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Abstract

This dissertation explores two related topics in the context of deep
learning: incremental learning and image generation. Incremental learning
studies training of models with the objective function evolving over time,
e.g., addition of new categories to a classification task. Image generation
seeks to learn a distribution of natural images for generating new images
resembling original ones.

Incremental learning is a challenging problem due to the phenomenon
called catastrophic forgetting: any significant change to the objective during
training causes a severe degradation of previously learned knowledge. We
present a learning framework to introduce new classes to an object detection
network. It is based on the idea of knowledge distillation to counteract
catastrophic forgetting effects: fixed copy of the network evaluates old
samples and its output is reused in an auxiliary loss to stabilize learning of
new classes. Our framework mines these samples of old classes on the fly
from incoming images, in contrast to other solutions that keep a subset of
samples in memory.

On the second topic of image generation, we build on the Generative
Adversarial Network (GAN) model. Recently, GANs significantly improved
the quality of generated images. However, they suffer from poor coverage
of the dataset: while individual samples have great quality, some modes
of the original distribution may not be captured. In addition, existing
GAN evaluation methods are focused on image quality, and thus do not
evaluate how well the dataset is covered, in contrast to the likelihood measure
commonly used for generative models. We present two approaches to address
these problems.

The first method evaluates class-conditional GANs using two complemen-
tary measures based on image classification — GAN-train and GAN-test,
which approximate recall (diversity) and precision (quality of the image)
of GANs respectively. We evaluate several recent GAN approaches based
on these two measures, and demonstrate a clear difference in performance.
Furthermore, we observe that the increasing difficulty of the dataset, from
CIFAR10 over CIFAR100 to ImageNet, shows an inverse correlation with
the quality of the GANs, as clearly evident from our measures.

Inspired by our study of GAN models, we present a method to explicitly
enforce dataset coverage during the GAN training phase. We develop a
generative model that combines GAN image quality with VAE architecture
in the feature space engendered by a flow-based model Real-NVP. This allows
us to evaluate a valid likelihood and simultaneously relax the independence
assumption in RGB space which is common for VAEs. We achieve Inception
score and FID competitive with state-of-the-art GANs, while maintaining
good likelihood for this class of models.
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Résumé

Cette thèse explore deux sujets liés dans le contexte de l’apprentissage
profond : l’apprentissage incrémental et la génération des images. L’apprentis-
sage incrémental étudie l’entrainement des modèles dont la fonction objective
évolue avec le temps (exemple : Ajout de nouvelles catégories à une tâche de
classification). La génération d’images cherche à apprendre une distribution
d’images naturelles pour générer de nouvelles images ressemblant aux images
de départ.

L’apprentissage incrémental est un problème difficile dû au phénomène
appelé l’oubli catastrophique : tout changement important de l’objectif au
cours de l’entrainement provoque une grave dégradation des connaissances
acquises précédemment. Nous présentons un cadre d’apprentissage permet-
tant d’introduire de nouvelles classes dans un réseau de détection d’objets.
Il est basé sur l’idée de la distillation du savoir pour lutter les effets de
l’oubli catastrophique : une copie fixe du réseau évalue les anciens échan-
tillons et sa sortie est réutilisée dans un objectif auxiliaire pour stabiliser
l’apprentissage de nouvelles classes. Notre framework extrait ces échantillons
d’anciennes classes à la volée à partir d’images entrantes, contrairement à
d’autres solutions qui gardent un sous-ensemble d’échantillons en mémoire.

Pour la génération d’images, nous nous appuyons sur le modèle du
réseau adverse génératif (en anglais generative adversarial network ou GAN).
Récemment, les GANs ont considérablement amélioré la qualité des images
générées. Cependant, ils offrent une pauvre couverture de l’ensemble des
données : alors que les échantillons individuels sont de grande qualité, certains
modes de la distribution d’origine peuvent ne pas être capturés. De plus,
contrairement à la mesure de vraisemblance couramment utilisée pour les
modèles génératives, les méthodes existantes d’évaluation GAN sont axées sur
la qualité de l’image et n’évaluent donc pas la qualité de la couverture du jeu
de données. Nous présentons deux approches pour résoudre ces problèmes.

La première approche évalue les GANs conditionnels à la classe en uti-
lisant deux mesures complémentaires basées sur la classification d’image —
GAN-train et GAN-test, qui approchent respectivement le rappel (diver-
sité) et la précision (qualité d’image) des GANs. Nous évaluons plusieurs
approches GANs récentes en fonction de ces deux mesures et démontrons
une différence de performance importante. De plus, nous observons que la
difficulté croissante du jeu de données, de CIFAR10 à ImageNet, indique une
corrélation inverse avec la qualité des GANs, comme le montre clairement
nos mesures.

Inspirés par notre étude des modèles GANs, la seconde approche ap-
plique explicitement la couverture d’un jeux de données pendant la phase
d’entrainement de GAN. Nous développons un modèle génératif combinant
la qualité d’image GAN et l’architecture VAE dans l’espace latente engendré
par un modèle basé sur le flux, Real-NVP. Cela nous permet d’évaluer une
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vraisemblance correcte et d’assouplir simultanément l’hypothèse d’indépen-
dance dans l’espace RVB qui est courante pour les VAE. Nous obtenons le
score Inception et la FID en concurrence avec les GANs à la pointe de la
technologie, tout en maintenant une bonne vraisemblance pour cette classe
de modèles.

Mots-clefs : apprentissage incrémental, apprentissage tout au long de
la vie, detection d’objet, réseaux adverses génératifs, réseaux de neurones
convolutionnels, vision par ordinateur, apprentissage machine
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Chapter 1

Introduction

Computer languages of the
future will be more concerned
with goals and less with
procedures specified by the
programmer.

— Marvin Minsky, Turing
Award Lecture “Form and

Content in Computer Science”

Contents
1.1 Goals and challenges . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Incremental learning . . . . . . . . . . . . . . . . . . . 4
1.1.2 Generative models . . . . . . . . . . . . . . . . . . . . 7

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Incremental learning of object detectors without catas-

trophic forgetting . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 How good is my GAN? . . . . . . . . . . . . . . . . . . 11
1.2.3 Adversarial training of partially invertible variational

autoencoders . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . 14

The quest for artificial intelligence is an ongoing adventure to design machines
capable of understanding the real world and to act accordingly on the level of,

1



2 CHAPTER 1. INTRODUCTION

or even surpassing human intelligence. Over the last 70 years the focus of AI
research has gradually moved from symbolic reasoning [126] and hand-crafted
algorithms [176] to statistical learning from data [20]. Today we train neural
networks that make sense of raw data and can learn millions of parameters in an
end-to-end manner [58]. This paradigm is known as deep learning.

Artificial neural networks (ANNs) are loosely inspired by biological neural
networks, but most similarities disappear on closer inspection. Subtle differences
suggest why their properties are so different from humans: ANNs are typically
trained in supervised regimes with a lot of data using backpropagation, while the
human brain learns with very little supervision and backpropagation is considered
biologically implausible [19]. Humans are capable of continuous learning throughout
their life, adding new objectives and refining prior knowledge, which demonstrates
the amazing flexibility of the human brain. ANNs, on the other hand, assume
objectives are known before training and all the data are i.i.d., which makes them
incapable of learning from ever changing streams of data.

Advances in connectionist research over the last two decades enabled end-to-
end training of neural networks on huge amounts of raw data. In particular,
deep learning has achieved incredible success in recent years: neural networks
have reached super-human performance in image classification [69–71], significantly
advanced state-of-the-art in several computer vision tasks (e.g., object detection [56,
99,148], semantic segmentation [27,28,101], instance segmentation [33, 68]) as well
as machine translation [14, 72, 174], speech recognition [8, 15, 63], and playing
Go [167,168]. A common feature of these tasks is large amounts of annotated raw
sensory data, where learned representations proved to be better than hand-crafted
representations of the past.

Computer vision seeks to understand the world from images and videos, which
are imperfect projections of reality, and partially capture its semantic variety. It is
an important subfield of AI research: if the main AI objective is to automate tasks
that the human brain can do, then computer vision automates what the human
visual system accomplishes. A major part of computer vision is essentially pattern
recognition: discovery of regularities in data, based on previously extracted statisti-
cal information. Among basic pattern recognition problems is image classification:
an image is associated with a class label, which can be interpreted as high-level
semantic description. Convolutional neural networks (CNNs) are empirically very
successful at solving this problem.

However, when trained for classification CNNs tend to learn minimalist repre-
sentations in the sense that they keep enough information to separate the classes,
and throw the rest away. One manifestation of this is that the only way to extend
an already trained network to teach it a few more classes (that differ significantly
from the original training set) is a complete retraining. Typically, this problem
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is mitigated by choosing many different classes (for example, 1000 classes of Ima-
geNet [155]). More classes means more data, hence longer training time for every
round of retraining. Naturally it raises a question: is there a way to avoid wasting
computational resources, to reuse pretrained networks and to extend them to
new classes in a short time? Computational resources become cheaper every year,
but the amount of available data grows at a much faster rate: Instagram alone
(relatively large social network, but still a small part of internet) has more than 80
million images and videos uploaded every day! 1

Computer vision is often described as a reduction of information: rich visual
description gets distilled to high-level semantic description, e.g., a class label,
segmentation mask or 3D structure. Perhaps the key to extendable neural networks
is connected with the inverse task: computer graphics that creates new images and
videos out of semantic description. As Geoffrey Hinton describes it: “In order to
do computer vision, first learn how to do computer graphics”. Indeed, computer
graphics roughly corresponds to inversion of semantic description back to raw
pixel space. Humans have the ability to visualise rich semantic concepts with very
little description, for instance by visualising the image of a bear when hearing
the word “bear”. It seems to be a more difficult problem than pattern recognition
because the latter is essentially reduction of information, while the former involves
reconstruction of fairly complex structure from a short description. Although
generative models achieved impressive success during the last few years [64,78,198],
they are still far from generating convincing high-resolution images on an arbitrary
subject, let alone videos [100]. In contrast, the human capability of imagination
seems to be interlinked with episodic memory (recalling events of the past) as
well as planning of future actions (“what will happen if I do X?”) as evidenced by
neuroscience research [196]. The ability to recall the past when needed is crucial to
maintain learning throughout our life. While CNNs excel in pattern recognition,
they are deprived of memory, and thus struggle at continuous learning.

1.1 Goals and challenges
This dissertation discusses two independent, but related topics: incremental

learning and generative adversarial networks. The first one is dedicated to designing
a framework where number of detected classes can be extended multiple times,
without complete retraining. The second one is dedicated to modern generative
models, particularly to adversarial ones. It discusses a common problem of adver-
sarial models “mode-dropping”, how to evaluate its extent, and introduces a new
generative model to reduce effects of mode-dropping.

1. https://www.brandwatch.com/blog/instagram-stats/

https://www.brandwatch.com/blog/instagram-stats/
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1.1.1 Incremental learning
Several applications of computer vision are connected to robotics. Indeed, robots

would benefit from having a powerful vision system, ideally a human-level one.
This would make them capable of understanding and navigating the visual world,
but is a challenging problem because of a plethora of hardware limitations. The
deep learning revolution has raised hopes that we will be able to build autonomous
agents equipped with human-level vision and understanding in the near future.
However, currently adopted lifecycle of deep learning models is hardly compatible
with the autonomous agent dream [173]. They require a lot of data collected
beforehand and most often, manually annotated as well as enormous computational
resources to train 2 (state-of-the-art models already use GPU-weeks as a unit of
training time). After this long training is completed, they are deployed most often
in the cloud. Furthermore, they can only be replaced by newer networks trained
from scratch. There is no practical way of altering an objective or extending a
network in any significant way after training, or even during the training phase. It
means that all the required information about the problem should be fixed before
the training starts.

The real world is infinitely diverse, making it impossible to precisely describe
and predict what an autonomous agent might encounter in the future. Ideally,
a neural network should be prepared to work with data outside of the training
distribution, so-called open set recognition [17, 18]. It means that the network can
reject a sample as unknown if it cannot classify it confidently. This setup, however,
presents a bigger challenge than it seems.

Another way to tackle the real world complexity is to continuously expand the
initial scope of the problem, and continue training after deployment. This is what
humans tend to do: continue learning throughout their whole life. However, early
connectionist research [51,112] showed that neural networks are particularly vulner-
able to changing the objective on the fly. This phenomenon is called catastrophic
forgetting (or interference) because new objective leads previous knowledge to be
discarded extremely fast.

Catastrophic forgetting makes any kind of evolving training objective difficult.
It can be mitigated partially by keeping all available data, and carefully balancing
the new and the old objectives, but often requires a tedious manual tuning of hyper-
parameters and training schedule. The holy grail of learning without catastrophic
forgetting is, of course, continuous retraining on-the-fly performed by autonomous
agents, but it is currently out of reach: modern neural networks require large
amounts of data and computational resources for training, even assuming we have
a perfect solution for catastrophic forgetting.

2. https://blog.openai.com/ai-and-compute/

https://blog.openai.com/ai-and-compute/
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Figure 1.1 – Catastrophic forgetting. An object detector network originally trained
for three classes, including person, detects the rider (top). When the network is
retrained with images of the new class horse, it detects the horse in the test image,
but fails to localize the rider (bottom).

Incremental learning is a setup where the training objective does not change
radically, but rather expands over time with new classes and new samples following
the evolution of datasets. It is desirable for networks deployed in the cloud, because
it avoids retraining from scratch, and thus wasting computational resources. In
certain cases, it is even required, e.g., a supermarket like Amazon Go, where
new products can arrive every day. Catastrophic forgetting heavily impedes the
incremental learning process: even when all incoming new data are stored and
added to the constantly growing training set, the resulting network has subpar
performance. Thus catastrophic forgetting is a big and important challenge in
incremental learning.

Let us illustrate how catastrophic forgetting manifests itself in class-incremental
learning of object detection task without memory. Consider the example in Fig-
ure 1.1: a trained model can detect a class person and recognizes a rider. A horse
is filtered out as background because it was not among the classes considered
for training. Note that the horse is not “never seen” data: the network has been
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explicitly trained to recognize patches with horses as background. Now we train the
model on images with annotated horses so it can reliably recognize the class horse.
However, due to catastrophic forgetting the network loses the ability to recognize
other classes including person. This is not the only problem here. In the absence
of prior training data, the object detector will fail because existing representations
are too crude to separate a new class from the background. Incremental learning
requires the model to discover more powerful representations and move the decision
boundary to free enough space for a new class. In the image classification task (in
the absence of dedicated background class), an image of a new unseen class is often
misclassified with high confidence as one of the previously learned classes. Strictly
speaking, entirely preventing forgetting in this case impedes learning new classes.
Thus, incremental learning introduces a challenge to gradually relearn new outputs
for potentially known inputs, without disturbing the unrelated representations,
which makes it more difficult than applications where catastrophic forgetting is the
only issue.

Catastrophic forgetting in neural networks is strikingly different from the human
brain: while we do forget information we do not use anymore, it is a gradual slow
process that is observed in adults. However, there is an interesting evidence that
human infants experience asymmetric interference reminiscent of catastrophic
forgetting in neural networks. In [139], asymmetric interference was observed in a
sequential category learning task in 3- and 4-month-old infants. They learned two
categories, “dog” and “cat”, sequentially from a series of images. It turned out that
subsequent learning of “dog” category disrupts the previously learned “cat” category.
However, learning of “cat” after the initial exposure to “dog” does not interfere
with previously learned “dog” category. This experiment inspired a hypothesis that
neural networks can model short-term memory in human infants [110].

Growing evidence from neuroscience [121, 196] suggests that the hippocam-
pus, the brain region that is ultimately responsible for short-term memory and
participating in its consolidation into long-term memory, is also linked to our
imagination. It is reasonable to hypothesize that our ability to imagine real and
unreal objects (in addition to memory retrieval) enables incremental learning and
prevents catastrophic forgetting from damaging our previously learned skills. It
is possible that when we encounter new objects we mentally compare them with
what we can remember or imagine. This allows us to separate a new category
from familiar data, essentially an outlier detection task. It is often a failure of
discriminative models: they misclassify images that look nothing like training
set while maintaining high confidence. We prefer discriminative models because
they are easier to train than generative ones, especially when classes are very
different [20]. However, a model trained to differentiate between sharks and bears
may concentrate on background cues and will likely recognize a ship as shark. At
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the same time, a generative model capable of outputing images of both sharks and
bears should be able to guess that ships are nothing like sharks. Indeed, generative
models can be used to detect outliers in a learned distribution [135]. Besides, in
the context of incremental learning, a generative model has to learn to generate
samples of a new class without losing the ability to model the old ones: it is a much
more natural case of catastrophic forgetting that does not require modification of
existing representations.

1.1.2 Generative models
As discussed above, generative models may be more robust to catastrophic

forgetting and are more suitable for incremental learning than their discriminative
counterparts. However, natural images are notoriously difficult to model. Successful
recent generative models can be divided into two broad families, which are trained
in fundamentally different ways. The first is trained using likelihood-based criteria,
which ensure that all the training data points are well covered by the model. This
category includes variational autoencoders [83,84], autoregressive models such as
PixelCNNs [159,188], and flow-based models such as Real-NVP [38]. The second
category is trained based on a signal that measures to what extent (statistics of)
samples from the model can be distinguished from (statistics of) the training data,
i.e., based on the quality of samples drawn from the model. This is the case for
generative adversarial networks (GANs) [59] and its numerous variants, as well as
moment matching methods [95]. Currently, GAN is the model of choice for natural
image generation mainly due to high fidelity of samples.

GAN [59] is a deep neural net architecture composed of a pair of competing
networks: a generator and a discriminator. This model is trained by alternately
optimizing two objective functions so that the generator learns to produce samples
resembling real images, and the discriminator learns to better discriminate between
real and fake data. Such a paradigm has huge potential, as it can learn to generate
any data distribution. This has been exploited with great success in several computer
vision problems, such as text-to-image [199] and image-to-image [76,202] translation,
video-to-video translation [190], pose transfer [123], facial animation [138], super-
resolution [93], and realistic natural image generation [78].

Since the original GAN model [59] was proposed, many variants have appeared
in the past few years, for example, to improve the quality of generated images [30,
36,78,115], or to stabilize the training procedure [12,64,109,115,127,200]. GANs
have also been modified to generate images of a given class by conditioning on
additional information, such as the class label [42, 114, 116,129]. With many GAN
modifications being regularly proposed in the literature, a critical question is how
these models can be evaluated and compared to each other.
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Evaluation and comparison of GANs, or equivalently, the images generated
by GANs, is challenging. This is in part due to the lack of an explicit likelihood
measure [180], which is commonplace in comparable probabilistic models [84, 159].
Thus, much of the previous work has resorted to a mere subjective visual evaluation
in the case of images synthesized by GANs. As seen from the sample images
generated by a state-of-the-art GAN [115] in Figure 1.5, it is impossible to judge
their quality precisely with a subjective evaluation. Recent work in the past
two years has begun to target this challenge through quantitative measures for
evaluating GANs [73,78,105,158].

Inception score (IS) [158] and Fréchet Inception distance (FID) [73] were
suggested as ad-hoc measures correlated with the visual quality of generated
images. Inception score measures the quality of a generated image by computing
the KL-divergence between the (logit) response produced by this image and the
marginal distribution, i.e., the average response of all the generated images, using
an Inception network [175] trained on ImageNet. In other words, Inception score
does not compare samples with a target distribution, and is limited to quantifying
the diversity of generated samples. Fréchet Inception distance compares Inception
activations (responses of the penultimate layer of the Inception network) between
real and generated images. This comparison however approximates the activations of
real and generated images as Gaussian distributions (cf. equation (4.12)), computing
their means and covariances, which are too crude to capture subtle details. Both
these measures rely on an ImageNet-pretrained Inception network, which is far
from ideal for other datasets, such as faces and biomedical imaging. Overall, IS and
FID are useful measures to evaluate how training advances, but they guarantee no
correlation with performance on real-world tasks. Besides, while they are somewhat
sensitive to the diversity of generated samples, they do not allow to distinguish
sample quality from diversity. Both measures provide essentially single numbers
that does not allow to evaluate the quality/diversity trade-off.

An alternative evaluation is to compute the distance of the generated samples
to the real data manifold in terms of precision and recall [105]. Here, high precision
implies that the generated samples are close to the data manifold, and high recall
shows that the generator outputs samples that cover the manifold well. These
measures remain idealistic as they are impossible to compute on natural image
data, whose manifold is unknown. Indeed, the evaluation in [105] is limited to
using synthetic data composed of gray-scale triangles.

Ideally we would like to evaluate likelihood estimation on held-out data. It is a
mathematically justified measure of how well we cover the dataset and has been
used in most generative models (VAE [84], PixelRNN [188], Real-NVP [38]) as a
training objective, except in the case of GANs. While being useful for evaluation,
likelihood presents a number of drawbacks. Likelihood-based models are trained
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Figure 1.2 – Intuitive explanation of the difference between coverage-driven (CDT)
and quality-driven training (QDT), in a one dimensional setting. CDT pulls
probability mass towards points from regions of high density of the distribution
underlying the data, while QDT pushes mass out of low-density regions. If the
model is not flexible enough (in the example, it has too few modes), these training
procedures lead to very different compromises in practice.

to put probability mass on all the elements of the training set, however fitting
all natural images perfectly would require infinite flexibility (even a finite, but
reasonably big dataset is already too difficult to fit perfectly). The lack of flexibility
forces models to over-generalize and assign probability mass to non-realistic images
in order to cover all modes. Limiting factors in such models are the use of fully
factorized decoders in variational autoencoders, restriction to the class of fully
invertible functions in Real-NVP, and the lack of latent variables to induce global
pixel dependencies in autoregressive models. Adversarial training on the other
hand explicitly ensures that the model does not generate samples that can be
distinguished from training images. This goes, however, at the expense of covering
all the training samples, a phenomenon known as “mode collapse” [12]. Moreover,
adversarial trained models typically have a low-dimensional support, which prevents
the use of likelihood to assess coverage of held-out data. Figure 1.2 gives an intuitive
illustration of the complementary approaches of coverage (likelihood-based) and
quality (adversarial) driven training.
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Figure 1.3 – Overview of our framework for learning object detectors incrementally.
It is composed of a frozen copy of the detector (Network A) and the detector
(Network B) adapted for the new class(es).

1.2 Contributions

1.2.1 Incremental learning of object detectors without
catastrophic forgetting

Our first contribution is dedicated to class-incremental learning in an object
detection framework. We focus on a challenging setup that does not store old
training images in memory. Using only the training samples for the new classes,
we propose a method for not only adapting the old network to the new classes, but
also ensuring performance on the old classes does not degrade (or only moderately).
The core of our approach is a training procedure balancing the interplay between
predictions on the new classes, i.e., cross-entropy loss, and a new distillation loss,
which minimizes the discrepancy between responses for old classes from the original
and the new networks. The overall approach is illustrated in Figure 1.3.

We use a frozen copy of the original detection network to compute the distillation
loss. This loss is related to the concept of “knowledge distillation” proposed
in [74] to transfer knowledge from a big neural network to a much smaller one.
We specifically target the problem of object detection, which has the additional
challenge of localizing objects with bounding boxes, unlike other attempts [96, 144]
limited to the image classification task. We demonstrate experimental results on
the PASCAL VOC 2007 [46] and COCO [98] datasets using Fast R-CNN [56] as
the network. Our results show that we can add new classes incrementally to an
existing network affecting the performance on the original classes only moderately
and with no access to the original training data. We also evaluate variants of our
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method empirically, and show the influence of distillation and the loss function.
This work was published in ICCV’17 [164] and is presented in Chapter 3.

