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Introduction

This thesis presents advances in the field Josephson photonics. It focuses on two questions:

• How can non-classical photon sources be built and how non-classical can they be?

• Can useful amplification be achieved and what are its limits?

Both are continuations of previous works done by, respectively, A. Grimm [Grimm15 ] and S. Jebari
[Jebari17 ].

The field of Josephson photonics is about the interplay between Coulomb blockade (CB) and circuit
Quantum Electrodynamic (cQED). The first one emerged in the sixties and studies Coulomb interaction
effects in tunnelling. The second one emerged in 2004 [Blais04 ] thanks to the advances in nano-fabrication
and cryogenic microwave technology. It studies interaction between microwave fields and non-linear
circuits forming two-level systems – often called artificial atoms – interacting in the same way as photons
and atoms in cavity quantum optics.

Scientific context

The field of cQED has recently made tremendous progress to the point where it is now arguably the
most advanced platform for quantum computing [Devoret04 ; Blais07 ; Clarke08 ]. Compared to the QED
regime of quantum optics, cQED uses superconducting microwave resonators to replace optical cavities
and Josephson junctions to replace atoms. These artificial atoms have much stronger electric dipole
moments than real atoms and come with wires attached, allowing for the incredible design flexibility.

However, if we consider that cQED is one domain of quantum optics brought to the microwave regime,
what about the regime of itinerant photons, which comes first to mind when thinking about quantum
optics? It concerns photons in the form of wave packets propagating rather than photons confined in
cavities. This regime of itinerant photons is so far much less developed in quantum microwaves. Usually
cQED is used to reach this regime by coupling the cavity to a transmission line so that the cavity quantum
state leaks out [Houck07 ; Bozyigit11 ; Eichler11 ]. In order to detect quantum states, this process can
also be reversed and used to catch itinerant states [Yin13 ]. However, this cQED approach has some
limitations.

Bandwidth is limited: In order for cQED to work, the coupling between the artificial atom and
the cavity must be much stronger than the coupling to the transmission line, this is the so-called
strong-coupling regime [Wallraff04 ; Blais04 ]. This limits the achievable bandwidth of cQED
devices working with itinerant photons to be much lower than the non-linearity of the artificial
atoms. This is a severe technical limitation for some applications, but also prevents cQED from
addressing one fundamental aspect of quantum mechanics: Non-locality [Aspect82b; Aspect82a].
The bandwidths of cQED imply photon wave-packets have sizes of the order of 10 m or more,
whereas the experimental space at the low temperatures is limited to few 10 cm. All cQED
experiments so far are therefore local.
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Frequency range is limited: The cQED approach is limited by the plasma frequency of the Joseph-
son junction. This frequency typically cannot be pushed significantly beyond 1/3 of the supercon-
ducting gap.

Accurately shaped control signals are required: The cQED approach relies on unitary opera-
tions on the artificial atom using accurately calibrated microwave pulses. These pulses require
significant hardware overhead and make the design of complex circuits a very challenging task.

Catching an itinerant photon in a cavity is difficult: When a quantum state is generated using
cQED, the leaky cavity generates an exponentially decaying envelope. Catching an itinerant
photon is the time-reversed process and therefore requires a time-reversed envelope, i.e. it must
be exponentially growing [Cirac97 ]. Therefore, with fixed coupling between the cavity and a
transmission line a photon released from one cavity cannot be caught completely in another one,
the coupling between the incoming photon and an artificial atom is therefore weaker than for
emission, because at no point in time the photon is fully confined in the cavity.

The goal of this thesis is to explore what the field of Josephson photonics has to offer in order to
overcome these limitations, both for the generation of quantum states and for amplification. In particular,
we explore if broadband non-classical microwave states can be generated from a simple DC bias, in
particular a bright single photon source, and if a DC powered amplifier can operate at the quantum limit.

Single Photon Source

While microwave generators are good coherent sources, non-classical ones are useful for long distance
transfer of quantum information in cQED. Consequently, development of single photon sources is an active
field both in cQED [Houck07 ; Hoi13 ; Pechal14 ; Sathyamoorthy16 ] and in Josephson photonics [Souquet14 ;
Dambach15 ; Leppäkangas15 ]. However, these are theoretical proposals. Experimental implementations
started with the implementation of [Leppäkangas15 ] presented in this work and [Dambach15 ] in parallel
at CEA Saclay [Rolland16 ; Rolland18 ].

Moreover, such non-classical photons are a candidate to implement quantum cryptographic protocols
[Ekert91 ; Bennett14 ] or quantum computers [Knill01 ]. So far the second one has not been deeply explored,
but the first ones are already implemented in optics and deployed by companies.

Quantum-limited amplifier

Quantum mechanics predicts a fundamental limit on amplifier performance [Heffner62 ; Caves82 ] through
an Heisenberg-like uncertainty principle: a signal can be amplified or be faithfully transmitted without
additional noises, but not both; a fine-tuning of the noise then requires a well-defined complementary
mode called idler. Moreover, Superconductor Insulator Superconductor (SIS) structures had been proposed
to reach this limit already early on [Lee82 ].

However, many of amplifiers based on a Josephson junction are limited – see above – by the usage of
a Radio Frequency (RF) pump [CastellanosBeltran09 ; Astafiev10 ; Bergeal10a; Bergeal10b; Macklin15 ].
When not, they use a resistive shunt that gives an undefined idler mode [Ribeill11 ; Hover12 ] and are far
from the quantum limit. See [Jebari17 ] for a short review of the different working principles (figure 1).

Figure 1: S. Jebari’s review of am-
plifier working principles (image from
[Jebari17 ]). Panel a: IV characteris-
tic of an unshunted Josephson junc-
tion. Panel b & c: IV characteristic
of a shunted Josephson junction. The
different working points are shown on
the different IV characteristics.
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From Coulomb blockade to dynamic Coulomb blockade

When a small conducting island exists between two electrodes, electrons can flow between the two
electrodes by tunnelling successively from the first electrode to the island and from the island to the
second electrode. However, Coulomb repulsion between electrons can forbid an electron to tunnel. This
phenomenon is called Coulomb blockade and takes place when the charging energy e2/2C is larger than
the particle energy eVb and thermal energy kBT , where C is the capacity of the island and Vb the bias
between the island and the electrode.

As capacitance has to be small, in order to reach this limit C. A. Neugebauer and M. B. Webb did
the first observation in granular ultra-thin films [Neugebauer62 ]. Then it was observed in junctions with
superconducting particles in oxide barrier [Zeller69 ]. When fabrication methods had been advanced
enough, islands were designed at will [Fulton87 ], together with theoretical background [Likharev88 ], more
devices were developed and used to tune electron tunnelling and study it [Pothier91 ].

Coulomb blockade also plays a role when there is no island but a single junction. In that case, explored
in late eighties [Delsing89 ; Geerligs89 ] and known as dynamic Coulomb blockade, inelastic tunnelling
happens only when the energy of a particle can be dissipated in the electromagnetic environment. Let’s
consider the case where the electromagnetic environment consists of a single mode at ω0. In that case
eVb ≥ ℏω0 is required for inelastic tunnelling. As a consequence conduction channels due to inelastic
tunnelling are closed when the bias is decreased below ℏω0/e, and a dip is observed in the differential
conductance (figure 2).

Figure 2: Differential conductance as a function of the voltage bias for a normal
junction (image from [Holst94 ]). A dip at zero bias is visible (see text).

T. Holst et al. observed the case of a Josephson junction with an electromagnetic environment reduced,
on purpose, to a single mode resonator [Holst94 ]. Now the particles are Cooper pairs and are condensed.
Each tunnelling Cooper pair has an energy 2eVb to dissipate, which can happen only when 2eVb = ℏω0.
Then, they observed peaks in the current – see figure 3 – instead of the differential conductance dip.
Moreover, the P-theory developed meanwhile [Averin90 ; Girvin90 ; Ingold91 ; Ingold92 ] gives tools
to quantitatively explain the results. Note also that early theoretical works [Averin85 ; Likharev85 ;
Likharev88 ] predicted charge and discharge oscillations – called Bloch oscillations – of the junction
capacitance, that is similar to dynamic Coulomb blockade.

Josephson photonics

Thanks to new microwave techniques, experiments focusing on the microwaves radiated by such inelastic
tunnelling processes [Basset10 ; Hofheinz11 ; Pashkin11 ] can now be conducted. Those experiments
measure the current as [Holst94 ] (see also figure 3) but also wire the device to measure the emitted
microwave signal1. The results (see figure 4) show a correlation between the Cooper pair current flowing
through such a device and the microwave photons radiated at ω0. This correlation is consistent with the
interpretation of Cooper pairs tunnelling by giving their energy to the electromagnetic environment in the
form of photons.

These experiments focussed on the creation of photons from a DC-biased Josephson junction. Then
other studies, theoretical [Armour13 ; Gramich13 ; Armour15 ] and experimental [Altimiras14 ; Houle17 ],
were conducted to study more complex electromagnetic environments (like two resonators or strong

1Coaxial cables and fast acquisition board for example.
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Figure 3: T. Holst’s experiment
in 1994 (images from [Holst94 ]).
Right scheme shows the device made
of stepped quarter-wave TLs forming
a resonator with a low quality fac-
tor and a Josephson junction biased
by a DC voltage source. Left fig-
ure shows the current through the
device as a function of the applied
voltage. Inset the usual IV charac-
teristics of a Josephson junction (N
indicates normal state, S supercon-
ducting one). Main zoom below the
gap in superconducting state. In addi-
tion to the super-current at zero bias
there is also a finite Cooper pair cur-
rent at (2n + 1) ℏω0/2e correspond-
ing to a tunnelling Cooper pair giv-
ing its energy as form of a photon at
(2n + 1) ω0, the different modes of the
resonator.

Figure 4: M. Hofheinz’ experi-
ment in 2011 (images [Hofheinz11 ])
bottom scheme shows how the pre-
vious experiment is updated with a
bias-tee to spit DC & RF components,
both are then measured. Top left
figure shows how the Cooper pair
current (in red) and the photon rate
(in blue) are effectively correlated in
agreement with the explanation that
a tunnelling Cooper pair gives its en-
ergy to a photon. Top right figure
shows other process where more than
one photon is created.

coupling) or out-of-equilibrium system (strong critical current). In particular, the photonic aspect has then
been addressed in terms of input photons using Input Output Theory (IOT) [Leppäkangas14b; Mora17 ;
Leppäkangas18 ]. These proposals have shown that Josephson photonics is a fertile place to implement and
study any kind of photonic devices in the microwave domain: Sources, amplifiers, converters, detectors.

This thesis presents results about such a non-classical source & a parametric amplifier.

Thesis goals – Josephson photonics: Microwave generation &
amplification in the quantum regime

Non-classical radiation

As explained previously, a DC-biased Josephson junction coupled to a microwave resonator produces
microwave photons: To tunnel through a Josephson junction biased at Vb, a Cooper pair has to give its
energy 2eVb to the resonator in the form of n photons of energy ℏω0; so the tunnelling is only possible if
2eVb = nℏω0. It results in a Cooper pair current, and microwave radiation.

If the tunnelling events of Cooper pairs are independent, i.e. there are no memory effects at low
frequencies, and higher order processes are negligible, which is the case when Z0 ≪ RQ/π where Z0 is

4



the resonator characteristic impedance and RQ ≡ h/4e2 ≃ 6.453 kΩ is the quantum of resistance2,
statistics of emitted photons will also be independent: The device forms a coherent source of photons
[Hofheinz11 ; Grimm15 ] – like a laser [Cassidy17 ].

In this work, we study what happens when the first condition is broken at will by adding an RC circuit
in series with the resonator. It introduces a memory effect for Cooper pairs: A Cooper pair will charge
the capacitor which influence further tunnelling for a time ≃ RC until the capacitor relaxes via the
resistor. The influence is easy to understand from an energetic point of view:

• When the capacitor is empty, a tunnelling Cooper pair has to charge the capacitor with the energy
(2e)2

/2C, and eventually creates n photons of (total) energy nℏω0. Consequently, for such a process
the bias has to be 2eVb = (2e)2

/2C + nℏω0

• When the capacitor is already charged with one Cooper pair, a second tunnelling Cooper pair has
to charge the capacitor with the energy (2 · e)2

/2C − (2e)2
/2C = 3 (2e)2

/2C, and eventually
creates m photons of (total) energy mℏω0. Consequently, for such a process the bias has to be
2eVb = 3 · (2e)2

/2C + mℏω0

If the bias voltage is chosen to create one photon at the first tunnelling event, then depending on C , either
the second event is impossible energetically or m = 0, see also figure IV.9. In any case no photon can
be emitted. Finally, if the resonator relaxes faster than the capacitor, i.e. Q/ω0 ≪ RC where Q is the
resonator quality factor, only one photon is created and goes out of the resonator before the capacitor
relaxes and allows further tunnelling and creation of a new photon. Photons are emitted one by one. The
device therefore acts as a single photon source.

Cooper pair 0

Cooper pair +hνJ

Photon hν

Cooper pair 0

Cooper pair +hνJ

Photon hν

EC

Cooper pair 0

Cooper pair +hνJ

3EC

Figure 5: Blocking mechanism.
Left diagram: Initial situation. Tun-
nelling happens when the Cooper pair
energy hνJ and photon energy hν are
equal. Then each tunnelling Cooper
pair gives a photon. Centre dia-
gram: Same process in presence of
a high impedance RC circuit where
a charging energy EC is required for
a Cooper pair to tunnel and charge
the capacitor, while dissipating the
remaining energy as a photon. Right
diagram: When the capacitor is al-
ready charged, the charging energy to
pay is now 3EC , consequently ener-
gies are not balanced any more block-
ing further tunnelling.

The photon statistics of a source are characterised by the second-order correlation function g(2)

[Glauber63 ] defined as:

g(2) ≡
〈
a†a†aa

〉
⟨a†a⟩2

(1)

This quantity can discriminate classical from quantum statistics:

• For a coherent field |α⟩, it is α4/
(
α2)2 = 1;

• For a Fock state |n⟩, g(2) = n (n − 1) /n2 = 1− 1/n;

• For a thermal state ∝
∑
n

e−nℏβω0 |n⟩ ⟨n| at temperature β, g(2) = 2

The value g(2) = 1 is the boundary between classical and quantum states. The optical Hanbury
Brown-Twiss experiment is the most intuitive to understand g(2): The field is split in two with a beam
splitter, then the field is measured on each path. It gives the probability to measure a photon on a path –

2This condition is discussed in chapter V.
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labelled D1 – knowing a photon is also measured on the other path – labelled D2 – p (D1|D2) using Single
Photon Detector (SPD) and coincidence circuits (see figure 6). Then this probability is compared to the
bare probability to measure a photon on the path D1, p (D1): This ratio is g(2). The boundary g(2) = 1
means these two probabilities are equals p (D1|D2) = p (D1), which is the definition of two independent
events. However, in the microwave domain SPD do not yet exist and, therefore, our measurement is rather
based on the measurement of field amplitudes proportional to the field operator a† & a in equation 1 as
proposed by M. Da Silva [daSilva10 ].

Figure 6: Photon correlation mea-
surement using Hanbury Brown-
Twiss setup (image [Glauber06 ]).
Left scheme is used in astronomy, the
radiation coming from a celestial ob-
ject is detected at two different points
and coincidences are then computed.
Right scheme is used in optics, a
light source is split in two and SPD
are used on each path to measure co-
incidences (see text).

In the thesis, experimental results of such a source are reported. Results are also compared to previous
theoretical work by J. Leppäkangas [Leppäkangas15 ]. Moreover, theoretical background using P-theory is
derived and used to develop an analytic method to extract quantitative insights from experimental data.
An alternative method for obtaining single photons based on Franck-Condon blockade by using a high
impedance resonator has been explored in parallel [Souquet14 ; Dambach15 ; Rolland18 ].

Quantum-limited amplification

Amplification based on Josephson photonics can be achieved by increasing the bias of the Josephson
junction from 2eVb = ℏω0 to 2eVb = ℏω0 + ℏω1 where ω1 is a second resonator frequency3. In that
case, a Cooper pair tunnelling through the Josephson junction has to create a photon in each resonator.

An ad hoc Hamiltonian is e−iωJ ta†0a†1 + h.c. where ℏωJ ≡ 2eVb, this is a parametric interaction
where a pump oscillating at frequency ωJ excites two modes a lower frequencies ω0/1. Early derivations
[Mollow67a; Mollow67b] show that it gives rise to amplification. Such a device is then a parametric
amplifier.

A more intuitive way to picture this amplifier is to consider this process where a Cooper pair gives rise
to photons as a radiative transition. An input field will then accelerate this process through stimulated
emission: A incoming photon at a frequency involved in the radiative transition will transmit, if possible,
its properties to the photon created by the radiative transition, see figure 7. It is a coherent amplification
of the input field.

Cooper pair 0

Cooper pair +hνJ

Photon hν

Cooper pair 0

Cooper pair +hνJ

Photon hν0

Photon hν1

Cooper pair 0

Cooper pair +hνJ

Photon hν1

Figure 7: Amplification process.
Left diagram: The initial situation
(see above). Centre diagram: Situa-
tion where a Cooper pair tunnels and
create two photons, one at ν0 and one
at ν1, this process is visible on figure 4
at 50 µV. Right diagram: Same pro-
cess with an additional input photon
at ν0, resulting in stimulated emission
and amplification.

In this thesis, theoretical characteristics of the parametric amplification for Josephson photonic devices
are derived. Connexion between P-theory and IOT are made and properties are derived:

3It includes the degenerate case ω0 ≃ ω1 where there is a single physical resonator.

6



Input added noise: Parametric amplification is a mechanism where the quantum limit derived by
C. Caves [Caves82 ] can be reached. However, in the case of Josephson photonics phase noise of the
pump must be considered.

Gain-bandwidth product: How high gain reduces the effective bandwidth, i.e. over which range of
frequencies the amplifier can be operated;

Compression point: The maximum power that can be amplified with this mechanism.

Experimental results of such a device are shown and compared to theoretical results. Finally, a future
design overcoming some defects is proposed.

Outline

Chapter I: Inelastic Cooper Pair Tunnelling

The first chapter introduces two complementary theories of Inelastic Cooper Pair Tunnelling (ICPT)
which aim to describe how Cooper pairs can tunnel though the Josephson junction depending on the
surrounding electromagnetic environment:

• The so-called P-theory [Ingold91 ; Nazarov13 ], which can be seen as a generalisation of the Fermi
golden rule;

• The IOT which gives more information about how energies can be dissipated though the environment.

The chapter also gives limitations of both theories.
We then derive the Power Spectral Density (PSD) and parametric amplification [Clerk10 ] (described

by gain and noise [Caves82 ]) generated by ICPT. Each of them is first introduced with simple classical
pictures before using quantum models.

The chapter ends with a memento on the Caldeira-Leggett [Caldeira83 ] model which is a powerful
tool to deal with arbitrary complex electromagnetic environments. Moreover, it also describes how we
can determine some properties – described by its P-function – of a complex environment made of many
well-know simple environments.

Chapter II: Experimental setup

The second chapter describes all different experimental setups used to characterise our devices. 4 K
techniques for device screening, He dilution fridge, its electronics, as well as computing code developed to
perform and analyse measurements.

4 K is an easily reachable temperature using liquid He, and is low enough to roughly characterise
material properties of our samples and properties of our structures: Josephson junctions & resonators.
When it is characterised and if it is compliant with our design, the device is cooled to 12 mK with our He
dilution fridge.

The main measurement system of the 12 mK platform is a high speed digitiser (AlazarTech ATS9373)
used to exact correlation properties of the field coming from the sample [daSilva10 ]. This chapter gives
theoretical and technical details about the scheme of this setup.

Finally, the chapter describes how measurements are performed and analysed. A flexible framework
has been developed in python:

• A data structure compatible with all our measurement, and future measurements;

• A control structure – and associated driver objects – to describe how a measurement should be
performed;

• A Graphical User Interface (GUI) to visualise our data using various filters.

7



Chapter III: Sample design and fabrication

The third chapter is succinct and describes how our samples are fabricated. A first section describes how
the NbN/MgO/NbN trilayer is sputtered and etched to form Josephson junctions, transmission lines and
other structures. A section is dedicated to building blocks of our designs and the limits they impose on
the electromagnetic environment we can synthesise.

Chapter IV: Non-classical radiation

The fourth chapter is focused on the building of a source of anti-bunched photons using ICPT. A first
section describes how the sample is designed to engineer the ICPT process to build a photon source
operating in the quantum regime (figure IV.9). Then PSD is measured and the P-theory is used to
characterise the sample:

• The critical current;

• The thermodynamic temperature;

• The impedance seen by the Josephson junction.

Finally, two operating modes are explored, free-running and on-demand. The first one corresponds to
the operating mode for which the sample was designed. The second one exploits an unexpected behaviour:
A high critical current allows to escape from ICPT regime to reach a dark regime where the sample
essentially behaves as a resistor. The chapter describes this second regime and how it can be used to
generate photons on-demand. In both cases, PSD and g(2) are measured to characterise the sample.

Chapter V: Quantum-limited amplification

The fifth chapter is focused on quantum-limited amplification based on ICPT. A first section describes how
the ICPT process can be engineered to allow for amplification (figure 7). Some drawbacks and solutions
are identified.

Finally, theoretical derivations of characteristics of such amplifiers, as bandwidth and compression
point, are derived and compared to experimental results from one of the designs. To characterise our
amplifiers, both gain and PSD are measured and used to also extract quantum limit and input added
noise, which is a measure of how close the amplifier operates to the quantum limit ([Caves82 ]). Our
results indicate that ICPT can lead to near quantum-limited amplification when voltage noise is mastered.
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Chapter I
Inelastic Cooper Pair Tunnelling

French resume

Ce chapitre introduit deux théories complémentaires décrivant l’ICPT, c’est à dire la façon dont les
paires de Cooper traversent par effet tunnel une jonction Josephson en fonction de l’environnement
électromagnétique l’entourant :

• La théorie P[Ingold91 ; Nazarov13 ] qui est une généralisation de la règle d’or de Fermi;

• L’IOT qui apporte plus d’information sur la manière dont l’énergie est dissipée dans l’environnement.

Ces deux théories ont aussi des limitations que nous verrons.
Ensuite notre attention se portera sur la PSD et l’amplification paramétrique [Clerk10 ] (à travers

l’expression du gain et du bruit [Caves82 ]) dans le cas de l’ICPT. Une approche classique sera présentée
avant l’utilisation du modèle quantique.

Un mémento sur le modèle Caldeira-Leggett [Caldeira83 ] est inclus en fin de chapitre, c’est un outil
puissant qui permet de traiter des environnement électromagnétique arbitrairement complexe. De plus, il
permet d’étudier certaines propriétés – sous la forme de la fonction P – d’un environnement complexe fait
d’un ensemble d’environnements simples et bien connus.
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In this chapter, a generic model of ICPT is introduced, it will be useful to afterwards describe our
experiments. This model encompasses two parts:

• A Josephson junction through which a Cooper pair current flows;

• A linear dissipative environment that can absorb or emit some energy.

This dissipative environment can itself be described by some resonators coupled to a Transmission Line
(TL) through which outgoing and incoming energies flow.

Note here that this model is an application of many theoretical works developed previously [Ingold92 ;
Nazarov13 ] and is pictured as simple as possible1. As a consequence, advanced models of dissipative
systems are not discussed2 [König95 ; Weiss12 ].

1 Current trough Josephson junctions

1.a Classical description by noise sources

First of all, a fully classical physics can be derived. While it does not capture all features of the full
quantum description it provides some quantitative insights. There are three elements involved in all our
samples (figure I.1 left panel ) that can be described classically (figure I.1 right panel):

A non-zero voltage DC bias Described by a voltage source usource (constant);

A dissipative electromagnetic environment Described by a linear impedance Zω in series with
a noise voltage source uN (Johnson-Nyquist noise);

A Josephson junction Described by a junction linear admittance Yω,J in parallel with a current
source iω. Its critical current is Ic.

The indices t, ν, ω denote, respectively, time, ordinary frequency and angular frequency quantities; the
two last one are Fourier transforms of the first one.

Figure I.1: General description of
our samples and classical model.
Left panel: General desciption of our
samples, a Josephson junction (blue)
in series with an arbitrary electromag-
netic environment (orange), bias by
a DC voltage source (green). Right
panel: The corresponding classical
electrical model, the Josephson junc-
tion is a current source iω in parallel
with a linear admittance Yω,J (blue).
The electromagnetic environment is
described by a linear impedance Zω

in series with a noise voltage source
uN (orange).

Current harmonics generation

First, let’s neglect the noise source uN and assume a low junction admittance (Yω,JZω ≪ 1). The AC
Josephson effect [Josephson62 ; Tinkham04 ], with −ϕ0 ≡ ℏ/2e the reduced magnetic flux quantum, gives

1Only a simple system & bath model at thermal equilibrium is used.
2A more complete approach is to use a path integral formalism.
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I.1. Current trough Josephson junctions

(together with Kirchhoff’s laws):

it (t) = Ic sin


1
−ϕ0

t∫
−∞

usource −
1
−ϕ0

t∫
−∞

Zt ∗ it

︸ ︷︷ ︸
δϕ

 (I.1)

As usource is constant,
t∫
−∞

usource can be rewritten as −ϕ0ωJ t + α where ωJ ≡ usource/2e is the Joseph-

son frequency and α an arbitrary phase offset3. We perform Taylor expansion up to first-order in

|δϕ| =

∣∣∣∣∣ t∫
−∞

Zt ∗ it

∣∣∣∣∣ ≪ 2π −ϕ0. As this condition cannot be fulfilled for a DC current, those components

are treated apart. The nth-order (in sense of iteration with equation I.1) current is i(n)
t (t) + i(n)

0 where
i(n)
0 is its DC component.

i(0)
t (t) = Ic sin (ωJ t + α)

i(0)
t (t) + i(1)

t (t) + i(1)
0 = Ic sin (ωJ t + α)

− Ic
−ϕ0

cos (ωJ t + α)
t∫
−∞

Zt ∗ i(0)
t

. . .

N+1∑
n

i(n)
t (t) + i(n)

0 = Ic sin
(
ωJ

(n)t + α
)

− Ic
−ϕ0

cos
(
ωJ

(n)t + α
) t∫
−∞

Zt ∗
N∑
n

i(n)
t

(I.2)

Where ωJ
(n) ≡ ωJ − Zω(0)

−ϕ0

N∑
n

i(n)
0 . Combining the two first equations:

i(1)
t (t) + i(1)

0 = − Ic
2
−ϕ0

t∫
−∞

dτ
∫
R

dτ ′Zt (τ ′) sin (ωJ (τ − τ ′) + α) cos (ωJ t + α)

= Ic
2
−ϕ0

Im
[

Zω (ωJ )
t∫
−∞

e−iωJ τ−iα cos (ωJ t + α) dτ

]
i(1)
t (t) + i(1)

0 = Ic
2
−ϕ0

1
2ωJ

Re
[
Zω (ωJ ) e−i2ωJ t−i2α

]
+ Ic

2
−ϕ0

1
2ωJ

Re [Zω (ωJ )]

(I.3)

Before pushing this expansion further, note that this equation already highlights the non-linear effect of
the Josephson junction: There is a generation of a DC signal and a second harmonic from a ωJ -oscillating
superconducting phase.

