N
N

N

HAL

open science

Restricted Boltzmann machines: from compositional

representations to protein sequence analysis

Jérome Tubiana

» To cite this version:

Jérome Tubiana. Restricted Boltzmann machines: from compositional representations to protein
sequence analysis. Physics [physics]. Université Paris sciences et lettres, 2018. English. NNT:

2018PSLEE039 . tel-02183417

HAL Id: tel-02183417
https://theses.hal.science/tel-02183417
Submitted on 15 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-02183417
https://hal.archives-ouvertes.fr

PSL %

UNIVERSITE PARIS

THESE DE DOCTORAT
DE L'UNIVERSITE PSL

Préparée a I'Ecole Normale Supérieure

Restricted Boltzmann Machines : from Compositional
Representations to Protein Sequence Analysis

Soutenue par Composition du jury :

Jérome TUBIANA

Paolo DE LOS RIOS
Le 29 Novembre 2018

Ecole Polytechnique Fédérale de Lausanne Président du jury

Riccardo, ZECCHINA

Universita’ Bocconi Rapporteur
Ecole doctorale n° 564
Physique en lle-de-France bz cRERLL L
CEA Saclay Examinatrice
Guillaume OBOZINSKI
Ecole Des Ponts et Chaussées Examinateur
Ecole Normale Supérieure Examinatrice

Physique

Rémi MONASSON
Ecole Normale Supérieure Directeur de these

CONTENTS

1T

INTRODUCTION 12

INTRODUCTION TO REPRESENTATIONS, BOLTZMANN MACHINES
AND RESTRICTED BOLTZMANN MACHINES

REPRESENTATIONS 17

2.1 Definition 17

2.2 Examples 19

2.2.1 Clustering and mixture models 19

2.2.2 Dimensionality Reduction and PCA 20

2.2.3 Extracting latent features from data 22

2.2.4 Random Projections and Compressed sensing 25
2.3 Summary 26

BOLTZMANN MACHINES AND RESTRICTED BOLTZMANN MACHINES
3.1 Historical Background 28
3.2 Definition 30
3.3 Sampling 35
3.4 Learning 38
3.5 Likelihood estimation 39
3.6 Results on MNIST 40
3.7 What do hidden units learn? 45
3.8 Explicit formula for sampling and training RBMs 47
3.8.1 Bernoulli 47
3.8.2 Potts 48
3.8.3 Gaussian 48
3.8.4 ReLU and dReLU 49

LEARNING ALGORITHMS FOR BOLTZMANN MACHINES AND RE-
STRICTED BOLTZMANN MACHINES

THE MOMENT EVALUATION PROBLEM 53
4.1 Background 53
4.1.1 Contrastive Divergence 54

4.1.2 Persistent Contrastive Divergence 56

4.1.3 Parallel Tempering 57

4.1.4 Methods not based on sampling 61
4.2 Augmented Parallel Tempering 62

4.2.1 Principle 62

28

5

II1

CONTENTS

4.2.2 Implementation 63
4.2.3 Results 68
THE PARAMETERIZATION PROBLEM 70

5.1 Background 70

5.2 A new reparameterization trick for Restricted Boltzmann Ma-
chines 73

5.3 Results 74

STATISTICAL MECHANICS OF RESTRICTED BOLTZMANN MACHINES
BACKGROUND ON NETWORK-BASED ASSOCIATIVE MEMORY MOD-

ELS 79
6.1 The Hopfield model of associative memory 79
6.2 Statistical Mechanics of Associative memory networks 81
6.3 Multitasking in Associate memory networks 83
THE RANDOM-RBM MODEL 86
7.1 Model definition 86
7.1.1 Main model ingredients 86
7.1.2 Random-RBM ensemble 87
7.1.3 The Hopfield model revisited 89
7.2 Replica computation and mean-field equations 91

7.2.1 Interpretation of the order parameters 93
7.2.2 Saddle-point equations 95
7.3 Results 96
7.3.1 Effect of the non-linearity 96
7.3.2 p < 1 and the compositional phase 97
7.4 Random-RBM in the high sparsity limit p — 0 98
7.4.1 Scaling law and limit regime 98
7.4.2 Geometry of the attractors 102
QUANTITATIVE COMPARISON WITH RBM TRAINED ON MNIST 105
8.1 Finding attractors in RBM trained on MNIST 105
8.2 Numerical proxies for control and order parameters 105
8.2.1 Participation Ratios PR 106
8.2.2 Number L of active hidden units 106
8.2.3 Normalized Magnetizations 107
8.2.4 Weight sparsity p 107
8.2.5 Weights heterogeneities 108
8.2.6 Effective Temperature T 109
8.2.7 Fieldsg 110
8.2.8 Thresholds 0 111
8.3 Results 111

CONTENTS

v

10

11

12

13

MODELING PROTEIN SEQUENCES WITH RESTRICTED BOLTZMANN
MACHINES
BACKGROUND 117
9.1 Context 117
9.2 Coevolution 121
9.2.1 Natural Selection and conservation 121
9.2.2 Direct-Coupling Analysis 126
9.2.3 Statistical Coupling Analysis and Sectors 131
LEARNING PROTEIN CONSTITUTIVE MOTIFS FROM SEQUENCE
DATA WITH RBM 133
10.1 Definition and implementation 133
10.1.1 Definition 133
10.1.2 Learning 136
10.1.3 Weight Visualization 137
A PHENOMENOLOGY OF FEATURES INFERRED BY RBM 138
11.1 Lattice Proteins 139
11.1.1 Description 139
11.1.2 Results 140
11.2 WW Domain 144
11.2.1 Description 144
11.2.2 Results 144
11.3 Kunitz Domain 148
11.3.1 Description 148
11.3.2 Results 148
11.4 Trypsin and Serine Protease 150
11.4.1 Description 150
11.4.2 Results 153
11.5 Hspyo Protein 157
11.5.1 Description 157
11.5.2 Results 158
CONTACT PREDICTION WITH RESTRICTED BOLTZMANN MACHINES
12.1 Principle 167
12.2 Results 169
12.2.1 Contact prediction 169
12.2.2 Dependence on the parameters of the RBM 171
12.2.3 Conclusion 171
PROTEIN DESIGN WITH RESTRICTED BOLTZMANN MACHINES 174
13.1 Methods of biased sampling 174
13.1.1 Conditional sampling 174
13.1.2 Low temperature sampling 175
13.1.3 Focused sampling 176

167

14

VI

CONTENTS

13.2 Results 176
13.2.1 Conditional Sampling and feature recombination 176
13.2.2 The fitness - diversity trade-off 177
13.2.3 Converting protein specificities 180
MODEL SELECTION 182
14.1 Generative performance 183
14.1.1 Number of hidden units 183
14.1.2 Hidden-unit potentials 183
14.1.3 Sparse regularization 186
14.2 Transition to compositional phase 188

CONCLUSION

APPENDIX
ANNEX: TECHNICAL DETAILS OF TRAINING ALGORITHM 200
A.1 Additional informations for SGD 200
A.2 Choice of initial potentials for PT/ APT 200
A.3 Implementation of the reparametrization trick for Bernoulli and
dReLU 202
A.3.1 Bernoulli 202
A.3.2 dReLU 202

ABSTRACT

Restricted Boltzmann Machines (RBM) are graphical models that learn jointly
a probability distribution and a representation of data. Despite their simple
architecture, RBM can learn very well complex data distributions such as the
handwritten digits data base MNIST. Moreover, they are empirically known to
learn compositional representations of data, i.e. representations that effectively
decompose configurations into their constitutive parts. However, not all variants
of RBM perform equally well, and few theoretical arguments exist for these
empirical observations.

In the first part of this thesis, we ask how come that such a simple model can
learn such complex probability distributions and representations. By analyzing
an ensemble of RBM with random weights using the replica method, we
have characterized a compositional regime for RBM, and shown under which
conditions (statistics of weights, choice of transfer function) it can and cannot
arise. Both qualitative and quantitative predictions obtained with our theoretical
analysis are in agreement with observations from RBM trained on real data.

In a second part, we present the application of RBM to protein sequence
analysis and design. Owing to their large size, it is very difficult to run
physical simulations of proteins, and to predict their structure and function. It
is however possible to infer information about a protein structure from the way
its sequence varies across organisms. For instance, Boltzmann Machines can
leverage correlations of mutations to predict spatial proximity of the sequence
amino-acids. Here, we have shown on several synthetic and real protein families
that provided a compositional regime is enforced, RBM can go beyond structure
and extract extended motifs of coevolving amino-acids that reflect phylogenic,
structural and functional constraints within proteins. Moreover, RBM can be
used to design new protein sequences with putative functional properties by
recombining these motifs at will.

Lastly, we have designed new training algorithms and model parametrizations
that significantly improve RBM generative performance, to the point where
it can compete with state-of-the-art generative models such as Generative
Adversarial Networks or Variational Autoencoders on medium-scale data.

RESUME

Les Machines de Boltzmann Restreintes (Restricted Boltzmann Machines, RBM)
sont des modeéles graphiques capables d’apprendre simultanément une distribu-
tion de probabilité et une représentation des données. Malgré leur architecture
relativement simple, les RBM peuvent reproduire tres fidelement des données
complexes telles que la base de données de chiffres écrits a la main MNIST. Il a
par ailleurs été montré empiriquement qu’elles peuvent produire des représen-
tations compositionnelles des données, i.e. qui décomposent les configurations
en leurs différentes parties constitutives. Cependant, toutes les variantes de ce
modele ne sont pas aussi performantes les unes que les autres, et il n’y a pas
d’explication théorique justifiant ces observations empiriques.

Dans la premiere partie de ma theése, nous avons cherché a comprendre
comment un modele si simple peut produire des distributions de probabilité si
complexes. Pour cela, nous avons analysé un modele simplifié de RBM a poids
aléatoires a 'aide de la méthode des répliques. Nous avons pu caractériser
théoriquement un régime compositionnel pour les RBM, et montré sous quelles
conditions (statistique des poids, choix de la fonction de transfert) ce régime
peut ou ne peut pas émerger. Les prédictions qualitatives et quantitatives de
cette analyse théorique sont en accord avec les observations réalisées sur des
RBM entrainées sur des données réelles.

Nous avons ensuite appliqué les RBM a l'analyse et a la conception de
séquences de protéines. De part leur grande taille, il est en effet tres difficile de
simuler physiquement les protéines, et donc de prédire leur structure et leur
fonction. Il est cependant possible d’obtenir des informations sur la structure
d’une protéine en étudiant la facon dont sa séquence varie selon les organismes.
Par exemple, deux sites présentant des corrélations de mutations importantes
sont souvent physiquement proches sur la structure. A l'aide de modeles
graphiques tels que les Machine de Boltzmann, on peut exploiter ces signaux
pour prédire la proximité spatiale des acides-aminés d"une séquence. Dans
le méme esprit, nous avons montré sur plusieurs familles de protéines que
les RBM peuvent aller au-dela de la structure, et extraire des motifs étendus
d’acides-aminés en coévolution qui refletent les contraintes phylogénétiques,
structurelles et fonctionnelles des protéines. De plus, on peut utiliser les
RBM pour concevoir de nouvelles séquences avec des propriétés fonctionnelles
putatives par recombinaison de ces motifs.