1.2.2 How good is my GAN?

Figure 1.4 – Illustration of GAN-train and GAN-test. GAN-train learns a classifier
on GAN generated images and measures the performance on real test images. This
evaluates the diversity and realism of GAN images. GAN-test learns a classifier on
real images and evaluates it on GAN images. This measures how realistic GAN
images are.

Incremental learning without memory turned out to be a quite challenging
problem in object detection. The setup we proposed in Chapter 3 is not easily
adaptable to image classification. Our pipeline relies on co-occurring instances of
objects, which are common in object detection datasets and virtually absent in
image classification datasets. Generative models present an alternative to a memory
buffer because they can learn a distribution, and then generate new samples for
replay. GANs produce high quality samples, so they are a natural choice for this
application. In order to find the most appropriate GAN model for this, we first need
to be a able to evaluate them. Such an evaluation of GANs is a difficult problem. In
particular, the extent of mode-collapse is a very important part of generative model
performance, but it is hard to evaluate this quantitatively. Common evaluation
methods consider unsupervised GANs and focus mostly on image quality. Even
measures more sensitive to mode-dropping (FID) do not give a breakdown between
quality and diversity.

We propose new evaluation measures to compare class-conditional GAN archi-
tectures with GAN-train and GAN-test scores. We rely on a neural net architecture
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for image classification for both these measures. To compute GAN-train, we train
a classification network (bottom classifier in Figure 1.4) with images generated by
a GAN, and then evaluate its performance on a test set composed of real-world
images. Intuitively, this measures the difference between the learned (i.e., gener-
ated image) and the target (i.e., real image) distributions. We can conclude that
generated images are similar to real ones if the classification network, which learns
features for discriminating images generated for different classes, can correctly
classify real images. In other words, GAN-train is akin to a recall measure, as a
good GAN-train performance shows that the generated samples are diverse enough.
However, GAN-train also requires a sufficient precision, i.e., sample quality, which
impacts the classifier.

Figure 1.5 – State-of-the-art GANs, e.g., SNGAN [115], generate realistic images,
which are difficult to evaluate subjectively in comparison to real images. Our new
image classification accuracy-based measure (GAN-train is shown here) overcomes
this issue, showing a clear difference between real and generated images.

Our second measure, GAN-test, is the accuracy of a network trained on real
images and evaluated on the generated images (top classifier in Figure 1.5). This
measure is similar to precision, with a high value denoting that the generated
samples are a realistic approximation of the (unknown) distribution of natural
images. In addition to these two measures, we study the utility of images generated
by GANs for augmenting training data. This can be interpreted as a measure
of the diversity of the generated images. The utility of our evaluation approach,
in particular, when a subjective inspection is insufficient, is illustrated with the
GAN-train measure in Figure 1.5.

As shown in our extensive experimental results in Section 5.3, these measures are
much more informative to evaluate GANs, compared to all the previous measures
discussed, including cases where human studies are inconclusive. In particular, we
evaluate two state-of-the-art GAN models: WGAN-GP [64] and SNGAN [115],
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along with other generative models [141,159] to provide baseline comparisons. Image
classification performance is evaluated on MNIST [92], CIFAR10, CIFAR100 [87],
and the ImageNet [155] datasets. Experimental results show that the quality of
GAN images decreases significantly as the complexity of the dataset increases.

This work was published in ECCV’18 [163] and is presented in Chapter 5.

1.2.3 Adversarial training of partially invertible variational
autoencoders
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Figure 1.6 – Overview of our model: An invertible non-linear mapping f maps an
image x to a feature space with the same dimension (arrows 1 and 4). The encoder
takes f(x) and maps it to a posterior distribution qφ(z|x) over the latent variable
(arrow 2), while the decoder maps z to a distribution over the feature space (arrow
3). The discriminator D(x) assesses sample quality in the image space.

As discussed above, a generative model can be used instead of memory to
implement incremental learning in image classification. It requires, however, a
model generating high quality samples with diversity comparable to the original
data. Modern generative models are typically divided into several classes: GANs,
variational autoencoders (VAEs) and flow-based models (e.g., Real-NVP [38]).
VAEs generate bad samples on natural images while GANs achieve good enough
quality, but suffer from mode collapse. It is desirable to modify the procedure
for training GANs to explicitly penalize mode dropping, and enforce full coverage
of the dataset, while maintaining GAN image quality. We propose a model that
uses adversarial mechanisms to explicitly discourage over-generalization together
with maximum-likelihood training to avoid mode collapse. Our model (illustrated
in Figure 1.6) is a novel extension of VAEs that uses invertible transformations
close to the output, thus avoiding naive independence assumptions on pixels given
the latent variables (which are typical in VAEs). As compared to Real-NVP, our
model is computationally much more efficient, since most of the model consists of
common non-invertible feed-forward layers.
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To experimentally validate our coverage and quality driven training procedure
and the different components of our model, we conduct a comprehensive and
exhaustive set of experiments on the CIFAR-10 natural image dataset. We evaluate
our models using likelihood scores on held-out training data, as well as Inception
score (IS) and Fréchet Inception distance (FID). Our models obtain likelihood
scores competitive with the state-of-the-art likelihood-based models, while achieving
at a sample quality typical of GANs. We provide additional qualitative and
quantitative experimental results on the CelebA dataset, STL-10, ImageNet, and
LSUN-Bedrooms, that further confirm the observations made on CIFAR-10.

This work is submitted to ICML’19 and is presented in Chapter 6.

1.2.4 Outline of the thesis
The thesis is split into two parts. Part I is dedicated to incremental learning.

We present related work on catastrophic forgetting and incremental learning in
Chapter 2. Then we explore how to incrementally learn new classes in an object
detection setup in Chapter 3. We do not store old training data which is a
challenging task in incremental learning because most of the existing solutions are
based on replay mechanism. Further in Part II, we discuss generative models as
type of memory. Related work on generative models (in particular, GANs and
VAEs) and their evaluation methods is presented in Chapter 4. In Chapter 5 we
present a new way to evaluate conditional GANs, and quantify one of the major
problems of GANs: “mode-dropping”. It is necessary to cover all the modes of
a data distribution to succeed in incremental learning supported by generative
models. So, in Chapter 6 we propose a new generative model combining the high
image quality of GANs with theoretical guarantees of data coverage, enjoyed by
models directly optimizing maximum likelihood. In Appendix A we list several
publications made while working on this thesis. In Appendix B we provide links
to the released source code accompanying these publications. In Appendix C we
present a real-time framework for simultaneous object detection and semantic
segmentation.



Part I

Incremental learning in object
detection
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Incremental (or lifelong) learning addresses situations where a learner encounters
different tasks in a form of stream [181]. It should master them sequentially and
preferably exploit previously obtained knowledge to learn recent tasks faster. It
is a metacognitive skill, so tasks can be arbitrary different from each other just
like humans can learn vastly different skills over their life. In practice, it is a very
broad definition involving a complex evaluation. Despite being studied for decades,
incremental learning still represents a problem without off-the-shelf solutions. In
computer vision it is often evaluated as a series of essentially the same task applied
to different datasets. Implicit assumption here is that tasks are approximately
independent and do not influence each other.

A more practical definition would be a gradual extension of tasks when a current
one includes a previous task as an easier case. For example, in image classification
it is a setup when every task adds new classes while keeping old ones intact. This
way a learner recognizes more and more classes with every task. Note that it
obviously violates independence assumption. An important subtlety here is how
much training data we keep for every task: one can accumulate more and more
data [32] or keep a small subset for each task [144] or not use old data at all.

In deep learning naive solutions to incremental learning fail because of catas-
trophic forgetting [112]: neural networks are not able to retain knowledge without
constant reinforcement during the whole training time. They forget in a funda-
mentally different way than humans do and require special mechanisms to enable
consolidation of knowledge, even in the simplest incremental learning setup with
series of independent tasks.

The rest of this part is organized as follows: in Chapter 2 we review the
related work on catastrophic forgetting and incremental learning, describe in detail
interconnections and differences between these topics. In Chapter 3 we introduce
our method to perform incremental learning in object detection task and present
extensive experimental validation on PASCAL VOC 2007 dataset.





Chapter 2

Related work
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The problem of incremental learning has a long history in machine learning and
artificial intelligence [26,137,161,181]. One of the main goals of AI research is to
create autonomous agents capable to adapt to constantly drifting distribution of
the real world rather than frozen models trained on carefully curated datasets for
very specific problems.

Incremental learning has a few subtly different definitions in the literature [77,
80,133]. It can be interpreted as learning multiple independent tasks sequentially
or when the main objective evolves over time, typically becoming more challenging.
Either way, sequential training of neural networks is complicated by catastrophic
forgetting (or interference): when the network’s training objective changes, it
quickly forgets previously learned knowledge [51,60,112].

It is not always the case we are interested in keeping performance on old tasks
intact. In transfer learning and domain adaptation goals are different: previous task
is a way to improve performance on a given task (typically lacking enough training
data) through first training a network on some other task. Transfer learning uses
knowledge acquired from one task to help learn another [194]. Domain adaptation

19
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transfers the knowledge acquired for a task from a data distribution to other (but
related) data [47]. Fine-tuning [57], a very common type of transfer learning in
computer vision, is way to alter the output layer of the original network for a new
task and to tune all the parameters of the network for a new objective. CNNs
learned for image classification [88] are often used to train other vision tasks such
as object detection [57,130,194] and semantic segmentation [27]. Overall, existing
transfer learning and domain adaptation methods require at least unlabeled data
for both the tasks or domains, and in its absence, the new network quickly forgets
all the knowledge acquired in the source domain [51,60,112,143].

If we consider the image classification problem, then sequential multi-task
learning would correspond to classification on many datasets with disjoint sets of
classes learned one after another. On the other hand, class-incremental learning
assumes that the set of classes is occasionally extended and new data is added.
Even more extreme version requires to only use new data. We are going to review
existing solutions for catastrophic forgetting problem and discuss their potential in
class-incremental setup.

2.1 Catastrophic forgetting

Catastrophic forgetting is the predisposition of neural networks to quickly forget
already learned knowledge upon learning new information. This phenomenon is
believed to be caused by two factors [50, 91]. First, the internal representations
in hidden layers are often overlapping, and a small change in a single neuron can
affect multiple representations at the same time [50]. Second, all the parameters
in feedforward networks are involved in computations for every data point, and a
backpropagation update affects all of them in each training step [91]. The problem
of addressing these issues in neural networks has its origin in classical connectionist
networks several years ago [50,51,112].

Recent approaches specifically targeted against catastrophic forgetting are
evaluated on sequential multi-task learning, typically on permuted MNIST (all
image pixels are permuted according to a fixed permutation, which generates
a different dataset with the same classification objective) or on multiple image
classification datasets.

These methods can be divided in two groups: architectural and regularization
approaches. Architectural methods change the network architecture to accommo-
date for new knowledge. Regularization methods add another term in the training
objective that encourages the network to remember previously learned knowledge.
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2.1.1 Architectural methods
Architectural approaches include growing the capacity of the network with new

layers [157] or splitting a big network into independent blocks a sequence of which
is optimized for any given task [48]. The downside of these approaches is the rapid
increase in the number of new parameters to be learned. Besides, both of them
require adding another head to network output which makes them unsuitable for
class-incremental learning.

Another solution is to employ binary masks to selectively turn off certain
weights [108]: idea inspired by weight pruning techniques for model compression.
Masked out weights can be retrained for a new objective and then pruned again to
accommodate for another task. While it allows to squeeze multiple classification
tasks in a single network, it can not be used to infer outputs for all of them in
parallel. Therefore, it can not be used for class-incremental learning.

2.1.2 Regularization approaches
Strong per-parameter regularization penalizes changes in weights relevant for a

given task. Such approach called elastic weight consolidation (EWC) was developed
in [85]. Answering the question “which parameters should not be changed much” in
full generality seems to be intractable for modern neural networks, however various
relaxations were suggested recently [7, 197]. Alternative to regularization loss is
Gradient Episodic Memory [102]. This approach modifies gradients using inner
optimization loop to prevent them from affecting important parameters.

EWC is a weighted L2-penalty selectively penalizing big changes in certain
weights. Suppose we trained a network with a loss LA for task A and θ∗A are
the weights learned at the end of training of A. Then we want to approximate a
conditional posterior on weights p(θ|DA) given the dataset DA. In general case,
it is intractable: EWC approximates it as a Gaussian distribution with mean θ∗A
and diagonal variance given by the diagonal of Fisher information matrix F . So,
coefficients Fi are basically second derivatives of the loss near a minimum (when
the network converged on task A) and thus can be computed efficiently. Then the
total loss to train on task B without forgetting task A is:

L(θ) = LB(θ) + λ

2
∑
i

Fi(θi − θ∗A,i)2, (2.1)

where LB(θ) is the loss of task B.
In [197] per-parameter regularization coefficients are estimated online during

SGD optimization rather than computed at convergence. In [7] these coefficients
are computed from gradients of network’s outputs rather than the loss function (as
in EWC).
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Gradient Episodic Memory (GEM) is quite different: for every task it stores a
subset of examples which provide a number of proxy losses. It allows to evaluate
if an updated network obtains worse loss on previous tasks. The idea of GEM
is to project gradients on every update onto subspace of updates that do not
degrade proxy losses of previous tasks. It enables backward knowledge transfer
(performance on old tasks may become better). However, it introduces inner loop
of quadratic optimization for each gradient descent step which slows training down
by an order of magnitude. Quite unsurprisingly, performance of GEM depends on
the size of memory and reaches performance of joint multi-task training when the
memory size is close to training set size.

Overall, regularization approaches are developed for multi-task learning and do
not perform well in class-incremental learning.

2.1.3 Knowledge distillation
An alternative to per-parameter regularization is to constrain network acti-

vations in order to cancel out undesired gradients and prevent representation
shift when it can be avoided. It is typically achieved via knowledge distilla-
tion [23,74]. This was originally proposed to transfer knowledge between different
neural networks—from a large network to a smaller one for efficient deployment.
The method in [74] encouraged the large (old) and the small (new) networks to
produce similar responses. It has found several applications in domain adaptation
and model compression [66,156,185].

Typically a small network is trained with usual cross-entropy loss on soft targets
qi produced by a large one

qi = exp(zi/T )∑
j exp(zj/T ) , (2.2)

where zi are logits of the large network and T ≥ 1 is softmax temperature to
smooth logit distribution. Alternatively, distillation can be represented as L2-loss
on logits.

Li and Hoiem [96] use knowledge distillation for one of the classical vision tasks,
image classification, formulated in a deep learning framework. However, their
evaluation is limited to the case where the old network is trained on a dataset,
while the new network is trained on a different one, e.g., Places365 for the old and
PASCAL VOC for the new, ImageNet for the old and PASCAL VOC for the new,
etc. It is clearly an example of sequential multi-task learning because (i) different
datasets often contain dissimilar classes, (ii) there is little confusion between
datasets—it is in fact possible to identify a dataset simply from an image [183].

Our method is significantly different from [96] in two ways. First, we deal with
the more difficult problem of learning incrementally on the same dataset, i.e., the
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addition of classes to the network. As shown in [144], [96] fails in a similar setting
of learning image classifiers incrementally. Second, we address the object detection
task, where it is very common for the old and the new classes to co-occur, unlike
the classification task.

2.2 Class-incremental learning
Class-incremental learning introduces new challenges besides catastrophic for-

getting: it is not enough to just freeze network activations for old classes, we
have to train the network to recognize new classes: discover new representations
capable to discriminate new classes against old ones as well as new classes between
themselves. It could be represented as multi-task learning (classification among old
classes and classification among new classes), but it would require an oracle at test
time to guess if an image belongs to old or new classes.

In object detection all objects not included in initial set of classes should
be recognized as background. It makes it very close to open set recognition we
discussed above. A lot of objects present on images from PASCAL VOC 2007 or
COCO are not annotated and thus should be considered background. To enable
incremental learning, the network should learn distinctive features of new objects
and change decision boundary of background class to create a space for new ones. It
is even more difficult challenge than catastrophic forgetting. In close set recognition
(classical image classification task) there is no dedicated background class. New
classes can be recognized as any of old classes which forces us to alter decision
boundaries for all old classes. This is why none of the methods described above
work for class-incremental learning [80].

Some of the more recent work, e.g., [32,39], focuses on continuously updating
the training set with data acquired from the Internet. They are: (i) restricted to
learning with a fixed data representation [39], or (ii) keep all the collected data
to retrain the model [32]. Other work partially addresses these issues by learning
classifiers without access to the ensemble of data [113,151], but uses a fixed image
representation.

Rebuffi et al. [144] address some of the drawbacks in [96] with their incremen-
tal learning approach for image classification (iCaRL). They also use knowledge
distillation, but decouple the classifier and the representation learning on top of
heavily engineered framework to select and process samples for the memory. More
precisely, nearest mean-of-exemplars over stored in memory examples is used as
classifier. Representations are then updated in a separate step via auxillary sigmoid
classification layer and composite loss (binary cross-entropy for new classes and
knowledge distillation for old ones). After that, examplar set is recomputed to
include new classes.
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Very recent extension [25] of iCaRL trains classifier and representation learning
end-to-end. Some of non-standard iCaRL elements (exemplar selection using
herding and Nearest Exemplar Mean) are removed in [77] without any performance
loss: it looks like exemplars can be chosen randomly and a softmax classifier can
be used when distillation loss is unbiased. Our approach is aimed at learning
the representation and classifiers jointly, without storing any of original training
examples to avoid catastrophic forgetting. We use a standard end-to-end framework
to solve object detection rather than non-standard pipeline in image classification.

A lot of class-incremental learning frameworks (including ours and [144]) are
inspired by biological models of human memory [111]: the brain contains the
hippocampus and the neocortex. The hippocampus is believed to be a quick learner
prone to forgetting just like artificial neural networks. The neocortex, however,
regularly consolidates recent knowledge learned by hippocampus and integrates
it with prior information. This dual network paradigm fits well with knowledge
distillation which describes exactly a way to transfer knowledge from one network
to another.

Early connectionist research [9,52] established that regular replay (rehearsal)
of old training samples helps to mitigate catastrophic forgetting, yet still leaving a
noticeable gap with offline models. Besides, it requires to keep all training data
which does not scale well on modern datasets. Possible workaround is to select a
small subset of representative images to use them for replay [144]. Another way is
to draw these samples from a probabilistic model, so-called “pseudorehearsal” [152].
Recently this method was applied to image classification CNN where a GAN is
used as a generator of pseudosamples [162]. However, natural image generation
is not exactly an easy task, especially not for object detection datasets. Besides,
incremental learning of generative models is even less explored area of research.

However, in [192] it was demonstrated that pseudorehearsal works for GANs
and arguably even better than for discriminative models. Indeed, the main problem
(covering all possible inputs) is circumvented because GANs uses random noise as
input. It demonstrates that class-incremental learning for GANs is a practical idea.

FearNet [79] is another implementation of dual network system based on pseu-
dorehearsal sampled from a simple generative model for embeddings. While it
achieves impressive results in incremental setup, this work is not focused on repre-
sentation learning and thus uses pre-trained on ImageNet embeddings as input. It
makes FearNet effectively unable to learn representations over time.

In summary, none of the previous work addresses the problem of learning
classifiers for object detection incrementally, without using previously seen training
samples.
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Our overall approach for incremental learning of a CNN model for object
detection is illustrated in Figure 3.1. It contains a frozen copy of the original
detector (denoted by Network A in the figure), which is used to: (i) select proposals
corresponding to the old classes, i.e., distillation proposals, and (ii) compute the
distillation loss. Network B in the figure is the adapted network for the new classes.
It is obtained by increasing the number of outputs in the last layer of the original
network, such that the new output layer includes the old as well as the new classes.
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Figure 3.1 – Overview of our framework for learning object detectors incrementally.
It is composed of a frozen copy of the detector (Network A) and the detector
(Network B) adapted for the new class(es).

In order to avoid catastrophic forgetting, we constrain the learning process
of the adapted network. We achieve this by incorporating a distillation loss, to
preserve the performance on the old classes, as an additional term in the standard
cross-entropy loss function (see Section 3.2). Specifically, we evaluate each new
training sample on the frozen copy (Network A) to choose a diverse set of proposals
(distillation proposals in Figure 3.1), and record their responses. With these
responses in hand, we compute a distillation loss which measures the discrepancy
between the two networks for the distillation proposals. This loss is added to the
cross-entropy loss on the new classes to make up the loss function for training
the adapted detection network. As we show in the experimental evaluation, the
distillation loss as well as the strategy to select the distillation proposals are critical
in preserving the performance on the old classes (see Section 3.4).

In the remainder of this section, we provide details of the object detector
network (Section 3.1), the loss functions and the learning algorithm (Section 3.2),
and strategies to sample the object proposals (Section 3.3).

3.1 Object detection network
We use a variant of a popular framework for object detection—Fast R-CNN [56],

which is a proposal-based detection method built with pre-computed object pro-
posals, e.g., [10,203]. We chose this instead of the more recent Faster R-CNN [148],
which integrates the computation of category-specific proposals into the network,
because we need proposals agnostic to object categories, such as EdgeBoxes [203],
MCG [10]. We use EdgeBoxes [203] proposals for PASCAL VOC 2007 and MCG [10]
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for COCO. This allows us to focus on the problem of learning the representation
and the classifier, given a pre-computed set of generic object proposals.

In our variant of Fast R-CNN, we replaced the VGG-16 trunk with a deeper
ResNet-50 [70] component, which is faster and more accurate than VGG-16. We
follow the suggestions in [70] to combine Fast R-CNN and ResNet architectures.
The network processes the whole image through a sequence of residual blocks.
Before the last strided convolution layer we insert a RoI pooling layer, which
performs maxpooling over regions of varied sizes, i.e., proposals, into a 7×7 feature
map. Then we add the remaining residual blocks, a layer for average pooling over
spatial dimensions, and two fully connected layers: a softmax layer for classification
(PASCAL or COCO classes, for example, along with the background class) and
a regression layer for bounding box refinement, with independent corrections for
each class.

The input to the network is an image and about 2000 precomputed object
proposals represented as bounding boxes. During inference, the high-scoring
proposals are refined according to bounding box regression. Then, a per-category
non-maxima suppression (NMS) is performed to get the final detection results. The
loss function to train the Fast R-CNN detector, corresponding to a RoI, is given
by:

Lrcnn(p, k∗, t, t∗) = − log pk∗ + [k∗ ≥ 1]R(t− t∗), (3.1)

where p is the set of responses of the network for all the classes (i.e., softmax
output), k∗ is a groundtruth class, t is an output of bounding box refinement
layer, and t∗ is the ground truth bounding box proposal. The first part of the loss
denotes log-loss over classes, and the second part is localization loss. For more
implementation details about Fast R-CNN, refer to the original paper [56].

3.2 Dual-network learning
First, we train a Fast R-CNN to detect the original set of classes CA. We refer

to this network as A(CA). The goal now is to add a new set of classes CB to this.
We make two copies of A(CA): one that is frozen to recognize classes CA through
distillation loss, and the second B(CB) that is extended to detect the new classes
CB, which were not present or at least not annotated in the source images. The
extension is done only in the last fully connected layers, i.e., classification and
bounding box regression. We create sibling (i.e., fully-connected) layers [57] for
new classes only and concatenate their outputs with the original ones. The new
layers are initialized randomly in the same way as the corresponding layers in Fast
R-CNN. Our goal is to train B(CB) to recognize classes CA ∪ CB using only new
data and annotations for CB.
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The distillation loss represents the idea of “keeping all the answers of the
network the same or as close as possible”. If we train B(CB) without distillation,
average precision on the old classes will degrade quickly, after a few hundred SGD
iterations. This is a manifestation of catastrophic forgetting. We illustrate this in
Section 3.4.3 and Section 3.4.4. We compute the distillation loss by applying the
frozen copy of A(CA) to any new image. Even if no object is detected by A(CA),
the unnormalized logits (softmax input) carry enough information to “distill” the
knowledge of the old classes from A(CA) to B(CB). This process is illustrated in
Figure 3.1.

