the electron wave function
with that of the parent ion is reduced, thus reducing the recombination probability. The-
oretical estimates for the scaling give a proportionality of ∼ λ−5.5±0.5 [15, 62–65], thus
indicating that it is highly unfavourable to use longer driving wavelengths. This reduced
single-atom response can however be compensated for by increasing the pressure of the
generation medium by orders of magnitude (thus increasing the number of emitters in
the macroscopic picture). Nevertheless, two fundamental limits are expected to extend-
ing the cut-off through ponderomotive scaling. First, at very long excursion lengths of the
electron wave packet, and high generation pressures, the wave packet risks to encounter
neighboring atoms, causing a loss of coherence, as indicated in figure 6.4. The classical

quiver amplitude of the electron is 2
ωL

r

Up
me

(see Appendix E). At Up = 50 eV, and λ= 800
nm, this amplitude is about 2.5 nm. Keeping the same intensity, but at λ = 3 micron,
Up = 700 eV, and the classical quiver amplitude is 35 nm. For comparison, the average
intermolecular distance of a gas at atmospheric pressure is about 3.5 nm. Secondly, as
explained in Appendix E, Up needs to be negligibly small compared to the electron rest
mass energy (511 keV) for the magnetic component of the laser field to be neglectable.
If Up becomes a reasonable fraction of 511 keV, the electrons velocity becomes relativistic
and will experience a drift, thus missing the parent ion upon recollision.

Finally, going to longer wavelengths poses another, more concrete challenge: it means
changing the laser architecture from the common Ti-Sapph technology, typically to sys-
tems based on optical parametric amplification (OPA). For a review on ultrafast mid-IR
lasers see e.g. [66] or section 5.2 of [26].
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6.3 High Harmonic Generation at High Repetition Rate

Solid state, femtosecond lasers typically have an average power output on the order of a
few up to a few tens of Watts. This means (roughly) that one can get pulse energies on the
order of a Joule only at a few Hz repetition rate, or µJ pulses at MHz repetition rates. For
time-resolved imaging, it is important to have a high number of photons in a single pulse,
so it makes sense to choose a system with low repetition rate and a high pulse energy
(and a loose focusing geometry). Other experiments would however greatly benefit from
attosecond pulses at a higher repetition rate: photo-electron spectroscopy [68–70], low
cross-section processes or experiments relying on coincidence detection [71, 72]. In order
to generate high harmonic radiation in spite of a low pulse energy, the peak intensity must
somehow be pushed to the order of 1014 W/cm2. This can be through spatial confinement
(focusing tightly) and/or temporal confinement (compressing temporally).

6.3.1 Tight focusing

To generate high harmonics at a high repetition rate and low pulse energy the driving
laser should be focused to a small focal spot. Several publications investigate the scaling
of the generation parameters with pulse energy [40, 48, 73]. They state that the phase
matching pressure is inversely proportional to the pulse energy, and moreover the con-
version efficiency should remain constant, so that in principle harmonic generation can
be generated efficiently even at high repetition rates. Following [40] and [48], the phase
matching pressure ppm at focus can be calculated from equation 6.19 as the pressure for
which dispersion by atoms and free electrons equals the Gouy phase. To simplify, the
analysis is done at focus (z = 0) so ∆kdip ≈ 0 and ∆kgeo ≈ q/zR. Then

ppm = p0
λ2

2π2w2
0∆δ

�

1− η
ηc

� . (6.22)

It is instructive to see the behavior of the phase-matching pressure as a function of the
focal spot size. This is plotted in figure 6.5, for a driving laser centered at 3.1 µm, a
pulse length of 95 fs and a pulse energy of 65 µJ, corresponding to the parameters of the
OPCPA used in this thesis (see next chapter for a description). As the pulse energy and
pulse length are fixed, the focal waist w0 determines the peak intensity and thus the high-
harmonic cut-off energy, as plotted with a solid line (scale on the left y-axis). For a waist
below 11 µm the cut-off energy is expected to be over a keV. However, for this radiation to
be phase-matched with the driver laser, high pressures are needed. This phase matching
pressure depends on the degree of ionization η, as indicated by the thin, straight lines.
They are the phase matching pressures for η = 0, 0.1,0.2, . . . , 0.9ηc . Finally, instead of
just giving a region, the expected ionization fraction can be estimated using the ADK
model [74, 75]. Using this model, the ionization fraction at the peak of the pulse is
calculated, thus giving the curve for the expected phase-matching pressure plotted by the
dashed-dotted lines in figure 6.5. This procedure was performed for generation in argon,
neon and helium. The ‘sweet spot’ for the experiment are in the bend of the ADK curve:
to the right of it, the tunneling probability drops, so the expected flux drops as well. To
the left of it, the phase matching is very sensitive to variations in the pressure, before
becoming impossible. The critical ionization fractions are around ηc = 2.6× 10−3 (Ar),
6.4× 10−4 (Ne), 3.3× 10−4 (He) and vary by only a few percent over the plotted range.

This analysis shows how a low pulse energy requires tight focusing, which in turn re-
quires high phase-matching pressures. Such high pressures are beneficial to compensate
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FIGURE 6.5: Cut-off energy (solid line) and expected phase matching pres-
sure (dash-dotted line) as a function of focal spot size for the laser param-
eters under concern (λL = 3.1 µm, τFW HM = 95 fs, Epulse = 65 µJ) and
for various gases. The thin lines indicate phase matching pressures for
ionization fractions of η = 0,0.1, 0.2, . . . , 0.9ηc . The dash-dotted line in-
dicates the phase-matching pressure for the ionization fraction expected

from calculation using the ADK model.

for the low single-atom response due to the long driver wavelength, and for the small
generation volume due to the tight focusing geometry.

6.3.2 Generation in a waveguide: combining pulse compression and HHG

In addition to spatial confinement of the pulse energy to obtain the necessary peak inten-
sity, one can compress the pulse in the time domain. To compress a pulse that is already
close to its Fourier limit, the spectral bandwidth of the pulse needs to be increased. The
typical way to do so [76–78] is to send the femtosecond pulse in a gas-filled, hollow-core
fiber (HCF) to increase the spectral bandwidth through self-phase modulation (SPM, see
Appendix E), which redshifts the leading edge of the pulse and blueshifts the trailing edge
of the pulse. After SPM, the spectrum is thus broadened but the pulse has actually become
longer, as it is now chirped (positively). Hence, it then needs to be compressed, which is
typically done using prisms, gratings or chirped mirrors. Although this scheme works well
and its use is widespread, a considerable amount of energy is lost (50-60 % transmission
through the HCF). An alternative solution is to combine spectral broadening, compression
and high-harmonic generation in one device, thus minimizing the energy losses between
the steps. This ‘device’ can be a special type of wave-guide, the details of the scheme are
explained in the next section. For now, we will focus on the phase-matching character-
istics of such a waveguide. From equation 6.2.2, we can derive the expression for the
phase matching pressure in a waveguide. As in the case for the free-focusing geometry,
we will constrain ourselves to the peak of the pulse and thus ∂ I/∂ z ≈ 0. However, this
time the geometrical contribution cannot be neglected. Keeping the same expression for
the critical ionization fraction ηc , the phase matching pressure for HHG in a waveguide
is:

ppm =
p0

(ηc −η)
u2

lmλL

4πa2

�

2π∆δ
λL

+
p0reλL

kB T

�−1

. (6.23)
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FIGURE 6.6: Cut-off energy (solid line) and expected phase matching pres-
sure (dash-dotted line) as a function of pulse length, for a waveguide ra-
dius of a = 40 µm (λL = 3.1 µm, Epulse = 55 µJ) and for various gases.
The thin lines indicate phase matching pressures for ionization fractions
of η = 0, 0.1,0.2, . . . , 0.9ηc . The dash-dotted line indicates the phase-
matching pressure for the ionization fraction expected from calculation

using the ADK model.

As before, we can now see the effect of temporal compression on the cut-off energy and
the necessary phase-matching pressure. This is shown in figure 6.6 for a waveguide with
radius a = 40 µm, assuming a coupling efficiency of 85 %, i.e. a pulse energy of 55
µJ (85 % is too high for a normal waveguide, however for a PCF it is reasonable, see
next section). We also assume all energy is in the fundamental mode u11, and that no
energy is lost during compression (which is an approximation, but it serves to illustrate
the principle). The principle of the figure is the same as for figure 6.5: as the pulse
length decreases, the cut-off energy Uco increases, from about 105 eV at 100 fs to over
a keV below 15 fs. The gas pressure for which this radiation can be phase-matched with
the driver laser depends on the ionization level. The thin lines indicate ionization levels
from η = 0,0.1, 0.2, . . . , 0.9ηc , the dash-dotted line is the phase-matching pressure for
the ionization level as calculated using the ADK model, at the peak of the pulse. Again,
the ‘sweet spot’ for the experiment is in the bend of the ADK-curve, for the same reasons
as mentioned above. Hence, if we can compress the pulse to 60 fs, 25 fs, or 15 fs we can
generate phase-matched high harmonics at a pressure of 2, 8, or 15 bar of argon, neon or
helium, respectively. Because of the strong reabsorption of argon and neon (figure 6.3) it
is preferable to generate with helium, but a pulse length of 15 fs is extremely challenging
at 3 micron wavelength (one optical cycle corresponds to 10 fs). Figure 6.7 shows the
same procedure but for a waveguide with a smaller radius, of a = 30 µm. Now the ‘sweet
spot’ for generation in helium is shifted to around 23 fs and 30 bar.
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FIGURE 6.7: Cut-off energy (solid line) and expected phase matching pres-
sure (dash-dotted line) as a function of pulse length, for a waveguide ra-
dius of a = 30 µm (λL = 3.1 µm, Epulse = 55 µJ) and for various gases.
The thin lines indicate phase matching pressures for ionization fractions
of η = 0, 0.1,0.2, . . . , 0.9ηc . The dash-dotted line indicates the phase-
matching pressure for the ionization fraction expected from calculation

using the ADK model.

6.4 Soliton compression in a photonic crystal fiber for high-
harmonic generation

In order to combine spectral broadening, temporal compression and high-harmonic gen-
eration, soliton compression in a photonic crystal fiber is proposed. The two main ele-
ments are explained in this section, and promising simulation results are presented.

6.4.1 Soliton compression

When an intense pulse propagates in a fiber and the chirp caused by self-phase modulation
(SPM) is exactly balanced by the dispersion of the fiber, the pulse shape and spectrum
remain invariant under propagation. This is a fundamental soliton. If the peak power of
the input pulse is close to N2 times that of a fundamental soliton, a higher order soliton
is formed with order N . This higher order soliton is not invariant under propagation, but
changes shape periodically with a so-called soliton period z0. The initial part of this period
consist of a considerable spectral broadening through SPM and a subsequent temporal
compression as the chirp from SPM gets compensated by the (anomalous) dispersion
of the fiber. This is the principle of soliton compression. More detail can be found in
Appendix E and the references mentioned therein.

Already in the eighties, soliton compression in solid-core fibers was used to compress
picosecond pulses by orders of magnitude [79–81]. More recently, the use of photonic
crystal fibers (next paragraph) has allowed soliton compression to much higher peak
intensities.
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6.4.2 Photonic crystal fibers

In solid core fibers, such as the ones used for soliton compression in [79–81], the dam-
age threshold of the material limits the use to (nowadays) fairly low peak intensities.
Also, the nonlinearity of the medium cannot be adjusted to the experimental conditions.
Hollow-core fibers filled with gas do sustain high peak intensities, and the non-linearity
of the process under concern (soliton compression in our case) can be adjusted by adjust-
ing the gas pressure. However the refractive index of the gas is close to unity, lower than
that of the dielectric material that constitutes the fiber cladding. These fibers thus do not
support bound modes, although for large diameter fibers all energy can be coupled into
the fundamental mode with low losses to the cladding. However, for such large diame-
ters the anomalous dispersion from these HCFs becomes very weak and with the addition
of high pressure gas the dispersion turns normal. They are thus not ideal for soliton
compression (which needs anomalous dispersion)2. The solution is given by hollow-core
photonic crystal fibers (HC-PCF) [83–85]. They consist of a configuration of microchan-
nels forming a two-dimensional photonic crystal. This photonic crystal forms a bandgap
that confines the light within the hollow (gas-filled) core, through a mechanism called
anti-resonant reflection (ARR). These come in two main varieties: Kagomé PCFs [86] and
single-ring PCFs3 [87–90], which are typically easier to make and have less absorption
(and thus a higher damage threshold) in the infra-red spectral region. This thesis work
uses the latter, through a collaboration with the Russel group at the Max Planck Institute
for the Science of Light (Erlangen, Germany). Figure 6.8 shows the dispersion curve and
a cross-section of one of the SR-PCFs used in this thesis. The wall thickness of the hollow
capillaries inside the PCF defines a resonant condition for the laser wavelength (inside
the capillary wall). At these resonances, the SR-PCF absorbs, at 2.0 µm for this particular
PCF, as is clear from the dispersion curve. Away from these resonances the PCF guides
the fundamental mode, with very low losses (tens of dB km−1). The position of these
resonances can be tailored through the wall thickness [91].

