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Using theoretical tools from statistical mechanics, we show how and when does such representations emerge. In that case, RBM achieve a very good compromise between model expressivity and interpretability. We then present a new application for protein sequence modeling based on this principle.

In Part I, we introduce and illustrate through examples the key concepts required for this thesis: representations in machine learning, Boltzmann Machines (BM) and Restricted Boltzmann Machines (RBM). It is based on the following review

A B S T R A C T Restricted Boltzmann Machines (RBM) are graphical models that learn jointly a probability distribution and a representation of data. Despite their simple architecture, RBM can learn very well complex data distributions such as the handwritten digits data base MNIST. Moreover, they are empirically known to learn compositional representations of data, i.e. representations that effectively decompose configurations into their constitutive parts. However, not all variants of RBM perform equally well, and few theoretical arguments exist for these empirical observations.

In the first part of this thesis, we ask how come that such a simple model can learn such complex probability distributions and representations. By analyzing an ensemble of RBM with random weights using the replica method, we have characterized a compositional regime for RBM, and shown under which conditions (statistics of weights, choice of transfer function) it can and cannot arise. Both qualitative and quantitative predictions obtained with our theoretical analysis are in agreement with observations from RBM trained on real data.

In a second part, we present the application of RBM to protein sequence analysis and design. Owing to their large size, it is very difficult to run physical simulations of proteins, and to predict their structure and function. It is however possible to infer information about a protein structure from the way its sequence varies across organisms. For instance, Boltzmann Machines can leverage correlations of mutations to predict spatial proximity of the sequence amino-acids. Here, we have shown on several synthetic and real protein families that provided a compositional regime is enforced, RBM can go beyond structure and extract extended motifs of coevolving amino-acids that reflect phylogenic, structural and functional constraints within proteins. Moreover, RBM can be used to design new protein sequences with putative functional properties by recombining these motifs at will. Lastly, we have designed new training algorithms and model parametrizations that significantly improve RBM generative performance, to the point where it can compete with state-of-the-art generative models such as Generative Adversarial Networks or Variational Autoencoders on medium-scale data.

R É S U M É

Les Machines de Boltzmann Restreintes (Restricted Boltzmann Machines, RBM) sont des modèles graphiques capables d'apprendre simultanément une distribution de probabilité et une représentation des données. Malgré leur architecture relativement simple, les RBM peuvent reproduire très fidèlement des données complexes telles que la base de données de chiffres écrits à la main MNIST. Il a par ailleurs été montré empiriquement qu'elles peuvent produire des représentations compositionnelles des données, i.e. qui décomposent les configurations en leurs différentes parties constitutives. Cependant, toutes les variantes de ce modèle ne sont pas aussi performantes les unes que les autres, et il n'y a pas d'explication théorique justifiant ces observations empiriques.

Dans la première partie de ma thèse, nous avons cherché à comprendre comment un modèle si simple peut produire des distributions de probabilité si complexes. Pour cela, nous avons analysé un modèle simplifié de RBM à poids aléatoires à l'aide de la méthode des répliques. Nous avons pu caractériser théoriquement un régime compositionnel pour les RBM, et montré sous quelles conditions (statistique des poids, choix de la fonction de transfert) ce régime peut ou ne peut pas émerger. Les prédictions qualitatives et quantitatives de cette analyse théorique sont en accord avec les observations réalisées sur des RBM entraînées sur des données réelles.

Nous avons ensuite appliqué les RBM à l'analyse et à la conception de séquences de protéines. De part leur grande taille, il est en effet très difficile de simuler physiquement les protéines, et donc de prédire leur structure et leur fonction. Il est cependant possible d'obtenir des informations sur la structure d'une protéine en étudiant la façon dont sa séquence varie selon les organismes. Par exemple, deux sites présentant des corrélations de mutations importantes sont souvent physiquement proches sur la structure. A l'aide de modèles graphiques tels que les Machine de Boltzmann, on peut exploiter ces signaux pour prédire la proximité spatiale des acides-aminés d'une séquence. Dans le même esprit, nous avons montré sur plusieurs familles de protéines que les RBM peuvent aller au-delà de la structure, et extraire des motifs étendus d'acides-aminés en coévolution qui reflètent les contraintes phylogénétiques, structurelles et fonctionnelles des protéines. De plus, on peut utiliser les RBM pour concevoir de nouvelles séquences avec des propriétés fonctionnelles putatives par recombinaison de ces motifs. Enfin, nous avons développé de nouveaux algorithmes d'entraînement et des nouvelles formes paramétriques qui améliorent significativement la performance générative des RBM. Ces améliorations les rendent compétitives avec l'état de l'art des modèles génératifs tels que les réseaux génératifs adversariaux ou les auto-encodeurs variationels pour des jeux de données de taille intermédiaires. contents acknowledgments Je tiens d'abord à remercier mon directeur de thèse Rémi Monasson ainsi que ma collaboratrice Simona Cocco d'avoir encadré ma thèse au cours de ces trois dernières années. J'ai bénéficié d'un environnement chaleureux et humain, d'un encadrement scientifique de très haut niveau et d'une exposition à des sujets de recherche passionnants. A ce titre, je me souviendrai de ma thèse comme de l'une de mes meilleures expériences professionnelles.

Je tiens également particulièrement à remercier Jean-François Allemand, pour ses nombreux conseils pertinents et bienveillants dont je bénéficie depuis avant mon arrivée à l'ENS en 2011. Plus généralement, cette thèse n'aurait pas été possible sans l'excellente formation scientifique dont j'ai bénéficié ici, et je souhaite donc remercier l'ensemble de l'équipe pédagogique de l'ENS. J'ai eu le plaisir de participer (à mon niveau) à la formation des étudiants de l'ENS au cours de ma thèse grâce à Frédéric Chevy, je l'en remercie.

Je remercie également Aleksandra Walczak et Lenka Zdeborova d'avoir accepté d'être respectivement ma parraine et tutrice scientifique et pour les discussions que nous avons eues. Je remercie également Guilhem Semerjian, Georges Debregeas, Didier Chatenay et Eric Aurell pour les conseils scientifiques avisés.

Je souhaite ensuite remercier chacun des membres du jury de ma soutenance de thèse: merci à Guillaume Obozinski, Lenka Zdeborova (encore), et particulièrement à Paolo de Los Rios et Riccardo Zecchina pour avoir accepté d'être rapporteurs et être venus de loin pour assister à ma soutenance de thèse.

Merci également à Viviane Sebille, Sandrine Pataccini et Laura Baron-Ledez pour leur aide administrative précieuse. Je remercie également Marc-Thierry Jaekel pour son support technique et pour avoir mis en place une infrastructure informatique solide et efficace, qui a survécu à mes innombrables benchmarking et autres essais ratés.

Au cours de ma thèse, j'ai eu le grand plaisir de rencontrer et de partager mon quotidien avec de nombreux étudiants, collègues du département de physique. Je remercie chaleureusement Ada, Aldo, Alessandro, Alexis, Arnaud, Beatriz, Clément, Dario, Elisabetta, Emmanuel, Francesca, Kevin, Lorenzo, Marco, Moshir, Sébastien, Steven, Thijs pour leur amitié, leur soutien émotionnel et scientifique et les nombreux moments chaleureux passés ensemble.

Il est difficile de réussir sa thèse sans être heureux en dehors, et au cours de ces trois années de motivations et résultats fluctuants, j'ai pu compter sur le soutien de ma famille et de mes amis. Un merci particulier à mes parents Gérard et Joëlle, à ma tante Dany, à mon frère Rémy et ma belle-soeur Lisa pour leur soutien moral et affectif inconditionnel. Merci également à tous mes amis en dehors du laboratoire, pour leur écoute, leur amitié et leur bonne humeur contagieuse.

J'ai enfin un mot particulier pour celle qui partage ma vie. Odélia je te remercie d'avoir été à mes cotés au cours de ces années ponctuée de hauts et ses bas; je te remercie de m'avoir toujours soutenu, et tantôt écouté, consolé, aidé concrètement, ou botté le derrière lorsque c'était nécessaire ! Maintenant, à mon tour ! 1

I N T R O D U C T I O N
Over the last years, deep learning [START_REF] Lecun | Deep learning[END_REF][START_REF] Goodfellow | Deep learning[END_REF], a family of machine learning algorithms based on neural networks, has dramatically improved state-of-the-art performance in numerous fields, including image [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF][START_REF] He | Deep residual learning for image recognition[END_REF] and speech recognition [START_REF] Hinton | Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups[END_REF][START_REF] Graves | Speech recognition with deep recurrent neural networks[END_REF], natural language processing [START_REF] Collobert | A unified architecture for natural language processing: Deep neural networks with multitask learning[END_REF][START_REF] Mikolov | Distributed representations of words and phrases and their compositionality[END_REF], text translation [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF][START_REF] Sutskever | Sequence to sequence learning with neural networks[END_REF][START_REF] Lample | Phrase-based & neural unsupervised machine translation[END_REF], computational medical diagnosis [START_REF] Esteva | Dermatologist-level classification of skin cancer with deep neural networks[END_REF], artificial image/video generation [START_REF] Goodfellow | Generative adversarial nets[END_REF][START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF]. These successes were notably allowed by the availability of increasingly large data sets, computational resource and software frameworks. On the other hand, our theoretical understanding of neural networks has evolved at a slower pace, and although recent theoretical developments are emerging [START_REF] Choromanska | The loss surfaces of multilayer networks[END_REF][START_REF] Mallat | Understanding deep convolutional networks[END_REF][START_REF] Kadmon | Optimal architectures in a solvable model of deep networks[END_REF][START_REF] Baity-Jesi | Comparing dynamics: Deep neural networks versus glassy systems[END_REF], numerous questions remain: how can such large models with hundreds of millions of parameters not overfit the data ? Why does the non-convex optimization work so well in practice ? Why do some architectures and parameters outperform others ? Neural networks could benefit from a better theoretical understanding, as empirical knowledge can be hard to transfer from one experiment to the other. For instance, the image recognition challenge ImageNet 2015 was won using an ensemble of very deep neural networks, each consisting of 152 layers, a staggering number [START_REF] He | Deep residual learning for image recognition[END_REF]. However, such very deep architectures should not be required to achieve human-like performance as the visual cortex is not as deep; but since the reason this model outperforms the others is unknown, we cannot reverse engineer it into a simpler architecture. Current progresses therefore essentially rely on improving optimization algorithm [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF][START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF][START_REF] Andrychowicz | Learning to learn by gradient descent by gradient descent[END_REF] and exploring increasingly more complex architectures [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF][START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF].

Another issue raised by these successes is that as neural networks become more and more complex, they behave more and more as black-boxes whose outputs are difficult to interpret. In supervised learning, one may want to know what clues are picked up by the model to make a decision; in unsupervised learning, e.g. in probability distribution learning, one may want to know what are the characteristic features of a configuration that give it high probability. This is particularly crucial in the context of data analysis in biology, where models must be both quantitative and relatable to the underlying biological mechanisms. Owing to continuous progresses in data acquisition techniques, such as electrophysiological and fluorescence-based functional recordings of neurons in neuroscience, DNA sequencing, single RNA-sequencing and deep mutational scans of protein fitness landscapes, the amount of available data has drastically increased. How to exploit these data in both a quantitative and easily interpretable fashion? Most often, interpretability comes at the expense of decreased quantitative performance: linear and logistic regression in supervised learning or mixture models in unsupervised learning are well understood, but rarely provide an sufficient description of data. On the other hand, deep neural networks, though powerful, may not be the best tools for the purpose of interpretation.

Statistical physics may play a key role in addressing both of these issues. Since the 80's, ideas from statistical physics have led to both fundamental and practical developments in computer science and neural networks. The physicsinspired simulated annealing optimization procedure [START_REF] Kirkpatrick | Optimization by simulated annealing[END_REF] had major impact in applied computer science and engineering. Statistical physics tools were used to study learning dynamics and maximum capacity of feed-forward and recurrent neural networks such as the perceptron and the Hopfield model [START_REF] Gardner | Maximum storage capacity in neural networks[END_REF][START_REF] Amit | Storing infinite numbers of patterns in a spin-glass model of neural networks[END_REF][START_REF] Seung | Statistical mechanics of learning from examples[END_REF]. More recently, statistical physics was applied to study transitions from polynomial to non-polynomial complexity in K-satisfiability problems [START_REF] Monasson | Determining computational complexity from characteristic 'phase transitions[END_REF][START_REF] Mézard | Analytic and algorithmic solution of random satisfiability problems[END_REF], and theoretical investigation tools such as TAP and belief propagation were shown to efficiently address inference problems [START_REF] Krzakala | Spectral redemption in clustering sparse networks[END_REF][START_REF] Krzakala | Statistical-physics-based reconstruction in compressed sensing[END_REF]. Nowadays, connections between deep neural network optimization landscapes and spin-glass energy landscapes and between dynamics of learning and Langevin dynamics are under active investigation [START_REF] Choromanska | The loss surfaces of multilayer networks[END_REF][START_REF] Baity-Jesi | Comparing dynamics: Deep neural networks versus glassy systems[END_REF]. From the perspective of data modeling, a key conceptual input from statistical physics is that very complex collective behaviors can emerge from simple interactions between individuals: the traditional example is the case of the Ising model, where long-range ferromagnetic order can arise from local couplings between spins. Conversely, this suggests that complex data may be explainable by relatively simple models. The recently developed inverse Ising procedure, which consists in finding interactions that reproduce data correlations found successes in numerous biological problems [START_REF] Nguyen | Inverse statistical problems: from the inverse ising problem to data science[END_REF]. More generally, the physics top-down culture of explaining observations by minimalist models may find future applications for developing interpretable machine learning models.

My PhD, realized at the Laboratory of Theoretical Physics of ENS Paris, under the supervision of Pr. Rémi Monasson and in collaboration with Pr. Simona Cocco, at the interface between statistical physics, machine learning and bioinformatics takes place in this general context. This thesis focuses on Restricted Boltzmann Machines (RBM), a simple yet powerful generative neural network, and their application to protein sequence modeling. Though they are much simpler than deep feedforward or generative networks, they share the similar working principle of learning compositional representations of data.

Part I I N T R O D U C T I O N T O R E P R E S E N TAT I O N S , B O LT Z M A N N M A C H I N E S A N D R E S T R I C T E D B O LT Z M A N N M A C H I N E S

definition

We start with the definition of a data representation. Suppose we are given a set of P data samples x (1) , x (2) , ...x (P) of a N-dimensional random variable X having joint density P(X). A data transformation is a deterministic transformation from the multidimensional vector space of data into another one:

F : x ∈ R N → x ′ = F(x) ∈ R M , (2.1) 
where M can be larger or smaller than N. In general, F is assumed to be differentiable, but is not necessarily invertible. We say that the random vector X ′ is a representation of the original random vector X. Changing the representation of a random variable can be often extremely helpful in data science because: i) it allows for better visualization and understanding of the process that generated the data; ii) the performance of machine-learning algorithm, such as classification or clustering methods heavily depends on the choice of representation used.

Although it is not obvious that a given representation is good, it is clear that many representations are useless: if F(x) = 0, ∀x, then X ′ is a trivial random variable, and does not carry any information about X. More generally, it is clear that any transformation F that does not vary strongly across the support of X is of little use. On the opposite, F = Id is not of much use either, since the properties of the data distribution have not changed. Typically, a good data representation X ′ must have helpful properties that X does not have, such as low dimensionality, independence between components or sparse values, while carrying information about the original random vector X. Thus, the transformation F must depend on P(X) and should be learnt. Once learnt, a data representation can often shed light on how the data was generated: one can find so-called 'features', i.e. frequent collective modes of variation in the data, find a partition into classes, discover outliers,... One fundamental reason for learning new data representations is that the vector space R N and its associated euclidian distance do not reflect well the 18 representations underlying structure of the data distribution. For instance, an image of an object and its copy translated by a few pixels are often very far away from one another in terms of euclidian distance -in fact, often as far away as two images of different objects. Similarly, in the context of protein sequences, it is well known that sequence similarity (the Hamming distance) is not always a good predictor of functional similarity. Moreover, the support of the data occupies only an infinitesimal fraction of the vector space, as data very often lie in or close to a subspace of dimension much lower than N. This is the so-called 'manifold hypothesis'. Indeed, consider for instance a data set constituted by pictures of a person's face, taken in many different positions; each picture is made of, say, 1000 × 1000 pixels. It is clear that this data set is a very small subset of all possible 1000 × 1000 colored pictures, which is defined by a 3 • 10 6 -dimensional vector. The reason is that, for a given face, there are only ∼ 50 varying degrees of freedom (the position of all muscles), a very small number compared to 10 6 [START_REF] Lecun | L'apprentissage profond[END_REF]. Hence, all data points lie in a (non-linear) manifold, of very low dimension M compared to N. More generally, the variability in the data often comes from a small number of explanatory latent factors that affect all components, and we would like to recover them. In practice, the perfect representation algorithm that would turn an image into this kind of 'muscle positions' representation does not exist, because our problem is mathematically ill-defined. Indeed, given a set of latent factors (e.g. the 'true' set of muscle positions), any invertible transformation z ′ = G(z) also defines a set of latent factors that explains the variability in the data. A well-defined representation learning problem therefore requires making assumptions on the statistics and/or dimensionality of the latent factors, as well as on the transformation from factors to observations. We will present below some interesting representation learning algorithms based on these assumptions.

A good data representation can significantly improve the performance of subsequent machine learning tasks, by retaining only useful information about the data sample. For instance, in a so-called deep neural network, one learns a sequence of data transformations, e.g. to predict a label from an image. By using non-linearities and so-called pooling architectures, the learnt intermediate representations of the data can become invariant with respect noise, shifts, rotations,... hence learn quicker [START_REF] Mallat | Understanding deep convolutional networks[END_REF]. Deep neural networks led to remarkable breakthrough in many areas, such as visual and speech recognition, natural language processing [START_REF] Lecun | Deep learning[END_REF][START_REF] Bengio | Representation learning: A review and new perspectives[END_REF]. Arguably, the most simple representation of data is clustering. Clustering algorithms such as K-means or Dbscan identify subgroups within the data where the intra-cluster euclidian (or other) distance is low, and inter-cluster distance is high. Formally, it defines a deterministic mapping from the original data space R N to a categorical variable z ∈ [1, ..K]. In the best cases, the subgroups identified by clustering are well separated and correspond to known categories, such as animal species in an image data base. In the worst cases, clusters found are unstable and do not relate to any known data structure. In particular, clustering depends on the choice of metric, and thus of the initial representation provided to the clustering algorithm.

Since allocation of a sample to a cluster can be ambiguous, probabilistic mapping P(z = k|x) (so-called fuzzy clustering) can be derived instead, e.g. using a Gaussian Mixture Model. This defines a K-dimensional representation in which each dimension codes for a 'prototype' sample, and for most samples, a single component dominates over the others, see an example on MNIST, the handwritten digit data base in Fig. 2

.2.

We observe pairs of values X i , y i = θ(X i ) , with i = 1...10, 000, and want to interpolate the values of θ for new test images. This interpolation problem would be trivial if the input space was densely sampled, e.g. if for any point in R N there would be a training data point at distance ≤ ǫ. In practice, it is impossible because the latter condition requires about ǫ -N data points, which is out-of-reach when N is large.

One possible way-out is to first learn a new data representation of lower dimension, x ′ = F(x), e.g. using PCA, and then train a classification model of the form: y = θ(x ′ ). If the low dimensional representation keeps relevant information about the nature of the image, then learning can be performed. One popular application of PCA for supervised learning is the 'eigenface' face recognition algorithm. A PCA representation is trained on a data set of faces, before applying supervised learning [START_REF] Turk | Face recognition using eigenfaces[END_REF]. The eigenface algorithm is considered among the first successful face recognition algorithms.

The main practical limitation of PCA is that it is generally difficult to identify the principal components with the latent factors mentioned above. As seen from Fig. 2.3(b), the weights are delocalized across all pixels, and cannot be related simply to the constitutents of digits. Weight delocalization is actually quite general: for any image data base featuring translational invariance, such as textures or natural images [START_REF] Ruderman | Statistics of natural images: Scaling in the woods[END_REF], the principal components are extended 2D Fourier modes 1 . In the next section, we briefly introduce discuss other feature extraction methods that aim at solving this issue.

Extracting latent features from data

The variability in real-world data, such as images, can often be decomposed into a set of largely independent modes of variation. For instance, two faces are different because some of their parts are different: nose, ears, lips... At a lower level of description, an image can contain or not an edge at a given location, or at some angle or scale, and two different images have different set of activated edges. Extracting these so-called 'features' is of particular interest for machine learning, in particular for classification, because the decision function y = θ(X) that must be learnt may be expressed more easily as a function of these 'features' X ′ than from the raw pixels X. For instance, one could achieve better results by expressing θ(X ′ ) as a linear function of X ′ , instead of a higher order polynomial 1 For instance, in the 1D case, a translational invariant data set yields a translational invariant covariant matrix of the form C ij = C(ij). Assuming periodic boundary conditions, the eigenvectors are Fourier modes of the form

λ k j ∝ e 2iπk N B O LT Z M A N N M A C H I N E S A N D R E S T R I C T E D B O LT Z M A N N M A C H I N E S

historical background

Systems of interacting binary units were originally introduced as toy models of condensed matter systems in statistical physics. These coarse grained descriptions of interacting particles were designed as minimal models for studying collective phenomena in materials and phase transitions. Some famous examples include The Ising and Curie-Weiss model for studying ferromagnetism, paramagnetism and criticality in magnets [START_REF] Ising | Beitrag zur theorie des ferromagnetismus[END_REF][START_REF] Onsager | Crystal statistics. i. a two-dimensional model with an order-disorder transition[END_REF], the Anderson model for studying conductor-insulator transition in materials [START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF][START_REF] Anderson | Localized magnetic states in metals[END_REF], the Lebowitz-Penrose model of Liquid-Vapor phase transition [START_REF] Lebowitz | Rigorous treatment of the van der waals-maxwell theory of the liquid-vapor transition[END_REF], or the Sherrington-Kirkpatrick model of spin glasses [START_REF] Kirkpatrick | Infinite-ranged models of spin-glasses[END_REF].

These models were first brought to the to the domains of neuroscience and artificial intelligence in 80s, at the onset of the second wave of connectionism. In 1982, Hopfield showed that a system of coupled binary units mimicking a biological network of neurons connected by synapses could learn to store memories ('patterns'), and retrieve then under noisy conditions [START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF]. The main idea is to adjust the synapses such that each memory (a pattern of activation of the neurons) is an attractor of the dynamical system of interacting neurons; therefore, any dynamic starting around the attractor leads to the full retrieval of the pattern. The so-called Hopfield model of associative memory inspired a wide literature of attractor models in theoretical neuroscience [START_REF] Amit | Modeling brain function: The world of attractor neural networks[END_REF]. In 1983, Ackley, Sejnowski and Hinton presented the Boltzmann Machine (BM), a system of coupled binary units whose biases and couplings could be trained by physics-like Monte Carlo simulations to learn implicit constraints from data [START_REF] Ackley | A learning algorithm for boltzmann machines[END_REF]. BM were proven to be succesful for pattern completion tasks on toy examples, but the learning algorithm was prohibitively slow. In 1984, Geman and Geman showed a connection between Bayesian image denoising and bidimensional Ising-like lattice models of interacting spins: each spin plays the role of a pixel, and ferromagnetic couplings between neighbors arise from continuity priors in images. They then showed that the physics-inspired Gibbs sampling and simulated annealing were efficient for performing Maximum A Posteriori optimization boltzmann machines and restricted boltzmann machines studying complex systems in which the behaviour of individual units is well understood but not their collective behaviours. For instance, in neuroscience, the functional differentiation between various biological neural networks does not arise from neuronal types (there are only a few types across the whole brain), but rather by the way they interact: the set of axons, dendrites and synapses that mediates communication between neurons determines what computations are performed, how the network responds to external stimuli, and how it learns from experience. Each neural network has its own unique interaction graph, and it is essential to develop experimental or theoretical tools for elucidating network connectivity.

Since experimental measurement of all the synaptic couplings between all pairs of neurons is very challenging in vivo, recent approaches have focused on inferring them from observed neural activity only. The key idea is that a neuron receiving input from another excitatory or inhibitory neuron is respectively more or less likely to spike when the latter is spiking. Interactions between neurons therefore induce positive or negative spike correlations, and it may be possible to recover some information about the underlying network from the patterns of correlations. This can be formalized as an Ising inference problem: we look for a set of fields (the neural thresholds) and couplings (the synaptic interactions) that reproduces the mean and pairwise correlations from recordings. This problem is identical to learning a Boltzmann Machine with only visible units from the data. Numerous statistical physics methods were developed for solving the inverse Ising problem, such as message-passing algorithms [START_REF] Mezard | Information, physics, and computation[END_REF], mean-field and TAP expansions [START_REF] Welling | Approximate inference in boltzmann machines[END_REF][START_REF] Mezard | Constraint satisfaction problems and neural networks: A statistical physics perspective[END_REF], cluster expansions [START_REF] Sessak | Small-correlation expansions for the inverse ising problem[END_REF][START_REF] Cocco | Adaptive cluster expansion for inferring boltzmann machines with noisy data[END_REF] see [START_REF] Nguyen | Inverse statistical problems: from the inverse ising problem to data science[END_REF] for a review.

In the context of neuroscience, such approaches were shown successful at retrieving both structure of synaptic couplings and at predicting functional behavior (response to stimulus, replay, learning,...) in the retina [START_REF] Cocco | Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods[END_REF][START_REF] Marre | Prediction of spatiotemporal patterns of neural activity from pairwise correlations[END_REF], prefrontal cortex [START_REF] Tavoni | Functional coupling networks inferred from prefrontal cortex activity show experience-related effective plasticity[END_REF] and hippocampus [START_REF] Posani | Functional connectivity models for decoding of spatial representations from hippocampal ca1 recordings[END_REF][START_REF] Meshulam | Collective behavior of place and non-place neurons in the hippocampal network[END_REF][START_REF] Posani | Integration and multiplexing of positional and contextual information by the hippocampal network[END_REF], see [START_REF] Cocco | Functional networks from inverse modeling of neural population activity[END_REF][START_REF] Gardella | Modeling the correlated activity of neural populations: A review[END_REF] for reviews. Other examples of application of inverse Ising problem (and related models) include modelling of bird flocks [START_REF] Bialek | Statistical mechanics for natural flocks of birds[END_REF], financial markets [START_REF] Bury | Market structure explained by pairwise interactions[END_REF], and structure prediction in proteins or RNA (see Part iv), see [START_REF] Nguyen | Inverse statistical problems: from the inverse ising problem to data science[END_REF] for a review. We now define BM and RBM and present result.

definition

A Boltzmann Machine (BM) and a Restricted Boltzmann Machine (RBM) are both undirected graphical models, i.e., probability distributions over a multidimensional space, defined via an interaction graph, see Fig. 3.2. BM are constituted of a single set of random variables v, interacting via a coupling Where E is the energy function and Z = ∑ v∈[0,1] N e -E(v) is the partition function such that P is normalized. The fields vector g i and couplings matrix J ij adjust respectively the mean and correlations of the units v i . Similarly, for a RBM, the joint probability distribution of the visible and hidden unit configurations, v = (v 1 , v 2 , ..., v N ) and h = (h 1 , h 2 , ..., h M ) is:

P(v, h) = 1 Z e -E(v,h) E(v, h) = -∑ i g i v i + M ∑ µ=1 U µ (h µ ) -∑ i,µ w i,µ v i h µ (3.2)
where as before, E is the energy function and Z = ∑ v,h e -E(v,h) is the partition function. U µ are unary potentials that control the marginal distributions of the variables h µ , and the weight matrix w i,µ couples the visible and hidden layers. The hidden potentials U µ can be chosen arbitrarily as long as sampling is feasible. Some useful examples are:

• The Bernoulli potential: U (x) = -gx with x ∈ {0, 1} • The Potts (multinomial) potential: U (x) = -g(x) with x ∈ {1, .., K} • The Quadratic or Gaussian potential: U (x) = 1 2 γx 2 + θx, with x ∈ R • The ReLU potential: U (x) = 1 2 γx 2 + θx, with x ∈ R + • The double ReLU potential: U(x) = 1 2 γ + x +2 + 1 2 γ -x -2 + θ + x + + θ -x -, x ∈ R where x + = max(x, 0), x -= min(x, 0).
Bernoulli and Quadratic potentials are standard in the RBM literature; Potts potential is a straightforward generalization of RBM to categorical variables such as protein sites, with value 1 out of 20 amino-acids. The ReLU and double ReLU potentials were introduced during this thesis and will be justified below 1 .