For each image we randomly sample 64 RoIs out of 128 with the smallest
background score. The logits computed for these RoIs by A(CA) serve as targets for
the old classes in the L2 distillation loss shown below. The logits for the new classes
CB are not considered in this loss. We subtract the mean over the class dimension
from these unnormalized logits (y) of each RoI to obtain the corresponding centered
logits ȳ used in the distillation loss. Bounding box regression outputs tA (of the
same set of proposals used for computing the logit loss) also constrain the loss
of the network B(CB). We chose to use L2 loss instead of a cross-entropy loss
for regression outputs because it demonstrates more stable training and performs
better (see Section 3.4.4). The distillation loss combining the logits and regression
outputs is written as:

Ldist(yA, tA, yB, tB) = 1
N |CA|

∑[
(ȳA − ȳB)2 + (tA − tB)2

]
, (3.2)

where N is the number of RoIs sampled for distillation (i.e., 64 in this case), |CA|
is the number of old classes, and the sum is over all the RoIs for the old classes.
We distill logits without any smoothing, unlike [74], because most of the proposals
already produce a smooth distribution of scores. Moreover, in our case, both the
old and the new networks are similar with almost the same parameters (in the
beginning), and so smoothing the logits distribution is not necessary to stabilize
the learning.

The values of the bounding box regression are also distilled because we update
all the layers, and any update of the convolutional layers will affect them indirectly.
As box refinements are important to detect objects accurately, their values should
be conserved as well. This is an easier task than keeping the classification scores
because bounding box refinements for each class are independent, and are not
linked by the softmax.

The overall loss L to train the model incrementally is a weighted sum of the
distillation loss (3.2), and the standard Fast R-CNN loss (3.1) that is applied only
to new classes CB, where groundtruth bounding box annotation is available. In
essence,

L = Lrcnn + λLdist, (3.3)



3.3. SAMPLING STRATEGY 29

where the hyperparameter λ balances the two losses. We set λ to 1 in all the
experiments with cross-validation (see Section 3.4.4).

The interplay between the two networks A(CA) and B(CB) provides the neces-
sary supervision that prevents the catastrophic forgetting in the absence of original
training data used by A(CA). After the training of B(CB) is completed, we can
add more classes by freezing the newly trained network and using it for distillation.
We can thus add new classes sequentially. Since B(CB) is structurally identical to
A(CA ∪ CB), the extension can be repeated to add more classes.

3.3 Sampling strategy
As mentioned before, we choose 64 proposals out of 128 with the lowest back-

ground score, thus biasing the distillation to non-background proposals. We noticed
that proposals recognized as confident background do not provide strong learning
cues to conserve the original classes. One possibility is using an unbiased distilla-
tion that randomly samples 64 proposals out of the whole set of 2000 proposals.
However, when doing so, the detection performance on old classes is noticeably
worse because most of the distillation proposals are now background, and carry no
strong signal about the object categories. Therefore, it is advantageous to select
non-background proposals. We demonstrate this empirically in Section 3.4.5.

3.4 Experiments
3.4.1 Datasets and evaluation

We evaluate our method on the PASCAL VOC 2007 detection benchmark and
the Microsoft COCO challenge dataset. VOC 2007 consists of 5K images in the
trainval split and 5K images in the test split for 20 object classes. COCO on the
other hand has 80K images in the training set and 40K images in the validation
set for 80 object classes (which includes all the classes from VOC). We use the
standard mean average precision (mAP) at 0.5 IoU threshold as the evaluation
metric. We also report mAP weighted across different IoU from 0.5 to 0.95 on
COCO, as recommended in the COCO challenge guidelines. Evaluation of the
VOC 2007 experiments is done on the test split, while for COCO, we use the first
5000 images from the validation set.

3.4.2 Implementation details
We use SGD with Nesterov momentum [122] to train the network in all the

experiments. We set the learning rate to 0.001, decay to 0.0001 after 30K iterations,
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method old new all
A(1-19) 68.4 - -
+B(20) w/o distillation 25.0 52.1 26.4
+B(20) w frozen trunk 53.5 43.1 52.9
+B(20) w all layers frozen 69.1 41.6 66.6
+B(20) w frozen trunk and distill. 68.7 43.2 67.4
+B(20) w distillation 68.3 58.3 67.8
+B(20) w cross-entropy distill. 68.1 52.0 67.3
+B(20) w/o bbox distillation 68.5 62.7 68.3
A(1-20) 69.6 73.9 69.8

Table 3.1 – VOC 2007 test average precision (%). Experiments demonstrating
the addition of “tvmonitor” class to a pretrained network under various setups.
Classes 1-19 are the old classes, and “tvmonitor” (class 20) is the new one.

and momentum to 0.9. In the second stage of training, i.e., learning the extended
network with new classes, we used a learning rate of 0.0001. The A(CA) network
is trained for 40K iterations on PASCAL VOC 2007 and for 400K iterations on
COCO. The B(CB) network is trained for 3K-5K iterations when only one class
is added, and for the same number of iterations as A(CA) when many classes are
added at once. Following Fast R-CNN [56], we regularize with weight decay of
0.00005 and take batches of two images each. All the layers of A(CA) and B(CB)
networks are finetuned unless stated otherwise.

The integration of ResNet into Fast R-CNN (see Section 3.1) is done by adding
a RoI pooling layer before the conv5_1 layer, and replacing the final classification
layer by two sibling fully connected layers. The batch normalization layers are
frozen, and as in Fast R-CNN, no dropout is used. RoIs are considered as detections
if they have a score more than 0.5 for any of the classes. We apply per-class NMS
with an IoU threshold of 0.3. Training is image-centric, and a batch is composed
of 64 proposals per image, with 16 of them having an IoU of at least 0.5 with a
groundtruth object. All the proposals are filtered to have IoU less than 0.7, as
in [203].

We use TensorFlow [5] to develop our incremental learning framework. Each
experiment begins with choosing a subset of classes to form the set CA. Then,
a network is learned only on the subset of the training set composed of all the
images containing at least one object from CA. Annotations for other classes in
these images are ignored. With the new classes chosen to form the set CB, we learn
the extended network as described in Section 3.2 with the subset of the training
set containing at least one object from CB. As in the previous case, annotations
of all the other classes, including those of the original classes CA, are ignored.
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method old new all
A(1-10) 65.8 - -
+B(11-20) w/o distillation 12.8 64.5 38.7
+B(11-20) w distillation 63.2 63.1 63.1
+B(11-20) w/o bbox distillation 58.7 63.1 60.9
+B(11-20) w EWC [85] 31.6 61.0 46.3
A(1-20) 68.4 71.3 69.8

Table 3.2 – VOC 2007 test average precision (%). Experiments demonstrating
the addition of 10 classes, all at once, to a pretrained network. Classes 1-10 are
the old classes, and 11-20 the new ones.

For computational efficiency, we precomputed the responses of the frozen network
A(CA) on the training data (as every image is typically used multiple times).

3.4.3 Addition of one class
In the first experiment we take 19 classes in alphabetical order from the VOC

dataset as CA, and the remaining one as the only new class CB. We then train
the A(1-19) network on the VOC trainval subset containing any of the 19 classes,
and the B(20) network is trained on the trainval subset containing the new class.
A summary of the evaluation of these networks on the VOC test set is shown in
Table 3.1, with the full results in Table 3.6.

A baseline approach for addition of a new class is to add an output to the
last layer and freeze the rest of the network. This freezing, where the weights
of the network’s convolutional layers are fixed (“B(20) w frozen trunk” in the
tables), results in a lower performance on the new class as the previously learned
representations have not been adapted for it. Furthermore, it does not prevent
degradation of the performance on the old classes, where mAP drops by almost
15%. When we freeze all the layers, including the old output layer (“B(20) w all
layers frozen”), or apply distillation loss (“B(20) w frozen trunk and distill.”), the
performance on the old classes is maintained, but that on the new class is poor.
This shows that finetuning of convolutional layers is necessary to learn the new
classes.

When the network B(20) is trained without the distillation loss (“B(20) w/o
distillation” in the tables), it can learn the 20th class, but the performance decreases
significantly on the other (old) classes. As seen in Table 3.6, the AP on classes like
“cat”, “person” drops by over 60%. The same training procedure with distillation
loss largely alleviates this catastrophic forgetting. Without distillation, the new
network has 25.0% mAP on the old classes compared to 68.3% with distillation,



32 CHAPTER 3. INCREMENTAL LEARNING OF NEW CLASSES

and 69.6% mAP of baseline Fast R-CNN trained jointly on all classes (“A(1-20)”).
With distillation the performance is similar to that of the old network A(1-19), but
is lower for certain classes, e.g., “bottle”. The 20th class “tvmonitor” does not get
the full performance of the baseline (73.9%), with or without distillation, and is
less than 60%. This is potentially due to the size of the training set. The B(20)
network is trained only a few hundred images containing instances of this class.
Thus, the “tvmonitor” classifier does not see the full diversity of negatives.

We also performed the “addition of one class” experiment with each of the
VOC categories being the new class. The behavior for each class is very similar
to the “tvmonitor” case described above. The mAP varies from 66.1% (for new
class “sheep”) to 68.3% (“tvmonitor”) with mean 67.38% and standard deviation
of 0.6%.

3.4.4 Addition of multiple classes
In this scenario we train the network A(1-10) on the first 10 VOC classes (in

alphabetical order) with the VOC trainval subset corresponding to these classes.
In the second stage of training we used the remaining 10 classes as CB and trained
only on the images containing the new classes. Table 3.2 shows a summary of the
evaluation of these networks on the VOC test set, with the full results in Table 3.7.

Training the network B(11-20) on the 10 new classes with distillation (for the
old classes) achieves 63.1% mAP (“B(11-20) w distillation” in the tables) compared
to 69.8% of the baseline network trained on all the 20 classes (“A(1-20)”). Just as
in the previous experiment of adding one class, performance on the new classes
is slightly worse than with the joint training of all the classes. For example, as
seen in Table 3.7, the performance for “person” is 73.2% vs 79.1%, and 72.5% vs
76.8% for the “train” class. The mAP on new classes is 63.1% for the network with
distillation versus 71.3% for the jointly trained model. However, without distillation,
the network achieves only 12.8% mAP (“+B(11-20) w/o distillation”) on the old
classes. Note that the method without bounding box distillation (“+B(11-20) w/o
bbox distillation”) is inferior to our full method (“+B(11-20) w distillation”).

We also performed the 10-class experiment for different values of λ in (3.3),
the hyperparameter controlling the relative importance of distillation and Fast
R-CNN loss. Results shown in Figure 3.2 demonstrate that when the distillation is
weak (λ = 0.1) the new classes are easier to learn, but the old ones are more easily
forgotten. When distillation is strong (λ = 10), it destabilizes training and impedes
learning the new classes. Setting λ to 1 is a good trade-off between learning new
classes and preventing catastrophic forgetting.

We also compare our approach with elastic weight consolidation (EWC) [85],
which is an alternative to distillation and applies per-parameter regularization
selectively to alleviate catastrophic forgetting. We reimplemented EWC and verified
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method old new all
A(1-15) 70.5 - -
+B(16-20) w distill. 68.4 58.4 65.9
+B(16)(17)...(20) w distill. 66.0 51.6 62.4
+B(16)(17)...(20) w unbiased distill. 45.8 46.5 46.0
+A(16)+...+A(20) 70.5 37.8 62.4
A(1-20) 70.9 66.7 69.8

Table 3.3 – VOC 2007 test average precision (%). Experiments demonstrating
the addition of 5 classes, all at once, and incrementally to a pretrained network.
Classes 1-15 are the old ones, and 16-20 the new classes.

method mAP@.5 mAP@[.5, .95]
A(1-40)+B(41-80) 37.4 21.3
A(1-80) 38.1 22.6

Table 3.4 – COCO minival (first 5000 validation images) average precision (%).
We compare the model learned incrementally on half the classes with the baseline
trained on all jointly.

that it produces results comparable to those reported in [85] on MNIST, and then
adapted it to our object detection task. We do this by using the Fast R-CNN
batches during the training phase (as done in Section 3.4.2), and by replacing log
loss with the Fast R-CNN loss. Our approach outperforms EWC for this case,
when we add 10 classes at once, as shown in Table 3.2 and Table 3.7.

We evaluated the influence of the number of new classes in incremental learning.
To this end, we learn a network for 15 classes first, and then train for the remaining
5 classes, all added at once on VOC. These results are summarized in Table 3.3,
with the per-class results shown in Table 3.8. The network B(16-20) has better
overall performance than B(11-20): 65.9% mAP versus 63.1% mAP. As in the
experiment with 10 classes, the performance is lower for a few classes, e.g., “table”,
“horse”, for example, than the initial model A(1-15). The performance on the new
classes is lower than jointly trained baseline Fast R-CNN A(1-20). Overall, mAP
of B(16-20) is lower than baseline Fast R-CNN (65.9% versus 69.8%).

The evaluation on COCO, shown in Table 3.4, is done with the first 40 classes
in the initial set, and the remaining 40 in the new second stage. The network
B(41-80) trained with the distillation loss obtains 37.4% mAP in the PASCAL-style
metric and 21% mAP in the COCO-style metric. The baseline network trained on
80 classes is similar in performance with 38.1% and 22.6% mAP respectively. We
observe that our proposed method overcomes catastrophic forgetting, just as in the
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Figure 3.2 – The influence of λ, in the loss function (3.3), on the mAP performance
for the B(11-20) network trained with distillation.

case of VOC seen earlier.
We also studied if distillation depends on the distribution of images used in

this loss. To this end, we used the model A(1-10) trained on VOC, and then
performed the second stage learning in two settings: B(11-20) learned on the subset
of VOC as before, and another model trained for the same set of classes, but using
a subset of COCO. From Table 3.5 we see that indeed, distillation works better
when background samples have exactly the same distribution in both stages of
training. However, it is still very effective even when the dataset in the second
stage is different from the one used in the first.

3.4.5 Sequential addition of multiple classes
In order to evaluate incremental learning of classes added sequentially, we

update the frozen copy of the network with the one learned with the new class, and
then repeat the process with another new class. For example, we take a network
learned for 15 classes of VOC, train it for the 16th on the subset containing only
this class, and then use the 16-class network as the frozen copy to then learn the
17th class. This is then continued until the 20th class. We denote this incremental
extension as B(16)(17)(18)(19)(20).

Results of adding classes sequentially are shown in Table 3.8 and Table 3.9.
After adding the 5 classes we obtain 62.4% mAP (row 3 in Table 3.8), which is lower
than 65.9% obtained by adding all the 5 classes at once (row 2). Table 3.9 shows
intermediate evaluations after adding each class. We observe that the performance
of the original classes remains stable at each step in most cases, but for a few
classes, which is not recovered in the following steps. We empirically evaluate the
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+COCO-10cls +VOC-10cls
mAP (old classes) 61.4 63.2
mAP (new classes) 48.2 63.1
mAP (all classes) 54.8 63.2

Table 3.5 – VOC 2007 test average precision (%). The second stage of training,
where 10 classes (11-20th) are added, is done on the subset of COCO images
(+COCO-10cls), and is compared to the one trained on the VOC subset (+VOC-
10cls).

importance of using biased non-background proposals (cf. Section 3.3). Here we add
the 5 classes one by one, but use unbiased distillation (“B(16)(17)(18)(19)(20) w
unbiased distill.” in Table 3.3 and Table 3.8), i.e., randomly sampled proposals are
used for distillation. This results in much worse overall performance (46% vs 62.4%)
and some classes (“person”, “chair”) suffer from a significant performance drop of
10-20%. We also performed sequential addition experiment with 10 classes, and
present the results in Table 3.10. Although the drop in mAP is more significant than
for the previous experiment with 5 classes, it is far from catastrophic forgetting.



36
C

H
A

PT
ER

3.
IN

C
R

EM
EN

TA
L

LEA
R

N
IN

G
O

F
N

EW
C

LA
SSES

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP
A(1-19) 69.9 79.4 69.5 55.7 45.6 78.4 78.9 79.8 44.8 76.2 63.8 78.0 80.8 77.6 70.2 40.9 67.8 64.5 77.5 - 68.4
+B(20) w/o distillation 35.9 36.1 26.4 16.5 9.1 26.4 36.2 18.2 9.1 51.5 9.1 26.6 50.0 26.2 9.1 9.1 43.7 9.1 28.0 52.1 26.4
+B(20) w frozen trunk 61.3 71.9 62.5 46.2 34.5 70.6 71.6 62.4 9.1 68.3 27.1 61.6 80.0 70.6 35.9 24.6 53.8 34.9 68.9 43.1 52.9
+B(20) w all layers frozen 68.8 78.4 70.2 51.8 52.8 76.1 78.7 78.8 50.1 74.5 65.5 76.9 80.2 76.3 69.8 40.4 62.0 63.7 75.5 41.6 66.6
+B(20) w frozen trunk and distill. 74.4 78.1 69.8 54.7 52.1 75.7 79.0 78.5 48.5 74.4 62.3 77.0 80.2 77.2 69.7 44.5 68.6 64.5 74.7 43.2 67.4
+B(20) w distillation 70.2 79.3 69.6 56.4 40.7 78.5 78.8 80.5 45.0 75.7 64.1 77.8 80.8 78.0 70.4 42.3 67.6 64.6 77.5 58.3 67.8
+B(20) w cross-entropy distill. 69.1 79.1 69.5 52.8 45.4 78.1 78.9 79.5 44.8 75.5 64.2 77.2 80.8 77.9 70.2 42.7 66.8 64.6 76.1 52.0 67.3
+B(20) w/o bbox distillation 69.4 79.3 69.5 57.4 45.4 78.4 79.1 80.5 45.7 76.3 64.8 77.2 80.8 77.5 70.1 42.3 67.5 64.4 76.7 62.7 68.3
A(1-20) 70.2 77.9 70.4 54.1 47.4 78.9 78.6 79.8 50.8 75.9 65.6 78.0 80.5 79.1 76.3 47.7 69.3 65.6 76.8 73.9 69.8

Table 3.6 – VOC 2007 test per-class average precision (%) under different settings when the “tvmonitor” class is
added.

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP
A(1-10) 69.9 76.7 68.9 54.9 48.7 72.9 78.8 75.5 48.8 62.7 - - - - - - - - - - 65.8
+B(11-20) w/o distillation 25.5 9.1 23.5 17.3 9.1 9.1 9.1 16.2 0.0 9.1 61.5 67.7 76.0 72.2 68.9 34.8 63.6 62.7 72.5 65.2 38.7
+B(11-20) w distillation 69.9 70.4 69.4 54.3 48.0 68.7 78.9 68.4 45.5 58.1 59.7 72.7 73.5 73.2 66.3 29.5 63.4 61.6 69.3 62.2 63.1
+B(11-20) w/o bbox distillation 68.8 69.8 60.6 46.4 46.7 65.9 71.3 66.3 43.6 47.3 58.5 70.6 73.4 70.6 66.3 33.6 63.1 62.1 69.4 63.1 60.9
+B(11-20) w EWC [85] 54.5 18.2 52.8 20.8 25.8 53.2 45.0 27.3 9.1 9.1 49.6 61.2 76.1 73.6 67.1 35.8 57.8 55.2 67.9 65.3 46.3
A(1-20) 70.2 77.9 70.4 54.1 47.4 78.9 78.6 79.8 50.8 75.9 65.6 78.0 80.5 79.1 76.3 47.7 69.3 65.6 76.8 73.9 69.8

Table 3.7 – VOC 2007 test per-class average precision (%) under different settings when 10 classes are added at
once.

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP
A(1-15) 70.8 79.1 69.8 59.2 53.3 76.9 79.3 79.1 47.8 70.0 62.0 76.6 80.4 77.5 76.2 - - - - - 70.5
+B(16-20) w distill. 70.5 79.2 68.8 59.1 53.2 75.4 79.4 78.8 46.6 59.4 59.0 75.8 71.8 78.6 69.6 33.7 61.5 63.1 71.7 62.2 65.9
+B(16)(17)(18)(19)(20) w distill. 70.0 78.1 61.0 50.9 46.3 76.0 78.8 77.2 46.1 66.6 58.9 67.7 71.6 71.4 69.6 25.6 57.1 46.5 70.7 58.2 62.4
+B(16)(17)(18)(19)(20) w unbiased distill. 62.2 71.2 52.3 43.8 24.9 60.7 62.9 53.4 9.1 34.9 42.5 34.8 54.3 70.9 9.1 18.7 53.2 48.9 58.2 53.5 46.0
A(1-20) 70.2 77.9 70.4 54.1 47.4 78.9 78.6 79.8 50.8 75.9 65.6 78.0 80.5 79.1 76.3 47.7 69.3 65.6 76.8 73.9 69.8

Table 3.8 – VOC 2007 test per-class average precision (%) under different settings when 5 classes are added at
once or sequentially.
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method aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP
A(1-15) 70.8 79.1 69.8 59.2 53.3 76.9 79.3 79.1 47.8 70.0 62.0 76.6 80.4 77.5 76.2 - - - - - 70.5
+B(16) 70.5 78.3 69.6 60.4 52.4 76.8 79.4 79.2 47.1 70.2 56.7 77.0 80.3 78.1 70.0 26.3 - - - - 67.0
+B(16)(17) 70.3 78.9 67.7 59.2 47.0 76.3 79.3 77.7 48.0 58.8 60.2 67.4 71.6 78.6 70.2 27.9 46.8 - - - 63.9
+B(16)(17)(18) 69.8 78.2 67.0 50.4 46.9 76.5 78.6 78.0 46.4 58.6 58.6 67.5 71.8 78.5 69.9 26.1 56.2 45.3 - - 62.5
+B(16)(17)(18)(19) 70.4 78.8 67.3 49.8 46.4 75.6 78.4 78.0 46.0 59.5 59.2 67.2 71.8 71.3 69.8 25.9 56.1 48.2 65.0 - 62.4
+B(16)(17)(18)(19)(20) 70.0 78.1 61.0 50.9 46.3 76.0 78.8 77.2 46.1 66.6 58.9 67.7 71.6 71.4 69.6 25.6 57.1 46.5 70.7 58.2 62.4
A(1-20) 70.2 77.9 70.4 54.1 47.4 78.9 78.6 79.8 50.8 75.9 65.6 78.0 80.5 79.1 76.3 47.7 69.3 65.6 76.8 73.9 69.8

Table 3.9 – VOC 2007 test per-class average precision (%) when 5 classes are added sequentially.

method A(1-10) +table +dog +horse +mbike +persn +plant +sheep +sofa +train +tv
mAP 67.1 65.1 62.5 59.9 59.8 59.2 57.3 49.1 49.8 48.7 49.0

Table 3.10 – VOC 2007 test average precision (%) when adding 10 classes sequentially. Unlike other tables each
column here shows the mAP of a network trained on all the previous classes and the new class. For example, the
mAP shown for “+dog” is the result of the network trained on the first ten classes, “table”, and the new class “dog”.
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3.5 Other alternatives
Learning multiple networks. Another solution for learning multiple classes is
to train a new network for each class, and then combine their detections. This is
an expensive strategy at test time, as each network has to be run independently,
including the extraction of features. This may seem like a reasonable thing to do as
evaluation of object detection is done independently for each class, However, learning
is usually not independent. Although we can learn a decent detection network
for 10 classes, it is much more difficult when learning single classes independently.
To demonstrate this, we trained a network for 1-15 classes and then separate
networks for each of the 16-20 classes. This results in 6 networks in total (row
“+A(16)+...+A(20)” in Table 3.3), compared to incremental learning of 5 classes
implemented with a single network (“+B(16)(17)...(20) w distill.”). The results
confirm that new classes are difficult to learn in isolation.