3If a time at which the uN is settled is introduced, uN becomes proportional to an Heaviside distribution and α is the
summation of vacuum quantum fluctuations before this time, and consequently is fully arbitrary.
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I. Inelastic Cooper Pair Tunnelling

Now, using the third equation, i(n+1)
t is expressed similarly using i(n)

t and adding the hypothesis
Zω (0) iω (0) ≪ −ϕ0ωJ :

i(n+1)
t (t) + i(n+1)

0 = − Ic
−ϕ0

t∫
−∞

dτ
∫
R

dτ ′Zt (τ − τ ′) i(n)
t (τ ′) cos (ωJ t + α)

= − Ic
−ϕ0

1
2π

∫
R

dω Zω (ω) i(n)
ω (ω)

t∫
−∞

dτ e−iωτ cos (ωJ t + α)

i(n+1)
t (t) + i(n+1)

0 = Ic
−ϕ0

1
2π

∫
R

dω
2ω Im

[
Zω (ω) i(n)

ω (ω) e−i(ω−ωJ )t+iα
]

+ Im
[
Zω (ω) i(n)

ω (ω) e−i(ω+ωJ )t−iα
]

(I.4)

The interpretation of this relation is straightforward: A first current oscillating at Josephson frequency
ωJ generates a DC current and a current at frequency 2ωJ , each of them generates two currents, one
at a frequency increased by ωJ and one at a frequency decreased by ωJ , and so on. Figure I.2 shows a
diagrammatic picture of those successive current generations.

i (0) i (1) i (2) i (3)

Current order

DC

ωJ

2ωJ

3ωJ

4ωJ

5ωJ

S
p

ec
tr

u
m
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m

p
on

en
ts

a −ω′

+ω′

−ω′
+ω′

−ωJ

+ωJ

+2ω′

0th Taylor

1th Taylor

2th Taylor

Interfering 2th Taylor

i (0) i (1)

b −ω′

−ω′

|Z |

Figure I.2: Diagrammatic representation of current harmonics each line is a component of the spectrum as a
function of the frequency in ordinate, the abscissa corresponds to successive iterations obtained with equation I.1. The
full current is the sum of all currents

∑
n

i(n)
ω . Panel a, solid blue lines and black arrows correspond to the single photon

generation according to equation I.4, in particular i(0)
ω oscillates at ωJ (most left solid blue line) and generates (downwards

black arrow) a DC current (bottom left solid blue line). Dotted lines correspond to higher (Taylor) orders of
∑
n

i(n)
ω with a

noise source at ωJ /2 and explain multi-photon generation according to equation I.5. In particular, with this noise, first
order Taylor expansion of i(0)

ω oscillates at ωJ − ωJ /2 = ωJ /2 (bottom left dotted orange line) and i(1)
ω includes a term

resulting from interference between i(0)
ω and the noise at ωJ /2, at second order Taylor expansion it gives a DC component:

[ωJ /2]noise + [ωJ /2]
i(0)
ω

− [ωJ ]source = 0. Panel b, shows which processes are preserved for a particular shape of Z where

impedance is high at frequency ωJ /2. In equation I.5, i(0)
ω is non-negligible in i(1)

ω only at frequencies where Z is high.

From an energetic point of view, at first order there are two components:

A flow of Cooper pairs: This flow gives rise to a DC current i(1)
0 and is generated by a potential

≈ −ϕ0ωJ . The instantaneous power is then Ic
2

2 Re [Zω (ωJ )];

Energy dissipated by the electromagnetic environment: At first order, it results from the cur-
rent i(0)

t oscillating at frequency ωJ , the resulting instantaneous power has two terms, a constant
one Ic

2

2 Re [Zω (ωJ )] and an oscillating one − Ic
2

2 |Zω (ωJ )| cos (2ωJ t + 2α−Arg [Zω (ωJ)]).

Finally these balanced powers can be interpreted as particles from a flow of Cooper pairs giving their
energies to an oscillating field at ωJ , i.e. photons. Moreover, as the energy of Cooper pairs tunnelling
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I.1. Current trough Josephson junctions

through a Josephson junction biased at −ϕ0ωJ is ℏωJ and the energy of photons at ωJ is also ℏωJ , this
process can be seen as each Cooper pair producing one photon4. Note that as there are also fields
oscillating at higher harmonics (see figure I.2) there are also processes where n Cooper pairs give one
photon at frequency nωJ , but there are no processes where one Cooper pair gives several photons.

Multi-photon generation

Now, the noise source uN is added back in. To highlight its influence, let’s consider the simple case where
uN ≡ u0 eiω′t + h.c.. The Kirchhoff’s laws with this added source imply:

it (t) = Ic sin

ωJ t + α− 1
−ϕ0

 t∫
−∞

Zt ∗ it −
1
ω′

[
iu0 eiω′t + h.c.

]
︸ ︷︷ ︸

δϕ

 (I.5)

Using complex notation, the Taylor expansion can be rewritten as:

it (t) = Ic

2

[
− eiωJ t+iα

∑
n

(−i)n

n!

(
δϕ
−ϕ0

)n
+ h.c.

]
(I.6)

In the expression of i(0)
t (t), δϕ has only one component at frequency ω′ of amplitude ∝ u0.

The (n − 1)th order – n will be the number of photons involved – of the Taylor expansion in δϕ gives
rise to oscillating fields5 at frequencies ωJ ± (n − 1) ω′. Their complex amplitudes are respectively
∝ un−1

0 / (n − 1)! and ∝ u∗,n−1
0 / (n − 1)!.

If one of them oscillates at ω′, i.e. ωJ = nω′6, in the expression of i(1)
t (t) + i(1)

0 , the component at
frequency ω′ of δϕ is a sum of two amplitudes ∝ u0 and ∝ u∗,n−1

0 / (n − 1)!. And so the nth order of
the Taylor expansion results now in a DC component ∝

∣∣un−1
0 / (n − 1)!

∣∣2.
For n = 1 the previous analysis is recovered: A process where one Cooper pair gives its energy to

one photon. When ωJ = nω′, as before there is an equality between DC and RF powers:

A flow of Cooper pairs: This flow has an intensity i(1)
0 ∝

∣∣∣ un−1
0

(n−1)!

∣∣∣2 and is generated by a potential
≈ −ϕ0ωJ , each Cooper pair energy is hωJ ;

Energy dissipated by the electromagnetic environment: It results from the current
i(0)
t (t) ∝ u∗,n−1

0
(n−1)! eiω′t + h.c. oscillating at frequency ω′, each photon energy is hω′.

Energy conservation, as ωJ = nω′, corresponds to a process where one Cooper pair gives n photons at
frequency ω′.

Note that voltage fluctuations at ω′ create current fluctuations at the same frequency, i.e. the junction
behaves, at first order, as a linear admittance Yω,J∗ . Moreover, as the junction is a source of energy, the
real part of this admittance can be negative.

Dissipated power

The first noise source uN is a direct consequence of the Fluctuation-Dissipation Theorem (FDT) [Kubo66 ]:
a linear dissipative impedance is ultimately noisy (described by a voltage source in series), moreover
the spectrum of this source is fully determined by the dissipative part of the electromagnetic linear
environment Re [Zω].

4It can also be n Cooper pairs giving n photons, however n can be reduced to 1 because processes involving fewer particles
are more probable.

5 i(0)
t (t) also encompasses DC components, however they are ∝ un or ∝ u∗,n and if uN is a noise the mean values

are 0.
6This condition is also the one of Shapiro steps, which are recovered if Zt ≡ 0 in equation I.5, see [Shapiro63 ; Tinkham04 ].
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I. Inelastic Cooper Pair Tunnelling

The second noise source iω is not the fluctuation over the junction admittance is a consequence of the
AC Josephson effect giving rise to a DC current and an additional noise. Note also that, as shown below,
this noise encompasses the usual shot noise [Frey17 ].

Applying Kirchhoff’s laws, the current flowing through Zω is:

iω + Yω,J (uN − usource)
1−Yω,JZω

(I.7)

In the low junction admittance limit, Yω,JZω ≪ 1, the power dissipated in the electromagnetic
environment is :

γω ≡ Re [Zω] Sω,itit (I.8)

where Sω,itit ≡ |iω|2 is the current PSD. This formula does not give insights about the nature of the
dissipation: It can be in the form of phonons or photons for example.

As shown, this dissipated power is strongly related to the noise over the dissipative linear environment.
At first sight this noise is purely thermal noise; however at low temperature quantum fluctuations become
important [Kubo66 ]. To address then, a quantum model of the ICPT has to be introduced.

1.b ICPT Hamiltonian description

To go further, the noise voltage source uN is characterised by the FDT ([Kubo66 ] & equation A.13), via
the following relation between the flux auto-correlation function Γt,ϕϕ, and the dissipative part of the
electromagnetic environment Re [Zω]:

S
[
Γβ

t,ϕϕ

]
(t) = 1

2π

∫
R

2ℏRe [Zω (ω)]
ω

coth
(

βℏω

2

)
︸ ︷︷ ︸
S[Sω,ϕϕ](ω) Symmetrised PSD

e−iωt dω (I.9)

With:

β: The thermodynamic temperature, when used as superscript means that the superscripted quantity
is taken at thermal equilibrium;

Γt,ϕϕ: The flux auto-correlation function defined as Γt,ϕϕ (t, τ) ≡
〈
ϕ† (t + τ) ϕ (t)

〉
= ⟨ϕ (t + τ) ϕ (t)⟩,

the t-dependence vanishes if the process is stationary and ergodic7;

S
[
Γβ

t,ϕϕ

]
: The symmetrised auto-correlation function, i.e. S

[
Γβ

t,ϕϕ

]
≡ Γβ

t,ϕϕ + T
[
Γβ

t,ϕϕ

]
where

T [f ] (t) ≡ f (−t) is the time reversal operator.

This noise includes thermal noise as well as quantum fluctuations.

System & drive model

First, let’s consider the following Hamiltonian [Ingold92 ; Leppäkangas14a; Mora17 ]:

Htot ≡ Henv + {κt (t)Hκ (ϕ) + h.c.}︸ ︷︷ ︸
Hdrive

(I.10)

Here, Henv contains all the reservoirs: both electrodes of the Josephson junction and the electromagnetic
environment bath. ϕ is the overall branch flux across the environment, it is the only degree of freedom of
interest for that description. The remaining Hdrive is the energy of interaction and depends only on ϕ and
t. It is a generalisation of the previous model:

κt (t): The time dependence is used to model the evolution of the junction phase created by usource.
As this source is DC, a classical description is sufficient;

7This hypothesis is assumed further on.
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I.1. Current trough Josephson junctions

Hκ (ϕ): This term models how the Josephson junction affects the electromagnetic environment through
the degree of freedom ϕ. For example the explicit form, Hκ (ϕ) ≡ − −ϕ0Ic e−i ϕ

−ϕ0 used afterwards,
corresponds to the usual Josephson junction Hamiltonian.

Figure I.3 shows how this Hamiltonian maps on to the general description shown in figure I.1

Figure I.3: General description of our samples and semi-classical model.
The Josephson junction (in blue) and its bias (in green) are modelled by
Hdrive ≡ κt (t) Hκ (ϕ) + h.c., time-dependence is the source of energy, electro-
magnetic environment (in orange) is modelled by Henv and coupled though the
degree of freedom ϕ.

The instantaneous energy of the system is Henv and consequently the instantaneous power received by
the system is [Leppäkangas14a; Mora17 ]:

∂tHenv =︸︷︷︸
Heisenberg eq. Henv

1
iℏ

[Htot−Hdrive,Htot]︷ ︸︸ ︷
[Henv,Htot]

=︸︷︷︸
[Htot,Htot] = 0

1
iℏ [−Hdrive,Htot]

=︸︷︷︸
Heisenberg eq. −Hdrive

−∂tHdrive + {[∂tκt ]Hκ + h.c.}

= −

{κt
1
2{∂ϕHκ,∂tϕ}+h.c.}︷ ︸︸ ︷
{κt∂tHκ + h.c.} − {[∂tκt ]Hκ + h.c.}

+ {[∂tκt ]Hκ + h.c.}

∂tHenv = 1
2 {−∂ϕHdrive, ∂tϕ}

(I.11)

We can interpret this relation using a mechanical analogy given in table I.1 (see also table A.1 and
[Vool17 ]). The RHS is the power associated to the force corresponding to the current defined as the
conjugated quantity of the flux, i.e. it ≡ − ∂ϕHdrive.

Table I.1: Mechanical and cQED analogy

Mechanical picture cQED picture

Position x Flux ϕ

Velocity ∂tx ∂tϕ

Additional potential energy Vx Hdrive

Driving force −∂xVx Driving current it ≡ − ∂ϕHdrive

Resulting power 1
2 {−∂xVx , ∂tx} Power dissipated 1

2 {−∂ϕHdrive, ∂tϕ}

G(1) & PSD

So far, our model describes how energy is pumped from Cooper pairs tunnelling through a Josephson
junction to an arbitrary linear electromagnetic environment. However, as described below (see also
[Roy18 ]), such an environment can be described with IOT by a closed system coupled to a semi-infinite
TL, see figure I.4. Following the conservation of energy, powers coming from the junction and going
through the TL should be characterised in the same way as before.
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I. Inelastic Cooper Pair Tunnelling

Figure I.4: Previous quantum
model with TL. Now the electro-
magnetic environment is split in two,
a non-dissipative part with the de-
gree of freedom ϕ and the dissipation
through a TL (in red).

Such a TL is defined by incoming and outgoing propagating wave amplitude operators Ain/out and
so the outgoing power is A†outAout. It corresponds to the value at τ = 0 of the following correlation
function:

G(1)
t,Aout

(τ) ≡ Γt,AoutAout (τ) ≡
〈

A†out (t + τ) Aout (t)
〉

(I.12)

This correlation function is hermitian symmetric, i.e. G(1),∗
t,Aout

(τ) = G(1)
t,Aout

(−τ) and consequently the
PSD (γout

ω ≡ Sω,AoutAout) defined as the Fourier transform of T [Γt,AoutAout ] is purely real.
Following equation I.11, the power coming from the junction is also the it-∂tϕ correlation, i.e. the

force-velocity correlation (see table I.1) at τ = 0. To have the same properties and be consistent with
G(1)

t,Aout
, let’s take its hermitian symmetrised form:

1
2
{

Γt,it∂tϕ + T [Γt,it∂tϕ]∗
}

= 1
2 {Γt,it∂tϕ + Γt,∂tϕit}

= Re [χt,∂tϕit ] ∗ Γt,itit

(I.13)

Going to the frequency domain using the Fourier transform, the PSD is expressed as:

γω = 1
2 {Sω,it∂tϕ + Sω,∂tϕit}

= Re [Zω] Sω,itit

(I.14)

Note that it assumes that the flux variation due to the driving current is negligible which is equivalent to
χω,∂tϕit = Zω where χω,∂tϕit is the response function.

Before going further and see how current and flux auto-correlation functions are linked, let’s note that
this PSD is consistent with equation I.8 presented in the simple classical model.

Josephson junction drive

We now focus on the case of an environment driven by a voltage biased Josephson junction. Hdrive (t) is
then −−ϕ0Ic cos

(
ωJ t + α− ϕ(t)

−ϕ0

)
[Josephson62 ; Tinkham04 ], i.e. κt (t) ≡ eiωJ t+iα/2 and Hκ (ϕ) ≡ −

−ϕ0Ic e−i ϕ
−ϕ0 , and so:

it ≡ − ∂ϕHdrive = Ic sin
(

ωJ t + α− ϕ (t)
−ϕ0

)
(I.15)
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I.1. Current trough Josephson junctions

In view of equation I.14, let’s focus on the it auto-correlation function at thermal equilibrium (β is the
thermodynamic temperature):

Γβ
t,itit

(τ) ≡ ⟨it (t + τ) it (t)⟩β

= Ic
2

4 eiωJ τ

{
− ei2ωJ t 〈 ei2α

〉〈
e−i ϕ(t+τ)

−ϕ0 e−i ϕ(t)
−ϕ0

〉
β

+
〈

e−i ϕ(t+τ)
−ϕ0 ei ϕ(t)

−ϕ0

〉
β

}

+ Ic
2

4 e−iωJ τ

{
+
〈

ei ϕ(t+τ)
−ϕ0 e−i ϕ(t)

−ϕ0

〉
β

− e−i2ωJ t 〈 ei2α
〉〈

ei ϕ(t+τ)
−ϕ0 ei ϕ(t)

−ϕ0

〉
β

}
(equation C.6) = Ic

2

2 e
Jβ

t,ϕ/−ϕ0
(τ)

cos (ωJτ)

− Ic
2

2 e
−Jβ

t,ϕ/−ϕ0
(τ)

⟨cos (ωJ (τ + 2t) + 2α)⟩︸ ︷︷ ︸
0

Γβ
t,itit

(τ) = Ic
2

2 cos (ωJτ) e
Jβ

t,ϕ/−ϕ0
(τ)

(I.16)
Where J β

t,ϕ/−ϕ0
(τ) ≡ Γβ

t,ϕ/−ϕ0ϕ/−ϕ0
(τ) − Γβ

t,ϕ/−ϕ0ϕ/−ϕ0
(0) = ⟨[ϕ (t + τ)− ϕ (t)] ϕ (t)⟩β /−ϕ2

0. In order to
simplify notation, ϕ/−ϕ0 subscripts and β superscripts will now be omitted.

This relation is the fundamental link between the current and flux auto-correlation functions. However,
this expression is cumbersome to use because J is challenging to compute8, moreover the FDT (see
equation I.9) expresses the flux auto-correlation in frequency domain as the dissipative part of the
electromagnetic environment. The next step, therefore, is to look at the PSD to reach a more pleasant
relation.

Probability function P

In frequency domain, Sω,itit ≡ Fω

[
T
[
Γβ

t,itit

]]
, equations I.14 and I.16 become (in ordinary frequency):

γν (νJ , ν) =

γν,→(νJ ,ν)︷ ︸︸ ︷
hIc

2

4 Re [Zν (ν)] P (hνJ − hν)

+ hIc
2

4 Re [Zν (ν)] P (−hνJ − hν)︸ ︷︷ ︸
γν,←(νJ ,ν) = γν,→(−νJ ,ν)

(I.17)

Where hP (hνJ) ≡ Fν

[
eJ] (νJ).

An important property of P is the Minnhagen equation (see equation C.10 for derivation):

νJP (hνJ) =
∫
R

P (hνJ − hν) Re [Zν (ν)]
RQ/2

1
1− e−βhν

dν (I.18)

This relation is a direct consequence of the FDT, it states the same result: Flux auto-correlation properties
are fully determined by the electromagnetic environment Re [Zν (ν)] and the temperature. Moreover, this
expression is easier to compute with iterative methods [Ingold91 ].

A brief interpretation of P can be made by recalling that there are only two sources of energy in our
system:

Dissipative part of the environment: energy is added or removed in the form of photons of energy
hν entering or leaving the system via a TL;

DC biased Josephson junction: energy ±hνJ is added or removed when a Cooper pair tunnels
from one electrode to the other.

8Divergence appears in analytic expressions.
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I. Inelastic Cooper Pair Tunnelling

Cooper pair 0

Cooper pair +hνJ

Photon hν

δ (hνJ − hν)

Cooper pair 0

Cooper pair +hνJ

Photon hν

P (hνJ − hν)

Remaining hνJ − hν

P(0)

ReZ

Cooper pair 0

Cooper pair +hνJ

All energy hνJ

P (hνJ )
P(1)

Figure I.5: P for inelastic pro-
cesses. Left scheme: The usual
Fermi golden rule. The Cooper pair
can go from the high energy state
(+hνJ ) to the low energy state (0)
if interacting with a field oscillating
at ν = νJ . Centre scheme: Shows
how the Fermi golden rule is update to
include the mode width (green dotted
line): P(0)-function (dotted red line)
substitutes δ, allowing the process to
happen even if νJ − ν is non-zero.
(0/1) are iterations of the Minnhagen
equation. Right scheme shows that
P-function can also be applied directly
to the full energy hνJ : If this energy
can be dissipated in the electromag-
netic environment, P (hνJ ) is signifi-
cant.

Therefore the argument of P is either the difference between a Cooper pair forward tunnelling through
the junction and a photon leaving via a TL; or the sum of a Cooper pair backward tunnelling through the
junction and a photon leaving via a TL. P can also be interpreted as a generalisation of the Fermi golden
rule [Ingold92 ; Grimm15 ] (figure I.5 left panel), P being the inelastic counterpart of δ: A process involving
unbalanced energy hνJ − hν can still happen if the remaining energy can be balanced somehow (figure I.5
centre & right panel). This what P captures [Nazarov13 ]. Moreover, the process corresponding to the
backward tunnelling is negligible compared to the forward tunnelling: γν,← ≪ γν,→ (for ν, νJ > 0).
Figure I.6 shows the resulting expression of γν (νJ , ν) depending on νJ − ν domain.
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ν J
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or

m
.)

P (hνJ − hν)

P (hνJ − hν)

P (−hνJ − hν)

P (−hνJ − hν)

Figure I.6: PSD quadrants of a
single mode resonator γν , each quad-
rant is dominated by P (hνJ − hν)
or P (−hνJ − hν) (in white). Verti-
cal symmetry corresponds to revers-
ing the bias, horizontal symmetry
depends on the temperature: Nega-
tive frequencies correspond to absorp-
tion from the electromagnetic envi-
ronments. At low temperature it is
empty and subsequently no absorp-
tion can happen.

2 Relaxation through the environment

The P-theory developed so far cannot be applied when the system is far from thermal equilibrium. In
particular an input electromagnetic field breaks the equilibrium. To deal with non-equilibrium case, IOT
is now applied.

2.a Single mode resonator

First, let’s deal with a single mode resonator in IOT. To do so, Henv is split in Hreso and Hdamp, the full
Hamiltonian is:

Htot ≡ Hreso +Hdamp︸ ︷︷ ︸
Henv

+Hdrive (I.19)

Hreso: For a single mode, Hreso ≡ ℏωsysb†b with a mode impedance Zsys, where b if the annihilation
operator of the resonator9;

9Hreso also includes an half photon, however it does not matter for equations of motion.

34



I.2. Relaxation through the environment

Hdamp: Figure I.7 shows how the model is updated for a single mode resonator; the term Hdamp

includes all dissipative elements.

Input output relation & impedance

The Input Output (IO) relations – under Rotating Wave Approximation (RWA) and Markov approximation
– are then (see equations A.8 and B.12 and [Walls08 ; Leppäkangas14a; Roy18 ]):

iℏ∂tb = [b,H∗]− iℏκ
2 b − iℏ

√
κaout

iℏ∂tb = [b,H∗] + iℏκ
2 b − iℏ

√
κain

(I.20)

Where ain/out are the input and output annihilation operators of the TL. With:

κ: The coupling strength between the system and the TL, for a single mode resonator κ ≡ ωsys/Q
where Q is the usual quality factor10;

H∗ ≡ Hreso +Hdrive: The effective Hamiltonian. The influence of Hdamp is taken into account by κ.

Note also that Ain/out ≃
√
ℏωsysain/out thanks to the RWA.

Figure I.7: Single mode resonator
model. A special cas of the model
figure I.4 where the non-dissipative
part is restricted to a single mode
resonator (LC circuit in orange) and
the dissipative part is a TL coupled
to the resonator with strength κ (in
red).

In frequency domain equation I.20 are:

ℏωsysb +χ∗ω
{
ℏωsysaout + i

√
Qωsys Fω [[b,Hdrive]]

}
= 0

ℏωsysb −χω

{
ℏωsysain + i

√
Qωsys Fω [[b,Hdrive]]

}
= 0

(I.21)

Where χ−1
ω (ω) ≡ i

√
Q

ωsys

[
ω − ωsys − i ωsys

2Q

]
is the raw response function, describing how b is linearly

governed by ain neglecting the driving term. In particular the following relation holds:

aout = ain −
√

ωsys

Q b (I.22)

It describes the evolution of IO operators knowing the evolution of the cavity field b, the first step of the
scattering approach.

10Q = 1/2 discriminates the different regimes of damping; under-damped, critically damped and over-damped.
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I. Inelastic Cooper Pair Tunnelling

PSD

Before pushing futher the scattering approach, let’s focus on the PSD. To do so, in view of equation I.21,
the driving Hamiltonian gives:

[b,Hdrive] =︸︷︷︸
b ≡

√
1

2ℏZsys (ϕ+iZsysq)

√
1

2ℏZsys

0︷ ︸︸ ︷
[ϕ,Hdrive] + i

√
Zsys
2ℏ

−iℏ∂ϕHdrive︷ ︸︸ ︷
[q,Hdrive]

[b,Hdrive] =︸︷︷︸
it ≡ −∂ϕHdrive

−
√

ℏZsys
2 it

(I.23)

The link between the photonic dynamics and the driving current shown with the classical picture is
recovered here. Together with equation I.22:

aout = − χω

χ∗ω
ain + i

√
Zsys

2ℏ χωiω (I.24)

Now, let’s take a look at the hypothesis of an input field smaller than the driving term. The condition11

is |ain| ≪ 2
√

Q/ωsys
√

Zsys/2ℏ |iω|. Under that assumption, implying aout = i
√

Zsys/2ℏχωiω, the
output PSD is:

γout
ω (ωJ , ω) = Sω,AoutAout (ω)

≃︸︷︷︸
aout ≃

√
ℏωsysAout

ℏωsys Sω,aoutaout (ω)

≃︸︷︷︸
aout =

√
Zsys

2ℏ χωiω

2 ωsysZsys
4 |χω (ω)|2 Sω,itit (ω)

≃ 2 QZsys
4(Q/ωsys)2

∣∣∣ 1
ω−ωsys−iωsys/2Q

∣∣∣2 Sω,itit (ω)

γout
ω (ωJ , ω) ≃ 2 Re [Zω (ω)] Sω,itit (ω)

(I.25)

Using the P function introduced above (see equation I.17), in ordinary frequency:

γout
ν (νJ , ν) ≃

γout
ν,→(νJ ,ν)︷ ︸︸ ︷

hIc
2

2 Re [Zν (ν)] P (hνJ − hν) (I.26)

2.b Scattering matrix

Classical description

As seen previously from the noise due to the electromagnetic environment, the circuit is seen – at first
order – as a linear admittance Yω,J∗ . Figure I.8 shows how the circuit is reduced to this single linear
admittance.

This picture is very simple; together with the linear admittance introduced earlier, there is a TL of
impedance Z0 > 0 from which sends Johnson-Nyquist noise as well as microwave signals to the circuit.
With iω,in/out, uω,in/out the incoming and outgoing currents and voltages in frequency domain in the TL,
Kirchhoff’s and Ohm’s laws give:

• uω,in = Z0iω,in

11It requires a norm, however as this condition is not pushed further, giving an explicit norm is not useful. |O| ≡
√〈

O†O
〉

is a candidate.
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I.2. Relaxation through the environment

Figure I.8: Reduced model where Josephson junction, bias and non-dissipative
part are reduced to a linear admittance which can have negative values. The input
field is then reflected by this admittance and can even be amplified when it is negative.

• uω,out = Z0iω,out

• iω,in − iω,out = Yω,J∗ (uω,in + uω,out)

Then, the reflection coefficient is:

r ≡ uω,out

uω,in
= 1− Z0Yω,J∗

1 + Z0Yω,J∗
(I.27)

Looking at this coefficient in power, it results in a gain:

G ≡ |r |2 = 1− 4Z0 Re [Yω,J∗ ]
|1 + Z0Yω,J∗ |2

(I.28)

Re [Yω,J∗ ] < 0 gives rise to amplification.

Quantum description

We now give the quantum description of such a reflection amplifier. A key aspect of the linear scattering
theory is that a (bosonic) field can be amplified only if at least one supplementary mode is involved
[Caves82 ]12. To push our development further, a second single mode resonator is introduced, the flux
through the environment is then:

ϕ ≡

√
ℏZ (0)

sys

2

(
b(0)† + h.c.

)
︸ ︷︷ ︸

ϕ(0)

+

√
ℏZ (1)

sys

2

(
b(1)† + h.c.