We stress that though the visible units are not directly connected, they are correlated thanks to common input from the hidden layer; RBM can therefore model correlated data. Indeed, consider the example of Fig. 3.3: a sample is collected from 4 binary variables that show strong Pearson correlations ∼ 0.5 between all pairs. These samples could have been produced in two ways:

Informally, the BM couplings represent causal links between units whereas the RBM hidden units represent collective modes of variation of the data. Formally, we can compute the probability distribution over the visible layer for RBM by marginalizing over the hidden units:

P(v) = M ∏ µ=1 dh µ P(v, h) = 1 Z exp - N ∑ i=1 U i (v i ) + M ∑ µ=1 Γ µ I µ (v) ≡ 1 Z e -E eff (v) (3.
3) Where:

I µ (v) = ∑ i w iµ v i (3.4)
is the input received by hidden unit µ, and:

Γ µ (I) = log dh e -U µ (h)+h I (3.5)
is the cumulant generative function associated to the potential U µ . For instance, for quadratic potential, Γ µ (I) = 1 2γ (Iθ) 2 + 1 2 log 2π γ ; if γ µ = 1, θ µ = 0, the effective energy is, up to an additive constant:

E e f f (v) = -∑ i g i v i - 1 2 ∑ i,j ∑ µ w iµ w jµ v i v j (3.6)
In that case, we recognize a pairwise effective Hamiltonian with rank M pairwise interaction matrix, i.e. the Hopfield model with M patterns [START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF][START_REF] Barra | On the equivalence of hopfield networks and boltzmann machines[END_REF]. In general, non-quadratic hidden-unit potentials have a non-quadratic cumulant generative function, and produce high-order interactions (obtained by Taylor of Γ). Interestingly, the number of high-order terms can be infinite but the number of parameters of the model is finite, scaling as MN; this is in stark contrast with high-order Boltzmann Machines, where each order adds O(N k ) parameters to the model. For both BM and RBM, training consists in fitting numerically the distribution P(v) to the data by maximum likelihood, see section 3.4 and Part ii.

Thanks to its high-order interaction terms, RBM with Bernoulli hidden units are universal approximators, provided the number of hidden units is arbitrarily large [START_REF] Roux | Representational power of restricted boltzmann machines and deep belief networks[END_REF]. In practice, the number of hidden units required can be relatively small or fairly large. For instance, the Curie-Weiss model, which is formally defined as a BM with i) ±1 visible units ii) g i = 0 ∀i and iii) J ij = J N ∀i, j connection with data representation algorithms is best seen when considering the sampling scheme. Since there are no connections within a layer, the hidden layer units are conditionally independent given the configuration of the visible layer, and conversely; hence the Gibbs sampling can be simplified as follows, schematized in Fig. 3.5:

• Compute hidden units inputs

I µ = ∑ i w iµ v i • Sample each hidden unit independently P(h µ |I µ ) ∝ exp -U µ (h µ ) + h µ I µ • Compute the visible layer inputs I i = ∑ µ w iµ h µ • Sample each visible unit independently P(v i |I i ) ∝ exp [(g i + I i )v i ]
The first two steps can be seen as a stochastic feature extraction from configuration v, whereas the last two steps are a stochastic reconstruction of v from the features h. One can define in particular a data representation as the most likely hidden layer configuration given a visible layer configuration, that is, through the set of

h * µ (v) = arg max h µ P(h µ |v) = H µ (I µ (v)) , (3.7) 
where

H µ = (U ′ µ ) -1 is the transfer function.
Another possiblity is to use the average hidden layer activity given the visible layer:

h * µ (v) = h µ |v ≡ ∂Γ µ ∂I (I µ (v)) , (3.8) 
Where the last equality stems from the definition of the cumulant generative function (we have similarly Var(h µ |v) ≡

∂ 2 Γ µ ∂I 2 (I µ v)).
We show in Fig. 3.6 ex- amples of transfer functions and average activity. The nature of the hidden potential determines the shape of the transfer function and average activity. For quadratic potential, both are linear, whereas for Bernoulli potential, they are respectively a Heavyside and sigmoid function, see Section 3.8. For the Rectified Linear Unit (ReLU) potentials, the transfer function is exactly a ReLU function (hence the name) H(I) = ReLU( I-θ γ ), where ReLU(x) = max(x, 0). ReLU is a popular non-linearity for neural networks, as they are easy to compute, can remove low signals by thresholding and do not saturate at large inputs, unlike sigmoids. For the double ReLU (dReLU) potential, the transfer function has two ReLU branches, see Fig. 3.6. Compared to Bernoulli hidden units, ReLU hidden units preserve information about the intensity of the input, and were shown to significantly outperform the former in the context of image recognition [START_REF] Nair | Rectified linear units improve restricted boltzmann machines[END_REF].

boltzmann machines and restricted boltzmann machines

learning

Training is achieved by maximizing the likelihood of the data L = log P(v) d . For any general parametric Boltzmann distribution P θ (v) = 1 Z e -E(v,`, the gradient with respect to `is given by:

∇ `L = -∇ `E(v, ` d + ∇ `E(v, ` m (3.9)
Where m is the expectation over the current model distribution P θ (v). For a Boltzmann Machine, this gives:

∂L ∂g i = v i d -v i m ∂L ∂J ij = v i v j d -v i v j m (3.10)
And for a Restricted Boltzmann Machine, with hidden unit potential U µ and associated potential parameters ξ µ (e.g. fields, threshold curvature,...):

∂L ∂g i = v i d -v i m ∂L ∂ξ µ = ∂Γ µ (I µ (v)) ∂ξ µ d - ∂Γ µ (I µ (v)) ∂ξ µ m ∂L ∂w iµ = v i h µ |v d -v i h µ |v m (3.11)
Where we used the identity

h µ |v = ∂Γ µ (I µ (v)) ∂I
. In all cases, the gradient is the difference between a moment from the data and its corresponding moment of the model distribution; at the maximum of likelihood, moment matching conditions are satisfied. The major difficulty lies in evaluating the second

term f (v) m = ∑ v f (v)e -E(v)
∑ v e -E(v) , because it involves a weighted summation over 2 N configurations, which is impossible in practice. Beyond the computational difficulty, estimating the moments from interactions is fundamentally difficult, because as is known in statistical physics, very small changes in interaction parameters can induce phase transitions i.e. dramatic changes in the moments.

likelihood estimation

We discuss in Part ii current moment approximation methods, and present a new sampling algorithm, as well as new dynamic reparameterization techniques for addressing these issues.

The main differences between training BM and RBM are that:

• in BM, the data moments can be evaluated only once, whereas they must be recomputed as W evolves in RBM. Regular gradient descent is therefore best suited for BM, whereas stochastic gradient descent is faster for RBM.

• Sampling is slightly easier for RBM due to the conditional independence property, which allows parallel updates instead of sequential ones.

• RBM can be less computationally demanding, as one can choose M ≪ N (iv) the likelihood is a convex function for BM but not for RBM.

likelihood estimation

Since the partition function Z is intractable in both BM and RBM, the loglikelihood L = log P(v) cannot be computed directly. Throughout this manuscript, we have used the Annealed Importance Sampling (AIS) algorithm for estimating the partition function and therefore the likelihood [START_REF] Neal | Annealed importance sampling[END_REF][START_REF] Salakhutdinov | On the quantitative analysis of deep belief networks[END_REF]. Briefly, the idea is to estimate partition function ratios. Let P 1 (x) =

P * 1 (x) Z 1 , P 0 = P * 0 (x)
Z 0 two probability distribution with partition functions Z 1 ,Z 0 . Then:

P * 1 (x) P * 0 (x) x∼P 0 = ∑ x P * 1 (x) P * 0 (x) P * 0 (x) Z 0 = 1 Z 0 ∑ x P * 1 (x) = Z 1 Z 0 (3.12)
Therefore, provided that Z 0 is known (e.g. if P 0 is an independent model with no couplings), one can in principle estimate Z 1 by Monte Carlo. The difficulty lies in the variance of the estimator: if P 1 , P 0 are very different from one another, some configurations can be very likely for P 1 and almost impossible for P 0 ; these configurations appear almost never in the Monte Carlo estimate of . , but the probability ratio can be exponentially large. In Annealed Importance Sampling, we address this problem by constructing a continuous path of interpolating distribution P β = P , and estimate Z 1 as a product of ratios of partition function:

Z 1 = Z 1 Z β l max Z β l max -1 Z β l max -2 ... Z β 1 Z 0 × Z 0 (3.13)
In practice, we choose P 0 as the closest (in terms of KL divergence) independent model to the data distribution P d , and a linear set of interpolating temperatures of the form β l = l l max . To evaluate the successive expectations, we use a fixed number M of samples initially drawn from P 0 , and gradually anneal from P 0 to P 1 by successive applications of Gibbs sampling at P β . Moreover, all computations are done in logarithmic scales for numerical stability purposes:

we estimate log Z 1 Z 0 ≈ log P * 1 (x) P * 0 (x) x∼P 0
, which is justified if P 1 and P 0 are close.

We refer interested readers to [START_REF] Salakhutdinov | On the quantitative analysis of deep belief networks[END_REF] for implementation details.

results on mnist

We show in Fig. 3 In BM, it is fairly clear that the couplings are adjusted so as to match the data and model correlations. On the other hand, the moments v i h µ |v adjusted by RBM depend on the weight matrix W and on the non-linearity chosen, and they are dynamically evolving throughout training. What are the hidden units trying to model ? Here, we present a new short computation illustrating the process.

In the following we assume that we sequentially add each hidden unit and update only its parameters w µ , ξ µ (and not the previous ones w µ ′ , ξ µ ′ µ ′ < µ) instead of performing a gradient descent over the entire set of parameters. Moreover, we will assume for now that the cumulant generative function Γ µ (I) is arbitrary rather than parametric, i.e. such that its value for each I can be adjusted. To this end, let P µ be the marginal probability distribution over the visible layer where only the first µ hidden units are included:

log P µ (v) = g T v + µ ∑ µ ′ =1 Γ µ ′ (I µ ′ ) -log Z µ (3.14)
Where

Z µ = ∑ v e g T v+∑ µ µ ′ =1 Γ µ ′ (I µ ′
) is the associated partition function. The following recursion relation holds:

P µ = P µ-1 e Γ µ (I µ ) Z µ-1 Z µ = P µ-1 e Γ µ (I µ )-log e Γ µ (I µ ) P µ-1 (3.15)
For µ = 0, P 0 is an independent model with fields g. Initially, we set the fields g i (a) = log f i (a), i.e. the fields of the independent model closest to the data. Then, the RBM is recursively built: given {w ′ ¯, Γ ′ µ , µ ′ ∈ [1, µ -1]}, we derive w µ , Γ µ by maximum likelihood estimation. From Eqn. 3.15, the likelihood writes:

L µ = log P µ (v) d = log P µ-1 (v) d + Γ µ (I µ ) d -log e Γ µ (I µ (v)) P µ-1 (3.16)
Where the first term does not depend on Γ µ , w µ . Deriving first with respect to Γ µ (I) yields:

δL µ δΓ µ (I) = δ(I -I µ ) d - δ(I -I µ )e Γ µ (I µ (v)) P µ-1 e Γ µ (I µ (v)) P µ-1 = P d (I µ = I) -e Γ µ (I)-log e Γ µ (I µ (v)) P µ-1 P µ-1 (I µ = I) (3.17) 
Where P d (I µ ) (resp. P µ-1 (I µ )) denote the induced probability density of the input I µ under P d (v) (resp. P µ-1 (v)). Solving for the critical point gives Γ µ up to an additive constant:

Γ µ (I) = log P d (I µ = I) P µ-1 (I µ = I) + K (3.18) 
The choice K = 0 is convenient, as it gives log e Γ µ (I µ (v))

P µ-1 = 0. P µ is given by:

P µ (v) = P µ-1 (v) P d (I µ (v)) P µ-1 (I µ (v)) (3.19)
Note also that Γ µ is such that P µ (I µ ) = P d (I µ ). Intuitively, for a fixed w ¯, Γ µ is adjusted such that the histograms of I µ under P µ and P d match. After optimizing of Γ µ , the likelihood 3.16 rewrites:

L µ = log P µ (v) d = log P µ-1 (v) d + log P d (I µ (v) P µ-1 (I µ (v) d = L µ-1 + D KL P d (I µ )||P µ-1 (I µ ) (3.20)
Where D KL denotes the Kullback-Leibler (KL) divergence. Hence, maximizing over w µ amounts to finding the linear projection that maximizes the KL divergence between the data distribution and the previous model distribution. In other words, hidden unit µ first finds the most discriminating feature between the target distribution and the current distribution P µ-1 (in a very similar spirit to the discriminator in GANs [START_REF] Goodfellow | Generative adversarial nets[END_REF]), then it is incorporated to the model and its potential is adjusted in order to exactly erase this difference. Since D KL ≥ 0, the process always increases the likelihood and is therefore guaranteed to converge to a local maximum. In practice, the cumulant generative function is not arbitrary but parametric; this biases the search of projections toward particular statistics: Bernoulli potentials favor projections with bimodal distributions, and so on. dReLU potentials, which can express all symmetric and asymmetric distributions, and gaussian, sub-gaussian or super-gaussian distributions (i.e. bimodal or sparse) are the least biased potentials. This iterative scheme is very similar to the process of finding the top K principal components of the data: one computes the data covariance matrix, then looks for the component with highest variance (the top eigenvector), substracts it to the covariance matrix, and repeats the cycle. The main differences are that (i) RBM aim at explaining data probability, whereas PCA solely explains variance and (ii) the iterative procedure described above gives the best possible result for PCA, but not for RBMs. Indeed, when adding a new hidden unit, one should also update all the previous units 1 → µ -1, as the new hidden unit can perturb their statistics. Therefore, standard simultaneous optimization of all the hidden units is probably more effective than iterative optimization, but this formulation better highlights the individual roles of the hidden units and of the potential.

explicit formula for sampling and training rbms

We conclude this section with explicit formula for sampling and training RBMs. Due to the conditional independence property, sampling the conditional distributions is straightforward both for the visible and hidden layer; it requires sampling from P(h µ |I) ∝ e -U µ (h µ )+Ih µ . Here, we give explicit formula for the average activity, transfer function H(I) = arg max P(h|I) cumulant generative functions and its derivatives for the various potentials useful for sampling and training; in the following, we drop the hidden unit index µ.

Bernoulli

• P(h|I) =      e g+I 1+e g+I if h = 1 1 1+e g+I if h = 0 0 Otherwise • Γ(I) = log 1 + e g+I • h|I = ∂ I Γ(I) = ∂ g Γ(I) = 1 1+e -g-I • Var[h|I] = ∂ 2 I Γ(I) = e -g-I (1+e -g-I ) 2
• H(I) = 1 g+I≥0

Potts

• P(z|I) = e g(z)+I(z)

∑ z ′ e g(z)+I(z)

• Γ(I) = log ∑ z e g(z)+I(z)

•

H(I) = arg max z ′ g(z ′ ) + I(z ′ )
Note the degeneracy g i (z) → g(z) + K i and w iµ (z) → w iµ (z) + G i for any K i , G i . In all experiments, we have removed the degeneracy by using the so-called zero-sum gauge: ∑ z g i (z) = 0, ∑ z w iµ (z) = 0 ∀i, µ. SGD updates preserve the zero-sum gauge for the fields but not for the weights, see the gradient equations 3.11; the weights must be modified after each update to restore the zero-sum gauge:

w iµ (v) → w iµ (v) -1 q v ∑ v ′ w iµ (v ′ )
, where q v is the number of Potts states (e.g. 20 amino-acids) of visible units.

Gaussian

We write N (µ, σ 2 ) the Gaussian distribution of mean µ and standard deviation σ. Then:

• P(h|I) = N I-θ γ , 1 γ • Γ(I) = (I-θ) 2 2γ + 1 2 log 2π γ • h|I = ∂ I Γ(I) = -∂ θ Γ(I) = I-θ γ • Var[h|I] = 1 γ • H(I) = I-θ γ • ∂ γ Γ(I) = -1 2 h 2 |I = -1 2γ -(I-θ) 2

ReLU and dReLU

As ReLU are special cases of dReLU (with γ -→ ∞), we provide formula only for the latter potentials. We first introduce Φ(x) = exp(

x 2 2 ) 1 -erf( x √ 2 ) π 2
. Some useful properties of Φ are:

• Φ(x) ∼ x→-∞ exp( x 2 2 ) √ 2π • Φ(x) ∼ x→∞ 1 x -1 x 3 + 3 x 5 + O( 1 x 7 ) • Φ ′ (x) = xΦ(x) -1
To avoid numerical issues, Φ is computed in practice with its definition for x < 5 and with its asymptotic expansion otherwise. We also write T N (µ, σ 2 , θ, +∞) the truncated Gaussian distribution of mode µ, width σ and support [θ, +∞].

Then, we see first that P(h|I) is equivalent to a mixture of two truncated Gaussians:

P(h|I) =    1 Z exp -γ + 2 h 2 -(θ + -I) if h ≥ 0 1 Z exp -γ - 2 h 2 -(θ --I) if h ≤ 0 = p + 1 h≥0 e -γ + 2 h 2 +(I-θ + )h Z + + p -1 h<0 e -γ - 2 h 2 +(I-θ -)h Z - (3.21) 
Where

Z ± = Φ ∓(I-θ ± ) √ γ ± 1 √ γ ±
, and p ± = Z ± Z + +Z -. We deduce the following formula:

• P(h|I) = p + T N I-θ + γ + , 1 γ + , 0, +∞ + p -T N I-θ - γ -, 1 γ -, -∞, 0 • Γ(I) = log 1 √ γ + Φ -I+θ + √ γ + + 1 √ γ -Φ I-θ - √ γ -
• For H(I) we distinguish two cases: the sparse case θ + > θ -(such as dReLU1 of Fig. 3.4,3.6), and the bimodal case θ + < θ -(dReLU2). For the former it writes:

H(x) = ReLU I -θ + γ + -ReLU -I + θ - γ -
Which justifies the name double ReLU 'dReLU'. Note the plateau betweeen [θ -, θ + ], which thresholds weak positive or negative inputs I and promotes sparse distributions. For the latter, it writes:

H(I) =      I-θ + γ + if I ≥ θ + √ γ -+θ -√ γ + √ γ + + √ γ - I-θ - γ - if I ≤ θ + √ γ -+θ -√ γ + √ γ + + √ γ -
Note the discontinuity, which pushes an input I toward either strongly positive or negative values and promotes bimodal distribution. Both expressions are consistent for the equality case. T

• h|I = p +   I-θ + γ + + 1 √ γ + Φ -I + +θ + √ γ +   + p -   I-θ - γ -- 1 √ γ -Φ I-θ - √ γ -   • Var[h|I] = p + γ + + p - γ -+ p + p -   I 1 γ + -1 γ --θ + γ + + θ - γ -+ 1 √ γ + Φ -I+θ + √ γ + + 1 √ γ -Φ I-θ - √ γ -   I 1 γ + -1 γ --θ + γ + + θ - γ -- 1 √ γ + Φ -I+θ + √ γ + + 1 √ γ -Φ I-θ - √ γ - Φ -I+θ + √ γ - √ γ + + Φ I-θ - √ γ - √ γ - • ∂ θ + Γ(I) = -max(h, 0)|I = -p +   I-θ + γ + + 1 √ γ + Φ -I + +θ + √ γ +   • ∂ θ -Γ(I) = -min(h, 0)|I = -p -   I-θ - γ -- 1 √ γ -Φ I-θ - √ γ -   • ∂ γ + Γ(I) = -1 2 max(h, 0) 2 |I = -1 2 p +   1 γ + + I-θ + γ + 2 + I-θ + γ + Φ -I+θ + √ γ +   • ∂ γ -Γ(I) = -1 2 min(h, 0) 2 |I = -1 2 p -   1 γ -+ I-θ - γ - 2 - I-θ - γ -Φ I-θ - √ γ -   Part II L E A R N I N G A L G O R I T H M S F O R B O LT Z M A N N M A C H I N E S A N D R E S T R I C T E D B O LT Z M A N N M A C H I N E S
H E M O M E N T E VA L U AT I O N P R O B L E M

background

We recall that the models are fitted through likelihood optimization, which can be carried out by a gradient ascent algorithm, consisting of successive updates of the form θ (t+1) = θ (t) + lr t ∇ `L, where lr t is the learning rate at time t, until convergence is reached. For BM and RBM, the likelihood gradient takes the form of a difference between a data average and model average:

∇ θ L = -∇ θ E(v, θ d + ∇ θ E(v, θ m (4.1) 
A gradient update therefore consists in simultaneously pushing down the energy of the data configuration and pushing up the energy of the current model distribution; convergence is reached once the two effects compensate exactly. For BM and RBM, the left hand term can be easily evaluated from the data. For BM,

∂E(v) ∂g i = v i and -∂E(v)
∂J ij = v i v j , such that after averaging, we obtain exactly the first and second order moments f i = v i d , f ij = v i v j d ; they can be computed once before the training starts. For RBM, the derivatives are non-linear moments and depend on the current parameter estimates, see Eqn. (3.11); they must be evaluated after each parameter update. For speed purposes, we evaluate the data average using only a small mini-batch of data (N batch ∼ 100 in most of our experiments), and iterate multiple time over all the mini-batches. Provided that the gradient can be evaluated and that the learning rate rate slowly decays to zero, this optimization method, termed Stochastic Gradient Descent (SGD) correctly converges toward a local maximum of the likelihood. Moreover, it exhibits increased speed and better behavior for non-convex optimization, see [START_REF] Bottou | Large-scale machine learning with stochastic gradient descent[END_REF] for more information.

On the other hand, the right hand term is hard to evaluate, since neither analytical evaluation (cost is exponential in N) nor direct sampling from P are possible (i.e. when samples from P can be obtained by transforming of uniformly distributed samples). In their original formulation of BM/RBM, Ackley, Hinton and Sejnowski used Markov Chain Monte Carlo (MCMC) to 54 the moment evaluation problem simulate the model. We recall briefly that MCMC consists in constructing a Markov chain such that the desired distribution (here P) matches the Markov chain distribution of samples in the limit of an infinite number of Markov steps, see [START_REF] Krauth | Statistical mechanics: algorithms and computations[END_REF] for an introduction. The greater the number of steps, the closer the Markov chain distribution is to the desired distribution. In our context, at each step of the gradient descent, we launch a set of N chains Markov Chains, wait until convergence, then evaluate the moments from the samples obtained. Though this is possible in principle, the very long computational time presents a major difficulty for doing so. For instance, a naive Metropolis-Hasting or Gibbs MCMC of a Curie-Weiss model, i.e. RBM with N ±1 visible units, M = 1 hidden unit, and uniform weight matrix w i1 = w/N) requires of the order of exp(Nw 2 ) steps to converge to the equilibrium distribution when w > 1. More generally, naive MCMC generally fails whenever the regions of the configuration space with low-energy do not form a connected space, in the sense that one must transit through (very) high-energy configurations to go from one region to the other; transitions are therefore extremely rare, and convergence to the equilibrium distribution is never observed in practice for large N. The original experiments of Ackley et al. were therefore limited to toy data sets, and BM/RBM rapidly lost traction in favor of less computationally heavy methods such as backpropagation. Since then, numerous heuristics were developed for handling this problem and are briefly presented here.

Contrastive Divergence

Contrastive Divergence (CD) is a MCMC based method introduced by Hinton in 2002 for training RBM [START_REF] Hinton | Training products of experts by minimizing contrastive divergence[END_REF]. It is a simplification of the original MCMC sampling algorithm in which instead of starting Markov chains from random configurations and waiting until equilibrium is reached, each chain is initialized with a data sample, and only a few N MC Gibbs sampling steps are applied before evaluating the gradient. In practice, we set N chains = N batch , and for a given SGD step, we use the same data samples for evaluating the data average of Eqn. (4.1) and for initializing the MCMC chains that will be used; the gradient therefore quantifies a 'contrast' between the initial data and the chains that have 'diverged' away from them. The intuition behind CD is that if we have P ∼ P d , the Gibbs sampling leaves both the model and data distribution invariant, such that the gradient vanishes. Conversely, if we update the parameters such that the Gibbs sampling step(s) leave invariant the data distribution, we should bring P close to P d . For instance, for a data set constituted by two handwritten digits (a 0 and a 1), CD learns by 'digging' the energy landscape around the two original samples, see Fig. (4.1). More formally, Bengio and Delalleau later constructed a formal (ie that minimizes D KL (P d |P 0 )). Best results are obtained when the {β r } are not evenly spaced, as P β can change slowly or abruptly with β, e.g. at phase transitions; we present our approach for dynamically adjusting the β in the next section.

PT sampling-based training with two replica of the system at β = 0 and β = 1 gracefully solves the mixing problem and subsequent divergence problem in the toy data set presented above for PCD, see Fig. 4.3. Indeed, the system at β = 0 samples at each step visible layer configurations 00,01,10,11 with equal probability 1 4 ; therefore, a Markov Chain at β = 1 stuck in 00 may swap its configuration its configuration with a 11 at any time. The acceptance rates of Eqn. 4.3 allow to maintain balance between the 4 possibles configurations: configurations 01, 10 at β = 0 are less likely to be swapped to β = 1 than 00,11. PT training was shown to be superior to regular CD/PCD training in terms of likelihood improvements in numerous cases [START_REF] Desjardins | Tempered markov chain monte carlo for training of restricted boltzmann machines[END_REF][START_REF] Desjardins | Adaptive parallel tempering for stochastic maximum likelihood learning of rbms[END_REF][START_REF] Cho | Parallel tempering is efficient for learning restricted boltzmann machines[END_REF]. In practice, although accepting moves with Metropolis rates guarantees unbiased samples, the acceptance rates can be very low when P 1 and P 0 are very different. In that case, large number of replica N R (10 to 40) are required to obtain significant acceptance rates, even for intermediate values of N ∼ 10 2-3 . Moreover, the above intuitive picture can become incorrect when entropic effects are taken into consideration: the particles may encounter entropic barriers at β = 0 that break ergodicity. Indeed, if one of the modes has lower energy but higher diversity than the others (e.g. a mixture of two 1D gaussians with σ 1 >> σ 2 ), it will completely dominate at low, non-zero β, and there will be no way for a particle lying in other modes at β = 0 to climb and reach β = 1. In physicist's terms, Parallel Tempering does not work whenever a system undergoes a first order phase transition. For instance, consider a simple binary data set drawn from the following Mixture of Independent distribution:

P(v) = 1 3 3 ∑ k=1 e g k ∑ N i=1 v i (1 + e g k ) N (4.4)
Where

g k = log µ k 1-µ k
, and µ 1 = 0.1, µ 2 = 0.5, µ 3 = 0.9. It is a trimodal distribution, with modes differentiated by their average activity m = 1 N ∑ N i=1 v i . The induced distribution P(m) has three peaks at µ 1 , µ 2 , µ 3 of identical area, see Fig. (4.5 b). We now argue that an RBM trained to reproduce P(v) cannot be sampled from using Gibbs or PT MCMC sampling. Clearly, whenever N is large, no transitions between the three modes are observed and Gibbs sampling as for β < 1 the overwhelming majority of configurations have m ∼ 0.5 and the two other peaks are not populated. Moreover, even at β ∼ 1 -ǫ N where all peaks are populated the intermediate regions µ 2 < m < µ 3 , µ 1 < m < µ 2 are never populated, such that there are no path from one mode to the other. In practice, we indeed observe that training with Gibbs and PT fails, whereas Augmented Parallel Tempering (APT, introduced below) trivially works, as P 0 = P 1 , see panel c. This counter-example may be ubiquitous in real data sets. First, whenever a mode has higher entropy than the others (such as mode 2 here), we expect it to dominate at low β. In MNIST, we have observed for instance that the set of digits 1 has much lower entropy that the others, such that they are unseen at low β. More broadly, whenever the system undergoes a first-order phase transition, i.e. when β essentially changes the relative proportion of each mode but not their location, we expect PT to fail.