Varying distillation loss. As noted in [74], knowledge distillation can also be
expressed as a cross-entropy loss. We compared this with L2-based loss on the
one class extension experiment (“B(20) w cross-entropy distill.” in Table 3.1 and
Table 3.6). Cross-entropy distillation works as well as L2 distillation keeping old
classes intact (67.3% vs 67.8%), but performs worse than L2 on the new class
“tvmonitor” (52% vs 58.3%). We also observed that cross-entropy is more sensitive
to the training schedule. According to [74], both formulations should be equivalent
in the limit of a high smoothing factor for logits (cf. Section 3.2), but our choice of
not smoothing leads to this different behavior.

Bounding box regression distillation. Addition of 10 classes (Table 3.2)
without distilling bounding box regression values performs consistently worse than
the full distillation loss. Overall B(11-20) without distilling bounding box regression
gets 60.9% vs 63.1% with the full distillation. However, on a few new classes the
performance can be higher than with the full distillation (Table 3.7). This is also
the case for B(20) without bounding box distillation (Table 3.6) that has better
performance on “tvmonitor” (62.7% vs 58.3%). This is not the case when other
categories are chosen as the new class. Indeed, bounding box distillation shows an
improvement of 2% for the “sheep” class.

3.6 Conclusion
In this chapter, we have presented an approach for incremental learning of object

detectors for new classes, without access to the training data corresponding to the
old classes. We address the problem of catastrophic forgetting in this context, with
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a loss function that optimizes the performance on the new classes, in addition to
preserving the performance on the old classes. Our extensive experimental analysis
demonstrates that our approach performs well, even in the extreme case of adding
new classes one by one.





Part II

Generative models
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As we discussed in Chapter 2, a lot of frameworks for incremental learning rely
on a form of knowledge distillation to prevent catastrophic forgetting. This requires
some samples to distill on. One way to get them is just to stash all (or subset of)
training images from the past. However, this approach does not scale well; size
of training set quickly becomes an issue even in cloud computing, let alone any
embodied agent we may imagine. Another way is to generate them artificially or
mine from incoming data.

It is interesting to note that we do not have to use real images for distillation.
Samples have to be close enough to real data and cover it well. Knowledge
distillation can be compared to polynomial interpolation: given enough of input-
output pairs we can exactly recover the original function even if these pairs
were never used to fit it in the first place. This is essentially the idea behind
“pseudorehearsals” [9, 52, 152] that were initially suggested to fight catastrophic
forgetting in fully connected shallow networks with low-dimensional inputs. In this
situation they could be sampled from a very simple probabilistic model. Although
this idea should in principle work in convolutional networks applied to natural
images, sampling random natural images is more challenging task.

Generative models offer exactly this: random natural images. Currently GANs
demonstrate the best quality of images, they are easy to condition on class labels
(after all, in order to use knowledge distillation we want not just any random image,
but image of a particular class learned before). Recent work [162] shows that GANs
can be extended dynamically and generated samples indeed help with incremental
learning. Even more effective method to dynamically extend conditional GANs
was suggested in [192]. These studies suggest that GANs represent an effective
method to generate “pseudorehearsals”.

However, there is still a significant gap between data a GAN can be trained to
generate and data an ordinary discriminative CNN can learn. Besides, GANs suffer
from mode-dropping, are notoriously difficult to train and to evaluate correctly.
All these problems contribute to the gap between generative and discriminative
models.

The rest of this part is organized as follows: in Chapter 4 we review the related
work on generative models with a particular focus on GANs and their issues and
then discuss common ways to evaluate them. In Chapter 5 we suggest a new
measure to evaluate conditional GANs and compare it to accepted GAN metrics.
Further in Chapter 6 we propose a new generative model elegantly combining
properties of adversarial models as well as coverage guarantees of likelihood-based
models. We demonstrate extensive evaluation of our model on CIFAR-10 and
STL-10 and show generated samples on CelebA and LSUN.

Application of generative models to incremental learning is left for future work.





Chapter 4

Related work

Contents
4.1 Coverage-driven training and maximum likelihood estimation . 46

4.1.1 Variational autoencoders . . . . . . . . . . . . . . . . . 46
4.1.2 Autoregressive models . . . . . . . . . . . . . . . . . . 47
4.1.3 Flow-based models . . . . . . . . . . . . . . . . . . . . 48

4.2 Adversarial models and quality-driven training . . . . . . . . . 48
4.3 Hybrid approaches . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Conditioning of generative models . . . . . . . . . . . . . . . . 51
4.5 Evaluation of GAN models . . . . . . . . . . . . . . . . . . . . 51

4.5.1 Inception score . . . . . . . . . . . . . . . . . . . . . . 52
4.5.2 Fréchet Inception distance . . . . . . . . . . . . . . . . 52
4.5.3 Other evaluation measures . . . . . . . . . . . . . . . . 53

4.6 Data augmentation with GANs . . . . . . . . . . . . . . . . . . 53

The classic and most common approach to training generative models is to make
sure that they cover the training data sampled from an unknown distribution p∗ well.
Using a score sc(x, pθ) that evaluates how well a sample x is covered by the model
pθ, training proceeds by maximizing the objective LC(pθ) =

∫
x∈X p

∗(x)sc(x, pθ)dx.
We refer to this training procedure as coverage-driven training (CDT). The other
approach to generative modeling is to make sure that samples from the model
fit the distribution p∗ underlying the training data. Given a score sq(x, p∗) that
evaluates how plausible a sample x is under p∗, a model pθ can be trained by
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maximizing LQ(pθ) =
∫
x∈X pθ(x)sq(x, p∗)dx. We refer to this procedure as quality-

driven training (QDT). In practice p∗ is unavailable, and the integral over p∗ is
therefore approximated using the empirical average over the training data. In what
follows we argue that well-recognized failure modes of modern generative models,
at least partially, stem from the choice of one of these procedures.

4.1 Coverage-driven training and maximum
likelihood estimation

Among coverage-driven training methods, maximum likelihood estimation
(MLE) is the most common. It maximizes the probability of data observed
from p∗ under pθ w.r.t. θ, the parameter vector of the model, using the log-
score LC(pθ) = Ex∼p∗ [log pθ(x)]. This is equivalent to minimizing DKL(p∗ || pθ),
the Kullback-Liebler (KL) divergence between p∗ and pθ. This yields models that
typically cover all the modes of the data, but tend to put mass in spurious regions of
the target space; a phenomenon known as over-generalization [20], and manifested
by unrealistic samples in the context of generative image models. Intuitively, all
the modes of the data are well covered because pθ is explicitly optimized to cover
all the samples from p∗. Conversely, what does not happen is sampling x from pθ
and assessing its quality, ideally using the inaccessible p∗(x) as a score. put mass
in spurious regions of the space without being heavily penalized.

Putting mass on samples from p∗ takes it away from spurious regions, so in
principle an infinitely flexible model with infinite training data should fit p∗ without
evaluating it on samples from pθ. Assuming p∗ is more complex than what pθ
can model, however, covering all the modes of p∗ will push pθ to assign mass to
regions of low probability under p∗. Even if pθ were infinitely expressive, given a
finite dataset it would over-fit by putting Diracs on all the training samples. The
model is thus forced to put mass on points that are not in the training set, but we
cannot control where this occurs, since p∗ cannot be evaluated. So regularization is
necessary: if a simple model explains the data well it should generalize and spill
some mass in the right places. Using a held-out validation or test set, we can assess
if the model generalizes and assigns mass to the held-out samples from p∗, but not
how much has been spilled elsewhere. Therefore, over-generalization is an inherent
problem for MLE-based models, and having a mechanism that drives quality as
well as coverage in the learned distribution is therefore desirable.

4.1.1 Variational autoencoders
Variational autoencoders (VAEs) [84,150] is a class of deep generative latent

variables models optimizing likelihood. VAE consists of two neural networks:
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encoder and decoder. Decoder network implements a distribution pθ(x|z) over
observations x given latent variables z and has parameters θ. Typically z has unit
Gaussian as a basic prior p(z). Then the generative model can be obtained via
marginalization of latent variables:

pθ(x) =
∫
p(z)pθ(x|z)dz (4.1)

However, this integral is intractable thus making direct optimization of marginal
likelihood impossible. Encoder network approximates a posterior distribution
qφ(z|x) and has parameters φ. It helps to define a variational lower bound on data
log-likelihood:

log pθ(x) ≥ ELBO(x, θ, φ) = log pθ(x)−DKL(qφ(z|x) || pθ(x|z))
= E

z∼qφ
[log pθ(x|z)]−DKL(qφ(z|x) || p(z)) (4.2)

The first term of this formula is reconstruction loss maximizing data log-likelihood
pθ(x|z) under posterior estimate qφ(z|x). The second term can be seen as regular-
ization of the posterior qφ to be close to the prior p(z).

To achieve efficient sampling VAE assumes pixels to be conditionally indepen-
dent:

pθ(x|z) =
N∏
i=1

p(xi|z) (4.3)

This implies that all low-level variability should be handled by latent variables z.
In the end it makes VAE samples very blurry.

4.1.2 Autoregressive models
Autoregressive models [55, 89] address the main drawback of VAEs: instead of

conditional independence they factorize multivariate distribution sequentially,

pθ(x) =
N∏
i=1

p(xi|x<i) (4.4)

where x<i = x1, . . . xi−1. Conditional distributions are modeled by a deep neural
network.

In computer vision autoregressive models usually use scan line pixel ordering.
The most successful model (by obtained log-likelihood on held-out data) is Pixel-
CNN++ [159] which integrates a lot of improvements on top of PixelRNN [188].
It achieves scan line ordering with convolutional layers via masking applied when
needed.
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However, autoregressive factorization comes with a price: autoregressive models
are frustratingly slow to sample and thus hardly scale to high resolution. Even
though clever caching of intermediate computations [142] can accelerate infer-
ence significantly, the speed is still far behind both GANs and VAEs. Another
way is to partially relax autoregressive nature and render some groups of pixels
independently [147].

4.1.3 Flow-based models
Flow-based model [37] is defined as follows:

z0 ∼ p(z0) zt = ft(zt−1) ∀t = 1 . . . T zT = x (4.5)

where p(z0) is a simple tractable distribution, usually spherical multivariate Gaus-
sian distribution N (0; I) and each of ft is an invertible function (bijection). Such
sequence of ft is called a normalizing flow [149]. Assuming that ft have known
Jacobian, probability density function of zT can be computed via change of variable
rule:

log p(zT ) = log p(z0) +
T∑
t=1

log
∣∣∣∣∣det dzt

dzt−1

∣∣∣∣∣ (4.6)

This way log-likelihood can be computed exactly, encoding and decoding is essen-
tially done by a single neural network (due to bijective nature of ft).

Normalizing flow was used in Inverse Autoregressive Flow (IAF) [83] to integrate
autoregressive decomposition into VAE. It made reconstructions crisp and allowed
VAE to achieve likelihood competitive with autoregressive models. In general,
normalizing flow can be seen as a way to learn more flexible posteriors.

RealNVP [38] uses a rich family of functions to choose ft from and generates
quite good samples (quality is still worse than GAN samples though). Likelihood,
on the other hand, was noticeably lower than autoregressive models. Very recently a
successor of RealNVP called Glow [82] has reached competitive likelihood numbers
albeit at a cost of huge networks and thus slower inference.

4.2 Adversarial models and quality-driven training
We have argued that models trained with maximum likelihood would benefit

from having a mechanism that samples x ∼ pθ and evaluate it under p∗. Intuitively
speaking, this is what happens when we ask human experts to assess a model
by comparing its samples with their own implicit, expert approximation of p∗.
One expects a good model pθ to produce realistic samples, which is reasonably
modeled by the idea that the cross-entropy between pθ and p∗ should be small.
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One also expects the model to produce samples that are as diverse as possible,
which is directly related to the entropy of pθ. Combining these ideas leads to the
KL divergence DKL(pθ || p∗) = Ex∼pθ [log pθ(x)− log p∗(x)].

GANs use a similar mechanism: samples are drawn from the model and evaluated
by a discriminator D. Originally, [59] trained the discriminator with the loss

LGAN =
∫
x
p∗(x) logD(x) + pθ(x) log(1−D(x))dx, (4.7)

and showed that, given f(y) = a log y + b log(1− y) is minimized for y = a
a+b , the

optimal discriminator is given by

D∗(x) = p∗(x)
p∗(x) + pθ(x) . (4.8)

Substituting the optimal discriminator, LGAN equals (up to additive and multi-
plicative constants) the Jensen-Shannon divergence:

JSD(p∗||pθ) = 1
2(DKL(p∗ || (pθ + p∗)/2) + DKL(pθ || (pθ + p∗)/2)). (4.9)

This loss, approximated by the discriminator, is symmetric and contains two KL
divergence terms. While one of them is an integral on p∗ the term that approximates
it,
∫
x p
∗(x) logD(x), is independent from the generative model. Therefore, it cannot

be used to perform coverage-driven training, and instead, the generator is trained
either to minimize log(1−D(G(z))) or to maximize logD(G(z)) [59], where G(z)
is the deterministic generator that maps latent variables z to the data space.
Assuming D = D∗, the first of these generator objective functions becomes:

log(1−D∗(G(z))) =
∫
x
pθ(x) log pθ(x)

pθ(x) + p∗(x) = DKL(pθ || pθ + p∗). (4.10)

As argued above, it seems reasonable that human assessment of generative
models is also based on a quality-driven objective similar to that of the GAN
generator, integrating a score function across samples from pθ. This could explain
why images produced by GANs typically correlate well with human judgment.
The main failure case of GANs, and more generally of quality-driven models, is
that they typically do not cover the full support of the data. This well-recognized
phenomenon is known as mode-dropping [12,20]. GANs fail to provide an objective
measure of this phenomenon, and of their performance in general. For instance,
defining a valid likelihood requires adding volume to the low-dimensional manifold
learned by GANs to define a density under which training and test data have
non-zero density. Furthermore, computing the density of a datapoint under the
defined density requires marginalizing out the latent variables. This is non trivial in
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the absence of a readily available inference model. Quality-driven training mirrors
the shortcomings of coverage-driven training: the reverse KL divergence explicitly
targets sample quality, and only implicitly how well the model covers the training
data.

As one of the main failure modes of GANs, mode-collapse has recently received
considerable attention. One line of research is focused on allowing the discriminator
to access batch statistics [103,158]. Another line of research focuses on restricting
discriminator to a certain functional class: it was demonstrated in [12] that Lipschitz-
continuous discriminator together with Earth-Mover distance as loss function heavily
improve the stability of training. Conditioning a network to be Lipschitz-continuous
is not trivial, initial suggestion (weight clipping) was eventually replaced by more
flexible gradient penalty [64]. These contributions allowed to move from simple
convolutional architectures like [141] to ResNets. Even better results were obtained
with spectral normalization of discriminator [115]: weights of every layer are
divided by first singular value estimated via power method. Interestingly, results
do not depend on loss function which hints that discriminator conditioning is more
important than loss function. It was also suggested that conditioning of generator in
the same way is beneficial for GAN reproducibility [128]. More detailed discussion
of contemporary GAN models can be found in Section 5.2.1.

There are many recent advances in GANs that allow generation of high res-
olution samples when conditioning on image labels. In [116] combining spectral
normalization with a projection discriminator yields convincing samples on Ima-
geNet. SAGAN [198] uses a self-attention mechanism to allow the discriminator to
better focus on salient long range dependencies. These contributions are orthogonal
to our work and could be leveraged to further improve image quality. The same
goes for the work of [78], where the depth of the convolutional architectures used to
build the two competing networks is progressively increased as training advances.

4.3 Hybrid approaches
Some recent works are exploring models combining the benefits of auto-encoders

and adversarial training. [90] use a VAE to model a feature space, taken to be
one of the intermediate layers of a discriminator. This goes beyond the pixel-wise
reconstruction loss in RGB space but does not yield a density model in the RGB
image space. [42] and [40] learn an encoder and decoder model using a discriminator
that, given a pair (x, z), predicts if z was encoded from a real image, or if x decoded
from a z sampled from the prior. This procedure is fully adversarial and does not
allow explicit optimization of a log-likelihood. This work is extended by [29], which
showed that it is possible to approximately optimize the symmetric KL in a fully
adversarial setup and introduced reconstruction losses in RGB space to improve
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the correspondence between reconstructions and the ground truth. [186] collapse
the encoder and a discriminator into one network that encodes real images and
samples, and tries to separate their posteriors, yielding another fully adversarial
approach. [107] replace the regularization term on the latent variables of a VAE with
a discriminator that compares latent codes from the prior and from the posterior.
This regularization is more flexible, but does not lead to a valid density model on
images.

To go beyond the VAE independence assumption in pixel space, some recent
works [31,65,104] have proposed using autoregressive decoders. These models suffer
from slow sampling because of their autoregressive components, and could not be
directly improved with a quality-driven mechanism.

4.4 Conditioning of generative models
Most generative models can be conditioned on additional information. In

the simplest case it can be a class label. One of well-tested methods of GAN
conditioning is ACGAN [129]: latent variables are concatenated with one hot class
labels, discriminator has additional head to recognize a category and the GAN loss
is augmented with categorical cross-entropy. It allows to train a model generating
an image of a given class, however does not necessarily facilitates training of bigger
models.

Recently, along with spectral normalization a new conditioning method was
suggested [116]: generator is conditioned using conditional batch normalization [43]
while discriminator uses cosine similarity to insert class information into GAN loss.
This method demonstrated great results on ImageNet generation and was adopted
by followup work [22,198].

In principle, a lot of different information can be used to condition GANs:
another image (like semantic segmentation or grayscale version) [76, 202], pose
information [106,123], text description [199].

VAEs can be conditioned on labels or semantic information with fairly straight-
forward modification of objective function [170]. PixelCNN can be also easily
conditioned on arbitrary vector (class label or richer semantic information) [187]
just by replacing all probabilities by conditional on some vector h probabilities in
the model definition (Eq. 4.4).

4.5 Evaluation of GAN models
We present existing quantitative measures to evaluate GANs: scores based

on an Inception network, i.e., IS and FID, a Wasserstein-based distance metric,
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precision and recall scores, and a technique built with data augmentation.

4.5.1 Inception score
One of the most common ways to evaluate GANs is the Inception score [158].

It uses an Inception network [175] pre-trained on ImageNet to compute logits of
generated images. The score is given by:

IS(G) = exp
(

E
xvpg

[DKL(p(y|x) ‖ p(y))]
)
, (4.11)

where x is a generated image sampled from the learned generator distribution pg,
E is the expectation over the set of generated images, DKL is the KL-divergence
between the conditional class distribution p(y|x) (for label y, according to the
Inception network) and the marginal class distribution p(y) = E

xvpg
[p(y|x)]. By

definition, Inception score does not consider real images at all, and so cannot
measure how well the generator approximates the real distribution. This score is
limited to measuring only the diversity of generated images. Some of its other
limitations, as noted in [16], are: high sensitivity to small changes in weights of the
Inception network, and large variance of scores.

4.5.2 Fréchet Inception distance
The recently proposed Fréchet Inception distance (FID) [73] compares the

distributions of Inception embeddings (activations from the penultimate layer of
the Inception network) of real (pr(x)) and generated (pg(x)) images. Both these
distributions as modeled as multi-dimensional Gaussians parameterized by their
respective mean and covariance. The distance measure is defined between the two
Gaussian distributions as:

d2((mr,Cr), (mg,Cg)) = ‖mr −mg‖2 + Tr(Cr + Cg − 2(CrCg)
1
2 ), (4.12)

where (mr,Cr), (mg,Cg) denote the mean and covariance of the real and generated
image distributions respectively. FID is inversely correlated with Inception score,
and suffers from the same issues discussed earlier.

The two Inception-based measures cannot separate image quality from image
diversity. For example, low IS or FID values can be due to the generated images
being either not realistic (low image quality) or too similar to each other (low
diversity), with no way to analyze the cause. In contrast, our measures can
distinguish when generated images become less diverse from worse image quality.
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4.5.3 Other evaluation measures
Sliced Wasserstein distance (SWD) [78] was used to evaluate high-resolution

GANs. It is a multi-scale statistical similarity computed on local image patches
extracted from the Laplacian pyramid representation of real and generated images.
A total of 128 7 × 7 local patches for each level of the Laplacian pyramid are
extracted per image. While SWD is an efficient approximation, using randomized
projections [140], of the Wasserstein-1 distance between the real and generated
images, its utility is limited when comparing a variety of GAN models, with not
all of them producing high-resolution images (see our evaluation in Section 5.3).

Precision and recall measures were introduced [105] in the context of GANs,
by constructing a synthetic data manifold. This makes it possible to compute the
distance of an image sample (generated or real) to the manifold, by finding its
distance to the closest point from the manifold. In this synthetic setup, precision is
defined as the fraction of the generated samples whose distance to the manifold is
below a certain threshold. Recall, on the other hand, is computed by considering
a set of test samples. First, the latent representation z̃ of each test sample x
is estimated, through gradient descent, by inverting the generator G. Recall is
then given by the fraction of test samples whose L2-distance to G(z̃) is below the
threshold. High recall is equivalent to the GAN capturing most of the manifold,
and high precision implies that the generated samples are close to the manifold.
Although these measures bring the flavor of techniques used widely to evaluate
discriminative models to GANs, they are impractical for real images as the data
manifold is unknown, and their use is limited to evaluations on synthetic data [105].

4.6 Data augmentation with GANs
Augmenting training data is an important component of learning neural net-

works. This can be achieved by increasing the size of the training set [88] or
incorporating augmentation directly in the latent space [191]. A popular technique
is to increase the size of the training set with minor transformations of data, which
has resulted in a performance boost, e.g., for image classification [88]. GANs
provide a natural way to augment training data with the generated samples. In-
deed, GANs have been used to train classification networks in a semi-supervised
fashion [34,184] or to facilitate domain adaptation [21]. Modern GANs generate
images realistic enough to improve performance in applications, such as, biomedical
imaging [24, 53], person re-identification [201] and image enhancement [195]. They
can also be used to refine training sets composed of synthetic images for applications
such as eye gaze and hand pose estimation [165]. GANs are also used to learn
complex 3D distributions and replace computationally intensive simulations in
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physics [119,131] and neuroscience [117]. Ideally, GANs should be able to recreate
the training set with different variations. This can be used to compress datasets
for learning incrementally, without suffering from catastrophic forgetting as new
classes are added [162]. We will study the utility of GANs for training image
classification networks with data augmentation (see Section 5.3.5), and analyze it
as an evaluation measure.

In summary, evaluation of generative models is not a easy task [180], especially
for models like GANs. We bring a new dimension to this problem with our GAN-
train and GAN-test performance-based measures, and show through our extensive
analysis that they are complementary to all the above schemes.
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5.1 GAN-train and GAN-test
An important characteristic of a conditional GAN model is that generated

images should not only be realistic, but also recognizable as coming from a given
class. An optimal GAN that perfectly captures the target distribution can generate
a new set of images Sg, which are indistinguishable from the original training set St.
Assuming both these sets have the same size, a classifier trained on either of them
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Figure 5.1 – Illustration of GAN-train and GAN-test. GAN-train learns a classifier
on GAN generated images and measures the performance on real test images. This
evaluates the diversity and realism of GAN images. GAN-test learns a classifier on
real images and evaluates it on GAN images. This measures how realistic GAN
images are.

should produce roughly the same validation accuracy. This is indeed true when
the dataset is simple enough, for example, MNIST [162] (see also Section 5.3.3).
Motivated by this optimal GAN characteristic, we devise two scores to evaluate
GANs, as illustrated in Figure 5.1.