CONTENTS

Enfin, nous avons développé de nouveaux algorithmes d’entrainement et des
nouvelles formes paramétriques qui améliorent significativement la performance
générative des RBM. Ces améliorations les rendent compétitives avec I’état de
I'art des modeles génératifs tels que les réseaux génératifs adversariaux ou les
auto-encodeurs variationels pour des jeux de données de taille intermédiaires.

10

CONTENTS

ACKNOWLEDGMENTS

Je tiens d’abord a remercier mon directeur de thése Rémi Monasson ainsi que
ma collaboratrice Simona Cocco d’avoir encadré ma thése au cours de ces trois
derniéres années. J'ai bénéficié d’un environnement chaleureux et humain, d’un
encadrement scientifique de tres haut niveau et d"une exposition a des sujets de
recherche passionnants. A ce titre, je me souviendrai de ma thése comme de
I'une de mes meilleures expériences professionnelles.

Je tiens également particulierement a remercier Jean-Frangois Allemand, pour
ses nombreux conseils pertinents et bienveillants dont je bénéficie depuis avant
mon arrivée a I'ENS en 2011. Plus généralement, cette these n’aurait pas été
possible sans l'excellente formation scientifique dont j’ai bénéficié ici, et je
souhaite donc remercier I'ensemble de 1'équipe pédagogique de 'ENS. J'ai eu
le plaisir de participer (a mon niveau) a la formation des étudiants de 'ENS au
cours de ma these grace a Frédéric Chevy, je I'en remercie.

Je remercie également Aleksandra Walczak et Lenka Zdeborova d’avoir ac-
cepté d’étre respectivement ma parraine et tutrice scientifique et pour les discus-
sions que nous avons eues. Je remercie également Guilhem Semerjian, Georges
Debregeas, Didier Chatenay et Eric Aurell pour les conseils scientifiques avisés.

Je souhaite ensuite remercier chacun des membres du jury de ma soutenance
de thése: merci a Guillaume Obozinski, Lenka Zdeborova (encore), et partic-
ulierement a Paolo de Los Rios et Riccardo Zecchina pour avoir accepté d’étre
rapporteurs et étre venus de loin pour assister a ma soutenance de these.

Merci également a Viviane Sebille, Sandrine Pataccini et Laura Baron-Ledez
pour leur aide administrative précieuse. Je remercie également Marc-Thierry
Jaekel pour son support technique et pour avoir mis en place une infrastructure
informatique solide et efficace, qui a survécu a mes innombrables benchmarking
et autres essais ratés.

Au cours de ma these, j’ai eu le grand plaisir de rencontrer et de partager mon
quotidien avec de nombreux étudiants, collegues du département de physique.
Je remercie chaleureusement Ada, Aldo, Alessandro, Alexis, Arnaud, Beatriz,
Clément, Dario, Elisabetta, Emmanuel, Francesca, Kevin, Lorenzo, Marco,
Moshir, Sébastien, Steven, Thijs pour leur amitié, leur soutien émotionnel et
scientifique et les nombreux moments chaleureux passés ensemble.

Il est difficile de réussir sa thése sans étre heureux en dehors, et au cours
de ces trois années de motivations et résultats fluctuants, j’ai pu compter sur
le soutien de ma famille et de mes amis. Un merci particulier a mes parents

CONTENTS

Gérard et Joélle, a ma tante Dany, a mon frére Rémy et ma belle-soeur Lisa pour
leur soutien moral et affectif inconditionnel. Merci également a tous mes amis
en dehors du laboratoire, pour leur écoute, leur amitié et leur bonne humeur
contagieuse.

J’ai enfin un mot particulier pour celle qui partage ma vie. Odélia je te
remercie d’avoir été a mes cotés au cours de ces années ponctuée de hauts et
ses bas; je te remercie de m’avoir toujours soutenu, et tantot écouté, consolé,
aidé concretement, ou botté le derriere lorsque c’était nécessaire ! Maintenant, a
mon tour !

11

INTRODUCTION

Over the last years, deep learning [1,2], a family of machine learning algorithms
based on neural networks, has dramatically improved state-of-the-art perfor-
mance in numerous fields, including image [3-5] and speech recognition [6,7],
natural language processing [8,9], text translation [10-12], computational medi-
cal diagnosis [13], artificial image/video generation [14, 15]. These successes
were notably allowed by the availability of increasingly large data sets, compu-
tational resource and software frameworks. On the other hand, our theoretical
understanding of neural networks has evolved at a slower pace, and although
recent theoretical developments are emerging [16-19], numerous questions
remain: how can such large models with hundreds of millions of parameters
not overfit the data ? Why does the non-convex optimization work so well
in practice ? Why do some architectures and parameters outperform others
? Neural networks could benefit from a better theoretical understanding, as
empirical knowledge can be hard to transfer from one experiment to the other.
For instance, the image recognition challenge ImageNet 2015 was won using
an ensemble of very deep neural networks, each consisting of 152 layers, a
staggering number [5]. However, such very deep architectures should not be
required to achieve human-like performance as the visual cortex is not as deep;
but since the reason this model outperforms the others is unknown, we cannot
reverse engineer it into a simpler architecture. Current progresses therefore
essentially rely on improving optimization algorithm [20-22] and exploring
increasingly more complex architectures [4,23].

Another issue raised by these successes is that as neural networks become
more and more complex, they behave more and more as black-boxes whose
outputs are difficult to interpret. In supervised learning, one may want to know
what clues are picked up by the model to make a decision; in unsupervised
learning, e.g. in probability distribution learning, one may want to know what
are the characteristic features of a configuration that give it high probability.
This is particularly crucial in the context of data analysis in biology, where
models must be both quantitative and relatable to the underlying biological
mechanisms. Owing to continuous progresses in data acquisition techniques,
such as electrophysiological and fluorescence-based functional recordings of
neurons in neuroscience, DNA sequencing, single RNA-sequencing and deep

12

INTRODUCTION

mutational scans of protein fitness landscapes, the amount of available data
has drastically increased. How to exploit these data in both a quantitative and
easily interpretable fashion? Most often, interpretability comes at the expense of
decreased quantitative performance: linear and logistic regression in supervised
learning or mixture models in unsupervised learning are well understood,
but rarely provide an sufficient description of data. On the other hand, deep
neural networks, though powerful, may not be the best tools for the purpose of
interpretation.

Statistical physics may play a key role in addressing both of these issues.
Since the 80’s, ideas from statistical physics have led to both fundamental and
practical developments in computer science and neural networks. The physics-
inspired simulated annealing optimization procedure [24] had major impact in
applied computer science and engineering. Statistical physics tools were used to
study learning dynamics and maximum capacity of feed-forward and recurrent
neural networks such as the perceptron and the Hopfield model [25—27]. More
recently, statistical physics was applied to study transitions from polynomial to
non-polynomial complexity in K-satisfiability problems [28,29], and theoretical
investigation tools such as TAP and belief propagation were shown to efficiently
address inference problems [30,31]. Nowadays, connections between deep
neural network optimization landscapes and spin-glass energy landscapes
and between dynamics of learning and Langevin dynamics are under active
investigation [16,19]. From the perspective of data modeling, a key conceptual
input from statistical physics is that very complex collective behaviors can
emerge from simple interactions between individuals: the traditional example
is the case of the Ising model, where long-range ferromagnetic order can arise
from local couplings between spins. Conversely, this suggests that complex
data may be explainable by relatively simple models. The recently developed
inverse Ising procedure, which consists in finding interactions that reproduce
data correlations found successes in numerous biological problems [32]. More
generally, the physics top-down culture of explaining observations by minimalist
models may find future applications for developing interpretable machine
learning models.

My PhD, realized at the Laboratory of Theoretical Physics of ENS Paris,
under the supervision of Pr. Rémi Monasson and in collaboration with Pr.
Simona Cocco, at the interface between statistical physics, machine learning
and bioinformatics takes place in this general context. This thesis focuses on
Restricted Boltzmann Machines (RBM), a simple yet powerful generative neural
network, and their application to protein sequence modeling. Though they are
much simpler than deep feedforward or generative networks, they share the
similar working principle of learning compositional representations of data.

13

14

INTRODUCTION

Using theoretical tools from statistical mechanics, we show how and when
does such representations emerge. In that case, RBM achieve a very good
compromise between model expressivity and interpretability. We then present
a new application for protein sequence modeling based on this principle.

In Part I, we introduce and illustrate through examples the key concepts re-
quired for this thesis: representations in machine learning, Boltzmann Machines
(BM) and Restricted Boltzmann Machines (RBM). It is based on the following
review article and currently unpublished material:

[33] S. Cocco, R. Monasson, L. Posani, S. Rosay, and J. Tubiana, “Statistical
physics and representations in real and artificial neural networks,” Physica A:
Statistical Mechanics and its Applications, vol. 504, pp. 45—76, 2018.

Part II focuses on training algorithms for BM and RBM. We first review
existing training methods, then introduce personal contributions developed
over the course of my thesis. This part is based on the following article, currently
under review:

[34]]. Tubiana and R. Monasson, “Efficient sampling and parametrization
improve restricted boltzmann machines,” 2018.

Part III is dedicated to the analysis of a model of RBM with random weights
using statistical mechanics tools. After a review of network-based associative
memory models and their statistical mechanics treatments, we present our
model, present theoretical results and compare them to RBM trained on the
MNIST handwritten digit data base. It is based on the following published
article, as well as additional material to be published soon:

[35] J. Tubiana and R. Monasson, “Emergence of compositional representa-
tions in restricted boltzmann machines,” Physical review letters, vol. 118, no. 13,
p- 138301, 2017.

Finally, Part IV is dedicated to the application of RBM to protein sequence
analysis. We start by reviewing major stakes of protein science, then present a
short review of coevolution methods. It is based on the following two articles;
the first is currently under review, and second will be submitted soon:

[36] J. Tubiana, S. Cocco, and R. Monasson, “Learning protein constitutive
motifs from sequence data,” arXiv preprint arXiv:1803.08718, 2018.

[37]J. Tubiana, S. Cocco, and R. Monasson, “Learning lattice proteins with re-
stricted boltzmann machines : compositional regime and comparative analysis,”
2018.