)
︸ ︷︷ ︸

ϕ(1)

(I.29)

We give here only a brief overview13 of the derivation of the quantum IO relation. For a general derivation
see [Clerk10 ], derivations applied to superconducting circuits are shown [Devoret16 ; Jebari17 ]. To describe
amplification we focus on the quadratic part of the form b(0)b(1) (or h.c.) of Hdrive:

Hdrive (t) ≡ − −ϕ0Ic cos
(

ωJ t − ϕ(t)
−ϕ0

)
= −

−ϕ0Ic
2

{
eiωJ t e−iϕ(0)(t)/−ϕ0 e−iϕ(1)(t)/−ϕ0 + h.c.

}
Hdrive (t) ≃ ℏ

Ic

4−ϕ0

√
Z (0)

sys Z (1)
sys︸ ︷︷ ︸

Q∗

√
ω

(0)
sys

Q(0)
ω

(0)
sys

Q(0)

{
eiωJ tb(0) (t)b(1) (t) + h.c.

} (I.30)

Where Q∗
√

ω
(0)
sys

Q(0)
ω

(0)
sys

Q(0) ∈ R is called the pump power, expressed in ordinary frequency.

12The key argument is preservation of CCR when b(n)
out =

∑
m

tn
mb(m)

in .

13Only the amplification case is derived, conversion is recovered with b(0)b(1)† (or h.c.).
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The input relation of equation I.21 becomes:
b(0) (ω) −χ

(0)
ω (ω)

{
ain (ω) + iQ∗

√
ω

(1)
sys

Q(1) b(1) (ωJ − ω)†
}

= 0

b(1) (ωJ − ω)† −χ
(1)
ω (ωJ − ω)∗

{
ain (ωJ − ω)† − iQ∗

√
ω

(0)
sys

Q(0) b(0) (ω)
}

= 0

b(0) (ω) = χ
(0)
ω (ω)

ain(ω) + iQ∗

χ̂ω
(1)

(ωJ−ω)∗︷ ︸︸ ︷√
ω

(1)
sys/Q(1)χ(1)

ω (ωJ − ω)∗ain(ωJ−ω)†

1 − Q∗
√

ω
(0)
sys/Q(0)χ(0)

ω (ω)︸ ︷︷ ︸
χ̂ω

(0)
(ω)

Q∗
√

ω
(1)
sys/Q(1)χ(1)

ω (ωJ − ω)∗︸ ︷︷ ︸
χ̂ω

(1)
(ωJ−ω)∗

(I.31)

Where χ̂ω is a normalised14 form of χω. Together with equation I.22, it results in:

aout (ωJ ; ω) =

r(ωJ ,ω)︷ ︸︸ ︷
χ̂ω

(0) (ω) /χ̂ω
(0) (ω)∗ + Q∗χ̂ω

(0) (ω) Q∗χ̂ω
(1) (ωJ − ω)∗

Q∗χ̂ω
(0) (ω) Q∗χ̂ω

(1) (ωJ − ω)∗ − 1
ain (ω)

i Q∗χ̂ω
(1) (ωJ − ω)∗ 1 + χ̂ω

(0) (ω) /χ̂ω
(0) (ω)∗

Q∗χ̂ω
(0) (ω) Q∗χ̂ω

(1) (ωJ − ω)∗ − 1︸ ︷︷ ︸
t(ωJ ,ω)

ain (ωJ − ω)†

(I.32)
Where r (ωJ , ω) is the gain and t (ωJ , ω) the trans gain between frequencies ω and ωJ − ω responsible for
the input added noise (N (ωJ , ω)) of the amplification process. From that relation, it is straightforward
that this amplification process affects equally both quadratures15, i.e. it is a phase preserving amplifier.
Figure I.9 shows the lollipop representation used to picture the operation of an amplifier. The left

panel shows the input field, the centre of the ellipsis is ⟨ain⟩ and its radii are
√〈
|Re [ain]− ⟨Re [ain]⟩|2

〉
and

√〈
|Im [ain]− ⟨Im [ain]⟩|2

〉
along both axes representing the quadratures of the signal, the outer

ellipsis on the right panel describes aout after amplification.
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Figure I.9: Lollipop picture de-
scribing the behaviour of an amplifier.
Panel a representing the field before
amplification, centre of the lollipop
is the complex amplitude of the field
while its radii are variances. Panel b
represents the field after amplification,
the orange crown corresponds to the
noise added by amplification.

Now, let ω ≃ ω
(0)
sys and ωJ − ω ≃ ω

(1)
sys, so that γin

ω (ω) ≃ ℏω
(0)
sysSω,ainain (ω) and

γin
ω (ωJ − ω) ≃ ℏω

(1)
sysSω,ainain (ωJ − ω). In terms of power, amplification can then be described as:

γout
ω (ωJ , ω) = G (ωJ , ω)︸ ︷︷ ︸

|r(ωJ ,ω)|2

γin
ω (ω) + N (ωJ , ω)︸ ︷︷ ︸

ℏω
(0)
sys

(
1+γin

ω (ωJ−ω)/ℏω
(1)
sys

)
|t(ωJ ,ω)/r(ωJ ,ω)|2

 (I.33)

This second term is responsible of the noise added by amplification, however does a minimal amount of
noise exist?

14Maximum value is 2 and consequently Q∗ = 1/2 is a particular value.
15For a phase-sensitive amplifier, both ain (ω) and h.c. have to be implied.
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Quantum-limited amplification

To answer this question we have to remember that IO fields are bosonic, i.e. they follow the usual Canonical
Commutation Relations (CCR), and consequently: |t (ωJ , ω)|2 = |r (ωJ , ω)|2 − 1 = G (ωJ , ω)− 1. To
simplify notation we define

√
G (ωJ , ω)− 1n (ωJ , ω)† ≡ t (ωJ , ω) ain (ωJ − ω)†. The CCR

[
n, n†

]
≡ 1

is preserved, and allows us to derive16 a bound value of the PSD [Caves82 ]:

Sω,n†n† = 1
2 ⟨{Re n, Re n}⟩+ 1

2 ⟨{Im n, Im n}⟩ −i ⟨[Re n, Im n]⟩︸ ︷︷ ︸
⟨[n,n†]⟩/2 = 1/2

= 1
2

(√
⟨{Re n, Re n}⟩ −

√
⟨{Im n, Im n}⟩

)2
+
√
⟨{Re n, Re n}⟩ ⟨{Im n, Im n}⟩︸ ︷︷ ︸

(Uncertainty) ≥ |⟨[Re n,Im n]⟩| = 1/2

+ 1
2

Sω,n†n† ≥ 1
2

(√
⟨{Re n, Re n}⟩ −

√
⟨{Im n, Im n}⟩

)2
+1

(I.34)
Straightforwardly, the equality holds only if n is a single mode, note also the equality implies that the two
quadrature variances are equal, i.e. that the amplifier adds the same amount of noise on both quadratures.
Figure I.9 shows which noise comes from this second mode (area between inner and outer ellipsis).

Finally, together with equation I.33 this fundamental limit becomes N ≥
∣∣1−G−1

∣∣ ℏω
(0)
sys, a more

meaningful relation is the excess noise relative to the quantum limit ϵ ≡ N/
∣∣1−G−1

∣∣ ℏω
(0)
sys. With the

expression of N of equation I.33 where the idler input field (the one at ωJ − ω) is at thermal equilibrium
γin

ω (ωJ − ω) ≡ ℏω
(1)
sys (coth (βℏ (ωJ − ω) /2)− 1) /2:

ϵ = 1
2

[
1 + coth

(
βℏ (ωJ − ω)

2

)]
(I.35)

As ωJ − ω ≃ ω
(1)
sys, the input added noise can be reduced by lowering the temperature or increasing the

idler frequency. Figure I.10 shows how the noise evolves with temperature and the idler frequency.
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Figure I.10: Excessive noise ex-
pressed relatively to the quantum
limit, as a function of the temperature
and the idler frequency. Dotted lines
identify remarkable values, coloured
stars show working points of our de-
vices (blue and yellow) and 4 K device
(orange).

Moreover, using equation I.26, an explicit expression of the gain in quantum-limited amplification
regime can be straightforwardly derived (in ordinary frequency):

G (νJ , ν) ≃ 1 + 1
1 + coth (β (hνJ − hν) /2)

Ic
2

ν
(0)
sys

Re [Zν (ν)] P (hνJ − hν) (I.36)

Note however that equation I.26 and therefore this expression assume all modes are near thermal
equilibrium, which implies a low gain.

Notes on the Caldeira-Leggett model

Let’s discuss the Caldeira-Leggett model useful to going from our discrete modes to an arbitrary environ-
ment. Let’s decompose the environment in many environments in series, see figure I.11, i.e. Zω =

∑
n

Z (n)
ω .

16The proof assumes ⟨n⟩ ≡ 0 for sake of simplicity, the general case is recovered with ∆n ≡ n − ⟨n⟩.
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Straightforwardly the PSD due to the nth environment is:

γ(n)
ω = Re

[
Z (n)

ω

]
Sω,itit (I.37)

Moreover, if all those environments are independent, i.e.
[
ϕ(n), ϕ(m)] = 0 where ϕ(n) is the flux through

the nth environment (see figure I.11), then a couple J (n), P(n) can be defined for each environment and
thanks to theirs definitions:

J =
∑
n

J (n)

P = P(0) ∗ P(1) ∗ . . .

(I.38)

The first equation is a direct consequence of Kirchhoff’s laws for correlation functions when cross-
correlations are negligible. The second one is consistent with our previous interpretation of P: The full P
describes how the remaining energy can be dissipated through all the environments. With δ the remaining
energy to dissipate as δ =

∑
n

δ(n) where δ(n) is dissipated through the nth environment, all different

remaining energy decomposition are captured as:

P(0)
(

δ
(0)
0

)
P(1)

(
δ

(1)
0

)
. . .

+ P(0)
(

δ
(0)
1

)
P(1)

(
δ

(1)
1

)
. . .

. . . Sum over all different decomposition

P = P(0) ∗P(1) ∗ . . .

(I.39)

Figure I.11: Many weak interact-
ing environments model extends
the previous model figure I.7, now
the single mode resonator is substi-
tuted with many resonators in se-
ries. Each of them has its frequency
ω

(n)
sys , impedance Z (n)

ω , flux ϕ(n), cou-
ple J (n), P(n) and coupling strength
κ(n).

Now, the Caldeira-Leggett model [Caldeira83 ] states that an arbitrary electromagnetic environment
can be decomposed into a set of single modes. The idea is that by reducing the dissipative element of
such a single mode, Re [Zω] → δωsys. An arbitrary electromagnetic environment can be approximated
by a set of Dirac peaks. They can subsequently be slightly enlarged to give a set of single modes (see
figure I.12). Moreover, even if the electromagnetic environment is made of a set of single modes (for
exemple with some LC circuits or quarter wave resonators), the Caldeira-Leggett decomposition does not
necessary recover those modes: The decomposition is not unique.
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Figure I.12: Example of Caldeira-
Leggett decomposition where
many single mode resonators (in blue)
results to a wideband mode with some
ripples.

Conclusion

Apart from the classical picture used as a first simple approach, we have considered Josephson junctions
using two descriptions:

P-theory: Where a P function describes how energies carried by tunnelling Cooper pairs can be
dissipated by the electromagnetic environment;

IOT: Where the electromagnetic environment was reduced to one or a few some modes. It relates
input and output field of the DC biased Josephson junction.

Moreover, those two descriptions are linked by a power balance.
However the two models cannot necessary be applied, P-theory requires an electromagnetic environment

at thermal equilibrium and low critical current and cannot be applied with an input field. Conversely,
IOT easily deals with IO fields and larger critical current, but can only be derived for simple models –
like single mode resonators.
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Chapter II
Experimental setup

French resume

Ce chapitre couvre l’ensemble des systèmes expérimentaux utilisés pour mesurer nos dispositifs : systèmes
4 K pour sélectionner les dispositifs les plus prometteurs; réfrigérateur à dilution He, son électronique; et
aussi le support informatique développé pour mesurer et analyser les résultats.

4 K est une température aisé à atteindre en utilisant un bain He, de plus elle est assez basse pour
estimer les propriétés des matériaux et structures – jonctions Josephson & résonateurs – de nos échantillons.
Lorsqu’un échantillon est convenable, il est ensuite refroidit à 12 mK avec notre réfrigérateur à dilution
He.

L’instrument de mesure principal utilisé à 12 mK est un numériseur ultrarapide (AlazarTech ATS9373)
qui nous permet d’extraire les corrélations du champs microonde émis par l’échantillon [daSilva10 ]. Cette
partie donnera des précisions théoriques et techniques sur cette méthode de mesure.

Une dernière partie décrira comment les mesures sont réalisées et analysées. Pour ce faire une
architecture flexible a été développée en mintinlinepythonpython :

• Une structure de donnée compatible avec nos mesures actuelles et futures;

• Une structure de contrôle et des pilotes associés décrivant comment les mesures sont faites;

• Une GUI pour afficher nos données de manière compréhensible grâce à divers filtres.
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Dataset model
Operations

1 Sample characterisation

Each wafer contains several hundred devices; in order to efficiently use the dilution fridge, electrical
properties, that can be accessed without cooling down to 12 mK, are measured and compared with the
expected values.

These measurements compromise:

• Room temperature measurements, to characterise the normal state properties;

• 4 K measurements with a He dipstick and 4 K to 300 K with a Physical Property Measurement
System (PPMS), to characterise the NbN superconducting state properties.

1.a Room temperature measurements

For all room temperature measurements, we use a four point probe scheme. There are two ways for the
current to flow in the trilayer, see figure II.1:

• Parallel to the trilayer, giving access to the sheet resistance, R□, of NbN;

• Perpendicular to the trilayer, giving access to the tunnelling resistance, RT , through the MgO
barrier.

Figure II.1: Currents flowing in
a trilayer. Left panel shows how
current parallel to the trilayer is mea-
sured, the dark sheet is the barrier
of the trialyer, the four wires show
how current source and bias probe are
setup to measure R□. Right panel
shows how current though the barrier
is measured and how RT is measured.

The first one is measured a first time just after the trilayer is sputtered and before it is patterned at
the centre of the wafer. For subsequent measurements, the fabrication process includes two useful features:

• Some technology dies including several structures used to monitor and check the fabrication process.
Especially Hall bars and meanders that can be used to measure R□ of each layer after the fabrication
process;
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• Some structures are repeated on each die. They are designed to be used with a four point station,
see figure II.2. At first there were only junctions with different sizes measured with those structures,
giving RT . In subsequent designs, other elements were added, giving also R□ for several layers.

Figure II.2: Four point probe
scheme for two test structures. Left
panel are test structures at the cen-
tre of each chip. Josephson junc-
tions of different sizes are connected
between four pads to measure their
characteristics, wiring is shown on
the 10×10µm2 junction. In future
designs, similar structures will host
other lumped elements to test – e.g.
resistors. Righ panel is a structure
of a chip dedicated to measuring qual-
ity of the process, it is a Hall bar, in
particular it can be used to measure
R□ with the wiring shown here.

Moreover, the junctions and test structures on each die show the homogeneity of the full process (see
figure II.3). As expected, trilayer quality decreases from the centre to the edge due to the sputtering
process over the wafer.
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Figure II.3: Homogeneity of junc-
tions is measured on each chip
with a probe station. Here each
plot show RT for different junc-
tion sizes: 1×1µm2, 1×10µm2 &
10×10µm2. Colour scale is the same
for the three schemes. First there is
a factor 10 between each plot corre-
sponding to a factor 10 between areas.
Moreover, an inhomogeneity is also
observed towards the border of the
wafer.

1.b He dipstick & PPMS

Even through the studied processes require a temperature well below 1 K, the critical temperature of NbN
of around 16 K allows us to use a He bath at 4 K to access the superconducting properties of our samples.
Two experimental setups are used:

• A simple dipstick to plunge the sample in a He bath. The sample is connected through RF coaxial
cables;

• A PPMS, which measures only DC properties but does it with accurate temperature control from
room temperature to 4 K.

The PPMS is used to measure the square resistance as a function of temperature, see figure II.4. From
those data the RRR can be extracted.

Thanks to the He bath, current voltage characteristics of junctions are measured with an USB-1608GX-
2AO analogue IO card. To do so, a slow triangular voltage bias is applied through a large resistor, i.e.
the junction is current biased; and the voltage through the junction is measured after amplification, see
figure II.5.
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as a function of the tempera-
ture measured with the Hall bar.
First the square resistance becomes
0 when the temperature is below
the critical temperature of NbN,
14 mK. Second, ratio between resis-
tance just above the critical temper-
ature and at room temperature give
RRR = 13 Ωsq−1/17 Ωsq−1 = 0.7.

Figure II.5: He bath and USB-1608GX-2AO setup used to measure IV char-
acteristics of Josephson junctions plunged in a He bath. The sample is current biased
by a voltage source Vin over a large resistor R, and the effective voltage VJJ over
the junction is measured with an amplifier of gain G. USB-1608GX-2AO acquisition
board is used to apply a triangular wave Vin and measure Vout.

Following the notation in figure II.5, voltage and current through the junction can be expressed as
follows: VJJ = Vout

G and IJJ = Vin−VJJ

R . Moreover to compare the data from junctions with different sizes,
junction currents are divided by junction areas resulting in current densities. Those results are shown in
figure II.6.
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Figure II.6: Current (densities) as
functions of the voltage bias for
different junction size. Both pan-
els show the same data. Left panel
shows the current as a function of the
voltage bias while right panel is the
current density as a function of the
voltage bias. First, the current scales
properly with the expected junction
size. Moreover, the current is close to
zero below |U | < 5 mV, which cor-
responds to the excepted gap value of
NbN Josephson junctions.

2 Low temperature setup

2.a General setup model

The most important goal of our setup is to determine fluctuations of the output field aout at base
temperature (generally ≃ 12 mK) thanks to a voltage measurement u ≡

√
hν0 · 50 Ω/2

[
ib† + h.c.

]
(where ν0 > 0 is the carrier frequency) through a 50 Ω matched acquisition channel at room temperature.
A first order, such a channel can be modelled the same way as an amplifier, see figure II.7, in time domain:

b = r ∗ [aout + n] (II.1)

First of all, our acquisition method has to give access to γout
ν and G(1),out. Even through these two

quantities are equivalent, a method to extract G(1),out can then be extended to measure photon correlations
G(2),out (τ) ≡

〈
a†out (t) a†out (t + τ) aout (t + τ) aout (t)

〉
.
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II.2. Low temperature setup

Figure II.7: Acquisition channel – amplifier model. There are three stages at
12 mK, 4 K & 300 K. The field to measured is generated at the 12 mK stage. It is
amplified at the 4 K stage which adds noise n. Finally, the voltage is measured at
the 300 K stage.

In-phase & quadrature (IQ) demodulation

A central aspect of our method is IQ demodulation [daSilva10 ]. Our technical realisation is described
later, we focus here on its theoretical consequences.

Figure II.8: IQ demodulation – beam-splitter model. The transmitted field
is not dephased while the reflected field is dephased by −π/2. The second input
field is written iv. On each arm, the voltage, i.e. the imaginary part of the field, is
measured. In total both quadratures of a virtual field S ≡ − i

[
b − v†

]
/
√

2 (see
text). The original figure comes from [daSilva10 ].

Figure II.8 shows how IQ demodulation is modelled: The output field is mixed with another field v
thanks to a balanced beam-splitter and subsequently in-phase and quadrature components are measured
(see technical details for how they are measured):

In-phase

I ≡
√

hν0 · 50 Ω
2

[
i (v + b)† + h.c.

]
=
√

hν0 · 50 Ω
2

[
S† + h.c.

]
(II.2)

Quadrature

Q ≡
√

hν0 · 50 Ω
2

[
(v − b)† + h.c.

]
=
√

hν0 · 50 Ω
2

[
iS† + h.c.

]
(II.3)

Where S ≡ − i
[
b − v†

]
/
√

2 is a self-commutating (
[
S†, S

]
= 0) virtual field. This property allows to

write products without taking care of ordering, consistent with classical quantities.
Assuming v can be rewritten as v ≡ r∗ ∗ v′, putting it all together, the equation II.1 becomes:

S = −ir√
2
∗

aout + n − v′,†︸ ︷︷ ︸
n′

 = I + iQ√
2hν0 · 50 Ω

(II.4)

As n contains the noise from the 4 K amplifier, it is the main source of noise and n′ ≃ n.

PSD

The PSD is measured as follows SPSD ≡
〈
|Fν [I + iQ]|2

〉
= 2hν0 · 50 Ω

〈
|Fν [S ]|2

〉
(absolute value is

unambiguous as S is self-commutating), consequently (derivation is straightforward):

SPSD = 2 · 50 Ω · |r |
2

2︸︷︷︸
G︸ ︷︷ ︸

χν

γout
ν + hν0Sν,n′n′︸ ︷︷ ︸

N

 (II.5)

χν is the full channel susceptibility in V2/W; N the input added noise of the full channel as γout
ν /Nhν0 is

the Signal to Noise Ratio (SNR).
Calibrating our setup requires determining both χν & N . This linear problem with two unknown

quantities is easily solved with two calibration points with well-known γout
ν . Experimentally, a 50 Ω load
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thermalised at β is a well-known source1. For calibration we use so two loads at temperature βcold & βhot:

hν0χν = 2 SPSD,hot−SPSD,cold
coth(βhothν0/2)−coth(βcoldhν0/2)

N − 1
2 = 1

hν0χν

coth(βhothν0/2)SPSD,cold−coth(βcoldhν0/2)SPSD,hot
coth(βhothν0/2)−coth(βcoldhν0/2)

(II.6)

Moreover, if our sample can be turned off (i.e tuned to γout
ν ≃ 0): SPSD,off ≃ hν0χνN and

consequently:
γout

ν

hν0
= SPSD − SPSD,off

hν0χν
(II.7)

If the two measurements are done in close succession, G & N do not vary and even if the gain subsequently
varies, this calibration gives a quantity proportional to the PSD without any offset.

Cross PSD & G(1)

An other way to handle the noise offset is to reduce it at its origin. This term comes from Sν,nn that
arises because of the amplifier noise of our channel and our measurement that correlates it with itself.
Thus, to avoid it, it is sufficient to not perform this correlation: We measure the field S two times with
two independent channels: SPSD,X ≡ 2hν0 · 50 Ω

〈
Fν [S0]† Fν [S1]

〉
. Figure II.9 shows this model and

notation.

Figure II.9: Acquisition dual
channels – amplifiers model in-
cludes two times the previous model
thanks to a balanced beam-splitter
placed just after the field to char-
acterise. Compared to the previous
model, correlations between ampli-
fier noise n0/1 vanish and only nX
remains.

Some algebra gives:

SPSD,X = 2 · 50 Ω · r∗0 r1

2 · 2︸ ︷︷ ︸
|GX| =

√
G0G1/2︸ ︷︷ ︸

|χν ,X| = √χν ,0χν ,1/2

γout
ν + hν0

[
2Sν,n′0n′1 − Sν,nXnX

]︸ ︷︷ ︸
NX

 (II.8)

1 γout
ν = hν0 (coth (βhν0/2) − 1) /2

48



II.2. Low temperature setup

Experimentally, both channels are physically different, consequently their noise should be independent2.
The coupler noise NX ≃ Sν,nXnX ≃ (coth (βhν0/2)− 1) /2 can be very low because the idler mode of a
coupler can easily be cooled to the ground state.

In summary our full calibration procedure is:

1. Calibrate G0 & G1 (and so χν ,0 & χν ,1) using 50 Ω loads at βcold & βhot;

2. (Optional) Also calibrate N0 & N1, to verify the noise performance of our channels;

3. Measure SPSD,X & SPSD,X,off ;

4. Use calibration to reach PSD:

γout
ν

hν0
= 2 |SPSD,X − SPSD,X,off |

hν0
√

χν ,0χν ,1
(II.9)

5. (Optional) Also extract the argument of SPSD,X − SPSD,X,off . It shows variations of the phase
difference between both channels;

6. (Optional) Also calibrate NX ≃ 2SPSD,X,off/hν0
√

χν ,0χν ,1, to verify that the coupler is cold. Note
that NX also includes crosstalk between channels (mostly on the acquisition board).

G(1) is the time domain counterpart of equation II.8

ΓX (t, τ) ≡ 2hν0 · 50 Ω
〈

S†0 (t + τ) S1 (t)
〉

= 2hν0 · 50 Ω ·GX (ν0)︸ ︷︷ ︸
χν ,X(ν0)

G(1),out (t, τ) +
[
2Γt,n′0n′1 (τ)−G(1)

t,nX
(τ)
]

︸ ︷︷ ︸
2Γt,n′′0 n′′1

(τ) = ΓX,off(τ)/χν ,X(ν0)


(II.10)

where the overall gain is supposed to be constant over the signal bandwidth. This gain can be calibrated
directly through G(1) measurement using G(1) (0) of 50 Ω loads as described previously with PSD
measurements3. Note also that correlations of noise fields are t-independent because they are stationary
and ergodic processes, in particular off quantities are t-independent. Finally:

G(1),out (t, τ) = ΓX (t, τ)− ΓX,off (τ)
χν ,X (ν0) (II.11)

Moreover, using cross correlations instead of direct ones does not only reduce the linear noise of our
model, but also make it less sensitive to non-linearities in the measurement chain that would reduce the
Spurious-Free Dynamic Range (SFDR), which becomes crucial for higher order correlation functions.

Results First of all, a rough sum of amplifications and attenuations along our acquisition channel (see
technical details chapter II section 2.b) gives a total gain of 101 dB, however this sum does not include
neither losses of circulators ( ≃ 0.5 dB per components) or mixers ( ≃ 7 dB per components), nor cables
≃ 0.9 dB/m. Consequently, this value is only an upper bound.

After measuring 50 Ω reference loads and extracting gains, figure II.10 is plotted. As expected, the
gains are well below the upper bound of 101 dB. A first observation is that gains are different for different
local oscillators; e.g. at 5.1 there is a jump of ≃ 1 dB. This results is due to the mixing. Actually if the
gain can be decomposed in two parts: Gbefore (ν) before the mixer depending only on the signal frequency,
and Gafter (|ν − νLO|) after the mixer depending on the down-mixed signal frequency.

2They are coupling only through grounds of active components and noise leaking from one channel to the other thanks to
backward reflections.

3It allows to calibrate G(1) exactly like measurements of G(1) will be taken, numerical filter encompassed.
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II. Experimental setup

The full gain is then Gbefore (ν) Gafter (|ν − νLO|), and consequently the order of magnitude of the
jump is Gbefore (ν) |Gafter (1 GHz)−Gafter (2 GHz)| if the jump occurs with two local oscillators working
with the same Nyquist band (i.e. local oscillators both below or upper 6 GHz). In the other case, e.g.
between green and red lines, there is no jump.
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Figure II.10: Channel gains as
functions of the measured frequency
and the local oscillator frequency,
solid lines correspond to one channel,
dotted lines to the other. There are
some jumps between different local
oscillator due to the fact that gain de-
pends on both input signal frequency
and local oscillator frequency, see text.
Moreover, the gain amplitude is com-
patible with the upper limit obtained
by summed theoretical amplifications
and attenuations along all the setup
of 101 dB.

Together with the gains, full channel noises are also extracted, these noises mainly come from the 4 K
amplifiers. Figure II.11 shows them on the left axis. Except for the first oscillator, all curves overlap,
which is excepted because the noises arise mostly before mixing. The curve close to 0 is plotted on the
right axis and is measured using a short circuit instead of a sample. As a consequence, the PSD measured
is the sum of backward noises coming from the amplifiers after isolation through circulators.
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Figure II.11: Channel noises in
photons as functions of the measured
frequency. Note that there are no
more jumps because most part of the
noise comes from the 4 K stage be-
fore the down conversion. The unique
jump is between the first two local
oscillators due to aliasing.