GAN-train is the accuracy of a classifier trained on Sg and tested on a validation
set of real images Sv. When a GAN is not perfect, GAN-train accuracy will be
lower than the typical validation accuracy of the classifier trained on St. It can
happen due to many reasons, e.g., (i) mode dropping reduces the diversity of Sg
in comparison to St, (ii) generated samples are not realistic enough to make the
classifier learn relevant features, (iii) GANs can mix-up classes and confuse the
classifier. Unfortunately, GAN failures are difficult to diagnose. When GAN-train
accuracy is close to validation accuracy, it means that GAN images are high quality
and as diverse as the training set. As we will show in Section 5.3.4, diversity varies
with the number of generated images. We will analyze this with the evaluation
discussed at the end of this section.
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GAN-test is the accuracy of a classifier trained on the original training set St,
but tested on Sg. If a GAN learns well, this turns out be an easy task because
both the sets have the same distribution. Ideally, GAN-test should be close to the
validation accuracy. If it significantly higher, it means that the GAN overfits, and
simply memorizes the training set. On the contrary, if it is significantly lower, the
GAN does not capture the target distribution well and the image quality is poor.
Note that this measure does not capture the diversity of samples because a model
that memorizes exactly one training image perfectly will score very well. GAN-test
accuracy is related to the precision score in [105], quantifying how close generated
images are to a data manifold.

To provide an insight into the diversity of GAN-generated images, we measure
GAN-train accuracy with generated sets of different sizes, and compare it with
the validation accuracy of a classifier trained on real data of the corresponding
size. If all the generated images were perfect, the size of Sg where GAN-train is
equal to validation accuracy with the reduced-size training set, would be a good
estimation of the number of distinct images in Sg. In practice, we observe that
GAN-train accuracy saturates with a certain number of GAN-generated samples
(see Figure 5.3(a) and Figure 5.3(b) discussed in Section 5.3.4). This is a measure
of the diversity of a GAN, similar to recall from [105], measuring the fraction of
the data manifold covered by a GAN.

5.2 Datasets and methods

Datasets. For comparing the different GAN methods and PixelCNN++, we
use several image classification datasets with an increasing number of labels:
MNIST [92], CIFAR10 [87], CIFAR100 [87] and ImageNet1k [155]. CIFAR10 and
CIFAR100 both have 50k 32× 32 RGB images in the training set, and 10k images
in the validation set. CIFAR10 has 10 classes while CIFAR100 has 100 classes.
ImageNet1k has 1000 classes with 1.3M training and 50k validation images. We
downsample the original ImageNet images to two resolutions in our experiments,
namely 64× 64 and 128× 128. MNIST has 10 classes of 28× 28 grayscale images,
with 60k samples for training and 10k for validation.

We exclude the CIFAR10/CIFAR100/ImageNet1k validation images from GAN
training to enable the evaluation of test accuracy. This is not done in a number of
GAN papers and may explain minor differences in IS and FID scores compared to
the ones reported in these papers.
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5.2.1 Evaluated methods
Among the plethora of GAN models in literature, it is difficult to choose the best

one, especially since appropriate hyperparameter fine-tuning appears to bring all
major GANs within a very close performance range, as noted in a study [105]. We
choose to perform our analysis on Wasserstein GAN (WGAN-GP), one of the most
widely-accepted models in literature at the moment, and SNGAN, a very recent
model showing state-of-the-art image generation results on ImageNet. Additionally,
we include two baseline generative models, DCGAN [141] and PixelCNN++ [159].
We summarize all the models included in our experimental analysis below.
Wasserstein GAN. WGAN [12] replaces the discriminator separating real and
generated images with a critic estimating Wasserstein-1 (i.e., earth-mover’s) distance
between their corresponding distributions. The success of WGANs in comparison
to the classical GAN model [59] can be attributed to two reasons. Firstly, the
optimization of the generator is easier because the gradient of the critic function is
better behaved than its GAN equivalent. Secondly, empirical observations show
that the WGAN value function better correlates with the quality of the samples
than GANs [12].

In order to estimate the Wasserstein-1 distance between the real and generated
image distributions, the critic must be a K-Lipschitz function. The original
paper [12] proposed to constrain the critic through weight clipping to satisfy this
Lipschitz requirement. This, however, can lead to unstable training or generate
poor samples [64]. An alternative to clipping weights is the use of a gradient penalty
as a regularizer to enforce the Lipschitz constraint. In particular, we penalize the
norm of the gradient of the critic function with respect to its input. This has
demonstrated stable training of several GAN architectures [64].

We use the gradient penalty variant of WGAN, conditioned on data in our
experiments, and refer to it as WGAN-GP in the rest of the chapter. Label
conditioning is an effective way to use labels available in image classification
training data [129]. Following ACGAN [129], we concatenate the noise input z
with the class label in the generator, and modify the discriminator to produce
probability distributions over the sources as well as the labels.
SNGAN. Variants have also analyzed other issues related to training GANs, such
as the impact of the performance control of the discriminator on training the
generator. Generators often fail to learn the multimodal structure of the target
distribution due to unstable training of the discriminator, particularly in high-
dimensional spaces [115]. More dramatically, generators cease to learn when the
supports of the real and the generated image distributions are disjoint [11]. This
occurs since the discriminator quickly learns to distinguish these distributions,
resulting in the gradients of the discriminator function, with respect to the input,
becoming zeros, and thus failing to update the generator model any further.
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SNGAN [115] introduces spectral normalization to stabilize training the dis-
criminator. This is achieved by normalizing each layer of the discriminator (i.e.,
the learnt weights) with the spectral norm of the weight matrix, which is its largest
singular value. Miyato et al. [115] showed that this regularization outperforms
other alternatives, including gradient penalty, and in particular, achieves state-of-
the-art image synthesis results on ImageNet. We use the class-conditioned version
of SNGAN [116] in our evaluation. Here, SNGAN is conditioned with projection in
the discriminator network, and conditional batch normalization [43] in the generator
network.
DCGAN. Deep convolutional GANs (DCGANs) is a class of architecture that was
proposed to leverage the benefits of supervised learning with CNNs as well as the
unsupervised learning of GAN models [141]. The main principles behind DCGANs
are using only convolutional layers and batch normalization for the generator and
discriminator networks. Several instantiations of DCGAN are possible with these
broad guidelines, and in fact, many do exist in literature [64, 115,129]. We use the
class-conditioned variant presented in [129] for our analysis.
PixelCNN++. The original PixelCNN [188] belongs to a class of generative
models with tractable likelihood. It is a deep neural net which predicts pixels
sequentially along both the spatial dimensions. The spatial dependencies among
pixels are captured with a fully convolutional network using masked convolutions.
PixelCNN++ proposes improvements to this model in terms of regularization,
modified network connections and more efficient training [159].

5.3 Experiments

5.3.1 Implementation details of evaluation measures
We compute Inception score with the WGAN-GP code [1] corrected for the

1008 classes problem [16]. The mean value of this score computed 10 times on 5k
splits is reported in all our evaluations, following standard protocol.

We found that there are two variants for computing FID. The first one is the
original implementation [2] from the authors [73], where all the real images and
at least 10k generated images are used. The second one is from the SNGAN [115]
implementation, where 5k generated images are compared to 5k real images.
Estimation of the covariance matrix is also different in both these cases. Hence, we
include these two versions of FID in the paper to facilitate comparison in the future.
The original implementation is referred to as FID, while our implementation [4] of
the 5k version is denoted as FID-5K. Implementation of SWD is taken from the
official NVIDIA repository [3].
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5.3.2 Implementation details of generative models
SNGAN in our experiments refers to the model with ResNet architecture, hinge

loss, spectral normalization [115], conditional batch normalization [43] and condi-
tioning via projection [116]. We evaluate two variants of WGAN-GP: one with 2.5M
and the other with 10M parameters. Both these variants use ResNet architecture
from [64], Wasserstein loss [12] with gradient penalty [64] and conditioning via
an auxiliary classifier [129], with the only difference being that, there are twice
as many filters in each layer of the generator for the 10M model over the 2.5M
variant. We use DCGAN with a simple convnet architecture [141], classical GAN
loss, conditioned via an auxiliary classifier [129], as in [115].

We reimplemented WGAN-GP, SNGAN, DCGAN, and validated our imple-
mentations on CIFAR10 to ensure that they match the published results. Our
implementations are available online [4]. For PixelCNN++, we used the reference
implementation 1 for training and the accelerated version 2 for inference.

For all the CIFAR experiments, SNGAN and WGAN-GP are trained for 100k
iterations with a linearly decaying learning rate, starting from 0.0002 to 0, using
the Adam optimizer [81] (β1 = 0, β2 = 0.9, 5 critic steps per generator step, and
generator batch size 64). ACGAN loss scaling coefficients are 1 and 0.1 for the
critic’s and generator’s ACGAN losses respectively. Gradient penalty is 10 as
recommended [64]. DCGAN is also trained for 100k iterations with learning rate
0.0002, Adam parameters β1 = 0.5, β2 = 0.999, and batch size of 100.

In the case of ImageNet, we follow [116] for ResNet architecture and the protocol.
We trained for 250k iterations with learning rate 0.0002, linearly decaying to 0,
starting from the 200k-th iteration, for resolution 64 × 64. We use the Adam
optimizer [81] (β1 = 0, β2 = 0.9, 5 critic steps per generator step, generator batch
size 64). For 128 × 128 resolution, we train for 450k iterations, with learning
rate linearly decaying to 0, starting from the 400k-th iteration. WGAN-GP for
ImageNet uses the same ResNet and training schedule as SNGAN. Its gradient
penalty and ACGAN loss coefficients are identical to the CIFAR case.

The classifier for computing GAN-train and GAN-test is a preactivation variant
of ResNet-32 from [71] in the CIFAR10 and CIFAR100 evaluation. Training schedule
is identical to the original paper: 64k iterations using momentum optimizer with
learning rate 0.1 dropped to 0.01, after 32k iterations, and 0.001, after 48k iterations
(batch size 128). We also use standard CIFAR data augmentation: 32× 32 crops
are randomly sampled from the padded image (4 pixels on each side), which are
flipped horizontally. The classifier in the case of ImageNet is ResNet-32 for 64× 64
and ResNet-34 for 128× 128 with momentum optimizer for 400k iterations, and
learning rate 0.1, dropped to 0.01 after 200k steps (batch size 128). We use a

1. https://github.com/openai/pixel-cnn
2. https://github.com/PrajitR/fast-pixel-cnn

https://github.com/openai/pixel-cnn
https://github.com/PrajitR/fast-pixel-cnn
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Figure 5.2 – First column: SNGAN-generated images. Other columns: 5 images
from CIFAR10 “train” closest to GAN image from the first column in feature space
of baseline CIFAR10 classifier.

central crop for both training and testing. We also compute our measures with a
random forest classifier [75]. Here, we used the scikit-learn implementation [134]
with 100 trees and no depth limitation.

To train SNGAN on MNIST we use the same GAN architecture as in the case
of CIFAR10 (adjusted to a single input channel), and a simple convnet architecture
(four convolutional layers with 32, 64, 128, 256 filters with batch normalization
and max pooling in between, and global average pooling before the final output
layer) as the baseline classifier. The GAN training schedule is also the same as in
the case of CIFAR10. We train the baseline classifier for 64k iterations using a
momentum optimizer with learning rate 0.1 dropped to 0.01, after 32k iterations,
and 0.001, after 48k iterations (using a batch size of 128).

5.3.3 Generative model evaluation
MNIST. We validate our claim (from Section 5.1) that a GAN can perfectly
reproduce a simple dataset on MNIST. A four-layer convnet classifier trained on
real MNIST data achieves 99.3% accuracy on the test set. In contrast, images
generated with SNGAN achieve a GAN-train accuracy of 99.0% and GAN-test
accuracy of 99.2%, highlighting their high image quality as well as diversity.
CIFAR10. Table 5.1 shows a comparison of state-of-the-art GAN models on
CIFAR10. We observe that the relative ranking of models is consistent across
different metrics: FID, GAN-train and GAN-test accuracies. Both GAN-train and
GAN-test are quite high for SNGAN and WGAN-GP (10M). This implies that
both the image quality and the diversity are good, but are still lower than that
of real images (92.8 in the first row). Note that PixelCNN++ has low diversity
because GAN-test is much higher than GAN-train in this case. This is in line with
its relatively poor Inception score and FID (as shown in [105] FID is quite sensitive
to mode dropping).
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model IS FID-
5K

FID GAN-
train

GAN-
test

SWD
16

SWD
32

real images 11.33 9.4 2.1 92.8 - 2.8 2.0
SNGAN 8.43 18.8 11.8 82.2 87.3 3.9 24.4
WGAN-GP (10M) 8.21 21.5 14.1 79.5 85.0 3.8 6.2
WGAN-GP (2.5M) 8.29 22.1 15.0 76.1 80.7 3.4 6.9
DCGAN 6.69 42.5 35.6 65.0 58.2 6.5 24.7
PixelCNN++ 5.36 121.3 119.5 34.0 47.1 14.9 56.6

Table 5.1 – CIFAR10 experiments. IS: higher is better. FID and SWD: lower is
better. SWD values here are multiplied by 103 for better readability. GAN-train
and GAN-test are accuracies given as percentage (higher is better).

Note that SWD does not correlate well with other metrics: it is consistently
smaller for WGAN-GP (especially SWD 32). We hypothesize that this is because
SWD approximates the Wasserstein-1 distance between patches of real and gener-
ated images, which is related to the optimization objective of Wasserstein GANs,
but not other models (e.g., SNGAN). This suggests that SWD is unsuitable to
compare WGAN and other GAN losses. It is also worth noting that WGAN-GP
(10M) shows only a small improvement over WGAN-GP (2.5M) despite a four-fold
increase in the number of parameters. In Figure 5.2 we show SNGAN-generated
images on CIFAR10 and their nearest neighbors from the training set in the feature
space of the classifier we use to compute the GAN-test measure. Note that SNGAN
consistently finds images of the same class as a generated image, which are close to
an image from the training set.

To highlight the complementarity of GAN-train and GAN-test, we emulate a
simple model by subsampling/corrupting the CIFAR10 training set, in the spirit
of [73]. GAN-train/test now corresponds to training/testing the classifier on
modified data. We observe that GAN-test is insensitive to subsampling unlike
GAN-train (where it is equivalent to training a classifier on a smaller split). Salt
and pepper noise, ranging from 1% to 20% of replaced pixels per image, barely
affects GAN-train, but degrades GAN-test significantly (from 82% to 15%).

Through this experiment on modified data, we also observe that FID is insuffi-
cient to distinguish between the impact of image diversity and quality. For example,
FID between CIFAR10 train set and train set with Gaussian noise (σ = 5) is 27.1,
while FID between train set and its random 5k subset with the same noise is 29.6.
This difference may be due to lack of diversity or quality or both. GAN-test, which
measures the quality of images, is identical (95%) in both these cases. GAN-train,
on the other hand, drops from 91% to 80%, showing that the 5k train set lacks
diversity. Together, our measures, address one of the main drawbacks of FID.
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CIFAR100. Our results on CIFAR100 are summarized in Table 5.2. It is a more
challenging dataset than CIFAR10, mainly due to the larger number of classes and
fewer images per class; as evident from the accuracy of a convnet for classification
trained with real images: 92.8 vs 69.4 for CIFAR10 and CIFAR100 respectively.
SNGAN and WGAN-GP (10M) produce similar IS and FID, but very different
GAN-train and GAN-test accuracies. This makes it easier to conclude that SNGAN
has better image quality and diversity than WGAN-GP (10M). It is also interesting
to note that WGAN-GP (10M) is superior to WGAN-GP (2.5M) in all the metrics,
except SWD. WGAN-GP (2.5M) achieves reasonable IS and FID, but the quality
of the generated samples is very low, as evidenced by GAN-test accuracy. SWD
follows the same pattern as in the CIFAR10 case: WGAN-GP shows a better
performance than others in this measure, which is not consistent with its relatively
poor image quality. PixelCNN++ exhibits an interesting behavior, with high
GAN-test accuracy, but very low GAN-train accuracy, showing that it can generate
images of acceptable quality, but they lack diversity. A high FID in this case also
hints at significant mode dropping.
Random forests. We verify if our findings depend on the type of classifier by using
random forests [75,134] instead of CNN for classification. This results in GAN-train,
GAN-test scores of 15.2%, 19.5% for SNGAN, 10.9%, 16.6% for WGAN-GP (10M),
3.7%, 4.8% for WGAN-GP (2.5M), and 3.2%, 3.0% for DCGAN respectively. Note
that the relative ranking of these GANs remains identical for random forests and
CNNs.
Human study. We designed a human study with the goal of finding which of the
measures (if any) is better aligned with human judgement. The subjects were asked
to choose the more realistic image from two samples generated for a particular class
of CIFAR100. Five subjects evaluated SNGAN vs one of the following: DCGAN,
WGAN-GP (2.5M), WGAN-GP (10M) in three separate tests. They made 100
comparisons of randomly generated image pairs for each test, i.e., 1500 trials in
total. All of them found the task challenging, in particular for both WGAN-GP
tests.

We use Student’s t-test for statistical analysis of these results. In SNGAN
vs DCGAN, subjects chose SNGAN 368 out of 500 trials, in SNGAN vs WGAN-
GP (2.5M), subjects preferred SNGAN 274 out of 500 trials, and in SNGAN
vs WGAN-GP (10M), SNGAN was preferred 230 out of 500. The preference of
SNGAN over DCGAN is statistically significant (p < 10−7), while the preference
over WGAN-GP (2.5M) or WGAN-GP (10M) is insignificant (p = 0.28 and p = 0.37
correspondingly). We conclude that the quality of images generated needs to be
significantly different, as in the case of SNGAN vs DCGAN, for human studies to
be conclusive. They are insufficient to pick out the subtle, but performance-critical,
differences, unlike our measures.
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model IS FID-
5K

FID GAN-
train

GAN-
test

SWD
16

SWD
32

real images 14.9 10.8 2.4 69.4 - 2.7 2.0
SNGAN 9.30 23.8 15.6 45.0 59.4 4.0 15.6
WGAN-GP (10M) 9.10 23.5 15.6 26.7 40.4 6.0 9.1
WGAN-GP (2.5M) 8.22 28.8 20.6 5.4 4.3 3.7 7.7
DCGAN 6.20 49.7 41.8 3.5 2.4 9.9 20.8
PixelCNN++ 6.27 143.4 141.9 4.8 27.5 8.5 25.9

Table 5.2 – CIFAR100 experiments. Refer to the caption of Table 5.1 for details.

res model IS FID-
5K

FID GAN-
train
top-1

GAN-
train
top-5

GAN-
test

top-1

GAN-
test

top-5

64px
real images 63.8 15.6 2.9 55.0 78.8 - -
SNGAN 12.3 44.5 34.4 3 8.4 12.9 28.9
WGAN-GP 11.3 46.7 35.8 0.1 0.7 0.1 0.5

128px
real images 203.2 17.4 3.0 59.1 81.9 - -
SNGAN* 35.3 44.9 33.2 9.3 21.9 39.5 63.4
WGAN-GP 11.6 91.6 79.5 0.1 0.5 0.1 0.5

Table 5.3 – ImageNet experiments. SNGAN* refers to the model provided by [115],
trained for 850k iterations. Refer to the caption of Table 5.1 for details.

ImageNet. On this dataset, which is one of the more challenging ones for image
synthesis [115], we analyzed the performance of the two best GAN models based
on our CIFAR experiments, i.e., SNGAN and WGAN-GP. As shown in Table 5.3,
SNGAN achieves a reasonable GAN-train accuracy and a relatively high GAN-test
accuracy at 128×128 resolution. This suggests that SNGAN generated images have
good quality, but their diversity is much lower than the original data. This may
be partly due to the size of the generator (150Mb) being significantly smaller in
comparison to ImageNet training data (64Gb for 128× 128). Despite this difference
in size, it achieves GAN-train accuracy of 9.3% and 21.9% for top-1 and top-5
classification results respectively. In comparison, the performance of WGAN-GP is
dramatically poorer; see last row for each resolution in the table.

In the case of images generated at 64× 64 resolution, GAN-train and GAN-test
accuracies with SNGAN are lower than their 128× 128 counterparts. GAN-test
accuracy is over four times better than GAN-train, showing that the generated
images lack in diversity. It is interesting to note that WGAN-GP produces Inception
score and FID very similar to SNGAN, but its images are insufficient to train a
reasonable classifier and to be recognized by an ImageNet classifier, as shown by
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Figure 5.3 – The effect of varying the size of the generated image set on GAN-train
accuracy. For comparison, we also show the result (in blue) of varying the size of
the real image training dataset. (Best viewed in pdf.)

the very low GAN-train and GAN-test scores.

5.3.4 GAN image diversity
We further analyze the diversity of the generated images by evaluating GAN-

train accuracy with varying amounts of generated data. A model with low diversity
generates redundant samples, and increasing the quantity of data generated in this
case does not result in better GAN-train accuracy. In contrast, generating more
samples from a model with high diversity produces a better GAN-train score. We
show this analysis in Figure 5.3, where GAN-train accuracy is plotted with respect
to the size of the generated training set on CIFAR10 and CIFAR100.

In the case of CIFAR10, we observe that GAN-train accuracy saturates around
15-20k generated images, even for the best model SNGAN (see Figure 5.3a). With
DCGAN, which is weaker than SNGAN, GAN-train saturates around 5k images,
due to its relatively poorer diversity. Figure 5.3b shows no increase in GAN-train
accuracy on CIFAR100 beyond 25k images for all the models. The diversity of 5k
SNGAN-generated images is comparable to the same quantity of real images; see
blue and orange plots in Figure 5.3b. WGAN-GP (10M) has very low diversity
beyond 5k generated images. WGAN-GP (2.5M) and DCGAN perform poorly on
CIFAR100, and are not competitive with respect to the other methods.

5.3.5 GAN data augmentation
We analyze the utility of GANs for data augmentation, i.e., for generating

additional training samples, with the best-performing GAN model (SNGAN) under
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Figure 5.4 – The impact of training a classifier with a combination of real and
SNGAN generated images.

Num real images real C10 real+GAN C10 real C100 real+GAN C100
2.5k 73.4 67.0 25.6 23.9
5k 80.9 77.9 40.0 33.5
10k 85.8 83.5 51.5 45.5

Table 5.4 – Data augmentation when SNGAN is trained with reduced real image
set. Classifier is trained either on this data (real) or a combination of real and
SNGAN generated images (real+GAN). Performance is shown as % accuracy.

two settings. First, in Figure 5.4a and Figure 5.4b, we show the influence of
training the classifier with a combination of real images from the training set and
50k GAN-generated images on the CIFAR10 and CIFAR100 datasets respectively.
In this case, SNGAN is trained with all the images from the original training set.
From both the figures, we observe that adding 2.5k or 5k real images to the 50k
GAN-generated images improves the accuracy over the corresponding real-only
counterparts. However, adding 50k real images does not provide any noticeable
improvement, and in fact, reduces the performance slightly in the case of CIFAR100
(Figure 5.4b). This is potentially due to the lack of image diversity.