Part

INTRODUCTION TO REPRESENTATIONS,
BOLTZMANN MACHINES AND RESTRICTED
BOLTZMANN MACHINES

REPRESENTATIONS

2.1 DEFINITION

We start with the definition of a data representation. Suppose we are given a set
of P data samples x(l), x(z), ..xP) of a N-dimensional random variable X having
joint density P(X). A data transformation is a deterministic transformation
from the multidimensional vector space of data into another one:

F:xeRN = x =F(x) ¢ RM, (2.1)

where M can be larger or smaller than N. In general, F is assumed to be
differentiable, but is not necessarily invertible. We say that the random vector
X' is a representation of the original random vector X. Changing the repre-
sentation of a random variable can be often extremely helpful in data science
because: i) it allows for better visualization and understanding of the process
that generated the data; ii) the performance of machine-learning algorithm,
such as classification or clustering methods heavily depends on the choice of
representation used.

Although it is not obvious that a given representation is good, it is clear that
many representations are useless: if F(x) = 0, Vx, then X’ is a trivial random
variable, and does not carry any information about X. More generally, it is
clear that any transformation F that does not vary strongly across the support
of X is of little use. On the opposite, F = Id is not of much use either, since
the properties of the data distribution have not changed. Typically, a good
data representation X’ must have helpful properties that X does not have, such
as low dimensionality, independence between components or sparse values,
while carrying information about the original random vector X. Thus, the
transformation F must depend on P(X) and should be learnt. Once learnt, a
data representation can often shed light on how the data was generated: one
can find so-called ’features’, i.e. frequent collective modes of variation in the
data, find a partition into classes, discover outliers,...

One fundamental reason for learning new data representations is that the
vector space RN and its associated euclidian distance do not reflect well the

17

18

REPRESENTATIONS

underlying structure of the data distribution. For instance, an image of an object
and its copy translated by a few pixels are often very far away from one another
in terms of euclidian distance - in fact, often as far away as two images of
different objects. Similarly, in the context of protein sequences, it is well known
that sequence similarity (the Hamming distance) is not always a good predictor
of functional similarity. Moreover, the support of the data occupies only an
infinitesimal fraction of the vector space, as data very often lie in or close to
a subspace of dimension much lower than N. This is the so-called "'manifold
hypothesis’. Indeed, consider for instance a data set constituted by pictures
of a person’s face, taken in many different positions; each picture is made of,
say, 1000 x 1000 pixels. It is clear that this data set is a very small subset of all
possible 1000 x 1000 colored pictures, which is defined by a 3 - 10°~dimensional
vector. The reason is that, for a given face, there are only ~ 50 varying degrees of
freedom (the position of all muscles), a very small number compared to 10° [38].
Hence, all data points lie in a (non-linear) manifold, of very low dimension M
compared to N. More generally, the variability in the data often comes from a
small number of explanatory latent factors that affect all components, and we
would like to recover them. In practice, the perfect representation algorithm
that would turn an image into this kind of ‘'muscle positions’ representation
does not exist, because our problem is mathematically ill-defined. Indeed, given
a set of latent factors (e.g. the "true’ set of muscle positions), any invertible
transformation z' = G(z) also defines a set of latent factors that explains the
variability in the data. A well-defined representation learning problem therefore
requires making assumptions on the statistics and/or dimensionality of the
latent factors, as well as on the transformation from factors to observations. We
will present below some interesting representation learning algorithms based
on these assumptions.

A good data representation can significantly improve the performance of
subsequent machine learning tasks, by retaining only useful information about
the data sample. For instance, in a so-called deep neural network, one learns
a sequence of data transformations, e.g. to predict a label from an image. By
using non-linearities and so-called pooling architectures, the learnt intermediate
representations of the data can become invariant with respect noise, shifts,
rotations,... hence learn quicker [17]. Deep neural networks led to remarkable
breakthrough in many areas, such as visual and speech recognition, natural
language processing [1,39].

2.2 EXAMPLES

Figure 2.1: (a) Pictures of a person with various facial expressions. They lie in a very
low dimensional manifold of the vector space of pictures with 1000 x 1000
pixels. (b) Example of complex 2D manifold embedded in a 3D vector space.
Both examples are reproduced from Pr. Yann Lecun’s lectures slides on
Deep Learning (https://www.slideshare.net/yandex/yann-1le-cun)

2.2 EXAMPLES

2.2.1 Clustering and mixture models

Arguably, the most simple representation of data is clustering. Clustering
algorithms such as K-means or Dbscan identify subgroups within the data
where the intra-cluster euclidian (or other) distance is low, and inter-cluster
distance is high. Formally, it defines a deterministic mapping from the original
data space RN to a categorical variable z € [1,..K]. In the best cases, the
subgroups identified by clustering are well separated and correspond to known
categories, such as animal species in an image data base. In the worst cases,
clusters found are unstable and do not relate to any known data structure. In
particular, clustering depends on the choice of metric, and thus of the initial
representation provided to the clustering algorithm.

Since allocation of a sample to a cluster can be ambiguous, probabilistic
mapping P(z = k|x) (so-called fuzzy clustering) can be derived instead, e.g.
using a Gaussian Mixture Model. This defines a K-dimensional representation
in which each dimension codes for a ‘prototype’ sample, and for most samples,
a single component dominates over the others, see an example on MNIST, the
handwritten digit data base in Fig. 2.2.

19

https://www.slideshare.net/yandex/yann-le-cun)

20

REPRESENTATIONS

6
/
3
i
3
o
s

WN~0%<tJ
NAN P Q0

N VO o L owe —
LevwhLeow

CONNEGCOON-=2
Moo a0 W H %N

B.

Figure 2.2: A. Some samples of MNIST, the data set of 28 x 28 images of handwritten
digits. B. Selection of prototypes inferred by a mixture model on MNIST.
Each one is essentially an average of few digits from the data set.

2.2.2 Dimensionality Reduction and PCA

One important subclass of data transformations are dimensionality reduction
transformations. One aims at compressing a random vector X of typically high
dimension N, into a smaller random vector X’ of dimension M < N, eg M=2
or 3, while keeping as much information as possible about X. Such compression
is motivated by the manifold hypothesis described above. One example is
Principal Component Analysis (PCA), in which dimensionality reduction is
obtained through a simple linear transformation:

X =WX. (2.2)

where the weight W is a M x N rectangular matrix that must be trained on
the data in order to retain as much information as possible from X. This is
done by minimizing a square error between the original data and the data
reconstructed from the representation X'. In practice, the PCA space is obtained
by projecting the data onto the top M eigenvectors of the data covariance
matrix C;; = (X;X;) — (X;)(X;), where the average is computed over the data.
Such transformation mainly serves two purposes. The first one is to provide a
qualitative understanding of the data by visualizing it: one computes a 2 or 3
dimensional-representation of the data; then each data point is represented in a
2 or 3D space. For example, one can compute the 2D PCA representation of
28 x 28 images of digits from the MNIST handrwitten digits dataset, vectorized
as 784-dimensional vectors, see Fig. 2.3; the scatter plot shows two distinct
clusters, corresponding to two digit types (os and 1s). A more interesting

Projection on Principal Component #2

1500 2-D \I\nsuahz'atlon olf the O.S (blue]: and lv[red) d'IgItS (') f?r;) ’F -
F ‘ ’
1000 | - Y -
gp _v i i
L - x|
500 "J -‘ - _a JJ' ‘;r
ot -
" "
gl ,5.'} ;}"‘l sy
-500 | e o A T
- = - il rs
-1000 | . T ime %
’ J A = =
7
~1500 | N it R 3
i i ¥l [
§ A R s bz B0) =
20[1%.500 -1000 -500 0 500 1000 1500 2000 2500 “::" ‘?"f . a ' -:E‘I! ‘i‘; .

2.2 EXAMPLES

Projection on Principal Compeonent #1

Figure 2.3: (a) A 2-dimensional PCA representation of the MNIST handwritten digits
data set. Each point is a different image with x and y coordinates being
the value of the first and second components of the representation. Here,
only the digits o’s (blue) and 1’s (red) are represented. (b) Visualization
of the weight matrix W. Each image is a principal component vector W; ;
blue (resp. red) pixels denote large positive (resp. negative) values. the
PCA representation is obtained by computing the set of overlaps between
an image and each principal component vector

illustration is the interpretation of molecular dynamics simulation of complex
systems, made of many strongly interacting and heterogeneous microscopic
components. Observing the dynamics of such systems, e.g. a protein described
at the atomic level, amounts in practice to look at thousands of correlated
time series. Principal component analysis offers low-dimensional projections
of these time traces, and allows one to visualize collective motions underlying
the evolution of the system, see [40] for a recent review on applications to
biomolecules, including nucleic acids and proteins.

The second purpose of dimensionality reduction is to overcome the so-called
curse of dimensionality. In very high dimensional spaces, most datasets sample
only very sparsely the vector space RVN. Consider for instance the following
supervised learning problem. We are given a training data basis of 10,000
100 x 100 grayscale (normalized between o and 1) images of cats and dogs, with
binary labels attached, and we want to train a parametric model to classify
whether images are cats or dogs. At this point, it is useful to think that
this classification task is essentially an interpolation problem: there exist a
mathematical function 6 : X — y € {0,1} that assigns 0 to cats and 1 to dogs.

21

22

REPRESENTATIONS

We observe pairs of values (X!, y' = 6(X")), with i = 1...10,000, and want to
interpolate the values of 6 for new test images. This interpolation problem
would be trivial if the input space was densely sampled, e.g. if for any point
in RN there would be a training data point at distance < €. In practice, it is
impossible because the latter condition requires about e~ N data points, which
is out-of-reach when N is large.

One possible way-out is to first learn a new data representation of lower
dimension, x’ = F(x), e.g. using PCA, and then train a classification model
of the form: y = 6(x’). If the low dimensional representation keeps relevant
information about the nature of the image, then learning can be performed.
One popular application of PCA for supervised learning is the ‘eigenface” face
recognition algorithm. A PCA representation is trained on a data set of faces,
before applying supervised learning [41]. The eigenface algorithm is considered
among the first successful face recognition algorithms.

The main practical limitation of PCA is that it is generally difficult to identify
the principal components with the latent factors mentioned above. As seen
from Fig. 2.3(b), the weights are delocalized across all pixels, and cannot be
related simply to the constitutents of digits. Weight delocalization is actually
quite general: for any image data base featuring translational invariance, such
as textures or natural images [42], the principal components are extended 2D
Fourier modes *. In the next section, we briefly introduce discuss other feature
extraction methods that aim at solving this issue.