As excepted this backward noise is close to 0 – many orders of magnitude below amplifier noise. A last
observation is the jump between the two first local oscillators, this jump is explained by mixer aliasing
due to spurious conversion terms with 3νLO for νLO = 3.3 GHz which let noise from 7.9 GHz to 8 GHz
appears at the frequency as 5.2 GHz to 5.3 GHz down-converted with 3.3 GHz

G(2)

The way G(1) is measured can be extended to higher order correlation functions. However, SNR
dramatically decreases with order, consequently our method can be experimentally extended to G(2) but
no more. To go further, SNR should have to be increased, the element to improve is the amplification, for
example the use quantum-limited amplifiers would increase the SNR and allow measurements of higher
order correlation functions.
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II.2. Low temperature setup

To measure G(2) we compute Γ (2) (t, τ) ≡ [2hν0 · 50 Ω]2
〈

S†0 (t) S†0 (t + τ) S1 (t + τ) S1 (t)
〉

. Let’s
develop this expression using Wick’s theorem:

Γ (2) (t, τ) = [2hν0 · 50 Ω ·GX (ν0)]2
〈 [

aout +
√

2n′′0
]† (t)

[
aout +

√
2n′′0

]† (t + τ)

[
aout +

√
2n′′1

]
(t + τ)

[
aout +

√
2n′′1

]
(t)

〉

=︸︷︷︸
Wick

χν ,X (ν0)2

[ 〈
a†out (t) a†out (t + τ) aout (t + τ) aout (t)

〉
+4
〈

n′′,†0 (t) n′′,†0 (t + τ) n′′1 (t + τ) n′′1 (t)
〉

︸ ︷︷ ︸
Γ(2),off(τ)/χν ,X(ν0)2

+2
〈

a†out (t) aout (t + τ)
〉〈

n′′,†0 (t + τ) n′′1 (t)
〉

+2
〈

a†out (t) aout (t)
〉 〈

n′′0 † (t + τ) n′′1 (t + τ)
〉

+2
〈

n′′,†0 (t) n′′1 (t + τ)
〉〈

a†out (t + τ) aout (t)
〉

+2
〈

n′′,†0 (t) n′′1 (t)
〉〈

a†out (t + τ) aout (t + τ)
〉 ]

Γ (2) (t, τ) = χν ,X (ν0)2 G(2),out (t, τ)

+Γ (2),off (τ)

+χν ,X (ν0) G(1),out (t,−τ) ΓX,off (τ)

+χν ,X (ν0) G(1),out (t, 0) ΓX,off (0)

+χν ,X (ν0) ΓX,off (−τ) G(1),out (t, τ)

+χν ,X (ν0) ΓX,off (0) G(1),out (t + τ, 0)
(II.12)

Inverting this equation, G(2) can be extracted. Note also this expression is simplified if the field aout is
also stationary and ergodic. Experimentally, we can measure both, depending if a trigger can be used or
not (see below):

G(2),out (t, τ) = Γ(2)(t,τ)−Γ(2),off(τ)
χν ,X(ν0)2 −ΓX,off(0)[G(1),out(t,0)+G(1),out(t+τ,0)]

χν ,X(ν0)

−ΓX,off(τ)G(1),out(t,−τ)+ΓX,off(−τ)G(1),out(t,τ)
χν ,X(ν0)

(II.13)

Scattering parameter

Determining the scattering parameter of a sample only means comparing the power (or amplitude) coming
from the sample to the power (or amplitude) sent to it. Two methods are used in our fridge:

• A Vector Network Analyser (VNA) designed for this measurement. However, the calibration method
introduced earlier cannot be used because the signal paths differ;

• The PSD & cross PSD together with an external microwave source can be used to extract the
scattering parameters. Roughly, measuring a short circuit reference – that fully reflects the signal
– with an external source, gives then the effective power sent to the sample. Then measuring the
sample instead of the short circuit with the same external source gives the power after amplification
by the sample. The gain is then the ratio between these two powers.
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II. Experimental setup

VNA sends a microwave signal at ν0 to the device and directly measures the ratio between this field
Sout (ν0) and the received one Sin (ν0). When an ICTA sample is measured aout ≡ rG ∗ [ain + nG],
however the signal coming from the VNA is attenuated before reaching the sample and amplified after,
consequently routrGrin is measured.

To calibrate this measurement, we use two methods:

• If a mainly fully reflecting sample is assumed – i.e. for most parameters the sample fully reflects the
signal – a statistical analysis can be used to determine routrin;

• Using a short instead of the sample fully reflects the signal, it results to a measurement of routrin.

Both methods have drawbacks, the first one requires a strong hypothesis that cannot be fulfilled for all
samples. The second one has a systematic error because the path used to measure the short reference and
the one for the sample are sightly different: The second one includes a coaxial cable and for some devices
a bias-tee.

Moreover, the power at the input of our sample also has to be determined, i.e. rin. To do so, an
external source is used to send a signal at ν0 on the short reference, afterwards the previous PSD method
is used to determine the power (by integration of PSD). The ratio of sent and measured powers gives
|rin|2.

2.b Technical details

Here we give technical details on our measurement chain from the sample holder to the high speed digitiser.

Sample holder

Our sample is made of a 1 cm× 1 cm chip including eight NbN 234 µm× 249 µm CPW landers. Figure II.12
shows the sample holder used to connect each pad to a SubMiniature version A (SMA) connector. The
square hole in the centre surrounded by a gold-plated Printed Circuit Board (PCB) holds the chip. Sample
and PCB are linked through Al wire bonds, whereas connector centre pins are Sn soldered.

Figure II.12: Sample holder and
zoom on a mounted sample. a is a
SMA connector, its pin goes through
the holder and is soldered on the PCB
at b. c are clamps used to fix the sam-
ple. d are bonding between the PCB
and the sample. e are test structures.

Bias circuit

DC voltage and flux biases are independent for each sample. DC voltage biases are applied through
home-made 25 Ω or 50 Ω bias boxes made of three RLC stages (see figure II.13 for details).
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II.2. Low temperature setup

Figure II.13: Bias box scheme
made of three RLC filters in series,
each of them is inside a Copper cav-
ity.

The flux biases are applied through home-made dissipative filters (Eccosorb CRS 124), which are
Gaussian filters with cut-off at ≃ 300 MHz (see figure II.14).

Figure II.14: Eccorsorb filter.
Left panel: Frequency response.
Middle panel: Impulse response in
time domain. The expected Gaus-
sian behaviour depending on the fil-
ter length is observed. Right scheme:
Elements of an eccorsorb filter. Ec-
cosorb CRS 124 (in green) is poured
in a copper coaxial cable (RG-402)
where dielectric has been removed
(copper shield and core in blue). The
centre conductor comes from a RG-
405 cable in order to get correct
impedance.

RF circuit

Two kinds of samples are studied in this thesis:

• One port samples where DC & RF signals are on the same 50 Ω port. This kind of samples is
intended to be measured without using cross PSD or G(1) methods;

• Three port samples with on-chip beam-splitters and bias-tee. There are two RF ports corresponding
to the split output fields, and one DC port. This kind of samples is intended to be characterised
with PSD, G(1) or G(2) methods.

For one port samples, DC and RF components of our setup are added through a 50 MHz bias-tee (Marki
DPXN-M50). The first kind of samples is used to study amplification, second one photon source. Moreover,
to connect the amplifiers to different calibration standards (see above) and samples, two six-ports switches
(Radial R591763600) are used.

The rest of the setup is the same for both types of samples. The first amplification stage is at the
4 K stage using HEMT low noise cryogenic amplifiers (LNF-LNC4-8 A) working between 4 GHz to 8 GHz.
Some elements along the channel at base temperature protect the sample from amplifier noise:

• A bandpass between 4 GHz to 8 GHz (Microtronics BP50403) protects our devices from and out-of-
band noise;

• Three circulators (Raditek RADC-4.0-8.0-Cryo-523-1WR-M2-b) reduce in-band noise coming from
amplifiers.

Figure II.15 shows a block diagram of the amplification stage.
For some measurements, a signal must be sent to the sample. This can be done easily though one of

the circulators already used to isolate the sample from backward noises. Note also some attenuators, 3 dB
to 6 dB are used to reduce stationary waves by improving 50 Ω matching – especially with amplifiers and
mixers – 20 dB are used to block the black-body radiation on input lines.
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II. Experimental setup

Figure II.15: Amplifiers wiring.
Samples and calibration references are
connected to the six-ports switch (the
left most block). The signal goes from
left to right, the right most block is
the 4 K amplifier, between these two
blocks others are here for isolation
and filtering. Moreover, substituting
the left most 50 Ω block by an input
line allows to send microwaves to the
sample.

IQ demodulation

The IQ demodulation is done with two mixers (Marki MM1-0312SS) that mix the signal with a local
oscillator generated by an RF source (Rohde & Schwarz SMF 100A) between 3 GHz to 9 GHz. At the
end our signal is digitised at 2 GS s−1 on a two channel high speed digitiser (AlazarTech ATS9373). As a
consequence only one Nyquist band may be preserved after mixing and all other have to be filtered out.
Figure II.16 shows aliasing depending on the Nyquist band.
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Figure II.16: Mixer aliasing
depending on the Nyquist band.
Panel a, a bis & a ter correspond to
the first band. When the signal upper
band is down converted only to posi-
tive or negative frequencies, a down
converted frequency is well-defined
(top left colour bar). In other case
there is aliasing between negative and
positive frequencies after down conver-
sion. The top right colour bar varies
between −100 % to 100 %. ±100 %
corresponds to the situation where the
upper signal band is fully down con-
verted to positive/negative frequen-
cies, 0 % is maximal aliasing with the
signal upper band covering the full
range −1 GHz to 1 GHz. a bis & a
ter shows spectrum after down con-
version in situation of aliasing. The
dotted line is the full spectrum, the
dash-dotted line is the spectrum in-
side the first Nyquist band. Panel b,
b bis & b ter correspond to the sec-
ond Nyquist band. While the first
band cannot give access to frequen-
cies around 6 GHz, the second band
allows to measure frequencies between
4 GHz to 8 GHz. This is why this solu-
tion is chosen. Note that this analysis
does not include aliasing due to higher
order mixing terms.

Our setup uses the second Nyquist band thanks to a bandpass between 1 GHz to 2 GHz (Microtronics
BPM18939). Additional amplifiers (Miteq AMF-5F-04000800-07-10p, Minicircuits ZRL-2150+ & Minicir-
cuits ZX60-V62+) and bandpass filters between 4 GHz to 8 GHz (Microtronics BPI17597) are used to
filter unwanted noise before mixing and adapt powers for mixing and digitising. Figure II.17 shows the
block diagram of the IQ stage.
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II.2. Low temperature setup

Figure II.17: IQ wiring. The block diagram shows the wiring starting from 4 K (the most left block, see also figure II.15),
orange arrows are the signal between 4 GHz to 8 GHz before down conversion and blue arrows are the signal between 1 GHz
to 2 GHz after down conversion. There are three groups, the first one is the room temperature amplification stage, the
second one is the mixing, and the last one is the filtering stage between 1 GHz to 2 GHz to avoid aliasing between the two
Nyquist bands. The last block is the high speed digitiser.

Digitising

We describe here how the complex envelope is extracted from the digitised signal. Let’s describe the
output field by its envelope: b (t) ≡ b̃ (t) e−iω0t ; subsequently the voltage is:

u (t) =
√

ℏω0·50 Ω
2

[
ib̃ (t)† eiω0t + h.c.

]
=

√
2ℏω0 · 50 Ω

[
Im
[
b̃ (t)

]
cos (ω0t)− Re

[
b̃ (t)

]
sin (ω0t)

] (II.14)

After mixing with a reference signal at ωLO, cos and sin arguments are shifted by −ωLO. This reference can
be chosen such that the resulting signal is at ωs [1 + 2n] /4 where n is the used Nyquist band4. Moreover,
we need to take into account a noise term ṽ (t) e−iω′t at ω′ = ωLO − ωs [1 + 2n] /4 because its resulting
frequency is −ωs [1 + 2n] /4, indistinguishable from the signal frequency. The voltage is then5:

u (t) ∝

Ĩ(t) =
√

ℏω0·50 Ω
2

[
S̃(t)†+h.c.

]︷ ︸︸ ︷√
ℏω0 · 50 Ω Im

[
b̃ (t) + ṽ (t)

]
cos
(ωsys

4 [1 + 2n] t
)

−
√
ℏω0 · 50 Ω Re

[
b̃ (t)− ṽ (t)

]
︸ ︷︷ ︸

Q̃(t) =
√

ℏω0·50 Ω
2

[
iS̃(t)†+h.c.

] sin
(ωsys

4 [1 + 2n] t
)

(II.15)

Where S̃ ≡ − i
[
b̃ − ṽ†

]
/
√

2 is recovered as previously.
Afterwards, the voltage is sampled at νs = 2 GHz, i.e. samples are xm ≡ 2u (m/νs) /upp where

upp = 800 mV is the peak-to-peak voltage of the full scale, allowing to extract both quadratures:

I
(

m
νs

)
∝ (−1)m/2 uppxm

2 , m even

Q
(

m
νs

)
∝ (−1)n+(m−1)/2 uppxm

2 , m odd
(II.16)

Figure II.18 shows the two quadratures and the virtual field S with extracted samples highlighted. To go
from quadratures to S , both quadratures have to be taken at the same time. This is done by convolving
(x2m)m∈N / (x2m+1)m∈N with F -1

ν

[
ν 7→ e∓iπν/νs

]
≡
(

kI/Q
m

)
m∈N

, i.e. samples corresponding to I are
advanced by 1/2νs and samples corresponding to Q are retarded by 1/2νs, they are noted x̃ (see also

4Indexing starts at 0.
5There is also an overall factor depending on reference power, however this factor is included in the overall gain of our

model.
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figure II.18):

(x̃2m)m∈N =
(
(−1)m uppx2m

2
)

m∈N ∗
(
kI

m
)

m∈N

(x̃2m+1)m∈N =
(

(−1)n+m uppx2m+1
2

)
m∈N

∗
(
kQ

m
)

m∈N

(II.17)

And finally samples are summed one-to-one:

S
(

1 + 4m
2νs

)
∝ x̃2m + ix̃2m+1√

2hν0 · 50 Ω
(II.18)

The kernels kI/Q also include numerical filters that adapt the measurement bandwidth to the signal
bandwidth to reduce the noise, especially to measure correlation functions.
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Figure II.18: Quadrature extrac-
tion. The input signal at 6.05 GHz
is down converted with a local oscilla-
tor at 4.5 GHz (solid green line), Then
the signal is sampled at 2 GS s−1 (red
crosses), even samples give I quadra-
ture (pink diamonds) and odd ones
Q quadrature (brown diamonds). Fi-
nally, a numerical filter is used to ad-
vance I by 0.25 ns (pink dots) and to
retarded Q by 0.25 ns (brown dots).
As the input signal is not at the centre
of the measured band, IQ components
are not constant in time.

Now that S fields are extracted, correlations can be computed numerically, either in frequency domain
when possible (PSD and G(1) of stationary processes) or directly in time domain doing correlations with
smaller blocks6, see figure II.19.

S0

S1

S†0 (t + τ) S1 (t)[−τmax, τmax]

[−2τmax, 0] [0, 2τmax]

t0 t1 t2 t3 t4

Figure II.19: Correlation method
using blocks to compute correlations
when there is not long-time correla-
tion. Blue & green dotted line repre-
sent the two signals to correlate. First
they are cut in small blocks (vertical
lines) as correlation of non-adjacent
blocks are negligible. Then by sum-
ming correlations (green, black and
red lines) of aligned blocks (black ar-
row) and adjacent blocks (green and
red arrows). If block are long enough,
green and red correlations can also be
neglected.

3 Instrumentation framework

At the beginning of my Ph.D., for each type of data acquisition a python script was written to vary the
needed parameters, acquire data and store them; figure II.20 pictures one of those scripts. This task was
repetitive, error-prone, and resulted in many scripts doing almost the same thing. The goal of the new

6As only short time correlations are useful, doing computations with a wide buffer is useless and resources consuming.
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instrumentation framework I wrote during my Ph.D. is to remove those issues by providing a flexible
software framework.

1 fluxBias = agilent_power_source.Channel(1)
2 fluxBias.setCurrent(0)
3 fluxBias.switchOn()
4 #Idem for voltage and uWaveSource
5

6 sv = DataSaver(
7 title,
8 [('Vbias','V'),('Coil current','A'),...],
9 [('ch0 PSD Von', 'V^2/Hz'),...,

10 ('ch0 PSD Voff','V^2/Hz'),... ])
11 sv.text("FFT points: %d" % (1<<log2nfft))
12 #Idem others metadata
13

14 digitizer = ats.AnalyzerBoard()
15 digitizer.setupCSD(averages, order=log2nfft)
16

17 for C in numpy.linspace(0, 1e-3, 11):
18 fluxBias.setCurrent(C)
19 for V in numpy.linspace(0, 10, 101):
20 voltage.setVoltage(V)
21 result = numpy.zeros((1<<(log2nfft-1)+1,12))
22

23 result[:,0] = V
24 #...
25

26 digitizer.start()
27 digitizer.waitEndMeasurement()
28 voltage.setVoltage(0.0)
29 af, apsd0, apsd1, acsd = digitizer.getData()
30

31 result[:,3] = af
32 result[:,4] = apsd0
33 #...
34

35 \\Idem lines 26 to 33 for Off values
36

37 sv.data(result)
38

39 fluxBias.setCurrent(0)
40 fluxBias.switchOff()
41 #Idem voltage and uWaveSource

Figure II.20: Typical old mea-
surement script where each
loop (for C in & for V in) and
all initialisations (fluxBias, voltage,
uWaveSource, digitizer & sv) were
hand written.

Moreover, the task of storing data is crucial: How data is stored fixes how they have to be read!
One of the simplest ways is to store data in a human-readable format as matrices. However, when the
development of the new instrumentation framework started, our measurements became heavier and heavier
– mainly due to gain measurements with high frequency and voltage resolutions – and the need of a
new format became apparent. A binary format Hierarchical Data Format 5 (HDF5) was chosen. This
key-point duality is kept orthogonal in the new instrumentation framework:

• A way to write data in various formats, useful to make measurements with our setups;

• A way to read data in various formats, useful to analyse data taken from different platforms in the
same way.

Another need is to quickly observe the data, as required by any experimental design – in order to
verify the measurement and plan the next one – optionally calibrated. However, as our setup is used with
different measurements, there are as many ways to observe the data as there are schemes. To do so, the
new instrumentation framework embeds a GUI based on a more fundamental and simple python core
interface.
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3.a Parameter space exploration

First of all, let’s describe four use cases of measurements:

• Hypercube scan (see figure II.20):

1. All instruments are settled – N (real) values – and some measurements are performed;

2. One of the instruments is successfully settled to new values and measurements are performed;

3. The instrument of step 2 is settled to its value at step 1, another one of the instruments is
successfully settled to new values and step 2 is performed for each;

4. Optionally the same as step 3 with another instrument;

5. ...

6. Nwalk ≤ N instruments.

Formally, those N instruments are described by an Hilbert space on RN = RN−Nwalk ×RNwalk , and
with a proper scalar product, all settled values make a regular mesh on S ×H where:

– S is a singleton in RN−Nwalk ;

– H is an unit hypercube in RNwalk – thanks to the proper scalar product.

And so, interpolating from the mesh, a measurement is a function S ×H → M , where M is an
arbitrary metric space – needed to have notion of continuity and interpolation, e.g. R for a single
real value measurement;

• Hyper-surface scan; e.g. when vector magnets are used, the three components have often to be
settled simultaneously. Contrary to the first case, it corresponds to settle simultaneously n ≥ 1
(real) values in step 2 or 3 etc. Formally, in the first case, it would be a regular mesh on a hypercube
in Rn, in the second one it is a mesh on Im (γ ∈ R ⊃ I → Rn) – with I a closed interval of R – i.e.
a mesh on the image of a parametric curve on Rn;

• Adaptive scan, e.g. a Ramsey experiment on a transmon qubit with tunable external parameters
controlling the resonance frequency depends on those external parameters. To do the Ramsey
sequence for different parameters, a preliminary measurement of the resonance frequency has to be
done. In view of the first case, each measurement task is replaced by two subsequent tasks:

– Measure the resonance frequency;

– Perform the Ramsey pulse sequence.

• The fourth one is the monitoring use case, for example the monitoring of temperature and pressure
in a cryogenic fridge. Contrary to the first case, there is only one step: Perform the measurements,
that is repeated indefinitely until the end of the experiment.

Iterative measurement

The core design of the new instrumentation framework is built on this iterative aspect present in each use
case. The following code snippet, figure II.21, shows this aspect:

Let’s comment line by line:

4 Perform an infinite loop, i.e. it will repeat the measurements indefinitely;

5 A for statement over an association (zip) between each measurement and its result, returned by
generator.next();
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II.3. Instrumentation framework

1 savers =
2 generator = process_sampling(parameters, measurements)
3

4 while True:
5 for measurement, data_set in zip(measurements, generator.next()):
6 for saver in savers:
7 saver(measurement, data_set)

Figure II.21: Iterative measure-
ment core code where all the loops
are hidden behind the generator,
generator.next() sets all the next
parameters and runs measurements,
therefore only saving in a file remains.

2 The generator is responsible for the iterative aspect. At each generator.next() the parameters
are updated and the measurements performed;

7 Thanks to an object saver, the results of measurements are pushed to a storage space (see below).

To go further, the second use case can be transformed to correspond to the first one. Actually, by using
a parametrisation of a parametric curve γ, the n parameters can be transformed to n measurements and
the chosen parametrisation become a parameter. Moreover, a regular mesh on a hypercube can be stored
as a dense matrix, which is simpler to store than a sparse one. And so, a way to perform a hypercube
exploration has to be developed.

Hypercube exploration

In accordance to figure II.21, a generator function should do the following:

• Settle each parameter;

• Perform all measurements.

Moreover, to save time, settling a parameter should be avoided if it is already settled. A trace is also an
useful feature to monitor the script. Let’s consider the following code snippet: figure II.22.

1 def process_sampling(parameters, measurements):
2 for sample in hypercube_sampling(parameters):
3 settle_ = 0
4 print 'Set instruments at'
5

6 for parameter, value in to_treat(parameters, sample):
7 parameter(value)
8 settle_ = max(settle_, parameter.settle)
9 print '\t%s %.4g %s' % (

10 parameter.name, value, parameter.unit)
11

12 time.sleep(settle_)
13

14 yield tuple(measurement() for measurement in measurements)

Figure II.22: Process sampling
core code embeds hypercube walk
with two loops. The first one gives
the new parameters set to measure,
the second one goes through this set
and updates each instrument if re-
quired. Finally, all measurements are
performed and returned at each itera-
tion (yield instruction).

The regular mesh is returned by hypercube_sampling(parameters), so at each step sample contains
the next values for each parameter. Next, to_treat(parameters, sample) select only the parameters
that effectively have to be updated. Lines 8 and 11 introduce a time delay to allow instruments to
effectively settle. Finally, the yield statement performs all the measurements.

Moreover, as the results of measurements are pushed to the saver proxy, it also has to be setup with
the mesh to push the results in the same order as they are measured. On figure II.23, lines 5-7, 19 and
20-21 show how the HDF saver keeps the order defined by the mesh.

An example

Now, an example from end user point of view can be build, see figure II.24. Each parameter, here VB and
FB, can be called with a value, e.g. VB(0), which update the bound instrument. Moreover, they embed
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1 class HDF5Saver(h5py.File):
2 def __init__(self, file_, parameters, measurements):
3 super(HDF5Saver, self).__init__(file_)
4

5 self.shape = [len(parameter.data) for parameter in parameters]
6 self.generator = itertools.product(
7 *(range(0, size) for size in self.shape))
8

9 for parameter in parameters:
10 parameter_data_set = self.create_dataset(
11 parameter.name, data=parameter.data)
12

13 for measurement in measurements:
14 measurement_group = self.create_group(
15 measurement.name)
16

17 def __call__(self, measurement, data_set):
18 if measurement is self.firstMeasurement:
19 self.currentIndex = self.generator.next()
20

21 self[measurement.name][measurement_.name][self.currentIndex]
22 = measurement_.data

Figure II.23: HDF saver code.
The constructor (__init__) deter-
mines number and shapes of arrays in
the HDF5 file. Such a saver has to be
callable (__call__). When called it
saves data in the corresponding HDF5
file.

the values to explore. The measurement PSD can be called to perform the measurement, i.e. PSD() return
a dataset corresponding to the PSD.

1 VB = parameters.VoltageBias(numpy.linspace(0, 10 , 101))
2 FB = parameters.FluxBias (numpy.linspace(0, 1e-3, 11))
3

4 PSD = measurements.DigitizerPSD()
5 HDF = HDF5Saver('file.hdf5', [FB,VB], (PSD,))
6

7 hypercube_sampling.enumerate_and_save([FB, VB], (PSD,), HDF)

Figure II.24: Example code corre-
sponding to the same measurement as
the old code seen above, a PSD with
voltage and flux sweeps. The code is
more concise than the old one: Two
lines define parameters to sweep (VB
& FB), one line define what is mea-
sured (PSD), one how data will be
saved (HDF). The last line explicit
sweep order and starts the measure-
ment, initialises required instruments
(some are also initialised when param-
eters are defined), asks where the file
will be saved and then performs all
loops.

3.b Visualisation pipeline

A way to visualise the measured data quickly is essential in order to quickly interpret the physics and
refine what has to be measured. There are two main key points:

• First, when more than two parameters are explored, some of them have to be fixed while the
measurement is plotted as a function of one or two parameters;

• Second, as seen in section 2.a, our measurements require highly demanding calibrations. Moreover,
a new measurement setup can require a new calibration scheme, and so our visualisation tool has to
be extensible.

Both of them can be addressed if underlying data can be accessed and transformed, until the data can be
pictured by a one or two-dimensional array, which is easy to plot.

Those successive transformations act on the data step by step: The data flows through a pipeline of
filters (see figure II.25) with the raw data at the source and the plotted figure at the sink.
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II.3. Instrumentation framework

Figure II.25: Pipeline model in which data flow. Orange arrows show the path followed by a dataset. Each block
connected by an orange arrow is a plugin that performs a required treatment on the dataset. If a plugin needs some additional
data it can also use IO (in the group Interface). Moreover, at each step the resulting dataset is saved and will be used if IO
changes to not reapply all plugins but only the one following the changed IO.

Dataset model

First of all, to ensure the consistency of the data all along the pipeline, the arrays inside our data structures
are immutable, so the data can be accessed but not altered, to do a transformation the arrays are copied
and put inside a new data structure. Moreover, at cost of memory, it speeds up the update of the pipeline
that happens when a filter is added, removed or altered. Actually the data structure just before the
modification is reusable and only the downstream elements have to be subsequently updated, as pictured
in figure II.25.

Our data structures have two responsibilities:

• Hierarchically organise the data: Each axis of arrays of data is associated to a parameter, arrays of
data are grouped together to form a dataset;

• Add semantics to each array of data: A name, unit and some metadata – e.g. how instruments are
setup and synchronised.

This hierarchical organisation is summarised in figure II.26, a Dataset contains two dictionaries, one
associating a name to each Parameter and one associating a name to each Measurement. It also contains
a third dictionary which structures all the metadata.

Figure II.26: Dataset model hi-
erarchy includes three subgroups,
one for the parameters, one for the
measurements and finally a dictio-
nary (the right most cylinder) for
the metadata. The two first sub-
groups are dictionaries associating
names to Parameter or Measurement
objects. Those objects are also simi-
lar, they include str objects to store a
name and an unit and a numpy.array
to store the data. Measurement also
includes a dictionary that associates
parameter names to axis indices.