6.4.3 Simulation on soliton compression in a SR-PCF for high-harmonic
generation

From the previous section on phase-matching of high-harmonics in a waveguide we can
conclude that reasonably high gas pressures (several bar to several tens of bar) are needed.
Although this is good to compensate the low single-atom response, it introduces strong
reabsorption by all gases except helium. We would however need to compress the pulse
by a factor 4 or 6 depending on the inner diameter of the PCF. To see if this is feasible,
consider the results of a simulation performed by Dr. F. Tani from MPL, shown in fig-
ure 6.9. The code used for the simulation is described in [92] and solves the multimode
full-field equation (using the propagation modes of the PCF) including linear dispersion,
Kerr effects and ionization. The simulation was performed for soliton compression in the
SR-PCF described above, in helium at 100 bar and at a pulse energy of 100 µJ (consistent
with the plan at an earlier stage of the project). As the compression factor is proportional
to the soliton order, which is proportional to the square root of the peak power, the com-
pressed pulse length is expected to be about 1.3 times longer than the simulation result.

2Even though, very recently, impressive soliton compression has been achieved in a HCF [82].
3One might argue that SR-PCFs are not photonic crystal fibers as their guiding principle is not based on

a photonic band gap as in the case of the Kagomé-type fiber (band gap in the radial direction). Indeed,
technically these fibers should be called negative curvature hollow core fibers. However, as noted in [87],
one can consider the cladding as a photonic crystal with a modulation of the curvature of the core-cladding
boundary in the azimuthal direction. Following [88, 89], the term SR-PCF is used in this thesis.
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FIGURE 6.8: The single-ring photonic crystal fiber, developed by the Russel
group at MPL (Max Planck Institute for the Science of Light, Erlangen,

Germany).

Alternatively, a PCF with a smaller core size (a = 30 instead of a = 40) would yield the
same peak power, and thus a similar compression factor.

The simulation assumes a pressure profile as depicted in figure 6.9a: it is constant at
100 bar for the first 18 cm of PCF; then over the last 10 mm the pressure drops to a low
vacuum (see next chapter for the technical implementation). The soliton compression
takes place over the 18 cm length at constant pressure. Then, as the pulse is short and
the peak intensity high enough to generate harmonics, it propagates through a pressure
gradient, where the harmonics are efficiently generated over a length of about 1 mm,
where the pressure equals the phase matching pressure. Next, the pressure drops to low
vacuum levels to prevent reabsorption.

The bottom panels show the spectral and temporal evolution of the high-order soliton
as it propagates through the fiber, showing a strong spectral broadening and temporal
narrowing, leading to an output pulse with a pulse length of 8.6 fs (FWHM)4, hence a
compression factor of more than an order of magnitude. The compressed part of the pulse
contains 51 % of the input pulse energy, increasing the peak intensity by a factor of 5.4.

6.5 Conclusions

High harmonic generation is a technique that has opened the field of attosecond science:
laser-based sources generate light pulses in the XUV and soft X-ray regime with durations
as short as tens of attoseconds. The mechanism is based on tunnel ionization, accelera-
tion and recombination of electrons by a strong laser field. Phase matching of the laser
with the harmonic radiation allows for efficient generation. To extend the cut-off en-
ergy of phase-matched harmonics to a keV and beyond, long wavelength driver lasers
are needed. In addition, high repetition rates are beneficial for many experiments. High

4Although 8.6 fs is shorter than a single optical cycle, note that this value is the FWHM of the intensity
profile (as is customary in laser physics) and that this intensity profile is far from gaussian. The electric field
does thus consist of more than one optical cycle.
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FIGURE 6.9: Simulation results for soliton compression in He at 100, and
an input pulse energy of 100 µJ. Simulation performed by Dr. F. Tani

(MPL).
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harmonic generation using a high rep-rate, mid-IR OPCPA can be done in a tight focusing
geometry, for which the scaling with focal spot size is investigated. It shows that high
phase-matching pressures are needed, which are beneficial to compensate for the low
single-atom response and the small generation volume, but which can be hard to realize
experimentally. An alternative scheme is proposed, where the pulses are temporally com-
pressed in a single-ring photonic crystal fiber through soliton compression, and where the
harmonics are generated at the end of the fiber. Both schemes could provide a way to-
wards a high repetition rate, keV high harmonic source. The next chapter explores these
schemes experimentally.
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Chapter 7

Experiments towards a high
repetition rate, mid-IR driven, high
harmonic source

7.1 Introduction

This chapter summarizes the technical design and experimental works performed at ICFO
(Institut de Ciències Fotòniques, Castelldefels, Spain) towards a high harmonic source
with a high repetition rate (160 kHz) and a high cut-off energy, based on a mid-IR OPCPA
laser system. First the laser system is described, as well as the high pressure gas and vac-
uum systems. Then the designs of the first attempts are presented, based on free focusing
in a gas jet as well as in a high pressure gas cell. Next, the design of the integrated setup
is explained, which combines soliton compression and high harmonic generation in one
device (principles introduced in the previous chapter). Preliminary results as well as the
technical challenges are specified. Finally, a setup which decoupled soliton compression
and high harmonic generation was used, which also gave some preliminary results. The
challenges are summarized at the end of the chapter.

7.2 The 3 micron OPCPA system

The 3 micron OPCPA laser system is schematically depicted in figure 7.1. The front-end
consists of a commercial Er-fiber-based laser (Femtofiber Scientific from Toptica Photonics
AG, Gräfelfing, Germany) and a difference frequency generation (DFG) stage. The output
of the oscillator, operating at a wavelength of 1560 nm at 100 MHz, is split in two arms,
which are both amplified and compressed (not shown here). One of these arms is then
fed into a highly non-linear fiber to create a supercontinuum. From this supercontinuum
a pulse is selected with a center wavelength of 1075 nm. These two pulses, at 1560
and 1075 nm, are then used for DFG in an MgO:PPLN crystal, to create an output at 3.1
micron with 7 pJ pulse energy. As the DFG input pulses originate from the same oscillator
pulse, the 3 micron pulse is CEP stable.

The pump laser is a diode-pumped solid-state laser (Hyper-Rapid, Coherent Inc, Santa
Clara, USA) at a center wavelength of 1064 nm at 160 kHz repetition rate and a pulse
length of 9.5 ps. It has three outputs lines, designed to deliver 16, 40 and 160 W respec-
tively. The synchronization between the pump and the oscillator is guaranteed by two
feedback loops (fast and slow) acting on the oscillator cavity length.

The 3 micron pulse is stretched through propagation through a 50 mm long sapphire
rod, stretching the seed from sub-100 fs to around 3.5 ps. After passing through 3 OPA
stages (pumped by the first pump laser arm) the 3 micron pulse energy increases to 2.6µJ
by design, though about 1.9µJ in practice during this thesis work. Next, the chirp of the
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FIGURE 7.1: Schematic of the 3 micron OPCPA system, description in the
main text. Figure adapted from [1].

pulse is inverted and increased through 4 bounces off a grating (Martinez configuration).
This allows final compression to be obtained again with bulk sapphire, thus allowing for
higher compression efficiency. The pulse duration is now 7 ps and negatively chirped.
After OPA 4 and 5 the idler pulse energy is 18µJ by design, 15µJ in practice. For the last
two OPA stages KNbO3 crystals are used, and 100 W of pump power to obtain an output
of 130µJ by design. The pulses are then compressed by a double pass through a 5 cm
long sapphire rod, to a pulse duration of around 97 fs. After transportation to the setup
of this thesis work, the available pulse energy is about 65µJ, corresponding to 10.5 W.
For more information on the OPCPA system see [1–3].

7.3 Gas and vacuum systems

As the previous chapter has shown, gas pressures of several tens of bar are needed for
soliton compression and high harmonic generation. To avoid reabsorption of the harmon-
ics, and for much of the detection system to work, the pressure needs to drop to vacuum
levels after generation. This requires a powerful vacuum pump and engineering of differ-
ential pumping apertures. For the first differential pumping step a combination of a rotary
pump with a mechanical booster was used (Edwards E2M80 with an EH250 booster, see
figure 7.2), with pumping speed of 274 m3/h (between atmospheric pressure and a few
10−3 mbar). This value determines the design for the differential pumping apertures
(for example the 10 mm pressure gradient in the integrated compression and generation
design), through the vacuum conductance expressions:

C = 135
d4

L
p̄ p̄ =

ph + pl

2
(pipe) (7.1)

C = 76.6p̂0.712
Æ

1− p̂0.288 A
(1− p̂)

p̂ =
ph

pl
(orifice) (7.2)

where d, L, A, ph, pl are the diameter, pipe length, orifice area, high pressure and low
pressure respectively, and all units are in centimeters, millibars, liters and seconds (so
the conductance C is in l/s). Both expressions are for the regime of viscous flow (d p̄ >
0.6 cm·mbar for a pipe), which is appropriate for these high pressures (as opposed to
molecular flow).

An important conclusion to draw is that the conductance through a pipe scales with
the diameter to the fourth power, whereas the orifice scales with the square of the di-
ameter. A small pipe is thus much more effective in reducing the gas conductance than
an orifice of the same diameter. To put in some numbers, consider a waveguide (pipe)
with an inner diameter of 90 µm and a length of 10 mm (as proposed at the end of the
previous chapter). Setting ph = 100 bar1, pl can be down to 40 mbar with our pumping

1For pumping helium an extra factor of 0.92 needs to be applied to the conductance.
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FIGURE 7.2: The roughing pump is a combination of an E2M80 rotary
pump with an EH250 mechanical booster (both from Edwards Vacuum

Ltd), yielding a pumping speed of 274 m3/h.

speed (giving C = 0.04 l/s). Reducing the waveguide diameter to 60 µm, a pressure of
12 mbar should be attainable (whereas an orifice of 60 µm would give ).

7.4 The detection systems

A variety of instruments was used to detect the harmonics. As depicted in figure 7.3,
the high harmonics are dispersed by a transmission grating, pass through a pair of filters
(aluminium, 100 nm) and fall onto the X-ray CCD (PI-MTE 2048, Princeton Instruments).
The transmission grating is a free-standing silicon-nitride grating with a 100 nm period,
duty cycle of 0.5 and 160 nm bar depth [4], for which the theoretical diffraction efficiency
is plotted in figure 7.4 for diffraction orders m = 1 and m = 3 following the expressions
in [5] (a symmetrical grating - with duty cycle 0.5 only has odd diffraction orders).

The X-ray CCD used to detect the harmonics uses a back-illuminated 2048 × 2048
pixel array of 13.5 µm pixels, is vacuum compatible and can cool down to -40 ◦ C. Its
quantum efficiency is shown in figure 7.5. At the beginning of the experiment a micro-
channel plate (MCP) was used instead of the CCD, but the X-ray CCD was preferred to
relax the vacuum requirements (10−6 mbar for the MCP versus 10−3 mbar for the CCD).

To look for lower harmonic orders (in the visible), the grating was moved out and
the reflection of the first filter was collected using a spectrometer (Maya 2000, Ocean
Optics), as indicated in figure 7.3a.