Methods not based on sampling

Finally, we briefly mention training methods that are not based on sampling. The moments can be evaluated using analytical approximations, such as the mean-field approximation [START_REF] Anderson | A mean field theory learning algorithm for neural networks[END_REF], loopy belief propagation, TAP expansion, see [START_REF] Nguyen | Inverse statistical problems: from the inverse ising problem to data science[END_REF] for a review. For instance, for BM with binary units taking values ±1, the first and second moments are, in the mean-field approximation:

C ij ≡ f ij -f i f j = -J -1 ij f i = tanh h i + ∑ j J ij f j (4.7)
At fixed f i , f ij , these equations can be inverted to obtain directly an estimate for the fields and couplings. In the case of BM, mean-field like approximations often give reasonable estimates for the interaction matrix, but they are in general not generative, i.e. sampling from the distribution does not reproduce the moments from the data. Indeed, these approaches are justified only in the limit of weak interactions or of tree-like graphs of interactions. More recently, Cocco and Monasson proposed an Adaptive Cluster Expansion (ACE) for computing the moments [START_REF] Cocco | Adaptive cluster expansion for inferring boltzmann machines with noisy data[END_REF][START_REF] Cocco | Adaptive cluster expansion for the inverse ising problem: convergence, algorithm and tests[END_REF][START_REF] Barton | Ace: adaptive cluster expansion for maximum entropy graphical model inference[END_REF], that is justified when the interaction graph is sparse. Though the computational cost is much heavier than mean-field or TAP approximations, ACE can correctly reproduce the data distribution, which is crucial for generative or scoring purposes.

In the case of RBM, the mean-field equations can be solved by fixed point iteration and be used to compute the gradient [START_REF] Welling | A new learning algorithm for mean field boltzmann machines[END_REF]; Tielemann and Hinton however showed that they produce neither meaningful features nor digits. More recently, Gabrie et al. showed that Thouless-Anderson-Palmer (TAP) expansion could retrieve meaningful features, and that the solutions of the TAP fixed point equations are reminiscent of original data samples [START_REF] Gabrié | Training restricted boltzmann machine via the? thouless-anderson-palmer free energy[END_REF][START_REF] Tramel | A deterministic and generalized framework for unsupervised learning with restricted boltzmann machines[END_REF]. TAP-based learning algorithms could be interesting for training RBM on proteins, as strong regularization is often used in that case; such that interactions are relatively weak. Generalization of ACE to RBM could be interesting as well for this purpose.

BM and RBM can also be trained using different objectives than maximum likelihood, such as pseudo-likelihood maximization (PLM) or minimum probability flow [START_REF] Sohl-Dickstein | New method for parameter estimation in probabilistic models: minimum probability flow[END_REF]. In particular, BM trained by PLM were found very successful in the context of structure predictions in proteins [START_REF] Ekeberg | Fast pseudolikelihood maximization for directcoupling analysis of protein structure from many homologous amino-acid sequences[END_REF].

augmented parallel tempering

Principle

In an attempt to overcome the issues found in CD, PCD or PT sampling, we propose a new sampling algorithm, Augmented Parallel Tempering. It shares benefits with both CD and PT learning. As a starting point, we recall first that although Parallel Tempering is well suited for exploring an unknown energy landscape, our sampling problem is substantially easier because we already know where to look: samples should be located close to the data. We would like to use this available information very much like Contrastive Divergence, but within an unbiased framework. To this end, we propose to learn P 0 from data using a Mixture of Independent model (MoI):

P 0 (v) = Z ∑ z=1 ∏ i P 0 (v i |z)P 0 (z) (4.8)
MoI are directed graphical models, can learn multimodal distribution and are relatively simple to fit to data using the Expectation-Maximization algorithm, combined with some tricks such as KM++ initialization [START_REF] Arthur | k-means++: The advantages of careful seeding[END_REF] and Split-Merge 64 the moment evaluation problem P 0 (z), P 0 (v i |z) is equivalent to a RBM with a single categorical hidden unit z with parameters:

g 0 i = log v i d 1 -v i d w MoI i (z) = log P(v i = 1|z) 1 -P(v i = 1|z) -g 0 i g z (z, 0) = log P 0 (z) -∑ i log [P(v i = 1|z)(1 -P(v i = 1|z))] (4.9) 
Where we chose arbitrarily, but without loss of generality the g 0 i as in PT. Then, we define the augmented RBM architecture shown in Fig. 4.6b: one visible layer, the RBM hidden layer and the mixture model node. At intermediate β, its distribution writes:

P β (v, h, z) = 1 Z β exp ∑ i βg i + (1 -β)g 0 i + ∑ µ -βU µ (h µ ) -(1 -β)U 0 µ (h µ ) +g z (z, β) + βh T Wv + (1 -β)z T W MoI v (4.10)
Where U 0 µ are chosen as in PT and g z (z, 1) = log P 0 (z), such that P 1 (z) = P 0 (z). By construction, the marginal distributions P 1 (v) and P 0 (v) match respectively the RBM and MoI marginal probabilities. Crucially, g z (z, β) is not necessarily linear, because the marginal P β (z), and thus the probabilities of each mode would not be preserved. For instance, if W = 0, the linear interpolation

g z (z, β) = g z (z, 0) + β [g z (z, 1) -g z (z, 0)] gives P β (z) ∝ P 0 (z) ∏ i P(v i = 1|z) β (1 -P(v i = 1|z) 1-β ,
which can brutally deviate from its initial/final value. In fact, some modes z can be completely erased at intermediate β, see Fig. (4.7). Therefore, a particle lying in z cannot be swapped to β, and is trapped either below or above β, resulting in poor ergodicity and slow mixing. Instead, we use a polynomial interpolation of the form:

g z (z, β) = g z (z, β) = g z (z, 0) + β [g z (z, 1) -g z (z, 0)] + D ∑ k=0 β(1 -β)(2β -1) k C(k)g (k) z (z) (4.11)
the moment evaluation problem ties for the mini-batch of Markov chains and ⊙ the elementwise product, we obtain the following update rule for g z (z):

g z (z) → g z (z) + ρ(M + ) T [P(z)(1 -P(z)) + ǫ1] ⊙-1 ⊙ M + (1P 0 (z) -P(z)) (4.13)
Where ǫ is set to 1 

Choice of inverse temperatures

A common rule of thumb for choosing {β r } in physical simulations is to set β such that the average acceptance rates AR r are approximately uniform across all pairs of replica. To this end, the following heuristic works well in practice and adds limited computational overhead. We define a set of 'springs stiffness' between pairs of replicas as, and their associated 'elastic energy' as:

K r = max 1 - AR r 1 N R -1 ∑ r ′ AR r ′ , 0 E ({β r }) = 1 2 N R -1 ∑ r=0 K r (β r -β r+1 ) 2 (4.14)
K r are zero if the swap (r, r + 1) have larger acceptance rate than average, and positive elsewhere. We then update the β r so as to minimize the 'elastic energy', with the boundary conditions

β 1 = 0, β N R = 1.
Intuitively, it moves closer pairs of inverse temperature (β r , β r+1 ) that have low swap acceptance rates, thus regressing it to the mean value. The average acceptance rates are computed using the current mini-batch and exponentially smoothed, and the update writes: β (t+1) = lr β arg min E + (1 -lr β )β (t) . Lastly, the total number of replica N R is adjusted dynamically during training so as to maintain high average swap acceptance rates. Starting from N R = 2 at the beginning of training, new replica are spawned so as to maintain an average acceptance rates above some target value, e.g. 0.3. The new replica is added at inverse temperature 0 and its Markov chains are initialized with the previous β = 0 samples. Additionally, to anticipate the subsequent readjustment of the β's, we largest eigenvalue of Q. Starting from N MC = 1 step between each gradient update, we increase N MC until τ < τ max where e.g. τ max = 10, and decrease N MC by 1 if τ ≤ τ max N MC N MC -1 . Note that τ cannot be identified directly with the true convergence time of the Markov Chain, as z (t) is not itself a Markov Chain; τ is only a lower bound, as it does not take into account intra-mode thermalization time, nor memory effect such as back-and-forth swaps between replica. Nonetheless, it is easier to interpretate and much less costly to evaluate than the autocorrelation function.

Results

We first compare Gibbs, PT and APT sampling on a RBM with 400 dReLU hidden units trained on MNIST. Clearly, APT improves over PT: as seen from Fig. 4.9(a,b), samples at lower β are much closer to the target distribution, resulting in higher swap rates and shorter trajectories in the β ladder (Fig. (a) Performance drops with trivial data transformation. As discussed in the literature [START_REF] Cho | Enhanced gradient and adaptive learning rate for training restricted boltzmann machines[END_REF], the naive SGD algorithm for RBM with Bernoulli hidden units gives much worse results on 1-MNIST (i.e. MNIST with all pixels flipped) than on MNIST, see likelihood curves in Fig.

(5.1)A. As seen from panel B, this is because at the end of the training, a significantly larger number of hidden units are either always active or silent ( h µ ∼ 0/1); these units are therefore essentially useless in practice, as they are compensated by the fields. This 'inactivation' can occur when the distribution of input I µ shifts quickly (e.g. its mean increases) and the field g µ are not compensated fast enough. Once a hidden unit is inactivated, both gradients over g µ and w iµ cancel out, such that it stays inactivated. For instance, a small random move w iµ → w iµ + 0.01 * N(0, 1) yields a shift of mean of order 0.01 × ∑ i v i 2 . For MNIST and 1-MNIST, this gives respectively 6 and 24; moves are therefore much larger for the later and inactivation is more frequent. Reducing the learning rate could overcome this issue, but it would slow learning considerably.

(b) Several ReLU hidden units do not learn The same problem can be observed with ReLU hidden units. For a given sample, the initial input distribution

I µ ∼ N (0, 1) × 0.01 × ∑ i v i 2 ,
which can be fairly negative. If a hidden unit has initial inputs significantly below its threshold, its activity will be very small, and so are the gradients with respect to w iµ and θ µ . It will therefore learn slower than the others; if not at all. This is seen from the evolution of the weight amplitude

W µ = ∑ w iµ 2 in Fig. (5.
2): some weights grow very quickly whereas others lag behind. We note that this effect is dynamical rather than a characteristic of the optimum. Indeed, if 

a new reparameterization trick for restricted boltzmann machines

In both Bernoulli and Gaussian hidden units, changes in one parameter must be accompanied by another change to maintain the hidden unit activity. This covariate shift phenomenon [START_REF] Shimodaira | Improving predictive inference under covariate shift weighting the log-likelihood function[END_REF] is general to all neural network, and an interesting solution, batch normalization, has been recently proposed for feedforward networks [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF]. The idea is to reparametrize the network such that all intermediate activities have zero mean and unit variance. For the quadratic potential, we adapt this idea and choose γ µ and θ µ such that:

h µ (v) d = 0 , Var[h µ (v)] d = 1 (5.1)
where Var denotes the variance. These implicit equations over γ µ , θ µ can be solved analytically:

γ µ = 1 + 1 + 4 Var[I µ (v)] d 2 , θ µ = I µ (v) d ≡ ∑ i w iµ v i d (5.2) 
Since γ µ , θ µ must be updated after each SGD step and evaluating Var[I µ (v)] d using the entire data set is computationally expensive, we compute it using only the current mini-batch (before performing the gradient update), and use an exponential moving average over γ µ . Moreover, since γ µ , θ µ are functions of w, the gradients with respect to the weights must be updated accordingly as:

∂ ∂w iµ L ← ∂ ∂w iµ L + ∂γ µ ∂w iµ ∂ ∂γ µ L + ∂θ µ ∂w iµ ∂ ∂θ µ L (5.3)
Which gives, after taking derivative of Eqn. 5.2:

∂L ∂w iµ = v i h µ d -v i d h µ d -v i h µ m -v i d h µ m + Cov I µ (v), v i d 1 + 4Var[I µ (v)] d h 2 µ d -h 2 µ m
(5.4) Eqn. 5.4 generalizes the centering trick to Gaussian hidden units. Crucially, the normalization condition Eqn. 5.1 guarantees that each gradient (and hessian) component are of order 1 regardless of the size of the network, contrary to Eqn. 4.1. The same idea can be adapted for dReLU potentials, but with significant technical complication. First, the potential must be reparameterized to express the two invariance conditions in terms of two independent parameters. Second, the condition h d = 0 cannot be satisfied without loss and generality and must be slightly changed. Lastly, solving analytically Var[h] d is impossible due to the non-linearity of the transfer function; instead a fixed-point equation over γ µ is derived. Interested reader are refered to Annex A.3 for the technical details.

results

We now evaluate generative performance improvements. RBM with various potentials, sampling methods and SGD parameters were trained on the MNIST and Caltech Silhouettes dataset. We run SGD for 40 (resp. 1000) epochs, with an initial learning rate lr, and an a exponential decay of the learning rate to lr f = 10 -3 lr after 25% of the updates. The partition function is evaluated using Annealed Importance Sampling [START_REF] Neal | Annealed importance sampling[END_REF], n β = 510 4 , M = 100. As shown from Tables 5.1,5.2, training benefits from dReLU hidden units, better sampling and reparametrization. The most important factor is the choice of hidden unit potentials and parametrization. Surprisingly, better sampling is not crucial for these two data sets provided that the learning rate is properly annealed. Compared to over studies, the values of up to -65 nats for MNIST are significantly higher than most reports in the literature which are around -80 nats, both with undirected graphical models (RBM, DBM,...) [START_REF] Salakhutdinov | Learning deep boltzmann machines using adaptive mcmc[END_REF] and variational autoencoders [START_REF] Sønderby | Ladder variational autoencoders[END_REF][START_REF] Mescheder | Adversarial variational bayes: Unifying variational autoencoders and generative adversarial networks[END_REF]. Similarly, 100 continuous hidden units performs better for Caltech Silhouettes than 4000 Bernoulli hidden units (-107 nats as reported in [START_REF] Cho | Enhanced gradient and adaptive learning rate for training restricted boltzmann machines[END_REF]). These results must be taken with caution, as the AIS procedure can result in large overestimation of the likelihood. However, we did find consistent results with i) larger M, n β , ii) another implementation of AIS and iii) the reverse AIS procedure, which underestimates the likelihood. This suggests that despite their simple architecture, RBM can be very effective generative models provided a proper training algorithm is used. • Careful initialization matters. We initialize fields from the independent model, and weights as N 0, σ 2 = 0.01 N , so as to avoid early hidden units saturations.

Gibbs (N

• Parameterization is critical: highest performance and best results were obtained using a dynamic reparametrization trick, chosen such that hidden units have h µ ∼ 0, Var[h µ ] = 1. When using it, dReLU potentials systematically outperform Bernoulli and quadratic potentials. If no regularization over the weights is used, the simple Gaussian gauge is enough. Otherwise, a lengthy computation is unfortunately required, see Annex A.3.

• In general, Persistent Contrastive Divergence, combined with a proper annealing procedure of the learning rate is a fairly reliable gradient approximation scheme. One must however play with the number of gradient updates until a satisfactory result is reached, as there is currently no way to know in advance how many updates are required. Moreover, no simple early stopping procedure exists, as the likelihood is noisy and costly to evaluate. At the expense of tougher programming, gains -or at least guarantees -can be obtained using Parallel Tempering or Augmented Parallel Tempering, a new method introduced in this thesis. APT is a principled way to overcome the main limitation of MCMC sampling, namely its inability to explore efficiently multimodal, non-connected data distribution. APT consistently outperforms PT, but we have yet to find real-life situations where APT finds results that cannot be obtained by using PCD with many Gibbs steps, many gradient updates and slowly annealing learning rate.

Several directions can improve the current developments. First, in our APT implementation, the mixture model is fitted first to the data, and remains fixed. We have also tested variants where the mixture model is dynamically fitted to the RBM samples rather than to the data; swap rates were slightly higher but similar results were obtained. An interesting application of this procedure is the case where N >> M: we can dynamically fit a MoI to the hidden layer, which could allow decent thermalization even when N is very large. Another possibility is to use Coupled Simulated Tempering [START_REF] Salakhutdinov | Learning deep boltzmann machines using adaptive mcmc[END_REF] instead of Parallel Tempering; it could significantly reduce the computational burden.

Altogether, we have reported several algorithmic improvements for training RBM that significantly improve their generative performance. Interestingly, for the MNIST data set, the likelihood scores from RBM are significantly higher than in the scores reported in the literature that were obtained with deep directed graphical models such as variational autoencoders. Though a careful validation of the likelihood scores and further experiments are required, this work suggests that shallow undirected models, which are often easier to interpretate can perform on-par with deep directed graphical models. Future prospects include generalizing to other undirected graphical models, and more broadly designing new learning algorithm that associate the expressivity of undirected graphical models with the sampling efficiency of directed graphical models.

Part III S TAT I S T I C A L M E C H A N I C S O F R E S T R I C T E D B O LT Z M A N N M A C H I N E S

We have presented in Section 3.6 a rich phenomenology of behaviors for RBM trained on real data. When tested on MNIST, a nontrivial real data-set, RBM can learn different types of representations depending on the training and model parameters. Moreover, in some cases, they can learn surprisingly well such complex datadistribution despite their very simple architecture. This phenomenology raises several questions. Firstly, how can such simple networks generate a complex distribution with a large variety of local minima, matching the original data points? Secondly, why do some hidden unit potentials give good results, whereas others do not? Lastly, can we connect this behavior to the one of the Hopfield model, corresponding to the case of quadratic hidden unit potential? It is hopeless to provide analytical answers to these questions in full generality for a given RBM with parameters fitted from real data. However, statistical physics methods and concepts allow us to study the typical energy landscape and properties of RBM drawn from appropriate random ensembles. In this part, we will first review some background on network-based models of associative memory.

We then present an ensemble of Random-RBM inspired from Hopfield's work and based on the main properties of RBM trained on real data. We present theoretical results and phase diagram, and compare theoretical predictions with RBM trained on real data.

B A C K G R O U N D O N N E T W O R K -B A S E D A S S O C I AT I V E M E M O R Y M O D E L S

the hopfield model of associative memory

We present first the Hopfield network, originally studied by Little in 1974 [START_REF] Little | The existence of persistent states in the brain[END_REF] and popularized by Hopfield in 1982 [START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF]. The original task was to design content-addressable memory systems based on brain-like parallel architectures -and conversely, understand how neural network could store memories. It was initially defined as the following dynamical system. We consider a set of N binary (McCulloch-Pitts) neurons, with associated activities S i ∈ {-1, 1}1 , modeled as either silent S i = -1 or spiking at maximum rate S i = 1. Let J ij , 1 ≤ i < j ≤ N a neural connectivity matrix modeling the synaptic couplings. Positive and negative entries correspond respectively to excitatory and inhibitory synapses. We consider the following asynchronous evolution of neural activity:

S i ← Sign( ∑ j =i J ij S j ) ≡ Sign(I i ) (6.1)
Eqn. (6.1) defines a dynamical system in which each neural state is updated depending on its input received: the neuron is activated when the total input is positive and not otherwise. Let ξ iµ ∈ {-1, 1}, µ = 1..M a finite set of M 'patterns' of neural activity that ought to be stored within the system. For simplicity, we assume here that each memory entry is drawn randomly and independently from the others P(ξ iµ = 1) = P(ξ iµ = -1) = 1 2 . Then provided that: Each memory state S i = ξ iµ is a fixed point of the dynamical system. Indeed, starting from a memory state with e.g. µ = 1, the input received by neuron i writes:

J ij = ∑ µ ξ iµ ξ jµ (6.2)
I i = ∑ j =i J ij ξ j1 = ∑ j =i,µ ξ j1 ξ jµ ξ iµ = ξ i1 (N -1) + ∑ j =i,µ =1 ξ j1 ξ jµ ξ iµ (6.3)
Since each memory is drawn randomly from the others, they are quasiorthogonal from one another, such that ∑ l ξ iµ ξ iµ ′ ∼ √ NN (0, 1). It follows that the first term in Eqn. (6.3) is of order N and same sign as ξ i1 , whereas the second term is of order √ N M << N if M is finite (or of order log N) and N is large. Therefore, Sign(I i ) = ξ i1 and the pattern is stable. Interestingly, the memory is also marginally stable: starting from a neural state sufficiently close to ξ i1 (essentially with overlap ∑ S i ξ i1 ∼ O(N)), the network dynamic also converges to the memory state. The Hopfield network can therefore be seen as a content-addressable memory: a dynamical system in which each memory is stored as an attractor that can be queried with an initial cue (a small part of memory) to retrieve memories. This new memory concept raises several questions. Firstly, how robust is the memory with respect to noise, as is the case in biological neural networks. Indeed, biological neurons are inherently stochastic, and the deterministic update Eqn. (6.1) is not realistic. A more reasonable model is to assume a probabilistic response, in which the neuron is activated with logistic probability:

P(S i = 1|I i ) = 1 1 + e -βI i (6.4)
The noise level is controlled by the 'inverse temperature' β: small and large β correspond respectively to pure noise and pure deterministic behaviors. Secondly, what is the capacity of the memory system, i.e. how many systems can be retrieved? As seen from Eqn. (6.3), trouble is expected when M is of order N. Thirdly, is the system specific, i.e. are all attractors of the dynamical system stored patterns? In particular, it is easy to show that the so-called spurious states, defined as:

Ξ i,{µ 1 ,µ 2 ,µ 3 } = Sign ξ iµ 1 + ξ iµ 1 + ξ iµ 1 (6.5)
are stable under the noiseless dynamics, despite a finite overlap with all three patterns (∑ i Ξ i,{µ 1 ,µ 2 ,µ 3 } ξ iµ 1 ∼ 0.5N). More generally, any finite combination of L patterns with L odd is also a stable state of the dynamic. This suggests that false memories could arise, but the subsequent error rate in memory retrieval is unknown. In his original paper, Hopfield addressed these questions with numerical simulations, and showed in particular that (i) the memory is stable with respect to noise and asymmetry in neuronal couplings J ij (ii) the system can store about M ∼ 0.15N patterns (iii) most initial configurations converge toward one of the original patterns.

statistical mechanics of associative memory networks

The first theoretical results supporting these observation were obtained by Amit, Gutfreund and Sompolinsky (AGS) in 1985 [START_REF] Amit | Storing infinite numbers of patterns in a spin-glass model of neural networks[END_REF][START_REF] Amit | Spin-glass models of neural networks[END_REF][START_REF] Amit | Statistical mechanics of neural networks near saturation[END_REF] using the replica theory, a statistical mechanics tool developed for studying disordered materials [START_REF] Mézard | Spin glass theory and beyond: An Introduction to the Replica Method and Its Applications[END_REF].

The connection with statistical mechanics between the Hopfield model can be seen as follows. We first define the following Hamiltonian over neural configurations S ∈ {-1, 1} N and its associated Boltzmann distribution:

H(S) = - 1 2N ∑ i,j ∑ µ ξ iµ ξ jµ S i S j P T (S) = e -1 T H(S) Z T (6.6)
Within this framework, the noiseless and noisy update rule of Eqn. (6.1,6.3) directly correspond to the zero-temperature and the finite temperature (with β = 1 T ) Monte Carlo Gibbs update of the probability distribution (6.6). In particular, a recall trajectory using the noisy update converges toward a sample from the probability distribution (6.6). Therefore, the questions raised above can be answered by studying what are the 'typical' macroscopic configuration states dominating the system, and how do they vary with T and α ≡ M N . In this language, the Hopfield network behaves correctly as an associative memory if the probability distribution concentrates around the original patterns ¸µ. This way, a dynamic with any initial configuration will quickly converge around one of the patterns.

background on network-based associative memory models

In particular, the StatMech framework allows to understand easily why the spurious states are not problematic in practice for finite M. First, we rewrite the Hamiltonian as:

H = - N 2 ∑ µ m µ (S) 2 (6.7)
Where the overlap (or magnetization) is defined as m µ (S) =

∑ S i ξ iµ N ∈ [-1, 1]
. Their energy can be computed analytically as:

E L = - L 2 2L-1 L -1 L-1 2 2 (6.8)
Which is significantly higher for L > 1 (e.g. E 3 = -3N 4 ) than for the memory states L = 1 (E 1 = -1 2 ). Intuitively, this comes from the 'winner-takes-all' structure of the Hamiltonian. Since the patterns are essentially orthogonal and the neural state has fixed norm N, one cannot have, say, both m 1 = 1 and m 2 = 1. In fact, starting from ξ 1 and switching one at a time the S i from ξ i 1 to ξ i 2 produces a set of configurations with |m 1 | + |m 2 | ∼ 1. By convexity of x → x 2 , the lowest energies are reached on the border m 1 = 1, m 2 = 0 or m 1 = 0, m 2 = 1, i.e. on the patterns. Therefore, the spurious states are almost non-existent provided that N and the inverse temperature β are sufficiently large. On the other hand, the case of M = O(N) is trickier, because though each spurious state has higher energy than the original patterns, their number is exponentially increasing with N, and they could be entropically favored. AGS addressed this question by assuming random uniform patterns and computing the average (over the patterns) free energy landscape of the model. They deduced the following phase diagram, reproduced in Fig. (6.1):

• A paramagnetic phase, dominant at high temperature, in which the system is mostly driven by noise. The system essentially explores almost uniformly the set of configurations, and the vast majority of these configurations have weak overlap with all patterns.

• A ferromagnetic or retrieval phase, dominant at low temperature and low ratio α, in which the system focuses on configurations near the patterns.

Starting from any random configuration, the system quickly converges toward one of the patterns.

• A Spin Glass phase, similar to the one of the Sherrington-Kirkpatrick model [START_REF] Kirkpatrick | Infinite-ranged models of spin-glasses[END_REF], in which a large number of metastable states with weak overlap with all patterns dominate.

• A metastable retrieval state, in which both ferromagnetic phase and spin glass phase coexist, but the latter is dominant. Memory retrieval is still possible provided the initial overlap with the memory is large enough. In particular, AGS find at T = 0 a critical capacity α c = 0.138, in very good agreement with the original numerical experiments of Hopfield. The AGS computation sparked interest in the study of associative memory models. Several researchers investigated more biologically plausible models [START_REF] Gerstner | Associative memory in a network of 'spiking'neurons[END_REF], how non-symmetrical or correlated patterns could be stored [START_REF] Amit | Information storage in neural networks with low levels of activity[END_REF][START_REF] Tsodyks | The enhanced storage capacity in neural networks with low activity level[END_REF][START_REF] Tsodyks | Associative memory in asymmetric diluted network with low level of activity[END_REF], and how other learning approaches could increase the total capacity of the network. A notable example is the pseudo-inverse rule, another way to encode memories into synaptic coupling [START_REF] Personnaz | Collective computational properties of neural networks: New learning mechanisms[END_REF][START_REF] Kanter | Associative recall of memory without errors[END_REF] showing robustness to correlations and increased capacity. Irrespective of the learning rule, Gardner showed that the maximum capacity was α c = 2 [START_REF] Gardner | Maximum storage capacity in neural networks[END_REF], a number that can be reached by the perceptron learning algorithm.

multitasking in associate memory networks

In the following two decades, most of the theoretical neuroscience community moved on to study other network models, such as feedforward architectures or chaotic neural networks, which are not relevant for our work. We move away from neuroscience and jump in time to a recent series of papers by Agliari, Barra (c) Low effective temperature As training converges, the system is effectively at very low temperature. This can be seen from the conditional average v i |h , shown in Fig. 7.1A: all conditional averages are essentially either black (0) or white [START_REF] Lecun | Deep learning[END_REF], with very few grey (intermediate) values. Another way to see this is to evaluate the pseudo-likelihood:

P L = log P(v i |{v j , j = i} (7.1)
The pseudo-likelihood quantifies how much a component varies given the other components. As seen from Fig. 7.1B it is fairly close to zero, suggesting that for a given configuration, all the visible units are essentially frozen.