This experiment provides another perspective on the diversity of the generated
set, given that the generated images are produced by a GAN learned from the
entire CIFAR10 (or CIFAR100) training dataset. For example, augmenting 2.5k
real images with 50k generated ones results in a better test accuracy than the
model trained only on 5k real images. Thus, we can conclude that the GAN
model generates images that have more diversity than the 2.5k real ones. This is
however, assuming that the generated images are as realistic as the original data.
In practice, the generated images tend to be lacking on the realistic front, and are
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more diverse than the real ones. These observations are in agreement with those
from Section 5.3.4, i.e., SNGAN generates images that are at least as diverse as 5k
randomly sampled real images.

In the second setting, SNGAN is trained in a low-data regime. In contrast to
the previous experiment, we train SNGAN on a reduced training set, and then
train the classifier on a combination of this reduced set, and the same number of
generated images. Results in Table 5.4 show that on both CIFAR10 and CIFAR100
(C10 and C100 respectively in the table), the behaviour is consistent with the whole
dataset setting (50k images), i.e., accuracy drops slightly.

5.3.6 Dataset compression
To complete the discussion on dataset memorization, we compare the size of

the generator and the real dataset. In our CIFAR experiments SNGAN has 8.3M
parameters (33Mb), WGAN-GP has either 2.5M or 10M parameters (10Mb or
40Mb respectively). In comparison, CIFAR10/100 have 50k training images which
amounts to 150Mb of uncompressed data.

SNGAN for ImageNet has 42M parameters (168Mb) and WGAN-GP has 48M
parameters (192Mb). The entire ImageNet training set takes 16Gb in 64 × 64
resolution and 64Gb in 128× 128 resolution. This difference may partially explain
why compression of CIFAR10/100 into a GAN is relatively easier than ImageNet.

5.3.7 t-SNE embeddings of datasets
In Figure 5.5 we show t-SNE embedding of randomly selected images from

the CIFAR100 train and test set splits, and images generated from the four GAN
models (500 images per split or model) of 5 classes (apple, aquarium fish, baby,
bear, bicycle). The t-SNE visualizations are generated with the embeddings of
these images in the feature space of the baseline classifier trained on CIFAR100,
i.e., the classifier used to compute GAN-test accuracy. Note that the quality of this
clustering is in line with the GAN-test accuracy in Table 5.2 in the main paper. For
example, the images generated by SNGAN and WGAN-GP (10M), which produce
the two best GAN-test accuracies, lie close to the training images, while those from
WGAN-GP (2.5M) and DCGAN form a point cloud that does not correspond to
any of the clusters.

5.4 Summary
This chapter presents steps towards addressing the challenging problem of

evaluating and comparing images generated by GANs. To this end, we present
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Figure 5.5 – t-SNE [189] embedding of images from 5 CIFAR100 classes, embedded
in the feature space of the baseline CIFAR100 classifier. We use 500 images each
from the train and test sets, along with 500 images each generated with (a) SNGAN,
(b) WGAN-GP (10M), (c) WGAN-GP (2.5M), and (d) DCGAN.

new quantitative measures, GAN-train and GAN-test, which are motivated by
precision and recall scores popularly used in the evaluation of discriminative models.
We evaluate several recent GAN approaches as well as other popular generative
models with these measures. Our extensive experimental analysis demonstrates
that GAN-train and GAN-test not only highlight the difference in performance of
these methods, but are also complementary to existing scores.
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Figure 6.1 – Overview of our model: An invertible non-linear mapping f maps an
image x to a feature space with the same dimension (arrows 1 and 4). The encoder
takes f(x) and maps it to a posterior distribution qφ(z|x) over the latent variable
(arrow 2), while the decoder maps z to a distribution over the feature space (arrow
3). The discriminator D(x) assesses sample quality in the image space.

6.1 Coverage and quality driven training
In this section we describe our generative model, and how we train it to ensure

both quality and coverage.

6.1.1 Partially Invertible Variational Autoencoders
Adversarial training requires continuous sampling from the model during train-

ing. As VAEs and flow-based models allow for efficient feed-forward sampling,
they are suitable likelihood-based models to build our approach on. VAEs rely
on an inference network qφ(z|x), or “encoder”, to construct a variational evidence
lower-bound (ELBO),

Lelbo(x, φ, θ) = E
qφ(z|x)

[log(pθ(x|z))−DKL(qφ(z|x) || pθ(z))] ≤ log pθ(x). (6.1)

The “decoder” pθ(x|z) has a convolutional architecture similar to that of a GAN
generator, with the exception that the decoder maps the latent variable z to a
distribution over images, rather to a single image. Another difference is that in a
VAE the prior pθ(z) is typically learned, and more flexible than in a GAN, which can
significantly improve the likelihoods on held-out data [83]. Our generative model
uses a latent variable hierarchy with top-down sampling similar to [13, 83, 172],
see Section 6.3.1. It also leverages inverse auto-regressive flow [83] to obtain
accurate posterior approximations, beyond commonly used factorized Gaussian
approximations, see Section 6.3.2.

Typically, strong independence assumptions are also made on the decoder, e.g. by
constraining it to a fully factorized Gaussian, i.e. pθ(x|z) = ∏

i=1N (xi;µi(z), σi(z)).
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In this case, all dependency structure across the pixels has to be modeled by the
latent variable z, any correlations not captured by z are treated as independent
per-pixel noise. Unless z captures each and every aspect of the image structure,
this is a poor model for natural images, and leads the model to over-generalize
with independent per-pixel noise around blurry non-realistic examples. Using
the decoder to produce a sparse Cholesky decomposition of the inverse covariance
matrix alleviates this problem to some extent [41], but retains a limiting assumption
of linear-Gaussian dependency across pixel values.

Flow-based models offer a more flexible alternative, allowing to depart from
Gaussian or other parametric distributions. Models such as NVP [38] map an
image x ∈ X from RGB space to a latent code y ∈ Y using a bijection f : X → Y ,
and rely on the change of variable formula to compute the likelihood

pX(x) = pY (f(x))
∣∣∣∣∣det

(
∂f(x)
∂xT

)∣∣∣∣∣ . (6.2)

To sample x, we first sample y from a parametric prior, e.g. a unit Gaussian, and
use the reverse mapping f−1 to find the corresponding x. Despite allowing for
exact inference and efficient sampling, current flow-based approaches are worse
than state-of-the-art likelihood-based approaches in terms held-out likelihood, and
sample quality.

In our model we use invertible network layers to map RGB images to an abstract
feature space f(x). A VAE is then trained to model the distribution of f(x). This
results in a non-factorial and non-parametric form of pθ(x|z) in the space of RGB
images. See Figure 6.1 for a schematic illustration of the model. Although the
likelihood of this model is intractable to compute, we can rely on a lower bound
for training:

LC(pθ) = − E
p∗(x)

[
Lelbo(f(x), φ, θ) + log

∣∣∣∣∣det ∂f(x)
∂xT

∣∣∣∣∣
]
≤ E

p∗(x)
[− log pθ(x)] . (6.3)

The bound is obtained by combining the VAE variational lower bound of Eq. (6.1)
with the change of variable formula of Eq. (6.2). Our model combines benefits from
VAE and NVP: it uses efficient non-invertible (convolutional) layers of VAE, while
using a limited number of invertible layers as in NVP to avoid factorization in the
conditional distribution pθ(x|z). An alternative interpretation of our model is to
see it as a variant of NVP with a complex non-parametric prior distribution rather
than a unit Gaussian. The Jacobian in Eq. (6.3) pushes the model to increases
the volume around training images in feature space, and the VAE measures their
density in that space. Experimentally, we find our partially invertible non-factorial
decoder to improve both sample quality as well as the likelihood of held-out data.
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6.1.2 Improving samples with adversarial training
When optimizing LC(pθ), the regularization term DKL(qφ(z|x)||pθ(z)) drives

the posterior qφ(z|x) and the prior pθ(z) closer together. Ideally, the posterior
marginalized across real images and the prior match, i.e. p∗θ(z) =

∫
x p
∗(x)q∗φ(z|x).

In this is the case, latent variables z ∼ pθ(z), and mapped through the feedforward
decoder, should result in realistic samples. Adversarial training be leveraged for
quality-driven training of the prior, thus enrich its training signal as previously
discussed.

For quality-driven training, we train a discriminator using the modified objective
proposed by [171] that combines both generator losses considered by [59]:

LQ(pθ) = − E
pθ(z)

ln D(Gθ(z))
1−D(Gθ(z)) . (6.4)

Assuming the discriminator D is trained to optimality at every step, it is easy to
demonstrate that the generator is trained to optimize DKL(pθ || p∗). To regularize
the training of the discriminator, we use the gradient penalty introduced by [64],
see App. 6.3.3 for details.

The training procedure alternates between two steps, similar to that of GANs.
In the first step, the discriminator is trained to maximize LQ(pθ), bringing it closer
to it’s optimal value L∗Q(pθ) = DKL(pθ || p∗). In the second step, the generative
model is trained to minimize LC(pθ)+LQ(pθ), the sum of the coverage-based loss in
Eq. (6.3), and the quality-based loss in Eq. (6.4). Assuming that the discriminator
is trained to optimality at every step, the generator is trained to minimize a bound
on the sum of two symmetric KL divergences:

LC(pθ) + L∗Q(pθ) ≥ DKL(p∗ || pθ) + DKL(pθ || p∗) +H(p∗), (6.5)

where the entropy of the data generating distribution, H(p∗), is an additive constant
that does not depend on the learned generative model pθ.

6.2 Experimental evaluation
Below, we present our evaluation protocol (Section 6.2.1), followed by an ablation

study to assess the importance of the components of our model (Section 6.2.2). In
Section 6.2.4 we improve quantitative and qualitative performance using recent
advances from the VAE and GAN literature. We then compare to the state of the
art on the CIFAR-10 and STL-10 datasets (Section 6.2.5), and present additional
results at higher resolutions and on other datasets (Section 6.2.6). Finally, we
evaluate a class-conditional version of our model using the image classification
framework of [163].
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6.2.1 Evaluation protocol
To evaluate the how well models cover held-out data, we use the bits per

dimension (BPD) measure. This measure is defined as the negative log-likelihood
on held-out data, averaged across pixels and color channels [38]. Due to their
degenerate low-dimensional support, GANs do not define a valid density in the
image space, which prevents measuring BPD. To endow a GAN with a full support
and a valid likelihood, we train a VAE “around it”. In particular, we train an
isotropic noise parameter σ that does not depend on z, as in our VAE decoder, as
well as an inference network. As we train these, the weights of the GAN generator
are kept fixed. For both GANs and VAEs, we use the inference network to compute
a lower-bound to approximate the likelihood, i.e. an upper bound on BPD.

To evaluate the sample quality, we report Fréchet Inception distance (FID) [73]
and Inception score (IS) [158], which are commonly used to quantitatively evaluate
GANs [22,198]. Although IS and FID are used to evaluate sample quality, these
metrics are also sensitive to coverage. In fact, any metric evaluating sample quality
only would be degenerate, as collapsing to the mode of the target distribution would
maximize it. However, in practice both metrics correlate stronger with sample
quality than with support coverage. We evaluate all measures using held-out
data not used during training, which improves over common practice in the GAN
literature, where train data is often used for evaluation.

6.2.2 Comparison to GAN and VAE baselines
Experimental setup. We evaluate our approach on the CIFAR-10 dataset,

using 50k/10k train/test images of 32×32 pixels (standard split). We train our
GAN baseline to optimize LQ(pθ), and use the architecture of SNGAN [115], which
is stable and trains quickly. The same architecture and training hyper-parameters
are used for all models in this experiments, see Section 6.3 for details.

We train our VAE baseline by optimizing LC(pθ). We use the GAN generator
architecture for the decoder, which produces the mean of a factorizing Gaussian
distribution over pixel RGB values. We add a trainable isotropic variance σ, to
ensure a valid density model. In the VAE model some feature maps in the decoder
are treated as conditional latent variables, allowing for hierarchical top-down
sampling. Experimentally, we find that similar top-down sampling is not effective
for the GAN model.

To train the generator for both coverage and quality, we optimize the sum of
LC(pθ) and LQ(pθ). We refer to the model trained in this way as CQG. We refer
to model that also includes invertible layers in the decoder as CQFG. The small
invertible model uses a single scale with three invertible layers, each composed of
two residual blocks and increases the number of weights in the generator by roughly
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VAE piVAE CQG

GAN CQFG (Ours)

Figure 6.2 – Samples from GAN and VAE baselines, and our CQG and CQFG
models, all trained on CIFAR-10.

LQ LC Flow BPD ↓ IS ↑ FID ↓
GAN [7.0] 6.8 31.4
VAE 4.4 2.0 171.0
piVAE 3.5 3.0 112.0
CQG 4.4 5.1 58.6
CQFG 3.9 7.1 28.0

Table 6.1 – Results for the GAN and VAE baselines, VAE with invertible flow
layers (piVAE), and our models with (CQFG) and without (CQG) invertible
layers. [Square brackets] denote that the value is approximated as described in
Section 6.2.1.
1.4% so we also slightly increase the width of the generator in the CQG version for
fair comparison. All implementation details can be found in Section 6.3.

Analysis of results. Form the experimental results in Table 6.1 we make
several observations. As expected, the GAN baseline yields better sample quality
(IS and FID) than the VAE baseline, e.g. obtaining inception scores of 6.8 and 2.0,
respectively. Conversely, the VAE achieves better coverage, with a BPD of 4.4,
compared to an estimated 7.0 for the GAN. The same generator trained for both
quality and coverage, CQG, achieves the same BPD as the VAE baseline. The
same quality of this model is in between that of the GAN and the VAE baselines.
In Figure 6.2 we show samples from the different models, and these confirm the
quantitative observations.

When adding the invertible layers to the VAE decoder, but using maximum
likelihood training with LC(pθ) (piVAE), leads to improves sample quality with
IS increasing from 2.0 to 3.0 and FID dropping from 171.0 to 112.0. Note that
the quantitative sample quality is below that of the GAN baseline and our CQG
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model. When we combine the non-factorial decoder with coverage and quality
driven training, CQFG, we obtain quantitative sample quality that is somewhat
better than that of the GAN baseline: IS improving from 6.8 to 7.1, and FID
decreasing from 31.4 to 28.0. The samples in Figure 6.2 confirm the high sample
quality of the CQFG model. Note that the CQFG model also achieves a better
BPD than the VAE baseline. These experimental observations demonstrate the
importance of our contributions: our non-factorial decoder trained for coverage and
quality improves both VAE and GAN in terms of held-out likelihood, and improves
VAE sample quality to, or slightly beyond, that of the GAN.

CIFAR-10 samples CIFAR-10 train images

STL-10 samples STL-10 train images

Figure 6.3 – Random samples from our CQFG (large-D) trained on the CIFAR-10
and STL-10 (48×48) datasets.

6.2.3 Qualitative influence of the feature space flexibility
In this section we experiment with different architectures to implement the

invertible mapping used to build the feature space as presented in Section 6.1.1. To
assess the impact of the expressiveness of the invertible model on the behavior of
our framework, we modify various standard parameters of the architecture. Popular
invertible models such as NVP [38] readily offer the possibility of extracting latent
representation at several scales, separating global factors of variations from low
level detail, thus we experiment with varying number of scales. An other way of
increasing the flexibility of the model is to change the number of residual blocks
used in each invertible layer. Note that all the models evaluated so far in the main
body of the paper are based on a single scale and two residual blocks. In addition
to our CQFG models, we also compare with similar models trained with maximum
likelihood estimation (MLE). Models are trained first with maximum-likelihood
estimation, then with both coverage and quality driven criterions.
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The results in Table 6.2 show that factoring out features at two scales rather
than one is helpful in terms of BPD. For the CQFG models, however, the IS and
FID deteriorate with more scales, and so a tradeoff between must be struck. For
the MLE models, the visual quality of samples also improves when using multiple
scales, as reflected in better IS and FID scores. Their quality, however, remains
far worse than those produced with the coverage and quality training used for
the CQFG models. Samples in the maximum-likelihood setting are provided in
Figure 6.4. With three or more scales, models exhibit symptoms of overfitting:
train BPD keeps decreasing while test BPD starts increasing, and IS and FID also
degrade.

Scales Blocks BPD ↓ IS ↑ FID ↓
1 2 3.77 7.9 20.1
2 2 3.48 6.9 27.7
2 4 3.46 6.9 28.9
3 3 3.49 6.5 31.7

(a) CQFG models

Scales Blocks BPD ↓ IS ↑ FID ↓
1 2 3.52 3.0 112.0
2 2 3.41 4.5 85.5
3 2 3.45 4.4 78.7
4 1 3.49 4.1 82.4

(b) piVAE models

Table 6.2 – Evaluation on CIFAR-10 of different architectures of the invertible
layers of the model.

In Figure 6.4 we show samples obtained using VAE models trained with MLE.
The models include one without invertible decoder layers, and with NVP layers
using one, two and three scales. The samples illustrate the dramatic impact of
using invertible NVP layers in these autoencoders.

6.2.4 Evaluation of architectural refinements
To further improve quantitative and qualitative performance, we proceed to

include two recent advances in the VAE and GAN literature. First, [64] have shown
a deeper discriminator with residual connections to be beneficial to training. We
using such improved discriminators, we find it useful to make similar changes to
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No NVP NVP 1 scale

NVP 2 scales NVP 3 scales

Figure 6.4 – Samples from MLE models (Table 6.2b) showing qualitative influence
of multi-scale feature space.

IAF Res BPD ↓ IS ↑ FID ↓
GAN [7.0] 6.8 31.4
GAN — 7.4 24.0
CQFG 3.9 7.1 28.0
CQFG 3.8 7.5 26.0
CQFG 3.8 7.9 20.1
CQFG (large-D) 3.7 8.1 18.6

Table 6.3 – Evaluation of architectures using residual (Res) layers and inverse
autoregressive flow (IAF) posterior approximation.

the generator to mirror these modifications. Second, [83] improve VAE encoders
by introducing inverse auto-regressive flow (IAF) to allow for more accurate poste-
rior approximations that go beyond factorized Gaussian approximations that are
commonly used.

The results in Table 6.3 show consistent improvements across all metrics when
adding residual connections and IAF. Increasing the size of the discriminator
(denoted “large D”) yields further improvements in IS and FID, while slightly
degrading the BPD from 3.77 to 3.74. These results show that our model benefits
from recent architectural advances in GANs and VAEs. In the remainder of our
experiments we use the CQFG (large D).

6.2.5 Comparison to the state of the art
In Table 6.4 we compare the performance of our models with previously proposed

hybrid approaches, as well as state-of-the-art adversarial and likelihood based
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models. Many entries in the table are missing, since the likelihood of held-out data
is not defined for most adversarial methods, and most likelihood-based models do
not report IS or FID scores. We present results for two variants of our CQFG
model, the large-D variant from Table 6.3, as well as a variant that uses two scales
in the invertible layers rather than one, denoted “S2”. See Section 6.2.3 for details.
The latter model achieves better BPD at the expense of worse IS and FID.

Compared to the best hybrid approaches, our large-D model yields a substantial
improvement in IS to 8.1, while our S2 model yields a comparable value of 6.9.
Compared to adversarially trained models, our large-D model obtains results that
are comparable to the best results obtained by SNGAN using residual connections
and hinge-loss. We note that the use of spectral normalization and hinge-loss for
adversarial training could potentially improve our results, but we leave this for
future work. Our S2 model is comparable to the basic SNGAN (somewhat better
FID, somewhat worse IS) that does not use residual connections and hinge-loss.
On STL-10 (48×48 pixels) our models trained using 100k/8k train/test images,
also achieve competitive IS and FID scores; being only outperformed by SNGAN
(Res-Hinge).

Using our S2 model we obtain a BPD of 3.5 that is comparable to Real-NVP,
while our large-D model obtains a slightly worse value of 3.7. We computed IS
and FID scores for VAE-IAF and PixelCNN++ using publicly released code and
parameters. We find that these IS and FID scores are substantially worse than
the ones we measured both of our model variants. To the best of our knowledge,
we are the first to report BPD measurements on STL-10, and can therefore not
compare to previous work in this metric.

We display samples from our CQFG (large-D) model on both datasets in
Figure 6.3.

6.2.6 Results on additional datasets
To further validate our approach we train our CQFG (large-D) model on three

additional datasets, and on STL-10 at 96×96 resolution. The architecture and
training procedure are unchanged from the preceding experiments, up to the
addition of convolutional layers to adapt to the increased resolution. For the
CelebA dataset we used 196k/6.4k train/test images, resized to 96× 96, and used
central image crops of both 178× 178 and 96× 96 pixels. We also train on STL-10
(100k/8k train/test images) resized to 96 × 96, on the LSUN-bedrooms dataset
(3M/300 train/test images) at 64 × 64 resolution, and on ImageNet (1.2M/50k
train/test images) resized to 64× 64 pixels.

We show samples and train images for these datasets in Figure 6.5, and quan-
titative evaluation results in Table 6.5. The fact that our model works without
changing the architecture and training hyper-parameters shows the stability of
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CIFAR-10 STL-10
BPD ↓ IS ↑ FID ↓ BPD ↓ IS ↑ FID ↓

Hybrid models
AGE 5.9
ALI 5.3
SVAE 6.8
α-GAN 6.8
SVAE-r 7.0
CQFG (Ours) 3.7 8.1 18.6 4.0 8.6 52.7
CQFG (S2) (Ours) 3.5 6.9 28.9 3.8 8.6 52.1
Adversarial models
SNGAN 7.4 29.3 8.3 53.1
BatchGAN 7.5 23.7 8.7 51
WGAN-GP 7.9
SNGAN (Res-Hinge) 8.2 21.7 9.1 40.1
Likelihood-based models
Real-NVP 3.5
VAE-IAF 3.1 [3.8] [73.5]
PixelCNN++ 2.9 [5.4] [121.3]

Table 6.4 – Comparison of our models on CIFAR-10 and STL-10 (48×48) with
state-of-the-art likelihood based, adversarial and hybrid generative models. [Square
brackets] denote that we computed the values using samples obtained with the code
and checkpoints released by the authors of the corresponding models. AGE: [186],
ALI: [42], SVAE: [29], SNGAN: [115], BatchGAN: [103], WGAN-GP: [64], NVP: [38],
VAE-IAF: [83], PixelCNN++: [159], α-GAN: [154].

our approach. On the CelebA and LSUN datasets, our CQF generator produces
compelling samples despite the high resolution of the images. The samples for
STL-10 and ImageNet are less realistic due to the larger variability in these datasets;
recall that we do not condition on class labels for generation. On CelebA, all scores
improve significantly when using central crops of 96 × 96, due to the reduced
variability in the smaller crop which removes the background from the images.
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Samples Real images

Figure 6.5 – Samples and train images of CelebA (crop 178), LSUN-Bedrooms,
STL-10 96×96, and ImageNet.

6.2.7 Class-conditional results

We also evaluate a class-conditional model and rely on two measures recently
proposed by [163]. The first measure, GAN-test, is obtained by training a classifier
on natural image data and evaluating it on the samples of a class-conditional
generative model. This measure is sensitive to sample quality only. The second
measure, GAN-train, is obtained by training a classifier on generated samples
and evaluating it on natural images. This measure requires is sensitive both to
quality and coverage. For a given GAN-test level, variations in GAN-train can be
attributed to different coverage.