2.2.3 Extracting latent features from data

The variability in real-world data, such as images, can often be decomposed
into a set of largely independent modes of variation. For instance, two faces are
different because some of their parts are different: nose, ears, lips... At a lower
level of description, an image can contain or not an edge at a given location, or
at some angle or scale, and two different images have different set of activated
edges. Extracting these so-called "features’ is of particular interest for machine
learning, in particular for classification, because the decision function y = 6(X)
that must be learnt may be expressed more easily as a function of these "features’
X’ than from the raw pixels X. For instance, one could achieve better results by
expressing 0(X’) as a linear function of X', instead of a higher order polynomial

For instance, in the 1D case, a translational invariant data set yields a translational invariant

covariant matrix of the form C;; = C(i — j). Assuming periodic boundary conditions, the
2irtk

eigenvectors are Fourier modes of the form /\;.‘ xeN

2.2 EXAMPLES

Unobserved Latent variables

(21, -y 200) ~ | [Pulz)

“w

A /X<
‘ ‘ ‘ x = Az [+noise]

Observed data

Figure 2.4: The linear mixing model. Observed random variable X is generated by
first drawing latent variables z from a prescribed distribution, then linear
transformation and addition of noise. Arrows indicate causal links

of X. Moreover, the learnt representations have interesting statistical properties,
such as low statistical dependence between modes, invariance with respect to
irrelevant perturbations of the data such as corruption by noise. that can be used
for denoising. Some notable algorithms for unsupervised feature extraction are
Independent Component Analysis (ICA) [43], sparse dictionary learning [44]
and sparse autoencoders [45].

Briefly, we assume in all cases the following directed graphical model, shown
in Fig. 2.4, in which the latent factors Z € RM are linearly mixed to produce the
signal X € RY; the goal is to learn the mixing matrix. Since the mixing model
is not unique (for any Z, W, Z’' = UZ and A’ = AUT with U unitary induce the
same distribution on X), all methods rely on a probabilistic prior on the latent
factor distribution. In the standard Infomax ICA framework [46], it is assumed
that the z are non-gaussian and independent, there is no noise and M < N.
The inference is carried out by finding A such that the z are as independent as
possible from one another, using high order moments criteria. In the sparse
dictionary framework, it is assumed that M > N and the z are sparse, with a
tunable sparsity prior A. The inference is carried out by a double optimization
process: for each sample x, find the latent factor z that best compromises
between reconstruction error and sparsity; then update A so as to reduce the
reconstruction error and improve sparsity.

We display in Fig. 2.5 the features learnt by ICA on the MNIST digits data
set. The features learnt correspond to individual handwritten strokes, i.e. parts
of digits, unlike PCA where the principal component do not have a simple
interpretation. Interestingly, the features found by sparse dictionary learning
on natural images dataset qualitatively match very well the receptive fields of

23

24

REPRESENTATIONS

AR F P E O x4

ik T i it ® b e g
e gy T % g e é‘ 4
. w £ = = ‘f: y

= a}§ ! l.mé = w ﬁ' .:i‘ lﬁ
. [= M & - \
s G ap T E 21750
B0 e o A ' ¥

Figure 2.5: Features learnt by Independant Component Analysis on MNIST. Most fea-
tures are localized around a region, and strongly activated by handwritten
strokes, parts of digits. The Scikit-learn implementation of FastICA algo-
rithm was used [50]

neurons in the visual cortex of mammalians, such as in monkey [47,48]. Feature
extraction carried out in the brain bear strong analogies with machine-learning
procedures [49].

ICA, sparse dictionaries and other linear blind source separations methods
found numerous applications in the fields of signal processing and neuroscience.
Sparse dictionaries inspired the development of new image restoration and
compression algorithms [51,52], and led to the theory of compressed sensing (see
below). In neuroscience, they were both successful as a theoretical framework
for understanding the brain’s visual processing [53] and for data analysis of
functional recording [54,55]. Their main strength is their expressivity: owing to
a large choice of latent feature activations, latent models can encode a diversity
of samples with a limited number of non-zero entries. There are two main
practical limitations. First, the choice of prior limits the set of latent factors that
can be inferred. "True’ latent factors may not be independent; for instance, in
images of faces, the latent factors ‘is a man” and 'has a mustache” are correlated
but distinct. Similarly, they may not be sparse, but rather binary, multimodal,...
Second, linear mixing model is too simplistic, because the latent factors interact
to generate the sample. For instance, translating an image or changing its angle
of view is essentially equivalent to performing a permutation of edges detectors
activations. Generally speaking, the latent factor - sample mapping is highly
non-linear, and most modern approaches for latent factor inferring are based
on deep architectures.

2.2 EXAMPLES 25

- -
J \

Figure 2.6: (a) Features learnt by Sparse Dictionary Learning applied to natural images
(woods,...). Most features are orientation-specific edge detectors, reminiscent
of Gabor filters. Picture reproduced from Olshausen and Fields [44] (b)
Receptive fields of V1 simple cells in Macaque visual cortex, reproduced

from [47]

2.2.4 Random Projections and Compressed sensing

One last interesting example of representation is the case of random projections,
and its application to compressed sensing [56]. Here, we will assume that (i)
there exists a known sparse dictionary such that x = As € RN, where s has at
most K non-zero entries for each x (ii) we compute a linear projection x' = Wx,
with a random matrix W in which each entry of the weights w;, is random,
drawn from a gaussian distribution independently from the others. Provided
that the number of measurements M is of the order of K (the exact boundary is
given by the Donoho-Tanner phase transition [57]), it is possible to reconstruct
accurately the original N dimensional signal, using e.g. LASSO optimization,
see Fig. 2.7. Random projections are an extreme example of representation
where all the information about the signal is present, but in a very intricate
way; the individual components have no meaning on their own, and one must
perform a complex non-linear transformation to recover the signal. In practice,
many so-called incoherent bases, such as the Fourier representation in image
processing share this property with random projections. Compressed sensing
notably led to tremendous speed-up of MRI imaging [58].

26 REPRESENTATIONS

B

S B -

|

2 W

— /

S X X
— J

1
§ = argmin §HX, — WAS|3 + \|I5])1

Figure 2.7: Graphical summary of compressed sensing A signal x is generated from
a sparse latent feature with dictionary A. A low-dimensional random
projection is computed, from which reconstruction can be performed using
LASSO reconstruction

2.3 SUMMARY

To summarize, we show in Fig. 2.8 the main types of representation:

e Original representation. Data typically forms a very sparse sampling of
the high-dimensional space.

¢ Prototypic representations, such as clustering or mixture models. Each
value or component encodes a specific portion of the data space, and for
most samples, only one component is significantly active.

e Intricate representations, such as random projections. Representations
are themselves high-dimensional vectors, whose component values are of
similar amplitudes and all play similar roles across data space. Intricate
representations can be very informative about the original data, but the
individual components do not have simple interpretation.

e Compositional representations, such as sparse dictionaries. These rep-
resentations are composed of elementary features that are activated by
overlapping regions of the data space. Combining different activation
patterns allows to describe a large diversity of data items all over the
space.

2.3 SUMMARY 27

Choosing one representation over the others ultimately depends on the kind
of data and the subsequent intentions: it does not make sense to look for clusters
when there are no natural classes within the data, or conversely to look for
shared features in purely multimodal data. Moreover, not all representation
learning algorithms can be allocated to one of the above mentioned types.
We will show in particular that depending on the learning algorithm and the
parameter values, RBM can behave in any of the last three representation types.

e B)

®o®

Figure 2.8: Nature of representations of data. A: Original data representation. B:
Prototypic representation. C: Intricate representation. D: Compositional
representation. Each dot represent a data sample, and each colored circle
denote the region of the data space where a feature is significantly activated.

BOLTZMANN MACHINES AND RESTRICTED BOLTZMANN
MACHINES

3.1 HISTORICAL BACKGROUND

Systems of interacting binary units were originally introduced as toy models of
condensed matter systems in statistical physics. These coarse grained descrip-
tions of interacting particles were designed as minimal models for studying
collective phenomena in materials and phase transitions. Some famous exam-
ples include The Ising and Curie-Weiss model for studying ferromagnetism,
paramagnetism and criticality in magnets [59,60], the Anderson model for study-
ing conductor-insulator transition in materials [61, 62], the Lebowitz-Penrose
model of Liquid-Vapor phase transition [63], or the Sherrington-Kirkpatrick
model of spin glasses [64].

These models were first brought to the to the domains of neuroscience and
artificial intelligence in 8os, at the onset of the second wave of connectionism.
In 1982, Hopfield showed that a system of coupled binary units mimicking a
biological network of neurons connected by synapses could learn to store mem-
ories (‘patterns’), and retrieve then under noisy conditions [65]. The main idea
is to adjust the synapses such that each memory (a pattern of activation of the
neurons) is an attractor of the dynamical system of interacting neurons; there-
fore, any dynamic starting around the attractor leads to the full retrieval of the
pattern. The so-called Hopfield model of associative memory inspired a wide
literature of attractor models in theoretical neuroscience [66]. In 1983, Ackley,
Sejnowski and Hinton presented the Boltzmann Machine (BM), a system of cou-
pled binary units whose biases and couplings could be trained by physics-like
Monte Carlo simulations to learn implicit constraints from data [67]. BM were
proven to be succesful for pattern completion tasks on toy examples, but the
learning algorithm was prohibitively slow. In 1984, Geman and Geman showed
a connection between Bayesian image denoising and bidimensional Ising-like
lattice models of interacting spins: each spin plays the role of a pixel, and ferro-
magnetic couplings between neighbors arise from continuity priors in images.
They then showed that the physics-inspired Gibbs sampling and simulated
annealing were efficient for performing Maximum A Posteriori optimization

28

3.1 HISTORICAL BACKGROUND

and denoising images. Finally, Smolensky presented the Harmonium - which
is a special case of BM and is now known as Restricted Boltzmann Machine
(RBM), in the context of the theory of language and symbolic computation [68].

Owe to their lack of computational efficiency, BM learning approaches were
initially let down in favor of supervised learning algorithms based on backprop-
agation [69]. They reappeared in 2002 when Hinton proposed the Contrastive
Divergence algorithm as a fast training algorithm for RBM [70], and RBM sub-
sequently found interesting successes as representation learning algorithms [71]
and for collaborative filtering (the Netflix problem) [72]. In particular, Hinton et
al. showed that stacking RBM on the top of one another proved an efficient way
of learning deep representations [73]; such deep belief networks could then be
fine-tuned by backpropagation to reach state-of-the-art performance in classifi-
cation tasks [74]. These results sparked a wave of interest in RBM [75], until
the large amount of data, faster hardware and better regularizations rendered
unsupervised pretraining of deep networks useless [1, 3,76]. More recently, BM
and RBM were also supplanted as generative models by new approaches, such
as Variational Autoencoders [77] and Generative Adversarial Networks [14].

Direct coupling

R R

Correlation 0 a

Indirect coupling

Figure 3.1: The Inverse Ising problem Correlations are either due to direct interaction
or indirect interaction, as in the Ising model of statistical physics. The goal
of the inverse Ising problem is to recover the interaction matrix from the
data correlations

In parallel to these developments, Boltzmann Machines have witnessed a
surge of interest in the statistical physics community over the last decade,
under the names of inverse Ising problem or Maximum entropy modelling.
In traditional statistical physics, macroscopic observables are derived from
microscopic laws governing the system. In inverse problems the order is
reversed: we are provided with observations of the system, and aim to go
back to its microscopic laws. Inverse problems are particularly important for

29

30

BOLTZMANN MACHINES AND RESTRICTED BOLTZMANN MACHINES

studying complex systems in which the behaviour of individual units is well
understood but not their collective behaviours. For instance, in neuroscience,
the functional differentiation between various biological neural networks does
not arise from neuronal types (there are only a few types across the whole brain),
but rather by the way they interact: the set of axons, dendrites and synapses
that mediates communication between neurons determines what computations
are performed, how the network responds to external stimuli, and how it learns
from experience. Each neural network has its own unique interaction graph,
and it is essential to develop experimental or theoretical tools for elucidating
network connectivity.