7.5 Free-focusing attempts: gas-jet and gas-cell based

The first attempt of this thesis project to generate high-harmonics with the 3 micron
OPCPA system described above was through free-focusing in a gas jet. Figure 7.6 shows
a CAD drawing and the realized chamber (machined by X. Menino and his team at the
mechanical workshop of ICFO). The design is compact (the vacuum connections in the
CAD drawing are KF40) and features a continuous jet with a design similar to that of [6].
The jet is mounted at the end of a gas tube which itself is mounted on an xyz-translation
stage. The chamber operates with a removable differential pumping aperture (green
in the CAD drawing) of a 300 µm opening. The laser beam was first aligned to be on
axis with the differential pumping aperture, then the jet was moved into the laser beam.
Finally the z-position (in the direction of propagation) was adjusted to look for signal on
the spectrometer. As indicated by the phase-matching parameters of figure 6.5, argon was
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(A) Schematic representation of the de-
tection system: the high harmonics are
dispersed by a transmission grating and
imaged by an X-ray CCD, after passing
through a set of aluminium filters. With the
grating out, the reflection of the first filter

is used to measure low harmonics.

(B) A picture of the detection chamber,
showing the X-ray CCD.

FIGURE 7.3: The detection setup.
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FIGURE 7.4: Theoretical diffraction efficiency ηm for orders m = 1 and
m= 3, calculation based on [5].
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FIGURE 7.5: Quantum efficiency curve for the PI-MTE X-ray CCD.

(A) CAD drawing of the generation cham-
ber for generation in a gas-jet. Drawing by

X. Menino (ICFO). (B) Picture of the jet-based chamber.

FIGURE 7.6: First attempt: a small chamber at low vacuum with a gas jet.
The pressure in the interaction region is estimated to be only about 1 bar,

and the jet suffered from mechanical instabilities.

used at a pressure of several bar, and the beam was focused down to an initial waist of
w0 ≈ 22 µm using an off-axis parabola. A faint signal at the third harmonic was observed
on the spectrometer. Focusing more tightly, eventually to w0 ≈ 15 µm, the third and fifth
harmonic appeared on the spectrometer, the fifth being just above the noise level. The
fact that no higher harmonics were observed was attributed to an insufficient pressure in
the interaction region of about 1 bar. The jet also suffered from mechanical instabilities.

For the second attempt, a gas cell geometry was chosen, the design of which is shown
in figure 7.7. It was designed by the author and machined by R. Gall at the mechanical
workshop at MPL. It features two glass capillaries for differential pumping, allowing a
drop from 40 bar to 5× 10−6 mbar over 8 cm. The laser is focused in the high-pressure
compartment on the left, about 3 mm in front of the first capillary (in order not to burn the
capillary), with special care taken to ensure proper alignment with the axis defined by the
differential pumping capillaries. Although this setup was significantly more stable and
could reach a static pressure of up to 40 bar, only a third, a fifth and very weak seventh
harmonic were observed. A possible explanation could be because of reabsorption, as
any generated harmonics need to travel through about a cm of argon at high pressure.
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(A) Cross-sectional drawing of the chamber for the
second attempt.

(B) Exploded view of the assembly of the
chamber for the second attempt.

FIGURE 7.7: Second attempt: a small chamber with a first compartment
designed to go up to 40 bar, a differential pumping section kept at 3 mbar
and the connection to the high-vacuum environment of the spectrograph.

7.6 Integrated setup

The integrated design - soliton compression in a photonic crystal fiber followed by high
harmonic generation - is a challenging design as it requires the PCF to be at a constant
pressure of up to 100 bar of helium, with the pressure gradient confined to only the
last centimeter of the fiber. Also, a second differential pumping aperture is needed to
separate the low-vacuum from the high-vacuum part of the setup, which needs to be on
axis with the (last part of the) PCF. A first design, realized in collaboration with MPL
and machined at their workshop, fulfilled the requirements only partially. The above-
mentioned coaxiality was met, but the separation between the high-pressure and the
low vacuum part of the setup was done using an automotive gasket sealant, which ‘only’
held up to about 40 bar and complicated replacement of the fiber. An improved design
was developed and drawn by the author, in collaboration with M. Bougeard (CEA) and
machined by S. Foucquart and A. Fillon (mechanical workshop CEA). The result is shown
in figure 7.8. The laser is focused into the entry chamber, where it is coupled into the
PCF. This PCF is inside a glass capillary which in turn is lying inside a precisely machined
V-groove, to insure coaxiality with the differential pumping aperture downstream. If a
single, long piece of PCF is used, the entry is at high pressure, where the fiber exit is
at low vacuum. There is thus a pressure gradient along the entire length of the PCF,
which means that the amount of SPM reduces along the fiber length. In order to have a
constant pressure along the first 18 cm of PCF, and the gradient only over the last 10 mm
as described in the previous chapter, the PCF was split in a long (18 cm) and short (10
mm) part and the glass capillary holding the PCF was prepared as shown in figure 7.9.
In the region where the two PCFs meet, the capillary is tapered to the outside diameter
of the PCF (0.3 mm) such that the PCFs are forced exactly on axis and a good coupling
efficiency (> 95 %) is obtained. A slot is machined in the glass capillary so gas can enter,
thus maintaining a constant pressure over the long PCF, and a gradient over the short PCF.
It must be noted that the technical implementation is rather challenging, as machining
the gas slot makes the capillary fragile, then the capillary needs to be cleaned of glass
debris, after which the two pieces of PCF need to be inserted (taking care not to damage
or pollute the cleaved fiber end-facets).

With this setup, and a PCF with an inner diameter of 60 micron, a constant pressure
profile for soliton compression of up to 110 bar can be reached, with the low-vacuum
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chamber maintained at around 10-50 mbar and the detection chamber at around 10−4−
10−5 mbar. To verify the laser beam at the output of the PCF, as well as to measure lower
harmonics, a pick-off mirror is installed on a small transfer rod. This mirror (consisting of
a gold-covered silicon chip) sends the beam out through the window shown in figure 7.8d.
It can be moved out to let the high harmonics pass to the detection chamber, through the
differential pumping aperture. Part of the driver laser power is also transmitted, and
blocked by the filters in front of the CCD.

7.6.1 Results from the integrated setup

Using this integrated setup, soliton compression was verified. The setup is shown in fig-
ure 7.10. A wire grid polarizer is used to ramp up the input power in a controlled way,
while compensating any changes in beam pointing with the coupling lens (CaF22, f=50
mm). The beam then enters the chamber through a 3 mm sapphire window and couples
into the PCF. The input pulse is chirped (using the Martinez grating compressor men-
tioned in section 7.2) to compensate for the dispersion introduced by the polarizer, lens
and entrance window (to about 116 fs at input, 105 fs after the polarizer and 97 fs after
the entrance window). At the output of the PCF, the beam is sent out of the setup by
the pick-off mirror, and its pulse length is measured through Frequency Resolved Opti-
cal Gating (FROG) [7], using FROG3 (Femtosoft Technologies). The input pulse energy
arriving at the setup is about 65 µJ. After the losses on the mirrors, polarizer, lens and
entrance window the pulse energy is about 47 µJ. With a coupling efficiency of about 85
% the energy of the pulse in the PCF is thus 42 µJ. At this rather low pulse energy, the
optimum compression is expected to be at a later stage than with the original PCF length
of 18 cm. Its length was thus increased to 26 cm. Figure 7.11 shows the FROG trace and
retrieval for compression in helium at 110 bar. Although some compression is observed
(down to 79 fs), it is far from sufficient and the spectrum does not show significant spec-
tral broadening. This is attributed to the low pulse intensities. The polarizer could be
removed to gain 17 % of energy, but at the expense of control. To see a stronger SPM, the
experiment was repeated with up to 75 bar of neon (which has a higher n2, see Appendix
E). Now significant spectral broadening was observed, and a pulse of 61 fs was retrieved,
as shown in figure 7.12. In these measurements the dispersion of the CaF2 exit window
was not compensated for, as it is not significant at these pulse lengths. Although this is a
step in the right direction, it also shows that we are far from the parameters needed for
efficient soliton compression in helium. Gaining 17 % by removing the polarizer will not
be sufficient, the intensity needs to be increased significantly. As explained in the pre-
vious chapter, using argon is not an option as any generated harmonics are reabsorbed.
So ideally one would use argon in the soliton compression stage, and helium in the HHG
stage. As this is extremely challenging to achieve in this integrated setup, it was decided
to decouple the compression and HHG stages, as described in the next section.
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(A) CAD of the integrated compression and generation chamber.

inlet

inlet

(B) Inner configuration of the compression and generation chamber, with the long glass capillary holding the
two pieces of PCF, with the position of the gas inlet in the glass capillary as detailed in figure 7.9. Also shown
is the second glass capillary that acts as differential pumping aperture between the low and high-vacuum

sections.

(C) Picture of the integrated compression
and generation chamber.

(D) With the pick-off mirror in place, the
beam is sent out of this window to measure
verify coupling, measure compression and

look for low order harmonics.

FIGURE 7.8: Chamber of the integrated compression and generation de-
sign.
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1 mm 1 mm

FIGURE 7.9: Using two pieces of PCF allows for a constant pressure along
the first PCF, and thus better soliton compression. A slot is machined in
the capillary to allow gas to flow in.Tapering of the capillary that holds

the two PCFs ensures 95 % coupling efficiency.

FIGURE 7.10: Schematic of the setup used to measure the pulse duration
after soliton self-compression in the integrated compression and genera-

tion setup.
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FIGURE 7.11: Soliton compression in helium at 110 bar gives a retrieved
pulse length of 79 fs. The spectral phase shows some chirp (up to 4×103

fs2).
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7.7 Decoupled setup

To decouple the parameters for soliton compression and high harmonic generation, the
setup was modified to the one shown in figure 7.13.

7.7.1 Soliton self-compression results from the decoupled setup

The compression part could be based on earlier work [1], for the generation part the gas
cell of section 7.5 was modified to handle up to 100 bar. Based on the results of [1], argon
was used for the soliton compression part, and an optimum pressure of 10.5 bar was found
for a PCF of 90 µm inner diameter and 22 cm length. This allowed compression down to
26 fs, as shown in figure 7.14, where the dispersion by the exit window is compensated
for by a 1 mm thick silicon plate. The input pulse energy was 65 µJ, the output energy
40 µJ. The compression stage increased the peak power by a factor 1.5 to 0.96 GW, as
can be seen in figure 7.15.

7.7.2 Harmonics generated from the decoupled setup

In the soliton compression stage harmonics up to the fifth order are generated. Figure
7.16a shows the spectrum of the fifth harmonic (the third harmonic being filtered out).
The compressed beam is collimated using an off-axis parabola (f=150 mm), and focused
into the generation chamber with another off-axis parabola (f=50 mm), to a focal spot
with a waist of around w0 ≈ 20 µm. Taking the actual pulse shape as retrieved in figure
7.14, the peak intensity is expected to be 1.4 × 1014 W/cm2. Following the analysis of
the previous chapter, the cut-off energy would be at 430 eV, ADK theory predicts an ion-
ization fraction of 5×10−9, and the phase-matching pressure would be 35 bar of helium.
In the experiment, the pressure was scanned from 20 to 100 bar, but no high harmonics
were observed. Figure 7.16b shows harmonics 3 to 7, generated in the generation cham-
ber. A possible explanation for not seeing higher harmonics could be that the alignment
of the beam with the two glass capillaries (the differential pumping apertures) is not
perfect, and that the high harmonics are absorbed whereas the low harmonics are par-
tially transmitted through internal reflection. A repetition of the experiment after careful
realignment however did not yield better results.

This chapter is concluded with two additional pictures of the experiment, shown in
figure 7.17. The picture on the left shows the compression chamber with the PCF lighting
up as a result of parasitic processes. The beam enters from the bottom of the picture.
The intensity oscillations visible at the first few cm of the PCF are caused by poor mode
matching (the picture should thus not be taken as an example). The focus of the incoming
beam is too tight, exciting multiple modes which interfere as they propagate, until they
extinct and only the fundamental mode is left. Going to high power with this poor mode
matching would cause the fiber entry to burn, but it does make for an interesting and
aesthetically pleasing image. The picture on the right shows the generation chamber of
the decoupled setup, with the focus lit up as a result of ionization and/or fluorescence.
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(A) Schematic of the decoupled setup.

(B) Picture of the decoupled setup.