To perform this evaluation we develop a class conditional version of our CQFG
model. The discriminator is conditioned using the class conditioning introduced
by [114]. GAN generators are typically made class-conditional using conditional
batch normalization [35,44], however batch normalization is known to be detrimental
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Resolution BPD↓ IS↑ FID↓
CelebA, crop 178 96× 96 2.85 — 24.3
CelebA, crop 96 96× 96 2.45 — 13.8
STL-10 96× 96 3.85 8.8 100.8
ImageNet 64× 64 4.90 7.6 69.9
LSUN-Bedrooms 64× 64 4.01 — 61.9

Table 6.5 – Quantitative evaluation of our CQFG (large-D) model on additional
datasets. IS is not reported on CelebA and LSUN because it is not informative on
these datasets.

in VAEs [83], as we verified in practice. To address this issue, we propose conditional
weight normalization (CWN). As in weight normalization [160], we separate the
training of the scale and the direction of the weight matrix. Additionally, the
scaling factor g(y) of the weight matrix v is conditioned on the class label y:

w = g(y)
‖v‖

v, (6.6)

We also make the network biases conditional on the class label. Otherwise, the
architecture is the same one used for the experiments in Table 6.1.

In Table 6.6 we report the GAN-train and GAN-test measures on CIFAR-10.
Our CQFG model obtain a slightly higher GAN-test score than the GAN baseline,
which shows that it achieves comparable if not better sample quality, which is inline
with the results in terms of IS and FID scores in Section 6.2.2. Moreover, with
CQFG we obtain a substantially better GAN-train score, going from 29.7 to 73.4.
Having established similar GAN-test performance, this demonstrates significantly
improved sample diversity of the CQFG model as compared to the GAN baseline.
This shows that the coverage-driven training improves the coverage of the learned
model.

6.3 Model refinements and implementation details
In this section we give more details about architectural changes made in Sec-

tion 6.2.4 as well as about implementation, in general.

6.3.1 Top-down sampling of hierarchical latent variables
Flexible priors and posteriors for the variational autoencoder model can be

obtained by sampling hierarchical latent variables at different layers in the network.
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model GAN-test (%) GAN-train (%)
GAN 71.8 29.7
CQFG 76.9 73.4

DCGAN† 58.2 65.0

Table 6.6 – GAN-test and GAN-train measures for class conditional CQFG and
GAN models on CIFAR-10. The performance of the DCGAN† model, though not
directly comparable, is provided as a reference point.

In the generative model pθ, latent variables z can be split into L groups, each one
at a different layer, and the density over z split thus:

q(z) = q(zL)
L−1∏
i=1

q(zi|zi+1)

Additionally, to allow the chain of latent variables to be sampled in the same
order when encoding-decoding and when sampling, top-down sampling is used, as
proposed in [13,83,172]. With top-down sampling, the encoder (symmetric to the
decoder) extracts deterministic features hi at different levels as the image is being
encoded, constituting the bottom-up deterministic pass. While decoding the image,
these previously extracted deterministic features hi are used for top-down sampling
and help determining the posterior over latent variables at different depths in the
decoder. These posteriors are also conditioned on the latent variables sampled at
lower feature resolutions, using normal densities:

qφ(z1|x) = N (z1|µ1(x, h1), σ2
1(x), h1)

qφ(zi|zi−1) = N (zi|µi(x, zi−1, hi−1), σ2
i (x, zi−1, hi−1))

This constitutes the stochastic top-down pass.
We refer the reader to [13,83,172] for more detail.

6.3.2 Inverse autoregressive flow
To increase the flexibility of posteriors used over latent variables in variational

inference, The authors of [83] have proposed a type of normalizing flow called
inverse autoregressive flow (IAF). The main appeals of this normalizing flow are its
scalability to high dimensionality and its ability to leverage autoregressive neural
network (such as those introduced in [188]). First, a latent variable vector is
sampled using the reparametrization trick [84]:

ε ∼ N (0, I)z0 = µ0 + σ0ε.
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Then mean and variance parameters µ1 and σ1 are computed as functions of z0
using autoregressive models, and a new latent variable z1 is obtained:

z1 = µ1(z0) + σ1(z0)z0.

Because σ1 and µ1 are implemented by auto-regressive networks, the jacobian dz1
dz0

is triangular with the values of σ1 on the diagonal and the density under the new
latent variable remains efficient to compute. In theory this transformation can be
repeated an arbitrary number of times for increased flexibility, in practice typically
a single step is used.

6.3.3 Gradient penalty
A body of work on Generative Adversarial Networks centers around the idea

of regularizing the discriminator by enforcing Lipschitz continuity, for instance
in [12, 64, 115, 179]. In this work we use the approach of [64], that enforces the
Lipschitz constraint with a gradient penalty term added to the loss:

LGrad = λ+ Ex̂[(||∆x̂D(x̂)||2 − 1)2],

where x̂ is obtained by interpolating between real and generated data:

ε ∼ U[0,1]

x̂ = εx+ (1− ε)x̃

We add this term to the loss used to train the discriminator that yields our quality
driven criterion.

6.3.4 Architecture and training hyper-parameters
We used Adamax [81] with learning rate 0.002, β1 = 0.9, β2 = 0.999 for all

experiments. All CIFAR-10 experiments use batch size 64, other experiments in
high resolution use batch size 32. To stabilize the adversarial training we use the
gradient penalty [64] with coefficient 100, and 1 discriminator update per generator
update. We experimented with different weighting coefficient between the two
loss components, and found that values in the range 10 to 100 on the adversarial
component work best in practice. In this range, no significant influence on the
final performance of the model is observed, though the training dynamics in early
training are improved with higher values. With values significantly smaller than
10, discriminator collapses was observed in a few isolated cases. All experiments
reported here use coefficient 100.

For experiments with hierarchical latent variables we use 32 of them per layer.
In the generator we use ELU nonlinearity, in discriminator with residual blocks
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we use ReLU while in simple convolutional discriminator we use leaky ReLU with
slope 0.2.

Unless stated otherwise we use three NVP layers with a single scale and two
residual blocks that we train only with the likelihood loss. Regardless of the
number of scales, the VAE decoder always outputs a tensor of the same dimension
as the target image, which is then fed to the NVP layers. Just like in reference
implementations we use both batch normalization and weight normalization in
NVP and only weight normalization in IAF.

We use the reference implementations of IAF and NVP released by the authors.

Discriminator
conv 3× 3, 16
ResBlock 32

ResBlock down 64
ResBlock down 128
ResBlock down 256
Average pooling

dense 1

Generator
conv 3× 3, 16
IAF block 32

IAF block down 64
IAF block down 128
IAF block down 256

h ∼ N (0; 1)
IAF block up 256
IAF block up 128
IAF block up 64
IAF block 32
conv 3× 3, 3

Table 6.7 – Residual architectures for experiments from Table 6.3 and Table 6.2

6.4 Conclusion
We presented CQGF, a generative model that leverages invertible network

layers to relax the conditional pixel independence assumption commonly made
in VAE models. Since our model allows for efficient feed-forward sampling, we
are able to train our model using a maximum likelihood criterion that ensure
coverage of the data generating distribution, as well as an adversarial criterion that
ensures high sample quality. We provide quantitative and qualitative experimental
results on a collection of five datasets (CIFAR-10, STL-10, CelebA, ImageNet and
LSUN-Bedrooms). We obtain IS and FID scores comparable to state-of-the-art
GAN models, and held-out likelihood scores that are comparable to recent pure
likelihood-based models.



Chapter 7

Conclusion

There is great potential to use
computer vision technology in a
constructive and benevolent way.

— Fei Fei Li
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7.1 Summary of contributions

7.1.1 Incremental learning
We have introduced a framework to enable class-incremental learning for object

detection in Chapter 3. Our model is validated for iterated single-class and multiple-
class addition scenarios in PASCAL VOC 2007 and MS COCO datasets. The
core idea is replay of samples corresponding to previously learned classes with a
training procedure based on knowledge distillation. Our framework does not store
old samples for replay, and instead mines them on the fly from new training images,
using a frozen copy of the network obtained from the preceding training steps. This
allowed us to obtain good results without keeping old samples for replay even in
the extreme scenario of adding classes one by one.

Our framework provides a solution to challenges specific to incremental learning
of object detection, e.g., background class, imbalanced class distribution of outputs,
catastrophic forgetting in bounding box regression module. It is universal enough
to be adapted for recent object detection systems with sliding window or learned
proposals, e.g., SSD [99] and Faster-RCNN [148].

7.1.2 Evaluation of GANs
We developed a framework to evaluate class-conditional GANs beyond commonly

used Inception-based metrics. In Chapter 5 we presented two measures, GAN-
train and GAN-test, that allow us to separately evaluate image quality and image
diversity. Both measures are computed using a separate CNN classifier. GAN-test is
the accuracy of the CNN trained on real images, and evaluated on GAN-generated
ones. It shows how similar generated images are to real ones, even if there are
very few distinct generated images. GAN-train is the accuracy of the same CNN,
but trained on GAN-generated samples and evaluated on real data. To obtain
high GAN-train accuracy the model should not only have good samples, but also
generate many different samples to prevent overfitting from crippling the classifier.
Both measures are complementary, enable a more comprehensive view on the
performance of GAN models, and can detect “mode collapse” (models that generate
very few, high quality samples), a common GAN problem.

7.1.3 Hybrid generative model
Motivated by the mode collapse problem [12], we built a new generative model

that combines the sample quality of adversarial training and the mathematical
guarantees of likelihood-based models. In Chapter 6, we presented this model
based on VAE architecture, together with a Real-NVP induced feature space.
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It alleviates the unrealistic assumption of independence in RGB space, which
is common for VAE models, and significantly improves the quality of samples.
Adversarial training allows to obtain Inception score and FID comparable with
state-of-the-art GAN models and alleviate overgeneralization typically encountered
in likelihood-based models, e.g., VAE, Real-NVP. At the same time state-of-the-art
VAE architecture (IAF) allows our model to achieve perfect reconstructions and
competitive test likelihood. We provide extensive ablation studies on CIFAR-10 as
well as quantitative and qualitative evaluation on CelebA, STL-10, ImageNet and
LSUN-Bedrooms datasets.

7.2 Future work

7.2.1 Comprehensive benchmark on incremental learning
As we discussed in Chapter 2, catastrophic forgetting and incremental learning

are not reduced one to another nor can be used interchangeably. Several researchers
believe that catastrophic forgetting is the only obstacle for incremental learning.
While it is the main issue, it is not the only one. Thus, solutions evaluated on
catastrophic forgetting benchmarks are assumed to perform well on incremental
learning problems as well. In practice, it is seldom the case. In order to facilitate
tracking of progress in the field we need a comprehensive and well-defined evaluation
framework that specifically targets incremental learning challenges.

A common benchmark for incremental learning is to split a dataset into number
of class groups, for example, CIFAR-100 split in 20 groups of 5 classes, and
consider each group as a separate training stage. In the end, we want a network
architecturally similar to the one we obtain using offline training, i.e., having a
single output layer for 100 classes and capable of identifying any test image without
any additional information. However, some papers targeting catastrophic forgetting
implement this benchmark as a sequence of 20 independent tasks. So, at the end
of the training phase, the resulting network can identify an image only when a
task descriptor (number of class group) is provided. Essentially it corresponds to
classifying an image as one of 5 classes using prior information to what split it
belongs. Architecturally, such a network has multiple output layers because different
splits are treated as independent tasks.

This formulation is significantly easier than any incremental learning benchmark,
and often provides a false impression that ideas to solve catastrophic forgetting can
be trivially applied to incremental learning challenges. Another pitfall is to allow
the network to revisit old tasks and relearn forgotten classes. It makes performing
well on the benchmark easier, but the exact protocol detailing the number and
order of revisits is often described too briefly, and complicates fair comparison
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between approaches.
These issues are due to the experimental methodology, not a particular dataset.

Incremental learning benchmarks should be designed differently than those for
catastrophic forgetting, which are usually a sequence of independent classification
tasks with task descriptors available at test time. Given our experience with object
detection incremental learning in Chapter 3 we suggest to begin with the image
classification task as it is easier to analyze mathematically and fundamental for a
variety of applications.

We argue that a good benchmark on class-incremental learning should satisfy
following criteria:

— no task descriptors at test time,
— a single output layer for all the learned classes,
— no revisits of old tasks,
— enough classes to create a meaningful sequence of tasks (10 classes is a really

lower limit),
— enough data per class to enable incremental learning without having to

constantly fight overfitting.
Evaluation procedure for incremental learning should be kept separate from

catastrophic forgetting benchmarks because small technicalities (task descriptors
available at test time, task revisits with unclear order) often create a false impression
that existing solutions are on par with offline training.

7.2.2 Critical periods in deep networks
A recent work [6] demonstrates that critical development periods common for

biological neural networks also arise in artificial neural networks. In particular, it
is shown that a network experiencing a degradation of input data (e.g., blur) in
the very beginning of training never recovers completely even if it is given enough
iterations. It is strikingly similar to mammals that never develop binocular vision if
they had one eye blocked during first few weeks or months of their life [118]. Further,
the authors show that the critical period is followed by a period of compression
(decreasing of information stored in weights). Empirical decomposition of the
training process agrees well with information bottleneck theoretical analysis in [166]
that divides the SGD optimization in two phases: drift phase (big gradients with
low SNR) and diffusion phase (small gradients with high SNR). The latter takes
significantly more epochs and corresponds to representation compression.

We speculate that the interplay between these periods may be connected to
incremental learning. When the critical period is already closed, learning new
classes substantially different from already learned ones results in low performance
on the new classes. On the other hand, moving to new classes before the end of
critical period results in inferior performance on the old classes (due to lack of
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compression period). There is a chance that the critical period is a fundamental
problem arising from information theory, and looking for a way to switch between
these periods back and forth seems to be a promising avenue in incremental learning
research.

It is interesting to note that the existence of critical periods does not complicate
incremental learning for humans. This is likely due to critical periods mainly
affecting low-level visual representations that are learned and fixed early in life. It
would mean that these representations are sufficient to navigate the visual world and
incrementally learn to recognize new object classes never seen before. Studying the
limits of incremental learning in humans may shed light on this question. Learning
to process other forms of visual data (for example, biomedical imaging data) often
takes a lot of time for people (up to a few decades of training in some domains).
This indirect evidence suggests that incremental learning without assumptions on
data similarity becomes much harder once we are past the critical period. If it is
indeed the case, then pre-training on datasets of even larger scale than ones we use
today can be a solution for deep networks.

7.2.3 Catastrophic forgetting in mainstream applications
There is an interesting facet of catastrophic forgetting that is often overlooked

in literature: catastrophic forgetting during training of the same task. In general,
catastrophic forgetting is an issue when the distribution of input data shifts during
training. Usually deep networks are trained using mini-batches uniformly sampled
from a large dataset. However, a mini-batch is just an approximation of true data
distribution, there is nothing that prevents the network from forgetting information
learned from mini-batches in previous iterations. It is a case of shifting distribution,
and it inevitably hinders the learning process. For example, a classifier on ImageNet
is typically trained with relatively small mini-batches (256 samples). Therefore, the
network observes each class on average only 1 batch out of 4. From this point of
view large batches may enable convergence within fewer steps because of reduced
catastrophic forgetting between batches [62].

In [182] it was empirically demonstrated that forgetting of individual training
examples occurs in practice, and has interesting regularities, e.g., some samples are
never forgotten once learned, while others are frequently forgotten and this property
of individual images (if they are ever forgotten during training) is conserved across
multiple random seeds and different architectures!

Another example of learning from an online stream of data shifting over time is
GANs: generator output shifts over training, discriminator forgets old images and
then generator cycles back to forgotten samples. In [178] this effect was demon-
strated on a toy dataset, and hypothesized that it may contribute to instabilities of
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GAN training as well as provide an intuition why certain heuristics help convergence
of GANs.

Catastrophic forgetting within a simple task due to training distribution shift is
another challenging case: any embodied agent learning from real environment will
be confronted with the problem that a stream of data is not i.i.d. It provides an
interesting connection between catastrophic forgetting and mainstream applications
of deep networks, and suggests that even an imperfect catastrophic solution may
alleviate example forgetting and accelerate convergence of CNN classifiers and
GANs.

7.2.4 Autoregressive decoder in CQFG
In the CQFG (coverage-quality-feature space generator) generative model pre-

sented in Chapter 6, we used a VAE decoder due to its sampling speed. Fast
sampling is important to assure adversarial training as it requires evaluation of
generated samples in every iteration. However, it is interesting to replace VAE
in CQFG with an autoregressive decoder, which provides a more flexible model,
as discussed in Chapter 4. Autoregressive models do not use the independence
assumption in the output space unlike VAE. Empirically state-of-the-art autore-
gressive models produce images of higher quality and achieve better likelihood than
VAE as shown in Table 6.4. However, sampling is significantly slower, which is not
a problem for purely coverage-based training, but an issue for our model as it slows
down adversarial training significantly.

An interesting solution to accelerate sampling from PixelCNN is suggested
in [147]: partial relaxation of the main assumption. This way pixels close to each
other are modeled with autoregressive decomposition while pixels far away are
assumed independent. To an extent, it corresponds to our intuition about natural
images: neighboring pixels are indeed more correlated than pixels far away. This
allows a significant speedup of sampling: O(logN) compared to O(N) for regular
PixelCNN, where N is a number of pixels.

It is plausible that Real-NVP will remain useful for relaxed PixelCNN decoder:
some independence is still present in the decoder output. However, the Real-NVP
part can be made much smaller, and thus faster and easier to train because it is
optimized in a limited function space due to the bijection requirement.

We hope such a modification of CQFG will lead to better-quality images
(potentially even surpassing GANs) and better likelihood, much closer to the
state-of-the-art coverage-based models without making training impossibly long.
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Software

Several source code bases created during this thesis are available online.
— Source code of incremental learning in object detection:

https://github.com/kshmelkov/incremental_detectors
— Source code of BlitzNet:

https://github.com/dvornikita/blitznet/
— Source code of GAN-train/GAN-test measures:

https://github.com/kshmelkov/gan_evaluation
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BlitzNet: a real-time deep
network for scene understanding

The following presents an ICCV 2017 paper [45] I co-authored with another
PhD student Nikita Dvornik during my PhD.

C.1 Introduction
Object detection and semantic segmentation are two fundamental problems for

scene understanding in computer vision. The task of object detection is to identify
on an image all objects of predefined categories and localize them via bounding
boxes. Semantic segmentation operates at a finer scale; its aim is to parse an image
and associate a class label to each pixel. Despite the similarities of the two tasks,
only few works have tackled them jointly [49,86,177,193].

Yet, there is a strong motivation to address both problems simultaneously. On
the one hand, good segmentation is sufficient to perform detection in some cases.
As Figure C.1 suggests, an object may be sometimes identified and localized from
segmentation only by simply looking at connected components of pixels sharing
the same label. In the more general case, it is easy to conduct a simple experiment
showing that ground-truth segmentation is a meaningful clue for detection, using
for instance ground-truth segmentation as the input of an object detection pipeline.
On the other hand, correctly identified detections are also useful for segmentation as
shown by the success of weakly supervised segmentation techniques that learn from
bounding box annotation only [132]. The goal is to solve efficiently both problems
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at the same time, by exploiting image data annotated at the global object level (via
bounding boxes), at the pixel level (via partially or fully annoated segmentation
maps), or at both levels.

(a) The outputs of object detection. (b) The results of semantic segmentation.

Figure C.1 – The outputs of our pipeline.

As most recent image recognition pipelines, our approach is based on convolu-
tional neural networks [91], which are widely adopted for object detection [57] and
semantic segmentation [101]. More precisely, deep neural networks were first used
as feature extractors to classify a large number of candidate bounding boxes [57],
which is computationally expensive. The improved version [56] reduces the compu-
tational cost but relies on shallow techniques for extracting bounding box proposals
and does not allow end-to-end training. This issue was later solved in [148] by
making the object proposal mechanism a part of the neural network. Yet, the
approach remains expensive and relies on a region-based strategy (see also [94])
that makes the network architecture inappropriate for semantic segmentation.

To match the real-time speed requirement, we choose instead to base our
work on the Single Shot Detection (SSD) [99] approach, which consists of a fully-
convolutional model to perform object detection in one forward pass. Besides the
fact that it allows all computations to be performed in real time, the pipeline is
more generic, imposes less constraints on the network architecture and opens new
perspectives to solve our multi-task problem.

Interestingly, recent work on semantic segmentations are also moving in the
same direction, see for instance [101]. Specific to semantic segmentation, [101] also
introduces new ideas such as the joint use of feature maps of different resolutions,
in order to obtain more accurate classification. The idea was then improved by
adding deconvolutional layers at all scales to better aggregate context, in addition
to using skip and residual connections [153]. Deconvolutional layers turned out
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to be useful to estimate precise segmentations, and are thus good candidates to
design architectures where localization is important.

In this chapter, we consider the multi-task scene understanding problem con-
sisting of joint object detection and semantic segmentation. For that purpose, we
propose a novel pipeline called BlitzNet, which will be released as an open-source
software package. BlitzNet is able to provide accurate segmentation and object
bounding boxes in real time. With a single network for solving both problems, the
computational cost is reduced, and we show also that the two tasks benefit from
each other in terms of accuracy.

The chapter is organized as follows: Section C.2 discusses related work; Sec-
tion C.3 presents our real-time multi-task pipeline called BlitzNet. Finally, Sec-
tion C.4 is devoted to our experiments, and Section C.5 concludes the chapter.

C.2 Related work
Before we introduce our approach, we now present techniques for object detec-

tion, semantic segmentation, and previous attempts to combine both tasks.

Object detection. The field of object detection has been recently dominated
by variants of the R-CNN architecture [56, 148], where bounding-box proposals are
independently classified by a convolutional neural network, and then filtered by
a non-maximum suppression algorithm. It provides great accuracy, but relatively
low inference speed since it requires a significant amount of computation per
proposal. R-FCN [94] is a fully-convolutional variant that further improves detection
and significantly reduces the computational cost per proposal. Its region-based
mechanism is however dedicated to object detection only.

SSD [99] is a recent state-of-the-art object detector, which uses a sliding window
approach instead of generated proposals to classify all boxes directly. SSD creates
a scale pyramid to find objects of various sizes in one forward pass. Because of its
speed and high accuracy, we have chosen to build our work on, and subsequently
improve, the SSD approach. Finally, YOLO [145,146] also provides real-time object
detection and shares some ideas with SSD.

Semantic segmentation and deconvolutional layers. Deconvolutional ar-
chitectures consist of adding to a classical convolutional neural networks with
feature pooling, a sequence of layers whose purpose is to increase the resolution
of the output feature maps. This idea is natural in the context of semantic seg-
mentation [125], since segmentation maps are expected to have the same resolution
as input images. Yet, it was also successfully evaluated in other contexts, such



98
APPENDIX C. BLITZNET: A REAL-TIME DEEP NETWORK FOR SCENE

UNDERSTANDING

as pose estimation [124], and object detection, as extensions of SSD [54] and
Faster-R-CNN [97].

Joint semantic segmentation and object detection. The idea of joint seman-
tic segmentation and object detection was investigated first for shallow approaches
in [49,61,120,193]. There, it was shown that learning both tasks simultaneously
could be better than learning them independently.

More recently, UberNet [86] integrates multiple vision tasks such as semantic
segmentation and object detection into a single deep neural network. The detection
part is based on the Faster R-CNN approach and is thus neither fully-convolutional
nor real-time. Closely related to our work, but dedicated to autonomous driv-
ing, [177] also proposes to integrate semantic segmentation and object detection
via a deep network. There, the VGG16 network [169] is used to compute image
features (encoding step), and then two different sub-networks are used for the
prediction of object bounding boxes and segmentation maps (decoding).