Parameter and Measurement share some properties, both have an immutable array, a name and an
unit, i.e. the semantic due to the physics is associated to the data array, and so at each time the physical
meaning of the data can be retrieved. Moreover, each Measurement includes a dictionary associating a
parameter name to each axis of the data array.
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Operations

The dataset model offers all elements to perform all needed analysis. Actually, measured data can be
opened with the framework and an usual numpy array can be retrieved and used as any other numpy array,
and thanks to the last dictionary (see above) and the Parameter objects the correspondence between axis
and Parameter is known. Figure II.27 shows an example of framework usage for analysis.

1 from meavis import core
2 from meavis import load
3

4 data = load.load(filename)
5 data = core.reduce_dim(data)
6

7 print data.measurements.keys()
8 #Display: ['/VNA/s12']
9 print data.measurements['/VNA/s12'].scales

10 #Display: {u'/Flux Bias': 0, u'/VNA/Frequency': 1, u'/Voltage Bias': 2}
11

12 data_vna = data.measurements['/VNA/s12'].data
13

14 data_fb = data.parameters[ '/Flux Bias' ].data
15 data_freq = data.parameters['/VNA/Frequency'].data
16 data_vb = data.parameters[ '/Voltage Bias' ].data
17

18 print data.parameters['/Flux Bias' ].unit #Display: A
19 print data.parameters['/VNA/Frequency'].unit #Display: Hz
20 print data.parameters['/Voltage Bias' ].unit #Display: V
21

22 #Here data_vna[2,12,5] is the S parameter when:
23 # - The flux bias is data_fb[2] A
24 # - The voltage bias is data_vb[5] V
25 #At data_freq[12] Hz
26 #Now all data_xxx can be used as any other numpy array

Figure II.27: Snippet of analysis
code. This is an example of python
code that loads the data from a file-
name, prints information about the
dataset structure and retrieves useful
data. Afterwards they can be plotted
for example.

Moreover, as previously explained, this dataset model is useful for building a visualisation tool following
the idea presented in figure II.25. Screenshot figure II.28 shows how this principle is implemented with a
GUI: The tabs at the bottom configure filters which the dataset goes through, that can be added, removed
and reorganised. The current tab displays the interface used to choose:

• Which data is plotted, on the left panel;

• Along which parameters, labelled abscissa and ordinate;

• To pin some parameters at chosen values, with a slider for each parameter.

The code resulting of those filters looks like line 4-5 in figure II.27: A data object is given to a function –
with other arguments to configure the filter, like abscissa and ordinate names – and the function output
become the new data object. Moreover, this resulting code can be copied to the clipboard to be pasted
and enhanced for further analysis.
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II.3. Instrumentation framework

Figure II.28: Screenshot of the data explorer GUI where five areas are visible. First left panel is the file explorer, it
allows to navigate through the arborescence of files. When a file is selected the two right panels update, top one shows
metadata, bottom one allows to add some user information. When opened, the centre area shows a plot of the data, while
the bottom panel has as many tabs as plugins. Here the last plugin, Data Selector is shown, the left list is used to select
which data to plot while the right part selects abscissa, ordinate and pins other parameters (or averages them over a range).
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Chapter III
Sample design and fabrication

French resume

Ce court chapitre est dédié à la fabrication de nos échantillons. Une première partie explique la déposition
et la gravure d’une tri-couche de NbN/MgO/NbN pour former des jonctions Josephson, des lignes de
transmission et d’autres structures. Une seconde partie étudie les environnements électromagnétiques
élémentaires que l’on peut réaliser et assembler pour former des circuits plus complexes.
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1 Fabrication

Preamble As I did not develop new aspects for the fabrication process, the description will be succinct;
for details and problems encountered during the development, see [Grimm15 ; Grimm17 ; Jebari17 ].

First, the fabrication process will be described to explain how it SQUIDs are patterned and how CPWs
are obtained with the same steps.

1.a Trilayer deposition

First of all a thin buffer (20 nm) of MgO is sputtered on a 4 in Si(500 µm)/SiO2(500 nm) wafer, this buffer
increases the trilayer critical temperature and acts as etch stop [Grimm15 ; Jebari18 ]. After, the trilayer
NbN/MgO/NbN is sputtered.

Thicknesses of the different layers depend on the device because our fabrication process is continuously
evolving, table III.1 shows the thicknesses for four devices:

ICTA Saclay: Is the sample used [Hofheinz11 ] to begin the exploration of the photonic side of
inelastic Cooper pair tunnelling. The fabrication process is not the one described here (standard
Al–junctions & Nb for large structures);
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SPS: Is the sample presented in chapter IV and one of the first built with this NbN fabrication
process;

ICTA low noise: Is presented in chapter V and has been designed by S. Jebari [Jebari17 ] also with
this NbN fabrication process;

Future designs: A new process for Nb/Al/Al2O3/Nb junctions has been developed by R. Albert
and will be used for future designs.

Table III.1: Thicknesses of layers

Device Species Thickness

ICTA Saclay Structure Nb 50 nm

Bottom Al 30 nm

Al2O3 Oxidation

Top Al 30 nm

SPS Bottom NbN 80 nm

MgO 4 nm

Top NbN 200 nm

Dielectric Si3N4 500 nm

Top-wiring NbN 300 nm

ICTA low noise Bottom NbN 30 nm

MgO 5 nm

Top NbN 170 nm

Dielectric Si3N4 300 nm

Top-wiring NbN 350 nm

Future designs Bottom Nb 50 nm

Al 10 nm

Al2O3 Oxidation

Top Nb 50 nm

Dielectric Si3N4 200 nm

Top-wiring Nb 200 nm

RF & DC magnetron sputtering is done with an Alcatel SCM 600 with two targets:

• Nb which is nitrided with N2 gas and sputtered with a DC field and a static (for top layer of the
trilayer and top-wiring) or rotating (for bottom layer of the trilayer) substrate;

• MgO is sputtered with an RF field and a rotating substrate.

Note that the Alcatel SCM 600 also allows back-sputtering to clean the substrate. Back-sputtering is
performed each time the wafer is introduced in the machine, i.e. before the first MgO sputtering on the
substrate and before the top-wiring is sputtered.
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1.b Etching of structures

Superconducting Quantum Interference Device (SQUID)

A SQUID is made of two Josephson junctions. To make each of them, two conducting fingers have to
cross:

• Bottom fingers are defined by etching all the trilayer. Figure III.1 top left shows the wafer after
etching. The MgO buffer is red, the blue structure is the trilayer defining the two fingers,

• Si3N4 dielectric is deposited by CVD and anisotropically mechanically. Subsequently, Si3N4 only
remains clung to vertical trilayer walls. Figure III.1 bottom left shows the structure after Si3N4

deposition and etching, Si3N4 is orange and some of it clings to the trilayer fingers (in blue);

• Top fingers are defined by sputtering and etching top-wiring (NbN). The etch step also removes
the top NbN of the trilayer. Figure III.1 right shows the final structure, as the top NbN has been
removed on the bottom finger, they are made only of bottom NbN and MgO barrier (red fingers);
moreover as vertical walls have been protected with Si3N4 bottom (blue) and top (red) fingers cross
and the interface is the MgO barrier.

Techniques used for each step are summed up in table III.2.

Figure III.1: SQUID fabrication.
Top left: Green is the SiO2 of the
wafer, red is the MgO buffer, blue
is the trilayer NbN/MgO/NbN. The
first step defines the two fingers of
the SQUID and is done by etch-
ing the trilayer (see text). Bottom
left: In the second fabrication step, a
layer of Si3N4 is deposited and etched
anisotropically so that spacers remain
clinging to the trilayer edge (orange).
Centre right: In the last step, the
top-wiring (NbN in blue) closes the
SQUID loop. Note that the top part
of the trilayer is etched together with
the top-wiring, so the junctions are
defined between the bottom part of
the trilayer (below the two red fin-
gers) and the top-wiring. The current
has to go through the barrier because
the spacers avoid that the top-wiring
shunts the trilayer. Bottom right is a
optical micrograph of such a SQUID,
borders of each structure are visible,
the two junctions are the two rect-
angles (in the centre) defined by the
crossing of fingers.

RIE is done with an Oxford ICP Plasmalab 100 RIE using a plasma of three gases:

• Ar mechanically etches MgO when strongly biased, or makes chemical etches more directional (see
CH2F2));

• SF6 chemically etches NbN or Si3N4 in all directions;

• CH2F2 polymerises the surface to protect it from SF6, however this polymer is etched by Ar
consequently only vertical edges are protected and the SF6 chemical etching becomes directional.

When possible, interfaces between layers are used for end point detection, especially the MgO buffer or
barrier. Details about masks and resists used for EBL or OL are given [Grimm15 ; Jebari17 ].

67



III. Sample design and fabrication

Table III.2: Sum up of coating & etching steps

Step Coating Lithography Etching

Trilayer DC & RF magnetron sputtering EBL & OL RIE

NbN/MgO/NbN Ar/SF6/CH2F2

Spacer CVD OL RIE

Si3N4 Ar/SF6/CH2F2

Top-wiring DC magnetron sputtering EBL & OL RIE

NbN Ar/SF6/CH2F2

Electron Beam Lithography (EBL)
Optical Lithography (OL)

Reactive Ion Etching (RIE)
Chemical Vapour Deposition (CVD)

Coplanar Waveguide (CPW)

A CPW is made of three conductors, a centre conductor and two ground planes (see figure III.2):

• Conductors are made by only etching the top-wiring, both trilayer and spacer remain;

• Gaps between conductors are made by etching both trilayer and top-wiring, only the dielectric
remains.

Figure III.2 top shows the three conductors in blue (red is the MgO buffer), figure III.2 middle shows how
the structure is covered by Si3N4 dielectric. Moreover, to balance the two ground planes, they have to be
linked. This can be achieved by going over the central conductor from one ground plane to the other,
simply by not etching the top-wiring. This strap is connected to the ground planes thanks to vias through
the dielectric made by etching it (blue on top of orange in figure III.2). Moreover, regularly spaced holes
are made in the top-wiring part of the ground plane to pin vortices.

Other structures

Using the same fabrication process, two other structures can be patterned:

Spiral inductors are easy included by etching the spiral pattern in the trilayer and using vias and
top-wiring straps (as those used to link lateral ground planes) to escape from the spiral centre;

Capacitor are simply formed by using the dielectric sandwiched between the trilayer and the top-
wiring.

Adding a supplementary coating step, a resistive material – Cr – can be deposited, either between the
trilayer and the dielectric, or after the top-wiring. See [Grimm15 ] for details about pattern and geometry
of cooling pads.
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Figure III.2: CPW fabrication.
Top is the first fabrication step. Af-
ter this step the CPW is already de-
fined: There are two lateral ground
planes and a central conductor (in
blue). Centre: In the second step,
the CPW is recovered by the dielectric
Si3N4, eventually some holes can be
made to from vias between the CPW
conductors and the future top-wiring.
Here there are two holes on top of
the ground planes. Bottom: As the
last step, NbN is deposited as top-
wiring. Here the top-wiring connects
both ground planes to avoid charge
imbalances. Right is a micrograph of
a section of CPW. The conductors are
visible, two bridges between ground
planes are also visible.

2 Environment tailoring

As seen in chapter I, an electromagnetic environment can be decomposed in several independent envi-
ronments in series. Knowing the behaviour of each one of them in terms of P-function (P(n)), gives the
behaviour of the full environment P = P(0) ∗ P(1) ∗ · · · .

Two simple examples of such decompositions (see also figure III.3):

• The P-function of a resonator is made of peaks at integer multiples of the energy of a photon inside
this resonator nhν0. This means Cooper pairs can tunnel at zero bias (supercurrent) or if their
energy corresponds to an integer number of photons inside the resonator. And consequently, if the
environment is made of two resonators, Cooper pairs can tunnel if νJ = nν0 + mν1 while creating
n photons in the first resonator and m in the second one;

• If an environment has a high impedance at νJ ≃ 0, tunnelling Cooper pairs have to pay a charging
energy EC to tunnel. The maximum of the corresponding P-function is slightly shifted from 0 to
EC . In the same way, if the environment is made of a resonator and such an impedance, Cooper
pairs can tunnel if hνJ = EC + nhν0 while creating n photons in the resonator and providing the
charging energy.

2.a Single mode resonator: λ/4 versus LC

All our device are based on resonators, two designs have been investigated:
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Figure III.3: P-function decomposition. Panel a and b correspond to the P-function when the electromagnetic
environment is a single mode resonator at ν0/1. There is a peak at zero corresponding to supercurrent: No mandatory
energy is required to tunnel. Other peaks correspond to a Cooper pair tunnelling while dissipating its energy in the form of
photons at ν0/1. Panel c corresponds to the P-function when the electromagnetic environment requires an energy to tunnel:
There is a single peak at EC , to tunnel though this environment a Cooper pair energy EC is required. This feature is typical
of an RC circuit (with R > RQ) for example, EC ≡ (2e)2 /2C . Panel a+b corresponds to the combination in series of
the environments a and b. Now Cooper pairs can tunnel and give theirs energy to photons in the environment a, or b, or
both! Abscissa labels these different processes. Panel a+c corresponds to the combination in series of the environments a
and c, now Cooper pairs have to pay the mandatory energy required by the environment c and can emit their remaining
energy to photons in the environment a. Abscissa labels these different processes.

• Two cascaded quarter-wave TLs;

• LC resonators made of lumped elements together with a quarter-wave transformer.

Both are shown in figure III.4. Those are two of the simplest designs as they have the minimal number of
parameters to tune frequency, effective impedance and quality factor.

Figure III.4: Designs of resonators. Top degign is two cascaded quarter-
wave TL, the first TL seen (starting from Zin) defines the effective impedance
of the resonator 4Zsys/π, while the second one transforms (a quarter-wave TL
transform high-impedance to low-impedance, relatively to this TL impedance Zκ

and reciprocally) the load impedance and so tune the quality factor. Bottom design
is a LC resonator with a quarter-wave TL, as for the previous design, the first part
defines the effective impedance

√
L/C while the quarter-wave tune the quality factor.

See text and table III.3 for details.

Before going further, let’s remind some definitions for characteristic quantities of a resonator. There,
definitions are based on the current iin and the voltage uin at input of the resonator which follow1 the
equation:

∂2
t uin + ωsys

Q ∂tuin + ω2
sysuin = ωsysZeff∂tiin (III.1)

ωsys is the resonance frequency, Zeff the effective impedance and Q the quality factor. Moreover, a load
impedance is then defined as QZeff . All these definitions are exactly recovered for a parallel RLC . When
Q → ∞, the equation degenerates and physically corresponds to a resonator where no photon can escape,
i.e. unloaded resonator. The corresponding degenerate effective impedance is the internal impedance Z (0)

sys .
1For quantities oscillating close to ωsys
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III.2. Environment tailoring

With Zin ≡ uω,in/iω,in and Z (0)
in ≡ uω,in/iω,in for normal and degenerate cases, it follows:

Z (0)
sys ≡

∣∣∣∣∣∂ω

[
ωsys

2Z (0)
in

]
(ωsys)

∣∣∣∣∣
−1

, Zeff ≡

√
−8Zin (ωsys)3

ω2
sys [∂2

ωZin] (ωsys)
, Q ≡

√
−ω2

sys [∂2
ωZin] (ωsys)

8Zin (ωsys)
(III.2)

In both cases a resonator is formed:

• A piece of TL of characteristic impedance Zsys allows for a stationary wave if its length is a multiple
n of the quarter-wave2. It forms a resonance with characteristic impedance 4Zsys/nπ;

• A capacitor C and an inductor L in parallel, as a textbook derivation shows, form a resonator at
1/
√

LC with characteristic impedance
√

L/C .

Table III.3: Characteristics of resonators

Design Z (0)
sys Zdamp Zeff Q

Cascaded λ/4 Zsys
4
π 50 Ω Z2

sys
Z2

κ
Zsys

4
π︸ ︷︷ ︸

Z(0)
sys

√
Zsys

Zsys+2Zκ
50 ΩZsys

Z2
κ︸ ︷︷ ︸

Zdamp/Zsys

π
4

√
Zsys+2Zκ

Zsys

LC & λ/4 transformer Zsys ≡
√

L
C

Z2
κ

50 Ω Zsys

√
2Zκ

2Zκ+πZsys

Z2
κ

50 Ω · Zsys︸ ︷︷ ︸
Zdamp/Zsys

√
2Zκ+πZsys

2Zκ

Z (0)
sys Internal impedance
Zdamp Load impedance

Zeff Effective impedance
Q Quality factor

In both cases, the resonator needs to be coupled to a TL in order to extract photons, the coupling to
the TL can be adjusting by adding a quarter-wave transformer to transform the 50 Ω to the needed load.
In the cascaded quarter-wave case, the 50 Ω is transformed two times. The second column of table III.3
shows the resulting Zdamp. Figure III.5 shows the impedance line shape of these two resonators, the main
difference is the DC impedance, zero for an LC–circuit and 50 Ω for cascaded quarter-wave resonators.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Measured frequency ω (ωsys)

10−2

10−1

100

101

Im
p

ed
an

ce
R

e
Z

(Z
eff

)

ZL

LC & λ/4
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Lorentzian

FWHM ωsys/Q

Figure III.5: Resonator
shapes. The dotted
line is the Lorentzian shape
QZeff/

[
1 + 4 (Q/ωsys)2 (ω − ωsys)2].

Blue and grey lines are the real part
of the impedance of respectively an
LC circuit coupled to a quarter-wave
TL and two cascaded quarter-wave
TL where characteristic values are
chosen to give the same effective
impedance and quality factor, see
table III.3. A first difference is the
behaviour at low-frequencies, LC &
λ/4 goes to zero while cascaded λ/4
to the load impedance ZL ≡ 50 Ω.
The second difference is the existence
of higher modes. The cascaded λ/4
has resonances at (2n + 1) ωsys while
LC & λ/4 higher modes are lower in
characteristic impedance.

2If there is a node a one end, there is an anti-note at the other. However, it is only a necessary condition, not sufficient.

71



III. Sample design and fabrication

In order to apply equation III.2 to our models, sympy is used. First, it is used to solve Zin for each
model. Then it finds the resonance frequency ωsys and performs a second order Taylor expansion of Re Zsys

around ωsys, where only the two first dominant terms are kept. Table III.3 shows the final expressions.

2.b Fabrication capabilities

Now let’s see how flexible our designs are. From numerical simulations (done with Sonnet & home-made
software), feasible parameters ranges for each element are determined – see table III.4. And finally
figure III.6 shows which resonator parameters can be designed.

Table III.4: Order of magnitude

Quantity Minimum Maximum

Spiral inductor 0.1 nH 100 nH

Face to face capacitor 10 fF 200 pF

Frequency LC 35 MHz 160 GHz

CPW λ/4 20 Ω 180 Ω

Microstrip λ/4 0.1 Ω 50 Ω

Frequency λ/4 20 MHz 1.2 THz

(2.5 m) (NbN gap)

100 101 102 103 104 105

Quality factor Q
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Figure III.6: Characteristics of our resonators. Left panel: Black border delimits the region where Q ≥ 1/2 and
QZeff ≥ 50 Ω which are requirements to be under-damped and have an impedance at resonance frequency above ZL ≡ 50 Ω.
Each triangle delimits the Q − Zeff space accessible with each design. Note that higher Q can be reached with additional
λ/4 transformers. For LC & λ/4 the different triangles show how the space shrinks with the frequency. The star indicates
the typical resonator used in our device, see chapters IV and V. Right panel: Each parallelogram delimits the ν0 − Z (0)

sys
space accessible with each design (ν0 ≡ 2πωsys).
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Experimental results





Chapter IV
Non-classical radiation

French resume

Ce chapitre s’intéresse à la réalisation d’une source de photons non-classique en utilisant l’ICPT. Une
première partie décrit le dispositif expérimental et la manière dont il utilise l’ICPT pour produire des
photons dans un régime quantique. La mesure expérimentale de la PSD permet alors de caractériser
l’échantillon grâce à la théorie P :

• Le courant critique;

• La température thermodynamique;

• L’impédance vue par la jonction Josephson.

On peut ensuite étudier deux modes de fonctionnement : un mode libre et un à la demande. Le premier
est celui pour lequel l’échantillon a été conçu. Le second tire profit d’un comportement inattendu : un
courant critique important permet d’échapper au régime décrit par l’ICPT et d’atteindre un comportement
non-radiatif où l’échantillon est essentiellement résistif. Pour les deux modes, la PSD et la g(2) sont
mesurées pour caractériser notre échantillon.
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Preamble The results of this chapter have been submitted for publication [Grimm18 ]. The device
includes an on-chip resistor that has to be very cold (see below), and has to be designed properly to
provide sufficient cooling. This aspect has been studied in previous work [Grimm15 ; Grimm18 ], and will
not be detailed here.

1 Design

Here, the design used to achieve a source of single photons is presented. First the working principle of the
sample studied previously by M. Hofheinz [Hofheinz11 ] is recalled, then an update to turn from coherent
to single photon operating mode is developed.

1.a Coherent source

[Hofheinz11 ] studied a source made of two quarter-wave TL. Figure IV.1 shows this design. The peak at
6 GHz of the P-function corresponds to a Cooper pair tunnelling and dissipating its energy in the form
of a photon inside the resonator. From now, we will focus on this process. As there is a peak at zero
energy, no charging energy is required for tunnelling. Consequently, the Cooper pairs tunnel freely and
independently, and each Cooper pair that tunnels creates a photon inside the resonator. Photons coming
from the resonator are, therefore, also independent, which corresponds to a coherent state.

Figure IV.1: Coherent source.
Left scheme shows the two cas-
caded quarter-wave TL, the orange
one mainly defines the resonator
impedance while the red one together
with the 50 Ω port defines the Q
factor. The Josephson junction is
in blue. Panel a shows the real
part of the impedance as a function
of the frequency, there are modes
at (2n + 1) νsys, 6 GHz and 18 GHz
peaks are visible. Panel b shows the
corresponding P-function as a func-
tion of the voltage bias expressed in
GHz. The peaks correspond to bi-
ases where Cooper pair tunnelling can
happen. The zero bias peak is the su-
percurrent, the second and last corre-
spond to first order processes with
photons at respectively 6 GHz and
18 GHz, the third one is a second or-
der process where a Cooper pair gives
two photons at 6 GHz. Orange dot-
ted lines indicate the process used as
photon source.

The coherent state is also recovered by applying the interaction Hamiltonian1 e−i
√

Zsys/(RQ/π)b† to the
vacuum state |0⟩, then it displaces the vacuum2 by −i

√
Zsys/ (RQ/π), i.e. a coherent state by definition.

1Chapter V will give more details about it.
2The previous expression includes only one term of the displacement operator for brevity.
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IV.1. Design

1.b Working principle

To turn this source in to a SPS, an RC circuit is added. The goal is to require an excess charging energy
together with the photon energy for Cooper pairs to tunnel. Moreover, if the charging energy is higher for
a second Cooper pair, the bias voltage is not sufficient to provide the increased charging energy and the
photon energy, therefore photon emission is prevented. Consequently, an RC circuit with a large enough
relaxation time – larger than resonator relaxation time – fits the requirements. The energy to charge the
capacitor with a first Cooper pair is (2e)2

/2C while it becomes (2 · 2e)2
/2C − (2e)2

/2C = 3 · (2e)2
/2C

for a second Cooper pair (see figure IV.2). Moreover, the resistor tunes the relaxation time ≃ RC . Note
here that to avoid thermal charging of the capacitor, the capacitor has to be small:

C ≪ (2e)2

2kB · 20 mK ≃ 186 fF (IV.1)

Cooper pair 0

Cooper pair +hνJ

Photon hν

Cooper pair 0

Cooper pair +hνJ

Photon hν

EC

Cooper pair 0

Cooper pair +hνJ

3EC

Figure IV.2: Blocking mechanism.
Left diagram Coherent source. Tun-
nelling happens when the Cooper pair
energy hνJ and photon energy hν are
equal. Then each tunnelling Cooper
pair gives a photon. Centre dia-
gram: The same process in presence
of a high impedance RC circuit where
a charging energy EC is required for
a Cooper pair to tunnel and charge
the capacitor, while dissipating the
remaining energy as a photon. Right
diagram: When the capacitor is al-
ready charged, the charging energy to
pay is now 3EC , consequently ener-
gies are not balanced any more block-
ing further tunnelling and photon
emission.

Figure IV.3 shows this design and corresponding P-function displaying a shift by EC with the
characteristics due to the charging mechanism. There is also a broadening of all processes, a consequence
is that two different processes are more likely to happen at the same voltage bias. For example, if the
process shown by the vertical orange dotted line is driven at a slightly lower bias, the process can still be
driven but tunnelling whitout photon emission is also possible. We therefore expect emission along wide
ranges of bias.

1.c Implementation

To experimentally implement this new design, a capacitor has to be designed. The way chosen was to
take advantage of the flux bias which has to be close to the SQUID. This line has been designed to cross
the line of the SQUID, and so it forms a capacitor, see figure IV.4.

However, this way to realise the capacitor designed for DC flux has a drawback, it introduces unwanted
coupling between the flux line and the voltage bias. Modulation of the flux bias also modulates the voltage
bias through an inductive and capacitive coupling (see figure IV.4).
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IV. Non-classical radiation

Figure IV.3: SPS design. Top
scheme shows how the coherent
source is modified to include a block-
ing mechanism: An RC circuit is
added. In orange the capacitor that
will be charged by tunnelling Cooper
pairs, in red the resistor that dissi-
pates those charges. Panel a shows
the real part of the impedance as
a function of the frequency. Com-
pared to the previous scheme, the
impedance at low-frequencies is high.
Panel b shows the corresponding P-
function as a function of the volt-
age bias expressed in GHz. Now the
peaks are shifted by EC /h, a sig-
nature of the charging mechanism:
Cooper pairs have to charge the capac-
itor while tunnelling. Orange dotted
lines indicate the process used as SPS:
A Cooper pair biased at νJ ≡ νsys +
EC /h tunnels while charging the ca-
pacitor EC ≡ (2e)2 /2C and creat-
ing a photon at νsys in the resonator.

Figure IV.4: SQUID and RC.
Right micrographs show how the ca-
pacitor is made. The flux line – used
to tune the effective critical current of
the SQUID – crosses the line between
the SQUID and the resistor. More-
over, the short wire to ground after
the crossing is equivalent to an induc-
tance. Left scheme updates the pre-
vious scheme (figure IV.3) taking into
account this coupling. In pink the
elements added for the flux control.

2 PSD measurements & characterisation

This second section is dedicated to show how PSD is used to extract P-function and impedance seen by
the junction, following the theory recalled in chapter I section 1.b.

2.a Characterisation in the P-theory regime

All this section is based on equation I.26:

γout
ν (νJ , ν) ≃ hIc

2

2 Re [Zν (ν)] P (hνJ − hν) (IV.2)

First of all, this equation requires the Josephson junction to be a small perturbation, i.e. −ϕ0Ic ≪ ℏν0.
At 6 GHz this corresponds to Ic ≪ 1.9 nA. We reach this limit by almost completely frustrating the
SQUID. Figure IV.5 shows the corresponding PSD.

First, integrating along νJ gives hIc
2 Re [Zν (ν)] /2 thanks to the normalisation property of the P-

function. Subsequently, dividing the PSD by this quantity gives P (hνJ − hν) for many νJ , ν. Finally, a
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IV.2. PSD measurements & characterisation
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Figure IV.5: Low current PSD & P-function. Panel a is the PSD as a function of the frequency and the voltage bias
expressed in frequency. The dashed white line is the first order process CPνJ →

EC
Phν , the dotted while lines are second

order processes, respectively CPνJ →
EC

Phν + Phν0 and CPνJ →
EC

Phν + Phν1 where νn ≡ (2n + 1) νsys are the resonance

frequencies of the different modes. Panel b is the real part of the impedance as a function the frequency extracted from the
PSD (see panel a). Up to a prefactor, it is the integration over bias of the PSD (see text). Panel c is the P-function as a
function of the bias. Up to a prefactor, the PSD is the integration along the dotted and dashed while lines of the PSD (see
text).

normalised window function w (νJ , ν, ν′) ∝ e−(νJ−ν−ν′)2
/2σ2

γout
ν (νJ , ν) is used to extract P (hν′):

P (hν′) ≃
∫ ∫

P (hνJ − hν) w (νJ , ν, ν′) dνJ dν (IV.3)

Integration is performed over the measurement space. This corresponds to integration parallel to the
dashed and dotted lines in figure IV.5. Figure IV.5 shows the P-function on the right panel.