(d) Compositional Representations At the end of the training, the hidden layer representation shows a compositional behavior, with 1 ≪ L ≪ M strongly activated hidden units for each sample. At the end of training, see Section 8.2 for details of the estimation. We briefly reinterpret the behavior of the Hopfield model in light of this connection. In the Gaussian-RBM model, each hidden unit is associated with a single pattern. Indeed, from Eqns. (7.2) and (3.4) we identify pattern magnetizations (overlaps) and hidden unit inputs:

I µ = √ Nm µ (7.3)
A recall state v = ξ i1 therefore corresponds to a hidden layer with hidden layer activity h *

1 (v) = √ N (see definition in Eqn. (3.7, 3.8)
). For all remaining hidden units,

m µ = 1 N ∑ i ξ i1 ξ iµ ∼ √ NN (0, 1), such that h * µ (v) ∼ N (0, 1).
To evaluate the stability of the recall state, let us write the outcome of a single Gibbs sampling update at zero temperature:

v → h = arg max P(h|v) = ( √ N, h * 2 , .., h * M ) h → v = arg max P(v|h) = Θ ξ i1 + 1 √ N ∑ µ =1 ξ iµ h * µ (7.4)
The recall state will be stable provided that the total input I i received by each visible unit is dominated by the one received from hidden unit 1. This is true if

1 √ N ∑ µ =1 ξ iµ h * µ ∼ M N < 1, e.g. for finite M.
Clearly, choosing a non-linear transfer function such as ReLU is a also very simple way to suppress this undesired input. A ReLU with a threshold θ of order 1 can silence off most of the h * µ , µ = 1, (e.g. θ = 2.58 to suppress about 99% of the hidden units), while not changing h 1 at leading order.

We note that one should be cautious and not attempt to derive an estimate of the critical capacity from this single equation only: as N, M → ∞, there is always at least one component v i whose input is dominated by the noise rather than by h 1 , such that the initial state is not perfectly stable. This may increase the value of the others h µ , which could in turn flip additional units, and so on, until the pattern is unstable. To obtain a rigorous metastability limit, we must study the free energy landscape with a replica computation, as in the Hopfield model.

Similarly, this back-and-forth sampling also allows to better understand the process of recalling a pattern from a partial cue. Starting from a visible layer configuration with small overlaps m µ , we compute the hidden layer activity h. Then, the visible units receive a larger input from the strongest hidden unit h max , and will tend to align to the corresponding pattern ξ µ . The overlap m max increases, and at the next iteration the dominant hidden unit will be even more strongly activated. The hidden units therefore follow a 'winnertake-all' dynamic, where hidden units compete for magnetization, and the one with largest initial overlap tends to reach maximum value. In this regard, the spurious states with L strong magnetizations correspond to an equilibrium between L competing hidden units; and it is clearly unstable. We can also interpret the Spin Glass phase from this perspective: when M is too large, no single hidden unit can dominate over the others, such that all magnetizations m µ are weak.

To illustrate how hidden units effectively interact with one another, we can compute the effective energy E eff (h) ≡ -log P(h) by summing over the visible layer configurations v, as was done for computing P(v) in Eqn. 3.3. We get:

E eff (h) = 1 2 ∑ µ h 2 µ -∑ i log cosh ∑ µ w iµ h µ (7.5)
Then, a 4th order Taylor expansion of the log cosh gives:

E eff (h) = 1 2 ∑ µ h 2 µ - 1 2 ∑ µ,µ ′ ∑ i w iµ w iµ ′ h µ h µ ′ + 1 2 ∑ µ,µ ′ h 2 µ h 2 µ ′ ∑ i w 2 iµ w 2 iµ ′ + ... (7.6) 
Where we have not written the terms in h 3 µ , h 4 µ . This expansion sheds light on two points. First, strong positive overlaps between patterns induce strong pairwise positive couplings; it is therefore difficult to find recall state configurations with one strongly activated hidden unit and not the other overlapping ones. This explains the observation by Hopfield that strongly correlated patterns tend to merge in practice, and cannot be recovered individually. Second, the binary nature of the visible units (which is responsible for high-order terms) induces an effective repulsion term between each pair of hidden units. The magnitude of the repulsion depends on the overlap between the supports of the hidden units: the repulsion is maximal for the Hopfield model (∑ i w 2 iµ w 2 iµ ′ = 1 N ) and much smaller when the patterns are sparse (∑ i w 2 iµ w 2 iµ ′ = p 2 N ). This illustrates why hidden unit may compete or collaborate depending on the statistics of the weight matrix. 

replica computation and mean-field equations

We now sketch the main steps of the replica computation. The goal it to compute the average free energy of the model:

f (α, {p i }, g, θ) ≡ lim N→∞ - 1 βN log Z α, β, {p i }, g, θ, {ξ iµ } , (7.7) 
where the overline denotes the average over the {ξ iµ } and the partition function reads

Z α, β, {p i }, g, θ, {ξ iµ } = ∑ v∈{0,1} N M ∏ µ=1 dh µ e -βE(v,h) . (7.8)
In particular, our goal is to evaluate the free energy as function of the number L of strongly activated hidden units, i.e. with h µ = √ Nm as in the Hopfield model, and of their associated magnetizations (supposed identical for simplicity). Following the replica trick log Z = lim n→0 Z n -1 n , we write the partition function for n replica (indexed by a) of the system sharing the same quenched weights:

Z n = ∑ v a i ∏ µ,a dh a µ e ∑ µ,a βU h (h a µ )+β ∑ i,a U v (v a i )-β ∑ i,µ w iµ ∑ a v a i h a µ (7.9)
We fix h a 1 = h a 2 = ... = h a L = m √ N, and assume the others are of order 1. As in the AGS computation, we treat both subsets separately, and average over the quenched disorder on the second subset first:

exp β ∑ i,µ≥L+1,a v a i h a µ w iµ ∼ ∏ i,µ≥L+1 exp β 2 p i 2N ∑ a,b v a i v b i h a µ h b µ (7.10)
Where we have used Var(w iµ ) = p i N , and have kept the extensive term in N only. We formally decouple the visible and hidden layer by introducing the order parameters:

q ab = ∑ i p i v a i v b i ∑ i p i ≡ 1 N ∑ i p i p v a i v b i (7.11) 92 
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And its Lagrange conjugate: qab , so as to replace the integrand as follows:

∑ v a i φ( ∑ i p i p v a i v b i , , h a , h b , ...) = ∏ a≤b d qab dq ab 2π/Nβ φ(q ab , h a , h b , ...) ∑ v a i exp -βN ∑ a≤b qab q ab -∑ i p i N p v a i v b i (7.12)
After some manipulation, the partition function rewrites:

Z n = ∏ a≤b d qab dq ab 2π/Nβ exp -βN ∑ a≤b qab q ab -βnL × U h (m √ N) × ∏ i   ∑ v a i exp -β ∑ a U v (v a i ) + β ∑ a≤b qab v a i v b i p i p + βm L ∑ µ=1 √ Nw iµ ∑ a v a i   × ∏ dh a exp -β ∑ a U h (h a ) + β 2 p 2 ∑ a,b q ab h a h b αN-L (7.13)
We now assume a replica-symmetric Ansatz, with both q ab , qab taking only two values (on diagonal and off-diagonal). They are parameterized as follows:

q ab = q + δ a,b C pβ qab = αβp 2 2r(1 -δ a,b ) + δ a,b r + B pβ ) (7.14) 
Where q, r, B, C are assumed to have finite limit as β → ∞. Note that in qab , we have 2r in the off-diagonal because the matrix has only lower diagonal indices a ≤ b. The parameterization is justified by their interpretation, see Section 7.2.1.

Then the three lines of Eqn. (7.13) can be computed. The first term gives, at leading order in β, N and n:

1 -nβL × U h m √ N - nβNα 2 [qC + rB] + O(n 2 ) (7.15)
The third term writes:

∏ a dh a exp -β ∑ a U h (h a ) + β 2 p 2 q( ∑ a h a ) 2 + βC 2 ( ∑ a h 2 a ) = Dz dh exp -βU h (h) + β √ qpzh + βC 2 h 2 n = 1 + n Dz log dh exp -βU (h) + β √ qpzh + β 2 Ch 2 + O(n 2 ) ≈ 1 -nβ Dz min h U (h) - √ qpzh - C 2 h 2 + O(n 2 ) (7.16)
Where Dz denote a Gaussian measure 1 2 , and where the last line was obtained by a saddle point approximation of the integral over h.

√ 2π e -z 2 
Similarly, the second one gives:

1 -nβ Dz min v U v (v) -m L ∑ µ=1 √ Nw iµ + z √ αp i r v - α 2 B p i p v 2 + O(n 2 ) (7.17) 
Finally, summing all contributions and keeping the first order term in n,N,β gives the following free energy value:

f (α, {p i }, g, θ) = L 2 m 2 + α 2 (q B + r C) - 1 N ∑ i Dz min v U v (v) -(mW + z √ αp i r)v - α 2 B p i p v 2 W= √ N ∑ L µ=1 ξ iµ α Dz min h U h (h) - C 2 h 2 -z √ pq h Where we used U µ (x) ∼ x→∞ x 2
2 , valid for both quadratic and ReLU potentials. The weight sum W = √ N ∑ L µ=1 w iµ takes integer values between -L and L.

Interpretation of the order parameters

Here, we have expressed the free energy as function of the number L and magnetization m of the strongly activated hidden units, and have introduced 94 the random-rbm model another set set of order parameters in the process: q, r, C, B. What is their physical interpretation? By taking the derivative of Eqn. (7.13) with respect to q ab , qab , we find a simple relation between the saddle point values of the order parameters and the moments of the Random-RBM distribution:

q = 1 N ∑ i p i p v i 2 ≈ β→∞ 1 N ∑ i p i p v i r = 1 M -L ∑ µ>L h µ 2 C = lim β→∞ βp N ∑ i p i p v i (1 -v i ) B = lim β→∞ βp M -L ∑ µ>L h 2 µ -h µ 2 (7.18)
In other words, q is the (weighted) mean activity in the visible layer, r is the square average activation of the weakly activated hidden units, and C,B are the rescaled variance of the visible (resp. hidden) units. C and B can also be interpreted as susceptibilities. Indeed, we have the following fluctuationdissipation relationship (similar as in Eqn. (3.8) ):

∂ < h µ |I µ > ∂I µ = ∂ ∂I µ dh µ e -U µ (h µ ) e βh µ I µ h µ dh µ e -U µ (h µ ) e βh µ I µ = βVar(h µ |I µ ) (7.19)
And similarly for the visible layer. Therefore, we have:

C = p N ∑ i ∂v i ∂I i B = p M -L ∑ µ ∂h µ ∂I µ (7.20)
C, B measure local gains, i.e. how a small additional input of one layer to the other affect the activity of the other layer.

Saddle-point equations

The previous computation was general for any hidden unit potential; we now focus on ReLU. We further assume that the p i have a density of the form ρ( p i p ), such that the average over visible sites can be replaced by an integral over x = p i p . Let:

H (k) (x) = ∞ z=x Dz(z -x) k (7.21)
The free energy rewrites:

f = L 2 m 2 + α 2 (q B + r C) - √ αpr ρ(x) √ x H (1) -g + α 2 B x + m W / √ α p x r W dx - αpq 2(1 -C) H (2) θ √ pq (7.22)
Deriving with respect to m,r,q,B,C gives the following set of self-consistency equations for the order parameters:

m = 1 L ρ(x) W H (0) -g + α 2 B x + m W / √ α p x r W dx (7.23) q = ρ(x) H (0) -g + α 2 B x + m W / √ α p x r W dx (7.24) C = √ p √ 2παr ρ(x) exp - 1 2 g + α 2 B x + m W 2 /α p x r W dx(7.25) r = pq/(1 -C) 2 H (2) (θ/ √ pq) (7.26) B = p 1 -C H (0) (θ/ √ pq) (7.27)
Briefly, we explain how to solve numerically these equations. In the case where p i = p ∀i, we use the change of variables M = m √ αpr , θ v = -

g+ αB 2 √ αpr , θ h = θ √ pq .
The above equations can be rewritten so as to express all order parameters m,r, q,B,C and model parameters α,g,θ as function of M,θ v ,θ h only. Therefore,
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the random-rbm model instead of varying α, g, θ and solving the equations by fixed-point iteration, we directly scan through M,θ v ,θ h to obtain a set of model/order parameter pairs of values (α, g, θ), (m, q, r, B, C). In the general case where the degree distribution is not uniform, we make the approximation g + α 2 B x + m W ∼ g + α 2 B + mW, justified when B is small (e.g. for large threshold), and repeat the procedure.

results

Effect of the non-linearity

We first study the non-sparse case with p = 1 and a single pattern L = 1, such that W = ±1. Moreover, we set the fields as g = -αB 2 to compensate for the asymmetry of 0-1 units and the ReLU. 1 . By symmetry H (0) (x) + H (0) (-x) = 1, we recover q = 1 2 , and the equations over B is decoupled from the other, such that we find three equations over m,C and r very similar to the original AGS computation (see Eqn 6.41-6.43 page 300 of [START_REF] Amit | Modeling brain function: The world of attractor neural networks[END_REF] ):

m = 1 2 erf m √ 2αr C = 1 √ 2πr exp - m 2 2αr r = 1 2(1 -C) 2 H (2) (θ √ 2) (7.28)
The only difference lies in the factors 1 2 in the magnetization (because m ∈ [- 1 2 , 1 2 ] for 0-1 units) and 1 2 H (2) (θ/ √ 2) in the noise equation. The later very quickly decays as θ → ∞, and illustrates how the thresholds damps the activity of the weakly activated hidden units. Since the change of variables m

→ m = m 2 , r → r = 2r H (2) (θ/ √ 2) and α → α = α 2H (2) (θ √ 2)
gives back the exact equations as in AGS, the phenomenology is qualitatively identical with the original Hopfield model, featuring a ferromagnetic phase and a spin glass phase. The critical capacity is given by:

α c (θ) = α AGS c 2H (2) (θ √ 2) (7.29)
the random-rbm model weight is 3 . Nonmagnetized hidden units have activities of the order of √ r ∼ √ p, and can be shutdown by choosing thresholds θ ∼ √ p; hence crosstalk between those units can be suppressed, allowing for large relative size α of the hidden layer. The input received by a visible unit from the large number of magnetized units is, after transmission through the dilute weights, of the order of L m p = 1 2 ℓ * m p; it can be modulated by a (positive or negative) field g ∼ p to produce any finite activity q in the visible layer, as soon as the effective temperature gets below ∼ p.

∑ i w iµ v i ∑ i |w iµ | ∼ 1.
         β = β p , g = p g θ = √ p θ, f = p f m = p 2 m, L = ℓ p r = pr, B = p B (7.30)
Under these scaling laws, the random weight variable

W i = √ N ∑ l p
µ=1 w iµ is a sum over l p terms, with a fraction p i = x i p are non-zero; in the limit p → 0, its probability law is well defined, given by the modified Bessel function of the first kind:

P ℓx i (W i = w ∈ Z) = e -lx i I w (lx i ) I α (x) = ∞ ∑ k=0 1 k!Γ(k + α + 1) ( x 2 ) 2k+α (7.31)
Then, rescaled free energy and saddle-point equations have a well-defined limit:

m = 2 ℓ ρ(x) W H (0) -g + α 2 B x + 1 2 m W / √ α x r W∼P ℓx (W) dx(7.32) q = ρ(x) H (0) -g + α 2 B x + 1 2 m W / √ α x r W∼P ℓx (W) dx (7.33) C = 1 √ 2παr ρ(x) exp - 1 2 g + α 2 B x + 1 2 m W 2 /α x r W∼P ℓx (W) dx (7.34) r = q/(1 -C) 2 H (2) ( θ/ √ q) (7.35) B = 1 1 -C H (0) ( θ/ √ q) (7.36) fℓ = - 1 8 ℓ m2 -gq - α 2 (q B + rC) + αq 2 θ √ q H (2) θ √ q (7.37)
Where in the last line, we injected the saddle-point values of the order parameters in the rescaled free energy. Under this low p regime, the phases mentioned above correspond to the three possible scenarios:

• Spin glass phase The global minimum of f is reached with m = 0.

• Ferromagnetic phase The global minimum is reached with m > 0, and ℓ * = 0. f ℓ is an increasing function of l. Typical configurations have a single hidden unit activated.

• Compositional phase The global minimum is reached with m > 0, and f ℓ is a non-monotonous function of l, reaching its minimum at ℓ * . Typical configurations have about ℓ * /p simultaneously activated hidden units.

A phase diagram can be derived as function of α, θ, g. Briefly speaking, given α, θ should be large enough (as in the finite p case) and | g| should be neither too large to penalize the ferromagnetic phase, nor too small to avoid the spin glass regime, see Fig. To validate this intuition, we propose to compute, through a real-replica approach, the average Hamming distance d (per pixel) between the visible configurations v (1) , v (2) minimizing the free energy (7.22) for two hidden configurations h [START_REF] Lecun | Deep learning[END_REF] , h [START_REF] Goodfellow | Deep learning[END_REF] sharing (ℓδℓ)/p hidden units among the ℓ/p strongly activated ones. We repeat the replica computation of the previous section but consider 2n replica of the system. In the first n replica, hidden units µ ∈ [1, L = ℓ/p] are strongly activated, and in the second n replica, hidden units µ ∈ [L -

L ′ = ℓ-δℓ p , 2L -L ′ ] are activated. The replica overlap q ab = ∑ i p i N p < v a i v b i > now takes three distinct values: q + C βp for a = b, q for a = b, with both a, b ∈ [1, n] or a, b ∈ [n + 1, 2n], or q ′ if a ∈ [1, n] and b ∈ [n + 1,
2n]; q ′ denotes the average overlap between configurations sharing δℓ/p strongly activated hidden units. Similarly, a hidden layer overlap between weakly activated hidden units r ′ = < h a µ >< h b µ > is introduced in the computation. Moreover, we add coupling terms of the form

J v ∑ i p i N p v a i v b i , and J h 1 M-L ∑ µ>L h a µ h b
µ (with a ≤ n and b > n or inversely) to the Hamiltonian. We then repeat the free energy computation and derivate with respect to J v , J h , in the limit J v , J h → 0 to obtain equations over q ′ , r ′ . Let η = r ′ r , and φ = q ′ q . We obtain the following equations:

φ = ρ(x)xdx Dz H (0) - g + α Bx/2 + 2 m(W + W 1 ) αrx(1 -η) -z η 1 -η 2 W 1 ∼P δℓx (W 1 ) W∼ η = (1 -φ)   DzH (2) θ/ √ q -z √ φ 1 -φ 2   H (2) θ/ √ q
Numerical results are shown in Fig. 8.3. The Hamming distance D monotonously increases from D = 0 for δℓ = 0 up to D = 2q(1q) (complete decorrelation of visible units) for δℓ = ℓ, in very good quantitative agreement with results for RBM trained on MNIST. Such gradual change have deep dynamical consequences. As seen from MCMC simulations of MNIST-trained RBM 4 , gradual changes may occasionally lead to another digit type, by passing through welldrawn, yet ambiguous digits. The progressive replacement of feature-encoding hidden units (small δℓ steps) along the transition path does not increase much the energy, and the transition process is fast compared to activated hopping between deep minima taking place in the Hopfield model. Studying quantitatively the Monte Carlo dynamics of Random-RBM model is an interesting lead for future work.

Q U A N T I TAT I V E C O M PA R I S O N W I T H R B M T R A I N E D O N M N I S T
In this chapter, we compare theoretical predictions from the Random-RBM ensemble and real RBM trained on MNIST. We first derive numerical proxies for the model parameters (p, β, g, θ,ρ(x)), then show results.

finding attractors in rbm trained on mnist

In RBM trained on real data, an attractor is defined as a local maximum of the marginal distribution P(v). Importantly, the attractors of P(v) are not necessarily the attractors of P(v, h); this is because at finite temperature, the entropy of the hidden layer matters. Though sampling from P β (v) is not possible in general, it can be done for integer β, see Section 13.1.2. In particular, when β → ∞, it can be shown that the zero temperature sampling Gibbs step is given by:

h µ ← E h µ |v v i ← Θ g i + ∑ µ w iµ h µ (8.1)
It is in general very difficult to enumerate all the attractors of the model, as there may be an exponential number of them. Here, we computed a subset of attractors for Figures 3.12 and 8.3 by starting from the train set configurations, and performing zero temperature sampling until convergence.

numerical proxies for control and order parameters

Several control and order parameters are well defined for R-RBM in the thermodynamical limit, but not for typical RBM trained on data. For R-RBM instances, }, but for RBM trained on data, the weights w iµ are never exactly equal to zero. Similarly, the number of strongly activated hidden units L is well-defined for R-RBM in the thermodynamic limit N → ∞ because their activity scales as √ N; but in general, all hidden units have finite activation. Proxies are therefore required to compare theoretical and numerical results. We consider 'consistent' proxies, giving back (in the large size limit), the original parameters for RBMs drawn from the R-RBM ensemble.

Participation Ratios PR

Participation ratios are used to estimate numbers of nonzero components in a vector, while avoiding the use of arbitrary thresholds. The Participation Ratio (PR a ) of a vector x = {x i } is

PR a (x) = (∑ i |x i | a ) 2 ∑ i |x i | 2a
If x has K nonzero and equal (in modulus) components PR is equal to K for any a. In practice we use the values a = 2 and 3: the higher a is, the more small components are discounted against strong components in x.

Number L of active hidden units

In both numerical simulations of R-RBM and on RBM trained on MNIST, we estimate L, for a given hidden-unit configuration h, through

L = PR 3 (h)
To understand the choice a = 3, consider a typical activation configuration h for a R-RBM :

h µ = m √ N if 1 ≤ µ ≤ L , √ r x µ if L + 1 ≤ µ ≤ M , (8.2) 
where the magnetization m and mean square activity r are O(1), and x µ are random variables with zero mean, and even moments of the order of unity. The first L hidden units are strongly activated (O( √ N) activity), whereas the 8.2 numerical proxies for control and order parameters 107 remaining N -L others are not (activations of the order of 1). Here, we assume L to be finite as N → ∞. One computes :

PR 2 (h) ∼ (Lm 2 N + (N -L)r) 2 Lm 4 N 2 + (N -L)r 2 = L × (1 + N-L N r Lm 2 ) 2 1 + N-L N 2 r 2 Lm 4 -→ N→∞ L(1 + r Lm 2 ) 2 , PR 3 (h) ∼ (Lm 3 N 3/2 + (N -L)r 3/2 ) 2 Lm 6 N 3 + (N -L)r 3 = L × (1 + N-L N 3/2 r 3/2 Lm 3 ) 2 1 + N-L N 3 r 3 Lm 6 -→ N→∞ L . (8.3)
Hence choosing coefficient a = 3 ensures that the participation ratio (a) does not take into account the weak activations in the thermodynamical limit, and (b) converges to the true value L if all magnetizations are equal.

Normalized Magnetizations

Given a RBM and a visible layer configuration, we define the normalized magnetization of hidden unit µ as the normalized overlap between the configuration and the weights attached to the unit:

mµ = ∑ i (2v i -1)w iµ ∑ i |w iµ | ∈ [-1, 1]
This definition is consistent with the Hopfield model. For R-RBM, we also have, in the thermodynamical limit, mµ =

2I µ p √ N
, where I µ is the input received by the hidden unit from the visible layer; m µ is O(1) for strongly activated hidden units, and O( 1 √ N

) for the others.

For a given configuration v, with L activated hidden units, the normalized magnetization of the activated hidden units m = m p/2 can be estimated as the average of the L highest magnetizations mµ .

Weight sparsity p

A natural way to estimate the fraction of non-zero weights w iµ would be to count the number of weights with absolute value above some threshold t. However, there is no simple satisfactory choice for t. Indeed, the fraction of non-zero weights should not depend on the scale of the weights, i.e. it should be invariant under the global rescaling transformation {w iµ } → {λ w iµ }. As the scale of weights vary from RBMs to RBMs and, for each RBM, across training it appears difficult to select an appropriate value for t. A possibility would be to use a threshold adapted to each RBM, e.g. t ∝ κ W 2 M , where κ would be some small number. Our experiments show that it is not accurate enough, due to the scale disparities across the hidden-unit weight vectors w µ . Rather than adapting thresholds to each hidden unit of each RBM, we use Participation Ratios, which naturally enjoy the scale invariance property. We estimate the fraction of nonzero weights through

p = 1 MN ∑ µ PR 2 (w µ ) For R-RBM with w iµ ∈ [-W 0 , 0, W 0 ] with corresponding probabilities [ p 2 , 1 - p, p 2 ], the estimator is consistent: p = p.
Other consistent estimators for p are possible, such as averaging the fraction of nonzero weights for a given visible unit, p i = PR 2 (w i ) M . For RBMs trained on MNIST, they typically have similar numerical values.

Weights heterogeneities

Not all visible units are equally connected to the hidden layer. To better capture this effect, one can study R-RBM with any arbitrary distribution of p i . Analogously to the homogeneous case a high sparsity limit is obtained when the average sparsity, p = 1 N ∑ i p i , vanishes. We define the distribution of the ratios pi = p i p in the p → 0 limit. In practice the ratios are estimated through

pi = ∑ i w 2 iµ 1 M ∑ i,µ w 2 iµ . ( 8.4) 
For a heterogeneous R-RBM, we have consistently pi = pi p = p i p . Looking at the histogram of values of pi across all RBM inferred on MNIST, we find a non-negligible spread around one, see Fig. 8.1. We also display for each visible unit i the average of pi accross all RBM inferred; we can see that the visible units at the border are indeed the least connected (smaller pi ), whereas the ones at the center are strongly connected (larger pi ). and in turn, the effective temperature of a given RBM can be deduced from the amplitude of its weights. For a R-RBM at temperature T:

W 2 = 1 M ∑ µ,i w2 iµ ∼ N→∞ p T .
We therefore estimate the temperature of a given RBM through

T = p 1 M ∑ µ,i w 2 iµ .
From this definition, it can be seen that the low temperature regime of the compositional regime, T ≪ p, is equivalent to W 2 ≫ 1. In RBM trained on MNIST, we typically find W 2 ∼ 7

Fields g

Similarly to the weights, the fields g i and normalized fields could be estimated respectively as:

ĝi = T ḡi ĝi = T p ḡi = ḡi 1 M ∑ µ,i w 2 iµ (8.7)
A naive estimate for the normalized field g would be to average the fields: ĝ = 1 N ∑ i ĝi . It is however not really meaningful, as the ĝi are extremely heterogeneous: for instance, the mean value over the sites i of a single RBM is equal to -0.48, and is comparable to the standard deviation, 0.40. This range of variation spans all the phases of R-RBM. To achieve quantitative predictions, we instead adjust the R-RBM parameter g so that q, the mean value of v i in the visible layer, averaged over thermal fluctuations and quenched disorder, matches the value 0.132 obtained from MNIST data. This gives ĝ p = -0.1725 for homogeneous R-RBM, and ĝ p = -0.21 for heterogeneous R-RBM. Again, a naive estimate for the normalized threshold θ would be the average θ = 1 M ∑ µ θµ but this estimate is not meaningful. Indeed, contrary to the R-RBM case, the inputs I µ of the hidden units µ are not evenly distributed around zero: E I µ = 0. Hence, even if the threshold is equal to zero, the activation probability can be different from 0.5. We take this effect into account by substracting the average value of the inputs from the average of θ, and find that the difference is equal to 0.33, with standard deviation 1.11. This range of value for θ again spans all phases. In order to use a well-defined value, we choose θ such that the critical capacity α R-RBM c (ℓ max ) = 0.5, where ℓ max ∼ 1.5 is the maximum average index number observed across all RBMs trained. This estimation gives θ ∼ 1.5.

results

We first evaluate the scaling law L ∝ ℓ p . Compared to Fig. 3.8, we add a regularization penalty ∝ ∑ µ (∑ i |w iµ |) x to control the final degree of sparsity; the case x = 1 gives standard L 1 regularization, while, for x > 1, the effective penalty strength ∝ (∑ i |w iµ |) x-1 increases with the weights, hence promoting homogeneity among hidden units. After training we generate Monte Carlo samples of each RBM at equilibrium, and monitor the average number of active hidden units, L, and the normalized magnetization, m. Figure 8.2(a) shows L vs. p, in good agreement with the R-RBM theoretical scaling L ∼ ℓ ⋆ p . Figure 8.2(b) shows that m is a decreasing function of ℓ = L × p, as qualitatively predicted by theory, but quantitatively differs from the prediction of R-RBM with homogeneous p. This disagreement can be partly explained by the heterogeneities in the sparsities p i in RBMs trained on MNIST, e.g. units on the borders are connected to only few hidden units, whereas units at the center of the grid are connected to many. Using the empirical heterogeneous degree distribution ρ(x) yields improved fit accuracy for both ℓ ⋆ and m.