Since experimental measurement of all the synaptic couplings between all
pairs of neurons is very challenging in vivo, recent approaches have focused on
inferring them from observed neural activity only. The key idea is that a neuron
receiving input from another excitatory or inhibitory neuron is respectively more
or less likely to spike when the latter is spiking. Interactions between neurons
therefore induce positive or negative spike correlations, and it may be possible
to recover some information about the underlying network from the patterns of
correlations. This can be formalized as an Ising inference problem: we look for a
set of fields (the neural thresholds) and couplings (the synaptic interactions) that
reproduces the mean and pairwise correlations from recordings. This problem
is identical to learning a Boltzmann Machine with only visible units from the
data. Numerous statistical physics methods were developed for solving the
inverse Ising problem, such as message-passing algorithms [78], mean-field and
TAP expansions [79,80], cluster expansions [81,82] see [32] for a review.

In the context of neuroscience, such approaches were shown successful at
retrieving both structure of synaptic couplings and at predicting functional be-
havior (response to stimulus, replay, learning,...) in the retina [83,84], prefrontal
cortex [85] and hippocampus [86-88], see [89,90] for reviews. Other examples
of application of inverse Ising problem (and related models) include modelling
of bird flocks [91], financial markets [92], and structure prediction in proteins
or RNA (see Part iv), see [32] for a review. We now define BM and RBM and
present result.

3.2 DEFINITION

A Boltzmann Machine (BM) and a Restricted Boltzmann Machine (RBM) are
both undirected graphical models, i.e., probability distributions over a mul-
tidimensional space, defined via an interaction graph, see Fig. 3.2. BM are
constituted of a single set of random variables v, interacting via a coupling

3.2 DEFINITION

Hidden layer
N

2630435

Visible layer

A.

Figure 3.2: Architectures of BM (A), RBM (B) and gBM (C). All models are defined
on a bidirectional graph; with a visible layer (v) representing the data
and, for RBM and gBM a hidden layer (h) supposed to extract statistically
meaningful features from the data.

matrix J. RBM are constituted by two sets of random variables, a visible layer
(v) -the data layer- and a hidden layer (h), which are coupled together by a
weight matrix W; there are no direct couplings between pairs of units in the
same layer (hence, the name restricted). BM and RBM are both special cases
of general Boltzmann Machines (gBM), originally formulated in [67], which
have a visible layer, hidden layer and couplings between all pairs of variables.
There are N visible units indexed by i, and for RBM and gBM, M hidden units
indexed by .

In all generality, the variables v;, i1, can take binary (0/1 or -1/1), categorical
(Potts state) or continuous (€ R, RY, [0,1],...) values; for simplicity of presen-
tation we will assume here that the v; are binary; generalization to other kind
of variables is straightforward. For BM, the probability distribution of the visi-
ble unit configuration v = (v1,vy, ..., vN) is given by the following Boltzmann
distribution:

(3-1)

31

32

BOLTZMANN MACHINES AND RESTRICTED BOLTZMANN MACHINES

Where E is the energy function and Z = } c(oqn e E(V) is the partition
function such that P is normalized. The fields vector g; and couplings matrix
Jij adjust respectively the mean and correlations of the units v;. Similarly,
for a RBM, the joint probability distribution of the visible and hidden unit
configurations, v = (v1,v2, ...,vn) and h = (hy, hy, ..., hy) is:

P(v,h) = S EM)

M (3-2)
E(V,h) = — Zgivi + Z Uy(hy) — Zwi,yvihy
i u=1 iU

where as before, E is the energy functionand Z = Y, , e * (vh) is the partition

function. U, are unary potentials that control the marginal distributions of
the variables h;,, and the weight matrix w;, couples the visible and hidden
layers. The hidden potentials I/, can be chosen arbitrarily as long as sampling
is feasible. Some useful examples are:

e The Bernoulli potential: U/ (x) = —gx with x € {0,1}

The Potts (multinomial) potential: U/ (x) = —g(x) with x € {1,.,K}

The Quadratic or Gaussian potential: ¢/ (x) = 3yx?> +60x, withx € R

The ReLU potential: U(x) = 1yx? +60x, withx € RT

The double ReLU potential: U(x) = 3y x "2+ 1y x 240 xT +07x7, x €
R where x™ = max(x,0), x~ = min(x,0).

Bernoulli and Quadratic potentials are standard in the RBM literature; Potts
potential is a straightforward generalization of RBM to categorical variables
such as protein sites, with value 1 out of 20 amino-acids. The ReLU and double

ReLU potentials were introduced during this thesis and will be justified below
1

We stress that though the visible units are not directly connected, they are
correlated thanks to common input from the hidden layer; RBM can therefore
model correlated data. Indeed, consider the example of Fig. 3.3: a sample is
collected from 4 binary variables that show strong Pearson correlations ~ 0.5
between all pairs. These samples could have been produced in two ways:

Nair and Hinton introduced ReLU for RBM in [93], but in an heuristic fashion: a conditional
form P(hy|1,) = ReLU (I, + N'(0,1)) is prescribed, without any associated potential. The RBM
were shown to be efficient for feature extraction, but cannot be used for scoring / generation
purpose

3.2 DEFINITION 33

Correlation Matrix

Input h

B
b {1,1,1,1} | ++
{1,1,xx} +
, {0,0,x,x} -
{0,0,0,0} | --

Figure 3.3: How to model correlations among a set of variables. A. Boltzmann Ma-
chine approach: The matrix of pairwise correlations between variables is
computed from data, and a network of couplings is inferred to reproduce
those correlations. B. Restricted Boltzmann Machine approach: observed
correlations are due to one or more common input(s), whose values drive
the configurations of the variables. A network of connection between the
visible layer (support of data configurations) and a layer of hidden units
(support of common inputs) is found to maximize the probability of the
data items. The rightmost column indicates the magnitude & of the hidden
unit as a function of the visible configuration.

e Either by a BM with excitatory couplings J;; > 0 between all pairs of
variables, such that a configuration with both v; = 1 and v; = 1 has lower
energy (and higher probability) than a configuration with v; =1,v; =0
orv;, =0, vj = 1. Here, 'Ferromagnetic” interactions between each pair
induce correlations.

e Either by a RBM with a single binary unit ;, with positive coupling
w;1 > 0 for all i. When h; = 1, each v; has a high probability to be 1,
p(v; =1|hy) = Hefw and conversely. In other words, the correlations
between visible units arise come from a shared common input received by

an unobserved unit.

34

BOLTZMANN MACHINES AND RESTRICTED BOLTZMANN MACHINES

Informally, the BM couplings represent causal links between units whereas the
RBM hidden units represent collective modes of variation of the data. Formally,
we can compute the probability distribution over the visible layer for RBM by
marginalizing over the hidden units:

B M B 1 N M B 1 B
P(v) = / l—IlthP(v,h) =Zexp| - Zl/{l-(vi) + Y Tu(L(v) | = e eff
u= —

i=1 u=1
(33)
Where:
L(v) =) wyv (3-4)
i
is the input received by hidden unit y, and:
I(1) = log | [dhe i1 (5)

is the cumulant generative function associated to the potential U,. For
instance, for quadratic potential, T, (I) = %(I —0)%+ % log 27” ;ifyy =1,0, =0,
the effective energy is, up to an additive constant:

1
Eepp(0) = =) 8&ivi—5) (Z wz’u%) vi0; (36)

ij \H

In that case, we recognize a pairwise effective Hamiltonian with rank M
pairwise interaction matrix, i.e. the Hopfield model with M patterns [65,94]. In
general, non-quadratic hidden-unit potentials have a non-quadratic cumulant
generative function, and produce high-order interactions (obtained by Taylor of
I'). Interestingly, the number of high-order terms can be infinite but the number
of parameters of the model is finite, scaling as M N; this is in stark contrast with
high-order Boltzmann Machines, where each order adds O(N*) parameters to
the model. For both BM and RBM, training consists in fitting numerically the
distribution P(v) to the data by maximum likelihood, see section 3.4 and Part ii.

Thanks to its high-order interaction terms, RBM with Bernoulli hidden units
are universal approximators, provided the number of hidden units is arbitrarily
large [95]. In practice, the number of hidden units required can be relatively
small or fairly large. For instance, the Curie-Weiss model, which is formally
defined as a BM with i) +1 visible units ii) g; = 0 Vi and iii) J; = % Vi, j

3.3 SAMPLING

120 potential v
12.51
4 10 . 100_
=
/ . 751
L.
7 _ : Q
10 5 5 %0 G 5.0
— Quadratic 11 251
— dRelLU1l
— dRelLU2 0.01
1-20 =2 -1 0 1 2
Input /

Figure 3.4: Hidden units potentials i, and corresponding cumulant generative function
I, see Section 3.8 for analytical formula. Non-quadratic potential induce
non-quadratic cumulant generative function and thus, high-order interaction
terms.

with | > 0 can be expressed as a RBM with i) M = 1 hidden unit ii) a

quadratic potential and iii) w;; = 4/ % ; this is because] is positive definite
of rank 1. On the other hand, the same model but with antiferromagnetic

interactions | < 0 requires N — 1 hidden units, because] is negative definite.

To view this, we can write the transformation J] — J — JId, which leaves the

probability invariant but changes J into a positive definite matrix of rank N — 1.

Qualitatively, antiferromagnetic interactions induce a narrower distribution of
the average magnetization m = % Y_; v; than with the independent model, and
such constraint cannot be encoded simply by a shared input between visible
units. More formally, this is because the cumulant generative function is always
convex.

3.3 SAMPLING

In both BM and RBM, one cannot sample directly the distribution like in
univariate distribution or multivariate gaussians. Instead, we must use Markov

chain Monte Carlo sampling, using the Gibbs sampling to update configurations.

Let x be the complete vector of units (either v or (v, h)). Gibbs sampling consists
in updating each unit x; in a random order by drawing it from its conditional
distribution P(x;|x x;). Gibbs sampling satisfies detailed balance, aperiodicity
and in most cases irreducibility, such that given sufficient time, the Markov
chain distribution converges toward the Boltzmann distribution. In RBM, the

35

36

BOLTZMANN MACHINES AND RESTRICTED BOLTZMANN MACHINES

connection with data representation algorithms is best seen when considering
the sampling scheme. Since there are no connections within a layer, the hidden
layer units are conditionally independent given the configuration of the visible
layer, and conversely; hence the Gibbs sampling can be simplified as follows,
schematized in Fig. 3.5:

e Compute hidden units inputs I;, = }_; w;;,v;

e Sample each hidden unit independently P(h,|1,,) o< exp [—U,(hy) + hy1,]
e Compute the visible layer inputs I; = }_, wi,hy

e Sample each visible unit independently P(v;|I;) o exp [(g;i + L;)vi]

The first two steps can be seen as a stochastic feature extraction from configu-
ration v, whereas the last two steps are a stochastic reconstruction of v from the
features h. One can define in particular a data representation as the most likely
hidden layer configuration given a visible layer configuration, that is, through
the set of

ha(v) = axgmax P Iv) = Hy(5u(v)) , ()

K

where H;, = (Z/IP’t)_1 is the transfer function.