Moreover, white lines show the three different processes:

• A first order process where one Cooper pair gives one photon at ν0 and charging the capacitor with
one Cooper pair;

• Two second order processes where one Cooper pair gives two photons (two at ν0 or one at ν0 and
one at 3ν0).

Electronic temperature extraction

From the P-function, the thermodynamic temperature can be extracted (see equation C.7 for derivation):

P (−hνJ) = e−βhνJ P (hνJ) (IV.4)

Inverting this relation, β can be expressed as a function of the frequency νJ :

β (νJ ) = ln P (hνJ)− ln P (−hνJ)
hνJ

(IV.5)

Figure IV.6 shows this relation, even through it should be constant, numerical errors and algebraic
properties induces variations.
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IV. Non-classical radiation

Differential form associated to equation IV.5 is:

δβ (νJ ) = δP (hνJ)
hνJ

(
1

P (hνJ) + 1
P (−hνJ)

)
(IV.6)

Therefore we use a normalised weight function ∝ νJ/P (hνJ)−1 +P (−hνJ)−1 (orange line on figure IV.6)
get an averaged the thermodynamic temperature of 20.9 mK.
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Figure IV.6: Temperature extrac-
tion. Left axis is the temperature
as a function of the bias following
equation IV.5, when far from zero, P
is small and then the value extracted
with equation IV.5 can diverge. Right
axis is the window function used to
mean the temperature taking into ac-
count where equation IV.5 is the less
noisy, see equation IV.6.

Critical current extraction

In order to extract the critical current of the SQUID, let’s recall the Minnhagen relation:

νJP (hνJ) =
∫
R

P (hνJ − hν) Re [Zν (ν)]
RQ/2

1
1− e−βhν

dν (IV.7)

Together with equation IV.2 and P normalisation, it can be rewritten:

hIc
2

4

∫
dνJ νJP (hνJ ) σνJ (νJ) =

∫
dν

1
RQ

1
1− e−βhν

σν (ν)︸ ︷︷ ︸∫
dνJ σνJ (νJ )P(hνJ−hν)

∫
dνJ γout

ν (νJ , ν)︸ ︷︷ ︸
hIc2

2 Re[Zν (ν)]

(IV.8)

All terms excepted Ic and σνJ are known, now a well adapted choice for σνJ can limit integration to
measurement ranges.

The two black lines on figure IV.7 show that a sharp integration of P around 7.4 GHz corresponds to
an integration in frequency space around 6 GHz. However even through this integration is done with a
sharp Gaussian shape, the corresponding integration is too wide. A way to reduce the integration range is
to include negative values in σνJ . The orange lines show this behaviour.
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Figure IV.7: P-function extrac-
tion. Panel a is the P-function (in
blue) as a function of the bias, it is
the same data as figure IV.5. Panel b
is the real part of the impedance as
a function of the frequency, it is the
same data as figure IV.5. The dotted
black line on both panels is the win-
dow function used to extract the crit-
ical current (see equation IV.8): On
panel a the window function is cho-
sen as a Gaussian, while on panel b
the window function is the convolu-
tion of the first window function and
P (arg1)-function (see equation IV.8
& text). Dashed orange line on
both panels are different weight func-
tions, see panel a. A wise choice of
the initial window function can give
a final window function with most of
the weight where the data have been
measured.
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IV.2. PSD measurements & characterisation

For now, the construction of σνJ is empirical. I choose an orthonormal basis made of Hermite functions
and maximise the weight of σν inside the measurement range. However, this method has drawbacks:

• The oscillation of σνJ can lead to a numerical value close to 0, and consequently a diverging result
due to numerical errors;

• If the impedance outside the measurement range is high, even a small amount of σν outside the
measurement range can lead to an important error.

To confirm our method, I also apply it to a measurement covering a wider frequency range. Figure IV.8
shows this comparison; the left panel and blue line are the previous measurement, the right one and
orange line is the second measurement done after with a slightly different critical current.
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Figure IV.8: Critical current extraction for different measurement ranges. Panel a is the PSD as a function
of the bias and the frequency. Dotted white lines delimits the FWHM of the resonator. Here the data are the same as
previously. Panel b is the PSD as a function of the bias and the frequency. Here the data are taken at a lower critical
current and measured over a different range. Panel c is the photon rate – integration of the PSD over the FWHM – as a
function of the bias. Left axis corresponds to panel a and right one to panel b, the two critical current are determined with
equation IV.8 (see also text). Right scale is the left one multiplied by (0.5 nA/0.8 nA)2. The curves should superpose if the
sample is operated in the P-regime and the extracted critical currents are correct. The difference between the two critical
current extraction is that the second one is done over a wider frequency range, and so the window functions for integration
are easier to choose (see text and figure IV.7).

On the bottom panel, left and right are scaled according to the critical current as blue and orange
lines should superpose.

2.b Blocking mechanism

When the critical current is increased – thanks to the flux bias – another working regime can become
dominant. Indeed, the resistor results in a high-impedance environment at low-frequencies, and so when
the current flowing though the system is too high, a non negligible voltage drops over the resistor. And
finally the voltage can even be fully dropped over on the resistor as a Josephson junction locks to the
zero-voltage state when the critical current is large enough.

This mechanism is very different from the previous P-theory, there is no more photonic aspect and
all the energy is dissipated in the resistor. Therefore, the following measurements will exhibit different
regions where photon emission happens or is blocked. The last section of this chapter actually uses this
mechanism for on-demand emission.

81



IV. Non-classical radiation

Figure IV.9: Dark state of the de-
vice. Top scheme is the standard
operating mode, the Josephson junc-
tion is DC biased and results to an
oscillating currenta. Bottom scheme
is the blocking operating mode, the
Josephson junction is in zero-voltage
bias state and admits a DC current
while the applied bias drops over the
resistor. However, this state is possi-
ble only if the critical current is high
enough: Ic ≥ Vb/R.

aThere is also a DC component,
see chapter I.

DC current

In order to better investigate this blocking mechanism, a DC current measurement is very helpful: When
the device is in the dark state, the current flows as if only the load was there. Figure IV.10 shows this
measurement. As excepted the current follows the resistance load-line (dark line on right panel) at 32.1 kΩ.
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Figure IV.10: Cross PSD & DC
current. Panel a is the photon
rate – integration of the PSD over the
measured frequencies – as a function
of the SQUID flux bias – i.e. the ef-
fective critical current – and the volt-
age bias. Panel b is the DC current
as a function of the voltage bias at
different flux biases (vertical dotted
lines of panel a). There is a corre-
lation between a resistive behaviour
– equivalent to 32.1 kΩ – and the re-
gion where there is no emission. It is
explained by an effective critical cur-
rent high enough to lock the SQUID
to the zero-voltage state, so that the
bias voltage drops over the resistor,
see figure IV.9. Then the load-line
at 32.1 kΩ corresponds to the resistor
of the RC circuit. Note that the two
measurements have been performed
in different cool-downs. There may
be a slight difference in the effective
critical currents.

Another way to confirm that interpretation is to look at the resonator frequency. Actually when
the device is in the dark state the SQUID is in its zero-voltage state and consequently behaves as an
inductance following the rule:

LJ (ϕ) ≡
−ϕ0

Ic
max |cos (ϕ/2−ϕ0)| (IV.9)

This inductance subsequently shifts upward the resonator frequency in the region where the mechanism is
blocked. Figure IV.11 shows a measurement of the resonator frequency done with a VNA. It confirms our
interpretation and a closer look at the border between the regions shows the blocking is continuous.
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Figure IV.11: Resonator fre-
quency. Panel a is the resonator
frequency – measured with a VNA –
as a function of the SQUID flux bias
– i.e. the effective critical current –
and the voltage bias. Panel b is the
DC current as a function of the volt-
age bias at different flux bias (verti-
cal dotted lines of panel a). There
is a correlation between a resistive
behaviour – equivalent to 32.1 kΩ –
and the region where the frequency
is higher. Both are explained by an
effective critical current being high
enough to lock to the zero-voltage
state, see figure IV.9. Indeed, in that
case the SQUID behaves as an induc-
tance which effectively shifts the res-
onator frequency. Note that the two
measurements have been performed
in different cool-downs. There may
be a slight difference in the effective
critical currents.

Numerical calculations

In order to verify that our model (see figure IV.9) accurately captures the device behaviour we numerically
calculate Z and P and compare it to the measured quantities. Before going further in numerical calculations,
let’s recall the values extracted from the actual measurements: Even through all those parameters can be

Table IV.1: Parameters extracted from measurements

ν0 C 1/kBβ Ic Q Z0 R RC

5.98 GHz 56.7 fF 20.9 mK 0.86 nA 10.9 106 Ω 32.1 kΩ 1.82 ns
2e2

hC ≡ 1.37 GHz ν0
∆ν FWHM Re Z (ν0) ≡ QZ0

roughly estimated, the ones corresponding to the resonators have been extracted by a fit with a Lorentzian
shape.

To go further, PSD have been calculated numerically and fitted with the measurement with a least
squares algorithm starting with the extracted values. Finally, the impedance seen by the junction and

Table IV.2: Parameters fitted from measurements

ν0 C 1/kBβ Ic Q Z0 R RC

5.99 GHz 52.8 fF 21.4 mK 0.85 nA 10.39 129 Ω 32.1 kΩ 1.69 ns
2e2

hC ≡ 1.47 GHz ν0
∆ν FWHM Re Z (ν0) ≡ QZ0 not fitted

P-function can be calculated numerically with those values.
First, the impedance shown on figure IV.12 (green line). The simulation is consistent with the

measurement, except a small modulation of the order of 200 MHz, which can be attributed to stationary
waves at base temperature – 200 MHz corresponds to 20 cm which is the coaxial cable length at base
temperature. Second, the P-function is seen on figure IV.13 (solid green line). Again the simulation
is consistent with the measurement. Empirically the difference between both (around 5 GHz) can be
compensated by a small capacitance in parallel with the junction, however even if such a capacitance
exists its value is too small (compared to the main capacitance) to be properly fitted.

On figure IV.13, the theoretical curve without the RC circuit (i.e. without the blocking mechanism) is
shown. The differences between both curves highlights the influence of the RC circuit:
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Figure IV.12: Impedance simu-
lated as a function of the frequency
(solid green). For comparison, data
(and window functions) extracted be-
fore are recalled (see figure IV.7). The
simulation is done with numerical val-
ues, see table IV.2, obtained by fitting
the full PSD with our numerical sim-
ulation.

• Each peak is thermally and lifetime broaden by the resistance of the RC;

• Each peak is shifted by the charging energy.
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Figure IV.13: P-function simu-
lated as a function of the frequency
(solid green). For comparison, data
extracted before are recalled. The
simulation is done with numerical val-
ues, see table IV.2, obtained by fit-
ting the full PSD with our numerical
simulation. Dashed green is the sim-
ulation without the RC circuit – i.e.
no charging mechanism – the shifting
due to the charge energy is recovered
as excepted.

3 Free-running mode

Two kinds of experiments have been conducted:

Free-running: where the flux bias is fixed and photons continuously flow from our source;

Pulse-mode: where the flux bias is pulsed, with the goal of emitting a single photon per cycle.

This section is dedicated to the first one. We start with a description of calibration methods necessary to
accurately measure photon correlations.

3.a Calibration

Calibration drifts

Whereas PSD measurements are quick to conduct, G(2) have to be repeated many times up to several 100 h
to beat the low SNR. Consequently, the channel gains and noises may drift. As we measure repeatedly our
device one time switched on G(1),on

n and one switched off G(1),on
n , if only the channel noises vary it will

be compensated by our method, however a variation is still observed, meaning the channel gains vary and
can be quantified if no variation on noises are assumed. This assumption is supported by the distribution
of gains and noises over each channel: As the channel noise mainly comes from the 4 K stage – which
its temperature does not vary a lot due to the monitoring of the fridge automaton – while the gain is
distributed over many stages (including a part at room temperature).

Blue dots on figure IV.14 panel c show the result when the calibration is done with a single value,
blue dots spreads somewhat meaning the calibration drifts over time. The initial calibration gives the
G(1),ref of the input added noise, subsequently the instantaneous gain is Gn = G(1),off/G(1),ref assuming
constant amplifier noise, Gn are averaged to remove short time variations due to statistical errors in the
G(1) measurement. Blue and orange lines on figure IV.14 panel a show those new calibrations and orange
dots on figure IV.14 panel c shows the result with those new calibrations.
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Figure IV.14: G(1) & G(2) calibration. Panel a shows the different gains as a function of the index of the measurement
which is repeated many times. Blue lines correspond to the first channel, orange ones to the second channel. Dotted lines
are the gain determined by a calibration measurement done before (see chapter II), dashed ones are the instantaneous
gains determined by using G(1),off

n and G(1),ref – also determined by the calibration measurement – which affected by gain
fluctuations (see text). Panel b left axis is the phase delay between the two channels as a function of the index, it depends
mainly on the length difference between the two channels and so is almost constant. Panel b right axis is the frequency
mismatch between the centre frequency and the centre of the measurement range as a function of the index. This mismatch
is responsible for the phase variation of G(1) with τ . Here, the mismatch of 25.9 MHz is negligible compared to the FWHM
of the resonator. Panel c are all the samples on the same complex space, each group of dots corresponds to one value of τ ,
centre groups correspond to long τ , the group with maximal amplitude corresponds to τ = 0. Blue dots are G(1) calibrated
with the initial gains (dotted lines of panel a) and orange dots with the instantaneous gain (dashed lines of panel a) and
corrected for phase delay and frequency mismatch (panel c): Each group of dots is smaller (due to the instantaneous gain),
and there is no more overall phase shift (due to phase delay correction) and variation of phase between each group (i.e.
variation with τ) is reduced.

Moreover, if the signal after down-conversion is not centred at 1.5 GHz, G(1) can be rewritten
G(1) (2n/2 GHz) ∝ ei2π|ν0−νLO|2n/2 GHz (−1)n. The orange line on figure IV.14 panel b shows this
mismatch ||ν0 − νLO| − 1.5 GHz|. The blue line is the overall delay between both channels.

Kernel influence

As explained in chapter II section 2.a a numerical filter is used to increase the SNR when measuring G(2),
figure IV.15 panel a shows the kernel filter together with the impedance seen by the junction. First our
kernel is very selective: It focuses on the region extending over the FWHM of the impedance. However, it
also means that G(1) encompasses only a part of the full emitted power.

To quantify this efficiency, the parameters determined previously are very useful. Actually the efficiency
is given by the ratio between the power inside the kernel and the power over a wide range that can be
simulated. Figure IV.15 panel b shows this ratio in orange, in blue it corresponds to a flat kernel as
used by the PSD. The order of magnitude is consistent with a Lorentzian shape which slow roll off and
extending over a wide range.

We now verify the consistency of our two methods. Figure IV.16 shows the photon rate emitted by our
sample and cuts in three orientation (blue lines). Superimposed dots are G(1) (0) measured for different
parameters. For both PSD and G(1) they are renormalised with the efficiency determined before, and now
dots are along respective lines. The good agreement between photon rate extracted from PSD and G(2)

validates our analysis.
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nel. Panel a left axis is the real
part of the impedance as a function
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Figure IV.16: Kernel consistency.
Panel a is the photon rate obtained
via integration of the PSD over the
measured frequencies as a function
of the SQUID flux bias and the volt-
age bias. Plus, cross and diamonds
indicate parameters where G(1) are
measured. Panel b, c & d are the
photon rates as functions of the volt-
age bias and show the photon rate,
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izontal and diagonal lines of mark-
ers in panel a. Blue line is the data
of panel a, bottom symbols are the
measured G(1). Green line and top
symbols are the same data corrected
with the corresponding efficiency, see
figure IV.15.

3.b Parameter space exploration

Finally, G(2) is extracted from the data for each parameter identified before, and then normalised with:

g(2) (τ) ≡ G(2) (τ)
G(1) (0) ·G(1) (0)

(IV.10)

First, figure IV.17 shows the evolution of g(2) with flux bias. The lowest value measured is g(2) (0) = 0.57
for a flux close to the frustration ϕ ≃ 0.5−ϕ0. As we approach lower flux biases – in order to increase
the critical current – the dip remains, but a broad bunching peak develops around it. We attribute this
broad peak to random jumps between the bright voltage state of the junction and the dark zero-voltage
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state discussed above. This is consistent with the reduction in emission rate observed. Moreover, the dip
remains and the blocking mechanism is still active.
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Figure IV.17: g(2) for different flux
biases. Panel a is the photon rate
as a function of the voltage bias and
the flux bias, plus symbols indicate
where g(2) are measured. Panel b is
the g(2) function at the points indi-
cated in panel a as functions of the
time delay. The different curves show
the evolution of g(2) with the flux
bias, i.e. when the critical current
is changed.

In order to study the influence of the voltage bias, we fix the flux bias to ϕ ≃ 0.462. At this bias the
jumps between the bright and dark regions are negligible, i.e. except the dip g(2) is flat. Figure IV.18
shows the evolution of g(2) with the voltage bias. When the voltage is reduced, both g(2) and photon rate
decrease. This is consistent with our mechanism when thermal fluctuations are included: At a lower bias,
the tunnelling of a first Cooper pair CPνJ →

EC
Phν is less probable – i.e. the photon rate is lower, but also

the process CPνJ +δ →
3·EC

Phν where δ comes from thermal fluctuations, which is responsible for the dip
closure. When the bias is increased, the process CPνJ +δ →

3·EC
Phν becomes more and more likely and then

the dip closes.
Moreover, J. Leppäkangas did numerical simulation (solid line) extending P-theory to fourth order in

critical current. The agreement is good at low biases, however the agreement gets worse when the bias
increases, likely because correlations between more than two Cooper pairs play a role, i.e. calculations
have to be pushed beyond fourth order.

Super-bunching mechanism

Third, figure IV.19 shows the evolution of g(2) following the maximum photon rate, i.e. the diagonal cut
seen previously. The observation is the same as before, but as the photon rate is higher, a higher voltage
bias can be measured until reaching g(2) (0) ≃ 2.

Moreover, going to higher biases, super-bunching (g(2) (0) ≫ 2) is observed, see figure IV.20. This
mechanism is explained by the additional second order process where one Cooper pair gives two photons.
In addition, now there are two processes that can emit photons, when the second order process happens and
charges the capacitor CPνJ →

EC
Ph≈ν0 + Phν0 , the first order process is then approximately on resonance

CPνJ →3·EC
Ph≈ν0 , it increases the probability of the first order process i.e. emission of two photons calls

for the emission of another one.
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Figure IV.18: g(2) for different
voltage biases. Panel a is the
photon rate as a function of the volt-
age bias and the flux bias, cross sym-
bols indicate where g(2) are measured.
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ent curves show the g(2) evolution
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Figure IV.19: g(2) for different
bias points along a line of maxi-
mal photon rate. Panel a is the
photon rate as a function of the volt-
age bias and the flux bias, diamond
symbols indicate where g(2) are mea-
sured. Panel b is the g(2) function at
the points indicated in panel a as func-
tions of the time delay. The different
curves show the g(2) when the flux
bias is tuned to maximal. The value
g(2) (0) = 2 is reached, i.e. pho-
ton as bunched as much as a thermal
source.

Experimental precision

To conclude this section, as the measurement is repeated many times, statistical properties of g(2) (0) can
be derived, the statistical uncertainty. Figure IV.21 shows the uncertainty at ±3σ for g(2) (0) along each
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cut. Together with the uncertainties, we claim and proof our source is non-classical. However, as g(2) (0)
is slightly above 0.5, so we cannot proof that our source is a SPS [Grünwald17 ].
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Figure IV.21: g(2) statistical
power. Panel a reminds all the g(2)

measured in figures IV.17 to IV.19.
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4 On-demand mode

This last section describes experiments using a pulse. The idea is built on the observation of a large area
without photon emission. A cycle going back and forth between emission and non-emission area is used
to, ultimately, emit one photon per cycle: the source is triggered on-demand.

4.a Pulse description

The pulse is applied using an Arbitrary Wave Generator (AWG) on the flux line. Figure IV.22 panel a
shows the intended pulse shape. This signal is added to a DC component through a bias-tee. Figure IV.22
panel b shows how the flux evolves according to this bias (orange line). The expected amplitude is 0.3ϕ0.

Moreover, as described earlier, the flux line crosses the TL close to the SQUID to form a capacitor.
This coupling also induces a fluctuation of the bias voltage (red line on figure IV.22 panel b). Consequently,
the pulse trajectory in parameter space is not a straight line but follows the white dotted line.

Before going further, figure IV.23 panel b & c show the first and second order correlation measurements.
The time localisation of the emission process is visible with these two measurements: G(1) has only one
peak, G(2) has equally spaced peaks along one line.

4.b Parameter space exploration

As before, second order correlation measurements are time consuming. Therefore the parameter space
cannot be fully explored.
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Figure IV.22: Pulse trajectory.
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a function of the time – send by the
AWG to pulse the flux line (target sig-
nal, not measured). Panel b expected
flux and voltage bias shifts (simula-
tions with an home-made software)
due to the pulse. The orange line is
the flux shift to go back and forth
between the dark and bright regime.
The red line is the voltage shift due
to the inducto-capacitive coupling fig-
ure IV.4.
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Figure IV.23: Correlation func-
tions with reference flux.
Panel a is the photon rate as a
function of the SQUID flux bias and
the voltage bias, dotted white line
is the pulse applied, this shape is
a simulation. Panel b is G(1) as a
function of t and τ . The time runs
over a pulse cycle, i.e. 6 ns. Panel b
is g(2) as a function of t and τ . Both
G(1) and g(2) confirm the radiation
is time localised.

Photon rate

We therefore start by only measuring G(1) (t, 0) on the full parameter space – it is equivalent to measure
the integrated PSD. Figure IV.24 shows the result. The pulse period is 6 ns and our acquisition interval
1 ns, therefore there are six different G(1) (t, 0). The choice of t = 0 is arbitrary.

We recover the V shape seen in free-running mode, however it is slightly deformed. The asymmetry
can be explained qualitative:

• The two bright regions correspond to the V shape, they are shifted by 0.1ϕ0 accordingly to the pulse
shape;

• The left arm is thicker than right one, due to the pulse shape. Indeed, when starting in the left dark
region slightly below the V shape, the pulse can reach the left arm of the V shape due to the voltage
shift, whereas it is less probable to reach the right arm when starting slightly below the V shape;

g(2) normalisation

Before discussing g(2) measurements, let’s discuss the normalisation of g(2), which is not as straightforward
in the free-running case [Glauber63 ]. Figure IV.25 recalls the Hanbury Brown-Twiss setup useful to
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Figure IV.24: PSD time-
dependence. Each panel
shows G(1) (t, 0) as a function of the
flux bias and the voltage bias. The
six panels correspond to the pulse
period. The V shape observed in the
free-running mode is recovered. The
horizontal white lines correspond to
the first and second order processes
identified previously.

interpret the g(2) in terms of probabilities. It is the probability to measure a photon on D1 when a photon
is measured on D2 compared to the probability to measure a photon on D1:

g(2) ≡ p (D1|D2)
p (D1) = p (D1 ∩D2)

p (D1) · p (D2) (IV.11)

Figure IV.25: Photon correla-
tion measurement using Han-
bury Brown-Twiss setup (image
[Glauber06 ]). Left scheme is used
in astronomy, the radiation coming
from a celestial object is detected at
two different points and coincidences
are then computed. Right scheme
is used in optics, a light source is
split in two and counters are used
on each path to measure coincidences
(see text).

In terms of correlation functions (for now expressed with two times and not the delay), p
(
D1/2

)
is

equivalent to G(1) (t1/2, t1/2
)

while the intersection probability is G(2) (t0, t1). Rewritten with time delay:

g(2) (t, τ) ≡ G(2) (t, τ)
G(1) (t, 0) ·G(1) (t + τ, 0)

(IV.12)

Note that when the process is stationary and there is no t variable, equation IV.10 is recovered.

Results

First, time-resolved G(2) measurements are tested against the stationary ones used for the free-running
regime. To do so, a working point is measured two times, one time with the stationary mode and one
with the time-resolved mode. When the time-resolved measurement is G(1)

resolved (t, τ), the stationary one
ignores the information about t, only the mean value is kept:

G(1)
stationary (τ) ≡ 1

6 ns

6 ns∫
0 ns

G(1)
resolved (t, τ) dt (IV.13)

91



IV. Non-classical radiation

Figure IV.26 shows the comparison of measured G(1)
stationary with the one computed from G(1)

resolved according
to equation IV.13 and confirm our two methods are in agreement.
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Figure IV.26: Stationary and
time-resolved methods compar-
ison. Panel a is the first order
correlation function as a function of
the time delay. Panel b is the second
order correlation function as a func-
tion of the time delay. Solid orange
lines are measurements obtained with
the stationary method. Blue diamond
symbols are measurements obtained
with the time-resolved method after
integration, see equation IV.13.

Finally, following figure IV.18 the voltage bias is chosen as low as possible to get minimal g(2) (0) –
≃ 0.5 – while keeping G(1) (0) sufficient to be able to measure in a reasonable time. The flux is chosen
such as the pulse reaches the frustration3. The pulse is shown on figure IV.23 as the white dotted line.
Figure IV.27 presents the final results. First the temporal width along t-axis and τ -axis are roughly
identical and equal to 2 ns, indicating that there is no jitter in the emission process, otherwise width along
t-axis would be larger. Moreover, our cycle cannot be much faster, otherwise the single photon would not
escape from the resonator between two cycles.
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Figure IV.27: G(2) time-dependence. Panel a & b is G(1) as a function of the time and the time delay. = 0 is chosen
as it is the maximum time emission. Orange solid line is obtained by repeating the measurement many times with a slightly
different time delay between the pulse and the acquisition board trigger. Blue dots are the data taken at the same time
of g(2). Panel c is g(2) as a function of the time delay at the maximum time emission. Left axis (solid green line) is the
normalised form as the right one (blue dots) is the raw form. Normalisation is done with equation IV.12 when G(1) is high
enough.

Here we achieve a stronger anti-bunching than in the free-running case, likely due to the additional
blocking effect given by the latching to the zero-voltage state in the dark region. At the same time, the
pulsing scheme allows us to maintain very good quantum efficiency and photon flux (0.2 photons per
pulse), because of the high emission rates at low flux bias. This makes it likely for a tunnel event to
happen during each cycle even for very short flux pulses. The residual g(2) (0) is mainly attributed to the
low charging energy of our RC circuit and its relatively low time constant, only slightly larger than the
decay time of the resonator.

3Flux where the effective critical current of the SQUID is minimal.
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IV.4. On-demand mode

Conclusion

First, a general method based on the P-theory has been derived and used to fully characterise our device in
the P-regime. Then the statistics of our device have been measured in two operating modes: Free-running
& on-demand.

It demonstrates that a Josephson photonics device – based on ICPT – can produce anti-bunched
microwave radiation. Moreover, by modulating the effective critical current of the SQUID, using fast
flux pulses and locking to a dark state after photon emission, the anti-bunched photons can be produced
on-demand at very high rates.