FIGURE 7.13: Decoupling the soliton compression and high harmonic
generation finally gives more control over the experiment.
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FIGURE 7.14: FROG measurement of the pulse after soliton self-
compression in Argon, showing a pulse length of 26 fs FWHM at an opti-
mum pressure of 10.5 bar. Input energy was 65µJ, output energy 40µJ.
Measured with 1 mm of Si to compensate for the CaF2 exit window of the

soliton compression chamber.
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FIGURE 7.15: Peak power of the input and output pulse of the soliton
compression stage, showing a gain of a factor 1.5.



7.7. Decoupled setup 113

400 600 800
wavelength [nm]

0.0

0.5

1.0

N
or

m
al

iz
ed

 in
te

ns
ity

H5 from compression stage

(A) Harmonic 5 generated during soliton com-
pression in argon (harmonic 3 filtered out).

500 750 1000
wavelength [nm]

0.0

0.5

1.0

N
or

m
al

iz
ed

 in
te

ns
ity

H3

H5H7

Lower harmonics

(B) Harmonic 3 to 7 generated in helium.

FIGURE 7.16: Lower harmonics generated in the self-compression stage
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(A) Picture of the soliton compression stage.
The intensity oscillations near the fiber entry are

caused by poor mode matching.

(B) Picture of ionization (or fluorescence?) at fo-
cus in the HHG stage.

FIGURE 7.17
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7.8 Conclusions

Through several design iterations, high harmonic generation was attempted using a 160
kHz 3-micron OPCPA laser system. Different schemes were tried: free-focusing in a gas
jet; free-focusing in a gas cell; soliton compression and HHG in a PCF; and separated
soliton compression and HHG.

The gas jet experiment did not yield results mainly because of the technical imple-
mentation: it was unstable and did not sustain high enough pressures. This could be
improved upon, but priority was given to trying the next scheme. Free-focusing in the
gas cell was stable, but the scheme inherently suffers from high reabsorption. It can thus
only work with helium as the generation medium, but for this the peak intensity was in-
sufficient. The scheme that integrates soliton compression and HHG in a PCF tested here
could be an elegant solution, as it is compact, stable, and minimizes the losses between
the compression and HHG stages. But the downside is that the parameters determining
the HHG process and those determining the compression process are coupled (gas type,
pressure, mode field diameter). For the parameters of this setup, it proved not feasible,
notably due to a too low pulse energy. The decoupled setup came closest to generating
high harmonics - it is even possible they were generated, but could not be observed.

All schemes could in principle lead to a high repetition rate, keV high harmonic source,
using a significantly higher pulse energy.
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Chapter 8

Conclusions

8.1 Conclusions on Broadband Coherent Diffractive Imaging

Coherent diffractive imaging through phase retrieval is an important imaging technique
that is gaining momentum on several sources thanks to its ease of implementation. It tra-
ditionally assumes a perfectly coherent, monochromatic incident wave, and reconstructs
an amplitude and phase representation of the sample from its diffraction pattern through
an iterative phase retrieval process. In order to make full use of the developed attosecond
sources, and other sources that feature a broad spectrum, it is necessary to extend CDI
methods to cope with broadband diffraction patterns. Some work has been performed
in this direction, particularly by extending the iterative phase retrieval algorithm. In this
thesis work, a method has been developed to perform a numerical monochromatization.

The method
The monochromatization works directly on the broadband diffraction pattern, us-
ing only the spectrum of the diffracted radiation. It makes use of a regularized
matrix inversion which controls the inverted noise and allows to optimize the de-
gree of monochromatization, depending on the signal-to-noise ratio of the acquired
diffraction patterns. An important limiting assumption is that the sample be non-
dispersive over the source bandwidth, as only then can the broadband pattern be
considered a sum of monochromatic patterns which are identical except for a geo-
metrical scaling and a spectral weight.

Experimental validation in the visible
A CDI experiment was performed on a supercontinuum source in the visible, such
as to have spatially coherent, broadband radiation. The sample - an aperture etched
out of a membrane - was readily reconstructed even at 11 % bandwidth. A noise
analysis shows that the broadband case performs comparably to the narrowband
case for the same number of photons in the diffraction pattern. At low signal levels,
the broadband case even performs slightly better thanks to the noise-suppressing
behavior of the monochromatization method.

X-ray simulations
A possible application for hard X-ray broadband CDI is explored through simu-
lation: the verification of lithography masks for the semiconductor industry. A
possible source is also explored: inverse Compton scattering source ThomX. The
monochromatization method is well suited to the source bandwidth of 5 %, but the
brightness of the source lacks orders of magnitude for a realistic CDI experiment.
Simulations with a sufficient number of photons yield good CDI reconstructions for
5 and 10 % bandwidth at 8 keV, whereas at 15 % bandwidth the reconstruction de-
grades significantly. Finally, combination of the monochromatization method with
an external ptychography code yielded good results, showing the versatility of the
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methods implementation. Ptychography can image extended samples and is more
robust to noise than CDI.

X-ray experiments on synchrotron sources
Two experiments were performed at synchrotron sources to collect monochromatic
diffraction patterns over a closely sampled energy range, to then constitute a broad-
band diffraction pattern at hard X-ray energies between 7 and 8 keV. The first ex-
periment, at a bending magnet beamline at Diamond, did not yield usable results
due to a too low spatial coherence of the source (in combination with limited beam-
time). In the second experiment, at a highly spatially coherent undulator beamline
at Soleil, several energy scans on different samples were obtained. The patterns
are highly coherent, and a monochromatic ptychography scan was reconstructed
successfully. In CDI only mediocre reconstructions were obtained, which could be
linked to a stability problem. As this beamtime took place near the end of thesis
project and was rather short, further analysis and follow-up experiments can yield
improved results.

Overall the proposed monochromatization method was explored both through simula-
tions and experiments, and yielded encouraging results. It may have brought attosecond
CDI and efficient use of broadband sources of radiation one step closer, although the
assumption on the sample limits its scope of application.

8.2 Conclusions on the development of a high repetition rate,
mid-IR driven keV harmonic source

Generating high harmonic radiation with a high repetition rate means one has to deal
with a low pulse energy. By focusing tightly, and/or compressing temporally, the peak in-
tensity can be made sufficiently high to generate high harmonic radiation. Additionally,
the cut-off energy can be pushed by using a long wavelength driver laser (mid-IR). How-
ever, as shown in Chapter 6, high phase matching pressures ranging from several bar to
hundreds of bars are needed, posing a technical challenge. At these high pressures strong
reabsorption of the harmonic radiation by the generation medium often leaves helium as
the only option. Different schemes were explored theoretically and experimentally:

Free-focusing in a gas-jet
This scheme is probably easiest to implement, and if more time is spent designing
(or buying) a stable gas-jet that can sustain high pressures, it could yield good
results. Also, if the gas jet can be made such that the pressure down-ramp is steep,
reabsorption is limited and other gases besides helium could be used. In this project,
no results beyond a weak third and fifth harmonic were obtained, as preference was
given to exploring the other schemes

Free-focusing in a gas-cell
Compared to a gas-jet, high pressures are much easier to reach in a gas-cell. In this
project, a system of glass capillaries was used as differential pumping apertures to
separate high pressure, low vacuum and high vacuum regions of the setup. These
apertures keep the setup compact, but complicate alignment. Low harmonics were
observed up to the seventh order. Reabsorption is significant in this scheme, so one
is limited to generation in helium.

Integrated soliton compression and HHG in a photonic crystal fiber
PCFs are a great means of confining high power laser pulses and have it interact
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over extended distances. They are thus ideal for soliton compression, and in prin-
ciple also for phase-matched harmonic generation. Additionally, they can serve as
a differential pumping aperture. To maintain a constant pressure for good soliton
compression, a long PCF is coupled to a short PCF, with a gas slot in the capil-
lary holding the two PCFs, at the point where they meet. The capillary is tapered
to the outside diameter of the PCF, such that good (> 95 %) coupling is reached.
Compression from 97 to 79 fs was obtained in helium, and to 61 fs in neon. The
downside of this integrated setup is that the parameters for compression and those
for HHG are coupled. For example, depending on the laser parameters one would
ideally generate in helium because of low reabsorption, but compress using e.g. ar-
gon because of the high n2. The technical implementation is also challenging. For
the correct parameters however, this could be a very compact and efficient solution.

Decoupled soliton compression and HHG in a gas-cell
Decoupling the compression stage and generation stage allows compression using
argon, and a compressed pulse duration of 26 fs was obtained, with a gain in peak
power of a factor 1.5. Focusing this pulse into a gas cell filled with helium, har-
monics up to the seventh order were observed. The fact that no higher orders were
observed could be a question of alignment through the differential pumping aper-
tures. This scheme allows the highest degree of freedom for the experiment.

Each of the schemes could work to generate up to keV-scale, phase-matched harmonic
radiation, but in this work all tried schemes lacked pulse energy to be feasible.

A ‘recipe’ was used to determine the experimental parameters: based on the available
pulse energy and maximum gas pressure, how strongly should one focus and/or compress
temporally to obtain phase-matched radiation at the highest cut-off? As more research
groups move towards higher repetition rates and longer driver wavelengths, this recipe
can be applied to similar cases.
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Chapter 9

Outlook

9.1 Outlook on Broadband Coherent Diffractive Imaging

In the near future it would be interesting to go back to the Nanoscopium beamline at
Soleil and try a broadband ptychography scan. As shown, it is more robust and would
thus be a way to experimentally validate the monochromatization method with hard X-
rays, unhindered by sources of noise that proved detrimental for the CDI experiment.

On the side of algorithm development, a good next step would be to couple the
monochromatization method to the PolyCDI algorithm of the former group at the Centre
for Coherent X-ray Science of the University of Melbourne [1–5], as mentioned in Chap-
ter 2. As described in [1], step 3-6 of their modified iterative phase retrieval algorithm
is to scale the updated guess of the farfield pattern to all wavelengths in the sample -
exactly what matrix C does. The resulting method should be able to handle larger band-
widths than PolyCDI alone, and yield more reliable reconstructions than the numerical
monochromatization method alone. The relevant authors have been contacted to initiate
a merging of the two codes, but the group has been dissolved and their developments on
PolyCDI are discontinued.

Another exciting development would be to loosen the constraint on the sample. As
a first step, a sample consisting of two different, known indices of refraction could be
considered. One of them could even have an absorption edge. These indices could then be
used as additional constraint in the sample space. For this to work the dispersion function
of the sample will need to be guessed iteratively, so it is probably best to implement this
as an extension to the above-mentioned combination with PolyCDI.

In a more distant future, with robust, mature algorithms and with bright high har-
monic sources delivering intense pulses on an attosecond timescale, it would be exciting
to perform attosecond CDI on the type of samples mentioned in the Introduction: all-
optical switching of magnetic domains [6, 7] and electron dynamics in candidate devices
for petahertz electronics [8–12].

9.2 Outlook on high repetition rate, mid-IR driven keV har-
monic source development

First, an outlook regarding experimental aspects and the immediate future. The decou-
pled setup gave the most promising results. It is advisable to work on a way to make
the alignment less critical. One way this could be done is by adding the possibility to
adjust the angle of the generation chamber up to a few millirad, so it can compensate for
misalignment. In parallel, the pump laser should be upgraded so that the pulse energy
can be increased.

If one is just starting to attempt HHG on a similar source and wants to start with the
gas-jet design, some time should be spent optimizing the gas jet to obtain a high pressure
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jet that is sharply localized to limit reabsorption. Suitable jets sustaining well over 10
bars of pressure have been developed in the context of near-critical density laser-plasma
experiments [13, 14], and are even commercially available (e.g. Sourcelab, Palaiseau,
France). Such jets are pulsed at Hz-scale repetition rates, and thus harmonics will be
generated only when the jet valve is open (a few % of the time) but it serves to demon-
strate the principle. Also Even-Lavie valves [15, 16] could be used for this purpose. If the
pulse energy of the idler is low, as a first step HHG could be attempted using the signal
[17], which has double the energy and with which it should be easier to generate be-
cause of the higher dipole emission. Once this works, and the detection system is proven,
generation with the idler can be attempted.

For the mid-term future, it would be interesting to develop a way to implement a
barrier in the PCFs that can withstand large pressure differences but is transparent to the
driver laser, in order to separate the soliton compression section from the HHG section.
One could imagine a transmission window at Brewster angle (on a tens-of-micron scale),
or perhaps a layer of graphene [18].