Another possiblity is to use the average hidden layer activity given the visible
layer:

%) = (ylv) =S4 (), 58)

Where the last equality stems from the definition of the cumulant generative

function (we have similarly Var(h,|v) = 812 F(I,v)). We show in Fig. 3.6 ex-
amples of transfer functions and average activity. The nature of the hidden
potential determines the shape of the transfer function and average activity. For
quadratic potential, both are linear, whereas for Bernoulli potential, they are
respectively a Heavyside and sigmoid function, see Section 3.8. For the Rectified
Linear Unit (ReLU) potentials, the transfer function is exactly a ReLU function
(hence the name) H(I) = ReLU(%), where ReLU(x) = max(x,0). ReLU is a
popular non-linearity for neural networks, as they are easy to compute, can
remove low signals by thresholding and do not saturate at large inputs, unlike
sigmoids. For the double ReLU (dReLU) potential, the transfer function has two
ReLU branches, see Fig. 3.6. Compared to Bernoulli hidden units, ReLU hidden
units preserve information about the intensity of the input, and were shown
to significantly outperform the former in the context of image recognition [93].

3.3 SAMPLING

Extract

features from
data /

@

Figure 3.5: Back-and-forth sampling procedure in RBM. Hidden configurations h are
sampled from visible configurations v, and, in turn, define the distribution
of visible configurations at the next sampling step.

Sampling steps

10 .
Average Activity 101 . — Quadratic
- — dRelU1
5] 3] — dreLu2
>
o
-2 -1 / 1 2 > 0
i ' i T Y]
X
Input / = _s5]
)]
_5< o
=
10
—101 2 1 0 1 2
Input /

Figure 3.6: Average activity and transfer function for various hidden units potentials 4,
see Section 3.8 for analytical formula. Non-quadratic potentials correspond
to to non-linear transfer function and average activity

We have chosen a truncated gaussian distribution rather than followed the
construction based on duplicating Bernoulli units proposed in [93] in order
to obtain a well-defined probability distribution. As seen from Fig. 3.6, the
dReLU potential, which we introduced in [36] is the most general form, and can
effectively interpolate between quadratic (61 = 0_, v+ = 7—), ReLU (y—- — 0),
and Bernoulli (y+ = F0+ — +00) potentials. In practice, the parameters are
adjusted during training and this flexibility is particularly useful for modeling
both super-gaussian and sub-gaussian projections, see Section 3.7.

37

38

BOLTZMANN MACHINES AND RESTRICTED BOLTZMANN MACHINES

3.4 LEARNING

Training is achieved by maximizing the likelihood of the data £ = (log P(v)),.
For any general parametric Boltzmann distribution Py(v) = %e*E (v, the gradi-
ent with respect to " is given by:

VL=~ (VE(W)+ (VEW,), (39)

Where (),, is the expectation over the current model distribution Py(v). For a
Boltzmann Machine, this gives:

oL
PP (0i)g = (Vi)

aﬁl (3-10)
3 (vivj), — (vivj),,

And for a Restricted Boltzmann Machine, with hidden unit potential U, and
associated potential parameters ¢, (e.g. fields, threshold curvature,...):

oL

Fro (0i)g = (Vi)

oL _ /Ou(lu(v)) Iy (1u(v))

Y p) - 3 (3.11)
Cn S /4 v m

oL

S (Vi (hyelv)) g = i (V)

Where we used the identity (h,|v) = w. In all cases, the gradient is

the difference between a moment from the data and its corresponding moment
of the model distribution; at the maximum of likelihood, moment matching
conditions are satisfied. The major difficulty lies in evaluating the second

—E(v) s . .
term (f(v)),, = %, because it involves a weighted summation over

2N configurations, which is impossible in practice. Beyond the computational
difficulty, estimating the moments from interactions is fundamentally difficult,
because as is known in statistical physics, very small changes in interaction
parameters can induce phase transitions i.e. dramatic changes in the moments.

3.5 LIKELIHOOD ESTIMATION

We discuss in Part ii current moment approximation methods, and present a
new sampling algorithm, as well as new dynamic reparameterization techniques
for addressing these issues.

The main differences between training BM and RBM are that:

¢ in BM, the data moments can be evaluated only once, whereas they must
be recomputed as W evolves in RBM. Regular gradient descent is therefore
best suited for BM, whereas stochastic gradient descent is faster for RBM.

e Sampling is slightly easier for RBM due to the conditional independence
property, which allows parallel updates instead of sequential ones.

e RBM can be less computationally demanding, as one can choose M < N
(iv) the likelihood is a convex function for BM but not for RBM.

3.5 LIKELIHOOD ESTIMATION

Since the partition function Z is intractable in both BM and RBM, the log-

likelihood £ = log P(v) cannot be computed directly. Throughout this manuscript,

we have used the Annealed Importance Sampling (AIS) algorithm for estimating
the partition function and therefore the likelihood [96,97]. Briefly, the idea is to

estimate partition function ratios. Let P;(x) = %(;(), Py = %(Ox) two probability
distribution with partition functions Z;,Zy. Then:
Pf(x) > Pf(x)Pi(x) 1 74
— = —)V Pf(x)==— 12
<P5<x> o LB 2 HENW=z 61

Therefore, provided that Z is known (e.g. if P is an independent model with
no couplings), one can in principle estimate Z; by Monte Carlo. The difficulty
lies in the variance of the estimator: if Pj, Py are very different from one another,
some configurations can be very likely for P; and almost impossible for Py; these
configurations appear almost never in the Monte Carlo estimate of (.), but the
probability ratio can be exponentially large. In Annealed Importance Sampling,
we address this problem by constructing a continuous path of interpolating

distribution Pg = Plﬁ P& “F and estimate Z1 as a product of ratios of partition
function:

Zq Zﬁlmrl Z,Bl

7 =
Zﬁlmax ZlBlmnx*2 ZO

X Zp (3.13)

39

40

BOLTZMANN MACHINES AND RESTRICTED BOLTZMANN MACHINES

In practice, we choose Pj as the closest (in terms of KL divergence) inde-
pendent model to the data distribution P;, and a linear set of interpolating
temperatures of the form f; = ﬁ To evaluate the successive expectations, we
use a fixed number M of samples initially drawn from Pp, and gradually anneal
from Py to P; by successive applications of Gibbs sampling at Pg. Moreover, all
computations are done in logarithmic scales for numerical stability purposes:
we estimate log %—é R <log gl*—g» b which is justified if P; and Py are close.

0 X~ I
We refer interested readers to [97] for implementation details.

3.6 RESULTS ON MNIST

We show in Fig. 3.7 and 3.8 selected results of training of respectively BM and
RBM with various potentials on the MNIST digits data set. For BM, Fig. 3.7A
shows a selection of pixel-pixel couplings; each image corresponds to a coupling
Ji. at fixed pixel i (shown in red). The couplings are mostly non-zero in the
neighborhood of the pixel, featuring short range excitation and intermediate
range inhibition. Crucially, the distribution of coupling values is much sparser
than the distribution of correlations (panel B). This is because a large fraction
of the correlations C;; are indirect and can be explained by other couplings
Jik/Jjk, see Fig. 3.1: in interacting systems such as the Ising model, long-range
correlations can arise from local couplings.

3.6 RESULTS ON MNIST

Pearson correlation matrix R;

o o o o

w

@ a o o -]

=] L= e o
Pairwise coupling matrix J;
w
100
10¢

-1 o o -] o
100
100
100

o o o o ‘ w

A B.

Figure 3.7: Modeling MNIST with Boltzmann Machines A. Visualization of the inter-
action matrix J;; inferred. Each image shows the couplings J; for a fixed
i, identified by the white pixel. Direct couplings are most important be-
tween close neighbors B. Distribution of the Pearson correlation coefficients.
Distribution of the inferred coupling values

: ’ = ‘ ‘; =% 5—3’ : 3 i 7
’ -7 o Yy s s —
”~ # " "
(4 ’/,‘ _— [/
2 (9 2" & d ©
RelLU, M =12 RelLU, M = 400, short training
’ . o= 3 S AT S e
' o / —_ — % T :’4 o £ - i
- ¥ = 3 ar 5 ¥
[L 4 s A . % ;
- 2 \ = V) / P ! l' 3§ o= .. -
f) 2 o BBVt A hg
) = ",:: v - fd ~.
i y g N B R e O
% o Vv d " M
3 i ' = ! \ 3 s Tt e GEp
- > » D Il e B
y \ ‘ ‘e NI ST T
= M B 5 3 F R S e Lo P
':.’ 4 - - % ,-.. /) qj:'l L :‘.' ’ “.r’ 3 .7;
- - .l ~k i . iy
w X = £ , G e UGN TSR
] w 2] - v -
RelLU, M =400 Bernoulli, M = 400 Gaussian, M =400

Figure 3.8: Modeling MNIST with Restricted Boltzmann Machines Selection of fea-
tures inferred by RBM, with M = 12 or M = 400, and with ReLU, Bernoulli
or Gaussian hidden unit potentials. We find prototypes, features or extended
modes.

41

42

BOLTZMANN MACHINES AND RESTRICTED BOLTZMANN MACHINES

1.0 8
[£
© 0.6 S
7] 4 V
0 =
+ 0.4 o
R=y @©
[} >
= 0.2 2g

O'OO 1 5 25 50 100 150 20%

Number of epochs

Figure 3.9: Weight evolution throughout training For ReLU RBM with M = 400, as
training converges, the weights become sparser and larger.

l(
)
-
()] 3
o
00 25 50 75 100 125 150 175)0 ZOL 40 100 ZOOS s00
Distribution of Average Activity Number of strongly Number of silent hidden
activated hidden units units
C
.©
[7)]
(2]
>
©
O
1 - 20 40 &0 80 100
-15 -50 -25 00 25 50 75
Distribution of Average Activity Number of strongly

activated hidden units

Figure 3.10: Properties of learnt representations Distribution of the hidden layer aver-
age activities <hy \v> (left), of the number of significantly activated hidden
units (middle) and silent units (right), for ReLU (top) and Gaussian (bot-
tom) potentials with M = 400 and regular training.