Our work is inspired by these previous attempts, but goes a step further in
integrating the two tasks, with a fully convolutional approach where network
weights are shared for both tasks until the last layer, which has advantages in terms
of speed, feature sharing, and simplicity for training.

C.3 Scene understanding with BlitzNet
In this section, we introduce the BlitzNet architecture and discuss its different

building blocks.

C.3.1 Global view of the pipeline
The joint object detection and segmentation pipeline is presented in Figure C.2.

The input image is first processed by a convolutional neural network to produce
a map that carries high-level features. Because of its high performance for classi-
fication and good trade-off for speed, we use the network ResNet-50 [70] as our
feature encoder.

Then, the resolution of the feature map is iteratively reduced to perform a
multi-scale search of bounding boxes, following the SSD approach [99]. Inspired
by the hourglass architecture [124] for pose estimation and an earlier work on
semantic segmentation [125], the feature maps are then up-scaled via deconvolu-
tional layers in order to predict subsequently precise segmentation maps. Recent
DSSD approach [54] uses a similar strategy for object detection the top part of
our architecture presented in Figure C.2 may be seen as a variant of DSSD with a
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Figure C.2 – The BlitzNet architecture, which performs object detection and
segmentation with one fully convolutional network. On the left, CNN denotes
a feature extractor, here ResNet-50 [70]; it is followed by the downscale-stream
(in blue) and the last part of the net is the upscale-stream (in purple), which
consists of a sequence of deconvolution layers interleaved with ResSkip blocks
(see Figure C.3). The localization and classification of bounding boxes (top) and
pixelwise segmentation (bottom) are performed in a multiscale fashion by single
convolutional layers operating on the output of deconvolution layers.

simpler “deconvolution module”, called ResSkip, that involves residual and skip
connections.

Finally, prediction is achieved by single convolutional layers, one for detection,
and one for segmentation, in one forward pass, which is the main originality of our
work.

C.3.2 SSD and downscale stream
The Single Shot MultiBox Detector [99] tiles an input image with a regular grid

of anchor boxes and then uses a convolutional neural network to classify these boxes
and predict corrections to their initial coordinates. In the original paper [99], the
base network VGG-16 [169] is followed by a cascade of convolutional and pooling
layers to form a sequence of feature maps with progressively decreasing spatial
resolution and increasing field of view. In [99], each of these layers is processed
separately in order to classify and predict coordinates correction for a set of default
bounding boxes of a particular scale. At test time, the set of predicted bounding
boxes is filtered by non-maximum suppression (NMS) to form the final output.

Our pipeline uses such a cascade (see Figure C.2), but the classification of bound-
ing boxes and pixels to build the segmentation maps is performed in subsequent
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layers, called deconvolutional layers, which will be described next.

C.3.3 Deconvolution layers and ResSkip blocks
Modeling visual context is often a key to complicated scenes parsing, which

is typically achieved by pooling layers in a convolutional neural network, leading
to large receptive fields for each output neuron. For semantic segmentation,
precise localization is equally important, and [125] proposes to use deconvolutional
operations to solve that issue. Later, this process was improved in [124] by adding
skip connections. Apart from combining high- and low-level features it also eases
the learning process [70].

Like [54] for object detection and [124] for pose estimation, we also use such a
mechanism with skip connections that combines feature maps from the downscale
and upscale streams (see Figure C.2). More precisely, maps from the downscale
and upscale streams are combined with a simple strategy, which we call ResSkip,
presented in Figure C.3. First, incoming feature maps are upsampled to the size of
corresponding skip connection via bilinear interpolation. Then both skip connection
feature maps and upsampled maps are concatenated and passed through a block
(1 × 1 convolution, 3 × 3 convolution, 1 × 1 convolution) and summed with the
upsampled input through a residual connection. The benefits of this topology will
be justified and discussed in more details in the experimental section.

C.3.4 Multiscale detection and segmentation
The problem of semantic segmentation and object detection share several key

properties. They both require per-region classification, based on the pixels inside
an object while taking into account its surrounding, and benefit from rich features
that include localization information. Instead of training a separate network to
perform these two tasks, we train a single one that allows weight sharing, such that
both tasks can benefit from each other.

In our pipeline, most of the weights are shared. Object detection is performed
by a single convolutional layer that predicts a class and coordinate corrections
for each bounding box in the feature maps of the upscale stream. Similarly, a
single convolutional layer is used to predict the pixel labels and produce segmen-
tation maps. To achieve this we upscale all the activations of the upscale stream,
concatenate them and feed to the final classification layer.

C.3.5 Speeding up Non-Maximum Suppression
Increasing the number of anchor boxes heavily affects inference time because

it performs NMS on a potentially huge number of proposals (in the worst case
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Figure C.3 – ResSkip block integrating feature maps from the upscale and downscale
streams, with skip connection.

scenario, it may be all of them). Indeed, we observed that by using sliding window
proposals, addition of small scale proposals slows down the inference even more
than increasing image resolution. Surprisingly, non-maximum suppression may then
become the bottleneck at inference time. We observed that this occurred sometimes
for particular object classes that return a lot of bounding box candidates.

Therefore, we suggest a different post-processing strategy to accelerate detection
when there are too many proposals. For each class, we pre-select the top 400 boxes
with largest scores, and perform NMS leaving only 50 of them. Overall, the final
detection is the top 200 highest scoring boxes per image after non-maximum
suppression. This strategy yields a reasonable computational time for NMS, and
has marginal impact on accuracy.
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C.3.6 Training and loss functions
Given labeled training data where each data point is annotated with segmenta-

tion maps, or bounding boxes, or with both, we consider a loss function which is
simply the sum of two loss functions of the two task. Note that we tried reweighting
the two loss functions, but we did not observe noticeable improvements in terms of
accuracy.

For segmentation, the loss is the cross-entropy between predicted and target
class distribution of pixels [27]. Specifically, we use a 1× 1 convolutional operation
with 64 channels to map each layer of the upscale-stream to an intermediate
representation. After this, each layer is upscaled to the size of the last layer using
bilinear interpolation and all maps are concatenated. This representation is mapped
to c feature maps, where c is the number of classes, by using 3× 3 convolutions to
predict posterior class probabilities.

For detection, we use the same loss function as [99] when performing tiling of
the input image with anchor boxes and matching them to ground truth bounding
boxes. We use activations of each layer in the upscale-stream to regress corrections
for coordinates of the anchor boxes and to predict the class probability distribution.
We use the same data augmentation suggested in the original SSD pipeline, namely
photometric distortions, random crops, horizontal flips and zoom-out operation.

C.4 Experiments
We now present various experiments conducted on the COCO, Pascal VOC 2007

and 2012 datasets, for which both bounding box annotations and segmentation
maps are available. Section C.4.1 discusses in more details the datasets and the
metrics we used; Section C.4.2 presents technical details that are useful to make our
work reproducible, and then each subsequent subsection is devoted to a particular
experiment. The last two sections discuss the inference speed and clarify particular
choices in the network architecture. Our code is now available as an open-source
software package at http://thoth.inrialpes.fr/research/blitznet/.

C.4.1 Datasets and metrics
We use the COCO [98], VOC07, and VOC12 datasets [46]. All images in the

VOC datasets are annotated with ground truth bounding boxes of objects and
only a subset of VOC12 is annotated with target segmentation masks. The VOC07
dataset is divided into 2 subsets, trainval (5011 images) and test (4952 images).
The VOC12-train subset contains 5717 images annotated for detection and 1464 of
them have segmentation ground truth as well (VOC12-train-seg), while VOC12-val

http://thoth.inrialpes.fr/research/blitznet/
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has 5823 images for detection and 1449 images for segmentation (we call this subset
VOC12-val-seg). Both datasets have 20 object classes.

The COCO dataset includes 80 object categories for detection and instance
segmentation. For the task of detection, there are 80k images for training and 40k
for validation. There is no either a protocol for evaluation of semantic segmentation
or even annotations to train it from. In this work, we are interested particularly
in semantic segmentation masks so we obtain them from instance segmentation
annotations by combining instances of one category.

To carry out more extensive experiments we leverage extra annotations for
VOC12 segmentation provided by [67], which gives a total of 10,582 fully annotated
images for training that we call VOC12-train-seg-aug. We still keep the original
PASCAL annotations in VOC12 val-seg, even if a more precise annotation is
available in [67], for a fair comparison with other methods that do not benefit
from these extra annotations.

In VOC12 and VOC07 datasets, a predicted bounding box is correct if its
intersection over union with the ground truth bounding box is higher than 0.5.
The metric for evaluation detection performance is the mean average precision
(mAP) and the quality of predicted segmentation masks is measured with mean
intersection over union (mIoU).

C.4.2 Experimental setup
In this section, we discuss the common setup to all experiments. BlitzNet is

coded in Python and TensorFlow. All experiments were conducted on a single
Titan X GPU (Maxwell architecture), which makes the speed comparison with
previous work easy, as long as they use the same GPU.

Optimization setup. In all our experiments, unless explicitly stated otherwise,
we use the Adam algorithm [81], with a mini-batch size of 32 images. The initial
learning rate is set to 10−4 and decreased twice during training by a factor 10. We
also use a weight decay parameter of 5× 10−4.

Modeling setup. As already mentioned, we use ResNet-50 [70] as a feature
extractor, 512 feature maps for each layer in down-scale and up-scale streams, 64
channels for intermediate representations in the segmentation branches; BlitzNet300
takes input images of size 300×300 and BlitzNet512 uses 512×512 images. Different
versions of the network vary in the stride of the last layer of the upscaling-stream.
Strides 4 and 8 in the result tables are denoted as (s4) and (s8) suffix respectively.
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Figure C.4 –Qualitative results for the taks of object detection. The results
are obtained by the BlitzNet512 trained on VOC07 and VOC12 train-val augmented
with extra segmentation masks.
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network backbone mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv
SSD300* [99] VGG-16 77.6 79.2 84.0 75.6 69.9 50.9 86.7 85.9 88.6 60.1 81.4 76.8 86.2 87.3 84.2 79.5 52.7 79.3 79.4 87.7 77.2
SSD300* (our reimpl) ResNet-50 75.3 75.3 85.1 72.5 67.4 45.5 85.7 83.9 82.8 57.2 79.1 76.7 83.1 86.5 83.3 77.5 50.1 74.4 79.4 86.5 73.3
BlitzNet300 (s8) ResNet-50 78.5 79.7 85.9 80.1 72.1 50.9 87.0 84.6 88.2 62.3 83.7 77.1 87.3 85.0 84.7 79.2 54.9 81.5 80.0 87.0 78.0
BlitzNet300 (s4) ResNet-50 78.2 86.8 85.1 78.3 70.4 47.5 85.4 85.0 86.2 59.0 81.8 77.9 86.9 86.1 85.4 78.6 54.9 81.9 81.1 87.7 78.2
BlitzNet300 + seg (s4) ResNet50 79.1 86.7 86.2 78.9 73.1 47.6 85.7 86.1 87.7 59.3 85.1 78.4 86.3 87.9 84.2 79.1 58.5 82.5 81.7 85.7 81.8
SSD512* [99] VGG-16 79.6 84.9 85.8 80.7 73.0 58.0 87.8 88.4 87.6 63.6 85.4 73.1 86.3 87.7 83.7 82.6 55.3 81.5 79.1 86.4 80.3
BlitzNet512 (s8) ResNet-50 80.7 87.7 85.4 83.6 73.3 58.5 86.6 87.9 88.5 63.7 87.3 77.6 87.3 88.1 86.2 81.3 57.1 84.9 79.8 87.9 81.5
R-FCN [94] ResNet-101 80.5 79.9 87.2 81.5 72.0 69.8 86.8 88.5 89.8 67.0 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9
Faster RCNN ResNet-101 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0
YOLO [145] YOLO net 63.4 - - - - - - - - - - - - - - - - - - - - -
BlitzNet512 + seg (s8) ResNet50 81.5 87.0 87.6 83.5 75.7 59.1 87.6 88.0 88.8 64.1 88.4 80.9 87.5 88.5 86.9 81.5 60.6 86.5 79.3 87.5 81.7

Table C.1 – Comparison of detection performance on Pascal VOC 2007
test set. The models where trained on VOC07 trainval + VOC12 trainval. The
models that have suffix “+ seg” where trained for segmentation jointly with data
from VOC12 trainval and extra annotations provided by [67]. The values in columns
correspond to average precision per class (%).

network backbone mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv
SSD300* [99] VGG-16 75.8 88.1 82.9 74.4 61.9 47.6 82.7 78.8 91.5 58.1 80.0 64.1 89.4 85.7 85.5 82.6 50.2 79.8 73.6 86.6 72.1
BlitzNet300 ResNet50 75.4 87.4 82.1 74.5 61.6 45.9 81.5 78.3 91.4 58.2 80.3 64.9 89.1 83.5 85.7 81.5 50.5 79.9 74.7 84.8 71.1
BlitzNet300 + COCO ResNet50 80.2 91.0 86.5 80.0 70.1 54.7 84.4 84.1 92.5 65.1 83.5 69.2 91.2 88.1 88.5 85.7 55.8 85.4 79.3 89.8 78.2
R-FCN [94] ResNet-101 77.6 86.9 83.4 81.5 63.8 62.4 81.6 81.1 93.1 58.0 83.8 60.8 92.7 86.0 84.6 84.4 59.0 80.8 68.6 86.1 72.9
Faster RCNN ResNet-101 73.8 86.5 81.6 77.2 58.0 51.0 78.6 76.6 93.2 48.6 80.4 59.0 92.1 85.3 84.8 80.7 48.1 77.3 66.5 84.7 65.6
YOLO [145] YOLOnet 57.9 77.0 67.2 57.7 38.3 22.7 68.3 55.9 81.4 36.2 60.8 48.5 77.2 72.3 71.3 63.5 28.9 52.2 54.8 73.9 50.8
SSD512* [99] VGG-16 78.5 90.0 85.3 77.7 64.3 58.5 85.1 84.3 92.6 61.3 83.4 65.1 89.9 88.5 88.2 85.5 54.4 82.4 70.7 87.1 75.6
BlitzNet512 ResNet50 79.0 89.9 85.2 80.4 67.2 53.6 82.9 83.6 93.8 62.5 84.0 65.8 91.6 86.6 87.6 84.6 56.8 84.7 73.9 88.0 75.7
BlitzNet512 + COCO ResNet50 83.8 93.1 89.4 84.7 75.5 65.0 86.6 87.4 94.5 69.9 88.8 71.7 92.5 91.6 91.1 88.9 61.2 90.4 79.2 91.8 83.0

Table C.2 – Comparison of detection performance on Pascal VOC 2012
test set. The models where trained on VOC07 trainval + VOC12 trainval. The
BlitzNet models where trained for segmentation jointly with data from VOC12
trainval and extra annotations provided by [67]. Suffix ‘+ COCO’ means that the
model was pretrained on the COCO dataset. The reported values correspond to
average precision per class (%). Detailed results of submissions are available on
the VOC12 test server.

network seg det mIoU mAP
BlitzNet300 - 78.9
BlitzNet300 72.8 80.0
BlitzNet300 72.4 -

Table C.3 – The effect of joint learning on both tasks. The networks where
trained on VOC12 train-seg-aug, and tested on VOC12 val.

C.4.3 PASCAL VOC 2007
In this experiment, we train our networks on the union of VOC07 trainval set

and VOC12 trainval set; then, we test them on the VOC07 test set. The results
are reported in the Table C.1. For experiments that involve segmentation, we
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network seg det mIoU mAP
BlitzNet300 - 83.0
BlitzNet300 75.7 83.6
BlitzNet300 72.4 -

Table C.4 – The effect of extra data with bounding box annotations on
segmentation performance. The networks were trained on VOC12 trainval
(aug) + VOC07 tainval. Detection performance is measured in average precision
(%) and mean IoU is the metric for segmentation segmentation(%).

leverage ground truth segmentation masks during training if they are available in
VOC12 train-seg-aug or in VOC12 val-seg. When using images of size 300× 300
as input, the stochastic gradient descent algorithm is performed by training for
65K iterations with the initial learning rate, which is then decreased after 35K and
50K steps. When training on 512× 512 images, we choose the batch size of 16 and
learn for 75K iterations decreasing the learning rate after 45K and 60K steps.

The results show that BlitzNet300 outperforms SSD300 and YOLO with a 78.5
mAP, while being a real time detector. BlitzNet512 (s8) performs 0.8% better than
R-FCN - the most accurate competitive model, scoring 81.2% mAP. We further
improve the results by training for detection and segmentation jointly achieving
79.1% and 81.5% mAP with BlitzNet300 (s4) and BlitzNet512 (s8) respectively.

We think that the performance gain for BlitzNet300 over BlitzNet512 could be
explained by the larger stride used for the last layer, which is 4, vs 8 for BlitzNet512,
and seems to be helpful for better learning finer details. Unfortunately, training
BlitzNet512 with stride 4 was impossible because of memory limitations on our
single GPU.

C.4.4 PASCAL VOC 2012
In this experiment, we use VOC12 train-seg-aug for training and VOC12 val-seg

for testing both segmentation and detection. We train the models for 40K steps
with the initial learning rate, and then decrease it after 25K and 35K iterations.
As Table C.3 shows, joint training improves accuracy on both tasks comparing to
learning a single task. Detection improves by more than 1% while segmentation
mIoU grows by 0.4%. We argue that this result could be explained by feature
sharing in the universal architecture.

To confirm this fact, we conducted another experiment by adding the VOC07
trainval images to VOC12 train-seg-aug for training. Then, the proportion of
images that have segmentation annotations to the ones that have detection ones
only is 2/1, in contrast to the previous experiments where all the images where
annotated for both tasks. To deal with cases where a mini-batch has no images
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network seg det mIoU mAP
BlitzNet512 - 33.2
BlitzNet512 53.5 34.1
BlitzNet512 48.3 -

Table C.5 – The effect of joint training tested on COCO minival2014. The
networks were trained on COCO train.

method minival2014 test-dev2015
int 0.5 0.75 int 0.5 0.75

BlitzNet300 29.7 49.4 31.2 29.8 49.7 31.1
BlitzNet512 34.1 55.1 35.9 34.2 55.5 35.8

Table C.6 – Detection performance of BlitzNet on the COCO dataset,
with minival2014 and test-dev2015 splits The networks were trained on
COCO trainval dataset. Detection performance is measured in average precision
(%) with different criteria, namely, minimum Jaccard overlap between annotated
and predicted bounding box is 0.5, 0.75 or integrated from 0.5 to 0.95 % (column
“int”).

to train for segmentation, we set the corresponding loss to 0 and do not back
propagate with respect to these images, otherwise we use all images that have
target segmentation masks in a batch to update the weights. The results presented
in Table C.4 show an improvement of 3.3%. Detection also improves in mAP by
0.6%. Figure C.5 shows that extra data for detection helps to improve classification
results and to mitigate confusion between similar categories. In Table C.2, we
report results for these models on the VOC12 test server, which again shows that
our results are competitive. More qualitative results, including failure cases, are
presented in the supplementary material.

network backbone mAP % FPS # proposals input resolution
Faster-RCNN [148] VGG-16 73.2 7 - ∼ 1000× 600
R-FCN [94] ResNet-101 80.5 9 - ∼ 1000× 600
SSD300* [99] VGG-16 77.1 46 8732 300× 300
SSD512* [99] VGG-16 80.6 19 24564 512× 512
YOLO [145] YOLO net 63.4 46 - -
BlitzNet300 (s4) ResNet-50 79.1 24 45390 300× 300
BlitzNet512 (s8) ResNet-50 81.5 19.5 32766 512× 512

Table C.7 – Comparison of inference time on PASCAL VOC 2007, when running
on a Titan X (Maxwell) GPU.
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Block type mAP mIoU
Hourglass-style [124] 78.7 75.6
Refine-style [136] 78.0 76.1
ResSkip (no res) 78.4 75.3
ResSkip (ours) 79.1 75.7

Table C.8 – The effect of fusion block type on performance, measured
on detection (VOC07-test) and segmentation (VOC12-val) The networks
were trained on VOC12-train (aug) + VOC07 tainval, see Sec. C.4.1. Detection
performance is measured in average precision (%) and mean IoU is the metric for
segmentation segmentation(%).

C.4.5 Microsoft COCO dataset
To further validate the proposed framework, we conduct experiments on the

COCO dataset [98]. Here, as explained in Section C.4.1, we obtain segmentation
masks and again training the model on different types of data, i.e., detection,
segmentation and both, to study the influence of joint training on detection
accuracy.

We train the BlitzNet300 or BlitzNet512 models for 700k iterations in total,
starting from the initial learning rate 10−4 and then decreasing it after the 400k
and 550k iterations by the factor of 10. Table C.5 shows clear benefits from joint
training for both of the tasks on the COCO dataset. To be comparable with other
methods, we also report the detection results on COCO test-dev2015 in Table C.6.
Our results are also publicly available on the COCO evaluation test server.

C.4.6 Inference speed comparison
In Table C.7 and Figure C.6, we report speed comparison to other state-of-the-

art detection pipelines. Our approach is the most accurate among the real time
detectors working 24 frames per second (FPS) and in the setting close to real time
(19 FPS), it provides the most accurate detections among the counterparts, while
also providing semantic segmentation mask. Note that all methods are run using
the same GPU (Titan X, Maxwell architecture).

C.4.7 Study of the network architecture
The BlitzNet pipeline simultaneously operates with several types of data. To

demonstrate the effectiveness of the ResSkip block, we set up the following exper-
iment: we leave the pipeline unchanged while only substituting this block with
another one. We consider in particular fusion blocks that appear in the state-of-the-
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Figure C.5 – Effect of extra data annotated for detection on the quality
of estimated segmentation masks. The first column displays test images; the
second column contains its segmentation ground truth masks. The third column
corresponds to segmentations predicted by BlitzNet300 trained on VOC12 train-
segmentation augmented with extra segmentation masks and VOC07. The last
row is segmentation masks produced by the same architecture but trained without
VOC07.
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art approaches on semantic segmentation. [124] [136] [153]. Table C.8 shows that
our ResSkip block performs similar or better (on average) than all counterparts,
which may be due to the fact that its design uses similar skip-connections as the
Backbone network ResNet50, making the overall architecture more homogeneous.

Optimal parameters for the size of intermediate representations in segmentation
stream (64) as well as the number of channels in the upscale-stream (512) where
found by using a validation set. We did not conduct experiments by changing
the number of layers in the upscale-stream as long as our architecture is designed
to be symmetric with respect to the convolutions and the deconvolutions steps.
Reducing the number of the steps will result in a smaller number of layers in the
upscale stream, which may deteriorate the performance as noted in [99].
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Figure C.6 – Speed comparison with other methods. The detection accuracy
of different methods measured in mAP is depicted on y-axis. x-coordinate is their
speed, in FPS.

C.5 Conclusion
In this chapter, we introduce a joint approach for object detection and semantic

segmentation. By using a single fully-convolutional network to solve both problems
at the same time, learning is facilitated by weight sharing between the two tasks,
and inference is performed in real time. Moreover, we show that our pipeline is
competitive in terms of accuracy, and that the two tasks benefit from each other.
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Figure C.7 – Improved and failure cases of detection by BlitzNet300 com-
paring to SSD300. Each pair of images corresponds to the results of detection
by SSD300 (left) and BlitzNet300 (right). The cases of improved detection are
presened on the top part of the figure and the cases where both methods still
fail are placed below the dashed line. It is clear that our pipeline provides more
accurate detections in presence of small objects, complicated scenes and objects
consisting of several parts with different appearance. The failure cases indicate
that modern pipelines still struggle to handle ambiguous big objects (top left),
intraclass variability (top right), misleading context (bottom right) and highly
occluded objects (bottom left).
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