D I S C U S S I O N

ReLU and Bernoulli RBM were shown empirically to be efficient as feature extraction algorithm, as well as good generative models. By studying an ensemble of RBM with random weights, we found theoretical insights consistent with these observations. The combination of sparse weights, low effective temperature, fields and non-linearities allows to drive RBM in a compositional phase, in which i) typical visible layer configurations drawn from the model have a simple hidden layer representation, with a few strongly activated hidden units ii) the probability P(v) is very rough, with a large diversity of local maxima arranged in a specific geometry. The phenomenology of Random-RBM matches well the one of RBM trained on real data, both qualitatively and quantitatively.

Beyond quantitative modeling, the compositional phase refines our understanding of how and why RBM work well:

• RBM are good feature extractors because in the compositional phase, there is a simple relationship between the typical configurations from P(v) and the weight matrix; and therefore between the real data used from training and the weights. Configurations are essentially generated by recombining the extracted features.

• RBM are good generative models because they can produce a large diversity of 'well-formed' (i.e. not noisy) configurations. In particular, the ability of RBM to generate configurations that are significantly different from the ones in the training set arises directly from this compositionality: high-probability attractors can be obtained by recombining features in a way that was unseen in the training data.

• Higher-order (i.e. non-linear) RBM outperform pairwise model because the non-linearity prevents the cross-talks between the hidden units, which can severely impair performance.

• In a compositional phase, one can transit from one attractor to the other by gradual changes of the hidden layer representation. Though a quantitative analysis is clearly desired, this may explain why RBM MCMC mix well in practice, and PCD is good enough.

quantitative comparison with rbm trained on mnist

Our work may be challenged both from a technical and a conceptual point of view. First, several technical shortcuts were taken:

• We used a simple uniform Ansatz for the magnetized solution m µ = m∀µ ≤ L, despite the fact that the real ground state is in general non- uniform, as seen from the case α = 0. Differences of order p are expected.

• We assumed a replica symmetric Ansatz, but it is known to be inexact at low temperature both for the Hopfield and SK models. Although quantitative differences are very small for the Hopfield model in practice, we acknowledge that a more cautious computation is required.

• A combinatorial diversity of solutions of the free energy minimization was found, but we have not checked how many of them are significantly contributing at finite temperature. In particular, it would be important to compute the average entropy S(T) so as to estimate an effective number of possible combinations.

Secondly, the scope of the computation is limited to simple cases. Random-RBM are a fairly crude model of real RBM: for instance, weights are not randomly distributed but often concentrated in regions, such that the overlaps between the patterns or their supports are not uniformly identical ∼ p 2 for all hidden units pairs. Patterns overlaps, which are also missing, are notably important for explaining correlations between hidden units. Though we acknowledge this limitation, we also argue that we are not trying to design an accurate model of RBM learnt from MNIST specifically, but rather to learn general properties of RBM trained on data. Moreover, the computation requires U (h) ∼ h 2 , and therefore it does not generalize to Bernoulli hidden units. Indeed, a ferromagnetic or compositional regime may be observed only if one or few hidden units can dominate over the ∼ αN → ∞ others; and therefore h must be unbounded. With Bernoulli hidden units, we speculate two different scenarios: either p ∼ 1 N , such that each hidden unit is effectively always in a finite N regime, or p ∼ 0.1 and there is a 'copy' mechanism, such that several hidden units share the same weights w iµ . Indeed, Nair and Hinton have shown that duplicating Bernoulli hidden units with identical weights and varying thresholds effectively resulted in a single ReLU-like hidden unit [START_REF] Nair | Rectified linear units improve restricted boltzmann machines[END_REF]; Bernoulli RBM may therefore work in practice just like ReLU RBM, provided the features are strongly overlapping. In our experiments on proteins, we have observed larger overlaps between hidden unit patterns for Bernoulli hidden units than Gaussian or ReLU, which is consistent with this hypothesis.

We have not studied explicitly the training dynamics in maximum likelihood. It would be interesting to study in particular the observed transition between Prototypic and Compositional representation. Moreover, it would also be important to understand why in some cases weight sparsity naturally arise from maximum likelihood as in MNIST and in others it does not, as in proteins (see next part). Since the publication of our paper, two works aimed at better understanding the dynamic of learning in RBM were recently published [START_REF] Decelle | Spectral dynamics of learning in restricted boltzmann machines[END_REF][START_REF] Decelle | Thermodynamics of restricted boltzmann machines and related learning dynamics[END_REF]; future work in this direction are welcome. Generalizations of our computation to deep models is also another important study. Nethertheless, regardless of the training procedure (maximum likelihood or other principle, regularization,...), a RBM will behave in a compositional phase provided that the weights are sparse. We will heavily rely on this property for modeling RBM trained on protein sequences by enforcing sparsity through regularization.

Part IV M O D E L I N G P R O T E I N S E Q U E N C E S W I T H R E S T R I C T E D B O LT Z M A N N M A C H I N E S

B A C K G R O U N D 9.1 context
Proteins form the basis of life. Proteins are large macromolecules constituted by sequences of amino-acids linked together by peptidic bonds. After transcription from the DNA, the protein, initially in a linear conformation, folds into a sequence-specific three-dimensional structure that defines its functional properties. Its unique shape allows the protein to interact selectively with other molecules or proteins with complementary shape in order to perform various tasks, such as catalyzing metabolic reactions, detecting biochemical stimuli, structuring the cell, transporting molecules,... Beyond this simple picture and despite decades of intensive research in structural biology, computational protein modeling and bioinformatics, we still have a limited mastery over the relationship between the sequence, structure and function of proteins. Indeed, several factors seriously limit our ability to emulate the physical processes underlying proteins life.

First and foremost, the space of possible proteins sequences is huge: with 20 different amino-acids, there are ∼ 10 130 possible sequence of length 100, which clearly makes exhaustive experimental characterization of all proteins impossible. Though impressive, this number would not be a barrier if only there were simple symmetry or continuity properties of the function mapping sequence to structure / function: after all, there is an infinity of possible electric charge and current spatial distributions, yet we can predict very accurately the induced electromagnetic field thanks to the Maxwell equations. This is because satisfying the constraints of space-time symmetries and continuity (in the sense of the Euclidian distance) leave very few candidate mappings; yielding relatively easy identification and very good predictive power. Unfortunately, the picture is not so simple for proteins, because high sequence identity does not necessarily imply structural similarity. On the one hand, two proteins, e.g. Kunitz domains from a bacterial (resp. eukaryote) organism may have as few as 20% sequence identity, yet have almost identical structure and function. On the other hand, a single mutation of amino-acid may completely impair a protein's ability to fold and function properly, resulting in potentially deadly genetic of a protein in complex often differs from its unbound structure, either due to conformation selection (i.e. another ground state is selected through the interaction) or induced fit (the ground state is perturbed by the interaction) [START_REF] Boehr | The role of dynamic conformational ensembles in biomolecular recognition[END_REF]. In practice, this can result in a large number of false positive solutions for docking.

These limitations have several very concrete practical consequences. Because we cannot predict systematically and accurately protein structures and complexes from their sequences only, it can be very hard to elucidate the behavior of complex protein networks. A famous example is the case of the Alzheimer disease, in which amyloid β protein aggregates form in the brain, causing neurons death and neurodegenerescence [START_REF] Goate | Segregation of a missense mutation in the amyloid precursor protein gene with familial alzheimer's disease[END_REF]. To this day, it remains unclear what is the cascade of molecular malfunction that triggers the accumulation, or even what is the original functional role of the Alzheimer Precursor Protein (APP, the protein that degenerates into amyloid plaques) in the first place [START_REF] Wang | A systemic view of alzheimer disease-insights from amyloid-β metabolism beyond the brain[END_REF].

Even for well-understood diseases, our practical ability to design drugs is also limited. Current docking algorithm are often good enough to design compounds that can bind very well to a target protein and inhibit its interactions with other proteins [START_REF] Arkin | Small-molecule inhibitors of protein-protein interactions: progressing toward the reality[END_REF][START_REF] Scott | Small molecules, big targets: drug discovery faces the protein-protein interaction challenge[END_REF]. However, because conformational changes within protein complexes are not well understood, it is very difficult to design drugs that, when complexed with a target malfunctional protein, can restore its original structure and functionality [START_REF] Bakail | Targeting protein-protein interactions, a wide open field for drug design[END_REF].

Finally, the ability to design artificial proteins with desired properties remains limited. The most commonly used protein strategy is Directed Evolution (DE), which mimics in vitro natural evolution cycle. Starting from an initial protein, a library of variants -each with a few mutations/insertions/deletionsis created, and these variants are expressed in organisms, e.g. on the surface of phages [START_REF] Smith | Phage display[END_REF]). The library is then subjected to functional selection: for instance, a target substrate is set on a solid support, and only the phages expressing a protein that strongly binds to the substrate stick on the support. The surviving phages are then amplified, and another cycle can be performed. DE techniques notably led to the development of therapeutic monoclonal antibodies, and were recently awarded the 2018 Chemistry Nobel Prize. The main limitation of DE is that it can only explore a limited region of the sequence space around the initial sequence, and therefore, one must start from an initial sequence that is already functional. This limits DE to the optimization of protein function (binding affinity, solvability, thermal stability,...) rather than to the development of radically new functionality.

Computational methods of Ab initio protein design have the potential to better explore the sequence space and have found interesting successes, but they are also limited in practice. Initial computational design were based on so-called threading algorithm, which are based on heuristic free energy functions that assesses whether a sequence is well fit to a given fold. The first successful Ab initio protein design simulations reported small artificial sequences whose structure was very close to the target natural [START_REF] Dahiyat | De novo protein design: fully automated sequence selection[END_REF] or artificial fold [START_REF] Kuhlman | Design of a novel globular protein fold with atomic-level accuracy[END_REF]. However, as for folding and docking, these heuristic often fail to take into account important effects, such as the role of competing folds. In particular, designing flexible protein parts such as loops, which are often key to binding function is challenging. Lastly, threading-based design of sequences with a target fold and high-binding affinity with some substrate requires knowledge of the protein complex, which is not always available. More recently, computational approaches using Molecular Dynamics or frameworks such as Rosetta have found encouraging successes [START_REF] Rohl | Protein structure prediction using rosetta[END_REF][START_REF] Khersonsky | Why reinvent the wheel? building new proteins based on ready-made parts[END_REF][START_REF] Huang | The coming of age of de novo protein design[END_REF] but designing new, large, folds remains exceptional [START_REF] Gonen | Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces[END_REF][START_REF] Bale | Accurate design of megadalton-scale two-component icosahedral protein complexes[END_REF]. Developing principled, accurate and affordable protein design strategies could lead to giant leaps for both basic research and industrial applications. For instance, new fluorescence calcium indicators similar to GCaMP [START_REF] Nakai | A high signal-to-noise ca 2+ probe composed of a single green fluorescent protein[END_REF] could help probing large biological neural networks at shorter time scales, whereas artificial ion channels could lead to new filtering water systems as efficient as our cell's.

In parallel to these developments, the last two decades have witnessed tremendous improvements in DNA sequencing techniques. As a consequence, the number of available protein sequences has exploded: there are currently ∼ 120 millions sequences on the UniprotKB database, of which only about 0.5% are annotated and have a known function (SwissProt database [START_REF] Consortium | Uniprot: the universal protein knowledgebase[END_REF]). This raises both important challenges and opportunities. On the one hand, we do not know what do most of these proteins do at all and it is crucial to develop automated structure and function prediction tools. On the other hand, the statistics of these sequences carry information about their underlying structure and function. For instance, amino-acid conservation suggests structural or functional importance, whereas correlation between amino-acid mutations can indicate proximity on the 3D structure. The main goal of coevolution is to develop systematic methods to unveil such properties. As such, coevolution lies at the interface between Bioinformatics, Statistical Physics and unsupervised Machine Learning, and our thesis takes place in this context. Important improvements over traditional methods of structural and functional predictions were recently brought by including coevolution forecasts. They will be reviewed briefly in section A. The starting point of coevolution methods is the observation that all existing natural protein sequences are good at something. Simply said, if one protein sequence was not doing its job correctly -whatever it is -its host would die and we would never have seen this sequence ! Conversely, 5 billion years of evolution could not have left a useless protein in the genome of a modern organism. As an introductory example, consider the following set of sequences of the WW domain shown in Fig. 9.2, which have identical structure and function. As highlighted, essentially all sequences carry a Tryptophan (W) at positions 5 and 29. Or -to rephrase it -we never see a sequence that does not carry a Tryptophan. Clearly, over the billions of years of existence of the WW domain, mutations of these sites have arised many times, yet we do not see it. This makes sense only if W5, W29 are crucial for function, such that sequences carrying these mutations were selected away by evolution. As a matter of fact, experimental structures of the WW domain have indeed shown that these two sites are the main binding sites of the WW domain, i.e. sites in direct proximity with the ligand (target molecule) and directly responsible for the complex formation. In order to go beyond this simple evolutionary pattern, a few notions are required:

• Amino-acids The full list of the 20 amino-acids is available on Table 9.1 and their properties are visualized on Fig. 9.3. Amino-acids differ by their side chain chemical properties, including size, electrical charge, aromaticity, hydrophobicity. Some amino-acids such as Isoleucine (I) and Leucine (L) are very similar and are often exchangeable within a sequence, whereas others are radically different, such as Aspartic Acid (D, acidic, negatively charged) and Lysine (K, basic, positively charged). For visualization purposes, we have divided them in 8 subgroups based on their properties, and assigned a color to each.

• MSA A Multiple Sequence Alignment (MSA) is a way of arranging the sequences of proteins to identify similarities and differences between them. Two evolutionary-related sequences may differ by substitutions at selected sites, but also by insertions and deletions of sites. To account for this, we build an MSA by identifying and aligning the matching sites across the various proteins, and treat the others residues as insertions; missing sites due to a deletion are represented by the gap symbol (-). The final result is a matrix where each row is a sequence, each column is a site and each entry either one of the 20 amino-acids or a gap, see Fig. 9.2. Building an MSA from a given set of sequences amounts to finding a sequence correspondence that maximizes homology between sequences while minimizing the number the of gaps; such optimization is implemented in practice using dynamic programming such as the Needleman-Wunsch algorithm.

• Conservation Score Let f i (a) be the observed frequency of each of the 20+1 amino-acids a, and S i its corresponding Shannon entropy:

S i = -∑ a f i (a) log f i (a).
Then the conservation score of a site i is :

C i = log 21 -S i (9.1)
By construction, C i = 0 if a site is completely unconserved, i.e. when all amino-acid plus gap have identical frequency 1 21 , and C i = log 21 ∼ 4.4bits when it is completely conserved.

• A Sequence logo, such as the one shown in Fig. 9.2, is a standard data visualization of the pattern of conservation within a MSA. Each column represents a site, with total height equal to C i ; it is filled with letters representing the amino-acids, sorted by frequency (top ones are most frequents) and with height proportional to f i (a).

Here, the Sequence Logo of the WW-domain MSA shown in Fig. 9.2 allows us to find more complex patterns of conservation. For instance, sites 17 and 18 are not perfectly conserved, but only two amino-acids (Tyrosine or Phenylalanine) are possible, both of which are aromatic. Similarly, sites 23, 26 and 27 are almost always occupied by polar hydrophilic residues and never by hydrophobic residues, suggesting that this site may often be in contact with water molecules of the solvent. More broadly, it is the combination of the various structural and functional chemical constraints, such as solvent exposure, steric interactions, surrounding charge... that determines which amino-acids can be present at a given site of a given sequence.

Beyond conservation, such structural and functional constraints also induce non-trivial second order moments of the amino-acid distribution. In particular, sites that are far away on the sequence but close in the tertiary structure of the protein can undergo coevolution, i.e. correlations between mutations. For instance, if the first residue is positively charged (H,K,R), then the second cannot be positively charged as well, because eletrostatic repulsions would destabilize the structure; instead, negatively charged residues (D,E) may be observed. In other sequences of the alignment, the first residue may itself be negative, and conversely positively charged residues are favored on the

Main achievements

Since their emergence, DCA and other graph-based methods such as GREM-LIN [START_REF] Kamisetty | Assessing the utility of coevolution-based residue-residue contact predictions in a sequence-and structure-rich era[END_REF] and PSICOV [START_REF] Jones | Psicov: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments[END_REF] have been used intensively for protein structure prediction, notably in conjunction with traditional protein folding methods. For instance, Sergey Ovchinnikov and collaborators accurately predicted two targets of the Critical Assessment for Structure Prediction 11 (CASP) by using coevolutionary contacts to constrain template-based folding within the Rosetta framework [START_REF] Ovchinnikov | Improved de novo structure prediction in casp 11 by incorporating coevolution information into rosetta[END_REF]. In a recent large scale study, they proposed plausible structures for representatives of 614 large protein families for which no structure was previously known [START_REF] Ovchinnikov | Protein structure determination using metagenome sequence data[END_REF]. Lastly, current state-of-the-art models of contact prediction from evolutionary data are supervised deep learning algorithms that combine DCA predictions with contextual information, such as solvent accessibility and secondary structure predictions [START_REF] Skwark | Improved contact predictions using the recognition of protein like contact patterns[END_REF][START_REF] Wang | Accurate de novo prediction of protein contact map by ultra-deep learning model[END_REF].

DCA structure prediction can also be extended to predict the structure of protein complexes. For instance, several proteins such as Hsp70 can form a complex with themselves, yielding transient contacts between sites that are distant in the tertiary structure. Since the ability to form homodimer can be important for activity regulation purpose, evolutionary pressures favoring complementary shapes can arise on these interfaces, yielding coevolution that can be detected by DCA [START_REF] Malinverni | Large-scale conformational transitions and dimerization are encoded in the amino-acid sequences of hsp70 chaperones[END_REF]. In two systematic studies [START_REF] Ovchinnikov | Robust and accurate prediction of residueresidue interactions across protein interfaces using evolutionary information[END_REF][START_REF] Hopf | Sequence co-evolution gives 3d contacts and structures of protein complexes[END_REF], the authors showed that DCA could predict accurately inter-protein contacts of several known protein complexes, provided that a joint MSA of both proteins can be constructed and is large enough. In practice, this typically limits the approach to proteins families that have bacterial representatives. More recently, Yu and collaborators have shown that incorporating inter-protein coevolutionary information into docking algorithms could significantly improve prediction accuracy by sorting docking solutions found by traditional algorithms [START_REF] Yu | Interevdock: a docking server to predict the structure of protein-protein interactions using evolutionary information[END_REF].

DCA can also be used for modeling the fitness landscape of proteins. It is indeed very tempting to identify the energy function inferred by DCA with the biochemical fitness of the protein. If we think of the evolutionary process as an ergodic, time-reversible exploration of a fixed fitness landscape, then there is a direct link between the equilibrum probability distribution and the underlying fitness, given by the Boltzmann law. Under this (simplistic) assumption, we can identify E(v) ≡ -Fitness(v). Recent studies have shown that the energy landscape inferred by DCA was a better fitness predictor than Position Weight Matrices (PWM), which correspond to the independent model (J ij (a, b) = 0) [START_REF] Mann | The fitness landscape of hiv-1 gag: Advanced modeling approaches and validation of model predictions by in vitro testing[END_REF][START_REF] Figliuzzi | Coevolutionary landscape inference and the context-dependence of mutations in beta-lactamase tem-1[END_REF][START_REF] Hopf | Mutation effects predicted from sequence co-variation[END_REF]. In particular, epistatic effects, i.e. non-additive effects of two or more mutations could be predicted as well. Shekhar et al. [START_REF] Mann | The fitness landscape of hiv-1 gag: Advanced modeling approaches and validation of model predictions by in vitro testing[END_REF] showed that DCA could identify compensatory mutations in HIV, and used this information to find HIV protein sites that are least likely to mutate and escape vaccines.

Conversely, the energy function of DCA can be used to find artificial sequences with potentially high experimental fitness. In an experiment on the WW domain, Russ et al. [START_REF] Russ | Natural-like function in artificial ww domains[END_REF] generated a library of artificial sequences by recombining the natural sequences in a way that preserves conservation and correlations -which is essentially the same thing as sampling from the Boltzmann machine probability distribution [START_REF] Bialek | Rediscovering the power of pairwise interactions[END_REF][START_REF] Coucke | High dimensional inference with correlated data: statistical modeling of protein sequences beyond structural prediction[END_REF]. They then showed that a significant fraction of these artificial sequences folded well, and had natural-like functional properties, including similar binding affinity and specificity patterns. Though DCA-generated sequences were not directly used, this experiment illustrates the potential of using a statistical energy function rather than a heuristic physical free energy function (as in folding or threading algorithms) for designing artificial sequences. Beyond structural stability, statistical energy implicitly takes into account several other factors such as binding affinity, allowing the design of putative functional proteins without knowledge of the protein-ligand complex structure, or even of the protein structure itself. From a computational efficiency perspective, we also note that Boltzmann Machines are vastly superior to threading algorithm, as they can scan very quickly through the sequence space for low energy sequences. This is done by Monte Carlo sampling of the Boltzmann distribution, at temperature T = 1 or T < 1; which directly biases the search toward low-energy sequences.

Limitations of DCA

Despite these successes, identifying the statistical energy to the experimental fitness function is too simplistic. First and foremost, the notion of fitness is plural rather than unique. Indeed, the ability for a protein to accomplish its function well in-vivo depends on numerous properties, such as:

• Stability, i.e. the ability for a protein to fold into a unique, low energy structure, and maintain its structure even at higher temperatures.

• Binding affinity and specificity, i.e the strength and specificity to which the protein binds to its target ligand. It is experimentally characterized by the catalytic rate k cat and Michaelis constant K M of the Michaelis-Menten dynamics. Within the same protein family, different proteins may have high homology and very similar structure but different binding specificities. For instance, the WW domain family can be split into four subclasses, depending on which proline-rich linear motif they recognize. Another well known example is the case of the serine protease family: trypsin and chymotrypsin are both proteins cleavers important for digestion, but they cleave proteins at different sites.

• For enzymatic proteins, the catalytic activity, i.e. the efficiency at which the protein promotes a reaction of ligand. In the case of the trypsin/chymotrypsin, the reaction is the hydrolysis of the peptide bond.

• Allostery i.e. the ability for a protein to undergo conformational changes when binding another protein. For instance, the Hsp70 chaperone protein has two main conformations, depending on whether it is complexed to ATP or ADP. The ATP conformation allows the protein to bind to its substrate whereas the ADP conformation prevents the substrate from being released. More broadly, allostery is a fundamental mechanism for proteins involved in signaling pathways such as PDZ.

• Evolvability, i.e. the ability for a protein sequence to be discovered by a biological evolutionary process. For instance, a known evolutionary strategy is to reuse parts of sequences from other proteins (termed domains) for building new proteins.

Each of these properties induces a distinct evolutionary pressure, and it is the combination of all these factors that shape the probability distribution of the sequence space. In fact, these pressures can be sometimes be antagonistic: in the case of the WW domain, reaching high enough binding affinity can result in substantial loss of structural stability [START_REF] Jäger | Structure-function-folding relationship in a ww domain[END_REF]. Therefore, although interesting similarities exist [START_REF] Coucke | Direct coevolutionary couplings reflect biophysical residue interactions in proteins[END_REF], it is way too simplistic to identify the statistical energy (i.e. negative log-probability) with the physical energy. In fact, several groups showed that there exist coevolutionary signals directly related to allostery [START_REF] Lockless | Evolutionarily conserved pathways of energetic connectivity in protein families[END_REF] or binding specificity [START_REF] Casari | A method to predict functional residues in proteins[END_REF].

Once this point is raised, it is difficult to adapt DCA so as to disentangle the various evolutionary pressures. Expressing the energy as a sum of pairwise interactions 9.2 is well suited for finding causal links between pairs of residues, but much less effective for describing collective behaviors. In a sense, pairwise models suffer from their qualities: on the one hand, local interactions are enough for inducing large-scale collective modes, but on the other hand, characterizing and visualizing these collective modes from the fields and couplings inferred is very hard -and essentially the core of traditional statistical physics. For instance, allostery requires propagation of physical energy perturbations across many sites and as such, delicate equilibrium between each many pairs sites. Finding which of the N(N -1)/2q 2 statistical couplings are involved in maintaining allostery would prove very difficult. Moreover, different binding specificity patterns can divide protein families in several subgroups, and even though Potts model can generate multimodal data (e.g. the Hopfield model), there is no simple way to recover these subgroups from the couplings.

Lastly, we should also point out that there is experimental evidence for high-order epistasis in proteins, suggesting that pairwise interactions are not enough [START_REF] Weinreich | Should evolutionary geneticists worry about higher-order epistasis?[END_REF][START_REF] Poelwijk | Learning the pattern of epistasis linking genotype and phenotype in a protein[END_REF].

Statistical Coupling Analysis and Sectors

Principle

An interesting approach that partially addresses these issues is the Statistical Coupling Analysis and protein sectors, proposed by Ranganathan and colleagues [START_REF] Halabi | Protein sectors: evolutionary units of three-dimensional structure[END_REF][START_REF] Rivoire | Evolution-based functional decomposition of proteins[END_REF]. The idea is to identify subset of sites that evolve independently from one another, using a spectral analysis of the correlation matrix, similar to principal component analysis. In details, the main steps of the analysis are:

• Compute the first and second order moments f i (a), f ij (a, b) and covariance matrix

C ij (a, b) = f ij (a, b) -f i (a) f j (b) • Compute a reweighted correlation matrix Ci j(a, b) = C ij (a, b)φ i (a)φ j (b),
where φ a i = log f i (a)(1-q(a)) (1f i (a))q(a) , and q(a) is a baseline amino-acid distribution (e.g. q(a) = 1 20 or the global empirical distribution). The purpose of the reweighting is to enhance the contribution of conserved sites in the covariance matrix.

• Sum over amino-acids Cij = ∑ a,b C ij (a, b) 2 , and compute the eigenvec- tors λ iµ and corresponding eigenvalues.

• Select only the eigenvectors having eigenvalues significantly above the noise level. The noise level is obtained by repeating the procedure for a shuffled MSA in which all sites are independent and correlations are only due to finite sampling size. In some protein families, the top eigenvector was also discarded as well.

• For each eigenvector, identify the subgroup of sites, termed sector, having significantly large component |λ iµ |.

Sectors essentially define a partition of the sequence in which (i) intra-sector correlations are high (ii) inter-sector correlations are weak and (iii) sites not belonging of any sector have weak correlations with all sites.

Results

The sector analysis was applied to several protein families, including the WW domain [START_REF] Russ | Natural-like function in artificial ww domains[END_REF], S1A serine protease [START_REF] Halabi | Protein sectors: evolutionary units of three-dimensional structure[END_REF], PDZ domain [START_REF] Mclaughlin | The spatial architecture of protein function and adaptation[END_REF], β-lactamase [START_REF] Rivoire | Evolution-based functional decomposition of proteins[END_REF] and Hsp70 [START_REF] Smock | An interdomain sector mediating allostery in hsp70 molecular chaperones[END_REF]. Depending on the protein and sample size, from 1 to 3 sectors could be found and in all cases, sectors define physically contiguous regions of the protein structure. Interestingly, mutagenesis experiments suggested that different sectors control different biochemical properties of the protein. In the case of serine protease (trypsin), three sectors were found, and mutations of their respective sites impaired respectively catalytic activity, binding specificity and structural stability. In the cases of PDZ and Hsp70, one sector was found and was linked to allostery. Overall, these results suggest an organization of proteins into identifiable subgroups that are subject to distinct evolutionary pressures.

Limitations

However, sector analysis suffer from lack of statistical robustness and predictive power. Firstly, the number of relevant sectors, found through step 4 of the procedure described above, is essentially determined by the noise level of the data rather than by the protein itself; it may therefore fluctuate from one MSA to the other. Secondly, determining whether a given site belongs to a sector or not (step 5) relies on an thresholding procedure with no clear scale separation. Finally, step 2 somewhat artificially enhances the importance of conserved sites in sectors; and in cases where a single sector is extracted, it may merely consist in conserved sites rather than coevolving ones [START_REF] Teşileanu | Protein sectors: Statistical coupling analysis versus conservation[END_REF].

From a conceptual point of view, there is no guarantee that the various evolutionary pressures are exerted on non-overlapping subgroups of amino-acids; we rather expect them to be intertwined: for instance, a mutation important for targeting a given ligand may induce compensatory neighboring mutations to re-stabilize the structure accordingly. Lastly, the sector analysis has limited predictive power: it merely highlights sites that are more vulnerable to mutations than others, whereas DCA attempts to quantify the effect of each mutation.