The phenomenology is richer for RBM. We show in Fig. 3.8 a selection
of features inferred using Bernoulli, Gaussian and ReLU hidden units, with
M = 400 or M = 12, and short or regular training. The shape of the features and
the nature of the representation depends on the training time, the number of
hidden units and the nature of the potential. For ReLU potential (and Bernoulli,

3.6 RESULTS ON MNIST

not shown) and i) low M or ii) large M and short training time, each weight
is extended, with a shape similar to a single digit, as was observed with the
mixture model, see Fig.2.2. For Bernoulli and ReLU potentials with large M,
as training converges, the weights get larger and sparser, reaching a fraction
of nonzero weights p ~ 0.1, see Fig. 3.9. Each weight is localized, and encodes
a stroke - as was found by ICA, see Fig. 2.5. The hidden layer representation
is also similar to sparse dictionaries, showing a compositional behavior: each
data image strongly activates a small number of hidden units L ~ 20 (see
Part iii for mathematical definition of p and L), whereas most hidden units
are silent (I below ReLU threshold) or weakly activated, see Fig. 3.10. On the
other hand, for Gaussian potentials, the features are delocalized, and seemingly
unrelated to the image data base. Histograms of hidden average hidden unit
activity i, are Gaussian, which is typical of intricate representations such as
random projection (see Section 2.2.4). This can be explained by the fact that
the marginal probability distribution P(v) is invariant under a rotation of the
weights W — WO, where O is a rotation matrix with OTO = Id, see Eqn. (3.6).
There is therefore a large degeneracy of equally performing models, and most
have intricate representations.

ARSI E A
66 uollz o
558 b« ¥ 2a
2D VRS TS
TR LRk
PART IS LA 5 S
FUS iQL T LY
ReLU RBM Bernoulli RBM Gaussian RBM BM
L = —-0.095 L= —-0.093 L=-0.111 L =—-0.108

Figure 3.11: Artificially generated digits Samples from the various models and likeli-
hood per pixel. See Fig. 2.2 for a comparison with digits from the original
data base.

The match between the data distribution and the inferred probability distri-
bution can be assessed by the quality of generated samples: for good matches,
samples from the probability distribution should look like digits. Fig. 3.11
shows samples from all 4 distributions. We find decent looking digits for
Bernoulli and ReLU RBM, but not BM and Gaussian RBM. Overall, this sug-
gests that high-order moments are crucial both for the nature of representation

43

44

BOLTZMANN MACHINES AND RESTRICTED BOLTZMANN MACHINES

and for generative purpose. Log-likelihood estimates obtained by Annealed
Importance Sampling (see section 3.5) confirm the visual impression, showing
higher log-likelihood for high-order models than pairwise models.

Interestingly, the samples of ReLU RBM are also very diverse: the learnt
probability distribution is very complex, with many local maxima of probability
(much larger than the values of N or M) as seen in Fig. 3.12. For each sample
from the training and testing set, we perform a gradient ascent on P(v) to
find its closest attractor (i.e. local maximum of probability); we then count the
number of distinct attractor at various phase of the training. At the beginning,
the model is monomodal, with a single attractor. As training progresses, the
number of attractors grows. After training, each data sample - both from
training and test set - is within few pixels of a distinct local maximum of
probability. Beyond the tested samples, the total number of attractors of the
model is likely very large. Intuitively, this is because different combinations
of activated features produce different visible layer configurations, such that
combinatorics can create large sample diversity.

.
. - train v
. 6 10° --- test 0.125
3 5 @
o) I T
< £ 4 10* 0~03‘3
[} L ©
X K =
E : :
E210 0.04 o
A 3 s
£
o 0
r 0w

Visible configuration %15 35 50 100 150 200 °

Number of epochs

Figure 3.12: Probability landscape learnt on MNIST Counts of the number of distinct
attractors (local maxima of P(v) around the data samples. After training,
each sample is very close (7-8 pixel) to a single attractor, suggesting a very
rough landscape.

Overall, depending on the choices of potentials, training time and num-
ber of hidden units, we found a diversity of learnt representations, model
performances and probability landscapes. In particular, RBM switch between
prototype, compositional and intricate representations. The motivation of Part iii
is to better understand why these different representations occur.

3.7 WHAT DO HIDDEN UNITS LEARN?

3.7 WHAT DO HIDDEN UNITS LEARN?

In BM, it is fairly clear that the couplings are adjusted so as to match the data
and model correlations. On the other hand, the moments v; (h,|v) adjusted by
RBM depend on the weight matrix W and on the non-linearity chosen, and they
are dynamically evolving throughout training. What are the hidden units trying
to model ? Here, we present a new short computation illustrating the process.
In the following we assume that we sequentially add each hidden unit and
update only its parameters wy,, §, (and not the previous ones w,/, &,y 1’ < i)
instead of performing a gradient descent over the entire set of parameters.
Moreover, we will assume for now that the cumulant generative function I (I)
is arbitrary rather than parametric, i.e. such that its value for each I can be
adjusted. To this end, let P, be the marginal probability distribution over the
visible layer where only the first 4 hidden units are included:

M
log Pu(v) =g"v+) Ty (L) —logZ, (3.14)
p'=1

gTv+Z”,7 r ’(14’) . . R .
Where Z), =) ¢ W=1"102 17 is the associated partition function. The follow-
ing recursion relation holds:

Z,_
Py:Py—lerH(Iy) ; !
M

Ty (L) ~log{ "))
= 1€

(3-15)

For u = 0, Py is an independent model with fields g. Initially, we set the
fields g;(a) = log fi(a), i.e. the fields of the independent model closest to the
data. Then, the RBM is recursively built: given {w., T, € [1,u — 1]}, we
derive wy,, I'; by maximum likelihood estimation. From Eqn. 3.15, the likelihood
writes:

Ly, = (log Pu(v)), = (log Py-1(v)) ; + (Tu(Lu))y — log <€F”(I“(V)) >P (3.16)

u—1

45

46 BOLTZMANN MACHINES AND RESTRICTED BOLTZMANN MACHINES

Where the first term does not depend on I';, w,. Deriving first with respect to
I',(I) yields:

<erﬂ(1u("))>P (3.17)

Where P;(I,) (resp. P,_1(I,)) denote the induced probability density of the
input I, under P;(v) (resp. P,_1(v)). Solving for the critical point gives I';, up
to an additive constant:

(I = 1)]
r,(I)=1o +K .18
The choice K = 0 is convenient, as it gives log <erﬂ(1ﬂ(")) >P = 0. P, is given
-1
by: '
Py(1u(v))

Py(v) =Py 1(V)s—+"= (3.19)
,‘U() u 1()Py—l(Iy(v)) 3-19

Note also that I', is such that P,(I,) = P4(I,). Intuitively, for a fixed w-,
'y is adjusted such that the histograms of I, under P, and P; match. After
optimizing of Iy, the likelihood 3.16 rewrites:

-1 (L(v) (3.20)
=L, 1+ Dk (Pd(Iy)pr—l(Iﬂ))

Where Dgr denotes the Kullback-Leibler (KL) divergence. Hence, maximizing
over w, amounts to finding the linear projection that maximizes the KL diver-
gence between the data distribution and the previous model distribution. In
other words, hidden unit y first finds the most discriminating feature between
the target distribution and the current distribution P, (in a very similar spirit

38 EXPLICIT FORMULA FOR SAMPLING AND TRAINING RBMS

to the discriminator in GANs [14]), then it is incorporated to the model and its
potential is adjusted in order to exactly erase this difference. Since Dk > 0,
the process always increases the likelihood and is therefore guaranteed to con-
verge to a local maximum. In practice, the cumulant generative function is not
arbitrary but parametric; this biases the search of projections toward particular
statistics: Bernoulli potentials favor projections with bimodal distributions, and
so on. dReLU potentials, which can express all symmetric and asymmetric
distributions, and gaussian, sub-gaussian or super-gaussian distributions (i.e.
bimodal or sparse) are the least biased potentials.

This iterative scheme is very similar to the process of finding the top K
principal components of the data: one computes the data covariance matrix, then
looks for the component with highest variance (the top eigenvector), substracts
it to the covariance matrix, and repeats the cycle. The main differences are
that (i) RBM aim at explaining data probability, whereas PCA solely explains
variance and (ii) the iterative procedure described above gives the best possible
result for PCA, but not for RBMs. Indeed, when adding a new hidden unit, one
should also update all the previous units 1 — p — 1, as the new hidden unit
can perturb their statistics. Therefore, standard simultaneous optimization of
all the hidden units is probably more effective than iterative optimization, but
this formulation better highlights the individual roles of the hidden units and
of the potential.

38 EXPLICIT FORMULA FOR SAMPLING AND TRAINING RBMS

We conclude this section with explicit formula for sampling and training RBMs.
Due to the conditional independence property, sampling the conditional dis-
tributions is straightforward both for the visible and hidden layer; it requires
sampling from P(f1,|I) oc e)+ Here, we give explicit formula for the
average activity, transfer function H(I) = arg max P(h|I) cumulant generative
functions and its derivatives for the various potentials useful for sampling and
training; in the following, we drop the hidden unit index pu.

3.8.1 Bernoulli

e if h=1
o P(h|I) = ﬁ if h=0

0 Otherwise

47

48 BOLTZMANN MACHINES AND RESTRICTED BOLTZMANN MACHINES

I(I) =log (1 + 8t

(h|I) = 0iT(I) = 9gT(I) = {15557

—g—1
Var[h|1] = B(1) = 755

[H(I) —]lg_|_120

3.8.2 Potts

e8(2)+1(2)

) P(Z’I) = W

o I(I) =log <Zz eg(z)H(z))
e H(I) = argmaxy g(z') + I(2)

Note the degeneracy g;(z) — g(z) + K; and w;, (z) — w;,(z) + G; for any K;,
G;. In all experiments, we have removed the degeneracy by using the so-called
zero-sum gauge:), i(z) = 0, L, w;,(z) = 0 Vi, p. SGD updates preserve the
zero-sum gauge for the fields but not for the weights, see the gradient equations
3.11; the weights must be modified after each update to restore the zero-sum
gauge: w;, (v) — w;y,(v) — qlv Yo Wiy (v'), where g, is the number of Potts states
(e.g. 20 amino-acids) of visible units.

3.8.3 Gaussian

We write N (1, 0?) the Gaussian distribution of mean u and standard deviation
o. Then:

e P(h|I) :N<I_9 1)

s

2
e I'(I) = (I;S) —I—%log%ﬂ

(hl1) = 8T (1) = ~apT(1) = 15°

Var|h|I] = %
o H(1) = 120
(1-0)?
292

(1) = 4 (11) =~ -

38 EXPLICIT FORMULA FOR SAMPLING AND TRAINING RBMS

3.8.4 ReLU and dReLU

As ReLU are special cases of dReLU (with y_ — o0), we provide formula only
T

for the latter potentials. We first introduce ®(x) = exp(xz—z) [1 - erf(%)} .