Increasing the charging energy and the RC time, or replacing the RC circuit by a high impedance
resonant mode, should allow for significant improvements of anti-bunching and quantum efficiency.
Ultimately, we expect that it can be optimised to be an on-demand single photon source with near unity
quantum efficiency and negligible g(2) (0).
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Chapter V
Quantum-limited amplification

French resume

Ce dernier chapitre se concentre sur les processus d’amplification proche de la limite quantique rendus
possibles avec l’ICPT. Une première partie détaille comment les processus de l’ICPT peuvent être mis à
contribution pour permettre l’amplification, et les avantages et inconvénients qu’ils apportent.

Les expressions des grandeurs caractéristiques de tels amplificateurs, comme la bande-passante et le
point de compression, seront démontrées et comparées aux résultats expérimentaux. Pour réaliser cette
caractérisation, les gains et PSD sont mesurés et utilisés pour quantifier la proximité du bruit ajouté avec
la limite quantique ([Caves82 ]). Nos résultats montrent que l’ICPT permet d’approcher une amplification
proche de cette limite à condition que le bruit en tension soit contrôlé.
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Preamble Some results of this chapter are direct continuation of [Jebari18 ] and will be recalled so that
we can build on them. Moreover, I will focus three designs of amplifiers, even thought many others have
been developed, see [Jebari17 ] for details.

1 Amplification based on ICPT

Different designs used to achieve amplification will be presented in this chapter. Here the working principle
of the sample studied previously by M. Hofheinz [Hofheinz11 ; Jebari18 ] is recalled, then some drawbacks
and solutions are highlighted.



V. Quantum-limited amplification

1.a Working principle & implementation

First of all, let’s recall the main idea of inelastic Cooper pair tunnelling (see chapter I). A Cooper pair can
tunnel through a DC biased Josephson junction by dissipating its energy hνJ in the form of photons inside
the electromagnetic environment. Instead of the first order process CPνJ → Phν explored in chapter IV,
here our device is based on the second order process CPνJ → Ph ≃ ν0 + Phν1 , see figure V.1.

Cooper pair 0

Cooper pair +hνJ

Photon hν

Cooper pair 0

Cooper pair +hνJ

Photon hν0

Photon hν1

Cooper pair 0

Cooper pair +hνJ

Photon hν1

Figure V.1: Amplification process.
Left diagram: Initial situation. Tun-
nelling happens when the Cooper pair
energy hνJ and photon energy hν are
equal. Then each tunnelling Cooper
pair gives a photon. Centre dia-
gram: Situation where a Cooper pair
tunnels and creates two photons, one
at ν0 and one at ν1. Right diagram:
Same process with an additional input
photon at ν0, resulting in stimulated
emission and amplification.

Then, an input photon – at one of the two modes involved – sent on such a device will stimulate the
process, the photon at the same mode will be identical to the input photon, i.e. it will have the same
frequency and phase – while the second photon has a frequency complementary to match energy balance
νJ = νin + ν1 and a complementary phase.

The design shown in figure V.2 can actually operate as amplifier. Indeed, the peak at 12 GHz
corresponds to the dissipation in the form of two photons at 6 GHz.

Figure V.2: Degenerate ampli-
fier. Left scheme shows the two
cascaded quarter-wave TL, the or-
ange one mainly defines the resonator
impedance while the red one together
with the 50 Ω port defines the Q
factor. The Josephson junction is
in blue. Panel a shows the real
part of the impedance as a function
of the frequency, there are modes
at (2n + 1) νsys, 6 GHz and 18 GHz
peaks are visible. Panel b shows the
corresponding P-function as a func-
tion of the voltage bias expressed in
GHz. The peaks correspond to bi-
ases where Cooper pair tunnelling can
happen. The zero bias peak is the su-
percurrent, the second and last corre-
spond to first order processes with
photons at respectively 6 GHz and
18 GHz, the third one at 12 GHz is a
second order process where a Cooper
pair gives two photons at 6 GHz. Or-
ange dotted lines indicate the pro-
cess used as amplifier.

1.b Experimental results

Figure V.3 shows the measured gain and input added noise of this device. Along the lowest dash dotted
line, the amplification process of interest is observed. First, as the slope is 1, resonance relation is
νJ = ν + νsys where νsys is the resonator mode.

Note there is also an amplification process at higher bias along the highest dash dotted line. However,
the gain is significantly lower. To understand why, let’s recall the effective gain (at resonance) – see
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V.1. Amplification based on ICPT
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Figure V.3: Gain and input added noise. Panel a is the gain as a function of the measured frequency and the voltage
bias. Pink lines are amplification processes while green ones are absorption processes. Panel b is the input added noise, i.e.
the noise emitted when there is no input signal, divided by the gain, as a function of the measured frequency and the voltage
bias. Amplification processes have significant input added noise. Dash dotted lines correspond to the discussed amplification
processes (see text), respectively with two photons around 6 GHz or one photon at 6 GHz and one at 18 GHz. The dotted
line is an unwanted conversion process (see text). The dashed line corresponds to the first order process which produces
both gain and conversion with low frequency photons. Therefore, the noise is significantly higher. The square corresponds to
the zoom used for figure V.6.

chapter I:

G∗ ≃
∣∣∣∣1 + 4Q∗2

1− 4Q∗2

∣∣∣∣2 white Q∗ ≡
−ϕ0Ic

2ℏ

√√√√Q(0)Q(1)

ω
(0)
sysω

(1)
sys

Z (0)
sys Z (1)

sys

(RQ/π)2 (V.1)

Where ·(0) corresponds to the mode at νsys and ·(1) to the mode at νsys and 3νsys depending on the process
considered. The two gains can be expressed using a common Q∗ as:

• The effective gain of the lowest amplification process G∗νsys
≃
∣∣∣ 1+4Q∗2

1−4Q∗2

∣∣∣2
• The effective gain of the highest amplification process G∗3νsys

≃
∣∣∣ 1+4Q∗2/3

1−4Q∗2/3

∣∣∣2
For G∗νsys

≃ 12 dB it gives G∗3νsys
≃ 3.5 dB.

Conversion process

Moreover, figure V.3 shows also absorption processes (in green). To understand these processes, figure V.4
shows, energetically, how a photon can be absorbed and converted to a photon at higher frequencies. The
energy of a Cooper pair hνJ ≃ h · 12 GHz together with the energy of a photon hν0 ≃ h · 6 GHz gives a
photon of energy hν2 = h · 18 GHz: CPνJ + Ph ≃ ν0 → Phν2 . Consequently this process appears only
when there are input photons. Note that these conversion processes provide energy gain but appear as
loss in our gain measurement because it considers only photons at the same frequency as the input signal.

As seen on figure V.3 the two processes, amplification and conversion, can cross and be efficient at the
same bias and frequency, which reduces the effective gain. Both happen when νin + ν1 = ν2 − νin, i.e.
ν2 = 2νin + ν1. Which is true with this design as νin ≃ ν1 ≃ 6 GHz i.e. ν2 ≃ 3ν1 ≃ 18 GHz (see
figure V.5 panel a). Note that this is also visible on the P-function: Instead of looking at P (hνJ ) which
describes if an inelastic process is possible for a Cooper pair of energy hνJ ≃ 12 GHz, P (hνJ + hνsys)
describes if an inelastic process is possible for a Cooper pair of energy hνJ ≃ 12 GHz assisted by a
photon of energy hνsys ≃ 6 GHz.
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V. Quantum-limited amplification

Cooper pair 0

Cooper pair +hνJ

Photon hν0

Photon hν1

Cooper pair 0

Cooper pair +hνJ

Photon hν0 Photon hν2
Figure V.4: Conversion process.
Left diagram: Amplification process
described in figure V.1. Right dia-
gram: Situation where a Cooper pair
tunnels assisted by a photon at ν0 and
creates a photon at ν2. This process
is observed as loss at frequency ν0.

Figure V.5: Conversion process &
P-function. Left scheme shows
the two cascaded quarter-wave TL,
the orange one mainly defines the res-
onator impedance while the red one
together with the 50 Ω port defines
the Q factor. The Josephson junction
is in blue. Panel a shows the real part
of the impedance seen by the junction
as a function of the frequency. There
are modes at (2n + 1) νsys, 6 GHz and
18 GHz peaks are visible. Panel b
shows the corresponding P-function
as a function of the voltage bias ex-
pressed in GHz. The peaks corre-
spond to biases where Cooper pair
tunnelling can happen. The zero bias
peak corresponds to supercurrent, the
second and last correspond to first or-
der processes with photons at respec-
tively 6 GHz and 18 GHz, the third
one at 12 GHz is a second order pro-
cess where a Cooper pair gives two
photons at 6 GHz. Orange dotted
lines indicate the process used as am-
plifier. Red dotted lines indicate the
unwanted conversion process.

2 Noise performance

We first analyse the noise performance of the previous design: How close is the first simple design to the
quantum limit? Then a second design is presented, intending to overcome the identified drawbacks, i.e.
conversion process and imperfect noise.

2.a Noise of initial design

First, figure V.6 is the zoom indicated on figure V.3. The dash dotted line and the dotted line correspond
to the resonance condition for amplification and conversion. They cross at νJ ≃ 12 GHz and ν ≃ 6 GHz,
resulting in reduced gain at this point. In order to check how close to the quantum limit this device
operates, cuts along the dashed lines are shown on panel c & d. Although this device adds very low noise,
it is still far from the quantum limit. It operates at 11 dB with 3 photons input added noise while the
quantum limit is 0.9 photons.

We attribute the excess photon noise to low frequency voltage noise, i.e. phase noise of the pump
frequency νJ . If the width of the fluctuations ∆νJ is large enough to bring the amplifier out of its
optimal working condition, it will modulate the gain in phase and amplitude. In the phase-sensitive
VNA measurement both effects reduce the average gain. The phase insensitive PSD on the other hand is
only affected by amplitude fluctuations, so that the input noise, i.e. the ratio of photon noise over gain,
is degraded. In our setup we achieve bias fluctuations1 ∆νJ ≃ 120 MHz, only slightly lower than the

1This value is the width of the PSD peak at the first order process around νJ ≃ 6 GHz when the SQUID is almost
completely frustrated.
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V.2. Noise performance
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Figure V.6: Amplifier near optimal working point. Panel a & b are zooms of figure V.3 Panel c is the cut along
the blue dashed line on panel a. The maximum gain is 11 dB. Panel d is the cut along the orange dashed line on panel b,
the orange dotted line is the quantum limit corresponding on the gain of panel a.

bandwidth of the amplifier. When the ICTA bandwidth can be made much larger than ∆νJ , this noise
source should become negligible and the ICTA approach quantum limited noise.

2.b Improved design

To overcome these issues – unwanted conversion process and bias fluctuations – a first step is to alter the
design on figure V.5. An open quarter-wave stub is added to suppress impedance at the target frequency
18 GHz. Figure V.7 panels a & b shows which influence this stub has on the impedance and P-function.
Both are significantly reduced at 18 GHz, and the conversion peak is shifted to ≃ 15 GHz. Amplification
and conversion do not cross any more at νin ≃ 6 GHz because now the conversion process is on resonance
at νJ ≃ 15 GHz− 6 GHz ≃ 9 GHz while the amplification process is still on resonance at 12 GHz.

Moreover, in order to limit this influence of bias fluctuations a capacitively shunted half-wave stub is
added. Figure V.5 panels c & d shows the result: This structure suppresses the impedance at low-frequency
and at 12 GHz and thereby reduces voltage noise P ( ≃ 0 GHz).

Finally, to compensate the drift of the resonator frequency due to the quarter-wave transformer (brown
solid line) at 18 GHz, the frequency of the quarter-wave resonator is shifted upwards (dash dotted green
line).

2.c Noise of improved design

Figure V.8 presents the amplification process of a sample based on this second design with increased
bandwidth and circuitry to suppress bias fluctuations. A first remark concerns the resonance frequency
at ≃ 4.3 GHz, shifted from the designed value due to fabrication issues, mainly the capacitance of the
junction which is higher than expected, see [Jebari17 ] for details. However, amplification and conversion
do not cross, just as designed. Moreover, from the bias at which the conversion process appears, we
deduce that ν2 ≃ 12.2 GHz.

As expected the device operates very close to the quantum limit (panel d), however as the resonance
frequency is close to the minimal frequency our setup can measure, it is impossible to characterise the
amplifier over a wide bandwidth. For a gain of 10 dB, there is 1 photon input added noise while the
quantum limit is 0.9.
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V. Quantum-limited amplification

Figure V.7: Low noise ICTA de-
sign. Left part shows how the de-
sign of figure V.5 is updated with an
open quarter-wave stub at the sec-
ond frequency involved for the con-
version process. The impedance at
the frequency is then close to zero,
however it also shifts the resonator
frequency slightly below 6 GHz (blue
lines). Right part shows how an
additional capacitively shunted half-
wave stub at the bias frequency (red
lines) lowers the impedance at the
bias frequency 12 GHz and close to
0 GHz, limiting the fluctuations of the
bias which is responsible for exces-
sive input added noise. To compen-
sate the frequency shift, the resonator
frequency is pushed upwards (green
lines).
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Figure V.8: Low noise amplifier working point. Panel a & b are zoom around the amplification process (in the same
way as figure V.6). Now amplification and conversion do not cross at the resonance frequency.Panel c is the cut along the
blue dashed line on panel a. The maximum gain is 10 dB. Panel d is the cut along the orange dashed line on panel b, the
orange dotted line is the quantum limit corresponding on the gain of panel a. Now, amplification is near quantum-limited.

Remarks about calibration

Figure V.8 is calibrated as explained in chapter II section 2.a, however calibration reference points are
subtle:

Gain & quantum limit: The reference point is the sample itself, working points where the sample
is assumed to be fully reflected are used as a reference where G ≡ 0 dB, i.e. we measure G on
figure V.9;

100



V.3. Bandwidth & dynamic range

Input added noise: The reference point of PSD measurements are the six-port switch, i.e. we
measure γout

ν on figure V.9. Note that γout
ν = GANG + · · · . Therefore in order to obtain an upper

limit of the input added noise, the gain referred to this second reference point is also measured
using a short as reference, i.e. we measure GA2 on figure V.9 to compute γout

ν /GA2 = NG/A +
· · · ≥ NG + · · · . The data plotted in figure V.8 is the system noise of amplifier and cable. With
A ≃ 0.5 dB, we except the actual amplifier noise to be at the quantum limit within measurement
accuracy.

Figure V.9: Calibration reference
points. From left to right, attenua-
tion between the six-port switch and
the sample, ICTA sample and atten-
uation between the sample and the
six-port switch.

3 Bandwidth & dynamic range

3.a Gain bandwidth product

In order to calculate the bandwidth, we have a closer look at the expression of the gain derived in chapter I:

G (ωJ , ω) =

∣∣∣∣∣1 + Q∗χ̂ω
(0) (ω)∗Q∗χ̂ω

(1) (ωJ − ω)∗

1 − Q∗χ̂ω
(0) (ω)Q∗χ̂ω

(1) (ωJ − ω)∗

∣∣∣∣∣
2

(V.2)

By solving [∂ωG] (ωJ , ω∗) = 0 & [∂ωJ G] (ωJ , ω∗) = 0, the main terms gives the resonance condition
ω∗ ≡ ωJ − ω(1). Now, to determine effective gain and bandwidth, the approximation ωJ ≃ ω(0) + ω(1)

is made, yielding:

• Gain: G∗ ≃ G
(
ω(0) + ω(1), ω∗

)
=
∣∣∣ 1+4Q∗2

1−4Q∗2

∣∣∣2
• Bandwidth (−3 dB): ΓBW ≃

√
−8G∗

[∂2
ωG](ω(0)+ω(1),ω∗) =︸︷︷︸

Taylor 1/
√

G∗

1√
G∗

2
Q(0)/ω(0)+Q(1)/ω(1)

Table V.1 sums up the second relation, moreover this relation also implies that the effective bandwidth
of the amplifier is limited by the bandwidths of the two modes. The relation between gain and bandwidth

Table V.1: ICTA characteristics

Bandwidth

Characteristic product ΓGBW ≡ 2
Q(0)/ω(0)+Q(1)/ω(1)

Constitutive equation
√

G∗ΓBW = ΓGBW

101



V. Quantum-limited amplification

has been measured with the first design for different critical currents. Figure V.10 shows the result and a
good agreement between measurement and theoretical curve.
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Figure V.10: Gain-bandwidth re-
lation. The effective gain is shown
as a function of the effective band-
width. Brown dots are experimental
data taken with the first design. Pur-
ple line is the theoretical curve, see
table V.1.

3.b Compression point

The compression point is the input power at which the effective gain decreases – usually by 1 dB. In Joseph-
son Parametric Amplifier (JPA), the physical orig [Abdo11 ; Roy18 ] is that the input field is so strong that
it depletes the pump and so reduces the process efficiency. From a theoretical point of view, it corresponds
to any reason that decreases Q∗ in the interaction Hamiltonian ∝ Q∗

{
eiωJ tb(0) (t)b(1) (t) + h.c.

}
. In

analogy to JPA and laser theories, we also call pump depletion the gain compression phenomena in the
ICTA although the physical origin is different here.

Pump depletion

To study the pump depletion, Hdrive has to be expanded at higher order in photon operators:

e−iϕ(0)/−ϕ0 =︸︷︷︸
Glauber

e−i
√

Z(0)
sys /(RQ/π)b(0)†

e−i
√

Z(0)
sys /(RQ/π)b(0)

e−Z(0)
sys /2(RQ/π)

= e−Z(0)
sys /2(RQ/π)

∑
n

:
∑
m

(
−i
√

Z (0)
sys / (RQ/π)

)2m+n

m! (m + n)!

(
b(0)†b(0)

)m

︸ ︷︷ ︸
Jn

(
2

√
Z(0)

sys
RQ/π

√
b(0)†b(0)

)(
−i√

b(0)†b(0)

)n

[
b(0)†,n + h.c.

]
:

(V.3)
Where :: is the normal ordering operator and Jn is the nth-order Bessel function. Now, a mean-
field approximation is done on the Bessel function so that only b(0)†,n (or h.c.) remains, i.e.
e−iϕ(0)/−ϕ0 ≃

∑
n

cn
[
b(0)†,n + h.c.

]
with cn complex scalars. Let’s assume2

〈
:
(
b(0)†b(0))n :

〉
≡ β2n

consistently with the result for a coherent state |β⟩.
Propagating to our original derivation, Q∗ becomes Q∗η (β) where:

• Q∗ ≡
−ϕ0Ic
2ℏ

√
Q(0)

ω
(0)
sys

Q(1)

ω
(1)
sys

Z(0)
sys Z(1)

sys
(RQ/π)2 e−(Z(0)

sys +Z(1)
sys)/2(RQ/π)

• η (β) ≡ J1

(
2β

√
Z(0)

sys
RQ/π

)
1
β

√
RQ/π

Z(0)
sys

First, Q∗ is renormalised by a factor depending on the mode impedances. However, in the limit
Z (0)

sys , Z (1)
sys ≪ RQ/π this factor is negligible as assumed before. Second, the efficiency η (β) goes to

unity when β ≪
√

1/2 · (RQ/π) /Z (0)
sys (see figure V.11), moreover this condition is easier to fulfil when

Z (0)
sys ≪ RQ/π. This means the characteristic impedance of the mode has to be as low as possible to get

the best dynamic range.
2β ∈ R+ without loss of generality.
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Figure V.11: Gain compression.
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Finally to estimate β with the input power γin, a self-consistent method is applied. We start with
η ≡ 1, and coherent states |β⟩ (for the field b(0)) and |

√
γin/ℏω⟩ (for the field ain) are assumed. IO

relations give then:

β =
√

γin

ℏω

∣∣∣∣∣ χ
(0)
ω (ω)

1− 4Q∗2

∣∣∣∣∣ (V.4)

Then the efficiency expressed as a function of γin becomes:

η
(
γin) ≡ J1

2

√
Z (0)

sys

RQ/π

γin

ℏω

∣∣∣∣∣ χ
(0)
ω (ω)

1− 4Q∗2

∣∣∣∣∣
√RQ/π

Z (0)
sys

ℏω

γin

∣∣∣∣∣1− 4Q∗2

χ
(0)
ω (ω)

∣∣∣∣∣ (V.5)

As previously, a nominal value of η is defined when on resonance:

η∗
(
γin) ≡ J1

2 2
|1− 4Q∗2|

√
Z (0)

sys

RQ/π

Q(0)

ω(0)
γin

ℏω(0)

 ∣∣1− 4Q∗2
∣∣

2

√
RQ/π

Z (0)
sys

ω(0)

Q(0)
ℏω(0)

γin (V.6)

Remarks about Q∗ re-normalisation

Note here, that the mean-field approximation can be done because the input field is assumed to be
coherent. Even through the general case is difficult to deal with, equation V.3 (together with RWA
approximation) can also be used to derive transition coefficients, between number states:

⟨0| e−iϕ(0)/−ϕ0 |1⟩ ≃ − i e−Z(0)
sys /2(RQ/π)

√
Z(0)

sys
RQ/π

⟨1| e−iϕ(0)/−ϕ0 |2⟩ ≃ − i e−Z(0)
sys /2(RQ/π)

√
Z(0)

sys
RQ/π

[
1− Z(0)

sys
2·RQ/π

] (V.7)

These coefficients imply that a mode with a characteristic impedance of Z (0)
sys ≃ 2 ·RQ/π driven by ICPT3

contains zero or one photon because ⟨1| e−iϕ(0)/−ϕ0 |2⟩ ≃ 0. This mechanism is the second mechanism
used to build a SPS with ICPT and has been implemented by C. Rolland [Rolland16 ; Rolland18 ].

Characteristic product

Finally, a relation similar to the gain-bandwidth product can be derived for the compression point. First,
the equation defining the compression point, 10 log G∗

(
η∗
(
γin
−1 dB

))
= 10 log G∗−1 dB is analytically

solved to obtain the relation between the nominal efficiency at the compression point η∗
(
γin
−1 dB

)
as a

function of the gain – when G∗ ≫ 1:

η∗
(
γin
−1 dB

)
≃︸︷︷︸

Taylor 1/
√

G∗

1− 101 dB/20 − 1√
G∗

(V.8)

3If the thermodynamic temperature is small enough such as the ground state is the vacuum.
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Next, the expression of η∗
(
γin) is developed to second order in γin and Q∗ is substituted with the gain

when G∗ ≫ 1:
η∗
(
γin) ≃︸︷︷︸

Taylor γin

1− Z(0)
sys

RQ/π
γin

ℏω(0)
2Q(0)

ω(0)|1−4Q∗2|2

≃︸︷︷︸
G∗ ≫ 1

1− G∗ Z(0)
sys

RQ/π
γin

ℏω(0)
Q(0)

2ω(0)

(V.9)

Asymptotic solution of the compression point is then:

γin
−1 dB ≃

1
√

G∗3 ℏω(0) RQ/π

Z (0)
sys

2ω(0)

Q(0)

(
101 dB/20 − 1

)
(V.10)

Table V.2 summarises the two characteristic products derived here. The relation between gain and

Table V.2: ICTA characteristics

Bandwidth Compression point

Characteristic product ΓGBW ≡ 2
Q(0)/ω(0)+Q(1)/ω(1) γin

GCP ≡ ℏω(0) RQ/π

Z(0)
sys

2ω(0)

Q(0)

Constitutive equation
√

G∗ΓBW = ΓGBW
√

G∗3
γin
−1 dB = γin

GCP
(
101 dB/20 − 1

)

compression point has been measured with the first design. Figure V.10 shows the experimental result
and a good agreement between measurement and theoretical curve.
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Figure V.12: Gain-compression
point relation. The gain is shown
as a function of the input power for
different critical currents. Brown
dots correspond to 1 dB compression
points of each curve. Purple line of
slope 2/3 is the theoretical curve, see
table V.2.

Conclusion & outlooks

In conclusion our results experimentally show that ICPT can lead to quantum-limited amplification
despite imperfections of the bias voltage. Limits of these noise, bandwidth and compression point have
been derived and experimentally observed. Moreover, those limits can be engineered with an appropriate
impedance seen by the junction; the amplification scheme can be optimised for:

Lower noise: It is quantum limited if the bias fluctuations are mastered, which can be done by
lowering the bias fluctuation themself with a low-impedance environment at bias frequency and
zero-frequency, or by increasing the effective bandwidth.

Higher bandwidth: By designing low quality factor resonators (see chapter III).

Dynamic range: It is limited by the quality factor and the characteristic impedance of the mode of
the amplified frequency. Both have to be low and can be engineered (see chapter III).
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V.3. Bandwidth & dynamic range

The remaining limit is the critical current of the Josephson junction, low quality factors and characteristic
impedances imply a high critical current to reach amplification regime.

A way to overcome issues observed above – conversion process and excessive noise – is to use an LC
resonator instead of a cascaded quarter-wave resonator. Figure V.13 shows this design. Moreover, it allows
reaching higher idler frequency allowing to stay closer to the quantum limit up to higher temperature
(chapter I). Indeed, any resonance between signal and idler is susceptible to interfere with the amplification
process. An LC resonator avoids these interferences, however an high frequency idler cannot be dissipated
off chip (frequency is too high for coaxial cables) and an on-chip resistor has to be included.

Figure V.13: High frequency
ICTA. Upper panel shows the
schematic of this design. Now low
(brown) and high (pink) frequency
modes are physically separated – DC
bias also has its own port (green cir-
cle). The low frequency mode is made
of a LC circuit coupled through a ca-
pacitance (defining the quality factor).
The high frequency mode is a quarter-
wave TL slightly flattened thanks to
a quarter-wave TL at the bias fre-
quency and a small piece of TL (act-
ing as an inductance), this mode is
dissipated on-chip by a 5 Ω resistor.
Panel bottom shows the real part of
the impedance seen by the junction,
annotations show which components
are responsible for the shape.

Finally, such an amplifier, powered by simple DC voltages could then make measuring microwave
signals at the single photon level much easier and allow deploying many amplifiers on a chip. It could,
therefore, be an important ingredient for qubit readout in large-scale quantum processors.
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Conclusion & outlooks

In this manuscript, I sum up the work I did on Josephson photonics. First I presented two different
theoretical approaches to explain this physics: P-theory and Input-Output Theory. Then I presented,
theoretical and experimental, results about two different devices based on that physics:

Single Photon Source: A source of microwave photons that are highly non-classical, with
g(2) (0) < 1 with the goal to ultimately produce single photons with g(2) (0) ≪ 1;

Inelastic Cooper pair Tunnelling Amplifier: A microwave amplifier working close to the quan-
tum limit.

Both devices are designed to be very simple to operate: They are powered by a DC voltage.
The two theoretical approaches of the first part have been used to derive characteristic quantities for

both devices:

Single Photon Source is characterised by its Power Spectral Density which we numerically compute
thanks to the P-theory. However, the statistics cannot be derived without more sophisticate theory,
provided by J. Leppäkangas;

Inelastic Cooper pair Tunnelling Amplifier is characterised by its gain, bandwidth and compres-
sion point, derived via Input-Output Theory. Moreover, fundamental relations on one hand between
gain and bandwidth (

√
G∗ΓBW is constant), and on other hand between gain and compression

point (
√

G∗3
γin
−1 dB is constant) are derived.

A sample implementing a Single Photon Source has been measured and fully characterised. Power
Spectral Density, first G(1) and second G(2) order correlation functions have been measured and properly
calibrated. The P-function has been used to propose a method to characterise such a sample. We
demonstrate a non-classical source of photons with g(2) (0) ≃ 0.43, operating at 6 GHz with a rate of
100 MHz in free-running or on-demand mode.

A sample implementing an Inelastic Cooper pair Tunnelling Amplifier has been measured. A gain of
10 dB over 200 MHz up to −115 dBm is observed. Moreover, both relations between gain and bandwidth
(
√

G∗ΓBW is constant) and between gain and compression point (
√

G∗3
γin
−1 dB is constant) are experi-

mentally verified. However, this sample was not quantum-limited. A second sample mastering the bias
fluctuations has then been measured and is effectively within 10 % of the quantum limit.