L E A R N I N G P R O T E I N C O N S T I T U T I V E M O T I F S F R O M S E Q U E N C E D ATA W I T H R B M
The lack of a unique, quantitative framework capable of extracting the structural and functional features common to a protein family, as well as the phylogenetic variations specific to sub-families motivates this project pursued during my PhD. Hereafter, we consider Restricted Boltzmann Machines (RBM) for this purpose. Like Boltzmann Machines / DCA, RBM is a probability distribution suited for fitness landscape predictions and sequence generation. Like Principal Component Analysis, RBM can learn a representation of the sequence space that can be related to phenotype. The difficulty lies in finding the right conditions under which RBM are good at both in the context of protein sequence modeling. Here, we show that provided a compositional regime is enforced, RBM is a powerful and versatile tool to unveil and exploit the genotype-phenotype relationship. This chapter is organized as follows. In section I, we detail the implementation of RBM in the context of protein sequence analysis. In section II, we apply RBM on several synthetic and real protein families, and show that the features inferred reflect biological properties and can be interpreted in terms of structure, function or phylogeny. In section III, we focus on structure, and present a contact map prediction algorithm based on RBM. Section IV shows sequence design applications of RBM. Section V focuses on model selection. Joint probability distribution The joint probability distribution of v, h is:

P(v, h) = 1 Z exp N ∑ i=1 g i (v i ) - M ∑ µ=1 U µ (h µ ) + ∑ i,µ h µ w iµ (v i ) , (10.1)
Where Z is the usual partition function. Here, the fields g and weights w are tensors of size respectively N × q and M × N × q, indexed by the visible layer index i, amino-acid index v and for w the hidden layer index µ.

Hidden unit input Given a sequence v on the visible layer, hidden unit µ receives the following input I µ :

I µ (v) = ∑ i w iµ (v i ) . (10.2)
This expression is analogous to the score of a sequence with a position-specific weight matrix. Large and small |I µ | correspond to, respectively, good and bad matches between the weights and the sequence.

Hidden unit potential As for binary visible units, the input I µ determines the conditional probability of the activity h µ of the hidden unit:

P(h µ |v) ∝ exp -U µ (h µ ) + h µ I µ (v) , (10.3) 
up to a normalization constant. The nature of the potential U is crucial to determine how the average activity h µ |v varies with the input I. Unless stated explicitely, we use a dReLU potential for U µ , see Section 3.2. For dReLU potentials, the average activity is an adaptive non-linear function of the input, that can interpolate between linear, ReLU, sigmoid, and double ReLU. dReLU potentials can adjust to gaussian, sparse, multimodal or skewed input distributions and induces effective high-order interactions in the visible layer. We justify the choice of dReLU potential over Bernoulli and quadratic potentials in Section V.

From representation to sequence Given a representation (set of activities) h on the hidden layer, the residues on site i are distributed according to

P(v i |h) ∝ exp g i (v i ) + ∑ µ h µ w iµ (v i ) . (10.4)
Hidden units with large activities h µ strongly bias this probability, and favor values of v i corresponding to large weights w iµ (v i ).

Gauge choice Since the conditional probability Eqn. 10.4 is normalized, the transformations g i (a) → g i (a) + λ i and w iµ (a) → w iµ (a) + K iµ leave the conditional probability invariant. We choose the zero-sum gauges, defined by

∑ v g i (v) = 0, ∑ v w iµ (v) = 0.
learning protein constitutive motifs from sequence data with rbm Marginal probability distribution The probability of a sequence, P(v), is obtained by summing (integrating) P(v, h) over all its possible representations h:

P(v) = M ∏ µ=1 dh µ P(v, h) = 1 Z exp N ∑ i=1 g i (v i ) + M ∑ µ=1 Γ µ I µ (v) (10.5)
Where Γ µ (I) = log dh e -U µ (h)+h I is the cumulant generative function associated to the potential U µ . Its derivative with respect to the input, ∂Γ µ ∂I , is the average activity of hidden unit µ Sampling As for binary RBM, sampling from P(v, h) is obtained by alternating sampling from P(h|v) and P(v|h). We discuss in Section IV biased sampling techniques relevant for protein design.

Learning

As for binary data, the weights w iµ (v) and the defining parameters of the potentials g i (v) and U µ are learned by maximizing the average likelihood log P(v) MSA of all sequences v within the Multiple Sequence Alignment (MSA). To correct for the heterogeneous sampling of the sequence space (some animal kingdoms such as primates are over-represented against others such as archaea), we apply a standard reweighting scheme: each sequence v ℓ with ℓ = 1, ..., B is assigned a weight w ℓ equal to the inverse of the number of sequences with more than 90% amino-acid identity (including itself). In all that follows, the average over the sequence data of a function f is defined as

f (v) MSA = B ∑ ℓ=1 w ℓ f (v ℓ ) B ∑ ℓ=1 w ℓ . ( 10.6) 
We also add penalty terms over the weights and fields to prevent overfitting and to create interpretable sequence representations. A standard L 2 regularization term over the fields ∝ g i (v) 2 prevents them from diverging when an amino-acid was never seen at a given position. A L 2 1 regularization term over the weights

∝ ∑ µ ∑ i,v |w iµ (v)|
2 is crucial to avoid overfitting and to produce sparse weights. As shown in part iii, sparse weights are crucial for learning 10.1 definition and implementation 137 compositional representations. Though sparsity naturally emerge during training in MNIST, it does not in proteins, and sparsity must be enforced. Overall, the cost function writes:

log P(v) MSA - λ f 2 ∑ i,v g i (v) 2 - λ 2 1 2qN ∑ µ ∑ i,v |w iµ (v)| 2 , (10.7) 
Choosing the value of the sparse penalty is not trivial but not arbitrary; we discuss rationales for this choice in Section V. As for binary data, the optimization is carried out by stochastic gradient ascent, evaluating the model averages by Monte Carlo. We initialize the fields with the ones of the best fitting independent model:

g 0 i (v) = log δ v i ,v MSA - 1 q ∑ v log δ v i ,v MSA (10.8) 
And the weights and hidden potentials are initialized as usual. During training, the only notable difference is that the gauges must be maintained. For the fields g i (a), the gradient updates directly preserve the zero-sum gauge. For the weights, we add the following line after each update:

w iµ (v) = w iµ (v) - 1 q ∑ v ′ w iµ (v ′ ) (10.9) 
Lastly, we have used traditional Persistent Contrastive Divergence for the training algorithm, with from 1 to 10 Monte Carlo steps. Tests on small proteins showed that provided the model is regularized, there is little improvement in likelihood between traditional sampling and Parallel Tempering / Augmented Parallel Tempering methods. We did not have time to investigate this on larger proteins.

Weight Visualization

To visualize the weights tensors inferred by the machine, we introduce the weight logo representation. Each weight logo represents a weight attached to one hidden unit µ, w iµ (v). As in a sequence logo, the x-axis is the site index. At each site, the height of each letter is proportional to the corresponding weight coefficient w iµ (v); positive weights are above the x-axis and negative weights below; letters are sorted by weight amplitude. Examples follow in next section.

We present in this section results of RBM trained on five protein families:

(a) Lattice-protein in silico data [START_REF] Shakhnovich | Enumeration of all compact conformations of copolymers with random sequence of links[END_REF][START_REF] Mirny | Protein folding theory: From lattice to all-atom models[END_REF] to benchmark our approach on an exactly solvable model with known fitness function [START_REF] Jacquin | Benchmarking inverse statistical approaches for protein structure and design with exactly solvable models[END_REF].

(b) The WW domain, a short module binding different classes of ligands [START_REF] Sudol | Characterization of a novel protein-binding module-the ww domain[END_REF] important for signaling pathway.

(c) The Kunitz domain, a protease inhibitor, historically important for protein structure determination [START_REF] Ascenzi | The bovine basic pancreatic trypsin inhibitor (kunitz inhibitor): a milestone protein[END_REF].

(d) The Serine protease protein family, an important family of protein-cleaving enzymes such as trypsin.

(e) The Hsp70 protein, a large chaperone protein [START_REF] Bukau | The hsp70 and hsp60 chaperone machines[END_REF] We have found structure-related features, either local, such as tertiary contacts, or extended, such as secondary structure motifs (α-helix and β-sheet) or characteristic of intrinsically disordered regions (2) functional features, i.e. groups of amino acids controlling specificity or activity; (3) phylogenetic features, related to sub-families sharing evolutionary determinants. Some of these features involves two residues only (as direct pairwise couplings do), others extend over large and not necessarily contiguous portions of the sequence (as in collective modes extracted with PCA). A selection of features follows now. We kindly warn the physicist reader that this section might be hard for the eye, as we will dive head-first into the terminology-rich world of structural biology. The features found will be extensively compared to current knowledge about these proteins, acquired through years of genomics, structural studies and mutagenesis experiments. The main purpose of this section is to show that RBM can extract very detailed and specific information about each protein family. But beyond this zoology of proteins and features, we hope to convince the reader that RBM open a window into the general principles underlying natural protein design.

a phenomenology of features inferred by rbm In the formula above, c (S) is the contact map: c (S) ij = 1 if the pair of sites ij is in contact, i.e. i and j are nearest neighbors on the lattice and zero otherwise. The pairwise energy E(v i , v j ) represents the amino-acid physicochemical interactions, given by the the Miyazawa-Jernigan (MJ) knowledgebased potential [START_REF] Miyazawa | Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading[END_REF].

A MSA of 36,000 sequences that fold specifically on structure S A , i.e. with high probability P nat (v; S A ) > 0.99, through Monte Carlo sampling from the Boltzmann distribution with H ∝ -log P nat [START_REF] Jacquin | Benchmarking inverse statistical approaches for protein structure and design with exactly solvable models[END_REF]. As in real MSA, Lattice Protein data feature conservation, short-and long-range correlations between amino-acid on different sites, as well as high-order interactions that arise from competition between folds [START_REF] Jacquin | Benchmarking inverse statistical approaches for protein structure and design with exactly solvable models[END_REF], see Fig. 11.1. However, unlike real proteins, the fitness function -structural stability -is mathematically well defined and it is also fairly intuitive: a good protein must fold specifically into its native conformation; otherwise it is useless half of the time. Moreover, sequences are statistically independent and the MSA can be arbitrarily large, so noise levels are arbitrarily low. LP are therefore great candidates for benchmarking RBM.

Results

A RBM with M = 100 dReLU hidden units and λ 2 1 = 0.025 is learned from the MSA. We present in Fig. 11.2 a selection of structural LP features inferred by the model. For each hidden unit µ, we show in panel A the weight logo of w iµ (v) and in panel B the distribution of its hidden unit input I µ , as well as the conditional mean function h µ |I µ . In all cases, the weights are significant only for a limited number of sites; this will guide our interpretation. As seen from panel A, weight 1 focuses mostly on sites 3 and 26, which are in contact in the structure (black contour). Positively charged residue (H,R,K) have a large positive (resp. negative) component on site 3 (resp. 26), and negatively charged residues (E,D) have a large negative (resp. positive) components on the same sites. The histogram of its input distribution (panel B) shows three main peaks in the data. Since I 1 (v) = ∑ i w i1 (v i ), the peaks (i) I 1 ∼ 3, (ii) I 1 ∼ -3 and (iii) I 1 ∼ 0 correspond respectively to sequences having (i) positively charged amino-acids at site 3 and negatively charged amino-acids at site 26 (ii) conversely, negatively charged amino-acids at site 3 and positively charged at site 26 and (iii) identical charges or non-charged amino-acids. We knew a priori that this pair of sites could take different values since they are not very conserved (see sequence logo Fig. 11.1 D), but the fact that hidden unit 1 focuses on these sites signals an excess of sequences having significantly high |I 1 | compared to an independent model. Indeed, the contribution of the hidden unit to the log-probability is Γ 1 (I 1 ) ∼ I 2 1 , since the conditional mean Γ ′ 1 is close to linear (see panel B). In other words, sequences folding into S A often have residues with opposite charges on sites 3 and 26, forming an electrostatic contact (or salt bridge). Feature 2 is another weight focusing on sites 3 and 26. Its positive components are similar to the negative components of weight 1, but the negative components corresponds to hydrophobic amino-acids (I,L,V,M,A) in both sites 3 and 26. The negative peak at I 2 ∼ -2 therefore identifies sequences having hydrophobic amino-acids at both sites. To summarize, here, 'evolution' favored sequences having complementary amino-acids at sites 3 and 26, and the resulting statistical signal (positive and negative correlations) was caught by hidden units 1 and 2.

Interestingly, RBM can extract features involving more than two sites. Weight 3 and 4 are related to, respectively, the triplets of neighboring amino acids 8-15-27 and 2-16-25, each realizing two overlapping contacts on S A (blue and orange dashed contours). Both highlight collective mode spanning over more than two sites: sequences having very negative I 3 ∼ -2 are characterized by an electrostatic 'triangle' (15, +) ↔ (8, -) ↔ (27, +), whereas sequences having very negative I 4 ∼ -2 have all three sites 2-16-25 occupied by hydrophobic amino-acids. Both subsets are relatively small but again, it is still in excess with respect to what would be expected from an independent model. In fact, the strong non-linearities could even suggest an excess with respect to a pairwise model. This will be discussed later in Section V.

Weight 5 is located mainly on sites 5 and 22, with weaker weights on sites 6, 9,11. It codes for a cisteine-cisteine disulfide bridge located on the bottom of the structure and present in about a third of the sequences (I 5 ∼ 3). The weak components and small peaks I 5 ∼ 4 also highlight sequences with a triplet of cisteines. We note however that this is an artifact of Lattice Proteins, as a cisteine may form only one disulfide bridge.

Weight 6 is an extreme version of the electrostatic triangle. It has important components on sites 23,2,25,16,18 corresponding to the upper side of the protein. Again, the region is contiguous, and the weight logo indicates a pattern of alternate charges present in many sequences (I 6 ≫ 0 and I 6 ≪ 0). The collective modes defined by RBM may not be contiguous. Weight 7 codes for an electrostatic triangle 20-1-18, and the electrostatic 3-26, which is far away from the former. This indicates that despite being far away, sites 1 and 26 often have the same charge. The latter constraint is not due to the native but impedes folding in the 'competing' structure, S G , in which sites 1 and 26 are neighbours. Such so-called negative design was also reported through analysis with pairwise model [START_REF] Jacquin | Benchmarking inverse statistical approaches for protein structure and design with exactly solvable models[END_REF]. Besides weight 7, we have found other weights indicating negative design; in particular pairs of distant sites that must not have cisteine together, as they would form a disulfide bridge in structure S G .

To summarize, we have shown that RBM can retrieve many biological features directly related to the underlying structure and competitors of the protein. The scenario was of course ideal owe to small protein size, simple fitness function and infinite sampling. We note however that many initial implementations failed to pass this test. We now turn to real-protein families.

a phenomenology of features inferred by rbm 11.2 ww domain

Description

The majority of natural proteins are obtained by concatenating functional building blocks, called protein domains, that can fold and function independently of the rest of the sequence. The WW domain is one of the smallest domains, with N = 31 residues. WW is a protein-protein interaction domain found in many eukaryotes and human signalling proteins, involved in essential cellular processes such as transcription, RNA processing, protein trafficking, receptor signalling. One example of WW-domain is YAP1, a protein that activates the transcription of genes involved in cell proliferation and suppresses apoptotic genes. It folds into a three-stranded antiparallel β-sheet, see Fig. 11.4D. The domain name stems from the two conserved tryptophans (W) at positions 5-28 (Fig. 3A), which serve as anchoring sites for the ligands. WW domains bind to a variety of proline (P)-rich peptide ligands, and can be divided into four groups, based on their preferential binding affinity [START_REF] Sudol | A single point mutation in a group i ww domain shifts its specificity to that of group ii ww domains[END_REF]. Group I binds specifically to PPXY motif -where X is any amino acid; Group II to PPLP motifs; Group III to proline-arginine containing sequences (PR); Group IV to phosphorylated serine/threonine-proline sites [p(S/T)P]. Modulation of binding properties allow hundreds of WW domain to specifically interact with hundreds of putative ligands in mammalian proteomes.

Results

We have trained a RBM with dReLU potential,M = 100 hidden units and λ 2 1 = 0.25 on the PFAM alignment PF00397. We show five hidden units, with their weight logos and corresponding input distribution in Fig. 11.4 B,C. We also map the important sites of each weight logo onto the structure of WW in Fig. 11.4D. In all following, a site i is considered important if

∑ v |w iµ (v)| > 40% × max i ∑ v |w iµ (v)|.
Lastly, we show the distribution of Hamming distances (i.e. fraction of sites with different residues) within the alignment, and within the top-20 sequences that have highest activation on the feature. This allows us to check whether the feature inferred is activated only for a small subset of the sequence space or for many distantly related sequences.

Weight 1 is reminiscent of Lattice Proteins, as it codes for a contact between sites 4-22 realized either by two amino acids with oppositive charges (I 1 < 0), or by one tiny and one negatively charged amino acid (I 1 > 0).

Weight 2 shows a β-sheet-related feature, with large entries defining a set of mostly hydrophobic (I 2 > 0) or hydrophilic (I 2 < 0) residues localized on the β 1 and β 2 strands and in contact on the 3D fold. The input distribution, with a large peak on negative I 2 , suggest that this part of the WW domain is in contact with the solvent in most, but not all, natural sequences.

Hidden unit 3 is negatively activated by few evolutionary-related sequences (see Hamming distance distribution) carrying the W28X mutation, with nonaromatic X; this rare mutation is accompanied by a complex mutation pattern around the β 1 -β 2 extremities. Notably, many sequences with positive I 3 have a glycine at site 14, whereas those with negative I 3 do not have it, having either a glycine or a gap at site 15. Since glycine often appear right before β strands, this suggests a slightly different structure compared to consensus. This is consistent with the observation that sequences lacking tryptophan are not functional for linear motif recognition, suggesting a completely different functional role.

Weights 4 and 5 involve sites on the β 2 -β 3 binding pocket and on the β 1 -β 2 loop of the WW domain. The distributions of activities highlight different groups of sequences in the MSA that strongly correlate with experimental ligand-type identification, see Fig. 11.3. We find that (i) Type I domains are characterized by I 4 < 0 and I 5 > 0; (ii) Type II/III domains are characterized by I 4 > 0 and I 5 > 0; (iii) There is no clear distinction between Type II and Type III domains; (iv) Type IV domains are characterized by I 4 > 0 and I 5 < 0. These findings are in good agreement with various studies: (i) Mutagenesis experiment have shown the importance of sites 19, 21, 24, 26 for binding specificity [211,[START_REF] Fowler | High-resolution mapping of protein sequence-function relationships[END_REF]. For the YAP1 WW domain, as confirmed by various studies (see [START_REF] Fowler | High-resolution mapping of protein sequence-function relationships[END_REF] Table 2), the mutations H21X and T26X reduce the binding affinity to Type I ligands, while Q24R increases it and S12X has no effect. This is in agreement with the negative components of weight 4 : I 4 increases upon mutations H21X and T26X, decreases upon Q24R and is unaffected by S12X. Moreover the mutation L19W alone, or combined with H21[D/G/K/R/S] could switch the specificity from Type I to Type II/III [211]. These results are consistent with Fig. 11.3 YAP1 (blue cross) is of Type I but one or two mutations move it to the right side, closer to the other cluster (orange crosses). Espanel and Sudol [211] also proposed that Type II/III specicity required the presence of an aromatic amino acid (W/F/Y) on site 19, in good agreement with weight 3.

(ii) The distinction between Types II and III is unclear in the literature, because WW domains often have high affinity with both ligand types.

(iii) Several studies [START_REF] Russ | Natural-like function in artificial ww domains[END_REF][START_REF] Jäger | Structure-function-folding relationship in a ww domain[END_REF][START_REF] Kato | Determinants of ligand specificity in groups i and iv ww domains as studied by surface plasmon resonance and model building[END_REF] have demonstrated the importance of the β 1 -β 2 loop for achieving Type IV specificity, which requires a longer, more a phenomenology of features inferred by rbm 11.3 kunitz domain

Description

The Kunitz domain, with N = 53 residues is present in several genes and its main function is to inhibit serine protease such as trypsin. Kunitz domains play a key role in the regulation of many important processes in the body such as tissue growth and remodeling, inflammation, body coagulation and fibrinolysis. They are implicated in several diseases such as tumor growth, Alzheimer, cardiovascular and inflammatory diseases and therefore they have been largely studied and shown to have a large potential in drug-design [START_REF] Shigetomi | Anti-inflammatory actions of serine protease inhibitors containing the kunitz domain[END_REF][START_REF] Bajaj | Structure and biology of tissue factor pathway inhibitor[END_REF]. Some examples of Kunitz domain-containing proteins include the Basic Pancreatic Trypsin Inhibitor (BPTI, 1 Kunitz domain), the Bikunin (2 domains) [START_REF] Fries | Bikunin-not just a plasma proteinase inhibitor[END_REF], Hepatocyte growth factor activator inhibitor (HAI, 2 domains) and tissue factor pathway inhibitor (TFPI, 3 domains) [START_REF] Shigetomi | Anti-inflammatory actions of serine protease inhibitors containing the kunitz domain[END_REF][START_REF] Bajaj | Structure and biology of tissue factor pathway inhibitor[END_REF].

Structurally, the Kunitz domain is characterized by 2 α-helices and 2 βstrands and, as frequently observed for small protein, cysteine-cysteine disulfide bridges largely contribute to its thermodynamic stability. Figure 11.5A shows the MSA sequence logo and the secondary structure motifs. BPTI structure was the first one ever resolved [START_REF] Ascenzi | The bovine basic pancreatic trypsin inhibitor (kunitz inhibitor): a milestone protein[END_REF], and is often used to benchmark folding predictions based on simulations [START_REF] Levitt | Computer simulation of protein folding[END_REF] and coevolutionary approaches [START_REF] Morcos | Direct-coupling analysis of residue coevolution captures native contacts across many protein families[END_REF][START_REF] Kamisetty | Assessing the utility of coevolution-based residue-residue contact predictions in a sequence-and structure-rich era[END_REF][START_REF] Hopf | Threedimensional structures of membrane proteins from genomic sequencing[END_REF][START_REF] Cocco | From principal component to direct coupling analysis of coevolution in proteins: Low-eigenvalue modes are needed for structure prediction[END_REF][START_REF] Haldane | Coevolutionary landscape of kinase family proteins: Sequence probabilities and functional motifs[END_REF].

Results

We have trained a RBM with dReLU potential,M = 100 hidden units and λ 2 1 = 0.25 on the PFAM alignment (PF00014 B = 7503 sequences, [START_REF] Finn | Pfam: the protein families database[END_REF]) Weight 1 in has large components on sites 45 and 49, in contact in the final α 2 helix. The distribution of the inputs I 1 partitions the MSA in three subfamilies (top histogram). The two peaks in I 1 ≃ -2.5 and I 1 ≃ 1.5 identify sequences in which the contact is due to an electrostatic interaction with, respectively, (+, -) and (-, +) charged amino acid on sites 45 and 49; the other peak in I 1 ≃ 0 identify sequences realizing the contact differently, e.g. with an aromatic amino acid on site 45. Weight 1 shows also a weaker electrostatic component on site 53; the 4-site separation between sites 45-49-53 fits well with the average helix turn of 3.6 amino acids.

Weight 2 focuses on the contact between residues 11-35, realized in most sequences by a C-C disulfide bridge (negative I 2 peak in input distribution). A minority of sequences in the MSA, corresponding to I 2 > 0 and mostly coming from nematode organisms (Fig. 11.6A), do not show the bridge. A subset of these sequences strongly and positively activate hidden unit 3 (I 3 > 0 peak in input distribution and Fig. 11.6A). Positive components in weight 3 logo suggest that these proteins stabilize their structure through electrostatic interactions between sites 10 (-charge) and 33-36 (+ charges both, see Fig. Both weights 4 and 5 describe features mostly localized on the loop preceding the β 1 -β 2 strands (sites 7 to 16). Structural studies of the trypsin-trypsin inhibitor complex have shown that this loop binds to the proteases [START_REF] Marquart | The geometry of the reactive site and of the peptide groups in trypsin, trypsinogen and its complexes with inhibitors[END_REF]; site 12 is notably in contact with the active site of the protease and is therefore key to the inhibitory activity of the domain. The two amino acids (R, K) having a large positive contribution to weight 4 in position 12 are basic and bind to negatively charged residues (D, E) on the active site of trypsin-like serine protease. While several Kunitz domains with known trypsin inhibitory activity, such as BPTI, TFPI, TPPI-2,... give rise large and positive inputs I 4 , Kunitz domains with no trypsin/chymotrypsin inhibition activity, e.g. associated to COL7A1 and COL6A3 genes [START_REF] Chen | The carboxyl terminus of type vii collagen mediates antiparallel-dimer formation and constitutes a new antigenic epitope for eba autoantibodies[END_REF][START_REF] Kohfeldt | Conversion of the kunitz-type module of collagen vi into a highly active trypsin inhibitor by site-directed mutagenesis[END_REF], correspond to negative or vanishing values of I 4 . Hence, hidden unit 4 possibly separates the Kunitz domains having trypsin-like protease inhibitory activity from the others. This interpretation is also in agreement with mutagenesis experiments carried out on sites 7 to 16 to test the inhibitory effects of Kunitz domains BPT1, HAI-1, and TFP1 against trypsine-like proteases [START_REF] Shigetomi | Anti-inflammatory actions of serine protease inhibitors containing the kunitz domain[END_REF][START_REF] Bajaj | Structure and biology of tissue factor pathway inhibitor[END_REF][START_REF] Kirchhofer | Tissue expression, protease specificity, and kunitz domain functions of hepatocyte growth factor activator inhibitor-1b (hai-1b), a new splice variant of hai-1[END_REF][START_REF] Grzesiak | Inhibition of six serine proteinases of the human coagulation system by mutants of bovine pancreatic trypsin inhibitor[END_REF][START_REF] Chand | Structure function analysis of the reactive site in the first kunitz-type domain of human tissue factor pathway inhibitor-2[END_REF]. In [START_REF] Kirchhofer | Tissue expression, protease specificity, and kunitz domain functions of hepatocyte growth factor activator inhibitor-1b (hai-1b), a new splice variant of hai-1[END_REF] it was shown that mutation R12A on the first domain (out of two) of HAI-1 destroyed its inhibitory activity; a similar effect was observed in the presence of non basic residues on site 12 in the first two domains (out of three) of TFP1 as discussed in [START_REF] Bajaj | Structure and biology of tissue factor pathway inhibitor[END_REF]. The affinity between human serine proteases and the mutants G9F, G9S, G9P of bovine BPTI was shown to decrease in [START_REF] Grzesiak | Inhibition of six serine proteinases of the human coagulation system by mutants of bovine pancreatic trypsin inhibitor[END_REF]. Conversely, in [START_REF] Kohfeldt | Conversion of the kunitz-type module of collagen vi into a highly active trypsin inhibitor by site-directed mutagenesis[END_REF] it was shown that the set of mutations P10R, D13A, F14R could convert the COL6A3 domain into a Trypsin inhibitor. All these results are in agreement with the above interpretation of weight 4. Note that, though quite few sequences have large I 4 , many correspond to small or negative values. This may be explained by the facts that (i) many of the Kunitz domains analyzed are present in two or more copies, and as such, are not all required to strongly bind trypsin [START_REF] Bajaj | Structure and biology of tissue factor pathway inhibitor[END_REF] and (ii) Kunitz domain may have other specificities encoded by other hidden units. In particular, weight 5 displays on site 12 large components associated to medium to large size hydrophobic residues (L, M,Y), and is possibly related to other serine protease specificity classes such as chymotrypsin. Weight 6 is an example of phylogenetic feature. It codes for a complex extended mode, negatively activated by a small subset of the MSA composed of evolutionary close sequences (see Hamming distance distribution). These sequences correspond to the protein Bikunin present in most mammals and some other vertebrates [START_REF] Shigetomi | Anti-inflammatory actions of serine protease inhibitors containing the kunitz domain[END_REF]. In our analysis, most protein families exhibited several phylogenetic modes with distribution similar to weight 6.