Exciting long-term developments are to investigate the relativistic effects and decoher-
ence induced by neighboring wavepackets as driver wavelengths become longer. Intense,
ultrashort pulses at longer wavelengths are thus needed. More than 30 years ago, CO2
laser pulses (at 10 µm) were compressed to 600 fs [19] and work is currently underway
to go further in this direction [20].
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Appendix A

The Fourier transform

The Fourier transform is an extremely important mathematical tool in physics, as it allows
to switch between the spaces of a pair of conjugate variables. Pairs of conjugate variables
are for example time and frequency (or energy), or distance and momentum. What this
means in practice is that for example the Fourier transform of a signal in time shows the
decomposition of this signal in frequency (in amplitude and phase), or the 2-dimensional
Fourier transform of a light wave leaving a sample describes the observed interference
pattern in the far field (again in amplitude and phase). See also Appendix B. The goal
of this appendix is to give the definition of the Fourier transform, and explain why short
pulses require broad spectra. It is by no means meant to be a complete introduction to
Fourier analysis (for which plenty of undergraduate textbooks and online resources are
available).

A.1 Definition of the Fourier transform

Taking as example the variables time (t) and angular frequency (ω), the Fourier trans-
form is defined as:

H(ω) =
1
p

2π

∞
∫

−∞

h(t)e−iωtdt (forward transform) (A.1)

h(t) =
1
p

2π

∞
∫

−∞

H(ω)eiωtdω (inverse transform). (A.2)

Sometimes however it can be more convenient to use for example:

H( f ) =

∞
∫

−∞

h(t)e−i2π f tdt (forward transform) (A.3)

h(t) =

∞
∫

−∞

H( f )ei2π f td f (inverse transform), (A.4)

using f =ω/2π as independent variable in Fourier space.
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A.2 Basic Fourier transform properties

Property Real Space Fourier Space

Linearity ah(t) + bg(t) aH(ω) + bG(ω)

Translation h(t −τ) e−iωτH(ω)

Scaling h(at) 1
|a|H

�

ω
a

�

Convolution h(t) ∗ g(t) H(ω)G(ω)

Differentiation d
dt h(t) iωH(ω)

Integration
t
∫

−∞
h(τ)dτ

H(ω)
iω +πH(0)δ(ω)

Energy conservation
(Parseval’s theorem)

∞
∫

−∞
|h(t)|2dt = 1

2π

∞
∫

−∞
|H(ω)|2dω

Symmetry (for h(t) real)

H(−ω) = H∗(ω)

Re{H(ω)}= Re{H(−ω)}
Im{H(ω)}= − Im{H(−ω)}
|H(ω)|= |H(−ω)|

arg{H(ω)}= −arg{H(−ω)}

A.3 Uncertainty relation and why short pulses require broad
spectra

If we now consider a Gaussian function in time:

h(t) =
1
p
σ

e−
t2

2σ2 (A.5)

the Fourier transform is given by:

H(ω) =
p
σe−

σ2ω2
2 (A.6)

which is again a Gaussian, but now in frequency space, and with a width of σω = 1/σt .
This is an example of the general inequality of the variances of Fourier transform pairs.
In general, if f is an arbitrary probability density distribution and F its Fourier transform,
then

var( f )var(F)≥ 1. (A.7)

A profound implication of this principle is the famous Heisenberg uncertainty principle,
stating that it is impossible to determine the exact position and momentum of a particle
simultaneously. More relevant for the field of ultrafast optics and this thesis work, it also
means that a pulse that is short in time, needs to have a broad spectrum. If equation A.5
describes the envelope of the electric field of a pulse, we can define the time-bandwidth
product for a Gaussian pulse as σtσω = 1. Experimentally, it is more common to look at
the intensity (i.e. the square of the electric field) so σI = σ/

p
2 and to use the Full Width

at Half Maximum (FWHM) so τFW HM = 2
p

2 ln2σI = 2
p

ln2σ. Again experimentally,
it is also more convenient to use the oscillation frequency f = ω/2π, so we can finally
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FIGURE A.1: Relative bandwidth of a gaussian pulse as a function of its
Fourier-limited pulse length and the central photon energy of its spec-
trum. It shows how shorter pulses require broader spectra, and how this

becomes easier for higher photon energies.

derive the time-bandwidth product for a gaussian pulse in experimental units:

τFWHM(∆ f )FWHM = 2
p

ln 2σt2
p

ln2σω/(2π)

= 2 ln2/π≈ 0.44 (A.8)

which is a well-known fact in ultrafast laser physics. It is illustrative to see what this means
for attoscience applications: if one wants to generate a pulse as short as 100 attoseconds
(the world record is currently at 43 [1]), the bandwidth of this pulse has to be at least
0.44/10−16 = 4.4 PHz or about 18 eV. In practice the spectra are much broader, as the
High Harmonic Generation process inherently produces chirped pulses, and this chirp is
difficult to compensate for. The higher the photon energy, the easier it is to make short
pulses, as relative bandwidth decreases. This is quantified in figure A.1.
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Appendix B

Fraunhofer diffraction

This appendix shows the derivation of the expression for Fraunhofer diffraction starting
from Maxwell’s equations, based on [1].

B.1 From Maxwell to d’Alembert

The free-space Maxwell equations in SI units are given by:

∇ · E(x , y, z, t) = 0, (B.1)

∇ ·B(x , y, z, t) = 0, (B.2)

∇× E(x , y, z, t) +
∂

∂ t
B(x , y, z, t) = 0, (B.3)

∇×B(x , y, z, t)− ε0µ0
∂

∂ t
E(x , y, z, t) = 0, (B.4)

where E,B,ε0,µ0 are the electric field, magnetic induction, electrical permittivity and
magnetic permeability of free space respectively. Taking the curl of equation B.3 and
making use of the vector identity:

∇× [∇× g(x , y, z)] =∇ [∇ · g(x , y, z)]−∇2g(x , y, z), (B.5)

we get:

∇ [∇ · E(x , y, z, t)]−∇2E(x , y, z, t) +∇×
∂

∂ t
B(x , y, z, t) = 0 (B.6)

Applying equations B.1 and B.4 this equation reduces to:
�

ε0µ0
∂ 2

∂ t2
−∇2

�

E(x , y, z, t) = 0 (B.7)

which is the d’Alembert wave equation. The same can be done taking the curl of equa-
tion B.4 and applying equations B.2 and B.3 to obtain the vacuum field equation for the
magnetic induction:

�

ε0µ0
∂ 2

∂ t2
−∇2

�

B(x , y, z, t) = 0 (B.8)

Injecting a plane wave solution A(x , y)ei(kz−ωt+φ) in d’Alembert’s equation one obtains:

ε0µ0ω
2 − k2 = 0, (B.9)

c =
ω

k
=

1
p
ε0ω0

, (B.10)
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where c is the speed of light. We can now write the d’Alembert vacuum field equations
as:

�

1
c2

∂ 2

∂ t2
−∇2

�

E(x , y, z, t) = 0 (B.11)

�

1
c2

∂ 2

∂ t2
−∇2

�

B(x , y, z, t) = 0 (B.12)

From these equations we can conclude that each of the spatial components of the electric
field and the magnetic field are uncoupled. Hence it is easy to pass from a vector descrip-
tion to a scalar description, in which the electromagnetic disturbance is characterized by
a single scalar field Ψ(x , y, z, t). Hence we can write a scalar d’Alembert equation:

�

1
c2

∂ 2

∂ t2
−∇2

�

Ψ(x , y, z, t) = 0. (B.13)

B.2 Helmholtz equation, free-space propagation and diffrac-
tion

By using a Fourier transform (appendix A) any scalar fieldΨ(x , y, z, t) can be decomposed
into its spectral components ψω(x , y, z):

Ψ(x , y, z, t) =
1
p

2π

−∞
∫

∞

ψω(x , y, z)eiωtdω. (B.14)

Injecting this expression in the scalar d’Alembert equation yields:

�

1
c2

∂ 2

∂ t2
−∇2

�

1
p

2π

∞
∫

−∞

ψω(x , y, z)eiωtdω= 0 (B.15)

1
p

2π

∞
∫

−∞

�

∇2 +
ω2

c2

�

ψω(x , y, z)eiωtdω= 0 (B.16)

�

∇2 +
ω2

c2

�

ψω(x , y, z) = 0 (B.17)

�

∇2 + k2
�

ψω(x , y, z) = 0, (B.18)

a result which is known as the Helmholtz equation, central in scalar diffraction theory.
In order to describe diffraction, we would like to consider a wave just after it has left a
sample (say at z = 0) and describe its propagation down stream (at z = ∆). Between
z = 0 and z =∆ is a vacuum, such that Helmholtz’ equation applies. The plane waves

ψPW
ω (x , y, z) = ei(kx x+ky y+kzz) (B.19)

are solutions to the Helmholtz equation, provided that:

k2
x + k2

y + k2
z = k2. (B.20)
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The elementary plane-wave solutions can now be written as:

ψPW
ω (x , y, z) = ei(kx x+ky y)eiz

q

k2−k2
x−k2

y . (B.21)

This means that if ψPW
ω (x , y, z = 0) = ei(kx x+ky y), i.e. the value of the monochromatic

plane wave at z = 0 is known, the plane wave can be propagated to z =∆ by multiplica-

tion with eiz
q

k2−k2
x−k2

y . This last term is therefore also called the “free-space propagator”.
These plane waves can be used to synthesize any wave function ψω through the inverse
2D spatial Fourier transform:

ψω(x , y, z = 0) =
1

2π

∫ ∫

ψ̃ω(kx , ky , z = 0)ei(kx x+ky y)dkxdky , (B.22)

where ψ̃ω(kx , ky , z = 0) is the 2D spatial Fourier transform of ψω(x , y, z = 0). The dou-
ble integral constitutes a linear combination of plane waves ei(kx x+ky y), which is therefore
itself also a solution of Helmholtz’ equation. We can now propagate this wave function
using the free-space propagator:

ψω(x , y, z =∆) =
1

2π

∫ ∫

ψ̃ω(kx , ky , z = 0)ei∆
q

k2−k2
x−k2

y ei(kx x+ky y)dkxdky . (B.23)

This equation gives the recipe for free-space propagation and diffraction of any wave
function Ψ(x , y, z = 0, t):

1. Decompose the wave function in its spectral components ψω(x , y, z = 0);

2. Compute the 2D spatial Fourier transform ψ̃ω(kx , ky , z = 0) for each spectral com-
ponent;

3. Multiply by the free space propagator;

4. Fourier transform back;

5. Sum all spectral components ψω(x , y, z =∆) to obtain Ψ(x , y, z =∆, t).

B.3 Fresnel diffraction

For many applications one is only concerned with propagation of the field in the for-
ward direction, at small scattering angles. In that case the paraxial approximation can be
applied:1

Ç

k2 − k2
x−2

y = k

�

1−
k2

x + k2
y

k2

�

1
2

≈ k−
k2

x + k2
y

2k
if k2

x + k2
y � k2 (B.24)

(paraxial approximation).