We, therefore, have demonstrated that both non-classical sources and near quantum-limited amplifiers
can be designed from Inelastic Cooper Pair Tunnelling where the electromagnetic environment is designed
at will. Moreover, these Josephson photonic devices are very easy to operate as they are powered by a
simple DC bias.

In parallel to exploration of Inelastic Cooper Pair Tunnelling physics, I also developed an instrumenta-
tion framework that we used to measure our samples and which has been designed to be a versatile tool
that can be applied to various kind of experiments: It monitors many instruments, performs loops and
records data in a flexible way.



Perspectives

Limitations of the measured Single Photon Source sample have been identified: First the characteristic time
of the RC circuit is not long enough compared to the resonator relaxation time. In addition, when operated
on-demand, there is an unwanted coupling between the flux line and the DC line. Most importantly the
charging energy of the RC circuit is too low, making it impossible to reach kBT ≪ EC necessary for
single photon generation.

Limitations of the measured Inelastic Cooper pair Tunnelling Amplifier sample have also been observed:
First an unwanted conversion process that reduces the effective gain. A second sample overcoming this
issue has been measured and shows a noise very close to the quantum limit. Second, a high sensitivity to
fluctuations of the bias. A future design overcoming this second issue is proposed and will be measured in
the future.

In this thesis, we have already demonstrated that Josephson photonics be used to build a non-classical
source of photons and a near quantum-limited amplifier. Next, optimised versions of these devices can be
designed to, respectively, reach the single photon level and higher bandwidth and dynamic range while
maintaining quantum limited noise for the amplifier. Moreover, other devices such as Single Photon
Detectors [Leppäkangas18 ] can be build. To do so, the conversion process we saw when we measured the
amplifier, can be used to convert a photon at one frequency to several photons at another frequency that
are subsequently detected.

Josephson photonics therefore appears as a promising field to build photonic devices on a frequency
range up to few 100 GHz and gives tools for further experiments on quantum information and quantum
electrodynamics. These devices can improve correlation function measurements and help to manipulate
and read qubits, a crucial element for the development of quantum information.
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Appendix A

Fluctuation-dissipation theorem
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Let’s consider a LC circuit, i.e. capacitor C and inductance L, in parallel, damped by an arbitrary
admittance Yω,damp (ω). We consider two descriptions:

• A classical picture that results in equations of motion with an usual phenomenological damping
model;

• A quantum picture in which the damping is pictured by an explicit bath Hamiltonian.

i Langevin equation

i.a Classical picture

First, current-voltage relations for each branch are written:

• iC ≡ C ∂tuC

• uL ≡ L ∂tiL

• idamp ≡ Yt ,damp ∗ udamp

Together with Kirchhoff’s laws:

• uC = uL = udamp = u

• iC + iL + idamp = it

A classical Langevin equation emerges:

∂2
t u + ω0 Z0Yt ,damp ∗ ∂tu + ω2

0u = 1
1/ω0Z0

∂tit (A.1)

With ω0 ≡
√

1
CL , Z0 ≡

√
L
C .



A. Fluctuation-dissipation theorem

In the case of a purely resistive admittance, i.e. Yt ,damp ≡ δ
Rdamp

, it corresponds to the classical
equation of motion of a damped harmonic oscillator:

∂2
t u + ω0

Q ∂tu + ω2
0u = 1

1/ω0Z0
∂tit (A.2)

With a quality factor corresponding to Q = Rdamp
Z0

. It discriminates the three different regimes of a
damped harmonic oscillator – over-damped (Q > 1/2), critically damped (Q = 1/2) & under-damped
(Q < 1/2).

The flux ϕ ≡
t∫
−∞

u is more meaningful than u for our systems because the Josephson junction

Hamiltonian is ∝ ei ϕ
−ϕ0 + h.c. [Vool17 ]. After integration, equation A.1 becomes:

∂2
t ϕ + ω0 Z0Yt ,damp ∗ ∂tϕ + ω2

0ϕ = 1
1/ω0Z0

it (A.3)

An effective mass, m∗, is defined to fulfil the homogeneity equation
[

1
2 m∗ [∂tϕ]2

]
= J = A V s, i.e.

[m∗] = A s V−1 = s Ω−1, and so m∗ ≡ 1
ω0Z0

fulfil that equation. Finally, a full analogy with a classical
mechanical harmonic oscillator can be pictured – table A.1.

Table A.1: Mechanical and LC circuit analogy

Mechanical picture LC circuit picture

Mass m Effective mass m∗ ≡ 1
ω0Z0

Position x Flux ϕ

Spring constant k m∗ω2
0

Restoring force −kx −m∗ω2
0ϕ

Impedance Zt,mecha Admittance Yt ,damp

Frictional force Zt,mecha ∗ ∂tx Ohm’s law Yt ,damp ∗ ∂tϕ

Driving force Driving current it

Kinetic energy 1
2 m [∂tx]2 Capacitance energy 1

2 m∗ [∂tϕ]2 = 1
2 Cu2

Potential energy 1
2 kx2 Inductance energy 1

2 m∗ω2
0ϕ2 = 1

2 Li2
L

Finally, the restoring force is extended with an arbitrary potential, Vϕ (ϕ), and so:

∂2
t ϕ + ω0 Z0Yt ,damp ∗ ∂tϕ + ω2

0ϕ + 1
m∗ [∂ϕVϕ] (ϕ) = 1

m∗ it (A.4)

Let’s assume Fω [[∂ϕVϕ] (ϕ)] ≡ 1
Lω

ϕ. And from equations A.1 and A.4, u-response function χω,uit = Zω

and ϕ-response function χω,ϕit are derived:

1
Zω(ω) ≡ iω,drive

u = Yω,damp (ω) + im∗ω
[

ω2
0+1/m∗Lω(ω)

ω2 − 1
]

χω,ϕit (ω) ≡ ϕ
iω,drive

= i Zω(ω)
ω

(A.5)

i.b Quantum picture

Previous notations are kept but now observable quantities are operators instead of vectors. Thanks to the
analogy picture in table A.1, the Hamiltonian – excluding the dissipative aspect – is:

HLC ≡ 1
2m∗ [∂tϕ]2 + 1

2m∗ω2
0ϕ2 (A.6)
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A.ii. Fluctuation-dissipation relation

Applying Heisenberg equation of motion, we obtain the usual Hamiltonian of a harmonic oscillator with1

∂tϕ = q
m∗ :

HLC = 1
2m∗ q2 + 1

2m∗ω2
0ϕ2 = ℏω0

(
a†a + 1

2

)
(A.7)

With a/a† ≡
√

m∗ω0
2ℏ

(
ϕ± i q

m∗ω0

)
=
√

1
2ℏZ0

(ϕ± iZ0q) as
[
a, a†

]
= 1, conversely ϕ = ϕzpf

(
a† + h.c.

)
and q = qzpf

(
ia† + h.c.

)
with ϕzpf ≡

√
ℏZ0

2 & qzpf ≡
√

ℏ
2Z0

.
Now, the arbitrary potential is added back to the Hamiltonian2:

HLC ≡ ℏω0a†a + Vϕ (ϕ) (A.8)

The equation of motion is then:

∂2
t ϕ = 1

m∗ ∂tq = 1
iℏm∗ [q,HLC ]

= 1
m∗
( 1

iℏ
[
q, ℏω0a†a

]
+ 1

iℏ [q,Vϕ (ϕ)]
)

∂2
t ϕ = − ω2

0ϕ− 1
m∗ [∂ϕVϕ] (ϕ)

(A.9)

Which is consistent with equation A.4.

ii Fluctuation-dissipation relation

ii.a General case

Here we summarise [Kubo66 ]. First, a driving term − 1
2 {it , ϕ}, with it independent of the system, is added

back in, so the full Hamiltonian of the driven system is:

Htot ≡ Henv−
1
2 {it , ϕ}︸ ︷︷ ︸
driving

(A.10)

Kubo studied the influence of the driving Hamiltonian on a system operator A, in the limit of small
perturbations.

He shows that the A-response function, defined as the response when it = δ, is
χt,Ait (t) = 1

iℏΘ (t) ⟨[ϕ (0) , A (t)]⟩. Moreover, at thermal equilibrium – thermodynamic temperature β –
in frequency domain, the response can be written as follows:

χω,Ait (ω) = Fω [χt,Ait ] (ω)

= 1
iℏ
∫
R+

⟨[ϕ (0) , A (t)]⟩β eiωt dt

= 1
iℏ Tr( e−βHtot)

∑
n,m

∫
R+

⟨n|ϕ (0) |m⟩ ⟨m|A (0) |n⟩ ei(ωm−ωn)t [ e−βℏωn − e−βℏωm
]

eiωt dt

= i
ℏ Tr( e−βHtot)

∑
n,m

∫
R+

⟨n|ϕ (0) |m⟩ ⟨m|A (0) |n⟩ ei(ωm−ωn)t [ e−βℏωn + e−βℏωm
] 1

coth(βℏω/2) eiωt dt

χω,Ait (ω) = 2i
ℏ coth(βℏω/2)

∫
R+

1
2 ⟨{ϕ (0) , A (t)}⟩β eiωt dt

(A.11)
This equation is the so-called fluctuation-dissipation theorem. It links the A-response function and the
A†-(symmetrised) correlation function – i.e. 1

2 ⟨{ϕ (0) , A (t)}⟩β :
1[ϕ, q] ≡ ih
2The relations

[
ϕ, ℏω0a†a

]
= iℏq/m∗ and

[
q, ℏω0a†a

]
= − iℏm∗ω2

0ϕ still hold.
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A. Fluctuation-dissipation theorem

ii.b Flux-flux case

First, a straightforward derivation shows that a symmetrised auto-correlation function, e.g. when A ≡ ϕ,
for a stationary ergodic process is even, i.e. 1

2 ⟨{ϕ (0) , ϕ (t)}⟩β = 1
2 ⟨{ϕ (0) , ϕ (−t)}⟩β . Combined with

equations A.5 and A.11 this result in:

Re[Zω(ω)]
ω = Im (χω,ϕit (ω))

= 1
ℏ coth(βℏω/2)

{ ∫
R+

1
2 ⟨{ϕ (0) , ϕ (t)}⟩β eiωt dt +

∫
R+

1
2 ⟨{ϕ (0) , ϕ (t)}⟩β e−iωt dt

}
Re[Zω(ω)]

ω = 1
ℏ coth(βℏω/2)

∫
R

1
2 ⟨{ϕ (0) , ϕ (t)}⟩β eiωt dt

(A.12)

Then, the inverse Fourier transform of equation A.12 is:

S
[
Γβ

t,ϕϕ

]
(t) = 1

2π

∫
R

2ℏRe [Zω (ω)]
ω

coth
(

βℏω

2

)
︸ ︷︷ ︸
S[Sω,ϕϕ](ω) Symmetrised PSD

e−iωt dω (A.13)

With ⟨{ϕ (0) , ϕ (t)}⟩β = S
[
Γβ

t,ϕϕ

]
. This equation is the form of the FDT applicable to a current driven

circuit. For a voltage driven one, a similar relation involving charge and admittance can be derived.
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Appendix B

Input output theory
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The input output relations are derived in two steps:

• First, the quantisation of TLs shows how travelling field operators are defined from an infinite set of
independent harmonic oscillators;

• Then, the input output relations themselves from a linearly coupled system & bath Hamiltonian.

Similar models of TL and coupling can be found [Roy18 ].

i Transmission line

The full continuous Hamiltonian of a TL is:

HTL ≡
1
2

∫
R+

m∗ω2
0 [∂zϕ]2 + m∗ [∂tϕ]2 (B.1)

Where m∗, ω0 & Z0 are defined accordingly to table A.1.
After quantisation similar to appendix A, the Hamiltonian becomes:

HTL = 1
2π

∫
R+

ℏvϕkz
[{

a† (kz) , a (kz)
}

+
{

a† (−kz) , a (−kz)
}]

dkz (B.2)

Where a† (kz) is the creation operator resulting from quantisation expressed in spacial frequency domain.
vϕ is the phase velocity.

The equation of motion is then:

iℏ∂ta (kz) ≡ [a (kz) ,HTL]

= 1
2π

∫
R

ℏvϕ |k ′z |
[
a (kz) ,

{
a† (k ′z) , a (k ′z)

}]
dk ′z

=
∫
R

ℏvϕ |k ′z | a (k ′z) δ (kz − k ′z) dk ′z

iℏ∂ta (kz) = ℏvϕ |kz | a (kz)

(B.3)



B. Input output theory

Interpretation of equations B.2 and B.3 is straightforward: A semi-infinite TL is described by a continuous
bath of non interacting modes – equation B.2; where a field can travel – equation B.3.

ii Input output model

ii.a Coupling model & Equation of motion

Now, the TL from equation B.1 can be inductively coupled to a flux ϕsys:

Htot ≡ Henv + 1
2

∫
R+

m∗ω2
0 [∂zϕ]2 + m∗ [∂tϕ]2

︸ ︷︷ ︸
HTL

+
∫
R+

{ϕsys, κz∂zϕ} (B.4)

The same quantisation as before can be applied1 , resulting in:

Htot ≡ Henv + 1
2π

∫
R

vϕ |kz |
[
|kz |
Z0

ϕ (kz) ϕ (−kz) + Z0
|kz |q (kz) q (−kz)

]
dkz

+ 1
2π

∫
R

{ϕsys,−ikzκω (−kz) ϕ (kz)} dkz

(B.5)

Note here that following [Ford88 ], this coupling is a linear-coupling/Ullersma model, that is equivalent to
the independent-oscillator model after renormalisation. Moreover, it implies the system is subject to the
Quantum Langevin Equation (QLE).

After substitutions kz 7→ ω/vϕ and κω (ω/vϕ) /vϕ 7→ κω (ω), the resulting equation of motion2 is
consistent with equation A.4 and gives the following relation:

Z0 |κω|2 = Re [Yω,damp] (B.6)

To go further, let’s consider a system consisting of an anharmonic oscillator described by equation A.8,
so two more equations of motion can be derived3:

iℏ∂tb =

[b,Henv]︷ ︸︸ ︷
ℏωsysb +

√
1

2ℏZsys
[∂ϕVϕ]

(√
ℏZsys

2
(
b† + h.c.

))
+ℏ
√

Z0Zsys
1

2π

∫
R

dkz i sgn (kz)
√
|kz |κω (kz) a† (kz) + h.c.

iℏ∂ta (kz) = ℏvϕ |kz | a (kz) + iℏ
√

Z0Zsys

2 sgn (kz)
√
|kz |κω (kz)

(
b† + h.c.

)
(B.7)

ii.b RWA & Markov approximations

First, if the potential and source terms are thrown away, natural frequencies of b and a (kz) are respectively
ωsys > 0 and vϕ |kz | > 0. We then make a weak RWA approximation, i.e. we neglect counter-rotation
terms proportional to b† and a† (kz). Equations of motion are then:

iℏ∂tb = [b,Henv]− iℏ
√

Z0Zsys
1

2π

∫
R

sgn (kz)
√
|kz |κω (kz)∗ a (kz) dkz

iℏ∂ta (kz) = ℏvϕ |kz | a (kz) + iℏ
√

Z0Zsys

2 sgn (kz)
√
|kz |κω (kz) b

(B.8)

1The same CCR [ϕ (kz) , q (k′
z)] ≃ iℏπδ (kz + k′

z) and ∂tϕq/m∗ still holds, because the coupling does not involve ∂tϕ.
2Algebra is tedious and can be found [Ford88 ; Roy18 ].
3Annihilation operator of the LC system is noted b to avoid confusion.
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B.ii. Input output model

The free4 and source terms of the solution of the second equation can be inserted in the first one:

1
2π

∫
R

sgn (kz)
√
|kz |κω (kz)∗ a (kz) dkz

=
only free term

1
2π

∫
R

sgn (kz)
√
|kz |κω (kz)∗

[
∓aret/adv (∓kz)

]
e−ivϕ|kz |(t−t0) dkz

=
kz 7→ ω/vϕ

{t 7→ κt (±t)} ∗

t 7→ 1
2π

∫
R+

√
ω

vϕ
aret/adv

(
ω

vϕ

)
e−iωt dω

︸ ︷︷ ︸
aout/in

=
only source term

±
√

Z0Zsys

2
1

2π

∫
R

|kz | |κω (kz)|2 Fω [[δt ∗ {τ 7→ Θ (∓τ)}] b] (vϕ |kz |) e−ivϕ|kz |t dkz

=
kz 7→ ω/vϕ

±i
√

Z0Zsys
1

2π

∫
R+

∣∣∣ 1
vϕ

κω

(
ω
vϕ

)∣∣∣2 (−iω)Fω [[δt ∗ {τ 7→ Θ (∓τ)}] b] (ω) e−iωt dkz

=
RWA

±i
√

Z0Zsys

[
{t 7→ Θ (±t)}

{
t 7→

∫
R

κt (τ) κt (τ − t) dτ

}]
∗ ∂tb

(B.9)
Combining all together, it results in input output relations under weak RWA approximation:

iℏ∂tb = [b,Henv]− iℏ
√

Z0Zsys
t∫
−∞

κt (t − τ) aout (τ) dτ + ℏZ0Zsys
t∫
−∞

[κt ∗ T [κt ]] (t − τ) ∂tb (τ) dτ

iℏ∂tb = [b,Henv]− iℏ
√

Z0Zsys
∞∫
t

κt (τ − t) ain (τ) dτ − ℏZ0Zsys
∞∫
t

[κt ∗ T [κt ]] (t − τ) ∂tb (τ) dτ

(B.10)
Before applying Markov approximation, let’s interpret aout/in by inserting free terms in the expression of
q:

q (z, t) = 1
2π

∫
R

iqzpf
√
|kz |

[
a† (−kz , t)− a (kz , t)

]
e−ikzz dkz

= qzpf
1

2π

∫
R+

dkz i

−√kz a (kz , t)︸ ︷︷ ︸
aadv(kz) e−ivϕkz t

e−ikzz −
√

kz a (−kz , t)︸ ︷︷ ︸
−aret(kz) e−ivϕkz t

eikzz

+ h.c.

=
kz 7→ ω/vϕ

qzpf
vϕ

1
2π

∫
R+

dkz i


−
√

ω

vϕ
aadv

(
ω

vϕ

)
e−iω(t+z/vϕ)

︸ ︷︷ ︸
1

2π

∫
R+

dkz → ain(t+z/vϕ)

+
√

ω

vϕ
aret

(
ω

vϕ

)
e−iω(t−z/vϕ)

︸ ︷︷ ︸
1

2π

∫
R+

dkz → aout(t−z/vϕ)


+ h.c.

q (z, t) = qin

(
t + z

vϕ

)
− qout

(
t − z

vϕ

)
(B.11)

So aout/in are the annihilation operators associated to the outgoing and incoming charge fields.
We now make the first Markov approximation, i.e. we neglect memory effects by assuming a purely

resistive admittance in equation B.6: κt ≡ δ√
Z0ZsysQ

. Moreover, the RHS can be approximated at first
order: aout/in 7→

√
ωsysaout/in & ∂tb 7→ − iωsysb, i.e. not only counter rotating terms are neglected but

their frequency is approximated as ωsys at first order. This is the strong RWA approximation. Finally,
4With, arbitrarily, a (kz , t) = ∓ aret/adv (∓kz) e−ivϕ|kz |t .
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B. Input output theory

the equations of motion become:

iℏ∂tb = [b,Henv]− iℏ
√

ωsys
Q aout − iℏ 1

2
ωsys

Q b

iℏ∂tb = [b,Henv]− iℏ
√

ωsys
Q ain + iℏ 1

2
ωsys

Q b
(B.12)

Those equations are the so-called input output relations under RWA and Markov approximations.
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Appendix C

Auxiliary calculations

Contents
i Wiener-Khinchine theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

General relations

Hermitian auto-correlation case

ii P(E) properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Exponential & correlation function

Temperature asymmetry

Minnhagen equation

i Wiener-Khinchine theorem

General relations

In view of study the energy and power of a quadratic from, let’s focus on the quantity f †0 (t + τ) f1 (t):

Fω

[
τ 7→ Fω

[
t 7→ f †0 (t + τ) f1 (t)

]
(ωt)

]
(ωτ )

=
[{

ωt 7→ Fω

[
τ 7→ 1

2π e−iωtτ
]

(ωτ )Fω [f0]† (−ωt)
}
∗ Fω [f1]

]
(ωt)

=
[{

ωt 7→ δ (ωt − ωτ )Fω [f0]† (−ωt)
}
∗ Fω [f1]

]
(ωt)

(C.1)

We suppose a stationary ergodic process, so that the average value is t-independent, it follows – with the
previous expression where ωt = 0:

Sω,f0f1 ≡ T [Fω [Γt,f0f1 ]]

= T
[〈
Fω

[
τ 7→ f †0 (t + τ) f1 (t)

]〉]
Sω,f0f1 = Fω [f0]† Fω [f1]

(C.2)

Hermitian auto-correlation case

Now let’s assume f0 = f1 = f is hermitian, i.e. f † ≡ f . Straightforwardly:

Fω [S [Γt,ff ]] = S [Sω,ff ] =
{
Fω [f ]† ,Fω [f ]

}
(C.3)



C. Auxiliary calculations

Moreover, be a thermal equilibrium at thermodynamic temperature β, positive and negative frequency
spectrum are related:

Sβ
ω,ff (−ω) =

∫
R

⟨f (t) f (0)⟩β eiωt dt

= 1
Tr( e−βHtot)

∑
n,m

∫
R

⟨n| f (0) |m⟩ ⟨m| f (0) |n⟩ ei(ωn−ωm)t e−βℏωn eiωt dt

= 1
Tr( e−βHtot)

∑
n,m

∫
R

⟨m| f (0) |n⟩ ⟨n| f (0) |m⟩ e−i(ωm−ωn)t e−βℏωm eβℏω eiωt dt

Sβ
ω,ff (−ω) = eβℏωSβ

ω,ff (ω)

(C.4)

ii P(E) properties

Exponential & correlation function

Let f an hermitian operator, i.e. f † = f . The following equation holds – thanks to the Wick theorem:

∂α

〈
e±iαf (t) e∓iαf (0)〉 (α) = ± i

〈
f (t) e±iαf (t) e∓iαf (0)〉∓ i

〈
e±iαf (t)f (0) e∓iαf (0)〉

= 2α {⟨f (t) f (0)⟩ − ⟨f (0) f (0)⟩}︸ ︷︷ ︸
Jt,f (t) ≡ Γt,ff (t)−Γt,ff (0)

〈
e±iαf (t) e∓iαf (0)〉 (C.5)

Consequently: 〈
e±if (t) e∓if (0)

〉
= eJt,f (t) (C.6)

A similar derivation gives
〈

e±if (t) e±if (0)〉 = e−Jt,f (t).

Temperature asymmetry

Now, let’s define Pβ
f (ℏωJ ) ≡ 1

h Fω

[
eJβ

t,f

]
(ωJ) where thermal equilibrium at thermodynamic temperature

β is assumed.

Pβ
f (−ℏωJ) = 1

h
∫
R

〈
e±if (−t) e∓if (0)〉

β
eiωJ t dt

= 1
h Tr( e−βHtot)

∑
n,m

∫
R

⟨n| e±if (0) |m⟩ ⟨m| e∓if (0) |n⟩ e−i(ωn−ωm)t e−βℏωn eiωJ t dt

= 1
h Tr( e−βHtot)

∑
n,m

∫
R

⟨m| e∓if (0) |n⟩ ⟨n| e±if (0) |m⟩ ei(ωm−ωn)t e−βℏωm e−βℏωJ eiωJ t dt

Pβ
f (−ℏωJ) = e−βℏωJ Pβ

f (ℏωJ)
(C.7)

Minnhagen equation

First of all, in time domain:
∂t eJβ

t,f = eJβ
t,f ∂tJ β

t,f︸ ︷︷ ︸
∂tΓβ

t,ff

(C.8)

It follows in frequency domain, together with equation C.4:

νJPβ
f (hνJ) =

∫
R

Pβ
f (hνJ − hν) νSβ

ν,ff (−ν) dν

=
∫
R

Pβ
f (hνJ − hν) ν

1+ e−βhν S
[
Sβ

ν,ff

]
(ν) dν

(C.9)
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C.ii. P(E) properties

In the flux-flux correlation case, see equation A.13, and with f ≡ ϕ/−ϕ0, it gives:

νJPβ

ϕ/−ϕ0
(hνJ ) =

∫
R

Pβ

ϕ/−ϕ0
(hνJ − hν) Re [Zν (ν)]

2π −ϕ2
0/ℏ︸ ︷︷ ︸

RQ

/ 2
1

1− e−βhν
dν (C.10)

This form is the so-called Minnhagen equation, it shows that thanks to the fluctuation dissipation theorem
the probability function Pβ

ϕ/−ϕ0
is determined by the dissipative part of the electromagnetic environment

Re [Zν (ν)].
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Resumé

La photonique Josephson est un domaine récent de la physique à la croisée entre l’électrodynamique
quantique en circuit et le blocage de Coulomb dynamique. Elle explique et étudie la possibilité pour une
paire de Cooper de traverser une jonction Josephson polarisée en tension par effet tunnel inélastique, en
dissipant la différence de potentiel électrique aux bornes de la jonction sous forme de photons émis dans
l’environnement électromagnétique de la jonction.

Cette thèse s’arrête sur deux aspects de la photonique Josephson:

• La possibilité de contrôler la statistique des photons émis dans l’environnement, pour générer des
photons non-classiques;

• La possibilité de stimuler l’émission de photons, ce qui permet d’amplifier avec un bruit ajouté
à la limite quantique.

Pour fonctionner, ces dispositifs ne demandent qu’une simple tension continue servant à polariser la jonction
Josephson. A terme ces dispositifs pourraient simplifier certaines mesures quantiques en remplaçant
avantageusement des dispositifs micro-ondes existants plus difficiles à utiliser.

Nous avons étudié nos dispositifs avec deux théories, la théorie P (E) et celle liant les flux de photons
entrant et sortant, pour en tirer les caractéristiques de fonctionnement de nos dispositifs : taux d’émission,
gain, bruit, bande passante, point de compression. Les dispositifs expérimentaux mesurés sont réalisés en
nitrure de niobium en créant un environnement électromagnétique répondant à nos besoins. La possibilité
de contrôler les processus photoniques que l’on veut en réalisant l’environnement électromagnétique adapté
laisse la porte ouverte à de futures dispositifs : diverses sources non-classiques, amplificateurs large bande,
détecteurs de photons.

Abstract

The recent field of Josephson photonics is about the interplay between circuit quantum electrodynamic and
dynamical Coulomb blockade. It explains and studies the ability of a Cooper pair to inelasticity tunnel
through a DC-biased Josephson junction by dissipating the Cooper pair energy in the electromagnetic
environment of the junction in the form of photons.

This thesis focuses on two aspects of the Josephson photonics:

• Control over the statistics of the emitted photons with focus on generation of non-classical
photons;

• Stimulated emission of photons leading to amplification with added noise at the quantum-
limit.

These devices are powered with a simple DC voltage used to bias the Josephson junction. These devices
could simplify quantum measurements hardware by replacing existing devices with large overhead.

We have studied our devices with two theories, P-theory and input output theory, to derive the
characteristics of our devices: Photon rate, gain, noise, bandwidth, compression point. The measured
samples are made of niobium nitride and the electromagnetic environment of the junction is engineered to
fulfil our needs. The possibility to select the photonic processes at will by engineering the electromagnetic
environment permits to imagine further devices: Other types of sources, wideband amplifiers, photon
detectors.
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