Lastly, we show in Fig. 11.7 a selection of so-called gap modes. Gap modes code for long stretches of gaps, often but not always located at the extremeties of the sequence [START_REF] Cocco | From principal component to direct coupling analysis of coevolution in proteins: Low-eigenvalue modes are needed for structure prediction[END_REF]. They are activated by the few sequences within the alignment that lack the corresponding missing sites. These sequences are often, but not always evolutionary close (see panel D). Though gap modes are essentially artifacts of the alignment procedure, visual inspection suggests that their distribution of positions may not be random. In some cases, it seems that they extend exactly over secondary structure elements of the protein, such as β strands. We have found gap modes in every real protein family studied, and further investigation of this effect would be very interesting. Serine protease are enzymes that cleave peptide bonds in proteins. They are found in both eukaryotes and prokaryotes, and involved in various physiological process such as digestion and blood coagulation and immune response. Some examples include trypsin and chymotrypsin, whose role is to cleave nutrient proteins for digestion, elastase, which break down membrane proteins of bacteria, and plasmin, which degrades blood plasma proteins. Structurally, serine protease have length about 220 residues, and are composed by two beta-barrels converging at the catalytic site, as well as 4 alpha-helices and six disulfide bridges, see Fig. 11.9. All members of the family share a common catalytic mechanism for cleaving proteins, involving a catalytic triad of Histidine, Serine, and Threonine [START_REF] Kraut | Serine proteases: structure and mechanism of catalysis[END_REF]. A catalysis event begins by the insertion of the peptide bond within the catalytic triad, followed by a binding of the hydroxyl group of the Serine to the carbonyl group of the peptide bond (hence the name), and results in hydrolysis of the bond. Depending on the composition of the active site [START_REF] Perona | Structural basis of substrate specificity in the serine proteases[END_REF][START_REF] Hedstrom | Serine protease mechanism and specificity[END_REF], Serine-Protease target specific peptide bonds: Trypsin specifically cleave bonds containing a positively charged amino-acid (R,K), whereas Chymotrypsin targets hydrophobic aromatic amino-acids (F,Y,W) and elastase targets small amino-acids (A,G,V). The mechanism of action and specificity of this family are well understood, with a large body of computational studies such as sector analysis [START_REF] Halabi | Protein sectors: evolutionary units of three-dimensional structure[END_REF][START_REF] Rivoire | Evolution-based functional decomposition of proteins[END_REF]. One particular topic of interest is to better understand how did the serine protease family evolve to diversify its functionalities [START_REF] Perona | Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold[END_REF], and in particular how can one given protein evolve into a different functionality [START_REF] Hedstrom | Converting trypsin to chymotrypsin: residue 172 is a substrate specificity determinant[END_REF][START_REF] Hedstrom | Converting trypsin to chymotrypsin: ground-state binding does not determine substrate specificity[END_REF]. We present in the next section features differentiating the various subfamilies, and discuss in chapter IV how RBM can probe these functional transitions.

Results

We have trained a RBM with M = 200 dReLU hidden units and λ 2 1 = 0.25, on the MSA from [START_REF] Hopf | Mutation effects predicted from sequence co-variation[END_REF], with B = 47913 sequences and N = 217 sites. We found, as usual several traditional gap modes and structural features, such as disulfide bridge and contact modes. Moreover, we found several hidden units with bimodal input distribution reminiscent of what was found in the WW domain. To assess whether these modes separate the various subfamilies described above, we used available labeled data from UniprotKB [START_REF] Rivoire | Evolution-based functional decomposition of proteins[END_REF], and looked for subgroups of hidden units that partitioned the sequence space into functionally distinct regions. This is done automatically as follows:

• Each hidden unit defines a binary of the sequence space, e.g. with Γ ′ µ (I µ ) ≶ 0. The minimum of Γ corresponds to a minimum of probability for the hidden input I µ ; it matches in practice a gap between two modes when the distribution is bimodal.

• Each set of l hidden units defines a partition of the sequence space into 2 l subsets. There are M l such partitions.

• For fixed l = 2, 3, 4, we looked for the partitions that maximize the mutual information between the partition index Part(v) ∈ [1, 2 l ] and the functional class.

Here, sequences were split in 7 functional subgroups: Trypsin, Chymotrypsin, Tryptase, Kallikrein, Granzyme, Elastase, Haptoglobin. We chose l = 4 in this example, and selected the first four features shown in Fig. 11.8 among the best partitions.

As seen from the input histograms and scatter plots in Fig. 11.9, the combination of hidden units allows to separate well the different subclasses. In particular, weight 1 separates sequences with trypsin specificity from sequences with chymotrypsin specificity. It is experimentally known that D168 and S168 are respectively important for Trypsin and Chymotrypsin specificity, in agreement with weight 1. The other sites are located around the active site of the enzyme, in agreement with their presumed functional role, see Fig. 11.9C. Similarly, weight 5 is localized on the catalytic triad, and separates the haptoglobin (which are non-enzymatic) from the rest of sequences.

Lastly, weight 6 codes for a collective mode located on the surface of the protein. Its amino-acid content is very similar for all positions, with negative components for uncharged hydrophilic residues (A,G,S,T,N,Q) and positive components for charged residues (K,R,H,E,D). Inspection of the sequences having large positive or negative I 6 shows that some sequences have as few as one charged residue over the 59 most important important sites of weight 6, whereas other sequences have more than 30. Weight 6 therefore separates proteins based on their surface charge density. Functionally, this could be related to the modulation of the enzyme's activity by pH. Another possible explanation is related to autolysis, namely the ability for one protease to cleave another protease. Autolysis, in particular for trypsin, is key for the regulation of the protease's concentrations, and higher charge density may lead to higher electrostatic repulsion and thus reduced autolysis [START_REF] Guseman | Surface charge modulates protein-protein interactions in physiologically relevant environments[END_REF]. Though further investigation is clearly required, we remark that this is an interesting example of biological feature with a graded input distribution rather than bimodal; it illustrate the importancy of using flexible hidden unit potentials rather than simply binary. 70-kDa heat shock proteins (Hsp70) form a highly-conserved family represented in essentially all organisms. Hsp70, together with other chaperone proteins, perform a variety of essential functions in the cell: they can assist folding and assembly of newly synthetized proteins, trigger refolding cycles of misfolded proteins, transport unfolded proteins through organelle membranes, and when necessary, deliver non-functional proteins to the proteasome, endosome or lysosome for recycling [START_REF] Bukau | The hsp70 and hsp60 chaperone machines[END_REF][START_REF] Young | Pathways of chaperone-mediated protein folding in the cytosol[END_REF][START_REF] Zuiderweg | The remarkable multivalency of the hsp70 chaperones[END_REF]. There are 13 HSP70s protein-encoding genes in humans, differing by where (nucleus/cytoplasm, mitochondria, endoplasmic reticulum) and when they are expressed. Some, such as HSPA8 (Hsc70) are constitutively expressed whereas others such as HSPA1 and HSPA5 are stress-induced (respectively by heat shock and glucose deprivation). Notably, Hsc70 can make up to 3% of the total total mass of proteins within the cell, and is thus one of its most important housekeeping genes. Structurally, Hsp70 are multi-domain proteins of length of 600-670 sites (631 for E-Coli DNaK gene). They consist of • A Nucleotide Binding Domain (NBD, 400 sites) that can bind and hydrolyse ATP. It is homologous to other ATPase domains such as the one in Actin [START_REF] Bork | An atpase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins[END_REF].

• A Substrate Binding Domain (SBD sites), folded in a beta-sandwich structure, which binds to the target peptide or protein.

• A flexible, hydrophobic interdomain-linker linking the NBD and the SBD.

• A LID domain, constituted by several (up to 5) α helices, which encapsulates the target protein and blocks its release.

• An unstructured C-terminal tail of variable length, important for detection and interaction with other co-chaperones, such as Hop proteins [START_REF] Scheufler | Structure of tpr domain-peptide complexes: critical elements in the assembly of the hsp70-hsp90 multichaperone machine[END_REF].

Hsp70 functions by adopting two different conformations, see Figs. 11.11C&D. When the NBD is bound to ATP, the NBD and the SBD are held together and the LID is open, such that the protein has low binding affinity to substrate peptides. After hydrolysis of ATP to ADP, the NBD and the SBD detach from one another, and the LID is closed, yielding high binding affinity and effectively trapping the peptides between the SBD and the LID. By cycling between both conformations, Hsp70 can bind to misfolded proteins, unfold them by stretching (e.g. with two 

Results

We have constructed a multiple sequence alignment for HSP70 with N = 675 residues and B = 32, 170 sequences: starting from the seeds of [START_REF] Malinverni | Large-scale conformational transitions and dimerization are encoded in the amino-acid sequences of hsp70 chaperones[END_REF], and querried SwissProt and Trembl UniprotKB databases using HMMER3 [START_REF] Eddy | Accelerated profile hmm searches[END_REF]. Annotated sequences were grouped based on their phylogenetic origin and functional role. Prokaryotes mainly express two Hsp70 proteins: DnaK (B = 17, 118 sequences in the alignment), which are the prototype Hsp70, and HscA (B = 3, 897), which are specialized in chaperoning of Iron-Sulfur cluster containing proteins. Eukaryotes Hsp70 were grouped by location of expression (Mitochondria: B = 851, Chloroplaste: B = 416, ER: B = 433, Nucleus/Cytoplasm and others: B = 1, 452). We also singled out Hsp110 sequences, which, despite the high homology with Hsp70, correspond to nonallosteric proteins (B = 294). We have then trained a dReLU RBM over the full MSA with M = 200 hidden units. We show below the weight logos and input distributions for ten selected hidden units.

Nucleotide Binding Domain Weights 1,2,3 focus on the loop within the IIB subdomain of the NBD, see Fig. 11.11A,B. As seen from the stretches of gaps, both weights 1 and 2 encode for a variability of the length of the loop. Depending on the sequence, the loop can be long (I 1 , I 2 > 0), short (I 1 < 0,I 2 > 0 4-5 sites shorter) or very short (I 1 , I 2 < 0 8-10 sites shorter). This classification corresponds respectively to the Prokaryotic DnaK, Eukaryotic Hsp70 and Prokaryotic HscA. This structural difference between the three families was previously reported and is of high functional importance to the NBD [START_REF] Buchberger | A conserved loop in the atpase domain of the dnak chaperone is essential for stable binding of grpe[END_REF][START_REF] Brehmer | Tuning of chaperone activity of hsp70 proteins by modulation of nucleotide exchange[END_REF]. Shorter loops increase the nucleotide exchange rates (and thus the release of target protein) in the absence of NEF, and the loop size controls interactions with NEF proteins [START_REF] Brehmer | Tuning of chaperone activity of hsp70 proteins by modulation of nucleotide exchange[END_REF][START_REF] Briknarová | Structural analysis of bag1 cochaperone and its interactions with hsc70 heat shock protein[END_REF][START_REF] Sondermann | Structure of a bag/hsc70 complex: convergent functional evolution of hsp70 nucleotide exchange factors[END_REF]. Hsp70 proteins having long and intermediate loop size interact specifically with respectively GrpE and Bag-1 NEF proteins, whereas short, HscA-like loops did not interact with any of them. This cochaperone specificity allows for functional diversification within the cell; for instance, Eukaryotic Hsp70 proteins expressed within mitochondria and chloroplasta, such as the human gene HSPA9 and the Chlamydomonas reinhardtii HSP70B share the long loop with prokaryotic DNaK proteins, and therefore do not interact with Bag proteins. As shown by weight 3, the amino-acid content of the loop also varies within the prokaryotic DNaK subfamily, with at least two distinct subfamilies (middle and right peaks of I 3 ). Though we did not find mention of these subfamilies in the literature, they suggest a diversity of NEF-protein specificity within the DNaK subfamiliy.

Feature-based classification of Eukaryotic Hsp70 Weight 4 encodes a small collective mode localized on β 4β 5 strands, at the edge of the β sandwich within the SBD. Weight are quite large (w ∼ 2), and the input distribution is bimodal, separating notably HscA and chloroplastal Hsp70 (I 2 > 0) from mitochondrial Hsp70 and the other Eukaryotic Hsp70 (I 2 < 0). We note also a similarity in structural location and amino-acid content with weight 4 of the WW-domain, which controls binding specificity (Fig. 11.3). We have not found trace of this motif in the literature either, but its location, strength and amino-acid content suggest that it could be important for binding substrate specificity. Besides chloroplastic and mitochondrial-specific Hsp70, we also found an inter-domain mode separating Endoplasmic reticulum-specific Hsp70 proteins from the other Eukaryotic proteins (Weight 5, green spheres in Fig. 11.12, weight logo not shown).

a phenomenology of features inferred by rbm Inter-domain collective modes and allostery RBM can also extract collective modes of coevolution spanning multiple domains, such as weights 6,7,8. The residues supporting Weight 6 are physically contiguous in the ADP conformation, but not in the ATP conformation, see Fig. 11.13 (weight logo not shown). Hence, weight 6 captures inter-domain coevolution between the SBD and the LID domains.

Weight 7 also codes for a wide, inter-domain collective mode, localized at the interface between the SBD and the NBD domains. When the Hsp70 protein is in the ATP conformation, the sites carrying weight 7 are physically contiguous, whereas in the ADP state they are far apart. Moreover, its input distribution separates the non-allosteric Hsp110 subfamily (I 4 ∼ 0) from the other subfamilies (I 4 ∼ 40), suggesting that this motif is important for allostery. Weight 8 is another weight separating non-allosteric from allosteric sequences. Several mutational studies have highlighted 21 important sites for allostery within E-Coli DNaK [START_REF] Smock | An interdomain sector mediating allostery in hsp70 molecular chaperones[END_REF]; 7 of these positions are present in the top 38 most important sites of Weight 7, 4 appear in Weight 8, and several others are highly conserved and do not coevolve at all. Unstructured tail Weight 9 codes for a collective mode located mainly on the unstructured C-terminal tail, with few sites on the LID domain, see Fig. 11.14A. 1 . Its amino-acid content is strikingly similar across all sites: positive weights for hydrophilic residues (in particular, lysine), and negative weights for tiny, hydrophobic residues. Indeed, as seen from Fig. 11.14B-D hydrophobic-rich or hydrophilic-rich sequences are found in the MSA. This motif is consistent with the role of the tail for cochaperone interaction: hydrophobic residues are important for formation of Hsp70-Hsp110 complexes via the Hop protein [START_REF] Scheufler | Structure of tpr domain-peptide complexes: critical elements in the assembly of the hsp70-hsp90 multichaperone machine[END_REF]. High-charge content is also frequently encountered and at the basis of recognition mechanism in intrinsically disordered protein regions [START_REF] Oldfield | Intrinsically disordered proteins and intrinsically disordered protein regions[END_REF], which could suggest the existence of different protein partners.

Dimerization In its ATP-bound conformation, the Hsp70 protein can form an antiparallel homo-dimer. This dimer is formed with the help of J-protein, and presumed to facilitate transfer of the substrate protein to another chaperone protein, Hsp90 [START_REF] Sarbeng | A functional dnak dimer is essential for the efficient interaction with heat shock protein 40 kda (hsp40)[END_REF][START_REF] Morgner | Hsp70 forms antiparallel dimers stabilized by post-translational modifications to position clients for transfer to hsp90[END_REF]. We found a statistical trace of this homo-dimer: Weight 10 codes for a collective mode located on two sides of the protein, that are in contact in the dimer, see Fig. 11.15. Its input distribution is trimodal, which could suggest different dimerization modalities, or some subgroups that do not form any dimer at all.

Comparison with other methods Some of the results presented here were previously obtained with others coevolutionary methods. In [START_REF] Malinverni | Large-scale conformational transitions and dimerization are encoded in the amino-acid sequences of hsp70 chaperones[END_REF], the authors showed that Direct Coupling Analysis could detect conformation-specific contacts; this is similar to hidden units, respectively, 3 and 4 presented here, located on contiguous sites in the, respectively, ADP-bound and ATP-bound conformations. In [START_REF] Smock | An interdomain sector mediating allostery in hsp70 molecular chaperones[END_REF], an inter-domain sector of sites discriminating between allosteric and non-allosteric sequences was found. This sector share many sites with our weight 4, and is also localized at the SBD/NBD edge. However, only a sector could be retrieved with sector analysis, whereas many other meaningful collective modes could be extracted using RBM. over the distribution of Ĩij µ (v), which can be approximated with an histogram of, say, n bins = 100 bins (total cost O(MN 3 B)). Then, we scan through a, b and compute the q 2 coefficients. The overall cost is therefore O(N 3 MB + n bins N 2 Mq 2 ), instead of O(N 3 MBq 2 ).

A fast approximation can also be derived by writing a second-order Taylor expansion of Γ µ in Eqn. (12.6). After rearrangement, we obtain:

J e f f ij (a, b) = 1 2 ∑ µ w iµ w jµ Γ ′′ µ (v) MSA (12.7)
The Taylor expansion is exact when Γ ′′ µ (The conditional variance) is constant, i.e. for quadratic potential, and we recover exactly the original expression of the couplings of Eqn. (3.6). For a non-quadratic potential, this equation illustrate the dependency of the coupling with the sequence. In particular, an 'inactive' hidden unit, i.e. such that I µ lies in a saturation of the average activity Γ ′ µ does not produce any epistatic effect around the sequence.

Overall, this estimator of contacts is fairly natural and its definition coincides with the ones of pairwise models. For non-pairwise models, we note that other averaging schemes could be investigated, such as computing quantiles rather than average.

results

Contact prediction

We use the above method to derive effective couplings and predict contact maps from the RBM trained on the Kunitz Domain, WW domain and lattice protein families shown in Section III. The main results are summarized in Figure 12.2. Panels A-E focus on the Kunitz domain; panel A,B illustrate how the true contact map is faithfully reproduced by the estimator based on RBM. From a quantitative point of view, the Positive Predicted Value curves of predicted contacts (Panel C) and distant contacts (panel D) show comparable performance as contact map prediced using DCA, trained either via pseudolikelihood maximization (PLM, [START_REF] Ekeberg | Fast pseudolikelihood maximization for directcoupling analysis of protein structure from many homologous amino-acid sequences[END_REF]) or Monte Carlo learning (BM). Moreover, the effective couplings of Eqn. (12.5) correlate well with the ones inferred by DCA, see panel E. Similar performance and behavior are found for WW and LP.

Dependence on the parameters of the RBM

We now assess how the quality of contact predictions depends with the parameters of the RBM: hidden-unit potential, number of hidden units and regularization choice. We repeat the contact predictions process on the three protein families with various parameters and show main results in Fig. 12.3. We find that the quality of predictions:

• strongly increases with the number of hidden units. This dependence is not surprising, as the number M of hidden units acts in practice as a regularizor over the effective coupling matrix between residues. In the case of Gaussian RBM, the value of M fixes the maximal rank of the matrix J ij (v i , v j ). The value M = 100 of the number of hidden units is small compared to the maximal ranks R = 20 × N of the couplings matrices of the Kunitz (R = 1060) and WW (R = 620) domains, and explains why Direct-Coupling Analysis gives slightly better performance than RBM in the contact predictions of Fig. 12.2.

• (i) is slightly better for quadratic and dReLU potentials than Bernoulli potentials, and (ii) there is little to no difference between quadratic and dReLU potentials. It is somewhat expected that Bernoulli potentials perform less at fixed M << R, as they are less expressive than Gaussian and dReLU potentials. On the other hand, the fact that Gaussian and dReLU potentials perform almost the same, despite strongly non-linear activation functions and different generative performance (see Section V) is more puzzling, and requires further investigation.

• tends to improve with the weight sparsity, see panel E and F. We indeed expect small regularization to improve contact predictions as it prevents overfitting; it is the case in pseudo-likelihood maximization for instance. We note that stronger regularization seem to slighly improve performance as well (upper left corner of panels E,F), and it would be interesting to investigate why.

Conclusion

Overall, it is possible to exploit RBM for contact prediction purposes, and we can reach performance equivalent to pairwise couplings methods for small protein families. We note however that the larger the protein, the larger the number of hidden units required to reach the performance of pairwise model.

Therefore, using RBM for contact prediction shows little speed gain compared to Boltzmann Machine Learning in practice. In the absence of an efficient approximate inference algorithm, it is currently preferable to use other standard algorithm such as plmDCA. Future investigation for the application of RBM for contact prediction include the design of more efficient learning algorithm and different effective coupling computation (e.g. different averaging schemes, selecting only subset of hidden units,...). The sequences are also compatible with a DCA model trained on the same data (panels C and D). The general trend is that the farther away from natural sequences, the lower the likelihood -this is expected. However, we can also find high likelihood sequences that are significantly different from natural sequences using low temperature sampling. Interestingly, sequences generated by conditional sampling with unseen combination also have high likelihood, despite never being seen in the data. This extrapolation is directly related to the compositional phase: recombining compatible, non-overlapping features yields sequences with similar likelihood as regular ones.

P R O T E I N D E S I G N W I T H R E S T R I C T E D B O LT Z M A N N M A C H I N E S
The capability of RBM to design new sequences with desired features and high values of fitness can be validated on Lattice Proteins, as the fitness function is well-defined in this case. This was previously done for BM in [START_REF] Jacquin | Benchmarking inverse statistical approaches for protein structure and design with exactly solvable models[END_REF]. Figure 13.3E shows that the log-likelihood correlates well with the fitness P nat , both for training and test set sequences. Sequences designed by RBM are diverse and have high P nat (panel F); in particular those designed by combining h 3 and h 4 . Remarkably, low temperature sampling allowed to find several sequences with higher P nat than the highest value in the training MSA.

protein design with restricted boltzmann machines

Converting protein specificities

Beyond the determination of specificity-determining positions within a protein family, one important question is to find plausible evolutionary paths between subfamilies. Consider the case of two protein subfamilies, such as the serine protease family, and trypsin/chymotrypsin-specificity, with a set of associated specificity-determining positions (SDP) S = {s l }, with amino-acid a l (for the first family), a ′ l (for the second family). Sequences having v s l = a l likely functionally belong to the first family, and conversely. Given a sequence v 1 belonging to the first family, we ask what sequence of mutations should we perform in order to bring it to the second subfamily. We should at least mutate the SDPs, but in which order, so as to maintain some functional fitness ? Moreover, is mutating only the SDPs enough, or additional mutations are required to restore structural stability ? We show in a simple scenario that RBM may provide an answer. In the case of trypsin, we found that a single hidden unit, h 1 differentiated trypsin-type specificity (I 1 ≪ 0) from chymotrypsin-type specificity (I 1 > 0), see Fig. 11.8 and Fig. 11.9). As seen from the weight logo, this amounts to about 18 SDPs. Given the wild type (say, rat chymotrypsin), we define a conditional focused RBM, by conditioning the RBM on h 1 (value h c 1 ) and focusing it around the wild type (with lagrange parameter λ). In the limit where λ → ∞, all samples collapse on the wild type. Conversely, when h 1 → +∞ and λ = 0, we obtain traditional samples with I 1 > 0, such as the rat trypsin. For intermediate value of h 1 and λ, low temperature samples of the conditional focused RBM are gradually farther away from the wild type, while going from I 1 ≪ 0 to I 1 > 0. Scanning through values of h 1 , λ allows to find low energy transition paths connecting the wild type and the I 1 ≫ 0 subspace, putatively corresponding to chymotrypsin specificity, see Fig. 13.4. Compared to simply switching the SDPs amino-acids, the path found by RBM have a relatively low (statistical) energetic cost. We are currently collaborating with the Statistical Biology group of Rivoire and Nizak at College de France, and look forward for experimental tests of these transition paths. More generally, finding a path between two sequences or subspaces involves more than a single hidden unit switch, and more general transition path sampling techniques should be developed in the future. It would be very interesting to estimate the number of possible transition path between two proteins, as was partially done experimentally by Poelwijk et al. between two fluorescent proteins [START_REF] Poelwijk | Learning the pattern of epistasis linking genotype and phenotype in a protein[END_REF].

M O D E L S E L E C T I O N

We presented in the previous sections various results from trained RBM, without justification for the model parameters chosen (strength of regularization, number of hidden units, shape of hidden-unit potentials, ...). We motivate these choices a posteriori in this chapter, based on model performance and interpretability.

Here, performance is measured by the accuracy of the fit of the model distribution to the empirical data distribution. It is evaluated by the average log-likelihood, divided by the number of visible units 1 N log P(v) MSA on a train set -to assess the capacity of the model and on a held-out test set, not used for training, to assess the ability to generalize. For visible-unit variables with q = 21 possible values (20 amino acids + gap symbol), this number typically ranges fromlog 21 ≃ -3.04 (uniform distribution) to 0. Evaluating the likelihood requires knowledge of the partition function, see Part I Section 3.5. We acknowledge that log-likelihood is not the ultimate metric of model performance: in the context of sequence design and scoring, that would be the quality/diversity of generated sequences or the correlation with the true fitness landscape. However, we found a good correlation between log-likelihood and sequence quality in the case of Lattice Proteins, see Fig. 14.1, which justifies model selection based on this criteria.

We say that a model is interpretable when (i) there is a simple link between weight matrices and typical configurations from the data or model distribution, and (ii) weights can be easily related to the biological constraints underlying protein structure and function. A simple weights -configuration relationship is achieved in the Random-RBM model with sparse weights, under the compositional phase introduced in Part iii. A typical hidden layer configuration consists in L strongly activated hidden units, and the rest are silent, and the corresponding visible layer configuration have high overlaps with the L selected weights. Since weights do not overlap, all combinations are possible, and each sequence can be mapped into one such combination, as in Fig. 2.8. Of course, the Random-RBM model is a poor depiction of real protein fitness landscape: N is small and the effective temperature can be fairly high, such that there is not always a nice scale separation between active and inactive hidden units, and 14.1 generative performance 183 importantly, features are overlapping. We will assess under which conditions the inferred model tends to the Random-RBM case.

14.1 generative performance

Number of hidden units

The number of hidden units is critical for the generative performance. We trained RBMs on the Lattice Protein and WW data set for various potentials (Bernoulli, quadratic and dReLU), number of hidden units (1-400) and regularizations (λ 2 1 = 0, λ 2 1 = 0.025,λ 2 1 = 0.25). The likelihood estimation shows that, as expected, the larger M, the better the ability to fit the training data, see Fig. 14.1. Overfitting i.e. a decrease in test set performance may occur for large low regularization and/or for low B.

Hidden-unit potentials

A priori, the major difference between Bernoulli, quadratic and dReLU potentials are that (i) Bernoulli hidden unit take discrete values whereas quadratic and dReLU take continuous ones and (ii) After marginalization, quadratic potentials create pairwise effective interactions whereas Bernoulli and dReLU create non-pairwise ones. It was shown in the context of image processing and text mining that non-pairwise models are more efficient in practice, and theoretical arguments also highlight the importance of high-order interactions, see Partiii.

In terms of generative performance, the above numerical experiments on Lattice Proteins and WW domain MSAs show that at equal number of parameters, dReLU RBM perform better than Gaussian and Bernoulli RBM. Similar results, not shown, were obtained for the Kunitz domain MSA. Although RBM with Bernoulli hidden units are known to be universal approximators as M → ∞ [START_REF] Roux | Representational power of restricted boltzmann machines and deep belief networks[END_REF], they require more hidden units than the other types; hence more data. This can be intuitively explained by the fact that Bernoulli units cannot naturally express modulation in the degree of presence of a feature. To overcome this issue, one needs more than one hidden unit to encode each feature, as in [START_REF] Nair | Rectified linear units improve restricted boltzmann machines[END_REF]. This is consistent with the heavier distribution of hidden units correlations observed in all data sets, see Fig. 

summary

To summarize, the systematic study suggests that:

• More general potentials like dReLU perform better than the simpler quadratic and Bernoulli potentials;

• L 2 1 regularization is more robust than standard L 1 regularization.

• There exist values of sparsity regularization penalties allowing for both good generative performance and interpretability.

• As the number of hidden units increases, more features are captured and generative performance improve. Moreover, a compositional regime appears, in which a few hidden units are significantly active for each sequence. Beyond some point, increasing M simply adds duplicate hidden units and marginally enhances performance, while making interpretation trickier.

Currently, selecting M and λ 2 1 relies on manual or exhaustive searching. It would be very helpful to find good rationales for specifying these factors a priori, and possibly adjust them throughout training.

D I S C U S S I O N

To summarize, we have shown that RBM could be a promising tool for studying protein coevolution. RBM are capable of extracting a variety of structural, functional and phylogenic information about protein families, with surprising accuracy. To the best of our knowledge, this is unique, compared to other coevolutionary approaches such as DCA, Sectors or Specificity-Determining Positions. The key idea is to enforce RBM to lie in a compositional regime, in which each sequence activates a few hidden units. These hidden units, which may be activated by very different sequences, therefore reflect the underlying function of the sequences rather than their phylogenic origin. Here, we have benchmarked RBM on well-studied protein families, but application to less known protein families could prove very useful for formulating hypothesis before performing experiments. In contrast, traditional approaches are based on knowledge of the protein structure and manual or phylogenic analysis of MSA; they are therefore limited both in the size of data that must be handled and in the complexity of the formulated hypothesis.