Thus the integral for Fresnel diffraction reads:

ψω(x , y, z =∆) =
eik∆

2π

∫ ∫

ψ̃ω(kx , ky , z = 0)ei∆
k2

x+k2
y

2k ei(kx x+ky y)dkxdky , (B.25)

1This is a special case of the binomial approximation: (1+ x)α ≈ 1+αx for x � 1
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with ei∆
k2

x+k2
y

2k being the Fresnel propagator.
For the next section it is useful to change to a real-space formulation. For this, consider

the following reformulation of equation B.25:

ψω(x , y, z =∆) =eik∆F−1

�

F [ψω(x , y, z = 0)]ei∆
k2

x+k2
y

2k

�

(B.26)

=2πF−1

�

F [ψω(x , y, z = 0)]
eik∆

2π
ei∆

k2
x+k2

y
2k

�

(B.27)

where F denotes a 2D spatial Fourier transform and F−1 its inverse. The convolution
property of the Fourier transform can be arranged in a similar way:

f (x , y) ∗ g(x , y) = 2πF−1 {F [ f (x , y)] F [g(x , y)]} , (B.28)

from which it is clear that:

ψω(x , y, z =∆) =ψω(x , y, z = 0) ∗
eik∆

2π
F−1

�

ei∆
k2

x+k2
y

2k

�

. (B.29)

To get the real-space form of the Fresnel propagator, P(x , y,∆), the inverse Fourier trans-
form can be performed independently for (kx , x) and (ky , y):

P(x , y,∆) =
eik∆

4π2

∞
∫

−∞

ei(kx−
∆
2k k2

x)dkx

∞
∫

−∞

ei
�

ky−
∆
2k k2

y

�

dky (B.30)

The trick in solving this integral is to use the following limit of the Fresnel integral:
∞
∫

0
e−iπx2/2dx = (1− i)/2= e−iπ/4/

p
2:

∞
∫

−∞

ei(kx x− ∆2k k2
x)dkx = ei kx2

2∆

∞
∫

−∞

e−
iπ
2

�q

∆
πk (kx−

k
∆ x)2

�

(B.31)

= 2

√

√πk
∆

ei kx2
2∆

∞
∫

0

e−
iπ
2 κ

2
dκ, κ=

√

√ ∆

πk

�

kx −
k
∆

x
�

(B.32)

=

√

√2πk
∆

e
i
�

kx2
2∆ −

π
4

�

(B.33)

Now the Fresnel propagator can be written as:

P(x , y,∆) =
eik∆

4π2

2πk
∆

e
i

2∆(kx2+k y2−π/2) (B.34)

=
ikeik∆

2π
e

ik
2∆(x2+y2). (B.35)
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Finally we arrive at the explicit, real-space formulation of Fresnel diffraction:

ψω(x , y, z =∆) =ψω(x , y, z = 0) ∗ P(x , y,∆) (B.36)

= −
ikeik∆

2π∆

�

ψω(kx , ky , z = 0) ∗ e
ik
2∆(x2+y2)

�

(B.37)

= −
ikeik∆

2π∆

∞
∫∫

−∞

ψω(x
′, y ′, z = 0)e

ik
2∆[(x−x ′)2+(y−y ′)2]dx ′dy ′ (B.38)

= −
ikeik∆

2π∆
e

ik
2∆ (x

2+y2)

∞
∫∫

−∞

ψω(x
′, y ′, z = 0)e

ik
2∆ (x

′2+y ′2)e−i k
∆ (x x ′+y y ′)dx ′dy ′.

(B.39)

B.4 Fraunhofer diffraction

If the detector is placed so far downstream that the diffraction pattern is completely de-
veloped we are in the so-called ‘far field’. Then the expression for Fresnel diffraction can
be further reduced to the case of Fraunhofer diffraction. The part of the wave field that
diffracts the slowest is the part that corresponds to the largest length scale in the sample,
say a. For far-field conditions to apply, the Fresnel number NF :

NF ≡
a2

λ∆
=

ka2

2π∆
(B.40)

should be well smaller than unity. x ′ and y ′ are non-zero only for values smaller than a,
such that in the far-field the term e

ik
2∆ (x

′2+y ′2) can be neglected. The Fraunhofer diffraction
integral is thus given as:

if NF � 1 :

ψω(x , y, z =∆) = −
ikeik∆

2π∆
e

ik
2∆ (x

2+y2)

∞
∫∫

−∞

ψω(x
′, y ′, z = 0)e−i k

∆ (x x ′+y y ′)dx ′dy ′ (B.41)

= −
ikeik∆

∆
e

ik
2∆ (x

2+y2)ψ̃ω

�

kx =
kx
∆

, ky =
k y
∆

, z = 0
�

. (B.42)

This can be interpreted as a (paraxial approximation to a) spherical wave originating in
the sample, modulated by the 2D Fourier transform of the wave as it left the sample.
When the diffraction pattern is recorded only the magnitude squared of the wave-field
will be preserved, i.e. the product of the wave-field with its complex conjugate:

|ψω(x , y, z =∆)|2 =
k2

∆2

�

�ψ̃ω(x , y, z = 0)
�

�

2
(B.43)

Bibliography

[1] David M. Paganin. Coherent X-Ray Optics. Number 6 in Oxford Series on Synchrotron
Radiation. Oxford University Press, Oxford, 2006. ISBN 978-0-19-856728-8.





133

Appendix C

Coherence

Two waves, or two parts of the same wave, are coherent if there exists a fixed phase
relation between them. It is this phase relation that allows interference. Consider the
addition of two general waves:

|ψ1(r, t) +ψ2(r, t)|2 = |ψ1(r, t)|2 + |ψ2(r, t)|2 + 2 |ψ1(r, t)ψ2(r, t)|
︸ ︷︷ ︸

interference term

. (C.1)

The cross-term, or interference term is what allows waves to interfere. If no phase relation
exists betweenψ1(r, t) andψ2(r, t), the integral of this term over time drops to zero, and
one is left with the incoherent sum of ψ1(r, t) and ψ2(r, t). It is coherence that makes
interference possible, and giving rise to coherent diffraction. Coherence can be quantified
by looking at the correlation between two waves, i.e.:

Γ12(r1, r2,τ) =

∞
∫

−∞

ψ1(r1, t +τ)ψ∗2(r2, t)dt for a pulse (C.2)

= lim
T→∞

1
T

T
∫

0

ψ1(r1, t +τ)ψ∗2(r2, t)dt for a continuous wave (C.3)

which is known as the mutual coherence function of ψ1 and ψ2. It can be normalized to
yield the complex degree of coherence:

γ12(r1, r2,τ) =
Γ12(r1, r2,τ)

p

Γ11(r1, 0)Γ22(r2, 0)
. (C.4)

This allows to quantify interference in the case of partial coherence:

Itot(r,τ) = I1 + I2 + 2
p

I1 I2ℜ{γ12(r,τ)} . (C.5)

|γ12| can be inferred directly from the fringe visibility in an interferometer experiment.
A distinction is generally made between temporal and spatial coherence, as explained in
the coming sections. Common textbooks that treat coherence include [1–4].

C.1 Temporal coherence

An ideal monochromatic wave has infinite temporal coherence. In reality, perfectly co-
herent sources do not exist. Temporal coherence is spoiled by random jumps in phase,
coming for example from spontaneous emission or thermal effects, and by changes in
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the wavelength, i.e. the finite bandwidth of the source. To consider only temporal co-
herence is to consider the ability of a signal to interfere with itself over a time delay, i.e.
Γ11(r,τ) and γ11(r,τ), which are also known as the first order autocorrelation and the
temporal degree of coherence respectively. As an example, take a perfect plane wave
ψ(x , t) = ei(kx−ωt):

Γ11(x ,τ) = lim
T→∞

1
T

T
∫

0

ei[kx−ω(t+τ)]e−i(kx−ωt)dt (C.6)

= lim
T→∞

1
T

T
∫

0

e−iωτdt (C.7)

= e−iωτ, (C.8)

meaning that |γ11| = 1 for all τ, so the plane wave is indeed perfectly coherent. If
one takes however a pulse with a Gaussian envelope, it inherently has a certain band-
width, and thus a limited temporal coherence. Consider the first order autocorrelation of

ψ(x , t) = ei(kx−ωt)e
− t2

2σ2
t :

Γ11(x ,τ) =

∞
∫

−∞

e−iωτe
− t2+(t+τ)2

2σ2
t (C.9)

= e−iωτe−
−τ2

4σ2

∞
∫

−∞

e
− (t+τ

2/2)2

σ2
t dt (C.10)

= σt
p
πe
−iωt− τ2

4σ2
t . (C.11)

Hence |γ11(x ,τ)|= e
− τ2

4σ2
t . The coherence function is thus also Gaussian, the wave is only

partially coherent: as the time delay τ is increased, the coherence drops. The time delay
for which |γ11(x ,τ)| drops below 1/e is the coherence time, τcoh. Comparing our result
to the bandwidth of a Gaussian pulse (equation A.5 and onward), we see that τcoh =p

2σt =
p

2/σω. The coherence length lcoh is then simply cτcoh. Often in literature,
lcoh ≈

λ2

∆λ is used, where ∆λ is the spectral bandwidth of the source in wavelength.
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C.1.1 Wiener-Khinchin Theorem

The relation between the autocorrelation of a signal and its bandwidth that is illustrated
in the previous section, is known as the Wiener-Khinchin Theorem. It states that the au-
tocorrelation of a function equals the Fourier transform of the functions power spectrum:

Γ11(τ) =

∞
∫

−∞

ψ(t +τ)ψ∗(t)dt (C.12)

=

∞
∫

−∞





∞
∫

−∞

ψ̃( f )ei2π f (t+τ)d f









∞
∫

−∞

ψ̃∗( f ′)ei2π f ′ td f ′



dt (C.13)

=

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

ψ̃( f )ψ̃( f ′)ei2π( f − f ′)tei2π f τdtd f ′d f (C.14)

=

∞
∫

−∞

∞
∫

−∞

ψ̃( f )ψ̃( f ′)δ( f − f ′)ei2π f τd f ′d f (C.15)

=

∞
∫

−∞

�

�ψ̃( f )
�

�

2
ei2π f τd f (C.16)

=F−1
¦
�

�ψ̃( f )
�

�

2©
. (C.17)

An important implication of this result is that, if random phase variations can be ne-
glected, the coherence length depends only on the power spectrum. Adding a chirp to a
Fourier limited pulse will increase its duration, but the coherence time is unaffected. The
coherence time of a pulse is thus practically the same as its Fourier limited duration (up
to a constant).

C.2 Spatial coherence

All practical light sources are of a finite size. Random variations in phase and wavelength
between different parts of the source give rise to spatial incoherence. This is described
by the mutual spatial coherence function, or mutual intensity J(r1, r2) = Γ12(r1, r2, 0).
This quantity can be analyzed (on a source with good temporal coherence) by perform-
ing Young’s slit experiment for different slit separations, or in more detail using a non-
redundant array aperture (see e.g. [5]). Analogous to the case of temporal coherence, the
slit separation for which the visibility of the interference fringes drops below 1/e corre-
sponds to the transverse coherence length. As an example consider figure C.1: in orange
it shows the interference pattern from a Young’s slit experiment in the case of perfect
spatial and temporal coherence. In blue the interference pattern is plotted of the same
experiment, but now with limited spatial and temporal coherence. Because of limited
spatial coherence of the wavefields at the two slits, the minima and maxima are reduced,
even on-axis (i.e. zero path-length difference). The limited temporal coherence (in this
case purely due to the finite bandwidth of the source) shows in the lateral direction, as a
beating between different wavelengths.
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Young interference pattern - partial coherence

FIGURE C.1: Young’s double slit experiment in the case of perfectly co-
herent source, plotted in orange. In blue the interference pattern in the
case of limited spatial (fringe visibility) and temporal (fringe modulation)

coherence.

C.2.1 Distant incoherent sources

Spatially incoherent sources can be rendered coherent by increasing the distance between
the source and the sample, i.e. by decreasing the angle subtended by the finite source
size and the sample. To explain this consider two mutually incoherent point sources,
separated by a distance s. At large sample-detector distance z the angle between the
wavevectors of the two waves incoming on the sample is s/z, see figureC.2a. Imagine the
green and the red wave now hit a Young’s double slit with separation d. The green wave,
being itself perfectly coherent, will create a perfect cosine on the detector. Idem for the
red wave. For small values of d (or small values of s/z), the green and red patterns will
overlap, and the sum of the two sources will be close to that of a single coherent source. If
however d → L, the phase difference of the two cosines equals π (the case drawn here),
the diffraction pattern is completely lost. Hence for spatially incoherent sources,

L ≈
λz
s

(C.18)

is often used as a measure for spatial coherence through propagation. It is a manifes-
tation of the Van Cittert-Zernike theorem (for a formal treatment consider[1–4]). Note
that although in this figure the two sources are drawn with equal wavelength, it is not
necessary for the reasoning to hold.

C.3 CDI with partial coherence

These deviations from perfectly coherent radiation pose important limits on the applica-
bility of coherent diffractive imaging techniques. CDI assumes perfect spatial and tempo-
ral coherence, which is a sometimes crude approximation to reality. For CDI with limited
temporal coherence see Chapter 2. CDI with limited spatial coherence can be performed
if the degree of coherence of the source has been characterized. The source radiation can
then be decomposed in a number of independent spatial modes [6, 7], which themselves
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(A) Waves from two mutually incoherent point sources (green and red) sep-
arated by a distance s arrive with an angle s/z between each other. For

transverse distances smaller than L they appear to be spatially coherent.