Some useful properties of P are:
o D(x) ~xosw exp(5) V2T
o O'(x) =xP(x)—1

To avoid numerical issues, ® is computed in practice with its definition for x <5
and with its asymptotic expansion otherwise. We also write TN (i, 02,6, +0)

the truncated Gaussian distribution of mode y, width ¢ and support [6, +0].

Then, we see first that P(h|I) is equivalent to a mixture of two truncated
Gaussians:

- .
P(|T) = Lexp |—L-h2— (0T —1)| if h>0
Lexp |-Lh2—(0- 1) ifh <0 (3.21)
o= WP H(I-07)h o= L+ (1—07)h
= P 1p=0 7. + 7 lico 7

Where Z+ = & (I(I\/W_T)) \/17—5 and pt = Zfﬁ We deduce the following

formula:

o P(h|I) = erTN(I;T,,Y%,O,—FOO) +p TN (%,%,—oo,o)

() =1 1 o —I+9+> 1 @(1—9)]
> 1) =log | e () + o (2
e For H(I) we distinguish two cases: the sparse case 67 > 6~ (such as

dReLU1 of Fig. 3.4,3.6), and the bimodal case 6 < 6~ (dReLU2). For the
former it writes:

_ o+ _ -
H(x) = ReLU 1-6 —ReLU Lf;
e Y

49

50 BOLTZMANN MACHINES AND RESTRICTED BOLTZMANN MACHINES

Which justifies the name double ReLU "dReLU’. Note the plateau betweeen
[6~,67], which thresholds weak positive or negative inputs I and promotes
sparse distributions. For the latter, it writes:

if 1> GARVA Vi
H(I) — v vV Yr/ 7™

[-0— 4f 1< ARV s A

_ \/7_++\/_

Note the discontinuity, which pushes an input I toward either strongly
positive or negative values and promotes bimodal distribution. Both
expressions are consistent for the equality case.

o (W) = pt |1=0F 4 1 4o | =6 1
o= |5 | [-t
o Var(h[l| = L4 - g ptp~ [(& - L) -4 =y ! +
Ty (7+ v > v v \/,Y—Jrq)(f\z/:i:) N
() e
_I+ot —9—
vre(p) Ve
—I+6+ 1-60—
o) ol
N N
o 9p+I'(I) = — (max(h,0)|I) = —P+ [I{ﬂ* + TP 1*I++9+]
! (N)
e 9, T'(I) = — (min(h,0)|I) = —p~ [179 - _@1(”)
Y =

o 3,+T'(I) = =3 (max(h,0)?|I) = —3p*

* 3y T(1) = = {min(h, O7|1) = —3p° [% +(55) - ﬁ]

Part II

LEARNING ALGORITHMS FOR BOLTZMANN
MACHINES AND RESTRICTED BOLTZMANN
MACHINES

This short part is dedicated to maximum likelihood training in BM
and RBM. As shown in Section 3.4, both models require evaluation of
the moments of the distribution, which is NP hard in the general case.
Moreover, in the case of RBM with continuous units, ill-conditioning
of the hessian complexifies training. Overall, feature extraction with
RBM is fairly robust but reaching good generative performance
can be challenging, and numerous articles have studied the subject.
We will briefly review them, before presenting two developments
introduced for the purpose of this thesis: a new sampling algorithm
and a new reparameterization trick.

THE MOMENT EVALUATION PROBLEM

4.1 BACKGROUND

We recall that the models are fitted through likelihood optimization, which can
be carried out by a gradient ascent algorithm, consisting of successive updates
of the form 80+ = () + 1r,V-L, where Ir; is the learning rate at time ¢, until
convergence is reached. For BM and RBM, the likelihood gradient takes the
form of a difference between a data average and model average:

VoL = — (VyE(v,0),+ (VgE(v,0),, (4.1)

A gradient update therefore consists in simultaneously pushing down the
energy of the data configuration and pushing up the energy of the current
model distribution; convergence is reached once the two effects compensate
exactly. For BM and RBM, the left hand term can be easily evaluated from

the data. For BM, ag_g) = p; and _ag}(;) = 00j, such that after averaging, we

obtain exactly the first and second order moments f; = (v;),,fij = (viv;) p they
can be computed once before the training starts. For RBM, the derivatives
are non-linear moments and depend on the current parameter estimates, see
Eqn. (3.11); they must be evaluated after each parameter update. For speed
purposes, we evaluate the data average using only a small mini-batch of data
(Npatch ~ 100 in most of our experiments), and iterate multiple time over all
the mini-batches. Provided that the gradient can be evaluated and that the
learning rate rate slowly decays to zero, this optimization method, termed
Stochastic Gradient Descent (SGD) correctly converges toward a local maximum
of the likelihood. Moreover, it exhibits increased speed and better behavior for
non-convex optimization, see [98] for more information.

On the other hand, the right hand term is hard to evaluate, since neither
analytical evaluation (cost is exponential in N) nor direct sampling from P
are possible (i.e. when samples from P can be obtained by transforming of
uniformly distributed samples). In their original formulation of BM/RBM,
Ackley, Hinton and Sejnowski used Markov Chain Monte Carlo (MCMC) to

53

54

THE MOMENT EVALUATION PROBLEM

simulate the model. We recall briefly that MCMC consists in constructing a
Markov chain such that the desired distribution (here P) matches the Markov
chain distribution of samples in the limit of an infinite number of Markov steps,
see [99] for an introduction. The greater the number of steps, the closer the
Markov chain distribution is to the desired distribution. In our context, at
each step of the gradient descent, we launch a set of N,;,s Markov Chains,
wait until convergence, then evaluate the moments from the samples obtained.
Though this is possible in principle, the very long computational time presents
a major difficulty for doing so. For instance, a naive Metropolis-Hasting or
Gibbs MCMC of a Curie-Weiss model, i.e. RBM with N +1 visible units,
M = 1 hidden unit, and uniform weight matrix w;; = w/N) requires of the
order of exp(Nw?) steps to converge to the equilibrium distribution when
w > 1. More generally, naive MCMC generally fails whenever the regions of
the configuration space with low-energy do not form a connected space, in
the sense that one must transit through (very) high-energy configurations to
go from one region to the other; transitions are therefore extremely rare, and
convergence to the equilibrium distribution is never observed in practice for
large N. The original experiments of Ackley et al. were therefore limited to toy
data sets, and BM/RBM rapidly lost traction in favor of less computationally
heavy methods such as backpropagation. Since then, numerous heuristics were
developed for handling this problem and are briefly presented here.

4.1.1 Contrastive Divergence

Contrastive Divergence (CD) is a MCMC based method introduced by Hinton
in 2002 for training RBM [70]. It is a simplification of the original MCMC
sampling algorithm in which instead of starting Markov chains from random
configurations and waiting until equilibrium is reached, each chain is initialized
with a data sample, and only a few Njy;c Gibbs sampling steps are applied before
evaluating the gradient. In practice, we set Nchains = Npatch, and for a given SGD
step, we use the same data samples for evaluating the data average of Eqn. (4.1)
and for initializing the MCMC chains that will be used; the gradient therefore
quantifies a ‘contrast” between the initial data and the chains that have "diverged’
away from them. The intuition behind CD is that if we have P ~ P;, the Gibbs
sampling leaves both the model and data distribution invariant, such that the
gradient vanishes. Conversely, if we update the parameters such that the Gibbs
sampling step(s) leave invariant the data distribution, we should bring P close to
P;. For instance, for a data set constituted by two handwritten digits (a 0 and a
1), CD learns by "digging’ the energy landscape around the two original samples,
see Fig. (4.1). More formally, Bengio and Delalleau later constructed a formal

4.1 BACKGROUND 55

Effective energy — log P(hy,hs) Effective energy — log P(hy,hs)
(before training) (after training)

0.012

~0.08
0.010 301

~0.10
0.008 201

—0.12 A 10 1

0.006

ho

0

—0.14 0.004

0.002 -101
~0.16

—20
0.000
—0.18 A
—30

—0.002

T T T T T T T T T
~0.20 4 -40 -30 -20 -10 0 10 20 30 40

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

hy ha

—0.004

Figure 4.1: CD learning on a data set constituted by two digits. Energy landscape in
hidden layer representation P(h) before (left) and after (right) training; red
dots denote the two data samples. Here, CD successfully digs attractors
around the two samples

series expansion of the log-likelihood via Gibbs updates, and showed that CD
learning is equivalent to a gradient descent over the truncated log-likelihood
expansion [100]. Compared to the original Monte Carlo learning algorithm,
CD is biased but much faster: it avoids the long 'burn-in” time necessary for
Markov Chains to reach high-probability configurations, and prevents them
from being stuck in a mode of the model, as they are each time initialized in
a different mode. Using CD, Hinton presented the first successful training of
RBM on a data set of honorable size, namely the MNIST handwritten digits
data set. Though strokes-like features can be found, the samples generated
by the model are not very good. This is because the Monte Carlo sampling
explores only a neighborhood of the data samples, such that regions far away
from the original data are never seen. This is problematic because learning some
samples can increase the probability of other configurations away from them;
think for instance of the Hopfield model: learning M patterns can generate
high-probability spurious states. In Fig. (4.2), we show a similar example with
three digits instead of two. CD learning fails to get rid of spurious states
because samples (green dots) cannot escape from the local attractor, even after
500 Gibbs steps. As for PCD (see below) CD learning can lead to divergence of
the likelihood [75, 101, 102].

56

THE MOMENT EVALUATION PROBLEM

Effective energy — log P(h1,hs)
(after training)

200
80 -
175
60 -

40 1
125

20 A

.

—20 A
.)

25

100

75

—60 - : . T T T T 0
—-40 -20 0 20 40 60

h

Figure 4.2: Same with three digits. Green dots indicate CD samples with 500 steps,
starting from the data instances; they cannot reach the low-energy spurious
attractors, though they have low energy as well

4.1.2 Persistent Contrastive Divergence

Instead of initializing the Markov Chains from samples at each gradient update,
Tieleman and Hinton later proposed to maintain the same set of (persistent)
Markov chains from one gradient update to the other, performing only a
tew Njic steps between each update [103]. The intuition behind Persitent
Contrastive Divergence (PCD) is that provided that the samples at a given time
are effectively at equilibrium and the probability distribution varies slowly from
one update to the other, then only a few steps should be required to adjust
to the new equilibrium distribution. Indeed, it can be shown that when the
learning rate tends to zero, PCD gives exactly samples from the probability
distribution [104]. In practice, due to slow mixing rates, samples from PCD are
often stuck in one mode, and the Markov Chains are unable to track global
evolutions of Py, such as the apparition of spurious modes, or the relative
probabilities of each mode. Consider for instance a trivial data set with N = 2
Bernoulli units, and pggp = p11 = 0.48, po1 = p10 = 0.02. We train a RBM with a
single Bernoulli hidden unit, using either exact moment evaluation (there are
only 8 states) or PCD (with 1 or 2 Gibbs steps between each update), using
a fixed learning rate Ir = 0.1, and Npatch = Nchains = 10. The exact method
quickly converges to the op<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>