Then, RBM combined with conditional and low temperature sampling can be used to design new artificial sequences with predicted function, based on the hidden unit interpretations. In particular, artificial sequences corresponding to unseen combinations of hidden unit activities could have a different function than all of the existing natural sequences. RBM protein design could be used in conjunction with traditional protein design strategies based on physical models of protein folding/docking. For instance, several protein design pipelines begin by computing a position-weight matrix from available natural sequences; they are then used to score sequences first, and keep only sequences with relatively high score before testing them with the physical model [START_REF] Khersonsky | Why reinvent the wheel? building new proteins based on ready-made parts[END_REF]. This is basically equivalent to drawing sequences to be tested from an independent model learnt on data. Instead, we could use RBM or conditional RBM for that purpose: they have significantly lower entropy than independent models, such that the size of the sequence space to be tested by costly physical methods could be largely reduced.

Compared to PCA or DCA, an important downside is the requirement to adjust three hyperparameters, namely the hidden unit potential, weight sparsity regularization λ 2 1 and the number of hidden units M. We have provided rationales for this: dReLU hidden units are always better, and M, λ 2 1 are adjusted so as to achieve both high likelihood and high interpretability. Moreover, even though improvements were introduced for this purpose, training is only approximate and significantly longer, as well as less reproducible as the likelihood is not convex. Therefore, it is important to check the robustness of the conclusions drawn from weight logo by repeating the training with different seed and parameters. Better training algorithms, automated parameter selection and perhaps different regularization schemes would certainly improve the method.

We have briefly investigated on Lattice Proteins whether other feature extraction algorithm, such as ICA, Sparse PCA and Sparse autoencoders -which are all simpler to train -could reproduce the results found here. Though some similarities exist, results were significantly worse in practice, with many false positive contacts, or non biological modes [37]. The takeaway message is that both probabilistic modeling (rather than variance explanation or sequence reconstruction) and interaction-based representations (hidden nodes must encode collective mode rather than single site variability) are crucial for retrieving the results presented here. Moreover, besides RBM, other algorithms that learn both a data representation and a probability distribution were recently developed for this purpose: Variational Autoencoders (VAE) [START_REF] Kingma | Auto-encoding variational bayes[END_REF] and Generative Adversarial Networks (GAN) [START_REF] Goodfellow | Generative adversarial nets[END_REF]. We have ruled out GAN fairly quickly, as i) there is currently no robust method for training GAN on discrete data; for instance text generation is based on Recurrent Neural Networks architectures ii) One cannot compute easily the probability of a configuration using a GAN. Research in GAN is moving forward fairly quickly, and this could of course change in the near future. On the other hand, VAE are suited for our purposes, and were recently applied to protein sequence data for fitness prediction [START_REF] Sinai | Variational auto-encoding of protein sequences[END_REF][START_REF] Riesselman | Deep generative models of genetic variation capture mutation effects[END_REF]. As RBM, VAE feature high-order interactions and were shown to outperform DCA for fitness prediction in some cases. They can also learn a representation of the sequence space, useful for exploration. Our work differs in several important points: our RBM is an extension of direct-based coupling approaches, requires much less hidden units (about 10 to 50 times less than [START_REF] Sinai | Variational auto-encoding of protein sequences[END_REF] and [START_REF] Riesselman | Deep generative models of genetic variation capture mutation effects[END_REF]), has a simple architecture with two layers carrying sequences and representations, infers interpretable weights with biological relevance, and can be easily tweaked to design sequences with desired statistical properties. In contrast, the lowdimensional representation shown for the β lactamase protein in Fig. 4 of [START_REF] Riesselman | Deep generative models of genetic variation capture mutation effects[END_REF] merely reflects phylogenic proximity rather than functional similarity. It is of course not definitive, as one may find a way to emulate a compositional regime using different variants of the VAE presented in this article.

Beyond individual protein families, RBM could be used to find general principles of natural protein design. From one protein family to another, we have noticed several common features, such as stereotyped contacts or functional loop diversification. It also seems that compositionality could be an ubiquitous feature of protein fitness landscapes, and may be a crucial for evolvability and functional diversification. Other future projects include the development of systematic methods for identifying function-determining sites or intrinsically disordered protein regions. In addition, it would be very interesting to use RBM to determine evolutionary paths between two, or more, protein sequences in the same family, but with distinct phenotypes. In principle, RBM could reveal how functionalities continuously change along the paths, and provide a measure of viability of intermediary sequences. It could also be powerful for estimating evolutionary distances between sequences; this could be used to trace back the evolutionary history of protein families, or detect homologs within a protein family.

Finally, generalization of our approach to other sequential genomic data such as RNA and antibodies is straightforward, and could also lead to interesting developments.

Part V C O N C L U S I O N

Over the last decade, the statistical physics community has mostly focused on pairwise interaction models for unsupervised data analysis purposes. The rationale behind this choice is multiple. Firstly, pairwise interaction model are justified by a Maximum Entropy principle: it is the minimal model that can account for both the mean and correlations of the data. Pairwise interaction are indeed the traditional form of interactions in physics (e.g. gravity, electrostatic, Van Der Waals,. . . ), whereas high-order interactions are often unnecessary to explain large scale collective behaviours of complex systems, and are typically washed away by the renormalization group. Secondly, pairwise interactions models are often very convenient to interpret as causal links between individual units within the system. These causal links can be related to the underlying biological features of the system: synapses in biological neural networks, protein interaction in gene networks, visual attention in bird flocks, contacts in protein sequences, etc. This is in stark contrast with traditional unsupervised models, such as clustering, PCA, or deep networks: these approaches focus mostly on the structure of the data manifold itself rather than on the set of constraint that give rise to it. Therefore there is often no biological/physical interpretation associated to the model parameters or representation inferred for techniques such as PCA or deep networks. Lastly, pairwise models are essentially the only available models ! Indeed, the number of interaction terms involving k units scales as N k , which is unreasonable for finite data size; it is already doubtful that all pairwise couplings are inferred correctly for a typical data size.

Each of these arguments can be challenged. First, incorporating within the model all the second order moments and none of the high-order moment is questionable: some second order moments are very noisy (e.g. for rare aminoacids), whereas other high order moments are very strong. Moreover, unlike in physics, high-order interactions are ubiquitous in biological systems: high-order epistasis is systematic in proteins, glial cells mediate high-order interactions in neural networks, and cooperation of more than two proteins are frequent in gene networks; inferred high-order interactions could therefore correspond to biological properties as well. Besides, interactions inferred from second order statistics are often effective in practice, in the sense that they reflect statistical interactions rather than physical ones. Lastly, the combinatorial explosion of the parameter space is not a fatality: tractable high-order models such as ICA and RBM or even mixture models have been around for decades; the key idea is to incorporate only some high-order interactions via a non-linearity in the Hamiltonian.

In this thesis, we have shown that RBM, a high-order interaction model that also learns a representation of data could integrate very well within the toolbox of the statistical physicist. RBM are justified theoretically by the necessity to use non-linearities to model complex multimodal data, and the emergence of a compositional phase in which a large diversity of attractors is produced from different combinations of features. Crucially, our work provides a conceptual framework for interpreting the representation and the model parameters: provided that the weights are sparse, they can be interpreted as typical parts of data configurations. Clearly, there is a wide conceptual and technical gap between theoretical understanding of RBM and of deep networks, but our work may be a small step toward the right direction.

Secondly, we have overcome several weaknesses of standard RBM parametrisation and training, to the point where they can compete with state-of-the-art methods such as Variational Autoencoders or Generative Adversarial Networks on relatively small data sets such as MNIST or proteins. This work suggests that RBM can achieve a good compromise between model interpretability and generative performance.

Using RBM, we were able to infer a wealth of functional, structural and phylogenic information from protein sequence data only. Moreover, RBM can recombine natural sequences into new artificial ones, that are putatively functional and may have different functionalities than natural sequences. RBM may find applications for both designing artificial proteins and elucidating general principles underlying natural protein design. In the future, RBM may be used to retrace the evolutionary history of protein families.

We do not expect Restricted Boltzmann Machines to replace Boltzmann Machines, as the later remain best suited for inferring interaction networks such as contacts. However, RBM are significantly better at elucidating collective modes of variation of data, and may find applications for this purpose in other important domains such as neuroscience, RNA analysis and gene networks. • The visible layer fields as, g i (v) = log f i (v) -1 q v ∑ q v ′ =1 log f i (v ′ ), i.e. the fields of the independent model.

• The parameters of the hidden unit potential as g µ = 0 if Bernoulli; γ µ = 1, θ µ = 0 ∀µ if Gaussian or ReLU, and γ + µ = γ - µ = 1, θ + µ = θ - µ = 0 for dReLU.

• The weights as random, independent Gaussian w iµ (a) ∼ 0.01 N N (0, 1). Indeed, w = 0 is a critical point with a vanishing gradient, hence the initial weights should not be zero; the normalization choice ensures that the initial inputs I µ are of order 1.

The learning rate is set to lr i for the d a % first updates, after which it decays in a geometric fashion until it reaches lr f . The number of epochs depends on the numerical experiments and was handpicked; a good rule of thumb is that the lower the final entropy of P (e.g. stronger correlations, more hidden units, less regularization), the longer the training should be. The data set is shuffled after each epoch.

a.2 choice of initial potentials for pt/ apt

Both Parallel Tempering and Augmented Parallel Tempering require choosing an initial independent distribution P 0 (v, h) = 1

Z 0 e -E 0 (v,h) with energy E 0 = -∑ i U 0 i (v i ) -∑ µ U 0 µ (h µ ). We choose formally P 0 so as to minimize D KL (P d |P 0 ). Or equivalently:

             γ = 2γ + γ - γ + +γ - η = γ --γ + γ -+γ + θ = γ - γ + +γ -θ + + γ + γ + +γ -θ - ∆ = 2γ + γ - (γ + +γ -) 2 (θ + -θ -) (A.8)
This parametrization helps better quantifying and interpreting the nongaussianity of the potential. γ and θ are the same parameters as for the quadratic potential, they control the curvature (resp. offset) of the potential, i.e. the slope and the offset of the transfer function. η ∈ [-1, 1] quantifies the asymmetry of the potential: for η = ±1, U (h) = ∞ ∀x ≶ 0 and the hidden unit becomes a single ReLU. ∆ quantifies the first derivative jump: for ∆ < 0, the potential has two local minima and the distribution is bimodal whereas for ∆ > 0, there is a single minimum with singular curvature, and the distribution is sparse. In terms of moments, θ, γ, η and ∆ control respectively the mean, variance, skewness and kurtosis of the distribution of h µ . If ∆ = η = 0, the potential is effectively quadratic.

The cumulant generating function and its moments rewrite:

• Γ(I) = log Φ ∆ √ 1+η - √ 1+η(I-θ) √ γ 1+η γ + Φ ∆ √ 1-η + √ 1-η(I-θ)
√ γ 1-η γ

• If ∆ > 0:

H(I) = ReLU (1 + η)(I -θ) -∆) γ -ReLU (1 -η)(I -θ) + ∆) γ
If ∆ < 0: • (1+η) 2 max(h, 0) 2 -1 (1-η) 2 min(h, 0) 2 + ∆ 1 (1+η) 2 max(h, 0) -1 (1-η) 2 min( With this parameterization, the following transformation: γ → λ 2 γ, I → λI, θ → λθ, ∆ → λ∆ leaves the effective potential invariant (up to an additive term), hence γ can be chosen arbitrarily in the model. On the other hand, due to the presence of order 3 terms in Γ, changing θ cannot be compensated by changing the visible layer fields like in the Gaussian case. Rather, we proceed as in the centering trick, and set: θ = θ + I (A.9)

H(I) =          √ 1+η(I-θ)-∆ √ 1+η γ if I ≥ θ + 2η ( √ 1+η+ √ 1-η) 2 ∆ √ 1-η(I-θ)+ ∆ √ 1-η γ if I ≤ θ + 2η ( √ 1+η+ √ 1-η) 2 ∆ • P[h > 0|I] ≡ p + = 1 -p -= Φ   ∆ √ 1+η - √ 1+η 
Var[h|I] = 1 γ {1 + η(p + -p -) +p + p -2 ∆ √ γ -2η I -θ √ γ       2∆ √ γ -2η I -θ √ γ - 1 + η Φ ∆ √ 1+η - √ 1+η(I-θ) √ γ - 1 -η Φ ∆ √ 1-η + √ 1+η(
And choose γ such that:

Var[h] MSA = 1 (A.10)
At this point, one should realize that Eqn. (A.10) cannot be solved analytically. It is extremely tempting to not perform exact batch normalization, and use the same formula for γ as in the Gaussian case; after all, we could expect that the distribution would be approximately normalized and that divergence problems are still solved even if exact normalization is not achieved. It matters however when the RBM is regularized (e.g., with L 1 norm on the weights), as the outcome of regularized training depends on the parametrization choice. In fact, when trying to train regularized dReLU with the Gaussian gauge choice, no optimum was found, but instead an asymptotic divergence of the form w → 0, ∆ → -∞ appeared, such that the inputs of the hidden unit go to zero but the slope of the average activity goes to infinity. Thus exact batch normalization is required, and we must proceed. We rewrite Eqn. (A.10) as: The above implicit equation A.11 is solved iteratively through γ (t+1) = Γ(γ (t) , δ, θ, η, P d ). As for the Gaussian case, we evaluate the expectation and variances on a mini-batch before computing the gradient, and we perform only one iteration step per gradient update. Furthermore, we use an exponential smoothing γ (t+1) = ρΓ(γ (t) , δ, θ, η, P d ) + (1ρ)γ (t) after a while, with ρ i = 1 and ρ → 0 to ensure convergence. Lastly, unlike the Gaussian case, the nonlinear moments estimators can have a very large variance, particularly when hidden unit h µ encodes for a very rare feature; in that case, the variance can decrease abruptly, yielding large fluctuations of γ. To alleviate this problem, we bound γ (t+1) ≥ 3 4 γ (t) . To obtain the gradient, one needs to compute the derivatives of E , V. They can be obtained, in principle, by automatic symbolic differentiation; however, numerical stability problems arose with the expression obtained. Instead we derived analytically the derivatives as follows. When they appear, ξ,ξ ′ denote any of the I,θ,∆,η. With the above formula, the cross-derivatives and the gradients can be computed. Note again that for sparse features, γ can fluctuate a lot and the above cross derivatives can be very large; we therefore threshold the final gradient for numerical stability.
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 211 Figure 2.1: (a) Pictures of a person with various facial expressions. They lie in a very low dimensional manifold of the vector space of pictures with 1000 × 1000 pixels. (b) Example of complex 2D manifold embedded in a 3D vector space. Both examples are reproduced from Pr. Yann Lecun's lectures slides on Deep Learning (https://www.slideshare.net/yandex/yann-le-cun)

  due to finite sampling, and the learning rate ρ is initially set to 0.05, and decays exponentially throughout learning. Example of fields inferred are shown in Fig. (4.7); the non-linear interpolation correctly maintains balance between modes at all sites.

  4.10).Quantitatively, the autocorrelation function Fig.4.9(c) confirms that APT decorrelates samples faster than both Gibbs and PT, at about equal computational cost. Transition matrices displayed in Fig.4.9(d) show that transitions between modes are significantly more frequent and homogeneously distributed with APT, resulting in smaller thermalization time τ. In terms of training, as expected, APT can successfully learn the mixture model shown in Fig. (4.5) onto which both PCD and PT fail. Quantitative results on non-trivial data sets are discussed in the next chapter. T H E PA R A M E T E R I Z AT I O N P R O B L E M 5.1 background Besides the gradient evaluation problem, maximum likelihood training of RBM is impaired by the non-convexity and bad conditioning of the hessian. We illustrate first the problem on few examples.

MC = 1 )

 1 Gibbs (N MC = 10) PT (N PT = 10) APT (N PT = 10) BM and RBM is not obvious: numerous methods exist, with their advantage and liabilities. If one were to start reimplementing RBM from scratch, our experiments suggest that:
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 61 Figure 6.1: Phase diagram of the Hopfield model. Derivation presented in[START_REF] Amit | Storing infinite numbers of patterns in a spin-glass model of neural networks[END_REF], and diagram reproduced from[START_REF] Mézard | Mean-field message-passing equations in the hopfield model and its generalizations[END_REF] 

  T H E R A N D O M -R B M M O D E L 7.1 model definition 7.1.1 Main model ingredients In Part 3.6, we presented results of training on the MNIST handwritten data set. We review here the main observations: (a) Importance of non-linearity Non-linear models perform better than linear ones, and learn meaningful representation. (b) Sparse weight matrix Shortly after the beginning of the training, weights are similar to digits; as training converges, each weight focus on individual strokes. The weight matrix w iµ becomes sparser, and with larger entries, see Fig. 3.9. At the end of training, we find a fraction of non-zero weights p ∼ 0.1, see Section 8.2 for details of the estimation.
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 1 definition and implementation 10.1.1 Definition In the context of protein sequence analysis, a Restricted Boltzmann Machine (RBM) is a joint probabilistic model for sequences and representations, see Fig. 10.1. Protein sequences v = (v 1 , v 2 , ..., v N ) are displayed on the Visible layer, and representations h = (h 1 , h 2 , ..., h M ) on the Hidden layer. Each visible unit takes one out of q = 21 values (20 amino acids + 1 alignment gap). Depending on the potential, hidden-layer unit values h µ are either real or binary. The formal definition is very similar to that of the binary case:

  11.6B), to compensate the absence of C-C bridge on the neighbouring sites 11-35.

11. 4
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Figure 11 . 10 :

 1110 Figure 11.10: Hsp70 functional cycle Graphical summary reproduced from [239]. Red/Brown = Nucleotide Binding Domain. Blue = Substrate Binding Domain. Green = Substrate protein. Purple = J-protein. Cyan = Nucleotide Exchange Factor

  E X : T E C H N I C A L D E TA I L S O F T R A I N I N G A L G O R I T H M a.1 additional informations for sgd RBM are initialized as follows:

  Since the probability factorizes, D KL (Pd |P 0 ) = ∑ i D KL (P d (v i )|P 0 (v i )) + ∑ µ D KL P d (h µ )|P 0 (h µ )is a sum of individual term which can be optimized independently. Here, P d (h µ ) = P(h µ |v)P d (v).
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 3 annex: technical details of training algorithm a.3 implementation of the reparametrization trick for bernoulli and drelu a.3.1 BernoulliHere, we recall the reparametrization used for Bernoulli potentials, which is equivalent to the centering trick.U µ (h) = -g µ h g µ = gµ -I µ (v) v∼P d (A.5)This choice ensures that the input is always centered, without limiting the capacity of the model. The partial derivatives, cross-derivative and final gradient equations are:∂L ∂ gµ = ∂L ∂g µ = = h µ v∼P d ∂δ µ ∂w iµ(a) =δ v i ,a v∼P d ∂L ∂w iµ (a) = δ v i ,a h µ v∼P d δ v i ,a v∼P d h µ v∼P d δ v i ,a h µ v∼Pδ v i ,a v∼P d h µ v∼P (A.6) a.3.2 dReLUWe start by introducing the following change of variable for the potential parameters:θ + = θ + ∆ 1+η θ -= θ -∆ implementationof the reparametrization trick for bernoulli and drelu 203

1 a

 1 θ)(1 + η(p +p -)) -∆(p +p -E (Iθ, ∆, γ, η)

E 1 γ ( 1 +

 11 (Iθ, ∆, γ, η ≡ V (Iθ, ∆, γ, η))And the derivatives of Γ are, by application of the chain rule:• ∂ θ Γ(I) = h|I • ∂ γ Γ(I) = -

1 == 1 γ 2 1 γ ( 1 +

 11211 Var[h|v] MSA + Var[ h|v ] MSA ⇐⇒ 1 Var[E (I(v)θ, ∆, γ, η)] MSA + V (I(v)θ, ∆, γ, η) MSA ) ⇐⇒ γ = 1 2 {1 + V (I(v)θ, ∆, γ, η) d + (1 + V (I(v)θ, ∆, γ, η) d ) 2 + 4Var[E (I(v)θ, ∆, γ, η)] d ≡ G(γ, θ, ∆, η, P d ) (A.11) 
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Table 5 . 1 :

 51 Test set likelihood on MNIST for several hidden unit potentials, learning rates and with (left) or our without reparametrization (right)

lr = 10 -3 lr = 10 -2 lr = 5.10 -2 lr = 10 -1 Gaussian -102.1/ -104.3 -81.2/-85.9 -76.8/ Diverge -75.9/Diverge dReLU -96.6/-88.7 -71.2/-73.0 -71.7/ Diverge -71.0 /Diverge

Table 5 . 2 :

 52 Test set likelihood for MNIST (left) and 28 × 28 Caltech Silhouettes 101 dataset (right). Standard deviations of order 0.1 (resp. 0.5)

  As discussed in Section 9.2.2, generative models like BM and RBM can be used to score sequences and generate artificial sequences with putative natural-like structure and function. However, as illustrated in Section 11, several protein families feature a diversity of functional specializations: substrate specificity, protein partners, biological expression,... Could we specify in advance what is the functionality of these sequences ? This is particularly important for achieving controlled protein design. Similarly, an ideal theoretical fitness function should take into account the specific details of an experiment: nature of the substrate, experimental pH,... How can we modify the statistical energy function in order to take into account these information ? Here, we show how the biologically interpretable representation learnt by RBM can guide quantitatively protein design and scoring. Beyond designing natural-like sequences, we illustrate how RBM can generate sequences in regions of the sequence space not seen in the alignment. Such approaches could provide rationales for better understanding the necessary conditions to functionality, and designing proteins with nonnatural properties.We have shown in Section 11 that several hidden units reliably identified functional subgroups within a protein family. In the context of design, a natural way to leverage this property is to sample while fixing the value of these hidden units. Numerical implementation of conditional sampling is straightforward in is present only in vertebrates; they are thus never observed simultaneously in natural sequences. Sampling our RBM conditioned to appropriate levels of h 2 and h 5 allows us to generate sequences with both features activated (red dots in panel B and corresponding sequence logo E). In Lattice Proteins, the sampling is ergodic but the MSA is of finite size. Hidden units 3 and 4 of RBM shown in Fig.11.2 are independent, but both have very sparse activity, such that we never observe a sequence with both strong activations. RBM can generate sequences having both activities (blue and cyan dots, panel C). The fitness -diversity trade-off A good generative model must be able to generate sequences that have both high fitness and high diversity, i.e. sequences that are far away from one another and from the training set sequences. Indeed, since RBM are universal approximators (see Section 3.2), they could very well overfit the training set, such that samples are copies of the original sequences (up to a few quasi-neutral mutations). As shown in panels A and B of Fig.13.3, the sequences designed by RBM are far away from all natural sequences in the MSA, but have comparable probabilities.

	13.2.2
	13.1 methods of biased sampling
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  14.2. For example, for RBM for Bernoulli potentials, 51 out of 100 hidden units encode gap stretches, as opposed to 23 for quadratic and 15 for dReLU potentials; on WW, the numbers are respectively 18, 15 and 9. For both data sets, dReLU encode more efficiently the gap modes.
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							∂I + ∂ξ	∂I + ∂ξ ′ 1 +	I + -φ -1 + φ +	-∂I -∂ξ	∂I -∂ξ ′ 1 +	I --φ -1 -φ -
	31.	∂ log Z ∂ξ	= p + (I + -1 φ + ) ∂I + ∂ξ + p -(I --1 φ -) ∂I 0 ∂ξ
	32. ∂E ∂I = 1 + V			
	33. ∂E ∂θ = -∂E ∂I			

∂p + ∂I -= -p + p -(I --1 φ -) 29. ∂p + ∂ξ ∂ξ for ξ ∈ {γ, θ, ∆, η, I}
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.

∂ 2γ + E ∂ log Z ∂γ -∂E ∂γ 42. ∂ log Z ∂∆ -∂E ∂∆ 43. ∂ log Z ∂η + η ∂E ∂η

Nair and Hinton introduced ReLU for RBM in[START_REF] Nair | Rectified linear units improve restricted boltzmann machines[END_REF], but in an heuristic fashion: a conditional form P(h µ |I µ ) = ReLU I µ + N (0, 1) is prescribed, without any associated potential. The RBM were shown to be efficient for feature extraction, but cannot be used for scoring / generation purpose

We use -1/1 notations for consistency with the following AGS computation

If we have +1/-1 spins and a symmetric ReLU such as the dReLU1 graph in Fig.3.6, then setting g = 0 would give the same results

Solutions with nonhomogeneous magnetizations m µ , varying from one strongly activated hidden unit to another, give additional contributions to f of the order of p 2 with respect to the homogeneous solution m µ = m, and do not affect the value of e ℓ .

Available at http://www.phys.ens.fr/~monasson/papers.html

The structure is not shown since the tail cannot be crystallized

contact prediction with restricted boltzmann machines

Applying the definition to a DCA model, with marginal distribution

we obtain

independently of the sequence v. With the zero-sum gauge (∑ b J ij (a, b) = ∑ a J ij (a, b) = 0) for the couplings, equation ( 12.3) can be inverted, yielding:

Thus, assuming a pairwise model implies that ∆∆Lij is constant, i.e. independent of the background sequence, and equation (12.4) shows that the reciprocal is also true. For a general distribution P(v), we do not expect Delta∆L to be constant as higher-order interaction terms may be present. We can nonetheless define an effective coupling matrix through:

From there, we can construct a contact map estimator based on the Frobenius norms of the effective couplings, with the Average Product Correction, see [START_REF] Cocco | Inverse statistical physics of protein sequences: A key issues review[END_REF]. This estimator is defined for any tractable probability distribution, but it may be costly in practice, as it requires O(Bq 2 N 2 ) evaluation of P(v). In the case of RBM, each probability evaluation has complexity O(NM), but it is possible to reduce the complexity. Starting from the definition of P(v) Eqn. (3.3) and writing Ĩij µ (v) = ∑ l =i,j w lµ (v l ), we have:

Since the expression is a sum over hidden units, it involves only marginal statistics of Ĩij µ (v). For a fixed µ, i, j, one can replace the . MSA by an average RBMs. For instance, the distribution of sequences v conditioned hidden unit µ having activity equal to h c µ gives

which is formally the probability distribution of another RBM with N visible units, M -1 hidden units, visible layer fields gi (v) = g i (v) + w iµ (v)h c µ and identical weights and potentials wiν (a) = w iν (a), Ũν = U ν , for all ν = µ. Conditioning is therefore equivalent to removing the hidden unit and multiplying the distribution by a factor exponential in the input I µ (v). More generally, simultaneous conditioning over K hidden units yields an RBM with M -K hidden units. Such conditioned RBM model can be used either for sampling or scoring.

Low temperature sampling

Traditional sampling of P(v) produces artificial sequences with average statistical energy. To increase the chance of finding sequences with high statistical fitness, one important trick is to bias sampling toward sequences having low statistical energy. For a traditional exponential model such as Boltzmann Machines, this is achieved by low temperature sampling. We define the modified distribution

, where β is the inverse temperature. For instance, P 2 (v) ∝ P 2 1 (v), thus reducing the importance of low probability sequences. In the case of RBM, biased sampling is not straightforward, as the low temperature of the marginal distribution P β (v) is not in general the marginal of the low temperature of the joint probability P β (v, h). The trick is to duplicate the hidden units, the weights, and the local potentials acting on the visible units, as shown in Fig. 13.1. By doing so, the sequences v are distributed according to:

(13.2)

In other words, sampling from P β (v) for integer β > 1 is possible, and done by duplicating β times the hidden layer and visible layer fields.

A.2 choice of initial potentials for pt/ apt 201 For categorical visible variables we obtain the standard independent model fields:

For Gaussian hidden units, we obtain:

At any time, since the hidden units are normalized. For Bernoulli and dReLU hidden units, since their statistics evolve during training, the corresponding hidden potential parameters must be adjusted dynamically by gradient descent. The updates write:

And:

Where Γ 0 is the c.g.f. evaluated at the initial parameters. We use the same learning rate as for the gradient descent.