In
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ity

d < L

Transverse coordinate

In
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ity

d L

Young - 2 mutually incoherent point sources

(B) The interference patterns of the two sources in case of a Young’s slit experi-
ment with slit separation d < L and d ≈ L.

FIGURE C.2: A manifestation of the Van Cittert-Zernike theorem, a spa-
tially incoherent source can be considered spatially coherent if the source

is small and far away.
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are perfectly spatial coherent. See [8, 9] for the implementation. [10] treats CDI in the
context of general partial coherence (both temporal and spatial).
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Appendix D

X-ray interactions with matter

X-rays have some peculiar properties, when compared to e.g. light at optical frequencies,
which is why they are so useful from a scientific point of view. This appendix introduces
the relevant interactions between X-rays and matter, as well as the expression for the re-
fractive index and the projection approximation, all relevant for this thesis. More detailed
derivations can be found in e.g. [1].

D.1 Possible interactions

In X-ray matter interaction, three main mechanisms can be identified: scattering, absorp-
tion and pair production. Their corresponding cross-sections σ are plotted in figure D.1
for the case of copper, but the general behavior is the same for all elements. First thing
to note is that the overall interaction decreases for increasing X-ray energy; materials be-
come transparent for highly energetic X-rays. Secondly, at low X-ray energies absorption
dominates. This is photo-electric absorption, in which the X-ray photon is absorbed by an
electron. This photo-electron is then liberated from its shell, with a kinetic energy equal
to the photon energy minus the electron binding energy. For the example of copper, soft
X-rays up to 1 keV are absorbed by electrons from the M-shell. Above 1 keV the X-ray
photon has enough energy to ionize L-shell electrons, and above 8.993 keV the K-shell
becomes available. The exact location of these absorption edges is sensitive to the chem-
ical and structural environment of the atom, giving rise to the field of X-ray absorption
spectroscopy. The photo-electron leaves a vacant orbital in the atom, which will be occu-
pied by an electron from a higher-energy orbital. The energy-loss of this electron is either
emitted in the form of a photon, giving rise to fluorescence, or transferred to yet another
electron which will then be ejected from the atom (this is called an Auger electron).

The second effect at low to moderate X-ray energies is scattering. Simply put, scatter-
ing can be seen as the photon ‘bouncing off’ of an electron. In a more accurate picture,
the bound electron acts as an oscillator, that starts oscillating with the incoming wave-
field. Its dipole oscillation immediately drives the re-emission of a photon. If the emitted
photon has the same energy as the incoming photon, scattering is said to be coherent
(compare with elastic collisions in a particle picture). If the energy of the emitted photon
is different from the incoming photon the scattering is incoherent (inelastic collision).
Typically the photon transfers energy to the electron: this is called Compton scattering.
When the electron transfers energy to the photon one speaks of inverse Compton scatter-
ing (see also chapter 4).

It is elastic scattering that is of most interest to this thesis, as it is the interference
between elastically scattered waves that gives rise to coherent diffraction.

Finally, the more exotic of these interactions is pair production, a mechanism that
only occurs at extremely high photon energies: it is the conversion of a photon into an
electron and a positron. The X-ray photon thus needs to have an energy of at least the
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FIGURE D.1: Interaction cross-sections for scattering (coherent and inco-
herent), absorption and pair production as a function of X-ray energy. The
values are given for the element copper, as an example. Data from [2].

sum of the rest mass energies of the electron and the positron (2×511keV = 1.022MeV).
It is thus not relevant for the X-ray energy levels in this thesis.

D.2 X-ray refractive index

In Appendix B the Helmholtz equation for free space propagation was derived. In the
presence of matter, the Helmholtz equation reads:

�

∇2 + n(x , y, z)k2
�

ψ(x , y, z) = 0, (D.1)

where n(x , y, z) is the refractive index. The effect of absorption can be taken into the
refractive index through its imaginary part. Considering the plane wave solution to the
Helmholtz equation:

ψPW (x , y, z) = ein(x ,y,z)(kx x+ky y+kzz), (D.2)

it is clear that the imaginary part of n causes an exponential decay of propagating field,
corresponding to absorption. The real part of the refractive index is very close to unity
for X-rays. It is thus customary to write the refractive index as:

n= 1−δ+ iβ . (D.3)

Figure D.2 plots the values of δ and β as a function of X-ray energy for three materials
used in this thesis: silicon nitride (Si3N4), gold (Au) and tantalum nitride (TaN). The
absorption edges are clearly visible.

D.3 Projection approximation

As X-rays have such a weak interaction with matter, it is common to model this interac-
tion in the projection approximation: it assumes that the scatterers are sufficiently weak
such that the wave exiting the object can be expressed in terms of the phase and ampli-
tude shifts accumulated through the object along the straight paths that the waves would
have followed in absence of matter. This assumption was also made in the simulations
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FIGURE D.2: X-ray refractive index as a function of X-ray energy for three
materials used in this thesis: silicon nitride, gold and tantalum nitride. δ
(left y-axis) is plotted with a solid line, β (right y-axis) is with a dotted

line. Data from [3].

performed in this thesis. More formally, one can inject the Ansatz

ψ(x , y, z) = ξ(x , y, z)eikz (D.4)

into the Helmholtz equation (D.2) to obtain
§

∇2 + 2ik
∂

∂ z
+ k2

�

n2(x , y, z)− 1
�

ª

ξ(x , y, z) = 0. (D.5)

To solve this differential equation it is convenient to get rid of the Laplacian: setting
∂ 2

∂ z2ξ(x , y, z) = 0 amounts to the paraxial approximation; setting ∂
∂ xξ(x , y, z) = 0, ∂

∂ yξ(x , y, z) =
0 amounts to the projection approximation as these are the only parts of the equation that
can transmit information transversely. The resulting partial differential equation

∂

∂ z
ξ(x , y, z)≈

k
2i

�

1− n2(x , y, z)
�

ξ(x , y, z) (D.6)

is thus easily solved:

ξ(x , y, z = z0)≈ e
k
2i

z0
∫

0
[1−n2(x ,y,z)]dz

ξ(x , y, z = 0). (D.7)

In addition, for small values of δ and β the quantity 1 − n2(x , y, z) can be linearized,
neglecting terms quadratic in δ and β to yield:

ξ(x , y, z = z0)≈ e
−ik

z0
∫

0
[δ(x ,y,z)−iβ(x ,y,z)]dz

ξ(x , y, z = 0). (D.8)
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Hence, the phase shift∆φ(x , y) and the absorption A(x , y) obtained through propagation
through the sample are given by:

∆φ(x , y, z0) = −k

z0
∫

0

δ(x , y, z)dz (D.9)

A(x , y, z0) = 1− e
−2k

z0
∫

0
β(x ,y,z)dz

. (D.10)

When ∆φ� 1 and A� 1 the object is said to be optically thin.

D.4 The first Born approximation

Rather than the macroscopic description of matter employed in the previous section, it
is sometimes desirable to model matter as a sum of individual scatterers. This is done
for example in the diffraction simulation code Condor [4], used in Chapter 4.Then, the
weakly interacting property of X-rays is used in the single-scattering approximation, also
known as the kinematic or first-Born approximation. If we write the outgoing wave as
the sum of the incoming and scattered wave, where the scattered wave is an integral over
all scatterers in the sample volume V we obtain:

ψout =ψin +ψscat t (D.11)

=ψin +

∫∫∫

V

φ(x′)ψout(x
′)

eik|x−x′|

|x− x′|
dx′ (D.12)

Here φ(x′) = − k2

4π

�

1− n2(x)
�

is the scattering potential. Note that this is not an explicit
expression for ψout , as the scattered wave itself depends on the outgoing wave. The first
Born approximation consists in setting ψout(x′) = ψin(x′), with ψin(x′) = eik0·x a plane
wave, such that

ψout = eik0·x −
k2

4π

∫∫∫

V

�

1− n2(x)
�

eik0·x′ e
ik|x−x′|

|x− x′|
dx′. (D.13)

From this first Born approximation it is possible to arrive at the expression for Fraunhofer
diffraction (Appendix B). For observation points far away from the object x′ � x, then
applying the farfield, paraxial and projection approximations (see [1] for the derivation)
one arrives at:

ψout ≈ eik0·x −
k2eikr

2πr

∫∫

z0
∫

0

�

δ(x ′, y ′, z′)− iβ(x ′, y ′, z′)
�

dz′e−i(∆kx x ′+∆ky y ′)dx ′dy ′.

(D.14)
The first term corresponds to the direct beam in the center of the diffraction pattern.
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Appendix E

Notions on non-linear optics and
strong-field physics

Non-linear optics is the branch of optics that describes those phenomena that do not scale
linearly with the strength of the electric field driving the phenomena. A powerful example
is the polarization of a material due to an electric field E(t), expressed as a power series:

P(t) = ε0

�

χ(1)E(t) +χ(2)E2(t) +χ(3)E3(t) + ...
�

, (E.1)

where ε0 is the vacuum permittivity, χ(1) the linear susceptibility, and χ(2) and χ(3) the
second and third order non-linear susceptibilities, respectively. The process of second
harmonic generation (SHG), used for the FROG measurements in Chapter 7, is an exam-
ple of a χ(2)-process and thus the electric field (intensity) of the second harmonic scales
quadratically with the electric field (intensity) of the driving laser. Also the processes of
difference frequency generation (DFG) and optical parametric amplification (OPA), at the
heart of the laser described in the same chapter, are χ(2)-processes. This Appendix treats
some notions of non-linear optics relevant to the work in this thesis. They are based on
the standard work on non-linear optics: [1].

E.1 Non-linear index of refraction

Consider the third-order non-linear susceptibility of equation E.1, χ(3). In the case of a
linearly polarized, oscillating field E(t) = E cosωt, the resulting polarization P(3)(t) is
given by:

P(3)(t) = ε0

�

1
4
χ(3)E3 cos3ωt +

3
4
χ(3)E3 cosωt

�

. (E.2)

The first term is the expected third harmonic generation, but the second term radiates at
the frequency of the incident field. Its effect can thus be absorbed in a non-linear part of
the refractive index. The total index of refraction thus becomes:

n= n0 + n2 I , (E.3)

where n0 is the ‘normal’, linear index of refraction, n2 the non-linear part due to χ(3) and
I the intensity. n2 is then given by:

n2 =
3

2n2
0ε0c

χ(3). (E.4)

The values of n2 for a number of gases and glass (fused silica) is given in tabel E.1.
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Medium n2 [cm2/W]
Helium 3.6× 10−21

Neon 6.5× 10−21

Nitrogen 7.6× 10−20

Argon 8.5× 10−20

Krypton 2.3× 10−19

Xenon 6.8× 10−19

Fused silica 3.2× 10−16

TABLE E.1: Nonlinear refractive index n2 for different gases and for fused
silica. Values calculated from [2].

E.2 Self-phase modulation and temporal solitons

The non-linear part of the refractive index n2 has important effects on the propagation of
intense, ultrashort pulses. For n2 positive, its effect on a traveling wave after a distance
δz is a phase shift of:

∆Φ= −k0n2 Iδz, (E.5)

where k0 is the wave number in vacuum (ω0/c). At the leading edge of a short pulse,
I(t) increases, so each part of the leading edge of the pulse will experience a stronger
phase delay than the part before: the frequencies at the leading edge of the pulse are
red-shifted. At the trailing edge of the pulse, the opposite occurs and the frequencies
are blue-shifted. This phenomenon is called self-phase modulation (SPM). For a formal
derivation, see e.g. [1].

The effect of SPM on an ultrashort pulse is thus a spectral broadening, where lower
frequencies appear at the front of the pulse and higher frequencies appear at the back. The
resulting pulse thus contains a positive chirp. If the pulse is however travelling through a
medium with the right amount of anomalous (negative) dispersion (blue faster than red),
then it is possible that the SPM and dispersion balance each other and the pulse propa-
gates while maintaining the same shape in time. This is known as a temporal soliton. To
describe their behavior first the description of dispersion is recalled:

β1 =
�

dk
dω

�

ω=ω0

(E.6)

=
1
c

�

n0(ω) +ω
dn0(ω)

dω

�

ω=ω0

≡
1

vg(ω0)
(group delay)

β2 =

�

d2k
dω2

�

ω=ω0

(E.7)

=
d

dω

�

1
vg(ω)

�

ω=ω0

=

�

1
v2

g

dvg

dω

�

ω=ω0

(group delay dispersion - GDD)

The propagation of temporal solitons is described by a non-linear Schrödinger equation
[1, 3–5]:

i
∂ U
∂ ξ
+

1
2
∂ 2U
∂ τ2

+ N2|U |2U = 0, (E.8)
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with the introduction of a number of dimensionless parameters:

γ=
ω0n2(ω0)

cAe f f
(SPM coefficient) (E.9)

T = t −
z
vg
= t − β1. (retarded time) (E.10)

U =
A
p

P0
(normalized field amplitude) (E.11)

ξ=
z
LD

(normalized coordinate of propagation) (E.12)

LD =
T2

0

|β2|
(dispersion length) (E.13)

τ=
T
T0

(normalized retarded time) (E.14)

N2 =
LD

LN L
=
γP0T2

0

|β2|
(soliton order squared) (E.15)

LN L = (γP0)
−1 (nonlinear length) (E.16)

where Ae f f , P0, T0 are the effective mode area, peak power and original pulse length
respectively. For N = 1, the solution is given by:

U(ξ,τ) = η sech (ητ)eiη2ξ/2. (E.17)

Here, η is an arbitrary scaling parameter, that shows how, for given amount of disper-
sion and SPM, the soliton width is inversely proportional to its amplitude. It is clear from
equation E.2 that only the phase of the pulse changes during propagation, its shape and
spectrum remains constant. This solution for N = 1 is called a fundamental soliton. The
peak power required to form a fundamental soliton is P0 = |β2|/(γT2

0 ). Perturbation sim-
ulations [3] show that the soliton is very stable: if the input pulse does not exactly match
the shape of equation E.2, the pulse will adjust its shape and width to a fundamental
soliton as long as the input pulse is bell-shaped and 0.5 < N < 1.5. Excess energy of the
pulse will be shed in the form of dispersive waves.

For higher (integer) values of N , higher order solitons are formed. These are super-
positions of soliton-like waves, with a peak power of N2 times that of the fundamental
soliton. High order solitons do change shape and spectrum upon propagation, but in a
periodic manner with a soliton period z0:

z0 =
π

2
LD =

πT2
0

2|β2|
≈

T2
FW HM

2|β2|
. (E.18)

Figure E.1 shows the temporal and spectral evolution of a soliton of order 3. At the start
of the propagation SPM dominates, broadening the spectrum. As the dispersion ‘catches
up’ the pulse is contracted in time (except for the wings of the pulse, where the intensity
is too low for SPM). Propagating further the soliton breaks up, then recombines to the
inital shape and one period of the process is completed. The first quarter of this process
can be used to compress ultrashort pulses in fibers, as in Chapters 6 and 7. Another
application is supercontinuum generation (used as a broadband source in Chapter 3): a
femtosecond pulse is launched into a highly nonlinear fiber with a peak power such that
N ¦ 10 and an extremely broad spectrum is generated (these solitons typically break up
due to third-order dispersion, neglected in the treatment above).
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(A) Evolution of the optical power of a soliton of
order 3.

(B) Evolution of the power spectral density of a
soliton of order 3.

FIGURE E.1: Temporal and spectral evolution of a third order soliton.
Taken from [6].

E.3 Quiver motion of a free electron in a laser field

Consider a free electron in an oscillating electric field, E(t) = Ex(t )̂x with:

Ex(t) = E cosωt. (E.19)

The equation of motion for the electron is then given by:

mẍ = −eE cosωt, (E.20)

where e is the charge of the electron. For an electron initially at rest, the solution is given
by:

ẋ = −
eE

meω2
sinωt (E.21)

x =
eE

meω
cosωt. (E.22)

The kinetic energy K of this quiver motion is given by:

K =
1
2

me < ẋ2 > (E.23)

=
e2E2

4meω2
. (E.24)

This kinetic energy is also called the ‘ponderomotive potential’ UP and is an important
figure of merit in e.g. high harmonic generation (Chapter 6):

UP =
e2E2

4meω2
(E.25)

=

�

e2

8π2ε0mec3

�

Iλ2, (E.26)

where I is the laser intensity and λ the laser wavelength.
In this derivation the effect of the magnetic field of the laser has been neglected. The

strength of the magnetic field is given by By = Ex/c. For the Lorentz force eve × By to
have an effect comparable to the force of the electric field eEx , the electron velocity ve
will need to approach c. Thus only when the quiver motion becomes relativistic does the
influence of the B-field become appreciable. This is the case when the ponderomotive
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potential becomes comparable to the electron rest mass energy, or the ratio a:

a =

√

√

√

Up

mec2
(E.27)

close to 1. For λ= 800 nm (the wavelength of the wide-spread Ti-Sapph technology) this
corresponds to an intensity of 9×1018 W/cm2. For λ= 3.1µm (used in this thesis work)
this corresponds to 6 × 1017 W/cm2. For the intensity regimes in this thesis (and most
cases of high harmonic generation) it is thus safe to neglect the influence of the B-field.

E.4 Strong-field physics: Keldysh parameter and ADK model

This appendix is concluded with some notions on strong-field physics. As mentioned
in chapter 6, when an atom is in a strong laser field, two ionization mechanisms are
identified: multiphoton ionization (MPI) and tunnel ionization1. In order to distinguish
between the two regimes, Keldysh introduced the adiabaticity parameter γ [7]:

γ=

√

√

√
Ip

2U p
=

2τT

τL
(E.28)

where Ip is the atoms ionization potential and Up is the ponderomotive potential intro-
duced in the previous section. It is the ratio between the tunneling time of the electron
and half a period of the laser, i.e. the time it takes the electron to tunnel divided by the
time it has to do so. γ� 1 is the regime for MPI, as the electron does not have time to
tunnel, whereas γ� 1 is the tunneling or quasi-static regime, where the tunneling time
τT is short compared to the laser period. Hence, at constant laser intensity, increasing
the wavelength decreases γ, thus favoring tunnel ionization.

Often one is interested in calculating the amount of ionization induced by a laser
pulse (for example in Chapters 6 and 7). The ionization rate can be calculated by the
Perelomov, Popov and Terent’ev (PPT) model [8, 9], for arbitrary values of γ. In the
tunnel ionization regime, this calculation reduces to the (simpler) ADK model [9, 10].
The ionization rate (ionization probability per unit time) wADK is given by:

wADK = |Cn∗ l∗ |
2 Glm Ip

�

2F0

F

�2n∗−|m|−1

e−
2F0
3F (E.29)

with

n∗ =
1

Æ

2Ip
(effective quantum number n) (E.30)

l∗ = n∗0 − 1 (effective quantum number l) (E.31)

|Cn∗ l∗ |
2 =

22n∗

(n∗ + l∗ + 1)! (n∗ − l∗)
(Hartree-Fock asymptotic parameter) (E.32)

Glm =
(2l + 1)(l + |m|)!
2|m||m|! (l − |m|)!

(E.33)

F0 = (2Ip)
3/2 (Coulomb field) (E.34)

1For very strong fields, the atomic potential barrier disappears completely and a third mechanism comes
into play, called Barrier Suppression.
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Gas F0 n∗ l∗ l m |Cn∗ l∗ |
2 Glm

Helium 2.42946 0.74387 -0.25613 0 0 4.25575 1
Neon 1.99547 0.7943 -0.2057 1 0 4.24355 3
Argon 1.24665 0.92915 -0.07085 1 0 4.11564 3
Krypton 1.04375 0.98583 -0.01417 1 0 4.02548 3
Xenon 0.84187 1.05906 0.05906 1 0 3.88241 3

TABLE E.2: Values of the ADK coefficients for noble gases. Values taken
from [9].
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FIGURE E.2: On axis ionization fraction η calculated using the ADK model.

Here n, l, m are the principal, azimuthal and magnetic quantum number of the atom and
Ip, F are the ionization potential and the instantaneous electric field strength, respectively.
Atomic units are used, so:

Ip =
Ip [eV]

2× 13.6
(E.35)

F =
E [V/m]

5.14× 1011
(E.36)

and wADK gives the ionization probability per atomic unit of time, i.e. 24.2 as. Although
typically γ� 1 is stated as criterium for the validity of the ADK model, [11] shows that
the model is reasonably accurate up to γ ≈ 0.5. Table E.2 shows values of the ADK
coefficients for noble gases. For fields that are small compared to the Coulomb field, i.e.
F � F0, the contribution of levels with nonzero m can be neglected, so only values for
m= 0 are given.

Figure E.2 shows the on axis degree of ionization η for a 95 fs pulse at 3.1 µm wave-
length and a peak intensity of 2×1014 W/cm2 in helium, as calculated to produce figure
6.5. With these parameters, γ= 0.26. Note that at a wavelength of 800 nm for the same
peak intensity γ= 1.0, so use of the ADK model would be invalid.
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Titre : Imagerie par diffraction cohérente des rayons X en large bande spectrale et développements 

vers une source harmonique au keV pompée par laser moyen-infrarouge à haut taux de répétition. 

Mots clés : génération d’harmoniques d’ordre élevé, rayons X, imagerie par diffraction cohérente, 

large bande spectrale, force ponderomotrice 

Résumé : Des sources laser novatrices basées 

sur la génération d’harmoniques d’ordre élevé 

permettent de sonder la matière aux échelles de 

temps propres aux dynamiques électroniques. 

Basées sur l’émission d’impulsions attosecondes 

de rayonnement XUV et X cohérent, ces sources 

offriront la possibilité de combiner une 

résolution spatiale au nanomètre avec une 

résolution temporelle à l’attoseconde. Or, deux 

défis restent à relever, qui sont chacun adressés 

dans ce travail de thèse. Premièrement, le 

rayonnement de ces sources doit être étendu vers 

les rayons X durs tout en augmentent leur 

brillance. À cet effet des expériences de 

génération d’harmoniques ont été réalisées sur 

un laser OPCPA à une longueur d’onde de 3.1 

μm et un taux de répétition de 160 kHz. Plusieurs 

configurations ont été explorées, dont une 

particulièrement novatrice regroupant la 

compression solitonique et la génération 

d’harmoniques dans une même fibre. Les 

premiers résultats sont présentés. 

Deuxièmement, les techniques d’imagerie 

doivent être adaptées à l’importante largeur 

spectrale intrinsèque à ces impulsions 

attosecondes. Une solution innovante en 

imagerie sans lentille est présentée sous la forme 

d’une monochromatisation numérique des 

figures de diffraction large bande. Cette étape 

dépend uniquement du spectre et de la 

supposition d’un échantillon spatialement non-

dispersif. Combinant simulations et expériences, 

dans les domaines du visible et des rayons X 

durs, la méthode est validée pour des largeurs 

spectrales supérieures à 10 %, compatible avec 

l’imagerie nanométrique et attoseconde sur les 

futures sources harmoniques laser. 

 

 

Title : Broadband Coherent X-ray Diffractive Imaging and Developments towards a High Repetition 

Rate mid-IR driven keV High Harmonic Source 

Keywords : high harmonic generation, X-rays, coherent diffractive imaging, broadband, 

ponderomotive scaling 

Abstract : Novel laser sources based on high 

order harmonic generation allow measuring 

dynamics in matter on the natural time scale of 

electrons. Based on the emission of attosecond 

pulses of coherent XUV and X-ray radiation, 

these sources should in principle lead to 

attosecond temporal resolution combined with 

nanometer spatial resolution. However, two 

challenges are yet to be met, both of which are 

addressed in this thesis. Firstly, the sources need 

to be extended to the (hard) X-ray regime, while 

simultaneously increasing their brightness. To 

this end, high harmonic generation was 

attempted with an OPCPA driver laser at 3.1 μm 

wavelength and 160 kHz repetition rate. Several 

combines soliton compression and high 

harmonic generation in a single fiber. First 

results are presented. Secondly, imaging 

techniques need to be adapted to the large 

spectral bandwidth inherent to these attosecond 

pulses. A novel solution is presented in lensless 

imaging in the form of a numerical 

monochromatization of the broadband 

diffraction patterns. This step depends solely on 

the spectrum and on the assumption of a 

spatially non-dispersive sample. Through 

simulations and experiments, both using visible 

and hard X-ray radiation, the method is shown 

to work with bandwidths well over 10 %, 

compatible with attosecond nanometric imaging 

on high harmonic sources.  
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